. . . % 1 5 . 3 3 . . ‘ . . . . ! a . . i : A . A 4 ! 5 2 . A 1 : : : : n a . . . . ‘ A . . . A . m L u F m e w m k . W . . . v . . ) u . . . . . . . . . i f . h : . . " v e ' a « ‘ c : i m . ? * » 1 . w 3 a o $ . l I . , . u 4 . . L M W W W M k A , . . . c h . ” a w ” u . 5 1 . . . . . . . . . A . A fi f n ‘ m v A . A . . 1 . . - . . . I 1 e . v . l A . . A t a . . . . I . I » ! O W E ” . r . F 4 . . W A , . . . » A , M m u h . ‘ a n . . ? W a . fl w u u . . : ¢ m . V . d : ” y a n m m ‘ w . . . a " ; . . ” E . . . fl a w } . A . . 4 ) 0 . . . . . . A i . 4 . 3 A ~ I a . » “ m m . . . “ i f . . . A . * C e J . M a I C “ h * ; c h ¥ m C a \ e t o e m s p h ; O o u p f a u D n m “ n \ " e e - \ w \ c " w a \ “ . D D r T N e — A m r a n e b s ‘ u L ‘ t a k ‘ i - j \ t I ( w E v ‘ g O — s M ‘ W E S T H E S I S 5 ’ T h i s i s t o c e r t i f y t h a t t h e d i s s e r t a t i o n e n t i t l e d p r e s e n t e d b y K e m a l \ l . C O i O A C t fl h a s b e e n a c c e p t e d t o w a r d s f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r P L D d e g r e e i n C ’ l ’ fl w a é ‘ f / , C T . 1 ’ L L ( ( 1 / : M a j o r p r o f e s s o r l ” ‘ " " ‘ 7 ’ D a t e 0 2 / 8 4 " / C 1 0 ’ M S U i s a n A f f i r m a t i w A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 0 - 1 2 7 7 1 i ‘ t L ‘ U E n i i E h v R g i e c i a r A s n R S i t t Y a y t e P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T o A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . M A Y B E R E C A L L E D w i t h e a r l i e r d u e d a t e i f r e q u e s t e d . D A T E D U E D A T E D U E D A T E D U E 6 / 0 1 c : / C I R C / D a t o D u e . p 6 5 — p . 1 5 I n t e r a c t I n t e r a c t i o n s o f D i n u c l e a r T r a n s i t i o n M e t a l C o m p o u n d s w i t h D N A N u c l e o h a s e s a n d R e l a t e d N i t r o g e n D o n o r L i g a n d s V o l u m e I B y K e m a l V . C a t a l a n A D i s s e r t a t i o n S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y I n p a r t i a l f u l fi l l m e n t o f t h e r e q u i r e m e n t s F o r t h e d e g r e e o f D O C T O R O F P I I I L O S P I I Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 9 3 : 5 2 : 1 3 : 2 ; “ . 9 . a n w a g m m . . ‘ 7 ‘ w t ‘ . 7 r 9 ” U h — v i : P O . H » . . . O . — . . J o b ) 0 _ ” n 1 , “ w . . r f r ( t o C _ 4 ‘ 4 — J - o h n s . . 3 r u n 5 . : ‘ " . ’ h ‘ 1 ‘ » ) I . T ‘ . . . l . t . . r r a t / ( v r r 1 . 3 . : s b ? H 1 I r } : { 0 : . » ( r w ( — . 4 . . . . . O O ” . 0 a L : w a r n — ( p r fl a r 0 t a r o / y ; ; : p . . t M M “ P S / w a x ' . A 1 m a k i n g ! “ . 4 “ L 2 3 ” n £ 3 1 1 . ) . . . . 1 J v . r . . I D m V ( W A N T u ; J a m . “ 2 . 3 . , ” 1 A . . . 4 . A . b v ! ‘ . O L ; E ? H 7 . “ h i 1 . _ . . v b d i p ! V . . I ; U r . w n a 4 ’ l - v : 2 . I . . . r . ( V e r J T h e I n t e r a c t i o n s o f D i n u c l e a r T r a n s i t i o n m e t a l C o m p o u n d s w i t h D N A N u c l e o b a s e s a n d R e l a t e d N i t r o g e n D o n o r L i g a n d s K e m a l V . C a t a l a n M o n o n u c l e a r t r a n s i t i o n m e t a l c o m p o u n d s s u c h a s c i s p l a t i n , i p r o p l a t i n a n d c a r b o p l a t i n a r e w e l l k n o w n f o r t h e i r e x t r a o r d i n a r i l y h i g h c a r c i n o s t a t i c a c t i v i t y . Y e a r s o f r e s e a r c h h a v e b e e n d e v o t e d t o t h e e l u c i d a t i o n o f t h e i r m e c h a n i s m o f a c t i o n . T h e g e n e r a l l y a c c e p t e d m o d e l i s t h e i n h i b i t i o n o f D N A r e p l i c a t i o n b y t h e c o v a l e n t b i n d i n g o f t w o a d j a c e n t g u a n i n e b a s e s t h r o u g h t h e i r r e s p e c t i v e N 7 a t o m s t o t h e p l a t i n u m m e t a l c e n t e r . O t h e r t r a n s i t i o n m e t a l c o m p o u n d s a r e k n o w n t o e x h i b i t c o n s i d e r a b l e a n t i c a n c e r a c t i v i t y t h a t i s a l s o a t t r i b u t e d t o d i r e c t m e t a l - D N A i n t e r a c t i o n s . I n t h i s v e i n , w e a r e i n v e s t i g a t i n g t h e p r e f e r r e d D N A b i n d i n g s i t e s a s w e l l a s t h e e x a c t b i n d i n g m o d e s o f d i n u c l e a r t r a n s i t i o n m e t a l c a r b o x y l a t e s o f t h e t y p e M 2 ( 0 2 C R ) 4 , M 2 X 4 ( 0 2 C R ) 2 a n d M 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( M = R u , R b a n d R e ; R = C H 3 , C H 2 , C H 3 , C H 2 C H 2 C H 3 ; D T o l F = d i - p - t o l y l f o r m a m i d i n a t e ; X = h a l i d e ) . R e c e n t s t u d i e s i n o u r l a b o r a t o r i e s h a v e e l u c i d a t e d u n p r e c e d e n t e d b r i d g i n g m o d e s f o r t h e m o d e l n u c l e o b a s e s 9 — e t h y l g u a n i n e a n d 9 - e t h y l a d e n i n e . I n a d d i t i o n , t h e s y n t h e s i s a n d s p e c t r o s c o p i c c h a r a c t e r i z a t i o n o f t h e r e a c t i o n p r o d u c t s o f t h e s e m e t a l c o m p o u n d s w i t h t h e t w e l v e b a s e p a i r o l i g o n u c l e o t i d e , d ( 5 ’ - C C T C T G G T C T C C - 3 ’ ) , h a v e b e e n p e r f o r m e d . O t h e r s t u d i e s i n v o l v i n g t h e p o l y m e r a s e c h a i n r e a c t i o n ( P C R ) i n d i c a t e t h a t t h e D N A r e p l i c a t i o n p r o c e s s i s i n h i b i t e d b y c o v a l e n t m e t a l b i n d i n g t o t h e t e m p l a t e s t r a n d . T h e P C R r e s u l t s a l o n g w i t h 1 H N M R s p e c t r o s c o p i c , H P L C a n d X - r a y c r y s t a l l o g r a p h i c r e s u l t s w i l l b e p r e s e n t e d . C ° p l fi g h t 1 K a r m a ] V _ C 1 9 9 8 C o p y r i g h t b y K e m a l V . C a t a l a n 1 9 9 8 E E l S S S T T l O O O F F F E N T E L L L C T F C R A l ( C 1 C H X P T E R I I A 2 . 1 ’ ) L i s t o f l 1 . I n t r o 2 . E X p e A . P ' B . s ; T a b l e o f C o n t e n t s P a g e L I S T O F F I G U R E q u L I S T O F C O M P O U N D S x m C H A P T E R I . I N T R O D U C T I O N 1 1 . A n t i c a n c e r A c t i v i t y o f C i s p l a t i n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 . D i r h o d i u m C o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3 . R e a c t i o n s w i t h O l i g o n u c l e o t i d e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 C H A P T E R H . T H E R E A C T I O N S O F 9 - E T H Y L A D E N I N E ( 9 - E t A H ) A n d 9 - E T H Y L G U A N I N E ( 9 - E t G H ) w i t h [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 1 . I n t r o d u c t i o n 3 4 2 . E x p e r i m e n t a l S e c t i o n 4 0 A . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 B . S y n t h e s e s 4 l i . S t a r t i n g M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 l i i . R e a c t i o n P r o c e d u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 ( 1 ) M o d i fi e d P r e p a r a t i o n o f R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) 4 2 i v ( 2 ) M o d i fi e d P r e p a r a t i o n o f 9 - E t h y l a d e n i n e ( 9 - E t A H ) . . . . . . 4 2 ( 3 ) [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . . . . . . . . . . . . . . . . . . . . . 4 3 ( 4 ) N M R S c a l e R e a c t i o n o f ( 1 ) w i t h 9 - E t A H . . . . . . 4 3 ( 5 ) P r e p a r a t i o n o f R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 ( H Z O ) ( 6 ) . . . . 4 3 C . X - r a y C r y s t a l l o g r a p h y a n d S t r u c t u r e S o l u t i o n . . . . . . . . . . . . . . . . . . . . . 4 4 ( 1 ) R h 2 ( D T O l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) 4 5 ( 2 ) [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] ( B F 4 ) 2 ( 4 ) . . . . . . . 4 6 ( 3 ) [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] ( B F 4 ) 2 ( 3 ) . . . . . . . . 4 7 ( 4 ) R h 2 ( D T o l F ) 2 ( 0 2 C C H 3 ) 2 ( H 2 0 ) ( 6 ) 4 9 . R e s u l t s a n d D i s c u s s m n S O A . M o d i fi e d P r e p a r a t i o n o f R h 2 ( f o r m ) ( O z C C F 3 ) 2 1 4 ( 1 ) . . . . . . . . . . . . . . . 5 0 ( 1 ) S y n t h e s e s S O ( 2 ) M o l e c u l a r S t r u c t u r e o f ( l ) 5 1 B . R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) ( 1 ) S y n t h e 5 1 5 5 4 ( 2 ) E l e c t r o c h e m i s t 1 y o f ( 3 ) 5 5 ( 3 ) M o l e c u l a r S t r u c t u r e o f ( 3 ) 5 5 ( 4 ) 1 H N M R S p e c t r o s c o p i c D a t a o f ( 3 ) 6 2 C . R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) w i t h ( 1 ) S y n t h e s e 5 6 3 ( 2 ) E l e c t r o c h e m i s t r y o f ( 4 ) 6 6 ( 3 ) 1 H N M R s t u d i e s o f ( 4 ) 6 7 ( 4 ) M o l e c u l a r s t r u c t u r e o f ( 4 ) 7 1 D . R e a c t i o n o f R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) ( 1 ) S y n t h e 5 1 5 7 3 ( 2 ) 1 H N M R S t u d i e s o f ( 5 ) 7 5 ( 3 ) M o l e c u l a r S t r u c t u r e o f ( 5 ) 7 7 E . P r e p a r a t i o n o t h 2 ( D T o l F ) 2 ( 0 2 C C H 3 ) 2 ( H 2 0 ) ( 6 ) . . . . . . 7 8 ( 1 ) S y n t h e 3 1 s 7 8 ( 2 ) M o l e c u l a r S t r u c t u r e o f ( 6 ) 8 1 4 . C o n c l u s 1 0 n s 8 4 5 . L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 C H A P T E R I I I . D I R H O D I U M F O R M A M I D I N A T E C O M P O U N D S W I T H N I T R O G E N C H E L A T E S A S M I M I C S F O R 9 - 1 . I n t r o d u c t l o n 9 7 1 E x p 6 A . P ? 8 . 8 2 . E x p e r i m e n t a l S e c t r o n 1 0 4 A . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 4 B . S y n t h e s r l e 4 i . S t a r t i n g M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 4 i i . R e a c t i o n P r o c e d u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 5 ( 1 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ 1 3 1 3 . ] 2 ( 7 a , 7 b ) . . 1 0 5 ( 2 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ 1 3 1 2 . ] 2 ( 8 ) . . . . . . . . . 1 O 6 ( 3 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) . . . . . . . 1 0 7 ( 4 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) . . . . . 1 0 7 ( 5 ) P r e p a r a t i o n o f t h e m i x t u r e o f [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 4 ] [ B F 4 ] 2 ( 7 ) a n d [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 ) . . . 1 0 7 ( 6 ) R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 ) w i t h 9 - e t h y l a d e n i n e ( 9 - E t A H ) . . . . . . . . 1 0 8 ( 7 ) R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 [ B F 4 ] 2 ( 7 ) w i t h 9 - e t h y l g u a n i n e ( 9 - E t G H ) 1 0 9 ( 8 ) R e a c t i o n o f [ R h 2 ( D T 0 1 F ) 2 ( b e ) 2 ( C H 3 C N ) I B F 4 ] 2 ( 8 ) C . X - r a y C r y s t a l l o g r a p h y a n d S t r u c t u r e S o l u t i o n . . . . . . . . . . . 1 1 0 ( l ) [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) . . . . . . . . . 1 1 1 ( 2 ) [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ B F 4 ] 2 ( 7 b ) . . . 1 1 2 ( 3 ) [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 a ) . . . 1 1 3 ( 4 ) [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( H 2 0 ) ] [ B F 4 ] [ B P h 4 ] ( 8 b ) . . . 1 1 4 ( 5 ) [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 6 ( 6 ) [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) ] [ B 1 3 4 ] ; ( 1 0 ) . . . . . . . 1 1 7 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 7 A . R e a c t i o n s o t h Z L L I I a n d b p y 1 1 7 ( 1 ) S y n t h e s e s l l 7 ( 2 ) E l e c t r o c h e m i s t r y o f ( 7 ) a n d ( 8 ) 1 1 9 ( 3 ) 1 H N M R s t u d i e s o f ( 7 ) a n d ( 8 ) 1 2 0 ( 4 ) M o l e c u l a r S t r u c t u r e s o f ( 7 a ) a n d ( 7 b ) 1 2 4 ( 5 ) M o l e c u l a r S t r u c t u r e s o f ( 8 a ) a n d ( 8 b ) 1 3 0 B . R e a c t i o n s o t h z n ’ H a n d l , 1 0 - p h e n a n t h r o l i n e . . . . . . . . . . . . 1 3 7 ( 1 ) S y n t h e s e s l 3 7 ( 2 ) E l e c t r o c h e m i s t r y o f ( 9 ) a n d ( 1 0 ) 1 3 7 ( 3 ) ' H N M R s t u d i e s o f ( 9 ) a n d ( 1 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 O ( 4 ) M o l e c u l a r S t r u c t u r e s o f ( 9 ) a n d ( 1 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 2 C . R e a c t i o n s o f ( 7 ) a n d ( 8 ) w i t h 9 - E t A H a n d 9 - E t G H . . . . . . 1 4 5 ( l ) S y n t h e s e s . . . . . . . . . . . . . . . . . . 1 4 5 ( 2 ) 1 H N M R S t u d i e s o f t h e R e a c t i o n B e t w e e n ( 7 ) a n d 9 - E t G H . . . . . . . . . . . . . . . . . . . l 4 6 C h a p t e r I ( ' 3 ) 1 t 1 . 1 8 5 . L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 C h a p t e r I V . T H E R E A C T I O N S O F D I R H D O I U M C A R B O X Y L A T E C O M P O U N D S W I T H D N A 1 5 7 I . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 8 2 . E x p e r i m e n t a l S e c t i o n 1 6 4 A . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 4 B . S y n t h e s i s . . . . . 1 6 6 i . S t a r t l n g M a t e n a l s 1 6 6 i i . R e a c t i o n P r o c e d u r e s 1 6 7 ( 1 ) R e a c t i o n o f R h 2 ( O z C C H 3 ) 4 ( H 2 O ) 2 ( 1 1 ) w i t h m 5 ’ - ’ p G p G - 3 D i n u c l e o t i d e . . . . . . . . . . . . . . . . 1 6 7 ( 2 ) R e a c t i o n o f [ R h 2 ( O z C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) w i t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e ” . . . . . . . 1 6 7 ( 3 ) R e a c t i o n o f R h 2 ( D T o l F ) 2 ( O Z C C F 3 ) 2 ( H 2 O ) 2 ( 3 ) w i t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e ” 1 6 8 ( 4 ) R e a c t i o n o f R h 2 ( 0 2 C C H 3 ) 4 ( I - 1 2 O ) 2 ( 1 1 ) w i t h 5 ’ - C C T C T G G T C T C C - B ’ ( G G - 1 2 m e r ) . . . . . . 1 6 9 ( 5 ) R C a C t h I l 0 f [ R h 2 ( 0 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) W l t h G G - l 2 m e r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 3 . R e s u l t s a n d D i s c u s s i o n . . . 1 7 1 A . R e a c t i o n 0 f R h 2 ( 0 2 C C H 3 ) 4 ( I ' 1 2 0 ) 2 ( 1 1 ) ” . w i t h t h e 5 ’ - p G p G - - 3 ’ D i n u c l e o t i d e . . . 1 7 1 ( l ) S y n t h e s i s ” . 1 7 1 ( 2 ) H P L C C h r o m a t o g r a p h y o f 5 ’ - p G p G - 3 ’ . . . . . 1 7 2 ( 3 ) 1 H N M R S p e c t r o s c o p i c S t u d i e s o f 5 ’ - p G p G - 3 ’ a n d ” [ R h 2 ( O z C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) 2 ( l 3 ) . . . . . . 1 7 5 B . R C a C t h I ] O f { R h 2 ( O 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) W l t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e ( 1 3 ) . . . . . 1 8 1 ( l ) S y n t h e s i s . . . . . . 1 8 1 ( 2 ) H P L C C h r o m a t o g r a p h y . . 1 8 1 C . R e a c t i o n o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H z O ) 2 ( 3 ) w i t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e ( 1 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 4 ( 1 ) S y n t h e s i s . . . . . . . . . . 1 8 4 D . R e a c t i o n o f R h 2 ( O Z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) w i t h G G - I 2 m e r . . . . . . . . 1 8 5 ( l ) S y n t h e s i s . . . . 1 8 5 ( 2 ) 1 - I P L C C h r o m a t o g r a p h y 1 8 8 ( 3 ) 1 H N M R S p e c t r o s c o p y . . . . . . . . . . . 1 8 8 E . E [ R h 2 ( O 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 1 2 ( 1 2 ) W l t h G G - l 2 m e r . . . . . . . . 1 9 4 ( l ) S y n t h e s i s . . . . . . . . . . . . . . . . . . . l 9 4 ( 2 ) H P L C C h r o m a t o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 ) 1 H N M R S p e c t r o s c o p y . . . . . . . . . . . . . . . . . . . . . 4 . S u m m a r y . . . . . 5 . L i s t o f R e f e r e n c e s . . C h a p t e r V . I n h i b i t i o n o f D N A R e p l i c a t i o n 1 I n t r o d u c t i o n . . . A . I n h i b i t i o n o f D N A R e p l i c a t i o n b y C i s p l a t i n . . . B . I n h i b i t i o n o f D N A R e p l i c a t i o n b y D i r h o d i u m T e t r a c a r b o x y l a t e s . . . . . . . . . . . . . . . 2 . E x p e r i m e n t a l . . . . . . . . . . . . . . . . . 2 1 1 . . . 2 1 2 A . S y n t h e s i s . . . 3 . R e s u l t s ” A . A u t o r a d i o g r a p h o f t h e P C R I n h i b i t i o n b y R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 2 ) ( 1 1 ) - ~ B . A u t o r a d i o g r a p h o f t h e P C R I n h i b i t i o n b y [ R 6 2 ( O 2 C C H 2 C H 3 ) 4 ] [ 8 0 4 ] . . . 4 . C o n c l u s i o n s . . 5 . L i s t o f R e f e r e n c e s . . . . . . . . . . . . . . . I . . . ’ . : . ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A p p e n d i x . 1 9 4 . 1 9 4 . . . . . 1 9 8 . . . . . . 2 0 0 . . . . . . 2 0 2 . . . 2 0 3 . 2 0 3 . . 2 0 8 . 2 1 1 . . . 2 1 2 . . . . . . 2 1 9 . . . . 2 2 1 . 2 2 2 2 2 3 T T a a b b l l e e 1 1 . . 1 3 T a b l e 2 . 1 T a b l e 1 . 3 T a b l e 1 . 4 T a b l e 1 . 5 T a b l e 1 . 6 T a b l e 1 . 1 T a b l e 1 . 2 T a b l e 1 . 3 T a b l e 1 . 4 T a b l e 1 . 5 T a b l e 1 . 6 T a b l e 2 . 1 T a b l e 2 . 2 T a b l e 2 . 3 T a b l e 2 . 4 T a b l e 2 . 5 T a b l e 2 . 6 L i s t o f T a b l e s P a g e C o m p a r i s o n o f A - , B - , Z - D N A 7 p K a V a l u e s f o r D N A N u c l e o b a s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 A c t i v i t y o f D i r h o d i u m C o m p o u n d s A g a i n s t H u m a n O r a l C a r c i n o m a K B C e 1 1 5 2 7 S u r v i v a l S t u d i e s w i t h S w i s s a l b i n o m i c e b e a r i n g E h r l i c h a s c i t e s t u m o r s Z 8 R h 2 ( O z C E t ) 4 ( p o l y - A ) a g a i n s t E h r l i c h a s c i t e s . . . . . . . . . . . . . . . . . . . . . 2 9 I n V i v o S t u d i e s o f R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( H 2 0 ) 2 A g a i n s t Y o s h i d a A s c i t e s S a r c o m a C e l l s . . . . . . . . . . 3 0 C r y s t a l l o g r a p h i c D a t a f o r R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) ( l ) , R h 2 ( D T 0 1 F ) 2 ( 0 2 C C H 3 ) 2 ( H 2 0 ) ( 6 ) , [ R h 2 ( D T 0 1 F ) 2 ( 9 ' E t A H ) : ( C H 3 C N ) 1 [ B F 4 ] 2 ( 4 ) , [ R h 2 ( D T 0 1 F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) . . . . . . . . . . . . . . 8 6 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) . . . . . . . . . 8 8 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B 1 3 4 ] ; ( 4 ) . . . . . . . . . . . . . . . . . . . . . 9 0 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ 1 3 1 7 . ] 2 ( 3 ) . . . . . . 9 1 N M R S p e c t r o s c o p i c D a t a f o r 3 , 4 , 5 , 6 a n d 7 . . . . . . . . . . . . . . . . . . . . . 9 2 T a b l e 3 . 1 T a b l e 3 . 2 T a b l e 3 . 3 T a b l e 5 . 1 T a b l e 3 . 1 T a b l e 3 . 2 T a b l e 3 . 3 T a b l e 5 . 1 C r y s t a l l o g r a p h i c D a t a f o r [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 3 ] [ B F 4 1 2 ‘ 0 C ( C H 3 ) 2 ' H 2 0 ( 7 a ) , [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 4 ] [ B F 4 1 2 ( 7 b ) , 1 R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( C H 3 C N ) 1 [ B F 4 1 2 ( 8 3 ) , [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( H 2 0 ) 1 [ B F 4 1 [ B P h 4 1 ' O C ( C H 3 ) 2 ' 3 C H 3 C H 2 0 2 C H Z C H 3 ( 8 b ) , [ R h 2 ( D T 0 1 F ) 2 ( p h e n ) ( C H 3 C N ) ] [ B F 4 ] 2 ' C H 3 C H 2 0 2 C H 2 C H 3 ‘ 4 H 2 0 ( 9 ) , [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) . . . . . . . 1 4 8 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 3 1 [ B F 4 1 2 ' O C ( C H 3 ) 2 ' H 2 0 ( 7 a ) . - - - 1 4 9 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ B 1 3 4 ] ; ( 7 b ) . . . 1 5 0 S u m m a r y o f t h e h a n ’ I I c o n c e n t r a t i o n s u s e d t o i n h i b i t D N A r e p l i c a t i o n b y B e a r a n d c o w o r k e r s . . . . . . 2 1 5 x i i F i g u r e 1 . 1 F i g u r e 1 . 2 F i g u r e 1 . 3 F i g u r e 1 . 4 F i g u r e 1 . 5 F i g u r e 1 . 6 F i g u r e 1 . 7 F i g u r e 1 . 8 F i g u r e 1 . 9 F i g u r e 1 . 1 0 F i g u r e 2 . 1 F i g u r e 2 . 2 F i g u r e 2 . 3 F i g u r e 2 . 4 F i g u r e 2 . 5 L i s t o f F i g u r e s P a g e A n t i c a n c e r a c t i v e c o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 T h e f o u r n u c l e i c a c i d s a n d t h e p h o s p h a t e b a c k b o n e o f D N A . . . . 5 T h e t h r e e s t r u c t u r a l t y p e s o f D N A , A , B , a n d Z . 7 T h e D N A b i n d i n g m o d e s o f c i s p l a t i n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 D i s t o r t i o n o f d e o x y r i b o s e r i n g o f D N A d u e t o p l a t i n a t i o n . . . . . . 1 1 M o l e c u l a r s t r u c t u r e o f c i s - P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) . . . 1 6 S t r u c t u r e o f a d o u b l e - s t r a n d e d D N A m o l e c u l e c o o r d i n a t e d t o c i s p l a t i n . . . . . . . . . . . 1 8 T h e d i n u c l e a r t r a n s i t i o n m e t a l a n t i c a n c e r a g e n t s . . . . . . . . . . . . . . . . . 2 0 S c h e m a t i c r e p r e s e n t a t i o n o f t h e c h e l a t i n g p o s s i b i l i t i e s f o r 2 , 2 ’ - b i p y r i d i n e , a d e n i n e , g u a n i n e a n d c y t o s i n e . . . . . . 2 3 T h e a n t i c a n c e r a c t i v e c o m p o u n d R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 L 2 . . . 2 4 S c h e m a t i c r e p r e s e n t a t i o n o f a n t i c a n c e r a c t i v e c o m p o u n d s . . . . . 3 5 P L U T O d i a g r a m o f R h 2 ( 0 2 C C H 3 ) 4 ( 1 - m e t h y l a d e n o s i n e ) 2 r e p l o t t e d f r o m X - r a y c o o r d i n a t e s ” . . . . . . . . . . . . . . . 3 6 S c h e m a t i c r e p r e s e n t a t i o n o f t h e H - H a n d H — T b r i d g i n g m o d e s o f t h e D N A p u r i n e s 9 — E t G H a n d 9 - E t A H t o d i n u c l e a r t r a n s i t i o n m e t a l c e n t e r s . . . . . . . . . . . . . . . . . . . 3 8 E x a m p l e o f a c h e l a t i n g 9 - E t A H l i g a n d d e p i c t e d i n t h e O R T E P r e p r e s e n t a t i o n o f [ R h 2 ( 0 2 C C H 3 ) 2 ( b p y ) ( 9 - E t A ) ] 2 + . . . . . . . . . . . . . . . 3 9 O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 1 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l 5 3 x i i i I - " j E ; ( D I . . . 1 4 5 ? 5 - - F i g u r e 2 . 1 F i g a r e 3 . 1 fi g u r e 2 . ] r 1 E — " a r e 2 . 1 5 3 3 5 2 1 F i g u r e 2 , 1 t i l g ‘ a r e 3 1 ‘ é ' l ’ r e 2 . 1 f i r m , e m e 3 l F i g u r e 2 . 6 F i g u r e 2 . 7 F i g u r e 2 . 8 F i g u r e 2 . 1 0 F i g u r e 2 . 1 1 F i g u r e 2 . 1 2 F i g u r e 2 . 1 3 F i g u r e 2 . 1 4 F i g u r e 2 . 1 5 F i g u r e 2 . 1 6 F i g u r e 2 . 1 7 F i g u r e 2 . 1 8 F i g u r e 3 . 1 C y c l i c v o l t a m m o g r a m s i n 0 . 1 M e l e t r o l y t e C H 3 C N a t a s c a n r a t e o f 2 0 0 m V / s u s i n g a P t e l e c t r o d e f o r ( a ) [ R h 2 ( D T 0 1 F ) 2 ( C H 3 C N ) e ] [ B F 4 1 2 ( 2 ) . ” a n d . . . ( b ) [ R h 2 ( D T 0 1 F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) . . . . . . 5 8 O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 3 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . ” . . . . . . . . 5 9 S c h e m a t i c r e p r e s e n t a t i o n o f p r o t o n a t e d a n d d e p r o t o n a t e d 9 - e t h y l g u a n i n e . . . . . . . . . . . . . . . . . . 6 0 C y c l i c v o l t a m m o g r a m s i n 0 . 1 M e l e t r o l y t e C H 3 C N a t a s c a n r a t e o f 2 0 0 m V / s u s i n g a P t e l e c t r o d e f o r ( a ) [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C l \ D ] [ B F 4 ] 2 ( 4 ) . . . . . . . . . . 6 5 S c h e m a t i c r e p r e s e n t a t i o n o f t h e t a u t o m e r s o f 9 - E t A H . . . . . . . . . . 6 6 1 H N M R s p e c t r u m d e p i c t i n g t h e H 8 r e g i o n o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) i n C D 3 C N a t 2 5 ° C a n d ’ 3 2 ° C . . . . . . 6 9 1 H N M R s p e c t r u m d e p i c t i n g t h e H 8 r e g i o n o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) i n a c e t o n e - d 6 a t 2 5 ° C a n d ’ 4 0 ° C . . 7 0 O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 4 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . ” 7 4 1 H N M R s p e c t r u m d e p i c t i n g t h e H 8 r e g i o n o f R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( 1 ) a n d 9 - E t A H . . . . . . 7 6 P r o p o s e d s t r u c t u r e o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( O z C C F 3 ) 2 ( 5 ) . . 7 8 O R T E P r e p r e s e n t a t i o n o f R h 2 ( 0 2 C C H 3 ) 4 ( H D T o l F ) 2 r e p l o t t e d f r o m a t o m i c c o o r d i n a t e s . . . . . . . . . . . . . . . . 8 0 O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 6 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . " 8 3 O R T E P r e p r e s e n t a t i o n o f [ R h 2 ( 0 2 C C H 3 ) 3 ( b p y ) ( 9 - E t A ) ] . . . . . . . 9 8 x i v ? " 1 ) D J : ( . f i g u r e 3 F i g u r e 3 T i g u 1 e 3 F i g u r e 3 F i g u r e 3 . 2 F i g u r e 3 . 3 F i g u r e 3 . 4 F i g u r e 3 . 5 F i g u r e 3 . 6 F i g u r e 3 . 7 F i g u r e 3 . 8 F i g u r e 3 . 9 F i g u r e 3 . 1 0 F i g u r e 3 . 1 1 F i g u r e 3 . 1 2 F i g u r e 3 . 1 3 F i g u r e 3 . 1 4 F i g u r e 3 . 1 5 F i g u r e 4 . 1 F i g u r e 4 . 2 O R T E P r e p r e s e n t a t i o n o f t h e p o l y m e r [ R h 2 ( 0 2 C C H 3 ) 3 ( b p y ) ( 9 - E t G H ) x 1 [ B F 4 ] 2 x Y C 5 H 1 0 0 . . . . . . . . . . 9 9 S c h e m a t i c r e p r e s e n t a t i o n o f t h e w a y t h a t 2 , 2 ’ - b i p y r i d i n e c a n m i m i c t h e c h e l a t i n g a b i l i t i e s o f a d e n i n e . . . . . . . 1 0 0 S c h e m a t i c r e p r e s e n t a t i o n o f t h e t w o p o s s i b l e b i n d i n g m o d e s o f b p y t o a d i n u c l e a r m e t a l c e n t e r . . . . . . . . . 1 0 3 C y c l i c v o l t a m m o g r a m s o f c o m p o u n d s ( 2 ) , ( 7 ) a n d ( 8 ) . . . . . . . . 1 2 1 2 - d i m e n s i o n a l 1 H N M R s p e c t r u m i n t h e a r o m a t i c b i p y r i d i n e r e g i o n o f t h e m i x t u r e o f c o m p o u n d s 7 a n d 8 . . . . . . . 1 2 2 O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 7 a . . . . . . . . . 1 2 5 P L U T O r e p r e s e n t a t i o n o f c o m p o u n d 7 b . . . 1 2 9 O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 8 a . . . 1 3 1 O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 8 a d e p i c t i n g t h e s p l a y i n g o f t h e b p y l i g a n d s . . . . . . . . . 1 3 3 O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 8 b . . . . . . . . . 1 3 5 C y c l i c v o l t a m m o g r a m s o f c o m p o u n d s ( 9 ) a n d ( 1 0 ) . . . . . . . . . . . 1 3 8 1 H N M R s p e c t r a o f c o m p o u n d s ( 9 ) a n d ( 1 0 ) d e p i c t i n g t h e a r o m a t i c r e g i o n ” . . . . . . . . . . . . . . . . . . . . . 1 4 1 O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 9 . . . . . . . . . . . 1 4 3 1 H N M R s p e c t r u m i n t h e a r o m a t i c b p y r e g i o n o f t h e p r o d u c t f r o m t h e r e a c t i o n b e t w e e n [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 4 ] 2 + ( 7 ) a n d 9 — E t G H . . . . 1 4 8 M o l e c u l a r s t r u c t u r e o f c i s - P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) . . . 1 5 9 S t r u c t u r e o f a d o u b l e - s t r a n d e d D N A m o l e c u l e c o o r d i n a t e d t o c i s p l a t m 1 6 2 F i g u r e 4 4 F i g u r e 4 . 6 T : i r e 4 . 7 ( 1 1 3 ‘ F i g u r e 4 . 8 F i g u r e 4 . 9 F i g u r e 4 . 1 0 b a r r e n : F l a m e 4 . 1 4 F i g u r e 4 . 3 F i g u r e 4 . 4 F i g u r e 4 . 6 F i g u r e 4 . 7 F i g u r e 4 . 8 F i g u r e 4 . 9 F i g u r e 4 . 1 0 F i g u r e 4 . 1 2 F i g u r e 4 . 1 4 F i g u r e 4 . 1 5 F i g u r e 4 . 1 7 F i g u r e 4 . 1 8 F i g u r e 4 . 2 0 F i g u r e 4 . 2 ] S t r u c t u r e o f R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) f r o m m o l e c u l a r m o d e l i n g s t u d 1 e s l 6 3 O v e r l a y o f t h e s u g a r - p h o s p h a t e b a c k b o n e s o f c i s - P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) a n d R h 2 ( O z C C H 3 ) 2 ( 5 ’ - p G p G - 3 ) f r o m m o l e c u l a r m o d e l i n g s t u d i e s . . . . . . . . . . . . . . . . . . . . . . . 1 6 5 R o t a t i o n a r o u n d t h e N - g l y c o s i d i c b o n d o f g u a n o s i n e . . . . . . . . . 1 7 4 H P L C c h r o m a t o g r a m o f 5 ’ - p G p G - 3 ’ . . . . . . . 1 7 6 1 H N M R s p e c t r u m o f 5 ’ - p G p G - 3 ’ i n D 2 0 . . . . . . . 1 7 7 1 H N M R s p e c t r u m i n D 2 0 d e p i c t i n g t h e H 8 r e g i o n o f 5 ’ - p G p G - 3 ’ a f t e r H P L C p u r i fi c a t i o n . . . . . . . . 1 7 8 1 H N M R s p e c t r u m o f t h e p r o d u c t s f r o m t h e r e a c t i o n o f ( 1 1 ) w i t h i m p u r e 5 ’ - p G p G - 3 ’ . . . 1 7 9 T h e H P L C c h r o m a t o g r a m o f R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ . . . ) ( H 2 0 ) 2 ( 1 3 ) . . . . . . . . . . . . 1 8 2 H P L C c h r o m a t o g r a m o f R h 2 ( 0 2 C C H 3 ) x ( G G - 1 2 m e r ) . . . . . . . . . . 1 8 6 ‘ H N M R s p e c t r u m o f d s [ R h 2 ( 0 2 C C H 3 ) x ( G G - 1 2 m e r ) ] . . . . . . . . . 1 8 9 1 H N M R s p e c t r a d e p i c t i n g t h e i m i n o r e g i o n o f d s [ R h 2 ( 0 2 C C H 3 ) x ( G G - l 2 m e r ) ] . . . . . . . . . 1 9 2 1 H N M R s p e c t r a o f d s ( G G - - 1 2 m e r ) a n d d s [ R h O A c ) x ( G G - 1 2 m e r ) ] . . . . . . . . . . . 1 9 3 H P L C c h r o m a t o g r a m o f s s [ R h O A c ) x ( G G - 1 2 m e r ) ] a d d u c t . . . 1 9 6 1 H N M R s p e c t r a d e p i c t i n g t h e i m i n o r e g i o n o f d s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] . . . . . . . . . 1 9 9 " Y 1 _ . . n : é ( D t ) ! U J F i g u r e 5 . 4 F i g u r e 5 . 5 F i g u r e 5 . 6 F i g u r e 5 . 1 F i g u r e 5 . 2 F i g u r e 5 . 3 F i g u r e 5 . 4 F i g u r e 5 . 5 F i g u r e 5 . 6 S c h e m a t i c r e p r e s e n t a t i o n o f D N A r e p l i c a t i o n b y D N A p o l y m e r a s e 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 4 S c h e m a t i c r e p r e s e n t a t i o n o f t h e D N A r e p l i c a t i o n p r o c e s s o f D N A p o l y m e r a s e I ( p o l I ) i n h i b i t e d b y c i s p l a t i n . . . . . . . . . . . . . . . 2 0 7 S c h e m a t i c r e p r e s e n t a t i o n o f t h e s t e p s o f t h e P o l y m e r a s e C h a i n R e a c t i o n ( P C R ) . . . 2 1 3 S c h e m a t i c o f t h e i n h i b i t i o n o f P C R b y d i n u c l e a r t r a n s i t i o n m e t a l c o m p o u n d 5 2 1 4 A u t o r a d i o g r a p h o f t h e i n h i b i t i o n o f P C R b y R h 2 ( O z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) . . . . . . . . . 2 1 8 A u t o r a d i o g r a p h o f t h e i n h i b i t i o n o f P C R b y b r c n 0 C g ‘ - b g H W E K B ‘ E t E g < b r c m - 1 0 C 0 ’ 0 ? m o l A b b r e v i a t i o n s A n g s t r o m b r o a d B o h r m a g n e t o n w a v e n u m b e r d e g r e e c e n t i g r a d e d o u b l e t ( N M R ) , d a y , d e u t e r a t e d p a r t s p e r m i l l i o n ( p p m ) m o l a r e x t i n c t i o n c o e f fi c i e n t w a v e l e n g t h g r a m m o l e m i l l i m o l e h o u r i n f r a r e d c o u p l i n g c o n s t a n t ( N M R ) B o l t z m a n n c o n s t a n t m e g a H e r t z m o l e p e r l i t e r m e d i u m , m u l t i p l e t m i l l i l i t e r b r i d g i n g l i g a n d n a n o m e t e r n u c l e a r m a g n e t i c r e s o n a n c e f r e q u e n c y p a r t s p e r m i l l i o n T 5 1 5 U V D . \ ' : R N ; a d e d i p < 9 - E 1 9 - E t 9 - E 1 9 - E 1 D T C D P b f e m T M S s i n g l e t , s t r o n g t e t r a m e t h y l s i l a n e u l t r a v i o l e t w e a k h a l i d e d e o x y r i b o n u c l e i c a c i d r i b o n u c l e i c a c i d g u a n o s i n e a d e n o s i n e a d e n i n e o r s u b s t i t u t e d a d e n i n e b a s e s d i m e r o f D N A c o n t a i n i n g g u a n i n e 9 - e t h y l g u a n i n e 9 - e t h y l a d e n i n e 9 - e t h y l g u a n i n e d e p r o t o n a t e d a t t h e N 1 p o s i t i o n 9 - e t h l y a d e n i n e d e p r o t o n a t e d a t t h e N 6 p o s i t i o n N , N ‘ - p - t o l y f o r m a m i d i n a t e N , N ‘ - d i p h e n y l f o r m a m i d i n a t e b o t h D T o l F " a n d D P h F ' d o n o r s o l v e n t l i g a n d s C h a p t e r I I n t r o d u c t i o n 1 , A n t i - l r i o r g 1 1 1 6 1 2 1 1 m m m m a c d e v e l o p m e c h e m o t h e n t u m o r s o f a c t i x i t y o f H 3 H C 3 _ C I ' C — C - — — i H 1 N H 2 ” I I I ” N H 2 0 . . . P , / A t I 0 \ \ \ ‘ \ \ ( : l ' . “ C l \ H l . A n t i c a n c e r A c t i v i t y o f C i s p l a t i n I n o r g a n i c c o m p o u n d s h a v e b e e n u s e d m e d i c i n a l l y s i n c e a n c i e n t t i m e s . M e t a l c o m p o u n d s t h a t e x h i b i t a n t i v i r a l , a n t i - b a c t e r i a l , a n t i c a n c e r a n d a n t i - a r t h r i t i c a c t i v i t y t o n a m e a f e w , a r e i n f r e q u e n t c l i n i c a l u s e t o d a y . “ “ 1 ’ 3 T h e d e v e l o p m e n t o f c i s p l a t i n ( c i s - D D P ) a n d r e l a t e d c o m p l e x e s ( F i g u r e 1 ) f o r t h e c h e m o t h e r a p e u t i c t r e a t m e n t o f t e s t i c u l a r a n d o v a r i a n c a n c e r s a s w e l l a s t u m o r s o f t h e h e a d a n d n e c k h a s s t i m u l a t e d i n v e s t i g a t i o n o f t h e a n t i t u m o r a c t i v i t y o f a w i d e r a n g e o f t r a n s i t i o n m e t a l c o m p l e x e s . 2 C H 3 N m , , , _ _ . . . . t \ \ \ C l H 3 N / I m . . u \ \ ‘ 0 2 1 m . ( P t \ o . P t . e I n . H 3 N c 1 H 3 N ( \ 0 2 C C i s p l a t i n 1 1 ’ " ) t h C H 3 C a r b o p l a t i n F i g u r e 1 . A n t i c a n c e r a c t i v e p l a t i n u m c o m p o u n d s . 2 T h e I c l i n i c a l U S e c e n t u r y w i t r u s e d u e t o I a n t i - b a c t e r i a c o m p o u n d s p a t i e n t s u h S i d e e f f e c t s p e r i p h e r a l d a n g e r o u s t A n e v e n 1 1 1 r e l a t e d c 0 ” c a m I l O g e n i l l l l l i r i o u n , 3 t h e r a p e u t i c T h e m e d i c a l c o m m u n i t y i n i t i a l l y o p p o s e d F D A a p p r o v a l f o r t h e c l i n i c a l u s e o f c i s p l a t i n . T h i s i s n o t s u r p r i s i n g , a s t h e e a r l y p a r t o f t h i s c e n t u r y w i t n e s s e d t h e e x c l u s i o n o f h e a v y m e t a l c o m p o u n d s f r o m t h e r a p e u t i c u s e d u e t o t h e r e p l a c e m e n t o f h i g h l y t o x i c a r s e n i c , a n t i m o n y a n d m e r c u r y a n t i - b a c t e r i a l a g e n t s w i t h o r g a n i c c o m p o u n d s . A l t h o u g h t h e p l a t i n u m c o m p o u n d s c u r r e n t l y i n c l i n i c a l u s e a r e e f f e c t i v e a g a i n s t k e y d e a d l y t u m o r s , p a t i e n t s w h o a r e a d m i n i s t e r e d c i s p l a t i n a r e t h r e a t e n e d b y a r a n g e o f t o x i c s i d e e f f e c t s i n c l u d i n g n e p h r o t o x i c i t y , m y e l o s u p p r e s s i o n , o t o t o x i c i t y , n a u s e a , p e r i p h e r a l n e u r o p a t h i e s a n d c a r d i a c a b n o r m a l i t i e s . O b v i o u s l y , l e s s d a n g e r o u s t r e a t m e n t s a r e s o u g h t s o t h a t s u c h h e a l t h r i s k s c a n b e m i n i m i z e d . A n e v e n m o r e c o m p e l l i n g r e a s o n f o r f u r t h e r r e s e a r c h i n t o c i s p l a t i n a n d r e l a t e d c o m p o u n d s i s t h e r e c e n t fi n d i n g s t h a t c i s p l a t i n i t s e l f e x h i b i t s c a r c i n o g e n i c e f f e c t s , a l t h o u g h t h e e x t e n t o f c a r c i n o g e n c i t y i n h u m a n s i s u n k n o w n . 3 S e c o n d g e n e r a t i o n d r u g s h a v e b e e n d e v e l o p e d t h a t e x h i b i t h i g h t h e r a p e u t i c a c t i v i t y w i t h r e d u c e d t o x i c i t y ; t h e s e i n c l u d e c a r b o p l a t i n a n d i p r o p l a t i n ( F i g u r e 1 ) . C a r b o p l a t i n h a s r e c e n t l y b e e n a p p r o v e d i n t h e U n i t e d S t a t e s a s a m u c h l e s s t o x i c a l t e r n a t i v e t o c i s p l a t i n i n t h e t r e a t m e n t o f o v a r i a n c a n c e r a n d s m a l l l u n g c a n c e r s , a n d a n o r a l a n a l o g u e o f c i s p l a t i n h a s r e c e n t l y b e e n a p p r o v e d f o r u s e . 3 T h e c h a l l e n g e n o w f a c e d b y r e s e a r c h e r s i s t o t a i l o r a n d d e s i g n i n o r g a n i c c o m p l e x e s w i t h i m p r o v e d b i o l o g i c a l a c t i v i t y a n d 3 & d e r e s i s t a n c e l l t o x i c s i d e e f B e f o n d e s c r i p t i o n m a t e r i a l o f 2 n a m e l y , d m o n o p h o s p l d e o x y c fi i d i r a r e l i n k e d t c o f D N A i s l s t r a n d s r u n fl a b t l i z e t h e 3 3 d ] O t h e r l I 0 f t h e t h r e e m g h t ' h a n d e t W a n d s m n . r e s i s t a n c e t o p h y s i o l o g i c a l d e c o m p o s i t i o n , w i t h c o n c o m i t a n t r e d u c t i o n o f t o x i c s i d e e f f e c t s . B e f o r e p r o c e e d i n g f l u - t h e r w i t h t h i s d i s c u s s i o n , h o w e v e r , a g e n e r a l d e s c r i p t i o n o f D N A s t r u c t u r e s h o u l d b e p r e s e n t e d . D N A i s t h e g e n e t i c m a t e r i a l o f a l l l i v i n g e n t i t i e s o n E a r t h . I t i s c o m p o s e d o f f o u r n u c l e i c a c i d s , n a m e l y , d e o x y a d e n o s i n e m o n o p h o s p h a t e ( d A M P ) , d e o x y t h y m i d i n e m o n o p h o s p h a t e ( d T M P ) , d e o x y g u a n o s i n e m o n o p h o s p h a t e ( d G M P ) , a n d d e o x y c y t i d i n e m o n o p h o s p h a t e ( d C M P ) ( F i g u r e 2 ) . 4 T h e f o u r n u c l e i c a c i d s a r e l i n k e d t o g e t h e r t h r o u g h a s u g a r - p h o s p h a t e b a c k b o n e . E a c h s i n g l e s t r a n d o f D N A i s b a s e - p a i r e d t o a n o t h e r s i n g l e s t r a n d o f D N A s u c h t h a t t h e t w o s t r a n d s r u n a n t i - p a r a l l e l t o e a c h o t h e r . B a s e s t a c k i n g a n d b a s e p a i r i n g s t a b i l i z e t h e d u p l e x s t r u c t u r e o f D N A . T h e t w o s t r a n d s a r e c o i l e d a r o u n d e a c h o t h e r i n t o a h e l i x . D N A e x i s t s i n s e v e r a l t y p e s o f s t r u c t u r a l f a m i l i e s : A , B , C , a n d Z ( F i g u r e 3 ) . T a b l e l s u m m a r i z e s p e r t i n e n t s t r u c t u r a l i n f o r m a t i o n o f t h e t h r e e m a j o r t y p e s o f D N A s t r u c t u r e s . B - D N A w h i c h i s a n a v e r a g e s t r u c t u r e o f D N A , i s t h e m o s t c o m m o n a n d s t a b l e f o r m . I t c o n s i s t s o f t w o r i g h t - h a n d e d p o l y n u c l e o t i d e c h a i n s c o i l e d a b o u t a c o m m o n a x i s . T h e t w o s t r a n d s r u n a n t i - p a r a l l e l w i t h r e s p e c t t o e a c h o t h e r ( 5 ’ t o 3 ’ a n d 3 ’ t o 5 ’ ) . T h e T h y m i n e c y t o s i n e F i g u r e 2 . T h e f o u r n u c l e i c a c i d s a n d t h e p h o s p h a t e b a c k b o n e o f D N A . e b a b a s e s a t o s i n e r . s l s t T n s e s a r e i e s g a r - p i t q b T a h u l i i t h e h e h e h e l e t w e e n N A a c t e r i i a f D N A l a m e t e g T O e n c e t b D b O ( O ” a Z H h m ' x x s ] r U . d b i a p r 5 t T a s l r e e h m 5 s i . 5 p - 1‘ ; p r ; m l ' c o n f o D N A d i f f ; p h O S D h a t e b m a fi l e t e r i s “ r r e P o r t e d i n c b a s e s a r e b a s e - p a i r e d s u c h t h a t a d e n i n e p a i r s w i t h t h y m i n e , a n d g u a n i n e w i t h c y t o s i n e . T h e b a s e s a r e s t a c k e d s u c h t h a t t h e h y d r O p h o b i c g r o u p s o f t h e b a s e s a r e i n s i d e t h e h e l i x , w h i c h i m p a r t s s t a b i l i t y b y t h e e x c l u s i o n o f w a t e r . T h e s u g a r - p h o s p h a t e b a c k b o n e i s h y d r o p h i l i c a n d i s f o u n d o n t h e o u t s i d e o f t h e h e l i x . T h e p l a n e s o f t h e b a s e s a r e p e r p e n d i c u l a r t o t h e h e l i c a l a x i s , a n d t h e h e l i x d i a m e t e r i s a p p r o x i m a t e l y 2 4 A . B - D N A h a s a v e r t i c a l r i s e o f 3 . 4 A b e t w e e n b a s e s . A p p r o x i m a t e l y 1 0 . 4 b a s e s a r e p r e s e n t p e r h e l i c a l t u r n . A - D N A i s p r e f e r r e d f o r D N A / R N A h y b r i d s , R N A h a i r p i n s , a n d i n s o m e b a c t e r i a l s p o r e s ( F i g u r e 3 ) . I n c o m p a r i s o n t o B - D N A , t h e m o s t c o m m o n t y p e o f D N A s t r u c t u r e , A - D N A i s w i d e r a n d m o r e v e r t i c a l l y c o m p a c t . T h e d i a m e t e r i s i m p o r t a n t s i n c e R N A n e e d s t o b e w i d e r t o a c c o m m o d a t e t h e 2 ’ - O H g r o u p . Z - D N A i s t r a n s i e n t l y a d o p t e d b y s h o r t s t r e t c h e s o f B - D N A i n a s e q u e n c e - s p e c i fi c f a s h i o n ( p o l y - G ) . T h e g u a n i n e b a s e s o f Z - D N A a r e i n t h e a n t i - c o n f o r m a t i o n w h i l e a l l o t h e r b a s e s a r e i n a s y n - c o n f o r m a t i o n ( F i g u r e 3 ) . Z - D N A d i f f e r s f r o m A a n d B - D N A i n t h a t i s l e f t - h a n d e d , a n d t h e s u g a r p h o s p h a t e b a c k b o n e i s p r e s e n t i n a z i g — z a g r e p e a t i n g u n i t . T h e h e l i x d i a m e t e r i s n a r r o w e r a n d l o n g e r t h a n t h e o t h e r f o r m s . C - D N A h a s o n l y b e e n r e p o r t e d i n c r y s t a l s t r u c t u r e s , a n d w i l l n o t b e d e s c r i b e d . S l ‘ a p e P fi S fi B a s e P a i r H e l i x D i a m e t e r k l ! “ S e n s e G l l ' c o s i d i c B O E t h ' S H c l t c a j M H ‘ W T u m F i g u r e 3 . T h e t h r e e s t r u c t u r a l t y p e s o f D N A , A , B a n d Z . A B S h a p e B r o a d e s t I n t e r m e d i a t e R i s e / B a s e P a i r 2 . 3 A 3 . 4 A H e l i x D i a m e t e r 2 5 . 5 A 2 3 . 7 A S c r e w S e n s e R i g h t - h a n d e d R i g h t - h a n d e d G l y c o s i d i c B o n d a n t i a n t i B a s e P a i r s / H e l i c a l T u m 1 1 1 0 . 4 1 2 P i t c h / H e l i c a l T u m 2 5 . 3 A 3 5 4 A 4 5 6 A T i l t o f B a s e P a i r s 1 9 " 1 ° M a j o r G r o o v e N a r r o w & D e e p W i d e & D e e p M i n o r G r o o v e B r o a d & S h a l l o w N a r r o w & D e e p T a b l e 1 . C o m p a r i s o n o f A - , B - , a n d Z - D N A . Z N a r r o w e s t 3 . 8 A 1 8 . 4 A L e f t - h a n d e d a n t i f o r C , T s y n f o r G 9 0 F l a t N a r r o w & D e e p A f t e r m a n l l c o o r d i n a t i o n E x p e r i m e n t s c e l l s r e v e a l e m o d e s o f P t t T h e r a d d u c l 0 f ; { W i N H s l a n d N i s z i n t r a s t r a n d . 9 0 % o f a l l C i s p l a t i n fi g a n d i s t h o u ; s T u d i e s a l s o P l a t i n u m C l G ‘ G b a s e s t A f t e r m a n y y e a r s o f r e s e a r c h o n t h e s u b j e c t , r e s e a r c h e r s g e n e r a l l y a g r e e t h a t c o o r d i n a t i o n o f P t t o D N A i s a m a j o r f a c t o r i n c i s p l a t i n ’ s a n t i c a n c e r a c t i v i t y . E x p e r i m e n t s m e a s u r i n g t h e r a t e s o f b i o m o l e c u l e s y n t h e s e s i n c i s p l a t i n t r e a t e d c e l l s r e v e a l e d t h a t D N A r e p l i c a t i o n i s p r e f e r e n t i a l l y i n h i b i t e d . 5 C o o r d i n a t i o n m o d e s o f P t ( I I ) t o D N A b a s e s h a v e b e e n e l u c i d a t e d b y e n z y m a t i c s t u d i e s . T h e m o s t c o m m o n D N A p l a t i n u m s p e c i e s i s a b i f u n c t i o n a l D N A a d d u c t o f g e n e r a l f o r m u l a e c i s - ( N H 3 ) 2 P t ( X p X ) , c i s - ( N H 3 ) P t ( X p r X ) o r t r a n s - ( N H 3 ) P t ( X p r X ) w h e r e X i s e i t h e r g u a n o s i n e ( G ) o r a d e n o s i n e ( A ) , a n d N i s a n y o f t h e o t h e r D N A n u c l e o s i d e s . l ° ’ 3 “ T h e s e 1 , 2 a n d 1 , 3 i n t r a s t r a n d c r o s s - l i n k s , w h e r e d ( X p X ) i s e i t h e r G p G o r A p G a c c o u n t f o r ~ 9 0 % o f a l l p l a t i n u m / D N A b i n d i n g m o d e s ( F i g u r e 4 ) . M i g r a t i o n o f b o u n d c i s p l a t i n f r o m o n e n u c l e o b a s e t o a n o t h e r h a s b e e n f o u n d t o b e u n c o m m o n , a n d i s t h o u g h t t o b e a n u n l i k e l y e v e n t u n d e r a m b i e n t c o n d i t i o n s . 6 P r e v i o u s s t u d i e s a l s o s u g g e s t t h a t a s h o r t e n i n g a n d u n w i n d i n g o f D N A o c c u r s a f t e r t h e p l a t i n u m c h e l a t i o n o f a G - G s e q u e n c e . T h i s c h e l a t i o n c a u s e s a t i l t i n g o f t h e G - G b a s e s o u t o f t h e i r p a r a l l e l a l i g n m e n t , a n d i n s t i g a t e s a k i n k i n t h e h e l i x o f l l l E T S l T ’ N H \ 3 / N H 3 / \ N 1 4 3 ‘ 3 ' . 1 , 2 A G 1 , 3 X G Q 2 G p G P G P D J Y I n t e r s t r a n d C r o s s l i n k I n t r a s t r a n d C r o s s l i n k s G = g u a n i n e A = a d e n i n e X = c y t o s i n e ( C ) , t h y m i n e ( T ) , a d e n i n e ( A ) F i g u r e 4 . T h e D N A b i n d i n g m o d e s o f c i s p l a t i n . a b o u t 4 0 0 ' w h i c h a n d ! r i n g p u c k e i n t r a s t r a n d f o u n d t o a t d o u b l e - s t r z i m p o r t a n t l T h e d e p e n d e n t . b e i n g t h e 1 0 f g u a n i n e t o b e t h e C 0 I m p o u n d b e e n o b s e i p o s i t i o n s C O m p o u n d O b s e m e d 1 E x p o s e d i r b o n d i n g " a b o u t 4 0 ° - 7 0 ° . A d d i t i o n a l d i s t o r t i o n o c c u r s a t t h e 5 ’ - d e o x y r i b o s e r i n g , w h i c h u n d e r g o e s a c o n f o r m a t i o n a l c h a n g e f r o m a C 2 ’ - e n d o t o a C 3 ’ - e n d o r i n g p u c k e r i n g t o a c c o m m o d a t e t h e s t r a i n c a u s e d b y t h e c i s p l a t i n 1 , 2 - i n t r a s t r a n d b i n d i n g ( F i g u r e 5 ) . A l t h o u g h i n t e r - s t r a n d c r o s s - l i n k s h a v e b e e n f o u n d t o a c c o u n t f o r l e s s t h a n 1 % o f t h e t o t a l a m o u n t o f p l a t i n u m b o u n d t o d o u b l e - s t r a n d e d D N A , t h i s m o d e o f b i n d i n g c a n n o t b e r u l e d o u t a s a n i m p o r t a n t b i n d i n g m o d e f o r a n t i t u m o r c o m p o u n d s . 6 T h e o b s e r v e d c o o r d i n a t i o n m o d e s f o r P t ( H ) t o D N A b a s e s a r e p H d e p e n d e n t , w i t h t h e N 7 p o s i t i o n o f g u a n i n e a n d t h e N 3 p o s i t i o n o f a d e n i n e b e i n g t h e p r e f e r r e d b i n d i n g s i t e s a t n e u t r a l p H ( T a b l e 2 ) . 7 T h e N 7 p o s i t i o n o f g u a n i n e h a s b e e n d e t e r m i n e d b y X - r a y c r y s t a l l o g r a p h i c a n d N M R s t u d i e s t o b e t h e m o s t l i k e l y s i t e o f c o o r d i n a t i o n f o r p l a t i n u m a n t i c a n c e r c o m p o u n d s . L i k e w i s e , b o t h t h e N 7 a n d N 1 p o s i t i o n s o f a d e n i n e h a v e a l s o b e e n o b s e r v e d , l e a d i n g r e s e a r c h e r s i n t h e fi e l d t o b e l i e v e t h a t t h e p u r i n e N 7 p o s i t i o n s a r e t h e a c t i v e c o o r d i n a t i o n s i t e s f o r c i s p l a t i n a n d r e l a t e d c o m p o u n d s . T h e m a i n r a t i o n a l e f o r p u r i n e N 7 p o s i t i o n s b e i n g t h e f r e q u e n t l y o b s e r v e d c o o r d i n a t i o n s i t e s i n d o u b l e h e l i c a l D N A i s t h a t t h i s p o s i t i o n i s e x p o s e d i n t h e m a j o r g r o o v e , a n d i s n o t i n v o l v e d i n W a t s o n - C r i c k h y d r o g e n b o n d i n g . 7 1 0 0 2 : : ( Z S \ . . / . Z . . . . . n o i t a n i t a l p o t e u d A N D f o g n i r e s o b i r x o e d f o n o i t r o t s i D . 5 e r u g i F l l C 2 ' - e n d o C 3 ' - e n d o I f ? C ‘ ) ‘ C D 0 ' 3 » 7 1 > J > H r - ‘ m m B o t h r e p l i c a t i o n c 0 m p O l l n d s b 0 t h 1 3 - ~ ‘ l l l l T r a n s p l a t i n m t m t r a n d a n d i m a m M o r e H a n s ; T a b l e 2 7 B u _ r _ m ' _ < : _ S _ i t : c _ p I _ < a B _ a _ n g 9 G u a n i n e N 7 2 . 3 G u a n i n e N 1 9 . 3 G u a n i n e N 3 ? A d e n i n e N 7 - 1 . 5 A d e n i n e N 1 3 . 7 A d e n i n e N 6 a ? C y t o s i n e N 3 4 . 4 C y t o s i n e N 4 ? U r a c i l N 3 9 . 5 T h y m i n e N 3 9 . 5 a = N 6 i s t h e e x o c y c l i c n i t r o g e n a fi e r d e p r o t o n a t i o n B o t h c i s p l a t i n a n d i t s t r a n s i s o m e r a r e k n o w n t o i n h i b i t D N A r e p l i c a t i o n t o t h e s a m e e x t e n t i n v i t r o . 5 B o t h o f t h e s e p l a t i n u m ( I I ) c o m p o u n d s b i n d t o D N A , b u t i n d i f f e r e n t w a y s . C i s p l a t i n b i n d s t o D N A v i a b o t h 1 , 2 - i n t r a s t a n d c r o s s l i n k s a n d 1 , 3 - i n t r a s t r a n d c r o s s l i n k s d e s c r i b e d a b o v e . T r a n s p l a t i n , o n t h e o t h e r h a n d , i s g e o m e t r i c a l l y u n a b l e t o m a k e 1 , 2 - i n u a s t r a n d c r o s s l i n k s t o D N A , a n d t h u s b i n d s v i a 1 , 3 - i n t r a s t I a n d c r o s s l i n k s a n d i n t e r s t r a n d c r o s s l i n k s . C e l l u l a r u p t a k e o f b o t h i s o m e r s i s e q u a l , b u t m o r e t r a n s p l a t i n t h a n c i s p l a t i n i s n e e d e d i n o r d e r t o i n h i b i t D N A r e p l i c a t i o n 5 i n v i v a . T i m e e v o l v e d s t u d i e s r e v e a l e d t h a t c i s p l a t i n b o u n d t o D N A 1 2 a c c u m u l a t h a t t h e D t ? S t u c r r e e s v e x c p e i o n s i b l t l e d i o n a s t l a t b y a d i f f : d a m a g e r e s i d e s o f t h e d a m a g e d 1 : i n t r a s t r a n d m fl r a n d a n l m a l i a r m m b." r e v e a l i r D N A . a n d . t h e s e P r o t e R e c o m l l m l a r g e n U m b t m e b t t m , m " s . a c c u m u l a t e s i n a c e l l , w h e r e a s t r a n s p l a t i n d o e s n o t . T h e s e r e s u l t s s u g g e s t t h a t t h e D N A a d d u c t s o f t h e t w o i s o m e r s a r e p r o c e s s e d d i f f e r e n t l y i n c e l l s . S t u d i e s d e s i g n e d t o d e t e r m i n e w h a t D N A r e p a i r m e c h a n i s m i s r e s p o n s i b l e f o r t h e r e p a i r o f p l a t i n a t e d D N A w a s p e r f o r m e d . 5 T h e s e s t u d i e s r e v e a l e d t h a t c i s p l a t i n m o d i fi e d D N A w e r e r e p a i r e d b y a c o m b i n a t i o n o f e x c i s i o n a n d r e c o m b i n a t i o n p r o c e s s e s , w h e r e a s t h e t r a n s i s o m e r i s r e p a i r e d b y a d i f f e r e n t c e l l u l a r m e c h a n i s m . E x c i s i o n r e p a i r p r o c e s s e s i n v o l v e d a m a g e r e c o g n i t i o n b y a p r o t e i n , i n c i s i o n o f t h e d a m a g e d D N A o n b o t h s i d e s o f t h e e r r o r , r e m o v a l o f t h e d a m a g e d s e q u e n c e , a n d r e p l a c e m e n t o f t h e d a m a g e d D N A b y p o l y m e r a s e a n d l i g a s e . T h e s t u d i e s a l s o s h o w e d t h a t l , 3 - i n t r a s t r a n d a d d u c t s w e r e r e p a i r e d a t a h i g h e r e f fi c i e n c y t h a n t h e 1 , 2 - i n t r a s t r a n d a d d u c t s o f A G a n d G G s e q u e n c e s . G e l m o b i l i t y s h i f t a s s a y s i n m a m m a l i a n c e l l u l a r e x t r a c t s s u p p o r t e d t h e d i f f e r e n c e i n r e p a i r r e c o g n i t i o n , b y r e v e a l i n g t h a t c e r t a i n c e l l u l a r p r o t e i n s b i n d s p e c i fi c a l l y t o p l a t i n a t e d D N A , a n d c a n d i s t i n g u i s h b e t w e e n l , 2 a n d l , 3 - i n t r a s t r a n d a d d u c t s . O n e o f t h e s e p r o t e i n s w a s c l o n e d a n d e x p r e s s e d . 5 T h e S t r u c t u r e S p e c i fi c R e c o g n i t i o n P r o t e i n 1 ( S S R P l ) i s ~ 8 0 k D a , a n d w a s d e t e r m i n e d t o c o n t a i n a l a r g e n u m b e r o f c h a r g e d r e s i d u e s a n d a D N A b i n d i n g r e g i o n c a l l e d a h i g h m o b i l i t y g r o u p ( H M G ) d o m a i n . H M G p r o t e i n s , i n g e n e r a l , c o n t a i n o n e t o s i x H M G d o m a i n s . T h e H M G d o m a i n s o f S S R P l w e r e i d e n t i fi e d t o b e 1 3 s i m i l a r t o d o m a i n s o f r e s i d u e a s : b a s e s . T h t o w a r d s t h e a r e v e r y s i n c o n t a i n s t h t r e s i d u e s 1 0 1 n h i c h i s 2 h y d r o p h o b i . s p e c i fi c a l l y f u r t h e r b e n t 8 5 ° } T h e \ t h e p r o t e i t n S C V e r h e d i s c m e r a d d U C t 5 _ 5 O s i m i l a r t o t h e h u m a n c e l l u l a r p r o t e i n s H M G ] a n d H M G 2 . T h e H M G d o m a i n s o f H M G ] a r e r e s p o n s i b l e f o r b i n d i n g t o D N A u s i n g a h y d r o p h o b i c r e s i d u e a s a n i n t e r c a l a t i v e w e d g e i n o r d e r t o l o c a l l y d e s t a c k s e v e r a l o f t h e b a s e s . T h i s i n t e r c a l a t i o n c a u s e s u n w i n d i n g a n d b e n d i n g o f t h e D N A t o w a r d s t h e m a j o r g r o o v e . T h e s t r u c t u r a l c h a n g e s i n d u c e d b y H M G p r o t e i n s a r e v e r y s i m i l a r t o t h o s e o b s e r v e d w h e n c i s p l a t i n b i n d s t o D N A . T h e p r o t e i n c o n t a i n s t h r e e d o m a i n s , t h e H M G d o m a i n s A ( N - t e r m i n u s ) a n d B a r e ~ 8 0 r e s i d u e s l o n g , p o s i t i v e l y c h a r g e d , a n d h o m o l o g o u s . T h e t h i r d d o m a i n , w h i c h i s a t t h e C - t e r r n i n u s , i s ~ 3 0 r e s i d u e s l o n g , a c i d i c , a n d l a c k s h y d r o p h o b i c s i d e c h a i n s . T h e A a n d B d o m a i n s o f H M G 2 , l i k e H M G ] , b i n d s p e c i fi c a l l y t o p l a t i n a t e d D N A . T h e s e H M G p r o t e i n s h a v e b e e n s h o w n t o f u r t h e r b e n d c i s p l a t i n - D N A a d d u c t s a t o r n e a r t h e p l a t i n a t e d s i t e b y 7 0 ° — 8 5 ° . 5 T h e v a r i a b i l i t y o f t h e b e n d s i s d e p e n d e n t o n t h e s p e c i fi c c o n t a c t s o f t h e p r o t e i n w i t h t h e D N A . S e v e r a l m o d e l s f o r c i s p l a t i n ’ s c y t o t o x i c i t y w e r e p o s t u l a t e d b a s e d u p o n t h e d i s c o v e r y o f t h e s p e c i fi c b i n d i n g o f t h e H M G d o m a i n s t o c i s p l a t i n - D N A a d d u c t s . 5 O n e o f t h e s e h y p o t h e s e s i s t h a t t h e H M G p r o t e i n s s i g n a l n o r m a l r e p a i r , a n d P t - D N A a d d u c t s r o b t h e c e l l o f t h e s e p r o t e i n s , l e a v i n g o t h e r d a m a g e d D N A t h a t w o u l d n o r m a l l y b e r e p a i r e d a v a i l a b l e f o r u s e i n t r a n s c r i p t i o n . A n o t h e r t h e o r y o f S S R P i s t h a t t h e s e p r o t e i n s r e g u l a t e g e n e 1 4 e x p r e s s i o n D N A m i i l h f r o m t h e i r c e l l u l a r f u n m o a s w e ? a d d u c t s h i e t h e c e l l . 0 ‘ H M G d o m b i n d i n g s i t e T h e d o m a i n s o f t h e C o o r d i n fl n l l c a n c e r c h a r a c t e r i z e 6 1 5 “ n i t C 0 O r d i n a t e d t h e d i n u c l u c a r d i n a l - O r S O l o t i o n 5 m 5 3 5 1 1 6 . M a m e x p r e s s i o n n e c e s s a r y f o r c a n c e r c e l l g r o w t h . T h e b i n d i n g o f c i s p l a t i n t o D N A m i g h t a f f o r d a s t r u c t u r e t h a t m i m i c s t h e r e c o g n i t i o n s i g n a l o f S S R P f r o m t h e i r n a t u r a l b i n d i n g s i t e s , c a u s i n g c h a n g e s i n t h e r e g u l a t i o n o f o t h e r c e l l u l a r f u n c t i o n s . Y e t a n o t h e r t h e o r y , w h i c h i s s u p p o r t e d e x p e r i m e n t a l l y i n v i v o a s w e l l a s i n v i t r o , i s t h a t t h e b i n d i n g o f a n S S R P t o a c i s p l a t i n - D N A a d d u c t s h i e l d s t h e p l a t i n a t e d D N A f r o m t h e e x c i s i o n r e p a i r m e c h a n i s m s o f t h e c e l l . O v e r a l l , c i s p l a t i n — D N A a d d u c t s i n t h e c e l l d i v e r t t h e f u n c t i o n o f t h e H M G d o m a i n p r o t e i n s e i t h e r b y r e m o v i n g t h e m f r o m t h e i r n a t u r a l D N A b i n d i n g s i t e s o r d e p l e t i n g t h e p o o l o f t h e s e p r o t e i n s . T h e fi n d i n g s t h a t c i s p l a t i n i s s p e c i fi c a l l y r e c o g n i z e d b y t h e H M G d o m a i n s o f S S R P s s u g g e s t s t h a t t h e a l t e r a t i o n o f D N A s t r u c t u r e i n d u c e d b y t h e c o o r d i n a t i o n o f c i s p l a t i n t o D N A p l a y s a n i m p o r t a n t r o l e i n c i s p l a t i n ’ s a n t i c a n c e r a c t i v i t y . T h e c i s p l a t i n D N A a d d u c t t h a t w a s s t r u c t u r a l l y c h a r a c t e r i z e d b y X - r a y c r y s t a l l o g r a p h y i s c i s - [ P t ( N H 3 ) 2 { d ( p G p G ) } ] ( F i g u r e 6 ) . ° " ’ 8 T h e m o l e c u l e i s c o m p o s e d o f a s q u a r e - p l a n a r p l a t i n u m a t o m c o o r d i n a t e d t o t w o N H 3 l i g a n d s a n d t h e N 7 a t o m s o f t h e g u a n i n e b a s e s o f t h e d i n u c l e o t i d e . T h e b a s e s t a c k i n g o f t h e g u a n i n e s i s d i s r u p t e d b y t h e c o o r d i n a t i o n . T h e s o l i d s t a t e s t r u c t u r e w a s c o m p a r e d t o p r e v i o u s l y r e p o r t e d s o l u t i o n s t r u c t u r e s , a n d i t w a s f o u n d t h a t t h e s t r u c t u r e s a r e e s s e n t i a l l y t h e s a m e . M a n y y e a r s l a t e r , t h e s t r u c t u r e o f a m u c h l o n g e r p i e c e o f p l a t i n a t e d 1 5 F i F i g u r e 6 . M o l e c u l a r s t r u c t u r e o f c i s - P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) . 3 l 6 a , T t s s G r l z l w y C D N t r N A a m e l T C h h C g i t P l a N v H e [ P t o t o l h a A - D N A 3 ’ e n d s q u a t h e e r r r f o i f n g f c a c n k g i e n fl a c k s “ h h a fi f t c P d i O t C 1 [ i ] t s a n . , l h i b i h e r D r a t [ s T d u e “ h e a r n c i n o m e l u c i d a n ‘ o f t h e m a D N A w a s a l s o s u b j e c t e d t o X - r a y c r y s t a l l o g r a p h i c d e t e r m i n a t i o n . c i s p l a t i n - N a m e l y , t h e 1 2 b a s e - p a i r ( b p ) d o u b l e s t r a n d s e q u e n c e ( C C T C T G G T C T C C ) - ( G G A G A C C A G A G G ) w a s c r y s t a l l i z e d w i t h a ( N H 3 ) P t m o i e t y c o o r d i n a t e d . 9 T h e s t r u c t u r e o f c i s - [ P t ( N H 3 ) 2 { d ( C C T C T G * G * T C T C C ) ' ( G G A G A C C A G A G G ) } ] w a s r e p o r t e d t o h a v e t h e s a m e t y p e o f c o o r d i n a t i o n t h r o u g h t h e N 7 a t o m s o f t h e g u a n i n e s t o a s q u a r e p l a n a r P t a t o m ( F i g u r e 7 ) . T h e D N A i n t h i s s t r u c t u r e r e s e m b l e s A - D N A f r o m t h e 5 ’ e n d t o t h e c o o r d i n a t e d P t a t o m . F r o m t h e P t a t o m t o t h e 3 ’ e n d o f t h e d o d e c a m e r D N A t h e b i o m o l e c u l e r e s e m b l e s B - D N A . T h i s c h a n g e i n t h e D N A s t r u c t u r a l f o r m i s t h o u g h t t o b e i n fl u e n c e d b y c r y s t a l p a c k i n g f o r c e s . A s c a n b e s e e n i n F i g u r e 7 , c o o r d i n a t i o n o f P t t o t h e D N A d e s t a c k s t h e b a s e s a n a l o g o u s t o t h e d i n u c l e o t i d e s t r u c t u r e . W h i l e i t i s n o t s a f e t o a s s u m e t h a t t h e m e c h a n i s m w h e r e b y c i s p l a t i n i n h i b i t s D N A r e p l i c a t i o n i s a p p l i c a b l e t o t h e a n t i t u m o r a c t i v i t y o b s e r v e d f o r o t h e r t r a n s i t i o n m e t a l c o m p o u n d s , i t i s n o n e t h e l e s s i m p o r t a n t t o e x t r a p o l a t e t h e n u c l e i c a c i d c h e m i s t r y o f c i s p l a t i n i n o r d e r t o r e c o g n i z e k e y p a t t e r n s f o r c a r c i n o s t a t i c b e h a v i o r . F r o m t h e e x t e n s i v e m e c h a n i s t i c s t u d i e s a i m e d a t e l u c i d a t i n g t h e e f f e c t o f c i s p l a t i n D N A r e p l i c a t i o n , a n d t h e c o l l e c t i v e s t u d i e s o f t h e m e c h a n i s m s o f s i m i l a r p l a t i n u m c o m p l e x e s , f u n d a m e n t a l t r e n d s h a v e 1 7 F i g u r e 7 . S t r u c t u r e o f a d o u b l e - s t r a n d e d D N A m o l e c u l e c o o r d i n a t e d t o c i s p l a t i n . 6 1 8 2 . D i r h o d i u e m e r g E d r e d e s i g n e d s r m t h b i o l o g s q u a r e p l a t c o m p o u n d s A a p a r t o n t h e r e m a i n i r o b u s t , a n d D N A . I e m e r g e d r e g a r d i n g t h e i r a c t i v i t y . F o r e x a m p l e , t h e c o m p l e x e s s h o u l d b e d e s i g n e d s u c h t h a t t w o c i s , r a t h e r t h a n t r a n s , l i g a n d s s u b s t i t u t e i n r e a c t i o n s w i t h b i o l o g i c a l m o l e c u l e s . 1 T h e g e o m e t r y o f t h e c o m p l e x e s s h o u l d b e s q u a r e p l a n a r o r o c t a h e d r a l a s i n t h e c a s e o f a c t i v e p l a t i n u m a n t i t u m o r c o m p o u n d s . A n o t h e r p r e v a i l i n g t e n d e n c y i s t h a t t h e l e a v i n g g r o u p s a r e ~ 3 . 4 A a p a r t o n t h e m o l e c u l e ( t h e W a t s o n - C r i c k l a d d e r s p a c i n g ) . F u r t h e r m o r e , t h e r e m a i n i n g g r o u p s t r a n s t o t h e l e a v i n g g r o u p s , s u c h a s a m i n e s , s h o u l d b e r o b u s t , a n d p r e f e r a b l y c a p a b l e o f p a r t i c i p a t i n g i n h y d r o g e n - b o n d i n g w i t h D N A . ’ 2 . D i r h o d i u m C o m p o u n d s O n e e n t i r e l y d i f f e r e n t c l a s s o f a n t i t u m o r a c t i v e c o m p o u n d s w h o s e s t r u c t u r e s a n d r e a c t i v i t i e s d o n o t c l o s e l y a d h e r e t o t h e c i s p l a t i n g u i d e l i n e s f o r a n t i c a n c e r c o m p o u n d s a r e d i n u c l e a r t r a n s i t i o n m e t a l c o m p l e x e s o f r h o d i u m , r h e n i u m a n d r u t h e n i u m ( F i g u r e 8 ) . C o m p o u n d s o f t h e s e m e t a l s w i t h b r i d g i n g c a r b o x y l a t e l i g a n d s h a v e b e e n s t u d i e d a s t o t h e i r a n t i t u m o r a c t i v i t y a g a i n s t v a r i o u s t u m o r c e l l l i n e s w i t h v e r y p r o m i s i n g r e s u l t s e n s u i n g m ’ m ’ 1 1 T o d a t e , h o w e v e r , n o m a j o r a d v a n c e s i n t h e d e v e l o p m e n t o f t h e s e c o m p o u n d s f o r p h a r m a c e u t i c a l u s e h a v e b e e n m a d e , m o s t l i k e l y d u e t o t h e i r s p e c i a l i z e d n a t u r e a n d t h e i r p u r p o r t e d f a c i l e d e c o m p o s i t i o n u n d e r p h y s i o l o g i c a l c o n d i t i o n s . T h e s o - c a l l e d “ l a n t e r n ” s t r u c t u r e s o f t h e s e 1 9 c W o m p o u n a n d d a s x e ( h , m 3 C e a A H r a c t i v e , H L C C R C e a s r e a c h e n l O S t R A O C l A s o ’ l — ‘ - — — R 0 ( Y R h a r o z c r e F i g u r R R R 0 A 0 R 0 A 0 R 0 A O R . \ O ‘ l k o , x x o ‘ l k o o L _ R h : . \ : _ _ R H L L L _ R e " \ R E L L C l / I I . 1 ‘ ) : fi o 0 ' I 0 ' I B r ' I B r 4 I 0 ' ' 0 ' I \ . . . s “ “ R B r 8 1 ' R Y R R R h 2 ( 0 2 C R ) 4 L z R e 2 ( 0 2 C R ) 2 B r 4 L 2 R h 2 ( 0 2 C R ) 4 1 / 2 F i g u r e 8 . T h e d i n u c l e a r t r a n s i t i o n m e t a l a n t i c a n c e r a g e n t s . c o m p o u n d s a l l o w f o r t w o p o s s i b l e t y p e s o f b i n d i n g s i t e s , n a m e l y e q u a t o r i a l ( e q ) a n d a x i a l ( a x ) . A m o n g t h e d i n u c l e a r c o m p o u n d s t h a t h a v e b e e n f o u n d t o b e a n t i t u m o r a c t i v e , t h e d i r h o d i u m c o m p o u n d s R h 2 ( O z C R ) 4 L 2 ( R = C H 3 , C H Z C H 3 , C H z C H z C H 3 ; L = s o l v e n t ) h a v e b e e n s t u d i e d t h e m o s t e x t e n s i v e l y . R e s e a r c h e r s h a v e s h o w n t h a t t h e s e c o m p o u n d s e x h i b i t s i g n i fi c a n t c a r c i n o s t a t i c a c t i v i t y a g a i n s t E r l i c h a s c i t e s a n d l e u k e m i a L 1 2 1 0 t u m o r s i n v i v o . “ ° A s u m m a r y o f t h e o b s e r v e d a n t i t c a n c e r a c t i v i t y o f d i r h o d i u m c o m p o u n d s i s p r e s e n t e d i n T a b l e s 3 - 7 . T h e s e c o m p l e x e s w e r e f o u n d t o i n h i b i t D N A b u t n o t R N A s y n t h e s i s w i t h R h 2 ( 0 2 C C H 2 C H 2 C H 3 ) 4 L z b e i n g t h e m o s t p o t e n t i n h i b i t o r . 1 1 M o d e l D N A s t u d i e s i n d i c a t e d t h a t t h e s e c o m p l e x e s b i n d t o s i n g l e - s t r a n d e d ( s s ) D N A a n d d s ( p o l y - A ) ( d s = d o u b l e - s t r a n d e d ) 2 0 d o n o s i g p r e f e r e n c e s m o l e c u l e s t s c l r e r r t m c b r i d g i n g c 2 g u a n i n e t o I n 0 t h a t g u a n i r a n d i n a n P e r f o r m e d a d e n i n e g t h e s e c o c a r b O X y l a m p r e c e d P r e v e n t E P m K n } - S t r ‘ 9 ‘ E I G = m O U T I a i n o u r l a b o r a t o r i e s w e r e f o u n d t o e x h i b i t s i m i l a r s t r u c t u r e s . D i r u t h e n i u m a s w i t h n o s i g n i fi c a n t b i n d i n g b e i n g r e p o r t e d f o r d s ( p o l y - G ) . T h e s e b i n d i n g p r e f e r e n c e s t o a d e n i n e w e r e p o s t u l a t e d t o b e r e l a t e d t o t h e f a c t t h a t t h e s e m o l e c u l e s t y p i c a l l y r e a c t w i t h n e u t r a l b a s e s b y t r a n s s u b s t i t u t i o n o f t h e a x i a l s o l v e n t m o l e c u l e s . I t h a s b e e n a r g u e d t h a t s t e r i c r e p u l s i o n s b e t w e e n t h e b r i d g i n g c a r b o x y l a t e l i g a n d s a n d t h e O 6 a t o m p r e v e n t s t h e a x i a l b i n d i n g o f g u a n i n e t o t h e d i m e t a l u n i t . 1 2 I n c o n t r a s t t o t h e e a r l i e r s t u d i e s , v e r y r e c e n t fi n d i n g s h a v e e s t a b l i s h e d t h a t g u a n i n e b a s e s d o i n f a c t b i n d t o R h 2 ( O z ( C C H 3 ) 4 a n d r e l a t e d m o l e c u l e s a n d i n a n u n p r e c e d e n t e d f a s h i o n . S i n g l e c r y s t a l X — r a y s t u d i e s h a v e b e e n p e r f o r m e d o n s e v e r a l c o m p o u n d s t h a t p o s s e s s n o v e l , b r i d g i n g g u a n i n e a n d a d e n i n e g r o u p s . 1 3 T h e s e r e s u l t s s u p p o r t a n a l t e r n a t e s u b s t i t u t i o n p a t h w a y f o r t h e s e c o m p o u n d s t h a t i n v o l v e s d i s p l a c e m e n t o f e q u a t o r i a l b r i d g i n g c a r b o x y l a t e l i g a n d s r a t h e r t h a n m e r e a x i a l s u b s t i t u t i o n . T h e d i s c o v e r y t h a t a b u i l d i n g b l o c k o f D N A c a n a c t a s a b r i d g e b e t w e e n t w o m e t a l c e n t e r s i s u n p r e c e d e n t e d a n d m a y p l a y a n i m p o r t a n t r o l e i n h o w d i n u c l e a r c o m p l e x e s p r e v e n t D N A r e p l i c a t i o n i n t u m o r s . P r e v i o u s r e s e a r c h i n o u r l a b o r a t o r i e s l e d t o t h e d e t e r m i n a t i o n o f t h e X - r a y s t r u c t u r e s o f c o m p o u n d s o f t h e t y p e R h 2 ( O z C C H 3 ) 2 ( 9 - E t G ) 2 ( C H 3 O H ) 2 ( 9 - E t G = d e p r o t o n a t e d 9 - e t h y l g u a n i n e ) . ‘ 3 R e l a t e d c o m p o u n d s s y n t h e s i z e d 2 1 w e l l a s d i m s t r u c t u r e a s d i m e t a l u n i t e i t h e r t h e h I n a d d i t i o n . m o d e t h r o r s t r u c t u r e o f E a r l ) s o u g h t t o L ‘ b i o l o g i c a l l j 9 ‘ ) D u r i n g S ‘ d C h a s I ; w e l l a s d i m o l y b d e n u m t e t r a - c a r b o x y l a t e c o m p o u n d s a d o p t t h e s a m e t y p e s o f s t r u c t u r e a s d i r h o d i u m c o m p o u n d s i n t h a t t h e t w o g u a n i n e b a s e s b r i d g e t h e d i m e t a l u n i t s i n a c i s d i s p o s i t i o n . F u r t h e r m o r e , t h e g u a n i n e s a r e a r r a n g e d i n e i t h e r t h e h e a d - t o - h e a d o r h e a d - t o - t a i l o r i e n t a t i o n s o f t h e N 7 a n d 0 6 a t o m s . I n a d d i t i o n , t h e m o d i fi e d p u r i n e , 9 - E t A H ( 9 - e t h y l a d e n i n e ) a d o p t s a b r i d g i n g m o d e t h r o u g h t h e N 7 a n d N 6 a t o m s a s o b s e r v e d i n t h e X - r a y c r y s t a l s t r u c t u r e o f [ M o z ( O z C C H 2 F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 . 1 3 ° E a r l y i n o u r r e s e a r c h o f p u r i n e r e a c t i o n s w i t h d i n u c l e a r c o m p l e x e s w e s o u g h t t o u s e t h e c h e l a t i n g p r o p e r t i e s o f 2 , 2 ’ - b i p y r i d i n e a s a m i m i c f o r t h e b i o l o g i c a l l y r e l e v a n t n i t r o g e n l i g a n d s , a d e n i n e , g u a n i n e a n d c y t o s i n e ( F i g u r e 9 ) . D u r i n g t h i s t i m e w e l e a r n e d t h a t c o m p o u n d s c o n t a i n i n g N - N c h e l a t e s s u c h a s R h 2 ( O z C H ) 4 ( b p y ) 2 C 1 2 a n d R h 2 ( O z C H ) 4 ( p h e n ) 2 C l z ( b p y = 2 , 2 ’ - b i p y r i d i n e ; p h e n = 1 , 1 0 - p h e n a n t h r o l i n e ) w e r e a c t i v e a g a i n s t s u c h c a n c e r c e l l s a s H u m a n O r a l C a r c i n o m a s ( T a b l e 3 ) . S t u d i e s i n o u r l a b o r a t o r i e s w i t h t h e m o n o - b p y c o m p o u n d [ R h 2 ( O z C C H 3 ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ B F 4 ] 2 a n d 9 - E t G H a n d 9 - E t A H a f f o r d e d c o m p o u n d s c o n t a i n i n g c h e l a t i n g p u r i n e s a s d e t e r m i n e d b y t h e i r X - r a y s t r u c t u r e s . 1 4 2 2 H Z N N \ H N / \ T \ > = N E . H R = d e o x y r i b o s e o r e t h y l F i g u r e 9 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e c h e l a t i n g p o s s i b i l i t i e s f o r 2 , 2 ' - b i p y r i d i n e , a d e n i n e , g u a n i n e a n d c y t o s i n e . 2 3 A n o s t r u c t u r e c o b s e r v e d 1 R h g t D T o l T 1 0 ) . ” T h t u m o r c e l l a c t i r i t y b r r e s e a r c h e r s b r i d g i n g t r A n o t h e r d i r h o d i u m c o m p o u n d t h a t p o s s e s s e s t h e s a m e “ l a n t e r n ” s t r u c t u r e o f t h e d i r h o d i u m ( I I ) t e t r a - c a r b o x y l a t e s a n d w h i c h h a s a l s o b e e n o b s e r v e d t o e x h i b i t c a r c i n o s t a t i c a c t i v i t y i s t h e m i x e d - l i g a n d c o m p o u n d R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H z O ) 2 ( D T o l F = N , N ’ - p - t o l y l f o r r n a m i d i n a t e ) ( F i g u r e 1 0 ) . 1 5 T h e a n t i t u m o r a c t i v i t y o f t h i s c o m p l e x w a s t e s t e d a g a i n s t v a r i o u s t u m o r c e l l l i n e s , a n d t h e c o m p o u n d w a s f o u n d t o e x h i b i t e q u a l a n t i t u m o r a c t i v i t y b u t w i t h a l o w e r t o x i c i t y t h a n R h 2 ( O z C R ) 4 L z ( T a b l e 5 ) . T h e r e s e a r c h e r s w h o p e r f o r m e d t h i s s t u d y p o s t u l a t e d t h a t t h e l a b i l i t y o f t h e b r i d g i n g t r i fl u o r o a c e t a t e l i g a n d s a n d t h e a x i a l w a t e r m o l e c u l e s i n s o l u t i o n ” A N N l . s \ N R N I o 6 ; I o O F 3 C / Y C F a L F i g u r e 1 0 . T h e a n t i c a n c e r a c t i v e c o m p o u n d R h Z ( D T o I F ) 2 ( O Z C C F 3 ) 2 L 2 . l e a d s t o t h e f o r m a t i o n o f t h e c h a r g e d s o l v a t e d c a t i o n [ R h 2 ( D T o l F ) 2 S ¢ 5 ] 2 + ( S = s o l v e n t ) w h i c h i s s u s p e c t e d t o b e t h e i m p o r t a n t p h y s i o l o g i c a l f o r m o f t h e a c t i v e c o m p o u n d ] 5 A l t h o u g h t h e i r p r e l i m i n a r y w o r k d i d n o t i n c l u d e 2 4 e r i f r o n c l c u a t i o n d i e n d t t l e r a r r a s e c t h . o d i u s n r o m r c D r c d N e o s n n A e t h R e a c t i s a r } E i T o I o C n i o n n n s A e m h i Q p D P l e c t 5 S t a b e C i C l i t r e a c t I C 1 t h C “ C S l t e t r a - c a r b o r r e S u i t s C o B i r d R h { C h a p t e r v e r i fi c a t i o n o f s t r u c t u r e s b y X - r a y c r y s t a l l o g r a p h y , t h e r e s e a r c h e r s a l s o c o n c l u d e d t h a t a x i a l s u b s t i t u t i o n a n a l o g o u s t o t h e p r e v i o u s p o s t u l a t i o n s o f t h e D N A i n t e r a c t i o n s o f R h 2 ( O z C R ) 4 L 2 , w a s t a k i n g p l a c e . 1 5 T h e s a m e r e s e a r c h e r s a l s o c o n c l u d e d t h a t n o r e a c t i o n s w i t h g u a n i n e w o u l d o c c u r . I n c o n t r a s t , o u r w o r k i n o u r l a b o r a t o r i e s r e g a r d i n g t h e r e a c t i v i t y o f t h i s c l a s s o f d i r h o d i u m c o m p o u n d s r e v e a l e d t h a t t h e y d i s p l a y s i m i l a r r e a c t i v i t i e s t o t h e t e t r a - c a r b o x y l a t e c l a s s e s o f c o m p o u n d s ( C h a p t e r H a n d C h a p t e r I H ) . R e a c t i o n s w i t h O l i g o n u c l e o t i d e s I n a n a t t e m p t t o o b t a i n p r e l i m i n a r y r e s u l t s o f d i r h o d i u m - D N A b i n d i n g , r e a c t i o n s o f R h 2 ( O z C C H 3 ) 2 ( H z O ) 2 w i t h t h e 1 2 b p s e q u e n c e d ( 5 ’ - C T C T C A A C T T C C - 3 ’ ) ( d ( A A ) ) . ‘ 6 T h e d i r h d o d i u m c o m p o u n d s w a s r e a c t e d w i t h o n e e q u i v a l e n t o f t h e D N A s t r a n d . T h e p r o d u c t w a s p u r i fi e d , a n d t h e c o m p l i m e n t a r y s t r a n d w a s a n n e a l e d t o t h e m o d i fi e d d ( A A ) s t r a n d . 1 H N M R s p e c t r o s c o p i c s t u d i e s r e v e a l e d t h a t t h e d u p l e x D N A s t r a n d w a s f o r m e d , a n d i t s s t a b i l i t y w a s q u i t e d i f f e r e n t f r o m t h e u n m e t a l l a t e d d u p l e x D N A . T h e s e r e s u l t s c o u p l e d w i t h t h e p u b l i s h e d X - r a y s t r u c t u r e o f t h e p l a t i n a t e d 1 2 b p D N A b y L i p p a r d l e d u s t o i n v e s t i g a t e t h e r e a c t i o n s o f R h 2 ( O z C C H 3 ) 4 ( I - I Z O ) 2 a n d R h 2 ( O z C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 w i t h d ( 5 ’ - C C T C T G G T C T C C - 3 ’ ) ( C h a p t e r I V ) . I n a d d i t i o n , w e p e r f o r m e d s t u d i e s t o p r o v e t h a t d i n u c l e a r 2 5 e a r l y I i t e r a t u r n a r r s i t i o n m e t r a n s i t i o n m e t a l c o m p o u n d s r e a c t w i t h d o u b l e - s t r a n d e d D N A , c o n t r a r y t o t h e e a r l y l i t e r a t u r e ( C h a p t e r V ) . 2 6 I n r ' i l T o A c t i r i t ) o f T C e l l s . 1 / # ’ R l l g l O A C l r e l R h ; l O A C i l l I R h ; l O A C l r e l N t h l g l C O N t h l g l C O ; N F L - R i k i C 0 9 l i a t h fi C O ; N a u R l l z l C O ; E R I N C O : R h 2 l 0 3 C H ) 4 R h 2 l 0 3 C I ‘ l ) 4 R l l l l 0 3 C l ‘ I ) 4 C o n e e n t r a t i r ‘ D r e c r r o r t E D S : : C l l e c T a b l e 3 I n v i t r o A c t i v i t y o f D i r h o d i u m C o m p o u n d s A g a i n s t H u m a n O r a l C a r c i n o m a K B C e l l s . L i g a n g E D S Q 1 0 6 R h 2 ( O A C ) 4 ~ H 2 0 ) 2 3 0 R h 2 ( O A C ) 4 ( H 2 0 ) 2 + 2 , 2 5 b e 6 0 R h 2 ( O A C ) 4 ~ H 2 0 ) 2 + 1 , 1 0 - p h e n 8 5 R h 2 ( P h C H O H C O O ) 4 ( H 2 0 ) 2 + 2 , 2 ' - b p y > 1 0 0 R h 2 ( P h C H O H C O O ) 4 ( H 2 0 ) 2 + 1 , 1 0 - p h e n 8 N a 4 R h 2 ( C O 3 ) 4 - 2 . 5 H z O + l a c t i c a c i d “ 1 5 N a n R h 2 ( C O g ) 4 - 2 . 5 H z O + l a c t i c a c i d + 2 , 2 ' - b p y 5 3 N a a R h 2 ( C O 3 ) 4 ° 2 . 5 H z O + l a c t i c a c i d + 1 , 1 0 - p h e n 8 N a n R h 2 ( C 0 3 ) 4 ' 2 . 5 H 2 0 + t a r t a r i c a c i d 5 5 N a n R h 2 ( C O 3 ) 4 ' 2 . 5 H z O + c i t r i c a c i d > 1 0 0 N a a R h 2 ( C O 3 ) 4 - 2 . 5 H z O + m a l i c a c i d > 1 0 0 R h 2 ( 0 2 C H ) 4 ( H 2 0 ) 2 + 2 , 2 ' - b p y > 1 0 0 R h 2 ( 0 2 C H ) 4 ( b P Y ) 2 C 1 2 > 1 0 0 R h 2 ( 0 2 C H ) 4 ( p h C I l ) 2 C 1 2 > 1 0 0 C o n c e n t r a t i o n s : [ R h ] = 1 0 ‘ 3 m o l ; [ l i g a n d ] = 2 x 1 0 ’ 3 m o l - d m ” . * [ M e C H O H C O O H ] = 4 x 1 0 " 3 m o l ° d m ’ 3 . E D s o = e f f e c t i v e d o s e t o k i l l 5 0 % . 2 7 I n I ' r ' v o S u r r i r ‘ a l S t u _ _ _ _ _ — — — — — C o n t r o l R I I j ’ O A C I s l l R l l e C E l l R h 2 l 0 3 C P I l D O S a g e o f ‘ T h e r a p e u t : l l l C I e a S C d 1 l T a b l e 4 I n V i v o S u r v i v a l S t u d i e s w i t h S w i s s a l b i n o m i c e b e a r i n g E h r l i c h a s c i t e s t u m o r s . 1 1 b D o s e s a % 1 s t L D l O n / I L S 4 0 ° C o n t r o l S a l i n e . . . . . . . . . . R h 2 ( O A c ) 4 ( H 2 0 ) 2 6 . 7 8 x 1 0 ' 5 ‘ 7 8 3 . 3 9 x 1 0 ‘ 5 8 8 1 . 8 2 . 2 6 x 1 0 ' 5 4 4 R h 2 ( O z C E t ) 4 ( H z O ) 2 8 . 0 4 x 1 0 “ 5 . 0 2 x 1 0 ‘ 4 1 4 3 4 . 2 2 . 0 1 x 1 0 “ 1 4 9 1 . 0 0 x 1 0 “ 1 7 R h 2 ( 0 2 C P r ) 4 ( H 2 0 ) 2 3 . 6 1 x 1 0 4 1 . 8 0 x 1 0 “ 1 3 2 1 . 0 8 x 1 0 ' 4 1 9 7 4 . 7 5 . 4 0 x 1 0 ' 7 1 7 3 1 . 8 0 x 1 0 ‘ 7 3 a D o s a g e o f d r u g ( m o l / K g / d a y x 6 d a y s . ° I L S = i n c r e a s e d l i f e s p a n . ° T h e r a p e u t i c i n d i c e s w h e r e L D l O = l e t h a l d o s e o f 1 0 % a n d I L S 4 0 = i n c r e a s e d l i f e s p a n 4 0 % . 2 8 “ S : 5 2 S U T a b l e 5 I n v i v a R h ( O z C E t ) 4 ( p o l y - A ) a g a i n s t E h r l i c h a s c i t e s . ‘ 1 " m l y — A R h S u r v i v a l t i m e a % I L S ° s u r v i v o r s ° 0 : 1 3 7 . 0 1 9 0 2 1 0 : 1 4 5 . 1 2 7 9 5 2 0 : 1 4 5 . 2 2 8 0 5 4 0 : 1 3 9 . 7 2 1 2 1 6 0 : 1 3 8 . 3 2 0 1 2 S a l i n e C o n t r o l s 1 2 . 9 0 S a l i n e / p o l y - A 1 2 . 7 0 a ' M e a n s u r v i v a l t i m e ( d a y s ) . ° % I L S = i n c r e a s e d l i f e s p a n . ‘ N u m b e r o f s u r v i v o r s a t d a y 5 0 . 2 9 I n I ' i v o s a r c o d # — c e l l s d a y 0 “ T h e n u m b t r r r r n o l x 1 1 s u n i v a l t i l d e a c l ' t o t a l . T a b l e 6 I n V i v a S t u d i e s o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( I - 1 2 0 ) 2 a g a i n s t Y o s h i d a a s c i t e s s a r c o m a c e l l s . 1 5 c c e l l s d a y 0 ° D r u g D o s e b D o s e c A v g . l i f e s p a n d t i m e ° I L S % f D / T g L T S > 6 0 d a y s 1 0 6 R h ( I I ) a c e t a t e 3 6 . 7 8 1 7 . 2 i 4 . 1 8 1 7 2 / 1 0 7 6 0 . 7 6 / 1 0 4 1 0 6 R h ( H ) f o r m 3 3 . 2 7 1 8 . 5 i 5 . 7 4 1 8 . 5 / 1 1 . 4 6 2 . 3 5 / 1 0 5 1 0 6 c i s p l a t i n 5 1 6 . 6 1 8 . 7 . t 1 0 . 4 1 8 . 7 / 1 0 . 7 7 4 . 8 4 / 2 0 1 6 1 0 6 R h ( I I ) f o r m 5 5 . 4 6 1 9 . 0 i 4 . 2 4 1 9 . 0 / 1 1 . 4 6 6 . 7 2 / 1 8 1 6 ” T h e n u m b e r o f t u m o r c e l l s a t d a y 0 . ° D r u g d o s e ( m g / K g ) . c D r u g d o s e ( m m o l x 1 0 ' 3 / K g . d A v e r a g e l i f e s p a n i n d a y s i s t a n d a r d d e v i a t i o n . M e d i a n s u r v i v a l t i m e ( t r e a t e d / c o n t r o l ) . f I L S = i n c r e a s e d l i f e s p a n . g D / T = d e a d / t o t a l . h L T S = l o n g t e r m s u r v i v o r s . 3 0 l . ~ J L I ) ( a ) K 6 1 I r r o r g . t D . i n 1 S t u d i e s Y o r k . ‘ A . S C H R e v . 1 ! 4 2 . 7 1 P s y c h l . ( 3 ) R 0 : P r O C t ’ t C 0 0 r d E d ; 5 ' 3 4 , 1 5 6 1 5 . ( 1 3 3 3 . H o w e ? P e r e z - - ( a ) R e Y o r k , L i p p a N e w L l p p a I . C o r : - l 3 ) B ; E d i l l c 1 9 9 5 . " w h i t s [ N I E r G C O M ; 1 9 9 6 ‘ - ( a t 8 ] C h e m G r a a f 1 0 9 ‘ 4 ' L i p t o n . S h e m 2 3 0 4 L i s t o f R e f e r e n c e s . ( a ) K e p p l e r , B . K . N e w J . C h e m . 1 9 9 0 , I 4 , 3 8 9 . ( b ) S a d l e r , P . J . A d v . I n o r g . C h e m . 1 9 9 1 , 3 6 , 1 . ( c ) M c A u l i f f e , C . A . ; S h a r m a , H . L . ; T i n k e r , N . D . i n C h e m i s t r y o f t h e P l a t i n u m G r o u p M e t a l s R e c e n t D e v e l o p m e n t s , S t u d i e s i n I n o r g a n i c C h e m i s t r y 1 1 , H a r t l e y , F . R . , E d . ; O x f o r d , N e w Y o r k , 1 9 9 1 , C h . 1 6 a n d r e f e r e n c e s t h e r e i n . ( d ) A b r a m s , M . J . ; M u r r e r , B . A . S c i e n c e , 1 9 9 3 , 2 6 1 , 7 2 5 . ( e ) B r o w , D . H . ; S m i t h , W . E . C h e m . S o c . R e v . 1 9 8 0 , 9 , 2 1 7 . ( f ) S i l v e r , 8 . ; M i s r a , T . K . A n n u . R e v . M i c r o b i a l . 1 9 8 8 , 4 2 , 7 1 7 . ( g ) B i r c h , N . J . , E d . ; “ L i t h i u m : I n o r g a n i c P h a r m a c o l o g y a n d P s y c h i a t r i c U s e . I R L P r e s s , O x f o r d , 1 9 8 8 , 1 1 - 3 9 . . ( a ) R o s e n b e r g , B . ; V a n C a m p , L . N a t u r e , 1 9 6 9 , 2 2 2 , 3 8 5 . ( b ) T h o m s o n , A . P r o c e e d i n g s o f t h e S e c o n d I n t e r n a t i o n a l S y m p o s i u m o n P l a t i n u m C a a r d i n a t i a n C o m p l e x e s i n C a n c e r C h e m o t h e r a p y , C o n n o r s a n d R o b e r t s , E d . ; S p r i n g e r - V e r l a g , B e r l i n , 1 9 7 4 . ( c ) E a s t m a n , A . P h a r m a . T h e r . 1 9 8 7 , 3 4 , 1 5 5 . ( d ) P a s i n i , A . ; Z u n i n o , F . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 7 , 2 6 , 6 1 5 . ( e ) F r e y , U . ; R a n f o r d , J . D . ; S a d l e r , P . J . I n o r g . C h e m . 1 9 9 3 , 3 2 , 1 3 3 3 . ( f ) P l a t i n u m a n d O t h e r M e t a l C o m p l e x e s i n C a n c e r C h e m o t h e r a p y , H o w e l l , S . B . , E d . ; P l e n u m P r e s s , N e w Y o r k , 1 9 9 1 . ( g ) B a k e r , S . A . B . ; P e r e z - S o l e r , R . ; K h o k h a r , A . R . J . C o o r d . C h e m . 1 9 9 3 , 2 9 , 1 . ( a ) R o s e n b e r g , B . ; i n M e t a l I o n s i n B i o l o g y , S p i r o , T . G . , E d ; W i l e y , N e w Y o r k , 1 9 8 0 , I , 1 . ( b ) U m a p a t h y , P . C o a r d . C h e m . R e v . 1 9 8 9 , 9 5 , 1 2 9 . ( c ) L i p p a r d B . C h a p t e r 1 i n P r a g . I n o r g . C h e m . L i p p a r d , S . J . , E d ; W i l e y , N e w Y o r k , 1 9 8 9 , 3 7 , 1 , a n d r e f e r e n c e s t h e r e i n . ( ( 1 ) S h e r m a n , S . E . ; L i p p a r d , S . J . C h e m . R e v . 1 9 8 7 , 8 7 , 1 1 5 3 . ( e ) S u n d q u i s t , W . 1 . ; L i p p a r d , S . J . C o o r d . C h e m . R e v . 1 9 9 0 , 1 0 0 , 2 9 3 , a n d r e f e r e n c e s t h e r e i n . . ( a ) B a k e r , T . A . ; K o r n b e r g , A . D N A R e p l i c a t i o n , F r e e m a n a n d C o . 2 “ d E d i t i o n , 1 9 9 2 . ( b ) S t r y e r , L . B i o c h e m i s t r y , F r e e m a n a n d C o . 4 ‘ 1 1 E d i t i o n , 1 9 9 5 . ( c ) L e w i n , B . G e n e s V , O x f o r d U n i v e r s i t y P r e s s , 1 9 9 4 . . W h i t e h e a d , J . P . ; L i p p a r d , S . J . i n M e t a l I o n s i n B i o l o g i c a l S y s t e m s , I n t e r a c t i o n s o f M e t a l I o n s w i t h N u c l e o t i d e s , N u c l e i c A c i d s , a n d T h e i r C o n s t i t u e n t s 3 2 . S i g e l , A . ; S i g e l , H . , E d . ; M a r c e l D e k k e r , I n c . N e w Y o r k , 1 9 9 6 , C h . 2 0 a n d r e f e r e n c e s t h e r e i n . . ( a ) S h e r m a n , S . E . ; G i b s o n , D . ; W a n g , A . H . J . ; L i p p a r d , S . J . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 0 , 7 3 6 8 . ( b ) A d m i r a a l , G . ; v a n d e r V e e r , J . L . ; d e G r a a f , R . A . G . ; d e n H a r t o g , J . H . J . ; R e e d i j k , J . J . A m . C h e m . S o c . 1 9 8 7 , 1 0 9 , 5 9 2 . . L i p p a r d , S . J . P u r e & A p p l . C h e m . 1 9 8 7 , 5 9 , 7 3 1 . . S h e r m a n , S . E . ; G i b s o n , D . ; W a n g , A . H . J . ; L i p p a r d , S . J . S c i e n c e , 1 9 8 5 , 2 3 0 , 4 1 2 . 3 1 9 . T a k a h a f i N a t u r e , 1 0 m D m i C o n g . ( l G . ; T h o r l l l a l E r c L 3 6 . 2 2 0 ( ‘ l z e m o t l B e a r . . 1 . C h e m . l C h e m o z . I l l a ) P n e R a i n e n . l 9 ' 7 5 _ 1 B . 8 . ; ( H a r e m } I W a y s b t 1 3 1 a ) D U I C h r i s t o C r a w f o . I S o c . 1 9 F e l t i n g 1 9 9 6 . 1 ' H C h r i s t e l r e s u l t s . 1 5 ( 3 ) P i r . 1 0 1 . ( l P l r d l n o ( C ) F i n 2 , 3 1 9 0 1 - [ I t a l 1 ( E - D u n b a I ' P T U C h p 9 . T a k a h a r a , P . M . ; R o s e n z w e i g , A . C . ; F r e d e r i c k , C . A . ; L i p p a r d , S . J . N a t u r e , 1 9 9 5 , 3 7 7 , 6 4 9 . 1 0 . ( a ) D m i t r o v , N . V . ; E a s t w o o d , G . W . C u r r e n t C h e m o t h e r . P r o c . I n t . C o n g . C h e m o t h e r . 1 0 t h 1 9 7 7 . 1 9 7 8 , 2 , 1 3 1 9 . ( b ) E a s t l a n d , G . W . ; Y a n g , G . ; T h o m p s o n , T . M e t h . a n d F i n d . E x p t l . C l i n . B i o c h e m . 1 9 8 9 , 1 0 , 4 1 . 1 1 . ( a ) E r c k , A . ; S h e r w o o d , E . ; B e a r , J . L . ; K i m b a l l , A . P . C a n c e r R e s . 1 9 7 6 , 3 6 , 2 2 0 4 . ( b ) B e a r , J . L . ; G r a y , J r . , H . B . ; R a i n e n , L . , e t . a l . C a n c e r C h e m o t h e r a p y R e p o r t s 1 9 7 5 , 5 9 , 6 1 1 . ( c ) H o w a r d , R . A . ; S p r i n g , T . G . ; B e a r , J . L . C a n c e r R e s . 1 9 7 6 , 3 6 , 4 4 0 2 . ( d ) C h e n , J . ; K o s t i c , N . M . I n o r g . C h e m . 1 9 8 8 , 2 7 , 2 8 6 2 . ( e ) B e a r , J . L . ; H o w a r d , R . A . ; D e n n i s , A . M . C u r r . C h e m o t h e r . P r o c . I n t . C o n g r e s s C h e m o t h e r . 1 0 : ] . M e e t i n g , 1 9 7 7 , v 0 1 2 . 1 2 . ( a ) P n e u m a t i k a k i s , G . ; H a d j i l i a d i s , N . J . C . S . D a l t o n 1 9 7 9 , 5 9 6 . ( b ) R a i n e n , L . ; H o w a r d , R . A . ; K i m b a l l , A . P . ; B e a r , J . L . J . I n o r g . C h e m . 1 9 7 5 , 1 1 , 2 7 5 2 . ( c ) F a r r e l l , N . J . I n o r g . B i o c h e m . 1 9 8 1 , 1 4 , 2 6 1 . ( d ) Y u , B . S . ; C h o o , S . Y . J . P h a r m . S o c . K o r . 1 9 7 5 , I 9 , 2 1 5 . ( e ) R u b i n , J . R . ; H a r o m y , T . P . ; S u n d a r a l i n g a m , M . A c t a C r y s t . 1 9 9 1 , C 4 7 , 1 7 1 2 . ( f ) W a y s b o r t , D . ; T a r i e n , E . ; E i c h o m , G . L . I n o r g . C h e m . 1 9 9 3 , 3 2 , 4 7 7 4 . 1 3 . ( a ) D u n b a r , K . R . ; M a t o n i c , J . H . , S a h a r a n , V . P . ; C r a w f o r d , C . A . ; C h r i s t o u , G . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 2 2 0 1 . ( b ) D a y , E . F . ; C r a w f o r d , C . A . ; F o l t i n g , K . ; D u n b a r , K . R . ; C h r i s t o u , G . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 9 3 3 9 . ( 0 ) C r a w f o r d , C . A . ; D a y , E . F . ; S a h a r a n , V . P . ; F o l t i n g , K . ; H u f f m a n , J . C . ; D u n b a r , K . R . ; C h r i s t o u , G . C h e m . C o m m u n . 1 9 9 6 , 1 1 1 3 . 1 4 . C h r i s t o u , G . J . ; C r a w f o r d , C . A . ; D u n b a r , K . R . ; F o l t i n g , K . u n p u b l i s h e d r e s u l t s . 1 5 . ( a ) P i r a i n o , P . ; T r e s o l d i , G . ; S c h i a v o , S . L . I n o r g . C h i m . A c t a 1 9 9 3 , 2 0 3 , 1 0 1 . ( b ) S c h i a v o , S . L . ; S i n i c r o p i , M . S . ; T r e s o l d i , G . ; A r e n a , C . G . ; P i r a i n o , P . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 4 , 1 5 1 7 a n d r e f e r e n c e s t h e r e i n . ( c ) F i m i a n i , V . ; A i m ' s , T . ; C a v a l l a r o , A . ; P i r a i n o , P . J . C h e m o t h e r . 1 9 9 0 , 2 , 3 1 9 a n d r e f e r e n c e s t h e r e i n . ( ( 1 ) P i r a i n o , P . ; B r u n o , G . ; T r e s o l d i , G . ; e t a 1 . I n o r g . C h e m . 1 9 8 7 , 2 6 , 9 1 . 1 6 . D u n b a r , K . R . ; C h i f o t i d e s , H . , T . P a t e l , D . u n p u b l i s h e d r e s u l t s . 1 7 . P r u c h n i k , F . ; D u s , D . J . I n o r g . B i o c h e m . 1 9 9 6 , 6 1 , 5 5 . 3 2 R e a c t i o n s C h a p t e r I I R e a c t i o n s o f S u b s t i t u t e d D N A P u r i n e s w i t h D i r h o d i u m C o m p l e x e s t h a t C o n t a i n F o r m a m i d i n a t e L i g a n d s . 3 3 1 . l n t r o d m 1 S i l v e f f e c t m e t a l c l ' l C ‘ e o a m . l b . " I ) . O f t h e l = M e . E 1 1 H u m a n 0 1 ‘ p e r f o r m e d T h e m i n i ; T n e i n h i t t h o u g h t I t E a p r e f e r e m f a v o r a b l : S t a b l l l Z e g r o u p 3 1 X - r a y $ 1 ‘ 2 . _ ) _ t B a t o m a t 3 P a 1 . I n t r o d u c t i o n S i n c e t h e d i s c o v e r y o f c i s p l a t i n , c i s - P t C 1 2 ( N H 3 ) 2 o r c i s - D D P , a s a n e f f e c t i v e a n t i t u m o r a g e n t , s i m i l a r i n v e s t i g a t i o n s o f o t h e r p l a t i n u m g r o u p m e t a l c o m p l e x e s h a v e u n e a r t h e d a v a r i e t y o f a c t i v e m e t a l c o m p l e x e s ( F i g u r e 1 ) . O f t h e s e c o m p o u n d s , t h e d i r h o d i u m t e t r a c a r b o x y l a t e s , R h 2 ( O z C R ) 4 L 2 ( R = M e , E t P h o r C F 3 ; L = d o n o r s o l v e n t ) , a r e a c t i v e a g a i n s t s u c h t u m o r s a s H u m a n O r a l C a r c i n o m a , E h r l i c h a s c i t e s , L 1 2 1 0 a n d P 3 8 8 . 1 E a r l y s t u d i e s p e r f o r m e d b y B e a r a n d c o w o r k e r s p o i n t e d t o D N A b i n d i n g a s t h e o r i g i n o f t h e a n t i t u m o r a c t i v i t y o f t h e s e c o m p o u n d s , i n a m a n n e r a k i n t o c i s p l a t i n . T h e i n h i b i t i o n o f D N A s y n t h e s i s a s a r e s u l t o f P t - D N A i n t e r a c t i o n s i s t h o u g h t t o b e a m a j o r f a c t o r t h a t c o n t r i b u t e s t o c i s p l a t i n ’ s a n t i t u m o r a c t i v i t y . E a r l y s t u d i e s o f R h 2 ( O A c ) 4 w i t h D N A n u c l e o b a s e s r e v e a l e d a s t r o n g p r e f e r e n c e f o r a d e n i n e o v e r g u a n i n e w h i c h w a s s a i d t o b e d u e t o t h e f a v o r a b l e a x i a l l i g a t i o n o f a d e n i n e z , 3 T h i s a x i a l i n t e r a c t i o n i s t h o u g h t t o b e s t a b i l i z e d b y h y d r o g e n b i n d i n g i n t e r a c t i o n s b e t w e e n t h e e x o c y c l i c a m i n e g r o u p a n d a c a r b o x y l a t e o x y g e n a t o m w h i c h i s o b s e r v e d i n a s i n g l e - c r y s t a l X - r a y s t r u c t u r e o f t h e b i s ( l - m e t h y l a d e n o s i n e ) a d d u c t o f R h 2 ( O A c ) 4 ( F i g u r e 2 ) . ” B y e m p l o y i n g s i m i l a r a r g u m e n t s , r e s e a r c h e r s s u g g e s t e d t h a t t h e O a t o m a t p o s i t i o n 6 o f g u a n i n e w o u l d r e s u l t i n a r e p u l s i v e i n t e r a c t i o n w i t h t h e l o n e p a i r s o n t h e c a r b o x y l a t e o x y g e n a t o m s , t h u s t h e b i n d i n g o f t h e 3 4 d i r h s a i d } o ; i n t : ‘ n a e n r a o c - d i u m . p t 6 i 1 o b o 7 n r x p l a i n t h e g n a c r l d n l s e i s o : r r b o x y l a s i t i o n s e o a o e R e e p l s o F l a ( t q o u f o - 4 a t m a l D \ C l / I ’ I ' H g " C i s u r e t i t a t e x , 2 , N ! d i r h o d i u m c a r b o x y l a t e s t o g u a n i n e w o u l d b e d i s f a v o r e d . I n a q u i t e d i f f e r e n t s t u d y , p e r f o r m e d b y E i c h o m a n d c o w o r k e r s , N M R d a t a i n d i c a t e d t h a t i n t e r a c t i o n s b e t w e e n t h e d i r h o d i u m c a r b o x y l a t e s a n d a d e n o s i n e i s n - r a t h e r t h a n o - b o n d e d i n t h e a x i a l p o s i t i o n s , w h i c h t h e s e r e s e a r c h e r s c l a i m e d w o u l d e x p l a i n t h e s p e c i fi c i t y o f a d e n o s i n e o v e r t h e p o o r e r n - a c c e p t o r g u a n o s i n e . 2 f R e g a r d l e s s o f t h e s e e a r l i e r c o n c l u s i o n s , w o r k i n o u r l a b o r a t o r i e s s u p p o r t s t h e c o n c l u s i o n t h a t g u a n i n e d o e s , i n f a c t , b i n d t o d i n u c l e a r t r a n s i t i o n m e t a l c a r b o x y l a t e c o m p o u n d s v i a b r i d g i n g i n t e r a c t i o n s i n v o l v i n g t h e N 7 a n d 0 6 p o s i t i o n s ( F i g u r e 3 ) . 4 I n a d d i t i o n , a d e n i n e h a s b e e n o b s e r v e d n o t o n l y t o b r i d g e d i n u c l e a r t r a n s i t i o n m e t a l c e n t e r s i n a s i m i l a r m a n n e r t o g u a n i n e , b u t a l s o t o f o r m c h e l a t e s a t o f t h e m e t a l c e n t e r s t h r o u g h t h e N 7 a n d N 6 p o s i t i o n s ( F i g u r e 4 ) . T h e e x i s t e n c e o f t h e s e b r i d g i n g o r c h e l a t i n g i n t e r a c t i o n s i n a c t u a l D N A t r e a t e d w i t h d i r h o d i u m t e t r a c a r b o x y l a t e c o m p o u n d s r e m a i n s t o R N . « x N T T N . ~ ‘ \ \ \ O . \ \ \ O C l l / I l “ \ ‘ C l 1 . , P t , . \ _ _ _ _ R h _ _ L _ _ . . . — - H 3 N ( ‘ N H , L O ' ' 0 ' l L O V R ' h 0 ' l L O O O O R Y F 3 C Y R C F 3 C l s p l a t l n R h 2 ( 0 2 C R ) 4 I . / 2 R h 2 ( D T O l F ) 2 ( 0 2 C C F 3 ) 2 l / ‘ F i g u r e 1 . S t r u c t u r e s o f d i n u c l e a r t r a n s i t i o n m e t a l a n t i c a n c e r c o m p o u n d s t h a t e x h i b i t a n t i t u m o r a c t i v i t y . 3 5 ' L ‘ fi l l ‘ l l l l ‘ l l ‘ l l fi [ I T I _ \ I ' I I I 1 \ I I I ‘ fi l l l ‘ l l l fi l r F e i p g l u o r t e t e d 2 . f r P o L m U X T - r O a y d i c o a o g r r d a i m n a t o e f s . R 2 h ° 2 ( O Z C C H 3 ) , , ( 1 - m e t h y l a d e n o s i n e ) 2 b e d e t e r m T h l i e e t r a r b o r c D a T ; ( o l l b c e p a r e d r t c i o t m a u m o r n h a i l e a c o w t o a r l i b i t i o n l t r 5 ] . L D T o i w k e r r e p m e t e d t o ( 1 1 h r a n t R p s a i h r c e P C P m f 9 E r r m i o o u ‘ i n e x r e m d a H E I G 5 . n _ “ t E . t H h . o f 9 ~ e t h t b e d e t e r m i n e d . T h e a n t i t u m o r a c t i v i t y o f d i r h o d i u m c o m p o u n d s i s n o t l i m i t e d t o t h e t e t r a c a r b o x y l a t e c o m p o u n d s . F o r e x a m p l e , t h e m i x e d - l i g a n d c o m p o u n d , R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H z O ) 2 ( D T o l F = N , N ’ - p - t o l y l f o r m a m i d i n a t e ) , fi r s t p r e p a r e d b y P i r a i n o a n d c o w o r k e r s , i s a c t i v e a g a i n s t Y o s h i d a a s c i t e s a n d T 8 s a r c o m a c e l l s i n v i v o ( F i g u r e 1 ) . 5 L i k e t e t r a c a r b o x y l a t e c o m p o u n d s , t h e a n t i t u m o r a c t i v i t y o f t h i s c o m p o u n d i s t h o u g h t t o b e t h e r e s u l t o f t h e i n h i b i t i o n o f D N A s y n t h e s i s . F u r t h e r m o r e , P i r a i n o r e p o r t s t h a t R h 2 ( D T o l F ) 2 ( O Z C C F 3 ) 2 ( H Z O ) 2 h a s a h i g h a f fi n i t y f o r a d e n i n e , b u t d o e s n o t r e a c t w i t h g u a n i n e w h i c h i s t h e s a m e c o n c l u s i o n d r a w n b y B e a r a n d c o w o r k e r s f o r R h 2 ( O Z C R ) 4 r e a c t i o n s . A l l o f t h e s e f a c t s c o m b i n e d w i t h o u r e a r l i e r s u c c e s s w i t h t h e p u r i n e r e a c t i o n s o f d i r h o d i u m t e t r a c a r b o x y l a t e s p r o m p t e d u s t o i n v e s t i g a t e t h e n u c l e o b a s e c h e m i s t r y o f t h e [ R h 2 ( D T o l F ) 2 ] 2 + c o r e t o d e t e r m i n e t h e m o d e o f b i n d i n g t o t h e d i r h o d i u m u n i t a d o p t e d b y t h e p u r i n e s . C o n t r a r y t o t h e l i t e r a t u r e r e p o r t c o n c e r n i n g t h e r e a c t i v i t y o f t h e m i x e d - l i g a n d c o m p o u n d , R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H z O ) 2 , w e f o u n d t h a t t h e f o r m a m i d i n a t e c o m p o u n d s d o i n f a c t r e a c t w i t h g u a n i n e b a s e s , i n t h i s c a s e , 9 - E t G H . 6 H e r e i n w e r e p o r t t h e s t r u c t u r e o f [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 . I n a d d i t i o n , t h e r e a c t i o n b e t w e e n t w o e q u i v a l e n t s o f 9 - e t h y 1 a d e n i n e ( 9 - E t A H ) a n d [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 5 ] [ B F 4 ] 2 ( 2 ) t o f o r m 3 7 i l l ; 9 - E C O l — 4 N M v ‘ N I e N h \ \ / ‘ d \ a ” 0 O V / - t o M N - O s I ' / i T O h e a d s N 4 — N M v / N ‘ h l O \ , ‘ / O 4 O \ e / - a d t o O S " M N - T ' t T L a i \ l [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) i s a l s o p r e s e n t e d . T h e s t r u c t u r e o f t h e a c e t o n i t r i l e a d d u c t o f t h e a n t i c a n c e r a c t i v e c o m p o u n d R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) a s w e l l a s t h e a n a l o g o u s r e a c t i o n w i t h 9 - E t A H i s d i s c u s s e d a l o n g w i t h t h e s t r u c t u r e o f t h e b i s - a c e t a t e d e r i v a t i v e o f c o m p o u n d ( 1 ) . N A N / O = 9 - e t h y l g u a n i n e o r 9 - e t h y l a d e n i n e M = R h , R u , M o 0 \ \ 2 5 N > 2 1 “ | : > — H N H L ; 4 N 9 L N 9 - e t 3 h y l g u a n i n e 9 - e t h y l a d e n i n e F i g u r e 3 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e H - H a n d H — T b r i d g i n g m o d e s o f t h e D N A p u r i n e s 9 - E t G H a n d 9 - E t A H t o d i n u c l e a r t r a n s i t i o n m e t a l c e n t e r s . 3 8 F i g u r e 4 . E x a m p l e o f a c h e l a t i n g 9 - E t A H l i g a n d d e p i c t e d i n t h e O R T E P r e p r e s e n t a t i o n o f [ R h 2 ( O Z C C H 3 ) 2 ( b p y ) ( 9 - E t A ) ] 2 " . 4 d 3 9 L E X A . P h p _ T h s d \ p i a e m r c e i e r i m ' s i \ e c i t n r s o i p h o n a n o ; a n S p r e s i d u a l l m R M a s u r e m s e a r c h e e o d e l \ ' l h n l t e T C a i n i n l ‘ l m r t i n t C S o u W i t h 0 S l i p p e r - 1 ‘ ” fi l P o e t r - g n u e n t i a i 2 . E x p e r i m e n t a l S e c t i o n A . P h y s i c a l M e a s u r e m e n t s . T h e i n f r a r e d s p e c t r a w e r e c o l l e c t e d o n a N i c o l e t 7 4 0 F T - I R s p e c t r o p h o t o m e t e r . A l l 1 H N M R s p e c t r o s c o p i c d a t a i n c l u d i n g t h e 2 - d i m e n s i o n a l e x p e r i m e n t s w e r e c o l l e c t e d o n e i t h e r a 3 0 0 o r a 5 0 0 M H z - V a r i a n S p e c t r o m e t e r . C h e m i c a l s h i f t s w e r e r e f e r e n c e d r e l a t i v e t o t h e r e s i d u a l p r o t o n i m p u r i t i e s o f t h e s o l v e n t s u s e d . E l e c t r o c h e m i c a l m e a s u r e m e n t s w e r e p e r f o r m e d b y u s i n g a n E G & G P r i n c e t o n A p p l i e d R e s e a r c h M o d e l 3 6 2 s c a n n i n g p o t e n t i o s t a t i n c o n j u n c t i o n w i t h a S o l t e c M o d e l V P - 6 4 2 4 S X - Y r e c o r d e r . T h e c y c l i c v o l t a m m e t r i c e x p e r i m e n t s f o r [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 4 ) w e r e c a r r i e d o u t a t r . t . i n a c e t o n i t r i l e c o n t a i n i n g 0 . 1 M t e t r a - n - b u t y l a m m o n i u m h e x a fl u o r o p h o s p h a t e , T B A P F 6 , a s s u p p o r t i n g e l e c t r o l y t e w h i l e t h e e x p e r i m e n t s f o r ( 3 ) a n d ( 4 ) w e r e p e r f o r m e d w i t h 0 . 1 M t e t r a - n - b u t y l a m m o n i u m t e t r a fl u o r o b o r a t e , T B A B F 4 , a s s u p p o r t i n g e l e c t r o l y t e . E m v a l u e s , d e t e r m i n e d a s ( E M + E p , c ) / 2 , w e r e r e f e r e n c e d t o t h e A g / A g C l e l e c t r o d e w i t h o u t c o r r e c t i o n f o r j u n c t i o n p o t e n t i a l s . T h e s z F e / s z F e + c o u p l e o c c u r s a t E 1 , 2 = + 0 . 4 6 V , E m = + 0 . 5 3 V a n d E m = + 0 . 4 5 V f o r t h e c y c l i c v o l t a m m o g r a m s o f c o m p o u n d s ( 2 ) , ( 3 ) a n d ( 4 ) , r e s p e c t i v e l y , u n d e r t h e s a m e e x p e r i m e n t a l c o n d i t i o n s i n a c e t o n i t r i l e . 4 0 r i _ _ . . - 6 ' 7 ” 9 - E t h y l g u a n i n e w a s p u r c h a s e d f r o m B . S y n t h e s e s i . S t a r t i n g M a t e r i a l s T h e c o m p o u n d s , [ R h ( D T o l F ) ( c o d ) ] 2 ( c o d = 1 , 4 - c y c l o o c t a d i e n e ) a n d [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) , w e r e p r e p a r e d a c c o r d i n g t o t h e l i t e r a t u r e p r o c e d u r e s . 6 ’ 7 a R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) , 9 - e t h y l a d e n i n e ( 9 - E t A H ) a n d [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) w e r e p r e p a r e d u s i n g m o d i fi e d l i t e r a t u r e p r o c e d u r e s . S i g m a w h e r e a s A g B F 4 N a O Z C C H 3 , a n d N a O Z C C H 3 ° 7 H z O w e r e p u r c h a s e d f r o m A l d r i c h . I n a l l c a s e s , c o m m e r c i a l r e a g e n t s w e r e u s e d w i t h o u t f u r t h e r p u r i fi c a t i o n . T h e l i g a n d 9 - E t A H w a s p r e p a r e d b y a m o d i fi c a t i o n o f t h e 8 P r i o r t o d i s t i l l a t i o n u n d e r a n i t r o g e n a t m o s p h e r e , a l l l i t e r a t u r e p r o c e d u r e . s o l v e n t s w e r e p r e d r i e d f r o m 4 A m o l e c u l a r s i e v e s w i t h t h e e x c e p t i o n o f a c e t o n e a n d a c e t o n i t r i l e , w h i c h w e r e p r e d r i e d w i t h 3 A m o l e c u l a r s i e v e s . D i e t h y l e t h e r w a s d i s t i l l e d f r o m s o d i u m / p o t a s s i u m b e n z o p h e n o n e k e t y l r a d i c a l w h e r e a s t o l u e n e w a s a l s o d i s t i l l e d f r o m N a / K d r y i n g a g e n t w i t h n o i n d i c a t o r . A c e t o n e a n d a c e t o n i t r i l e w e r e d i s t i l l e d f r o m 3 A m o l e c u l a r s i e v e s w h i l e m e t h y l e n e c h l o r i d e w a s d i s t i l l e d f r o m P 2 0 5 . T h e a c e t o n i t r i l e u s e d f o r t h e e l e c t r o c h e m i c a l m e a s u r e m e n t s w a s f u r t h e r p u r i fi e d b y p a s s i n g i t t h r o u g h a n a c t i v a t e d a l u m i n a c o l u m n f u r t h e r p u r i fi e d . 4 1 S p e c t r O S C O F i i . R e a l l i n e r t a t m o s p o t h e r w i s e s t a ( 1 ) M o d i f i e r s l u r r y o f [ R ' m e t h a n o l a r . . l g O ; C C F ; a l l o w e d t o s C o ' s t a l l i z a t i c b y fi l t r a t i o n . l 2 ) l l o d l fi e a d e n i n e ( 3 1 e l T 2 1 i ‘ I l t , \ . r ' l a n 7 b o n o m e d l l . T h e r e a c t i o e l A a P O T a l e d : : 0 5 0 C u s i n f u n h e r p u r i i 0 f p u r i fi e d i i . R e a c t i o n P r o c e d u r e s . A l l m a n i p u l a t i o n s w e r e p e r f o r m e d u n d e r i n e r t a t m o s p h e r i c c o n d i t i o n s u s i n g s t a n d a r d S c h l e n k t e c h n i q u e s u n l e s s o t h e r w i s e s t a t e d . ( 1 ) M o d i f i e d P r e p a r a t i o n o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) . A s l u r r y o f [ R h ( D T o l F ) ( c o d ) ] 2 ( 1 5 7 m g , 0 . 3 2 m m o l ) a n d a 1 : 1 m i x t u r e o f m e t h a n o l a n d m e t h y l e n e c h l o r i d e ( 7 m L ) w a s t r e a t e d w i t h 3 m L o f a A g O Z C C F 3 ( 2 8 1 m g , 1 . 3 m m o l ) m e t h a n o l s o l u t i o n . T h e m i x t u r e w a s a l l o w e d t o s t i r f o r 2 4 h a t r . t . , a n d t h e n t r e a t e d w i t h d i e t h y l e t h e r t o i n d u c e c r y s t a l l i z a t i o n o f t h e p r o d u c t . T h e g r e e n c r y s t a l l i n e m a t e r i a l w a s c o l l e c t e d b y fi l t r a t i o n , a n d d r i e d i n a i r ( 2 0 4 m g , 6 9 % y i e l d ) . ( 2 ) M o d i fi e d P r e p a r a t i o n o f 9 - e t h y l a d e n i n e ( 9 - E t A I - I ) . A n a m o u n t o f a d e n i n e ( 8 2 8 m g , 6 . 1 3 m m o l ) a n d 2 . 5 8 g o f 3 5 % a q u e o u s t e t r a e t h y l a m m o n i u m h y d r o x i d e w e r e p l a c e d i n t o a l o n g n e c k 5 0 m L r o u n d - b o t t o m e d fl a s k e q u i p p e d w i t h a n i n t e r n a l c o n d e n s o r a n d a S c h l e n k a d a p t e r . T h e r e a c t i o n m i x t u r e w a s s t i r r r e d f o r 1 / 2 h a t r . t . a n d t h e w a t e r w a s e v a p o r a t e d t o y i e l d a n o f f - w h i t e r e s i d u e . T h e r e s i d u e w a s s u b l i m e d a t 2 0 0 — 2 0 5 ° C u s i n g t h e i n t e r n a l c o n d e n s o r t o c o l l e c t t h e 9 - E t A H . T h e p u r i n e w a s f u r t h e r p u r i f e d b y r e c r y s t a l l i z a t i o n f r o m m e t h y l e t h y l k e t o n e t o y i e l d 8 0 0 m g o f p u r i fi e d m a t e r i a l ( 8 0 % y i e l d ) . P u r i t y w a s c o n fi r m e d b y 1 H N M R s p e c t r o s c o p y i n D 2 0 , C D 3 C N a n d C D 3 O D . 4 2 ( 3 ) [ h a l D 0 . 0 5 5 6 m r r s o l u t i o n ( 3 f o r ~ 2 d a y : w i t h d i e t h . C d l g C H ; l l ( 4 ) N M R R h n g T o l F A f t e r o b t a i : a d d e d t o t h f o r 7 2 h ( i t 5 1 1 6 0 1 1 1 0 1 1 0 ' 7 2 h P fi r i o d l 5 ) P r e p a l C o m P O U n d . N a O l c c H B s t i r r e d a t r . m m e d l l g h m a t e r i a l , a : ( 3 ) [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . C o m p o u n d ( 2 ) ( 6 0 . 3 m g , 0 . 0 5 5 6 m m o l ) w a s d i s s o l v e d i n C H 3 C N ( 2 m L ) a n d t r e a t e d w i t h a C H 3 C N s o l u t i o n ( 3 m L ) o f 9 - E t A H ( 1 8 . 2 m g , 0 . 1 1 2 m m o l ) . T h e m i x t u r e w a s s t i r r e d f o r ~ 2 d a y s a n d t h e r e s u l t i n g g r e e n p r o d u c t w a s p r e c i p i t a t e d f r o m s o l u t i o n w i t h d i e t h y l e t h e r ; s i n g l e c r y s t a l s w e r e g r o w n f r o m t h e d i f f u s i o n o f C 6 H 5 C H 3 i n t o a s o l u t i o n o f C H 3 C N ( 4 ) . ( 4 ) N M R T u b e R e a c t i o n o f ( 1 ) w i t h 9 - E t A H . A n N M R s a m p l e o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) w a s p r e p a r e d i n C D 3 C N ( 0 . 4 m L ) . A f t e r o b t a i n i n g t h e 1 H N M R s p e c t r u m o f t h e s t a r t i n g m a t e r i a l , 9 - E t A H w a s a d d e d t o t h e r e d - v i o l e t d i r h o d i u m s o l u t i o n . T h e m i x t u r e w a s s t i r r e d a t r . t . f o r 7 2 h d u r i n g w h i c h t i m e t h e s o l u t i o n c o l o r t u r n e d g r e e n . T h e 1 H N M R s p e c t r u m o f t h e r e a c t i o n m i x t u r e w a s m o n i t o r e d a t v a r i o u s t i m e s d u r i n g t h e 7 2 h p e r i o d . ( 5 ) P r e p a r a t i o n o f R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 ( H Z O ) ( 6 ) . A n a m o u n t o f c o m p o u n d ( 2 ) ( 9 7 m g , 0 . 0 0 8 9 m m o l ) w a s d i s s o l v e d i n a c e t o n i t r i l e ( 5 m L ) , N a O Z C C H 3 - 4 H z O ( 1 7 m g , 0 . 0 2 1 m m o l ) w a s a d d e d , a n d t h e m i x t u r e w a s s t i r r e d a t r . t . f o r 2 d a y s . D u r i n g t h i s t i m e , t h e c o l o r o f t h e r e a c t i o n m i x t u r e t u r n e d l i g h t g r e e n c o m p a r e d t o t h e d a r k o r a n g e - r e d c o l o r o f t h e s t a r t i n g m a t e r i a l , a n d a w h i t e p r e c i p i t a t e f o r m e d . T h e m i x t u r e w a s fi l t e r e d i n a i r t h r o u g h a f r i t c o v e r e d w i t h C e l i t e , a n d t r e a t e d w i t h d i e t h y l e t h e r ( ~ 2 0 m L ) , 4 3 b u t t h i s d i d t h e s o l u t i o : p r o d u c e d g t C . X - r a y C c o m p o u n d d i t l r a c t o m e M o K a ( \ t c o r r e c t e d f t s t r u c t u r e s o S i l i c o n G r a ] C h e m i s t r y 3 0 1 t h e M o l e d a t a f o r c o r a v e r a g e 2 9 ' C l P o l a r i z a t i o n C o m P U t e r P a t ‘ l ‘ a g e ‘ a , t i U i m g I h e R b u t t h i s d i d n o t s e r v e t o b r i n g t h e c o m p o u n d o u t o f s o l u t i o n . C o n s e q u e n t l y , t h e s o l u t i o n w a s a l l o w e d t o s l o w l y e v a p o r a t e i n a i r , w h i c h e v e n t u a l l y p r o d u c e d g r e e n c r y s t a l s t h a t w e r e s u i t a b l e f o r a s i n g l e c r y s t a l X - r a y s t u d y . C . X — r a y C r y s t a l l o g r a p h y a n d S t r u c t u r e S o l u t i o n . A q u a d r a n t o f d a t a f o r c o m p o u n d ( 4 ) w e r e c o l l e c t e d a t 1 7 3 i 2 K o n a N i c o l e t P 3 / V d i f f r a c t o m e t e r u p g r a d e d t o a S i e m e n s P 3 / F w i t h g r a p h i t e m o n o c h r o m a t e d M o K a ( w i t h a v e r a g e l e a = 0 . 7 1 0 7 3 A ) r a d i a t i o n ; t h e r e fl e c t i o n s w e r e c o r r e c t e d f o r L o r e n t z a n d p o l a r i z a t i o n e f f e c t s . A l l c a l c u l a t i o n s f o r t h e s t r u c t u r e s o l u t i o n a n d t h e r e fi n e m e n t o f c o m p o u n d ( 4 ) w e r e p e r f o r m e d w i t h S i l i c o n G r a p h i c s c o m p u t e r s o n a c l u s t e r n e t w o r k w i t h i n t h e D e p a r t m e n t o f C h e m i s t r y a t M i c h i g a n S t a t e U n i v e r s i t y u s i n g t h e T e x s a n s o f t w a r e p a c k a g e o f t h e M o l e c u l a r S t r u c t u r e C o r p o r a t i o n . 9 A h e m i s p h e r e o f c r y s t a l l o g r a p h i c d a t a f o r c o m p o u n d s ( 1 ) , ( 3 ) , a n d ( 6 ) w a s c o l l e c t e d o n a S i e m e n s S M A R T d i f f r a c t o m e t e r a t 1 7 3 i 2 K w i t h g r a p h i t e m o n o c h r o m a t e d M o K a t ( w i t h a v e r a g e I t o , = 0 . 7 1 0 7 3 A ) r a d i a t i o n a n d w e r e c o r r e c t e d f o r L o r e n t z a n d p o l a r i z a t i o n e f f e c t s . C a l c u l a t i o n s w e r e p e r f o r m e d o n a S i l i c o n G r a p h i c s c o m p u t e r . T h e f r a m e s w e r e i n t e g r a t e d w i t h t h e S i e m e n s S A I N T s o f t w a r e p a c k a g e , a n d t h e d a t a w e r e c o r r e c t e d f o r a b s o r p t i o n u s i n g t h e S A D A B S p r o g r a m . 1 0 T h e s t r u c t u r e s o f ( l ) , ( 3 ) a n d ( 6 ) w e r e s o l v e d b y d i r e c t m e t h o d s u s i n g t h e S H E L X S p r o g r a m i n t h e S i e m e n s S H E L X T L v . 5 . 0 5 s o f t w a r e n a 4 4 R e fi n e m e n t s w e r e c a r r i e d o u t b y f u l l — m a t r i x l e a s t - s q u a r e s c a l c u l a t i o n s o n F 2 u s i n g t h e S H E L X L - 9 7 p r o g r a m . l l b A l l r e l e v a n t c r y s t a l l o g r a p h i c v a l u e s a n d o t h e r p e r t i n e n t i n f o r m a t i o n f o r c o m p o u n d s ( 1 ) , ( 3 ) , ( 4 ) a n d ( 6 ) a r e l i s t e d i n T a b l e s 1 2 - 1 5 . ( 1 ) R h 2 ( D T o l F ) z ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) . A o r a n g e - r e d r e c t a n g u l a r p l a t e l e t 3 w a s o b t a i n e d f r o m t h e h a v i n g d i m e n s i o n s 0 . 3 1 x 0 . 1 1 x 0 . 1 0 m m e v a p o r a t i o n o f a n a c e t o n i t r i l e s o l u t i o n o f ( 1 ) , a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . I n d e x i n g a n d r e fi n e m e n t o f 5 9 r e fl e c t i o n s s e l e c t e d f r o m a t o t a l o f 4 5 f r a m e s w i t h a n e x p o s u r e t i m e o f 1 0 s e c / f r a m e g a v e u n i t c e l l p a r a m e t e r s f o r a m o n o c l i n i c u n i t c e l l . A t o t a l o f 1 , 3 2 1 f r a m e s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 3 ° i n ( o a n d a n e x p o s u r e t i m e o f 3 0 s e c / f r a m e . T h e t o t a l d a t a c o l l e c t i o n t i m e w a s 1 3 . 5 h . T h e i n t e g r a t i o n o f t h e f r a m e d a t a u s i n g a m o n o c l i n i c B - c e n t e r e d u n i t c e l l c o n s t r a i n t y i e l d e d r e fl e c t i o n s t o t a l i n g 2 5 , 1 6 0 i n t h e r a n g e h = 1 4 — ) ' 1 4 , k = 2 7 — - ) ' 2 8 , l = 2 3 — > ‘ 1 5 w i t h a m a x i m u m 2 0 a n g l e o f 5 6 . 7 8 ° . O f t h e 1 0 , 1 0 1 u n i q u e r e fl e c t i o n s , a t o t a l o f 3 , 7 6 1 r e fl e c t i o n s r e m a i n e d w i t h I > 2 6 ( 1 ) a n d R i m = 0 . 1 1 7 7 a n d R s i g = 0 . 1 9 1 2 a f t e r d a t a r e d u c t i o n . T h e p o s i t i o n s o f a l l o f t h e n o n - h y d r o g e n a t o m s w e r e l o c a t e d b y d i r e c t m e t h o d s . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d a n i s o t r o p i c a l l y w h i l e t h e h y d r o g e n a t o m s w e r e 4 5 a l c u l a a e f s - t f r u h e fi e s p e c 2 : c d t t e s £ 1 a n i r l i v e I } l l ) . i p n n a a t z t h 3 4 ) ) w e r e g r t c r o r l ( t o l u e n e . A C o m i n g g r t O b t a i n e d i n . 9 < 2 1 0 . m a x i m u m ; m a t W e r e C 1 t h e d a t a C C S i g n l l ‘ l C a m C O H e c t i o n \ n e a r 9 0 0 - fl u n k “ t h e n a t o r c a l c u l a t e d a t fi x e d p o s i t i o n s . F i n a l r e fi n e m e n t o f 5 0 6 p a r a m e t e r s a n d 3 1 r e s t r a i n t s g a v e r e s i d u a l s o f R 1 = 0 . 0 4 5 1 a n d w R 2 = 0 . 0 9 0 4 . T h e g o o d n e s s - o f - fi t p a r a m e t e r w a s 0 . 9 9 2 w i t h t h e m a x i m u m a n d m i n i m u m p e a k h e i g h t s i n t h e fi n a l d i f f e r e n c e F o u r i e r m a p b e i n g 0 . 6 4 9 e / A 3 a n d — 0 . 9 9 4 e / A 3 , r e s p e c t i v e l y . ( 2 ) [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] ( B F 4 ) 2 ( 4 ) . X - r a y q u a l i t y c r y s t a l s o f ( 4 ) w e r e g r o w n f r o m t h e s l o w d i f f u s i o n o f a n a c e t o n i t r i l e s o l u t i o n o f ( 4 ) i n t o t o l u e n e . A g r e e n r e c t a n g u l a r c r y s t a l h a v i n g t h e a p p r o x i m a t e d i m e n s i o n s 0 . 3 1 x 0 . 2 3 x 0 . 1 8 m m 3 w a s m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . C e l l c o n s t a n t s f o r t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / c w e r e o b t a i n e d f r o m a l e a s t - s q u a r e s r e fi n e m e n t o f 2 5 r e fl e c t i o n s i n t h e r a n g e 1 5 < 2 0 < 2 1 ° . T h e d a t a w e r e c o l l e c t e d u s i n g t h e c o - 2 0 s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 4 5 ° i n t h e r a n g e 4 < 2 0 < 4 5 ° . O f t h e 7 , 1 5 1 r e fl e c t i o n s t h a t w e r e c o l l e c t e d , 6 , 8 4 1 w e r e u n i q u e w i t h R i m = 0 . 1 1 9 . O v e r t h e c o u r s e o f t h e d a t a c o l l e c t i o n , s t a n d a r d s c o l l e c t e d e v e r y 1 5 0 r e fl e c t i o n s r e v e a l e d n o s i g n i fi c a n t d e c r e a s e i n d i f f r a c t i o n i n t e n s i t y . A n e m p i r i c a l a b s o r p t i o n c o r r e c t i o n w a s a p p l i e d o n t h e b a s i s o f a z i m u t h a l s c a n s o f 3 r e fl e c t i o n s w i t h x n e a r 9 0 ° . T h e s t r u c t u r e w a s s o l v e d b y d i r e c t m e t h o d s u s i n g t h e M I T H R I L p r o g r a m , a n d e x p a n d e d u s i n g d i f f e r e n c e F o u r i e r t e c h n i q u e s . T h e e t h y l c a r b o n a t o m s o f t h e 9 - E t A H m o l e c u l e s a n d t h e a r o m a t i c c a r b o n a t o m s o f t h e 4 6 D l o l F 8 “ a t o m s W 6 1 t i r e d p o s t 3 . 2 4 0 o b s : a n d R , = 1 r e v e a l e d t b e 0 . 6 5 . e ' ( 3 ) t h 2 l 1 h a v i n g a p : t h e C l ’ a p o r W l ' l l C l ‘ l W a g fi b e r W i t h 3 S c a n W k l l ) 7 r e fl e C r e fi n e d t o w e r e 1 1 1 1 6 3 r e f l e c n O n S a n . D T o l F g r o u p s w e r e r e fi n e d i s o t r o p i c a l l y w h i l e t h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e r e fi n e d a n i s o t r o p i c a l l y . A l l h y d r o g e n a t o m s w e r e c a l c u l a t e d a t fi x e d p o s i t i o n s . T h e fi n a l l e a s t - s q u a r e s r e fi n e m e n t o f 5 0 3 p a r a m e t e r s o n 2 , 2 4 0 o b s e r v e d r e fl e c t i o n s ( I > 3 . 0 0 0 ( 1 ) ) r e s u l t e d i n r e s i d u a l s o f R 1 = 0 . 0 6 3 , a n d R w = 0 . 0 7 3 a n d a g o o d n e s s - o f - fi t = 1 . 3 0 . A fi n a l d i f f e r e n c e F o u r i e r m a p r e v e a l e d t h e h i g h e s t p e a k t o b e 0 . 7 5 e ' / A 3 a n d t h e m i n i m u m p e a k h e i g h t t o b e ‘ 0 . 6 5 e ' / A 3 . ( 3 ) [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] ( B E ) ; ( 3 ) . A g r e e n p r i s m a t i c p l a t e l e t h a v i n g a p p r o x i m a t e d i m e n s i o n s 0 . 1 0 x 0 . 0 8 x 0 . 0 6 m m 3 w a s o b t a i n e d f r o m t h e e v a p o r a t i o n o f a m e t h y l e n e c h l o r i d e s o l u t i o n o f ( 3 ) . T h e s e l e c t e d c r y s t a l , w h i c h w a s q u i t e s m a l l a n d s o f t , w a s c a r e f u l l y m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . A t o t a l o f 1 , 3 2 1 f r a m e s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 . 3 ° ' i n ( o a n d a n e x p o s u r e t i m e o f 4 4 s e c / f r a m e . A t o t a l o f . 1 0 7 r e fl e c t i o n s w e r e i n d e x e d f r o m 1 5 o f t h e s e f r a m e s . T h e r e fl e c t i o n s w e r e r e fi n e d t o g i v e u n i t c e l l p a r a m e t e r s f o r a t r i c l i n i c u n i t c e l l . T h e d a t a c o l l e c t e d w e r e i n t e g r a t e d u s i n g a t r i c l i n i c u n i t c e l l c o n s t r a i n t t o y i e l d a t o t a l o f 3 1 , 0 0 2 r e fl e c t i o n s i n t h e r a n g e h = 1 3 — ) ' 1 4 , k = 2 4 — ) ‘ 2 7 , l = 1 9 — > ' 2 9 w i t h a m a x i m u m 2 0 a n g l e o f 5 6 . 6 8 ° . A f t e r d a t a r e d u c t i o n o f t h e 1 2 , 2 8 7 u n i q u e r e fl e c t i o n s , 4 , 8 3 4 r e fl e c t i o n s r e m a i n e d w i t h I > 2 0 ( 1 ) . T h e R i m a n d R s i g 4 7 v a l u e s W I i n d i c a t i v e w e r e l o c z l o c a t e d d i t t ‘ e r e n c e p o s i t i o n s . t h e [ B E ] d i s o r d e r e d r e m e d i s o T h e h y d r o g l e a s t - s q u a r e " 3 9 5 1 3 a n d t ) “ R 2 = 0 . 0 r . l ” p a r a m e t e r v a l u e s w e r e 0 . 1 4 8 0 a n d 0 . 2 5 3 9 , r e s p e c t i v e l y . T h e s e f a i r l y h i g h r e s i d u a l s a r e i n d i c a t i v e o f t h e l o w q u a l i t y o f t h e c r y s t a l . T h e p o s i t i o n s o f t h e R h a t o m s w e r e l o c a t e d b y d i r e c t m e t h o d s . T h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d t h r o u g h s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . A d i s o r d e r e d [ B F 4 ] " a n i o n w a s m o d e l e d o v e r t w o p o s i t i o n s . A l l o f t h e n o n - h y d r o g e n a t o m s o f t h e c a t i o n i c c o m p l e x a n d o n e o f t h e [ B F 4 ] ' a n i o n s w e r e r e fi n e d a n i s o t r o p i c a l l y . T h e F a t o m s o f t h e d i s o r d e r e d [ B F 4 ] ' a n i o n w e r e r e fi n e d a n i s o t r o p i c a l l y w h i l e t h e B a t o m w a s r e fi n e d i s o t r o p i c a l l y w i t h a c o n s t r a i n t o n t h e i s o t h e r m a l t e m p e r a t u r e f a c t o r . T h e h y d r o g e n a t o m s w e r e r e fi n e d a t fi x e d p o s i t i o n s . T h e fi n a l f u l l - m a t r i x - l e a s t — s q u a r e s o n F 2 r e v e a l e d m a x i m u m a n d m i n i m u m p e a k h e i g h t s o f 1 . 4 3 e / A 3 a n d ’ 0 . 7 3 2 e / A 3 , r e s p e c t i v e l y , w i t h fi n a l r e s i d u a l s o f R 1 = 0 . 0 8 9 8 a n d w R 2 = 0 . 0 1 4 8 4 f o r 6 9 4 p a r a m e t e r s a n d 9 5 r e s t r a i n t s . T h e fi n a l g o o d n e s s - o f - fi t p a r a m e t e r w a s 0 . 9 7 4 . ( 4 ) R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 ( H Z O ) ( 6 ) . A g r e e n p r i s m a t i c p l a t e l e t h a v i n g d i m e n s i o n s 0 . 6 2 x 0 . 2 3 x 0 . 1 3 m m 3 w a s o b t a i n e d f r o m t h e e v a p o r a t i o n o f a n a c e t o n i t r i l e / d i e t h y l e t h e r s o l u t i o n o f ( 6 ) . T h e s e l e c t e d c r y s t a l w a s m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . I n d e x i n g a n d r e fi n e m e n t o f 3 0 r e fl e c t i o n s s e l e c t e d f r o m a t o t a l o f 4 5 f r a m e s w i t h a n 4 8 x p o s e l l . n d a n i t u A n c r e t i t t o t : e x p e l l < p n t e g r a t e d l e c a u i r e fl e c t i o n s m a x i m u m ; r e f l e c t i o n s . v a l u e s w e r e W e r e l o c a t e W e r e l o c a t e d i t l e r e n c e a n i s 0 t r 0 p i c ; F i n a l r e fi n = 0 . 1 1 0 1 m i n i j m l e x p o s u r e t i m e o f 1 0 s e c / f r a m e g a v e u n i t c e l l p a r a m e t e r s f o r a t r i c l i n i c u n i t c e l l . A t o t a l o f 1 , 3 2 1 f r a m e s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 3 ° i n 0 ) a n d a n e x p o s u r e t i m e o f 3 0 s e c / f r a m e . T h e r e fl e c t i o n s w e r e r e fi n e d t o g i v e u n i t c e l l p a r a m e t e r s f o r a t r i c l i n i c u n i t c e l l . T h e d a t a c o l l e c t e d w e r e i n t e g r a t e d u s i n g a t r i c l i n i c u n i t c e l l c o n s t r a i n t t o y i e l d a t o t a l o f 1 4 , 6 8 3 r e fl e c t i o n s i n t h e r a n g e h = 1 4 - — > ' 1 4 , k = 1 3 — > ' 1 6 , l = 1 7 — — > ' 1 9 w i t h a m a x i m u m 2 0 a n g l e o f 5 6 . 5 0 ° . A f t e r d a t a r e d u c t i o n o f t h e 8 , 0 3 3 u n i q u e r e fl e c t i o n s , 4 , 4 1 3 r e fl e c t i o n s r e m a i n e d w i t h I > 2 6 ( 1 ) . T h e R i m a n d R s i g v a l u e s w e r e 0 . 0 5 7 7 a n d 0 . 1 3 3 3 , r e s p e c t i v e l y . T h e p o s i t i o n s o f t h e R h a t o m s w e r e l o c a t e d b y d i r e c t m e t h o d s , a n d t h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d t h r o u g h s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d a n i s o t r o p i c a l l y w h i l e t h e h y d r o g e n a t o m s w e r e c a l c u l a t e d a t fi x e d p o s i t i o n s . F i n a l r e fi n e m e n t o f 4 2 2 p a r a m e t e r s g a v e r e s i d u a l s o f R 1 = 0 . 0 6 2 8 a n d w R 2 = 0 . 1 1 0 1 . T h e g o o d n e s s - o f - fi t p a r a m e t e r w a s 1 . 0 8 1 w i t h t h e m a x i m u m a n d m i n i m u m p e a k h e i g h t s i n t h e fi n a l d i f f e r e n c e F o u r i e r m a p b e i n g 1 . 0 2 1 e / A 3 a n d - O . 6 2 3 e / A 3 , r e s p e c t i v e l y . 4 9 3 , R e s u l t s : A . l l o d l fi e ( 1 ) R h ; t D T o l F f o r t h e 2 1 0 3 1 0 1 0 1 1 : g r e a t e r y i e ' . m o r e p u r e : a c e t o n i t r i l e 3 . R e s u l t s a n d D i s c u s s i o n . A . M o d i f i e d P r e p a r a t i o n o f R h 2 ( f o r m ) 2 ( O z C C F 3 ) z L 2 ( 1 ) ( 1 ) S y n t h e s e s . T h e s y n t h e s i s o f t h e a n t i t u m o r a c t i v e c o m p o u n d R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H z O ) 2 w a s m o d i fi e d b y e x c l u d i n g w a t e r a s a s o l v e n t f o r t h e a d d i t i o n o f A g O z C C F 3 w h i c h l e a d s t o t h e i s o l a t i o n o f R h 2 ( D T o l F ) ( O z C C F 3 ) 2 L 2 ( 1 ) ( L = C H 3 C N o r C H 3 O H ) . T h i s o c c u r s i n g r e a t e r y i e l d s t h a n t h e c o r r e s p o n d i n g a q u e o u s r e a c t i o n , a n d t h e p r o d u c t i s m o r e p u r e . 7 b C o n t r a r y t o t h e l i t e r a t u r e r e p o r t , w e d i d n o t o b s e r v e t h e r e d b i s - a c e t o n i t r i l e a d d u c t r a p i d l y c o n v e r t t o t h e g r e e n w a t e r a d d u c t i n a i r . 7 b C H C N / C C l [ R h ( D T o l F ) ( c o d ) ] 2 _ i _ 2 > R h 2 ( D T o l ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) 4 ( A 8 0 2 C C F 3 ) 1 ( 2 ) M o l e c u l a r S t r u c t u r e o f ( 1 ) . S u b s t i t u t i o n o f t h e a x i a l w a t e r i n R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 w i t h a c e t o n i t r i l e r e s u l t s i n s u b t l e c h a n g e s i n t h e l a n t e r n s t r u c t u r e o f t h e m i x e d - l i g a n d c o m p l e x . A n O R T E P r e p r e s e n t a t i o n o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) i s p r e s e n t e d i n F i g u r e 5 . T h e d i r h o d i u m c o r e c o n s i s t s o f t w o c i s b r i d g i n g [ D T o l F ] ' l i g a n d s , t w o b r i d g i n g [ O Z C C F 3 ] ' l i g a n d s a n d t w o a x i a l C H 3 C N m o l e c u l e s . T h e g e o m e t r y a r o u n d t h e R h a t o m s i s e s s e n t i a l l y o c t a h e d r a l w i t h a R h - R h b o n d l e n g t h o f 5 0 2 . 4 7 4 3 ( 5 ) A . T h i s i s l o n g e r t h a n t h e R h - R h b o n d l e n g t h o f t h e b i s - w a t e r a d d u c t f o r w h i c h R h - R h = 2 . 4 2 5 ( 1 ) A . 7 ° T h e l e n g t h e n i n g o f t h e m e t a l - m e t a l b o n d c a n b e a t t r i b u t e d t o t h e i n c r e a s e d i n t e r a c t i o n o f t h e a x i a l a c e t o n i t r i l e m o l e c u l e s w h i c h a r e c o o r d i n a t e d a t R h - N b o n d d i s t a n c e s o f 2 . 2 6 7 ( 5 ) A a n d 2 . 2 6 5 ( 5 ) A f o r R h ( 1 ) - N ( 3 ) a n d R h ( 2 ) - N ( 4 ) , r e s p e c t i v e l y . I n t e r e s t i n g l y , b o t h a x i a l a c e t o n i t r i l e s a r e c o o r d i n a t e d a t a n g l e s s i g n i fi c a n t l y l e s s t h a n 1 8 0 ° , w i t h t h e R h ( l ) - R h ( 2 ) - N ( 4 ) a n g l e b e i n g 1 7 2 . 3 7 ( 1 1 ) ° a n d t h e R h ( 2 ) - R h ( l ) - N ( 3 ) a n g l e b e i n g 1 6 8 . 8 8 ( 1 1 ) ° . T h e b i s - w a t e r a d d u c t e x h i b i t s s i m i l a r b e n d s f o r t h e a x i a l w a t e r s ( a v e r a g e R h - R h - O a n g l e o f l 6 8 . 6 [ 1 ] ° ) . A c o m p a r a b l e b e n d w a s a l s o o b s e r v e d i n t h e c o m p o u n d [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ B F 4 ] 2 ( 7 ) w h e r e o n e o f t h e a x i a l a c e t o n i t r i l e l i g a n d s i s c o o r d i n a t e d a t t h e a c u t e a n g l e o f 1 6 1 . 9 ( 2 6 ) ° ( C h a p t e r 2 ) . 1 4 T h e a v e r a g e R h - O b o n d d i s t a n c e o f t h e c o o r d i n a t e d t r i fl u o r o a c e t a t e g r o u p s o f 2 . 0 9 8 [ 3 ] A i s s l i g h t l y l o n g e r t h a n t h e a v e r a g e R h - O d i s t a n c e o f 2 . 0 8 3 [ 3 ] A i n t h e b i s - w a t e r a d d u c t . T h e O - C - O a n g l e s o f t h e t r i fl u o r o a c e t a t e g r o u p s a r e 1 2 9 . 7 ( 5 ) ° a n d 1 3 1 . 4 ( 5 ) ° f o r O ( 1 ) - C ( 2 8 ) - O ( 3 ) a n d O ( 2 ) - C ( 3 1 ) - O ( 4 ) , r e s p e c t i v e l y . T h e [ O z C C F 3 ] ' g r o u p s a r e t w i s t e d b y 5 . 3 2 ( 1 3 ) ° a n d 6 . 0 3 ( 1 4 ) ° f r o m t h e e c l i p s e d o r i e n t a t i o n i n c o m p a r i s o n t o t h e 8 . 0 ( 1 ) ° a n d 8 . 3 ( 1 ) ° t w i s t s o f t h e [ 0 2 C C F 3 J ' i n t h e b i s - w a t e r a d d u c t . T h e [ D T o l F ] ' g r o u p s a r e c o o r d i n a t e d a t a n a v e r a g e R h - N d i s t a n c e o f 2 . 0 1 1 [ 4 ] A , a n d a r e w i t h i n n o r m a l r a n g e s . L i k e w i s e , t h e N - C - N 5 1 “ C 2 8 ( 7 0 F i g u r e 5 . O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 1 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a n d F a t o m s a r e o m i t t e d f o r c l a r i t y . 5 2 1 1 0 ‘ o n a l l ! j u t a n g l e s o f t h e b r i d g e h e a d C a t o m s o f 1 2 4 . 4 ( 5 ) ° a n d 1 2 5 . 8 ( 5 ) ° a r e w i t h i n n o r m a l r a n g e s . T h e [ D T o l F ] ’ g r o u p s a r e s l i g h t l y t w i s t e d f r o m t h e e c l i p s e d o r i e n t a t i o n b y 5 . 4 ( 2 ) ° a n d 5 . 6 ( 2 ) ° i n c o m p a r i s o n t o t h e l a r g e r t w i s t s r e p o r t e d f o r t h e b i s - w a t e r a d d u c t o f 9 . 4 ( 2 ) ° a n d 9 . 5 ( 2 ) ° . B . R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) w i t h 9 - E t G H ( 1 ) S y n t h e s i s . T h e p a r t i a l l y s o l v a t e d c o m p o u n d , [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) , r e a c t s w i t h t w o e q u i v a l e n t s o f 9 - E t G H i n m e t h a n o l / a c e t o n i t r i l e a n d a l s o i n m e t h a n o l / m e t h y l e n e c h l o r i d e m i x t u r e s u n d e r r e fl u x i n g c o n d i t i o n s t o y i e l d [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) ( E q u a t i o n 2 ) . S i m i l a r t o t h e 9 - E t G H r e a c t i o n s w i t h t h e d i r h o d i u m b i s - a n d t e t r a c a r b o x y l a t e c o m p o u n d s w i t h t h i s p u r i n e , t w o i s o m e r s a r e f o r m e d a s j u d g e d b y t h e 1 H N M R s p e c t r u m w h i c h w i l l b e d i s c u s s e d l a t e r i n t h i s c h a p t e r . S i m i l a r p r o d u c t s a r e o b t a i n e d f o r t h e r e a c t i o n b e t w e e n c o m p o u n d ( 1 ) a n d 9 - E t G H . 5 C H O H / C H C N r e fl i i x 2 h 3 ( 2 ) [ h a ( D T o t h ( 9 - E t G P 0 2 ( C H 3 C N ) ] [ B F 4 1 2 7 5 3 ( 2 ) E l e c t r o c h e m i s t r y o f ( 3 ) . A c y c l i c v o l t a m m o g r a m o f c r y s t a l s o f [ R h 2 ( D T O l F ) 2 ( 9 - E I G H ) Q ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) d l S S O l V C d 1 1 1 C H 3 C N C X h l b l t S t w o r e v e r s i b l e o x i d a t i o n s a t + 0 . 6 7 V a n d + 2 . 6 3 V a n d o n e i r r e v e r s i b l e r e d u c t i o n a t ‘ 1 . 3 1 V ( F i g u r e 6 ) . T h e c y c l i c v o l t a m m o g r a m o f c o m p o u n d ( 2 ) e x h i b i t s o n e r e v e r s i b l e o x i d a t i o n a t E “ ; = + 1 . 0 2 V a n d o n e q u a s i - r e v e r s i b l e o x i d a t i o n a t E M = + 1 . 5 5 V ( r e t u r n w a v e a t E p , C = + 1 . 4 0 V ) ( F i g u r e 2 . 6 ) . T w o i r r e v e r s i b l e r e d u c t i o n s a r e o b s e r v e d a t E p , c = ' 0 . 5 1 V a n d ' 1 . 3 4 V i n c o m p a r i s o n t o t h e b i s - t r i fl u o r o a c e t a t e a d d u c t , w h i c h e x h i b i t s o n l y t w o r e v e r s i b l e o x i d a t i o n p r o c e s s e s a t + 0 . 5 2 V a n d + 1 . 4 1 V , a n d t h e f r e e f o r m a m i d i n a t e l i g a n d w h i c h e x h i b i t s a n i r r e v e r s i b l e o x i d a t i o n a t + 0 . 9 5 V . 7 ° ( 3 ) M o l e c u l a r S t r u c t u r e o f ( 3 ) . T h e c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / n . T h e O R T E P d i a g r a m o f t h e c a t i o n , d i s p l a y e d i n F i g u r e 7 , c o n s i s t s o f t w o n e u t r a l 9 - E t G H g r o u p s b r i d g i n g t h e d i n u c l e a r u n i t i n a h e a d - t o - h e a d a r r a n g e m e n t , t w o c i s [ D T o l F I b r i d g e s , a n d a s i n g l e a x i a l a c e t o n i t r i l e m o l e c u l e . T h e s t r u c t u r e s o f d i r h o d i u m c o m p o u n d s w i t h b r i d g i n g 9 - E t G H m o l e c u l e s , n a m e l y , [ R h 2 ( 0 2 C C H 3 ) 2 ( 9 - E t G H ) z ( ( C H 3 ) 2 0 ) ( H 2 0 ) ] [ B F 4 ] 2 , 5 4 ( a ) ( b ) p l p l 1 + 2 . 0 1 . 0 0 . 0 1 . 0 - 2 . 0 V o l t s v s A g / A g C l F i g u r e 6 . C y c l i c v o l t a m m o g r a m s i n 0 . 1 M e l e c t r o l y t e - C H 3 C N a t a s c a n r a t e o f 2 0 0 m V / s u s i n g a P t e l e c t r o d e f o r ( a ) [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F , , ] 2 ( 2 ) a n d ( b ) [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) . 5 5 R h 2 ( O Z C C H 3 ) 2 ( 9 - E t G ) 2 ( C H 3 O H ) 2 a n d [ R h 2 ( O z C C F 3 ) 2 ( 9 - E t G H ) 2 ( ( C H 3 ) 2 O ) 2 ] [ O Z C C F 3 ] 2 , h a v e r e v e a l e d t w o t y p e s o f b r i d g i n g g u a n i n e l i g a n d s : ( i ) 9 - E t G H , t h e n e u t r a l l i g a n d f o r m a n d ( i i ) 9 - E t G ' , t h e a n i o n i c o r d e p r o t o n a t e d f o r m , w h e r e t h e p u r i n e i s d e p r o t o n a t e d a t t h e N 1 p o s i t i o n ( F i g u r e 8 ) . I t h a s b e e n d o c u m e n t e d t h a t t h e p k , o f t h e N 1 p o s i t i o n i s l o w e r e d b y 1 . 5 - 2 . 0 p k a u n i t s u p o n c o o r d i n a t i o n t o p l a t i n u m c o m p l e x e s ( f r o m ~ 9 4 t o 8 . 0 ) . 4 ° 1 8 T h e a n i o n i c l i g a n d , 9 - E t G ' , h a s a l s o b e e n o b s e r v e d t o f o r m i n s i t u i n a c i d i c m e d i a . 1 8 T h e d e p r o t o n a t i o n o f N l - H i n g u a n i n e h a s b e e n m a i n l y o b s e r v e d i n r e a c t i o n s w i t h m e t a l c o m p l e x e s c o n t a i n i n g b a s i c l e a v i n g g r o u p s s u c h a s [ O Z C C H 3 ] ' ( p k b = 9 . 2 5 ) . T h e m u c h l o w e r b a s i c i t y o f t h e t r i fl u o r o a c e t a t e l e a v i n g g r o u p s o f ( 1 ) ( p k , > 1 3 ) w a s r e p o r t e d t o a l l o w t h e c o o r d i n a t i o n o f t h e n e u t r a l 9 - E t G H s p e c i e s t o t h e d i n u c l e a r c e n t e r ( F i g u r e 8 ) . ° ° T h u s , t h e p r e s e n c e o f a c e t o n i t r i l e a s a l e a v i n g g r o u p w o u l d a l l o w t h e c o o r d i n a t i o n o f t h e n e u t r a l f o r m o f t h e p u r i n e . 5 6 ‘ . P . 1 7 ] r . \ \ \ - l r l A . 0 2 7 : 7 F i g u r e 7 . O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 3 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s , e x c e p t f o r t h o s e o f 9 - E t G H a r e o m i t t e d f o r c l a r i t y . 5 7 N T } \ J ’ I , . « " “ “ 6 O / l \ l . . . . . . . . . t M N / l \ H \ N J k ' \ H r \ H Z N N 1 ' “ E t 9 - E t G H K e t o n e f o r m 9 - E t G ' E n o l a t e f o r m F i g u r e 8 . S c h e m a t i c r e p r e s e n t a t i o n o f p r o t o n a t e d a n d d e p r o t o n a t e d 9 - e t h y l g u a n i n e . T h e R h - R h b o n d l e n g t h o f 2 . 5 4 1 0 ( 1 0 ) A i s c o m p a r a b l e t o t h a t o f t h e r e l a t e d c o m p l e x [ R h 2 ( O z C C H 3 ) 2 ( 9 - E t G H ) 2 ( ( C H 3 ) Z O ) ( H Z O ) ] [ B F 4 ] 2 w h i c h h a s a m e t a l - m e t a l b o n d d i s t a n c e o f 2 . 5 1 1 9 ( 1 9 ) A . 4 ° I n c o m p a r i s o n t o t h e o t h e r t w o k n o w n d i r h o d i u m s t r u c t u r e s c o n t a i n i n g b r i d g i n g 9 - E t G H m o l e c u l e s , R h 2 ( O z C C H 3 ) 2 ( 9 - E t G ) 2 ( C H 3 O H ) 2 ( R h - R h = 2 . 4 8 3 ( 2 ) A ) a n d [ R h 2 ( O z C C F 3 ) 2 ( 9 - E t G H ) 2 ( ( C H 3 ) 2 0 ) 2 ] [ O Z C C F 3 ] 2 ( R h - R h = 2 . 5 2 0 ( 5 ) A ) , t h e R h - R h b o n d d i s t a n c e o f ( 3 ) i s t h e l o n g e s t o f t h e g r o u p . 4 c T h e R h - O b o n d d i s t a n c e s t o t h e 9 - E t G H m o l e c u l e s a r e 2 . 0 7 0 ( 5 ) A a n d 2 . 0 6 2 ( 6 ) A f o r R h ( 2 ) - O ( 1 ) a n d R h ( 2 ) - O ( 2 ) , r e s p e c t i v e l y . T h e m e t a l - n i t r o g e n d i s t a n c e s t o t h e p u r i n e o f R h ( 1 ) - N ( 3 ) a n d R h ( 1 ) - N ( 1 2 ) a r e 2 . 0 7 6 ( 7 ) A a n d 2 . 0 8 0 ( 7 ) A , r e s p e c t i v e l y . T h e R h - O a n d R h - N d i s t a n c e s t o t h e p u r i n e i n c o m p o u n d ( 3 ) a r e s l i g h t l y l o n g e r t h a n t h e o t h e r s t r u c t u r a l l y c h a r a c t e r i z e d d i r h o d i u m c o m p o u n d s c o n t a i n i n g b r i d g i n g 9 - E t G H ( R h - O ~ 2 . 0 3 A a n d R h - N ~ 2 . 0 A . 4 T h e 9 - E t G H m o l e c u l e s o f ( 3 ) a r e t w i s t e d f r o m t h e e c l i p s e d o r i e n t a t i o n b y 2 4 . 3 ( 3 ) ° a n d 2 6 . 8 ( 2 ) ° ( F i g u r e 9 ) . D i f f e r e n c e s i n t h e R h - N b o n d d i s t a n c e s b e t w e e n e a c h R h a t o m a n d t h e [ D T o l F ] ' l i g a n d s c a n b e a t t r i b u t e d t o t h e c o m b i n a t i o n o f t h e t r a n s h e a d - t o - h e a d 9 - E t G H g r o u p s a n d t h e o n e a x i a l a c e t o n i t r i l e m o l e c u l e r e s u l t i n g i n a d i f f e r e n t e l e c t r o n i c e n v i r o n m e n t f o r e a c h R h a t o m . I t c a n b e o b s e r v e d i n 5 9 fi g u r e 7 t h a t R h ( l ) i s b o u n d t o t h e N 7 p o s i t i o n o f t h e 9 - E t G H m o l e c u l e w h i l e R h ( 2 ) i s b o u n d t o t h e 0 6 p o s i t i o n . I n a d d i t i o n , R h ( l ) a l s o p o s s e s s e s a n a x i a l a c e t o n i t r i l e m o l e c u l e c o o r d i n a t e d w i t h a R h - N b o n d d i s t a n c e o f 2 . 1 4 2 ( 8 ) A f o r R h ( 1 ) - N ( 6 ) w h e r e a s t h e a x i a l p o s i t i o n o f R h ( 2 ) i s v a c a n t . T h e N a t o m s c o o r d i n a t e d a t R h ( l ) , N ( 3 ) a n d N ( 1 4 ) , a r e c o o r d i n a t e d a t d i s t a n c e s o f 2 . 0 4 6 ( 7 ) A a n d 2 . 0 4 2 ( 7 ) A , r e s p e c t i v e l y . I n c o n t r a s t , R h ( 2 ) h a s n o t i c e a b l y s h o r t e r R h - N b o n d d i s t a n c e s t o t h e [ D T o l F ] ’ g r o u p s ( R h ( 2 ) - N ( 5 ) = 2 . 0 0 6 ( 7 ) A a n d R h ( 2 ) - N ( 1 5 ) = = 2 . 0 0 7 ( 7 ) A ) . T h e a n g l e s s u b t e n d e d b y t h e N - C - N b r i d g e h e a d a r e 1 2 1 . 8 ( 8 ) ° a n d 1 2 3 . 5 ( 8 ) ° , a n d a r e w i t h i n t h e n o r m a l r a n g e s . I n c o m p a r i s o n t o t h e b r i d g i n g 9 - E t G H g r o u p s , t h e b r i d g i n g [ D T o l F ] ' l i g a n d s a r e t w i s t e d f r o m t h e e c l i p s e d o r i e n t a t i o n b y 2 0 . 2 ( 3 ) ° a n d 2 3 . 5 ( 3 ) ° . T h e t w i s t s o f t h e a n i o n i c b r i d g i n g l i g a n d s a r e s m a l l e r t h a n t h o s e o b s e r v e d f o r c o m p o u n d ( 4 ) w h i c h a r e ~ 3 0 ° . ( 4 ) 1 H N M R S p e c t r o s c o p i c D a t a o f ( 3 ) . A s o b s e r v e d i n t h e 1 H N M R s p e c t r u m o f h a ( D T o l F ) 2 ( 9 - E t G H ) 2 ( O Z C C F 3 ) 2 , f o r m e d f r o m t h e r e a c t i o n b e t w e e n R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) a n d 9 - E t G H , [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) w a s r e p o r t e d t o e x h i b i t t w o H 8 1 H N M R r e s o n a n c e s i n a 1 : 1 r a t i o b o t h i n C D 3 0 D a t 8 = 8 . 3 2 a n d 8 . 3 5 p p m . ° ° A 1 H N M R s p e c t r u m o f t h e c r y s t a l s o f ( 3 ) e x h i b i t e d o n e H 8 s i g n a l a t 8 . 3 4 p p m . A 1 H N M R s p e c t r u m o f t h e c r y s t a l l i z i n g s o l u t i o n a f t e r h a r v e s t i n g t h e c r y s t a l s 6 0 d i d n o t e x h i b i t s i g n a l s i n t h e H 8 r e g i o n t h a t c a n b e a t t r i b u t e d t o t h e H - T i s o m e r . T h e X - r a y s t r u c t u r e o f c o m p o u n d ( 3 ) i s i n a c c o r d w i t h t h e 1 H N M R s p e c t r u m . C . R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) w i t h 9 - E t A H I I , " ( 1 ) S y n t h e s e s . I t h a s b e e n r e p o r t e d t h a t h a t e t r a c a r b o x y l a t e c o m p o u n d s h a v e a p r e f e r e n c e f o r a d e n i n e b a s e s o v e r g u a n i n e . 3 P i r a i n o r e p o r t s s i m i l a r p r e f e r e n c e s f o r t h e a n t i t u m o r a c t i v e R h 2 ( D T o l F ) 2 ( O Z C C F 3 ) 2 ( H 2 0 ) . 1 2 ° R e p o r t s t h a t t h e b r i d g i n g t r i fl u o r o a c e t a t e g r o u p s o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H 2 0 ) 2 e x h i b i t i n c r e a s e d l a b i l i t y d u e t o t h e s t r o n g t r a n s e f f e c t s o f t h e [ D T o l F ] ' l i g a n d s p r o m p t e d u s t o i n v e s t i g a t e t h e i s o l a t i o n o f t h e p a r t i a l l y s o l v a t e d c a t i o n [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) ( , ] 2 + ( 2 ) . 1 2 F u r t h e r m o r e , 1 9 F N M R s p e c t r o s c o p y o f c o m p o u n d ( 1 ) i n d o n a t i n g s o l v e n t s s u c h a s a c e t o n i t r i l e s h o w e d e v i d e n c e t h a t t h e t r i fl u o r o a c e t a t e m o l e c u l e s w e r e u n c o o r d i n a t e d . I t h a s a l s o b e e n o b s e r v e d t h a t t h e r e a c t i o n b e t w e e n 9 - E t G H a n d t h e p a r t i a l l y s o l v a t e d c a r b o x y l a t e c o m p l e x , [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + , y i e l d s s i m i l a r p r o d u c t s o b s e r v e d w h e n R h 2 ( D T o l F ) 2 ( O z C C F 3 ) ( C H 3 C N ) ( 1 ) i s r e a c t e d w i t h 9 - E t G H . ° W e h a v e o b s e r v e d t h a t c o m p o u n d ( 2 ) r e a c t s w i t h t w o e q u i v a l e n t s o f 9 - E t A H i n a c e t o n i t r i l e a t r . t . ( E q u a t i o n 3 ) . U n l i k e t h e r e a c t i o n s w i t h 9 - E t G H , o n l y o n e i s o m e r , R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) , i s f o r m e d a s j u d g e d b y 1 H N M R s p e c t r o s c o p y . 6 1 [ R h 2 ( D T 0 1 F ) 2 ( C H 3 C N ) e ] [ B F 4 ] 2 + 2 ( 9 - E t A H ) 2 l C H 3 C N ( 3 ) [ R h 2 ( D T 0 1 F ) 2 ( 9 - E 1 A H ) 2 ( C H 3 C N ) l [ B F 4 ] 2 4 6 2 F — 1 ‘ 1 1 l l + 2 . 0 1 . 0 0 . 0 1 . 0 - 2 . 0 V o l t s v s A g / A g C l F i g u r e 1 0 . C y c l i c v o l t a m m o g r a m s i n 0 . 1 M e l e c t r o l y t e - C H 3 C N a t a s c a n r a t e o f 2 0 0 m V / s u s i n g a P t e l e c t r o d e f o r [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . 6 3 ( 2 ) E l e c t r o c h e m i s t r y o f ( 4 ) . T h e r e d o x p r o p e r t i e s o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) a r e q u i t e d i f f e r e n t f r o m t h e e l e c t r o c h e m i s t r y e x h i b i t e d b y [ R h ; ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) . T h e c y c l i c v o l t a m m o g r a m o f [ h a ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) p o s s e s s e s o n e q u a s i - r e v e r s i b l e a n o d i c p r o c e s s a t E m a n d E M v a l u e s o f + 0 . 9 3 V a n d + 0 . 7 2 V , r e s p e c t i v e l y ( F i g u r e 1 0 ) . T h e i p c / i l , a r a t i o i s 0 . 1 7 , t h u s t h e p r o c e s s i s f a i r l y i r r e v e r s i b l e . F u r t h e r m o r e , o n l y o n e i r r e v e r s i b l e r e d u c t i o n p r o c e s s i s o b s e r v e d a t “ 1 . 1 4 V , a n d i s m a s k e d b y t h e r e d u c t i o n o f t h e a c e t o n i t r i l e . N H N H 2 “ V i i — \ H — ‘ H _ _ _ \ a | * 1 1 > : : i | : > H H N I f N 4 N 9 P r o t o t o p i c s h i f t A m i n o F o r m P r o t o t o p i E c t s h i f t I r n i n o F o r m Z w i t t e r i o n i c F o r m F i g u r e 1 1 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e t a u t o m e r s o f 9 - E t A H . ( 3 ) 1 H N M R s t u d i e s o f ( 4 ) . T h e 1 H N M R s p e c t r u m o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) p r o v e d t o b e u s e f u l i n r e s o l v i n g t h e q u e s t i o n a s t o w h e t h e r t h e N 6 p o s i t i o n s o f t h e p u r i n e s w e r e a m i n o ( N H Z ) o r N H g r o u p s . T h e l a t t e r s i t u a t i o n , a l t h o u g h u n u s u a l , a r i s e s f r o m a p r o t o t o p i c s h i f t f r o m t h e N 6 a m i n o g r o u p t o t h e N 1 p o s i t i o n o f t h e p u r i n e ( F i g u r e 1 1 ) . A p r o t o t o p i c s h i f t o f a n N 6 p r o t o n t o t h e N 1 p o s i t i o n w a s o b s e r v e d f o r t h e M 0 2 c o m p o u n d , [ M 0 2 ( O Z C C H F 2 ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 . ° ° A p r o t o t o p i c s h i f t i n 9 - E t A H i s e a s i l y r e c o g n i z a b l e b y 1 H N M R s p e c t r o s c o p y , s i n c e t h r e e r e s o n a n c e s w o u l d b e e x p e c t e d f o r t h e c o m m o n a d e n i n e t a u t o m e r , w h e r e a s f o u r r e s o n a n c e s w o u l d b e e x p e c t e d f o r t h e a d e n i n e t h a t h a d u n d e r g o n e t h e p r o t o t o p i c s h i f t . T h e 1 H N M R s p e c t r u m i n C D 3 C N e x h i b i t s t w o s i n g l e t s a s s i g n a b l e t o t h e H 2 ( 8 . 0 6 p p m ) a n d H 8 ( 7 . 6 8 p p m ) p r o t o n s i n t h e a r o m a t i c r e g i o n ( F i g u r e 1 2 ) . U p o n l o w e r i n g t h e t e m p e r a t u r e t o ’ 3 2 ° C , a n a d d i t i o n a l s i n g l e t a p p e a r s a t 6 . 4 6 p p m t h a t c a n b e a s s i g n e d t o t h e H 6 p r o t o n s . S e l e c t i v e d e c o u p l i n g e x p e r i m e n t s p e r f o r m e d o n e a c h t h e t h r e e r e s o n a n c e s p r o v e d t h a t n o n e t h e r e s o n a n c e s w e r e c o u p l e d t o e a c h o t h e r . T h e s e a s s i g n m e n t s i n i t i a l l y l e d u s t o c o n c l u d e t h a t t h e 9 - E t A H l i g a n d s c o o r d i n a t e d t o t h e d i r h o d i u m c o r e w e r e n e u t r a l w i t h t h e t w o p r o t o n s o f t h e e x o c y c l i c N H ; g r o u p i n t a c t . T h u s t h e N 6 n i t r o g e n a t o m s w o u l d b e f o u r - c o o r d i n a t e ; a b o n d i n g s i t u a t i o n w h i c h p r o m p t e d u s t o q u e s t i o n t h e s e s p e c t r o s c o p i c d a t a . R e p e a t i n g t h e N M R e x p e r i m e n t i n a c e t o n e - d 6 a l l o w e d f o r a d i f f e r e n t m o r e r e a s o n a b l e i n t e r p r e t a t i o n ( F i g u r e 6 5 1 3 ) . T h e r o o m t e m p e r a t u r e 1 H N M R s p e c t r u m e x h i b i t s s i n g l e t s a t 7 . 9 4 , 8 . 6 3 a n d 1 1 . 3 5 p p m t h a t a r e a s s i g n a b l e t o t h e H 2 , H 8 a n d H 6 p r o t o n s , r e s p e c t i v e l y . A t ‘ 4 1 ° C t h e r e s o n a n c e a t 7 . 9 4 i s r e s o l v e d i n t o a d o u b l e t , a n d t h e H 1 p r o t o n i s a p p a r e n t a t 7 . 2 0 p p m a m o n g t h e a r o m a t i c r e s o n a n c e s o f t h e [ D T o l F ] ' g r o u p s . T h e i n t e g r a t i o n o f t h e f o u r r e s o n a n c e s i s 1 : 1 : 1 2 1 , w i t h t h e d e fi n i t i v e a s s i g n m e n t s o f t h e H 1 a n d H 2 p r o t o n s b e i n g a c h i e v e d b y s e l e c t i v e d e c o u p l i n g e x p e r i m e n t s . T h e H 8 s i g n a l i s o b s e r v e d i n t h e a r o m a t i c r e g i o n a s e x p e c t e d . T h e s o l u t i o n b e h a v i o r i n a c e t o n e i s i n a c c o r d w i t h a p r o t o t o p i c s h i f t f r o m t h e N 6 p o s i t i o n t o t h e N 1 p o s i t i o n , a n d s u p p o r t s t h e X - r a y s t r u c t u r e o f ( 4 ) . 6 6 6 H m p p 4 . . 6 - w 9 - 2 ( w ) - F l - 6 o . T F 6 D “ ( ~ 2 ~ h ~ R ~ [ ~ ~ f 8 o . . 6 C u n ° m o i 2 g 3 e ' r d n a C w v v 0 8 v . ‘ 7 v v H 2 . 7 e ° h t 5 2 g n t i a t c N i C p e 3 d D m C u n 4 r i . t 7 ) c 4 e ( p s 2 ] 4 F R 6 M B . 7 [ N ] H 1 ) N C 3 . H 2 C 8 1 . ( 7 2 e r ) u H g A i t F E - 0 . 8 C ° 5 2 C ° 2 3 - 6 7 A ; v l l t l N \ ( , t a l r T u l i 1 _ " ' ” Y ' T 7 ‘ T — Y ” - 9 m ( p p j T 0 2 ) F l o . T fi — 7 D T ( — I W T 2 h R [ T f ‘ fi T — q ' ‘ fi ‘ Y ' T T ‘ — W ‘ r " — T ‘ — T ‘ ‘ Y " 0 . o 8 n o i g e r . C ° 9 8 0 2 . H 4 8 l H J T fi T “ T T — T _ T 8 ” ' d r e h n j a t ~ 9 r 0 2 H “ 1 V ' " T " ' T — T ‘ T — T ‘ W ‘ — T " T ‘ - Y ‘ Y — fi Y " T ” ‘ Y ‘ ‘ 1 T V " T “ " T ” ” ' Y ' T — T — Y ' T T ! — " 1 — V J " Y — T T T ' L t i l r fi C ° g n v 5 1 7 0 ' . c t i t 2 0 i a 1 p e 6 d d - e n m o u t r e t c v 1 I r l T ‘ V — fi ’ c 0 a fi fi . e ‘ 1 p n r i 1 s — F w r w T * — r — . r . ' r 0 ) 4 ( R 2 ] M 4 F N B [ ] 6 H C 1 . H ° 2 ) 1 l 2 4 - N C . 3 3 H M l C ( 2 e ) r u H g A i t F E 6 8 H 2 0 r H 8 l J ' — ( 4 ) M o l e c u l a r s t r u c t u r e o f ( 4 ) . T h e r e a c t i o n w i t h t w o e q u i v a l e n t s o f 9 - E t A H a n d c o m p o u n d ( 2 ) y i e l d s t h e c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . C o m p o u n d ( 4 ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / c w i t h t h e a s y m m e t r i c u n i t c o n s i s t i n g o f t h e e n t i r e c a t i o n a n d t w o [ B F 4 ] ' a n i o n s ( F i g u r e 1 4 ) . T h e c a t i o n c o n s i s t s o f o n e a x i a l a c e t o n i t r i l e m o l e c u l e , t w o b r i d g i n g [ D T o l F ] ' a n i o n s a n d t w o c i s 9 - E t A H l i g a n d s c o o r d i n a t e d i n a h e a d - t o - t a i l b r i d g i n g o r i e n t a t i o n t h r o u g h t h e N 7 a n d N 6 p o s i t i o n s o f t h e p u r i n e . C o m p o u n d ( 4 ) i s t h e s e c o n d c o m p o u n d p o s s e s s i n g a b r i d g i n g a d e n i n e i n t h i s m a n n e r . T h e fi r s t r e p o r t e d c o m p o u n d w i t h a b r i d g i n g 9 - E t A H l i g a n d , [ M 0 2 ( O z C C H F 2 ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 , a l s o c o n t a i n s t h e a d e n i n e l i g a n d i n a h e a d - t o - t a i l a r r a n g e m e n t . 4 b T h e u n u s u a l m o n o a x i a l a c e t o n i t r i l e h a s a f a i r l y s h o r t R h - N b o n d d i s t a n c e o f 2 0 6 ( 2 ) A i n c o m p a r i s o n t o o t h e r m o n o a x i a l a c e t o n i t r i l e c o n t a i n i n g c o m p o u n d s t h a t h a v e b e e n r e c e n t l y o b s e r v e d i n o u r l a b o r a t o r i e s . T h e N - c h e l a t e c o m p o u n d s [ h a ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] 2 + ( 7 ) , [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( C H 3 C N ) l 2 + ( 3 ) a n d [ h a ( D T 0 1 1 : ) 2 0 3 1 ' 1 6 1 1 ) “ : H s C N ) 3 l 2 + ( 9 ) , w h i c h a r e p r e s e n t e d i n c h a p t e r 2 , a l l p o s s e s s o n e a x i a l a c e t o n i t r i l e l i g a n d c o o r d i n a t e d a t R h - N b o n d d i s t a n c e s o f 2 . 1 0 1 ( 4 ) A , 2 . 1 1 5 ( 4 ) A a n d 2 . 1 2 6 ( 3 ) A , r e s p e c t i v e l y . ” A s a c o n s e q u e n c e o f t h e c o o r d i n a t i o n b y t h e a x i a l 6 9 a c e t o n i t r i l e , t h e N 7 a n d N 6 p o s i t i o n s o f t h e p u r i n e s a r e n o t r e l a t e d b y s y m m e t r y . T h u s , t h e m e t a l - n i t r o g e n d i s t a n c e s i n v o l v i n g t h e s e g r o u p s a r e s l i g h t l y d i f f e r e n t f r o m e a c h o t h e r , v i z . , R h ( 1 ) - N ( 4 ) = 1 . 9 9 ( 2 ) A a n d R h ( 2 ) - N ( 6 ) = 2 . 0 3 ( 2 ) A ; R h ( 1 ) - N ( 2 ) = 2 0 4 ( 2 ) A a n d R h ( 2 ) - N ( 8 ) = 2 . 0 3 ( 2 ) A , b u t i n t h e r a n g e e x p e c t e d f o r e q R h - N b o n d d i s t a n c e s . T h e f a c t t h a t t w o o u t e r - s p h e r e [ B F 4 ] ' a n i o n s a r e p r e s e n t i n t h e s t r u c t u r e r e q u i r e s t h e 9 - E t A H m o l e c u l e s t o b e n e u t r a l , b u t d o e s n o t r e s o l v e t h e q u e s t i o n a s t o w h e t h e r t h e N 6 p o s i t i o n s a r e a m i n o ( N H Z ) o r N H g r o u p s . T h i s q u e s t i o n w a s p r e v i o u s l y a d d r e s s e d . T h e b r i d g i n g [ D T o l F ] ' l i g a n d s o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) a r e t w i s t e d f r o m t h e e c l i p s e d o r i e n t a t i o n b y ~ 3 0 ° , w h i c h i s n e a r l y 1 0 ° m o r e t h a n t h e t o r s i o n o b s e r v e d f o r t h e p r e c u r s o r [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) , a n d m o r e t h a n 2 0 ° g r e a t e r t h a n t h e b i s - t r i fl u o r o a c e t a t e d e r i v a t i v e s . T h e R h - R h b o n d l e n g t h o f 2 . 5 1 0 ( 3 ) A i n ( 4 ) i s s l i g h t l y s h o r t e r t h a n t h a t o f t h e p a r e n t c o m p l e x [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) , b u t l o n g e r t h a n t h a t o b s e r v e d f o r R h 2 ( D T o l F ) 2 ( O Z C C F 3 ) 2 ( C H 3 C N ) ; ( 1 ) . T h i s m a y b e a t t r i b u t e d t o t h e a d d i t i o n o f t h e b r i d g i n g 9 - E t A H l i g a n d s t o t h e R h ; 2 + c o r e . T h e M o - M o b o n d l e n g t h i n [ M 0 2 ( O Z C C H F 2 ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 o f 2 . 1 4 3 6 ( 1 7 ) A i s s i g n i fi c a n t l y s h o r t e r t h a n t h e R h - R h d i s t a n c e i n c o m p o u n d ( 4 ) , a n d i n d i c a t e s 7 O t h a t t h e 9 - e t h y l a d e n i n e l i g a n d c a n b r i d g e a w i d e r a n g e d i m e t a l b o n d d i s t a n c e s . D . R e a c t i o n o f R h 2 ( D T o l F ) 2 ( O Z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) w i t h 9 - E t A H ( 1 ) S y n t h e s i s . S i n c e w e h a d a l r e a d y e s t a b l i s h e d t h a t [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) r e a c t s w i t h 9 - E t A H , w e w a n t e d t o c o n fi r m t h a t a r e a c t i o n l e a d i n g t o s i m i l a r p r o d u c t s w o u l d t a k e p l a c e w i t h t h e a n t i t u m o r a c t i v e b i s - t r i fl u o r o a c e t a t e c o m p o u n d . A n a l o g o u s t o t h e r e a c t i o n b e t w e e n [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) a n d 9 - E t A H , t h e N M R s c a l e r e a c t i o n b e t w e e n c o m p o u n d ( 1 ) a n d 9 - E t A H f o r m s o n l y o n e i s o m e r , R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( O z C C F 3 ) 2 ( 5 ) , a s d e t e r m i n e d b y 1 H N M R s p e c t r o s c o p y . 7 1 p ‘ £ 0 ‘ \ N 9 \ K I C l \ \ " t / ’ i ‘ \ C 2 ' \ a M I “ 4 ‘ F 6 ‘ d , ( t " 7 “ ‘ " 1 ‘ - \ ~ @ 3 0 1 ) r 3 " £ 1 i ‘ h a \ Q w — ~ s . { - 0 C 3 1 C 3 0 N 5 F i g u r e 1 4 . O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 4 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s e x c e p t f o r t h e 9 - E t A H l i g a n d s a r e o m i t t e d f o r c l a r i t y . 7 2 ( 2 ) 1 H N M R S t u d i e s o f ( 5 ) . T h e 1 H N M R s p e c t r u m o f c o m p o u n d ( 5 ) i n t h e H 8 r e g i o n o f t h e p u r i n e s u g g e s t s t h e p r e s e n c e o f t w o c o m p o u n d s a f t e r 7 2 h ( F i g u r e 1 5 ) . O n e o f t h e c o m p o u n d s c a n b e i d e n t i fi e d a s t h e s t a r t i n g c o m p o u n d , R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( l ) , a n d t h e o t h e r o n e a s t h e p r o d u c t , R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( O Z C C F 3 ) 2 ( 5 ) . T h e t h r e e s i n g l e t s a t 8 . 2 4 , 8 . 0 5 a n d 8 . 0 0 p p m c a n b e a t t r i b u t e d t o t h e H 8 , H 1 , a n d H 2 p r o t o n s o f a c o o r d i n a t e d 9 - E t A H m o l e c u l e . L i k e w i s e , t h e b r o a d r e s o n a n c e a t 7 . 8 0 p p m c a n a l s o b e a t t r i b u t e d t o a c o o r d i n a t e d 9 - E t A H . T h e b r e a d t h o f t h i s s i g n a l s u g g e s t s t h a t t h i s r e s o n a n c e i s t h e H 6 p r o t o n . S e l e c t i v e d e c o u p l i n g e x p e r i m e n t s w e r e i n c o n c l u s i v e s i n c e t h e s i g n a l s f o r t h e p r o t o n s a t 7 . 8 0 , 8 . 0 0 a n d 8 . 0 5 p p m a r e t o o c l o s e t o g e t h e r s u c h t h a t s e l e c t i v e i r r a d i a t i o n o f a n y o f t h e s e p r o t o n s r e s u l t s i n t h e l o s s o f a l l o f t h e s e s i g n a l s . S e l e c t i v e d e c o u p l i n g d i d p r o v e , h o w e v e r , t h a t t h e r e s o n a n c e a t 8 . 2 4 p p m i s n o t c o u p l e d t o a n y o f t h e o t h e r r e s o n a n c e s , s u g g e s t i n g t h a t t h e a s s i g n m e n t o f t h i s r e s o n a n c e i s t h e H 8 p r o t o n . A l t h o u g h t h e s e a s s i g n m e n t s a r e n o t d e fi n i t i v e , t h e y d o p r o v e t h a t a r e a c t i o n d i d t a k e p l a c e a s t h e p r o t o n s f o r t h e f r e e p u r i n e i n C D 3 C N r e s o n a t e a t 8 . 2 1 , 7 . 8 9 a n d 5 . 9 0 p p m f o r t h e H 2 , H 8 a n d H 6 p r o t o n s , r e s p e c t i v e l y ( T a b l e 1 6 ) . T h e r e s o n a n c e a t 7 . 6 3 p p m c a n b e a s s i g n e d t o t h e 7 3 m fi i p l p l l l 2 l . l 6 l l l l l l l 4 l . l 6 l l l l l l l l I l l l H l l l l l l l l l l l l l l l l l l l l l l 6 . 6 8 . 6 0 . 7 l 2 l . l 7 l 1 1 1 1 1 1 1 4 1 . ' 7 l m l l l l l l 6 l . l 7 l l l l l l l 8 l . l 7 l l l | l l . 6 H l 0 l . l 8 l l l l l l l l 2 p . n 8 l l l l l l l [ 7 4 H 1 o r H 2 H 8 ’ ‘ _ J U F i g u r e 1 5 . 1 H N M R s p e c t r u m d e p i c t i n g t h e H 8 r e g i o n o f t h e N M R s c a l e r e a c t i o n b e t w e e n R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( 1 ) a n d 9 — E t A H . m e t h y l e n e p r o t o n s o f t h e [ D T o l F ] ' g r o u p s , a s t h i s i s t h e s a m e r e g i o n t h e s e p r o t o n s a r e o b s e r v e d i n t h e r e l a t e d c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . T h e r e s o n a n c e a t 7 . 2 7 p p m c a n b e a t t r i b u t e d t o t h e m e t h y l e n e p r o t o n s o f t h e [ D T o l F ] ' g r o u p s o f t h e s t a r t i n g m a t e r i a l . ( 3 ) M o l e c u l a r S t r u c t u r e o f ( 5 ) . T h e s t r u c t u r e o f c o m p o u n d ( 5 ) i s t h o u g h t t o b e q u i t e s i m i l a r t o t h a t o f [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) ( F i g u r e 1 4 ) . T h e 1 H N M R s p e c t r u m s u g g e s t s t h a t t h e 9 - E t A H g r o u p s a r e b r i d g i n g t h e d i m e t a l c e n t e r s , a n d a r e n e u t r a l a f t e r h a v i n g u n d e r g o n e a p r o t o t o p i c s h i f t o f a n N 6 p r o t o n t o t h e N 1 p o s i t i o n ( F i g u r e 1 6 ) . W h e t h e r t h e p u r i n e i s b r i d g i n g i n t h e h e a d - t o - h e a d o r h e a d - t o - t a i l b r i d g i n g m o d e r e m a i n s u n d e t e r m i n e d . T h e t r i fl u o r o a c e t a t e g r o u p s a r e d i s p l a c e d f r o m t h e b r i d g i n g e q u a t o r i a l p o s i t i o n s t o t h e a x i a l p o s i t i o n s . T h e f a c t t h a t t h e a x i a l t r i fl u o r o a c e t a t e g r o u p s w o u l d b e i n e x c h a n g e w i t h t h e d o n o r s o l v e n t w o u l d a c c o u n t f o r t h e d i f f e r e n c e s i n t h e 1 H N M R s p e c t r a b e t w e e n h a ( D T o l F ) 2 ( 9 - E t A H ) 2 ( O Z C C F 3 ) 2 ( 5 ) a n d [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) l l B F 4 ] ( 4 ) - 7 5 A N ; ” N A N N / ’ \ \ \ \ \ N / r \ \ \ \ \ N , \ \ \ \ N , \ \ \ \ N F 3 C C 0 2 — R H — R h _ O z C C F 3 F 3 C C 0 2 7 R h — ‘ R h — 0 2 C C F 3 4 N a / N : N 7 v / N 6 N 7 V N 6 N 6 V N 7 h e a d - t o - h e a d h e a d - t o - t a i l 2 H N N A N = 9 - e t h y l a d e n i n e N / N u I ‘ H \ H N I f E t F i g u r e 1 6 . P r o p o s e d s t r u c t u r e o f R h ( D T o l F b ( 9 - E t A H ) 2 ( O Z C C F 3 ) 2 ( 5 ) E . P r e p a r a t i o n o f R h 2 ( D T o l F ) 2 ( 0 2 C C H 3 ) 2 ( H 2 0 ) ( 6 ) ( 1 ) S y n t h e s i s . I n a n a t t e m p t t o m o d i f y t h e [ R h 2 ( D T o l F ) 2 ] 2 + c o r e f o r f u t u r e r e a c t i v i t y s t u d i e s w i t h D N A n u c l e o b a s e s w e d e c i d e d t o s u b s t i t u t e t h e b r i d g i n g t r i fl u o r o a c e t a t e g r o u p s f o r t h e l e s s e l e c t r o n w i t h d r a w i n g a c e t a t e g r o u p s . T h e d i f f e r e n c e s b e t w e e n t h e e f f e c t s o n 9 - E t G H b y a c e t a t e a n d t r i fl u o r o a c e t a t e g r o u p s w e r e p r e v i o u s l y d i s c u s s e d . A p r e v i o u s a t t e m p t t o s y n t h e s i z e R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 L 2 ( L = d o n o r s o l v e n t ) w a s p e r f o r m e d b y P i r a i n o a n d c o w o r k e r s . 2 0 T h e r e s e a r c h e r s a t t e m p t e d t o i s o l a t e t h i s c o m p o u n d b y t h e c h e m i c a l o x i d a t i o n o f [ R h ( D T o l F ) ( c o d ) ] 2 w i t h A g O Z C C F 3 . T h i s s y n t h e t i c p r o c e d u r e w a s s u c c e s s fi r l i n t h e s y n t h e s i s o f 7 6 R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 L 2 ( 1 ) . U n f o r t u n a t e l y , t h i s p r o c e d u r e d o e s n o t w o r k w i t h A g O z C C H 3 . P i r a i n o t o o k n o t e t h a t R h 2 ( O Z C C H 3 ) 4 L 2 r e a c t s w i t h e x c e s s H D T o l F t o f o r m t h e d i r h o d i u m t e t r a - f o r m a m i d i n a t e c o m p o u n d , R h 2 ( D T o l F ) 4 . 2 ° ° A d i f f e r e n t r e a c t i o n t a k e s p l a c e w h e n t h e s t o c i o m e t r y o f H D T o l F i s c o n t r o l l e d . T h e r e a c t i o n b e t w e e n R h 2 ( O z C C H 3 ) 4 L 2 a n d t w o e q u i v a l e n t s o f H D T o l F l e a d s t o t h e f o r m a t i o n o f R h 2 ( O z C C H 3 ) 4 ( H D T o l F ) 2 , w h i c h h a s b e e n s t r u c t u r a l l y c h a r a c t e r i z e d . T h e f o r m a m i d i n a t e m o l e c u l e s a r e n e u t r a l a n d c o o r d i n a t e d i n t h e a x i a l p o s i t i o n s o f t h e d i r h o d i u m c o m p o u n d ( F i g u r e 1 7 ) . 2 0 ° A t t e m p t s t o d e p r o t o n a t e t h e H D T o l F l i g a n d i n h o p e s t h a t t h e l i g a n d s w o u l d s w i n g i n t o a b r i d g i n g e q u a t o r i a l m o d e f a i l e d . A l t h o u g h t h e p r e v i o u s a t t e m p t s w e r e n o t p r o m i s i n g , w e d e c i d e d t o a d v a n t a g e o f t h e s u b s t i t u t i o n c h e m i s t r y o f t h e p a r t i a l l y s o l v a t e d c o m p o u n d , [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) . T h e a d d i t i o n o f t w o e q u i v a l e n t s o f N a O z C C H 3 - 7 H 2 0 i n a c e t o n i t r i l e l e a d s t o t h e p r e c i p i t a t i o n o f N a B F 4 , a n d t h e 7 7 F i g u r e 1 7 . O R T E P r e p r e s e n t a t i o n o f R h 2 ( O Z C C H 3 ) 4 ( H D T o l F ) 2 r e p l o t t e d f r o m a t o m i c c o o r d i n a t e s . 2 0 b 7 8 f o r m a t i o n o f R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 ( H z O ) ( 6 ) a s d e t e r m i n e d b y X - r a y c r y s t a l l o g r a p h y ( E q u a t i o n 4 ) . [ R h 2 ( D T O l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 + 2 ( N 3 0 2 C C H 3 7 H 2 0 R h 2 ( D T o l F ) 2 ( 0 2 C C H 3 ) 2 ( H Z O ) + N n B F 4 ( 2 ) M o l e c u l a r S t r u c t u r e o f ( 6 ) . A n O R T E P r e p r e s e n t a t i o n o f R h 2 ( D T o l F ) 2 ( O Z C C H 3 ) 2 ( H z O ) ( 6 ) , w h i c h c r y s t a l l i z e s i n t h e t r i c l i n i c s p a c e g r o u p P - l i s p r e s e n t e d i n F i g u r e 1 8 . U n l i k e t h e s o l i d - s t a t e s t r u c t u r e s o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) a n d R h ; ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H z O ) z , t h e X - r a y s t r u c t u r e o f R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 ( H z O ) ( 6 ) p o s s e s s e s o n l y o n e a x i a l s o l v e n t m o l e c u l e , n a m e l y , w a t e r . C o m p o u n d ( 6 ) a l s o p o s s e s s e s t w o c i s b r i d g i n g [ D T o l F ] ' g r o u p s a s w e l l a s t w o b r i d g i n g [ 0 2 C C H 3 ] ' g r o u p s . T h e n e u t r a l c o m p o u n d a l s o c r y s t a l l i z e s w i t h f o u r i n t e r s t i t i a l w a t e r m o l e c u l e s i n t h e i n t e r s t i c e s . T h e R h - R h b o n d l e n g t h o f 2 . 4 1 7 1 ( 7 ) A i s s l i g h t l y s h o r t e r t h a n t h e m e t a l - m e t a l b o n d d i s t a n c e o f c o m p o u n d ( 1 ) , w h i c h i s o b s e r v e d t o b e 2 . 4 7 4 3 ( 5 ) A . T h e b i s - w a t e r a d d u c t , o n t h e o t h e r h a n d , h a s a v e r y s i m i l a r 7 9 R h - R h b o n d d i s t a n c e o f 2 . 4 2 5 ( 1 ) A . 7 ° I n a s i m i l a r f a s h i o n t o t h e t r i fl u o r o a c e t a t e d e r i v a t i v e s , t h e a x i a l w a t e r m o l e c u l e i s c o o r d i n a t e d a t a n a n g l e s i g n i fi c a n t l y l e s s t h a n 1 8 0 ° . T h e O ( 5 ) - R h ( 1 ) - R h ( 2 ) a n g l e i s l 7 1 . 2 4 ( l 1 ) ° . T h e a x i a l s o l v e n t s o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) a n d R h 2 ( D T o l F ) 2 ( O Z C C F 3 ) 2 ( H Z O ) 2 a r e c o o r d i n a t e d a t a n a v e r a g e a n g l e o f 1 7 0 ° . T h R h ( 1 ) - O ( 5 ) b o n d d i s t a n c e o f 2 . 2 5 0 ( 4 ) A i s s h o r t e r t h a n a x i a l w a t e r m o l e c u l e s i n R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H 2 0 ) 2 ( 2 . 3 1 1 ( 3 ) A a n d 2 . 3 1 9 ( 3 ) A ) . T h e a v e r a g e R h - O b o n d d i s t a n c e t o t h e b r i d g i n g a c e t a t e l i g a n d s o f 2 . 0 7 2 [ 4 ] A i s w i t h i n i n t h e n o r m a l r a n g e . T h e O - C - O a n g l e s o f t h e a c e t a t e g r o u p s a r e 1 2 4 . 6 ( 6 ) ° a n d 1 2 4 . 2 ( 6 ) ° f o r t h e O ( l ) - C ( 3 0 ) - O ( 2 ) a n d O ( 3 ) - C ( 3 2 ) - O ( 4 ) a n g l e s . T h e s e a n g l e s a r e w i t h i n t h e e x p e c t e d r a n g e s , b u t a r e s m a l l e r t h a n a n g l e s o b s e r v e d i n c o m p o u n d ( 1 ) ( 1 2 9 . 7 ( 5 ) ° a n d 1 3 1 . 4 ( 5 ) ° ) . T h e a n g l e s s u b t e n d e d b y t h e N - C - N b r i d g e h e a d o f t h e [ D T o l F ] ' g r o u p s a r e 1 2 4 . 2 ( 6 ) ° a n d 1 2 2 . 4 ( 6 ) ° , a n d a r e w i t h i n t h e e x p e c t e d r a n g e s . T h e R h - N d i s t a n c e s o f t o t h e [ D T o l F ] ' l i g a n d s c o o r d i n a t e d a t R h ( l ) o f 2 . 0 2 4 ( 5 ) A a n d 2 . 0 2 6 ( 5 ) A a r e s l i g h t l y l o n g e r t h a n t h e R h - N d i s t a n c e s b e t w e e n R h ( 2 ) a n d t h e [ D T o l F ] ' g r o u p s ( 2 . 0 0 2 ( 5 ) A a n d 2 . 0 0 6 ( 5 ) A ) . A m o r e d r a m a t i c d i f f e r e n c e i n t h e s e 8 0 F i g u r e 1 8 . O R T E P r e p r e s e n t a t i o n o f c o m p o u n d ( 6 ) d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s a r e o m i t t e d f o r c l a r i t y . 8 1 b o n d l e n g t h s a r e o b s e r v e d f o r o t h e r c o m p o u n d s p r e s e n t e d i n c h a p t e r 2 w h e r e o n l y o n e m e t a l a t o m p o s s e s s e s a n a x i a l s o l v e n t m o l e c u l e . A s i m i l a r b o n d i n g s i t u a t i o n w a s a l s o p r e v i o u s l y d i s c u s s e d f o r c o m p o u n d ( 3 ) . T h e b r i d g i n g f o r m a m i d i n a t e l i g a n d s a r e s l i g h t l y t w i s t e d f r o m t h e e c l i p s e d o r i e n t a t i o n b y 4 . 8 ( 2 ) ° a n d 5 . 7 ( 2 ) ° . 4 . C o n c l u s i o n s . R e c e n t d e v e l o p m e n t s i n o u r l a b o r a t o r i e s i n t h e c h e m i s t r y o f d i r h o d i u m t e t r a c a r b o x y l a t e c o m p o u n d s w i t h D N A p u r i n e s o p e n e d t h e q u e s t i o n o f t h e p o s s i b l e i n v o l v e m e n t o f t h e 0 6 p o s i t i o n i n t h e o b s e r v e d D N A b i n d i n g o f t h i s c l a s s o f c o m p o u n d s . I n v e s t i g a t i o n s o f t h e p u r i n e r e a c t i o n s o f R h 2 ( D T o 1 F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) 2 ( l ) [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) h a v e b e e n e x p l o r e d . T h e p r o d u c t s w i t h 9 - E t G H f o r m e d f r o m t h e r e a c t i o n s w i t h R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) a n d [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) s h o w l i t t l e o r n o p r e f e r e n c e f o r t h e f o r m a t i o n o f t h e h e a d - t o - h e a d i s o m e r o v e r t h e h e a d - t o - t a i l i s o m e r a s d e t e r m i n e d b y 1 H N M R s p e c t r o s c o p y . S i n g l e c r y s t a l X - r a y c r y s t a l l o g r a p h i c s t u d i e s p e r f o r m e d o n [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] 2 + ( 3 ) s h o w e d t h a t a p r e f e r e n c e f o r c r y s t a l l i z i n g t h e h e a d - t o - h e a d i s o m e r . C o n v e r s e l y , t h e . r e a c t i o n s b e t w e e n 9 - E t A H [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) s h o w s a p r e f e r e n c e f o r t h e f o r m a t i o n o f t h e b e a d - t o - t a i l i s o m e r o v e r t h e h e a d - t o - h e a d i s o m e r a s e l u c i d a t e d f r o m 1 H 8 2 N M R s p e c t r o s c o p y a n d s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s . T h e c o m p o u n d s c o n t a i n i n g t h e [ D T o l F ] ' b r i d g i n g g r o u p s a n d t h e p u r i n e s a l s o e x h i b i t v e r y r i c h r e d o x c h e m i s t r y . F r o m t h e s e s t u d i e s w e e x p e c t t h a t t h e . d i r h o d i u m f o r m a m i d i n a t e c o m p o u n d s w i l l r e a c t w i t h D N A s i m i l a r l y t o t h e d i r h o d i u m t e t r a c a r b o x y l a t e c o m p o u n d s u n d e r c u r r e n t i n v e s t i g a t i o n i n o u r l a b o r a t o r i e s . T h e n e w c o m p o u n d R h 2 ( D T o l F ) 2 ( O z C C H 3 ) 2 ( H z O ) ( 6 ) s h o w s l i t t l e o r n o d i f f e r e n c e s t o t h e l a n t e r n s t r u c t u r e t o t h e t r i fl u o r o a c e t a t e d e r i V a t i v e s . W e a r e c o n fi d e n t t h a t t h i s c o m p o u n d w i l l e x h i b i t s i m i l a r r e a c t i v i t i e s w i t h t h e D N A n u c l e o b a s e s t o c o m p o u n d s ( 1 ) a n d ( 2 ) . 8 3 , ) 1 ( ) 9 ( 2 ) ( 7 7 2 1 ( 4 1 2 0 0 a 7 O 0 F F I ( . Z W 2 ) [ ) " — - R Z 2 ) n . 6 0 . 9 9 8 4 0 C . 7 3 / 2 . 1 2 1 2 1 1 P . 4 K 4 0 4 = 7 F 8 4 Z 0 3 6 5 7 2 3 1 9 ( [ 0 O 2 . 8 . . m 0 7 . 0 o 2 9 9 5 4 M 0 4 0 0 i 1 1 1 1 3 = R ° > 2 2 0 . R : i 1 ) 3 7 0 ) 8 w 1 ( 0 ; . 2 l 2 o ” e ] > ) l p ) 4 ( ) 7 6 0 ( 1 ( 3 9 3 g 1 - l ) . 4 8 1 0 l 1 6 o C J n | 5 3 5 4 4 9 1 0 K 0 h ( 0 4 / F r h . / 0 0 8 2 9 . . . 0 7 o . 9 9 4 4 M 7 6 2 0 0 1 1 1 ) 1 c ] | . ‘ 2 ( r 2 l ) o 0 o 2 F / t c e 1 a l F - m = ) ) ) 0 o 2 0 1 r F w 1 ( h . w ; c 1 2 2 5 [ 2 ) ) ) 0 ( ( ( 1 1 1 ( 0 1 5 ( ( ( o R £ ” n C [ ] o 2 3 4 7 3 1 5 5 8 a | 5 0 3 7 6 9 2 1 2 . . 9 2 1 5 1 5 5 K 3 6 3 3 m = o . s F a 1 2 8 7 . 3 9 4 7 - . 0 4 . 2 t w 9 l . . . 9 0 | ] . . 1 3 3 5 1 e o 8 P 6 7 8 M 8 2 4 0 0 1 1 1 1 1 i 0 = 2 N C 3 H C ( 2 ) 3 F C 2 0 ( 2 ) F l o T D ( 2 h R r o f t a D c i h p a 2 h R ) 2 2 1 9 2 h 0 R 5 4 1 0 N 6 Z F B 6 3 ) e | . ) ) ) . O ) ) 6 8 1 ’ s o F r 0 g 2 o H l ( 6 1 4 6 3 3 1 N F ( ( ( ( ( 1 1 ) ) 0 1 2 ( 5 6 9 ( ( 5 4 3 9 6 7 7 9 6 3 n 5 . 5 3 0 4 7 1 0 7 9 1 c o a = l 5 a 2 ” H t ) 8 6 . 4 8 6 K 7 1 1 / 0 0 2 8 6 0 e = G 0 . . . 6 1 f 1 . 8 4 . . 1 l 3 4 a o m , s 3 y H r C C C , 0 ( 2 . ) l F | 0 T e D l ( b 2 a h T R 3 4 6 2 1 2 0 0 0 0 3 . 7 . 0 8 7 . 0 C C 9 P 2 2 2 9 4 M 9 9 4 0 3 0 1 1 1 1 1 o m g R i . ' s ? t R “ n . ] | e ] , v 2 ; . ] F l 2 ) | o 0 2 : s , : > p / u l o o r m g / g e a 3 c t m a a c g ) ) d ) t ) 1 r | [ | ( g 2 , n / w = i | l [ 1 / i 9 4 - d 3 d e a Z ) 2 g 3 8 s R ’ u R f u a ] , n / | a m d ( F 2 5 4 W l e F c q c c 2 1 ( m | ) | , a A A s t o ( A c l i . . n 2 2 n 2 w p , b o , a , , c 1 n 0 0 1 i 0 I , F S a b c p ( ( G = 1 R R F r U O a h F / p [ 2 n a r / | ] c r o ) F G 2 c | ° 0 - - F | ( s s [ e w Z n ( l Z d u [ o 8 4 [ R h 2 ( D T o l F ) z ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 1 2 ( 4 ) . [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) F o r m u l a a 0 1 , d e g B . d e g y , d e v , i t g Z T , K R a d i a t i o n b 1 0 . 0 4 4 9 ( 0 . 0 8 9 8 ) 0 . 9 8 5 6 C 3 7 H 3 7 0 6 N 4 R h 2 1 4 . 4 5 1 6 ( 1 ) 0 . 0 5 7 7 ( 0 . l 3 3 3 ) 1 . 0 8 1 4 C 4 6 H 4 8 3 2 F 8 N 1 5 R h 2 1 1 9 0 . 4 0 P 2 1 / C 1 5 . 6 4 8 ( 8 ) 1 6 . 5 1 5 ( 5 ) 2 0 . 0 2 6 ( 8 ) 1 . 3 0 0 . 0 8 9 8 T a b l e 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r h a ( D T O l F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) . R h ( 1 ) - R h ( 2 ) 2 . 4 7 4 5 ( 5 ) R h ( 1 ) - N ( 1 ) 2 . 0 0 7 ( 4 ) R h ( 1 ) - N ( 5 ) 2 . 0 1 5 ( 4 ) R h ( 1 ) - 0 ( 3 ) 2 . 0 9 5 ( 3 ) R h ( 1 ) - 0 ( 2 ) 2 . 1 0 2 ( 3 ) R h ( 2 ) - N ( 4 ) 2 . 2 6 9 ( 5 ) N ( 1 ) - R h ( 1 ) - N ( 5 ) 9 1 . 6 ( 2 ) N ( S ) - R h ( l ) - O ( 3 ) 1 7 5 . 1 6 ( 1 5 ) N ( s ) - R h ( 1 ) — O ( 2 ) 8 8 . 1 4 ( 1 5 ) N ( 1 ) - R h ( 1 ) - N ( 3 ) 9 7 . 1 ( 2 ) 0 ( 3 ) - R h ( 1 ) - N ( 3 ) 8 3 . 6 2 ( 1 4 ) N ( 6 ) - R h ( 2 ) - N ( 2 ) 9 1 . 8 ( 2 ) N ( 2 ) - R h ( 2 ) - O ( 1 ) 8 8 . 4 1 ( 1 4 ) N ( z ) - R h ( 2 ) - O ( 4 ) 1 7 5 . 1 ( 2 ) N ( 6 ) - R h ( 2 ) — N ( 4 ) 9 3 . 8 ( 2 ) 0 ( 1 ) - R h ( 2 ) - N ( 4 ) 9 1 . 2 8 ( 1 4 ) N ( 2 ) - C ( 4 0 ) - N ( 1 ) 1 2 4 . 4 ( 5 ) 0 ( l ) - C ( 2 8 ) - O ( 3 ) 1 2 9 . 9 ( 5 ) N ( 4 ) - R h ( 2 ) - R h ( l ) 1 7 2 . 3 7 ( 1 1 ) N ( 2 ) — R h ( 2 ) - R h ( 1 ) - N ( 1 ) 5 . 6 ( 2 ) N ( S ) — R h ( 1 ) - R h ( 2 ) - N ( 6 ) 5 . 4 ( 2 ) ( a ) B o n d s ( b ) A n g l e s 8 5 R h ( 1 ) - N ( 3 ) R h ( 2 ) - N ( 6 ) R h ( 2 ) - N O ) R h ( 2 ) - 0 ( 1 ) R h ( 2 ) - 0 ( 4 ) N ( 1 ) - R h ( 1 ) - 0 ( 3 ) N ( 1 ) - R h ( 1 ) - 0 ( 2 ) 0 ( 3 ) - R h ( 1 ) - 0 ( 2 ) N ( 5 ) - R h ( 1 ) - N ( 3 ) 0 ( 2 ) - R h ( 1 ) - N ( 3 ) N ( 6 ) - R h ( 2 ) - 0 ( 1 ) N ( 6 ) - R h ( 2 ) - 0 ( 4 ) 0 ( 1 ) - R h ( 2 ) - 0 ( 4 ) N ( 2 ) - R h ( 2 ) - N ( 4 ) 0 ( 4 ) - R h ( 2 ) - N ( 4 ) N ( 5 ) - C ( 3 9 ) - N ( 6 ) O ( 2 ) - C ( 3 l ) - O ( 4 ) 2 . 2 6 6 ( 5 ) 2 . 0 1 2 ( 4 ) 2 . 0 0 8 ( 4 ) 2 . 0 9 8 ( 3 ) 2 . 1 0 0 ( 3 ) 8 7 . 8 9 ( 1 4 ) 1 7 5 . 3 ( 2 ) 9 1 . 9 5 ( 1 3 ) 1 0 1 . 2 ( 2 ) 8 7 . 6 ( 2 ) 1 7 4 . 8 4 ( 1 5 ) 8 8 . 1 8 ( 1 5 ) 9 1 . 2 0 ( 1 3 ) 9 9 . 2 ( 2 ) 8 5 . 6 6 ( 1 4 ) 1 2 5 . 9 ( 5 ) 1 3 1 . 2 ( 5 ) N ( 3 ) - R h ( l ) - R h ( 2 ) 1 6 8 . 8 7 ( 1 1 ) O ( 2 ) - R h ( 1 ) - R h ( 2 ) - O ( 4 ) 5 . 3 3 ( 1 3 ) O ( 3 ) - R h ( 1 ) - R h ( 2 ) - O ( 1 ) 6 . 0 8 ( 1 3 ) T a b l e 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T 0 1 F ) 2 ( C H 3 C N ) 6 l [ B F 4 1 2 ( 6 ) R h ( 1 ) - R h ( 2 ) R h ( l l - N U ) R 1 1 ( 1 ) - 0 ( 3 ) R h ( l l - O U ) R h ( 1 ) - 0 ( 5 ) R h ( 1 ) - N ( 4 ) N ( 4 ) - R h ( 1 ) - N ( 1 ) N ( 4 ) - R h ( 1 ) - 0 ( 3 ) N ( 1 ) - R h ( 1 ) - 0 ( 3 ) N ( 4 ) - R h ( 1 ) - 0 ( 1 ) N ( 1 ) - R h ( 1 ) - 0 ( 1 ) 0 ( 3 ) - R h ( 1 ) - 0 ( 1 ) N ( 4 ) - R h ( 1 ) - 0 ( 5 ) N ( l l - R h ( 1 ) - 0 ( 5 ) N ( l ) - C ( 3 3 ) - N ( 2 ) N ( 4 ) - R h ( 1 ) - R h ( 2 ) - N ( 3 ) 4 . 8 ( 2 ) O ( 3 ) - R h ( 1 ) - R h ( 2 ) - O ( 4 ) 5 . 0 ( 2 ) 2 . 4 1 7 1 ( 7 ) 2 . 0 2 6 ( 5 ) 2 . 0 7 3 ( 4 ) 2 . 0 9 1 ( 4 ) 2 . 2 5 0 ( 4 ) 2 . 0 2 4 ( 5 ) 9 0 . 5 ( 2 ) 1 7 5 . 0 ( 2 ) 8 8 . 7 ( 2 ) 9 1 . 0 ( 2 ) 1 7 4 . 9 ( 2 ) 8 9 . 3 ( 2 ) 1 0 0 . 4 ( 2 ) 9 4 . 2 ( 2 ) 1 2 4 . 2 ( 6 ) ( a ) B o n d s ( b ) A n g l e s R h ( 2 ) - N 0 ) R 1 1 ( 2 ) - N ( 3 ) R h ( 2 ) - 0 ( 4 ) R 1 1 ( 2 ) - 0 ( 2 ) O ( 5 ) — R h ( l ) - R h ( 2 ) 1 7 1 . 2 4 ( 1 1 ) N ( 3 ) - R h ( 2 ) - N ( 2 ) N ( 3 ) - R h ( 2 ) - 0 ( 4 ) N ( 2 ) - R h ( 2 ) - O ( 4 ) N ( 3 ) - R h ( 2 ) - O ( 2 ) O ( 4 ) - R h ( 2 ) - O ( 2 ) O ( 2 ) - C ( 3 0 ) - O ( 1 ) O ( 3 ) — C ( 3 2 ) - O ( 4 ) N ( 3 ) - C ( 3 4 ) - N ( 4 ) . N ( 1 ) - R h ( 1 ) - R h ( 2 ) - N ( 2 ) O ( l ) - R h ( 1 ) - R h ( 2 ) — O ( 2 ) 8 6 2 . 0 0 6 ( 5 ) 2 . 0 0 2 ( 5 ) 2 . 0 5 5 ( 4 ) 2 . 0 7 0 ( 4 ) 8 9 . 7 ( 2 ) 1 7 7 . 2 ( 2 ) 8 9 . 5 ( 2 ) 9 1 . 2 ( 2 ) 8 9 . 4 ( 2 ) 1 2 4 . 6 ( 6 ) 1 2 4 . 2 ( 6 ) 1 2 2 . 4 ( 6 ) 5 . 7 ( 2 ) 5 . 1 ( 2 ) T a b l e 4 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r . [ R h 2 ( D T 0 1 F ) 2 ( 9 ' E t A H ) 2 ( C H 3 C N ) ] [ B F 4 1 2 ( 4 ) R h ( 1 ) - R h ( 2 ) R h ( 1 ) - N ( 2 ) R h ( 1 ) - N ( 4 ) R h ( 2 ) - N ( 6 ) R h ( 2 ) - N 0 3 ) N ( 1 ) - R h ( 1 ) - N ( 2 ) N ( 1 ) - R h ( 1 ) - N ( 4 ) N ( 2 ) - R h ( 1 ) - N ( 3 ) N ( Z l - R h ( 1 ) - N ( 5 ) N ( 3 ) - R h ( 2 ) - N ( 5 ) N ( 6 l - R h ( 2 ) - N ( 7 ) N ( 6 l - R h ( 2 ) - N ( 9 ) N ( 7 ) - R h ( 2 ) - N ( 9 ) N ( 1 ) - C ( 1 ) - N ( 9 ) 2 . 5 1 0 ( 3 ) 2 . 0 4 ( 2 ) 1 . 9 9 ( 2 ) 2 . 0 3 ( 2 ) 2 . 0 3 ( 2 ) ( b ) A n g l e s 1 7 7 . 7 ( 8 ) 8 8 . 6 ( 7 ) 8 7 . 1 ( 7 ) 8 3 . 2 ( 8 ) 9 0 . 1 ( 7 ) 8 9 . 5 ( 8 ) 1 7 9 . 0 ( 7 ) 8 9 . 6 ( 7 ) 1 1 6 ( 2 ) N ( 1 ) - R h ( 1 ) - R h ( 2 ) - N ( 9 ) 3 0 . 2 ( 7 ) N ( 4 ) - R h ( 1 ) - R h ( 2 ) - N ( 8 ) 2 9 . 9 ( 7 ) N ( 4 ) - C ( 3 5 ) - C ( 3 2 ) - N ( 8 ) 6 ( 4 ) ( a ) B o n d s R h ( 1 ) - N ( 1 ) R h ( 1 ) - N ( 3 ) R h ( 1 ) - N ( 5 ) R h ( 2 ) - N 0 ) R h ( 2 ) - N ( 9 ) N ( 1 ) - R h ( 1 ) - N ( 3 ) N ( 1 ) - R h ( 1 ) - N ( 5 ) N ( 2 ) - R h ( 1 ) - N ( 4 ) N ( 3 ) - R h ( 1 ) - N ( 4 ) N ( 4 ) - R h ( 2 ) - N ( 5 ) N ( 6 ) - R h ( 2 ) - N ( 8 ) N ( 7 ) - R h ( 2 ) - N ( 8 ) N ( 8 ) - R h ( 2 ) - N ( 9 ) N ( 3 ) - C ( 2 ) - N ( 7 ) N ( 3 ) - R h ( 1 ) - R h ( 2 ) - N ( 7 ) N ( 2 ) - R h ( l ) - R h ( 2 ) - N ( 6 ) N ( 2 ) - C ( 3 9 ) - C ( 4 2 ) - N ( 6 ) 8 7 2 . 0 4 ( 2 ) 2 . 0 7 ( 2 ) 2 . 0 6 ( 2 ) 2 . 0 0 ( 2 ) 2 . 0 3 ( 2 ) 9 2 . 1 ( 7 ) 9 8 . 9 ( 8 ) 9 2 . 1 ( 7 ) 1 7 6 . 4 ( 8 ) 9 3 . 3 ( 8 ) 9 1 . 8 ( 7 ) 1 7 6 . 5 ( 7 ) 8 9 . 2 ( 7 ) 1 1 8 ( 2 ) 2 7 . 1 ( 7 ) 2 9 . 8 ( 7 ) 6 ( 4 ) T a b l e 5 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 3 ) . R h ( 1 ) — R h ( 2 ) 2 . 5 1 4 0 ( 1 0 ) R h ( 1 ) - N ( 3 ) 2 . 0 4 6 ( 7 ) R h ( 1 ) - N ( 1 2 ) 2 . 0 8 0 ( 7 ) R h ( 2 ) - N ( 5 ) 2 . 0 0 6 ( 7 ) R h ( 2 ) - 0 ( 2 ) 2 . 0 6 2 ( 6 ) N ( l 4 ) - R h ( 1 ) - N ( 3 ) 8 9 . 3 ( 3 ) N ( 3 ) - R h ( 1 ) - N ( 8 ) N ( 3 ) - R h ( l ) - N ( 1 2 ) 1 7 7 . 8 ( 3 ) N ( 1 4 ) - R h ( 1 ) — N ( 6 ) 9 3 . 5 ( 3 ) N ( 8 ) - R h ( l ) - N ( 6 ) N ( 5 ) - R h ( 2 ) - N ( 1 5 ) 9 2 . 8 ( 3 ) N ( 1 5 ) - R h ( 2 ) - O ( 2 ) 9 2 . 8 ( 3 ) N ( 1 5 ) - R h ( 2 ) - O ( l ) 1 7 2 . 6 ( 3 ) N ( 6 ) - R h ( l ) - N ( 2 ) 9 2 . 4 ( 3 ) 8 9 . 9 ( 3 ) 1 7 6 . 0 ( 2 ) N ( 1 5 ) - C ( 2 2 ) - N ( 1 4 ) 1 2 1 . 8 ( 8 ) N ( 3 ) - R h ( 1 ) - R h ( 2 ) - N ( 5 ) 2 0 . 2 ( 3 ) N ( 1 2 ) - R h ( 1 ) - R h ( 2 ) - O ( 2 ) 2 6 . 8 ( 2 ) N ( 1 2 ) — C ( 7 ) - C ( 3 4 ) - 0 ( 2 ) 0 . 4 ( 1 7 ) ( a ) B o n d s ( b ) A n g l e s R h ( 1 ) - N ( 1 4 ) 2 . 0 4 2 ( 7 ) R h ( l ) - N ( 8 ) 2 . 0 7 6 ( 7 ) R h ( 1 ) - N ( 6 ) 2 . 1 4 2 ( 8 ) R h ( 2 ) - N ( 1 5 ) 2 . 0 0 7 ( 7 ) R h ( 2 ) - 0 ( 1 ) 2 . 0 7 0 ( 8 ) N ( 1 4 ) - R h ( 1 ) - N ( 8 ) 1 7 6 . 1 ( 3 ) N ( 1 4 ) - R h ( l ) - N ( 1 2 ) 8 9 . 0 ( 3 ) N ( 8 ) - R h ( 1 ) - N ( 1 2 ) 8 9 . 2 ( 3 ) N ( 3 ) - R h ( 1 ) - N ( 6 ) 9 1 . 3 ( 3 ) N ( 1 2 ) - R h ( l ) - N ( 6 ) 9 0 . 2 ( 3 ) N ( 5 ) - R h ( 2 ) - O ( 2 ) 1 7 1 . 9 ( 2 ) N ( 5 ) - R h ( 2 ) - O ( 1 ) 8 9 . 0 ( 3 ) O ( 2 ) - R h ( 2 ) - O ( 1 ) 8 4 . 7 ( 2 ) N ( 5 ) - C ( 3 1 ) - N ( 3 ) 1 2 3 . 5 ( 8 ) N ( l 4 ) - R h ( 1 ) - R h ( 2 ) - N ( 1 5 ) 2 3 . 5 ( 3 ) N ( 8 ) — R h ( l ) - R h ( 2 ) - O ( 1 ) 2 4 . 2 ( 3 ) N ( 8 ) - C ( 1 9 ) - C ( 3 6 ) - O ( 1 ) 0 . 2 ( 1 7 ) 8 8 T a b l e 6 . N M R S p e c t r o s c o p i c D a t a f o r 3 , 4 , 5 , 6 a n d 7 . c o m p o u n d N M R s p e c t r a , p p m 3 R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( O z C C F 3 ) 2 4 R h 2 ( D P h F ) 2 ( 9 - E t G H ) 2 ( O z C C F 3 ) 2 5 [ R 1 1 2 ( D T 0 1 F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 8 9 ' H N M R ( C D 3 C N ) 5 p p m : 1 . 3 5 - 1 . 3 7 ( m , C H 3 ) , 1 . 9 5 ( s , C H 3 C N ) , 2 . 1 5 b r o a d ( 8 , H 2 0 ) , 2 . 2 3 ( s , C H 3 ) , 4 . 0 5 ( m , C H 2 ) , 6 . 8 0 ( d , p h e n y l ) , 6 . 8 9 ( d , p h e n y l ) , 7 . 0 3 - 7 . 1 9 b r o a d ( m , p h e n y l ) , 7 . 5 5 ( m , N C H N ) , 7 . 9 9 ( 5 , H 8 ) , 8 . 0 2 ( s , H 8 ) . ” ’ 1 7 N M R ( b o t h C D 3 C N a n d a c e t o n e - d 6 ) 5 p p m : ' 1 2 . 4 9 r e f e r e n c e d t o C 6 1 1 5 C F 3 ( s , O Z C C F 3 ) . ' H N M R ( C D 3 C N ) 8 p p m : 1 . 3 5 - 1 . 3 8 ( m , C H 3 ) , 1 . 9 5 ( s , C H 3 C N ) , 2 . 2 1 b r o a d ( 8 , H 2 0 ) , 4 . 0 4 - 4 . 0 7 b r o a d ( m , C H 2 ) , 6 . 8 2 ( d , p h e n y l ) , 6 . 8 9 ( d , p h e n y l ) , 7 . 0 4 - 7 . 2 0 b r o a d ( m , p h e n y l ) , 7 . 5 5 ( m , N C H N ) , 7 . 9 3 ( 5 , H 8 ) , 8 . 0 3 ( s , H 8 ) . " ’ 1 7 N M R ( b o t h C D 3 C N , a c e t o n e - d 6 ) 6 p p m : 1 2 4 7 r e f e r e n c e d t o C 6 H 5 C F 3 ( s , 0 2 C C F 3 ) . ' ° 3 R h N M R ( C D 3 C N ) 5 p p m : 5 5 5 1 . 9 8 . l H N M R s p e c t r u m i n C D 3 C N : 6 = 7 . 5 1 ( t , 3 1 1 1 1 1 - 1 1 = 4 H z , N C H N ) , 6 . 9 9 ( m , P h ) , 2 . 2 7 ( s , C H y P h ) , 2 . 4 9 ( s , e q - C H g C N ) , a n d 1 . 9 6 ( s , a x - C H 3 C N ) . l o 3 1 1 1 : N M R s p e c t r u m i n C D 3 C N : 6 = 4 6 4 8 . 6 [ R h 2 ( D T O l F ) 2 ( 9 - E 1 A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 3 7 [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 9 0 1 H N M R s p e c t r u m i n C D 3 C N a t 2 5 ° C : 6 = 1 . 2 5 ( t , C H 3 ) , 1 . 9 5 ( s , C H 3 C N ) , 2 . 2 5 ( s , C H 3 ) , 2 . 3 3 ( s , C H 3 ) , 3 . 9 8 - 4 . 1 1 ( m , C H 2 ) , 6 . 4 6 ( d , p h e n y l ) , 6 . 7 6 ( d , p h e n y l ) , 7 . 0 2 ( d , p h e n y l ) , 7 . 0 9 ( d , p h e n y l ) , 7 . 2 6 ( s , N C H N ) , 7 . 6 8 ( 8 , H 2 o r H 8 ) , 8 . 0 6 ( 5 , H 2 o r H 8 ) , 8 . 6 3 ( s , H 6 ) . ‘ H N M R s p e c t r u m a t ' 3 2 ° C : 8 = 1 . 2 8 ( t , C H 3 ) , 1 . 9 5 ( s , C H 3 C N ) , 2 . 1 3 ( 8 , H 2 O ) , 2 . 2 3 ( s , C H 3 ) , 4 . 0 8 ( m , C H 2 ) , 6 . 3 6 ( d , p h e n y l ) , 6 . 4 6 ( s , H 6 ) , 6 . 7 8 ( d , p h e n y l ) , 6 . 9 6 ( d , p h e n y l ) , 6 . 9 9 ( d , p h e n y l ) , 7 . 6 5 ( t , N C H N ) , 7 . 6 8 ( s , H 2 o r H 8 ) , 8 . 0 4 ( s , H 2 o r H 8 ) . ‘ H N M R s p e c t r u m i n a c e t o n e - d 6 a t 2 5 ° C : 8 = 1 . 3 0 ( t , C H 3 - 9 - E t A H ) , 1 . 8 8 ( 5 , a r - C H 3 C N ) , 2 . 1 4 ( s , H 2 0 ) , 2 . 2 4 ( s , fi l m - P h ) , 4 . 1 5 - 4 . 1 9 ( m , C H 2 - 9 - E t A H ) , 6 . 7 1 ( ( 1 , P h ) , 6 . 8 6 ( d , P h ) , 7 . 0 6 ( d , P h ) , 7 . 1 2 ( ( 1 , P h ) , 7 . 7 3 ( b s , N C H N ) , 8 . 6 3 ( 8 , H 8 ) , 1 1 . 3 5 ( s , H 6 ) . ‘ H N M R s p e c t r u m a t ' 4 1 ° C : 8 = 1 . 2 7 ( t , C H 2 - 9 - E t A H ) , 1 . 8 4 ( s , a x - C H 3 C N ) , 2 . 1 3 ( 3 , H 2 O ) , 2 . 2 0 ( s , C h g - P h ) , 4 . 1 7 ( m , C H 2 - 9 - E t A H ) , 6 . 7 6 ( ( 1 , H 6 ) , 6 . 8 8 ( d , P h ) , 7 . 0 3 ( ( 1 , P h ) , 7 . 1 1 ( ( 1 , P h ) , 7 . 2 0 ( 8 , H 2 ) , 7 . 7 1 ( b s , N C H N ) , 7 . 9 9 ( d , H 1 ) , 8 . 7 3 ( 5 , H 8 ) , 7 . 9 4 ( s , H 1 ) , 1 1 . 5 7 ( 8 , H 6 ) . ' H N M R ( € 0 , 0 1 3 ) 8 p p m : 1 . 3 6 ( 1 , C H 3 ) , 1 . 4 0 ( t , C H 3 ) , 1 . 9 2 ( s , C H 3 C N ) , 2 . 2 3 ( s , C H 3 ) , 3 . 9 8 ( q , C H 2 ) , 4 . 0 5 ( q , C H 2 ) , 6 . 8 0 ( m , p h e n y l ) , 6 . 8 9 ( m , p h e n y l ) , 7 . 0 0 ( m , p h e n y l ) , 7 . 5 0 ( t , N C H N ) , 7 . 5 5 ( t , N C H N ) , 8 . 3 2 ( s , H 8 ) , 8 . 3 5 ( s , H 8 ) . . ° ° L i s t o f R e f e r e n c e s . ( a ) P r u c h n i k , F . ; D u s , D . J . I n o r g . B i o c h e m . 1 9 9 6 , 6 1 , 5 5 . ( b ) B e a r , J . L . ; G r a y , H . B . ; e t a l . C a n c e r C h e m o t h e r . R e p . 1 9 7 5 , 5 9 , 6 1 1 . ( c ) B e a r , J . L . ; H o w a r d , R . A . ; D e n n i s , A . M . C u r r . C h e m o t h e r . P r o c . I n t . C o n g r e s s C h e m o t h e r . 1 0 1 7 : M e e t i n g . 1 9 7 7 , v o l . 2 . ( a ) P n e u m a t i k a k i s , G . ; H a d j i l i a d i s , N . J . C . S . D a l t o n 1 9 7 9 , 5 9 6 . ( b ) R a i n e n , L . ; H o w a r d , R . A . ; K i m b a l l , A . P . ; B e a r , J . L . J . I n o r g . C h e m . 1 9 7 5 , 1 1 , 2 7 5 2 . ( c ) F a r r e l l , N . J . I n o r g . B i o c h e m . 1 9 8 1 , 1 4 , 2 6 1 . ( d ) Y u , B . S . ; C h o o , S . Y . J . P h a r m . S o c . K o r . 1 9 7 5 , 1 9 , 2 1 5 . ( e ) R u b i n , J . R . ; H a r o m y , T . P . ; S u n d a r a l i n g a m , M . A c t a C r y s t . 1 9 9 1 , C 4 7 , 1 7 1 2 . ( f ) W a y s b o r t , D . ; T a r i e n , E . ; E i c h o m , G . L . I n o r g . C h e m . 1 9 9 3 , 3 2 , 4 7 7 4 . . B e a r , J . L . ; G r a y , J r . H . B . ; R a i n e n , L . ; C h a n g , I . M . ; H o w a r d , R . ; S e r i o , S . ; K i m b a l l , A . P . C a n c e r C h e m o t h e r . R e p . P a r t 1 . 1 9 7 5 , 5 9 , 6 1 1 . ( a ) D u n b a r , K . R . ; M a t o n i c , J . H . , S a h a r a n , V . P . ; C r a w f o r d , C . A . ; C h r i s t o u , G . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 2 2 0 1 . ( b ) D a y , E . F . ; C r a w f o r d , C . A . ; F o l t i n g , K . ; D u n b a r , K . R . ; C h r i s t o u , G . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 9 3 3 9 . ( c ) C r a w f o r d , C . A . ; D a y , E . F . ; S a h a r a n , V . P . ; F o l t i n g , K . ; H u f fi n a n , J . C . ; D u n b a r , K . R . ; C h r i s t o u , G . C h e m . C o m m u n . 1 9 9 6 , 1 1 1 3 . F i m i a n i , V . ; A i n i s , T . ; C a v a l l a r o , A . ; P i r a i n o , P . J . o f C h e m o t h e r . 2 , 1 9 9 0 , 3 1 9 . ( a ) C a t a l a n , K . V . ; M i n d i o l a , D . J . ; W a r d , D . L . ; D u n b a r , K . R . I n o r g . C h e m . 1 9 9 7 , 3 6 , 2 4 5 8 . ( b ) C a t a l a n , K . M a s t e r ’ s T h e s i s . ( a ) P i r a i n o , P . ; T r e s o l d i , G . ; F a r a o n e , F . J . O r g a n o m e t . C h e m . 1 9 8 2 , 2 2 4 , 3 0 5 . ( b ) P i r a i n o , P . ; B r u n o , G . ; T r e s o l d i , G . ; e t a l . I n o r g . C h e m . 1 9 8 7 , 2 6 , 9 1 . M y e r s & Z e l e z n i c k , J . O r g . C h e m . 1 9 6 3 , 2 8 , 2 0 8 7 . ( a ) T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s p a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , 1 9 8 5 . ( b ) M I T H R I L : I n t e g r a t e d D i r e c t M e t h o d s C o m p u t e r P r o g r a m , G i l m o r e , C . J . J . A p p l . C r y s t . 1 9 8 4 , I 7 , 4 2 . ( c ) D I R D I F : D i r e c t M e t h o d s f o r D i f f e r e n c e S t r u c t u r e s , A n A u t o m a t i c P r o c e d u r e f o r P h a s e E x t e n s i o n ; R e fi n e m e n t o f D i f f e r e n c e S t r u c t u r e F a c t o r s . B e u r s k e n s , P . T . T e c h n i c a l R e p o r t , 1 9 8 4 . 1 0 . S A I N T & S A D A B S r e f s 1 1 . ( a ) S h e l d r i c k , G . S H E L X S - 9 7 , 1 9 9 0 . ( b ) S h e l d r i c k , G . S H E L fl - 9 7 . 1 9 9 7 . 1 2 . ( a ) P i r a i n o , P . ; T r e s o l d i , G . ; S c h i a v o , S . L . I n o r g . C h i m . A c t a 1 9 9 3 , 2 0 3 , 1 0 1 . ( b ) S c h i a v o , S . L . ; S i n i c r o p i , M . S . ; T r e s o l d i , G . ; A r e n a , C . G . ; 9 1 P i r a i n o , P . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 4 , 1 5 1 7 a n d r e f e r e n c e s t h e r e i n . 1 3 . D u n b a r , K . R . ; M a j o r s , S . 0 . ; S u n , R . - S . I n o r g . C h i m . A c t a 1 9 9 5 , 2 2 9 , 3 7 3 . 1 4 . C a t a l a n , K . V . ; D u n b a r , K . R . ; M a l o n e y , M . M . m a n u s c r i p t i n p r e p a r a t i o n . 1 5 . C o t t o n , F . A . a n d W a l t o n , R . A . M u l t i p l e B o n d s B e t w e e n M e t a l A t o m s . O x f o r d P r e s s , 2 n d e d . 1 9 9 3 , a n d r e f e r e n c e s t h e r e i n . 1 6 . P i m b l e t t , G . ; G a r n e r , C . D . ; C l e g g , W . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 6 , 1 2 5 7 . l 7 . ( a ) B u r g e s s , J . T r a n s . M e t . C h e m . 1 9 9 3 , 1 8 , 4 3 9 . ( b ) H o l l i s , L . S . ; A m u n d s e n , A . R . ; S t e r n , E . W . J . M e d . C h e m . 1 9 8 9 , 3 2 , 1 3 6 . ( c ) A l l e s i o , E . ; B a l d u c c i , G . ; C a l l i g a r i s , M . ; C o s t a , G . ; A t t i a , W . M . ; M e s t r o n i , G . I n o r g . C h e m . 1 9 9 1 , 3 0 , 6 0 9 . 1 8 . L i p p a r d , S . J . P u r e & A p p l . C h e m . 1 9 8 7 , 5 9 , 7 3 1 . 1 9 . ( a ) W e b b , G . A . A n n u . R e p . o n N M R S p e c t . 1 9 8 3 , 1 4 . ( b ) G a r n e r , C . D . ; H u g h e s , B . A d v . i n I n o r g . a n d R a d i o c h e m . 1 9 7 5 , 1 7 , 1 . ( c ) M a t o n i c J . H . ; C h e n , S . J . ; P e n c e , L . E . ; D u n b a r , K . R . P o l y h e d r o n 1 9 9 2 , 1 1 , 5 4 1 . 2 0 . ( a ) B e a r , J . L . ; Y a o , C . - L . ; L i f s e y , R . S . ; K o r p , J . D . ; K a d i s h , K . M . I n o r g . C h e m . 1 9 9 1 , 3 0 , 3 3 6 . ( b ) N i c o l o , F . ; B r u n o , G . ; S c h i a v o , S . L . ; S i n i c r o p i , M . S . ; P i r a i n o , P . I n o r g . C h i m . A c t a . 1 9 9 4 , 2 2 3 , 1 4 5 . 9 2 C h a p t e r I I I D i r h o d i u m F o r m a m i d i n a t e C o m p o u n d s w i t h N i t r o g e n C h e l a t e s A s M i m i c s f o r 9 - E t h y l a d e n i n e 9 3 1 . I n t r o d u c t i o n M o d i fi e d d i r h o d i u m c a r b o x y l a t e c o m p o u n d s o f t h e t y p e , [ R h 2 ( O z C M e ) 2 ( N - N ) Z H Z O ] 2 + ( N - N = 2 , 2 ’ - b p y r i d i n e ( b p y ) o r 1 - 1 0 - p h e n a n t h r o l i n e ( p h e n ) ) , e x h i b i t h i g h e r c a r c i n o s t a t i c a c t i v i t y a g a i n s t h u m a n o r a l c a r c i n o m a K B c e l l s i n v i t r o t h a n t h e d i r h o d i u m t e t r a c a r b o x y l a t e s . l A d d i t i o n a l l y , t h e s e c o m p o u n d s h a v e b e e n r e p o r t e d t o i n fl u e n c e t h e g r o w t h o f t h e a l g a k n o w n a s C h l o r e l l a v u l g a r i s b y i n h i b i t i o n o f D N A , b u t n o t R N A s y n t h e s i s . 1 b T h e s e c o m p o u n d s c o n s t i t u t e y e t a n o t h e r i n t e r e s t i n g c l a s s o f d i n u c l e a r t r a n s i t i o n m e t a l c o m p o u n d s f o r b i o l o g i c a l s t u d i e s . B e f o r e e m b a r k i n g o n r e a c t i o n s w i t h b i o m o l e c u l e s , h o w e v e r , w e t h o u g h t i t w o u l d b e i n s t r u c t i v e t o e x p l o r e g e n e r a l r e a c t i o n s o f t h e s e c o m p o u n d s w i t h n i t r o g e n d o n o r l i g a n d s . T h e f o c u s o f c h a p t e r 1 1 w a s t o d e m o n s t r a t e t h e a b i l i t y o f t h e m o d i fi e d p u r i n e s 9 - E t G H a n d 9 - E t A H t o b r i d g e d i n u c l e a r t r a n s i t i o n m e t a l s , b u t t h e r e i s i n c r e a s i n g e v i d e n c e t h a t t h e s e p u r i n e s c a n a l s o c h e l a t e t r a n s i t i o n m e t a l s t h r o u g h t h e N 6 / O 6 a n d N 7 p o s i t i o n s . 1 2 T h e c o m p o u n d o f g e n e r a l f o r m u l a [ R h 2 ( 0 2 C C H 3 ) 3 ( b p y ) ( 9 - E t A ) ] i s f o r m e d w h e n o n e e q u i v a l e n t o f [ R h 2 ( O Z C C H 3 ) 4 ( b p y ) o r [ R h 2 ( O z C C H 3 ) 3 ( b p y ) ] [ O Z C C H 3 ] i s r e a c t e d w i t h e q u i m o l a r a m o u n t s o f 9 - E t A H . T h e s t r u c t u r e o f t h i s c o m p o u n d ( F i g u r e 1 ) r e v e a l e d t h e p r e s e n c e a c h e l a t i n g , d e p r o t o n a t e d 9 - E t A ' l i g a n d . T h e 9 4 F i g u r e 1 . O R T E P r e p r e s e n t a t i o n o f [ h a ( O Z C C H 3 ) 3 ( b p y ) ( 9 - E t A ) ] . 1 2 9 5 F i g u r e 2 . O R T E P r e p r e s e n t a t i o n o f t h e p o l y m e r [ R h 2 ( O Z C C H 3 ) 2 ( b p y ) ( 9 - E t G H ) ] N [ B F 4 1 2 : 6 y C 5 H 1 0 0 . T h e R h 2 - N 2 ’ b o n d d i s t a n c e i s 2 . 3 4 1 ( 5 ) A . 1 2 9 6 d i r h o d i u m c o m p o u n d d e p i c t e d i n F i g u r e 2 w a s h e a t e d i n t h e p r e s e n c e o f / \ T N : \ R = d e o x y r i b o s e o r , e t h y l F i g u r e 3 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e w a y t h a t 2 , 2 ' - b i p y r i d i n e c a n m i m i c t h e c h e l a t i n g a b i l i t i e s o f a d e n i n e . p y r i d i n e t o y i e l d a c o m p o u n d w i t h a s i m i l a r s t r u c t u r e w i t h c h e l a t i n g 9 - E t G ' i n t h e a x - e q p o s i t i o n s . 1 2 P r i o r t o t h e d i s c o v e r y o f d i r h o d i u m c o m p o u n d s t h a t c o n t a i n c h e l a t i n g 9 - E t G ' o r 9 - E t A ' l i g a n d s , a t t e m p t s t o m i m i c t h e a d d i t i o n o f a p u r i n e m o l e c u l e t o t h e d i r h o d i u m c o r e w e r e m a d e b y r e a c t i n g R h 2 ( O Z C R ) 4 L 2 ( R = M e , E t , P h o r C F , ; L = d o n o r s o l v e n t ) w i t h 2 , 2 ’ - b i p y r i d i n e ( b p y ) ( F i g u r e 3 ) . T h e s e s t u d i e s d e m o n s t r a t e d t h e a b i l i t y o f a s i n g l e N - N c h e l a t e l i g a n d t o i n t e r a c t w i t h t h e h a 4 + c o r e . T h e t w o m a j o r b i n d i n g m o d e s w e r e f o u n d t o b e a x i a l - e q u a t o r i a l ( a x - e q ) a n d e q u a t o r i a l - e q u a t o r i a l ( e q - e q ) ( F i g u r e 4 ) . 5 H A l t h o u g h n o s o l i d - s t a t e s t r u c t u r e s w e r e r e p o r t e d , r e l a t e d s t u d i e s 9 7 i n v o l v i n g r e a c t i o n s o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H Z O ) 2 w i t h b p y a s w e l l a s 1 , 1 0 - p h e n a n t h r o l i n e l e d r e s e a r c h e r s t o c o n c l u d e t h a t s i m i l a r b i n d i n g m o d e s f o r N - N c h e l a t e s w e r e p o s s i b l e i n t h e s e c o m p o u n d s . 6 F r o m a c o m b i n a t i o n o f s t r u c t u r a l i n f o r m a t i o n g a t h e r e d o n c o m p o u n d s i n t h e s o l i d - s t a t e a n d i n s o l u t i o n , w e h a v e p r o p o s e d a p a t h w a y w h e r e b y b p y e n t e r s t h e c o o r d i n a t i o n s p h e r e o f t h e l a n t e r n s t r u c t u r e o f h a ’ l ' I I c o m p o u n d s ( S c h e m e 1 ) . 5 c A s s h o w n i n s c h e m e 1 , t h e i n i t i a l s t e p i n v o l v e s a n u c l e o p h i l i c a t t a c k o f t h e b p y a t a n a x i a l s i t e o n t h e d i r h o d i u m u n i t . T h e a x i a l l y - b o u n d m o n o d e n t a t e b p y ( s t e p a ) r a p i d l y u n d e r g o e s c h e l a t e r i n g f o r m a t i o n b y d i s p l a c e m e n t o f a n o x y g e n o f a b r i d g i n g c a r b o x y l a t e g r o u p ( s t e p b ) t o g i v e a n a x , e q c h e l a t e w h i c h i s m o s t s t a b l e a s c o m p o u n d 3 w h o s e s i n g l e c r y s t a l X - r a y s t r u c t u r e w a s d e t e r m i n e d . X - r a y c r y s t a l l o g r a p h y a l s o s u p p o r t s t h e c o n v e r s i o n f r o m t h e a x - e q c h e l a t i n g m o d e o f t h e b p y t o a n e q - e q m o d e ( s t e p d ) . C o m p o u n d 5 w a s n o t d e t e c t e d , b u t t h e s t r u c t u r e o f t h e c a t i o n i c p r o d u c t o f s t e p e w a s v e r i fi e d b y 1 H N M R s p e c t r o s c o p y . 5 c 9 8 ( N o ( N 3 l W o w b . . e o 4 a . . l e e n > « M o l W M l v o % 3 2 1 1 . . . 1 : 0 L o n o l S \ u M _ S l o e l l N s m _ M . _ . o l l W o o d 4 M n . . . . W o . N N / _ \ \ / \ \ \ \ O M ' ~ S O / \ l N , \ \ \ \ \ 0 . \ l ‘ \ / o / H i 0 o \ / 0 / 5 A N N S c h e m e 1 9 9 N N N l N ‘ \ \ \ \ N . . \ \ \ \ N l . ~ \ ‘ \ \ N “ N 7 1 , | _ . C / l ‘ « 1 ‘ 3 N L / N S s N s S s e q - e q a x - e q F i g u r e 4 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e t w o p o s s i b l e b i n d i n g m o d e s o f b p y t o a d i n u c l e a r m e t a l c e n t e r . I n t h e p r e s e n t c h a p t e r , w e d e s c r i b e t h e s y n t h e s e s a n d f u l l c h a r a c t e r i z a t i o n , i n c l u d i n g t h e s i n g l e c r y s t a l X - r a y s t r u c t u r e s , o f c o m p o u n d s w i t h o n e o r t w o 2 , 2 ’ - b p y o r 1 , 1 0 - p h e n l i g a n d s c o o r d i n a t e d t o a c i s - [ R h 2 ( D T o l F ) 2 ] 2 + c o r e . R e a c t i o n s o f t h e s e c o m p o u n d s w i t h o n e e q u i v a l e n t e a c h o f 9 - E t G H a n d 9 - E t A H a r e a l s o d i s c u s s e d . T h e s e i n v e s t i g a t i o n s l e d t o t h e s u r p r i s i n g o b s e r v a t i o n t h a t c e r t a i n d i r h o d i u m ( I I , I I ) c o m p o u n d s c r y s t a l l i z e w i t h v a c a n t a x i a l c o o r d i n a t i o n s i t e s e v e n i n t h e e x c e s s o f d o n o r s o l v e n t l i g a n d s . S o l u t i o n s t r u c t u r e s a s d e d u c e d f r o m 1 H N M R s p e c t r o s c o p y a n d c y c l i c v o l t a m m e t r y a r e i n a c c o r d w i t h t h e s o l i d - s t a t e s t r u c t u r e s d e t e r m i n e d b y s i n g l e c r y s t a l X - r a y d i f fi ' a c t i o n s t u d i e s . 1 0 0 2 . E x p e r i m e n t a l S e c t i o n A . P h y s i c a l M e a s u r e m e n t s 1 H N M R s p e c t r o s c o p i c d a t a , i n c l u d i n g 2 - d i m e n s i o n a l e x p e r i m e n t s , w e r e c o l l e c t e d o n 3 e i t h e r a 3 0 0 o r a 5 0 0 M H z - V a r i a n S p e c t r o m e t e r . C h e m i c a l s h i f t s w e r e r e f e r e n c e d r e l a t i v e t o t h e r e s i d u a l p r o t o n i m p u r i t i e s o f t h e d e u t e r a t e d s o l v e n t s . E l e c t r o c h e m i c a l m e a s u r e m e n t s w e r e p e r f o r m e d b y u s i n g a n E G & G P r i n c e t o n A p p l i e d R e s e a r c h M o d e l 3 6 2 s c a n n i n g p o t e n t i o s t a t i n c o n j u n c t i o n w i t h a S o l t e c M o d e l V P - 6 4 2 4 S X - Y r e c o r d e r . C y c l i c v o l t a m m e t r i c e x p e r i m e n t s f o r ( 7 ) , ( 8 ) , ( 9 ) a n d ( 1 0 ) w e r e c a r r i e d o u t a t r . t . i n a c e t o n i t r i l e c o n t a i n i n g 0 . 1 M t e t r a - n - b u t y l a m m o n i u m t e t r a fl u o r o b o r a t e a s t h e s u p p o r t i n g e l e c t r o l y t e . E 1 , 2 v a l u e s , d e t e r m i n e d a s ( E N , a + E c h ) / 2 , w e r e r e f e r e n c e d t o t h e A g / A g C l e l e c t r o d e w i t h o u t c o r r e c t i o n f o r j u n c t i o n p o t e n t i a l s . T h e s z F e / [ s z F e P c o u p l e o c c u r s a t E U 2 = + 0 . 4 5 V f o r t h e c y c l i c v o l t a m m o g r a m s o f c o m p o u n d s ( 7 ) a n d ( 8 ) a n d a t E 1 , 2 = + 0 . 4 7 V f o r c o m p o u n d ( 1 0 ) u n d e r t h e s a m e e x p e r i m e n t a l c o n d i t i o n s i n a c e t o n i t r i l e . B . S y n t h e s i s . i . S t a r t i n g M a t e r i a l s T h e p a r t i a l l y s o l v a t e d c o m p o u n d , [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) , w a s p r e p a r e d b y l i t e r a t u r e p r o c e d u r e s . 3 a T h e r e a g e n t s 2 , 2 ’ - b i p y r i d i n e ( b p y ) a n d 1 , 1 0 - p h e n a n t h r o l i n e ( p h e n ) w e r e p u r c h a s e d f r o m A l d r i c h C h e m i c a l 1 0 1 C o m p a n y a n d r e c r y s t a l l i z e d f r o m a n h y d r o u s d i e t h y l e t h e r . N a B P h 4 a n d 9 - e t h y l g u a n i n e w e r e p u r c h a s e d f r o m S i g m a a n d u s e d w i t h o u t f u r t h e r p u r i fi c a t i o n . T h e 9 - e t h y l a d e n i n e w a s p r e p a r e d b y l i t e r a t u r e p r o c e d u r e s . 3 a P r i o r t o d i s t i l l a t i o n u n d e r a n i t r o g e n a t m o s p h e r e , a l l s o l v e n t s w e r e p r e d r i e d f r o m 4 A m o l e c u l a r s i e v e s w i t h t h e e x c e p t i o n o f a c e t o n e a n d a c e t o n i t r i l e w h i c h w e r e p r e d r i e d w i t h 3 A m o l e c u l a r s i e v e s . D i e t h y l e t h e r w a s d i s t i l l e d f r o m N a / K b e n z o p h e n o n e k e t y l r a d i c a l w h e r e a s t o l u e n e w a s d i s t i l l e d f r o m N a / K d r y i n g a g e n t w i t h n o i n d i c a t o r . A c e t o n e a n d a c e t o n i t r i l e w e r e d i s t i l l e d f r o m 3 A m o l e c u l a r s i e v e s , a n d e t h y l a c e t a t e w a s d i s t i l l e d f r o m 4 A m o l e c u l a r s i e v e s w h i l e m e t h y l e n e c h l o r i d e w a s d i s t i l l e d f r o m P 2 0 5 . A c e t o n i t r i l e w a s p a s s e d t h r o u g h a n a c t i v a t e d a l u m i n a c o l u m n t o f u r t h e r d r y i t f o r t h e e l e c t r o c h e m i c a l m e a s u r e m e n t s . i i . R e a c t i o n P r o c e d u r e s . A l l m a n i p u l a t i o n s w e r e p e r f o r m e d u n d e r i n e r t a t m o s p h e r i c c o n d i t i o n s u s i n g s t a n d a r d S c h l e n k t e c h n i q u e s u n l e s s o t h e r w i s e s t a t e d . ( 1 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 N , ] [ B F 4 ] 2 ( 7 a , 7 b ) [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) ( 9 3 m g , 0 . 0 8 5 7 m m o l ) w a s d i s s o l v e d i n a c e t o n e ( 5 m L ) t o y i e l d a g r e e n s o l u t i o n w h i c h w a s t r e a t e d w i t h a s o l u t i o n o f b p y ( 1 3 . 4 m g , 0 . 0 8 5 8 m m o l ) i n a c e t o n e ( 2 m L ) . T h e r e a c t i o n m i x t u r e w a s a l l o w e d t o s t i r a t r . t . f o r ~ 2 4 h , a f t e r w h i c h t i m e t h e v o l u m e o f 1 0 2 t h e r e a c t i o n s o l v e n t w a s r e d u c e d t o o n e - h a l f o f i t s o r i g i n a l v o l u m e u n d e r r e d u c e d p r e s s u r e . T h e p r o d u c t w a s p r e c i p i t a t e d f r o m s o l u t i o n b y t h e a d d i t i o n o f d i e t h y l e t h e r ( ~ 1 0 m L ) , a n d c o l l e c t e d b y fi l t r a t i o n i n a i r t o g i v e 8 8 m g ( 0 . 0 7 6 7 m m o l ) , 8 9 . 5 % y i e l d . S i n g l e c r y s t a l s o f o n e m o r p h o l o g y w e r e g r o w n f r o m a C H 3 C N s o l u t i o n o f t h e c o m p o u n d l a y e r e d w i t h d i e t h y l e t h e r . A s e c o n d m o r p h o l o g y o f s i n g l e c r y s t a l s w a s g r o w n f r o m a n a c e t o n e s o l u t i o n l a y e r e d w i t h e t h y l a c e t a t e . ( 2 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 ) A s o l u t i o n o f ( 2 ) ( 1 0 5 , m g , 0 . 0 9 6 8 m m o l ) i n C H 3 C N ( 7 m L ) w a s t r e a t e d w i t h b p y ( 3 0 . 2 4 m g , 0 . 0 2 8 2 m m o l ) , a n d r e fl u x e d f o r ~ 4 8 h . T h e r e a c t i o n m i x t u r e w a s c o o l e d t o r . t . , a n d d i e t h y l e t h e r ( 1 5 m L ) w a s a d d e d t o y i e l d m i c r o c r y s t a l s ( 3 1 m g , 0 . 0 1 8 1 m m o l , 6 4 % ) w h i c h w e r e c o l l e c t e d b y fi l t r a t i o n i n a i r . X - r a y q u a l i t y s i n g l e c r y s t a l s , ( 8 a ) , w e r e g r o w n f r o m t h e c a r e f u l l a y e r i n g o f a n a c e t o n e s o l u t i o n o f ( 8 ) i n e t h y l a c e t a t e . A s e c o n d m o r p h o l o g y , ( 8 b ) , w a s p r e p a r e d b y t r e a t i n g a n a c e t o n e s o l u t i o n o f t h e c o m p o u n d w i t h a n e q u i m o l a r q u a n t i t y o f N a B P h 4 ( 1 5 . 6 5 m g , 4 5 . 7 m m o l ) w h i c h l e d t o t h e p r e c i p i t a t i o n o f N a B F 4 . T h e s o l u t i o n w a s fi l t e r e d t o r e m o v e t h e b y - p r o d u c t s a l t , a n d t h e fi l t r a t e w a s l a y e r e d w i t h e t h y l a c e t a t e ( 6 m L ) . ( 3 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B R ] ; ( 9 ) A m i x t u r e o f ( 2 ) ( 1 0 0 m g , 0 . 0 9 3 4 m m o l ) a n d 1 , 1 0 - p h e n a n t h r o l i n e 1 0 3 ( 1 8 . 3 m g , 0 . 0 9 2 1 m m o l ) i n C H Z C I 2 ( 5 m L ) w a s s t i r r e d f o r ~ 7 2 h a t r . t . T h e m i x t u r e w a s fi l t e r e d t h r o u g h C e l i t e i n a i r t o r e m o v e a n y u n d i s s o l v e d m a t e r i a l s , a n d c o n c e n t r a t e d t o o n e - h a l f o f i t s o r i g i n a l v o l u m e . T h e g r e e n p r o d u c t w a s i s o l a t e d a f t e r t h e a d d i t i o n o f d i e t h y l e t h e r , d r i e d i n v a c u o , a n d r e c r y s t a l l i z e d f r o m m e t h y l e n e c h l o r i d e a n d d i e t h y l e t h e r ( 9 4 m g , 8 9 % y i e l d ) . ( 4 ) P r e p a r a t i o n o f [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) A m i x t u r e o f ( 2 ) ( 7 5 . 0 m g , 0 . 0 7 0 1 m m o l ) a n d 1 , 1 0 - p h e n a n t h r o l i n e ( 1 3 . 8 m g , 0 . 0 6 9 6 m m o l ) i n C H 3 C N ( 1 0 m L ) w a s h e a t e d t o r e fl u x f o r ~ 6 4 h . T h e g r e e n s o l u t i o n w a s c o n c e n t r a t e d t o o n e - h a l f o f i t s o r i g i n a l v o l u m e , a n d t h e p r o d u c t w a s i s o l a t e d a s m i c r o c r y s t a l s a f t e r t h e a d d i t i o n o f d i e t h y l e t h e r . T h e m i c r o c r y s t a l s w e r e c o l l e c t e d b y fi l t r a t i o n i n a i r , a n d d r i e d i n v a c u o ( 6 0 m g , 5 7 % y i e l d ) . X - r a y q u a l i t y s i n g l e c r y s t a l s w e r e g r o w n f r o m t h e c a r e f u l l a y e r i n g o f a n a c e t o n e s o l u t i o n o f ( 1 0 ) w i t h e t h y l a c e t a t e . ( 5 ) P r e p a r a t i o n o f t h e m i x t u r e o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) , , ] [ B F 4 ] 2 ( 7 ) a n d [ h a m T o l F M w a A C H s C N N [ B F 4 1 2 ( 8 ) A d a r k o r a n g e - r e d s o l u t i o n o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) ( 7 5 . 0 m g , 0 . 0 6 9 2 m m o l ) i n a c e t o n e ( 4 m L ) w a s a d d e d v i a a c a n n u l a t o a s o l u t i o n o f b p y ( 1 0 . 8 m g , 0 . 0 6 9 1 m m o l ) i n a c e t o n e ( 5 m L ) . T h e m i x t u r e w a s a l l o w e d t o s t i r f o r 2 4 h a t r . t . a f t e r w h i c h t i m e t h e b r o w n - g r e e n s o l u t i o n w a s c o n c e n t r a t e d t o ~ 4 m L u n d e r r e d u c e d p r e s s u r e , a n d t h e p r o d u c t s p r e c i p i t a t e d 1 0 4 b y t h e a d d i t i o n o f h e x a n e s ( 1 m L ) a n d d i e t h y l e t h e r ( 5 m L ) . T h e r e s u l t i n g m i c r o c r y s t a l l i n e m a t e r i a l w a s c o l l e c t e d b y s u c t i o n fi l t r a t i o n i n a i r , a n d d r i e d i n v a c u o . T h e p r o d u c t w a s i d e n t i fi e d a s a m i x t u r e b y 1 H N M R s p e c t r o s c o p y ( v i d e i n f r a ) . ( 6 ) R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) ; , ] [ B F 4 ] 2 ( 7 ) w i t h 9 - e t h y l a d e n i n e ( 9 - E t A H ) A g r e e n a c e t o n e s o l u t i o n o f ( 7 ) ( 4 4 m g , 0 . 0 4 0 6 m m o l , 3 m L ) w a s t r e a t e d w i t h o n e e q u i v a l e n t o f 9 - E t A H ( 6 . 6 m g , 0 . 0 4 0 6 m m o l ) d i s s o l v e d i n 2 m L o f a c e t o n e . T h e r e s u l t i n g m i x t u r e w a s a l l o w e d t o s t i r a t r . t . f o r ~ 4 8 h . T h e a d d i t i o n o f d i e t h y l e t h e r ( 1 0 m L ) r e s u l t e d i n t h e p r e c i p i t a t i o n o f a g r e e n m i c r o c r y s t a l l i n e s o l i d . T h e p r o d u c t w a s r e d i s s o l v e d i n a c e t o n i t r i l e a n d c a r e f u l l y l a y e r e d w i t h d i e t h y l e t h e r w h i c h p r o d u c e d l a r g e X - r a y q u a l i t y c r y s t a l s o f t h e p r e v i o u s l y r e p o r t e d c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 . 3 a 1 0 5 ( 7 ) R e a c t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 [ B F 4 ] 2 ' ( 7 ) w i t h 9 - e t h y l g u a n i n e ( 9 - E t G H ) A g r e e n m e t h a n o l s o l u t i o n o f ( 7 ) ( 2 4 . 3 m g , 0 . 0 2 2 m o l , 6 m L ) w a s t r e a t e d w i t h 9 - E t G H ( 4 . 1 m g , 0 . 0 2 3 m m o l ) , a n d a l l o w e d t o s t i r a t r . t . f o r 2 4 h . T h e r e s u l t i n g g r e e n - b r o w n s o l u t i o n w a s t r e a t e d w i t h d i e t h y l e t h e r ( 1 5 m L ) w h i c h l e d t o t h e p r e c i p i t a t i o n o f u n r e a c t e d 9 - E t G H . T h e d i e t h y l e t h e r w a s e v a p o r a t e d u n d e r r e d u c e d p r e s s u r e , a n d t h e r e s u l t i n g m e t h a n o l m i x t u r e w a s a l l o w e d t o s t i r u n d e r r e fl u x i n g c o n d i t i o n s f o r ~ 1 h . T h e p r e c i p i t a t i o n o f a g r e e n p r o d u c t w a s i n d u c e d b y t h e a d d i t i o n o f d i e t h y l e t h e r ( 1 5 m L ) . T h e g r e e n p r o d u c t w a s c h a r a c t e r i z e d b y 1 H N M R s p e c t r o s c o p y a s a m i x t u r e o f c o m p o u n d ( 8 ) a n d t h e k n o w n c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 . 1 3 ( 8 ) R e a c t i o n o f [ R h 2 ( D T o l F ) z ( b p y ) 2 ( C H 3 C N ) [ B F 4 ] 2 ( 8 ) w i t h 9 - E t A H A g r e e n a c e t o n e s o l u t i o n o f ( 7 ) ( 4 4 m g , 0 . 0 4 0 6 m o l , 3 m L ) w a s t r e a t e d w i t h o n e e q u i v a l e n t o f 9 - E t A H ( 6 . 6 m g , 0 . 0 4 0 5 m m o l ) . T h e r e s u l t i n g m i x t u r e w a s a l l o w e d t o s t i r a t r . t . f o r ~ 4 8 h . T h e a d d i t i o n o f d i e t h y l e t h e r ( 1 0 m L ) r e s u l t e d i n t h e p r e c i p i t a t i o n o f a g r e e n m i c r o c r y s t a l l i n e s o l i d . T h e p r o d u c t w a s r e d i s s o l v e d i n a c e t o n e a n d c a r e f u l l y l a y e r e d w i t h e t h y l a c e t a t e t o p r o d u c e l a r g e g r e e n s i n g l e c r y s t a l s . A u n i t c e l l 1 0 6 d e t e r m i n a t i o n o f t h e c r y s t a l s r e v e a l e d t h e c o m p o u n d t o b e c r y s t a l s o f ( 8 ) . C . X - r a y C r y s t a l l o g r a p h y a n d S t r u c t u r e S o l u t i o n A h e m i s p h e r e o f c r y s t a l l o g r a p h i c d a t a w e r e c o l l e c t e d f o r ( 7 b ) , ( 8 a ) , ( 8 b ) , ( 9 ) a n d ( 1 0 ) o n a S i e m e n s S M A R T d i f f r a c t o m e t e r a t 2 9 3 ( 2 ) K w i t h g r a p h i t e m o n o c h r o m a t e d M o K 0 1 ( a v e r a g e A , = 0 . 7 1 0 7 3 A ) r a d i a t i o n a n d c o r r e c t e d f o r L o r e n t z a n d p o l a r i z a t i o n e f f e c t s . A t o t a l o f 1 A o f a s p h e r e o f c r y s t a l l o g r a p h i c d a t a w e r e c o l l e c t e d f o r ( 7 a ) o n t h e s a m e i n s t r u m e n t . C a l c u l a t i o n s w e r e p e r f o r m e d o n a c l u s t e r n e t w o r k o f S i l i c o n G r a p h i c s c o m p u t e r s i n t h e v i s u a l i z a t i o n f a c i l i t y i n t h e D e p a r t m e n t o f C h e m i s t r y a t M i c h i g a n S t a t e U n i v e r s i t y . T h e f r a m e s w e r e i n t e g r a t e d w i t h t h e S i e m e n s S A I N T s o f t w a r e p a c k a g e , a n d t h e d a t a w e r e c o r r e c t e d f o r a b s o r p t i o n u s i n g t h e S A D A B S p r o g r a m . T h e s t r u c t u r e s o f ( 7 b ) , ( 8 b ) a n d ( 9 ) w e r e s o l v e d b y P a t t e r s o n m e t h o d s u s i n g t h e S H E L X S p r o g r a m i n t h e S i e m e n s S H E L X T L v . 5 . 0 5 s o f t w a r e . T h e s t r u c t u r e o f c o m p o u n d ( 7 3 ) w a s s o l v e d b y d i r e c t m e t h o d s u s i n g t h e s a m e s o f t w a r e p a c k a g e . 1 0 T h e s t r u c t u r e o f ( 8 a ) w a s s o l v e d b y P a t t e r s o n m e t h o d s u s i n g t h e S H E L X S - 8 6 p r o g r a m i n t h e T e x s a n ‘ T h e s t r u c t u r e o f c o m p o u n d ( 1 0 ) w a s n o t d e t e r m i n e d s o f t w a r e p a c k a g e . 1 d u e t o a n u n r e s o l v e d t w i n n i n g p r o b l e m . A l l o f t h e s t r u c t u r e s w e r e r e fi n e d b y f u l l - m a t r i x l e a s t - s q u a r e s c a l c u l a t i o n s o n F 2 u s i n g t h e S H E L X L p r o g r a m i n t h e S H E L X T L s o f t w a r e p a c k a g e . R e l e v a n t c r y s t a l l o g r a p h i c d a t a a n d 1 0 7 o t h e r p e r t i n e n t i n f o r m a t i o n a r e l i s t e d i n T a b l e s 1 7 - 2 2 . ( 1 ) [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) . S i n g l e c r y s t a l s o f ( 7 a ) w e r e g r o w n b y t h e c a r e f u l l a y e r i n g o f a n a c e t o n e s o l u t i o n o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 N 4 ] [ B F 4 ] 2 ( 7 ) i n e t h y l a c e t a t e . A g r e e n r e c t a n g u l a r c r y s t a l w i t h a p p r o x i m a t e d i m e n s i o n s 0 . 3 9 x 0 . 3 9 x 0 . 3 1 m m 3 w a s m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . I n d e x i n g a n d r e fi n e m e n t o f 1 3 3 r e fl e c t i o n s s e l e c t e d f r o m a t o t a l o f 4 5 f r a m e s w i t h a n e x p o s u r e t i m e o f 1 0 s e c / f r a m e g a v e u n i t c e l l p a r a m e t e r s f o r a m o n o c l i n i c u n i t c e l l . A t o t a l o f 1 , 3 2 1 f r a m e s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 . 3 ° i n 0 ) a n d a n e x p o s u r e t i m e o f 3 0 s e c / f r a m e . T h e t o t a l d a t a c o l l e c t i o n t i m e w a s 1 3 . 5 h . T h e i n t e g r a t i o n o f t h e f r a m e d a t a u s i n g a m o n o c l i n i c B - c e n t e r e d u n i t c e l l y i e l d e d a t o t a l o f 1 4 , 2 9 7 r e fl e c t i o n s i n t h e r a n g e h = 1 3 — > ' 1 3 , k = 2 6 — > - 3 0 , l = 2 3 — ) ' 1 7 w i t h a m a x i m u m 2 0 a n g l e o f 5 5 . 0 4 ° . O f t h e 5 , 4 5 0 u n i q u e r e fl e c t i o n s a t o t a l o f 4 , 2 6 9 r e m a i n e d w i t h I > 2 0 ( 1 ) a n d R i m = 0 . 0 3 4 1 a n d R s i g = 0 . 0 4 9 9 a f t e r d a t a r e d u c t i o n . T h e p o s i t i o n s o f t h e R h a t o m s w e r e l o c a t e d b y d i r e c t m e t h o d s . T h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d t h r o u g h s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . A t o m s C ( 4 7 A ) a n d C ( 4 8 A ) o f a d i s o r d e r e d a x i a l a c e t o n i t r i l e l i g a n d w e r e l o c a t e d b y a n e l e c t r o n d e n s i t y d i f f e r e n c e m a p , a n d r e fi n e d 1 0 8 i s o t r o p i c a l l y . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d a n i s o t r o p i c a l l y w h i l e t h e h y d r o g e n a t o m s w e r e c a l c u l a t e d a t fi x e d p o s i t i o n s . F i n a l r e fi n e m e n t o f 7 2 0 p a r a m e t e r s g a v e r e s i d u a l s o f R 1 = 0 . 0 4 6 2 a n d w R 2 = 0 . 1 1 3 4 f o r 5 , 4 5 0 r e fl e c t i o n s . T h e g o o d n e s s - o f - fi t = 0 . 9 4 4 , a n d t h e m a x i m u m a n d m i n i m u m p e a k s i n t h e fi n a l d i f f e r e n c e F o u r i e r m a p w e r e 1 . 1 1 3 e ' / A 3 a n d ‘ 0 . 3 6 3 e ‘ / A 3 , r e s p e c t i v e l y . ( 2 ) [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H _ . , C N ) 4 ] [ B F 4 ] 2 ( 7 b ) . O r a n g e - r e d r e c t a n g u l a r c r y s t a l s o f ( 7 b ) w e r e g r o w n f r o m t h e s l o w d i f f u s i o n o f d i e t h y l e t h e r i n t o a n a c e t o n i t r i l e s o l u t i o n o f [ R h ; , ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 N 4 ] [ B F 4 ] 2 ( 7 ) . A c r y s t a l o f d i m e n s i o n s 0 . 3 1 x 0 . 2 6 x 0 . 2 1 m m 3 w a s m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h e p o x y c e m e n t . T h e c e l l p a r a m e t e r s o f a m o n o c l i n i c c r y s t a l s y s t e m w e r e r e fi n e d f r o m a fi t o f 8 2 r e fl e c t i o n s s e l e c t e d f r o m 4 5 f r a m e s w i t h 1 0 s e c / f r a m e e x p o s u r e t i m e . A t o t a l o f 1 , 3 2 1 f r a m e s w i t h 3 0 s e c / f r a m e e x p o s u r e t i m e w e r e c o l l e c t e d a t a s c a n w i d t h o f 0 . 3 ° i n ( 0 . T h e i n t e g r a t i o n o f t h e f r a m e s u s i n g a m o n o c l i n i c B - c e n t e r e d u n i t c e l l y i e l d e d 2 7 , 1 6 3 r e fl e c t i o n s i n t h e r a n g e h = 1 7 — > ' 1 6 , k = 2 3 — > ' 1 5 , l = 2 6 — ) ' 2 6 w i t h a m a x i m u m 2 0 a n g l e o f 5 5 . 3 2 ° . O f t h e t o t a l d a t a c o l l e c t e d , 1 0 , 6 7 9 r e fl e c t i o n s w e r e u n i q u e w i t h 6 , 8 3 4 r e fl e c t i o n s w i t h I > 2 0 ( 1 ) r e m a i n i n g a f t e r d a t a r e d u c t i o n . T h e R m : w a s 0 . 0 5 9 5 a n d t h e R s i g w a s 0 . 0 9 4 5 . T h e p o s i t i o n s o f t h e 1 0 9 R h a t o m s w e r e l o c a t e d b y P a t t e r s o n m e t h o d s w h i l e t h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d t h r o u g h s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . A l l r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e r e fi n e d a n i s o t r o p i c a l l y b y f u l l - m a t r i x l e a s t - s q u a r e s c a l c u l a t i o n s o n F 2 w h i l e t h e h y d r o g e n a t o m s w e r e c a l c u l a t e d a t fi x e d p o s i t i o n s . T h e fi n a l r e fi n e m e n t o f 6 5 4 p a r a m e t e r s r e v e a l e d m a x i m u m a n d m i n i m u m p e a k h e i g h t s o f 0 . 8 5 5 e ' / A 3 a n d — 0 . 4 9 7 e ' / A 3 , r e s p e c t i v e l y i n t h e fi n a l d i f f e r e n c e F o u r i e r m a p . F i n a l a n i s o t r o p i c f u l l - m a t r i x l e a s t - s q u a r e s r e fi n e m e n t o n F 2 c o n v e r g e d a t R 1 = 0 . 0 5 3 9 a n d w R 2 = 0 . 1 0 1 2 a n d a g o o d n e s s - o f - fi t o f 1 . 1 1 1 . ( 3 ) [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 a ) . A g r e e n r h o m b o h e d r a l c r y s t a l o f ( 8 a ) h a v i n g d i m e n s i o n s 0 . 1 3 x 0 . 1 3 x 0 . 1 0 m m 3 o b t a i n e d b y t h e s l o w d i f f u s i o n o f a n a c e t o n i t r i l e s o l u t i o n o f ( 8 ) i n t o e t h y l a c e t a t e w a s m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . R e fi n e m e n t o f 3 3 r e fl e c t i o n s i n d e x e d f r o m 4 5 f r a m e s c o l l e c t e d w i t h a n e x p o s u r e t i m e o f 1 0 s e c / f r a m e g a v e u n i t c e l l p a r a m e t e r s f o r a m o n o c l i n i c u n i t c e l l . A t o t a l o f 1 , 6 2 1 f r a m e s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 . 3 ° i n 0 ) . T h e e x p o s u r e t i m e f o r e a c h f r a m e w a s 3 0 s e c / f r a m e . T h e f r a m e s w e r e i n t e g r a t e d u s i n g a B - c e n t e r e d m o n o c l i n i c u n i t c e l l t o y i e l d a t o t a l o f 3 6 , 5 4 9 r e fl e c t i o n s i n t h e r a n g e h = 2 5 — > ' 2 2 , k = 1 7 — > ' 1 8 , l = 2 5 — > ' 2 6 w i t h a m a x i m u m 2 0 a n g l e 1 1 0 o f 5 6 . 5 8 ° . A f t e r d a t a r e d u c t i o n , o f t h e 1 1 , 8 3 8 u n i q u e r e fl e c t i o n s , 7 , 0 9 2 r e fl e c t i o n s r e m a i n e d w i t h I > 2 0 ( 1 ) . T h e d a t a s e t g a v e a R i n t = 0 . 0 7 6 7 a n d R s i g = 0 . 1 0 1 8 . T h e p o s i t i o n s o f t h e R h a t o m s w e r e l o c a t e d b y P a t t e r s o n m e t h o d s , a n d t h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d t h r o u g h s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . T h e fi n a l l e a s t s q u a r e s r e fi n e m e n t i n c l u d e d a l l n o n - h y d r o g e n a t o m s a s a n i s o t r o p i c a n d h y d r o g e n a t o m s a t c a l c u l a t e d p o s i t i o n s . T h e fi n a l d i f f e r e n c e F o u r i e r m a p r e v e a l e d m a x i m u m a n d m i n i m u m p e a k h e i g h t s o f 0 . 4 9 2 e ' / A 3 a n d - 0 . 5 2 0 e ' / A 3 , r e s p e c t i v e l y . T h e fi n a l f u l l - m a t r i x l e a s t - s q u a r e s r e fi n e m e n t c o n v e r g e d a t R 1 = 0 . 0 6 0 0 a n d w R 2 = 0 . 0 8 9 1 f o r 6 6 8 p a r a m e t e r s a n d 1 1 , 8 3 7 r e fl e c t i o n s w i t h a g o o d n e s s - o f - fi t o f 1 . 1 4 0 . ( 4 ) [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( H Z O ) ] [ B F 4 ] [ B P h 4 ] ( 8 b ) . X - r a y q u a l i t y s i n g l e c r y s t a l s o f ( 8 b ) w e r e g r o w n b y t h e c a r e f u l l a y e r i n g o f a n a c e t o n e s o l u t i o n o f ( 8 ) i n e t h y l a c e t a t e , t h a t w a s n o t p r e d r i e d n o r d i s t i l l e d . G r e e n r e c t a n g u l a r c r y s t a l s g r e w a t t h e d i f f u s i o n l a y e r , b u t u n f o r t u n a t e l y , a l l o f t h e c r y s t a l s w e r e v e r y s o f t a n d e x h i b i t e d o n l y w e a k X - r a y d i f f r a c t i o n p a t t e r n s e v e n a t l o w t e m p e r a t u r e s . I n s p i t e o f t h i s , a c r y s t a l o f d i m e n s i o n s 0 . 4 6 x 0 . 3 6 x 0 . 1 8 m m 3 w a s m o u n t e d o n a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e a n d s u b j e c t e d t o a n X - r a y e x p e r i m e n t o n a C C D d i f f r a c t o m e t e r . R e fi n e m e n t o f 5 4 r e fl e c t i o n s t h a t w e r e i n d e x e d f r o m 4 5 f r a m e s w i t h a n e x p o s u r e t i m e o f 1 0 1 1 1 s e c / f r a m e g a v e u n i t c e l l p a r a m e t e r s f o r a m o n o c l i n i c u n i t c e l l . A t o t a l o f 1 , 3 2 1 f r a m e s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 . 3 ° i n 0 0 a n d a n e x p o s u r e t i m e o f 3 0 s e c / f r a m e . T h e d a t a w e r e i n t e g r a t e d u s i n g a B - c e n t e r e d m o n o c l i n i c u n i t c e l l t o y i e l d a t o t a l o f 4 7 , 5 3 3 r e fl e c t i o n s i n t h e r a n g e h = 2 4 — > ' 3 0 , k = 1 0 — > ' 1 8 , l = 3 6 — > ' 3 6 w i t h a m a x i m u m 2 0 a n g l e o f 5 6 . 4 0 ° . A f t e r d a t a r e d u c t i o n o f t h e 1 9 , 0 8 4 u n i q u e r e fl e c t i o n s , 8 , 1 9 0 r e fl e c t i o n s r e m a i n e d w i t h I > 2 0 ( 1 ) . T h e h i g h R i n t = 0 . 1 3 2 1 a n d R s i g = 0 . 2 2 3 5 o f t h e d a t a i s a n i n d i c a t i o n o f t h e p o o r q u a l i t y o f t h e d a t a d u e t o t h e s m a l l n u m b e r o f r e fl e c t i o n s o b s e r v e d a t h i g h e r 2 0 a n g l e s . T h e p o s i t i o n s o f t h e R h a t o m s w e r e l o c a t e d b y P a t t e r s o n m e t h o d s a n d t h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d f r o m s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . T h e fi n a l f u l l - m a t r i x l e a s t - s q u a r e s r e fi n e m e n t i n c l u d e d a l l t h e n o n - h y d r o g e n a t o m s a s a n i s o t r o p i c a n d a l l o f t h e h y d r o g e n a t o m s a t fi x e d p o s i t i o n s . T h e fi n a l d i f f e r e n c e F o u r i e r m a p c o n t a i n e d m a x i m u m a n d m i n i m u m p e a k h e i g h t s o f 1 . 1 9 e ' / A 3 a n d ’ 0 . 8 2 4 e ' / A 3 , r e s p e c t i v e l y . T h e fi n a l R 1 w a s 0 . 1 0 9 3 w i t h t h e w R 2 = 0 . 2 1 5 5 f o r 1 , 0 1 3 p a r a m e t e r s a n d 1 9 , 0 7 9 r e fl e c t i o n s a n d a g o o d n e s s - o f - fi t o f 1 . 1 3 2 . T h e h i g h R f a c t o r s a r e a n i n d i c a t i o n o f t h e r a t h e r i p o o r q u a l i t y o f t h e d a t a s e t w h i c h h a d a l a r g e m o s a i c s p r e a d . 1 1 2 ( 5 ) [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) . A g r e e n p r i s m a t i c p l a t e l e t o f d i m e n s i o n s 0 . 3 1 x 0 . 2 3 x 0 . 1 3 m m 3 w a s o b t a i n e d f r o m t h e c a r e f u l l a y e r i n g o f a m e t h y l e n e c h l o r i d e s o l u t i o n o f ( 9 ) w i t h e t h y l a c e t a t e . T h e s e l e c t e d c r y s t a l w a s m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . A t o t a l o f 1 , 3 2 1 r e fl e c t i o n s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 . 3 ° i n 0 0 a n d a n e x p o s u r e t i m e 3 0 s e c / f r a m e . A t o t a l o f 1 0 7 r e fl e c t i o n s w e r e i n d e x e d f r o m 1 5 o f t h e s e f r a m e s . T h e r e fl e c t i o n s w e r e r e fi n e d t o g i v e u n i t c e l l p a r a m e t e r s f o r a t r i c l i n i c u n i t c e l l . T h e d a t a w e r e i n t e g r a t e d u s i n g a t r i c l i n i c u n i t c e l l t o y i e l d a t o t a l o f 1 7 , 8 9 9 r e fl e c t i o n s i n t h e r a n g e h = 1 6 — > ' 8 , k = 1 7 — ) ' 1 8 , l = 2 4 — ) ' 2 5 w i t h a m a x i m u m 2 0 a n g l e o f 5 6 . 4 8 ° . A f t e r d a t a r e d u c t i o n o f t h e 1 2 , 4 6 5 u n i q u e r e fl e c t i o n s , 9 , 7 5 2 r e fl e c t i o n s r e m a i n e d w i t h I > 2 0 ( 1 ) . T h e R i m a n d R s i g w e r e 0 . 0 1 6 7 a n d 0 . 0 4 2 3 , r e s p e c t i v e l y . T h e p o s i t i o n s o f t h e R h a t o m s w e r e l o c a t e d b y d i r e c t m e t h o d s a n d t h e r e m a i n i n g n o n - h y d r o g e n a t o m s w e r e l o c a t e d f r o m s u c c e s s i v e c y c l e s o f l e a s t - s q u a r e s r e fi n e m e n t s a n d d i f f e r e n c e F o u r i e r m a p s . R e s t r a i n t s w e r e u s e d t o s o l v e d i s o r d e r e d e t h y l a c e t a t e a n d w a t e r m o l e c u l e s t h a t w e r e l o c a t e d i n t h e i n t e r s t i c e s . T h e fi n a l f u l l - m a t r i x l e a s t - s q u a r e s o n F 2 f o r a l l a t o m s n o n - h y d r o g e n a t o m s a s a n i s o t r o p i c r e v e a l e d m a x i m u m a n d m i n i m u m p e a k h e i g h t s o f 1 . 0 9 7 e ' / A 3 a n d - 1 . 1 3 4 e ' / A 3 w i t h fi n a l r e s i d u a l s o f R 1 = 0 . 0 4 4 9 1 1 3 a n d w R 2 = 0 . 1 2 5 0 f o r 7 0 8 p a r a m e t e r s a n d 1 2 , 4 6 5 r e fl e c t i o n s . T h e fi n a l g o o d n e s s - o f - fi t w a s 1 . 0 3 9 . ( 6 ) [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 1 0 ) . A g r e e n r e c t a n g u l a r p l a t e l e t h a v i n g d i m e n s i o n s 0 . 2 6 x 0 . 2 1 x 0 . 1 0 m m 3 w a s c o a t e d i n p a r a t o n e o i l t o p r e v e n t t h e l o s s o f s o l v e n t f r o m t h e c r y s t a l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h D o w C o r n i n g g r e a s e . A t o t a l o f 5 6 r e fl e c t i o n s w e r e i n d e x e d f r o m 4 5 f r a m e s c o l l e c t e d a t a n e x p o s u r e t i m e o f 2 0 s e c / f r a m e . T h e r e fl e c t i o n s w e r e r e fi n e d t o g i v e u n i t c e l l p a r a m e t e r s f o r a n o r t h o r h o m b i c u n i t c e l l . A t o t a l o f 6 0 , 3 9 1 r e fl e c t i o n s w e r e c o l l e c t e d w i t h a s c a n w i d t h o f 0 . 3 ° i n 0 0 a n d a n e x p o s u r e t i m e 6 0 s e c / f r a m e . T h e d a t a w e r e i n t e g r a t e d u s i n g a n o r t h o r h o m b i c u n i t c e l l t o y i e l d a t o t a l o f 2 3 , 8 6 0 r e fl e c t i o n s i n t h e r a n g e h = 1 7 - — ) ‘ 1 7 k = 4 8 — > ' 5 0 , l = 1 3 — > ‘ 2 6 w i t h a m a x i m u m 2 0 a n g l e o f 8 4 . 5 8 ° . A f t e r d a t a r e d u c t i o n o f t h e 2 3 , 8 6 0 u n i q u e r e fl e c t i o n s , o n l y 9 , 0 2 8 r e fl e c t i o n s r e m a i n e d w i t h I > 2 0 ( 1 ) . T h e R i n t a n d R s i g v a l u e s w e r e 0 . 1 6 2 4 a n d 0 . 2 8 3 1 , r e s p e c t i v e l y . B e c a u s e o f t h e w e a k d i f f r a c t i o n p a t t e r n s a n d t h e i n h e r e n t t w i n n i n g p r o b l e m s w i t h t h e s e c r y s t a l s , i t w a s n o t p o s s i b l e t o s o l v e t h e X - r a y s t r u c t u r e o f t h i s c o m p o u n d . 3 . R e s u l t s a n d D i s c u s s i o n A . R e a c t i o n s o f h a ‘ w a n d b p y ( 1 ) S y n t h e s e s . R e p o r t s i n t h e l i t e r a t u r e o f r e a c t i o n s b e t w e e n 1 1 4 - . ‘ fi i fl . ‘ _ . — . m [ R h 2 ( D T o l F ) 2 ( C H . . N C 1 \ 1 ) 6 ] [ 1 3 1 : N ] 2 2 2 2 2 C C H H 3 3 C C N N ) ) 6 o ] ] [ [ B B F F 4 4 ] l 2 z H 3 C N ) 6 ] [ B F 4 ] 2 [ [ R R h h 2 2 ( ( D D T T o 0 I 1 F F ) ) 2 2 ( ( [ R h 2 ( D T o l F ) 2 ( C + + + + l b p y l b 2 Z b b p p y y P Y C R R m R % C W R H 2 2 2 H 2 h h h h N ( ( ( ( [ [ [ [ C N D D D — C D T T T T 0 0 0 > 0 N 1 1 1 F F F p ) ) ) 2 ( b p y ) C ( 7 H + 2 2 ( ( b b P P Y Y ) ) 2 8 ( ( C C H 7 7 2 8 ( C 1 F ) r t b p y ) H 3 3 H 3 C C s C N N C N ) ) N ) 4 4 > ] 2 [ ] B [ F B 4 F l 4 z ] 2 l l B F 4 l z r t t B F . 1 r ( < ( “ ) ) a 1 2 3 " ) 1 R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 O H ) 2 a n d n i t r o g e n - c h e l a t e s r e v e a l e d t h a t t h e b r i d g i n g t r i fl u o r o a c e t a t e l i g a n d s a r e s u b s t i t u t i o n a l l y l a b i l e . 6 N o p r o d u c t s w e r e c h a r a c t e r i z e d b y X - r a y c r y s t a l l o g r a p h y , h o w e v e r , t h u s w e i n v e s t i g a t e d t h e r e l a t e d c h e m i s t r y o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) . C o m p o u n d ( 2 ) r e a c t s w i t h 1 e q u i v a l e n t o f b p y i n C H 3 C N t o y i e l d a m i x t u r e o f p r o d u c t s ( E q u a t i o n 1 ) a s d i s c e r n e d b y 1 H N M R s p e c t r o s c 0 p y . D u e t o t h i s s i t u a t i o n , w e s e t o u t t o d e s i g n a s e r i e s o f r e a c t i o n s t h a t w o u l d p r e f e r e n t i a l l y y i e l d o n l y o n e o f t h e p r o d u c t s . T h i s w a s a c h i e v e d b y u s i n g a c e t o n e i n s t e a d o f C H 3 C N a s t h e s o l v e n t ( E q u a t i o n 2 ) . T h e p r o d u c t , 1 1 5 [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 N 4 ] [ B F 4 ] 2 ( 7 ) , a c c o u n t s f o r o n e s e t o f b p y r e s o n a n c e s o b s e r v e d i n t h e 1 H N M R s p e c t r u m o f t h e s o l i d i s o l a t e d f r o m C H 3 C N . U n d e r r e fl u x i n g c o n d i t i o n s i n a c e t o n e w h e r e a x i a l C H 3 C N e x c h a n g e i s p r e s u m a b l y n o t f a v o r e d , c o m p o u n d ( 7 ) i s f o r m e d ( E q u a t i o n 3 a ) . T h u s , b y r e p l a c i n g t h e c o o r d i n a t i n g s o l v e n t C H 3 C N w i t h a c e t o n e , o n e c a n e f f e c t t h e c o o r d i n a t i o n o f t w o b p y l i g a n d s t o a s i n g l e d i r h o d i u m c o r e i n s t e a d o f o n l y o n e . T h e r e s u l t i s t h e f o r m a t i o n o f [ h a ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 a ) ( E q u a t i o n 3 b ) . ( 2 ) E l e c t r o c h e m i s t r y o f 7 a n d 8 . T h e c y c l i c v o l t a m m o g r a m o f [ h a ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] 2 + ( 7 ) s h o w s o n e r e v e r s i b l e o x i d a t i o n a t E 1 , 2 = + 1 . 0 V a n d o n e r e v e r s i b l e r e d u c t i o n a t E 1 , 2 = ‘ 0 . 4 4 V i n a c e t o n i t r i l e ( F i g u r e 5 ) . A q u a s i - r e v e r s i b l e r e d u c t i o n p r o c e s s o c c u r s a t E N , c = ‘ 1 . 1 9 V w i t h a n a s s o c i a t e d r e t u r n w a v e o f E N , a = ‘ 1 . 1 5 V ( i p C / i p a = 0 . 7 5 ) . T h e e l e c t r o c h e m i c a l p r o p e r t i e s o f ( 7 ) a r e s o m e w h a t d i f f e r e n t f r o m t h o s e o f t h e p a r e n t c o m p o u n d [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) , , ] 2 + ( 2 ) w h i c h e x h i b i t s a r e v e r s i b l e o x i d a t i o n a t + 1 . 0 V a n d a q u a s i - r e v e r s i b l e o x i d a t i o n p r o c e s s a t + 1 . 5 5 V . T w o i r r e v e r s i b l e c a t h o d i c p r o c e s s e s a r e a l s o o b s e r v e d f o r c o m p o u n d ( 7 ) a t ' 0 . 5 1 V a n d ‘ 1 . 3 4 V . 3 6 T h e e l e c t r o c h e m i c a l b e h a v i o r o f [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] 2 + ( 8 ) i n a c e t o n i t r i l e i s v e r y s i m i l a r t o t h a t o f t h e m o n o - b p y c o m p o u n d ( 7 ) . 1 1 6 C o m p o u n d ( 8 ) e x h i b i t s t w o q u a s i - r e v e r s i b l e r e d u c t i o n s a t E l , c = “ 0 . 5 0 V a n d ‘ 1 . 3 V . T h e a s s o c i a t e d r e t u r n w a v e s f o r t h e r e d u c t i o n s o c c u r a t E N , = ' 0 . 3 7 V ( i i n p , = 0 . 5 ) a n d ‘ 1 . 2 V ( i p C / i p a = 0 . 4 ) , r e s p e c t i v e l y . T h e r e v e r s i b l e a n o d i c p r o c e s s a t E 1 , 2 = + 1 . 0 2 V f o r ( 8 ) i s a t n e a r l y t h e s a m e p o t e n t i a l a s t h e p r o c e s s o b s e r v e d f o r ( 7 ) , b u t i s s o m e w h a t m a s k e d b y t h e r e d u c t i o n o f t h e s o l v e n t ( F i g u r e 5 ) . [ R h 2 ( O z C R ) 2 ( b p y ) 2 C H 3 C N ) 2 ] 2 + ( R = M e , E t , P h ) d o n o t u n d e r g o o x i d a t i o n p r o c e s s e s . ” T h e s e c o m p o u n d s d o , h o w e v e r , e x h i b i t a o n e - e l e c t r o n r e d u c t i o n p r o c e s s o c c u r r i n g a t ~ ‘ 0 . 9 V . ( 3 ) 1 H N M R s t u d i e s o f ( 7 ) a n d ( 8 ) . A s p r e v i o u s l y m e n t i o n e d , t h e o r i g i n a l s y n t h e s e s o f c o m p o u n d s ( 7 ) a n d ( 8 ) i n v o l v e d t h e i r i s o l a t i o n a s a m i x t u r e f r o m C H 3 C N . A 1 H N M R s p e c t r u m o f t h e m i x t u r e i n i t i a l l y p r o m p t e d u s t o p o s t u l a t e t h a t w e h a d o b t a i n e d t w o d i f f e r e n t m o n o - b p y i s o m e r s , n a m e l y t h o s e w i t h t h e b p y g r o u p s a r r a n g e d i n e i t h e r t h e e q - e q o r a x - e q b i n d i n g m o d e s ( F i g u r e 4 ) . F i g u r e 6 d e p i c t s a n e x p a n s i o n o f t h e a r o m a t i c r e g i o n i n t h e 2 - D C O S Y N M R s p e c t r u m o f t h e m i x t u r e . T h e 2 D ' H N M R s p e c t r u m o f t h e m i x t u r e i n C D 3 C N d e p i c t s t w o i n d e p e n d e n t s e t s o f f o u r c o u p l e d p r o t o n s w h i c h c a n b e a t t r i b u t e d t o b p y b a s e d p r o t o n s . E a c h o f t h e s e s e t s i s s h i f t e d f r o m t h e r e s o n a n c e s o b s e r v e d f o r t h e f r e e l i g a n d . A l s o p r e s e n t i n t h e 2 D s p e c t r u m a r e t w o t r i p l e t s t h a t a r e n o t c o u p l e d t o a n y o f t h e p r o t o n s i n t h e s a m p l e . T h e s e t w o t r i p l e t s c a n b e 1 1 7 / ‘ 6 1 1 A 1 l 1 1 l + 1 1 - 1 c o r s a i r / A g o F i g u r e 5 . C y c l i c v o l t a m m o g r a m s o f c o m p o u n d s ( 2 ) , ( 7 ) a n d ( 8 ) . 1 1 8 7 . 2 7 . 6 8 . 0 8 . 4 8 . 8 9 . 2 b 9 a fl 9 . 2 F i g u r e 6 . 2 - d i m e n s i o n a l 1 H N M R s p e c t r u m i n t h e a r o m a t i c 8 . 8 8 . 4 8 . 0 T T I W I I I I I I I I I I I I I I I I I I I I I I I I I l I I ” [ [ 1 1 1 1 I l l " I I I I I I I I I U I I I I I I I I I I I I H 1 [ 1 1 1 1 1 1 1 1 1 ] I I I I I I I I U I I I I I I I I I I I J I I 7 . 6 7 . 2 b i p y r i d i n e r e g i o n o f t h e m i x t u r e o f c o m p o u n d s 7 a n d 8 . 1 1 9 a s s i g n e d t o t h e 1 ° 3 R h c o u p l e d m e t h y l e n e p r o t o n s o f t h e [ D T o l F ] ' g r o u p s . T h e 1 H N M R s p e c t r a o f a u t h e n t i c c r y s t a l s o f c o m p o u n d s ( 7 a ) a n d ( 7 b ) a l l o w e d u s t o d e fi n i t i v e l y a s s i g n t h e 2 D s p e c t r u m . O n e o f t h e s e t s o f f o u r b p y r e s o n a n c e s a , b , c a n d d a t 7 . 7 5 , 8 . 2 4 , 8 . 5 3 a n d 9 . 0 4 p p m , r e s p e c t i v e l y b e l o n g t o t h e a r o m a t i c b p y p r o t o n s o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 2 N 3 ] [ B F 4 ] 2 ( 7 ) ( T a b l e 2 3 ) . T h e t r i p l e t l a b e l e d e a t 7 . 8 2 p p m i n F i g u r e 6 i s a s s i g n e d t o t h e h y d r o g e n o n t h e m e t h y l e n e c a r b o n o f t h e [ D T o l F ] ‘ g r o u p s , a n d i s i n a 1 : 1 r a t i o w i t h e a c h o f t h e b p y r e s o n a n c e s . T h e m e t h y l p r o t o n s o f t h e [ D T o l F ] ‘ g r o u p s r e s o n a t e a t 2 . 2 2 p p m w h i l e t h e r e s o n a n c e s f o r t h e e q u a t o r i a l c o o r d i n a t e d a c e t o n i t r i l e g r o u p s o c c u r a t 2 . 2 5 p p m . A s i m u l a t i o n o f t h e 1 H N M R s p e c t r u m o f c o m p o u n d ( 7 ) i s i n e x c e l l e n t a g r e e m e n t w i t h t h e e x p e r i m e n t a l s p e c t r u m . T h e 1 H N M R s p e c t r u m o f t h e b i s - b p y c o m p o u n d [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F , , ] 2 ( 8 a ) i s i d e n t i c a l t o t h e 1 H N M R s p e c t r u m o f [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( H z O ) ] [ B F 4 ] [ B P h 4 ] ( 8 b ) , a n d a c c o u n t s f o r t h e r e m a i n i n g s e t o f f o u r b p y r e s o n a n c e s a ’ , b ’ , c ’ a n d d ’ a t 7 . 2 9 , 7 . 7 9 , 7 . 8 6 a n d 8 . 3 8 p p m , r e s p e c t i v e l y ( T a b l e 2 3 ) . T h e t r i p l e t a t 8 . 1 7 p p m l a b e l e d e ’ i s a s s i g n e d t o t h e h y d r o g e n a t o m o f t h e m e t h y l e n e c a r b o n o f [ D T o l F ] ’ , a n d i s i n a 1 : 2 r a t i o w i t h t h e b p y r e s o n a n c e s . T h e [ D T o l F ] ' m e t h y l p r o t o n s a r e o b s e r v e d a s a s i n g l e t a t 2 . 2 3 p p m . T h e a x i a l C H 3 C N l i g a n d s f o r b o t h ( 7 ) 1 2 0 a n d ( 8 ) a r e i n r a p i d e x c h a n g e w i t h C D 3 C N o n t h e N M R t i m e s c a l e , a n d a r e o b s e r v e d a t t h e c h e m i c a l s h i f t f o r f r e e C H 3 C N , w h i c h i s a t 1 . 9 5 p p m ( T a b l e 2 3 ) . ( 4 ) M o l e c u l a r S t r u c t u r e s o f ( 7 a ) a n d ( 7 b ) . T h e c o m p o u n d [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 , C N ) 3 ] [ B F 4 ] 2 ( 7 a ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / n w i t h t w o [ B F ] 4 ' a n i o n s , a n d o n e m o l e c u l e e a c h o f i n t e r s t i t i a l a c e t o n e a n d w a t e r . T h e m o s t n o t a b l e f e a t u r e o f c o m p o u n d ( 7 a ) i s t h a t o n l y o n e o f t h e R h a t o m s p o s s e s s e s a n a x i a l C H 3 C N m o l e c u l e , n a m e l y , R h ] w i t h a R h - N b o n d d i s t a n c e o f 2 . 1 0 1 ( 4 ) A ( F i g u r e 7 ) . T h e a x i a l p o s i t i o n o f R h 2 i s v a c a n t . A l t h o u g h t h i s i s a n u n u s u a l r e s u l t , i t i s n o t e n t i r e l y u n p r e c e d e n t e d f o r d i r h o d i u m c o m p o u n d s c o n t a i n i n g f o r m a m i d i n a t e l i g a n d s t o p o s s e s s o n l y o n e a x i a l s o l v e n t m o l e c u l e . A s i m i l a r o b s e r v a t i o n w a s m a d e i n o u r l a b o r a t o r i e s f o r t h e c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 . 3 a T h i s c o m p o u n d w a s o b s e r v e d t o p o s s e s s o n l y o n e a x i a l s o l v e n t i n t h e c o o r d i n a t i o n s p h e r e d u e t o a [ B F 4 ] ' a n i o n l o c a t e d i n c l o s e p r o x i m i t y t o t h e v a c a n t s i t e , t h u s p r e v e n t i n g t h e c o o r d i n a t i o n o f a d o n o r s o l v e n t m o l e c u l e i n t h e s o l i d s t a t e . I t i s i m p o r t a n t t o n o t e t h a t t h e t e t r a - f o r m a m i d i n a t e c o m p o u n d R h 2 ( D P h F ) 4 i t s e l f c a n c r y s t a l l i z e w i t h o r w i t h o u t t h e p r e s e n c e o f a x i a l l i g a n d s d e p e n d i n g o n t h e 1 2 1 \ _ A o w F i g u r e 7 . O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 7 a w i t h t h e r m a l e l l i p s o i d s d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s a r e o m i t t e d f o r c l a r i t y . 1 2 2 ( \ \ \ \ \ . m i r s o l v e n t o f c r y s t a l l i z a t i o n f i l T h e m o n o - a x i a l c o m p o u n d R h 2 ( D P h F ) 4 ( C H 3 C N ) w a s g r o w n f r o m a s o l u t i o n o f R h 2 ( D P h F ) 4 i n C H 3 C N , t h u s t h e f a c t t h a t o n e a x i a l s i t e i s v a c a n t m u s t b e d i c t a t e d b y t h e p r e s e n c e o f b r i d g i n g f o r m a m i d i n a t e s . M o n o - a x i a l c o o r d i n a t i o n i s a l s o o b s e r v e d i n t h e c o m p o u n d [ R h 2 ( D T o l F ) , , ( H z O ) ] + w h i c h w a s s y n t h e s i z e d f r o m t h e o n e e l e c t r o n o x i d a t i o n o f R h 2 ( D T o l F ) 4 w i t h A g N O 3 i n C H 3 C 1 3 . 8 b T h e R h - R h b o n d l e n g t h i n [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) i s 2 . 5 7 8 0 ( 5 ) A w h i c h i s s l i g h t l y s h o r t e r t h a n t h e c o r r e s p o n d i n g b o n d d i s t a n c e i n t h e p a r e n t c o m p o u n d [ R h , ( D T o 1 F ) , ( C H , C N ) , ] [ 1 3 1 a , ] 2 ( 2 ) ( 2 . 5 5 9 4 ( 8 ) 1 1 ) . 3 2 1 T h e R h - R h b o n d d i s t a n c e i n t h e r e l a t e d c o m p o u n d [ R h 2 ( O A c ) 2 ( b p y ) ( C H 3 C N ) 4 ] 2 + i s v e r y s i m i l a r 2 . 5 3 9 5 ( 8 ) A . S C T h e b p y l i g a n d i n c o m p o u n d ( 7 ) i s b o u n d i n t h e e q - e q f a s h i o n w i t h R h - N b o n d d i s t a n c e s o f 2 . 0 3 4 ( 4 ) A a n d 2 . 0 5 3 ( 4 ) A . T h e s e a r e o v e r 0 . 0 3 A l o n g e r t h a n t h a t r e p o r t e d f o r c o m p o u n d [ R h 2 ( O A c ) 2 ( b p y ) ( C H 3 C N ) 4 ] 2 + , 2 . 0 0 1 [ 6 ] A , w h i c h i s p r e s u m a b l y a r e fl e c t i o n o f t h e s t r o n g e r t r a n s i n fl u e n c e o f t h e f o r m a m i d i n a t e l i g a n d s i n ( 7 a ) v e r s u s a c e t a t e l i g a n d s i n [ R h 2 ( O A c ) 2 ( b p y ) ( C H 3 C N ) 4 ] 2 ‘ “ . 5 c T h e 1 2 3 p y r i d y l r i n g s a r e s l i g h t l y t w i s t e d b y 2 . 9 ( 6 ) 0 a n d t h e t w o [ D T o l F ] ' l i g a n d s a r e t w i s t e d b y 1 3 . 2 8 ( 1 4 ) ° a n d 1 6 . 7 ( 2 ) ° f r o m t h e e c l i p s e d o r i e n t a t i o n a s c o m p a r e d t o 1 9 ° f o r [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) . 3 a T h e N - C - N b r i d g e h e a d a n g l e s o f 1 2 4 . 1 ( 4 ) o a n d 1 2 3 . 2 ( 4 ) ° a r e w i t h i n n o r m a l r a n g e s . T h e R h - N d i s t a n c e s o f 2 . 0 5 7 ( 4 ) A a n d 2 . 0 6 6 ( 4 ) A f o r t h e [ D T o l F ] ‘ a n i o n s c o o r d i n a t e d a t R h ( 1 ) a r e l o n g e r t h a n t h e R h - N d i s t a n c e s f o r R h ( 2 ) ( 2 . 0 0 1 ( 4 ) A a n d 2 . 0 2 0 ( 4 ) A . S i m i l a r d i f f e r e n c e s i n t h e R h - N b o n d l e n g t h s w e r e o b s e r v e d i n t h e c o m p o u n d R h 2 ( D P h F ) 4 . 8 ‘ 1 l L i k e w i s e , t h e c o m p o u n d s [ R h 2 ( O A c ) 2 ( b p y ) ( C H 3 C N ) 4 ] 2 + a n d R h 2 ( 0 2 C C F 3 ) 4 ( b p y ) 2 e x h i b i t d i f f e r e n c e s i n t h e R h - O b o n d l e n g t h s 2 . 0 5 4 [ 4 ] A a n d 2 . 0 2 1 [ 5 ] A f o r t h e a c e t a t e c a t i o n a n d 2 . 1 0 [ 3 ] A a n d 2 . 0 6 [ 3 ] A f o r t h e t r i fl u o r o a c e t a t e c o m p o u n d , r e s p e c t i v e l y ? “ T h e d i f f e r e n c e s i n t h e R h - N [ D T o l F ] ‘ b o n d l e n g t h s c a n b e e x p l a i n e d , i n p a r t , a s a c o n s e q u e n c e o f t h e t r a n s c o o r d i n a t e d b p y l i g a n d a n d t h e a x i a l a c e t o n i t r i l e a t R h ( l ) . T h e e q u a t o r i a l C H 3 C N l i g a n d s b o u n d t o R h ( 2 ) e x h i b i t R h - N b o n d d i s t a n c e s o f 2 . 0 2 6 ( 4 ) A a n d 2 . 0 3 0 ( 4 ) A , r e s p e c t i v e l y . C o m p o u n d ( 7 ) c r y s t a l l i z e s i n a d i f f e r e n t m o d i fi c a t i o n w h e n t h e s o l v e n t i s C H 3 C N ( F i g u r e 8 ) . [ R h 2 ( D T o 1 F ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ B F 4 ] 2 ( 7 b ) c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p P 2 1 / n w i t h t h e a s y m m e t r i c u n i t c o n s i s t i n g o f t h e e n t i r e c a t i o n a n d t w o [ B F 4 ] ' a n i o n s . B o t h [ B F 4 ] ' a n i o n s a r e i n v e r y c l o s e p r o x i m i t y t o a n a x i a l C H 3 C N l i g a n d . O n e o f t h e s e [ B R ] - 1 2 4 a n i o n s i s d i s o r d e r e d o v e r t w o p o s i t i o n s , a n d t h e s e c o n d a n i o n i s p r e s e n t a t f u l l o c c u p a n c y . T h i s p a c k i n g a r r a n g e m e n t c a u s e s t h e a x i a l C H 3 C N l i g a n d o n R h ( l ) t o b e n d a t a n a n g l e o f 1 6 1 . 9 ( 2 6 ) ° . T h e u n u s u a l b i n d i n g o f t h e a x i a l C H 3 C N s o l v e n t i s a l s o r e fl e c t e d i n t h e l o n g R h - N b o n d d i s t a n c e o f 2 . 3 1 5 ( 6 ) A a s c o m p a r e d t o t h e a x i a l C H 3 C N s o l v e n t m o l e c u l e o n R h ( 2 ) w h i c h i s c o o r d i n a t e d a t a R h - N d i s t a n c e o f 2 . 2 0 9 ( 2 2 ) A . T h e s e a x i a l s o l v e n t i n t e r a c t i o n s a r e s i g n i fi c a n t l y l o n g e r t h a n t h e a x i a l C H 3 C N i n t e r a c t i o n i n ( 7 a ) ( 2 . 1 0 1 ( 4 ) A ) . T h e c a t i o n i n ( 7 b ) c o n t a i n s a s i n g l e c h e l a t i n g e q - e q b p y l i g a n d w i t h t h e p y r i d y l r i n g s t w i s t e d b y 1 . 9 ( 1 0 ) ° . T h e R h - N b o n d s o f t h e b p y l i g a n d a r e 2 . 0 5 ( 2 ) A a n d 2 0 6 ( 2 ) A , w h i c h a r e c o m p a r a b l e t o t h o s e i n ( 7 a ) . T h e t w o 1 2 5 F i g u r e 8 . P L U T O r e p r e s e n t a t i o n o f c o m p o u n d 7 b . H a t o m s a r e o m i t t e d f o r c l a r i t y . 1 2 6 e q u a t o r m e W i t h i n c o o r d i a r e i n t o ( 7 : 1 6 3 7 C i n e n fl d h u a r “ t o l a x n fl o u r . S p a c . ( 7 a ) , T h o l e e q u a t o r i a l a c e t o n i t r i l e R h - N b o n d d i s t a n c e s o f 2 . 0 3 1 ( 9 ) A a n d 2 . 0 4 6 ( 6 ) A a r e w i t h i n n o r m a l r a n g e s , a n d s i m i l a r t o t h o s e o f ( 7 a ) . T h e R h - R h s i n g l e b o n d i s 2 6 3 ( 2 ) A w h i c h i s s i g n i fi c a n t l y l o n g e r t h a n t h e m e t a l - m e t a l b o n d i n ( 7 a ) ( 2 . 5 7 8 0 ( 5 ) A ) a n d , i n d e e d , i n r e l a t e d c o m p o u n d s . 5 2 m T h e l e n g t h e n i n g o f t h e R h - R h b o n d c a n b e a t t r i b u t e d t o t h e p r e s e n c e o f t h e a x i a l C H 3 C N m o l e c u l e c o o r d i n a t e d t o R h ( l ) , a p o s i t i o n t h a t i s v a c a n t i n ( 7 a ) . T h e [ D T o l F ] ' g r o u p s a r e t w i s t e d f r o m t h e e c l i p s e d c o n f o r m a t i o n b y 7 . 7 ( 6 ) 0 a n d 8 . 6 ( 5 ) o i n c o n t r a s t t o ( 7 a ) w h i c h e x h i b i t s s i g n i fi c a n t l y l a r g e r t w i s t v a l u e s ( 1 3 . 2 8 ( 1 4 ) ° a n d 1 6 . 7 ( 2 ) ° ) . T h e a n g l e s s u b t e n d e d b y t h e N - C - N b r i d g e h e a d i n t h e fi v e - m e m b e r e d r i n g s a r e 1 2 4 . 7 ( 7 ) ° a n d 1 2 4 . 8 ( 1 4 ) ° . T h e a v e r a g e [ D T o l F ] ' R h - N d i s t a n c e s o f 2 . 0 3 [ 1 ] A a r e w i t h i n n o r m a l r a n g e s , a n d a r e n o t d i f f e r e n t f o r t h e t w o R h a t o m s a s f o u n d i n ( 7 a ) , p r e s u m a b l y b e c a u s e o f t h e p r e s e n c e o f t w o a x i a l l y c o o r d i n a t e d a c e t o n i t r i l e l i g a n d s a t R h ( l ) . ( 5 ) M o l e c u l a r S t r u c t u r e s o f ( 8 a ) a n d ( 8 b ) . T h e b i s - b p y c o m p o u n d , [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 a ) , c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p , P 2 1 / c . A s i n t h e c a s e o f [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) , t h e d i r h o d i u m c a t i o n i n ( 8 a ) p o s s e s s e s o n l y o n e a x i a l a c e t o n i t r i l e m o l e c u l e w i t h a R h - N b o n d d i s t a n c e o f 2 . 1 1 5 ( 4 ) A ( F i g u r e 9 ) . T h e v a c a n t c o o r d i n a t i o n s i t e a t R h ( l ) a l s o d o e s n o t a p p e a r t o b e b a s e d o n a s t e r i c e f f e c t . 1 2 7 F i g u r e 9 . O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n o f c o m p o u n d 8 a w i t h t h e r m a l e l l i p s o i d s d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s a r e o m i t t e d f o r c l a r i t y . 1 2 8 T h e 0 t w o [ 2 . 5 8 2 3 1 3 1 2 : ; T h e o x i d a t i o n s t a t e o f e a c h R h a t o m i s + 2 b a s e d o n t h e f a c t t h a t t h e r e a r e t w o [ B F 4 ] ’ c o u n t e r i o n s i n t h e i n t e r s t i c e s . T h e R h - R h b o n d l e n g t h i s 2 . 5 8 2 0 ( 5 ) A w h i c h i s l o n g e r t h a n t h e m e t a l - m e t a l b o n d d i s t a n c e s o f t h e b i s - b p y c o m p o u n d s , [ R h 2 ( O A c ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] [ P F g ] 2 ( 2 . 5 4 8 ( 1 ) A ) a n d R h 2 ( O ; , C C F 3 ) 4 ( b p y ) 2 ( 2 . 5 7 0 ( 6 ) A ) ? " c T h e a v e r a g e R h - N d i s t a n c e f o r t h e e q - e q b o u n d b p y g r o u p s o f 2 . 0 3 9 5 [ 4 ] i s c o m p a r a b l e t o t h e c o r r e s p o n d i n g d i s t a n c e s i n ( 7 a ) a n d ( 7 b ) , b u t l o n g e r t h a n t h e R h - N b o n d o f 1 . 9 9 [ 1 ] A i n [ R h 2 ( O A c ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] [ P F g ] 2 a n d 1 . 9 9 [ 3 ] A i n R h 2 ( O z C C F 3 ) 4 ( b p y ) 2 . 5 3 ’ ° T h e p y r i d y l r i n g s o f t h e b p y l i g a n d s a r e t w i s t e d o u t - o f - p l a n e b y 5 . 9 ( 6 ) ° a n d 3 . 5 ( 6 ) ° w h i c h a r e s l i g h t l y g r e a t e r t h a n t h e a n a l o g o u s d i s t o r t i o n s f o u n d i n ( 7 a ) a n d ( 7 b ) ( 2 . 9 ( 6 ) 0 a n d 1 . 9 ( 1 0 ) ° ) . T h e u n f a v o r a b l y s h o r t b p y - - - b p y c o n t a c t s i n ( 8 a ) a r e a l l e v i a t e d b y a s p l a y i n g o f t h e b p y g r o u p s a w a y f r o m t h e c e n t e r o f t h e m o l e c u l e , r e s u l t i n g i n a d i h e d r a l a n g l e o f l 4 . 7 5 ( 4 ) ° b e t w e e n t h e N ( 1 ) , N ( 2 ) , N ( 3 ) , N ( 4 ) a n d N ( 6 ) , N ( 7 ) , N ( 8 ) , N ( 9 ) p l a n e s w i t h t h e b p y p l a n e s r e m a i n i n g e s s e n t i a l l y c o p l a n a r w i t h t h e s e e q u a t o r i a l p l a n e s ( F i g u r e 1 0 ) . T h i s d i s t o r t i o n o f t h e c o o r d i n a t i o n e n v i r o n m e n t i s s l i g h t l y l e s s t h a n t h a t f o u n d i n [ R h 2 ( O A c ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] 2 + ( 1 5 . 8 ° ) a n d g r e a t e r t h a n t h e d i h e d r a l a n g l e r e p o r t e d f o r R h 2 ( 0 2 C C F 3 ) 4 ( b p y ) 2 ( 1 1 . 7 ° ) . 5 “ ' ° A s a c o n s e q u e n c e o f t h e s p l a y i n g o f t h e b p y g r o u p s i n c o m p o u n d 1 2 9 F i g u r e 1 0 . O R T E P r e p r e s e n t a t i o n o f t h e c a t i o n i n 8 a ( w i t h t h e r m a l e l l i p s o i d s d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l ) e m p h a s i z i n g t h e s p l a y i n g o f t h e b p y l i g a n d s i n t h e e q u a t o r i a l p l a n e . 1 3 0 ( 8 3 ) . f a v o r C Q ' S ‘ e t h y c o m m O l t A n 1 C a g e 1 q - s s u m m m 1 1 ( 8 a ) , t h e d i s t a n c e b e t w e e n t h e t w o b p y p l a n e s i s c a . 3 . 0 A , w h i c h i s a f a v o r a b l e r t - s t a c k i n g d i s t a n c e . ” 9 T h e [ D T o l F ] ‘ g r o u p s i n c o m p o u n d ( 8 a ) a r e t w i s t e d b y 1 8 . 1 2 ( 1 4 ) o a n d 1 9 . 3 9 ( l 4 ) ° f r o m t h e e c l i p s e d o r i e n t a t i o n . T h e N - C - N b r i d g e h e a d a n g l e s o f 1 2 3 . 8 ( 4 ) ° a n d 1 2 3 . 6 ( 4 ) ° a r e w i t h i n n o r m a l r a n g e s . T h e R h - N d i s t a n c e s o f t h e [ D T o l F ] ' g r o u p s a r e d i f f e r e n t f o r e a c h R h a t o m s i m i l a r t o t h e d i f f e r e n c e s o b s e r v e d i n t h e m o n o - b p y c o m p o u n d [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) a n d t h e m o n o - p h e n c o m p o u n d [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) . T h e R h - N d i s t a n c e s a t R h ( l ) w h e r e t h e a x i a l c o o r d i n a t i o n s i t e i s v a c a n t a r e 2 . 0 2 3 ( 4 ) A a n d 2 . 0 3 2 ( 3 ) A , r e s p e c t i v e l y w h i l e t h e R h - N d i s t a n c e s a t R h ( 2 ) a r e 2 . 0 6 4 ( 3 ) A a n d 2 . 0 7 6 ( 4 ) A . C o m p o u n d ( 8 ) c r y s t a l l i z e s i n a d i f f e r e n t m o d i fi c a t i o n w h e n t h e c r y s t a l s a r e g r o w n f r o m t h e s l o w d i f f u s i o n o f a n a c e t o n e s o l u t i o n o f ( 8 ) i n t o e t h y l a c e t a t e i n s t e a d o f a n a c e t o n i t r i l e s o l u t i o n o f ( 8 ) i n t o e t h y l a c e t a t e . T h e [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( H z O ) ] [ B F 4 ] [ B P h 4 ] - ( C H 3 ) Z O - ( C H 3 C H 2 0 2 C C H 3 ) ( 8 b ) c o m p o u n d c r y s t a l l i z e s i n t h e m o n o c l i n i c s p a c e g r o u p , P 2 1 / n w i t h o n e m o l e c u l e o f a c e t o n e a n d t h r e e m o l e c u l e s o f e t h y l a c e t a t e i n t h e i n t e r s t i c e s . A n O R T E P p l o t o f t h e c a t i o n p o r t i o n i s p r o v i d e d i n F i g u r e 1 1 . A s w a s t h e c a s e f o r ( 8 a ) , t h e d i r h o d i u m c a t i o n i n ( 8 b ) p o s s e s s e s o n l y o n e a x i a l l i g a n d , 1 3 ] F i t e l l c l z F i g u r e 1 1 . O R E T P r e p r e s e n t a t i o n o f t h e c a t i o n o f 8 b w i t h t h e r m a l e l l i p s o i d s d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s a r e o m i t t e d f o r c l a r i t y . 1 3 2 l e a v i n g a p p e a r i n ( 8 b a n i o n o r i g i n : r a t h e r T h e l c o m p s d i s t a n t t h e a v f o r [ R a V O l d e m o l e c l N 1 7 ) . _ ~ N S l g n i f “ l e a v i n g a n o p e n c o o r d i n a t i o n s i t e o n R h ( 2 ) w h i c h , o n c e a g a i n , d o e s n o t a p p e a r t o b e b a s e d o n a s t e r i c e f f e c t i n t h e s o l i d - s t a t e . T h e t w o c o u n t e r i o n s i n ( 8 b ) a r e n o t t h e s a m e i d e n t i t y , a s t h e s a l t c r y s t a l l i z e d w i t h o n e [ B F 4 ] ' a n i o n a n d o n e [ B P h 4 ] " a n i o n . O b v i o u s l y , t h e m e t a t h e s i s r e a c t i o n o f t h e o r i g i n a l [ B F 4 ] ' s a l t w i t h N a B P h 4 w a s i n c o m p l e t e . A n a x i a l H 2 0 m o l e c u l e r a t h e r t h a n a c e t o n i t r i l e i s c o o r d i n a t e d a t a n R h - O d i s t a n c e o f 2 . 2 2 1 ( 8 ) A . T h e R h - R h b o n d l e n g t h i n c o m p o u n d ( 8 b ) i s 2 . 5 7 8 ( 1 ) A , w h i c h i s c o m p a r a b l e t o t h a t f o u n d i n ( 8 a ) ( 2 . 5 8 2 0 ( 5 ) A ) . T h e a v e r a g e R h - N b o n d d i s t a n c e s f o r t h e e q - e q b o u n d b p y g r o u p s i s 2 . 0 5 2 [ 8 ] A w h i c h i s l o n g e r t h a n t h e a v e r a g e R h - N b p y i n t e r a c t i o n s o f l . 9 9 2 [ 1 0 ] A a n d 2 . 0 3 9 5 [ 4 ] r e p o r t e d f o r [ R h 2 ( O A c ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] 2 + a n d ( 8 a ) , r e s p e c t i v e l y . 5 a T h e [ D T o l F ] ‘ g r o u p s a r e t w i s t e d b y l 6 . 9 ( 3 ) ° a n d 1 9 . 6 ( 3 ) ° f r o m t h e e c l i p s e d o r i e n t a t i o n a n d t h e N - C - N b r i d g e h e a d a n g l e s a r e l 2 3 . 3 ( 1 0 ) ° a n d 1 2 3 . 7 ( 1 0 ) ° . T h e a v e r a g e R h - N d i s t a n c e f o r t h e f o r m a m i d i n a t e b r i d g e s i s 2 . 0 6 4 [ 9 ] A , w i t h n o s i g n i fi c a n t d i f f e r e n c e s a m o n g t h e i n d e p e n d e n t i n t e r a c t i o n s . A s i n ( 8 a ) , t h e u n f a v o r a b l y s h o r t b p y m b p y c o n t a c t s i n ( 8 b ) a r e a v o i d e d b y a s p l a y i n g o f t h e b p y g r o u p s a w a y f r o m t h e c e n t e r o f t h e m o l e c u l e , r e s u l t i n g i n a d i h e d r a l a n g l e o f l 4 . 2 5 ( 0 . 4 5 ) ° b e t w e e n t h e N ( 1 ) , N ( 2 ) , N ( 3 ) , N ( 8 ) a n d N ( 4 ) , N ( 5 ) , N ( 6 ) , N ( 7 ) p l a n e s . ” 9 T h i s i s n o t s i g n i fi c a n t l y d i f f e r e n t f r o m t h e d i h e d r a l a n g l e o b s e r v e d f o r ( 8 a ) . 1 3 3 B . R e a c t ( l [ R h g t D T c h e m i s t 1 E q u a t i o c h l o r i d e s e c o n d t h l e ' c o n d i t i t c o m p o i [ R h 2 ( D T o I F ) 2 [ h a ( D T 9 1 F ) 2 ( 3 r F = N ] 2 , ] 2 ( C C H H 3 C N ) , , ] [ 1 2 s 2 C N ) . , ] [ B + + l 2 p h e n p h e H T z ° < C D g 2 ( D T h t n [ R z h I 1 i 0 C l > z F z g F ) 2 ( m ? p h h e e n 9 ) n X C H s 2 ( C H 3 c C m N d t B F r h < 4 ) ) 2 ] [ B F 4 1 , ( 5 ) B . R e a c t i o n s o f R h 2 " ’ " a n d 1 , 1 0 - p h e n a n t h r o l i n e ( 1 ) S y n t h e s e s . W h i l e i n v e s t i g a t i n g t h e r e a c t i o n s o f [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) w i t h b p y , w e s o u g h t t o e x t e n d t h i s c h e m i s t r y t o i n c l u d e o t h e r N - c h e l a t e s s u c h a s L I D - p h e n a n t h r o l i n e ( p h e n ) . E q u a t i o n 4 s u m m a r i z e s t h e a d d i t i o n o f o n e e q u i v a l e n t o f p h e n i n m e t h y l e n e c h l o r i d e t o g i v e [ R h 2 ( D T o 1 F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) . T h e a d d i t i o n o f a s e c o n d e q u i v a l e n t o f p h e n t o t h e d i r h o d i u m c o r e t o y i e l d [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) o c c u r s o n l y u n d e r r e fl u x i n g c o n d i t i o n s t h a t a r e a n a l o g o u s t o t h o s e r e q u i r e d t o p r e p a r e t h e b i s - b p y c o m p o u n d ( 8 ) ( E q u a t i o n 5 ) . ( 2 ) E l e c t r o c h e m i s t r y o f ( 9 ) a n d ( 1 0 ) . T h e c y c l i c v o l t a m m o g r a m o f [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) r e v e a l s s l i g h t l y d i f f e r e n t r e d o x p r o p e r t i e s t h a n t h e c o r r e s p o n d i n g b p y c o m p o u n d ( F i g u r e 1 2 ) . 1 0 1 3 4 l l I + 2 . 0 0 . 0 ' 2 . 0 V V o l t s v s A g / A g C l F i g u r e 1 2 . C y c l i c v o l t a m m o g r a m s o f c o m p o u n d s ( 9 ) a n d ( 1 0 ) . 1 3 5 T w o r e v c t a d d i t i o n I a l s o d e t e r w i t h t h e n 1 . 7 a n d 1 ' 1 h u n d e r g o e p h e n c o r + 0 . 9 9 V c a t h o d i t i r r e v e r s T h e ( 2 0 1 ‘ ‘ 1 4 3 \ d d fi n e t t h , ( ( ) r e d u c t j T w o r e v e r s i b l e a n o d i c p r o c e s s e s a r e o b s e r v e d a t + 1 . 0 7 V a n d + 1 . 5 0 V . I n a d d i t i o n t o t h e t w o o x i d a t i o n p r o c e s s e s , t w o q u a s i - r e v e r s i b l e r e d u c t i o n s a r e a l s o d e t e c t e d a t E p , c = ' 0 . 5 3 V a n d ’ 1 . 4 2 V . T h e r e t u r n w a v e s a s s o c i a t e d w i t h t h e s e p r o c e s s e s o c c u r a t E N , a = ' 0 . 4 3 V a n d “ 1 . 3 6 V w i t h i p c / i p a r a t i o s o f 1 . 7 a n d 1 . 9 , r e s p e c t i v e l y . T h e b i s - p h e n a n t h r o l i n e c a t i o n , [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] 2 + ( 1 0 ) , u n d e r g o e s o x i d a t i o n p r o c e s s e s i n a c e t o n i t r i l e t h a t a r e s i m i l a r t o t h e m o n o - p h e n c o m p o u n d ( 9 ) ( F i g u r e 1 2 ) . T w o q u a s i - r e v e r s i b l e o x i d a t i o n s o c c u r a t E N = + 1 . 0 5 V a n d + 1 . 5 7 V , r e s p e c t i v e l y , w i t h t h e r e t u r n w a v e s a t E N , = + 0 . 9 9 V a n d + 1 . 4 3 V ' i , p c / i p , r a t i o s a r e 1 . 5 a n d 1 . 8 , r e s p e c t i v e l y . A r e v e r s i b l e c a t h o d i c p r o c e s s f o r c o m p o u n d ( 1 0 ) o c c u r s a t E 1 , 2 = “ 0 . 9 1 V , a n d t w o i r r e v e r s i b l e p r o c e s s e s o c c u r a t E N , c = " 1 . 4 7 V a n d E N , c = " 1 . 8 9 V , r e s p e c t i v e l y . T h e c o r r e s p o n d i n g r e t u r n w a v e f o r t h e fi r s t r e d u c t i o n p r o c e s s o c c u r s a t E N , = ” 1 . 4 3 V w i t h a n i p c / i p a r a t i o o f 0 . 5 . T h e r e d o x p r o p e r t i e s o f ( 1 0 ) a r e v e r y d i f f e r e n t f r o m t h e b e h a v i o r r e p o r t e d f o r t h e a n a l o g o u s a c e t a t e c o m p o u n d [ R h 2 ( O A c ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] 2 + , w h i c h i s r e p o r t e d t o u n d e r g o a r e v e r s i b l e r e d u c t i o n a t “ 0 . 8 3 V w i t h n o r e p o r t e d o x i d a t i o n p r o c e s s e s . I t i s i n t e r e s t i n g t o n o t e , h o w e v e r , t h a t t h e m o d i fi e d p h e n d e r i v a t i v e , [ R h 2 ( O A c ) 2 ( t h p h e n ) 2 ( C H 3 C N ) 2 ] 2 + ( t h p h e n = 4 , 7 - d i p h e n y l - 1 , 1 0 - 1 3 6 I e { i n - I ! “ h e n a n t l ‘ . 7 6 V 2 ( R h 3 ( D 3 l t r u c s e t r u r e v e p 0 [ s o d b e u t e r a t e q u a t o r i n ( 9 ) r b r . 1 n o p 9 ( i c r o s o 0 e t 5 0 ) e s p 1 v n p w d l S t o m p 0 S P E C t n p h e n a n t h r o l i n e ) , i s r e p o r t e d t o e x h i b i t a t w o - e l e c t r o n r e v e r s i b l e r e d u c t i o n a t ‘ 0 . 7 6 V a n d a o n e - e l e c t r o n r e v e r s i b l e o x i d a t i o n a t + 0 . 8 9 V . “ ( 3 ) 1 H N M R s t u d i e s o f ( 9 ) a n d ( 1 0 ) . T h e 1 H N M R s p e c t r u m o f [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 9 ) i s i n a c c o r d w i t h t h e s o l i d - s t a t e s t r u c t u r e ( F i g u r e 1 3 a ) . T h e a x i a l l y c o o r d i n a t e d a c e t o n i t r i l e l i g a n d s a r e o b s e r v e d a s f r e e a c e t o n i t r i l e a t 1 . 9 5 p p m d u e t o e x c h a n g e w i t h t h e d e u t e r a t e d s o l v e n t . U n l i k e t h e m o n o - b p y a n a l o g u e ( 7 ) , f o r w h i c h t h e e q u a t o r i a l a c e t o n i t r i l e p r o t o n s o c c u r a t 2 . 2 5 p p m , t h e c o r r e s p o n d i n g p r o t o n s i n ( 9 ) r e s o n a t e f u r t h e r d o w n fi e l d a t 2 . 5 1 p p m . T h e [ D T o l F ] ' p r o t o n s a r e o b s e r v e d a t 2 . 2 5 p p m f o r t h e m e t h y l g r o u p s a n d 6 . 9 9 p p m f o r t h e a r o m a t i c p r o t o n s . T h e p h e n a n t h r o l i n e p r o t o n s a r e o b s e r v e d a t 7 . 9 2 , 8 . 0 6 , 8 . 6 0 a n d 9 . 0 5 p p m . A l t h o u g h t h e X - r a y s t r u c t u r e o f [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) w a s n o t a b l e t o b e r e s o l v e d , 1 H N M R s p e c t r o s c o p y p r o v e d t o b e u s e f u l i n d i s c e r n i n g t h e m o l e c u l a r s t r u c t u r e . A s e x p e c t e d , t h e s t r u c t u r e o f c o m p o u n d ( 1 0 ) c l o s e l y r e s e m b l e s c o m p o u n d ( 8 ) a s j u d g e d b y i t s 1 H N M R s p e c t r u m ( F i g u r e 1 3 b ) . F o u r r e s o n a n c e s a t 7 . 5 3 , 7 . 6 3 , 8 . 1 5 a n d 8 . 5 7 p p m a r e a t t r i b u t e d t o t h e p h e n l i g a n d . A t r i p l e t a t 8 . 3 0 p p m c a n b e a s s i g n e d t o t h e [ D T o l F ] ' b r i d g e h e a d h y d r o g e n a t o m o f w h i c h i s i n a 1 : 2 r a t i o w i t h t h e f o u r 1 3 7 ) ' 1 1 2 ( l l l l l l T l l . 9 l 1 H 3 C f 1 ’ l 8 l . . 9 / l l l l l l l l l W l l l l l l l 8 7 l l l | l l l l l 8 w . 5 . C H 3 b H e \ N | 8 c l . l 3 — l N — \ l l l l l l l 8 o N / — l l l l { l l l l l l 7 . 9 p p m . 1 \ “ o r O “ : O N / { N N O I . . t h N . . . . N b : C _ N — M — — — M ' — - S l 8 ’ l “ N : N [ F l l j l l l l l l l l l l l r fl j l l l l l r l l d ( 2 H ) c ( 2 H ) M a ( 2 H ) M H m b ( 2 H ) b ” \ \ \ N . o ‘ “ “ N i ] ( 1 V 1 ’ 1 v 1 S C N U h e ( 1 6 H ) d d 4 H e ( 2 H ) ( ) a ( 4 H ) c ( 4 H ) J L J l l l E ‘ i H ) U ' r r r v v r l v r r r l r r r — r r r r r r j r r r r g r r t r r T r — r ' r r r e r I r r r r j r r r v ' r r r r y r r t u l t r v r [ 1 r 1 1 1 r r r r l r v u v l r r r 8 . 6 8 . 4 8 . 2 8 . 0 7 . 8 7 . 6 7 . 4 7 . 2 7 . 0 p p m F i g u r e 1 3 . 1 H N M R s p e c t r a o f c o m p o u n d s 9 a n d 1 0 i n t h e a r o m a t i c r e g i o n . 1 3 8 r n e o s o d n 0 a \ n \ a r b e o v e I s o n a t t w o b 0 ( p c 3 ) h r e y n s 3 t 1 a f o u r q s . l c - n - i L . m . . a _ . i r e s o n a n c e s . T h e a x i a l C H 3 C N i s o b s e r v e d a s f r e e s o l v e n t a t 1 . 9 5 p p m , w i t h n o d o w n fi e l d r e s o n a n c e s a t t r i b u t a b l e t o e q u a t o r i a l C H 3 C N b e i n g o b s e r v e d a b o v e 2 . 0 p p m w h e r e t h e y t y p i c a l l y o c c u r . T h e [ D T o l F ] ' m e t h y l p r o t o n s r e s o n a t e a t 2 . 2 4 p p m . T h e s e d a t a a r e i n a c c o r d w i t h a m o l e c u l e t h a t c o n t a i n s t w o b o u n d p h e n g r o u p s t h a t a r e c o o r d i n a t e d i n a n e q - e q m o d e . ( 3 ) M o l e c u l a r S t r u c t u r e s o f ( 9 ) a n d ( 1 0 ) . U n l i k e c o m p o u n d ( 7 a ) , t h e p h e n a n t h r o l i n e a n a l o g u e [ R h — 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 , ] [ B F 4 ] 2 ( 9 ) c r y s t a l l i z e s i n t h e P - l c r y s t a l s y s t e m w i t h o n e m o l e c u l e o f e t h y l a c e t a t e a n d f o u r w a t e r m o l e c u l e s . T h e c a t i o n o f ( 9 ) i s i s o s t r u c t u r a l t o R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) ( F i g u r e 1 4 ) . A s w a s o b s e r v e d f o r t h e c a t i o n o f ( 7 a ) , t h e a x i a l c o o r d i n a t i o n s i t e o f t h e s o l v a t e d r h o d i u m a t o m i s v a c a n t , a n d t h e R h - R h b o n d d i s t a n c e o f 2 . 5 8 0 4 ( 4 ) A i s n o t a p p r e c i a b l y l o n g e r t h a n t h e m e t a l - m e t a l b o n d i n ( 7 a ) . T h e p h e n l i g a n d i s b o u n d i n t h e e q - e q b i n d i n g m o d e a t R h ( l ) w i t h R h - N d i s t a n c e s o f 2 . 0 5 4 ( 3 ) A a n d 2 . 0 6 0 ( 3 ) A . T h e p y r i d y l r i n g s o f t h e p h e n l i g a n d a r e t w i s t e d o u t o f t h e p l a n e b y l . 4 ( 5 ) ° i n c o m p a r i s o n t o t h e 1 9 ° t w i s t o b s e r v e d i n c o m p o u n d ( 7 a ) . T h e a x i a l a c e t o n i t r i l e i s c o o r d i n a t e d t o R h ( l ) a t a d i s t a n c e o f 2 . 1 2 6 ( 3 ) A . T h e e q u a t o r i a l a c e t o n i t r i l e m o l e c u l e s a r e c o o r d i n a t e d t o R h ( 2 ) a t a n a v e r a g e R h - N d i s t a n c e o f 2 . 0 3 2 [ 3 ] A . T h e R h - N d i s t a n c e s o f 2 . 0 6 4 ( 3 ) A a n d 2 . 0 7 0 ( 3 ) A 1 3 9 . - \ U " ? Z \ \ ' ° ‘ . q I ’ \ : I ‘ \ ‘ 1 \ \ , F i g u r e 1 4 . O R T E P r e p r e s e n t a t i o n o f c o m p o u n d 9 w i t h t h e r m a l e l l i p s o i d s d r a w n a t t h e 5 0 % p r o b a b i l i t y l e v e l . H a t o m s a r e o m i t t e d f o r c l a r i t y . 1 4 0 f o r l e d i n s T h 1 2 c 2 0 o h l r . f t t a 4 g t e 3 . r r e c o m T h e C I ‘ y s i m p e n o p r e . r 6 3 1 a n c ‘ T 6 3 W i t D O S " 1 1 J . I f o r t h e [ D T o l F ] ’ l i g a n d s c o o r d i n a t e d a t R h ( l ) a r e l o n g e r t h a n t h e b o n d l e n g t h s f o r R h ( 2 ) ( 2 . 0 0 6 ( 3 ) A a n d 2 . 0 1 5 ( 3 ) A ) . A s i n ( 7 a ) , t h e R h - N b o n d d i s t a n c e s o f t h e [ D T o l F ] ‘ l i g a n d s t r a n s t o t h e N - N c h e l a t e a r e l e n g t h e n e d . T h e N - C - N b r i d g e h e a d a n g l e s o f t h e b r i d g i n g l i g a n d s ( 1 2 3 . 5 ( 4 ) ° a n d 1 2 3 . 5 ( 4 ) ° ) a r e w i t h i n n o r m a l r a n g e s . T h e [ D T o l F ] ' g r o u p s a r e t w i s t e d b y 2 0 . 4 1 ( 1 3 ) ° a n d 1 6 . 6 5 ( 1 3 ) ° f r o m t h e e c l i p s e d o r i e n t a t i o n a s c o m p a r e d t o t h e c o r r e s p o n d i n g t w i s t s o f 1 3 . 2 8 ( 1 4 ) o a n d 1 6 . 7 ( 2 ) o o b s e r v e d i n t h e m o n o - b p y c o m p l e x [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] [ B F 4 ] 2 ( 7 a ) . A s p r e v i o u s l y s t a t e d i n t h e N M R s e c t i o n , t h e s o l i d s t a t e s t r u c t u r e o f [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) w a s n o t a b l e t o b e d e t e r m i n e d . T h e c r y s t a l s o f ( 1 0 ) g r o w a s s e v e r e l y t w i n n e d c r y s t a l s r e g a r d l e s s o f t h e c r y s t a l l i z a t i o n c o n d i t i o n s t h a t a r e u s e d . D e c o n v o l u t i o n o f t h e t w i n s w a s a l s o i m p o s s i b l e s i n c e t h e i n t e n s i t y o f t h e c r y s t a l w a s n o t s u f fi c i e n t t o a l l o w f o r e n o u g h d a t a t o b e c o l l e c t e d . F r o m t h e N M R d a t a , h o w e v e r , i t i s p o s s i b l e t o p r e d i c t t h a t t h e s t r u c t u r e o f [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) r e s e m b l e s t h e b i s - b p y c o m p o u n d s R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 8 a ) a n d R h 2 ( D T o l F ) 2 ( b p y ) 2 ( H 2 0 ) ] [ B F 4 ] 2 ( 8 b ) . S p e c i fi c a l l y , i t w o u l d b e r e a s o n a b l e t o e x p e c t t h a t t h e t w o p h e n l i g a n d s a r e b o u n d i n a n e q - e q f a s h i o n w i t h t w o c i s [ D T o l F ] ' l i g a n d s b r i d g i n g t h e d i m e t a l u n i t . W h e t h e r o n e a x i a l p o s i t i o n i s v a c a n t o r n o t c a n n o t b e p r e d i c t e d . 1 4 1 C . R 1 a n d ‘ e q u a ( E q u a n d “ 1 0 1 o c c 1 C O l T C . R e a c t i o n s o f ( 7 ) a n d ( 8 ) w i t h 9 - E t A H a n d 9 - E t G H ( l ) S y n t h e s e s . T h e r e a c t i o n b e t w e e n t h e m o n o - b p y c o m p o u n d ( 7 ) a n d 9 - E t A H r e s u l t e d i n t h e f u l l s u b s t i t u t i o n o f t h e b p y l i g a n d s a n d t h e e q u a t o r i a l a c e t o n i t r i l e l i g a n d s f o r t h e p u r i n e t o y i e l d t h e k n o w n c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 a s j u d g e d b y X - r a y c r y s t a l l o g r a p h y ( E q u a t i o n 6 ) . 3 " " 1 3 N o t s u r p r i s i n g l y , n o r e a c t i o n t a k e s p l a c e b e t w e e n 9 - E t A H a n d t h e b i s - b p y c o m p o u n d ( 8 ) . W h e n o n e e q u i v a l e n t o f 9 - E t G H i s r e a c t e d w i t h [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 , 4 ] [ B F 4 ] 2 ( 7 ) a t r . t . i n m e t h a n o l , n o r e a c t i o n o c c u r s . U n d e r r e fl u x i n g c o n d i t i o n s , h o w e v e r , l i g a n d s e x c h a n g e o c c u r s a n d c o m p o u n d ( 7 ) l o s e s t h e c o o r d i n a t e d b p y t o g i v e a m i x t u r e o f [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 8 ) a n d [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 2 ) . ” 1 3 C o m p o u n d ( 2 ) t h e n f u r t h e r r e a c t s w i t h t h e f r e e 9 - E t G H p r e s e n t t o f o r m t h e k n o w n b i s - 9 - E t G H c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( E q u a t i o n 7 ) . 1 3 T h e g o a l o f t h e s e r e a c t i o n s w a s t o a d d a c h e l a t i n g 9 - E t A H o r 9 - E t G H m o l e c u l e t o t h e s o l v a t e d R h a t o m o f c o m p o u n d ( 7 ) , b u t t h u s f a r w e h a v e n o t i s o l a t e d a D T o l F p r o d u c t t h a t c o n t a i n s b o t h b p y a n d a p u r i n e . I t i s k n o w n t h a t t h e D N A n u c l e o b a s e s 9 - E t A H a n d 9 - E t G H c a n a l s o a d o p t a c h e l a t i n g m o d e o f b i n d i n g t h r o u g h t h e N 7 a n d N 6 / O 6 p o s i t i o n s w h e n o n e e q u i v a l e n t o f e i t h e r p u r i n e i s r e a c t e d w i t h [ R h 2 ( O A c ) 2 ( b p y ) ( C H 3 C N ) 4 ] [ B F 4 ] 2 , t h u s i t w o u l d s e e m t h a t t h i s i s a f e a s i b l e I 4 2 g o a l . 1 2 P e r h a p s d i f f e r e n t r e a c t i o n c o n d i t i o n s o r t h e u s e o f t h e p h e n d e r i v a t i v e w i l l l e a d t o o n e o f t h e s e m i x e d N - N / p u r i n e c o m p o u n d s . ( 2 ) 1 H N M R S t u d i e s o f t h e R e a c t i o n B e t w e e n ( 7 ) a n d 9 - E t G H . T h e 1 H N M R s p e c t r u m o f t h e g r e e n p r o d u c t o b t a i n e d i n e q u a t i o n 7 i s i n d i c a t i v e o f a m i x t u r e o f c o m p o u n d s ( F i g u r e 1 5 ) . T h e r e s o n a n c e s a t 8 . 3 7 , 8 . 1 7 , 7 . 8 7 , 7 . 7 9 a n d 7 . 2 8 p p m c a n b e a t t r i b u t e d t o t h e b i s - b p y c o m p o u n d [ R h 2 ( D T o l F ) 2 ( b p y ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 8 ) a s p r e v i o u s l y d i s c u s s e d . N o o t h e r d e fi n i t i v e a s s i g n m e n t s c a n b e m a d e . 4 . S u m m a r y T h e w o r k d e s c r i b e d i n t h i s c h a p t e r i n v o l v e s t h e s y n t h e s i s a n d f u l l c h a r a c t e r i z a t i o n o f a s e r i e s o f u n u s u a l d i r h o d i u m ( I I , I I ) c o m p o u n d s , s o m e o f w h i c h b i n d o n l y o n e a x i a l s o l v e n t m o l e c u l e . T h e v a c a n t a x i a l p o s i t i o n o b s e r v e d i n t h e c a t i o n s [ R h 2 ( D T o l F ) 2 ( b p y ) ( C H 3 C N ) 3 ] 2 + ( 7 a ) , [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( C H 3 C N ) ] 2 + ( 8 3 ) , [ R h 2 ( D T 0 1 F ) 2 ( b p y ) 2 ( H 2 0 ) l 2 + ( 8 b ) , l R h 2 ( D T o l F ) 2 ( p h e n ) ( C H l 3 C N ) 3 ] 2 + ( 9 ) a n d t h e n e u t r a l c o m p o u n d R h 2 ( D T o l F ) 2 ( O Z C C H 3 ) 2 ( H Z O ) ( 6 ) r e n d e r s t h e s e c o m p o u n d s g o o d c a n d i d a t e s f o r f u r t h e r a d d i t i o n / s u b s t i t u t i o n c h e m i s t r y . A r e a s o n f o r t h e o c c u r r e n c e o f t h e m o n o - a x i a l c o m p o u n d s i n t h i s s e r i e s o f c o m p o u n d s m a y b e t h e s t r o n g l y d o n a t i n g p r o p e r t i e s o f t h e b r i d g i n g f o r m a m i d i n a t e l i g a n d s a s o p p o s e d t o c a r b o x y l a t e l i g a n d s . A p a r t f r o m t h e a x i a l l i g a t i o n i s s u e , t h e c o o r d i n a t i o n o f 1 4 3 N - c h e l a t e s t o [ R h 2 ( D T o l F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) t a k e s p l a c e i n a s i m i l a r f a s h i o n t o t h e r e l a t e d r e a c t i o n s b e t w e e n [ R h 2 ( O A c ) 2 ( C H 3 C N ) 6 ] 2 + a n d N - c h e l a t e s . 5 I t w a s a l s o o b s e r v e d t h a t r e a c t i o n s w i t h 9 - E t A H a n d [ R h 2 ( D T o 1 F ) 2 ( b p y ) ( C H 3 C N ) 3 , 4 ] [ B F 4 ] 2 ( 7 ) r e s u l t i n t h e f o r m a t i o n o f t h e h i s c o m p o u n d [ R h 2 ( D T o l F ) 2 ( 9 — E t A H ) 2 ( C H 3 C N ) [ B F 4 ] 2 p r e v i o u s l y p r e p a r e d b y a d i f f e r e n t r o u t e . 3 2 1 R e a c t i o n s w i t h 9 - E t G H r e v e a l e d a p r e f e r e n c e f o r c o m p o u n d ( 7 ) t o u n d e r g o l i g a n d r e d i s t r i b u t i o n l e a d i n g t o t h e f o r m a t i o n o f [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( C H 3 C N ) 2 ] 2 + ( 8 ) a n d [ R h 2 ( D T 0 1 F ) 2 ( C H 3 C N ) 6 ] 2 + ( 2 ) i n s o l u t i o n . W h e t h e r s i m i l a r r e a c t i o n s w i t h t h e L I D - p h e n a n t h r o l i n e a n a l o g u e s w i l l o c c u r r e m a i n s t o b e e x p l a i n e d . 1 4 4 m V p p 4 1 . 6 . 6 . 6 e n n e i d e i w r t 8 ) 7 y e . p b . H ' ( 6 " 2 0 ] i b G t n c E o . 4 i - i 7 ‘ t t 9 3 ) a c ) q m a 2 3 N . C ( 7 3 o e e r r 1 H a " C 2 ( e e ] + 4 . ) h h 2 7 y t t ) p N C b n ( i 1 ) 7 ( 6 2 ; H m + 2 . ) o m 7 F C ] l ( u r 4 o ’ 2 r f T 3 ) t 3 y D c ) . p ( 7 b e t N 2 h R ( C p c 2 s u 3 0 [ ) d . o F H C 8 R 1 d e o r ( p t M T ) c D y 2 a ( N p . 2 e e b 3 r h h n R t H ( u [ 1 2 4 a b ) . F 8 6 . 8 . f 5 o l 1 o T e n D r o ( u i 2 g g h 8 R i e F r [ . 8 - 3 . 3 0 . 0 . 9 . 9 A “ 2 . 9 1 4 5 W W 2 . ] ) 4 b 8 F ( B [ ] 4 ) N 3 H C C 3 2 H H C C ( 2 ) 0 y 2 p H b C 0 1 ( 3 a 2 h H ) o C F 3 o ) ) = 1 R e . ] 2 0 F [ / ] a ) / " n O F ( o [ ) Z 3 ) 2 5 = 4 2 0 1 l ' o a o T D 2 N ) ) ) ) ) 0 0 2 2 3 7 8 1 1 ) t ( ( ( ( ( ( ( 3 9 0 s 6 2 7 0 5 0 . m . 0 0 ( ( g i s R ( H B 4 8 4 7 1 9 9 7 7 9 2 h R C 3 8 5 s . 4 3 4 7 . 2 6 4 9 ; a 5 ( 6 3 6 z 0 6 5 1 9 K 7 1 4 3 5 ] 6 2 C l s 8 . . . . . 8 3 5 4 6 0 0 0 z . 4 [ o 0 - s 8 3 1 1 . . . 2 9 2 3 7 . 2 7 . o - 2 ” C P 7 2 7 7 2 M ] 0 9 0 0 1 1 1 1 1 1 1 1 F ' , ) l a a 7 h ( P B O l [ Z / | ) P ' D ) ) , ( 5 5 / n 3 5 ] m 2 1 ( 2 Z z l ) ) H a ) ) 1 3 - F 1 1 6 1 ) 2 2 . . ) o 2 F c 0 0 — 2 ( ( ( ( B 7 ( ( z F ' ) [ , l 8 1 4 1 3 8 ( o 2 9 1 8 1 7 1 3 F 0 a 4 H 8 8 9 2 F . 5 8 2 . l 5 1 ) n C 0 9 5 . / 4 4 8 6 3 K 3 5 0 ( 8 0 Z ( I . 7 . 4 1 1 0 . 4 3 9 3 1 0 W 2 o 7 3 1 7 . 1 . = 9 Z 3 8 2 . . . 0 0 C H 1 l 1 1 1 1 1 P 2 2 9 9 4 0 0 0 8 M 8 [ 2 [ ( , 2 ) Y P m R = d ) ) S 8 1 b = a h o 1 9 . 0 8 ) 1 0 1 N ) ) ) ) ( . . t i F t 4 3 5 1 ) 0 0 s ( ( ( ( 2 ( ( 0 2 ‘ f O N 4 8 8 9 B ( 1 4 C o 3 1 9 8 7 0 > 5 ‘ 0 4 3 a T . 5 2 2 1 . 5 S 6 0 0 1 a 8 H 6 / 3 c D 9 fl c 4 8 8 . K 5 7 S 6 4 3 2 1 C 7 . ( 1 e . . 3 9 . 9 z 3 5 0 0 7 8 2 0 0 0 . 9 9 3 0 7 . ‘ s 2 0 . . . 1 1 o ( ) h P 9 5 C 9 4 7 M 0 0 0 1 1 1 1 1 1 1 1 1 I O - 2 ] 4 F B [ ( ] 2 3 ) ) F y R p [ b ( 2 h 2 R 2 0 ) F l o . d r O o O t G ) ) f 5 2 4 1 9 0 a m o - r 2 ” 9 0 1 ) N ) ) ) 2 3 ) 2 3 1 1 . . l h 0 0 c ] T F ( ( ( 2 ( 2 ( ( o D ( 1 0 4 7 ) 2 4 n ( 6 2 9 4 2 5 9 3 4 2 7 8 4 0 . 6 3 6 9 3 . a o 9 z o h / 5 0 . K 1 4 1 5 7 5 5 9 n 7 4 m F R , 9 1 o e W [ 4 [ t 2 1 . . . 0 0 8 1 3 8 0 7 . 0 H ( 7 6 . . 1 3 3 5 . 7 0 0 6 C 2 9 4 2 0 6 0 0 P 9 M 5 1 1 1 1 l 1 1 r o f a t a D c a h O I N t s ) 0 ) 1 ) 3 i h p / ] 2 a ) ) ) r 2 9 4 G c 9 3 b F 4 1 ' 0 1 2 0 . . . ( F 3 1 ) 0 0 s 0 ( ( 1 ( ( e ( W [ i 8 4 8 ( l h B 5 7 3 2 9 1 u a E p m a r g o l l a t s y r C . 1 a 7 fl K 6 4 4 2 3 0 4 3 8 e 0 9 8 8 . 4 6 6 2 4 8 c [ s 0 . . 7 0 l 0 9 = . 4 5 6 3 o a 4 4 . 0 0 2 4 2 o . . . 9 . 7 C 9 2 9 9 5 m 4 M 5 0 0 0 0 4 1 1 1 2 t R n W e v ; l I O o F s I g Z / I n I i C d F g u I ‘ p u l o a o r a m g l / e e u g l m c e d b r , a A A A a T o w p , , , , 1 F a F 0 b c S l I c O n F I I I a Z 1 4 6 ( 7 b ) . [ R h 2 ( D T 0 1 F ) 2 ( b p Y ) 2 ( C H 3 C N ) ] [ B E L ( 8 8 ) , [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) ] [ B F , ] 2 - C H 3 C H 2 0 2 C H 2 C H 3 ~ 4 H Z O ( 9 ) , [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 ] 2 ( 1 0 ) 1 3 , d e g 1 , d e g V , A 3 Z T , K R a d i a t i o n b p c a l c a g / C I T I 3 p , c m ‘ 3 U n i q u e d a t a O b s d d a t a c R . . . ( R . . . ) d R . ( s z ) e G o F f - 4 — 1 1 4 6 . 4 2 P 2 l / n 1 0 . 9 3 3 9 ( 2 ) 7 b _ 1 . 1 1 1 . 1 3 1 fi l l C s o H o a B z F 4 N a O s h a 9 - k C 5 4 H 5 0 3 2 F 8 N 1 0 R h 2 1 1 3 2 . 4 1 P 2 , 2 , 2 1 9 . 6 9 3 9 ( 3 ) 3 8 . 7 6 6 0 ( 1 ) 1 3 . 7 9 3 8 ( 2 ) 9 0 9 0 9 0 1 0 5 3 0 . 8 ( 2 ) 8 1 7 3 M o K a 1 . 4 2 9 0 . 6 9 6 2 3 8 6 0 9 0 2 8 0 . 1 6 2 4 ( 0 . 2 8 3 1 ) n / a T a b l e 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 3 ] [ B F 4 1 2 ' O C ( C H 3 ) 2 ' H 2 0 ( 7 3 ) L E ( a ) B o n d s R h ( 1 ) - R h ( 2 ) 2 . 5 7 8 0 ( 5 ) R h ( 1 ) - N ( 9 ) 2 . 0 3 4 ( 4 ) R h ( 1 ) - N ( 4 ) 2 . 0 5 7 ( 4 ) R h ( 2 ) - N ( 1 ) 2 . 0 3 0 ( 4 ) R h ( 1 ) - N ( 5 ) 2 . 0 6 6 ( 4 ) R h ( 2 ) - N ( 2 ) 2 . 0 2 0 ( 4 ) R h ( 1 ) - N ( 6 ) 2 . 1 0 1 ( 4 ) R h ( 2 ) - N ( 3 ) 2 . 0 2 6 ( 4 ) R h ( l ) - N ( 7 ) 2 . 0 5 3 ( 4 ) R h ( 2 ) - N ( 8 ) 2 . 0 0 1 ( 4 ) ( b ) A n g l e s N ( 9 ) - R h ( 1 ) - N ( 7 ) 7 9 . 9 ( 2 ) N ( 9 ) - R h ( 1 ) - N ( 4 ) 9 5 . 3 ( 2 ) N ( 7 ) - R h ( l ) - N ( 4 ) l 7 4 . 1 9 ( 1 5 ) N ( 9 ) - R h ( l ) - N ( 5 ) 1 7 6 . 5 7 ( l 4 ) N ( 7 ) - R h ( 1 ) — N ( 5 ) 9 7 . 6 3 ( 1 4 ) N ( 4 ) - R h ( 1 ) - N ( 5 ) 8 7 . 0 1 ( 1 5 ) N ( 9 ) - R h ( 1 ) - N ( 6 ) 8 7 . 8 0 ( 1 5 ) N ( 7 ) - R h ( 1 ) — N ( 6 ) 8 8 . 6 2 ( 1 4 ) N ( 4 ) - R h ( 1 ) - N ( 6 ) 9 4 . 5 0 ( 1 4 ) N ( 5 ) - R h ( 1 ) - N ( 6 ) 9 4 . 5 7 ( 1 4 ) N ( 8 ) - R h ( 2 ) - N ( 2 ) 9 0 . 1 ( 2 ) N ( 8 ) - R h ( 2 ) - N ( 3 ) 1 7 4 . 2 8 ( 1 5 ) N ( 2 ) - R h ( 2 ) - N ( 3 ) 9 1 . 7 ( 2 ) N ( 8 ) - R h ( 2 ) - N ( 1 ) 8 8 . 1 ( 2 ) N ( 2 ) - R h ( 2 ) - N ( 1 ) 1 7 4 . 8 6 ( 1 5 ) N ( 3 ) - R h ( 2 ) - N ( 1 ) 8 9 . 6 ( 2 ) N ( 2 ) - C ( 4 0 ) - N ( 4 ) 1 2 4 . l ( 4 ) N ( 5 ) - C ( 4 4 ) - N ( 8 ) 1 2 3 . 2 ( 4 ) N ( 2 ) - R h ( 2 ) - R h ( 1 ) - N ( 4 ) 1 6 . 7 ( 2 ) N ( 6 ) - R h ( l ) - R h ( 2 ) 1 7 7 . 8 3 ( 1 0 ) N ( 5 ) - R h ( 1 ) - R h ( 2 ) - N ( 8 ) 1 3 . 2 8 ( 1 4 ) N ( 9 ) - C ( 2 9 ) - C ( 4 5 ) - N ( 7 ) 2 . 9 ( 6 ) 1 4 7 T a b l e 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r 1 R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 4 ] [ B F 4 1 2 ( 7 b ) ( a ) B o n d s R h ( 1 ) - R h ( 2 ) 2 6 3 ( 2 ) R h ( 2 ) - N ( 2 ) 2 . 2 1 ( 2 ) R h ( 1 ) - N ( 1 ) 2 . 3 1 5 ( 6 ) R h ( 2 ) - N ( 3 ) 2 0 4 ( 2 ) R h ( 1 ) - N ( 5 ) 2 . 0 3 3 ( 1 1 ) R h ( 2 ) - N ( 4 ) 2 0 4 ( 2 ) R h ( 1 ) — N ( 6 ) 2 . 0 2 0 ( 6 ) R h ( 2 ) - N ( 7 ) 2 0 5 ( 2 ) R h ( 1 ) - N ( 9 ) 2 . 0 3 0 ( 1 0 ) R h ( 2 ) - N ( 8 ) 2 0 6 ( 2 ) R h ( 1 ) - N ( 1 0 ) 2 . 0 4 7 ( 6 ) ( b ) A n g l e s R h ( 1 ) - N ( 1 ) - C ( 4 7 A ) 1 6 1 . 9 ( 2 6 ) R h ( 2 ) - N ( 2 ) - C ( 1 7 ) 1 7 3 . 9 ( 8 ) C ( 1 0 ) - N ( 1 0 ) - R h ( 1 ) 1 7 0 . 5 ( 6 ) C ( 3 2 ) - N ( 9 ) - R h ( 1 ) 1 7 5 . 0 ( 9 ) N ( 9 ) - R h ( 1 ) - N ( 6 ) 1 7 8 . 6 ( 3 ) N ( 9 ) - R h ( 1 ) - N ( 5 ) 9 2 . 9 ( 4 ) N ( 6 ) - R h ( 1 ) - N ( 1 0 ) 9 2 0 ( 2 ) N ( 9 ) - R h ( 1 ) - N ( 1 ) 8 5 . 5 ( 3 ) N ( 5 ) - R h ( 1 ) - N ( 1 0 ) 1 7 7 . 4 ( 3 ) N ( 5 ) - R h ( 1 ) - N ( 1 ) 9 3 . 1 ( 3 ) N ( 6 ) - R h ( 1 ) - N ( 1 ) 9 3 . 8 ( 2 ) N ( 4 ) - R h ( 2 ) - N ( 3 ) 8 7 . 8 ( 1 0 ) N ( 1 0 ) - R h ( l ) - N ( 1 ) 8 4 . 3 ( 2 ) N ( 3 ) - R h ( 2 ) - N ( 7 ) 9 6 . 4 ( 4 ) N ( 4 ) - R h ( 2 ) - N ( 7 ) 1 7 4 . 8 ( 1 4 ) N ( 3 ) - R h ( 2 ) - N ( 8 ) 1 7 5 . 3 ( 1 6 ) N ( 4 ) - R h ( 2 ) - N ( 8 ) 9 6 . 4 ( 3 ) N ( 4 ) - R h ( 2 ) - N ( 2 ) 9 9 . 1 ( 1 3 ) N ( 7 ) - R h ( 2 ) - N ( 8 ) 7 9 . 3 ( 9 ) N ( 7 ) - R h ( 2 ) - N ( 2 ) 8 3 . 6 ( 2 ) N ( 3 ) - R h ( 2 ) - N ( 2 ) 9 5 . 8 ( 1 1 ) N ( 4 ) - C ( 3 ) - N ( 5 ) 1 2 5 . 0 ( 1 4 ) N ( 3 ) - C ( 2 ) - N ( 6 ) 1 2 5 . 2 ( 6 ) N ( 2 ) — C ( l 7 ) - C ( 4 0 ) 1 7 8 . 0 ( 1 2 ) N ( l ) - C ( 4 7 A ) - C ( 4 8 A ) 1 6 2 . 0 ( 5 8 ) R h ( 1 ) - R h ( 2 ) - N ( 2 ) 1 7 7 . 8 ( 6 ) N ( 3 ) - R h ( 2 ) - R h ( 1 ) - N ( 6 ) 7 . 8 ( 6 ) N ( 4 ) - R h ( 2 ) - R h ( 1 ) - N ( 5 ) 8 . 5 ( 5 ) 1 4 8 T a b l e 4 . [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( C H 3 C N ) ] [ B F 4 1 2 ( 8 3 ) S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r R h ( 1 ) - R h ( 2 ) R h ( 1 ) - N ( 1 ) R h ( 1 ) - N ( 2 ) R h ( 1 ) - N ( 3 ) R h ( 1 ) - N ( 4 ) N ( 2 ) - R h ( 1 ) - N ( 3 ) N ( 3 ) - R h ( 1 ) - N ( 4 ) N ( 1 ) - R h ( 1 ) - N ( 3 ) N ( 6 ) - R h ( 2 ) - N ( 9 ) N ( 6 ) - R h ( 2 ) - N ( 8 ) N ( 8 ) - R h ( 2 ) - N ( 9 ) N ( 6 ) - R h ( 2 ) - N ( 7 ) N ( 5 ) - R h ( 2 ) - N ( 8 ) N ( 2 ) - C ( 3 3 ) - N ( 7 ) ( a ) B o n d s 2 . 5 8 2 0 ( 5 ) 2 . 0 4 2 ( 3 ) 2 . 0 2 3 ( 4 ) 2 . 0 3 2 ( 3 ) 2 . 0 3 2 ( 4 ) ( b ) A n g l e s 8 8 . 3 6 ( 1 4 ) 9 4 . 3 6 ( 1 4 ) 1 7 4 . 5 3 ( 1 4 ) 7 9 . 7 3 ( 1 5 ) 1 7 8 . 6 5 ( 1 5 ) 9 9 . 1 2 ( 1 4 ) 9 3 . 9 7 ( 1 5 ) 9 0 . 2 1 ( 1 5 ) 1 2 3 . 8 ( 4 ) N ( 3 ) - R h ( 1 ) - R h ( 2 ) - N ( 8 ) 1 8 . 1 2 ( 1 4 ) N ( 2 ) - R h ( 1 ) - R h ( 2 ) — N ( 7 ) 1 9 . 3 9 ( 1 4 ) N ( 1 ) - C ( 3 4 ) - C ( 3 1 ) - N ( 4 ) N ( 6 ) - C ( 2 1 ) - C ( 1 9 ) - N ( 9 ) 5 . 9 ( 6 ) 3 . 5 ( 6 ) 1 4 9 R h ( 1 ) - N ( 5 ) R h ( 2 ) - N ( 6 ) R h ( 2 ) - N ( 7 ) R h ( 2 ) - N ( 8 ) R h ( 2 ) - N ( 9 ) N ( 2 ) - R h ( 1 ) - N ( 4 ) N ( 1 ) - R h ( 1 ) - N ( 2 ) N ( 1 ) - R h ( 1 ) - N ( 4 ) N ( 7 ) - R h ( 2 ) - N ( 9 ) N ( 7 ) - R h ( 2 ) - N ( 8 ) N ( 5 ) - R h ( 2 ) - N ( 6 ) N ( 5 ) - R h ( 2 ) - N ( 9 ) N ( 5 ) - R h ( 2 ) - N ( 7 ) N ( 3 ) - C ( 4 3 ) - N ( 8 ) 2 . 1 1 5 ( 4 ) 2 . 0 3 7 ( 4 ) 2 . 0 7 6 ( 4 ) 2 . 0 6 4 ( 3 ) 2 . 0 4 7 ( 3 ) 1 7 4 . 2 0 0 4 ) 9 6 5 5 ( 1 5 ) 8 0 . 5 3 ( 1 4 ) 1 7 2 . 2 5 ( 1 4 ) 8 7 . 2 4 ( 1 4 ) 8 9 0 3 ( 1 4 ) 8 7 . 1 1 ( 1 4 ) 9 7 . 3 7 ( 1 5 ) 1 2 3 . 6 ( 4 ) T a b l e 5 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( H 2 0 ) ] [ 8 1 : 4 ] [ B P h 4 ] ' O C ( C H 3 ) 2 ' 3 C H 3 C H 2 0 2 C H 2 C H 3 ( 8 b ) R h ( 1 ) - R h ( 2 ) R h ( 1 ) - N ( 4 ) R h ( 1 ) - N ( 5 ) R h ( 1 ) - N ( 6 ) R h ( 1 ) — N ( 7 ) N ( 4 ) - R h ( 1 ) - N ( 5 ) N ( 5 ) - R h ( 1 ) - N ( 6 ) N ( 5 ) - R h ( 1 ) - N ( 7 ) N ( 4 ) - R h ( 1 ) - O ( 8 ) N ( 6 ) - R h ( 1 ) - O ( 8 ) N ( 8 ) - R h ( 2 ) - N ( 1 ) N ( 1 ) - R h ( 2 ) - N ( 2 ) N ( 3 ) - C ( 6 3 ) - N ( 7 ) ( a ) B o n d s 2 . 5 7 8 7 ( 1 2 ) 2 . 0 5 3 ( 8 ) 2 . 0 5 7 ( 9 ) 2 . 0 6 7 ( 9 ) 2 . 0 7 2 ( 8 ) ( b ) A n g l e s 8 0 . 1 ( 3 ) 1 7 7 . 9 ( 3 ) 9 5 . 4 ( 3 ) 8 4 . 7 ( 3 ) 9 5 . 0 ( 3 ) 9 3 . 3 ( 3 ) 8 0 . 7 ( 3 ) 1 2 3 . 3 ( 1 0 ) N ( 3 ) - R h ( 2 ) - R h ( l ) - N ( 7 ) 1 9 . 6 ( 3 ) N ( 6 ) - R h ( 1 ) - R h ( 2 ) - N ( 8 ) 1 6 . 9 ( 3 ) N ( 4 ) - C ( 7 4 ) - C ( 7 0 ) - N ( 5 ) N ( 1 ) - C ( 7 6 ) - C ( 6 1 ) - N ( 2 ) 3 . 0 ( 1 5 ) 3 . 9 ( 1 3 ) 1 5 0 R h ( 1 ) - O ( 8 ) R 1 1 0 - 1 1 8 ( 1 ) R h ( 2 ) - N 0 ) R h ( 2 ) - N ( 3 ) R 1 1 ( 2 ) - N ( 8 ) N ( 4 ) - R h ( 1 ) - N ( 6 ) N ( 4 ) - R h ( 1 ) - N ( 7 ) N ( 6 ) - R h ( 1 ) - N ( 7 ) N ( 5 ) - R h ( 1 ) - 0 ( 8 ) N ( 7 ) - R h ( 1 ) - 0 ( 8 ) N ( 8 ) - R h ( 2 ) - N ( 2 ) N ( 2 ) - R h ( 2 ) - N ( 3 ) N ( 6 ) - C ( 6 8 ) - N ( 8 ) 2 . 2 2 1 ( 8 ) 2 . 0 4 0 ( 8 ) 2 . 0 5 9 ( 9 ) 2 . 0 7 8 ( 9 ) 2 . 0 3 8 ( 8 ) ‘ - 9 7 . 9 ( 3 ) 1 7 4 . 8 ( 4 ) 8 6 . 6 ( 3 ) 8 5 . 3 ( 3 ) 9 7 . 7 ( 3 ) 1 7 3 . 7 ( 3 ) 9 6 . 7 ( 4 ) 1 2 3 . 7 ( 1 0 ) T a b l e 6 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d A n g l e s ( d e g ) f o r [ R h 2 ( D T o l F ) 2 ( p h e n ) ( C H 3 C N ) 3 ] [ B F 4 1 2 ( 9 ) ( a ) B o n d s R h ( 1 ) - R h ( 2 ) 2 . 5 8 0 4 ( 4 ) R h ( 1 ) - N ( 9 ) 2 . 1 2 6 ( 3 ) R h ( l ) - N ( 5 ) 2 . 0 5 4 ( 3 ) R h ( 2 ) - N ( 1 ) 2 . 0 1 5 ( 3 ) R h ( 1 ) - N ( 6 ) 2 . 0 6 0 ( 3 ) R h ( 2 ) - N ( 4 ) 2 . 0 2 9 ( 3 ) F ‘ R h ( 1 ) - N ( 8 ) 2 . 0 6 4 ( 3 ) R h ( 2 ) - N ( 3 ) 2 . 0 3 4 ( 3 ) 1 - R h ( 1 ) - N ( 7 ) 2 . 0 7 0 ( 3 ) R h ( 2 ) - N ( 2 ) 2 . 0 0 6 ( 3 ) 1 ( b ) A n g l e s N ( 5 ) - R h ( l ) - N ( 6 ) 8 0 . 8 6 ( 1 3 ) N ( 9 ) - R h ( 1 ) - N ( 6 ) 8 4 . 5 7 ( 1 2 ) N ( 5 ) - R h ( 1 ) - N ( 8 ) l 7 7 . 4 1 ( 1 3 ) N ( 9 ) - R h ( 1 ) - N ( 5 ) 8 8 . 5 6 ( 1 2 ) N ( 6 ) - R h ( l ) - N ( 8 ) 9 8 0 1 ( 1 3 ) N ( 8 ) - R h ( 1 ) - N ( 7 ) 8 7 . 3 6 ( 1 3 ) N ( 5 ) - R h ( 1 ) - N ( 7 ) 9 3 . 5 4 ( 1 3 ) N ( 7 ) - R h ( 1 ) — N ( 6 ) 1 7 2 . 2 0 ( 1 3 ) N ( 7 ) - R h ( 1 ) - N ( 9 ) 1 0 0 . 7 9 ( 1 3 ) N ( 8 ) - R h ( l ) - N ( 9 ) 9 3 . 6 6 ( 1 3 ) N ( 1 ) - R h ( 2 ) - N ( 2 ) 9 0 . 8 0 ( 1 3 ) N ( 2 ) - R h ( 2 ) - N ( 4 ) 1 7 5 . 6 3 ( 1 3 ) N ( l ) - R h ( 2 ) - N ( 4 ) 8 9 . 5 7 ( 1 3 ) N ( 2 ) - R h ( 2 ) - N ( 3 ) 9 0 . 7 9 ( 1 3 ) N ( 3 ) - R h ( 2 ) - N ( 1 ) 1 7 4 . 9 5 ( 1 3 ) N ( 3 ) - R h ( 2 ) - N ( 4 ) 8 8 . 4 8 ( 1 3 ) N ( 7 ) - C ( 1 7 ) - N ( 2 ) 1 2 3 . 5 ( 4 ) N ( 1 ) - C ( 3 0 ) - N ( 8 ) 1 2 3 . 5 ( 4 ) N ( 7 ) - R h ( 1 ) - R h ( 2 ) - N ( 2 ) 2 0 . 4 1 ( 1 3 ) N ( 9 ) - R h ( ] ) - R h ( 2 ) 1 7 3 . 9 7 ( 9 ) N ( 8 ) - R h ( 1 ) - R h ( 2 ) - N ( 1 ) 1 6 . 6 5 ( 1 3 ) N ( 5 ) - C ( 2 1 ) - C ( 3 3 ) - N ( 6 ) 1 . 4 ( 5 ) 1 5 1 T a b l e 7 . 1 H N M R S p e c t r o s c o p i c D a t a f o r 7 , 8 , 9 a n d 1 0 . c o m p o u n d l H N M R s p e c t r a , a p p m 7 [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 3 , 4 ] [ B F 4 1 2 7 [ h a ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 3 , 4 ] [ B F 4 1 2 8 [ R h 2 ( D T O I F ) 2 ( b P Y ) 2 ( C H 3 C N ) 2 ] [ B F 4 1 2 9 [ R h 2 ( D T 0 1 F ) 2 ( p h e n ) ( C H 3 C N ) 2 ] [ B F 4 1 2 1 0 [ R h 2 ( D T o 1 F ) 2 ( p h e n ) 2 ( C H 3 C N ) 2 ] [ B F 4 1 2 1 5 2 a c t e o n e - d 6 : 5 = 1 . 9 5 ( s , a x - C H 3 C N ) , 2 . 2 2 ( s , C H 3 ) , 2 . 2 5 ( s , e q - C H 3 C N ) , 6 . 9 5 ( m , P h ) , 7 . 7 5 ( d , b p y ) , 7 . 8 2 ( t , 3 1 1 1 1 . 1 1 = 4 H z , N - C H — N ) , 8 . 2 4 , ( d , b p y ) , 8 . 5 3 ( d 1 b p y ) , 9 - 0 5 ( d 1 b p y ) C D 3 C N : 6 = 1 . 9 5 ( s , a x - C H 3 C N ) , 2 . 2 3 ( s , C H 3 ) , 2 . 2 5 ( s , e q - C H 3 C N ) , 6 . 9 9 ( m , P h ) , 7 . 7 7 ( d , b p y ) , 7 . 8 3 ( t , 3 1 1 1 1 1 - 1 1 = 4 H z , N - C H — N ) , 8 . 2 4 ( d , b p y ) , 8 . 5 3 ( d , b p y ) , 9 . 0 6 ( d , b p y ) C D 3 C N : 5 = 2 . 0 8 ( s , a x - C H 3 C N ) , 2 . 2 3 ( s , C H 3 ) , 6 . 9 9 ( m , P h ) , 7 . 2 9 ( d , b p y ) , 7 . 7 9 ( d , b p y ) , 7 . 8 6 ( d , b p y ) , 8 . 1 7 ( t , 3 1 1 1 1 1 - 1 1 = 4 H z , N - C H - N ) , 8 . 3 8 ( d , b p y ) C D 3 C N : 5 = 1 . 9 5 ( s , a x - C H 3 C N ) , 2 . 2 5 ( s , C H 3 ) , 2 . 5 1 ( s , e q - C H 3 C N ) , 6 . 9 9 ( m , P h ) , 7 . 5 1 ( t , 3 1 1 1 1 1 - 1 1 = 4 H z , N - C H — N ) , 7 . 9 2 ( q , p h e n ) , 8 . 0 6 ( s , p h e n ) , 8 . 6 0 ( d , p h e n ) , 9 . 0 5 ( d , p h e n ) C D 3 C N : 8 = 1 . 9 5 ( s , a x - C H 3 C N ) , 2 . 2 4 ( s , C H 3 ) , 7 . 0 5 ( m , P h ) , 7 . 5 2 ( q , p h e n ) , 7 . 6 3 ( s , p h e n ) , 8 . 1 6 ( d , p h e n ) , 8 . 3 0 ( t , 3 1 “ , , “ = 4 H z , N - C H - N ) , 8 . 5 7 ( d , p h e n ) ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) L i s t o f R e f e r e n c e s ( 3 ) P r u c h n i k , F . ; D u s , D . J . I n o r g . B i o c h e m . 1 9 9 6 , 6 1 , 5 5 . ( b ) P r u c h n i k , F . P . ; K l u c z e w s k a , G . ; W i l c z o k , A . ; M a z u r e k , U . ; W i l c z o k ; J . I n o r g . B i o c h e m . 1 9 9 7 , 2 5 . ( a ) C o t t o n , F . A . ; W a l t o n , R . A . M u l t i p l e B o n d s B e t w e e n M e t a l A t o m s , 2 n d e d . ; O x f o r d P r e s s : N e w Y o r k , 1 9 9 3 a n d r e f e r e n c e s t h e r e i n . ( b ) F e l t h o u s e , T . R . P r o g . I n o r g . C h e m . 1 9 8 2 , 2 0 , 1 0 9 . ( c ) B o y e r , E . B . ; R o b i n s o n , 8 . D . C o o r d . C h e m . R e v . 1 9 8 3 , 5 0 , 1 0 9 . ( a ) C a t a l a n , K . V . ; M i n d i o l a , D . J . ; W a r d , D . L . ; D u n b a r , K . R . ; I n o r g . C h e m . 1 9 9 7 , 3 6 , 2 4 5 8 . ( b ) D u n b a r , K . R . ; M a t o n i c , J . H . ; S a h a r a n , V . P . , C r a w f o r d , C . A . ; C h r i s t o u , G . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 2 2 0 1 . ( c ) D a y , E . F . ; C r a w f o r d , C . A . ; F o l t i n g , K . ; D u n b a r , K . R . ; C h r i s t o u , G . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 9 3 3 9 . ( d ) C r a w f o r d , C . A . ; D a y , E . F . ; S a h a r a n , V . P . ; F o l t i n g , K . ; H u f f m a n , J . C . ; D u n b a r , K . R . ; C h r i s t o u , G . J . n e e d t o g e t I C . ( e ) C a t a l a n , K . V . ; D u n b a r , K . R . ; M i n d i o l a , D . J . ; M a l o n e y , M . ; W a r d , D . L . m a n u s c r i p t i n p r e p a r a t i o n . ( a ) F i m i a n i , V . ; A i n i s , T . ; C a v a l l a r o , A . ; P i r a i n o , P . J . C h e m o t h e r . 1 9 9 0 , 2 , 3 1 9 . ( c ) B e a r , J . L . ; G r a y , H . B . ; R a i n e n , L . ; C h a n g , I - M . ; H o w a r d , R . ; S e r i o , G . ; K i m b a l l , A . P . C a n c e r C h e m o t h e r . R e p . 1 9 7 5 , 5 9 , 6 1 1 . ( ( 1 ) B e a r , J . L . ; H o w a r d , R . A . ; D e n n i s , A . M . C u r r . C h e m o t h e r . P r o c . I n t . C o n g r e s s C h e m o t h e r . 1 0 t h M e e t i n g , 1 9 7 7 , v o l . 2 . ( e ) P r u c h n i k , F . P . ; K l u c z e w s k a , G . ; W i l c z o k , A . ; M a z u r e k , U . ; W i l c z o k , T . J . I n o r g . B i o c h e m . 1 9 9 6 , 6 1 , 2 5 . ( a ) C r a w f o r d , C . A . ; M a t o n i c , J . H . ; H u f f m a n , J . C . ; F o l t i n g , K . ; D u n b a r , K . R . ; C h r i s t o u , G . I n o r g . C h e m . 1 9 9 7 , 3 6 , 2 3 6 1 . ( b ) P e r l e p e s , S . P . ; H u f f m a n , J . C . ; M a t o n i c , J . H . ; D u n b a r , K . R . ; C h r i s t o u , G . J . J . A m . C h e m . S o c . 1 9 9 1 , 1 1 3 , 2 7 7 0 . ( c ) C r a w f o r d , C . A . ; M a t o n i c , J . H . ; S t r e i b , W . 1 3 . ; H u f f m a n , J . C . ; D u n b a r , K . R . ; C h r i s t o u , G . J . I n o r g . C h e m . 1 9 9 3 , 3 2 , 3 1 2 5 . S c h i a v o , S . L . ; S i n i c r o p i , M . S . ; T r e s o l d i , G , A r e n a , C . G . ; P i r a i n o , P . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 4 , 1 5 1 7 . P i r a i n o , P . ; B r u n o , G . ; T r e s o l d i , G . ; S c h i a v o , S . L . ; Z a n e l l o , P . I n o r g . C h e m . 1 9 8 7 , 2 6 , 9 1 . ( a ) B e a r , J . L . ; Y a o , C . - L . ; L i f s e y , R . S . ; K o r p , J . D . I n o r g . C h e m . 1 9 9 1 , 3 0 , 3 3 6 . ( b ) B r u n o , G . ; S c h i a v o , S . L . ; T r e s o l d i , 1 5 3 ( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) ( 1 3 ) G . P i r a i n o , P . I n o r g . C h i m . A c t a , 1 9 9 2 , 1 9 6 , 1 3 1 . ( c ) P i r a i n o , P . ; B r u n o , G . ; S c h i a v o , S . L . ; L a s c h i , F . ; Z a n e l l o , P . I n o r g . C h e m . 1 9 8 7 , 2 6 , 2 2 0 5 . C a l l i g a r i s , M . ; C a m p a n a , L . ; M e s t r o n i , G . ; T o m a t o r e , M . ; A l e s s i o , E . I n o r g . C h i m . A c t a , 1 9 8 7 , 1 2 7 , 1 0 3 . ( a ) S h e l d r i c k , G . S H E L X S - 9 7 , 1 9 9 0 . ( b ) S h e l d r i c k , G . S H E L X L - 9 7 . 1 9 9 7 . ( a ) T E X S A N - T E X R A Y S t r u c t u r e A n a l y s i s p a c k a g e , M o l e c u l a r S t r u c t u r e C o r p o r a t i o n , 1 9 8 5 . ( b ) S H E L X S - 8 6 : 1 9 8 6 . C r a w f o r d , C . A . ; D u n b a r , K . R . ; C h r i s t o u , G . u n p u b l i s h e d r e s u l t s . C a t a l a n , K . V . ; D u n b a r , K . R . ; M a l o n e y , M . M . ; M i n d i o l a , D . J . ; W a r d , D . L . m a n u s c r i p t i n p r e p a r a t i o n . # 4 7 1 1 O I i l a c - . 1 9 . ) “ 1 5 4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 , 7 . f ' m - . . \ l l o ‘ . ~ . ‘ M ‘ P » . fl m ; l > V " ’ . 5 ’ , . . . * . . . 1 - Q 5 5 ' ? ! ” . ' . I V ‘ A . ' H _ ' V A . " i t “ 3 5 1 2 1 ‘ . 4 4 “ ” : i “ 1 9 9 4 1 4 : , n . . V , “ 1 M 3 . " g - ‘ . 5 . y a ; x ' . . h - o . u : : . n . " . « 5 . . : - ‘ ~ . . ' " , , . " “ “ . . ' 1 ~ . . . } ! ~ ‘ . - L L ' { f L 3 . " . ' ' , y r ‘ s i “ ' ' ‘ , y . 3 J . : A n . m . ‘ « ‘ q L i a t fl s $ fi Q . v 5 g J . T q ’ m i ‘ 1 J " a i Q 1 a . ' fl m s { A ' \ t g € u w a n 1 . a - h W t fl 1 2 é ' 1 ; " c r 0 é 0 l “ “ z f i 3 fi 1 y } . 1 . a n r . - ' w " n a 6 t fi ' ; $ . 1 3 ; - , ‘ 7 q M - q " t % f r M ’ m Z i a - n . . . r £ 5 5 i : ' 2 a » L . o * 2 : o n . L 9 : 5 “ r t a g - 3 ' 2 ; , , ‘ 3 2 ? » 3 * u 0 5 ? w e e s - m ' 3 ' 9 ; a r “ g s g fi fl L L L f 3 ” 5 2 : ? m w w w n v L V , L - a L , . . A . . r g a } , . . . k . A 9 5 3 3 ” , V , L ~ n . . V ' 0 a . L L , u 4 . 5 3 4 fi r m ” . i n . . . » . ; . v . . u u ' . > L L - - v . 5 . . . l p n v fi n ' 0 > “ m a y . _ . « m a m a ” I . “ - 4 ‘ ' V A u m . . ‘ 4 , , v n u L h , s u p p — n « a . u “ 4 , , . . . V , . - . . . A . « a v - v , ' ‘ 3 # : n a q m n u n - ) - " 4 M r - w . w t ; ' ‘ ~ ‘ t " A s fi i g g u z fi ; _ . . ' . . . 1 A . 3 , 2 . ” n ‘ ‘ i p q ’ r ‘ é . a I! L .1 L c U S h n B v g é i R a e r A s n Y a R t S i t y E t e M i P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T o A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . M A Y B E R E C A L L E D w i t h e a r l i e r d u e d a t e i f r e q u e s t e d . D A T E D U E D A T E D U E D A T E D U E 6 / 0 1 c h l R C / D a t o O u e p e s - n m I n t e r a c t i o n s o f D i n u c l e a r T r a n s i t i o n M e t a l C o m p o u n d s w i t h D N A N u c l e o b a s e s a n d R e l a t e d N i t r o g e n D o n o r L i g a n d s V o l u m e I I B y K e m a l V . C a t a l a n A D i s s e r t a t i o n S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y I n p a r t i a l f u l fi l l m e n t o f t h e r e q u i r e m e n t s F o r t h e d e g r e e o f D O C T O R O F P H I L O S P H Y D e p a r t m e n t o f C h e m i s t r y 1 9 9 9 C h a p t e r I V T h e R e a c t i o n s o f D i r h o d i u m C a r b o x y l a t e C o m p o u n d s w i t h D N A 1 5 5 1 . I n t r o d u c t i o n T h e a n t i t u m o r d r u g c i s p l a t i n , c i s - [ P t C l z m H 3 ) 2 ] , i s o n e o f t h e l e a d i n g a n t i c a n c e r d r u g s u s e d i n t h e r o u t i n e t r e a t m e n t o f v a r i o u s d e a d l y c a n c e r s . 1 T h e r e i s a m p l e e v i d e n c e t h a t c i s p l a t i n i n h i b i t s D N A r e p l i c a t i o n b y f o r m i n g b i f u n c t i o n a l a d d u c t s w i t h D N A . E x t e n s i v e f o o t p r i n t i n g s t u d i e s s u p p o r t t h a t D N A i s t h e p r i m a r y t a r g e t w i t h r e g i o s e l e c t i v i t y b e i n g c o n t r o l l e d b y l o c a l s e q u e n c e s i n w h i c h 5 ’ - p G p G - 3 ’ a n d 5 ’ - p A p G - 3 ’ a r e f o u n d . T h e s e i n t r a s t r a n d a d d u c t s a c c o u n t f o r 6 5 % a n d 2 5 % , r e s p e c t i v e l y , o f D N A - c i s p l a t i n a d d u c t s f o r m e d . 2 S i n g l e c r y s t a l X - r a y c r y s t a l l o g r a p h y a n d h i g h r e s o l u t i o n N M R s p e c t r o s c o p y c o u p l e d w i t h m o l e c u l a r m e c h a n i c s s t u d i e s s u p p o r t t h e f o r m a t i o n a n d s t a b i l i t y o f t h e s e a d d u c t s i n t h e s o l i d - s t a t e a s w e l l a s i n s o l u t i o n . 3 T e n y e a r s a g o L i p p a r d a n d c o w o r k e r s c r y s t a l l i z e d t h e d i n u c l e o t i d e a d d u c t o f c i s - [ P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ] a n d d e t e r m i n e d i t s X - r a y s t r u c t u r e ( F i g u r e 1 ) . T h e m o l e c u l a r s t r u c t u r e o f t h i s p l a t i n a t e d c o m p l e x i s i n a g r e e m e n t w i t h t h e 1 H a n d 3 | P N M R s p e c t r o s c o p i c r e s u l t s , a n d r e l a t e d m o d e l i n g s t u d i e s . N a m e l y , t h e N 7 a t o m o f e a c h g u a n i n e i s c o o r d i n a t e d t o t h e P t c e n t e r w i t h e a c h p u r i n e i n t h e h e a d - t o - h e a d d i s p o s i t i o n , a s i n D N A . 4 T h e r i b o s e r i n g o f t h e 5 ’ n u c l e o s i d e i s i n t h e C 3 ’ - e n d o ( A D N A ) c o n f o r m a t i o n w h i l e t h e r i b o s e o f t h e 3 ’ n u c l e o s i d e r e m a i n s i n t h e C 2 ’ - e n d o 1 5 6 F i g u r e 1 . M o l e c u l a r s t r u c t u r e o f c i s - P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) . 3 1 5 7 c o n f o r m a t i o n o b s e r v e d i n B D N A . T h e d i h e d r a l a n g l e o f t h e g u a n i n e b a s e s i n t h e d i n u c l e o t i d e s t r u c t u r e a r e d e s t a c k e d a n d b e n t a w a y f r o m t h e h e l i c a l a x i s b y ~ 6 0 " . 4 C i s p l a t i n r e a c t i o n s w i t h s h o r t c h a i n o l i g o n u c l e o t i d e s h a v e a l s o b e e n p e r f o r m e d . F o r e x a m p l e , t h e N M R s o l u t i o n s t r u c t u r e o f t h e d o u b l e - s t r a n d e d ( d s ) s e l f — c o m p l i m e n t a r y D N A s e q u e n c e , 5 ’ - C A T A G C T A T G - 3 ’ c o o r d i n a t e d t o c i s p l a t i n s h o w s t h a t t h e t w o s t r a n d s a r e a c t u a l l y c r o s s l i n k e d b y t h e P t a t o m a t t h e G C : G C s i t e t h r o u g h t h e N 7 a t o m s o f t h e g u a n i n e b a s e s . F u r t h e r m o r e , t h e h e l i x i s u n w o u n d a n d b e n t t o w a r d t h e m i n o r g r o o v e a s a r e s u l t o f t h e i n t e r s t r a n d c r o s s - l i n k i n g . T h e r e s e a r c h e r s s u p p o r t e d t h e i r r e s u l t s w i t h a n i n d e p e n d e n t g e l e l e c t r o p h o r e s i s b e n d i n g a s s a y . 5 I n a n o t h e r s t u d y , R e e d i j k a n d c o w o r k e r s u s e d 1 H a n d 3 1 P N M R s p e c t r o s c o p y t o p r o b e t h e s o l u t i o n s t r u c t u r e o f t h e d e c a m e r , 5 ’ - T C T C G G T C T C - 3 ’ b o u n d t o c i s p l a t i n . 7 T h e c o m p l i m e n t a r y s t r a n d w a s a n n e a l e d t o t h e p l a t i n a t e d D N A , a n d s t u d i e d u n d e r t h e s a m e N M R e x p e r i m e n t a l c o n d i t i o n s . 7 T h i s s t u d y r e v e a l e d t h a t t h e b i n d i n g o f c i s - [ P t ( N H 3 ) 2 ] 2 + t o t h e i n t r a s t r a n d G G s i t e c a u s e s a n o v e r a l l d e s t a b i l i z a t i o n o f t h e d u p l e x a s d e t e r m i n e d b y t h e m e l t i n g p o i n t o f t h e D N A , w h i c h i s l o w e r e d b y 1 0 ° - — 2 0 ° f r o m t h e u n m e t a l l a t e d D N A . I n a d d i t i o n , R e e d i j k d e s c r i b e s t h e 1 5 8 s t r u c t u r e o f t h e p l a t i n a t e d D N A a s e x h i b i t i n g a k i n k o f t h e d o u b l e h e l i x b y 4 0 ° — 7 0 ° a s d e t e r m i n e d b y t h e c o l l e c t i v e N M R s t u d i e s . A v e r y s i m i l a r s t r u c t u r e t o t h e p l a t i n a t e d D N A p r o p o s e d b y R e e d i j k w a s o b s e r v e d i n t h e fi r s t X - r a y s t r u c t u r e o f a p l a t i n a t e d d o u b l e - s t r a n d e d D N A c o m p l e x . T h e c i s p l a t i n - D N A a d d u c t , d s [ c i s - P t ( N H 3 ) 2 { ( 5 ’ - C C T C T G * G * T C T C C - 3 ’ ) - ( 5 ’ - G G A G A C C A G A G G - 3 ’ ) } ] , ( G * d e s i g n a t e s t h e s i t e o f p l a t i n a t i o n ; d s s t a n d s f o r d o u b l e s t r a n d e d ) w a s r e c e n t l y p u b l i s h e d b y L i p p a r d a n d c o w o r k e r s ( F i g u r e 2 ) . ° M o d e l i n g s t u d i e s p r e d i c t t h a t c o o r d i n a t i o n o f P t t o D N A d e s t a c k s t h e b a s e s a n d b e n d s t h e D N A a w a y f r o m t h e h e l i c a l a x i s b y 3 9 ° — 5 5 ° . T h i s i s c o m p a r a b l e t o t h e 4 0 ° - 9 0 ° b e n d p r e d i c t e d b y g e l e l e c t r o p h o r e s i s , 1 H N M R s p e c t r o s c o p y a n d o t h e r m o d e l i n g s t u d i e s . 4 M o l e c u l a r m o d e l i n g s t u d i e s p e r f o r m e d i n o u r l a b o r a t o r i e s i n d i c a t e t h a t t h e m o d e l s o f s e v e r a l d i n u c l e o t i d e g u a n i n e a n d a d e n i n e a d d u c t s o f t h e [ R h 2 ( 0 2 C C H 3 ) 2 ] 2 + f r a g m e n t e x h i b i t i n t e r e s t i n g s t r u c t u r a l f e a t u r e s s i m i l a r t o t h o s e o f c i s p l a t i n ( F i g u r e 3 ) . ° T h e m a i n d i f f e r e n c e i n t h e s e a d d u c t s a s c o m p a r e d t o c i s p l a t i n i s t h a t t h e p u r i n e s b r i d g e t h e d i r h o d i u m c e n t e r s t h r o u g h t h e N 7 / N 6 ( O 6 ) p u r i n e p o s i t i o n s . I n o r d e r t o m a k e a c o m p a r i s o n b e t w e e n t h e d i r h o d i u m a n d c i s p l a t i n s t r u c t u r e s , t h e m o l e c u l e , c i s - [ P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ] , w a s m o d e l e d i n t h e s a m e p r o g r a m f r o m t h e 1 5 9 F i g u r e 2 . S t r u c t u r e o f a d o u b l e - s t r a n d e d D N A m o l e c u l e c o o r d i n a t e d t o c i s p l a t i n . 6 1 6 0 F i g u r e 3 . S t r u c t u r e o f R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) f r o m m o l e c u l a r m o d e l i n g s t u d i e s . 6 1 6 1 c o o r d i n a t e s o f t h e X - r a y c r y s t a l s t r u c t u r e r e p o r t e d b y L i p p a r d . O n e o f t h e s i m i l a r i t i e s o b s e r v e d i n t h e s t r u c t u r e s i s t h e c o n f o r m a t i o n a l c h a n g e i n t h e p u c k e r o f t h e r i b o s e r i n g i n t h e D N A b a c k b o n e , b u t a c c o r d i n g t o t h i s m o l e c u l a r m e c h a n i c s c a l c u l a t i o n , t h e d i f f e r e n c e b e t w e e n t h e e n e r g i e s o f t h e b a c k b o n e s o f c i s - [ R h 2 ( O z C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ] a n d c i s - [ P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ] i s o n l y 1 0 k c a l ( F i g u r e 4 ) . T h e p r o m i s i n g m o l e c u l a r m o d e l i n g r e s u l t s p r o m p t e d u s t o p e r f o r m r e a c t i o n s b e t w e e n t h i s d i n u c l e o t i d e a n d t h e d i r h o d i u m c a r b o x y l a t e c o m p o u n d s . T h e r e a c t i o n s b e t w e e n R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 ( 1 1 ) a n d [ R h 2 ( 0 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) a n d t h e 1 2 b p D N A , s s ( 5 ’ - C C T C T G * G * T C T C C - 3 ’ ) ( s i n g l e - s t r a n d e d G G - 1 2 m e r ) h a v e b e e n p e r f o r m e d . P r e l i m i n a r y e v i d e n c e o f a d o u b l e - s t r a n d e d D N A m o l e c u l e c o o r d i n a t e d t o t h e [ R h 2 ( 0 2 C C H 3 ) 2 ] 2 + c o r e w a s o b t a i n e d a n d w i l l b e d i s c u s s e d . 2 . E x p e r i m e n t a l S e c t i o n A . P h y s i c a l M e a s u r e m e n t s 1 H N M R s p e c t r o s c o p i c m e a s u r e m e n t s w e r e c o l l e c t e d i n c o l l a b o r a t i o n w i t h E l i z a b e t h L o z a d a , o n e i t h e r a 5 0 0 o r 6 0 0 M H z - V a r i a n S p e c t r o m e t e r . C h e m i c a l s h i f t s w e r e r e f e r e n c e d r e l a t i v e t o t h e r e s i d u a l p r o t o n i m p u r i t i e s o f t h e d e u t e r a t e d s o l v e n t s . E l e c t r o n i c a b s o r p t i o n s p e c t r a w e r e m e a s u r e d o n a 1 6 2 F i g u r e 4 . O v e r l a y o f t h e s u g a r - p h o s p h a t e b a c k b o n e s o f c i s - P t ( N H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) a n d R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) f r o m m o l e c u l a r m o d e l i n g s t u d i e s . 6 1 6 3 H i t a c h i U - 2 0 0 0 s p e c t r o p h o t o m e t e r . H P L C c h r o m a t o g r a p h y w a s p e r f o r m e d b y a n i o n i c e x c h a n g e u s i n g a P e r k i n E l m e r L C - 2 3 5 d i o d e a r r a y d e t e c t o r e q u i p p e d w i t h a 2 0 m L P h a r m a c i a S o u r c e Q 1 5 R e s i n c o l u m n . B . S y n t h e s i s i . S t a r t i n g M a t e r i a l s T h e c o m p o u n d s R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) a n d R h 2 ( D T o l F ) 2 ( 0 2 C C F 3 ) 2 ( H 2 0 ) 2 ( 3 ) a s w e l l a s t h e p a r t i a l l y s o l v a t e d c o m p o u n d [ R h 2 ( 0 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) w e r e p r e p a r e d a c c o r d i n g t o l i t e r a t u r e p r o c e d u r e s . 7 T h e w a t e r u s e d f o r t h e r e a c t i o n s w a s fi l t e r e d t h r o u g h a M i l l i p o r e M i l l i Q s y s t e m . T h e K + s a l t o f t h e D N A d i n u c l e o t i d e 5 ’ - G G - ‘ 3 w a s p u r c h a s e d f r o m O l i g o s E t c . , l y o p h i l i z e d w i t h H 2 0 , fi l t e r e d t h r o u g h a M i l l i p o r e U l t r a f r e e - M C c e n t r i f u g a l u n i t ( 0 . 4 5 p ) a n d s t o r e d a t 1 3 ° C u n t i l u s e . C h e l e x - I O O r e s i n w a s p u r c h a s e d f r o m B i o r a d . S e p h a d e x G - 1 0 a n d G - 2 5 w e r e p u r c h a s e d f r o m S i g m a . T h e S e p h a d e x c o l u m n s w e r e p r e p a r e d b y fi r s t s w e l l i n g t h e g e l i n w a t e r , a n d t h e n p o u r i n g i n t o t h e c o l u m n . T h e c o l u m n w a s r i n s e d w i t h l a r g e q u a n t i t i e s o f w a t e r u n t i l t h e g e l w a s fi r m l y p a c k e d . T h e D N A f o r t h e r e a c t i o n s w i t h R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) w a s t r e a t e d w i t h t h e f o l l o w i n g p r o t o c o l . A f t e r fi l t r a t i o n t h r o u g h a M i l l i p o r e U l t r a f r e e - M C c e n t r i f u g a l u n i t ( 0 . 4 5 p ) , t h e s i n g l e s t r a n d o l i g o n u c l e o t i d e , 5 ’ - I 6 4 , " 0 “ A . " o \ 5 “ I . . . a . “ C C T C T G G T C T C C - 3 ’ w a s t r e a t e d w i t h C h e l e x - 1 0 0 r e s i n i n a 1 0 m L T e fl o n c o l u m n t o r e m o v e a n y d i - c a t i o n s f r o m t h e s o l u t i o n . N e x t , t h e G G - 1 2 m e r w a s d e s a l t e d b y g e l c h r o m a t o g r a p h y o n a 7 0 c m x 1 . 5 c m G - 1 0 o r G - 2 5 S e p h a d e x c o l u m n . A f t e r t h e D N A w a s l y o p h i l i z e d , i t w a s d i s s o l v e d i n 1 2 2 u L H 2 0 f o r u s e . T h e c o m p l i m e n t a r y s t r a n d , 5 ’ - G G A G A C C A G A G G - 3 ’ w a s p u r i fi e d b y a n i o n i c e x c h a n g e H P L C c h r o m a t o g r a p h y , t r e a t e d w i t h C h e l e x - 1 0 0 r e s i n , a n d d e s a l t e d b y t h e s a m e p r o c e d u r e u s e d f o r t h e G G - 1 2 m e r . i i . R e a c t i o n P r o c e d u r e s ( 1 ) R e a c t i o n o f R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) w i t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e . A 1 6 2 u L a l i q u o t o f a n a q u e o u s s o l u t i o n o f ( 1 1 ) ( 2 m g , 4 . 1 8 u m o l , 1 m L ) w a s a d d e d t o a 2 m L a q u e o u s s o l u t i o n o f t h e 5 ’ - p G p G - 3 ’ ( 0 . 4 5 m g , 0 . 6 8 u m o l ) . T h e i n i t i a l p H w a s m e a s u r e d t o b e ~ 5 b y c r u d e m e a s u r e m e n t u s i n g p H i n d i c a t o r p a p e r . T h e m i x t u r e w a s a l l o w e d t o s t i r a t r . t . f o r 1 2 h . T h e b l u e - g r e e n c o l o r o f t h e m i x t u r e d i d n o t c h a n g e , b u t t h e p H i n c r e a s e d t o 6 . T h e s o l v e n t w a s l y o p h i l i z e d r e p e a t e d l y w i t h D 2 0 , a n d t h e s a m p l e fi l t e r e d t h r o u g h a M i l l i p o r e fi l t e r u n i t b e f o r e o b t a i n i n g t h e 1 H N M R s p e c t r u m . ( 2 ) R e a c t i o n o f [ R h 2 ( 0 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B E L ] ; ( 1 2 ) w i t h 5 ’ - p G p G — 3 ’ . A n a m o u n t o f c o m p o u n d ( 1 2 ) ( 2 . 2 m g , 3 . 4 9 u m o l ) w a s d i s s o l v e d i n H 2 0 ( 2 0 0 u L ) . A s o l u t i o n o f 5 ’ - p G p G - 3 ’ ( 1 u m o l , 3 0 0 u L ) w a s a d d e d t o t h e P u r p l e d i r h o d i u m s o l u t i o n . T h e 5 0 0 u L r e a c t i o n m i x t u r e w a s s e p a r a t e d i n t o 1 6 5 t w o e q u a l p o r t i o n s a n d t h e o r i g i n a l r e a c t i o n v e s s e l r i n s e d w i t h H 2 0 ( 2 x 5 u L ) t o g i v e a t o t a l o f t w o 2 6 0 u L r e a c t i o n m i x t u r e s . E a c h m i x t u r e w a s h e a t e d a t 7 0 ° C i n a t h e r m a l c y c l e f o r 5 0 h , d u r i n g w h i c h t i m e t h e c o l o r o f t h e m i x t u r e b e c a m e g r e e n . A n i o n i c e x c h a n g e H P L C c h r o m a t o g r a p h y w a s u s e d t o c h a r a c t e r i z e t h e p r o d u c t s . ( 3 ) R e a c t i o n o f R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( H 2 0 ) 2 ( 3 ) w i t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e ( 1 4 ) A n a m o u n t o f 5 ’ - p G p G - 3 ’ ( 0 . 4 5 m g , 0 . 6 8 u m o l ) w a s d i s s o l v e d i n H 2 0 ( 6 0 0 u L ) a n d a n a l i q u o t o f R h 2 ( D T o 1 F ) 2 ( 0 2 C C F 3 ) 2 ( H 2 0 ) 2 ( 3 ) i n C H 3 C N ( 6 2 . 4 u L , 1 0 . 9 u M ) w a s a d d e d . A n i m m e d i a t e p r e c i p i t a t i o n o f a n o r a n g e - r e d s o l i d o c c u r r e d w h i c h i s p r e s u m a b l y t h e s t a r t i n g m a t e r i a l . T h e s o l i d w a s r e d i s s o l v e d u p o n t h e a d d i t i o n o f 2 0 0 u L a c e t o n i t r i l e w i t h h e a t i n g t o 7 0 ° C , b u t p r o b l e m s w i t h p r e c i p i t a t i o n c o n t i n u e d . T h e s o l v e n t w a s e v a p o r a t e d u n d e r r e d u c e d p r e s s u r e , a n d t h e r e s i d u e r e d i s s o l v e d i n D M S O a n d H 2 0 ( 2 0 u L a n d 8 0 u L , r e s p e c t i v e l y ) w i t h h e a t i n g t o 7 0 ° C . I n t h i s m a n n e r , a r e a c t i o n w a s e f f e c t e d a n d t h e p r o d u c t w a s s u b j e c t e d t o H P L C c h r o m a t o g r a p h y . 1 6 6 ( 4 ) R e a c t i o n o f R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) w i t h 5 ’ - C C T C T G G T C T C C - 3 ’ ( G G - l Z m e r ) A n a m o u n t o f R h 2 ( O A c ) 4 ( H 2 0 ) 2 ( 1 1 ) ( 0 . 9 0 u m o l , 4 2 8 u L , 2 0 9 2 u M ) w a s a d d e d t o a 1 . 5 m L m i c r o t u b e c o n t a i n i n g t h e G G - l 2 m e r ( 0 . 8 9 u m o l , 1 6 2 u L ) w h i c h e f f e c t e d a c o l o r c h a n g e f r o m b l u e - g r e e n t o p i n k . T h e r e a c t i o n m i x t u r e w a s h e a t e d a t 7 0 ° C f o r 1 6 h i n a t h e r m o c y c l e , t h e n c o o l e d t o r o o m t e m p e r a t u r e . D u r i n g t h i s t i m e t h e c o l o r o f t h e r e a c t i o n s o l u t i o n h a d t u r n e d g r e e n . T h e p r o d u c t w a s p u r i fi e d ' b y a n i o n e x c h a n g e H P L C c h r o m a t o g r a p h y , t r e a t e d w i t h C h e l e x - 1 0 0 r e s i n a n d d e s a l t e d o n a G - 2 5 S e p h a d e x c o l u m n . T h e c o m p l i m e n t a r y s t r a n d ( 1 u m o l , 2 0 0 u L ) w a s a d d e d , t h e m i x t u r e w a s p l a c e d i n t h e r e f r i g e r a t o r a t 1 3 ° C f o r 2 4 h a n d t h e n fi l t e r e d t h r o u g h a C e n t r i c o n — 3 . T h e w a t e r w a s e v a p o r a t e d u n d e r r e d u c e d p r e s s u r e , a n d t h e r e s i d u e r e d i s s o l v e d i n 4 0 0 u L H 2 0 . U V - v i s s p e c t r o s c o p y i n d i c a t e d t h a t ~ 5 . 2 m g o f p r o d u c t w a s c o l l e c t e d . ( 5 ) R e a c t i o n o f [ h a ( O z C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B E L ] ; ( 1 2 ) w i t h t h e G G - l Z m e r t o p r e p a r e d s [ R h 2 ( O z C C H 3 ) 2 ( G G - 1 2 m e r - C C - 1 2 m e r ) ( H 2 0 ) 2 ] ( 1 6 ) A n a m o u n t o f [ R h 2 ( O z C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) ( 1 . 2 m g , 1 . 9 u m o l ) w a s d i s s o l v e d i n 1 0 0 u L o f H 2 0 , a n d fi l t e r e d t h r o u g h a M i l l i p o r e U l t r a f r e e - M C c e n t r i f u g a l u n i t ( 0 . 4 5 p ) . A s o l u t i o n o f t h e G G - 1 2 m e r ( 1 l i m o ] , 5 0 0 1 1 1 ) w a s a d d e d t o t h e p u r p l e d i r h o d i u m s o l u t i o n . T h e c o l o r 1 6 7 i m m e d i a t e l y c h a n g e d f r o m p u r p l e t o o r a n g e . A 1 u L a l i q u o t o f t h e o r a n g e m i x t u r e w a s c h r o m a t o g r a p h e d b y a n i o n i c e x c h a n g e H P L C c h r o m a t o g r a p h y . T h e r e m a i n i n g r e a c t i o n m i x t u r e w a s h e a t e d a t 7 0 ° C f o r 5 0 h d u r i n g w h i c h t i m e a l i q u o t s f r o m t h e r e a c t i o n m i x t u r e w e r e p e r i o d i c a l l y a n a l y z e d b y a n i o n e x c h a n g e H P L C c h r o m a t o g r a p h y . T h e c o m p l i m e n t a r y s t r a n d , t h e C C - 1 2 m e r , w a s a d d e d a f t e r t r e a t i n g b o t h c o m p o u n d ( 1 5 ) a n d t h e C C - 1 2 m e r w i t h C h e l e x - 1 0 0 r e s i n , a n d d e s a l t i n g o n a S e p h a d e x G - 2 5 c o l u m n ( 7 5 c m x 1 . 5 c m ) . T h e d o u b l e - s t r a n d p r o d u c t , d s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r - C C - 1 2 m e r ) ( H 2 0 ) 2 ] ( 1 6 ) , w a s fi l t e r e d t h r o u g h a C e n t r i c o n - 3 t o r e m o v e a n y s i n g l e - s t r a n d i m p u r i t i e s . i i i . H i g h P e r f o r m a n c e L i q u i d C o l u m n C h r o m a t o g r a p h y ( H P L C ) . ( 1 ) H P L C c h r o m a t o g r a p h y f o r 5 ’ - p G p G - 3 ’ a n d R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) 2 ( 1 3 ) w a s p e r f o r m e d u s i n g t h e f o l l o w i n g p r o t o c o l a n d a 2 0 0 u L s a m p l e l o o p . I L . ; E ! L I Z ° L ° E E ° E E 8 0 . 7 5 1 0 0 0 2 0 0 . 7 5 5 5 4 5 3 0 0 . 7 5 1 0 9 0 1 0 0 . 7 5 O 1 0 0 1 6 8 ( 2 ) T h e H P L C p r o t o c o l u s e d f o r t h e s e p a r a t i o n s o f t h e G G - 1 2 m e r , C C - 1 2 m e r a n d R h 2 ( O z C C H 3 ) 2 ( G G - 1 2 m e r ) ( H z O ) 2 ( 1 5 ) i s p r e s e n t e d i n t h e f o l l o w i n g t a b l e . T i m e ( m i n ) F l o w ( m L / m i n ) % A % B 5 4 . 0 7 0 3 0 6 0 4 . 0 6 5 3 5 5 4 . 0 0 1 0 0 5 4 . 0 1 0 0 0 2 . R e s u l t s a n d D i s c u s s i o n A . R e a c t i o n o f R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) w i t h t h e 5 ’ - p G p G — 3 ’ D i n u c l e o t i d e S y n t h e s i s . N u m e r o u s s t u d i e s h a v e b e e n p e r f o r m e d t o o b t a i n s t r u c t u r a l i n f o r m a t i o n a b o u t t h e r e a c t i o n p r o d u c t s o f c i s p l a t i n w i t h D N A , b u t n o s u c h i n v e s t i g a t i o n s i n v o l v i n g d i r h o d i u m c o m p o u n d s h a v e b e e n p e r f o r m e d . W h e n w e e m b a r k e d o n t h e s e s t u d i e s w e w e r e s u r p r i s e d t o l e a r n t h a t t h e d i n u c l e o t i d e s t a r t i n g m a t e r i a l s a r e n o t e a s i l y o b t a i n e d , e s p e c i a l l y i n t h e p u r i fi e d q u a n t i t i e s n e e d e d i n o r d e r t o p e r f o r m r e a c t i o n s a n d s t r u c t u r a l c h a r a c t e r i z a t i o n . T h e 5 ’ - p G p G - 3 ’ o b t a i n e d f r o m O l i g o s E t c . c o n t a i n e d a 1 6 9 m o n o n u c l e o t i d e ( p G ) i m p u r i t y ( s e e 1 H N M R s e c t i o n b e l o w ) . A t t e m p t s t o p u r i f y t h e d i n u c l e o t i d e w e r e u n s u c c e s s f u l , t h u s w e s e t o u t t o p e r f o r m t h e r e a c t i o n i n t h e h o p e s t h a t p u r i fi c a t i o n o f t h e p r o d u c t s w o u l d b e p o s s i b l e . T h e p r o d u c t s t h a t w e r e o b t a i n e d f r o m t h e r e a c t i o n o f a 1 : 1 r a t i o o f R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) a n d 5 ’ - p G p G - 3 ’ t h a t c o n t a i n s t h e m o n o n u c l e o t i d e i m p u r i t y a r e d e p i c t e d i n F i g u r e 5 . I t i s r e a s o n a b l e t o e x p e c t t h a t c o m p o u n d ( 1 1 ) w i l l r e a c t w i t h t h e d i n u c l e o t i d e t o f o r m h e a d - t o - h e a d a n d h e a d - t o - t a i l i s o m e r s . T h e h e a d - t o - t a i l i s o m e r o f t h e d i n u c l e o t i d e p r o d u c t , R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) 2 ( 1 3 ) , i s p o s s i b l e s i n c e i t i s k n o w n t h a t f r e e r o t a t i o n a b o u t t h e g l y c o s i d i c b o n d a l l o w s t h e g u a n i n e b a s e s i n D N A t o b e s t a b l e i n t h e s y n c o n f o r m a t i o n ( F i g u r e 6 ) . 8 T w o m o r e p o s s i b l e p r o d u c t s a r e t h e h e a d - t o - h e a d a n d h e a d - t o - t a i l i s o m e r s o f t h e b i s - d i n u c l e o t i d e f o r m e d f r o m t h e r e a c t i o n o f t h e R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 ( 1 1 ) a n d t w o e q u i v a l e n t s o f t h e m o n o n u c l e o t i d e i m p u r i t y , g u a n o s i n e m o n o p h o s p h a t e . U n f o r t u n a t e l y , i t w a s n o t p o s s i b l e t o p u r i f y t h e s a m p l e d u e t o t h e l o w c o n c e n t r a t i o n o f t h e s a m p l e . T y p i c a l c o n c e n t r a t i o n s o f D N A d i - a n d t r i n u c l e o t i d e s o l u t i o n s s t u d i e d b y L i p p a r d a n d o t h e r s i n t h e fi e l d a r e a n o r d e r o f m a g n i t u d e g r e a t e r t h a n t h e a m o u n t s u s e d i n t h e p r e s e n t s t u d y . " ’ 9 ( 1 ) H P L C C h r o m a t o g r a p h y o f 5 ’ - p G p G - 3 ’ . T h e c h r o m a t o g r a m o f t h e f r e e d i n u c l e o t i d e i n i t i a l l y r e v e a l e d t h a t t h e D N A s t a r t i n g m a t e r i a l w a s 1 7 0 N m m : \ > H / i “ N H z H O C H 2 H O C H : H O H H O H H I { O H H s y n g u a n o s i n e a n t i g u a n o s i n e F i g u r e 6 . R o t a t i o n a r o u n d t h e N - g l y c o s i d i c b o n d o f g u a n o s i n e . 1 7 1 i m p u r e ( F i g u r e 7 ) . A t t e m p t s t o p u r i f y t h e d i n u c l e o t i d e w e r e p e r f o r m e d b y H P L C , a n d a p r o d u c t t h a t e l u t e d a t 2 8 m i n u t e s w a s c o l l e c t e d . N o a t t e m p t s w e r e m a d e t o c o l l e c t o t h e r a l i q u o t s . A f t e r H P L C c h r o m a t o g r a p h y , w e a t t e m p t e d t o r e m o v e t h e s a l t s , N 3 0 2 C C H 3 a n d K C ] d u r i n g t h e p u r i fi c a t i o n , b u t d e s a l t i n g o n a G - 1 0 S e p h a d e x c o l u m n f a i l e d t o y i e l d g o o d s e p a r a t i o n s s i n c e t h e d i n u c l e o t i d e e l u t e s a t a p p r o x i m a t e l y t h e s a m e r a t e . ( 2 ) 1 H N M R S p e c t r o s c o p i c S t u d i e s o f 5 ’ - p G p G - 3 ’ a n d [ R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) z ( 1 3 ) . T h e 1 H N M R s p e c t r u m o f t h e f r e e d i n u c l e o t i d e i s i n a c c o r d w i t h t h e c h r o m a t o g r a m s h o w n i n F i g u r e 7 ( F i g u r e 8 ) . T h e 1 H N M R s p e c t r u m e x h i b i t s t w o H 8 r e s o n a n c e s i n a 1 : 2 r a t i o . T h e r e s o n a n c e a t 7 . 9 0 p p m c a n b e a t t r i b u t e d t o t h e t w o H 8 p r o t o n s o f t h e d i n u c l e o t i d e w h i l e t h e r e s o n a n c e a t 7 . 8 0 p p m i s a s s i g n e d t o t h e H 8 r e s o n a n c e o f t h e m o n o n u c l e o t i d e . T h e s a m p l e w a s t o o i m p u r e t o m a k e d e fi n i t i v e a s s i g n m e n t s o f t h e s u g a r p r o t o n s . T h e a t t e m p t e d p u r i fi c a t i o n o f t h e d i n u c l e o t i d e , w h i c h i n v o l v e d n u m e r o u s m a n i p u l a t i o n s , o n l y s e r v e d t o m a k e t h e s a m p l e m o r e i m p u r e . T h e s p e c t r u m d e p i c t e d i n F i g u r e 9 s u p p o r t s t h e c o n c l u s i o n t h a t i m p u r i t i e s w e r e i n t r o d u c e d i n t o t h e s a m p l e . T h e 1 H N M R s p e c t r u m o f t h e p r o d u c t s o b t a i n e d f r o m t h e r e a c t i o n b e t w e e n ( 1 1 ) a n d t h e i m p u r e d i n u c l e o t i d e s u g g e s t s t h a t t h e r e a r e c o m p e t i n g r e a c t i o n s ( F i g u r e 1 0 ) . T h e m o s t n o t a b l e f e a t u r e o f t h e N M R s p e c t r u m i s a 1 7 2 F l a p / L a 3 2 5 n m , 0 . 0 2 A U 2 8 m i n 2 6 0 n m , 1 . 0 A U 8 m i n 4 6 m i n | N | + v 0 4 2 4 5 4 5 6 t i m e ( m i n ) F i g u r e 7 . H P L C c h r o m a t o g r a m o f 5 ’ - p G p G - 3 ’ . 1 7 3 m P P . 0 2 D n i ’ 3 - G p G p - ’ 5 f o m u r t c e p s R M N H ' . 8 e r u g i F 1 7 4 1 1 1 1 ] l , l I I D I I I T I I I I I I I I I I I I I I I I 9 8 7 6 5 p p m F i g u r e 9 . 1 H N M R s p e c t r u m i n D 2 0 d e p i c t i n g t h e H 8 r e g i o n o f 5 ’ - p G p G - 3 ’ a f t e r H P L C p u r i fi c a t i o n . 1 7 5 H 8 p r o t o n s J 2 O p p m F i g u r e 1 0 . 1 H N M R s p e c t r u m o f t h e p r o d u c t s f r o m t h e r e a c t i o n o f ( 1 l ) w i t h i m p u r e 5 ’ - p G p G - 3 ’ . S p e c t r u m o b t a i n e d i n D 2 0 u s i n g t h e b i n o m i a l w a t e r s u p p r e s s i o n t e c h n i q u e a t 1 0 ° C 1 7 6 r e s o n a n c e a t t r i b u t a b l e t o a n a c e t a t e p r o t o n . W h e t h e r o r n o t t h i s r e s o n a n c e c a n b e a s s i g n e d a s a c o o r d i n a t e d a c e t a t e l i g a n d w a s n o t d e t e r m i n e d . T h e H 8 r e g i o n e x h i b i t e d t h r e e s i n g l e t s a t ~ 7 . 0 p p m . T h e s e r e s o n a n c e s a r e s h i f t e d ~ 1 p p m u p fi e l d f r o m t h e H 8 r e s o n a n c e s i n t h e u n r e a c t e d s a m p l e . P r e v i o u s r e a c t i o n s w i t h t h e m o d i fi e d g u a n i n e b a s e , 9 - e t h y l g u a n i n e , i n d i c a t e t h a t a d o w n fi e l d s h i f t o f t h e H 8 p r o t o n i s e x p e c t e d i n t h e 1 H N M R s p e c t r u m . B . R e a c t i o n o f [ R h 2 ( O z C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B E L ] ; ( 1 2 ) w i t h 5 ’ - p G p G - 3 ’ D i n u c l e o t i d e ( 1 3 ) ( 1 ) S y n t h e s i s . T h e s t r a t e g y o f s o l v a t i n g t h e c i s - P t C 1 2 ( N H 3 ) 2 b y r e m o v i n g t h e c h l o r i d e a t o m s i s o f t e n u s e d i n c i s p l a t i n D N A c h e m i s t r y t o r e n d e r t h e c o m p o u n d m o r e r e a c t i v e . I n t h i s v e i n , b y s t a r t i n g w i t h t h e s o l v a t e d c a t i o n ( 1 2 ) , o n e e l i m i n a t e s t h e n e e d t o d i s p l a c e t w o o f t h e a c e t a t e l i g a n d s i n s i t u t o g i v e t h e t h e p r o d u c t , [ R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) 2 ( 1 3 ) ( F i g u r e 1 1 ) . I t i s e x p e c t e d t h a t t h e r e a c t i o n b e t w e e n c o m p o u n d ( 1 2 ) a n d t h e i m p u r e d i n u c l e o t i d e w i l l f o r m t h e s a m e p r o d u c t s a s t h e r e a c t i o n w i t h c o m p o u n d ( 1 l ) . ( 2 ) H P L C C h r o m a t o g r a p h y . A n a l i q u o t ( 5 u L ) f r o m t h e r e a c t i o n w a s d i l u t e d t o 1 0 0 m L a n d c h r o m a t o g r a p h e d b y a n i o n e x c h a n g e H P L C c h r o m a t o g r a p h y . T h e c h r o m a t o g r a m d e p i c t e d i n F i g u r e 1 2 s u g g e s t s t h a t 8 0 % - 9 0 % o f t h e d i r h o d i u m c o m p o u n d i s a s s o c i a t e d w i t h t h e d i n u c l e o t i d e . 1 7 7 H M 3 2 5 n m , 0 . 1 A U 2 6 0 n m , 1 . 0 A U 6 m i n I v I “ o 4 2 4 5 4 6 4 8 2 t i m e ( m i n ) F i g u r e 1 2 . H P L C c h r o m a t o g r a m R h 2 ( 0 2 C C H 3 ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) 2 ( 1 3 ) . 1 7 8 T h e fi r s t p e a k e l u t e s a t 6 . 0 m i n u t e s , a n d i s p r o b a b l y a m i x t u r e o f d i f f e r e n t i s o m e r s . S i n c e t h e c h a r g e o n e a c h i s o m e r s i s t h e s a m e , s e p a r a t i o n b y a n i o n e x c h a n g e i s n o t p o s s i b l e . W e w e r e a b l e t o d e t e r m i n e t h a t t h e d i r h o d i u m c a t i o n i s a s s o c i a t e d w i t h t h e s m a l l s e g m e n t o f D N A f r o m t h e c h r o m a t o g r a m b y m e a s u r i n g t h e a b s o r b a n c e i n t h e r a n g e o f 3 2 5 i 1 5 n m ( F i g u r e 1 2 ) . T h e d i c a t i o n , [ R h 2 ( 0 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] 2 + ( l 2 ) , e x h i b i t s a v e r y w e a k e l e c t r o n i c t r a n s i t i o n a t 3 6 4 n m i n w a t e r . D u r i n g t h e H P L C p u r i fi c a t i o n , t h e a b s o r p t i o n a t 3 6 4 n m w a s s c a n n e d s i m u l t a n e o u s l y w i t h t h e D N A a b s o r p t i o n a t 2 6 0 n m . W e c a n r u l e o u t t h a t t h e p e a k t h a t e l u t e s o f t h e c o l u m n a t 6 . 0 m i n u t e s i s u n r e a c t e d c o m p o u n d ( 1 2 ) s i n c e d i c a t i o n s w o u l d n o t b i n d t o t h e a n i o n i c - e x c h a n g e r e s i n o f t h e c o l u m n . C . R e a c t i o n o f R h 2 ( D T o l F ) z ( O z C C F 3 ) 2 ( H 2 0 ) 2 ( 3 ) w i t h S ’ - p G p G — 3 ’ D i n u c l e o t i d e t o f o r m [ R h 2 ( D T 0 1 F ) 2 ( 5 ’ - p G p G - 3 ’ ) ( H 2 0 ) 2 ( 1 4 ) ( 1 ) S y n t h e s i s . T h i s r e a c t i o n w a s fi r s t a t t e m p t e d w i t h a 1 : 1 r a t i o o f c o m p o u n d ( 3 ) a n d t h e d i n u c l e o t i d e i n 6 0 0 u L o f D 2 0 . A l t h o u g h c o m p o u n d ( 3 ) i s a b i s - w a t e r a d d u c t , i t i s i n s o l u b l e i n w a t e r e v e n w i t h h e a t i n g . T h e r e a c t i o n w a s a l s o a t t e m p t e d i n C D 3 C N a n d D Z O / C H 3 C N , b u t t h e r e s u l t s w e r e t h e s a m e . T h i s l e d u s t o i n v e s t i g a t e t h e m e t h o d s e m p l o y e d b y P i r a i n o a n d c o w o r k e r s f o r b i o l o g i c a l r e a c t i o n s o f t h e s a m e c o m p o u n d . 1 0 P i r a i n o r e p o r t e d t h a t t h e i n v i v o a n d i n v i t r o r e a c t i o n s w e r e p e r f o r m e d i n a 1 7 9 w a t e r / D M S O m i x t u r e . U n f o r t u n a t e l y , o u r a t t e m p t s t o p e r f o r m t h e r e a c t i o n i n t h i s s o l v e n t m i x t u r e w e r e a l s o u n s u c c e s s f u l a s t h e d i n u c l e o t i d e p r e c i p i t a t e d f r o m s o l u t i o n . D . R e a c t i o n o f R h 2 ( O z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) w i t h G G - 1 2 m e r ( 1 ) S y n t h e s i s . A n i m m e d i a t e r e a c t i o n b e t w e e n R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) a n d t h e G G - 1 2 m e r t a k e s p l a c e u p o n m i x i n g s o l u t i o n s o f e a c h r e a c t a n t ( F i g u r e 1 3 ) a s e v i d e n c e d b y a n i n s t a n t a n e o u s c o l o r c h a n g e f r o m b l u e - g r e e n t o p i n k . S i m i l a r o b s e r v a t i o n s w e r e d e s c r i b e d f o r o t h e r D N A r e a c t i o n s w i t h c o m p o u n d ( 1 1 ) p e r f o r m e d b y F a r r e l l a n d i n d e p e n d e n t l y b y B e a r a n d c o w o r k e r s . 1 1 I n t h e c a s e o f t h e a d e n i n e c o n t a i n i n g r e a c t i o n s , t h i s i n i t i a l r e a c t i o n i s t h o u g h t t o b e a r e v e r s i b l e a x i a l i n t e r a c t i o n b e t w e e n t h e N 7 a t o m o f a d e n i n e a n d c o m p o u n d ( 1 1 ) . I n o u r c a s e , h o w e v e r , t h e r e a r e n o a d e n i n e b a s e s p r e s e n t . T h e i n i t i a l c o l o r c h a n g e i n o u r r e a c t i o n c a n b e s t b e d e s c r i b e d a s a n a x i a l i n t e r a c t i o n b e t w e e n t h e d i r h o d i u m c a r b o x y l a t e a n d o n e o f t h e g u a n i n e b a s e s i n t h e G G - 1 2 m e r . I t i s i m p o r t a n t t o r e c a l l t h a t t h e l i t e r a t u r e m e n t i o n s t h a t d i r h o d i u m c o m p o u n d s d o n o t h a v e a n a f fi n i t y f o r G , C a n d T n u c l e o b a s e s e v e n i f t h e D N A i s s i n g l e - s t r a n d e d . S i n c e t h e a x i a l i n t e r a c t i o n w a s s a i d t o b e r e v e r s i b l e , i t w a s t h o u g h t t o b e i m p o s s i b l e t o a t t e m p t t o p u r i f y t h i s a d d u c t b y H P L C c h r o m a t o g r a p h y . 1 8 0 3 2 5 n m , 0 . 0 5 A U 2 6 0 n m , 1 . 0 A U I " " I I M 1 N v 0 4 2 4 5 4 8 4 t i m e ( m i n ) F i g u r e 1 4 . H P L C c h r o m a t o g r a m o f R h 2 ( 0 2 C C H 3 ) x ( G G - 1 2 m e r ) 1 8 1 I n o r d e r t o d e c r e a s e t h e r e a c t i o n t i m e , t h e m i x t u r e w a s h e a t e d t o 7 0 ° C , a m e t h o d a l s o u s e d b y t h o s e w o r k i n g w i t h c i s p l a t i n . D u r i n g t h i s t i m e t h e p i n k c o l o r c h a n g e d t o g r e e n . T h i s s u g g e s t s t h a t t h e p i n k c o l o r i s a k i n e t i c p r o d u c t a n d t h e g r e e n c o m p o u n d i s a t h e r m o d y n a m i c o n e , a n d f u r t h e r h i n t s t h a t t h e D N A i n t e r a c t i o n w i t h R h 2 ( O z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) d o e s n o t i n v o l v e o n l y a n a x i a l c o o r d i n a t i o n . T h e s i n g l e - s t r a n d p r o d u c t w a s p u r i fi e d b y H P L C c h r o m a t o g r a p h y , w h i c h w i l l b e d e s c r i b e d l a t e r i n t h i s c h a p t e r . T h e d o u b l e - s t r a n d e d p r o d u c t w a s f o r m e d b y t h e a d d i t i o n o f a n e q u i m o l a r a m o u n t o f t h e C C - 1 2 m e r t o t h e a d d u c t , s s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] ( 1 5 ) . F o l l o w i n g t h e c o l l e c t i o n o f t h e f r a c t i o n s c o n t a i n i n g t h e s s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] ( 1 5 ) , t h e c o m p o u n d w a s t r e a t e d w i t h C h e l e x - 1 0 0 r e s i n t o e x c h a n g e a n y d i c a t i o n s i n s o l u t i o n w i t h N a + . P a r a m a g n e t i c i m p u r i t i e s a r e r a n d o m l y a s s o c i a t e d w i t h D N A . T h e s e i m p u r i t i e s c a n c a u s e a b r o a d e n i n g o f t h e 1 H N M R r e s o n a n c e s , a n d t h u s m u s t b e r e m o v e d . 1 2 C h e l e x - I O O r e s i n t r e a t m e n t i n v o l v e s s o a k i n g t h e D N A ( i n o u r c a s e m e t a l l a t e d D N A ) i n a s u s p e n s i o n o f C h e l e x - I O O r e s i n f o r n o l e s s t h a n 2 h f o l l o w e d b y fi l t r a t i o n , a n d w a s h i n g w i t h a 5 0 m M N a C l s o l u t i o n . T h e m e t a l l a t e d D N A w a s d e s a l t e d o n a G - 1 0 S e p h a d e x c o l u m n t o r e m o v e t h e e x c e s s N a C l a n d t h e s a l t s i n t r o d u c e d d u r i n g t h e H P L C p u r i fi c a t i o n . T h e c o m p l i m e n t a r y s t r a n d , C C - l 2 m e r , w a s a l s o t r e a t e d w i t h C h e l e x - I O O r e s i n 1 8 2 a n d S e p h a d e x a f t e r p u r i fi c a t i o n b y a n i o n e x c h a n g e H P L C c h r o m a t o g r a p h y . E q u i m o l a r q u a n t i t i e s o f t h e t w o s t r a n d s w e r e m i x e d , a n d t h e s o l u t i o n w a s t r e a t e d w i t h a C e n t r i c o n - 3 , w h i c h s e p a r a t e s t h e D N A b y s i z e e x c l u s i o n , t h e r e b y s e p a r a t i n g a n y s i n g l e - s t r a n d i m p u r i t i e s f r o m t h e d o u b l e - s t r a n d D N A . ( 2 ) H P L C C h r o m a t o g r a p h y . T h e s i n g l e - s t r a n d p r o d u c t , s s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] ( 1 5 ) , w a s p u r i fi e d b y a n i o n e x c h a n g e H P L C c h r o m a t o g r a p h y b y t h e m e t h o d d e s c r i b e d e a r l i e r . A r e p r e s e n t a t i v e c h r o m a t o g r a m f r o m t h e p u r i fi c a t i o n i s d e p i c t e d i n F i g u r e 1 4 . I t c a n b e s e e n t h a t n o c o m p o u n d s e l u t e o f f o f t h e c o l u m n u n t i l t h e h i g h s a l t c o n c e n t r a t i o n i s r e a c h e d . I t a p p e a r s t h a t o n l y o n e p r o d u c t i s f o r m e d f r o m t h e r e a c t i o n , a n d t h i s i s s u p p o r t e d b y t h e r e s u l t s o f 1 H N M R s p e c t r o s c o p y . ( 3 ) 1 H N M R S p e c t r o s c o p y . T h e 1 H N M R s p e c t r u m o f d s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] ( 7 ) w a s o b t a i n e d a t 1 0 ° C i n D 2 0 , a n d i s d e p i c t e d i n F i g u r e 1 5 . F r o m t h i s s p e c t r u m i t i s o b v i o u s t h a t t h e r e s o n a n c e s a r e n o t w e l l r e s o l v e d . T h e r e s o n a n c e s a t 2 . 8 a n d 3 . 1 p p m c a n b e a s s i g n e d t o t h e m e t h y l p r o t o n s o f b o u n d a c e t a t e l i g a n d s . T h e r e s o n a n c e a t 2 . 0 p p m e x c e e d s t h e v e r t i c a l s c a l e , a n d c a n b e a s s i g n e d t o f r e e a c e t a t e i o n . T h i s r e s o n a n c e e x c e e d s t h e d y n a m i c r a n g e o f t h e N M R r e c e i v e r . W h e n t h e d y n a m i c r a n g e o f s i g n a l i n t e n s i t y e x c e e d s t h e r a n g e o f t h e d i g i t i z e r , t h e w e a k e s t s i g n a l i n t h e N M R s p e c t r u m b e c o m e s c o m p a r a b l e t o n o i s e . T h u s , 1 8 3 F r e e a c e t a t e B o u n d a c e t a t e ' F i g u r e 1 5 . 1 H N M R s p e c t r u m o f d s [ R h 2 ( 0 2 C C H 3 ) x ( G G l 2 m e r ) ] a t 1 0 ° C i n D 2 0 . 1 8 4 t h e s m a l l e r r e s o n a n c e s d u e t o t h e D N A s u g a r p r o t o n s a n d t h e n u c l e o b a s e p r o t o n s a r e b r o a d e n e d a n d n o t r e s o l v e d . I n o r d e r t o d e t e r m i n e w h e t h e r o r n o t t h e D N A w a s d o u b l e - s t r a n d e d w e m e a s u r e d t h e 1 H N M R s p e c t r u m i n 1 0 % D 2 0 . T h e p r e s e n c e o f H 2 0 i s n e c e s s a r y t o o b s e r v e t h e r e s o n a n c e s o f t h e i m i n o p r o t o n s w h i c h r e s o n a t e d o w n fi e l d , > 1 0 p p m ( F i g u r e 1 6 ) . T h e s e p r o t o n s a r e t h e e x c h a n g e a b l e p r o t o n s o f D N A , a n d t h u s i f t h e s p e c t r u m w a s p e r f o r m e d i n D 2 0 o n e w o u l d l o s e t h e s e s i g n a l s d u e t o H - D e x c h a n g e . T h e 1 H N M R s p e c t r a i n t h e i m i n o r e g i o n a t v a r i o u s t e m p e r a t u r e s a r e d e p i c t e d i n F i g u r e 1 7 . T h e s e s p e c t r a s u g g e s t t h a t t h e d o u b l e - s t r a n d e d D N A i s d e s t a b i l i z e d b y t h e c o o r d i n a t i o n o f t h e [ R h 2 ( O z C C H 3 ) 2 ] 2 + c o r e a t 6 0 ° C ( T h e D N A i t s e l f m e l t s a b o v e 7 0 ° C ) . T h e 1 H N M R s p e c t r u m i n F i g u r e 1 8 s h o w s t h e d i f f e r e n c e s i n t h e i m i n o r e g i o n b e t w e e n t h e m e t a l l a t e d a n d u n m e t a l l a t e d D N A . T h e d i f f e r e n c e s b e t w e e n s p e c t r a o f t h e m e t a l l a t e d a n d t h e u m n e t a l l a t e d D N A s u p p o r t s t h e c o n c l u s i o n t h a t t h e d i r h o d i u m c e n t e r i s c o o r d i n a t e d . A l t h o u g h w e c a n n o t c o m m e n t o n t h e m o d e o f b i n d i n g a t t h i s t i m e , t h e s t r u c t u r e o f d s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] d o e s n o t p r e c l u d e t h e f o r m a t i o n o f t h e d o u b l e - s t r a n d e d s t r u c t u r e . 1 8 5 5 ° C I I I I I I l I I I F l 1 I I f I I I I I I I I I ‘ I T fi ] I I I I I T I 1 4 . 5 1 4 . 0 1 3 . 5 1 3 . 0 1 2 . 5 1 2 . 0 p p m 1 5 ° C I I I r I r T j I T I T I I V I I I I I H I T I I I I I I I I I fi I I 1 4 . 5 1 4 . 0 1 3 . 5 1 3 . 0 1 2 . 5 1 2 . 0 p p m 2 5 ° C , . , . . , . . . 4 , . . . . , . . , . , . . . . . . . . , , . . . , , . . . . , . . . . , . . 1 5 . 0 ~ 1 4 . 0 1 3 . 0 1 2 . 0 1 1 . 0 p p m 5 0 ° C . , . . . . , . . . . , . . . . r . - . . , . . , . , . . . . , . . . . , . . . . , . . . . . . . . . , . . . . 1 5 . 0 1 4 . 0 1 3 . 0 1 2 . 0 1 1 . 0 p p m F i g u r e 1 7 . 1 H N M R s p e c t r a d e p i c t i n g t h e i m i n o r e g i o n o f d s [ R h 2 ( 0 2 C C H 3 ) x ( G G - 1 2 m e r ) ] i n 1 0 % D 2 0 a t v a r i o u s t e m p e r a t u r e s . 1 8 6 ) r e m 2 1 - G G ( x ) c A O ( 2 h R [ s d d n a ) r e m 2 1 - G G ( s d f o a r t c e p S R 0 1 l _ 0 1 1 _ fl L 2 ) A N M 2 N H H % ‘ 0 1 9 < 3 1 4 1 D ( s d d e . 8 1 , C e ° r u 0 g 2 i t t F a a l a t e M J ) C ( 6 H ; ) G & r A g 8 H ; ) A ( 2 H L , s n o ) A N D ( s d d e t t o a l r P a o t n e m n U i m I . 1 8 7 3 5 i m p u r i t y [ “ Y fl ” Y 7 I v v I v I V Y Y V 1 ' V ‘ Y ‘ Y — ‘ Y ' Y fi - T ‘ r ‘ 1 ' fi w ‘ 7 4 4 ‘ f ‘ V 1 4 1 3 1 2 l l 1 0 E . R e a c t i o n o f [ R h 2 ( 0 2 C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B R ] ; ( 1 . 2 ) w i t h t h e G G - l Z m e r ( 1 ) S y n t h e s i s . I n a n a t t e m p t t o e n h a n c e t h e s i g n a l s o f t h e D N A p r o t o n s b y p r e v e n t i n g t h e t h e s i g n a l o v e r fl o w c a u s e d b y t h e d i s p l a c e d a c e t a t e r e s o n a n c e , w e r e a c t e d t h e G G - 1 2 m e r w i t h a n e q u i m o l a r a m o u n t o f t h e p a r t i a l l y s o l v a t e d c o m p o u n d [ R h 2 ( O z C C H 3 ) 2 ( C H 3 C N ) 6 ] [ B F 4 ] 2 ( 1 2 ) . A n a l o g o u s t o t h e r e a c t i o n w i t h R h 2 ( 0 2 C C H 3 ) 4 ( H z O ) 2 ( 1 ) , a n i m m e d i a t e c o l o r c h a n g e f r o m p u r p l e t o o r a n g e t a k e s p l a c e u p o n m i x i n g t h e t w o s o l u t i o n s ( F i g u r e 1 9 ) . A f t e r g r a d u a l l y h e a t i n g t h e m i x t u r e a t 7 0 ° C f o r 5 0 h , t h e r e a c t i o n m i x t u r e c h a n g e d c o l o r t o g r e e n . T h e p r o c e d u r e f o r p u r i fi c a t i o n a n d p r e p a r i n g t h e d o u b l e - s t r a n d e d c o m p l e x w a s t h e s a m e a s d e s c r i b e d i n t h e p r e v i o u s s e c t i o n D . ( 2 ) H P L C C h r o m a t o g r a p h y . T h e c h r o m a t o g r a m o f s s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] ( 6 ) , d e p i c t e d i n F i g u r e 2 0 , i s i d e n t i c a l t o t h e c h r o m a t o g r a m o f t h e r e a c t i o n p r o d u c t o b t a i n e d f r o m t h e a n a l o g o u s t e t r a - a c e t a t e r e a c t i o n p o r t r a y e d i n F i g u r e 1 4 . T h e m e t a l l a t e d D N A a d h e r e s t o t h e c o l u m n , a n d i s e l u t e d o n l y a t h i g h K C l c o n c e n t r a t i o n s , ( > 8 0 % ) . ( 3 ) 1 H N M R S p e c t r o s c o p y . T h e 1 H N M R s p e c t r u m o f t h e i m i n o r e g i o n o f d s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] ( 7 ) , w h i c h w a s o b t a i n e d f r o m t h e 1 8 8 h a a b s o r p t i o n 3 6 5 n m , 0 . 1 A U W K — ~ 4 g . D N A 2 6 0 n m , 1 . 0 A U W M “ E b 0 5 6 5 7 0 7 5 8 0 t i m e ( m i n ) F i g u r e 2 0 . H P L C c h r o m a t o g r a m o f s s [ R h 2 ( 0 2 C C H 3 ) 2 ( G G - 1 2 m e r ) ] a d d u c t . 1 8 9 r e a c t i o n w i t h c o m p o u n d ( 1 2 ) , i s m u c h m o r e r e s o l v e d t h a n t h e s p e c t r u m f r o m t h e t e t r a - a c e t a t e r e a c t i o n ( F i g u r e 2 1 ) . A f t e r 4 5 ° C , h o w e v e r , t h e s t a b i l i t y o f t h e d o u b l e h e l i x i s c o m p r o m i s e d , a n d t h e D N A b e c o m e s s i n g l e - s t r a n d e d . O n c e a g a i n w e c a n c o n c l u d e t h a t t h e d i r h o d i u m c e n t e r s a r e c o o r d i n a t e d t o t h e D N A , b u t w e c a n n o t c o m m e n t w i t h c e r t a i n t y o n t h e m o d e o f b i n d i n g . W h e t h e r t h e b i n d i n g o c c u r s a t t h e g u a n i n e b a s e s a n d i s b r i d g i n g o r c h e l a t i n g r e m a i n s t o b e d e t e r m i n e d . O n e w a y t o d i s c e r n b i n d i n g s i t e s i s t o d i g e s t t h e m e t a l l a t e d D N A w i t h s n a k e v e n o m p h o s p h o e s t e r a s e t o o b t a i n t h e n u c l e o t i d e f r a g m e n t s , a n d t h e n s e p a r a t e t h e m b y H P L C c h r o m a t o g r a p h y . B y t h e e l u t i o n t i m e s , o n e c o u l d d e t e r m i n e w h i c h n u c l e o t i d e s w e r e b o u n d a n d h o w m a n y w e r e i n v o l v e d . 1 H N M R s p e c t r o s c o p y c o u l d a l s o b e u s e d t o d e t e r m i n e t o w h i c h b a s e s t h e d i r h o d i u m c o r e i s c o o r d i n a t e d . A s i m i l a r e x p e r i m e n t w a s p e r f o r m e d o n s o m e o t h e r D N A s e q u e n c e s b y a p r e v i o u s w o r k e r i n o u r l a b o r a t o r i e s . 1 3 T h e s o l u t i o n s t r u c t u r e o f t h e m e t a l l a t e d D N A c o m p o u n d s h o u l d b e p o s s i b l e t o d e t e r m i n e f r o m N M R s p e c t r o s c o p y , b u t o n l y a t m u c h h i g h e r c o n c e n t r a t i o n s t h a n w h a t w e h a v e e m p l o y e d . T h e c o n c e n t r a t i o n s u s e d b y R e e d i j k a n d c o w o r k e r s w e r e 1 3 t i m e s g r e a t e r t h a n t h e c o n c e n t r a t i o n s u s e d i n o u r e x p e r i m e n t s . E f f o r t s t o s o l v e t h e s o l u t i o n s t r u c t u r e b y N M R s p e c t r o s c o p y a s w e l l a s i n t h e s o l i d - s t a t e b y X - r a y c r y s t a l l o g r a p h y a r e i n p r o g r e s s . 1 9 0 3 . S u m m a r y R e c e n t d e v e l o p m e n t s o u t l i n e d i n t h i s c h a p t e r s u p p o r t t h e f o r m a t i o n o f d i r h o d i u m - D N A a d d u c t s . W h e t h e r t h e a d d u c t s f o r m e d a r e d u e t o t h e i n t e r a c t i o n o f t h e c e n t r a l g u a n i n e b a s e s c o o r d i n a t i n g t o t h e R h a t o m s i n a b r i d g i n g e q m o d e o r n o t c a n n o t b e d i s c e r n e d f r o m t h e c u r r e n t d a t a . I t i s c l e a r , h o w e v e r , t h a t w h a t e v e r t h e i n t e r a c t i o n , i t i s f a i r l y s t a b l e a n d n o t i n t e r r u p t e d d u r i n g t h e c o u r s e o f p u r i fi c a t i o n . A n n e a l i n g o f t h e c o m p l i m e n t a r y s t r a n d o f D N A i n t h e G G - 1 2 m e r r e a c t i o n s w a s n o t p r e v e n t e d b y t h e c o o r d i n a t i o n o f t h e d i r h o d i u m u n i t . I n a d d i t i o n , t h e b i n d i n g o f d i r h o d i u m c o m p o u n d s d e s t a b i l i z e s t h e D N A h e l i x a s d e t e r m i n e d b y t h e l o w m e l t i n g p o i n t o f t h e m e t a l l a t e d d s D N A . S t r u c t u r a l i n f o r m a t i o n o f t h e d s ( h a - D N A ) a d d u c t o b t a i n e d b y t w o - d i m e n s i o n a l N M R s t u d i e s a n d X - r a y c r y s t a l l o g r a p h y a r e i n p r o g r e s s . 1 9 1 l L t l 1 . 1 . . M M m M / / \ V V v \ W W 1 4 . 5 1 4 . 0 1 3 . 5 1 3 . 0 1 2 . 5 1 2 0 p p m 1 , 1 - : l I “ : I “ . l l i l W l l l l l l ° i l l J L J \ V " 1 4 . 5 1 4 . 0 1 3 . 5 1 3 . 0 1 2 5 1 2 . 0 p p m 1 1 l l I l l 1 ' “ . I l l I 1 1 " L N 1 l l I l v 1 / ‘ 1 ‘ 1 1 . ! l J H M “ r 1 4 . 5 1 4 0 ' 1 3 . 5 1 3 . 0 1 2 . 5 1 2 . 0 p p m 1 4 . 5 1 4 0 ' 1 3 . 5 1 3 . 0 1 2 5 1 2 . 0 p p m F i g u r e 2 1 . 1 H N M R s p e c t r a d e p i c t i n g t h e i m i n o r e g i o n o f d s [ R h 2 ( O z C C H 3 ) 2 ( G G - 1 2 m e r ) ] i n 1 0 % D 2 0 . 1 9 2 L i s t o f R e f e r e n c e s 1 . ( a ) R o s e n b e r g , B . ; V a n C a m p , L . N a t u r e , 1 9 6 9 , 2 2 2 , 3 8 5 . ( b ) R o s e n b e r g , B . i n M e t a l I o n s i n B i o l o g y , S p i r o , T . G . , E d . ; W i l e y , N e w Y o r k , 1 9 8 0 , 1 , 1 . ( c ) U m a p a t h y , P . C o o r d . C h e m . R e v . 1 9 8 9 , 9 5 , 1 2 9 . ( d ) L i p p e r t , B . C h a p t e r 1 i n P r o g . I n o r g . C h e m . L i p p a r d , S . J . , E d . ; W i l e y , N e w Y o r k , 1 9 8 9 , 3 7 , 1 . ( e ) S h e r m a n , S . E . ; L i p p a r d , S . J . J . C h e m . R e v . 1 9 8 7 , 8 7 , 1 1 5 3 . ( f ) S u n d q u i s t , W . 1 . ; L i p p a r d , S . J . J . C o o r d . C h e m . R e v . 1 9 9 0 , 1 0 0 , 2 9 3 . ( g ) R e e d i j k , J . P u r e A p p l . C h e m . 1 9 8 7 , 5 9 , 1 8 1 . ( h ) E a s t m a n , A . P h a r m a c . T h e r . 1 9 8 7 , 3 4 , 1 5 5 . ( i ) P a s i n i , A . ; Z u n i n o , F . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 7 , 2 6 , 6 1 5 . ( j ) F r e y , U . ; R a n f o r d , J . D . ; S a d l e r , P . J . I n o r g . C h e m . 1 9 9 3 , 3 2 , 1 3 3 3 . ( k ) P l a t i n u m a n d O t h e r M e t a l C o m p l e x e s i n C a n c e r C h e m o t h e r a p y , H o w e l l , S . B . , E d . ; P l e n u m P r e s s , N e w Y o r k , 1 9 9 1 . ( 1 ) P l a t i n u m C o o r d i n a t i o n C o m p l e x e s i n C a n c e r C h e m o t h e r a p y , H a c k e r , M . P . ; D o u b l e , E . B . ; K r a k o f f , I . H . , E d s . ; M a r t i n u s N i j h o f f , B o s t o n , 1 9 8 4 . 2 . B a k e r , S . A - . B . ; P e r e z - S o l e r , R . ; K h o k h a r , A . R . J . C o o r d . C h e m . 1 9 9 3 , 2 9 , 1 . 3 . ( a ) S h e r m a n , S . E . ; G i b s o n , D . ; W a n g , A . H . - J . ; L i p p a r d , S . J . S c i e n c e , 1 9 8 5 , 2 3 0 , 4 1 2 . ( b ) S h e r m a n , S . E . ; G i b s o n , D . ; W a n g , A . H . - J . ; L i p p a r d , S . J . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 0 , 7 3 6 8 . ( 0 ) C 0 1 1 , M . ; S h e r m a n , S . E . ; G i b s o n , D . ; L i p p a r d , S . J . ; W a n g , A . H . - J . J . B i o m o l . S t r u c t . D y n . 1 9 9 0 , 8 , 3 1 5 . ( d ) C h o t t a r d , J . C . ; G i r a u l t , J . P . ; C h o t t a r d , G . ; L a l l e m a n d , J . Y . ; M a n s u y , D . J . A m . C h e m . S o c . 1 9 8 0 , 1 0 2 , 5 5 6 5 . ( e ) D i j t , F . J . ; C a n t e r s , G . W . ; d e n H a r t o g , J . H . J . ; M a r c e l i s , A . T . M . a n d R e e d i j k , J . J . A m . C h e m . S o c . 1 9 8 4 , 1 0 6 , 3 6 4 4 . ( i ) d e n H a r t o g , J . H . J . ; A l t o n a , C . ; v a n B o o m , J . H . ; v a n d e r M a r e l , G . A . ; H a a s n o o t , C . A . G . ; R e e d i j k , J . J . B i o m o l . S t r u c t . D y n . 1 9 8 5 , 2 ( 6 ) , 1 1 3 7 . ( g ) d e n H a r t o g , J . H . J . ; A l t o n a , C . ; v a n B o o m , J . H ; v a n d e r M a r e l , G . A . ; H a a s n o o t , C . A . G . ; R e e d i j k , J . J . A m . C h e m . S o c . 1 9 8 4 , 1 0 6 , 1 5 2 8 . ( h ) H e r m a n , F . ; K o z e l k a , J . ; G u i t t e t , E . ; G i r a u l t , J . - P . ; H u y n i - D i n h , T . ; I g o l e n , J . ; L a l l e m a n d , J . - Y . ; C h o t t a r d , J . C . E u r . J . B i o c h e m . 1 9 9 0 , 1 9 4 , 1 1 9 . ( i ) K o z e l k a , J . ; F o u c h e t , M . - H . ; C h o t t a r d , J . C . E u r . J . B i o c h e m . 1 9 9 2 , 2 0 5 , 8 9 5 . ( j ) I w a m o t o , M . ; M u k u n d a n , S . J r . ; M a r z i l l i , L . G . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 6 2 3 8 . ( k ) K o z e l k a , J . ; P e t s k o , G . A . ; L i p p a r d , S . J . J . A m . C h e m . S o c . 1 9 8 5 , 1 0 7 , 4 0 7 9 . ( l ) K o z e l k a , J . ; P e t s k o , G . A . ; Q u i g l e y , J . D . ; L i p p a r d , S . J . J . A m . C h e m . S o c . 1 9 8 6 , 2 5 , 1 0 7 5 . ( m ) K o z e l k a , J . ; A r c h e r , S . ; P e t s k o , G . A . ; L i p p a r d , S . J . ; Q u i g l e y , J . B i o p o l y m e r s , 1 9 8 7 , 2 6 , 1 2 4 5 . ( n ) K o z e l k a , J . ; C h o t t a r d , J . - C . B i o p h y s . C h e m . 1 9 9 0 , 3 5 , 1 6 5 . ( o ) Y a o , S . ; P l a s t a r a s , J . P . a n d M a r z i l l i , L . G . I n o r g . C h e m . 1 9 9 4 , 3 3 , 6 0 6 1 . 1 9 3 9 N 9 . ( a ) S h e r m a n , S . E . ; G i b s o n , D . ; W a n g , A . H . — J . ; L i p p a r d , S . J . S c i e n c e , 1 9 8 5 , 2 3 0 , 4 1 2 . ( b ) J . A m . C h e m . S o c . 1 9 8 8 , 1 1 0 , 7 3 6 8 . ( c ) d e n H a r t o g , J . H . J . ; A l t o n a , C . ; G i r a u l t , J . P . ; L a l l e m a n d , J . Y . ; M a r c e l i s , A . T . M . ; R e e d i j k , J . N u c l e i c A c i d s R e s . 1 9 8 2 , 1 0 , 4 7 1 5 . ( d ) G i r a u l t , J . P . ; C h o t t a r d , G . ; L a l l e m a n d , J . Y . ; C h o t t a r d , J . C . B i o c h e m i s t r y , 1 9 8 2 , 2 1 , 1 3 5 2 . . H u a n g , H . ; Z h u , L . ; R e i d , B . R . ; D r o b n y , G . R ; H o p k i n s , P . B . S c i e n c e , 1 9 9 5 , 2 7 0 , 1 8 4 2 . C h i f o t i d e s , H . T . ; D u n b a r , K . R . ; Y o u n g , D . C . u n p u b l i s h e d r e s u l t s . D e n H a r t o g , J . H . J . ; A l t o n a , C . ; v a n B o o m , J . H . ; v a n d e r M a r e l , G . A . ; H a a s n o o t , C . A . G . ; R e e d i j k , J . J . o f B i o m o l e c . S t r u c t . D y n . 1 9 8 5 , 2 , 1 1 3 7 . ( 3 ) B a k e r , T . A . ; K o r n b e r g , A . D N A R e p l i c a t i o n , F r e e m a n a n d C o . 2 n d E d i t i o n , 1 9 9 2 . ( b ) S t 1 y e r , L . B i o c h e m i s t r y , F r e e m a n a n d C o . 4 ‘ h E d i t i o n , 1 9 9 5 . ( c ) L e w i n , B . G e n e s V , O x f o r d U n i v e r s i t y P r e s s , 1 9 9 4 . G i b s o n , D . ; L i p p a r d , S . J . I n o r g . C h e m . 1 9 8 7 , 2 6 , 2 2 7 5 . 1 0 . F i m i a n i , V . A i n i s , T . ; C a v a l l a r o , A . ; P i r a i n o , P . J . C h e m o t h e r . 1 9 9 0 , 2 , 3 1 9 . 1 1 . ( a ) F a r r e l l , N . J . I n o r g . B i o c h e m . 1 9 8 1 , 1 4 , 2 6 1 . ( b ) B e a r , J . L . ; G r a y , J r . H . B . ; R a i n e n , L . ; C h a n g , I . M . ; H o w a r d , R . ; S e r i o , G . ; K i m b a l l , A . P . C a n c e r C h e m o t h e r . R e p o r t s P a r t I , 1 9 7 5 , 5 9 , 6 1 1 . 1 2 . S l e t t e n , E ; F r o y s t e i n , N . A . i n M e t a l I o n s i n B i o l o g i c a l S y s t e m s : I n t e r a c t i o n s o f M e t a l s w i t h N u c l e o t i d e s , N u c l e i c A c i d s , a n d T h e i r C o n s t i t u e n t s 3 2 , S i g e l , A . ; S i g e l , H . , E d . M a r c e l D e k k e r , I n c . N e w Y o r k , 1 9 9 6 , C h . 1 1 . 1 3 . D u n b a r , K . R . ; C h i f o t i d e s , H . T . ; P a t e l , D . u n p u b l i s h e d r e s u l t s . 1 9 4 C h a p t e r V I n h i b i t i o n o f D N A R e p l i c a t i o n 1 9 5 1 . I n t r o d u c t i o n A . I n h i b i t i o n o f D N A R e p l i c a t i o n b y C i s p l a t i n . W h i l e t h e m e c h a n i s m o f c i s p l a t i n i s n o t f u l l y u n d e r s t o o d , e v i d e n c e s u p p o r t s t h e c o n c l u s i o n t h a t D N A i n t e r a c t i o n s a r e r e s p o n s i b l e f o r i t s a n t i c a n c e r a c t i v i t y . I t i s n o t k n o w n , h o w e v e r , w h e t h e r p l a t i n a t i o n o f D N A i s t h e s o l e c e l l u l a r e v e n t t h a t l e a d s t o t h e t u m o r c e l l d e a t h . E x p e r i m e n t s m e a s u r i n g t h e r a t e s o f D N A , R N A , a n d p r o t e i n s y n t h e s e s i n c i s p l a t i n - t r e a t e d c e l l s r e v e a l t h a t D N A s y n t h e s i s i s p r e f e r e n t i a l l y i n h i b i t e d , w h i l e R N A a n d p r o t e i n s y n t h e s e s a r e o n l y s l i g h t l y a f f e c t e d . I I t i s c u r r e n t l y b e l i e v e d t h a t p l a t i n a t i o n o f D N A i n h i b i t s t h e a c t i v i t y o f D N A p o l y m e r a s e s , t h e r e b y p r e v e n t i n g c a n c e r c e l l s f r o m r e p l i c a t i n g . W h e t h e r t h i s i n h i b i t i o n i s t h e r e s u l t o f P t — e n z y m e o r P t - D N A i n t e r a c t i o n s h a s a l s o b e e n e x p l o r e d . 3 ' 5 B e f o r e d i s c u s s i n g i n h i b i t i o n o f D N A r e p l i c a t i o n b y c i s p l a t i n , i t i s i m p o r t a n t t o b r i e fl y d e s c r i b e , i n g e n e r a l , t h e r e p l i c a t i o n p r o c e s s e x h i b i t e d i n p r o k a r y o t i c a n d e u k a r y o t i c s y s t e m s . T h r e e D N A p o l y m e r a s e s a r e r e s p o n s i b l e f o r r e p l i c a t i o n i n p r o k a r y o t i c s y s t e m s : D N A p o l y m e r a s e I ( p o l 1 ) , D N A p o l y m e r a s e I I ( p o l I I ) a n d D N A p o l y m e r a s e I I I ( p o l I I I ) . 2 T h e d i s c u s s i o n w i l l b e l i m i t e d t o t h e p o l y m e r a s e a c t i v i t y o f p o l I , a s t h e g e n e r a l D N A r e p l i c a t i o n p r o c e s s e s o f p o l I I a n d p o l I I I a r e s i m i l a r a l t h o u g h m o r e c o m p l i c a t e d . P o l I c o n t a i n s a t e m p l a t e b i n d i n g s i t e , a p r i m e r b i n d i n g s i t e , a 1 9 6 p r i m e r t e r m i n u s s i t e , a n d a s i t e f o r t h e i n c o m i n g f o u r d e o x y r i b o n u c l e o s i d e 5 ’ - t r i p h o s p h a t e s , d N T P s , ( d N T P = d A T P , d G T P , d C T P , d T T P ) . P o l I r e q u i r e s a t e m p l a t e s t r a n d o f D N A , M g 2 + c a t i o n s , a n d p r i m e r i n o r d e r t o s y n t h e s i z e D N A ( F i g u r e 1 ) . T h e t e m p l a t e - b i n d i n g s i t e o f p o l I b i n d s o n l y t o s i n g l e - s t r a n d e d D N A a t a r a t i o o f 1 e n z y m e p e r 3 0 0 b a s e s . B i n d i n g t o d o u b l e - s t r a n d e d D N A h a s b e e n o b s e r v e d u n l e s s t h e D N A i s i n a d e n a t u r e d s t a t e . D N A s y n t h e s i s o c c u r s b y n u c l e o p h i l i c a t t a c k o f t h e 3 ’ - O H e n d o f t h e p r i m e r o n t h e 0 1 P a t o m o f t h e i n c o m i n g d N T P . A p h o s p h o d i e s t e r b o n d i s f o r m e d , a n d p y r o p h o s p h a t e ( P P L ) i s r e l e a s e d . T h e r e a c t i o n i s d r i v e n b y t h e d N T P , M g 2 + p r i m e r < — » W M t e m p h t e J ' " l l l l l l l l l " I l l " " I " I N H I H H I H I H H H l 5 ' 3 ' + d N T P s = d A T P , d T T P , d G T P , d C T P F i g u r e 1 . S c h e m a t i c r e p s e n t a t i o n o f D N A r e p l i c a t i o n b y D N A p o l I . 1 9 7 s u b s e q u e n t h y d r o l y s i s o f P P , b y i n o r g a n i c p y r o p h o s p h a t a s e . E x t e n s i o n o f t h e p r i m e r D N A s t r a n d o c c u r s i n t h e 5 ’ — > 3 ’ d i r e c t i o n o f t h e t e m p l a t e s t r a n d . p o l I i s m o d e r a t e l y p r o c e s s i v e , i n t h a t i t c a t a l y z e s t h e f o r m a t i o n o f ~ 2 0 p h o s p h o d i e s t e r b o n d s b e f o r e d i s s o c i a t i n g f r o m t h e t e m p l a t e . I t i s a l s o i m p o r t a n t t o m e n t i o n t h a t P o l I c o n t a i n s a 3 ’ — > 5 ’ e x o n u c l e a s e ( p r o o f r e a d i n g ) a c t i v i t y a s w e l l a s a 5 ’ — ) 3 ’ e x o n u c l e a s e ( r e p a i r ) a c t i v i t y . S i m i l a r l y , p o l I I h a s t h e s a m e p r o p e r t i e s a s p o l I , h o w e v e r p o l I I I , w h i c h i s t h e m a j o r r e p l i c a t i v e p o l y m e r a s e o f p r o k a r y o t e s , d o e s n o t p o s s e s s t h e 3 ’ — > 5 ’ e x o n u c l e a s e a c t i v i t y . E u k a r y o t i c c e l l s c o n t a i n fi v e t y p e s o f D N A p o l y m e r a s e s . T h e p o l y m e r a s e s a , B , y , 5 , a n d 8 a l l h a v e s l i g h t l y d i f f e r e n t f u n c t i o n s w i t h i n t h e c e l l . D N A p o l y m e r a s e s 0 1 ( p o l 0 1 ) a n d 5 ( p o l 5 ) p l a y m a j o r r o l e s i n c h r o m o s o m a l r e p l i c a t i o n . T h e o t h e r e n z y m e s a r e r e s p o n s i b l e f o r r e p a i r m e c h a n i s m s w i t h t h e e x c e p t i o n o f p o l 7 , w h i c h i s t h e D N A r e p l i c a t i o n e n z y m e o f m i t o c h o n d r i a . T h e s e e n z y m e s , l i k e t h e p r o k a r y o t i c p o l y m e r a s e s , r e q u i r e d N T P s t o c a r r y o u t t e m p l a t e - d i r e c t e d e l o n g a t i o n o f t h e p r i m e r i n t h e 5 ’ — - ) 3 ’ d i r e c t i o n . S i m i l a r t o t h e p r o k a r y o t i c p o l y m e r a s e s , p o l 5 , p o l e , a n d p o l y p o s s e s s 3 ’ — > 5 ’ e x o n u c l e a s e ( p r o o f r e a d i n g ) a c t i v i t y . L i k e p r o k a r y o t i c D N A r e p l i c a t i o n , e u k a r y o t i c D N A r e p l i c a t i o n r e q u i r e s a t e m p l a t e a n d p r i m e r . 2 1 9 8 E . c o l i p o l I w a s u s e d i n a n e x p e r i m e n t d e s i g n e d b y B e m g e s a n d H o l l e r t o i n v e s t i g a t e t h e i n h i b i t i o n o f D N A s y n t h e s i s b y b o t h c i s p l a t i n a n d t r a n s p l a t i n D N A a d d u c t s . B o t h i s o m e r s i n h i b i t t h e r e p l i c a t i v e p r o c e s s o f p o l I a t h i g h a n d l o w c o n c e n t r a t i o n s i n v i t r o . 3 T h e a u t h o r s s u g g e s t t h a t D N A s y n t h e s i s i s u n i n h i b i t e d u n t i l t h e p o l y m e r a s e r e a c h e s t h e p l a t i n a t e d D N A s i g h t . A t t h i s j u n c t i o n , t h e p o l y m e r a s e s i m p l y d i s s o c i a t e s f r o m t h e t e m p l a t e s t r a n d ( F i g u r e 2 ) . T h e p r o o f r e a d i n g a b i l i t y o f p o l I w a s a l s o t e r m i n a t e d o n t h e 5 ’ s i d e o f e a c h p l a t i n a t e d n u c l e o t i d e i n t h e p r i m e r s t r a n d . 3 A s i m i l a r s t u d y b y V i l l a n i a n d c o w o r k e r s i n v o l v i n g p o l I l e d t o c o m p a r a b l e r e s u l t s . 4 I n t h e s a m e s t u d y , h o w e v e r , t h e r e s e a r c h e r s p e r f o r m e d i n v i t r o e x p e r i m e n t s w i t h e u k a r y o t i c p o l y m e r a s e p o l o r . T h e r e s u l t s o f t h e s e s t u d i e s s h o w e d t h a t D N A r e p l i c a t i o n b y t h i s e n z y m e w a s t e r m i n a t e d a t t h e s i t e s w h e r e P t w a s c o o r d i n a t e d . I n v i v o s t u d i e s w i t h t h e D N A t u m o r v i r u s S V 4 0 c a r r i e d o u t b y L i p p a r d a n d c o w o r k e r s a l s o s u p p o r t t h e t e r m i n a t i o n o f D N A p o l y m e r a s e s b y P t b o u n d t o t h e t e m p l a t e s t r a n d . 5 1 9 9 N N H 3 p r i m e r / H 3 \ 1 . . . “ . . . — > / P t \ 5 1 W 3 ' t e m p l a t e J H 3 N \ / N H 3 / P t \ " W i n n " u i ' u u u m u u n u u u u u m u u n S ' W W W W W M W W W 3 + F i g u r e 2 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e D N A r e p l i c a t i o n p r o c e s s o f D N A p o l y m e r a s e I ( p o l 1 ) . S u p p o r t i n g e v i d e n c e t h a t D N A a d d u c t s o f c i s p l a t i n r a t h e r t h a n c i s p l a t i n b o u n d t o e n z y m e i s r e s p o n s i b l e f o r t h e i n h i b i t i o n o f t h e D N A r e p l i c a t i o n p r o c e s s w a s r e p o r t e d b y H a r d e r a n d c o w o r k e r s . ° I n t h i s s t u d y , t h e r e s e a r c h e r s i n c u b a t e d P t / D N A a d d u c t s o f c i s p l a t i n a n d t r a n s p l a t i n w i t h p o l o r , p o l B , a n d R a u s c h e r m u r i n e l e u k e m i a v i r u s r e v e r s e t r a n s c r i p t a s e ( R M L V R T ) . T h e y o b s e r v e d b e h a v i o r s i m i l a r t o t h e i n h i b i t i o n e x h i b i t e d w i t h t h e p r o k a r y o t i c p o l y m e r a s e p o l I . I n o r d e r t o d e t e r m i n e t h e s i g n i fi c a n c e o f P t - e n z y m e i n t e r a c t i o n , p o l 0 1 w a s i n c u b a t e d w i t h v a r i o u s c o n c e n t r a t i o n s o f b o t h P t c o m p o u n d s i n d i s t i l l e d w a t e r a t 3 7 ° C f o r t h r e e d a y s . A t i m e c o u r s e s t u d y w a s p e r f o r m e d w h e r e a t s e v e r a l i n t e r v a l s u p t o 1 1 0 m i n u t e s 2 0 0 a f t e r i n c u b a t i o n , a l i q u o t s o f t h e P t - e n z y m e m i x t u r e s w e r e r e m o v e d a n d a d d e d t o a n a s s a y m i x t u r e c o n t a i n i n g a c t i v a t e e n z y m e . I t w a s o b s e r v e d t h a t p o l o r w a s i n a c t i v a t e d a t a c o n c e n t r a t i o n o f 5 0 0 1 1 M c i s p l a t i n a f t e r 3 0 m i n u t e s . T h i s i s 1 0 0 t i m e s t h e c o n c e n t r a t i o n o f c i s p l a t i n r e q u i r e d t o i n h i b i t D N A r e p l i c a t i o n i n v i v o . T r a n s p l a t i n , o n t h e o t h e r h a n d , i n a c t i v a t e d p o l 0 1 7 t o 1 0 t i m e s m o r e e f f e c t i v e l y t h a n c i s p l a t i n . T h e r e s u l t s o f t h i s s t u d y a l l o w e d t h e r e s e a r c h e r s t o c o n c l u d e t h a t i n a c t i v a t i o n o f p o l o r b y c i s p l a t i n a n d t r a n s p l a t i n w e r e b i o l o g i c a l l y i n s i g n i fi c a n t c o m p a r e d t o t h e e f f e c t s o f t h e r e a c t i o n s o f t h e p l a t i n u m c o m p o u n d s w i t h t h e t e m p l a t e . I n o t h e r w o r d s , D N A r e p l i c a t i o n i s i n h i b i t e d b y t h e i n t e r a c t i o n o f P t w i t h t h e D N A t e m p l a t e , w h i c h r e n d e r s t h e D N A u n s u i t a b l e o r u n r e c o g n i z a b l e f o r u s e b y p o l 0 1 . T h u s t h e P t - e n z y m e i n t e r a c t i o n s a r e o f n e g l i g i b l e i m p o r t a n c e . F u r t h e r m o r e , t h e a b o v e s t u d i e s f o u n d t h a t t h e 5 ’ — > 3 ’ e x o n u c l e a s e a c t i v i t y o f p o l 0 1 w a s i n h i b i t e d b y p l a t i n a t i o n o f t h e t e m p l a t e . B . I n h i b i t i o n o f D N A R e p l i c a t i o n b y D i r h o d i u m T e t r a c a r b o x y l a t e s . D i r h o d i u m t e t r a c a r b o x y l a t e s , h a ( 0 2 C R ) 4 ( H 2 0 ) 2 ( R = M e , E t , P r ) h a v e a l s o b e e n r e p o r t e d t o i n h i b i t D N A r e p l i c a t i o n . S t u d i e s b y B e a r a n d c o w o r k e r s p r o b e d t h e m e c h a n i s m b y w h i c h i n h i b i t i o n o f r e p l i c a t i o n t a k e s p l a c e . 7 L i k e c i s p l a t i n r e s e a r c h e r s , t h e s e i n v e s t i g a t o r s a l s o q u e s t i o n e d t h e s i g n i fi c a n c e o f m e t a l - D N A i n t e r a c t i o n s a s w e l l a s t h e i n a c t i v a t i o n o f t h e 2 0 1 p o l y m e r a s e b y m e t a l - e n z y m e i n t e r a c t i o n s . U n l i k e t h e s t u d i e s w i t h c i s p l a t i n a n d r e l a t e d P t c o m p o u n d s w h e r e r e a c t i o n t i m e s b e t w e e n t h e m e t a l c o m p o u n d a n d D N A r a n g e f r o m 2 4 h t o t w o w e e k s , t h e d i r h o d i u m c o m p o u n d s w e r e i n c u b a t e d w i t h D N A f o r n o m o r e t h a n 1 h b e f o r e t h e a d d i t i o n o f p o l I a n d t h e m e a s u r e m e n t s m a d e . T h i s c o u l d a c c o u n t f o r t h e o b s e r v a t i o n t h a t t h e i n h i b i t i o n o f r e p l i c a t i o n i n c r e a s e d w i t h t i m e s i n c e m o r e o f t h e R h 2 ( 0 2 C R ) 4 ( H 2 0 ) 2 r e a c t e d w i t h t h e D N A . T h e s a m e d i f f e r e n c e i n i n c u b a t i o n t i m e i s n o t i c e d f o r t h e e n z y m e i n a c t i v a t i o n s t u d y , v i z . 0 . 5 h i n c u b a t i o n o f R h 2 ( 0 2 C R ) 4 ( H 2 0 ) 2 w i t h t h e e n z y m e b e f o r e a n y m e a s u r e m e n t s w e r e m a d e , v e r s u s 3 d a y s f o r c i s p l a t i n a n d t r a n s p l a t i n . ° ’ 7 E v e n a t t h e s e s h o r t i n c u b a t i o n t i m e s , B e a r a n d c o w o r k e r s o b s e r v e d i n h i b i t i o n o f t h e r e p l i c a t i v e p r o p e r t i e s o f p o l I . T h e y c o u l d n o t e x p l a i n h o w e v e r , w h a t w a s r e s p o n s i b l e f o r t h e s e e f f e c t s . T h r e e p o s s i b l e e x p l a n a t i o n s w e r e p r o p o s e d f o r t h e i r o b s e r v a t i o n s : ( a ) i n h i b i t i o n d u e t o h a - e n z y m e i n t e r a c t i o n e i t h e r a t t h e a c t i v e s i t e o r o n t h e s u r f a c e o f t h e e n z y m e ; ( b ) i n h i b i t i o n d u e t o b i n d i n g o f t h e s u b s t r a t e p o o l , p a r t i c u l a r l y t h o s e m o l e c u l e s c o n t a i n i n g a d e n i n e ; a n d ( c ) i n h i b i t i o n d u e t o b i n d i n g o f t h e d r u g t o s i n g l e - s t r a n d e d r e g i o n s o f t h e t e m p l a t e . T h e i n v e s t i g a t o r s a t t e m p t e d t o d i f f e r e n t i a t e b e t w e e n t h e s e p o s s i b i l i t i e s b y e x p l o r i n g o n e s y s t e m i n w h i c h R h 2 ( 0 2 C R ) 4 ( H 2 0 ) 2 w a s a l l o w e d t o r e a c t w i t h p o l y - d A , p o l y - d T , d A T P a n d d T T P a n d a n o t h e r s y s t e m 2 0 2 c o n t a i n i n g p o l y - d C , p o l y - d G , d C T P , a n d d G T P . T h e i r r e a s o n i n g f o r t h e t w o d i f f e r e n t s y s t e m s i s t h a t t h e a s s a y c o n t a i n i n g p o l y - d G w o u l d n o t e x h i b i t a n y b i n d i n g o f t h e R h 2 ( O C R ) 4 ( H z O ) 2 t o t h e t e m p l a t e s i n c e p r e v i o u s r e s u l t s o b t a i n e d b y t h e r e s e a r c h e r s s u g g e s t t h a t R h 2 ( O C C H 3 ) 4 ( H z O ) 2 ( 1 1 ) d o e s n o t b i n d t o g u a n i n e b a s e s . 7 I f D N A b i n d i n g i s n o t a l l o w e d , t h e n t h e h a c o m p o u n d c a n o n l y b i n d t o t h e e n z y m e . W h e n R = M e t h e h a c o m p o u n d i n h i b i t e d r e p l i c a t i o n o f t h e p o l y - d A s y s t e m b y 8 3 . 9 % a n d t h e p o l y - G s y s t e m b y 5 5 . 7 % . I n t h e c a s e s w h e r e t h e c a r b o x y l a t e w a s p r o p i o n a t e o r b u t y r a t e , t h e p o l y - d G r e p l i c a t i o n w a s i n h i b i t e d b y 7 1 . 3 % a n d b y 4 9 . 3 % , r e s p e c t i v e l y , w h e r e a s t h e r e p l i c a t i o n o f t h e p o l y - d A s y s t e m w a s i n h i b i t e d b y 3 3 . 1 % f o r p r o p i o n a t e a n d b y 2 0 . 0 % f o r b u t y r a t e . T h e c o n c l u s i o n o f f e r e d b y B e a r i s t h a t t h e i n h i b i t i o n o f t h e p o l y — d G r e p l i c a t i o n w a s d u e t o b i n d i n g o f t h e d i r h o d i u m c o m p o u n d t o t h e e n z y m e , a n d i n t h e c a s e f o r t h e p o l y - d A s y s t e m t h e i n h i b i t i o n w a s d u e t o t h e b i n d i n g o f t h e d A T P s u b s t r a t e p o o l . U n f o r t u n a t e l y , t h e s t u d y f a i l e d t o p r o v i d e s a t i s f a c t o r y m e t h o d s o f c h a r a c t e r i z a t i o n f o r t h e d i r h o d i u m c o m p o u n d s p r o d u c e d i n t h e s e s t u d i e s . T h e o n l y m e t h o d s t h a t w e r e u s e d t o f o l l o w t h e r e a c t i o n s i n v o l v e d t h e m e a s u r e m e n t o f 3 H - d T T P a n d 3 H - d C T P i n c o r p o r a t i o n i n t o t h e n e w l y s y n t h e s i z e d D N A . 7 A n e q u a l l y a c c e p t a b l e i n t e r p r e t a t i o n o f B e a r ’ s r e s u l t s w o u l d b e t h a t m e t a l - D N A b i n d i n g a n d n o t m e t a l - p o l I o r m e t a l - s u b s t r a t e 2 0 3 p o o l i n t e r a c t i o n s i s t h e c a u s e o f i n h i b i t i o n . F u r t h e r m o r e , p r e v i o u s r e s e a r c h i n o u r l a b s , d i s c u s s e d i n c h a p t e r 2 o f t h i s d i s s e r t a t i o n , h a s d e m o n s t r a t e d t h a t d i r h o d i u m c o m p o u n d s a c t u a l l y b i n d g u a n i n e b a s e s q u i t e r e a d i l y , c o u n t e r t o t h e e a r l i e r c l a i m s . T h e a i m o f t h e r e s e a r c h d e s c r i b e d i n t h i s c h a p t e r i s t o r e p e a t t h e s e e a r l y s t u d i e s o f R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 ( 1 1 ) p e r f o r m e d b y B e a r , a n d t o a l s o i n v e s t i g a t e w h e t h e r a n a l o g o u s i n h i b i t i o n o f D N A r e p l i c a t i o n b y [ R e 2 ( 0 2 C C H 2 C H 3 ) 4 ] [ S O 4 ] a l s o o c c u r s . E v i d e n c e t h a t R h 2 ( O z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 1 ) d o e s i n f a c t r e a c t w i t h d o u b l e - s t r a n d e d D N A i s a l s o p r e s e n t e d . 2 . E x p e r i m e n t a l A . S y n t h e s i s T h e c o m p o u n d s R h 2 ( O z C C H 3 ) 4 ( H Z O ) 2 ( l 1 ) a n d [ R e 2 ( 0 2 C C H 2 C H 3 ) 4 ] [ S O 4 ] ( 1 3 ) w e r e p r e p a r e d b y l i t e r a t u r e p r o c e d u r e s . 9 S i n c e P C R ( P o l y m e r a s e _ C _ h a i n R e a c t i o n ) r e q u i r e s a s p e c i a l i z e d k n o w l e d g e o f b i o c h e m i c a l l a b t e c h n i q u e s , t h i s w o r k w a s c a r r i e d o u t i n c o l l a b o r a t i o n w i t h D r . K a r l B i s h o p a n d L e e B i c k e r s t a f f . A b r i e f d e s c r i p t i o n o f t h e b i o c h e m i c a l e x p e r i m e n t f o l l o w s . V a r y i n g c o n c e n t r a t i o n s o f t h e d i n u c l e a r t r a n s i t i o n m e t a l c a r b o x y l a t e w e r e a d d e d t o s o l u t i o n s w i t h c o n s t a n t c o n c e n t r a t i o n s o f p l a s m i d P B R 3 2 2 a t r . t . f o r 1 2 h . T h e a p p r o p r i a t e b u f f e r s c o n t a i n i n g t h e s u b s t r a t e s ( d N T P s ) , t h e 3 2 P l a b e l e d 5 ’ - p r i m e r , u n l a b e l e d 3 ’ - p r i m e r a n d t h e T a q p o l y m e r a s e w e r e 2 0 4 a d d e d , a n d t h e P C R p r o c e s s s t a r t e d . T h e P C R p r o d u c t s w e r e a n a l y z e d b y d e n a t u r i n g p o l y a c r l i m i d e g e l e l e c t r o p h o r e s i s ( % a c r y l i m i d e , 7 m M u r e a ) f o l l o w e d b y a u t o r a d i o g r a p h y . 3 . R e s u l t s A . A u t o r a d i o g r a p h o f t h e P C R I n h i b i t i o n b y R h 2 ( O z C C H 3 ) 4 ( H 2 0 2 ) ( 1 1 ) P C R i s a s e n s i t i v e p r o c e s s ; m i n u t e q u a n t i t i e s o f c o n t a m i n a n t D N A o r p r o t e i n s c a n h a v e d e v a s t a t i n g r e s u l t s . 2 P C R r e q u i r e s t w o f r a g m e n t s , t y p i c a l l y 2 0 b a s e p a i r s ( b p ) l o n g , t h a t a r e u s e d a s a p r i m e r f o r t h e p o l y m e r a s e . T h e s e p r i m e r s a r e c o m p l e m e n t a r y i m a g e s t o e a c h e n d o f t h e D N A s e q u e n c e o f i n t e r e s t , i n t h i s c a s e a 3 1 5 - b p s e c t i o n o f t h e P B R 3 2 2 p l a s m i d . T h e p r i m e r s p l u s t h e d N T P s a r e a d d e d t o a s o l u t i o n o f t h e t e m p l a t e a l o n g w i t h a h e a t - s t a b l e p o l y m e r a s e c a l l e d T a q p o l y m e r a s e . U n l i k e m o s t D N A p o l y m e r a s e s s u c h a s p o l I o r p o l 0 1 , T a q r e s i s t s d e n a t u r a t i o n a t 9 5 ° C . T a q i s i s o l a t e d f r o m t h e b a c t e r i u m k n o w n a s T h e r m u s a q u a t i c u s w h i c h i s f o u n d i n t h e h o t s p r i n g s o f Y e l l o w s t o n e N a t i o n a l P a r k . T h e D N A m i x t u r e i s h e a t e d t o 9 5 ° C t o m e l t t h e d o u b l e - s t r a n d e d D N A i n t o t w o s i n g l e s t r a n d s . T h e r e a c t i o n m i x t u r e i s c o o l e d t o 5 5 ° C w h i c h a l l o w s t h e p r i m e r s t o b i n d t o t h e i r c o m p l e m e n t a r y s i t e s ( F i g u r e 3 ) . T h e e n t i r e s a m p l e o f D N A i s n o w s i n g l e - s t r a n d e d e x c e p t f o r t h e t w o s m a l l r e g i o n s w h e r e t h e 1 5 - b a s e p r i m e r s a r e b o u n d . T h e t e m p e r a t u r e i s i n c r e a s e d 2 0 5 . ( S W W L W W W W I i l m m m m 1 m m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " 1 1 1 1 1 1 1 1 1 1 1 1 1 " m m m m 1 m m m m u m u u u l u u u I 5 W 3 M e l t a t 9 5 0 C . I 2 ( " " 1 " " " l l " I H H H H I H H H I H H H H H H H I H H H I H I I I I H H H H H I I " H I ” " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 " ! " 1 1 1 1 1 1 1 ) C o o l t o 5 5 ° C a n d a n n e a l p r i m e r . i 7 2 ° C T a q p o l y n E r a s e d N T P s F i g u r e 3 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e s t e p s o f t h e P o l y m e r a s e C h a i n R e a c t i o n ( P C R ) . t o 7 2 ° C a n d t h e r e p l i c a t i o n p r o c e s s b e g i n s f r o m t h e 3 ’ - O H e n d o f t h e p r i m e r . T h e p r o fi c i e n c y a t w h i c h T a q s y n t h e s i z e s D N A i s a t a r a t e o f 2 0 n u c l e o t i d e s / s e c . A f t e r a s h o r t p e r i o d o f t i m e , t h e t e m p e r a t u r e i s r a i s e d t o 9 5 ° C w h i c h c a u s e s t h e D N A t e m p l a t e t o b e c o m e s i n g l e - s t r a n d e d . A t t h e e n d o f t h e fi r s t c y c l e , t h e r e a r e t w o s t r a n d s o f t h e o r i g i n a l t e m p l a t e . T h e t e m p e r a t u r e i s a g a i n l o w e r e d t o 5 5 ° C t o b e g i n t h e p r o c e s s o f a n n e a l i n g t h e 2 0 6 ' p r i m e r s a g a i n . T h e p r o c e s s i s r e p e a t e d , t h e r e b y a m p l i f y i n g t h e a m o u n t o f 3 1 5 - b p t e m p l a t e . I n o u r e x p e 1 i m e n t , T a q w o u l d t h e o r e t i c a l l y s y n t h e s i z e D N A u n t i l i t r e a c h e d a m e t a l l a t e d s i t e o f t h e D N A , a n d t h e n d i s s o c i a t e f r o m t h e t e m p l a t e ( F i g u r e 4 ) . T h e p r o d u c t s o f t h e P C R r e a c t i o n a r e t h e n v e r i fi e d b y g e l e l e c t r o p h o r e s i s . 5 ' - 3 ' M 2 ( 0 2 C R ) 4 R . T . 2 4 h J D e n a t u r e a n d a n n e a l p r i m e r M 2 T A Q p o l y m e r a s e d N T P s M 2 / \ F i g u r e 4 . S c h e m a t i c o f t h e i n h i b i t i o n o f P C R b y d i n u c l e a r t r a n s i t i o n m e t a l c o m p o u n d s . T h e a u t o r a d i o g r a p h p r e s e n t e d i n F i g u r e 5 d e p i c t s 9 l a n e s l a b e l e d 1 - 9 . T h e b a n d a t t h e t o p o f l a n e 1 r e p r e s e n t s t h e P C R c o n t r o l r e a c t i o n w h e r e n o R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 / p l a s m i d i n c u b a t i o n w a s p e r f o r m e d . L a n e s 2 - 8 r e p r e s e n t t h e P C R p r o d u c t s w i t h v a r y i n g c o n c e n t r a t i o n s o f R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 i n c u b a t e d w i t h t h e t e m p l a t e . L a n e 9 c o n t a i n s a 1 0 0 - b p 2 0 7 T a b l e 1 . S u m m a r y o f t h e h a a n d c o w o r k e r s . 7 R h 2 ( 0 2 C C H 3 ) 4 ( 1 1 M ) R h 2 ( 0 2 C E t ) 4 ( p M ) R 1 1 2 ( 0 2 C P 1 ' J 4 ( H M ) d N T P s ( p M ) T e m p l a t e ( H g ) P o l y m e r a s e ( u n i t s ) 1 1 , 1 1 c a l f t h y m u s 1 0 - 4 0 1 0 - 4 0 1 0 - 4 0 1 0 5 2 . 3 2 c o n c e n t r a t i o n s u s e d t o i n h i b i t D N A r e p l i c a t i o n b y B e a r p o l y - A / p o l y - T p o l y - G / p o l y - C 4 0 4 4 5 1 0 4 . 6 4 2 0 8 4 0 4 4 5 1 0 4 . 6 4 D N A m o l e c u l a r l a d d e r ( i . e . 1 0 0 - b p , 2 0 0 - b p , 3 0 0 - b p , 1 5 0 0 - b p ) u s e d t o c o m p a r e w i t h t h e m o l e c u l a r w e i g h t o f t h e a m p l i fi e d D N A . I n l a n e 1 o n l y o n e b a n d i s o b s e r v e d a t a b o u t 3 0 0 - b p . T h i s i s t h e 3 1 5 - b p P C R p r o d u c t w i t h n o i n h i b i t i o n o f t h e D N A s y n t h e s i s . L a n e s 2 — 3 e x h i b i t n o b a n d s t h a t c a n b e a s s i g n e d a s t h e 3 1 5 - b p p r o d u c t . A s i n g l e b a n d i n e a c h o f t h e s e l a n e s i s o b s e r v e d m u c h l o w e r t h a n t h e 1 0 0 - b p m o l e c u l a r w e i g h t m a r k e r . T h e s e l o w e r b a n d s a r e a s s i g n e d t o t h e 1 5 - b p p r i m e r a n d t h e s h o r t p i e c e s o f D N A s y n t h e s i z e d t h a t a r e a b o u t t h e s a m e l e n g t h a s t h e p r i m e r . I t c a n b e o b s e r v e d t h a t t h e s e b a n d s b e c o m e m o r e f a i n t f r o m l a n e s 3 - 8 a s t h e b a n d f o r t h e 3 1 5 - b p p r o d u c t b e c o m e s m o r e i n t e n s e . T h i s i n d i c a t e s t h a t D N A r e p l i c a t i o n w a s i n h i b i t e d a t t h e c o n c e n t r a t i o n s r a n g i n g f r o m 1 . 5 u M t o 1 5 n M . T h e D N A r e p l i c a t i o n w a s n o t s i g n i fi c a n t l y a f f e c t e d a t c o n c e n t r a t i o n s a t o r b e l o w 1 . 5 n M . T h e q u e s t i o n a r i s e s a s t o w h e t h e r t h e i n h i b i t i o n i s d u e t o t h e i n t e r a c t i o n o f R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 w i t h t h e t e m p l a t e , t h e s u b s t r a t e p o o l , o r t h e T a q . I n t e r a c t i o n s w i t h t h e s u b s t r a t e p o o l c a n b e e l i m i n a t e d a s a c a u s e o f i n h i b i t i o n s i n c e a t t h e h i g h e s t c o n c e n t r a t i o n o f R h 2 ( O z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 . 5 u M ) t h e c o n c e n t r a t i o n o f t h e d N T P s i n t h e P C R p r o c e s s i s a t l e a s t a n o r d e r o f m a g n i t u d e g r e a t e r . T h u s , i f a l l o f t h e R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 w e r e r e a c t i n g w i t h t h e d N T P s s u c h a s d A T P a n d d G T P , e n o u g h s u b s t r a t e i s p r e s e n t t o 2 0 9 a l l o w t h e D N A r e p l i c a t i o n p r o c e s s t o o c c u r . U n f o r t u n a t e l y , i t i s i m p o s s i b l e t o h a v e a d e fi n i t i v e c o n t r o l e x p e r i m e n t w h e r e R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 i s fi r s t i n c u b a t e d w i t h T a q b e f o r e t h e P C R p r o c e s s d u e t o t h e fi n d i n g s t h a t R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 r e a c t s w i t h s i n g l e - s t r a n d e d D N A a l m o s t i n s t a n t a n e o u s l y ( a s p r e s e n t e d i n C h a p t e r I V ) , a n d t h e P C R p r o c e s s r e q u i r e s t h e p r e s e n c e o f s i n g l e — s t r a n d e d D N A i n o r d e r f o r t h e p r i m e r t o b i n d . I t c a n b e a r g u e d h o w e v e r , t h a t R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 i s i n e x c e s s c o m p a r e d t o t h e p o l y m e r a s e a t e a c h c o n c e n t r a t i o n i n t h e P C R e x p e r i m e n t . T h e r e f o r e , o n e w o u l d e x p e c t t h e i n a c t i v a t i o n o f t h e e n z y m e a t t h e l o w e s t c o n c e n t r a t i o n o f 1 . 5 p M i f t h e r e a c t i o n b e t w e e n R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 a n d T a q t o o k p l a c e m o r e e f fi c i e n t l y t h a n t h e r e a c t i o n s b e t w e e n t h e d i r h o d i u m c o m p o u n d a n d t h e o v e r w h e l m i n g c o n c e n t r a t i o n s o f d A T P a n d d G T P w h i c h w e a l s o k n o w t o o c c u r a t r a p i d r a t e s . ° T h e c o n c e n t r a t i o n u s e d b y B e a r i n t h e e a r l y s t u d i e s o f R h 2 ( O z C R ) 4 ( H z O ) 2 w e r e e q u i m o l a r o r i n e x c e s s t o t h e c o n c e n t r a t i o n s o f d N T P s ( T a b l e 2 4 ) . A n a d d i t i o n a l s t u d y w a s p e r f o r m e d t o d e t e r m i n e i f b i n d i n g t o t h e d o u b l e - s t r a n d e d p l a s m i d w a s a c t u a l l y o c c u r r i n g . S o l u t i o n s o f R h 2 ( 0 2 C C H 3 ) 4 ( H 2 0 ) 2 a t t h e s a m e c o n c e n t r a t i o n s u s e d i n t h e P C R e x p e r i m e n t w e r e i n c u b a t e d w i t h t h e 3 1 5 - b p P B R 3 2 2 f o r 2 4 h a t r . t . T h e h a - D N A a d d u c t s w e r e t h e n i n t e r c a l a t e d w i t h e t h i d i u m b r o m i d e a n d g e l 2 1 0 1 2 3 4 5 6 7 8 9 3 1 5 p r C R , 2 ’ . . : 1 i . . . a . ’ 2 5 , . 4 — 3 0 0 b p p r o d u c t a w é — 1 0 0 b p p r i m e r ’ . - L a n e s 1 - 9 : 1 ) c o n t r o l 2 ) 1 . 5 1 1 M ( 1 1 ) 3 ) 1 5 0 1 1 M ( 1 1 ) 4 ) 1 5 n M ( 1 1 ) 5 ) 1 . 5 n M ( 1 1 ) 6 ) ] 5 0 p M ( l l ) 7 ) 1 5 p M ( l l ) 8 ) 1 . 5 p M ( l l ) 9 ) m o l e c u l a r w e i g h t m a r k e r F i g u r e 5 . A u t o r a d i o g r a p h o f t h e i n h i b i t i o n o f P C R b y R h 2 ( 0 2 C C H 3 ) 4 ( H z O ) 2 ( 1 l ) - 2 1 1 e l e c t r o p h o r e s e d o n a n o n - d e n a t u r i n g g e l . T h e r e s u l t s o f t h i s s t u d y p r o v e d t h a t n o t o n l y w a s R h 2 ( O z C C H 3 ) 4 ( H z O ) 2 b i n d i n g t o d o u b l e - s t r a n d e d D N A , b u t t h a t i t a l t e r e d t h e s t r u c t u r e o f t h e p l a s m i d a t d i f f e r e n t c o n c e n t r a t i o n s . 8 B . A u t o r a d i o g r a p h o f t h e P C R I n h i b i t i o n b y [ R e 2 ( O z C C H 2 C H 3 ) 4 ] [ S O 4 ] U n d e r t h e s a m e P C R c o n d i t i o n s a s t h e d i r h o d i u m t e t r a c a r b o x y l a t e , [ R e 2 ( 0 2 C C H 2 C H 3 ) 4 ] [ S O 4 ] w a s i n c u b a t e d w i t h t h e 3 1 5 - b p p l a s m i d , a n d t h e a d d u c t s u b j e c t e d t o P C R . T h e a u t o r a d i o g r a p h p r e s e n t e d i n F i g u r e 6 e x h i b i t s b a n d s c o m p a r a b l e t o t h e b a n d s i n F i g u r e 5 . T h e a u t o r a d i o g r a p h h a s 1 0 l a n e s w i t h l a n e s 1 a n d 1 0 r e p r e s e n t i n g t h e 1 0 0 - b p m o l e c u l a r w e i g h t l a d d e r s . [ R e 2 ( O z C C H 2 C H 3 ) 4 ] [ S O 4 I i n h i b i t s t h e P C R r e a c t i o n a t t h e s a m e c o n c e n t r a t i o n s a s R h 2 ( O z C C H 3 ) 4 ( H 2 0 ) 2 ( 1 . 5 u M , 1 5 0 n M , a n d 1 5 n M ) , a s o n l y b a n d s f o r s h o r t s t r a n d s o f D N A a r e o b s e r v e d a n d t h e b a n d s f o r t h e 3 1 5 - b p P C R p r o d u c t a r e a b s e n t i n l a n e s 2 — 4 . L a n e s 5 — 8 c o n t a i n t h e P C R p r o d u c t a s t h e c o n c e n t r a t i o n o f t h e d i r h e n i u m c o m p o u n d i s d e c r e a s e d . T h i s i s a n i m p o r t a n t r e s u l t , a s n o o t h e r D N A i n h i b i t i o n s t u d i e s h a v e e v e r b e e n p e r f o r m e d o n a d i r h e n i u m c o m p o u n d . I t i s k n o w n t h a t t h e d i r h e n i u m t e t r a c a r b o x y l a t e s R e 2 ( O z C R ) 4 X y a n d t h e d i r h e n i u m b i s c a r b o x y l a t e s c i s - R e 2 ( 0 2 C R ) 2 X 4 L 2 ( R = M e , E t , P r ; x = C l ‘ , B r ' , s o i z ' , B F 4 ' ; L = H 2 0 , C H 3 O H ) r e a c t w i t h 9 - E t G H a n d 9 - E t A H . 9 I n v i v o s t u d i e s w i t h t e s t a n i m a l s i n f e c t e d w i t h v a r i o u s c a n c e r s s h o w s i g n s o f m a r k e d i m p r o v e m e n t w h e n 2 1 2 1 2 3 4 5 3 1 5 p r C R , t - — p r o d u c t 1 ’ ” 1 5 . b p _ _ > . . . - p n m e r L a n e s 1 - 9 : 1 ) m o l e c u l a r w e i g h t m a r k e r 2 ) c o n t r o l 3 ) 1 . 5 u M ( 1 1 ) 4 ) 1 5 0 n M ( l 1 ) 5 ) 1 5 n M ( 1 1 ) 6 ) 1 . 5 n M ( 1 1 ) 7 ) 1 5 0 p M ( 1 1 ) 8 ) 1 5 p M ( 1 1 ) 9 ) 1 . 5 p M ( 1 l ) 1 0 ) m o l e c u l a r w e i g h t m a r k e r F i g u r e 6 . A u t o r a d i o g r a p h o f t h e i n h i b i t i o n o f P C R b y [ R e 2 ( O z C C H 2 C H 3 ) 4 ( H Z O ) 2 ] [ 8 0 4 ] . 2 1 3 t r e a t e d w i t h t h e s e c o m p o u n d s . 9 T o o u r k n o w l e d g e , n o o t h e r i n v e s t i g a t i o n s b e t w e e n t h e a n t i t u m o r a c t i v e d i r h e n i u m c o m p o u n d s a n d e n z y m e s o r w i t h D N A h a v e b e e n r e p o r t e d . 4 . C o n c l u s i o n s R e c e n t r e s u l t s i n v o l v i n g t h e r e a c t i o n s o f d i n u c l e a r r h o d i u m a n d d i n u c l e a r r h e n i u m t e t r a c a r b o x y l a t e c o m p o u n d s w i t h d o u b l e - s t r a n d e d D N A u n d e r m i l d c o n d i t i o n s r e v e a l t h a t b o t h R h 2 ( 0 2 C C H 3 ) 4 ( H z O ) 2 a n d [ R e 2 ( 0 2 C C H 2 C H 3 ) 4 ] [ S O 4 ] i n h i b i t t h e D N A s y n t h e s i s b y P C R . I t w a s r e p o r t e d i n p r e v i o u s l i t e r a t u r e t h a t w h i l e d i n u c l e a r r h o d i u m ( I I ) c o m p o u n d s h a v e a h i g h a f fi n i t y f o r s i n g l e - s t r a n d e d D N A , t h e y d o n o t b i n d t o d o u b l e - s t r a n d e d D N A . 7 C o n t r a d i c t i n g e v i d e n c e t h a t s u p p o r t s t h e b i n d i n g o f t h e d i n u c l e a r r h o d i u m a n d r h e n i u m c o m p o u n d s t o d o u b l e - s t r a n d e d D N A h a s b e e n p r e s e n t e d . I n a d d i t i o n , p r e v i o u s r e s e a r c h e r s c o n c l u d e d t h a t d i r h o d i u m t e t r a c a r b o x y l a t e c o m p o u n d s i n a c t i v a t e e n z y m e s c o n t a i n i n g S H g r o u p s , b u t t h a t t h e y d o n o t d e fi n i t i v e l y i n a c t i v a t e D N A o r R N A p o l y m e r a s e s . 7 E v i d e n c e p r e s e n t e d i n t h i s c h a p t e r s u p p o r t s t h a t i n h i b i t i o n o f P C R c a n b e a t t r i b u t e d t o t h e b i n d i n g o f t h e d i n u c l e a r t r a n s i t i o n c o m p l e x e s t o D N A . T h e a c t u a l m o d e o f b i n d i n g t o t h e D N A h a s n o t b e e n e s t a b l i s h e d , a n d i s t h e s u b j e c t o f f u r t h e r s t u d y . 2 1 4 b » ) > 1 9 L i s t o f R e f e r e n c e s . ( a ) H a r d e r , H . C . ; R o s e n b e r g , B . I n t . J . C a n c e r . 1 9 7 0 , 6 , 2 0 7 . ( b ) H o w l e , J . A . ; G a l e , G . R . B i o c h e m . P h a r m o c o l . 1 9 7 0 , I 9 , 2 7 5 7 . ( c ) S h e r m a n , S . E . L i p p a r d , S . J . C h e m . R e v . 1 9 8 7 , 8 7 , 1 1 5 3 . ( a ) B a k e r , T . A . ; K o r n b e r g , A . D N A R e p l i c a t i o n , F r e e m a n a n d C o . 2 n d E d i t i o n , 1 9 9 2 . ( b ) S t r y e r , L . B i o c h e m i s t r y , F r e e m a n a n d C o . 4 t h E d i t i o n , 1 9 9 5 . ( c ) L e w i n , B . G e n e s V , O x f o r d U n i v e r s i t y P r e s s , 1 9 9 4 . B e m g e s , F . ; H o l l e r , E . B i o c h e m i s t r y . 1 9 8 8 , 2 7 , 6 3 9 8 . H o f f m a n , J . - S . ; J o h n s o n , N . P . ; V i l l a n i , G . J . B i o l . C h e m . 1 9 8 9 , 2 6 4 , 1 5 1 3 0 . C i c c a r e l l i , R . B . ; S o l o m o n , M . J . ; V a r s h a v s k y , A . ; L i p p a r d , S . J . B i o c h e m i s t r y . 1 9 8 5 , 2 4 , 7 5 3 3 . H a r d e r , H . C . ; S m i t h , R . G . ; L e r o y , A . F . C a n c e r R e s . 1 9 7 6 , 3 6 , 3 8 2 1 . ( a ) H o w a r d , R . A . ; S p r i n g , T . G . ; B e a r , J . L . C a n c e r R e s e a r c h 1 9 7 6 , 3 6 , 4 4 0 2 . ( b ) B e a r , J . L . ; G r a y , J r . , H . B . ; R a i n e n , L . ; C h a n g , I . M . ; H o w a r d , R . ; S e r i o , G . ; K i m b a l l , A . P . C a n c e r C h e m o t h e r . R e p o r t s P a r t 1 , 1 9 7 5 , 5 9 , 6 1 1 . B i s h o p , K . ; B i c k e r s t a f f , L . ; C a t a l a n , K . V . ; L o z a d a , E . U . ; D u n b a r , K . R . u n p u b l i s h e d r e s u l t s . ( a ) D m i t r o v , N . V . ; E a s t w o o d , G . W . C u r r e n t C h e m o t h e r . P r o c . I n t . C o n g . C h e m o t h e r . 1 0 t h 1 9 7 7 . 1 9 7 8 , 2 , 1 3 1 9 . ( b ) E a s t l a n d , G . W . ; Y a n g , G . ; T h o m p s o n , T . M e t h . a n d F i n d . E x p t l . C l i n . B i o c h e m . 1 9 8 9 , 1 0 , 4 1 . 2 1 5 A p p e n d i x T A B L E S O F A T O M I C P O S I T I O N A L P A R A M T E R S A N D E Q U I V A L E N T I S O T R O P I C D I S P L A C E M E N T P A R A M E T E R S F O R X - R A Y C R Y S T A L L O G R A P H I C S T R U C T U R E S 2 1 6 T a b l e A 1 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r R h 2 ( D T O I F ) 2 ( 0 2 C C F 3 ) 2 ( C H 3 C N ) 2 ( 1 ) . I d e n t i fi c a t i o n c o d e R h 2 ( D T o l F ) 2 ( O z C C F 3 ) 2 ( C H 3 C N ) E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e p c a l c u F ( 0 0 0 ) 2 1 7 C 3 8 H 3 6 F 6 N 6 0 4 R h 2 9 6 0 . 5 5 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A M o n o c l i n i c P 2 1 / n a = 1 0 . 8 4 9 5 ( 3 ) A b = 2 1 . 4 3 4 9 ( 6 ) A c = 1 8 . 6 7 6 6 ( 3 ) A a = 9 0 0 B = 9 2 . 0 5 9 0 ( 1 0 ) o y = 9 0 o 4 3 4 0 . 6 ( 2 ) A 3 4 1 . 4 7 0 g / c m 3 0 . 8 2 9 c m ' 3 1 9 2 8 T a b l e A 1 c o n t i n u e d . C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s — o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ' ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 2 1 8 0 . 3 1 x 0 . 1 1 x 0 . 1 0 m m 3 1 . 9 0 t o 2 8 3 9 " . - 1 4 < = h < = 1 4 , - 2 8 < = k < = 2 7 , - 1 5 < = 1 < = 2 3 2 5 1 6 0 1 0 1 0 1 [ R ( i n t ) = ' 0 . 1 1 7 7 ] F u l l - m a t r i x l e a s t - s q u a r e s o n F 2 1 0 1 0 1 / 3 1 / 5 0 6 0 . 7 1 7 R 1 = 0 . 0 4 5 1 , w R 2 = 0 . 0 9 0 4 R 1 = 0 . 1 3 9 0 , w R 2 = 0 . 1 1 1 6 0 . 7 8 0 a n d - 1 . 1 3 4 e ' / A 3 T a b l e A 1 c o n t i n u e d . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . R h ( l ) 2 6 5 ( 1 ) 1 9 6 8 ( 1 ) 3 1 6 2 ( 1 ) 4 7 ( 1 ) 1 R h ( 2 ) 5 6 2 ( 1 ) 1 9 7 2 ( 1 ) 4 4 8 2 ( 1 ) 4 6 ( 1 ) 1 0 ( 1 ) - 2 0 1 ( 3 ) 2 8 7 1 ( 1 ) 4 4 6 5 ( 2 ) 5 7 ( 1 ) 1 0 ( 2 ) 1 9 8 6 ( 3 ) 2 4 1 2 ( 2 ) 3 1 1 5 ( 2 ) 5 7 ( 1 ) 1 0 ( 3 ) - 6 4 9 ( 3 ) 2 8 2 1 ( 1 ) 3 2 7 8 ( 2 ) 5 6 ( 1 ) 1 0 ( 4 ) 2 3 3 0 ( 3 ) 2 3 3 2 ( 2 ) 4 3 2 1 ( 2 ) 5 8 ( 1 ) 1 N ( 1 ) - 1 3 5 9 ( 4 ) 1 5 4 2 ( 2 ) 3 2 9 5 ( 2 ) 4 9 ( 1 ) 1 N ( 2 ) - 1 1 5 5 ( 4 ) 1 6 2 8 ( 2 ) 4 5 4 4 ( 2 ) 5 0 ( 1 ) 1 N ( 3 ) - 8 ( 5 ) 2 1 6 9 ( 2 ) 1 9 7 6 ( 3 ) 6 4 ( 1 ) 1 N ( 4 ) 1 0 5 9 ( 4 ) 2 0 5 5 ( 2 ) 5 6 6 7 ( 2 ) 5 8 ( 1 ) 1 N ( 5 ) 1 1 5 7 ( 4 ) 1 1 4 4 ( 2 ) 3 1 4 2 ( 2 ) 5 2 ( 1 ) 1 N ( 6 ) 1 2 8 0 ( 4 ) l 1 1 1 ( 2 ) 4 4 0 0 ( 2 ) 5 4 ( 1 ) 1 C ( 1 ) - 4 6 1 2 ( 7 ) 1 0 1 6 ( 4 ) 8 6 7 ( 4 ) 1 2 2 ( 3 ) 1 C ( 2 ) 1 9 0 0 ( 9 ) - 1 6 5 ( 4 ) 4 8 2 ( 4 ) 1 6 4 ( 4 ) 1 C ( 4 ) 3 8 7 3 ( 6 ) - 1 7 ( 3 ) 6 8 0 0 ( 3 ) 1 0 9 ( 3 ) 1 C ( 5 ) - 2 5 8 1 ( 7 ) 9 3 3 ( 3 ) 1 5 4 3 ( 3 ) 8 2 ( 2 ) 1 C ( 6 ) - 4 1 2 7 ( 6 ) 1 5 0 5 ( 3 ) 2 0 7 6 ( 4 ) 8 2 ( 2 ) 1 C ( 7 ) - 3 7 5 0 ( 7 ) 1 1 5 4 ( 3 ) 1 5 0 9 ( 4 ) 7 8 ( 2 ) 1 C ( 8 ) - 1 7 9 5 ( 6 ) 1 0 5 5 ( 3 ) 2 1 3 2 ( 3 ) 7 2 ( 2 ) 1 C ( 9 ) 1 4 4 0 ( 6 ) 1 9 7 6 ( 3 ) 6 2 3 5 ( 3 ) 6 6 ( 2 ) 1 C ( 1 0 ) 1 9 2 4 ( 7 ) 2 8 2 ( 2 ) 6 1 2 9 ( 3 ) 6 7 ( 2 ) 1 C ( 1 1 ) 1 7 0 4 ( 7 ) 1 7 6 ( 4 ) 1 1 9 6 ( 4 ) 9 7 ( 2 ) 1 C ( 1 2 ) 1 9 3 4 ( 7 ) 1 8 5 3 ( 3 ) 6 9 5 4 ( 3 ) 1 0 4 ( 3 ) 1 C ( 1 3 ) 1 2 2 6 ( 6 ) - 1 1 6 ( 3 ) 1 7 8 4 ( 4 ) 8 8 ( 2 ) 1 C ( 1 5 ) 2 0 4 0 ( 6 ) 7 9 2 ( 3 ) 1 2 8 2 ( 3 ) 9 4 ( 2 ) 1 C ( 1 6 ) - 1 5 5 ( 6 ) 2 3 2 3 ( 3 ) 1 4 0 5 ( 4 ) 8 7 ( 2 ) 1 2 1 9 T a b l e A 1 c o n t i n u e d . C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 9 ) C ( 4 0 ) 1 7 ( 4 ) F ( 1 ) F ( 2 ) F ( 3 ) C ( 4 1 ) C ( 3 ) F ( 5 ) F ( 6 ) 1 8 9 1 ( 5 ) - 3 7 3 ( 8 ) 2 8 0 5 ( 5 ) 3 1 7 5 ( 6 ) - 2 8 6 6 ( 5 ) 3 7 9 6 ( 6 ) 1 0 4 9 ( 6 ) 1 2 9 3 ( 5 ) - 3 5 1 6 ( 6 ) - 3 3 7 4 ( 6 ) - 6 6 3 ( 5 ) 3 1 8 3 ( 7 ) - 1 7 9 8 ( 5 ) 2 5 8 9 ( 5 ) 1 3 7 6 ( 5 ) - 2 1 8 4 ( 6 ) 1 9 2 8 ( 6 ) 2 2 3 9 ( 5 ) 2 3 5 0 ( 5 ) - 1 7 3 8 ( 5 ) 1 4 9 2 ( 5 ) - 1 7 7 3 ( 5 ) - 5 9 6 ( 9 ) 4 7 2 6 ( 4 ) 4 2 3 2 ( 4 ) 4 0 2 6 ( 4 ) 3 8 9 4 ( 7 ) - 1 3 9 3 ( 1 3 ) - 1 8 9 0 ( 9 ) - 1 8 9 1 ( 7 ) 1 1 0 0 ( 3 ) 2 5 1 7 ( 5 ) 8 5 0 ( 2 ) 8 0 2 ( 2 ) 1 3 1 8 ( 2 ) 5 2 4 ( 3 ) 1 8 8 ( 3 ) 5 5 3 ( 2 ) 1 2 0 9 ( 2 ) 1 6 3 8 ( 2 ) 3 0 6 1 ( 2 ) 2 7 4 ( 3 ) 1 9 9 0 ( 2 ) 2 4 6 6 ( 2 ) 8 0 2 ( 3 ) 1 4 1 4 ( 2 ) 8 2 0 ( 2 ) 9 4 2 ( 2 ) 1 8 8 7 ( 2 ) 1 5 1 6 ( 2 ) 8 8 4 ( 2 ) 1 4 6 9 ( 2 ) 4 1 1 7 ( 3 ) 2 3 7 0 ( 2 ) 2 8 2 8 ( 2 ) 3 2 5 9 ( 2 ) 2 7 2 9 ( 4 ) 3 6 5 0 ( 4 ) 3 7 5 8 ( 4 ) 3 8 4 3 ( 3 ) 1 9 1 7 ( 3 ) 6 4 5 ( 4 ) 6 0 2 4 ( 3 ) 5 0 3 1 ( 3 ) 6 5 4 0 ( 3 ) 5 6 0 3 ( 4 ) 2 4 3 3 ( 3 ) 5 5 5 9 ( 3 ) 7 2 3 0 ( 3 ) 2 6 6 5 ( 3 ) 3 8 8 4 ( 3 ) 6 1 6 6 ( 3 ) 5 7 2 4 ( 3 ) 3 6 8 6 ( 3 ) 2 4 9 9 ( 3 ) 2 6 9 9 ( 3 ) 4 9 9 2 ( 3 ) 5 3 7 2 ( 3 ) 6 3 6 8 ( 3 ) 5 2 1 1 ( 3 ) 3 7 5 6 ( 3 ) 3 9 5 4 ( 3 ) 4 0 2 8 ( 6 ) 3 9 2 6 ( 2 ) 2 9 7 8 ( 2 ) 3 9 7 6 ( 3 ) 3 6 2 6 ( 4 ) 3 9 0 0 ( 5 ) 4 4 6 8 ( 4 ) 3 3 8 9 ( 3 ) 7 0 ( 2 ) 1 7 7 ( 4 ) 5 7 ( 2 ) 6 7 ( 2 ) 5 3 ( 1 ) 8 1 ( 2 ) 7 2 ( 2 ) 6 1 ( 2 ) 7 6 ( 2 ) 6 4 ( 2 ) 5 7 ( 2 ) 6 8 ( 2 ) 5 3 ( 1 ) 5 6 ( 2 ) 5 6 ( 2 ) 5 4 ( 1 ) 5 2 ( 1 ) 5 0 ( 1 ) 5 7 ( 2 ) 4 7 ( 1 ) 5 6 ( 2 ) 5 4 ( 1 ) 2 8 9 ( 6 ) 1 2 6 ( 2 ) 1 1 3 7 ( 2 ) 1 4 9 ( 2 ) 8 1 ( 2 ) 1 4 8 ( 5 ) 2 5 4 ( 5 ) 2 4 0 ( 4 ) H H H H H ’ d H fi — i fl fl p ‘ H H — i fi — A H — I H H — t p — I p — d y — t j — d H o n — A u — l p — i p — A U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 2 0 T a b l e A 1 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ ° ] . R h ( 1 ) - N ( 1 ) R h ( 1 ) - N ( 5 ) R h ( 1 ) - 0 ( 3 ) R h ( 1 ) - 0 ( 2 ) R h ( 1 ) - N ( 3 ) R h ( 1 ) - R h ( 2 ) R h ( 2 ) - N ( 6 ) R h ( 2 ) - N ( 2 ) R h ( 2 ) - 0 ( 1 ) R h ( 2 ) - 0 ( 4 ) R h ( 2 ) - N ( 4 ) O ( 1 ) - C ( 2 8 ) 0 ( 2 ) - C ( 3 1 ) 0 ( 3 ) - C ( 2 8 ) 0 ( 4 ) - C ( 3 1 ) N ( 1 ) - C ( 4 0 ) N ( 1 ) - C ( 3 3 ) N ( 2 ) - C ( 4 0 ) N ( 2 ) - C ( 3 7 ) N ( 3 ) - C ( 1 6 ) N ( 4 r C ( 9 ) N ( 5 ) - C ( 3 9 ) N ( 5 ) - C ( 3 2 ) N ( 6 ) - C ( 3 9 ) N ( 6 ) - C ( 3 4 ) C ( 1 ) - C ( 7 ) C ( 2 ) - C ( 1 1 ) C ( 4 ) - C ( 2 9 ) C ( 5 ) - C ( 7 ) C ( 5 ) - C ( 8 ) 2 . 0 0 7 ( 4 ) 2 . 0 1 5 ( 4 ) 2 . 0 9 4 ( 3 ) 2 . 1 0 1 ( 3 ) 2 . 2 6 7 ( 5 ) 2 . 4 7 4 3 ( 5 ) 2 . 0 1 1 ( 4 ) 2 . 0 1 1 ( 4 ) 2 . 0 9 8 ( 3 ) 2 . 1 0 0 ( 3 ) 2 . 2 6 5 ( 5 ) 1 . 2 4 8 ( 6 ) 1 . 2 3 8 ( 6 ) 1 . 2 4 5 ( 6 ) 1 . 2 6 2 ( 6 ) 1 . 3 3 5 ( 6 ) 1 . 4 2 9 ( 6 ) 1 . 3 1 3 ( 6 ) 1 . 4 3 8 ( 5 ) 1 . 1 2 2 ( 7 ) 1 . 1 3 7 ( 7 ) 1 . 3 1 3 ( 6 ) 1 . 3 1 3 ( 6 ) 1 . 3 2 6 ( 6 ) 1 . 4 3 1 ( 6 ) 1 . 5 2 4 ( 8 ) 1 . 5 4 3 ( 8 ) 1 . 5 1 2 ( 7 ) 1 . 3 5 4 ( 8 ) 1 . 3 9 2 ( 8 ) 2 2 1 T a b l e A 1 c o n t i n u e d . C ( 6 ) - C ( 7 ) C ( 6 ) - C ( 2 7 ) C ( 8 ) - C ( 3 3 ) C ( 9 ) - C ( 1 2 ) C ( l O ) - C ( 2 9 ) C ( 1 0 ) - C ( 2 4 ) C ( 1 1 ) - C ( 1 5 ) C ( 1 1 ) - C ( 1 3 ) C ( 1 3 ) - C ( 2 3 ) C ( 1 5 ) - C ( 1 7 ) C ( 1 6 ) - C ( 1 8 ) C ( 1 7 ) - C ( 3 2 ) C ( 1 9 ) - C ( 2 1 ) C ( 1 9 ) - C ( 3 5 ) C ( 2 0 ) - C ( 3 4 ) C ( 2 0 ) - C ( 2 2 ) C ( 2 1 ) - C ( 3 6 ) C ( 2 1 ) - C ( 2 5 ) C ( 2 2 ) - C ( 2 9 ) C ( 2 3 ) - C ( 3 2 ) C ( 2 4 ) - C ( 3 4 ) C ( 2 7 ) - C ( 3 3 ) C ( 2 8 ) - C ( 3 ) C ( 3 0 ) — C ( 3 6 ) C ( 3 0 ) - C ( 3 7 ) C ( 3 1 ) - C ( 4 1 ) C ( 3 5 ) - C ( 3 7 ) F ( 4 ) - C ( 3 ) F ( 1 ) - C ( 4 1 ) F ( 2 ) - C ( 4 1 ) F ( 3 ) - C ( 4 l ) C ( 3 ) - F ( 6 ) C ( 3 ) - F ( 5 ) N ( 1 ) - R h ( l ) - N ( 5 ) N ( 1 ) - R h ( 1 ) - 0 ( 3 ) N ( 5 ) - R h ( 1 ) - O ( 3 ) N ( 1 ) - R h ( l ) - O ( 2 ) N ( 5 ) - R h ( 1 ) - O ( 2 ) 1 . 3 7 2 ( 8 ) 1 . 3 7 7 ( 8 ) 1 . 3 8 8 ( 7 ) 1 . 4 5 2 ( 8 ) 1 . 3 6 5 ( 8 ) 1 . 3 7 3 ( 7 ) 1 . 3 7 9 ( 8 ) 1 . 3 8 0 ( 8 ) 1 . 3 9 6 ( 7 ) 1 . 3 7 2 ( 7 ) 1 . 4 8 9 ( 9 ) 1 . 3 9 5 ( 6 ) 1 . 3 9 4 ( 6 ) 1 . 3 9 8 ( 6 ) 1 . 3 5 4 ( 7 ) 1 . 3 7 8 ( 7 ) 1 . 3 8 6 ( 6 ) 1 . 5 0 9 ( 6 ) 1 . 3 7 4 ( 7 ) 1 . 3 6 6 ( 7 ) 1 . 4 0 5 ( 6 ) 1 . 3 7 7 ( 7 ) 1 . 4 9 2 ( 8 ) 1 . 3 8 0 ( 6 ) 1 . 3 9 9 ( 6 ) 1 . 5 3 1 ( 8 ) 1 . 3 8 1 ( 6 ) 1 . 3 3 9 ( 1 2 ) 1 . 2 9 7 ( 7 ) 1 . 2 9 4 ( 6 ) 1 . 3 1 7 ( 7 ) 1 . 1 5 7 ( 8 ) 1 . 2 2 9 ( 8 ) 9 1 . 6 ( 2 ) 8 7 . 9 3 ( 1 4 ) 1 7 5 . 2 ( 2 ) 1 7 5 . 4 ( 2 ) 8 8 . 2 ( 2 ) T a b l e A 1 c o n t i n u e d . 0 ( 3 ) - R h ( 1 ) - O ( 2 ) N ( 1 ) - R h ( 1 ) - N ( 3 ) N ( 5 ) - R h ( 1 ) - N ( 3 ) 0 ( 3 ) - R h ( 1 ) - N ( 3 ) 0 ( 2 ) - R h ( 1 ) - N ( 3 ) N ( 1 ) - R h ( 1 ) - R h ( 2 ) N ( 5 ) - R h ( 1 ) - R h ( 2 ) 0 ( 3 ) - R h ( 1 ) - R h ( 2 ) 0 ( 2 ) - R h ( 1 ) - R h ( 2 ) N ( 3 ) - R h ( 1 ) - R h ( 2 ) N ( 6 ) - R h ( 2 ) - N ( 2 ) N ( 6 ) — R h ( 2 ) - O ( 1 ) N ( 2 ) - R h ( 2 ) - O ( 1 ) N ( 6 ) - R h ( 2 ) - 0 ( 4 ) N ( 2 ) - R h ( 2 ) - 0 ( 4 ) 0 ( 1 ) - R h ( 2 ) - 0 ( 4 ) N ( 6 ) - R h ( 2 ) - N ( 4 ) N ( 2 ) - R h ( 2 ) - N ( 4 ) 0 ( 1 ) - R h ( 2 ) - N ( 4 ) 0 ( 4 ) - R h ( 2 ) - N ( 4 ) N ( 6 ) - R h ( 2 ) - R h ( 1 ) N ( 2 ) - R h ( 2 ) - R h ( 1 ) 0 ( 1 ) - R h ( 2 ) - R h ( 1 ) 0 ( 4 ) - R h ( 2 ) - R h ( 1 ) N ( 4 ) - R h ( 2 ) - R h ( 1 ) C ( 2 8 ) - O ( 1 ) - R h ( 2 ) C ( 3 1 ) - O ( 2 ) - R h ( l ) C ( 2 8 ) - 0 ( 3 ) - R h ( 1 ) C ( 3 1 ) - O ( 4 ) — R h ( 2 ) C ( 4 0 ) - N ( 1 ) - C ( 3 3 ) C ( 4 0 ) - N ( 1 ) - R h ( 1 ) C ( 3 3 ) - N ( 1 ) - R h ( 1 ) C ( 4 0 ) - N ( 2 ) - C ( 3 7 ) C ( 4 0 ) - N ( 2 ) - R h ( 2 ) C ( 3 7 ) - N ( 2 ) - R h ( 2 ) C ( 1 6 ) - N ( 3 ) - R h ( 1 ) C ( 9 ) - N ( 4 ) - R h ( 2 ) C ( 3 9 ) - N ( 5 ) - C ( 3 2 ) 9 1 9 2 ( 1 4 ) 9 7 . 0 ( 2 ) 1 0 1 . 2 ( 2 ) 8 3 . 6 4 ( 1 4 ) 8 7 . 6 ( 2 ) 8 7 . 8 5 ( 1 2 ) 8 8 . 6 1 ( 1 2 ) 8 6 5 6 ( 9 ) 8 7 . 5 1 ( 1 0 ) 1 6 8 . 8 8 ( 1 1 ) 9 1 . 7 ( 2 ) 1 7 4 . 8 ( 2 ) 8 8 . 4 ( 2 ) 8 8 . 2 ( 2 ) 1 7 5 . 0 ( 2 ) 9 1 . 2 2 ( 1 4 ) 9 3 . 9 ( 2 ) 9 9 . 3 ( 2 ) 9 1 . 2 7 ( 1 4 ) 8 5 . 7 ( 2 ) 8 7 . 6 0 ( 1 3 ) 8 8 . 1 5 ( 1 2 ) 8 7 1 9 ( 9 ) 8 6 . 9 0 ( 1 0 ) 1 7 2 . 3 7 ( 1 1 ) 1 1 7 . 3 ( 3 ) 1 1 6 . 7 ( 3 ) 1 1 8 . 4 ( 3 ) 1 1 7 . 0 ( 4 ) 1 1 8 . 2 ( 5 ) 1 1 9 . 5 ( 4 ) 1 2 1 . 3 ( 3 ) 1 1 7 . 1 ( 4 ) 1 1 9 . 5 ( 4 ) 1 2 3 . 2 ( 4 ) 1 7 3 . 7 ( 5 ) 1 6 4 . 8 ( 5 ) 1 1 7 . 7 ( 4 ) 2 2 3 T a b l e A 1 c o n t i n u e d . C ( 3 9 ) - N ( 5 ) - R h ( 1 ) C ( 3 2 ) - N ( 5 ) - R h ( 1 ) C ( 3 9 ) - N ( 6 ) - C ( 3 4 ) C ( 3 9 ) - N ( 6 ) - R h ( 2 ) C ( 3 4 ) - N ( 6 ) - R h ( 2 ) C ( 7 ) - C ( 5 ) - C ( 8 ) C ( 7 ) - C ( 6 ) - C ( 2 7 ) C ( 5 ) - C ( 7 ) - C ( 6 ) C ( 5 ) - C ( 7 ) - C ( 1 ) C ( 6 ) - C ( 7 ) - C ( 1 ) C ( 3 3 ) - C ( 8 ) - C ( 5 ) N ( 4 ) - C ( 9 ) — C ( 1 2 ) C ( 2 9 ) - C ( 1 0 ) - C ( 2 4 ) C ( 1 5 ) - C ( 1 1 ) - C ( 1 3 ) C ( 1 5 ) - C ( 1 1 ) - C ( 2 ) C ( 1 3 ) - C ( 1 1 ) - C ( 2 ) C ( 1 1 ) - C ( 1 3 ) - C ( 2 3 ) C ( 1 1 ) — C ( 1 5 ) - C ( 1 7 ) N ( 3 ) - C ( 1 6 ) — C ( 1 8 ) C ( 1 5 ) — C ( 1 7 ) - C ( 3 2 ) C ( 2 1 ) - C ( 1 9 ) - C ( 3 5 ) C ( 3 4 ) - C ( 2 0 ) - C ( 2 2 ) C ( 3 6 ) — C ( 2 1 ) - C ( 1 9 ) C ( 3 6 ) - C ( 2 1 ) - C ( 2 5 ) C ( 1 9 ) - C ( 2 1 ) - C ( 2 5 ) C ( 2 0 ) - C ( 2 2 ) - C ( 2 9 ) C ( 3 2 ) - C ( 2 3 ) - C ( 1 3 ) C ( 1 0 ) - C ( 2 4 ) - C ( 3 4 ) C ( 3 3 ) - C ( 2 7 ) - C ( 6 ) 0 ( 3 ) - C ( 2 8 ) - 0 ( 1 ) O ( 3 ) - C ( 2 8 ) - C ( 3 ) O ( 1 ) - C ( 2 8 ) — C ( 3 ) C ( 1 0 ) - C ( 2 9 ) - C ( 2 2 ) C ( 1 0 ) - C ( 2 9 ) - C ( 4 ) C ( 2 2 ) - C ( 2 9 ) - C ( 4 ) C ( 3 6 ) - C ( 3 0 ) - C ( 3 7 ) 0 ( 2 ) - C ( 3 1 ) - O ( 4 ) 0 ( 2 ) - C ( 3 1 ) - C ( 4 1 ) 1 1 8 . 3 ( 3 ) 1 2 3 . 9 ( 3 ) 1 1 6 . 4 ( 4 ) 1 1 9 . 0 ( 4 ) 1 2 1 . 5 ( 3 ) 1 2 1 . 2 ( 6 ) 1 2 3 . 0 ( 6 ) 1 1 7 . 4 ( 6 ) 1 2 1 . 1 ( 7 ) 1 2 1 . 5 ( 7 ) 1 2 0 . 9 ( 6 ) 1 7 8 . 1 ( 6 ) 1 2 1 . 0 ( 6 ) 1 1 6 . 5 ( 6 ) 1 2 0 . 7 ( 7 ) 1 2 2 . 8 ( 7 ) 1 2 3 . 2 ( 6 ) 1 2 1 . 5 ( 6 ) 1 7 8 . 7 ( 9 ) 1 2 1 . 0 ( 6 ) 1 2 2 . 2 ( 5 ) 1 2 0 . 9 ( 6 ) 1 1 6 . 4 ( 4 ) 1 2 2 . 6 ( 5 ) 1 2 1 . 0 ( 5 ) 1 2 1 . 7 ( 6 ) 1 1 8 . 9 ( 6 ) 1 2 0 . 8 ( 6 ) 1 1 9 . 6 ( 6 ) 1 2 9 . 7 ( 5 ) 1 1 3 . 1 ( 6 ) 1 1 7 . 1 ( 5 ) 1 1 7 . 8 ( 6 ) 1 2 0 . 8 ( 6 ) 1 2 1 . 4 ( 7 ) 1 2 0 . 9 ( 5 ) 1 3 1 . 4 ( 5 ) 1 1 5 . 6 ( 5 ) 2 2 4 T a b l e A 1 c o n t i n u e d . 0 ( 4 ) - C ( 3 l ) - C ( 4 1 ) C ( 2 3 ) - C ( 3 2 ) - C ( 1 7 ) C ( 2 3 ) - C ( 3 2 ) - N ( 5 ) C ( 1 7 ) - C ( 3 2 ) - N ( 5 ) C ( 2 7 ) - C ( 3 3 ) - C ( 8 ) C ( 2 7 ) - C ( 3 3 ) - N ( 1 ) C ( 8 ) - C ( 3 3 ) - N ( 1 ) C ( 2 0 ) - C ( 3 4 ) - C ( 2 4 ) C ( 2 0 ) - C ( 3 4 ) - N ( 6 ) C ( 2 4 ) - C ( 3 4 ) - N ( 6 ) C ( 3 7 ) - C ( 3 5 ) - C ( 1 9 ) C ( 3 0 ) - C ( 3 6 ) - C ( 2 1 ) C ( 3 5 ) - C ( 3 7 ) - C ( 3 0 ) C ( 3 5 ) - C ( 3 7 ) - N ( 2 ) C ( 3 0 ) - C ( 3 7 ) - N ( 2 ) N ( 5 ) - C ( 3 9 ) - N ( 6 ) N ( 2 ) - C ( 4 0 ) - N ( 1 ) F ( 2 ) - C ( 4 1 ) - F ( 1 ) F ( 2 ) - C ( 4 1 ) - F ( 3 ) F ( 1 ) - C ( 4 1 ) - F ( 3 ) F ( 2 ) - C ( 4 1 ) - C ( 3 1 ) F ( 1 ) - C ( 4 1 ) - C ( 3 1 ) F ( 3 ) - C ( 4 1 ) - C ( 3 1 ) F ( 6 ) - C ( 3 ) - F ( 5 ) F ( 6 ) - C ( 3 ) - F ( 4 ) F ( 5 ) - C ( 3 ) - F ( 4 ) F ( 6 ) - C ( 3 ) - C ( 2 8 ) F ( 5 ) - C ( 3 ) - C ( 2 8 ) F ( 4 ) - C ( 3 ) - C ( 2 8 ) 1 1 3 . 0 ( 6 ) 1 1 8 . 8 ( 5 ) 1 2 1 . 1 ( 5 ) 1 2 0 . 1 ( 5 ) 1 1 7 . 9 ( 6 ) 1 2 2 . 0 ( 5 ) 1 2 0 . 1 ( 6 ) 1 1 7 . 6 ( 5 ) 1 2 1 . 1 ( 5 ) 1 2 1 . 3 ( 5 ) 1 2 0 . 3 ( 4 ) 1 2 2 . 2 ( 5 ) 1 1 7 . 9 ( 4 ) 1 2 1 . 7 ( 4 ) 1 2 0 . 3 ( 4 ) 1 2 5 . 8 ( 5 ) 1 2 4 . 4 ( 5 ) 1 0 6 . 6 ( 6 ) 1 0 7 . 0 ( 6 ) 1 0 3 . 6 ( 7 ) 1 1 5 . 1 ( 6 ) 1 1 2 . 4 ( 6 ) 1 1 1 . 4 ( 6 ) 1 1 6 . 1 ( 1 0 ) 9 9 . 2 ( 1 0 ) 9 0 . 4 ( 7 ) 1 2 1 . 2 ( 7 ) 1 1 5 . 2 ( 8 ) 1 0 7 . 2 ( 1 0 ) 2 2 5 T a b l e A 1 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 R h ( l ) 5 8 ( 1 ) 5 0 ( 1 ) 3 2 ( 1 ) 2 ( 1 ) 2 ( 1 ) 4 ( 1 ) R h ( 2 ) 5 5 ( 1 ) 4 8 ( 1 ) 3 4 ( 1 ) 2 ( 1 ) 1 ( 1 ) 3 ( 1 ) 0 ( 1 ) 8 5 ( 3 ) 4 7 ( 2 ) 3 8 ( 2 ) - 3 ( 2 ) 2 ( 2 ) 1 2 ( 2 ) 0 ( 2 ) 5 8 ( 3 ) 7 0 ( 3 ) 4 2 ( 2 ) 5 ( 2 ) - 1 ( 2 ) — 5 ( 2 ) 0 ( 3 ) 7 3 ( 3 ) 5 3 ( 2 ) 4 0 ( 2 ) 2 ( 2 ) - 6 ( 2 ) 1 6 ( 2 ) 0 ( 4 ) 5 2 ( 3 ) 7 2 ( 2 ) 5 1 ( 2 ) 2 ( 2 ) 2 ( 2 ) 2 ( 2 ) N ( 1 ) 4 9 ( 3 ) 5 7 ( 3 ) 4 1 ( 3 ) - 9 ( 2 ) - 4 ( 2 ) 0 ( 2 ) N ( 2 ) 5 8 ( 3 ) 5 2 ( 3 ) 4 0 ( 3 ) - 8 ( 2 ) 5 ( 2 ) - 1 ( 2 ) N ( 3 ) 7 6 ( 4 ) 7 3 ( 3 ) 4 3 ( 3 ) — 4 ( 3 ) - 5 ( 3 ) 5 ( 3 ) N ( 4 ) 7 0 ( 4 ) 5 9 ( 3 ) 4 7 ( 3 ) - 8 ( 3 ) 1 0 ( 3 ) - 3 ( 2 ) N ( 5 ) 6 7 ( 3 ) 5 2 ( 3 ) 3 8 ( 3 ) - 1 ( 2 ) 5 ( 2 ) 1 1 ( 2 ) N ( 6 ) 6 9 ( 3 ) 5 1 ( 3 ) 4 1 ( 3 ) 2 ( 2 ) 1 ( 2 ) 1 3 ( 2 ) C ( 1 ) 1 0 8 ( 7 ) 1 7 5 ( 7 ) 8 0 ( 5 ) — 4 ( 5 ) - 5 7 ( 5 ) - 1 ( 5 ) C ( 2 ) 2 3 8 ( 1 1 ) 1 6 7 ( 8 ) 9 1 ( 6 ) - 6 7 ( 6 ) 4 9 ( 7 ) 1 4 ( 7 ) C ( 4 ) 1 3 6 ( 7 ) 8 8 ( 5 ) 9 8 ( 6 ) 3 6 ( 4 ) - 6 2 ( 5 ) - 3 4 ( 5 ) C ( 5 ) 8 9 ( 6 ) 1 0 7 ( 5 ) 4 9 ( 4 ) - 3 1 ( 4 ) 0 ( 4 ) - 1 0 ( 4 ) C ( 6 ) 7 0 ( 5 ) 9 8 ( 5 ) 7 5 ( 5 ) - 1 ( 4 ) 2 3 ( 4 ) 1 3 ( 4 ) C ( 7 ) 7 6 ( 5 ) 9 8 ( 5 ) 5 8 ( 5 ) 2 ( 4 ) - 1 9 ( 4 ) - 1 0 ( 4 ) C ( 8 ) 6 7 ( 5 ) 9 3 ( 5 ) 5 4 ( 4 ) 2 0 ( 4 ) - 3 ( 4 ) - 6 ( 4 ) C ( 9 ) 8 8 ( 5 ) 7 1 ( 4 ) 4 0 ( 4 ) - 1 1 ( 4 ) 1 ( 4 ) 6 ( 4 ) C ( 1 0 ) 1 0 0 ( 6 ) 5 4 ( 4 ) 4 6 ( 4 ) 8 ( 3 ) - 1 ( 4 ) — 7 ( 4 ) C ( 1 1 ) 1 2 8 ( 7 ) 1 0 2 ( 6 ) 6 1 ( 5 ) 2 9 ( 4 ) 1 8 ( 5 ) 7 ( 5 ) C ( 1 2 ) 1 5 3 ( 7 ) 1 0 9 ( 5 ) 4 7 ( 4 ) - 1 3 ( 4 ) 2 1 ( 4 ) 3 8 ( 5 ) C ( 1 3 ) 1 1 7 ( 6 ) 6 4 ( 4 ) 8 4 ( 5 ) 2 6 ( 4 ) 4 ( 5 ) 4 ( 4 ) C ( 1 5 ) 1 0 9 ( 6 ) 1 0 8 ( 6 ) 6 8 ( 5 ) - 1 5 ( 4 ) 3 6 ( 4 ) 3 ( 5 ) C ( 1 6 ) 9 3 ( 6 ) 1 1 5 ( 6 ) 5 2 ( 5 ) 1 0 ( 4 ) 2 ( 4 ) 1 3 ( 4 ) 2 2 6 T a b l e A 1 c o n t i n u e d . C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 9 ) C ( 4 0 ) F ( 4 ) F ( 1 ) F ( 2 ) F ( 3 ) C ( 4 1 ) C ( 3 ) F ( 5 ) F ( 6 ) 6 8 ( 5 ) 1 9 4 ( 1 1 ) 6 2 ( 4 ) 6 4 ( 5 ) 5 3 ( 4 ) 7 3 ( 5 ) 1 0 0 ( 5 ) 6 3 ( 4 ) 1 0 8 ( 6 ) 7 2 ( 5 ) 7 2 ( 4 ) 9 2 ( 5 ) 5 5 ( 4 ) 5 3 ( 4 ) 6 0 ( 4 ) 6 4 ( 4 ) 6 4 ( 4 ) 5 9 ( 4 ) 6 4 ( 4 ) 4 7 ( 4 ) 6 5 ( 4 ) 5 8 ( 4 ) 3 8 7 ( 1 3 ) 6 4 ( 3 ) 7 8 ( 3 ) 1 2 3 ( 4 ) 8 3 ( 6 ) 2 7 8 ( 1 4 ) 3 9 1 ( 1 2 ) 3 9 9 ( 1 0 ) 8 2 ( 4 ) 2 9 0 ( 1 3 ) 4 7 ( 3 ) 6 8 ( 4 ) 6 3 ( 4 ) 7 9 ( 4 ) 5 9 ( 4 ) 6 1 ( 4 ) 7 0 ( 4 ) 6 5 ( 4 ) 5 4 ( 3 ) 5 3 ( 4 ) 5 2 ( 3 ) 6 1 ( 4 ) 7 1 ( 4 ) 5 7 ( 4 ) 4 2 ( 3 ) 4 6 ( 3 ) 5 6 ( 3 ) 5 4 ( 3 ) 4 7 ( 3 ) 5 4 ( 3 ) 8 7 ( 4 ) 1 9 6 ( 5 ) 2 7 0 ( 5 ) 1 2 2 ( 3 ) 9 1 ( 5 ) 9 5 ( 7 ) 2 4 4 ( 8 ) 1 9 1 ( 5 ) 6 0 ( 4 ) 4 7 ( 5 ) 6 3 ( 4 ) 7 0 ( 4 ) 4 3 ( 3 ) 9 1 ( 5 ) 5 8 ( 4 ) 5 9 ( 4 ) 5 1 ( 4 ) 5 3 ( 4 ) 4 5 ( 4 ) 5 7 ( 4 ) 5 2 ( 3 ) 5 4 ( 4 ) 3 6 ( 3 ) 3 9 ( 3 ) 4 9 ( 4 ) 4 6 ( 3 ) 5 3 ( 4 ) 4 0 ( 3 ) 5 6 ( 4 ) 4 9 ( 4 ) 3 7 9 ( 1 4 ) 1 1 7 ( 4 ) 6 3 ( 3 ) 2 0 5 ( 6 ) 6 8 ( 5 ) 6 7 ( 6 ) 1 3 2 ( 5 ) 1 1 8 ( 4 ) - 9 ( 4 ) 3 8 ( 6 ) - 1 ( 3 ) 2 4 ( 3 ) 1 ( 3 ) 2 2 ( 4 ) 2 7 ( 3 ) 5 ( 3 ) - 2 ( 3 ) - 4 ( 3 ) - 2 ( 3 ) 7 ( 3 ) - 8 ( 3 ) - 1 ( 3 ) 2 0 ( 3 ) 1 ( 3 ) - 2 ( 3 ) - 8 ( 3 ) 2 0 ( 3 ) - 2 ( 3 ) 4 ( 3 ) - 7 ( 3 ) - 5 5 ( 6 ) 3 3 ( 3 ) 3 9 ( 3 ) 2 7 ( 4 ) 8 ( 4 ) - 4 6 ( 5 ) 3 9 ( 5 ) - 8 1 ( 4 ) 1 3 ( 4 ) 2 3 ( 6 ) 1 2 ( 3 ) 5 ( 4 ) 6 ( 3 ) 2 9 ( 4 ) 8 ( 4 ) 1 2 ( 3 ) 2 8 ( 4 ) - 4 ( 4 ) - 1 ( 3 ) - 3 0 ( 4 ) 6 ( 3 ) 1 2 ( 3 ) 1 ( 3 ) 1 ( 3 ) 1 ( 3 ) 5 ( 3 ) 1 0 ( 3 ) 2 ( 3 ) 4 ( 3 ) 3 ( 3 ) - 1 6 4 ( 1 l ) 9 ( 3 ) 6 ( 2 ) 4 6 ( 4 ) 1 1 ( 4 ) - 3 8 ( 8 ) 8 4 ( 6 ) 2 4 0 ( 5 ) 9 ( 3 ) 2 1 ( 9 ) 1 ( 3 ) - 1 ( 3 ) 6 ( 3 ) 2 0 ( 4 ) 1 0 ( 3 ) - 1 ( 3 ) - 7 ( 4 ) 7 ( 3 ) 6 ( 3 ) 2 5 ( 4 ) - 1 ( 3 ) - 1 ( 3 ) 1 5 ( 3 ) - 7 ( 3 ) 8 ( 3 ) 3 ( 3 ) - 7 ( 3 ) 7 ( 3 ) 1 2 ( 3 ) - 3 ( 3 ) 7 8 ( 6 ) 1 6 ( 3 ) - 5 2 ( 3 ) - 5 5 ( 3 ) - 7 ( 5 ) 1 1 2 ( 8 ) 2 4 9 ( 8 ) 2 3 0 ( 6 ) T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : - 2 p i " 2 [ h A Z a * " 2 U 1 1 + + 2 h k a * b * U 1 2 ] 2 2 7 T a b l e A 1 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s ( x 1 0 4 ) a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . H ( l A ) - 5 3 9 9 ( 7 ) 1 2 0 8 ( 4 ) 9 3 7 ( 4 ) 1 8 4 1 H ( 1 B ) - 4 7 1 7 ( 7 ) 5 7 3 ( 4 ) 8 1 9 ( 4 ) 1 8 4 1 H ( 1 C ) - 4 2 6 5 ( 7 ) 1 1 8 0 ( 4 ) 4 4 1 ( 4 ) 1 8 4 1 H ( 2 A ) 1 6 1 6 ( 9 ) ~ 5 8 8 ( 4 ) 5 1 7 ( 4 ) 2 4 6 1 H ( 2 B ) 2 7 6 2 ( 9 ) - 1 6 4 ( 4 ) 3 8 1 ( 4 ) 2 4 6 1 H ( 2 C ) 1 4 4 5 ( 9 ) 4 4 ( 4 ) 1 0 2 ( 4 ) 2 4 6 l H ( 4 A ) 4 7 4 4 ( 6 ) 1 7 ( 3 ) 6 7 3 6 ( 3 ) 1 6 3 1 H ( 4 B ) 3 6 5 1 ( 6 ) - 4 4 9 ( 3 ) 6 8 3 6 ( 3 ) 1 6 3 1 H ( 4 C ) 3 6 6 2 ( 6 ) 1 9 6 ( 3 ) 7 2 3 1 ( 3 ) 1 6 3 1 H ( 5 ) - 2 2 9 7 ( 7 ) 6 9 6 ( 3 ) 1 1 6 6 ( 3 ) 9 8 1 H ( 6 ) - 4 9 2 9 ( 6 ) 1 6 5 9 ( 3 ) 2 0 6 1 ( 4 ) 9 8 1 H ( 8 ) - 9 9 9 ( 6 ) 8 9 3 ( 3 ) 2 1 4 6 ( 3 ) 8 6 1 H ( 1 0 ) 1 4 8 7 ( 7 ) 1 0 1 ( 2 ) 6 4 9 5 ( 3 ) 8 0 1 H ( 1 2 A ) 2 1 3 2 ( 7 ) 2 2 4 1 ( 3 ) 7 1 8 7 ( 3 ) 1 5 6 1 H ( 1 2 B ) 2 6 6 6 ( 7 ) 1 6 0 4 ( 3 ) 6 9 2 8 ( 3 ) 1 5 6 1 H ( 1 2 C ) 1 3 3 1 ( 7 ) 1 6 3 4 ( 3 ) 7 2 2 1 ( 3 ) 1 5 6 1 H ( 1 3 ) 1 0 1 2 ( 6 ) - 5 3 5 ( 3 ) 1 7 4 6 ( 4 ) 1 0 6 1 H ( 1 5 ) 2 3 7 6 ( 6 ) 1 0 0 4 ( 3 ) 9 0 1 ( 3 ) 1 l 3 1 H ( 1 7 ) 2 1 3 8 ( 5 ) 1 5 1 4 ( 3 ) 1 9 6 1 ( 3 ) 8 4 1 H ( 1 8 A ) 2 2 3 ( 8 ) 2 3 2 0 ( 5 ) 3 5 2 ( 4 ) 2 6 6 1 H ( 1 8 B ) - 2 9 6 ( 8 ) 2 9 6 2 ( 5 ) 6 0 9 ( 4 ) 2 6 6 1 H ( 1 8 C ) - 1 1 8 8 ( 8 ) 2 3 9 4 ( 5 ) 4 8 5 ( 4 ) 2 6 6 1 H ( 1 9 ) - 3 1 5 3 ( 5 ) 4 6 3 ( 2 ) 6 1 1 7 ( 3 ) 6 9 1 H ( 2 0 ) 3 6 2 0 ( 6 ) 9 8 0 ( 2 ) 4 6 6 6 ( 3 ) 8 0 1 H ( 2 2 ) 4 6 5 3 ( 6 ) 5 0 6 ( 3 ) 5 6 0 8 ( 4 ) 9 8 l H ( 2 3 ) 7 1 4 ( 6 ) - 2 3 ( 3 ) 2 8 1 5 ( 3 ) 8 7 1 H ( 2 4 ) 4 3 6 ( 5 ) 5 6 1 ( 2 ) 5 5 4 9 ( 3 ) 7 3 l H ( 2 5 A ) - 3 8 0 6 ( 6 ) 7 8 6 ( 2 ) 7 2 4 5 ( 3 ) l 1 4 1 H ( 2 5 B ) - 4 2 0 4 ( 6 ) 1 4 8 9 ( 2 ) 7 2 5 5 ( 3 ) 1 1 4 l H ( 2 5 C ) - 2 9 5 3 ( 6 ) 1 2 8 2 ( 2 ) 7 6 2 9 ( 3 ) l 1 4 1 H ( 2 7 ) - 3 6 6 7 ( 6 ) 1 8 7 8 ( 2 ) 3 0 3 7 ( 3 ) 7 6 1 H ( 3 0 ) - 1 4 6 1 ( 5 ) 2 3 7 9 ( 2 ) 5 6 3 0 ( 3 ) 6 3 1 H ( 3 5 ) - 2 1 9 9 ( 5 ) 6 1 7 ( 2 ) 5 0 4 5 ( 3 ) 6 0 l 2 2 8 T a b l e A 1 c o n t i n u e d . H ( 3 6 ) 2 3 7 7 ( 5 ) 2 2 1 2 ( 2 ) 6 6 9 8 ( 3 ) 6 9 H ( 3 9 ) 1 9 1 6 ( 5 ) 5 0 8 ( 2 ) 3 7 3 6 ( 3 ) 6 7 H ( 4 0 ) 2 5 5 2 ( 5 ) 1 2 9 5 ( 2 ) 3 9 9 9 ( 3 ) 6 4 2 2 9 T a b l e A 1 c o n t i n u e d . T o r s i o n a n g l e s [ 0 ] . N ( 1 ) R h ( l ) R h ( 2 ) N ( 6 ) N ( 5 ) R h ( 1 ) R h ( 2 ) N ( 6 ) O ( 3 ) R h ( l ) R h ( 2 ) N ( 6 ) 0 ( 2 ) K W ) R h ( 2 ) N ( 6 ) N ( 3 ) R h ( l ) R h ( 2 ) N ( 6 ) N ( 1 ) R h ( l ) R h ( 2 ) N ( 2 ) N ( 5 ) R h ( 1 ) R h ( 2 ) N ( 2 ) 0 ( 3 ) R h ( 1 ) R h ( 2 ) N ( 2 ) 0 ( 2 ) R h ( l ) R h ( 2 ) N ( 2 ) N ( 3 ) R h ( l ) R h ( 2 ) N ( 2 ) N ( 1 ) R h ( 1 ) R h ( 2 ) 0 ( 1 ) N ( 5 ) R h ( 1 ) R h ( 2 ) 0 ( 1 ) 0 ( 3 ) R h ( 1 ) R 1 1 ( 2 ) 0 ( 1 ) 0 ( 2 ) R h ( l ) R h ( 2 ) 0 ( 1 ) N ( 3 ) R h ( 1 ) R h ( 2 ) 0 ( 1 ) N ( 1 ) R h ( l ) R 1 1 ( 2 ) 0 ( 4 ) N ( 5 ) R h ( l ) R h ( 2 ) 0 ( 4 ) 0 ( 3 ) R h ( l ) R h ( 2 ) 0 ( 4 ) 0 ( 2 ) R 1 1 ( 1 ) R h ( 2 ) 0 ( 4 ) N ( 3 ) R h ( l ) R 1 1 ( 2 ) 0 ( 4 ) N ( 1 ) R h ( l ) R h ( 2 ) N ( 4 ) N ( 5 ) R h ( l ) R h ( 2 ) N ( 4 ) 0 ( 3 ) R h ( l ) R h ( 2 ) N ( 4 ) 0 ( 2 ) R h ( l ) R h ( 2 ) N ( 4 ) N ( 3 ) R 1 1 ( 1 ) R h ( 2 ) N ( 4 ) N ( 6 ) R h ( 2 ) 0 ( 1 ) C ( 2 8 ) N ( 2 ) R h ( 2 ) 0 ( 1 ) C ( 2 8 ) 0 ( 4 ) R h ( 2 ) 0 ( 1 ) C ( 2 8 ) N ( 4 ) R h ( 2 ) 0 ( 1 ) C ( 2 8 ) R h ( l ) R h ( 2 ) 0 ( 1 ) C ( 2 8 ) N ( 1 ) R h ( l ) 0 ( 2 ) C ( 3 1 ) 8 6 . 2 ( 2 ) - 5 . 4 ( 2 ) 1 7 4 . 3 ( 2 ) - 9 3 . 7 ( 2 ) 2 5 7 . 4 ( 6 ) - 5 . 6 ( 2 ) - 9 7 . 2 ( 2 ) 8 2 . 4 ( 2 ) 1 7 4 . 5 2 ( 1 4 ) 1 1 0 . 7 ( 6 ) - 9 4 . 1 ( 2 ) 1 7 4 . 3 ( 2 ) - 6 . 0 3 ( 1 4 ) 8 6 . 0 5 ( 1 4 ) 2 2 . 3 ( 6 ) 1 7 4 . 5 4 ( 1 4 ) 8 2 . 9 ( 2 ) 9 7 . 4 0 0 3 ) 6 . 3 2 0 3 ) - 6 9 . 1 ( 6 ) 2 7 2 . 5 ( 8 ) 9 5 . 8 ( 8 ) - 8 4 . 5 ( 8 ) 7 . 6 ( 8 ) - 5 6 . 2 ( 1 1 ) 1 2 ( 2 ) - 7 9 . 5 ( 4 ) 9 5 . 6 ( 4 ) 2 7 8 . 7 ( 4 ) 8 . 7 ( 4 ) 5 ( 2 ) 2 3 0 T a b l e A 1 c o n t i n u e d . N ( 5 ) R h ( l ) 0 ( 2 ) C ( 3 1 ) - 8 1 . 8 ( 4 ) 0 ( 3 ) R h ( 1 ) 0 ( 2 ) C ( 3 1 ) 9 3 . 4 ( 4 ) N ( 3 ) R h ( l ) 0 ( 2 ) C ( 3 1 ) 1 7 6 . 9 ( 4 ) R h ( 2 ) R h ( l ) 0 ( 2 ) C ( 3 1 ) 6 . 9 ( 4 ) N ( 1 ) R h ( l ) 0 ( 3 ) C ( 2 8 ) 9 3 . 6 ( 4 ) N ( 5 ) R h ( 1 ) 0 ( 3 ) C ( 2 8 ) 9 ( 2 ) 0 ( 2 ) R h ( l ) 0 ( 3 ) C ( 2 8 ) - 8 1 . 8 ( 4 ) N ( 3 ) R h ( 1 ) 0 ( 3 ) C ( 2 8 ) - 1 6 9 . 1 ( 4 ) R h ( 2 ) R h ( l ) 0 ( 3 ) C ( 2 8 ) 5 . 6 ( 4 ) N ( 6 ) R h ( 2 ) 0 ( 4 ) C ( 3 1 ) 9 3 . 3 ( 4 ) N ( 2 ) R h ( 2 ) 0 ( 4 ) C ( 3 1 ) 4 ( 2 ) 0 ( 1 ) R h ( 2 ) 0 ( 4 ) C ( 3 1 ) - 8 l . 5 ( 4 ) N ( 4 ) R h ( 2 ) 0 ( 4 ) C ( 3 1 ) - 1 7 2 . 7 ( 4 ) R h ( l ) R h ( 2 ) 0 ( 4 ) C ( 3 1 ) 5 . 6 ( 4 ) N ( 5 ) R h ( l ) N ( 1 ) C ( 4 0 ) 9 5 . 3 ( 4 ) 0 ( 3 ) R h ( l ) N ( 1 ) C ( 4 0 ) - 7 9 . 9 ( 4 ) 0 ( 2 ) R h ( l ) N ( 1 ) C ( 4 0 ) 8 ( 2 ) N ( 3 ) R h ( l ) N ( 1 ) C ( 4 0 ) - 1 6 3 . 3 ( 4 ) R h ( 2 ) R h ( l ) N ( 1 ) C ( 4 0 ) 6 . 7 ( 4 ) N ( 5 ) R h ( 1 ) N ( 1 ) C ( 3 3 ) - 9 6 . 2 ( 4 ) 0 ( 3 ) R h ( l ) N ( 1 ) C ( 3 3 ) 8 8 . 6 ( 4 ) 0 ( 2 ) R h ( l ) N ( 1 ) C ( 3 3 ) 1 7 7 ( 2 7 ) N ( 3 ) R h ( l ) N ( 1 ) C ( 3 3 ) 5 . 3 ( 4 ) R h ( 2 ) R h ( l ) N ( 1 ) C ( 3 3 ) 1 7 5 . 3 ( 4 ) N ( 6 ) R h ( 2 ) N ( 2 ) C ( 4 0 ) - 8 1 . 4 ( 4 ) 0 ( 1 ) R h ( 2 ) N ( 2 ) C ( 4 0 ) 9 3 . 3 ( 4 ) 0 ( 4 ) R h ( 2 ) N ( 2 ) C ( 4 0 ) 8 ( 2 ) N ( 4 ) R h ( 2 ) N ( 2 ) C ( 4 0 ) - 1 7 5 . 7 ( 4 ) R h ( l ) R h ( 2 ) N ( 2 ) C ( 4 0 ) 6 . 1 ( 4 ) N ( 6 ) R h ( 2 ) N ( 2 ) C ( 3 7 ) 9 5 . 4 ( 4 ) 0 ( 1 ) R h ( 2 ) N ( 2 ) C ( 3 7 ) - 8 9 . 8 ( 4 ) 0 ( 4 ) R h ( 2 ) N ( 2 ) C ( 3 7 ) - 1 7 5 ( 2 ) N ( 4 ) R h ( 2 ) N ( 2 ) C ( 3 7 ) 1 . 2 ( 4 ) R h ( l ) R h ( 2 ) N ( 2 ) C ( 3 7 ) - 1 7 7 . 0 ( 3 ) N ( 1 ) R h ( 1 ) N ( 3 ) C ( 1 6 ) 1 0 8 ( 5 ) N ( 5 ) R h ( l ) N ( 3 ) C ( 1 6 ) - 1 5 9 ( 5 ) 0 ( 3 ) R h ( l ) N ( 3 ) C ( 1 6 ) 2 1 ( 5 ) 0 ( 2 ) R h ( 1 ) N ( 3 ) C ( 1 6 ) - 7 1 ( 5 ) R h ( 2 ) R h ( 1 ) N ( 3 ) C ( 1 6 ) - 8 ( 6 ) 2 3 1 T a b l e A 1 c o n t i n u e d . N ( 6 ) 1 1 1 1 ( 2 ) N ( 4 ) C ( 9 ) N ( 2 ) 1 1 1 1 ( 2 ) N ( 4 ) C ( 9 ) 0 ( 1 ) 1 1 1 1 ( 2 ) N ( 4 ) C ( 9 ) 0 ( 4 ) 1 1 1 1 ( 2 ) N ( 4 ) C ( 9 ) 1 1 1 1 ( 1 ) 1 1 1 1 ( 2 ) N ( 4 ) C ( 9 ) N ( 1 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 9 ) 0 ( 3 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 9 ) 0 ( 2 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 9 ) N ( 3 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 9 ) 1 1 1 1 ( 2 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 9 ) N ( 1 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) 0 ( 3 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) 0 ( 2 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) N ( 3 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) 1 1 1 1 ( 2 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) N ( 2 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 9 ) 0 ( 1 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 9 ) 0 ( 4 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 9 ) N ( 4 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 9 ) 1 1 1 1 ( 1 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 9 ) N ( 2 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) 0 ( 1 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) 0 ( 4 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) N ( 4 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) 1 1 1 1 ( 1 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) C ( 8 ) C ( 5 ) C ( 7 ) C ( 6 ) C ( 8 ) C ( 5 ) C ( 7 ) C ( 1 ) C ( 2 7 ) C ( 6 ) C ( 7 ) C ( 5 ) C ( 2 7 ) C ( 6 ) C ( 7 ) C ( 1 ) C ( 7 ) C ( 5 ) C ( 8 ) C ( 3 3 ) 1 1 1 1 ( 2 ) N ( 4 ) C ( 9 ) C ( 1 2 ) C ( 1 5 ) C ( 1 1 ) C ( 1 3 ) C ( 2 3 ) C ( 2 ) C ( 1 1 ) C ( 1 3 ) C ( 2 3 ) C ( 1 3 ) C ( 1 1 ) C ( 1 5 ) C ( 1 7 ) C ( 2 ) C ( 1 1 ) C ( 1 5 ) C ( 1 7 ) 1 1 1 1 ( 1 ) N ( 3 ) C ( 1 6 ) C ( 1 8 ) C ( 1 1 ) C ( 1 5 ) C ( 1 7 ) C ( 3 2 ) C ( 3 5 ) C ( 1 9 ) C ( 2 1 ) C ( 3 6 ) 2 3 2 7 ( 2 ) 1 0 0 ( 2 ) 2 7 2 ( 2 ) - 8 1 ( 2 ) - 9 4 ( 2 ) - 8 3 . 7 ( 4 ) 0 ( 2 ) 9 1 . 7 ( 4 ) 1 7 8 . 8 ( 4 ) 4 . 1 ( 4 ) 9 1 . 9 ( 4 ) 1 7 6 ( 2 ) - 9 2 . 8 ( 4 ) - 5 . 6 ( 4 ) 1 7 9 . 7 ( 4 ) 9 6 . 2 ( 4 ) 5 ( 2 ) - 7 8 . 8 ( 4 ) 2 6 4 . 4 ( 4 ) 8 . 1 ( 4 ) 2 0 4 . 3 ( 4 ) 1 6 4 ( 2 ) 8 0 . 7 ( 4 ) - 4 . 9 ( 4 ) 1 6 7 . 6 ( 4 ) 0 . 3 ( 1 0 ) 2 7 9 . 5 ( 6 ) 0 . 1 ( 1 0 ) 1 7 9 . 9 ( 6 ) 0 9 0 0 ) 2 7 ( 2 3 ) 1 . 7 ( 1 2 ) 1 7 9 . 8 ( 7 ) - 0 . 8 ( 1 1 ) 2 7 8 . 9 ( 7 ) - 1 2 8 ( 2 9 ) 0 9 a 1 ) 1 . 0 ( 8 ) T a b l e A 1 c o n t i n u e d . C ( 3 5 ) C ( 1 9 ) C ( 2 1 ) C ( 2 5 ) C ( 3 4 ) C ( 2 0 ) C ( 2 2 ) C ( 2 9 ) C ( 1 1 ) C ( 1 3 ) C ( 2 3 ) C ( 3 2 ) C ( 2 9 ) C ( 1 0 ) C ( 2 4 ) C ( 3 4 ) C ( 7 ) C ( 6 ) C ( 2 7 ) C ( 3 3 ) 1 1 1 1 ( 1 ) 0 ( 3 ) C ( 2 8 ) 0 ( 1 ) 1 1 1 1 ( 1 ) 0 ( 3 ) C ( 2 8 ) C ( 3 ) 1 1 1 1 ( 2 ) 0 ( 1 ) C ( 2 8 ) 0 ( 3 ) 1 1 1 1 ( 2 ) C ( 1 ) C ( 2 8 ) C ( 3 ) C ( 2 4 ) C ( 1 0 ) C ( 2 9 ) C ( 2 2 ) C ( 2 4 ) C ( 1 0 ) C ( 2 9 ) C ( 4 ) C ( 2 0 ) C ( 2 2 ) C ( 2 9 ) C ( 1 0 ) C ( 2 0 ) C ( 2 2 ) C ( 2 9 ) C ( 4 ) 1 1 1 1 ( 1 ) 0 ( 2 ) C ( 3 1 ) 0 ( 4 ) 1 1 1 1 ( 1 ) 0 ( 2 ) C ( 3 1 ) C ( 4 1 ) 1 1 1 1 ( 2 ) 0 ( 4 ) C ( 3 1 ) 0 ( 2 ) 1 1 1 1 ( 2 ) 0 ( 4 ) C ( 3 1 ) C ( 4 1 ) C ( 1 3 ) C ( 2 3 ) C ( 3 2 ) C ( 1 7 ) C ( 1 3 ) C ( 2 3 ) C ( 3 2 ) N ( 5 ) C ( 1 5 ) C ( 1 7 ) C ( 3 2 ) C ( 2 3 ) C ( 1 5 ) C ( 1 7 ) C ( 3 2 ) N ( 5 ) C ( 3 9 ) N ( 5 ) C ( 3 2 ) C ( 2 3 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) C ( 2 3 ) C ( 3 9 ) N ( 5 ) C ( 3 2 ) C ( 1 7 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 2 ) C ( 1 7 ) C ( 6 ) C ( 2 7 ) C ( 3 3 ) C ( 8 ) C ( 6 ) C ( 2 7 ) C ( 3 3 ) N ( 1 ) C ( 5 ) C ( 8 ) C ( 3 3 ) C ( 2 7 ) C ( 5 ) C ( 8 ) C ( 3 3 ) N ( 1 ) C ( 4 0 ) N ( 1 ) C ( 3 3 ) C ( 2 7 ) 1 1 1 1 ( 1 ) N ( 1 ) C ( 3 3 ) C ( 2 7 ) C ( 4 0 ) N ( 1 ) C ( 3 3 ) C ( 8 ) 1 1 1 1 ( 1 ) N ( 1 ) C ( 3 3 ) C ( 8 ) C ( 2 2 ) C ( 2 0 ) C ( 3 4 ) C ( 2 4 ) C ( 2 2 ) C ( 2 0 ) C ( 3 4 ) N ( 6 ) C ( 1 0 ) C ( 2 4 ) C ( 3 4 ) C ( 2 0 ) C ( 1 0 ) C ( 2 4 ) C ( 3 4 ) N ( 6 ) C ( 3 9 ) N ( 6 ) C ( 3 4 ) C ( 2 0 ) 2 3 3 1 7 8 . 2 ( 5 ) 2 . 2 ( 1 0 ) 0 9 ( 1 1 ) 1 . 2 ( 8 ) 0 . 0 ( 9 ) 0 . 0 ( 8 ) 2 7 7 . 2 ( 7 ) - 7 . 4 ( 8 ) 1 6 9 . 7 ( 7 ) 2 . 4 ( 9 ) 1 7 9 . 1 ( 5 ) 2 . 9 ( 9 ) 2 7 8 . 6 ( 6 ) - 4 . 8 ( 8 ) 1 7 3 . 8 ( 4 ) 2 . 7 ( 8 ) 1 7 9 . 7 ( 4 ) 0 9 ( 9 ) 1 7 6 . 9 ( 5 ) 1 . 8 ( 9 ) 2 7 6 . 1 ( 6 ) 4 8 . 0 ( 8 ) 2 2 7 . 6 ( 5 ) 2 3 4 . 2 ( 6 ) 5 0 . 2 ( 7 ) - 0 . 5 ( 8 ) 1 7 9 . 6 ( 5 ) 0 . 9 ( 8 ) 2 7 9 . 1 ( 5 ) 4 6 . 5 ( 7 ) 2 2 2 . 2 ( 5 ) 2 3 3 . 4 ( 5 ) 5 7 . 9 ( 6 ) 0 . 9 ( 8 ) 1 7 9 . 7 ( 5 ) - 0 . 4 ( 8 ) 2 7 9 . 2 ( 5 ) 5 8 . 8 ( 7 ) T a b l e A 1 c o n t i n u e d . 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) C ( 2 0 ) C ( 3 9 ) N ( 6 ) C ( 3 4 ) C ( 2 4 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 4 ) C ( 2 4 ) C ( 2 1 ) C ( 1 9 ) C ( 3 5 ) C ( 3 7 ) C ( 3 7 ) C ( 3 0 ) C ( 3 6 ) C ( 2 1 ) C ( 1 9 ) C ( 2 1 ) C ( 3 6 ) C ( 3 0 ) C ( 2 5 ) C ( 2 1 ) C ( 3 6 ) C ( 3 0 ) C ( 1 9 ) C ( 3 5 ) C ( 3 7 ) C ( 3 0 ) C ( 1 9 ) C ( 3 5 ) C ( 3 7 ) N ( 2 ) C ( 3 6 ) C ( 3 0 ) C ( 3 7 ) C ( 3 5 ) C ( 3 6 ) C ( 3 0 ) C ( 3 7 ) N ( 2 ) C ( 4 0 ) N ( 2 ) C ( 3 7 ) C ( 3 5 ) 1 1 1 1 ( 2 ) N ( 2 ) C ( 3 7 ) C ( 3 5 ) C ( 4 0 ) N ( 2 ) C ( 3 7 ) C ( 3 0 ) 1 1 1 1 ( 2 ) N ( 2 ) C ( 3 7 ) C ( 3 0 ) C ( 3 2 ) N ( 5 ) C ( 3 9 ) N ( 6 ) 1 1 1 1 ( 1 ) N ( 5 ) C ( 3 9 ) N ( 6 ) C ( 3 4 ) N ( 6 ) C ( 3 9 ) N ( 5 ) 1 1 1 1 ( 2 ) N ( 6 ) C ( 3 9 ) N ( 5 ) C ( 3 7 ) N ( 2 ) C ( 4 0 ) N ( 1 ) 1 1 1 1 ( 2 ) N ( 2 ) C ( 4 0 ) N ( 1 ) C ( 3 3 ) N ( 1 ) C ( 4 0 ) N ( 2 ) 1 1 1 1 ( 1 ) N ( 1 ) C ( 4 0 ) N ( 2 ) 0 ( 2 ) C ( 3 1 ) C ( 4 1 ) F ( 2 ) 0 ( 4 ) C ( 3 1 ) C ( 4 1 ) F ( 2 ) 0 ( 2 ) C ( 3 1 ) C ( 4 1 ) F ( l ) 0 ( 4 ) C ( 3 1 ) C ( 4 1 ) 1 ( 1 ) 0 ( 2 ) C ( 3 1 ) C ( 4 1 ) 1 7 ( 3 ) 0 ( 4 ) C ( 3 1 ) C ( 4 1 ) F ( 3 ) 0 ( 3 ) C ( 2 8 ) C ( 3 ) F ( 6 ) 0 ( 1 ) C ( 2 8 ) C ( 3 ) F ( 6 ) 0 ( 3 ) C ( 2 8 ) C ( 3 ) F ( 5 ) 0 ( 1 ) C ( 2 8 ) C ( 3 ) F ( 5 ) 0 ( 3 ) C ( 2 8 ) C ( 3 ) F ( 4 ) 0 ( 1 ) C ( 2 8 ) C ( 3 ) F ( 4 ) 2 0 1 . 2 ( 5 ) 2 2 2 . 4 ( 5 ) 7 7 . 5 ( 5 ) - l . 5 ( 8 ) 0 . 1 ( 9 ) - O . 4 ( 8 ) 2 7 7 . 5 ( 5 ) 1 . 2 ( 8 ) 2 7 9 . 6 ( 5 ) - 0 . 5 ( 8 ) 2 7 9 . 7 ( 5 ) 5 0 . 5 ( 7 ) 2 2 6 . 5 ( 5 ) 2 3 0 . 3 ( 5 ) 5 2 . 7 ( 6 ) 2 7 4 . 7 ( 5 ) 1 . 1 ( 8 ) 2 6 8 . 2 ( 5 ) - 7 . 7 ( 8 ) 2 7 9 . 8 ( 4 ) 2 . 7 ( 7 ) 2 7 3 . 0 ( 5 ) - 4 . 1 ( 7 ) - 3 . 8 ( 9 ) 1 7 5 . 0 ( 6 ) 2 2 6 . 1 ( 6 ) 5 2 . 8 ( 8 ) 1 1 8 . 2 ( 6 ) - 6 3 . 0 ( 8 ) 1 ( 2 ) 2 7 6 . 9 ( 1 2 ) 1 4 9 . 3 ( 1 1 ) 2 8 ( 2 ) 2 1 1 . 9 ( 9 ) 7 0 . 5 ( 1 2 ) 2 3 4 T a b l e A 2 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s f o r [ R h 2 ( D T 0 1 F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . I d e n t i fi c a t i o n c o d e [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z p c a l c 2 3 5 C 4 6 H 4 8 B Z F 8 N 1 5 R h 2 1 1 9 0 . 4 0 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A M o n o c l i n i c P 2 1 / c a = 1 5 . 6 4 8 ( 8 ) A b = 1 6 . 5 1 5 ( 5 ) A c = 2 0 . 0 2 6 ( 8 ) A a = 9 0 ° [ 3 = 1 0 5 . 1 7 ( 4 ) ° y : 9 0 0 4 9 9 4 ( 6 ) A 3 4 1 . 5 8 3 g / c m 3 0 . 7 4 0 c m ' 3 T a b l e A 2 c o n t i n u e d . C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d G o o d n e s s - o f - fi t o n F F i n a l R i n d i c e s [ I > 3 o ( I ) ] L a r g e s t d i f f . p e a k a n d h o l e 2 3 6 0 . 3 1 x 0 . 2 3 x 0 1 8 1 1 1 1 1 1 3 1 . 9 0 t o 2 2 5 0 " . 1 5 < 2 9 < 2 1 ° 7 1 5 1 6 8 4 1 [ R ( i n t ) = 0 . 1 1 9 ] F u l l - m a t r i x l e a s t - s q u a r e s o n F 1 . 3 0 R ; = 0 . 0 6 3 , R w = 0 . 0 7 3 0 . 7 8 0 a n d 2 . 1 3 4 1 : 7 A 3 T a b l e A 2 . P o s i t i o n a l P a r a m e t e r s a n d E q u i v a l e n t I s o t r o p i c T h e r m a l P a r a m e t e r s f o r [ R h 2 ( D T o l F ) 2 ( 9 - E t A H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 ( 4 ) . a t o m x y z B e q R h ( l ) 0 . 7 6 8 2 ( 1 ) 0 . 1 4 7 0 ( 1 ) 0 . 1 4 6 7 ( 1 ) 2 5 2 ( 5 ) R h ( 2 ) 0 . 7 1 2 2 ( 1 ) 0 . 2 1 7 7 ( 1 ) 0 . 2 3 7 8 ( 1 ) 2 . 6 0 ( 5 ) N ( 1 ) 0 . 8 7 2 ( 1 ) 0 . 1 2 2 ( 1 ) 0 . 2 3 0 ( 1 ) 3 . 2 ( 6 ) N ( 2 ) 0 . 6 6 2 ( 1 ) 0 . 1 7 3 ( 1 ) 0 . 0 6 6 2 ( 1 0 ) 3 . 2 ( 6 ) N ( 3 ) 0 . 6 9 6 ( 1 ) 0 . 0 5 0 ( 1 ) 0 . 1 6 8 5 ( 8 ) 2 . 1 ( S ) N ( 4 ) 0 . 8 3 3 ( 1 ) 0 . 2 4 5 ( 1 ) 0 . 1 2 8 ( 1 ) 3 . 1 ( 6 ) N ( S ) 0 . 8 0 6 ( 1 ) 0 . 0 7 8 ( 1 ) 0 . 0 7 4 ( 1 ) 2 . 9 ( 6 ) N ( 6 ) 0 . 6 4 1 ( 1 ) 0 . 3 0 2 ( 1 ) 0 . 1 7 3 ( 1 ) 3 . 2 ( 6 ) N ( 7 ) 0 . 6 0 9 ( 1 ) 0 . 1 4 2 ( 1 ) 0 . 2 1 0 7 ( 9 ) 3 . 0 ( S ) N ( 8 ) 0 . 8 1 5 ( 1 ) 0 . 2 9 6 ( 1 ) 0 . 2 7 1 2 ( 1 0 ) 3 . 1 ( 5 ) N ( 9 ) 0 . 7 8 1 ( 1 ) 0 . 1 3 2 ( 1 ) 0 . 3 0 3 ( 1 ) 3 . 2 ( 5 ) N ( 1 0 ) 0 . 9 3 0 ( 2 ) 0 . 3 8 8 ( 1 ) 0 . 2 6 7 ( 1 ) 6 . 2 ( 8 ) N ( 1 1 ) 0 . 9 9 1 ( 2 ) 0 . 4 1 2 ( 2 ) 0 . 1 7 4 ( 2 ) 8 ( 1 ) N ( 1 2 ) 0 . 9 2 8 ( 2 ) 0 . 3 2 0 ( 1 ) 0 . 0 8 1 ( 1 ) 5 . 6 ( 8 ) N ( 1 3 ) 0 . 5 4 2 ( 1 ) 0 . 2 4 2 ( 1 ) - 0 . 0 0 9 ( 1 ) 4 . 3 ( 7 ) N ( 1 4 ) 0 . 4 7 5 ( 2 ) 0 . 3 6 1 ( 2 ) 0 . 0 2 3 ( 2 ) 6 . 5 ( 9 ) N ( 1 5 ) 0 . 5 4 3 ( 2 ) 0 . 4 0 0 ( 2 ) 0 . 1 3 9 ( 2 ) 6 . 0 ( 8 ) C ( 1 ) 0 . 8 5 6 ( 2 ) 0 . 1 0 4 ( 1 ) 0 . 2 9 1 ( 1 ) 3 . 3 ( 7 ) C ( 2 ) 0 . 6 1 7 ( 2 ) 0 . 0 6 9 ( 2 ) 0 . 1 8 3 ( 1 ) 3 . 7 ( 8 ) C ( 3 ) 0 . 9 6 5 ( 2 ) 0 . 1 2 3 ( 1 ) 0 . 2 3 3 ( 1 ) 2 . 5 ( 6 ) C ( 4 ) 1 . 0 2 8 ( 2 ) 0 . 1 4 2 ( 2 ) 0 . 2 9 6 ( 1 ) 4 . 4 ( 6 ) C ( S ) 1 . 1 1 7 ( 2 ) 0 . 1 2 5 ( 2 ) 0 . 3 0 0 ( 1 ) 4 . 5 ( 6 ) C ( 6 ) 1 . 1 4 7 ( 2 ) 0 . 0 9 9 ( 2 ) 0 . 2 4 5 ( 1 ) 4 . 3 ( 6 ) C ( 7 ) 1 . 0 8 9 ( 2 ) 0 . 0 9 1 ( 1 ) 0 . 1 8 3 ( 1 ) 3 . 3 ( 5 ) C ( 8 ) 0 . 9 9 8 ( 2 ) 0 . 1 0 2 ( 1 ) 0 . 1 7 6 ( 1 ) 3 . 4 ( 5 ) C ( 9 ) 1 . 2 4 4 ( 2 ) 0 . 0 7 6 ( 2 ) 0 . 2 5 7 ( 2 ) 6 . 8 ( 8 ) C ( 1 0 ) 0 . 7 6 1 ( 1 ) 0 . 1 0 0 ( 1 ) 0 . 3 6 2 ( 1 ) 3 . 1 ( 7 ) C ( 1 1 ) 0 . 7 2 8 ( 1 ) 0 . 1 5 5 ( 2 ) 0 . 4 0 5 ( 1 ) 3 . 3 ( 5 ) C ( 1 2 ) 0 . 7 1 1 ( 2 ) 0 . 1 2 5 ( 1 ) 0 . 4 6 3 ( 1 ) 3 . 7 ( 6 ) C ( 1 3 ) 0 . 7 2 8 ( 2 ) 0 . 0 4 3 ( 2 ) 0 . 4 8 7 ( 1 ) 3 . 6 ( 6 ) C ( 1 4 ) 0 . 7 6 2 ( 2 ) - 0 . 0 1 0 ( 2 ) 0 . 4 4 4 ( 1 ) 5 . 0 ( 7 ) C ( 1 5 ) 0 . 7 7 6 ( 2 ) 0 . 0 2 2 ( 2 ) 0 . 3 8 1 ( 1 ) 3 . 8 ( 6 ) C ( 1 6 ) 0 . 7 1 4 ( 2 ) 0 . 0 1 6 ( 2 ) 0 . 5 5 5 ( 1 ) 6 . 0 ( 7 ) C ( 1 7 ) 0 . 5 2 1 ( 2 ) 0 . 1 6 6 ( 1 ) 0 . 2 0 5 ( 1 ) 2 . 8 ( S ) C ( 1 8 ) 0 . 4 4 9 ( 1 ) 0 . 1 4 6 ( 1 ) 0 . 1 5 0 ( 1 ) 3 . 0 ( 5 ) T a b l e A 2 c o n t i n u e d . C ( 1 9 ) 0 . 3 5 2 ( 2 ) 0 . 2 3 7 ( 2 ) 0 . 1 9 2 ( 1 ) C ( 2 0 ) 0 . 4 2 4 ( 2 ) 0 . 2 5 8 ( 1 ) 0 . 2 4 6 ( 1 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 2 8 ) C ( 2 9 ) C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 3 3 ) C ( 3 4 ) C ( 3 5 ) C ( 3 6 ) C ( 3 7 ) C ( 3 8 ) C ( 3 9 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) C ( 4 5 ) C ( 4 6 ) 1 3 ( 1 ) B ( 2 * ) F ( 1 ) F ( 2 ) F ( 3 ) F ( 4 ) F ( 5 * ) F ( 6 * ) 0 . 5 0 7 ( 2 ) 0 . 2 6 0 ( 2 ) 0 . 7 0 3 ( 1 ) 0 . 7 7 8 ( 2 ) 0 . 7 9 3 ( 2 ) 0 . 7 3 6 ( 2 ) 0 . 6 6 0 ( 2 ) 0 . 6 4 5 ( 2 ) 0 . 7 5 4 ( 2 ) 0 . 8 1 4 ( 2 ) 0 . 8 2 8 ( 2 ) 0 . 8 7 2 ( 2 ) 0 . 9 8 5 ( 2 ) 0 . 9 3 5 ( 2 ) 0 . 8 7 6 ( 2 ) 0 . 8 6 7 ( 2 ) 0 . 9 6 9 ( 3 ) 1 . 0 4 9 ( 3 ) 0 . 6 0 7 ( 2 ) 0 . 4 8 5 ( 2 ) 0 . 5 3 6 ( 2 ) 0 . 5 9 9 ( 2 ) 0 . 6 0 7 ( 2 ) 0 . 4 7 2 ( 3 ) 0 . 5 0 9 ( 3 ) 0 . 3 6 5 ( 2 ) 0 . 9 7 5 ( 2 ) 0 . 6 1 5 ( 5 ) 0 . 9 7 9 ( 1 ) 1 . 0 0 4 ( 1 ) 1 . 0 1 8 ( 1 ) 0 . 8 8 5 ( 1 ) 0 . 6 7 6 ( 2 ) 0 . 5 6 9 ( 2 ) 0 . 2 2 3 ( 2 ) 0 . 2 5 3 ( 1 ) 0 . 2 8 0 ( 2 ) 0 . 1 8 0 ( 1 ) - 0 . 0 2 9 ( 1 ) 0 . 1 3 9 ( 1 ) - 0 . 0 7 3 ( 1 ) 0 . 1 6 9 ( 1 ) - O . 1 4 6 ( 2 ) 0 . 1 4 0 ( 1 ) 0 . 1 7 5 ( 1 ) 0 . 0 8 3 ( 1 ) 2 . 1 3 0 ( 2 ) 0 . 0 5 4 ( 1 ) - 0 . 0 5 6 ( 1 ) 0 . 0 8 3 ( 1 ) 0 . 2 5 3 ( 2 ) 0 . 0 4 7 ( 1 ) 0 . 0 3 7 ( 2 ) 0 . 0 3 0 ( 2 ) - 0 . 0 2 0 ( 2 ) - 0 . 0 2 8 ( 2 ) 0 . 3 2 9 ( 2 ) 0 . 2 4 0 ( 1 ) 0 . 4 2 5 ( 2 ) 0 . 2 3 2 ( 3 ) 0 . 3 5 3 ( 2 ) 0 . 1 4 7 ( 2 ) 0 . 3 0 6 ( 2 ) 0 . 1 7 2 ( 2 ) 0 . 2 5 5 ( 1 ) 0 . 0 7 5 ( 1 ) 0 . 3 6 3 ( 3 ) 0 . 0 2 1 ( 2 ) 0 . 3 4 0 ( 2 ) 0 . 0 4 5 ( 2 ) 0 . 2 3 1 ( 2 ) 0 . 0 5 8 ( 2 ) 0 . 3 0 6 ( 2 ) 0 . 0 2 1 ( 2 ) 0 . 3 5 2 ( 2 ) 0 . 0 8 4 ( 2 ) 0 . 2 9 3 ( 2 ) 0 . 1 0 5 ( 2 ) 0 . 3 7 0 ( 2 ) 0 . 1 9 2 ( 1 ) 0 . 4 6 6 ( 3 ) 0 . 1 5 1 ( 2 ) 0 . 5 3 0 ( 3 ) 0 . 1 4 3 ( 2 ) 0 . 1 8 4 ( 1 ) 0 . 1 4 6 ( 1 ) 0 . 1 4 8 ( 3 ) 0 . 0 5 5 ( 2 ) 0 . 4 1 0 ( 2 ) 0 . 3 8 4 ( 3 ) 4 . 6 ( 6 ) 3 . 5 ( 5 ) 3 . 7 ( 5 ) 6 . 4 ( 7 ) 2 . 3 ( 5 ) 3 . 4 ( 5 ) 4 . 3 ( 6 ) 3 . 6 ( S ) 4 . 8 ( 6 ) 3 . 2 ( 5 ) 6 . 1 ( 7 ) 3 . 8 ( 8 ) 6 . 4 ( 7 ) 4 . 0 ( 9 ) 9 ( 1 ) 5 . 6 ( 9 ) 3 . 4 ( 7 ) 3 . 6 ( 7 ) 1 0 ( 1 ) 9 . 6 ( 9 ) 3 . 5 ( 8 ) 6 ( 1 ) 5 . 2 ( 9 ) 2 . 9 ( 7 ) 3 . 9 ( 8 ) 1 1 ( 1 ) 1 3 ( 1 ) 4 . 1 ( 6 ) 5 ( 1 ) 1 0 ( 2 ) 0 . 0 7 9 ( 1 ) - 0 . 0 9 0 4 ( 9 ) 8 . 0 ( 6 ) 0 . 1 4 1 ( 1 ) 0 . 0 1 2 9 ( 8 ) 7 . 8 ( 6 ) 0 . 2 1 0 ( 1 ) - 0 . 0 8 1 9 ( 1 0 ) 8 . 2 ( 6 ) O . 1 7 2 ( 1 ) - 0 . 0 7 2 2 ( 8 ) 7 . 5 ( 6 ) 0 . 3 7 6 ( 2 ) 0 . 3 6 6 ( 1 ) 0 . 3 3 9 ( 2 ) 0 . 3 8 8 ( 1 ) 1 7 ( 1 ) 1 6 ( 1 ) 2 3 8 T a b l e A 2 c o n t i n u e d . F ( 7 * ) 0 . 5 6 6 ( 2 ) 0 . 4 4 4 ( 1 ) 0 . 3 2 7 ( 1 ) 1 4 . 5 ( 1 0 ) F ( 8 * ) 0 . 6 2 3 ( 1 ) 0 . 4 4 8 ( 1 ) 0 . 4 4 0 0 ( 8 ) 7 . 3 ( 5 ) 3 9 9 2 ( 8 / 3 ) “ 2 ( U 1 1 ( a a * ) 2 + U 2 2 ( b b * ) 2 + U 3 3 ( C C " ‘ ) 2 + 2 U 1 2 a a * b b * c o s y ) + 2 U 1 3 a a * c c * c o s a ) + 2 U 2 3 b b * c c * c o s a ) 2 3 9 T a b l e A 3 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ R h 2 ( D T o l F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) l [ B F 4 1 2 ( 7 ) - I d e n t i fi c a t i o n c o d e E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z p c a l c [ R h 2 ( D T o 1 F ) 2 ( 9 - E t G H ) 2 ( C H 3 C N ) ] [ B F 4 ] 2 C 4 6 H 5 3 B Z F 8 N 1 5 0 2 R h 2 1 2 2 7 . 4 7 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A M o n o c l i n i c P 2 1 / n a = 1 1 . 3 6 1 2 ( 9 ) A b = 2 0 . 8 0 3 ( 2 ) A c = 2 2 . 6 1 7 ( 2 ) A a = 9 0 0 B = 1 0 0 . 0 2 1 ( 2 ) o y = 9 0 0 5 2 6 4 . 0 ( 7 ) A 3 4 1 . 5 4 9 g / c m 3 0 . 7 0 9 c m ' 3 2 4 0 T a b l e A 3 c o n t i n u e d . F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ' ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . P e a k a n d h o l e 2 4 8 8 0 . 1 0 x 0 . 0 8 x 0 . 0 6 1 1 1 1 1 1 3 1 . 8 3 t o 2 8 . 3 4 0 - 1 4 < = h < = 1 3 , - 2 7 < = k < = 2 4 , - 2 9 < = l < = 1 9 3 1 0 0 2 1 2 2 8 7 [ R ( i n t ) = 0 . 1 4 8 0 ] F u l l - m a t n ' x l e a s t - s q u a r e s o n F 2 1 2 2 8 7 / 9 5 / 6 9 4 0 . 9 7 4 R 1 = 0 . 0 8 9 8 , w R 2 = 0 . 1 4 8 4 R 1 = 0 . 2 4 7 2 , w R 2 = 0 . 1 9 9 4 1 . 4 2 7 a n d — 0 . 7 3 2 e ' / A 3 2 4 1 T a b l e A 3 c o n t i n u e d . A t o m i c C o o r d i n a t e s a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 ) . x y z U ( e q ) O c c . R h l 0 . 0 2 4 2 4 ( 6 ) 0 . 7 6 2 3 4 ( 3 ) 0 . 0 8 5 6 7 ( 3 ) 0 . 0 2 4 6 ( 2 ) 1 R h 2 0 . 1 5 9 9 2 ( 6 ) 0 . 7 6 3 7 5 ( 3 ) O . 1 8 6 1 3 ( 3 ) 0 . 0 2 3 9 ( 2 ) 1 C 1 0 . 1 6 7 3 ( 1 2 ) 1 . 0 1 1 5 ( 5 ) 0 . 2 5 3 3 ( 5 ) 0 . 0 6 9 ( 4 ) 1 C 3 0 . 0 3 2 5 ( 9 ) 0 . 8 9 0 7 ( 5 ) - 0 . 0 2 7 7 ( 5 ) 0 . 0 4 8 ( 3 ) 1 C 4 - 0 . 3 0 9 2 ( 1 0 ) 0 . 5 2 2 4 ( 5 ) 0 . 0 4 6 8 ( 5 ) 0 . 0 6 9 ( 4 ) 1 C 5 0 . 1 9 7 2 ( 1 3 ) 1 . 0 3 9 0 ( 5 ) 0 . 3 6 3 3 ( 5 ) 0 . 0 8 5 ( 5 ) 1 C 6 0 . 1 9 6 5 ( 9 ) 0 . 9 9 1 9 ( 5 ) 0 . 3 1 1 2 ( 5 ) 0 . 0 4 3 ( 3 ) 1 C 7 - 0 . 1 0 1 4 ( 7 ) 0 . 8 4 6 9 ( 4 ) 0 . 1 7 2 3 ( 4 ) 0 . 0 2 4 ( 2 ) 1 C 8 0 . 2 2 7 7 ( 9 ) 0 . 9 2 7 8 ( 5 ) 0 . 3 2 2 2 ( 5 ) 0 . 0 4 5 ( 3 ) 1 C 9 0 . 0 3 9 0 ( 1 0 ) 0 . 9 1 0 8 ( 5 ) - 0 . 0 8 5 8 ( 5 ) 0 . 0 5 5 ( 3 ) 1 C 1 0 0 . 7 6 8 8 ( 8 ) 0 . 7 1 8 0 ( 5 ) 0 . 2 7 2 3 ( 5 ) 0 . 0 6 0 ( 3 ) 1 C 1 1 0 . 1 4 3 3 ( 1 2 ) 0 . 9 3 2 2 ( 5 ) - 0 . 1 7 1 7 ( 5 ) 0 . 0 7 5 ( 4 ) 1 C 1 2 0 . 1 4 0 0 ( 1 1 ) 0 . 9 0 7 4 ( 4 ) - 0 . 1 0 7 9 ( 5 ) 0 . 0 4 3 ( 3 ) 1 C 1 3 0 . 1 6 3 3 ( 9 ) 0 . 9 6 8 1 ( 4 ) 0 . 2 0 5 1 ( 5 ) 0 . 0 4 4 ( 3 ) 1 C 1 4 - 0 . 1 7 5 9 ( 9 ) 0 . 7 5 3 7 ( 5 ) - 0 . 1 1 4 4 ( 4 ) 0 . 0 5 2 ( 3 ) 1 C 1 5 0 . 1 9 5 3 ( 8 ) 0 . 9 0 3 1 ( 4 ) 0 . 2 1 5 7 ( 4 ) 0 . 0 3 0 ( 2 ) 1 C 1 6 0 . 2 3 9 4 ( 1 0 ) 0 . 8 8 0 6 ( 5 ) - 0 . 0 7 1 7 ( 5 ) 0 . 0 5 4 ( 3 ) 1 C 1 7 - 0 . 0 6 0 5 ( 8 ) 0 . 5 5 2 7 ( 4 ) 0 . 2 4 4 1 ( 4 ) 0 . 0 3 0 ( 2 ) 1 C 1 8 - 0 . 1 9 0 2 ( 8 ) 0 . 8 9 2 7 ( 4 ) 0 . 1 6 9 4 ( 4 ) 0 . 0 2 8 ( 2 ) 1 C 1 9 - 0 . 0 4 8 5 ( 8 ) 0 . 6 4 4 9 ( 4 ) 0 . 1 5 9 9 ( 4 ) 0 . 0 2 5 ( 2 ) 1 C 2 0 0 . 6 2 2 1 ( 9 ) 0 . 7 3 5 6 ( 5 ) 0 . 1 7 7 3 ( 5 ) 0 . 0 4 9 ( 3 ) 1 C 2 1 - 0 . 1 5 6 9 ( 8 ) 0 . 9 0 9 9 ( 4 ) 0 . 2 6 7 6 ( 4 ) 0 . 0 2 9 ( 2 ) 1 C 2 2 0 . 1 7 2 8 ( 8 ) 0 . 8 7 6 3 ( 4 ) 0 . 1 1 2 8 ( 4 ) 0 . 0 2 9 ( 2 ) 1 C 2 3 - 0 . 1 4 0 0 ( 8 ) 0 . 6 0 0 9 ( 4 ) 0 . 1 5 8 8 ( 4 ) 0 . 0 2 9 ( 2 ) 1 C 2 4 - 0 . 3 4 3 4 ( 9 ) 0 . 9 4 0 2 ( 5 ) 0 . 0 8 2 7 ( 5 ) 0 . 0 4 6 ( 3 ) 1 C 2 5 0 . 5 4 4 6 ( 9 ) 0 . 7 2 2 8 ( 4 ) 0 . 2 6 6 6 ( 5 ) 0 . 0 4 2 ( 3 ) 1 C 2 6 0 . 2 3 1 4 ( 9 ) 0 . 8 5 7 3 ( 4 ) - 0 . 0 1 3 9 ( 5 ) 0 . 0 4 0 ( 3 ) 1 C 2 7 - 0 . 1 2 4 2 ( 8 ) 0 . 7 5 7 0 ( 4 ) - 0 . 0 5 1 8 ( 5 ) 0 . 0 3 5 ( 2 ) 1 C 2 8 - 0 . 3 3 4 0 ( 8 ) 0 . 5 7 8 1 ( 5 ) 0 . 0 8 6 2 ( 5 ) 0 . 0 4 5 ( 3 ) 1 C 2 9 0 . 4 0 9 6 ( 8 ) 0 . 7 3 4 4 ( 4 ) 0 . 1 7 2 7 ( 4 ) 0 . 0 3 4 ( 2 ) 1 C 3 0 0 . 6 4 3 3 ( 9 ) 0 . 7 2 6 7 ( 5 ) 0 . 2 3 7 9 ( 5 ) 0 . 0 3 9 ( 3 ) 1 2 4 2 T a b l e A 3 c o n t i n u e d . C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 0 1 0 2 N 1 5 N 1 4 N 1 3 N 1 2 N 1 1 N 1 0 N 9 N 8 N 7 N 6 N 5 N 4 N 3 N 2 N 1 F 1 F 2 F 3 F 4 0 . 2 5 9 7 ( 8 ) 0 . 5 0 5 4 ( 9 ) 0 . 1 7 8 3 ( 8 ) 0 . 0 3 9 9 ( 8 ) 0 . 2 2 8 8 ( 8 ) 0 . 0 5 0 3 ( 8 ) 0 . 1 2 8 9 ( 8 ) 0 . 1 8 1 5 ( 8 ) 0 . 4 3 0 4 ( 9 ) 0 . 1 2 9 8 ( 9 ) 0 . 0 4 5 4 ( 9 ) 0 . 0 1 7 5 ( 1 0 ) 0 . 1 8 5 3 ( 1 0 ) 0 . 4 5 8 8 ( 9 ) 0 . 1 5 7 4 ( 1 1 ) 0 . 0 7 1 9 ( 1 2 ) 0 . 0 3 1 0 ( 1 1 ) 0 . 1 4 6 4 ( 5 ) 0 . 0 3 7 5 ( 5 ) 0 . 1 8 4 4 ( 6 ) 0 . 1 2 2 1 ( 6 ) 0 . 0 3 6 6 ( 6 ) 0 . 0 9 8 1 ( 6 ) 0 . 2 3 9 8 ( 6 ) 0 . 2 2 2 5 ( 6 ) 0 . 0 7 2 5 ( 6 ) 0 . 0 7 3 2 ( 7 ) 0 . 1 5 1 0 ( 6 ) 0 . 0 8 0 6 ( 6 ) 0 . 2 8 9 5 ( 6 ) 0 . 2 2 1 3 ( 6 ) 0 . 1 4 9 7 ( 6 ) 0 . 0 5 9 3 ( 7 ) 0 . 1 7 0 5 ( 7 ) 0 . 4 3 8 1 ( 7 ) 0 . 2 4 8 9 ( 8 ) 0 . 2 9 3 2 ( 6 ) 0 . 3 0 3 3 ( 6 ) 0 . 7 0 6 0 ( 4 ) 0 . 7 3 9 7 ( 5 ) 0 . 6 6 6 3 ( 4 ) 0 . 8 2 7 5 ( 4 ) 0 . 8 8 4 9 ( 4 ) 0 . 6 3 9 3 ( 4 ) 0 . 8 6 2 9 ( 4 ) 0 . 8 5 7 3 ( 4 ) 0 . 7 2 6 7 ( 4 ) 0 . 6 7 2 1 ( 4 ) 0 . 6 2 4 5 ( 5 ) 0 . 5 9 7 2 ( 6 ) 0 . 6 9 1 3 ( 5 ) 0 . 9 0 6 8 ( 5 ) 0 . 6 6 6 0 ( 6 ) 0 . 6 1 9 2 ( 6 ) 0 . 5 9 4 1 ( 7 ) 0 . 6 7 0 2 ( 2 ) 0 . 7 8 4 3 ( 3 ) 0 . 8 5 6 9 ( 3 ) 0 . 8 3 9 9 ( 3 ) 0 . 5 9 2 3 ( 3 ) 0 . 8 2 4 9 ( 3 ) 0 . 8 9 9 4 ( 3 ) 0 . 6 1 4 8 ( 3 ) 0 . 8 6 2 1 ( 3 ) 0 . 6 8 5 4 ( 3 ) 0 . 5 5 5 5 ( 3 ) 0 . 7 6 0 2 ( 3 ) 0 . 7 3 5 3 ( 3 ) 0 . 9 2 4 8 ( 3 ) 0 . 7 0 3 0 ( 3 ) 0 . 5 1 0 2 ( 3 ) 0 . 9 4 2 1 ( 4 ) 0 . 9 4 1 7 ( 4 ) 0 . 9 7 1 7 ( 4 ) 0 . 9 0 8 8 ( 3 ) 0 . 8 7 2 6 ( 3 ) 0 . 0 8 9 5 ( 4 ) 0 . 1 4 3 4 ( 5 ) 0 . 0 8 0 8 ( 4 ) 0 . 2 2 8 0 ( 4 ) 0 . 2 7 5 1 ( 4 ) 0 . 2 0 6 0 ( 4 ) 0 . 0 0 8 7 ( 4 ) 0 . 0 7 9 2 ( 4 ) 0 . 2 3 4 2 ( 4 ) 0 . 0 0 2 8 ( 5 ) 0 . 0 0 9 1 ( 6 ) 0 . 0 6 6 2 ( 6 ) 0 . 0 4 2 3 ( 5 ) 0 . 0 7 5 5 ( 6 ) 0 . 0 9 9 9 ( 5 ) 0 . 1 1 3 0 ( 6 ) 0 . 1 7 7 0 ( 6 ) 0 . 2 1 5 4 ( 3 ) 0 . 2 4 0 9 ( 2 ) 0 . 1 6 8 6 ( 3 ) 0 . 0 6 7 5 ( 3 ) 0 . 2 4 7 8 ( 3 ) 0 . 1 1 3 5 ( 3 ) 0 . 1 0 9 3 ( 3 ) 0 . 1 0 8 9 ( 3 ) 0 . 2 7 4 6 ( 3 ) 0 . 1 1 0 3 ( 3 ) 0 . 1 9 9 4 ( 3 ) 0 . 0 0 2 7 ( 3 ) 0 . 1 4 2 0 ( 3 ) 0 . 2 1 6 2 ( 3 ) 0 . 0 5 9 9 ( 3 ) 0 . 2 8 8 8 ( 3 ) 0 . 3 1 7 8 ( 4 ) 0 . 0 9 7 0 ( 3 ) 0 . 0 6 2 1 ( 4 ) 0 . 1 4 6 0 ( 3 ) 0 . 0 5 3 9 ( 3 ) 2 4 3 0 . 0 2 5 ( 2 ) 0 . 0 4 2 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 2 9 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 3 8 ( 3 ) 0 . 0 3 4 ( 2 ) 0 . 0 5 4 ( 3 ) 0 . 0 6 3 ( 4 ) 0 . 0 4 9 ( 3 ) 0 . 0 7 3 ( 4 ) 0 . 0 6 5 ( 4 ) 0 . 0 6 9 ( 4 ) 0 . 1 1 1 ( 6 ) 0 . 0 2 4 3 ( 1 4 ) 0 . 0 2 4 9 ( 1 4 ) 0 . 0 2 7 8 ( 1 8 ) 0 . 0 2 5 0 ( 1 8 ) 0 . 0 2 5 9 ( 1 8 ) 0 . 0 2 6 1 ( 1 8 ) 0 . 0 2 8 6 ( 1 9 ) 0 . 0 3 2 ( 2 ) 0 . 0 2 9 2 ( 1 9 ) 0 . 0 3 1 0 ( 1 9 ) 0 . 0 2 9 4 ( 1 9 ) 0 . 0 2 8 2 ( 1 8 ) 0 . 0 2 5 7 ( 1 7 ) 0 . 0 3 0 2 ( 1 9 ) 0 . 0 2 4 7 ( 1 8 ) 0 . 0 3 9 ( 2 ) 0 . 0 4 7 ( 2 ) 0 . 1 1 4 ( 3 ) 0 . 1 1 0 ( 3 ) 0 . 0 6 4 7 ( 1 9 ) 0 . 0 8 1 ( 2 ) T a b l e A 3 c o n t i n u e d . B 1 B 2 F 5 F 6 F 7 F 8 B 2 B F 5 B F 6 B F 7 B F 8 B 0 . 3 2 3 6 ( 1 2 ) 0 . 0 4 1 5 ( 6 ) 0 . 0 0 6 2 ( 6 ) 0 . 0 0 4 3 ( 5 ) 0 . 1 6 6 3 ( 5 ) 0 . 0 0 6 7 ( 6 ) 0 . 0 1 3 ( 2 ) 0 . 0 5 0 ( 3 ) 0 . 0 1 3 ( 3 ) 0 . 1 3 0 ( 2 ) 0 . 0 4 1 ( 4 ) 0 . 9 2 4 6 ( 6 ) 0 . 8 4 5 3 ( 3 ) 0 . 8 0 7 3 ( 3 ) 0 . 9 0 8 8 ( 3 ) 0 . 8 4 6 6 ( 3 ) 0 . 8 2 4 0 ( 4 ) 0 . 8 0 0 1 ( 1 2 ) 0 . 8 5 1 1 ( 1 3 ) 0 . 7 4 8 0 ( 1 3 ) 0 . 8 1 9 4 ( 1 5 ) 0 . 7 8 1 ( 2 ) 0 . 0 9 1 3 ( 6 ) 0 . 4 3 8 8 ( 3 ) 0 . 3 8 7 8 ( 3 ) 0 . 4 2 5 3 ( 3 ) 0 . 4 5 4 4 ( 3 ) 0 . 4 8 7 4 ( 3 ) 0 . 4 3 4 6 ( 1 0 ) 0 . 4 0 4 1 ( 1 4 ) 0 . 3 9 5 3 ( 1 5 ) 0 . 4 5 6 1 ( 1 6 ) 0 . 4 8 2 6 ( 1 5 ) 2 4 4 0 . 0 3 9 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 6 4 ( 2 ) 0 . 0 5 8 ( 2 ) 0 . 0 5 3 ( 2 ) 0 . 0 7 1 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 6 4 ( 2 ) 0 . 0 5 8 ( 2 ) 0 . 0 5 3 ( 2 ) 0 3 3 ( 8 ) T a b l e A 3 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ 0 ] . R h l - N 1 4 R h l - N 3 R h l - N 8 R h l - N 1 2 R h l - N 6 R h l - R h 2 R h 2 - N 5 R h 2 - N 1 5 R h 2 - 0 2 R h 2 - 0 1 C 1 - C 6 C 1 - C 1 3 C 3 - C 3 7 C 3 - C 9 C 4 - C 2 8 C 5 - C 6 C 6 - C 8 C 7 - C 1 8 C 7 - C 3 4 C 7 - N 1 2 C 8 - C 3 5 C 9 - C 1 2 C 1 0 - C 3 0 C 1 1 - C 1 2 C 1 2 - C l 6 C l 3 - C 1 5 C 1 4 - C 2 7 C 1 5 - C 3 5 C 1 5 - N 1 5 C 1 6 - C 2 6 C 1 7 - N 7 C 1 7 - N 2 C 1 7 - N 1 3 C 1 8 - N 4 2 . 0 4 2 ( 7 ) 2 . 0 4 6 ( 7 ) 2 . 0 7 6 ( 7 ) 2 . 0 8 0 ( 7 ) 2 . 1 4 2 ( 8 ) 2 . 5 1 4 0 ( 1 0 ) 2 . 0 0 6 ( 7 ) 2 . 0 0 7 ( 7 ) 2 . 0 6 2 ( 6 ) 2 . 0 7 0 ( 5 ) 1 . 3 5 6 ( 1 4 ) 1 . 4 1 0 ( 1 3 ) 1 . 3 7 8 ( 1 2 ) 1 . 3 9 4 ( 1 3 ) 1 . 5 1 8 ( 1 4 ) 1 . 5 3 2 ( 1 4 ) 1 . 3 9 0 ( 1 3 ) 1 . 3 8 1 ( 1 1 ) 1 . 3 8 9 ( 1 2 ) 1 . 4 1 2 ( 1 1 ) 1 . 3 9 2 ( 1 2 ) 1 . 3 3 1 ( 1 3 ) 1 . 5 1 2 ( 1 2 ) 1 . 5 3 9 ( 1 3 ) 1 . 3 9 1 ( 1 4 ) 1 . 4 1 0 ( 1 1 ) 1 . 4 3 8 ( 1 3 ) 1 . 3 8 3 ( 1 2 ) 1 . 4 2 4 ( 1 1 ) 1 . 4 1 3 ( 1 3 ) 1 . 3 1 2 ( 1 1 ) 1 . 3 4 1 ( 1 0 ) 1 . 3 6 6 ( 1 0 ) 1 . 3 4 9 ( 1 0 ) 2 4 5 T a b l e A 3 c o n t i n u e d . C 1 8 - N 1 1 C 1 9 — C 2 3 C 1 9 - N 8 C 1 9 - C 3 6 C 2 0 - C 3 0 C 2 0 - C 3 2 C 2 1 - N 4 C 2 1 - N 1 C 2 1 - N 9 C 2 2 - N 1 5 C 2 2 - N 1 4 C 2 3 - N 7 C 2 3 - N 1 0 C 2 4 - C 4 4 C 2 4 - N 1 1 C 2 5 - C 3 9 C 2 5 - C 3 0 C 2 6 - C 3 7 C 2 7 - N 6 C 2 8 - N 1 0 C 2 9 - C 3 2 C 2 9 - C 3 9 C 2 9 - N 5 C 3 1 - N 3 C 3 1 - N 5 C 3 3 - N 8 C 3 3 - N 1 0 C 3 4 - 0 2 C 3 4 - N 9 C 3 6 - 0 1 C 3 6 - N l 3 C 3 7 - N 1 4 C 3 8 - N 1 2 C 3 8 - N 1 1 C 4 0 - C 4 3 C 4 0 - C 4 1 C 4 0 - N 3 C 4 1 - C 4 2 1 . 3 8 6 ( 1 0 ) 1 . 3 8 2 ( 1 1 ) 1 . 3 9 2 ( 1 1 ) 1 . 3 9 8 ( 1 2 ) 1 . 3 6 1 ( 1 3 ) 1 . 4 1 5 ( 1 3 ) 1 . 2 9 9 ( 1 1 ) 1 . 3 4 9 ( 1 1 ) 1 . 3 7 2 ( 1 0 ) 1 . 3 0 9 ( 1 1 ) 1 . 3 2 3 ( 1 0 ) 1 . 3 3 9 ( 1 0 ) 1 . 3 6 6 ( 1 0 ) 1 . 4 6 8 ( 1 3 ) 1 . 4 9 1 ( 1 0 ) 1 . 3 7 7 ( 1 2 ) 1 . 3 9 3 ( 1 2 ) 1 . 3 5 5 ( 1 2 ) 1 . 1 3 5 ( 1 1 ) 1 . 4 9 2 ( 1 0 ) 1 . 3 7 3 ( 1 2 ) 1 . 3 7 9 ( 1 2 ) 1 . 4 1 9 ( 1 1 ) 1 . 3 1 2 ( 1 0 ) 1 . 3 2 6 ( 1 0 ) 1 . 3 2 4 ( 1 0 ) 1 . 3 8 3 ( 1 0 ) 1 . 2 5 6 ( 1 0 ) 1 . 3 7 8 ( 1 0 ) 1 . 2 5 2 ( 9 ) 1 . 3 8 8 ( 1 0 ) 1 . 4 2 8 ( 1 1 ) 1 . 3 0 3 ( 1 0 ) 1 . 3 5 1 ( 1 0 ) 1 . 3 5 1 ( 1 3 ) 1 . 3 7 2 ( 1 3 ) 1 . 4 2 5 ( 1 1 ) 1 . 3 9 7 ( 1 5 ) 2 4 6 T a b l e A 3 c o n t i n u e d . C 4 2 - C 4 6 C 4 3 - C 4 5 C 4 5 - C 4 6 C 4 6 - C 4 7 B 1 - F 1 B 1 - F 2 B 1 - F 3 B 1 - F 4 B 2 - F 8 B 2 - F 5 B Z - F 7 B Z - F 6 B Z B - F 7 B B Z B - F S B B 2 B - F 8 B B 2 B - F 6 B N 1 4 - R h 1 - N 3 N 1 4 - R h ] - N 8 N 3 - R h 1 - N 8 N 1 4 - R h l - N 1 2 N 3 - R h 1 - N 1 2 N 8 - R h l - N 1 2 N 1 4 - R h 1 - N 6 N 3 - R h 1 - N 6 N 8 - R h 1 - N 6 N 1 2 - R h 1 - N 6 N 1 4 - R h 1 - R h 2 N 3 - R h 1 - R h 2 N 8 - R h 1 - R h 2 N 1 2 - R h 1 - R h 2 N 6 - R h 1 - R h 2 N 5 - R h 2 - N 1 5 N 5 - R h 2 - 0 2 N 1 5 - R h 2 - 0 2 N 5 - R h 2 - 0 1 N 1 5 - R h 2 - 0 1 0 2 - R h 2 - 0 1 N 5 - R h 2 - R h 1 1 . 3 9 3 ( 1 7 ) 1 . 3 8 8 ( 1 4 ) 1 . 3 7 2 ( 1 6 ) 1 . 5 3 3 ( 1 5 ) 1 . 3 3 3 ( 1 3 ) 1 . 3 8 5 ( 1 3 ) 1 . 3 8 0 ( 1 3 ) 1 . 3 6 9 ( 1 3 ) 1 . 3 8 3 ( 7 ) 1 . 3 9 8 ( 7 ) 1 . 4 0 0 ( 7 ) 1 . 4 0 4 ( 7 ) 1 . 3 9 5 ( 8 ) 1 . 3 9 5 ( 7 ) 1 . 3 9 6 ( 8 ) 1 . 4 0 2 ( 8 ) 8 9 . 3 ( 3 ) 1 7 6 . 1 ( 3 ) 9 2 . 4 ( 3 ) 8 9 . 0 ( 3 ) 1 7 7 . 8 ( 3 ) 8 9 . 2 ( 3 ) 9 3 . 5 ( 3 ) 9 1 . 3 ( 3 ) 8 9 . 9 ( 3 ) 9 0 . 2 ( 3 ) 8 4 . 4 ( 2 ) 8 5 . 2 ( 2 ) 9 2 . 2 ( 2 ) 9 3 . 2 ( 2 ) 1 7 6 . 0 ( 2 ) 9 2 . 8 ( 3 ) 1 7 1 . 9 ( 2 ) 9 2 . 8 ( 3 ) 8 9 . 0 ( 3 ) 1 7 2 . 6 ( 3 ) 8 4 . 7 ( 2 ) 8 6 . 3 ( 2 ) 2 4 7 T a b l e A 3 c o n t i n u e d . N 1 5 - R h 2 - R h 1 0 2 - R h 2 - R h 1 0 1 - R h 2 - R h 1 C 6 - C l - C 1 3 C 3 7 - C 3 - C 9 C 1 - C 6 - C 8 C 1 - C 6 - C 5 C 8 - C 6 - C 5 C 1 8 - C 7 - C 3 4 C 1 8 - C 7 - N 1 2 C 3 4 - C 7 - N 1 2 C 6 - C 8 — C 3 5 C 1 2 - C 9 - C 3 C 9 - C 1 2 - C 1 6 C 9 - C 1 2 - C 1 1 C 1 6 - C 1 2 - C 1 1 C 1 - C 1 3 - C 1 5 C 3 5 - C 1 5 - C 1 3 C 3 5 - C 1 5 - N 1 5 C 1 3 - C 1 5 - N 1 5 C 1 2 - C 1 6 - C 2 6 N 7 - C 1 7 - N 2 N 7 - C 1 7 - N 1 3 N 2 - C l 7 - N 1 3 N 4 - C 1 8 - C 7 N 4 - C 1 8 - N 1 1 C 7 - C 1 8 - N 1 l C 2 3 - C 1 9 - N 8 C 2 3 - C 1 9 - C 3 6 N 8 - C 1 9 - C 3 6 C 3 0 - C 2 0 - C 3 2 N 4 - C 2 1 - N 1 N 4 - C 2 1 - N 9 N 1 - C 2 1 - N 9 N 1 5 - C 2 2 - N 1 4 N 7 - C 2 3 - N 1 0 N 7 - C 2 3 - C 1 9 N 1 0 - C 2 3 - C 1 9 8 5 . 2 ( 2 ) 1 0 0 . 0 0 ( 1 6 ) 1 0 2 . 1 0 ( 1 6 ) 1 2 1 . 6 ( 1 0 ) 1 2 1 . 5 ( 1 0 ) 1 1 8 . 2 ( 1 0 ) 1 2 1 . 2 ( 1 0 ) 1 2 0 . 5 ( 1 0 ) 1 1 9 . 4 ( 9 ) 1 0 8 . 6 ( 8 ) 1 3 1 . 9 ( 8 ) 1 2 0 . 9 ( 1 0 ) 1 2 1 . 9 ( 1 1 ) 1 1 7 . 8 ( 1 0 ) 1 1 9 . 8 ( 1 1 ) 1 2 2 . 4 ( 1 1 ) 1 2 0 . 6 ( 1 0 ) 1 1 6 . 6 ( 9 ) 1 2 1 . 0 ( 8 ) 1 2 2 . 2 ( 8 ) 1 2 0 . 3 ( 1 1 ) 1 2 0 . 9 ( 8 ) 1 2 2 . 5 ( 8 ) 1 1 6 . 7 ( 8 ) 1 2 6 . 4 ( 8 ) 1 2 7 . 1 ( 8 ) 1 0 6 . 5 ( 8 ) 1 0 9 . 9 ( 8 ) 1 1 7 . 6 ( 8 ) 1 3 2 . 4 ( 8 ) 1 2 2 . 5 ( 9 ) 1 2 0 . 4 ( 8 ) 1 2 3 . 3 ( 8 ) 1 1 6 . 3 ( 8 ) 1 2 1 . 8 ( 8 ) 1 2 5 . 7 ( 8 ) 1 2 7 . 9 ( 8 ) 1 0 6 . 3 ( 8 ) 2 4 8 T a b l e A 3 c o n t i n u e d . C 4 4 - C 2 4 - N 1 1 C 3 9 - C 2 5 - C 3 0 C 3 7 - C 2 6 - C 1 6 N 6 - C 2 7 - C 1 4 N 1 0 - C 2 8 - C 4 C 3 2 - C 2 9 - C 3 9 C 3 2 - C 2 9 - N 5 C 3 9 - C 2 9 - N 5 C 2 0 - C 3 0 - C 2 5 C 2 0 - C 3 0 - C 1 0 C 2 5 - C 3 0 - C 1 0 N 3 - C 3 1 - N 5 C 2 9 - C 3 2 - C 2 0 N 8 - C 3 3 - N 1 0 0 2 - C 3 4 - N 9 0 2 - C 3 4 - C 7 N 9 - C 3 4 — C 7 C 1 5 - C 3 5 - C 8 0 1 - C 3 6 - N 1 3 0 1 - C 3 6 — C 1 9 N 1 3 - C 3 6 - C 1 9 C 2 6 - C 3 7 - C 3 C 2 6 - C 3 7 - N 1 4 C 3 - C 3 7 — N 1 4 N 1 2 - C 3 8 - N 1 1 C 2 5 - C 3 9 - C 2 9 C 4 3 - C 4 0 - C 4 1 C 4 3 - C 4 0 - N 3 C 4 1 - C 4 0 - N 3 C 4 0 - C 4 1 - C 4 2 C 4 6 - C 4 2 - C 4 1 C 4 0 - C 4 3 - C 4 5 C 4 6 - C 4 5 - C 4 3 C 4 5 - C 4 6 - C 4 2 C 4 5 - C 4 6 - C 4 7 C 4 2 - C 4 6 - C 4 7 C 3 6 - 0 1 - R h 2 C 3 4 - 0 2 - R h 2 1 1 3 . 6 ( 8 ) 1 2 0 . 6 ( 1 0 ) 1 2 1 . 2 ( 1 0 ) 1 7 8 . 1 ( 1 1 ) 1 1 1 . 1 ( 8 ) 1 1 9 . 0 ( 9 ) 1 2 2 . 6 ( 9 ) 1 1 8 . 4 ( 8 ) 1 1 7 . 5 ( 1 0 ) 1 2 1 . 3 ( 9 ) 1 2 1 . 1 ( 1 0 ) 1 2 3 . 5 ( 8 ) 1 1 8 . 7 ( 1 0 ) 1 1 1 . 7 ( 8 ) 1 1 7 . 7 ( 8 ) 1 2 9 . 8 ( 8 ) 1 1 2 . 5 ( 8 ) 1 2 2 . 0 ( 9 ) 1 1 6 . 4 ( 8 ) 1 3 0 . 3 ( 8 ) 1 1 3 . 3 ( 8 ) 1 1 7 . 2 ( 9 ) 1 2 0 . 7 ( 9 ) 1 2 2 . 0 ( 9 ) 1 1 3 . 9 ( 8 ) 1 2 1 . 6 ( 9 ) 1 1 7 . 9 ( 1 0 ) 1 2 2 . 0 ( 9 ) 1 1 9 . 9 ( 1 0 ) 1 2 0 . 9 ( 1 2 ) 1 2 0 . 7 ( 1 2 ) 1 2 2 . 4 ( 1 1 ) 1 2 0 . 7 ( 1 3 ) 1 1 7 . 4 ( 1 2 ) 1 2 2 . 2 ( 1 4 ) 1 2 0 . 3 ( 1 3 ) 1 2 2 . 6 ( 5 ) 1 2 1 . 8 ( 6 ) 2 4 9 T a b l e A 3 c o n t i n u e d . C 2 2 - N 1 5 - C 1 5 C 2 2 - N 1 5 - R h 2 C 1 5 - N 1 5 - R h 2 C 2 2 - N 1 4 - C 3 7 C 2 2 - N 1 4 - R h l C 3 7 - N 1 4 - R h 1 C 1 7 - N 1 3 - C 3 6 C 3 8 - N 1 2 - C 7 C 3 8 - N 1 2 - R h 1 C 7 - N 1 2 - R h l C 3 8 - N 1 1 - C 1 8 C 3 8 - N 1 1 - C 2 4 C l 8 - N l 1 - C 2 4 C 2 3 - N 1 0 - C 3 3 C 2 3 - N 1 0 - C 2 8 C 3 3 - N 1 0 - C 2 8 C 2 1 - N 9 - C 3 4 C 3 3 - N 8 - C 1 9 C 3 3 - N 8 - R h 1 C l 9 - N 8 - R h 1 C l 7 - N 7 - C 2 3 C 2 7 - N 6 - R h l C 3 1 - N 5 - C 2 9 C 3 1 - N 5 - R h 2 C 2 9 - N 5 - R h 2 C 2 1 - N 4 - C 1 8 C 3 1 - N 3 - C 4 0 C 3 1 - N 3 - R h 1 C 4 0 - N 3 - R h 1 F l - B 1 - F 4 F 1 - B 1 - F 3 F 4 - B 1 - F 3 F 1 - B 1 - F 2 F 4 - B 1 - F 2 F 3 - B 1 - F 2 F 8 - B 2 - F 5 F 8 - B 2 - F 7 F S - B Z - F 7 1 1 9 . 6 ( 7 ) 1 1 9 . 6 ( 6 ) 1 2 0 . 0 ( 6 ) 1 1 6 . 3 ( 7 ) 1 1 8 . 3 ( 6 ) 1 2 4 . 9 ( 6 ) 1 2 4 . 6 ( 8 ) 1 0 4 . 9 ( 7 ) 1 2 6 . 7 ( 6 ) 1 2 8 . 1 ( 6 ) 1 0 6 . 1 ( 7 ) 1 2 6 . 0 ( 8 ) 1 2 7 . 7 ( 8 ) 1 0 6 . 9 ( 8 ) 1 2 6 . 5 ( 8 ) 1 2 6 . 4 ( 8 ) 1 2 4 . 5 ( 8 ) 1 0 5 . 1 ( 7 ) 1 2 5 . 0 ( 6 ) 1 2 9 . 8 ( 6 ) 1 1 3 . 9 ( 7 ) 1 7 2 . 0 ( 8 ) 1 2 0 . 4 ( 8 ) 1 1 9 . 1 ( 6 ) 1 1 9 . 1 ( 6 ) 1 1 3 . 6 ( 7 ) 1 1 8 . 1 ( 8 ) 1 1 8 . 3 ( 6 ) 1 2 1 . 5 ( 6 ) 1 0 9 . 1 ( 1 1 ) 1 1 1 . 6 ( 1 0 ) 1 0 8 . 9 ( 9 ) 1 1 1 . 4 ( 1 0 ) 1 0 3 . 9 ( 9 ) 1 1 1 . 5 ( 1 1 ) 1 1 2 . 2 ( 5 ) 1 0 9 . 2 ( 5 ) 1 1 0 . 6 ( 5 ) 2 5 0 T a b l e A 3 c o n t i n u e d . F 8 - B 2 - F 6 F S - B Z - F 6 F 7 - B 2 - F 6 F 7 B - B 2 B - F S B F 7 B - B Z B - F 8 B F S B - B Z B - F 8 B F 7 B - B 2 B - F 6 B F 5 B — B 2 B - F 6 B F 8 B - B Z B - F 6 B 1 0 9 . 1 ( 5 ) 1 0 8 . 7 ( 5 ) 1 0 6 . 9 ( 5 ) 1 0 9 . 6 ( 6 ) 1 0 9 . 4 ( 6 ) 1 0 9 . 5 ( 6 ) 1 0 9 . 7 ( 6 ) 1 0 9 . 4 ( 6 ) 1 0 9 . 2 ( 6 ) 2 5 1 T a b l e A 3 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 ) . R h l R h 2 C 1 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 1 0 C 1 1 C 1 2 C 1 3 C 1 4 C 1 5 C 1 6 C 1 7 C 1 8 C 1 9 C 2 0 C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 0 . 0 3 0 4 ( 4 ) 0 . 0 2 6 7 ( 4 ) 0 . 1 4 1 ( 1 3 ) 0 . 0 4 5 ( 7 ) 0 . 0 8 6 ( 1 0 ) 0 . 1 5 5 ( 1 4 ) 0 . 0 5 5 ( 7 ) 0 . 0 2 4 ( 5 ) 0 . 0 6 3 ( 8 ) 0 . 0 4 2 ( 7 ) 0 . 0 1 9 ( 6 ) 0 . 1 2 6 ( 1 2 ) 0 . 0 7 0 ( 9 ) 0 . 0 6 9 ( 8 ) 0 . 0 6 6 ( 8 ) 0 . 0 3 6 ( 6 ) 0 . 0 5 5 ( 8 ) 0 . 0 3 2 ( 6 ) 0 . 0 4 1 ( 6 ) 0 . 0 2 2 ( 5 ) 0 . 0 4 2 ( 7 ) 0 . 0 2 6 ( 6 ) 0 . 0 3 6 ( 6 ) 0 . 0 2 3 ( 5 ) 0 . 0 6 3 ( 8 ) 0 . 0 4 6 ( 7 ) 0 . 0 4 2 ( 7 ) 0 . 0 3 6 ( 6 ) 0 . 0 2 5 ( 6 ) 0 . 0 2 9 ( 6 ) 0 . 0 3 6 ( 6 ) 0 . 0 2 5 ( 5 ) 0 . 0 4 1 ( 6 ) 0 . 0 3 7 ( 7 ) 0 . 0 3 8 ( 6 ) 0 . 0 3 6 ( 6 ) 0 . 0 2 1 5 ( 4 ) 0 . 0 2 1 1 ( 4 ) 0 . 0 2 0 ( 6 ) 0 . 0 6 6 ( 8 ) 0 . 0 4 8 ( 7 ) 0 . 0 4 8 ( 8 ) 0 . 0 3 6 ( 6 ) 0 . 0 2 0 ( 5 ) 0 . 0 4 2 ( 7 ) 0 . 0 8 3 ( 9 ) 0 . 0 9 2 ( 9 ) 0 . 0 5 8 ( 8 ) 0 . 0 2 9 ( 6 ) 0 . 0 2 7 ( 6 ) 0 . 0 5 9 ( 8 ) 0 . 0 1 9 ( 5 ) 0 . 0 6 5 ( 8 ) 0 . 0 2 0 ( 5 ) 0 . 0 2 3 ( 5 ) 0 . 0 2 7 ( 5 ) 0 . 0 5 1 ( 6 ) 0 . 0 3 6 ( 6 ) 0 . 0 2 1 ( 5 ) 0 . 0 3 2 ( 6 ) 0 . 0 3 6 ( 6 ) 0 . 0 3 8 ( 7 ) 0 . 0 4 0 ( 6 ) 0 . 0 3 1 ( 6 ) 0 . 0 6 2 ( 8 ) 0 . 0 2 7 ( 5 ) 0 . 0 4 1 ( 7 ) 0 . 0 2 0 ( 5 ) 0 . 0 4 7 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 2 9 ( 5 ) 0 . 0 2 1 7 ( 4 ) 0 . 0 2 3 5 ( 4 ) 0 . 0 4 9 ( 8 ) 0 . 0 3 7 ( 7 ) 0 . 0 6 7 ( 9 ) 0 . 0 5 6 ( 9 ) 0 . 0 3 7 ( 7 ) 0 . 0 2 8 ( 6 ) 0 . 0 2 9 ( 6 ) 0 . 0 4 4 ( 8 ) 0 . 0 6 4 ( 8 ) 0 . 0 4 4 ( 8 ) 0 . 0 2 8 ( 6 ) 0 . 0 3 4 ( 7 ) 0 . 0 2 9 ( 6 ) 0 . 0 3 2 ( 6 ) 0 . 0 4 2 ( 7 ) 0 . 0 3 8 ( 6 ) 0 . 0 1 8 ( 5 ) 0 . 0 2 6 ( 6 ) 0 . 0 6 0 ( 8 ) 0 . 0 2 6 ( 6 ) 0 . 0 3 4 ( 6 ) 0 . 0 2 6 ( 6 ) 0 . 0 3 6 ( 7 ) 0 . 0 4 4 ( 7 ) 0 . 0 3 6 ( 7 ) 0 . 0 3 9 ( 6 ) 0 . 0 4 1 ( 7 ) 0 . 0 4 8 ( 7 ) 0 . 0 4 1 ( 7 ) 0 . 0 3 2 ( 6 ) 0 . 0 4 0 ( 6 ) 0 . 0 3 2 ( 6 ) 0 . 0 1 8 ( 5 ) 0 . 0 2 1 ( 5 ) 2 5 2 0 . 0 0 1 0 ( 4 ) 0 . 0 0 1 1 ( 4 ) 0 . 0 0 4 ( 6 ) 0 . 0 2 4 ( 6 ) 0 . 0 1 0 ( 7 ) 0 . 0 2 5 ( 7 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 0 ( 5 ) 0 . 0 3 6 ( 7 ) 0 . 0 0 9 ( 7 ) 0 . 0 1 0 ( 7 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 1 0 ( 5 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 3 ( 6 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 7 ( 7 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 3 ( 6 ) 0 . 0 1 7 ( 6 ) 0 . 0 0 1 ( 6 ) 0 . 0 0 0 ( 6 ) 0 . 0 0 2 ( 5 ) 0 . 0 0 1 ( 6 ) 0 . 0 1 2 ( 5 ) 0 . 0 0 6 ( 5 ) 0 . 0 0 7 ( 5 ) 0 . 0 0 4 1 ( 3 ) 0 . 0 0 3 3 ( 3 ) 0 . 0 2 1 ( 8 ) 0 . 0 1 6 ( 6 ) 0 . 0 0 4 ( 8 ) 0 . 0 2 7 ( 9 ) 0 . 0 0 6 ( 6 ) 0 . 0 0 5 ( 4 ) 0 . 0 0 6 ( 6 ) 0 . 0 1 5 ( 6 ) 0 . 0 0 8 ( 6 ) 0 . 0 2 3 ( 8 ) 0 . 0 0 4 ( 6 ) 0 . 0 0 5 ( 6 ) 0 . 0 0 0 ( 6 ) 0 . 0 0 3 ( 5 ) 0 . 0 1 3 ( 6 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 3 ( 4 ) 0 . 0 2 7 ( 6 ) 0 . 0 0 3 ( 5 ) 0 . 0 1 4 ( 5 ) 0 . 0 1 2 ( 5 ) 0 . 0 0 1 ( 6 ) 0 . 0 1 2 ( 6 ) 0 . 0 0 1 ( 6 ) 0 . 0 0 5 ( 5 ) 0 . 0 1 4 ( 5 ) 0 . 0 1 2 ( 5 ) 0 . 0 1 1 ( 5 ) 0 . 0 0 5 ( 5 ) 0 . 0 1 1 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 1 9 ( 4 ) 0 . 0 0 0 6 ( 4 ) 0 . 0 0 3 ( 7 ) 0 . 0 0 0 ( 6 ) 0 . 0 3 3 ( 7 ) 0 . 0 1 8 ( 8 ) 0 . 0 1 4 ( 5 ) 0 . 0 1 0 ( 4 ) 0 . 0 0 3 ( 6 ) 0 . 0 0 3 ( 6 ) 0 . 0 0 0 ( 5 ) 0 . 0 1 9 ( 8 ) 0 . 0 1 6 ( 6 ) 0 . 0 0 2 ( 5 ) 0 . 0 0 4 ( 6 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 0 ( 6 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 1 1 ( 6 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 1 8 ( 6 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 8 ( 5 ) 0 . 0 2 2 ( 5 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 4 ( 4 ) 0 . 0 1 3 ( 5 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 4 ( 4 ) T a b l e A 3 c o n t i n u e d . C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 0 1 0 2 N 1 5 N 1 4 N 1 3 N 1 2 N 1 1 N 1 0 N 9 N 8 N 7 N 6 N 5 N 4 N 3 N 2 N 1 F 1 F 2 F 3 F 4 B 1 F 5 F 6 F 7 F 8 0 . 0 2 0 ( 5 ) 0 . 0 2 7 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 3 6 ( 6 ) 0 . 0 4 0 ( 7 ) 0 . 0 3 6 ( 7 ) 0 . 0 4 0 ( 8 ) 0 . 0 7 2 ( 8 ) 0 . 0 3 3 ( 7 ) 0 . 0 8 8 ( 1 0 ) 0 . 0 5 9 ( 9 ) 0 . 0 6 6 ( 1 0 ) 0 . 0 2 3 ( 3 ) 0 . 0 2 9 ( 4 ) 0 . 0 3 5 ( 5 ) 0 . 0 2 6 ( 4 ) 0 . 0 3 7 ( 5 ) 0 . 0 2 6 ( 4 ) 0 . 0 3 0 ( 5 ) 0 . 0 3 0 ( 5 ) 0 . 0 2 8 ( 5 ) 0 . 0 3 2 ( 5 ) 0 . 0 2 5 ( 5 ) 0 . 0 3 7 ( 5 ) 0 . 0 2 9 ( 4 ) 0 . 0 2 8 ( 5 ) 0 . 0 3 0 ( 5 ) 0 . 0 4 6 ( 5 ) 0 . 0 5 7 ( 6 ) 0 . 0 7 9 ( 6 ) 0 . 1 4 7 ( 8 ) 0 . 0 7 3 ( 5 ) 0 . 1 0 3 ( 6 ) 0 . 0 5 0 ( 9 ) 0 . 0 9 1 ( 6 ) 0 . 0 5 2 ( 5 ) 0 . 0 4 5 ( 5 ) 0 . 0 6 3 ( 6 ) 0 . 0 2 4 ( 5 ) 0 . 0 3 2 ( 6 ) 0 . 0 3 8 ( 6 ) 0 . 0 5 1 ( 7 ) 0 . 0 2 8 ( 6 ) 0 . 0 6 3 ( 8 ) 0 . 0 7 2 ( 9 ) 0 . 0 4 4 ( 7 ) 0 . 0 6 2 ( 8 ) 0 . 0 6 5 ( 9 ) 0 . 0 7 6 ( 1 0 ) 0 . 1 8 5 ( 1 6 ) 0 . 0 2 1 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 7 ( 4 ) 0 . 0 2 9 ( 4 ) 0 . 0 2 5 ( 4 ) 0 . 0 3 3 ( 5 ) 0 . 0 3 0 ( 5 ) 0 . 0 3 3 ( 5 ) 0 . 0 3 8 ( 5 ) 0 . 0 2 8 ( 4 ) 0 . 0 3 0 ( 5 ) 0 . 0 2 2 ( 4 ) 0 . 0 2 3 ( 4 ) 0 . 0 3 2 ( 4 ) 0 . 0 1 6 ( 4 ) 0 . 0 3 9 ( 5 ) 0 . 0 4 9 ( 5 ) 0 . 2 0 1 ( 9 ) 0 . 0 9 9 ( 6 ) 0 . 0 9 0 ( 5 ) 0 . 0 8 4 ( 5 ) 0 . 0 3 1 ( 7 ) 0 . 0 6 1 ( 6 ) 0 . 0 6 3 ( 5 ) 0 . 0 6 0 ( 6 ) 0 . 0 9 9 ( 7 ) 0 . 0 2 6 ( 6 ) 0 . 0 3 0 ( 6 ) 0 . 0 1 2 ( 5 ) 0 . 0 3 1 ( 6 ) 0 . 0 3 5 ( 7 ) 0 . 0 6 1 ( 9 ) 0 . 0 7 5 ( 1 0 ) 0 . 0 3 5 ( 7 ) 0 . 1 0 9 ( 1 2 ) 0 . 0 4 0 ( 8 ) 0 . 0 6 5 ( 1 0 ) 0 . 0 7 2 ( 1 0 ) 0 . 0 2 8 ( 4 ) 0 . 0 1 7 ( 3 ) 0 . 0 2 3 ( 5 ) 0 . 0 2 0 ( 4 ) 0 . 0 1 4 ( 4 ) 0 . 0 1 7 ( 4 ) 0 . 0 2 3 ( 5 ) 0 . 0 3 0 ( 5 ) 0 . 0 1 8 ( 4 ) 0 . 0 3 1 ( 5 ) 0 . 0 3 0 ( 5 ) 0 . 0 2 6 ( 4 ) 0 . 0 2 6 ( 4 ) 0 . 0 2 7 ( 5 ) 0 . 0 2 8 ( 5 ) 0 . 0 2 8 ( 5 ) 0 . 0 3 3 ( 5 ) 0 . 0 5 9 ( 5 ) 0 . 0 8 2 ( 6 ) 0 . 0 2 7 ( 4 ) 0 . 0 5 1 ( 5 ) 0 . 0 3 1 ( 8 ) 0 . 0 3 1 ( 4 ) 0 . 0 5 0 ( 5 ) 0 . 0 4 7 ( 4 ) 0 . 0 4 7 ( 5 ) 2 5 3 0 . 0 0 1 ( 4 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 1 ( 6 ) 0 . 0 1 0 ( 5 ) 0 . 0 1 4 ( 7 ) 0 . 0 3 2 ( 8 ) 0 . 0 1 6 ( 6 ) 0 . 0 0 5 ( 8 ) 0 . 0 1 2 ( 7 ) 0 . 0 4 2 ( 8 ) - 0 . 0 8 3 ( 1 1 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 6 ( 3 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 1 2 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 1 1 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 1 3 ( 4 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 8 ( 6 ) 0 . 0 2 6 ( 5 ) 0 . 0 0 1 ( 4 ) 0 . 0 1 4 ( 4 ) 0 . 0 0 9 ( 6 ) 0 . 0 0 1 ( 4 ) 0 . 0 2 0 ( 4 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 4 ( 5 ) 0 . 0 1 5 ( 5 ) 0 . 0 0 9 ( 5 ) 0 . 0 0 0 ( 6 ) 0 . 0 0 4 ( 7 ) 0 . 0 2 1 ( 6 ) 0 . 0 2 6 ( 7 ) 0 . 0 0 7 ( 7 ) 0 . 0 0 4 ( 8 ) - 0 . 0 l 6 ( 8 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 5 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 3 ( 4 ) 0 . 0 1 7 ( 6 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 8 ( 7 ) 0 . 0 1 9 ( 4 ) 0 . 0 1 4 ( 4 ) 0 . 0 1 3 ( 4 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 5 ( 4 ) 0 . 0 0 8 ( 4 ) 0 . 0 1 1 ( 5 ) 0 . 0 0 5 ( 5 ) 0 . 0 1 0 ( 5 ) 0 . 0 1 3 ( 6 ) 0 . 0 0 0 ( 6 ) 0 . 0 0 1 ( 6 ) 0 . 0 0 5 ( 6 ) 0 . 0 2 6 ( 8 ) 0 . 0 2 2 ( 7 ) 0 . 0 4 7 ( 1 0 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 6 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 1 0 ( 4 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 8 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 1 7 ( 3 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 4 ( 4 ) 0 . 0 1 5 ( 4 ) 0 . 0 0 0 ( 3 ) 0 . 0 1 7 ( 4 ) 0 . 0 3 1 ( 5 ) 0 . 0 6 8 ( 6 ) 0 . 0 3 4 ( 6 ) 0 . 0 0 1 ( 4 ) 0 . 0 3 0 ( 4 ) 0 . 0 1 1 ( 6 ) 0 . 0 1 6 ( 4 ) 0 . 0 1 8 ( 4 ) 0 . 0 0 9 ( 4 ) 0 . 0 3 3 ( 5 ) T a b l e A 3 c o n t i n u e d . F 5 B 0 . 0 9 1 ( 6 ) 0 . 0 6 1 ( 6 ) F 6 B 0 . 0 5 2 ( 5 ) 0 . 0 6 3 ( 5 ) F 7 B 0 . 0 4 5 ( 5 ) 0 . 0 6 0 ( 6 ) F 8 B 0 . 0 6 ( 4 ) 0 . 5 5 ( l 6 ) 0 . 0 3 1 ( 4 ) 0 . 0 5 0 ( 5 ) 0 . 0 4 7 ( 4 ) 0 4 0 ( 1 3 ) 2 5 4 0 . 0 0 1 ( 4 ) 0 . 0 2 0 ( 4 ) 0 . 0 0 7 ( 4 ) 0 4 2 ( 1 3 ) - 0 . 0 1 9 ( 4 ) - 0 . 0 1 4 ( 4 ) - 0 . 0 1 3 ( 4 ) 0 . 0 8 ( 6 ) 0 . 0 1 6 ( 4 ) 0 . 0 1 8 ( 4 ) - 0 . 0 0 9 ( 4 ) 0 . 0 2 ( 7 ) T a b l e A 3 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 ) . x y z U ( e q ) O c c . H l A 0 . 1 4 9 5 1 . 0 5 4 5 0 . 2 4 5 2 0 . 0 8 3 1 H 3 A - 0 . 0 3 8 6 0 . 8 9 6 1 - 0 . 0 1 3 1 0 . 0 5 8 1 H 4 A - 0 . 3 8 2 1 0 . 4 9 9 5 0 . 0 3 2 9 0 . 1 0 3 1 H 4 B - 0 . 2 5 2 0 0 . 4 9 3 9 0 . 0 6 9 5 0 . 1 0 3 1 H 4 C - 0 . 2 7 7 9 0 . 5 3 8 7 0 . 0 1 2 9 0 . 1 0 3 1 H S A 0 . 1 7 4 5 1 . 0 8 0 9 0 . 3 4 7 7 0 . 1 2 8 1 H S B 0 . 2 7 5 9 1 . 0 4 0 8 0 . 3 8 7 0 0 . 1 2 8 1 H 5 C 0 . 1 4 1 5 1 . 0 2 4 7 0 . 3 8 7 9 0 . 1 2 8 1 H 8 A 0 . 2 4 8 1 0 . 9 1 3 5 0 . 3 6 1 6 0 . 0 5 4 1 H 9 A - 0 . 0 2 9 2 0 . 9 2 7 2 - 0 . 1 0 9 8 0 . 0 6 6 1 H 1 0 A 0 . 8 2 5 0 0 . 7 2 2 3 0 . 2 4 5 4 0 . 0 9 1 1 H 1 0 B 0 . 7 7 6 3 0 . 6 7 6 0 0 . 2 9 0 3 0 . 0 9 1 1 H 1 0 C 0 . 7 8 4 8 0 . 7 5 0 1 0 . 3 0 3 2 0 . 0 9 1 1 H 1 1 A 0 . 0 6 6 3 0 . 9 4 8 9 - 0 . 1 8 8 9 0 . 1 1 3 1 H 1 1 8 0 . 1 6 3 7 0 . 8 9 7 5 - 0 . 1 9 6 0 0 . 1 1 3 1 H 1 1 C 0 . 2 0 2 1 0 . 9 6 5 6 - 0 . 1 6 9 9 0 . 1 1 3 1 H 1 3 A 0 . 1 3 9 3 0 . 9 8 2 4 0 . 1 6 5 9 0 . 0 5 3 1 H 1 4 A - 0 . 1 3 3 0 0 . 7 8 1 8 - 0 . 1 3 6 8 0 . 0 7 9 1 H 1 4 B - 0 . 2 5 8 1 0 . 7 6 6 8 - 0 . 1 1 9 8 0 . 0 7 9 1 H 1 4 C - 0 . 1 7 1 2 0 . 7 1 0 4 - 0 . 1 2 8 4 0 . 0 7 9 1 H 1 6 A 0 . 3 1 1 6 0 . 8 7 8 0 - 0 . 0 8 5 7 0 . 0 6 4 1 H 2 0 A 0 . 6 8 7 0 0 . 7 3 9 2 0 . 1 5 7 5 0 . 0 5 8 1 H 2 2 A 0 . 2 0 1 1 0 . 9 1 6 8 0 . 1 0 4 8 0 . 0 3 5 1 H 2 4 A - 0 . 3 4 6 3 0 . 9 7 7 6 0 . 1 0 8 1 0 . 0 5 5 1 H 2 4 B - 0 . 3 3 0 9 0 . 9 5 5 4 0 . 0 4 3 7 0 . 0 5 5 1 H 2 5 A 0 . 5 5 5 9 0 . 7 1 7 6 0 . 3 0 8 1 0 . 0 5 1 1 H 2 6 A 0 . 2 9 7 5 0 . 8 3 7 8 0 . 0 0 9 1 0 . 0 4 8 1 H 2 8 A - 0 . 3 9 2 6 0 . 6 0 6 6 0 . 0 6 3 4 0 . 0 5 4 1 H 2 8 B - 0 . 3 6 7 2 0 . 5 6 1 7 0 . 1 2 0 0 0 . 0 5 4 1 H 3 1 A 0 . 3 1 9 9 0 . 6 8 6 5 0 . 0 7 2 8 0 . 0 3 0 1 2 5 5 n — p d p a — a — p H H A p H a — H e — i — p ‘ p H H a — e — p e — p g — p e — p d — p A — p n — p T a b l e A 3 c o n t i n u e d . H 3 2 A H 3 3 A H 3 5 A H 3 8 A H 3 9 A H 4 1 A H 4 2 A H 4 3 A H 4 4 A H 4 4 B H 4 4 C H 4 5 A H 4 7 A H 4 7 B H 4 7 C H 1 3 B H 9 B H 7 A H 4 D H 2 A H 2 B H 1 B H l C 0 . 4 9 3 7 - 0 . 2 1 7 6 0 . 2 5 2 8 - 0 . 1 9 9 4 0 . 3 6 5 7 0 . 0 0 6 2 - 0 . 0 3 8 0 0 . 2 4 4 4 - 0 . 5 2 1 3 - 0 . 4 7 3 3 - 0 . 4 5 7 2 0 . 1 9 7 1 0 . 0 7 7 5 - 0 . 0 5 2 0 0 . 0 4 1 9 0 . 0 9 3 1 - 0 . 0 3 7 5 - 0 . 2 1 1 8 - 0 . 2 7 8 4 - 0 . 1 1 8 4 0 . 0 0 0 5 - 0 . 2 2 2 1 - 0 . 1 2 7 6 0 . 7 4 5 8 0 . 6 8 5 1 0 . 8 4 2 7 0 . 8 5 1 8 0 . 7 2 4 0 0 . 6 1 0 3 0 . 5 6 3 9 0 . 7 2 2 6 0 . 9 3 5 5 0 . 8 9 2 9 0 . 8 7 0 1 0 . 6 8 1 0 0 . 6 1 4 1 0 . 6 0 4 1 0 . 5 4 8 3 0 . 5 8 7 7 0 . 8 5 3 0 0 . 5 3 0 4 0 . 9 5 2 4 0 . 4 8 4 3 0 . 5 0 8 9 0 . 9 7 2 6 0 . 9 3 2 1 0 . 1 0 2 1 0 . 0 4 5 6 0 . 2 8 3 8 0 . 0 3 7 8 0 . 2 5 4 3 0 . 0 2 1 3 - 0 . 0 7 3 0 - 0 . 0 3 4 6 0 . 0 5 7 9 0 . 1 1 4 1 0 . 0 4 9 9 - 0 . 1 2 9 8 - 0 . 2 0 3 6 - 0 . 1 9 0 0 - 0 . l 7 7 7 0 . 2 7 8 1 0 . 3 1 0 4 0 . 1 9 6 4 0 . 2 1 2 3 0 . 2 8 8 3 0 . 3 1 7 8 0 . 3 1 5 8 0 . 3 5 1 7 2 5 6 0 . 0 5 1 0 . 0 4 2 0 . 0 3 5 0 . 0 3 5 0 . 0 4 6 0 . 0 6 5 0 . 0 7 6 0 . 0 5 8 0 . 1 0 9 0 . 1 0 9 0 . 1 0 9 0 . 0 7 8 0 . 1 6 7 0 . 1 6 7 0 . 1 6 7 0 . 0 3 1 0 . 0 3 5 0 . 0 3 5 0 . 0 3 6 0 . 0 4 7 0 . 0 4 7 0 . 0 5 7 0 . 0 5 7 T a b l e A 3 c o n t i n u e d . N 1 4 1 1 1 1 1 1 1 1 1 2 N 5 - 6 9 . 6 ( 3 ) N 3 R h l 1 1 1 1 2 N 5 2 0 . 2 ( 3 ) N 8 1 1 1 1 1 R h 2 N 5 1 1 2 . 4 ( 3 ) N 1 2 1 1 1 1 1 1 1 1 1 2 N 5 2 5 8 . 3 ( 3 ) N 6 1 1 1 1 1 1 1 1 1 2 N 5 2 0 ( 3 ) N 1 4 1 1 1 1 1 1 1 1 1 2 N 1 5 2 3 . 5 ( 3 ) N 3 1 1 1 1 1 1 1 1 1 2 N 1 5 1 1 3 . 2 ( 3 ) N 8 1 1 1 1 1 1 1 1 1 2 N 1 5 2 5 4 . 5 ( 3 ) N 1 2 1 1 1 1 1 1 1 1 1 2 N 1 5 - 6 5 . 2 ( 3 ) N 6 1 1 1 1 1 1 1 1 1 2 N 1 5 8 3 ( 3 ) N 1 4 1 1 1 1 1 1 1 1 1 2 0 2 1 1 5 . 5 ( 2 ) N 3 1 1 1 1 1 1 1 1 1 2 0 2 2 5 4 . 7 ( 2 ) N 8 1 1 1 1 1 1 1 1 1 2 0 2 - 6 2 . 5 ( 3 ) N 1 2 1 1 1 1 1 1 1 1 1 2 0 2 2 6 . 8 ( 2 ) N 6 1 1 1 1 1 1 1 1 1 2 0 2 1 7 5 ( 3 ) N 1 4 1 1 1 1 1 1 1 1 1 2 o 1 2 5 7 . 8 ( 3 ) N 3 1 1 1 1 1 1 1 1 1 2 0 1 - 6 8 . 0 ( 2 ) N 8 1 1 1 1 1 1 1 1 1 2 0 1 2 4 . 2 ( 3 ) N 1 2 R h l 1 1 1 1 2 0 1 1 1 3 . 5 ( 3 ) N 6 1 1 1 1 1 R 1 1 2 0 1 - 9 8 ( 3 ) C 1 3 C 1 C 6 C 8 2 . 7 ( 1 9 ) C 1 3 C 1 C 6 C 5 2 7 8 . 2 ( 1 1 ) C 1 C 6 C 8 C 3 5 - 0 . 1 ( 1 6 ) C 5 C 6 C 8 C 3 5 2 7 9 . 2 ( 1 0 ) C 3 7 C 3 C 9 C 1 2 - 3 . 6 ( 1 8 ) C 3 C 9 C 1 2 C 1 6 2 . 2 ( 1 7 ) C 3 C 9 C 1 2 C 1 1 - 1 7 8 . 1 ( 1 0 ) C 6 C 1 C 1 3 C 1 5 2 1 0 9 ) C 1 C 1 3 C 1 5 C 3 5 0 . 7 ( 1 5 ) C 1 C 1 3 C 1 5 N 1 5 1 7 5 . 5 ( 1 0 ) C 9 C 1 2 C 1 6 C 2 6 0 . 9 ( 1 6 ) C 1 1 C 1 2 C 1 6 C 2 6 2 7 8 . 7 ( 9 ) C 3 4 C 7 C 1 8 N 4 3 . 9 ( 1 4 ) N 1 2 C 7 C 1 8 N 4 1 7 9 . 6 ( 8 ) C 3 4 C 7 C 1 8 N 1 1 2 7 6 . 4 ( 8 ) N 1 2 C 7 C 1 8 N 1 1 0 . 8 ( 1 0 ) N 8 C 1 9 C 2 3 N 7 2 7 7 . 8 ( 9 ) C 3 6 C 1 9 C 2 3 N 7 5 . 4 ( 1 4 ) 2 5 7 T a b l e A 3 c o n t i n u e d . N 8 C 1 9 C 2 3 N 1 0 0 . 9 ( 1 0 ) C 3 6 C 1 9 C 2 3 N 1 0 2 7 7 . 7 ( 8 ) C 1 2 C 1 6 C 2 6 C 3 7 2 . 9 ( 1 6 ) C 3 2 C 2 0 C 3 0 C 2 5 - 1 . 4 ( 1 6 ) C 3 2 C 2 0 C 3 0 C 1 0 1 7 5 . 8 ( 9 ) C 3 9 C 2 5 C 3 0 C 2 0 1 . 4 ( 1 5 ) C 3 9 C 2 5 C 3 0 C 1 0 2 7 5 . 8 ( 9 ) C 3 9 C 2 9 C 3 2 C 2 0 1 . 3 ( 1 5 ) N 5 C 2 9 C 3 2 C 2 0 2 7 7 . 3 ( 8 ) C 3 0 C 2 0 C 3 2 C 2 9 0 . 0 ( 1 6 ) C 1 8 C 7 C 3 4 0 2 1 7 4 . 9 ( 9 ) N 1 2 C 7 C 3 4 0 2 0 . 4 ( 1 7 ) C 1 8 C 7 C 3 4 N 9 4 5 0 2 ) N 1 2 C 7 C 3 4 N 9 2 7 9 . 0 ( 9 ) C 1 3 C 1 5 C 3 5 C 8 1 . 9 ( 1 4 ) N 1 5 C 1 5 C 3 5 C 8 2 7 3 . 0 ( 9 ) C 6 C 8 C 3 5 C 1 5 2 . 3 ( 1 5 ) C 2 3 C 1 9 C 3 6 0 1 1 7 5 . 7 ( 9 ) N 8 C 1 9 C 3 6 0 1 0 . 2 ( 1 7 ) C 2 3 C 1 9 C 3 6 N 1 3 5 1 0 2 ) N 8 C 1 9 C 3 6 N 1 3 1 7 9 . 0 ( 8 ) C 1 6 C 2 6 C 3 7 C 3 1 . 6 ( 1 5 ) C 1 6 C 2 6 C 3 7 N 1 4 2 7 9 . 2 ( 9 ) C 9 C 3 C 3 7 C 2 6 1 . 5 ( 1 5 ) C 9 C 3 C 3 7 N 1 4 2 7 7 . 7 ( 9 ) C 3 0 C 2 5 C 3 9 C 2 9 0 . 0 ( 1 5 ) C 3 2 C 2 9 C 3 9 C 2 5 2 . 3 ( 1 5 ) N 5 C 2 9 C 3 9 C 2 5 1 7 7 . 4 ( 8 ) C 4 3 C 4 0 C 4 1 C 4 2 0 . 3 ( 1 5 ) N 3 C 4 0 C 4 1 C 4 2 1 7 4 . 8 ( 9 ) C 4 0 C 4 1 C 4 2 C 4 6 2 . 2 ( 1 7 ) C 4 1 C 4 0 C 4 3 C 4 5 1 . 9 ( 1 6 ) N 3 C 4 0 C 4 3 C 4 5 2 7 3 . 1 ( 9 ) C 4 0 C 4 3 C 4 5 C 4 6 0 . 8 ( 1 8 ) C 4 3 C 4 5 C 4 6 C 4 2 2 . 7 ( 1 8 ) C 4 3 C 4 5 C 4 6 C 4 7 1 7 4 . 7 ( 1 1 ) C 4 1 C 4 2 C 4 6 C 4 5 3 . 2 ( 1 8 ) C 4 1 C 4 2 C 4 6 C 4 7 - 1 7 3 . 3 ( 1 1 ) 2 5 8 T a b l e A 3 c o n t i n u e d . N 1 3 C 3 6 0 1 1 1 1 1 2 2 5 1 . 7 ( 6 ) C 1 9 C 3 6 0 1 1 1 1 1 2 2 7 . 5 ( 1 3 ) N 5 1 1 1 1 2 0 1 C 3 6 2 2 3 . 8 ( 7 ) N 1 5 1 1 1 1 2 0 1 C 3 6 1 3 2 . 4 ( 1 9 ) 0 2 1 1 1 1 2 0 1 C 3 6 6 1 . 3 ( 7 ) 1 1 1 1 1 1 1 1 1 2 o 1 C 3 6 - 3 7 . 8 ( 7 ) N 9 C 3 4 o 2 1 1 1 1 2 2 4 5 . 7 ( 6 ) C 7 C 3 4 0 2 1 1 1 1 2 3 4 . 9 ( 1 3 ) N 5 1 1 1 1 2 0 2 C 3 4 1 7 4 . 0 ( 1 7 ) N 1 5 R h 2 0 2 C 3 4 4 0 . 3 ( 7 ) 0 1 R h 2 0 2 C 3 4 - l 4 6 . 8 ( 6 ) R h l R h 2 0 2 C 3 4 - 4 5 . 4 ( 6 ) N 1 4 C 2 2 N 1 5 C 1 5 - 1 5 6 . 0 ( 8 ) N 1 4 C 2 2 N 1 5 1 1 1 1 2 1 4 . 1 ( 1 2 ) C 3 5 C 1 5 N 1 5 C 2 2 2 6 8 . 3 ( 9 ) C 1 3 C 1 5 N 1 5 C 2 2 1 7 . 1 ( 1 3 ) C 3 5 C 1 5 N 1 5 1 1 1 1 2 2 1 . 6 ( 1 1 ) C 1 3 C 1 5 N 1 5 1 1 1 1 2 2 5 3 . 0 ( 7 ) N 5 1 1 1 1 2 N 1 5 C 2 2 5 8 . 6 ( 7 ) 0 2 1 1 1 1 2 N 1 5 C 2 2 2 2 7 . 3 ( 7 ) 0 1 1 1 1 1 2 N 1 5 C 2 2 1 6 2 . 2 ( 1 7 ) 1 1 1 1 1 1 1 1 1 2 N 1 5 C 2 2 2 7 . 4 ( 7 ) N 5 1 1 1 1 2 N 1 5 C 1 5 2 3 1 . 3 ( 7 ) 0 2 1 1 1 1 2 N 1 5 C 1 5 4 2 . 9 ( 6 ) 0 1 1 1 1 1 2 N 1 5 C 1 5 2 8 ( 2 ) 1 1 1 1 1 1 1 1 1 2 N 1 5 C 1 5 1 4 2 . 7 ( 6 ) N 1 5 C 2 2 N 1 4 C 3 7 2 7 2 . 1 ( 8 ) N 1 5 C 2 2 N 1 4 1 1 1 1 1 1 5 . 2 ( 1 1 ) C 2 6 C 3 7 N 1 4 C 2 2 7 7 . 1 ( 1 1 ) C 3 C 3 7 N 1 4 C 2 2 1 0 3 . 7 ( 1 0 ) C 2 6 C 3 7 N 1 4 1 1 1 1 1 2 1 0 . 7 ( 9 ) C 3 C 3 7 N 1 4 1 1 1 1 1 6 8 . 5 ( 1 1 ) N 3 1 1 1 1 1 N 1 4 C 2 2 - 1 1 2 . 8 ( 7 ) N 8 1 1 1 1 1 N 1 4 C 2 2 3 ( 4 ) N 1 2 1 1 1 1 1 N 1 4 C 2 2 6 5 . 8 ( 6 ) N 6 1 1 1 1 1 N 1 4 C 2 2 1 5 5 . 9 ( 6 ) 1 1 1 1 2 R h l N 1 4 C 2 2 2 7 . 5 ( 6 ) N 3 1 1 1 1 1 N 1 4 C 3 7 7 5 . 2 ( 7 ) 2 5 9 T a b l e A 3 c o n t i n u e d . N 8 N 1 2 N 6 R h 2 N 7 N 2 0 1 C 1 9 N 1 1 N 1 1 C 1 8 C 3 4 C 1 8 C 3 4 N 1 4 N 3 N 8 N 6 R h 2 N 1 4 N 3 N 8 N 6 R h 2 N 1 2 N 1 2 N 4 C 7 N 4 C 7 C 4 4 C 4 4 N 7 C 1 9 N 7 C 1 9 N 8 N 8 R h l R h l R h l R h l C 1 7 C 1 7 C 3 6 C 3 6 C 3 8 C 3 8 C 7 C 7 C 7 C 7 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l C 3 8 C 3 8 C 1 8 C 1 8 C 1 8 C 1 8 C 2 4 C 2 4 C 2 3 C 2 3 C 2 3 C 2 3 C 3 3 C 3 3 N 1 4 N 1 4 N 1 4 N 1 4 N 1 3 N 1 3 N 1 3 N 1 3 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 2 N 1 1 N 1 1 N 1 1 N 1 1 N 1 1 N 1 1 N 1 1 N 1 1 N 1 0 N 1 0 N 1 0 N 1 0 N 1 0 N 1 0 C 3 7 C 3 7 C 3 7 C 3 7 C 3 6 C 3 6 C 1 7 C 1 7 C 7 R h l C 3 8 C 3 8 R h l R h l C 3 8 C 3 8 C 3 8 C 3 8 C 3 8 C 7 C 7 C 7 C 7 C 7 C 1 8 C 2 4 C 3 8 C 3 8 C 2 4 C 2 4 C 3 8 C 1 8 C 3 3 C 3 3 C 2 8 C 2 8 C 2 3 C 2 8 2 6 9 ( 4 ) 2 0 6 . 3 ( 7 ) 2 6 . 1 ( 7 ) 1 6 0 . 4 ( 7 ) 0 . 6 ( 1 4 ) 2 7 9 . 5 ( 8 ) 2 7 8 . 1 ( 8 ) 2 . 6 ( 1 2 ) 0 . 6 ( 1 0 ) 2 7 3 . 4 ( 6 ) 0 . 1 ( 1 0 ) 1 7 5 . 1 ( 9 ) 1 7 4 . 0 ( 6 ) 2 1 . 1 ( 1 4 ) 7 9 . 0 ( 8 ) 1 2 0 ( 7 ) 2 0 4 . 4 ( 8 ) - l 4 . 5 ( 8 ) 1 6 3 . 4 ( 7 ) - 9 3 . 6 ( 7 ) - 5 3 ( 8 ) 8 2 . 9 ( 7 ) 1 7 2 . 9 ( 7 ) - 9 . 2 ( 7 ) 2 . 1 ( 1 1 ) 2 7 6 . 5 ( 8 ) 2 7 9 . 3 ( 9 ) 1 . 1 ( 1 0 ) - 4 . 0 ( 1 5 ) 1 7 6 . 4 ( 8 ) 8 2 . 8 ( 1 2 ) — 9 1 . 5 ( 1 2 ) 1 7 7 . 6 ( 9 ) 0 . 6 ( 1 0 ) - 7 . 0 ( 1 5 ) 1 7 6 . 0 ( 9 ) 0 . 1 ( 1 1 ) 2 7 5 . 5 ( 9 ) 2 6 0 T a b l e A 3 c o n t i n u e d . C 4 C 4 N 4 N 1 0 2 C 7 N 1 0 N 1 0 C 2 3 C 3 6 C 2 3 C 3 6 N 1 4 N 3 N 1 2 N 6 R h 2 N 1 4 N 3 N 1 2 N 6 R h 2 N 2 N 1 3 N 1 0 C 1 9 C 1 4 N 1 4 N 3 N 8 N 1 2 N 3 N 3 C 3 2 C 3 9 C 3 2 C 3 9 C 2 8 C 2 8 C 2 1 C 2 1 C 3 4 C 3 4 C 3 3 C 3 3 C 1 9 C 1 9 C 1 9 C 1 9 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l C 1 7 C 1 7 C 2 3 C 2 3 C 2 7 R h l R h l R h l R h l R h l C 3 1 C 3 1 C 2 9 C 2 9 C 2 9 C 2 9 N 1 0 N 1 0 N 9 N 9 N 9 N 9 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 7 N 7 N 7 N 7 N 6 N 6 N 6 N 6 N 6 N 6 N 5 N 5 N 5 N 5 N 5 N 5 C 2 3 C 3 3 C 3 4 C 3 4 C 2 1 C 2 1 C 1 9 R h l C 3 3 C 3 3 R h l R h l C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 1 9 C 1 9 C 1 9 C 1 9 C 1 9 C 2 3 C 2 3 C 1 7 C 1 7 R h l C 2 7 C 2 7 C 2 7 C 2 7 C 2 7 C 2 9 C 3 1 C 3 1 R h 2 R h 2 - 8 5 . 4 ( 1 2 ) 8 9 . 1 ( 1 1 ) 5 . 0 ( 1 4 ) 2 7 4 . 9 ( 8 ) 2 7 8 . 9 ( 8 ) 0 . 6 ( 1 3 ) 0 . 5 ( 1 0 ) - 1 7 8 . 5 ( 6 ) 0 . 8 ( 1 0 ) 1 7 7 . 0 ( 9 ) 1 7 8 . 7 ( 6 ) 5 1 0 5 ) 1 3 5 ( 4 ) 2 0 8 . 8 ( 8 ) 7 2 . 7 ( 8 ) 2 7 . 5 ( 8 ) 1 6 5 . 9 ( 7 ) - 4 2 ( 4 ) 7 3 . 7 ( 8 ) 2 0 4 . 7 ( 8 ) 1 6 5 . 0 ( 8 ) 2 1 . 6 ( 7 ) 1 7 9 . 0 ( 8 ) 2 . 1 ( 1 3 ) 2 7 8 . 4 ( 9 ) 2 . 0 ( 1 4 ) - 3 6 ( 3 9 ) 6 8 ( 6 ) 2 1 ( 6 ) 2 1 4 ( 6 ) 1 5 7 ( 6 ) 8 ( 8 ) 1 7 7 . 5 ( 7 ) 1 0 . 9 ( 1 1 ) 3 8 . 6 ( 1 3 ) 2 4 0 . 0 ( 9 ) 2 5 4 . 8 ( 7 ) 2 6 . 6 ( 1 1 ) 2 6 1 T a b l e A 3 c o n t i n u e d . N 1 5 0 2 0 1 R h l N 1 5 0 2 0 1 R h l N 1 N 9 C 7 N 1 1 N 5 N 5 C 4 3 C 4 1 C 4 3 C 4 1 N 1 4 N 8 N 1 2 N 6 R h 2 N 1 4 N 8 N 1 2 N 6 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 C 2 1 C 2 1 C 1 8 C 1 8 C 3 1 C 3 1 C 4 0 C 4 0 C 4 0 C 4 0 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 4 N 4 N 4 N 4 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 C 3 1 C 3 1 C 3 1 C 3 1 C 2 9 C 2 9 C 2 9 C 2 9 C 1 8 C 1 8 C 2 1 C 2 1 C 4 0 R h l C 3 1 C 3 1 R h l R h l C 3 1 C 3 1 C 3 1 C 3 1 C 3 1 C 4 0 C 4 0 C 4 0 C 4 0 C 4 0 2 0 7 . 7 ( 6 ) 1 1 8 . 5 ( 1 8 ) 7 9 . 5 ( 6 ) 2 2 . 7 ( 6 ) 8 5 . 5 ( 6 ) - 4 8 ( 2 ) - 8 7 . 3 ( 6 ) 1 7 0 . 5 ( 6 ) 1 7 4 . 2 ( 8 ) - 5 . 6 ( 1 3 ) 1 . 4 ( 1 4 ) 2 7 8 . 2 ( 9 ) 1 7 7 . 8 ( 8 ) 1 4 . 0 ( 1 1 ) 0 7 . 2 0 2 ) 1 2 7 . 9 ( 9 ) 1 0 6 . 1 ( 1 0 ) - 6 8 . 8 ( 1 0 ) 6 0 . 6 ( 6 ) 2 1 5 . 9 ( 7 ) 2 0 ( 8 ) 1 5 4 . 1 ( 7 ) 2 3 . 9 ( 6 ) 2 0 2 . 6 ( 7 ) 8 0 . 9 ( 7 ) 2 4 3 ( 7 ) 0 1 0 ) 1 7 2 . 9 ( 7 ) 2 6 2 T a b l e A 5 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N J 3 l [ B F 4 1 2 ‘ 0 C ( C H 3 ) 2 ‘ H 2 0 ( 7 a ) . I d e n t i fi c a t i o n c o d e E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z p c a l c [ h a ( D T o l F ) z ( b p y ) 1 ( C H 1 C N > 1 1 1 1 3 E 1 1 1 ° 0 C ( C H 3 ) 2 - H 2 0 C 4 9 H 5 3 1 3 2 F 8 N 1 0 1 1 1 1 2 1 1 7 9 . 4 4 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A m o n o c l i n i c P 2 1 / n a = 1 3 . 5 8 5 6 ( 2 ) A b = 1 8 . 0 4 2 0 ( 2 ) A c = 2 1 . 4 7 9 1 ( 3 ) A 0 1 = 9 0 0 ( 3 = 1 0 1 . 0 4 4 0 ( 1 0 ) o y = 9 0 0 5 1 6 7 . 2 7 ( 1 2 ) A 3 4 1 . 5 1 6 g / c m 3 2 6 3 T a b l e A 5 c o n t i n u e d . 1 1 . F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 0 . 7 1 6 6 1 1 1 ' 3 2 3 9 2 0 . 3 1 x 0 . 2 6 x 0 . 2 1 1 1 1 1 1 1 3 1 . 4 9 t o 2 7 . 6 6 0 - 1 6 < = h < = 1 7 , - 1 5 < = k < = 2 3 , - 2 6 < = l < = 2 6 2 7 1 6 3 1 0 6 7 9 [ R ( i n t ) = 0 . 0 5 9 5 ] F u l l - m a t r i x l e a s t - s q u a r e s o n F 2 1 0 6 7 4 / 4 2 / 6 5 4 1 . 0 1 4 R 1 = 0 . 0 5 3 9 , w R 2 = 0 . 1 0 1 2 R 1 = 0 . 1 0 6 5 , w R 2 = 0 . 1 1 8 6 0 . 8 5 5 a n d 0 . 4 9 7 e ' / A ' 3 2 6 4 T a b l e A 5 c o n t i n u e d . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . B 1 0 . 7 4 4 5 ( 5 ) 0 . 3 4 5 6 ( 3 ) - 0 . 0 0 2 3 ( 3 ) 0 . 0 4 7 ( 2 ) 1 B 2 0 . 9 9 9 1 ( 8 ) 0 . 9 6 3 2 ( 5 ) - 0 . 2 3 3 4 ( 4 ) 0 . 0 8 0 ( 3 ) 1 C 1 1 . 0 2 7 7 ( 4 ) 0 . 7 3 9 4 ( 3 ) - 0 . 1 4 8 5 ( 3 ) 0 . 0 5 6 ( 2 ) 1 C 1 0 0 . 8 0 7 0 ( 5 ) 0 . 4 6 8 8 ( 3 ) 0 . 1 8 1 5 ( 3 ) 0 . 0 6 2 ( 2 ) 1 C 1 1 0 . 4 9 4 4 ( 4 ) 0 . 5 8 0 8 ( 3 ) - 0 . 0 4 8 5 ( 3 ) 0 . 0 4 5 2 ( 1 4 ) 1 C 1 2 0 . 6 9 0 2 ( 4 ) 0 . 6 7 3 1 ( 3 ) 0 . 1 8 8 2 ( 2 ) 0 . 0 3 9 9 ( 1 3 ) 1 C 1 3 0 . 9 3 7 5 ( 4 ) 0 . 5 1 6 8 ( 3 ) - 0 . 1 0 5 0 ( 2 ) 0 . 0 4 0 0 ( 1 3 ) 1 C 1 4 0 . 7 6 2 7 ( 4 ) 0 . 7 9 3 6 ( 3 ) 0 . 1 8 6 1 ( 2 ) 0 . 0 4 1 6 ( 1 3 ) 1 C 1 5 0 . 6 0 5 0 ( 4 ) 0 . 9 0 9 8 ( 3 ) - 0 . 0 7 2 6 ( 2 ) 0 . 0 4 1 3 ( 1 3 ) 1 C 1 6 0 . 4 8 0 9 ( 4 ) 0 . 8 5 8 4 ( 3 ) - 0 . 0 2 0 6 ( 2 ) 0 . 0 4 1 4 ( 1 3 ) 1 C 1 7 0 . 7 8 3 9 ( 4 ) 0 . 7 9 4 8 ( 3 ) 0 . 2 5 1 2 ( 3 ) 0 . 0 4 7 0 ( 1 5 ) 1 C 1 8 0 . 8 0 2 0 ( 4 ) 0 . 5 2 8 4 ( 3 ) 0 . 1 3 5 2 ( 2 ) 0 . 0 3 6 1 ( 1 2 ) 1 C 1 9 1 . 0 8 6 6 ( 4 ) 0 . 6 9 4 2 ( 3 ) 0 . 1 2 8 2 ( 2 ) 0 . 0 3 1 9 ( 1 2 ) 1 C 2 0 . 7 6 2 4 ( 5 ) 0 . 7 3 5 8 ( 4 ) 0 . 2 8 6 6 ( 2 ) 0 . 0 5 6 ( 2 ) 1 C 2 0 1 . 0 3 9 0 ( 4 ) 0 . 6 3 4 0 ( 3 ) 0 . 2 3 6 7 ( 2 ) 0 . 0 3 6 3 ( 1 2 ) 1 C 2 1 0 . 9 4 3 2 ( 4 ) 0 . 7 4 3 7 ( 3 ) - 0 . 1 1 6 2 ( 2 ) 0 . 0 3 5 8 ( 1 2 ) 1 C 2 2 0 . 4 4 0 0 ( 4 ) 0 . 9 6 3 5 ( 3 ) - 0 . 0 9 0 6 ( 2 ) 0 . 0 3 8 5 ( 1 3 ) 1 C 2 3 0 . 8 3 6 4 ( 4 ) 0 . 5 1 5 8 ( 3 ) - 0 . 1 0 5 8 ( 2 ) 0 . 0 3 6 4 ( 1 2 ) 1 C 2 4 0 . 5 7 8 2 ( 4 ) 0 . 8 5 7 5 ( 2 ) - 0 . 0 3 1 8 ( 2 ) 0 . 0 3 0 6 ( 1 2 ) 1 C 2 5 0 . 9 8 6 9 ( 4 ) 0 . 6 9 2 1 ( 2 ) 0 . 1 3 4 4 ( 2 ) 0 . 0 2 8 0 ( 1 1 ) 1 C 2 6 1 . 1 3 9 5 ( 4 ) 0 . 6 3 6 4 ( 3 ) 0 . 2 3 1 1 ( 2 ) 0 . 0 3 5 5 ( 1 2 ) 1 C 2 7 0 . 6 1 6 7 ( 4 ) 0 . 7 0 4 2 ( 3 ) - 0 . 1 6 3 4 ( 2 ) 0 . 0 3 6 5 ( 1 2 ) 1 C 2 8 0 . 6 1 6 8 ( 4 ) 0 . 5 2 2 2 ( 3 ) - 0 . 0 9 7 5 ( 2 ) 0 . 0 3 7 5 ( 1 3 ) 1 C 2 9 0 . 6 8 9 9 ( 4 ) 0 . 5 6 3 0 ( 2 ) - 0 . 0 5 9 5 ( 2 ) 0 . 0 3 0 2 ( 1 1 ) 1 C 3 0 . 3 6 4 2 ( 4 ) 1 . 0 1 9 6 ( 3 ) - 0 . 1 2 4 0 ( 3 ) 0 . 0 5 2 ( 2 ) 1 C 3 0 0 . 9 9 9 3 ( 4 ) 0 . 5 6 0 6 ( 3 ) - 0 . 0 6 1 8 ( 2 ) 0 . 0 3 3 5 ( 1 2 ) 1 C 3 1 0 . 5 7 0 8 ( 4 ) 0 . 6 2 0 1 ( 3 ) - 0 . 0 1 0 8 ( 2 ) 0 . 0 3 8 7 ( 1 3 ) 1 2 6 5 T a b l e A 5 c o n t i n u e d . C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 C 4 8 C 4 9 C 5 C 6 C 7 C 8 C 9 F 1 F 1 ' F 2 F 3 F 4 F 5 F 6 F 7 F 8 N 1 N 2 N 3 N 4 N 5 1 . 1 6 1 7 ( 4 ) 0 . 9 5 7 1 ( 4 ) 0 . 9 6 4 1 ( 4 ) 0 . 7 9 3 8 ( 6 ) 1 . 2 2 1 7 ( 4 ) 0 . 8 6 2 4 ( 4 ) 0 . 8 7 3 5 ( 4 ) 0 . 8 6 3 5 ( 4 ) 0 . 5 1 7 7 ( 4 ) 0 . 6 5 0 8 ( 4 ) 0 . 8 6 4 8 ( 4 ) 0 . 8 7 0 3 ( 4 ) 0 . 8 5 9 8 ( 5 ) 0 . 9 1 9 9 ( 4 ) 0 . 7 9 6 9 ( 4 ) 0 . 8 6 8 5 ( 3 ) 1 . 1 0 0 7 ( 8 ) 1 . 2 0 3 0 ( 8 ) 1 . 0 7 9 3 ( 1 3 ) 0 . 4 1 4 8 ( 4 ) 0 . 7 1 3 4 ( 4 ) 0 . 5 3 5 9 ( 4 ) 0 . 5 5 4 7 ( 5 ) 0 . 7 1 8 3 ( 4 ) 0 . 9 3 3 3 ( 1 5 ) 0 . 9 1 9 4 ( 1 1 ) 0 . 9 6 7 7 ( 5 ) 1 . 0 8 2 6 ( 4 ) 1 . 0 1 2 7 ( 4 ) 0 . 6 6 4 9 ( 3 ) 0 . 7 4 3 3 ( 3 ) 0 . 8 3 4 3 ( 3 ) 0 . 7 3 7 7 ( 3 ) 0 . 8 7 8 2 ( 3 ) 0 . 6 5 1 3 ( 3 ) 0 . 6 6 5 9 ( 3 ) 0 . 7 0 2 0 ( 3 ) 0 . 9 1 0 4 ( 3 ) 0 . 6 6 6 4 ( 3 ) 0 . 6 0 2 6 ( 2 ) 0 . 6 6 2 0 ( 2 ) 0 . 7 3 5 1 ( 4 ) 0 . 6 0 6 2 ( 3 ) 1 . 0 2 6 7 ( 3 ) 0 . 9 3 0 9 ( 3 ) 1 . 0 5 5 6 ( 3 ) 0 . 5 3 2 0 ( 3 ) 0 . 7 8 5 6 ( 3 ) 0 . 9 5 1 4 ( 3 ) 1 . 0 0 6 9 ( 3 ) 1 . 1 3 9 0 ( 3 ) 0 . 7 9 1 7 ( 2 ) 0 . 5 5 9 5 ( 2 ) 0 . 9 0 2 5 ( 2 ) 0 . 3 6 1 9 ( 7 ) 0 . 3 6 3 7 ( 6 ) 0 . 3 1 2 9 ( 1 2 ) 0 . 9 1 1 7 ( 3 ) 0 . 6 7 6 0 ( 3 ) 0 . 9 6 1 0 ( 3 ) 0 . 6 7 5 2 ( 3 ) 0 . 7 3 2 4 ( 3 ) 1 . 0 1 2 9 ( 1 0 ) 1 . 0 0 8 4 ( 8 ) 0 . 9 1 9 4 ( 3 ) 0 . 9 9 7 2 ( 3 ) 0 . 9 1 3 9 ( 2 ) 0 . 2 9 9 7 ( 2 ) 0 . 4 0 0 4 ( 2 ) 0 . 3 0 6 9 ( 2 ) 0 . 3 7 6 6 ( 2 ) 0 . 7 4 7 8 ( 2 ) 0 . 8 0 4 9 ( 2 ) 0 . 7 2 6 4 ( 2 ) 0 . 7 2 9 9 ( 2 ) 0 . 7 2 1 4 ( 2 ) 2 6 6 0 . 1 7 6 2 ( 2 ) 0 . 0 2 0 3 ( 2 ) 0 . 1 8 9 6 ( 2 ) 0 . 3 5 8 8 ( 2 ) 0 . 2 8 2 1 ( 2 ) 0 . 0 5 1 5 ( 3 ) 0 . 0 4 6 7 ( 2 ) 0 . 0 0 8 3 ( 3 ) 0 . 0 9 2 6 ( 3 ) 0 . 0 5 6 7 ( 2 ) 0 . 0 6 2 5 ( 2 ) 0 . 0 5 7 1 ( 3 ) 0 . 0 1 9 3 ( 3 ) 0 . 0 7 0 4 ( 2 ) 0 . 0 6 2 6 ( 2 ) 0 . 0 1 3 0 ( 2 ) 0 . 2 9 3 1 ( 5 ) 0 . 2 8 0 8 ( 6 ) 0 . 3 3 9 0 ( 7 ) 0 . 0 4 8 8 ( 2 ) 0 . 2 5 4 5 ( 3 ) 0 . 1 0 2 4 ( 2 ) 0 . 2 2 1 9 ( 3 ) 0 . 1 5 3 7 ( 2 ) 0 . 2 2 3 0 ( 1 2 ) 0 . 2 3 7 0 ( 1 1 ) 0 . 2 8 7 0 ( 2 ) 0 . 2 3 9 9 ( 3 ) 0 . 1 8 4 8 ( 2 ) 0 . 0 0 3 0 ( 2 ) 0 . 0 4 2 1 ( 2 ) 0 . 0 1 3 5 ( 2 ) 0 . 0 6 0 9 ( 2 ) 0 . 0 9 0 3 ( 2 ) 0 . 0 0 2 4 ( 2 ) 0 . 1 1 8 3 ( 2 ) 0 . 0 8 5 7 ( 2 ) 0 . 0 8 5 0 ( 2 ) 0 . 0 3 3 2 ( 1 2 ) 0 . 0 2 9 3 ( 1 1 ) 0 . 0 3 0 0 ( 1 1 ) 0 . 0 9 0 ( 3 ) 0 . 0 5 8 ( 2 ) 0 . 0 4 5 2 ( 1 4 ) 0 . 0 3 7 1 ( 1 2 ) 0 . 0 4 5 1 ( 1 4 ) 0 . 0 4 8 2 ( 1 5 ) 0 . 0 3 2 8 ( 1 2 ) 0 . 0 3 5 8 ( 1 2 ) 0 . 0 4 0 2 ( 1 3 ) 0 . 0 6 7 ( 2 ) 0 . 0 2 7 5 ( 1 1 ) 0 . 0 2 8 0 ( 1 1 ) 0 . 0 2 9 3 ( 1 1 ) 0 . 1 2 2 ( 4 ) 0 . 1 8 7 ( 6 ) 0 . 3 6 8 ( 1 6 ) 0 . 0 4 4 6 ( 1 4 ) 0 . 0 5 1 ( 2 ) 0 . 0 4 4 3 ( 1 4 ) 0 . 0 6 2 ( 2 ) 0 . 0 3 1 0 ( 1 1 ) 0 . 2 0 7 ( 1 5 ) 0 . 0 9 4 ( 6 ) 0 . 1 4 8 ( 2 ) 0 . 1 4 7 ( 2 ) 0 . 1 0 8 ( 2 ) 0 . 0 7 7 5 ( 1 1 ) 0 . 0 8 7 9 ( 1 3 ) 0 . 0 6 5 2 ( 1 0 ) 0 . 1 0 7 ( 2 ) 0 . 0 3 0 3 ( 1 0 ) 0 . 0 3 0 3 ( 9 ) 0 . 0 3 0 0 ( 9 ) 0 . 0 3 1 0 ( 9 ) 0 . 0 2 6 9 ( 9 ) M M C O H fl H fi fl fl fl H T a b l e A 5 c o n t i n u e d . N 6 N 7 N 8 N 9 0 1 0 2 R h l R h 2 0 . 7 9 9 8 ( 3 ) 0 . 8 5 8 5 ( 3 ) 0 . 8 6 3 0 ( 3 ) 0 . 6 6 7 1 ( 3 ) 1 . 0 3 8 1 ( 5 ) 1 . 0 4 3 5 ( 2 7 ) 0 . 7 8 6 2 3 ( 3 ) 0 . 7 6 3 8 2 ( 3 ) 0 . 5 7 6 9 ( 2 ) 0 . 6 0 2 0 ( 2 ) 0 . 8 2 4 2 ( 2 ) 0 . 6 1 1 5 ( 2 ) 0 . 4 0 0 3 ( 4 ) 0 . 2 0 1 5 ( 2 0 ) 0 . 6 6 5 4 7 ( 2 ) 0 . 7 7 1 6 5 ( 2 ) 0 . 1 0 1 3 ( 2 ) 0 . 0 1 9 9 ( 2 ) 0 . 0 2 1 1 ( 2 ) - 0 . 0 1 5 8 ( 2 ) 0 . 2 6 2 8 ( 3 ) 0 . 3 7 9 9 ( 1 7 ) 0 . 0 3 6 7 0 ( 2 ) 0 . 0 4 5 1 2 ( 2 ) 0 . 0 3 0 9 ( 9 ) 0 . 0 2 5 3 ( 9 ) 0 . 0 2 8 8 ( 9 ) 0 . 0 2 8 6 ( 9 ) 0 . 1 2 7 ( 2 ) 0 . 7 8 9 ( 2 3 ) 0 . 0 2 4 9 6 ( 1 1 ) 0 . 0 2 6 1 1 ( 1 1 ) 2 6 7 U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . T a b l e A 5 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ ° ] . R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 N 1 N 2 N 2 N 3 N 4 N 4 N 5 N 5 N 6 N 7 N 7 N 8 N 8 N 9 N 9 B 1 B 1 B 1 B 1 B 2 B 2 B Z B 2 B 2 C 1 N 9 N 7 N 4 N 5 N 6 R h 2 N 8 N 2 N 3 N 1 C 2 1 C 4 0 C 2 4 C 2 7 C 4 0 C 9 C 4 4 C 2 5 C 1 8 C 3 3 C 4 5 C 4 4 C 4 6 C 3 1 C 2 9 F 5 F 8 F 6 F 7 F 1 F 3 F 1 ' F 4 F 2 C 2 1 2 . 0 3 4 ( 4 ) 2 . 0 5 3 ( 4 ) 2 . 0 5 7 ( 4 ) 2 . 0 6 6 ( 4 ) 2 . 1 0 1 ( 4 ) 2 . 5 7 8 0 ( 5 ) 2 . 0 0 1 ( 4 ) 2 . 0 2 0 ( 4 ) 2 . 0 2 6 ( 4 ) 2 . 0 3 0 ( 4 ) 1 . 1 3 4 ( 6 ) 1 . 3 1 7 ( 5 ) 1 . 4 3 0 ( 6 ) 1 . 1 3 9 ( 6 ) 1 . 3 1 1 ( 6 ) 1 . 4 3 5 ( 5 ) 1 . 3 2 0 ( 5 ) 1 . 4 3 6 ( 6 ) 1 . 1 3 6 ( 6 ) 1 . 3 4 0 ( 6 ) 1 . 3 5 4 ( 5 ) 1 . 3 2 3 ( 5 ) 1 . 4 2 7 ( 5 ) 1 . 3 4 2 ( 6 ) 1 . 3 6 3 ( 5 ) 1 . 3 5 9 ( 7 ) 1 . 3 6 4 ( 7 ) 1 . 3 7 6 ( 7 ) 1 . 3 8 9 ( 7 ) 1 3 1 ( 2 ) 1 . 3 2 1 ( 9 ) 1 3 5 ( 2 ) 1 . 3 5 7 ( 8 ) 1 . 3 9 5 ( 9 ) 1 . 4 5 2 ( 7 ) 2 6 8 T a b l e A 5 c o n t i n u e d . C 2 C 2 C 2 C 3 C 4 C 4 C 5 C 5 C 6 C 7 C 7 C 8 C 9 C 9 C 1 0 C 1 1 C 1 3 C 1 3 C 1 4 C 1 5 C 1 6 C 1 9 C 1 9 C 2 0 C 2 0 C 2 3 C 2 5 C 2 6 C 2 6 C 2 8 C 2 9 C 3 0 C 3 7 C 3 7 C 3 8 C 3 8 C 3 9 C 3 9 C 1 7 C 6 C 3 5 C 2 2 C 1 1 C 2 8 C 1 6 C 2 2 C 1 2 C 2 2 C 1 5 C 2 7 C 1 4 C 1 2 C 1 8 C 3 1 C 2 3 C 3 0 C 1 7 C 2 4 C 2 4 C 2 5 C 3 2 C 3 4 C 2 6 C 4 5 C 3 4 C 3 2 C 3 6 C 2 9 C 4 5 C 3 3 C 4 1 C 3 9 C 4 2 C 4 6 C 4 2 C 4 3 1 . 3 7 2 ( 8 ) 1 . 3 8 2 ( 8 ) 1 . 5 2 7 ( 7 ) 1 . 5 2 1 ( 7 ) 1 . 3 7 4 ( 7 ) 1 . 3 8 2 ( 7 ) 1 . 3 7 4 ( 7 ) 1 . 3 8 5 ( 7 ) 1 . 3 9 9 ( 7 ) 1 . 3 7 5 ( 7 ) 1 . 3 8 5 ( 7 ) 1 . 4 6 8 ( 7 ) 1 . 3 8 2 ( 7 ) 1 . 3 9 6 ( 6 ) 1 . 4 5 7 ( 7 ) 1 . 3 8 3 ( 7 ) 1 . 3 7 0 ( 7 ) 1 . 3 7 5 ( 7 ) 1 . 3 7 2 ( 7 ) 1 . 3 8 3 ( 6 ) 1 . 3 8 9 ( 7 ) 1 . 3 8 7 ( 6 ) 1 . 3 9 8 ( 6 ) 1 . 3 8 6 ( 6 ) 1 . 3 9 3 ( 7 ) 1 . 3 9 9 ( 6 ) 1 . 3 9 2 ( 6 ) 1 . 3 8 2 ( 6 ) 1 . 5 0 9 ( 7 ) 1 . 3 7 1 ( 7 ) 1 . 4 7 0 ( 7 ) 1 . 3 7 7 ( 6 ) 1 . 3 8 0 ( 6 ) 1 . 3 8 9 ( 7 ) 1 . 3 8 7 ( 6 ) 1 . 3 9 6 ( 6 ) 1 . 3 8 3 ( 7 ) 1 . 5 2 2 ( 7 ) 2 6 9 T a b l e A 5 c o n t i n u e d . C 4 1 C 4 7 C 4 7 C 4 7 N 9 N 9 N 7 N 9 N 7 N 4 N 9 N 7 N 4 N 5 N 9 N 7 N 4 N 5 N 6 N 8 N 8 N 2 N 8 N 2 N 3 N 8 N 2 N 3 N 1 C 2 1 C 4 0 C 4 0 C 2 4 C 2 7 C 4 0 C 4 0 C 9 C 4 4 C 4 6 0 1 C 4 9 C 4 8 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 N 1 N 2 N 2 N 2 N 3 N 4 N 4 N 4 N 5 1 . 3 8 8 ( 6 ) 1 . 1 9 0 ( 9 ) 1 4 0 ( 2 ) 1 . 4 6 4 ( 1 3 ) N 7 7 9 . 9 ( 2 ) N 4 9 5 . 3 ( 2 ) N 4 1 7 4 . 1 9 ( 1 5 ) N 5 1 7 6 . 5 7 ( 1 4 ) N 5 9 7 . 6 3 ( 1 4 ) N 5 8 7 . 0 1 ( 1 5 ) N 6 8 7 . 8 0 ( 1 5 ) N 6 8 8 . 6 2 ( 1 4 ) N 6 9 4 . 5 0 ( 1 4 ) N 6 9 4 . 5 7 ( 1 4 ) 1 1 1 1 2 9 0 0 3 ( 1 0 ) 1 1 1 1 2 9 1 0 3 ( 9 ) 1 1 1 1 2 8 5 . 6 6 ( 1 0 ) 1 1 1 1 2 8 7 . 6 1 ( 1 0 ) 1 1 1 1 2 1 7 7 . 8 3 ( 1 0 ) N 2 9 0 . 1 ( 2 ) N 3 1 7 4 . 2 8 ( 1 5 ) N 3 9 1 . 7 ( 2 ) N 1 8 8 . 1 ( 2 ) N 1 1 7 4 . 8 6 ( 1 5 ) N 1 8 9 . 6 ( 2 ) 1 1 1 1 1 8 3 . 7 9 ( 1 0 ) 1 1 1 1 1 8 4 . 9 4 ( 1 1 ) 1 1 1 1 1 1 0 1 . 7 8 ( 1 0 ) 1 1 1 1 1 9 9 . 6 4 ( 1 0 ) 1 1 1 1 2 1 7 1 . 6 ( 4 ) C 2 4 1 1 8 . 0 ( 4 ) 1 1 1 1 2 1 2 0 . 2 ( 3 ) 1 1 1 1 2 1 2 1 . 2 ( 3 ) 1 1 1 1 2 1 7 2 . 9 ( 4 ) C 9 1 1 5 . 0 ( 4 ) 1 1 1 1 1 1 1 9 . 2 ( 3 ) 1 1 1 1 1 1 2 3 . 1 ( 3 ) C 2 5 1 1 6 . 0 ( 4 ) 2 7 0 T a b l e A 5 c o n t i n u e d . C 4 4 C 2 5 C 1 8 C 3 3 C 3 3 C 4 5 C 4 4 C 4 4 C 4 6 C 3 1 C 3 1 C 2 9 F 5 F 5 F 8 F 5 F 8 F 6 F 1 F 1 F 3 F 1 F 3 F 1 ' F 1 F 3 F 1 ' F 4 C 1 7 C 1 7 C 6 C 1 1 C 1 6 C 2 C 2 2 C 1 4 C 1 4 C 1 2 N 5 N 5 N 6 N 7 N 7 N 7 N 8 N 8 N 8 N 9 N 9 N 9 B 1 B 1 B ] B 1 B 1 B 1 B 2 B 2 B 2 B Z B 2 B 2 B 2 B 2 B 2 B 2 C 2 C 2 C 2 C 4 C 5 C 6 C 7 C 9 C 9 C 9 R h l R h l R h l C 4 5 R h l R h l C 4 6 R h 2 R h 2 C 2 9 R h l R h l F 8 F 6 F 6 F 7 F 7 F 7 F 3 F 1 ' F 1 ' F 4 F 4 F 4 F 2 F 2 F 2 F 2 C 6 C 3 5 C 3 5 C 2 8 C 2 2 C 1 2 C 1 5 C 1 2 N 4 N 4 1 1 7 . 3 ( 3 ) 1 2 6 . 7 ( 3 ) 1 7 6 . 5 ( 4 ) 1 1 9 . 3 ( 4 ) 1 2 6 . 2 ( 3 ) 1 1 4 . 4 ( 3 ) 1 2 0 . 0 ( 4 ) 1 2 4 . 8 ( 3 ) 1 1 5 . 2 ( 3 ) 1 1 8 . 8 ( 4 ) 1 2 5 . 8 ( 3 ) 1 1 5 . 3 ( 3 ) 1 0 9 . 0 ( 6 ) 1 0 9 . 3 ( 5 ) 1 0 9 . 7 ( 5 ) 1 1 0 . 9 ( 5 ) 1 0 9 . 5 ( 5 ) 1 0 8 . 5 ( 5 ) 1 0 9 . 1 ( 1 1 ) 1 4 . 3 ( 1 7 ) 1 1 4 . 2 ( 1 0 ) 1 0 8 . 3 ( 1 2 ) 1 1 3 . 1 ( 8 ) 1 1 5 . 5 ( 1 2 ) 1 1 4 . 6 ( 1 3 ) 1 0 8 . 0 ( 7 ) 1 0 0 . 4 ( 1 1 ) 1 0 3 . 8 ( 6 ) 1 1 7 . 6 ( 5 ) 1 2 1 . 4 ( 7 ) 1 2 0 . 9 ( 6 ) 1 1 9 . 4 ( 5 ) 1 2 2 . 4 ( 5 ) 1 2 2 . 0 ( 5 ) 1 2 1 . 3 ( 5 ) 1 1 8 . 8 ( 5 ) 1 2 0 . 4 ( 4 ) 1 2 0 . 8 ( 5 ) 2 7 1 T a b l e A 5 c o n t i n u e d . C 4 C 9 C 2 3 C 1 7 C 2 4 C 5 C 2 N 6 C 2 5 C 3 4 N 1 C 7 C 7 C 5 C 1 3 C 1 5 C 1 5 C 1 6 C 1 9 C 1 9 C 3 4 C 3 2 C 3 2 C 2 0 N 3 C 2 9 N 9 N 9 C 2 8 C 1 3 N 9 C 2 6 N 7 C 2 0 C 4 1 C 4 2 C 4 2 C 4 2 C l 1 C 1 2 C 1 3 C 1 4 C 1 5 C 1 6 C 1 7 C 1 8 C 1 9 C 2 0 C 2 1 C 2 2 C 2 2 C 2 2 C 2 3 C 2 4 C 2 4 C 2 4 C 2 5 C 2 5 C 2 5 C 2 6 C 2 6 C 2 6 C 2 7 C 2 8 C 2 9 C 2 9 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 7 C 3 8 C 3 9 C 3 9 C 3 1 C 6 C 3 0 C 9 C 7 C 2 4 C 1 4 C 1 0 C 3 2 C 2 6 C 1 C 5 C 3 C 3 C 4 5 C 1 6 N 2 N 2 C 3 4 N 5 N 5 C 2 0 C 3 6 C 3 6 C 8 C 4 C 2 8 C 4 5 C 4 5 C 3 3 C 1 1 C 1 9 C 3 0 C 2 5 C 3 9 C 4 6 C 3 7 C 4 3 1 1 9 . 1 ( 5 ) 1 1 8 . 8 ( 5 ) 1 1 9 . 8 ( 5 ) 1 2 0 . 8 ( 5 ) 1 2 0 . 8 ( 5 ) 1 1 9 . 8 ( 5 ) 1 2 1 . 8 ( 6 ) 1 7 6 . 9 ( 5 ) 1 2 0 . 5 ( 4 ) 1 2 1 . 3 ( 5 ) 1 7 8 . 8 ( 5 ) 1 1 7 . 3 ( 5 ) 1 2 1 . 0 ( 5 ) 1 2 1 . 7 ( 5 ) 1 1 9 . 7 ( 5 ) 1 1 8 . 4 ( 4 ) 1 1 9 . 2 ( 4 ) 1 2 2 . 4 ( 4 ) 1 1 8 . 2 ( 4 ) 1 2 0 . 1 ( 4 ) 1 2 1 . 7 ( 4 ) 1 1 7 . 7 ( 5 ) 1 2 0 . 5 ( 5 ) 1 2 1 . 8 ( 5 ) 1 7 9 . 1 ( 6 ) 1 1 9 . 5 ( 5 ) 1 2 1 . 4 ( 5 ) 1 1 4 . 6 ( 4 ) 1 2 4 . 1 ( 4 ) 1 1 8 . 5 ( 5 ) 1 2 1 . 9 ( 5 ) 1 2 1 . 5 ( 5 ) 1 2 2 . 6 ( 4 ) 1 2 0 . 9 ( 5 ) 1 2 1 . 6 ( 5 ) 1 2 0 . 4 ( 5 ) 1 1 8 . 4 ( 5 ) 1 2 1 . 1 ( 5 ) 2 7 2 T a b l e A 5 c o n t i n u e d . C 3 7 C 3 9 C 4 3 1 2 0 . 5 ( 5 ) N 4 C 4 0 N 2 1 2 4 . 1 ( 4 ) C 3 7 C 4 1 C 4 6 1 1 9 . 9 ( 5 ) C 3 9 C 4 2 C 3 8 1 2 0 . 7 ( 5 ) N 5 C 4 4 N 8 1 2 3 . 2 ( 4 ) N 7 C 4 5 C 2 3 1 2 0 . 1 ( 5 ) N 7 C 4 5 C 2 9 1 1 5 . 7 ( 4 ) C 2 3 C 4 5 C 2 9 1 2 4 . 2 ( 4 ) C 4 1 C 4 6 C 3 8 1 1 9 . 0 ( 4 ) C 4 1 C 4 6 N 8 1 2 1 . 7 ( 4 ) C 3 8 C 4 6 N 8 1 1 9 . 3 ( 4 ) 0 1 C 4 7 C 4 9 1 2 2 . 1 ( 1 2 ) 0 1 C 4 7 C 4 8 1 1 9 . 5 ( 1 2 ) C 4 9 C 4 7 C 4 8 1 1 8 . 4 ( 1 1 ) S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 2 7 3 T a b l e A 5 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 1 1 1 1 1 0 . 0 2 9 7 ( 2 ) 0 . 0 2 1 0 ( 2 ) 0 . 0 2 5 0 ( 2 ) 0 . 0 0 1 2 ( 2 ) 0 . 0 0 7 2 ( 2 ) 0 . 0 0 3 1 ( 2 ) 1 1 1 1 2 0 . 0 3 0 7 ( 2 ) 0 . 0 2 2 7 ( 2 ) 0 . 0 2 4 9 ( 2 ) 0 . 0 0 0 8 ( 2 ) 0 . 0 0 5 1 ( 2 ) 0 . 0 0 2 9 ( 2 ) N 1 0 . 0 3 7 ( 3 ) 0 . 0 2 5 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 0 0 3 ( 2 ) N 2 0 . 0 3 4 ( 3 ) 0 . 0 2 7 ( 2 ) 0 . 0 3 1 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 0 0 8 ( 2 ) N 3 0 . 0 3 4 ( 3 ) 0 . 0 2 5 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 3 ( 2 ) N 4 0 . 0 4 3 ( 3 ) 0 . 0 2 5 ( 2 ) 0 . 0 2 6 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 1 0 ( 2 ) 0 . 0 0 8 ( 2 ) N 5 0 . 0 3 1 ( 2 ) 0 . 0 2 6 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 4 ( 2 ) N 6 0 . 0 3 5 ( 3 ) 0 . 0 2 9 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 2 ( 2 ) N 7 0 . 0 3 2 ( 2 ) 0 . 0 2 0 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 4 ( 2 ) N 8 0 . 0 3 4 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 2 8 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 0 ( 2 ) N 9 0 . 0 3 1 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 9 ( 2 ) 0 . 0 0 2 ( 2 ) 1 3 1 0 . 0 5 8 ( 5 ) 0 . 0 3 7 ( 4 ) 0 . 0 5 6 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 3 7 ( 4 ) 0 . 0 0 0 ( 3 ) 1 3 2 0 . 1 0 1 ( 9 ) 0 . 0 7 2 ( 7 ) 0 . 0 6 8 ( 6 ) 0 . 0 0 8 ( 5 ) 0 . 0 1 7 ( 6 ) 0 . 0 1 2 ( 6 ) C 1 0 . 0 5 0 ( 4 ) 0 . 0 5 9 ( 4 ) 0 . 0 6 7 ( 4 ) 0 . 0 0 2 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 0 4 ( 3 ) C 2 0 . 0 5 4 ( 4 ) 0 . 0 8 9 ( 5 ) 0 . 0 2 6 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 1 4 ( 3 ) 0 . 0 3 4 ( 4 ) C 3 0 . 0 4 7 ( 4 ) 0 . 0 4 9 ( 4 ) 0 . 0 6 1 ( 4 ) 0 . 0 1 1 ( 3 ) 0 . 0 1 1 ( 3 ) 0 . 0 2 3 ( 3 ) C 4 0 . 0 4 3 ( 4 ) 0 . 0 4 4 ( 3 ) 0 . 0 5 4 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 7 ( 3 ) C 5 0 . 0 3 8 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 5 3 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 1 2 ( 3 ) 0 . 0 0 5 ( 3 ) C 6 0 . 0 5 4 ( 4 ) 0 . 0 6 6 ( 4 ) 0 . 0 4 0 ( 3 ) 0 . 0 2 3 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 3 ( 3 ) C 7 0 . 0 5 1 ( 4 ) 0 . 0 4 6 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 1 2 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 1 0 ( 3 ) C 8 0 . 0 6 2 ( 4 ) 0 . 0 5 9 ( 4 ) 0 . 0 5 1 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 2 1 ( 3 ) 0 . 0 1 0 ( 3 ) C 9 0 . 0 3 2 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 0 6 ( 2 ) 0 . 0 1 5 ( 2 ) 0 . 0 1 5 ( 2 ) C 1 0 0 . 0 9 6 ( 5 ) 0 . 0 4 2 ( 4 ) 0 . 0 4 9 ( 4 ) 0 . 0 1 9 ( 3 ) 0 . 0 1 7 ( 4 ) 0 . 0 0 1 ( 3 ) C 1 1 0 . 0 2 9 ( 3 ) 0 . 0 5 2 ( 4 ) 0 . 0 5 7 ( 4 ) 0 . 0 0 2 ( 3 ) 0 . 0 1 3 ( 3 ) 0 . 0 0 2 ( 3 ) C 1 2 0 . 0 4 1 ( 3 ) 0 . 0 4 3 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 1 8 ( 3 ) 0 . 0 0 9 ( 3 ) C 1 3 0 . 0 4 8 ( 4 ) 0 . 0 3 6 ( 3 ) 0 . 0 4 2 ( 3 ) 0 . 0 0 9 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 0 4 ( 3 ) C 1 4 0 . 0 5 0 ( 4 ) 0 . 0 3 8 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 0 8 ( 3 ) 0 . 0 1 5 ( 3 ) 0 . 0 0 9 ( 3 ) C 1 5 0 . 0 3 7 ( 3 ) 0 . 0 4 7 ( 3 ) 0 . 0 4 3 ( 3 ) 0 . 0 0 8 ( 3 ) 0 . 0 1 4 ( 3 ) 0 . 0 1 0 ( 3 ) C 1 6 0 . 0 3 9 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 5 0 ( 3 ) 0 . 0 1 2 ( 3 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 2 ( 2 ) C 1 7 0 . 0 4 5 ( 4 ) 0 . 0 5 8 ( 4 ) 0 . 0 3 8 ( 3 ) 0 . 0 1 6 ( 3 ) 0 . 0 0 9 ( 3 ) 0 . 0 1 3 ( 3 ) 2 7 4 T a b l e A 5 c o n t i n u e d . C 1 8 C 1 9 C 2 0 C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 C 4 8 C 4 9 F 1 F 1 ' F 2 F 3 F 4 F 5 F 6 F 7 F 8 0 . 0 4 3 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 4 5 ( 4 ) 0 . 0 4 4 ( 3 ) 0 . 0 4 4 ( 4 ) 0 . 0 4 4 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 4 8 ( 4 ) 0 . 0 4 2 ( 3 ) 0 . 0 4 2 ( 4 ) 0 . 0 3 4 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 8 8 ( 6 ) 0 . 0 5 4 ( 4 ) 0 . 0 4 4 ( 4 ) 0 . 0 4 0 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 4 3 ( 3 ) 0 . 0 3 9 ( 3 ) 0 . 0 3 3 ( 3 ) 0 . 0 5 9 ( 4 ) 0 . 0 3 3 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 1 0 3 ( 9 ) 0 . 1 0 3 ( 1 0 ) 0 . 3 1 9 ( 2 3 ) 0 . 2 3 4 ( 2 5 ) 0 . 0 6 5 ( 9 ) 0 . 2 1 3 ( 6 ) 0 . 0 8 1 ( 4 ) 0 . 1 7 5 ( 5 ) 0 . 0 8 3 ( 3 ) 0 . 0 5 8 ( 3 ) 0 . 0 7 3 ( 3 ) 0 . 1 3 6 ( 4 ) 0 . 0 3 2 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 2 1 ( 3 ) 0 . 0 2 2 ( 2 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 2 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 2 1 ( 3 ) 0 . 0 3 0 ( 3 ) 0 . 1 5 8 ( 8 ) 0 . 0 7 4 ( 4 ) 0 . 0 3 3 ( 3 ) 0 . 0 3 0 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 1 7 ( 2 ) 0 . 0 2 0 ( 3 ) 0 . 1 7 1 ( 1 0 ) 0 . 1 7 7 ( 1 2 ) 0 . 5 8 7 ( 3 5 ) 0 . 1 1 6 ( 1 7 ) 0 . 0 5 6 ( 1 0 ) 0 . 1 4 1 ( 5 ) 0 . 1 3 9 ( 5 ) 0 . 0 8 2 ( 3 ) 0 . 0 7 6 ( 3 ) 0 . 0 8 3 ( 3 ) 0 . 0 5 3 ( 2 ) 0 . 1 0 1 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 9 ( 3 ) 0 . 0 4 2 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 3 9 ( 3 ) 0 . 0 4 8 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 2 6 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 3 9 ( 3 ) 0 . 0 5 8 ( 4 ) 0 . 0 3 8 ( 3 ) 0 . 0 7 4 ( 4 ) 0 . 0 3 0 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 5 7 ( 4 ) 0 . 1 2 0 ( 6 ) 0 . 0 2 5 ( 2 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 8 9 ( 7 ) 0 . 2 7 1 ( 1 6 ) 0 . 2 6 0 ( 1 8 ) 0 . 3 2 2 ( 3 3 ) 0 . 1 6 5 ( 1 3 ) 0 . 0 7 4 ( 3 ) 0 . 2 2 3 ( 6 ) 0 . 0 5 8 ( 2 ) 0 . 0 7 5 ( 2 ) 0 . 1 3 0 ( 3 ) 0 . 0 7 2 ( 2 ) 0 . 1 0 3 ( 3 ) 2 7 5 0 . 0 0 3 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 9 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 7 ( 3 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 1 5 ( 3 ) 0 . 0 0 9 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 3 0 ( 7 ) 0 . 0 6 4 ( 1 1 ) 0 . 3 1 0 ( 2 2 ) 0 . 1 3 8 ( 1 8 ) 0 . 0 3 1 ( 9 ) 0 . 0 1 2 ( 3 ) 0 . 0 5 7 ( 5 ) 0 . 0 2 1 ( 2 ) 0 . 0 0 9 ( 2 ) 0 . 0 6 1 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 6 3 ( 3 ) 0 . 0 0 9 ( 3 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 9 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 7 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 9 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 1 5 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 9 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 4 ( 3 ) 0 . 0 1 5 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 4 ( 3 ) 0 . 0 2 3 ( 4 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 9 ( 6 ) 0 . 0 1 1 ( 1 0 ) 0 . 2 1 5 ( 1 7 ) 0 . 1 8 6 ( 2 3 ) 0 . 0 3 7 ( 9 ) 0 . 0 1 4 ( 4 ) 0 . 0 3 4 ( 4 ) 0 . 0 0 2 ( 3 ) 0 . 0 1 7 ( 2 ) 0 . 0 3 5 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 0 7 1 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 4 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 9 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 4 6 ( 5 ) 0 . 0 2 2 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 7 7 ( 8 ) 0 . 0 1 9 ( 8 ) 0 . 2 6 5 ( 2 3 ) 0 . 1 1 2 ( 1 5 ) 0 . 0 0 3 ( 7 ) 0 . 0 3 9 ( 4 ) 0 . 0 0 5 ( 3 ) 0 . 0 2 2 ( 3 ) 0 . 0 3 2 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 1 8 ( 2 ) 0 . 0 5 3 ( 3 ) T a b l e A 5 c o n t i n u e d . 0 1 0 . 1 0 6 ( 5 ) 0 . 1 4 1 ( 6 ) 0 . 1 2 6 ( 5 ) - 0 . 0 2 8 ( 4 ) - 0 . 0 0 1 ( 4 ) 0 . 0 4 9 ( 4 ) T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : - 2 1 t z [ h 2 a * 2 U 1 1 + . . . + 2 h k a * b * U 1 2 ] 2 7 6 T a b l e A 5 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s ( x 1 0 4 ) a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . H 1 0 A 0 . 8 7 3 2 ( 5 ) 0 . 4 4 7 8 ( 3 ) 0 . 1 8 9 5 ( 3 ) 0 . 0 9 3 1 H 1 0 B 0 . 7 5 9 1 ( 5 ) 0 . 4 3 1 1 ( 3 ) 0 . 1 6 5 1 ( 3 ) 0 . 0 9 3 1 H I O C 0 . 7 9 2 1 ( 5 ) 0 . 4 8 8 2 ( 3 ) 0 . 2 2 0 2 ( 3 ) 0 . 0 9 3 1 H 1 1 A 0 . 4 2 8 2 ( 4 ) 0 . 5 8 7 3 ( 3 ) - 0 . 0 4 4 1 ( 3 ) 0 . 0 5 4 1 H 1 2 A 0 . 6 5 6 7 ( 4 ) 0 . 6 3 2 5 ( 3 ) 0 . 1 6 7 5 ( 2 ) 0 . 0 4 8 1 H 1 3 A 0 . 9 6 4 2 ( 4 ) 0 . 4 8 7 9 ( 3 ) - 0 . 1 3 3 5 ( 2 ) 0 . 0 4 8 1 H 1 4 A 0 . 7 7 8 5 ( 4 ) 0 . 8 3 4 6 ( 3 ) 0 . 1 6 3 6 ( 2 ) 0 . 0 5 0 1 H 1 5 A 0 . 6 7 0 2 ( 4 ) 0 . 9 1 0 5 ( 3 ) - 0 . 0 8 0 1 ( 2 ) 0 . 0 5 0 1 H 1 6 A 0 . 4 6 0 5 ( 4 ) 0 . 8 2 3 1 ( 3 ) 0 . 0 0 5 8 ( 2 ) 0 . 0 5 0 1 H 1 7 A 0 . 8 1 3 7 ( 4 ) 0 . 8 3 6 8 ( 3 ) 0 . 2 7 1 9 ( 3 ) 0 . 0 5 6 1 H 1 9 A 1 . 1 0 3 6 ( 4 ) 0 . 7 1 4 3 ( 3 ) 0 . 0 9 1 8 ( 2 ) 0 . 0 3 8 1 H l A 1 . 0 2 4 8 ( 4 ) 0 . 7 8 0 2 ( 3 ) - 0 . 1 7 7 6 ( 3 ) 0 . 0 8 4 1 H l B 1 . 0 2 4 9 ( 4 ) 0 . 6 9 3 6 ( 3 ) - 0 . 1 7 1 5 ( 3 ) 0 . 0 8 4 1 H l C 1 . 0 8 9 2 ( 4 ) 0 . 7 4 1 8 ( 3 ) - 0 . 1 1 7 9 ( 3 ) 0 . 0 8 4 1 H 2 0 A 1 . 0 2 1 9 ( 4 ) 0 . 6 1 3 1 ( 3 ) 0 . 2 7 2 8 ( 2 ) 0 . 0 4 4 1 H 2 3 A 0 . 7 9 4 2 ( 4 ) 0 . 4 8 6 3 ( 3 ) - 0 . 1 3 4 8 ( 2 ) 0 . 0 4 4 1 H 2 8 A 0 . 6 3 3 8 ( 4 ) 0 . 4 8 8 2 ( 3 ) - 0 . 1 2 6 2 ( 2 ) 0 . 0 4 5 1 H 3 0 A 1 . 0 6 8 0 ( 4 ) 0 . 5 6 1 8 ( 3 ) 0 . 0 6 0 7 ( 2 ) 0 . 0 4 0 1 H 3 1 A 0 . 5 5 4 9 ( 4 ) 0 . 6 5 3 4 ( 3 ) 0 . 0 1 8 8 ( 2 ) 0 . 0 4 6 1 H 3 2 A 1 . 2 2 8 1 ( 4 ) 0 . 6 6 8 1 ( 3 ) 0 . 1 7 1 1 ( 2 ) 0 . 0 4 0 1 H 3 3 A 0 . 9 9 8 6 ( 4 ) 0 . 6 3 2 6 ( 2 ) 0 . 0 0 8 7 ( 2 ) 0 . 0 3 5 1 H 3 4 A 0 . 8 9 7 8 ( 4 ) 0 . 6 6 0 7 ( 2 ) 0 . 1 9 4 9 ( 2 ) 0 . 0 3 6 1 H 3 5 A 0 . 7 7 2 3 ( 6 ) 0 . 6 8 9 6 ( 4 ) 0 . 3 7 5 1 ( 2 ) 0 . 1 3 6 1 H 3 5 8 0 . 7 6 3 4 ( 6 ) 0 . 7 7 6 2 ( 4 ) 0 . 3 7 6 3 ( 2 ) 0 . 1 3 6 1 H 3 5 C 0 . 8 6 5 5 ( 6 ) 0 . 7 3 9 0 ( 4 ) 0 . 3 7 0 3 ( 2 ) 0 . 1 3 6 1 H 3 6 A 1 . 1 9 3 2 ( 4 ) 0 . 5 8 7 7 ( 3 ) 0 . 3 1 6 6 ( 2 ) 0 . 0 8 7 1 H 3 6 B 1 . 2 6 8 6 ( 4 ) 0 . 6 4 5 0 ( 3 ) 0 . 2 9 7 2 ( 2 ) 0 . 0 8 7 1 H 3 6 C 1 . 2 5 5 8 ( 4 ) 0 . 5 6 6 8 ( 3 ) 0 . 2 6 5 0 ( 2 ) 0 . 0 8 7 1 2 7 7 d — p i - h b — d — p ‘ — p t - p H A — h H J — fi ‘ — j fl d — p t — p d — l t — p ‘ — fi I — p i — p A — p d — p d — p H H H T a b l e A 5 c o n t i n u e d . H 3 7 A 0 . 8 6 0 0 ( 4 ) 1 . 0 5 9 0 ( 3 ) 0 . 0 8 4 9 ( 3 ) 0 . 0 5 4 H 3 8 A 0 . 8 7 8 9 ( 4 ) 0 . 8 9 8 8 ( 3 ) 0 . 0 7 9 7 ( 2 ) 0 . 0 4 5 H 3 A 0 . 3 0 1 7 ( 4 ) 1 . 0 1 3 2 ( 3 ) 0 . 1 1 0 1 ( 3 ) 0 . 0 7 8 H 3 3 0 . 3 5 4 1 ( 4 ) 1 . 0 1 1 9 ( 3 ) 0 . 1 6 9 0 ( 3 ) 0 . 0 7 8 H 3 C 0 . 3 8 9 0 ( 4 ) 1 . 0 6 8 8 ( 3 ) 0 . 1 1 4 1 ( 3 ) 0 . 0 7 8 H 4 0 A 0 . 6 1 1 6 ( 4 ) 0 . 8 1 3 3 ( 3 ) 0 . 0 7 9 3 ( 2 ) 0 . 0 3 9 H 4 1 A 0 . 8 6 4 0 ( 4 ) 0 . 9 3 3 3 ( 3 ) 0 . 1 0 2 9 ( 2 ) 0 . 0 4 3 H 4 2 A 0 . 8 7 2 9 ( 4 ) 1 . 0 2 5 2 ( 3 ) 0 . 0 9 7 2 ( 3 ) 0 . 0 4 8 H 4 3 A 0 . 8 5 5 1 ( 5 ) 1 . 1 6 3 8 ( 3 ) 0 . 0 1 9 5 ( 3 ) 0 . 1 0 1 H 4 3 3 0 . 8 0 2 3 ( 5 ) 1 . 1 5 1 1 ( 3 ) 0 . 0 5 1 2 ( 3 ) 0 . 1 0 1 H 4 3 C 0 . 9 1 9 6 ( 5 ) 1 . 1 5 4 6 ( 3 ) 0 . 0 3 3 1 ( 3 ) 0 . 1 0 1 H 4 4 A 0 . 9 6 9 1 ( 4 ) 0 . 8 1 9 8 ( 2 ) 0 . 0 9 6 0 ( 2 ) 0 . 0 3 3 H 4 8 A 1 . 2 0 7 0 ( 8 ) 0 . 3 9 9 7 ( 6 ) 0 . 2 4 8 4 ( 6 ) 0 . 2 8 1 H 4 8 3 1 . 2 2 0 3 ( 8 ) 0 . 3 1 5 7 ( 6 ) 0 . 2 6 6 8 ( 6 ) 0 . 2 8 1 H 4 8 C 1 . 2 4 8 8 ( 8 ) 0 . 3 7 6 9 ( 6 ) 0 . 3 1 9 0 ( 6 ) 0 . 2 8 1 H 4 9 A 1 . 0 1 0 0 ( 1 3 ) 0 . 3 1 7 5 ( 1 2 ) 0 . 3 4 2 1 ( 7 ) 0 . 5 5 1 H 4 9 3 1 . 1 2 0 8 ( 1 3 ) 0 . 3 2 4 4 ( 1 2 ) 0 . 3 7 9 3 ( 7 ) 0 . 5 5 1 H 4 9 C 1 . 0 9 2 4 ( 1 3 ) 0 . 2 6 3 0 ( 1 2 ) 0 . 3 2 7 2 ( 7 ) 0 . 5 5 1 H 4 A 0 . 4 6 7 2 ( 4 ) 0 . 5 0 5 9 ( 3 ) 0 . 1 1 9 0 ( 3 ) 0 . 0 5 8 H 5 A 0 . 3 5 0 8 ( 4 ) 0 . 9 1 3 0 ( 3 ) 0 . 0 3 9 3 ( 2 ) 0 . 0 5 4 H 6 A 0 . 6 9 5 4 ( 4 ) 0 . 6 3 6 4 ( 3 ) 0 . 2 7 7 7 ( 3 ) 0 . 0 6 1 H 7 A 0 . 5 5 4 7 ( 4 ) 0 . 9 9 4 4 ( 3 ) 0 . 1 3 1 0 ( 2 ) 0 . 0 5 3 H 8 A 0 . 5 2 9 3 ( 5 ) 0 . 7 1 5 6 ( 3 ) 0 . 2 4 9 3 ( 3 ) 0 . 0 9 2 ' H 8 3 0 . 4 9 9 7 ( 5 ) 0 . 6 4 7 4 ( 3 ) 0 . 2 1 1 6 ( 3 ) 0 . 0 9 2 H 8 C 0 . 5 9 4 6 ( 5 ) 0 . 6 4 3 4 ( 3 ) 0 . 2 4 3 0 ( 3 ) 0 . 0 9 2 S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 2 7 8 T a b l e A 5 c o n t i n u e d . T o r s i o n a n g l e s [ ° ] . N 9 1 1 1 1 1 1 1 1 1 2 N 8 1 6 9 . 2 ( 2 ) N 7 1 1 1 1 1 1 1 1 1 2 N 8 2 1 0 . 9 ( 2 ) N 4 1 1 1 1 1 1 1 1 1 2 N 8 7 3 . 9 ( 2 ) N 5 1 1 1 1 1 1 1 1 1 2 N 8 - 1 3 . 2 8 ( 1 4 ) N 6 1 1 1 1 1 1 1 1 1 2 N 8 1 6 8 . 4 ( 2 8 ) N 9 1 1 1 1 1 1 1 1 1 2 N 2 7 8 . 6 ( 2 ) N 7 1 1 1 1 1 1 1 1 1 2 N 2 1 5 8 . 5 ( 2 ) N 4 1 1 1 1 1 1 1 1 1 2 N 2 - 1 6 . 7 ( 2 ) N 5 1 1 1 1 1 1 1 1 1 2 N 2 2 0 3 . 9 0 ( 1 5 ) N 6 1 1 1 1 1 1 1 1 1 2 N 2 7 7 . 8 ( 2 8 ) N 9 1 1 1 1 1 1 1 1 1 2 N 3 2 2 . 1 ( 2 ) N 7 1 1 1 1 1 1 1 1 1 2 N 3 6 7 . 8 ( 2 ) N 4 1 1 1 1 1 1 1 1 1 2 N 3 2 0 7 . 4 ( 2 ) N 5 1 1 1 1 1 1 1 1 1 2 N 3 1 6 5 . 3 7 ( 1 5 ) N 6 1 1 1 1 1 1 1 1 1 2 N 3 2 3 . 0 ( 2 8 ) N 9 1 1 1 1 1 1 1 1 1 2 N 1 2 0 3 . 7 ( 2 ) N 7 1 1 1 1 1 1 1 1 1 2 N 1 2 3 . 8 ( 2 ) N 4 1 1 1 1 1 1 1 1 1 2 N 1 1 6 0 . 9 ( 2 ) N 5 1 1 1 1 1 1 1 1 1 2 N 1 7 3 . 7 6 ( 1 5 ) N 6 1 1 1 1 1 1 1 1 1 2 N 1 2 0 4 . 6 ( 2 8 ) N 8 1 1 1 1 2 N 1 C 2 1 - 6 1 . 6 ( 2 8 ) N 2 1 1 1 1 2 N 1 C 2 1 8 . 0 ( 4 0 ) N 3 1 1 1 1 2 N 1 C 2 1 1 1 3 . 1 ( 2 8 ) 1 1 1 1 1 1 1 1 1 2 N 1 C 2 1 2 4 5 . 0 ( 2 8 ) N 8 1 1 1 1 2 N 2 C 4 0 - 5 9 . 9 ( 4 ) N 3 1 1 1 1 2 N 2 C 4 0 1 2 5 . 5 ( 4 ) N 1 1 1 1 1 2 N 2 C 4 0 2 2 9 . 4 ( 1 6 ) 1 1 1 1 1 1 1 1 1 2 N 2 C 4 0 2 3 . 9 ( 4 ) N 8 1 1 1 1 2 N 2 C 2 4 1 1 1 . 6 ( 4 ) N 3 1 1 1 1 2 N 2 C 2 4 - 6 3 . 0 ( 4 ) N 1 1 1 1 1 2 N 2 C 2 4 4 2 . 1 ( 1 9 ) 1 1 1 1 1 1 1 1 1 2 N 2 C 2 4 2 6 4 . 6 ( 3 ) N 8 ' 1 1 1 1 2 N 3 C 2 7 2 8 . 6 ( 4 2 ) N 2 1 1 1 1 2 N 3 C 2 7 1 3 7 . 0 ( 3 3 ) N 1 1 1 1 1 2 N 3 C 2 7 - 3 8 . 0 ( 3 3 ) 1 1 1 1 1 1 1 1 1 2 N 3 C 2 7 2 3 7 . 8 ( 3 2 ) 2 7 9 T a b l e A 5 c o n t i n u e d . N 9 1 1 1 1 1 N 4 C 4 0 2 4 4 ( 4 ) N 7 1 1 1 1 1 N 4 C 4 0 - 4 0 . 1 ( 1 6 ) N 5 1 1 1 1 1 N 4 C 4 0 1 0 3 . 1 ( 4 ) N 6 1 1 1 1 1 N 4 C 4 0 2 6 2 . 6 ( 4 ) 1 1 1 1 2 1 1 1 1 1 N 4 C 4 0 1 5 . 3 ( 4 ) N 9 1 1 1 1 1 N 4 C 9 1 2 5 . 1 ( 4 ) N 7 1 1 1 1 1 N 4 C 9 1 5 9 . 4 ( 1 3 ) N 5 1 1 1 1 1 N 4 C 9 - 5 7 . 4 ( 4 ) N 6 1 1 1 1 1 N 4 C 9 3 6 . 9 ( 4 ) 1 1 1 1 2 1 1 1 1 1 N 4 C 9 2 4 5 . 3 ( 4 ) N 9 1 1 1 1 1 N 5 C 4 4 6 2 . 6 ( 2 5 ) N 7 1 1 1 1 1 N 5 C 4 4 1 0 6 . 8 ( 3 ) N 4 1 1 1 1 1 N 5 C 4 4 - 6 9 . 7 ( 3 ) N 6 1 1 1 1 1 N 5 C 4 4 2 6 4 . 0 ( 3 ) 1 1 1 1 2 1 1 1 1 1 N 5 C 4 4 1 6 . 1 ( 3 ) N 9 1 1 1 1 1 N 5 C 2 5 2 1 9 . 0 ( 2 3 ) N 7 1 1 1 1 1 N 5 C 2 5 - 7 4 . 8 ( 4 ) N 4 1 1 1 1 1 N 5 C 2 5 1 0 8 . 7 ( 4 ) N 6 1 1 1 1 1 N 5 C 2 5 1 4 . 4 ( 4 ) 1 1 1 1 2 R h l N 5 C 2 5 2 6 5 . 5 ( 3 ) N 9 1 1 1 1 1 N 6 C 1 8 - 2 5 . 4 ( 6 0 ) N 7 1 1 1 1 1 N 6 C 1 8 2 0 5 . 3 ( 6 0 ) N 4 1 1 1 1 1 N 6 C 1 8 6 9 . 8 ( 6 0 ) N 5 1 1 1 1 1 N 6 C 1 8 1 5 7 . 1 ( 6 0 ) 1 1 1 1 2 1 1 1 1 1 N 6 C 1 8 2 4 . 6 ( 8 2 ) N 9 1 1 1 1 1 N 7 C 3 3 1 7 7 . 5 ( 4 ) N 4 1 1 1 1 1 N 7 C 3 3 1 4 2 . 9 ( 1 3 ) N 5 1 1 1 1 1 N 7 C 3 3 0 . 0 ( 4 ) N 6 1 1 1 1 1 N 7 C 3 3 - 9 4 . 5 ( 4 ) 1 1 1 1 2 1 1 1 1 1 N 7 C 3 3 8 7 . 7 ( 3 ) N 9 1 1 1 1 1 N 7 C 4 5 1 . 4 ( 3 ) N 4 1 1 1 1 1 N 7 C 4 5 - 3 3 . 3 ( 1 6 ) N 5 1 1 1 1 1 N 7 C 4 5 2 7 6 . 1 ( 3 ) N 6 1 1 1 1 1 N 7 C 4 5 8 9 . 4 ( 3 ) 1 1 1 1 2 1 1 1 1 1 N 7 C 4 5 - 8 8 . 4 ( 3 ) N 2 1 1 1 1 2 N 8 C 4 4 1 0 0 . 1 ( 4 ) N 3 1 1 1 1 2 N 8 C 4 4 2 5 1 . 4 ( 1 4 ) N 1 1 1 1 1 2 N 8 C 4 4 - 8 4 . 7 ( 4 ) 2 8 0 T a b l e A 5 c o n t i n u e d . 1 1 1 1 1 1 1 1 1 2 N 8 C 4 4 1 5 . 2 ( 4 ) N 2 1 1 1 1 2 N 8 C 4 6 - 7 8 . 7 ( 3 ) N 3 1 1 1 1 2 N 8 C 4 6 2 9 . 8 ( 1 7 ) N 1 1 1 1 1 2 N 8 C 4 6 9 6 . 5 ( 3 ) 1 1 1 1 1 1 1 1 1 2 N 8 C 4 6 2 6 3 . 6 ( 3 ) N 7 1 1 1 1 1 N 9 C 3 1 2 7 9 . 5 ( 4 ) N 4 1 1 1 1 1 N 9 C 3 1 - 2 . 8 ( 4 ) N 5 1 1 1 1 1 N 9 C 3 1 2 3 4 . 9 ( 2 3 ) N 6 1 1 1 1 1 N 9 C 3 1 9 1 . 5 ( 4 ) 1 1 1 1 2 1 1 1 1 1 N 9 C 3 1 - 8 8 . 5 ( 4 ) N 7 1 1 1 1 1 N 9 C 2 9 0 . 2 ( 3 ) N 4 1 1 1 1 1 N 9 C 2 9 1 7 6 . 9 ( 3 ) N 5 1 1 1 1 1 N 9 C 2 9 4 4 . 8 ( 2 5 ) N 6 1 1 1 1 1 N 9 C 2 9 - 8 8 . 8 ( 3 ) 1 1 1 1 2 1 1 1 1 1 N 9 C 2 9 9 1 . 2 ( 3 ) C 1 7 C 2 C 6 C 1 2 2 . 9 ( 8 ) C 3 5 C 2 C 6 C 1 2 2 7 5 . 4 ( 5 ) C 4 0 N 4 C 9 C 1 4 - 5 5 . 1 ( 6 ) 1 1 1 1 1 N 4 C 9 C 1 4 1 0 6 . 2 ( 5 ) C 4 0 N 4 C 9 C 1 2 1 2 5 . 3 ( 5 ) 1 1 1 1 1 N 4 C 9 C 1 2 - 7 3 . 4 ( 5 ) C 2 8 C 4 C 1 1 C 3 1 1 . 3 ( 8 ) C 1 4 C 9 C 1 2 C 6 3 7 0 ) N 4 C 9 C 1 2 C 6 1 7 5 . 9 ( 4 ) C 2 C 6 C 1 2 C 9 0 . 6 ( 8 ) C 1 2 C 9 C 1 4 C 1 7 3 . 4 ( 7 ) N 4 C 9 C 1 4 C 1 7 2 7 6 . 2 ( 4 ) C 2 2 C 7 C 1 5 C 2 4 2 . 6 ( 8 ) C 2 2 C 5 C 1 6 C 2 4 2 . 9 ( 8 ) C 6 C 2 C 1 7 C 1 4 - 3 . 3 ( 8 ) C 3 5 C 2 C 1 7 C 1 4 1 7 5 . 0 ( 5 ) C 9 C 1 4 C 1 7 C 2 0 . 2 ( 8 ) 1 1 1 1 1 N 6 C 1 8 C 1 0 2 2 4 . 1 ( 9 4 ) 1 1 1 1 2 N 1 C 2 1 C 1 4 8 . 7 ( 3 1 8 ) C 1 5 C 7 C 2 2 C 5 - 1 . 4 ( 8 ) C 1 5 C 7 C 2 2 C 3 2 7 9 . 5 ( 5 ) C 1 6 C 5 C 2 2 C 7 2 . 4 ( 8 ) C 1 6 C 5 C 2 2 C 3 1 7 6 . 7 ( 5 ) 2 8 1 T a b l e A 5 c o n t i n u e d . C 3 0 C 1 3 C 2 3 C 4 5 0 . 0 ( 7 ) C 7 C 1 5 C 2 4 C 1 6 2 . 0 ( 7 ) C 7 C 1 5 C 2 4 N 2 1 7 9 . 3 ( 4 ) C 5 C 1 6 C 2 4 C 1 5 - l . 6 ( 8 ) C 5 C 1 6 C 2 4 N 2 1 7 8 . 1 ( 5 ) C 4 0 N 2 C 2 4 C 1 5 1 4 2 . 6 ( 5 ) 1 1 1 1 2 N 2 C 2 4 C 1 5 - 2 9 . 1 ( 6 ) C 4 0 N 2 C 2 4 C 1 6 2 7 0 0 ) R h 2 N 2 C 2 4 C 1 6 1 5 1 . 3 ( 4 ) C 3 2 C 1 9 C 2 5 C 3 4 0 . 4 ( 7 ) C 3 2 C 1 9 C 2 5 N 5 1 7 9 . 5 ( 4 ) C 4 4 N 5 C 2 5 C 1 9 - 5 8 . 0 ( 6 ) 1 1 1 1 1 N 5 C 2 5 C 1 9 1 2 3 . 7 ( 4 ) C 4 4 N 5 C 2 5 C 3 4 1 2 1 . 1 ( 5 ) 1 1 1 1 1 N 5 C 2 5 C 3 4 - 5 7 . 3 ( 5 ) C 3 4 C 2 0 C 2 6 C 3 2 2 . 3 ( 7 ) C 3 4 C 2 0 C 2 6 C 3 6 1 7 9 . 9 ( 5 ) 1 1 1 1 2 N 3 C 2 7 C 8 4 7 . 9 ( 3 4 4 ) C 1 1 C 4 C 2 8 C 2 9 2 . 0 ( 8 ) C 3 1 N 9 C 2 9 C 2 8 - 1 . 1 ( 6 ) 1 1 1 1 1 N 9 C 2 9 C 2 8 1 7 9 . 1 ( 4 ) C 3 1 N 9 C 2 9 C 4 5 1 7 8 . 1 ( 4 ) 1 1 1 1 1 N 9 C 2 9 C 4 5 2 . 7 ( 5 ) C 4 C 2 8 C 2 9 N 9 1 . 9 ( 7 ) C 4 C 2 8 C 2 9 C 4 5 2 7 7 . 2 ( 4 ) C 2 3 C 1 3 C 3 0 C 3 3 0 . 0 ( 7 ) C 2 9 N 9 C 3 1 C 1 1 0 . 4 ( 7 ) 1 1 1 1 1 N 9 C 3 1 C 1 1 2 7 9 . 9 ( 4 ) C 4 C 1 1 C 3 1 N 9 0 . 5 ( 8 ) C 2 0 C 2 6 C 3 2 C 1 9 0 . 7 ( 7 ) C 3 6 C 2 6 C 3 2 C 1 9 1 7 9 . 6 ( 5 ) C 2 5 C 1 9 C 3 2 C 2 6 0 . 3 ( 7 ) C 4 5 N 7 C 3 3 C 3 0 - 1 . l ( 6 ) 1 1 1 1 1 N 7 C 3 3 C 3 0 2 7 7 . 0 ( 3 ) C 1 3 C 3 0 C 3 3 N 7 0 . 6 ( 7 ) C 2 6 C 2 0 C 3 4 C 2 5 1 . 4 ( 7 ) C 1 9 C 2 5 C 3 4 C 2 0 0 . 9 ( 7 ) N 5 C 2 5 C 3 4 C 2 0 2 8 0 . 0 ( 4 ) 2 8 2 T a b l e A 5 c o n t i n u e d . C 4 1 C 3 7 C 3 9 C 4 2 2 . 1 ( 8 ) C 4 1 C 3 7 C 3 9 C 4 3 1 7 9 . 5 ( 5 ) C 9 N 4 C 4 0 N 2 1 6 0 . 3 ( 5 ) 1 1 1 1 1 N 4 C 4 0 N 2 - l . 8 ( 7 ) C 2 4 N 2 C 4 0 N 4 1 6 8 . 5 ( 4 ) 1 1 1 1 2 N 2 C 4 0 N 4 2 9 . 7 ( 7 ) C 3 9 C 3 7 C 4 1 C 4 6 0 . 0 ( 8 ) C 3 7 C 3 9 C 4 2 C 3 8 1 . 6 ( 8 ) C 4 3 C 3 9 C 4 2 C 3 8 2 7 9 . 9 ( 5 ) C 4 6 C 3 8 C 4 2 C 3 9 0 . 8 ( 8 ) C 2 5 N 5 C 4 4 N 8 1 7 1 . 4 ( 4 ) 1 1 1 1 1 N 5 C 4 4 N 8 - 1 0 . 0 ( 6 ) C 4 6 N 8 C 4 4 N 5 1 7 1 . 7 ( 4 ) 1 1 1 1 2 N 8 C 4 4 N 5 - 7 . 1 ( 6 ) C 3 3 N 7 C 4 5 C 2 3 1 . 1 ( 6 ) 1 1 1 1 1 N 7 C 4 5 C 2 3 1 7 7 . 5 ( 3 ) C 3 3 N 7 C 4 5 C 2 9 2 7 9 . 1 ( 4 ) 1 1 1 1 1 N 7 C 4 5 C 2 9 2 . 7 ( 5 ) C 1 3 C 2 3 C 4 5 N 7 - 0 . 6 ( 7 ) C 1 3 C 2 3 C 4 5 C 2 9 1 7 9 . 7 ( 4 ) N 9 C 2 9 C 4 5 N 7 2 . 9 ( 6 ) C 2 8 C 2 9 C 4 5 N 7 2 7 7 . 9 ( 4 ) N 9 C 2 9 C 4 5 C 2 3 2 7 7 . 3 ( 4 ) C 2 8 C 2 9 C 4 5 C 2 3 1 . 9 ( 7 ) C 3 7 C 4 1 C 4 6 C 3 8 2 . 4 ( 7 ) C 3 7 C 4 1 C 4 6 N 8 2 7 4 . 9 ( 5 ) C 4 2 C 3 8 C 4 6 C 4 1 2 . 8 ( 7 ) C 4 2 C 3 8 C 4 6 N 8 1 7 4 . 6 ( 4 ) C 4 4 N 8 C 4 6 C 4 1 - 4 8 . 1 ( 6 ) 1 1 1 1 2 N 8 C 4 6 C 4 1 1 3 0 . 8 ( 4 ) C 4 4 N 8 C 4 6 C 3 8 1 3 4 . 6 ( 5 ) 1 1 1 1 2 N 8 C 4 6 C 3 8 - 4 6 . 5 ( 5 ) 2 8 3 T a b l e A 6 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ R h 2 ( D T 0 1 F ) 2 ( b p y ) ( C H 3 C N ) 4 l [ B F 4 1 2 ( 7 b ) - I d e n t i fi c a t i o n c o d e E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z p c a l c 1 R h 2 ( D T 0 1 F ) 2 ( b P Y ) ( C H 3 C N ) 4 J [ B F 4 1 2 C 4 8 H 5 0 B 2 F 8 N 1 0 R h 2 1 1 4 6 . 4 2 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A m o n o c l i n i c P 2 1 / n a = 1 0 . 9 3 3 9 ( 2 ) A b = 2 4 . 4 8 5 8 0 ( 1 0 ) A c = 1 9 . 4 8 7 4 ( 3 ) A a = 9 0 0 [ 3 = 9 4 . 3 2 9 0 ( 1 0 ) o y = 9 0 0 5 2 0 2 . 3 8 ( 1 3 ) A 3 4 1 . 4 6 4 g / c m 3 2 8 5 T a b l e A 6 c o n t i n u e d . 1 1 F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 0 . 7 0 6 6 1 1 1 ‘ 3 2 3 2 0 0 . 3 9 x 0 . 3 9 x 0 . 3 1 1 1 1 1 1 1 3 1 . 6 6 t o 2 7 5 2 " - 1 3 < = h < = 1 3 , — 3 0 < = k < = 2 6 , - 1 7 < = l < = 2 3 5 4 5 0 A 4 2 6 9 [ R ( i n t ) = 0 . 0 3 4 1 ] F u l l — m a t r i x l e a s t - s q u a r e s o n F 2 5 4 5 0 / 1 4 0 / 7 2 0 0 . 9 4 4 R 1 = 0 . 0 4 6 2 , W R 2 = 0 . 1 1 3 4 R 1 = 0 . 0 6 7 0 , W R 2 = 0 . 1 2 4 9 1 . 1 1 3 a n d 0 . 3 6 3 e ' / A ' 3 2 8 6 T a b l e A 6 c o n t i n u e d . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . B 1 0 . 4 6 7 3 ( 1 1 ) 0 . 0 1 2 2 ( 4 ) - 0 . 1 7 7 5 ( 6 ) 0 . 0 6 0 ( 3 ) 1 . 0 5 4 ( 1 3 ) B 2 0 . 9 5 6 3 ( 8 ) 0 . 0 0 7 9 ( 4 ) - 0 . 0 5 3 9 ( 6 ) 0 . 0 6 5 ( 6 ) 0 . 5 4 5 ( 8 ) B 2 A 0 . 1 0 7 3 ( 1 7 ) 0 . 0 8 4 4 ( 8 ) 0 . 3 3 0 7 ( 1 0 ) 0 . 0 6 1 ( 8 ) 0 . 4 5 5 ( 8 ) C 1 0 . 4 6 9 0 ( 7 ) 0 . 1 6 1 6 ( 4 ) 0 . 1 7 0 7 ( 5 ) 0 . 0 2 5 ( 2 ) 1 C 1 0 0 . 4 3 8 9 ( 7 ) 0 . 0 8 8 6 ( 3 ) - 0 . 0 0 3 0 ( 4 ) 0 . 0 2 8 ( 2 ) 1 C 1 1 0 . 6 4 0 2 ( 8 ) 0 . 2 4 8 2 ( 2 6 ) - 0 . 2 5 2 7 ( 4 ) 0 . 0 4 1 ( 3 ) 1 C 1 2 0 . 3 7 2 5 ( 7 ) 0 . 3 2 0 8 ( 3 ) 0 . 0 0 9 5 ( 4 ) 0 . 0 2 5 ( 2 ) 1 C 1 3 0 . 2 5 7 3 ( 7 ) 0 . 3 1 2 5 ( 3 ) - 0 . 0 2 4 6 ( 4 ) 0 . 0 2 9 ( 2 ) 1 C 1 4 0 . 1 6 4 7 ( 7 ) 0 . 3 5 1 1 ( 4 ) - 0 . 0 2 1 5 ( 4 ) 0 . 0 3 7 ( 2 ) 1 C 1 5 0 . 1 8 2 0 ( 8 ) 0 . 3 9 8 6 ( 4 ) 0 . 0 1 7 5 ( 5 ) 0 . 0 4 0 ( 2 ) 1 C 1 6 0 . 2 9 7 6 ( 8 ) 0 . 4 0 5 8 ( 3 ) 0 . 0 5 2 5 ( 4 ) 0 . 0 3 9 ( 2 ) 1 C 1 7 0 . 4 4 4 3 ( 8 ) 0 . 3 2 4 5 ( 4 ) 0 . 2 0 5 2 ( 5 ) 0 . 0 3 5 ( 2 ) 1 C 1 8 0 . 2 3 6 6 ( 7 ) 0 . 1 5 1 7 ( 3 ) 0 . 1 0 4 8 ( 4 ) 0 . 0 3 5 ( 2 ) 1 C 1 9 0 . 2 6 8 9 ( 8 ) 0 . 1 1 9 4 ( 4 ) 0 . 1 6 1 2 ( 5 ) 0 . 0 4 3 ( 2 ) 1 C 2 0 . 4 9 0 7 ( 8 ) 0 . 2 6 5 4 ( 3 ) - 0 . 0 5 7 6 ( 4 ) 0 . 0 2 4 ( 2 ) 1 C 2 0 0 . 3 9 1 9 ( 8 ) 0 . 3 6 8 5 ( 3 ) 0 . 0 4 7 8 ( 4 ) 0 . 0 3 2 ( 2 ) 1 C 2 1 0 . 3 2 1 2 ( 7 ) 0 . 1 8 7 8 ( 3 ) 0 . 0 8 2 9 ( 4 ) 0 . 0 2 9 ( 2 ) 1 C 2 2 0 . 7 7 6 8 ( 7 ) 0 . 2 1 7 0 ( 3 ) 0 . 1 9 2 3 ( 4 ) 0 . 0 3 0 ( 2 ) 1 C 2 3 0 . 8 2 9 6 ( 8 ) 0 . 1 9 1 0 ( 4 ) 0 . 2 5 0 2 ( 5 ) 0 . 0 3 9 ( 2 ) 1 C 2 4 0 . 7 6 3 2 ( 9 ) 0 . 1 5 4 1 ( 4 ) 0 . 2 8 5 3 ( 5 ) 0 . 0 4 2 ( 2 ) 1 C 2 5 0 . 9 3 1 5 ( 7 ) 0 . 2 5 1 7 ( 1 1 ) - 0 . 0 9 5 5 ( 4 ) 0 . 0 3 5 ( 2 ) 1 C 2 6 0 . 9 0 0 5 ( 6 ) 0 . 2 1 4 5 ( 3 ) - 0 . 0 4 3 1 ( 4 ) 0 . 0 2 6 ( 2 ) 1 C 2 7 0 . 9 6 8 3 ( 7 ) 0 . 1 6 7 4 ( 3 ) - 0 . 0 2 9 2 ( 4 ) 0 . 0 3 2 ( 2 ) 1 C 2 8 0 . 7 0 2 1 ( 8 ) 0 . 3 9 1 3 ( 4 ) 0 . 0 2 8 2 ( 5 ) 0 . 0 3 7 ( 2 ) 1 C 2 9 0 . 7 3 2 3 ( 8 ) 0 . 3 6 9 3 ( 4 ) 0 . 1 4 8 1 ( 4 ) 0 . 0 3 7 ( 2 ) 1 C 3 0 . 7 9 5 0 ( 1 3 ) 0 . 2 7 7 5 ( 6 ) 0 . 0 2 4 3 ( 5 ) 0 . 0 2 4 ( 2 ) 1 C 3 0 0 . 7 3 3 0 ( 1 1 ) 0 . 4 2 3 5 ( 4 ) 0 . 1 6 4 0 ( 5 ) 0 . 0 5 0 ( 3 ) 1 C 3 1 0 . 3 5 1 8 ( 8 ) 0 . 0 4 3 9 ( 4 ) - 0 . 0 0 3 9 ( 5 ) 0 . 0 4 3 ( 2 ) l 2 8 7 T a b l e A 6 c o n t i n u e d . C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 b C 4 8 A C 5 C 6 C 7 C 8 C 9 F 1 F 2 F 3 F 4 F 5 F 5 A F 6 F 6 A F 7 F 7 b F 8 F 8 A N 1 N 1 0 N 2 0 . 7 8 6 0 ( 7 ) 0 . 7 0 0 9 ( 9 ) 0 . 7 1 5 2 ( 1 0 ) 1 . 0 6 8 5 ( 7 ) 1 . 1 0 2 5 ( 7 ) 1 . 0 3 4 2 ( 7 ) 0 . 3 8 5 2 ( 7 ) 0 . 0 7 6 6 ( 1 4 ) 0 . 5 7 8 2 ( 6 ) 0 . 3 8 2 9 ( 9 ) 0 . 5 3 8 1 ( 8 ) 0 . 5 9 2 3 ( 8 ) 0 . 5 9 6 2 ( 9 ) 0 . 8 4 5 9 ( 1 0 ) 1 . 2 1 3 2 ( 8 ) 0 . 7 1 5 9 ( 1 4 ) 0 . 7 6 7 2 ( 3 9 ) 0 . 8 2 6 3 ( 6 0 ) 0 . 6 3 3 3 ( 7 ) 0 . 5 3 2 4 ( 7 ) 0 . 5 9 2 7 ( 7 ) 0 . 6 4 3 7 ( 8 ) 0 . 7 1 7 4 ( 1 2 ) 0 . 3 7 3 8 ( 6 ) 0 . 4 4 2 0 ( 8 ) 0 . 5 7 0 6 ( 1 3 ) 0 . 4 9 0 5 ( 1 2 ) 1 . 0 7 0 3 ( 9 ) 0 . 2 1 7 6 ( 1 2 ) 0 . 8 7 3 5 ( 1 0 ) 0 . 1 1 2 4 ( 2 4 ) 0 . 9 4 4 6 ( 1 5 ) 0 . 0 2 8 6 ( 1 3 ) 0 . 9 3 9 4 ( 1 5 ) 0 . 0 5 9 6 ( 1 6 ) 0 . 7 2 4 6 ( 5 ) 0 . 5 0 7 2 ( 5 ) 0 . 4 9 3 3 ( 6 ) 0 . 0 9 6 0 ( 3 ) 0 . 4 4 5 9 ( 4 ) 0 . 4 6 3 2 ( 4 ) 0 . 1 5 6 0 ( 4 ) 0 . 1 9 0 3 ( 4 ) 0 . 2 3 7 0 ( 4 ) 0 . 1 2 4 8 ( 4 ) 0 . 4 3 7 4 ( 5 ) 0 . 2 1 7 8 ( 3 ) 0 . 3 5 8 3 ( 5 ) 0 . 1 6 6 7 ( 4 ) 0 . 2 0 7 5 ( 4 ) 0 . 2 0 3 0 ( 5 ) 0 . 0 5 5 5 ( 4 ) 0 . 1 7 6 7 ( 4 ) 0 . 5 2 3 6 ( 4 ) 0 . 0 8 0 9 ( 1 2 ) 0 . 0 4 5 9 ( 2 5 ) 0 . 2 5 8 0 ( 1 6 ) 0 . 1 7 1 9 ( 3 ) 0 . 1 7 0 3 ( 3 ) 0 . 1 4 2 6 ( 3 ) 0 . 3 5 1 3 ( 4 ) 0 . 0 4 9 1 ( 3 ) 0 . 0 3 3 8 ( 3 ) 0 . 0 3 2 4 ( 6 ) 0 . 0 0 0 2 ( 5 ) 0 . 0 1 7 4 ( 6 ) 0 . 1 0 7 9 ( 8 ) 0 . 0 3 1 9 ( 5 ) 0 . 0 3 4 1 ( 6 ) 0 . 0 2 9 9 ( 7 ) 0 . 1 1 3 5 ( 7 ) 0 . 0 4 5 8 ( 4 ) 0 . 0 8 0 4 ( 1 2 ) 0 . 1 1 8 0 ( 3 ) 0 . 1 2 3 6 ( 3 ) 0 . 2 9 9 4 ( 3 ) 0 . 1 0 7 1 ( 4 ) 0 . 0 4 4 4 ( 5 ) 0 . 1 1 2 7 ( 5 ) 0 . 0 6 6 5 ( 4 ) 0 . 1 1 8 6 ( 4 ) 0 . 1 3 2 3 ( 4 ) 0 . 1 9 4 7 ( 5 ) 0 . 0 2 6 3 ( 8 ) 0 . 1 4 5 3 ( 4 ) 0 . 2 5 4 0 ( 6 ) 0 . 2 5 0 4 ( 4 ) 0 . 2 8 8 1 ( 4 ) 0 . 3 6 4 9 ( 4 ) 0 . 1 5 3 8 ( 6 ) 0 . 1 5 7 5 ( 5 ) 0 . 1 3 0 1 ( 7 ) 0 . 1 0 5 7 ( 2 3 ) 0 . 1 5 4 1 ( 3 0 ) 0 . 1 8 1 5 ( 4 ) 0 . 1 7 9 7 ( 4 ) 0 . 2 0 1 6 ( 4 ) 0 . 2 6 0 3 ( 4 ) 0 . 0 7 9 6 ( 7 ) 0 . 1 7 3 1 ( 3 ) 0 . 1 4 2 4 ( 6 ) 0 . 1 4 7 1 ( 1 0 ) 0 . 2 4 0 4 ( 4 ) 0 . 0 2 7 8 ( 8 ) 0 . 3 3 3 7 ( 8 ) 0 . 0 1 7 3 ( 6 ) 0 . 3 6 0 3 ( 1 1 ) 0 . 1 1 6 5 ( 6 ) 0 . 3 6 6 5 ( 1 0 ) 0 . 0 5 1 3 ( 1 1 ) 0 . 2 6 7 0 ( 7 ) 0 . 0 8 1 2 ( 3 ) 0 . 0 0 1 8 ( 3 ) 0 . 1 6 6 0 ( 4 ) 2 8 8 0 . 0 3 4 ( 2 ) 0 . 0 4 5 ( 2 ) 0 . 0 4 9 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 6 ( 2 ) 0 . 0 3 9 ( 3 ) 0 . 0 3 9 ( 2 ) 0 . 0 6 3 ( 4 ) 0 . 0 2 3 9 ( 1 5 ) 0 . 0 6 0 ( 3 ) 0 . 0 3 8 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 0 5 5 ( 3 ) 0 . 0 6 0 ( 3 ) 0 . 0 4 9 ( 2 ) 0 . 0 7 9 ( 4 ) 0 . 3 2 8 ( 2 3 ) 0 . 5 8 2 ( 5 0 ) 0 . 0 3 4 ( 7 ) 0 . 0 3 2 ( 2 ) 0 . 0 2 8 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 2 8 ( 2 ) 0 . 0 8 0 ( 2 ) 0 . 1 3 5 ( 4 ) 0 . 1 8 4 ( 9 ) 0 . 1 8 1 ( 7 ) 0 . 0 9 8 ( 5 ) 0 . 0 9 9 ( 6 ) 0 . 0 7 6 ( 4 ) 0 . 0 9 0 ( 8 ) 0 . 1 2 9 ( 7 ) 0 . 1 0 9 ( 7 ) 0 . 0 9 8 ( 7 ) 0 . 1 5 9 ( 1 3 ) 0 . 0 3 2 ( 2 ) 0 . 0 2 5 2 ( 1 3 ) 0 . 0 3 3 6 ( 1 5 ) j — I fi — I p — i p — d h — i — ‘ p — i fl h ‘ p — l fl fi — d h fl p ‘ h — ‘ p — i 1 0 7 ( 2 ) 1 0 7 ( 2 ) 1 1 1 1 1 1 . 0 5 4 ( 1 3 ) 1 . 0 5 4 ( 1 3 ) 1 . 0 5 4 ( 1 3 ) 1 . 0 5 4 ( 1 3 ) 0 . 5 4 5 ( 8 ) 0 . 4 5 5 ( 8 ) 0 . 5 4 5 ( 8 ) 0 . 4 5 5 ( 8 ) 0 . 5 4 5 ( 8 ) 0 . 4 5 5 ( 8 ) 0 . 5 4 5 ( 8 ) 0 . 4 5 5 ( 8 ) 1 0 7 ( 2 ) 1 1 T a b l e A 6 c o n t i n u e d . N 3 0 . 4 6 8 4 ( 5 ) 0 . 2 8 0 8 ( 2 ) 0 . 0 0 5 3 ( 3 ) 0 . 0 2 4 7 ( 1 3 ) N 4 0 . 7 1 1 6 ( 5 ) 0 . 2 9 4 9 ( 3 ) 0 . 0 6 3 0 ( 3 ) 0 . 0 2 5 9 ( 1 3 ) N 5 0 . 7 9 8 7 ( 1 0 ) 0 . 2 2 7 5 ( 4 ) 0 . 0 0 2 7 ( 4 ) 0 . 0 1 9 ( 2 ) N 6 0 . 5 6 2 9 ( 6 ) 0 . 2 2 5 0 ( 3 ) 0 . 0 7 2 6 ( 3 ) 0 . 0 2 4 3 ( 1 3 ) N 7 0 . 4 3 6 3 ( 5 ) 0 . 1 9 3 2 ( 2 ) 0 . 1 1 4 0 ( 3 ) 0 . 0 2 3 0 ( 1 2 ) N 8 0 . 6 6 1 1 ( 5 ) 0 . 2 0 7 1 ( 2 ) 0 . 1 6 8 7 ( 3 ) 0 . 0 2 4 2 ( 1 3 ) N 9 0 . 7 3 8 1 ( 9 ) 0 . 1 2 7 0 ( 4 ) 0 . 0 7 0 5 ( 5 ) 0 . 0 2 5 ( 2 ) 1 1 1 1 1 0 . 6 5 1 6 1 ( 5 ) 0 . 1 7 6 8 7 ( 2 ) 0 . 0 0 0 8 1 ( 3 ) 0 . 0 2 0 3 ( 2 ) 1 1 1 1 2 0 . 5 6 8 7 3 ( 4 ) 0 . 2 4 6 9 ( 1 5 ) 0 . 0 8 7 1 5 ( 3 ) 0 . 0 2 3 ( 2 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 8 9 T a b l e A 6 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ ° ] . R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 C 1 C 1 C 1 C 2 C 2 C 3 C 3 C 4 C 4 C 4 C 5 C 6 C 7 C 7 C 8 C 9 C 9 C 9 C 1 0 C 1 0 C 1 1 C 1 2 C 1 2 C 1 2 N 6 N 9 N 5 N 1 0 N 1 R h 2 N 4 N 3 N 7 N 8 N 2 N 7 C 3 8 C 7 N 6 N 3 N 4 N 5 C 5 C 6 N 6 C 1 1 C 4 1 N 8 C 8 C 2 4 C 2 8 C 2 9 N 4 N 1 0 C 3 1 C 4 2 C 2 0 C 1 3 N 3 2 . 0 2 0 ( 6 ) 2 . 0 3 0 ( 1 0 ) 2 . 0 3 3 ( 1 1 ) 2 . 0 4 7 ( 6 ) 2 . 3 1 5 ( 6 ) 2 6 3 ( 2 ) 2 0 4 ( 2 ) 2 0 4 ( 2 ) 2 0 5 ( 2 ) 2 0 6 ( 2 ) 2 2 1 ( 2 ) 1 . 3 7 3 ( 1 0 ) 1 . 3 9 1 ( 1 2 ) 1 . 4 5 4 ( 1 1 ) 1 . 3 1 4 ( 9 ) 1 . 3 2 3 ( 1 0 ) 1 . 2 9 8 ( 1 4 ) 1 . 3 3 5 ( 9 ) 1 3 8 ( 3 ) 1 . 3 8 4 ( 1 1 ) 1 . 4 5 0 ( 9 ) 1 4 2 ( 2 ) 1 . 3 8 8 ( 1 1 ) 1 . 3 6 1 ( 1 0 ) 1 . 4 0 9 ( 1 1 ) 1 . 3 8 8 ( 1 2 ) 1 . 4 0 0 ( 1 2 ) 1 4 0 ( 2 ) 1 . 4 1 8 ( 1 2 ) 1 . 1 3 7 ( 9 ) 1 . 4 5 0 ( 1 1 ) 1 3 0 ( 5 ) 1 . 3 9 3 ( 1 1 ) 1 . 3 9 5 ( 1 1 ) 1 . 4 4 2 ( 9 ) 2 9 0 T a b l e A 6 c o n t i n u e d . C 1 3 C 1 4 1 . 3 8 9 ( 1 1 ) C 1 4 C 1 5 1 . 3 9 4 ( 1 2 ) C 1 5 C 1 6 1 . 4 0 2 ( 1 2 ) C 1 5 C 3 9 1 . 5 1 3 ( 1 4 ) C 1 6 C 2 0 1 . 3 8 7 ( 1 1 ) C 1 7 N 2 1 . 1 4 4 ( 1 1 ) C 1 7 C 4 0 1 . 4 6 4 ( 1 3 ) C 1 8 C 2 1 1 . 3 7 1 ( 1 1 ) C 1 8 C 1 9 1 . 3 7 7 ( 1 2 ) C 1 9 C 3 8 1 . 3 9 1 ( 1 2 ) C 2 1 N 7 1 . 3 6 1 ( 9 ) C 2 2 N 8 1 . 3 3 6 ( 9 ) C 2 2 C 2 3 1 . 3 8 4 ( 1 1 ) C 2 3 C 2 4 1 . 3 7 3 ( 1 3 ) C 2 5 C 3 7 1 . 4 2 4 ( 1 5 ) C 2 5 C 2 6 l . 4 3 ( 2 ) C 2 6 C 2 7 1 . 3 8 8 ( 1 1 ) C 2 6 N 5 1 . 4 4 7 ( 1 2 ) C 2 7 C 3 5 1 . 3 8 7 ( 1 1 ) C 2 8 C 3 3 1 . 3 7 5 ( 1 2 ) C 2 9 C 3 0 1 . 3 6 2 ( 1 3 ) C 3 0 C 3 4 1 . 3 9 7 ( 1 4 ) C 3 2 N 9 1 . 1 4 1 ( 1 3 ) C 3 2 C 4 4 1 . 4 6 7 ( 1 2 ) C 3 3 C 3 4 1 . 3 9 4 ( 1 3 ) C 3 4 C 4 6 1 . 5 1 8 ( 1 3 ) C 3 5 C 3 6 1 . 3 9 1 ( 1 2 ) C 3 6 C 3 7 1 . 3 8 1 ( 1 2 ) C 3 6 C 4 5 1 . 5 1 3 ( 1 1 ) C 4 1 C 4 2 1 . 3 9 8 ( 1 3 ) C 4 2 C 4 3 1 . 5 0 5 ( 1 1 ) C 4 7 b N 1 1 . 1 4 1 ( 1 1 ) C 4 7 b C 4 8 A 1 . 4 6 1 ( 1 1 ) B Z A F 8 A 1 . 3 1 ( 2 ) B 2 A F 5 A 1 3 3 ( 2 ) B Z A F 7 b 1 3 5 ( 2 ) B 2 A F 6 A l . 3 6 ( 2 ) B 2 F 5 1 . 3 3 0 5 ( 1 1 ) B 2 F 6 1 . 3 3 0 5 ( 1 1 ) 2 9 1 T a b l e A 6 c o n t i n u e d . B 2 B 2 B 1 B 1 B 1 B 1 N 6 N 6 N 9 N 6 N 9 N 5 N 6 N 9 N 5 N 1 0 N 6 N 9 N 5 N 1 0 N 1 N 4 N 4 N 3 N 4 N 3 N 7 N 4 N 3 N 7 N 8 N 4 N 3 N 7 N 8 N 2 N 7 N 7 C 3 8 F 7 F 8 F 4 F 3 F 2 F 1 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 C 1 1 . 3 3 0 3 ( 1 1 ) 1 . 3 3 0 5 ( 1 1 ) 1 . 3 0 3 ( 1 2 ) 1 . 3 3 0 ( 1 5 ) 1 . 3 5 8 ( 1 2 ) 1 . 3 7 2 ( 1 2 ) N 9 1 7 8 . 6 ( 3 ) N 5 8 8 . 4 ( 3 ) N 5 9 2 . 9 ( 4 ) N 1 0 9 2 . 0 ( 2 ) N 1 0 8 6 . 7 ( 3 ) N 1 0 1 7 7 . 4 ( 3 ) N 1 9 3 . 8 ( 2 ) N 1 8 5 . 5 ( 3 ) N 1 9 3 . 1 ( 3 ) N 1 8 4 . 3 ( 2 ) 1 1 1 1 2 8 4 3 ( 4 ) 1 1 1 1 2 9 6 . 4 ( 5 ) 1 1 1 1 2 8 5 . 8 ( 5 ) 1 1 1 1 2 9 6 . 8 ( 5 ) 1 1 1 1 2 1 7 7 . 8 ( 6 ) N 3 8 7 . 8 ( 1 0 ) N 7 1 7 4 . 8 ( 1 4 ) N 7 9 6 . 4 ( 4 ) N 8 9 6 4 ( 3 ) N 8 1 7 5 . 3 ( 1 6 ) N 8 7 9 3 ( 9 ) N 2 9 9 . 1 ( 1 3 ) N 2 9 5 . 8 ( 1 1 ) N 2 8 3 . 6 ( 2 ) N 2 8 5 . 7 ( 3 ) 1 1 1 1 1 8 5 . 3 ( 3 ) 1 1 1 1 1 8 7 0 ( 4 ) 1 1 1 1 1 9 1 . 8 ( 1 2 ) 1 1 1 1 1 9 1 . 2 ( 1 0 ) 1 1 1 1 1 1 7 4 . 9 ( 1 3 ) C 3 8 1 1 9 . 8 ( 7 ) C 7 1 1 5 . 4 ( 7 ) C 7 1 2 4 . 9 ( 8 ) 2 9 2 T a b l e A 6 c o n t i n u e d . N 6 N 4 C 5 C 5 C 6 C 4 C 4 N 8 N 8 C 8 C 2 4 C 2 8 C 2 8 C 2 9 N 1 0 C 4 2 C 2 0 C 2 0 C 1 3 C 1 4 C 1 3 C 1 4 C 1 4 C 1 6 C 2 0 N 2 C 2 1 C 1 8 C 1 6 N 7 N 8 C 2 4 C 2 3 C 3 7 C 2 7 C 2 7 C 2 5 C 3 5 C 3 3 C 2 C 3 C 4 C 4 C 4 C 5 C 6 C 7 C 7 C 7 C 8 C 9 C 9 C 9 C 1 0 C 1 1 C 1 2 C 1 2 C 1 2 C 1 3 C 1 4 C 1 5 C 1 5 C 1 5 C 1 6 C 1 7 C 1 8 C 1 9 C 2 0 C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 6 C 2 6 C 2 7 C 2 8 N 3 N 5 C 6 N 6 N 6 C 1 1 C 4 1 C 8 C 1 C 1 C 7 C 2 9 N 4 N 4 C 3 1 C 5 C 1 3 N 3 N 3 C 1 2 C 1 5 C 1 6 C 3 9 C 3 9 C 1 5 C 4 0 C 1 9 C 3 8 C 1 2 C 1 8 C 2 3 C 2 2 C 8 C 2 6 C 2 5 N 5 N 5 C 2 6 C 9 1 2 5 . 2 ( 6 ) 1 2 5 . 0 ( 1 4 ) 1 1 9 . 3 ( 1 1 ) 1 2 0 . 1 ( 1 1 ) 1 2 0 . 5 ( 7 ) 1 1 6 . 0 ( 3 3 ) 1 2 0 . 8 ( 8 ) 1 2 0 . 2 ( 7 ) 1 1 5 . 4 ( 7 ) 1 2 4 . 4 ( 7 ) 1 1 9 . 5 ( 8 ) 1 1 7 . 3 ( 9 ) 1 2 1 . 1 ( 1 0 ) 1 2 1 . 5 ( 9 ) 1 7 9 . 6 ( 8 ) 1 2 7 . 0 ( 3 6 ) 1 1 8 . 3 ( 7 ) 1 2 1 . 2 ( 7 ) 1 2 0 . 5 ( 7 ) 1 2 0 . 9 ( 8 ) 1 2 1 . 5 ( 8 ) 1 1 6 . 8 ( 7 ) 1 2 0 . 8 ( 9 ) 1 2 2 . 2 ( 9 ) 1 2 2 . 2 ( 8 ) 1 7 8 . 0 ( 1 2 ) 1 1 8 . 7 ( 8 ) 1 1 9 . 4 ( 8 ) 1 2 0 . 2 ( 8 ) 1 2 3 . 1 ( 7 ) 1 2 1 . 6 ( 7 ) 1 2 0 . 3 ( 8 ) 1 1 8 . 6 ( 8 ) 1 1 5 . 9 ( 1 7 ) 1 2 1 . 2 ( 1 0 ) 1 1 9 . 9 ( 7 ) 1 1 8 . 9 ( 1 0 ) 1 1 9 . 8 ( 7 ) 1 2 1 . 2 ( 9 ) 2 9 3 T a b l e A 6 c o n t i n u e d . C 3 0 C 2 9 N 9 C 2 8 C 3 3 C 3 3 C 3 0 C 2 7 C 3 7 C 3 7 C 3 5 C 3 6 C 1 9 C 6 C 1 1 C 1 1 C 4 1 N 1 C 4 7 b C 1 7 C 2 C 2 C 1 2 C 3 C 3 C 9 C 3 C 3 C 2 6 C 2 C 2 C 4 C 2 1 C 2 1 C 1 C 2 2 C 2 2 C 7 C 3 2 C 2 9 C 3 0 C 3 2 C 3 3 C 3 4 C 3 4 C 3 4 C 3 5 C 3 6 C 3 6 C 3 6 C 3 7 C 3 8 C 4 1 C 4 2 C 4 2 C 4 2 C 4 7 b N 1 N 2 N 3 N 3 N 3 N 4 N 4 N 4 N 5 N 5 N 5 N 6 N 6 N 6 N 7 N 7 N 7 N 8 N 8 N 8 N 9 C 9 C 3 4 C 4 4 C 3 4 C 3 0 C 4 6 C 4 6 C 3 6 C 3 5 C 4 5 C 4 5 C 2 5 C 1 C 4 2 C 4 1 C 4 3 C 4 3 C 4 8 A R h l R h 2 C 1 2 R h 2 R h 2 C 9 R h 2 R h 2 C 2 6 R h l R h l C 4 R h l R h l C 1 R h 2 R h 2 C 7 R h 2 R h 2 R h l 1 2 1 . 4 ( 9 ) 1 2 1 . 1 ( 8 ) 1 7 9 . 0 ( 1 0 ) 1 2 0 . 8 ( 9 ) ‘ 1 1 8 . 1 ( 8 ) 1 2 0 . 5 ( 9 ) 1 2 1 . 4 ( 9 ) 1 2 1 . 7 ( 8 ) 1 1 8 . 2 ( 7 ) 1 2 1 . 7 ( 8 ) 1 2 0 . 1 ( 8 ) 1 2 3 . 2 ( 1 1 ) 1 2 0 . 4 ( 8 ) 1 2 0 . 7 ( 8 ) 1 1 5 . 9 ( 1 4 ) 1 2 2 . 9 ( 1 5 ) 1 2 1 . 1 ( 9 ) 1 6 2 . 0 ( 5 8 ) 1 6 1 . 9 ( 2 6 ) 1 7 3 . 9 ( 8 ) 1 1 5 . 6 ( 6 ) 1 1 8 . 9 ( 7 ) 1 2 5 . 5 ( 7 ) 1 1 5 . 5 ( 9 ) 1 2 1 . 9 ( 1 0 ) 1 2 2 . 1 ( 1 0 ) 1 1 7 . 6 ( 1 1 ) 1 2 0 . 3 ( 1 2 ) 1 2 1 . 2 ( 7 ) 1 1 5 . 1 ( 6 ) 1 2 3 . 4 ( 5 ) 1 2 1 . 4 ( 5 ) 1 1 8 . 6 ( 7 ) 1 2 6 . 5 ( 6 ) 1 1 4 . 8 ( 6 ) 1 1 9 . 9 ( 6 ) 1 2 5 . 1 ( 7 ) 1 1 4 . 9 ( 7 ) 1 7 5 . 0 ( 9 ) 2 9 4 T a b l e A 6 c o n t i n u e d . C 1 0 N 1 0 1 1 1 1 1 1 7 0 . 5 ( 6 ) F 8 A 3 2 A F S A 1 1 1 . 5 ( 1 6 ) F 8 A B Z A F 7 b 1 0 7 . 7 ( 1 6 ) F S A B Z A F 7 b 1 1 1 . 1 ( 1 5 ) F 8 A 3 2 A F 6 A 1 0 9 . 5 ( 1 7 ) F 5 A B 2 A F 6 A 1 1 1 . 4 ( 1 6 ) F 7 b B 2 A F 6 A 1 0 5 . 4 ( 1 5 ) F 5 3 2 F 6 1 1 1 . 9 ( 1 0 ) F 5 3 2 F 7 1 0 7 . 6 ( 1 0 ) F 6 3 2 F 7 1 0 6 . 9 ( 1 0 ) F 5 3 2 F 8 1 0 6 . 7 ( 1 0 ) F 6 3 2 F 8 1 0 8 . 2 ( 1 0 ) F 7 3 2 F 8 1 1 5 . 6 ( 1 2 ) F 4 3 1 F 3 1 0 6 . 5 ( 1 3 ) F 4 3 1 F 2 1 1 0 . 3 ( 1 0 ) F 3 3 1 F 2 1 0 6 . 4 ( 1 1 ) F 4 3 1 F 1 1 1 4 . 1 ( 9 ) F 3 3 1 F 1 1 0 9 . 8 ( 1 0 ) F 2 3 1 F 1 1 0 9 . 4 ( 9 ) S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 2 9 5 T a b l e A 6 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 1 1 1 1 1 0 . 0 1 8 0 ( 3 ) 0 . 0 2 0 2 ( 3 ) 0 . 0 2 2 7 ( 3 ) 0 . 0 0 0 7 ( 2 ) 0 . 0 0 1 0 ( 2 ) 0 . 0 0 0 7 ( 2 ) 1 1 1 1 2 0 . 0 2 1 0 ( 2 ) 0 . 0 2 7 ( 6 ) 0 . 0 2 0 3 ( 2 ) 0 . 0 0 2 5 ( 1 4 ) 0 . 0 0 0 0 9 ( 1 5 ) 0 . 0 0 1 8 ( 1 1 ) C 1 0 . 0 1 9 ( 4 ) 0 . 0 3 1 ( 5 ) 0 . 0 2 6 ( 5 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 6 ( 3 ) 0 . 0 0 3 ( 3 ) C 2 0 . 0 2 8 ( 4 ) 0 . 0 2 6 ( 6 ) 0 . 0 1 9 ( 4 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 5 ( 3 ) C 3 0 . 0 2 6 ( 5 ) 0 . 0 2 9 ( 5 ) 0 . 0 1 6 ( 6 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 4 ( 4 ) C 4 0 . 0 1 8 ( 3 ) 0 . 0 3 0 ( 4 ) 0 . 0 2 3 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 0 ( 3 ) 0 . 0 0 0 ( 3 ) C 5 0 . 0 3 0 ( 3 ) 0 . 0 4 1 ( 2 2 ) 0 . 0 2 9 ( 3 ) 0 . 0 1 0 ( 6 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 1 ( 5 ) C 6 0 . 0 2 9 ( 4 ) 0 . 0 4 2 ( 5 ) 0 . 0 2 7 ( 4 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 0 ( 3 ) C 7 0 . 0 3 3 ( 4 ) 0 . 0 2 6 ( 4 ) 0 . 0 2 5 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 2 ( 3 ) C 8 0 . 0 4 0 ( 5 ) 0 . 0 3 3 ( 5 ) 0 . 0 4 1 ( 5 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 2 ( 4 ) C 9 0 . 0 3 8 ( 6 ) 0 . 0 1 6 ( 6 ) 0 . 0 3 1 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 0 ( 5 ) C 1 0 0 . 0 2 3 ( 4 ) 0 . 0 3 0 ( 4 ) 0 . 0 3 2 ( 4 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 2 ( 3 ) C l 1 0 . 0 4 3 ( 5 ) 0 . 0 4 8 ( 9 ) 0 . 0 3 1 ( 3 ) 0 . 0 0 1 ( 1 7 ) 0 . 0 0 9 ( 3 ) 0 . 0 2 0 ( 1 7 ) C 1 2 0 . 0 2 7 ( 4 ) 0 . 0 2 5 ( 4 ) 0 . 0 2 5 ( 4 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 6 ( 3 ) C 1 3 0 . 0 3 0 ( 4 ) 0 . 0 2 9 ( 4 ) 0 . 0 2 8 ( 4 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 6 ( 3 ) 0 . 0 0 4 ( 3 ) C 1 4 0 . 0 2 8 ( 4 ) 0 . 0 4 3 ( 5 ) 0 . 0 3 9 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 2 ( 3 ) 0 . 0 1 0 ( 4 ) C 1 5 0 . 0 3 8 ( 5 ) 0 . 0 3 4 ( 5 ) 0 . 0 4 9 ( 5 ) ‘ 0 . 0 1 0 ( 4 ) 0 . 0 1 0 ( 4 ) 0 . 0 1 3 ( 4 ) C 1 6 0 . 0 5 2 ( 5 ) 0 . 0 2 7 ( 4 ) 0 . 0 3 9 ( 5 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 4 ( 4 ) 0 . 0 1 0 ( 4 ) C 1 7 0 . 0 3 0 ( 5 ) 0 . 0 3 7 ( 5 ) 0 . 0 3 9 ( 5 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 2 ( 4 ) C 1 8 0 . 0 2 8 ( 4 ) 0 . 0 3 8 ( 5 ) 0 . 0 4 0 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 2 ( 4 ) C 1 9 0 . 0 3 0 ( 4 ) 0 . 0 3 9 ( 5 ) 0 . 0 6 0 ( 6 ) 0 . 0 0 7 ( 4 ) 0 . 0 1 0 ( 4 ) - 0 . 0 0 8 ( 4 ) C 2 0 0 . 0 3 6 ( 4 ) 0 . 0 2 4 ( 4 ) 0 . 0 3 6 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 4 ( 3 ) C 2 1 0 . 0 2 1 ( 4 ) 0 . 0 3 7 ( 4 ) 0 . 0 2 8 ( 4 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 2 ( 3 ) C 2 2 0 . 0 2 9 ( 4 ) 0 . 0 2 9 ( 4 ) 0 . 0 3 0 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 7 ( 3 ) 0 . 0 0 2 ( 3 ) C 2 3 0 . 0 3 5 ( 5 ) 0 . 0 3 4 ( 5 ) 0 . 0 4 6 ( 5 ) 0 . 0 0 2 ( 4 ) 0 . 0 1 6 ( 4 ) 0 . 0 0 3 ( 4 ) C 2 4 0 . 0 5 0 ( 5 ) 0 . 0 3 8 ( 5 ) 0 . 0 3 6 ( 5 ) 0 . 0 1 3 ( 4 ) 0 . 0 1 4 ( 4 ) 0 . 0 0 8 ( 4 ) C 2 5 0 . 0 3 2 ( 4 ) 0 . 0 3 4 ( 5 ) 0 . 0 3 8 ( 4 ) 0 . 0 1 1 ( 1 0 ) 0 . 0 0 1 ( 3 ) 0 . 0 2 9 ( 9 ) C 2 6 0 . 0 1 9 ( 3 ) 0 . 0 2 8 ( 4 ) 0 . 0 3 1 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 4 ( 3 ) C 2 7 0 . 0 2 2 ( 4 ) 0 . 0 3 7 ( 5 ) 0 . 0 3 7 ( 4 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 2 ( 3 ) C 2 8 0 . 0 5 0 ( 5 ) 0 . 0 3 2 ( 5 ) 0 . 0 2 9 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 2 ( 4 ) 2 9 6 T a b l e A 6 c o n t i n u e d . C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 1 0 B 2 A F 5 A F 6 A F 7 b F 8 A B 2 F 5 F 6 F 7 F 8 B l F 1 F 2 0 . 0 4 7 ( 5 ) 0 . 0 8 2 ( 7 ) 0 . 0 3 5 ( 5 ) 0 . 0 2 9 ( 4 ) 0 . 0 6 9 ( 6 ) 0 . 0 6 6 ( 6 ) 0 . 0 2 2 ( 4 ) 0 . 0 2 3 ( 4 ) 0 . 0 3 3 ( 4 ) 0 . 0 3 4 ( 4 ) 0 . 0 6 0 ( 7 ) 0 . 0 5 0 ( 6 ) 0 . 0 3 1 ( 4 ) 0 . 0 3 1 ( 4 ) 0 . 0 5 8 ( 6 ) 0 . 0 6 6 ( 7 ) 0 . 0 3 7 ( 5 ) 0 . 1 2 4 ( 1 1 ) 0 . 0 2 3 ( 3 ) 0 . 0 3 0 ( 4 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 0 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 1 9 ( 3 ) 0 . 0 2 3 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 2 5 ( 4 ) 0 . 0 2 2 ( 3 ) 0 . 0 4 2 ( 1 5 ) 0 . 0 5 9 ( 1 0 ) 0 . 1 4 7 ( 2 3 ) 0 . 0 5 3 ( 9 ) 0 . 0 8 7 ( 1 4 ) 0 . 0 5 7 ( 9 ) 0 . 0 5 5 ( 8 ) 0 . 0 6 5 ( 8 ) 0 . 1 1 3 ( 1 4 ) 0 . 0 7 2 ( 1 0 ) 0 . 0 8 4 ( 9 ) 0 . 0 8 9 ( 5 ) 0 . 1 1 7 ( 7 ) 0 . 0 3 1 ( 5 ) 0 . 0 4 2 ( 5 ) 0 . 0 3 6 ( 5 ) 0 . 0 3 2 ( 4 ) 0 . 0 2 8 ( 4 ) 0 . 0 3 0 ( 5 ) 0 . 0 3 6 ( 5 ) 0 . 0 4 3 ( 5 ) 0 . 0 5 1 ( 1 0 ) 0 . 0 4 1 ( 5 ) 0 . 0 1 9 ( 6 ) 0 . 0 6 9 ( 7 ) 0 . 0 4 2 ( 5 ) 0 . 0 5 5 ( 6 ) 0 . 0 8 3 ( 8 ) 0 . 0 5 1 ( 6 ) 0 . 0 5 9 ( 6 ) 0 . 0 3 4 ( 6 ) 0 . 0 3 2 ( 4 ) 0 . 0 3 4 ( 5 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 6 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 2 3 ( 3 ) 0 . 0 1 5 ( 5 ) 0 . 0 2 9 ( 3 ) 0 . 0 8 9 ( 2 3 ) 0 . 1 4 7 ( 1 8 ) 0 . 0 3 3 ( 9 ) 0 . 0 8 5 ( 1 3 ) 0 . 3 2 7 ( 4 2 ) 0 . 0 6 8 ( 1 0 ) 0 . 0 9 6 ( 1 1 ) 0 . 0 6 4 ( 8 ) 0 . 1 6 7 ( 1 9 ) 0 . 0 1 0 ( 7 ) 0 . 0 3 8 ( 6 ) 0 . 0 6 5 ( 4 ) 0 . 0 6 9 ( 5 ) 0 . 0 3 0 ( 4 ) 0 . 0 2 6 ( 4 ) 0 . 0 5 8 ( 6 ) 0 . 0 4 0 ( 5 ) 0 . 0 4 0 ( 5 ) 0 . 0 5 0 ( 6 ) 0 . 0 4 4 ( 5 ) 0 . 0 4 1 ( 5 ) 0 . 0 3 3 ( 4 ) 0 . 0 4 1 ( 5 ) 0 . 1 0 8 ( 1 1 ) 0 . 0 5 9 ( 7 ) 0 . 0 4 0 ( 5 ) 0 . 0 2 4 ( 4 ) 0 . 0 2 3 ( 4 ) 0 . 0 6 2 ( 7 ) 0 . 0 5 3 ( 6 ) 0 . 0 8 3 ( 9 ) 0 . 0 4 1 ( 4 ) 0 . 0 3 7 ( 4 ) 0 . 0 2 1 ( 3 ) 0 . 0 2 1 ( 3 ) 0 . 0 1 8 ( 5 ) 0 . 0 2 2 ( 3 ) 0 . 0 2 2 ( 3 ) 0 . 0 2 2 ( 3 ) 0 . 0 3 5 ( 5 ) 0 . 0 2 5 ( 3 ) 0 . 0 5 2 ( 1 6 ) 0 . 0 8 8 ( 1 2 ) 0 . 0 9 0 ( 1 4 ) 0 . 1 8 8 ( 2 1 ) 0 . 0 5 9 ( 1 1 ) 0 . 0 7 0 ( 1 0 ) 0 . 1 4 1 ( 1 4 ) 0 . 1 0 1 ( 1 0 ) 0 . 1 0 5 ( 1 3 ) 0 . 2 1 4 ( 2 1 ) 0 . 0 5 6 ( 7 ) 0 . 0 8 6 ( 5 ) 0 . 2 2 7 ( 1 1 ) 2 9 7 0 . 0 0 0 ( 3 ) 0 . 0 1 0 ( 4 ) 0 . 0 0 8 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 1 5 ( 4 ) 0 . 0 0 7 ( 6 ) 0 . 0 2 9 ( 6 ) 0 . 0 1 2 ( 4 ) 0 . 0 0 5 ( 4 ) 0 . 0 0 3 ( 5 ) 0 . 0 1 7 ( 5 ) 0 . 0 0 6 ( 5 ) 0 . 0 2 0 ( 6 ) 0 . 0 1 2 ( 3 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 2 ( 2 ) 0 . 0 1 2 ( 1 5 ) 0 . 0 0 5 ( 1 1 ) 0 . 0 1 7 ( 9 ) 0 . 0 0 1 ( 1 3 ) 0 . 0 1 3 ( 1 7 ) 0 . 0 0 8 ( 8 ) 0 . 0 1 7 ( 1 0 ) 0 . 0 1 6 ( 7 ) 0 . 0 3 1 ( 1 3 ) 0 . 0 2 2 ( 9 ) 0 . 0 0 8 ( 5 ) 0 . 0 0 3 ( 3 ) 0 . 0 4 8 ( 6 ) 0 . 0 0 5 ( 4 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 8 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 7 ( 4 ) 0 . 0 1 1 ( 5 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 6 ( 3 ) 0 . 0 1 1 ( 3 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 9 ( 7 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 6 ( 4 ) 0 . 0 1 0 ( 5 ) 0 . 0 1 5 ( 4 ) 0 . 0 2 7 ( 8 ) 0 . 0 0 4 ( 3 ) 0 . 0 0 0 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 6 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 2 ( 1 2 ) 0 . 0 1 0 ( 8 ) 0 . 0 0 3 ( 1 4 ) 0 . 0 0 4 ( 1 1 ) 0 . 0 2 5 ( 1 0 ) 0 . 0 1 0 ( 8 ) - 0 . 0 0 5 ( 8 ) 0 . 0 2 8 ( 7 ) 0 . 0 1 0 ( 1 0 ) 0 . 0 1 3 ( 1 1 ) - 0 . 0 0 2 ( 6 ) 0 . 0 0 3 ( 4 ) 0 . 0 6 8 ( 7 ) 0 . 0 0 9 ( 4 ) 0 . 0 1 6 ( 5 ) 0 . 0 1 6 ( 4 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 7 ( 3 ) - 0 . 0 0 6 ( 4 ) 0 . 0 1 1 ( 4 ) 0 . 0 0 5 ( 4 ) 0 . 0 2 3 ( 6 ) 0 . 0 2 5 ( 5 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 8 ( 4 ) 0 . 0 0 2 ( 6 ) 0 . 0 1 9 ( 5 ) 0 . 0 0 1 ( 4 ) 0 . 0 1 8 ( 7 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 5 ( 3 ) 0 . 0 1 6 ( 1 5 ) 0 . 0 1 6 ( 1 1 ) 0 . 0 0 7 ( 1 1 ) 0 . 0 1 5 ( 9 ) 0 . 0 3 6 ( 1 9 ) 0 . 0 0 7 ( 8 ) - 0 . 0 2 6 ( 7 ) 0 . 0 0 2 ( 6 ) 0 . 0 0 5 ( 1 3 ) 0 . 0 0 1 ( 6 ) 0 . 0 0 4 ( 6 ) 0 . 0 3 1 ( 4 ) 0 . 0 3 0 ( 5 ) T a b l e A 6 c o n t i n u e d . F 3 0 . 1 0 8 ( 9 ) 0 . 1 4 0 ( 1 3 ) 0 . 2 8 7 ( 2 1 ) - 0 . 0 5 3 ( 1 2 ) - 0 . 0 9 3 ( 1 0 ) 0 . 0 0 9 ( 8 ) F 4 0 . 2 6 1 ( 1 5 ) 0 . 2 1 6 ( 1 3 ) 0 . 0 6 5 ( 6 ) 0 . 0 0 5 ( 6 ) 0 . 0 1 3 ( 7 ) 0 . 1 5 7 ( 1 2 ) T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : - 2 n 2 [ h 2 a * 2 U 1 1 + . . . + 2 h k a * b * U 1 2 ] 2 9 8 T a b l e A 6 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s ( x 1 0 4 ) a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) H 1 1 0 . 6 7 8 4 ( 9 4 ) 0 . 2 8 1 6 ( 3 9 ) - 0 . 2 7 1 2 ( 5 1 ) 0 . 0 4 9 1 H 1 3 0 . 2 4 0 3 ( 7 3 ) 0 . 2 8 1 5 ( 3 3 ) - 0 . 0 5 3 4 ( 4 2 ) 0 . 0 3 5 1 H 1 4 0 . 0 8 9 6 ( 7 ) 0 . 3 4 5 2 ( 4 ) - 0 . 0 4 6 0 ( 4 ) 0 . 0 4 4 1 H 1 6 A 0 . 3 1 1 5 ( 8 ) 0 . 4 3 6 7 ( 3 ) 0 . 0 7 9 8 ( 4 ) 0 . 0 4 7 1 H 1 8 0 . 1 5 8 9 ( 7 ) 0 . 1 4 9 0 ( 3 ) 0 . 0 8 2 1 ( 4 ) 0 . 0 4 3 1 H 1 9 A 0 . 2 1 3 5 ( 8 ) 0 . 0 9 4 3 ( 4 ) 0 . 1 7 6 7 ( 5 ) 0 . 0 5 1 1 H 2 0 . 4 6 9 4 ( 8 2 ) 0 . 2 8 1 8 ( 3 8 ) - 0 . 0 7 9 9 ( 4 5 ) 0 . 0 2 9 1 H 2 0 0 . 4 6 5 9 ( 8 2 ) 0 . 3 7 8 1 ( 3 6 ) 0 . 0 6 0 5 ( 4 5 ) 0 . 0 3 9 1 H 2 1 0 . 3 0 9 2 ( 7 3 ) 0 . 2 0 9 5 ( 3 4 ) 0 . 0 4 1 4 ( 4 4 ) 0 . 0 3 4 1 H 2 2 0 . 8 2 6 8 ( 5 4 ) 0 . 2 4 6 6 ( 9 3 ) 0 . 1 6 6 4 ( 3 0 ) 0 . 0 3 6 1 H 2 3 0 . 9 0 6 7 ( 8 5 ) 0 . 1 9 9 8 ( 3 9 ) 0 . 2 6 5 9 ( 4 7 ) 0 . 0 4 7 1 H 2 4 0 . 7 8 8 2 ( 8 8 ) 0 . 1 3 3 0 ( 4 2 ) 0 . 3 2 0 1 ( 5 0 ) 0 . 0 5 1 1 H 2 5 0 . 8 9 2 5 ( 8 2 ) 0 . 2 8 0 1 ( 3 6 ) - 0 . 1 1 2 5 ( 4 7 ) 0 . 0 4 2 1 H 2 7 0 . 9 5 4 1 ( 7 5 ) 0 . 1 4 1 2 ( 3 5 ) 0 . 0 1 2 1 ( 4 3 ) 0 . 0 3 9 1 H 2 8 A 0 . 6 9 2 4 ( 8 ) 0 . 3 8 0 6 ( 4 ) - 0 . 0 1 7 7 ( 5 ) 0 . 0 4 4 1 H 2 9 0 . 7 5 0 3 ( 8 3 ) 0 . 3 4 4 0 ( 4 1 ) 0 . 1 7 8 2 ( 4 7 ) 0 . 0 4 4 1 H 3 0 . 8 6 0 6 ( 7 1 ) 0 . 3 0 3 7 ( 3 4 ) 0 . 0 1 7 0 ( 4 0 ) 0 . 0 2 9 1 H 3 0 0 . 7 2 4 8 ( 9 7 ) 0 . 4 3 0 5 ( 4 3 ) 0 . 2 0 4 0 ( 5 6 ) 0 . 0 6 0 1 H 3 1 A 0 . 3 6 3 5 ( 8 ) 0 . 0 2 0 5 ( 4 ) - 0 . 0 4 2 4 ( 5 ) 0 . 0 6 4 1 H 3 1 B 0 . 2 6 9 8 ( 8 ) 0 . 0 5 8 2 ( 4 ) - 0 . 0 0 7 9 ( 5 ) 0 . 0 6 4 1 H 3 1 C 0 . 3 6 4 3 ( 8 ) . 0 . 0 2 3 3 ( 4 ) 0 . 0 3 8 0 ( 5 ) 0 . 0 6 4 1 H 3 3 0 . 6 9 0 5 ( 9 ) 0 . 4 7 1 7 ( 4 ) 0 . 0 0 9 4 ( 5 ) 0 . 0 5 5 1 H 3 5 1 . 1 1 2 3 ( 8 3 ) 0 . 1 2 6 8 ( 3 9 ) - 0 . 0 5 9 9 ( 4 6 ) 0 . 0 4 1 1 H 3 7 1 . 0 5 6 4 ( 7 ) 0 . 2 6 0 0 ( 4 ) - 0 . 1 6 7 3 ( 4 ) 0 . 0 4 6 1 H 3 8 A 0 . 4 0 7 0 ( 7 ) 0 . 1 0 3 7 ( 4 ) 0 . 2 3 3 3 ( 5 ) 0 . 0 4 6 1 H 3 9 A 0 . 1 0 4 9 ( 1 4 ) 0 . 4 6 7 6 ( 5 ) 0 . 0 5 4 5 ( 8 ) 0 . 0 9 5 1 H 3 9 8 0 . 0 1 2 8 ( 1 4 ) 0 . 4 1 8 5 ( 5 ) 0 . 0 4 7 9 ( 8 ) 0 . 0 9 5 1 H 3 9 C 0 . 0 4 5 2 ( 1 4 ) 0 . 4 5 0 5 ( 5 ) - 0 . 0 1 8 0 ( 8 ) 0 . 0 9 5 1 T a b l e A 6 c o n t i n u e d . H 4 0 A H 4 0 B H 4 0 C H 4 1 H 4 3 A H 4 3 B H 4 3 C H 4 4 A H 4 4 B H 4 4 C H 4 5 A H 4 5 B H 4 5 C H 4 6 A H 4 6 B H 4 6 C H 4 8 A H 4 8 B H 4 8 C H 4 8 D H 4 8 E H 4 8 F H 5 H 6 H 8 0 . 4 3 7 9 ( 9 ) 0 . 3 1 1 3 ( 9 ) 0 . 3 5 9 2 ( 9 ) 0 . 5 1 3 0 ( 8 2 ) 0 . 5 5 5 8 ( 9 ) 0 . 6 8 0 1 ( 9 ) 0 . 5 5 5 4 ( 9 ) 0 . 7 9 8 8 ( 1 0 ) 0 . 9 2 6 9 ( 1 0 ) 0 . 8 5 1 1 ( 1 0 ) 1 . 2 4 8 3 ( 8 ) 1 . 2 7 2 9 ( 8 ) 1 . 1 8 8 6 ( 8 ) 0 . 7 2 6 5 ( 1 4 ) 0 . 6 3 9 6 ( 1 4 ) 0 . 7 8 2 2 ( 1 4 ) 0 . 8 2 7 2 ( 6 0 ) 0 . 9 0 8 9 ( 6 0 ) 0 . 7 8 1 5 ( 6 0 ) 0 . 8 5 1 2 ( 6 0 ) 0 . 7 6 9 5 ( 6 0 ) 0 . 8 9 6 9 ( 6 0 ) 0 . 6 6 9 9 ( 8 1 ) 0 . 4 9 7 3 ( 7 ) 0 . 5 9 7 6 ( 7 9 ) 0 . 3 6 5 0 ( 5 ) 0 . 3 3 9 7 ( 5 ) 0 . 3 9 2 5 ( 5 ) 0 . 1 3 2 6 ( 4 0 ) 0 . 1 7 0 0 ( 5 ) 0 . 2 0 2 2 ( 5 ) 0 . 2 3 3 9 ( 5 ) 0 . 0 5 0 8 ( 4 ) 0 . 0 6 7 8 ( 4 ) 0 . 0 2 1 3 ( 4 ) 0 . 1 4 2 9 ( 4 ) 0 . 2 0 5 3 ( 4 ) 0 . 1 7 3 4 ( 4 ) 0 . 5 2 8 1 ( 4 ) 0 . 5 3 9 7 ( 4 ) 0 . 5 4 1 2 ( 4 ) 0 . 0 0 8 9 ( 2 5 ) 0 . 0 5 8 1 ( 2 5 ) 0 . 0 4 7 7 ( 2 5 ) 0 . 0 6 7 6 ( 2 5 ) 0 . 0 1 8 4 ( 2 5 ) 0 . 0 2 8 7 ( 2 5 ) 0 . 2 9 0 6 ( 3 8 ) 0 . 1 4 4 1 ( 3 ) 0 . 1 1 3 1 ( 3 8 ) 0 . 2 9 3 9 ( 6 ) 0 . 2 6 7 6 ( 6 ) 0 . 2 3 2 7 ( 6 ) 0 . 2 7 1 1 ( 4 7 ) 0 . 3 8 0 7 ( 4 ) 0 . 3 7 6 5 ( 4 ) 0 . 3 8 6 6 ( 4 ) 0 . 1 9 3 0 ( 6 ) 0 . 1 6 8 7 ( 6 ) 0 . 1 3 0 1 ( 6 ) 0 . 1 4 0 7 ( 5 ) 0 . 1 5 0 8 ( 5 ) 0 . 2 0 5 6 ( 5 ) 0 . 1 7 9 1 ( 7 ) 0 . 1 1 3 0 ( 7 ) 0 . 1 0 9 1 ( 7 ) 0 . 1 3 7 8 ( 3 0 ) 0 . 1 5 8 0 ( 3 0 ) 0 . 1 9 8 4 ( 3 0 ) 0 . 1 9 1 7 ( 3 0 ) 0 . 1 7 1 5 ( 3 0 ) 0 . 1 3 1 1 ( 3 0 ) 0 . 1 5 9 1 ( 4 5 ) 0 . 1 5 5 2 ( 4 ) 0 . 2 9 0 8 ( 4 5 ) 0 . 0 9 0 0 . 0 9 0 0 . 0 9 0 0 . 0 4 5 0 . 0 8 2 0 . 0 8 2 0 . 0 8 2 0 . 0 9 0 0 . 0 9 0 0 . 0 9 0 0 . 0 7 3 0 . 0 7 3 0 . 0 7 3 0 . 1 1 9 0 . 1 1 9 0 . 1 1 9 0 . 8 7 3 0 . 8 7 3 0 . 8 7 3 0 . 8 7 3 0 . 8 7 3 0 . 8 7 3 0 . 0 4 0 0 . 0 3 9 0 . 0 4 5 1 0 . 5 3 5 ( 1 0 ) 0 . 5 3 5 ( 1 0 ) 0 . 5 3 5 ( 1 0 ) 0 . 5 3 5 ( 1 0 ) 0 . 5 3 5 ( 1 0 ) 0 . 5 3 5 ( 1 0 ) 1 1 1 S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 3 0 0 T a b l e A 6 c o n t i n u e d . T o r s i o n a n g l e s [ 0 ] . N 6 N 9 N 5 N 1 0 N 1 N 6 N 9 N 5 N 1 0 N 1 N 6 N 9 N 5 N 1 0 N 1 N 6 N 9 N 5 N 1 0 N 1 N 6 N 9 N 5 N 1 0 N 1 C 6 N 6 C 5 N 6 N 7 C 3 8 N 7 C 3 8 N 8 C 1 C 4 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l C 4 C 4 C 4 C 4 C 1 C 1 C 1 C 1 C 7 C 7 C 5 R h 2 C 1 1 N 4 N 4 N 4 N 4 N 4 N 3 N 3 N 3 N 3 N 3 N 7 N 7 N 7 N 7 N 7 N 8 N 8 N 8 N 8 N 8 N 2 N 2 N 2 N 2 N 2 C 1 1 C 1 1 C 4 1 C 4 1 N 8 N 8 C 8 C 8 C 2 4 C 2 4 C 4 2 - 8 0 . 3 ( 5 ) 1 0 1 . 0 ( 5 ) 8 . 5 ( 5 ) 2 7 1 . 6 ( 4 ) - 5 0 . 7 ( 5 5 ) 7 . 8 ( 6 ) 2 7 1 . 0 ( 6 ) 9 6 . 6 ( 7 ) - 8 3 . 5 ( 7 ) 3 7 . 4 ( 6 2 ) 1 0 4 . 1 ( 4 ) - 7 4 . 7 ( 5 ) 2 6 7 . 1 ( 5 ) 1 2 . 8 ( 5 ) 1 3 3 . 7 ( 6 0 ) 2 7 6 . 6 ( 7 ) 4 . 7 ( 7 ) - 8 7 . 8 ( 6 ) 9 2 . 1 ( 6 ) 2 4 7 . 0 ( 5 3 ) 1 3 0 . 1 ( 2 1 ) - 4 8 . 7 ( 2 1 ) 2 4 1 . 2 ( 2 1 ) 3 8 . 7 ( 2 1 ) 1 5 9 . 7 ( 6 6 ) 2 . 0 ( 2 1 ) 2 7 7 . 8 ( 1 4 ) 2 . 9 ( 1 4 ) 1 7 4 . 9 ( 7 ) 2 . 2 ( 1 1 ) 1 7 8 . 0 ( 8 ) 1 7 9 . 4 ( 8 ) 0 . 5 ( 1 4 ) 1 . 4 ( 1 2 ) 1 7 9 . 9 ( 8 ) 5 . 5 ( 3 6 ) 3 0 1 T a b l e A 6 c o n t i n u e d . C 2 0 C 1 2 C 1 3 C 1 4 1 . 1 ( 1 1 ) N 3 C 1 2 C 1 3 C 1 4 2 7 9 . 2 ( 7 ) C 1 2 C 1 3 C 1 4 C 1 5 2 . 2 ( 1 2 ) C 1 3 C 1 4 C 1 5 C 1 6 0 . 9 ( 1 2 ) C 1 3 C 1 4 C 1 5 C 3 9 2 7 3 . 7 ( 1 0 ) C 1 4 C 1 5 C 1 6 C 2 0 1 . 4 ( 1 3 ) C 3 9 C 1 5 C 1 6 C 2 0 1 7 5 . 9 ( 1 0 ) C 2 1 C 1 8 C 1 9 C 3 8 0 . 8 ( 1 3 ) C 1 5 C 1 6 C 2 0 C 1 2 2 . 5 ( 1 3 ) C 1 3 C 1 2 C 2 0 C 1 6 1 . 2 ( 1 1 ) N 3 C 1 2 C 2 0 C 1 6 2 7 8 . 5 ( 7 ) C 1 9 C 1 8 C 2 1 N 7 0 . 5 ( 1 2 ) N 8 C 2 2 C 2 3 C 2 4 0 . 3 ( 1 3 ) C 2 2 C 2 3 C 2 4 C 8 1 . 6 ( 1 4 ) C 7 C 8 C 2 4 C 2 3 2 . 2 ( 1 4 ) C 3 7 C 2 5 C 2 6 C 2 7 0 . 6 ( 1 4 ) C 3 7 C 2 5 C 2 6 N 5 1 7 8 . 7 ( 9 ) C 2 5 C 2 6 C 2 7 C 3 5 0 . 4 ( 1 3 ) N 5 C 2 6 C 2 7 C 3 5 - 1 7 7 . 8 ( 8 ) C 2 9 C 9 C 2 8 C 3 3 0 . 4 ( 1 6 ) N 4 C 9 C 2 8 C 3 3 1 7 6 . 4 ( 1 0 ) C 2 8 C 9 C 2 9 C 3 0 0 . 6 ( 1 6 ) N 4 C 9 C 2 9 C 3 0 2 7 7 . 3 ( 1 0 ) C 9 C 2 9 C 3 0 C 3 4 1 . 9 ( 1 7 ) C 9 C 2 8 C 3 3 C 3 4 0 . 0 ( 1 6 ) C 2 8 C 3 3 C 3 4 C 3 0 1 . 2 ( 1 5 ) C 2 8 C 3 3 C 3 4 C 4 6 1 7 9 . 0 ( 1 1 ) C 2 9 C 3 0 C 3 4 C 3 3 2 . 2 ( 1 7 ) C 2 9 C 3 0 C 3 4 C 4 6 2 7 9 . 9 ( 1 1 ) C 2 6 C 2 7 C 3 5 C 3 6 2 . 0 ( 1 3 ) C 2 7 C 3 5 C 3 6 C 3 7 0 . 7 ( 1 2 ) C 2 7 C 3 5 C 3 6 C 4 5 1 7 9 . 4 ( 8 ) C 3 5 C 3 6 C 3 7 C 2 5 0 . 3 ( 1 3 ) C 4 5 C 3 6 C 3 7 C 2 5 - 1 7 8 . 4 ( 1 0 ) C 2 6 C 2 5 C 3 7 C 3 6 0 . 9 ( 1 5 ) C 1 8 C 1 9 C 3 8 C 1 2 . 3 ( 1 4 ) N 7 C 1 C 3 8 C 1 9 0 . 5 ( 1 4 ) C 7 C 1 C 3 8 C 1 9 2 7 9 . 7 ( 8 ) 3 0 2 T a b l e A 6 c o n t i n u e d . C 4 C 5 C 5 C 6 C 6 C 4 8 A N 6 N 9 N 5 N 1 0 R h 2 C 4 0 N 4 N 3 N 7 N 8 R h l N 6 N 6 C 2 0 C 1 3 C 2 0 C 1 3 N 4 N 7 N 8 N 2 R h l N 4 N 7 N 8 N 2 R h l N 5 N 5 C 2 8 C 2 9 C 2 8 C 6 C 1 1 C 1 1 C 4 1 C 4 1 C 4 7 b R h l R h l R h l R h l R h l C 1 7 R h 2 R h 2 R h 2 R h 2 C 2 C 2 C 1 2 C 1 2 C 1 2 C 1 2 C 4 1 C 4 2 C 4 2 C 4 2 C 4 2 N 1 N 1 N 1 N 1 N 1 N 1 N 2 N 2 N 2 N 2 N 2 N 2 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 4 N 4 N 4 N 4 N 4 C 4 2 C 4 1 C 4 3 C 1 1 C 4 3 R h l C 4 7 b C 4 7 b C 4 7 b C 4 7 b C 4 7 b C 1 7 C 1 7 C 1 7 C 1 7 C 1 7 C 1 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 1 2 C 1 2 C 1 2 C 1 2 C 1 2 C 9 C 3 C 3 1 . 1 ( 1 2 ) - 6 . 2 ( 3 4 ) 1 7 5 . 0 ( 2 1 ) 2 . 8 ( 1 7 ) 2 7 8 . 5 ( 8 ) 2 6 0 . 3 ( 1 3 0 ) - 1 6 7 . 0 ( 7 8 ) 1 1 . 7 ( 7 9 ) 1 0 4 . 4 ( 7 9 ) - 7 5 . 4 ( 7 8 ) 1 6 3 . 5 ( 8 7 ) 2 1 8 . 6 ( 2 6 2 ) 1 5 1 . 9 ( 9 6 ) 6 3 . 2 ( 1 0 5 ) - 3 2 . 6 ( 1 0 2 ) 2 1 2 . 3 ( 9 6 ) - 5 8 . 7 ( 1 1 1 ) 2 7 1 . 2 ( 7 ) 8 . 6 ( 1 4 ) 2 2 8 . 5 ( 8 ) 5 1 . 9 ( 9 ) 5 1 . 7 ( 1 3 ) 2 2 7 . 9 ( 1 1 ) 7 4 . 8 ( 1 3 ) 2 0 2 . 1 ( 7 ) - 7 7 . 9 ( 8 8 ) 1 7 3 . 7 ( 6 ) 2 0 . 6 ( 1 0 ) 2 0 5 . 4 ( 6 ) 7 7 . 7 ( 1 4 ) 1 0 1 . 9 ( 9 6 ) 0 . 5 ( 1 4 ) 1 6 9 . 2 ( 6 ) 2 7 3 . 0 ( 1 1 ) 2 . 1 ( 1 7 ) 6 2 . 5 ( 1 4 ) 2 2 0 . 9 ( 1 1 ) 2 0 9 . 3 ( 1 1 ) 3 0 3 T a b l e A 6 c o n t i n u e d . C 2 9 N 3 N 7 N 8 N 2 R h l N 3 N 7 N 8 N 2 R h l N 4 N 4 C 2 7 C 2 5 C 2 7 C 2 5 N 6 N 9 N 1 0 N 1 R h 2 N 6 N 9 N 1 0 N 1 R h 2 N 3 N 3 C 5 C 6 C 5 C 6 N 9 N 5 N 1 0 N 1 R h 2 C 9 C 2 6 C 2 6 C 2 6 C 2 6 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l C 2 C 2 C 4 C 4 C 4 C 4 R h l R h l R h l R h l R h l N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 6 N 6 N 6 N 6 N 6 . N 6 N 6 N 6 N 6 N 6 N 6 C 3 C 3 C 3 C 3 C 3 C 9 C 9 C 9 C 9 C 9 C 2 6 R h l C 3 C 3 R h l R h l C 3 C 3 C 3 C 3 C 3 C 2 6 C 2 6 C 2 6 C 2 6 C 2 6 C 4 R h l C 2 C 2 R h l R h l C 2 C 2 C 2 C 2 C 2 6 7 . 2 ( 1 3 ) 9 4 . 0 ( 1 2 ) 4 9 . 8 ( 7 7 ) 8 3 . 8 ( 1 0 ) 1 7 0 . 5 ( 8 ) - 6 . 9 ( 9 ) 7 7 . 4 ( 9 ) 2 3 8 . 8 ( 7 9 ) 2 0 4 . 8 ( 1 2 ) - 1 8 . 1 ( 1 0 ) 1 6 4 . 5 ( 7 ) 2 7 8 . 3 ( 9 ) 1 2 . 2 ( 1 6 ) 1 2 9 . 4 ( 9 ) - 4 8 . 8 ( 1 4 ) - 6 1 . 2 ( 1 0 ) 1 2 0 . 6 ( 9 ) 7 1 . 4 ( 8 ) 2 0 9 . 2 ( 8 ) 1 6 9 . 7 ( 6 6 ) 1 6 5 . 2 ( 8 ) 2 2 . 9 ( 8 ) - 9 7 . 7 ( 7 ) 8 1 . 7 ( 7 ) 0 . 6 ( 7 5 ) - 4 . 0 ( 7 ) 1 7 7 . 9 ( 8 ) 2 7 6 . 8 ( 7 ) 1 . 5 ( 1 1 ) 6 3 . 9 ( 1 2 ) 2 1 2 . 9 ( 8 ) 2 1 4 . 4 ( 1 0 ) 6 8 . 8 ( 8 ) 1 1 2 . 4 ( 1 3 6 ) - 9 3 . 4 ( 6 ) 8 9 . 1 ( 6 ) 1 7 3 . 6 ( 6 ) 2 5 ( 7 ) 3 0 4 T a b l e A 6 c o n t i n u e d . N 9 N 5 N 1 0 N 1 R h 2 C 1 8 C 1 8 C 3 8 C 7 C 3 8 C 7 N 4 N 3 N 8 N 2 R h l N 4 N 3 N 8 N 2 R h l C 2 3 C 2 3 C 8 C 1 C 8 C 1 N 4 N 3 N 7 N 2 R h l N 4 N 3 N 7 N 2 R h l C 4 4 R h l R h l R h l R h l R h l C 2 1 C 2 1 C 1 C 1 C 1 C 1 N 6 N 6 N 6 N 6 N 6 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 9 C 4 C 4 C 4 C 4 C 4 C 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 1 C 1 C 1 C 1 C 1 C 7 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 7 C 7 C 7 C 7 C 7 R h l - 6 9 . 4 ( 1 3 7 ) 8 4 . 7 ( 6 ) - 9 2 . 7 ( 5 ) - 8 . 3 ( 5 ) 1 7 0 . 6 ( 7 ) 2 . 3 ( 1 1 ) 2 7 8 . 4 ( 1 0 ) 0 . 8 ( 1 2 ) 2 7 9 . 1 ( 7 ) 1 7 8 . 3 ( 1 0 ) 2 . 6 ( 1 2 ) 2 4 5 . 2 ( 7 3 ) - l . 6 ( l 4 ) 2 7 9 . 6 ( 6 ) 9 3 . 5 ( 6 ) - 8 8 . 7 ( 1 0 ) 3 7 . 6 ( 8 2 ) - l 7 8 . 8 ( 7 ) 3 . 1 ( 1 0 ) - 8 3 . 7 ( 8 ) 9 4 0 ( 5 ) 0 . 5 ( 1 2 ) 1 7 5 . 7 ( 1 0 ) 0 . 1 ( 1 1 ) 2 7 8 . 6 ( 7 ) 2 7 6 . 6 ( 1 0 ) 4 . 8 ( 1 2 ) 2 . 3 ( 1 4 ) 1 5 4 . 8 ( 8 6 ) 1 7 9 . 3 ( 6 ) - 9 6 . 4 ( 6 ) 8 7 . 7 ( 1 1 ) 1 7 8 . 6 ( 7 ) 2 8 . 9 ( 9 5 ) - 4 . 3 ( 1 0 ) 7 9 . 9 ( 1 0 ) - 9 6 . 0 ( 5 ) - 4 1 . 3 ( 5 8 8 ) 3 0 5 T a b l e A 6 c o n t i n u e d . N 6 N 5 N 1 0 N 1 R h 2 C 3 1 N 6 N 9 N 5 N 1 R h 2 R h l R h l R h l R h l R h l C 1 0 R h l R h l R h l R h l R h l N 9 N 9 N 9 N 9 N 9 N 1 0 N 1 0 N 1 0 N 1 0 N 1 0 N 1 0 C 3 2 C 3 2 C 3 2 C 3 2 C 3 2 R h l C 1 0 C 1 0 C 1 0 C 1 0 C 1 0 3 6 . 7 ( 2 0 7 ) 2 1 7 . 4 ( 9 5 ) 6 0 . 0 ( 9 5 ) 2 4 . 5 ( 9 5 ) 1 5 6 . 5 ( 9 5 ) 1 0 1 . 2 ( 1 0 0 0 ) 1 3 2 . 7 ( 3 6 ) - 4 6 . 7 ( 3 6 ) 3 4 . 5 ( 8 9 ) 3 9 . 1 ( 3 6 ) 2 4 2 . 8 ( 3 6 ) 3 0 6 T a b l e A 6 c o n t i n u e d . N 9 N 5 N 1 0 N 1 R h 2 C l 8 C 1 8 C 3 8 C 7 C 3 8 C 7 N 4 N 3 N 8 N 2 R h l N 4 N 3 N 8 N 2 R h l C 2 3 C 2 3 C 8 C 1 C 8 C 1 N 4 N 3 N 7 N 2 R h l N 4 N 3 N 7 N 2 R h l C 4 4 R h l R h l R h l R h l R h l C 2 1 C 2 1 C 1 C 1 C 1 C 1 N 6 N 6 N 6 N 6 N 6 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 9 C 4 C 4 C 4 C 4 C 4 C 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 1 C 1 C 1 C 1 C 1 C 7 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 7 C 7 C 7 C 7 C 7 R h l - 6 9 . 4 ( 1 3 7 ) 8 4 . 7 ( 6 ) - 9 2 . 7 ( 5 ) - 8 . 3 ( 5 ) 1 7 0 . 6 ( 7 ) 2 3 ( 1 1 ) 2 7 8 . 4 ( 1 0 ) 0 . 8 ( 1 2 ) 2 7 9 . 1 ( 7 ) 1 7 8 . 3 ( 1 0 ) 2 . 6 ( 1 2 ) 2 4 5 . 2 ( 7 3 ) 2 . 6 ( 1 4 ) 2 7 9 . 6 ( 6 ) 9 3 . 5 ( 6 ) - 8 8 . 7 ( 1 0 ) 3 7 . 6 ( 8 2 ) 2 7 8 . 8 ( 7 ) 3 . 1 ( 1 0 ) - 8 3 . 7 ( 8 ) 9 4 . 0 ( 5 ) 0 . 5 ( 1 2 ) 1 7 5 . 7 ( 1 0 ) 0 . 1 ( 1 1 ) 2 7 8 . 6 ( 7 ) 2 7 6 . 6 ( 1 0 ) 4 . 8 ( 1 2 ) 2 . 3 ( 1 4 ) 1 5 4 . 8 ( 8 6 ) 1 7 9 . 3 ( 6 ) - 9 6 . 4 ( 6 ) 8 7 . 7 ( 1 1 ) 1 7 8 . 6 ( 7 ) 2 8 . 9 ( 9 5 ) - 4 . 3 ( 1 0 ) 7 9 . 9 ( 1 0 ) - 9 6 . 0 ( 5 ) - 4 1 . 3 ( 5 8 8 ) 3 0 7 T a b l e A 7 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ R h 2 ( D T o l F ) 2 ( b P Y ) 2 ( C H s C N ) l [ B F 4 1 2 ( 8 a ) - I d e n t i fi c a t i o n c o d e E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z p c a l c [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( C H 3 C N ) ] [ B F 4 1 2 C 5 2 H 4 9 B 2 F 8 N 9 R h 2 1 1 7 9 . 4 4 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A m o n o c l i n i c P 2 1 / c a = 1 9 . 4 5 3 4 ( 4 ) A b = 1 3 . 8 2 9 8 ( 3 ) A c = 1 9 . 8 2 1 8 ( 5 ) A a = 9 0 0 B = 1 0 9 . 1 8 9 ( 1 ) ° y = 9 0 0 5 0 3 6 . 5 ( 2 ) A 3 4 1 . 5 5 5 g / c m 3 3 0 8 T a b l e A 7 c o n t i n u e d . 1 1 F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f — fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 0 . 7 3 1 c m ' 3 2 3 8 4 0 . 1 3 x 0 . 1 3 x 0 . 1 0 1 1 1 1 1 1 3 1 . 8 3 t o 2 8 2 9 " — 2 2 < = h < = 2 5 , - 1 8 < = k < = 1 7 , - 2 6 < = l < = 2 5 3 6 5 4 9 1 1 8 3 8 [ R ( i n t ) = 0 . 0 7 6 7 ] F u l l - m a t r i x l e a s t - s q u a r e s o n F 2 1 1 8 3 8 / 0 / 6 6 8 1 . 0 2 4 R 1 = 0 . 0 6 0 0 , w R 2 = 0 . 0 8 9 1 R 1 = 0 . 1 2 6 8 , w R 2 = 0 . 1 0 5 2 0 . 4 9 2 a n d 0 . 5 2 0 6 7 A 3 3 0 9 T a b l e A 7 c o n t i n u e d . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . B 1 0 . 4 5 9 3 ( 4 ) 0 . 6 0 9 7 ( 6 ) 0 . 1 5 8 9 ( 3 ) 0 . 0 5 1 ( 2 ) 1 B Z 0 . 1 4 2 2 ( 4 ) 0 . 4 2 9 1 ( 5 ) 0 . 1 6 2 2 ( 4 ) 0 . 0 5 1 ( 2 ) 1 C 1 0 . 3 2 5 3 ( 3 ) 0 . 2 3 5 3 ( 4 ) 0 . 4 7 4 7 ( 3 ) 0 . 0 4 5 4 ( 1 4 ) 1 C 1 0 0 . 1 5 6 1 ( 3 ) - 0 . 1 8 0 7 ( 4 ) 0 . 2 7 5 7 ( 3 ) 0 . 0 4 1 9 ( 1 4 ) 1 C 1 1 0 . 1 2 7 6 ( 3 ) - 0 . 2 6 4 3 ( 4 ) 0 . 2 9 4 3 ( 3 ) 0 . 0 4 4 5 ( 1 4 ) 1 C 1 2 0 . 3 9 4 9 ( 3 ) 0 . 1 5 7 7 ( 3 ) 0 . 0 4 2 9 ( 3 ) 0 . 0 4 1 3 ( 1 3 ) 1 C 1 3 0 . 4 7 8 0 ( 3 ) — 0 . 2 8 9 3 ( 4 ) 0 . 3 9 5 9 ( 3 ) 0 . 0 3 7 9 ( 1 3 ) 1 C 1 4 0 . 4 6 7 3 ( 3 ) - 0 . 1 7 5 9 ( 4 ) 0 . 4 8 2 2 ( 3 ) 0 . 0 4 0 3 ( 1 3 ) 1 C 1 5 0 . 1 6 9 3 ( 3 ) - 0 . 3 2 7 1 ( 3 ) 0 . 3 4 4 5 ( 3 ) 0 . 0 3 3 6 ( 1 2 ) 1 C 1 6 0 . 2 9 1 5 ( 2 ) 0 . 1 6 8 8 ( 3 ) 0 . 3 5 6 1 ( 2 ) 0 . 0 2 6 1 ( 1 1 ) 1 C 1 7 0 . 1 4 6 6 ( 3 ) 0 . 1 3 4 7 ( 3 ) 0 . 1 7 5 4 ( 3 ) 0 . 0 3 5 5 ( 1 2 ) 1 C 1 8 0 . 0 7 7 6 ( 3 ) 0 . 1 5 7 8 ( 4 ) 0 . 1 3 0 8 ( 3 ) 0 . 0 3 9 3 ( 1 3 ) 1 C 1 9 0 . 2 5 3 2 ( 3 ) - 0 . 0 8 2 6 ( 3 ) 0 . 0 6 1 7 ( 2 ) 0 . 0 2 9 6 ( 1 1 ) 1 C 2 0 . 2 4 1 4 ( 3 ) - 0 . 3 0 3 6 ( 4 ) 0 . 3 7 6 7 ( 3 ) 0 . 0 5 8 ( 2 ) 1 C 2 0 0 . 2 9 9 8 ( 3 ) 0 . 3 2 5 3 ( 4 ) 0 . 4 4 8 4 ( 3 ) 0 . 0 4 2 6 ( 1 4 ) 1 C 2 1 0 . 3 3 1 3 ( 3 ) - 0 . 0 8 4 3 ( 3 ) 0 . 0 7 4 2 ( 2 ) 0 . 0 3 3 4 ( 1 2 ) 1 C 2 2 0 . 3 0 9 2 ( 3 ) - 0 . 3 0 8 5 ( 4 ) 0 . 2 2 0 8 ( 3 ) 0 . 0 3 7 3 ( 1 2 ) 1 C 2 3 0 . 4 3 6 7 ( 2 ) - 0 . 1 2 7 4 ( 3 ) 0 . 3 5 9 2 ( 2 ) 0 . 0 2 8 1 ( 1 1 ) 1 C 2 4 0 . 2 0 0 7 ( 3 ) - 0 . 0 8 1 2 ( 3 ) - 0 . 0 0 6 7 ( 3 ) 0 . 0 4 2 5 ( 1 4 ) 1 C 2 5 0 . 3 0 1 9 ( 3 ) - 0 . 4 1 1 6 ( 4 ) 0 . 2 3 1 8 ( 3 ) 0 . 0 6 4 ( 2 ) 1 C 2 6 0 . 4 6 0 0 ( 2 ) 0 . 1 9 0 4 ( 3 ) 0 . 2 8 8 2 ( 2 ) 0 . 0 2 8 3 ( 1 1 ) 1 C 2 7 0 . 5 3 5 6 ( 3 ) 0 . 1 8 8 7 ( 4 ) 0 . 3 1 2 1 ( 2 ) 0 . 0 3 4 5 ( 1 2 ) 1 C 2 8 0 . 4 5 5 4 ( 2 ) - 0 . 2 1 9 3 ( 3 ) 0 . 3 4 2 9 ( 2 ) 0 . 0 3 1 3 ( 1 1 ) 1 C 2 9 0 . 5 7 4 5 ( 3 ) 0 . 2 7 4 0 ( 4 ) 0 . 3 2 6 0 ( 3 ) 0 . 0 3 9 5 ( 1 3 ) 1 C 3 0 . 2 7 0 6 ( 3 ) - 0 . 2 2 0 2 ( 4 ) 0 . 3 5 7 8 ( 3 ) 0 . 0 5 3 ( 2 ) 1 C 3 0 0 . 2 6 7 7 ( 2 ) 0 . 2 6 0 1 ( 3 ) 0 . 3 2 9 1 ( 2 ) 0 . 0 3 0 0 ( 1 l ) 1 C 3 1 0 . 1 9 5 3 ( 3 ) 0 . 1 5 3 7 ( 3 ) 0 . 0 8 4 2 ( 2 ) 0 . 0 2 9 9 ( 1 1 ) 1 3 1 0 T a b l e A 7 c o n t i n u e d . C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 C 4 8 C 4 9 C 5 C 5 0 C 5 1 C 5 2 C 6 C 7 C 8 C 9 F 1 F 2 F 3 F 4 F 4 A F 5 F 6 F 7 F 8 N 1 N 2 0 . 4 4 6 1 ( 3 ) 0 . 4 4 2 0 ( 2 ) 0 . 2 6 2 9 ( 3 ) 0 . 2 2 8 3 ( 2 ) 0 . 2 7 1 7 ( 3 ) 0 . 3 2 1 8 ( 3 ) 0 . 1 6 2 3 ( 3 ) 0 . 4 6 5 9 ( 3 ) 0 . 3 6 3 3 ( 3 ) 0 . 4 2 6 1 ( 3 ) 0 . 4 4 4 5 ( 2 ) 0 . 3 8 9 6 ( 3 ) 0 . 2 6 2 6 ( 2 ) ‘ 0 . 3 0 3 5 ( 4 ) 0 . 5 0 5 9 ( 3 ) 0 . 4 3 7 8 ( 4 ) 0 . 4 8 0 5 ( 3 ) 0 . 5 8 3 8 ( 3 ) 0 . 1 2 8 0 ( 3 ) 0 . 1 2 8 1 ( 3 ) 0 . 2 6 5 4 ( 3 ) 0 . 4 8 3 5 ( 3 ) 0 . 5 4 0 8 ( 3 ) 0 . 1 0 8 3 ( 3 ) 0 . 0 6 8 8 ( 3 ) 0 . 1 3 7 2 ( 3 ) 0 . 3 3 1 4 ( 3 ) 0 . 3 8 7 9 ( 2 ) 0 . 5 0 2 0 ( 2 ) 0 . 4 7 1 1 ( 2 ) 0 . 4 6 2 0 ( 1 1 ) 0 . 4 8 8 7 ( 7 ) 0 . 1 5 4 9 ( 2 ) 0 . 1 9 6 7 ( 2 ) 0 . 0 7 4 3 ( 2 ) 0 . 1 4 5 4 ( 2 ) 0 . 3 2 5 9 ( 2 ) 0 . 4 1 6 5 ( 2 ) 0 . 0 7 9 6 ( 3 ) 0 . 0 2 8 2 ( 3 ) 0 . 1 5 3 0 ( 3 ) 0 . 1 5 8 1 ( 3 ) 0 . 3 3 7 5 ( 4 ) 0 . 1 5 7 4 ( 4 ) 0 . 0 7 9 3 ( 3 ) 0 . 3 6 4 4 ( 3 ) 0 . 0 9 1 0 ( 3 ) 0 . 2 7 9 8 ( 3 ) 0 . 1 0 5 9 ( 4 ) 0 . 1 4 3 9 ( 3 ) 0 . 0 0 5 7 ( 3 ) 0 . 4 0 9 4 ( 4 ) 0 . 3 4 7 0 ( 4 ) 0 . 0 9 1 7 ( 4 ) 0 . 0 8 6 2 ( 4 ) 0 . 4 5 5 8 ( 4 ) 0 . 1 7 5 6 ( 3 ) 0 . 0 7 7 9 ( 3 ) 0 . 1 6 6 6 ( 3 ) 0 . 2 6 9 1 ( 4 ) 0 . 3 6 3 3 ( 4 ) 0 . 0 7 8 1 ( 4 ) 0 . 1 7 8 8 ( 3 ) 0 . 4 1 8 4 ( 4 ) 0 . 1 6 8 1 ( 3 ) 0 . 5 8 8 6 ( 3 ) 0 . 5 3 7 9 ( 3 ) 0 . 6 2 1 8 ( 3 ) 0 . 6 9 6 2 ( 9 ) 0 . 6 8 2 6 ( 1 2 ) 0 . 4 4 6 8 ( 3 ) 0 . 3 6 7 7 ( 2 ) 0 . 3 8 7 8 ( 2 ) 0 . 5 1 5 0 ( 2 ) 0 . 1 4 0 0 ( 2 ) 0 . 1 0 5 5 ( 3 ) 3 1 1 0 . 1 6 1 7 ( 3 ) 0 . 3 1 5 9 ( 2 ) 0 . 0 6 5 8 ( 2 ) 0 . 3 0 6 1 ( 2 ) 0 . 3 7 4 8 ( 3 ) 0 . 4 2 9 5 ( 2 ) 0 . 1 1 2 8 ( 2 ) 0 . 2 8 4 5 ( 3 ) 0 . 0 2 1 8 ( 3 ) 0 . 2 7 3 0 ( 2 ) 0 . 4 2 9 9 ( 2 ) 0 . 1 1 0 1 ( 3 ) 0 . 3 2 3 7 ( 2 ) 0 . 4 9 9 0 ( 3 ) 0 . 5 2 3 2 ( 3 ) 0 . 0 4 0 1 ( 3 ) 0 . 1 1 0 3 ( 3 ) 0 . 3 3 1 1 ( 3 ) 0 . 0 3 6 6 ( 3 ) 0 . 0 1 2 7 ( 3 ) 0 . 0 0 3 0 ( 3 ) 0 . 4 6 6 1 ( 3 ) 0 . 3 1 3 1 ( 3 ) 0 . 0 4 7 5 ( 3 ) 0 . 0 6 0 4 ( 3 ) 0 . 3 6 4 3 ( 3 ) 0 . 0 1 4 8 ( 3 ) 0 . 1 2 3 6 ( 2 ) 0 . 1 4 8 4 ( 2 ) 0 . 2 3 0 6 ( 2 ) 0 . 1 3 6 6 ( 1 0 ) 0 . 1 2 3 9 ( 9 ) 0 . 2 3 3 1 ( 2 ) 0 . 1 5 5 2 ( 2 ) 0 . 1 3 0 8 ( 2 ) 0 . 1 2 7 0 ( 2 ) 0 . 1 2 2 4 ( 2 ) 0 . 2 7 7 3 ( 2 ) 0 . 0 4 1 1 ( 1 3 ) 0 . 0 2 9 6 ( 1 1 ) 0 . 0 2 8 7 ( 1 1 ) 0 . 0 2 5 6 ( 1 0 ) 0 . 0 3 7 9 ( 1 3 ) 0 . 0 3 8 0 ( 1 3 ) 0 . 0 3 2 6 ( 1 1 ) 0 . 0 3 5 2 ( 1 2 ) 0 . 0 4 5 4 ( 1 5 ) 0 . 0 3 3 9 ( 1 2 ) 0 . 0 3 3 4 ( 1 2 ) 0 . 0 3 4 5 ( 1 2 ) 0 . 0 2 5 3 ( 1 1 ) 0 . 0 7 5 ( 2 ) 0 . 0 6 2 ( 2 ) 0 . 0 5 6 ( 2 ) 0 . 0 5 2 ( 2 ) 0 . 0 5 1 ( 2 ) 0 . 0 3 7 3 ( 1 3 ) 0 . 0 4 5 0 ( 1 4 ) 0 . 0 3 9 2 ( 1 3 ) 0 . 0 3 9 4 ( 1 3 ) 0 . 0 3 3 7 ( 1 2 ) 0 . 0 4 1 2 ( 1 3 ) 0 . 0 3 8 4 ( 1 3 ) 0 . 0 4 8 9 ( 1 4 ) 0 . 0 4 5 8 ( 1 5 ) 0 . 0 9 2 9 ( 1 4 ) 0 . 0 8 4 6 ( 1 2 ) 0 . 0 7 5 9 ( 1 1 ) 0 . 1 8 1 ( 1 2 ) 0 . 1 1 4 ( 7 ) 0 . 0 8 0 5 ( 1 1 ) 0 . 0 7 4 8 ( 1 1 ) 0 . 0 7 5 7 ( 1 1 ) 0 . 0 6 0 8 ( 9 ) 0 . 0 2 6 2 ( 9 ) 0 . 0 2 7 2 ( 9 ) p — A p — e p — e p — e u — ‘ p — a p — s p — a p — fi p — e p — d p — e p — e p — e p — e p — e p — e p — a p — s p — a p — a p — t p — a p — a p — o y — e fl fl y — ‘ F ‘ 0 . 5 3 0 ( 7 ) 0 . 5 3 0 ( 7 ) 1 1 1 1 l l T a b l e A 7 c o n t i n u e d . N 3 0 . 2 8 4 8 ( 2 ) 0 . 0 9 0 2 ( 2 ) 0 . 3 0 7 9 ( 2 ) 0 . 0 2 4 5 ( 9 ) N 4 0 . 2 0 5 0 ( 2 ) 0 . 1 3 2 0 ( 3 ) 0 . 1 5 4 5 ( 2 ) 0 . 0 2 5 5 ( 9 ) N 5 0 . 3 1 6 0 ( 2 ) 0 . 2 2 7 5 ( 3 ) 0 . 2 1 5 0 ( 2 ) 0 . 0 3 1 2 ( 9 ) N 6 0 . 3 7 4 0 ( 2 ) - 0 . 0 7 8 1 ( 3 ) 0 . 1 4 5 2 ( 2 ) 0 . 0 3 1 1 ( 9 ) N 7 0 . 4 1 0 0 ( 2 ) 0 . 0 5 6 7 ( 3 ) 0 . 3 0 4 0 ( 2 ) 0 . 0 2 7 4 ( 9 ) N 8 0 . 2 5 8 3 ( 2 ) 0 . 0 7 2 9 ( 3 ) 0 . 2 8 4 7 ( 2 ) 0 . 0 2 8 7 ( 9 ) N 9 0 . 2 3 3 3 ( 2 ) 0 . 0 8 0 7 ( 2 ) 0 . 1 2 0 6 ( 2 ) 0 . 0 2 6 4 ( 9 ) 1 1 1 1 1 0 . 3 0 9 9 7 ( 2 ) 0 . 1 1 1 7 7 ( 3 ) 0 . 2 1 7 2 9 ( 2 ) 0 . 0 2 3 9 1 ( 1 0 ) 1 1 1 1 2 0 . 3 1 7 4 9 ( 2 ) 0 . 0 7 4 5 5 ( 3 ) 0 . 2 1 5 3 1 ( 2 ) 0 . 0 2 4 2 1 0 0 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 1 2 T a b l e A 7 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ ° ] . R h 1 R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 N 1 N 1 N 2 N 2 N 3 N 3 N 4 N 4 N 5 N 6 N 6 N 7 N 7 N 8 N 8 N 9 N 9 F 1 F 2 F 3 F 4 F 4 F 4 A F 5 F 6 N 2 N 3 N 4 N 1 R h 2 N 6 N 9 N 8 N 7 N 5 C 4 2 C 3 4 C 3 3 C 2 6 C 4 3 C 1 6 C 1 7 C 3 1 C 2 2 C 3 2 C 2 1 C 3 3 C 2 3 C 4 3 C 3 5 C 3 8 C 1 9 B 1 B l B 1 F 4 A B 1 B 1 B Z B 2 2 . 0 2 3 ( 4 ) 2 . 0 3 2 ( 3 ) 2 . 0 3 2 ( 4 ) 2 . 0 4 2 ( 3 ) 2 . 5 8 2 0 ( 5 ) 2 . 0 3 7 ( 4 ) 2 . 0 4 7 ( 3 ) 2 . 0 6 4 ( 3 ) 2 . 0 7 6 ( 4 ) 2 . 1 1 5 ( 4 ) 1 . 3 4 1 ( 5 ) 1 . 3 7 4 ( 5 ) 1 . 3 1 4 ( 5 ) 1 . 4 2 2 ( 5 ) 1 . 3 1 9 ( 5 ) 1 . 4 2 6 ( 5 ) 1 . 3 3 1 ( 5 ) 1 . 3 7 6 ( 5 ) 1 . 1 3 9 ( 6 ) 1 . 3 3 1 ( 6 ) 1 . 3 8 2 ( 6 ) 1 . 3 1 5 ( 5 ) 1 . 4 3 0 ( 5 ) 1 . 3 1 9 ( 5 ) 1 . 4 3 9 ( 5 ) 1 . 3 3 9 ( 5 ) 1 . 3 4 5 ( 5 ) 1 . 3 6 6 ( 7 ) 1 . 3 5 3 ( 7 ) 1 . 3 7 4 ( 7 ) 0 . 6 7 ( 4 ) 1 . 2 8 3 ( 1 5 ) 1 4 4 ( 2 ) 1 . 3 6 6 ( 7 ) 1 . 4 0 0 ( 7 ) T a b l e A 7 c o n t i n u e d . F 7 F 8 C 1 C 1 C 2 C 2 C 3 C 4 C 4 C 5 C 5 C 6 C 7 C 7 C 8 C 9 C 9 C 1 0 C 1 0 C 1 1 C 1 2 C 1 3 C 1 3 C 1 4 C 1 4 C 1 6 C 1 6 C 1 7 C 1 9 C 1 9 C 2 0 C 2 0 C 2 2 C 2 3 C 2 3 C 2 6 C 2 6 C 2 7 3 2 3 2 C 2 0 C 3 7 C 1 5 C 3 C 3 5 C 4 6 C 2 1 C 6 C 2 4 C 3 8 C 1 8 C 4 9 C 1 5 C 5 0 C 1 2 C 3 5 C 1 1 C 1 5 C 4 2 C 5 1 C 2 8 C 4 1 C 5 1 C 3 7 C 3 0 C 1 8 C 2 4 C 2 1 C 3 6 C 4 4 C 2 5 C 2 8 C 4 1 C 4 0 C 2 7 C 2 9 1 . 3 8 4 ( 8 ) 1 . 3 8 9 ( 7 ) 1 . 3 7 8 ( 7 ) 1 . 3 8 8 ( 6 ) 1 . 3 7 6 ( 7 ) 1 . 3 8 9 ( 7 ) ' 1 . 3 8 2 ( 6 ) 1 . 3 7 3 ( 7 ) 1 . 3 7 8 ( 6 ) 1 . 3 6 8 ( 7 ) 1 . 3 7 8 ( 7 ) 1 . 3 7 3 ( 6 ) 1 . 3 7 9 ( 7 ) 1 . 3 8 2 ( 7 ) 1 . 5 1 7 ( 6 ) 1 . 3 7 9 ( 7 ) 1 . 3 8 9 ( 7 ) 1 . 3 7 1 ( 6 ) 1 . 3 8 4 ( 7 ) 1 . 3 6 8 ( 7 ) 1 . 3 8 1 ( 6 ) 1 . 3 8 9 ( 7 ) 1 . 3 8 9 ( 6 ) 1 . 3 8 1 ( 6 ) 1 . 3 8 8 ( 7 ) 1 . 3 8 8 ( 6 ) 1 . 3 8 9 ( 6 ) 1 . 3 8 2 ( 6 ) 1 . 4 0 3 ( 6 ) 1 . 4 5 7 ( 6 ) 1 . 3 8 8 ( 6 ) 1 . 5 2 3 ( 6 ) 1 . 4 5 7 ( 7 ) 1 . 3 8 9 ( 6 ) 1 . 3 9 3 ( 6 ) 1 . 3 8 7 ( 6 ) 1 . 3 9 0 ( 6 ) 1 . 3 7 9 ( 6 ) 3 1 4 T a b l e A 7 c o n t i n u e d . C 2 9 C 3 0 C 3 1 C 3 1 C 3 2 C 3 4 C 3 9 C 3 9 C 4 5 C 4 6 C 4 8 N 2 N 2 N 3 N 2 N 3 N 4 N 2 N 3 N 4 N 1 N 6 N 6 N 9 N 6 N 9 N 8 N 6 N 9 N 8 N 7 N 6 N 9 N 8 N 7 N 5 C 4 2 C 4 2 C 5 2 C 3 6 C 4 9 C 3 4 C 4 7 C 5 0 C 5 2 C 4 0 C 5 1 C 4 7 C 5 2 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 1 . 3 8 3 ( 6 ) 1 . 3 8 8 ( 6 ) 1 . 3 7 3 ( 6 ) 1 . 4 7 7 ( 6 ) 1 . 3 9 3 ( 7 ) 1 . 3 9 2 ( 6 ) 1 . 3 7 9 ( 6 ) 1 . 3 8 0 ( 6 ) 1 . 5 1 9 ( 7 ) 1 . 3 6 7 ( 8 ) 1 . 5 0 7 ( 6 ) N 3 8 8 . 3 6 ( 1 4 ) N 4 1 7 4 . 2 0 ( 1 4 ) N 4 9 4 . 3 6 ( 1 4 ) N 1 9 6 . 5 5 ( 1 5 ) N 1 1 7 4 . 5 3 ( 1 4 ) N 1 8 0 . 5 3 ( 1 4 ) 1 1 1 1 2 8 5 . 0 8 ( 1 0 ) 1 1 1 1 2 8 4 . 1 5 ( 1 0 ) 1 1 1 1 2 1 0 0 . 2 8 ( 1 0 ) 1 1 1 1 2 9 8 . 6 3 ( 1 0 ) N 9 7 9 . 7 3 ( 1 5 ) N 8 1 7 8 . 6 5 ( 1 5 ) N 8 9 9 . 1 2 ( 1 4 ) N 7 9 3 . 9 7 ( 1 5 ) N 7 1 7 2 . 2 5 ( 1 4 ) N 7 8 7 . 2 4 ( 1 4 ) N 5 8 9 0 3 ( 1 4 ) N 5 8 7 . 1 1 ( 1 4 ) N 5 9 0 2 1 ( 1 5 ) N 5 9 7 3 7 ( 1 5 ) 1 1 1 1 1 9 4 6 2 0 0 ) 1 1 1 1 1 9 1 3 4 ( 1 0 ) 1 1 1 1 1 8 6 . 0 9 ( 1 0 ) 1 1 1 1 1 8 4 . 6 3 ( 1 0 ) 1 1 1 1 1 1 7 5 . 7 2 ( 1 1 ) C 3 4 1 1 8 . 3 ( 4 ) 1 1 1 1 1 1 2 7 . 2 ( 3 ) T a b l e A 7 c o n t i n u e d . C 3 4 C 3 3 C 3 3 C 2 6 C 4 3 C 4 3 C 1 6 C 1 7 C 1 7 C 3 1 C 2 2 C 3 2 C 3 2 C 2 1 C 3 3 C 3 3 C 2 3 C 4 3 C 4 3 C 3 5 C 3 8 C 3 8 C 1 9 F 4 A F 4 F 4 F 4 F 2 F 4 F 2 F 1 F 4 F 2 F 1 F 3 F 5 F 5 F 7 N 1 N 2 N 2 N 2 N 3 N 3 N 3 N 4 N 4 N 4 N 5 N 6 N 6 N 6 N 7 N 7 N 7 N 8 N 8 N 8 N 9 N 9 N 9 F 4 F 4 A B 1 B l B 1 B 1 B 1 B l B 1 B l B 1 B l B Z B 2 B 2 R h l C 2 6 R h l R h l C 1 6 R h l R h l C 3 1 R h l R h l R h 2 C 2 1 F 4 A F 4 A F 4 A F 4 A F 7 F 8 F 8 1 1 4 . 4 ( 3 ) 1 1 9 . 4 ( 4 ) 1 1 9 . 7 ( 3 ) 1 1 9 . 9 ( 3 ) 1 1 8 . 8 ( 4 ) 1 2 2 . 2 ( 3 ) 1 1 9 . 0 ( 3 ) 1 1 7 . 6 ( 4 ) 1 2 7 . 0 ( 3 ) 1 1 5 2 ( 3 ) 1 7 0 . 2 ( 4 ) 1 1 8 . 8 ( 4 ) 1 2 6 . 4 ( 3 ) 1 1 4 . 7 ( 3 ) 1 1 6 . 2 ( 4 ) 1 1 9 . 1 ( 3 ) 1 2 4 . 2 ( 3 ) 1 1 7 . 1 ( 4 ) 1 1 7 . 2 ( 3 ) 1 2 3 . 8 ( 3 ) 1 1 8 . 6 ( 4 ) 1 2 6 . 2 ( 3 ) 1 1 5 . 2 ( 3 ) 8 9 . 6 ( 2 3 ) 6 2 . 7 ( 2 1 ) 1 2 2 . 3 ( 1 3 ) 9 9 . 9 ( 1 0 ) 1 0 9 . 7 ( 5 ) 1 0 3 . 4 ( 1 0 ) 1 1 0 . 3 ( 5 ) 1 1 0 . 6 ( 6 ) 2 7 . 8 ( 1 5 ) 9 4 . 5 ( 9 ) 1 1 3 . 5 ( 7 ) 1 1 7 . 0 ( 9 ) 1 1 1 . 0 ( 6 ) 1 0 9 . 9 ( 5 ) 1 0 8 . 7 ( 5 ) 3 1 6 T a b l e A 7 c o n t i n u e d . F 5 F 7 F 8 C 2 0 C 1 5 C 3 5 C 4 6 C 6 C 5 C 1 8 C 5 0 C 3 5 C 1 5 C 4 2 C 5 1 C 4 1 C l 1 C 1 1 C 2 C 3 7 C 3 7 C 3 0 N 4 C 7 N 9 N 9 C 2 4 C 1 C 1 C 3 6 C 4 C 4 N 6 N 5 C 2 8 C 2 8 C 4 1 C 5 B 2 B 2 B 2 C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 9 C 1 0 C 1 1 C 1 2 C 1 3 C 1 4 C 1 5 C 1 5 C 1 5 C 1 6 C 1 6 C 1 6 C 1 7 C 1 8 C 1 9 C 1 9 C 1 9 C 2 0 C 2 0 C 2 0 C 2 1 C 2 1 C 2 1 C 2 2 C 2 3 C 2 3 C 2 3 C 2 4 F 6 F 6 F 6 C 3 7 C 3 C 2 C 2 1 C 2 4 C 3 8 C 4 9 C 1 2 C 1 1 C 1 0 C 9 C 2 8 C 5 1 C 2 C 8 C 8 C 3 0 N 3 N 3 C 1 8 C 1 7 C 2 4 C 2 1 C 2 1 C 3 6 C 4 4 C 4 4 N 6 C 1 9 C 1 9 C 2 5 C 4 1 N 7 N 7 C 1 9 1 0 8 . 9 ( 5 ) 1 1 0 . 3 ( 5 ) 1 0 8 . 0 ( 5 ) 1 2 1 . 4 ( 5 ) 1 2 1 . 0 ( 5 ) 1 2 1 . 3 ( 5 ) 1 2 0 . 0 ( 5 ) 1 1 9 . 9 ( 5 ) 1 1 8 . 3 ( 5 ) 1 2 0 . 0 ( 5 ) 1 1 9 . 0 ( 5 ) 1 2 1 . 1 ( 5 ) 1 2 2 . 0 ( 5 ) 1 1 8 . 7 ( 5 ) 1 2 1 . 2 ( 5 ) 1 2 1 . 4 ( 5 ) 1 1 7 . 2 ( 4 ) 1 2 1 . 4 ( 5 ) ‘ 1 2 1 . 4 ( 5 ) 1 1 8 . 7 ( 4 ) 1 2 2 . 0 ( 4 ) 1 1 9 3 ( 4 ) 1 2 3 . 8 ( 5 ) 1 1 7 . 9 ( 5 ) 1 2 0 . 9 ( 5 ) 1 1 5 . 7 ( 4 ) 1 2 3 . 4 ( 4 ) 1 1 8 . 5 ( 4 ) 1 2 0 . 5 ( 5 ) 1 2 1 . 1 ( 5 ) 1 2 0 . 1 ( 5 ) 1 2 5 . 3 ( 5 ) 1 1 4 . 6 ( 4 ) 1 7 7 . 4 ( 6 ) 1 1 8 . 7 ( 4 ) 1 2 0 . 3 ( 4 ) 1 2 1 . 0 ( 4 ) 1 1 8 . 9 ( 5 ) 3 1 7 T a b l e A 7 c o n t i n u e d . C 4 0 C 4 0 C 2 7 C 2 9 C 2 3 C 2 7 C 3 6 C 4 9 C 4 9 N 4 N 6 N 2 N 1 N 1 C 5 0 C 1 0 C 1 0 C 3 C 3 0 C 1 N 9 C 5 2 C 3 9 C 1 4 N 1 N 8 C 4 C 4 6 C 3 1 C 9 C 1 3 C 2 6 C 2 6 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 1 C 3 1 C 3 2 C 3 3 C 3 4 C 3 4 C 3 4 C 3 5 C 3 5 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 6 C 4 7 C 4 9 C 5 0 C 5 1 C 2 7 N 2 N 2 C 2 6 C 1 3 C 5 2 C 1 6 N 4 C 3 4 C 3 4 C 4 7 N 7 C 5 0 C 3 1 C 3 1 C 3 N 8 N 8 C 2 0 C 1 6 C 6 C 4 0 C 2 6 C 2 3 C 1 2 N 3 C 4 7 C 3 2 C 7 C 3 4 C 1 4 1 1 7 . 6 ( 4 ) 1 1 9 . 1 ( 4 ) 1 2 3 . 3 ( 4 ) 1 2 0 . 2 ( 5 ) 1 2 0 . 3 ( 4 ) 1 2 2 . 0 ( 5 ) 1 2 0 . 6 ( 4 ) 1 2 1 . 8 ( 4 ) 1 2 3 . 8 ( 4 ) 1 1 4 . 4 ( 4 ) 1 2 2 . 8 ( 5 ) 1 2 3 . 8 ( 4 ) 1 2 0 . 7 ( 4 ) 1 1 5 . 2 ( 4 ) 1 2 4 . 1 ( 4 ) 1 1 7 . 2 ( 4 ) 1 2 0 . 9 ( 4 ) 1 2 1 . 8 ( 4 ) 1 2 0 . 7 ( 5 ) 1 2 0 . 1 ( 5 ) 1 2 3 . 4 ( 4 ) 1 2 1 . 2 ( 5 ) 1 2 1 . 2 ( 4 ) 1 2 0 . 4 ( 5 ) 1 2 3 . 2 ( 5 ) 1 2 3 . 6 ( 4 ) 1 2 0 . 2 ( 5 ) 1 1 8 0 ( 5 ) 1 1 9 0 ( 5 ) 1 2 0 . 1 ( 5 ) 1 1 8 . 0 ( 5 ) 3 1 8 T a b l e A 7 c o n t i n u e d . C 1 3 C 1 4 C 3 9 C 3 9 C 2 9 C 5 1 C 5 1 C 5 2 C 5 2 C 5 2 C 4 5 C 4 5 C 2 9 C 4 8 C 4 8 1 2 0 . 8 ( 5 ) 1 2 1 . 2 ( 5 ) 1 1 7 . 4 ( 4 ) 1 2 1 . 1 ( 5 ) 1 2 1 . 5 ( 5 ) S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - l , - y + l , - z + 1 3 1 9 T a b l e A 7 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 R h l 0 . 0 2 2 7 ( 2 ) 0 . 0 2 2 2 ( 2 ) 0 . 0 2 5 3 ( 2 ) 0 . 0 0 1 9 ( 2 ) 0 . 0 0 5 8 0 ( 1 5 ) 0 . 0 0 1 2 ( 2 ) R h 2 0 . 0 2 4 5 ( 2 ) 0 . 0 2 2 1 ( 2 ) 0 . 0 2 5 1 ( 2 ) 0 . 0 0 3 0 ( 2 ) 0 . 0 0 6 7 6 ( 1 5 ) 0 . 0 0 2 9 ( 2 ) N 1 0 . 0 2 7 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 0 4 ( 2 ) N 2 0 . 0 2 3 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 3 ( 2 ) N 3 0 . 0 2 6 ( 2 ) 0 . 0 2 1 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 0 ( 2 ) N 4 0 . 0 2 4 ( 2 ) 0 . 0 2 5 ( 2 ) 0 . 0 2 6 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 4 ( 2 ) N 5 0 . 0 3 0 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 2 8 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 1 ( 2 ) N 6 0 . 0 3 3 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 0 4 3 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 1 6 ( 2 ) 0 . 0 0 0 ( 2 ) N 7 0 . 0 2 2 ( 2 ) 0 . 0 2 2 ( 2 ) 0 . 0 3 3 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 0 ( 2 ) N 8 0 . 0 3 1 ( 2 ) 0 . 0 2 8 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 0 3 ( 2 ) N 9 0 . 0 3 2 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 0 2 5 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 5 ( 2 ) F 1 0 . 0 4 7 ( 2 ) 0 . 1 5 8 ( 4 ) 0 . 0 6 2 ( 2 ) 0 . 0 4 0 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 5 ( 2 ) 1 : 2 0 . 0 7 8 ( 3 ) 0 . 0 9 7 ( 3 ) 0 . 0 8 0 ( 3 ) 0 . 0 2 8 ( 2 ) 0 . 0 2 8 ( 2 ) 0 . 0 2 2 ( 2 ) F 3 0 . 0 6 9 ( 2 ) 0 . 1 0 1 ( 3 ) 0 . 0 4 3 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 2 2 ( 2 ) F 4 0 . 3 9 1 ( 3 0 ) 0 . 0 1 6 ( 5 ) 0 . 0 8 5 ( 9 ) 0 . 0 3 1 ( 5 ) 0 . 0 1 1 ( 1 4 ) 0 . 0 0 1 ( 1 0 ) 1 : 4 A 0 . 0 6 6 ( 6 ) 0 . 1 3 6 ( 1 4 ) 0 . 1 0 5 ( 1 1 ) 0 . 0 0 5 ( 8 ) - 0 . 0 1 8 ( 6 ) 0 . 0 5 1 ( 7 ) F 5 0 . 1 1 3 ( 3 ) 0 . 0 8 1 ( 3 ) 0 . 0 4 5 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 2 2 ( 2 ) 0 . 0 0 5 ( 2 ) F 6 0 . 0 8 3 ( 3 ) 0 . 0 6 4 ( 2 ) 0 . 0 6 9 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 1 4 ( 2 ) 0 . 0 2 2 ( 2 ) 1 : 7 0 . 0 7 3 ( 3 ) 0 . 0 4 7 ( 2 ) 0 . 0 9 1 ( 3 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 1 2 ( 2 ) F 8 0 . 0 6 7 ( 2 ) 0 . 0 4 7 ( 2 ) 0 . 0 6 8 ( 2 ) 0 . 0 1 3 ( 2 ) 0 . 0 2 2 ( 2 ) 0 . 0 0 2 ( 2 ) B 1 0 . 0 4 8 ( 4 ) 0 . 0 5 0 ( 5 ) 0 . 0 4 0 ( 4 ) 0 . 0 1 1 ( 3 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 3 ( 4 ) 3 2 0 . 0 6 6 ( 5 ) 0 . 0 4 0 ( 4 ) 0 . 0 4 4 ( 4 ) 0 . 0 0 7 ( 3 ) 0 . 0 1 6 ( 4 ) 0 . 0 0 1 ( 4 ) C 1 0 . 0 6 7 ( 4 ) 0 . 0 4 2 ( 3 ) 0 . 0 2 3 ( 3 ) 0 . 0 0 9 ( 2 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 1 ( 3 ) C 2 0 . 0 3 3 ( 3 ) 0 . 0 5 8 ( 4 ) 0 . 0 7 7 ( 4 ) 0 . 0 4 0 ( 3 ) 0 . 0 1 2 ( 3 ) 0 . 0 0 6 ( 3 ) C 3 0 . 0 2 8 ( 3 ) 0 . 0 6 8 ( 4 ) 0 . 0 5 2 ( 4 ) 0 . 0 2 5 ( 3 ) 0 . 0 0 0 ( 3 ) 0 . 0 1 0 ( 3 ) C 4 0 . 0 7 3 ( 4 ) 0 . 0 2 9 ( 3 ) 0 . 0 4 9 ( 3 ) 0 . 0 0 6 ( 2 ) 0 . 0 4 0 ( 3 ) 0 . 0 0 1 ( 3 ) C 5 0 . 0 5 5 ( 4 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 7 ( 3 ) 0 . 0 0 6 ( 3 ) C 6 0 . 0 3 3 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 3 ( 3 ) 3 2 0 T a b l e A 7 c o n t i n u e d . C 7 C 8 C 9 C 1 0 C 1 1 C 1 2 C 1 3 C 1 4 C 1 5 C 1 6 C 1 7 C 1 8 C 1 9 C 2 0 C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 0 . 0 2 9 ( 3 ) 0 . 0 4 9 ( 4 ) 0 . 0 7 7 ( 5 ) 0 . 0 2 3 ( 3 ) 0 . 0 2 2 ( 3 ) 0 . 0 5 3 ( 4 ) 0 . 0 3 4 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 4 6 ( 3 ) 0 . 0 5 3 ( 4 ) 0 . 0 5 6 ( 4 ) 0 . 0 3 2 ( 3 ) 0 . 0 2 1 ( 3 ) 0 . 0 7 1 ( 4 ) 0 . 0 8 0 ( 5 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 1 9 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 4 1 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 3 3 ( 3 ) 0 . 0 2 6 ( 3 ) 0 . 0 4 3 ( 3 ) 0 . 0 4 7 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 1 8 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 3 9 ( 3 ) 0 . 0 2 0 ( 2 ) 0 . 1 0 8 ( 6 ) 0 . 0 3 1 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 4 4 ( 4 ) 0 . 0 5 7 ( 4 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 5 1 ( 4 ) 0 . 0 2 4 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 3 8 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 2 8 ( 4 ) 0 . 0 2 6 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 4 3 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 2 5 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 1 7 ( 2 ) 0 . 0 2 8 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 5 1 ( 4 ) 0 . 0 4 5 ( 3 ) 0 . 0 7 2 ( 4 ) 0 . 0 4 1 ( 3 ) 0 . 0 5 0 ( 3 ) 0 . 0 4 7 ( 3 ) 0 . 0 5 8 ( 4 ) 0 . 0 4 9 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 5 0 ( 3 ) 0 . 0 2 7 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 5 1 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 8 0 ( 5 ) 0 . 0 3 4 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 5 6 ( 4 ) 0 . 0 2 8 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 5 9 ( 3 ) 0 . 0 3 7 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 2 4 ( 2 ) 0 . 0 3 8 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 4 5 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 4 2 ( 3 ) 0 . 0 2 3 ( 2 ) 0 . 0 5 5 ( 4 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 1 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 1 2 ( 3 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 0 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 1 4 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 2 7 ( 3 ) 3 2 1 0 . 0 0 1 ( 2 ) 0 . 0 3 1 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 3 5 ( 3 ) 0 . 0 0 9 ( 3 ) 0 . 0 0 7 ( 2 ) 0 . 0 2 4 ( 3 ) 0 . 0 0 8 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 1 3 ( 3 ) 0 . 0 1 5 ( 2 ) 0 . 0 1 1 ( 3 ) 0 . 0 2 8 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 1 4 ( 3 ) 0 . 0 2 1 ( 4 ) 0 . 0 0 8 ( 2 ) 0 . 0 0 9 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 0 2 2 ( 3 ) 0 . 0 0 8 ( 2 ) 0 . 0 0 9 ( 2 ) 0 . 0 1 0 ( 2 ) 0 . 0 1 1 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 1 4 ( 3 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 6 ( 2 ) 0 . 0 1 6 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 1 2 ( 4 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 9 ( 3 ) 0 . 0 0 0 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 1 3 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 7 ( 2 ) 0 . 0 0 5 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 0 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 7 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 1 ( 2 ) - 0 . 0 0 8 ( 2 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 7 ( 3 ) 0 . 0 0 6 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 1 6 ( 4 ) T a b l e A 7 c o n t i n u e d . C 4 5 C 4 6 C 4 7 C 4 8 C 4 9 C 5 0 C 5 1 C 5 2 0 . 0 7 1 ( 5 ) 0 . 0 7 8 ( 5 ) 0 . 0 5 0 ( 4 ) 0 . 0 4 2 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 5 6 ( 4 ) 0 . 0 3 7 ( 3 ) 0 . 0 2 9 ( 3 ) 0 . 0 5 7 ( 4 ) 0 . 0 3 5 ( 4 ) 0 . 0 3 8 ( 4 ) 0 . 0 3 6 ( 3 ) 0 . 0 2 6 ( 3 ) 0 . 0 3 1 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 5 3 ( 4 ) 0 . 0 8 0 ( 5 ) 0 . 0 8 4 ( 5 ) 0 . 0 7 7 ( 4 ) 0 . 0 3 3 ( 3 ) 0 . 0 3 2 ( 3 ) 0 . 0 3 5 ( 3 ) 0 . 0 4 0 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 0 2 ( 3 ) 0 . 0 0 3 ( 3 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 1 0 ( 2 ) 0 . 0 0 4 ( 2 ) 0 . 0 1 7 ( 3 ) 0 . 0 6 1 ( 4 ) 0 . 0 4 5 ( 4 ) 0 . 0 1 9 ( 3 ) 0 . 0 0 1 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 0 9 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 0 7 ( 3 ) 0 . 0 0 8 ( 3 ) 0 . 0 0 2 ( 3 ) - 0 . 0 1 5 ( 3 ) 0 . 0 0 2 ( 2 ) - 0 . 0 0 5 ( 3 ) 0 . 0 0 2 ( 3 ) - 0 . 0 1 2 ( 2 ) 3 2 2 T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : - 2 n 2 [ h 2 a * 2 U 1 1 + . . . + 2 h k a * 1 1 * U 1 2 ] T a b l e A 7 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s ( x 1 0 4 ) a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . H 1 0 . 3 4 5 2 ( 3 ) 0 . 2 2 6 5 ( 4 ) 0 . 5 2 3 8 ( 3 ) 0 . 0 5 4 1 H 1 0 0 . 1 2 5 8 ( 3 ) - 0 . 1 3 9 3 ( 4 ) 0 . 2 4 1 9 ( 3 ) 0 . 0 5 0 1 H 1 1 0 . 0 7 8 5 ( 3 ) - 0 . 2 7 8 2 ( 4 ) 0 . 2 7 2 1 ( 3 ) 0 . 0 5 3 1 H 1 2 0 . 4 4 0 1 ( 3 ) 0 . 1 5 9 9 ( 3 ) 0 . 0 3 6 5 ( 3 ) 0 . 0 5 0 1 H 1 3 0 . 4 8 9 7 ( 3 ) - 0 . 3 5 0 8 ( 4 ) 0 . 3 8 4 1 ( 3 ) 0 . 0 4 5 1 H 1 4 0 . 4 7 2 0 ( 3 ) - 0 . 1 6 0 4 ( 4 ) 0 . 5 2 9 1 ( 3 ) 0 . 0 4 8 1 H 1 7 0 . 1 5 2 7 ( 3 ) 0 . 1 2 0 2 ( 3 ) 0 . 2 2 2 9 ( 3 ) 0 . 0 4 3 1 H 1 8 0 . 0 3 8 2 ( 3 ) 0 . 1 5 9 1 ( 4 ) 0 . 1 4 7 6 ( 3 ) 0 . 0 4 7 1 H 2 0 . 2 7 1 2 ( 3 ) - 0 . 3 4 4 1 ( 4 ) 0 . 4 1 1 6 ( 3 ) 0 . 0 6 9 1 H 2 4 0 . 2 1 4 7 ( 3 ) - 0 . 0 8 2 4 ( 3 ) - 0 . 0 4 7 2 ( 3 ) 0 . 0 5 1 1 H 2 5 A 0 . 3 4 8 9 ( 3 ) - 0 . 4 4 1 7 ( 4 ) 0 . 2 4 4 9 ( 3 ) 0 . 0 9 6 1 H 2 5 B 0 . 2 7 0 5 ( 3 ) - 0 . 4 4 0 2 ( 4 ) 0 . 1 8 8 4 ( 3 ) 0 . 0 9 6 1 H 2 5 C 0 . 2 8 1 4 ( 3 ) - 0 . 4 2 1 0 ( 4 ) 0 . 2 6 9 2 ( 3 ) 0 . 0 9 6 1 H 2 7 0 . 5 6 0 1 ( 3 ) 0 . 1 2 9 8 ( 4 ) 0 . 3 1 8 8 ( 2 ) 0 . 0 4 1 1 H 2 8 0 . 4 5 2 8 ( 2 ) - 0 . 2 3 4 0 ( 3 ) 0 . 2 9 6 4 ( 2 ) 0 . 0 3 8 1 H 2 9 0 . 6 2 5 1 ( 3 ) 0 . 2 7 1 3 ( 4 ) 0 . 3 4 4 5 ( 3 ) 0 . 0 4 7 1 H 3 0 . 3 1 9 5 ( 3 ) - 0 . 2 0 5 9 ( 4 ) 0 . 3 8 0 4 ( 3 ) 0 . 0 6 3 1 H 3 0 0 . 2 4 8 9 ( 2 ) 0 . 2 6 9 4 ( 3 ) 0 . 2 8 0 0 ( 2 ) 0 . 0 3 6 1 H 3 2 0 . 4 7 4 7 ( 3 ) - 0 . 0 7 6 1 ( 3 ) 0 . 2 0 9 5 ( 3 ) 0 . 0 4 9 1 H 3 3 0 . 4 8 5 3 ( 2 ) 0 . 0 3 3 9 ( 3 ) 0 . 3 5 3 9 ( 2 ) 0 . 0 3 6 1 H 3 6 0 . 2 5 5 5 ( 3 ) 0 . 3 9 8 2 ( 4 ) 0 . 3 5 6 0 ( 3 ) 0 . 0 4 5 1 H 3 7 0 . 3 3 9 8 ( 3 ) 0 . 0 9 7 4 ( 4 ) 0 . 4 4 8 5 ( 2 ) 0 . 0 4 6 1 H 3 8 0 . 1 4 8 8 ( 3 ) - 0 . 0 7 9 1 ( 3 ) 0 . 1 5 3 6 ( 2 ) 0 . 0 3 9 1 H 3 9 0 . 4 4 1 8 ( 3 ) 0 . 4 2 3 3 ( 3 ) 0 . 2 7 2 7 ( 3 ) 0 . 0 4 2 1 H 4 0 . 3 3 4 4 ( 3 ) - 0 . 0 9 5 0 ( 3 ) - 0 . 0 2 5 9 ( 3 ) 0 . 0 5 5 1 H 4 0 0 . 3 7 5 5 ( 3 ) 0 . 2 8 2 8 ( 3 ) 0 . 2 5 4 8 ( 2 ) 0 . 0 4 1 1 3 2 3 H 4 1 0 . 4 3 4 2 ( 2 ) - 0 . 0 4 3 8 ( 4 ) 0 . 4 4 2 1 ( 2 ) 0 . 0 4 0 H 4 2 0 . 4 3 2 3 ( 3 ) 0 . 1 3 7 1 ( 3 ) 0 . 1 4 8 6 ( 3 ) 0 . 0 4 1 T a b l e A 7 c o n t i n u e d . H 4 3 0 . 2 4 9 3 ( 2 ) 0 . 0 0 1 2 ( 3 ) 0 . 3 6 4 5 ( 2 ) 0 . 0 3 0 H 4 4 A 0 . 2 8 3 6 ( 4 ) 0 . 4 6 6 3 ( 4 ) 0 . 4 7 1 8 ( 3 ) 0 . 1 1 2 H 4 4 B 0 . 3 5 3 3 ( 4 ) 0 . 4 2 1 1 ( 4 ) 0 . 5 2 7 3 ( 3 ) 0 . 1 1 2 H 4 4 C 0 . 2 7 5 9 ( 4 ) 0 . 3 9 3 9 ( 4 ) 0 . 5 2 9 8 ( 3 ) 0 . 1 1 2 H 4 5 A 0 . 5 0 6 9 ( 3 ) - 0 . 3 2 0 3 ( 4 ) 0 . 5 6 8 2 ( 3 ) 0 . 0 9 2 H 4 5 B 0 . 5 5 3 5 ( 3 ) - 0 . 3 7 0 6 ( 4 ) 0 . 5 2 7 0 ( 3 ) 0 . 0 9 2 H 4 5 C 0 . 4 7 1 6 ( 3 ) - 0 . 3 9 9 3 ( 4 ) 0 . 5 1 0 5 ( 3 ) 0 . 0 9 2 H 4 6 0 . 4 5 9 3 ( 4 ) - 0 . 0 9 5 9 ( 4 ) 0 . 0 0 4 7 ( 3 ) 0 . 0 6 7 H 4 7 0 . 5 3 0 9 ( 3 ) - 0 . 0 8 6 9 ( 4 ) 0 . 1 2 3 3 ( 3 ) 0 . 0 6 2 H 4 8 A 0 . 6 3 4 7 ( 3 ) 0 . 4 4 1 0 ( 4 ) 0 . 3 5 0 4 ( 3 ) 0 . 0 7 7 H 4 8 8 0 . 5 6 9 2 ( 3 ) 0 . 4 9 1 5 ( 4 ) 0 . 3 6 5 7 ( 3 ) 0 . 0 7 7 H 4 8 C 0 . 5 7 4 8 ( 3 ) 0 . 4 9 4 0 ( 4 ) 0 . 2 8 8 6 ( 3 ) 0 . 0 7 7 H 4 9 0 . 1 2 2 4 ( 3 ) 0 . 1 8 8 1 ( 3 ) - 0 . 0 1 1 1 ( 3 ) 0 . 0 4 5 H 5 0 . 0 9 2 7 ( 3 ) - 0 . 0 7 5 6 ( 3 ) — 0 . 0 5 7 6 ( 3 ) 0 . 0 5 4 H 5 0 0 . 2 2 2 4 ( 3 ) 0 . 1 7 4 6 ( 3 ) 0 0 4 1 1 ( 3 ) 0 . 0 4 7 H 6 0 . 0 5 9 5 ( 3 ) - 0 . 0 7 7 5 ( 4 ) 0 . 0 4 4 2 ( 3 ) 0 . 0 4 9 H 7 0 . 0 2 3 1 ( 3 ) 0 . 1 9 5 0 ( 3 ) 0 . 0 2 9 0 ( 3 ) 0 . 0 4 6 H 8 A 0 . 1 7 4 4 ( 3 ) - 0 . 4 5 3 1 ( 4 ) 0 . 4 0 0 1 ( 3 ) 0 . 0 7 3 H 8 B 0 . 1 1 8 1 ( 3 ) - 0 . 4 5 8 4 ( 4 ) 0 . 3 2 2 7 ( 3 ) 0 . 0 7 3 H 8 C 0 . 0 9 8 8 ( 3 ) - 0 . 4 0 1 6 ( 4 ) 0 . 3 8 2 6 ( 3 ) 0 . 0 7 3 H 9 0 . 3 3 3 3 ( 3 ) 0 . 1 7 6 0 ( 3 ) - 0 . 0 6 0 8 ( 3 ) 0 . 0 5 5 S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 3 2 4 T a b l e A 7 c o n t i n u e d . T o r s i o n a n g l e s [ ° ] . N 2 N 3 N 4 N 1 N 2 N 3 N 4 N 1 N 2 N 3 N 4 N 1 N 2 N 3 N 4 N 1 N 2 N 3 N 4 N 1 N 2 N 3 N 4 R h 2 N 2 N 3 N 4 R h 2 N 3 N 4 N 1 R h 2 N 3 N 4 N 1 R h 2 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 N 6 N 6 N 6 N 6 N 9 N 9 N 9 N 9 N 8 N 8 N 8 N 8 N 7 N 7 N 7 N 7 N 5 N 5 N 5 N 5 C 4 2 C 4 2 C 4 2 C 4 2 C 3 4 C 3 4 C 3 4 C 3 4 C 3 3 C 3 3 C 3 3 C 3 3 C 2 6 C 2 6 C 2 6 C 2 6 - 7 4 . 2 ( 2 ) 2 6 3 . 0 3 ( 1 5 ) 1 0 3 . 5 7 ( 1 5 ) 2 1 . 7 ( 2 ) 2 5 3 . 9 8 ( 1 4 ) 1 1 7 . 1 7 ( 1 4 ) 2 3 . 7 8 ( 1 4 ) - 5 8 . 0 9 ( 1 4 ) 1 0 6 . 9 7 ( 1 4 ) 1 8 . 1 2 ( 1 4 ) - 7 5 . 2 7 ( 1 4 ) 2 5 7 . 1 3 ( 1 5 ) 1 9 3 9 ( 1 4 ) - 6 9 . 4 7 ( 1 4 ) 2 6 2 . 8 6 ( 1 4 ) 1 1 5 . 2 8 ( 1 5 ) 1 3 7 . 3 ( 1 4 ) 4 8 . 5 ( 1 4 ) - 4 4 . 9 ( 1 4 ) 2 2 6 . 8 ( 1 4 ) 4 . 2 ( 4 ) 1 5 8 . 0 ( 1 3 ) 1 7 9 . 2 ( 4 ) - 8 1 . 8 ( 4 ) 2 7 7 . 8 ( 3 ) 2 4 . 1 ( 1 6 ) 2 . 9 ( 3 ) 9 6 . 2 ( 3 ) 5 7 . 6 ( 3 ) 1 7 5 . 7 ( 1 3 ) 2 2 4 . 8 ( 3 ) 2 6 . 7 ( 3 ) 2 1 0 . 6 ( 3 ) 7 . 5 ( 1 6 ) 6 6 . 9 ( 3 ) 1 6 5 . 1 ( 3 ) 3 2 5 T a b l e A 7 c o n t i n u e d . N 2 N 4 N 1 R h 2 N 2 N 4 N 1 R h 2 N 2 N 3 N 1 R h 2 N 2 N 3 N 1 R h 2 N 6 N 9 N 8 N 7 R h l N 9 N 8 N 7 N 5 R h l N 9 N 8 N 7 N 5 R h l N 6 N 9 N 8 N 5 R h l N 6 N 9 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 5 N 5 N 5 N 5 N 5 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 7 N 7 N 7 N 7 N 7 N 7 N 7 C 4 3 C 4 3 C 4 3 C 4 3 C 1 6 C 1 6 C 1 6 C 1 6 C 1 7 C 1 7 C 1 7 C 1 7 C 3 1 C 3 1 C 3 1 C 3 1 C 2 2 C 2 2 C 2 2 C 2 2 C 2 2 C 3 2 C 3 2 C 3 2 C 3 2 C 3 2 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 2 3 C 2 3 2 0 3 . 0 ( 3 ) 8 2 . 2 ( 3 ) 1 0 3 . 1 ( 1 5 ) 2 7 . 7 ( 3 ) 7 6 . 9 ( 3 ) - 9 7 . 9 ( 3 ) - 7 7 . 0 ( 1 5 ) 1 6 2 . 1 ( 3 ) 2 1 3 . 9 ( 1 4 ) 4 . 0 ( 4 ) 2 7 4 . 0 ( 4 ) 8 8 . 8 ( 4 ) 5 9 . 8 ( 1 5 ) 1 7 7 . 7 ( 3 ) 0 . 4 ( 3 ) - 9 7 . 5 ( 3 ) 2 7 5 . 6 ( 2 5 ) - 9 5 . 8 ( 2 5 ) 3 . 3 ( 2 5 ) 9 0 . 5 ( 2 5 ) 2 7 . 0 ( 3 6 ) 2 7 7 . 8 ( 4 ) 2 4 6 . 6 ( 6 3 ) 6 . 8 ( 4 ) - 9 0 . 5 ( 4 ) 9 1 . 7 ( 4 ) 2 . 1 ( 3 ) 3 0 . 0 ( 6 5 ) 2 7 6 . 5 ( 3 ) 8 6 . 2 ( 3 ) - 9 1 . 6 ( 3 ) 7 5 . 4 ( 3 ) 4 0 . 0 ( 1 2 ) 2 0 5 . 2 ( 3 ) 1 6 4 . 9 ( 3 ) 2 8 . 9 ( 3 ) 2 1 3 . 1 ( 3 ) 2 4 8 . 5 ( 9 ) 3 2 6 T a b l e A 7 c o n t i n u e d . N 8 N 5 R h l N 6 N 9 N 7 N 5 R h l N 6 N 9 N 7 N 5 R h l N 6 N 8 N 7 N 5 R h l N 6 N 8 N 7 N 5 R h l B 1 F 4 A F 4 A F 4 A F 4 A F 4 F 4 F 4 F 4 C 1 5 C 2 4 C 3 5 C 5 0 C 1 0 C 1 0 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 F 4 A F 4 A F 4 A F 4 A C 2 C 5 C 1 0 C 9 C 1 1 C 1 1 N 7 N 7 N 7 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 9 N 9 N 9 N 9 N 9 N 9 N 9 N 9 N 9 N 9 F 4 A B 1 B l B 1 B 1 B 1 B 1 B l B 1 C 3 C 6 C 1 1 C 1 2 C 1 5 C 1 5 C 2 3 C 2 3 C 2 3 C 4 3 C 4 3 C 4 3 C 4 3 C 4 3 C 3 5 C 3 5 C 3 5 C 3 5 C 3 5 C 3 8 C 3 8 C 3 8 C 3 8 C 3 8 C 1 9 C 1 9 C 1 9 C 1 9 C 1 9 B 1 F 2 F 1 F 3 F 4 A F 4 F 2 F 1 F 3 C 3 5 C 3 8 C 1 5 C 4 2 C 2 C 8 6 6 3 ( 3 ) 2 3 . 6 ( 4 ) 1 5 2 . 6 ( 3 ) 2 4 6 . 4 ( 6 3 ) 2 1 5 . 4 ( 3 ) 6 0 . 1 ( 3 ) 1 5 7 . 5 ( 3 ) 2 4 . 7 ( 3 ) 4 9 . 8 ( 6 5 ) 8 0 . 8 ( 3 ) 2 0 3 . 7 ( 3 ) 0 4 ( 3 ) 1 7 1 . 5 ( 3 ) 2 7 8 . 2 ( 4 ) 2 . 5 ( 4 ) 2 4 2 . 2 ( 1 0 ) 9 2 . 3 ( 4 ) - 8 3 . 7 ( 4 ) 0 . 9 ( 3 ) 1 7 9 . 8 ( 3 ) 3 5 . 1 ( 1 2 ) - 9 0 . 4 ( 3 ) 9 3 . 6 ( 3 ) 0 . 0 0 0 ( 2 ) 2 . 5 ( 3 1 ) 2 2 2 . 5 ( 2 5 ) 1 2 3 . 4 ( 2 6 ) 0 . 0 0 0 ( 3 ) 0 . 0 0 0 ( 4 ) 1 7 8 . 7 ( 2 6 ) 6 4 . 9 ( 2 9 ) - 6 5 . 8 ( 2 7 ) 0 . 1 ( 9 ) 1 . 5 ( 8 ) 1 . 1 ( 8 ) 1 . 4 ( 7 ) 0 . 6 ( 8 ) 2 7 9 . 9 ( 5 ) 3 2 7 T a b l e A 7 c o n t i n u e d . C 3 C 3 C 4 3 R h l C 4 3 R h l C 3 1 R h l C 4 9 N 4 C 3 8 R h 2 C 3 8 R h 2 C 3 7 C 3 7 C 4 6 C 4 6 C 3 2 R h 2 C 3 2 R h 2 N 9 C 2 4 N 9 C 2 4 R h 2 C 3 3 R h 2 C 3 3 R h 2 C 6 N 9 C 2 1 C 3 3 R h l C 3 3 R h l C 2 C 2 N 3 N 3 N 3 N 3 N 4 N 4 C 7 C 1 7 N 9 N 9 N 9 N 9 C l C 1 C 4 C 4 N 6 N 6 N 6 N 6 C 1 9 C 1 9 C 1 9 C 1 9 N 5 N 7 N 7 N 7 N 7 C 5 C 1 9 C 1 9 N 2 N 2 N 2 N 2 C 1 5 C 1 5 C 1 6 C 1 6 C 1 6 C 1 6 C 1 7 C 1 7 C 1 8 C 1 8 C 1 9 C 1 9 C 1 9 C 1 9 C 2 0 C 2 0 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 2 C 2 3 C 2 3 C 2 3 C 2 3 C 2 4 C 2 4 C 2 4 C 2 6 C 2 6 C 2 6 C 2 6 C 1 1 C 8 C 3 7 C 3 7 C 3 0 C 3 0 C 1 8 C 1 8 C 1 7 C 7 C 2 4 C 2 4 C 2 1 C 2 1 C 3 6 C 4 4 N 6 C 1 9 C 4 C 4 C 1 9 C 1 9 C 4 C 4 N 6 N 6 C 2 5 C 2 8 C 2 8 C 4 1 C 4 1 C 1 9 C 5 C 5 C 4 0 C 4 0 C 2 7 C 2 7 2 . 1 ( 9 ) 1 7 9 . 4 ( 5 ) 4 2 . 7 ( 6 ) 2 3 7 . 1 ( 4 ) 2 3 7 . 9 ( 4 ) 4 2 . 3 ( 5 ) 0 . 1 ( 7 ) 1 7 3 . 7 ( 4 ) 0 . 4 ( 7 ) 0 3 ( 7 ) 1 . 2 ( 6 ) 2 7 6 . 3 ( 3 ) 2 7 9 . 9 ( 4 ) 2 . 6 ( 5 ) 2 . 4 ( 8 ) 1 7 9 . 4 ( 5 ) 0 . 1 ( 7 ) 1 7 9 . 9 ( 4 ) 0 . 6 ( 7 ) 2 7 7 . 5 ( 3 ) 1 7 9 . 7 ( 4 ) 2 . 7 ( 5 ) 1 7 6 . 7 ( 4 ) 4 4 ( 7 ) - 3 . 5 ( 6 ) 1 7 5 . 3 ( 4 ) - 5 6 . 8 ( 1 4 1 ) 2 2 9 . 3 ( 5 ) 5 8 . 9 ( 5 ) 5 0 . 6 ( 6 ) 2 2 1 . 1 ( 4 ) 2 . 3 ( 7 ) 0 . 1 ( 7 ) 2 7 8 . 9 ( 4 ) 2 5 2 . 5 ( 4 ) 1 5 . 8 ( 5 ) 2 8 . 9 ( 7 ) 2 6 2 . 8 ( 4 ) 3 2 8 T a b l e A 7 c o n t i n u e d . C 4 0 N 2 C 4 1 N 7 C 5 1 C 2 6 C 3 7 N 3 C 1 7 R h l C 1 7 R h l C 2 1 R h 2 C 2 6 R h l C 2 3 R h 2 C 4 2 R h l C 4 2 R h l C 4 9 N 4 C 4 9 N 4 C 1 1 C 1 1 C 2 C 2 C 4 3 R h 2 C 4 3 R h 2 C 1 6 C 1 C 4 4 C 2 0 C 2 6 C 2 6 C 2 3 C 2 3 C 1 3 C 2 7 C 1 6 C 1 6 N 4 N 4 N 4 N 4 N 6 N 6 N 2 N 2 N 7 N 7 N 1 N 1 N 1 N 1 C 3 1 C 3 1 C 3 1 C 3 1 C 1 0 C 1 0 C 3 C 3 N 8 N 8 N 8 N 8 C 3 0 C 2 0 C 2 0 C 1 C 2 7 C 2 7 C 2 8 C 2 8 C 2 8 C 2 9 C 3 0 C 3 0 C 3 1 C 3 1 C 3 1 C 3 1 C 3 2 C 3 2 C 3 3 C 3 3 C 3 3 C 3 3 C 3 4 C 3 4 C 3 4 C 3 4 C 3 4 C 3 4 C 3 4 C 3 4 C 3 5 C 3 5 C 3 5 C 3 5 C 3 5 C 3 5 C 3 5 C 3 5 C 3 6 C 3 6 C 3 6 C 3 7 C 2 9 C 2 9 C 1 3 C 1 3 C 2 3 C 5 2 C 3 6 C 3 6 C 4 9 C 4 9 C 3 4 C 3 4 C 4 7 C 4 7 N 7 N 7 N 2 N 2 C 5 0 C 5 0 C 3 1 C 3 1 N 1 N 1 C 5 0 C 5 0 C 3 N 8 C 1 0 N 8 C 1 0 C 1 0 C 3 C 3 C 2 0 C 3 0 C 3 0 C 1 6 5 . 6 ( 7 ) 2 7 5 . 8 ( 4 ) 3 . 1 ( 7 ) - 1 7 6 . 9 ( 4 ) 2 . 0 ( 7 ) - 3 . 6 ( 7 ) 2 . 3 ( 7 ) 1 7 8 . 3 ( 4 ) 2 . 3 ( 7 ) 2 7 5 . 6 ( 3 ) 1 7 7 . 6 ( 4 ) 3 . 4 ( 5 ) 0 . 6 ( 7 ) 1 7 7 . 2 ( 4 ) 2 7 1 . 4 ( 4 ) 2 0 . 3 ( 6 ) 2 6 7 . 6 ( 4 ) 4 . 5 ( 6 ) 2 . 3 ( 6 ) 2 7 5 . 8 ( 3 ) 2 7 6 . 4 ( 4 ) 5 . 5 ( 5 ) 1 7 3 . 1 ( 4 ) - 5 . 9 ( 6 ) - 5 . 5 ( 7 ) 1 7 5 . 5 ( 4 ) 2 . 2 ( 8 ) 1 7 7 . 8 ( 5 ) 1 . 7 ( 8 ) 2 7 8 . 3 ( 5 ) 9 5 . 4 ( 5 ) 2 0 0 . 7 ( 5 ) - 8 4 . 7 ( 6 ) 7 9 . 2 ( 5 ) 0 . 2 ( 7 ) 1 . 7 ( 8 ) 2 7 9 . 1 ( 5 ) 0 . 7 ( 8 ) 3 2 9 T a b l e A 7 c o n t i n u e d . C 3 0 N 3 C 1 9 R h 2 C 5 C 5 2 C 2 7 N 2 C 5 1 C 2 8 N 7 C 3 4 R h l C 9 C 3 5 R h 2 C 1 6 R h l C 2 1 C 4 N 6 N 4 C 3 4 C 1 8 C 1 2 N 1 C 3 1 C 2 8 C 2 8 C 4 1 C 4 1 C 4 0 C 4 0 C 2 7 C 2 7 C 1 6 C 1 6 N 9 N 9 C 6 C 3 9 C 2 6 C 2 6 C 1 4 C 2 3 C 2 3 N 1 N 1 C 1 2 N 8 N 8 N 3 N 3 C 4 C 4 6 C 3 2 C 3 1 C 3 1 C 7 C 9 C 3 4 C 3 4 C 1 3 C 1 3 C 1 4 C 1 4 C 3 9 C 3 9 C 2 9 C 2 9 C 3 7 C 3 7 C 3 8 C 3 8 C 3 8 C 4 0 C 4 0 C 4 0 C 4 1 C 4 1 C 4 1 C 4 2 C 4 2 C 4 2 C 4 3 C 4 3 C 4 3 C 4 3 C 4 6 C 4 7 C 4 7 C 4 9 C 4 9 C 4 9 C 5 0 C 5 0 C 5 0 C 5 1 C 5 1 C 5 1 C 5 1 C 5 2 C 5 2 C 5 2 C 5 2 C 1 C 1 C 6 C 6 N 9 C 2 6 C 3 9 C 3 9 C 2 3 C 1 4 C 1 4 C 1 2 C 1 2 N 1 N 3 N 3 N 8 N 8 C 4 7 C 3 2 C 4 6 C 7 C 7 C 3 1 C 3 4 C 9 C 9 C 1 4 C 4 5 C 1 3 C 4 5 C 2 9 C 4 8 C 3 9 C 4 8 2 . 6 ( 7 ) 2 7 8 . 0 ( 4 ) 2 . 0 ( 7 ) 1 7 6 . 2 ( 3 ) 0 3 ( 8 ) - 1 . 6 ( 7 ) - 3 . 1 ( 7 ) 1 7 8 . 3 ( 4 ) 0 . 4 ( 8 ) 2 . 8 ( 7 ) 1 7 7 . 2 ( 4 ) 2 . 0 ( 7 ) 1 7 5 . 9 ( 3 ) 0 . 1 ( 7 ) 2 7 5 . 8 ( 4 ) 1 9 3 ( 6 ) 2 7 6 . 3 ( 4 ) 3 . 6 ( 6 ) 0 . 3 ( 8 ) - 0 . 2 ( 8 ) 0 . 2 ( 8 ) 2 . 0 ( 7 ) 2 7 6 . 8 ( 4 ) 2 . 6 ( 7 ) 2 . 1 ( 7 ) 0 . 8 ( 7 ) 1 7 7 . 7 ( 4 ) 2 . 5 ( 8 ) 1 7 8 . 0 ( 5 ) 1 . 8 ( 8 ) 2 7 7 . 7 ( 5 ) 3 . 7 ( 7 ) 2 7 5 . 1 ( 5 ) 2 . 1 ( 7 ) 1 7 7 . 7 ( 5 ) 3 3 0 T a b l e A 8 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ h a m T o l F ) 2 ( b p y ) z ( H 2 0 ) l [ B F 4 1 l B P h 4 l ' 0 C ( C H 3 ) 2 ' 3 C H s C H z o z C H z C H s ( 8 b ) . I d e n t i fi c a t i o n c o d e E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z [ R h 2 ( D T 0 1 F ) 2 ( b P Y ) 2 ( H 2 0 ) J [ B F 4 ] [ B P h 4 ] - 0 C ( C H 3 ) 2 ~ 3 C H 3 C H 2 0 2 C H 2 C H 3 C 8 9 H 9 6 B 2 F 8 N 8 0 8 R h 2 1 7 0 9 . 1 8 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A m o n o c l i n i c P 2 1 / n a = 2 3 . 4 8 9 4 ( 1 1 ) A b = 1 3 . 5 5 8 3 ( 6 ) A c = 2 8 . 4 8 1 1 ( 1 3 ) A a = 9 0 0 B = 1 1 4 . 1 1 8 0 ( 1 0 ) ° y = 9 0 0 8 2 7 8 . 7 ( 7 ) A 3 4 3 3 1 p c a l c T a b l e A 8 c o n t i n u e d . u F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ’ ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 1 . 3 7 1 g / c m 3 0 . 4 6 9 6 1 1 1 ' 3 3 5 4 4 0 . 4 6 x 0 . 3 6 x 0 . 1 8 1 1 1 1 1 1 3 1 . 4 6 t o 2 7 . 4 4 ° - 3 0 < = h < = 2 4 , - 1 7 < = k < = 9 , - 3 5 < = l < = 3 6 4 3 8 8 2 1 7 9 2 6 [ R ( i n t ) = 0 . 1 4 8 9 ] F u l l - m a t n ' x l e a s t - s q u a r e s o n F 2 1 7 9 2 1 / 2 8 / 1 0 1 3 0 . 9 7 2 R 1 = 0 . 1 1 9 6 , w R 2 = 0 . 2 2 6 7 R 1 = 0 . 2 5 8 5 , w R 2 = 0 . 2 9 0 6 1 . 0 4 7 a n d 0 . 9 5 8 6 7 A : 3 3 3 2 T a b l e A 8 c o n t i n u e d . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) B 1 0 . 0 7 5 6 ( 6 ) 0 . 2 4 4 4 ( 8 ) 0 . 1 0 7 2 ( 4 ) 0 . 0 3 6 ( 3 ) l B Z 0 . 8 2 6 9 ( 7 ) 0 . 2 4 5 6 ( 1 0 ) 0 . 1 5 2 6 ( 6 ) 0 . 0 7 0 ( 5 ) 1 C 1 0 . 9 6 0 6 ( 7 ) 0 . 8 2 6 3 ( 1 0 ) 0 . 4 8 7 4 ( 5 ) 0 . 0 7 0 ( 4 ) 1 C 1 0 0 . 7 2 6 5 ( 6 ) 0 . 9 8 5 2 ( 7 ) 0 . 1 6 1 4 ( 4 ) 0 . 0 4 4 ( 3 ) 1 C l 1 0 . 2 1 3 3 ( 6 ) 0 . 3 0 6 5 ( 1 1 ) 0 . 0 6 1 9 ( 5 ) 0 . 0 6 6 ( 4 ) 1 C 1 2 0 . 6 2 3 3 ( 5 ) 0 . 5 5 9 4 ( 7 ) 0 . 1 2 1 6 ( 4 ) 0 . 0 4 2 ( 3 ) 1 C 1 3 0 . 5 5 7 5 ( 6 ) 1 . 0 5 2 0 ( 8 ) 0 . 0 7 1 4 ( 5 ) 0 . 0 6 0 ( 3 ) 1 C 1 4 1 . 0 6 9 8 ( 6 ) 0 . 3 4 1 0 ( 1 0 ) 0 . 4 0 1 3 ( 5 ) 0 . 0 7 5 ( 4 ) 1 C 1 5 0 . 1 7 7 6 ( 6 ) 0 . 4 5 7 4 ( 1 0 ) 0 . 0 8 4 5 ( 5 ) 0 . 0 6 3 ( 4 ) 1 C 1 6 1 . 0 1 8 4 ( 5 ) 0 . 9 4 7 7 ( 7 ) 0 . 1 8 5 6 ( 4 ) 0 . 0 4 2 ( 3 ) 1 C 1 7 0 . 1 3 6 6 ( 6 ) 0 . 0 8 3 3 ( 8 ) 0 . 1 5 7 0 ( 4 ) 0 . 0 5 2 ( 3 ) 1 C 1 8 0 . 7 2 4 6 ( 5 ) 0 . 8 8 2 7 ( 7 ) 0 . 1 5 7 3 ( 3 ) 0 . 0 3 0 ( 2 ) 1 C 1 9 0 . 1 3 8 9 ( 6 ) 0 . 3 4 7 3 ( 8 ) 0 . 2 5 0 3 ( 4 ) 0 . 0 5 6 ( 3 ) 1 C 2 0 . 1 5 6 2 ( 7 ) - 0 . 0 1 6 2 ( 9 ) 0 . 1 6 0 1 ( 5 ) 0 . 0 6 5 ( 4 ) 1 C 2 0 0 . 8 8 2 7 ( 5 ) 0 . 4 6 7 2 ( 7 ) 0 . 0 9 6 9 ( 4 ) 0 . 0 4 4 ( 3 ) 1 C 2 1 0 . 6 1 6 3 ( 5 ) 0 . 8 9 0 6 ( 8 ) 0 . 1 0 1 2 ( 4 ) 0 . 0 4 5 ( 3 ) 1 C 2 2 0 . 6 7 1 6 ( 6 ) 1 . 0 3 8 5 ( 8 ) 0 . 1 3 3 4 ( 4 ) 0 . 0 5 2 ( 3 ) 1 C 2 3 0 . 0 6 5 0 ( 5 ) 0 . 0 5 8 5 ( 8 ) 0 . 0 7 0 3 ( 5 ) 0 . 0 5 2 ( 3 ) 1 C 2 4 1 . 0 3 7 2 ( 5 ) 0 . 5 0 9 2 ( 9 ) 0 . 3 5 8 7 ( 4 ) 0 . 0 5 1 ( 3 ) 1 C 2 5 0 . 0 8 5 9 ( 7 ) 0 . 3 5 4 8 ( 9 ) 0 . 2 6 0 1 ( 5 ) 0 . 0 6 0 ( 4 ) 1 C 2 6 0 . 6 1 5 6 ( 5 ) 0 . 9 9 2 3 ( 8 ) 0 . 1 0 2 1 ( 4 ) 0 . 0 4 2 ( 3 ) 1 C 2 7 1 . 0 2 3 8 ( 6 ) 0 . 4 0 8 2 ( 8 ) 0 . 3 6 0 4 ( 4 ) 0 . 0 4 8 ( 3 ) 1 C 2 8 - 0 . 1 0 5 3 ( 5 ) 0 . 2 2 2 0 ( 8 ) 0 . 0 1 7 1 ( 4 ) 0 . 0 5 2 ( 3 ) 1 C 2 9 1 . 0 6 5 5 ( 5 ) 0 . 6 4 3 9 ( 8 ) 0 . 1 6 1 9 ( 4 ) 0 . 0 4 4 ( 3 ) 1 C 3 0 0 . 7 0 4 0 ( 5 ) 0 . 6 3 7 2 ( 7 ) 0 . 2 1 5 1 ( 4 ) 0 . 0 4 2 ( 3 ) 1 C 3 1 0 . 1 3 6 6 ( 6 ) 0 . 4 0 5 3 ( 8 ) 0 . 0 9 8 5 ( 5 ) 0 . 0 5 4 ( 3 ) 1 C 3 2 0 . 8 6 9 2 ( 6 ) 0 . 8 0 9 2 ( 7 ) 0 . 3 9 7 9 ( 4 ) 0 . 0 4 3 ( 3 ) 1 3 3 3 T a b l e A 8 c o n t i n u e d . C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 C 4 8 C 4 9 C 5 C 5 0 C 5 1 C 5 2 C 5 3 C 5 4 C 5 5 C 5 6 C 5 7 C 5 8 C 5 9 C 6 C 6 0 C 6 1 C 6 2 C 6 3 C 6 4 C 6 5 C 6 6 C 6 7 C 6 8 0 . 9 6 8 2 ( 5 ) 0 . 0 2 5 9 ( 5 ) 0 . 8 7 0 1 ( 5 ) - 0 . 0 6 3 0 ( 6 ) 0 . 0 2 9 8 ( 6 ) 0 . 9 7 3 2 ( 5 ) 0 . 9 0 8 6 ( 5 ) 0 . 9 0 3 8 ( 5 ) 0 . 9 2 5 3 ( 5 ) 0 . 6 8 7 1 ( 5 ) 0 . 5 9 9 1 ( 5 ) 0 . 8 9 9 5 ( 5 ) 0 . 6 6 9 2 ( 5 ) 0 . 6 3 9 2 ( 5 ) 0 . 1 3 0 2 ( 5 ) 0 . 9 6 0 5 ( 5 ) 0 . 9 0 7 4 ( 5 ) 0 . 1 2 9 3 ( 6 ) 1 . 0 0 1 4 ( 5 ) 0 . 1 6 9 1 ( 5 ) 0 . 0 7 8 2 ( 5 ) 0 . 8 5 8 9 ( 4 ) 0 . 9 3 8 2 ( 5 ) 0 . 0 9 1 9 ( 5 ) 0 . 9 9 4 6 ( 5 ) - 0 . 1 1 4 5 ( 6 ) - 0 . 0 4 6 l ( 5 ) 1 . 0 3 9 3 ( 5 ) 0 . 0 8 4 2 ( 7 ) 0 . 0 0 4 2 ( 5 ) 1 . 0 0 9 6 ( 4 ) 0 . 1 3 4 7 ( 5 ) 0 . 8 3 4 6 ( 5 ) 0 . 9 3 3 6 ( 6 ) 0 . 9 3 6 4 ( 5 ) 0 . 8 4 5 0 ( 5 ) 0 . 9 4 9 8 ( 5 ) 0 . 8 0 8 5 ( 5 ) 0 . 3 7 5 8 ( 7 ) 0 . 2 9 6 9 ( 6 ) 0 . 9 8 2 7 ( 8 ) 0 . 3 3 9 0 ( 8 ) 0 . 3 2 8 7 ( 7 ) 0 . 8 2 1 0 ( 8 ) 0 . 5 0 7 0 ( 8 ) 0 . 8 3 5 6 ( 8 ) 0 . 4 3 4 7 ( 7 ) 0 . 5 6 3 8 ( 7 ) 0 . 5 9 1 4 ( 7 ) 0 . 9 3 7 2 ( 8 ) 0 . 8 3 6 0 ( 7 ) 0 . 6 2 8 5 ( 7 ) 0 . 3 0 2 2 ( 8 ) 1 . 0 4 7 8 ( 7 ) 0 . 6 0 9 9 ( 8 ) 0 . 0 7 7 1 ( 9 ) 1 . 0 4 0 8 ( 7 ) 0 . 2 5 5 5 ( 9 ) 0 . 2 8 7 0 ( 7 ) 0 . 5 3 0 4 ( 7 ) 0 . 5 3 6 8 ( 7 ) 0 . 1 2 3 9 ( 7 ) 0 . 5 7 2 0 ( 7 ) 0 . 2 8 5 6 ( 8 ) 0 . 2 1 0 2 ( 7 ) 0 . 5 6 8 9 ( 7 ) - 0 . 0 4 0 6 ( 9 ) 0 . 3 2 7 2 ( 8 ) 0 . 7 6 2 8 ( 7 ) 0 . 3 1 5 7 ( 8 ) 0 . 5 7 9 4 ( 7 ) 0 . 8 1 9 7 ( 7 ) 0 . 9 6 1 8 ( 6 ) 0 . 8 0 3 2 ( 7 ) 0 . 8 1 6 0 ( 7 ) 0 . 8 3 9 4 ( 6 ) 3 3 4 0 . 3 2 3 8 ( 4 ) 0 . 1 7 4 4 ( 4 ) 0 . 0 8 3 7 ( 4 ) 0 . 0 2 1 6 ( 4 ) 0 . 2 2 2 5 ( 4 ) 0 . 4 0 2 4 ( 4 ) 0 . 0 6 5 2 ( 4 ) 0 . 0 5 4 5 ( 3 ) 0 . 2 8 6 9 ( 4 ) 0 . 1 3 3 6 ( 4 ) 0 . 1 5 5 4 ( 4 ) 0 . 0 5 6 3 ( 4 ) 0 . 1 2 7 5 ( 4 ) 0 . 2 0 1 9 ( 4 ) 0 . 0 9 3 6 ( 4 ) 0 . 2 2 0 0 ( 4 ) 0 . 0 5 9 0 ( 4 ) 0 . 1 1 6 8 ( 5 ) 0 . 1 9 6 9 ( 4 ) 0 . 0 7 5 2 ( 4 ) 0 . 1 6 2 6 ( 4 ) 0 . 1 2 2 7 ( 4 ) 0 . 2 8 7 8 ( 4 ) 0 . 1 1 2 1 ( 4 ) 0 . 3 2 2 3 ( 4 ) - 0 . 0 2 3 3 ( 4 ) 0 . 0 5 6 8 ( 4 ) 0 . 1 7 9 6 ( 4 ) 0 . 0 7 3 2 ( 6 ) 0 . 0 1 8 5 ( 4 ) 0 . 1 8 9 3 ( 4 ) 0 . 2 0 2 6 ( 4 ) 0 . 2 3 1 8 ( 4 ) 0 . 4 2 7 9 ( 4 ) 0 . 2 3 0 5 ( 4 ) 0 . 3 4 4 7 ( 4 ) 0 . 3 4 9 0 ( 4 ) 0 . 2 3 4 9 ( 4 ) 0 . 0 4 3 ( 3 ) 0 . 0 3 8 ( 2 ) 0 . 0 4 1 ( 3 ) 0 . 0 5 0 ( 3 ) 0 . 0 4 5 ( 3 ) 0 . 0 4 9 ( 3 ) 0 . 0 5 0 ( 3 ) 0 . 0 3 9 ( 3 ) 0 . 0 3 4 ( 2 ) 0 . 0 4 0 ( 3 ) 0 . 0 4 2 ( 3 ) 0 . 0 4 5 ( 3 ) 0 . 0 3 8 ( 2 ) 0 . 0 4 0 ( 3 ) 0 . 0 4 5 ( 3 ) 0 . 0 3 9 ( 2 ) 0 . 0 4 7 ( 3 ) 0 . 0 6 0 ( 3 ) 0 . 0 4 1 ( 3 ) 0 . 0 4 6 ( 3 ) § 0 . 0 3 5 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 4 2 ( 3 ) 0 . 0 5 2 ( 3 ) 0 . 0 4 5 ( 3 ) 0 . 0 3 7 ( 2 ) 0 . 0 6 7 ( 4 ) 0 . 0 4 4 ( 3 ) 0 . 0 3 4 ( 2 ) 0 . 0 4 8 ( 3 ) 0 . 0 3 3 ( 2 ) 0 . 0 4 8 ( 3 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 3 0 ( 2 ) p — a H H p — o p — d p — a H — t p — e p — e p — t p — A H p — e p — a p — n H H p — n p — e y — e w p — u p — a p — a p — A p — A p — e p — ‘ H p — ‘ p — a y — t — ‘ H H H H T a b l e A 8 c o n t i n u e d . C 6 9 C 7 0 C 7 1 C 7 2 C 7 3 C 7 4 C 7 5 C 7 6 C 7 7 C 7 8 C 7 9 C 8 C 8 0 C 8 1 C 8 2 C 8 3 C 8 4 C 8 5 C 8 6 C 8 7 C 8 8 C 9 C 9 1 C 9 2 C 9 3 C 9 4 F 1 F 2 F 3 F 4 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 0 . 8 8 5 5 ( 5 ) 0 . 8 8 2 3 ( 5 ) 0 . 0 0 7 4 ( 5 ) 1 . 0 5 0 9 ( 5 ) 0 . 7 2 7 5 ( 5 ) 0 . 8 8 0 2 ( 5 ) 0 . 8 4 6 8 ( 5 ) 0 . 9 9 4 2 ( 4 ) 0 . 9 9 8 8 ( 5 ) 1 . 1 3 7 7 ( 8 ) 1 . 1 5 3 7 ( 9 ) 0 . 2 1 7 4 ( 6 ) 1 . 1 7 3 6 ( 8 ) 0 . 2 4 5 1 ( 1 2 ) 0 . 2 2 4 5 ( 1 1 ) 0 . 3 2 7 3 ( 2 0 ) 0 . 3 7 5 4 ( 1 4 ) 0 . 3 7 6 0 ( 1 0 ) 0 . 3 2 1 4 ( 1 0 ) 0 . 2 6 4 3 ( 8 ) 0 . 2 7 8 1 ( 1 2 ) 0 . 5 2 9 7 ( 5 ) 1 . 2 0 1 1 ( 1 3 ) 1 . 1 6 1 5 ( 3 1 ) 1 . 2 4 8 9 ( 1 1 ) 1 . 2 2 4 7 ( 1 0 ) 0 . 8 8 2 6 ( 6 ) 0 . 7 9 5 4 ( 5 ) 0 . 8 4 5 3 ( 7 ) 0 . 8 0 4 0 ( 6 ) 0 . 9 5 1 2 ( 4 ) 0 . 9 8 2 5 ( 4 ) 0 . 8 9 4 2 ( 4 ) 0 . 8 5 2 7 ( 4 ) 0 . 8 5 8 5 ( 4 ) 0 . 7 8 2 4 ( 4 ) 0 . 7 9 3 4 ( 4 ) 0 . 8 6 4 3 ( 4 ) 0 . 8 0 7 9 ( 6 ) 0 . 6 6 9 9 ( 7 ) 0 . 2 6 2 0 ( 7 ) 0 . 7 4 1 3 ( 7 ) 0 . 6 0 6 2 ( 6 ) 0 . 7 7 9 2 ( 7 ) 0 . 9 2 2 1 ( 7 ) 0 . 8 6 5 4 ( 6 ) 0 . 5 9 6 0 ( 7 ) 0 . 7 7 4 9 ( 1 4 ) 0 . 6 7 3 9 ( 1 4 ) 0 . 4 0 7 4 ( 1 0 ) 0 . 8 3 6 8 ( 1 2 ) 0 . 3 6 5 8 ( 1 7 ) 0 . 4 2 6 8 ( 2 2 ) 0 . 3 6 3 1 ( 2 4 ) 0 . 4 0 4 5 ( 2 4 ) 0 . 4 4 1 1 ( 2 2 ) 0 . 4 9 8 4 ( 2 3 ) 0 . 6 4 5 8 ( 1 3 ) 0 . 7 5 3 7 ( 1 9 ) 0 . 5 8 6 4 ( 8 ) 0 . 5 7 2 2 ( 2 4 ) 0 . 5 3 9 1 ( 6 9 ) 0 . 5 0 0 2 ( 2 5 ) 0 . 4 4 5 3 ( 1 7 ) 0 . 2 6 6 6 ( 1 0 ) 0 . 3 2 8 3 ( 8 ) 0 . 2 2 1 5 ( 8 ) 0 . 1 7 7 3 ( 9 ) 0 . 8 7 1 0 ( 5 ) 0 . 6 8 9 4 ( 5 ) 0 . 6 0 0 8 ( 5 ) 0 . 8 2 2 4 ( 6 ) 0 . 6 2 8 6 ( 6 ) 0 . 8 2 9 5 ( 6 ) 0 . 6 2 1 1 ( 5 ) 0 . 8 0 2 0 ( 5 ) 3 3 5 0 . 3 1 9 7 ( 4 ) 0 . 0 8 6 9 ( 4 ) 0 . 0 6 0 1 ( 4 ) 0 . 1 6 6 7 ( 4 ) 0 . 1 7 9 5 ( 4 ) 0 . 0 8 3 1 ( 3 ) 0 . 1 1 1 6 ( 4 ) 0 . 1 9 8 4 ( 4 ) 0 . 2 0 1 6 ( 4 ) 0 . 3 1 2 5 ( 6 ) 0 . 3 2 3 0 ( 8 ) 0 . 0 6 7 7 ( 5 ) 0 . 2 9 4 0 ( 6 ) 0 . 1 8 6 4 ( 9 ) 0 . 2 2 5 9 ( 1 1 ) 0 . 1 5 3 3 ( 1 3 ) 0 . 1 5 0 1 ( 2 0 ) 0 . 0 4 1 6 ( 1 1 ) 0 . 0 0 8 5 ( 8 ) - 0 . 0 1 1 6 ( 8 ) 0 . 0 0 2 6 ( 1 1 ) 0 . 1 4 1 9 ( 5 ) 0 . 4 8 5 2 ( 1 0 ) 0 . 5 0 7 4 ( 2 3 ) 0 . 4 4 5 9 ( 1 5 ) 0 . 3 9 2 4 ( 1 0 ) 0 . 1 9 3 2 ( 6 ) 0 . 1 4 3 5 ( 5 ) 0 . 1 1 6 6 ( 4 ) 0 . 1 7 0 5 ( 5 ) 0 . 2 2 0 0 ( 3 ) 0 . 2 0 5 6 ( 3 ) 0 . 2 5 1 0 ( 3 ) 0 . 1 1 2 4 ( 3 ) 0 . 1 1 8 0 ( 3 ) 0 . 1 8 4 5 ( 3 ) 0 . 1 9 1 3 ( 3 ) 0 . 2 6 4 8 ( 3 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 3 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 4 1 ( 3 ) 0 . 0 3 2 ( 2 ) 0 . 0 3 5 ( 2 ) 0 . 0 3 3 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 3 5 ( 2 ) 0 . 1 1 2 ( 7 ) 0 . 1 4 7 ( 9 ) 0 . 0 6 2 ( 4 ) 0 . 1 0 9 ( 6 ) 0 . 1 2 1 ( 7 ) 0 . 2 2 0 ( 1 4 ) 0 . 3 1 4 ( 3 3 ) 0 . 3 5 3 ( 3 4 ) 0 . 2 3 6 ( 1 7 ) 0 . 1 3 2 ( 9 ) 0 . 1 0 5 ( 6 ) 0 . 2 2 7 ( 1 6 ) 0 . 0 5 4 ( 3 ) 0 . 2 3 0 ( 2 0 ) 1 . 0 5 2 ( 1 3 3 ) 0 . 2 6 7 ( 2 8 ) 0 . 1 7 4 ( 1 1 ) 0 . 2 1 4 ( 8 ) 0 . 1 6 5 ( 5 ) 0 . 1 7 3 ( 6 ) 0 . 1 9 9 ( 7 ) 0 . 0 2 8 ( 2 ) 0 . 0 2 9 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 3 3 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 2 9 ( 2 ) T a b l e A 8 c o n t i n u e d . 0 1 1 . 0 9 1 3 ( 7 ) 0 . 8 1 3 0 ( 1 2 ) 0 . 3 2 2 2 ( 6 ) 0 . 1 5 7 ( 6 ) 0 2 0 . 2 7 3 0 ( 6 ) 0 . 4 5 8 0 ( 9 ) 0 . 0 2 9 4 ( 5 ) 0 . 1 1 1 ( 4 ) 0 3 0 . 2 0 9 6 ( 8 ) 0 . 3 0 1 1 ( 1 2 ) 0 . 1 5 6 2 ( 7 ) 0 . 1 8 4 ( 7 ) 0 4 0 . 3 2 0 8 ( 7 ) 0 . 5 8 7 0 ( 1 1 ) 0 . 0 2 3 9 ( 7 ) 0 . 1 4 9 ( 7 ) 0 5 0 . 2 9 9 4 ( 8 ) 0 . 3 9 7 7 ( 1 2 ) 0 . 1 8 5 4 ( 7 ) 0 . 1 8 1 ( 7 ) 0 6 1 . 2 2 9 3 ( 6 ) 0 . 6 3 9 2 ( 9 ) 0 . 5 0 6 7 ( 6 ) 0 . 1 3 7 ( 5 ) 0 7 1 . 2 0 1 8 ( 1 5 ) 0 . 5 1 0 4 ( 2 7 ) 0 . 4 5 8 5 ( 1 0 ) 0 . 3 2 4 ( 2 3 ) 0 8 0 . 7 3 5 6 ( 3 ) 0 . 7 1 7 2 ( 5 ) 0 . 0 7 7 9 ( 3 ) 0 . 0 4 2 ( 2 ) 1 1 1 1 1 0 . 8 1 9 9 0 ( 4 ) 0 . 7 2 6 1 4 ( 5 ) 0 . 1 5 1 4 2 ( 3 ) 0 . 0 2 8 3 ( 2 ) 1 1 1 1 2 0 . 9 2 0 3 9 ( 4 ) 0 . 7 3 8 2 3 ( 5 ) 0 . 2 3 4 6 8 ( 3 ) 0 . 0 2 8 6 ( 2 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 3 6 T a b l e A 8 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ ° ] . B 1 B 1 B 1 B 1 B 2 B Z B 2 B Z R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 N 1 N 1 N 2 N 2 N 3 N 3 N 4 N 4 N 5 N 5 N 6 N 6 N 7 N 7 N 8 N 8 C 1 C 7 1 C 5 2 C 5 5 C 4 7 F 4 F 3 F 2 F 1 N 4 N 5 N 6 N 7 0 8 R h 2 N 8 N 1 N 2 N 3 C 6 5 C 7 6 C 7 7 C 6 1 C 6 3 C 5 4 C 7 5 C 7 4 C 5 3 C 7 0 C 6 8 C 1 8 C 6 3 C 7 3 C 6 8 C 6 9 C 6 4 1 . 6 3 ( 2 ) 1 . 6 5 7 ( 1 4 ) 1 . 6 7 2 ( 1 4 ) 1 . 6 7 6 ( 1 5 ) 1 . 2 7 7 ( 1 3 ) 1 . 3 0 6 ( 1 4 ) 1 . 3 1 0 ( 1 4 ) 1 3 8 ( 2 ) 2 . 0 5 8 ( 7 ) 2 . 0 4 5 ( 7 ) 2 . 0 7 6 ( 8 ) 2 . 0 7 0 ( 7 ) 2 . 2 2 1 ( 7 ) 2 . 5 7 8 2 ( 1 1 ) 2 . 0 3 6 ( 7 ) 2 . 0 4 6 ( 7 ) 2 . 0 6 1 ( 7 ) 2 . 0 7 4 ( 7 ) 1 . 3 4 5 ( 1 1 ) 1 . 3 8 3 ( 1 1 ) 1 . 3 4 1 ( 1 1 ) 1 . 3 6 0 ( 1 1 ) 1 . 3 1 0 ( 1 2 ) 1 . 4 2 6 ( 1 2 ) 1 . 3 5 8 ( 1 1 ) 1 . 3 7 5 ( 1 1 ) 1 . 3 3 7 ( 1 1 ) 1 . 3 4 9 ( 1 1 ) 1 . 3 1 7 ( 1 1 ) 1 . 4 5 1 ( 1 2 ) 1 . 2 9 4 ( 1 2 ) 1 . 4 5 6 ( 1 2 ) 1 . 3 3 6 ( 1 1 ) 1 . 4 3 6 ( 1 1 ) 1 5 5 ( 2 ) 3 3 7 T a b l e A 8 c o n t i n u e d . C 2 C 2 C 5 C 6 C 8 C 8 C 9 C 1 0 C 1 0 C 1 1 C 1 2 C 1 2 C 1 3 C 1 4 C 1 5 C 1 6 C 1 6 C 1 7 C 1 8 C 1 9 C 1 9 C 2 0 C 2 0 C 2 1 C 2 1 C 2 2 C 2 3 C 2 4 C 2 4 C 2 5 C 2 7 C 2 8 C 2 8 C 2 9 C 2 9 C 3 0 C 3 0 C 3 1 C 1 7 C 5 C 6 C 2 3 C 1 1 C 1 5 C 4 3 C 1 8 C 2 2 C 5 1 C 4 3 C 4 2 C 2 6 C 2 7 C 3 1 C 7 6 C 5 0 C 5 5 C 4 5 C 6 2 C 2 5 C 3 9 C 5 3 C 2 6 C 4 5 C 2 6 C 5 5 C 2 7 C 5 6 C 3 7 C 3 3 C 5 7 C 5 8 C 7 2 C 5 9 C 7 3 C 4 6 C 4 7 1 4 2 ( 2 ) 1 4 0 ( 2 ) 1 3 5 ( 2 ) 1 . 4 1 0 ( 1 5 ) 1 3 8 ( 2 ) 1 3 9 ( 2 ) 1 . 5 1 5 ( 1 4 ) 1 . 3 9 3 ( 1 2 ) 1 . 4 0 7 ( 1 5 ) 1 4 2 ( 2 ) 1 . 3 7 4 ( 1 4 ) 1 . 3 9 5 ( 1 4 ) 1 . 5 1 9 ( 1 5 ) 1 . 5 2 6 ( 1 4 ) 1 3 8 ( 2 ) 1 . 3 6 9 ( 1 2 ) 1 . 4 0 0 ( 1 3 ) 1 . 3 9 3 ( 1 4 ) 1 . 3 8 2 ( 1 3 ) 1 . 3 8 9 ( 1 4 ) 1 3 9 ( 2 ) 1 . 3 8 7 ( 1 5 ) 1 . 3 8 6 ( 1 3 ) 1 . 3 7 9 ( 1 4 ) 1 . 3 7 5 ( 1 4 ) 1 4 0 ( 2 ) 1 . 4 1 1 ( 1 4 ) 1 . 4 1 0 ( 1 5 ) 1 . 3 9 8 ( 1 4 ) 1 3 6 ( 2 ) 1 3 7 ( 2 ) 1 3 8 ( 2 ) 1 . 3 9 9 ( 1 5 ) 1 . 3 8 5 ( 1 3 ) 1 . 3 8 7 ( 1 4 ) 1 . 4 0 3 ( 1 3 ) 1 . 4 1 6 ( 1 4 ) 1 . 4 0 7 ( 1 4 ) 3 3 8 T a b l e A 8 c o n t i n u e d . C 3 2 C 3 2 C 3 3 C 3 4 C 3 4 C 3 5 C 3 5 C 3 6 C 3 6 C 3 8 C 3 8 C 3 9 C 4 0 C 4 0 C 4 1 C 4 2 C 4 3 C 4 7 C 4 8 C 4 8 C 4 9 C 5 2 C 5 4 C 5 8 C 5 9 C 6 0 C 6 1 C 6 1 C 6 6 C 6 7 C 7 0 C 7 8 C 7 8 C 7 8 C 8 1 C 8 1 C 8 1 C 8 3 C 6 6 C 6 4 C 4 1 C 3 7 C 5 2 C 4 4 C 7 5 C 5 7 C 6 0 C 6 7 C 6 4 C 4 9 C 7 4 C 4 4 C 5 4 C 7 3 C 4 6 C 5 1 C 5 0 C 6 5 C 7 0 C 6 2 C 5 6 C 7 1 C 7 7 C 7 1 C 7 2 C 7 6 C 6 9 C 6 9 C 7 4 0 1 C 7 9 C 8 0 0 3 0 5 C 8 2 C 8 4 1 . 3 8 4 ( 1 3 ) 1 4 1 ( 2 ) 1 . 3 7 6 ( 1 4 ) 1 . 4 0 3 ( 1 3 ) 1 . 4 0 6 ( 1 3 ) 1 . 3 8 0 ( 1 4 ) 1 . 4 0 0 ( 1 3 ) 1 3 9 ( 2 ) 1 . 3 9 5 ( 1 5 ) 1 . 3 9 2 ( 1 4 ) 1 3 9 ( 2 ) 1 . 4 0 5 ( 1 4 ) 1 . 3 8 9 ( 1 2 ) 1 . 3 8 4 ( 1 4 ) 1 . 4 1 6 ( 1 3 ) 1 . 3 8 7 ( 1 3 ) 1 . 3 7 0 ( 1 4 ) 1 . 3 8 0 ( 1 4 ) 1 . 3 7 1 ( 1 4 ) 1 . 3 8 2 ( 1 3 ) 1 . 4 2 2 ( 1 3 ) 1 . 4 0 5 ( 1 4 ) 1 . 3 7 3 ( 1 4 ) 1 . 4 0 9 ( 1 4 ) 1 . 3 8 6 ( 1 3 ) 1 . 4 1 2 ( 1 4 ) 1 . 3 9 7 ( 1 3 ) 1 . 4 8 6 ( 1 3 ) 1 . 4 0 4 ( 1 3 ) 1 . 3 9 9 ( 1 4 ) 1 . 4 8 5 ( 1 3 ) 1 3 3 ( 2 ) 1 4 2 ( 2 ) 1 4 3 ( 2 ) 1 2 7 ( 2 ) 1 3 6 ( 2 ) 1 6 2 ( 3 ) 1 3 0 ( 4 ) 3 3 9 T a b l e A 8 c o n t i n u e d . C 8 3 C 8 5 C 8 6 C 8 6 C 8 7 C 8 7 C 9 1 C 9 1 C 9 1 C 9 3 C 9 3 C 7 1 C 7 1 C 5 2 C 7 1 C 5 2 C 5 5 F 4 F 4 F 3 F 4 F 3 F 2 N 4 N 4 N 5 N 4 N 5 N 6 N 4 N 5 N 6 N 7 N 4 N 5 N 6 N 7 0 8 0 5 C 8 6 0 4 0 2 C 8 8 0 4 0 6 0 7 C 9 2 0 7 C 9 4 B l B 1 B 1 B 1 B 1 B 1 B 2 B Z B 2 B 2 B Z B 2 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l C 5 2 C 5 5 C 5 5 C 4 7 C 4 7 C 4 7 F 3 F 2 F 2 F 1 F 1 F 1 N 5 N 6 N 6 N 7 N 7 N 7 0 8 0 8 0 8 0 8 R h 2 R h 2 R h 2 1 4 1 ( 3 ) 1 4 7 ( 3 ) 1 2 8 ( 3 ) 1 3 2 ( 2 ) 1 5 2 ( 3 ) 1 5 2 ( 2 ) 1 . 1 4 ( 2 ) 1 . 1 4 ( 3 ) 1 4 0 ( 4 ) 1 3 0 ( 3 ) 1 5 8 ( 3 ) 1 1 1 . 9 ( 8 ) 1 0 9 . 0 ( 8 ) 1 1 0 . 1 ( 8 ) 1 0 9 . 2 ( 8 ) 1 0 8 . 8 ( 8 ) 1 0 7 . 8 ( 8 ) 1 1 7 . 4 ( 1 4 ) 1 1 3 . 8 ( 1 3 ) 1 1 3 . 5 ( 1 2 ) 1 0 3 . 1 ( 1 2 ) 1 0 1 . 9 ( 1 2 ) 1 0 4 . 8 ( 1 3 ) 7 9 . 8 ( 3 ) 9 8 . 0 ( 3 ) 1 7 7 . 8 ( 3 ) 1 7 4 . 9 ( 3 ) 9 5 . 7 ( 3 ) 8 6 . 4 ( 3 ) 8 4 . 9 ( 3 ) 8 5 . 4 ( 3 ) 9 4 . 9 ( 3 ) 9 7 . 4 ( 3 ) 9 3 0 ( 2 ) 9 3 2 ( 2 ) 8 6 . 4 ( 2 ) 8 4 . 7 ( 2 ) 1 7 7 . 6 ( 2 ) 3 4 0 T a b l e A 8 c o n t i n u e d . N 8 N 8 N 1 N 8 N 1 N 2 N 8 N 1 N 2 N 3 C 6 5 C 6 5 C 7 6 C 7 7 C 7 7 C 6 1 C 6 3 C 6 3 C 5 4 C 7 5 C 7 5 C 7 4 C 5 3 C 5 3 C 7 0 C 6 8 C 6 8 C 1 8 C 6 3 C 6 3 C 7 3 C 6 8 C 6 8 C 6 9 C 1 7 C 6 C 5 C 1 1 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 N 1 N 1 N 1 N 2 N 2 N 2 N 3 N 3 N 3 N 4 N 4 N 4 N 5 N 5 N 5 N 6 N 6 N 6 N 7 N 7 N 7 N 8 N 8 N 8 C 2 C 5 C 6 C 8 N 1 N 2 N 2 N 3 N 3 N 3 R h l R h l R h l R h l C 7 6 R h 2 R h 2 C 6 1 R h 2 R h 2 C 5 4 R h 2 R h 2 C 7 4 R h l R h l C 7 0 R h l R h l C 1 8 R h l R h l C 7 3 R h l R h l C 6 9 R h 2 R h 2 C 5 C 2 C 2 3 C 1 5 9 3 2 ( 3 ) 1 7 3 . 3 ( 3 ) 8 0 . 4 ( 3 ) 8 9 . 1 ( 3 ) 1 7 6 . 8 ( 3 ) 9 7 2 ( 3 ) 8 4 . 7 ( 2 ) 9 7 . 8 ( 2 ) 9 8 2 ( 2 ) 8 4 5 ( 2 ) 1 1 6 . 8 ( 8 ) 1 2 8 . 0 ( 6 ) 1 1 5 . 2 ( 6 ) 1 1 8 . 4 ( 8 ) 1 2 7 . 6 ( 6 ) 1 1 4 . 1 ( 6 ) 1 2 0 . 2 ( 8 ) 1 1 8 0 ( 6 ) 1 2 1 . 2 ( 6 ) 1 1 9 . 0 ( 8 ) 1 2 5 . 5 ( 6 ) 1 1 5 . 4 ( 6 ) 1 1 9 . 4 ( 8 ) 1 2 5 . 7 ( 6 ) 1 1 4 . 8 ( 6 ) 1 1 6 . 7 ( 8 ) 1 1 7 . 9 ( 6 ) 1 2 4 . 8 ( 6 ) 1 1 8 . 9 ( 8 ) 1 2 0 . 4 ( 7 ) 1 1 9 . 8 ( 6 ) 1 1 9 . 1 ( 8 ) 1 2 1 . 8 ( 6 ) 1 1 9 . 1 ( 6 ) 1 1 9 . 2 ( 1 2 ) 1 1 9 . 7 ( 1 2 ) 1 2 0 . 9 ( 1 3 ) 1 2 0 . 2 ( 1 1 ) 3 4 1 T a b l e A 8 c o n t i n u e d . C 1 8 C 8 C 4 3 C 3 1 C 7 6 C 5 5 C 4 5 C 4 5 C 1 0 C 6 2 C 3 9 C 2 6 C 2 6 C 5 5 C 2 7 C 3 7 C 2 1 C 2 1 C 2 2 C 3 3 C 3 3 C 2 4 C 5 7 C 7 2 C 7 3 C 1 5 C 6 6 C 2 7 C 3 7 C 4 4 C 5 7 C 2 5 C 6 7 C 2 0 C 7 4 C 3 3 C 7 3 C 4 6 C 1 0 C 1 1 C 1 2 C 1 5 C 1 6 C 1 7 C 1 8 C 1 8 C 1 8 C 1 9 C 2 0 C 2 1 C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 6 C 2 6 C 2 7 C 2 7 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 2 2 C 5 1 C 4 2 C 8 C 5 0 C 2 C 1 0 N 6 N 6 C 2 5 C 5 3 C 4 5 C 1 0 C 6 C 5 6 C 1 9 C 2 2 C 1 3 C 1 3 C 2 4 C 1 4 C 1 4 C 5 8 C 5 9 C 4 6 C 4 7 C 6 4 C 4 1 C 5 2 C 7 5 C 6 0 C 3 4 C 6 4 C 4 9 C 4 4 C 5 4 C 1 2 C 1 2 1 1 8 . 4 ( 1 0 ) 1 1 8 . 3 ( 1 2 ) 1 2 1 . 7 ( 1 0 ) 1 1 9 . 9 ( 1 2 ) 1 1 9 . 0 ( 1 0 ) 1 2 2 . 5 ( 1 1 ) 1 1 9 . 8 ( 9 ) 1 2 2 . 8 ( 8 ) 1 1 7 . 4 ( 9 ) 1 2 0 . 5 ( 1 1 ) 1 1 8 . 9 ( 1 0 ) 1 2 2 . 9 ( 1 1 ) 1 2 2 . 4 ( 1 0 ) 1 2 1 . 8 ( 1 2 ) 1 2 1 . 0 ( 1 1 ) 1 1 8 . 8 ( 1 0 ) 1 1 6 . 3 ( 1 0 ) 1 2 2 . 5 ( 1 0 ) 1 2 1 . 2 ( 1 0 ) 1 1 6 . 3 ( 1 0 ) 1 2 3 . 2 ( 1 1 ) 1 2 0 . 6 ( 1 1 ) 1 2 0 . 7 ( 1 1 ) 1 1 9 . 9 ( 1 0 ) 1 1 8 . 8 ( 1 0 ) 1 2 2 . 7 ( 1 2 ) 1 2 1 . 9 ( 1 0 ) 1 2 4 . 6 ( 1 0 ) 1 2 3 . 2 ( 1 0 ) 1 1 7 . 4 ( 1 0 ) 1 2 1 . 6 ( 1 1 ) 1 2 0 . 3 ( 1 0 ) 1 2 1 . 2 ( 1 1 ) 1 1 8 . 5 ( 1 0 ) 1 1 8 . 2 ( 9 ) 1 1 8 . 0 ( 1 0 ) 1 2 0 . 2 ( 1 0 ) 1 1 8 . 4 ( 1 0 ) 3 4 2 T a b l e A 8 c o n t i n u e d . C 4 6 C 1 2 C 3 5 C 2 1 C 4 3 C 5 1 C 5 1 C 3 1 C 5 0 C 3 9 C 4 8 C 4 7 C 6 2 C 6 2 C 3 4 N 5 C 5 6 C 5 6 C 4 1 C 1 7 C 1 7 C 2 3 C 5 4 C 2 8 C 2 8 C 2 9 C 3 6 N 2 N 2 C 7 2 C 1 9 N 7 C 3 8 C 3 8 C 3 2 N 1 C 3 2 C 3 8 C 4 3 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 C 4 7 C 4 7 C 4 8 C 4 9 C 5 0 C 5 1 C 5 2 C 5 2 C 5 2 C 5 3 C 5 4 C 5 4 C 5 4 C 5 5 C 5 5 C 5 5 C 5 6 C 5 7 C 5 8 C 5 9 C 6 0 C 6 1 C 6 1 C 6 1 C 6 2 C 6 3 C 6 4 C 6 4 C 6 4 C 6 5 C 6 6 C 6 7 C 9 C 9 C 4 0 C 1 8 C 3 0 C 3 1 B 1 B 1 C 6 5 C 7 0 C 1 6 C 1 1 C 3 4 B 1 B 1 C 2 0 C 4 1 N 3 N 3 C 2 3 B 1 B 1 C 2 4 C 3 6 C 7 1 C 7 7 C 7 1 C 7 2 C 7 6 C 7 6 C 5 2 N 3 C 3 2 C 1 C 1 C 4 8 C 6 9 C 6 9 1 2 0 . 4 ( 1 0 ) 1 2 1 . 2 ( 1 0 ) 1 2 1 . 9 ( 9 ) 1 2 0 . 1 ( 1 0 ) 1 2 1 . 7 ( 1 0 ) 1 1 5 . 6 ( 1 0 ) 1 2 4 . 2 ( 9 ) 1 2 0 . 2 ( 1 0 ) 1 1 8 . 4 ( 9 ) 1 1 9 . 3 ( 1 0 ) 1 1 9 . 6 ( 9 ) 1 2 3 . 3 ( 1 2 ) 1 1 4 . 0 ( 9 ) 1 2 1 . 5 ( 9 ) 1 2 4 . 4 ( 9 ) 1 2 3 . 4 ( 9 ) 1 1 9 . 3 ( 9 ) 1 2 0 . 9 ( 9 ) 1 1 9 . 7 ( 9 ) 1 1 5 . 9 ( 1 0 ) 1 2 1 . 6 ( 9 ) 1 2 2 . 3 ( 1 0 ) 1 2 0 . 5 ( 1 0 ) 1 1 7 . 2 ( 1 1 ) 1 2 4 . 2 ( 1 0 ) 1 1 7 . 4 ( 9 ) 1 2 3 . 1 ( 1 0 ) 1 2 0 . 8 ( 9 ) 1 1 6 . 4 ( 8 ) 1 2 2 . 7 ( 8 ) 1 2 3 . 0 ( 1 1 ) 1 2 3 . 9 ( 9 ) 1 1 7 . 7 ( 1 0 ) 1 2 0 . 4 ( 1 2 ) 1 2 1 . 8 ( 1 1 ) 1 2 4 . 0 ( 9 ) 1 1 9 . 4 ( 1 0 ) 1 2 0 . 2 ( 1 0 ) 3 4 3 T a b l e A 8 c o n t i n u e d . N 6 C 6 7 C 6 7 C 6 6 N 5 N 5 C 4 9 C 6 0 C 6 0 C 5 8 C 2 9 C 4 2 C 4 2 C 3 0 N 4 N 4 C 4 0 N 4 C 1 6 C 1 6 N 1 N 2 0 1 0 1 C 7 9 0 3 0 3 0 5 C 8 4 0 4 0 4 0 2 C 8 8 0 6 O 6 O 7 0 7 C 8 6 C 6 8 C 6 9 C 6 9 C 6 9 C 7 0 C 7 0 C 7 0 C 7 1 C 7 1 C 7 1 C 7 2 C 7 3 C 7 3 C 7 3 C 7 4 C 7 4 C 7 4 C 7 5 C 7 6 C 7 6 C 7 6 C 7 7 C 7 8 C 7 8 C 7 8 C 8 1 C 8 1 C 8 1 C 8 3 C 8 6 C 8 6 C 8 6 C 8 7 C 9 1 C 9 1 C 9 1 C 9 3 0 4 N 8 C 6 6 N 8 N 8 C 4 9 C 7 4 C 7 4 C 5 8 B 1 B 1 C 6 1 C 3 0 N 7 N 7 C 4 0 C 7 0 C 7 0 C 3 5 N 1 C 6 1 C 6 1 C 5 9 C 7 9 C 8 0 C 8 0 0 5 C 8 2 C 8 2 0 5 0 2 C 8 5 C 8 5 0 4 0 7 C 9 2 C 9 2 C 9 4 C 8 7 1 2 3 . 7 ( 9 ) 1 1 9 . 4 ( 9 ) 1 1 7 . 6 ( 9 ) 1 2 3 . 0 ( 9 ) 1 2 0 . 5 ( 9 ) 1 1 6 . 8 ( 8 ) 1 2 2 . 7 ( 9 ) 1 1 3 . 3 ( 1 0 ) 1 2 4 . 7 ( 9 ) 1 2 2 . 0 ( 9 ) 1 1 9 . 5 ( 9 ) 1 1 9 . 0 ( 1 0 ) 1 2 2 . 0 ( 9 ) 1 1 9 . 0 ( 9 ) 1 2 1 . 3 ( 9 ) 1 1 3 . 1 ( 8 ) 1 2 5 . 6 ( 9 ) 1 2 2 . 1 ( 9 ) 1 2 2 . 2 ( 9 ) 1 2 4 . 0 ( 9 ) 1 1 3 . 8 ( 7 ) 1 2 4 . 0 ( 9 ) 1 2 0 . 0 ( 1 4 ) 1 2 0 . 1 ( 1 5 ) 1 1 9 . 8 ( 1 4 ) 1 2 4 . 7 ( 2 3 ) 1 2 1 . 4 ( 2 4 ) 1 1 3 . 6 ( 2 3 ) 1 2 3 . 5 ( 4 3 ) 1 2 2 . 8 ( 2 3 ) 1 1 3 . 9 ( 2 2 ) 1 2 2 . 6 ( 2 7 ) 1 0 7 . 1 ( 1 6 ) 1 4 1 . 4 ( 3 3 ) 1 1 1 . 1 ( 3 6 ) 1 0 5 . 1 ( 3 5 ) 1 0 7 . 8 ( 2 1 ) 1 1 3 . 1 ( 1 7 ) 3 4 4 T a b l e A 8 c o n t i n u e d . C 8 1 0 5 C 8 3 1 2 6 . 7 ( 2 8 ) C 9 1 0 7 C 9 3 1 2 0 . 6 ( 2 7 ) S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 3 4 5 T a b l e A 8 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 3 1 0 . 0 5 1 ( 7 ) 0 . 0 2 9 ( 6 ) 0 . 0 3 8 ( 6 ) 0 . 0 0 4 ( 5 ) 0 . 0 3 0 ( 6 ) 0 . 0 0 3 ( 5 ) 3 2 0 . 0 7 0 ( 1 1 ) 0 . 0 6 0 ( 1 1 ) 0 . 0 8 7 ( 1 2 ) 0 . 0 3 1 ( 1 0 ) 0 . 0 3 9 ( 1 0 ) 0 . 0 1 6 ( 9 ) R h l 0 . 0 3 6 3 ( 4 ) 0 . 0 2 1 8 ( 4 ) 0 . 0 3 3 6 ( 4 ) 0 . 0 0 2 0 ( 3 ) 0 . 0 2 1 2 ( 3 ) 0 . 0 0 2 0 ( 3 ) R h 2 0 . 0 3 5 6 ( 4 ) 0 . 0 2 2 3 ( 4 ) 0 . 0 3 4 5 ( 4 ) 0 . 0 0 1 3 ( 3 ) 0 . 0 2 1 1 ( 3 ) 0 . 0 0 0 1 ( 3 ) N 1 0 . 0 3 3 ( 5 ) 0 . 0 2 3 ( 4 ) 0 . 0 2 8 ( 4 ) 0 . 0 0 1 ( 3 ) 0 . 0 1 4 ( 4 ) 0 . 0 0 0 ( 3 ) N 2 0 . 0 3 7 ( 5 ) 0 . 0 2 2 ( 4 ) 0 . 0 3 1 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 1 7 ( 4 ) 0 . 0 0 1 ( 3 ) N 3 0 . 0 4 5 ( 6 ) 0 . 0 2 3 ( 4 ) 0 . 0 4 1 ( 5 ) 0 . 0 0 0 ( 4 ) 0 . 0 2 4 ( 4 ) 0 . 0 0 4 ( 4 ) N 4 0 . 0 3 1 ( 5 ) 0 . 0 3 7 ( 5 ) 0 . 0 2 3 ( 4 ) 0 . 0 0 4 ( 3 ) 0 . 0 1 4 ( 4 ) 0 . 0 0 4 ( 3 ) N 5 0 . 0 3 6 ( 5 ) 0 . 0 2 7 ( 4 ) 0 . 0 3 6 ( 5 ) 0 . 0 1 0 ( 4 ) 0 . 0 1 9 ( 4 ) 0 . 0 0 9 ( 4 ) N 6 0 . 0 3 6 ( 5 ) 0 . 0 3 4 ( 5 ) 0 . 0 3 1 ( 5 ) 0 . 0 0 5 ( 4 ) 0 . 0 1 5 ( 4 ) 0 . 0 0 2 ( 4 ) N 7 0 . 0 3 9 ( 5 ) 0 . 0 2 7 ( 4 ) 0 . 0 3 8 ( 5 ) 0 . 0 0 0 ( 4 ) 0 . 0 2 4 ( 4 ) 0 . 0 0 2 ( 4 ) N 8 0 . 0 3 5 ( 5 ) 0 . 0 2 7 ( 4 ) 0 . 0 3 2 ( 5 ) 0 . 0 0 1 ( 3 ) 0 . 0 2 1 ( 4 ) 0 . 0 0 8 ( 3 ) c 1 0 . 0 9 0 ( 1 1 ) 0 . 0 7 1 ( 9 ) 0 . 0 4 7 ( 8 ) 0 . 0 0 5 ( 7 ) 0 . 0 2 5 ( 8 ) 0 . 0 0 3 ( 8 ) c z 0 . 0 9 0 ( 1 1 ) 0 . 0 4 5 ( 8 ) 0 . 0 6 9 ( 9 ) 0 . 0 2 3 ( 7 ) 0 . 0 4 2 ( 8 ) 0 . 0 2 4 ( 7 ) C 5 0 . 0 7 3 ( 1 0 ) 0 . 0 3 8 ( 7 ) 0 . 0 8 8 ( 1 0 ) 0 . 0 1 1 ( 7 ) 0 . 0 5 3 ( 9 ) 0 . 0 0 3 ( 6 ) C 6 0 . 0 8 9 ( 1 1 ) 0 . 0 3 5 ( 7 ) 0 . 1 0 4 ( 1 2 ) 0 . 0 1 4 ( 7 ) 0 . 0 6 6 ( 1 0 ) 0 . 0 0 1 ( 7 ) C 8 0 . 0 3 5 ( 7 ) 0 . 0 7 5 ( 1 0 ) 0 . 0 6 9 ( 9 ) 0 . 0 2 2 ( 7 ) 0 . 0 1 2 ( 6 ) - 0 . 0 1 6 ( 6 ) C 9 0 . 0 4 1 ( 7 ) 0 . 0 4 5 ( 7 ) 0 . 0 7 9 ( 9 ) 0 . 0 0 2 ( 6 ) 0 . 0 2 6 ( 7 ) 0 . 0 0 0 ( 5 ) C 1 0 0 . 0 6 4 ( 8 ) 0 . 0 2 0 ( 5 ) 0 . 0 4 6 ( 7 ) - 0 . 0 0 6 ( 5 ) 0 . 0 2 2 ( 6 ) 0 . 0 0 1 ( 5 ) C 1 1 0 . 0 4 1 ( 8 ) 0 . 1 0 1 ( 1 2 ) 0 . 0 6 6 ( 9 ) 0 . 0 2 0 ( 8 ) 0 . 0 3 0 ( 7 ) 0 . 0 0 3 ( 7 ) C 1 2 0 . 0 3 8 ( 7 ) 0 . 0 2 8 ( 6 ) 0 . 0 5 6 ( 7 ) 0 0 1 1 ( 5 ) 0 . 0 1 3 ( 6 ) 0 . 0 1 3 ( 4 ) C 1 3 0 . 0 6 5 ( 9 ) 0 . 0 4 4 ( 7 ) 0 . 0 6 0 ( 8 ) 0 . 0 0 1 ( 6 ) 0 . 0 1 4 ( 7 ) 0 . 0 0 7 ( 6 ) C 1 4 0 . 0 5 9 ( 9 ) 0 . 0 6 9 ( 9 ) 0 . 0 8 7 ( 1 1 ) 0 . 0 3 8 ( 8 ) 0 . 0 2 0 ( 8 ) 0 . 0 1 6 ( 7 ) C 1 5 0 . 0 6 2 ( 9 ) 0 . 0 5 8 ( 8 ) 0 . 0 6 9 ( 9 ) 0 . 0 1 2 ( 7 ) 0 . 0 2 6 ( 8 ) 0 . 0 0 7 ( 7 ) C 1 6 0 . 0 6 2 ( 8 ) 0 . 0 2 7 ( 6 ) 0 . 0 4 2 ( 6 ) 0 . 0 0 2 ( 5 ) 0 . 0 2 8 ( 6 ) 0 . 0 0 9 ( 5 ) C 1 7 0 . 0 6 6 ( 9 ) 0 . 0 4 8 ( 7 ) 0 . 0 4 5 ( 7 ) 0 . 0 0 0 ( 5 ) 0 . 0 2 6 ( 6 ) 0 . 0 0 8 ( 6 ) C 1 8 0 . 0 3 8 ( 6 ) 0 . 0 3 0 ( 5 ) 0 . 0 2 3 ( 5 ) 0 . 0 0 3 ( 4 ) 0 . 0 1 4 ( 4 ) 0 . 0 0 1 ( 4 ) C 1 9 0 . 0 7 5 ( 9 ) 0 . 0 5 2 ( 7 ) 0 . 0 2 5 ( 6 ) 0 . 0 0 7 ( 5 ) 0 . 0 0 5 ( 6 ) 0 . 0 0 4 ( 6 ) C 2 0 0 . 0 3 7 ( 6 ) 0 . 0 2 7 ( 6 ) 0 . 0 7 5 ( 8 ) 0 . 0 1 5 ( 5 ) 0 . 0 2 9 ( 6 ) 0 . 0 0 4 ( 4 ) C 2 1 0 . 0 3 6 ( 7 ) 0 . 0 4 9 ( 7 ) 0 . 0 4 9 ( 7 ) 0 . 0 0 1 ( 5 ) 0 . 0 1 5 ( 5 ) 0 . 0 0 3 ( 5 ) 3 4 6 T a b l e A 8 c o n t i n u e d . C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 4 7 C 4 8 C 4 9 C 5 0 C 5 1 C 5 2 C 5 3 C 5 4 C 5 5 C 5 6 C 5 7 C 5 8 C 5 9 C 6 0 C 6 1 C 6 2 0 . 0 7 3 ( 9 ) 0 . 0 4 9 ( 7 ) 0 . 0 4 6 ( 7 ) 0 . 0 9 5 ( 1 1 ) 0 . 0 5 1 ( 7 ) 0 . 0 5 6 ( 8 ) 0 . 0 5 0 ( 7 ) 0 . 0 5 2 ( 7 ) 0 . 0 5 1 ( 7 ) 0 . 0 6 2 ( 8 ) 0 . 0 6 2 ( 8 ) 0 . 0 5 6 ( 8 ) 0 . 0 5 3 ( 7 ) 0 . 0 5 5 ( 7 ) 0 . 0 5 8 ( 8 ) 0 . 0 6 2 ( 8 ) 0 . 0 4 5 ( 7 ) 0 . 0 5 6 ( 8 ) 0 . 0 5 7 ( 7 ) 0 . 0 3 6 ( 6 ) 0 . 0 6 1 ( 8 ) 0 . 0 4 1 ( 7 ) 0 . 0 6 5 ( 8 ) 0 . 0 3 9 ( 6 ) 0 . 0 3 9 ( 6 ) 0 . 0 5 3 ( 7 ) 0 . 0 5 1 ( 7 ) 0 . 0 5 1 ( 8 ) 0 . 0 5 8 ( 7 ) 0 . 0 4 4 ( 6 ) 0 . 0 4 0 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 3 8 ( 6 ) 0 . 0 4 1 ( 6 ) 0 . 0 4 6 ( 7 ) 0 . 0 5 7 ( 8 ) 0 . 0 5 9 ( 8 ) 0 . 0 4 5 ( 7 ) 0 . 0 4 1 ( 7 ) 0 . 0 3 7 ( 6 ) 0 . 0 4 5 ( 7 ) 0 . 0 2 9 ( 6 ) 0 . 0 3 8 ( 7 ) 0 . 0 5 8 ( 8 ) 0 . 0 5 1 ( 8 ) 0 . 0 4 4 ( 7 ) 0 . 0 4 6 ( 7 ) 0 . 0 5 0 ( 7 ) 0 . 0 4 6 ( 7 ) 0 . 0 3 7 ( 6 ) 0 . 0 4 2 ( 7 ) 0 . 0 4 2 ( 6 ) 0 . 0 2 5 ( 5 ) 0 . 0 1 7 ( 5 ) 0 . 0 3 9 ( 6 ) 0 . 0 5 2 ( 7 ) 0 . 0 3 2 ( 6 ) 0 . 0 4 5 ( 7 ) 0 . 0 3 5 ( 6 ) 0 . 0 4 9 ( 7 ) 0 . 0 3 3 ( 6 ) 0 . 0 2 1 ( 5 ) 0 . 0 2 4 ( 5 ) 0 . 0 3 6 ( 6 ) 0 . 0 3 7 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 3 0 ( 6 ) 0 . 0 5 6 ( 8 ) 0 . 0 2 1 ( 5 ) 0 . 0 5 7 ( 7 ) 0 . 0 2 7 ( 5 ) 0 . 0 3 5 ( 6 ) 0 . 0 3 4 ( 6 ) 0 . 0 3 2 ( 6 ) 0 . 0 3 0 ( 6 ) 0 . 0 4 6 ( 7 ) 0 . 0 3 6 ( 6 ) 0 . 0 3 0 ( 6 ) 0 . 0 5 0 ( 7 ) 0 . 0 3 3 ( 5 ) 0 . 0 5 6 ( 7 ) 0 . 0 4 2 ( 7 ) 0 . 0 7 8 ( 9 ) 0 . 0 4 1 ( 7 ) 0 . 0 3 8 ( 7 ) 0 . 0 3 2 ( 6 ) 0 . 0 4 6 ( 7 ) 0 . 0 5 4 ( 7 ) 0 . 0 4 6 ( 7 ) 0 . 0 3 6 ( 6 ) 0 . 0 6 5 ( 8 ) 0 . 0 2 9 ( 6 ) 0 . 0 5 8 ( 7 ) 0 . 0 5 0 ( 7 ) 0 . 0 3 3 ( 6 ) 0 . 0 4 5 ( 7 ) 0 . 0 5 6 ( 8 ) 0 . 0 4 8 ( 7 ) 0 . 0 6 4 ( 8 ) 0 . 0 2 0 ( 5 ) 0 . 0 4 2 ( 6 ) 0 . 0 4 7 ( 7 ) 0 . 0 5 8 ( 7 ) 0 . 0 3 8 ( 6 ) 0 . 0 4 2 ( 6 ) 0 . 0 6 0 ( 7 ) 0 . 0 4 7 ( 7 ) 0 . 0 3 7 ( 6 ) 0 . 0 4 5 ( 7 ) 0 . 0 4 1 ( 6 ) 0 . 0 4 0 ( 6 ) 0 . 0 4 0 ( 6 ) 0 . 0 5 0 ( 7 ) 0 . 0 3 9 ( 6 ) 0 . 0 4 7 ( 7 ) 0 . 0 5 4 ( 7 ) 0 . 0 4 3 ( 7 ) 0 . 0 4 2 ( 6 ) 0 . 0 3 7 ( 6 ) 0 . 0 5 4 ( 7 ) 0 . 0 3 4 ( 5 ) 0 . 0 5 2 ( 7 ) 3 4 7 0 . 0 0 0 ( 5 ) - 0 . 0 1 2 ( 6 ) 0 . 0 0 8 ( 6 ) - 0 . 0 0 5 ( 6 ) 0 . 0 0 0 ( 5 ) 0 . 0 2 0 ( 5 ) - 0 . 0 1 2 ( 6 ) - 0 . 0 1 4 ( 5 ) 0 . 0 0 0 ( 5 ) 0 . 0 0 3 ( 6 ) 0 . 0 0 6 ( 5 ) 0 . 0 0 6 ( 5 ) 0 . 0 0 1 ( 4 ) - 0 . 0 0 1 ( 5 ) 0 . 0 0 8 ( 5 ) - 0 . 0 0 3 ( 5 ) - 0 . 0 0 4 ( 5 ) - 0 . 0 3 0 ( 6 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 4 ( 5 ) - 0 . 0 0 6 ( 5 ) 0 . 0 1 3 ( 5 ) 0 . 0 1 0 ( 5 ) 0 . 0 0 4 ( 5 ) 0 . 0 1 6 ( 5 ) 0 . 0 1 0 ( 5 ) - 0 . 0 0 3 ( 4 ) - 0 . 0 1 7 ( 5 ) - 0 . 0 0 2 ( 4 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 5 ( 4 ) - 0 . 0 1 0 ( 5 ) 0 . 0 0 5 ( 4 ) - 0 . 0 0 4 ( 5 ) 0 . 0 1 7 ( 5 ) - 0 . 0 1 7 ( 5 ) - 0 . 0 0 1 ( 5 ) 0 . 0 0 3 ( 4 ) - 0 . 0 0 6 ( 5 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 2 ( 6 ) 0 . 0 1 0 ( 6 ) 0 . 0 3 5 ( 7 ) 0 . 0 1 1 ( 6 ) 0 . 0 3 3 ( 7 ) 0 . 0 1 7 ( 5 ) 0 . 0 2 4 ( 6 ) 0 . 0 1 8 ( 6 ) 0 . 0 3 1 ( 6 ) 0 . 0 1 7 ( 5 ) 0 . 0 3 5 ( 7 ) 0 . 0 2 4 ( 6 ) 0 . 0 3 5 ( 6 ) 0 . 0 2 8 ( 6 ) 0 . 0 2 1 ( 5 ) 0 . 0 2 6 ( 6 ) 0 . 0 4 2 ( 7 ) 0 . 0 0 9 ( 6 ) 0 . 0 2 9 ( 6 ) 0 . 0 2 5 ( 5 ) 0 . 0 2 4 ( 5 ) 0 . 0 3 2 ( 6 ) 0 . 0 1 9 ( 6 ) 0 . 0 2 6 ( 6 ) 0 . 0 2 2 ( 5 ) 0 . 0 3 3 ( 6 ) 0 . 0 1 9 ( 6 ) 0 . 0 2 0 ( 5 ) 0 . 0 3 1 ( 6 ) 0 . 0 1 8 ( 6 ) 0 . 0 2 0 ( 5 ) 0 . 0 1 9 ( 5 ) 0 . 0 2 5 ( 5 ) 0 . 0 2 7 ( 5 ) 0 . 0 2 5 ( 5 ) 0 . 0 2 4 ( 6 ) 0 . 0 1 1 ( 6 ) 0 . 0 2 4 ( 6 ) 0 . 0 1 9 ( 5 ) 0 . 0 3 3 ( 6 ) 0 . 0 1 7 ( 4 ) 0 . 0 3 1 ( 6 ) 0 . 0 0 7 ( 6 ) 0 . 0 0 2 ( 5 ) 0 . 0 0 1 ( 6 ) 0 . 0 1 3 ( 7 ) 0 . 0 1 4 ( 5 ) 0 . 0 1 3 ( 6 ) - 0 . 0 1 0 ( 6 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 7 ( 6 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 2 ( 4 ) 0 . 0 0 8 ( 5 ) 0 . 0 1 8 ( 6 ) 0 . 0 0 6 ( 5 ) 0 . 0 0 6 ( 5 ) 0 . 0 1 3 ( 5 ) 0 . 0 1 5 ( 5 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 4 ( 4 ) 0 . 0 1 6 ( 5 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 2 ( 5 ) 0 . 0 0 4 ( 5 ) 0 . 0 1 3 ( 5 ) 0 . 0 0 7 ( 5 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 7 ( 5 ) 0 . 0 0 6 ( 5 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 4 ( 6 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 1 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 0 ( 5 ) T a b l e A 8 c o n t i n u e d . C 6 3 C 6 4 C 6 5 C 6 6 C 6 7 C 6 8 C 6 9 C 7 0 C 7 1 C 7 2 C 7 3 C 7 4 C 7 5 C 7 6 C 7 7 C 7 8 C 7 9 C 8 0 C 8 2 C 8 3 C 8 4 C 8 5 C 8 6 C 8 7 C 8 8 C 9 1 C 9 2 C 9 3 C 9 4 F 1 F 2 F 3 0 . 0 4 0 ( 6 ) 0 . 0 7 8 ( 9 ) 0 . 0 4 7 ( 6 ) 0 . 0 5 1 ( 7 ) 0 . 0 3 6 ( 6 ) 0 . 0 4 2 ( 6 ) 0 . 0 5 3 ( 7 ) 0 . 0 4 5 ( 6 ) 0 . 0 5 4 ( 7 ) 0 . 0 4 8 ( 6 ) 0 . 0 4 8 ( 7 ) 0 . 0 4 1 ( 6 ) 0 . 0 4 4 ( 6 ) 0 . 0 2 2 ( 5 ) 0 . 0 4 9 ( 7 ) 0 . 0 9 1 ( 1 5 ) 0 . 1 4 9 ( 2 1 ) 0 . 1 0 1 ( 1 4 ) 0 . 1 2 7 ( 2 3 ) 0 . 5 1 0 ( 7 0 ) 0 . 2 0 9 ( 3 5 ) 0 . 0 6 5 ( 1 6 ) 0 . 0 8 4 ( 1 6 ) 0 . 0 7 5 ( 1 3 ) 0 . 1 6 6 ( 2 6 ) 0 . 2 2 1 ( 3 2 ) 0 . 9 7 9 ( 1 5 0 ) 0 . 0 7 3 ( 1 7 ) 0 . 1 3 8 ( 2 0 ) 0 . 1 1 9 ( 1 1 ) 0 . 1 4 0 ( 1 1 ) 0 . 3 0 2 ( 1 8 ) 0 . 0 2 3 ( 5 ) 0 . 0 3 0 ( 6 ) 0 . 0 2 4 ( 5 ) 0 . 0 2 8 ( 5 ) 0 . 0 3 4 ( 6 ) 0 . 0 2 7 ( 5 ) 0 . 0 1 6 ( 5 ) 0 . 0 3 0 ( 5 ) 0 . 0 2 7 ( 5 ) 0 . 0 3 7 ( 6 ) 0 . 0 1 7 ( 5 ) 0 . 0 4 7 ( 6 ) 0 . 0 2 3 ( 5 ) 0 . 0 2 4 ( 5 ) 0 . 0 2 3 ( 5 ) 0 . 1 6 4 ( 2 1 ) 0 . 1 5 9 ( 2 2 ) 0 . 1 0 6 ( 1 4 ) 0 . 2 6 6 ( 3 5 ) 0 . 2 7 1 ( 4 0 ) 0 . 2 1 2 ( 3 4 ) 0 . 2 6 5 ( 3 4 ) 0 . 2 2 3 ( 3 0 ) 0 . 0 9 5 ( 1 4 ) 0 . 1 7 1 ( 2 7 ) 0 . 3 1 5 ( 4 1 ) 1 . 8 5 9 ( 2 8 7 ) 0 . 2 5 8 ( 3 7 ) 0 . 1 6 4 ( 2 2 ) 0 . 1 8 3 ( 1 4 ) 0 . 1 3 0 ( 1 0 ) 0 . 1 3 5 ( 1 0 ) 0 . 0 4 8 ( 6 ) 0 . 0 4 0 ( 7 ) 0 . 0 4 0 ( 6 ) 0 . 0 4 1 ( 6 ) 0 . 0 4 6 ( 7 ) 0 . 0 3 1 ( 6 ) 0 . 0 3 3 ( 6 ) 0 . 0 2 5 ( 5 ) 0 . 0 4 1 ( 6 ) 0 . 0 5 1 ( 6 ) 0 . 0 3 7 ( 6 ) 0 . 0 2 2 ( 5 ) 0 . 0 3 5 ( 6 ) 0 . 0 3 9 ( 6 ) 0 . 0 3 9 ( 6 ) 0 . 0 5 9 ( 1 0 ) 0 . 1 1 6 ( 1 7 ) 0 . 1 0 8 ( 1 4 ) 0 . 2 5 7 ( 3 5 ) 0 . 3 4 9 ( 4 6 ) 0 . 8 0 0 ( 1 0 3 ) 0 . 2 7 5 ( 3 5 ) 0 . 0 9 4 ( 1 5 ) 0 . 1 3 4 ( 1 6 ) 0 . 2 3 6 ( 3 2 ) 0 . 1 7 2 ( 2 7 ) 0 . 8 2 5 ( 1 2 5 ) 0 . 3 6 2 ( 5 1 ) 0 . 2 9 9 ( 3 3 ) 0 . 2 9 1 ( 2 0 ) 0 . 2 5 4 ( 1 5 ) 0 . 1 4 1 ( 1 0 ) 3 4 8 0 . 0 0 4 ( 4 ) 0 . 0 0 2 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 9 ( 4 ) 0 . 0 1 2 ( 5 ) 0 . 0 0 9 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 5 ( 4 ) 0 . 0 0 5 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 4 ( 4 ) 0 . 0 0 2 ( 1 2 ) 0 . 0 2 3 ( 1 5 ) 0 . 0 0 6 ( 1 1 ) 0 . 0 5 4 ( 2 8 ) 0 . 1 9 4 ( 3 6 ) 0 . 1 2 6 ( 4 7 ) 0 . 0 4 4 ( 2 7 ) 0 . 0 2 5 ( 1 7 ) 0 . 0 2 3 ( 1 2 ) 0 . 0 8 2 ( 2 3 ) 0 . 1 5 4 ( 2 7 ) 2 . 0 0 0 ( 1 7 1 ) 0 . 2 6 6 ( 3 9 ) 0 . 0 7 9 ( 2 1 ) 0 . 0 7 0 ( 1 3 ) 0 . 0 6 7 ( 1 0 ) 0 . 0 2 0 ( 8 ) 0 . 0 3 1 ( 5 ) 0 . 0 2 9 ( 7 ) 0 . 0 2 7 ( 5 ) 0 . 0 2 4 ( 5 ) 0 . 0 1 9 ( 5 ) 0 . 0 2 3 ( 5 ) 0 . 0 1 7 ( 5 ) 0 . 0 1 5 ( 5 ) 0 . 0 2 8 ( 5 ) 0 . 0 3 4 ( 5 ) 0 . 0 2 5 ( 5 ) 0 . 0 1 8 ( 4 ) 0 . 0 1 8 ( 5 ) 0 . 0 1 0 ( 4 ) 0 . 0 2 4 ( 5 ) 0 . 0 1 0 ( 1 0 ) 0 . 0 3 6 ( 1 5 ) 0 . 0 3 1 ( 1 2 ) 0 . 0 6 9 ( 2 4 ) 0 . 3 6 6 ( 5 4 ) 0 . 3 7 3 ( 5 4 ) - 0 . 0 3 4 ( 1 9 ) 0 . 0 4 2 ( 1 3 ) 0 . 0 3 1 ( 1 2 ) - 0 . 0 2 7 ( 2 2 ) 0 . 0 9 9 ( 2 3 ) 0 . 8 8 5 ( 1 3 3 ) - 0 . 0 2 2 ( 2 1 ) 0 . 1 6 8 ( 2 4 ) 0 . 0 3 4 ( 1 3 ) 0 . 1 1 2 ( 1 1 ) 0 . 1 5 1 ( 1 2 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 5 ( 6 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 7 ( 4 ) 0 . 0 0 0 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 1 ( 4 ) 0 . 0 0 4 ( 5 ) 0 . 0 0 3 ( 5 ) 0 . 0 0 2 ( 4 ) - 0 . 0 0 6 ( 5 ) 0 . 0 0 6 ( 4 ) 0 . 0 0 3 ( 4 ) 0 . 0 0 2 ( 4 ) 0 . 0 4 3 ( 1 5 ) 0 . 0 6 2 ( 1 7 ) 0 . 0 4 3 ( 1 1 ) 0 . 0 5 2 ( 2 2 ) 0 . 3 2 7 ( 4 9 ) 0 . 0 5 8 ( 2 6 ) 0 . 0 5 8 ( 1 8 ) 0 . 0 3 6 ( 1 7 ) 0 . 0 0 1 ( 1 0 ) 0 . 0 1 7 ( 2 0 ) 0 . 2 3 2 ( 3 2 ) 2 . 0 0 0 ( 1 8 4 ) 0 . 0 0 4 ( 1 9 ) - 0 . 0 2 7 ( l 6 ) 0 . 0 2 0 ( 1 0 ) 0 . 0 4 3 ( 8 ) 0 . 0 7 3 ( 1 0 ) T a b l e A 8 c o n t i n u e d . F 4 0 1 0 2 0 3 0 4 0 5 0 6 O 7 0 8 0 . 2 2 5 ( 1 5 ) 0 . 1 0 7 ( 1 2 ) 0 . 1 1 0 ( 1 1 ) 0 . 1 5 3 ( 1 4 ) 0 . 1 3 2 ( 1 3 ) 0 . 1 0 5 ( 1 2 ) 0 . 1 2 1 ( 1 1 ) 0 . 3 7 2 ( 4 1 ) 0 . 0 3 9 ( 4 ) 0 . 1 8 7 ( 1 3 ) 0 . 2 1 5 ( 1 7 ) 0 . 1 1 8 ( 1 0 ) 0 . 1 4 9 ( 1 4 ) 0 . 1 0 5 ( 1 1 ) 0 . 1 4 5 ( 1 4 ) 0 . 0 8 1 ( 9 ) 0 . 4 2 9 ( 4 6 ) 0 . 0 4 7 ( 4 ) 0 . 2 0 0 ( 1 4 ) 0 . 1 6 7 ( 1 5 ) 0 . 1 0 2 ( 9 ) 0 . 2 0 7 ( 1 7 ) 0 . 2 3 2 ( 1 8 ) 0 . 2 3 8 ( 1 9 ) 0 . 1 6 3 ( 1 3 ) 0 . 2 0 6 ( 2 3 ) 0 . 0 5 5 ( 5 ) 0 . 0 5 2 ( 1 0 ) 0 . 0 1 1 ( 1 2 ) 0 . 0 1 1 ( 7 ) 0 . 0 6 5 ( 1 3 ) 0 . 1 0 1 ( 1 2 ) 0 . 0 5 6 ( 1 3 ) 0 . 0 1 4 ( 8 ) 0 . 1 8 5 ( 2 8 ) 0 . 0 0 7 ( 3 ) 0 . 1 0 1 ( 1 2 ) 0 . 0 7 4 ( 1 1 ) 0 . 0 4 0 ( 8 ) 0 . 0 2 9 ( 1 3 ) 0 . 0 9 7 ( 1 3 ) 0 . 0 1 4 ( 1 2 ) 0 . 0 1 3 ( 1 0 ) 0 . 1 5 4 ( 2 9 ) 0 . 0 3 2 ( 4 ) 0 . 0 9 7 ( 1 1 ) 0 . 0 2 5 ( 1 1 ) 0 . 0 0 2 ( 8 ) 0 . 0 4 7 ( 1 1 ) 0 . 0 5 2 ( 1 0 ) 0 . 0 1 1 ( 1 0 ) 0 . 0 0 8 ( 8 ) 0 . 3 2 7 ( 3 9 ) 0 . 0 0 8 ( 3 ) - 2 n 2 [ h 2 a * 2 U 1 1 + . . . + 2 h k a * b * U 1 2 ] 3 4 9 T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : T a b l e A 8 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s ( x 1 0 4 ) a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . H 1 0 0 . 7 6 3 9 ( 6 ) 1 . 0 1 8 2 ( 7 ) 0 . 1 8 2 5 ( 4 ) 0 . 0 5 2 1 H 1 1 0 . 2 3 9 4 ( 6 ) 0 . 2 7 1 8 ( 1 1 ) 0 . 0 4 9 4 ( 5 ) 0 . 0 8 0 1 H 1 2 0 . 5 9 5 9 ( 5 ) 0 . 5 3 3 7 ( 7 ) 0 . 0 8 9 2 ( 4 ) 0 . 0 5 1 1 H 1 3 A 0 . 5 6 7 0 ( 6 ) 1 . 1 2 2 5 ( 8 ) 0 . 0 7 7 1 ( 5 ) 0 . 0 9 0 1 H 1 3 B 0 . 5 2 4 4 ( 6 ) 1 . 0 3 5 1 ( 8 ) 0 . 0 8 2 6 ( 5 ) 0 . 0 9 0 1 H 1 3 C 0 . 5 4 3 5 ( 6 ) 1 . 0 3 6 9 ( 8 ) 0 . 0 3 4 7 ( 5 ) 0 . 0 9 0 1 H 1 4 A 1 . 1 0 6 2 ( 6 ) 0 . 3 7 9 5 ( 1 0 ) 0 . 4 2 3 5 ( 5 ) 0 . 1 1 3 1 H 1 4 B 1 . 0 8 3 2 ( 6 ) 0 . 2 8 8 2 ( 1 0 ) 0 . 3 8 4 6 ( 5 ) 0 . 1 1 3 1 H 1 4 C 1 . 0 4 9 6 ( 6 ) 0 . 3 1 2 1 ( 1 0 ) 0 . 4 2 2 1 ( 5 ) 0 . 1 1 3 1 H 1 5 0 . 1 7 8 7 ( 6 ) 0 . 5 2 7 4 ( 1 0 ) 0 . 0 8 6 4 ( 5 ) 0 . 0 7 6 1 H 1 6 1 . 0 4 6 3 ( 5 ) 0 . 9 4 1 8 ( 7 ) 0 . 1 6 9 2 ( 4 ) 0 . 0 5 0 1 H 1 7 0 . 1 5 4 7 ( 6 ) 0 . 1 2 3 9 ( 8 ) 0 . 1 8 6 6 ( 4 ) 0 . 0 6 2 1 H 1 9 0 . 1 7 8 4 ( 6 ) 0 . 3 6 4 0 ( 8 ) 0 . 2 7 6 4 ( 4 ) 0 . 0 6 7 1 H l A 0 . 9 2 6 5 ( 7 ) 0 . 8 2 3 5 ( 1 0 ) 0 . 4 9 8 7 ( 5 ) 0 . 1 0 6 1 H l B 0 . 9 8 3 3 ( 7 ) 0 . 8 8 8 6 ( 1 0 ) 0 . 4 9 8 7 ( 5 ) 0 . 1 0 6 1 H l C 0 . 9 8 9 2 ( 7 ) 0 . 7 7 0 9 ( 1 0 ) 0 . 5 0 2 3 ( 5 ) 0 . 1 0 6 1 H 2 0 . 1 8 7 2 ( 7 ) - 0 . 0 4 1 4 ( 9 ) 0 . 1 9 1 1 ( 5 ) 0 . 0 7 8 1 H 2 0 0 . 8 8 1 3 ( 5 ) 0 . 3 9 7 8 ( 7 ) 0 . 1 0 0 9 ( 4 ) 0 . 0 5 3 1 H 2 1 0 . 5 7 8 6 ( 5 ) 0 . 8 5 6 8 ( 8 ) 0 . 0 8 1 5 ( 4 ) 0 . 0 5 4 1 H 2 2 0 . 6 7 2 6 ( 6 ) 1 . 1 0 8 4 ( 8 ) 0 . 1 3 5 8 ( 4 ) 0 . 0 6 3 1 H 2 3 0 . 0 3 3 0 ( 5 ) 0 . 0 8 2 0 ( 8 ) 0 . 0 3 9 3 ( 5 ) 0 . 0 6 3 1 H 2 4 1 . 0 7 5 7 ( 5 ) 0 . 5 3 5 0 ( 9 ) 0 . 3 8 2 7 ( 4 ) 0 . 0 6 1 1 H 2 5 0 . 0 8 8 6 ( 7 ) 0 . 3 7 7 7 ( 9 ) 0 . 2 9 2 4 ( 5 ) 0 . 0 7 2 1 H 2 8 - 0 . 1 3 9 6 ( 5 ) 0 . 1 8 5 9 ( 8 ) 0 . 0 1 7 8 ( 4 ) 0 . 0 6 3 1 H 2 9 1 . 0 9 3 4 ( 5 ) 0 . 6 2 8 5 ( 8 ) 0 . 1 4 6 4 ( 4 ) 0 . 0 5 3 1 H 3 0 0 . 7 3 1 1 ( 5 ) 0 . 6 6 3 6 ( 7 ) 0 . 2 4 7 4 ( 4 ) 0 . 0 5 0 1 H 3 1 0 . 1 1 1 6 ( 6 ) 0 . 4 4 0 4 ( 8 ) 0 . 1 1 1 9 ( 5 ) 0 . 0 6 4 1 3 5 0 a — u a — y s — p a — p e — p ‘ p n — p s — a — d p e — o — a — d p ‘ p H H A — p o — e _ e — p o — p ‘ — p ‘ — y ‘ p d p e — p e — p a — p ‘ — e — s I — a — e — g a — p a — p a — p u p T a b l e A 8 c o n t i n u e d . H 3 2 H 3 3 H 3 4 H 3 5 H 3 6 H 3 7 H 3 8 H 3 9 H 4 0 H 4 1 H 4 2 H 4 4 H 4 5 H 4 6 H 4 8 H 4 9 H 5 H 5 0 H 5 1 H 5 3 H 5 6 H 5 7 H 5 8 H 5 9 H 6 H 6 0 H 6 2 H 6 3 H 6 5 H 6 6 H 6 7 H 6 8 H 7 2 H 7 5 H 7 7 H 7 9 A H 7 9 B H 7 9 C 0 . 8 4 1 6 ( 6 ) 0 . 9 5 8 6 ( 5 ) - 0 . 0 1 4 0 ( 5 ) 0 . 8 6 5 7 ( 5 ) 0 . 0 6 8 0 ( 6 ) 0 . 0 0 6 8 ( 6 ) 1 . 0 1 7 0 ( 5 ) 0 . 9 2 6 7 ( 5 ) 0 . 9 2 2 5 ( 5 ) 0 . 8 8 8 1 ( 5 ) 0 . 7 0 2 9 ( 5 ) 0 . 9 1 7 3 ( 5 ) 0 . 6 6 7 7 ( 5 ) 0 . 6 2 3 1 ( 5 ) 0 . 9 4 9 1 ( 5 ) 0 . 9 2 3 2 ( 5 ) 0 . 1 4 2 5 ( 6 ) 1 . 0 1 8 1 ( 5 ) 0 . 1 6 6 2 ( 5 ) 0 . 8 4 1 9 ( 4 ) 1 . 0 0 4 7 ( 5 ) 0 . 1 5 4 3 ( 6 ) 0 . 0 4 1 6 ( 5 ) 1 . 0 4 8 7 ( 5 ) 0 . 0 6 5 4 ( 7 ) 0 . 0 2 9 6 ( 5 ) 0 . 1 7 1 7 ( 5 ) 0 . 8 2 0 8 ( 5 ) 0 . 9 0 7 7 ( 5 ) 0 . 8 0 1 4 ( 5 ) 0 . 9 7 7 5 ( 5 ) 0 . 7 8 6 5 ( 5 ) 1 . 0 6 8 9 ( 5 ) 0 . 8 2 6 3 ( 5 ) 0 . 9 8 1 5 ( 5 ) 1 . 1 2 4 8 ( 9 ) 1 . 1 9 6 4 ( 9 ) 1 . 1 5 1 0 ( 9 ) 0 . 8 0 6 2 ( 7 ) 0 . 3 0 7 8 ( 7 ) 0 . 2 8 1 2 ( 6 ) 1 . 0 5 2 4 ( 8 ) 0 . 3 8 4 5 ( 8 ) 0 . 3 3 2 0 ( 7 ) 0 . 8 2 5 3 ( 8 ) 0 . 4 6 5 6 ( 8 ) 0 . 8 0 5 2 ( 8 ) 0 . 4 0 7 6 ( 7 ) 0 . 5 3 7 6 ( 7 ) 0 . 9 7 6 8 ( 8 ) 0 . 7 6 6 1 ( 7 ) 0 . 6 4 9 0 ( 7 ) 1 . 1 1 0 3 ( 7 ) 0 . 6 3 9 0 ( 8 ) - 0 . 1 4 3 6 ( 9 ) 1 . 0 9 8 8 ( 7 ) 0 . 1 8 5 9 ( 9 ) 0 . 5 0 2 6 ( 7 ) 0 . 6 3 9 7 ( 7 ) 0 . 2 9 2 6 ( 8 ) 0 . 1 6 4 2 ( 7 ) 0 . 5 0 1 6 ( 7 ) 0 . 0 8 2 4 ( 9 ) ' 0 . 3 6 4 9 ( 8 ) 0 . 3 1 3 3 ( 8 ) 0 . 5 3 0 2 ( 7 ) 0 . 9 6 7 1 ( 6 ) 0 . 7 9 6 0 ( 7 ) 0 . 8 1 8 1 ( 7 ) 0 . 8 7 5 1 ( 6 ) 0 . 7 9 3 0 ( 7 ) 0 . 9 5 1 6 ( 7 ) 0 . 5 4 5 2 ( 7 ) 0 . 6 4 2 3 ( 1 4 ) 0 . 6 6 8 5 ( 1 4 ) 0 . 6 4 1 1 ( 1 4 ) 3 5 1 0 . 4 1 4 6 ( 4 ) 0 . 3 2 3 9 ( 4 ) 0 . 1 4 8 5 ( 4 ) 0 . 0 8 3 6 ( 4 ) 0 . 0 4 8 4 ( 4 ) 0 . 2 2 8 9 ( 4 ) 0 . 4 2 1 8 ( 4 ) 0 . 0 4 8 1 ( 4 ) 0 . 0 3 4 2 ( 3 ) 0 . 2 6 1 6 ( 4 ) 0 . 1 1 0 4 ( 4 ) 0 . 0 3 8 3 ( 4 ) 0 . 1 2 5 2 ( 4 ) 0 . 2 2 6 0 ( 4 ) 0 . 2 2 8 5 ( 4 ) 0 . 0 3 6 4 ( 4 ) 0 . 1 1 8 1 ( 5 ) 0 . 1 8 8 6 ( 4 ) 0 . 0 7 1 2 ( 4 ) 0 . 1 4 4 8 ( 4 ) 0 . 3 2 1 5 ( 4 ) 0 . 0 5 1 1 ( 4 ) 0 . 0 8 3 3 ( 4 ) 0 . 1 7 6 7 ( 4 ) 0 . 0 4 4 1 ( 6 ) 0 . 0 1 7 8 ( 4 ) 0 . 1 9 6 7 ( 4 ) 0 . 2 4 8 5 ( 4 ) 0 . 2 4 6 0 ( 4 ) 0 . 3 2 5 4 ( 4 ) 0 . 3 3 2 3 ( 4 ) 0 . 2 5 0 9 ( 4 ) 0 . 1 5 4 8 ( 4 ) 0 . 1 3 0 7 ( 4 ) 0 . 2 1 4 8 ( 4 ) 0 . 3 3 5 3 ( 8 ) 0 . 3 4 9 4 ( 8 ) 0 . 2 9 1 4 ( 8 ) 0 . 0 5 1 0 . 0 5 2 0 . 0 4 6 0 . 0 4 9 0 . 0 6 0 0 . 0 5 3 0 . 0 5 9 0 . 0 6 0 0 . 0 4 7 0 . 0 4 1 0 . 0 4 8 0 . 0 5 4 0 . 0 4 5 0 . 0 4 8 0 . 0 4 7 0 . 0 5 6 0 . 0 7 2 0 . 0 4 9 0 . 0 5 5 0 . 0 4 4 0 . 0 5 1 0 . 0 6 2 0 . 0 5 4 0 . 0 4 4 0 . 0 8 1 0 . 0 5 2 0 . 0 5 7 0 . 0 3 9 0 . 0 4 0 0 . 0 4 6 0 . 0 4 5 0 . 0 3 7 0 . 0 4 9 0 . 0 4 0 0 . 0 4 2 0 . 2 2 1 0 . 2 2 1 0 . 2 2 1 e — p L — p ‘ — p ‘ - r e — y H A — e — p ‘ F a — s — p n — p a — y e — p e — p e — p d p ‘ — p d p e — g e — p a — y e — p i — p i — p e — p i — p e — p e — e — p T a b l e A 8 c o n t i n u e d . H 8 0 . 2 4 7 5 ( 6 ) 0 . 4 4 2 9 ( 1 0 ) 0 . 0 6 0 1 ( 5 ) 0 . 0 7 5 H 8 0 A 1 . 1 5 6 7 ( 8 ) 0 . 9 0 4 0 ( 1 2 ) 0 . 2 8 9 1 ( 6 ) 0 . 1 6 3 H 8 0 3 1 . 1 7 1 4 ( 8 ) 0 . 8 1 1 1 ( 1 2 ) 0 . 2 6 1 2 ( 6 ) 0 . 1 6 3 H 8 0 C 1 . 2 1 7 1 ( 8 ) 0 . 8 3 7 7 ( 1 2 ) 0 . 3 1 9 2 ( 6 ) 0 . 1 6 3 H 8 2 A 0 . 2 5 8 1 ( 1 1 ) 0 . 4 7 1 7 ( 2 2 ) 0 . 2 4 6 4 ( 1 1 ) 0 . 3 3 0 H 8 2 3 0 . 1 8 6 7 ( 1 1 ) - O . 4 6 4 9 ( 2 2 ) 0 . 2 0 6 3 ( 1 1 ) 0 . 3 3 0 H 8 2 C 0 . 2 1 6 1 ( 1 1 ) 0 . 3 8 0 6 ( 2 2 ) 0 . 2 4 8 7 ( 1 1 ) 0 . 3 3 0 H 8 3 A 0 . 2 9 4 1 ( 2 0 ) 0 . 3 6 1 7 ( 2 4 ) 0 . 1 1 8 0 ( 1 3 ) 0 . 3 7 7 H 8 3 3 0 . 3 3 9 0 ( 2 0 ) 0 . 2 9 3 5 ( 2 4 ) 0 . 1 6 3 2 ( 1 3 ) 0 . 3 7 7 H 8 4 A 0 . 3 8 6 7 ( 1 4 ) 0 . 3 6 8 4 ( 2 4 ) 0 . 1 2 5 4 ( 2 0 ) 0 . 5 2 9 H 8 4 3 0 . 3 6 5 3 ( 1 4 ) 0 . 4 7 2 9 ( 2 4 ) 0 . 1 3 8 6 ( 2 0 ) 0 . 5 2 9 H 8 4 C 0 . 4 1 0 6 ( 1 4 ) 0 . 4 0 3 6 ( 2 4 ) 0 . 1 8 3 9 ( 2 0 ) 0 . 5 2 9 H 8 5 A 0 . 3 7 2 9 ( 1 0 ) 0 . 3 7 3 9 ( 2 2 ) 0 . 0 2 8 1 ( 1 1 ) 0 . 3 5 4 H 8 5 3 0 . 3 7 7 7 ( 1 0 ) 0 . 4 3 8 6 ( 2 2 ) 0 . 0 7 6 6 ( 1 1 ) 0 . 3 5 4 H 8 5 C 0 . 4 1 4 0 ( 1 0 ) 0 . 4 7 2 4 ( 2 2 ) 0 . 0 4 2 4 ( 1 1 ) 0 . 3 5 4 H 8 7 A 0 . 2 5 7 2 ( 8 ) 0 . 6 3 5 2 ( 1 3 ) 0 . 0 4 8 0 ( 8 ) 0 . 1 2 6 H 8 7 3 0 . 2 2 6 6 ( 8 ) 0 . 6 2 4 8 ( 1 3 ) 0 . 0 0 7 1 ( 8 ) 0 . 1 2 6 H 8 8 A 0 . 2 4 2 6 ( 1 2 ) 0 . 7 9 4 0 ( 1 9 ) 0 . 0 1 9 4 ( 1 1 ) 0 . 3 4 0 H 8 8 3 0 . 3 1 5 5 ( 1 2 ) 0 . 7 7 3 7 ( 1 9 ) 0 . 0 0 2 2 ( 1 1 ) 0 . 3 4 0 H 8 8 C 0 . 2 8 5 1 ( 1 2 ) 0 . 7 6 3 2 ( 1 9 ) 0 . 0 3 8 7 ( 1 1 ) 0 . 3 4 0 H 9 2 A 1 . 1 3 7 4 ( 3 1 ) 0 . 4 8 2 6 ( 6 9 ) 0 . 4 8 7 9 ( 2 3 ) 1 . 5 7 8 H 9 2 3 1 . 1 3 3 0 ( 3 1 ) 0 . 5 9 2 3 ( 6 9 ) 0 . 5 0 6 9 ( 2 3 ) 1 . 5 7 8 H 9 2 C 1 . 1 8 6 4 ( 3 1 ) 0 . 5 1 9 1 ( 6 9 ) 0 . 5 4 3 0 ( 2 3 ) 1 . 5 7 8 H 9 3 A 1 . 2 8 2 3 ( 1 1 ) 0 . 4 6 1 1 ( 2 5 ) 0 . 4 7 2 4 ( 1 5 ) 0 . 3 2 0 H 9 3 3 1 . 2 6 6 1 ( 1 1 ) 0 . 5 6 5 6 ( 2 5 ) 0 . 4 4 3 2 ( 1 5 ) 0 . 3 2 0 H 9 4 A 1 . 2 5 9 7 ( 1 0 ) 0 . 4 3 3 6 ( 1 7 ) 0 . 3 8 2 8 ( 1 0 ) 0 . 2 6 2 H 9 4 3 1 . 1 9 3 3 ( 1 0 ) 0 . 4 8 6 2 ( 1 7 ) 0 . 3 6 6 1 ( 1 0 ) 0 . 2 6 2 H 9 4 C 1 . 2 0 6 0 ( 1 0 ) 0 . 3 8 2 1 ( 1 7 ) 0 . 3 9 5 0 ( 1 0 ) 0 . 2 6 2 H 9 A 0 . 5 0 8 2 ( 5 ) 0 . 5 5 7 9 ( 8 ) 0 . 1 0 7 5 ( 5 ) 0 . 0 8 2 H 9 3 0 . 5 1 3 8 ( 5 ) 0 . 6 5 2 9 ( 8 ) 0 . 1 4 2 4 ( 5 ) 0 . 0 8 2 H 9 C 0 . 5 2 2 4 ( 5 ) 0 . 5 4 5 0 ( 8 ) 0 . 1 6 7 1 ( 5 ) 0 . 0 8 2 S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 3 5 2 T a b l e A 8 c o n t i n u e d . T o r s i o n a n g l e s [ ° ] . N 4 N 5 N 6 N 7 0 8 N 4 N 5 N 6 N 7 0 8 N 4 N 5 N 6 N 7 0 8 N 4 N 5 N 6 N 7 0 8 N 8 N 2 N 3 R h l N 8 N 2 N 3 R h l N 8 N 1 N 3 R h l N 8 N 1 N 3 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 N 8 N 8 N 8 N 8 N 8 N 1 N 1 N 1 N 1 N 1 N 2 N 2 N 2 N 2 N 2 N 3 N 3 N 3 N 3 N 3 C 6 5 C 6 5 C 6 5 C 6 5 C 7 6 C 7 6 C 7 6 C 7 6 C 7 7 C 7 7 C 7 7 C 7 7 C 6 1 C 6 1 C 6 1 C 6 1 1 1 4 . 6 ( 3 ) 2 6 5 . 4 ( 3 ) 1 6 . 7 ( 3 ) 2 0 . 0 ( 3 ) 1 4 1 . 5 ( 4 3 ) 2 2 0 ( 3 ) 1 0 2 . 0 ( 3 ) 2 5 . 9 ( 3 ) 2 6 2 . 5 ( 3 ) 4 8 . 9 ( 4 3 ) 2 9 . 3 ( 3 ) 2 0 . 7 ( 3 ) 2 5 7 . 2 ( 3 ) 1 1 6 . 2 ( 3 ) 2 2 . 4 ( 4 3 ) 2 5 5 . 8 ( 3 ) 2 5 . 8 ( 3 ) 1 0 6 . 3 ( 3 ) 1 9 . 6 ( 3 ) 2 2 8 . 9 ( 4 3 ) 1 . 7 ( 8 ) - l 7 6 . 2 ( 8 ) 2 3 5 . 9 ( 5 1 ) 8 6 . 8 ( 8 ) 1 7 9 . 2 ( 6 ) 1 . 3 ( 6 ) 4 1 . 7 ( 5 6 ) - 9 5 . 7 ( 6 ) 1 5 7 . 9 ( 2 3 ) 1 7 6 . 2 ( 8 ) 2 . 7 ( 8 ) - 8 7 . 2 ( 8 ) 2 1 . 5 ( 2 9 ) 2 . 2 ( 6 ) 1 7 8 . 9 ( 6 ) 9 3 . 4 ( 6 ) 3 5 3 T a b l e A 8 c o n t i n u e d . N 8 N 1 N 2 R h l N 8 N 1 N 2 R h l N 5 N 6 N 7 0 8 R h 2 N 5 N 6 N 7 0 8 R h 2 N 4 N 6 N 7 0 8 R h 2 N 4 N 6 N 7 0 8 R h 2 N 4 N 5 N 7 0 8 R h 2 N 4 N 5 N 7 0 8 R h 2 R h 2 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 3 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 4 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 C 6 3 C 6 3 C 6 3 C 6 3 C 5 4 C 5 4 C 5 4 C 5 4 C 7 5 C 7 5 C 7 5 C 7 5 C 7 5 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 5 3 C 5 3 C 5 3 C 5 3 C 5 3 C 7 0 C 7 0 C 7 0 C 7 0 C 7 0 C 6 8 C 6 8 C 6 8 C 6 8 C 6 8 C 1 8 C 1 8 C 1 8 C 1 8 C 1 8 5 6 . 5 ( 7 ) 2 6 5 . 9 ( 5 0 ) 2 2 5 . 9 ( 7 ) 2 8 . 3 ( 7 ) 2 1 4 . 7 ( 7 ) 2 2 . 9 ( 5 7 ) 6 3 0 ( 7 ) 1 6 0 . 6 ( 7 ) 1 7 9 . 4 ( 8 ) 2 . 1 ( 8 ) 2 5 0 . 4 ( 3 2 ) 9 3 2 ( 8 ) - 8 7 . 9 ( 7 ) 2 . 5 ( 6 ) 2 7 7 . 9 ( 7 ) 3 2 . 8 ( 3 7 ) - 8 3 . 7 ( 7 ) 9 5 2 ( 6 ) 2 7 9 . 4 ( 8 ) 1 6 8 . 6 ( 7 9 ) 3 . 1 ( 8 ) - 9 3 . 8 ( 8 ) 8 8 . 1 ( 8 ) 2 . 9 ( 7 ) 2 4 . 9 ( 8 7 ) 1 7 9 . 7 ( 7 ) 8 2 . 8 ( 7 ) 0 5 4 ( 7 ) 2 1 3 . 4 ( 7 ) 2 0 1 . 5 ( 8 2 ) 6 3 . 9 ( 7 ) 1 6 1 . 0 ( 7 ) 2 0 . 9 ( 6 ) 7 5 . 2 ( 7 ) 8 7 . 1 ( 8 4 ) 2 0 7 . 4 ( 7 ) 2 0 . 4 ( 7 ) 1 6 7 . 7 ( 7 ) 3 5 4 T a b l e A 8 c o n t i n u e d . N 4 N 5 N 6 0 8 R h 2 N 4 N 5 N 6 0 8 R h 2 N 1 N 2 N 3 R h l N 1 N 2 N 3 R h l C 1 7 C 2 C 1 5 C 1 1 C 5 C 2 2 C 2 2 C 6 8 R h l C 6 8 R h l C 1 8 C 5 C 6 2 C 4 5 C 4 5 C 1 0 C 1 0 C 5 6 C 5 6 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 C 2 C 5 C 8 C 8 C 2 C 1 0 C 1 0 N 6 N 6 N 6 N 6 C 1 0 C 6 C 1 9 C 2 1 C 2 1 C 2 2 C 2 2 C 2 4 C 2 4 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 C 5 C 6 C 1 1 C 1 5 C 1 7 C 1 8 C 1 8 C 1 8 C 1 8 C 1 8 C 1 8 C 2 2 C 2 3 C 2 5 C 2 6 C 2 6 C 2 6 C 2 6 C 2 7 C 2 7 C 6 3 C 6 3 C 6 3 C 6 3 C 6 3 C 7 3 C 7 3 C 7 3 C 7 3 C 7 3 C 6 8 C 6 8 C 6 8 C 6 8 C 6 9 C 6 9 C 6 9 C 6 9 C 6 C 2 3 C 5 1 C 3 1 C 5 5 C 4 5 N 6 C 4 5 C 4 5 C 1 0 C 1 0 C 2 6 C 5 5 C 3 7 C 2 2 C 1 3 C 2 1 C 1 3 C 3 3 C 1 4 4 4 . 5 ( 3 7 ) 7 4 3 ( 7 ) 2 0 5 . 1 ( 7 ) 1 6 0 . 4 ( 7 ) - 1 8 . 4 ( 7 ) 2 4 6 . 3 ( 3 2 ) 2 1 6 . 4 ( 7 ) 6 4 2 ( 7 ) 2 0 . 3 ( 7 ) 1 5 0 . 9 ( 6 ) 7 9 . 3 ( 7 ) 9 7 . 4 ( 2 6 ) 2 0 2 . 8 ( 7 ) 2 8 . 2 ( 7 ) 2 0 0 . 0 ( 7 ) - 8 1 . 9 ( 2 7 ) 7 7 . 9 ( 7 ) 1 6 2 . 5 ( 6 ) 2 . 3 ( 1 9 ) 1 . 4 ( 1 9 ) 2 . 0 ( 1 8 ) 4 . 0 ( 1 9 ) 0 . 8 ( 1 9 ) - l . 8 ( 1 5 ) 1 7 7 . 1 ( 9 ) 2 2 0 . 0 ( 1 0 ) 5 1 . 5 ( 1 2 ) 6 1 . 1 ( 1 1 ) 2 2 7 . 4 ( 8 ) 0 . 3 ( 1 7 ) 0 . 6 ( 1 8 ) 1 . 3 ( 1 7 ) 2 . 6 ( 1 6 ) 1 7 7 . 8 ( 1 0 ) 1 . 8 ( 1 7 ) 2 7 8 . 5 ( 1 0 ) 1 . 6 ( 1 7 ) 2 7 8 . 1 ( 1 1 ) 3 5 5 T a b l e A 8 c o n t i n u e d . C 8 C 2 4 C 1 4 C 1 9 C 5 2 C 5 3 C 2 7 C 4 3 C 4 2 C 4 2 C 7 5 C 7 4 C 2 6 C 1 0 N 6 C 1 2 C 9 C 7 3 C 1 5 C 1 5 C 7 1 C 5 2 C 5 5 C 7 1 C 5 2 C 5 5 C 2 0 C 6 5 C 7 6 C 3 1 B 1 C 8 C 3 7 C 3 7 C 7 1 C 5 5 C 4 7 C 7 1 C 1 5 C 2 7 C 2 7 C 2 5 C 3 4 C 2 0 C 3 3 C 1 2 C 1 2 C 1 2 C 3 5 C 4 0 C 2 1 C 1 8 C 1 8 C 4 3 C 4 3 C 3 0 C 3 1 C 3 1 B 1 B 1 B l B l B 1 B 1 C 3 9 C 4 8 C 1 6 C 4 7 C 4 7 C 1 1 C 3 4 C 3 4 B 1 B l B 1 B l C 3 1 C 3 3 C 3 3 C 3 7 C 3 7 C 3 9 C 4 1 C 4 2 C 4 3 C 4 3 C 4 4 C 4 4 C 4 5 C 4 5 C 4 5 C 4 6 C 4 6 C 4 6 C 4 7 C 4 7 C 4 7 C 4 7 C 4 7 C 4 7 C 4 7 C 4 7 C 4 9 C 5 0 C 5 0 C 5 1 C 5 1 C 5 1 C 5 2 C 5 2 C 5 2 C 5 2 C 5 2 C 5 2 C 4 7 C 4 1 C 4 1 C 3 4 C 2 5 C 4 9 C 5 4 C 7 3 C 4 6 C 9 C 4 0 C 3 5 C 1 8 C 2 1 C 2 1 C 3 0 C 3 0 C 4 3 C 5 1 B 1 C 5 1 C 5 1 C 5 1 C 3 1 C 3 1 C 3 1 C 7 0 C 1 6 C 4 8 C 1 1 C 1 1 C 4 7 C 6 2 B 1 C 6 2 C 6 2 C 6 2 C 3 4 2 . 9 ( 1 9 ) 0 . 8 ( 1 7 ) 1 7 8 . 9 ( 1 1 ) - l . 4 ( l 6 ) 2 . 1 ( 1 5 ) 2 . 4 ( 1 6 ) - 2 . 5 ( 1 6 ) 2 . 7 ( 1 5 ) 0 . 2 ( 1 5 ) 1 8 0 . 0 ( 9 ) 2 . 7 ( 1 6 ) 2 . 0 ( 1 6 ) 1 . 2 ( 1 6 ) 1 . 1 ( 1 5 ) 2 7 7 . 8 ( 9 ) 1 . 9 ( 1 4 ) 2 7 7 . 9 ( 9 ) 0 . 5 ( 1 4 ) 1 . 7 ( 1 7 ) 2 7 5 . 4 ( 1 1 ) 2 0 1 . 1 ( 1 1 ) 1 3 6 . 6 ( 1 0 ) 1 7 . 2 ( 1 4 ) 7 5 . 8 ( 1 2 ) - 4 6 . 6 ( 1 3 ) 2 6 5 . 9 ( 1 0 ) 2 . 7 ( 1 6 ) 2 . 2 ( 1 5 ) 0 . 7 ( 1 5 ) 0 . 3 ( 1 6 ) 1 7 7 . 3 ( 1 0 ) 0 . 2 ( 1 8 ) 2 . 4 ( 1 4 ) 1 7 6 . 8 ( 9 ) 2 5 4 . 7 ( 9 ) 8 3 . 9 ( 1 1 ) 2 4 . 0 ( 1 2 ) 2 6 . 1 ( 1 2 ) 3 5 6 T a b l e A 8 c o n t i n u e d . C 5 5 C 4 7 C 7 0 R h l C 3 9 C 3 3 C 3 3 C 6 3 R h 2 C 6 3 R h 2 C 2 C 2 C 6 C 6 C 7 1 C 5 2 C 4 7 C 7 1 C 5 2 C 4 7 C 4 1 N 3 C 2 7 C 5 8 C 6 0 C 5 7 C 7 2 C 5 7 C 7 7 R h 2 C 7 7 R h 2 C 2 5 C 3 4 B 1 C 7 3 R h l B 1 B 1 N 5 N 5 C 2 0 C 4 1 C 4 1 N 3 N 3 N 3 N 3 C 1 7 C 1 7 C 2 3 C 2 3 B 1 B l B 1 B 1 B 1 B 1 C 5 4 C 5 4 C 2 4 C 2 8 C 3 6 C 2 8 C 2 9 C 3 6 N 2 N 2 N 2 N 2 C 1 9 C 5 2 C 5 2 N 7 N 7 C 5 2 C 5 2 C 5 3 C 5 3 C 5 3 C 5 4 C 5 4 C 5 4 C 5 4 C 5 4 C 5 4 C 5 5 C 5 5 C 5 5 C 5 5 C 5 5 C 5 5 C 5 5 C 5 5 C 5 5 C 5 5 C 5 6 C 5 6 C 5 6 C 5 7 C 5 7 C 5 8 C 5 9 C 6 0 C 6 1 C 6 1 C 6 1 C 6 1 C 6 2 C 6 2 C 6 2 C 6 3 C 6 3 C 3 4 C 3 4 C 2 0 C 2 0 N 5 C 5 6 N 3 C 5 6 C 5 6 C 4 1 C 4 1 C 2 3 B 1 C 1 7 B l C 1 7 C 1 7 C 1 7 C 2 3 C 2 3 C 2 3 C 2 4 C 2 4 C 5 4 C 3 6 C 2 8 C 7 1 C 7 7 C 7 1 C 7 2 C 7 2 C 7 6 C 7 6 C 5 2 C 1 9 C 1 9 N 3 N 3 9 5 3 0 1 ) 1 4 6 . 8 ( 9 ) 0 . 1 ( 1 5 ) 1 7 6 . 3 ( 8 ) 1 . 1 ( 1 6 ) 5 . 1 ( 1 4 ) 2 7 8 . 4 ( 8 ) 2 5 4 . 8 ( 9 ) 1 6 . 2 ( 1 2 ) 2 8 . 7 ( 1 3 ) 2 6 0 . 3 ( 7 ) 2 . 7 ( 1 7 ) 2 7 2 . 7 ( 1 0 ) - 2 . 6 ( 1 6 ) 1 7 2 . 8 ( 1 0 ) 2 6 0 . 5 ( 9 ) 2 7 . 4 ( 1 3 ) 8 1 . 1 ( 1 2 ) 2 4 . 3 ( 1 2 ) 1 4 7 . 4 ( 1 0 ) 9 4 . 0 0 1 ) 4 . 4 0 5 ) 1 7 9 . 1 ( 9 ) 1 . 0 ( 1 7 ) 2 . 1 ( 1 6 ) 1 . 5 ( 1 6 ) 1 . 9 ( 1 6 ) 0 . 1 ( 1 5 ) 0 . 6 ( 1 6 ) 3 . 0 ( 1 3 ) 2 7 7 . 5 ( 7 ) 2 7 5 . 0 ( 8 ) 4 . 4 ( 1 0 ) 2 . 9 ( 1 7 ) 2 . 4 ( 1 5 ) - 1 7 6 . 9 ( 1 0 ) 2 6 7 . 8 ( 8 ) 1 . 6 ( 1 3 ) 3 5 7 T a b l e A 8 c o n t i n u e d . C 5 4 R h 2 C 6 7 C 6 7 C 6 6 C 6 6 C 7 6 R h 2 C 5 0 C 6 4 C 6 4 C 1 8 R h l C 6 9 R h 2 C 3 8 C 3 8 C 3 2 C 3 2 C 6 8 R h 2 C 6 8 R h 2 C 5 3 R h l C 5 3 R h l C 3 9 C 3 9 C 3 6 C 3 6 C 2 8 C 2 8 C 5 2 C 5 5 C 4 7 C 5 2 C 5 5 N 3 N 3 C 3 8 C 3 8 C 3 2 C 3 2 N 1 N 1 C 4 8 C 3 2 C 3 8 N 6 N 6 N 8 N 8 C 6 7 C 6 7 C 6 6 C 6 6 N 8 N 8 N 8 N 8 N 5 N 5 N 5 N 5 C 4 9 C 4 9 C 6 0 C 6 0 C 5 8 C 5 8 B 1 B 1 B l B 1 B 1 C 6 3 C 6 3 C 6 4 C 6 4 C 6 4 C 6 4 C 6 5 C 6 5 C 6 5 C 6 6 C 6 7 C 6 8 C 6 8 C 6 8 C 6 8 C 6 9 C 6 9 C 6 9 C 6 9 C 6 9 C 6 9 C 6 9 C 6 9 C 7 0 C 7 0 C 7 0 C 7 0 C 7 0 C 7 0 C 7 1 C 7 1 C 7 1 C 7 1 C 7 1 C 7 1 C 7 1 C 7 1 C 7 1 N 7 N 7 C 3 2 C 1 C 3 8 C 1 C 4 8 C 4 8 N 1 C 6 9 C 6 9 N 8 N 8 N 6 N 6 C 6 6 N 8 C 6 7 N 8 C 6 7 C 6 7 C 6 6 C 6 6 C 4 9 C 4 9 C 7 4 C 7 4 N 5 C 7 4 C 5 8 B 1 C 6 0 B l C 6 0 C 6 0 C 6 0 C 5 8 C 5 8 2 6 5 . 3 ( 9 ) 2 3 . 5 ( 1 2 ) 2 . 5 ( 1 6 ) 2 7 9 . 4 ( 1 0 ) 2 . 9 ( 1 5 ) 2 7 9 . 9 ( 1 0 ) 1 . 3 ( 1 4 ) 1 7 8 . 8 ( 7 ) 0 . 9 ( 1 5 ) 0 . 2 ( 1 5 ) 2 . 1 ( 1 6 ) 2 7 4 . 1 ( 8 ) 1 3 . 8 ( 1 2 ) 2 7 3 . 4 ( 8 ) 7 . 4 ( 1 2 ) 2 . 0 ( 1 4 ) 2 7 9 . 3 ( 9 ) 1 . 6 ( 1 4 ) 1 7 9 . 9 ( 8 ) 2 4 8 . 8 ( 9 ) 3 0 . 5 ( 1 0 ) 3 3 . 0 ( 1 3 ) 2 4 7 . 7 ( 7 ) 0 . 3 ( 1 4 ) 2 7 6 . 5 ( 8 ) 1 7 9 . 6 ( 9 ) 2 . 8 ( 1 1 ) 2 . 7 ( 1 6 ) 1 7 9 . 1 ( 1 0 ) 0 . 2 ( 1 4 ) 1 7 8 . 7 ( 9 ) - 0 . 8 ( 1 5 ) 2 7 9 . 4 ( 9 ) 1 1 2 . 1 ( 1 0 ) 2 2 5 . 9 ( 1 0 ) - 8 . 4 ( 1 3 ) - 6 9 . 5 ( 1 2 ) 5 2 . 5 ( 1 2 ) 3 5 8 h i T a b l e A 8 c o n t i n u e d . C 4 7 C 5 9 N 2 C 7 6 C 1 2 C 1 2 C 4 6 C 4 6 C 6 3 R h l C 6 3 R h l C 7 5 R h l C 7 5 R h l C 4 4 C 4 4 N 5 C 4 9 N 5 C 4 9 C 7 4 R h l C 4 4 C 5 0 C 5 0 C 6 5 R h 2 C 6 5 R h 2 N 2 C 7 2 N 2 C 7 2 C 6 1 R h 2 C 2 9 B 1 C 2 9 C 6 1 C 6 1 C 4 2 C 4 2 C 3 0 C 3 0 N 7 N 7 N 7 N 7 N 4 N 4 N 4 N 4 C 4 0 C 4 0 C 7 0 C 7 0 C 7 0 C 7 0 N 4 N 4 C 3 5 C 1 6 C 1 6 N 1 N 1 N 1 N 1 C 6 1 C 6 1 C 6 1 C 6 1 N 2 N 2 C 5 9 C 7 1 C 7 2 C 7 2 C 7 2 C 7 3 C 7 3 C 7 3 C 7 3 C 7 3 C 7 3 C 7 3 C 7 3 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 7 4 C 7 5 C 7 5 C 7 5 C 7 6 C 7 6 C 7 6 C 7 6 C 7 6 C 7 6 C 7 6 C 7 6 C 7 6 C 7 6 C 7 7 C 7 7 C 7 7 C 5 8 C 6 1 C 2 9 C 2 9 C 3 0 N 7 C 4 2 N 7 C 4 2 C 4 2 C 3 0 C 3 0 C 4 0 C 4 0 C 7 0 C 7 0 N 4 C 7 0 N 4 N 4 C 4 0 C 4 0 C 3 5 C 3 5 N 4 N 1 C 6 1 C 1 6 C 1 6 C 6 1 C 6 1 C 1 6 C 1 6 N 1 N 1 C 5 9 C 5 9 N 2 1 7 0 . 0 ( 9 ) 0 . 3 ( 1 6 ) 2 . 3 ( 1 5 ) 1 7 6 . 7 ( 9 ) 5 . 1 ( 1 4 ) 2 7 3 . 8 ( 8 ) 2 . 0 ( 1 3 ) 1 7 5 . 9 ( 8 ) 2 2 0 . 5 ( 1 0 ) 7 0 . 1 ( 1 0 ) 6 0 . 7 ( 1 2 ) 2 0 8 . 8 ( 8 ) 2 . 4 ( 1 4 ) 1 7 9 . 5 ( 7 ) - 1 7 8 . 9 ( 8 ) 2 . 8 ( 1 0 ) 0 . 4 ( 1 5 ) 2 7 8 . 2 ( 1 0 ) 0 . 7 ( 1 3 ) 1 7 8 . 6 ( 9 ) 1 7 8 . 0 ( 9 ) - 2 . 7 ( 1 6 ) 2 . 7 ( 1 4 ) 2 7 9 . 5 ( 7 ) 0 . 2 ( 1 5 ) 3 . 0 ( 1 5 ) 2 7 8 . 8 ( 9 ) 2 . 3 ( 1 3 ) 1 7 8 . 9 ( 8 ) 1 7 8 . 4 ( 8 ) 0 . 6 ( 1 0 ) 1 7 8 . 4 ( 9 ) 0 . 4 ( 1 5 ) 2 . 3 ( 1 2 ) 1 7 8 . 6 ( 9 ) 2 . 3 ( 1 4 ) 1 7 7 . 3 ( 7 ) 1 . 8 ( 1 5 ) 3 5 9 T a b l e A 8 c o n t i n u e d . 0 2 C 8 5 C 8 8 0 3 C 8 2 C 8 4 0 6 C 9 2 C 9 4 C 8 6 C 8 6 C 8 7 C 8 1 C 8 1 C 8 3 C 9 1 C 9 1 C 9 3 0 4 0 4 0 4 0 5 0 5 0 5 0 7 0 7 0 7 C 8 7 C 8 7 C 8 6 C 8 3 C 8 3 C 8 1 C 9 3 C 9 3 C 9 1 2 0 . 3 ( 2 8 ) 1 7 8 . 9 ( 2 0 ) 2 6 5 . 2 ( 2 1 ) 3 . 1 ( 3 7 ) 1 7 6 . 4 ( 2 0 ) 2 7 1 . 6 ( 3 5 ) 3 . 7 ( 8 9 ) 2 5 5 . 5 ( 6 1 ) 2 5 4 . 6 ( 3 4 ) 3 6 0 T a b l e A 9 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ R h 2 ( D T o l F ) 2 ( p h e n ) ( H 2 0 ) ] [ B F 4 ] [ B P h 4 ] ' C H 3 C H 2 0 2 C H 2 C H 3 ' 4 H 2 0 ( 9 ) . I d e n t i fi c a t i o n c o d e E m p i r i c a l f o r m u l a F o r m u l a w e i g h t T e m p e r a t u r e W a v e l e n g t h C r y s t a l s y s t e m S p a c e g r o u p U n i t c e l l d i m e n s i o n s V o l u m e Z p c a l c [ R h 2 ( D T o l F ) 2 ( p h e n ) ( H 2 0 ) ] [ B F 4 ] [ B P h 4 ] ~ C H 3 C H 2 0 2 C H 2 C H 3 - 4 H 2 0 C 5 2 H 5 5 3 2 F 8 N 9 0 6 1 1 1 1 2 1 2 8 1 . 4 9 g / m o l 2 9 3 ( 2 ) K 0 . 7 1 0 7 3 A t r i c l i n i c P - l a = 1 2 . 6 3 4 6 ( 2 ) A 1 1 = 1 3 . 5 8 7 2 ( 2 ) A c = 1 9 . 0 5 9 7 ( 3 ) A 0 1 = 7 1 . 9 4 8 0 ( 1 0 ) ° 3 = 7 3 . 6 3 1 0 ( 1 0 ) o y = 7 1 . 3 7 9 5 ( 7 ) ° 2 8 8 6 . 7 0 ( 8 ) A 3 2 1 . 4 7 4 g / c m 3 3 6 1 T a b l e A 9 c o n t i n u e d . 1 1 F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 0 . 6 5 2 c m ' 3 1 3 0 0 0 . 3 1 x 0 . 2 3 x 0 . 1 3 1 1 1 1 1 1 3 1 . 6 3 t o 2 8 . 2 4 ° - 8 < = h < = 1 6 , - 1 8 < = k < = ] 7 , - 2 5 < = l < = 2 4 4 3 8 8 2 1 2 4 6 5 [ R ( i n t ) = 0 . 0 1 6 7 ] F u l l - m a t r i x l e a s t - s q u a r e s o n F 2 1 2 4 6 5 / 1 2 9 / 7 0 8 1 . 0 3 9 R 1 = 0 . 0 4 4 9 , w R 2 = 0 . 1 2 5 R 1 = 0 . 0 6 2 0 , w R 2 = 0 . 1 3 5 2 1 . 0 9 7 a n d 2 . 1 3 4 e ' / A ' 3 3 6 2 T a b l e A 9 c o n t i n u e d . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . B 1 0 . 1 0 9 4 ( 6 ) 0 . 7 6 1 0 ( 5 ) 0 . 3 4 0 8 ( 4 ) 0 . 0 6 0 9 ( 1 7 ) 1 B 2 0 . 5 0 0 5 ( 5 ) 0 . 7 1 6 8 ( 5 ) 0 . 5 5 9 4 ( 3 ) 0 . 0 5 7 3 ( 1 5 ) 1 C 1 - 0 . 3 2 0 4 ( 4 ) 0 . 6 7 7 3 ( 4 ) 0 . 2 9 8 3 ( 3 ) 0 . 0 4 5 9 ( 1 1 ) 1 C 1 0 - 0 . 3 2 6 0 ( 4 ) 0 . 5 7 4 7 ( 4 ) 0 . 3 0 1 1 ( 3 ) 0 . 0 4 6 8 ( 1 1 ) 1 C 1 1 0 . 3 7 6 9 ( 5 ) - 0 . 0 9 9 2 ( 4 ) 0 . 1 7 1 2 ( 3 ) 0 . 0 5 5 8 ( 1 3 ) 1 C 1 2 0 . 1 7 0 3 ( 4 ) 0 . 3 7 4 8 ( 4 ) 0 . 5 0 3 7 ( 2 ) 0 . 0 3 7 4 ( 9 ) 1 C 1 3 0 . 2 8 9 0 ( 4 ) 0 . 0 8 4 6 ( 3 ) 0 . 1 7 6 0 ( 2 ) 0 . 0 3 3 9 ( 9 ) 1 C 1 4 - 0 . 2 0 5 4 ( 4 ) 0 . 3 3 2 9 ( 4 ) 0 . 4 4 5 3 ( 2 ) 0 . 0 3 7 9 ( 9 ) 1 C 1 5 0 . 1 3 5 1 ( 4 ) - 0 . 0 4 8 5 ( 3 ) 0 . 4 4 0 1 ( 2 ) 0 . 0 3 9 6 ( 1 0 ) 1 C 1 6 0 . 1 7 8 8 ( 4 ) 0 . 0 5 9 5 ( 3 ) 0 . 5 0 2 1 ( 2 ) 0 . 0 3 6 0 ( 9 ) 1 C 1 7 0 . 0 9 1 1 ( 3 ) 0 . 1 6 5 4 ( 3 ) 0 . 2 0 9 2 ( 2 ) 0 . 0 3 0 4 ( 8 ) 1 C 1 8 - 0 . 1 0 5 3 ( 3 ) 0 . 2 3 6 8 ( 3 ) 0 . 2 2 9 9 ( 2 ) 0 . 0 3 0 5 ( 8 ) 1 C 1 9 0 . 1 2 1 4 ( 3 ) 0 . 4 5 7 7 ( 4 ) 0 . 4 5 0 4 ( 2 ) 0 . 0 3 6 0 ( 9 ) 1 C 2 0 . 3 9 1 2 ( 4 ) 0 . 0 9 7 9 ( 4 ) 0 . 3 4 4 9 ( 2 ) 0 . 0 3 7 5 ( 9 ) 1 C 2 0 - 0 . l 1 4 5 ( 4 ) 0 . 2 7 1 1 ( 4 ) 0 . 1 5 4 3 ( 2 ) 0 . 0 3 9 7 ( 1 0 ) 1 C 2 1 0 . 1 3 1 0 ( 3 ) 0 . 1 4 9 2 ( 3 ) 0 . 4 4 9 4 ( 2 ) 0 . 0 2 9 4 ( 8 ) 1 C 2 2 - 0 . 2 0 0 1 ( 4 ) 0 . 2 1 5 1 ( 4 ) 0 . 2 8 4 2 ( 3 ) 0 . 0 4 2 6 ( 1 1 ) 1 C 2 3 0 . 0 8 8 1 ( 4 ) 0 . 0 4 4 9 ( 3 ) 0 . 3 9 0 3 ( 2 ) 0 . 0 3 3 4 ( 9 ) 1 C 2 4 0 . 3 3 8 7 ( 5 ) 0 . 4 4 0 8 ( 4 ) - 0 . 0 6 1 4 ( 3 ) 0 . 0 5 0 5 ( 1 2 ) 1 C 2 5 0 . 1 6 0 7 ( 4 ) 0 . 4 2 9 9 ( 4 ) 0 . 0 2 7 6 ( 2 ) 0 . 0 4 5 7 ( ] 1 ) 1 C 2 6 0 . 3 1 5 6 ( 4 ) 0 . 4 4 0 0 ( 3 ) 0 . 2 8 3 8 ( 2 ) 0 . 0 3 5 5 ( 9 ) 1 C 2 7 - 0 . 1 1 9 4 ( 3 ) 0 . 5 1 6 2 ( 3 ) 0 . 2 6 6 8 ( 2 ) 0 . 0 3 2 3 ( 8 ) 1 C 2 8 0 . 1 7 4 8 ( 3 ) 0 . 2 6 8 9 ( 3 ) 0 . 5 0 5 1 ( 2 ) 0 . 0 3 4 2 ( 9 ) 1 C 2 9 0 . 3 8 8 3 ( 4 ) 0 . 4 2 3 1 ( 4 ) - 0 . 0 0 0 8 ( 3 ) 0 . 0 4 4 4 ( 1 1 ) 1 C 3 - 0 . 3 0 2 8 ( 4 ) 0 . 3 7 0 7 ( 5 ) 0 . 5 0 1 8 ( 3 ) 0 . 0 5 7 6 ( 1 4 ) 1 C 3 0 0 . 0 4 8 5 ( 3 ) 0 . 4 5 4 9 ( 3 ) 0 . 1 8 3 6 ( 2 ) 0 . 0 2 9 7 ( 8 ) 1 C 3 1 0 . 3 2 5 2 ( 4 ) 0 . 4 1 0 3 ( 4 ) 0 . 0 7 2 9 ( 2 ) 0 . 0 4 0 9 ( 1 0 ) 1 3 6 3 g — p a — p H a — y A — p n — p ‘ p — p b — p a p ‘ p e — p a — p ‘ — p i — p e — g c — u e — u d — p o — p ‘ — p d p e — A — p ‘ — p d p a — p d p a — p ‘ p H A — n p L — p o — p d — e — u ‘ — a — p T a b l e A 9 c o n t i n u e d . C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 5 C 5 1 C 5 2 C 5 3 C 5 4 C 5 6 C 5 7 C 6 C 7 C 8 C 9 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 N 1 N 2 N 3 0 . 2 1 0 9 ( 3 ) 0 . 1 2 8 8 ( 3 ) 0 . 0 7 6 2 ( 3 ) 0 . 2 8 5 7 ( 4 ) 0 . 3 8 4 5 ( 4 ) 0 . 4 7 4 6 ( 5 ) 0 . 4 7 1 8 ( 5 ) 0 . 5 7 0 9 ( 6 ) 0 . 2 2 2 6 ( 4 ) 0 . 2 2 3 7 ( 5 ) 0 . 4 1 0 1 ( 6 ) 0 . 4 3 0 4 ( 5 ) 0 . 2 1 4 5 ( 4 ) 0 . 2 1 5 4 ( 4 ) 0 . 3 0 9 4 ( 4 ) 0 . 4 1 8 8 ( 5 ) 0 . 2 2 6 4 ( 4 ) 0 . 4 7 1 5 ( 5 ) 0 . 2 2 4 4 ( 4 ) 0 . 7 0 8 6 ( 8 ) 0 . 7 8 8 8 ( 1 1 ) 0 . 8 7 8 ( 3 ) 1 . 0 0 8 ( 2 ) 0 . 3 6 1 6 ( 5 ) 0 . 1 8 1 0 ( 4 ) 0 . 1 1 4 7 ( 4 ) 0 . 3 0 0 5 ( 4 ) 0 . 0 5 6 6 ( 3 ) 0 . 0 9 1 2 ( 3 ) 0 . 2 2 6 3 ( 4 ) 0 . 0 6 8 3 ( 6 ) 0 . 4 3 3 6 ( 4 ) 0 . 5 6 1 9 ( 3 ) 0 . 5 6 8 6 ( 3 ) 0 . 4 2 3 6 ( 4 ) 0 . 1 5 0 0 ( 3 ) 0 . 1 9 7 9 ( 3 ) 0 . 3 2 8 8 ( 3 ) 0 . 4 1 2 6 ( 3 ) 0 . 2 5 5 1 ( 3 ) 0 . 4 3 7 5 ( 3 ) 0 . 0 2 2 3 ( 4 ) 0 . 1 1 1 4 ( 4 ) 0 . 0 3 3 9 ( 4 ) 0 . 0 7 4 0 ( 4 ) 0 . 1 5 8 5 ( 5 ) 0 . 1 7 5 6 ( 4 ) 0 . 4 4 4 5 ( 5 ) 0 . 4 5 5 3 ( 6 ) 0 . 7 6 3 0 ( 5 ) 0 . 6 9 7 3 ( 4 ) 0 . 2 7 8 7 ( 4 ) 0 . 2 5 4 1 ( 5 ) 0 . 2 6 1 1 ( 6 ) 0 . 4 9 6 2 ( 4 ) 0 . 0 2 2 7 ( 4 ) 0 . 0 7 6 4 ( 4 ) 0 . 0 2 0 5 ( 8 ) 0 . 0 1 9 3 ( 7 ) 0 . 0 2 6 ( 6 ) 0 . 0 5 0 ( 3 ) 0 . 5 0 9 9 ( 4 ) 0 . 0 4 1 3 ( 4 ) 0 . 6 1 8 5 ( 3 ) 0 . 2 2 3 9 ( 4 ) 0 . 8 7 0 0 ( 3 ) 0 . 7 2 4 0 ( 3 ) 0 . 7 4 7 5 ( 3 ) 0 . 7 0 2 9 ( 4 ) 0 . 6 4 6 1 ( 4 ) 0 . 7 3 3 9 ( 3 ) 0 . 6 6 3 2 ( 4 ) 0 . 8 0 6 6 ( 4 ) 0 . 3 9 4 0 ( 3 ) 0 . 1 6 5 2 ( 3 ) 0 . 1 5 7 6 ( 3 ) 3 6 4 0 . 0 8 8 3 ( 2 ) 0 . 4 5 0 8 ( 2 ) 0 . 3 9 8 3 ( 2 ) 0 . 1 9 9 1 ( 3 ) 0 . 1 2 5 4 ( 3 ) 0 . 0 9 8 2 ( 3 ) 0 . 1 2 1 1 ( 3 ) 0 . 0 9 2 2 ( 4 ) 0 . 5 5 8 8 ( 3 ) 0 . 0 4 5 7 ( 3 ) 0 . 1 4 0 9 ( 3 ) 0 . 3 1 6 2 ( 3 ) 0 . 2 7 9 5 ( 3 ) 0 . 1 3 4 0 ( 3 ) 0 . 1 8 8 5 ( 3 ) 0 . 1 6 6 7 ( 4 ) 0 . 2 8 4 4 ( 3 ) 0 . 3 9 1 7 ( 3 ) 0 . 5 5 7 1 ( 2 ) 0 . 2 6 5 3 ( 5 ) 0 . 2 0 4 7 ( 6 ) 0 . 1 3 0 1 ( 1 8 ) 0 . 1 1 1 ( 2 ) 0 . 3 0 5 7 ( 3 ) 0 . 4 9 5 4 ( 3 ) 0 . 2 6 4 9 ( 2 ) 0 . 2 6 3 5 ( 3 ) 0 . 3 2 2 8 ( 2 ) 0 . 4 1 8 9 ( 2 ) 0 . 3 1 6 0 ( 3 ) 0 . 3 1 3 9 ( 3 ) 0 . 6 0 8 8 ( 2 ) 0 . 6 0 1 8 5 ( 1 8 ) 0 . 5 0 6 8 ( 3 ) 0 . 5 3 4 4 ( 3 ) 0 . 1 6 4 5 1 ( 1 8 ) 0 . 2 0 4 8 2 0 8 ) 0 . 3 0 8 6 8 ( 1 9 ) 0 . 0 3 0 4 ( 8 ) 0 . 0 2 8 9 ( 8 ) 0 . 0 3 1 0 ( 8 ) 0 . 0 4 8 0 ( 1 1 ) 0 . 0 4 9 3 ( 1 2 ) 0 . 0 6 2 8 ( 1 5 ) 0 . 0 5 8 5 ( 1 4 ) 0 . 0 8 5 ( 2 ) 0 . 0 4 6 2 ( 1 1 ) 0 . 0 5 9 9 ( 1 4 ) 0 . 0 7 2 7 ( 1 8 ) 0 . 0 6 5 8 ( 1 6 ) 0 . 0 4 5 7 ( 1 1 ) 0 . 0 5 2 3 ( 1 2 ) 0 . 0 5 2 2 ( 1 3 ) 0 . 0 8 3 ( 2 ) 0 . 0 4 0 4 ( 1 0 ) 0 . 0 6 0 6 ( 1 5 ) 0 . 0 4 5 2 ( 1 1 ) 0 . 1 3 5 ( 4 ) 0 . 2 4 2 ( 1 2 ) 1 . 9 ( 2 ) 1 2 0 ( 8 ) 0 . 0 5 0 9 ( 1 2 ) 0 . 0 4 3 3 ( 1 0 ) 0 . 0 3 9 4 ( 1 0 ) 0 . 0 5 0 7 ( 1 2 ) 0 . 0 8 0 4 ( 1 1 ) 0 . 0 7 5 5 ( 1 0 ) 0 . 1 1 6 7 ( 1 8 ) 0 . 1 3 9 ( 2 ) 0 . 0 9 5 9 ( 1 3 ) 0 . 0 6 3 2 ( 8 ) 0 . 1 0 8 5 ( 1 6 ) 0 . 1 2 1 7 ( 1 8 ) 0 . 0 3 0 5 ( 7 ) 0 . 0 3 1 2 ( 7 ) 0 . 0 3 1 6 ( 7 ) T a b l e A 9 c o n t i n u e d . N 4 0 . 2 7 9 1 ( 3 ) 0 . 3 8 4 2 ( 3 ) 0 . 2 6 8 3 6 0 8 ) 0 . 0 3 0 0 ( 7 ) N 5 0 . 0 8 7 3 ( 3 ) 0 . 1 4 1 7 ( 3 ) 0 . 3 9 3 4 5 ( 1 7 ) 0 . 0 2 8 2 ( 7 ) N 6 0 . 0 8 1 4 ( 3 ) 0 . 3 3 8 0 ( 3 ) 0 . 3 9 7 5 0 ( 1 7 ) 0 . 0 2 7 3 ( 7 ) N 7 0 . 0 0 1 5 ( 3 ) 0 . 2 2 1 2 ( 3 ) 0 . 2 4 8 8 8 ( 1 8 ) 0 . 0 3 0 1 ( 7 ) N 8 0 . 0 1 7 6 ( 3 ) 0 . 4 3 5 3 ( 3 ) 0 . 2 5 1 4 2 ( 1 8 ) 0 . 0 3 0 7 ( 7 ) N 9 0 . 1 2 8 9 ( 3 ) 0 . 3 0 5 3 ( 3 ) 0 . 3 9 9 7 6 ( 1 9 ) 0 . 0 3 1 5 ( 7 ) 0 1 0 . 9 0 1 1 ( 9 ) 0 . 0 3 0 6 ( 1 1 ) 0 . 2 0 4 8 ( 8 ) 0 . 2 6 0 ( 7 ) 0 2 0 . 2 2 6 ( 2 ) 0 . 3 2 6 0 ( 1 5 ) 0 . 1 1 7 5 ( 9 ) 0 . 3 7 2 ( 1 2 ) 0 3 0 . 7 7 3 7 ( 1 5 ) - 0 . 0 2 1 8 ( 1 3 ) 0 . 1 3 9 3 ( 8 ) 0 . 4 0 8 ( 1 3 ) 0 4 1 . 0 7 5 2 ( 1 5 ) 0 . 2 3 6 1 ( 1 5 ) 0 . 0 6 2 4 ( 9 ) 0 . 4 4 5 ( 1 6 ) 0 6 0 . 9 0 8 9 ( 1 5 ) 0 . 1 9 2 ( 2 ) 0 . 0 2 3 5 ( 9 ) 0 . 4 2 6 ( 1 4 ) 0 7 0 . 2 6 2 1 ( 1 7 ) 0 . 1 8 1 ( 2 ) 0 . 0 4 9 6 ( 1 0 ) 0 . 3 9 3 ( 1 2 ) 1 1 1 1 1 0 . 0 3 1 2 7 ( 2 ) 0 . 2 8 7 7 7 ( 2 ) 0 . 3 2 3 3 1 4 ( 1 5 ) 0 . 0 2 4 8 4 ( 9 ) 1 1 1 1 2 0 . 2 3 2 5 2 ( 2 ) 0 . 2 7 4 9 0 ( 2 ) 0 . 2 3 9 1 8 1 ( 1 6 ) 0 . 0 2 5 5 7 ( 9 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 6 5 T a b l e A 9 c o n t i n u e d . B o n d l e n g t h s [ A ] a n d a n g l e s [ 0 ] . R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 R h 2 N 1 N 1 N 2 N 2 N 3 N 4 N 5 N 5 N 6 N 6 N 7 N 7 N 8 N 8 N 9 C 1 C 1 C 1 C 2 C 3 C 4 C 4 C 5 C 5 C 6 N 5 N 6 N 8 N 7 N 9 R h 2 N 2 N 1 N 4 N 3 C 3 0 C 3 2 C 1 7 C 1 3 C 2 C 2 6 C 2 3 C 2 1 C 3 4 C 3 3 C 1 7 C 1 8 C 3 0 C 2 7 C 1 4 C 4 3 C 1 0 C 4 2 C 5 1 C 1 4 C 5 2 C 2 8 C 2 7 C 1 0 C 2 6 2 . 0 5 4 ( 3 ) 2 . 0 6 0 ( 3 ) 2 . 0 6 4 ( 3 ) 2 . 0 7 0 ( 3 ) 2 . 1 2 6 ( 3 ) 2 . 5 8 0 4 ( 4 ) 2 . 0 0 6 ( 3 ) 2 . 0 1 5 ( 3 ) 2 . 0 2 9 ( 3 ) 2 . 0 3 4 ( 3 ) 1 . 3 0 7 ( 5 ) 1 . 4 2 6 ( 5 ) 1 . 3 2 8 ( 5 ) 1 . 4 2 7 ( 5 ) 1 . 1 4 3 ( 5 ) 1 . 1 4 5 ( 5 ) 1 . 3 3 2 ( 5 ) 1 . 3 7 4 ( 5 ) 1 . 3 3 8 ( 5 ) 1 . 3 6 5 ( 5 ) 1 . 3 2 4 ( 5 ) 1 . 4 2 9 ( 5 ) 1 . 3 2 7 ( 5 ) 1 . 4 2 6 ( 5 ) 1 . 1 5 2 ( 5 ) 1 . 3 7 7 ( 7 ) 1 . 4 0 2 ( 7 ) 1 . 5 3 2 ( 7 ) 1 . 4 6 8 ( 6 ) 1 . 4 5 9 ( 6 ) 1 . 3 5 1 ( 7 ) 1 . 4 4 1 ( 6 ) 1 . 3 9 2 ( 6 ) 1 . 3 9 7 ( 6 ) 1 . 4 6 7 ( 6 ) 3 6 6 T a b l e A 9 c o n t i n u e d . C 7 C 7 C 8 C 8 C 9 C 9 C 1 1 C 1 1 C 1 2 C 1 2 C 1 3 C 1 3 C 1 5 C 1 6 C 1 6 C 1 8 C 1 8 C 1 9 C 2 0 C 2 1 C 2 4 C 2 4 C 2 4 C 2 5 C 2 5 C 2 8 C 2 9 C 3 1 C 3 6 C 3 7 C 3 8 C 4 4 C 4 5 B 1 B 1 B l B 1 F 5 C 1 5 C 1 6 C 4 3 C 2 7 C 4 5 C 2 2 C 3 8 C 3 5 C 1 9 C 2 8 C 3 6 C 3 5 C 2 3 C 2 1 C 5 2 C 2 2 C 2 0 C 3 4 C 4 4 C 3 3 C 4 0 C 2 9 C 4 1 C 4 0 C 3 2 C 3 3 C 3 1 C 3 2 C 3 7 C 3 8 C 3 9 C 4 5 C 4 6 F 4 F 3 F 2 F 1 B 2 1 . 3 7 8 ( 6 ) 1 . 4 0 5 ( 6 ) 1 . 3 9 3 ( 6 ) 1 . 3 9 9 ( 6 ) 1 . 3 8 7 ( 7 ) 1 . 3 9 1 ( 6 ) 1 . 3 7 1 ( 8 ) 1 . 3 9 0 ( 7 ) 1 . 3 7 2 ( 6 ) 1 . 4 1 5 ( 6 ) 1 . 3 8 8 ( 6 ) 1 . 3 9 3 ( 6 ) 1 . 3 9 9 ( 6 ) 1 . 4 0 4 ( 5 ) 1 . 4 3 5 ( 6 ) 1 . 3 8 9 ( 6 ) 1 . 3 9 8 ( 6 ) 1 . 4 0 5 ( 6 ) 1 . 3 9 7 ( 6 ) 1 . 4 3 9 ( 6 ) 1 . 3 8 5 ( 8 ) 1 . 3 8 7 ( 7 ) 1 . 5 2 0 ( 7 ) 1 . 3 8 9 ( 7 ) 1 . 3 9 4 ( 6 ) 1 . 4 0 3 ( 5 ) 1 . 3 9 5 ( 6 ) 1 . 3 8 3 ( 6 ) 1 . 3 8 4 ( 7 ) 1 . 4 0 4 ( 8 ) 1 . 5 0 7 ( 7 ) 1 . 3 9 4 ( 7 ) 1 . 5 2 0 ( 7 ) 1 . 3 4 9 ( 6 ) 1 . 3 8 8 ( 7 ) 1 . 3 9 2 ( 7 ) 1 . 3 9 3 ( 7 ) 1 . 4 2 6 ( 7 ) 3 6 7 T a b l e A 9 c o n t i n u e d . F 6 F 7 F 8 C 5 4 C 5 4 C 5 4 C 5 6 C 5 6 N 5 N 5 N 6 N 5 N 6 N 8 N 5 N 6 N 8 N 7 N 5 N 6 N 8 N 7 N 9 N 2 N 2 N 1 N 2 N 1 N 4 N 2 N 1 N 4 N 3 C 3 0 C 3 0 C 3 2 C 1 7 C 1 7 B 2 B 2 B 2 C 5 3 0 3 O l 0 1 C 5 7 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 1 . 3 7 6 ( 6 ) 1 . 3 5 7 ( 7 ) 1 . 3 4 3 ( 7 ) 1 . 3 0 4 ( 1 1 ) 1 . 3 2 4 ( 1 2 ) 1 . 3 7 8 ( 1 3 ) 1 5 1 ( 3 ) 1 5 2 ( 3 ) C 3 2 C 1 3 8 0 . 8 6 ( 1 3 ) 1 7 7 . 4 1 ( 1 3 ) 9 8 . 0 1 ( 1 3 ) 9 3 5 4 ( 1 3 ) 1 7 2 . 2 0 ( 1 3 ) 8 7 . 3 6 ( l 3 ) 8 8 . 5 6 ( 1 2 ) 8 4 . 5 7 ( 1 2 ) 9 3 . 6 6 ( 1 3 ) 1 0 0 . 7 9 ( 1 3 ) 9 1 0 2 ( 9 ) 8 9 4 2 ( 9 ) 8 6 6 3 ( 9 ) 8 5 2 4 ( 9 ) 1 7 3 . 9 7 ( 9 ) 9 0 8 0 ( 1 3 ) 1 7 5 . 6 3 ( 1 3 ) 8 9 5 7 ( 1 3 ) 9 0 7 9 ( 1 3 ) 1 7 4 . 9 5 ( 1 3 ) 8 8 . 4 8 ( 1 3 ) 8 4 . 6 6 ( 1 0 ) 8 3 8 8 ( 1 0 ) 9 9 7 1 ( 9 ) 1 0 1 . 0 4 ( 1 0 ) 1 2 0 . 5 ( 3 ) 1 2 3 . 3 ( 3 ) 1 1 6 . 2 ( 3 ) 1 1 9 . 1 ( 3 ) 1 2 1 . 0 ( 3 ) 3 6 8 T a b l e A 9 c o n t i n u e d . C 1 3 C 2 C 2 6 C 2 3 C 2 3 C 2 1 C 3 4 C 3 4 C 3 3 C 1 7 C 1 7 C 1 8 C 3 0 C 3 0 C 2 7 C 1 4 C 4 3 C 4 3 C 1 0 N 3 C 5 2 C 2 7 C 1 5 C 4 3 C 4 5 C 5 C 3 8 C 1 9 C 3 6 C 3 6 C 3 5 N 9 C 7 C 2 1 C 2 1 C 7 N 7 C 2 2 N 2 N 3 N 4 N 5 N 5 N 5 N 6 N 6 N 6 N 7 N 7 N 7 N 8 N 8 N 8 N 9 C 1 C 1 C 1 C 2 C 4 C 5 C 7 C 8 C 9 C 1 0 C 1 1 C 1 2 C 1 3 C 1 3 C 1 3 C 1 4 C 1 5 C 1 6 C 1 6 C 1 6 C 1 7 C 1 8 R h 2 R h 2 R h 2 C 2 1 R h l R h l C 3 3 R h l R h l C 1 8 R h l R h l C 2 7 R h l R h l R h l C 1 0 C 4 2 C 4 2 C 5 1 C 2 8 C 1 0 C 1 6 C 2 7 C 2 2 C 1 C 3 5 C 2 8 C 3 5 N 2 N 2 C 3 C 2 3 C 7 C 5 2 C 5 2 N 2 C 2 0 1 1 9 . 8 ( 3 ) 1 7 2 . 8 ( 3 ) 1 7 3 . 7 ( 3 ) 1 1 8 . 3 ( 3 ) 1 2 8 . 8 ( 3 ) 1 1 2 . 9 ( 3 ) 1 1 8 . 1 ( 3 ) 1 2 9 . 0 ( 3 ) 1 1 2 . 9 ( 2 ) 1 1 5 . 1 ( 3 ) 1 1 7 . 6 ( 3 ) 1 2 7 . 0 ( 3 ) 1 1 6 . 9 ( 3 ) 1 1 7 . 3 ( 3 ) 1 2 5 . 7 ( 3 ) 1 6 2 . 6 ( 3 ) 1 1 8 . 1 ( 4 ) 1 2 2 . 0 ( 5 ) 1 1 9 . 9 ( 5 ) 1 7 9 . 1 ( 5 ) 1 2 1 . 1 ( 4 ) 1 2 1 . 3 ( 4 ) 1 2 0 . 0 ( 4 ) 1 2 0 . 5 ( 4 ) 1 2 1 . 3 ( 4 ) 1 2 0 . 4 ( 5 ) 1 2 2 . 4 ( 5 ) 1 1 8 . 8 ( 4 ) 1 1 8 . 5 ( 4 ) 1 2 0 . 3 ( 4 ) 1 2 1 . 2 ( 4 ) 1 7 8 . 5 ( 5 ) 1 1 9 . 6 ( 4 ) 1 1 6 . 9 ( 4 ) 1 1 8 . 4 ( 4 ) 1 2 4 . 7 ( 4 ) 1 2 3 . 5 ( 4 ) 1 1 8 . 4 ( 4 ) 3 6 9 T a b l e A 9 c o n t i n u e d . C 2 2 C 2 0 C 1 2 C 4 4 N 5 N 5 C 1 6 C 1 8 N 5 C 4 0 C 4 0 C 2 9 C 4 0 N 4 C 5 C 5 C 8 C 3 3 C 3 3 C 1 2 C 2 4 N 1 C 3 2 C 3 1 C 3 1 C 2 5 N 6 N 6 C 2 8 N 6 C 1 1 C 3 7 C 3 6 C 1 1 C 1 1 C 3 7 C 2 4 C 1 C 1 8 C 1 8 C 1 9 C 2 0 C 2 1 C 2 1 C 2 1 C 2 2 C 2 3 C 2 4 C 2 4 C 2 4 C 2 5 C 2 6 C 2 7 C 2 7 C 2 7 C 2 8 C 2 8 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 2 C 3 2 C 3 3 C 3 3 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 8 C 3 8 C 4 0 C 4 3 N 7 N 7 C 3 4 C 1 8 C 1 6 C 3 3 C 3 3 C 9 C 1 5 C 2 9 C 4 1 C 4 1 C 3 2 C 6 C 8 N 8 N 8 C 1 2 C 4 C 4 C 3 1 N 8 C 2 9 C 2 5 N 1 N 1 C 2 8 C 2 1 C 2 1 C 1 9 C 1 3 C 1 3 C 3 8 C 3 7 C 3 9 C 3 9 C 2 5 C 8 1 2 2 . 2 ( 4 ) 1 1 9 . 4 ( 4 ) 1 2 0 . 5 ( 4 ) 1 2 0 . 4 ( 4 ) 1 2 3 . 0 ( 4 ) 1 1 6 . 6 ( 3 ) 1 2 0 . 4 ( 4 ) 1 2 0 . 8 ( 4 ) 1 2 2 . 2 ( 4 ) 1 1 7 . 3 ( 4 ) 1 2 2 . 7 ( 5 ) 1 2 0 . 0 ( 5 ) 1 2 0 . 9 ( 5 ) 1 7 8 . 5 ( 5 ) 1 1 7 . 8 ( 4 ) 1 2 1 . 3 ( 4 ) 1 2 0 . 8 ( 4 ) 1 1 7 . 4 ( 4 ) 1 1 8 . 7 ( 4 ) 1 2 3 . 9 ( 4 ) 1 2 1 . 5 ( 5 ) 1 2 3 . 5 ( 4 ) 1 2 0 . 9 ( 4 ) 1 1 7 . 8 ( 4 ) 1 1 9 . 5 ( 4 ) 1 2 2 . 6 ( 4 ) 1 2 3 . 4 ( 4 ) 1 1 6 . 8 ( 3 ) 1 1 9 . 9 ( 4 ) 1 2 1 . 8 ( 4 ) 1 1 9 . 8 ( 5 ) 1 2 1 . 0 ( 5 ) 1 2 0 . 8 ( 5 ) 1 1 7 . 5 ( 5 ) 1 2 1 . 8 ( 6 ) 1 2 0 . 6 ( 6 ) 1 2 1 . 5 ( 5 ) 1 2 1 . 8 ( 4 ) 3 7 0 T a b l e A 9 c o n t i n u e d . C 4 5 C 4 4 C 2 0 1 2 1 . 1 ( 5 ) C 9 C 4 5 C 4 4 1 1 8 . 0 ( 4 ) C 9 C 4 5 C 4 6 1 2 0 . 8 ( 5 ) C 4 4 C 4 5 C 4 6 1 2 1 . 2 ( 5 ) C 4 C 5 2 C 1 6 1 2 1 . 6 ( 4 ) F 4 3 1 F 3 1 1 2 . 6 ( 6 ) F 4 3 1 F 2 1 0 7 . 8 ( 5 ) F 3 3 1 F 2 1 0 6 . 1 ( 5 ) F 4 3 1 F 1 1 1 2 . 8 ( 5 ) F 3 3 1 F 1 1 0 8 . 4 ( 5 ) F 2 3 1 F 1 1 0 8 . 8 ( 5 ) F 8 3 2 F 7 1 1 5 . 9 ( 5 ) F 8 3 2 F 6 1 1 1 . 7 ( 5 ) F 7 3 2 F 6 1 1 2 . 3 ( 4 ) F 8 3 2 F 5 1 0 4 . 4 ( 5 ) F 7 3 2 F 5 1 0 4 . 5 ( 5 ) F 6 3 2 F 5 1 0 7 . 1 ( 5 ) C 5 3 C 5 4 0 3 1 2 3 . 2 ( 1 3 ) C 5 3 C 5 4 0 1 1 2 3 . 2 ( 1 1 ) 0 3 C 5 4 0 1 1 1 2 . 9 ( 1 1 ) 0 1 C 5 6 C 5 7 8 0 ( 2 ) C 5 4 0 1 C 5 6 6 4 . 9 ( 1 5 ) S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - 1 , - y + 1 , - z + 1 3 7 1 T a b l e A 9 c o n t i n u e d . A n i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . U 1 1 U 2 2 U 3 3 U 2 3 U 1 3 U 1 2 R h l 0 . 0 2 5 1 0 ( 1 6 ) 0 . 0 2 4 9 4 ( 1 6 ) 0 . 0 2 4 2 9 ( 1 5 ) 0 . 0 0 3 5 9 ( 1 1 ) 0 . 0 0 6 6 2 ( 1 1 ) 0 . 0 0 6 9 8 ( 1 2 ) R h 2 0 . 0 2 4 1 6 0 6 ) 0 . 0 2 7 5 1 ( 1 6 ) 0 . 0 2 4 7 8 0 5 ) 0 . 0 0 4 2 3 ( 1 2 ) 0 . 0 0 7 1 4 ( 1 1 ) 0 . 0 0 6 3 4 0 2 ) N 1 0 . 0 3 0 7 ( 1 7 ) 0 . 0 3 1 6 ( 1 7 ) 0 . 0 2 7 8 ( 1 6 ) 0 . 0 0 3 4 ( 1 3 ) 0 . 0 0 8 0 ( 1 3 ) 0 . 0 0 8 0 ( 1 4 ) N 2 0 . 0 3 0 4 ( 1 7 ) 0 . 0 3 2 1 ( 1 7 ) 0 . 0 3 1 1 ( 1 7 ) 0 . 0 0 7 4 ( 1 4 ) - 0 . 0 0 8 1 ( 1 4 ) - 0 . 0 0 6 2 ( 1 4 ) N 3 0 . 0 2 7 3 ( 1 7 ) 0 . 0 3 4 3 ( 1 8 ) 0 . 0 3 3 1 ( 1 7 ) 0 . 0 0 5 7 ( 1 4 ) 0 . 0 0 9 0 ( 1 4 ) 0 . 0 0 7 7 ( 1 4 ) N 4 0 . 0 2 8 5 ( 1 7 ) 0 . 0 3 3 9 ( 1 7 ) 0 . 0 2 7 4 ( 1 6 ) 0 . 0 0 5 8 ( 1 4 ) 0 . 0 0 2 9 ( 1 3 ) 0 . 0 1 1 6 ( 1 4 ) N 5 0 . 0 2 8 3 ( 1 6 ) 0 . 0 2 8 4 ( 1 6 ) 0 . 0 2 5 0 ( 1 5 ) 0 . 0 0 2 5 ( 1 3 ) 0 . 0 0 4 3 ( 1 3 ) - 0 . 0 0 8 2 ( 1 3 ) N 6 0 . 0 2 5 2 ( 1 6 ) 0 . 0 3 1 9 ( 1 7 ) 0 . 0 2 3 6 ( 1 5 ) 0 . 0 0 5 6 ( 1 3 ) 0 . 0 0 1 5 ( 1 2 ) 0 . 0 0 9 7 ( 1 3 ) N 7 0 . 0 2 9 9 ( 1 7 ) 0 . 0 3 1 9 ( 1 7 ) 0 . 0 3 1 1 ( 1 7 ) 0 . 0 0 7 2 ( 1 4 ) 0 . 0 0 9 2 ( 1 4 ) 0 . 0 0 9 1 ( 1 4 ) N 8 0 . 0 3 3 5 ( 1 8 ) 0 . 0 2 7 8 ( 1 6 ) 0 . 0 2 7 5 ( 1 6 ) 0 . 0 0 1 5 ( 1 3 ) 0 . 0 0 8 6 ( 1 4 ) 0 . 0 0 6 3 ( 1 4 ) N 9 0 . 0 2 9 3 ( 1 7 ) 0 . 0 3 0 7 ( 1 7 ) 0 . 0 3 2 2 ( 1 7 ) 0 . 0 0 5 6 ( 1 4 ) 0 . 0 0 7 5 ( 1 4 ) 0 . 0 0 5 4 ( 1 4 ) C 1 0 . 0 4 3 ( 3 ) 0 . 0 4 6 ( 3 ) 0 . 0 3 9 ( 2 ) 0 . 0 1 3 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 0 8 ( 2 ) c 2 0 . 0 3 4 ( 2 ) 0 . 0 4 0 ( 2 ) 0 . 0 3 9 ( 2 ) 0 . 0 0 8 7 ( 1 9 ) 0 . 0 1 0 0 ( 1 9 ) 0 . 0 0 8 7 ( 1 9 ) ( : 3 0 . 0 3 4 ( 2 ) 0 . 0 8 4 ( 4 ) 0 . 0 5 8 ( 3 ) 0 . 0 3 4 ( 3 ) 0 . 0 0 0 ( 2 ) 0 . 0 1 2 ( 3 ) c 4 0 . 0 4 8 ( 3 ) 0 . 0 5 9 ( 3 ) 0 . 0 3 5 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 0 1 8 ( 2 ) 0 . 0 1 3 ( 2 ) c 5 0 . 0 3 6 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 4 7 ( 3 ) 0 . 0 0 3 2 ( 1 9 ) 0 . 0 1 4 ( 2 ) 0 . 0 0 5 9 ( 1 8 ) C 6 0 . 0 5 8 ( 3 ) 0 . 0 5 2 ( 3 ) 0 . 0 5 3 ( 3 ) 0 . 0 2 1 ( 2 ) 0 . 0 0 1 ( 2 ) 0 . 0 2 9 ( 2 ) ( : 7 0 . 0 4 5 ( 3 ) 0 . 0 3 6 ( 2 ) 0 . 0 4 1 ( 2 ) 0 . 0 0 5 6 ( 1 9 ) 0 . 0 1 5 ( 2 ) 0 . 0 0 8 ( 2 ) ( : 3 0 . 0 4 2 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 0 3 9 ( 2 ) - 0 . 0 0 7 9 ( 1 8 ) 0 . 0 0 8 2 ( 1 9 ) 0 . 0 0 9 4 ( 1 9 ) ( : 9 0 . 0 3 4 ( 2 ) 0 . 0 7 0 ( 3 ) 0 . 0 5 8 ( 3 ) 0 . 0 3 0 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 2 3 ( 2 ) C 1 0 0 . 0 3 1 ( 2 ) 0 . 0 5 1 ( 3 ) 0 . 0 4 8 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 0 1 ( 2 ) c 1 1 0 . 0 5 7 ( 3 ) 0 . 0 3 2 ( 2 ) 0 . 0 7 2 ( 4 ) 0 . 0 1 6 ( 2 ) 0 . 0 1 2 ( 3 ) 0 . 0 0 1 ( 2 ) ( : 1 2 0 . 0 3 1 ( 2 ) 0 . 0 5 1 ( 3 ) 0 . 0 3 6 ( 2 ) 0 . 0 1 9 ( 2 ) 0 . 0 0 2 4 ( 1 7 ) 0 . 0 1 3 6 ( 1 9 ) ( : 1 3 0 . 0 3 2 ( 2 ) 0 . 0 3 5 ( 2 ) 0 . 0 3 5 ( 2 ) 0 . 0 0 9 1 ( 1 7 ) 0 . 0 1 1 0 ( 1 7 ) 0 . 0 0 4 5 ( 1 7 ) C 1 4 0 . 0 3 4 ( 2 ) 0 . 0 4 5 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 0 7 4 ( 1 9 ) 0 . 0 1 2 4 ( 1 9 ) 0 . 0 1 2 3 ( 1 9 ) C 1 5 0 . 0 4 5 ( 3 ) 0 . 0 2 7 ( 2 ) 0 . 0 4 4 ( 2 ) 0 . 0 0 3 5 ( 1 8 ) 0 . 0 0 9 ( 2 ) 0 . 0 1 1 1 ( 1 8 ) C 1 6 0 . 0 3 3 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 0 0 9 ( 1 7 ) 0 . 0 0 8 9 ( 1 7 ) 0 . 0 0 7 8 ( 1 8 ) C 1 7 0 . 0 3 4 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 2 9 1 ( 1 9 ) - 0 . 0 0 7 2 ( l 6 ) 0 . 0 0 9 9 ( 1 6 ) 0 . 0 0 8 9 ( 1 7 ) C 1 8 0 . 0 3 0 ( 2 ) 0 . 0 3 0 6 ( 1 9 ) 0 . 0 3 5 ( 2 ) 0 . 0 0 8 9 ( 1 6 ) 0 . 0 0 8 7 ( 1 6 ) 0 . 0 0 9 8 ( 1 6 ) C 1 9 0 . 0 3 3 ( 2 ) 0 . 0 4 1 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 1 9 1 ( 1 9 ) 0 . 0 0 1 6 ( 1 8 ) 0 . 0 1 2 8 ( 1 8 ) ( : 2 0 0 . 0 3 2 ( 2 ) 0 . 0 4 9 ( 3 ) 0 . 0 3 8 ( 2 ) 0 . 0 0 7 ( 2 ) - 0 . 0 1 0 4 ( 1 8 ) 0 . 0 1 0 7 ( 1 9 ) C 2 1 0 . 0 2 6 4 ( 1 9 ) 0 . 0 3 4 ( 2 ) 0 . 0 2 5 4 ( 1 8 ) 0 . 0 0 3 9 ( 1 6 ) 0 . 0 0 3 7 ( 1 5 ) 0 . 0 0 9 4 ( 1 6 ) 3 7 2 T a b l e A 9 c o n t i n u e d . C 2 2 C 2 3 C 2 4 C 2 5 C 2 6 C 2 7 C 2 8 C 2 9 C 3 0 C 3 1 C 3 2 C 3 3 C 3 4 C 3 5 C 3 6 C 3 7 C 3 8 C 3 9 C 4 0 C 4 1 C 4 2 C 4 3 C 4 4 C 4 5 C 4 6 C 5 1 C 5 2 B 1 F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 B 2 C 5 4 0 3 C 5 6 0 1 C 5 7 0 2 0 4 0 . 0 4 1 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 0 6 3 ( 3 ) 0 . 0 4 0 ( 2 ) 0 . 0 3 5 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 3 9 ( 2 ) 0 . 0 3 1 ( 2 ) 0 . 0 4 2 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 2 5 9 ( 1 9 ) 0 . 0 3 0 ( 2 ) 0 . 0 5 1 ( 3 ) 0 . 0 4 1 ( 3 ) 0 . 0 4 8 ( 3 ) 0 . 0 5 9 ( 3 ) 0 . 0 7 1 ( 4 ) 0 . 0 6 4 ( 4 ) 0 . 0 7 6 ( 4 ) 0 . 0 5 4 ( 3 ) 0 . 0 5 5 ( 3 ) 0 . 0 4 4 ( 3 ) 0 . 0 2 8 ( 2 ) 0 . 0 3 7 ( 3 ) 0 . 0 5 5 ( 3 ) 0 . 0 5 2 ( 3 ) 0 . 0 7 8 ( 5 ) 0 . 0 9 0 ( 3 ) 0 . 0 9 0 ( 3 ) 0 . 0 9 4 ( 3 ) 0 . 2 5 3 ( 7 ) 0 . 1 0 0 ( 3 ) 0 . 0 6 0 8 ( 1 9 ) 0 . 0 6 6 ( 3 ) 0 . 0 9 4 ( 3 ) 0 . 0 3 9 ( 3 ) 0 5 4 ( 3 ) 0 7 6 ( 4 ) 2 . 0 ( 2 ) 0 . 1 5 6 ( 9 ) 1 2 1 ( 1 1 ) 0 5 6 ( 3 ) 0 6 0 ( 4 ) 0 . 0 6 0 ( 3 ) 0 . 0 3 0 ( 2 ) 0 . 0 4 8 ( 3 ) 0 . 0 6 2 ( 3 ) 0 . 0 3 7 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 4 1 ( 2 ) 0 . 0 5 0 ( 3 ) 0 . 0 2 7 9 ( 1 9 ) 0 . 0 5 1 ( 3 ) 0 . 0 2 6 5 ( 1 9 ) 0 . 0 3 5 ( 2 ) 0 . 0 3 1 ( 2 ) 0 . 0 3 8 ( 2 ) 0 . 0 4 1 ( 3 ) 0 . 0 5 2 ( 3 ) 0 . 0 5 0 ( 3 ) 0 . 0 6 6 ( 4 ) 0 . 0 8 2 ( 4 ) 0 . 0 9 4 ( 5 ) 0 . 0 6 2 ( 3 ) 0 . 0 3 1 ( 2 ) 0 . 0 7 0 ( 3 ) 0 . 0 7 8 ( 4 ) 0 . 1 2 9 ( 6 ) 0 . 0 5 1 ( 3 ) 0 . 0 4 8 ( 3 ) 0 . 0 4 8 ( 3 ) 0 . 0 5 5 ( 2 ) 0 . 0 7 2 ( 2 ) 0 . 0 6 9 ( 3 ) 0 . 1 0 7 ( 4 ) 0 . 1 1 9 ( 3 ) 0 . 0 7 0 ( 2 ) 0 . 1 7 7 ( 5 ) 0 . 1 0 3 ( 3 ) 0 . 0 7 6 ( 4 ) 0 . 0 3 3 ( 4 ) 0 . 2 9 2 ( 1 7 ) 2 . 0 ( 3 ) 0 . 2 5 1 ( 1 3 ) 1 . 0 2 ( 1 0 ) 0 . 3 7 ( 2 ) 0 . 4 3 ( 3 ) 0 . 0 3 5 ( 2 ) 0 . 0 3 3 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 3 2 ( 2 ) 0 . 0 3 0 ( 2 ) 0 . 0 3 7 ( 2 ) 0 . 0 2 9 1 ( 1 9 ) 0 . 0 3 0 ( 2 ) 0 . 0 2 6 3 ( 1 9 ) 0 . 0 2 3 7 ( 1 8 ) 0 . 0 3 0 3 ( 1 9 ) 0 . 0 5 2 ( 3 ) 0 . 0 5 9 ( 3 ) 0 . 0 7 3 ( 4 ) 0 . 0 5 7 ( 3 ) 0 . 0 9 5 ( 5 ) 0 . 0 3 4 ( 2 ) 0 . 0 3 1 ( 3 ) 0 . 0 6 4 ( 4 ) 0 . 0 4 8 ( 3 ) 0 . 0 4 7 ( 3 ) 0 . 0 6 0 ( 3 ) 0 . 1 0 2 ( 5 ) 0 . 0 6 9 ( 4 ) 0 . 0 3 4 ( 2 ) 0 . 0 6 4 ( 4 ) 0 . 1 0 1 ( 3 ) 0 . 0 7 2 ( 2 ) 0 . 1 4 9 ( 4 ) 0 . 1 2 2 ( 4 ) 0 . 0 8 9 ( 3 ) 0 . 0 7 1 ( 2 ) 0 . 1 0 5 ( 3 ) 0 . 1 5 9 ( 5 ) 0 . 0 5 8 ( 4 ) 0 . 0 8 7 ( 8 ) 0 . 3 2 7 ( 1 9 ) 2 . 0 ( 3 ) 0 4 2 ( 2 ) 0 8 6 ( 9 ) 0 . 2 1 5 ( 1 5 ) 0 3 1 ( 2 ) 3 7 3 0 . 0 1 4 ( 2 ) 0 . 0 0 5 2 ( 1 6 ) 0 . 0 0 4 ( 2 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 9 1 ( 1 8 ) 0 . 0 0 3 6 ( 1 6 ) 0 . 0 0 9 8 ( 1 7 ) 0 . 0 0 8 ( 2 ) 0 . 0 0 1 6 ( 1 5 ) 0 . 0 0 5 9 ( 1 9 ) 0 . 0 0 1 3 ( 1 5 ) 0 . 0 0 4 6 ( 1 5 ) 0 . 0 0 9 4 ( 1 6 ) 0 . 0 1 1 ( 2 ) 0 . 0 1 6 ( 2 ) 0 . 0 2 0 ( 3 ) 0 . 0 2 3 ( 3 ) 0 . 0 3 7 ( 4 ) 0 . 0 0 6 ( 3 ) 0 . 0 1 0 ( 3 ) 0 . 0 2 4 ( 3 ) 0 . 0 1 2 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 3 0 ( 3 ) 0 . 0 4 9 ( 5 ) 0 . 0 0 3 ( 3 ) 0 . 0 0 2 ( 2 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 6 9 ( 1 9 ) 0 . 0 0 6 2 ( 1 8 ) 0 . 0 2 0 ( 3 ) 0 . 0 1 5 ( 3 ) 0 . 0 1 8 ( 2 ) 0 . 0 1 7 5 ( 1 6 ) 0 . 0 8 6 ( 3 ) 0 . 0 1 1 ( 3 ) 0 . 0 1 7 ( 3 ) 0 . 0 0 2 ( 4 ) 0 . 0 4 0 ( 1 5 ) 0 5 0 ( 1 1 ) 0 . 0 5 9 ( 1 2 ) 0 3 5 ( 7 ) 0 . 0 9 3 ( 1 5 ) 0 2 8 ( 2 ) 0 . 0 0 4 7 ( 1 9 ) 0 . 0 0 7 5 ( 1 7 ) 0 . 0 0 1 ( 2 ) 0 . 0 1 3 4 ( 1 9 ) 0 . 0 0 0 7 ( 1 7 ) 0 . 0 1 0 0 ( 1 7 ) - 0 . 0 0 4 7 ( 1 6 ) 0 . 0 0 2 5 ( 1 9 ) 0 . 0 1 1 3 ( 1 6 ) 0 . 0 0 7 6 ( 1 8 ) - 0 . 0 0 5 8 ( l 6 ) 0 . 0 0 2 1 ( 1 5 ) 0 . 0 0 0 4 ( 1 6 ) 0 . 0 0 5 ( 2 ) 0 . 0 0 2 ( 2 ) 0 . 0 1 3 ( 3 ) 0 . 0 1 1 ( 3 ) 0 . 0 0 6 ( 4 ) 0 . 0 1 6 ( 2 ) 0 . 0 0 6 ( 3 ) 0 . 0 1 3 ( 3 ) 0 . 0 1 2 ( 2 ) 0 . 0 2 1 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 2 6 ( 3 ) 0 . 0 3 6 ( 3 ) 0 . 0 1 9 ( 2 ) 0 . 0 1 5 ( 4 ) 0 . 0 4 0 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 3 3 ( 3 ) 0 . 0 9 2 ( 4 ) 0 . 0 1 9 ( 2 ) 0 . 0 2 6 5 ( 1 6 ) 0 . 0 1 0 ( 2 ) 0 . 0 7 7 ( 3 ) 0 . 0 1 4 ( 3 ) 0 . 0 0 6 ( 1 3 ) 0 2 8 ( 3 ) - 0 . 5 6 ( 1 1 ) 0 . 1 4 2 ( 1 1 ) 0 0 5 ( 8 ) 0 1 6 ( 2 ) 0 2 5 ( 2 ) 0 . 0 2 4 ( 2 ) 0 . 0 1 0 7 ( 1 7 ) 0 . 0 1 2 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 1 1 1 ( 1 8 ) 0 . 0 0 5 2 ( 1 7 ) 0 . 0 0 6 9 ( 1 7 ) 0 . 0 1 4 ( 2 ) 0 . 0 0 6 3 ( 1 6 ) 0 . 0 1 5 ( 2 ) 0 . 0 0 7 1 ( 1 6 ) 0 . 0 1 0 4 ( 1 6 ) 0 . 0 0 9 4 ( 1 6 ) 0 . 0 1 2 ( 2 ) 0 . 0 0 8 ( 2 ) 0 . 0 1 0 ( 3 ) 0 . 0 0 8 ( 3 ) 0 . 0 1 9 ( 3 ) 0 . 0 2 1 ( 3 ) 0 . 0 1 8 ( 4 ) 0 . 0 1 8 ( 3 ) 0 . 0 0 3 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 1 1 ( 2 ) 0 . 0 1 6 ( 3 ) 0 . 0 0 5 ( 2 ) 0 . 0 1 2 ( 2 ) 0 . 0 2 9 ( 3 ) 0 . 0 1 8 4 ( 1 9 ) 0 . 0 3 4 ( 2 ) - 0 . 0 2 6 ( 2 ) 0 . 0 9 7 ( 4 ) 0 . 0 6 2 ( 3 ) 0 . 0 2 1 1 ( 1 6 ) 0 . 0 1 7 ( 3 ) 0 . 0 1 2 ( 3 ) 0 . 0 1 2 ( 3 ) 0 . 0 4 1 ( 1 0 ) 0 3 0 ( 2 ) 0 . 7 8 ( 1 2 ) 0 . 0 5 5 ( 9 ) 0 3 8 ( 8 ) 0 0 5 ( 2 ) 0 2 5 ( 3 ) T a b l e A 9 c o n t i n u e d . ( ) 6 0 . 3 1 7 ( 1 9 ) 0 8 2 ( 4 ) 0 . 3 0 6 ( 1 7 ) - 0 . 3 8 ( 2 ) 0 . 0 5 6 ( 1 5 ) - 0 . 2 3 ( 2 ) 0 7 0 4 0 ( 2 ) 0 6 3 ( 4 ) 0 . 2 7 9 ( 1 8 ) - 0 . 1 3 ( 2 ) - 0 . 1 4 2 ( 1 8 ) - 0 . 2 3 ( 2 ) T h e a n i s o t r o p i c d i s p l a c e m e n t f a c t o r e x p o n e n t t a k e s t h e f o r m : 2 n 2 [ h 2 a * 2 U 1 1 + . . . + 2 h k a * b * U 1 2 ] 3 7 4 T a b l e A 9 c o n t i n u e d . H y d r o g e n c o o r d i n a t e s ( x 1 0 4 ) a n d i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) . x y z U ( e q ) O c c . H 1 0 - 0 . 3 9 6 5 0 . 5 5 8 8 0 . 3 1 4 2 0 . 0 5 6 1 H 1 1 0 . 3 7 3 5 - 0 . 1 7 0 3 0 . 1 8 7 1 0 . 0 6 7 1 H 1 2 0 . 1 9 9 9 0 . 3 8 8 1 0 . 5 3 8 4 0 . 0 4 5 1 H 1 5 0 . 1 3 5 4 - 0 . 1 1 5 0 0 . 4 3 6 0 0 . 0 4 8 1 H 1 7 0 . 0 7 8 5 0 . 1 2 4 2 0 . 1 8 2 9 0 . 0 3 6 1 H 1 9 0 . 1 1 8 3 0 . 5 2 7 7 0 . 4 4 8 6 0 . 0 4 3 1 H 2 0 - 0 . 0 5 3 1 0 . 2 8 8 9 0 . 1 1 7 2 0 . 0 4 8 1 H 2 2 - 0 . 1 9 6 4 0 . 1 9 4 4 0 . 3 3 4 9 0 . 0 5 1 1 H 2 3 0 . 0 5 6 3 0 . 0 3 9 3 0 . 3 5 3 6 0 . 0 4 0 1 H 2 5 0 . 0 8 3 9 0 . 4 3 1 7 0 . 0 3 6 4 0 . 0 5 5 1 H 2 9 0 . 4 6 5 5 0 . 4 1 9 8 - 0 . 0 0 9 6 0 . 0 5 3 1 H 3 0 0 . 0 2 1 1 0 . 5 1 5 3 0 . 1 4 7 7 0 . 0 3 6 1 H 3 1 0 . 3 6 0 5 0 . 4 0 0 0 0 . 1 1 2 3 0 . 0 4 9 1 H 3 4 0 . 0 4 1 6 0 . 4 9 5 0 0 . 3 6 3 5 0 . 0 3 7 1 H 3 5 0 . 2 2 2 7 - 0 . 0 4 2 3 0 . 2 3 3 1 0 . 0 5 8 1 H 3 6 0 . 3 8 8 0 0 . 1 8 2 5 0 . 1 0 9 5 0 . 0 5 9 1 H 3 7 0 . 5 3 7 8 0 . 0 5 3 5 0 . 0 6 4 3 0 . 0 7 5 1 H 3 9 A 0 . 6 2 8 7 - 0 . 1 2 5 4 0 . 0 5 8 0 0 . 1 2 7 1 H 3 9 8 0 . 5 4 5 2 - 0 . 1 9 4 3 0 . 0 6 6 5 0 . 1 2 7 1 H 3 9 C 0 . 6 0 1 7 - 0 . 2 0 9 4 0 . 1 3 3 8 0 . 1 2 7 1 H 3 A - 0 . 3 3 5 9 0 . 4 4 5 5 0 . 4 8 3 2 0 . 0 8 6 1 H 3 B - 0 . 2 7 7 9 0 . 3 6 0 2 0 . 5 4 7 3 0 . 0 8 6 1 H 3 C - 0 . 3 5 8 7 0 . 3 3 1 4 0 . 5 1 1 9 0 . 0 8 6 1 H 4 0 . 2 5 2 8 0 . 1 8 3 8 0 . 5 9 5 3 0 . 0 5 5 1 H 4 0 0 . 1 8 7 9 0 . 4 5 7 1 - 0 . 0 8 5 3 0 . 0 7 2 1 H 4 1 A 0 . 4 8 7 1 0 . 4 4 9 8 - 0 . 1 3 9 4 0 . 1 0 9 1 3 7 5 H 4 1 B 0 . 3 7 8 9 0 . 5 2 4 6 - 0 . 1 7 0 8 0 . 1 0 9 T a b l e A 9 c o n t i n u e d . H 4 1 C 0 . 4 0 9 3 0 . 4 0 0 9 - 0 . 1 6 2 9 0 . 1 0 9 H 4 2 A - 0 . 4 9 4 8 0 . 7 3 3 6 ’ 0 . 3 2 8 1 0 . 0 9 9 H 4 2 B - 0 . 4 3 6 5 0 . 8 2 2 9 0 . 2 7 3 3 0 . 0 9 9 H 4 2 C - 0 . 4 2 8 6 0 . 7 8 6 1 0 . 3 5 8 6 0 . 0 9 9 H 4 3 - 0 . 2 0 9 5 0 . 7 6 5 4 0 . 2 7 6 5 0 . 0 5 5 H 4 4 - 0 . 2 2 0 0 0 . 3 0 0 6 0 . 0 8 3 4 0 . 0 6 3 H 4 6 A - 0 . 4 0 9 8 0 . 2 8 3 4 0 . 1 1 2 8 0 . 1 2 5 H 4 6 B - 0 . 4 8 0 6 0 . 3 1 2 2 0 . 1 8 9 0 0 . 1 2 5 H 4 6 C - 0 . 4 3 5 1 0 . 1 9 2 2 0 . 1 8 4 4 0 . 1 2 5 H 5 - 0 . 2 3 1 7 0 . 4 2 9 2 0 . 2 8 5 1 0 . 0 4 9 H 5 1 A 0 . 4 8 1 9 0 . 0 5 7 8 0 . 4 2 5 0 0 . 0 9 1 H 5 1 B 0 . 5 4 3 5 - 0 . 0 0 1 0 0 . 3 5 9 9 0 . 0 9 1 H 5 1 C 0 . 4 4 1 8 - 0 . 0 3 7 8 0 . 4 2 0 8 0 . 0 9 1 H 5 2 0 . 2 5 6 0 0 . 0 1 7 6 0 . 5 9 2 4 0 . 0 5 4 H 5 3 A 0 . 7 4 0 1 - 0 . 0 2 7 3 0 . 3 0 7 4 0 . 2 0 3 H 5 3 B 0 . 6 7 7 1 - 0 . 0 8 0 1 0 . 2 7 4 8 0 . 2 0 3 H 5 3 C 0 . 6 4 9 7 0 . 0 4 4 9 0 . 2 5 8 4 0 . 2 0 3 H 5 6 A 0 . 8 3 8 9 0 . 0 4 3 9 0 . 1 0 4 0 2 . 2 7 7 H 5 6 B 0 . 8 4 6 4 - 0 . 0 8 2 4 0 . 1 3 0 3 2 . 2 7 7 H 5 7 A 1 . 0 3 1 3 - 0 . 0 0 3 3 0 . 0 6 3 4 1 . 8 0 1 H 5 7 B 1 . 0 3 8 8 - 0 . 1 2 3 3 0 . 1 0 6 6 1 . 8 0 1 H 5 7 C 1 . 0 3 4 7 - 0 . 0 4 0 1 0 . 1 4 9 5 1 . 8 0 1 H 6 A 0 . 3 5 0 0 0 . 4 9 3 5 0 . 3 5 9 6 0 . 0 7 6 H 6 B 0 . 3 2 3 3 0 . 5 8 3 3 0 . 2 8 7 3 0 . 0 7 6 H 6 C 0 . 4 4 1 8 0 . 4 9 8 8 0 . 2 8 4 4 0 . 0 7 6 H 7 0 . 2 1 3 3 - 0 . 1 0 3 1 0 . 5 2 8 3 0 . 0 5 2 H 8 - 0 . 0 4 4 3 0 . 6 3 3 9 0 . 2 5 3 9 0 . 0 4 7 H 9 - 0 . 3 6 3 0 0 . 2 0 9 2 0 . 3 0 0 8 0 . 0 6 1 S y m m e t r y t r a n s f o r m a t i o n s u s e d t o g e n e r a t e e q u i v a l e n t a t o m s : # 1 - x - l , - y + l , - z + 1 3 7 6 T a b l e A 9 c o n t i n u e d . T o r s i o n a n g l e s [ ° ] . N 5 N 6 N 8 N 7 N 9 N 5 N 6 N 8 N 7 N 9 N 5 N 6 N 8 N 7 N 9 N 5 N 6 N 8 N 7 N 9 N 2 N 4 N 3 R h l N 2 N 4 N 3 R h l N 1 N 4 N 3 R h l N 1 N 4 N 3 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h 2 R h 2 R h 2 N 2 N 2 N 2 N 2 N 2 N 1 N 1 N 1 N 1 N 1 N 4 N 4 N 4 N 4 N 4 N 3 N 3 N 3 N 3 N 3 C 3 0 C 3 0 C 3 0 C 3 0 C 3 2 C 3 2 C 3 2 C 3 2 C 1 7 C 1 7 C 1 7 C 1 7 C 1 3 C 1 3 C 1 3 C 1 3 7 3 . 0 6 ( 1 3 ) 1 5 3 . 9 0 ( 1 3 ) 2 0 8 . 0 4 ( 1 3 ) 2 0 4 1 ( 1 3 ) 1 5 9 . 0 ( 8 ) 1 6 4 . 4 4 ( 1 3 ) 2 1 4 . 7 2 ( 1 3 ) - 1 6 . 6 5 ( 1 3 ) 7 0 9 8 ( 1 3 ) 2 0 9 . 6 ( 8 ) 2 0 7 . 0 5 ( 1 3 ) - 2 6 . 2 1 ( 1 3 ) 7 1 . 8 5 ( 1 3 ) 1 5 9 . 4 8 ( 1 3 ) 2 1 . 1 ( 8 ) - 1 6 . 7 0 ( 1 3 ) 6 4 . 1 4 ( 1 3 ) 1 6 2 . 2 0 ( 1 3 ) 2 1 0 . 1 7 ( 1 3 ) 6 9 . 3 ( 8 ) 1 0 4 . 3 ( 3 ) 2 0 . 1 ( 3 ) 2 4 7 . 4 ( 1 4 ) 1 9 . 8 ( 3 ) 2 8 . 5 ( 3 ) 9 7 . 2 ( 3 ) 2 9 . 9 ( 1 6 ) 2 6 3 . 0 ( 3 ) 2 9 2 ( 3 ) 2 5 4 . 1 ( 1 6 ) 1 2 5 . 5 ( 3 ) 2 4 . 5 ( 3 ) 1 2 1 . 5 ( 3 ) 2 6 . 7 ( 1 8 ) 2 3 . 7 ( 3 ) 2 5 4 . 7 ( 3 ) 3 7 7 T a b l e A 9 c o n t i n u e d . N 2 N 1 N 4 R h l N 2 N 1 N 3 R h l N 6 N 8 N 7 N 9 R h 2 N 6 N 8 N 7 N 9 R h 2 N 5 N 8 N 7 N 9 R h 2 N 5 N 8 N 7 N 9 R h 2 N 5 1 N 6 N 8 N 9 R h 2 N 5 N 6 N 8 N 9 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h 2 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R 1 1 1 R h l R h l R h l N 3 N 3 N 3 N 3 N 4 N 4 N 4 N 4 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 5 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 N 7 C 2 C 2 C 2 C 2 C 2 6 C 2 6 C 2 6 C 2 6 C 2 3 C 2 3 C 2 3 C 2 3 C 2 3 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 3 4 C 3 4 C 3 4 C 3 4 C 3 4 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 1 7 C 1 7 C 1 7 C 1 7 C 1 7 C 1 8 C 1 8 C 1 8 C 1 8 C 1 8 1 3 5 ( 3 ) 2 7 ( 4 ) - 4 1 ( 3 ) 2 4 0 ( 3 ) 2 4 ( 4 ) 2 2 9 ( 3 ) 4 6 ( 3 ) 1 4 7 ( 3 ) 1 7 9 . 3 ( 4 ) 2 1 6 ( 3 ) - 6 . 2 ( 4 ) 9 4 . 5 ( 3 ) - 9 1 . 5 ( 3 ) 2 . 0 ( 3 ) 6 2 ( 3 ) 1 7 2 . 5 ( 3 ) - 8 6 . 7 ( 3 ) 8 7 2 ( 3 ) 2 7 9 . 2 ( 3 ) 3 . 1 ( 3 ) 1 3 6 . 4 ( 8 ) - 8 9 . 8 ( 3 ) 8 9 . 6 ( 3 ) 2 . 7 ( 2 ) 2 7 4 . 9 ( 3 ) - 4 1 . 7 ( 1 0 ) 9 2 . 1 ( 3 ) - 8 8 . 4 ( 2 ) - 6 7 . 8 ( 3 ) 2 4 . 0 ( 1 1 ) 1 0 9 . 8 ( 3 ) 2 5 7 . 0 ( 3 ) 2 3 0 ( 3 ) 1 1 8 . 5 ( 3 ) 1 6 2 . 3 ( 8 ) 0 3 9 ( 3 ) 2 9 3 ( 3 ) 2 5 0 . 7 ( 3 ) 3 7 8 T a b l e A 9 c o n t i n u e d . N 5 N 6 N 7 N 9 R h 2 N 5 N 6 N 7 N 9 R h 2 N 5 N 6 N 8 N 7 R h 2 R h 2 C 2 7 C 4 3 C 4 2 C 1 7 R h 2 C 1 7 R h 2 R h l C 1 6 C 1 5 C 1 5 C 1 8 R h l C 1 3 R h 2 C 1 7 R h l C 1 7 R h l C 2 8 C 2 2 N 7 R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l R h l N 3 C 5 C 1 C 1 N 2 N 2 N 2 N 2 N 9 C 7 C 7 C 7 N 7 N 7 N 2 N 2 N 7 N 7 N 7 N 7 C 1 2 C 1 8 C 1 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 8 N 9 N 9 N 9 N 9 N 9 C 2 C 1 0 C 1 0 C 1 0 C 1 3 C 1 3 C 1 3 C 1 3 C 1 4 C 1 5 C 1 6 C 1 6 C 1 7 C 1 7 C 1 7 C 1 7 C 1 8 C 1 8 C 1 8 C 1 8 C 1 9 C 2 0 C 2 0 C 3 0 C 3 0 C 3 0 C 3 0 C 3 0 C 2 7 C 2 7 C 2 7 C 2 7 C 2 7 C 1 4 C 1 4 C 1 4 C 1 4 C 1 4 C 5 1 C 1 C 5 C 5 C 3 6 C 3 6 C 3 5 C 3 5 C 3 C 2 3 C 2 1 C 5 2 N 2 N 2 N 7 N 7 C 2 2 C 2 2 C 2 0 C 2 0 C 3 4 C 4 4 C 4 4 4 5 ( 3 ) 1 0 8 . 4 ( 3 ) - 6 5 . 9 ( 3 ) 2 6 6 . 5 ( 3 ) 1 9 . 5 ( 3 ) 2 3 9 ( 3 ) 2 5 0 ( 3 ) 1 1 0 . 7 ( 3 ) 1 0 . 1 ( 3 ) 2 6 3 . 9 ( 3 ) 1 0 6 . 2 ( 1 1 ) 2 5 . 3 ( 1 1 ) 2 2 . 4 ( 1 1 ) - l 6 0 . 4 ( 1 1 ) 2 0 . 1 ( 1 8 ) 4 4 ( 3 9 ) 1 . 9 ( 7 ) 0 . 7 ( 7 ) 1 7 9 . 6 ( 4 ) 1 3 6 . 4 ( 4 ) 4 4 3 ( 5 ) 2 5 2 ( 5 ) 1 3 4 . 1 ( 4 ) 6 2 ( 1 9 ) 0 . 9 ( 7 ) 2 . 4 ( 7 ) 2 7 9 . 7 ( 4 ) 1 6 2 . 5 ( 4 ) 2 1 . 9 ( 5 ) 1 6 5 . 3 ( 4 ) 2 4 0 ( 5 ) 1 2 9 . 9 ( 4 ) - 5 6 . 2 ( 5 ) - 4 7 . 6 ( 5 ) 1 2 6 . 2 ( 4 ) 0 . 4 ( 6 ) - 2 . 6 ( 7 ) 1 7 5 . 0 ( 4 ) 3 7 9 T a b l e A 9 c o n t i n u e d . C 2 3 R h l C 2 3 R h l C 7 C 5 2 C 7 C 5 2 C 2 0 N 7 C 4 5 C 2 1 R h l C 7 R h 2 C 1 0 C 1 0 C 4 3 C 4 3 C 3 0 R h l C 3 0 R h l C 1 9 C 1 9 C 5 2 C 5 2 C 4 0 C 4 1 C 3 2 R h 2 C 2 7 R h l C 2 4 C 2 9 C 2 9 C 4 0 C 4 0 N 5 N 5 N 5 N 5 C 1 6 C 1 6 C 1 6 C 1 6 C 1 8 C 1 8 C 9 N 5 N 5 C 1 5 N 4 C 5 C 5 C 8 C 8 N 8 N 8 N 8 N 8 C 1 2 C 1 2 C 4 C 4 C 2 4 C 2 4 N 1 N 1 N 8 N 8 C 2 9 C 3 1 C 3 1 C 2 5 C 2 5 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 1 C 2 2 C 2 2 C 2 2 C 2 3 C 2 3 C 2 3 C 2 6 C 2 7 C 2 7 C 2 7 C 2 7 C 2 7 C 2 7 C 2 7 C 2 7 C 2 8 C 2 8 C 2 8 C 2 8 C 2 9 C 2 9 C 3 0 C 3 0 C 3 0 C 3 0 C 3 1 C 3 2 C 3 2 C 3 2 C 3 2 C 1 6 C 1 6 C 3 3 C 3 3 N 5 N 5 C 3 3 C 3 3 C 9 C 9 C 1 8 C 1 5 C 1 5 N 5 C 6 C 8 N 8 C 5 N 8 C 5 C 5 C 8 C 8 C 3 3 C 4 C 3 3 C 1 2 C 3 1 C 3 1 N 8 N 8 N 1 N 1 C 3 2 C 2 5 N 1 C 3 1 N 1 1 . 7 ( 6 ) 2 7 7 . 2 ( 3 ) 1 7 9 . 9 ( 3 ) 1 . 0 ( 4 ) 0 . 1 ( 6 ) 1 7 8 . 5 ( 4 ) - l 7 8 . 0 ( 4 ) 0 . 4 ( 6 ) 2 . 1 ( 7 ) 2 7 5 . 5 ( 4 ) 0 2 ( 8 ) 2 2 ( 6 ) 1 7 6 . 4 ( 3 ) 1 . 0 ( 7 ) - 9 1 ( 1 8 ) - 1 . l ( 6 ) 1 7 8 . 5 ( 4 ) 0 . 8 ( 6 ) 1 7 9 . 6 ( 4 ) 1 1 9 0 ( 4 ) - 5 7 . 6 ( 5 ) - 6 1 . 3 ( 5 ) 1 2 2 . 0 ( 4 ) 0 . 3 ( 6 ) 2 7 9 . 3 ( 4 ) 0 . 5 ( 7 ) 2 8 0 . 0 ( 4 ) 0 . 4 ( 8 ) 1 7 9 . 5 ( 5 ) 1 7 2 . 5 ( 4 ) 2 0 . 4 ( 5 ) 1 7 2 . 0 ( 4 ) 2 1 . 1 ( 5 ) 1 . 3 ( 7 ) 2 0 ( 7 ) 1 7 7 . 0 ( 4 ) 0 . 1 ( 7 ) - 1 7 8 . 0 ( 5 ) 3 8 0 T a b l e A 9 c o n t i n u e d . C 3 0 R h 2 C 3 0 R h 2 C 3 4 R h l C 3 4 R h l C 1 2 C 4 C 1 2 C 4 N 5 C 1 6 N 5 C 1 6 C 3 3 R h l C 1 2 C 3 8 C 3 6 N 2 C 3 5 N 2 C 1 3 C 3 5 C 3 5 C 3 6 C 3 6 C 2 9 C 4 1 C 3 2 C 1 0 C 4 2 C 2 7 C 1 8 C 2 2 C 2 2 N 1 N 1 N 1 N 1 N 6 N 6 N 6 N 6 C 2 8 C 2 8 C 2 8 C 2 8 C 2 1 C 2 1 C 2 1 C 2 1 N 6 N 6 C 1 9 C 1 1 C 1 3 C 1 3 C 1 3 C 1 3 C 3 6 C 1 1 C 1 1 C 3 7 C 3 7 C 2 4 C 2 4 C 2 5 C 1 C 1 C 8 C 2 0 C 9 C 9 C 3 2 C 3 2 C 3 2 C 3 2 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 3 C 3 4 C 3 4 C 3 4 C 3 5 C 3 5 C 3 5 C 3 6 C 3 6 C 3 7 C 3 8 C 3 8 C 3 8 C 3 8 C 4 0 C 4 0 C 4 0 C 4 3 C 4 3 C 4 3 C 4 4 C 4 5 C 4 5 C 3 1 C 3 1 C 2 5 C 2 5 C 2 8 C 2 8 C 2 1 C 2 1 N 6 N 6 C 2 1 C 2 1 N 6 N 6 C 2 8 C 2 8 C 1 9 C 1 9 N 6 C 1 3 C 1 1 C 1 1 C 3 7 C 3 7 C 3 8 C 3 7 C 3 9 C 1 1 C 3 9 C 2 5 C 2 5 C 2 4 C 8 C 8 C 1 C 4 5 C 4 4 C 4 6 1 3 5 . 3 ( 4 ) 4 2 0 ( 5 ) - 4 6 . 8 ( 6 ) 1 3 5 . 9 ( 4 ) 2 . 7 ( 5 ) 1 7 6 . 6 ( 3 ) 1 7 8 . 7 ( 3 ) 2 . 0 ( 4 ) 0 . 4 ( 6 ) 1 7 9 . 9 ( 4 ) 1 8 0 . 0 ( 4 ) 0 5 ( 6 ) 1 . 4 ( 5 ) 1 7 9 . 6 ( 3 ) 2 7 8 . 2 ( 3 ) 0 0 ( 6 ) 2 . 3 ( 5 ) 2 7 5 . 6 ( 3 ) - 1 . 7 ( 6 ) 0 . 1 ( 9 ) 0 2 ( 7 ) 2 7 8 . 6 ( 4 ) 0 . 1 ( 8 ) 1 7 8 . 6 ( 5 ) 0 0 ( 9 ) 0 . 0 ( 9 ) 1 7 9 . 0 ( 5 ) 0 . 1 ( 9 ) 2 7 9 . 1 ( 6 ) - O . 8 ( 9 ) 1 7 9 . 4 ( 5 ) 1 . 0 ( 9 ) 2 2 ( 7 ) 1 7 8 . 5 ( 5 ) 2 . 0 ( 7 ) 1 . 0 ( 8 ) - 1 . 9 ( 8 ) 1 7 8 . 7 ( 5 ) 3 8 1 T a b l e A 9 c o n t i n u e d . C 2 0 C 2 0 C 2 8 C 2 1 C 7 C 5 3 0 3 C 5 7 C 4 4 C 4 4 C 4 C 1 6 C 1 6 C 5 4 C 5 4 C 5 6 C 4 5 C 4 5 C 5 2 C 5 2 C 5 2 0 1 O l 0 1 C 9 C 4 6 C 1 6 C 4 C 4 C 5 6 C 5 6 C 5 4 1 . 3 ( 8 ) 2 7 9 . 3 ( 5 ) 0 . 1 ( 8 ) 0 . 3 ( 7 ) 1 7 7 . 9 ( 5 ) 1 7 5 ( 3 ) 4 ( 3 ) 2 7 4 ( 4 ) 3 8 2 ‘ 1 ‘ - ‘ T a b l e A 1 0 . C r y s t a l d a t a a n d s t r u c t u r e r e fi n e m e n t f o r [ h a ( D T o l F ) 2 ( p h e n ) 1 ( H 2 0 ) l [ B F 4 1 2 ( 1 0 ) - I d e n t i fi c a t i o n c o d e [ R h 2 ( D T o l F ) 2 ( p h e n ) 2 ( H 2 0 ) ] [ B F 4 ] 2 E m p i r i c a l f o r m u l a C 5 4 H 5 0 B 2 F 8 N 1 0 R h 2 F o r m u l a w e i g h t 1 1 3 2 . 4 1 g / m o l a T e m p e r a t u r e 2 9 3 ( 2 ) K W a v e l e n g t h 0 . 7 1 0 7 3 A C r y s t a l s y s t e m o r t h o r h o m b i c S p a c e g r o u p P 2 1 2 1 7 - U n i t c e l l d i m e n s i o n s a = 1 9 . 6 9 3 9 ( 3 ) A b = 3 8 . 7 6 6 0 ( 1 ) A c = 1 3 . 7 9 3 8 ( 2 ) A 0 1 = 9 0 ° [ 3 = 9 0 0 y = 9 0 0 V o l u m e 1 0 5 3 0 . 8 ( 2 ) A 3 Z 8 p m 1 . 4 2 9 g / c m 3 3 8 3 T a b l e A 1 0 c o n t i n u e d . 1 1 F ( 0 0 0 ) C r y s t a l s i z e T h e t a r a n g e f o r d a t a c o l l e c t i o n I n d e x r a n g e s R e fl e c t i o n s c o l l e c t e d I n d e p e n d e n t r e fl e c t i o n s R e fi n e m e n t m e t h o d D a t a / r e s t r a i n t s / p a r a m e t e r s G o o d n e s s - o f - fi t o n F 2 F i n a l R i n d i c e s [ I > 2 0 ’ ( I ) ] R i n d i c e s ( a l l d a t a ) L a r g e s t d i f f . p e a k a n d h o l e 0 . 6 9 6 c m ' 3 n a 0 . 2 6 x 0 . 2 1 x 0 . 1 0 1 1 1 1 1 1 3 n a n a 2 3 8 6 0 9 0 2 8 [ R ( i n t ) = 0 . 1 6 2 4 ] n a n a n a n a n a n a 3 8 4 ‘ M l - 1 . K g . ‘ n a h — I R l 1 1 , 1 1 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1