’ \ ' . . . s . a : . . . 3 . . . S 7 _. . t. . . 3 i 7 3 : . 5 1 « 1 5 - . t . . t “ u t B r . \ i fl : . . a . ; : . . h . . . . g . ) n i I r ( " 0 . ! T ! . t . 1 » . . » . ! . 0 % r 2 n v . t ! i ! k I . ? t s . I 3 r t . fi \ ' h e ! n u v h a v ' W fi fl m T r i m i s L / 9 0 0 ! L I B R A R Y M i c h i g a n S t a t e U n i v e r s i t y T h i s i s t o c e r t i f y t h a t t h e d i s s e r t a t i o n e n t i t l e d C Y A N I D E A N D N I T R I L E C O M P O U N D S W I T H A P P L I C A T I O N S I N M A T E R I A L S A N D C L U S T E R C H E M I S T R Y p r e s e n t e d b y P a u l S . S z a l a y J r . h a s b e e n a c c e p t e d t o w a r d s f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r P h . D . C h e m i s t r y d e g r e e i n M a j o r p r o f e s s o r M W M S U i s a n A f fi r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n 0 - 1 2 7 7 1 P L A C E I N R E T U R N B o x t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . M A Y B E R E C A L L E D w i t h e a r l i e r d u e d a t e i f r e q u e s t e d . D A T E D U E D A T E D U E D A T E D U E 6 / 0 1 c J C i R C / D m e D u e . p 6 5 - p . 1 5 C Y A N I D E A N D N I T R I L E C O M P O U N D S W I T H A P P L I C A T I O N S I N M A T E R I A L S A N D C L U S T E R C H E M I S T R Y B y P a u l S . S z a l a y , J r . A N A B S T R A C T O F A D I S S E R T A T I O N S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l f u l fi l l m e n t o f t h e r e q u i r e m e n t s f o r t h e d e g r e e o f D O C T O R O F P H I L O S O P H Y D e p a r t m e n t o f C h e m i s t r y 2 0 0 1 P r o f e s s o r K i m R . D u n b a r A B S T R A C T C Y A N I D E A N D N I T R I L E C O M P O U N D S W I T H A P P L I C A T I O N S I N M A T E R I A L S A N D C L U S T E R C H E M I S T R Y B y P a u l S . S z a l a y , J r . N o v e l t r a n s i t i o n m e t a l c y a n i d e a n d n i t r i l e c o m p o u n d s a r e t a r g e t e d a s b u i l d i n g b l o c k s f o r t h e s y n t h e s i s o f c l u s t e r s o r m a t e r i a l s t h a t m i g h t e x h i b i t i n t e r e s t i n g m a g n e t i c p r o p e r t i e s . T h e r e a c t i o n o f M 0 2 C l 4 ( d p p m ) 2 w i t h [ n - B u 4 N ] [ C N ] p r o d u c e s [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] t h e fi r s t e x a m p l e o f a n e d g e - s h a r i n g b i o c t a h e d r a l c o m p o u n d o f M o ( I I ) a n d o n l y t h e t h i r d e x a m p l e o f a s t r u c t u r a l l y c h a r a c t e r i z e d m e t a l - m e t a l b o n d e d c o m p o u n d w i t h t e r m i n a l c y a n i d e l i g a n d s . I n v e s t i g a t i o n s o f t h e e l e c t r o c h e m i s t r y o f [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ' l e d t o t h e i s o l a t i o n o f t h e o n e a n d t w o e l e c t r o n o x i d a t i o n p r o d u c t s [ M o z ( C N ) 6 ( d p p m ) 2 ] ' a n d M 0 2 ( C N ) 6 ( d p p m ) 2 . A s e r i e s o f t r a n s i t i o n m e t a l c o m p o u n d s w e r e p r e p a r e d w i t h t h e f a c i a l c a p p i n g l i g a n d 1 - ( h y d r o ) t r i s p y r a z o l y l b o r a t e a n d t h r e e a c e t o n i t r i l e o r c y a n i d e l i g a n d s . T h e f a c i a l a r r a n g e m e n t o f t h e d a n g l i n g c y a n i d e s a n d a c e t o n i t r i l e l e a v i n g g r o u p s i n t h e s e c o m p o u n d s w e r e d e s i g n e d t o a l l o w f o r t h e f o r m a t i o n o f m o l e c u l a r c u b e s . D i s p l a c e m e n t o f t h e a c e t o n i t r i l e l e a v i n g g r o u p s b y n i t r o g e n s o f t h e c y a n i d e s c o u l d r e s u l t i n c l o s u r e a n d f o r m a t i o n o f h e t e r o b i m e t a l l i c c u b i c c l u s t e r s a n d r e a c t i o n s t o t h i s e n d w e r e i n v e s t i g a t e d . T h e a r o m a t i c m o l e c u l e , h e x a z a t r i p h e n y l e n e - h e x a c a r b o n i t n ' l e ( H A T - ( C N ) 6 ) , w i t h t r i g o n a l l y d i s p o s e d c h e l a t i n g s i t e s w a s e x p l o r e d a s a n a l t e r n a t i v e t o c y a n i d e a s a l i n k i n g g r o u p f o r p a r a m a g n e t i c t r a n s i t i o n m e t a l i o n s . C o n v e n i e n t c h e m i c a l r e d u c t i o n r o u t e s t o [ H A T - ( C N ) 6 ] ' a n d [ H A T - ( C N ) 6 ] 2 ' h a v e b e e n d e m o n s t r a t e d . T h e t r a n s i t i o n m e t a l s C o a n d Z n c a n b e u s e d a s r e d u c i n g a g e n t s , b u t i n t h e s e c a s e s c o m p l e x a t i o n o f t h e m e t a l w i t h t h e r e d u c e d H A T — ( C N ) 6 s p e c i e s o c c u r s t o y i e l d t h e s o l u b l e p a r a m a g n e t i c c o m p l e x e s M [ H A T — ( C N ) 6 ] 2 ( M = C 0 , Z n ) . C o m p u t a t i o n a l a n d E P R s p e c t r o s c o p i c s t u d i e s i n d i c a t e [ H A T - ( C N ) 6 ] 2 ' h a s a t r i p l e t g r o u n d s t a t e e l e c t r o n i c c o n fi g u r a t i o n . T o m y w i f e S h e l l e y a n d m y s o n C a r t e r . i v A C K N O W L E G M E N T S T h i s w o r k w o u l d n o t h a v e b e e n p o s s i b l e w i t h o u t t h e a s s i s t a n c e a n d s u p p o r t o f m a n y p e o p l e . F i r s t a n d f o r e m o s t , I h a v e t o t h a n k m y a d v i s o r P r o f e s s o r K i m R . D u n b a r . I w i l l a l w a y s a p p r e c i a t e h e r p a t i e n c e , s u p p o r t , g u i d a n c e , a n d e n t h u s i a s m . F r o m h e r e x a m p l e , I h a v e l e a r n e d m u c h a b o u t p r o f e s s i o n a l i s m a n d w h a t i t m e a n s t o b e a s c i e n t i s t , t e a c h e r , a n d m e n t o r . M y t h a n k s g o e s o u t t o t h e m e m b e r s o f m y g u i d a n c e c o m m i t t e e , P r o f e s s o r s M i t c h S m i t h , R o b M a l e c z k a , a n d G a r y B l a n c h a r d f o r t h e a d v i c e t h e y o f f e r e d d u r i n g t h e c o u r s e o f m y s t u d i e s . I w o u l d a l s o l i k e t o t h a n k P r o f e s s o r s A a r o n O d o m a n d J o a n B r o d e r i c k f o r t h e g e n e r o u s u s e o f t h e i r l a b o r a t o r y f a c i l i t i e s . M y a p p r e c i a t i o n g o e s o u t t o P r o f e s s o r N e d J a c k s o n f o r h i s a s s i s t a n c e i n o v e r c o m i n g s o m e o f t h e c o m p u t a t i o n a l c h e m i s t r y c h a l l e n g e s t h a t a r o s e d u r i n g m y r e s e a r c h e f f o r t s . I a m g r a t e f u l f o r t h e h e l p a n d a d v i c e w i t h E P R s p e c t r o s c o p y p r o v i d e d b y D r . A n d r e w I c h i m u r a . M y t h a n k s g o o u t t o D r . D o n a l d W a r d f o r h i s X - r a y c r y s t a l l o g r a p h y t u t o r i a l s a n d h e l p w i t h s o m e d i f fi c u l t s t r u c t u r e s . I w o u l d l i k e t o t h a n k a l l o f t h e m e m b e r s o f t h e D u n b a r g r o u p , w i t h w h o m I h a d t h e o p p o r t u n i t y t o w o r k . T h e i r f r i e n d s h i p h e l p e d m a k e m y t i m e a t M i c h i g a n S t a t e a s e n j o y a b l e a s i t w a s f u l fi l l i n g . A s p e c i a l t h a n k s g o e s o u t t o M a t t P r a t e r f o r h i s k n o w l e d g e a n d p a t i e n c e i n a n s w e r i n g s o m a n y o f m y q u e s t i o n s d u r i n g t h e e a r l y s t a g e s o f m y g r a d u a t e c a r e e r a n d J e n n i f e r S m i t h , m y p a r t n e r i n t h e d e v e l o p m e n t o f s o m e o f t h e w o r k p r e s e n t e d i n t h i s d i s s e r t a t i o n . M y a p p r e c i a t i o n g o e s o u t t o D r . R o d o l p h e C l é r a c f o r h i s a s s i s t a n c e a n d a d v i c e w i t h m y s t u d i e s o f m a g n e t i s m , D r . J i t e n d r a B e r a f o r h i s a i d w i t h m y c o m p u t a t i o n a l s t u d i e s , a n d D r . J . R . G a l a n - M a s c a r o s f o r m a n y h e l p f u l d i s c u s s i o n s . I w o u l d l i k e t o t h a n k B i l l S c a n l o n , P e t e L e B a r o n , R a n d y H i c k s , a n d J i m C i s z e w s k i f o r t h e f r i e n d s h i p t h a t w a s s o h e l p f u l t h r o u g h s o m e o f t h e m o r e d i f fi c u l t t i m e s a s w e l l a s a l l t h e d i s c u s s i o n s o f t h e i r r e s e a r c h , w h i c h h e l p e d m e d e v e l o p a m o r e b r o a d u n d e r s t a n d i n g a n d a p p r e c i a t i o n o f s c i e n c e . I w o u l d a l s o l i k e t o a c k n o w l e d g e t h e s u p p o r t p r o v i d e d b y t h e D e p a r t m e n t o f C h e m i s t r y a t M i c h i g a n S t a t e U n i v e r s i t y a n d t h e C a r l H . B r u b a k e r E n d o w e d F e l l o w s h i p . I w o u l d l i k e t o t h a n k m y p a r e n t s f o r g i v i n g m e t h e f r e e d o m t o c h o o s e m y p a t h a n d t h e m e a n s t o p u r s u e m y d r e a m s . I t i s l a r g e l y t h r o u g h t h e i r s a c r i fi c e s t h a t I w a s a b l e t o r e a c h t h i s p o i n t . M y a p p r e c i a t i o n g o e s o u t t o m y b r o t h e r s a n d s i s t e r s f o r t h e i r l o v e , s u p p o r t , a n d e n c o u r a g e m e n t . M y t h a n k s g o o u t t o m y i n - l a w s f o r t h e g e t - a w a y w e e k e n d s a n d h e l p t a k i n g c a r e o f m y s o n w h e n I n e e d e d t i m e f o r m y s t u d i e s . F i n a l l y , a s p e c i a l t h a n k s t o m y w i f e S h e l l e y f o r h e r s u p p o r t , e n c o u r a g e m e n t , b o u n d l e s s p a t i e n c e , a n d a l l t h e s a c r i fi c e s s h e m a d e i n h e l p i n g m e a c h i e v e m y g o a l s . v i T A B L E O F C O N T E N T S L I S T O F T A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x i x L I S T O F F I G U R E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x i i L I S T O F S Y M B O L S A N D A B B R E V I A T I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x i x L I S T O F P R E L I M I N A R Y P R O D U C T I N V E S T I G A T I O N S . . . . . . . . . . . . . x x x i v L I S T O F C O M P O U N D S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x x v C H A P T E R I I N T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A . T r a n s i t i o n m e t a l c y a n i d e c o m p o u n d s i n s o l i d s t a t e a n d c l u s t e r c h e m i s t r y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 B . M e t a l - m e t a l b o n d e d c o m p o u n d s w i t h c y a n i d e l i g a n d s . . . . . . . . . . . . . 2 4 C . M a t e r i a l s w i t h o p e n - s h e l l m e t a l s c o o r d i n a t e d t o o r g a n i c r a d i c a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0 C H A P T E R I I N O N A Q U E O U S C Y A N I D E C H E M I S T R Y O F L O W V A L E N T T R A N S I T I O N M E T A L S T H A T E X H I B I T M E T A L - M E T A L B O N D I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2 . E x p e r i m e n t a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ‘ . . . . . . . . . . . . 5 4 A . M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 v i i B . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 C . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 ( 1 ) A t t e m p t e d p r e p a r a t i o n o f [ C r 2 ( C N ) 3 ] 4 ' . . . . . . . . . . . . . . . . . . . . . . . . 5 5 ( i ) R e a c t i o n s o f C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 w i t h [ n - B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 ( 2 ) A t t e m p t e d p r e p a r a t i o n o f [ W 2 ( C N ) 8 ] 4 ' . . . . . . . . . . . . . . . . . . . . . . . . 5 6 ( i ) R e a c t i o n o f W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ E t 4 N ] [ C N ] . . . . . . . . . . . . 5 6 ( i i ) R e a c t i o n o f W 2 ( O z C C 6 H 5 ) 4 w i t h [ n - B u 4 N ] [ C N ] . . . . . . . . 5 7 ( 3 ) A t t e m p t e d p r e p a r a t i o n o f [ R e 2 ( C N ) 3 ] Z ' . . . . . . . . . . . . . . . . . . . . . . . . 5 7 ( i ) R e a c t i o n s o f R e z ( O z C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] a n d [ n — B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 7 ( 4 ) A t t e m p t e d p r e p a r a t i o n o f [ 0 3 2 ( C N ) 3 ] 2 ' ( i ) R e a c t i o n o f 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 8 ( 5 ) R e a c t i o n o f M 0 2 ( O z C C H 3 ) 4 a n d ( C H 3 ) 3 S i C N . . . . . . . . . . . . . . . 5 9 ( 6 ) S t a b i l i t y s t u d i e s o f [ M 0 2 ( C N ) 3 ] 4 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 0 ( 7 ) S a m p l e p r e p a r a t i o n f o r s t a b i l i t y s t u d i e s o f [ n - B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] i n o r g a n i c m e d i a . . . . . . . . . . . . 6 1 3 - R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 A . R e a c t i o n s o f C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 a n d W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ n - B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 ( 1 ) R e a c t i o n s o f C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 w i t h [ n - B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 v i i i ( 2 ) R e a c t i o n s o f W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ n — B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 ( i ) R e a c t i o n o f W 2 ( O Z C C 6 H 5 ) 4 w i t h [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . 6 3 ( i i ) R e a c t i o n o f W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ E t 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . 6 3 B . R e a c t i o n s o f R e 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 ( 1 ) P r o d u c t c h a r a c t e r i z a t i o n f r o m t h e r e a c t i o n s o f R 6 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5 ( i ) I n f r a r e d a n d N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r o s c o p i c A n a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6 ( i i ) E l e c t r o n i c a b s o r p t i o n s p e c t r a l s t u d i e s a n d c y c l i c v o l t a m m e t r i c a n a l y s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 0 ( i i i ) M a s s s p e c t r o m e t r i c a n a l y s i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 ( 2 ) P r o d u c t c h a r a c t e r i z a t i o n f r o m t h e r e a c t i o n s o f R 6 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 W l t h [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 ( 3 ) S u m m a r y o f r e s u l t s f r o m t h e r e a c t i o n s o f R 6 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 W i t h [ E t 4 N ] [ C N ] a n d [ n - B u s N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 ( i ) R e a c t i o n s o f R e 2 ( 0 2 C C H 3 ) 4 C 1 2 W i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 ( i i ) R e a c t i o n s o f O s z ( O z C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 C - R e a c t i o n s O f M 0 2 ( 0 2 C C H 3 ) 4 , R 6 2 ( 0 2 C C H 3 ) 4 C 1 2 , a n d 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 W l t h ( C H 3 ) 3 S I C N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 D . S t a b i l i t y s t u d i e s o f [ M o z ( C N ) 8 ] 4 ‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 i x E . S t a b i l i t y s t u d i e s o f [ n - B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] i n o r g a n i c m e d i a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 8 4 . C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 C H A P T E R I I I A N E W F A M I L Y O F D I M O L Y B D E N U M C O M P O U N D S W I T H C Y A N I D E A N D P H O S P H I N E L I G A N D S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9 2 . E x p e r i m e n t a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 A . M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 B . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 C . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 ( 1 ) P r e p a r a t i o n o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] , ( 8 ) . . . . . . . . . . . . p . . . . . . 9 2 ( 2 ) P r e p a r a t i o n o f [ E t 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] , ( 9 ) . . . . . . . . . . . . . . . . . . . . . . 9 3 ( 3 ) P r e p a r a t i o n o f [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] , ( 1 0 ) . . . . . . . . . . . . . . . . . 9 4 ( i ) M e t h o d i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 ( i i ) M e t h o d i i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 ( 4 ) P r e p a r a t i o n o f M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5 ( 5 ) P r e p a r a t i o n o f N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 , ( 1 2 ) . . . . . . . . . . . . . . . . . . . . . . . 9 6 1 3 . X - r a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 ( 1 ) [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] , ( 8 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 7 ( 2 ) [ n - B u 4 N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] , ( 1 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8 ( 3 ) M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 E . T h e o r e t i c a l M e t h o d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 A . P r e p a r a t i o n o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) , [ n - B u 4 N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) , a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) . . . . 1 1 1 ( 1 ) O x i d a t i o n o f [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 B . P r e p a r a t i o n o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) , [ n - B u 4 N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) , a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) . . . . 1 1 4 ( 1 ) M a s s S p e c t r o m e t r y S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 4 ( 2 ) C y c l i c V o l t a m m e t r y S t u d y o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] , ( 8 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 5 ( 3 ) I n f r a r e d , N u c l e a r M a g n e t i c R e s o n a n c e , a n d E l e c t r o n i c A b s o r p t i o n S p e c t r o s c o p i c S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 6 C . S p e c t r o s c o p i c S t u d i e s o f N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 , ( 1 2 ) . . . . . . . . . . . . . 1 1 9 D . M o l e c u l a r S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 4 . C o m p u t a t i o n a l S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 6 x i 5 . C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 0 C H A P T E R I V T R A N S I T I O N M E T A L C Y A N I D E A N D N I T R I L E C O M P O U N D S W I T H l - ( H Y D R O ) T R I S P Y R A Z O L Y L B O R A T E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 7 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 8 2 . E x p e r i m e n t a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 2 A . M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 2 B . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 3 C . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 3 ( 1 ) P r e p a r a t i o n o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) a n d K [ ( T p ) C r C l 3 ] ( 1 4 ) . . . . . . 1 4 3 ( 2 ) P r e p a r a t i o n o f ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 4 ( 3 ) P r e p a r a t i o n o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) a n d [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 7 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 5 ( 4 ) P r e p a r a t i o n o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) . . . . . . . . . . . . . . . . . . . . . 1 4 6 ( 5 ) P r e p a r a t i o n o f [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) . . . . . . . . . . . . . . . . . . . . . . . . 1 4 6 ( 6 ) P r e p a r a t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 7 ( 7 ) P r e p a r a t i o n o f t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 0 ) . . . . . . . . . . . . . . . 1 4 7 ( 8 ) R e a c t i o n o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) w i t h M P F 6 ( M = A g “ o r T 1 “ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 8 ( 9 ) R e a c t i o n o f [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) a n d 3 [ n - B u 4 N ] [ C N ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 9 x i i ( 1 0 ) R e a c t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) w i t h [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 9 E . X - r a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0 ( 1 ) N a [ ( T p ) C r C l 3 ] ( 1 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 0 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 1 ( 2 ) ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 2 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 2 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 2 ( 3 ) [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 7 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 3 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 3 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 3 ( 4 ) [ N i ( C H 3 C N ) 3 ( e n ) 2 ] [ P F 6 ] 2 ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 ( 1 ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 ( 5 ) ( T p ) C r C 1 2 ( C H 3 C N ) . A g P F 6 . 2 C H 3 C N ( 2 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 5 ( 6 ) ( T p ) C r C 1 2 ( C H 3 C N ) o A g P F 6 - 2 C H 3 C N ( 2 1 ) . . . . . . . . 1 5 6 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 6 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 6 x i i i ( 7 ) V ( T p ) 2 0 1 / 3 C H 3 C N O 1 I 6 1 3 1 2 2 0 ( 2 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 7 ( 1 ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 7 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 7 4 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 4 A . S y n t h e t i c I s s u e s i n t h e D e s i g n o f N e w P a r a m a g n e t i c B u i l d i n g B l o c k s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 4 ( 1 ) C o m e r B u i l d i n g B l o c k C o m p o u n d s f o r M o l e c u l a r C u b e s . . . 1 7 4 ( 2 ) E d g e B u i l d i n g B l o c k C o m p o u n d s f o r M o l e c u l a r C u b e s . . . . . . . . . 1 7 5 B . P r e p a r a t i o n o f N a [ ( T p ) C r C l 3 ] ( l 3 ) , K [ ( T p ) C r C l 3 ] ( l 4 ) , a n d ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 6 C . P r e p a r a t i o n o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 6 ) [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 7 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 8 D . P r e p a r a t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 9 E . P r e p a r a t i o n o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) , [ ( T P ) V ( C H 3 C N ) 3 ] [ P F 6 1 2 ( 1 9 ) , a n d t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 0 F . R e a c t i o n o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) w i t h M P F 6 ( M = A g ” o r T 1 ” ) . . . . . 1 8 1 G . P r e p a r a t i o n o f V ( T p ) 2 0 1 / 3 C H 3 C N 0 1 / 6 E t 2 0 ( 2 4 ) . . . . . . . . . . . . . . . . . . . . . . 1 8 3 H . R e a c t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) a n d [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] . . . . 1 8 3 I . P h y s i c a l M e t h o d s C h a r a c t e r i z a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 4 ( 1 ) I n f r a r e d a n d E l e c t r o n i c A b s o r p t i o n S p e c t r o s c o p i c S t u d i e s . . . . . . 1 8 4 x i v ( 2 ) M a s s S p e c t r o m e t r i c A n a l y s i s o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) a n d [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 8 ( 3 ) M a g n e t i c S u s c e p t i b i l i t y S t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8 9 ( 4 ) C h a r a c t e r i z a t i o n o f t h e p r o d u c t f r o m t h e r e a c t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 8 ) a n d t r a n s - [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] . . . . . 1 9 1 J . M o l e c u l a r S t r u c t u r e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 4 ( 1 ) N a [ ( T p ) C r C l 3 ] ( 1 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 4 ( 2 ) ( T p ) M o B r 2 ( T H F ) ( 1 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 4 ( 3 ) [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 7 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 5 ( 4 ) t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 6 ( 5 ) { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 - 2 C H 3 C N ( 2 1 ) a n d { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 T 1 P F 6 . 2 C H 3 C N ( 2 3 ) . . . . . . . . . . . . . . . . . . . 1 9 6 ( 6 ) V ( T p ) 2 0 1 / 3 C H 3 C N 0 1 / 6 E t 2 0 ( 2 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 7 5 . C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 7 C H A P T E R V I N V E S T I G A T I O N S O F T H E R E D U C T I O N C H E M I S T R Y O F H A T - ( C N ) 6 A N D R E A C T I V I T Y O F T H E R E D U C E D S P E C I E S W I T H T R A N S I T I O N M E T A L S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 4 1 . I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 5 2 . E x p e r i m e n t a l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 9 A . M a t e r i a l s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 9 B . P h y s i c a l M e a s u r e m e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 0 X V C . S y n t h e s e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 ( 1 ) P r e p a r a t i o n o f H A T - ( C N ) 6 . C 7 H 8 . C H 3 C N , ( 2 6 ) . . . . . . . . . . . . . . . . . . 2 2 1 ( 2 ) P r e p a r a t i o n o f C o ( H A T ( C N ) 4 0 2 ) ( H z O ) 4 o 4 H 2 0 ( 2 7 ) . . . . . 2 2 1 ( 3 ) P r e p a r a t i o n o f M n ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 o 4 H 2 0 ( 2 8 ) N i ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 . 4 H Z O ( 2 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 ( 4 ) P r e p a r a t i o n o f { ( s z F e ) 3 [ h a t ( C N ) 6 ] } . C H 3 C N ( 3 0 ) . . . . . . . . . . . . . 2 2 2 ( 5 ) P r e p a r a t i o n o f { [ ( C p ) 2 C o ] [ P F 6 ] } 3 H A T - ( C N ) 6 ( 3 1 ) . . . . . . . . . . . . . 2 2 2 ( 6 ) P r e p a r a t i o n o f { ( [ n - B u l N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } . 3 C 6 H 6 ( 3 2 ) . . . . . . . . . . . . . . . . . . . 2 2 2 ( 7 ) P r e p a r a t i o n o f [ C o n 2 ] [ H A T - ( C N ) 6 ] ( 3 3 ) . . . . . . . . . . . . . . . . . . . . . . . . 2 2 3 ( 8 ) P r e p a r a t i o n o f [ C o n 2 ] 2 [ H A T - ( C N ) 6 ] ( 3 4 ) . . . . . . . . . . . . . . . . . . . . . . . 2 2 3 ( 9 ) P r e p a r a t i o n o f M [ H A T - ( C N ) 6 ] 2 ( M = C o ( 1 1 ) , Z n ( 1 2 ) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 D . X - r a y C r y s t a l l o g r a p h y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 4 ( 1 ) H A T - ( C N ) 6 . C 7 H 8 . C H 3 C N ( 2 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 5 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 5 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 5 ( 2 ) C o ( H A T ( C N ) 4 O z ) ( H z O ) 4 o 4 H z O ( 2 7 ) M n ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 - 4 H Z O ( 2 8 ) N i ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 o 4 H 2 0 ( 2 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 6 ( 1 ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 6 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 6 ( 3 ) { ( s z F e ) 3 [ H A T - ( C N ) 6 ] } . C H 3 C N ( 3 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 7 x v i ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 7 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 8 ( 4 ) { [ ( C P ) 2 C 0 ] [ P F 6 ] } 3 H A T - ( C N ) 6 ( 3 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 8 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 8 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9 ( 5 ) { ( [ n - B u 4 N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } . 3 C 6 H ( 5 ( 3 2 ) . . . . . . . . . . . . . . . . . . . 2 2 9 ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9 ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 9 3 . R e s u l t s a n d D i s c u s s i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 A . C h e m i s t r y o f n e u t r a l H A T - ( C N ) 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 ( 1 ) M o l e c u l a r S t r u c t u r e o f H A T - ( C N ) 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 3 ( 2 ) T h e t e m p l a t i n g e f f e c t o f F e s z a n d [ C o n 2 ] [ P F 6 ] o n t h e c r y s t a l s t r u c t u r e s o f H A T - ( C N ) 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7 ( 3 ) R e a c t i v i t y S t u d i e s o f H A T - ( C N ) 6 w i t h M ( C I O 4 ) 2 - 6 H 2 0 ( M = M n , C o , o r N i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 B . C h e m i c a l r e d u c t i o n o f H A T - ( C N ) 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 8 ( 1 ) R e a c t i v i t y w i t h [ n - B u 4 N ] [ I ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 4 8 ( 2 ) R e a c t i v i t y w i t h P e e p " 2 a n d C o n 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 2 ( 3 ) R e a c t i v i t y s t u d i e s o f H A T - ( C N ) 6 w i t h C o a n d Z n . . . . . . . . . . . . . . . 2 5 4 ( 4 ) P o t a s s i u m r e d u c t i o n o f H A T - ( C N ) 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 7 C . R e a c t i o n o f [ H A T - ( C N ) 6 ] ‘ w i t h t r a n s i t i o n m e t a l i o n s . . . . . . . . . . . . . . . . . 2 6 0 x v i i D . C o m p u t a t i o n a l s t u d i e s o f H A T - ( C N ) 6 a n d i t s r e d u c t i o n p r o d u c t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 6 5 . C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 4 C H A P T E R V I C O N C L U S I O N S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 8 A P P E N D I C E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 4 x v i i i 1 . 1 . 1 . 2 . 2 . 1 . 3 . 1 . 3 . 2 . 3 . 3 . 3 . 4 . 3 . 5 . 4 . 1 . 4 . 2 . 4 . 3 . 4 . 4 . L I S T O F T A B L E S P r u s s i a n b l u e a n d P B a n a l o g u e s w i t h t h e i r T c v a l u e s . . . . . . . . . . . . . . . . . . . . . . 7 S a t u r a t i o n m a g n e t i z a t i o n , M s , a n d o r d e r i n g t e m p e r a t u r e , T c , f o r [ M ( T C N E ) 2 ] . x C H 2 C l 2 ( M = V , M n , F e , C o , N i ) . . . . . . . . . . . . . . . . . . . . . 3 7 D e c o m p o s i t i o n o f [ E t a N ] [ C N ] a n d [ n - B u a N H C N ] i n o r g a n i c s o l v e n t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 0 S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r [ n - B U 4 N 1 2 [ M 0 2 ( C N ) 6 ( d P P m ) 2 ] “ 2 ( C H 3 C N ) ' 2 ( C 6 H 6 ) ( 8 ) , [ n - B u t N ] [ M 0 2 ( C N ) 6 ( d P P m ) 2 ] - 2 ( C H 3 C N ) ° 2 ( H 2 0 ) ( 1 0 ) . a n d M 0 2 ( C N ) 6 ( d p p m ) 2 o 2 ( C H 3 N O z ) ( 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 4 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( ° ) f o r [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 0 2 ( C H 3 C N ) 0 2 ( C 6 H 6 ) ( 8 ) . . . . . . . . . . . . . . . . 1 0 2 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( ° ) f o r [ n - B u 4 N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] - 2 ( C H 3 C N ) 0 2 ( H 2 0 ) , ( 1 0 ) . . . . . . . . . . . . . . . 1 0 5 S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( ° ) f o r M o z ( C N ) 6 ( d p p m ) 2 o 2 ( N 0 2 C H 3 ) , ( 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 8 C o m p a r i s o n o f t h e m e t r i c a l p a r a m e t e r s f o r t h e e q u a t o r i a l p l a n e s o f [ n - B u t l e [ M 0 2 ( C N ) 6 ( d P P m ) 2 ] ( 8 ) . [ n - B u t N l l M 0 2 ( C N ) e ( d p p m ) 2 ] ( 1 0 ) . a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 0 S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r N a [ ( T p ) C r C l 3 ] , ( 1 3 ) . . . . . . . . . . . 1 6 1 S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r ( T p ) M o B r 2 ( T H F ) , ( 1 5 ) . . . . . . . . 1 6 3 S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r [ C o ( C H 3 C N ) 3 ] [ P F 6 ] , ( 1 7 ) . . . . . 1 6 5 S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 7 x i x 4 4 4 . . . 1 1 1 5 . 6 7 . . { B ( B { o o ( ( o T T n p n n ) d d T p p ) d ) 2 C l l a - C r e n r e n 1 C n g C g / g 1 l t 2 e 1 t 3 2 C h h s ( s s H ( [ H d A 3 e C ] g H A C 3 ] N C [ C [ 3 N ] C a 0 ) o f f N r } o ) } n 1 d / B V T 2 r 2 a T n 1 g 1 P l 6 E t 2 F 6 . 2 P F 6 e 0 s , - [ ( 2 d 2 C e 4 H C g ) 3 . H ] C f 3 . . N , ( 2 3 ) . . C o . N r . , . . . ( . 2 3 . . . ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 0 0 0 4 5 6 4 . 5 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 - 2 C H 3 C N , ( 2 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 9 4 . 6 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 T 1 P F 6 - 2 C H 3 C N , ( 2 3 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 1 4 . 7 . V ( T p ) 2 0 1 / 3 C H 3 C N 0 1 / 6 E t 2 0 , ( 2 4 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 3 4 . 8 . P r o p e r t i e s o f b u i l d i n g b l o c k c o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3 4 . 9 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r N a [ ( T p ) C r C l 3 ] , ( 1 3 ) . . . . . . . . . . . . 1 9 8 4 . 1 0 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r ( T p ) M o B r 2 ( T H F ) , ( 1 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 9 4 . 1 1 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r [ C o ( C H 3 C N ) 3 ] [ P F 6 ] , ( 1 7 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 0 4 . 1 2 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 4 . 1 3 . B o n d l e n g t h s [ A ] f o r { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 . 2 C H 3 C N , ( 2 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 2 4 . 1 4 . B o n d a n g l e s [ d e g ] f o r { ( T p ) C I ' C 1 2 ( C H 3 C N ) } 2 A g P F 6 0 2 C H 3 C N , ( 2 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 3 5 . 1 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r H A T - ( C N ) 6 0 C 7 H 3 0 C H 3 C N ( 2 6 ) { ( F e C p 2 ) 3 [ H A T - ( C N ) 6 ] } 0 C H 3 C N ( 3 0 ) , a n d { ( [ F e s z ] [ P F 6 ] ) 3 [ H A T — ( C N ) 6 ] } 0 C H 3 C N ( 3 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 0 5 . 2 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { C o [ H A T - ( C N ) 4 0 2 ( H Z O ) 4 } . 4 H 2 0 ( 2 7 ) , { N i [ H A T - ( C N ) 4 0 2 ( H 2 0 ) 4 } . 4 H 2 0 ( 2 8 ) , a n d { M n [ H A T - ( C N ) 4 0 2 ( H Z O ) 4 } . 4 H 2 0 ( 2 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 1 5 . 3 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { ( [ n - B u 4 N ] [ I ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } 0 3 C 6 H ( 5 , ( 3 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 2 5 . 4 . B o n d l e n g t h s [ A ] f o r { C o ( H A T ( C N ) 4 O z ( H z O ) 4 } 0 4 H 2 0 ( 2 7 ) . . . . 2 4 2 5 . 5 . B o n d a n g l e s [ d e g ] f o r { C o ( H A T ( C N ) 4 0 2 ( H z O ) 4 } 0 4 H 2 0 ( 2 7 ) . . . . 2 4 3 5 . 6 . B o n d l e n g t h s [ A ] f o r { M n ( H A T ( C N ) 4 0 2 ( H z O ) 4 } 0 4 H 2 0 ( 2 8 ) . . . . . . . . . 2 4 4 5 . 7 . B o n d a n g l e s [ d e g ] f o r { M n ( H A T ( C N ) 4 O z ( H z O ) 4 } 0 4 H 2 0 ( 2 8 ) . . . . . . . . 2 4 5 5 . 8 . B o n d l e n g t h s [ A ] f o r { N i ( H A T ( C N ) 4 O Z ( H 2 0 ) 4 } 0 4 H 2 0 ( 2 9 ) . . . . 2 4 6 5 . 9 . B o n d a n g l e s [ d e g ] f o r { N i ( H A T ( C N ) 4 O z ( H z O ) 4 } 0 4 H z O ( 2 9 ) . . . . 2 4 7 x x i 1 . 1 0 . E x a m p l e s o f m e t a l - 0 x 0 c l u s t e r s t h a t e x h i b i t s i n g l e m o l e c u l e 1 . 1 . 1 . 2 . 1 . 3 . 1 . 4 . 1 . 5 . 1 . 6 . 1 . 7 . 1 . 8 . 1 . 9 . L I S T O F F I G U R E S C o o r d i n a t i o n m o d e s o f t h e c y a n i d e i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 R e p r e s e n t a t i o n s o f H o f f m a n n — t y p e c o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 T h r e e d i m e n s i o n a l c u b i c s t r u c t u r e o f a n i d e a l i z e d P r u s s i a n B l u e ( P B ) c o m p o u n d . F o r P B , M = F e 1 1 a n d M ’ = F e m . R e p l a c i n g o n e o r b o t h o f t h e F e s i t e s i n P B w i t h p a r a m a g n e t i c m e t a l i o n s h a s g i v e n r i s e t o t h e P B f a m i l y o f c o m p o u n d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 S c h e m a t i c r e p r e s e n t a t i o n s o f a n t i f e r r o m a g n e t i c a n d f e r r o m a g n e t i c c o u p l i n g o f p a r a m a g n e t i c m e t a l s b r i d g e d b y c y a n i d e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 E x a m p l e s o f c y c l i c m e t a l c y a n i d e c l u s t e r s c h a r a c t e r i z e d b y X - r a y s t u d i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 S t r u c t u r a l r e p r e s e n t a t i o n s o f t h e m o l e c u l a r s q u a r e s [ F e a n u 2 H ( u - C N ) 4 ( b p y ) 6 ] [ P F 6 ] 4 - 2 H 2 0 - 4 C H C 1 3 ( l e f t ) a n d [ F e s z u 2 " ( u - C N ) 4 ( b p y ) 6 ] [ P F 6 ] 6 o 4 C H 3 C N o 2 C H C l 3 ( r i g h t ) . . . . . . . . . . . . . . 1 2 T h e r m a l e l l i p s o i d p l o t s o f [ ( C p ) 4 ( C 5 ( M e ) 4 E t ) 4 C o 4 R h 4 ( C N ) 1 2 ] [ P F 6 ] 4 w i t h a n d w i t h o u t t h e c o m e r p r o t e c t i n g g r o u p s a n d a s p a c e fi l l i n g ' d i a g r a m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 T h e r m a l e l l i p s o i d p l o t s o f K [ ( C p * ) 4 ( C O ) 1 2 R h 4 M o 4 ( C N ) 1 2 ] w i t h a n d w i t h o u t t h e c o r n e r p r o t e c t i n g g r o u p s . T h e K a t o m i s d i s o r d e r e d o v e r t w o p o s i t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 6 T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f t h e m o l e c u l a r c u b e [ ( t a c n ) 3 C o g ( C N ) 1 2 ] [ C F 3 S O 3 ] 3 a n d a s p a c e fi l l i n g d i a g r a m . . . . . . . . . . . . . . . 1 8 m a g n e t i s m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 1 . 1 1 . D o u b l e - w e l l p o t e n t i a l e n e r g y v s m a g n e t i z a t i o n d i r e c t i o n d i a g r a m f o r [ V O z ( O z C E t ) 7 ( b p y ) 2 ] + ( S = 3 ) . T h e t h e r m a l x x i i 1 . 1 2 . 1 . 1 3 . 1 . 1 4 . 1 . 1 5 . 1 . 1 6 . 1 . 1 7 . 2 . 1 . 2 . 2 . 3 . 1 . 3 . 2 . b a r r i e r f o r r e v e r s a l o f m a g n e t i z a t i o n d i r e c t i o n f r o m m , = 3 t o m , = - 3 i s | 9 D | . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 S c h e m a t i c r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f S u p e r P r u s s i a n B l u e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 R e p r e s e n t a t i o n s o f t h e m e t a l - m e t a l b o n d e d c o m p o u n d s w i t h c y a n i d e l i g a n d s k n o w n p r i o r t o t h e r e s e a r c h e f f o r t s o f t h e D u n b a r g r o u p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 ( a ) T h e r m a l e l l i p s o i d p l o t o f t h e m o l e c u l a r a n i o n [ M o z ( C N ) 3 ] 4 ' . ( b ) T h e r m a l e l l i p s o i d p l o t o f t h e m o l e c u l a r a n i o n [ R e 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' . A t o m s f o r b o t h s t r u c t u r e s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 9 S c h e m a t i c r e p r e s e n t a t i o n s o f T C N E a n d T C N Q . T h e r e p o r t e d p o t e n t i a l s a r e v s . A g / A g C l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5 P r o p o s e d l o c a l b o n d i n g a b o u t e a c h T C N E a n d V c e n t e r i n [ V ( T C N E ) x ] o y ( C H 2 C 1 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 V i e w s o f t h e s t r u c t u r e o f M n ( T C N Q ) 2 ( C H 3 O H ) 2 : ( a ) a s e g e m e n t o f o n e z i g - z a g c h a i n ( b ) e x t e n d e d p a c k i n g d i a g r a m p r o j e c t e d d o w n t h e ( 1 a x i s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8 A r e p r e s e n t a t i o n o f t h e p r e d i c t e d s t r u c t u r e o f [ R e 2 ( C N ) g ] 2 ’ f r o m a s i d e - o n p e r s p e c t i v e ( 1 ) a n d a n e n d - o n v i e w ( 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . 6 8 A r e p r e s e n t a t i o n o f t h e p r e d i c t e d s t r u c t u r e o f [ O s z ( C N ) 3 ] 2 ' f r o m a s i d e - o n p e r s p e c t i v e ( 1 ) a n d a n e n d - o n v i e w ( 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . 6 9 T h e r m a l e l l i p s o i d p l o t o f [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' , ( 3 . 1 ) r e p r e s e n t e d a t t h e 5 0 % p r o b a b i l i t y l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 0 A n e l e c t r o n d e n s i t y m a p o f t h e e q u a t o r i a l p l a n e o f [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' . T h e f e a t u r e o f p r i m a r y i n t e r e s t i s t h e e l e c t r o n d e n s i t y d i s t r i b u t i o n o f t h e t w o c y a n i d e l i g a n d s b r i d g i n g t h e d i m o l y b d e n u m c o r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 1 x x i i i 3 . 1 1 . R e p r e s e n t a t i o n s o f s e l e c t e d m o l e c u l a r o r b i t a l s f o r ( 3 . 1 ) 3 . 3 . 3 . 4 . 3 . 5 . 3 . 6 . 3 . 7 . 3 . 8 . 3 . 9 . T h e r m a l e l l i p s o i d p l o t o f t h e m o l e c u l a r a n i o n [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] l ' i n ( 3 . 3 ) a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s h a v e b e e n r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 2 T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 3 . 4 ) r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 3 C o m p a r i s o n o f t h e e q u a t o r i a l p l a n e s o f t h e d i m e t a l u n i t s i n [ n - B u a N 1 2 1 M 0 2 ( C N ) 6 ( d P P m ) 2 1 ( 3 - 1 ) , [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 3 . 3 ) , a n d M o z ( C N ) 6 ( d p p m ) 2 ( 3 . 4 ) . A l l a t o m s a r e r e p r e s e n t e d b y t h e i r 5 0 % p r o b a b i l i t y e l l i p s o i d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0 8 C y c l i c v o l t a m m o g r a m o f [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 3 . 1 ) i n 0 . 1 M [ n - B u a N ] [ P F 6 ] / a c e t o n i t r i l e a t a P t d i s k e l e c t r o d e w i t h a P t w i r e a u x i l i a r y e l e c t r o d e a n d A g / A g C l r e f e r e n c e . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 2 A s e g m e n t o f o n e p o s s i b l e s t r u c t u r e f o r N i ( e n ) 2 M o g ( C N ) 6 ( d p p m ) 2 , ( 3 . 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 0 P l o t s o f x T ( e m u C G S . m o l ) v s . t e m p e r a t u r e ( K ) a n d l l x ( e m u C G S . m o l ) v s . t e m p e r a t u r e ( K ) f o r { N i ( e n ) 2 M 0 2 ( C N ) 6 ( d p p m ) 2 } , . ( 3 . 5 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 1 A s c h e m a t i c r e p r e s e n t a t i o n o f t h e e l e c t r o n i c c o n fi g u r a t i o n s o f c o m p o u n d s ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 4 3 . 1 0 . A s c h e m a t i c r e p r e s e n t a t i o n o f t h e s e m i - b r i d g i n g m o d e o f c y a n i d e w i t h t h e m o l y b d e n u m b a s e d d x 2 o r b i t a l s i n t e r a c t i n g w i t h t h e p , . + p x 7 t b o n d i n g M D . o f t h e c y a n i d e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 5 4 . 1 . a n d ( 3 . 4 ) a s d e t e r m i n e d b y G a u s s i a n 9 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 8 S c h e m a t i c r e p r e s e n t a t i o n o f t h e a s s e m b l y o f a n e i g h t m e t a l a t o m m o l e c u l a r b o x . T h e c o r n e r c a p p i n g g r o u p s w e r e o m i t t e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 0 x x i v 4 . 2 . . 4 . 3 . 4 . 4 . 4 . 5 . 4 . 6 . 4 . 7 . 4 . 8 . 4 . 9 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e a s s e m b l y o f a t w e n t y m e t a l a t o m m o l e c u l a r b o x . T h e c o m e r c a p p i n g g r o u p s a n d b i d e n t a t e l i g a n d s o f t h e e d g e b u i l d i n g b l o c k s w e r e o m i t t e d f o r t h e s a k e o f c l a r i t y . . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) . A l l a t o m s w e r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s 1 4 1 w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 9 T h e r m a l e l l i p s o i d r e p r e s e n t a t i o n o f t h e m o l e c u l a r a n i o n [ ( T p ) C r C l 3 ] ' f r o m ( 1 3 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) . A 1 1 a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T h e r m a l e l l i p s o i d r e p r e s e n t a t i o n o f t h e m o l e c u l a r c a t i o n [ ( T p ) C o ( C H 3 C N ) 3 ] + f r o m ( 1 7 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T h e r m a l e l l i p s o i d p l o t o f t h e c a t i o n o f t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 0 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 - 2 C H 3 C N ( 2 1 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 T 1 P F 6 - 2 C H 3 C N ( 2 3 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 . 1 0 . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f V ( T p ) 2 ( 2 4 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X X V . . 1 6 0 . . 1 6 2 . . 1 6 4 . . 1 6 6 . 1 6 8 . 1 7 0 . . 1 7 2 4 . 1 1 . S p a c e - fi l l i n g m o d e l s g e n e r a t e d b y t h e S p a r t a n p r o g r a m f o r t h e 5 . 1 . 5 . 2 . 5 . 3 . 5 . 4 . 5 . 5 . 5 . 6 . 5 . 7 . 5 . 8 . 5 . 9 . ( l ) 8 m e t a l a t o m a n d ( 2 ) 2 0 m e t a l a t o m m o l e c u l a r b o x e s . T h e f e a t u r e o f p r i m a r y i n t e r e s t i s t h e l a c k o f v o i d s p a c e p r e s e n t w i t h i n t h e c u b e i n t e r i o r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 7 A r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f H A T - ( C N ) 6 ( 5 . 1 ) . . . . . . . . . . . . . . . . . . . 2 1 6 C y c l i c V o l t a m m o g r a m o f H A T - ( C N ) 6 ( 5 . 1 ) p e r f o r m e d i n a c e t o n i t r i l e v s . A g / A g C l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 7 T w o d i f f e r e n t v i e w s o f o n e o f t h e H A T — ( C N ) 6 c h a i n s i n ( 5 . 1 ) . . . . . . . . 2 3 4 A v i e w o f t h e 3 D s t r u c t u r e o f H A T - ( C N ) 6 ( 5 . 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 5 A v i e w o f t h e s t r u c t u r e o f H A T - ( C N ) 6 0 C 7 H 3 0 C H 3 C N ( 2 6 ) l o o k i n g d o w n t h e b a x i s ( l e f t ) a n d a a x i s ( r i g h t ) . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 6 V i e w s o f t h e c r y s t a l s t r u c t u r e o f { ( F e C p 2 ) 3 [ H A T - ( C N ) 6 ] } 0 C H 3 C N ( 3 0 ) v i e w e d d o w n t h e 0 a x i s ( l e f t ) a n d c a x i s ( r i g h t ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 9 V i e w s o f t h e c r y s t a l s t r u c t u r e o f { ( [ s z C o ] [ P F 6 ] ) 3 [ H A T ( C N ) 6 ] - C H 3 C N ( 3 1 ) l o o k i n g d o w n t h e b a x i s ( t o p ) a n d t h e c a x i s ( b o t t o m ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 7 A t h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f N i ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 ( 2 8 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . C o m p o u n d ( 2 8 ) i s i s o s t r u c t u r a l w i t h c o m p o u n d s { N i [ H A T ( C N ) 4 O z ( H 2 0 ) 4 } . 4 H 2 0 ( 2 9 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3 8 V i e w s o f t h e c r y s t a l s t r u c t u r e o f { ( [ n - B u 4 N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } 0 3 C 6 H ( 5 ( 3 2 ) l o o k i n g d o w n t h e b a x i s ( l e f t ) a n d t h e c a x i s ( r i g h t ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 0 5 . 1 0 . R e p r e s e n t a t i o n s o f t h e l a y e r s t h a t c o m p o s e t h e c o l u m n s p r e s e n t i n t h e c r y s t a l s t r u c t u r e o f { ( [ n - B u 4 N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 5 ] 2 } 0 3 C 6 H ( t ( 3 2 ) . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 1 x x v i 5 . 1 1 . 5 . 1 2 . 5 . 1 3 . 5 . 1 4 . 5 . 1 5 . 5 . 1 6 . 5 . 1 7 . 5 . 1 8 . 5 . 1 9 . 5 . 2 0 . A s t r u c t u r a l r e p r e s e n t a t i o n o f C o [ H A T — ( C N ) 6 ] 2 ( 3 5 ) a n d Z n [ H A T - ( C N ) 6 ] 2 ( 3 6 ) i l l u s t r a t i n g t h e s t e r i c b u l k o f t h e C N g r o u p s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E P R S p e c t r a o f M ( H A T - ( C N ) 6 ) 2 ( M = C 0 ( 3 5 ) , Z n ( 3 6 ) ) . . 2 5 5 r e c o r d e d o n C H 3 C N / t o l u e n e f r o z e n s o l u t i o n s a t 7 7 K . . . . . . . . . . . . . . . . 2 5 6 T h e e x p e r i m e n t a l s i m u l a t e d E P R s p e c t r a o f K ( c r y p t a n d [ 2 . 2 . 2 ] ) [ H A T — ( C N ) 6 ] r e c o r d e d i n T H F a t 2 0 3 K . . . . . . . . E f f e c t o f z e r o - fi e l d s p l i t t i n g ( z f s ) o n t h e E P R s p e c t r a o f . . 2 5 8 t r i p l e t s t a t e s p e c i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 1 T h e h a l f - fi e l d t r a n s i t i o n i n t h e E P R s p e c t r u m o f t h e r e a c t i o n o f H A T - ( C N ) 6 w i t h 2 e q u i v a l e n t s o f K . T h e s p e c t r u m w a s r e c o r d e d i n D M I a t 4 . 2 K . T h e s i g n a l i s c e n t e r e d a t 1 6 8 5 G . . . T h e f r o z e n s o l u t i o n E P R s p e c t r u m o f t h e r e a c t i o n o f H A T - ( C N ) 6 w i t h 2 e q u i v a l e n t s o f K i n d i m e t h y l i m a d i z o l e 2 6 2 r e c o r d e d a t 4 . 2 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 3 T h e s o l u t i o n E P R s p e c t r u m o f t h e r e a c t i o n o f H A T - ( C N ) 6 w i t h 2 e q u i v a l e n t s o f K . T h e s p e c t r u m w a s r e c o r d e d i n d i m e t h y l i m a d i z o l e a t r o o m t e m p e r a t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 4 A r e p r e s e n t a t i o n o f t h e J a h n - T e l l e r e l o n g a t i o n p r e d i c t e d f o r t h e r a d i c a l [ H A T - ( C N ) ( , ] ' b y a D P T c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h G a u s s i a n 9 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 9 R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s o f H A T - ( C N ) 6 a s d e t e r m i n e d b y a D F T c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 0 R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s o f _ [ H A T - ( C N ) 6 ] ' a s d e t e r m i n e d b y a D F T c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 1 x x v i i 5 . 2 1 . 5 . 2 2 . R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s f o r t h e t r i p l e t e l e c t r o n i c c o n fi g u r a t i o n o f [ H A T - ( C N ) 6 ] 2 ‘ a s d e t e r m i n e d b y a D F ' I ‘ c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . . . . . . . . . . . . . . . . . . 2 7 2 R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s f o r t h e s i n g l e t e l e c t r o n i c c o n fi g u r a t i o n o f [ H A T - ( C N ) 6 ] 2 ' a s d e t e r m i n e d b y a D F I ‘ c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . . . 2 7 3 x x v i i i A g / A g C l B . M . b r n - B u c a . C H 3 C N c m c m ’ C N C V ° C L I S T O F S Y M B O L S A N D A B R E V I A T I O N S A n g s t r o m s i l v e r - s i l v e r c h l o r i d e r e f e r e n c e B o h r m a g n e t o n b r o a d n - b u t y l a b o u t a c e t o n i t r i l e c e n t i m e t e r w a v e n u m b e r c y a n i d e c y c l i c v o l t a m m e t r y d e g r e e c e n t r i g r a d e p a r t s p e r m i l l i o n ( p p m ) d i m e t h y l p h o s p h i n o e t h a n e d i p h e n y l p h o s p h i n o m e t h a n e m o l a r e x t i n c t i o n c o e f fi c i e n t a n o d i c p e a k p o t e n t i a l c a t h o d i c p e a k p o t e n t i a l x x i x e m u E P R E S B O e s d E t F A B G h H . S . H A T - ( C N ) 6 H z I R e l e c t r o m a g n e t i c u n i t e l e c t r o n p a r a m a g n e t i c r e s o n a n c e e d g e - s h a r i n g b i o c t a h e d r a l e s t i m a t e d s t a n d a r d d e v i a t i o n e t h y l F a s t A t o m B o m b a r d m e n t g r a m G a u s s h o u r h i g h s p i n h e x a z a t r i p h e n y l e n e - h e x a c a r b o n i t r i l e H e r t z i n f r a r e d K e l v i n l i t e r l o w s p i n w a v e l e n g t h m e d i u m m o l e s p e r l i t e r m e t h y l X X X m g m m o l m u l t n m O X r e d 1 ' . 1 . s h S Q U I D U V m i l l i g r a m m i n u t e m i l l i l i t e r m i l l i m e t e r m i l l i m o l e m u l t i p l e t b r i d g i n g l i g a n d n a n o m e t e r f r e q u e n c y , s t r e t c h i n g n u c l e a r m a g n e t i c r e s o n a n c e o x i d a t i o n r e d u c t i o n r o o m t e m p e r a t u r e s i n g l e t ( N M R ) , s t r o n g ( I R ) s h o u l d e r ( U V - v i s ) , s h a r p ( I R ) S u p e r c o n d u c t i n g Q u a n t u m I n t e r f e r e n c e D e v i c e t e m p e r a t u r e 1 - ( h y d r o ) t r i s p y r a z o l b o r a t e t e t r a h y d r o f u r a n u l t r a v i o l e t x x x i V S v e r s u s , v e r y s t r o n g w e a k x x x i i L I S T O F P R E L I M I N A R Y P R O D U C T I N V E S T I G A T I O N S ( 1 ) - - - - - P r o d u c t o f W 2 ( 0 2 C C 6 H 5 ) 4 a n d [ E t 4 N ] [ C N ] i n T H F ( 2 ) - - - - - P r o d u c t o f W 2 ( 0 2 C C 6 H 5 ) 4 a n d [ E t a N ] [ C N ] i n C H z C l z ( 4 ) - - - - - P r o d u c t o f R e 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d [ n - B u 4 N ] [ C N ] ( 5 ) - - - - - P r o d u c t o f O S 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d [ n - E t a N ] [ C N ] ( 6 ) - - - - - P r o d u c t o f O s z ( O z C C H 3 ) 4 C 1 2 a n d [ n - B u 4 N ] [ C N ] ( 7 ) - - - - - P r o d u c t o f M 0 2 ( 0 2 C C H 3 ) 4 a n d ( C H 3 ) 3 S i C N x x x i i i L I S T O F C O M P O U N D S ( 3 ) - - - - - - - - - - - [ E t a l e l R e z ( C N ) s l ( 8 ) - - - - - - - - - - - [ n - B u 4 N 1 2 1 M 0 2 ( C N ) t ( d p p m ) 2 l ( 9 ) - - - - - - - - - - - [ E t t l e l M 0 2 ( C N ) s ( d p p m ) 2 l ( 1 0 ) - - - - - - - - - - [ n - B u t N l l M 0 2 ( C N ) 6 ( d p p m ) 2 l ( 1 1 ) - - - - - - - - - - M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 2 ) - - - - - - - - - - N i ( e n ) 2 M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 3 ) - - - - - - - - - - N a [ ( T p ) C r C l 3 ] ( 1 4 ) - - - - - - - - - - K [ ( T p ) C r C 1 3 ] ( 1 5 ) - - - - - - - - - - ( T p ) M o B r 2 ( T H F ) ( 1 6 ) - - - - - - - - - - [ ( T p ) M n ( C H 3 C N ) 3 l [ P F s l ( 1 7 ) - - - - - - - - - - [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 8 ) - - - - - - - - - - [ ( T p ) M 0 ( C H 3 C N ) s l [ P F 6 1 2 ( 1 9 ) - - - - - - - - - - [ ( T p ) V ( C H 3 C N ) 3 ] [ P F e l z ( 2 0 ) - - - - - - - - - - K [ ( T p ) C r ( C N ) 3 ] ( 5 . 0 ) - - - - - - - - - - t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 2 ) - - - - - - - - - - ( T p ) C r C 1 2 ( C H 3 C N ) O A g P F 6 0 2 C H 3 C N ( 2 3 ) - - - - - - - - - - ( T p ) C r C 1 2 ( C H 3 C N ) 0 T l P F 6 0 2 C H 3 C N ( 2 4 ) - - - - - - - - - - V ( T p ) 2 0 1 / 3 C H 3 C N 0 1 / 6 E t 2 0 ( 2 5 ) - - - - - - - - - - H A T - ( C N ) 6 x x x i v ( 2 6 ) - - - - - - - - - - H A T - ( C N ) 6 - C 7 H 3 - C H 3 C N ( 2 7 ) - - - - - - - - - - C o ( H A T ( C N ) 4 0 2 ) ( H Z O ) 4 . 4 H Z O ( 2 8 ) - - - - - - - - - - M n ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 . 4 H 2 0 ( 2 9 ) - - - - - - - - - - N i ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 . 4 H 2 0 ( 3 0 ) - - - - - - - - - - { ( s z F e ) 3 [ h a t ( C N ) 6 ] } . C H 3 C N ( 3 1 ) - - - - - - - - - - { [ ( C P ) Z C 0 ] [ P F 6 ] } 3 H A T ' ( C N ) 6 ( 3 2 ) - - - - - - - - - - i ( [ n ' B u 4 N ] [ 1 ] ) 3 I I I I H A T ' ( C N ) 6 ] 2 } ' 3 C 6 H 6 ( 3 3 ) - - - - - - - - - - [ C o n 2 ] [ H A T - ( C N ) 6 ] ( 3 4 ) - - - - - - - - - - [ C o n 2 ] 2 [ H A T - ( C N ) 6 ] ( 3 5 ) - - - - - - - - - - C o [ H A T - ( C N ) 6 ] 2 ( 3 6 ) - - - - - - - - - - Z n [ H A T - ( C N ) 6 ] 2 X X X V C h a p t e r I I n t r o d u c t i o n A . T r a n s i t i o n m e t a l c y a n i d e c o m p o u n d s i n s o l i d s t a t e a n d c l u s t e r c h e m i s t r y T h e u s e o f t r a n s i t i o n m e t a l p r e c u r s o r s a s b u i l d i n g b l o c k s f o r t h e p r e p a r a t i o n o f e x t e n d e d s t r u c t u r e s a l l o w s f o r i m p r e s s i v e s t r u c t u r a l d i v e r s i t y a n d o p e n s u p a w e a l t h o f p o t e n t i a l a p p l i c a t i o n s f o r p o r o u s l , m a g n e t i c z , a n d c o n d u c t i n g 3 s o l i d s . T r a n s i t i o n m e t a l c y a n i d e s c o n s t i t u t e a c l a s s o f c o m p o u n d s t h a t h a v e b e e n s i g n i fi c a n t l y i n v o l v e d i n t h e d e v e l o p m e n t o f t h i s a r e a i n r e c e n t y e a r s . 4 C y a n i d e h a s a r i c h h i s t o r y i n c o o r d i n a t i o n c h e m i s t r y . 4 ’ 5 N e a r l y a l l o f t h e d — b l o c k m e t a l s a r e k n o w n t o f o r m c y a n o c o m p l e x e s i n w h i c h c y a n i d e h a s b e e n o b s e r v e d t o a d o p t n u m e r o u s d i f f e r e n t b i n d i n g m o d e s ( F i g u r e 1 . 1 ) . H o m o l e p t i c a n d m i x e d l i g a n d c y a n i d e c o m p l e x e s w i t h a w i d e r a n g e o f o x i d a t i o n s t a t e s a n d c o o r d i n a t i o n n u m b e r s r a n g i n g f r o m t w o t o e i g h t a r e k n o w n . T h e b i d e n t a t e , l i n e a r n a t u r e o f c y a n i d e g i v e s r i s e t o e x t e n d e d s t r u c t u r e s w i t h 1 D , 2 D , a n d 3 D m o t i f s , t h e e x a c t n a t u r e o f w h i c h d e p e n d s o n t h e c o o r d i n a t i o n n u m b e r a n d a r r a n g e m e n t o f l i g a n d s a r o u n d t h e m e t a l c e n t e r s . T h e d i s t a n c e s s p a n n e d b y t h e g r o u p d e fi n e d b y M - C N — M ’ , a r e t y p i c a l l y i n t h e r a n g e o f 5 . 0 - 5 . 6 A , w h i c h i s s u f fi c i e n t l y l o n g t o a l l o w f o r t h e f o r m a t i o n o f c a v i t i e s i n t h e s e p o l y m e r i c s t r u c t u r e s . M e t a l c y a n i d e m a t e r i a l s w i t h v o i d S p a c e s t h a t t r a p i n t e r s t i t i a l s o l v e n t m o l e c u l e s a r e t e r m e d c l a t h r a t e s , t h e s e a r e o f t e n r e f e r r e d t o a s i n c l u s i o n c o m p o u n d s . P r o m i n e n t e x a m p l e s ( F i g u r e 1 . 2 ) o f t r a n s i t i o n m e t a l c y a n i d e c l a t h r a t e s a r e t h e H o f m a n n - t y p e c o m p o u n d s o f t h e g e n e r a l f o r m u l a M ( N H 3 ) 2 M ’ ( C N ) 4 w h e r e M ’ i s s q u a r e p l a n a r a n d m o d i fi e d H o f m a n n - t y p e c o m p o u n d s i n v o l v i n g r e p l a c e m e n t o f t h e m o n o d e n t a t e a m m o n i a l i g a n d s w i t h o t h e r l i g a n d s o r s u b s t i t u t i o n o f t h e s q u a r e p l a n a r m e t a l M ’ ( C N ) 4 u n i t w i t h a t e t r a h e d r a l M ’ ( C N ) 4 g r o u p . 5 I n a d d i t i o n t o f o r m i n g i n t e r e s t i n g e x t e n d e d s t r u c t u r e s w i t h i n c l u s i o n c a p a b i l i t i e s , t h e a b i l i t y o f c y a n i d e t o c o m m u n i c a t e m a g n e t i c i n f o r m a t i o n b e t w e e n p a r a m a g n e t i c m e t a l c e n t e r s i s a t o p i c o f m u c h i n t e r e s t . “ ’ 5 T h e c l a s s i c e x a m p l e o f t h i s a p p l i c a t i o n i s t h e F e I " [ F e " ( C N ) 6 ] o t z O m a t e r i a l c a l l e d P r u s s i a n B l u e ( P B ) ( F i g u r e 1 . 3 ) , w h i c h p r e c i p i t a t e s a s a d a r k b l u e s o l i d f r o m t h e c o n d e n s a t i o n r e a c t i o n o f K 4 [ F e ( C N ) 6 ] a n d [ F e ( H z O ) 6 ] [ N O 3 ] 3 . T h e F e I I I a n d F e I I c e n t e r s f o r m a n e a r l y p e r f e c t c u b i c l a t t i c e l i n k e d b y c y a n i d e w h e r e i n F e 1 1 i s l i g a t e d b y t h e s t r o n g fi e l d c a r b o n a n d F e I I I i s c o o r d i n a t e d t o t h e w e a k fi e l d n i t r o g e n e n d o f c y a n i d e . D e s p i t e t h e 1 1 1 c e n t e r s b y t h e d i a m a g n e t i c F e I I c e n t e r s , s e p a r a t i o n o f t h e p a r a m a g n e t i c F e P B e x h i b i t s f e r r o m a g n e t i c c o u p l i n g w i t h a C u r i e t e m p e r a t u r e ( T c ) o f 5 . 5 K . T h e P r u s s i a n B l u e ( P B ) f a m i l y o f c o m p o u n d s h a s e x p a n d e d i n r e c e n t y e a r s a s r e s e a r c h e r s p u r s u e h i g h T C f e r r o m a g n e t i c m a t e r i a l s ( T a b l e 1 . 1 ) . 4 I n M — C E N M — C E N — M ( A ) ( B ) N M / / \ c , E N M / / \ I V I M ( C ) ( D ) M \ / M , C E N - M M — C E N \ M ( E ) ( F ) M 2 C - = — N . M ( G ) M M \ [ M \ , C E ‘ I . [ c a r M M ( H ) M M ( I ) F i g u r e 1 . 1 . C o o r d i n a t i o n m o d e s o f t h e c y a n i d e i o n . H V e r t i c o a f m a n l p i a l n d n o ' t c 7 l a r i n G g I o 2 - a _ D " h N m d o r t a i l f N w i i " t ( . l fi “ " C N - C g . ; _ N " M I ‘ — C C = : ' e M = ” h N g s 3 H 7 , q d u ) a 2 " — m N f d t e h p e i H c o e t f d m a a s n s n o 2 i l - , D b E C d N r ( = ‘ m o Z 7 e N p ) C C — N l l 2 “ a i o l t d i f l N f — C n w N i E u e n C i - ( C N ) 4 r t fi 7 s N C a n ' a i E i ” d " 3 . s t 7 h b i d e n t a t e a m i n e s C d ; c 9 . N 9 . " 5 N N H ; 3 N N H ; T 3 9 1 3 ; I [ a g e 1 l i f e . . C S N — i — N z c — N i — c = N - — N i — N = c - — N l — c ; n — I — N E C - ' i I l l N H ; C N H ; N N “ : N 3 N . H 8 N N H 8 N J 3 I I . 9 I s I - N s c — N i — c = N — N i — — N ; c — N i — C E N — N i — N E C — N i — C E N — g / . I I I m N “ ; 2 ‘ . 9 N H ) 9 ‘ . C N C N C . N N , , \ “ : - | \ \ = \ \ \ \ 7 C d — N = C — ’ - N i — C = - ; C d N - C — ' — ; N I C E N - ; C d — \ “ _ _ ” I | . \ \ ‘ = C ‘ c = N £ 1 7 — N - C — ’ - N l — C - N 7 C d — N : C — ’ N I — : I I . n u N E C E N I “ \ \ N ‘ 1 . \ | \ g - N I , \ \ \ ( C d — N Z C 7 N I . ‘ C E N ' ; C d — N : C ' — l — C z N ‘ — ” - - a “ _ “ . I “ _ I . . \ \ _ , , . \ \ \ = l : 2 - 7 C d — N ' : . C c — r ' N I - — C E : S 7 C d — l : l ; ( C : / N I — C : N ’ \ u ‘ 5 - ’ 3 , ' fl u ’ _ . n ‘ — " — N ' " a c — , ~ i — “ “ G E N — ( C H “ s c — r N i — ‘ 0 : — , C d — - . . \ \ \ “ \ = . \ “ o ‘ : ' " N N " . n ‘ c 5 S l a n t e d p i l l a r i n g o f t h e H o f m a n n 2 - D m o t i f w i t h b i d e n t a t e a m i n e s d e p i c t e d a s s o l i d , b o l d l i n e s F i g u r e 1 . 2 . R e p r e s e n t a t i o n s o f H o f m a n n - t y p e c o m p o u n d s s d i c l i o b S u C l a d n e o r i e s t n n e e m C i - e c a D - e F e r h T ” 4 . - 1 — 4 1 3 1 . 1 . . . . - F e ( I I ) ( C 6 c o o r d i n a t i o n ) 9 - F e ( I I I ) ( N 6 c o o r d i n a t i o n ) F i g u r e 1 . 3 . T h r e e d i m e n s i o n a l c u b i c s t r u c t u r e o f a n i d e a l i z e d P r u s s i a n B l u e ( P B ) c o m p o u n d . F o r P B , M = F e I I a n d M ’ = F e m . R e p l a c i n g o n e o r b o t h o f t h e F e s i t e s i n P B w i t h p a r a m a g n e t i c m e t a l i o n s h a s g i v e n r i s e t o t h e P B f a m i l y o f c o m p o u n d s . T a b l e 1 . 1 . P r u s s i a n b l u e a n d P B a n a l o g u e s w i t h t h e i r T c v a l u e s . C o m p o u n d T c ( K ) M a g n e t i c B e h a v i o r R e f . V “ 0 , 4 2 v " ‘ 0 , 5 8 [ C r ( C N ) 6 ] 0 , . 6 . 2 . 8 H 2 0 3 1 5 f e r r i 3 7 a [ C r 5 ( C N ) 1 2 ] . 1 0 H 2 0 2 4 0 f e r r i 3 7 b [ E t 4 N ] o , 5 M n 1 _ 2 5 [ V ( C N ) 6 ] - 2 H 2 0 2 3 0 f e r r i 3 7 c C s o . 7 5 [ C r 2 , 1 2 5 ( C N ) 6 ] . 5 H 2 0 1 9 0 f e r r i 3 7 b C s z M n [ V ( C N ) 6 ] 1 2 5 f e r r i 3 7 c C s M n [ C r ( C N ) 6 ] 9 0 f e r r i 3 7 d C s N i [ C r ( C N ) 6 ] . 1 2 H 2 0 9 0 f e r r i 3 7 c [ ( C H 3 ) 4 N ] M n [ C r ( C N ) 6 ] 5 9 f e r r i 3 7 d M n " [ M n “ ’ ( C N ) , ] . 1 . 1 4 H 2 0 4 8 . 7 f e r r i 3 7 c K 2 M n [ M n ( C N ) 6 ] 4 1 f e r r i 3 7 c C s M n [ M n ( C N ) 6 ] - 1 / 2 H 2 0 4 1 f e r r i 3 7 c M n 3 [ M n ( C N ) 6 ] 2 - 1 2 H 2 0 3 7 f e r r i 3 7 c N i 3 [ F e m ( C N ) 6 ] 2 3 . 6 f e r r o 3 7 f C u 3 [ F e m ( C N ) 6 ] 2 2 0 f e r r o 3 7 g C o n 3 [ F e m ( C N ) 6 ] 2 1 4 f e r r i 3 7 f M n n 3 [ F e m ( C N ) 6 ] 2 9 a n t i f e r r o 3 7 c F e 4 [ F e ( C N ) 6 ] o x H Z O x = 1 4 - 1 6 5 . 5 f e r r o 4 t h e s e n e w c o m p o u n d s , o n e o r b o t h o f t h e F e s i t e s h a s b e e n r e p l a c e d w i t h a d i f f e r e n t p a r a m a g n e t i c m e t a l i o n ( F i g u r e 1 . 3 ) . T h e o c t a h e d r a l c o o r d i n a t i o n o f t h e m e t a l s i n t h e s e c u b i c P B t y p e s t r u c t u r e s p r o v i d e s a n o p p o r t u n i t y t o t e s t t h e p r i n c i p l e o f o r t h o g o n a l i t y t o r e g a r d i n g w h i c h c o m b i n a t i o n s o f t r a n s i t i o n m e t a l i o n s w i l l l e a d t o t h e g r e a t e s t n u m b e r o f u n p a i r e d S p i n s . T h i s r e f e r s t o t h e f a c t t h a t u n p a i r e d e l e c t r o n s i n a d j a c e n t m e t a l o r b i t a l s o f c o m p a t i b l e s y m m e t r y ( t 2 g + t z g o r e g 4 » e g ) c o u p l e a n t i f e r r o m a g n e t i c a l l y a c r o s s t h e c y a n i d e b r i d g e , w h i l e t h o s e i n o r t h o g o n a l o r b i t a l s ( t z g + c g ) c o u p l e f e r r o m a g n e t i c a l l y ( F i g u r e 1 . 4 ) . T h i s p r i n c i p l e i s i l l u s t r a t e d i n t h e P B a n a l o g u e N i " 3 [ F e m ( C N ) 6 ] 2 . 9 T h e t z g s e l e c t r o n s o f F e a r e s t r i c t l y o r t h o g o n a l t o t h e e g 2 e l e c t r o n s o f N i , c o n s e q u e n t l y t h e y a r e u n a b l e t o c a n c e l a n d f e r r o m a g n e t i c c o u p l i n g i s o b s e r v e d . T h e o r t h o g o n a l i t y p r i n c i p l e i s t r e m e n d o u s l y u s e f u l b e c a u s e i t e n a b l e s t h e r a t i o n a l d e s i g n o f m a t e r i a l s , w h i c h i f a s s e m b l e d p r o p e r l y , c o u l d h a v e e x t r e m e l y l a r g e m a g n e t i c m o m e n t s . T w o s t r u c t u r a l m o t i f s i n c r e a s i n g l y c o m m o n i n m e t a l c y a n i d e c h e m i s t r y p r o v i d e a n o p p o r t u n i t y t o a p p l y t h i s p r i n c i p l e t o r a t i o n a l l y d e s i g n e d p r o d u c t s i n t h e m o l e c u l a r r e g i m e . O n e o f t h e s e i s m o l e c u l a r s q u a r e s a n d t h e o t h e r i s m o l e c u l a r c u b e s . M o l e c u l a r s q u a r e s o f f o u r m e t a l s b r i d g e d b y f o u r c y a n i d e s h a v e b e e n k n o w n s i n c e t h e e a r l y 1 9 0 0 ’ s ( F i g u r e 1 . 5 ) . 6 T h e s e a r e p r e p a r e d f r o m f o u r ) y t s i l l a n a t ) o b 2 g r L o g C h ( t . 6 g r o e s e n i g H o n S z h 1 H i t t ( N i p s l n l 2 n i n — a t i b s = u n o i o N C S p p r o r a t p r E c S e n C r e S l g c : i i - - h — e v l t a i d e p e p W n n 0 o d n S g H g e g a i O i t t L H r c e r p g a . S 4 s z i e g t a N e m C . 2 r t o n n L t i e p o r > ) — + L ( — d N o t n s e d n C i e b n h l ) t a d h n t u r o e f o o N o d s F _ r i a t g t p L 2 s n C e g n i d i e p l r p s r fi m ( . 3 S g d . 2 H n H t s i 2 d o n n c i e M s u a / l o p 3 a C n t u i = b s c — b ' e s o N t o r i S N h s e e C T E l s C a p a e t h : n n g i " 0 i a p l b t r r n m S g o e o i H v C t r r n N S g o z r . 4 s g e . 2 t e C 1 L n t o c e r f h i t ) e e r t c t n L ( i f l D o e A S = 1 s = 5 / 2 s = 1 S = 1 F i g u r e 1 . 4 . S c h e m a t i c r e p r e s e n t a t i o n s o f a n t i f e r r o m a g n e t i c a n d f e r r o m a g n e t i c c o u p l i n g o f o p e n - s h e l l t r a n s i t i o n m e t a l s b r i d g e d b y c y a n i d e . " ’ 1 p h 3 P fi ~ h / g h — P i d h [ 0 N P p P ’ a 0 C N 5 z d P / N N p \ h \ P d ‘ , h h 0 \ a ' C N 9 9 9 1 , s a P P : ' \ - - P “ P P @ m o T ( : v ? b P 8 o l l e v l a F 2 H C 2 . F p / C \ / \ P \ N / P / 1 8 h 9 h 9 R R — 9 9 1 1 \ . . I — , , ’ ’ N l N i N a l a E : e e t t \ r R \ k ' ° s 0 : “ 9 \ 9 3 9 1 C C s i — l h t h R i a — M 4 R / ' 2 0 p / H C < \ . C 2 H 0 9 9 1 , . l a t e ? n ” i s s u f h c u a R 8 9 9 R i l ' t - s F l ( , M N e u ' . l u e n 0 i E u i . t R w A O a A - N - o C r C P - . B s , . l a C 1 - E : Z - N 8 - d t s C P e / u / k C s e - ! p u 3 b M ‘ i i C F i u t ' “ t ( [ A A - - R R l l i h P % h C 1 0 n 0 0 \ O C 0 N - n d / ( ( 9 H a w t h o r n e , e t a l . , 1 9 8 2 \ / \ _ / P ‘ P h D a v i e s e t a 1 . , 1 9 8 3 I C I I I : ‘ 1 ’ ' 1 9 \ ® 5 N : C — T S c h i n n e r l i n g & T h e w a l t , 1 9 9 2 1 ' 1 . ? H 2 9 N ' / N _ - _ - C — F | ' t — C : N - C u 1 F i g u r e 1 . 5 . E x a m p l e s o f c y c l i c m e t a l c y a n i d e c l u s t e r s c h a r a c t e r i z e d b y X - r a y s t u d i e s m o n o n u c l e a r p r e c u r s o r s w i t h t w o c i s c h e l a t i n g l i g a n d s ( L - L ) t h a t l e a v e t w o c i s c o o r d i n a t i o n s i t e s o p e n t h a t c a n b e o c c u p i e d b y e i t h e r c y a n i d e o r l e a v i n g g r o u p s ( L ) . O n e o u t c o m e o f t h e r e a c t i o n b e t w e e n p r e c u r s o r s o f t h e t y p e [ ( L - L ) 2 M ( C N ) 2 ] n a n d [ ( L - L ) 2 M ’ ( L ) 2 ] n s p e c i e s i s l o s s o f L l i g a n d s f r o m M ’ a n d c o o r d i n a t i o n o f t h e N e n d o f t h e c y a n i d e s t o p r o d u c e a m o l e c u l a r s q u a r e . S q u a r e s f o r o c t a h e d r a l 3 d t r a n s i t i o n m e t a l s h a v e b e e n p r e p a r e d , b u t t h e y a r e l e s s c o m m o n t h a n s q u a r e p l a n a r 4 d a n d 5 d m e t a l s . 6 I f t h e s a m e m e t a l i s u s e d f o r a l l f o u r c o r n e r s o f t h e s q u a r e , a n t i f e r r o m a g n e t i c c o u p l i n g w o u l d e n s u e a n d t h e s t r u c t u r e w o u l d b e d i a m a g n e t i c . B y u s i n g t h e o r t h o g o n a l i t y p r i n c i p l e a s a g u i d e i n s e l e c t i n g m e t a l s f o r a h e t e r o m e t a l l i c , i t s h o u l d b e p o s s i b l e t o p r e p a r e a h e t e r o m e t a l l i c s q u a r e w i t h a n e t m a g n e t i c m o m e n t . I n d e e d , t h i s w a s d e m o n s t r a t e d b y O s h i o i n t h e p r e p a r a t i o n o f t h e m o l e c u l a r s q u a r e s [ F e a n u 2 H ( u - C N ) 4 ( b p y ) 6 ] [ P F 6 ] 4 - 2 H 2 0 o 4 C H C 1 3 a n d [ F c 2 " ‘ C u 2 " ( t t - C N ) 4 ( b p y ) 6 ] [ P F 6 ] 6 o 4 C H 3 C N - 2 C H C 1 3 ( F i g u r e 1 . 6 ) . 6 i M a g n e t i c s u s c e p t i b i l i t y s t u d i e s r e v e a l e d t h e F e a n u z I I s q u a r e b a s e d o n L . S . F e 1 1 a n d S = 1 / 2 C u 1 1 c e n t e r s t o b e a s i m p l e p a r a m a g n e t w i t h n o n i n t e r a c t i n g C u I I c e n t e r s . T h e I n c e n t e r s i n a d d i t i o n t o t w o S = 1 / 2 C u I I F e s z u z I I s q u a r e w i t h t w o S = 1 / 2 F e c e n t e r s e x h i b i t s f e r r o m a g n e t i c c o u p l i n g b e t w e e n t h e t h e o p e n s h e l l F e a n d C u c e n t e r s w h i c h g i v e s r i s e t o a g r o u n d s t a t e o f S = 2 . 6 i l l 3 1 C H C 4 o 0 2 H 2 . 4 ] 6 F P [ ] 6 ) y p b ( 4 ) 7 . N ) C t - h g u i ( r " ( 2 u 3 1 C u C z H e C F 2 [ - N s C e r 3 H a u C q 4 s o 6 r ] a l 6 u F c P e [ l ] o 6 m ) e y h p t b f ( o 4 ) s N n o C i - t u a ( t " n e 2 s u e z r s p e e r F [ l a d r n u t a c ) u t r f e t l S ( . 6 . 1 e r u g i F 0 o 9 ° V ; . 0 2 ‘ 1 2 U . . ‘ 0 ’ 0 1 N 1 . ‘ . ‘ - ’ 4 - . I n t h e o r y , i t i s p o s s i b l e t o p r e p a r e m o l e c u l e s w i t h C N ’ b r i d g e s t h a t e x h i b i t m u c h h i g h e r m o m e n t s i f t h e s t r u c t u r a l m o t i f o f m o l e c u l a r s q u a r e s c o u l d b e e x t e n d e d i n t o a t h i r d d i m e n s i o n , i . e . t o m o l e c u l a r c u b e s o r b o x e s . M e t a l c y a n i d e c o m p o u n d s b a s e d o n t h e M 3 ( C N ) 1 2 b u i l d i n g b l o c k c a n b e t h o u g h t o f a s d i s c r e t e c l u s t e r a n a l o g u e s o f t h e c u b i c c a g e s i n h e r e n t t o t h e P B - t y p e s t r u c t u r e a n d r e p r e s e n t a v e h i c l e f o r p r o b i n g t h e d i v e r s e i n c l u s i o n a n d m a g n e t o c h e r n i s t r y o f t h e P B f a m i l y o f c o m p o u n d s a t t h e m o l e c u l a r l e v e l . T h e l e v e l o f s y n t h e t i c c o n t r o l r e q u i r e d t o a c h i e v e t h e g o a l o f a m o l e c u l a r c u b e w a s r e c e n t l y d e m o n s t r a t e d i n i n d e p e n d e n t w o r k r e p o r t e d b y R a u c h f u s s a n d L o n g i n t h e p r e p a r a t i o n a n d c r y s t a l l i z a t i o n o f m o l e c u l a r c u b e s w i t h c o m e r s c o n s i s t i n g o f e i g h t m e t a l a t o m s w i t h b r i d g i n g c y a n i d e s s p a n n i n g t h e 8 T h e r e m a i n i n g t h r e e c o o r d i n a t i o n s i t e s o n t h e m e t a l a t o m s a r e e d g e s . 7 ’ o c c u p i e d b y t h e f a c i a l c a p p i n g l i g a n d s C p l “ o r t r i a z a c y c l o n o n a n e ( t a c n ) r e s p e c t i v e l y . T h e r e s e a r c h e f f o r t s o f t h e R a c h f u s s g r o u p f o c u s e d o n m o l e c u l a r b o x p r e p a r a t i o n f o r t h e p u r p o s e s o f e x p l o r i n g t h e h o s t - g u e s t b e h a v i o r o f t h e s e s p e c i e s . T h e “ o r g a n o m e t a l l i c b o x ” , [ ( C p ) 4 ( C 5 M e 4 E t ) 4 C o 4 R h 4 ( C N ) 1 2 ] [ P F 6 ] 4 ( F i g u r e 1 . 7 ) , w a s c h a r a c t e r i z e d b y s i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s a n d f o u n d t o h a v e f a c e d i a g o n a l d i s t a n c e s o f 7 . 1 a n d 7 . 4 A w i t h a n i n t e r i o r v o l u m e e s t i m a t e d t o b e 1 3 2 A 3 . 7 T h e c o v a l e n t r a d i i o f t h e c u b e f r a m e w o r k 1 3 p r o h i b i t s a c c e s s t o t h e i n t e r i o r a s e v i d e n c e d b y t h e f a c t t h a t s i x C H 3 C N m o l e c u l e s a r e l o c a t e d n e a r t h e c u b e f a c e s , b u t a r e n e i t h e r b o u n d t o n o r i n s e r t e d i n t o t h e c u b e . T h e i n c l u s i o n c a p a b i l i t i e s o f a m o l e c u l a r a n a l o g u e t o P B w e r e d e m o n s t r a t e d b y t h e R a u c h f u s s g r o u p w i t h t h e a l k a l i m e t a l t e m p l a t e d a s s e m b l y o f t h e c y a n o m e t a l l a t e b o x e s [ E t 4 N ] 3 { M [ ( C p * ) R h ( C N ) 3 ] 4 [ M o ( C O ) 3 ] 4 } ( M = K , C s ) ( F i g u r e 1 . 8 ) . 9 T h e s e m o l e c u l a r b o x e s f o r m i n s o l u t i o n f r o m t h e r e a c t i o n o f [ E t 4 N ] [ ( C p * ) R h ( C N ) 3 ] a n d ( C 6 H 3 ( C H 3 ) 3 ) M 0 ( C O ) 3 i n t h e p r e s e n c e o f t h e r e s p e c t i v e a l k a l i m e t a l c a t i o n . B y i n c o r p o r a t i o n o f t h e l a r g e r M o o a t o m i n p l a c e o f t h e C o I I I a l l o w s f o r a n e x p a n s i o n o f t h e c u b e s u c h t h a t a l k a l i m e t a l i n c l u s i o n i s p o s s i b l e . C o m p e t i t i o n e x p e r i m e n t s r e v e a l e d t h e c u b e t o h a v e a h i g h e r a f fi n i t y f o r C s + t h a n K + t h e r e b y d e m o n s t r a t i n g t h e p o s s i b i l i t y f o r s e l e c t i v e h o s t - g u e s t c h e m i s t r y f o r t h e s e c y a n o m e t a l l a t e c a g e s . I n t h e a f o r e m e n t i o n e d w o r k f r o m t h e R a c h f u s s g r o u p , t h e s e l e c t i o n o f m e t a l s t o u s e a s c u b e c o m e r s w a s m a d e o n t h e b a s i s o f s i z e a n d i n e r t n e s s t o s u b s t i t u t i o n . T h e d i a m a g n e t i c C o m , R h m , a n d M o 0 c o r n e r s c u b e s d o n o t c o n f e r a n y m a g n e t i c p r o p e r t i e s o n t h e s e m o l e c u l e s . W o r k i n o u r l a b o r a t o r i e s a n d i n t h o s e o f L o n g a n d c o w o r k e r s h a v e a l t e r n a t i v e l y f o c u s e d o n e x t e n d i n g t h e r i c h m a g n e t o c h e m i c a l h i s t o r y o f t h e P B f a m i l y o f 1 4 s e l c r i c y r a r t i r b r a ) a 9 ( m 4 a ] r 6 g F a P i [ d ] g 2 n 1 i ) l N l C fi ( 4 e h c R a 4 p 0 s C a 4 ) ) t c ( E 4 ) s d e i M o ( s 5 p C i ( l 4 l e ) p l C a ( m [ r f o e h t s t h o t l i p w d w i o e s i p v i l l e l a t e l l a e m k r s e ) h b T ( . 7 . 1 e r u g i F 1 5 ( a ) ( b ) 1 6 F i g u r e 1 . 8 . T h e r m a l e l l i p s o i d p l o t s o f K [ ( C p * ) 4 ( C O ) 1 2 R h 4 M o 4 ( C N ) 1 2 ] 9 ( a ) f u l l m o l e c u l e ( b ) s k e l e t a l v i e w e m p h a s i z i n g K + o c c u p a n c y a n d c o n t a c t s . c o m p o u n d s t o t h e m o l e c u l a r l e v e l b y p r e p a r i n g h e t e r o m e t a l l i c c y a n i d e c u b e s w i t h p a r a m a g n e t i c t r a n s i t i o n m e t a l s . L o n g a n d c o w o r k e r s r e p o r t e d t h e o p e n s h e l l m o l e c u l a r c u b e , [ ( t a c n ) g C r 4 C o 4 ( C N ) 1 2 ] [ C F 3 S O 3 ] 1 2 - 8 H 2 0 , f r o m t h e r e a c t i o n o f [ ( t a c n ) C r ( H 2 0 ) 3 ] [ C F 3 S O 3 ] 3 a n d ( t a c n ) C o ( C N ) 3 . 8 T h e d i a m a g n e t i c a n a l o g , [ ( t a c n ) g C 0 8 ( C N ) 1 2 ] [ C F 3 S O 3 ] 1 2 ( F i g u r e 1 . 9 ) , w a s s t r u c t u r a l l y c h a r a c t e r i z e d b y s i n g l e c r y s t r a l X - r a y d i f f r a c t i o n . 8 X - r a y d a t a f o r t h e C r 4 C o 4 c u b e w e r e n o t r e p o r t e d , b u t t h e i d e n t i t y o f t h e c l u s t e r w a s c o n fi r m e d b y e l e c t r o s p r a y m a s s s p e c t r o s c o p y . T h e o p e n - s h e l l C r m i o n s a r e a r r a n g e d i n a t e t r a h e d r o n s u b - s e t o f t h e c u b e v e r t i c e s s e p a r a t e d b y i n t e r v e n i n g C o I I I i o n s . M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s r e v e a l e d a r o o m t e m p e r a t u r e u e f f v a l u e o f 7 . 5 1 B . M . w i t h g = 1 . 9 7 w h i c h i s c o n s i s t e n t w i t h f o u r i s o l a t e d S = 3 / 2 C r I I I i o n s p e r c u b e . D e s p i t e t h e l a c k o f e x c h a n g e i n t e r a c t i o n s i n t h e [ ( t a c n ) g C r 4 C o 4 ( C N ) 1 2 ] [ C F 3 S O 3 ] 1 2 - 8 H 2 0 c u b e , t h i s r e s u l t d e m o n s t r a t e d t h e o p p o r t u n i t y f o r t h e s e t y p e s o f c o m p o u n d s t o c o n t r i b u t e t o t h e m a g n e t o c h e m i c a l r e s e a r c h a r e a o f o p e n - s h e l l n a n o s c a l e m o l e c u l e s . 1 0 T h i s i n t e r e s t s t e m s f r o m t h e d e m o n s t r a t i o n o f a p h e n o m e n o n s i m i l a r t o S u p e r p a r a m a g n e t i s m i n l a r g e s p i n p a r a m a g n e t i c c l u s t e r s t h a t e x h i b i t l 7 8 . m a r g a i d g n i l l fi F i g u r e 1 . 9 . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f t h e m o l e c u l a r c u b e [ ( t fl C fl ) g C O g ( C N ) 1 2 ] [ C F 3 S O 3 ] 3 a n d a s p a c e m a g n e t i c a n i s o t r o p y . S e v e r a l m i x e d v a l e n c e c l u s t e r s M n c l u s t e r s w i t h c a r b o x y l a t e b r i d g e s c o n s t i t u t e o n e f a r m e o f c o m p o u n d s w i t h h i g h g r o u n d s t a t e s p i n v a l u e s t h a t h a v e b e e n p r e p a r e d f o r t h e p u r p o s e s o f i n v e s t i g a t i n g s i n g l e m o l e c u l e m a g n e t i c p h e n o m e n a ( F i g u r e 1 . 1 0 ) . ” U n f o r t u n a t e l y , t r a d i t i o n a l c l u s t e r c h e m i s t r y s u c h a s t h e M n c a r b o x y l a t e c l u s t e r s s u f f e r s f r o m t h e l i m i t a t i o n t h a t , a p r i o r i , r e l i a b l e p r e d i c t i o n o f t h e s t r u c t u r e a n d c o m p o s i t i o n o f t h e r e s u l t i n g p r o d u c t s i s o f t e n n o t p o s s i b l e . T h e s y n t h e t i c c o n t r o l a f f o r d e d b y t r a n s i t i o n m e t a l c y a n i d e c h e m i s t r y a s d e m o n s t r a t e d b y R a u c h f u s s a n d L o n g p r o v i d e s a p o s s i b l e a n s w e r t o t h i s c h a l l e n g e . B e s i d e s t h e M n c a r b o x y l a t e s , o t h e r m e t a l - 0 x 0 c l u s t e r s w e r e d i s c o v e r e d t o e x h i b i t t h e s l o w m a g n e t i c r e l a x a t i o n c h a r a c t e r i s t i c o f s i n g l e m o l e c u l e m a g n e t i c s ( F i g u r e 1 . 1 0 ) . 1 2 T h i s s l o w r e l a x a t i o n i s a c o n s e q u e n c e o f a n e n e r g y b a r r i e r f o r m a g n e t i c m o m e n t r e v e r s a l t h a t a r i s e s f r o m a g r o u n d s t a t e w i t h a c o m b i n a t i o n o f h i g h s p i n , S , a n d n e g a t i v e a x i a l m a g n e t i c a n i s o t r o p y , D < 0 . A d i a g r a m o f t h i s d o u b l e - w e l l p o t e n t i a l e n e r g y b a r r i e r f o r [ V O z ( O z C E t ) 7 ( b p y ) 2 ] + ( S = 3 ) i s d e p i c t e d i n F i g u r e 1 . 1 1 . I n t h i s i n s t a n c e , t h e b a r r i e r f o r r e v e r s a l o f t h e m a g n e t i z a t i o n d i r e c t i o n f r o m m 5 = 3 t o m 5 = - 3 i s | 9 | D . I n o r d e r t o e x p l o r e t h e p o s s i b i l i t y o f u s i n g s u c h m o l e c u l e s a s d a t a s t o r a g e m e d i a , n e w c l u s t e r s d i s p l a y i n g l a r g e r v a l u e s o f S a n d | D | m u s t b e p r e p a r e d . 1 9 ] 2 1 ) 0 2 H ( 6 ) O ' 3 “ ( 8 ) H O g . l . ; ‘ I . . fi " ] Z I O 4 ) O Z H ( 6 1 ) 3 H C 9 ' C f ' “ “ Z ( O . 6 " . ) . s } H . O . ! ' O " a ' 3 g { . M ” 9 n \ “ v 2 ( 0 l ) 5 ( 2 1 n M [ m o r f ‘ é l e x H r " l o ” N 5 0 c 2 3 1 C ( 9 l e F [ ) b ( e l n M ) d ( + l 2 ) e b ( 7 ) t E C 2 0 ( 2 0 V [ ) C ( 2 0 - - - 1 2 f 1 2 h 1 2 e , d 1 2 b F i g u r e l 1 0 E x a m p l e s o f m e t a l - o x o c l u s t e r s t h a t e x h i b l t s r n g l e m o l e c u l e m a g n e t r s m . ( a , b , c ) / 1 0 2 - c 3 - " - n 9 m i m > - - - - ' - n o i t c e r i \ _ 7 _ D r n o f o f m i o a 3 i t a z r l g a a s i r 0 2 ! 8 : 1 1 3 : 1 e t e d v n e m 1 n e 3 v g o 2 r i 1 a r “ I _ / I M t . c e o | f D 9 r r | i e d i s r i \ n r _ 3 . ' j o a i b - t l = a a z 3 m i r m t e e o h t n t g 3 a e m h = s T s v m . y ) m g 3 o r e = r n S f e ( n l + o i a i t n e ] t 2 c ) e y r t p i d o b p ( n + ] l 2 l ) e e w b - ( e 7 o ) i t t E a C z Z i O t 7 ( l ) 2 b e n I 0 g u E a o V C m D [ 2 0 ( 2 . 1 1 . 0 1 V [ e r u g i F 2 1 _ _ l _ _ i 9 D < — - — — _ [ 5 . 1 9 m i U s i n g o r t h o g o n a l i t y a s a g u i d e , a m a x i m u m o f S = 1 0 i s p o s s i b l e w i t h t h e e i g h t m e t a l a t o m c u b e m o t i f i f t h e c o m e r s a r e c o m p o s e d o f f o u r m e t a l a t o m s w i t h t 2 g 3 e l e c t r o n c o n fi g u r a t i o n s a n d f o u r w i t h t z g ‘ s e g 2 c o n fi g u r a t i o n s . T h e m a g n e t i c a n i s o t r o p y n e c e s s a r y f o r h i g h | D | v a l u e s i s t i e d t o t h e s h a p e o f t h e c l u s t e r a n d t h e a n i s o t r o p y i n h e r e n t t o t h e m e t a l i o n s ( s i n g l e i o n ” ’ 1 2 S i m p l y p u t , t h e r e q u i r e m e n t s f o r i n c r e a s i n g m a g n e t i c a n i s o t r o p y ) . a n i s o t r o p y a r e t h e u s e o f m e t a l a t o m s w i t h s i n g l e i o n a n i s o t r o p y ( - D ) a n d c l u s t e r s h a p e s t h a t a r e n o t h i g h l y s y m m e t r i c a l . W h e t h e r h i g h s y m m e t r y m o l e c u l a r c u b e s w i l l e x h i b i t s i n g l e m o l e c u l e m a g n e t i c p h e n o m e n a i s a n o p e n q u e s t i o n , a l t h o u g h t h e h i g h s y m m e t r y c e r t a i n l y i s n o t a g o o d S i g n . A n i n s u f fi c i e n t n u m b e r o f s i n g l e m o l e c u l e m a g n e t s h a v e b e e n p r e p a r e d t o p r e d i c t h o w h i g h s p i n t r a n s i t i o n m e t a l c y a n i d e c u b e s w i l l b e h a v e . I n t h e v e i n o f a t t e m p t i n g t o p r e p a r e o p e n - s h e l l h e t e r o m e t a l l i c c u b e s a s m o l e c u l a r a n a l o g s t o P r u s s i a n B l u e , a n a l t e r n a t i v e s t r u c t u r a l m o t i f f o r a n e x p a n d e d c u b i c c l u s t e r i s t h a t o f S u p e r P r u s s i a n B l u e ( S P B ) . 4 A s e g m e n t o f t h e e x p a n d e d c u b e m o t i f i n h e r e n t t o t h e p o l y m e r i c S P D s t r u c t u r e i s p r e s e n t e d i n F i g u r e 1 . 1 2 . A d d i n g o p e n - s h e l l m e t a l s i n p l a c e o f t h e S n s i t e s a l o n g t h e e d g e s t o t h e m e t a l s p r e s e n t i n t h e c o m e r p o s i t i o n s w o u l d a l l o w f o r t h e i n c o r p o r a t i o n o f 2 0 m e t a l a t o m s , t h e r e b y e n a b l i n g h i g h e r s p i n s t a t e s t h a n w o u l d b e p o s s i b l e w i t h a e i g h t m e t a l a t o m c u b e . A m a x i m u m S v a l u e o f 2 6 2 2 2 3 F i g u r e 1 . 1 2 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f S u p e r P r u s s i a n B l u e N C E N N " I C I c — M — c | C I I I N I " t / _ — S n — N : N N / C N I I I I ’ 4 c — M — C l C I I I N I S n — 1 N I I I C N E N N E N w o u l d t h e o r e t i c a l l y b e p o s s i b l e i f t h e m e t a l s a l o n g t h e e d g e s h a d t 2 g 3 e l e c t r o n c o n fi g u r a t i o n s a n d t h e c o m e r m e t a l s h a d t z g ‘ s e g 2 c o n fi g u r a t i o n s . T h e r e i s n o p r e c e d e n t i n t h e l i t e r a t u r e f o r a m o l e c u l e o f t h i s t y p e , b u t t h i s a p p r o a c h i s t h e s u b j e c t o f w o r k t h a t w i l l b e d i s c u s s e d i n C h a p t e r I V o f t h i s t h e s i s . B . M e t a l - m e t a l b o n d e d c o m p o u n d s w i t h c y a n i d e l i g a n d s D e s p i t e t h e p r o g r e s s i n d e v e l o p i n g t h e c y a n i d e c h e m i s t r y o f t h e t r a n s i t i o n m e t a l s , o n e a r e a t h a t h a s r e m a i n e d l a r g e l y u n e x p l o r e d i s t h e p r e p a r a t i o n o f m e t a l - m e t a l b o n d e d c o m p o u n d s w i t h c y a n i d e l i g a n d s . T r a d i t i o n a l l y c y a n i d e c h e m i s t r y h a s b e e n p e r f o r m e d u n d e r a q u e o u s c o n d i t i o n s . T h i s c o m m o n l y i n v o l v e s a m e t a t h e t i c a p p r o a c h i n w h i c h t r a n s i t i o n m e t a l h a l i d e s a r e r e a c t e d w i t h a l k a l i m e t a l c y a n i d e s . I n c a s e s w h e r e t h e s p e c i e s i n v o l v e d w e r e h y d r o l y t i c a l l y u n s t a b l e , l i q u i d a m m o n i a o r m e t h a n o l m e d i a a r e u s e d . L o w o x i d a t i o n s t a t e s o f t h e e a r l y t r a n s i t i o n m e t a l s a r e t y p i c a l l y a c c e s s e d b y s t a r t i n g f r o m t h e h i g h e r o x i d a t i o n s t a t e c o m p o u n d s a n d r e d u c i n g t h o s e e i t h e r c h e m i c a l l y u s i n g h y d r a z i n e o r a n a l k a l i m e t a l a m a l g a m o r e l e c t r o c h e m i c a l l y i n t h e p r e s e n c e o f e x c e s s c y a n i d e . S u c h r e a c t i o n c o n d i t i o n s d i f f e r f r o m t h e m e d i a u s e d t o c o n d u c t r e s e a r c h o n m e t a l - m e t a l b o n d e d c o m p o u n d s . M o s t d i m e t a l l i c c o m p l e x e s a r e n o t s t a b l e o x i d a t i v e l y o r h y d r o l y t i c a l l y i n s o l v e n t s s u c h a s w a t e r . I n a d d i t i o n , t h e a l k a l i m e t a l s a l t s o f c y a n i d e a r e v i r t u a l l y 2 4 i n s o l u b l e i n t h e n o n p o l a r , a p r o t i c s o l v e n t s c o m m o n l y u s e d i n m e t a l - m e t a l b o n d c h e m i s t r y . T h e e x c l u s i o n o f c y a n i d e a s a r o u t i n e l i g a n d i n m e t a l — m e t a l b o n d c h e m i s t r y i s , t o a n e x t e n t , u n d e r s t a n d a b l e o n t h e b a s i s o f t h e e l e c t r o n i c s o f t h e l i g a n d . I t i s i n t u i t i v e t o a s s u m e t h a t t h e l o w - v a l e n t , e l e c t r o n - r i c h d i n u c l e a r c o r e s w o u l d n o t b e r e a d i l y s t a b i l i z e d b y a n - a c c e p t i n g l i g a n d s u c h a s c y a n i d e , a n d t h e r e i s p r e c e d e n c e i n t h e l i t e r a t u r e t h a t s u p p o r t s t h i s h y p o t h e s i s . T h e M o z n ' I I c o r e h a s b e e n s h o w n t o u n d e r g o c l e a v a g e i n t h e p r e s e n c e o f o t h e r n - a c c e p t o r s s u c h a s C O , N O , a n d i s o c y a n i d e s . 1 4 T h e , 1 . . . W z n ’ n a n d R e g I I I I I c o r e s h a v e a l s o b e e n s h o w n t o d i s p l a y s m u l a r 1 5 . 1 6 [ 1 1 , 1 1 1 r e a c t i v i t i e s . A n e v e n l e s s r o b u s t d i m e t a l l i c c o r e i s O s z w h i c h i s k n o w n t o c l e a v e i n s u b s t i t u t i o n r e a c t i o n s w i t h a v a r i e t y o f l i g a n d s . 1 6 D e s p i t e t h e s e d i f fi c u l t i e s , c y a n i d e c h e m i s t r y i s n o t u n k n o w n i n t h e a r e a o f m e t a l - m e t a l b o n d r e s e a r c h ( F i g u r e 1 . 1 3 ) . T h e r e a c t i o n o f ( C p ) 2 M 0 2 ( C O ) 4 w i t h c y a n i d e , i n t r o d u c e d a s a m e t h a n o l i c s o l u t i o n o f K C N , l e d t o t h e a d d i t i o n p r o d u c t K [ ( C p ) 2 M o z ( C O ) 4 C N ] . 1 7 T h i s c o m p o u n d c o n s t i t u t e s t h e fi r s t r e p o r t e d e x a m p l e o f c y a n i d e b i n d i n g i n a s e m i - b r i d g i n g m o d e ( d e p i c t e d i n ( c ) o f F i g u r e 1 . 1 ) . T h e e q u i v a l e n c y o f a l l t h e C p g r o u p s i n t h e N M R s p e c t r u m o f t h i s c o m p o u n d r e v e a l e d t h i s b i n d i n g m o d e t o b e fl u x i o n a l i n a 2 5 ' u i \ V 3 5 0 h [ M r t h e 4 N e i l e m ; 1 0 l l X - r z C y a n N M P o s s a m t h e l “ w i n d s h i e l d w i p e r ” f a s h i o n o n t h e N M R t i m e s c a l e . T h e c r y s t a l s t r u c t u r e w a s r e p o r t e d i n a s u b s e q u e n t p u b l i c a t i o n . 1 8 S i m i l a r r e a c t i v i t y w a s d i s p l a y e d i n s u b s e q u e n t r e a c t i o n s o f [ M n 2 H ( C H 3 C N ) ( C O ) 5 , ( d p p m ) 2 ] + . 1 9 T h e i n i t i a l r e a c t i o n w i t h a m e t h a n o l s o l u t i o n o f K C N p r o c e e d e d w i t h d i s p l a c e m e n t o f t h e C H 3 C N l i g a n d t o y i e l d [ M n 2 H ( C N ) ( C O ) 5 ( d p p m ) 2 ] . T h e s u b s e q u e n t r e a c t i o n o f t h i s c o m p o u n d w i t h t h e d e c a r b o n y l a t i o n r e a g e n t ( C H 3 ) N O p r o d u c e d [ M n 2 H ( C N ) ( C O ) ( d p p m ) 2 ] . N e i t h e r o f t h e s e c y a n o p r o d u c t s h a s b e e n s t r u c t u r a l l y c h a r a c t e r i z e d , b u t s p e c t r o s c o p i c e v i d e n c e s u g g e s t s t h a t c y a n i d e i s p r e s e n t i n t h e c a r b o n y l e x t r a c t i o n p r o d u c t i n t h e s e m i - b r i d g i n g m o d e a s fi r s t o b s e r v e d i n K [ ( C P ) 2 M 0 2 ( C O ) 4 C N ] - T h e r e a c t i v i t y o f M 2 ( O R ) 6 ( M = M 0 , W ) c o m p o u n d s w a s i n v e s t i g a t e d w i t h o n e a n d t w o e q u i v a l e n t s o f [ n - B u 4 N ] [ C N ] i n b e n z e n e a n d f o u n d t o l e a d t o t h e p r o d u c t s [ n - B u 4 N ] [ M 2 ( C N ) ( O R ) 6 ] a n d [ n - B u 4 N ] 2 [ M 2 ( C N ) 2 ( O R ) 6 ] . 2 ° X — r a y q u a l i t y s i n g l e c r y s t a l s w e r e n o t o b t a i n e d , s o a s s i g n m e n t s o f t h e c y a n i d e b i n d i n g m o d e s w e r e m a d e s o l e l y o n t h e b a s i s o f i n f r a r e d a n d 1 3 C N M R s p e c t r o s c o p i c d a t a . T h e m o n o - a d d i t i o n p r o d u c t s w e r e s p e c u l a t e d t o p o s s e s s c y a n i d e i n t h e m o d e w h e r e b r i d g i n g o c c u r s o n l y t h r o u g h t h e c a r b o n a t o m i n a f a s h i o n a n a l o g o u s t o C O . T h i s a s s i g n m e n t w a s m a d e p r i m a r i l y o n t h e b a s i s o f N M R e v i d e n c e w h i c h s h o w e d e q u a l c o u p l i n g t o t h e t w o 1 8 3 W 2 6 w a s W h i t b u d ; b r i d ‘ C O m J B u . ) n u c l e i , a n d b y c o m p a r i s o n t o t h e s t r u c t u r a l c h a r a c t e r i z e d c a r b o n y l a n a l o g w h i c h h a s C O i n t h e s y m m e t r i c a l b r i d g i n g m o d e , M ( u - C O ) M . W h i l e t h i s b r i d g i n g m o d e i s c o m m o n f o r C O , t h e r e a r e n o r e p o r t e d e x a m p l e s o f c y a n i d e b r i d g i n g i n t h i s m a n n e r . T h e k n o w n c y a n i d e b i n d i n g m o d e s a r e p r e s e n t e d i n F i g u r e 1 . 1 . A m o r e p l a u s i b l e e x p l a n a t i o n i s t h e p r e s e n c e o f c y a n i d e i n t h e s e m i — b r i d g i n g m o d e w h i c h h a s b e e n s h o w n t o b e fl u x i o n a l o n t h e N M R t i m e s c a l e 1 7 a n d w o u l d a c c o u n t f o r t h e 1 3 C N M R d a t a o b s e r v e d f o r [ n - B u 4 N ] [ M 2 ( C N ) ( O R ) 6 ] . T h e d i c y a n o a d d u c t s w e r e c l e a r l y f o r m u l a t e d a s c o n t a i n i n g o n l y t e r m i n a l c y a n i d e s b a s e d o n t h e 1 3 C N M R d a t a w h i c h r e v e a l e d c o u p l i n g o f t h e c y a n i d e s t o o n l y o n e W n u c l e i . O n e a d d i t i o n a l e x a m p l e o f a n u n e x p e c t e d s e m i - b r i d g i n g c y a n o c m p o u n d w a s o b t a i n e d f r o m t h e r e a c t i o n o f [ R h 2 ( N C S ) ( C O ) 2 ( d p p m ) 2 ] C l O 4 w i t h C O w h i c h y i e l d s [ R h 2 ( l J « - C N ) ( u — C O ) ( C O ) 2 ( d p p m ) 2 ] C 1 0 4 . I n t h i s p r o d u c t , a b r i d g i n g C O h a s b e e n a d d e d a n d t h e S C N ' g r o u p h a s b e e n c o n v e r t e d t o C N ' . 2 1 T h i s c o m p o u n d w a s s t r u c t u r a l l y c h a r a c t e r i z e d t o c o n fi r m t h e s e m i - b r i d g i n g c y a n i d e b i n d i n g m o d e . O n l y t w o s t r u c t u r a l l y c h a r a c t e r i z e d e x a m p l e s o f m e t a l — m e t a l b o n d e d c o m p o u n d s w i t h t e r m i n a l c y a n i d e s e x i s t , v i z . , [ n - B u 4 N ] 4 [ M 0 2 ( C N ) g ] a n d [ n - B u 4 N ] 2 [ R e 2 ( C N ) 6 ( d p p m ) 2 ] p r e p a r e d i n t h e D u n b a r l a b o r a t o r i e s s e v e r a l y e a r s a g o ( F i g u r e 1 . 1 4 ) . 2 2 T h e o c t a c y a n o d i m o l y b d a t e a n i o n , [ M 0 2 ( C N ) 3 ] " ' 2 7 P h Z P / 9 \ P p h 2 O \ C \ / C % { 1 0 % 0 ’ . . ~ \ “ “ \ \ C / ” " ' ~ . . M 0 M 3 E C — R fi : — / — R h \ \ c 0 / C S N C \ \ \ / / / O o o t h P P P h 2 ( a ) \ C / ( b ) H 2 H 2 H 2 / C \ C 0 P M 0 P P M p t h / \ p p n 2 \ C / I l l § I , ” O \ C \ \ \ H / / / / ’ C / 0 E C — M D W < C = O > M n ' : fi n < P " 2 P \ P p h z P h P P P h / 2 2 C \ C / N N m \ \ \ / / x C 9 O R R 0 ” , s o “ R 0 “ R O K Q M O / \ M : / O R ” fl u n k / I o M o / . 1 , ” \ \ \ \ " / 9 ” \ O R / R 0 I \ ” R ( ( 1 ) O R ( d ) R 0 0 ! ? F i g u r e 1 . 1 3 . R e p r e s e n t a t i o n s o f t h e m e t a l - m e t a l b o n d e d c o m p o u n d s w i t h c y a n i d e l i g a n d s k n o w n p r i o r t o t h e r e s e a r c h e f f o r t s c a r r i e d o u t i n t h e D u n b a r l a b o r a t o r i e s . ( a m , b ” , C ” , d ” ) 2 8 M — @ ) 1 2 ) m ( g C O ' ) 1 ( P . " ' ) ? 1 I ” ( 0 3 ‘ ’ ) 3 ( C “ ( ' ) 3 ( N 2 9 ( a ) ( b ) ‘ 5 F i g u r e 1 . 1 4 . ( 3 ) T h e r m a l e l l i p s o i d p l o t o f t h e m o l e c u l a r a n i o n [ M 0 2 ( C N ) 3 ] 4 ' . A t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . ( b ) T h e r m a l e l l i p s o i d p l o t o f t h e m o l e c u l a r a n i o n [ R e 2 ( C N ) 6 ( d p p m ) 2 ] 2 ‘ . T h e r m a l e l l i p s o i d s f o r a t o m s i n b o t h s t r u c t u r e s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . 2 2 c o n s t i t u t e s t h e o n l y k n o w n h o m o l e p t i c d i n u c l e a r c y a n i d e c o m p l e x i n t h e l i t e r a t u r e , a n d t h e d i r h e n i u m c o m p o u n d i s t h e o n l y c y a n i d e c o m p l e x o f t h e e d g e - s h a r i n g b i o c t a h e d r a l ( E S B O ) t y p e . T h e s e e x a m p l e s n o t w i t h s t a n d i n g , t h e f u l l p o t e n t i a l f o r t h e u s e o f t h e c y a n i d e l i g a n d i n m e t a l - m e t a l b o n d c h e m i s t r y h a s n o t b e e n s i g n i fi c a n t l y r e a l i z e d . O n e o b v i o u s a r e a o f i m p a c t i s t o a d v a n c e t h e u n d e r s t a n d i n g o f s t r u c t u r e a n d b o n d i n g i n s i m p l e m o l e c u l e s v i a s y n t h e s i s a n d s p e c t r o s c o p i c a n d s t r u c t u r a l c h a r a c t e r i z a t i o n o f n o v e l c o m p o u n d s w i t h c y a n i d e l i g a n d s . T h i s c o u l d i n t u r n p r o v i d e a s o u r c e f o r e x p l o r a t i o n o f a l i t t l e d e v e l o p e d a r e a , n a m e l y t h e e x t e n s i o n o f m u l t i p l y b o n d e d m o l e c u l a r p r e c u r s o r s i n t o s o l i d s t a t e m a t e r i a l s w i t h i n t e r e s t i n g p r o p e r t i e s . 2 3 C . M a t e r i a l s w i t h o p e n - s h e l l m e t a l s c o o r d i n a t e d t o o r g a n i c a c c e p t o r r a d i c a l s A n t i f e r r o m a g n e t i c e x c h a n g e b e t w e e n s t r o n g l y i n t e r a c t i n g m a g n e t i c c e n t e r s o f u n e q u a l s p i n s i s u s e f u l f o r d e s i g n i n g b u l k m a g n e t i c m a t e r i a l s , a s e v i d e n c e d b y t h e s u c c e s s o f t h i s a p p r o a c h i n t h e P r u s s i a n B l u e f a m i l y o f c o m p o u n d s , e . g . V [ C r ( C N ) 6 ] o _ 8 6 w h i c h o r d e r s a t T 0 = 3 1 5 K . T h e s e c o m p o u n d s d e m o n s t r a t e t h e p o t e n t i a l f o r p r e p a r i n g m a t e r i a l s f r o m m o l e c u l a r b u i l d i n g b l o c k s u s i n g m i l d s o l u t i o n m e t h o d s . I n t h e s e a r c h f o r n o v e l m a g n e t i c c o m p o u n d s , a n a l t e r n a t i v e t o m e t a l c y a n i d e s t h a t i s a m e n a b l e t o 3 0 t h i s f a c i l e s o l u t i o n s y n t h e s i s i s t h e p r e p a r a t i o n o f m a t e r i a l s t h a t h a v e b o t h i n o r g a n i c a n d o r g a n i c c o m p o n e n t s . M a t e r i a l s w i t h o p e n - s h e l l m e t a l s a n d o r g a n i c r a d i c a l s c a n h a v e s p i n s o n b o t h t h e i n o r g a n i c a n d o r g a n i c c o m p o n e n t s . R e c e n t a c t i v i t y i n t h i s a r e a o f m o l e c u l e - b a s e d m a t e r i a l s h a s l e d t o i m p o r t a n t a c h i e v e m e n t s i n a n u m b e r o f t e c h n o l o g i c a l l y i m p o r t a n t a r e a s . N o v e l m o l e c u l a r a n d e x t e n d e d n e t w o r k s c o n s t r u c t e d f r o m o r g a n i c a n d i n o r g a n i c b u i l d i n g b l o c k s h a v e b e e n f o u n d t o b e h a v e a s m o l e c u l e - b a s e d c o n d u c t o r s a n d s u p e r c o n d u c t o r s “ , o p t i c a l l y a c t i v e c o m p o u n d s 2 5 a n d m a g n e t s . 2 6 F u r t h e r m o r e , t h e v e r s a t i l i t y o f m o l e c u l e - b a s e d m a t e r i a l s a l l o w s f o r t h e d e s i g n o f “ h y b r i d ” m a t e r i a l s w i t h t h e p o s s i b i l i t y o f t h e c o - e x i s t e n c e o f p r o p e r t i e s , o r e v e n s y n e r g y b e t w e e n t h e m . 2 7 I n p a r t i c u l a r , m a g n e t i s m h a s b e e n o n e o f t h e fi e l d s t h a t h a s u n d e r g o n e s i g n i fi c a n t d e v e l o p m e n t , w i t h m 0 1 e c u l e - b a s e d m a g n e t i c m a t e r i a l s t h a t m i m i c a n d e v e n i m p r o v e o n t h e p r o p e r t i e s o f c l a s s i c i n o r g a n i c m a g n e t s ( e . g . c r i t i c a l t e m p e r a t u r e s ” , c o e r c i v e fi e l d s ” ) h a v i n g b e e n r e p o r t e d . A c o m m o n f e a t u r e o f m o l e c u l e - b a s e d m a g n e t s i s t h e p r e s e n c e o f p o l y m e r i c n e t w o r k s o f p a r a m a g n e t i c m e t a l s b r i d g e d b y l i g a n d s c a p a b l e o f p r o m o t i n g m a g n e t i c i n t e r a c t i o n s b e t w e e n t h e l o c a l i z e d d - e l e c t r o n s . I n a d d i t i o n t o t h e d i f f e r e n t p a t h w a y s f o r m a g n e t i c e x c h a n g e t h r o u g h t h e l i g a n d ( 6 v e r s u s a t ) , i t i s i m p o r t a n t t o c o n s i d e r t h e s i z e o f t h e l i n k e r , w h i c h i s 3 1 t y p i c a l l y i n v e r s e l y r e l a t e d t o t h e s t r e n g t h o f t h e i n t e r a c t i o n . C o n s e q u e n t l y , m o s t e x a m p l e s o f m o l e c u l a r - b a s e d m a g n e t s a r e b a s e d o n l i g a n d s c o n s i s t i n g o f o n l y a f e w a t o m s s u c h a s C N " 3 0 , N ( C N ) 2 ' 3 1 , a n d C 2 0 4 2 - 3 2 . O n e s t r a t e g y f o r i n d u c i n g s t r o n g e r m a g n e t i c i n t e r a c t i o n s w i t h l o n g e r l i n k e r s i s t o u s e o r g a n i c r a d i c a l s a s l i g a n d s , d u e t o t h e a b i l i t y o f u n p a i r e d e l e c t r o n s o n t h e l i g a n d t o i n t e r a c t w i t h t h o s e o f t h e m e t a l s . N o v e l m a g n e t s h a v e b e e n o b t a i n e d i n t h i s w a y w i t h o r g a n i c a c c e p t o r s s u c h a s T C N E 3 3 , a n d T C N Q 3 4 ( F i g u r e 1 . 1 5 ) . T h e r e a c t i o n o f V ( C 6 H 6 ) 2 w i t h a n e x c e s s o f T C N E p r o c e e d s w i t h r e d u c t i o n o f t h e T C N E b y t h e V ( C 6 H 6 ) 2 f o l l o w e d b y l o s s o f t h e C 6 H 6 l i g a n d s t o y i e l d a b l a c k p r e c i p i t a t e w i t h t h e e m p i r i c a l c o m p o s i t i o n [ V ( T C N E ) X ] . y C H 2 C 1 2 ( x g 2 , y a 1 / 2 ) . 3 3 2 1 T h i s c o m p o u n d h a s a n o r d e r i n g t e m p e r a t u r e , T C , a b o v e r o o m t e m p e r a t u r e a n d e x h i b i t s h y s t e r e s i s w i t h a c o e r c i v e fi e l d o f 6 0 G a t r o o m t e m p e r a t u r e . T h e c r i t i c a l t e m p e r a t u r e , i n f a c t , e x c e e d s 3 5 0 K , t h e t h e r m a l d e c o m p o s i t i o n t e m p e r a t u r e o f t h e s a m p l e , b u t w a s e s t i m a t e d t o b e ~ 4 0 0 K b y a l i n e a r e x t r a p o l a t i o n o f t h e m a g n e t i z a t i o n t o a t e m p e r a t u r e a t w h i c h i t w o u l d v a n i s h . 3 6 a D u e t o t h e s t r u c t u r a l d i s o r d e r a n d v a r i a b l e c o m p o s i t i o n o f t h e m a g n e t i c m a t e r i a l , a c o n s e q u e n c e o f v e r y l o w s o l u b i l i t y a n d e x t r e m e a i r a n d w a t e r s e n s i t i v i t y , t h e d e t a i l e d s t r u c t u r e o f [ V ( T C N E ) x ] - y C H 2 C 1 2 h a s y e t t o b e e l u c i d a t e d , b u t t h e p r o p o s e d l o c a l 3 2 b o n c R e a r r e s u M n . C O H [ e m b e l t p l C ] l l l ' W a t b o r . M n e x t T h e P E I ; b o n d i n g a b o u t e a c h T C N E a n d V c e n t e r i s d e p i c t e d i n F i g u r e 1 . 1 6 . R e a c t i o n s o f T C N E w e r e c a r r i e d o u t w i t h o t h e r fi r s t r o w t r a n s i t i o n m e t a l s r e s u l t i n g i n t h e p r e p a r a t i o n o f t h e a n a l o g o u s [ M ( T C N E ) 2 ] c o m p o u n d s o f F e , M n , C o , a n d N i . 3 3 C T h e s a t u r a t i o n m a g n e t i z a t i o n , M s , a n d o r d e r i n g t e m p e r a t u r e s , T c , f o r t h e s e p r o d u c t s a r e p r e s e n t e d i n T a b l e 1 . 2 . T h e s e c o m p o u n d s d i d n o t d i s p l a y c o o p e r a t i v e m a g n e t i c b e h a v i o r a t r o o m t e m p e r a t u r e , b u t h y s t e r e s i s w a s o b s e r v e d f o r [ M ( T C N E ) 2 ] ( M = C o , N i ) b e l o w t h e o r d e r i n g t e m p e r a t u r e f o r b o t h ( 4 4 K ) . B i n a r y t r a n s i t i o n m e t a l c o m p o u n d s o f t h e r a d i c a l T C N Q h a v e b e e n p r e p a r e d w i t h F e , C o , M n , a n d N i b o t h w i t h c o o r d i n a t e d s o l v e n t , M ( T C N Q ) 2 ( S ) 2 , a n d a s s o l v e n t f r e e p h a s e s , M ( T C N Q ) 2 . 3 4 P r e p a r a t i o n i n w a t e r o r a l c o h o l s l e d t o t w o - d i m e n s i o n a l p o l y m e r s w i t h e x t e n s i v e h y d r o g e n b o n d i n g a n d n - s t a c k i n g a s e v i d e n c e d b y t h e c r y s t a l s t r u c t u r e o f M n ( T C N Q ) 2 ( C H 3 O H ) 2 p r e s e n t e d i n F i g u r e 1 . 1 7 . 3 5 T h e T C N Q m o l e c u l e s e x h i b i t t w o d i f f e r e n t s t r u c t u r a l t y p e s , n a m e l y o - d i m e r s r e s u l t i n g f r o m d i r e c t C - C b o n d f o r m a t i o n b e t w e e n t w o T C N Q r a d i c a l s a n d f a c e - t o - f a c e n - d i m e r s . T h e s e c o o r d i n a t e d s o l v e n t p h a s e s e x h i b i t e d o n l y C u r i e - W e i s s p a r a m a g n e t i s m . T h e s o l v e n t f r e e p h a s e s , M ( T C N Q ) 2 , w e r e m o r e d i f fi c u l t t o s t r u c t u r a l l y c h a r a c t e r i z e , b u t w e r e s h o w n t o f o r m n a n o s i z e c r y s t a l s a s j u d g e d b y T E M 3 3 h i d l h I e m n o t f r e t g l a s c h m t h r o U l l d : t o o 1 C O I H ‘ [ 1 1 6 3 5 h n h t h a n b f h a ‘ g l a s s w i t h p o w d e r p a t t e r n s i n d i c a t i v e o f t e t r a g o n a l c r y s t a l s y s t e m s . T h e M n a n d N i c o m p o u n d s e x h i b i t e d a n i n c r e a s e i n m a g n e t i c s u s c e p t i b i l i t y a t l o w t e m p e r a t u r e s d u e t o f e r r o m a g n e t i c c o u p l i n g . T h e n a t u r e o f t h i s b e h a v i o r i s n o t c l e a r - c u t b e c a u s e a . c . m a g n e t i c s u s c e p t i b i l i t y s t u d i e s r e v e a l e d a f r e q u e n c y d e p e n d e n c e f o r t h e t r a n s i t i o n , w h i c h i s i n d i c a t i v e o f e i t h e r a s p i n - g l a s s o r s u p e r p a r a m a g n e t i c s t a t e b u t n o t a f e r r o m a g n e t . 3 4 S p i n g l a s s e s a r e c h a r a c t e r i z e d b y f e r r o m a g n e t i c o r a n t i f e r r o m a g n e t i c i n t e r a c t i o n s t h a t t h r o u g h s o m e d e g r e e o f r a n d o m n e s s o r c o m p e t i n g i n t e r a c t i o n s c a n n o t u n d e r g o a p h a s e t r a n s i t i o n o r o r d e r i n g . 3 6 A t t e m p t s t o fi t t h e M n ( T C N Q ) 2 m a g n e t i c d a t a t o t h e A r r h e n i u s l a w g a v e B a a n d v 0 v a l u e s t h a t w e r e t o o l a r g e t o o h a v e a n y p h y s i c a l m e a n i n g s u g g e s t i n g t h e m a g n e t i c p r o p e r t i e s i n t h e s e c o m p o u n d s a r e n o t s u p e r p a r a m a g n e t i c i n o r i g i n . H e a t c a p a c i t y m e a s u r e m e n t s d i d n o t r e v e a l a p e a k i n d i c a t i v e o f t h e p h a s e t r a n s i t i o n o f a f e r r o m a g n e t , b u t t h e o b s e r v e d i n c r e a s e i n s u s c e p t i b i l i t y a r e m o r e c h a r a c t e r i s t i c o f f e r r o m a g n e t s t h a n s p i n g l a s s e s . T h e n a t u r e o f t h e m a g n e t i c b e h a v i o r o f t h e s e c o m p o u n d s a p p e a r s t o s h a r e c h a r a c t e r i s t i c s o f b o t h s p i n g l a s s e s a n d f e r r o m a g n e t s . 3 4 3 4 N N \ / c : : C / \ N / \ N t e t r a c y a n o e t h y l e n e ( T C N E ) E 1 / 2 ( r e d ) = 0 . 3 4 V N N \ \ / C c \ _ _ _ / c C c / \ c / / \ \ N N 7 , 7 , 8 , 8 - t e t r a c y a n o q u i n o d i m e t h a n e ( T C N Q ) E 1 , 2 ( , e d ) = 0 . 2 8 V F i g u r e 1 . 1 5 . S c h e m a t i c r e p r e s e n t a t i o n s o f T C N E a n d T C N Q . T h e r e p o r t e d p o t e n t i a l s a r e v s A g / A g C l . 3 5 N N — - ' V / \ , p l a n a r N ‘ 5 . N l V N , 3 " N N J “ c u , z : m “ — ‘ 0 — < . . 1 . O t w i s t e d F i g u r e 1 . 1 6 . P r o p o s e d l o c a l b o n d i n g a b o u t e a c h T C N E a n d V c e n t e r i n [ V ( T C N E ) X ] . y ( C H 2 C 1 2 ) , 3 3 a 3 6 [ M ( T C N E ) 2 v F M N C ] ' x C H 2 C 1 2 M S , ( e m u n e 0 i 1 1 I 8 1 0 9 6 , 5 , , , , 0 3 0 9 0 8 e r n o 1 - 1 ) a O 0 0 0 0 0 0 0 0 0 ( K ) T ~ 4 c 1 1 4 4 . 0 0 2 4 4 0 7 1 T a b l e 1 . 2 . S a t u r a t i o n m a g n e t i z a t i o n , M S , a n d o r d e r i n g t e m p e r a t u r e , T C , f o r [ M ( T C N E ) 2 ] ° x C H 2 C 1 2 ( M = V , M n , F e , C o , N i ) 3 3 a 3 ‘ r e c o r d e d a t 2 K 3 7 C 2 5 ‘ l ' N 3 . . . o . C 2 2 ' " ‘ _ c o v C “ 0 1 - o ' C 1 0 C 3 C 2 C 1 5 C 2 2 C 2 2 : 4 7 N 8 . C l C 8 N l ‘ C 5 ’ 0 6 c 7 . ( : 7 c m c m " : 2 . . . m ( b ) F i g u r e 1 . 1 7 . V i e w s o f t h e s t r u c t u r e o f M n ( T C N Q ) 2 ( C H 3 O H ) 2 : ( a ) a s e g e m e n t o f o n e z i g - z a g c h a i n ( b ) e x t e n d e d p a c k i n g d i a g r a m p r o j e c t e d d o w n t h e ( 1 a x i s . 3 8 T h i s d i s s e r t a t i o n d e s c r i b e s t h e w o r k r e l a t i n g t o t h e p r e p a r a t i o n o f c y a n i d e a n d n i t r i l e c o m p o u n d s w i t h a p p l i c a t i o n s i n s o l i d s t a t e a n d c l u s t e r c h e m i s t r y . S e v e r a l a p p r o a c h e s i n d e v e l o p i n g t h i s c h e m i s t r y w e r e u n d e r t a k e n . T h e fi r s t a p p r o a c h , d e t a i l e d i n C h a p t e r s 1 1 a n d I I I i s f o c u s e d o n a d v a n c i n g t h e fi e l d o f c y a n i d e c h e m i s t r y i n t h e a r e a o f l o w v a l e n t m e t a l s t h a t e x h i b i t m e t a l - m e t a l b o n d i n g . E f f o r t s t o p r e p a r e h o m o l e p t i c d i n u c l e a r c y a n i d e c o m p o u n d s a r e p r e s e n t e d i n C h a p t e r I I . T h e s y n t h e s i s a n d c h a r a c t e r i z a t i o n o f [ E t 4 N ] 4 [ R e 2 ( C N ) 3 ] , w h i c h i s o n l y t h e s e c o n d r e p o r t e d e x a m p l e o f a d i n u c l e a r h o m o l e p t i c c y a n i d e c o m p o u n d o f t h e t y p e [ M 2 ( C N ) m ] " ' , i s p r e s e n t e d a l o n g w i t h d i s c u s s i o n s o f t h e c y a n i d e r e a c t i v i t y o f o t h e r t r a n s i t i o n m e t a l i o n s t h a t h a v e fi g u r e d p r o m i n e n t l y i n t h e d e v e l o p m e n t o f m e t a l - m e t a l m u l t i p l e b o n d c h e m i s t r y . C h a p t e r I I I p r e s e n t s t h e n o v e l a n i o n i c e d g e - s h a r i n g - b i o o c t a h e d r a l ( E S B O ) c o m p o u n d [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' a n d t h e c o r r e s p o n d i n g o n e a n d t w o - e l e c t r o n o x i d a t i o n p r o d u c t s [ M 0 2 ( C N ) 6 ( d p p m ) - 2 ] 1 ' a n d M 0 2 ( C N ) 6 ( d p p m ) 2 . A c o m p u t a t i o n a l s t u d y o f t h e s e c o m p o u n d s l e n d s i n s i g h t i n t o t h e n a t u r e o f t h e s e m i - b r i d g i n g m o d e a d o p t e d b y t h e c y a n i d e s s p a n n i n g t h e d i m o l y b d e n u m c o r e i n t h e s e c o m p o u n d s a n d i t s i n fl u e n c e o n t h e m e t a l - m e t a l b o n d . 3 9 A n e w f a m i l y o f m o n o n u c l e a r t r a n s t i o n m e t a l c y a n i d e a n d n i t r i l e c o m p o u n d s p r e p a r e d w i t h t h e f a c i a l c a p p i n g l i g a n d 1 - ( h y d r o ) t r i s p y r a z o l b o r a t e a r e r e p o r t e d i n C h a p t e r I V . T h e s e c o m p o u n d s w e r e d e s i g n e d f o r t h e p r e p a r a t i o n o f m o l e c u l a r o p e n - s h e l l h e t e r o m e t a l l i c c u b e s . A n a l t e r n a t i v e t o t r a n s i t i o n m e t a l c y a n i d e b u i l d i n g b l o c k s f o r t h e p r e p a r a t i o n o f c l u s t e r s a n d e x t e n d e d s y s t e m s i s p r e s e n t e d i n C h a p t e r V . I n t h e v e i n o f u s i n g o r g a n i c r a d i c a l s t o l i n k t r a n s i t i o n m e t a l i o n s , t h e c h e m i s t r y o f h e x a z a t r i p h e n y l e n e - h e x a c a r b o n i t r i l e ( H A T - ( C N ) 6 ) w a s e x p l o r e d . T h e m o l e c u l e H A T - ( C N ) 6 i s a n a r o m a t i c s y s t e m w i t h t h r e e t r i g o n a l l y d i s p o s e d N - N c h e l a t i n g s i t e s t h a t i s c a p a b l e o f u n d e r g o i n g m u l t i p l e r e v e r s i b l e r e d u c t i o n p r o c e s s e s . T h e d e l i b e r a t e r e d u c t i o n o f H A T - ( C N ) 6 t o [ H A T - ( C N ) 6 ] ' a n d [ H A T - ( C N ) 6 ] 2 ' a n d t h e r e a c t i v i t y o f t h e s e r e d u c e d s p e c i e s w i t h t r a n s t i o n m e t a l s w i l l b e p r e s e n t e d . 4 0 R e f e r e n c e s 1 . ( a ) G a r d n e r , G . B . ; V e n k a t a r a m a n , D . ; M o o r e , J . S . ; L e e , S . N a t u r e , 1 9 9 5 , 3 7 4 , 7 9 2 . ( b ) Y a g h i , O . M . ; L i , G . ; L i , H . N a t u r e , 1 9 9 5 , 3 7 8 , 7 0 3 . ( c ) Y a g h i , O . M . ; L i , H . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 7 , 1 0 4 0 1 . ( d ) V e n k a t a r a m a n , D . ; G a r d n e r , G . B . ; L e e , S . ; M o o r e , J . S . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 7 , 1 1 6 0 1 . ( e ) W h i t e f o r d , J . A . ; R a c h l i n , E . M . ; S t a n g , P . J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 6 , 3 5 , 2 5 2 4 . ( f ) Y a g h i , O . M . ; L i , H . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 8 , 2 9 5 . ( g ) Y a g h i , O . M . ; L i , H . ; G r o y , T . L . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 9 0 9 6 . ( h ) O l e n y u k , B . ; W h i t e f o r d , J . A . ; S t a n g , P . J . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 8 2 2 1 . 2 . ( a ) M a n r i q u e z , J . M . ; Y e e , G . T . ; M c L e a n , S . ; E p s t e i n , A . J . ; M i l l e r , J . S . S c i e n c e , 1 9 9 1 , 2 5 2 , 1 4 1 5 . ( b ) T a m a k i , H . ; Z h u a n g , Z . J . ; M a t s u m o t o , N . ; K i d a , S . ; K o i k a w a , M . ; A c h i w a , N . ; H a s h i m o t o , Y . ; O k a w a , H . J . A m . C h e m . S o c . 1 9 9 2 , 1 1 4 , 6 9 7 4 . ( c ) S t u m p f , H . O . ; P e i , Y . ; K a h n , O . ; S l e t t e n , J . ; R e n a r d , J . P . J . A m . C h e m . S o c . 1 9 9 3 , 1 1 5 , 6 7 3 8 . ( d ) I n o u e , K . ; I w a m u r a , H . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 3 1 7 3 . ( e ) O h b a , M . ; M a r u o n o , N . ; O k a w a , H . ; E n o k i , T . ; L a t o u r , J . M . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 1 1 5 6 6 . D e c u r t i n s , S . ; S c h m a l l e , H . W . ; S c h n e u w l y , P . ; Z h e n g , L . M . ; E n s l i n g , J . ; H a u s e r , A . I n o r g . C h e m . 1 9 9 5 , 3 4 , 5 5 0 1 . ( f ) O h b a , M . ; O k a w a , H . ; I t o , T . ; O h t o , A . J . J . A m . C h e m . S o c . C h e m . 4 1 C o m m u n . 1 9 9 5 , 1 5 4 5 . ( g ) M i c h a u t , C . ; O u a h a b , L . ; B e r g e r a t , P . ; K a h n , O . ; B o u s s e k s o u , A . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 3 6 1 0 . ( h ) d e M u n n o , G . ; P o e r i o , T . ; V i a u , G . ; J u l v e , M . ; L l o r e t , F . ; J o u m a u x , Y . ; R i v i e r e , E . C h e m . C o m m u n . 1 9 9 6 , 2 5 8 7 . 3 . ( a ) A u m fi l l e r , A . ; E r k , P . ; K l e b e , G . ; H fi n i g , S . ; v o n S c h i i t z , J . ; W e r n e r , H . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 6 , 2 5 , 7 4 0 . ( b ) A u m fi l l e r , A . ; E r k , G . ; H i i n i g , S . M o l . C r y s t . L i q . C r y s t . 1 9 8 8 , 1 5 6 , 2 1 5 . ( c ) E r k , P . ; G r o s s , H . J . ; G . ; H i i n i g , U . L . ; M e i x n e r , H . ; W e r n e r , H . P . ; v o n S c h l i t z , J . ; W o l r , H . C . A n g e w . C h e m . I n t . E d . E n g l . 1 9 8 9 , 2 8 , 1 2 4 5 . ( d ) K a t o , R . ; K o b a y a s h i , H . ; K o b a y a s h i , A . J . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 1 , 5 2 2 4 . ( e ) S i n z g e r , K . ; H i i n i g , S . ; J o p p , M . ; B a u e r , D . ; B e i t s c h , W . ; v o n S c h i i t z , J . ; W o l f , H . C . ; K r e m e r , R . K . ; M e t z e n t h i n , T . ; B a u , R . ; K h a n , S . I . ; L i n d b a u m , A . ; L e n g a u e r , C . L . ; T i l l m a n n s , E . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 5 , 7 6 9 6 . 4 . ( a ) D u n b a r , K . R . ; H e i n t z , R . A . P r o g . I n o r g . C h e m . 1 9 9 7 , 4 5 , 2 8 3 . ( b ) V a h r e n k a m p , H . ; G e i s s , A . ; R i c h a r d s o n , G . N . J . C h e m . S o c . D a l t o n , 1 9 9 7 , 2 0 , 3 6 4 3 . 5 . S h a r p e , A . G . T h e C h e m i s t r y o f C y a n o C o m p l e x e s o f t h e T r a n s i t i o n M e t a l s , A c a d e m i c P r e s s I n c . N e w Y o r k 1 9 7 6 . 6 . ( a ) P h i l l i p s , R . F . ; P o w e l l , H . M . P r o c . R . S o c . L o n d o n , 1 9 9 3 , I 7 3 , 1 4 7 . 4 2 ( b ) S h a w , B . L . ; S h a w , G . J . C h e m . S o c . A . 1 9 7 1 , 3 5 3 3 . ( c ) S l o n e , R . V . ; H u p p , J . T . ; S t e r n , L . C . ; A l b r e t c h - S c h m i d t , T . E . ; I n o r g . C h e m . 1 9 9 6 , 3 5 , 4 0 9 6 . ( d ) S t a n g , P . J . ; O l e n y u k , B . A c c . C h e m . R e s . 1 9 9 7 , 3 0 , 5 0 2 . ( e ) O l e n y u k , B . ; F e c h t e n k o t t e r , A . ; S t a n g , P . J . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 8 , 1 7 0 7 . ( f ) H u p p , J . T . C o o r d . C h e m . R e v . 1 9 9 8 , 1 7 1 , 2 2 1 . ( g ) B e n k s t e i n , K . D . ; H u p p , J . T . ; S t e r n , L . C . I n o r g . C h e m . 1 9 9 8 , 3 7 , 5 4 0 4 . ( h ) W o e s s n e r , S . M . ; H e l m s , J . B . ; S h e n , Y . ; S u l l i v a n , B . P . I n o r g . C h e m . 1 9 9 8 , 3 7 , 5 4 0 6 . ( i ) O s h i o , H . ; T a m a d a , O . ; O n o d e r a , H . ; I t o , T . ; I k o m o , T . ; T e r o - K u b o t a , S . I n o r g . C h e m . 1 9 9 9 , 3 8 , 5 6 8 6 . 7 . K l a u s m e y e r , K . K . ; R a u c h f u s s , T . B . ; W i l s o n , S . R . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 1 6 9 4 . 8 . H e i n r i c h , J . L . ; B e r s e t h , P . A . ; L o n g , J . R . C h e m . C o m m u n . 1 9 9 8 , 1 2 3 1 . 9 . K l a u s m e y e r , K . L . ; W i l s o n , S . R . ; R a u c h f u s s , T . B . J . A m . C h e m . S o c . 1 9 9 9 , 1 2 1 , 2 7 0 5 . 1 0 . ( a ) C a n e s c h i , A . ; G a t t e s c h i , D . ; L a u g i e r , J . ; R e y , P . ; S e s s o l i , R . ; Z a n a c h i n i , C . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 0 , 2 7 8 5 . ( b ) G a t t e s c h i , D . ; C a n e s c h i , A . ; P a r d i , L . ; S e s s o l i , R . S c i e n c e , 1 9 9 4 , 2 6 5 , 1 0 5 4 . ( c ) T a f t , K . L . ; D e l f s , C . D . ; P a p a e f t h y m i o u , S . F . ; F o n e r , S . ; G a t t e s c h i , D . ; L i p p a r d , S . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 8 2 3 . ( ( 1 ) P o w e l l , A . K ; H e a t h , S . L . ; G a t t e s c h i , D . ; P a r d i s , L . ; S e s s o l i , R . ; S p i n a , G . ; D e l 4 3 - G i a l l o , F . ; a n d P i e r a l l i , F . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 7 , 2 4 9 1 . ( e ) M a l l a h , T . ; F e r l a y , S . ; A u g b e r g e r , C . ; H e l a r y , C . ; H e r m i t e , F . ; O u a h e s , R . ; V a i s s e r m a n , J . ; V e r d a g u e r , M . ; V e i l l e t , P . M o l . C r y s t . L i q . C r y s t . S e c . A . - M o l . C r y s t . L i q . C r y s t . 1 9 9 5 , 2 7 3 , 1 4 1 . ( f ) S c u i l l e r , A . ; M a l l a h , T . ; V e r d a g u e r , M . ; N i v o r o z k h i n , A . ; T h o l e n c e , J . L . ; V i e l l e t , P . N e w J . o f C h e m . 1 9 9 6 , 2 0 , 1 . ( g ) M a l l a h , T . ; A u g b e r g e r , C . ; V e r d a g u e r , M . ; V e i l l e t , P . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 6 , 6 1 , 1 2 5 . ( h ) V o l o k i t i n , Y . ; S i n z i g , J . ; d e J o n g h , L . J . ; S c h m i d t , G . ; V a r g a f t i k , M . N . ; M o i s e e v , I . 1 . N a t u r e , 1 9 9 6 , 3 8 4 , 6 2 1 . ( i ) A b b a t i , G . L . ; C o m i a , A . ; F a b r e t t i , A . C . ; C a n e s c h i , A . C . ; G a t t e s c h i , D . I n o r g . C h e m . 1 9 9 8 , 3 7 , 3 7 5 9 . ( j ) S c h m i d t , G . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 8 , 1 0 7 7 . ( k ) B r e c h i n , K . E . ; C l e g g , W . ; M u r r i e , M . ; P a r s o n s , S . ; T e a t , S . J . ; W i n p e n n y , R . E . P . J . A m . C h e m . S o c . 1 9 9 8 , 1 2 0 , 7 3 6 5 . ( 1 ) M u l l e r , A . ; K r i c k m e y e r , E . ; B o g g e , H . ; S c h m i d t m a n n , M . ; B e u g h o l t , C . ; K r o g e r l e r , P . ; L u , C . ; A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 1 2 2 0 . ( m ) W a t t o n , S . P . ; F u h r m a n n , P . ; P e n c e , L . E . ; C a n e s c h i , A . ; C o m i a , A . ; A b b a t i , G . L . ; L i p p a r d , S . J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 7 , 3 6 , 2 7 7 4 . ( n ) T r a n , N . T . ; K a w a n o , M . ; P o w e l l , D . R . ; D a h l , L . F . J . A m . C h e m . S o c . 1 9 9 8 , 1 2 0 , 1 1 . 1 2 . 1 0 9 8 6 . ( 0 ) M u l l e r , A . ; S h a h , S . Q . N . ; B o g g e , H . S c h m i d t m a n n , M . N a t u r e , 1 9 9 9 , 3 9 7 , 4 8 . ( a ) F r i e d m a n , J . R . ; S a r a c h i k , M . P . ; T e j a d a , J . ; Z i o l o , R . P h y s . R e v . L e t t . 1 9 9 6 , 7 6 , 3 8 3 0 . ( b ) T h o m a s , L . ; L i o n t i , F . ; B a l l o u , R . ; G a t t e s c h i , D . ; S e s s o l i , R . ; B a r b a r a , B . N a t u r e , 1 9 9 6 , 3 8 3 , 1 4 5 . ( c ) A u b i n , S . M . J . ; W e m p l e , M . W . ; A d a m s , D . M . ; T s a i , H . L . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 7 7 4 6 . ( d ) A u b i n , S . M . J . ; S p a g n a , S . E p p l e y , H . J . ; S a g e r , R . E . ; F o l t i n g , K . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . M o l . C r y s t . a n d L i q . C r y s t . S c i e n c e a n d T e c h . S e c . A . - M o l . C r y s t . L i q . C r y s t . 1 9 9 7 , 3 0 5 , 1 8 1 . ( e ) A r o r n i , G . ; A u b i n , S . M . J . ; S p a g n a , S . ; B o l c a r , M . A . ; E p p l e y , H . J . ; F o l t i n g , K . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . ; H u f f m a n , J . C . ; S q u i r e , R . C . ; T s a i , H . L . ; W a n g , S . ; W e m p l e , M . W . ; P o l y h e d r o n , 1 9 9 8 , 1 7 , 3 0 0 5 . ( f ) R u i z , D . ; S u n , 2 . ; A l b e l a , B . ; F o l t i n g , K . ; R i b a s , J . ; C h r i s t o u , G . ; D . N . H e n d r i c k s o n , A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 3 0 0 . ( a ) S e s s o l i , R . ; T s a i , H . L . ; S c h a k e , A . R . ; W a n g , S . ; V i n c e n t , J . B . ; F o l t i n g K . ; G a t t e s c h i , D . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . J . A m . C h e m . S o c . 1 9 9 3 , 1 1 5 , 1 8 0 4 . ( b ) S e s s o l i , R . ; G a t t e s c h i , D . ; C a n e s c h i , A . ; N o v a k , M . A . N a t u r e , 1 9 9 3 , 3 6 5 , 1 4 1 . ( c ) B a r r a , A . L . ; D e b r u n n e r , D . ; G a t t e s c h i , D . ; S c h u l t z , C . E . ; S e s s o l i , R . E u r o p h y s . 4 5 1 3 . 1 4 . 1 5 . 1 6 . L e t t . 1 9 9 6 , 3 5 , 1 3 3 . ( d ) A u b i n , S . M . J . ; W e m p l e , D . M . ; A d a m s , D . M . ; T s a i , H . L . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 7 7 4 6 . ( e ) C a s t r o , S . L . ; S u n , 2 . ; G r a n t , C . M . ; B o l i n g e r , C . ; H e n d r i c k s o n , D . N . ; C h r i s t o u , G . J . A m . C h e m . S o c . 1 9 9 8 , 1 2 0 , 2 3 6 5 . ( f ) B a r r a , A . L . ; C a n e s c h i , A . ; C o m i a , A . ; F a b r i z i d e B i a n i , F . ; G a t t e s c h i , D . ; S a n g r e g o r i o , C . ; S e s s o l i , R . ; S o r a c e , L . J . A m . C h e m . S o c . 1 9 9 9 , 1 2 1 , 5 3 0 2 . ( g ) Y o o , J . ; B r e c h i n , E . K . ; Y a m a g u c h i , A . ; N a k a n o , M . ; H u f f m a n , J . C . ; M a n i e r o , A . L . ; B r u n e l , L . C . ; A w a g a , K . ; I s h i m o t o , H . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . I n o r g . C h e m . 2 0 0 0 , 3 9 , 7 8 3 . ( h ) G o o d w i n , J . C . ; S e s s o l i , R . ; G a t t e s c h i , D . ; W e m s d o r f e r , W . ; P o w e l l , A . K . ; H e a t h , S . L . J . C h e m . S o c . D a l t o n . 2 0 0 0 , 1 8 3 5 . ( a ) S o k o l , J . J . ; S h o r e s , M . P . ; L o n g , J . R . A n g e w . C h e m . I n t . E d . E n g l . 2 0 0 1 , 4 0 , 2 3 6 . ( b ) B e r s e t h , P . A . ; S o k o l , J . J . ; S h o r e s , M . P . ; H e i n r i c h , J . L . ; L o n g , J . R . J . A m . C h e m . S o c . 2 0 0 0 , 1 2 2 , 9 6 5 5 . W a l t o n , R . A . A C S S y m p . S e r . 1 9 8 1 , 1 5 5 , 2 0 7 . A l l i s o n , J . D . ; W o o d , T . E . ; W i l d R . E . ; W a l t o n , R . A . I n o r g . C h e m . 1 9 8 2 , 2 1 , 3 5 4 0 . K l e n d w o r t h , D . D . ; W e l t e r s , W . W . ; W a l t o n , R . A . O r g a n o m e t . 1 9 8 2 , 1 , 3 3 6 . 4 6 1 7 . M . D . C u r t i s , a n d R . J . K l i n g e r , J . O r g a n o m e t . C h e m . 1 9 7 8 , I 6 1 , 2 3 . 1 8 . M . D . C u r t i s , a n d R . J . K l i n g e r , J . O r g a n o m e t . C h e m . 1 9 7 8 , 1 6 1 , 2 3 . 1 9 . H . C . A s p i n a l l a n d A . J . D e e m i n g , J . C h e m . S o c . 1 9 8 3 , 8 4 , 2 0 5 . 2 0 . T . B u d z i c h o w s k i a n d M . C h i s h o l m , P o l y h e d r o n , 1 9 9 4 , 1 3 , 2 0 3 5 . 2 1 . S . P . D e r a n i y a g a n d K . R . G r u n d y , I n o r g . C h i m . A c t a , 1 9 8 4 , 8 4 , 2 0 5 . 2 2 . S . L . B a r t l e y , S . N . B e r n s t e i n , a n d K . R . D u n b a r , I n o r g . C h i m . A c t a . 1 9 9 3 , 2 1 3 , 2 1 3 . 2 3 . ( a ) C a y t o n , R . H . ; C h i s l h o l m , M . H . J . A m . C h e m . S o c . 1 9 8 9 , 1 1 1 , 8 9 2 1 . ( b ) C a y t o n , R . H . ; C h i s l h o l m , M . H . ; D a r r i n g t o n , F . D . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 0 , 2 9 , 1 4 8 1 . ( c ) C h i s h o l m , M . H . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 1 , 3 0 , 6 7 3 . 2 4 . W i l l i a m s , J . M . ; F e r r a r o , J . R . ; T h o r n , R . J . ; C a r l s o n , K . D . ; G e i s e r , U . ; W a n g , H . H . ; K i n i , A . M . ; W h a n g b o , M . H . i n : O r g a n i c S u p e r c o n d u c t o r s ( I n c l u d i n g F u l l e r e n e s ) . S y n t h e s i s , S t r u c t u r e , P r o p e r t i e s a n d T h e o r y , E d . R . N . G r i m e s , P r e n t i c e H a l l , E n g l e w o o d C l i f f s , N e w J e r s e y ( 1 9 9 2 ) . 2 5 . M o l e c u l a r N o n l i n e a r O p t i c s , E d . J . Z y s s . A c a d e m i c P r e s s , N e w Y o r k ( 1 9 9 4 ) . 2 6 . L a n d e e , C . P . ; M e l v i l l e , D . ; M i l l e r , J . S . M a t e r i a l s , E d . D . G a t t e s c h i , O . K a h n , J . S . M i l l e r , F . P a l a c i o , K l u w e r A c a d e m i c P r e s s , N A T O - A S I S e r i e s E 1 9 8 ( 1 9 9 6 ) 3 9 5 . i n : M a g n e t i c M o l e c u l a r 4 7 2 7 . ( a ) S a t o , 0 . ; I y o d a , T . ; F u j i s h i m a , A . ; H a s h i m o t o , K . S c i e n c e 2 7 2 ( 1 9 9 6 ) 7 0 4 ; ( b ) K u r m o o , M . ; G r a h a m , A . W . ; D a y , P . ; C o l e s , S . J . ; H u r s t h o u s e , M . B . ; C a u l fi e l d , J . L . ; S i n g l e t o n , J . ; P r a t t , F . L . ; H a y e s , W . ; D u c a s s e , L . ; G u i o n e a u , P . J . A m . C h e m S o c . 1 1 7 ( 1 9 9 5 ) 1 2 2 0 9 . 2 8 . ( a ) M a n r i q u e z , J . M . ; Y e e , G . T . ; M c L e a n , R . S . ; E p s t e i n , A . J . ; M i l l e r , J . S . S c i e n c e 2 5 2 ( 1 9 9 1 ) , 1 4 1 5 ; 0 ) ) M a l l a h , T . ; T h i e b a u l t , S . ; V e r d a g u e r , M . ; V e i l l e t , P . S c i e n c e 2 6 2 ( 1 9 9 3 ) 1 5 5 4 . l 2 9 . ( a ) K u r m o o , M . ; K e p e r t , C ] . N e w J . C h e m . 2 2 ( 1 9 9 8 ) 1 5 1 5 ; ( b ) C o r o n a d o , E . ; G a l a n - M a s c a r é s , J . R . ; G o m e z - G a r c i a , C . J . A d v . M a t e r . 1 1 ( 1 9 9 9 ) 5 5 8 . 3 0 . ( a ) D u n b a r , K . R . ; H e i n t z , R . A . P r o g . I n o r g . C h e m . 3 5 ( 1 9 9 6 ) 4 4 4 9 ; ( b ) V e r d a g u e r , M . ; B l e u z e n , A . ; M a r v a u d , V . ; V a i s s e r m a n n , J . S e u l e i m a n , M . ; D e s p l a n c h e s , C . ; S c u l l i e r , A . ; T r a i n , C . ; G a r d e , R . ; G e l l y , G . ; L o m e n e c h , C . ; R o s e n m a n , I . ; V e i l l e t , P . ; C a r t i e r , C . ; V i l l a i n , F . C o o r d . C h e m . R e v . 1 9 0 - 1 9 2 ( 1 9 9 9 ) 1 2 8 5 ; ( c ) O h b a , M . ; O k a w a , H . C o o r d . C h e m . R e v . 1 9 8 ( 2 0 0 0 ) 3 1 3 ; E n t l e y , W . R . ; G i r o l a m i , G . S . I n o r g . C h e m . 3 3 ( 1 9 9 4 ) 5 1 5 6 ; ( d ) S a t o , 0 . ; E i n a g a , Y . ; F u j i s h i m a , A . ; H a s h i m o t o , K . I n o r g . C h e m . 3 8 ( 1 9 9 9 ) 4 4 0 5 ; ( e ) L a r i o n o v a , J . ; C l é r a c , R . ; S a n c h i z , J . ; K a h n , O . ; G o l h e n , S . ; O u a h a b , L . J . A m . C h e m . S o c . 1 2 0 ( 1 9 9 8 ) 1 3 0 8 8 . 3 1 . ( a ) M a n s o n , J . L . ; K m e t y , C . R . ; H u a n g , Q . - Z . ; L y n n , J . W . ; B e n d e l e , G . M . ; P a g o l a , S . ; S t e p h e n s , P . W . ; L i a b l e - S a n d s , L . M . ; R h e n i n g o l d , A . L . ; E p s t e i n , A . J . ; M i l l e r , J . S . C h e m . M a t e r . 1 0 ( 1 9 9 8 ) 2 5 5 2 ; M a n s o n , J . L . ; K m e t y , C . R . ; E p s t e i n , A . J . ; M i l l e r , J . S . I n o r g . C h e m . 3 8 ( 1 9 9 9 ) 2 5 5 2 ; ( c ) B a t t e n , S . R . ; J e n s e n , P . ; M o u b a r a k i , B . ; M u r r a y , K . S . ; 4 8 R o b s o n , R . C h e m . C o m m u n . ( 1 9 9 8 ) 4 3 9 ; ( d ) B a t t e n , S . R . ; J e n s e n , P . ; K e p e r t , C . J . ; K u r m o o , M . ; M o u b a r a k i , 8 . ; M u r r a y , K . S . ; P r i c e , D . J . J . C h e m . S o c . , D a l t o n T r a n s . ( 1 9 9 9 ) 2 9 8 7 . 3 2 . ( a ) T a m a k i , H . ; Z h o n g , Z . J . ; M a t s u m o t o , N . ; K i d a , S . ; K o i k a w a , M . ; A c h i w a , N . ; H a s h i m o t o , Y . ; O k a w a , H . J . A m . C h e m . S o c . 1 1 4 ( 1 9 9 2 ) 6 9 7 4 ; ( b ) P e l l a u x , R . ; S c h m a l l e , H . W . ; H u b e r , R . ; F i s h e r , P . ; H a u s s , T . ; O u l a d d i a f , B . ; D e c u r t i n s , S . I n o r g . C h e m . 3 6 ( 1 9 9 7 ) 2 3 0 1 ; ( c ) H e m a n d e z - M o l i n a , M . ; L l o r e t , F . ; R u i z - P e r e z , C . ; J u l v e , M . I n o r g . C h e m . 3 7 ( 1 9 9 8 ) 4 1 3 1 ; ( d ) C o r o n a d o , E . ; G a l a n - M a s c a r é s , J . R . ; G o m e z - G a r c i a , C . J . ; E n s l i n g , J . ; G fi t l i c h , P . C h e m . E u r . J . 6 ( 2 0 0 0 ) 5 5 2 . 3 3 . ( a ) M i l l e r , J . S . ; E p s t e i n , A . J . A n g e w . C h e m . I n t . E d . E n g l . 3 3 ( 1 9 9 4 ) 3 8 5 ; ( b ) M i l l e r , J . S . ; E p s t e i n , A . J . C h e m i s t r y & I n d u s t r y 2 ( 1 9 9 6 ) 4 9 ; ( c ) Z h a n g , J . ; E n s l i n g , J . ; K s e n o f o n t o v , V . ; G l i t l i c h , P . ; E p s t e i n , A . J . ; M i l l e r , J . S . ; A n g e w . C h e m . , I n t . E d . E n g l . 3 7 ( 1 9 9 8 ) 6 5 7 ; ( d ) Y e e , G . T . ; M a n r i q u e z , J . M . ; D i x o n , D . A . ; M c L e a n , R . S . ; G r o s k i , D . M . ; F l i p p e n , R . 1 3 . ; N a r a y a n , K . s . ; E p s t e i n , A . J . ; M i n e r , J . s . A d v . M a t e r . 3 , ( 1 9 9 1 ) 3 0 9 ; ( e ) M i l l e r , J . S . ; G l a t z h o f e r , D . T . ; O ' H a r e , D . M . ; R e i f f , W . M . ; C h a k r a b o r t y , A . ; E p s t e i n , A . J . I n o r g . C h e m . 2 8 ( 1 9 8 9 ) 2 9 3 0 . 3 4 . ( a ) D u n b a r , K . R . ; C o w e n , J . ; Z h a o , H . ; H e i n t z , R . A . ; O u y a n g , X . ; G r a n d i n e t t i , G . i n N A T O A S I : S u p r a m o l e c u l a r E n g i n e e r i n g o f S y n t h e t i c M e t a l l i c M a t e r i a l s : C o n d u c t o r s a n d M a g n e t s , E d : J . V e c i a n a , K l u w e r A c a d e m i c P u b ] . 5 1 8 ( 1 9 9 9 ) 3 5 3 ; ( b ) C o w e n , J . ; C l é r a c , R . ; 4 9 3 5 . 3 6 . 3 7 . H e i n t z , R . A . ; O ’ K a n e , S . ; O u y a n g , X . ; Z h a o , H . ; D u n b a r , K . R . M o l . C r y s t . L i q . C r y s t . 3 3 5 ( 1 9 9 9 ) 1 1 3 . Z h a o , H . ; H e i n t z , R . A . ; D u n b a r , K . R . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 1 2 8 4 4 . C a r l i n , R . L . M a g n e t o c h e m i s t r y , S p r i n g e r - V e r l a g B e r l i n H e i d e l b e r g 1 9 8 6 . ( a ) M a l l a h , T . ; T h i e b a u t , S . ; V e r d a g u e r , M . ; V i e l l e t , P . S c i e n c e , 1 9 9 3 , 2 6 2 , 1 5 5 4 . ( b ) E n t l e y , W . R . ; G i r o l a m i , G . S . I n o r g . C h e m . 1 9 9 4 , 3 3 , 5 1 6 5 . ( c ) E n t l e y , W . R . ; G i r o l a m i , G . S . S c i e n c e , 1 9 9 5 , 2 6 8 , 3 9 7 . ( d ) F e r l a y , S . ; M a l l a h , T . ; O u a h e s , R . ; V i e l l e t , P . ; V e r d a g u e r N a t u r e , 1 9 9 5 , 3 7 8 , 7 0 1 . ( e ) W i t z e l , M . ; B a b e l , D . Z . N a t u r f o r s c h , 1 9 8 8 , 4 0 b , 1 3 4 4 . ( f ) O h b a , M . ; M a r u o n o , N . ; O k a w a , H . ; E n o k i , T . ; L a t o u r , J . M . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 1 1 5 6 6 . ( g ) M a l l a h , T . ; A u b e r g e r , C . ; V e r d a g u e r , M . ; V i e l l e t , P . J . A m . C h e m . C o m m u n . 1 9 9 5 , 1 1 6 , 1 1 5 6 6 . 5 0 C h a p t e r I I N o n a q u e o u s c y a n i d e c h e m i s t r y o f l o w v a l e n t t r a n s i t i o n m e t a l s t h a t e x h i b i t m e t a l - m e t a l b o n d i n g 5 1 1 . I n t r o d u c t i o n T h e u s e o f t r a n s i t i o n m e t a l c y a n i d e c o m p o u n d s a s b u i l d i n g b l o c k s f o r c l u s t e r s a n d e x t e n d e d a r r a y s i s a n a c t i v e a r e a o f r e s e a r c h . " 2 O n e o f o u r g o a l s i s t o e x t e n d t h e fi e l d o f c y a n i d e c h e m i s t r y t o l o w v a l e n t m e t a l s t h a t e x h i b i t m e t a l - m e t a l b o n d i n g . S u c h c o m p o u n d s a r e s c a r c e , w i t h t h e o n l y e x a m p l e s p r i o r t o t h e w o r k i n o u r l a b o r a t o r i e s b e i n g K [ M o z ( u - C N ) ( C 0 ) . < C p ) 2 1 3 . M n 2 ( u - C N ) H ( C O ) 5 ( d p p m ) 2 , 4 [ n - B U 4 N 1 n l M 2 0 1 ‘ C N ) ( O R ) 6 ] 5 ( n = 1 , 2 ) ( M = M o o r W ) , a n d [ R h 2 ( u - C N ) ( u - C O ) ( C O ) 2 ( d p p m ) 2 ] [ C 1 0 4 ] ; 5 w h i c h c o n t a i n o n e o r t w o b r i d g i n g c y a n i d e l i g a n d s ( F i g u r e 1 . 1 4 ) . O n l y t w o e x a m p l e s o f m e t a l - m e t a l b o n d e d c o m p o u n d s w i t h t e r m i n a l c y a n i d e s e x i s t , v i z . , [ n - B u 4 N ] 4 [ M 0 2 ( C N ) 3 ] a n d [ n - B u 4 N ] 2 [ R e 2 ( C N ) 6 ( d p p m ) 2 ] p r e p a r e d i n t h e D u n b a r l a b o r a t o r i e s s e v e r a l y e a r s a g o ( F i g u r e 1 . 1 4 ) . 7 T h e o c t a c y a n o d i m o l y b d a t e a n i o n , [ M 0 2 ( C N ) 3 ] 4 ' c o n s t i t u t e s t h e o n l y k n o w n h o m o l e p t i c d i n u c l e a r c y a n i d e c o m p l e x i n t h e l i t e r a t u r e , a n d t h e d i r h e n i u m c o m p o u n d i s t h e o n l y c y a n i d e c o m p l e x o f t h e e d g e - s h a r i n g b i o c t a h e d r a l ( E S B O ) t y p e . T h e s e e x a m p l e s n o t w i t h s t a n d i n g , t h e p o t e n t i a l i m p a c t o f i n c o r p o r a t i n g c y a n i d e i n t o t h e c h e m i s t r y o f m e t a l - m e t a l b o n d e d c o m p o u n d s h a s n o t b e e n s i g n i fi c a n t l y r e a l i z e d . O n e o b v i o u s a r e a o f i m p a c t i s a d v a n c e m e n t o f u n d e r s t a n d i n g s t r u c t u r e a n d b o n d i n g i n s i m p l e m o l e c u l e s v i a s y n t h e s i s a n d c h a r a c t e r i z a t i o n o f n o v e l c o m p o u n d s 5 2 w i t h c y a n i d e l i g a n d s . T h i s c o u l d i n t u r n p r o v i d e a s o u r c e o f c o m p o u n d s f o r e x p l o r i n g a u n d e v e l o p e d a r e a , n a m e l y i n c o r p o r a t i o n o f m u l t i p l y b o n d e d m o l e c u l a r p r e c u r s o r s i n t o s o l i d s t a t e m a t e r i a l s . T h e b r i d g i n g a b i l i t y o f c y a n i d e i s w e l l d o c u m e n t e d t o o c c u r w i t h m o n o n u c l e a r c y a n i d e c o m p l e x e s , t h e r e i s e v e r y r e a s o n t o b e l i e v e i t w i l l b e t h e c a s e w i t h m e t a l - m e t a l b o n d e d c y a n i d e c o m p o u n d s a s w e l l . T h e d i s c o v e r y o f t h e u n p r e c e d e n t e d c o m p o u n d s [ n - B u 4 N ] 4 [ M 0 2 ( C N ) 8 ] a n d [ n - B u 4 N ] 2 [ R e 2 ( C N ) 6 ( d p p m ) 2 ] p r o m p t e d u s t o q u e s t i o n w h e t h e r o t h e r h o m o l e p t i c d i n u c l e a r c y a n o c o m p o u n d s a n d a n i o n i c m e t a l - m e t a l b o n d e d E S B O c o m p l e x e s w i t h c y a n i d e l i g a n d s c o u l d b e i s o l a t e d . T h i s c h a p t e r r e p o r t s t h e r e s u l t s o f o u r i n v e s t i g a t i o n s i n t o e x t e n d i n g t h e f a m i l y o f h o m o l e p t i c d i n u c l e a r c y a n o c o m p o u n d s t o i n c l u d e o t h e r t r a n s i t i o n m e t a l i o n s t h a t h a v e fi g u r e d p r o m i n e n t l y i n t h e d e v e l o p m e n t o f m e t a l - m e t a l m u l t i p l e b o n d c h e m i s t r y . T h e s e i n c l u d e t h e g r o u p 6 c o n g e n e r s o f M o " , n a m e l y C r [ 1 a n d W 2 " a s w e l l a s t h o s e i n g r o u p 7 a n d 8 , v i z . , R e I I I a n d 0 5 ‘ " . I n t h e c o u r s e o f t h e s e i n v e s t i g a t i o n s , a p r e v i o u s l y u n d o c u m e n t e d r e a c t i o n i n v o l v i n g t h e [ E t 4 N ] + a n d [ n - B u 4 N ] + s a l t s o f c y a n i d e i n n o n p o l a r o r g a n i c s o l v e n t s w a s o b s e r v e d . T h e n a t u r e o f t h i s d e c o m p o s i t i o n w i l l b e d i s c u s s e d i n l i g h t o f w h a t i s a f e a s i b l e c o u r s e o f a c t i o n t o t a k e w h e n c a r r y i n g o u t n o n - a q u e o u s c y a n i d e c h e m i s t r y . I n a d d i t i o n , t h e o x i d a t i v e a n d h y d r o l y t i c 5 3 s t a b i l i t y o f [ n - B u 4 N ] 4 [ M 0 2 ( C N ) g ] w a s e x p l o r e d . A r e l a t e d t o p i c , t h e p r e p a r a t i o n o f a n o v e l s e r i e s o f m e t a l - m e t a l b o n d e d E S B O c o m p o u n d s w i t h c y a n i d e l i g a n d s i s r e p o r t e d i n C h a p t e r I I I . 2 . E x p e r i m e n t a l A . M a t e r i a l s A l l m a n i p u l a t i o n s w e r e c a r r i e d o u t u n d e r a n i n e r t a t m o s p h e r e u s i n g s t a n d a r d S c h l e n k - l i n e t e c h n i q u e s . G l a s s w a r e w a s f l a m e - d r i e d u n d e r v a c u u m p r i o r t o u s e . S o l v e n t s w e r e p u r i fi e d b y c o n v e n t i o n a l m e t h o d s a n d w e r e d i s t i l l e d u n d e r . n i t r o g e n p r i o r t o u s e . R e 2 ( O z C C H 3 ) 4 C 1 2 8 a n d W 2 ( O z C ( C 5 H 5 ) ) 4 9 w e r e p r e p a r e d a c c o r d i n g t o p u b l i s h e d p r o c e d u r e s . O s 2 ( O z C C H 3 ) 4 C 1 2 w a s p r e p a r e d b y a m o d i fi c a t i o n o f t h e r e p o r t e d p r o c e d u r e . l o C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 w a s p r e p a r e d b y a n u n p u b l i s h e d m e t h o d d e v e l o p e d i n t h e D u n b a r l a b o r a t o r i e s . 1 1 T h e s a l t s [ n - B u 4 N ] [ C N ] a n d [ E t s N ] [ C N ] w e r e p u r c h a s e d f r o m A l d r i c h . T h e s a l t [ n - B u 4 N ] [ C N ] w a s d r i e d b y h e a t i n g t h e fi n e l y d i v i d e s s o l i d t o 7 5 ° C u n d e r v a c u u m f o r 1 2 h o u r s . T h e s a l t [ E t 4 N ] [ C N ] w a s d r i e d i n a s i m i l a r f a s h i o n b u t a t 1 5 0 ° C . B . P h y s i c a l M e a s u r e m e n t s I n f r a r e d s p e c t r a w e r e r e c o r d e d o n s o l i d s s u s p e n d e d i n N u j o l b e t w e e n C s I p l a t e s i n t h e r a n g e 4 0 0 0 - 4 0 0 c m ' 1 o n a N i c o l e t I R / 4 2 S p e c t r o m e t e r a n d b e t w e e n 4 0 0 — 5 0 c m ’ 1 o n a N i c o l e t M a g n a - I R S e r i e s I I 7 5 0 S p e c t r o m e t e r . 1 H 5 4 a n d 1 3 C N M R s p e c t r a w e r e r e c o r d e d o n a V a r i a n V X R 3 0 0 $ S p e c t r o m e t e r . E l e c t r o n i c a b s o r p t i o n a n d n e a r - I R s p e c t r a w e r e m e a s u r e d o n a S h i m a d z u U V - 3 1 0 1 P C U V - V i s - N I R S c a n n i n g S p e c t r o p h o t o m e t e r . C y c l i c v o l t a m m e t n ' c s t u d i e s w e r e c a r r i e d o u t w i t h a C H I n s t r u m e n t s E l e c t r o c h e m i c a l W o r k s t a t i o n i n 0 . 1 M [ n - B u 4 N ] [ B F 4 ] / C H 3 C N s o l u t i o n s a t a P t d i s k w o r k i n g e l e c t r o d e w i t h P t w i r e a u x i l i a r y a n d A g / A g C l r e f e r e n c e e l e c t r o d e s . M a s s s p e c t r a l d a t a w e r e o b t a i n e d a t t h e M i c h i g a n S t a t e U n i v e r s i t y M a s s S p e c t r o m e t r y F a c i l i t y , w h i c h i s s u p p o r t e d , i n p a r t , b y a g r a n t ( D R R - 0 0 4 8 0 ) f r o m t h e B i o t e c h n o l o g y R e s e a r c h T e c h n o l o g y P r o g r a m , N a t i o n a l C e n t e r f o r R e s e a r c h R e s o u r c e s , N a t i o n a l I n s t i t u t e o f H e a l t h . C . S y n t h e s e s ( 1 ) A t t e m p t e d p r e p a r a t i o n o f [ C r 2 ( C N ) 3 ] 4 ' ( i ) R e a c t i o n s o f C r z ( 0 2 C C F 3 ) 4 ( T H F ) 2 w i t h [ n - B u 4 N ] [ C N ] a n d [ E t e N l l C N ] A d d i t i o n o f a T H F s o l u t i o n ( 2 0 m L ) o f [ n - B u 4 N ] [ C N ] ( 0 . 4 6 0 g , 1 . 7 1 6 m m o l ) t o a p i n k T H F s o l u t i o n ( 1 5 m L ) o f C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 ( 0 . 1 0 0 g , 0 . 1 4 3 m m o l ) r e s u l t e d i n a n i m m e d i a t e c o l o r c h a n g e t o g r e e n f o l l o w e d b y y e l l o w w i t h i n fi f t e e n s e c o n d s . T h e s o l u t i o n w a s c o n c e n t r a t e d t o 1 0 m L b e f o r e a n a l i q u o t o f h e x a n e s ( 1 0 m L ) w a s a d d e d t o p r e c i p i t a t e t h e k n o w n 5 5 c o m p o u n d [ n - B u 4 N ] 3 [ C r ( C N ) 6 ] a s a y e l l o w s o l i d . T h e s o l i d w a s r e c o v e r e d b y fi l t r a t i o n a n d d r i e d i n v a c u o . Y i e l d 0 . 2 2 7 g ( 8 5 % ) . T h e r e a c t i o n o f [ E t 4 N ] [ C N ] ( 0 . 1 3 3 g , 0 . 8 5 2 m m o l ) i n T H F ( 1 5 m L ) w i t h C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 ( 0 . 0 5 0 g , 0 . 0 7 1 m m o l ) i n T H F ( 1 0 m L ) p r o c e e d e d w i t h t h e f o r m a t i o n o f a b l u e s o l u t i o n . T h e s o l u t i o n w a s c o n c e n t r a t e d t o 1 0 m L b e f o r e h e x a n e s ( 1 0 m L ) w e r e a d d e d t o p r e c i p i t a t e [ E t 4 N ] 4 [ C r ( C N ) 6 ] a s a b l u e s o l i d . E x p o s u r e o f t h e b l u e r e a c t i o n s o l u t i o n t o a i r o r w a t e r r e s u l t s i n a s w i f t c o l o r c h a n g e t o y e l l o w . A d d i t i o n o f h e x a n e s ( 1 0 m L ) i n d u c e d t h e p r e c i p i t a t i o n o f [ E t 4 N ] 3 [ C r ( C N ) 6 ] a s a y e l l o w s o l i d . T h e p r e c i p i t a t e s a r e c o l l e c t e d b y fi l t r a t i o n a n d d r i e d i n v a c u o . Y i e l d [ E t 4 N ] 4 [ C r ( C N ) 6 ] 0 . 0 5 1 g ( 7 9 % ) [ E u N ] 3 [ C r ( C N ) 6 ] 0 . 0 5 6 g ( 7 0 % ) . [ n - B u 4 N ] 3 [ C r ( C N ) 6 ] : V C E N : 2 1 0 6 c m " ; [ E u N ] 4 [ C r ( C N ) 6 ] v C N : 2 0 8 9 c m " ; [ E t 4 N ] 3 [ C r ( C N ) 6 ] : v C N : 2 1 1 0 c m " . ( 2 ) A t t e m p t e d p r e p a r a t i o n o f [ W 2 ( C N ) 3 ] 4 ‘ ( i ) R e a c t i o n o f W 2 ( 0 2 C C ( , H s ) 4 w i t h [ E t 4 N ] [ C N ] A T H F s o l u t i o n ( 1 0 m L ) o f [ E t 4 N ] [ C N ] ( 0 . 0 4 0 g , 0 . 2 5 9 m m o l ) w a s a d d e d t o a T H F s o l u t i o n ( 5 m L ) o f W 2 ( 0 2 C C 6 H 5 ) 4 ( 0 . 0 2 8 g , 0 . 0 3 2 m m o l ) w h i c h l e d t o t h e f o r m a t i o n o f a n o r a n g e s o l u t i o n a n d a n o r a n g e p r e c i p i t a t e ( 1 ) . T h e p r e c i p i t a t e w a s i s o l a t e d b y fi l t r a t i o n a n d d r i e d i n v a c u o . Y i e l d 0 . 0 2 9 g . W h e n t h e r e a c t i o n i s c a r r i e d o u t i n C H z C l z u n d e r t h e s a m e c o n d i t i o n s a n o r a n g e s o l u t i o n a n d o r a n g e p r e c i p i t a t e ( 2 ) a r e a l s o p r o d u c e d . Y i e l d 0 . 0 3 6 g . 5 6 ( 1 ) v e s t : 2 0 5 2 c m “ ; 1 H N M R ( C D 2 C 1 2 ) : { [ E t 4 N ] + } - C H 2 - q u a r t e t 2 . 9 3 p p m , - C H 3 - t r i p l e t 0 . 9 4 p p m , U V - V i s ( C H 2 C 1 2 ) : ) . , , , , , ( n m ) ( s ( M ' 1 c m " ) ) 2 7 0 , 4 8 8 ( s h ) ( 2 ) V e t : 2 1 1 8 ( s h ) , 2 1 0 2 , 2 0 9 1 ( s h ) c m " . ( i i ) R e a c t i o n o f W 2 ( 0 2 C C 6 H S ) 4 w i t h [ n - B u 4 N ] [ C N ] A C H C 1 3 s o l u t i o n ( 1 0 m L ) o f [ n - B u 4 N ] [ C N ] ( 0 . 0 6 4 g , 0 . 2 3 8 m m o l ) w a s a d d e d t o a C H C 1 3 s o l u t i o n ( 5 m L ) o f W 2 ( O z C C 6 H 5 ) 4 ( 0 . 0 2 5 g , 0 . 0 2 9 m m o l ) , g i v i n g r i s e t o a n o r a n g e s o l u t i o n w h i c h w a s fi l t e r e d , a n d c o n c e n t r a t e d t o 2 m L . T h e s o l u t i o n w a s c o o l e d t o - 3 0 ° C f o r s e v e r a l d a y s t o p r o d u c e o r a n g e c r y s t a l s t h a t w e r e i d e n t i fi e d b y s i n g l e c r y s t a l X - r a y d i f f r a c t i o n t o b e [ n - B u 4 N ] [ W 6 0 1 9 ] . N o o t h e r t r a c t a b l e p r o d u c t s c o u l d b e i s o l a t e d f r o m t h i s r e a c t i o n . ( 3 ) P r e p a r a t i o n o f [ R e 2 ( C N ) 3 ] 2 ' ( i ) R e a c t i o n s o f R e 2 ( O z C C H 3 ) 4 C l z w i t h [ E t a N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] A d d i t i o n o f a C H C 1 3 s o l u t i o n ( 1 0 m L ) o f [ n - E t 4 N ] [ C N ] ( 0 . 1 3 8 g , 0 . 8 8 4 m m o l ) t o a r a p i d l y s t i r r i n g s u s p e n s i o n o f R e 2 ( O z C C H 3 ) 4 C 1 2 ( 0 . 0 7 5 g , 0 . 1 1 1 m m o l ) i n C H C 1 3 ( 7 m L ) p r o d u c e d a g r e e n s o l u t i o n a n d a n o i l y g r e e n p r e c i p i t a t e . T h e s o l u t i o n w a s d e c a n t e d f r o m t h e p r e c i p i t a t e w h i c h w a s r e d i s s o l v e d i n C H C 1 3 a n d r e - p r e c i p i t a t e d w i t h p e n t a n e t o y i e l d a g r e e n s o l i d ( 3 ) . Y i e l d 0 . 0 6 5 g . X - r a y q u a l i t y s i n g l e c r y s t a l s o f t h i s c o m p o u n d h a v e y e t 5 7 t o b e o b t a i n e d , b u t m a s s s p e c t r a l a n d s p e c t r o s c o p i c d a t a s u p p o r t t h e f o r m u l a t i o n o f t h i s p r o d u c t a s [ E t a N ] 2 [ R e z ( C N ) 3 ] . G o o d e l e m e n t a l d a t a t o s u p p o r t t h i s f o r m u l a o r i t s C H C l 3 s o l v a t e h a v e n o t y e t b e e n o b t a i n e d . A d d i t i o n o f a C H C 1 3 s o l u t i o n ( 1 0 m L ) o f [ n - B u 4 N ] [ C N ] ( 0 . 2 6 9 , 1 . 0 0 m m o l ) t o a r a p i d l y s t i r r i n g s u s p e n s i o n o f R e 2 ( O z C C H 3 ) 4 C 1 2 ( 0 . 0 7 5 g , 0 . 1 1 1 m m o l ) i n C H C l 3 ( 7 m L ) p r o d u c e d a d a r k p u r p l e s o l u t i o n . A d d i t i o n o f h e x a n e s ( 8 m L ) p r e c i p i t a t e d a d a r k r e d - p u r p l e s o l i d 4 A t h a t w a s i s o l a t e d b y fi l t r a t i o n , w a s h e d w i t h d i e t h y l e t h e r a n d d r i e d i n v a c u o . Y i e l d 0 . 0 5 8 g . T h e s o l u t i o n w a s c o n c e n t r a t e d t o 5 m L i n v a c u o . A d d i t i o n o f p e n t a n e ( 5 m L ) p r e c i p i t a t e d a b r o w n - g r e e n s o l i d 4 B . 4 A Y i e l d 0 . 0 5 8 g . 4 B Y i e l d 0 . 0 4 4 g . ( 3 ) : v C N : 2 0 9 3 a n d 2 0 7 9 c m “ ; 1 H N M R ( C D 3 C N ) : ( [ E t 4 N r } - C H 2 - q u a r t e t 3 . 2 8 p p m , - C H 3 - t r i p l e t 1 . 2 7 p p m { C H C 1 3 } 7 . 5 9 p p m ; 1 3 ( 3 N M R ( C D 3 C N ) : { [ E t a N T } - C H 2 - 5 3 . 4 3 , - C H ; - 8 . 3 4 p p m ; U V - V i s ( C H 3 C N ) : M n m ) 6 1 0 ; - F A B M S : m / z = 7 1 0 { [ E t 4 N ] [ R e 2 ( C N ) 8 ] } ' ; 1 3 p , C = - 0 . 4 2 1 V , E p , c - 1 . 1 3 0 V . ( 4 A ) : V C E N : 2 2 1 0 , 2 1 1 2 , 2 1 0 0 , 2 0 7 3 , 1 9 0 7 c m " 1 ( 4 B ) : v e a N : 2 0 9 1 a n d 2 0 7 3 c m " ; 1 H N M R ( C D C 1 3 ) : - C H 2 — 3 . 2 2 , - C H 2 - 1 . 5 7 , - C H 2 - 1 . 3 5 , - C H 3 - 0 . 8 8 p p m ; 1 3 C N M R ( C D C 1 3 ) : 1 2 8 . 2 4 , - C H 2 - 5 9 . 3 2 , - C H 2 - 2 4 . 2 7 , - C H 2 - 1 9 . 8 2 , - C H 3 - 1 3 . 7 3 p p m ; U V - V i s ( C H 3 C N ) : M n m ) 3 4 5 ( b r ) 6 0 5 ( h r ) . 5 8 ( 4 ) A t t e m p t e d p r e p a r a t i o n o f [ O s 2 ( C N ) 3 ] 2 ' ( i ) R e a c t i o n o f O s 2 ( O z C C H 3 ) 4 C 1 2 w i t h [ E t a N ] [ C N ] a n d [ n - B m N H C N ] A d d i t i o n o f a C H C 1 3 s o l u t i o n ( 1 0 m L ) o f [ n — E t 4 N ] [ C N ] ( 0 . 1 3 6 g , 0 . 8 4 7 m m o l ) t o a r a p i d l y s t i r r i n g s u s p e n s i o n o f O s 2 ( O z C C H 3 ) 4 C 1 2 ( 0 . 0 7 5 g , 0 . 1 0 9 m m o l ) i n C H C 1 3 ( 7 m L ) p r o d u c e d a g r e e n s o l u t i o n a n d a n o i l y g r e e n p r e c i p i t a t e . T h e s o l u t i o n w a s d e c a n t e d f r o m t h e s o l i d w h i c h w a s , r e d i s s o l v e d i n C H C 1 3 a n d r e - p r e c i p i t a t e d w i t h p e n t a n e t o y i e l d a g r e e n s o l i d ( 5 ) . Y i e l d 0 . 0 6 8 g . A d d i t i o n o f a C H C l 3 s o l u t i o n ( 1 0 m L ) o f [ n - B u 4 N ] [ C N ] ( 0 . 2 6 6 g , 0 . 9 9 9 m m o l ) t o a r a p i d l y s t i r r i n g s u s p e n s i o n o f O s z ( O Z C C H 3 ) 4 C 1 2 ( 0 . 0 8 5 g , 0 . 1 2 4 m m o l ) i n C H C l 3 ( 7 m L ) p r o d u c e d a g r e e n s o l u t i o n . A d d i t i o n o f h e x a n e s ( 1 2 m L ) p r e c i p i t a t e d a g r e e n s o l i d ( 6 ) t h a t w a s i s o l a t e d b y fi l t r a t i o n , w a s h e d w i t h d i e t h y l e t h e r a n d d r i e d i n v a c u o . Y i e l d 0 . 0 7 9 g . ( 5 ) : V C N : 2 1 1 2 ( s h ) , 2 1 0 6 , 2 0 8 5 , 2 0 7 0 ( s h ) , 1 8 7 0 , a n d 1 8 6 3 c m " ; 1 H N M R ( C D 3 C N ) : { [ E t 4 N ] + } - C H z - q u a r t e t 3 . 2 1 p p m , - C H 3 - t r i p l e t 1 . 1 2 p p m ; 1 3 c N M R ( C D 3 C N ) : { [ E t 4 N ] + } - C H 2 - 5 3 . 4 3 , - C H ; - 8 . 3 4 p p m ; U V - V i s ( C H 3 C N ) : M n m ) 3 5 8 , 5 2 6 ( s h ) , 6 2 2 ( s h ) , 7 0 0 ; A c y c l i c v o l t a r m n o g r a m o f t h e c o m p o u n d i n a 0 . 1 M [ n - B u 4 N ] [ B F 4 ] / C H 3 C N s o l u t i o n d i d n o t r e v e a l a n y e l e c t r o c h e m i c a l p r o c e s s e s b e t w e e n + 2 . 0 a n d — 2 . 0 v . ( 6 ) v e s t : 2 1 1 4 , 2 0 8 5 , 2 0 3 7 , a n d 1 8 6 9 c m “ ; 1 3 C N M R ( C D 3 C N ) : 1 7 4 . 7 5 , 8 0 . 0 2 , 5 9 . 3 4 , 2 4 . 5 6 , 2 4 . 3 3 , 2 0 . 2 7 , 1 3 . 7 9 p p m . 5 9 ( 5 ) R e a c t i o n o f M 0 2 ( O Z C C H 3 ) 4 a n d ( C H 3 ) 3 S i C N A ( C H 3 ) 3 S i C N ( 0 . 0 2 4 g , 0 . 2 3 4 m m o l ) / T H F ( 1 0 m L ) m i x t u r e w a s a d d e d t o a T H F s o l u t i o n ( 1 0 m L ) o f M 0 2 ( O z C C H 3 ) 4 ( 0 . 0 5 0 g , 0 . 1 1 6 m o l ) a n d a l l o w e d t o s t i r f o r t h r e e d a y s w i t h t h e s o l u t i o n c o l o r g r a d u a l l y c h a n g i n g f r o m y e l l o w t o r e d . F i l t r a t i o n o f t h e s o l u t i o n w a s f o l l o w e d b y c o n c e n t r a t i o n t o 3 m L a n d a d d i t i o n o f d i e t h y l e t h e r ( 1 0 m L ) t o p r e c i p i t a t e a r e d - p u r p l e s o l i d ( 7 ) . T h e p r e c i p i t a t e w a s i s o l a t e d b y fi l t r a t i o n , w a s h e d w i t h d i e t h y l e t h e r ( 2 x 5 m L ) a n d d r i e d i n v a c u o . Y i e l d 0 . 0 4 0 g . V C N : 2 1 1 6 c m ] ; 1 H N M R ( C D 3 C N ) : 2 . 6 3 p p m ; U V - V i s ( C H 3 C N ) : M n m ) 5 4 0 , 5 1 3 . ( 6 ) S t a b i l i t y s t u d i e s o f [ M o Z ( C N ) , ] * T h e s e r e a c t i o n s w e r e c a r r i e d o u t n o n s t o i c h i o m e t r i c a l l y w i t h [ E t a N ] 4 [ M o z ( C N ) 3 ] . T h e C H 3 C N s o l v e n t f o r t h e s e s t u d i e s w a s d r i e d b y p a s s i n g i t d o w n a n a c t i v a t e d a l u m i n a c o l u r r m . R e a c t i v i t y w i t h O z ( g ) u n d e r a n h y d r o u s c o n d i t i o n s w a s i n v e s t i g a t e d b y p a s s i n g t h e 0 2 ( g ) t h r o u g h a d r y i n g c o l u m n p r i o r t o b u b b l i n g i t t h r o u g h t h e [ E t 4 N ] 4 [ M o z ( C N ) 8 ] s o l u t i o n o v e r n i g h t . D e i o n i z e d w a t e r f o r t h e h y d r o l y t i c s t a b i l i t y t e s t w a s d e o x y g e n a t e d b y p u r g i n g i t w i t h A r p r i o r t o a d d i n g i t t o a C H 3 C N s o l u t i o n o f [ E t 4 N ] 4 [ M 0 2 ( C N ) 3 ] w h i c h w a s s t i r r e d o v e r n i g h t . T h e s o l u t i o n s f o r b o t h r e a c t i o n s w e r e p u m p e d t o d r y n e s s i n v a c u o t o g i v e a g r e e n s o l i d f r o m t h e r e a c t i o n w i t h 0 2 ( g ) a n d a b r o w n s o l i d f r o m t h e r e a c t i o n w i t h w a t e r . G r e e n 6 0 s o l i d : V e s N I 2 1 9 7 a n d 2 1 0 8 ( s h ) c m ' l ; b r o w n s o l i d V e a N i 2 1 9 7 , 2 1 0 8 ( s h ) , a n d 2 0 7 9 c m ' l . ( 7 ) S a m p l e p r e p a r a t i o n f o r s t a b i l i t y s t u d i e s o f [ n - B m N H C N ] a n d [ E t a N ] [ C N ] i n o r g a n i c m e d i a [ E t 4 N ] [ C N ] ( 0 . 0 3 0 g , 0 . 1 9 2 m m o l ) a n d [ n - B u 4 N ] [ C N ] ( 0 . 0 5 2 g , 0 . 1 9 2 m m o l ) w e r e d i s s o l v e d i n 1 5 m L o f T H F , C H C 1 3 , C H z C l z , a c e t o n e , N O Z C H 3 , a n d D M F . T h e s a m p l e s w e r e a l l o w e d t o s t a n d u n d i s t u r b e d f o r 4 8 h o u r s d u r i n g w h i c h a l l t h e s o l u t i o n s b e c a m e a c l e a r o r a n g e c o l o r . N o r e a c t i v i t y d i f f e r e n c e s w e r e o b s e r v e d w i t h t h e e x c l u s i o n o f l i g h t . [ E t 4 N J [ C N ] / { s o l v e n t } : v e a N ( c m ‘ l ) : { T H F } 2 1 5 4 , { C H C 1 3 } 2 1 4 8 , { C H z C l z } 2 1 5 0 , { a c e t o n e } 2 1 6 4 , { N O z C H 3 } 2 1 5 2 , { D M F } 2 1 5 4 ; [ n - B u a N ] [ C N ] / { s o l v e n t } : V C E N ( c m ' 1 ) : { T H F } 2 1 5 0 , { C H C 1 3 } 2 1 5 0 , { C H 2 c 1 2 } 2 1 5 3 , { a c e t o n e } 2 1 5 4 , { N O z C H 3 } 2 1 5 2 , { D M F } 2 1 5 4 ; 3 . R e s u l t s a n d D i s c u s s i o n A . R e a c t i o n s o f C r 2 ( O Z C C F 3 ) 4 ( T H F ) 2 a n d W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ n - B l e l C N l a n d [ E t e N I I C N ] ( 1 ) R e a c t i o n s o f C r 2 ( 0 2 C C F 3 ) 4 ( T I - I F ) 2 w i t h [ n - B m N H C N ] a n d [ E t c h l C N ] T h e r e a c t i o n o f 8 e q u i v a l e n t s o f c y a n i d e w i t h C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 , i n t e n d e d t o l e a d t o [ C r 2 ( C N ) g ] * , p r o d u c e d o n l y a b r o w n p o s s i b l y p o l y m e r i c 6 1 p r o d u c t , b a s e d o n p a r t i a l s u b s t i t u t i o n . T h e r e a c t i o n o f t w e l v e e q u i v a l e n t s o f [ n - B u a N ] [ C N ] w i t h C r 2 ( O z C C F 3 ) 4 ( T I - I F ) 2 p r o c e e d s w i t h f u l l s u b s t i t u t i o n o f t h e ( O Z C C F 3 ) ' g r o u p s b u t w i t h o u t r e t e n t i o n o f t h e m e t a l - m e t a l b o n d . T h i s s h o u l d n o t b e u n e x p e c t e d b e c a u s e C r - C r b o n d s , w h i l e b e i n g a m o n g s t t h e s h o r t e s t k n o w n , a r e n o t o r i o u s l y w e a k . W i t h i n fi f t e e n s e c o n d s a f t e r a d d i t i o n o f t h e c y a n i d e t o t h e C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 p r e c u r s o r , t h e i n i t i a l g r e e n c o l o r o f t h e s o l u t i o n c h a n g e d t o y e l l o w . B o t h [ C r ( C N ) 6 ] 4 ' ( w h i c h i s b l u e ) a n d [ C r ( C N ) 6 ] 3 ' ( w h i c h i s y e l l o w ) a r e k n o w n c o m p o u n d s . T h i s r e a c t i o n a p p e a r s t o p r o c e e d w i t h f o r m a t i o n o f [ C r ( C N ) 6 ] 4 ’ w h i c h i s t h e n r a p i d l y o x i d i z e d t o [ C r ( C N ) 6 ] 3 ' . T h i s w o u l d a c c o u n t f o r t h e s o l u t i o n c o l o r s a s t h e r e a c t i o n p r o c e e d s t o e v e n t u a l l y y i e l d [ n - B u a N ] 3 [ C r ( C N ) 6 ] a s a y e l l o w s o l i d . T h e i n f r a r e d s p e c t r u m o f t h e p r o d u c t d i s p l a y e d t h e c h a r a c t e r i s t i c V C N m o d e a t 2 1 0 6 c m ] . D e s p i t e r e p e a t e d a t t e m p t s , t h e t a r g e t [ C r ( C N ) ( ; ] ‘ L c o u l d n o t b e i s o l a t e d f r o m r e a c t i o n s o f C r 2 ( O z C C F 3 ) 4 ( T H F ) 2 w i t h [ n - B u 4 N ] [ C N ] . T h e a n i o n [ C r ( C N ) 6 ] 4 ' i s k n o w n , b u t i s s a i d t o b e h i g h l y o x i d a t i v e l y u n s t a b l e . T h e w e l l k n o w n h y g r o s c o p i c n a t u r e o f [ n - B u 4 N ] + s a l t s i s m o s t l i k e l y r e s p o n s i b l e f o r o u r i n a b i l i t y t o s t a b i l i z e t h e C r ! I c o m p o u n d . U n f o r t u n a t e l y t h e l o w t h e r m a l s t a b i l i t y o f [ n - B u a N ] [ C N ] p r e c l u d e s h e a t i n g i t a b o v e 7 5 ° C u n d e r v a c u u m t o d r y i t , r e n d e r i n g a n h y d r o u s p r e p a r a t i o n e x t r e m e l y d i f fi c u l t . [ E t 4 N ] [ C N ] 6 2 p 0 5 5 V K C L 1 3 3 C ] s o h n t h a t B u g W a s j p o s s e s s i n g m u c h h i g h e r t h e r m a l s t a b i l i t y e n a b l e s s a m p l e s t o b e h e a t e d u n d e r v a c u u m u p t o 1 5 0 ° C e f f e c t i v e l y f a c i l i t a t i n g a n h y d r o u s p r e p a r a t i o n . T h e r e a c t i o n o f [ E t 4 N ] [ C N ] w i t h C r 2 ( O Z C C F 3 ) 4 ( T H F ) 2 i n T H F p r o c e e d s w i t h f o r m a t i o n o f a b l u e s o l u t i o n . A d d i t i o n o f h e x a n e s p r e c i p i t a t e d [ E t 4 N ] 4 [ C r ( C N ) 6 ] a s a b l u e s o l i d . T h e i n f r a r e d s p e c t r u m o f t h e p r o d u c t 1 d i s p l a y e d t h e c h a r a c t e r i s t i c V C N m o d e a t 2 0 8 9 c m ’ . E x p o s u r e o f t h e b l u e r e a c t i o n s o l u t i o n t o a i r o r w a t e r r e s u l t e d i n a s w i f t c o l o r c h a n g e t o y e l l o w . A d d i t i o n o f h e x a n e s i n d u c e d t h e p r e c i p i t a t i o n o f [ E t 4 N ] 3 [ C r ( C N ) 6 ] a s a y e l l o w s o l i d w h i c h e x h i b i t s t h e c h a r a c t e r i s t i c v C N m o d e i n t h e i n f r a r e d s p e c t r u m a t 2 1 1 0 c m ] . ( 2 ) R e a c t i o n s o f W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ n - B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] ( i ) R e a c t i o n o f W 2 ( 0 2 C C 6 H 5 ) 4 w i t h [ n - B u 4 N ] [ C N ] A l t h o u g h w e w e r e u n s u c c e s s f u l i n p r e p a r i n g t h e d i n u c l e a r C r c y a n o c o m p o u n d , [ C r ( C N ) 3 ] 4 ' t h e g r o u p 6 t r a n s i t i o n m e t a l , W w a s i d e n t i fi e d a s a l i k e l y c a n d i d a t e f o r p r e p a r i n g t h e a n a l o g o u s a n i o n [ W 2 ( C N ) 3 ] 4 ' . T h e r e a c t i o n o f [ n - B u a N ] [ C N ] w i t h W 2 ( O z C C 6 H s ) 4 i n C H C 1 3 p r o d u c e d a n o r a n g e s o l u t i o n , w h i c h , a f t e r c o n c e n t r a t i o n a n d c h i l l i n g , p r o d u c e d o r a n g e c r y s t a l s t h a t w e r e i d e n t i fi e d b y s i n g l e c r y s t a l X — r a y d i f f r a c t i o n s t u d i e s t o b e [ n - B u 4 N ] [ W 6 0 1 9 ] . B a s e d o n o u r o b s e r v a t i o n s i n t h e C r c h e m i s t r y t h i s r e s u l t w a s n o t e n t i r e ] u n e x e c t e d b e c a u s e W I I c o m o u n d s a r e a l s o h i h l r o n e t o y P P g Y P 6 3 o x i d a t i o n . 1 2 C o n s e q u e n t l y , i n a d v e r t e n t i n t r o d u c t i o n o f w a t e r , b y t h e u s e o f w e t [ n — B u 4 N ] [ C N ] w o u l d p r o m o t e f o r m a t i o n o f o x i d i z e d d e c o m p o s i t i o n p r o d u c t s . ( i i ) R e a c t i o n s o f W 2 ( O z C C 6 H 5 ) 4 w i t h [ E t a N ] [ C N ] T h e l a c k o f a n a d e q u a t e m e t h o d f o r d r y i n g [ n - B u 4 N ] [ C N ] f o r s y n t h e t i c a p p l i c a t i o n s i n v o l v i n g h i g h l y o x i d a t i v e l y u n s t a b l e t r a n s i t i o n m e t a l i o n s l e d u s t o e x p l o r e [ E t a N ] [ C N ] a s a n a l t e r n a t i v e i n a l l r e a c t i o n s . T h e r e a c t i o n o f [ E t 4 N ] [ C N ] w i t h W 2 ( O z C C 6 H 5 ) 4 i n C H 2 C 1 2 p r o d u c e d a n o r a n g e s o l u t i o n a n d a n o r a n g e p r e c i p i t a t e ( 2 ) . T h e M i d - I R s p e c t r u m o f t h e o r a n g e p r e c i p i t a t e d i s p l a y e d a b r o a d s t r e t c h a t 2 1 0 2 w i t h s h o u l d e r s a t 2 1 1 8 a n d 2 0 9 1 c m } . T h e b r e a d t h o f t h e s t r e t c h a t 2 1 0 2 c m ' 1 a n d t h e p r e s e n c e o f t h e t w o s h o u l d e r s s u g g e s t t h e f o r m a t i o n o f m u l t i p l e p r o d u c t s t h a t , d e s p i t e t h e p r e c a u t i o n s t a k e n i n d r y i n g t h e [ E t 4 N ] [ C N ] , c o u l d i n c l u d e W o x o s p e c i e s . T o r u l e o u t t h e s o l v e n t a s a p o s s i b l e o x i d a n t , t h e r e a c t i o n w a s r e p e a t e d i n T H F , w h i c h w a s d r i e d o v e r N a a n d d i s t i l l e d u n d e r n i t r o g e n i m m e d i a t e l y p r i o r t o i t s u s e . T h e r e a c t i o n o f [ E t 4 N ] [ C N ] w i t h W 2 ( O z C C 6 H 5 ) 4 i n T H F a l s o p r o d u c e d a n o r a n g e s o l u t i o n a n d o r a n g e p r e c i p i t a t e ( 1 ) a s d i d t h e r e a c t i o n i n C H z C l z , b u t t h e m i d - I R s p e c t r u m o f t h i s p r e c i p i t a t e d i s p l a y e d o n l y a s i n g l e s h a r p V C N m o d e a t 2 0 5 2 c m " 1 i n d i c a t i n g f o r m a t i o n o f a s i n g l e W c y a n o p r o d u c t . T h e r e s u l t f r o m t h i s r e a c t i o n u n d e r s c o r e s t h e n e e d f o r s c r u p u l o u s e x c l u s i o n o f w a t e r a n d o x y g e n f r o m t h e r e a c t i o n c o n d i t i o n s . T h e o b s e r v e d V C N m o d e f o r t h e W c y a n o p r o d u c t ( 1 ) i s s h i f t e d b y 1 8 c m " 1 t o l o w e r e n e r g y f r o m t h e V C E N v a l u e o f [ E t 4 N ] [ C N ] a t 2 0 7 0 c m " . T h e 1 H N M R s p e c t r u m i n C D 2 C 1 2 d i s p l a y e d o n l y t h e e x p e c t e d s i g n a l s f o r t h e m e t h y l e n e a n d m e t h y l g r o u p s o f [ E t 4 N ] + 2 . 9 3 p p m , 0 . 9 4 4 p p m i n d i c a t i n g f u l l d i s p l a c e m e n t o f t h e ( O z C C 6 H 5 ) ' g r o u p s . T h e U V - v i s i b l e s p e c t r u m d i s p l a y e d a s t r o n g a b s o r p t i o n a t 2 7 0 n m w i t h a b r o a d s h o u l d e r a t 4 8 0 n m . T h e t a r g e t p r o d u c t , [ W Z H ’ H ( C N ) 8 ] 4 ’ , w i t h a d 4 - d 4 e l e c t r o n i c c o n fi g u r a t i o n i s e x p e c t e d t o p o s s e s a m e t a l - m e t a l q u a d r u p l e b o n d b a s e d o n t h e c o n v e n t i o n a l d - o r b i t a l o v e r l a p s c h e m e . 1 2 T h e H O M O L U M O g a p f o r [ W 2 ( C N ) 8 ] 4 ” w o u l d c o r r e s p o n d t o a t r a n s i t i o n b e t w e e n t h e 5 a n d 5 * m o l e c u l a r o r b i t a l s o f t h e W - W q u a d r u p l e b o n d . T h e l o w e s t e n e r g y a b s o r p t i o n i n t h e o b s e r v e d s p e c t r u m a t 4 8 0 n m i s n o t u n r e a s o n a b l e f o r t h e 8 9 5 * t r a n s i t i o n w h i c h w e t a k e a s a n i n d i c a t i o n t h e m e t a l - m e t a l b o n d c o u l d s t i l l b e i n t a c t . ” ’ 1 4 T h e f o r m a t i o n o f m o n o n u c l e a r p r o d u c t s f r o m t h e r e a c t i o n o f W - W q u a d r u p l y b o n d e d c o m p o u n d s w i t h n - a c c e p t o r l i g a n d s h a s b e e n d e m o n s t r a t e d . 1 2 T h e a s s i g n m e n t o f t h e ( 1 ) a s [ E t 4 N ] 4 [ W ( C N ) 6 ] o r [ E t a N ] 4 [ W 2 ( C N ) 3 ] r e m a i n s u n c l e a r . B o t h f o r m u l a t i o n s a r e c o n s i s t e n t w i t h 6 5 t h e f u l l d i s p l a c e m e n t o f t h e ( O z C C 6 H 5 ) ' g r o u p s i n d i c a t e d b y t h e 1 H N M R s p e c t r u m a n d t h e s i n g l e V C N o b s e r v e d i n t h e i n f r a r e d s p e c t r u m B . R e a c t i o n s o f R e 2 ( O z C C H 3 ) 4 C l z a n d O s 2 ( O z C C H 3 ) 4 C l z w i t h [ E t a N l l C N ] a n d [ n - B u e N l l C N l ( 1 ) P r o d u c t c h a r a c t e r i z a t i o n f r o m t h e r e a c t i o n s o f R e 2 ( O Z C C H 3 ) 4 C l z a n d O s 2 ( O z C C H 3 ) 4 C 1 2 w i t h [ E t a N ] [ C N ] I n a n e f f o r t t o p r e p a r e [ E t a N ] 2 [ M 2 ( C N ) 3 ] ( M = R e , O s ) , 8 e q u i v a l e n t s o f [ E t a N ] [ C N ] i n C H C 1 3 w e r e a d d e d t o C H C 1 3 s u s p e n s i o n s o f R e 2 ( O z C C H 3 ) 4 C 1 2 a n d O s 2 ( O z C C H 3 ) 4 C 1 2 w h i c h l e a d t o t h e p r o d u c t i o n o f g r e e n s o l u t i o n s a n d g r e e n p r e c i p i t a t e s ( 3 ) ( R e p r o d u c t ) a n d 5 ( O s p r o d u c t ) . C r y s t a l l i z a t i o n e f f o r t s h a v e y e t t o y i e l d X - r a y q u a l i t y s i n g l e c r y s t a l s o t h e r t h a n [ E t 4 N ] [ O z C C H 3 ] a n d [ E t a N ] C 1 , b u t s e v e r a l s p e c t r o s c o p i c m e t h o d s h a v e b e e n e m p l o y e d i n t h e c h a r a c t e r i z a t i o n o f t h e g r e e n s o l i d s ( 3 ) a n d 5 . ( i ) I n f r a r e d a n d N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r o s c o p i c A n a l y s i s T h e c h a r a c t e r i s t i c v o , O ( 3 9 2 , 3 4 6 c m ! ) V a . . . ) ( 3 8 8 , 3 5 6 c m " ) , y o , C l ( 2 4 8 c m ' l ) , v p e a ( 2 2 1 c m ’ l ) m o d e s o f t h e R e 2 ( 0 2 C C H 3 ) 4 C 1 2 a n d O s 2 ( O z C C H 3 ) 4 C 1 2 s t a r t i n g m a t e r i a l s a r e a b s e n t f r o m t h e F a r - I R s p e c t r a o f t h e s e g r e e n p r o d u c t s w h i c h i s a g o o d i n d i c a t i o n o f t h e f u l l d i s p l a c e m e n t o f t h e ( O Z C C H 3 ) ' a n d C l ' g r o u p s t o y i e l d h o m o l e p t i c R e a n d O s c y a n i d e c o m p o u n d s . 6 6 C 0 1 o f d i o r e d d i s ; p 1 0 h i g t h a t . T h e d i r h e n i u m c o r e o f [ R e z m ’ m ( C N ) 3 ] 2 ° w i t h a d 4 - d 4 e l e c t r o n c o n fi g u r a t i o n w o u l d b e e x p e c t e d t o h a v e a m e t a l - m e t a l q u a d r u p l e b o n d b a s e d o n t h e c o n v e n t i o n a l d - o r b i t a l o v e r l a p s c h e m e . 1 2 T h e y s y m m e t r y o f t h e 5 c o m p o n e n t o f t h e q u a d r u p l e b o n d w o u l d r e q u i r e a n e c l i p s e d c o n fi g u r a t i o n o f t h e c y a n i d e l i g a n d s . T h e t w o a d d i t i o n a l e l e c t r o n s p r e s e n t i n a d 5 - d 5 d i o s r n i u m c o r e s u c h a s [ O s z m ’ m ( C N ) 3 ] 2 ' w o u l d p o p u l a t e t h e 5 * M . 0 . t h e r e b y r e d u c i n g t h e m e t a l - m e t a l b o n d o r d e r t o 3 , i . e . 0 ’ 2 7 : 2 5 2 5 ” . T h e c y l i n d r i c a l s y m m e t r y o f t h e 0 8 5 0 8 t r i p l e b o n d w o u l d a l l o w t h e c y a n i d e l i g a n d s t o a s s u m e a s t a g g e r e d c o n fi g u r a t i o n a s f o u n d f r o m e x a m p l e i n [ O s X 3 ] 2 ' . 1 2 T h e i d e a l i z e d p o i n t g r o u p s y m m e t r i e s o f [ R e 2 ( C N ) 8 ] 2 ' a n d [ O s z ( C N ) 3 ] 2 ' ( d e p i c t e d i n F i g u r e s 2 . 1 a n d 2 . 2 ) w o u l d b e D 4 ) , a n d D 4 d , r e s p e c t i v e l y , b o t h o f w h i c h w o u l d g i v e r i s e t o t w o I R a c t i v e V C N m o d e s ( A 2 u a n d E u f o r [ R e 2 ( C N ) 3 ] 2 ’ a n d B 2 a n d E ; f o r [ 0 8 2 ( C N ) 3 ] 2 ' ) . T h e m i d - I R s p e c t r u m o f t h e R e p r o d u c t ( 3 ) d i s p l a y e d V C N m o d e s a t 2 0 8 9 a n d 2 0 7 5 c m ' 1 w h i c h i s c o n s i s t e n t w i t h t h e p r o d u c t b e i n g [ R e 2 ( C N ) 3 ] 2 ' . T h e e n e r g i e s o f t h e d i s p l a y e d V C N m o d e s b e i n g h i g h e r t h a n t h e 2 0 7 0 c m ' 1 c h a r a c t e r i s t i c o f f r e e C N ’ i n [ E t 4 N ] [ C N ] i n d i c a t e t h a t a d o n a t i o n n o t 7 t b a c k b o n d i n g i s d o m i n a t i n g t h e R e c y a n i d e b o n d i n g i n t e r a c t i o n s . T h i s w a s t h e c a s e f o r t h e M o - C E N i n t e r a c t i o n s o b s e r v e d f o r [ M 0 2 ( C N ) s ] “ . 7 6 7 m o r f ' 2 ] 3 ) N C ( 2 e R [ f o e r u ) t 2 c ( u r w t e s i d v e s n p o i - l d c n e e d e n z a i l d a n e a d i ) 1 e ( h t e v f i o t c n e o p i s t r a e t p n e n s o e - r e p d e i r s A a . 1 . 2 e r u g i F 6 8 ( 1 ) ( 2 ) ) 2 ( m o r f ‘ 2 ] 3 ) N C ( 2 8 0 [ n o i n a d e r e g g a t s e ) h 2 t ( f w o e e i r v u t n c o u - r t d s n e d e n t a c i d d n e a r p ) 1 e ( h t e v f i o t c n e o p i s t r a e t n p e n s o e - r e p d e i r s A a . 2 . 2 e r u g i F 6 9 ( 1 ) T h e s p e c t r u m o f t h e O s p r o d u c t ( 5 ) d i s p l a y s V O N m o d e s a t 2 1 1 2 ( s h ) , 2 1 0 6 , 2 0 8 5 , 2 0 7 0 ( s h ) , 1 8 7 0 , a n d 1 8 6 3 . T h e n u m e r o u s s t r e t c h e s s p a n n i n g a w i d e e n e r g y r a n g e s u g g e s t s t h a t m u l t i p l e p r o d u c t s a r e p r e s e n t . T h e 1 H a n d 1 3 C N M R s p e c t r a i n C D 3 C N o f b o t h t h e R e ( 3 ) a n d O s ( 5 ) p r o d u c t s s h o w e d o n l y t h e p e a k s e x p e c t e d f o r t h e m e t h y l e n e a n d m e t h y l g r o u p s o f t h e [ E t 4 N ] + c a t i o n s a n d s m a l l a m o u n t s o f r e s i d u a l C H C 1 3 f r o m t h e r e a c t i o n s o l v e n t . T h e s i g n a l s i n t h e 1 H N M R s p e c t r u m o f t h e R e p r o d u c t ( 3 ) a p p e a r e d a t 3 . 2 8 p p m f o r t h e m e t h y l e n e q u a r t e t a n d 1 . 2 7 p p m t h e m e t h y l t r i p l e t . T h e c o r r e s p o n d i n g s i g n a l s i n t h e 1 3 C N M R w e r e d i s p l a y e d a t 5 3 . 4 3 a n d 8 . 3 4 p p m . T h e m e t h y l e n e a n d m e t h y l s i g n a l s i n t h e 1 H a n d 1 3 C N M R s p e c t r a o f t h e O s ( 5 ) p r o d u c t a p p e a r e d a t 3 . 2 1 a n d 1 . 1 2 p p m a n d 5 3 . 7 4 a n d 8 . 6 3 p p m r e s p e c t i v e l y . ( i i ) E l e c t r o n i c p r o p e r t i e s a n d c y c l i c v o l t a m m e t r i c s t u d i e s T h e U V - v i s i b l e s p e c t r u m o f t h e R e p r o d u c t d i s p l a y s a b r o a d a b s o r p t i o n f e a t u r e a t 6 1 0 n m . T h e H O M O L U M O g a p f o r t h e p o s t u l a t e d p r o d u c t , [ R e 2 ( C N ) g ] 2 ' , w o u l d c o r r e s p o n d t o t h e t r a n s i t i o n b e t w e e n t h e 5 a n d 5 * m o l e c u l a r o r b i t a l s o f t h e R e - R e q u a d r u p l e b o n d . T h e o b s e r v e d a b s o r b a n c e a t 6 1 0 r u n w h i l e h i g h e r i n e n e r g y t h a n i s c o m m o n f o r t h e 5 — > 5 * t r a n s i t i o n o f m e t a l - m e t a l b o n d e d c o m p o u n d s b a s e d o n t h e R e z m ’ I I I c o r e , i s s t i l l 7 0 r e a s o n a b l e . 1 2 C o m p a r i s o n o f t h e d a t a t o t h e d i r h e n i u m s t a r t i n g m a t e r i a l i s p r e c l u d e d b y t h e i n s o l u b i l i t y o f R e 2 ( O z C C H 3 ) 4 C 1 2 . T h e U V - v i s i b l e s p e c t r u m o f t h e O s p r o d u c t ( 5 ) d i s p l a y e d e l e c t r o n i c t r a n s i t i o n s a t 3 5 8 , 5 2 6 ( s h ) , 6 2 2 ( s h ) , 7 0 0 n m . T h e l a c k o f 0 8 2 1 1 1 . 1 1 1 c o m p o u n d s w i t h n - a c i d l i g a n d s m a k e s i t d i f fi c u l t t o d r a w c o n c l u s i o n s r e g a r d i n g t h e a s s i g n m e n t s , b u t w e n o t e t h a t t h e [ O S Z X 3 ] 2 ' ( X = C l , B r , 1 ) f a m i l y o f c o m p o u n d s w i t h r t - d o n o r h a l i d e l i g a n d s a l s o e x h i b i t n u m e r o u s t r a n s i t i o n s i n t h e r a n g e 2 5 0 - 7 5 0 n m . 1 2 T h e l o w e s t e n e r g y t r a n s i t i o n i n t h e s e m o l e c u l e s h a s b e e n a s s i g n e d t o t h e 5 1 9 7 1 ? t r a n s i t i o n . W i t h o u t o t h e r s u p p o r t i n g d a t a , h o w e v e r , t h e e l e c t r o n i c a b s o r p t i o n d a t a f o r t h e O s p r o d u c t ( 5 ) d o e s l e n d i n s i g h t i n t o t h e a s s i g n m e n t o f ( 5 ) a s [ O s ( C N ) 3 ] 2 ' . T h e i n s o l u b i l i t y o f t h e O s z ( O z C C H 3 ) 4 C 1 2 s t a r t i n g m a t e r i a l p r o h i b i t s a c o m p a r i s o n t o t h e U V - v i s i b l e d a t a o b s e r v e d f o r t h i s p r o d u c t . A c y c l i c v o l t a m m e t r y s t u d y o f t h e R e p r o d u c t ( 3 ) i n a 0 . 1 M [ n - B u 4 N ] [ B F 4 ] / C H 3 C N o f t h e R e p r o d u c t r e v e a l e d t w o i r r e v e r s i b l e c a t h o d i c p r o c e s s e s a t — O . 4 2 1 V a n d - 1 . 1 3 0 V . T h e c y c l i c v o l t a m m o g r a m o f t h e O s c o m p o u n d d i d n o t r e v e a l a n y e l e c t r o c h e m i c a l p r o c e s s e s b e t w e e n + 2 . 0 a n d — I l l , I I l I I , I I l - 2 . 0 V . R e d u c t i o n o f t h e d i o s m i u m c o r e f r o m O s ; t o 0 8 2 I S a c o m m o n e l e c t r o c h e m i c a l f e a t u r e o f O s 2 ( O z C R ) 4 X 2 a n d O s 2 ( h p ) 4 X 2 ( R = C H 3 , C 2 H 5 , C 3 H 7 ) ( X C l , B r ) ( h p = l - h y d r o x y p y r i d i n a t e ) . 1 2 C u r i o u s l y , t h e 7 1 [ M 0 2 ( C N ) 3 ] 4 ' c o m p o u n d i s a l s o e l e c t r o c h e m i c a l l y i n a c t i v e i n t h e w i n d o w + 2 . 0 V t o — 2 . 0 V . ( i i i ) M a s s s p e c t r o m e t r i c a n a l y s i s T h e n e g a t i v e i o n f a s t - a t o m b o m b a r d m e n t ( F A B ) m a s s s p e c t r o m e t r y s t u d i e s o f t h e R e a n d O s p r o d u c t s w e r e c o n d u c t e d i n b o t h n i t r o b e n z y l a l c o h o l ( N B A ) a n d g l y c e r o l m a t r i c e s . T h e s p e c t r u m o f t h e R e c o m p o u n d ( 3 ) i n b o t h m a t r i c e s d i s p l a y e d a s i g n a l a t 7 1 0 m / z c o r r e s p o n d i n g t o t h e f r a g m e n t { [ E t 4 N ] [ R e 2 ( C N ) 3 ] } ' . T h e o b s e r v e d s i g n a l i s i n a g r e e m e n t w i t h t h e p r e d i c t e d i s o t o p e p a t t e r n f o r t h e f r a g m e n t . N o p e a k s i n t h e s p e c t r a o f t h e O s ( 5 ) c o m p o u n d i n e i t h e r m a t r i x c o u l d b e c o r r e l a t e d w i t h t h e t a r g e t p r o d u c t [ E t 4 N ] 2 [ O s 2 ( C N ) g ] o r a n y o f i t s p r e d i c t e d f r a g m e n t s . ( 2 ) P r o d u c t c h a r a c t e r i z a t i o n f r o m t h e r e a c t i o n s o f R e 2 ( 0 2 C C H 3 ) 4 C l z a n d O s z ( O z C C H 3 ) 4 C l z w i t h [ n - B u 4 N ] [ C N ] T h e r e a c t i o n o f R e 2 ( O z C C H 3 ) 4 C 1 2 w i t h [ n - B u 4 N ] [ C N ] p r o c e e d s a l o n g a d i f f e r e n t p a t h t h a n t h e a n a l o g o u s [ E t 4 N ] [ C N ] r e a c t i o n i n t h a t i t p r o d u c e s a d a r k p u r p l e s o l u t i o n . A d d i t i o n o f p e n t a n e t o t h i s s o l u t i o n p r e c i p i t a t e d a r e d - p u r p l e s o l i d ( 4 A ) t h a t w a s s e p a r a t e d b y fi l t r a t i o n . C o n c e n t r a t i o n o f t h e s o l u t i o n i n v a c u o a n d a d d i t i o n o f p e n t a n e r e s u l t e d i n t h e i s o l a t i o n o f a g r e e n - b r o w n s o l i d ( 4 b ) . T h e g r e e n - b r o w n s o l i d i s p r e s u m e d t o b e t h e c o n t a m i n a t e d [ n - B u 4 N ] + s a l t o f t h e g r e e n s o l i d ( 3 ) i s o l a t e d f r o m t h e r e a c t i o n 7 2 o f R e 2 ( 0 2 C C H 3 ) 4 C 1 2 w i t h [ E t a N ] [ C N ] t h a t i s f o r m u l a t e d o n t h e b a s i s o f m s s p e c t r o s c o p i c d a t a t o b e [ E t 4 N ] 2 [ R e 2 ( C N ) 3 ] . S u i t a b l e c o n d i t i o n s f o r p u r i f y i n g t h i s g r e e n s o l i d w e r e n o t f o u n d , b u t t h e m i d - I R s p e c t r u m d i s p l a y e d V C N m o d e s a t 2 0 9 1 a n d 2 0 7 3 c m ' 1 w h i c h a r e w h i c h a r e t a k e n t o b e t h e s a m e a s t h e V C N m o d e s a t 2 0 8 9 a n d 2 0 7 5 c m ' 1 o b s e r v e d i n t h e s p e c t r u m o f t h e R e p r o d u c t ( 3 ) . I n a d d i t i o n , t h e V R e - 0 a n d v p e g m o d e s c h a r a c t e r i s t i c o f R e 2 ( O z C C H 3 ) 4 C 1 2 a r e a b s e n t i n t h e f a r - I R s p e c t r u m s u p p o r t i n g t h e a s s i g n m e n t o f ( 4 b ) a s c o n t a m i n a t e d [ n - B u 4 N ] 2 [ R e 2 ( C N ) g ] . N o o t h e r V C N m o d e s w e r e p r e s e n t i n t h e m i d - I R o f ( 4 b ) i n d i c a t i n g t h a t t h e i m p u r i t y i s n o t a R e c y a n i d e c o m p o u n d b u t s o m e o t h e r b y - p r o d u c t . T h e m i d - I R s p e c t r u m o f t h e r e d - p u r p l e p r e c i p i t a t e ( 4 a ) i n i t i a l l y i s o l a t e d i n t h i s r e a c t i o n d i s p l a y e d m u l t i p l e V C N m o d e s a t 2 2 1 0 , 2 1 1 2 , 2 1 0 0 , 2 0 7 3 , a n d 1 9 0 7 c m ' 1 i n d i c a t i n g t h a t t h e f o r m a t i o n o f m u l t i p l e R e c y a n i d e p r o d u c t s h a d o c c u r r e d . T h e r e a c t i o n o f O s z ( O z C C H 3 ) 4 C 1 2 w i t h [ n - B u 4 N ] [ C N ] i n C H C l 3 p r o d u c e d a d a r k g r e e n s o l u t i o n s i m i l a r t o t h e a n a l o g o u s [ E t 4 N ] [ C N ] r e a c t i o n . A d d i t i o n o f p e n t a n e t o t h e s o l u t i o n i n d u c e d t h e p r e c i p i t a t i o n o f a g r e e n s o l i d ( 6 ) . S i m i l a r t o t h e g r e e n s o l i d ( 5 ) o b t a i n e d i n t h e [ E t 4 N ] [ C N ] r e a c t i o n w i t h O S 2 ( 0 2 C C H 3 ) 4 C 1 2 , t h e p r o d u c t d i s p l a y s m u l t i p l e V C N m o d e s i n t h e m i d - I R s p e c t r u m a t 2 1 1 4 , 2 0 8 5 , 2 0 3 7 , 1 8 6 9 c m ‘ l . A s s t a t e d , t h i s i s a g o o d i n d i c a t i o n t h a t m u l t i p l e p r o d u c t s a r e b e i n g f o r m e d . T h e p o s s i b i l i t y t h a t 7 3 t h e s e a r e h o m o l e p t i c O s c y a n i d e p r o d u c t s i s s u p p o r t e d b y t h e l a c k o f V o s - o a n d v 0 , “ m o d e s i n t h e f a r - I R s p e c t r u m o f ( 6 ) . ( 3 ) S u m m a r y o f r e s u l t s f r o m t h e r e a c t i o n s o f R e 2 ( O z C C H 3 ) 4 C 1 2 a n d O s z ( O z C C H 3 ) 4 C l z w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] ( i ) R e a c t i o n s o f R e 2 ( O z C C H 3 ) 4 C l z w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] T h e c o m b i n e d d a t a f r o m e l e c t r o n i c a b s o r p t i o n a n d i n f r a r e d s p e c t r a ] m e a s u r e m e n t s s u p p o r t t h e f o r m u l a t i o n o f t h e g r e e n p r e c i p i t a t e f r o m t h e . r e a c t i o n o f R e z ( O z C C H 3 ) 4 C 1 2 w i t h 8 e q u i v a l e n t s o f b e i n g [ E t a N ] [ C N ] a s [ E t 4 N ] 2 [ R e 2 ( C N ) 3 ] . T h e f a r - I R s p e c t r u m i s c o n s i s t e n t w i t h c o m p l e t e ( O z C C H 3 ) ' a n d C l ' d i s p l a c e m e n t . T h e t w o V O N m o d e s o f 2 0 8 9 a n d 2 0 7 5 c m ' 1 i n t h e m i d - I R a r e c o n s i s t e n t w i t h t h e e x p e c t e d D 4 , , s y m m e t r y o f t h e e c l i p s e d [ R e 2 ( C N ) g ] 2 ’ a n i o n . T h e s i g n a l i n t h e n e g a t i v e i o n F A B m a s s s p e c t r u m a t 7 1 0 m / z t h a t c o r r e s p o n d s t o t h e { [ E t 4 N ] [ R e 2 ( C N ) 3 ] } ' f r a g m e n t p r o v i d e s v a l u a b l e s t r u c t u r a l i n f o r m a t i o n . T h e 6 1 0 n m t r a n s i t i o n i n t h e U V - v i s i b l e s p e c t r u m i s r e a s o n a b l e f o r t h e e x p e c t e d 5 — — > 5 * t r a n s i t i o n b a s e d o n a q u a d r u p l e b o n d f o r t h e R e z m ’ I I I c o r e . I n f r a r e d s p e c t r a l e v i d e n c e s u g g e s t s t h a t a n a l o g o u s r e a c t i o n s o f R e 2 ( O z C C H 3 ) C 1 2 w i t h [ n - B u 4 N ] [ C N ] a l s o p r o d u c e s [ n - B u 4 N ] 2 [ R e 2 ( C N ) 3 ] ( 4 b ) a l o n g w i t h a d d i t i o n a l R e c y a n i d e c o m p o u n d s ( 4 a ) . T h e i n c r e a s e d 7 4 s o l u b i l i t y i m b u e d b y t h e [ n - B u 4 N ] + c a t i o n h a s t h u s f a r p r e v e n t e d i s o l a t i o n o f p u r e [ n - B u 4 N ] 2 [ R e 2 ( C N ) 3 ] f r o m i t s b y - p r o d u c t s . ( i i ) R e a c t i o n s o f 0 8 2 ( 0 2 C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] E l e c t r o n i c a b s o r p t i o n a n d i n f r a r e d s p e c t r a l e v i d e n c e s u g g e s t s t h a t r e a c t i o n s o f O s 2 ( O z C C H 3 ) 4 C 1 2 w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] p r o c e e d w i t h f o r m a t i o n o f m i x t u r e s o f h o m o l e p t i c O s c y a n i d e c o m p o u n d s t h a t m a y i n c l u d e m o n o n u c l e a r c o m p l e x e s , d i n u c l e a r s p e c i e s w i t h e i g h t o r m o r e c y a n i d e l i g a n d s , o r e v e n h i g h e r n u c l e a r i t y c l u s t e r s . D i s r u p t i o n o f t h e 0 8 5 0 8 t r i p l e b o n d i s a l i k e l y r e a c t i o n p a t h w a y , 1 2 a s r e a c t i o n s i n v o l v i n g d i s p l a c e m e n t o f t h e ( O z C C H 3 ) ' g r o u p s f r o m O s 2 ( O z C C H 3 ) 4 C 1 2 t y p i c a l l y l e a d t o m e t a l - m e t a l b o n d c l e a v a g e . F o r e x a m p l e , a l t h o u g h r e a c t i o n s o f a q u e o u s I - I X ( x = C l , B r ) w i t h R e 2 ( O z C C H 3 ) 4 C 1 2 c o m p o u n d s l e a d t o [ R e 2 X 3 ] 2 ' , t r e a t m e n t o f O s 2 ( O z C R ) 4 C 1 2 ( R = C H 3 , C 2 H 5 , C 3 H 7 ) w i t h a q u e o u s H C l o r H B r l e a d o n l y t o O s _ = . O s b o n d s c i s s i o n . D i s p l a c e m e n t o f t h e ( O Z C R ) ( R = 1 1 1 . 1 1 1 c o r e t o y i e l d [ O s 2 X 8 ] 2 ’ C H 3 , C 2 H 5 , C 3 H 7 ) g r o u p s w i t h r e t e n t i o n o f t h e O s ; ( C l , B r ) w a s a c c o m p l i s h e d b y p a s s i n g d r y g a s e o u s H C l a n d H B r t h r o u g h s u s p e n s i o n s o f O s 2 ( O Z C R ) 4 C 1 2 i n a n h y d r o u s e t h a n o l . A s i m i l a r a p p r o a c h i n v o l v i n g H C N w a s n o t c o n s i d e r e d a s a n a l t e r n a t i v e m e a n s o f p r e p a r i n g a d i o s m i u m c y a n i d e c o m p o u n d d u e t o s a f e t y c o n c e r n s . 7 5 T h e m o n o n u c l e a r c y a n o c o m p l e x e s [ O s ( C N ) 6 ] ¢ a n d [ O s ( C N ) 6 ] 3 ' h a v e b e e n r e p o r t e d b u t t h e y a r e n o t w e l l c h a r a c t e r i z e d . 1 3 A t t e m p t s a t p r e p a r i n g m o n o n u c l e a r [ O s ( C N ) n ] “ * p r o d u c t s f r o m r e a c t i o n o f O s z ( O z C C H 3 ) 4 C 1 2 w i t h 1 2 o r m o r e e q u i v a l e n t s o f c y a n i d e a n d r e fl u x i n g l e d o n l y t o m u l t i p l e p r o d u c t s a s e v i d e n c e d b y s e v e r a l V C N m o d e s i n t h e i n f r a r e d s p e c t r a o f t h e s e p r o d u c t s . C . R e a c t i o n s o f M 0 2 ( 0 2 C C H 3 ) 4 , R e 2 ( O z C C H 3 ) 4 C l z , a n d O s 2 ( O z C C H 3 ) 4 C 1 2 w i t h ( C H 3 ) 3 S i C N T h e r e a g e n t ( C H 3 ) 3 S i C N w a s i n v e s t i g a t e d a s a n a l t e r n a t i v e m e a n s f o r i n t r o d u c i n g C N ' i n t o m e t a l c o o r d i n a t i o n e n v i r o n m e n t s , b u t s u s p e n s i o n s o f R e 2 ( O z C C H 3 ) 4 C 1 2 , a n d O s 2 ( O z C C H 3 ) 4 C 1 2 i n T H F d i s p l a y e d n o r e a c t i v i t y w i t h ( C H 3 ) 3 S i C N , w h i c h p r e s u m a b l y i s n o t a s t r o n g e n o u g h c y a n i d e t r a n s f e r r e a g e n t f o r t h a t t y p e o f h e t e r o g e n e o u s r e a c t i o n . T h e r e a c t i o n o f ( C H 3 ) 3 S i C N w i t h a T H F s o l u t i o n o f M 0 2 ( O z C C H 3 ) 4 i s s l o w , b u t d i d o v e r t h e c o u r s e o f t h r e e d a y s p r o d u c e a s o l u t i o n c o l o r c h a n g e f r o m y e l l o w t o r e d . A d d i t i o n o f d i e t h y l e t h e r t o t h i s s o l u t i o n i n d u c e d p r e c i p i t a t i o n o f a r e d - p u r p l e s o l i d ( 7 ) . T h e m i d - I R s p e c t r u m o f t h i s s o l i d d i s p l a y e d a s i n g l e p e a k a t 2 1 1 6 c m ' 1 t h a t w a s s h i f t e d 7 3 c m ' 1 l o w e r i n e n e r g y t h a n t h e V C E N m o d e a t 2 1 8 9 c m ' 1 o b s e r v e d f o r ( C H 3 ) 3 S i C N . T h e 1 H N M R s p e c t r u m r e v e a l e d o n l y a s i n g l e t a t 2 . 6 3 p p m i n d i c a t i n g ( O Z C C H 3 ) ' r e m a i n s b o u n d f r o m w h i c h i t c a n b e i n f e r r e d 7 6 t h a t t h e m e t a l - m e t a l b o n d l i k e l y r e m a i n s i n t a c t . T h i s i s s u p p o r t e d b y t h e U V - v i s i b l e s p e c t r u m , w h i c h d i s p l a y s a 5 4 0 n m a b s o r b a n c e t h a t i s r e a s o n a b l e f o r t h e 5 — > 5 m t r a n s i t i o n o f t h e M o - M o q u a d r u p l e b o n d . 1 ) . S t a b i l i t y s t u d i e s o f [ M 0 2 ( C N ) 3 ] 4 ‘ I n c o n t r a s t t o w h a t m i g h t b e e x p e c t e d f o r a c o m p o u n d w i t h e i g h t n - a c i d l i g a n d s , e s p e c i a l l y g i v e n t h e l o w v a l e n c y o f t h e M o c e n t e r , [ M o n ' n z ( C N ) 3 ] 4 ‘ i s r e m a r k a b l y r e s i s t a n t t o s u b s t i t u t i o n o r c l e a v a g e . R e a c t i o n s w i t h p y r i d i n e a n d C l ' d i d n o t l e a d t o a n y o b s e r v a b l e s u b s t i t u t i o n o f t h e c y a n i d e l i g a n d s . E v e n e x t r e m e c o n d i t i o n s s u c h a s r e fl u x i n g i n C O s a t u r a t e d t o l u e n e a n d d i s s o l u t i o n i n n e a t P ( C H 3 ) 3 w e r e n o t a b l e t o t r a n s f o r m o r d e c o m p o s e t h e c o m p o u n d . D e s p i t e t h i s i n e r t n e s s t o s u b s t i t u t i o n a n d m e t a l - m e t a l b o n d s c i s s i o n , [ M o z ( C N ) g ] 4 " h a s l i m i t e d o x i d a t i v e a n d h y d r o l y t i c s t a b i l i t y . T h i s w a s s o m e w h a t s u r p r i s i n g g i v e n t h e f a c t t h a t c y c l i c v o l t a m m e t r y e x p e r i m e n t s r e v e a l e d t h a t [ M o z ( C N ) g ] 4 ' d o e s n o t d i s p l a y a n y e l e c t r o c h e m i c a l p r o c e s s e s i n t h e r a n g e + 2 V t o — 2 V ( v e r s u s A g / A g C l ) . R e a c t i o n s o f [ M 0 2 ( C N ) 3 ] 4 ’ i n d r y C H 3 C N w i t h 0 2 ( g ) p r o d u c e d a g r e e n s o l i d w i t h t h e v e a N m o d e s s h i f t e d f r o m 2 1 0 9 a n d 2 0 9 7 t o 2 1 9 7 a n d 2 1 0 8 ( s h ) c m " . R e a c t i o n w i t h d e o x y g e n a t e d , d e i o n i z e d w a t e r p r o d u c e d a b r o w n s o l i d w i t h v e a N m o d e s s h i f t e d t o 2 1 9 7 , 2 1 0 8 ( s h ) , a n d 2 0 7 9 c m " . T h e i d e n t i t i e s o f t h e s e p r o d u c t s r e m a i n u n c e r t a i n , 7 7 . — b u t t h e s h i f t s o f t h e V C E N m o d e s t o h i g h e r e n e r g i e s i n d i c a t e t h a t t h e c y a n i d e i s e i t h e r b e i n g o x i d i z e d t o c y a n a t e , O C N ' , o r t h a t t h e n i t r o g e n e n d i s b e i n g i n d u c e d t o c o o r d i n a t e p e r h a p s a s p a r t o f a m e t a l - m e t a l b o n d c l e a v a g e p r o c e s s . A m i x t u r e o f p r o d u c t s i s p o s s i b l e a s o n l y a m a x i m u m o f e i g h t c y a n a t e l i g a n d s c o u l d b e g e n e r a t e d b y c y a n i d e o x i d a t i o n . I f c y a n a t e c o u l d n o t s t a b i l i z e t h e d i n u c l e a r c o r e , a n d c l e a v a g e w e r e t o o c c u r , t h e c o o r d i n a t i o n s p h e r e s o f t h e M o c o u l d c o n t a i n v a r i o u s n u m b e r s o f c y a n a t e a s w e l l a s s o m e c o m b i n a t i o n o f s o l v e n t , w a t e r , o r o x y g e n . E . S t a b i l i t y s t u d i e s o f [ n - B u a N H C N ] a n d [ E t a N ] [ C N ] i n o r g a n i c m e d i a T r a d i t i o n a l c y a n i d e c h e m i s t r y i s c a r r i e d o u t i n e i t h e r a q u e o u s o r l i q u i d a m m o n i a m e d i a . C o n s e q u e n t l y , l i t t l e i s k n o w n a b o u t t h e i n t e r a c t i o n s b e t w e e n n o n p o l a r o r g a n i c s o l v e n t s a n d t h e c y a n i d e a n i o n . O u r u s e o f t e t r a a l k y l a m m o n i u m c y a n i d e s a l t s i n v a r i o u s o r g a n i c m e d i a h a s l e d t o o b s e r v a t i o n s o f p r e v i o u s l y u n d o c u m e n t e d r e a c t i o n s . I t w a s n o t e d t h a t a c o l o r l e s s r e a g e n t s o l u t i o n o f [ E t 4 N ] [ C N ] i n C H z C l z t u r n e d a c l e a r o r a n g e w i t h i n 2 4 h . O t h e r s o l v e n t s w e r e i n v e s t i g a t e d f o r s i m i l a r r e a c t i v i t y w i t h b o t h [ n — B u 4 N ] [ C N ] a n d [ E t 4 N ] [ C N ] . R e a c t i o n s a r e s i g n a l e d b y a d i s - c o l o r a t i o n o f t h e c l e a r s o l u t i o n . T h e r e s u l t s o f t h e s e s t u d i e s a r e p r e s e n t e d i n T a b l e 2 . 1 . 7 8 T h e t r e n d i n d i c a t e s t h a t o n l y t h e m o s t p o l a r s o l v e n t s d o n o t u n d e r g o a r e a c t i o n w i t h c y a n i d e , w i t h m e t h a n o l b e i n g a n e x c e p t i o n . T h e e x p l a n a t i o n f o r t h i s o b s e r v a t i o n l i e s i n c o n s i d e r i n g i o n - p a i r i n g a n d s o l v a t i o n o f t h e c y a n i d e a n i o n . I t i s b e l i e v e d t h a t t h e s e n o n p o l a r s o l v e n t s c a n n o t s u f fi c i e n t l y s o l v a t e t h e c y a n i d e , t h e r e b y r e n d e r i n g i t m o r e s t r o n g l y b a s i c a n d h e n c e r e a c t i v e . T h e a b i l i t y o f m e t h a n o l t o s t a b i l i z e t h e c y a n i d e a n i o n b y e n g a g i n g i n h y d r o g e n b o n d i n g i n t e r a c t i o n s i s b e l i e v e d t o b e t h e r e a s o n f o r i t s e x c e p t i o n t o t h e t r e n d . I n a l l c a s e s , t h e [ n - B u 4 N ] + s a l t r e a c t e d m o r e s l o w l y . T h i s i s a t t r i b u t e d t o t h e a b i l i t y o f t h e b u t y l g r o u p s t o f o l d b a c k o n e a c h o t h e r i n a n u m b r e l l a f a s h i o n , t h e r e b y e x p o s i n g t h e p o s i t i v e l y c h a r g e d n i t r o g e n a n d a l l o w i n g f o r t i g h t e r i o n p a i r i n g . T h i s w o u l d b e t t e r s t a b i l i z e t h e c y a n i d e a n i o n a n d s e r v e t o s l o w t h e d e c o m p o s i t i o n r e a c t i o n . I n f r a r e d s p e c t r o s c o p y w a s e m p l o y e d t o e l u c i d a t e t h e n a t u r e o f t h e s e d e c o m p o s i t i o n r e a c t i o n s . T h e p a t h w a y t o d e c o m p o s i t i o n o f t h e s e t e t r a a l k y l a m m o n i u m c y a n i d e s i n n o n p o l a r o r g a n i c s o l v e n t s i s t r a n s f e r o f a n a l k y l g r o u p f r o m t h e c a t i o n t o t h e n i t r o g e n e n d o f c y a n i d e t o f o r m t h e c o r r e s p o n d i n g i s o c y a n i d e a n d t r i a l k y l a m i n e . I n f r a r e d s p e c t r a o f [ E t a N ] [ C N ] / s o l v e n t s o l u t i o n s w e r e o b t a i n e d o n n e a t s a m p l e s p l a c e d b e t w e e n 7 9 T a b l e 2 . 1 . D e c o m p o s i t i o n o f [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] i n o r g a n i c s o l v e n t s D i e l e c t r i c D e c o m p o s i t i o n o f S o l v e n t C o n s t a n t , e [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] C H C 1 3 4 . 7 2 y e s T H F 7 . 5 8 y e s C H 2 C 1 2 8 . 9 3 y e s A c e t o n e 2 0 . 7 y e s M e O H 3 2 . 7 n o N O z C H 3 3 5 . 9 y e s D M F 3 6 . 7 n o C H 3 C N 3 8 . 8 n o D M S O 4 6 . 8 n o 8 0 K B r p l a t e s . T h e s e s p e c t r a r e v e a l e d t h e d i s a p p e a r a n c e o f t h e 2 0 7 0 c m ' 1 V C E N m o d e o f [ E t 4 N ] [ C N ] a n d t h e a p p e a r a n c e o f a s l i g h t l y s o l v e n t d e p e n d e n t V C E N m o d e t h a t i s i n g o o d a g r e e m e n t w i t h t h e r e p o r t e d v a l u e o f 2 1 5 4 c m ' 1 f o r e t h y l i s o c y a n i d e ( E t N C ) . T h e V C N m o d e s ( c m ' l ) o b s e r v e d f o r t h e r e a c t i o n s o f t h e v a r i o u s s o l v e n t s w e r e { T H F } 2 1 5 4 , { C H C 1 3 } 2 1 4 8 , { C H z C l z } 2 1 5 0 , { a c e t o n e } 2 1 6 4 , { N O z C H 3 } 2 1 5 2 , a n d { D M F } 2 1 5 4 . T h e d i s a p p e a r a n c e o f t h e [ n - B u 4 N ] [ C N ] V C N m o d e a t 2 0 4 8 c m ' 1 a n d a p p e a r a n c e o f t h e C E N s t r e t c h c h a r a c t e r i s t i c o f n - B u N C ( r e p o r t e d t o b e 2 1 5 3 c m ’ l ) w e r e o b s e r v e d i n t h e s p e c t r a o f t h e [ n - B u 4 N ] [ C N ] / { s o l v e n t } s a m p l e s a t { T H F } 2 1 5 0 , { C H C 1 3 } 2 1 5 0 , { C H z C l z } 2 1 5 3 , { a c e t o n e } 2 1 5 4 , { N O z C H 3 } 2 1 5 2 , a n d { D M F } 2 1 5 4 c m ’ l . T h e a p p e a r a n c e o f t h e a m i n e s , R 3 N ( R = n - B u , E t ) , i s b e s t m o n i t o r e d w i t h 1 H N M R s p e c t r o s c o p y b y o b s e r v i n g t h e m u l t i p l e t f o r t h e m e t h y l e n e g r o u p s o r t o t h e N a t o m . T h e s e s i g n a l s a p p e a r a t ~ 2 . 5 a n d ~ 2 . 4 p p m ( s o l v e n t d e p e n d e n t ) f o r E t 3 N a n d n - B u 3 N r e s p e c t i v e l y . T h e e q u i v a l e n t m e t h y l e n e g r o u p s f o r t h e c o r r e s p o n d i n g t e t r a a l k y l a m m o n i u m c y a n i d e s a n d a l k y l i s o c y a n i d e s o c c u r ~ 3 . 4 p p m . T h e 1 H N M R s p e c t r a o f t h e s a m p l e s a l s o r e v e a l e d t h e p r e s e n c e o f a d d i t i o n a l s i g n a l s i n t h e r a n g e 0 t o 4 p p m t h a t c a n n o t b e a s s i g n e d t o a n y o f t h e s p e c i e s d e s c r i b e d i n t h e d e c o m p o s i t i o n o f t h e t e t r a a l k y l a m m o n i u m c y a n i d e s i n d i c a t i n g t h a t w h i l e t h e a m i n e s , R 3 N ( R = n - B u , E t ) , a n d i s o c y a n i d e s , R N C ( R : E t , n - B u ) , a r e t h e m a j o r p r o d u c t s t h e 8 1 f o r m a t i o n o f a d d i t i o n a l p r o d u c t s o r f u r t h e r d e c o m p o s i t i o n i s l i k e l y o c c u r r i n g . T h a t a l k y l g r o u p t r a n s f e r t o c y a n i d e w o u l d t a k e p l a c e w i t h a l k y l a t i o n o f t h e n i t r o g e n e n d o f c y a n i d e i n p l a c e o f t h e c a r b o n i s s u r p r i S i n g . H o w e v e r , t h e e n e r g i e s o f t h e o b s e r v e d V C N m o d e s p r e c l u d e t h e p o s s i b i l i t y o f n i t r i l e f o r m a t i o n a s t h e fi n a l p r o d u c t i n t h e s e r e a c t i o n s a n d a r e i n g o o d a g r e e m e n t w i t h t h e r e p o r t e d v a l u e s o f E t N C a n d n - B u N C . 4 . C o n c l u s i o n s R e a c t i o n s o f 1 2 e q u i v a l e n t s [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] w i t h C r 2 ( O z C C F 3 ) 4 ( T I - I F ) 2 p r o c e e d w i t h c l e a v a g e o f t h e m e t a l - m e t a l b o n d a n d f o r m a t i o n o f [ C r ( C N ) , ] 2 " 3 ‘ c o m p l e x e s . T h e o x i d a t i v e i n s t a b i l i t y o f l o w v a l e n t t r a n s i t i o n m e t a l s s u c h a s C r “ a n d W I I t h a t e x h i b i t m e t a l - m e t a l b o n d i n g n e c e s s i t a t e t h e u s e o f a n h y d r o u s r e a c t i o n c o n d i t i o n s t h a t a r e a c c e s s i b l e o n l y w i t h [ E t 4 N ] [ C N ] a n d ( C H 3 ) 3 S i C N , b u t n o t [ n - B u 4 N ] [ C N ] . T h e a n i o n [ C r ( C N ) 6 ] 4 ' w a s p r e p a r e d o n l y f r o m r e a c t i o n s w i t h [ E t 4 N ] [ C N ] . E x p o s u r e o f [ E t a N ] 4 [ C r ( C N ) 5 ] s o l u t i o n s t o a i r o r w a t e r l e d t o o x i d a t i o n a n d f o r m a t i o n o f [ E t 4 N 1 3 [ C r ( C N ) o l - T h e e l e c t r o n i c a b s o r p t i o n , n u c l e a r m a g n e t i c r e s o n a n c e , a n d i n f r a r e d s p e c t r a l c h a r a c t e r i z a t i o n a s w e l l a s m a s s s p e c t r o m e t r i c m e t h o d s s u p p o r t t h e f o r m u l a t i o n o f t h e g r e e n p r e c i p i t a t e f r o m t h e r e a c t i o n o f R e 2 ( 0 2 C C H 3 ) 4 C 1 2 8 2 w i t h 8 e q u i v a l e n t s o f [ E t 4 N ] [ C N ] a s [ E t 4 N ] 2 [ R e 2 ( C N ) 3 ] . I n f r a r e d s p e c t r o s c o p i c e v i d e n c e s u g g e s t s t h a t t h e r e a c t i o n o f R e 2 ( O z C C H 3 ) 4 C 1 2 w i t h 8 e q u i v a l e n t s o f [ n - B u 4 N ] [ C N ] p r o c e e d s w i t h f o r m a t i o n o f s e v e r a l R e c y a n i d e p r o d u c t s , a m o n g t h e m [ n - B u 4 N ] 2 [ R e 2 ( C N ) 3 ] . E l e c t r o n i c a b s o r p t i o n a n d i n f r a r e d s p e c t r a l e v i d e n c e s u g g e s t s t h a t r e a c t i o n s o f O s 2 ( O z C C H 3 ) 4 C l z w i t h [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] p r o c e e d w i t h f o r m a t i o n o f m u l t i p l e O s c y a n i d e c o m p o u n d s . I t w a s f o u n d t h a t ( C H 3 ) S i C N i s n o t a s u f fi c i e n t l y s t r o n g c y a n i d e t r a n s f e r r e a g e n t f o r h e t e r o g e n e o u s r e a c t i o n s w i t h s u s p e n s i o n s o f R e 2 ( O z C C H 3 ) 4 C 1 2 , o r O S 2 ( 0 2 C C H 3 ) 4 C 1 2 . A T H F / ( C H 3 ) S i C N s o l u t i o n , h o w e v e r , w a s a b l e t o s l o w l y r e a c t w i t h a T H F s o l u t i o n o f M 0 2 ( O z C C H 3 ) 4 t o p r o d u c e a r e d p r o d u c t w i t h a s i n g l e V O N m o d e . T h e n a t u r e o f t h i s p r o d u c t i s u n d e r i n v e s t i g a t i o n . D e s p i t e t h e r e s i s t a n c e t o s u b s t i t u t i o n o f t h e c y a n i d e s a n d m e t a l - m e t a l b o n d c l e a v a g e , [ M 0 2 ( C N ) 3 ] 4 ” h a s l i m i t e d o x i d a t i v e a n d h y d r o l y t i c s t a b i l i t y . A c e t o n i t r i l e s o l u t i o n s o f [ n - B u a N ] 4 [ M 0 2 ( C N ) 8 ] r e a c t w i t h b o t h d e i o n i z e d , d e o x y g e n a t e d w a t e r a n d d r y o x y g e n i n a m a n n e r t h a t i s s u g g e s t i v e o f c y a n i d e o x i d a t i o n t o c y a n a t e . T h e p a t h w a y t o d e c o m p o s i t i o n o f [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] i n n o n p o l a r o r g a n i c s o l v e n t s i s t h e t r a n s f e r o f t h e a l k y l g r o u p f r o m t h e c a t i o n t o t h e n i t r o g e n e n d o f c y a n i d e t o f o r m R N C a n d R N . T h e i n a b i l i t y o f t h e s e 8 3 s o l v e n t s t o a d e q u a t e l y s o l v a t e t h e c y a n i d e a n i o n i s t h e d r i v i n g f o r c e b e h i n d t h e r e a c t i o n . 8 4 R e f e r e n c e s 1 . 2 . H e i n t z , R . A . ; D u n b a r , K . R . P r o g . I n o r g . C h e m . 1 9 9 6 , 4 5 , 2 8 3 . V a h r e n k a m p , H . ; G e i s s , A . ; R i c h a r d s o n , G . N . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 7 , 2 0 , 3 6 6 4 . . C u r t i s , M . D . ; K l i n g e r , R . J . J . O r g a n o m e t . C h e m . 1 9 7 8 , 1 6 1 , 2 3 . . A s p i n a l l , H . C . ; D e e m i n g , A . J . ; D o n o v a n - M t u n z i , S . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 3 , 8 4 , 2 0 5 . . B u d z i c h o w s k i , T . ; C h i s h o l m , M . P o l y h e d r o n , 1 9 9 4 , I 3 , 2 0 3 5 . . D e r a n i y a g , S . P . ; G r u n d y , K . R . I n o r g . C h i m . A c t a , 1 9 8 4 , 8 4 , 2 0 5 . B a r t l e y , S . L . ; B e r n s t e i n , S . N . ; D u n b a r , K . R . I n o r g . C h i m . A c t a . 1 9 9 3 , 2 1 3 , 2 1 3 . C o t t o n , F . A . ; C u r t i s , N . F . ; J o h n s o n , B . F . G . ; R o b i n s o n , W . R . I n o r g . C h e m . 1 9 6 5 , 4 , 3 6 5 . C a r l s o n - D a y , K . M . ; E g l i n , J . L . ; V a l e n t e , E . J . ; Z u b k o w s k i , J . D . I n o r g . C h i m i c a A c t a 1 9 9 6 , 2 4 4 , 1 5 1 . 1 0 . O s z O z C C H 3 C 1 2 w a s p r e p a r e d b y a m o d i fi c a t i o n d e v e l o p e d i n t h e D u n b a r l a b o r a t o r i e s o f t h e p r o c e d u r e r e p o r t e d i n B e h l i n g , T . ; W i l k i n s o n , G . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 3 , 2 1 0 9 . I n a 5 0 0 m L E r l e n m e y e r fl a s k , c o n c e n t r a t e d H C l ( 9 0 m L ) a n d F e C 1 2 - 4 H Z O ( 7 g ) w e r e c o m b i n e d . T h r e e 1 g a m p o u l e s o f 0 8 0 4 w e r e a d d e d . H e a t t h e b e a k e r c o n t e n t s i n a 8 5 1 1 . w a t e r b a t h a t 8 5 - 9 0 ° C f o r 4 h o u r s . T h e s o l u t i o n w a s t r a n s f e r r e d t o a l a r g e s e p a r a t o r y f u n n e l a n d e x t r a c t e d w i t h d i e t h y l e t h e r ( 1 0 x 1 0 0 m L ) . E a c h t i m e t h a t f r e s h d i e t h y l e t h e r i s a d d e d , t h e b o t t o m l a y e r m u s t b e d i s p e n s e d i n t o a b e a k e r a n d t h e t o p l a y e r d i s c a r d e d b e f o r e t h e a q u e o u s l a y e r i s r e t u r n e d t o t h e s e p a r a t o r y f u n n e l . T h e y e l l o w d i e t h y l e t h e r l a y e r w i l l b e c o m e p r o g r e s s i v e l y b e c o m e c o l o r l e s s . T h e r e d a q u e o u s l a y e r i s e m p t i e d i n t o a r o u n d - b o t t o m e d fl a s k a n d r e d u c e d t o a m o i s t r e s i d u e . A c e t i c a c i d ( 4 5 m L ) a n d a c e t i c a n h y d r i d e ( 4 5 m L ) a r e a d d e d a n d t h e s o l u t i o n i s r e fl u x e d u n d e r a n i n e r t a t m o s p h e r e f o r ~ 2 4 h o u r s . T h e s o l u t i o n i s c o o l e d a n d fi l t e r e d i n a i r . A c e t i c a c i d f o l l o w e d b y m e t h a n o l a n d d i e t h y l e t h e r a r e u s e d t o w a s h t h e s o l i d . T h e p r o d u c t i s d r i e d i n v a c u o . Y i e l d i s 2 . 8 4 g ( 7 0 % ) . I n a d r y b o x , C r C l z ( 0 . 7 5 0 g , 6 . 1 0 m m o l ) a n d N 3 0 2 C C F 3 ( 1 . 6 6 g , 1 2 . 2 m m o l ) w e r e t r a n s f e r r e d t o a 1 0 0 m L S c h l e n k fl a s k . T h e fl a s k w a s r e m o v e d f r o m t h e d r y b o x a n d 5 0 m L o f T H F w a s a d d e d . T h e s u s p e n s i o n w a s r e fl u x e d f o r 1 0 - 1 2 h o u r s . T h i s p r o d u c e d a p u r p l e s o l u t i o n a n d a w h i t e ( l i g h t g r e e n ) p r e c i p i t a t e . T h e p u r p l e s o l u t i o n w a s fi l i t e r e d a n d t h e T H F r e m o v e d u n d e r v a c u u m . T h e r e s u l t i n g p u r p l e s o l i d w a s e x t r a c t e d w i t h t o l u e n e a n d fi l t e r e d a g a i n . T h e t o l u e n e w a s 8 6 r e m o v e d t o g i v e a p u r p l e s o l i d . T h e s o l i d w a s d r i e d u n d e r v a c u u m a n d t r a n s f e r r e d t o a d r y b o x f o r s t o r a g e . Y i e l d 1 . 7 7 g ( 8 3 % ) . 1 2 . C o t t o n , F . A . ; W a l t o n , R . A . M u l t i p l e B o n d s B e t w e e n M e t a l A t o m s , 2 “ d 1 3 . e d . , C l a r e n d o n P r e s s , O x f o r d , 1 9 9 3 . S h a r p , A . G . T h e C h e m i s t r y o f C y a n o C o m p l e x e s o f t h e T r a n s i t i o n M e t a l s , 1 9 7 6 , A c a d e m i c P r e s s , N e w Y o r k , N e w Y o r k . 8 7 C h a p t e r I I I A n e w f a m i l y o f d i m o l y b d e n u m c o m p o u n d s w i t h c y a n i d e a n d p h o s p h i n e l i g a n d s 8 8 1 . I n t r o d u c t i o n N e u t r a l a n d c a t i o n i c E S B O c o m p o u n d s a r e w e l l e s t a b l i s h e d f a m i l i e s o f c o m p o u n d s , b u t , p r i o r t o o u r r e s u l t s i n t h e c y a n i d e c h e m i s t r y , a n i o n i c E S B O s w e r e l i m i t e d t o o n e e x a m p l e , v i z . , [ R e 2 C 1 6 ( d p p m ) 2 ] ’ . T h e d i s c o v e r y o f t h e u n p r e c e d e n t e d c o m p o u n d [ n — B u 4 N ] 2 [ R e 2 ( C N ) 6 ( d p p m ) 2 ] p r o m p t e d u s t o q u e s t i o n w h e t h e r o t h e r a n i o n i c m e t a l - m e t a l b o n d e d E S B O c o m p l e x e s w i t h c y a n i d e l i g a n d s c o u l d b e i s o l a t e d . H e r e i n , t h e s y n t h e s i s o f t h e n e w a n i o n i c E S B O , [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' , p r o d u c e d f r o m t h e r e a c t i o n o f M 0 2 C 1 4 ( d p p m ) 2 a n d e x c e s s c y a n i d e , i s r e p o r t e d . I n v e s t i g a t i o n s o f t h e e l e c t r o c h e m i s t r y o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) l e d t o t h e i s o l a t i o n o f t h e c o r r e s p o n d i n g o n e a n d t w o - e l e c t r o n o x i d a t i o n p r o d u c t s , [ n - B u a N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) r e s p e c t i v e l y . T h i s h o m o l o g o u s s e r i e s o f c o m p o u n d s p r e s e n t s a n e x c e l l a n t o p p o r t u n i t y t o p r o b e t h e o r d e r i n g o f t h e o r b i t a l s i n v o l v e d i n m e t a l - m e t a l b o n d f o r m a t i o n i n e d g e - s h a r i n g b i o c t a h e d r a l ( E S B O ) c o m p o u n d s . I n E S B O c o m p o u n d s , t h r e e d - d o v e r l a p s g i v e r i s e t o m e t a l - m e t a l b o n d s w i t h 6 , 1 c , a n d 5 c o m p o n e n t s a s w e l l a s t h e c o r r e s p o n d i n g a n t i b o n d i n g c o m b i n a t i o n s ( F i g u r e 3 . 1 ) . T h e 5 a n d 5 * o r b i t a l s a r e g e n e r a l l y c o n s i d e r e d t o b e s u f fi c i e n t l y w e a k s u c h t h a t t h e y m a y e v e n b e r e v e r s e d i n e n e r g y . T h i s s w i t c h i n g o f t h e o r b i t a l o r d e r a r i s e s f r o m t h e i n t e r a c t i o n o f e l e c t r o n l o n e p a i r o r b i t a l s o n t h e b r i d g i n g 8 9 d x y - d , y 8 * d X y + d x y 5 R J d y z + d y z 7 ‘ F i g u r e 3 . 1 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e o v e r l a p o f d - o r b i t a l s i n v o l v e d i n m e t a l - m e t a l b o n d f o r m a t i o n i n a n E S B O c o m p l e x . 9 0 a t o m s w i t h m e t a l b a s e d ( 1 o r b i t a l s i n v o l v e d i n m e t a l - m e t a l b o n d f o r m a t i o n . S i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s o f ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) a s w e l l a s c o m p u t a t i o n a l s t u d i e s o f t h e c l o s e d s h e l l a n a l o g s [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' a n d M o z ( C N ) 6 ( d p p m ) 2 h a v e h e l p e d l e n d i n s i g h t i n t o t h e n a t u r e o f t h e s e m i - b r i d g i n g m o d e a d o p t e d b y t h e c y a n i d e s s p a n n i n g t h e d i m o l y b d e n u m c o r e s o f t h e s e E S B O c o m p o u n d s a n d i t s i n fl u e n c e o n t h e m e t a l - m e t a l b o n d i n g . 2 . E x p e r i m e n t a l A . M a t e r i a l s A l l m a n i p u l a t i o n s w e r e c a r r i e d o u t u n d e r a n i n e r t a t m o s p h e r e u s i n g s t a n d a r d S c h l e n k - l i n e t e c h n i q u e s . G l a s s w a r e w a s fl a m e - d r i e d u n d e r v a c u u m p r i o r t o u s e . A c e t o n i t r i l e w a s d r i e d o v e r 3 A s i e v e s a n d d i e t h y l e t h e r w a s d r i e d o v e r N a . B o t h s o l v e n t s w e r e d i s t i l l e d u n d e r n i t r o g e n p r i o r t o u s e . T h e c o m p o u n d M 0 2 C 1 4 ( d p p m ) 2 w a s p r e p a r e d a c c o r d i n g t o t h e l i t e r a t u r e m e t h o d . 1 1 T h e r e a g e n t N O B F 4 w a s p u r c h a s e d f r o m A l d r i c h a n d u s e d w i t h o u t f u r t h e r p u r i fi c a t i o n . T h e s a l t [ s z F e ] [ B F 4 ] w a s p r e p a r e d a c c o r d i n g t o t h e l i t e r a t u r e m e t h o d . 1 2 B . P h y s i c a l M e a s u r e m e n t s I n f r a r e d s p e c t r a w e r e r e c o r d e d i n t h e r a n g e 4 0 0 0 - 4 0 0 c m ' 1 o n a N i c o l e t I R / 4 2 S p e c t r o m e t e r u s i n g K B r s a l t p l a t e s . 1 H a n d 3 1 P N M R s p e c t r a w e r e r e c o r d e d o n V a r i a n V X R 3 0 0 s S p e c t r o m e t e r . E l e c t r o n i c a b s o r p t i o n a n d 9 1 n e a r - I R s p e c t r a w e r e m e a s u r e d o n a S h i m a d z u U V - 3 1 0 1 P C U V - V i s - N I R S c a n n i n g S p e c t r o p h o t o m e t e r . C y c l i c v o l t a m m e t r y s t u d i e s w e r e c a r r i e d o u t w i t h a C H I n s t r u m e n t s E l e c t r o c h e m i c a l W o r k s t a t i o n i n 0 . 1 M [ n - B u a N ] [ B F 4 ] / C H 3 C N s o l u t i o n s a t a P t d i s k w o r k i n g e l e c t r o d e w i t h a P t w i r e a u x i l i a r y e l e c t r o d e a n d A g / A g C l r e f e r e n c e . M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s i n t h e s o l i d s t a t e w e r e p e r f o r m e d w i t h t h e u s e o f a Q u a n t u m D e s i g n s u p e r c o n d u c t i n g q u a n t u m i n t e r f e r e n c e d e v i c e ( S Q U I D ) m a g n e t o m e t e r M P M S - S . D a t a w e r e o b t a i n e d o n p o l y c r y s t a l l i n e s a m p l e s i n t h e r a n g e o f 2 - 3 0 0 K a t 1 0 0 0 G . E l e c t r o n P a r a m a g n e t i c R e s o n a n c e s p e c t r a w e r e r e c o r d e d o n a E S P 3 0 0 E i n s t r u m e n t e q u i p p e d w i t h a n O x f o r d i n s t r u m e n t C r y o s t a t E S R 9 0 0 . E l e m e n t a l a n a l y s e s w e r e p e r f o r m e d o n a P e r k i n E l m e r S e r i e s I I C H N S / O A n a l y z e r . M a s s s p e c t r a l d a t a w e r e o b t a i n e d a t t h e M i c h i g a n S t a t e U n i v e r s i t y M a s s S p e c t r o m e t r y F a c i l i t y w h i c h i s s u p p o r t e d , i n p a r t , b y a g r a n t ( D R R - 0 0 4 8 0 ) f r o m t h e B i o t e c h n o l o g y R e s e a r c h T e c h n o l o g y P r o g r a m , N a t i o n a l C e n t e r f o r R e s e a r c h R e s o u r c e s , N a t i o n a l I n s t i t u t e o f H e a l t h . C . S y n t h e s e s ( 1 ) P r e p a r a t i o n o f [ n - B u 4 N 1 2 I M 0 2 ( C N ) t ( d p p m ) 2 ] , ( 8 ) [ n - B u a N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] w a s p r e p a r e d b y c o m b i n i n g 5 m L d i c h l o r o m e t h a n e s o l u t i o n s o f M 0 2 C 1 4 ( d p p m ) 2 ( 0 . 2 0 0 g , 0 . 1 8 1 m m o l ) a n d [ n - 9 2 B u 4 N ] [ C N ] ( 0 . 2 9 2 g , 1 . 0 8 7 m m o l ) . U p o n m i x i n g , a d a r k r e d s o l u t i o n w a s o b t a i n e d a n d t h e r e a c t i o n w a s a l l o w e d t o s t i r f o r 5 m i n u t e s . A d d i t i o n o f 1 0 m L o f d i e t h y l e t h e r t o t h e r e a c t i o n s o l u t i o n i n d u c e d t h e p r e c i p i t a t i o n o f a d a r k r e d m i c r o c r y s t a l l i n e s o l i d , w h i c h w a s c o l l e c t e d b y fi l t r a t i o n , w a s h e d w i t h d i e t h y l e t h e r ( 3 x 1 0 m L ) , a n d d r i e d i n v a c u o . Y i e l d 0 . 1 4 5 g . ( 5 0 % ) . 1 H N M R : - C H 2 - p e n t e t 4 . 0 8 p p m , p h e n y l m u l t i p l e t s 7 . 6 0 a n d 6 . 9 6 p p m ; { 1 H } 3 1 P N M R : 2 5 . 4 7 p p m ; v C N : 2 0 9 4 , 2 0 8 0 , a n d 1 9 3 6 c m " ; U V - V i s ( C H 3 C N ) : ) . , , , , , . ( n m ) ( e ( M ' 1 c m “ ) ) 5 5 3 ( 1 . 9 x 1 0 3 ) 3 3 3 ( 3 . 4 x 1 0 5 ) A n a l . C a l c d f o r C 8 3 H 1 1 4 N 3 P 4 M 0 2 : C , 6 6 . 0 1 ; H , 7 . 2 5 ; N , 7 . 0 0 . F o u n d : C , 6 5 . 1 8 ; H , 7 . 3 3 ; N 6 . 5 8 . ( 2 ) P r e p a r a t i o n o f [ E t t l e l M 0 2 ( C N ) o ( d P P m ) 2 ] , ( 9 ) T h e s a l t [ E t a N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] w a s p r e p a r e d b y c o m b i n i n g 5 m L d i c h l o r o m e t h a n e s o l u t i o n s o f M 0 2 C 1 4 ( d p p m ) 2 ( 0 . 2 0 0 g , 0 . 1 8 1 0 m m o l ) a n d [ E t 4 N ] [ C N ] ( 0 . 1 7 0 g , 1 . 0 8 7 m m o l ) . U p o n m i x i n g , t h e s o l u t i o n t u r n e d d a r k r e d a n d a d a r k r e d m i c r o c r y s t a l l i n e s o l i d w a s o b s e r v e d t o f o r m . T h e s o l u t i o n w a s c o n c e n t r a t e d t o 5 m L , a n d t h e p r o d u c t w a s c o l l e c t e d b y fi l t r a t i o n a n d w a s h e d w i t h d i c h l o r o m e t h a n e ( 3 x 5 m L ) . T h e s o l i d w a s t h e n d r i e d i n v a c u o . Y i e l d 0 . 1 6 2 g . ( 6 5 % ) . 1 H N M R : - C H 2 - p e n t e t 4 . 0 8 p p m , p h e n y l m u l t i p l e t s 7 . 6 0 a n d 6 . 9 6 p p m ; ( ‘ H } 3 ‘ P N M R : 2 1 . 0 p p m ; V C N : 2 0 9 4 , 2 0 8 0 , a n d 1 9 2 5 c m " ; U V - V i s ( C H 3 C N ) : 7 t , , , , , ( n m ) ( e ( M ‘ 1 c m “ ) ) 5 5 3 ( 1 . 9 x 1 0 3 ) , 3 3 3 ( 3 . 4 x 1 0 5 ) 9 3 A n a l . C a l c d f o r C 7 2 H 3 4 N 8 P 4 M 0 2 : C , 6 2 . 7 9 ; H , 6 . 1 5 ; N , 8 . 1 4 . F o u n d : C , 6 2 . 4 8 ; H , 6 . 2 6 ; N 8 . 2 3 . ( 3 ) P r e p a r a t i o n o f [ n - B u a N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] , ( 1 0 ) M e t h o d i [ n - B u l N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] w a s p r e p a r e d b y t h e d r o p - w i s e a d d i t i o n o f 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f N O B F 4 ( 0 . 0 1 5 g , 0 . 1 2 3 m m o l ) i n t o 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f [ n - B u 4 N 1 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 0 . 1 6 5 g , 0 . 1 0 3 1 m m o l ) t h a t h a d b e e n c o o l e d t o — 1 5 ° C b y a n e t h y l e n e g l y c o l / d r y i c e b a t h . U p o n c o m p l e t e a d d i t i o n o f t h e N O B F 4 s o l u t i o n , t h e r e s u l t i n g g r e e n s o l u t i o n w a s a l l o w e d t o w a r m t o r o o m t e m p e r a t u r e . T h e v o l u m e w a s r e d u c e d t o 1 0 m L , t h e s o l u t i o n w a s fi l t e r e d t h r o u g h C e l i t e , a n d 1 0 m L o f d i e t h y l e t h e r w e r e a d d e d t o i n d u c e p r e c i p i t a t i o n . A g r e e n s o l i d w a s r e c o v e r e d b y fi l t r a t i o n , w a s h e d w i t h a 3 5 / 6 5 % a c e t o n i t r i l e / d i e t h y l e t h e r s o l u t i o n ( 3 x 5 m L ) , a n d d r i e d i n v a c u o . Y i e l d 0 . 1 1 2 g . ( 8 0 % ) . V C N : 2 1 0 8 , a n d 1 8 0 7 c m " ; U V - V i s ( C H 3 C N ) : 7 t . , , , , , ( n m ) ( e ( M ' l c m " ) ) 4 2 9 ( 8 0 0 ) 7 8 0 ( 1 . 2 x 1 0 3 ) . A n a l . C a l c d f o r C 7 2 H 3 0 N 7 P 4 M 0 2 : c , 6 4 . 2 8 ; H , 5 . 9 5 ; N , 7 . 2 9 . F o u n d : C , 6 3 . 8 9 ; H , 6 . 1 7 ; N 6 . 9 8 . M e t h o d i i 9 4 [ n - B u a N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] c a n a l t e r n a t i v e l y b e p r e p a r e d u s i n g [ s z F e ] [ B F 4 ] a s a n o x i d i z i n g a g e n t . T h e d r o p - w i s e a d d i t i o n o f 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f [ C n g e ] [ B F 4 ] i n t o 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f [ n - B u a N h [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] t h a t h a d b e e n c o o l e d t o - — 1 5 ° C i n a n e t h y l e n e g l y c o l / d r y i c e b a t h p r o d u c e d a g r e e n s o l u t i o n . T h e r e s u l t i n g g r e e n s o l u t i o n w a s a l l o w e d t o w a r m t o r o o m t e m p e r a t u r e , c o n c e n t r a t e d t o 1 0 m L , t h e n fi l t e r e d t h r o u g h C e l i t e . D i e t h y l e t h e r ( 1 0 m L ) w a s a d d e d t o p r e c i p i t a t e a g r e e n s o l i d t h a t w a s r e c o v e r e d b y fi l t r a t i o n t h e n w a s h e d w i t h a 3 5 / 6 5 % a c e t o n i t r i l e / d i e t h y l e t h e r s o l u t i o n ( 3 x 5 m L ) a n d d r i e d i n v a c u o . T y p i c a l y i e l d s a r e 8 0 % . ( 4 ) P r e p a r a t i o n o f M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 1 1 ) M 0 2 ( C N ) 6 ( d p p m ) 2 w a s p r e p a r e d b y t h e d r o p w i s e a d d i t i o n o f 2 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f N O B F 4 ( 0 . 0 2 6 g , 0 . 2 2 7 m m o l ) i n t o 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 0 . 1 6 5 g , 0 . 1 0 3 1 r m n o l ) c o o l e d t o — 1 5 ° C b y a n e t h y l e n e g l y c o l / d r y i c e b a t h . U p o n c o m p l e t e a d d i t i o n o f t h e N O B F 4 s o l u t i o n , a y e l l o w - g r e e n s o l u t i o n w i t h a s m a l l a m o u n t o f a p u r p l e - r e d p r e c i p i t a t e w a s o b s e r v e d . T h e s o l u t i o n w a s a l l o w e d t o w a r m t o r o o m t e m p e r a t u r e a n d t h e p u r p l e - r e d p r e c i p i t a t e w a s r e m o v e d b y fi l t r a t i o n t h r o u g h C e l i t e . T h e s o l u t i o n w a s c o n c e n t r a t e d t o 1 0 m L w h i c h r e s u l t e d i n t h e p r e c i p i t a t i o n o f a y e l l o w - g r e e n s o l i d t h a t w a s r e c o v e r e d b y fi l t r a t i o n , 9 5 w a s h e d w i t h a c e t o n i t r i l e ( 3 x 5 m L ) , a n d d r i e d i n v a c u o . Y i e l d 0 . 0 8 0 g . ( 7 0 % ) . v C N : 2 1 1 0 , 2 1 0 2 a n d 1 8 0 7 c m " ; A n a l . C a l c d f o r C 5 6 H 4 4 N 6 P 4 M 0 2 : c , 6 0 . 2 3 ; H , 3 . 9 7 ; N , 7 . 5 3 . F o u n d : C , 6 1 . 0 9 ; H , 4 . 2 5 ; N 7 . 3 2 . ( 5 ) P r e p a r a t i o n o f N i ( e n ) 2 M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 1 2 ) N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 w a s p r e p a r e d b y t h e a d d i t i o n o f 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f [ N i ( e n ) 2 ( C H 3 C N ) 2 ] ( P F 6 ) 2 ( 0 . 0 3 5 g , 0 . 0 6 2 5 m m o l ) t o 1 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 0 . 1 0 0 g , 0 . 0 6 2 5 m m o l ) . U p o n m i x i n g o f t h e s o l u t i o n s , a p u r p l e p r e c i p i t a t e e n s u e d w h i c h w a s r e c o v e r e d b y fi l t r a t i o n , w a s h e d w i t h a c e t o n i t r i l e ( 3 x 5 m L ) a n d d r i e d i n v a c c u o . Y i e l d 0 . 7 7 g ( 9 5 % ) . v a r 2 0 9 6 ( b r o a d ) a n d 1 9 3 6 c m ' 1 A n a l . C a l c d f o r C 6 0 H 6 0 N 1 0 P 4 M 0 2 N 1 1 : C , 5 5 . 6 2 ; H , 4 . 6 7 ; N , 1 0 . 8 1 . F o u n d : C , 5 5 . 3 1 ; H , 4 . 4 5 ; N 1 0 . 3 9 . D . X - r a y C r y s t a l l o g r a p h y S i n g l e c r y s t a l X - r a y s t r u c t u r a l d e t e r m i n a t i o n s w e r e p e r f o r m e d o n a B r u k e r S M A R T 1 K C C D ' p l a t f o r m d i f f r a c t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d M o K a r a d i a t i o n ( h a = 0 . 7 1 0 6 9 A ) . T h e f r a m e s w e r e i n t e g r a t e d i n t h e B r u k e r S A I N T s o f t w a r e p a c k a g e , 1 3 a n d t h e d a t a w e r e c o r r e c t e d f o r a b s o r p t i o n u s i n g t h e S A D A B S p r o g r a m . 1 4 T h e s t r u c t u r e s w e r e s o l v e d u s i n g t h e S H E L X T L V . 5 . 1 0 p a c k a g e . 1 5 C r y s t a l l o g r a p h i c d a t a f o r [ n - 9 6 B u t N ] 2 [ M 0 2 ( C N ) o ( d p p m ) 2 ] ( 8 ) . [ n - B u t N ] [ M 0 2 ( C N ) o ( d m e ) 2 ] ( 1 0 ) . a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) a r e s u m m a r i z e d i n T a b l e 1 . T h e r m a l e l l i p s o i d p l o t s f o r t h e s t r u c t u r e s o f ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) a r e d i s p l a y e d i n F i g u r e s 2 , 3 , a n d 4 . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) a r e p r e s e n t e d i n T a b l e s 2 , 3 , a n d 4 . A c o m p a r i s o n o f t h e e q u a t o r i a l p l a n e s o f t h e d i m e t a l u n i t s i n ( 8 ) , ( 1 0 ) , a n d ( l l ) i s i l l u s t r a t e d i n F i g u r e 5 . A m e t r i c a l c o m p a r i s o n o f t h e t h r e e s t r u c t u r e s i s p r e s e n t e d i n T a b l e 5 . ( 1 ) [ n - B u 4 N ] 2 1 N 1 0 2 ( C N ) o ( d P P m ) z l s ( 8 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s o f ( 8 ) w e r e g r o w n b y s l o w d i f f u s i o n o f b e n z e n e i n t o a n a c e t o n i t r i l e s o l u t i o n o f ( 8 ) i n a s e a l e d 8 m m O . D . g l a s s t u b e . A d a r k r e d c r y s t a l o f d i m e n s i o n s 0 . 4 4 x 0 . 3 9 x 0 . 0 7 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 6 5 6 8 u n i q u e r e fl e c t i o n s w a s c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 4 6 4 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e C 2 / c . T h e s t r u c t u r e w a s s o l v e d b y t h e S I - I E L X S 1 5 s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . T h e 9 7 “ s o f t n e s s ” o f t h e c r y s t a l r e s u l t e d i n p o o r d i f f r a c t i o n w h i c h l e d t o r e fi n e m e n t l i m i t a t i o n s . W i t h t h e e x c e p t i o n s o f C 3 1 a n d C 2 , a l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . H y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e h i g h d e g r e e o f t h e r m a l m o t i o n o b s e r v e d f o r t h e C 3 a n d N 3 a t o m s i s a t t r i b u t e d t o l i b r a t i o n a l d i s o r d e r . 1 6 B a s e d o n t h e a p p e a r a n c e o f t h e e l e c t r o n d e n s i t y m a p s o f t h e r e g i o n , i t i s u n l i k e l y t h a t t h e b r i d g i n g a t o m s a r e i n v o l v e d i n a p a c k i n g d i s o r d e r o f t h e m o l e c u l e w i t h t w o s l i g h t l y d i f f e r e n t s u p e r i m p o s e d o r i e n t a t i o n s o f t h e l i g a n d . F u r t h e r m o r e t h e u n r e a s o n a b l y s h o r t C 3 - N 3 b o n d l e n g t h o f 1 . 0 2 8 A i s a n e x p e c t e d c o n s e q u e n c e o f l i b r a t i o n . T h e r a t h e r u n l i k e l y p o s s i b i l i t y o f t h e b r i d g i n g c y a n i d e b e i n g b o u n d t h r o u g h t h e N r a t h e r t h a n C a t o m w a s c o n s i d e r e d a n d r e j e c t e d o n t h e b a s i s o f r e fi n e m e n t s t a t i s t i c s . W h e n t h e a t o m b o n d e d d i r e c t l y t o t h e M o a t o m i n t h e b r i d g i n g p o s i t i o n w a s r e fi n e d a s a N a t o m i n s t e a d o f a C a t o m , t h e t e m p e r a t u r e f a c t o r b e c a m e n o n - p o s i t i v e d e fi n i t e ; t h e c o r r e s p o n d i n g t e m p e r a t u r e f a c t o r o f t h e C a t o m i n c r e a s e d f r o m 0 . 0 4 2 t o 0 . 0 7 2 . ( 2 ) [ n - B u t N ] [ M 0 2 ( C N ) t ( d P P m ) 2 l , ( 1 0 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s o f ( 1 0 ) w e r e g r o w n b y s l o w e v a p o r a t i o n i n a i r o f a b e n z e n e a n d 9 8 a c e t o n i t r i l e s o l u t i o n o f ( 8 ) . A g r e e n c r y s t a l o f d i m e n s i o n s 0 . 3 8 x 0 . 2 5 x 0 . 0 7 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d t h e n m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 8 4 6 2 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e C 2 / c . T h e s t r u c t u r e w a s s o l v e d b y t h e S I - I E L X S 1 5 s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s w e r e l o c a t e d f r o m t h e d i f f e r e n c e m a p a n d r e fi n e d i s o t r o p i c a l l y . T h e O l - H l W A a n d O l - H l W B d i s t a n c e s w e r e r e s t r a i n e d t o 0 . 8 5 A . ( 3 ) M 0 2 ( C N ) t ( d P P m ) 2 , ( 1 1 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s o f ( 1 1 ) w e r e g r o w n i n a n 8 m m O . D . g l a s s t u b e b y s l o w d i f f u s i o n o f a n a c e t o n i t r i l e s o l u t i o n o f ( 1 0 ) i n t o n i t r o m e t h a n e t h a t w a s n o t d r i e d o r d e o x y g e n a t e d p r i o r t o u s e . A y e l l o w - g r e e n c r y s t a l o f d i m e n s i o n s 0 . 4 2 x 0 . 3 5 x 0 . 2 8 m m 3 w a s c o v e r e d i n P a r a t o n e o i l t h e n m o u n t e d o n t h e t i p 9 9 o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a t r i c l i n i c c e l l . A t o t a l o f 6 5 6 8 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P - l . T h e s t r u c t u r e w a s s o l v e d b y t h e S I - I E L X S 1 6 s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s , a n d h y d r o g e n a t o m s w e r e a d d e d i n c a l c u l a t e d p o s i t i o n s . 1 0 0 " ' ‘ E l l l l { f i l m ( ” 3 . 5 ; " m ' 1 1 1 ’ \ L g u n s 7 ‘ \ ‘ s " . ‘ S ” R 0 « - 3 7 5 r \ . 4 ‘ ‘ 2 5 , ‘ \ " ‘ 1 7 5 % , C ) I 1 3 “ ? ‘ 2 3 / ' ‘ _ - 4 ' . / / ' 0 7 7 ; . " 1 ‘ a “ V 5 1 5 ! " P ( 1 A ) P 1 2 ) 4 ‘ 1 “ “ " I . N ( 2 A ) N 1 3 ) , C ( 2 A ) ‘ . . - u 1 3 ; } t } o u t fi t - r c m N 1 1 ) , , ( 1 ’ ( . 4 9 V ‘ M m ' 1 ‘ ) 1 ) N M ) C N A ° ” " 9 5 \ “ t 0 1 2 1 N 1 2 ) 9 , , - 1 “ } , N R ‘ ‘ 3 ’ ‘ i \ \ ‘ ‘ 5 ’ 5 ‘ " f l ; 0 ( 4 ) { i n ‘ m l \ u : \ r fi t fi ’ ) D F i g u r e 3 . 1 . T h e r m a l e l l i p s o i d p l o t o f [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ' , ( 8 ) r e p r e s e n t e d a t t h e 5 0 % p r o b a b i l i t y l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 0 1 ) A 2 ( N ) H C ) 1 1 N W N ) A 1 ( C “ . . k Q * 9 K 5 9 i ; \ : 3 . e _ k . € R l i l ) A 3 ( C ) 2 ( 0 A 3 1 N ) 2 l N 1 0 2 / ~ : l u f f / : § , , l ( 9 ‘ \ \ \ < : : 3 I / ‘ . t “ . ( 3 ( 3 ) C O N 4 . , 7 M 0 1 " M o l 1 A ) A F i g u r e 3 . 2 . A n e l e c t r o n d e n s i t y m a p o f t h e e q u a t o r i a l p l a n e o f [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ' . T h e f e a t u r e o f p r i m a r y i n t e r e s t i s t h e e l e c t r o n d e n s i t y d i s t r i b u t i o n o f t h e t w o c y a n i d e l i g a n d s b r i d g i n g t h e d i m o l y b d e n u m c o r e . 6 ‘ 1 “ ) " 7 , i , l ; t r i l l " , ( L : . V 4 p ? 1 , r 4 5 ' " i t ? > ’ " ‘ 0 ( 4 ) ' 4 4 ( x U < - 0 2 . 2 . . - P 1 1 ) , . 1 4 . — t a . 3 " r : s \ ‘ l l i ‘ fl t l l l ‘ “ l " i “ 5 J ‘ 9 ' " ( é " ‘ 4 — N B ) 9 3 ’ 0 1 2 A 1 2 A ) “ 1 ' ‘ 3 ' ( s 4 ! E N . 1 f . 1 “ o . 9 . 3 ( g C ( 2 ) M o l l l ( 3 1 9 $ } 6 7 1 7 ' a n , l A l ‘ ( 4 M 2 ) . C 3 N B A ) Q m b 5 N 1 1 A l . W : a * ' , , ' A } ‘ V ' ( 9 1 “ ! ( 5 5 " . 0 ‘ C . 4 3 ‘ ( M 5 v . w P n A l P l 2 A ) 3 m 0 1 4 A ) , 3 ‘ E ‘ 1 ‘ ) ' . \ \ \ ‘ E ‘ 1 ' “ “ ' 4 i 7 } , 1 F i g u r e 3 . 3 . T h e r m a l e l l i p s o i d p l o t o f t h e m o l e c u l a r a n i o n [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] l ' i n ( 1 0 ) a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s h a v e b e e n r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 0 3 ' > 4 ‘ » I “ ? ? ? ’ 2 5 ‘ 9 ’ 2 . F 7 % “ / é ‘ 1 : - ‘ 4 3 % , . ” ’ 9 , ‘ r ' 3 ’ 4 5 “ 3 ‘ i “ , / ’ 9 2 . _ ‘ _ ‘ ‘ 5 ‘ ) 7 9 > ( i t 3 “ P ; 3 “ A “ ‘ \ ‘ ‘ fi ‘ " “ Q ! \ \ \ \ ‘ - 4 a “ , P . ‘ " u “ p m i n “ H 2 ) N ( 3 A ) V N ( 1 A l M o l 1 A ) 9 ” “ A 5 , , ' 3 5 g : I ‘ . l \ \ \ \ ‘ ( ‘ 5 C ( 2 A ) C ( 3 A ) N 1 2 A ) F U N ( ‘ 3 ‘ i t s ) \ \ \ \ , 1 I - ‘ " i t ! i f t o ‘ u h “ ; \ ’ \ \ \ ‘ ( \ v \ \ " " ‘ \ \ \ ' \ \ \ \ ' F i g u r e 3 . 4 . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 1 1 ) r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 0 4 T a b l e 3 . 1 . C r y s t a l l o g r p h i c D a t a f o r [ n - B u a N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) “ 2 C H 3 C N ' 2 C 6 H ( 5 , [ n - B U 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) ' 2 C H 3 C N ' 2 H 2 0 a n d M o z ( C N ) 6 ( d p p m ) 2 ( 1 1 ) “ 2 C H 3 N O Z , 8 ‘ 2 C H 3 C N ' 2 C 6 H 6 1 0 ' 2 C H 3 C N ' 2 H Z O l 1 ' 2 C H 3 N O Z e m p i r i c a l f o r m u l a C 1 0 4 H 1 3 4 N 1 0 P 4 0 2 M 0 2 C 7 5 H 9 0 N 9 P 4 0 2 M 0 2 C 5 3 H 5 0 N 3 P 4 0 2 M 0 2 f o r m u l a w e i g h t 1 6 0 1 . 7 1 1 3 5 9 . 2 5 1 2 0 6 . 8 2 s p a c e g r o u p C 2 / c C 2 / c P 1 a ( A ) 2 7 . 5 0 5 ( 6 ) 2 7 . 3 5 3 ( 6 ) 9 . 9 4 2 ( 2 ) b ( A ) 1 8 . 8 2 4 ( 4 ) 1 0 . 7 4 1 ( 2 ) 1 2 . 4 1 8 ( 3 ) c ( A ) 2 3 . 1 0 8 ( 5 ) 2 6 . 1 4 9 ( 5 ) 1 2 . 9 3 4 ( 3 ) o t ( d e g ) 9 0 . 0 0 9 0 . 0 0 9 5 . B ( d e g ) 1 0 2 . 5 8 ( 3 ) 1 0 7 . 5 0 ( 3 ) 1 0 2 . 5 8 ( 3 ) 7 ( d e g ) 9 0 . 0 0 9 0 . 0 0 9 0 . 0 0 V ( A 3 ) 9 9 0 9 ( 3 ) 7 3 2 7 ( 3 ) 1 5 1 6 . 1 ( 5 ) z 4 4 1 p c a l c d ( g / c m 3 ) 1 . 3 3 9 1 . 2 3 3 1 . 3 2 2 t e m p e r a t u r e , K 1 7 3 1 7 3 1 7 3 R . “ 0 . 0 8 5 0 0 . 0 6 0 2 0 . 0 4 2 3 W R Z ” 0 . 1 3 5 7 0 . 1 1 6 6 0 . 1 0 4 9 ( i o o d n e s s - o i — i i t r 1 . 0 5 2 0 . 9 2 7 0 . 9 0 4 3 R ; = s u m — - I F C I I I Z I F O I , " w R 2 = [ 2 w ( l F o l — I F C I ) 2 / Z I F 0 | 2 ] " 2 ; w = 1 / o ’ ( I F , I ) , c g o o d n e s s - o f - fi t = [ Z w ( | F o | — c h l ) 2 / N o b s - N p a m m c t e r s ) ] l / 2 1 0 5 T a b l e 3 . 2 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( ° ) f o r [ n - B U 4 N 1 2 1 M 0 2 ( C N ) 6 ( d P P m ) 2 l ( 8 ) 2 C H 3 C N ' 2 C 6 H 6 B o n d D i s t a n c e s M o ( 1 ) — M o ( 1 A ) 2 . 7 0 9 ( 2 ) C ( 1 ) — N ( l ) 1 . 1 6 2 ( 1 2 ) M o ( 1 ) — C ( 1 ) 2 . 1 6 7 ( 1 3 ) C ( 2 ) — N ( 2 ) 1 . 1 3 2 ( 1 1 ) M o ( 1 ) — C ( 2 ) 2 . 1 8 6 ( 1 1 ) C ( 3 ) — N ( 3 ) 1 . 0 2 8 ( 1 2 ) M o ( 1 ) — C ( 3 ) 2 . 1 9 9 ( 1 2 ) M o ( 1 ) — P ( l ) 2 . 4 7 4 ( 3 ) M o ( 1 ) — C ( 3 A ) 2 . 0 7 7 ( 1 2 ) M o ( 1 ) — P ( 2 ) 2 . 4 7 0 ( 3 ) B o n d A n g l e s C ( 2 ) — M o ( 1 ) — C ( l ) 8 1 . 7 ( 4 ) N ( 3 ) — C ( 3 ) — M o ( 1 ) 1 1 7 . 1 ( 1 4 ) C ( 3 ) — M o ( 1 ) — C ( 1 ) 1 6 3 . 5 ( 4 ) N ( 3 ) — C ( 3 ) — M o ( 1 A ) 1 6 2 . 8 ( 1 4 ) C ( 3 ) — M o ( 1 ) — C ( 2 ) 8 3 . 0 ( 4 ) P ( 1 ) — M o ( 1 ) — P ( 2 ) 1 7 2 . 8 5 ( 1 0 ) 1 0 6 T a b l e 3 . 3 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( ° ) f o r [ n - B U 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) ' 2 C H 3 C N ' 2 H z O . B o n d D i s t a n c e M o ( 1 ) — M o ( 1 A ) 2 . 8 2 9 9 ( 1 0 ) C ( 1 ) — N ( l ) 1 . 1 5 3 ( 6 ) M o ( 1 ) — C ( 1 ) 2 . 1 8 1 ( 5 ) C ( 2 ) — N ( 2 ) 1 . 1 5 1 ( 5 ) M o ( 1 ) — C ( 2 ) 2 . 1 5 5 ( 4 ) C ( 3 ) — N ( 3 ) 1 . 1 6 1 ( 5 ) M o ( 1 ) — C ( 3 ) 2 . 2 5 2 ( 3 ) M o ( 1 ) — P ( 1 ) 2 . 5 4 2 ( 1 ) M o ( 1 ) — C ( 3 A ) 2 . 0 3 2 ( 4 ) M o ( 1 ) — P ( 2 ) 2 . 5 3 7 ( 1 ) B o n d A n g l e s C ( 2 ) — M o ( 1 ) — ( 3 ( 1 ) 7 8 . 4 7 ( 1 6 ) N ( 3 ) — — C ( 3 ) — M o ( 1 ) 8 6 . 2 ( 3 ) C ( 3 ) — M o ( 1 ) — C ( l ) 1 5 7 . 6 4 ( 1 5 ) N ( 3 ) — C ( 3 ) — M o ( 1 A ) 1 6 8 . 2 ( 3 ) C ( 3 ) — M o ( 1 ) — C ( 2 ) 8 0 . 7 5 ( 1 5 ) P ( 1 A ) — M o ( 1 ) — P ( 2 ) 1 7 4 . 3 1 ( 3 ) 1 0 7 T a b l e 3 . 4 . S e l e c t e d B o n d D i s t a n c e s ( A ) a n d B o n d A n g l e s ( ° ) f o r M 0 2 ( C N ) 6 ( d p p m ) 2 ( l l ) ‘ 2 C H 3 N 0 2 B o n d D i s t a n c e s M o ( 1 ) — M o ( 1 A ) 2 . 9 3 5 7 ( 9 ) C ( 1 ) — N ( l ) 1 . 1 5 3 ( 6 ) M o ( 1 ) — C ( l ) 2 . 1 7 6 ( 4 ) C ( 2 ) — N ( 2 ) 1 . 1 5 1 ( 5 ) M o ( 1 ) — C ( 2 ) 2 . 2 5 1 ( 3 ) C ( 3 ) — N ( 3 A ) 1 . 1 6 1 ( 5 ) M o ( 1 ) — C ( 3 ) 2 . 0 8 7 ( 4 ) M o ( 1 ) — P ( l ) 2 . 5 4 7 ( 1 ) M o ( 1 ) — C ( 3 A ) 2 . 2 8 4 ( 3 ) M o ( 1 ) — P ( 2 ) 2 . 5 5 7 ( 1 ) B o n d A n g l e s C ( 2 ) — M o ( 1 ) — C ( l ) 8 1 . 0 8 ( l 1 ) N ( 3 ) — C ( 3 ) — M o ( 1 ) 1 6 5 . 8 ( 3 ) C ( 3 ) — M o ( 1 ) — C ( l ) 8 0 . 2 2 ( 1 2 ) N ( 3 ) — C ( 3 ) — M o ( 1 A ) 8 2 . 2 ( 2 ) C ( 3 ) — M o ( 1 ) — C ( 2 ) 1 5 9 . 0 2 ( 1 2 ) P ( 1 ) — M o ( 1 ) — P ( 2 A ) 1 7 6 . 9 0 ( 3 ) 1 0 8 " m “ N ( 2 1 5 ( ' I \ N 1 1 \ 1 ) e ) . ) ~ ‘ 4 1 ’ c , 1 1 c . 1 3 ( 1 1 “ 5 1 3 2 ' 1 2 5 1 1 ‘ 1 1 C 2 ‘ c . 1 1 ) ‘ ( 3 ( 1 6 ) 1 8 5 ‘ 1 ( 5 ) 2 ) N 1 9 ' 7 % ) 1 1 % " ‘ 1 " ( 8 ( 1 ) 0 ) 1 1 ( ) ( ) " 6 N ’ ) N c 1 0 M m ' 8 0 N ‘ ° . ) ‘ 9 ( c 2 “ M ’ W ‘ 4 ’ 3 ; \ \ m 3 Q 7 i 1 2 c “ 0 ) 1 n 3 M m I . ? ) ” A “ ) : g ) 7 " 3 m ? N 1 1 ) ' 3 ( 1 g 1 c " N C m _ _ - _ e ' \ ” Q 9 9 W ‘ g 3 , M o ( 1 ) c o : 2 3 0 1 " ) 0 ‘ 4 a a ; L , 0 1 3 1 N " " C N 1 1 7 N . 1 ' 1 c 1 2 1 ‘ C ) C 9 1 I 4 ’ ‘ 3 — — — - — M o ( 1 A 6 2 ° 5 D ( C o 8 d 5 ) . & E W 1 . 1 2 1 ) r 3 ' \ = ' M o ( A ) ‘ 2 , 0 ‘ 3 N ( - 4 3 ‘ , ( ’ § 1 N 4 ‘ ‘ 3 . 0 ‘ 3 \ “ ( C 4 t % t A ) M O N x ) C O ) A N 3 % ‘ V a 1 . 1 6 2 ( 1 2 ) 4 ! ! - 7 . _ _ . . — A ‘ N 1 3 1 1 . 0 2 8 ( 1 2 ) L I / I ' W A ) 1 1 2 7 ( 5 ) 5 ‘ - . " , 0 ! N 1 3 ) ( 1 ; ) m a r F i g u r e 3 . 5 . V i e w s o f t h e e q u a t o r i a l p l a n e s i n ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) . 1 0 9 T a b l e 3 . 5 . C o m p a r i s o n o f t h e m e t r i c a l p a r a m e t e r s f o r t h e e q u a t o r i a l p l a n e s o f [ n - B u t l e [ M 0 2 ( C N ) o ( d P P m ) 2 ] ( 1 ) . [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 3 ) , a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 4 ) - M 0 2 n ’ n ( l ) M o . “ I I I ( 3 ) M a m a ) B o n d L e n g t h ( A ) M o ( 1 ) - M o ( 1 A ) 2 . 0 7 9 ( 2 ) 2 . 8 2 9 9 ( 1 0 ) 2 . 9 3 5 7 ( 9 ) M o ( 1 ) - C ( 1 ) 2 . 1 6 7 ( 1 3 ) 2 . 1 8 1 1 ( 5 ) 2 . 1 7 6 ( 4 ) M o ( 1 ) - C ( 2 ) 2 . 1 8 6 ( 1 1 ) 2 . 1 5 5 4 ( 4 ) 2 . 2 5 1 ( 3 ) M o ( 1 ) - C ( 3 ) 2 . 0 7 7 ( 1 2 ) 2 . 0 3 2 ( 4 ) - - - - - - M o ( 1 ) - C ( 3 A ) - - - - - - - - - - - - 2 . 0 8 7 ( 4 ) C ( 3 ) - N ( 3 ) 1 . 0 2 8 ( 1 2 ) 1 . 1 6 1 ( 5 ) - - - - - - C ( 3 ) - N ( 3 A ) - - - - - - - - - - - - 1 . 1 2 1 ( 4 ) B o n d A n g l e ( d e g . ) C ( 1 ) - M o ( 1 ) — C ( 2 ) 8 1 . 7 ( 4 ) 7 8 . 4 7 ( 1 6 ) 8 1 . 0 8 ( 1 1 ) M o ( 1 ) - C ( 3 ) - N ( 3 ) 1 1 7 . 1 ( 1 4 ) 8 6 . 2 ( 3 ) - - - - - - M o ( 1 ) - C ( 3 ) - N ( 3 A ) - - - - - - - - - - - - 8 2 . 2 ( 2 ) N o t e : T h e s t r u c t u r a l s o l u t i o n o f M 0 2 ( C N ) 6 ( d p p m ) 2 ( 4 ) n e c e s s i t a t e d t h e u s e o f a d i f f e r e n t a t o m l a b e l i n g s c h e m e . I n S i t u a t i o n s w h e r e t h i s s c h e m e d i f f e r e d b e t w e e n c o m p o u n d ( 4 ) a n d c o m p o u n d s ( 1 ) a n d ( 3 ) t h e c o r r e s p o n d i n g b o n d l e n g t h o r a n g l e i s l i s t e d o n t h e n e x t l i n e . 1 1 0 E . T h e o r e t i c a l M e t h o d s A b i n i t i o c a l c u l a t i o n s w i t h r e l a t i v e l y l a r g e b a s i s s e t s , i n c l u d i n g e l e c t r o n c o r r e l a t i o n u s i n g D e n s i t y F u n c t i o n a l T h e o r y ( D F T ) w i t h t h e B e c k e 3 h y b r i d e x c h a n g e f u n c t i o n a l 1 7 a n d t h e L e e - Y a n g - P a r r c o r r e l a t i o n ( B 3 L Y P ) 1 8 w e r e c a r r i e d o u t u s i n g t h e G a u s s i a n 9 8 s u i t e o f p r o g r a m s . 1 9 A q u a s i - r e l a t i v i s t i c e f f e c t i v e c o r e p o t e n t i a l ( E C P ) w i t h a s m a l l c o r e ( 1 s 2 s 2 p 3 s 3 p 3 d ) a n d t h e b a s i s s e t o f H a y a n d W a d t 2 0 w e r e u s e d f o r M 0 i n c o n j u n c t i o n w i t h t h e D u n n i n g b a s i s s e t o n H , C a n d N . 2 1 T h e L A N L 2 D Z b a s e s a s i m p l e m e n t e d i n G 9 8 w e r e u s e d f o r t h e P a t o m s a l o n g w i t h E C P o f s m a l l c o r e ( 1 s 2 S 2 p ) . E x t r a d - p o l a r i z a t i o n f u n c t i o n s w e r e s u p p l i e d f o r P a t o m s . 2 2 T h e m u l t i p l i c i t i e s ( 2 S + 1 ) w e r e r e s t r i c t e d t o o n e . M o d e l c o m p o u n d s f o r ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) w i t h t h e p h e n y l g r o u p s o f t h e d p p m l i g a n d s r e p l a c e d b y h y d r o g e n s w e r e e m p l o y e d . T h e g e o m e t r i e s o f t h e c o m p l e x e s w e r e o b t a i n e d f r o m t h e c o r r e s p o n d i n g s i n g l e - c r y s t a l X - r a y s t r u c t u r e s . A n i d e a l i z e d P — H d i s t a n c e o f 1 . 4 0 A w a s u s e d . 3 . R e s u l t s a n d D i s c u s s i o n A . P r e p a r a t i o n o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] , [ n - B l e l M 0 2 ( C N ) t ( d p p m ) 2 l , a n d M 0 2 ( C N ) o ( d P P m ) 2 T h e s a l t [ n - B u 4 N ] 2 [ R e 2 ( C N ) 6 ( d p p m ) 2 ] w a s p r e p a r e d b y r e a c t i n g R e 2 C 1 4 ( d p p m ) 2 w i t h e x c e s s c y a n i d e . T h e c o r r e s p o n d i n g r e a c t i o n o f 1 1 1 M o z C l 4 ( d p p m ) 2 w i t h e x c e s s c y a n i d e p r o c e e d s i n a n a n a l o g o u s f a s h i o n . T h e c h l o r i d e l i g a n d s a r e d i s p l a c e d b y c y a n i d e a n d t h e m e t a l c o m p l e x a c c e p t s t w o a d d i t i o n a l c y a n i d e s t h a t s e r v e t o b r i d g e t h e d i m o l y b d e n u m c o r e . P r i o r t o s t r u c t u r a l c h a r a c t e r i z a t i o n , t h e p r e s e n c e o f t w o d i f f e r e n t c y a n i d e e n v i r o n m e n t s w a s c o n fi r m e d b y i n f r a r e d s p e c t r o s c o p y ( v i d e i n f r a ) . T h e d a t a i n d i c a t e d t h a t t h e b r i d g i n g c y a n i d e s a d o p t t h e s e m i - b r i d g i n g m o d e t h a t w a s o b s e r v e d i n t h e s t r u c t u r e o f [ n - B u 4 N ] 2 [ R e 2 ( C N ) 6 ( d p p m ) 2 ] . ( 1 ) O x i d a t i o n o f [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ' A l t h o u g h [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) a n d [ n - B u 4 N ] 2 [ R e z ( C N ) 6 ( d p p m ) 2 ] a r e i s o s t r u c t u r a l a n d i s o e l e c t r o n i c , t h e i r s t a b i l i t i e s a r e q u i t e d i f f e r e n t . T h e d i a n i o n [ R e 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' i s q u i t e a i r s t a b l e a n d d i s p l a y s n o r e d o x a c t i v i t y b y c y c l i c v o l t a m m e t r y . I n c o n t r a s t , t h e c y c l i c v o l t a m m o g r a m o f { M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) ( F i g u r e 3 . 6 . ) r e v e a l s t w o a c c e s s i b l e o x i d a t i o n s . T h i s i s p r e s u m a b l y t h e r e a s o n w h y [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) s l o w l y d e c o m p o s e s i n d i c h l o r o m e t h a n e t o a g r e e n p r o d u c t w h i c h h a s n o t b e e n i s o l a t e d i n s u f fi c i e n t p u r i t y t o e n a b l e i t s i d e n t i fi c a t i o n , b u t w h o s e c o l o r s t r o n g l y s u p p o r t s t h a t o x i d a t i o n i s o c c u r r i n g . T h i s d e c o m p o s i t i o n d o e s n o t a p p e a r t o o c c u r i n a c e t o n i t r i l e b u t e f f o r t s t o p r e p a r e [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) i n a c e t o n i t r i l e l e a d o n l y t o t h e p r o d u c t i o n o f o i l y i n t r a c t a b l e p r o d u c t s . 1 1 2 A 6 - e 0 . 1 \ t n e r r u c p o t e n t i a l \ V 1 3 1 / 2 = 0 . 4 4 8 V E l / 2 = 0 . 2 9 1 V E 1 / 2 = - O . 4 9 0 V F i g u r e 3 . 6 . C y c l i c v o l t a m m o g r a m o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) i n 0 . 1 M [ n - B u n N ] [ P F 6 ] / a c e t o n i t l i l e a t a P t d i s k e l e c t r o d e w i t h a P t w i r e a u x i l i a r y e l e c t r o d e a n d a A g / A g C l r e f e r e n c e e l e c t r o d e . 1 1 3 T h e o b s e r v a t i o n t h a t [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' d e c o m p o s e s i n a i r p r o m p t e d u s t o u s e d e l i b e r a t e c h e m i c a l m e a n s t o p r e p a r e t h e o x i d a t i o n p r o d u c t s r e p r e s e n t e d i n t h e e l e c t r o c h e m i s t r y . T h e o n e - e l e c t r o n o x i d a t i o n p r o d u c t , [ n - B u 4 N ] [ M o z n ' m ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) , w a s p r e p a r e d b y r e a c t i o n o f a n a c e t o n i t r i l e s o l u t i o n o f [ n - B u l N h [ M o z n ’ " ( C N ) 6 ( d p p m ) 2 ] c o o l e d t o — 1 5 ° C w i t h 1 . 2 e q u i v a l e n t s o f e i t h e r N O B F 4 o r [ s z F e ] [ B F 4 ] . A l l a t t e m p t s t o p e r f o r m t h i s r e a c t i o n a t r o o m t e m p e r a t u r e l e d t o a m i x t u r e o f [ n - B u 4 N ] [ M o z n ’ m ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) a n d a d d i t i o n a l p r o d u c t s w h i c h c o u l d n o t b e i s o l a t e d . T h e t w o - e l e c t r o n o x i d a t i o n p r o d u c t , M o z m ’ m ( C N ) 5 ( d p p m ) 2 ( 1 1 ) , w a s p r e p a r e d u n d e r a n a l o g o u s c o n d i t i o n s b y u s i n g 2 . 2 e q u i v a l e n t s o f N O B F 4 . A s m a l l a m o u n t o f r e d - p u r p l e p r e c i p i t a t e w a s o b s e r v e d t o f o r m i n t h i s r e a c t i o n w h i c h w a s t o o s m a l l i n q u a n t i t y t o a l l o w f o r c h a r a c t e r i z a t i o n . I t w a s r e m o v e d b y fi l t r a t i o n t h r o u g h C e l i t e . B . P h y s i c a l M e t h o d s C h a r a c t e r i z a t i o n o f [ n - B u 4 N ] 2 [ l V I o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) , [ n - B u 4 N ] [ M 0 2 ( C N ) c ( d p p m ) 2 1 ( 1 0 ) , a n d M 0 2 ( C N ) t ( d P P m ) 2 ( 1 1 ) ( 1 ) M a s s S p e c t r o m e t r y S t u d i e s N o e v i d e n c e f o r t h e f o r m a t i o n o f p a r t i a l l y s u b s t i t u t e d c o m p o u n d s w a s o b s e r v e d i n t h e p r e p a r a t i o n o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) . F a s t - a t o m b o m b a r d m e n t ( F A B ) m a s s s p e c t r o m e t r y i n b o t h n i t r o b e n z y l a l c o h o l a n d 1 1 4 g l y c e r o l m a t r i c e s w a s c o n d u c t e d t o i n v e s t i g a t e t h e p o s s i b i l i t y o f i n c o m p l e t e c y a n i d e / c h l o r i d e m e t a t h a s i s . T h e m a s s s p e c t r a s h o w e d n o e v i d e n c e f o r t h e i s o t o p i c p a t t e r n c h a r a c t e r i s t i c o f c h l o r i n e . S i n c e [ n - B U 4 N 1 [ M 0 2 ( C N ) 6 ( d P P m ) 2 l ( 1 0 ) a n d M 0 2 ( C N ) 6 ( d P P m ) 2 ( 1 1 ) a r e p r e p a r e d d i r e c t l y f r o m ( 8 ) , t h e p u r i t y o f t h e p a r e n t c o m p o u n d e n s u r e s t h a t t h e o t h e r t w o w i l l a l s o b e f r e e o f c h l o r i d e l i g a n d s . A p e a k a t 1 3 6 0 m / z c o r r e s p o n d i n g t o t h e i o n [ H M 0 2 ( C N ) 6 ( d p p m ) 2 ] 1 ' w a s p r e s e n t i n t h e n e g a t i v e i o n F A B m a s s s p e c t r u m o f ( 8 ) . ( 2 ) C y c l i c V o l t a m m e t r y S t u d y o f [ n - B u a N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] , ( 8 ) C y c l i c v o l t a m m e t r y w a s u s e d t o p r o b e t h e r e d o x p r o p e r t i e s o f [ n - B u n N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) . M e a s u r e m e n t s w e r e m a d e i n 0 . 1 M [ n - B u n N ] [ P F 6 ] a c e t o n i t r i l e s o l u t i o n s a t a P t d i s k e l e c t r o d e w i t h a A g / A g C l r e f e r e n c e e l e c t r o d e . U n d e r t h e s e e x p e r i m e n t a l c o n d i t i o n s , t h e f e r r o c e n e / f e r r o c e n i u m c o u p l e o c c u r s a t E m ( C p 2 F e / [ C p 2 F e ] + ) = 0 . 4 5 5 V . T w o o x i d a t i o n w a v e s E y , ( o x ) a t + 0 . 2 9 ( 6 0 ) V a n d 0 . 4 5 ( 7 0 ) V w e r e o b s e r v e d a l o n g w i t h a t w o - e l e c t r o n r e d u c t i o n E t , ( r e d ) a t — 0 . 4 9 ( 6 0 ) V . T h e s e p a r a t i o n o f 1 6 0 m V b e t w e e n t h e t w o s u c c e s s i v e o x i d a t i o n s a l l o w s f o r t h e i s o l a t i o n o f t h e m i x e d - v a l e n c e c o m p l e x . T h e c o m p o u n d ’ [ F e C p 2 ] [ B F 4 ] , w h i c h h a s a c o u p l e a t 0 . 4 6 V u n d e r s i m i l a r e x p e r i m e n t a l c o n d i t i o n s , w a s u s e d t o o x i d i z e 1 1 . 1 1 ] t h e M o n ’ " c o m p l e x t o M 0 i n c o m p l e x ( 1 0 ) . A l t h o u g h b o t h t h e m i x e d - 1 1 5 v a l e n c e c o m p l e x 3 a n d t h e t w o - e l e c t r o n o x i d a t i o n c o m p l e x ( 1 1 ) c o u l d b y i s o l a t e d b y u s i n g N O B F 4 , t h e l a t t e r c o m p l e x c o u l d n o t b e o b t a i n e d b y t h e r e a c t i o n o f ( 8 ) w i t h [ F e C p 2 ] [ B F 4 ] . T h e p o t e n t i a l t h a t i s r e q u i r e d f o r t h e s e c o n d o x i d a t i o n i s c o m p a r a b l e t o [ F e C p 2 ] [ B F 4 ] , b u t w a s a c h i e v a b l e o n l y b y u s i n g N O B F 4 . T h e o r i g i n o f t h e t w o - e l e c t r o n r e d u c t i o n w a v e h a s n o t b e e n e s t a b l i s h e d , b u t i s p r e s u m e d t o b e d u e t o r e d u c t i o n o f t h e M 0 2 u n i t . ( 3 ) I n f r a r e d , N u c l e a r M a g n e t i c R e s o n a n c e , a n d E l e c t r o n i c A b s o r p t i o n S p e c t r o s c o p i c S t u d i e s P r i o r t o X - r a y s t r u c t u r a l c h a r a c t e r i z a t i o n , t h e p r e s e n c e o f t w o c y a n i d e e n v i r o n m e n t s i n [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) w a s c o n fi r m e d b y i n f r a r e d s p e c t r o s c o p y a n d r a t i o n a l i z e d o n t h e b a s i s o f g r o u p t h e o r e t i c a l a r g u m e n t s a n d l i t e r a t u r e p r e c e d e n c e . T h e l o c a l i z e d D 2 1 , s y m m e t r y o f t h e f o u r t e r m i n a l c y a n i d e l i g a n d s w o u l d b e e x p e c t e d t o g i v e r i s e t o t w o I R a c t i v e v i b r a t i o n a l m o d e s ( B 1 u a n d B 3 “ ) . T h e v C N m o d e s o c c u r a t 2 0 9 4 a n d 2 0 7 9 c m ’ I f o r t h e t e r m i n a l c y a n i d e s a n d a t 1 9 3 6 c m ’ 1 f o r t h e b r i d g i n g c y a n i d e s . A n i n f r a r e d s p e c t r u m o f c r y s t a l s o f [ n - B u n N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) e x h i b i t s t w o f e a t u r e s a t 2 1 0 8 a n d 1 8 0 7 c m ] . T h e l a c k o f a s e c o n d s t r e t c h i n t h e h i g h e r e n e r g y r e g i o n i m p l i e s t h a t t h e s y m m e t r i c a n d a n t i - s y m m e t r i c s t r e t c h e s f o r t h e f o u r t e r m i n a l c y a n i d e s a r e d e g e n e r a t e . T h e V C N m o d e a t 1 1 6 1 8 0 7 c m " 1 f o r t h e b r i d g i n g c y a n i d e i n ( 1 0 ) r e p r e s e n t s a d e c r e a s e o f 1 2 9 c m ‘ 1 f r o m t h e 1 . 1 . - c y a n o V C N o b s e r v e d i n [ n - B u n N h [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) . T h e i n f r a r e d s p e c t r u m o f M o z ( C N ) 6 ( d p p m ) 2 ( 1 1 ) e x h i b i t s V C N m o d e s a t 2 1 1 0 a n d 2 1 0 2 c m ' ] f o r t h e t e r m i n a l c y a n i d e s a n d a S i n g l e f e a t u r e a t 1 8 0 7 c m ' 1 f o r t h e b r i d g i n g c y a n i d e l i g a n d s . T h e r e m o v a l o f a n a d d i t i o n a l e l e c t r o n f r o m t h e M o . “ I I I c o r e o f [ n - B u 4 N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) l i f t s t h e d e g e n e r a c y o f t h e s y m m e t r i c a n d a n t i - s y m m e t r i c s t r e t c h e s o f t h e t e r m i n a l c y a n i d e s . T h e p r o n o u n c e d d e c r e a s e i n t h e V C N s t r e t c h f r o m 1 9 3 6 t o 1 8 0 7 c m ' 1 t h a t w a s o b s e r v e d w i t h t h e o n e e l e c t r o n o x i d a t i o n o f [ n - B u n N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) t o ( 1 0 ) i s n o t m i m i c k e d i n t h e o n e e l e c t r o n o x i d a t i o n o f ( 1 0 ) t o M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) . T h e V C N m o d e f o r t h e b r i d g i n g c y a n i d e i n b o t h ( 1 0 ) a n d ( 1 1 ) i s ~ 1 8 0 7 c m ] . T h e o b s e r v e d i n c r e a s e i n e n e r g y o f t h e V C N m o d e s f o r t h e t e r m i n a l c y a n i d e s t h a t a c c o m p a n i e s o x i d a t i o n o f t h e d i m o l y b d e n u m c o r e f r o m M 0 2 1 1 . " ( 2 0 9 4 , 2 0 7 9 c m “ ) t o M o , “ I I I ( 2 1 0 8 c m " ) a n d M o z m ' m ( 2 1 1 0 , 2 1 0 2 c m ' 1 ) i s c o n s i s t e n t w i t h t h e e x p e c t e d t r e n d f o r n - a c i d c a p a b l e l i g a n d s . A s t h e M o o x i d a t i o n s t a t e i n c r e a s e s , l e s s e l e c t r o n d e n s i t y i s a v a i l a b l e f o r d o n a t i o n t o t h e 1 1 * L U M O o f c y a n i d e t h r o u g h n — b a c k b o n d i n g i n t e r a c t i o n s . I n c o n t r a s t , t h e V C N m o d e s f o r t h e b r i d g i n g c y a n i d e s d e c r e a s e a s t h e M o o x i d a t i o n s t a t e i n c r e a s e s . T h e s e m i - b r i d g i n g m o d e e x h i b i t e d i n t h e s t r u c t u r e s o f ( 8 ) , ( 1 0 ) , 1 1 7 a n d ( 1 1 ) r e q u i r e s a t t a c h m e n t t o o n e M o t h r o u g h a 6 i n t e r a c t i o n f r o m t h e C e n d o f c y a n i d e a n d c o o r d i n a t i o n t o t h e o t h e r M o t h r o u g h a s i d e - o n 7 t i n t e r a c t i o n . T h i s d o n a t i o n o f n - e l e c t r o n d e n s i t y w e a k e n s t h e C E N a n d c o n s e q u e n t l y l o w e r s t h e f r e q u e n c y a t w h i c h t h e m o d e c o r r e s p o n d i n g t o t h a t s t r e t c h a p p e a r s i n t h e I R s p e c t r u m . T h e n a t u r e o f t h i s i n t e r a c t i o n a n d h o w i t s i n fl u e n c e d b y t h e o x i d a t i o n s t a t e o f t h e d i m o l y b d e n u m c o r e i s e x a m i n e d m o r e e x t e n s i v e l y i n t h e p r o c e e d i n g s e c t i o n s w h i c h p r e s e n t a c o m p a r i s o n o f t h e s t r u c t u r e s o f ( 8 ) , ( 1 0 ) , a n d ( l 1 ) a n d t h e r e s u l t s o f t h e c o m p u t a t i o n a l s t u d i e s c a r r i e d o u t f o r [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) . T h e 1 H N M R s p e c t r u m o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) i s t y p i c a l o f b i s - d p p m c o m p o u n d s w i t h a s y m m e t r i c a l d i s t r i b u t i o n o f l i g a n d s i n t h e 2 3 T h e p e n t e t f o r t h e m e t h y l e n e b r i d g e o f t r a n s b i s - d p p m e q u a t o r i a l p l a n e . w a s i d e n t i fi e d a t 4 . 0 8 p p m . T h e p e n t e t a r i s e s f r o m v i r t u a l c o u p l i n g o f t h e f o u r e q u i v a l e n t m e t h y l e n e p r o t o n s w i t h f o u r e q u i v a l e n t 1 ’ n u c l e i . M u l t i p l e t s f o r t h e d p p m p h e n y l g r o u p s w e r e o b s e r v e d a t 7 . 6 0 a n d 6 . 9 6 p p m . T h e 3 1 P { 1 H } s p e c t r u m o f ( 8 ) r e c o r d e d i n a c e t o n i t r i l e a t 2 2 ° C r e l a t i v e t o 8 5 % H 3 P O 4 s h o w e d a s i n g l e t a t 2 5 . 5 p p m . I n a c c o r d w i t h t h e a s s i g n m e n t o f t h e m i x e d v a l e n c e M o z n ’ I I I c o r e , t h e 1 H N M R s p e c t r u m o f [ n - B u a N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) c o n t a i n e d o n l y b r o a d s i g n a l s i n d i c a t i v e o f p a r a m a g n e t i s m . L i k e w i s e , t h e 3 1 P N M R s p e c t r u m 1 1 8 e x h i b i t e d n o s i g n a l . T h e p o o r s o l u b i l i t y o f M o z ( C N ) 6 ( d p p m ) 2 , ( 1 1 ) p r e v e n t e d a n a l y s i s b y N M R m e t h o d s . E l e c t r o n i c d - d t r a n s i t i o n s f o r [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) o c c u r a t 5 5 3 a n d 3 3 3 n m w i t h e v a l u e s o f 1 . 9 x 1 0 3 a n d 3 . 4 x 1 0 5 L m o l ' l c m r e s p e c t i v e l y . E l e c t r o n i c d - d t r a n s i t i o n s f o r [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] , ( 1 0 ) o c c u r a t 4 2 0 a n d 7 8 0 n m w i t h 8 v a l u e s o f 8 0 0 a n d 1 . 2 x 1 0 3 L m o l ' l c m r e s p e c t i v e l y . S i n c e c o m p o u n d s ( 8 ) a n d ( 1 0 ) c o n s t i t u t e t h e o n l y e x a m p l e s o f a n i o n i c M 0 2 ( E S B O ) c o m p o u n d s , a s s i g n m e n t s o f t h e s e t r a n s i t i o n s c a n n o t b e m a d e b y a n a l o g y t o s i m i l a r c o m p o u n d s . T h e c h r o m o p h o r e s o f t h e c o m p o u n d s l o c a t e d a t 3 3 3 a n d 5 5 3 n m f o r ( 8 ) a n d 4 2 9 a n d 7 8 0 n m f o r ( 1 0 ) p r o v i d e a c o n v e n i e n t m e a n s f o r v e r i f y i n g t h e p u r i t y o f s a m p l e s o f [ n - B u n N ] [ M o z ( C N ) 6 ( d p p m ) 2 ] , ( 1 0 ) . D u e t o t h e s o l u b i l i t y l i m i t a t i o n s o f M 0 2 ( C N ) ( , ( d p p m ) 2 , ( 1 1 ) , a n a l y s i s b y U V - v i s i b l e s p e c t r o s c o p i c m e t h o d s w a s n o t p o s s i b l e . C . S p e c t r o s c o p i c S t u d i e s o f N i ( e n ) 2 M 0 2 ( C N ) 6 ( d p p m ) 2 , ( 1 2 ) T h e i n f r a r e d s p e c t r u m o f N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 ( 1 2 ) e x h i b i t e d a b r o a d l V C N m o d e a t 2 0 9 6 c m ' a n d a m o r e n a r r o w f e a t u r e a t 1 9 3 6 c m ' l . T h e p r e s e n c e o f t h e l o w e r e n e r g y m o d e i s c h a r a c t e r i s t i c o f t h e b r i d g i n g c y a n i d e i n t h e [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' a n i o n . T h e s h i f t o f t h e s h a r p t e r m i n a l V C N m o d e s o f 2 0 9 1 a n d 2 0 8 0 c m ' 1 i n ( 8 ) t o t h e b r o a d 2 0 9 6 c m ‘ 1 f e a t u r e o b s e r v e d 1 1 9 i n ( 1 2 ) i n d i c a t e s t h a t t h e N i i o n i s c o o r d i n a t e d t o t h e t e r m i n a l c y a n i d e s . T h i s i s f u r t h e r s u p p o r t e d b y t h e a b s e n c e o f t h e c h a r a c t e r i s t i c V C N m o d e s o f t h e b o u n d a c e t o n i t r i l e i n t h e [ N i ( e n ) 2 ( C H 3 C N ) 2 ] [ P F 6 ] 2 s t a r t i n g m a t e r i a l . T h e n e u t r a l i t y o f t h e p r o d u c t i s i n f e r r e d b y t h e l a c k o f t h e V P ] : m o d e s i n t h e i n f r a r e d s p e c t r u m c h a r a c t e r i s t i c o f [ P F 6 ] ' . M a g n e t i c s u s c e p t i b i l i t y s t u d i e s o f ( 1 2 ) y i e l d e d a n e g v a l u e o f 2 . 9 0 B . M . w i t h g = 2 . 0 5 . P l o t s o f x T v s T a n d l l x v s T a r e p r e s e n t e d i n F i g u r e 3 . 9 . T h e s e d a t a a r e i n g o o d a g r e e m e n t w i t h t h e p r o p o s e d s t r u c t u r e ( F i g u r e 3 . 8 ) o f a 1 - d i m e n s i o n a l c h a i n w i t h a l t e r n a t i n g [ N i ( e n ) 2 ] 2 + a n d [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ‘ u n i t s . T h e N i " c e n t e r s a r e d 8 a n d o c t a h e d r a l l y c o o r d i n a t e d , w h i c h w o u l d b e e x p e c t e d t o p r o d u c e a s p i n v a l u e o f S = 1 f o r e a c h N i c e n t e r . T h e o b s e r v e d l i e f ; v a l u e i s i n t h e r a n g e e x p e c t e d f o r i s o l a t e d , i . e . n o n - i n t e r a c t i n g , S = 1 s p i n c e n t e r s . T h u s , t h e e q u a t o r i a l p l a n e o f [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' a c t s a s a b r i d g e b u t d o e s n o t e n a b l e m a g n e t i c c o m m u n i c a t i o n t o o c c u r b e t w e e n t h e n e a r e s t n e i g h b o r N i I I c e n t e r s . 1 2 0 1 2 1 P N I . v ' " / ' 4 2 , , P h “ \ " ’ P h F i g u r e 3 . 7 . A s e g m e n t o f o n e p o s s i b l e s t r u c t u r e f o r N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 , ( 1 2 ) h p I h I I P " \ V “ l u \ h P P ? , ] t f i I N / N / e c . P é 1 2 1 F i g u r e 3 . 7 . A s e g m e n t o f o n e p o s s i b l e s t r u c t u r e f o r N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 , ( 1 2 ) o 5 0 1 0 0 2 0 0 2 5 0 3 0 0 3 5 0 1 5 0 T ( K ) l . 2 - . 1 ' ' I I r r 1 r r v r r I I t v I 1 C Z A _ : : - - - - - : : : : o o o o o o I 0 O 0 C C C . . : : 5 c = l . 0 5 e m u . K / m ' o l = > s = l g = 2 . 0 5 ' 3 S 0 . 8 i _ ' v i u c f f = 2 . 9 0 B . M . 1 8 0 . 6 t - . 2 = 1 . ‘ a . $ 3 , 0 . 4 - L ‘ 2 ; . ' 0 . 2 ~ . 2 1 0 0 0 G 3 O l l 1 l L l l l u l r 1 1 n - 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 T ( K ) 3 5 0 _ I v r I l r I r I 1 ‘ ' r r r r I r 1 r r 3 0 0 : — - - ' A ' ' ' 6 2 5 0 ' - . - E 1 . 3 - m : o 0 2 0 0 : ' . . U : . ‘ . a 1 5 0 _ - , ' . 1 . V : o . : . 8 ‘ m L ‘ . . . . : H : 0 . . z 5 0 3 - ' ° 4 . 1 0 0 0 G ; 0 . 1 n I l a u n l l 1 r 1 l I n l l n l a l L l l l a a l 4 1 n 1 F i g u r e 3 . 8 . P l o t s o f x T ( e m u C G S . m o l ) v s . t e m p e r a t u r e ( K ) a n d l l x ( e m u C G S . m o l ) v s . t e m p e r a t u r e ( K ) f o r { N i ( e n ) 2 M o z ( C N ) 6 ( d p p m ) 2 } n ( 1 2 ) 1 2 2 D . M o l e c u l a r S t r u c t u r e s T h e m o l e c u l a r a n i o n s o f [ n - B u 4 N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) , [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) , a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) c o n s i s t o f t r a n s - d p p m l i g a n d s t h a t b i s e c t a n e q u a t o r i a l p l a n e c o n t a i n i n g t w o m o l y b d e n u m a t o m s a s w e l l a s f o u r t e r m i n a l a n d t w o b r i d g i n g c y a n i d e l i g a n d s . I n ( 8 ) , t h e b r i d g i n g l i g a n d s a r e c o o r d i n a t e d t h r o u g h t h e c a r b o n a t o m t o t h e M o - M o u n i t i n a s l i g h t l y u n s y m m e t r i c a l f a s h i o n , w h e r e a s i n ( 1 0 ) a n d ( 1 1 ) t h e b i n d i n g m o d e i s b e s t d e s c r i b e d a s s e m i - b r i d g i n g w i t h a n e a r l y l i n e a r M o ( 1 A ) - C ( 1 0 ) o - b o n d a n d a s i d e - o n 7 : i n t e r a c t i o n b e t w e e n C ( 1 0 ) N ( 1 0 ) a n d M o ( 8 ) . A s c h e m a t i c o f t h i s i n t e r a c t i o n i s d e p i c t e d i n F i g u r e 3 . 1 0 . A c o m p a r i s o n o f t h e m e t r i c a l p a r a m e t e r s a s s o c i a t e d w i t h t h e b r i d g i n g c y a n i d e s i n [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) a n d [ n - B u n N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) i l l u s t r a t e s t h e e f f e c t o n t h e s e b o n d i n g 1 1 , 1 1 i n t e r a c t i o n s w i t h r e d u c t i o n o f t h e M 0 2 c o r e t o M o z n ’ m . T h e d i f f e r e n t o r i e n t a t i o n s o f t h e b r i d g i n g l i g a n d s i n t h e t w o c o m p o u n d s a r e b e s t a p p r e c i a t e d b y i n s p e c t i o n o f t h e M o l - C 3 - N 3 a n g l e s w h i c h a r e 1 1 7 . 1 ( 1 4 ) ° a n d 8 6 . 2 ( 1 0 ) ° i n ( 8 ) a n d ( 1 0 ) r e s p e c t i v e l y . I t i s a p p a r e n t f r o m t h e s e s t r u c t u r a l d i f f e r e n c e s , a n d f r o m t h e b r i d g i n g V C N m o d e w h i c h i s l o w e r e d f r o m 1 9 3 6 c m ' 1 i n ( 8 ) t o 1 8 0 7 c m ' 1 i n ( 1 0 ) , t h a t o x i d a t i o n o f t h e M 0 2 4 + c o r e t o M 0 2 5 + i s a c c o m p a n i e d b y a n i n c r e a s e i n n - b o n d i n g f r o m t h e b r i d g i n g 1 2 3 M 0 2 1 1 , 1 1 ( 8 ) M ( ) 2 1 1 , 1 1 1 ( 1 0 ) M 0 2 1 1 1 , 1 1 1 ( 1 1 ) a fi — . 5 1 . . 5 _ , 4 8 i > < 8 * 1 — _ > < 5 * — 1 L > . 1 1 . 1 . 4 , 1 , 1 , 1 . F i g u r e 3 . 9 . A s c h e m a t i c r e p r e s e n t a t i o n o f t h e e l e c t r o n i c c o n fi g u r a t i o n s o f c o m p o u n d s ( 8 ) , ( 1 0 ) , a n d ( 1 1 ) . 1 2 4 Y F i g u r e 3 . 1 0 . A s c h e m a t i c r e p r e s e n t a t i o n o f t h e s e m i - b r i d g i n g m o d e o f c y a n i d e w i t h t h e m o l y b d e n u m b a s e d d x z o r b i t a l s i n t e r a c t i n g w i t h t h e p , , + p x 7 t b o n d i n g M D . o f t h e c y a n i d e . 1 2 5 c y a n i d e t o t h e m e t a l c e n t e r s . A c o m p a r i s o n o f s e l e c t e d m e t r i c a l p a r a m e t e r s f o r [ n - B u t h [ M 0 2 ( C N ) e ( d p p m ) 2 l ( 8 ) . [ n - B u t N ] [ M 0 2 ( C N ) o ( d p p m ) 2 l ( 1 0 ) . a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) i s p r e s e n t e d i n T a b l e 3 . 7 . A l t h o u g h t h e d a t a s e t f o r [ n - B u n N h [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) i s o f a l o w e r r e s o l u t i o n t h a n t h a t o f [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) , a c o m p a r i s o n o f t h e m e t a l - l i g a n d b o n d i n g e n v i r o n m e n t o f t h e t w o c o m p o u n d s i s n o n e t h e l e s s i n f o r m a t i v e . A c c o r d i n g t o t h e e s t a b l i s h e d M . O . b o n d i n g s c h e m e f o r E S B O c o m p o u n d s , t h e e l e c t r o n i c c o n fi g u r a t i o n s o f t h e M o z n ’ " a n d M o z n ’ I I I c o m p o u n d s a r e 0 2 7 1 ; 2 ( 5 5 ' ) 4 a n d 0 2 1 : 2 ( 5 5 m ) 3 r e s p e c t i v e l y . 8 ’ 9 S i n c e t h e 5 a n d 5 * o r b i t a l s a r e c o n s i d e r e d w e a k i n t e r a c t i o n s a n d m a y e v e n b e r e v e r s e d i n t h e i r e n e r g i e s , a b o n d o r d e r o f a p p r o x i m a t e l y t w o w o u l d b e p r e d i c t e d f o r b o t h . T h e i n c r e a s e i n t h e m e t a l - m e t a l b o n d l e n g t h i n t h e M 0 2 5 + c o m p o u n d v e r s u s t h e M 0 2 4 + c o m p o u n d ( 2 . 8 2 9 9 ( 1 0 ) A v e r s u s 2 . 7 0 9 ( 9 ) A ) i s a t t r i b u t e d t o a n i n t e r a c t i o n b e t w e e n t h e s e m i - b r i d g i n g c y a n i d e s a n d t h e m o l e c u l a r o r b i t a l s o f t h e m e t a l - m e t a l b o n d . A d e t a i l e d d e s c r i p t i o n o f t h i s i n t e r a c t i o n i s p r o v i d e d w i t h t h e r e s u l t s o f t h e c o m p u t a t i o n a l s t u d i e s . T h e i n c r e a s e i n n — b o n d i n g f r o m t h e b r i d g i n g c y a n i d e t o t h e m e t a l c e n t e r s t h a t a c c o m p a n i e s o x i d a t i o n o f t h e M 0 2 4 + c o r e t o M 0 2 5 + i s f a r m o r e p r o n o u n c e d t h a n t h e a n a l o g o u s i n c r e a s e t h a t i s o b s e r v e d u p o n o x i d a t i o n o f t h e M 0 2 5 + c o r e t o M 0 2 6 + ( F i g u r e 3 . 5 ) . A c o m p a r i s o n o f t h e s t r u c t u r e s o f [ n - 1 2 6 l m . B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) r e v e a l s t h a t t h e o r i e n t a t i o n s o f t h e b r i d g i n g l i g a n d s i n t h o s e t w o c o m p o u n d s a r e o n l y S l i g h t l y d i f f e r e n t . T h e M o ( 8 ) - C ( 1 0 ) — N ( 1 0 ) a n g l e i s 8 6 . 2 ( 1 0 ) ° i n ( 1 0 ) a n d t h e e q u i v a l e n t a n g l e i n ( 1 1 ) M o ( 8 ) - C ( 3 A ) - N ( 1 0 ) i s 8 2 . 2 ( 1 1 ) ° . 2 4 T h i s s i m i l a r i t y i s a l s o r e fl e c t e d i n t h e e n e r g y o f t h e b r i d g i n g V C N m o d e , w h i c h i s 1 8 0 7 c m ’ 1 f o r b o t h c o m p o u n d s . D e s p i t e t h i s , t h e M o - M o d i s t a n c e i n M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) i s i n c r e a s e d t o 2 . 9 3 5 7 ( 8 ) A f r o m 2 . 7 0 9 ( 9 ) a n d 2 . 8 2 9 9 ( 1 0 ) A f o r [ n - B u t l e l M 0 2 ( C N ) o ( d P P m ) 2 l ( 8 ) . a n d [ n - B u t N l l M 0 2 ( C N ) o ( d P P m ) 2 l ( 1 0 ) r e s p e c t i v e l y . T h e i n t e r a c t i o n s b e t w e e n t h e s e m i - b r i d g i n g c y a n i d e a n d t h e m o l e c u l a r o r b i t a l s o f t h e M o — M o b o n d w o u l d p r o d u c e t h i s r e s u l t a n d , i n f a c t , t h e c o m p u t a t i o n a l s t u d i e s p r e s e n t e d s u p p o r t t h i s h y p o t h e s i s . A n a d d i t i o n a l c o n t r i b u t i n g f a c t o r c o u l d b e d - o r b i t a l c o n t r a c t i o n r e s u l t i n g f r o m t h e i n c r e a s e i n p o s i t i v e c h a r g e o f t h e d i m o l y b d e n u m c o r e t h a t o c c u r s w i t h o x i d a t i o n o f t h e M o z n ’ I I I c o r e o f ( 1 0 ) t o M o z m ’ I I I f o r M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) . E . C o m p u t a t i o n a l s t u d y o f [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) , a n d M 0 2 ( C N ) o ( d P P m ) 2 ( 1 1 ) T o g a i n a b e t t e r u n d e r s t a n d i n g o f t h e e l e c t r o n i c s t r u c t u r e a n d b o n d i n g i n [ n - B u a N h [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 8 ) a n d M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) c o m p u t a t i o n a l s t u d i e s w e r e c o n d u c t e d . A c c o r d i n g t o t h e e s t a b l i s h e d M . O . b o n d i n g s c h e m e f o r E S B O c o m p o u n d s , t h e e l e c t r o n i c c o n fi g u r a t i o n s o f t h e M 0 2 1 1 . " ( 8 ) a n d 1 2 7 M o z m ' I n ( 1 0 ) c o m p o u n d s a r e ( 3 3 7 1 : 2 ( 5 5 ' ) 4 a n d 0 2 7 1 : 2 ( 5 5 1 ' ) 2 r e s p e c t i v e l y ( F i g u r e 6 ) . 8 ’ 9 T h e 5 a n d 5 * a r e c o n s i d e r e d t o b e w e a k i n t e r a c t i o n s , a n d m a y e v e n b e r e v e r s e d i n t h e i r e n e r g i e s . I n a c c o r d w i t h t h e b o n d i n g s c h e m e , t h e c o m p u t a t i o n a l s t u d i e s p r e d i c t t h a t t h e H O M O a n d H O M O - 1 l e v e l s f o r t h e M o z n ‘ " c o m p o u n d ( 8 ) a r e t h e 5 * a n d 5 l e v e l s ( F i g u r e 3 . 1 1 ) . F o r t h e “ I ’ m ( 1 0 ) t h e 5 a n d 5 * M . O . ’ S a r e r e v e r s e d i n e n e r g y w i t h 5 * c o m p o u n d M 0 2 a s t h e H O M O a n d 5 a s t h e L U M O . T h e c o n t o u r d i a g r a m s o f t h e f r o n t i e r o r b i t a l s o f t h e M 0 2 1 " I I ( 8 ) a n d M o z m ’ I n ( 1 1 ) s y s t e m s a r e s h o w n i n F i g u r e 7 . T h e H O M O ( n o . 7 6 ) o f t h e M o z n ’ n s y s t e m r e s e m b l e s a 5 * o r b i t a l r e s u l t i n g p r i m a r i l y f r o m t h e o u t - o f - p h a s e i n t e r a c t i o n o f ( 1 , , y o r b i t a l s o n t h e m e t a l a t o m s . N o c o n t r i b u t i o n f r o m t h e p K o r b i t a l s o f N ( 1 0 ) a n d N ( 3 A ) w e r e o b s e r v e d ( F i g u r e 7 a ) . T h e H O M O — 1 ( n o . 7 5 ) i s a p r e d o m i n a n t l y m e t a l — b a s e d 5 o r b i t a l a r i s i n g f r o m a b o n d i n g i n t e r a c t i o n b e t w e e n m e t a l ( 1 , , y o r b i t a l s . T h e p x o r b i t a l s o f N ( 1 0 ) a n d N ( 3 A ) a r e i n v o l v e d i n a n a n t i b o n d i n g i n t e r a c t i o n w i t h t h e 5 o r b i t a l ( F i g u r e 7 b ) . T h e e s t i m a t e d s e p a r a t i o n b e t w e e n t h e o c c u p i e d 5 * a n d 5 o r b i t a l s i s o n l y 4 . 0 7 K c a l / m o l e . I n c o n t r a s t , t h e L U M O ( N o . 7 6 ) a n d H O M O ( n o . 7 5 ) o f t h e M o z m ’ I I I c o m p o u n d a r e 5 a n d 5 * t y p e o r b i t a l s r e s p e c t i v e l y w i t h a n e n e r g y s e p a r a t i o n o f 2 5 . 9 7 K c a l / m o l e . T h e c o e f fi c i e n t s o f t h e a t o m i c o r b i t a l s 1 2 8 ) 1 1 ( 2 ) m p p d ( 6 ) N C ( " 1 ’ 1 1 1 2 0 M ) 8 ( ' 2 ] 2 ) m p p d ( 6 ) N C ( " , ] 1 2 0 M [ 1 2 9 H O M O - 1 ' F i g u r e 3 . 1 1 . R e p r e s e n t a t i o n s o f s e l e c t e d m o l e c u l a r o r b i t a l s f o r ( 8 ) a n d ( 1 1 ) a s d e t e r m i n e d b y G a u s s i a n 9 8 . i n d i c a t e t h a t t h e H O M O ’ S i n ( 8 ) a n d ( 1 1 ) h a v e s i m i l a r p a r e n t a g e . T h e s a m e i s t r u e f o r t h e H O M O - l a n d L U M O o f t h e M 0 2 1 ” I a n d M 0 2 1 1 " I I I s p e c i e s r e s p e c t i v e l y . T h e t w o e l e c t r o n o x i d a t i o n o f t h e M 0 2 1 1 ’ 1 1 c o r e o f ( 8 ) t o y i e l d M o z m ’ I I I ( 1 1 ) p r o d u c e s a c l e a r a l t e r a t i o n i n t h e o r d e r i n g o f t h e f r o n t i e r o r b i t a l s i n t h e s e c o m p o u n d s . T h e L U M O o f ( 1 1 ) t e s t i fi e s t h a t t h e e l e c t r o n d e n s i t y , o n o x i d a t i o n , i s r e m o v e d p r i m a r i l y f r o m a m e t a l - m e t a l b o n d i n g o r b i t a l . T h e c o n s e q u e n c e o f w h i c h i s t h e e x p e r i m e n t a l l y o b s e r v e d i n c r e a s e i n t h e m e t a l — m e t a l b o n d l e n g t h . T h e s t a b i l i z a t i o n o f t h e 5 * o r b i t a l a n d d e s t a b i l i z a t i o n o f t h e 5 o r b i t a l o n " " 1 c o m p o u n d ( 8 ) i s r e a d i l y u n d e r s t o o d b y c o n s i d e r i n g t h e o x i d a t i o n o f M 0 2 i n t e r a c t i o n o f t h e o r b i t a l s o f t h e b r i d g i n g c y a n i d e s w i t h t h e m e t a l b a s e d 4 d o r b i t a l s . T h e r e d u c t i o n i n t h e M 0 1 - C 3 A — N 3 a n d M o l A — C 3 — N 3 A a n g l e s t h a t a c c o m p a n y o n e - a n d t w o - e l e c t r o n o x i d a t i o n o f ( 8 ) r e s p e c t i v e l y r e s u l t i n s h o r t e r M o l — N 3 a n d M o l A — N 3 A d i s t a n c e s . T h e m o r e c l o s e p r o x i m i t y o f t h e b r i d g i n g c y a n i d e s t o t h e d i m o l y b d e n u m c o r e i n c r e a s e s t h e a n t i b o n d i n g i n t e r a c t i o n o f t h e p , ( o r b i t a l s o f N 3 a n d N 3 A w i t h t h e 5 o r b i t a l ( F i g u r e 7 c ) r e s u l t i n g i n t o d e s t a b i l i z a t i o n o f t h i s o r b i t a l . I t s h o u l d b e n o t e d 1 1 , 1 1 h e r e a l t h o u g h s i m i l a r i n t e r a c t i o n i s p r e s e n t i n t h e M 0 2 c o m p o u n d 1 3 0 ( H O M O - 1 ) i t i s c o n s i d e r a b l y m o r e i n fl u e n t i a l i n t h e o x i d i z e d s p e c i e s d u e t o s h o r t e r M o l — N 3 a n d M o l A - N 3 A d i s t a n c e s . T h e s e m i - b r i d g i n g o r i e n t a t i o n o f t h e b r i d g i n g c y a n i d e s a l s o h e l p i n s t a b i l i z i n g t h e 5 * o r b i t a l . T h e p x o r b i t a l s o f t h e C 3 A a n d C 3 a t o m s a r e i n v o l v e d i n a f a v o r a b l e b o n d i n g i n t e r a c t i o n w i t h d x y o r b i t a l s o f M o l A a n d M 0 1 r e s p e c t i v e l y ( F i g u r e 7 d ) . S u c h i n t e r a c t i o n i s v i r t u a l l y a b s e n t i n c o m p l e x ( 8 ) w h e r e e a c h c y a n i d e b r i d g e s t h e t w o m e t a l c e n t e r s i n a n e a r l y s y m m e t r i c f a s h i o n . T h e n e t e f f e c t i s t h e s t a b i l i z a t i o n o f t h e H O M O o f t h e M 0 2 1 " 1 1 c o m p o u n d 1 1 1 , 1 1 1 s u c h t h a t u p o n o x i d a t i o n i t r e m a i n s t h e H O M O f o r t h e M 0 2 c o m p o u n d . T h e l o w - l y i n g H O M O - 1 f o r M o z n ’ " , o n o x i d a t i o n , e x p e r i e n c e s d e s t a b i l i z i n g i n t e r a c t i o n s a n d b e c o m e s t h e L U M O f o r M o z m ’ m . T h e l o s s o f t h e 5 b o n d i n g c o n t r i b u t i o n t o t h e m e t a l - m e t a l b o n d r e s u l t s i n t h e o b s e r v e d i n c r e a s e o f t h e M o — M o d i s t a n c e i n M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) v s [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) . 4 . C o n c l u s i o n s U n d e r a n a e r o b i c c o n d i t i o n s , t h e r e a c t i o n o f M 0 2 C 1 4 ( d p p m ) 2 w i t h [ R 4 N ] [ C N ] ( R = E t o r n - B u ) p r o c e e d s w i t h c o m p l e t e d i s p l a c e m e n t o f t h e f o u r c h l o r i d e l i g a n d s a n d a d d i t i o n o f t w o c y a n i d e s t o y i e l d [ M o z n ’ " ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) , T h e c y a n i d e l i g a n d s s p a n n i n g t h e d i m o l y b d e n u m c o r e h a v e a d o p t e d a r a r e s e m i - b r i d g i n g m o d e , w i t h c y a n i d e 1 3 1 b o u n d t h r o u g h a a b o n d t o o n e M o a t o m t h r o u g h t h e c a r b o n a t o m a n d t o t h e o t h e r M o a t o m t h r o u g h a s i d e - o n 7 : i n t e r a c t i o n . A s e v i d e n c e d b y t h e c y c l i c v o l t a m m o g r a m . [ M o z n ’ n ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) i s e a s i l y o x i d i z e d . T h e c a r e f u l u s e o f o n e a n d t w o e q u i v a l e n t s o f t h e o x i d a n t N O B F 4 l e d t o t h e p r e p a r a t i o n o f t h e o n e a n d t w o - e l e c t r o n o x i d a t i o n p r o d u c t s o f ( 8 ) , v i z . , [ M 0 2 " ’ 1 " ( C N ) o ( d P P m ) 2 l l ' ( 1 0 ) a n d M 0 2 m ’ m ( C N ) o ( d p p m ) 2 ( 1 1 ) . T h e o x i d a t i o n s t a t e o f t h e d i m o l y b d e n u m c o r e s t r o n g l y i n fl u e n c e s t h e b o n d i n g i n t e r a c t i o n s o f t h e b r i d g i n g c y a n i d e s . T h e s i d e - o n 7 : i n t e r a c t i o n o f t h e s e m i - b r i d g i n g c y a n i d e s i n t h e o n e e l e c t r o n o x i d a t i o n p r o d u c t [ n - B u 4 N ] [ M o z n ’ m ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) a r e s i g n i fi c a n t l y m o r e p r o m i n e n t t h a n i n t h e p a r e n t c o m p o u n d [ n - B u 4 N ] 2 [ M o z n ’ " ( C N ) 6 ( d p p m ) 2 ] ( 8 ) . T h e r e m o v a l o f a n e l e c t r o n f r o m ( 1 0 ) t o g i v e M o z m ’ m ( C N ) 6 ( d p p m ) 2 ( 1 1 ) f u r t h e r i n c r e a s e s t h e 7 t i n t e r a c t i o n b u t o n l y s l i g h t l y s o . T h e s t r e n g t h o f t h e i n t e r a c t i o n b e t w e e n t h e s e m i — b r i g i n g c y a n i d e a n d t h e m e t a l - m e t a l b o n d i n ( 1 0 ) a s c o m p a r e d t o ( 8 ) r e s u l t s i n a s w i t c h i n g o f t h e o r d e r o f t h e 5 a n d 5 * o r b i t a l s i n M 0 2 ( C N ) o ( d P P m ) 2 ( 1 1 ) - T h e s p a t i a l a r r a n g e m e n t o f t h e t e r m i n a l c y a n i d e l i g a n d s i n [ n - B u t l e l M 0 2 ( C N ) o ( d P P m ) 2 l ( 8 ) , [ E t t l e l M 0 2 ( C N ) o ( d P P m ) 2 ] ( 9 ) a n d . [ n - B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) i s s u c h t h a t i n t e r a c t i o n s w i t h L e w i s a c i d s t o f o r m l a r g e r a s s e m b l i e s a r e p o s s i b l e . T h e p o o r s o l u b i l i t y o f 1 3 2 M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) p r e c l u d e s i t s u s e i n t h i s m a n n e r . I n t h i s r e g a r d , t h e r e a c t i o n o f ( 8 ) w i t h [ N i ( e n ) 2 ( C H 3 C N ) 2 ] [ P F 6 ] 2 w a s c a r r i e d o u t . T h e c o m p o u n d [ n - B u 4 N ] 2 [ M o z ( C N ) 6 ( d p p m ) 2 ] ( 8 ) r e a c t s w i t h [ N i ( e n ) 2 ( C H 3 C N ) 2 ] [ P F 6 ] 2 t o f o r m a p r o d u c t t h a t i s f o r m u l a t e d a s n e u t r a l o n e - d i m e n s i o n a l p o l y m e r c o m p o s e d o f { [ N i ( e n ) 2 ] [ M 0 2 ( C N ) ( ; ( d p p m ) 2 ] } n r e p e a t i n g u n i t s . T h e [ M o z ( C N ) 6 ( d p p m ) 2 ] 2 ’ u n i t s a c t a s a b r i d g e , b u t d o n o t e n a b l e m a g n e t i c c o m m u n i c a t i o n t o o c c u r b e t w e e n t h e n e a r e s t n e i g h b o r N i I I c e n t e r s . 1 3 3 R e f e r e n c e s 1 0 . 1 1 . 1 2 . 1 3 . 1 4 . . H e i n t z , R . A . ; D u n b a r , K . R . P r o g . I n o r g . C h e m . 1 9 9 6 , 4 5 , 2 8 3 . V a h r e n k a m p , H . ; G e i s s , A . ; R i c h a r d s o n , G . N . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 7 , 2 0 , 3 6 6 4 . . C u r t i s , M . D . ; K l i n g e r , R . J . J . O r g a n o m e t . C h e m . 1 9 7 8 , 1 6 1 , 2 3 . . A s p i n a l l , H . C . ; D e e m i n g , A . J . ; D o n o v a n - M t u n z i , S . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 3 , 8 4 , 2 0 5 . B u d z i c h o w s k i , T . ; C h i s h o l m , M . P o l y h e d r o n , 1 9 9 4 , I 3 , 2 0 3 5 . D e r a n i y a g , S . P . ; G r u n d y , K . R . I n o r g . C h i m . A c t a , 1 9 8 4 , 8 4 , 2 0 5 . B a r t l e y , S . L . ; B e r n s t e i n , S . N . ; D u n b a r , K . R . I n o r g . C h i m . A c t a . 1 9 9 3 , 2 1 3 , 2 1 3 . C o t t o n , F . A . P o l y h e d r o n , 1 9 8 7 , 6 , 6 6 7 . C o t t o n , F . A . ; W a l t o n , R . A . M u l t i p l e B o n d s B e t w e e n M e t a l A t o m s , 2 n d e d . , C l a r e n d o n P r e s s , O x f o r d , 1 9 9 3 . D u n b a r , K . R . ; P o w e l l , D . ; W a l t o n , R . A . I n o r g . C h e m . 1 9 8 5 , 2 4 , 2 8 4 2 . G r e e n , M . L . H . ; P a r k i n , G . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 2 , 2 5 1 9 . H e n d r i c k s o n , D . N . ; S o h n , Y . S . ; G r a y , 1 1 . B . I n o r g . C h e m . 1 9 7 1 , 1 0 , 1 5 5 9 . S a i n t 1 0 0 0 , B r u k e r A n a l y t i c a l X - R a y I n s t r u m e n t s , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) S h e l d r i c k , G . M . “ S A B A B S , S i e m e n s A r e a D e t e c t o r A b s o r p t i o n 1 3 4 1 5 . 1 6 . l 7 . 1 8 . 1 9 . C o r r e c t i o n ” , U n i v . o f G o t t i n g e n , G o t t i n g e n , G e r m a n y ( 1 9 9 8 ) . S H E L T X L v e r s i o n 5 . 1 0 , R e f e r e n c e M a n u a l , B r u k e r I n d u s t r i a l A u t o m a t i o n , A n a l y t i c a l I n s t r u m e n t , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) . G l u s k e r , J . R ; L e w i s , M . ; R o s s i , M . C r y s t a l S t r u c t u r e A n a l y s i s f o r C h e m i s t s a n d B i o l o g i s t s , V C H , N e w Y o r k , 1 9 9 4 . F r i s c h , M . J ; T r u c k s , G . W ; S c h l e g e l , H . B ; S c u s e r i a , G . E ; R o b b , M . A ; C h e e s e m a n , J . R ; Z a k r z e w s k i , V . G ; M o n t g o m e r y , J r . , J . A ; S t r a t r n a n n , R . E ; B u r a n t , J . C ; D a p p r i c h , S ; M i l l a m , J . M ; D a n i e l s , A . D ; K u d i n , K . N ; S t r a i n , M . C ; F a r k a s , O ; T o m a s i , J ; B a r o n e , V ; C o s s i , M ; C a m m i , R ; M e n n u c c i , B ; P o m e l l i , C ; A d a m o , C ; C l i f f o r d , S ; O c h t e r s k i , J ; P e t e r s s o n , G . A ; A y a l a , P . Y ; C u i , Q ; M o r o k u m a , K ; M a l i c k , D . K ; R a b u c k , A . D ; R a g h a v a c h a r i , K ; F o r e s m a n , J . B ; C i o s l o w s k i , J ; O r t i z , J . V ; S t e f a n o v , B . B ; L i u , G ; L i a s h e n k o , A ; P i s k o r z , P ; K o m a r o m i , I ; G o m p e r t s , R ; M a r t i n , R . L ; F o x , D . J ; K e i t h , T ; A l - L a h a m , M . A ; P e n g , C . Y ; N a n a y a k k a r a , A ; G o n z a l e z , C ; C h a l l a c o m b e , M ; G i l l , P . M . W ; J o h n s o n , B ; C h e n , W ; W o n g , M . W ; A n d r e s , J . L ; G o n z a l e z , C ; H e a d - G o r d o n , M ; R e p l o g l e , E . S ; P o p l e , J . A . G a u s s i a n , I n c . , P i t t s b u r g h P A , 1 9 9 8 . B e c k e , A . D . J . C h e m . P h y s . 1 9 9 3 , 9 8 , 5 6 4 8 . L e e , C . ; Y a n g , W . ; P a r r , R . G . P h y s . R e v . 1 9 8 8 , 3 7 , 7 8 5 . 1 3 5 2 0 . ( a ) H a y , P . J . ; W a d t , W . R . J . C h e m . P h y s . 1 9 8 5 , 8 2 , 2 7 0 . H a y , P . J . ; W a d t , W . R . J . C h e m . P h y s . 1 9 8 5 , 8 2 , 2 8 4 . ( b ) H a y , P . J . ; W a d t , W . R . J . C h e m . P h y s . 1 9 8 5 , 8 2 , 2 9 9 . 2 1 . D u n n i n g , T . H . J r . ; H a y , P . J . I n M o d e r n T h e o r e t i c a l C h e m i s t r y ; S c h a e f e r , H . F . , 1 1 1 , E d . ; P l e n u m : N e w Y o r k , 1 9 7 7 ; V o l . 3 , p l . 2 2 . H b l l w a r t h , A . ; B o h m e , M . ; D a p p r i c h , S . ; E h l e r s , A . W . ; G o b b i , A . ; J o n a s , V . ; K é h l e r , K . F . ; S t e g m a n n , R . ; V e l d k a m p , . ; F r e n k i n g , G . C h e m . P h y s . L e t t . 1 9 9 3 , 2 0 8 , 2 3 7 . 2 3 . B a r d e r , T . J . ; C o t t o n , F . A . ; L e w i s , D . ; S c h w o t z e r , W . ; T e t r i c k , S . M . ; W a l t o n , R . A . J . A m . C h e m . S o c . 1 9 8 4 , 1 0 6 , 2 8 8 2 . 2 4 . T h e s t r u c t u r a l s o l u t i o n o f M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) p r o d u c e d a d i f f e r e n t s e t o f u n i q u e a t o m s t h a n w a s f o u n d f o r [ n - B u 4 l e [ M 0 2 ( C N ) o ( d P P m ) 2 l a n d [ n - B u t N l l M 0 2 ( C N ) o ( d P P m ) 2 l n e c e s s i t a t i n g t h e u s e o f a d i f f e r e n t a t o m l a b e l i n g s c h e m e f o r t h e b r i d g i n g c y a n i d e s i n ( 1 1 ) . 1 3 6 I I I I I I I I I I I I I I I I I I I I I i i i l i l i h i i i i l i i g h l l l . n 4 > i 3 . 3 . 3 fl . . . § . u s n : . : . 5 « : b . 1 . 2 . . . , . , . ‘ . . . . , f _ . ‘ . . / . _ fi r fl fi . . . . . 3 2 2 - : 5 £ . . . 3 a 1 . L . . A fi r h 3 h . 3 » m 1 1 w . . . v . 3 s h t a . . a . . , . . a n . 3 . 2 1 . . . . . . _ . . . a h . u o v . r . R . I i l . . l . v . . . L a 1 i . fi 7 y f . 3 l . . a . I x 5 } , . . u , . . 2 . . . a . 1 . 2 . a . . . . 2 . 9 . 3 1 . 9 . 1 . . i . t . . . 2 3 : a . u . . 4 1 . . 3 ‘ 3 “ 3 “ a . . , s z a . : 5 9 . . . . . 3 1 £ 2 2 . . . ) . . a s . 2 . . . A 5 . 1 2 5 . . 5 I . 1 . : 3 . 1 ! . . . fl 4 - . 9 | , ! L E M . : - . . 7 \ I . 2 0 0 i “ s h i m “ M i c h i g a n S t a t e U n i v e r s i t y P L A C E I N R E T U R N B O X t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . T O A V O I D F I N E S r e t u r n o n o r b e f o r e d a t e d u e . M A Y B E R E C A L L E D w i t h e a r l i e r d u e d a t e i f r e q u e s t e d . D A T E D U E D A T E D U E D A T E D U E 6 / 0 1 c h l R C / D a t e D u e p G S - p . 1 5 C h a p t e r I V T r a n s i t i o n m e t a l c y a n i d e a n d n i t r i l e c o m p o u n d s w i t h 1 - ( h y d r o ) t r i s p y r a z o l y l b o r a t e 1 3 7 1 . I n t r o d u c t i o n T h e a s s e m b l y o f m o l e c u l a r p r e c u r s o r s t o f o r m n a n o s c a l e m o l e c u l e s i s b e c o m i n g a n a c t i v e a r e a o f r e s e a r c h i n m a g n e t o c h e m i s t r y . 1 T h i s i n t e r e s t s t e m s f r o m t h e d e m o n s t r a t i o n o f a p h e n o m e n o n s i m i l a r t o s u p e r p a r a m a g n e t i s m i n l a r g e s p i n p a r a m a g n e t i c c l u s t e r s t h a t e x h i b i t m a g n e t i c a n i s o t r o p y . S e v e r a l m i x e d v a l e n c e M n c l u s t e r s w i t h c a r b o x y l a t e b r i d g e s c o n s t i t u t e o n e f a m i l y o f c o m p o u n d s w i t h h i g h g r o u n d s t a t e s p i n v a l u e s t h a t h a v e b e e n p r e p a r e d f o r t h e p u r p o s e s o f i n v e s t i g a t i n g s i n g l e m o l e c u l e m a g n e t i c p h e n o m e n o n ( F i g u r e 1 . 1 0 ) . 2 T h e s e h a v e b e e n s h o w n t o d i s p l a y p r o p e r t i e s s u c h a s h y s t e r e s i s a n d q u a n t u m t u n n e l i n g o f t h e m a g n e t i z a t i o n . U n f o r t u n a t e l y , t r a d i t i o n a l c l u s t e r c h e m i s t r y s u c h a s t h e M n c a r b o x y l a t e c l u s t e r s s u f f e r s f r o m t h e l i m i t a t i o n t h a t , a p r i o r i , r e l i a b l e p r e d i c t i o n o f t h e s t r u c t u r e a n d c o m p o s i t i o n o f t h e r e s u l t i n g p r o d u c t s i s o f t e n n o t p o s s i b l e . A n u n a d d r e s s e d s y n t h e t i c c h a l l e n g e i n t h i s a r e a i s t h e d e s i g n o f s y n t h e t i c r o u t e s t o h i g h - s p i n m a g n e t i c c l u s t e r s w i t h p r e d e t e r m i n e d s t r u c t u r e s . T h i s l e v e l o f s y n t h e t i c c o n t r o l w a s r e c e n t l y d e m o n s t r a t e d b y t h e i n d e p e n d e n t w o r k o f R a u c h f u s s ( F i g u r e s 1 . 7 a n d 1 . 8 ) a n d L o n g ( F i g u r e 1 . 9 ) i n t h e p r e p a r a t i o n a n d c r y s t a l l i z a t i o n o f m o l e c u l a r “ b o x e s ” ( “ c u b e s ” ) . 3 ' 4 T h e c o m e r s o f t h e m o l e c u l e s c o n s i s t o f e i g h t m e t a l a t o m s w i t h b r i d g i n g c y a n i d e s a l o n g t h e s i d e s . T h e r e m a i n i n g t h r e e c o o r d i n a t i o n s i t e s o n t h e m e t a l a t o m 1 3 8 c o r n e r s w e r e o c c u p i e d b y t h e f a c i a l c a p p i n g l i g a n d s C p ‘ o r t r i a z a c y c l o n o n a n e ( t a c n ) r e s p e c t i v e l y . I n b o t h p r e v i o u s l y r e p o r t e d c a s e s t h e m o l e c u l a r c u b e s a r e d i a m a g n e t i c , b e i n g c o m p o s e d o f R h I I I a n d C o I I I i n t h e c a s e o f [ ( C p ) 4 ( C 5 ( M e ) 4 E t ) 4 C o 4 R h 4 ( C N ) 1 2 ] [ P F 6 ] 4 a n d C o m i n t h e c a s e o f [ ( t a c n ) 3 C o g ( C N ) 1 2 ] [ C F 3 S O 3 ] . W e i n i t i a t e d a n e f f o r t t o p r e p a r e p a r a m a g n e t i c h e t e r o m e t a l l i c c u b e s w i t h b o t h e i g h t a n d t w e n t y m e t a l a t o m b o x e s . T h e b o x e s w i t h e i g h t m e t a l a t o m c o r n e r s a r e o n e e x p e c t e d p r o d u c t f r o m t h e c o m b i n a t i o n o f f o u r “ c o m e r ” p r e c u r s o r s t h a t c o n t a i n f a c i a l l y a r r a n g e d d a n g l i n g c y a n i d e s w i t h f o u r “ c o m e r ” p r e c u r s o r s t h a t c o n t a i n g o o d l e a v i n g g r o u p s i n t h e s a m e f a c i a l a r r a n g e m e n t . D i s p l a c e m e n t o f t h e l e a v i n g g r o u p s b y t h e n i t r o g e n s o f t h e d a n g l i n g c y a n i d e s w o u l d r e s u l t i n c l o s u r e a n d f o r m a t i o n o f t h e d e s i r e d m o l e c u l a r b o x . T h e t w e n t y m e t a l a t o m b o x e s w o u l d c o n s i s t o f t h e c o r n e r p r e c u r s o r s d e s c r i b e d a b o v e , b u t i n s t e a d o f t w e l v e c y a n i d e e d g e s , t h e e d g e s c o n s i s t o f u n i t s o f t h e t y p e t r a n s - M ( L ) 4 ( C N ) 2 . S c h e m a t i c s o f t h e p r o p o s e d a s s e m b l y o f 8 a n d 2 0 m e t a l a t o m m o l e c u l a r b o x e s a r e d e p i c t e d i n F i g u r e s 4 . 1 a n d 4 . 2 r e s p e c t i v e l y . T h e fi r s t s t e p i n t h i s c h e m i s t r y i s t o p r e p a r e t h e a p p r o p r i a t e b u i l d i n g b l o c k s . T h i s c h a p t e r p r e s e n t s t h e r e s u l t s o f t h e s e e f f o r t s t o p r e p a r e d i v a l e n t a n d t r i v a l e n t c o r n e r a n d e d g e b u i l d i n g b l o c k c o m p o u n d s . T h e m o s t 1 3 9 | : | c ~ p I i g n / ’ 1 p a c r e n r o | I N c N ' M _ _ E C e h T . x — o — M m l C 3 9 N , ’ ~ “ m b r a l u c e l o m m o t a l a Q x t e ) e p m l u t p h o r g m g i o e g c n n i a r v f o a o . “ e I I t y L l y t T p l i N \ N I I / / N e b a r c s i c a L a m l e c s f s o - a ( c e e k h a a a f \ t s f o e h n t o r i o t f a t d n e e t s t e i r N m x 5 e e p o N \ \ \ l p m r e c r i e t w o a s m I c p 1 9 3 r e u h o c r o S g n o d - c . 1 . 4 e r a u f g i F N X 1 4 0 M — N E C — M — c E N — M x e l p m r o r o o » . E \ > \ \ \ \ \ \ \ . \ c n o r M o d : , " 0 ” - t s p n e ” a c r c t a x e l p ‘ 1 m 0 o c r o r n o o t d p 2 1 + N \ \ \ \ . _ \ I I I , C k N - e c c c a a f 8 1 4 1 \ L 2 — 4 F i g u r e 4 . 2 . S c h e m a t i c r e p r e s e n t a t i o n o f t h e a s s e m b l y o f a t w e n t y m e t a l a t o m m o l e c u l a r b o x . T h e c o r n e r c a p p i n g g r o u p s a n d b i d e n t a t e l i g a n d s o f t h e e d g e b u i l d i n g b l o c k s w e r e o m i t t e d f o r t h e s a k e o f c l a r i t y . p r o m i s i n g r e s u l t s i n t h e u s e o f t h e s e c o m p o u n d s t o a s s e m b l e m o l e c u l a r b o x e s w i l l a l s o b e d i s c u s s e d . T h e c h a p t e r f o c u s e s o n b u i l d i n g b l o c k s o f t h e m e t a l s V 1 " , C r m , M o m , M n " , a n d C o " . P r e c u r s o r c o m p o u n d s o f F e m , F e " , a n d N i 1 1 w i l l b e p r e s e n t e d i n t h e d i s s e r t a t i o n o f J e n n i f e r A . S m i t h a n o t h e r s t u d e n t o n t h e p r o j e c t . 2 2 2 . E x p e r i m e n t a l A . M a t e r i a l s A l l m a n i p u l a t i o n s w e r e c a r r i e d o u t u n d e r a n i n e r t a t m o s p h e r e u s i n g s t a n d a r d S c h l e n k - l i n e a n d d r y b o x t e c h n i q u e s . A l l g l a s s w a r e w a s fl a m e - d r i e d u n d e r v a c u u m p r i o r t o u s e . S o l v e n t s w e r e p u r i fi e d b y c o n v e n t i o n a l m e t h o d s a n d w e r e d i s t i l l e d u n d e r n i t r o g e n p r i o r t o u s e . A c e t o n i t r i l e s o l v a t e d t r a n s i t i o n m e t a l c o m p l e x e s o f t h e t y p e [ M ( C H 3 C N ) X ] ( P F 6 ) 2 ( x = 4 , 6 ) , 5 2 1 V C 1 3 ( T H F ) 3 , 5 " C r C 1 3 ( T H Z F ) 3 , 5 b a n d M o B r 3 ( T H F ) 3 5 ° w e r e p r e p a r e d a c c o r d i n g t o t h e l i t e r a t u r e m e t h o d s . T h e r e a g e n t s K C N , A g P F 6 , a n d T l P F 6 w e r e p u r c h a s e d f r o m A l d r i c h a n d u s e d a s r e c e i v e d . T h e f a c i a l c a p p i n g l i g a n d t h a t w a s u s e d f o r a l l t h e c o r n e r p r e c u r s o r s i s 1 - ( h y d r o ) t r i s p y r a z o l y l b o r a t e ( T p ) w h i c h w a s p r e p a r e d a s i t ’ s N a [ T p ] a n d K [ T p ] s a l t s f r o m t h e l i t e r a t u r e m e t h o d . 6 1 4 2 B . P h y s i c a l M e a s u r e m e n t s I n f r a r e d s p e c t r a w e r e r e c o r d e d o n s o l i d s s u s p e n d e d i n N u j o l b e t w e e n K B r p l a t e s i n t h e r a n g e 4 0 0 0 - 4 0 0 c m ' 1 o n a N i c o l e t I R / 4 2 S p e c t r o m e t e r o r b e t w e e n C s I p l a t e s i n t h e r a n g e b e t w e e n 4 0 0 - 5 0 c m ' 1 o n a N i c o l e t M a g n a - I R S e r i e s I I 7 5 0 S p e c t r o m e t e r . E l e c t r o n i c a b s o r p t i o n a n d n e a r - I R s p e c t r a w e r e m e a s u r e d o n a S h i m a d z u U V - 3 1 0 1 P C U V - V i s - N I R S c a n n i n g S p e c t r o p h o t o m e t e r . M a g n e t i c s u s c e p t i b i l i t y m e a s u r e m e n t s i n t h e s o l i d s t a t e w e r e p e r f o r m e d w i t h t h e u s e o f a Q u a n t u m D e s i g n s u p e r c o n d u c t i n g q u a n t u m i n t e r f e r e n c e d e v i c e ( S Q U I D ) m a g n e t o m e t e r M P M S - S . D a t a w e r e o b t a i n e d o n p o l y c r y s t a l l i n e s a m p l e s i n t h e r a n g e o f 2 - 3 0 0 K a t 1 0 0 0 G . E l e m e n t a l a n a l y s e s w e r e p e r f o r m e d o n a P e r k i n E l m e r S e r i e s I I C H N S / O A n a l y z e r . M a s s s p e c t r a l d a t a w e r e o b t a i n e d a t t h e M i c h i g a n S t a t e U n i v e r s i t y M a s s S p e c t r o m e t r y F a c i l i t y , w h i c h i s s u p p o r t e d , i n p a r t , b y a g r a n t ( D R R - 0 0 4 8 0 ) f r o m t h e B i o t e c h n o l o g y R e s e a r c h T e c h n o l o g y P r o g r a m , N a t i o n a l C e n t e r f o r R e s e a r c h R e s o u r c e s , N a t i o n a l I n s t i t u t e o f H e a l t h . C . S y n t h e s e s ( 1 ) P r e p a r a t i o n o f N a [ ( T p ) C r C l 3 ] ( l 3 ) a n d K [ ( T p ) C r C l 3 ] ( 1 4 ) T h e c o m p o u n d N a [ ( T p ) C r C l 3 ] ( 1 3 ) w a s p r e p a r e d b y a m o d i fi c a t i o n o f t h e l i t e r a t u r e m e t h o d r e p o r t e d f o r [ P h 4 A s ] [ ( T p ) C r C 1 3 ] . 7 A T H F s o l u t i o n ( 3 0 m L ) o f N a [ T p ] ( 0 . 0 6 3 g , 0 . 2 0 8 m m o l ) w a s a d d e d t o a 3 0 m L T H F s o l u t i o n 1 4 3 o f C r C l 3 ( T I - I F ) 3 ( 0 . 1 0 0 g , 0 . 2 6 8 m m o l ) . T h e r e s u l t i n g g r e e n s o l u t i o n w a s s t i r r e d f o r t h i r t y m i n u t e s a n d c o n c e n t r a t e d t o 1 0 m L . H e x a n e s ( 1 0 m L ) w e r e a d d e d t o p r e c i p i t a t e a g r e e n s o l i d t h a t w a s c o l l e c t e d b y fi l t r a t i o n , w a s h e d w i t h d i e t h y l e t h e r , ( 3 x 5 m L ) a n d d r i e d i n v a c u o . Y i e l d 0 . 1 0 0 g ( 9 5 % ) . K [ ( T p ) C r C l 3 ] ( 1 4 ) w a s p r e p a r e d f r o m t h e r e a c t i o n o f C r C l 3 ( T H F ) 3 ( 0 . 1 0 0 g , 0 . 2 6 8 m m o l ) w i t h K [ T p ] ( 0 . 0 6 8 g , 0 . 2 6 8 m m o l ) a s d e s c r i b e d f o r N a [ ( T p ) C r C l 3 ] ( 1 3 ) . Y i e l d 0 . 1 0 5 g ( 9 6 % ) . N a [ ( T p ) C r C l 3 ] ( 1 3 ) : v 0 - 0 : 3 4 0 a n d 3 3 0 c m ] ; V 3 - 1 4 : 2 4 9 0 c m ] ; U V - V i s ( T H F ) : ) 1 . ( n m ) ( 8 ( M ' l c m ' 1 ) ) 6 0 0 ( 7 7 ) ; A n a l . C a l c d f o r C 9 H 1 0 N 6 C 1 3 B 1 C r 1 N a 1 : C , 2 7 . 4 0 ; H , 2 . 5 6 ; N , 2 1 . 3 0 . F o u n d : C , 2 7 . 8 5 ; H , 2 . 7 2 ; N 2 1 . 0 8 . K [ C r C l 3 ( T p ) ] ( 1 4 ) : v 0 - 0 : 3 3 1 a n d 3 1 0 c m ' l ; m m : 2 4 9 0 c m " ; A n a l . C a l c d f o r C 9 H 1 0 N 6 C 1 3 B C r K : c , 2 6 . 3 3 ; H , 2 . 4 5 ; N , 2 0 . 4 7 . F o u n d : C , 2 6 . 9 5 ; H , 2 . 3 5 ; N 2 1 . 0 3 . ( 2 ) P r e p a r a t i o n o f ( T p ) M o B r 2 ( T H F ) , ( 1 5 ) A T H F s o l u t i o n ( 2 0 m L ) o f N a [ T p ] ( 0 . 2 0 0 g , 0 . 8 5 0 m m o l ) w a s a d d e d t o a 4 0 m L T H F s o l u t i o n o f M o B r 3 ( T H F ) 3 . T h e r e s u l t i n g d a r k y e l l o w s o l u t i o n w a s r e fl u x e d o v e r n i g h t , c o n c e n t r a t e d t o 1 0 m L , a n d fi l t e r e d t h r o u g h C e l i t e . A d a r k y e l l o w s o l i d w a s o b t a i n e d b y r e d u c i n g t h e s o l u t i o n t o d r y n e s s i n v a c u o . T h e s o l i d w a s e x t r a c t e d w i t h 6 0 m L o f T H F a n d fi l t e r e d a g a i n t h r o u g h C e l i t e . T h e s o l u t i o n w a s r e d u c e d t o d r y n e s s , w a s h e d w i t h d i e t h y l e t h e r , ( 3 x 5 m L ) a n d d r i e d i n v a c u o . Y i e l d 0 . 4 5 9 g ( 7 5 % ) . V M O _ B , : 2 6 3 c m " 1 4 4 1 ; v B - H : 2 4 8 0 c m " ; U V - V i s ( T H F ) : A ( n m ) ( e ( M " e m “ ) ) 3 7 6 ( 8 0 . 0 ) 3 0 8 ( 1 0 0 ) ; A n a l . C a l c d f o r C 1 3 H 1 8 N 6 B r 2 B 1 0 1 M 0 1 : C , 2 8 . 8 7 ; H , 3 . 3 5 ; N , 1 5 . 5 4 . F o u n d : C , 2 8 . 4 0 ; H , 3 . 2 2 ; N 1 5 . 8 0 . ( 3 ) P r e p a r a t i o n o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] , ( l 6 ) a n d [ ( T P ) C 0 ( C H 3 C N ) 3 ] [ P F 6 ] 9 ( 1 7 ) T h e f o l l o w i n g p r o c e d u r e w o r k s f o r t h e p r e p a r a t i o n o f b o t h ( 1 6 ) a n d ( 1 7 ) , t h e o n l y d i f f e r e n c e b e i n g t h e u s e o f [ M n ( C H 3 C N ) 4 ] [ P F 6 ] 2 ( 0 . 4 3 8 g , 0 . 8 4 7 m m o l ) t o p r e p a r e ( 1 6 ) o r [ C o ( C H 3 C N ) 6 ] [ P F 6 ] 2 ( 0 . 4 5 7 g , 0 . 8 4 7 m m o l ) t o p r e p a r e ( 1 7 ) . A n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f N a [ T p ] ( 0 . 2 0 0 g , 0 . 8 4 7 m m o l ) w a s a d d e d d r o p w i s e t o a 3 0 m L a c e t o n i t r i l e s o l u t i o n o f t h e a p p r o p r i a t e [ M ( C H 3 C N ) X ] [ P F 6 ] 2 s t a r t i n g m a t e r i a l . T h e s o l u t i o n w a s t h e n c o n c e n t r a t e d t o ~ 3 0 m L a n d p l a c e d i n t h e f r e e z e r ( - 5 ° C ) o v e r n i g h t t o i n d u c e c o m p l e t e p r e c i p i t a t i o n o f N a P F 6 a s a w h i t e p r e c i p i t a t e . T h e c o l d s o l u t i o n w a s fi l t e r e d t h r o u g h C e l i t e t o r e m o v e t h e p r e c i p i t a t e . D i e t h y l e t h e r ( 6 0 m L ) w a s a d d e d a n d t h e s o l u t i o n w a s c o o l e d t o - 5 ° C o v e r n i g h t t o y i e l d t h e p r o d u c t [ M n ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] . ( 1 6 ) a s a w h i t e s o l i d o r [ C 0 ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] ( 1 7 ) a s a y e l l o w - o r a n g e s o l i d . Y i e l d s 0 . 2 1 5 g ( 5 4 % ) ( 1 6 ) a n d 0 . 2 2 8 g , ( 5 0 % ) ( 1 7 ) . [ M n ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] , ( 1 6 ) : v c e N : 2 3 1 2 a n d 2 2 8 4 c m " ; v “ : 2 4 6 9 c m “ ; v . . . 8 6 9 c m ' 1 ; U V - V i s ( C H 3 C N ) : A ( n m ) ( 8 ( M ' 1 c m ' 1 ) ) 3 3 1 ( ~ 1 ) . [ C o ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] , ( 1 7 ) : v C E N : 2 3 1 5 a n d 1 4 5 2 2 8 0 c m ' l ; V B - H : 2 4 9 8 c m ] ; V ” : 8 3 9 c m ' l ; U V - V i s ( C H 3 C N ) : A ( n m ) ( e ( M ’ 1 e m " ) ) 4 6 8 ( 8 3 . 2 ) , 5 1 5 ( 2 2 . 5 ) . ( 4 ) P r e p a r a t i o n o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 , ( 1 8 ) [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) w a s p r e p a r e d b y b r o m i d e a b s t r a c t i o n f r o m ( T p ) M o B r 2 ( T H F ) ( 1 5 ) . A n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f A g P F 6 ( 0 . 2 0 5 g , 0 . 8 1 4 m m o l ) w a s a d d e d t o a n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f ( 1 5 ) ( 0 . 2 2 0 g , 0 . 4 0 7 m m o l ) a n d a l l o w e d t o s t i r o v e r n i g h t . A l u m i n u m f o i l w a s u s e d t o e x c l u d e l i g h t f r o m t h e r e a c t i o n . T h e r e s u l t i n g p r e c i p i t a t e w a s r e m o v e d b y fi l t r a t i o n t h r o u g h C e l i t e . T h e s o l u t i o n w a s r e d u c e d t o 1 0 m L b e f o r e 3 0 m L o f d i e t h y l e t h e r w a s a d d e d t o p r e c i p i t a t e t h e p r o d u c t a s a y e l l o w s o l i d . T h i s s o l i d w a s e x t r a c t e d w i t h a c e t o n i t r i l e ( 3 0 m L ) a n d fi l t e r e d t h r o u g h C e l i t e . A d d i t i o n o f d i e t h y l e t h e r ( 3 0 m L ) f o l l o w e d b y c o o l i n g t h e s o l u t i o n t o - 5 ° C o v e r n i g h t l e d t o p r e c i p i t a t i o n o f t h e p r o d u c t , w h i c h w a s c o l l e c t e d b y fi l t r a t i o n , w a s h e d w i t h 1 0 m L o f d i e t h y l e t h e r , a n d d r i e d i n v a c u o . Y i e l d w a s 0 . 2 9 3 g ( 7 9 % ) . v C E N : 2 3 1 8 a n d 2 2 8 4 c m " ; v “ : 2 5 2 7 c m " ; v ” : 8 4 1 c m “ ; U V - V i s ( C H 3 C N ) : > . ( n m ) ( e ( M ' l e m " ) ) 4 5 5 ( b r o a d ) ( 9 6 6 ) . ( 5 ) P r e p a r a t i o n o f [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 , ( 1 9 ) T h e c o m p o u n d [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) w a s p r e p a r e d b y c h l o r i d e a b s t r a c t i o n f r o m ( T p ) V C 1 2 ( T H F ) w h i c h w a s p r e p a r e d a c c o r d i n g t o t h e 1 4 6 l i t e r a t u r e m e t h o d . 8 A n a c e t o n i t r i l e s o l u t i o n ( 4 0 m L ) o f V C 1 2 ( T H I F ) ( T p ) ( 0 . 3 2 0 g , 0 . 7 8 8 m m o l ) w a s c o m b i n e d w i t h a n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f T I P F G ( 0 . 5 5 8 g , 1 . 5 8 m m o l ) . T h e p r o c e d u r e d e s c r i b e d f o r [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) w a s a l s o f o l l o w e d f o r t h i s r e a c t i o n . A d a r k y e l l o w s o l i d w a s r e c o v e r e d t o g i v e a y i e l d o f 0 . 3 2 0 g ( 6 0 % ) . V C E N : 2 3 2 6 a n d 2 2 9 5 c m " ; v “ : 2 5 3 2 c m " ; v ” : 8 4 5 c m " U V - V i s ( C H 3 C N ) : } . ( n m ) ( e ( M ' 1 e m " ) ) 4 8 0 ( 1 1 5 ) 3 3 0 ( 7 5 ) . ( 6 ) P r e p a r a t i o n o f K [ ( T p ) C r ( C N ) 3 ] , ( 2 0 ) A m e t h a n o l s o l u t i o n ( 3 0 m L ) o f K C N ( 0 . 1 5 0 g , 2 . 2 8 m m o l ) w a s a d d e d d r o p w i s e ( a b o u t 1 d r o p / s e c o n d ) w i t h v i g o r o u s s t i r r i n g t o a m e t h a n o l s o l u t i o n ( 3 0 m L ) o f K [ ( T p ) C r C 1 3 ] ( 1 4 ) ( 0 . 3 1 2 g , 0 . 7 6 0 m m o l ) . C o m p l e t e a d d i t i o n o f K C N p r o d u c e s a c l o u d y p i n k s o l u t i o n , w h i c h w a s fi l t e r e d t h r o u g h C e l i t e a n d r e d u c e d t o d r y n e s s t o g i v e a p i n k s o l i d . T h i s s o l i d w a s e x t r a c t e d w i t h 3 0 m L o f a c e t o n i t r i l e a n d fi l t e r e d a g a i n t h r o u g h C e l i t e . T h e s o l u t i o n w a s t h e n c o n c e n t r a t e d t o 5 m L a n d 2 5 m L o f d i e t h y l e t h e r w a s a d d e d t o y i e l d a p i n k s o l i d . Y i e l d 0 . 2 5 0 g ( 8 0 % ) . V C E N : 2 1 3 5 c m ] ; v 3 - 3 : 2 4 9 2 c m ] ; U V - V i s ( C H 3 C N ) : ) . ( n m ) ( e ( M ' l c m ' 1 ) ) 3 2 2 ( 7 5 ) , 3 6 5 ( 6 0 ) , a n d 4 1 0 ( 4 5 ) . ( 7 ) P r e p a r a t i o n o f t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 1 ) A n a c e t o n i t r i l e s o l u t i o n o f T 1 P F 6 ( 2 0 m L ) ( 0 . 1 5 0 g , 0 . 4 2 3 m r n o l ) w a s a d d e d t o a 2 0 m L a c e t o n i t r i l e s u s p e n s i o n o f t r a n s - N i C 1 2 ( e n ) 2 ( 0 . 0 5 3 g , 0 . 2 1 2 1 4 7 m m o l ) a n d a l l o w e d t o s t i r o v e r n i g h t . T h e r e s u l t i n g c l o u d y b l u e s o l u t i o n w a s fi l t e r e d t h r o u g h C e l i t e a n d c o n c e n t r a t e d t o 5 m L b e f o r e 2 5 m L o f d i e t h y l e t h e r w a s a d d e d t o p r e c i p i t a t e a p u r p l e - b l u e s o l i d . T h e s o l i d w a s e x t r a c t e d w i t h 2 0 m L o f a c e t o n i t r i l e a n d fi l t e r e d t h r o u g h C e l i t e . C o n c e n t r a t i o n o f t h i s s o l u t i o n t o 5 m L f o l l o w e d b y a d d i t i o n o f 3 0 m L o f d i e t h y l e t h e r p r o d u c e d a p u r p l e - b l u e p r o d u c t . T h e s o l i d w a s c o l l e c t e d b y fi l t r a t i o n , w a s h e d w i t h 1 0 m L o f d i e t h y l e t h e r a n d d r i e d i n v a c u o . Y i e l d 0 . 0 6 8 g ( 9 0 % ) . V C E N : 2 3 1 2 a n d 2 2 8 4 c m ' l ; v a r : 8 8 0 c m " ; U V - V i s ( C H 3 C N ) : } \ . ( n m ) ( 8 ( M ' 1 c m ' 1 ) ) 8 8 0 ( 6 5 ) , 5 3 6 ( 7 5 ) , 3 3 9 ( 2 5 ) . ( 8 ) R e a c t i o n o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) w i t h M P F 6 ( M = A g 1 + o r T 1 “ ) R e a c t i o n s o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) ( 0 . 1 5 0 g , 0 . 3 8 0 m m o l ) w e r e c a r r i e d o u t u n d e r t h e s a m e c o n d i t i o n s w i t h b o t h A g P F 6 ( 0 . 2 8 8 g , 1 . 1 4 m m o l ) a n d T l P F 6 ( 0 . 4 0 3 g , 1 . 1 4 m m o l ) . A n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f M P F 6 ( M = A g ” o r T 1 ” ) w a s a d d e d t o 3 0 m L o f a n a c e t o n i t r i l e s o l u t i o n o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) a n d a l l o w e d t o s t i r o v e r n i g h t . A l u m i n u m f o i l w a s u s e d t o e x c l u d e l i g h t f r o m t h e r e a c t i o n i n v o l v i n g A g P F 6 . B o t h r e a c t i o n s p r o d u c e d c l o u d y p i n k s o l u t i o n s t h a t w e r e fi l t e r e d t h r o u g h C e l i t e a n d c o n c e n t r a t e d t o 5 m L . C o o l i n g t h e s e s o l u t i o n s t o - 5 ° C f o r t h r e e d a y s r e s u l t e d t o t h e d e p o s i t i o n o f p i n k c r y s t a l s . S i n g l e c r y s t a l X - r a y d i f f r a c t i o n s t u d i e s r e v e a l e d t h e s e c o m p o u n d s t o b e t h e m o n o h a l i d e a b s t r a c t i o n p r o d u c t s , ( T p ) C r C 1 2 ( C H 3 C N ) . 1 4 8 E q u i v a l e n t s o f A g P F 6 a n d T I P F 6 w e r e i n c o r p o r a t e d i n t o t h e p r o d u c t s f r o m t h e s e r e a c t i o n s t o g i v e { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 - A g P F 6 ( 2 2 ) a n d { ( ' I ' p ) C r C 1 2 ( C H 3 C N ) } 2 o ' I ' l P F 6 ( 2 3 ) . N o o t h e r t r a c t a b l e p r o d u c t s c o u l d b e i s o l a t e d f r o m t h e s e r e a c t i o n s . ( 9 ) R e a c t i o n o f [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( l 9 ) a n d 3 [ n - B u 4 N ] [ C N ] A n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f [ n - B u 4 N ] [ C N ] ( 0 . 3 3 9 g , 1 . 2 6 m m o l ) w a s a d d e d d r o p w i s e ( ~ 1 d r o p / s e c o n d ) t o a 3 0 m L a c e t o n i t r i l e s o l u t i o n o f [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) ( 0 . 2 8 5 g , 0 . 4 2 1 m m o l ) . T h e r e s u l t i n g l i g h t o r a n g e s o l u t i o n w a s fi l t e r e d t h r o u g h C e l i t e a n d c o n c e n t r a t e d t o 2 0 m L a n d c o o l e d t o — 5 ° C o v e r n i g h t p r o d u c i n g c o l o r l e s s n e e d l e s h a p e d c r y s t a l s . T h e s e w e r e d e t e r m i n e d b y a s i n g l e c r y s t a l X - r a y d i f f r a c t i o n u n i t c e l l d e t e r m i n a t i o n t o b e [ n - B u 4 N ] [ P F 6 ] . T h e s o l u t i o n w a s s e p a r a t e d b y fi l t r a t i o n , c o n c e n t r a t e d t o 5 m L , a n d c o o l e d t o — 5 ° C o v e r n i g h t p r o d u c i n g a r e d c r y s t a l l i n e p r o d u c t . S i n g l e c r y s t a l X - r a y d i f f r a c t i o n r e v e a l e d t h e s e t o b e V ( T p ) 2 0 1 / 3 C H 3 C N 0 1 / 6 E t 2 0 ( 2 4 ) . N o o t h e r t r a c t a b l e p r o d u c t s c o u l d b e i s o l a t e d f r o m t h e r e a c t i o n . ( 1 0 ) R e a c t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) w i t h [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] 2 2 A n a c e t o n i t r i l e s o l u t i o n ( 3 0 m L ) o f K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) ( 0 . 0 5 0 g , 0 . 1 3 1 m m o l ) w a s a d d e d t o a 3 0 m L a c e t o n i t r i l e s o l u t i o n o f [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] ( 0 . 0 6 3 g , 0 . 1 3 1 m m o l ) . A p i n k p r e c i p i t a t e w a s 1 4 9 o b s e r v e d t o f o r m w i t h i n 3 0 s e c o n d s . T h i s w a s c o l l e c t e d b y fi l t r a t i o n a n d w a s h e d w i t h a c e t o n i t r i l e ( 3 x 5 m L . ) . Y i e l d 0 . 0 3 5 g . v c e N : 2 1 7 4 c m ' 1 ; V B - H : 2 4 9 4 c m ] . D . X - r a y C r y s t a l l o g r a p h y S i n g l e c r y s t a l x - r a y s t r u c t u r a l d e t e r m i n a t i o n s w e r e p e r f o r m e d o n a B r u k e r S M A R T 1 K C C D p l a t f o r m d i f f r a c t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d M o K o c r a d i a t i o n ( A = 0 . 7 1 0 6 9 A ) . T h e f r a m e s w e r e i n t e g r a t e d i n t h e B r u k e r S A I N T s o f t w a r e p a c k a g e ) , a n d t h e d a t a w e r e c o r r e c t e d f o r a b s o r p t i o n u s i n g t h e S A D A B S p r o g r a m . 1 0 T h e s t r u c t u r e s w e r e s o l v e d u s i n g t h e S H E L X T L V . 5 . 1 0 p a c k a g e . 1 1 P e r t i n e n t c r y s t a l l o g r a p h i c d a t a f o r N a [ C r C 1 3 ( T p ) ] ( 1 3 ) , ( T P ) M o B r 2 ( T H F ) ( 1 5 ) . [ ( T P ) C 0 ( C H 3 C N ) 3 ] [ P F 6 1 ( 1 7 ) . [ ( T p ) N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) , ( T p ) C r C 1 2 ( C H 3 C N ) o A g P F 6 - 2 C H 3 C N ( 2 2 ) , ( T p ) C r C 1 2 ( C H 3 C N ) . T 1 P F 6 o 2 C H 3 C N ( 2 3 ) , a n d V ( T p ) 2 o 1 / 3 C H 3 C N - 1 / 6 E t 2 0 ( 2 4 ) a r e p r e s e n t e d i n T a b l e s 4 . 1 - 4 . 7 . T h e r m a l e l l i p s o i d p l o t s a r e p r o v i d e d i n F i g u r e s 4 . 3 4 . 1 0 . ( 1 ) N a [ ( T p ) C r C l 3 ] , ( 1 3 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C o o l i n g a c o n c e n t r a t e d T H F s o l u t i o n o f ( 1 3 ) o v e r n i g h t i n d r y i c e p r o d u c e d g r e e n X — r a y q u a l i t y s i n g l e c r y s t a l s . A c r y s t a l o f d i m e n s i o n s 0 . 2 2 x 0 . 3 1 x 0 . 3 5 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a 1 5 0 g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a h e x a g o n a l c e l l . A t o t a l o f 2 8 9 1 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 1 0 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t F r o m t h e s y s t e m a t i c a b s e n c e s , t h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P 6 3 / m . T h e s t r u c t u r e w a s s o l v e d b y t h e S I - I E L X S p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s b o u n d t o C ( 1 ) , C ( 2 ) , a n d C ( 3 ) o f t h e p y r a z o l r i n g w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e h y d r o g e n a t o m o n E U ) w a s i d e n t i fi e d f r o m t h e d i f f e r e n c e m a p . T h e c r y s t a l d i f f r a c t e d p o o r l y w h i c h l e a d t o r e fi n e m e n t l i m i t a t i o n s ( R . n t = 0 . 1 1 2 1 a n d R 0 = 0 . 1 4 3 5 ) . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d o n 3 6 9 5 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 0 ( F o ) a n d 9 3 p a r a m e t e r s t o g i v e R 1 = 0 . 1 2 7 2 a n d w R 2 = 0 . 3 4 4 1 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 1 1 3 . T h e m o l e c u l a r s t r u c t u r e o f [ C r C l 3 ( T P ) ] ' w a s i d e n t i fi e d t o b e t h e e x p e c t e d s i x - c o o r d i n a t e c o m p o u n d . A l l a t o m s w e r e l o c a t e d a n d r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s y i e l d i n g r e a s o n a b l e t e m p e r a t u r e f a c t o r s . T h e h i g h R f a c t o r s a r e a c o n s e q u e n c e o f t h e l o w d a t a q u a l i t y a n d r e s i d u a l 1 5 1 e l e c t r o n d e n s i t y , t h e m a g n i t u d e o f w h i c h s u g g e s t s t h e u n a s s i g n e d a t o m s a r e c a r b o n , n i t r o g e n , o r o x y g e n . T h i s u n a s s i g n e d e l e c t r o n d e n s i t y l o c a l i z e d a r o u n d t h e e x t e r i o r o f N a ( 2 ) c o u l d n o t b e s a t i s f a c t o r i l y m o d e l e d . ( 2 ) ( T p ) M o B r 2 ( T H F ) , ( 1 5 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s w e r e g r o w n b y c o o l i n g a c o n c e n t r a t e d T H F s o l u t i o n o f ( 1 5 ) o v e r n i g h t a t — 5 ° C . A y e l l o w c r y s t a l o f d i m e n s i o n s 0 . 2 3 x 0 . 1 3 x 0 . 1 3 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 8 5 7 1 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 6 1 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P 2 1 / n f r o m t h e s y s t e m a t i c a b s e n c e s . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m u s i n g d i r e c t m e t h o d s a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s b o u n d t o t h e p y r a z o l r i n g s a n d t h e a t o m B ( 1 ) w e r e l o c a t e d f r o m t h e d i f f e r e n c e m a p . T h e T H F h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l 1 5 2 c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d o n 3 6 9 5 o b s e r v e d r e fl e c t i o n s w i t h F 0 > 4 0 ( F o ) a n d 2 5 7 p a r a m e t e r s t o g i v e R 1 = 0 . 0 3 1 5 a n d w R 2 = 0 . 0 7 0 7 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 0 2 8 . ( 3 ) [ C 0 ( C H 3 C N ) 3 ( T P ) ] [ P F 6 ] 9 ( 1 7 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s w e r e g r o w n b y c o o l i n g a 5 0 / 5 0 m i x t u r e o f a c e t o n i t r i l e / d i e t h y l e t h e r s o l u t i o n t h a t c o n t a i n e d ( 1 7 ) f o r s e v e r a l d a y s a t — 5 ° C . A n o r a n g e c r y s t a l o f d i m e n s i o n s 0 . 3 5 x 0 . 4 5 x 0 . 5 0 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n o b t a i n e d c o r r e s p o n d e d t o a r h o m b o h e d r a l c e l l . A t o t a l o f 5 4 5 3 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 6 4 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t F r o m t h e s y s t e m a t i c a b s e n c e s , t h e s p a c e g r o u p w a s d e t e r m i n e d t o b e R - 3 c . ' T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S 1 6 s t r u c t u r e p r o g r a m u s i n g d i r e c t m e t h o d s a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . O t h e r t h a n a t o m s F ( l ) a n d F ( 2 ) a l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m b o u n d t o B ( 1 ) , w a s l o c a t e d f r o m t h e d i f f e r e n c e m a p . A l l a d d i t i o n a l h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l 1 5 3 c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d o n 9 6 2 o b s e r v e d r e fl e c t i o n s w i t h F 0 > 4 C ( F o ) a n d 9 3 p a r a m e t e r s t o g i v e R 1 = 0 . 1 4 4 3 a n d w R 2 = 0 . 3 9 9 8 a n d a g o o d n e s s - o f - fi t v a l u e o f 2 . 5 4 5 . T h e h i g h R f a c t o r s a r e a c o n s e q u e n c e o f a [ P F 6 ] ' d i s o r d e r t h a t c o u l d n o t b e a d e q u a t e l y m o d e l e d . ( 4 ) t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] , ( 2 1 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s w e r e g r o w n b y c o o l i n g a c o n c e n t r a t e d a c e t o n i t r i l e s o l u t i o n o f ( 2 1 ) o v e r n i g h t a t — 5 ° C . A p u r p l e - b l u e c r y s t a l o f d i m e n s i o n s 0 . 5 0 x 0 . 4 9 x 0 . 3 5 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 2 5 5 1 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 7 . 0 1 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P 2 1 / n F r o m t h e s y s t e m a t i c a b s e n c e s . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m u s i n g d i r e c t m e t h o d s a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s b o u n d t o a t o m s N 2 a n d N 3 w e r e l o c a t e d f r o m t h e d i f f e r e n c e m a p w h e r e a s t h e 1 5 4 h y d r o g e n a t o m s c o o r d i n a t e d t o C 2 , C 3 , a n d C 4 w e r e a d d e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d o n 2 5 5 1 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 0 ( F o ) a n d 1 4 9 p a r a m e t e r s t o g i v e R 1 = 0 . 0 4 9 6 a n d w R 2 = 0 . 1 4 2 7 a n d a g o o d n e s s - o f — fi t v a l u e o f 1 . 0 9 4 . ( 5 ) ( T p ) C r C l z ( C H 3 C N ) . A g P F 6 - 2 C H 3 C N , ( 2 2 ) ( i i i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s w e r e g r o w n f r o m c o o l i n g a c o n c e n t r a t e d a c e t o n i t r i l e s o l u t i o n o f ( 2 2 ) f o r t h r e e d a y s a t - 5 ° C . A r e d c r y s t a l o f d i m e n s i o n s 0 . 5 1 x 0 . 4 2 x 0 . 4 3 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a t r i c l i n i c c e l l . A t o t a l o f 1 0 0 8 6 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 6 8 ° . ( i v ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P - l . T h e s t r u c t u r e w a s s o l v e d i n t h e S H E L X S p r o g r a m u s i n g d i r e c t m e t h o d s a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s a n d a l l t h e h y d r o g e n a t o m s w e r e a d d e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d o n 5 9 6 2 o b s e r v e d r e fl e c t i o n s w i t h 1 5 5 F 0 > 4 0 ( F o ) a n d 5 2 3 p a r a m e t e r s t o g i v e R 1 = 0 . 0 6 1 8 a n d w R 2 = 0 . 1 7 9 3 a n d a g o o d n e s s - o f — fi t v a l u e o f 1 . 1 7 0 . ( 6 ) ( T p ) C r C l z ( C H 3 C N ) . T l P F 6 - 2 C H 3 C N , ( 2 3 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s w e r e g r o w n b y c o o l i n g a c o n c e n t r a t e d a c e t o n i t r i l e s o l u t i o n o f ( 2 3 ) f o r t h r e e d a y s a t — 5 ° C . A r e d c r y s t a l o f d i m e n s i o n s 0 . 3 5 x 0 . 4 0 x 0 . 2 0 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 1 9 2 0 9 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 6 7 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t F r o m t h e s y s t e m a t i c a b s e n c e s , t h e s p a c e g r o u p w a s d e t e r m i n e d t o b e C c . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S p r o g r a m u s i n g d i r e c t m e t h o d s a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s c o o r d i n a t e d t o t h e b o r o n o f t h e T p g r o u p s w e r e l o c a t e d i n t h e d i f f e r e n c e m a p w h e r e a s a l l o t h e r h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d o n 9 0 9 0 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 1 5 6 0 ( F 0 ) a n d 5 3 1 p a r a m e t e r s t o g i v e R 1 = 0 . 0 2 6 3 a n d w R 2 = 0 . 0 5 8 7 a n d a g o o d n e s s - o f - fi t v a l u e o f 0 . 9 6 5 . ( 7 ) V ( T p ) 2 . 1 / 3 C H 3 C N o 1 / 6 E t 2 0 , ( 2 4 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n C r y s t a l s w e r e g r o w n b y c o o l i n g o v e r n i g h t t h e c o n c e n t r a t e d a c e t o n i t r i l e r e a c t i o n s o l u t i o n c o n t a i n i n g [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 9 ) a n d t h r e e e q u i v a l e n t s o f [ n - B u 4 N ] [ C N ] a t — 5 ° C . A d a r k r e d c r y s t a l o f d i m e n s i o n s 0 . 3 1 x 0 . 1 7 x 0 . 1 7 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a t r i c l i n i c c e l l . A t o t a l o f 9 5 9 2 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 7 . 0 1 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e fi n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P - l . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S p r o g r a m u s i n g d i r e c t m e t h o d s a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s c o o r d i n a t e d t o B ( 1 ) , 3 ( 2 ) , a n d B ( 3 ) w e r e l o c a t e d f r o m t h e d i f f e r e n c e m a p w h e r e a s a l l o t h e r h y d r o g e n a t o m s w e r e a d d e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t w a s b a s e d 1 5 7 o n 7 5 5 9 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 0 ( F o ) a n d 5 3 2 p a r a m e t e r s t o g i v e R 1 = 0 . 0 4 6 5 a n d w R 2 = 0 . 1 3 6 1 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 0 3 0 . 1 5 8 e h t t a d e t n e s e r p e r e r e w s m o t a . l y l t i A r a . l ) c 3 f 1 ( o e k a s ] 3 1 C ) r e B C h 2 ) t ( p ? a N » 2 1 0 N ) T r o f ( [ a d N e f o v o m e e r u r t c e u r r e t w 0 s 1 1 s e 1 m c h t o t a f o t n o e l g p o d r i o d s y p H i l . l l e e v l e a l m r % e h 0 T 5 . 3 . 4 e r u g i F 1 5 9 ‘ C l l 1 C l C l l A A l F i g u r e 4 . 4 . T h e r m a l e l l i p s o i d r e p r e s e n t a t i o n o f t h e m o l e c u l a r a n i o n [ ( T p ) C r C l 3 ] ' f r o m ( 1 3 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 6 0 w g R o 2 d o = e n [ E s s - W o G f F - O fi I t — = I 2 I ( F . E ) I w 2 a / > n : I F ! O — ] I " P 2 ; A Y w I N . = . “ N 5 . 2 . 0 . 1 . 2 . 0 . 1 . ) . . - . . . ) 1 “ 2 T a b l e 4 . 1 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r N a [ ( T p ) C r C l 3 ] , ( l 3 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A o r , d e g . B , d e g . 7 . d e g - V , A 3 Z d c a l c , g / c m 3 1 ) . ( M o K a ) , c m ' l t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R 1 W R 2 g o o d n e s s - o f - fi t C 9 H 1 0 N 6 C l 3 B l C r 1 N a 1 4 1 0 . 8 8 P 6 ( 3 ) / m 1 1 . 4 2 5 5 ( 1 6 ) 1 1 . 4 2 5 5 ( 1 6 ) 2 2 . 1 2 4 ( 4 ) 9 0 . 0 0 9 0 . 0 0 1 2 0 . 0 0 2 5 0 1 . 2 ( 7 ) 6 1 . 7 6 2 1 . 2 1 4 1 7 3 1 . 0 0 , 0 . 7 5 7 0 . 1 2 6 3 0 . 3 0 7 8 1 . 1 0 1 R 1 = ) 3 I I F O I - I F C I V E I F O I 1 6 1 F i g u r e 4 . 5 . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 6 2 w g R o 2 = [ Z w o d n e s s - ( o | f F - o fi l t - = I [ F 2 C w I ) ( 2 l / F 2 o | F O I 2 l — ] c " 2 ; w h ' ) 2 / N = o b s “ ' 0 N 2 p a 0 r 1 a 2 m 0 c t ” e r s ) ] l / 2 T a b l e 4 . 2 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r ( T p ) M o B r 2 ( T I - I F ) , ( 1 5 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A D i , d e g . [ 3 , d e g . y , d e g . v , A 3 Z d c a l c , g / c m 3 1 1 ( M O K 0 1 ) , c m " t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R 1 W R z g o o d n e s s - o f - fi t C 1 3 H 2 0 N 6 B I B F 2 0 1 M 0 1 5 4 2 . 9 2 P 2 ( 1 ) / n 9 . 8 9 4 ( 2 ) l 2 . 6 0 1 ( 3 ) 1 5 . 2 0 8 ( 3 ) 9 0 . 0 0 1 0 1 . 1 2 ( 3 ) 9 0 . 0 0 1 8 0 6 . 5 ( 6 ) 4 1 . 9 3 8 5 . 0 1 3 1 7 3 1 . 0 0 , 0 . 7 6 8 0 . 0 3 1 5 0 . 0 6 6 1 1 . 0 2 8 R 1 = Z I I F O I - I F C I I I Z I F O I 1 6 3 ( C 3 ) ( “ ) C ( 3 3 ' ) ( N a 2 i 1 e m / { 8 ) ’ 0 \ } n \ : ' l ’ ‘ ) e ‘ A 7 ‘ — " - 1 ' — ( ‘ \ w \ “ , l v . ’ \ 4 “ \ \ 3 \ a l ) ‘ ( 7 “ ‘ < ‘ . C ( ( 1 \ 8 \ 2 1 8 5 8 ) 1 N , 1 ) c 1 ‘ m . 0 1 . . A 1 . N ' < N B / 1 3 8 ) 3 ) _ ’ 9 4 c C ( S A ) 6 ‘ ‘ 4 A ) 6 . ‘ 5 9 7 1 / . 1 7 4 : . ? 1 ’ 9 ’ 4 l ’ / / Q Q C ( 4 8 ) ( ” / 0 ' 1 0 1 5 3 1 F i g u r e 4 . 6 . T h e r m a l e l l i p s o i d r e p r e s e n t a t i o n o f t h e m o l e c u l a r c a t i o n [ ( T p ) C o ( C H 3 C N ) 3 ] + f r o m ( 1 7 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 6 4 g o o d n e s s - o f - fi t = [ E w d F o l - I I = . . I > 9 N . . . - N . . . . . . . . . . . . ) 1 " 2 T a b l e 4 . 3 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] , ( 1 7 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 t , d e g . B , d e g . y , d e g . V , A 3 Z d c a l c , g / c m 3 1 : . ( M o K a ) , c m ' l t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R 1 W R z g o o d n e s s - o f - fi t C 1 5 H 1 9 N 9 B l P 1 F 6 C r r 5 4 0 . 1 0 R - 3 c 2 1 . 5 6 8 ( 3 ) 2 1 . 5 6 8 ( 3 ) 2 1 . 5 6 8 ( 3 ) 3 0 . 8 6 8 ( 1 7 ) 3 0 . 8 6 8 ( 1 7 ) 3 0 . 8 6 8 ( 1 7 ) 2 3 4 2 . 3 8 ( 7 ) 4 1 . 5 3 2 0 . 8 7 0 1 7 3 1 . 0 0 , 0 . 7 4 3 0 . 1 4 4 3 0 . 3 9 9 8 2 . 5 4 5 R 1 = Z I I F O I - I F C I I I E I F O I w R 2 = [ 2 w ( l F o l - I F , I ) 2 / > : I F , I 2 ] " 2 ; w = 1 / 0 ' 2 ( 1 F o l ) 1 6 5 5 : 0 0 1 2 ) i n c m , . C ( 3 A ) 8 ’ 9 N 1 1 ) N ( 2 A ) 2 , 2 3 ‘ N 1 3 ) ( 9 3 ; . ' N 1 2 ) “ é , N ( 1 A ) C ( 3 ) 4 : 9 ) a n i 7 0 1 2 A ) t \ \ \ \ ’ / , , \ F i g u r e 4 . 7 . T h e r m a l e l l i p s o i d p l o t o f t h e c a t i o n o f t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 6 6 w g R o 2 = [ 2 w ( o d n e s s - o | f F - o fi l t — = m [ a 2 y w / ( 2 I 1 F 1 . 7 I , 1 - 2 ) I ” 1 = ; . w ) I 9 N = . . . 1 - / N 0 , ' . 2 . ( . | . F . o . | . ) . . . . . ) 1 " 2 T a b l e 4 . 4 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 1 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A ( 1 , d e g . B , d e g . 7 , d e g . V , A 3 Z d c a l c , g / c m 3 1 1 ( M o K O L ) , c m ' 1 t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R 1 W R z g o o d n e s s - o f — fi t C 8 H 2 2 N 6 P 2 F 1 2 N i 1 5 5 0 . 9 7 P 2 ( l ) / n 8 . 8 5 3 8 ( 1 8 ) 1 0 . 1 0 6 ( 2 ) 1 1 . 8 1 5 ( 2 ) 9 0 . 0 0 1 0 7 . 5 7 ( 3 ) 9 0 . 0 0 1 0 0 7 . 8 ( 4 ) 2 1 . 8 1 6 1 . 2 3 7 1 7 3 1 . 0 0 , 0 . 7 6 8 0 . 0 4 9 6 0 . 1 4 0 4 1 . 0 9 4 R 1 = z I I F O I — I F C I I I Z I F O I 1 6 7 ) 2 i r C \ 1 é ) ‘ ( 4 ( 1 0 ) r u ) c 1 2 ) h ( u ) C 4 ( " 1 1 ! N e é ‘ W ; ( \ ) 4 1 N 1 6 8 0 ( 9 ) - ' 1 ” ; C ( 2 2 ) F i g u r e 4 . 8 . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f t h e m e t a l c o m p l e x i n { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 - 2 C H 3 C N ( 2 2 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . w g R 2 = [ Z w ( l o o d n e s s - o f F - o fi l t — = I [ F C I Z W ) G 2 / F Z O I I F O I 2 ] " _ I F 2 C ; I w = “ 0 2 0 ” ) 2 / N o b s ' 1 \ I [ ) a r a m ) e t e r s ) 1 I , 2 T a b l e 4 . 5 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { ( T P ) C T C 1 2 ( C H 3 C N ) } 2 1 3 8 P F 6 ' 2 ( C H 3 C N ) . ( 2 2 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 t , d e g . B , d e g . y , d e g . v , A 3 Z d c a l c , g / c m 3 1 1 ( M o K e r ) , c m " t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R 1 W R z g o o d n e s s - o f - fi t C 2 6 H 3 2 N 1 6 C 1 4 B 2 P 1 F 6 c r l A g l 1 0 3 6 . 9 8 P - l 1 2 . 7 1 3 ( 3 ) 1 2 . 7 0 9 ( 3 ) 1 5 . 0 9 0 ( 3 ) 8 2 9 6 ( 3 ) 8 2 9 4 ( 3 ) 6 3 2 2 ( 3 ) 2 1 5 3 . 9 ( 7 ) 2 2 . 2 4 0 3 . 0 6 4 1 7 3 1 . 0 0 , 0 . 8 2 7 0 . 0 6 1 8 0 . 1 6 3 6 1 . 1 7 0 R ( = 2 I I F O I — I F C I I I Z I F O I 1 6 9 l l A . ) 3 2 ( . y t N i C r a 3 l H c C r 2 o - f 6 d F e P v 1 T 2 } ) o m e r N e C r 3 e H w C ( s m 2 o 1 t C a r C n ) e p g T o ( r { d f y o H e r . u l t e c v u e r l t s ‘ C m c , l 2 ( C 3 “ “ ) u c - \ \ \ ‘ ) % ‘ 3 _ ( 0 ) 2 1 N ) 0 6 ( ) C r g Z ( , , , . m - e 0 h t 5 f e o h t t o d l e p t n e d i o s s e p r i p l e l r e e l r a a m s r m e o h t T a . 9 . 4 e r u g i F l 1 ! ? \ ) i I l ‘ I T ) 3 1 1 0 1 7 0 u . \ \ \ W g R o z o = d n [ e s s w a s - M m t - = F . I I F . M | 2 ) F Z / . I ) 2 ] | — " ) " F ; ’ . w ) ) 2 / = N , , l , / - O N ’ 2 ( | F , . , , o , l , ) . . . , , ) ] W T a b l e 4 . 6 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { ( T p ) C r C l z ( C H 3 C N ) } 2 T l P F 6 o 2 ( C H 3 C N ) , ( 2 3 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 t , d e g . B , d e g . y , d e g . v , A 3 Z d c a l c , g / c m 3 1 : . ( M o K a ) , c m ' l t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R 1 W R 2 g o o d n e s s - o f - fi t C 2 6 H 3 2 N 1 6 C 1 4 P 1 F 6 C r 1 T 1 1 1 1 3 3 . 0 8 C c 2 2 . 4 7 3 ( 5 ) 1 2 . 7 9 1 ( 3 ) 1 5 . 1 8 0 ( 5 ) 9 0 . 0 0 9 9 . 7 4 ( 3 ) 9 0 . 0 0 4 3 0 0 . 6 ( 1 5 ) 8 2 . 1 3 2 8 . 3 7 1 1 7 3 1 . 0 0 , 0 . 7 2 5 0 . 0 2 6 3 0 . 0 5 8 7 0 . 9 6 5 R 1 = Z I I F O I — I F C I I I Z I F O I 1 7 1 F i g u r e 4 . 1 0 . T h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f V ( T p ) 2 ( 2 4 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . H y d r o g e n a t o m s w e r e r e m o v e d f o r t h e s a k e o f c l a r i t y . 1 7 2 w g R o 2 = [ 2 w o d n e s s - ( o l f F - o fi l t — = I [ F E C I w ) a 2 / F 2 o | l F o | 2 — ] I " F 2 . ; ) w 9 ) = . “ N 0 p 2 . 0 . 1 . . 2 . 0 . 1 . ) . . - N . . . . . ) 1 “ 2 T a b l e 4 . 7 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r V ( T p ) 2 0 1 / 6 E t 2 0 0 1 / 3 C H 3 C N , ( 2 4 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 t , d e g . B , d e g . y , d e g . v , A 3 Z d c a l c , g / c m 3 ) 1 ( M o K a ) , c m " l t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R ) W R z g o o d n e s s - o f - fi t C 6 0 H 7 3 N 3 7 B 6 0 1 V 3 1 4 4 4 . 2 6 P - l 1 0 . 5 9 5 ( 2 ) 1 5 . 0 4 5 ( 3 ) 1 5 . 4 7 2 ( 3 ) 6 3 5 7 ( 3 ) 7 3 3 5 ( 3 ) 7 7 . 0 8 ( 3 ) 2 1 0 2 . 4 ( 7 ) 3 1 . 4 8 6 1 . 2 1 4 1 7 3 1 . 0 0 , 0 . 8 8 9 0 . 0 4 6 5 0 . 1 2 6 7 1 . 0 3 0 R 1 = 2 ‘ . I I F O I - I F C I I I Z I F O I 1 7 3 4 . R e s u l t s a n d D i s c u s s i o n A . S y n t h e t i c I s s u e s i n t h e D e s i g n o f N e w P a r a m a g n e t i c B u i l d i n g B l o c k s ( 1 ) C o r n e r B u i l d i n g B l o c k C o m p o u n d s f o r M o l e c u l a r C u b e s O n e c a t e g o r y o f b u i l d i n g b l o c k c o m p o u n d s c o n t a i n s a c e t o n i t r i l e a s a l e a v i n g g r o u p . A c e t o n i t r i l e r e a d i l y c o o r d i n a t e s t o t r a n s i t i o n m e t a l s i o n s , b u t w i t h s u f fi c i e n t l a b i l i t y s u c h t h a t t h e s e s o l v a t e s h a v e b e e n u s e d e x t e n s i v e l y a s a s o u r c e o f t r a n s i t i o n m e t a l i o n s i n s y n t h e t i c c h e m i s t r y . T h e d i s s o c i a t i o n o f t h e a c e t o n i t r i l e l i g a n d s o p e n s u p v a c a n t c o o r d i n a t i o n s i t e s f o r c a t a l y s i s , a n d a l l o w s t r a n s i t i o n m e t a l s t o b e i n t r o d u c e d i n t o e x t e n d e d a r r a y s f o r m e d b y c o n d e n s a t i o n r e a c t i o n s w i t h p o l y d e n t a t e l i g a n d s . 1 2 T h e f a c i a l c a p p i n g l i g a n d e m p l o y e d f o r a l l o f t h e c o m e r b u i l d i n g b l o c k c o m p o u n d s i s l - h y d r o t r i s p y r a z o l y l b o r a t e ( T p ) , o n e o f t h e s o - c a l l e d “ s c o r p i o n a t e l i g a n d s ” . T h e T p l i g a n d i s a t r i d e n t a t e , m o n o a n i o n i c l i g a n d t h a t h a s b e e n u s e d e x t e n s i v e l y i n t r a n s i t i o n m e t a l a n d m a i n g r o u p c o o r d i n a t i o n c h e m i s t r y . l 3 I n t e r m s o f i t s r o l e i n c h e m i s t r y , i t i s s i m i l a r t o t h e C p f a m i l y t h a t h a s b e e n u s e d s u c c e s s f u l l y b y R a u c h f u s s i n t h e p r e p a r a t i o n o f a m o l e c u l a r b o x . B o t h C p ' a n d T p ' d o n a t e 6 e l e c t r o n s , o c c u p y t h r e e c o o r d i n a t i o n s i t e s , a n d a r e m o n o a n i o n i c . T p i s a r e p r e s e n t a t i v e o f t h e “ fi r s t g e n e r a t i o n ” o f s c o r p i o n a t e l i g a n d s . 1 3 T h e “ s e c o n d g e n e r a t i o n ” i s c h a r a c t e r i z e d b y s u b s t i t u t i o n o f t h e h y d r o g e n s i n t h e t h r e e o r t h r e e a n d fi v e 1 7 4 p o s i t i o n s o f t h e p r y a z o l r i n g s . C o m m o n s u b s t i t u e n t s a r e m e t h y l , t e r t — b u t y l , i s o p r o p y l , p h e n y l , a n d t o l y l a l t h o u g h s e v e r a l o t h e r s h a v e b e e n r e p o r t e d . 1 3 T h e a d d i t i o n a l s t e r i c b u l k p r o v i d e d b y t h e s e s u b s t i t u e n t s s e r v e s t o i n fl u e n c e t h e c o o r d i n a t i o n n u m b e r o f m e t a l s t o w h i c h t h e y a r e b o u n d . T h e s e s u b s t i t u e n t s a l s o o f t e n i m p a r t i m p r o v e d s o l u b i l i t y f o r T p c o m p o u n d s i n o r g a n i c s o l v e n t s . I n s p i t e o f t h i s a d v a n t a g e , s u b s t i t u t e d T p l i g a n d s w e r e n o t e x t e n s i v e l y e x p l o r e d i n t h i s p r o j e c t d u e t o t h e f a c t t h a t m e t a l c o o r d i n a t i o n n u m b e r s l e s s t h a n s i x a r e n o t c o n d u c i v e t o f o r m i n g m o l e c u l a r c u b e s . E v e n i n c a s e s o f s u b s t i t u t e d T p l i g a n d s w h e r e t h e m e t a l c o o r d i n a t i o n n u m b e r r e m a i n e d s i x , t h e p r o s p e c t o f a d d i n g s t e r i c r e p u l s i o n t o t h e e n t r o p y b a r r i e r f o r c u b e a s s e m b l y w a s a d i s a d v a n t a g e o u s f a c t o r i n t h e i r u s e . ( 2 ) E d g e B u i l d i n g B l o c k C o m p o u n d s f o r M o l e c u l a r C u b e s I n a d d i t i o n t o p r e c u r s o r s w i t h t r a n s s o l v e n t m o l e c u l e s s u c h a s t r a n s - [ N i ( C H 3 C N ] 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) , a s u i t a b l e d i c y a n i d e c o m p o u n d e x i s t s i n t h e l i t e r a t u r e . T h e c o m p o u n d t r a n s - V ( C N ) 2 ( d m p e ) 2 w a s p r e p a r e d a c c o r d i n g t o t h e p u b l i s h e d m e t h o d . 1 4 b u t t h e u s e o f t h i s c o m p o u n d s u f f e r s f r o m s e v e r a l p r o b l e m s . B o t h t h e V 1 1 c e n t e r a n d c h e l a t i n g p h o s p h i n e l i g a n d s , d m p e , a r e e x t r e m e l y a i r a n d m o i s t u r e s e n s i t i v e w h i c h p r o h i b i t s t h e u s e o f a n y w a t e r i n a s s e m b l y r e a c t i o n s i n v o l v i n g t h i s c o m p o u n d . T h e b e n e fi t s o f e m p l o y i n g w a t e r a s a s o l v e n t o r c o - s o l v e n t i n p r e p a r i n g m e t a l c y a n i d e c o m p o u n d s h a v e 1 7 5 b e e n a m p l y d e m o n s t r a t e d . 1 5 A d d i t i o n a l l y , t h e q u e s t i o n o f s t e r i c i n t e r a c t i o n s f r o m t h e d m p e l i g a n d s t h a t w o u l d p o i n t t o t h e i n t e r i o r o f t h e 2 0 m e t a l a t o m c u b e m u s t b e c o n s i d e r e d . A m o d e l i n g s t u d y u s i n g t h e S p a r t a n p r o g r a m ] 6 w a s u s e d t o e v a l u a t e t h e p o s s i b i l i t y t h a t s t e r i c p r o b l e m s w o u l d p r e v e n t c u b e a s s e m b l y w i t h t h e t r a n s - V ( C N ) 2 ( d p m e ) 2 c o m p o u n d . A s i m i l a r s t u d y w a s a l s o c a r r i e d o u t o n a p r o p o s e d e i g h t m e t a l a t o m c u b e w i t h ( T p ) M c o m e r s . T h e r e s u l t s o f t h e s e e f f o r t s a r e p r e s e n t e d i n F i g u r e 4 . 1 1 . B o t h m o d e l s s h o w t h a t l i t t l e v o i d s p a c e e x i s t s b u t t h a t p e r h a p s s t e r i c f a c t o r s w i l l n o t t o t a l l y p r e c l u d e t h e f o r m a t i o n o f t h e p r o p o s e d m o l e c u l e s . B . P r e p a r a t i o n o f N a [ ( T p ) C r C l 3 ] ( l 3 ) , K [ ( T p ) C r C l 3 ] ( l 4 ) , a n d ( T p ) M o B r 2 ( T H F ) ( 1 5 ) T h e m e t a l t r i h a l i d e t r i s - T H F a d d u c t s , M X 3 ( T H F ) 3 ( X = C l , B r ) p r o v i d e d a c o n v e n i e n t s o u r c e o f t r i v a l e n t t r a n s i t i o n m e t a l s t a r t i n g m a t e r i a l s . B o t h o f t h e s e r e a c t i o n s w e r e e x p e c t e d t o p r o c e e d w i t h d i s p l a c e m e n t o f t h e T H F b y t h e t r i d e n t a t e T p t o f o r m t h e c o r r e s p o n d i n g [ ( T p ) M X 3 ] l ‘ c o m p o u n d s . T h e r e a c t i o n o f C r C l 3 ( T H F ) 3 w i t h N a [ T p ] o r K [ T p ] f o l l o w e d t h i s s c h e m e a n d l e d t o t h e e x p e c t e d c o m p o u n d N a [ ( T p ) C r ( C l ) 3 ] ( 1 3 ) . T h e a n a l o g o u s r e a c t i o n w i t h M o B r 3 ( T H F ) 3 , h o w e v e r , d i d n o t p r o c e e d i n t h e s a m e m a n n e r . T p a d d e d 1 1 1 t o t h e M o c e n t e r d i s p l a c i n g t h e t h r e e T H F l i g a n d s , b u t a B r i s a l s o l o s t a n d t h e n e u t r a l p r o d u c t M o B r 2 ( T H F ) ( T p ) ( 1 5 ) i s i s o l a t e d . 1 7 6 ( 1 ) ( 2 ) F i g u r e 4 . 1 1 . S p a c e - fi l l i n g m o d e l s g e n e r a t e d b y t h e S p a r t a n p r o g r a m f o r t h e ( 1 ) 8 m e t a l a t o m a n d ( 2 ) 2 0 m e t a l a t o m m o l e c u l a r b o x e s . T h e f e a t u r e o f p r i m a r y i n t e r e s t i s t h e l a c k o f v o i d s p a c e p r e s e n t w i t h i n t h e c u b e i n t e r i o r s . 1 7 7 T h e r e a c t i o n o f T p w i t h C r C l 3 ( T H F ) 3 o c c u r s a l m o s t i m m e d i a t e l y u p o n a d d i t i o n o f N a [ T p ] o r K [ T p ] . T h e r e a c t i o n w i t h M o B r 3 ( T H F ) 3 p r o c e e d s m o r e s l o w l y a n d r e q u i r e s a n o v e r n i g h t r e fl u x . T h e a d d i t i o n a l t i m e f o r t h e M o r e a c t i o n i s a c o n s e q u e n c e o f t h e g e o m e t r i e s o f t h e M X 3 ( T I - I F ) 3 s t a r t i n g m a t e r i a l s . T h e c o m p o u n d C r C l 3 ( T H F ) 3 i s a f a c i s o m e r w h i c h i s t h e n e c e s s a r y g e o m e t r y f o r a d d i t i o n o f T p w h e r e a s M o B r 3 ( T I - I F ) 3 i s a m e r i s o m e r w h i c h r e q u i r e s s u b s t i t u t i o n w i t h i s o m e r i z a t i o n . T h e r a t e o f a d d i t i o n o f N a [ T p ] w a s a s y n t h e t i c c o n s i d e r a t i o n t h a t r e q u i r e d m o n i t o r i n g d u e t o u n w a n t e d p r o d u c t i o n o f M ( T p ) 2 . A v o i d a n c e o f t h e s e b y - p r o d u c t s p l a y e d a c e n t r a l r o l e i n t h e d e v e l o p m e n t o f t h e r e a c t i o n s o f [ M ( C H 3 C N ) , . ] 1 1 + w i t h N a [ T p ] a n d w i l l b e d i s c u s s e d f u r t h e r i n s e c t i o n 4 ( C ) . D u r i n g t h e i s o l a t i o n o f N a [ ( T p ) C r ( C l ) 3 ] ( 1 3 ) f r o m r e a c t i o n s i n w h i c h t h e N a [ T p ] w a s a d d e d r a p i d l y , a s m a l l a m o u n t o f y e l l o w - o r a n g e p r e c i p i t a t e w a s i s o l a t e d a n d d e t e r m i n e d t o b e [ C r ( T p ) 2 ] C l . 1 3 T h i s i m p u r i t y i s m i n i m i z e d b y s l o w a d d i t i o n o f N a [ T p ] t o C r C 1 3 ( T H F ) 3 . C . P r e p a r a t i o n o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) a n d [ ( T P ) C 0 ( C H 3 C N ) 3 1 [ P F 6 1 ( 1 7 ) T h e a c e t o n i t r i l e s o l v a t e s , [ M n ( C H 3 C N ) 4 ] [ P F 6 ] 2 a n d [ C 0 ( C H 3 C N ) 6 ] [ P F 6 ] 2 , p r o v i d e a c o n v e n i e n t s o u r c e o f d i v a l e n t t r a n s i t i o n m e t a l s t a r t i n g m a t e r i a l s f o r T p c h e m i s t r y . T h e r e a c t i o n s o f t h e s e c o m p o u n d s w i t h N a [ T p ] p r o c e e d 1 7 8 r a p i d l y [ ( T p ) M ( C H 3 C N ) 3 ] + . T h e [ P F 6 ] 1 ' a n i o n i s w e a k l y c o o r d i n a t i n g a n d s u f fi c i e n t l y s t a b l e t h a t t h e c a t i o n i c m e t a l c e n t e r s d o n o t a b s t r a c t fl o u r i d e s . A s m e n t i o n e d i n s e c t i o n 4 ( B ) , t h e f o r m a t i o n o f t h e u n d e s i r e d b y - p r o d u c t M ( T p ) 2 i s a s y n t h e t i c o b s t a c l e t h a t h a d t o b e a d d r e s s e d i n t h e p r e p a r a t i o n o f t h e s e c o m p o u n d s . T h e s t a b i l i t y o f t h e [ ( T p ) M ( C H g C N ) 3 ] 1 + c o m p l e x e s w a s o b s e r v e d t o b e h e a v i l y c o n c e n t r a t i o n d e p e n d e n t . I f t h e r e a c t i o n s o l u t i o n s a r e t o o c o n c e n t r a t e d l i g a n d r e d i s t r i b u t i o n o c c u r s t o g i v e M ( T p ) 2 c o m p l e x e s a n d [ M ( C H 3 C N ) X ] " + . T h i s l i m i t a t i o n w a s o v e r c o m e b y i s o l a t i o n o f [ ( T p ) M ( C H 3 C N ) 3 ] 1 + s a l t s f r o m s o l u t i o n b y a d d i t i o n o f d i e t h y l e t h e r t o m o d e r a t e l y c o n c e n t r a t e d s o l u t i o n s o f t h e c o m p o u n d s . D . P r e p a r a t i o n o f K [ ( T p ) C r ( C N ) 3 ] , ( 2 0 ) K [ ( T p ) C r C l 3 ] ( 1 4 ) s e r v e d a s a c o n v e n i e n t s t a r t i n g m a t e r i a l f o r t h e t r i - c y a n i d e a n a l o g K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) . R e a c t i o n o f ( 1 4 ) w i t h t h e t e t r a a l k y l a m m o n i u m c y a n i d e s , [ E t 4 N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] , p r o v e d t o b e u n r e l i a b l e f o r r e p r o d u c i b l e p r e p a r a t i o n o f t r a c t a b l e p r o d u c t s . K C N p r o v e d t o b e a n e f f e c t i v e a l t e r n a t i v e , i n t h a t t h e r e i s n o p o s s i b i l i t y o f a m i x t u r e o f c a t i o n s m o r e o v e r t h e b y - p r o d u c t , K C l , i s m o r e e a s i l y r e m o v e d f r o m t h e s o l u t i o n t h a n t h e t e t r a a l k y l a m m o n i u m c h l o r i d e s . T h e p o o r s o l u b i l i t y o f K C N i n n o n - p o l a r o r g a n i c s o l v e n t s n e c e s s i t a t e d c a r r y i n g o u t t h e r e a c t i o n i n m e t h a n o l . 1 7 9 T h e l i g a n d fi e l d s t r e n g t h o f c y a n i d e i s h i g h a n d t h e t e n d e n c y o f T p t o y i e l d M ( T p ) 2 c o m p o u n d s r e q u i r e s c a r e f u l m o n i t o r i n g o f t h e a d d i t i o n r a t e o f t h e c y a n i d e r e a g e n t t o K [ ( T p ) C r C l 3 ] ( 1 4 ) . B y a d d i n g K C N v i a c a n n u l a d r o p w i s e a t a r a t e o f ~ 1 d r o p p e r s e c o n d t h e r e a c t i o n p r o c e e d s a s d e s i r e d t o y i e l d [ ( T p ) M ( C N ) 3 l - C r y s t a l s o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) w e r e g r o w n s e v e r a l t i m e s f r o m c o o l i n g c o n c e n t r a t e d a c e t o n i t r i l e s o l u t i o n s o f t h e c o m p o u n d . U n f o r t u n a t e l y t h e c r y s t a l s p r o v e d t o b e r e m a r k a b l y u n s t a b l e o n c e r e m o v e d f r o m t h e s o l u t i o n . P r e c a u t i o n s i n c l u d i n g t h e u s e o f D O W S i l i c o n e g r e a s e , P a r a t o n e o i l , a n d a n i t r o g e n p u r g e d g l o v e b a g w i t h m i c r o s c o p e a n d l i q u i d n i t r o g e n c o o l e d m o u n t i n g s t a g e w e r e e m p l o y e d i n m o u n t i n g t h e s e f o r s i n g l e - c r y s t a l X - r a y d i f f r a c t i o n a n a l y s i s . D e s p i t e t h e s e e f f o r t s , a l l a t t e m p t s t o o b t a i n a s i n g l e c r y s t a l X - r a y d a t a s e t i n v a r i a b l y l e d t o l o s s o f c r y s t a l l i n i t y . T h e l o s s o f c r y s t a l l i n i t y i s m o s t l i k e l y d u e t o l o s s o f i n t e r s t i t i a l s o l v e n t . E . P r e p a r a t i o n o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) , [ ( T P ) V ( C H 3 C N ) 3 1 [ P F 6 1 2 ( 7 ) 9 a n d t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 l [ P F t l z , ( 2 1 ) O n e m e t h o d t o p r e p a r e p r e c u r s o r s w i t h l a b i l e s o l v e n t l i g a n d s , i n v o l v e d t h e c o o r d i n a t i o n o f T p t o t h e h o m o l e p t i c a c e t o n i t r i l e s o l v a t e d t r a n s i t i o n m e t a l c a t i o n s , [ M ( C H 3 , C N ) n ] 2 + ( M = M n , C o ; I ) = 4 , 6 ) . T h i s w a s a c o n v e n i e n t a p p r o a c h f o r t h e d i v a l e n t t r a n s i t i o n m e t a l i o n s , b u t t h e t r i v a l e n t 1 8 0 m e t a l i o n s a r e n o t p a r t i c u l a r l y s t a b l e a s [ M ( C H 3 C N ) , , ] 3 + c o m p o u n d s . I n t h e c a s e s o f ( T p ) M o B r 2 ( T H F ) ( 1 5 ) a n d ( T p ) V C 1 2 ( T H F ) s u i t a b l e t r i v a l e n t p r e c u r s o r s w e r e p r e p a r e d f r o m M X 3 ( T H F ) 3 . A s u i t a b l e e d g e p r e c u r s o r w a s p r e p a r e d f r o m t r a n s — N i C 1 2 ( e n ) 2 . A b s t r a c t i o n o f t h e h a l i d e s f r o m ( T p ) M X 2 ( T I - I F ) a n d N i C 1 2 ( e n ) 2 i n a c e t o n i t r i l e w i t h A g P F 6 o r T l P F 6 r e s u l t s i n t h e f o r m a t i o n o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( l 8 ) , [ V ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] 2 ( 1 9 ) , a n d t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) . A c e t o n i t r i l e o c c u p i e d t h e m e t a l c o o r d i n a t i o n s i t e s v a c a t e d b y t h e h a l i d e s , w h i c h w e r e e a s i l y r e m o v e d M C I ( M = A g , T l ) . O b v i o u s l y s i n c e a c e t o n i t r i l e w a s p r e s e n t i n s u f fi c i e n t e x c e s s , i t r e p l a c e s t h e T H F l i g a n d s t h a t w e r e o r i g i n a l l y c o o r d i n a t e d t o t h e M o a n d V s t a r t i n g m a t e r i a l s . F o r t h e p r e p a r a t i o n o f t h e c o m p o u n d s [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) a n d t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) b o t h A g ” a n d T 1 “ a r e s u i t a b l e h a l i d e a b s t r a c t i o n r e a g e n t s , b u t r e m o v a l o f t h e B r ' f r o m ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) , r e q u i r e d t h e u s e o f A g . E v e n u n d e r r e fl u x i n g c o n d i t i o n s t h e T 1 “ i o n p r o v e d t o b e u n a b l e t o e f f e c t c o m p l e t e h a l i d e a b s t r a c t i o n . F . R e a c t i o n o f N a [ ( T p ) C r C l 3 ] ( 1 3 ) w i t h M P F 6 ( M = A g 1 + o r T 1 “ ) A f t e r t h e s u c c e s s f u l p r e p a r a t i o n o f [ M ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] ( M = M o I I I 1 1 1 ( 1 8 ) , o r V I I I ( 1 9 ) ) , a t t e m p t s w e r e m a d e t o p r e p a r e t h e a n a l o g o u s C r c o m p o u n d b y c h l o r i d e a b s t r a c t i o n f r o m N a [ ( T p ) C r C l 3 ] ( 1 3 ) w i t h A g P F 6 a n d 1 8 1 T l P F 6 . T h e c h a n g e i n s o l u t i o n c o l o r f r o m g r e e n t o p i n k f o r t h e N a [ ( T p ) C r C l 3 ] ( 1 3 ) s t a r t i n g m a t e r i a l c l e a r l y i n d i c a t e d t h a t a r e a c t i o n w a s t a k i n g p l a c e b u t , o n l y t h e p r o d u c t s r e p r e s e n t i n g a s i n g l e h a l i d e a b s t r a c t i o n e v e n t , n a m e l y { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 - 2 C H 3 C N ( 2 2 ) a n d { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 T 1 P F 6 - 2 C H 3 C N ( 2 3 ) , c o u l d b e i s o l a t e d f r o m t h e s e r e a c t i o n s . T h e p r e s e n c e o f u n r e a c t e d A g + a n d T 1 4 ’ r e a g e n t s e x p l a i n s t h e i r p r e s e n c e i n ( 2 2 ) a n d ( 2 3 ) . F u r t h e r a t t e m p t s t o i s o l a t e t h e d e s i r e d p r o d u c t , [ ( T p ) C r ( C H 3 C N ) 3 ] 2 + b y v a r y i n g t h e r e a c t i o n c o n d i t i o n s ( e . g . i n c r e a s i n g t h e r e a c t i o n t i m e ) w e r e u n s u c c e s s f u l . R e fl u x i n g t o m a k e t r a n s i t i o n m e t a l T p c o m p o u n d s w a s a v o i d e d d u e t o t h e i n e v i t a b l e r e d i s t r i b u t i o n r e a c t i o n s r e s u l t i n g i n t h e f o r m a t i o n o f M ( T p ) 2 b y - p r o d u c t s . I n r e t r o s p e c t , t h e f a c t t h a t [ ( T p ) C r m C l 3 ] ' i s n o t a s u i t a b l e p r e c u r s o r t o [ C r m ( C H 3 C N ) 3 ( T p ) ] 2 + , i n s p i t e o f t h e s u c c e s s f u l p r e p a r a t i o n o f [ M " ‘ ( C H 3 C N ) 3 ( ' 1 “ p ) ] 2 + ( M = M 0 ( 1 8 ) , V ( 1 9 ) ) i s n o t s o u n e x p e c t e d i n r e t r o s p e c t . T h e c o m p o u n d M o B r 3 ( T I - I F ) 3 a n d V C 1 3 ( T H F ) 3 e x h i b i t d i f f e r e n t r e a c t i v i t y w i t h N a n f r o m t h a t o f C r C l 3 ( T I - I F ) 3 i n t h a t t h e n e u t r a l s p e c i e s ( T p ) M X 2 ( T H F ) i s f o r m e d s p o n t a n e o u s l y ( M = M 0 , V ) . T h e r e a c t i o n w i t h C r , h o w e v e r , p r o c e e d s w i t h r e t e n t i o n o f a l l t h r e e h a l i d e s t o y i e l d t h e a n i o n i c [ ( T p ) C r C l 3 ] ' s p e c i e s , a n i n d i c a t i o n t h a t t h e C r I I I c e n t e r i s m o r e L e w i s a c i d i c 1 8 2 a n d l e s s l a b i l e t h a n t h e V I I I o r M o I l l a n d t h e r e f o r e l e s s a b l e t o b e s t a b i l i z e d a s a d i c a t i o n i c c o m p l e x w i t h T p a n d t h r e e n e u t r a l , w e a k l y d o n a t i n g a c e t o n i t r i l e l i g a n d s . G . P r e p a r a t i o n o f V ( T p ) 2 - 1 / 3 C H 3 C N - 1 / 6 E t 2 0 , ( 2 4 ) T h e c r y s t a l l i n e b y - p r o d u c t V ( T p ) 2 - 1 / 3 C H 3 C N - 1 / 6 E t 2 0 w a s i s o l a t e d f r o m t h e a c e t o n i t r i l e r e a c t i o n o f [ V ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] ( 1 9 ) a n d 3 [ n - B u 4 N ] [ C N ] a r e a c t i o n t h a t w a s i n t e n d e d t o y i e l d [ V ( C N ) 3 ( T p ) ] l ' . I t i s n o t c l e a r w h e t h e r t h e t a r g e t p r o d u c t w a s f o r m e d a t a l l b e c a u s e t h e o n l y t r a c t a b l e p r o d u c t t h a t c o u l d b e i s o l a t e d f r o m t h i s r e a c t i o n i s V ( T p ) 2 . A n i n t e r e s t i n g a s p e c t o f t h i s r e a c t i o n r e l a t e s t o t h e f a c t t h a t v a n a d i u m i s i n t h e + 3 o x i d a t i o n s t a t e i n t h e s t a r t i n g m a t e r i a l a n d + 2 i n t h e V ( T p ) 2 p r o d u c t . T h e d i s p r o p o r t i o n a t i o n o f [ V ( C N ) 7 ] 4 " t o V I I a n d V N c y a n o s p e c i e s i n t h e p r e s e n c e o f w a t e r h a s b e e n r e p o r t e d . 1 7 I t i s p o s s i b l e t h a t [ n - B u 4 N ] [ C N ] , w h i c h i s v e r y d i f fi c u l t t o d r y , c o u l d h a v e i n t r o d u c e d w a t e r i n t o t h i s r e a c t i o n . T h e V 1 1 g e n e r a t e d b y d i p r o p o r t i o n a t i o n u n d e r c y a n i d e d e fi c i e n t c o n d i t i o n s ( o n l y t h r e e e q u i v a l e n t s o f t h e c y a n i d e s t a r t i n g m a t e r i a l b e i n g a v a i l a b l e ) c o u l d h a v e b e e n a t a r g e t f o r f r e e T p t h e r e b y l e a d i n g t o V ( T p ) 2 . T h e M ( T p ) 2 c o m p o u n d s a r e t h e r m o d y n a m i c a l l y q u i t e s t a b l e , w h i c h t r a n s l a t e s t o a “ d e a d - e n d ” s i d e r e a c t i o n i n t h i s c a s e . H . R e a c t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 1 ) ) a n d [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] 2 2 1 8 3 T h e r e a c t i o n o f a n a c e t o n i t r i l e s o l u t i o n o f K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) w i t h a n a c e t o n i t r i l e s o l u t i o n o f [ ( T p ) N i ( C H 3 C N ) 3 ( T p ) ] [ B F 4 ] p r o d u c e d a p i n k p r e c i p i t a t e w i t h i n t h i r t y s e c o n d s . T h e p r o d u c t w a s c o l l e c t e d b y fi l t r a t i o n a n d w a s h e d w i t h a c e t o n i t r i l e . T h e t a r g e t p r o d u c t o f t h i s r e a c t i o n i s t h e e i g h t m e t a l a t o m m o l e c u l a r b o x , C r 4 N i 4 ( C N ) 1 2 ( T p ) 3 a n d , i n d e e d , s p o n t a n e o u s p r e c i p i t a t i o n o f a p r o d u c t i s i n a c c o r d w i t h a n e u t r a l p r o d u c t . T h e f a c t t h a t t h e s o l i d f o r m e d s o q u i c k l y d i d n o t a l l o w f o r s i n g l e c r y s t a l x - r a y d i f f r a c t i o n s t u d i e s , b u t t h e i n f r a r e d s p e c t r o s c o p i c e v i d e n c e i s e n c o u r a g i n g ( v i d e i n f r a ) . I . P h y s i c a l M e t h o d s C h a r a c t e r i z a t i o n ( 1 ) I n f r a r e d a n d E l e c t r o n i c A b s o r p t i o n S p e c t r o s c o p i c S t u d i e s I n a l l c a s e s , t h e p a r a m a g n e t i s m o f t h e c o m p o u n d s u n d e r i n v e s t i g a t i o n p r o h i b i t e d s t r u c t u r a l c h a r a c t e r i z a t i o n b y N M R S p e c t r o s c o p y , b u t s i n g l e c r y s t a l X - r a y d i f f r a c t i o n a n d i n f r a r e d s p e c t r o s c o p y w e r e i n f o r m a t i v e m e t h o d s f o r h e l p i n g o n e t o a s s i g n a f o r m u l a a n d / o r a m o l e c u l a r s t r u c t u r e . T h e u s e o f g r o u p t h e o r e t i c a l a r g u m e n t s a n d t h e l o c a l i z e d m o l e c u l a r s y m m e t r y o f c h a r a c t e r i s t i c i n f r a r e d a c t i v e b o n d s t r e t c h i n g m o d e s p r o v i d e i n f o r m a t i o n f o r i d e n t i f y i n g t h e s t r u c t u r e s o f t h e s e c o m p o u n d s . T h e M - X ( X = h a l i d e s ) a n d t h e C E N i n a c e t o n i t r i l e a n d c y a n i d e a r e e s p e c i a l l y h e l p f u l i n t h i s r e g a r d . I n a d d i t i o n , t h e V B - “ m o d e i n t h e T p ' l i g a n d i s a c o n v e n i e n t 1 8 4 m a r k e r . A c o m p a r i s o n o f t h e e n e r g i e s o f t h e V B - ” a n d V C E N m o d e s i n t h e s t a r t i n g m a t e r i a l s a n d p r o d u c t s w a s a l s o q u i t e i n f o r m a t i v e . T h e i n f r a r e d s p e c t r a o f N a [ ( T p ) C r C l 3 ] , ( 1 3 ) a n d K [ ( T p ) C r C l 3 ] ( 1 4 ) e x h i b i t t w o v 0 - 0 m o d e s a t 3 4 0 a n d 3 3 0 c m ’ 1 a n d 3 3 1 a n d 3 1 0 c m ' 1 r e s p e c t i v e l y . T h e V B - ” m o d e a t 2 4 9 0 c m ' 1 w h i c h i s c o m m o n t o b o t h ( 1 3 ) a n d ( 1 4 ) w a s s h i f t e d t o l o w e r e n e r g y f r o m t h e 2 5 0 0 c m " 1 o b s e r v e d f o r N a n . T h e t w o o b s e r v e d v 0 - 0 f e a t u r e s a r e i n a g r e e m e n t w i t h t h e g r o u p t h e o r e t i c a l p r e d i c t i o n o f t w o I R a c t i v e m o d e s , A 1 a n d E , f o r t h e i d e a l i z e d C 3 , , s y m m e t r y o f t h e C r — C l b o n d s . T h e d i s p l a c e m e n t o f t h e T H F l i g a n d w a s s u p p o r t e d b y t h e d i s a p p e a r a n c e o f t h e T H F v 0 0 m o d e s o b s e r v e d a t 1 0 1 2 a n d 8 5 5 c m ’ 1 i n t h e s t a r t i n g m a t e r i a l . A b r o a d V M O _ B , m o d e a t 2 6 3 c m ’ 1 w a s o b s e r v e d i n t h e i n f r a r e d s p e c t r u m o f ( T p ) M o B r 2 ( T H F ) ( 1 5 ) . T h e V 3 . “ f e a t u r e a t 2 4 8 0 c m ’ 1 w a s s h i f t e d t o l o w e r e n e r g y f r o m t h e 2 5 0 0 c m ’ 1 s t r e t c h f o r N a [ T p ] . G r o u p t h e o r e t i c a l a n a l y s i s p r e d i c t s t w o o b s e r v e d V M O - B , m o d e s , n a m e l y A 1 a n d B 1 , f o r t h e i d e a l i z e d C 2 v s y m m e t r y o f t h e M o - B r b o n d s . T h e 2 0 c m ’ 1 w i d t h a t h a l f - h e i g h t o f t h e V M o - B , s t r e t c h i n d i c a t e s t h a t t h e t w o e x p e c t e d m o d e s a r e d e g e n e r a t e , t h e r e b y g i v i n g r i s e t o a s i n g l e o v e r l a p p i n g p e a k . T h e U V - V i s i b l e s p e c t r u m o f ( T p ) M o B r 2 ( T H F ) ( 1 5 ) i n T H F d i s p l a y e d a b s o r p t i o n s a t 3 7 6 ( 8 0 . 0 ) a n d 3 0 8 ( 1 0 0 ) n m ( L r n o r 1 c m " ) . 1 8 5 O n e e x p e c t s t w o I R a c t i v e m o d e s , A 1 a n d E , f o r t h e i d e a l i z e d C 3 , , s y m m e t r y o f t h e C E N b o n d s i n C H 3 C N i n t h e s p e c t r a o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) a n d [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 7 ) . I n d e e d , t h e V C N m o d e s a p p e a r a t 2 3 1 2 , 2 2 8 4 c m ’ 1 a n d 2 3 1 5 , 2 2 8 0 c m " 1 f o r ( 1 6 ) a n d ( 1 7 ) r e s p e c t i v e l y . T h e s e v a l u e s a r e s h i f t e d f r o m t h e V C N f e a t u r e s l o c a t e d a t 2 3 2 2 , 2 2 9 3 c m ' 1 a n d 2 3 1 6 , 2 2 9 2 c m ‘ 1 o b s e r v e d i n t h e M n a n d C o s t a r t i n g m a t e r i a l s r e s p e c t i v e l y . T h e V 3 . ” m o d e s a r e l o c a t e d a t 2 4 6 9 c m ' 1 f o r ( 1 6 ) a n d 2 4 9 8 f o r ( 1 7 ) . T h e U V - V i s i b l e s p e c t r u m o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) i n a c e t o n i t r i l e d i s p l a y s a n a b s o r b a n c e a t 3 3 1 n m w i t h a n 8 v a l u e o f ~ 1 L m o l ' l c m ] . T h i s l o w v a l u e i s e x p e c t e d o n t h e b a s i s o f t h e d 5 h i g h - s p i n e l e c t r o n i c c o n fi g u r a t i o n o f o c t a h e d r a l M n " , w h i c h l e a d s t o o n l y s p i n f o r b i d d e n t r a n s i t i o n s b e i n g p o s s i b l e . T h e U V - V i s i b l e s p e c t r u m o f [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 7 ) i n C H 3 C N d i s p l a y e d a b s o r b a n c e s a t 5 1 5 ( 2 3 ) a n d 4 6 8 ( 8 3 ) n m ( L m o l ' 1 c m ' l ) . T h e i n f r a r e d s p e c t r a o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( l 8 ) a n d [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) s h o w e d t w o v c . N m o d e s a t 2 3 1 8 , 2 2 8 4 c r n ‘ l a n d 2 3 2 6 , 2 2 9 5 c m " 1 r e s p e c t i v e l y . T h e V 3 . “ m o d e f o r ( 1 8 ) i s a t 2 5 2 7 c m ” 1 a n d i s s h i f t e d t o h i g h e r e n e r g y f r o m t h e 2 5 0 0 o b s e r v e d f o r N a [ T p ] a n d t h e 2 4 8 0 c m ’ 1 s t r e t c h f o u n d f o r ( T p ) M o B r 2 ( T I - I F ) ( 1 5 ) . T h e V B - ” m o d e f o r ( 1 9 ) 1 8 6 a t 2 5 3 2 c m " 1 i s s i m i l a r l y s h i f t e d t o h i g h e r e n e r g y f r o m t h e c o r r e s p o n d i n g v a l u e s o b s e r v e d f o r N a [ T p ] a n d ( T p ) V C 1 2 ( T I - I F ) . T h e t w o o b s e r v e d V c e N m o d e s a r e i n a g r e e m e n t w i t h t h e g r o u p t h e o r e t i c a l p r e d i c t i o n o f t w o I R a c t i v e m o d e s , n a m e l y A 1 a n d E , f o r t h e i d e a l i z e d m o l e c u l a r C 3 , , s y m m e t r y o f [ ( T p ) M ( C H g C N ) 3 ] + . T h e U V — V i s s p e c t r a i n a c e t o n i t r i l e d i s p l a y e d a b r o a d p e a k a t 4 5 5 ( 9 6 6 ) n m ( L r n o r l c m " ) f o r [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) a n d p e a k s a t 4 8 0 ( 1 1 5 ) a n d 3 3 0 ( 7 5 ) n m ( L m o l ' l c m ' l ' ) f o r [ V ( C H 3 C N ) 3 ( T P ) 1 [ P F 6 1 2 ( 1 9 ) - T h e i n f r a r e d s p e c t r u m o f K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) e x h i b i t e d a s i n g l e V C E N 1 s t r e t c h i n g f e a t u r e a t 2 1 3 5 c m ’ i n s t e a d o f t h e u s u a l t w o m o d e s . T h e p r e s e n c e o f a s i n g l e s t r e t c h i n d i c a t e s t h a t t h e s y m m e t r i c a n d a n t i - s y m m e t r i c V C N s t r e t c h i n g m o d e s a r e d e g e n e r a t e . 1 8 T h e V 3 . ” m o d e w a s o b s e r v e d a t 2 4 9 6 c m ] . T h e a b s e n c e o f v 0 - 0 m o d e s i n t h e f a r I R o f t h i s c o m p o u n d c o n fi r m e d c o m p l e t e c y a n i d e d i s p l a c e m e n t o f t h e c h l o r i d e s . T h e U V - V i s i b l e s p e c t r u m r e v e a l e d a b s o r p t i o n s a t 3 2 2 ( 7 5 ) , 3 6 5 ( 6 0 ) , a n d 4 1 0 ( 4 5 ) n m ( L m o l ' l c m ' l ' ) . A s i n g l e I R a c t i v e m o d e , B l u , f o r t h e i d e a l i z e d D 2 ) , s y m m e t r y o f t h e C E N b o n d s o f t h e C H 3 C N l i g a n d s i n t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) i s e x p e c t e d , b u t i n f a c t t w o s t r e t c h e s a t 2 3 1 2 a n d 2 2 8 4 c m " 1 w e r e o b s e r v e d . T h e t w o s t r e t c h e s w o u l d b e c o n s i s t e n t w i t h a C 2 , , s y m m e t r y f o r t h e C E N b o n d s f o r t h e c i s i s o m e r o f t h i s c o m p o u n d , b u t t h e c r y s t a l s t r u c t u r e w a s 1 8 7 o b t a i n e d o n t h e t r a n s i s o m e r . W e r e a s o n e d t h a t o n e p o s s i b i l i t y i s t h a t b o t h i s o m e r s c o u l d b e p r e s e n t i n t h e r e a c t i o n s o l u t i o n w i t h t h e t r a n s i s o m e r p r e f e r e n t i a l l y c r y s t a l l i z i n g . T h i s h y p o t h e s i s w a s e x p l o r e d b y p r e p a r i n g a n I R s a m p l e f r o m a b a t c h o f t h e t r a n s i s o m e r c r y s t a l s . T h i s s a m p l e p r o d u c e d a s p e c t r u m w i t h t h e s a m e t w o s t r e t c h e s . A s o l u t i o n i n f r a r e d s p e c t r u m , h o w e v e r , r e v e a l e d a s i n g l e V C E N m o d e a t 2 2 9 3 c m ' 1 i n d i c a t i n g t h e t w o s t r e t c h e s a r e a c o n s e q u e n c e o f s o l i d s t a t e s p l i t t i n g w h i c h l o w e r s t h e s i t e s y m m e t r y f r o m t h e i d e a l i z e d D 2 h . T h e U V - v i s i b l e s p e c t r u m i n a c e t o n i t r i l e c o n t a i n s t r a n s i t i o n s a t 8 8 0 ( 6 5 ) , 5 3 6 ( 7 5 ) , 3 3 9 ( 2 5 ) 1 1 m ( L m o l ' l c m ' l ' ) . ( 2 ) M a s s S p e c t r o m e t r i c A n a l y s i s o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( l 6 ) a n d [ ( T P ) C 0 ( C H 3 C N ) 3 ] [ P F o l ( 1 7 ) F a s t - a t o m b o m b a r d m e n t ( F A B ) m a s s s p e c t r o m e t r y i n b o t h n i t r o b e n z y l a l c o h o l ( N B A ) a n d g l y c e r o l m a t r i c e s w a s c o n d u c t e d o n S a m p l e s o f [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 1 ( 1 6 ) a n d [ ( T P ) C 0 ( C H 3 C N ) 3 I I P F 6 ] ( 1 7 ) - N B A p r o v e d t h e m o r e s u c c e s s f u l o f t h e t w o m a t r i c e s . T h e p a r e n t i o n p e a k s i n t h e s p e c t r a f o r ( 1 5 ) a n d ( 1 6 ) w e r e 2 6 8 . 0 9 a n d 2 7 2 . 1 2 m / z r e s p e c t i v e l y , w h i c h c o r r e s p o n d t o t h e f r a g m e n t s [ M n ( T p ) ] 1 + a n d [ C o ( T p ) ] ” . T h e b o u n d a c e t o n i t r i l e l i g a n d s a p p e a r t o b e e a s i l y l o s t u n d e r t h e s e c o n d i t i o n s . A s e c o n d f r a g m e n t c o u l d b e a l s o b e a s s i g n e d t o t h e p r o m i n e n t p e a k s a t 3 6 0 . 1 3 a n d 3 6 4 . 1 5 m / z i n t h e s p e c t r a o f ( 1 5 ) a n d ( 1 6 ) . T h e s e c o r r e s p o n d t o 1 8 8 [ M n ( C H 3 C N ) 2 F ( T p ) ] 1 + a n d [ C o ( C H 3 C N ) 2 F ( T p ) ] 1 + , s p e c i e s p r o d u c e d b y fl u o r i d e a b s t r a c t i o n f r o m [ P F ( , ] ' . 1 9 ( 3 ) M a g n e t i c S u s c e p t i b i l i t y S t u d i e s M a g n e t i c s u s c e p t i b i l i t y s t u d i e s w e r e c o n d u c t e d t o e s t a b l i s h t h e e x p e c t e d g r o u n d s t a t e s p i n v a l u e s f o r t h e n e w p a r a m a g n e t i c m o l e c u l a r b u i l d i n g b l o c k s . T h i s i n f o r m a t i o n i s u s e f u l f o r p r e d i c t i n g t h e n u m b e r o f u n p a i r e d e l e c t r o n s t h a t a p r o d u c t w i l l p o s s e s b a s e d o n t h e m e t a l p r e c u r s o r c o m b i n a t i o n s c h o s e n f o r a g i v e n m o l e c u l a r b o x a s s e m b l y r e a c t i o n . A m a g n e t i c s u s c e p t i b i l i t y s t u d y o f [ M n ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] ( 1 6 ) g a v e a 1 1 . “ v a l u e o f 5 . 9 0 B . M . w i t h g = 1 . 9 9 . T h e s y m m e t r i c a l t 2 g 3 e g 2 e l e c t r o n c o n fi g u r a t i o n o f t h e M n " c e n t e r l e a d s t o u m a n d g v a l u e s t h a t a r e i n g o o d a g r e e m e n t w i t h t h e p r e d i c t e d s p i n - o n l y v a l u e s o f 5 . 9 0 B . M . a n d g ~ 2 . T h e [ B F . . ] ' s a l t o f [ C o ( C H 3 C N ) 3 ( T p ) ] 1 + ( 1 7 ) w i t h a t C o I I c e n t e r e x h i b i t s a 1 1 m v a l u e o f 3 . 6 9 B . M . w i t h g = 1 . 9 0 . T h e s p i n - o n l y v a l u e f o r a n S = 3 / 2 g r o u n d s t a t e w o u l d e x h i b i t a 1 . 1 . , “ = 3 . 8 7 f o r g . 2 . 2 . T h e t z g i l e g 2 c o n fi g u r a t i o n o f t h e C o n l e a d s t o s p i n - o r b i t a l c o u p l i n g a n d t y p i c a l l y l o w e r m o m e n t s t h a n t h e s p i n - o n l y v a l u e . T h e c o m p o u n d [ V ( C H 3 C N ) 3 ( T p ) ] [ P F 6 ] 2 ( 1 9 ) e x h i b i t s a r o o m t e m p e r a t u r e 1 1 . 3 v a l u e o f 3 . 0 6 B . M . w i t h g = 2 . 1 5 . A n o c t a h e d r a l ( 1 2 V I I I c o m p o u n d w i t h S = l w i t h n o s p i n - o r b i t e f f e c t s s h o u l d e x h i b i t a 1 1 m = 1 8 9 2 . 8 3 f o r g s 2 . 2 0 T h e e x p e r i m e n t a l l y o b s e r v e d v a l u e s a r e c o n s i s t e n t w i t h l i t e r a t u r e r e p o r t s o f o t h e r o c t a h e d r a l V I I I a n d C o I I c o m p o u n d s . ” 2 1 A m a g n e t i c s u s c e p t i b i l i t y s t u d y o f [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) r e v e a l e d a r o o m t e m p e r a t u r e 1 1 . . “ v a l u e o f 3 . 4 5 B . M . w i t h g = 1 . 7 8 . A n i d e a l i z e d s = 3 / 2 o c t a h e d r a l d 3 M o I I I i o n w i t h n o s p i n o r b i t c o u p l i n g e f f e c t s w o u l d b e e x p e c t e d t o e x h i b i t a p m v a l u e o f 3 . 8 7 B . M ( f o r g 5 2 ) . T h i s a s s u m p t i o n f o r s e c o n d a n d t h i r d r o w t r a n s i t i o n m e t a l i o n s , h o w e v e r , i s n o t g e n e r a l l y v a l i d b e c a u s e s p i n - o r b i t c o u p l i n g c o n t r i b u t i o n s t e n d t o b e s i g n i fi c a n t l y g r e a t e r t h a n w i t h t h e r e s p e c t i v e 3 d c o n g e n e r s . 2 0 T h e o b s e r v e d d e v i a t i o n s i n l i e n a n d g f o r t h e M o I I I c e n t e r w e r e e x p e c t e d a n d r e a s o n a b l e b a s e d o n l i t e r a t u r e p r e c e d e n c e . 2 0 M a g n e t i c s u s c e p t i b i l i t y s t u d i e s o f K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) r e v e a l e d a r o o m t e m p e r a t u r e u m v a l u e o f 3 . 6 2 B . M . w i t h g = 1 . 8 9 . A 1 1 . 3 v a l u e o f 3 . 8 7 w o u l d b e e x p e c t e d f o r a n i d e a l i z e d o c t a h e d r a l d 3 C r I I I i o n w i t h a s p i n v a l u e o f S = 3 / 2 a s s u m i n g n o s p i n o r b i t a l c o u p l i n g c o n t r i b u t i o n . T h e s y m m e t r i c a l fi l l i n g o f t h e t z g o r b i t a l s w o u l d b e e x p e c t e d t o m i n i m i z e s p i n - o r b i t a l c o u p l i n g c o n t r i b u t i o n s . H o w e v e r , t h e s i x c o o r d i n a t e C r I l l c e n t e r i s n o t r i g o r o u s l y o c t a h e d r a l f r o m a s y m m e t r y s t a n d p o i n t , a s t h r e e c o o r d i n a t i o n s i t e s o c c u p i e d b y t h e t r i d e n t a t e n i t r o g e n d o n o r l i g a n d T p a n d t h e o t h e r t h r e e a r e fi l l e d b y c y a n i d e l i g a n d s . I n a d d i t i o n , t h e e x p e c t e d 1 . 1 . “ v a l u e f o r C r I I I c o m p l e x e s i s 1 9 0 g e n e r a l l y h i g h e r t h a n o b s e r v e d d u e t o s p i n - o r b i t c o u p l i n g s t e m m i n g f r o m t h e m i x i n g o f e x c i t e d s t a t e s , w h i c h h a v e o r b i t a l d e g e n e r a c y , w i t h t h e n o n - d e g e n e r a t e g r o u n d s t a t e . 2 0 T h e e d g e b u i l d i n g b l o c k t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] ( 2 1 ) e x h i b i t s a r o o m t e m p e r a t u r e p e g v a l u e o f 2 . 9 8 B . M . w i t h g = 2 . 1 2 . T h e e x p e r i m e n t a l l y o b s e r v e d p a g e a n d g v a l u e s d e v i a t e f r o m t h e p r e d i c t e d s p i n - o n l y v a l u e s o f 2 . 8 3 B . M . a n d g E 2 , b u t a r e c o n s i s t e n t w i t h l i t e r a t u r e r e p o r t s o f o t h e r o c t a h e d r a l N i I I c o m p o u n d s . ” 2 1 ( 4 ) C h a r a c t e r i z a t i o n o f t h e p r o d u c t f r o m t h e r e a c t i o n o f K l ( T p ) C r ( C N ) 3 l ( 2 0 ) a n d [ ( T p ) N i ( C H 3 C N ) 3 ] [ B F 4 ] 2 2 T h e i n f r a r e d s p e c t r u m o f t h e p i n k p r e c i p i t a t e f r o m t h i s r e a c t i o n e x h i b i t e d o n l y a s i n g l e v C N m o d e a t 2 1 7 4 c m “ . T h i s i s i n a c c o r d w i t h a h i g h l y s y m m e t r i c a l s t r u c t u r e s u c h a s t h e t a r g e t p r o d u c t a n e i g h t m e t a l a t o m m o l e c u l a r b o x , n a m e l y ( T p ) 3 C r 4 N i 4 ( C N ) 1 2 , i n w h i c h a l l t h e c y a n i d e s r e s i d e i n t h e s a m e e n v i r o n m e n t . A s t r u c t u r a l s c h e m a t i c i s d e p i c t e d i n F i g u r e 4 . 1 . T h e i n c r e a s e o f 3 1 c m ' 1 f o r t h e V C N m o d e o f t h e p r o d u c t r e l a t i v e t o t h e K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) s t a r t i n g m a t e r i a l ( 2 1 7 4 v e r s u s 2 1 3 5 c m " ) i s a n e x p e c t e d c o n s e q u e n c e i n t h e s w i t c h o f c y a n i d e f r o m d a n g l i n g t o b r i d g i n g m o d e . T h i s s h i f t t o h i g h e r e n e r g y i s a t t r i b u t e d t o b o t h t h e k i n e m a t i c c o u p l i n g t h a t o c c u r s w h e n a s e c o n d m a s s i s a t t a c h e d t o t h e C N u n i t a s w e l l 1 9 1 a s t o t h e f a c t t h a t t h e l o n e p a i r e l e c t r o n d e n s i t y l o c a l i z e d o n t h e n i t r o g e n i s a n t i b o n d i n g w i t h r e s p e c t t o t h e C E N t r i p l e b o n d . T h e V C N f o r c e c o n s t a n t i n c r e a s e s u p o n d o n a t i o n f r o m t h i s o r b i t a l t o a L e w i s a c i d . F u r t h e r m o r e a V B - H m o d e a t 2 4 9 4 c m ' 1 w a s o b s e r v e d i n a c c o r d w i t h t h e c o n c l u s i o n t h e T p l i g a n d i s s t i l l b o u n d t o t h e m e t a l s i n t h e p r o d u c t . T h e a p p e a r a n c e o f t h e s t r e t c h a t 2 4 9 4 c m ' 1 i s w i t h i n r e s o l u t i o n o f t h e V B - “ m o d e s o f 2 4 9 2 a n d 2 4 9 6 f o r t h e s t a r t i n g m a t e r i a l s K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) a n d [ N i ( C H 3 C N ) 3 ( T p ) ] [ B F 4 ] . T h e p o o r s o l u b i l i t y o f t h i s p r o d u c t p r e c l u d e s s o l u t i o n c h a r a c t e r i z a t i o n s u c h a s U V - v i s i b l e a n a l y s i s . E l e m e n t a l a n a l y s i s o f t h e p r o d u c t d i d n o t fi t t h e e x p e c t e d f o r m u l a , n o r d i d i t c o r r e s p o n d t o a n y i d e n t i fi a b l e p r o d u c t s . M a g n e t i c s u s c e p t i b i l i t y s t u d i e s o f t h i s p r o d u c t l e d t o m o m e n t s t h a t a r e l o w e r t h a n p r e d i c t e d v a l u e f o r ( T p ) 3 C r 4 N i 4 ( C N ) 1 2 . T h e l a c k o f d e fi n i t i v e s t r u c t u r a l i n f o r m a t i o n p r e v e n t s a n y f u r t h e r d e t a i l e d i n t e r p r e t a t i o n o f t h i s r e a c t i o n . 1 9 2 ) } e } g } 2 l 5 x 6 . } } b 1 l 6 3 2 5 i l 1 9 8 1 7 s n { { { ( ( i u 1 0 8 5 V x 3 6 8 5 - a 4 4 3 4 2 2 3 V m U A ) t - n M e ° B m < o fl M e H 5 4 . 3 8 9 . 2 s d n H - B 7 9 8 2 2 6 9 9 5 4 4 4 ) V 2 2 2 2 l ' u m o p m c ( d e o r C k c o l a r 5 4 0 4 4 f 8 9 8 8 n 2 2 2 2 8 2 I 2 2 2 2 2 , , 6 8 2 5 , , 5 , B 2 1 1 1 3 1 g 2 2 2 2 2 3 3 3 3 2 1 3 2 n i d l i u B f o s e s i k c 2 ) ) 2 ) ) 6 6 6 t F F 6 F r P F P o P e l B P ( ( ( ( p ( 1 ] ] 1 c o g ] ) ) ) o l 2 r g n ) ) P P P g B g P n i T n T n P T d ( ( i T ( n i g i . t i ) p 3 ) ) i l t ( 3 3 3 n e ) N d N N a c N C C l C c n N c C 3 3 3 i o C e A 3 H H H u D ) 6 F P s k e ( 2 ) t p e c A 3 H C 8 . 4 u B r l b a T e n r o C H C C C B C ( ( ( ( 0 D 0 V M M C [ [ [ [ e ( d i i N S [ 1 9 3 K [ C r ( C N ) 3 ( T P ) l V ( E N 2 5 3 2 N / A 3 . 0 6 5 . 9 0 3 . 6 9 3 . 6 2 5 3 6 { 7 5 } 1 " i o n w i t h t h r e e s i t e s b e i n g o c c u p i e d b y f a c i a l l y a r r a n g e d J . M o l e c u l a r S t r u c t u r e s ( 1 ) N a [ ( T p ) C r C l s l , ( l 3 ) T h e m o l e c u l a r a n i o n [ ( T p ) C r C l 3 ] l ' c o n s i s t s o f a n o c t a h e d r a l l y c o o r d i n a t e d C r c h l o r i d e s a n d t h e o t h e r t h r e e s i t e s b e i n g o c c u p i e d b y t h e f a c e c a p p i n g l i g a n d T p . T h e o c t a h e d r o n i s r e l a t i v e l y u n d i s t o r t e d w i t h a N ( 1 ) — C r ( 1 ) - C l ( 1 ) a n g l e o f 9 0 . 4 9 ° . T h e N a ( 1 ) i s c o o r d i n a t e d t o t h e f a c i a l c h l o r i d e s f r o m t w o [ ( T p ) C r C l 3 ] l ' a n i o n s w i t h a t r i g o n a l p r i s m a t i c g e o m e t r y . T h e N a ( 2 ) r e s i d e s i n t h e p l a n e o f N a ( l ) a n d i s d i s o r d e r e d o v e r t h r e e s i t e s s u c h t h a t i t b r i d g e s t h e e d g e s o f t h e “ N a C l . « , ” t r i g o n a l p r i s m . T h e s e p a r a t i o n d i s t a n c e b e t w e e n N a ( l ) a n d N a ( 2 ) i s 3 . 8 9 A . T h e N a ( l ) a t o m i s s i t u a t e d o n a m i r r o r p l a n e a n d t h r e e f o l d a x i s o f r o t a t i o n . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e p r e s e n t e d i n T a b l e 4 . 9 . ( 2 ) ( T p ) M o B r 2 ( T H F ) , ( 1 5 ) I n t h i s c o m p o u n d , T p o c c u p i e s t h r e e f a c i a l c o o r d i n a t i o n s i t e s o f t h e o c t a h e d r a l M o c e n t e r . T h e M o ( 1 ) - N ( 1 ) , N ( 3 ) , a n d N ( 5 ) d i s t a n c e s o f 2 . 1 3 9 , 2 . 1 6 3 , a n d 2 . 1 5 8 A r e s p e c t i v e l y a r e l o n g e r t h a n t h e C r - N d i s t a n c e o f 2 . 0 3 3 A o b s e r v e d i n ( 1 3 ) . T h e s h o r t e r M o ( 1 ) - N ( 1 ) d i s t a n c e r e l a t i v e t o t h e c o r r e s p o n d i n g M o d i s t a n c e t o N ( 3 ) a n d N ( 5 ) i s a t t r i b u t e d t o t h e p r e s e n c e o f a t r a n s T H F t o N ( l ) a s c o m p a r e d t o B r ' l i g a n d s w h i c h a r e p r e s e n t i n 1 9 4 p o s i t i o n s t r a n s t o N ( 3 ) a n d N ( 5 ) r e s p e c t i v e l y . T h e b o n d d i f f e r e n c e s r e fl e c t t h e s u p e r i o r l i t - d o n a t i n g a b i l i t y o f B r ' v e r s u s T H F l i g a n d s . T h e o c t a h e d r o n i s s l i g h t l y d i s t o r t e d w i t h N ( 1 ) - M o ( 1 ) _ - B r ( l ) a n d N ( 1 ) - M o ( 1 ) - B r ( 2 ) a n g l e s o f 9 6 . 8 1 ° a n d 9 3 . 3 5 ° r e s p e c t i v e l y . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e p r e s e n t e d i n T a b l e 4 . 1 0 . ( 3 ) [ ( T p ) C 0 ( C H 3 C N ) 3 ] [ P F o l , ( 1 7 ) T h e m o l e c u l a r c a t i o n [ ( T p ) C o ( C H 3 , C N ) 3 ] 1 + c o n s i s t s o f a n o c t a h e d r a l l y c o o r d i n a t e d c o b a l t a t o m w i t h t h r e e s i t e s o c c u p i e d b y f a c - C H 3 C N g r o u p s a n d t h e f a c e c a p p i n g T p l i g a n d . T h e C o - N b o n d s a r e s l i g h t l y n o n - l i n e a r w i t h a C o ( 1 ) - N ( 3 ) - C ( 4 ) a n g l e o f 1 6 7 . 2 ( 8 ) ° . T h e o c t a h e d r o n i s d i s t o r t e d a s r e fl e c t e d b y t h e a n g l e N ( 3 ) - C o ( 1 ) - N ( 1 ) a n g l e = 9 5 . 3 ( 3 ) ° . T h e C 0 a t o m r e s i d e s o n a t h r e e - f o l d a x i s o f s y m m e t r y a n d t h e [ P F 6 ] ' c o u n t e r i o n s a r e l o c a t e d i n t w o p o s i t i o n s i n t h e s t r u c t u r e . O n e [ P F 6 ] ' i s l o c a t e d b e t w e e n t w o [ C o ( C H 3 C N ) 3 ( T p ) ] + c a t i o n s w h i c h a r e o r i e n t e d s u c h t h a t t h e t h r e e f a c i a l C H 3 C N a r e d i r e c t e d t o w a r d s t h e a n i o n . T h e s e c o n d [ P F 6 ] ' a n i o n i s p o s i t i o n e d b e t w e e n t h e T p l i g a n d s o f t w o a d j a c e n t [ C o ( C H — , 1 C N ) 3 ( T p ) ] + c a t i o n s . T h e P a t o m s r e s i d e o n t h e m i r r o r p l a n e s o f t h e 3 b a r a x i s . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e p r e s e n t e d i n T a b l e 4 . 1 1 . 1 9 5 ( 4 ) t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 1 ) T h e m o l e c u l a r s t r u c t u r e o f ( 2 1 ) i s c o m p o s e d o f a n o c t a h e d r a l n i c k e l c e n t e r w i t h t w o t r a n s C H 3 C N a n d t w o t r a n s b i d e n t a t e e t h y l e n e d i a m r n i n e l i g a n d s . T h e n i c k e l a t o m r e s i d e s o n a n i n v e r s i o n c e n t e r . T h e N i - N ( C H 3 C N ) i n t e r a c t i o n s a r e s l i g h t l y n o n - l i n e a r a s e v i d e n c e d b y t h e N i ( 1 ) - N ( l ) - C ( 1 ) a n g l e o f 1 7 3 . 4 ° . T h e o c t a h e d r o n i s d i s t o r t e d i n t h e p l a n e o f t h e e t h y l e n e d i a m r n i n e l i g a n d s w i t h a n o b t u s e N ( 2 ) - N i ( l ) - N ( 3 ) a n g l e o f 9 7 . 1 2 ° . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e p r e s e n t e d i n T a b l e 4 . 1 2 . ( 5 ) { ( T p ) C r C l z ( C H 3 C N ) } 2 A g P F 6 . 2 C H 3 C N ( 2 2 ) a n d { ( T p ) C r C l z ( C H 3 C N ) } 2 T I P F 6 . 2 C H 3 C N ( 2 3 ) T h e s t r u c t u r e s o f ( 2 2 ) a n d ( 2 3 ) a r e e s s e n t i a l l y i d e n t i c a l e x c e p t f o r o f t h e c o o r d i n a t i o n n u m b e r s o f t h e A g a n d T 1 r e s p e c t i v e l y . T h e C r a t o m s i n b o t h s t r u c t u r e s a r e o c t a h e d r a l l y c o o r d i n a t e d w i t h t h r e e f a c i a l l y o r i e n t e d c o o r d i n a t i o n s i t e s b e i n g o c c u p i e d b y T p . T w o C l ' a t o m s a n d o n e a c e t o n i t r i l e l i g a n d c o m p l e t e t h e c o o r d i n a t i o n s p h e r e o f e a c h C r a t o m . T w o ( T p ) C r C 1 2 ( C H 3 C N ) m o i e t i e s a r e c o n n e c t e d i n e a c h s t r u c t u r e b y t h e c o o r d i n a t i o n o f t h e C I ' t o A g o r T 1 r e s p e c t i v e l y . I n ( 2 2 ) f o u r C l ' l i g a n d s a r e b o u n d t o a A g a t o m . I n ( 2 3 ) o n l y o n e C I ' f r o m e a c h ( T p ) C r C 1 2 ( C H 3 C N ) m o i e t y i s b o u n d t o t h e T 1 + i o n . T h e A g + c o o r d i n a t i o n e n v i r o n m e n t i s b e s t d e s c r i b e d a s a h i g h l y d i s t o r t e d s e e - s a w s h a p e w i t h C l ( 1 ) - A g ( 1 ) - C l ( 2 ) a n d 1 9 6 C l ( 3 ) - A g ( 1 ) - C l ( 4 ) a n g l e s o f 7 9 . 4 1 ° a n d 7 9 . 3 1 ° r e s p e c t i v e l y . T h e C l ( 1 ) - T 1 ( 1 ) - C l ( 4 ) b r i d g e i s b e n t a t a n a n g l e o f 1 4 7 . 9 6 ° . T h e p y r a z o l r i n g s o f t h e T p l i g a n d s o f t h e t w o ( T p ) C r C 1 2 ( C H 3 C N ) m o i e t i e s b r i d g e d b y t h e m e t a l s i n ( 2 2 ) a n d ( 2 3 ) a r e s t a g g e r e d r e l a t i v e t o e a c h o t h e r . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 A g P F 6 - 2 C H 3 C N ( 2 2 ) a r e p r e s e n t e d i n T a b l e s 1 3 a n d 1 4 . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s f o r { ( T p ) C r C l z ( C H 3 C N ) } 2 T 1 P F 6 - 2 C H 3 C N ( 2 3 ) a r e p r e s e n t e d i n T a b l e s 4 . 1 5 a n d 4 . 1 6 . ( 6 ) V ( T p ) 2 o 1 / 6 E t 2 0 - l / 3 C H 3 C N , ( 2 4 ) T h e c r y s t a l s t r u c t u r e o f ( 2 4 ) c o n s i s t s o f t h r e e V ( T p ) 2 u n i t s , a n a c e t o n i t r i l e s o l v e n t m o l e c u l e , a n d a d i s o r d e r e d d i e t h y l e t h e r m o l e c u l e . T h e c o o r d i n a t i o n s p h e r e o f e a c h V a t o m i s o c c u p i e d b y t w o T p l i g a n d s i n a s t a g g e r e d f o r m a t i o n . T h e o c t a h e d r a l c o o r d i n a t i o n o f t h e V a t o m s i s e s s e n t i a l l y u n d i s t o r t e d w i t h a l l t h e V a t o m s r e s i d i n g o n i n v e r s i o n c e n t e r s . T h e d i e t h y l e t h e r m o l e c u l e i s d i s o r d e r e d a n d w a s t h e r e f o r e m o d e l e d w i t h a 5 0 % o c c u p a n c y . S e l e c t e d b o n d d i s t a n c e s a n d a n g l e s a r e p r e s e n t e d i n T a b l e 4 . 1 7 . 1 9 7 T a b l e 4 . 9 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] N a [ ( T p ) C r C l 3 ] , ( l 3 ) C r ( l A ) - N ( 1 A ) C r ( 1 A ) - C l ( 2 A ) C r ( l A ) - N a ( l A ) C l ( 2 A ) - N a ( 1 A ) C l ( 2 A ) - N a ( 2 A ) N a ( 1 A ) - N a ( 2 A ) B ( l A ) - N ( 2 A ) N ( l A ) - C ( l A ) N ( l A ) - N ( 2 A ) C ( 1 A ) - C ( 2 A ) C ( 2 A ) - C ( 3 A ) N ( l A ) - C r ( l A ) - C l ( 2 A ) N ( l A ) - C r ( 1 A ) - N a ( l A ) C l ( 2 A ) — C r ( l A ) - N a ( l A ) C r ( l A ) - C l ( 2 A ) - N a ( l A ) C r ( l A ) - C l ( 2 A ) - N a ( 2 A ) N a ( l A ) - C l ( 2 A ) - N a ( 2 A ) C l ( 2 A ) - N a ( l A ) - C r ( 1 A ) C l ( 2 A ) - N a ( l A ) - N a ( 2 A ) C r ( 1 A ) - N a ( l A ) - N a ( 2 A ) C l ( 2 A ) - N a ( 2 A ) - N a ( 1 A ) C ( 1 A ) - N ( l A ) - N ( 2 A ) C ( 1 A ) - N ( l A ) - C r ( l A ) N ( 2 A ) - N ( l A ) - C r ( 1 A ) C ( 3 A ) - N ( 2 A ) - N ( l A ) C ( 3 A ) - N ( 2 A ) - B ( 1 A ) N ( l A ) — N ( 2 A ) - B ( 1 A ) N ( l A ) - C ( l A ) - C ( 2 A ) C ( 3 A ) - C ( 2 A ) - C ( 1 A ) N ( 2 A ) - C ( 3 A ) - C ( 2 A ) 1 9 8 2 . 0 3 3 ( 7 ) 2 . 3 4 9 ( 2 ) 3 . 3 1 8 ( 2 ) 2 . 7 9 8 ( 2 ) 2 . 9 8 ( 3 ) 3 . 8 4 ( 4 ) 1 . 5 4 2 ( 9 ) 1 . 3 3 0 ( 1 0 ) 1 . 3 6 9 ( 9 ) 1 . 4 1 0 ( 1 2 ) 1 . 3 7 0 ( 1 3 ) 9 1 . 2 3 ( 1 8 ) l 2 7 . 8 8 ( l 8 ) 5 6 1 0 ( 7 ) 7 9 7 4 ( 7 ) 1 4 3 . 8 ( 8 ) 8 3 . 1 ( 6 ) 4 4 . 1 7 ( 4 ) 5 0 . 5 ( 2 ) 9 0 . 0 0 0 ( 9 ) 4 6 . 4 ( 5 ) 1 0 6 . 3 ( 6 ) 1 3 3 . 1 ( 6 ) 1 2 0 . 6 ( 5 ) 1 0 9 . 9 ( 7 ) 1 3 1 . 0 ( 8 ) 1 1 9 . 1 ( 7 ) 1 1 0 . 6 ( 7 ) 1 0 4 . 7 ( 7 ) 1 0 8 . 6 ( 7 ) T a b l e 4 . 1 0 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r ( T p ) M o B r 2 ( T H F ) , ( 1 5 ) M o ( 1 ) - N ( 1 ) M o ( 1 ) - N ( 3 ) M o ( 1 ) - N ( 5 ) M o ( 1 ) - O ( 1 ) M o ( 1 ) - B r ( 1 ) M o ( 1 ) - B r ( 2 ) B ( 1 ) - N ( 2 ) B ( 1 ) - N ( 4 ) B ( 1 ) - N ( 6 ) N ( l ) - M o ( 1 ) - N ( 3 ) N ( 1 ) - M o ( 1 ) - N ( 5 ) N ( l ) - M o ( 1 ) - O ( 1 ) N ( 1 ) - M o ( l ) - B r ( l ) N ( 1 ) - M o ( 1 ) - B r ( 2 ) N ( 2 ) - B ( 1 ) - N ( 4 ) N ( 2 ) - B ( l ) - N ( 6 ) N ( 3 ) - M o ( 1 ) - B r ( l ) N ( 3 ) - M o ( 1 ) - B r ( 2 ) N ( 5 ) - M o ( 1 ) — N ( 3 ) N ( 5 ) - M o ( l ) - O ( 1 ) N ( 5 ) - M o ( 1 ) - B r ( 1 ) N ( 5 ) - M o ( l ) - B r ( 2 ) N ( 6 ) - B ( 1 ) - N ( 4 ) O ( 1 ) - M o ( 1 ) - N ( 3 ) O ( 1 ) - M o ( 1 ) - B r ( 1 ) O ( 1 ) - M o ( l ) - B r ( 2 ) B r ( 2 ) - M o ( 1 ) - B r ( l ) 2 . 1 3 9 ( 3 ) 2 . 1 6 3 ( 3 ) 2 . 1 5 8 ( 2 ) 2 . 1 6 3 ( 2 ) 2 . 5 7 4 7 ( 7 ) 2 . 5 7 3 2 ( 6 ) 1 . 5 4 9 ( 4 ) 1 . 5 5 6 ( 5 ) 1 . 5 5 1 ( 4 ) 8 4 . 0 0 ( 1 0 ) 8 4 . 6 0 ( 1 0 ) l 7 0 . 2 6 ( 9 ) 9 6 8 1 ( 7 ) 9 3 3 5 ( 7 ) 1 0 8 . 1 ( 3 ) 1 0 8 . 4 ( 3 ) 1 7 8 . 1 0 ( 7 ) 8 8 7 4 ( 7 ) 8 5 . 6 4 ( 1 0 ) 8 7 . 5 3 ( 1 0 ) 9 2 . 7 l ( 7 ) 1 7 4 . 1 9 ( 7 ) 1 0 7 . 7 ( 3 ) 8 9 . 6 9 ( 1 0 ) 8 9 2 9 ( 7 ) 9 3 9 3 ( 7 ) 9 2 . 9 3 7 ( 1 5 ) 1 9 9 T a b l e 4 . 1 1 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] , ( 1 7 ) C o ( 1 ) - N ( l ) 2 . 1 1 5 ( 8 ) C o ( 1 ) - N ( 3 ) 2 . 1 4 6 ( 9 ) B ( l ) - N ( 2 ) 1 . 5 3 7 ( 1 2 ) N ( 1 ) - C ( 1 ) 1 . 3 4 6 ( 1 3 ) N ( 1 ) - N ( 2 ) 1 . 3 4 9 ( 1 0 ) N ( 2 ) - C ( 3 ) 1 . 3 4 3 ( 1 3 ) N ( 3 ) - C ( 4 ) 1 . 1 2 9 ( 1 2 ) N ( 1 A ) - C o ( 1 ) - N ( 1 B ) 8 6 . 7 ( 3 ) N ( l A ) - C o ( 1 ) - N ( 1 ) 8 6 . 7 ( 3 ) N ( 1 B ) - C o ( l ) — N ( 1 ) 8 6 . 7 ( 3 ) N ( l B ) - C o ( 1 ) - N ( 3 B ) 9 5 . 3 ( 3 ) N ( l B ) - C o ( 1 ) - N ( 3 B ) 1 7 7 . 0 ( 3 ) N ( 1 ) - C o ( l ) - N ( 3 B ) 9 1 . 2 ( 3 ) N ( l A ) - C o ( 1 ) - N ( 3 A ) 1 7 7 . 0 ( 3 ) N ( l B ) - C o ( l ) - N ( 3 A ) 9 1 . 2 ( 3 ) N ( 1 ) - C o ( 1 ) - N ( 3 A ) 9 5 . 3 ( 3 ) N ( 3 B ) - C o ( 1 ) - N ( 3 A ) 8 6 . 9 ( 3 ) N ( 1 A ) - C o ( 1 ) - N ( 3 ) 9 1 . 2 ( 3 ) N ( l B ) - C o ( 1 ) - N ( 3 ) 9 5 . 3 ( 3 ) N ( l ) - C o ( 1 ) - N ( 3 ) 1 7 7 . 0 ( 3 ) N ( 3 B ) - C o ( 1 ) - N ( 3 ) 8 6 . 9 ( 3 ) N ( 3 A ) - C o ( 1 ) - N ( 3 ) 8 6 . 9 ( 3 ) N ( 2 ) - B ( 1 ) - N ( 2 A ) 1 0 8 . 3 ( 1 ) N ( 2 ) - B ( 1 ) — N ( 2 B ) 1 0 8 . 3 ( 1 ) N ( 2 A ) - B ( l ) - N ( 2 B ) 1 0 8 . 3 ( 1 ) 2 0 0 T a b l e 4 . 1 2 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] f o r t r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 1 ) N i ( 1 ) - N ( 1 ) N i ( 1 ) - N ( 2 ) N ( 1 ) - C ( l ) N ( 2 ) - C ( 3 ) N ( 3 ) - C ( 4 ) C ( 1 ) - C ( 2 ) N i ( l ) - N ( 3 ) N ( 2 ) - N i ( l ) - N ( 1 ) N ( 3 ) - N i ( l ) - N ( 1 ) N ( 3 ) - N i ( 1 ) - N ( 2 ) C ( l ) - N ( l ) - N i ( 1 ) C ( 3 ) - N ( 2 ) - N i ( 1 ) C ( 4 ) - N ( 3 ) - N i ( 1 ) N ( l ) - C ( 1 ) - C ( 2 ) 2 0 1 2 . 1 3 4 ( 2 ) 2 . 1 2 1 ( 2 ) 1 . 1 4 1 ( 4 ) 1 . 4 9 5 ( 4 ) 1 . 4 9 1 ( 4 ) 1 . 4 6 0 ( 4 ) 2 . 1 0 9 ( 2 ) 9 1 . 0 5 ( 9 ) 8 9 6 0 ( 9 ) 9 7 . 1 2 ( 9 ) 1 7 3 . 4 ( 2 ) 1 0 7 . 8 8 ( 1 7 ) 1 0 7 . 6 5 ( 1 7 ) 1 7 9 . 7 ( 4 ) T a b l e 1 3 . B o n d l e n g t h s [ A ] { C r C 1 2 ( C H 3 C N ) ( T p ) } 2 A g P F 6 o 2 C H 3 C N , ( 2 2 ) A g ( 1 ) - C l ( 1 ) A g ( l ) - C l ( 2 ) A g ( l ) - C l ( 3 ) A g ( l ) - C l ( 4 ) C r ( 1 ) - N ( l ) C r ( l ) - N ( 3 ) C r ( 1 ) — N ( 5 ) C r ( 1 ) - N ( 1 4 ) C r ( 1 ) - C l ( 1 ) C r ( 1 ) - C l ( 2 ) C r ( 2 ) - N ( 7 ) C r ( 2 ) - N ( 9 ) C r ( 2 ) - N ( l l ) C r ( 2 ) - N ( 1 3 ) C r ( 2 ) - C l ( 3 ) C r ( 2 ) — C l ( 4 ) B ( l ) - N ( 2 ) B ( l ) - N ( 4 ) B ( 1 ) - N ( 6 ) B ( 2 ) - N ( 8 ) B ( 2 ) - N ( 1 0 ) B ( 2 ) - N ( 1 2 ) N ( 1 3 ) - C ( 1 9 ) N ( l 4 ) - C ( 2 1 ) 2 . 7 1 7 6 ( 1 8 ) 2 . 5 8 1 4 ( 1 6 ) 2 . 5 7 9 6 ( 1 6 ) 2 . 7 1 7 1 ( 1 8 ) 2 . 0 2 3 ( 4 ) 2 . 0 5 6 ( 4 ) 2 . 0 2 5 ( 4 ) 2 . 0 5 5 ( 5 ) 2 . 3 3 4 5 ( 1 6 ) 2 . 3 4 8 2 ( 1 8 ) 2 . 0 2 5 ( 4 ) 2 . 0 2 5 ( 4 ) 2 . 0 5 3 ( 4 ) 2 . 0 6 3 ( 5 ) 2 . 3 4 8 6 ( 1 8 ) 2 . 3 3 6 7 ( 1 6 ) 1 . 5 5 1 ( 7 ) 1 . 5 4 9 ( 7 ) 1 . 5 5 1 ( 7 ) 1 . 5 4 9 ( 7 ) 1 . 5 5 3 ( 7 ) 1 . 5 5 7 ( 7 ) 1 . 1 4 8 ( 7 ) 1 . 1 4 7 ( 7 ) 2 0 2 T a b l e 1 4 . B o n d a n g l e s [ d e g ] f o r { C r C l z ( C H 3 C N ) ( T p ) } 2 A g P F 6 0 2 C H 3 C N , ( 2 2 ) C l ( 2 ) — A g ( 1 ) - C l ( 4 ) C l ( 2 ) - A g ( 1 ) - C l ( 1 ) C l ( 3 ) - A g ( 1 ) - C l ( 1 ) C l ( 3 ) - A g ( l ) - C l ( 2 ) C l ( 3 ) - A g ( 1 ) - C l ( 4 ) C l ( 4 ) - A g ( l ) - C l ( l ) N ( 1 ) - C r ( l ) - N ( 3 ) N ( l ) - C r ( 1 ) - N ( l 4 ) N ( l ) - C r ( 1 ) - C l ( 1 ) N ( l ) - C r ( 1 ) - C l ( 2 ) N ( 3 ) - C r ( 1 ) - N ( l 4 ) N ( 3 ) - C r ( 1 ) - C l ( 1 ) N ( 3 ) - C r ( 1 ) - C l ( 2 ) N ( 5 ) - C r ( l ) - N ( 1 ) N ( 5 ) - C r ( l ) - N ( 3 ) N ( 5 ) - C r ( l ) — N ( 1 4 ) N ( 5 ) - C r ( l ) - C l ( 1 ) N ( 5 ) - C r ( 1 ) - C l ( 2 ) N ( 1 4 ) - C r ( 1 ) - C l ( l ) N ( l 4 ) - C r ( 1 ) - C l ( 2 ) C l ( l ) - C r ( 1 ) - C l ( 2 ) C r ( 1 ) - C l ( l ) - A g ( 1 ) C r ( 1 ) - C l ( 2 ) — A g ( l ) C r ( 2 ) - C l ( 3 ) — A g ( l ) C r ( 2 ) - C l ( 4 ) - A g ( 1 ) N ( 4 ) - B ( 1 ) - N ( 2 ) N ( 4 ) - B ( 1 ) - N ( 6 ) N ( 6 ) - B ( 1 ) - N ( 2 ) C ( 1 9 ) - N ( l 3 ) — C r ( 2 ) C ( 2 1 ) - N ( 1 4 ) - C r ( l ) 2 0 3 1 0 4 . 8 5 ( 5 ) 7 9 3 1 ( 5 ) 1 0 4 . 9 7 ( 5 ) 1 7 2 . 8 6 ( 5 ) 7 9 4 1 ( 5 ) 1 0 8 . 5 7 ( 6 ) 8 6 . 2 9 ( 1 7 ) 9 0 . 3 2 ( 1 8 ) 8 9 . 8 1 ( l 3 ) l 7 7 . 2 3 ( 1 2 ) 8 8 . 1 1 ( 1 8 ) l 7 6 . 0 7 ( l 3 ) 9 1 . 3 9 ( 1 3 ) 8 7 . 5 5 ( 1 7 ) 8 6 . 7 1 ( 1 7 ) l 7 4 . 5 2 ( 1 8 ) 9 2 . 6 4 ( 1 2 ) 9 3 8 2 ( 1 3 ) 9 2 . 4 0 ( 1 4 ) 8 8 . 1 0 ( 1 4 ) 9 2 5 2 ( 6 ) 9 0 3 3 ( 6 ) 9 3 4 5 ( 6 ) 9 3 4 4 ( 6 ) 9 0 2 4 ( 6 ) 1 0 6 . 2 ( 4 ) 1 0 6 . 6 ( 4 ) 1 0 7 . 5 ( 4 ) 1 7 3 . 8 ( 5 ) 1 7 3 . 9 ( 4 ) T a b l e 4 . 1 5 . B o n d l e n g t h s [ A ] f o r { ( T p ) C r C 1 2 ( C H 3 C N ) } 2 T 1 P F 6 0 2 C H 3 C N , ( 2 3 ) T I ( 1 ) - C l ( 1 ) 3 . 0 8 1 ( 2 ) T l ( l ) — C l ( 4 ) 3 . 0 8 8 ( 2 ) C r ( l ) - N ( l ) 2 . 0 5 5 ( 8 ) C r ( l ) - N ( 1 0 ) 2 . 0 5 6 ( 7 ) C r ( 1 ) - N ( 2 0 ) 2 . 0 1 7 ( 7 ) C r ( 1 ) - N ( 3 0 ) 2 . 0 6 7 ( 7 ) C r ( l ) - C l ( 1 ) 2 . 3 3 7 ( 3 ) C r ( 1 ) - C l ( 2 ) 2 . 3 2 1 ( 3 ) C r ( 2 ) - N ( 2 ) 2 . 0 6 7 ( 8 ) C r ( 2 ) - N ( 4 0 ) 2 . 0 3 3 ( 7 ) C r ( 2 ) - N ( 5 0 ) 2 . 0 4 4 ( 7 ) C r ( 2 ) - N ( 6 0 ) 2 . 0 4 5 ( 6 ) C r ( 2 ) - C l ( 3 ) 2 . 3 2 7 ( 3 ) C r ( 2 ) - C l ( 4 ) 2 . 3 3 2 ( 3 ) 2 0 4 T a b l e 4 . 1 6 . A n g l e s [ d e g ] f o r { ( T p ) C r C l z ( C H 3 C N ) } 2 T 1 P F 6 - 2 C H 3 C N , ( 2 3 ) C l ( 1 ) - T l ( 1 ) - C l ( 4 ) N ( l ) - C r ( l ) — N ( 1 0 ) N ( l ) - C r ( 1 ) - N ( 3 0 ) N ( 1 ) — C r ( 1 ) - C l ( 1 ) N ( l ) - C r ( 1 ) - C l ( 2 ) N ( l O ) - C r ( 1 ) - N ( 3 0 ) N ( 1 0 ) - C r ( l ) - C l ( l ) N ( 1 0 ) - C r ( l ) - c 1 ( 2 ) N ( 2 0 ) - C r ( 1 ) - N ( l ) N ( 2 0 ) - C r ( l ) - N ( 1 0 ) N ( 2 0 ) - C r ( l ) - N ( 3 0 ) N ( 2 0 ) - C r ( l ) - C l ( l ) N ( 2 0 ) - C r ( l ) - C l ( 2 ) N ( 3 0 ) - C r ( l ) - C l ( l ) N ( 3 0 ) - C r ( l ) - C l ( 2 ) C l ( 2 ) - C r ( l ) - C l ( l ) N ( 2 ) - C r ( 2 ) - C l ( 3 ) N ( 2 ) - C r ( 2 ) - C l ( 4 ) N ( 4 0 ) - C r ( 2 ) - N ( 2 ) N ( 4 0 ) - C r ( 2 ) - N ( 5 0 ) N ( 4 0 ) - C r ( 2 ) - N ( 6 0 ) N ( 4 0 ) - C r ( 2 ) - C l ( 3 ) N ( 4 0 ) - C r ( 2 ) - C l ( 4 ) N ( 5 0 ) - C r ( 2 ) - N ( 2 ) N ( 5 0 ) - C r ( 2 ) - N ( 6 0 ) N ( 5 0 ) - C r ( 2 ) - C l ( 3 ) N ( 5 0 ) — C r ( 2 ) - C l ( 4 ) N ( 6 0 ) - C r ( 2 ) - N ( 2 ) N ( 6 0 ) - C r ( 2 ) - C l ( 3 ) N ( 6 0 ) - C r ( 2 ) - C l ( 4 ) C l ( 3 ) - C r ( 2 ) - C l ( 4 ) 2 0 5 l 4 7 . 9 6 ( 2 ) 1 7 2 . 5 ( 3 ) 8 8 . 2 ( 3 ) 8 9 . 5 ( 2 ) 9 2 . 3 ( 3 ) 8 5 . 9 ( 3 ) 9 5 . 1 ( 2 ) 9 3 . 4 ( 2 ) 8 8 . 9 ( 3 ) 8 6 . 0 ( 3 ) 8 5 . 5 ( 3 ) 1 7 4 . 7 ( 2 ) 9 1 . 8 ( 2 ) 8 9 . 3 ( 2 ) 1 7 7 . 3 ( 2 ) 9 3 . 3 2 ( 1 0 ) 9 1 . 6 ( 2 ) 8 9 . 8 ( 2 ) 1 7 4 . 3 ( 3 ) 8 8 . 3 ( 3 ) 8 6 . 8 ( 3 ) 9 1 . 9 ( 2 ) 9 4 . 5 ( 2 ) 8 8 . 0 ( 3 ) 8 6 . 6 ( 3 ) 1 7 7 . 8 ( 2 ) 8 8 . 7 ( 2 ) 8 8 . 7 ( 3 ) 9 1 . 2 ( 2 ) 1 7 5 . 1 ( 2 ) 9 3 . 4 8 ( 1 0 ) T a b l e 4 . 1 7 . B o n d l e n g t h s [ A ] a n d a n g l e s [ d e g ] V ( T p ) 2 0 1 / 6 E t z O - 1 / 3 C H 3 C N , ( 2 4 V ( 1 ) - N ( 1 3 ) 2 . 1 6 8 ( 2 ) V ( l ) - N ( 1 5 ) 2 . 1 7 0 8 ( 1 7 ) V ( l ) - N ( 1 7 ) 2 . 1 8 4 0 ( 1 9 ) V ( 2 ) - N ( 7 ) 2 . 1 6 5 6 ( 1 8 ) V ( 2 ) - N ( 9 ) 2 . 1 5 4 6 ( 1 9 ) V ( 2 ) - N ( 1 1 ) 2 . 1 7 8 ( 2 ) V ( 3 ) - N ( 1 ) 2 . 1 7 7 ( 2 ) V ( 3 ) - N ( 3 ) 2 . 1 6 5 ( 2 ) V ( 3 ) - N ( 5 ) 2 . 1 8 6 1 ( 1 8 ) B ( 1 ) - N ( l 4 ) 1 . 5 6 3 ( 3 ) B ( 2 ) - N ( 1 0 ) 1 . 5 6 2 ( 3 ) B ( 2 ) - N ( 1 2 ) 1 . 5 5 8 ( 3 ) B ( 3 ) - N ( 2 ) 1 . 5 6 1 ( 3 ) B ( 3 ) - N ( 6 ) 1 . 5 5 8 ( 3 ) N ( l 3 ) - V ( l ) - N ( 1 5 ) 9 4 . 7 9 ( 7 ) N ( 1 3 ) - V ( 1 ) - N ( 1 7 ) 9 3 . 8 1 ( 7 ) N ( 1 5 ) - V ( 1 ) - N ( 1 7 ) 8 4 5 6 ( 7 ) N ( 7 ) - V ( 2 ) - N ( 1 1 ) 9 5 0 4 ( 8 ) N ( 9 ) - V ( 2 ) - N ( 7 ) 9 4 2 9 ( 7 ) N ( 9 ) - V ( 2 ) - N ( l l ) 8 6 3 7 ( 7 ) N ( l ) - V ( 3 ) - N ( 5 ) 8 5 3 2 ( 7 ) N ( 3 ) - V ( 3 ) - N ( l ) 9 4 3 6 ( 7 ) N ( 3 ) - V ( 3 ) - N ( 5 ) 9 5 . 0 4 ( 7 ) N ( 1 2 ) - B ( 2 ) - N ( 1 0 ) 1 0 9 . 7 2 ( 1 8 ) N ( 6 ) - B ( 3 ) — N ( 2 ) 1 0 8 . 4 1 ( 1 8 ) 2 0 6 5 . C o n c l u s i o n s : R e a c t i o n s o f N a [ T p ] w i t h t h e h o m o l e p t i c a c e t o n i t r i l e s o l v a t e d t r a n s i t i o n m e t a l i o n s , [ M n ( C H 3 C N ) 4 ] [ P F 6 ] 2 a n d [ C o ( C H 3 C N ) 6 ] [ P F 6 ] 2 p r o v e d t o b e e f f e c t i v e i n p r e p a r i n g t h e d i v a l e n t , s o l v a t e d c o r n e r b u i l d i n g b l o c k c o m p o u n d s [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) a n d [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 7 ) . T h e t r i v a l e n t p r e c u r s o r s ( T p ) M o B r 2 ( T H F ) a n d ( T p ) V C 1 2 ( T H F ) w e r e u s e f u l a s p r e c u r s o r s t o t h e h i g h e r o x i d a t i o n s t a t e b u i l d i n g b l o c k s c o m p o u n d s [ ( T p ) M 0 ( C H 3 C N ) 3 ] [ P F 6 l 2 ( 1 8 ) a n d [ ( T P ) V ( C H 3 C N ) 3 1 1 P F 6 1 2 ( 1 9 ) . T h e c y a n i d e c o r n e r b u i l d i n g b l o c k c o m p o u n d K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) w a s p r e p a r e d f r o m K [ ( T p ) C r C l 3 ] ( 1 4 ) . A l l e f f o r t s t o p r e p a r e t h e c a t i o n [ ( T p ) C r ( C H 3 C N ) 3 ] + b y c h l o r i d e a b s t r a c t i o n f r o m [ ( T p ) C r C l 3 ] ' p r o d u c e d o n l y t h e m o n o c h l o r i d e a b s t r a c t i o n p r o d u c t ( T p ) C r C 1 2 ( T H F ) . T h e s o l v a t e d e d g e b u i l d i n g b l o c k , t r a n s - [ N i ( C H 3 C N ] 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) w a s p r e p a r e d b y c h l o r i d e a b s t r a c t i o n f r o m t r a n s - N i C 1 2 ( e n ) 2 . A s u i t a b l e t r a n s - c y a n i d e e d g e p r e c u r s o r , t r a n s - V ( C N ) 2 ( d m p e ) 2 , w a s i d e n t i fi e d f r o m t h e l i t e r a t u r e a n d p r e p a r e d a c c o r d i n g t o t h e p u b l i s h e d m e t h o d . 1 4 T h e s u c c e s s f u l s y n t h e s i s o f s e v e r a l d i v a l e n t a n d t r i v a l e n t c o m e r a n d e d g e b u i l d i n g b l o c k c o m p o u n d s p r o v i d e s a n o p p o r t u n i t y t o e x p l o r e d i f f e r e n t c h a r g e s f o r t h e r e s u l t i n g m o l e c u l a r c u b e s . T h e m a i n p o i n t i s t h a t d e p e n d e n t u p o n p r e c u r s o r s e l e c t i o n , t h e c u b e s c o u l d b e e i t h e r n e u t r a l o r c a t i o n i c . 2 0 7 T h e S p a r t a n p r o g r a m w a s u s e d t o c o n d u c t a m o d e l i n g s t u d y t o e v a l u a t e w h e t h e r s t e r i c i n t e r a c t i o n s w o u l d p r e v e n t c u b e a s s e m b l y w i t h t h e c o m p o u n d s u n d e r i n v e s t i g a t i o n . A m o l e c u l a r m o d e l w a s c o n s t r u c t e d f o r b o t h t h e e i g h t a n d t w e n t y m e t a l a t o m c u b e s . T h e r e s u l t s o f t h e s e e f f o r t s r e v e a l e d t h a t s u f fi c i e n t v o i d s p a c e e x i s t s i n s i d e t h e c u b e s s u c h t h a t s t e r i c f a c t o r s w i l l n o t p l a y a p r o h i b i t i v e r o l e i n t h e a s s e m b l y p r o c e s s . F i n a l l y , s e l f - a s s e m b l y r e a c t i o n s o f t w o t y p e s o f b u i l d i n g b l o c k c o m p o u n d s w e r e i n v e s t i g a t e d . T h e m o s t p r o m i s i n g o f t h e s e r e a c t i o n s b a s e d o n i n f r a r e d s p e c t r o s c o p i c d a t a i s t h e r e a c t i o n o f f o u r e q u i v a l e n t s e a c h o f K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) a n d [ N i ( C H 3 C N ) 3 ( T p ) ] [ B F 4 ] w h i c h i s l e a d i n g t o a p r o d u c t t h a t h a s o n l y a s i n g l e c y a n i d e s t r e t c h . 2 0 8 R e f e r e n c e s : 1 . ( a ) C a n e s c h i , A . ; G a t t e s c h i , D . ; L a u g i e r , J . ; R e y , P . ; S e s s o l i , R . ; Z a n a c h i n i , C . J . A m . C h e m . S o c . 1 9 8 8 , 1 1 0 , 2 7 8 5 . ( b ) G a t t e s c h i , D . ; C a n e s c h i , A . ; P a r d i , L . ; S e s s o l i , R . S c i e n c e , 1 9 9 4 , 2 6 5 , 1 0 5 4 . ( c ) T a f t , K . L . ; D e l f s , C . D . ; P a p a e f t h y m i o u , S . F . ; F o n e r , S . ; G a t t e s c h i , D . ; L i p p a r d , S . J . J . A m . C h e m . S o c . 1 9 9 4 , 1 1 6 , 8 2 3 . ( ( 1 ) P o w e l l , A . K ; H e a t h , S . L . ; G a t t e s c h i , D . ; P a r d i s , L . ; S e s s o l i , R . ; S p i n a , G . ; D e l G i a l l o , F . ; a n d P i e r a l l i , F . J . A m . C h e m . S o c . 1 9 9 5 , 1 1 7 , 2 4 9 1 . ( e ) M a l l a h , T . ; F e r l a y , S . ; A u g b e r g e r , C . ; H e l a r y , C . ; H e r m i t e , F . ; O u a h e s , R . ; V a i s s e r m a n , J . ; V e r d a g u e r , M . ; V e i l l e t , P . M 0 1 . C r y s t . L i q . C r y s t . S e c . A . - M 0 1 . C r y s t . L i q . C r y s t . 1 9 9 5 , 2 7 3 , 1 4 1 . ( f ) S c u i l l e r , A . ; M a l l a h , T . ; V e r d a g u e r , M . ; N i v o r o z k h i n , A . ; T h o l e n c e , J . L . ; V i e l l e t , P . N e w J . o f C h e m . 1 9 9 6 , 2 0 , 1 . ( g ) M a l l a h , T . ; A u g b e r g e r , C . ; V e r d a g u e r , M . ; V e i l l e t , P . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 6 , 6 1 , 1 2 5 . ( h ) V o l o k i t i n , Y . ; S i n z i g , J . ; d e J o n g h , L . J . ; S c h m i d t , G . ; V a r g a f t i k , M . N . ; M o i s e e v , I . 1 . N a t u r e , 1 9 9 6 , 3 8 4 , 6 2 1 . ( i ) A b b a t i , G . L . ; C o m i a , A . ; F a b r e t t i , A . C . ; C a n e s c h i , A . C . ; G a t t e s c h i , D . I n o r g . C h e m . 1 9 9 8 , 3 7 , 3 7 5 9 . ( j ) S c h m i d t , G . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 8 , 1 0 7 7 . ( k ) B r e c h i n , K . E . ; C l e g g , W . ; M u n i e , M . ; P a r s o n s , S . ; T e a t , S . J . ; W i n p e n n y , R . E . P . J . A m . C h e m . S o c . 1 9 9 8 , 1 2 0 , 7 3 6 5 . ( 1 ) M i i l l e r , A . ; K r i c k r n e y e r , E . ; 2 0 9 B t i g g e , H . ; S c h m i d t r n a n n , M . ; B e u g h o l t , C . ; K r i i g e r l e r , P . ; L u , C . ; A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 1 2 2 0 . ( m ) W a t t o n , S . P . ; F u h r m a n n , P . ; P e n c e , L . E . ; C a n e s c h i , A . ; C o m i a , A . ; A b b a t i , G . L . ; L i p p a r d , S . J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 7 , 3 6 , 2 7 7 4 . ( 1 1 ) T r a n , N . T . ; K a w a n o , M . ; P o w e l l , D . R . ; D a h l , L . F . J . A m . C h e m . S o c . 1 9 9 8 , 1 2 0 , 1 0 9 8 6 . ( 0 ) M u l l e r , A . ; S h a h , S . Q . N . ; B o g g e , H . S c h m i d t r n a n n , M . N a t u r e , 1 9 9 9 , 3 9 7 , 4 8 . 2 . ( a ) F r i e d m a n , J . R . ; S a r a c h i k , M . P . ; T e j a d a , J . ; Z i o l o , R . P h y s . R e v . L e t t . 1 9 9 6 , 7 6 , 3 8 3 0 . ( b ) T h o m a s , L . ; L i o n t i , F . ; B a l l o u , R . ; G a t t e s c h i , D . ; S e s s o l i , R . ; B a r b a r a , B . N a t u r e , 1 9 9 6 , 3 8 3 , 1 4 5 . ( c ) A u b i n , S . M . J . ; W e m p l e , M . W . ; A d a m s , D . M . ; T s a i , H . L . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 7 7 4 6 . ( d ) A u b i n , S . M . J . ; S p a g n a , S . E p p l e y , H . J . ; S a g e r , R . E . ; F o l t i n g , K . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . M o l . C r y s t . a n d L i q . C r y s t . S c i e n c e a n d T e c h . S e c . A . - M o l . C r y s t . L i q . C r y s t . 1 9 9 7 , 3 0 5 , 1 8 1 . ( e ) A r o m i , G . ; A u b i n , S . M . J . ; S p a g n a , S . ; B o l c a r , M . A . ; E p p l e y , H . J . ; F o l t i n g , K . ; C h r i s t o u , G . ; H e n d r i c k s o n , D . N . ; H u f f m a n , J . C . ; S q u i r e , R . C . ; T s a i , H . L . ; W a n g , S . ; W e m p l e , M . W . ; P o l y h e d r o n , 1 9 9 8 , 1 7 , 3 0 0 5 . K l a u s m e y e r , K . K . ; R a u c h f u s s , T . B . ; W i l s o n , S . R . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 1 6 9 4 . 3 . H e i n r i c h , J . L . ; B e r s e t h , P . A . ; L o n g , J . R . C h e m . C o m m u n . 1 9 9 8 , 1 2 3 1 . 2 1 0 4 . ( a ) H e i n t z , R . A . ; S m i t h , J . A . ; S z a l a y , P . S . ; W e i s g e r b e r , A . ; D u n b a r , K . R . a c c e p t e d i n t o I n o r g a n i c S y n t h e s e s ( b ) K e r n , R . J . J . I n o r g . N u c l . C h e m . 1 9 6 2 , 2 4 , 1 1 0 5 . ( c ) F o w l e s , G . W . A . J . I n o r g . N u c l . C h e m . 1 9 6 7 , 2 9 , 2 3 6 5 . 5 . T r o fi m e n k o , S . I n o r g . S y n . 1 9 7 0 , 1 2 , 9 9 . 6 . A b r a m s , M . J . ; F a g g i a n i , R . ; L o c k , C . J . L . I n o r g . C h i m . A c t a . 1 9 8 5 , 1 0 6 , 6 9 . 7 . M a n z e r , L . J . o f O r g a n o m e t . C h e m . 1 9 7 5 , 1 0 2 , 1 6 7 . 8 . S a i n t 1 0 0 0 , B r u k e r A n a l y t i c a l X - R a y I n s t r u m e n t s , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) 9 . S h e l d r i c k , G . M . “ S A B A B S , S i e m e n s A r e a D e t e c t o r A b s o r p t i o n C o r r e c t i o n ” , U n i v . o f G o t t i n g e n , G o t t i n g e n , G e r m a n y ( 1 9 9 8 ) . 1 0 . S I - I E L T X L v e r s i o n 5 . 1 0 , R e f e r e n c e M a n u a l , B r u k e r I n d u s t r i a l A u t o m a t i o n , A n a l y t i c a l I n s t r u m e n t , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) . 1 2 . ( a ) S e n , A . ; L a i , T . J . A m . C h e m . S o c . 1 9 8 1 , 1 0 3 , 4 6 2 7 . ( b ) R e n z i , A . ; P a n u n z i , A . ; V i t a g l i a n o , A . J . ; J . C h e m . S o c . C h e m . C o m m u n . 1 9 7 6 , 4 7 1 . ( c ) F i n n i s , G . M . ; C a n a d e l l , E . ; D u n b a r , K . R . A n g e w . C h e m . 1 9 9 6 , 1 1 8 , 2 7 7 2 . ( d ) Z h a o , H . ; H e i n t z , R . H . ; R o g e r s , R . D . ; D u n b a r , K . R . J . A m . C h e m . S o c . 1 9 9 6 , 1 1 8 , 1 2 8 4 4 . ( e ) B u s c h m a r l , W . E . ; M i l l e r , J . S . I n o r g . C h e m . C o m m u n . 1 9 9 8 , I , 1 7 4 . 2 1 1 1 3 . ( a ) A n d e r s o n , P . A . ; A s t l e y , T . ; H i t c h m a n , M . A . ; K e e n e , F . R . ; 1 4 . 1 5 . M o u b a r a k i , B . ; M u r r a y , K . S . ; S k e l t o n , B . W . ; T i e k i n k , E . R . T . ; T o f t l u n d , H . ; W h i t e , A . H . J . C h e m . S o c . D a l t o n T r a n s . 2 0 0 0 , 3 5 0 5 . ( b ) N i c a s i o , M . C . ; P a n e q u e , M . ; P e r e z , P . J . ; P i z z a n o , A . ; P o v e d a , M . L . ; R e y , L . ; S i r o l , S . ; T a b o a d a , S . ; T r u j i l l o , M . ; M o n g e , A . ; R u i z , C . ; C a r m o n a , E . I n o r g . C h e m . 2 0 0 0 , 3 9 , 1 8 0 . ( c ) P a u l o , A . ; D o m i n g o s , A . ; S a n t o s , I . J . C h e m . S o c . D a l t o n T r a n s . 1 9 9 9 , 3 7 3 5 . ( d ) G h o s h , P . ; R h e i n g h o l d , A . ; P a r k i n , G . I n o r g . C h e m . 1 9 9 9 , 3 8 , 5 4 6 4 . ( e ) T a n g , L - R ; W a n g , Z - H . ; X u , Y - M . ; W a n g , J - T . T r a n s . M e t . C h e m . 1 9 9 9 , 2 4 , 7 0 8 . ( f ) T r o fi m e n k o , S . C h e m . R e v . 1 9 9 3 , 9 3 , 9 4 3 . ( a ) B o u m a , R . J . ; T e u b e n , J . H . ; H u f f m a n , J . C . ; C a u l t o n , K . G . I n o r g . C h e m . 1 9 8 4 , 2 3 , 2 7 1 5 . ( b ) G i r o l a m i , G . S . ; W i l k i n s o n , G . J . C h e m . S o c . D a l t o n T r a n s . 1 9 8 5 , 1 3 3 9 . ( c ) A n d e r s o n , S . J . ; W e l l s , F . J . ; W i l k i n s o n , G . P o l y h e d r o n , 1 9 8 8 , 2 4 , 2 6 1 5 . ( a ) N i s h i k i r i , S . ; R a t c l i f f e , C . I . ; R i p m e e s t e r , J . A . J . A m . C h e m . S o c . 1 9 9 2 , 1 1 4 , 8 5 9 0 . ( b ) K i m , J . ; W h a n g , D . ; L e e , J . 1 . ; K i m , K . J . C h e m . S o c . C h e m . C o m m u n . 1 9 9 3 , 1 4 0 0 . ( c ) M i r o n o v , Y . V . ; V i r o v e t s , A . V . ; A r t e m k i n a , S . B . ; F e d o r o v , V . E . ; A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 2 5 0 7 . ( d ) S i e b e l , B . ; F i s c h e r , R . D . ; K o p f , J . ; D a v i e s , N . A . ; 2 1 2 1 6 . 1 7 . 1 8 . 1 9 . 2 0 . 2 1 . 2 2 . A p p e r l e y , D . C . ; H a r r i s , R . K . I n o r g . C h e m . C o m m u n . 1 9 9 8 , 3 4 6 . ( e ) N a u m o v , N . G . ; V i r o v e t s , A . V . ; S o k o l o v , M . N . ; A r t e m k i n a , S . B . ; F e d o r o v , V . E . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 8 , 3 7 , 1 9 4 3 . F a l v e l l o , L . R . ; T o m a s , M . C h e m . C o m m u n . 1 9 9 9 , 2 7 3 . C h e s n u t , D . J . ; K u s n e t z o w , A . ; B i r g e , R . ; Z u b i e t a , J . I n o r g . C h e m . 1 9 9 9 , 3 8 , 5 4 8 4 . S p a r t a n , W a v e f u n c t i o n I n c . 1 8 4 0 1 V o n K a r m a n A v e . S u i t e 3 7 0 I r v i n e , C A 9 2 7 1 5 U S A S h a r p e , A . G . T h e C h e m i s t r y o f C y a n o C o m p l e x e s o f t h e T r a n s i t i o n M e t a l s , A c a d e m i c P r e s s I n c . N e w Y o r k 1 9 7 6 . N a k a m o t o , K . I n f r a r e d a n d R a m a n S p e c t r o s c o p y o f I n o r g a n i c a n d C o o r d i n a t i o n C o m p o u n d s , J o h n W i l e y & S o n s I n c . 1 9 8 6 . U z e l r n e i e r , C . E . ; D u n b a r , K . R . ; A l l i s o n , J . I n o r g . C h e m . 1 9 9 8 , 3 7 , 1 8 3 3 . C a r l i n , R . L . M a g n e t o c h e m i s t r y , S p r i n g e r - V e r l a g B e r l i n H e i d e l b e r g 1 9 8 6 . M a b b s , F . B . ; M a c h i n , D . J . M a g n e t i s m a n d T r a n s i t i o n M e t a l C o m p l e x e s , L o n d o n C h a p m a n a n d H a l l 1 9 7 3 . F o r d e t a i l s r e g a r d i n g [ N i ( C H 3 C N ) 3 ( T p ) ] [ B F 4 ] p l e a s e r e f e r t o t h e D i s s e r t a t i o n o f J . A . S m i t h , M i c h i g a n S t a t e U n i v e r s i t y M a y , 2 0 0 1 . 2 1 3 C h a p t e r V I n v e s t i g a t i o n s o f t h e r e d u c t i o n c h e m i s t r y o f H A T - ( C N ) 6 a n d r e a c t i v i t y o f t h e r e d u c e d s p e c i e s w i t h t r a n s i t i o n m e t a l s 2 1 4 1 . I n t r o d u c t i o n A c o m m o n f e a t u r e o f m o l e c u l e - b a s e d m a g n e t s i s t h e p r e s e n c e o f p o l y m e r i c n e t w o r k s o f p a r a m a g n e t i c m e t a l s b r i d g e d b y l i g a n d s c a p a b l e o f p r o m o t i n g m a g n e t i c i n t e r a c t i o n s b e t w e e n t h e l o c a l i z e d d - e l e c t r o n s . I n a d d i t i o n t o t h e d i f f e r e n t p a t h w a y s f o r m a g n e t i c e x c h a n g e t h r o u g h t h e l i g a n d ( 0 v e r s u s 7 1 : ) , i t i s i m p o r t a n t t o c o n s i d e r t h e s i z e o f t h e l i n k e r w h i c h i s t y p i c a l l y i n v e r s e l y r e l a t e d t o t h e s t r e n g t h o f t h e i n t e r a c t i o n . C o n s e q u e n t l y , m o s t e x a m p l e s o f m o l e c u l a r - b a s e d m a g n e t s a r e b a s e d o n l i g a n d s c o n s i s t i n g o f o n l y a f e w a t o m s s u c h a s C N ' 1 , N ( C N ) 2 ’ 2 , a n d C 2 0 4 2 - 3 . O n e s t r a t e g y f o r i n d u c i n g s t r o n g e r m a g n e t i c i n t e r a c t i o n s w i t h l o n g e r l i n k e r s i s t o u s e o r g a n i c r a d i c a l s a s l i g a n d s , d u e t o t h e a b i l i t y o f u n p a i r e d e l e c t r o n s o n t h e l i g a n d t o i n t e r a c t w i t h t h o s e o f t h e m e t a l s . N o v e l m a g n e t s h a v e b e e n “ o b t a i n e d i n t h i s m a n n e r w i t h o r g a n i c a c c e p t o r s s u c h a s T C N E 4 a n d T C N Q 5 . I n t h e v e i n o f o u r u s e o f o r g a n o r a d i c a l l i n k e r s s u c h a s T C N Q , t h e h e x a n i t r i l e d e r i v a t i v e o f 1 , 4 , 5 , 8 , 9 , 1 l - h e x a z a t r i p h e n y l e n e , n a m e l y h e x a a z a t r i p h e n y l e n e - h e x a c a r b o n i t r i l e ( H A T - ( C N ) 6 ) ( F i g u r e 5 . 1 ) , o f f e r s i n t e r e s t i n g p o s s i b i l i t i e s f o r p r e p a r i n g n e w m a g n e t i c m a t e r i a l s w i t h fi r s t r o w t r a n s i t i o n m e t a l s . T h e c y c l i c v o l t a r n m o g r a m o f H A T - ( C N ) 6 i n a c e t o n i t r i l e , 2 1 5 ” \ \ 7 “ 7 \ / 2 ” \ / / / \ \ F i g u r e 5 . 1 . A r e p r e s e n t a t i o n o f t h e s t r u c t u r e o f H A T - ( C N ) 6 ( 2 5 ) 2 1 6 g n r r e u p 1 9 4 9 V - 2 . 5 f 0 . 2 o - o . 2 - o . 4 - 0 . 6 - 0 . fi 8 - 1 . 0 - 1 . 2 - 1 . 4 - 1 . 6 - 1 . 8 P o t e n t i a l / V F i g u r e 5 . 2 . C y c l i c V o l t a m m o g r a m o f H A T - ( C N ) 6 ( 2 5 ) p e r f o r m e d i n a c e t o n i t r i l e v s A g / A g C l . 2 1 7 v e r s u s A g / A g C l , r e v e a l s t w o r e v e r s i b l e o n e - e l e c t r o n r e d u c t i o n s l o c a t e d a t E m = — 0 . 0 6 4 V a n d — 0 . 4 5 0 V . R e d u c t i o n b y a t h i r d e l e c t r o n l e a d s t o d e c o m p o s i t i o n a s e v i d e n c e d b y a n i r r e v e r s i b l e c a t h o d i c f e a t u r e a t — 1 . 1 6 V ( F i g u r e 5 . 2 ) . 1 2 T h e a c c e s s i b i l i t y o f t h e fi r s t t w o r e d o x p r o c e s s e s r e n d e r s [ H A T - ( C N ) 6 ] ' a n d [ H A T - ( C N ) 6 ] 2 ' v i a b l e c a n d i d a t e s f o r i s o l a t i o n a s p a r a m a g n e t i c l i g a n d s . I n c o n s i d e r i n g t h e t w o p o s s i b l e c o o r d i n a t i o n m o d e s o f t h i s l i g a n d , t h e c h e l a t i n g b i p y r i d i n e m o i e t i e s i n t h e c e n t r a l r i n g s a r e e x p e c t e d t o b e f a v o r e d o v e r m o n o d e n t a t e c o o r d i n a t i o n a t t h e t e m l i n a l n i t r i l e f u n c t i o n a l i t i e s . W i t h t h i s s i t u a t i o n , t h e c o o r d i n a t i o n o f u p t o t h r e e m e t a l s i s p o s s i b l e , w h i c h w o u l d r e s u l t i n a t r i a n g u l a r a r r a n g e m e n t . D e p e n d i n g u p o n t h e m e t a l / l i g a n d r a t i o , o n e m a y a n t i c i p a t e d i f f e r e n t s o l i d s t a t e a r c h i t e c t u r e s a n d m o l e c u l a r s p e c i e s t o b e f o r m e d . D u r i n g t h e c o u r s e o f o u r s t u d i e s , w e n o t e d t h e r e p o r t o f t h e c o m p o u n d { [ C u ( d p p e ) ] 3 [ H A T - ( C N ) 6 ] } i n w h i c h t h e [ H A T - ( C N ) 6 ] ' l i g a n d i s c h e l a t e d t o t h r e e m e t a l i o n s . 1 3 T h i s i s t h e o n l y c o m p o u n d o f t h e [ H A T - ( C N ) 6 ] ' r a d i c a l t h a t h a s b e e n r e p o r t e d t o d a t e . I n t h i s c a s e , h o w e v e r , t h e m a g n e t i c i n t e r a c t i o n o f m e t a l s p i n s t h r o u g h t h e [ H A T - ( C N ) 6 ] " c o r e c o u l d n o t b e p r o b e d , s i n c e t h e C u ( I ) c e n t e r s a r e d i a m a g n e t i c . T h i s c h a p t e r i s a r e p o r t o u r s t u d i e s o n t h e d e l i b e r a t e r e d u c t i o n o f H A T - ( C N ) 6 t o [ H A T - ( C N ) 6 ] ' a n d [ H A T - ( C N ) 6 ] 2 ' a n d t h e r e a c t i v i t y o f t h e s e r e d u c e d s p e c i e s w i t h t r a n s i t i o n m e t a l s . A c o m p u t a t i o n a l s t u d y i n v e s t i g a t i n g 2 1 8 t h e o n e a n d t w o e l e c t r o n r e d u c t i o n p r o d u c t s o f H A T - ( C N ) 6 w a s c o n d u c t e d i n c o l l a b o r a t i o n w i t h P r o f e s s o r J . E . J a c k s o n o f M i c h i g a n S t a t e U n i v e r s i t y . I n a d d i t i o n , E P R s t u d i e s w e r e c o n d u c t e d i n c o l l a b o r a t i o n w i t h D r . A n d r e w I c h i m u r a a t M i c h i g a n S t a t e U n i v e r s i t y . T h e r e s u l t s o f t h e s e e f f o r t s w i t h H A T - ( C N ) 6 , [ H A T - ( C N ) 6 ] ' , a n d b o t h t h e s i n g l e t a n d t r i p l e t e l e c t r o n i c c o n fi g u r a t i o n s o f [ H A T - ( C N ) 6 ] 2 ' w i l l b e d i s c u s s e d . 2 . E x p e r i m e n t a l A . M a t e r i a l s A l l s o l v e n t s w e r e o f r e a g e n t g r a d e q u a l i t y a n d w e r e d r i e d b y c o n v e n t i o n a l m e t h o d s . A l l m a n i p u l a t i o n s w e r e c a r r i e d o u t u n d e r a n i n e r t a t m o s p h e r e u s i n g s t a n d a r d S c h l e n k - l i n e a n d d r y b o x t e c h n i q u e s . T h e m o l e c u l e H A T - ( C N ) 6 ( 2 5 ) w a s p r e p a r e d a c c o r d i n g t o t h e l i t e r a t u r e m e t h o d a n d r e c r y s t a l l i z e d f r o m a m e t h a n o l / a c e t o n i t r i l e s o l u t i o n . 6 T h e c o m p o u n d s C p * 2 F e , s z C o , a n d [ C p 2 C 0 ] [ P F ( , ] w e r e p u r c h a s e d f r o m S t r e m a n d u s e d a s r e c e i v e d . T h e s a l t s M ( C l O 4 ) 2 - 6 ( H Z O ) ( M = M n , C o , a n d N i ) w e r e p u r c h a s e d f r o m A l d r i c h a n d u s e d w i t h o u t f u r t h e r p u r i fi c a t i o n . B . P h y s i c a l M e a s u r e m e n t s C y c l i c V o l t a m m e t r i c ( C V ) e x p e r i m e n t s w e r e c a r r i e d o u t o n a C H I n s t r u m e n t s E l e c t r o c h e m i c a l W o r k S t a t i o n w i t h a A g / A g C l r e f e r e n c e e l e c t r o d e , a P t d i s k w o r k i n g e l e c t r o d e , a n d a P t w i r e a u x i l l a r y e l e c t r o d e i n 2 1 9 0 . 1 M [ n - B u 4 N ] [ P F 6 ] a c e t o n i t r i l e s o l u t i o n s . I n f r a r e d s p e c t r a w e r e r e c o r d e d o n s o l i d s s u s p e n d e d i n N u j o l o n C s I p l a t e s u s i n g a N i c o l e t I R / 4 2 F T - I R s p e c t r o m e t e r . E l e c t r o n P a r a m a g n e t i c R e s o n a n c e ( E P R ) s p e c t r a w e r e r e c o r d e d o n a B r u k e r E l e c t r o n S p i n R e s o n a n c e E S P 3 0 0 E i n s t r u m e n t e q u i p p e d w i t h a n O x f o r d i n s t r u m e n t C r y o s t a t E S R 9 0 0 i n t h e r a n g e 4 . 2 - 3 0 0 K . V a r i a b l e t e m p e r a t u r e m a g n e t i c s u s c e p t i b i l i t y d a t a w e r e o b t a i n e d i n t h e r a n g e 2 - 3 0 0 K o n p o l y c r y s t a l l i n e s a m p l e s u s i n g a Q u a n t u m D e s i g n , M o d e l M P M S - X L h o u s e d i n t h e D e p a r t m e n t o f P h y s i c s a t M i c h i g a n S t a t e U n i v e r s i t y . C . S y n t h e s e s ( 1 ) P r e p a r a t i o n o f H A T - ( C N ) 6 - C 7 H 3 - C H 3 C N , ( 2 6 ) A s a m p l e o f H A T - ( C N ) 6 ( 0 . 0 2 0 g , 0 . 0 5 2 m m o l ) w a s d i s s o l v e d i n 5 m L o f a c e t o n i t r i l e a n d t r e a t e d w i t h t o l u e n e ( 5 m L ) . T h e r e s u l t i n g o r a n g e s o l u t i o n w a s fi l t e r e d a n d c o n c e n t r a t e d b y s l o w e v a p o r a t i o n u n d e r n i t r o g e n t o y i e l d g r e e n c r y s t a l s o f H A T - ( C N ) 6 - C 7 H 8 - C H 3 C N ( 2 6 ) . v C N = 2 2 4 3 c m " . ( 2 ) P r e p a r a t i o n o f C o ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 . 4 H 2 0 , ( 2 7 ) O r a n g e c r y s t a l s o f C o ( H A T ( C N ) 4 O Z ) ( H z O ) 4 . 4 H z O ( 2 7 ) , w e r e o b t a i n e d b y s l o w e v a p o r a t i o n i n a i r o f a s o l u t i o n c o n t a i n i n g C o ( C I O 4 ) 2 - 6 ( H Z O ) ( 0 . 0 1 3 g , 0 . 0 3 4 m m o l ) d i s s o l v e d i n 2 m L o f d e i o n i z e d w a t e r a n d H A T - ( C N ) ( , ( 0 . 0 0 8 2 2 0 g , 0 . 0 2 1 m m o l ) d i s s o l v e d i n 2 m L o f a c e t o n i t r i l e . Y i e l d 0 . 0 0 6 g ( 6 0 % ) v C N = 2 2 2 9 c m " . ( 3 ) P r e p a r a t i o n o f N i [ H A T ( C N ) 4 0 2 ] ( H 2 0 ) 4 - 4 H Z O , ( 2 8 ) a n d M n [ H A T ( C N ) 4 0 2 ] ( H z O ) 4 o 4 H Z O , ( 2 9 ) T h e c o m p o u n d s N i [ H A T ( C N ) 4 O z ] ( H z O ) 4 . 4 H z O ( 2 8 ) a n d M n [ H A T ( C N ) 4 O Z ] ( H Z O ) 4 . 4 H z O , ( 2 9 ) w e r e p r e p a r e d a s c r y s t a l l i n e p r o d u c t s u n d e r t h e s a m e c o n d i t i o n s a s C o ( H A T ( C N ) 4 O z ) ( H 2 0 ) 4 . 4 H g O , ( 2 7 ) f r o m t h e r e a c t i o n o f N i ( C l O 4 ) 2 . 6 ( H z O ) ( 0 . 0 1 3 g , 0 . 0 3 4 m m o l ) o r M n ( C l O 4 ) 2 . 6 ( H z O ) ( 0 . 0 1 3 g , 0 . 0 3 3 m m o l ) w i t h H A T - ( C N ) 6 ( 0 . 0 0 8 g , 0 . 0 2 1 m m o l ) . ( 2 8 ) Y i e l d 0 . 0 0 5 g ( 5 0 % ) v C N = 2 2 2 9 c m " . ( 2 9 ) Y i e l d 0 . 0 0 5 g ( 5 0 % ) u m = 2 2 2 9 c m " 1 . ( 4 ) P r e p a r a t i o n o f { ( s z F e ) 3 [ H A T - ( C N ) 6 ] } - C H 3 C N , ( 3 0 ) C r y s t a l s o f { ( s z F e ) 3 [ H A T — ( C N ) 6 ] } . C H 3 C N ( 3 0 ) , w e r e p r e p a r e d b y m i x i n g a c e t o n i t r i l e s o l u t i o n s o f f e r r o c e n e ( 0 . 1 0 0 g , 0 . 5 2 8 m m o l ) a n d H A T - ( C N ) 6 ( 0 . 0 6 8 g , 0 . 1 7 6 m m o l ) . C o n c e n t r a t i o n o f t h i s s o l u t i o n e i t h e r i n v a c u o o r b y e v a p o r a t i o n i n a i r r e s u l t e d i n t h e f o r m a t i o n o f d a r k g r e e n c r y s t a l s . V c . N = 2 2 4 3 c m " . ( 5 ) P r e p a r a t i o n o f { [ ( C p ) 2 C o ] [ P F 6 ] } 3 H A T - ( C N ) 6 ( 3 1 ) 2 2 1 T h e c o m p o u n d { [ ( C p ) 2 C o ] [ P F 6 ] } 3 H A T - ( C N ) 6 ( 3 1 ) w a s p r e p a r e d b y m i x i n g a c e t o n i t r i l e s o l u t i o n s o f [ s z C o ] [ P F 6 ] ( 0 . 1 0 0 g , 0 . 5 2 8 m m o l ) a n d H A T - ( C N ) 6 ( 0 . 0 6 8 g , 0 . 1 7 6 m m o l ) . C o n c e n t r a t i o n o f t h i s s o l u t i o n b y s l o w e v a p o r a t i o n u n d e r n i t r o g e n r e s u l t s i n t h e d e p o s t i o n o f d a r k g r e e n c r y s t a l s ( 3 1 ) . v C = N = 2 2 4 3 c m " . ( 6 ) P Y E P a r a t i o n 0 f { ( [ n - B m N ] [ I ] ) 3 [ I l [ H A T - ( C N ) 6 1 2 } . 3 C s H s , ( 3 2 ) A d d i t i o n o f a T H F s o l u t i o n ( 1 0 m L ) o f [ n - B u . . N ] [ I ] ( 0 . 4 3 2 g , 1 . 1 7 m m o l ) t o a T H F s o l u t i o n o f H A T - ( C N ) 6 ( 0 . 0 7 5 g , 0 . 1 9 5 m m o l ) p r o d u c e d a g r e e n s o l u t i o n . H e a t i n g w a s r e q u i r e d f o r c o m p l e t e r e a g e n t d i s s o l u t i o n . C o n c e n t r a t i o n o f t h e s o l u t i o n t o ~ 7 m L p r e c i p i t a t e d u n r e a c t e d [ n - B u 4 N ] [ I ] a s a w h i t e c r y s t a l l i n e s o l i d . A f t e r r e m o v a l o f t h e [ n - B u 4 N ] [ I ] b y fi l t r a t i o n , b e n z e n e ( 1 5 m L ) w a s a d d e d . G r e e n n e e d l e - s h a p e d c r y s t a l s o f { ( [ n - B u 4 N ] [ I ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } - 3 C 6 H 6 , ( 3 2 ) w e r e o b t a i n e d a f t e r t h e s o l u t i o n h a d b e e n s t a n d i n g u n d i s t u r b e d f o r t w o d a y s . V c . N = 2 2 4 3 , 2 2 2 8 c m " 1 ( 7 ) P r e p a r a t i o n o f [ C o n 2 ] [ H A T - ( C N ) 6 ] , ( 3 3 ) [ C o n 2 ] [ H A T - ( C N ) 6 ] ( 3 3 ) , w a s p r e p a r e d b y m i x i n g a c e t o n i t r i l e s o l u t i o n s o f H A T - ( C N ) 6 ( 0 . 3 0 4 g , 0 . 7 9 3 m m o l ) a n d c o b a l t o c e n e ( 0 . 0 5 0 g , 0 . 2 6 4 m m o l ) . T h e s o l u t i o n w a s c o n c e n t r a t e d a n d t e t r a h y d r o f u r a n a d d e d t o p r e c i p i t a t e t h e g r e e n p r o d u c t , w h i c h w a s c o l l e c t e d b y fi l t r a t i o n , w a s h e d w i t h 2 2 2 t e t r a h y d r o f u r a n f o l l o w e d b y d i e t h y l e t h e r , a n d d r i e d i n v a c u o . Y i e l d 0 . 1 1 3 g ( 7 5 % ) . V C ‘ N = 2 2 1 4 c m ] . T h e E P R s p e c t r u m o f a s o l i d s a m p l e a t 4 K s h o w s a n i s o t r o p i c s i g n a l a t g = 2 . 0 0 8 4 a n d a l i n e - w i d t h o f 7 G . A n a l . C a l c d f o r n g l e H l o C o l : C , 5 8 . 6 5 ; H , 1 . 7 6 ; N , 2 9 . 3 1 . F o u n d : C , 5 8 . 7 8 ; H , 1 . 9 2 ; N , 2 8 . 8 8 . ( 8 ) P r e p a r a t i o n o f [ C o n 2 ] 2 [ H A T - ( C N ) 6 ] ( 3 4 ) T h e c o m p o u n d [ C o n 2 ] 2 [ H A T - ( C N ) 6 ] ( 3 4 ) w a s p r e p a r e d b y c o m b i n i n g a c e t o n i t r i l e s o l u t i o n s o f H A T - ( C N ) 6 ( 0 . 0 7 5 g , 0 . 1 9 5 m m o l ) a n d c o b a l t o c e n e ( 0 . 1 1 1 g , 0 . 5 8 5 m m o l ) . T h e b l u e - g r e e n p r o d u c t p r e c i p i t a t e d f r o m s o l u t i o n w i t h c o n c e n t r a t i o n a n d w a s c o l l e c t e d b y fi l t r a t i o n , w a s h e d w i t h t e t r a h y d r o f u r a n f o l l o w e d b y d i e t h y l e t h e r , a n d d r i e d i n v a c u o . Y i e l d 0 . 1 2 6 g ( 8 5 % ) . v . 3 , N = 2 1 9 5 c m " . A n a l . C a l c d f o r C 3 8 N 1 2 H 2 0 C 0 2 : C , 5 9 . 8 6 ; H , 2 . 6 4 ; N , 2 2 . 0 4 . F o u n d : C , 5 8 . 9 5 ; H , 2 . 8 1 ; N , 2 2 . 4 9 . ( 9 ) P r e p a r a t i o n o f [ M ] [ H A T - ( C N ) 6 ] 2 ( M = C 0 ( 3 5 ) , Z n ( 3 6 ) ) [ M ] [ H A T - ( C N ) 6 ] 2 ( M = C 0 ( 3 5 ) o r Z n ( 3 6 ) ) c o m p l e x e s w e r e p r e p a r e d b y t h e r e a c t i o n o f a n e x c e s s o f t h e m e t a l p o w d e r o r c h i p s w i t h a v i g o r o u s l y s t i r r e d a c e t o n i t r i l e s o l u t i o n o f H A T - ( C N ) 6 ( 0 . 2 0 0 g , 0 . 5 2 0 m m o l ) . T h e r e s u l t i n g d a r k b l u e - g r e e n s o l u t i o n s a r e fi l t e r e d t h r o u g h C e l i t e a n d r e d u c e d t o d r y n e s s . T h e s o l i d w a s w a s h e d w i t h d i c h l o r o m e t h a n e f o l l o w e d b y d i e t h y l 2 2 3 e t h e r a n d d r i e d i n v a c u o . C o [ H A T — ( C N ) 6 ] 2 ( 3 5 ) : Y i e l d 0 . 3 6 5 g ( 8 5 % ) . V C S N = 2 2 1 0 c m ] ; T h e r e s u l t s o f E P R s t u d i e s a r e p r e s e n t e d i n t h e r e s u l t s a n d d i s c u s s i o n s e c t i o n o f t h i s c h a p t e r . A n a l . C a l c d . f o r C 3 6 N 2 4 C o : C , 5 2 . 2 5 ; N , 4 0 . 6 2 . F o u n d : C , 5 1 . 3 2 ; N , 3 9 . 9 5 . Z n [ H A T - ( C N ) 6 ] 2 ( 3 6 ) : Y i e l d 0 . 3 6 8 g ( 8 5 % ) v c i N = 2 2 1 2 c m “ ; A n a l . C a l c d . f o r C 3 6 N 2 4 Z n : C , 5 1 . 8 4 ; N , 4 0 . 3 1 . F o u n d : C , 5 1 . 0 6 ; N , 3 9 . 7 3 . D . X - r a y C r y s t a l l o g r a p h y S i n g l e c r y s t a l X - r a y s t r u c t u r a l a n a l y s e s w e r e p e r f o r m e d o n a B r u k e r S M A R T 1 K C C D p l a t f o r m d i f f r a c t o m e t e r w i t h g r a p h i t e m o n o c h r o m a t e d M o K a r a d i a t i o n ( A u = 0 . 7 1 0 6 9 A ) . 1 3 T h e f r a m e s w e r e i n t e g r a t e d i n t h e B r u k e r S A I N T s o f t w a r e p a c k a g e ” , a n d t h e d a t a w e r e c o r r e c t e d f o r a b s o r p t i o n u s i n g t h e S A D A B S p r o g r a m . 1 3 T h e s t r u c t u r e s w e r e s o l v e d u s i n g t h e S H E L X T L V . 5 . 1 0 p a c k a g e . l 3 P e r t i n e n t c r y s t a l l o g r a p h i c d a t a a n d r e fi n e m e n t p a r a m e t e r s a r e p r o v i d e d i n T a b l e s 5 . 1 — 5 . 3 . ( l ) H A T - ( C N ) 6 - t o l u e n e o C H 3 C N , ( 2 6 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n G r e e n X - r a y q u a l i t y s i n g l e c r y s t a l s w e r e o b t a i n e d b y s l o w e v a p o r a t i o n o f a n a c e t o n i t r i e / t o l u e n e 5 0 / 5 0 s o l u t i o n o f H A T - ( C N ) 6 u n d e r n i t r o g e n . A c r y s t a l o f d i m e n s i o n s 0 . 2 5 x 0 . 1 5 x 0 . 0 5 m m 3 w a s c o v e r e d i n P a r a t o n e o i l 2 2 4 a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 6 1 7 4 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 5 6 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t F r o m t h e s y s t e m a t i c a b s e n c e s , t h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P 2 1 / c . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e c r y s t a l d i f f r a c t e d p o o r l y w h i c h l e a d t o r e fi n e m e n t l i m i t a t i o n s ( R ; m = 0 . 1 4 0 1 a n d R 0 = 0 . 1 3 8 1 ) . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t w a s b a s e d o n 2 7 2 4 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 s i g ( F o ) a n d 3 6 1 p a r a m e t e r s t o g i v e R 1 = 0 . 0 9 3 2 a n d w R 2 = 0 . 2 5 9 2 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 0 4 2 . ( 2 ) C o ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 . 4 H 2 0 , ( 2 7 ) , N i [ H A T ( C N ) 4 O z ] ( H 2 0 ) 4 o 4 H 2 0 ( 2 8 ) , a n d M n [ H A T ( C N ) 4 0 2 ] ( H z O ) 4 - 4 H 2 0 ( 2 9 ) ( i ) D a t a C o l l e c t i o n a n d R e d u c t i o n 2 2 5 O r a n g e X - r a y q u a l i t y s i n g l e c r y s t a l s o f t h e i s o s t r u c t u r a l c o m p o u n d s ( 2 7 ) , ( 2 8 ) , a n d ( 2 9 ) f o r m e d f r o m a e r i a l e v a p o r a t i o n o f s o l u t i o n s o f H A T - ( C N ) 6 d i s s o l v e d i n C H 3 C N a n d M ( C I O 4 ) 2 - 6 H Z O ( M = M n , C o , N i ) d i s s o l v e d i n w a t e r . C r y s t a l s o f d i m e n s i o n s 0 . 7 5 x 0 . 2 2 x 0 . 1 3 m m 3 ( 2 7 ) , 0 . 4 0 x 0 . 0 9 x 0 . 0 9 m m 3 ( 2 8 ) , a n d 0 . 2 5 x 0 . 1 2 x 0 . 1 1 m m 3 ( 2 9 ) w e r e c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p s o f g l a s s fi b e r s w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n o b t a i n e d f o r a l l t h r e e c o m p o u n d s c o r r e s p o n d e d t o t r i c l i n i c c e l l s . T o t a l s o f 1 3 4 1 4 , 1 3 4 7 7 , a n d 1 3 5 0 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d f o r ( 2 7 ) , ( 2 8 ) , a n d ( 2 9 ) a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 7 6 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p f o r a l l t h r e e s t r u c t u r e s w a s d e t e r m i n e d t o b e P - l . T h e s t r u c t u r e s w e r e s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s w e r e l o c a t e d f r o m t h e d i f f e r e n c e m a p . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t f o r ( 2 7 ) w a s b a s e d o n 3 1 9 9 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 s i g ( F o ) a n d 3 9 8 p a r a m e t e r s t o g i v e R 1 = 0 . 0 5 4 1 a n d w R 2 = 0 . 1 2 5 2 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 0 2 3 . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t s q u a r e s r e fi n e m e n t f o r ( 2 8 ) w a s b a s e d o n 2 2 6 2 8 8 4 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 s i g ( F o ) a n d 3 9 8 p a r a m e t e r s t o g i v e R 1 = 0 . 0 5 5 6 a n d w R 2 = 0 . 1 1 2 6 a n d a g o o d n e s s - o f - fi t v a l u e o f 0 . 9 1 3 . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t f o r ( 2 9 ) w a s b a s e d o n 3 5 4 6 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 s i g ( F o ) a n d 3 8 5 p a r a m e t e r s t o g i v e R 1 = 0 . 0 6 0 8 a n d w R 2 = 0 . 1 7 7 3 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 2 1 1 . ( 3 ) { ( s z F e ) 3 l H A T - ( C N ) 6 1 } - C H 3 C N , ( 3 0 ) ( i ) D a t a c o l l e c t i o n a n d r e d u c t i o n G r e e n X — r a y q u a l i t y s i n g l e c r y s t a l s w e r e o b t a i n e d b y e v a p o r a t i o n i n v a c u o o f a n a c e t o n i t r i l e s o l u t i o n o f H A T - ( C N ) 6 a n d s z F e . A c r y s t a l o f d i m e n s i o n s 0 . 5 5 x 0 . 4 9 x 0 . 3 5 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a t r i g o n a l c r y s t a l s y s t e m . A t o t a l o f 7 5 8 7 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 4 8 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e P 3 f r o m t h e s y s t e m a t i c a b s e n c e s . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . W i t h t h e e x c e p t i o n s o f C 1 0 2 a n d C 1 1 2 a l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e 2 2 7 h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t w a s b a s e d o n 6 1 0 9 o b s e r v e d r e fl e c t i o n s w i t h F o > 4 s i g ( F o ) a n d 3 7 8 p a r a m e t e r s t o g i v e R 1 = 0 . 0 8 9 0 a n d w R 2 = 0 . 2 3 3 5 a n d a g o o d n e s s — o f - fi t v a l u e o f 1 . 4 2 0 . ( 4 ) { ( [ C P z F e l [ P F o l ) 3 [ H A T - ( C N ) 6 1 } , ( 3 1 ) ( 1 ) D a t a c o l l e c t i o n a n d r e d u c t i o n G r e e n X - r a y q u a l i t y s i n g l e c r y s t a l s w e r e o b t a i n e d b y e v a p o r a t i o n u n d e r n i t r o g e n o f a n a c e t o n i t r i l e s o l u t i o n o f H A T - ( C N ) 6 a n d [ C p 2 C 0 ] [ P F 6 ] . A c r y s t a l o f d i m e n s i o n s 0 . 2 0 x 0 . 1 5 x 0 . 0 5 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a m o n o c l i n i c c e l l . A t o t a l o f 6 8 1 9 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( 1 ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 5 6 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e C 2 f r o m t h e s y s t e m a t i c a b s e n c e s . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s , a n d t h e h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d 2 2 8 p o s i t i o n s . T h e c r y s t a l d i f f r a c t e d p o o r l y w h i c h l e d t o r e fi n e m e n t l i m i t a t i o n s ( R ; m = 0 . 1 0 1 7 a n d R 0 = 0 . 1 4 6 1 ) . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t w a s b a s e d o n 3 6 3 6 o b s e r v e d r e fl e c t i o n s w i t h F 0 > 4 s i g ( F o ) a n d 3 4 7 p a r a m e t e r s t o g i v e R 1 = 0 . 1 0 2 1 a n d w R 2 = 0 . 2 6 6 6 a n d a g o o d n e s s - o f - fi t v a l u e o f 1 . 0 5 . ( 5 ) { ( 1 1 1 - 3 l e [ 1 ] ) 3 1 1 1 [ H A T - ( C N ) 6 1 2 } . 3 C 6 H 6 9 ( 3 2 ) ( i ) D a t a c o l l e c t i o n a n d r e d u c t i o n T h e a d d i t i o n o f b e n z e n e t o t h e g r e e n T H F r e a c t i o n s o l u t i o n o f [ n - B u n N ] I a n d H A T - ( C N ) 6 l e d t o t h e d e p o s i t i o n o f g r e e n X - r a y q u a l i t y s i n g l e c r y s t a l s o f { ( [ n - B u 4 N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } - 3 C 6 H 6 , ( 3 2 ) a f t e r t w o d a y s . A c r y s t a l o f d i m e n s i o n s 0 . 6 0 x 0 . 2 0 x 0 . 2 0 m m 3 w a s c o v e r e d i n P a r a t o n e o i l a n d m o u n t e d o n t h e t i p o f a g l a s s fi b e r w i t h s i l i c o n e g r e a s e . T h e c e l l c o n s t a n t s a n d o r i e n t a t i o n m a t r i x f o r d a t a c o l l e c t i o n c o r r e s p o n d e d t o a r h o m b o h e d r a l c e l l . A t o t a l o f 9 0 6 1 u n i q u e r e fl e c t i o n s w e r e c o l l e c t e d a t 1 7 3 K u s i n g t h e ( l ) - s c a n t e c h n i q u e t o a m a x i m u m 2 0 v a l u e o f 5 6 . 6 5 ° . ( i i ) S t r u c t u r a l S o l u t i o n a n d R e f i n e m e n t T h e s p a c e g r o u p w a s d e t e r m i n e d t o b e R 3 f r o m t h e s y s t e m a t i c a b s e n c e s . T h e s t r u c t u r e w a s s o l v e d b y t h e S H E L X S s t r u c t u r e p r o g r a m a n d r e fi n e d b y f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t u s i n g t h e S H E L X L 9 7 s t r u c t u r e 2 2 9 g o o d n e s s - o f - fi t = [ 2 w 1 I F o l — I 1 = . I ) Z I N . . . - N r . . . . . . . . . . l l " 2 T a b l e 5 . 1 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r H A T - ( C N ) 6 0 C 7 H 3 - C H 3 C N ( 2 6 ) { ( F e C P 2 ) 3 [ H A T - ( C N ) 6 1 l - C H s C N ( 3 0 ) . a n d { ( l F e s z l l P F 6 1 ) 3 l H A T - ( C N ) 6 I } - C H 3 C N ( 3 1 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 1 , d e g . B , d e g . 7 , d e g . v , A 3 Z d c a l c , g / c m 3 1 1 ( M o K a t ) , c m ' l t e m p e r a t u r e , K R 1 w R 2 g o o d n e s s - o f — fi t C 2 7 H 1 1 N l 3 5 1 7 . 4 9 P 2 ( I ) / C 2 0 . 6 1 8 ( 4 ) 7 . 3 7 9 0 ( 1 5 ) l 7 . 3 6 2 ( 4 ) 9 0 . 0 0 1 0 4 . 5 3 ( 3 ) 9 0 . 0 0 2 5 5 6 . 9 ( 9 ) 4 1 . 3 4 4 1 . 0 9 1 7 3 0 . 0 9 3 2 0 . 2 1 2 7 1 . 0 4 2 C 5 0 H 3 3 N 1 3 1 : 6 3 9 8 3 . 4 4 P 3 1 6 . 6 7 3 ( 2 ) 1 6 . 6 7 3 ( 2 ) 9 . 8 7 8 ( 2 ) 9 0 . 0 0 9 0 . 0 0 1 2 0 . 0 0 2 3 7 8 . 0 ( 7 ) 2 1 . 3 7 3 9 . 5 2 1 7 3 0 . 0 8 9 0 0 . 2 3 3 5 1 . 4 2 0 C 4 8 H 3 0 N 1 2 P 3 F 1 8 C 0 3 1 3 8 6 . 5 4 C 2 2 5 . 7 8 0 ( 5 ) 1 4 . 9 0 3 ( 3 ) 7 . 5 6 1 0 ( 1 5 ) 9 0 . 0 0 9 0 8 5 ( 3 ) 9 0 . 0 0 2 9 0 4 . 5 ( 1 0 ) 2 1 . 5 8 5 1 . 0 3 2 1 7 3 0 . 1 0 1 7 0 . 2 6 6 6 1 . 0 5 2 R 1 = 2 H F . ) — c h l l / E I F O I w R 2 = [ s w a m — 1 F , 1 ) 2 / 2 1 F 0 1 2 ] " 2 ; w = l / o Z ( I F o | ) w g R 2 = [ 2 w ( l F o o d n e s s - o f - o fi l t — = I [ F C I Z W ) G 2 / F X O I I F O I 2 ] " 2 ; w = _ ' F c I ) l e o b s “ ‘ 0 N 2 0 1 2 0 p a r a m e 1 t ) e r s ) 1 l / 2 T a b l e 5 . 2 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { C o [ H A T - ( C N ) 4 0 2 ( H 2 0 ) 4 } . 4 H 2 0 ( 2 7 ) , { N i [ H A T - ( C N ) 4 0 2 ( H Z O ) 4 } . 4 H Z O ( 2 8 ) a n d { M n [ H A T - ( C N ) 4 O Z ( H Z O ) 4 } . 4 H z O ( 2 9 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 1 , d e g . B , d e g . 7 , d e g . v , A 3 Z d c a l c , g / c m 3 1 1 ( M o K 0 1 ) , c m ' I t e m p e r a t u r e , K R ) w R 2 g o o d n e s s - o f - fi t R 1 = 2 " F o l — I F C I I I X I F O I C 1 6 H 2 0 N 1 0 0 1 0 C 0 1 5 7 1 . 3 2 P - l 8 . 5 7 1 ( 2 ) 1 0 . 0 6 5 ( 2 ) 1 3 . 5 7 1 ( 3 ) 8 1 . 7 8 ( 3 ) 7 7 . 4 3 ( 3 ) 8 5 . 7 0 ( 3 ) 1 1 2 9 . 8 ( 4 ) 2 1 . 6 9 2 8 . 4 3 1 7 3 0 . 0 5 4 1 0 . 1 2 5 2 1 . 0 2 3 C 1 6 H 2 0 N 1 0 0 1 0 N i l 5 7 1 . 0 9 P - l 8 . 5 4 6 ( 2 ) 1 0 . 0 7 2 ( 2 ) l 3 . 4 9 3 ( 3 ) 8 2 . 0 7 ( 3 ) 7 7 5 3 ( 3 ) 8 5 4 9 ( 3 ) 1 1 2 1 . 7 ( 4 ) 2 1 . 6 9 1 9 . 4 3 1 7 3 0 . 0 5 5 6 0 . 1 1 2 6 0 . 9 1 3 2 3 1 C 1 6 H 2 0 N 1 0 0 1 0 M n l 5 7 6 . 3 2 P - I 8 . 5 7 0 ( 3 ) 1 0 . 0 9 4 ( 2 ) 1 3 . 5 7 1 ( 3 ) 8 2 5 5 ( 3 ) 7 7 5 1 ( 3 ) 8 5 . 7 8 ( 3 ) 1 1 3 5 . 3 ( 4 ) 2 1 . 6 9 0 8 . 3 0 1 7 3 0 . 0 6 0 8 0 . 1 7 7 3 1 . 2 1 1 w g R o 2 = [ 2 w ( o d n e s s - o l f F - o fi l t — = I [ F 2 C w I ) ( 2 I / F 2 . | F o | 2 I — ] c " 2 h ; | w 2 ) = N / o “ b 0 . 2 - 0 a 1 n 2 0 1 ) . m a e s ) ] ” 2 T a b l e 5 . 3 . S u m m a r y o f c r y s t a l l o g r a p h i c d a t a f o r { ( [ n - B u a N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } 0 3 C 6 H 6 , ( 3 2 ) f o r m u l a f o r m u l a w e i g h t s p a c e g r o u p a , A b , A c , A 0 1 , d e g . B , d e g . 7 , d e g . v , A 3 Z d c a l c , g e m 3 [ . 1 ( M o K 0 1 ) , c m " l t e m p e r a t u r e , K t r a n s . f a c t o r s , m a x . , m i n . R l W R z g o o d n e s s - o f - fi t R 1 = 2 I I F O I — I F C I I I Z I F O I C l o z H l 2 6 N 2 7 I 4 2 2 3 7 . 9 R 3 2 6 . 6 9 0 ( 4 ) 2 6 . 6 9 0 ( 4 0 1 3 . 6 7 6 ( 3 ) 9 0 . 0 0 9 0 . 0 0 1 2 0 . 0 0 8 4 3 7 ( 2 ) 3 1 . 1 7 5 1 . 1 5 5 1 7 3 1 . 0 0 0 , 0 . 6 0 7 0 . 1 0 9 4 0 . 2 6 7 9 0 . 9 9 3 2 3 2 r e fi n e m e n t p r o g r a m . A l l n o n - h y d r o g e n a t o m s w e r e r e fi n e d w i t h a n i s o t r o p i c t h e r m a l p a r a m e t e r s . T h e h y d r o g e n a t o m s w e r e p l a c e d i n c a l c u l a t e d p o s i t i o n s . T h e fi n a l c y c l e o f f u l l m a t r i x l e a s t - s q u a r e s r e fi n e m e n t w a s b a s e d o n 4 0 9 6 o b s e r v e d r e fl e c t i o n s w i t h F 0 > 4 s i g ( F o ) a n d 3 6 1 p a r a m e t e r s t o g i v e R 1 = 0 . 1 0 9 4 a n d w R 2 = 0 . 3 2 9 1 a n d a g o o d n e s s - o f — fi t v a l u e o f 0 . 9 9 3 . 3 . R e s u l t s a n d D i s c u s s i o n . A . C h e m i s t r y o f n e u t r a l H A T - ( C N ) 6 ( 1 ) M o l e c u l a r S t r u c t u r e o f H A T - ( C N ) ; T h e H A T - ( C N ) 6 m o l e c u l e i s a s t r o n g l y e l e c t r o n - d e fi c i e n t h e t e r o c y c l e . O n e c o n s e q u e n c e o f t h i s i s t h a t i t a v o i d s s e l f - l t - c o m p l e x a t i o n i n i t s n e u t r a l f o r m . C r y s t a l s o b t a i n e d f r o m a m e t h a n o l / a c e t o n i t r i l e m i x t u r e b y J . R . G a l a n - M a s c a r é s , a p o s t d o c t o r a l f e l l o w i n t h e D u n b a r l a b o r a t o r i e s , r e v e a l e d t h a t n e u t r a l H A T - ( C N ) 6 m o l e c u l e s h a v e n o t e n d e n c y t o s t a c k , r a t h e r t h e y a r e s i g n i fi c a n t l y o f f s e t w i t h r e s p e c t t o o n e a n o t h e r , f o r m i n g s t a i r c a s e - l i k e c h a i n s ( F i g u r e 5 . 3 ) . T h e i n t e r m o l e c u l a r s p a c i n g i s 3 . 7 5 A , w h i c h i s l a r g e r t h a n t h e e x p e c t e d v a n d e r W a a l s r a d i i s u m o f 3 . 5 4 A . 7 T h e o v e r a l l c r y s t a l p a c k i n g i s p r i m a r i l y d o m i n a t e d b y p e r p e n d i c u l a r C N - 7 1 : i n t e r a c t i o n s w h i c h l e a d s t o a c o m p l i c a t e d , b u t h i g h l y s y m m e t r i c , 3 D h e x a g o n a l a r r a n g e m e n t a s i l l u s t r a t e d i n F i g u r e 5 . 4 . 2 3 3 “ C 3 F 3 . ' o 9 . 0 9 4 . M 9 . 3 . ‘ . ! ’ , - F i g u r e 5 . 3 . T w o d i f f e r e n t v i e w s o f o n e o f t h e H A T - ( C N ) 6 c h a i n s i n ( 2 5 ) . 2 3 4 2 3 5 m o l e c u l e s i n ( 2 5 ) . F i g u r e 5 . 4 . A v i e w o f t h e 3 D p a c k i n g a r r a n g e m e n t o f H A T - ( C N ) 6 . ) t h g i r ( s i x a a d n a ) t f e l ( s i x a b e h t . ¢ I \ 2 3 6 F i g u r e 5 . 5 . A v i e w o f t h e s t r u c t u r e o f t h e p a c k i n g i n H A T - ( C N ) 6 - C 7 H 3 0 C H 3 C N ( 2 6 ) l o o k i n g d o w n S l o w e v a p o r a t i o n o f a 5 0 / 5 0 a c e t o n i t r i l e / t o l u e n e s o l u t i o n u n d e r n i t r o g e n r e s u l t e d i n a s e c o n d c r y s t a l l i n e f o r m o f H A T - ( C N ) 6 ( 2 5 ) ( F i g u r e 5 . 5 ) . S i n g l e c r y s t a l X - r a y d i f f r a c t i o n a n a l y s i s r e v e a l e d t h e i n c o r p o r a t i o n o f b o t h t o l u e n e a n d a c e t o n i t r i l e m o l e c u l e s i n t o t h e i n t e r s t i c e s o f t h e s t r u c t u r e . T h e p a c k i n g m o t i f c o n s i s t s o f a n g l e d , i n t e r p e n e t r a t i n g c o l u m n s o f a l t e r n a t i n g H A T - ( C N ) 6 a n d t o l u e n e m o l e c u l e s . T h e t o l u e n e m o l e c u l e s r e s i d e b e l o w H A T - ( C N ) 6 b i p y r i d i n e m o i e t i e s . T h e i n c o r p o r a t i o n o f t o l u e n e c o m b i n e d w i t h t h e i n t e r p e n a t r a t i n g n a t u r e o f t h e c o l u m n s p r e c l u d e s a n y s e l f - l t - c o m p l e x a t i o n o f H A T - ( C N ) 6 . T h e a c e t o n i t r i l e m o l e c u l e s r e s i d e s i n t h e c h a n n e l s d e fi n e d b y t h r e e n e a r e s t - n e i g h b o r H A T - ( C N ) 6 / t o l u e n e c o l u m n s . ( 2 ) T h e t e m p l a t i n g e f f e c t o f F e s z a n d [ C o n 2 ] [ P F 6 ] o n t h e c r y s t a l s t r u c t u r e s o f H A T - ( C N ) 6 F e r r o c e n e w a s i n i t i a l l y e m p l o y e d a s a p o t e n t i a l r e d u c i n g a g e n t f o r H A T - ( C N ) 6 , b u t i t p r o v e d t o b e a n i n s u f fi c i e n t l y s t r o n g r e d u c t a n t f o r t h i s p u r p o s e . T h e g r e e n c r y s t a l l i n e p r o d u c t t h a t w a s i s o l a t e d f r o m t h i s r e a c t i o n w a s s h o w n b y s i n g l e - c r y s t a l X - r a y c r y s t a l l o g r a p h y t o b e t h e 3 : 1 p h a s e { ( F e C p 2 ) 3 [ H A T - ( C N ) 6 ] } . C H 3 C N ( 3 0 ) ( F i g u r e 5 . 6 ) . S u p p o r t f o r t h e n e u t r a l a s s i g n m e n t f o r t h e H A T - ( C N ) 6 m o l e c u l e s i n t h i s c o m p o u n d c o m e s f r o m t h e V C = N m o d e a t 2 2 4 3 c m ' 1 i n t h e i n f r a r e d s p e c t r u m I t a p p e a r s t h a t t h e 2 3 7 f e r r o c e n e m o l e c u l e s a c t a s t e m p l a t e s i n t h e f o r m a t i o n o f a l a y e r e d s t r u c t u r e w i t h a t r i g o n a l m o t i f . W i t h i n a g i v e n l a y e r , t h e f e r r o c e n e m o l e c u l e s r e s i d e i n t h e s p a c e s a d j a c e n t t o t h e c h e l a t i n g b i p y r i d i n e m o i e t i e s o f H A T - ( C N ) 6 . A d j a c e n t l a y e r s a r e s t a g g e r e d s u c h t h a t t h e f e r r o c e n e i n o n e l a y e r l i e s u n d e r n e a t h t h e c y a n o g r o u p s o f t h e H A T - ( C N ) 6 i n t h e l a y e r a b o v e i t . T h e m e t a l l o c e n e s a l t , [ C o n 2 ] [ P F 6 ] , a l s o p r o v e d t o b e a c a p a b l e t e m p l a t e f o r t h e f o r m a t i o n o f a l a y e r e d s t r u c t u r e w i t h n e u t r a l H A T - ( C N ) 6 . S l o w e v a p o r a t i o n u n d e r n i t r o g e n o f a n a c e t o n i t r i l e s o l u t i o n o f [ C o n 2 ] [ P F 6 ] a n d H A T ( C N ) 6 p r o d u c e d g r e e n c r y s t a l s t h a t w e r e d e t e r m i n e d b y s i n g l e c r y s t a l X - r a y d i f f r a c t i o n t o b e t h e 3 : 1 p h a s e { [ C o n 2 ] [ P F 6 ] } 3 H A T - ( C N ) 6 ( 3 1 ) ( F i g u r e 5 . 7 ) . T h e p a c k i n g i n t h i s s t r u c t u r e c o n s i s t s o f c o l u m n s c o m p o s e d o f a l t e r n a t i n g l a y e r s o f H A T - ( C N ) 6 a n d t h r e e [ P F 6 ] ' a n i o n s . T h e P a t o m s o f t h e [ P F 6 ] ’ a r e c e n t e r e d u n d e r n e a t h t h e N C - C ( , ; n g ) . T h e [ P F 6 ] ’ a n i o n s a r e o r i e n t e d w i t h t h e 3 - f o l d r o t a t i o n a x i s o f t h e o c t a h e d r a p e r p e n d i c u l a r t o t h e H A T - ( C N ) 6 . T h e [ C o n z ] + c a t i o n s r e s i d e i n t h e c h a n n e l s d e fi n e d b y t h r e e n e a r e s t n e i g h b o r H A T - ( C N ) 6 / [ P F 6 ] ' c o l u m n s a n d a r e s l i g h t l y c a n t e d s u c h t h a t t h e C p r i n g s a r e n o t p a r a l l e l t o t h e H A T - ( C N ) ( , l a y e r s . U n l i k e t h e { ( F e C p 2 ) 3 [ H A T ( C N ) 6 ] } . C H 3 C N ( 3 0 ) s t r u c t u r e w i t h t h e n e u t a l m e t a l l o c e n e F e s z , t h e c a t i o n i c [ C o n z ] + d o n o t o c c u p y t h e s p a c e a d j a c e n t t o t h e b i p y r i d i n e m o i t i e s b u t r e s i d e i n t h e p l a n e o f t h e [ P F 6 ] ' c o u n t e r a n i o n s . 2 3 8 2 3 9 F i g u r e 5 . 6 . V i e w s o f t h e p a c k i n g i n t h e c r y s t a l s t r u c t u r e o f { ( F e C p 2 ) 3 [ H A T - ( C N ) 6 ] } - C H 3 C N ( 3 0 ) v i e w e d d o w n t h e a a x i s ( l e f t ) a n d c a x i s ( r i g h t ) . F i g u r e 5 . 7 . V i e w s o f t h e p a c k i n g i n t h e c r y s t a l s t r u c t u r e o f { ( [ s z C o ] [ P F 6 ] ) 3 [ H A T ( C N ) 6 ] 0 C H 3 C N ( 3 1 ) l o o k i n g d o w n t h e b a x i s ( t o p ) a n d t h e c a x i s ( b o t t o m ) . 2 4 0 ) 4 ( 0 ) 6 1 0 1 ‘ 3 \ ) 2 1 0 _ _ - — . = g = ” ‘ ) ) 6 6 1 2 1 N ( C ) ! 5 A 1 ( N ) 5 1 3 ( ) 5 2 2 ( ’ C 9 ) ; 5 ) ? 1 9 M ) 4 1 1 c ) 4 ) 2 2 1 ) 0 ) 4 ' 1 r 1 ’ 9 " N ‘ ( I \ V I I I ; ! 2 4 1 F i g u r e 5 . 8 . A t h e r m a l e l l i p s o i d p l o t o f t h e s t r u c t u r e o f N i ( H A T ( C N ) 4 0 2 ) ( H z O ) 4 ( 2 9 ) . A l l a t o m s a r e r e p r e s e n t e d a t t h e 5 0 % l e v e l . C o m p o u n d ( 2 9 ) i s i s o s t r u c t u r a l w i t h c o m p o u n d s T a b l e 5 . 4 . B o n d l e n g t h s [ A ] f o r { C o ( H A T ( C N ) 4 0 2 ( H z O ) 4 } o 4 H z O ( 2 7 ) C o ( l ) - O ( 3 ) C o ( 1 ) - O ( 4 ) C o ( 1 ) — O ( 5 ) C o ( 1 ) - O ( 6 ) C o ( l ) - N ( l ) C o ( l ) - N ( 2 ) C ( 1 ) - N ( l ) C ( 1 ) - C ( 2 ) C ( l ) - C ( 6 ) C ( 2 ) - N ( 2 ) C ( 2 ) - C ( 3 ) C ( 3 ) - N ( 3 ) C ( 3 ) - C ( 4 ) C ( 4 ) - N ( 4 ) C ( 4 ) - C ( 5 ) C ( 5 ) - N ( 5 ) C ( 5 ) - C ( 6 ) C ( 6 ) - N ( 6 ) C ( l 1 ) - 0 ( 1 ) C ( l 1 ) - N ( 1 ) C ( 1 l ) - C ( l 6 ) C ( 1 2 ) - O ( 2 ) C ( 1 2 ) - N ( 2 ) C ( 1 2 ) - C ( 1 3 ) C ( 1 3 ) - N ( 3 ) C ( 1 3 ) — C ( 2 3 ) C ( 1 4 ) - N ( 4 ) C ( 1 4 ) - C ( 1 5 ) C ( 1 4 ) - C ( 2 4 ) C ( 1 5 ) - N ( 5 ) C ( 1 5 ) - C ( 2 5 ) C ( 1 6 ) - N ( 6 ) C ( 1 6 ) - C ( 2 6 ) C ( 2 3 ) - N ( l 3 ) C ( 2 4 ) - N ( l 4 ) C ( 2 5 ) - N ( 1 5 ) C ( 2 6 ) - N ( l 6 ) 2 . 1 2 4 ( 3 ) 2 . 0 9 5 ( 3 ) 2 . 1 2 2 ( 4 ) 2 . 0 8 1 ( 3 ) 2 . 1 4 6 ( 3 ) 2 . 1 4 4 ( 3 ) 1 . 3 5 5 ( 4 ) 1 . 4 7 2 ( 4 ) 1 . 4 0 3 ( 4 ) 1 . 3 5 9 ( 4 ) 1 . 4 0 0 ( 4 ) 1 . 3 7 7 ( 4 ) 1 . 4 5 0 ( 4 ) 1 . 3 4 6 ( 4 ) 1 . 4 3 8 ( 4 ) 1 . 3 4 5 ( 4 ) 1 . 4 4 9 ( 4 ) 1 . 3 7 4 ( 4 ) 1 . 2 4 4 ( 4 ) 1 . 3 8 4 ( 4 ) 1 . 4 7 3 ( 5 ) 1 . 2 5 2 ( 4 ) 1 . 3 7 1 ( 4 ) 1 . 4 6 6 ( 5 ) 1 . 3 2 2 ( 4 ) 1 . 4 3 7 ( 4 ) 1 . 3 4 1 ( 4 ) 1 . 4 2 3 ( 4 ) 1 . 4 5 8 ( 5 ) 1 . 3 4 1 ( 4 ) 1 . 4 5 1 ( 5 ) 1 . 3 2 2 ( 4 ) 1 . 4 4 4 ( 4 ) 1 . 1 5 5 ( 4 ) 1 . 1 4 8 ( 4 ) 1 . 1 4 4 ( 4 ) 1 . 1 5 7 ( 4 ) 2 4 2 T a b l e 5 . 5 . B o n d a n g l e s [ d e g ] f o r { C o ( H A T ( C N ) 4 0 2 ( H 2 0 ) 4 ) o 4 H 2 0 ( 2 7 ) O ( 3 ) - C o ( l ) - N ( 1 ) O ( 3 ) - C o ( 1 ) - N ( 2 ) O ( 4 ) - C o ( l ) - O ( 3 ) O ( 4 ) - C o ( 1 ) — O ( 5 ) 0 ( 4 ) - C o ( l ) - N ( 1 ) O ( 4 ) - C o ( 1 ) - N ( 2 ) O ( 5 ) - C o ( 1 ) - O ( 3 ) O ( 5 ) - C o ( 1 ) - N ( 1 ) O ( 5 ) - C o ( 1 ) - N ( 2 ) O ( 6 ) - C o ( 1 ) - O ( 3 ) O ( 6 ) - C o ( l ) - O ( 4 ) O ( 6 ) - C o ( l ) - O ( 5 ) O ( 6 ) - C o ( l ) - N ( l ) O ( 6 ) - C o ( 1 ) - N ( 2 ) N ( 2 ) - C o ( 1 ) - N ( 1 ) O ( l ) - C ( 1 1 ) - N ( 1 ) O ( 1 ) - C ( 1 l ) - C ( 1 6 ) N ( 1 ) - C ( 1 1 ) - C ( 1 6 ) O ( 2 ) - C ( 1 2 ) - N ( 2 ) O ( 2 ) - C ( 1 2 ) - C ( 1 3 ) N ( 2 ) - C ( 1 2 ) - C ( 1 3 ) C ( 1 ) - N ( 1 ) - C ( 1 1 ) C ( 1 ) - N ( 1 ) — C o ( 1 ) C ( 1 1 ) - N ( 1 ) - C o ( l ) C ( 2 ) - N ( 2 ) - C ( 1 2 ) C ( 2 ) - N ( 2 ) - C o ( 1 ) C ( 1 2 ) - N ( 2 ) - C o ( 1 ) 9 5 . 8 8 ( 1 2 ) l 7 2 . 3 5 ( 1 2 ) 9 2 . 2 1 ( l 3 ) 9 0 . 4 0 ( 1 3 ) 1 7 1 . 1 1 ( 1 1 ) 9 4 . 4 4 ( 1 1 ) 8 6 . 5 7 ( 1 5 ) 9 3 . 7 3 ( 1 2 ) 8 9 . 6 2 ( 1 3 ) 8 8 . 8 4 ( 1 4 ) 8 6 . 8 7 ( 1 4 ) 1 7 4 . 5 7 ( 1 3 ) 8 9 . 6 3 ( 1 3 ) 9 5 . 2 7 ( 1 2 ) 7 7 . 7 4 ( 1 0 ) 1 2 2 . 6 ( 3 ) 1 2 1 . 9 ( 3 ) 1 1 5 . 6 ( 3 ) 1 2 2 . 3 ( 3 ) 1 2 1 . 0 ( 3 ) 1 1 6 . 7 ( 3 1 1 8 . 7 ( 3 ) 1 1 4 . 2 ( 2 ) 1 2 7 . 0 ( 2 ) 1 1 7 . 8 ( 3 ) 1 1 4 . 6 ( 2 ) 1 2 7 . 6 ( 2 ) T a b l e 5 . 6 . B o n d l e n g t h s [ A ] f o r { N i ( H A T ( C N ) 4 0 2 ( H z O ) 4 } o 4 H z O ( 2 9 ) N i ( 1 ) - O ( 3 ) N i ( 1 ) - O ( 4 ) N i ( 1 ) - O ( 5 ) N i ( 1 ) - O ( 6 ) N i ( 1 ) - N ( l ) N i ( l ) - N ( 2 ) C ( 1 ) - N ( l ) C ( 1 ) - C ( 6 ) C ( 1 ) - C ( 2 ) C ( 2 ) - N ( 2 ) C ( 2 ) - C ( 3 ) C ( 3 ) - N ( 3 ) C ( 3 ) - C ( 4 ) C ( 4 ) - N ( 4 ) C ( 4 ) - C ( 5 ) C ( 5 ) - N ( 5 ) C ( 5 ) - C ( 6 ) C ( 6 ) - N ( 6 ) C ( l 1 ) - 0 ( 2 ) C ( l l ) - N ( l ) C ( l 1 ) - C ( 1 6 ) C ( 1 2 ) - O ( 1 ) C ( 1 2 ) - N ( 2 ) C ( 1 2 ) - C ( 1 3 ) C ( 1 3 ) - N ( 3 ) C ( 1 3 ) — C ( 2 3 ) C ( 1 4 ) - N ( 4 ) C ( 1 4 ) - C ( 1 5 ) C ( 1 4 ) - C ( 2 4 ) C ( 1 5 ) - N ( 5 ) C ( 1 5 ) - C ( 2 5 ) C ( 1 6 ) - N ( 6 ) C ( 1 6 ) - C ( 2 6 ) C ( 2 3 ) - N ( 1 3 ) C ( 2 4 ) - N ( 1 4 ) C ( 2 5 ) - N ( 1 5 ) C ( 2 6 ) - N ( 1 6 ) 2 4 4 2 . 0 6 7 ( 4 ) 2 . 0 6 0 ( 3 ) 2 . 0 6 1 ( 3 ) 2 . 0 6 9 ( 3 ) 2 . 0 9 2 ( 3 ) 2 . 0 9 5 ( 3 ) 1 . 3 5 0 ( 5 ) 1 . 3 9 5 ( 5 ) 1 . 4 7 0 ( 5 ) 1 . 3 4 8 ( 5 ) 1 . 3 9 6 ( 5 ) 1 . 3 7 0 ( 4 ) 1 . 4 4 6 ( 5 ) 1 . 3 3 8 ( 4 ) 1 . 4 2 7 ( 5 ) 1 . 3 5 0 ( 4 ) 1 . 4 4 1 ( 5 ) 1 . 3 6 3 ( 4 ) 1 . 2 3 8 ( 4 ) 1 . 3 8 5 ( 5 ) 1 . 4 6 1 ( 5 ) 1 . 2 5 1 ( 4 ) 1 . 3 7 4 ( 4 ) 1 . 4 5 2 ( 5 ) 1 . 3 1 8 ( 4 ) 1 . 4 4 4 ( 5 ) 1 . 3 3 9 ( 5 ) 1 . 4 0 9 ( 5 ) 1 . 4 5 9 ( 5 ) 1 . 3 3 3 ( 5 ) 1 . 4 5 4 ( 5 ) 1 . 3 1 1 ( 4 ) 1 . 4 4 9 ( 5 ) 1 . 1 3 8 ( 5 ) 1 . 1 3 4 ( 5 ) 1 . 1 3 6 ( 5 ) 1 . 1 4 3 ( 5 ) T a b l e 5 . 7 . B o n d a n g l e s [ d e g ] f o r { N i ( H A T ( C N ) 4 O z ( H z O ) 4 } o 4 H 2 0 ( 2 9 ) C ( 3 ) - N i ( l ) - O ( 6 ) O ( 3 ) - N i ( 1 ) - N ( 1 ) O ( 3 ) - N i ( 1 ) - N ( 2 ) O ( 4 ) - N i ( l ) - O ( 3 ) O ( 4 ) - N i ( 1 ) - O ( 5 ) O ( 4 ) - N i ( 1 ) - O ( 6 ) O ( 4 ) - N i ( 1 ) - N ( 1 ) O ( 4 ) — N i ( 1 ) - N ( 2 ) O ( 5 ) - N i ( 1 ) - O ( 3 ) 0 ( 5 ) - N i ( 1 ) - O ( 6 ) O ( 5 ) - N i ( 1 ) - N ( 1 ) O ( 5 ) - N i ( 1 ) - N ( 2 ) O ( 6 ) - N i ( 1 ) - N ( 1 ) O ( 6 ) - N i ( 1 ) - N ( 2 ) N ( 1 ) - N i ( 1 ) - N ( 2 ) N ( 2 ) - C ( 2 ) - C ( 3 ) O ( 2 ) - C ( 1 1 ) - N ( 1 ) O ( 2 ) - C ( 1 1 ) - C ( 1 6 ) N ( 1 ) - C ( 1 1 ) - C ( 1 6 ) O ( 1 ) - C ( 1 2 ) - N ( 2 ) O ( 1 ) - C ( 1 2 ) - C ( 1 3 ) N ( 2 ) - C ( l 2 ) - C ( 1 3 ) C ( 1 ) - N ( l ) - C ( 1 1 ) C ( 1 ) - N ( l ) - N i ( 1 ) C ( 1 1 ) - N ( 1 ) - N i ( l ) C ( 2 ) - N ( 2 ) - C ( 1 2 ) C ( 2 ) - N ( 2 ) - N i ( 1 ) C ( 1 2 ) - N ( 2 ) - N i ( 1 ) C ( 1 3 ) - N ( 3 ) - C ( 3 ) C ( 4 ) - N ( 4 ) - C ( 1 4 ) C ( 1 5 ) — N ( 5 ) - C ( 5 ) C ( 1 6 ) - N ( 6 ) - C ( 6 ) 2 4 5 8 7 . 2 2 ( 1 7 ) 9 4 . 1 0 ( 1 3 ) 8 9 . 7 4 ( 1 5 ) 8 9 . 3 6 ( 1 4 ) 8 6 . 7 5 ( 1 5 ) 9 1 . 5 0 ( 1 6 ) 1 7 2 . 6 2 ( 1 4 ) 9 4 . 1 6 ( 1 3 ) 1 7 3 . 8 7 ( 1 5 ) 8 8 . 1 5 ( 1 5 ) 9 0 . 3 1 ( 1 4 ) 9 5 . 2 6 ( 1 3 ) 9 5 . 1 7 ( 1 4 ) 1 7 3 . 5 5 ( 1 4 ) 7 9 . 3 6 ( 1 1 ) 1 2 3 . 9 ( 3 ) 1 2 2 . 6 ( 3 ) 1 2 2 . 0 ( 3 ) 1 1 5 . 4 ( 3 ) 1 2 1 . 9 ( 3 ) 1 2 1 . 6 ( 3 ) 1 1 6 . 5 ( 3 ) 1 1 8 . 1 ( 3 ) 1 1 3 . 9 ( 2 ) 1 2 7 . 9 ( 3 ) 1 1 7 . 7 ( 3 ) 1 1 3 . 8 ( 2 ) 1 2 8 . 5 ( 3 ) 1 1 6 . 0 ( 3 ) 1 1 6 . 8 ( 3 ) 1 1 6 . 6 ( 3 ) 1 1 6 . 7 ( 3 ) T a b l e 5 . 8 . B o n d l e n g t h s [ A ] f o r { M n ( H A T ( C N ) 4 0 2 ( H 2 0 ) 4 } o 4 H z O ( 2 8 ) M n ( 1 ) - O ( 4 ) M n ( l ) - O ( 6 ) M n ( 1 ) - O ( 3 ) M n ( l ) - O ( 5 ) M n ( l ) - N ( 1 ) M n ( l ) - N ( 2 ) N ( l ) - C ( l 1 ) N ( 2 ) - C ( 2 ) N ( 2 ) — C ( 1 2 ) N ( 3 ) - C ( 1 3 ) N ( 3 ) - C ( 3 ) N ( 4 ) - C ( 1 4 ) N ( 4 ) - C ( 4 ) N ( 5 ) - C ( 1 5 ) N ( 6 ) - C ( 1 6 ) N ( 6 ) - C ( 6 ) C ( l ) - C ( 2 ) C ( l ) - N ( l ) ) C ( 3 ) - C ( 2 ) C ( 4 ) - C ( 3 ) C ( 5 ) - N ( 5 ) C ( 5 ) - C ( 4 ) C ( S ) - C ( 6 ) C ( 6 ) ~ C ( 1 ) C ( 1 2 ) - C ( 1 3 ) C ( 1 5 ) - C ( 1 4 ) C ( 1 5 ) - C ( 2 5 ) C ( l 6 ) - C ( 2 6 ) C ( l 6 ) - C ( 1 1 ) C ( 2 3 ) — N ( 1 3 ) C ( 2 3 ) - C ( 1 3 ) C ( 2 4 ) - N ( 1 4 ) C ( 2 4 ) - C ( 1 4 ) C ( 2 5 ) - N ( 1 5 ) C ( 2 6 ) - N ( 1 6 ) O ( l ) - C ( l 1 ) O ( 2 ) - C ( 1 2 ) 2 4 6 2 . 1 6 3 ( 3 ) 2 . 1 8 6 ( 4 ) 2 . 1 9 2 ( 4 ) 2 . 2 2 4 ( 4 ) 2 . 2 8 0 ( 3 ) 2 . 2 8 6 ( 3 ) 1 . 3 8 1 ( 4 ) 1 . 3 5 4 ( 4 ) 1 . 3 6 9 ( 4 ) 1 . 3 1 8 ( 4 ) 1 . 3 6 8 ( 4 ) 1 . 3 4 0 ( 4 ) 1 . 3 5 6 ( 4 ) 1 . 3 4 9 ( 4 ) 1 . 3 2 2 ( 4 ) 1 . 3 6 3 ( 4 ) 1 . 4 7 8 ( 4 ) 1 . 3 5 3 ( 4 1 . 4 0 4 ( 4 ) 1 . 4 4 9 ( 4 ) 1 . 3 4 4 ( 4 ) 1 . 4 2 6 ( 4 ) 1 . 4 5 2 ( 4 ) 1 . 4 0 1 ( 5 ) 1 . 4 5 9 ( 4 ) 1 . 4 1 1 ( 4 ) 1 . 4 5 3 ( 5 ) 1 4 4 4 ( 4 ) 1 . 4 5 3 ( 5 ) 1 . 1 6 1 ( 4 ) 1 4 4 0 ( 4 ) 1 . 1 4 2 ( 5 ) 1 . 4 5 1 ( 5 ) 1 . 1 4 6 ( 5 ) 1 . 1 6 5 ( 4 ) 1 . 2 5 2 ( 4 ) 1 . 2 4 9 ( 4 ) T a b l e 5 . 9 . B o n d a n g l e s [ d e g ] f o r { M n ( H A T ( C N ) 4 0 2 ( H 2 0 ) 4 } o 4 H 2 0 ( 2 8 ) O ( 3 ) - M n ( 1 ) - N ( 1 ) O ( 3 ) — M n ( 1 ) - N ( 2 ) O ( 3 ) - M n ( 1 ) - O ( 5 ) O ( 4 ) - M n ( 1 ) - O ( 6 ) O ( 4 ) - M n ( 1 ) - O ( 3 ) O ( 4 ) - M n ( 1 ) - O ( 5 ) O ( 4 ) - M n ( 1 ) - N ( 1 ) O ( 4 ) - M n ( 1 ) - N ( 2 ) O ( 5 ) - M n ( 1 ) - N ( 1 ) O ( 5 ) - M n ( 1 ) - N ( 2 ) O ( 6 ) - M n ( l ) - O ( 5 ) O ( 6 ) - M n ( 1 ) - O ( 3 ) O ( 6 ) - M n ( 1 ) - N ( 1 ) O ( 6 ) - M n ( 1 ) - N ( 2 ) N ( 1 ) - M n ( 1 ) - N ( 2 ) C ( 1 ) - N ( 1 ) - C ( 1 1 ) C ( l ) - N ( l ) - M n ( 1 ) C ( l 1 ) - N ( 1 ) — M n ( 1 ) C ( 2 ) - N ( 2 ) - C ( 1 2 ) C ( 2 ) - N ( 2 ) - M n ( 1 ) C ( 1 2 ) - N ( 2 ) - M n ( 1 ) O ( l ) — C ( 1 1 ) - N ( 1 ) O ( l ) - C ( 1 1 ) - C ( 1 6 ) N ( 1 ) - C ( 1 1 ) - C ( 1 6 ) N ( 2 ) - C ( 1 2 ) - C ( 1 3 ) O ( 2 ) - C ( 1 2 ) - N ( 2 ) O ( 2 ) — C ( 1 2 ) - C ( 1 3 ) 9 5 . 5 4 ( 1 5 ) 1 6 6 . 7 5 ( 1 5 ) 8 5 . 7 8 ( 1 9 ) 8 7 . 3 3 ( 1 4 ) 1 0 0 . 2 9 ( 1 6 ) 9 1 . 0 6 ( 1 4 ) 1 6 3 . 7 9 ( 1 1 ) 9 1 . 6 7 ( 1 1 ) 9 3 . 5 9 ( 1 2 ) 8 8 . 3 5 ( 1 2 ) 1 7 5 . 8 6 ( 1 4 ) 9 0 . 7 4 ( 1 9 ) 8 8 . 9 9 ( 1 2 ) 9 5 . 5 2 ( 1 2 ) 7 2 . 9 7 ( 1 0 ) 1 1 8 . 0 ( 3 ) 1 1 6 . 3 ( 2 ) 1 2 5 . 6 ( 2 ) 1 1 7 . 9 ( 3 ) 1 1 6 . 2 8 ( 1 9 ) 1 2 5 . 8 ( 2 ) 1 2 1 . 5 ( 3 ) 1 2 2 . 0 ( 3 ) 1 1 6 . 4 ( 3 ) 1 1 6 . 9 ( 3 ) 1 2 2 . 2 ( 3 ) 1 2 0 . 9 ( 3 ) ( 3 ) R e a c t i v i t y S t u d i e s o f H A T - ( C N ) 6 w i t h M ( C l O 4 ) 2 . 6 H 2 0 ( M = M n , C o , o r N i ) A l t h o u g h t h e b i p y r i d i n e b i n d i n g s i t e s o f n e u t r a l H A T - ( C N ) 6 a r e e x p e c t e d t o b e r a t h e r w e a k l i g a n d s d u e t o t h e e l e c t r o n w i t h d r a w i n g e f f e c t s o f t h e c y a n o g r o u p s , r e a c t i o n s w i t h fi r s t r o w t r a n s i t i o n m e t a l i o n s w e r e c a r r i e d o u t t o p r o b e t h e p o s s i b i l i t i e s o f c o o r d i n a t i o n . W h e n a m i x t u r e o f w a t e r / a c e t o n i t r i l e s o l u t i o n s o f M ( C l O 4 ) 2 - 6 H 2 0 w e r e r e a c t e d w i t h H A T - ( C N ) 6 t h e n e w c o m p o u n d s M ( H A T ( C N ) 4 0 2 ) ( H 2 0 ) 4 ( M : M n , C o , N i ) w e r e i s o l a t e d ( F i g u r e 5 . 8 ) . T h e e a s e o f f o r m a t i o n o f t h e s e c o m p o u n d s u n d e r s c o r e s t h e f a c t t h a t c o o r d i n a t e d H A T - ( C N ) 6 i s h y d r o l y t i c a l l y u n s t a b l e . A s t h e s t r u c t u r e s o f t h e s e c o m p o u n d s r e v e a l e d H A T - ( C N ) 6 u n d e r g o e s c l e a v a g e o f t h e t w o a c t i v a t e d n i t r i l e g r o u p s a d j a c e n t t o t h e c o o r d i n a t e d m e t a l c e n t e r . T h e r e s u l t i s a d i - a n i o n i c o x y g e n l i g a n d . T h e c o o r d i n a t i o n s p h e r e o f t h e o c t a h e d r a l m e t a l c e n t e r i n t h e s e c o m p o u n d s i s c o m p l e t e d b y w a t e r m o l e c u l e s . B . C h e m i c a l r e d u c t i o n o f H A T - ( C N ) 6 ( 1 ) R e a c t i v i t y w i t h [ n - B u 4 N ] [ I ] T h e w e l l k n o w n a b i l i t y o f i o d i d e t o a c t a s a r e d u c i n g a g e n t i n s o l u t i o n w i t h t h e f o r m a t i o n o f p o l y i o d i d e s p e c i e s s u c h a s 1 3 ' l e d u s t o e x p l o r e t h e [ n - B u 4 N ] + s a l t a s a r e d u c i n g a g e n t f o r H A T - ( C N ) 6 . A d d i t i o n o f [ n - B u 4 N ] [ I ] t o 2 4 8 a T H F s o l u t i o n o f H A T - ( C N ) 6 p r o d u c e s a g r e e n s o l u t i o n w h i c h i s i n d i c a t i v e o f t h e p r e s e n c e o f [ H A T - ( C N ) 6 ] ' . A d d i t i o n o f b e n z e n e l e d t o i s o l a t i o n o f t h e c r y s t a l l i n e p r o d u c t { ( [ n - B u 4 N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } . 3 C 6 H 6 ( 3 2 ) a f t e r t h r e e d a y s . S i n g l e c r y s t a l X — r a y d i f f r a c t i o n a n a l y s i s r e v e a l e d a n u n u s u a l s t r u c t u r e t h a t c o n s i s t s o f s t a c k s w i t h f o u r d i f f e r e n t r e p e a t i n g l a y e r s a n d c h a n n e l s d e fi n e d b y t h e p o s i t i o n s o f t h e s t a c k s ( F i g u r e s 5 . 9 a n d 5 . 1 0 ) . T h e fi r s t o f t h e f o u r r e p e a t i n g l a y e r s c o n s i s t s o f a H A T - ( C N ) 6 m o l e c u l e w i t h t h r e e [ n - B u 4 N ] + c a t i o n s o c c u p y i n g t h e s p a c e a d j a c e n t t o t h e b i p y r i d i n e m o i t i e s . T h e n e x t l a y e r i s f o r m e d b y t h r e e i o d i d e i o n s e a c h o f w h i c h i s c e n t e r e d u n d e r t h e C - C b o n d i n N C - C m n g ) p o s t i o n s o n H A T - ( C N ) 6 . M o l e c u l e s o f H A T - ( C N ) 6 c o n s t i t u t e t h e t h i r d l a y e r . T h e f o u r t h l a y e r c o n s i s t s o f a n i o d i n e a t o m p o s i t i o n e d u n d e r t h e c e n t e r r i n g o f H A T - ( C N ) 6 a n d t h r e e b e n z e n e m o l e c u l e s t h a t a r e l o c a t e d u n d e r t h e H A T - ( C N ) 6 c y a n o g r o u p s . T h i s A B C D p a c k i n g p a t t e r n r e p e a t s t h r o u g h o u t t h e c r y s t a l . F i n a l l y , t h e [ n - B u . , , N ] + i o n s o c c u p y t h e c h a n n e l s f o r m i n g a s h e a t h a r o u n d e a c h s t a c k . T h e d e t e r m i n a t i o n o f t h i s s t r u c t u r e p r o m p t e d u s t o e x p l a i n t h e f a c t t h a t o n l y t h r e e [ n - B u 4 N ] + i o n s a r e a v a i l b l e f o r f o u r 1 ' i o n s . T h e m i d - I R s p e c t r u m o f c r y s t a l s o f { ( [ n - B u 4 N ] [ 1 ] ) 3 [ I ] [ H A T - ( C N ) 6 ] 2 } - 3 C 6 H 6 ( 3 2 ) r e v e a l e d t h e p r e s e n c e o f V C N m o d e s a t 2 2 4 3 a n d 2 2 2 8 c m ] . T h e 2 2 4 3 c m " 1 f e a t u r e i s c h a r a c t e r i s t i c o f n e u t r a l H A T - ( C N ) 6 . b u t t h e l o w e r e n e r g y V C N m o d e 2 4 9 ’ 3 7 a l ( \ ? 2 £ - ‘ ? ‘ G ‘ . V 1 . 3 . . A 1 2 , 3 I q 5 ~ 3 o Q , . o 4 ‘ g ? ) 2 3 ( 6 H 6 C 3 0 } 2 ] 6 ) N C ( - T A H [ ] I t [ 1 ? ' 1 t j Q € ; i F " 1 e . J 9 1 i G V 3 ! v ‘ . ( f ; E " % ” 3 ) ] 1 [ ] N 4 u B - n . [ ) t ( ” h 1 i ? 0 i 1 3 . . 1 ; . t ) : a t h " w 1 0 9 t 1 ’ “ g o 9“ { { g i f r o ( e s r i u x t a c u c r t s e h t l a d t n s a y r ) c t 9 f ? « l 4 : e e l } h 4 ( “ - ‘ : ° ) fi 2 - 1 9 ) “ . . . h 1 1 . 8 r . ‘ . w 1 . . , ¥ ‘ 2 k . . 3 : 6 0 g i ' , 1 ; 1 2 a @ m . t n i s i x g a n b i k e c h a t p n e w h t o d f o g n i " s t 3 o “ : . W 1 - . ) , g I 1 “ ' 0 9 % fi ~ 3 fi ' 1 M w k e o i o V l . 9 . 5 1 e 2 h 7 f 2 O : 2 L 3 . . u r 3 w 1 g i F 1 o 1 3 2 5 0 , ‘ I G u i ; ‘ 1 ‘ ? “ ‘ 0 ‘ O _ L ) J » ! ” 3 " “ " “ 3 ” ~ " $ 3 . 2 3 ? , 0 2 3 4 * “ ’ r 3 1 0 ; $ q m g w . - A } , E v ” f i g ? ? ? ) F i g u r e 5 . 1 0 . R e p r e s e n t a t i o n s o f t h e l a y e r s t h a t c o m p o s e t h e c o l u m n s p r e s e n t i n t h e c r y s t a l s t r u c t u r e o f { ( [ n - B u 4 N l [ 1 ] ) 3 [ 1 ] [ H A T - ( C N ) 6 1 2 ) ‘ 3 C 6 H 6 ( 3 2 ) - 2 5 1 i n d i c a t e s t h a t d o n a t i o n o f e l e c t r o n d e n s i t y t o H A T - ( C N ) 6 i s o c c u r i n g . T h e c r y t a l l o g r a p h i c e v i d e n c e s u g e s t s t h i s i s o c u r r i n g f r o m a c h a r g e t r a n s f e r i n t e r a c t i o n i n v o l v i n g H A T - ( C N ) 6 a n d t h e a n 1 a t o m o f t h e f o u r t h r e p e a t l a y e r . T h e d i s t a n c e o f t h e I a t o m t o t h e C a t o m s o f t h e c e n t e r r i n g i n t h e H A T - ( C N ) 6 a b o v e i t i s s l i g h t l y l e s s ( 3 . 6 5 A v e r s u s 3 . 6 9 A ) t h a n t h e d i s t a n c e t o t h e e q u i v a l e n t c a r b o n a t o m s i n t h e H A T - ( C N ) 6 b e l o w i t . R e a c t i o n s o f t h i s t y p e h a v e b e e n r e p o r t e d f o r i o d i n e a t o m s i n t h e l i t e r a t u r e . 2 0 ( 2 ) R e a c t i v i t y w i t h F e C p ‘ z a n d C o n 2 T h e i n a b i l i t y o f F e s z t o r e d u c e H A T - ( C N ) 6 l e d t o t r y t h e m o r e s t r o n g l y r e d u c i n g F e C p ‘ z . T h e F e C p * / [ F e C p * 2 ] + c o u p l e a t — 0 . 0 7 0 V s u g g e s t s t h a t F e C p ' } i s c a p a b l e o f t h e o n e e l e c t r o n r e d u c t i o n o f H A T - ( C N ) 6 t o [ H A T - ( C N ) 6 ] ' w h i c h o c c u r s a t E m = - 0 . 0 6 4 V . A c e t o n i t r i l e s o l u t i o n s o f F e C p ' z ( y e l l o w ) t r e a t e d w i t h H A T - ( C N ) 6 ( o r a n g e ) p r o d u c e d a g r e e n s o l u t i o n c h a r a c t e r i s t i c o f t h e r a d i c a l [ H A T - ( C N ) 6 ] ' , b u t t h e s y s t e m i s i n e q u i l i b r i u m , a n d t h e p r o c e s s o f e l e c t r o n t r a n s f e r f r o m F e C p * 2 t o H A T - ( C N ) 6 i s e v i d e n t l y n o t s t r o n g l y p r o d u c t f a v o r e d . I f o n e c o o l s t h e s o l u t i o n t o — 5 ° C t h e e q u i l i b r i u m s h i f t s b a c k t o t h e r e a c t a n t s , n e u t r a l H A T - ( C N ) 6 a n d n e u t r a l F e C p * 2 . W i t h t h e l o s s o f t h e [ H A T - ( C N ) 6 ] ' a n d [ ( C p " ' ) 2 F e ] + c h r o m o p h o r e s , t h e s o l u t i o n r e v e r t s t o o r a n g e - y e l l o w . T h e p o t e n t i a l s o f t h e ( C p * ) 2 F e / [ ( C p * ) 2 F e ] + a n d H A T — ( C N ) 6 / [ H A T - ( C N ) 6 ] ' r e d o x c o u p l e s a r e 2 5 2 s o l v e n t d e p e n d e n t w h i c h e f f e c t s t h e e l e c t r o n t r a n s f e r p r o c e s s . I n T H F , t w o r e v e r s i b l e r e d u c t i o n s a n d o n e i r r e v e r s i b l e c a t h o d i c p r o c e s s a r e a g a i n o b s e r v e d f o r H A T — ( C N ) 6 , b u t t h e p o t e n t i a l s a r e s h i f t e d t o m o r e p o s t i v e p o t e n t i a l s o c u r r i n g a t 0 . 0 5 1 , - 0 . 4 2 9 , a n d — 1 . 0 6 V r e s p e c t i v e l y . C o m b i n i n g T H F s o l u t i o n s o f ( C p ‘ ) 2 F e a n d H A T - ( C N ) 6 p r o d u c e s n o c o l o r c h a n g e i n d i c a t i n g t h e l o w e r d i e l e c t r i c c o n s t a n t o f T H F a s c o m p a r e d t o a c e t o n i t r i l e d o e s n o t f a c i l i t a t e r e d u c t i o n o f H A T - ( C N ) 6 . A m o r e c o n v e n i e n t a n d s u c c e s s f u l a p p r o a c h t o c h e m i c a l r e d u c t i o n o f H A T - ( C N ) 6 i s t o u s e C o n z w h i c h i s t h e o r e t i c a l l y c a p a b l e o f r e d u c i n g H A T - ( C N ) 6 t o b o t h t h e m o n o - r a d i c a l [ H A T - ( C N ) 6 ] ’ a n d t h e d i - a n i o n i c [ H A T - ( C N ) 6 ] 2 ' f o r m s . T h e c o m p o u n d [ C o n 2 ] [ H A T - ( C N ) 6 ] w a s i s o l a t e d a s a g r e e n p o w d e r f r o m t h e r e a c t i o n o f c o b a l t o c e n e w i t h a n e x c e s s o f H A T - ( C N ) 6 . A l t h o u g h s i n g l e c r y s t a l s h a v e n o t y e t b e e n o b t a i n e d , s o m e c h a r a c t e r i s t i c f e a t u r e s o f t h e [ H A T - ( C N ) 6 ] ' r a d i c a l w e r e i d e n t i fi e d . T h e I R s p e c t r u m c o n t a i n s a V C 3 N m o d e a t 2 2 1 4 c m ] , w h i c h r e p r e s e n t s a s h i f t t o l o w e r e n e r g y f r o m n e u t r a l H A T - ( C N ) 6 ( 2 2 4 3 c m ' l ) . T h i s i s a n a l o g o u s t o t h e s h i f t s o b s e r v e d f o r o t h e r o r g a n i c r a d i c a l s w i t h C E N g r o u p s . 2 0 T h e E P R s p e c t r u m o f a s o l i d s a m p l e o f [ C o n 2 ] [ H A T - ( C N ) 6 ] a t 4 K s h o w s a t y p i c a l i s o t r o p i c r e s o n a n c e f o r a n o r g a n i c r a d i c a l ( S = 1 / 2 ) , w i t h a g v a l u e o f 2 . 0 0 8 4 2 5 3 a n d a n a r r o w l i n e - w i d t h o f 7 G . T h e s e d a t a i n d i c a t e t h e [ H A T - ( C N ) 6 ] 1 ' r a d i c a l s a r e n o t s t r o n g l y d i m e r i z e d i n t h e s o l i d s t a t e , p e r h a p s d u e t o t h e f o r m a t i o n o f i n t e g r a t e d s t a c k s w i t h n - r t i n t e r a c t i o n s b e t w e e n t h e c a t i o n s a n d a n i o n s . T h e r e a c t i o n o f n e u t r a l H A T - ( C N ) 6 w i t h a n e x c e s s o f C o n 2 y i e l d s t h e s a l t [ C o n 2 ] 2 [ H A T - ( C N ) 6 ] . T h e d i a n i o n i s e x t r e m e l y s e n s i t i v e t o t h e p r e s e n c e o f a i r o r w a t e r , w h i c h r e n d e r s i t s c h a r a c t e r i z a t i o n d i f fi c u l t . T h e I R s p e c t r u m c o n t a i n s a c h a r a c t e r i s t i c V c . N m o d e a t 2 1 9 5 c m ’ l , w h i c h i s l o w e r i n e n e r g y b y 1 9 c m ' 1 r e l a t i v e t o t h e m o n o r a d i c a l [ H A T - ( C N ) 6 ] ' a n d 4 8 e m " r e l a t i v e t o n e u t r a l H A T - ( C N ) 6 . ( 3 ) R e a c t i v i t y S t u d i e s o f H A T - ( C N ) 6 w i t h C o a n d Z n A n a l t e r n a t i v e m e t h o d f o r p r e p a r i n g b i n a r y t r a n s i t i o n m e t a l c o m p o u n d s o f [ H A T - ( C N ) 6 ] ‘ i s t h e d i r e c t r e a c t i o n o f H A T - ( C N ) 6 w i t h fi r s t r o w t r a n s i t i o n m e t a l s s u c h a s C o a n d Z n . T h e r e s u l t i n g d a r k b l u e — g r e e n p o w d e r s a r e s o l u b l e i n p o l a r o r g a n i c s o l v e n t s s u c h a s a c e t o n i t r i l e w h i c h s u g g e s t s t h a t d i s c r e t e s p e c i e s a r e b e i n g f o r m e d . A l t h o u g h X - r a y q u a l i t y s i n g l e c r y s t a l s h a v e n o t b e e n o b t a i n e d , s e v e r a l s p e c t r o s c o p i c c h a r a c t e r i z a t i o n t e c h n i q u e s h a v e b e e n e m p l o y e d t h a t s u p p o r t t h e i r f o r m u l a t i o n a s t h e c o m p o u n d s M [ H A T - ( C N ) 6 ] 2 ( M = C 0 ( 3 5 ) , Z n ( 3 6 ) ) ( F i g u r e 5 . 1 0 ) . T h e V C E N s t r e t c h i n g 2 5 4 F i g u r e 5 . 1 1 . A s t r u c t u r a l r e p r e s e n t a t i o n o f C o [ H A T - ( C N ) 6 ] 2 ( 3 5 ) a n d Z n [ H A T - ( C N ) 6 ] 2 ( 3 6 ) i l l u s t r a t i n g t h e s t e r i c b u l k o f t h e C N g r o u p s . 2 5 5 ) G ( H . ) G ( H g : 2 . 0 0 3 9 : 2 . 1 8 0 g = 2 . 0 0 5 2 5 6 3 3 0 0 3 4 0 0 3 0 0 0 3 4 0 0 3 8 0 0 M = Z n I I M = C 0 1 1 F i g u r e 5 . 1 2 . X - B a n d E P R S p e c t r a o f M ( H A T - ( C N ) 6 ) 2 ( M = Z n o r C o ) r e c o r d e d o n C H 3 C N / t o l u e n e f r o z e n s o l u t i o n s a t 7 7 K . m o d e s o f 2 2 1 0 a n d 2 2 1 2 c m ' 1 a r e c o n s i s t e n t w i t h t h e p r e s e n c e o f [ H A T - ( C N ) 6 ] ’ . B o t h c o m p o u n d s a r e E P R s i l e n t i n t h e s o l i d s t a t e , b u t s p e c t r a o b t a i n e d i n a c e t o n i t r i l e / t o l u e n e f r o z e n s o l u t i o n s a t 4 K E P R a c t i v e . T h e s p e c t r u m o f t h e Z n c o m p o u n d c o n s i s t s o f a s i n g l e i s o t r o p i c f e a t u r e a t g = 2 . 0 0 3 1 w i t h A H = 1 5 G ( F i g u r e 5 . 1 2 ) . H y p e r fi n e c o u p l i n g w o u l d n o t b e e x p e c t e d d u e t o t h e l o w n a t u r a l a b u n d a n c e o f 6 7 Z n ( 4 % ) . O n t h e o t h e r h a n d , 5 9 C o w i t h I = 7 / 2 i s 1 0 0 % a b u n d a n t , c o n s e q u e n t l y t h e E P R s i g n a l o f C o [ H A T - ( C N ) 6 ] 2 s h o w s h y p e r fi n e c o u p l i n g t o t h e C o n u c l e u s a t g = 2 . 0 0 5 1 w i t h A H = 4 8 0 G ( F i g u r e 5 . 1 2 ) . A d d i t i o n a l l y , a b r o a d s i g n a l w a s o b s e r v e d f o r t h e S = 3 / 2 C o u i o n a t g = 2 . 1 8 0 . T h i s g v a l u e i s i n g o o d a g r e e m e n t w i t h t h e o n e o b t a i n e d f r o m m a g n e t i c s u s c e p t i b i l i t y s t u d i e s o f t h e c o m p o u n d , w h i c h r e v e a l e d a h i g h t e m p e r a t u r e m o m e n t o f [ l e g = 4 . 2 B . M . w i t h g = 2 . 1 7 . T h e s e d a t a i n d i c a t e t h a t t h e C o c e n t e r s a r e m a g n e t i c a l l y i s o l a t e d f r o m e a c h o t h e r . A s c o n fi r m e d b y E P R s p e c t r o s c o p y , t h e r e i s n o c o n t r i b u t i o n t o t h e m a g n e t i z a t i o n f r o m [ H A T - ( C N ) 6 ] ' , p r e s u m a b l y d u e t o i n t e r m o l e c u l a r i n t e r a c t i o n s i n t h e s o l i d s t a t e . T h e Z n c o m p o u n d i s r e n d e r e d d i a m a g n e t i c i n t h e s o l i d s t a t e d u e t o t h e s e s t a c k i n g i n t e r a c t i o n s . 2 5 7 a N A = 1 . 0 4 G S i m u l a t i o n 2 0 3 K T H F I I I I I l I I I I I I I 3 3 0 0 3 3 0 5 3 3 1 O 3 3 1 5 3 3 2 0 M a g n e t i c F i e l d ( G ) K ( c r y p t a n d [ 2 . 2 . 2 ] ) [ H A T - ( C N ) 6 ] F i g u r e 5 . 1 3 . T h e e x p e r i m e n t a l a n d s i m u l a t e d E P R s p e c t r a o f K ( c r y p t a n d [ 2 . 2 . 2 ] ) [ H A T - ( C N ) 6 ] r e c o r d e d i n T H F a t 2 0 3 K . 2 5 8 ( 4 ) P o t a s s i u m r e d u c t i o n o f H A T - ( C N ) 6 T h e r e a c t i o n o f H A T - ( C N ) 6 w i t h o n e e q u i v a l e n t o f K i n d i m e t h y l i m a d i z o l e ( D M I ) p r o d u c e s a g r e e n s o l u t i o n o f K [ H A T — ( C N ) 6 ] . T h e E P R s p e c t r u m o f t h i s s o l u t i o n i s i d e n t i c a l t o t h e s p e c t r u m ( F i g u r e 5 . 1 3 ) o f K ( c r y p t a n d [ 2 . 2 . 2 ] ) [ H A T - ( C N ) 6 ] t h a t w a s fi r s t r e c o r d e d b y A . I c h i m u r a . 2 1 T h e n a r r o w l i n e - w i d t h o f 5 G a n d t h e g v a l u e o f 2 . 0 0 3 a r e c h a r a c t e r i s t i c o f o r g a n i c r a d i c a l s . T h e h y p e r fi n e c o u p l i n g t o t h e n i t r o g e n a t o m s i s w e a k y e t s u f fi c i e n t l y w e l l r e s o l v e d t o i d e n t i f y t h e h y p e r fi n e c o u p l i n g c o n s t a n t s o f a N A ( r i n g n i t r o g e n s ) = 1 . 0 4 G a n d a N B ( n i t r i l e n i t r o g e n s ) = 0 . 2 4 G . A s i m u l a t i o n o f t h e [ H A T - ( C N ) 6 ] ' E P R s p e c t r u m ( F i g u r e 5 . 1 3 ) p r o v i d e d a g o o d fi t t o t h e e x p e r i m e n t a l d a t a . T h e l o w i n t e n s i t y o f t h e h y p e r fi n e c o u p l i n g i s a t t r i b u t e d t o s e v e r a l f a c t o r s t h a t m o d u l a t e t h e l i n e - w i d t h . I n t h e s i m u l a t i o n , t h e h y p e r fi n e s p l i t t i n g p a t t e r n i s t h e s a m e o n b o t h h a l v e s o f t h e s p e c t r u m , b u t i n t h e e x p e r i m e n t a l s p e c t r u m t h e h i g h fi e l d s i d e i s l e s s w e l l - r e s o l v e d . T h i s i s c o m m o n f o r m o l e c u l e s u n d e r g o i n g s l o w m o l e c u l a r t u m b l i n g . A d d i t i o n a l l y , h y p e r fi n e a n i s o t r o p y o f n - r a d i c a l s i s g e n e r a l l y q u i t e l a r g e a n d i s o n e o f t h e t e r m s t h a t c o n t r i b u t e s t o t h e e x p r e s s i o n f o r t h e l i n e - w i d t h u n d e r c o n d i t i o n s o f s l o w m o l e c u l a r t u m b l i n g a n d s h o r t c o r r e l a t i o n t i m e s . 2 2 2 5 9 T h e r e a c t i o n o f H A T - ( C N ) 6 w i t h t w o e q u i v a l e n t s o f K i n D M I p r o d u c e s a g r e e n s o l u t i o n t h a t i s p r o p o s e d t o b e [ K ] 2 [ H A T - ( C N ) 6 ] . T h e r e s u l t s o f c o m p u t a t i o n a l s t u d i e s p r e s e n t e d i n S e c t i o n 4 o f t h i s c h a p t e r i n d i c a t e t h a t [ H A T ( C N ) 6 ] 2 ‘ s h o u l d e x h i b i t a t r i p l e t g r o u n d s t a t e . T h e m o s t c o m p e l l i n g e x p e r i m e n t a l e v i d e n c e i n s u p p o r t o f t h i s e l e c t r o n i c g r o u n d s t a t e c o n fi g u r a t i o n i s t h e o b s e r v a t i o n o f a h a l f - fi e l d s i g n a l a t 1 6 8 5 G i n t h e E P R s p e c t r u m r e c o r d e d a t 4 . 2 K ( F i g u r e 5 . 1 5 ) . T h i s l i n e c o r r e s p o n d s t o t h e A m , = 2 t r a n s i t i o n t h a t c a n o n l y o r i g i n a t e f r o m a t r i p l e t e l e c t r o n i c s t a t e . 2 2 T h e t r a n s i t i o n i s q u a n t u m - m e c h a n i c a l l y f o r b i d d e n , b u t z e r o fi e l d s p l i t t i n g ( z f s ) g e n e r a l l y r e l a x e s t h e s e l e c t i o n r u l e t h a t d i c t a t e s o n l y t r a n s i t i o n s w i t h A m , = : 1 a r e a l l o w e d . T h e w e a k i n t e n s i t y o f t h e s i g n a l i s c o n s i s t e n t w i t h t h e o n e l i n e s i g n a l o b s e r v e d i n t h e h i g h fi e l d r e g i o n n e a r g = = 2 ( F i g u r e 5 . 1 5 ) . G i v e n t h r e e e n e r g y l e v e l s , - 1 , O , a n d + 1 , a n d t h e A m , = - _ * - 1 s e l e c t i o n r u l e t w o E P R t r a n s i t i o n s w o u l d b e e x p e c t e d f o r a t r i p l e t ( F i g u r e 5 . 1 4 ) . I n s i t u a t i o n s w h e r e t h e z f s p a r a m e t e r , D , i s s m a l l , h o w e v e r , t h e t w o l i n e s c a n c o l l a p s e t o g i v e a s p e c t r u m w i t h o n l y o n e l i n e . 2 2 T h e i n t e n s i t y o f t h e h a l f - fi e l d , f o r b i d d e n , t r a n s i t i o n s c a l e s w i t h D s o t r i p l e t s p e c t r a w i t h a s i n g l e l i n e i n t h e h i g h - fi e l d r e g i o n w o u l d b e e x p e c t e d t o h a v e a w e a k A m , = 2 t r a n s i t i o n . 2 6 0 g n i s a e r c n i H 0 , 1 - , 1 + 2 6 1 + 1 + 1 H i n c r e a s i n g H i n c r e a s i n g ( a ) 0 ) ) + 1 ( C ) F i g u r e 5 . 1 4 . T h e e f f e c t s o f z e r o - fi e l d s p l i t t i n g ( Z F S ) o n t h e e x p e c t e d E P R t r a n s i t i o n s o f a t r i p l e t s t a t e s p e c i e s . ( a ) n o Z F S ( b ) m o d e r a t e Z F S ( c ) l a r g e Z F S G 5 8 6 1 = d l e ] G [ i 0 F 1 r e t n e 7 1 0 0 C 7 1 0 9 6 1 0 8 6 1 0 7 6 1 0 6 6 1 - 2 6 2 l l I 1 1 I F i g u r e 5 . 1 5 . H a l f — fi e l d t r a n s i t i o n i n t h e E P R s p e c t r u m o f t h e p r o d u c t f r o m t h e r e a c t i o n o f H A T - ( C N ) 6 w i t h 2 e q u i v a l e n t s o f K . T h e s p e c t r u m w a s r e c o r d e d i n d i m e t h y l i m i d a z o l e a t 4 . 2 K . 3 3 4 0 3 3 8 0 3 4 2 0 [ G ] F i g u r e 5 . 1 6 . T h e f r o z e n s o l u t i o n E P R s p e c t r u m o f t h e r e a c t i o n o f H A T - ( C N ) 6 w i t h 2 e q u i v a l e n t s o f K i n d i m e t h y l i m a d i z o l e r e c o r d e d a t 4 . 2 K . 2 6 3 1 l l l 3 3 7 0 3 3 7 5 3 3 8 0 3 3 8 5 3 3 9 0 [ G ] F i g u r e 5 . 1 7 . T h e s o l u t i o n E P R s p e c t r u m o f t h e r e a c t i o n o f H A T - ( C N ) 6 w i t h 2 e q u i v a l e n t s o f K . T h e s p e c t r u m w a s r e c o r d e d i n D M I a t r o o m t e m p e r a t u r e . 2 6 4 T h e s o l u t i o n E P R s p e c t r u m i n D M I a t r o o m t e m p e r a t u r e i s d i s p l a y e d i n F i g u r e 5 . 1 7 . T h e e v e n n u m b e r o f h y p e r fi n e l i n e s i s i n c o n s i s t e n t w i t h w h a t s h o u l d b e p r o d u c e d b y a m o l e c u l e s u c h a s H A T - ( C N ) 6 w h i c h c o n t a i n s a n e v e n n u m b e r o f N a t o m s w i t h I = 1 n u c l e a r s p i n v a l u e s . T h i s s i t u a t i o n s h o u l d g i v e r i s e t o a s i g n a l w i t h a n o d d n u m b e r o f l i n e s a n d t h e r e f o r e a h y p e r fi n e l i n e a t t h e c e n t e r . T h e e v e n n u m b e r o f h y p e r fi n e l i n e s i m p l i e s a d d i t i o n a l c o u p l i n g , p o s s i b l y t o K , h o w e v e r t h e h y p e r fi n e c o u p l i n g c o n s t a n t o f t h e a d d i t i o n a l n u c l e u s w o u l d h a v e t o b e e q u a l t o t h e n i t r o g e n h y p e r fi n e o r s o m e m u l t i p l e o f i t t o g i v e t h e o b s e r v e d s i g n a l . T h e o r i g i n o f t h e h y p e r fi n e c o u p l i n g o b s e r v e d i n t h i s s p e c t r u m i s s t i l l u n r e s o l v e d . C . R e a c t i o n o f [ H A T - ( C N ) 6 ] ' w i t h t r a n s i t i o n m e t a l i o n s R e a c t i o n s o f [ C o n 2 ] [ H A T - ( C N ) 6 ] w i t h d i v a l e n t fi r s t r o w t r a n s i t i o n m e t a l i o n s s u c h a s M n " , F e " , C o " , a n d N i 1 1 i n a c e t o n i t r i l e a t r o o m t e m p e r a t u r e y i e l d d a r k g r e e n p r e c i p i t a t e s . T h e h i g h d e g r e e o f i n s o l u b i l i t y o f t h e s e p r o d u c t s i n c o m m o n s o l v e n t s s u g g e s t s t h e p r e s e n c e o f e x t e n d e d s t r u c t u r e s . A s s u m i n g t h a t t h e p r e f e r r e d [ H A T - ( C N ) 6 ] ‘ b i n d i n g m o d e i s t h r o u g h t h e c h e l a t i n g N - N s i t e s a n d t h a t t h e n i t r i l e g r o u p s a r e s u f fi c i e n t l y b u l k y t o f o r c e t h e t e t r a h e d r a l v e r s u s o c t a h e d r a l g e o m e t r y ( F i g u r e 5 . 1 1 ) , t h e e x p e c t e d s t o i c h i o m e t r y f o r t h e b i n a r y m e t a l - [ H A T - ( C N ) 6 ] c o o r d i n a t i o n p o l y m e r s w o u l d b e 3 : 2 . T h e p r e s e n c e o f t h e [ H A T - ( C N ) 6 ] ' r a d i c a l a n d t h e 2 6 5 a b s e n c e o f [ C o n 2 ] + w a s v e r i fi e d b y I R s p e c t r o s c o p y , b u t t h e l o w c r y s t a l l i n i t y o f t h e s e s a m p l e s p r e c l u d e d a s t r u c t u r a l s t u d y . I t r e m a i n s u n k n o w n i f t h e c o m p o u n d s a r e d i s c r e t e o r p o l y m e r i c , a n d i f t h e s o l i d s t a t e s t r u c t u r e i s c o n t r o l l e d s o l e l y b y m e t a l - l i g a n d i n t e r a c t i o n s o r a l s o b y l i g a n d - l i g a n d i n t e r a c t i o n s . T h e m a g n e t i c m e a s u r e m e n t s f o r t h e s e c o m p o u n d s r e v e a l e d o n l y p a r a m a g n e t i c b e h a v i o u r c h a r a c t e r i s t i c o f t h e m e t a l i o n s w i t h n o c o n t r i b u t i o n s f r o m t h e l i g a n d . T h i s f a c t t a k e n , t o g e t h e r w i t h t h e a b s e n c e o f s i g n i fi c a n t m a g n e t i c e x c h a n g e b e t w e e n l o c a l i z e d m o m e n t s i n t h e m e t a l i o n s i n a l l c a s e s , s u g g e s t s 1 t - 1 t d i m e r i z a t i o n o f t h e l i g a n d i n t h e s o l i d s t a t e . S u c h a s i t u a t i o n w o u l d y i e l d d i a m a g n e t i c “ d i m e r s ” ( S = 0 ) s i m i l a r t o m a n y o t h e r s a l t s o f o r g a n i c r a d i c a l s . 8 4 . C o m p u t a t i o n a l S t u d i e s o f H A T - ( C N ) 6 a n d i t s r e d u c t i o n p r o d u c t s D e n s i t y F u n c t i o n a l T h e o r y c o m p u t a t i o n s w e r e c a r r i e d o u t u s i n g t h e G a u s s i a n 9 8 P r o g r a m . G e o m e t r i c o p t i m i z a t i o n u s i n g C a r t e s i a n c o o r d i n a t e s a n d f r e q u e n c y c a l c u l a t i o n s w e r e c o n d u c t e d f o r n e u t r a l H A T - ( C N ) 6 , t h e m o n o - a n i o n r a d i c a l [ H A T - ( C N ) 6 ] 1 ' , a n d b o t h t h e s i n g l e t a n d t r i p l e t s t a t e s o f t h e d i - a n i o n [ H A T - ( C N ) 6 ] 2 ' . T h e t h e o r y l e v e l a n d b a s i s s e t e m p l o y e d w e r e U B 3 L Y P a n d 6 - 3 1 G r e s p e c t i v e l y . 2 6 6 A l t h o u g h t h e p a r a m e t e r s f o r t h e g e o m e t r i c o p t i m i z a t i o n s w e r e s e t u p s o a s t o p e r m i t t h e [ H A T - ( C N ) 6 ] ° ” ” 2 ’ m o l e c u l e s t o u n d e r g o J a h n - T e l l e r d i s t o r t i o n , a l l f o u r s p e c i e s r e m a i n e d p l a n a r . I t s h o u l d b e n o t e d t h a t o p t i m i z a t i o n s f o r t h e r a d i c a l m o n o - a n i o n a n d t h e s i n g l e t d i - a n i o n a r e n o t t r u e m i n i m i z a t i o n s b e c a u s e t h e f r e q u e n c y c a l c u l a t i o n s y i e l d e d a n i m a g i n a r y f r e q u e n c y . T h e s e g e o m e t r i e s w o u l d b e s t b e c a l l e d t r a n s i t i o n s t a t e s b u t t h e s e c o u l d b e m e r e l y r o t a t i o n a l t r a n s i t i o n s t a t e s a n d n o t n e c e s s a r i l y v i b r a t i o n a l i n n a t u r e . T h e m a x i m u m f o r c e , R M S f o r c e , m a x i m u m d i s p l a c e m e n t , a n d R M S d i s p l a c e m e n t t e r m s o f a l l f o u r o p t i m i z a t i o n s d i d , h o w e v e r , c o n v e r g e a s r e q u i r e d . T h i s s u g g e s t s t h a t a n y e n e r g y d i f f e r e n c e s p r o d u c e d b y a d d i t i o n a l c a l c u l a t i o n s w o u l d b e n e g l i g i b l e . A s l i g h t J a h n - T e l l e r d i s t o r t i o n w a s o b s e r v e d f o r t h e r a d i c a l [ H A T - ( C N ) 6 ] ' . A s m e n t i o n e d p r e v i o u s l y , t h e r a d i c a l r e m a i n e d p l a n a r w i t h o n l y a s l i g h t i n - p l a n e e l o n g a t i o n a l o n g t w o o f t h e C 2 a x e s w h i c h l o w e r s t h e m o l e c u l a r s y m m e t r y f r o m D 3 ) , t o C Z V . A r e p r e s e n t a t i o n o f t h e d i s t o r t i o n i s d e p i c t e d i n F i g u r e 5 . 1 8 . T h e e n e r g i e s o f t h e f o u r H A T - ( C N ) 6 s p e c i e s w e r e d e t e r m i n e d . T h e l o w e s t o f t h e s e w a s n e u t r a l H A T - ( C N ) 6 w h i c h l i e s 7 8 . 5 5 9 k c a l / m o l b e l o w t h e m o n o - a n i o n r a d i c a l [ H A T - ( C N ) 6 ] ' . T h e t r i p l e t d i - a n i o n i s 1 . 3 5 4 k c a l / m o l a b o v e t h e m o n o - a n i o n a n d 3 . 6 6 3 k c a l / m o l b e l o w t h e s i n g l e t 2 6 7 d i a n i o n . T h o u g h t h e s i n g l e t - t r i p l e t g a p i s s m a l l , t h e s e c a l c u l a t i o n s s u p p o r t t h a t [ H A T - ( C N ) 6 ] 2 ' s h o u l d f a v o r s l i g h t l y a t r i p l e t g r o u n d s t a t e . T h e m o l e c u l a r o r b i t a l s f o r H A T - ( C N ) 6 , [ H A T - ( C N ) 6 ] ' , a n d b o t h t h e s i n g l e t a n d t r i p l e t e l e c t r o n i c c o n fi g u r a t i o n s o f [ H A T ( C N ) 6 ] 2 ’ w e r e d e t e r m i n e d . T h e d e g e n e r a t e H O M O ’ s a n d L U M O ’ s o f n e u t r a l H A T - ( C N ) 6 a r e d e p i c t e d i n F i g u r e 5 . 1 9 . T h e m o l e c u l a r o r b i t a l c a l c u l a t i o n s r e v e a l e d t h e t h a t H O M O o f [ H A T ( C N ) 6 ] ' ( F i g u r e 5 . 2 0 ) s t r o n g l y r e s e m b l e s o n e o f t h e H A T - ( C N ) 6 L U M O ’ s . T h e o t h e r H A T - ( C N ) 6 L U M O b e c o m e s t h e L U M O + 1 o f [ H A T ( C N ) 6 ] ’ a n d n o t , a s m i g h t h a v e b e e n e x p e c t e d , t h e L U M O . T h i s c o u l d b e d u e t o t h e J a h n - T e l l e r d i s t o r t i o n o b s e r v e d f o r t h e r a d i c a l [ H A T ( C N ) 6 ] ' . T h e d e g e n e r a t e H O M O ’ s o f t h e t r i p l e t [ H A T ( C N ) 6 ] 2 ' ( p r e s e n t e d i n F i g u r e 5 . 2 1 ) s p l i t a n d b e c o m e t h e H O M O a n d L U M O o f t h e s i n g l e t [ H A T ( C N ) 6 ] 2 ' s p e c i e s ( d e p i c t e d i n F i g u r e 5 . 2 2 ) . 2 6 8 F i g u r e 5 . 1 8 . A r e p r e s e n t a t i o n o f t h e J a h n — T e l l e r e l o n g a t i o n p r e d i c t e d f o r t h e r a d i c a l [ H A T - ( C N ) 6 ] ' b y a D F I ‘ c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h G a u s s i a n 9 8 . 2 6 9 L U M O ’ S E = - 0 . 1 6 9 5 8 H O M O ’ S E = - 0 . 3 2 4 7 2 F i g u r e 5 . 1 9 . R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s o f H A T - ( C N ) 6 a s d e t e r m i n e d b y a D P T c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . 2 7 0 L U M O L U M O + 1 E = ' 0 - 0 4 0 0 8 E = 0 . 0 3 9 1 7 H O M O E = 0 . 0 8 0 8 6 F i g u r e 5 . 2 0 . R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s o f [ H A T - ( C N ) 6 ] ' a s d e t e r m i n e d b y a D F I ‘ c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . 2 7 1 L U M O E = 0 . 0 9 1 7 5 H O M O ’ s E = 0 . 0 4 1 0 6 F i g u r e 5 . 2 1 . R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s f o r t h e t r i p l e t e l e c t r o n i c c o n fi g u r a t i o n o f [ H A T - ( C N ) 6 ] 2 ' a s d e t e r m i n e d b y a D P T c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . 2 7 2 L U M O E = 0 . 0 8 7 8 2 H O M O E = 0 . 0 5 1 3 8 F i g u r e 5 . 2 2 . R e p r e s e n t a t i o n s o f t h e f r o n t i e r m o l e c u l a r o r b i t a l s f o r t h e s i n g l e t e l e c t r o n i c c o n fi g u r a t i o n o f [ H A T - ( C N ) 6 ] 2 ' a s d e t e r m i n e d b y a D P T c o m p u t a t i o n a l s t u d y c o n d u c t e d w i t h t h e G a u s s i a n 9 8 p r o g r a m . T h e e n e r g i e s a r e r e p o r t e d i n H a r t r e e u n i t s . 2 7 3 5 . C o n c l u s i o n s T h e m e t a l l o c e n e s , F e s z a n d [ C o n 2 ] [ P F 6 ] , p r o v e d t o b e c a p a b l e t e m p l a t e s f o r t h e f o r m a t i o n o f l a y e r e d s t r u c t u r e s o f w i t h H A T - ( C N ) 6 , C o n v e n i e n t o u t e r - s p h e r e c h e m i c a l r e d u c t i o n r o u t e s o f H A T - ( C N ) 6 t o t h e r a d i c a l [ H A T - ( C N ) 6 ] ' s p e c i e s a n d t h e d i a n i o n [ H A T - ( C N ) ( , ] 2 ' h a v e b e e n d o c u m e n t e d . T r a n s i t i o n m e t a l s c a n a l s o b e u s e d a s r e d u c i n g a g e n t s , b u t i n t h e s e c a s e s c o m p l e x a t i o n o f t h e m e t a l w i t h t h e r e d u c e d H A T - ( C N ) 6 s p e c i e s o c c u r s . D i s c r e t e , s o l u b l e p a r a m a g n e t i c c o m p l e x e s a r e o b t a i n e d b y d i r e c t r e a c t i o n o f H A T - ( C N ) 6 w i t h C o a n d Z n . I n s o l u b l e , p o l y m e r i c b i n a r y s a l t s w e r e o b t a i n e d f r o m r e a c t i o n s o f d i v a l e n t t r a n s i t i o n m e t a l s w i t h t h e p r e - r e d u c e d [ H A T - ( C N ) 6 ] ' a n i o n . T h e s t r u c t u r e s o f t h e s e s a l t s a r e n o t k n o w n , b u t t h e y s h o w m a g n e t i c b e h a v i o r i n d i c a t i v e o f a d i m e r i z a t i o n o f t h e [ H A T - ( C N ) 6 ] 1 ' r a d i c a l s i n t h e s o l i d s t a t e . 2 7 4 R e f e r e n c e s : l . ( a ) D u n b a r , K . R . ; H e i n t z , R . A . P r o g . I n o r g . C h e m . 1 9 9 6 3 5 4 4 4 9 ; ( b ) V e r d a g u e r , M . ; B l e u z e n , A . ; M a r v a u d , V . ; V a i s s e r m a n n , J . S e u l e i m a n , M . ; D e s p l a n c h e s , C . ; S c u l l i e r , A . ; T r a i n , C . ; G a r d e , R . ; G e l l y , G . ; L o m e n e c h , C . ; R o s e n m a n , 1 . ; V e i l l e t , P . ; C a r t i e r , C . ; V i l l a i n , F . C o o r d . C h e m . R e v . 1 9 9 9 1 9 0 - 1 9 2 1 2 8 5 ; ( c ) O h b a , M . ; O k a w a , H . C o o r d . C h e m . R e v . 2 0 0 0 , I 9 8 3 1 3 ; E n t l e y , W . R . ; G i r o l a m i , G . S . I n o r g . C h e m . 1 9 9 4 3 3 5 1 5 6 ; ( d ) S a t o , 0 . ; E i n a g a , Y . ; F u j i s h i m a , A . ; H a s h i m o t o , K . I n o r g . C h e m . 1 9 9 9 3 8 4 4 0 5 ; ( e ) L a r i o n o v a , J . ; C l é r a c , R . ; S a n c h i z , J . ; K a h n , O . ; G o l h e n , S . ; O u a h a b , L . J . A m . C h e m . S o c . 1 9 9 8 1 2 0 1 3 0 8 8 . 2 . ( a ) M a n s o n , J . L . ; K m e t y , C . R . ; H u a n g , Q . - Z . ; L y n n , J . W . ; B e n d e l e , G . 3 . M . ; P a g o l a , S . ; S t e p h e n s , P . W . ; L i a b l e - S a n d s , L . M . ; R h e n i n g o l d , A . L . ; E p s t e i n , A . J . ; M i l l e r , J . S . C h e m . M a t e r . 1 9 9 8 1 0 2 5 5 2 ; M a n s o n , J . L . ; K m e t y , C . R . ; E p s t e i n , A . J . ; M i l l e r , J . S . I n o r g . C h e m . 1 9 9 9 3 8 2 5 5 2 ; ( c ) B a t t e n , S . R . ; J e n s e n , P . ; M o u b a r a k i , B . ; M u r r a y , K . S . ; R o b s o n , R . C h e m . C o m m u n . 1 9 9 8 4 3 9 ; ( d ) B a t t e n , S . R . ; J e n s e n , P . ; K e p e r t , C . J . ; K u r m o o , M . ; M o u b a r a k i , B . ; M u r r a y , K . S . ; P r i c e , D . J . J . C h e m . S o c . , D a l t o n T r a n s . 1 9 9 9 2 9 8 7 . ( a ) T a m a k i , H . ; Z h o n g , Z . J . ; M a t s u m o t o , N . ; K i d a , S . ; K o i k a w a , M . ; A c h i w a , N . ; H a s h i m o t o , Y . ; O k a w a , H . J . A m . C h e m . S o c . 1 9 9 2 1 1 4 6 9 7 4 ; ( b ) P e l l a u x , R . ; S c h m a l l e , H . W . ; H u b e r , R . ; F i s h e r , P . ; H a u s s , T . ; O u l a d d i a f , B . ; D e c u r t i n s , S . I n o r g . C h e m . 1 9 9 7 3 6 2 3 0 1 ; ( c ) H e r n a n d e z - M o l i n a , M . ; L l o r e t , F . ; R u i z - P e r e z , C . ; J u l v e , M . I n o r g . C h e m . 1 9 9 8 3 7 4 1 3 1 ; ( d ) C o r o n a d o , E . ; G a l a n - M a s c a r o s , J . R . ; G o m e z - G a r c i a , C . J . ; E n s l i n g , J . ; G i i t l i c h , P . C h e m . E u r . J . 2 0 0 0 6 5 5 2 . 2 7 5 4 . ( a ) M i l l e r , J . S . ; E p s t e i n , A . J . A n g e w . C h e m . I n t . E d . E n g l . 1 9 9 4 3 3 3 8 5 ; ( b ) M i l l e r , J . S . ; E p s t e i n , A . J . C h e m i s t r y & I n d u s t r y 2 ( 1 9 9 6 ) 4 9 ; ( c ) Z h a n g , J . ; E n s l i n g , J . ; K s e n o f o n t o v , V . ; G l ’ i t l i c h , P . ; E p s t e i n , A . J . ; M i l l e r , J . S . ; A n g e w . C h e m , I n t . E d . E n g l . 1 9 9 8 3 7 6 5 7 ; ( d ) Y e e , G . T . ; M a n r i q u e z , J . M . ; D i x o n , D . A . ; M c L e a n , R . S . ; G r o s k i , D . M . ; F l i p p e n , R . B . ; N a r a y a n , K . S . ; E p s t e i n , A . J . ; M i l l e r , J . S . A d v . M a t e r . 1 9 9 1 3 , 3 0 9 ; ( e ) M i l l e r , J . S . ; G l a t z h o f e r , D . T . ; O ' H a r e , D . M . ; R e i f f , W . M . ; C h a k r a b o r t y , A . ; E p s t e i n , A . J . I n o r g . C h e m . 1 9 8 9 2 8 , 2 9 3 0 . 5 . ( a ) D u n b a r , K . R . ; C o w e n , J . ; Z h a o , H . ; H e i n t z , R . A . ; O u y a n g , X . ; G r a n d i n e t t i , G . i n N A T O A S I : S u p r a m o l e c u l a r E n g i n e e r i n g o f S y n t h e t i c M e t a l l i c M a t e r i a l s : C o n d u c t o r s a n d M a g n e t s , E d : J . V e c i a n a , K l u w e r A c a d e m i c P u b ] . 5 1 8 ( 1 9 9 9 ) 3 5 3 ; ( b ) C o w e n , J . ; C l é r a c , R . ; H e i n t z , R . A . ; O ’ K a n e , S . ; O u y a n g , X . ; Z h a o , H . ; D u n b a r , K . R . M o l . C r y s t . L i q . C r y s t . 1 9 9 9 3 3 5 1 1 3 . 6 . R a d e m a c h e r , J . T . ; K a n a k a r a j a n , K . ; C z a m i k , A . W . S y n t h e s i s 1 9 9 4 3 7 8 . 1 3 . S M A R T 1 0 0 0 , B r u k e r A n a l y t i c a l X - R a y I n s t r u m e n t s , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) . 1 4 . S A I N T 1 0 0 0 , B r u k e r A n a l y t i c a l X - R a y I n s t r u m e n t s , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) . 1 5 . G M . S h e l d r i c k , “ S A D A B S , S i e m e n s A r e a D e t e c t o r A b s o r p t i o n ( a n d o t h e r ) C o r r e c t i o n ” , U n i v . o f G o t t i n g e n , G o t t i n g e n , G e r m a n y ( 1 9 9 8 ) . 1 6 . S H E L X T L v e r . 5 . 1 0 , R e f e r e n c e M a n u a l , B r u k e r I n d u s t r i a l A u t o m a t i o n , A n a l y t i c a l I n s t r u m e n t , M a d i s o n , W I 5 3 7 1 9 ( 1 9 9 9 ) . 1 7 . ( a ) C o m e l i s s e n , J . P . ; v a n d i e m e n , J . H . ; G r o e n e v e l d , L . R . ; H a a s n o o t , J . G . ; S p e k , A . L . ; R e e d i j k , J . I n o r g . C h e m . 1 9 9 2 3 1 1 9 8 ; ( b ) P u k a c k i , 2 7 6 1 8 . 1 9 . W . ; P a w l a k , M . ; G r a j a , A . ; L e q u a n , M . ; L e q u a n , R . M . I n o r g . C h e m . 1 9 8 7 2 6 , 1 3 2 8 ; ( c ) B a l l e s t e r , L . ; B a r r a l , M . C . ; G u t i é r r e z , A . ; J i m e n e z - A p a r i c i o , R . ; M a r t i n e z - M u y o , J . M . ; M . F . P e r p i fi a n , M . A . M o n g e , C . J . R u i z - V a l e r o , C h e m . S o c . , C h e m . C o m m u n . 1 9 9 1 1 3 9 6 . ( d ) K a i m , W . ; M o s c h e r o s h , M . C o o r d . C h e m . R e v . 1 9 9 4 , 1 2 9 1 5 7 ; ( e ) H e i n t z , R . A . ; Z h a o , H . ; O u y a n g , X . ; G r a n d i n e t t i , G . ; C o w e n , J . ; D u n b a r , K . R . I n o r g . C h e m . 1 9 9 9 , 3 8 , 1 4 4 ; ( f ) Z h a o , H . ; H e i n t z , R . A . ; O u y a n g , X . ; D u n b a r , K . R . ; C a m p a n a , C . F . ; R o g e r s , R . D . C h e m . M a t e r . 1 9 9 9 , 1 1 , 7 3 6 ; ( g ) C o w e n , J . ; C l é r a c , R . ; H e i n t z , R . A . ; O ' K a n e , S . ; O u y a n g , X . ; Z h a o , H . ; D u n b a r , K . R . M o l . C r y s t . L i q . C r y s t . 1 9 9 9 , 3 5 5 , 1 1 3 . B o n d i , A . J . P h y s . C h e m . 1 9 6 4 , 6 8 , 4 4 1 . O ’ K a n e , S . A . ; C l é r a c , R . ; Z h a o , H . ; O u y a n g , X . ; G a l a n - M a s c a r é s , J . R . ; H e i n t z , R . ; D u n b a r , K . R . J . S o l i d S t a t e C h e m . 2 0 0 0 I 5 2 1 5 9 . 2 0 . C o t t o n , F . A . ; W i l k i n s o n , G . A d v a n c e d I n o r g a n i c C h e m i s t r y , 1 9 9 8 , 2 1 . J o h n W i l e y & S o n s , N e w Y o r k , N e w Y o r k . U n p u b l i s h e d r e s u l t p r i v a t e l y c o m m u n i c a t e d 2 2 . P l a t z , M . S . K i n e t i c s a n d S p e r t r o s c o p y o f C a r b e n e s a n d B i r a d i c a l s , 1 9 9 0 , P l e n u m P r e s s , N e w Y o r k 2 7 7 C h a p t e r V I C o n c l u s i o n s 2 7 8 I n t h i s t h e s i s p r o j e c t , p r o g r e s s w a s m a d e i n a d v a n c i n g t h e fi e l d l o w - v a l e n t t r a n s i t i o n m e t a l c y a n i d e c h e m i s t r y t h a t i n c l u d i n g c o m p o u n d s t h a t e x h i b i t m e t a l - m e t a l b o n d i n g . E l e c t r o n i c a b s o r p t i o n , N M R , a n d i n f r a r e d s p e c t r a l c h a r a c t e r i z a t i o n a s w e l l a s m a s s s p e c t r o m e t r i c m e t h o d s s u p p o r t t h a t t h e r e a c t i o n o f R e 2 ( O z C C H 3 ) 4 C 1 2 w i t h 8 e q u i v a l e n t s o f [ E t a N ] [ C N ] p r o c e e d s t o y i e l d [ E t 4 N ] 2 [ R 6 2 ( C N ) 3 ] ( 3 ) , w h i c h i s o n l y t h e s e c o n d e x a m p l e o f a [ M 2 ( C N ) 8 ] " ' c o m p o u n d . T h e r e a c t i o n o f C r 2 ( O z C C F 3 ) 4 ( T I - I F ) 2 w i t h [ E t 4 N ] [ C N ] o r [ n - B u a N ] [ C N ] p r o c e e d s w i t h c l e a v a g e o f t h e m e t a l - m e t a l b o n d a n d f o r m a t i o n o f [ C r ( C N ) 6 ] 2 " 3 ' r a t h e r t h a n t h e d e s i r e d d i n u c l e a r a n i o n [ C r 2 ( C N ) g ] 4 ’ . T h e r e s u l t s o f e l e c t r o n i c a b s o r p t i o n a n d i n f r a r e d s p e c t r o s c o p y i n d i c a t e t h a t r e a c t i o n s o f O s 2 ( O z C C H 3 ) 4 C 1 2 w i t h [ E t a N ] [ C N ] a n d [ n - B u 4 N ] [ C N ] p r o c e e d w i t h f o r m a t i o n o f m u l t i p l e c y a n i d e c o n t a i n i n g p r o d u c t s . T h e i n s t a b i l i t y o f l o w v a l e n t t r a n s i t i o n m e t a l s s u c h a s C r 1 1 a n d W I I t o w a r d s o x i d a t i o n n e c e s s i t a t e t h e u s e o f a n h y d r o u s r e a c t i o n c o n d i t i o n s t h a t a r e a c c e s s i b l e o n l y w i t h [ E t 4 N ] [ C N ] a n d ( C H 3 ) 3 S i C N , b u t n o t w i t h [ n - B u 4 N ] [ C N ] . A f a r r r i l y o f e d g e - s h a r i n g b i o c t a h e d r a l ( E S B O ) d i m o l y b d e n u m c y a n i d e c o m p o u n d s w i t h p h o s p h i n e c o - l i g a n d s w a s p r e p a r e d . U n d e r a n a e r o b i c c o n d i t i o n s , t h e r e a c t i o n o f M 0 2 C 1 4 ( d p p m ) 2 w i t h [ R 4 N ] [ C N ] ( R = E t o r n - B u ) p r o c e e d s w i t h c y a n i d e d i s p l a c e m e n t o f t h e c h l o r i d e l i g a n d s a n d a d d i t i o n o f 2 7 9 t w o c y a n i d e s t o y i e l d t h e t e t r a a l k y l a m m o n i u m s a l t o f [ M o z u ’ " ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) ( F i g u r e 3 . 1 ) . T h e t w o ( u — C N ) g r o u p s s p a n n i n g t h e d i m o l y b d e n u m c o r e a r e i n t h e r a r e l y o b s e r v e d s e m i - b r i d g i n g m o d e w i t h c y a n i d e b e i n g b o u n d t o o n e M o t h r o u g h a o - b o n d a n d t o t h e o t h e r M o a t o m t h r o u g h a s i d e - o n 7 : i n t e r a c t i o n ( F i g u r e s 3 . 1 0 ) . A s e v i d e n c e d b y t h e c y c l i c v o l t a m m o g r a m d i s p l a y e d i n F i g u r e 3 . 6 [ M o z n ’ " ( C N ) 6 ( d p p m ) 2 ] 2 ' ( 8 ) i s e a s i l y o x i d i z e d . T h e d e l i b e r a t e u s e o f o n e a n d t w o e q u i v a l e n t s o f t h e o x i d a n t N O B F 4 l e d t o t h e p r e p a r a t i o n o f t h e o x i d a t i o n p r o d u c t s [ M o z n ‘ m ( C N ) 6 ( d p p m ) 2 ] 1 ' ( 1 0 ) a n d M o g u l ’ m ( C N ) 6 ( d p p m ) 2 ( 1 1 ) ( F i g u r e s 3 . 3 a n d 3 . 4 ) . T h e o x i d a t i o n s t a t e o f t h e d i m o l y b d e n u m c o r e s t r o n g l y i n fl u e n c e s t h e b o n d i n g i n t e r a c t i o n s o f t h e b r i d g i n g c y a n i d e s . T h e s i d e - o n 1 t i n t e r a c t i o n o f t h e s e m i - b r i d g i n g c y a n i d e s i n t h e o n e e l e c t r o n o x i d a t i o n p r o d u c t [ n - B u 4 N ] [ M o z u ’ m ( C N ) 6 ( d p p m ) 2 ] ( 1 0 ) a r e s i g n i fi c a n t l y m o r e p r o m i n e n t t h a n i n t h e p a r e n t c o m p o u n d [ n - B u 4 N ] 2 [ M o z n ’ " ( C N ) 6 ( d p p m ) 2 ] ( 8 ) ( F i g u r e 3 . 5 a n d T a b l e 3 . 7 ) . T h e r e m o v a l o f a n e l e c t r o n f r o m [ M o z n ’ m ( C N ) 6 ( d p p m ) 2 ] ' ( 1 0 ) t o g i v e M o z m ’ m ( C N ) 6 ( d p p m ) 2 ( 1 1 ) f u r t h e r i n c r e a s e s t h e 1 : i n t e r a c t i o n b u t t o a s m a l l e r d e g r e e t h a n w h a t w a s o b s e r v e d i n g o i n g f r o m t h e M o z n ’ I I t o M 0 2 1 1 1 " s p e c i e s ( F i g u r e s 3 . 5 a n d T a b l e 3 . 7 ) . 2 8 0 T h e s p a t i a l a r r a n g e m e n t o f t h e t e r m i n a l c y a n i d e l i g a n d s i n t h e s e n e w c o m p o u n d s i s s u c h t h a t i n t e r a c t i o n s w i t h L e w i s a c i d s t o f o r m l a r g e r a s s e m b l i e s a r e p o s s i b l e . I n t h i s r e g a r d , t h e r e a c t i o n o f [ n - B u 4 N 1 2 [ M 0 2 ( C N ) 6 ( d P P m ) 2 1 ( 8 ) w i t h [ N i ( e n ) 2 ( C H 3 C N ) 2 ] [ P F 6 ] 2 ( 2 1 ) w a s f o u n d t o f o r m a n e u t r a l o n e - d i m e n s i o n a l p o l y m e r w i t h { [ N i ( e n ) 2 ] [ M o z ( C N ) 6 ( d p p m ) 2 ] } , , ( 1 2 ) r e p e a t i n g u n i t s ( F i g u r e 3 . 8 ) . T h e [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 2 ' u n i t s a c t a s a b r i d g e , b u t d o n o t e n a b l e m a g n e t i c c o m m u n i c a t i o n t o o c c u r b e t w e e n t h e n e a r e s t n e i g h b o r N i l I c e n t e r s ( F i g u r e 3 . 9 ) . - A f a m i l y o f m o n o n u c l e a r t r a n s t i o n m e t a l c y a n i d e a n d n i t r i l e c o m p o u n d s w i t h t h e f a c i a l c a p p i n g l i g a n d 1 - ( h y d r o ) t r i s p y r a z o l b o r a t e w e r e d e s i g n e d f o r t h e p r e p a r a t i o n o f m o l e c u l a r , o p e n - s h e l l , h e t e r o m e t a l l i c c u b e s ( F i g u r e s 4 . 1 a n d 4 . 2 ) . T h e N a [ T p ] a n d h o m o l e p t i c a c e t o n i t r i l e s o l v a t e d t r a n s i t i o n m e t a l i o n s , [ M n ( C H 3 C N ) 4 ] [ P F ( , ] 2 a n d [ C o ( C H 3 C N ) 6 ] [ P F 6 ] 2 p r o v e d t o b e e f f e c t i v e i n p r e p a r i n g t h e d i v a l e n t , s o l v a t e d c o r n e r b u i l d i n g b l o c k c o m p o u n d s [ ( T p ) M n ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 6 ) a n d [ ( T p ) C o ( C H 3 C N ) 3 ] [ P F 6 ] ( 1 7 ) ( F i g u r e 4 . 6 ) . T h e t r i v a l e n t p r e c u r s o r s ( T p ) M o B r 2 ( T H F ) ( 1 5 ) ( F i g u r e 4 . 5 ) a n d ( T p ) V C 1 2 ( T H F ) w e r e u s e f u l a s p r e c u r s o r s t o t h e h i g h e r o x i d a t i o n s t a t e b u i l d i n g b l o c k s c o m p o u n d s [ ( T p ) M o ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 8 ) a n d [ ( T p ) V ( C H 3 C N ) 3 ] [ P F 6 ] 2 ( 1 9 ) . T h e c y a n i d e c o m e r b u i l d i n g b l o c k c o m p o u n d 2 8 1 K [ ( T p ) C r ( C N ) 3 ] ( 2 0 ) w a s p r e p a r e d f r o m K [ ( T p ) C r C l 3 ] ( 1 4 ) . T h e s o l v a t e d , e d g e b u i l d i n g b l o c k , t r a n s - [ N i ( C H 3 C N ] 2 ( e n ) 2 ] [ P F 6 ] 2 ( 2 1 ) ( F i g u r e 4 . 7 ) w a s p r e p a r e d b y c h l o r i d e a b s t r a c t i o n f r o m t r a n s - N i C 1 2 ( e n ) 2 . T h e S p a r t a n p r o g r a m w a s u s e d t o c o n d u c t a c o m p u t e r m o d e l i n g s t u d y t o e v a l u a t e w h e t h e r s t e r i c i n t e r a c t i o n s w o u l d p r e v e n t c u b e a s s e m b l y w i t h t h e c o m p o u n d s u n d e r i n v e s t i g a t i o n . A m o l e c u l a r m o d e l w a s c o n s t r u c t e d f o r b o t h t h e e i g h t a n d t w e n t y m e t a l a t o m c u b e s ( F i g u r e 4 . 1 1 ) . T h e r e s u l t s o f t h e s e e f f o r t s r e v e a l e d t h a t s u f fi c i e n t v o i d s p a c e e x i s t s i n s i d e t h e c u b e s s u c h t h a t s t e r i c f a c t o r s w i l l n o t p l a y a p r o h i b i t i v e r o l e i n t h e a s s e m b l y p r o c e s s . S e l f - a s s e m b l y r e a c t i o n s o f t w o t y p e s o f b u i l d i n g b l o c k c o m p o u n d s w e r e i n v e s t i g a t e d . B a s e d o n i n f r a r e d s p e c t r o s c o p i c d a t a , h e m o s t p r o m i s i n g o f t h e s e i s t h e r e a c t i o n o f f o u r e q u i v a l e n t s e a c h o f K [ C r ( C N ) 3 ( T p ) ] ( 2 0 ) a n d [ N i ( C H 3 C N ) 3 ( T p ) ] [ B F 4 ] w h i c h l e a d s t o a p r o d u c t t h a t e x h i b i t s o n l y a s i n g l e , s h a r p c y a n i d e s t r e t c h . T h e a r o m a t i c m o l e c u l e w i t h t r i g o n a l l y d i s p o s e d c h e l a t i n g s i t e s , h e x a z a t r i p h e n y l e n e - h e x a c a r b o n i t r i l e ( H A T - ( C N ) 6 ) , a n d i t s r e d u c e d s p e c i e s w e r e e x p l o r e d a s o r g a n i c l i n k e r s f o r t r a n s i t i o n m e t a l i o n s . T h e m e t a l l o c e n e s , F e C p 2 a n d [ C o n 2 ] [ P F 6 ] , p r o v e d t o b e c a p a b l e t e m p l a t e s f o r t h e f o r m a t i o n o f l a y e r e d s t r u c t u r e s w i t h H A T - ( C N ) 6 ( F i g u r e s 5 . 6 a n d 5 . 7 ) . C o n v e n i e n t o u t e r - s p h e r e c h e m i c a l r e d u c t i o n r o u t e s o f H A T - ( C N ) 6 t o t h e r a d i c a l [ H A T - 2 8 2 ( C N ) 6 ] ' s p e c i e s a n d t h e d i a n i o n [ H A T - ( C N ) 6 ] 2 ‘ h a v e b e e n d o c u m e n t e d . T r a n s i t i o n m e t a l s c a n a l s o b e u s e d a s r e d u c i n g a g e n t s , b u t , i n t h e s e c a s e s , c o m p l e x a t i o n o f t h e m e t a l w i t h t h e r e d u c e d H A T - ( C N ) 6 s p e c i e s o c c u r s . D i s c r e t e , s o l u b l e p a r a m a g n e t i c c o m p l e x e s a r e o b t a i n e d b y d i r e c t r e a c t i o n o f H A T - ( C N ) , w i t h C o ( 3 5 ) a n d Z n ( 3 6 ) ( F i g u r e 5 . 1 1 ) . I n s o l u b l e , p o l y m e r i c b i n a r y s a l t s w e r e o b t a i n e d f r o m r e a c t i o n s o f d i v a l e n t t r a n s i t i o n m e t a l s w i t h t h e p r e - r e d u c e d [ H A T - ( C N ) 6 ] ' a n i o n . T h e s t r u c t u r e s o f t h e s e s a l t s a r e n o t k n o w n , b u t t h e y s h o w m a g n e t i c b e h a v i o r i n d i c a t i v e o f a d i m e r i z a t i o n o f t h e [ H A T - ( C N ) 6 ] ' r a d i c a l s i n t h e s o l i d s t a t e . C o m p u t a t i o n a l s t u d i e s p r e d i c t t h a t [ H A T - ( C N ) 6 ] 2 ’ s h o u l d e x h i b i t a t r i p l e t g r o u n d s t a t e . E x p e r i m e n t a l e v i d e n c e t o t h i s e f f e c t w a s o b t a i n e d f r o m E P R s p e c t r o s c o p i c s t u d i e s t h a t l e d t o t h e o b s e r v a t i o n o f a h a l f - fi e l d s i g n a l f o r K 2 [ H A T - ( C N ) 6 ] w h i c h c a n o n l y a r i s e f r o m a t r i p l e t e l e c t r o n i c s t a t e ( F i g u r e 5 . 1 4 ) . 2 8 3 A p p e n d i c e s 2 8 4 T a b l e A . l . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r [ n - B u a N ] 2 [ M 0 2 ( C N ) 6 ( d p p m ) ] 0 2 C H 3 C N 0 2 C 6 1 - 1 6 ( 8 ) X y 2 W m ) M o ( l ) 2 4 7 9 ( 1 ) 2 7 2 0 ( 1 ) 3 7 2 ( 1 ) 2 6 ( 1 ) P ( 1 ) 3 4 9 8 ( 1 ) 2 3 4 8 ( 2 ) - 1 0 5 ( 1 ) 3 1 ( 1 ) F ( 2 ) 1 4 5 0 ( 1 ) 3 1 2 2 ( 1 ) - 1 1 7 6 ( 2 ) 3 0 ( 1 ) N ( l ) 2 2 3 1 ( 4 ) 2 2 0 5 ( 5 ) 2 0 9 2 ( 5 ) 4 4 ( 3 ) N ( 2 ) 2 7 6 2 ( 4 ) 4 1 8 8 ( 4 ) 4 1 2 2 ( 5 ) 5 5 ( 3 ) N ( 5 ) 3 0 2 8 ( 6 ) 3 1 7 5 ( 9 ) 2 9 1 0 ( 9 ) 1 2 6 ( 6 ) N ( 3 ) 1 9 8 1 ( 4 ) 1 3 6 1 ( 5 ) - 7 5 0 ( 7 ) 8 8 ( 5 ) N ( 4 ) 1 7 6 8 ( 4 ) 1 1 1 2 ( 4 ) - 3 8 8 1 ( 5 ) 3 9 ( 2 ) C ( l ) 2 3 0 0 ( 4 ) 2 3 5 5 ( 6 ) - 1 5 6 4 ( 7 ) 4 1 ( 3 ) C ( 2 ) 2 6 8 2 ( 4 ) 3 7 0 3 ( 6 ) - 8 9 8 ( 5 ) 3 4 ( 3 ) C ( 3 ) 2 2 0 5 ( 5 ) 1 7 1 8 ( 6 ) - 3 4 8 ( 7 ) 4 5 ( 4 ) C ( 4 ) 3 9 2 8 ( 4 ) 2 3 7 0 ( 5 ) 8 6 4 ( 5 ) 3 5 ( 3 ) C ( 1 1 ) 3 9 2 0 ( 4 ) 2 9 3 2 ( 5 ) 3 0 0 ( 6 ) 3 3 ( 3 ) C ( 1 2 ) 4 2 8 1 ( 4 ) 3 4 6 6 ( 6 ) 1 4 0 ( 6 ) 4 0 ( 3 ) C ( 1 3 ) 4 5 7 8 ( 5 ) 3 8 9 4 ( 6 ) - 6 0 ( 8 ) 5 9 ( 4 ) C ( 1 4 ) 4 5 1 7 ( 5 ) 3 8 1 6 ( 7 ) ~ 6 8 4 ( 8 ) 5 7 ( 4 ) C ( 1 5 ) 4 1 3 0 ( 5 ) 3 2 9 7 ( 8 ) - 1 1 3 2 ( 7 ) 6 4 ( 4 ) C ( 1 6 ) 3 8 3 8 ( 5 ) 2 8 7 1 ( 6 ) 2 4 0 0 ) 5 2 ( 4 ) C ( 2 1 ) 3 6 6 7 ( 5 ) 1 4 7 6 ( 5 ) - 3 0 3 ( 6 ) 3 5 ( 3 ) C ( 2 2 ) 4 2 3 4 ( 5 ) 1 2 9 4 ( 7 ) 3 3 ( 7 ) 6 9 ( 4 ) C ( 2 3 ) 4 3 6 8 ( 6 ) 6 3 1 ( 9 ) - 1 9 3 ( 8 ) 9 7 ( 6 ) C ( 2 4 ) 3 9 3 8 ( 7 ) 1 4 7 ( 7 ) 3 7 1 ( 7 ) 7 3 ( 5 ) C ( 2 5 ) 3 3 8 2 ( 6 ) 3 2 2 ( 6 ) 3 1 9 ( 7 ) 6 1 ( 4 ) C ( 2 6 ) 3 2 3 2 ( 5 ) 9 8 4 ( 6 ) - 6 9 5 ( 6 ) 4 3 ( 3 ) C ( 3 1 ) 1 2 3 2 ( 5 ) 4 0 3 3 ( 5 ) - 1 1 8 8 ( 5 ) 2 9 ( 3 ) C ( 3 2 ) 6 4 6 ( 5 ) 4 2 2 1 ( 6 ) - 1 5 5 9 ( 6 ) 6 0 ( 4 ) C ( 3 3 ) 4 7 3 ( 6 ) 4 9 0 3 ( 8 ) - 1 5 4 4 ( 7 ) 7 1 ( 4 ) C ( 3 4 ) 8 9 9 ( 7 ) 5 4 1 4 ( 7 ) - 1 1 7 9 ( 7 ) 6 8 ( 4 ) C ( 3 5 ) 1 4 9 3 ( 6 ) 5 2 4 5 ( 6 ) - 7 9 7 ( 7 ) 7 6 ( 5 ) C ( 3 6 ) 1 6 4 7 ( 5 ) 4 5 4 5 ( 5 ) - 8 0 7 ( 6 ) 4 7 ( 4 ) C ( 4 1 ) 1 0 1 5 ( 4 ) 2 9 1 7 ( 6 ) 2 1 1 2 ( 6 ) 3 3 ( 3 ) C ( 4 2 ) 9 4 4 ( 5 ) 3 4 1 8 ( 6 ) 2 5 9 3 ( 6 ) 4 4 ( 3 ) C ( 4 3 ) 6 8 8 ( 5 ) 3 2 4 4 ( 7 ) 3 2 7 4 ( 8 ) 6 3 ( 4 ) C ( 4 4 ) 4 8 3 ( 5 ) 2 5 6 9 ( 8 ) 3 5 0 9 ( 6 ) 5 6 ( 4 ) C ( 4 5 ) 5 4 4 ( 5 ) 2 0 5 9 ( 6 ) 3 0 3 7 ( 7 ) 5 0 ( 4 ) C ( 4 6 ) 8 1 6 ( 4 ) 2 2 3 5 ( 6 ) 2 3 4 1 ( 6 ) 4 4 ( 3 ) C ( 5 1 ) 2 3 8 1 ( 5 ) 1 3 5 6 ( 5 ) 3 3 2 7 ( 6 ) 5 2 ( 4 ) C ( 5 2 ) 2 8 5 4 ( 5 ) 8 0 1 ( 6 ) 3 0 2 8 ( 6 ) 5 5 ( 4 ) 2 8 5 C ( 5 3 ) C ( 5 4 ) C ( 5 5 ) C ( 5 6 ) C ( 5 7 ) C ( 5 8 ) C ( 5 9 ) C ( 6 0 ) C ( 6 1 ) C ( 6 2 ) C ( 6 3 ) C ( 6 4 ) C ( 6 5 ) C ( 6 6 ) C ( 7 0 ) C ( 7 1 ) C ( 7 2 ) C ( 7 3 ) C ( 7 4 ) C ( 7 5 ) C ( 7 6 ) C ( 7 7 ) 3 4 3 2 ( 5 ) 3 9 1 2 ( 6 ) 1 7 4 5 ( 5 ) 1 1 5 5 ( 5 ) 1 2 0 3 ( 6 ) 6 0 1 ( 6 ) 1 3 6 0 ( 5 ) 1 4 7 0 ( 6 ) 1 0 4 9 ( 7 ) 5 0 2 ( 6 ) 1 5 5 9 ( 5 ) 1 6 6 4 ( 5 ) 1 3 5 3 ( 6 ) 1 5 0 7 ( 7 ) 2 5 5 ( 7 ) 5 1 9 ( 6 ) 2 5 9 ( 8 ) 2 9 3 0 ( 7 ) 2 4 6 0 ( 1 0 ) 2 0 4 1 ( 8 ) 2 6 9 7 ( 7 ) 2 2 6 8 ( 6 ) 1 0 8 3 ( 6 ) 5 4 4 ( 7 ) 8 1 9 ( 6 ) 6 1 1 ( 6 ) 2 6 6 ( 7 ) 3 2 ( 8 ) 1 7 6 7 ( 6 ) 2 3 3 5 ( 7 ) 2 9 7 2 ( 7 ) 2 8 9 9 ( 9 ) 5 5 5 ( 6 ) 6 6 3 ( 6 ) 9 1 ( 6 ) 7 5 ( 7 ) 3 0 0 5 ( 8 ) 2 3 9 5 ( 1 0 ) 1 7 5 9 ( 8 ) 2 7 5 1 ( 1 2 ) 3 1 6 7 ( 8 ) 2 9 1 1 ( 1 1 ) 3 4 0 1 ( 9 ) 3 7 1 0 ( 7 ) - 2 4 1 2 ( 7 ) - 2 1 4 3 ( 7 ) - 4 5 0 4 ( 6 ) - 5 1 1 5 ( 7 ) - 5 6 7 5 ( 7 ) - 6 2 9 0 ( 7 ) - 4 0 8 4 ( 6 ) - 4 4 4 9 ( 7 ) - 4 7 0 4 ( 9 ) - 5 2 8 7 ( 9 ) - 3 5 8 9 ( 7 ) - 2 9 0 3 ( 6 ) - 2 7 6 6 ( 7 ) - 2 0 7 0 ( 8 ) 2 5 2 9 ( 1 0 ) 2 5 5 6 ( 8 ) 2 5 3 5 ( 1 3 ) - 4 3 2 0 ( 8 ) - 4 7 8 8 ( 1 2 ) - 5 4 4 6 ( 1 2 ) - 2 8 4 0 ( 9 ) - 2 7 5 8 ( 7 ) 7 2 ( 4 ) 1 0 0 ( 5 ) 5 2 ( 4 ) 6 9 ( 4 ) 8 3 ( 5 ) 1 0 7 ( 6 ) 6 6 ( 4 ) 8 7 ( 5 ) 1 0 0 ( 5 ) 1 4 7 ( 9 ) 5 5 ( 4 ) 5 4 ( 4 ) 6 8 ( 4 ) 1 0 9 ( 6 ) 1 0 5 ( 6 ) 1 0 3 ( 6 ) 1 5 8 ( 9 ) 9 7 ( 6 ) 9 4 ( 6 ) 9 8 ( 6 ) 8 9 ( 5 ) 9 1 ( 5 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 8 6 T a b l e A . 2 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e g u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 ) , a n d o c c u p a n c i e s f o r [ n — B u 4 N ] [ M 0 2 ( C N ) 6 ( d p p m ) 2 ] 0 2 C H 3 C N - H 2 0 ( 1 0 ) x y z U ( e q ) M o ( l ) 2 2 0 3 ( 1 ) 1 8 7 8 ( 1 ) - 4 6 7 ( 1 ) 1 9 ( 1 ) P ( l ) 2 2 2 2 ( 1 ) 2 4 0 8 ( 1 ) 1 0 1 5 ( 1 ) 1 9 ( 1 ) F ( 2 ) 1 6 0 9 ( 1 ) 9 7 8 ( 1 ) 1 9 ( 1 ) 1 9 ( 1 ) N ( l ) 1 1 5 1 ( 2 ) 1 7 8 1 ( 4 ) - 1 5 1 9 ( 2 ) 4 7 ( 1 ) N ( 2 ) 2 2 4 9 ( 2 ) - 9 6 0 ( 3 ) - 9 4 0 ( 2 ) 4 3 ( 1 ) N ( 3 ) 1 9 0 1 ( 2 ) 4 0 5 2 ( 3 ) - 5 4 4 ( 2 ) 3 7 ( 1 ) N ( 4 ) 5 0 0 0 4 9 8 5 ( 4 ) 2 5 0 0 2 8 ( 1 ) N ( 5 ) 1 6 0 ( 2 ) 5 5 8 3 ( 6 ) - 1 7 2 0 ( 2 ) 8 6 ( 2 ) C ( 1 ) 1 5 2 5 ( 2 ) 1 8 6 1 ( 4 ) - 1 1 6 9 ( 2 ) 3 0 ( 1 ) C ( 2 ) 2 2 3 6 ( 2 ) 2 7 ( 4 ) - 7 7 3 ( 2 ) 2 8 ( 1 ) C ( 3 ) 2 2 1 7 ( 2 ) 3 8 2 6 ( 3 ) - 1 4 6 ( 2 ) 2 6 ( 1 ) C ( 4 ) 1 9 2 1 ( 2 ) 9 1 2 ( 4 ) 7 4 6 ( 2 ) 2 2 ( 1 ) C ( 1 1 ) 2 5 4 4 ( 2 ) 2 0 9 5 ( 4 ) 1 7 2 3 ( 2 ) 2 3 ( 1 ) C ( 1 2 ) 2 7 2 9 ( 2 ) 9 2 5 ( 4 ) 1 9 1 6 ( 2 ) 3 1 ( 1 ) C ( 1 3 ) 2 9 7 8 ( 2 ) 7 6 0 ( 5 ) 2 4 5 6 ( 2 ) 3 7 ( 1 ) C ( 1 4 ) 3 0 3 7 ( 2 ) 1 7 3 8 ( 5 ) 2 8 1 0 ( 2 ) 3 8 ( 1 ) C ( 1 5 ) 2 8 5 7 ( 2 ) 2 9 0 5 ( 5 ) 2 6 2 4 ( 2 ) 4 4 ( 1 ) C ( 1 6 ) 2 6 1 9 ( 2 ) 3 0 7 7 ( 4 ) 2 0 7 9 ( 2 ) 3 5 ( 1 ) C ( 2 1 ) 1 6 7 9 ( 1 ) 3 3 5 8 ( 3 ) 1 0 5 2 ( 2 ) 2 2 ( 1 ) C ( 2 2 ) 1 3 5 0 ( 2 ) 2 9 2 3 ( 4 ) 1 3 2 4 ( 2 ) 3 6 ( 1 ) C ( 2 3 ) 9 2 9 ( 2 ) 3 6 1 7 ( 5 ) 1 3 5 1 ( 2 ) 4 2 ( 1 ) C ( 2 4 ) 8 4 3 ( 2 ) 4 7 6 8 ( 4 ) 1 1 0 9 ( 2 ) 3 6 ( 1 ) C ( 2 5 ) 1 1 6 6 ( 2 ) 5 2 1 7 ( 4 ) 8 4 1 ( 2 ) 4 2 ( 1 ) C ( 2 6 ) 1 5 8 1 ( 2 ) 4 5 1 4 ( 4 ) 8 0 9 ( 2 ) 3 3 ( 1 ) C ( 3 1 ) 9 8 9 ( 2 ) 1 6 9 5 ( 3 ) - 3 9 ( 2 ) 2 4 ( 1 ) C ( 3 2 ) 6 5 5 ( 2 ) 1 1 2 9 ( 5 ) 2 0 3 ( 2 ) 3 7 ( 1 ) C ( 3 3 ) 1 9 4 ( 2 ) 1 6 8 5 ( 6 ) 1 8 8 ( 2 ) 4 8 ( 1 ) C ( 3 4 ) 6 6 ( 2 ) 2 8 2 4 ( 6 ) - 6 3 ( 2 ) 5 4 ( 2 ) C ( 3 5 ) 3 8 8 ( 2 ) 3 3 8 2 ( 5 ) - 3 0 9 ( 3 ) 4 9 ( 1 ) C ( 3 6 ) 8 4 9 ( 2 ) 2 8 2 0 ( 4 ) - 3 0 1 ( 2 ) 3 5 ( 1 ) C ( 4 1 ) 1 4 3 2 ( 2 ) - 6 4 1 ( 3 ) - 1 6 2 ( 2 ) 2 2 ( 1 ) C ( 4 2 ) 1 0 0 7 ( 2 ) - 8 9 4 ( 4 ) - 5 9 7 ( 2 ) 3 0 ( 1 ) C ( 4 3 ) 8 8 3 ( 2 ) - 2 1 1 9 ( 4 ) - 7 6 3 ( 2 ) 3 3 ( 1 ) C ( 4 4 ) 1 1 9 3 ( 2 ) - 3 0 8 3 ( 4 ) - 5 0 3 ( 2 ) 3 7 ( 1 ) C ( 4 5 ) 1 6 2 1 ( 2 ) - 2 8 3 7 ( 4 ) - 8 0 ( 2 ) 4 2 ( 1 ) C ( 4 6 ) 1 7 4 3 ( 2 ) - 1 6 2 2 ( 4 ) 9 4 ( 2 ) 3 2 ( 1 ) C ( 5 0 ) 5 0 6 8 ( 2 ) 4 1 8 0 ( 4 ) 2 0 4 5 ( 2 ) 3 3 ( 1 ) C ( 5 1 ) 5 5 1 7 ( 2 ) 3 2 9 6 ( 5 ) 2 1 8 5 ( 2 ) 4 2 ( 1 ) 2 8 7 C ( 5 2 ) C ( 5 3 ) C ( 5 4 ) C ( 5 5 ) C ( 5 6 ) C ( 5 7 ) C ( 6 1 ) C ( 6 0 ) 0 ( 1 ) 5 5 7 8 ( 2 ) 5 7 7 2 ( 3 ) 4 5 2 7 ( 2 ) 4 3 4 6 ( 2 ) 3 7 9 6 ( 2 ) 3 3 9 3 ( 2 ) 9 5 3 ( 3 ) 5 0 0 ( 2 ) 2 8 7 8 ( 1 ) 2 7 0 0 ( 5 ) 3 6 0 1 ( 7 ) 5 7 7 0 ( 4 ) 6 6 2 4 ( 4 ) 7 0 6 0 ( 5 ) 6 0 7 8 ( 6 ) 4 7 7 8 ( 6 ) 5 2 2 3 ( 5 ) 8 5 7 5 ( 3 ) 1 6 7 7 ( 2 ) 1 3 3 1 ( 3 ) 2 2 4 5 ( 2 ) 2 6 0 8 ( 2 ) 2 3 1 5 ( 2 ) 2 2 9 8 ( 3 ) - 1 9 5 4 ( 3 ) - 1 8 2 6 ( 2 ) 1 1 7 6 ( 2 ) 4 9 ( 1 ) 6 6 ( 2 ) 3 2 ( 1 ) 3 8 ( 1 ) 4 4 ( 1 ) 5 3 ( 2 ) 5 8 ( 2 ) 5 1 ( 1 ) 4 4 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 8 8 T a b l e A . 3 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 ) f o r M 0 2 ( C N ) 6 ( d p p m ) 2 ( 1 1 ) x y z U ( e q ) M o ( l ) 5 1 9 9 ( 1 ) 3 8 9 4 ( 1 ) 5 3 0 3 ( 1 ) 2 0 ( 1 ) P ( l ) 6 8 1 5 ( 1 ) 4 6 5 5 ( 1 ) 7 1 7 0 ( 1 ) 2 2 ( 1 ) P ( 2 ) 6 4 0 4 ( 1 ) 6 9 7 3 ( 1 ) 6 5 3 9 ( 1 ) 2 2 ( 1 ) C ( 1 ) 3 9 9 2 ( 3 ) 2 8 7 4 ( 3 ) 6 0 3 5 ( 3 ) 2 6 ( 1 ) C ( 2 ) 6 5 5 2 ( 3 ) 2 4 6 4 ( 3 ) 5 4 9 7 ( 3 ) 2 4 ( 1 ) C ( 3 ) 3 7 8 4 ( 3 ) 4 9 9 7 ( 3 ) 5 6 0 5 ( 3 ) 2 6 ( 1 ) C ( 4 ) 6 4 2 0 ( 3 ) 6 0 4 7 ( 3 ) 7 5 8 7 ( 2 ) 2 6 ( 1 ) C ( 1 1 ) 6 5 8 9 ( 4 ) 3 8 8 7 ( 3 ) 8 2 6 0 ( 3 ) 2 7 ( 1 ) C ( 1 2 ) 7 3 5 7 ( 6 ) 2 9 9 1 ( 4 ) 8 5 0 0 ( 4 ) 6 2 ( 1 ) C ( 1 3 ) 7 1 4 7 ( 7 ) 2 3 4 9 ( 4 ) 9 2 7 2 ( 4 ) 8 4 ( 2 ) C ( 1 4 ) 6 1 7 5 ( 6 ) 2 5 9 4 ( 4 ) 9 8 0 3 ( 4 ) 5 9 ( 1 ) C ( 1 5 ) 5 3 7 5 ( 5 ) 3 4 5 0 ( 4 ) 9 5 4 5 ( 4 ) 5 5 ( 1 ) C ( 1 6 ) 5 5 9 4 ( 4 ) 4 1 0 3 ( 4 ) 8 7 8 5 ( 3 ) 4 5 ( 1 ) C ( 2 1 ) 8 7 3 8 ( 3 ) 4 7 2 7 ( 3 ) 7 4 4 5 ( 3 ) 2 9 ( 1 ) C ( 2 2 ) 9 6 1 0 ( 4 ) 5 2 2 7 ( 4 ) 8 4 4 9 ( 3 ) 5 0 ( 1 ) C ( 2 3 ) 1 1 0 6 6 ( 5 ) 5 2 6 0 ( 5 ) 8 6 6 2 ( 4 ) 7 3 ( 2 ) C ( 2 4 ) 1 1 6 4 6 ( 5 ) 4 7 9 2 ( 5 ) 7 8 9 9 ( 5 ) 7 4 ( 2 ) C ( 2 5 ) 1 0 8 1 6 ( 4 ) 4 2 9 7 ( 4 ) 6 9 1 5 ( 4 ) 5 6 ( 1 ) C ( 2 6 ) 9 3 5 1 ( 4 ) 4 2 6 1 ( 3 ) 6 6 8 5 ( 3 ) 3 7 ( 1 ) C ( 3 1 ) 8 2 8 2 ( 3 ) 7 3 4 4 ( 3 ) 6 7 4 5 ( 3 ) 2 9 ( 1 ) C ( 3 2 ) 9 0 3 0 ( 4 ) 8 1 0 1 ( 3 ) 7 6 1 2 ( 3 ) 4 5 ( 1 ) C ( 3 3 ) 1 0 4 6 5 ( 5 ) 8 3 4 9 ( 4 ) 7 7 6 9 ( 4 ) 6 0 ( 1 ) C ( 3 4 ) 1 1 1 5 3 ( 4 ) 7 8 4 9 ( 4 ) 7 0 8 3 ( 4 ) 5 8 ( 1 ) C ( 3 5 ) 1 0 4 1 6 ( 4 ) 7 0 9 5 ( 4 ) 6 2 3 8 ( 4 ) 5 0 ( 1 ) C ( 3 6 ) 8 9 7 9 ( 4 ) 6 8 3 9 ( 3 ) 6 0 6 0 ( 3 ) 3 7 ( 1 ) C ( 4 1 ) 5 7 8 7 ( 3 ) 8 2 3 4 ( 3 ) 7 0 4 9 ( 3 ) 2 6 ( 1 ) C ( 4 2 ) 5 2 7 1 ( 4 ) 8 3 4 6 ( 3 ) 7 9 3 0 ( 3 ) 3 9 ( 1 ) C ( 4 3 ) 4 7 7 9 ( 5 ) 9 3 3 9 ( 3 ) 8 2 3 7 ( 4 ) 5 1 ( 1 ) C ( 4 4 ) 4 8 1 4 ( 4 ) 1 0 2 0 9 ( 3 ) 7 6 6 3 ( 3 ) 4 5 ( 1 ) C ( 4 5 ) 5 3 3 2 ( 5 ) 1 0 1 0 8 ( 3 ) 6 7 8 7 ( 3 ) 4 8 ( 1 ) C ( 4 6 ) 5 8 0 8 ( 4 ) 9 1 2 4 ( 3 ) 6 4 6 8 ( 3 ) 4 2 ( 1 ) N ( 1 ) 3 3 1 0 ( 3 ) 2 3 6 0 ( 3 ) 6 3 7 9 ( 3 ) 4 3 ( 1 ) N ( 2 ) 7 2 8 5 ( 4 ) 1 8 2 5 ( 3 ) 5 6 0 9 ( 3 ) 5 5 ( 1 ) N ( 3 ) 6 7 9 3 ( 3 ) 4 2 6 2 ( 3 ) 4 2 7 9 ( 2 ) 3 7 ( 1 ) C ( 5 0 ) 8 8 1 8 ( 1 5 ) 8 3 0 7 ( 9 ) 1 1 8 8 9 ( 9 ) 2 1 0 ( 6 ) N ( 5 0 ) 8 3 9 8 ( 1 1 ) 8 2 3 2 ( 7 ) 1 0 7 1 9 ( 6 ) 1 6 3 ( 4 ) 0 ( 1 ) 8 1 6 3 ( 8 ) 7 4 6 2 ( 6 ) 1 0 1 5 7 ( 5 ) 1 6 7 ( 3 ) 0 ( 2 ) 8 3 5 0 ( 2 0 ) 9 1 2 3 ( 9 ) 1 0 4 8 0 ( 1 0 ) 5 0 1 ( 1 5 ) 2 8 9 g u i v a l e n t i s o t r o p i c C ( 5 1 ) 5 7 2 ( 6 ) 4 0 2 ( 5 ) 5 2 5 0 ( 5 ) 9 6 ( 2 ) N ( 5 1 ) 5 7 2 ( 6 ) 4 0 2 ( 5 ) 5 2 5 0 ( 5 ) 9 6 ( 2 ) 0 ( 3 ) 1 7 1 0 ( 7 ) 1 3 7 ( 5 ) 5 3 0 8 ( 5 ) 6 5 ( 2 ) 0 ( 4 ) 1 9 7 ( 8 ) 1 2 8 4 ( 6 ) 5 7 7 1 ( 6 ) 7 7 ( 2 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 0 T a b l e A . 4 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r N a [ ( T p ) C r C l z l , ( 1 3 ) x y z U ( e q ) C r ( l A ) - 3 3 3 3 3 3 3 3 6 0 0 0 ( 1 ) 2 5 ( 1 ) C l ( 2 A ) - 3 3 4 8 ( 2 ) 5 0 3 2 ( 2 ) 6 5 9 3 ( 1 ) 3 9 ( 1 ) N a ( l A ) - 3 3 3 3 3 3 3 3 7 5 0 0 8 9 ( 4 ) N a ( 2 A ) - 1 7 8 0 ( 4 0 ) 7 1 9 0 ( 3 0 ) 7 5 0 0 1 3 3 ( 1 1 ) B ( l A ) - 3 3 3 3 3 3 3 3 4 5 6 3 ( 7 ) 2 4 ( 3 ) N ( 1 A ) 4 7 5 3 ( 6 ) 3 3 0 2 ( 6 ) 5 4 3 6 ( 3 ) 2 8 ( 1 ) N ( 2 A ) - 4 5 9 2 ( 6 ) 3 3 2 1 ( 6 ) 4 8 2 3 ( 3 ) 2 9 ( 2 ) C ( 1 A ) - 5 9 0 6 ( 8 ) 3 2 9 5 ( 8 ) 5 5 3 1 ( 4 ) 3 4 ( 2 ) C ( 2 A ) - 6 5 1 8 ( 8 ) 3 2 9 0 ( 8 ) 4 9 7 7 ( 4 ) 3 7 ( 2 ) C ( 3 A ) - 5 6 4 7 ( 8 ) 3 3 1 3 ( 8 ) 4 5 4 5 ( 4 ) 3 5 ( 2 ) 0 ( 1 ) 1 0 ( 4 0 ) 6 4 8 0 ( 4 0 ) 7 5 0 0 2 5 7 ( 1 7 ) 0 ( 2 ) - 4 0 9 0 ( 9 0 ) 7 5 1 0 ( 6 0 ) 7 5 0 0 5 2 0 ( 5 0 ) 0 ( 3 ) - 4 7 0 ( 9 0 ) 9 0 8 0 ( 3 0 ) 6 4 6 6 ( 1 5 ) 4 3 0 ( 3 0 ) U ( e q ) i s d e f i n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 1 T a b l e A . 5 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e g u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 ) f o r ( T p ) M o B r 2 ( T H F ) . ( 1 5 ) x y z U ( e q ) M o ( l ) 2 8 9 ( 1 ) 1 4 4 9 ( 1 ) 2 3 6 4 ( 1 ) 1 6 ( 1 ) B r ( 2 ) 1 1 5 3 ( 1 ) 3 7 5 ( 1 ) 2 9 9 8 ( 1 ) 2 8 ( 1 ) B r ( 1 ) 1 5 3 4 ( 1 ) 1 2 9 2 ( 1 ) 1 0 3 1 ( 1 ) 2 8 ( 1 ) B ( l ) 2 7 9 2 ( 4 ) 2 3 5 6 ( 3 ) 2 3 7 0 ( 3 ) 2 4 ( 1 ) N ( 1 ) 4 6 5 3 ( 3 ) 8 3 4 ( 2 ) 1 6 9 3 ( 2 ) 2 0 ( 1 ) N ( 2 ) 2 8 4 6 ( 3 ) 1 3 2 6 ( 2 ) 1 8 0 8 ( 2 ) 2 3 ( 1 ) N ( 3 ) 2 5 1 ( 3 ) 1 6 3 7 ( 2 ) 3 4 8 2 ( 2 ) 2 2 ( 1 ) N ( 4 ) 2 0 2 8 ( 3 ) 2 1 0 2 ( 2 ) 3 3 4 1 ( 2 ) 2 4 ( 1 ) N ( 5 ) 3 8 3 ( 3 ) 2 9 7 3 ( 2 ) 1 9 2 4 ( 2 ) 2 1 ( 1 ) N ( 6 ) 4 9 2 5 ( 3 ) 3 1 9 1 ( 2 ) 1 9 7 4 ( 2 ) 2 2 ( 1 ) 0 ( 1 ) 2 0 5 0 ( 2 ) 2 2 9 4 ( 2 ) 3 1 0 4 ( 2 ) 3 3 ( 1 ) C ( 1 ) 2 0 3 1 ( 4 ) 4 ( 3 ) 1 1 5 3 ( 2 ) 2 6 ( 1 ) C ( 2 ) 3 4 5 5 ( 4 ) 3 7 ( 3 ) 9 1 6 ( 3 ) 3 4 ( 1 ) C ( 3 ) 3 9 3 8 ( 4 ) 7 9 4 ( 3 ) 1 3 3 6 ( 2 ) 2 9 ( 1 ) C ( 4 ) 3 8 2 ( 4 ) 1 4 7 3 ( 3 ) 4 3 6 8 ( 2 ) 3 0 ( 1 ) C ( 5 ) 4 3 8 9 ( 4 ) 1 8 4 4 ( 3 ) 4 8 1 1 ( 2 ) 3 8 ( 1 ) C ( 6 ) 2 4 1 3 ( 4 ) 2 2 3 1 ( 3 ) 4 1 4 4 ( 2 ) 3 2 ( 1 ) C ( 7 ) 4 0 2 ( 4 ) 3 8 4 0 ( 3 ) 1 5 5 8 ( 2 ) 2 8 ( 1 ) C ( 8 ) 4 1 2 0 ( 4 ) 4 6 0 2 ( 3 ) 1 3 7 7 ( 3 ) 3 7 ( 1 ) C ( 9 ) 2 2 5 8 ( 4 ) 4 1 6 8 ( 3 ) 1 6 4 0 ( 2 ) 3 0 ( 1 ) C ( 1 0 ) 1 9 9 4 ( 4 ) 3 2 0 2 ( 3 ) 3 6 9 5 ( 2 ) 3 5 ( 1 ) C ( l 1 ) 3 0 0 7 ( 5 ) 2 9 3 1 ( 4 ) 4 5 4 6 ( 3 ) 6 4 ( 2 ) C ( 1 2 ) 3 7 5 4 ( 5 ) 1 9 4 3 ( 6 ) 4 3 1 4 ( 3 ) 8 6 ( 2 ) C ( 1 3 ) 3 4 3 6 ( 4 ) 1 8 7 9 ( 3 ) 3 3 3 3 ( 3 ) 4 2 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 2 T a b l e A . 6 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 2 ) , a n d o c c u p a n c i e s f o r [ ( T P ) C 0 ( C H 3 C N ) 3 1 1 P F 6 ] . ( 1 7 ) x y z U ( e q ) C o ( l ) 9 7 3 ( 1 ) 9 7 3 ( 1 ) 9 7 3 ( 1 ) 3 1 ( 1 ) B ( l ) 1 4 8 6 ( 4 ) 1 4 8 6 ( 4 ) 1 4 8 6 ( 4 ) 4 7 ( 5 ) N ( 1 ) 1 0 2 8 ( 8 ) 2 7 1 4 ( 8 ) - 1 9 3 ( 8 ) 3 4 ( 2 ) N ( 2 ) 1 3 0 2 ( 9 ) 2 6 9 7 ( 9 ) 1 9 6 ( 9 ) 3 8 ( 2 ) N ( 3 ) 8 0 6 ( 9 ) - 7 4 5 ( 9 ) 2 2 2 3 ( 9 ) 4 1 ( 2 ) C ( 1 ) 8 7 2 ( 1 3 ) 3 9 3 0 ( 1 2 ) - 1 3 0 3 ( 1 1 ) 5 2 ( 3 ) C ( 2 ) 1 0 0 8 ( 1 6 ) 4 6 5 8 ( 1 3 ) - 1 6 2 3 ( 1 3 ) 7 0 ( 4 ) C ( 3 ) 1 3 2 1 ( 1 4 ) 3 8 5 9 ( 1 2 ) - 6 5 2 ( 1 2 ) 5 9 ( 4 ) C ( 4 ) 6 2 0 ( 1 1 ) - l 4 9 6 ( 1 1 ) 2 7 4 1 ( 1 1 ) 4 1 ( 3 ) C ( 5 ) 4 1 5 ( 1 1 ) - 2 5 1 7 ( 1 2 ) 3 4 2 1 ( 1 2 ) 4 5 ( 3 ) P ( l ) 0 0 0 3 8 ( 2 ) P ( 2 ) 2 5 0 0 2 5 0 0 2 5 0 0 4 3 ( 2 ) F ( l ) 1 0 0 ( 2 0 0 ) - 1 1 4 0 ( 9 0 ) 6 5 0 ( 1 6 0 ) 8 0 0 ( 9 0 ) F ( 2 ) 3 9 1 0 ( 3 0 ) 2 0 5 0 ( 3 0 ) 1 9 9 0 ( 3 0 ) 3 4 1 ( 1 5 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 3 T a b l e A . 7 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 ) f o r I r a n s - [ N i ( C H 3 C N ) 2 ( e n ) 2 ] [ P F 6 ] 2 , ( 2 1 ) x y z U ( e q ) N i ( l ) 0 0 5 0 0 0 1 6 ( 1 ) N ( 1 ) 2 1 7 2 ( 3 ) - 9 8 6 ( 2 ) 5 1 1 4 ( 2 ) 2 4 ( 1 ) N ( 2 ) 1 2 3 2 ( 3 ) 1 5 1 7 ( 2 ) 6 1 5 4 ( 2 ) 2 2 ( 1 ) N ( 3 ) 4 8 ( 3 ) 8 8 9 ( 2 ) 3 3 9 6 ( 2 ) 2 4 ( 1 ) C ( 1 ) 3 2 9 1 ( 3 ) 4 5 0 4 ( 3 ) 5 0 5 7 ( 2 ) 2 2 ( 1 ) C ( 2 ) 4 7 2 9 ( 4 ) 2 1 6 3 ( 4 ) 4 9 8 9 ( 3 ) 3 3 ( 1 ) C ( 3 ) 1 0 5 0 ( 3 ) 1 2 7 0 ( 3 ) 7 3 5 3 ( 2 ) 2 8 ( 1 ) C ( 4 ) 4 1 5 9 ( 4 ) 2 0 9 ( 3 ) 2 4 0 8 ( 3 ) 2 9 ( 1 ) P ( l ) 1 4 6 7 ( 1 ) 4 5 8 7 ( 1 ) 3 3 2 5 ( 1 ) 2 4 ( 1 ) F ( l ) 8 0 3 ( 4 ) 5 8 7 0 ( 2 ) 3 7 7 4 ( 3 ) 6 7 ( 1 ) F ( 2 ) 1 5 0 7 ( 5 ) 5 3 4 7 ( 3 ) 2 1 4 9 ( 3 ) 8 3 ( 1 ) F ( 3 ) 2 1 4 1 ( 3 ) 3 2 8 6 ( 2 ) 2 8 4 6 ( 2 ) 4 6 ( 1 ) 1 3 ( 4 ) 1 5 3 1 ( 5 ) 3 7 7 3 ( 3 ) 4 4 8 2 ( 2 ) 8 0 ( 1 ) F ( 5 ) 3 2 4 3 ( 4 ) 5 0 6 6 ( 3 ) 3 9 4 4 ( 4 ) 8 2 ( 1 ) F ( 6 ) 2 6 6 ( 3 ) 4 0 5 2 ( 3 ) 2 6 6 0 ( 3 ) 7 1 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 4 T a b l e A . 8 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r ( T p ) C r C 1 2 ( C H 3 C N ) - A g P F 5 0 2 C H 3 C N , ( 2 2 ) . x y z U ( e q ) T 1 ( 1 ) 1 8 0 2 ( 1 ) 2 6 3 8 ( 1 ) 4 0 6 7 ( 1 ) 3 0 ( 1 ) C r ( 2 ) 3 2 1 9 ( 1 ) 4 9 5 ( 1 ) 3 8 8 7 ( 1 ) 1 7 ( 1 ) C r ( l ) 3 8 9 ( 1 ) 4 9 4 ( 1 ) 4 2 4 7 ( 1 ) 1 8 ( 1 ) C 1 ( 1 ) 7 7 2 ( 1 ) 1 9 7 3 ( 2 ) 5 0 5 2 ( 2 ) 2 5 ( 1 ) C 1 ( 2 ) 9 9 8 ( 1 ) 7 2 1 ( 2 ) 3 1 7 1 ( 2 ) 2 8 ( 1 ) C 1 ( 3 ) 2 6 0 8 ( 1 ) 7 1 7 ( 2 ) 4 9 6 6 ( 2 ) 2 6 ( 1 ) C 1 ( 4 ) 2 8 3 6 ( 1 ) 1 9 7 1 ( 2 ) 3 0 8 3 ( 2 ) 2 6 ( 1 ) P ( l ) 1 8 0 6 ( 2 ) 6 2 6 4 ( 1 ) 4 0 6 6 ( 3 ) 3 7 ( 1 ) N ( 1 ) 1 0 2 8 ( 4 ) 4 0 6 ( 6 ) 5 0 3 0 ( 6 ) 2 8 ( 2 ) N ( 2 ) 2 5 7 3 ( 3 ) - 4 1 5 ( 6 ) 3 1 1 2 ( 5 ) 2 4 ( 2 ) N ( 3 ) 1 0 9 8 ( 4 ) 3 7 1 7 ( 8 ) 2 1 7 6 ( 6 ) 4 6 ( 2 ) N ( 4 ) 2 6 1 7 ( 5 ) 5 5 5 2 ( 8 ) 6 7 8 1 ( 8 ) 8 5 ( 3 ) N ( 1 0 ) 3 3 3 ( 3 ) 1 2 5 5 ( 5 ) 3 5 0 5 ( 5 ) 1 8 ( 1 ) N ( 1 1 ) - 8 8 6 ( 3 ) 8 8 4 ( 5 ) 3 4 5 3 ( 4 ) 1 8 ( 1 ) N ( 2 0 ) 2 6 ( 3 ) 3 2 4 ( 5 ) 3 6 5 3 ( 5 ) 2 2 ( 2 ) N ( 2 1 ) 3 9 6 ( 3 ) - 9 8 3 ( 5 ) 3 5 2 3 ( 5 ) 2 0 ( 2 ) N ( 3 0 ) 4 7 6 ( 3 ) 2 3 7 ( 5 ) 5 1 6 9 ( 4 ) 2 0 ( 1 ) N ( 3 1 ) - 7 4 8 ( 3 ) 3 1 ( 5 ) 4 8 9 3 ( 5 ) 2 1 ( 2 ) N ( 4 0 ) 3 9 1 4 ( 3 ) 1 2 7 5 ( 5 ) 4 6 4 0 ( 5 ) 1 9 ( 1 ) N ( 4 1 ) 4 5 0 5 ( 3 ) 8 9 6 ( 5 ) 4 6 7 3 ( 5 ) 1 9 ( 1 ) N ( 5 0 ) 3 7 6 6 ( 3 ) 2 4 5 ( 6 ) 2 9 5 9 ( 4 ) 2 2 ( 2 ) N ( 5 1 ) 4 3 6 2 ( 3 ) - 7 2 ( 5 ) 3 2 2 4 ( 5 ) 1 8 ( 2 ) N ( 6 0 ) 3 5 8 3 ( 3 ) 3 3 9 ( 5 ) 4 4 9 7 ( 4 ) 1 7 ( 1 ) N ( 6 1 ) 4 1 8 6 ( 3 ) - 9 9 7 ( 5 ) 4 6 1 9 ( 5 ) 1 8 ( 1 ) C ( 1 ) 1 3 7 0 ( 4 ) - 9 0 0 ( 7 ) 5 5 0 4 ( 6 ) 2 7 ( 2 ) C ( 3 ) 2 2 6 0 ( 4 ) - 9 1 7 ( 6 ) 2 6 5 3 ( 6 ) 2 6 ( 2 ) C ( 2 ) 1 7 6 9 ( 4 ) 4 5 5 4 ( 8 ) 6 1 3 9 ( 7 ) 4 1 ( 2 ) C ( 4 ) 1 8 0 8 ( 5 ) 4 5 1 0 ( 8 ) 2 0 4 5 ( 7 ) 4 2 ( 2 ) C ( 5 ) 1 0 4 6 ( 4 ) 4 5 0 5 ( 9 ) 1 8 3 2 ( 8 ) 3 9 ( 2 ) C ( 6 ) 9 6 3 ( 4 ) 5 4 8 3 ( 7 ) 1 3 4 9 ( 5 ) 3 7 ( 2 ) C ( 7 ) 2 5 3 6 ( 4 ) 4 4 8 8 ( 1 0 ) 6 3 4 5 ( 7 ) 4 2 ( 3 ) C ( 8 ) 2 4 5 8 ( 5 ) 3 7 3 2 ( 9 ) 5 9 9 0 ( 8 ) 4 8 ( 3 ) C ( 1 0 ) 3 6 8 ( 4 ) 2 1 5 5 ( 6 ) 3 0 3 6 ( 6 ) 2 5 ( 2 ) C ( 1 1 ) - 9 7 1 ( 4 ) 2 3 5 8 ( 7 ) 2 6 9 6 ( 6 ) 2 9 ( 2 ) C ( 1 2 ) 4 2 8 1 ( 4 ) 1 5 4 9 ( 7 ) 2 9 7 7 ( 6 ) 2 5 ( 2 ) C ( 2 0 ) 2 7 2 ( 4 ) 4 6 6 7 ( 6 ) 3 2 8 9 ( 6 ) 2 4 ( 2 ) C ( 2 1 ) 4 8 2 ( 4 ) - 2 3 5 8 ( 7 ) 2 9 4 6 ( 6 ) 3 1 ( 2 ) C ( 2 2 ) 2 2 5 ( 4 ) 4 8 9 9 ( 7 ) 3 1 0 5 ( 6 ) 2 2 ( 2 ) 2 9 5 C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 5 0 ) C ( 5 1 ) C ( 5 2 ) C ( 6 0 ) C ( 6 1 ) C ( 6 2 ) B ( 2 ) B ( l ) F ( l ) F ( 2 ) F ( 3 ) F ( 4 ) F ( 5 ) F ( 6 ) - 7 1 ( 4 ) - 6 1 1 ( 5 ) - 1 0 1 7 ( 4 ) 3 9 6 1 ( 4 ) 4 5 6 6 ( 4 ) 4 8 9 8 ( 4 ) 3 7 0 2 ( 4 ) 4 2 1 3 ( 4 ) 4 6 3 6 ( 4 ) 3 3 4 6 ( 4 ) 3 7 9 1 ( 4 ) 4 3 1 3 ( 4 ) 4 5 9 8 ( 4 ) - 9 9 2 ( 4 ) 2 4 2 7 ( 3 ) 1 1 7 7 ( 4 ) 1 8 0 4 ( 5 ) 1 4 3 2 ( 4 ) 2 1 2 8 ( 4 ) 1 7 9 3 ( 7 ) 2 8 6 ( 7 ) 2 4 ( 7 ) - 1 9 0 ( 7 ) 2 1 5 5 ( 6 ) 2 3 8 2 ( 7 ) 1 5 5 9 ( 6 ) 2 8 1 ( 6 ) 0 ( 6 ) - 2 0 9 ( 7 ) - 1 6 5 5 ( 7 ) - 2 3 5 7 ( 7 ) - 1 9 l 7 ( 7 ) - 1 6 4 ( 8 ) - 1 8 5 ( 7 ) 6 2 8 8 ( 6 ) 6 2 6 9 ( 6 ) 7 5 2 3 ( 2 ) 6 3 1 2 ( 7 ) 6 2 4 4 ( 7 ) 5 0 2 9 ( 2 ) 6 0 6 8 ( 6 ) 6 3 5 6 ( 7 ) 5 5 9 7 ( 6 ) 5 1 0 1 ( 6 ) 5 4 4 7 ( 6 ) 5 1 5 0 ( 6 ) 2 0 6 0 ( 6 ) 1 7 3 5 ( 6 ) 2 5 0 2 ( 5 ) 4 8 3 3 ( 6 ) 5 1 9 4 ( 6 ) 5 0 4 5 ( 6 ) 4 2 5 4 ( 6 ) 3 9 0 0 ( 6 ) 4 7 4 9 ( 5 ) 3 4 0 8 ( 6 ) 4 0 5 1 ( 7 ) 4 8 8 8 ( 5 ) 3 2 2 6 ( 5 ) 4 0 6 9 ( 1 0 ) 2 5 ( 2 ) 3 6 ( 2 ) 2 8 ( 2 ) 2 2 ( 2 ) 2 7 ( 2 ) 2 4 ( 2 ) 2 8 ( 2 ) 2 5 ( 2 ) 2 2 ( 2 ) 2 7 ( 2 ) 3 0 ( 2 ) 2 7 ( 2 ) 2 1 ( 2 ) 1 8 ( 2 ) - 6 6 ( 2 ) 7 3 ( 2 ) 6 0 ( 1 ) 7 8 ( 2 ) 7 8 ( 2 ) 9 6 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 6 T a b l e A . 9 . A t o m i c c o o r d i n a t e s ( x 1 0 ‘ ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r ( T p ) C r C 1 2 ( C H 3 C N ) 0 T 1 P F 6 0 2 C H 3 C N , ( 2 3 ) x y z U ( e q ) T 1 ( l ) 1 8 0 2 ( 1 ) 2 6 3 8 ( 1 ) 4 0 6 7 ( 1 ) 3 0 ( 1 ) C r ( 2 ) 3 2 1 9 ( 1 ) 4 9 5 ( 1 ) 3 8 8 7 ( 1 ) 1 7 ( 1 ) C r ( l ) 3 8 9 ( 1 ) 4 9 4 ( 1 ) 4 2 4 7 ( 1 ) 1 8 ( 1 ) C 1 ( 1 ) 7 7 2 ( 1 ) 1 9 7 3 ( 2 ) 5 0 5 2 ( 2 ) 2 5 ( 1 ) C 1 ( 2 ) 9 9 8 ( 1 ) 7 2 1 ( 2 ) 3 1 7 1 ( 2 ) 2 8 ( 1 ) C 1 ( 3 ) 2 6 0 8 ( 1 ) 7 1 7 ( 2 ) 4 9 6 6 ( 2 ) 2 6 ( 1 ) C 1 ( 4 ) 2 8 3 6 ( 1 ) 1 9 7 1 ( 2 ) 3 0 8 3 ( 2 ) 2 6 ( 1 ) P ( l ) 1 8 0 6 ( 2 ) 6 2 6 4 ( 1 ) 4 0 6 6 ( 3 ) 3 7 ( 1 ) N ( 1 ) 1 0 2 8 ( 4 ) 4 0 6 ( 6 ) 5 0 3 0 ( 6 ) 2 8 ( 2 ) N ( 2 ) 2 5 7 3 ( 3 ) 4 1 5 ( 6 ) 3 1 1 2 ( 5 ) 2 4 ( 2 ) N ( 3 ) 1 0 9 8 ( 4 ) 3 7 1 7 ( 8 ) 2 1 7 6 ( 6 ) 4 6 ( 2 ) N ( 4 ) 2 6 1 7 ( 5 ) 5 5 5 2 ( 8 ) 6 7 8 1 ( 8 ) 8 5 ( 3 ) N ( 1 0 ) 3 3 3 ( 3 ) 1 2 5 5 ( 5 ) 3 5 0 5 ( 5 ) 1 8 ( 1 ) N ( 1 1 ) 3 8 6 ( 3 ) 8 8 4 ( 5 ) 3 4 5 3 ( 4 ) 1 8 ( 1 ) N ( 2 0 ) 2 6 ( 3 ) 3 2 4 ( 5 ) 3 6 5 3 ( 5 ) 2 2 ( 2 ) N ( 2 1 ) 3 9 6 ( 3 ) - 9 8 3 ( 5 ) 3 5 2 3 ( 5 ) 2 0 ( 2 ) N ( 3 0 ) 4 7 6 ( 3 ) 2 3 7 ( 5 ) 5 1 6 9 ( 4 ) 2 0 ( 1 ) N ( 3 1 ) - 7 4 8 ( 3 ) 3 1 ( 5 ) 4 8 9 3 ( 5 ) 2 1 ( 2 ) N ( 4 0 ) 3 9 1 4 ( 3 ) 1 2 7 5 ( 5 ) 4 6 4 0 ( 5 ) 1 9 ( 1 ) N ( 4 1 ) 4 5 0 5 ( 3 ) 8 9 6 ( 5 ) 4 6 7 3 ( 5 ) 1 9 ( 1 ) N ( 5 0 ) 3 7 6 6 ( 3 ) 2 4 5 ( 6 ) 2 9 5 9 ( 4 ) 2 2 ( 2 ) N ( 5 1 ) 4 3 6 2 ( 3 ) 2 2 ( 5 ) 3 2 2 4 ( 5 ) 1 8 ( 2 ) N ( 6 0 ) 3 5 8 3 ( 3 ) 3 3 9 ( 5 ) 4 4 9 7 ( 4 ) 1 7 ( 1 ) N ( 6 1 ) 4 1 8 6 ( 3 ) - 9 9 7 ( 5 ) 4 6 1 9 ( 5 ) 1 8 ( 1 ) C ( 1 ) 1 3 7 0 ( 4 ) — 9 0 0 ( 7 ) 5 5 0 4 ( 6 ) 2 7 ( 2 ) C ( 3 ) 2 2 6 0 ( 4 ) - 9 1 7 ( 6 ) 2 6 5 3 ( 6 ) 2 6 ( 2 ) C ( 2 ) 1 7 6 9 ( 4 ) 4 5 5 4 ( 8 ) 6 1 3 9 ( 7 ) 4 1 ( 2 ) C ( 4 ) 1 8 0 8 ( 5 ) 4 5 1 0 ( 8 ) 2 0 4 5 ( 7 ) 4 2 ( 2 ) C ( 5 ) 1 0 4 6 ( 4 ) 4 5 0 5 ( 9 ) 1 8 3 2 ( 8 ) 3 9 ( 2 ) C ( 6 ) 9 6 3 ( 4 ) 5 4 8 3 ( 7 ) 1 3 4 9 ( 5 ) 3 7 ( 2 ) C ( 7 ) 2 5 3 6 ( 4 ) 4 4 8 8 ( 1 0 ) 6 3 4 5 ( 7 ) 4 2 ( 3 ) C ( 8 ) 2 4 5 8 ( 5 ) 3 7 3 2 ( 9 ) 5 9 9 0 ( 8 ) 4 8 ( 3 ) C ( 1 0 ) 3 6 8 ( 4 ) 2 1 5 5 ( 6 ) 3 0 3 6 ( 6 ) 2 5 ( 2 ) c a 1 ) - 9 7 1 ( 4 ) 2 3 5 8 ( 7 ) 2 6 9 6 ( 6 ) 2 9 ( 2 ) C ( 1 2 ) 4 2 8 1 ( 4 ) 1 5 4 9 ( 7 ) 2 9 7 7 ( 6 ) 2 5 ( 2 ) C ( 2 0 ) 2 7 2 ( 4 ) 4 6 6 7 ( 6 ) 3 2 8 9 ( 6 ) 2 4 ( 2 ) C ( 2 1 ) 4 8 2 ( 4 ) 2 3 5 8 ( 7 ) 2 9 4 6 ( 6 ) 3 1 ( 2 ) C ( 2 2 ) 2 2 5 ( 4 ) 4 8 9 9 ( 7 ) 3 1 0 5 ( 6 ) 2 2 ( 2 ) 2 9 7 C ( 3 0 ) C ( 3 1 ) C ( 3 2 ) C ( 4 0 ) C ( 4 1 ) C ( 4 2 ) C ( 5 0 ) C ( 5 1 ) C ( 5 2 ) C ( 6 0 ) C ( 6 1 ) C ( 6 2 ) B ( 2 ) B ( l ) F ( l ) F ( 2 ) F ( 3 ) F ( 4 ) F ( S ) F ( 6 ) 2 1 ( 4 ) - 6 1 1 ( 5 ) - 1 0 1 7 ( 4 ) 3 9 6 1 ( 4 ) 4 5 6 6 ( 4 ) 4 8 9 8 ( 4 ) 3 7 0 2 ( 4 ) 4 2 1 3 ( 4 ) 4 6 3 6 ( 4 ) 3 3 4 6 ( 4 ) 3 7 9 1 ( 4 ) 4 3 1 3 ( 4 ) 4 5 9 8 ( 4 ) - 9 9 2 ( 4 ) 2 4 2 7 ( 3 ) 1 1 7 7 ( 4 ) 1 8 0 4 ( 5 ) 1 4 3 2 ( 4 ) 2 1 2 8 ( 4 ) 1 7 9 3 ( 7 ) 2 8 6 ( 7 ) 2 4 ( 7 ) - 1 9 0 ( 7 ) 2 1 5 5 ( 6 ) 2 3 8 2 ( 7 ) 1 5 5 9 ( 6 ) 2 8 1 ( 6 ) 0 ( 6 ) - 2 0 9 ( 7 ) - 1 6 5 5 ( 7 ) — 2 3 5 7 ( 7 ) - 1 9 l 7 ( 7 ) - 1 6 4 ( 8 ) - 1 8 5 ( 7 ) 6 2 8 8 ( 6 ) 6 2 6 9 ( 6 ) 7 5 2 3 ( 2 ) 6 3 1 2 ( 7 ) 6 2 4 4 ( 7 ) 5 0 2 9 ( 2 ) 6 0 6 8 ( 6 ) 6 3 5 6 ( 7 ) 5 5 9 7 ( 6 ) 5 1 0 1 ( 6 ) 5 4 4 7 ( 6 ) 5 1 5 0 ( 6 ) 2 0 6 0 ( 6 ) 1 7 3 5 ( 6 ) 2 5 0 2 ( 5 ) 4 8 3 3 ( 6 ) 5 1 9 4 ( 6 ) 5 0 4 5 ( 6 ) 4 2 5 4 ( 6 ) 3 9 0 0 ( 6 ) 4 7 4 9 ( 5 ) 3 4 0 8 ( 6 ) 4 0 5 1 ( 7 ) 4 8 8 8 ( 5 ) 3 2 2 6 ( 5 ) 4 0 6 9 ( 1 0 ) 2 5 ( 2 ) 3 6 ( 2 ) 2 8 ( 2 ) 2 2 ( 2 ) 2 7 ( 2 ) 2 4 ( 2 ) 2 8 ( 2 ) 2 5 ( 2 ) 2 2 ( 2 ) 2 7 ( 2 ) 3 0 ( 2 ) 2 7 ( 2 ) 2 1 ( 2 ) 1 8 ( 2 ) 6 6 ( 2 ) 7 3 ( 2 ) 6 0 ( 1 ) 7 8 ( 2 ) 7 8 ( 2 ) 9 6 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 2 9 8 T a b l e A . 1 0 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 ) f o r V ( T p ) 2 0 1 / 3 C H 3 C N 0 1 / 6 E t 2 0 , ( 2 4 ) x y z U ( e q ) V ( 1 ) 5 0 0 0 5 0 0 0 0 2 1 ( 1 ) V ( 2 ) 5 0 0 0 5 0 0 0 5 0 0 0 2 3 ( 1 ) V ( 3 ) 0 1 0 0 0 0 5 0 0 0 2 2 ( 1 ) 1 3 ( 1 ) 1 8 2 3 ( 2 ) 5 6 7 2 ( 2 ) 4 3 7 ( 2 ) 2 3 ( 1 ) B ( 2 ) 5 4 3 7 ( 3 ) 7 1 4 3 ( 2 ) 3 1 3 5 ( 2 ) 3 1 ( 1 ) B ( 3 ) 2 3 1 1 ( 2 ) 9 3 9 5 ( 2 ) 4 4 2 0 ( 2 ) 2 7 ( 1 ) 0 ( 1 ) 6 8 5 3 ( 3 ) 8 7 8 3 ( 2 ) - 6 7 8 ( 2 ) 5 4 ( 1 ) N ( 1 ) 4 0 2 6 ( 2 ) 1 0 8 9 0 ( 1 ) 3 7 9 5 ( 1 ) 2 7 ( 1 ) N ( 2 ) 4 9 5 2 ( 2 ) 1 0 4 6 4 ( 1 ) 3 6 7 1 ( 1 ) 2 6 ( 1 ) N ( 3 ) 1 9 3 3 ( 2 ) 1 0 4 2 6 ( 1 ) 4 1 0 9 ( 1 ) 2 7 ( 1 ) N ( 4 ) 2 7 7 4 ( 2 ) 1 0 6 2 8 ( 1 ) 4 5 1 8 ( 1 ) 2 7 ( 1 ) N ( 5 ) 8 5 ( 2 ) 8 7 6 9 ( 1 ) 4 5 9 1 ( 1 ) 2 8 ( 1 ) N ( 6 ) 4 0 4 0 ( 2 ) 8 6 4 3 ( 1 ) 4 3 9 1 ( 1 ) 2 8 ( 1 ) N ( 7 ) 5 4 3 8 ( 2 ) 3 5 2 5 ( 1 ) 4 9 9 6 ( 1 ) 2 8 ( 1 ) N ( 8 ) 5 1 5 2 ( 2 ) 2 7 1 0 ( 1 ) 5 8 8 7 ( 1 ) 2 8 ( 1 ) N ( 9 ) 4 1 4 8 ( 2 ) 5 6 5 8 ( 1 ) 3 7 1 2 ( 1 ) 2 8 ( 1 ) N ( 1 0 ) 4 4 5 6 ( 2 ) 6 5 9 4 ( 1 ) 3 0 1 0 ( 1 ) 2 9 ( 1 ) N ( l l ) 6 8 4 8 ( 2 ) 5 5 3 1 ( 1 ) 3 9 9 1 ( 1 ) 2 9 ( 1 ) N ( 1 2 ) 6 7 8 8 ( 2 ) 6 4 7 5 ( 1 ) 3 2 4 2 ( 1 ) 3 0 ( 1 ) N ( 1 3 ) 3 5 3 2 ( 2 ) 4 3 6 3 ( 1 ) 1 3 4 3 ( 1 ) 2 5 ( 1 ) N ( 1 4 ) 2 2 2 0 ( 2 ) 4 7 6 2 ( 1 ) 1 3 6 2 ( 1 ) 2 4 ( 1 ) N ( 1 5 ) 6 4 6 2 ( 2 ) 4 9 6 6 ( 1 ) 7 5 4 ( 1 ) 2 4 ( 1 ) N ( 1 6 ) 7 7 6 8 ( 2 ) 4 6 3 5 ( 1 ) 4 5 5 ( 1 ) 2 3 ( 1 ) N ( 1 7 ) 6 0 3 4 ( 2 ) 3 5 4 7 ( 1 ) 7 4 ( 1 ) 2 5 ( 1 ) N ( 1 8 ) 7 4 0 4 ( 2 ) 3 4 4 1 ( 1 ) 4 6 5 ( 1 ) 2 4 ( 1 ) N ( 3 0 4 0 8 4 ( 7 ) 9 1 9 2 ( 5 ) 1 1 2 7 ( 5 ) 1 5 4 ( 3 ) C ( 1 ) 3 5 9 2 ) 1 1 8 0 8 ( 2 ) 3 0 5 3 ( 2 ) 3 4 ( 1 ) C ( 2 ) 4 8 3 3 ( 3 ) 1 1 9 8 3 ( 2 ) 2 4 4 0 ( 2 ) 4 1 ( 1 ) C ( 3 ) 2 4 3 2 ( 2 ) 1 1 1 1 3 ( 2 ) 2 8 5 4 ( 2 ) 3 2 ( 1 ) C ( 4 ) 2 5 9 1 ( 2 ) 1 0 5 6 4 ( 2 ) 3 1 7 7 ( 2 ) 3 0 ( 1 ) C ( 5 ) 3 8 5 0 ( 2 ) 1 0 8 5 6 ( 2 ) 2 9 7 8 ( 2 ) 3 4 ( 1 ) C ( 6 ) 3 9 2 9 ( 2 ) 1 0 8 8 8 ( 2 ) 3 8 4 4 ( 2 ) 3 1 ( 1 ) C ( 7 ) 1 0 1 8 ( 2 ) 8 0 3 7 ( 2 ) 4 4 6 3 ( 2 ) 3 8 ( 1 ) C ( 8 ) 5 1 1 ( 3 ) 7 4 4 4 ( 2 ) 4 1 8 0 ( 2 ) 4 4 ( 1 ) C ( 9 ) 2 9 2 ( 3 ) 7 8 5 2 ( 2 ) 4 1 4 6 ( 2 ) 3 6 ( 1 ) C ( 1 0 ) 5 9 0 1 ( 2 ) 3 1 5 5 ( 2 ) 4 2 9 9 ( 2 ) 3 2 ( 1 ) C ( 1 1 ) 5 9 1 2 ( 2 ) 2 1 1 7 ( 2 ) 4 7 2 1 ( 2 ) 3 8 ( 1 ) C ( 1 2 ) 5 4 2 7 ( 2 ) 1 8 6 3 ( 2 ) 5 7 2 6 ( 2 ) 3 4 ( 1 ) 2 9 9 e q u i v a l e n t i s o t r o p i c C ( 1 3 ) C ( 1 4 ) C ( 1 5 ) C ( 1 6 ) C ( 1 7 ) C ( 1 8 ) C ( 1 9 ) C ( 2 0 ) C ( 2 1 ) C ( 2 2 ) C ( 2 3 ) C ( 2 4 ) C ( 2 5 ) C ( 2 6 ) C ( 2 7 ) C ( 3 0 ) C ( 3 1 ) C ( 4 1 ) C ( 4 2 ) C ( 4 3 ) C ( 4 4 ) 3 2 6 3 ( 2 ) 2 9 9 0 ( 2 ) 3 7 5 8 ( 2 ) 8 1 4 3 ( 2 ) 8 9 3 4 ( 3 ) 8 0 3 6 ( 2 ) 3 5 4 7 ( 2 ) 2 2 5 9 ( 2 ) 1 4 4 9 ( 2 ) 6 4 1 3 ( 2 ) 7 6 8 1 ( 2 ) 8 5 0 7 ( 2 ) 5 6 6 5 ( 2 ) 6 7 8 4 ( 3 ) 7 8 6 1 ( 2 ) - 3 5 9 ( 6 ) 5 0 6 ( 5 ) 8 2 7 6 ( 4 ) 7 5 1 2 ( 5 ) 5 4 4 5 ( 8 ) 6 0 0 7 ( 7 ) 5 4 0 0 ( 2 ) 6 1 6 4 ( 2 ) 6 9 0 1 ( 2 ) 5 2 0 7 ( 2 ) 5 9 3 3 ( 2 ) 6 7 2 7 ( 2 ) 3 5 8 5 ( 2 ) 3 4 7 1 ( 2 ) 4 2 3 1 ( 2 ) 5 1 5 4 ( 2 ) 4 9 4 7 ( 2 ) 4 6 2 0 ( 2 ) 2 6 4 7 ( 2 ) 1 9 4 9 ( 2 ) 2 4 8 6 ( 2 ) 9 4 3 5 ( 4 ) 9 7 5 3 ( 4 ) 7 2 8 9 ( 3 ) 7 8 9 0 ( 4 ) 1 0 3 0 6 ( 5 ) 9 3 5 2 ( 4 ) 3 4 0 8 ( 2 ) 2 5 1 2 ( 2 ) 2 2 9 1 ( 2 ) 3 9 5 9 ( 2 ) 3 2 0 7 ( 2 ) 2 7 6 8 ( 2 ) 2 2 3 0 ( 2 ) 2 8 2 3 ( 2 ) 2 2 4 8 ( 2 ) 1 5 4 0 ( 2 ) 1 7 5 4 ( 2 ) 1 0 5 2 ( 2 ) 3 3 2 ( 2 ) 2 6 5 ( 2 ) - 5 7 ( 2 ) 1 3 8 8 ( 4 ) 1 6 8 1 ( 4 ) - 6 2 9 ( 3 ) - 1 0 1 ( 5 ) - 9 3 8 ( 7 ) - 1 6 5 ( 5 ) 3 1 ( 1 ) 3 5 ( 1 ) 3 4 ( 1 ) 3 5 ( 1 ) 4 2 ( 1 ) 3 8 ( 1 ) 3 1 ( 1 ) 3 6 ( 1 ) 3 0 ( 1 ) 2 9 ( 1 ) 3 1 ( 1 ) 2 6 ( 1 ) 3 2 ( 1 ) 3 9 ( 1 ) 3 2 ( 1 ) 9 3 ( 2 ) 8 8 ( 2 ) 5 2 ( 1 ) 7 2 ( 2 ) 1 2 2 ( 3 ) 8 4 ( 2 ) U ( e q ) i s d e f i n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 0 0 T a b l e A . 1 1 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r H A T - ( C N X ' C 7 H 3 ' C H 3 C N , ( 2 6 ) x y z U ( e q ) N ( 1 ) 3 9 3 8 ( 2 ) 1 0 5 0 7 ( 5 ) 5 4 8 0 ( 2 ) 2 8 ( 1 ) N ( 2 ) 3 0 1 1 ( 2 ) 9 1 7 9 ( 5 ) 4 2 2 1 ( 2 ) 3 1 ( 1 ) N ( 3 ) 1 6 6 5 ( 2 ) 8 8 6 6 ( 5 ) 4 2 9 8 ( 2 ) 3 0 ( 1 ) N ( 4 ) 1 2 7 9 ( 2 ) 1 0 3 7 4 ( 5 ) 5 5 4 3 ( 2 ) 2 6 ( 1 ) N ( 5 ) 2 2 3 0 ( 2 ) 1 1 8 4 9 ( 5 ) 6 8 6 5 ( 2 ) 2 6 ( 1 ) N ( 6 ) 3 5 8 3 ( 2 ) 1 1 7 5 8 ( 5 ) 6 8 6 6 ( 2 ) 2 6 ( 1 ) N ( 2 1 ) 5 6 2 1 ( 2 ) 1 1 2 5 7 ( 6 ) 6 0 3 2 ( 2 ) 4 7 ( 1 ) N ( 2 2 ) 2 8 9 6 ( 2 ) 7 2 4 9 ( 6 ) 2 3 7 8 ( 3 ) 5 1 ( 1 ) N ( 2 3 ) 1 0 1 2 ( 2 ) 6 6 4 7 ( 6 ) 2 5 2 7 ( 2 ) 4 7 ( 1 ) N ( 2 4 ) 4 6 3 ( 2 ) 1 1 2 4 6 ( 6 ) 6 0 7 4 ( 2 ) 4 2 ( 1 ) N ( 2 5 ) 1 1 7 6 ( 2 ) 1 3 2 0 8 ( 6 ) 7 9 8 1 ( 3 ) 5 4 ( 1 ) N ( 2 6 ) 5 1 7 0 ( 2 ) 1 2 7 0 4 ( 6 ) 8 0 0 5 ( 3 ) 5 1 ( 1 ) N ( 3 8 ) 9 3 6 ( 3 ) 9 6 1 3 ( 7 ) 7 4 7 ( 3 ) 7 1 ( 2 ) C ( 1 ) 3 2 9 7 ( 2 ) 1 0 4 8 0 ( 6 ) 5 5 4 4 ( 2 ) 2 3 ( 1 ) C ( 2 ) 2 8 0 6 ( 2 ) 9 7 5 7 ( 6 ) 4 8 8 7 ( 2 ) 2 5 ( 1 ) C ( 3 ) 2 1 4 5 ( 2 ) 9 6 5 8 ( 6 ) 4 9 1 8 ( 2 ) 2 3 ( 1 ) C ( 4 ) 1 9 4 4 ( 2 ) 1 0 4 0 0 ( 6 ) 5 5 7 6 ( 2 ) 2 4 ( 1 ) C ( 5 ) 2 4 2 0 ( 2 ) 1 1 1 4 7 ( 6 ) 6 2 3 8 ( 2 ) 2 3 ( 1 ) C ( 6 ) 3 1 1 7 ( 2 ) 1 1 1 4 3 ( 6 ) 6 2 3 1 ( 2 ) 2 4 ( 1 ) C ( 1 1 ) 4 3 8 2 ( 2 ) 1 1 1 2 4 ( 6 ) 6 1 0 4 ( 2 ) 2 6 ( 1 ) C ( 1 2 ) 2 5 2 4 ( 2 ) 8 3 9 2 ( 6 ) 3 5 9 8 ( 2 ) 2 8 ( 1 ) C ( 1 3 ) 1 8 7 8 ( 2 ) 8 2 6 6 ( 6 ) 3 6 4 5 ( 2 ) 2 7 ( 1 ) C ( 1 4 ) 1 1 0 3 ( 2 ) 1 1 1 0 1 ( 6 ) 6 1 4 6 ( 2 ) 2 5 ( 1 ) C ( 1 5 ) 1 5 7 8 ( 2 ) 1 1 8 2 1 ( 6 ) 6 8 1 5 ( 2 ) 2 6 ( 1 ) C ( 1 6 ) 4 2 1 4 ( 2 ) 1 1 7 3 5 ( 6 ) 6 8 0 0 ( 2 ) 2 7 ( 1 ) C ( 2 1 ) 5 0 7 7 ( 2 ) 1 1 2 0 4 ( 6 ) 6 0 5 9 ( 3 ) 3 2 ( 1 ) C ( 2 2 ) 2 7 3 2 ( 2 ) 7 7 5 4 ( 6 ) 2 9 2 7 ( 3 ) 3 2 ( 1 ) C ( 2 3 ) 1 3 8 9 ( 2 ) 7 3 7 8 ( 6 ) 3 0 2 1 ( 3 ) 3 1 ( 1 ) C ( 2 4 ) 3 8 8 ( 2 ) 1 1 1 7 0 ( 6 ) 6 1 1 3 ( 3 ) 3 1 ( 1 ) C ( 2 5 ) 1 3 5 7 ( 2 ) 1 2 6 0 3 ( 6 ) 7 4 6 9 ( 3 ) 3 4 ( 1 ) C ( 2 6 ) 4 7 3 6 ( 2 ) 1 2 3 0 4 ( 6 ) 7 4 7 6 ( 3 ) 3 3 ( 1 ) C ( 3 1 ) 3 4 9 0 ( 3 ) 1 0 5 6 4 ( 6 ) 4 9 4 ( 3 ) 4 0 ( 1 ) C ( 3 2 ) 2 8 2 4 ( 3 ) 1 0 9 6 3 ( 7 ) 2 5 6 ( 4 ) 5 7 ( 2 ) C ( 3 3 ) 2 3 8 8 ( 3 ) 1 0 5 3 3 ( 8 ) 2 8 3 ( 4 ) 6 6 ( 2 ) C ( 3 4 ) 2 6 1 8 ( 3 ) 9 7 0 8 ( 8 ) 4 5 3 ( 4 ) 6 1 ( 2 ) C ( 3 5 ) 3 2 9 3 ( 3 ) 9 3 2 3 ( 7 ) 7 1 5 ( 4 ) 5 4 ( 2 ) C ( 3 6 ) 3 7 1 9 ( 3 ) 9 7 3 3 ( 7 ) 2 4 9 ( 3 ) 4 6 ( 1 ) C ( 3 7 ) 3 9 7 4 ( 3 ) 1 1 0 6 1 ( 9 ) - 9 8 8 ( 4 ) 6 9 ( 2 ) 3 0 1 C ( 3 8 ) 4 7 1 ( 3 ) 9 2 6 3 ( 8 ) 9 3 2 ( 3 ) 5 5 ( 2 ) C ( 3 9 ) - 1 4 3 ( 3 ) 8 8 4 5 ( 9 ) 1 1 7 1 ( 4 ) 7 3 ( 2 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 0 2 T a b l e A . 1 2 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r C o ( H A T ( C N ) 4 0 2 ) ( I - 1 2 0 ) 4 0 4 H 2 0 ( 2 7 ) x y z U ( e q ) C o ( 1 ) 4 7 3 5 ( 1 ) 2 2 1 9 ( 1 ) 1 6 2 9 ( 1 ) 3 3 ( 1 ) C ( 1 ) 4 4 2 7 ( 4 ) 2 6 4 6 ( 3 ) 3 7 9 2 ( 2 ) 2 4 ( 1 ) C ( 2 ) 3 0 8 4 ( 4 ) 2 1 1 3 ( 3 ) 3 8 3 4 ( 2 ) 2 3 ( 1 ) C ( 3 ) 4 0 8 8 ( 4 ) 4 9 3 9 ( 3 ) 4 7 7 3 ( 2 ) 2 2 ( 1 ) C ( 4 ) 3 5 2 6 ( 3 ) 2 2 9 3 ( 3 ) 5 7 1 5 ( 2 ) 2 1 ( 1 ) C ( 5 ) 4 9 1 5 ( 4 ) 2 8 2 9 ( 3 ) 5 6 7 5 ( 2 ) 2 3 ( 1 ) C ( 6 ) 3 7 9 ( 4 ) 2 9 9 9 ( 3 ) 4 7 0 0 ( 2 ) 2 2 ( 1 ) C ( 1 1 ) 1 0 4 1 ( 4 ) 3 3 0 3 ( 4 ) 2 7 9 2 ( 3 ) 2 9 ( 1 ) C ( 1 2 ) 3 0 7 9 ( 4 ) 4 3 1 1 ( 4 ) 2 9 3 9 ( 3 ) 2 7 ( 1 ) C ( 1 3 ) - 6 0 8 1 ( 4 ) 4 1 2 5 ( 3 ) 3 9 3 7 ( 2 ) 2 4 ( 1 ) C ( 1 4 ) 3 9 4 0 ( 4 ) 2 4 6 4 ( 3 ) 7 4 5 2 ( 2 ) 2 5 ( 1 ) C ( 1 5 ) 2 3 5 7 ( 4 ) 3 0 2 0 ( 3 ) 7 4 1 7 ( 2 ) 2 6 ( 1 ) C ( 1 6 ) 1 5 5 9 ( 4 ) 3 6 4 2 ( 3 ) 3 7 6 7 ( 3 ) 2 5 ( 1 ) C ( 2 3 ) 2 6 7 8 ( 4 ) 3 7 1 ( 3 ) 3 9 4 6 ( 2 ) 2 2 ( 1 ) C ( 2 4 ) 3 0 2 1 ( 4 ) 2 2 4 8 ( 4 ) 8 4 1 1 ( 3 ) 3 3 ( 1 ) C ( 2 5 ) 4 7 2 2 ( 4 ) 3 4 0 1 ( 4 ) 8 3 3 1 ( 3 ) 3 2 ( 1 ) C ( 2 6 ) 3 1 7 0 ( 4 ) 4 1 8 9 ( 3 ) 3 7 5 1 ( 3 ) 2 5 ( 1 ) N ( 1 ) 3 1 2 ( 3 ) 2 7 7 8 ( 3 ) 2 8 5 9 ( 2 ) 2 9 ( 1 ) N ( 2 ) 3 5 4 4 ( 3 ) 4 8 1 5 ( 3 ) 2 9 2 8 ( 2 ) 2 6 ( 1 ) N ( 3 ) 3 6 3 2 ( 3 ) 4 4 2 3 ( 3 ) 4 8 1 8 ( 2 ) 2 4 ( 1 ) N ( 4 ) 4 5 1 7 ( 3 ) 2 1 0 5 ( 3 ) 6 6 0 5 ( 2 ) 2 5 ( 1 ) N ( 5 ) 4 3 5 5 ( 3 ) 3 1 9 2 ( 3 ) 6 5 3 2 ( 2 ) 2 5 ( 1 ) N ( 6 ) 6 5 9 ( 3 ) 3 5 0 8 ( 3 ) 4 6 7 5 ( 2 ) 2 3 ( 1 ) N ( 1 3 ) 3 9 4 2 ( 4 ) 4 1 9 ( 3 ) 3 8 9 8 ( 2 ) 4 0 ( 1 ) N ( 1 4 ) 3 8 7 0 ( 4 ) 2 0 6 0 ( 4 ) 9 1 6 3 ( 2 ) 4 8 ( 1 ) N ( 1 5 ) 4 1 8 6 ( 4 ) 3 6 9 4 ( 4 ) 9 0 3 8 ( 3 ) 5 0 ( 1 ) N ( 1 6 ) 4 4 4 2 ( 4 ) 4 6 4 0 ( 3 ) 3 7 8 5 ( 3 ) 4 4 ( 1 ) 0 ( 1 ) 1 9 4 2 ( 3 ) 3 4 8 8 ( 3 ) 1 9 6 7 ( 2 ) 4 3 ( 1 ) 0 ( 2 ) 3 6 0 9 ( 3 ) 4 0 1 4 ( 3 ) 2 1 4 2 ( 2 ) 4 1 ( 1 ) 0 ( 3 ) 2 7 8 ( 4 ) 2 5 4 1 ( 4 ) 4 4 9 ( 2 ) 5 4 ( 1 ) 0 ( 4 ) 3 2 5 2 ( 3 ) 4 7 5 5 ( 3 ) 5 9 6 ( 2 ) 4 1 ( 1 ) 0 ( 5 ) 4 0 8 9 ( 4 ) 4 8 7 ( 4 ) 1 4 0 6 ( 2 ) 4 5 ( 1 ) 0 ( 6 ) 2 2 8 3 ( 4 ) 4 2 1 5 ( 3 ) 1 7 0 2 ( 3 ) 4 4 ( 1 ) 0 ( 1 0 ) 3 0 1 3 ( 4 ) 4 5 1 4 ( 4 ) 9 9 0 ( 3 ) 6 0 ( 1 ) 0 ( 1 1 ) 4 8 7 3 ( 4 ) 9 7 2 ( 4 ) 3 1 5 1 ( 3 ) 6 2 ( 1 ) 0 ( 1 2 ) 2 2 5 2 ( 5 ) 3 9 1 2 ( 5 ) 3 4 8 0 ( 3 ) 7 2 ( 1 ) 0 ( 1 3 ) 2 2 2 3 ( 7 ) 0 ( 8 ) 4 0 1 7 ( 7 ) 1 9 6 ( 4 ) 3 0 3 T a b l e A . 1 3 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) f o r M n G ' I A T - ( C I ‘ D 4 0 2 ) ( I ' 1 2 0 ) 4 ° 4 H 2 0 . ( 2 8 ) x y z U ( e q ) M n ( 1 ) 1 6 1 3 ( 1 ) 2 2 1 7 ( 1 ) 3 4 7 0 ( 1 ) 3 8 ( 1 ) N ( 3 ) 5 5 8 3 ( 3 ) 1 4 3 8 ( 2 ) 1 6 7 ( 2 ) 2 4 ( 1 ) N ( 4 ) 4 4 9 6 ( 3 ) 2 1 0 8 ( 3 ) - 1 6 2 0 ( 2 ) 2 6 ( 1 ) 0 ( 2 ) 5 5 4 2 ( 3 ) 1 0 0 3 ( 3 ) 2 8 3 1 ( 2 ) 4 1 ( 1 ) N ( 2 ) 3 4 9 2 ( 3 ) 1 8 2 3 ( 3 ) 2 0 5 1 ( 2 ) 2 7 ( 1 ) C ( 5 ) 1 8 9 5 ( 4 ) 2 8 3 7 ( 3 ) - 6 9 6 ( 2 ) 2 4 ( 1 ) N ( 5 ) 1 3 4 9 ( 3 ) 3 2 1 3 ( 3 ) - 1 5 5 2 ( 2 ) 2 8 ( 1 ) N ( 6 ) - 6 8 1 ( 3 ) 3 5 1 7 ( 3 ) 2 8 2 ( 2 ) 2 7 ( 1 ) C ( 4 ) 3 4 8 9 ( 3 ) 2 3 0 2 ( 3 ) - 7 2 6 ( 2 ) 2 3 ( 1 ) C ( 2 3 ) 7 6 2 8 ( 4 ) 5 8 5 ( 3 ) 1 0 3 4 ( 2 ) 2 5 ( 1 ) C ( 3 ) 4 0 5 0 ( 4 ) 1 9 5 1 ( 3 ) 2 1 2 ( 2 ) 2 4 ( 1 ) C ( 1 2 ) 5 0 1 8 ( 4 ) 1 3 0 7 ( 3 ) 2 0 3 7 ( 2 ) 2 7 ( 1 ) C ( 6 ) 8 4 0 ( 3 ) 3 0 1 3 ( 3 ) 2 7 5 ( 2 ) 2 4 ( 1 ) C ( 1 ) 1 3 7 3 ( 4 ) 2 6 6 2 ( 3 ) 1 1 8 4 ( 2 ) 2 6 ( 1 ) C ( 2 ) 3 0 3 2 ( 4 ) 2 1 2 4 ( 3 ) 1 1 5 1 ( 2 ) 2 5 ( 1 ) C ( 1 3 ) 6 0 2 5 ( 3 ) 1 1 3 2 ( 3 ) 1 0 4 4 ( 2 ) 2 3 ( 1 ) 0 ( 5 ) 9 9 6 ( 4 ) 8 6 ( 4 ) 3 6 4 0 ( 3 ) 5 2 ( 1 ) N ( 1 ) 4 3 8 ( 3 ) 2 7 9 5 ( 3 ) 2 1 1 0 ( 2 ) 3 1 ( 1 ) 0 ( 1 ) 2 0 2 0 ( 3 ) 3 5 1 8 ( 3 ) 2 9 7 8 ( 2 ) 4 9 ( 1 ) C ( 1 5 ) 2 3 6 7 ( 4 ) 3 0 3 0 ( 3 ) - 2 4 3 8 ( 2 ) 2 8 ( 1 ) 0 ( 6 ) 2 1 4 2 ( 4 ) 4 3 1 4 ( 3 ) 3 4 2 0 ( 3 ) 5 4 ( 1 ) C ( 1 6 ) - 1 5 9 2 ( 4 ) 3 6 6 2 ( 3 ) 1 1 8 5 ( 3 ) 2 8 ( 1 ) C ( 2 6 ) - 3 2 0 1 ( 4 ) 4 2 0 4 ( 3 ) 1 1 9 3 ( 3 ) 3 0 ( 1 ) C ( 2 4 ) 5 0 1 6 ( 4 ) 2 2 4 6 ( 3 ) - 3 4 1 8 ( 3 ) 3 1 ( 1 ) 0 ( 4 ) 3 3 3 6 ( 4 ) 1 7 2 9 ( 3 ) 4 4 3 1 ( 2 ) 5 2 ( 1 ) N ( 1 3 ) 8 8 9 7 ( 4 ) 1 3 1 ( 3 ) 1 0 8 4 ( 2 ) 3 6 ( 1 ) C ( 1 1 ) - 1 1 0 1 ( 4 ) 3 3 3 1 ( 3 ) 2 1 5 1 ( 3 ) 3 2 ( 1 ) N ( 1 4 ) 5 8 6 5 ( 4 ) 2 0 4 1 ( 4 ) - 4 1 6 1 ( 2 ) 4 6 ( 1 ) C ( 2 5 ) 1 7 7 1 ( 4 ) 3 4 5 2 ( 4 ) - 3 3 5 9 ( 3 ) 3 5 ( 1 ) C ( 1 4 ) 3 9 3 4 ( 4 ) 2 4 7 4 ( 3 ) - 2 4 6 7 ( 2 ) 2 6 ( 1 ) N ( 1 6 ) - 4 4 9 2 ( 4 ) 4 6 4 8 ( 3 ) 1 1 8 0 ( 3 ) 4 3 ( 1 ) N ( 1 5 ) 1 2 6 5 ( 4 ) 3 8 0 3 ( 4 ) - 4 0 6 9 ( 3 ) 5 5 ( 1 ) 0 ( 3 ) - 5 7 5 ( 5 ) 2 4 8 3 ( 6 ) 4 6 2 3 ( 4 ) 8 3 ( 2 ) 0 ( 1 0 ) 5 0 0 9 ( 4 ) 4 5 3 5 ( 4 ) 4 0 5 0 ( 3 ) 6 1 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 0 4 T a b l e A . 1 4 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) a n d e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 ) f o r N i ( H A T - ( C N ) 4 0 2 ) ( H z O ) 4 ‘ 4 H 2 0 . ( 2 9 ) x y z U ( e q ) N i ( l ) 3 7 3 8 ( 1 ) 2 7 0 9 ( 1 ) 3 3 4 9 ( 1 ) 2 6 ( 1 ) C ( 1 ) 3 4 3 5 ( 4 ) 2 3 2 0 ( 4 ) 4 2 1 8 ( 3 ) 2 0 ( 1 ) C ( 2 ) 3 0 9 0 ( 4 ) 2 8 5 9 ( 4 ) 4 1 9 1 ( 3 ) 2 1 ( 1 ) C ( 3 ) 3 0 9 3 ( 4 ) 3 0 5 7 ( 3 ) 2 5 3 ( 3 ) 2 0 ( 1 ) C ( 4 ) 3 5 3 6 ( 4 ) 2 7 2 3 ( 3 ) 6 9 3 ( 3 ) 2 0 ( 1 ) C ( 5 ) 3 9 3 2 ( 4 ) 2 1 8 6 ( 3 ) 6 5 9 ( 3 ) 2 1 ( 1 ) C ( 6 ) 3 8 8 7 ( 4 ) 1 9 9 6 ( 4 ) 3 0 8 ( 3 ) 2 1 ( 1 ) C ( 1 1 ) 3 9 7 3 ( 4 ) 1 6 2 9 ( 4 ) 2 2 0 5 ( 3 ) 2 3 ( 1 ) C ( 1 2 ) 4 0 0 8 0 ( 4 ) 3 6 5 2 ( 4 ) 2 0 9 4 ( 3 ) 2 5 ( 1 ) C ( 1 3 ) 4 1 0 7 1 ( 4 ) 3 8 6 3 ( 4 ) 4 1 0 3 ( 3 ) 2 2 ( 1 ) C ( 1 4 ) 3 9 5 7 ( 4 ) 2 5 6 4 ( 4 ) 2 4 3 2 ( 3 ) 2 4 ( 1 ) C ( 1 5 ) 2 3 8 5 ( 5 ) 2 0 0 9 ( 4 ) 2 4 0 1 ( 3 ) 2 5 ( 1 ) C ( 1 6 ) 3 4 6 2 ( 4 ) 1 3 3 3 ( 4 ) 4 2 2 9 ( 3 ) 2 2 ( 1 ) C ( 2 3 ) 4 2 6 8 1 ( 4 ) 4 4 2 3 ( 4 ) 4 0 9 7 ( 3 ) 2 3 ( 1 ) C ( 2 4 ) 4 0 0 4 1 ( 5 ) 2 7 8 4 ( 4 ) 3 3 9 7 ( 3 ) 3 2 ( 1 ) C ( 2 5 ) 3 7 5 1 ( 5 ) 1 6 3 2 ( 4 ) 3 3 2 3 ( 3 ) 3 2 ( 1 ) C ( 2 6 ) 4 8 3 8 ( 4 ) 7 9 2 ( 4 ) 4 2 3 4 ( 3 ) 2 3 ( 1 ) N ( 1 ) 3 5 2 6 ( 3 ) 2 1 6 7 ( 3 ) 2 1 5 0 ( 2 ) 2 4 ( 1 ) N ( 2 ) 3 5 4 5 ( 3 ) 3 1 3 1 ( 3 ) 2 0 9 7 ( 2 ) 2 3 ( 1 ) N ( 3 ) 4 0 6 3 0 ( 3 ) 3 5 8 2 ( 3 ) 2 1 7 ( 2 ) 2 2 ( 1 ) N ( 4 ) 3 5 2 9 ( 4 ) 2 9 2 1 ( 3 ) 1 5 8 0 ( 2 ) 2 4 ( 1 ) N ( 5 ) 3 3 7 4 ( 4 ) 1 8 2 1 ( 3 ) 1 5 2 4 ( 2 ) 2 4 ( 1 ) N ( 6 ) 4 3 5 5 ( 3 ) 1 4 9 0 ( 3 ) 3 2 8 ( 2 ) 2 1 ( 1 ) N ( 1 3 ) 4 3 9 3 1 ( 4 ) 4 8 7 5 ( 3 ) 4 1 4 1 ( 3 ) 3 8 ( 1 ) N ( 1 4 ) 4 0 8 5 0 ( 5 ) 2 9 9 2 ( 4 ) 4 1 5 0 ( 3 ) 5 1 ( 1 ) N ( 1 5 ) 3 2 1 5 ( 5 ) 1 3 2 9 ( 4 ) 4 0 2 7 ( 3 ) 5 3 ( 1 ) N ( 1 6 ) 3 7 7 ( 4 ) 3 4 6 ( 4 ) 4 1 9 8 ( 3 ) 3 9 ( 1 ) 0 ( 1 ) 4 0 6 0 4 ( 3 ) 3 9 2 7 ( 3 ) 2 8 9 9 ( 2 ) 3 7 ( 1 ) 0 ( 2 ) 3 0 6 8 ( 3 ) 1 4 2 0 ( 3 ) 3 0 2 4 ( 2 ) 3 5 ( 1 ) 0 ( 3 ) 3 1 1 3 ( 4 ) 4 6 8 6 ( 4 ) 3 5 7 8 ( 3 ) 3 6 ( 1 ) 0 ( 4 ) 3 1 9 5 ( 4 ) 3 1 7 7 ( 4 ) 4 3 9 4 ( 3 ) 3 4 ( 1 ) 0 ( 5 ) 2 3 0 0 ( 4 ) 7 4 3 ( 3 ) 3 2 8 9 ( 3 ) 3 7 ( 1 ) 0 ( 6 ) 4 7 7 1 ( 4 ) 2 3 5 2 ( 4 ) 4 4 9 5 ( 3 ) 4 1 ( 1 ) 0 ( 1 0 ) 2 2 3 4 ( 4 ) 5 3 3 8 ( 4 ) 3 7 9 5 ( 3 ) 5 8 ( 1 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 0 5 T a b l e A . 1 5 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) , e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) , a n d o c c u p a n c i e s f o r { ( s z F e ) 3 H A T ( C N ) 6 . C H 3 C N } ( 3 0 ) x y z U ( e q ) F e ( 1 ) 4 5 6 2 ( 1 ) 3 3 2 8 ( 2 ) 3 4 6 0 ( 2 ) 3 7 ( 1 ) F e ( 2 ) 8 1 7 ( 1 ) 3 3 3 6 ( 2 ) 8 4 5 8 ( 2 ) 5 1 ( 1 ) C ( 4 0 ) 1 0 6 7 ( 1 3 ) 4 2 7 0 ( 1 8 ) 6 8 5 3 ( 1 6 ) 1 0 7 ( 8 ) C ( 3 4 ) 1 0 7 6 ( 1 3 ) 4 1 6 1 ( 1 9 ) 1 0 1 1 2 ( 1 6 ) 1 0 7 ( 7 ) C ( 3 6 ) 1 1 8 0 ( 1 4 ) 2 8 9 8 ( 1 7 ) 6 8 2 8 ( 1 3 ) 9 1 ( 7 ) C ( 3 2 ) 1 1 5 5 ( 1 0 ) 2 9 0 9 ( 1 2 ) 1 0 1 5 7 ( 1 2 ) 6 1 ( 4 ) C ( 3 7 ) 1 6 9 3 ( 1 3 ) 3 9 7 0 ( 2 0 ) 6 8 1 6 ( 1 5 ) 9 3 ( 6 ) C ( 3 3 ) 1 6 4 8 ( 1 1 ) 3 8 8 7 ( 1 5 ) 1 0 1 9 7 ( 1 4 ) 7 6 ( 5 ) C ( 3 5 ) 1 0 4 ( 1 5 ) 3 3 5 7 ( 1 8 ) 1 0 1 0 0 ( l 3 ) 1 0 4 ( 8 ) C ( 3 8 ) 1 5 7 ( 1 2 ) 2 5 7 5 ( 1 6 ) 6 8 5 9 ( 1 6 ) 9 1 ( 6 ) C ( 3 1 ) 2 0 0 ( 1 2 ) 2 6 4 5 ( 1 3 ) 1 0 1 2 5 ( 1 6 ) 9 0 ( 6 ) C ( 3 9 ) 7 2 ( 1 2 ) 3 3 2 4 ( 1 3 ) 6 8 2 9 ( 1 2 ) 7 2 ( 5 ) N ( 7 ) 5 7 2 7 ( 6 ) 4 2 8 8 ( 6 ) 8 4 4 8 ( 7 ) 2 5 ( 2 ) N ( 8 ) 4 7 1 8 ( 6 ) 2 3 4 5 ( 6 ) 8 4 5 0 ( 8 ) 3 3 ( 2 ) C ( 2 9 ) 3 3 2 6 ( 7 ) 2 3 4 8 ( 8 ) 8 4 6 8 ( 1 1 ) 3 8 ( 2 ) C ( 2 4 ) 4 3 3 6 ( 7 ) 2 8 5 8 ( 8 ) 8 4 5 4 ( 9 ) 3 5 ( 2 ) C ( 3 0 ) 4 3 3 0 ( 7 ) 4 3 6 7 ( 8 ) 8 4 8 2 ( 1 3 ) 4 2 ( 3 ) C ( 2 7 ) 6 1 5 8 ( 5 ) 3 8 3 8 ( 8 ) 8 4 6 9 ( 8 ) 3 2 ( 2 ) C ( 2 8 ) 4 7 5 5 ( 7 ) 3 8 2 7 ( 6 ) 8 4 6 2 ( 9 ) 2 6 ( 2 ) N ( 1 ) 2 5 6 6 ( 7 ) 1 9 5 5 ( 6 ) 8 4 4 0 ( 1 0 ) 4 8 ( 2 ) N ( 2 ) 3 8 6 8 ( 1 4 ) 4 6 9 8 ( 1 3 ) 8 4 5 7 ( 1 4 ) 1 1 1 ( 6 ) C ( 2 6 ) 5 6 7 2 ( 6 ) 2 8 5 1 ( 6 ) 8 4 6 8 ( 7 ) 2 4 ( 2 ) N ( 4 ) 4 6 5 0 ( 6 ) 6 1 2 7 ( 6 ) 3 4 6 4 ( 9 ) 4 4 ( 2 ) N ( 5 ) 7 8 9 1 ( 1 6 ) 9 2 8 8 ( 1 5 ) 3 4 5 6 ( 9 ) 1 4 5 ( 1 0 ) C ( 5 3 ) 4 0 5 6 ( 6 ) 6 4 2 2 ( 6 ) 3 4 5 3 ( 1 0 ) 4 3 ( 2 ) C ( 4 1 ) 0 0 7 6 4 0 ( 2 0 ) 7 5 ( 6 ) C ( 4 2 ) 0 0 9 2 7 0 ( 3 0 ) 8 3 ( 6 ) N ( 3 ) 6 7 3 3 ( 1 1 ) 6 3 1 3 ( 7 ) 3 4 9 8 ( 1 2 ) 5 2 ( 2 ) C ( 1 ) 6 6 2 0 ( 9 ) 8 4 1 4 ( 6 ) 3 4 5 2 ( 1 3 ) 3 5 ( 2 ) N ( 1 1 ) 0 0 1 0 6 5 0 ( 2 0 ) 1 3 3 ( 1 1 ) C ( 2 ) 5 5 5 3 ( 7 ) 6 8 2 8 ( 6 ) 3 4 6 0 ( 9 ) 3 8 ( 2 ) N ( 9 ) 5 1 5 4 ( 8 ) 8 0 3 3 ( 9 ) 3 4 6 8 ( 1 7 ) 8 6 ( 4 ) C ( 4 9 ) 4 2 7 4 ( 7 ) 7 3 4 5 ( 6 ) 3 4 4 6 ( 1 0 ) 4 6 ( 2 ) C ( 5 4 ) 6 2 2 8 ( 7 ) 6 5 5 4 ( 6 ) 3 4 6 2 ( 8 ) 4 2 ( 2 ) C ( 5 2 ) 5 8 0 1 ( 6 ) 7 8 1 8 ( 9 ) 3 4 5 3 ( 1 0 ) 6 5 ( 3 ) C ( 1 0 1 ) 3 8 8 9 ( 1 1 ) 3 3 9 2 ( 1 1 ) 5 1 4 1 ( 1 1 ) 5 5 ( 4 ) C ( 1 0 2 ) 4 4 8 0 ( 1 3 ) 2 5 5 8 ( 1 3 ) 5 1 2 2 ( 1 7 ) 7 8 ( 4 ) C ( 1 0 3 ) 5 2 7 8 ( 8 ) 3 3 5 5 ( 9 ) 5 1 0 5 ( 1 2 ) 5 4 ( 3 ) 3 0 6 C ( 1 0 4 ) 3 8 0 8 ( 1 7 ) 2 6 4 0 ( 2 0 ) 5 1 5 4 ( 1 8 ) 1 5 0 ( 1 3 ) C ( 1 0 5 ) 4 9 7 9 ( 1 5 ) 4 0 9 3 ( 7 ) 5 1 1 9 ( 9 ) 1 1 0 ( 8 ) C ( l 1 1 ) 4 4 8 7 ( 1 0 ) 2 5 3 2 ( 8 ) 1 7 8 6 ( 1 3 ) 7 6 ( 5 ) C ( 1 1 3 ) 5 2 9 0 ( 7 ) 3 3 7 7 ( 8 ) 1 7 9 2 ( 1 3 ) 5 7 ( 3 ) C ( 1 1 4 ) 4 0 6 2 ( 1 0 ) 3 5 9 9 ( 1 2 ) 1 8 1 3 ( 1 2 ) 1 4 4 ( 1 3 ) C ( 1 1 5 ) 5 0 4 6 ( 1 1 ) 4 0 9 2 ( 6 ) 1 7 9 5 ( 9 ) 9 7 ( 8 ) C ( 1 1 2 ) 3 7 3 7 ( 9 ) 2 6 5 4 ( 1 0 ) 1 8 1 1 ( 1 9 ) 9 0 ( 5 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 0 7 T a b l e A . 1 6 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) , e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) , a n d o c c u p a n c i e s f o r { [ ( C P ) 2 C 0 ] [ P F 6 1 } 3 H A T - ( C N ) 6 , ( 3 1 ) X y z U ( e q ) C o ( 1 ) 1 9 9 8 ( 1 ) 8 1 7 6 ( 1 ) 4 5 ( 2 ) 4 1 ( 1 ) C o ( 2 ) 0 1 2 1 5 9 ( 1 ) 0 4 7 ( 1 ) P ( 1 ) 0 8 5 6 0 ( 3 ) 0 3 8 ( 1 ) P ( 2 ) 1 2 0 1 ( 1 ) 4 9 7 1 ( 2 ) 3 4 ( 4 ) 3 9 ( 1 ) F ( l ) 2 0 9 ( 4 ) 7 8 0 5 ( 6 ) 3 2 6 ( 1 0 ) 8 0 ( 3 ) F ( 2 ) 2 0 9 ( 6 ) 9 2 9 7 ( 6 ) 1 3 1 9 ( 1 2 ) 1 1 2 ( 5 ) F ( 3 ) 5 3 9 ( 3 ) 8 5 3 8 ( 7 ) 1 0 2 2 ( 1 2 ) 8 4 ( 3 ) F ( 7 ) 7 4 6 ( 4 ) 4 8 2 2 ( 1 0 ) 1 2 1 1 ( 1 1 ) 1 1 6 ( 5 ) F ( 8 ) 1 6 6 0 ( 4 ) 5 1 4 3 ( 1 0 ) 4 3 8 4 ( 1 2 ) 1 0 9 ( 4 ) F ( 9 ) 8 3 7 ( 4 ) 5 5 4 6 ( 8 ) 4 3 8 3 ( 1 0 ) 9 7 ( 4 ) F ( l O ) 1 3 8 2 ( 5 ) 5 8 2 2 ( 7 ) 9 8 5 ( 1 2 ) 1 0 4 ( 4 ) F ( l 1 ) 1 5 5 5 ( 5 ) 4 4 2 8 ( 9 ) 2 3 5 ( 1 2 ) 1 1 8 ( 5 ) F ( 1 2 ) 1 0 7 2 ( 1 0 ) 4 1 1 5 ( 7 ) 4 1 5 3 ( 1 5 ) 1 8 3 ( 9 ) N ( 1 ) 4 4 5 6 ( 3 ) 1 2 7 6 5 ( 5 ) 5 1 0 9 ( 1 1 ) 3 1 ( 2 ) N ( 2 ) 3 9 2 9 ( 3 ) 1 1 1 8 1 ( 6 ) 5 1 3 5 ( 1 2 ) 2 9 ( 2 ) N ( 3 ) 4 4 6 4 ( 3 ) 9 5 3 7 ( 6 ) 5 0 1 0 ( 1 1 ) 3 0 ( 2 ) N ( 4 ) 2 6 7 8 ( 3 ) 1 0 4 0 5 ( 8 ) 5 2 4 9 ( 1 6 ) 5 2 ( 3 ) N ( 5 ) 3 4 5 6 ( 4 ) 8 0 5 1 ( 6 ) 5 0 7 3 ( 1 7 ) 5 1 ( 3 ) N ( 6 ) 4 2 2 0 ( 4 ) 1 5 0 1 1 ( 7 ) 5 1 2 1 ( 1 5 ) 4 7 ( 3 ) C ( 1 ) 4 7 2 8 ( 4 ) 1 1 9 9 7 ( 6 ) 5 0 6 4 ( 1 2 ) 2 4 ( 2 ) C ( 2 ) 4 4 4 8 ( 4 ) 1 1 1 6 3 ( 7 ) 5 0 6 9 ( 1 2 ) 2 5 ( 2 ) C ( 3 ) 4 7 2 5 ( 3 ) 1 0 3 4 0 ( 7 ) 5 0 1 6 ( 1 2 ) 2 7 ( 2 ) C ( 4 ) 3 9 5 8 ( 4 ) 9 5 6 7 ( 7 ) 5 0 7 0 ( 1 4 ) 3 0 ( 2 ) C ( 5 ) 3 6 9 0 ( 3 ) 1 0 3 9 0 ( 8 ) 5 1 2 4 ( 1 2 ) 2 8 ( 2 ) C ( 6 ) 4 7 2 1 ( 4 ) 1 3 5 2 1 ( 7 ) 5 0 6 3 ( 1 3 ) 3 3 ( 2 ) C ( 7 ) 4 4 3 8 ( 4 ) 1 4 3 5 0 ( 8 ) 5 1 4 7 ( 1 4 ) 3 4 ( 2 ) C ( 8 ) 3 1 2 9 ( 4 ) 1 0 4 1 1 ( 8 ) 5 1 9 7 ( 1 4 ) 3 7 ( 2 ) C ( 9 ) 3 6 8 8 ( 4 ) 8 7 1 0 ( 8 ) 5 0 5 0 ( 1 4 ) 3 7 ( 3 ) 2 . “ . ‘ k C ( 2 1 ) 9 3 9 ( 1 0 ) 7 2 5 0 ( 2 0 ) — 2 0 8 0 ( 3 0 ) 1 1 3 ( 9 ) C ( 2 2 ) 2 3 1 7 ( 7 ) 8 1 1 0 ( 3 0 ) - 2 4 8 0 ( 2 0 ) 1 5 5 ( 1 3 ) C ( 2 3 ) 0 1 9 ( 1 1 ) 8 8 5 6 ( 1 3 ) - 2 3 2 0 ( 3 0 ) 1 0 7 ( 9 ) C ( 2 4 ) 1 4 7 1 ( 1 8 ) 8 5 2 7 ( 1 6 ) - 1 9 7 0 ( 3 0 ) 1 8 4 ( 1 8 ) C ( 2 5 ) 1 4 9 6 ( 9 ) 7 6 9 5 ( 1 3 ) - 1 8 5 0 ( 2 0 ) 8 6 ( 7 ) C ( 2 6 ) 2 2 4 0 ( 1 0 ) 7 5 2 4 ( 1 8 ) 2 1 5 0 ( 3 0 ) 1 0 2 ( 7 ) C ( 2 7 ) 2 5 5 2 ( 8 ) 8 1 7 0 ( 2 0 ) 1 7 9 0 ( 3 0 ) 1 0 1 ( 7 ) C ( 2 8 ) 2 2 9 6 ( 1 0 ) 9 0 6 8 ( 1 4 ) 1 6 8 0 ( 3 0 ) 9 7 ( 7 ) C ( 2 9 ) 1 7 4 3 ( 8 ) 8 8 2 7 ( 1 3 ) 2 2 3 0 ( 2 0 ) 8 3 ( 5 ) C ( 3 0 ) 7 1 8 ( 1 0 ) 7 8 8 5 ( 1 8 ) 2 4 2 0 ( 2 0 ) 1 0 7 ( 8 ) 3 0 8 C ( 3 1 ) 8 ( 8 ) 1 2 9 8 7 ( 1 3 ) 2 1 2 0 ( 3 0 ) 1 3 7 ( 9 ) C ( 3 2 ) 4 7 7 ( 8 ) 1 2 5 1 1 ( 1 6 ) 1 9 1 0 ( 3 0 ) 1 6 1 ( 1 3 ) C ( 3 3 ) 3 6 3 ( 9 ) 1 1 5 8 5 ( 1 6 ) 1 9 8 0 ( 3 0 ) 1 3 9 ( 1 0 ) C ( 3 4 ) - l 7 5 ( 9 ) 1 1 4 8 8 ( 1 4 ) 2 2 3 0 ( 3 0 ) 1 7 3 ( 1 4 ) C ( 3 5 ) - 3 9 5 ( 7 ) 1 2 3 5 5 ( 1 4 ) 2 3 2 0 ( 2 0 ) 1 0 6 ( 7 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 0 9 T a b l e A . 1 7 . A t o m i c c o o r d i n a t e s ( x 1 0 4 ) , e q u i v a l e n t i s o t r o p i c d i s p l a c e m e n t p a r a m e t e r s ( A 2 x 1 0 3 ) , f o r { ( [ n - B U 4 N 1 [ 1 ] ) 3 1 1 1 [ H A T - ( C N ) 6 ] 2 ' 3 C 6 H s . ( 3 2 ) x y z U ( e q ) 1 ( 1 ) 7 4 6 8 ( 1 ) 2 5 3 2 ( 1 ) 2 1 8 9 ( 1 ) 1 0 2 ( 1 ) 1 ( 2 ) 0 0 3 7 9 8 ( 1 ) 1 4 8 ( 1 ) C ( 1 ) 5 4 2 ( 4 ) 5 4 7 ( 3 ) 1 3 3 8 ( 6 ) 3 9 ( 2 ) N ( 1 ) - 1 6 ( 4 ) 1 0 3 0 ( 4 ) 1 3 1 2 ( 6 ) 5 0 ( 2 ) N ( 2 ) 1 0 4 2 ( 3 ) 1 0 4 3 ( 4 ) 1 3 1 5 ( 6 ) 5 1 ( 2 ) C ( 2 ) - 2 ( 4 ) 5 4 2 ( 4 ) 1 3 4 0 ( 6 ) 4 4 ( 2 ) C ( 3 ) 1 8 ( 7 ) 5 3 9 ( 5 ) 6 2 8 1 ( 7 ) 6 8 ( 3 ) C ( 4 ) 1 0 3 1 ( 4 ) 1 5 2 0 ( 4 ) 1 2 6 9 ( 6 ) 4 1 ( 2 ) N ( 3 ) - 3 0 ( 7 ) 1 0 0 5 ( 7 ) 6 3 0 8 ( 7 ) 8 2 ( 3 ) C ( 5 ) 5 2 9 ( 6 ) 5 4 2 ( 5 ) 6 2 8 4 ( 7 ) 6 9 ( 3 ) C ( 6 ) 4 8 2 ( 4 ) 1 5 1 4 ( 4 ) 1 2 7 2 ( 7 ) 4 6 ( 2 ) N ( 4 ) 1 0 5 3 ( 5 ) 1 0 3 0 ( 6 ) 6 3 1 1 ( 7 ) 8 9 ( 4 ) C ( 7 ) 4 9 9 ( 5 ) 2 0 5 8 ( 6 ) 1 2 1 9 ( 1 0 ) 6 8 ( 3 ) C ( 8 ) 1 5 5 9 ( 5 ) 2 0 6 5 ( 5 ) 1 2 1 4 ( 9 ) 6 3 ( 3 ) C ( 9 ) 4 7 5 ( 1 7 ) 1 4 7 5 ( 1 1 ) 6 3 5 7 ( 1 1 ) 1 1 8 ( 8 ) C ( 1 0 ) 9 7 6 ( 1 2 ) 1 5 1 0 ( 7 ) 6 3 5 5 ( 1 2 ) 1 1 8 ( 8 ) C ( 1 3 ) 1 5 6 8 ( 1 3 ) 2 0 6 0 ( 1 3 ) 6 4 2 2 ( 1 6 ) 1 9 5 ( 1 6 ) N ( 5 ) 1 9 7 8 ( 4 ) 2 4 9 3 ( 5 ) 1 1 5 1 ( 1 2 ) 9 8 ( 4 ) N ( 6 ) 5 1 3 ( 6 ) 2 4 9 1 ( 5 ) 1 1 5 8 ( 1 3 ) 1 0 7 ( 5 ) C ( 1 2 ) 4 8 5 ( 1 5 ) 2 0 8 4 ( 1 6 ) 6 4 4 5 ( 1 6 ) 1 6 7 ( 1 1 ) C ( 1 4 ) 8 6 9 3 ( 7 ) 1 3 2 6 ( 7 ) 3 0 3 9 ( 1 1 ) 8 7 ( 4 ) N ( 9 ) 8 5 1 8 ( 4 ) 1 4 8 7 ( 4 ) 2 0 5 9 ( 8 ) 6 8 ( 3 ) C ( 1 6 ) 8 7 4 2 ( 1 1 ) 2 0 9 5 ( 1 0 ) 2 0 6 0 ( 2 0 ) 1 3 9 ( 8 ) C ( 1 7 ) 9 3 5 4 ( 1 0 ) 2 4 7 4 ( 8 ) 2 0 2 0 ( 2 0 ) 1 6 2 ( 1 1 ) C ( 1 9 ) 8 7 4 8 ( 6 ) 1 2 6 2 ( 6 ) 1 3 0 5 ( 1 2 ) 8 7 ( 4 ) C ( 2 0 ) 8 6 3 6 ( 8 ) 1 3 7 5 ( 8 ) 2 7 9 ( 1 4 ) 1 1 1 ( 5 ) C ( 2 1 ) 7 9 4 4 ( 1 0 ) 1 3 0 2 ( 1 1 ) 2 0 6 1 ( 1 6 ) 1 3 3 ( 8 ) N ( 7 ) 6 0 9 ( 1 8 ) 2 5 5 9 ( 1 0 ) 6 3 7 0 ( 3 0 ) 2 4 9 ( 1 8 ) C ( 2 2 ) 8 9 4 0 ( 4 0 ) 1 1 3 0 ( 3 0 ) - 5 1 0 ( 1 5 ) 4 4 0 ( 6 0 ) N ( 8 ) 1 9 4 7 ( 1 2 ) 2 5 4 9 ( 9 ) 6 3 9 0 ( 2 0 ) 1 9 9 ( 1 1 ) C ( 2 3 ) 8 8 1 0 ( 2 0 ) 1 1 9 0 ( 2 0 ) - 1 5 3 0 ( 2 0 ) 3 4 0 ( 3 0 ) C ( 2 4 ) 9 4 9 7 ( 1 3 ) 3 1 3 8 ( 1 3 ) 2 1 1 0 ( 4 0 ) 2 1 1 ( 1 6 ) C ( 2 5 ) 1 0 0 1 0 ( 3 0 ) 3 5 9 9 ( 1 8 ) 1 7 0 0 ( 5 0 ) 5 4 0 ( 8 0 ) C ( 2 6 ) 1 0 8 9 ( 8 ) 1 7 2 8 ( 9 ) 3 8 0 4 ( 1 4 ) 1 0 7 ( 5 ) C ( 2 7 ) 6 4 9 ( 1 0 ) 1 7 4 4 ( 1 0 ) 3 8 0 7 ( 1 5 ) 1 1 3 ( 5 ) C ( 2 8 ) 5 3 9 ( 1 2 ) 2 1 2 7 ( 1 2 ) 3 8 2 0 ( 2 0 ) 1 5 6 ( 8 ) C ( 2 9 ) 1 5 9 6 ( 1 3 ) 2 1 6 2 ( 1 2 ) 3 8 1 0 ( 2 0 ) 1 6 1 ( 9 ) C ( 3 0 ) 9 9 3 ( 1 8 ) 2 6 6 0 ( 2 0 ) 3 7 9 0 ( 3 0 ) 2 2 0 ( 1 4 ) 3 1 0 C ( 3 1 ) 1 5 9 0 ( 2 0 ) 2 6 7 0 ( 2 0 ) 3 7 6 0 ( 3 0 ) 2 2 2 ( 1 5 ) C ( 3 2 ) 8 5 1 0 ( 2 0 ) 1 4 6 0 ( 2 0 ) 3 9 7 0 ( 3 0 ) 2 6 0 ( 2 0 ) C ( 3 3 ) 7 5 1 4 ( 7 ) 6 3 8 ( 9 ) 2 0 3 0 ( 2 0 ) 1 5 9 ( 1 1 ) C ( 3 5 ) 6 8 3 6 ( 1 2 ) 4 8 9 ( 1 5 ) 2 1 1 0 ( 3 0 ) 2 1 7 ( 1 7 ) C ( 3 7 ) 6 3 7 0 ( 2 0 ) 6 0 ( 4 0 ) 1 7 4 0 ( 6 0 ) 6 7 0 ( 1 1 0 ) C ( 3 4 ) 8 8 0 0 ( 3 0 ) 1 1 5 0 ( 3 0 ) 4 9 0 0 ( 3 0 ) 3 3 0 ( 3 0 ) U ( e q ) i s d e fi n e d a s o n e t h i r d o f t h e t r a c e o f t h e o r t h o g o n a l i z e d U i j t e n s o r . 3 1 1 ' 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 9 1 1 1 '