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ABSTRACT

THE ASYMPTOTIC RADIATION FIELD AND
PROPER PROPAGATION MODE SPECTRA OF
THE OPEN PLANAR WA VEGUIDE
By

Jeong-Seog Lee

The radiation field of the asymmetric planar dielectric waveguide is evaluated using
the steepest-descent method for both TE and TM excitations.

Continuous spectrum currents/fields of integrated open waveguide structures has been
until recently neither conceptualized theoretically nor quantified numerically. That
spectrum can be identified as the branch cut contribution to singularity expansion of
those currents/fields in the complex axial transform plane. Singularities in that plane
include poles associated with the guiding structure and branch points contributed by
layered background environments. The manner in which singularities in background
environments manifest themselves as branch points in the complex axial transform plane
is reviewed.

Based on transform domain integral equation formulation, approximate and analytical
expression for spectral domain microstrip current is obtained. The delta-gap feed model
is exploited. That approximation is based on Maxwellian distribution for the transverse
current profile. The spectral domain current is inverted into space domain by integration
contour deformation in the top sheet of the axial transform plane. This result is the

representation of currents in terms of proper propagation mode spectra. That spectra
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consist of bound propagation modes associated with pole singularities and continuous
spectrum associated with integration around branch cuts contributed by background
environments. During integration around branch cuts, singularities in the transverse
transform plane migrate in a complicated manner. The trajectories of this migration are
identified and suitably accommodated during the real axis integration in that plane. This
overall procedure leads to a decomposition of the total currents into bound modes and
continuous spectrum contributions. This representation is validated by real axis
integration in the axial transform plane. Similar analysis leads to near and moderate zone
electric fields of the guiding structure. The quasi TEM characteristic impedance of
bound mode is calculated.

Numerical results are obtained, which compare bound mode and continuous spectrum
contribution to microstrip currents. It is found that current is dominated by that of bound
mode. The characteristic impedance of bound mode is validated by comparison with
well-known empirical formula. The continuous spectrum current is maximal near feed
point and decays rapidly with axial distant from the feed. The near field is dominated by
continuous spectrum contribution. The extensive numerical results for near and moderate
zone fields are obtained.

Asymptotic approximation to the field of an open integrated microstrip waveguide is

achieved theoretically using the steepest-descent method (saddle point approximation). It

is observed that the far zone cover field decays algebraically as r_(a+3/ 2) (a #O)

transversely. The algebraic decaying factor & still remains to be determined in future

research.
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CHAPTER 1

INTRODUCTION

A full-wave integral operator formulation for electromagnetic fields in an integrated
microstrip waveguide configuration in a planarly layered background environment has
been developed to analyze associated EM phenomena [1]-[6]. However, the nature of the
physics in electromagnetic fields of the integrated microstrip waveguide configuration is
neither conceptualized nor quantified adequately. A continuous spectrum contributed by
the background layer environment and a discrete spectrum contributed by the guiding
structure is rigorously revealed and more physical insight into the EM behaviours of the
integrated microstrip waveguide configuration is obtained.

Chapter 2 describes the steepest-descent evaluation of the radiation field for TE
modes of an asymmetric planar open waveguide. The cover, film and substrate field will
be formulated in the spectral domain. The steepest-descent path in the complex axial

transform plane ({ -plane) is identified as a direct method and that in the complex ¢ -
plane (@ = O + jn : complex polar coordinate) is also identified as an indirect method in

order to validate the steepest-descent path in the complex axial transform plane (¢ -

plane). The branch cut integration will be rigorously analyzed through complex-phasor
diagrams. An alternative integration path will be also identified since it is an effective
method to validate the steepest-descent and branch cut integrations. Then, the steepest-
descent evaluation of cover and substrate fields and numerical results will be presented.

Chapter 3 describes the steepest-descent evaluation of the radiation field for TM mo-
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des of an asymmetric planar open waveguide. The cover, film and substrate ficld will be
formulated in the spectral domain then the spectral green’s dyads are represented. The
steepest-descent path in the complex axial transform plane ({ -plane) is identified as for
the TE case. The branch cut integration is analyzed in a fashion similar to that in Chapter
2. An alternative integration path will be also identified since it is an effective method to
validate the steepest-descent and branch cut integrations. Then, the steepest-descent
evaluation of cover and substrate ficlds will be presented. Numerical implementation
will be accommodated in the future research.

Chapter 4 discusses the spectral electric field integral equation (EFIE) formulation for
an integrated open waveguide structure in a planar-layered background environment. It,
importantly, introduces the concept of logarithmic- and square-root type branch-point
singularities contributed by the layered background environment [7]-[9]. The physical
meaning of those singularities will be interpreted.

Chapter 5 discusses the formulation for current in an open integrated microstrip
waveguide. Then, the physics of currents on the microstrip waveguide configuration is
conceptualized and quantified numerically. Since the microstrip currents are represented
in proper (continuous and discrete) spectra, then no leaky-modes need to be considered.

Chapter 6 discusses the electromagnetic fields in an open integrated microstrip
waveguide. Based upon the identity of complex analysis for the microstrip currents and
fields, much of the analysis was already carried out in Chapter 5. The physics of fields
surrounding the open microstrip configuration are subsequently conceptualized and

extensive numerical results are presented.
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Chapter 7 discusses the asymptotic approximation to the far zone electromagnetic

fields of an open integrated microstrip waveguide. It is observed that the asymptotic

cover field behaves algebraically like r_(a+3/ 2) (a # 0) when approaching to the far

zone. The asymptotic form of the film field can be also obtained in a similar fashion but
is not included in this chapter. The rigorous numerical implementation will be
accommodated in the future research.

Finally, Chapter 8 comments on a general review of the dissertation and emphasizes

the numerical implementation of Chapters 3 and 7 in future research.
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CHAPTER 2

SPECTRAL ANALYSIS AND ASYMPTOTIC RADIATION FIELD
FOR TE MODES OF THE ASYMMETRIC PLANAR OPEN
WAVEGUIDE

2.1 INTRODUCTION AND GEOMETRICAL CONFIGURATION

The steepest-descent method in the complex @ -plane has been extensively developed

to determine the asymptotic radiation field of planar waveguide structures [10]-[13]. Due
to the intrinsic nature of complexity in the complex @ -plane, the radiation fields of open

planar waveguides are identified and classified here through the steepest-descent method
in the complex axial transform plane [14], [15]. And, the spectral fields of planar open
waveguide structures possess multiple branch points associated with each of the three
planar layers. The branch point associated with the film layer is removable and the
branch points associated with the cover layer and the substrate layers are non-removable.
The steepest-descent evaluation of radiation fields in both the cover and the substrate
layer maintained by TE electric sources in proximity to the simplest canonical waveguide
structure will be performed when spectral representations of those fields possess multiple
non-removable branch points in the complex axial transform plane.

For the cover field, the steepest-descent path in the complex axial transform plane
replaces the cover layer branch cut while the substrate layer branch cut is retained. Alter-
natively the cover and the incomplete substrate layer branch cut are replaced while the
remaining substrate layer branch cut is retained. However, in the substrate layer, the
incomplete cover and the complete substrate layer branch cut are replaced while the

remaining cover layer branch cut is retained.
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The planar waveguide structure consists of a dielectric guiding region immersed in a

planar-layered background environment. Each planar layer is non-magnetic, isotropic,
and homogeneous with complex permittivity £, [ =1, 2, 3 for cover, film, and substrate
layers. A coordinate system is chosen with the Z axis as the waveguiding axis and the x

axis normal to the planar interfaces as depicted in Fig. 2.1.1. The structure is of infinite

extent parallel to the y — Z plane.
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2.2 SPECTRAL FIELD FORMULATION

The analysis of layered waveguide configurations proceed typically from a spectral
formulation for currents/fields in the complex axial transform plane. Uniformity along
the waveguiding axis Z prompts a complex axial Fourier transformation of all field
quantities with respect to the Z variable.

Since the spectral fields are TE with respect to the waveguiding axis in agreement
with the prescribed y-invariance, the guided wave fields are

é(x¢)=5¢,(x¢)
h(x,$)=zh, (x,8)+2h, (x,¢)

where 2.2.1)
E(xz)eoé(x{)
H(xz)o h(x()

-«-are transform pairs

C is the complex axial transform variable and excitation by a (e’ @ time dependence)

unit line current source is assumed.

The spectral Maxwell equations for the /’th layer become

e, (x.4)=auph, (x.$)

%, (x¢) (x ¢)_ — jeough, (x.4)

iCh (x.4)- o (x )

where

J,(8)=8(x—x)e 47

= J, (x.0)+ jwee, (x.0) (2.2.2)

Subsequent manipulation uncouples the spectral Maxwell equations to yield the spectral

Helmbholtz equation.
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a2é X, ~
22RO 008, (20)= jomad, (1)

where (2.2.3)

p(§)=yC2 K} 121,23
ki = ) HoEy =miky -+ my =€ /&

The integral representation for the complete electromagnetic field is recovered by

subsequent inverse transformation of the spectral fields.

2.2.1 COVER FIELD FORMULATION

Decomposition into principal and reflected spectral fields in the cover layer leads to

éy(x.{)=8l (x.{)+&, (%) (2.2.4)

Eqn. (2.2.4) superposes the primary and reflected solution in agreement with Eqn. (2.2.3)

(see Appendix A)

2 (50)=—s ekl
el (x,8)=—jouy————-¢
by 2p($)
, (2.2.5)
o (0)s R(;\e—m(c)(m) e
e, (x,¢)=—jou, e
Y T 2p(¢)
where R ({ ) denotes the reflection coefficient given by
(P1— P3) P2 +(P1p3 — p3 Jtanh (pyt)
R($)= ( ) (2.2.6)

2
(Pi+P3) P2+ (Pips + 3 Jtanh (pyt)
The space-domain field representation is recovered from its spectral counterpart such as

E, (x,2) e &, (x,$)- - Transform Pair
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PO, ()P E)
4rp($)

E, (x,2)=—jou, J:o e—jg(z_z’)dg (2.2.7)

2.2.2 FILM FIELD FORMULATION

The spectral field in the film layer is decomposed into the transmitted and reflected

fields (see Appendix A).

(924

_ 2 ($)x 2($)(x+21) e IS7
2y (5,) = jomoC () " +R (O )e™” | oy e

where C (; ) is the coupling and R (C ) is the interfacial reflection coefficient given by

_ 2p(py+p3)
cle)= (1+e‘2”2')Z(§)

P2~ D3
R —
R()= P

(2.2.9)

where

Z(¢)=(py+ p3) Py +(pip3 + p3 Jtanh (pyt)

Then, the space-domain field representation is recovered from its spectral counterpart

using the inverse Fourier transform.

Eay (n.2)=—jomo_C(£)| ™ +R({)e ”2(”2’)] e Dag a0

4r p,

2.2.3 SUBSTRATE FIELD FORMULATION

The spectral field in the substrate layer is the transmitted field (see Appendix A).
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(94
; = P e T et
&3y, (x.8)=—jauyT ($)e 2 (;) (2.2.11)

where T({ ) is the transmission coefficient defined by

2p1py
T( )=cosh(5ZS-Z({)

where (2.2.12)
Z(&)=(p+p3)py+ (P1P3 + P%)tanh(l’zt)

Then, the space-domain field representation is recovered as

(@)W
By, (x.2)=—jouo [ T( )e”(“(’*":ﬂ i3k e Dag a3

2.3 IDENTIFICATION OF THE STEEPEST-DESCENT PATH

The method of steepest-descents investigates the asymptotic evaluation of an integral

of the generic type [16], [17]

I= jc F(0)e®@ag 2.3.1)

where C is an infinite contour in the complex { -plane.
If 8 (; ) has a stationary point at { = {, then
8 (£o)=0 (2.3.2)
Egn. (2.3.2) implies

22 o) 5’(40)

6($)-6($0)=(&-¢o +-,§ > (2.3.3)

10
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Chew [17] suggested a change of variable to A such that

A2=5(0)-8(Lo) @34
since O (C )— ) ({ 0) is quadratic around the stationary point 0.

Eqn. (2.3.4) maps the complex { -plane to the complex A -plane in Figure 2.3.1.

2
Along the real axis of the A-plane (the path P’), the function era(;) = e_r'l +r8(%)

has a constant phase. According to this transformation, P also is a constant phase path.

56(¢)

Furthermore, €’ is a maximum at A =0 on the complex A -plane or {’ ={|y on the
complex { -plane and becomes exponentially small along the path P away from 4 =0

on the complex A -plane or {’ = ¢y on the complex { -plane. On the other hand, along

the imaginary axis of the A -plane ( A”), era(g) becomes exponentially large from

A =0 on the complex A -plane or { =§0 on the complex { -plane. Hence, the

function eré'({) looks like a saddle at the point A =0 on the complex A -plane or

4 =(0 on the complex { -plane. The constant-phase path on which the function

era(;) descends steeply away from the saddle point is known as the steepest-descent

path (SDP).

11



Figure ;



Figure 2.3.1 The mapping from the complex ( -plane to the complex A -plane.

12



131 ST
PL

Transf

representat

A depicteq

F
or SUbgtra‘e



2.3.1 STEEPEST-DESCENT PATH IN THE COMPLEX AXIAL TRANSFORM
PLANE (DIRECT METHOD)

Transformation to spatial polar coordinates (r,e) in both transverse and longitudinal

representations is implemented as depicted in Fig. 2.3.2.

(x.2)

Figure 2.3.2 Polar coordinate transformations.

As depicted in Fig. 2.3.3, for the phase-corrected cover layer field,

|x - x’l =rcos@—x"cos? 6
x+x =rcos@+xcos?0 (2.3.5)
z—27 =rsin@

For substrate layer field,

X+t=-rcos@
(2.3.6)

z—7 =rsin@

13
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<
|x—x|=rcos@
x+x =rcosf
Figure 2.3.3 Phase correction diagram in the cover layer.
Substituting Eqn. (2.3.5) into Eqn. (2.2.7) yields
Ely (x’z)
‘ -n (& hx—x - (ENx+x )
=C0J'¢o e ( 1 1+R(é’)e Pl( )(I x)e_j;(z_z)dc
- pi($)
-n($) rcos@—x’"cos? @ -n(¢ rcos 8+x"cos? @
Cjooe ( )+R({)e )( ) —j§rsin0d
=C, e 4
— pi($)
_ COJ-oo 1+ R’({)epl({)x'cosz ger[-jgsina—pl ({)COSo]dé»
- p({)
where
R(C)=R(¢ )e-2P| (§)x cos 6
¢, = 1%
4r

and R’ ({ ) is the corrected reflection coefficient.

14
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Substituting Eqn. (2.3.6) into Eqn. (2.2.13) yields
E3 y (x’ Z )
(94

i [ T (NP O €
]%'[‘“ (£)e 4zp($)

o -5 (2.3.8)
o T -p3({)rcosg € " —J{rsmed
jouo [ T(¢)e o D)

er[—j{sin 6-p3({)cos e]dé,

e-i((Z’Z')dé’

e (6%

4zp ({)

Eqn. (2.3.7) and Eqn. (2.3.8) lead to identification of 8 ({') in Eqn. (2.3.1) such that

=-japy [ T({)

5(&)=-j¢sin@— p;({)cosd
5 > (2.3.9)
pi($)= V& —k
where [ =1 and 3 for cover and substrate layers respectively.
The stationary point { o in the complex g’ -plane was shown to be a saddle point in that

plane. Using Eqn. (2.3.2) yields,

5'({0)=—jsin0——§-0—cost9=0
N (2.3.10)

~§o=k;siné

where the observation aspect angle is defined by

Z_Z,) 2.3.11)
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The steepest-descent path in the complex { -plane is identified as

5(¢)=5(L) (2.3.12)

[%}ine— jl:%f)]coséb (2.3.13)

Using the complex conjugate of Eqn. (2.3.13) leads to

[_{_] sin9+j[M] cosf =1 (2.3.14)
k k

1 l

After some manipulation,

Consequently, the steepest-descent path in the complex { -plane is obtained by adding

Eqn. (2.3.13) and Eqn. (2.3.14) as

_;_+[£)* sind _ p,(c)_{p,(:)}* cosf _

kK k|| 2 k, k, 2

(2.3.15)

2.3.2 TRANSFORMATION OF SDP FROM THE COMPLEX ¢ -PLANE TO
THE COMPLEX ( -PLANE (INDIRECT METHOD)

The inversion integral for the I'th (I=1 and 3 for cover and substrate) layer can be
approximated asymptotically by the steepest-descent saddle-point method in the complex

@ -plane defined by

@=0+jn (2.3.16)
It is noted that the integral representation must be placed in an appropriate standard form

by transforming to polar coordinates in both the (x, z) and ( i< ) planes.

16
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Due to Eqn. (2.3.5) and Eqn. (2.3.6), the appropriate transformation in (p,,{ ) is

identified as

p; = jk;cos¢@

2.3.17
§ =k;sing ( )

To determine the integration limits in the complex ¢ = 0 + j7] plane,

§ =ksin(o + jn)=k;sinocoshn + jk;cososinhn (2.3.18)

Therefore,
Re{¢{}=k;sinocoshn

(2.3.19)
Im{¢}=k,;cososinhn
Eqn. (2.3.19) maps the integration limits in the complex { - plane to those in the complex
@ - plane such that
Im{{}=0>0=1%x/2
Re{{}=—c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>