


’U*‘)/l

This is to certify that the

dissertation entitled

STOCHASTIC SIMULATION OF SEPARATION SYSTEMS

presented by

Peter Edward Krouskop

has been accepted towards fulfillment
of the requirements for

PhD degreein _ Chemistry

My o TIEZ‘:L' e

Major professor

Date I/ ;/ 2002

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771



LIBRARY
Michigan State
University

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE

DATE DUE

6/01 c/CIRC/DateDue.p65-p.15




STOCHASTIC SIMULATION OF SEPARATION SYSTEMS
VOLUME 1
By

Peter Edward Krouskop

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

2002



ABSTRACT
STOCHASTIC SIMULATION OF SEPARATION SYSTEMS
By

Peter Edward Krouskop

A three-dimensional stochastic simulation of chromatography has been developed
and used to study absorption chromatography, adsorption chromatography, and reactive
chromatography. The trajectories of individual molecules are tracked as the processes of
absorption, adsorption, chemical reaction, diffusion, electrophoretic migration, and
laminar or electroosmotic flow are simulated. The macroscopic and molecular abilities of
the simulation are used to study the effects of the radii of the fluid and surface phases, the
diffusion coefficients in the fluid and surface phases, and the absorption coefficient on the
rate of molecular transfer between the fluid and surface phases. The data collected from
the simulation are used to develop an empirical equation relating the parameters listed
above to the mass transfer rate constants. The effects of heterogeneous surfaces on
absorption systems are also investigated. It is determined that heterogeneities that cause
differences in the absorption coefficient result in a system that behaves as a homogeneous
system with an absorption coefficient equal to the average absorption coefficient.
Differences in the diffusion coefficient and the interfacial barrier to mass transfer cause
noticeable changes in the kinetic behavior of the system, but do not affect the long-time
or steady-state behavior of the system.

The computer algorithm for the simulation of linear adsorption chromatography is

developed and validated. The algorithm is independent of the time increment of the



simulation. The adsorption process is treated as a second order reaction between the
adsorbate and the surface, and desorption is treated as a first-order reaction. The kinetic
and steady-state behavior of adsorption systems are investigated and the simulation is
shown to be in good agreement with established theories of adsorption chromatography.

Finally, systems in which reaction and separation occur concurrently (reactive
separations) are considered. The simulation of an absorption chromatography column in
which a reaction occurs in the fluid or surface phase is presented. The responses of
reactive separation systems with irreversible and reversible reactions to changes in the
absorption coefficient, the diffusion c&efﬁcient, and the reaction rate are studied. The
statistical moments of the reactant and product zones are shown to be in agreement with
established theories. The data also suggests that the mass transfer and reaction rates
affect the system response in a dependent manner. The data show that separation of the
reactant and product species is possible while the system is not at steady state. The yield
and purity of the product is shown to increase for systems in which the absorption
coefficient of the product is smaller than the absorption coefficient of the reactant.

This dissertation presents the depth of information obtainable from the stochastic
model of separation systems. The simulation bridges molecular descriptions of the
system (e.g. ab initio and molecular dynamics simulations) to macroscopic descriptions
of the system (e.g. mass balance equations). Hence, a unified treatment of separation
systems is presented for the study of the effects of molecular interactions on the

macroscopic system.
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Chapter 1

Models of Chromatography

1.1 Introduction.

There have been many different models applied to chromatographic systems to
gain an understanding of the processes involved in this separation method. The models
can be broadly grouped into three categories. The first category is based on mass balance
equations. Partial differential equations are used to describe the movement of the analyte
through the chromatographic system. The solutions of these equations provide zone
profiles of the analyte as a function of time or distance. The second category is based on
molecular dynamic simulations of the molecules in the separation system. By applying
these methods of simulation to chromatography, the molecular nature of the separation
processes can be observed. The third category is based on the stochastic nature of the
separation process. The probability of an adsorption or absorption (partition) event
occurring for a single analyte molecule is used to determine the probability distribution
for an ensemble of molecules. The probability distribution is then used to obtain the zone
profile of the analyte as a function of time or distance. All three of these types of models
have been applied to homogeneous and heterogeneous chromatographic systems with
linear and non-linear isotherms.

This chapter will discuss in detail the different models that have been used to
study linear adsorption and absorption chromatography. The benefits and limitations of

the models will be presented.



1.2 Mass Balance Models of Separation Systems.
A general mass balance equation that describes the processes in a separation
system is

aC aC ,dq . d%C
Vo az+aT+ ﬁ—Dsz-i— [1.1]

where v is the average velocity of the fluid phase, C is the concentration of solute in the
fluid phase, q is the concentration of solute in the surface phase, T is time, z is the

distance coordinate in the axial direction, P is the ratio of the surface phase volume to the

fluid phase volume, and D is the axial dispersion coefficient.

Solutions to Equation [1.1] become very difficult to obtain as more detail about
the system is placed in the model. Thus, these models are usually solved with some
assumption(s) made about the system. Golshan-Shirazi and Guiochon have reviewed
these models for both linear and non-linear chromatography.'? The classification scheme

presented by Golshan-Shirazi and Guiochon for linear isotherm systems is used herein.

1.2.1 Plate Models.

The first models of chromatography were based on the idea of several extraction
stages placed in series. The Craig model is based on this idea of discrete stages.> Each
stage is assumed to reach equilibrium before a finite amount of the mobile phase is
moved from one stage to the next in a stepwise fashion. A model presented by Martin
and Synge uses the same approach, but allows continuous flow to occur between the

stages of the separation.* These models have had a lasting impact on chromatography. It



is from these models that plate height and the number of theoretical plates were defined
as a measure of the separation ability of a column. The number of theoretical plates
directly corresponds to the number of equilibrium stages, and the plate height is the
length of the column divided by the number of theoretical plates. The plate models have
been used widely as a method of comparing one separation system to another, but the
models are not predictive. Hence, these models can not be used to determine the
molecular and system responses caused by changes in the fluid or surface phase
characteristics. Recent work has shown that the more complex models of separation
systems discussed below can be reduced to these simple models, and the relationships

between the system parameters and the plate models can be determined.*

1.2.2 Equilibrium-Dispersive Models.
The category of equilibrium-dispersive models includes all models that assume

equilibrium to exist between the fluid and surface phases. The dq/dT term in Equation

[1.1] is replaced by an expression that describes the steady-state or equilibrium
relationship of the solute concentration in the fluid and surface phases. The broadening
of the zone profile due to the processes of axial dispersion, mass transfer and
adsorption/desorption kinetics is accounted for through an apparent dispersion
coefficient. The apparent dispersion coefficient is system specific, and is usually
determined empirically. Taylor and Aris use this type of model to study zone profiles that

occur when a system is at steady state.”® Equilibrium-dispersive models have more



predictive power than the plate models,”'® but still depend on empirical data to determine

the value of the apparent dispersion coefficient.

1.2.3 Lumped Kinetic Models.

The lumped kinetic models study the limiting processes that produce broadening
in the analyte zone and combine the other processes that occur on a faster time scale into
a single term. For example, reaction-dispersive models assume that the mass transfer to
and from the interface of the fluid and surface phases is fast and at equilibrium when
compared to the reaction, and the processes of absorption or adsorption and desorption
are studied in detail.>® Transport-dispersive models study the mass transfer to and from
the interface of the fluid and surface phases in detail, and assume the processes of
absorption or adsorption and desorption are fast and at equilibrium when compared to the
transport processes.6" II5 These models provide more information about the effects of the
various processes within chromatography than the previously mentioned equilibrium
models. For example, Golay used moment analysis of a transport-dispersive model to
determine the effect of system shape and size as well as diffusion and partition
coefficients on the broadening of zones.'?> Other workers have examined the effects of
boundary conditions on the moments obtained from transport-dispersive systems.'*!?
Finally, Frey and Grushka use a combination of the Craig model and a lumped kinetic
model to arrive at a numerical solution of the mass balance equations for the separation

system.6 However, a disadvantage of these models is that the dependence of the system

on both slow mass transfer and slow reaction kinetics cannot be studied simultaneously.



1.2.4 General Rate Models.

Finally, there are predictive mass balance models that make no assumptions about
the system.“r*21 These models, called general rate models, describe the processes of mass
transport in the fluid and surface phases, axial dispersion, and absorption or adsorption
and desorption kinetics within the system. These models can be used to study systems in
which the mass transfer and surface interaction processes occur on the same time scale.
Also, since no assumption about equilibrium or steady-state conditions are made, the
progression of the system from some initial condition to steady state can be studied in
detail. Unfortunately, these systems are usually not solvable analytically, and are almost
always simplified by making assumptions about the system. If assumptions are not made,
numerical means must be used to obtain the predicted zone proﬁlezo or the moments of

the zones.'5'%?!

1.3 Molecular Models.

The second approach to modeling separation systems is based on molecular
modeling through ab initio and molecular dynamic simulations.”” Since the simulations
are done on a true atomic or molecular level, very detailed and accurate descriptions of
the system can be obtained. This molecular approach has been applied to study the
adsorption and desorption processes on heterogeneous surfaces. % Catalytic systems
have been studied using these methods as well.? Molecular dynamic methods have also
been used to study the surface phase of absorption chromatography.”’* Molecular

dynamics simulations have also investigated the effects of chain length and density on the



structure of the surface phase.”® Temperature effects on the behavior of the surface phase
have also been studied.?' Simulations of the transfer process between the fluid and
surface phases have been done to study the retention process within absorption
chromatography.*>*® While these simulations have given very detailed information about
the surface phase and the retention process, the simulations represent small time scales

(e.g. 1.0x 10? s) and short distances (e.g. 1.0 x 10° m) when compared to a real

chromatographic system.

1.4 Stochastic Models of Separation Systems.

The third approach to describing separation systems is based on the stochastic
nature of the separation process. The retention probability for an individual molecule is
determined and used to predict the retention behavior of an ensemble of molecules.
There are two methods that have been employed to model the systems in this manner.
The methods can be distinguished from one another by the method in which the retention

probability is used within the model.

1.4.1 Probability Distribution Models.

The first theory based on probability methods was presented by Giddings and
Eyring.>* This approach views the retention processes as a series of interactions that can
be described by the laws of statistics. The probability that a molecule will elute from a
column within a time T and T + AT is developed and then used to obtain a zone profile.
This model has been extensively used to study adsorption chromatography.***” This

model has also been adapted to study the effects of heterogeneous surface phases in



adsorption chromatography.®®*! This kind of stochastic model has also been derived
from non-equilibrium statistical mechanics which has provided a basis on which to gain
an understanding of the mathematical and physical meanings of dispersion
coefficients.*>** Recently, this model has been extended to study systems in which the
adsorption and desorption kinetics are on the same time scale as the mass transfer
processes.** It has also been used to develop a model of non-linear cl‘nromatography.“5
These models provide information about the behavior of an ensemble of molecules in a
chromatographic system, but molecular-level information about the chromatographic

system cannot be elucidated from these models.

1.4.2 Random-Walk Molecular Models.

The second kind of stochastic model of chromatography simulates individual
molecules as they progress through the system. These models use Monte Carlo
techniques to apply the processes of mass transfer and reaction kinetics to individual
molecules. Recently, these models have been employed to study a wide variety of

systems in separation science, including flow injection analysis,**® field-flow

49,50 51,52

fractionation, " electrophoresis,” ~“ and chromatography.”'55 An advantage of such
methods is that they deal with the behavior of individual molecules, rather than the
average behavior of an ensemble. By monitoring the positions or trajectories of these
molecules in space and time, a direct and detailed description of physical and chemical
phenomena is possible. Stochastic simulations require few, if any, simplifying

assumptions and can be designed to include all relevant mass transport processes in a

single unified model. These simulation methods can be applied to homogeneous systems



or to systems with physical and chemical heterogeneity at the molecular, microscopic, or
macroscopic level. The systems may be near to or far from steady-state or equilibrium
conditions. Consequently, these simulation methods are a powerful and versatile means
to model complex separation systems. Finally, stochastic simulations can provide the
connection between molecular-level models, such as ab initio quantum mechanics or
molecular dynamics calculations (Section 1.3) , and the classical theoretical models
(Section 1.2), or experiments that investigate the macroscopic or bulk behavior of the
system.

There are several distinctions among the various stochastic simulations that have
been developed to date. In these simulations, the fundamental equations of motion for
each relevant mass transport process are applied independently to each molecule as

shown in Figure 1.1. The simulations range in complexity from one-dimensional models

56,57 46-48,52,54,55

with finite step size™ " to three-dimensional models with variable step size.
The more rigorous and comprehensive models generally provide the most detailed insight
as well as the greatest accuracy and precision. The transport algorithms may be
implemented by uniformly incrementing time and calculating the distance traveled,**
48523435 or by incrementing distance and calculating the time required to traverse that
distance.*! Although these approaches may seem equivalent, there is an important
difference in the statistical distribution of error. No matter how large the number of
molecules or how small the time or distance increment, there is a lower limit to the
statistical error. If time is the incremental variable then its uncertainty or imprecision is

controlled and the remaining imprecision is contained in the distance. Conversely, if

distance is the incremental variable, then the uncontrolled imprecision is contained in the



Figure 1.1 Schematic representation of the trajectories of three molecules during four
sequential time increments of the stochastic simulation. Diffusion is illustrated as a
sphere of randomly varying radial distance (p) with a vector indicating the randomly
selected spherical coordinate angles (¢,0). Axial displacement due to laminar or
electroosmotic convection is illustrated as a dashed line. Surface interaction is shown for
a molecule that is retained by the surface phase (top) and a molecule that is not retained

and undergoes an elastic collision at the interface (bottom).
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time (or velocity). Each of these approaches has conditions under which it is
advantageous; for example, controlled precision in the distance domain is most beneficial
when there is spatial heterogeneity in the system.

Another distinction is that some stochastic simulations are performed by

49-51 whereas other

advancing each molecule individually through the separation system,
simulations advance all molecules simultaneously in each time or distance
increment.*6##325435 The former approach has the advantage that it can be performed
until a given number of molecules have been simulated or until a desired level of
precision has been achieved. This approach has the potential to be faster because it
utilizes no more than the requisite minimum number of molecules. However, this
approach does not easily provide both spatial and temporal distributions of the molecules.
Furthermore, this approach is not suitable for modeling transport processes that are
dependent upon the local number or concentration of molecules, such as those involving
interconversion of the solute by acid/base or complexation reactions, nonideal solute-
solute interactions, and nonlinear absorption or adsorption isotherms. For the proper

implementation of such processes, all molecules must be advanced simultaneously

through the system.

1.5 Conclusions.
The model used in this dissertation is a three-dimensional computer simulation
based on the stochastic principles presented in Section 1.4.2. This approach provides a

very robust model with few assumptions, allowing complex systems to be investigated
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with ease. Chapter 2 discusses the algorithms of the simulation in detail. The
relationship between the mass transfer rates and the shape of the zone profiles is
investigated in Chapter 3 for systems representative of gas chromatography, supercritical
fluid chromatography, enhanced fluidity liquid chromatography, and liquid
chromatography. The model is then used to determine an empirical relationship between
the system and molecular parameters and the observed rate of mass transfer between the
fluid and surface phases in an absorption (partition) system under diffusion-limited
conditions in Chapter 4. The simulation is also employed to study absorption systems
with a heterogeneous surface phase. The adaptation of the simulation to model a
heterogeneous surface phase and the results of the studies are discussed in Chapter 5.
Chapter 6 presents the development, validation, and initial application of a novel
adsorption algorithm. Chapters 7 and 8 discuss the application of the simulation to
systems in which chemical reaction and separation occur concurrently. The benefits of
applying a stochastic model with molecular-level detail to such systems are elucidated as
well. Finally, Chapter 9 presents the conclusions of the work detailed in the intervening

chapters and discusses some of the future work that is possible with this simulation.
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Chapter 2

Three-Dimensional Stochastic Simulation

2.1 Introduction.

The three-dimensional molecular simulation program presented in this
dissertation is written in the FORTRAN 90 programming language and is optimized for
execution on an International Business Machines (IBM) RS/6000 Model 580 computer as
well as R10000 Silicon Graphics, Inc. (SGI) workstations and a SGI Origin 2400 server
with thirty-two 300 MHz R12000 processors. This program incorporates algorithms for
the processes of diffusion, convection by laminar and electroosmotic flow,
electrophoretic migration, and surface interaction by an absorption (partition) or
adsorption mechanism, as shown schematically in Figure 2.1. These processes are
applied to each molecule at each time increment (t) until the total simulation time (T) is
reached. The simulation may be performed in Cartesian global coordinates, which is
most appropriate for separations in planar media, or alternatively in cylindrical global
coordinates for separations in capillary tubes, membranes, or fibers. Because of its
mathematical simplicity, the latter case will be described in detail. This chapter will
discuss the algorithms used in the simulation for diffusion, convection, electrophoretic

migration, absorption (partition), adsorption, and chemical reaction.

2.2 Simulation Input.
The input parameters required for the simulation may be divided into three

general categories, as summarized in Table 2.1.
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Figure 2.1: Flowchart of the stochastic simulation.
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Figure 2.1
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Table 2.1 Input Parameter for the Stochastic Simulation Program.

System Parameters Symbol
Radius of fluid phase R¢
Radius of surface phase Rs
Length of fluid/surface phase L
Position of injection Linj
Length, variance of injection zone linj, Oinj
Position of detector Laet
Number of surface different adsorption or absorption sites |n
Fractional coverage of surface site i P;
Zeta potential of surface phase €
Velocity of fluid phase Vo
pH of fluid phase pH
pC of complexing agent in fluid phase pC
Ionic strength of fluid phase I
Viscosity of fluid phase n
Dielectric constant of fluid phase I3
Temperature To
Pressure P
Voltage \/
Molecular Parameters Symbol
Diffusion coefficient in fluid phase D¢
Diffusion coefficient in surface phase for interaction i D;;
Equilibrium constant for acid/base reaction Ka
Equilibrium constant for complexation reaction K.
Absorption coefficient for interaction i Kabs.i
Adsorption rate constant for interaction i a
Desorption rate constant for interaction i kg
Reaction rate constant for reaction i Kei
Electrophoretic mobility m
Charge Z
Computational Parameters Symbol
Number of molecules N
Time increment t
Total simulation time T
Molecular coordinate systems

Spherical coordinates p,$.0

Cartesian coordinates X,y,Z
Global coordinate systems

Cylindrical coordinates R,0,Z

Cartesian coordinates X,Y,Z
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The system parameters describe properties of the fluid and the surface, as well as the
spatial dimensions of the separation system to be simulated. The molecular parameters
describe attributes of the solute molecules or ions. The values of these parameters may
be systematically chosen to characterize the behavior of the system or may be derived
from ab initio calculation or from experiment. On the basis of these input parameters, an
array is created that contains the properties and coordinates of each molecule. To
initialize the simulation, the molecules are distributed randomly with a delta, rectangular,
or Gaussian profile of specified variance at a specified mean distance in the global
coordinate frame. The molecules may be distributed entirely in the fluid phase, entirely

in the surface phase, or at equilibrium between the phases.

2.3 Simulation Output.

The simulation program allows the molecular zone profile to be examined as the
distance distribution at specified times or, correspondingly, as the time distribution at
specified distances. The statistical moments of the molecular distribution are then
calculated in either the distance or time domain.' For example, the first statistical

moment or mean is calculated as

N
2%
i=1

N [2.1]

M1=

where x; is the time or distance datum of an individual molecule and N is the total

number of molecules. The higher order central moments are calculated as
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M, =izl [2.2]

where the second moment or variance is obtained when y = 2, the third moment is
obtained when y = 3, etc. These statistical moments, as well as the chromatographic or
electrophoretic figures of merit derived therefrom, are stored in a standard data file at
each specified time (or distance). For example, the capacity factor, effective mobility,
velocity, plate height, skew, etc. can be calculated since the beginning of the simulation
(net average) or since the most recent data file output (local average). Other information
such as the number of molecules in the fluid and surface phases, the time spent by each
molecule in each phase, and the number of transitions between phases are also recorded
in the standard data file.

In addition to these numerical output parameters, the molecular population is
summed in discrete segments and then smoothed by Fourier transform methods* to
provide a continuous zone profile for graphical display. Because the molecular
distribution may be examined at any time (or distance), these output routines provide an

extensive visual and numerical record of transport processes throughout the simulation.

2.4 Diffusion.

Molecular diffusion is simulated by using a three-dimensional extension of the
Einstein-Smoluchowski equation.s‘7 The radial distance p traveled during the time

increment t is selected randomly from the following probability distribution
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[2.3]

2 2
P, = # cxp(“-)p t)
s f.s

where Dy represents the binary diffusion coefficient of the molecule in the fluid or
surface phase, as appropriate. This approach provides a variable step size derived from a
normal (Gaussian) distribution, where the direction of travel is subsequently randomized
through the spherical coordinate angles (¢,0). The coordinate increments in the molecular
frame are used to calculate the new molecular position in the global coordinate frame.

To verify the accuracy of the diffusion algorithm, the zone distance and variance
for an ensemble of 750 molecules were monitored as a function of the simulation time.
These results were compared with classical mass balance models based on the Einstein
equation.’ Excellent agreement was observed for the range of diffusion coefficients from
10! to 10-10 cm? s°!, with average relative errors for the zone distance and variance of

0.81% and 3.67%, respectively."®

2.5 Convection.

Molecular convection in the fluid phase may be induced by means of a pressure or
electrical field gradient applied tangential to the surface. The axial distance z traveled by
a molecule in time increment t is given by

z=vt [2.4]
The following convection algorithms may be used individually or in combination to
simulate a wide variety of hydrodynamic conditions for chromatography, electrophoresis,

or electrochromatography.
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2.5.1 Pressure-Induced Flow.
For pressure-induced flow under fully developed laminar conditions, the radial

velocity profile in the cylindrical global frame is given by the Taylor-Aris equation® '

R2
V=2V0(1-R—%) [25]
2
v = Ri P [2.6]
8nL

The mean velocity v, may be specified as an input parameter or may be calculated

11-14

from the Hagen-Poiseuille equation, " where P is the applied pressure, 1) is the viscosity

of the fluid phase, R; and L are the radius and length. The coordinate increment in the

molecular frame determined from Equations [2.4] and [2.5] is used to calculate the new
molecular position in the global coordinate frame.

To verify the accuracy of the laminar convection algorithm, the zone distance and
variance for an ensemble of 750 molecules were monitored as a function of the
simulation time. These results were compared with classical mass balance models based
on the Taylor-Aris equation®'° with both diffusion and resistance to mass transfer in the
fluid phase. Excellent agreement was observed for the range of linear velocities from
0.001 to 100 cm s°!, with average relative errors for the zone distance and variance of

0.49% and 2.24%, respectively.?
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2.5.2 Electroosmotic flow.

For electric field-induced flow due to electroosmosis, the radial velocity profile in

the cylindrical global frame is given by the Rice-Whitehead equation'>'®

v= vo(l --IIOL((:R—I?)) [2.7]

elV
4nnL

vo = [2.8]

where x! is the Debye length, and I is the zero-order modified Bessel function of the

first kind. The maximum velocity v, may be specified as an input parameter or may be

17,18

calculated from the Helmholtz-Smoluchowski equation, " where € is the permittivity of

the fluid phase, { is the zeta potential of the fluid-surface interface, and V is the applied
voltage. The coordinate increment in the molecular frame determined from Equations
[2.4] and [2.7] is used to calculate the new molecular position in the global coordinate
frame.

To verify the accuracy of the electroosmotic convection algorithm, the zone
distance and variance for an ensemble of 500 molecules were monitored as a function of
the simulation time. These results were compared with classical mass balance models
based on the analytical solution of the Rice-Whitehead equation by McEldoon and
Datta.'® Excellent agreement was observed for the range of linear velocities from 0.01 to
1.0 cm s'!, with average relative errors for the zone distance and variance of 0.12% and

4.42%, respectively.'
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2.6 Electrophoretic Migration.
For charged molecules under the influence of an applied electric field,” the

velocity of electrophoretic migration is given by
pv
V= 29
L [29]

The electrophoretic mobility p is corrected by means of the modified Onsager equation®!

to the specified ionic strength of the fluid phase.

If the molecule exists as a single species, the mobility is constant. This
convection algorithm provides equal displacement of all molecules during each time
increment according to Equations [2.4] and [2.9]. The axial coordinate increment in the
molecular frame is used to calculate the new position for each molecule in the global
frame.

If the molecule exists as n multiple species in dynamic equilibrium (e.g.,
phosphate may exist as HsPO4, H,PO,", HPO4*, or PO,™), the mobility of an individual
molecule is determined from statistical probability at each time increment. The fraction

a; of each species i is calculated from the appropriate equilibrium constants for acid/base

or complexation reactions, which are corrected for ionic strength by means of the Davies

equation.”*? The identity of a molecule is determined by selecting a random number, ¥,

between zero and one to establish the value of i that satisfies the relationship
n—i i+l

l—zan_j <X Szaj_] [210]
j=l J:l
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The molecule is then assigned the mobility p; corresponding to species i during that time

increment and its electrophoretic migration is calculated via Equations [2.4] and [2.9].
The resulting migration of the zone is similar, but not identical, to that for a single species

whose average mobility is given by
n
p=Yan, 2.11)
i=0

To verify the accuracy of the electrophoretic migration algorithms corresponding
to a single species and n multiple species, the zone distance and variance for an ensemble
of 500 molecules were monitored as a function of the simulation time. These results were
compared with classical models. Excellent agreement was observed for single species
with positive and negative electrophoretic mobilities in the range from +10? to -10°
cm’ V! 57!, with average relative errors for the zone distance and variance of 0.04% and
2.67%, respectively.! The agreement is similarly good for multiple species, with average
relative errors for the zone distance and variance of 0.01% and 3.38%, respectively,. for

phosphate at pH values from 3.0 to 9.0.'

2.7 Surface Interaction.

Molecular interaction with a stationary surface is simulated as an absorption
process if the surface is permeable (e.g., thin polymer film or chemically bonded organic
ligands) or as an adsorption process if the surface is solid (e.g., silica or alumina). The
surface may be homogeneous, or heterogeneous. If the surface has more than one kind of

absorption (or adsorption) site present (n > 1), then the fraction (P;) of the surface covered
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by each site is input. When a solute molecule intersects the boundary between the fluid
and surface phases, a random number is used to determine which site is to be chosen.
The appropriate molecular parameters are then chosen for the solute molecule, and the
algorithm for absorption (or adsorption) is then initiated. The processes is repeated each

time the molecule intersects the interface from the mobile phase side.

2.7.1 Absorption or Partition.
For the absorption process, the probability of transport between the fluid and

surface phases at a given partition site i is given by

D. .
P i =Mi“(ai Kabs,i ﬁ,aiJ [2.12)
f
Py ; = Min| a; ,——. Dy [2.13]
abs, i Ds,i

where K, ; is the absorption coefficient and the constant g; represents the fraction of

effective collisions with the interface, which is equal to unity when there is no barrier to
transport (diffusion-limited case). When a molecule in the fluid phase encounters the
fluid-surface interface during the simulation, a random number between zero and one is
selected. If the selected number is less than or equal to the probability Py ; given by
Equation [2.12], the molecule will be transferred to the surface phase. Otherwise, the
molecule will remain in the fluid phase and will undergo an elastic collision at the
interface. A similar routine is performed when a molecule in the surface phase

encounters the interface, except that the random number is compared with the probability
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P, given in Equation [2.13]. Finally, when a molecule in the fluid or surface phase

encounters a physical boundary of the system, an elastic collision is performed.

To verify the accuracy of the absorption algorithm, the zone distance and variance
for an ensemble of 750 molecules were monitored as a function of the simulation time.
These results were compared with classical mass balance models based on the extended
Golay equation including both diffusion and resistance to mass transfer in the fluid and

surface phases.”* The first and second moments for a homogeneous surface phase are

predicted to be
1=;2; [2.14]
, 1+6k’+11k’2)R? vy /R2
M, = 2Df+2kDS+( ) +KRsYo v s

Vo Vo 24(1+k")? D; (1+k’)? D,

where M, and M, are the first and second moments in distance at time T, k” is the

capacity factor (defined as Kans(Vs/V5) where V; and V¢ are the volumes of the surface and
fluid phases, respectively), and all other symbols are as defined in Table 2.1. Excellent
agreement was observed for the range of absorption coefficients from 0.01 to 100.0, with
average relative errors for the zone distance and variance of 0.55% and 4.02%,

respectively.2
2.7.2 Adsorption.

The process of adsorption can occur for any molecule that interacts with the

interface of the fluid and surface phases. The final phase of the molecule is determined
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by comparing a random number to the probability that a molecule will adsorb at the time

of the collision (Equation [2.16]).

Pags,i = (1-exp(~ka,; t)) [2.16]

ka,i =Ka,i [S] [2.17]
where k', ; is the pseudo-first-order reaction rate constant for adsorption on site i, t is the
time increment of the simulation, k,; is the second-order adsorption rate constant, and [S]
is the number of surface sites in the system (discussed further in Chapter 6). If the
random number is less then the probability, the molecule adsorbs, otherwise the molecule
elastically collides with the interface.

Desorption is treated as a first-order reaction. The reaction is simulated by
randomly assigning each adsorbed molecule a lifetime based on the desorption rate

constant (kg ;) of the site chosen as previously described.” The lifetimes are determined

by

-1
Aj =-—log(x) [2.18]
d,i

where A, is the adsorbed lifetime of the molecule, and % is a random number between zero
and one. The molecule then remains adsorbed for the entire assigned lifetime. At the end
of the assigned lifetime, the molecule desorbs and diffuses back into the fluid phase.

To verify the accuracy of the adsorption algorithm, the zone distance and variance
for an ensemble of 750 molecules were monitored as a function of the simulation time.
These results were compared with classical mass balance models for a homogeneous

surface phase based on the following equations proposed by Giddings®®
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V()T

M =7——"—— [2.19]
(1+Kads)
2 2
2D l+6Kad +11Kd Rf Vo ’
M, =| =2t +( : azs) 2k L [2.20]
Yo 24(”'Kads) D¢ (“’Kads) kg

where M and M; are the first and second moments in distance at time T, Ka4s is equal to
ka/kg, and all other symbols are as defined in Table 2.1. Excellent agreement was
observed for the range of distribution coefficients from 0.01 to 100.0, with average

relative errors for the zone distance and variance of + 0.784% and + 6.46%,

respectively.27

2.8 Chemical Reaction.

Chemical reactions can be modeled to occur in the fluid phase, the surface phase,
or both. The simulation models first-order and pseudo-first-order reversible and
irreversible kinetics that describe systems ranging from one simple reaction to those as
complex as three sequential reactions with one side reaction. To simulate the reaction,
when the molecule enters the reacting phase it is assigned a random lifetime (A,) using
Equation [2.18] with kg; replaced with the appropriate reaction rate constant k;. If the
molecule then remains in the reacting phase for an accumulated time that is equal to or
greater than the assigned lifetime, the molecule is converted to the new species with all of
its respective properties. In the case of a branching reaction, a lifetime is randomly
selected for each reaction and that with the shortest lifetime is assigned to the molecule.

To properly simulate reactions that are faster than the time increment of the simulation,
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the algorithm calculates lifetimes that sum to equal or exceed the time increment of the
simulation. A time-weighted average of the molecular properties is then used to
determine the diffusion and electromigration steps. This process allows the reactions to
be simulated with finer precision than the discrete time intervals used within the
simulation. In essence, the time increment of the simulation is contracted and expanded,
as necessary, to allow reactions to be modeled accurately. The reaction algorithm has

been validated for kinetic rate constants over the range of 1.0x10° to 1.0x10'® s™! and for

equilibrium constants over the range of 1.0x10™'® to 1.0x10'%.%

2.9 Conclusions.

The algorithms that have been described in this chapter model the respective
processes to within 5% error of what is theoretically expected. The processes of mass
transfer (diffusion, convection, electrophoretic migration, absorption, and adsorption) are
modeled within a framework that allows any combination of the processes to be
investigated. Chemical reaction is also modeled to allow the investigation of the
interconversion of species in electrophoresis, electrochromatography, and reactive
separations. This allows a unified study of the basic separation techniques of analytical

scientists.
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Chapter 3
Three-Dimensional Stochastic Simulation for the Unified Treatment of

Chromatographic and Electrophoretic Separations

3.1 Introduction.

In this chapter, the three-dimensional stochastic simulation of Chapter 2 is used
for the unified treatment of chromatography, electrophoresis, and electrochromatography.
In this simulation, the migration of individual molecules or ions is established through the
processes of diffusion and convection by laminar, electroosmotic, and electrophoretic
flow. Molecular retention arises from absorption (partition) into permeable surfaces. The
molecular distribution and the corresponding zone profile may be examined and
characterized at any specified time or spatial position during the simulation. The effects
of diffusion in the fluid and surface phases as well as interfacial resistance to mass

transport in a unified study of chromatography systems are presented below.

3.2 Selected Applications of the Stochastic Simulation.

Some applications have been selected to illustrate the capabilities and versatility
of the stochastic simulation approach. The kinetic and equilibrium behavior are
characterized for a model chromatographic system with a simple absorption mechanism
under diffusion-limited conditions. In the first series of simulations, the behavior is
examined as a function of the diffusion coefficient in the fluid phase. In the second series

of simulations, the effect of the diffusion coefficient in the surface phase is similarly
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explored. Finally, the influence of interfacial resistance to mass transport between the
fluid and surface phases is examined.

For each of these cases, the kinetic behavior of the system is elucidated by
monitoring the number of molecules in the fluid phase as a function of the simulation

time. These data are analyzed by means of nonlinear regression to the following equation

N; kg +kg e’(p(-(kfs + ksf)T)

N kg + kg [3.1]

in order to determine the pseudo first-order rate constants for transport from the fluid to
the surface phase (k¢) and from the surface to the fluid phase (ksf). By using this
approach, the rate constants k¢ and ks can typically be determined with £0.49% relative
standard deviation and the ratio of the rate constants ke/kss with £0.70% relative standard
deviation and +2.25% relative error."* The characteristic time 7 is given by

e L
kg + ke [3.2]

The equilibrium behavior of the system is elucidated by monitoring the number of
molecules in the fluid and surface phases at equilibrium, N¢ and N;, respectively. The
ratio of the number of molecules can typically be determined with £0.29% relative
standard deviation and +0.39% relative error.' The kinetic and equilibrium descriptions

of the system are related in the following manner:

kfs - I:js — Kabs Vs

=5 = =k’ [3.3]
ksf Nf Vf
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where the volumes of the fluid and surface phases are given as Ve= 1 RZLand V, =
7 (R¢2 + 2 R, R¢) L, respectively, and k’ is the capacity factor.

Finally, for each case, the hydrodynamic behavior of the system is elucidated
under laminar flow conditions. In the presence of flow, the characteristic time T will
influence the appearance of the solute zones. If 1 is sufficiently small, the system will be
nearly at equilibrium and the zone profile will be a symmetric Gaussian distribution.
Under these conditions, the profile will be well described by classical equations of mass
balance based on the equilibrium-dispersive model, such as the Golay equation
(Equations [2.14] and [2. 15]).3 As T increases, however, the system may depart from

equilibrium and the zone profile may become highly asymmetric. As a measure of the
degree of departure from equilibrium for convective systems, we may use the inverse of

the Stanton number (St™') defined as

_d_ [3.4]

where 7 is equal to 1/(kg + ksf), T is time, d is distance, and vy is the linear velocity. This
parameter directly reflects the sources of kinetic stress that are placed on the system and

will approach a limiting value of zero for a system that is at equilibrium. For each of the
cases outlined above, the solute zone profiles are simulated at fixed times from O to 30 s.
The first moment (mean zone distance) and second moment (variance) are determined by
means of Equations [2.1] and [2.2] as a function of the simulation time and are compared

with classical theoretical models.>
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3.2.1 Effect of the Fluid-Phase Diffusion Coefficient.

The stochastic simulation method is especially well suited for the unified
treatment of chromatographic separations. To illustrate this capability, we have simulated
systems that are representative of gas, dense gas, supercritical fluid, enhanced fluidity
liquid, and liquid chromatography. The kinetic behavior of these systems is illustrated in
Figure 3.1. The gas, dense gas, and supercritical fluid are compared as fluid phases in an
open-tubular column with radius Ry of 50.0x10™" cm and surface phase R; of 2.5x10% cm,
resulting in a volumetric phase ratio V¢/V; of 100. As shown in Figure 3.1A, the kinetic
behavior of the system is nearly indistinguishable, despite the significant change in
diffusion coefficients D from 1.0x10™ to 1.0x10™ cm? s™ for these fluid phases. This
observation is confirmed by the rate constants k¢ and kg, which were determined by
nonlinear regression of the simulation data to Equation [3.1] and are summarized in Table
3.1. There is a small but statistically significant decrease in both kg and ks with
decreasing diffusion coefficient in the fluid phase. The overall transport rate, as

represented by the characteristic time T in Equation [3.2], is controlled by the rate

constant for transport from the surface to fluid phase (ksr) which is one-hundred-fold
larger than that from fluid to surface phase (kg). It is evident that the characteristic time ©
is very small (~107 s), which indicates that equilibrium is rapidly achieved within this
system for all of the fluid phases. Finally, the ratio of the rate constants k¢/kss and the
ratio of the number of molecules at equilibrium N¢/N; are in good agreement with the

theoretically predicted value of Kqaps Vo/V¢=0.01 given by Equation [3.3].
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Figure 3.1: Kinetic evolution of the absorption process with varying diffusion
coefficients in the fluid phase representative of (A) gas, dense gas, and supercritical fluid
chromatography, (B) supercritical fluid, enhanced fluidity liquid, and liquid
chromatography. Simulation conditions: (A) N = 1.0x10% t = 1.0x107 s; T =20 1; R¢ =
5.0x10 cm; R, = 2.5%10”° cm; Dy = 1.0x10™ em? s™' (V), 1.0x10% cm’ s (),
1.0x102 cm? s (A ); Dy = 1.0x10™° em® s Kaps = 1.0. (B) N = 1.0x10% t = 1.0x107 s;
T =20 1; Rr=2.0x10" cm; R = 8.28x10™ cm; D¢ = 1.0x10” cm* s (A), 1.0x10™ cm?

s1(0), 1.0x10° cm? s (O); Dy = 1.0x10° cm? s™!; Kaps = 1.0.
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Table 3.1 Effect of Fluid-Phase Diffusion Coefficient on Rate Constants.

D¢ ke kst T kes/kss | No/N¢
(cm’s’) | s | (s)
1.00x10" ®| 442 | 44000 [2.25x107{0.01006 [0.01021
1.00x10% %[ 407 | 40700 |2.44x10°|0.01000|0.00996
1.00x103 | 367 | 37200 |2.66x10°|0.00986|0.01000
1.00x103 ®| 36.6 37.0 0.014 | 0989 | 0.995
1.00x10™*®| 30.5 30.7 | 0.016 | 0.993 | 1.003
1.00x10° % 13.74 | 13.87 | 0.036 | 0.991 | 0.997

* Simulation conditions: N = 1.0x10% t = 1.0x10” s; T = 20 T; Ry = 5.0x10” cm; R, =
2.5%107 cm; Dy = 1.0x10°° cm? s™'; Kqps = 1.0.
b Simulation conditions: N = 1.0x104; t=1.0x10° $;T=201;R¢= 2.0x103 cm;, Ry =
8.28x10™ cm; D, = 1.0x10” cm? s™; Kas = 1.0.

The supercritical fluid, enhanced fluidity liquid, and liquid are compared as fluid

phases in an open-tubular column with radius R¢ of 20.0x10™ cm and surface phase R; of
8.28x10™' cm, resulting in a volumetric phase ratio V¢V, of 1.0. As shown in Figure
3.1B, the kinetic behavior of the system is somewhat more distinguishable for these fluid
phases with diffusion coefficients D¢ from 1.0x102 to 1.0x10° cm? s, The rate
constants derived from these data are summarized in Table 3.1. The rate constants k¢ and
ks are approximately equal, as expected from Equation [3.3], and are several orders of
magnitude smaller than those determined for the system described above. The
characteristic time 7 is significantly larger (~107s), so that equilibrium is much more
slowly achieved than in the system above.

The liquid chromatography case may be used as a representative example to
illustrate other kinetic and equilibrium information that can be derived from the

stochastic simulation approach. During the kinetic process shown in Figure 3.1, the
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system gradually evolves from the initial condition, where all molecules are uniformly
distributed in the fluid phase, to the equilibrium condition, where Ne=N (Kaps V&/V/(1 +
Kabs Vs/Vi) molecules are uniformly distributed in the fluid phase and Ny = N/(1 + Kaps
V¢/V¢) molecules are uniformly distributed in the surface phase. The radial distribution of

solute molecules is illustrated in Figure 3.2 at times corresponding to 0.0 t, 0.1 1, 0.2 T,
0.51,1.01,2.07, and 5.0 1, where T is 0.036 s for the liquid chromatography system. At

these times, the system has achieved 0%, 9.5%, 18.1%, 39.4%, 63.2%, 86.5%, and
99.3%, respectively, of the molecular distribution at equilibrium. Once the system has

achieved equilibrium (T > 20 T), we may further characterize the transport between the

fluid and surface phases. The residence time distribution for a single sojourn of a
molecule in the fluid and surface phases is shown in Figure 3.3. From this distribution,
the average residence time is 1.9x10 s and the standard deviation is 1.1x107%s.
However the most probable residence time is one time constant, with approximately 30%
of the molecules residing just 1.0x10°% s before transferring to the opposite phase. The
molecules are transferred between phases an average of 284 times per second at
equilibrium. The standard deviation is 76 s, which suggests that 95% of the molecules
are transferred between phases from 135 to 433 times per second.

The effect of the fluid-phase diffusion coefficient on the fluid dynamic behavior
of the system has also been examined. The solute zone profiles for supercritical fluid,
enhanced fluidity liquid, and liquid chromatography at a mean linear velocity of 0.10 cm

s are shown in Figure 3.4. Since the simulation time T is much greater than the

characteristic time 7 in all cases, the system is nearly at equilibrium according to Equation
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Figure 3.2: Radial solute distribution profiles during the kinetic evolution of

chromatographic systems. Simulation conditions: N = 1.0x10% t=1.0x10%s; T=0.01
(0),0.11(0),021(A),051( ), 1.01(V), 201 (+),5.071 (%), where T=0.036 s;
R¢=2.0x107 cm; R, = 8.28x10™ cm; Dy = 1.0x10”° cm? s™'; Dy = 1.0x10”° cm? 575 Kyps =

1.0.
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Figure 3.3: Residence time distribution for a single sojourn in the fluid phase (A) and

surface phase (B) under equilibrium conditions. Simulation conditions: T > 20 T, where

1 = 0.036 s; other conditions as given in Figure 3.2.
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Figure 3.4: Evolution of the solute zone profile with varying diffusion coefficients in the
fluid phase representative of (A) supercritical fluid, (B) enhanced fluidity liquid, and (C)

liquid chromatography. Simulation conditions: N = 1.0x10% t = 1.0x10% 5; T = 5, 10,

15, 20, 25, 30 s (left to right); Ry = 2.0x10” cm; Rs = 8.28x10™ cm; Dy = 1.0x10> cm? s™*
(A), 1.0x10* cm? s (B), 1.0x107 cm? s™! (C); D, = 1.0x10” cm? s™!; Kaps = 1.0, vo =0.10

cms™.
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[3.4] and the zone profiles are symmetric. The statistical moments of these zone profiles
calculated by means of Equations [2.1] and [2.2] are shown as a function of the
simulation time in Figure 3.5. The first statistical moment or mean distance coincides
with the theoretically expected value of” M; = vo T/(1 + Kaps Vo/Vy) for all fluid phases.
The second statistical moment or variance also agrees well with the extended Golay
equation (Equation 2.15), which includes dispersion arising from axial diffusion in the
fluid and surface phases and resistance to mass transfer in the fluid and surface phases.
The variance for enhanced fluidity liquid chromatography is the smallest because the
selected velocity of 0.10 cm s is near the optimum value of 0.11 cm s™ for this system.
For liquid chromatography, the selected velocity is greater than the optimum value of
0.022 cm 5™ and the variance has a correspondingly larger contribution from resistance to
mass transfer in the fluid phase. For supercritical fluid chromatography, the selected
velocity is less than the optimum value of 0.41 cm s™' and the variance has a
correspondingly larger contribution from axial diffusion in the fluid phase. In all cases,
however, there is excellent agreement between the simulation results and the extended
Golay equation® because the system is nearly at equilibrium.

The liquid chromatography case may again be used as a representative example to
illustrate other hydrodynamic information that can be derived from the stochastic
simulation approach. Consider the final zone profile in Figure 3.4C, where each
molecule has traveled for a fixed total time of 30.0 s. Of this total time, each molecule
has spent some time in the fluid phase and the remainder in the surface phase. The

residence time distribution in each phase is shown in Figure 3.6. It is evident that the
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Figure 3.5: Mean distance (A) and variance (B) of the solute zone profile with varying

diffusion coefficients in the fluid phase. Simulation conditions: Df= 1.0x10" cm?s™
(Q), 1.0x10* cm? st (0O), 1.0x10° cm? s™! (O); other conditions as given in Figure

3.4C. (—) Theory according to the extended Golay equation.3
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Figure 3.6: Residence time distribution for total time spent in the fluid phase (A) and

surface phase (B). Simulation conditions as given in Figure 3.4C.
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residence time distribution in the fluid phase is symmetric and the mean value of 15.0' s
coincides with the theoretically expected value of Ts=T /(1 + Kabs Vs/Vi) = 15.0s.
Similarly, the mean residence time in the surface phase of 15.0 s coincides with the
expected value of Ts = T (Kaps Vo/Vi)/(1 + Kaps Vs/Vy) = 15.0 s. The standard deviation of
these residence time distributions is 0.77 s, which suggests that 95% of the molecules
have spent from 13.5 to 16.5 s in each phase. This information can also be used to

calculate the capacity factor (k”) for each molecule as T¢/T;. These calculations suggest

that the mean capacity factor is 1.00, the standard deviation is 0.10, and 95% of the
molecules have capacity factors ranging from 0.80 to 1.20. Finally, it is instructive to
graph the residence time in each phase versus the distance traveled for each molecule, as
shown in Figure 3.7. This graph confirms that molecules at the front of the zone have
spent the greatest time in the fluid phase and the least time in the surface phase, whereas
the converse is true for molecules at the rear of the zone. The relationship between
residence time and distance traveled appears to be linear with slopes of 6.00 and -6.00 s
cm’! for the fluid and surface phases, respectively. This slope is a direct measure of the
extent of deviation from equilibrium across the solute zone. The steeper the slope, which

is related to the variables in Equation [3.4] such as characteristic time 7, velocity, and

distance traveled, the greater is the nonequilibrium. Moreover, the broader the solute
zone for a given slope, the greater is the nonequilibrium. The data in Figure 3.7 also
suggest that there is significant variation in the behavior of individual molecules. For

example, molecules at the center of the zone that have traveled the mean distance of 1.5
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Figure 3.7: Relationship between total time spent in fluid phase (A) and surface phase
(B) and the distance traveled by individual molecules. Simulation conditions as given in

Figure 3.4C.



Figure 3.7
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cm may have spent from 14.4 to 15.6 s in the fluid and surface phases and may have
capacity factors ranging from 0.91 to 1.07 (95% confidence level). These descriptions
and characterizations of molecular behavior appear to be typical of solute zones in

systems that are nearly at equilibrium.

3.2.2 Effect of the Surface-Phase Diffusion Coefficient.
Using the liquid chromatography case as a representative example, the diffusion

coefficient in the surface phase was varied from 1.0x107° to 1.0x10°® cm® s™'. The kinetic

behavior of the system is summarized in Table 3.2 and Figure 3.8.

Table 3.2 Effect of the Surface-Phase Diffusion Coefficient on Rate Constants.”

D; kg kst T kes/Kss NJN f
em’sh| s (s)
1.00x10°| 13.74 | 13.87 | 0.036 | 0991 | 0.997
1.00x10%| 3.076 | 3.102 | 0.162 | 0991 | 1.006
1.00x107| 0.353 | 0.357 1.41 0.989 | 0.999
1.00x10%| 0.038 | 0.039 | 13.05 | 0986 | 0.999
® Simulation conditions: N = 1.0x10*% t=1.0x107 s; T = 20 1; R¢= 2.0x10° cm; R, =
8.28x10™ cm; D¢ = 1.0x10”° cm? s™!; Kas = 1.0.

It is'apparent from the rate constants and the characteristic time 7 that the kinetic behavior
is reasonably rapid for the diffusion coefficient of 1.0x10”° cm? s, slightly slower for
1.0x10® cm? s™!, and significantly slower for 1.0x10” and 1.0x10® cm?s™.

In order to understand the effect of the diffusion coefficients in the fluid and

surface phases on the rate constants, it is helpful to represent the data in Tables 3.1 and

3.2 graphically. As shown in Figure 3.9, the rate constants are intrinsically related to the
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Figure 3.8: Kinetic evolution of the absorption process with varying diffusion
coefficients in the surface phase for liquid chromatography. Simulation conditions: Dr=

1.0x10° cm?s'; Dy = 1.0x10° em?s™! (O), 1.0x10% em? s (O), 1.0x107 cm? s (A),

1.0x10"8 cm? s (O ); other conditions as given in Figure 3.1B.
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Figure 3.9: Effect of the reduced diffusion coefficient on rate constants kg (O) and k¢

(@ ). Simulation conditions as given in Tables 3.1 and 3.2.
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Figure 3.9
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reduced diffusion coefficient D = D¢ Dy/(Ds + D;) for the system.l When the diffusion
coefficients are comparable in magnitude, they both influence the kinetic behavior of the
system. However, when one diffusion coefficient is significantly smaller than the other, it
serves to limit the overall rate of transport in the system. The consequences of this
dependence on the reduced diffusion coefficient were observed in Figure 3.1 and Table
3.1 above. Because the diffusion coefficient in the surface phase was significantly
smaller (1.0x10”° cm? s™), the fluid phases of gas, dense gas, and supercritical fluid had
little effect on the kinetic behavior. The practical implications of this statement are clear:
In the development of unified chromatography, we cannot simply be concerned with the
properties of the fluid phase. We must also concomitantly increase the diffusion
coefficients in the surface phase so that they are maintained within approximately two
orders of magnitude of those in the fluid phase in order to derive the full benefits of the
improved kinetic behavior.

The effect of the surface phase diffusion coefficient on the fluid dynamic behavior
of the system has also been examined. The solute zone profiles obtained at a mean linear
velocity of 0.10 cm s™* are shown in Figure 3.10. For the diffusion coefficient of

1.0x10”° cm® s™', the ratio of the characteristic time T to the simulation time T ranges from

0.007 to 0.001 for simulation times from 5 to 30 s, respectively. Consequently, this
system is nearly at equilibrium according to Equation [3.4] and all of the zone profiles are
symmetric. Similarly for the diffusion coefficient of 1.0x10 cm? ™!, the inverse of the
Stanton number (St ')ranges from 0.032 to 0.005 and all of the solute zones appear to be

symmetric. However, for the diffusion coefficient of 1.0x107 cm? s, the value of St is
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Figure 3.10: Evolution of the solute zone profile with varying diffusion coefficients in
the surface phase for liquid chromatography. Simulation conditions:
D¢ = 1.0x10° cm’ s™'; Dy = 1.0x10”° cm? 5! (A), 1.0x10° cm® s (B),

1.0x107 cm? s (C), 1.0x10® cm? 5! (D); other conditions as given in Figure 3.4C.
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significantly larger and ranges from 0.28 to 0.047. The zone profiles initially deviate
from equilibrium and are asymmetric but progressively become more symmetric. The
deviations from equilibrium are even more problematic for the diffusion coefficient of
1.0x10® cm® 5!, where the value of St ranges from 2.61 to 0.44 and all of the profiles
are markedly asymmetric.

The statistical moments of the solute zone profiles are shown as a function of the
simulation time in Figure 3.11. For the diffusion coefficient of 1.0x10° cm? s, the mean
distance and variance agree well with the theoretically expected values from the extended
Golay equation.” However, as the diffusion coefficient in the surface phase decreases and
the system deviates from equilibrium behavior, the mean zone distance increases because
the molecules have proportionately greater residence time in the fluid phase. The
variance also increases because the resistance to mass transfer in the surface phase has an
additional contribution from slow kinetics. When the molecular zone begins migration
from the initial nonequilibrium state, the variance increases as the square of the
simulation time (as evident for the diffusion coefficient of 1.0x10®% cm®s™). As the
system gradually evolves toward the steady state, the variance progressively changes until
it increases linearly with the simulation time (as evident for the diffusion coefficient of
1.0x10”7 cm? s). As shown in Figure 3.11, the slow kinetics of the system influence the
time required for the onset of steady-state conditions and the variance incurred during this
transition as well as the variance per unit time (or length) once steady-state conditions
have been achieved. The extended Golay equation® and other equilibrium-dispersive

models cannot be used to predict the behavior of such systems.
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Figure 3.11: Mean distance (A) and variance (B) of the solute zone profile with varying

diffusion coefficients in the surface phase. Simulation conditions: Dg= 1.0x10 cm? s";
D, = 1.0x10° cm? s (O), 1.0x10% cm?s™! (O), 1.0x107 ecm?s™ (A), 1.0x10® cm? 5™
(X ); other conditions as given in Figure 3.4C. (—) Theory according to the extended

Golay equation.’
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3.2.3 EX X ect of Interfacial Resistance to Mass Transport.

X is possible to extend this simulation approach to consider the situation where
there iS  =some resistance to mass transport at the interface and all collisions are not
suffici & xytly energetic to overcome this barrier. To represent this situation, the constant a
in the IO robability expressions of Equations [2.12] and [2.13] was varied from 1.0 to 0.001
for the case of liquid chromatography. The kinetic behavior of the system is summarized

inTase 3.3 and Figure 3.12.

Table 3.3 Effect of Interfacial Resistance to Mass Transport on Rate Constants.”

a ke Kss T kes/kst No/N¢
() () (s)
1.0 13.74 | 1387 | 0036 | 0991 | 0.997
0.5 11.60 | 11.73 | 0.043 | 0989 | 0.997
0.1 2509 | 2509 | 0.199 | 1.000 | 1.001
0.05 1.301 | 1302 | 0384 | 0999 | 0.998
0.01 0273 | 0272 1.84 1.004 | 1.008
0.005 | 0.137 | 0.137 | 3.65 1.001 | 1.002
0.001 | 0028 | 0028 | 18.02 | 0992 | 1.005
Simulation conditions: N = 1.0x10% t = 1.0x10” s; T = 20 T; R¢ = 2.0x10™ cm; R, =

B _28x10™ cm; Dy = 1.0x10° cm? s™'; Dy = 1.0x10™ cm? s7'; Kaps = 1.0.

Xt js apparent from the rate constants and the characteristic time 7 that the kinetic behavior
1S reasonably rapid for a = 1.0, slightly slower for a = 0.5, and significantly slower for
Smmaller values of a.
The trends may be more clearly illustrated in graphical form, as shown in Figure
3.13. The rate constants increase linearly with the constant a up to approximately 0.5,
‘Whereafter the system becomes diffusion limited for these simulation conditions. From

the rate constants given in Table 3.3, we can estimate the barrier to interfacial transport
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Figure 3.12: Kinetic evolution of the absorption process with varying interfacial

2 -1

resistance to mass transport. Simulation conditions: Dg= 1.0x107 cm? s~ ;
D, =1.0x10% cm?s'; a = 1.0 (O), 0.1 (O), 0.01 (A), 0.001 (O ); other conditions as

given in Figure 3.1B.
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Figure 3.13: Effect of interfacial resistance to mass transport on rate constants k¢ (O)

and ks (@ ). Simulation conditions as given in Table 3.3.
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relative &« the diffusion-limited case (a = 1.0). These barriers correspond to 0.17 kg To
fora= €3 _5,1.70 kg Ty for a = 0.1, 2.36 kg Ty for a = 0.05, 3.92 kg T, for a = 0.01, 4.61
ks To S 4= 0.005, and 6.20 kg T, for a = 0.001 where kg is the Boltzman constant, and
Tois thhe temperature. From these calculations, it is evident that relatively small barriers
canha~e asi gnificant effect upon the kinetic behavior of the system. Consequently, we
MUST s eek to minimize sources of interfacial resistance to mass transport in order to
develop unified chromatographic systems with optimal kinetic performance. This may
Ve yve minimizing surface tension effects, minimizing configurational or orientational
effe<:ts, and choosing fluid-phase s;olvcnts and modifiers that can be easily and rapidly
dis = s50ciated from solute molecules at the interface.
The effect of interfacial resistance to mass transfer on the fluid dynamic behavior
OTX the system has also been examined. The solute zone profiles obtained at a mean linear
VW elocity of 0.10 cm s are shown in Figure 3.14 for values of the constant a of 1.0, 0.1,
.01, and 0.001. Although the characteristic time 7 is very similar for these values of the
<onstant a and for diffusion coefficients in the surface phase from 1.0x107 to 1.0x10®
<m?®s" shown in Table 3.2, there is a marked difference in the solute zone profiles in
Xigures 3.10 and 3.14. The profiles for decreasing values of the constant a broaden but
Temain symmetric regardless of the magnitude of the characteristic time T. Symmetry is
‘Preserved because the constant a influences both Pg and Py in Equations [2.12] and
[2.13] in the same manner. In contrast, the diffusion coefficients influence only one of

the probability expressions in Equations [2.12] and [2.13] and mass transport in only one
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Figure 3.14: Evolution of the solute zone profile with varying interfacial resistance to

mass transport for liquid chromatography. Simulation conditions: D¢ = 1.0x10% cm?s™!;
D, = 1.0x10° cm®s'; a = 1.0 (A), 0.1 (B), 0.01 (C), 0.001 (D); other conditions as given

in Figure 3.4C.
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phase, resulting in zone profiles that are broader and more asymmetric as the

characteristic time T increases.

The statistical moments of the solute zone profiles are shown as a function of the
simulation time in Figure 3.15. For the constant a = 1.0, the mean distance and variance
agree well with the theoretically expected values. As the constant a decreases, the mean
distance increases slightly because the molecules spend more time in the fluid phase
before an effective transfer can occur at the interface. In general, the mean distance
agrees reasonably well with the theoretically expected value for all except the smallest
value of a = 0.001. However, the variance of the zone increases significantly as the
constant a decreases. Only for the case of a = 1.0 does the variance conform to the
extended Golay equation.® This is because the Golay equation assumes that equilibrium
conditions exist at the interface and does not consider the effects of slow interfacial mass
transfer. These contributions rapidly become important as the constant a decreases and
become predominant for values of a less than 0.01. It is also noteworthy that these |
contributions to variance increase linearly with simulation time, suggesting that steady-
state conditions have been achieved. Clearly, interfacial resistance to mass transport in
chromatographic systems is important and merits further study and more detailed

characterization.
3.3 Conclusions.
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