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ABSTRACT
THE USE OF GASEOUS OZONE TO REMEDIATE PYRENE CONTAMINATED
SOILS: A STUDY OF BYPRODUCT PRODUCTION, ENVIRONMENTAL EFFECTS
ON REMEDIATION EFFORTS, AND SCALE-UP
By
Stephanie Luster-Teasley

Ozonation studies were performed in 15 cm soil columns to determine the affect
various soil conditions would have on pyrene oxidation and the subsequent byproduct
formation. The conditions evaluated included 0, 5%, and 10% soil moisture contents and
the pH levels of 2, 6, and 8. Ozonation experiments were conducted in soils at 13°C and
25°C. A comparison of ozonation in freshly contaminated soils and soils contaminated
with pyrene for 6 months were conducted to determine the effect soil age has on the
ability to remediate soils with ozone. An ozonation system using a 3.5 foot column was
also designed to evaluate the ozone transport model proposed by Hsu and Masten (1997).

Dry soil with high pH (pH 6, pH 8) resulted in the highest level of contaminant
removal. In the presence of soil moisture, the reduction of pyrene concentrations in soil
required longer treatment times compared to the dry soils. Temperature was determined
to affect pyrene oxidation in the moisturized soils at pH 6 and pH 8. Pyrene removal in
the moisturized soils improved when ozonated at 13°C. The colder temperature, however,
appeared to harden the packed soil and inhibited gas flow through the soil. In the
ozonation experiments for the aged soils, the percentage of pyrene reduction was found to
be 3 - 4 times less in the aged soils compared to the freshly contaminated soils.

The pyrene ozonation byproducts produced in soil were consistent with the

compounds produced from aqueous pyrene ozonation. The byproducts detected were



phenanthrene-like and biphenyl-like with hydroxyl, aldehyde, and carboxylic acid
functional groups.

Two synthesized ozonation byproducts, 2,2°,6,6’-biphenyl tetraaldehyde and
2,2’,6,6’-biphenyl tetra carboxylic acid, were evaluated using two toxicology assays. The
first assay measured the potential for the compounds to block gap junctional intercellular
communication (GJIC) using the scrape loading/dye transfer (SL/DT) assay. The second
assay evaluated the ability for the compounds to affect neutrophil function by measuring
the production of superoxide in a human cell line (HL60). 2,2°,6,6’-biphenyl
tetraaldehyde was determined to show adverse effects in both toxicity analyses. 2,2°,6,6’-

biphenyl tetra carboxylic acid did not exhibit any significant effect in either assays.
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Chapter 1

1.1 Introduction
Background and Environmental Significance

Polycyclic aromatic hydrocarbons (PAHs) are compounds produced during the
burning of coal, oil, gasoline, and organic matter and are present in coal tars, diesel fuel,
oil and gasoline (Figure 1). In the atmosphere, PAHs are associated with soot, smog, and
particulate matter. At petroleum hazardous waste sites, PAHs are components of
nonaqueous phase liquids (NAPLs) such as coal tars, creosotes, and petroleum distillates
contaminating soil and groundwater [/]. The U.S. Environmental Protection Agency
(EPA) lists 16 PAHs as priority pollutants and eight as carcinogens or potential
carcinogens causing skin, liver, and/or lung cancer in humans. These compounds present
a remediation challenge because they are highly recalcitrant, insoluble in water, and tend
to accumulate on solid surfaces [2].

US Superfund Sites with extensive PAH contamination include a number of
locations where gas, petroleum, and paper manufacturing facilities operate or once
operated. The concentrations seen at these sites depend on the PAH source (i.e., industrial
waste, leaking petroleum storage tanks, accidental spills), the properties of the individual
chemical (i.e., solubility, structure), and soil properties (i.e. organic matter content,
porosity, and degree of water saturation). For Superfund sites contaminated by PAHs, the
US Records of Decisions (US ROD) will document the methods considered for the
remediation of a site and the rational for the final method chosen for implementation [3-
5]. Many of the RODs report excavation of PAH contaminated soil as the primary

remediation technique chosen for sites. Following excavation, the soil was either
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incinerated or stored at an approved storage facility. For sites where the PAH
concentrations were low, sealing and capping of the contaminated area was also a method
implemented. Excavating, incinerating, and properly disposing of PAH contaminated soil
can be an expensive undertaking and might not be a feasible remediation choice based
upon the extent of site contamination. For this reason, in-situ processes are of interest to
reduce remediation costs.

A novel approach for in-situ treatment of PAHs is the use of ozone. Ozonation
processes are increasingly being investigated because process application can be both
technically efficient and cost effective.for PAH removal [6-10]. Ozonation processes are
advantageous because they employ the use of highly reactive gaseous ozone (Os)
molecules or solutions with dissolved O3 to oxidize contaminants. Ozonation processes
are currently being implemented in water treatment to improve color, odor, and to control
bacteria growth [/]]. Additional applications have shown effective implementation of
ozonation in soil [7, 12-13]. The system is versatile because it is a chemical process that
can be used in gaseous form or in ozone saturated aqueous form and it is not limited by
PAH toxicity like bioremediation.

The disadvantages in implementing ozonation processes are: (1) numerous
oxidation byproducts'are produced, (2) little research has been performed identifying
chemical structures of the byproducts, and (3) few toxicology evaluations of ozonation
byproducts are available. Ozonation byproducts in aqueous systems have been identified
in numerous studies [14-16]. Ozonation byproducts in soil systems, however, have not
been evaluated as extensively [17, 18). Therefore, more research on the use of PAH

Ozonation for in-situ remediation is needed.



1.2 Objective and Order of Thesis

The overall objective of this research was to evaluate the efficacy of using
gaseous ozone to remediate PAH contaminated soil. The target PAH compound, pyrene,
was selected because the literature available provides a good foundation for
understanding the ozonolysis of pyrene in aqueous and soil systems [/4, 15, 17-19].

The first phase of this study (Chapter 2) was designed to investigate the affect
various soil conditions such as soil pH, temperature, soil moisture, and soil contaminant
age would have on pyrene oxidation. These variables were selected to represent
environmental conditions that could impact in-situ ozonation in unsaturated soil. The
selected soil was a sandy, loam Metea soil that has been used in previous PAH ozonation
studies [7, 9, 20]. Using soil columns, gaseous ozone was supplied to the pyrene
contaminated soil for the desired experimental time. The ozone concentration in the inlet
and outlet gas stream was monitored to develop ozone breakthrough curves (BTC) and to
calculate the ozone dose delivered to the soil. The effect soil conditions had on ozonation
efficiency was evaluated by measuring the reduction of pyrene concentrations in the soil.

In the second phase of the study (Chapter 3,) polar and non-polar solutions were
used to extract the pyrene ozone byproducts from the soil. The two solvents were used to
extract the oxidized compounds that would readily dissolve in groundwater (polar
compounds) and the compounds that would remain bound to the soil (non-polar
compounds) after treatment. For each experiment, three ozone doses were used to
determine the effect ozone dose has on byproduct formation. The byproducts were

fractionated and structurally identified using GC/MS. The results were then compared to



the byproducts published in literature for pyrene ozonation byproducts in aqueous
systems.

The third phase of the research (Chapter 4) evaluated the toxicity of two pyrene
ozonation byproducts. Two synthesized byproducts were used in the analysis because
pyrene ozonation byproducts are not commercially available. A previous study by Herner
[16] also addressed the difficulty in isolating and purifying pyrene ozonation byproducts
from ozonated mixtures. The Scrape Load/Dye transfer assay was used to measure the
ability of a compound to interfere with normal Gap Junctional Intercellular
Communication (GJIC).

Chapter 5 of the study discusses reaction kinetics for the experimental data
collected in the short soil column (15 cm) ozonation studies. This chaptér also addresses
the ozone transport model developed by Hsu et al. [20]. The goal for this phase of the
research was to apply the model to data collected from a 3.5-foot soil column. The model

was also applied to experimental data from the 15 cm soil column.
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CHAPTER 2

Ozonation Studies

2.1 Introduction

In-situ ozonation is increasingly becoming acceptable for groundwater and soil
treatment [/]. Ozonation offers a novel approach to remediate a broad range of
compounds in aqueous and soil systems [2]. Laboratory studies and field studies in soil
show effective reduction of various types of PAHs [4-8]. A recent study of in-situ
ozonation showed significant reduction of target petroleum waste in groundwater at
contaminated sites in Wisconsin. The studies demonstrated successful reduction of total
PAH concentrations to environmentally acceptable levels at three different sites [9]. In
2001, in-situ ozonation was approved by the US EPA and Michigan Department of
Environmental Quality (MDEQ) to treat a ground water plume at the Rasmussen Dump
in Brighton, MI [/0]. The Rasmussen Dump is reported to contain 13 volatile organic
compounds (VOCs), 3 semi-VOCs, and 2 metals.

Ozone (03) is known to be effective in oxidizing, or reducing the concentration
of, many types of compounds. Many factors can affect the amount and total cost of ozone
needed to remediate a site. The feasibility of using ozone for soil remediation is largely
determined by the ability to reduce contamination to acceptable levels in a cost effective
manner. This issue often becomes the factor which prevents the selection of ozonation
processes for field remediation [/7/]. This chapter focuses on evaluating the effect pH,

temperature, and soil moisture will have on ozonation efficiency and pyrene removal.



2.2 Background
a. Ozone Reactions

Ozone is a very strong oxidant (E,= 2.06 V) that can effectively degrade many
compounds [/2, 13]. Ozone has primarily been implemented in water treatment for
disinfection and algae control, oxidation of inorganic and organic pollutants, taste and
odor control, and color removal [/4]. Staéhelin and Hoigné [/5] showed that in aqueous
systems with organic components, two mechanisms are involved in the oxidation of
constituents within the system. The first mech@sm involves the direct reaction of
compounds with molecular ozone. The second mechanism involves the indirect reaction
of compounds with radical species that are formed when ozone decomposes. This model
is also believed to be applicable in soil [6]. If this is true, then like aqueous systems, the
extent of compound oxidation by ozone will be affected by direct reactions with ozone
and ozone decomposition caused by indirect reactions.

The mechanism by which ozone reacts with organic compounds is complex (see
Figure 2.1). Mechanism 1 represents direct ozone attack of target solute M. Solute M,
when present in the system, may directly react with ozone to form a new compound
(Moxia) (Step 1). Solute M may react with O; by electron transfer to produce a protonated
reactive compound (M") and an ozonide ion radical ("O53’) (Step 2).

The indirect reaction (mechanism 2) involves the reaction of Solute M with
radical species, primarily hydroxyl ions (OH), created from ozone decomposition. In
solution, ozone can react with OH" ions to form one superoxide anion (-O;) and one

hydroperoxyl radical (HO,"). Both the superoxide anion and the hydroperoxyl radical are
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(adapted from Staehelin and Hoigné, 1985)

Figure 2.1. Mechanism of Aqueous Ozonolysis Reaction with a target solute
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in acid-base equilibrium and become the driving force for the( cyclic reaction. Ozone
~ reacts with *O;” anions, resulting in the production of ozonide (*03") (Step 9b). A two-
step reaction using the ozonide and hydrogen ions produces *OH radicals (Step 3 — 4).
These *OH radicals react with Solute M to produce the M oxiq and HO,® radicals (Step 7).
The cycle continues with HO,® radicals regenerating superoxides (Step 8). The rate of
ozone decomposition is readily affected by pH; therefore; OH’ ion concentrations will
determine the initiation rate for this mechanistic pathway.

Direct reactions predominate at low pH. Indirect reactions will also occur at low
pH, but to a limited extent [/4]. As the pH (i.e., OH" ion concentrations) increases, direct

ozonation will continue and the occurrence of indirect reactions will increase.

b. Ozone reactions with Polycyclic Aromatic Hydrocarbons

PAH oxidation by ozone might involve either the aromatic ring or one of the side-
chain constituents [12 - /4]. Fused-ring aromatics are classified into three categories for
ozone attack. The three categories are: (I) 1, 3-dipolar cyclo addition (Criegee
mechanism) which occurs at across the double bond, (II) ozone attack, which occurs
where the bond of lowest bond localization is the same as the atom of lowest atom
localization, or (III) ozone attack, which might occur either at the bond of lowest bond-
localization energy or the atom of lowest atom-localization energy [/2, 14].

Many aromatic compounds exhibit what is called high para-localization energies,
where the atom of lowest atom-localization energy is included in the bond of lowest
bond-localization energy (Category II) (See Figure 2.2). These compounds include

naphthalene,  phenanthrene, = benzo[c]phenanthrene,  chrysene, triphenylene,
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dibenzo[c,g]phenanthrene, perylene, dibenzo[g,p]chrysene, and coronene. Other
polycyclic aromatics exhibit competition between bond attack and atom attack for ozone
(Category III) (See Figure 2.3). In these compounds, the atom with the lowest
localization energy is not included in the bond with the lowest-localization energy. These
compounds include pyrene, benzo[a]pyrene, benz[a]anthracene, benzo[r,s,t]pentaphene,
anthracene, naphthacene, benzo[c]phenanthrene, dibenz[a,h]anthracene, dibenz[a,j]-
anthracene, and pentaphene.

Table 2.1 lists the localization energies and the type of ozone reaction that occurs
for selected PAH compounds. Naphthalene exhibits Category II type reactions where
ozone attack occurs at the 1, 2 bond with the lowest bond localization energy. The 1, 2
bond also includes the atom of lowest atom-localization. Anthracene (Category III)
exhibits ozone attack at the sites with the lowest atom-localization energy. Pyrene
(Category III) undergoes ozone attack at the 4, 5 bond exhibiting the lowest bond-

localization energy.
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Chrysene Triphenylene Dibenzo[c,g]phenanthrene
Perylene Dibenzo[g,p]chrysene Coronene
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Figure 2.2. Structures for Category II PAH compounds
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Figure 2.3. Structures for Category IIl PAH compounds
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Table 2.1. The bond/atom localization energies and the type of ozone reaction that occurs
for representative PAH compounds.

Hydrocarbon Most Bond- Most Atom- Ozone
reactive | localization | reactive | localization | reaction Type
bond energy’ atom energy”

Phenanthrene 9,10 1.07 9 1.79 11

Picene 5,6 1.11 5 1.67 11

Chrysene 5,6 1.12 6 1.67 I

Naphthalene 1,2 1.26 1 1.81 11

Pyrene 4,5 1.06 3 1.51 III
Bond Attack

Benzo [a] pyrene 4,5 1.02 6 1.15 II1
Atom Attack

Anthracene 1,2 1.20 9 1.26 111
Atom Attack

Benz[a]anthracene 5,6 1.03 7 1.35 I
Bond Attack

a. Brown (1950) as cited in Bailey [/2].
b. Dewar (1952) as cited in Bailey [/2].

2.3 Soil remediation using Ozonation processes

Direct ozone reactions and ozone decomposition in soil are affected by soil
properties (i.e., organic matter, degree of water saturation, pH, temperature) and by the
properties of PAH compounds (i.e., solubility, adsorption strength). Therefore, the
amount of ozone required and the efficiency of PAH removal will vary based on these

combined environmental factors.

a. Ozone Reaction with Organic Matter

The consumption of ozone by a number of the constituents in soil organic matter
is a concern when assessing the feasibility of in-situ ozonation. Soil organic matter is

largely comprised of humic acid and fulvic acid that form stable complexes with iron and
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manganese [/6]. Ozone decomposition occurs as a result of reactions with these
components [7]. Xiong and Legube [/7] determined that organic matter played both
initiation and promotion roles in ozone decomposition. Fulvic acid did not participate in
the radical type decomposition of ozone at high pH; although increasing the pH did
facilitate the decomposition of ozone in water [/7]. Lindsay et al. [/6] observed that in
the presence of dissolved natural organic matter, fulvic acid, and humic acid increased
ozone decomposition by producing hydroxyl radicals. In this study, the indirect reaction
of ozone with the radical species inhibited the degradation of pyrene. The rate of pyrene

degradation changed from first order to second order [/6].

b. The influence of water and soil saturation on Ozonation

Ozone decomposes in water to form radical species which promote mechanism 2
in ozonolysis. As discussed earlier, OH ions will react with ozone to produce ozonide and
hydroxyl peroxide. The OH radicals will increase ozone decomposition and decrease
PAH degradation rates [/8 19]. In unsaturated soils, pore water will most likely be
present and able to react with molecular ozone. Therefore, if soil ozonation resembles
aqueous ozonation, at low pH, direct ozonation will predominate. At higher pH levels,
indirect reactions will impact these reactions. Studies researching the behavior of ozone
in the presence of organic matter and the various contaminants in soil suggest that the

formation of hydroxyl (-OH) radicals may help facilitate the oxidation of PAHs [3, 15, 6-

8].
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c. Surjface Adsorption and Bond-Localization Strength
Many organic chemicals, including PAHs, bind to organic macromolecules in soil
and beéome relatively immobile. The more hydrophobic compounds are readily adsorbed
to lipophilic organic matter in soils. Water can interfere with PAH adsorption onto soil by
coatin g soil surfaces, thereby decreasing the sites available for chemical adsorption [7].
Studie s have also suggested that during cycles of wetting and re-wetting of soil surfaces,
the polar parts of organic molecule become oriented towards the soil surface and coalesce
upon drying [7].
For all soil bound contaminants, the ability to oxidize target compounds is
influenced by hydrophobic bonding and the bond-localization energy. The amount of
ozone required for removal will vary depending on the PAH mixture present in the soil
and the strength by which these compounds are sorbed to the soil. Compounds in soil for
long periods of time are theorized to be more strongly sorbed to the soil matrix than those
compounds that are the result of recent contamination events. Sorption strength and
contaminant age therefore are important factors that might determine ozone efficiency
and PAH removal.

PAHs with high partition coefficients (log K,c) have strong bond-localization
energies and a high affinity for soil organic matter. Thus, the more strongly adsorbed
contaminants require higher ozone dosages for removal. PAHs with low K, (e.g.
phenanthrene, anthracene) values are more easily degraded by ozone than PAHs with
high K, (e.g. pyrene and chrysene) [3]. In dry Metea soil studies, Yao [3] reported that
95% of phenanthrene (Koc = 6.12) was removed using 582 mg Oj. Pyrene (Koc = 6.51)

contaminated soil ozonated using 581 mg Oj; resulted in 83% removal. Chrysene (Ko =
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6.27), however, was only removed by 40% using 582 mg Os;. The lower efficiency in

pyrene and chrysene removal was attributed to the higher partition coefficients and a

high er affinity for the soil.
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