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ABSTRACT

CHARACTERIZATION OF DEFORMATION IN SN-AG LEAD-FREE SOLDERS
DURING THERMOMECHANICAL FATIGUE USING ORIENTATION IMAGING
MICROSCOPY

By

Adwait U. Telang
Eutectic Sn-Ag solder joints with copper substrate with different joint geometries
were subjected to isothermal aging, creep at room and elevated temperature,
and thermomechanical fatigue (TMF). Orientation Imaging Microscopy (OIM)
studies reveal how the crystallographic orientations are correlated with
microstructural features in the solder joints. Certain misorientations appear to be
energetically favored during solidification, which have twin and Y. boundary type
relationships. Changes in the crystallographic orientations, grain size and
misorientation angles between grains, occurring due to subsequent heating
and/or deformation were documented and analyzed. This study shows that the
lead-free solder joints are multi-crystals, so that deformation is very
heterogeneous and sensitive to crystal orientation, strain and the temperature
history. High temperature processes caused polygonization of dislocations into
low angle grain boundaries that slid. Special boundaries also show sliding, which
adds to the deformation. Mechanisms that cause grain boundary sliding and

pop-up are presented and discussed.
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CHAPTER 1

INTRODUCTION



The following is a study to examine the deformation behavior of Sn-3.5wt.%Ag
lead-free solders wusing Orientation Imaging Microscopy (OIM), primarily in
thermomechanical fatigue (TMF) as experienced by solders in service. The introduction
and rationale for this study is presented along with relevant background, followed by the

specific aims, experimental procedures, results and discussion.

1.1 RATIONALE

Soldering is as an integral part of the electronic assembly because it connects
devices to printed circuit boards (PCB). Lead-based solder (esp. Pb-Sn) has been used
for several decades as the interconnect material [1]. However, the toxicity of lead,
environmental concerns and international trade restrictions have warranted its eradication
from all electronic systems by 2006 [1-5]. Consequently, eutectic tin-silver (96.5Sn-
3.5wt.%Ag) based solders have gained particular interest in recent years due to their
comparable wetting and mechanical properties to 37Pb-63wt.%Sn solders [1, 3, 6, 7].
There is sufficient data on mechanical properties, microstructural details and deformation
behavior of lead-based solders, however relatively less is known about tin-based solders.
Therefore the selection of the appropriate solder alloys to replace Sn-Pb solders is still in
the embryonic stages because deformation characteristics and failure modes for eutectic
Sn-Ag have not been fully characterized.  Further, several processes could
simultaneously occur during service and contribute to damage accumulation that leads to

failure, which implies that, certain solders appropriate for one application might not be



applicable for others. Hence there is need to further investigate Sn-based solders to
determine the cause of failure and qualify their usefulness as good interconnects.

About 70% of failures in most electronic circuitry is related to the failure of the
solder interconnect. With miniaturization in electronic packaging and the concurrent
reduction of the joint dimensions, solder joints serve dual purposes; as electrical
connections and mechanical supports for surface mount components. The smaller
electronic packaging imposes additional constraints on the solder. The temperatures
experienced by solder interconnects ranges from -40°C to 150°C on a printed circuit
board (PCB) in an automotive under-the-hood type of application and can reach up to
85°C in household electronics like computers due to Joule heating experienced during
service [8]. These temperatures are above 0.5T, (T, of tin = 232°C) where creep and
aging is expedited and the microstructure evolves continuously [9]. This necessitates
better inherent properties in the solder material to prevent failure in service.

In solder alloys, there is a strong correlation between the microstructure and
mechanical properties [2, 10, 11]. The microstructure of solder joints made with Sn-
3.5wt.%Ag solders has a small volume fraction of sub-micron size hard Ag;Sn
intermetallic particles interspersed in the eutectic matrix. Compared to pure metal these
particles provide particle strengthening, as a result of dislocation interactions during
stress application, thermal cycling, and microstructural evolution. These intermetallic
particles are also known to coarsen with time and temperature [12], and affect grain
boundary mobility; models for grain growth limited by Zener drag of particles that grow
by Ostwald Ripening have been developed for particle strengthened high temperature

deformation [12-17]. Joint reliability has been found to depend on factors such as



temperature to which the joint is exposed and temperature fluctuations that it experiences
[18], the dwell period at a particular temperature [18], the stresses experienced by the
joint due to the thermal expansion mismatch between the substrate, solder and the
component, the extent of the external load imposed and the inherent anisotropy of tin.

Extensive prior characterization of this Sn-3.5wt.% Ag solder using single shear
lap joint specimens [19, 20] identified changes in properties after creep, stress-relaxation,
reversed-shear and thermomechanical fatigue (TMF). These changes were correlated
with the heterogeneous grain boundary sliding and surface relief that developed in the
microstructure [21-30]. Grain boundary sliding is important for superplastic deformation
phenomena, which occurs in a limited range of strain rate/temperature conditions. Thus
the wide range of strain rates and temperatures encountered by solder joints implies that
grain boundary sliding will more likely cause damage rather than plastic deformation. As
important as deformation of the tin phase is to solder joints, the vast majority of research
on the microstructure of solder joints has focused on intermetallics and not on the tin
phase with only a few exceptions, e.g. Ref. [31, 32].

Although deformation in tin has been studied for many decades, the information
available on deformation mechanisms in tin is not complete. There are 7 slip system
families of interest and taken together they provide 26 slip systems (not counting at least
one twinning system family, which is not considered in this study because twinning is
most likely at low temperatures/high strain rates, which are not relevant to solder joints in
electronic applications). The critical resolved shear stresses and hardening behavior have

been partially characterized [33-35]. Some of the more recent studies have shown that



slip is quite complex with the hardening behavior depending on the pre-existing
populations of dislocations and their type [36].

Characterization of microstructural evolution in Sn-Ag solder alloys is
challenging, since the grain size is difficult to identify in the solidification
microstructures of the eutectic Sn-Ag matrix. SEM imaging is fruitful only to the extent
of giving topographical information (using secondary electrons) revealing surface
damage. However since grain boundary sliding has been the obvious deformation
mechanism it is important to characterize misorientations between grains and the grain
boundary character along which sliding has occurred. Since failure of solder joints
occurs by deformation and fracture in fin, it is necessary to understand the role of
crystal orientation and misorientation across grain boundaries that slide, as well as
the role of slip and recovery processes occurring in the joint, before failure
processes can be characterized, in order to develop the foundation on which
physically based deformation models can be developed. Hence, there is a need to
identify a suitable methodology for measuring microstructural evolution in Sn-Ag
solders, and characterizing the interaction between the stress and the microstructural
evolution, following which modeling strategies can be developed to predict the reliability
of lead-free solders.

Due to a strong correlation between the microstructure, properties and the
crystallographic orientations that go with the microstructure, it is known that
crystallographic orientations can affect fracture behavior and mechanics, corrosion
resistance, precipitation and recrystallization [2, 10, 11]. Macrotexture studies on metals

have been carried out for decades using X-rays and the technique has allowed theories to



be developed that describe how preferred crystallographic arrangement in the material
evolves during service conditions [37-43]. Orientation Imaging Microscopy (OIM) using
automated Electron Backscattered Diffraction Pattern (EBSP) indexing is a valuable
measurement tool in the texture arena, and provides an ideal method to investigate the
microstructure evolution phenomena. With this technique, crystallographic orientation
and shape of the grains and their misorientations with each other (collectively called
mesotexture) can be simultaneously measured. Thus the phenomenon of microstructural
evolution resulting from processes such as solidification, recrystallization and grain
growth can be tracked.

The following sections will develop the theoretical background for the current
investigation followed by the rationale behind the research, the experiments carried out,

results obtained, followed by the discussion and conclusions.

1.2. BACKGROUND AND SIGNIFICANCE

A) Thermal and Mechanical Processes Experienced by a Solder Joint:

(1) Aging: Aging is inevitable with time in such solders where room temperature is
greater than half the absolute melting temperature, and this results in the alteration of the
microstructure. However, the rate of aging is dependent on the temperature to which the
solder joint is exposed during service. Higher temperatures naturally cause faster
evolution of the microstructure. Solder joints in typical automotive under-the-hood
service conditions are exposed to temperatures of around 150°C, while those in computer

related applications experience temperatures of 50-80°C. Such high temperatures cause



dynamic recrystallization and grain growth to occur within the solder microstructure in
Pb-Sn solders [44-48]. The constant evolution of the microstructure alters the properties
of the solder joint and changes the way the solder material would otherwise respond to
further deformation processes.

In eutectic Sn-Ag solder joints aging produces coarsening of the Ag;Sn particles
in the solder matrix [23]. The intermetallic layers of CusSns and CusSn also grow in
thickness, from approximately 0.7um initially to about 10um after aging at 150°C for
1000 hours [23]. The intermetallic compound grows faster in liquid solder. Jang et. al.
observed a 2um thick CugSns layer after a 60 seconds reflow of a eutectic Sn-Ag solder at
250°C, with no intermetallic present initially [49].

The material in the joint configuration can undergo two basic types of stress /
strain history: 1) time dependent monotonic loading e.g. tensile loading, shear loading,
creep and stress relaxation, and 2) cyclic deformation as in fatigue [49]. However, due to
the low melting temperatures of these solders, during thermomechanical fatigue, a

combination of all deformation modes listed above in 1) occur in a cyclic manner.

(2) Creep: Creep is the progressive deformation that a material experiences under
constant stress at an elevated temperature, usually greater than half the absolute melting
temperature. It is known that material strength decreases with rise in temperature, due to
a corresponding influence of diffusion processes that come into play at elevated
temperatures. Higher temperatures also give additional mobility to dislocations that can

climb as well as additional slip-systems can come into play [50]. For materials being



used at elevated temperatures, the strength of the material depends on the strain rate and
the amount of deformation with time that the material has undergone.

The creep experiment involves loading a tensile specimen at a constant
temperature (>0.5Ty,) and at a constant load. The strain / extension of the material is
measured as a function of time. Hence studies based on creep experiments can take
several hours to years to achieve the desired information. A typical creep curve is shown
in Figure 1.1. The curve can be ideally divided into three regions; primary, secondary
and tertiary creep. The creep rate given by de/dt, decreases rapidly with time initially
during primary creep and is approximately constant in the secondary creep region. The
initiation of tertiary creep is an important point on the creep curve since after this point
the creep rate increases steadily until the specimen ultimately fractures. A long
secondary creep period or a very low minimal creep rate is essential for longer service
life of the specimen.

The creep curves are explained using the diffusional creep theories or the
dislocation based creep theories [S1]. Both theories are able to explain many of the strain
and strain rate features one sees in a typical creep curve. The diffusion-based theory is
explained by the diffusion of atoms through the bulk, grain boundaries or interfaces to
sinks in the material, which depends on the activation energy for the process of diffusion
(volume, grain boundary and surface). At high temperatures bulk diffusion or lattice
diffusion is more active and also has higher activation energy, whereas at lower
temperatures (0.4Ty,) other preferential paths of diffusion (short circuits in the diffusion
path), such as grain boundary diffusion or diffusion along dislocation cores, becomes

more predominant.



Dislocation creep theories are based on creation and annihilation of dislocations
and their subsequent re-arrangement in the material into a substructure. These theories
consider the balance between work hardening and recovery phenomena to explain
changes in the typical creep curve. Primary creep involves the increase in the number of
dislocations, which get tangled up and hence harden the material (causing a decrease in
the strain rate). Two types of primary creep curves are observed in alloys; normal
transients are seen in class M (pure metals or alloys where the n value (n is the stress
exponent) does not change with increasing the amount of the alloying element, and
inverse (abnormal) transients are seen where the value of n decreases with increasing
alloy content, which is accompanied by a decrease in the creep rate. The decrease in the
value of n is associated with the solute atoms forming a cloud around the dislocations
cores, which now have to drag the solute cloud to achieve the same strain. Hence the
creep rate is governed by the dislocation density and their average velocity [51]. During
secondary creep, the overall stress and strain rate remain constant when the rate of
hardening is balanced by the rate of recovery. Dislocations rearrange themselves in to
substructures. The creation and movement of dislocations leads to work hardening,
whereas their climb and cross slip permits recovery by annihilation or re-arrangement
into low energy substructures. In tertiary creep, instability is reached, where cavities or
microcracks are formed (due to dislocation pile-ups or local tensile regions where
vacancies condense. Formation of microcracks or cavities further increase local high
stress concentrations and decrease the load carrying capacity of the material. The strain

rate increases rapidly with stress, which ultimately leads to the failure of the material.
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Figure 1.1. Typical creep curve showing the three stages of creep. Curve A is
constant-load test; curve B, constant-stress test[50].
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A quasi-empirical relationship developed by Mukherjee, Bird and Dorn [52] is

commonly used to describe the secondary creep deformation [52, 53] and is given by:

E= %(;—b(-é-)"(-g)pDo exp(;—gj where, where € is the steady state strain rate, G is the
shear modulus, b is the Burger’s vector, R is the gas constant, T is the absolute
temperature, d is the grain size, 7is the applied stress, Dy is a frequency factor, Q is the
activation energy for the deformation process, n is the stress exponent (n=1 diffusional
creep, n=2 grain boundary sliding, n=3-4 dislocation glide or drag by solute atoms, n=5-7
diffusional climb of dislocations around barriers, n>7 creep of dispersion strengthened
alloys, with a threshold stress term which could cause the higher stress exponent in
several cases), p is the grain size exponent, and A is a constant characteristic of the
underlying micromechanism (that depends on the microstructure and the rate limiting

deformation mechanism). Most metals and metal alloys have several strain rate regimes

where one or the other deformation process could occur depending on the stress and

temperatures imposed. Transition points are often observed in logarithmic plots of &
versus O for materials that deform, with mechanisms that depend on several sequential
deformation processes, such as glide and climb; the deformation mechanism that has
slowest strain rate will control the flow behavior. When there are multiple independent
processes occurring, such as different rates of deformation in different phases, the faster
process will dominate the creep deformation.

Tensile tests are commonly used to find the total strain to failure in solder joints.
However the recovery processes occurring during creep are not captured in a normal

tensile test (unless they are done at a very slow strain rate). Data can be collected at
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different temperatures to determine conditions where recovery occurs. Stress relaxation
that occurs at the end of tensile tests is a useful way to characterize recovery that occurs
after straining. Figure 1.2 shows stress strain curves obtained for Sn-3.5Ag solder joints
at room temperature and 150°C. At high strain rate and low temperature, work hardening
occurs due to the lack of time for recovery, while at low rate and high temperature,
recovery more rapidly than dislocation accumulation that causes work hardening.
Extensive softening in these curves implies recovery, recrystallization, and/or damage,
but in what proportion, is not yet understood. At higher rates and lower temperature
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