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ABSTRACT

DIVERSITY, BIOGEOGRAPHY, AND TAPHONOMY OF LATE CRETACEOUS
CHONDRICHTHYANS FROM MONTANA

By
Yasemin Ifakat Tulu

The chondrichthyan fauna of the Late Cretaceous of Montana was last
comprehensively reviewed by Case in the late 1970s. Collections from vertebrate lag
deposits (2002 and 2006) from the Woodhawk Bonebed (WH) and Power Plant Ferry
Bonebed (PPF) respectively of the Judith River Formation (JRF) add six additional species
to the previous known diversity from the JRF, namely Squalicorax pristodontus,
Cretolamna appendiculata, Protolamna sokolovi, Ischyrhiza avonicola, Ptychotrygon
hooveri, and Ptychotrygon triangularis. These collections also include previously known
species from the JRF, Hybodus montanensis, Cretorectolobus olsoni, Squalicorax kaupi,
Squalicorax sp., cf. S. kaupi, Hypotodus grandis, Hypotodus spp., Archaeolamna
kopingensis, Archaeotriakis rochelleae, Protoplatyrhina renae, Ischyrhiza mira, Myledaphus
bipartitus and a chimaerid, Ischyodus.

The combined faunas from the WH and PPF and Case’s studies (1978a and 1979)
indicate that the JRF was a coastal, warm shallow marginal marine environment
supporting a moderately diverse fauna of mostly lamniforms and rajiforms.
Biogeography analyses of elasmobranchs from the Western Interior Seaway (WIS) show
that 17 of the JRF taxa are endemic either to the JRF or to the end of the Cretaceous of
the WIS. Also present are five cosmopolitan species. The species compositions of Case’s
study and this study differs, such that, the combined faunas produce a more

comprehensive faunal list that is on par with contemporaneous faunas from similar



environments to that of the JRF, and that the JRF fauna along with the faunas of the
Dinosaur Park Formation (Alberta), “Mesaverde Formation” (Wyoming), and the Hell
Creek Formation (Montana) form the Judith River Province at the generic level in a
Parsimony Analysis of Endemicity (PAE).

Most of the species collected are autochthonous; those found in situ are likely to be
less abraded than material brought in, as evidenced by taphonomic experiments.
Experiments also show that the two locations, despite close proximity to each other, show
localized areas of variable energy that affected the faunal composition slightly, the
abundance of material, and the quality of preservation. The WH is a higher energy
environment where additional material from farther offshore is transported in and mixed
with local material, resulting in a higher degree of abrasion of material compared to that
preserved at PPF. This has created a mixed marine and estuarine assemblage, which in
turn has produced mixed interpretations of the geology and paleontology of the JRF. The
experimental approach applied here permits: distinguishing autochthonous from
allochthonous fossil vertebrate hard parts, quantification of the amount of transport and
wear, and clarification of the potential for postmortem effects such as the loss or
distortion of diagnostic skeletal features. In the case of shark teeth, the root lobes and
apex of the cusp wear down first, followed by other projections such as cusplets. Loss of
these features suggests the effects of taphonomic processes. However, taphonomic insight
is achieved at the cost of information on the taxon and the fauna overall. A preliminary
product from these observations and experiments is a taphonomic scale that can be
applied to moderately worn shark teeth to assess amount of wear and relative

environment.
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CHAPTER ONE

INTRODUCTION

The Cretaceous formations of Montana (Figure 1) have long been of interest to both
geologists and paleontologists. The formations were first noted as early as the Lewis and
Clark expedition from 1804-1806 (Lewis, 1814). Since that time the area, in particular
the Judith River Formation (JRF) (notably in Fergus and Blaine counties), has been
explored and studied for its geology and fossil fauna (in particular the vertebrate fauna)
by, among others, Meek and Hayden in 1855 (1856a and 1856b), Cope in 1876, Stanton
and Hatcher in 1905, Sahni (1972), Case (1978a and 1979), Rogers (1994 and 1998),
Rogers and Eberth (1996), and Rogers and Kidwell (2000). Extensive studies have been
carried out to determine the age and relationship of the formation to others in the region.
These studies have shown that the JRF is mostly nonmarine, with dominantly fluvial
facies and local tidal influences. The formation is primarily composed of silty clays,

siltstones, and fine-to-medium-grained sandstones.

The focus of this research is to examine the chondrichthyan fauna and geologic setting of
the Woodhawk Bonebed (WH) and the Power Plant Ferry Bonebed (PPF) localities in the
JRF. Hypotheses to be addressed include:
e (Case’s work (1978a and 1979) accurately reflects the Cretaceous diversity of
sharks in the region particularly with respect to heterodonty, a complicating

feature of elasmobranch teeth;



the biogeographical relationships of the Late Cretaceous shark fauna from the JRF
will show it to be a rather typical fauna when compared to contemporaneous
faunas from other formations in western North America;

the current faunal list (Case 1978a and 1979) of the JRF represents a rather typical
fauna from a coastal, warm shallow marine environment, so the area has been
sufficiently sampled to create a complete faunal picture and no undescribed taxa
will be found;

taphonomic factors have affected the composition of the chondrichthyan fauna;
actualistic taphonomic experiments can be used to test the null hypothesis: there
will be no significant difference between the teeth at the start of the experiment
and at the end of the experiment;

and actualistic taphonomic experiments can be used interpret the fossil material.



HISTORICAL BACKGROUND ON GEOLOGIC SETTING

The first scientific observation of rocks that would later be recognized as part of the
Judith River area was by the Lewis and Clark expedition in 1804-1806 (Lewis, 1814)
when they saw the white rocks (now named the Eagle Sandstone) in the valley of the
Missouri River. Other early expeditions were carried out by the Prussian naturalist
Alexander Philipp Maximilian, Prince of Wied-Neuwied as he travelled the Missouri
River studying the Native Americans, wildlife, and strata (1839-1841); by Meek and
Hayden (1856a and 1856b); by Hatcher (1903b), by Hatcher and Stanton (1903), and
Stanton and Hatcher (1905). Almost from the outset, these Campanian aged sediments
(Figure 2) have been objects of geological and paleontological study, including both
invertebrates and vertebrates. The vertebrate fauna has been studied extensively,
resulting in many enormous dinosaur skeletons now gracing the floors of major

museums.

These early expeditions and other extensive studies by scientists including Meek and
Hayden (1856a-b, 1857, and 1858), Hayden (1857, 1858, and 1860), Leidy (1856a),
Cope (1874, 1876a-b, and 1877), C.H. Sternberg (1883, 1903, 1914, and 1915), Marsh
(1888, 1889a-b, 1890, and 1892a-c), Brown (1907 and 1933a), and Matthew (1914)
contributed to several efforts including the determination of the age of the JRF, the
relationship of the JRF to other formations in the region, the correlation of formations
across international boundaries, as well as the discovery and description of new fossil

taxa.



1850s-1870s

The perceived age of the rocks, which were often referred to as the Judith River beds
(Meek and Hayden, 1856b and Hayden, 1858) in the mid-1800s, ranged from Jurassic to
the Tertiary (Meek and Hayden, 1856a-b) on the basis of the invertebrate fossils collected
by Meek and Hayden in 1855 (1856a-b). In 1876 Cope confirmed Meek and Hayden’s
(1856a-b) views that the beds were Upper Cretaceous in age with his own studies and
descriptions on vertebrate specimens collected from the area by Hayden in 1855 (Cope,
1874, 1876a, and 1877). This occurred after Cope (1869) had originally claimed a
Jurassic age for the fossils. Cope (1876b) also surveyed the area himself with colleagues
and collected specimens that he later published. Materials collected by Hayden were also
examined and published by Leidy (1856a) who compared them to European Cretaceous

specimens.

1880s-1900s

In addition to the aforementioned studies, research also focused on coeval deposits and
fossils from Canada and Wyoming. These studies contributed to determining the age and
geographic extent of the JRF. G.M. Dawson (1883 and 1884a-b) completed regional and
fossil studies of the Bow and Belly River Formations in the Northwest Territory, while
the plants were studied by J.W. Dawson (1886) who concluded that the Bow and Belly
River Series and the Oldman River and Medicine Hat Formations were Jurasso-
Cretaceous or lower Cretaceous in age. Whiteaves (1885) studied the invertebrates from
the Belly River Group in Canada, finding many of the same fossils in the Belly River

Series as Meek and Hayden found in the JRF. Whiteaves also made early correlations of



formations in the U.S. and Canada. Vertebrate studies from the Belly River Group along
with provisional stratigraphical correlations were carried out by Osborn (1902) and by
Lambe (1902) who also worked on a shark fossil from Alberta (Lambe, 1918). Fossils
from the Judith River beds, Lance Creek, and the Belly River beds were all compared to
each other by Hatcher (1903a) who found sufficient taxonomic similarities among them

to assign similar ages to the formations.

1900s-1940s

In 1903 Hatcher and Stanton surveyed the Judith River area, completing studies on the
stratigraphy, invertebrates, vertebrates, and flora, and assigned an Upper Cretaceous age
to the JRF (Stanton and Hatcher, 1905 and Knowlton, 1905). Brown (1907, 1908, 1911,
1912, 1913a-c, 1914a-e, and 1933a-b) conducted excavations and studies of material
collected from Montana as well as the Cretaceous beds (along with some Eocene
material) of Canada, notably Alberta, working on the stratigraphy and vertebrate
paleontological faunas. Peale (1912a-c) worked on the age and the stratigraphic position
of the JRF, followed by Stebinger (1914a-b) who traced the lithologic changes of the
Montana Group (of which the JRF is a part of) northward. C.H. Sternberg (1914, 1915,
1916-1917, 1918) contributed with collections and studies on the Campanian vertebrates
from the Belly River Series of Canada in addition to vertebrates from the JRF in
Montana. C.H. Sternberg (1914 and 1918) noted that both the succession of rocks and
vertebrate fossils in the Edmonton and Belly River Series appeared to be of the same type
as seen in the JRF and deduced that the observations made by Hatcher and Stanton

(1903), Stanton and Hatcher (1905) on stratigraphic correlations were correct (C.H.



Sternberg, 1915). Bowen’s (1915) studies of the Montana Group in north-central
Montana confirmed the work by Stanton and Hatcher (1905). Bowen (1915) suggested a
Cretaceous age for the JRF and determined its stratigraphic position beneath the Bearpaw
Shale and above the Claggett Formation based on lithology and faunal indicators. Bowen
also found that many of the invertebrate and vertebrate fossils in the JRF correlated with
those found in the Belly River Series. C.H. Sternberg’s son (C.M. Sternberg) also
collected many fossils from the Edmonton Formation of Alberta (C.M. Sternberg, 1926,

1928, and 1940a-b).

1940s-1980s

Russell and Landes’ (1940) work on the Canadian stratigraphy and invertebrate
paleontology of the southern Alberta Plains reviewed Dowling’s (1917) study, and
confirmed Bowen’s (1915) work in the U.S.A. Stott (1963) reiterated Russell and
Landes’ (1940) findings. Cobban and Reeside (1952) completed broad sweeping
correlations of the Cretaceous strata in the western interior of the U.S.A. in order to
delineate age boundaries. Lerbekmo (1961) looked at stratigraphical relationships of the
Milk River Formation and the Belly River Formation in southern Alberta, and Estes
(1964 and 1969b-f), Estes and Berberian (1969 and 1970), Estes et al. (1969), and Sahni
(1972) worked on vertebrate faunal analyses of the Cretaceous in Wyoming and
Montana. Russell (1964) studied the non-marine fauna in Cretaceous rocks of
northwestern North America; Langston (1965) compiled a survey and studied the history
and pondered the potential future of vertebrate paleontology in Canada; Fox (1972)

discovered a new genus of mammal, and Langston (1976) surveyed the vertebrate fauna



of Alberta. In 1973 Gill and Cobban published their work on the paleogeography of the
Upper Cretaceous of the Montana Group utilizing combined data from stratigraphy,
paleontology, and radiometry. Wall and Rosene (1977) studied the Upper Cretaceous
stratigraphy of the southern Alberta Foothills, Case’s studies (1978a and 1979) dealt with
the chondrichthyan fauna of the JRF in Montana, and Neuman et al. (1988) examined the

freshwater fishes of the JRF in Alberta.

1990s-2000s

In more recent years Eberth et al. (1990) studied JRF stratigraphy and vertebrate
paleontology in Saskatchewan in addition to proposing new guidelines for standardizing
the stratigraphical nomenclature for the formation. Rogers (1994 and 1998) and Rogers
and Eberth (1996) looked at tectonic and eustatic aspects of the JRF, as well as the
marine sequences and discontinuities. LaRock et al. (2000a-b) studied the taphonomy of
dinoéaur bonebeds of the JRF in northeastern Montana, and Bergman and Eberth (1998),
correlated, on a regional scale, the JRF in Alberta and Saskatchewan. Hamblin (1995)
studied the plains of Alberta with a focus on the Judith River group. Siverson (1995)
revisited Case (1978a) by revising some of his work when in the JRF and Rogers and
Kidwell (2000) investigated the taphonomic relationships of discontinuity surfaces.
Mammal studies of the JRF were carried out by Carrano et al. (1995 and 1997) and
mammal paleoecology of the Judith River Group in Alberta was studied by Sankey et al.
(1999). Blob et al. (2001) discovered a new fossil frog in Montana; and Sankey et al.
(2002) completed diversity and variation studies on theropod and bird teeth from the JRF

of Alberta, covering both the geology and paleontology of the JRF. All of these studies,



over the past 160 years have led to a framework for understanding of northern Great
Plains Late Cretaceous paleoecology and geology. The current study will be presented in

the context of that framework.



ELASMOBRANCH SYSTEMATIC PROBLEMS AND TOOTH
CHARACTERISTICS

Historical Observations of Shark Teeth

Elasmobranchs are polyphydont, producing and shedding teeth over the entire course of
their lives. Owen (1866) is often credited with the first hypothesized description of the

mode of tooth replacement in sharks. Teeth were thought to be replaced by,

...the whole phalanx of their numerous teeth is ever marching slowly

forwards in rotatory progress over the alveolar border of the jaw, the teeth

being successively cast off as they reach the outer margin, and new teeth

rising from the mucuous membrane behind the rear rank of the phalanx

(Owen, 1866: 383-384).
However, similar, older accounts are present in André (1784) and cited within André is
an even earlier work by Gesner (1558). It was Gesner’s early observations
(1558) and later Steno’s (1667) (Figure 3) observations of extant and fossil shark teeth
that initially demonstrated the identity of what had been termed “tongue-stones” or
glossopetrae. Glossopetrae were also called Linguae Melitensis or Linguae S. Pauli, the
Germans used Nattern-zungen (adder’s tongues) or Schlangenzungen (serpent’s tongues).

Other terms include Maltesichen amuletten and Ilsien San Pawl (Zammit-Maempel,

1975).

Beginning with the Middle Ages, people believed the fossil shark teeth or glossopetrae,
were stones that fell from the sky, an idea proposed by early historians and naturalists, or
that they were spontaneously generated from the rocks in which they were encased

(Zammit-Maempel, 1975). Another idea was that they were the tongues of serpents that



were turned to stone by Saint Paul thereby possessing medicinal properties, including the
ability to counteract poisons (particularly the Miocene age shark’s teeth from Malta)
(Zammit-Maempel, 1975). These beliefs and ideas were most prevalent between the
thirteenth and eighteenth centuries (Zammit-Maempel, 1975), observations by naturalists

such as Gesner (1558) and Steno (1667) not withstanding.

Early observations and dissections of extant sharks led Steno (1667) to believe that teeth
found inside (or within) the jaws were of little or no use to the animal. He also surmised

that fossil shark teeth found in sediments were not glossopetrae but were instead shark
*
teeth that had been altered. However, it was demonstrated in the earlier work by Gesner

(1558) that those posterior or “within the jaw” teeth did have a function; as the anterior or
functional teeth wore away, broke, or fell out the posterior teeth would then move
forward to fill in the spaces vacated by the previous anteriorly placed teeth. This was
demonstrated by André (1784) when he observed a stingray tail spine bisecting teeth of a
tiger shark (Galeocerdo cuvier). While not noted in the paper, his illustration (Figure 4)
clearly shows that teeth are replaced. In order for the teeth to be bisected (teeth labelled
“B” in the image) they had to form around the foreign body implanted in the tooth germ,
which is seen in the functional tooth and in the replacement teeth. As shark jaws would
not have foreign bodies implanted in them at the time of birth, the initial tooth or teeth
would have been “normal” as is seen on either side of the bisected tooth in the image

(teeth labelled “A” in the image). However, it seems that these early investigations were

"Steno’s work (1667) became paramount and had great ramifications on the study of
geology when he questioned the formation of solids within solids and also laid the
foundations for the principles of stratigraphy.
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lost as Owen (1866) is the most frequently cited work and subsequent scholars such as
Cawston (1938, 1939a-b, 1940a-c, 1941a-d, 1944, and 1945) were not even convinced of
Owen’s postulations. This uncertainty of the tooth replacement was the status quo for a
long time until researchers sought to validate Owen’s hypothesis and determine the rate
of tooth loss or shedding rate of sharks. Despite the studies (below), very little is still
known about the shedding rate. It is presumed that the complete teeth, both fossil and
modern, used in this study were fully formed functional teeth, having been preserved

prior to any taphonomic factors influences acting on them.

Shedding Rates of Shark Teeth

Various approaches yielding mixed results have attempted to determine the rate of
shedding of shark teeth. Breder (1942) observed that in Carcharias littoralis a loosened
tooth took 2-7 days to detach, and that a single tooth was lost at a time with nothing to
suggest the simultaneous loss of an entire row. This was contrary to studies by Cawston
(1938, 1939a, 1940a-b, 1941a-d, and 1944) who insisted that the teeth were not replaced
but instead grew continuously throughout life. Cawston’s studies of teeth and of tooth
replacement also extended to other fish and reptiles (1939b, 1940c, and 1945), and he
also refuted tooth replacement in other groups of animals. To explain any tooth loss
observed from deep-water fish housed in aquaria Cawston (1944) claimed tooth loss
occurred because the fish had been moved to an artificial environment, stressing the
animals. Cawston (1940a and 1944) suggested that there would be overcrowding of the
jaw due to successively larger replacement teeth, therefore, replacement would not occur.

However, that last argument is moot as Cawston reported that the teeth grew
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continuously, which would also lead to overcrowding in the jaw, by his reasoning.
Cawston (1938) also rejected André’s (1784) observations, saying that the bisection
through the teeth of the tiger shark is a result of having had the teeth impaled by the spine

and creating a tear as the shark tried to wrench itself free.

Ifft and Zinn (1948) were able to observe tooth replacement in sharks as originally
hypothesized by Owen in 1866, i.e. teeth moving forward to the outer margin from the
back. However, they were not able to deduce the normal rates of shedding as the sharks
died prior to obtaining sufficient data. Despite the deaths, Ifft and Zinn were able to
obtain initial rates, 10-12 days for one tooth row in the smooth dogfish (Mustelus canis),
having observed that tooth buds were needed for tooth development and replacement and

that they occurred behind the erupted teeth and no where else (1948).

During the 1960s the subject was revisited by Strasburg (1963), Tessman (1966), and
Moss (1967). Strasburg’s study was of a comparative nature in which relative rates were
determined. The findings determined that rates were dependent on the species. Strasburg
(1963) discovered that different species shed their teeth differently, including: singly, a
few teeth at a time, most of the teeth in a tooth row, or whole tooth rows. Also
discovered were differences between the top and bottom jaw. These factors were also
noted by Peyer (1968), who observed that age and metabolic rate of the sharks could also
be contributing factors. Also of interest is that the tooth arrangement in some species
may prevent or block the replacement of other teeth (Strasburg, 1963). Strasburg noted

five different tooth arrangements in shark jaws from his 1963 study: 1) no overlap
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(independent dentition), 2) alternate overlap, 3) imbricate overlap, 4) mixed alternate
overlap, and 5) modified imbricate overlap, which occurs when the teeth of the right and
left halves of the jaw are imbricated in opposite directions and the mesial tooth is in an
alternate position with respect to its neighbors (Figure 5). Tessman (1966) estimated
that a single tiger shark could produce 24,000 teeth in a 10 year period. However, this
was not substantiated with observations or citations. Moss (1967) was able to
corroborate Strasburg’s work, finding different replacement rates in the lower versus
upper jaw of the lemon shark (Negaprion brevirostris), with a faster rate in the upper jaw
(1 tooth in 7.8 days) than the lower (1 tooth in 8.2 days). However, the difference in
these rates is slight and may not be statistically significant. Moss (1972) also sought to
relate the replacement rate to body growth and devised, through empirical means, a
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