L I E R A R Y M i c h i g a n S t a t e 1 U n i v e r s i t y T h i s i s t o c e r t i f y t h a t t h e t h e s i s e n t i t l e d A N I N T E R N A T I O N A L A G R I C U L T U R A L T R A D E M O D E L W I T H L I N K A G E C A P A B I L I T Y p r e s e n t e d b y S H A Y L E D A N I E L S H A G A M h a s b e e n a c c e p t e d t o w a r d s f u l f i l l m e n t o f t h e r e q u i r e m e n t s f o r M S d e g r e e i n W 1 E c o n o m i c s M a j o r p r o f e s s o r D a t e / & ’ / 2 ’ g 7 0 - 7 6 3 9 M S U i s a n A f fi r m a t i v e A c t i o n / E q u a l O p p o r t u n i t y I n s t i t u t i o n M S U L I B R A R I E S . — ; — R E T U R N I N G M A T E R I A L S : P l a c e i n b o o k d r o p t o r e m o v e t h i s c h e c k o u t f r o m y o u r r e c o r d . F I N E S w i l l b e c h a r g e d i f b o o k i s r e t u r n e d a f t e r t h e d a t e s t a m p e d b e l o w . S h a y D e p a r t m e n t o l f e D a n A g r i i c e u l S h a q a m l t u r a l E c o n o m i c s A N I N T E R N A T I O N A L A G R I C U L T U R A L T R A D E N O B E L W I T H L I N K A G E C A P A B I L I T Y B Y A T H E S I S S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l F u l f i l l m e n t o f t n e r e q u i r e m e n t s . f o r t h e d e g r e e o f M A S T E R O F S C I E N C E 1 9 8 7 z c p n T u u a T n t T t r q a c i l n i r s i c c y o i u a t . l e u f l i s e c e s u p s h l i l n k o h h u e e u t l t e n d t f n n c e r e e c a e . e a m r r n a t m i e r y u g d k e t d u r a o c a e d e o r v m o p r t m f s o f i o o a e d d s o o d o o o n l h l d w e M s b e e d e r r s u i e o m a o i a e w l e l . t v c d r a x l g e t a e i e y e k n o p w r m a w r t b . o d l f a c e e r i o a h s n i c e f m i r s h e e o h o s n a w a p n e n l g c a g r a n e a o s e r r u e t A m a a o w r b l s d u e a g n i e f h e a n g e i t i v r a o r t g e v r f a l d n n s r r d n r c s e r e t n p d g e i o a t g e g t t e e d o p a c n m i g i e s i r i e e l r a s s u p o m n d i o a x v i i a a n e l l n g o n t p e c c a t d t e t n a d e n O d r e d t o e o r . a n l h y e e w r m u x d s l s p a h r g d e a u 0 b t l e i e l i . t n n s u i l l o o d d o 3 h a d o s T f o a n e n c l e n y i h i c t . o e r m o s o c e g s v d t e y o c i r s b n e e k i s h o m i r f d a e w v p n p i p a s r o s o n a f r a d p r m f r o a t r i o n o n i a o i e p o c s d n r d p c h t l n a v m e o o r t u u c e i a c i d u o a t r c i m a u t t t d e s n d i p l r n t h m i o l s e s g l n e y i e a o o o o a d e d . g e l c n l u a n s o a s s e e x y s s p a g a i s n f t l . . h o u n t a ’ T s - n o g i t h t d i f n n m d f i s p o m i e e / p r A I w i t s r o p v t t t t i f e c i s e . e o n c c e a m h a p n s S e f a d a a o s a o d n c r l S n a i g r r c p s n U . U t n . t g l o o e o . a b d e l i l i l i i p . e o x i n s a n i d e b l - t n c o r i b u o a s t . s V w a c - i o n s e i i e t y . i a h M r t i h l e m r b a s g - e A B S T R A C T A N I N T E R N A T I O N A L A G R I C U L T U R A L T R A D E M U D — L W I T H L I N K A G E C A P A B I L I T Y B Y S h a y l e D a n i e l S h a g a m w i t h o u t t h e i r n i m b l e k e e p b o a r d w o r k I w o u l d s t i l l b e A C K N O W L E D G E M E N T S T h i s t h e s i s i s t h e c u l m i n a t i o n o f t h r e e y e a r s o f w o r k a s a g r a d u a t e r e s e a r c h a s s i s t a n t . D u r i n g s u c h t i m e . i t h a s b e e n m y p l e a s u r e t o c r o s s p a t h s w i t h s t u d e n t s a n d s t a f f . t h e s h e e r n u m b e r o f w h o m r e n d e r s i t i m p o s s i b l e t o g i v e p r o p e r c r e d i t a n d t h a n k s i n s u c h a s m a l l s p a c e . T h e r e f o r e t h e o m m i s s i o n o f s o m e n a m e s i s i n e v i t a b l e b u t I a m n o l e s s g r a t e f u l f o r a l l a s s i s t a n c e . n o m a t t e r h o w s m a l l o r u n d e r s t a t e d . F i r s t I w o u l d l i k e t o t h a n k t h e m e m b e r s o f m y o f f i c i a l c o m m i t t e e : m y m a j o r p r o f e s s o r D r . V e r n o n S o r e n s o n . D r . J . R o y B l a c k a n d D r . D a n i e l S u i t s . W i t h o u t t h e i r a s s i s c a n c e a n d a d v i c e t h i s t h e s i s w o u l d n e t b e w h a t i t i s : i n f a C t w i t h o u t D r . B l a c k ’ s a d v i c e . i t w o u l d b e a b o u t o n e — o u a r t e r o f i t s l e n g t h . T h a n k s a r e a l s o d u e t o m y u n o f f i C i a l c o m m i t t e e : D r . J a m e s H i l k e r . D r . J o h n F e r r i s . B i l l R o c k w e l l . H s i n - H u i H s u . D o n M i t c h e l l . T o m H e b e r t . M e r l i n o a I n g c o . R e e n i e D e G e u s a n d w e Y n e w h i t m a n . W h e t h e r w i t t i n g o r n o t . t h e y p r o v i d e d m e w i t h i n t e l l e c t u a l s p r i n g b o a r d s a n d t h e o c c a s i o n a l v e n t f o r 1 “ Y c r a b b i n e s s . E x t r a t h a n k s a r e d u e t o R e e n i e a n d W a y n e . e s t i m a t i n g e q u a t i o n s . i i A d d i t i o n a l l y . I w o u l d l i k e t o t h a n k C h r i s W o l f a n d t h e p r o g r a m m i n g o f f i c e f o r i n v a l u a b l e a s s i s t a n c e . W i t h o u t t h e i r h e l p I w o u l d h a v e b e e n l o s t f o r e v e r i n t h e p r o g r a m m i n g e r r o r s . V e r y s p e c i a l t h a n k s g o t o T o m C h r i s t e n s e n . w i t h o u t T o m ’ s a b i l i t i e s . p a t i e n c e a n d f r i e n d s h i p . t h i s m o d e l a n d t h e s i s w o u l d n o t e x i s t . F i n a l l y . t h a n k s g o t o m y p a r e n t s f o r t h e i r u n s w e r V i n g a n d u n q u e s t i o n i n g s u p p o r t t h r o u g h a l l t h o s e y e a r s w h e n t h e y m u s t h a v e w o n d e r e d w h a t s o m e o n e f r o m C h i c a g o w a s d o i n g i n a g r i c u l t u r e a n d t o J a n e t . w h o e n t e r e d t h i s e v e n t a s a f r i e n d . s a w i t s c o m p l e t i o n a s m y w i f e a n d w h o s e l o v e a n d p a t i e n c e c a n n e v e r b e r e p a i d . i i i T A B L E O F C O N T E N T S L I S T O F T A B L E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V i i L I S T O F F I G U R E S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v i i i C h a p t e r I . I N T R O D U C T I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l T h e p r O b l e m C O O O C O C O O O O I C I O O O O U O O O U I I O O U C O O I O b j e c t i v e . C . C O C O - C O O O C C C O I I I O C C C C I C I O C O C O O O N H I I . R E V I E W O F P R E V I O U S M O D E L I N G E X P E R I E N C E S . . . . . . . 4 T h e F A ? M o d e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e T h e G r a i n s - O i l s e e d s - L i v e s t o c k ( G O L ) M o d e l . . » 8 G l o b a l R i c e M o d e l . . . . . . . . . . . . . . . . . . . . . . . . . . l 4 C o n c l u s i o n s F r o m M o d e l i n g R e v i e w . . . . . . . . . . . 1 7 N o t e s t o C h a p t e r I I . . . . . . . . . . . . . . . . . . . . . . . . 1 9 I I I . T H E M C S O U C M O D E L 0 . 0 . 0 . 0 0 0 0 . . . O ' C O O C O C U O C D O O O O O 2 1 M o d e l S t r u c t u r e . . . . . . . . . . . . . . . . . . . . . . . . . . . . i i B a s i c C o n s i d e r a t i o n s i n R e g i o n a l A g g r e g a t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 E x p o r t S u b r o u t i n e . . . . . . . . . . . . . . . . . . . . . . . 2 9 I m p o r t S u b r o u t i n e . . . . . . . . . . . . . . . . . . . . . . . 3 0 M e t h o d o f D a t a C o l l e c t i o n a n d A g g r e g a t i o n . . 3 4 ' M e t h o d o l o g i c a l P r o b l e m s i n A g g r e g a t i o n o f D a t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 6 E x p o r t P r i c e S u b r o u t i n e . . . . . . . . . . . . . . . . . . . . 3 8 C o u n t r y / R e g i o n M o d e l s . . . . . . . . . . . . . . . . . . . . . . 4 4 D o m e s t i c P r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . 4 6 H a r v e s t e d A r e a . . . . . . . . . . . . . . . . . . . . . . . 4 6 Y i e l d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 N e t E x p o r t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5 N e t I m p o r t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 D o m e s t i c C o n s u m p t i o n . . . . . . . . . . . . . . . . . . . . 6 8 E n d i n g S t o c k s . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1 N o t e s t o C h a p t e r I I I . . . . . . . . . . . . . . . . . . . . . . . 7 9 I v . M O D E L L I N K A G E C A P A B I L I T Y O O O O O O C C D O O O O I O O O I I I I . 8 2 N O t e ‘ t o C h a p t e r I v O I O O O O O O O O O O O O C O O I O I C O O C 8 8 1 V v . H O D E L P E R F O R H A N C E . . . . . . O O O C I O I I I I O I O . . . . . I U O O O E v a l u a t i o n P r o c e d u r e . . . . . . . . . . . . . . . . . . . . . . . M e a s u r e s o f A c c u r a c y . . . . . . . . . . . . . . . . . . . . . . . A b s o l u t e A c c u r a c y . . . . . . . . . . . . . . . . . . . . . . . R e l a t i v e A c c u r a c y . . . . . . . . . . . . . . . . . . . . . . . U s i n g A c c u r a c y M e a s u r e s t o J u d g e P e r f o r m a n c e R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M o d e l P e r f o r m a n c e . . . . . . . . . . . . . . . . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r t h e U n i t e d S t a t e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r A r g e n t i n a . . . . . . . . P e r f o r m a n c e R e s u l t s f o r A u s t r a l i a . . . . . . . . P e r f o r m a n c e R e s u l t s f o r B r a z i l . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r C a n a d a . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r t h e D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r t h e L e s s D e v e l o p e d C o u n t r i e s . . . . . . . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r t h e L e s s D e v e l o p e d O i l E x p o r t i n g C o u n t r i e s . . . . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r t h e S o v i e t B l o c . . . P e r f o r m a n c e R e s u l t s f o r C h i n a . . . . . . . . . . . . P e r f o r m a n c e R e s u l t s f o r t h e P r i c e E q u a t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . N o t e s t o C h a p t e r V . . . . . . . . . . . . . . . . . . . . . . . . . . V I . B A S E L I N E F O R E C A S T A N D S C E N A R I O A N A L Y S I S . . . . . . . . E x o g e n o u s M o d e l A s s u m p t i o n s . . . . . . . . . . . . . . . . . M a c r o - E c o n o m i c A s s u m p t i o n s . . . . . . . . . . . . . . . U . S . A g r i c u l t u r a l A s s u m p t i o n s . . . . . . . . . . . . . . F o r e c a s t R e s u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n C o m p l e x . . . . . . . . . . . . . . . . . . . . . . . . . . S c e n a r i o A n a l y s i s : T h e E f f e c t s o f P . I . K . C e r t i f i c a t e s o n I n t e r n a t i o n a l G r a i n M a r k e t s . . . . . . . . . . . . . . . . . . . . . . . . . . . E f f e c t s o f a O n e Y e a r R e l e a s e o f P I K C e r t i f i c a t e s . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n s . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n C o m p l e x . . . . . . . . . . . . . . . . . . . . . . . . . . S c e n a r i o C o n c l u s i o n s . . . . . . . . . . . . . . . . . . . . . . . . 9 5 1 0 0 1 0 4 1 0 7 1 1 1 1 1 4 1 1 9 1 2 2 1 2 6 1 3 0 1 3 5 1 3 7 1 4 1 1 4 2 1 4 2 1 4 2 1 4 4 1 & 5 1 & 5 1 4 9 1 5 3 1 5 7 1 5 9 1 6 0 1 6 2 1 6 5 1 6 5 C O N C L U S I O N S A N D R E C O M M E N D A T I O N S F O R F U R T H E R R E S E A R C H O . . . - . . . . . . - . . . . . C . . . . . . . . . . . O . . . . . E v a l u a t i o n o f M o d e l R e c o m m e n d a t i o n s f o r F u r t h e r E n h a n c e m e n t . . . . . U N I T E D S T A T E S . . . . . . . . . . . . A R G E N T I N A . . . - . . . . . . I O I O D I A U S T R A L I A . . . - 0 0 0 . 0 0 0 . 0 0 0 0 B R A Z I L . . . . . . I I O O O I O I O O O I O C A N A D A . . . - . . . . . I O C I O O O O O O D E V E L O P E D M A R K E T S . . . . . . . . L E S S D E V E L O P E D L E S S D E V E L O P E D O I L I N D U S T R I A L I Z E D S O V I E T B L O C . . . . . . C O C O D O O O V I I . C o n c l u s i o n s F r o m P e r f o r m a n c e C o n c l u d i n g O b s e r v a t i o n s B I B L I O G R A P H Y V O L U M E I I A p p e n d i x A . E Q U A T I O N S T A T I S T I C S - B . E Q U A T I O N S T A T I S T I C S - C . E Q U A T I O N S T A T I S T I C S - D . E Q U A T I O N S T A T I S T I C S - E . E Q U A T I O N S T A T I S T I C S - V O L U M E I I I F . E Q U A T I O N S T A T I S T I C S - G . E Q U A T I O N S T A T I S T I C S - C O U N T R I E S . . . . . . . . . . . . H . E Q U A T I O N S T A T I S T I C S - E X P O R T E R S . . . . . . . . . . . . . I . E Q U A T I O N S T A T I S T I C S - N E W L Y C O U N T R I E S . . . . . . . J . E Q U A T I O N S T A T I S T I C S - K . E Q U A T I O N S T A T I S T I C S - C H I N A L . P R I C E E Q U A T I O N S T A T I S T I C S v i 1 6 8 1 6 8 1 7 1 1 7 5 ) L k 0 H 0 ( N I P U U N ' Q U O U U M ‘ I U O I J U \ ‘ 0 0 | D 0 \ m O p m P p w N w m e m w m m m m m w s m m u m m - m a m p O m w P m p N 0 ‘ p ( A ) 0 " p # - L I S T O F T A B L E S C o m p a r i s o n o f M o d e l S t r u c t u r e s . . . . . . . . . . . . . . . . . R e g i o n a l a n d C o m m o d i t y A g g r e g a t i o n s . . . . . . . . . . . . C r o p H a r v e s t e d A r e a a s a F u n c t i o n o f T o t a l C r o p l a n d B a s e . . . . . . . . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r U n i t e d S t a t e s . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r A r g e n t i n a . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r A u s t r a l i a . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r B r a z i l . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r C a n a d a . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r D e v e l o p e d M a r k e t s . . . . . . A c c u r a c y S t a t i s t i c s f o r L e s s D e v e l o p e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r L e s s D e v e l o p e d O i 1 E x p o r t i n g C o u n t r i e s . . . . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r S o v i e t B l o c . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r C h i n a . . . . . . . . . . . . . . . . . . A c c u r a c y S t a t i s t i c s f o r P r i c e s . . . . . . . . . . . . . . . . . P o p u l a t i o n A s s u m p t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . R e a l G r o s s D o m e s t i c P r o d u c t A s s u m p t i o n s . . . . . . . . C o n s u m e r P r i c e I n d e x A s s u m p t i o n s . . . . . . . . . . . . . . . E x c h a n g e R a t e A s s u m p t i o n s . . . . . . . . . . . . . . . . . . . . . . L o a n R a t e A s s u m p t i o n s . . . . . . . . . . . . . . . . . . . . . . . . . . N o m i n a l W o r l d S o y o i l P r i c e A s s u m p t i o n s . . . . . . . . . W o r l d W h e a t a n d W h e a t F l o u r B a l a n c e S h e e t . . . . . . W o r l d C o a r s e G r a i n B a l a n c e S h e e t . . . . . . . . . . . . . . . W o r l d S o y b e a n B a l a n c e S h e e t . . . . . . . . . . . . . . . . . . . . W o r l d S o y m e a l B a l a n c e S h e e t . . . . . . . . . . . . . . . . . . . . W o r l d S o y o i l B a l a n c e S h e e t . . . . . . . . . . . . . . . . . . . . . E f f e c t s o f 5 0 0 B u s h e l P I X C e r t i f i c a t e s o n C o a r s e G r a i n s - D e v i a t i o n s F r o m t h e B a s e l i n e . . . . . E f f e c t s o f 5 0 0 B u s h e l P I K C e r t i f i c a t e s o n W h e a t - D e v i a t i o n s F r o m t h e B a s e l i n e . . . . E f f e c t s o f 5 0 0 B u s h e l P I K C e r t i f i c a t e s o n S o y b e a n E q u i v a l e n t - D e v i a t i o n s F r o m t h e B a s e l i n e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v i i 5 4 9 7 1 0 1 1 0 5 1 0 8 1 1 2 1 1 5 1 1 8 1 2 3 1 2 7 1 3 1 1 3 6 1 3 8 1 4 3 1 4 3 1 4 4 1 4 4 1 4 5 1 4 5 1 4 7 1 5 0 1 5 4 1 5 5 p 1 5 6 . . . . U : . . . . ) 5 . - 0 ’ ) u ) 1 6 6 n N 0 o ( m - m l l o u c M ) ‘ o 0 n 1 ( \ 0 0 ' - I O [ » fi l w - b r b e b n n b a D m " O V G D I P U S S . S . L i v e s t o c k M o o o y y m o l e i a l E q q u E u i i v v a a l l e e n n t d t e l C o o n C L n s i n k a g e s / U . S . s u u m m p p t t i n i o o n - - U U n n i i d R i t e g t e e d o n - . S t t a a t t e S . e s s 0 . ) O . . . - # # w w O . . . O . O . 1 1 . 1 2 3 3 " ? ? ? ) s A . 1 3 A . 1 4 A . 1 5 A . 1 6 A . 1 7 A . 1 8 A . 1 9 A . 2 0 A . 2 1 A . 2 2 A . 2 O A . 2 1 3 . 1 L I S T O F F I G U R E S P e r C a p i t a F o o d a n d F e e d C o n s u m p t i o n C a l o r i e s P e r D a y - 1 9 8 3 W o r l d G r a i n T r a d e H i e r a r c h y D i s t r i b u t i o n o f C r o p Y e a r s f o r M a j o r E x p o r t e r s E n d i n g S t o c k - P r i c e R e l a t i o n s h i p E n d i n g S t o c k - P r i c e R e l a t i o n s h i p f o r C o m p e t i n g E x p o r t e r s I n t e r n a t i o n a l C o m p o n e n t - G r a i n s S e c t o r R e a l B o r d e r a n d P r o d u c e r P r i c e s f o r W h e a t a n d C o a r s e G r a i n s i n t h e D e v e l O p e d M a r k e t s . I n t e r n a t i o n a l C o m p o n e n t P r i c e - P o l i c y S t o c k C h a n g e R e l a t i o n s h i p A g r i c u l t u r a l - M o d e l O v e r v i e w - O i l s e e d s S e c t o r I n t e r n a t i o n a l C o m p o n e n t D o m e s t i c L i n k a g e s / U . S . R e g i o n P r o d u c t i o n - U n i t e d S t a t e s H a r v e s t e d A r e a - U n i t e d S t a t e s W h e a t C o n s u m p t i o n - U n i t e d S t a t e s W h e a t F e e d C o n s u m p t i o n - U n i t e d S t a t e s W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n - U n i t e d S t a t e s W h e a t N e t E x p o r t s — U n i t e d S t a t e s W h e a t E n d i n g S t o c k s - U n i t e d S t a t e s C o a r s e G r a i n P r o d u c t i o n - U n i t e d S t a t e s C o a r s e G r a i n H a r v e s t e d A r e a - T o t a l C o a r s e G r a i n C o n s u m p t i o n C o a r s e G r a i n F e e d C o n s u m p t i o n - C o a r s e G r a i n U n i t e d S t a t e s W h e a t W h e a t T o t a l C o a r s e G r a i n N e t E x p o r t s - U n i t e d S t a t e s U n i t e d S t a t e s . C o a r s e G r a i n E n d i n g S t o c k s - S o y b e a n P r o d u c t i o n - U n i t e d S t a t e s S o y b e a n H a r v e s t e d A r e a - U n i t e d S t a t e s U n i t e d S t a t e s - U n i t e d S t a t e s U n i t e d S t a t e s F o o d a n d R e s i d u a l C o n s u m p t i o n - S o y m e a l N e t E x p o r t s - U n i t e d S t a t e s . . S o y o i l N e t E x p o r t s - U n i t e d S t a t e s . . . S o y b e a n N e t E x p o r t s - U n i t e d S t a t e s . . S o y m e a l E n d i n g S t o c k s - U n i t e d S t a t e s S o y o i l E n d i n g S t o c k s - U n i t e d S t a t e s . S o y b e a n E n d i n g S t o c k s - U n i t e d S t a t e s W h e a t P r o d u c t i o n - A r g e n t i n a v i i i 2 7 3 1 3 7 4 0 4 0 4 5 4 9 6 4 7 4 8 3 8 5 8 7 1 8 4 1 8 5 1 9 0 1 9 1 1 9 4 1 9 7 1 9 8 1 9 9 2 0 0 2 0 5 2 0 6 2 0 9 2 1 2 2 1 3 2 1 4 2 1 5 2 2 0 2 2 3 2 2 6 2 2 9 2 3 2 2 3 5 2 3 8 2 4 1 2 4 3 ” N 0 ! ( - W t W u B W ( w ‘ O w Q w D C w D w t O P w P P w H N W P I m ’ ' U P m 0 H > ) ( h § o ( ( 0 & ) fl ( ( 0 l > a ( d 3 ( 0 ‘ m l d ) d : i O 3 P P 4 ‘ 0 F N ) O P . 0 5 H O J U U H N Q U - U fi ’ ‘ C U ‘ U U U V ’ G C D U \ W h e a t H a r v e s t e d A r e a - A r g e n t i n a T o t a l W h e a t C o n s u m p t i o n - A r g e n t i n a . . . . W h e a t F e e d C o n s u m p t i o n - A r g e n t i n a W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n - A r g e n t i n a W h e a t N e t E x p o r t s - A r g e n t i n a W h e a t E n d i n g S t o c k s - A r g e n t i n a C o a r s e G r a i n P r o d u c t i o n - A r g e n t i n a C o a r s e G r a i n H a r v e s t e d A r e a - A r g e n t i n a T o t a l C o a r s e G r a i n C o n s u m p t i o n - A r g e n t i n a C o a r s e G r a i n F e e d C o n s u m p t i o n - A r g e n t i n a C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n A r g . n t 1 n a . . . . . . I O O I O I I I I I O I I O I O I O . . . . C o a r s e G r a i n N e t E x p o r t s - A r g e n t i n a . . . . . C o a r s e G r a i n E n d i n g S t o c k s - A r g e n t i n a . . . S o y b e a n P r o d u c t i o n - A r g e n t i n a . . . . . . . . . . . S o y b e a n H a r v e s t e d A r e a - A r g e n t i n a S o y m e a l E q u i v a l e n t C o n s u m p t i o n - A r g e n t i n a S o y o i l E q u i v a l e n t C o n s u m p t i o n - A r g e n t i n a S o y m e a l E n d i n g S t o c k s - A r g e n t i n a S o y o i l E n d i n g S t o c k s - A r g e n t i n a S o y b e a n E n d i n g S t o c k s - A r g e n t i n a S o y m e a l E q u i v a l e n t N e t E x p o r t s - A r g e n t i n a S o y o i l E q u i v a l e n t N e t E x p o r t s - A r g e n t i n a P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y m e a l - A r g e n t i n a S o y m e a l N e t E x p o r t s - A r g e n t i n a S o y o i l N e t E x p o r t s - A r g e n t i n a S o y b e a n N e t E x p o r t s - A r g e n t i n a W h e a t P r o d u c t i o n - A u s t r a l i a W h e a t H a r v e s t e d A r e a - A u s t r a l i a T o t a l W h e a t C o n s u m p t i o n - A u s t r a l i a W h e a t F e e d C o n s u m p t i o n - A u s t r a l i a W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n - A u s t r a l i a W h e a t N e t E x p o r t s - A u s t r a l i a W h e a t E n d i n g S t o c k s - A u s t r a l i a C o a r s e G r a i n P r o d u c t i o n - A u s t r a l i a C o a r s e G r a i n H a r v e s t e d A r e a - A u s t r a l i a T o t a l C o a r s e G r a i n C o n s u m p t i o n - A u s t r a l i a C o a r s e G r a i n F e e d C o n s u m p t i o n - A u s t r a l i a C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n A u s t r a l i a C o a r s e G r a i n N e t E x p o r t s C o a r s e G r a i n E n d i n g S t o c k s - W h e a t P r o d u c t i o n - B r a z i l W h e a t H a r v e s t e d A r e a - B r a z i l T o t a l W h e a t C o n s u m p t i o n - B r a z i l W h e a t N e t I m p o r t s - B r a z i l W h e a t E n d i n g S t o c k s - B r a z i l C o a r s e G r a i n P r o d u c t i o n - B r a z i l C o a r s e G r a i n H a r v e s t e d A r e a - B r a z i l T O t a l C o a r s e G r a i n C o n s u m p t i o n - B r a z i l C o a r s e G r a i n N e t I m p o r t s - B r a z i l . . . . . . . . - A u s t r a l i a . . . . . A u s t r a l i a . . . 1 X 2 4 4 2 4 9 2 5 0 2 5 3 2 5 6 2 5 7 2 6 0 2 6 1 2 6 6 2 6 7 2 7 0 2 7 3 2 7 4 2 7 7 2 7 8 2 8 3 2 8 6 2 8 9 2 9 2 2 9 5 2 9 8 2 9 9 3 0 0 3 0 3 3 0 4 3 0 5 3 0 7 3 0 8 3 1 3 3 1 4 3 1 7 3 2 0 3 2 1 3 2 4 3 2 5 3 3 0 3 3 1 3 3 4 3 3 7 3 3 8 3 4 2 3 4 3 3 4 8 3 4 9 3 5 2 3 5 5 3 5 6 3 6 1 3 6 2 m P M m U ( m - m P M m U m ‘ O m m m Q O W m P O m P H m P N m w » m a t n r m ' w n ) ' h u n ' t n m w n m c i a q ~ m ) u D . 1 0 D . 1 1 D . 1 2 D . 1 3 D . 1 4 D . 1 5 D . 1 6 D . 1 7 D . 1 8 D . 1 9 D . 2 0 0 . 2 1 D . 2 2 D . 2 3 m ' n w i m C o a r s e G r a i n E n d i n g S t o c k s - B r a z i l . . . . . . . . S o y b e a n P r o d u c t i o n - B r a z i l . . . . . . . . . . . . . . . . S o y b e a n H a r v e s t e d A r e a - B r a z i l . . . . . . . . . . . . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - B r a z i l . . . . S o y o i l E q u i v a l e n t C o n s u m p t i o n - B r a z i l . . . . . S o y m e a l E n d i n g S t o c k s - B r a z i l . . . . . . . . . . . . . S o y o i l E n d i n g S t o c k s - B r a z i l . . . . . . . . . . . . . . S o y b e a n E n d i n g S t o c k s - B r a z i l . . . . . . . . . . . . . S o y m e a l E q u i v a l e n t N e t E x p o r t s - B r a z i l . . . . S o y o i l E q u i v a l e n t N e t E x p o r t s - B r a z i l . . . . . P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y m e a l - B r a z i l . . . . . . . . . . . . . . . . . . . . . . . S o y m e a l N e t E x p o r t s - B r a z i l . . . . . . . . . . . . . . . S o y o i l N e t E x p o r t s - B r a z i l . . . . . . . . . . . . . . . . S o y b e a n N e t E x p o r t s - B r a z i l . . . . . . . . . . . . . . . W h e a t P r o d u c t i o n - C a n a d a . . . . . . . . . . . . . . . . . . W h e a t H a r v e s t e d A r e a - C a n a d a . . . . . . . . . . . . . . T o t a l W h e a t C o n s u m p t i o n - C a n a d a . . . . . . . . . . . W h e a t F e e d C o n s u m p t i o n - C a n a d a . . . . . . . . . . . . W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n - C a n a d a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t N e t E x p o r t s - C a n a d a . . . . . . . . . . . . . . . . . W h e a t E n d i n g S t o c k s - C a n a d a . . . . . . . . . . . . . . . C o a r s e G r a i n P r o d u c t i o n - C a n a d a . . . . . . . . . . . C o a r s e G r a i n H a r v e s t e d A r e a - C a n a d a . . . . . . . T o t a l C o a r s e G r a i n C o n s u m p t i o n - C a n a d a . . . . C o a r s e G r a i n F e e d C o n s u m p t i o n - C a n a d a . . . . . C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n - C a n a d a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n N e t E x p o r t s - C a n a d a . . . . . . . . . . C o a r s e G r a i n E n d i n g S t o c k s - C a n a d a . . . . . . . . W h e a t P r o d u c t i o n - D e v e l o p e d M a r k e t s . . . . . . . W h e a t H a r v e s t e d A r e a - D e v e l o p e d M a r k e t s . . . T o t a l W h e a t C o n s u m p t i o n - D e v e l o p e d M a r k e t s W h e a t F e e d C o n s u m p t i o n - D e v e l o p e d M a r k e t s . W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n - D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . W h e a t N e t E x p o r t s - D e v e l o p e d M a r k e t s . . . . . . W h e a t E n d i n g S t o c k s - D e v e l o p e d M a r k e t s . . . . C o a r s e G r a i n P r o d u c t i o n - D e v e l o p e d M a r k e t s C o a r s e G r a i n H a r v e s t e d A r e a - D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . T o t a l C o a r s e G r a i n C o n s u m p t i o n - D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n N e t I m p o r t s - D e v e l o p e d M a r k e t s C o a r s e G r a i n E n d i n g S t o c k s - D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . S o y b e a n P r o d u c t i o n - D e v e l o p e d M a r k e t s . . . . . S o y b e a n H a r v e s t e d A r e a - D e v e l o p e d M a r k e t s . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v a l e n t C o n s u m p t i o n - D e v e l o p e d M a r k e t s . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v a l e n t N e t I m p o r t s - X 3 6 5 3 6 8 3 6 9 3 7 4 3 7 7 3 8 0 3 8 3 3 8 6 3 8 9 3 9 0 3 9 1 3 9 4 3 9 5 3 9 6 3 9 8 3 9 9 4 0 4 4 0 5 4 0 8 4 1 1 4 1 4 4 1 5 4 1 6 4 2 1 2 2 4 2 5 4 2 8 4 3 1 4 3 3 4 3 4 4 3 9 4 4 0 4 4 3 4 4 6 4 4 9 4 5 0 D e v e l o p e d M a r k e t s S o y o i l E q u i v a l e n t N e t I m p o r t s - D e v e l o p e d M a r k e t s P e r c e n t a g e S o y m e a l E q u i v a l e n t I m p o r t e d a s S o y m e a l - D e v e l o p e d M a r k e t s . . . . . . . . . . . S o y m e a l N e t I m p o r t s - D e v e l o p e d M a r k e t s . . . S o y o i l N e t I m p o r t s - D e v e l o p e d M a r k e t s . . . . S o y b e a n N e t I m p o r t s - D e v e l o p e d M a r k e t s . . . S o y m e a l E n d i n g S t o c k s - D e v e l o p e d M a r k e t s . S o y o i l E n d i n g S t o c k s - D e v e l o p e d M a r k e t s . . S o y b e a n E n d i n g S t o c k s - D e v e l o p e d M a r k e t s . W h e a t P r o d u c t i o n - L e s s D e v e l o p e d C o u n t r i e s W h e a t H a r v e s t e d A r e a - L e s s D e v e l o p e d C o u n t r i e s T o t a l W h e a t C o n s u m p t i o n C o u n t r i e s W h e a t N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s W h e a t E n d i n g S t o c k s - L e s s D e v e l o p e d ‘ C o u n t r i e s C o a r s e G r a i n P r o d u c t i o n - L e s s D e v e l o p e d C o u n t r i e s C o a r s e G r a i n H a r v e s t e d A r e a - L e s s D e v e l o p e d C o u n t r i e s T o t a l C o a r s e G r a i n C o n s u m p t i o n - L e s s D e v e l o p e d C o u n t r i e s C o a r s e G r a i n N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s C o a r s e G r a i n E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s S o y b e a n P r o d u c t i o n - L e s s D e v e l O p e d C o u n t r i e s S o y b e a n H a r v e s t e d A r e a - L e s s D e v e l o p e d C o u n t r i e s S o y m e a l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d C o u n t r i e s S o y o i l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d C o u n t r i e s S o y m e a l E q u i v a l e n t N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s - L e s s D e v e l o p e d ' S o y o i l E q u i v a l e n t N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s P e r c e n t a g e S o y m e a l E q u i v a l e n t I m p o r t e d a s S o y m e a l - L e s s D e v e l o p e d C o u n t r i e s . . . . S o y m e a l N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s ' S o y o i l N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s S o y b e a n N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s S o y m e a l E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s S o y o i l E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s X 1 4 7 7 4 8 0 4 8 1 4 8 2 4 8 3 4 8 6 4 8 9 4 9 3 4 9 4 4 9 9 5 0 0 5 0 3 5 0 6 5 0 7 5 2 5 U : m C ; 0 1 w ( , 0 S o y b e a n E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t P r o d u c t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t H a r v e s t e d A r e a - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . T o t a l W h e a t C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t E n d i n g S t o c k s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n P r o d u c t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n H a r v e s t e d A r e a - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . T o t a l C o a r s e G r a i n C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . C o a r s e G r a i n N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n E n d i n g S t o c k s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . S o y b e a n P r o d u c t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n H a r v e s t e d A r e a - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . S o y o i l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . S o y m e a l E q u i v a l e n t N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . S o y o i l E q u i v a l e n t N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . P e r c e n t a g e S o y m e a l E q u i v a l e n t I m p o r t e d a s S o y m e a l - L e s s D e v e l o p e d O i l E x p o r t e r s . . . S o y m e a l N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t P r o d u c t i o n - N e w l y I n d u s t r i a l i z e d E x p o r t e r s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t H a r v e s t e d A r e a - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T o t a l W h e a t C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n P r o d u c t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X 1 1 5 4 5 5 4 9 5 5 0 5 5 5 5 5 6 5 5 9 U ! ‘ 1 ’ I n U l w w H P 4 ) L N 4 D C I Q ¢ a £ 4 ¢ fi c £ H ( $ J ‘ G 4 J ¢ U Q 9 ¢ 1 ¢ P 4 ‘ C F C C S S S S S S o o o o o o o a y y y a y y r r b b m o m s s e e e i e e e a a a l a n n l l o i n l G G E E r r P H q q E E a a r a q q u u i i o r u u i i n n d v v i i v u a e v v a N E c l s a a l e n t e t l l e d i t e e n e n i o d n t n t I n n t t g m A C N r t S n s a t - p r e C o N o S o n e e t t o o s u I s c v u m - I m x i m p m p - s e p t S p o t t i o o r v S l n e s S - i o v r t o B o n i t s v e c - - i o o t - - t i B S S e l S o S o . B t o o v o v . l c v i v i o B . i e i e l . c e t e t . . . . . . . B . B l l . . l l o o . . . . c c . . . . c c o o o . . t t . c . B B m & m ~ fl i o t k r fi n < ( c m w m » l ) o u U n fi h < ( t m m w - ' a o o e h d n < ‘ x m v n . l c 0 x m h d 1 ~ > m H u » : m o 0 a h r m t 1 - m 0 o w ‘ n a 0 « | ‘ 0 N U ‘ fl b 0 t \ ) 0 m m C o a r s e G r a i n H a r v e s t e d A r e a - N e w l y I n d u s t r i a l i z e d C o u n t r i e s T o t a l C o a r s e G r a i n C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s C o a r s e G r a i n N e t I m p o r t s C o u n t r i e s C o a r s e G r a i n E n d i n g S t o c k s - I n d u s t r i a l i z e d C o u n t r i e s N e w l y S o y b e a n P r o d u c t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y b e a n H a r v e s t e d A r e a - N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y m e a l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d C o u n t r i e s S o y o i l E q u i v a l e n t C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y m e a l E q u i v a l e n t N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y o i l E q u i v a l e n t N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s P e r c e n t a g e S o y m e a l E q u i v a l e n t I m p o r t e d a s S o y m e a l - N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y m e a l N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d _ C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y o i l E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t P r o d u c t i o n - S o v i e t B l o c W h e a t H a r v e s t e d A r e a - S o v i e t B l o c T o t a l W h e a t C o n s u m p t i o n - S o v i e t B l o c W h e a t N e t I m p o r t s - S o v i e t B l o c W h e a t E n d i n g S t o c k s - S o v i e t B l o c C o a r s e G r a i n P r o d u c t i o n - S o v i e t B l o c . C o a r s e G r a i n H a r v e s t e d A r e a T o t a l C o a r s e G r a i n C o n s u m p t i o n - - S o v i e t B l o c S o v i e t B l o c P e r c e n t a g e S o y m e a l E q u i v a l e n t I m p o r t e d a s S o y m e a l - S o v i e t B l o c . . . . . . . . . . . . . S o y m e a l N e t I m p o r t s - S o v i e t B l o c S o i n l N e t I m p o r t s - S o v i e t B l o c X 1 1 1 - N e w l y I n d u s t r i a l i z e d N Q P x N Z O W C - W t W n W fl t fi m P fl I m K w W P fi ' o — W P I Z H n P K w L X . m . . W m . . N . m O K . 1 7 L . 1 L . 2 L . 3 L . 4 S o y b e a n N e t I m p o r t s - S o v i e t B l o c W h e a t P r o d u c t i o n - C h i n a . . . . . . . . . . . . . . . . . . . . . . . . . W h e a t H a r v e s t e d A r e a - C h i n a . . . . . . . . . . . . . . . . . . . . T O t a l W h e a t C o n s u m p t i o n - C h i n a . . . . . . . . . . . . . . . . . W h e a t N e t I m p o r t s - C h i n a . . . . . . . . . . . . . . . . . . . . . . . C o a r s e G r a i n P r o d u c t i o n - C h i n a . . . . . . . . . . . . . . . . . C o a r s e G r a i n H a r v e s t e d A r e a - C h i n a . . . . . . . . . . . . . T o t a l C o a r s e G r a i n C o n s u m p t i o n - C h i n a . . . . . . . . . . C o a r s e G r a i n N e t I m p o r t s - C h i n a . . . . . . . . . . . . . . . . S o y b e a n P r o d u c t i o n - C h i n a . . . . . . . . . . . . . . . . . . . . . . S o y b e a n H a r v e s t e d A r e a - C h i n a . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - C h i n a . . . . . . . . . . S o y o i l E q u i v a l e n t C o n s u m p t i o n - C h i n a . . . . . . . . . . . S o y m e a l E q u i v a l e n t N e t I m p o r t s - C h i n a . . . . . S o y o i l E q u i v a l e n t N e t I m p o r t s - C h i n a . . . . . . S o y m e a l N e t I m p o r t s - C h i n a S o y o i l N e t I m p o r t s - C h i n a S o y b e a n N e t I m p o r t s - C h i n a W h e a t P r i c e - U . S . G u l f . . c o a r s e G r a i n p r i c e - U . S s G U l f e e e e s s e s e s e e e S o y m e a l P r i c e - 4 4 % D e c a t u r S o y b e a n P r i c e - U . S . G u l f x i v 6 9 7 6 9 9 7 0 0 7 0 5 7 0 6 7 0 9 7 1 0 7 1 5 7 1 6 7 1 9 7 2 0 7 2 5 7 2 8 7 3 1 7 3 2 7 3 3 7 3 6 7 3 7 7 3 9 7 4 2 7 4 5 7 4 8 d W H a o d d r u t a s a i . o s l i i l i i d s o h s l o e o r t t w t e n e i a i r p l d g e y i s u s g e v g d i v r e e o x d a n a r l w t u r e h i o f y d f s p t b w w p e c s e a l n i h e a t . l . e l a t c i t r i i a a d r o c h t c c p m t i r d t e a h a m a e i a h i i d d n e o t r r t e n l o e v h d a r s s k t y n d a n c u a t a e i . s n d d h o c d a n o t e o c e n i t f a r r i f t i i r n y e s e s t e n f b o d s i e g n p i n f r e m o c a d h a o a n a t n a a t r h v t e r t a n t i t h m t s e a g r c h c v n a e e l i a i e o s a o m e e y b g i o n n m l n n n p e c e p l e v d e y e x t c a t a e a s a e p i e a o h l o r e e c a r g e d l c r g d s t s r o n f e x n y o a s l t d t p i p s h w r s o r e r t m a o r s t 1 a i y o o n i p o h s e 9 e v s s m g l o d . . 6 t c a t i p o e s r u 0 e g e h o v r a d t c s r p a a b s e r e c e e t . a o n d t r A o l d d r i t i y l g i t c n s o e s n i e n h r o s n . . i t c g D e e m t a y n i u a e r n p h a r d d r g A c a T n e a n r o c r n e i h i y d n d h e n t s o d n i e e g u a w a h u m t s a t x t n s e c t m a m a h s e p r t h t g e r r b e e o a i h m b c e s e r k e r d n s i x t n n b i a e o i s i r e h y t e i t a d f r f a e . h n f w o g e l g s a n o o s m a n r s a o n s h i p t c c t c c o a s b a h n e e o o r g o o e g e f a r c c m m a r u m v g h d i r h m m i n p t r a d e o e n o o t c e e r r e a v i r c a n e v i n e C H A P T E R I I N T R O D U C T I O N r e l a t i o n s h i p s o f t h e w o r l d a g r i c u l t u r a l s y s t e m . 1 . T e b m A g r i c u l t u r e i s a d y n a m i c s y s t e m o f c o n s t a n t l y e v o l v i n g a n d r e d e f i n e d i n t e r n a l a n d e x t e r n a l p o l i c i e s . T h e s e c h a n g e s . c o u p l e d w i t h c h a n g e s i n t h e m a c r o e c o n o m y i n c r e a s e p o n e n t b e d i s a s s e m b l e d . r e s t r u c t u r e d a n d r e - e s t i m a t e d w i t h 2 t h e d i f f i c u l t y o f a n a l y z i n g p o l i c y c h a n g e s w i t h i n a c o u n t r y o r r e g i o n . I n o r d e r t o e f f e c t i v e l y s t u d y t h e i m p a c t s o f a l t e r n a t i v e s e t s o f a s s u m p t i o n s u p o n a i n t e r n a t i o n a l l y t r a d e d c o m m o d i t y . a c a r i c a t u r e o f t h e e n t i r e w o r l d i s r e q u i r e d . o n e s i m p l e e n o u g h t o m a i n t a i n y e t c o m p l e x e n o u g h t o p r o v i d e t h e r i c h n e s s o f d e t a i l n e c e s s a r y f o r a n a l y s i s . W i t h i n t h i s c o n t e x t . t h e M . S . U . A g r i c u l t u r e M o d e l w a s d e v e l o p e d t o p r o v i d e a f r a m e w o r k f o r p o l i c y a n a l y s i s a s w e l l a s l o n g - t e r m a n n u a l f o r e c a s t s o f s u p p l y . d e m a n d a n d p r i c e i n t h e w o r l d u n d e r v a r i o u s p o l i c y a n d m a c r o e c o n o m i c a s s u m p - t i o n s . T h e m o d e l w a s i n i t i a l l y e s t i m a t e d i n t h e l a t e 1 9 7 0 s a n d i n t h e e n s u i n g t i m e . a n u m b e r o f s i g n i f i c a n t c h a n g e s h a v e o c c u r r e d i n t h e w o r l d e c o n o m y w i t h i m p o r t a n t i m p l i c a - t i o n s f o r b o t h a g r i c u l t u r a l p r o d u c t i o n a n d t r a d e . I f t h e m o d e l i s t o c o n t i n u e t o p r o v i d e a r e a s o n a b l e f r a m e w o r k f o r f o r e c a s t i n g a n d p o l i c y a n a l y s i s . t h e r e c e n t c h a n g e s . l i n k a g e s . a n d r e l a t i o n s h i p s i n a g r i c u l t u r e a n d t r a d e m u s t b e r e p r e s e n t e d . T h i s r e q u i r e s t h a t t h e i n t e r n a t i o n a l c o m - t h e m o s t c u r r e n t d a t a . . c v s T h e o b j e c t i v e s o f t h i s s t u d y a r e t o c r e a t e a m o d e l o f w o r l d a g r i c u l t u r e . o n e w h i c h h a s i t s o w n U . S . r e g i o n b u t c a n a l s o b e l i n k e d t o a m o r e d e t a i l e d d o m e s t i c c o m p o n e n t o f t h e M S U A g r i c u l t u r e M o d e l a n d p r o v i d e b o t h f o r e c a s t s a n d t h e f r a m e w o r k f o r p e r f o r m i n g p o l i c y a n a l y s i s . T h e r e w i l l b e f o u r s t a g e s i n f u l f i l l i n g t h e s e o b J e c - 3 t i v e s . I n t h e f i r s t s t a g e . b a s e d u p o n t h e s t r u c t u r e o f a g r i c u l t u r e a n d t r a d e p a t t e r n s f o r d i f f e r e n t e c o n o m i c r e g i o n s o f t h e w o r l d . a m o d e l w i l l b e c o n s t r u c t e d . T h i s m o d e l w i l l b e a v e r y s i m p l e r e p r e s e n t a t i o n o f w o r l d a g r i - c u l t u r e . I t i s n o t m e a n t t o b e a m o d e l o f w o r l d a g r i c u l t u r e i n d e t a i l b u t r a t h e r a s i m p l e . a n a l y s t d r i v e n m o d e l w h i c h c a n b e m o d i f i e d t o s u i t a v a r i e t y o f n e e d s . S e c o n d . t h e c o m p l e t e d m o d e l w i l l b e r u n t o p r o v i d e a n e x - p o s t f o r e c a s t f o r p e r f o r m a n c e a p p r a i s a l . T h i r d . a b a s e l i n e f o r e c a s t o f w o r l d a g r i c u l t u r e f o r 1 9 8 5 - 9 4 w i l l b e g e n e r a t e d a n d l a s t l y . a p o l i c y s h o c k w i l l b e i n t r o d u c e d t o o b s e r v e t h e d e v i a t i o n s f r o m t h e b a s e l i n e . . T a n m r r s n h n s s e i s o e i s s h d d A C a e b e n o n t n e l i r a t d r n h a s r e l s r g * d y g c d t f o e r o u o e s ' s i u r g m s i 1 t c m h m s i s . ’ t o g a t a t i d h n n h a e h o i d e ( I I n t s d h e i i g e I m A t o m f n o f h S h o o s e t d t e s t A ) e d r . r h c e l f c F n a g e A o o a o p r s c r m t o a e F o e p i d b e A d v c o l P i e e a n e l a o s r s a x i n m f c s t l d t o r i b S a m i r a t e o y t n n i e l o e p F y o e c t l i s d s s a g d e o d 2 y d i n n g o l s e I A i e f b 1 g t s r f a d r a i g h t b e n e c d i e p b g g u t g e r y i m u r l a e o p t n g o t f n A o e u a d o s b l r t i e r k i a i n l m i c f a l o s i n y o n 1 n r d n w P 9 a a g . h o 7 n A n 1 i l 6 d d p b 0 a c p o i e l h l c t t a F c y i y n a h i o s e d i w s m i F i l e n h o A n l d e d ( i d l i c m s P r i ) - C H A P T E R I I R E V I E W O F P R E V I O U S M O D E L I N G E X P E R I E N C E S A n u m b e r o f s i m u l t a n e o u s m o d e l s o f w o r l d a g r i c u l t u r e h a v e b e e n e s t i m a t e d . e a c h s t r u c t u r e d i n r e s p o n s e t o t h e u s e s i n t e n d e d f o r t h a t m o d e l . I n o r d e r t o p r o v i d e a b a s i s f o r c o m p a r i s o n w i t h t h e s t r u c t u r e o f t h e M S U A g r i c u l t u r a l M o d e l a n d t o o b s e r v e t h e d i f f e r e n c e s i n t h e o r y u n d e r l y i n g i n t e r n a - t i o n a l t r a d e m o d e l s . t h r e e m o d e l s r e p r e s e n t i n g d i f f e r e n t s t y l e s o f m o d e l i n g w i l l b e r e v i e w e d . 2 , ; [ h e : 5 2 M o d e l ’ A l l n o t e s w h i c h r e f e r e n c e q u o t e s o r p u b l i c a t i o n s w i l l b e n u m b e r e d a n d a p p e a r a t t h e e n d o f e a c h c h a p t e r . A l l n o t e s o f c l a r i f i c a t i o n o r c o m m e n t w i l l b e s t a r r e d a n d a p p e a r a t t h e b o t t o m o f t h e r e s p e c t i v e p a g e . 4 5 o v e r a 1 5 - 2 0 y e a r t i m e h o r i z o n ( T a b l e 2 . 1 ) . T h e F A P m o d e l i s a " B a s i c L i n k e d S y s t e m “ w h e r e a b a s i c T a b l e 2 . 1 C o m p a r i s o n o f M o d e l S t r u c t u r e s F A P G O L G L O B A L R I C E F U L L S I M P L E R e g i o n s i 2 1 S 2 7 n . a . 5 P r o d u c t s 1 0 2 0 $ 2 0 1 : E x p l i c i t L i v e s t o c k Y Y Y N 3 E x p l i c i t S t o c k s N Y N Y P r i c e s ” N I . R I R B R T R B C o n s t r a i n e d A r e a Y Y N Y L R & S R E l a s t i c i t y S u p p l y N N N Y D e m a n d N N N N N o n - A g r i c u l t u r e Y N N N E n d o g e n o u s P o l i c y S o m e S o m e N N & * N i s fl o m i n a i I n t e r n a l . R i s i e a i i n t e r n a l . R T S R E I I T r a d e . R b fi n l k m m fi s t r u c t u r e f o r e a c h r e g i o n s o l v e s f o r d o m e s t i c e q u i l i b r i u m i n n o n - t r a d e d g o o d s a n d p o l i c y a n d t h e i n d i v i d u a l r e g i o n s a r e l i n k e d t o g e t h e r t h r o u g h e x c e s s s u p p l y a n d d e m a n d e q u a t i o n s . E a c h i n d i v i d u a l r e g i o n c o n s i s t s o f t w o s e c t o r s . a g r i c u l t u r e a n d a s i m p l e n o n - a g r i c u l t u r e s e c t o r e a c h c o n t a i n i n g t h r e e s u b - c o m p o n e n t s r e p r e s e n t i n g p r o d u c t i o n . c o n s u m p t i o n a n d - R e a l I n t e r n a l - W o r l d p r i c e s a d j u s t e d f o r t r a n s p o r t a t i o n c o s t s . e x c h a n g e r a t e s . e n d o g e n o u s p o l i c i e s a n d d e f l a t e d b y a p r i c e i n d e x . N o m i n a l I n t e r n a l 1 W o r l d p r i c e s a d j u s t e d f o r t r a n s p o r t a t i o n c o s t s . e x c h a n g e r a t e s . a n d e n d o g e n o u s p o l i c i e s . R e a l T r a d e 8 U n a d j u s t e d w o r l d p r i c e s d e f l a t e d b y a p r i c e i n d e x . R e a l B o r d e r . W o r l d p r i c e s a d j u s t e d f o r e x c h a n g e r a t e s . t r a n s p o r t a t i o n c o s t s . e x o g e n o u s p o l i c i e s a n d d e f l a t e d b y a p r i c e i n d e x . g o v e r n m e n t p o l i c y . T h e p r o d u c t i o n c o m p o n e n t h a s t w o s t a g e s o f d e c i s i o n . T h e f i r s t s t a g e d e c i s i o n p r o v i d e s e s t i m a t e s o f t o t a l a v a i l a b i l i t y o f l a n d . c a p i t a l . l a b o r . a n d f e e d c o n c e n t r a t e s . T h e s e e s t i m a t e s a r e b a s e d u p o n p r e d e t e r m i n e d v a r i a b l e s . T o t a l a v a i l a b l e l a n d i s a s i m p l e t i m e t r e n d : F i s c h e r a n d F r o h b e r g 2 s t a t e t h a t a t t e m p t s t o e s t i m a t e t o t a l a c r e a g e a s a f u n c t i o n o f o t h e r e c o n o m i c v a r i a b l e s r e s u l t e d i n i n s i g - n i f i c a n t t - s t a t i s t i c s . T o t a l l a b o r . c a p i t a l a n d f e r t i l i z e r a v a i l a b i l i t y a r e e s t i m a t e d u s i n g a s t r u c t u r e w h e r e p r e d e t e r m i n e d v a r i a b l e s a r e p r o x i e s f o r e x p e c t a t i o n s . A l t h o u g h t h e i n d e p e n d e n t v a r i a b l e o n l y a p p e a r s o n t h e r i g h t - h a n d s i d e i n t h e f o r m u l a - t i o n o f l a b o r a n d c a p i t a l a v a i l a b i l i t y . a l l o t h e r r i g h t h a n d v a r i a b l e s a r e e i t h e r l a g g e d o r e x o g e n o u s v a r i a b l e s . E x a m p l e s o f o t h e r v a r i a b l e s u s e d i n t h e s e e q u a t i o n s a r e t h e l a g g e d s h a r e o f t h e t o t a l a v a i l a b l e i n p u t u s e d i n a g r i - c u l t u r e ( l a b o r a n d c a p i t a l ) . d e p r e c i a t i o n . t h e t e r m s o f t r a d e b e t w e e n t h e a g r i c u l t u r e a n d n o n - a g r i c u l t u r e s e c t o r s . g r o s s d o m e s t i c p r o d u c t a n d l a g g e d g o v e r n m e n t p o l i c y ( c a p i t a l ) a n d t h e c u r r e n t i n p u t c o s t a n d v a l u e o f l a g g e d p r o d u c t i o n ( f e r t i l i z e r ) . T h e d e m a n d f o r f e e d c o n c e n t r a t e s a s a n i n p u t i s a m i n i m i z a t i o n p r o b l e m w h e r e t h e p r o d u c e r a t t e m p t s t o m i n i m i z e t h e c o s t s o f f e e d i n g s u b j e c t t o t h e f e e d r e q u i r e m e n t s o f h i s h e r d . T h e r e f o r e . t h e r e l e v a n t v a r i a b l e s a r e t h e r e q u i r e - m e n t s o f c o n c e n t r a t e p e r a n i m a l t y p e , t h e s h a r e o f a n i m a l s 7 o f a g i v e n t y p e . t h e p r i c e o f f e e d a n d a p r o x y f o r f e e d e f f i c i e n c y . T h e s e c o n d s t a g e o f p r o d u c t i o n d e c i s i o n m a k i n g i s t h e a l l o c a t i o n o f i n p u t s . T h e p r o d u c e r a t t e m p t s t o m a x i m i z e t o t a l n e t r e v e n u e - d e f i n e d a s t h e e x p e c t e d p r i c e p e r c o m m o d i t y u n i t m i n u s t h e p r i c e o f t h e i n p u t s p e r u n i t . t i m e s t h e n u m b e r o f u n i t s a n d s u m m e d a c r o s s a l l c o m m o d i t i e s . R e v e n u e m a x i m i z a t i o n i s s u b j e c t t o t h e c o n s t r a i n t t h a t t h e a m o u n t o f i n p u t a p p l i e d t o a n y c o m m o d i t y m u s t b e l e s s t h a n o r e q u a l t o t h e t o t a l a v a i l a b l e i n p u t s . T h e c o m m o d i t y d e m a n d c o m p o n e n t d i v i d e s i n c o m e w i t h i n r e g i o n i n t o b o t h s e c t o r s a n d c l a s s e s . I n d e v e l o p i n g c o u n t r i e s . t h e r e a r e t w o i n c o m e c l a s s e s d e p e n d e n t u p o n t h e s e c t o r o f e m p l o y m e n t ( a g r i c u l t u r e a n d n o n - a g r i c u l t u r e ) . I n d e v e l o p e d c o u n t r i e s . t h e r e i s o n l y o n e c l a s s o f i n c o m e . i s : t h e r e i s n o e x p l i c i t a s s u m p t i o n o f i n c o m e d i s p a r i t y b e t w e e n e m p l o y m e n t s e c t o r s . E x p e c t e d i n c o m e i s c a l c u l a t e d f o r e a c h c l a s s a n d b r o k e n i n t o a g r i c u l t u r a l a n d n o n - a g r i c u l t u r a l e x p e n d i t u r e s u s i n g a " l i n e a r e x p e n d i t u r e s y s t e m w i t h h a b i t f o r m a t i o n “ 3 . T h e e x p e n d i t u r e f o r a g r i c u l t u r a l p r o d u c t s i s f u r t h e r b r o k e n i n t o e x p e n d i t u r e f o r e a c h c o m m o d i t y u s i n g t h e c o m m o d i t y ’ s e x p e n d i t u r e e l a s t i c i t y . a n o n - l i n e a r e s t i m a t e o f p e r c a p i t a e x p e n d i t u r e . T h e m o d e l s f o r e a c h r e g i o n t a k e w o r l d p r i c e s a n d a d j u s t t h e m b y g o v e r n m e n t p o l i c i e s a n d t h e p r o c e s s i n g m a r g i n t o d e r i v e e x p e c t e d r e t a i l p r i c e s . E x p e n d i t u r e s a r e t h e n d i v i d e d b y e x p e c t e d p r i c e s t o d e t e r m i n e t h e q u a n t i t y o f t h e 2 m d e s c i s d T l s s t o a r d e l m c o m o m s l e e r m p i o o s x h o i e T t t s e d e e e s c o s r t h i i i r i d / a G s p e d e e r u a p r u v s a l p n l i c e . i i p d y o e l n i u p e l s n n T l d d y - s k t a o h - 0 e h n e f ( o d e d O a r 1 i n n 1 - r d l m d d 3 e e f o a e u s g t e d d t m y i l a v i i s q n m d e e e t a e o l i d m e n l l a n - s a m d r a s w - p n s l t i L h d t e a n ) v c u o a b o d e f h a t d u n a s t r a o e t c o g c l o s y t s a i o l d l k c l r o i f n s G O t l s ( ( e c k e a r . s s u r n m . k v i n v c o s i t h O i T b d ) n L u e h e m e H ) r d e o p o d o i g o r d ‘ e u o e o e u n l a l m g n l g . l m i s a d d c r i d m i v e r , l m v e m e o n e a i r f e r w l r d n e t o p o i e i h l o n s d k g t r v n i o o t s R u e i i o e n a i e u s o g n n t t n s g d h e s h h o e e n P a r i e v i F o n r h f n e t a A r e d 8 i n d i v i d u a l c o m m o d i t y w h i c h i s c o n s u m e d a t e a c h i n c o m e l e v e l . G o v e r n m e n t p o l i c i e s c a n b e e i t h e r b o u n d s o r t a r g e t s . T h e f i n a l t e s t i n t h e s o l u t i o n o f t h e d o m e s t i c m o d e l s i s f o r t h e s a t i s f a c t i o n o f t h e b u d g e t c o n s t r a i n t . I f t h e c o n - s t r a i n t i s n o t s a t i s f i e d . g o v e r n m e n t p o l i c i e s ( t a x e s . p u b l i c c o n s u m p t i o n . t r a d e b a l a n c e ) a r e a d j u s t e d a n d t h e m o d e l i s r e s o l v e d u n t i l t h e b u d g e t c o n s t r a i n t i s s a t i s f i e d . A t s o l u t i o n . a l l p r o d u c t i o n n o t c o n s u m e d d o m e s t i c a l l y i s c o n s i d e r e d e x c e s s s u p p l y w h i l e a s h o r t f a l l i n p r o d u c t i o n d e t e r m i n e s e x c e s s d e m a n d . I n t h e f i r s t i t e r a t i o n . t h e w o r l d p r i c e i s s e t e q u a l t o t h e p r e v i o u s p e r i o d ’ s p r i c e . O n c e t h e r e g i o n a l m o d e l s s o l v e . t h e i n t e r n a t i o n a l m o d e l t e s t s t o a s s u r e t h a t e x c e s s s u p p l y a n d e x c e s s d e m a n d a r e e q u a l . I f t h e y a r e n o t t h e m o d e l a d j u s t s w o r l d p r i c e a n d r e s o l v e s t h e i n d i v i d u a l m o d e l s . c o n t i n u i n g t h i s p r o c e s s u n t i l e x c e s s s u p p l y a n d e x c e s s d e m a n d a r e e q u a t e d . 9 L i u h a v e q u e s t i o n e d h o w m u c h i s t o b e g a i n e d f r o m t h e m o r e c o m p l e x m o d e l s : " A s i m p l e s t r u c t u r e m a y h a v e a c o s t i n t e r m s o f o v e r a l l ’ g o o d n e s s o f f i t ’ c h a r a c t e r i s t i c s . H o w e v e r . g i v e n t h e p r o x i m a t e n a t u r e o f m u c h o f t h e p o l i c y d a t a a n d p a r a m e t e r s n e e d e d i n a p o l i c y o r i e n t e d m o d e l . i t i s n o t c l e a r t h a t t h e c o m p l e x i t y i n v o l v e d i n a m o d e l w i t h a b e t t e r f i t i s w o r t h t h e e f f o r t . " 4 W h e n e s t i m a t e d a s a s i m p l e / r e d u c e d s t r u c t u r e . e a c h i n d i v i d u a l r e g i o n c o n t a i n s f i v e c o m p o n e n t s : s u p p l y . d e m a n d . t r a d e . p r i c e . a n d d o m e s t i c i n d i c a t o r s . T h e r e a l p r i c e f a c i n g a n i n d i v i d u a l r e g i o n u n d e r n o c o n s t r a i n t i s t h e w o r l d p r i c e d i v i d e d b y a n e x o g e n o u s p r i c e i n d e x . H o w e v e r . i f t h e c o u n t r y i s b o u n d b y a n i m p o r t o r e x p o r t q u o t a t h e r e i s a m e c h a n i s m t o a d j u s t i n t e r n a l p r i c e s b e l o w t h o s e o f t h e w o r l d f o r a n e x p o r t b o u n d o r r a i s e i n t e r n a l p r i c e s a b o v e w o r l d l e v e l s i f t h e r e g i o n f a c e s a n i m p o r t q u o t a . I f n e t t r a d e e x c e e d s t h e q u o t a . a p r i c e a d j u s t m e n t w i l l b e d e f i n e d t o b e t h e q u o t a m i n u s t h e t r a d e a b l e s u r p l u s o v e r t h e s u m o f t r a d e a n d e i t h e r s u p p l y o r d e m a n d t i m e s a c o n v e r g e n c e p a r a m e t e r . T h i s a d j u s t m e n t c o e f f i c i e n t w i l l b e p o s i t i v e i f i m p o r t s e x c e e d t h e q u o t a a n d n e g a t i v e i f e x p o r t s e x c e e d t h e q u o t a . L i u a n d R o n i n g e n 5 d e f i n e s u p p l y a s p r o d u c t i o n p l u s b e g i n n i n g s t o c k s . T h e f o r m u l a t i o n o f a s t a n d a r d s u p p l y e q u a t i o n u s e s r e a l t r a d e p r i c e s . a t i m e t r e n d f o r t e c h n i c a l c h a n g e a n d a n e x o g e n o u s s u p p l y s h i f t e r . T h e r e l e v a n t p r i c e s r a r e t h e l a g g e d a n d c u r r e n t p r i c e s f o r t h e o w n a n d c o m p e t i n g c r o p . d o m e s t i c m a r g i n a n d a n y c o n s u m p t i o n . p r o d u c t i o n o r i m p o r t 1 0 D e m a n d i s e s t i m a t e d o n a p e r c a p i t a q u a n t i t y b a s i s a s a f u n c t i o n o f c u r r e n t a n d l a g g e d o w n p r i c e s . c u r r e n t a n d l a g g e d o t h e r c o m m o d i t y p r i c e s a n d r e a l i n c o m e . I n t h e s p e c i f i c a t i o n o f t h e d e m a n d e q u a t i o n s r e a l i n c o m e a n d p o p u l a t i o n a r e e x o g e n o u s v a r i a b l e s . F o r o i l s e e d s . t h e d e m a n d f o r c r u s h d r i v e s b o t h o i l s e e d d e m a n d a n d s u p p l y . T h e d e m a n d f o r c r u s h i s e s t i m a t e d a s a f u n c t i o n o f t h e r a t i o o f t h e w e i g h t e d p r i c e s o f t h e e n d p r o d u c t s o v e r t h e p r i c e o f w h o l e o i l s e e d s . A t i m e t r e n d i s i n c l u d e t o a c t a s a p r o x y f o r c h a n g e s i n c r u s h c a p a c i t y . T h e s u p p l y o f o i l s a n d m e a l s a r e t h e n d e f i n e d a s t h e e x o g e n o u s c r u s h i n g y i e l d t i m e s t h e e s t i m a t e d q u a n t i t y c r u s h e d . A t t h e i n i t i a l w o r l d p r i c e . d o m e s t i c s u p p l y a n d d e m a n d a r e s o l v e d a n d t h e e x c e s s s u p p l y o r d e m a n d o f e a c h r e g i o n i s l i n k e d i n i n t e r n a t i o n a l t r a d e . I f e x c e s s s u p p l y a n d d e m a n d a r e n o t e q u a l . t h e w o r l d p r i c e i s a d j u s t e d a n d t h e m o d e l i s r e s o l v e d . T h e f u l l / s t a n d a r d m o d e l i s d e s i g n e d t o p r o v i d e m o r e d e t a i l b y i n c l u d i n g f e e d a n d f o o d d e m a n d . s t o c k s . s u p p l y . t r a d e a n d c r o s s c o m m o d i t y i n f l u e n c e s . I n t e r n a l p r i c e s a r e m o d i f i e d t o a c c o u n t f o r e x c h a n g e r a t e c h a n g e s . t h e r e b y c o n v e r t i n g i n t e r n a t i o n a l p r i c e s t o t h o s e a t t h e c o u n t r y ’ s b o r d e r . T h e t r a d e p r i c e c a n b e c o n v e r t e d i n t o a s u p p l y p r i c e b y s u b t r a c t i n g t h e t r a d e m a r g i n s a n d a n y p r o d u c t i o n o r e x p o r t t a x e s : t h e d e m a n d p r i c e i s t h e s u p p l y p r i c e p l u s t h e 1 1 t a x e s / m a r g i n s . I n t h i s f o r m u l a t i o n t h e m a r g i n s a r e c a l c u l a t e d a s f u n c t i o n s o f c u r r e n t a n d l a g g e d r a t i o s o f a n o n - a g r i c u l t u r e p r i c e t o t h e d e m a n d p r i c e ( f r e i g h t c o s t s f o r t r a d e d g o o d s a r e i n c l u d e d i n t h e p r i c e l i n k a g e e q u a t i o n s ) . t h e t a x e s a r e e x o g e n o u s l y d e t e r m i n e d . I n t h e f u l l / s t a n d a r d m o d e l s t h e r e a r e f o u r e q u a t i o n s i n t h e p r o d u c t i o n c o m p o n e n t . F i r s t . a n a v e r a g e r e a l r e t u r n t o l a n d i s g e n e r a t e d b y d i v i d i n g t h e s u m o f g r o s s r e t u r n s p e r c r o p ( s u p p l y p r i c e t i m e s y i e l d t i m e s a r e a ) b y t h e s u m o f t h e c o s t s o f p r o d u c t i o n p e r c r o p ) . T h e t o t a l s u p p l y o f l a n d i s t h e n e s t i m a t e d a s a f u n c t i o n o f t h e l a g g e d a v e r a g e r e a l r e t u r n t o l a n d a n d a t i m e t r e n d . H a r v e s t e d a r e a i s a f u n c t i o n o f l a g g e d r e a l r e t u r n s f r o m t h e o w n a n d c o m p e t i n g c r o p s a n d t h e t o t a l s u p p l y o f l a n d c r o p l a n d w i t h t h e s u m o f t h e a r e a s c o n s t r a i n e d t o e q u a l t h e t o t a l s u p p l y o f l a n d . Y i e l d s a r e e s t i m a t e d a s a f u n c t i o n o f a t i m e t r e n d . r e p r e s e n t i n g t e c h n o l o g i c a l c h a n g e . a r a t i o o f t h e c r o p p r i c e t o a n i n d e x o f i n p u t p r i c e s . c r o p a r e a a n d a s u p p l y s h i f t e r f o r w e a t h e r . L a s t l y . p r o d u c t i o n i s d e f i n e d a s t h e p r o d u c t o f h a r v e s t e d a r e a a n d y i e l d . A s i n t h e s i m p l e / r e d u c e d f o r m u l a t i o n s . o i l s e e d p r o d u c - t i o n i s d r i v e n b y t h e d e m a n d f o r c r u s h . T h e d e m a n d f o r c r u s h i s e s t i m a t e d a s a f u n c t i o n o f t h e r a t i o o f t h e c o m p o n e n t p r o d u c t v a l u e s t o c o s t o f o i l s e e d s a n d a t i m e t r e n d f o r c r u s h c a p a c i t y . T h e q u a n t i t y o f o i l s e e d s s u p p l i e d i s t h e n d e f i n e d a s t h e s h a r e o f o i l s e e d w e i g h t s i n m e a l a n d o i l t i m e s t h e q u a n t i t y o f o i l s e e d c r u s h e d . l i v e s t o c k p r i c e i n d e x . w h e r e t h e l i v e s t o c k p r i c e i n d e x i s 1 2 T h e G O L m o d e l . a s i t s n a m e i m p l i e s . h a s a f u l l b l o w n l i v e s t o c k s e c t o r i n b o t h t h e s i m p l e / r e d u c e d a n d f u l l / s t a n d a r d s t r u c t u r e s . L i v e s t o c k p r o d u c t i o n ( b e e f . p o r k o r m u t t o n ) h a s f o u r e q u a t i o n s . b e g i n n i n g n u m b e r s . a d d i t i o n s a n d s l a u g h t e r w i t h a n a d d i t i o n a l e q u a t i o n f o r m e a t s u p p l y . T h e d a i r y a n d p o u l t r y s u b s e c t o r s h a v e t w o e q u a t i o n s . a n i m a l n u m b e r s a n d p r o d u c t s u p p l y . B e g i n n i n g l i v e s t o c k n u m b e r s a r e d e f i n e d a s l a g g e d l i v e s t o c k n u m b e r s p l u s l a g g e d l i v e s t o c k a d d i t i o n s m i n u s l a g g e d l i v e s t o c k s l a u g h t e r . B o t h a d d i t i o n s t o t h e h e r d a n d l i v e s t o c k s l a u g h t e r a r e e s t i m a t e d a s p e r c e n t a g e s o f l i v e - s t o c k n u m b e r s a n d a r e f u n c t i o n s o f o n e a n d t w o y e a r l a g g e d r a t i o s o f t h e s u p p l y p r i c e o f l i v e s t o c k o v e r t h e c o s t o f f e e d . F e e d c o s t s f o r e a c h l i v e s t o c k t y p e a r e d e f i n e d a s t h e s h a r e o f f e e d p e r a n i m a l u n i t t i m e s t h e p r i c e o f f e e d s u m m e d a c r o s s a l l f e e d s . T h e f i n a l e q u a t i o n . t h a t f o r m e a t s u p p l y i n c a r c a s s w e i g h t . i s e s t i m a t e d i n t h e s a m e m a n n e r a s t h e p r e v i o u s e q u a t i o n s b u t i n c l u d e s a t i m e t r e n d i n a d d i t i o n t o t h e l a g g e d p r i c e r a t i o s . I n t h e f u l l / s t a n d a r d m o d e l s t h e a n i m a l n u m b e r s g e n - e r a t e d i n t h e l i v e s t o c k s e c t o r d r i v e r t h e f e e d d e m a n d e q u a t i o n s . L i v e s t o c k n u m b e r s a n d p o u l t r y s u p p l y a r e w e i g h t e d e x o g e n o u s l y a n d s u m m e d t o d e r i v e a n a g g r e g a t e “ g r a i n c o n s u m i n g a n i m a l u n i t " . T h e q u a n t i t y o f a f e e d d e m a n d e d p e r g r a i n c o n s u m i n g a n i m a l u n i t i s a f u n c t i o n o f t h e d e m a n d p r i c e o f o w n a n d c o m p e t i n g f e e d s o v e r t h e t h o s e i n t h e s i m p l e / r e d u c e d m o d e l s . I n t h e f u l l / s t a n d a r d 1 3 d e f i n e d a s t h e w e i g h t e d s u m o f a l l l i v e s t o c k s u p p l y p r i c e s . T h e e q u a t i o n f o r p e r c a p i t a d e m a n d f o r f o o d a n d n o n - f e e d g r a i n i s e s t i m a t e d a s a f u n c t i o n o f t h e r e a l p r i c e o f t h e o w n a n d c o m p e t i n g g o o d s a n d r e a l p e r c a p i t a i n c o m e . T o t a l d e m a n d f o r t h e c o m m o d i t y i s d e f i n e d a s t h e s u m o f f e e d . n o n - f e e d a n d f o o d d e m a n d . T h e G O L m o d e l i n c l u d e s a s t o c k e q u a t i o n w h e r e e n d i n g s t o c k s a s a s h a r e o f s u m o f t r a d e a n d s u p p l y o r d e m a n d a r e e s t i m a t e d a s a f u n c t i o n o f t h e r e a l d e m a n d p r i c e o f t h e c o m m o d i t y . W h e r e g o v e r n m e n t s t o c k h o l d i n g p o l i c i e s o c c u r . a n a d d i t i o n a l v a r i a b l e i s i n c l u d e d t o c a p t u r e t h e s e e f f e c t s . A c c o r d i n g t o R o n i n g e n a n d L i u . t h e s t o c k e q u a t i o n i s a s p e c u l a t i v e d e m a n d e q u a t i o n : “ T h e p r i c e e l a s t i c i t y i s e x p e c t e d t o b e p o s i t i v e i n d i c a t i n g t h a t a s t h e c o m m o d i t y p r i c e r i s e s r e l a t i v e t o n o n - G O L p r i c e s “ . s t o c k s w i l l b e d e p l e t e d “ 6 T h e s o l u t i o n a n d t e s t i n g p r o c e s s e s f o r t h e f u l l / s t a n d a r d m o d e l s a r e t h e s a m e a s t h o s e f o r t h e s i m p l e r e d u c e d m o d e l s . T h e i n d i v i d u a l c o u n t r y m o d e l s s o l v e f o r s u p p l y a n d d e m a n d . t h e e x c e s s s u p p l y a n d d e m a n d q u a n t i t i e s b e c o m e t h e t r a d e e q u a t i o n s l i n k i n g a l l t h e c o u n t r i e s . I f e x p o r t s a n d i m p o r t s d o n o t s u m t o z e r o t h e w o r l d p r i c e i s a d j u s t e d a n d t h e m o d e l s a r e r e s o l v e d . H o w e v e r . t h e p r i c e l i n k a g e s f o r u n r e s t r i c t e d t r a d e i n t h e f u l l / s t a n d a r d m o d e l s a r e s i g n i f i c a n t l y d i f f e r e n t f r o m * T h e i n d e x o f p r i c e s . k s s e u e y p t p t o o e f t f r r ' h a t d B n e i i s M t s e c h d C e p a r u l w i l p h c o a e e n ’ a s t a t n h c m d o e a a r t k d e e j s n u u t e t . n r s l i t t o s n i t o t f h t a h h t r i o C s u a g e n h s a p o m a t d i a l a i c t c t i y s o a t a o s e b d b a r p o i r t v i t e c e A n . 1 4 m o d e l s . t h e U . S . d o l l a r a t U . S . p o r t s i s t h e b a s e . t h i s i s a d j u s t e d b y e x o g e n o u s l y s u p p l i e d e x c h a n g e r a t e s . t a x e s a n d t r a n s p o r t a t i o n c o s t s t o p r o v i d e a b o r d e r p r i c e . W 2 1 . I n s e v e r a l w a y s . t h e s t r u c t u r e o f t h e g l o b a l r i c e m o d e l e s t i m a t e d b y M i t c h e l l 7 r e p r e s e n t s a d e p a r t u r e f r o m t h e t w o p r e v i o u s m o d e l s . C i t i n g w o r k d o n e b y A b b o t t . M i t c h e l l 8 a r g u e s t h a t i n a w o r l d w h e r e g o v e r n m e n t s i n t e r v e n e t o d r i v e a w e d g e b e t w e e n w o r l d p r i c e s a n d d o m e s t i c p r i c e s . t r a d e s h o u l d n o t b e c o n s i d e r e d a r e s i d u a l b u t r a t h e r e s t i m a t e d d i r e c t l y . I n a n a t t e m p t t o a c c o u n t f o r t h e d i v e r g e n c e i n p r i c e s . M i t c h e l l s u g g e s t s e s t i m a t i n g c o u n t r y p r i c e s a s a f u n c t i o n o f t h e w o r l d p r i c e a n d e c o n o m i c v a r i a b l e s . H o w e v e r . w h e r e c o u n t r y p r i c e d a t a a r e u n a v a i l a b l e . c o u n t r y p r i c e s a r e d e f i n e d b y t h e w o r l d p r i c e . e x c h a n g e r a t e a n d p r i c e i n d e x . W o r l d p r i c e e s t i m a t e s a r e o b t a i n e d f r o m e s t i m a t e d e q u a t i o n s a s o p p o s e d t o t h e s i m u l t a n e o u s s o l u t i o n o f s u p p l y a n d d e m a n d . M i t c h e l l e s t i m a t e s w o r l d p r i c e a s a f u n c t i o n o f a f l o o r ( t h e U . S . l o a n r a t e ) a n d g l o b a l e n d i n g s t o c k s o f t h e c o m m o d i t y . T h i s d i f f e r s f r o m A b b o t t w h o e s t i m a t e s t h e b o r d e r p r i c e f o r a " p r i c e l e a d e r " * a s a f u n c t i o n o f p o p u l a - t i o n . i n p u t p r i c e s . p r o d u c t i o n a n d s t o c k s . 9 O t h e r c o u n t r i e s 1 5 d o m e s t i c p r i c e . T h e G l o b a l R i c e M o d e l h a s f o u r c o m p o n e n t s . p r o d u c t i o n . c o n s u m p t i o n . n e t t r a d e a n d e n d i n g s t o c k s . P r o d u c t i o n i s c o m p r i s e d o f h a r v e s t e d a r e a a n d y i e l d . A N e r l o v e a n p a r t i a l a d j u s t m e n t s t r u c t u r e i s i m p o s e d o n h a r v e s t e d a r e a u s i n g p r e d e t e r m i n e d v a r i a b l e s ( l a g g e d p r i c e s a n d y i e l d s ) . U s e o f N e r l o v e ' s p a r t i a l a d j u s t m e n t m o d e l p r o v i d e s b o t h l o n g - r u n a n d s h o r t - r u n s u p p l y e l a s t i c i t i e s . a s i g n i f i c a n t d e p a r t u r e f r o m t h e a s s u m p t i o n o f t h e e q u a l i t y o f l o n g a n d s h o r t r u n e l a s t i c i t i e s i n t h e p r e v i o u s m o d e l s . A s i n t h e F A P m o d e l . h a r v e s t e d a r e a i s c o n s t r a i n e d b y t h e g r o w t h o f t h e c r o p l a n d b a s e . Y i e l d s a r e e s t i m a t e d a s a s i m p l e t i m e t r e n d . M i t c h e l l f e l t t h a t e v e n t h o u g h i t w a s i m p e r f e c t . a t t e m p t s a t e s t i m a t i n g y i e l d s b a s e d u p o n e c o n o m i c v a r i a b l e s . w e a t h e r o r f e r t i l i z e r l e d t o f a i l u r e . A s i n t h e f u l l / s t a n d a r d m o d e l s o f G O L . p r o d u c t i o n i s d e f i n e d a s h a r v e s t e d a r e a t i m e s y i e l d . N e t t r a d e i n t h e G l o b a l R i c e M o d e l i s e s t i m a t e d b y M i t c h e l l a s a n e t i m p o r t r e d u c e d f o r m e q u a t i o n . H e s t a t e s t h a t i f t h e r e i s a m a r k e t i n g a g e n c y : “ T h e d e c i s i o n a b o u t i m p o r t s i s m a d e b y a g o v e r n m e n t a g e n c y a n d t h e s e i m p o r t s p l u s t h e l e v e l o f d o m e s t i c p r o d u c t i o n d e t e r m i n e d o m e s t i c c o n s u m p t i o n . " 1 0 A s p a r a m e t e r s . M i t c h e l l c h o o s e s p o p u l a t i o n . i n c o m e . l a g g e d a n d c u r r e n t p r i c e a n d p r o d u c t i o n : a l t h o u g h " i t i s d i f f i c u l t t o i n t e r p r e t t h e i n d i v i d u a l c o e f f i c i e n t s ” - . 1 1 “ t h e s i g n s a r e e x p e c t e d t o b e p o s i t i v e f o r i n c o m e a n d p a p u l a t i o n a n d n e g a t i v e f o r c u r r e n t a n d l a g g e d p r i c e s a n d p r o d u c t i o n . 1 6 B o t h M i t c h e l l a n d A b b o t t ( 1 9 7 9 ) d i s c u s s t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f e s t i m a t i n g a n e t i m p o r t e q u a t i o n . T h e m a j o r p r o b l e m s w i t h t h e m e t h o d a r e a r e s u l t o f t h e s t r u c t u r - a l f o r m . A s m e n t i o n e d . a b o v e . i n t e r p r e t a t i o n o f t h e p a r a m e t e r s i s d i f f i c u l t . A d d i t i o n a l l y . e s t i m a t i o n o f a n e t i m p o r t e q u a t i o n i m p l i c i t l y a s s u m e s t h a t p o l i c y d e c i s i o n s a r e b e i n g p r o x i e d t h r o u g h t h e c h o i c e o f p a r a m e t e r s . I f t h e g o v e r n m e n t i n q u e s t i o n c h a n g e s p o l i c y . t h e p a r a m e t e r s w i l l c h a n g e a s w e l l . H o w e v e r . e s t i m a t i o n o f t h e t r a d e e q u a t i o n p e r m i t s g o v e r n m e n t p o l i c y t o b e e n d o g e n i z e d . t h o s e v a r i a b l e s s u c h a s a v a i l a b l e d o m e s t i c s u p p l y w h i c h w o u l d i n f l u e n c e p o l i c y c a n b e i n c l u d e d a s e x p l a n a t o r y v a r i a b l e s . S e c o n d l y . t h i s t e c h n i q u e d o e s n o t r e q u i r e d e t a i l e d k n o w l e d g e o f t h e t r a d i n g b e h a v i o r o f a n i n d i v i d u a l c o u n t r y . a t a s k w h i c h w o u l d b e e x c e e d i n g l y d i f f i c u l t i f a l a r g e n u m b e r o f c o u n t r i e s w e r e m o d e l e d a n d n e a r l y i m p o s s i b l e t o d e t e r m i n e i f r e g i o n a l a g g r e g a t i o n s w e r e u s e d . I f i m p o r t s a r e d i r e c t l y e s t i m a t e d a n d c o n s u m p t i o n i s r e s i d u a l . a n e n d i n g s t o c k e q u a t i o n i s r e q u i r e d t o c l o s e t h e s y s t e m . M i t c h e l l e s t i m a t e s t h e r a t i o o f e n d i n g s t o c k s t o l a g g e d c o n s u m p t i o n a s a f u n c t i o n o f t h e f a r m p r i c e . A l t h o u g h h e c l a i m s t h a t t h e e q u a t i o n w i l l p e r f o r m r e a s o n a b l y w e l l . " . . . ( i t ) w i l l n o t c a p t u r e t h e v o l a t i l i t y w h i c h i s f r e q u e n t l y p r e s e n t i n s t o c k h o l d i n g s . 1 2 1 7 ' o m R e v ' w E a c h m o d e l p r o v i d e s a v i e w o f a g r i c u l t u r e w i t h a d i f f e r e n t a m o u n t o f d e t a i l a n d a s s u c h i s s u i t e d f o r d i f f e r e n t t a s k s . T h e F A P m o d e l p r o v i d e s t h e g r e a t e s t a m o u n t o f d e t a i l a n d i s v e r y w e l l s u i t e d f o r p o l i c y a n a l y s i s . T h e m o d e l c o v e r s a l a r g e n u m b e r o f d i s a g g r e g a t e d r e g i o n s a n d l i n k s t h e p e r f o r m a n c e o f t h e a g r i c u l t u r a l s e c t o r w i t h t h e n o n - a g r i - c u l t u r a l s e c t o r . T h e m o d e l a l s o u s e s r e a l i n t e r n a l p r i c e s . T h e s e p e r m i t m o r e d e t a i l e d a n a l y s i s o f t h e e f f e c t s o f t a x e s a n d s u b s i d i e s . H o w e v e r . t h e s i z e o f m o d e l m a k e s i t d i f f i c u l t t o m a i n t a i n a n d i t s c o m p l e x i t y m a k e s i t m o r e d i f f i c u l t t o t r a c e t h r o u g h t h e e f f e c t s o f e x o g e n o u s s h o c k . T h a t i s t o s a y . i t w o u l d b e e a s i e r t o s a y t h a t a s h o c k h a s a n e f f e c t o n a n u m b e r o f v a r i a b l e s t h a n t o a n a l y z e h o w t h e v a r i a b l e s t r a n s m i t t h e e f f e c t s o f t h e s h o c k . F i n a l l y . t h e m o d e l d o e s n ’ t e x p l i c i t l y m o d e l s t o c k s w h i c h i n t i m e s o f l a r g e b u i l d u p w i l l h a v e s i g n i f i c a n t e f f e c t o n c o m m o d i t y p r i c e s a n d g o v e r n m e n t p o l i c y . T h e G . O . L . m o d e l a t t e m p t e d t o s o l v e s o m e o f t h e s e d i f f i c u l t i e s b y m o v i n g t o a s y s t e m o f i n d i v i d u a l s m a l l : r e g i o n a l m o d e l s w h i c h c o u l d b e u s e d b y c o u n t r y a n a l y s t s 1 ! ) i s o l a t i o n o r l i n k e d a n d r u n a s a l a r g e i n d i v i d u a l m o d e l . H o w e v e r . t o s i m p l i f y t h e m o d e l s . a n u m b e r o f a s s u m p - t i o n s f o r t h e f u l l / s t a n d a r d m o d e l w e r e r e l a x e d . T h e G . O . L . l o c i e l l u s e s r e a l t r a d e p r i c e s : t h i s d o e s n ’ t p e r m i t e a s y M . S . U . m o d e l . t h e s e w i l l b e c o v e r e d i n t h e f i n a l c h a p t e r . 1 8 a n a l y s i s o f t h e e f f e c t s o f e x c h a n g e r a t e s u p o n s u p p l y a n d d e m a n d o f a g r i c u l t u r a l p r o d u c t s . N o r d o e s i t e x p l i c i t l y e s t i m a t e s t o c k s a n d t h e i r e f f e c t u p o n p r i c e . M i t c h e l l s i m p l i f i e s i n t e r n a t i o n a l t r a d e m o d e l s b y e s t i m a t i n g i m p o r t e q u a t i o n s d i r e c t l y a n d a s s u m i n g a t r a d e h i e r a r c h y w h e r e o n e r e g i o n a c t s a s t h e r e s i d u a l s u p p l i e r t o t h e w o r l d m a r k e t . T h i s p e r m i t s e a s y s o l u t i o n b u t p l a c e s r e s t r i c t i o n s u p o n t h e e x p o r t i n g r e g i o n s : t h e r e m u s t b e o n e p a s s i v e t r a d e r w h o w i l l a c c u m u l a t e a l l t h e e r r o r i n t h e m o d e l . U s i n g r e e l b o r d e r p r i c e s p e r m i t s o n e t o a n a l y z e t h e e f f e c t s o f e x c h a n g e r a t e p o l i c y b u t d o e s n ’ t a l l o w a n a l y s i s o f t a x e s o r s u b s i d i e s . I n g e n e r a l . t h e M i t c h e l l m o d e l p l a c e s f a r m o r e r e s p o n s i b i l i t y u p o n t h e a n a l y s t t o m a k e t h e m o d e l d o w h a t i s r e q u i r e d . E a c h m o d e l h a s a d v a n t a g e s a n d d i s a d v a n t a g e s . i t i s i m p o s s i b l e t o s a y t h a t o n e m o d e l i s ” b e t t e r " t h a n a n o t h e r m o d e l . A l t h o u g h t h e d e v e l o p m e n t o f t h e M . S . U . A g r i c u l t u r e f o l l o w e d t h e r e l a t i v e l y s i m p l e f o r m a t l a i d o u t b y M i t c h e l l . t h e r e i s r o o m f o r a d a p t a t i o n . A n u m b e r o f f e a t u r e s f o u n d i n t h e o t h e r t w o m o d e l s c o u l d i n c r e a s e t h e c a p a b i l i t i e s o f t h e h f g t D g p d g . 2 S 4 5 S S R S fl p S P 7 a ( 8 G l . e g . . . y g o i e t r n s r g n W a . m i r a d t i v e s U p v f n D . r 2 a u i i c . S c u m . g i i i n e b i ; i f U h 1 G l D e n . t o n I n S e e . e n n - f P n a s i T l a . . . t o n g i a g l i d r _ o e g e n D a a e O n r t e n g p h r f 0 . p e _ a 2 d i F e g a r e N i r r t r o c i W K D W M W 2 h p e k d a e V f . . “ . w s i s § s F t . m g s o a o i a 4 t i . e c o m g r r C i . e r t s h s . h o e g l e n c h . o : A u e d n d d n t h i n d 6 F G l r t : . 5 e e n P o £ a L G a o 3 b v h 2 l g a n o G b n i f 8 r e i £ l t n d o f d y u 5 r l s u . o d . v A i 0 a n . n i l A A S g e n K 1 r " m p _ K g t g r r - a 2 y e § E G l r r a n R i O r 8 D l C n s a i i O n m S c i e 1 o . . t g u c i d e 9 b C c u n a ( s u l a n S u l s A C 8 a . g W l s r t t l t e L a 5 l . s b o F t r u t u ) d a e i s 1 i b n u r . f P d u h R t 9 o s o r f s C d r i i r r e 8 t s h e s o i - n a p e . c o 3 t . b e P r r g o . g e o d r g n e s 7 d . m n R n g p e l . . 6 p e t d l t . 1 E a o p i E ' c v c n n o n o V o n . M " e o d M ( r t n t o r n . e o F d M e " a T m N f m i c . o s : t l o ' m o n O D e a h v i o f c k n C . e a c e i . . C a n e e . ( B R e A n y s y c : t b R O o g t r a I o G e s O G c . G s I s c V E e L R o e i A e k e S A a o v p ) I . " n 1 t 9 c S A L : a r 8 p r n e t 7 e ( r c i n 3 r r u 9 M r m G c i o 0 h n n o a n e ) i O h n 3 l e g m l a g n 1 e e i t i ) 1 k A 7 l n z i g n e n 9 a o a . t d 8 t n g 3 ) . S n A E i a R o l l r r b i k u l 9 N o t g g t 9 C h g p g g ; I I 1 . M i c h a e l H . A b k i n . C o n c e p t s b e h i n d I I A S A ’ s F o o d a n d A g r i c u l t u r e M o d e l . A g r i c u l t u r a l E c o n o m i c s S t a f f P a p e r N o . 8 1 - 7 8 . M i c h i g a n S t a t e U n i v e r s i t y . D e c e m b e r 1 9 8 1 : G u n t h e r F i s c h e r a n d K l a u s F r o h b e r g . " T h e B a s i c L i n k e d S y s t e m o f t h e F o o d a n d A g r i c u l t u r e P r o g r a m a t I I A S A : A n O v e r v i e w o f t h e N a t i o n a l M o d e l s . “ a g g e m a t i g g ; fl o g g l i n g 3 ( 1 9 8 2 ) . O v e r v i e w o f t h e N a t i o n a l M o d e l s . " fi g ; § g ; g § § g g l _ fl g g g l i g g 3 ( 1 9 8 2 ) : 4 5 3 - 4 6 6 3 . I b i d . P g . 4 6 4 6 . I b i d . P g . 7 7 . 9 - P h i l i p C . A b b o t t . " D e v e l o p i n g C o u n t r i e s a n d I n t e r n a t i o n a l G r a i n T r a d e . " ( P h . D . d i s s e r t a t i o n . M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y . J u n e 1 9 7 6 ) . p . 1 4 9 2 0 1 0 . D o n a l d 0 . M i t c h e l l . " G l o b a l R i c e M o d e l : C o n c e p t u a l i z a t i o n a n d D e s i g n . " W a s h i n g t o n . D . C . . 1 9 8 3 . p . 2 3 . 1 1 . I b i d . p . 2 6 . 1 2 . 1 1 2 2 3 4 . 9 . 2 8 . C H A P T E R I I I T H E M . S . U . M O D E L G i v e n t h e n e e d f o r r e - e s t i m a t i n g t h e M . S . U . A g r i c u l t u r e M o d e l . t h e o b j e c t i v e w a s t o b u i l d a m o d e l o f i n t e r n a t i o n a l a g r i c u l t u r a l p r o d u c t i o n a n d t r a d e w h i c h c o u l d p r o v i d e s u f f i c i e n t d e t a i l f o r f o r e c a s t i n g a n d p o l i c y a n a l y s i s b u t n o t b e s o c o m p l e x t h a t t h e i m p a c t s o f a n e x o g e n o u s s h o c k c o u l d n o t b e t r a c e d . F u r t h e r m o r e t h e m o d e l h a d t o h a v e t h e c a p a c i t y t o s t a n d a l o n e o r b e l i n k e d w i t h o t h e r c o m p o n e n t s . F i n a l l y . w i t h a n e y e t o a d a p t i n g t h e m o d e l t o t h e m i c r o - c o m p u t e r e n v i r o n m e n t . t h e m o d e l h a d t o s i m p l e e n o u g h f o r a n i n d i v i d u a l t o m a i n t a i n a n d o p e r a t e . T h e p r e v i o u s v e r s i o n o f t h e m o d e l . b u i l t b y M i t c h e l l 1 w a s d e s i g n e d t o s o l v e s i m u l t a n e o u s l y a c r o s s t h r e e c o m m o d i t - i e s . T h e b a s i c s t r u c t u r e w a s k e p t i n t a c t b u t t h e r e g i o n a l c o v e r a g e w a s e x p a n d e d t o p r o v i d e m o r e c o v e r a g e o f r e g i o n s w i t h d i f f e r e n t i n c o m e g r o w t h . T h e m o d e l s t i l l s o l v e d f o r w h e a t a n d c o a r s e g r a i n s b u t t h e c o v e r a g e o f t h e s o y b e a n c o m p l e x w a s e x p a n d e d f r o m s o y b e a n e q u i v a l e n t t o s o y b e a n s i n t h e i r c o m p o n e n t f o r m s . T h e s i z e o f t h e m o d e l w h i c h h a s b e e n c o n s t r u c t e d p r e s e n t s a n u m b e r o f p r o b l e m s i n p r e s e n t a t i o n . T h e m o d e l c o n s i s t s o f a p p r o x i m a t e l y 2 0 0 b e h a v i o r a l a n d 1 0 0 d e f i n i - t i o n a l e q u a t i o n s . i t w o u l d b e i m p r a c t i c a l t o d i s c u s s t h e 2 1 2 2 r e s u l t s o f e a c h e s t i m a t i o n w i t h i n t h e c o n t e x t o f t h i s t h e s i s . T h e r e f o r e i n t h i s c h a p t e r t h e t h e o r e t i c a l f o u n d a - t i o n s o f t h e m o d e l w i l l b e p r e s e n t e d a s a s e t o f g e n e r i c s t r u c t u r e s w i t h s p e c i a l d i s c u s s i o n r e s e r v e d f o r t h o s e e q u a t i o n s w h i c h d o n o t f i t t h e g e n e r a l s p e c i f i c a t i o n . T h e p r e d i c t i v e c a p a b i l i t i e s o f e q u a t i o n s b a s e d u p o n t h e s e s t r u c t u r e s w i l l b e a n a l y z e d i n t h e f o l l o w i n g c h a p t e r a n d t h e s t a t i s t i c a l r e s u l t s f o r t h e i n d i v i d u a l e q u a t i o n s w i l l b e p r e s e n t e d i n a n a p p e n d i x . . T h e s t a t i s t i c a l t e c h n i q u e u s e d t o d e t e r m i n e e s t i m a t e s o f t h e p a r a m e t e r s o f a l l e q u a t i o n s w a s o r d i n a r y l e a s t s q u a r e s . A l t h o u g h t h e m o d e l s t r u c t u r e i s s i m u l t a n e o u s a n d O L S e s t i m a t i o n r e s u l t s i n b i a s e d a n d i n c o n s i s t e n t e s t i m a t e s . i t w a s f e l t t h a t t h e s i m p l i c i t y o f p r o c e d u r e o u t w e i g h e d t h e i n c o n s i s t e n c i e s . F u r t h e r m o r e . H s u 2 n o t e s a d d i t i o n a l a d v a n t a g e s t o m o r e c o m p l e x e s t i m a t i o n p r o c e d u r e s . C o m p a r i s o n o f t h e O L S t e c h n i q u e a g a i n s t l i m i t e d o r f u l l i n f o r m a t i o n e s t i m a t i o n t e c h n i q u e s w i t h r e g a r d t o r o b u s t n e s s a g a i n s t s p e c i f i c a t i o n e r r o r i s f a v o r a b l e a n d O L S t e n d s t o i m p r o v e r e l a t i v e t o l i m i t e d i n f o r m a t i o n m a x i m u m l i k e l i h o o d a s m o d e l s i z e i n c r e a s e s . 3 , ; M g d g ; s g g g g g g g e T h e m o d e l i s b a s e d u p o n t h e s t r u c t u r e p r e s e n t e d b y l i i t c h e l l a n d A b b o t t a n d o u t l i n e d i n t h e p r e v i o u s c h a p t e r . . I t . w a s n e c e s s a r y t o m o d i f y t h i s s t r u c t u r e t o a c c o u n t f o r < 1 1 f f e r e n c e s a m o n g t h e c o m m o d i t i e s . t h e i r u s e s . p o l i c y i J T t e r a c t i o n s a n d t h e l e v e l o f a g g r e g a t i o n w i t h i n a r e g i o n . c o m m o d i t i e s w h i c h i n f l u e n c e s u p p l y a n d d e m a n d c o n d i t i o n s f o r 2 3 A l t h o u g h t h e G l o b a l R i c e M o d e l d e v e l o p e d b y M i t c h e l l h a d a s i m i l a r s t r u c t u r e o f e q u a t i o n s w i t h i n a r e g i o n . i t w a s a s i n g l e c o m m o d i t y m o d e l . O n t h e o t h e r h a n d . A b b o t t ’ s m o d e l s o l v e d s i m u l t a n e o u s l y a c r o s s m o r e t h a n o n e c o m m o d i t y b u t t h e e q u a t i o n s t r u c t u r e w i t h i n a r e g i o n w a s t o o a g g r e g a t e d f o r t h e a n d u s e s o f t h i s m o d e l . T h e A g m o d e l d i v i d e s t h e w o r l d i n t o 1 1 r e g i o n s w i t h i n t h r e e s t r u c t u r a l m o d e l s . T w o o f t h e m o d e l s . a m o d e l o f U . S . l i v e s t o c k s u p p l y a n d d e m a n d a n d a c o m p l e x m o d e l o f t h e U . S . c r o p s e c t o r w i l l n o t b e d i s c u s s e d i n a n y d e t a i l . T h e y w i l l b e r e f e r e d t o a s t h e " d o m e s t i c m o d e l " . T h e 1 1 w o r l d r e g i o n s i n c l u d i n g a s i m p l e U . S . m o d e l a n d t h e l i n k a g e s t o t h e d o m e s t i c m o d e l a r e e s t i m a t e d i n a c o m p o n e n t h e r e a f t e r r e f e r r e d t o a s t h e " i n t e r n a t i o n a l m o d e l " . T h e d o m e s t i c a n d i n t e r n a t i o n a l m o d e l s s h a r e a p r i c e c o m p o n e n t w h i c h w i l l b e p r e s e n t e d i n t h i s c h a p t e r a n d t h e l i n k a g e s b e t w e e n t h e i n t e r n a t i o n a l m o d e l a n d d o m e s t i c m o d e l s w i l l b e p r e s e n t e d o n C h a p t e r I V . T h e i n t e r n a t i o n a l m o d e l e s t i m a t e s p r o d u c t i o n . c o n s u m p - t i o n . n e t t r a d e a n d e n d i n g s t o c k s f o r w h e a t . t h e s o y b e a n c o m p l e x ( s o y b e a n s . s o y m e a l a n d s o y o i l ) a n d c o a r s e g r a i n s ( c o r n . s o r g h u m . b a r l e y a n d o a t s ) . S u p p l i e s a n d p r i c e s i n t e r a c t t o a c h i e v e s i m u l t a n e o u s s o l u t i o n a c r o s s a l l c o m m o d i t i e s . A l t h o u g h t h e c o m m o d i t i e s c o v e r e d i n t h i s m o d e l h a v e s i g n i f i c a n t c r o s s e l a s t i c i t i e s . t h e r e a r e o t h e r n o n - m o d e l e d t i o n s p r o v i d e p r o x i e s o f t h e a v a i l a b i l i t y o f a l t e r n a t i v e s t o 2 4 w h e a t . c o a r s e g r a i n s a n d t h e s o y c o m p l e x . D e m a n d f o r f e e d g r a i n s i n A s i a i s b e i n g c h a l l e n g e d b y l o w p r i c e d b r o k e n - h u l l r i c e w h i l e t h e d e m a n d f o r g r a i n s f o r h u m a n c o n s u m p t i o n i n A s i a a n d A f r i c a i s a f f e c t e d b y c o n d i t i o n s i n t h e r i c e m a r k e t . C a s s a v a p r o v i d e s a f e e d s u b s t i t u t e f o r l i v e s t o c k i n b o t h t h e E C a n d i n J a p a n . T h e d e m a n d f o r s o y m e a l a n d s o y o i l w o r l d w i d e i s a f f e c t e d b y s u p p l y a n d d e m a n d c o n d i t i o n s i n o t h e r o i l s e e d s . T h e r e f o r e . i t w a s f e l t t h a t a n a t t e m p t s h o u l d b e m a d e t o e s t i m a t e " s e c o n d a r y “ c o m m o d i t i e s w h i c h a f f e c t s u p p l y a n d d e m a n d c o m m o d i t i e s f o r t h e " p r i m a r y " c o m m o d i t i e s . T h e e s t i m a t i o n o f r i c e a s a " s e c o n d a r y " c o m m o d i t y i s b e y o n d t h e s c o p e o f t h i s w o r k . A s t h e t h i r d l a r g e s t t r a d e d a g r i c u l t u r a l c o m m o d i t y 3 . i n c l u s i o n o f r i c e w o u l d r e q u i r e e s t i m a t i o n o f s t o c k s . p r o d u c t i o n . a n d t r a d e f o r e a c h r e g i o n . i n s h o r t t h e a d d i t i o n o f a n e n t i r e s e c t o r . T h e r e f o r e . t h e o n l y " s e c o n d a r y " c o m m o d i t y w h o s e t r a d e i s e s t i m a t e d i s r o o t s a n d t u b e r s a n d t h a t i s l i m i t e d t o i m p o r t s i n t o t h e E C ( T a b l e 3 . 1 ) . O n t h e o t h e r h a n d . a l t e r n a t i v e o i l s e e d s a r e g e n e r a l l y c o u n t r y s p e c i f i c . i e : d o m e s t i c p r o d u c t i o n o f a n a l t e r n a t i v e o i l s e e d w i l l e f f e c t d e m a n d f o r a s o y p r o d u c t o n l y i n t h a t c o u n t r y . T h e r e i s v e r y l i t t l e t r a d e i n a l t e r n a t i v e o i l - s e e d s . I n 1 9 8 3 . t r a d e i n a l l a l t e r n a t i v e o i l s e e d s c o m b i n e d a c c o u n t e d f o r o n l y 2 0 x o f t h e t r a d e i n t o t a l o i l s e e d s . T h e r e f o r e . s i m p l e p r o d u c t i o n e q u a t i o n s o r e x o g e n o u s a s s u m p - 2 5 s o y p r o d u c t s . T A B L E 3 . 1 R E G I O N A L A N D C O M M O D I T Y A G G R E G A T I O N S C O U N T R Y P R I M A R Y C O M M O D I T I E S S E C O N D A R Y C O M M O D I T I E S E X P O R T E R S A r g e n t i n a W h e a t . C o a r s e G r a i n s N o n e S o y b e a n s . S o y m e a l . S o y o i l A u s t r a l i a W h e a t . C o a r s e G r a i n s N o n e B r a z i l W h e a t . C o a r s e G r a i n s N o n e S o y b e a n s . S o y m e a l . S o y o i l C a n a d a W h e a t . C o a r s e G r a i n s N o n e U n i t e d S t a t e s ( l i n k e d a s s e p a r a t e m o d e l ) W h e a t . C o a r s e G r a i n s N o n e S o y b e a n s . S o y m e a l . S o y o i l I M P O R T E R S D e v e l o p e d M a r k e t s W h e a t . C o a r s e G r a i n s R a p e s e e d . S u n f l o w e r S o y b e a n s . S o y m e a l . S o y o i l R o o t s A T u b e r s S o v i e t B l o c W h e a t . C o a r s e G r a i n s R a p e s e e d . S u n f l o w e r S o y b e a n s . S o y m e a l . S o y o i l N e w l y I n d u s t r i a l i z e d C o u n t r i e s ( N I C s ) W h e a t . C o a r s e G r a i n s N o n e S o y b e a n s . S o y m e a l . S o y o i l O i l E x p o r t e r s W h e a t . C o a r s e G r a i n s N o n e S o y b e a n s . S o y m e a l . S o y o i l C h i n a W h e a t . C o a r s e G r a i n s C o t t o n s e e d . R a p e s e e d S o y b e a n s . S o y m e a l . S o y o i l S u n f l o w e r . P e a n u t L e s s D e v e l o p e d W h e a t . C o a r s e G r a i n s R a p e s e e d . S u n f l o w e r . S o y b e a n s . S o y m e a l . S o y o i l P a l m K e r n e l . P e a n u t i n c o m e s a p p r o a c h U S Q 1 0 . 0 0 0 . C o u n t r i e s w i t h i n c o m e s g r o u p e d 2 6 3 . - . ' o . R . A O n e o f t h e m a j o r p r o b l e m s w h i c h m u s t b e c o n f r o n t e d i n d e t e r m i n i n g t h e s t r u c t u r e o f a m o d e l i s t h e t r a d e o f f b e t w e e n t h e l e v e l o f a g g r e g a t i o n a n d t h e a b i l i t y t o g e n e r a t e a s u p p o r t a b l e d a t a b a s e o f v a r i a b l e s w h i c h c a p t u r e s t h e r e l e v a n t r e l a t i o n s h i p s i n d o m e s t i c a n d i n t e r n a t i o n a l m a r k e t s . I n a t t e m p t i n g t o a g g r e g a t e r e g i o n s . o n e s e e k s t o d e f i n e c o m m o n s t r u c t u r e s a m o n g c o u n t r i e s . T o t h i s e n d . s i m i l a r c o e f f i c i e n t s a r e d e s i r e d f o r t h e v a r i a b l e s . W h i l e i t i s i m p r a c t i c a l t o e s t i m a t e e a c h r e g i o n t o d e t e r m i n e i f t h e r e a r e c l o s e c o e f f i c i e n t s . o n e c o u l d d e d u c e t h a t t h e r e i s a r e a s o n a b l e p r o b a b i l i t y o f s i m i l a r i t y a m o n g c o e f f i c i e n t s i f t h e c o u n t r i e s o f a r e g i o n e x h i b i t s i m i l a r i t i e s w i t h r e g a r d t o e c o n o m y . p o l i c y o r g e o g r a p h y . R e g i o n a l a g g r e g a t i o n b e g i n s w i t h t h e a s s u m p t i o n t h a t t h e r e a r e e c o n o m i c o r p o l i c y v a r i a b l e s s h a r e d b y c o u n t r i e s i n a r e g i o n w h i c h c a n b e u s e d a s i n d e p e n d e n t v a r i a b l e s . R e a l i n c o m e . a n d m o r e i m p o r t a n t l y . r e a l i n c o m e g r o w t h i s o b v i o u s l y a v e r y i m p o r t a n t d e t e r m i n a n t o f t r a d e . O b s e r v a t i o n o f p e r c a p i t a i n t a k e o f c a l o r i e s a c r o s s i n c o m e ( F i g u r e 3 . 1 ) i n d i c a t e s t h a t i n c r e a s e s i n i n c o m e l e v e l s I r e s u l t i n s i g n i f i c a n t s h i f t s b o t h i n r a t e s o f g r o w t h o f < = a l o r i c c o n s u m p t i o n a n d i n t h e s h i f t o f c o n s u m p t i o n t o a n i m a l c a l o r i e s . I t w o u l d a p p e a r t h a t r a p i d g r o w t h i n C a l o r i c c o n s u m p t i o n b e g i n s a t a b o u t U 5 6 1 8 0 0 a n d s l o w s a s Y A D ! U P A ) T s I d P n A a C s u R o E h T P ( “ I R O L A C 1 0 0 1 3 _ 2 I 5 - 0 O R B 6 H G W 3 0 E R C M m a A . 1 m 5 w 0 9 m 4 ) M 0 0 A L 0 C k S m + « A M N I A L O R I E S T O T A L C A 1 0 0 0 0 2 5 0 0 0 2 7 F i g u r e 3 . 1 . P e r C a p i t a F o o d a n d F e e d C o n s u m p t i o n C a l o r i e s p e r D a y - 1 9 8 3 a r o u n d o n e o f t h e s e t u r n i n g p o i n t s c o u l d b e e x p e c t e d t o e x h i b i t a s i m i l a r c o e f f i c i e n t o n r e a l i n c o m e g r o w t h . A n o t h e r c o n s i d e r a t i o n i s t h e l e v e l o f p r o t e c t i o n p r o v i d e d t o a g r i c u l t u r a l p r o d u c e r s o r t o c o n s u m e r s . T h e s e w o u l d e f f e c t t h e r e a l b o r d e r p r i c e e l a s t i c i t i e s o f s u p p l y a n d d e m a n d . a p r o t e c t i n g c o u n t r y w o u l d e x c l u d e i m p o r t s o f g r a i n n o m a t t e r h o w l o w t h e p r i c e w h i l e a c o u n t r y s e e k i n g s t a b l e l e v e l s c o n s u m p t i o n m i g h t b e c o m m i t t e d t o i m p o r t n o m a t t e r h o w h i g h t h e p r i c e . P o l i c y d e c i s i o n s a r e c l o s e l y r e l a t e d t o t h e a b i l i t y o f a c o u n t r y t o s e t p o l i c y i n d e p e n - d e n t o f o t h e r s . I n t h e c a s e o f c o m m o n m a r k e t s o r p o w e r e c o n o m i c a g g r e g a t i o n . w h i c h g r o u p s r e g i o n s w i t h d i f f e r i n g 2 8 b l o c s . a g g r e g a t i o n h a s a l r e a d y o c c u r r e d . T h e c o m m o n a l i t i e s w h i c h d e f i n e e a c h r e g i o n w i l l b e p r e s e n t e d w h e n t h e i n d i v - i d u a l r e g i o n s a r e i n t r o d u c e d . T h e f i n a l c o n s i d e r a t i o n i n a g g r e g a t i o n i s t h e a v a i l - a b i l i t y o f m a c r o e c o n o m i c f o r e c a s t s . A l t h o u g h u s e o f c o m p u t e r s p r e a d s h e e t s a n d t a p e s t r i p p i n g h a s e a s e d t h e d e r i v a t i o n o f a g g r e g a t i o n s f o r t h e h i s t o r i c a l p e r i o d . f o r e c a s t s o f t h e r e l e v a n t e x o g e n o u s v a r i a b l e m u s t b e a v a i l a b l e . F o r a l l r e g i o n s . t h e r e a r e f o u r e s s e n t i a l e x o g e n o u s v a r i a b l e s : p o p u l a t i o n . i n c o m e . i n f l a t i o n a n d e x c h a n g e r a t e . F o r e c a s t s o f p o p u l a t i o n f o r a n y a g g r e g a t i o n a r e r e l a t i v e l y e a s y t o f o r m u l a t e a n d a n u m b e r o f s o u r c e s p r o v i d e f o r e c a s t s o f p o p u l a t i o n g r o w t h . H o w e v e r . f e w e r f o r e c a s t s o f t h e m a c r o e c o n o m i c v a r i a b l e s a r e a v a i l a b l e . I n t h e c a s e o f t h e D e v e l o p e d M a r k e t s . f o r e c a s t s c o v e r i n g t h e O E C D a r e a v a i l - a b l e . w h i l e t h e S o v i e t B l o c i s a g g r e g a t e d b y t h e U n i t e d N a t i o n s S t a t i s t i c a l Y e a r b o o k a s " C e n t r a l l y P l a n n e d E c o n o m i e s " . O n e p r o b l e m w h i c h m u s t b e r e c o g n i z e d i n g r o u p i n g c o u n t r i e s b y e c o n o m i c o r p o l i t i c a l b e h a v i o r i s t h a t t h e r e i s a d e f a c t o d i s r e g a r d f o r s i m i l a r i t i e s i n h e r e n t i n g e o g r a p h i - c a l g r o u p i n g s . G e o g r a p h i c g r o u p i n g s t e n d t o a g g r e g a t e s i m i l a r c l i m a t i c c o n d i t i o n s o r r e s o u r c e a v a i l a b i l i t y t h e r e b y p r o v i d i n g a b e t t e r i n d i c a t i o n o f a r e g i o n ’ s a b i l i t y t o e x p a n d o r c o n t r a c t a c r e a g e o v e r t i m e . P o l i t i c a l o r p o l i c i e s o f e a c h o f t h e s e c o u n t r i e s h a s a m a j o r e f f e c t i n 2 9 e n d o w m e n t s . c a n r e s u l t i n b i a s e d s u p p l y r e s p o n s e s . O n c e t h e r e g i o n s w e r e a g g r e g a t e d . t h e i n t e r n a t i o n a l m o d e l w a s d i v i d e d i n t o t h r e e s u b r o u t i n e s : a n e x p o r t s u b r o u t i n e ( E X P R T S ) . a n d i m p o r t s u b r o u t i n e ( I M P R T D ) a n d t h e s h a r e d m a r k e t c l e a r i n g s u b r o u t i n e ( E X P R T P ) . T h e d e c i s i o n t o p l a c e e a c h r e g i o n w i t h i n a s u b r o u t i n e w a s b a s e d o n w h e t h e r t h e c o m m o d i t i e s o f i n t e r e s t w h e r e i m p o r t e d o r e x p o r t e d . I n t h e c a s e w h e r e a r e g i o n w a s a n i m p o r t e r o f o n e c o m m o d i t y a n d a n e x p o r t e r o f a n o t h e r . ( e . g . B r a z i l a n d t h e D e v e l o p e d M a r k e t s ) t h e J u d g e m e n t w a s m a d e b y t h e a n a l y s t . B r a z i l i s m o r e i m p o r t a n t a s a t r a d e r o f t h e s o y b e a n c o m p l e x t h a n o f w h e a t a n d c o a r s e g r a i n ( w h i c h i t h a s o c c a s i o n a l l y e x p o r t e d ) s o w a s i n c l u d e d i n t h e E X P R T S s u b r o u t i n e . T h e D e v e l o p e d M a r k e t s i m p o r t s o y b e a n s . c o a r s e g r a i n s a n d h a d b e e n a n i m p o r t e r o f w h e a t o v e r m u c h o f t h e e s t i m a t i o n p e r i o d s o h a v e b e e n i n c l u d e d i n t h e s u b r o u t i n e I M P R T D . R e g a r d l e s s . t h e l o c a t i o n o f a r e g i o n i n o n e o r t h e o t h e r s u b r o u t i n e i s m o r e a c o n v e n i e n c e a n d d o e s n o t a f f e c t m o d e l p e r f o r m a n c e . . o o i n T h e s u b r o u t i n e E X P R T S c o n t a i n s f i v e c o u n t r i e s . t h e U n i t e d S t a t e s . C a n a d a . A u s t r a l i a . A r g e n t i n a a n d B r a z i l . T h e s e f i v e c o u n t r i e s w e r e c h o s e n b e c a u s e w i t h t h e D e v e l o p e d M a r k e t s “ a s a n e x p o r t e r o f w h e a t t h e y w e r e r e s p o n s i b l e f o r 7 3 * o f t h e w o r l d g r a i n a n d s o y p r o d u c t e x p o r t s i n 1 9 8 3 . T h e * L o c a t e d i n t h e i m p o r t s u b r o u t i n e . J a p a n a n d E u r o p e h a v e d i f f e r e n t r a t e s o f i n c o m e g r o w t h . 3 0 i n t e r n a t i o n a l g r a i n t r a d e . T h e r e f o r e . t h e y a r e m o d e l e d a s i n d i v i d u a l r e g i o n s . T h r e e o f t h e s e f i v e c o u n t r i e s . A u s t r a l i a . A r g e n t i n a a n d B r a z i l a r e c o n s i d e r e d " s u r p l u s e x p o r t e r s " : i t i s a s s u m e d t h a t s u b j e c t t o a m i n i m u m s t o c k l e v e l t h e y a r e p r e p a r e d t o e x p o r t a l l e x c e s s p r o d u c t i o n a n d p r o v i d e p r i c e c o m p e t i t i o n i f n e c e s s a r y . T h e D e v e l o p e d M a r k e t s r e p r e s e n t s o m e t h i n g l e s s t h a n p u r e s u r p l u s e x p o r t e r s . A l t h o u g h t h e E u r o p e a n C o m m u n i t y w o u l d l i k e t o m i n i m i z e i t s s t o c k s t h e h i g h i n t e r v e n t i o n p r i c e r e q u i r e s a s u b s i d y t o l o w e r t h e E u r o p e a n e x p o r t p r i c e t o w o r l d l e v e l s . T h e r e f o r e . e x p o r t s b y t h e D e v e l o p e d M a r k e t s w i l l b e f u n c t i o n s o f a m o u n t o f s u b s i d y r e q u i r e d t o e x p o r t t h e i r s u r p l u s a n d t h e s i z e o f t h e s u r p l u s . T h e r e m a i n i n g p o o l o f i m p o r t d e m a n d i s f i l l e d b y C a n a d a w i t h t h e U n i t e d S t a t e s p e r f o r m i n g t h e f u n c t i o n o f r e s i d u a l s u p p l i e r ( F i g u r e 3 . 2 ) . 3 m t o t ' n e T h e s u b r o u t i n e I M P R T D c o n s i s t s o f s i x r e g i o n s . F o l l o w i n g t h e b r o a d c o n s i d e r a t i o n s o f a g g r e g a t i o n d i s c u s s e d e a r l i e r . o b s e r v e d c o m m o n t r a i t s a m o n g c o u n t r i e s w e r e f e l t t o J u s t i f y a g g r e g a t i o n i n t o r e g i o n s . T h e D e v e l o p e d M a r k e t s ( t h e E C - 1 2 . o t h e r W e s t e r n E u r o p e . J a p a n a n d S o u t h A f r i c a ) r e p r e s e n t t h e h i g h i n c o m e i n d u s t r - i a l i z e d c o u n t r i e s . T h e i r a g r i c u l t u r a l s y s t e m s t e n d t o b e b a s e d u p o n a c r o p l a n d b a s e w i t h o u t r o o m f o r e x p a n s i o n a n d h i g h l e v e l s o f p r o t e c t i o n f o r d o m e s t i c p r o d u c e r s . A l t h o u g h ( F M W , ( $ 3 , . . . ) L . D . O . L . D . C . N . I . C . 3 1 s o w : a L o c " 9 5 1 9 3 . . . . “ ” W " - W U 0 ” “ Q M H N H K B ) 1 1 1 ' T O T A L N E T I M P O R T D E M A N D A R G E N T I N A s u m . G M H W G E B ) A U S T R A L I A 4 W a : a c . ) U W E D S U M S r F i g u r e 3 . 2 . W o r l d G r a i n T r a d e H i e r a c h y t h e i r m a c r o e c o n o m i c v a r i a b l e s a r e a g g r e g a t e d b y t h e O E C D . I n a d d i t i o n . t h e m a j o r i t y o f a d j u s t m e n t f r o m a n y t r a d e l i b e r a l i z a t i o n w i l l o c c u r t h r o u g h t h e l o w e r i n g o f t h e l e v e l o f p r o t e c t i o n i n t h i s r e g i o n . T h e S o v i e t B l o c ( U . S . S . R . & E a s t e r n E u r o p e ) i s a g g r e - g a t e d b y m e m b e r s h i p i n C O M E C O N . A l t h o u g h s e v e r a l m e m b e r s o f 3 2 C O M E C O N h a v e c l o s e t r a d e r e l a t i o n s w i t h t h e W e s t . t h e i r e c o n o m i c p o l i c i e s a r e c l o s e l y t i e d t o t h o s e o f t h e S o v i e t U n i o n . T h e i r a c c e s s t o f o r e i g n c u r r e n c y i s m o r e c l o s e l y t i e d t o p o l i t i c a l p o l i c i e s t h a n f o r o t h e r g r o u p s . A n u m b e r o f s t u d i e s 4 h a v e c o n c l u d e d t h a t s i n c e t h e e a r l y 1 9 7 0 s . t h e S o v i e t B l o c . l e d b y t h e S o v i e t U n i o n h a s s h i f t e d f r o m a p o l i c y o f s e l f - s u f f i c i e n c y i n p r o d u c t i o n t o a m a r k e d d e s i r e t o u p g r a d e d i e t t h r o u g h i n c r e a s e d a n i m a l c a l o r i e s . T h i s r e q u i r e s a s t e a d y s u p p l y o f f e e d s t u f f s . A s a r e s u l t o f e r r a t i c y i e l d s a n d o f t e n d i m i n i s h i n g p r o d u c t i o n t h e S o v i e t B l o c h a s r e s o r t e d t o m a i n t a i n i n g s t a b l e d o m e s t i c s u p p l i e s b y i m p o r t i n g g r a i n . T h i s h a s b r o u g h t g r e a t e r i n s t a b i l i t y t o t h e i n t e r n a t i o n a l g r a i n m a r k e t s 5 . T h e N . I . C . s ( T a i w a n . S o u t h K o r e a . M o n g K o n g . S i n g a p o r e a n d M a l a y s i a ) . a n d L . D . O . s ( O . P . E . C . e x c l u d i n g G a b o n a n d i n c l u d i n g O m a n ) r e p r e s e n t c o u n t r i e s e x p e r i e n c i n g o r w i t h t h e p o t e n t i a l f o r r a p i d i n c r e a s e s i n i n c o m e . M o s t o f t h e s e c o u n t r i e s a r e a t o r g i v e n t h e i r g r o w t h p o t e n t i a l s w i l l a p p r o a c h t h e s t a g e w h e r e c a l o r i e c o n s u m p t i o n w i l l i n c r e a s e d r a m a t i c a l l y . M u c h o f t h e i n c r e a s e i n c a l o r i c i n t a k e w i l l m a n i f e s t i t s e l f a s i n c r e a s e d c o n s u m p t i o n o f a n i m a l c a l o r i e s . I n c r e a s e d a n i m a l p r o d u c t i o n w i l l r e q u i r e i n c r e a s e d i m p o r t s o f g r a i n f o r f e e d i n g a s o p p o s e d t o g r a i n s f o r h u m a n c o n s u m p - t i o n . A l t h o u g h r i c e o r m a n i o c c a n b e u s e d a s a s u b s t i t u t e f o r f e e d g r a i n s i n t h e N I C s . i t i s e x p e c t e d t h a t t h i s i n c o m e g r o w t h w i l l g e n e r a t e a n i n c r e a s e d d e m a n d f o r b o t h f e e d g r a i n s a n d s o y p r o d u c t s . r e v e r s e t h e b a l a n c e o f C h i n e s e a g r i c u l t u r a l t r a d e . 3 3 T h e n a t u r e o f e c o n o m i c g r o w t h s t r a t e g i e s l e d t o t h e s e p a r a t i o n o f t h e N I C s a n d L D O s i n t o t w o r e g i o n s . T h e N . I . C . s a r e e x p e r i e n c i n g g r o w t h a l o n g a b r o a d b a s e o f i n d u s t r i a l a n d t e x t i l e p r o d u c t i o n w h i l e O . P . E . C . ’ s e c o n o m i c g r o w t h w i l l r i s e a n d f a l l w i t h t h e d e m a n d f o r p e t r o l e u m : t h e r e f o r e i t w a s d e e m e d n e c e s s a r y t o s e p a r a t e t h e t w o r e g i o n s . F u r t h e r m o r e . t h e N I C s t e n d t o h a v e a m o r e s t a b l e a g r i c u l t u r a l b a s e t h a n t h a t f o r t h e L D O s . T h e g r o w t h i n p r o d u c t i o n f o r m a n y o f O P E C c o u n t r i e s i s v e r y c l o s e l y t i e d t o t h e i r a b i l i t y t o s u p p o r t a g r i c u l t u r e w i t h p e t r o d o l l a r s . T h e P e o p l e ’ s R e p u b l i c o f C h i n a i s e s t i m a t e d a s a n i n d i v i d u a l r e g i o n f o r s e v e r a l r e a s o n s . T h e e c o n o m i c p o l i c i e s o f C h i n a h a v e a n e f f e c t o n t h e w e l l - b e i n g o f o n e - q u a r t e r o f t h e w o r l d ’ s p o p u l a t i o n a n d i t s r e c e n t o p e n t r a d e p o l i c y h a s t u r n e d i t f r o m a h o p e d f o r m a j o r m a r k e t f o r a g r i c u l t u r a l c o m m o d i t i e s t o a m a j o r c o m p e t i t o r i n t h e A s i a n g r a i n m a r k e t . U n d e r t h e l i m i t e d c a p i t a l i s m o f t h e c u r r e n t a d m i n i s t r a t i o n m a n y s e c t o r s o f C h i n e s e a g r i c u l t u r e a n d i n d u s t r y a r e e x p e r i e n c i n g s i g n i f i c a n t i n c r e a s e s i n p r o d u c t i v i t y . H i s t o r i c a l l y . C h i n a h a s b e e n a n e x p o r t e r o f s o y b e a n s a n d r e c e n t i n c r e a s e s i n a g r i c u l t u r a l p r o d u c t i v i t y h a v e t u r n e d C h i n a i n t o a n e t e x p o r t e r o f b o t h c o a r s e g r a i n s a n d s o y p r o d u c t s . H o w e v e r . e c o n o m i c l i b e r a l i z a t i o n h a s l e d t o i n c r e a s e s i n i n c o m e s w h i c h c o u l d i n c r e a s e c a l o r i e c o n s u m p - t i o n . U n d e r t h i s s c e n a r i o . t h e d e m a n d s m a d e u p o n t h e a g r i c u l t u r a l s e c t o r b y a m o r e a f f l u e n t p o p u l a t i o n c o u l d t i o n a n d t h e e f f o r t r e q u i r e d t o g e n e r a t e m o r e p r e c i s e 3 4 T h e r e s t o f t h e w o r l d i s c o n t a i n e d i n t h e L . D . C . r e g i o n . A l t h o u g h t h i s i n c l u d e s s e v e r a l c o u n t r i e s w h i c h h a v e r e l a t i v e l y h i g h i n c o m e s ( m o s t n o t a b l y I s r a e l a n d N e w Z e a l a n d ) t h e a m o u n t p r o d u c e d a n d t r a d e d b y t h e s e r e g i o n s w e r e t o o s m a l l t o w a r r a n t i n c l u s i o n w i t h t h e D e v e l o p e d M a r k e t s . T h e r e f o r e . t h e y w e r e p l a c e d w i t h t h e L . D . C . s w h i c h r e p r e s e n t “ t h e w o r l d m i n u s a l l o t h e r r e g i o n s “ . b a s i c a l l y a c o l l e c t i o n o f c o u n t r i e s f o r w h i c h p u b l i s h e d d a t a a r e n o t r e g u l a r l y a v a i l a b l e . W W W A l l d a t a u s e d i n t h e e s t i m a t i o n p r o c e s s i s f r o m p u b l i c l y a v a i l a b l e s o u r c e s . M o s t d a t a e x t e n d s b a c k t o 1 9 6 0 e x c e p t f o r t h e o i l s e e d c o m p l e x . T h i s d a t a i s n o t a v a i l a b l e o n t a p e p r i o r t o 1 9 6 4 . A l l a g r i c u l t u r a l d a t a i s a v a i l a b l e t h r o u g h t h e F o r e i g n A g r i c u l t u r a l S e r v i c e / U . S . D . A . b o t h o n c o m p u t e r t a p e a n d i n p u b l i c a t i o n s . T h e i n d i v i d u a l c o u n t r y d a t a ( h a r v e s t e d a r e a . p r o d u c t i o n . c o n s u m p t i o n n e t t r a d e a n d e n d i n g s t o c k s ) a r e t h e n s u m m e d i n t o t h e r e l e v a n t a g g r e g a t i o n s e i t h e r w i t h i n t h e t a p e s t r i p p i n g r o u t i n e o r w i t h a s p r e a d s h e e t p r o g r a m . C P I . G D P . p o p u l a t i o n a n d e x c h a n g e r a t e ( h e r e a f t e r r e f e r r e d t o a s m a c r o e c o n o m i c d a t a ) w e r e g a t h e r e d f r o m t h e I n t e r n a t i o n a l M o n e t a r y F u n d ’ s I n t e r n a t i o n a l F i n a n c i a l S t a t i s t i c s o r t h e U n i t e d N a t i o n s ’ S t a t i s t i c a l Y e a r b o o k . I n g e n e r a t i n g a g g r e g a t e d G D P . C P I a n d e x c h a n g e r a t e s f o r t h e r e g i o n s . t h e r e w a s a t r a d e - o f f b e t w e e n t h e l e v e l o f a g g r e g a - I a C e o P x r t J = h T 3 m 9 p 0 l x e . i o f o t e a n t t h C a e n i s r s m m e u e a g m l i r e t P 1 ( l o n r ’ e s 9 r g i 8 i t c 0 o r e n a I n 1 8 5 e d d 0 c w e 0 x ) o h u e n r f t e o r a r i s r s i e n e g i o n m g i a h l t a r b g e e r r e e g s i p o o n n . s i b r F l o e f 3 5 m a c r o e c o n o m i c v a r i a b l e s . U s i n g t h e f o r m u l a d e v e l o p e d b y M i t c h e l l s . 5 - 1 0 c o u n t r i e s w h i c h w e r e r e s p o n s i b l e f o r 7 5 - 9 0 % o f t o t a l g r a i n t r a d e f o r a r e g i o n f o r t h e p a s t f i v e y e a r s w e r e s e l e c t e d . T h e a m o u n t o f t r a d e f o r t h o s e 5 - 1 0 c o u n t r i e s a r e t h e n s u m m e d t o r e p r e s e n t 1 0 0 x o f t h e r e g i o n ’ s t r a d e a n d t h e w e i g h t f 1 f o r e a c h c o u n t r y i s e q u a l t o p e r c e n t a g e o f t r a d e f o r e a c h : : N e t T r a d e i : : 1 : 1 2 1 N e t T r a d e { 1 : T h e r e f o r e . X R t J = 1 g 1 < £ 1 . x a t i > G D P t J ~ 1 2 1 < £ 1 - G o p t 1 > C P I t J s i g l < £ 1 ~ c p 1 t 1 > w h e r e : X R t J - E x c h a n g e R a t e f o r r e g i o n 3 a t t i m e t ( e x p r e s s e d a s a n i n d e x p e r U 3 8 w h e r e 1 9 8 0 8 1 0 0 ) G D P t J 8 G r o s s D o m e s t i c P r o d u c t f o r r e g i o n 3 a t t i m e t ( e x p r e s s e d a s a n i n d e x w h e r e 1 9 8 0 8 1 0 0 ) a n d : i 3 1 . . . . . n c o u n t r i e s w h o s e t r a d e i s e q u a l t o 7 5 - 9 0 x o f t r a d e f o r t h a t r e g i o n . 3 ' 1 . . . . . . k r e g i o n s T h e n u m b e r o f c o u n t r i e s a n d t h e a m o u n t o f t r a d e w o u l d v a r y d e p e n d i n g o n t h e i n d i v i d u a l p e r c e n t a g e s o f t r a d e f o r t h e 3 w n t t i S r e f a g h t b e r e r t d e o h r n i t e a e s M g o d v . i r e f e n e o r h r w a l u s F i d i o n w t o r m t h h s i p e i r t l t n c . o i o h ' b m t l e t h h d e h e s i a m e t s s a y n t I P o e e e a c r . w x M i r e a i . " s c s s F o s . t f a d a m r a v i d e s y a t n a n a i i t t t n d o a r i l a a y n b A t f e a o i x f r n c a l e . r g t l v a e o u e o t o h o r c i a u e a f o o t n n y 0 M u l b o s F t . n e o r . o i t I c a n d l y . . y D f r s s . a t y i t e t n i a n r c i m a e I m p n d r S c t e e e d d t p o e o o r e w r t s a a t s n a t n t 3 6 r e g i o n o f s m a l l c o u n t r i e s t h e 1 0 l a r g e s t t r a d e r s m i g h t b e r e s p o n s i b l e f o r o n l y 7 5 3 o f t h e r e g i o n ’ s t r a d e . W h i l e d a t a f o r G D P f o r t h e S o v i e t B l o c i s a g g r e g a t e d i n t h e U n i t e d N a t i o n s S t a t i s t i c a l Y e a r b o o k . a t r a d e d e x c h a n g e r a t e a n d i n f l a t i o n d a t a a r e n o t a v a i l a b l e . C o n s i d e r i n g t h a t t h e m a j o r i t y o f h a r d c u r r e n c y i s g a i n e d t h r o u g h t r a d e w i t h t h e i n d u s t r i a l i z e d c o u n t r i e s . S . D . R . s a n d t h e O . E . C . D . d e f l a t o r w e r e c h o s e n a s t h e s i m p l e s t p r o x i e s . I n a n a t t e m p t t o e a s e c a l c u l a t i o n s t h e r e a d i l y a v a i l - a b l e S . D . R . a n d E . C . U . w e r e a l s o t e s t e d a s p r o x i e s f o r D e v e l o p e d M a r k e t e x c h a n g e r a t e s . T h e S . D . R . w a s n o t f o u n d t o t r a c k v e r y w e l l a g a i n s t t h e t r a d e w e i g h t e d e x c h a n g e r a t e d e r i v e d i n t h e f o r m u l a a b o v e . A l t h o u g h u s e o f t h e E C U b i a s e s t h e e x c h a n g e r a t e w e i g h t i n g b y r e l y i n g s o l e l y o n E u r o p e a n c u r r e n c i e s . t h e r e s u l t s o f a c o m p a r i s o n o f t h e t r a d e w e i g h t e d e x c h a n g e r a t e a n d t h e E C U i n d i c a t e d t h a t h i s t o r i c a l l y . t h e E C U a n d t h e w e i g h t e x c h a n g e r a t e t r a c k e d f a i r l y c l o s e l y . T h e r e f o r e . t h e E u r o p e a n C u r r e n c y U n i t ( E C U ) w a s c h o s e n a s a p r o x y f o r t h e D e v e l o p e d M a r k e t e x c h a n g e r a t e . - 0 0 - - T - - P 3 7 p o l i c i e s a n d p r o d u c t i o n c h a n g e o v e r t i m e r e l a t i v e t r a d e b y c o u n t r i e s w i t h i n a r e g i o n t h e t r a d e w e i g h t s r e q u i r e p e r i o d i c r e v i s i o n . F i n a l l y . t h e r e i s t h e p r o b l e m o f r e c o n c i l i n g t h e a g r i c u l t u r a l a n d m a c r o d a t a s e t s . T y p i c a l l y . t h e c o m m o d i t y d a t a a r e p r e s e n t e d o n a c r o p y e a r b a s i s w h i c h e x t e n d s a c r o s s t w o c a l e n d a r y e a r s ( F i g u r e 3 . 3 ) . O n t h e o t h e r h a n d . t h e m a c r o d a t a a r e p r e s e n t e d o n a c a l e n d e r y e a r b a s i s . I n t h e i n t e r e s t s o f e a s e o f d a t a c o l l e c t i o n . t h e c a l e n d a r y e a r o f m a c r o e c o n o m i c d a t a c o r r e s p o n d s t o t h e b e g i n n i n g y e a r o f t h e c r o p y e a r . T h e s t a n d a r d p r a c t i c e f o r r e c o n c i l i n g t h e c r o p y e a r s i f a b a l a n c e d s e t o f t r a d e f i g u r e s i s d e s i r e d h a s C a l e n d a r Y e a r Y e a r 1 Y e a r 2 Y e a r 3 l l l l l l J J l l i l l l l L l l l l l l l g l l l l l l l l i u S o y b e a n s B R A Z I L U N I T E D S T A T E S A R G E N T I N A C H I N A W h e a t U N I T E D S T A T E S A R G E N T I N A A U S T R A L I A C A N A D A D E V E L O P E D M A R K E T S C o a r s e G r a i n s m w n E J S D M E S N M E N D N A A U S fl U m M G M M D A I F i S u r e 3 . 3 . D i s t r i b u t i o n o f C r o p Y e a r s f o r M a 3 0 r E x p o r t e r s e x p o r t e r . A u s t r a l i a . T A h r e g m e t h e n t i n o a d b y a n d w t h h i e c h t r a D e v e l d o e p i s e d M r a e r c k o e n t c s i l e d w i ( f o r w l h l e b e a t ) 3 8 ‘ b e e n t o c a l l e a c h o f t h o s e c r o p y e a r s Y e a r 1 a n d a s s i g n i t t o t h e m a c r o e c o n o m i c d a t a c o r r e s p o n d i n g t o y e a r 1 . A m o r e s e r i o u s t h o u g h s i m i l a r p r o b l e m e x i s t s i n a t t e m p t i n g t o r e c o n c i l e t r a d e d a t a f o r n o r t h e r n a n d s o u t h e r n h e m i s p h e r e c r o p y e a r s . I n t h e g r a i n s e c t o r t h e o v e r l a p i s o n l y 2 m o n t h s a n d i s n o t a s c r i t i c a l . H o w e v e r . i n t h e s o y b e a n s e c t o r . t h e o v e r l a p i s s i x m o n t h s f o r B r a z i l a n d 8 m o n t h s f o r A r g e n t i n a . T h i s p r e s e n t e d a s p e c i a l p r o b l e m i n r e c o n c i l i n g t h e s o y b e a n d a t a . A s a r e s u l t o f t h e o v e r l a p i t b e c o m e s d i f f i c u l t t o g e t a c l e a r p i c t u r e o f t r a d e w i t h i n a c r o p y e a r . T h e d a t a . h o w e v e r . c a n n o t b e h a n d l e d o n a t r a d e y e a r b e c a u s e i t w o u l d t h e n b e i m p o s s i b l e t o r e c o n c i l e t h e d o m e s t i c m a r k e t s . A l t h o u g h a n u m b e r o f a r g u m e n t s c a n b e m a d e f o r s e t t i n g B r a z i l a n d A r g e n t i n a i n Y e a r 2 . t o m a i n t a i n a u n i f o r m m e t h o d o f d a t a c o l l e c t i o n . e a c h o f t h e r e g i o n s w i l l b e r e f e r r e d t o a s Y e a r 1 . T h e i m p l i c a t i o n o f t h i s a c t i o n i s t h a t i t i s i m p o s s i b l e t o b a l a n c e t h e e x p o r t s a n d i m p o r t s b e c a u s e t h e U . S . c a n n o t p e r f o r m a s a r e s i d u a l d i s c u s s e d a t t h e e n d o f S e c t i o n 3 . 5 . 2 3 . 4 x o r u t i n T h e s u b r o u t i n e E X P R T P c o n t a i n s t h e p r i c e c l e a r i n g e q u a t i o n s . U s i n g t h e s p e c i f i c a t i o n f o r t h e p r i c e e q u a t i o n d e v e l o p e d b y M i t c h e l l 7 . t h e w o r l d p r i c e f o r w h e a t a n d c o a r s e g r a i n s i n U . S . d o l l a r s a t t h e G u l f i s e s t i m a t e d a s a f u n c t i o n o f t h e s t o c k t o u t i l i z a t i o n r a t i o s f o r C a n a d a . a n d t h e U n i t e d S t a t e s : d o r l o - 3 3 t h . . . . P t : ( h g l U T I E Z F F . 0 . 3 . L O A N R A T E t ) w h e r e t h e l o a n r a t e i n t h e U n i t e d S t a t e s e s t a b l i s h e s t h e f l o o r o n U . S . p r i c e . T h i s i s s e t e x o g e n o u s l y i n r e s p o n s e t o d o m e s t i c p r e s s u r e . a n d b e c a u s e t h e U n i t e d S t a t e s i s t h e d o m i n a n t e x p o r t e r t h i s s a m e s u p p o r t p r i c e w i l l a l s o a c t a s a f l o o r o n t h e w o r l d p r i c e b y s o a k i n g u p a n d s t o r i n g e x c e s s s u p p l y b e f o r e i t g o e s i n t o e x p o r t c h a n n e l s . T h e t h e o r y o f s p e c u l a t i v e d e m a n d i n d i c a t e s t h a t a s a v a i l a b l e s u p p l y t i g h t e n s r e l a t i v e t o d e m a n d . i t w i l l t a k e a p r o g r e s s i v e l y h i g h e r p r i c e t o b r i n g a c o m m o d i t y o u t o f s t o c k a n d i n t o t h e m a r k e t . C o n v e r s e l y . l o w p r i c e s w o u l d t e n d t o r e s u l t i n s t o c k a c c u m u l a t i o n . H o w e v e r . t h e i n t r o d u c t i o n o f t h e l o a n r a t e s o a k s u p e x c e s s p r o d u c t i o n i f t h e p r i c e f a l l s b e l o w t h e l o a n r a t e . T h e r e f o r e t h e s t o c k / u t i l i z a t i o n - p r i c e c u r v e w i l l k i n k a t J u s t b e l o w t h e l o a n r a t e i n s t e a d o f d e c r e a s i n g a s y m p t o t i c a l l y ( F i g u r e 3 . 4 ) . R e c e n t l y . i t h a s b e c o m e e v i d e n t t h a t t h e r e h a s b e e n a s u b s t a n t i a l b u i l d u p o f s t o c k s i n t h e U . S . T h e b u i l d u p w o u l d a p p e a r t o b e t h e r e s u l t o f t h e s a t u r a t i o n o f d e m a n d f o r c o n s u m p t i o n a s o p p o s e d t o s p e c u l a t i v e d e m a n d . L o n g m i r e a n d M o r e y e c l a i m t h a t t h i s b u i l d u p i s l i n k e d t o t h e c h a n g e i n t h e v a l u e o f t h e d o l l a r . T h e y a r g u e t h a t a n a p p r e c i a t i o n o f t h e d o l l a r w i l l a c t i n t h e s a m e m a n n e r a s a n e x p o r t t a x : * U t i l i z a t i o n ( U T I L ) i s e q u a l t o d o m e s t i c c o n s u m p t i o n ( C O N S ) p l u s n e t e x p o r t s ( N E ) - a - . - - - . - — - o - e “ ' 0 - . . . - . . . - . - ~ s ~ . - - . e a - - 4 0 1 1 2 2 1 9 . L o a n R a t e S t o c k / U t i l i z a t i o n F i g u r e 3 . 4 . E n d i n g S t o c k - P r i c e R e l a t i o n s h i p d r i v i n g a w e d g e b e t w e e n t h e d o m e s t i c p r i c e i n t h e U . S . a n d t h e p r i c e i m p o r t e r s m u s t p a y . S i n c e w o r l d g r a i n p r i c e s a r e q u o t e d i n U . S . d o l l a r s t h e r e w o u l d b e a d e c l i n e i n i m p o r t d e m a n d . I n a w o r l d o f c o m p e t i n g . e x p o r t e r s w h e r e s p e c u l a t i v e d e m a n d e x i s t s . e a c h e x p o r t e r i s f a c e d w i t h a s i m i l a r s p e c u l a t i v e d e m a n d c u r v e i n i t s o w n c u r r e n c y ( F i g u r e 3 . 5 ) p U S l p C a n p E C F S t k / U t i l S t k / U t i l S t k / U t i l F i g u r e 3 . 5 . E n d i n g ' S t o c k - P r i c e R e l a t i o n s h i p f o r C o m p e t i n g E x p o r t e r s T h i s s p e c u l a t i v e d e m a n d i s m o d e l e d b y e s t i m a t i n g e x p o r t s f o r n o n - d u m p i n g e x p o r t e r s ( C a n a d a a n d t h e D e v e l o p e d M a r k e t s ) a s a f u n c t i o n o f r e a l b o r d e r p r i c e s . T h e d e c i s i o n t o e x p o r t o r S t o c k s a s " o f f t h e m a r k e t ” i f p r i c e s a r e n e a r t h e l o a n r a t e 4 1 h o l d s t o c k s i s a f u n c t i o n o f t h e l o c a l c u r r e n c y p r i c e f a c i n g t h e e x p o r t e r . A p p r e c i a t i o n o f a r e g i o n ’ s c u r r e n c y v i a - a - v i s t h e U . S . d o l l a r w i l l r a i s e t h e p r i c e f a c e d b y b o t h e x p o r t i n g a n d i m p o r t i n g r e g i o n s . I m p o r t i n g r e g i o n s w i l l d e c r e a s e t h e q u a n t i t y i m p o r t e d a n d e x p o r t i n g r e g i o n s w i l l i n c r e a s e t h e q u a n t i t y o f t h e i r e x p o r t s . T h e r e f o r e c o m p e t i n g e x p o r t e r s w i l l i n c r e a s e t h e i r s h a r e s o f a d e c l i n i n g p i e a n d t h e U . S . w i l l l o s e m a r k e t s h a r e . A l t h o u g h t h e r e w a s n o c h a n g e i n t h e U . S . d o l l a r p r i c e t h e r e w i l l b e a n i n i t i a l i n c r e a s e i n U . S . e n d i n g s t o c k s . T h e e f f e c t s t h a t i n c r e a s e d s t o c k s h a v e o n U . S . p r i c e s w i l l d e p e n d o n w h e t h e r t h e s t o c k s a r e s t o r e d u n d e r p o l i c y r u l e s o r a s m a r k e t s t o c k s . A l t h o u g h t h e g o v e r n m e n t h o l d s s t o c k s t o m a i n t a i n p r i c e b y s o a k i n g u p e x c e s s p r o d u c t i o n . t h e k n o w l e d g e o f t h e q u a n t i t y a n d t h e r e l e a s e p r i c e f o r F O R a n d C C C s t o c k s d i s c o u n t s i t s e f f e c t i v e n e s s . T h e r e f o r e . t h e r e l e v a n t e n d s t o c k e q u a t i o n f o r t h e U . S . i s a c t u a l l y s o m e - w h e r e b e t w e e n t o t a l e n d i n g s t o c k s a n d f r e e s t o c k s ' . T h e e f f e c t s o f i n c r e a s e d s t o c k s o n p r i c e w i l l d e p e n d u p o n t h e d e g r e e t o w h i c h t h e m a r k e t v i e w s p o l i c y s t o c k s a s “ o f f t h e m a r k e t " a n d t h e p e r c e i v e d l e v e l o f s t o c k s w h i c h a r e n e e d e d t o s m o o t h m a r k e t t r a n s a c t i o n s . E m p i r i c a l t e s t i n g h a s i n d i c a t e d t h a t b o t h ' s e t s o f p e r c e p t i o n s h a v e b e e n s u b j e c t t o c h a n g e . T h e m a r k e t p e r c e i v e s a g r e a t e r p e r c e n t a g e o f p o l i c y ¥ D F r e e s t o c k s I T o t a l E n d i n g S t o c k s - C C C - F O R . E U S d e d S W c i i T s H w e s o t n c . h L t F y r i l o f u t I I b i o r r i g h = i s h e r d t o T l v d n s s t e t h = s u p o s o e ( E = p t r a p c f 1 n T n i r h i p F m k d h s i o n e l c t r a s i 0 t 1 0 U ( e c o t y e h e r i 0 s n 0 g e m s e e m k g i 0 l s o a r n s i e ) a t c M t l e e c s o e S T z o a a s c b d o u s D t n i H s i 0 t e e y n t n t ( ” t T e o k e s a c k c d r i c / s ) r s n k s w e a t e k u t o a o m t h c s n t i r a r u c t t w a o o b l a a d d m e n ) y m l n i h o o r h t g i n t f y p r i t u p r r a e i t 9 a y s a c c t a d r e e o o i r o o l F c t i x h d n r s i e c u u a e d i r e o s f e n n i z e n a s a t t n 1 l . r o t a e t s z e o l e z p c f t e y y 7 t r m o i t g . h h e s t c s a n a 8 e p a n e o o e " o f a a n c u i r - s f i o r a s l k o f t t e m d n a a t t t t t d r e i q C e i i t h a e o u C - a n e r t e C h m m i - e t c g a m e m e i e l a o a f a a t t f r i e t h i o n u U n w e e c e n . d h t t b n c o f r d e n o U l n i e e m m d e e a l i f l e i u f a t l s F t e a t o O t e d t h R y r k e t " . S a l p S d i o r e t n n a i t a d c n c e t e e e r a r P m s . ' t s o t t o T h l k a c e s 4 2 a n d t h e r e i s a n i n c r e a s e i n p o l i c y s t o c k s . I f p r i c e s a r e n e a r t h e t r i g g e r p r i c e . t h e m a r k e t a n t i c i p a t e s t h e i r r e l e a s e b y l o w e r i n g t h e p e r c e n t a g e o f s t o c k s “ o f f t h e m a r k e t " . A f t e r t h e p e r i o d o f h i g h p r i c e s i n t h e e a r l y a n d m i d - 1 9 7 0 ’ s t h e r e a p p e a r e d t o b e a r e a l i z a t i o n t h a t s t o c k s c o u l d b e c o n s i d e r a b l y l o w e r r e l a t i v e t o u t i l i z a t i o n r a t i o b e f o r e p r i c e s i n c r e a s e d . T h i s “ o p t i m u m “ h a s c o n t i n u e d t o d e c l i n e o v e r t h e p e r i o d s i n c e 1 9 7 7 . T h e r e f o r e t h e p r i c e e q u a t i o n c a n b e s p e c i f i e d a s : m H r P t - ' E S t h L o a n R a t e t ‘ f é g l U T I L t ' S h 1 f t ) w h e r e : h = 1 . . . k e x p o r t e r s 4 3 e q u i v a l e n t “ . I f t h e i n t e r n a t i o n a l m o d e l i s l i n k e d t o t h e d o m e s t i c m o d e l . s o y m e a l p r i c e s a r e c a l c u l a t e d i n t h e d o m e s t i c p r i c e c o m p o n e n t . S o y o i l p r i c e s a r e d e t e r m i n e d b y s u p p l y a n d d e m a n d c o n d i t i o n s i n t h e d o m e s t i c c o m p o n e n t o f t h e m o d e l ( D e c a t u r p r i c e ) a n d t h e n t h e c o s t o f t r a n s p o r t a - t i o n i s a d d e d t o d e r i v e t h e g u l f p r i c e o r e x o g e n i z e d i n t h e i n t e r n a t i o n a l c o m p o n e n t . T h e s o y b e a n e x p o r t p r i c e i s e s t i m a t e d a s a f u n c t i o n o f t h e p r i c e s o f t h e c o m p o n e n t p r o d u c t s . T o c o n v e r t t h e s e p r i c e s t o r e a l b o r d e r p r i c e s . t h e y a r e t h e n m u l t i p l i e d b y t h e e x c h a n g e r a t e a n d d i v i d e d b y t h e C . P . I . f o r a r e g i o n : P t J ' p t m r m . X R t J w h e r e : 3 . 1 . . . . . . k r e g i o n s A b b o t t 9 i n c l u d e s t r a n s p o r t a t i o n c o s t s i n h i s p r i c e m e c h a n i s m b y d e t e r m i n i n g t h e c o s t s o f t r a n s p o r t a t i o n f r o m a l l e x p o r t m a r k e t s t o a l l i m p o r t m a r k e t s a n d o f a l l i m p o r t m a r k e t t o t h e G u l f . T h e p r i c e f a c i n g e a c h i m p o r t i n g r e g i o n 1 w o u l d b e : P t 1 3 P t fi u r * F r e i g h t g w u q l w h i l e t h e p r i c e f a c i n g e a c h e x p o r t e r x i n r e g i o n i w o u l d b e : P e i - P t m fl + F r e i g h t f r u + F r e i g h t t m u p n w h e r e P t i = B o r d e r i m p o r t p r i c e a t t i m e t p t m u r 8 P r i c e a t t h e G u l f a t t i m e t S o y m e a l p l u s t h e s o y m e a l e q u i v a l e n t o f s o y b e a n s . 4 4 F r e i g h t t s ‘ u f - H I T h e c o s t o f t r a n s p o r t a t i o n f r o m t h e G u l f t o i m p o r t i n g r e g i o n 1 a t t i m e t F r e i g h t t m n r n 8 T h e c o s t o f t r a n s p o r t a t i o n f r o m t h e G u l f t o e x p o r t i n g r e g i o n x a t t i m e t ) x . T h e c o s t o f t r a n s p o r t a t i o n f r o m i m p o r t i n g r e g i o n 1 t o e x p o r t i n g r e g i o n x a t t i m e t ' F r e i g h t t r U s e o f t h i s e q u a t i o n a l f o r m w o u l d p e r m i t d e t e r m i n a t i o n o f t h e p a t t e r n s o f t r a d e i n m u c h t h e s a m e m a t t e r a s a s p a c i a l e q u i l i b r i u m m o d e l . H o w e v e r . t h e c u r r e n t s c h e m e o f r e g i o n a l a g g r e g a t i o n b y e c o n o m i c c o n s i d e r a t i o n w o u l d r e s u l t i n c o n s i d e r a b l e p r o b l e m s i n a g g r e g a t i o n . I t w a s f e l t t h a t t h e c o m p l e x i t y o f d e t e r m i n i n g f r e i g h t r a t e s w o u l d o v e r s h a d o w a n y b e n e f i t s f r o m i n c l u d i n g a n e x o g e n o u s v a r i a b l e . T h e r e - f o r e . t r a n s p o r t a t i o n c o s t s a p p e a r i m p l i c i t l y i n e s t i m a t i o n o f t h e i m p o r t a n d e x p o r t e q u a t i o n s . 3 . 5 C n t / e o e T h e m o d e l s t r u c t u r e c o n t a i n s b o t h r e c u r s i v e a n d s i m u l t a n e o u s e l e m e n t s . F o r e a c h o f t h e 1 1 r e g i o n s . p r o d u c - t i o n i s b a s e d o n r e l a t i v e p r i c e s . y i e l d s . e n d i n g s t o c k s o r i m p o r t s f r o m p a s t p e r i o d s w h i l e p r i c e s . c o n s u m p t i o n a n d i m p o r t s a r e s o l v e d s i m u l t a n e o u s l y . I n m o s t c a s e s . t h e s t r u c t u r e o f t h e m o d e l e s t i m a t e d f o r c o u n t r i e s f i t t i n g a c l a s s ( e g : s u r p l u s e x p o r t e r . r e s i d u a l s u p p l i e r o r i m p o r t e r ) ( 0 1 1 1 b e t h e s a m e ( F i g u r e 3 . 6 ) . H o w e v e r . i n s o m e c a s e s i t w a s n e c e s s a r y t o m o d i f y t h e e q u a t i o n s t r u c t u r e s o m e w h a t . 4 5 w m w s a o o m m s a r o m a s E E M E / “ M W W V ' 4 m . ' m A V G 1 5 1 . . ” D C 0 0 M M E P i 3 o w e d / m i m e I E y c N w e a p o n s T Q . . . . . O N E Y E A R L A G ' I N E c r a m - m o m - o . ( m - c c c ) D - D i s c o u n t f a c t o r o n g o n m m o n t s t o r a g e F i g u r e 3 . 6 . I n t e r n a t i o n a l C o m p o n e n t - G r a i n s S e c t o r a n d a t t e w h e r e : H g a d t o i . a c ‘ p e o n t a e x l r p r y i e i o c H P K d p w t i m i a A v t e p t r I I t i v o t i n g t o e s i e t n i t f i r I e i s I i . s a I O t u l s m e a r t j D t x n x h o a i p e i p e n d s E t e p i e c i n h u a t t r s r e s s h t t e e i e t s e i m a d d o l m u p h p o a v n e e n e m r l t a r t d a t d s e r i o u n t b o t h y v c t c t t e e t t o h p s v i h a e t o e o t r a t e f n i r h d d i e f o c a e f a d i a o b s u d r ’ e l e m e r c s e r m l i n e m s d a o s e t i r p a n d p r o i o e i f t n d c a b y e c a d d i r s r c r s w a o e e i c h a m a n i r o a e m g c t d d u c t o t e h a h d i t y t w r e i h i a e r a g e t s t j e e o e u n p i t m s s i n i l s H r a a b n c : t u o t i A c e n i l i t e s 4 6 m u 0 M i t c h e l l 1 0 a r g u e s t h a t e s t i m a t i n g a n a g g r e g a t e p r o d u c - t i o n f u n c t i o n i s b o t h d i f f i c u l t a n d o f t e n l e a d s t o i n c o r r e c t s i g n s a n d e l a s t i c i t i e s . H e f e e l s t h a t a g r e a t e r d e g r e e o f s u c c e s s c a n b e a c h i e v e d b y c o n s i d e r i n g d o m e s t i c p r o d u c t i o n f o r e a c h r e g i o n t o b e a n i d e n t i t y d e f i n e d a s : P R O D t i I H A t 1 I Y L D t 1 w h e r e : P R O D t i I P r o d u c t i o n o f c r o p i i n y e a r t ( 1 0 0 0 M T ) H A t 1 I H a r v e s t e d a r e a o f c r o p i i n y e a r t ( 1 0 0 0 H A ) Y L D t 1 I Y i e l d o f c r o p i i n y e a r t ( M T / H A ) s e p a r a t e e q u a t i o n s . . R V T E s t i m a t i o n o f t h e h a r v e s t e d a r e a e q u a t i o n s f o l l o w t h e g e n e r a l f o r m u l a o f a p a r t i a l a d j u s t m e n t m o d e l s u g g e s t e d b y N e r l o v e . T h e m o d e l a s s u m e s t h a t p r o d u c e r s a d j u s t t h e i r a c r e a g e H A t - 1 t o w a r d a d e s i r e d l e v e l H A I t i n r e s p o n s e t o e x p e c t e d p r i c e s : H A I t i I f ( P I t 1 . K t i ) V s a i r R X s . d d t E w e s 1 p g l t i o I s a I m - n b f ° e l e O t d I t e e n r G c t e r t o u r r r a s w o o f t n s p r e o w h e s s o a r d r i e b . e d l m w r g h t . e n v A y v v a p b e n e t r a u . y m e n e i 4 r h s e s d o u a s l y e r v h t t e e - i t l s p t r c p i n r a i e i h a a l r a y l m b r i a f o l e n h o g v e r g g e i c s r m e n t u e t d g c b r r a l f v h o e r e a r a e r n t e v f c e o e e r o r a n n a o f r u g l p o p e e u i r v e i o f o o o e m o r v f i p a l d e n e l c e d t o h r y i i w y t e n i e o p o l g n a f r d r s g i c t c a h e u t f e s o b y e r < ) I c P : r n o O r i o e n r i p l s i t s d i o 4 7 s o m e w h e r e b e t w e e n H A t - l a n d H A I t . t h e N e l o v i a n m o d e l m a y b e w r i t t e n : a n t i a f ( H A t - 1 i . P t — 1 1 . X t i ) w h e r e : H A ; 1 I H a r v e s t e d a r e a o f c o m m o d i t y i a t t i m e t P t - l i I P r i c e o f c o m m o d i t y i a t t i m e t - l x t i I O t h e r r e l e v a n t v a r i a b l e s T h i s i n i t i a l f o r m u l a t i o n w a s m o d i f i e d b y N e r l o v e a n d A d d i s o n i n r e s p o n s e t o B r a n d o w ’ s a r g u m e n t t h a t n o n - p r i c e v a r i a b l e s ( i e : y i e l d ) n o t i n c l u d e d i n N e r l o v e ’ s o r i g i n a l s p e c i f i c a t i o n h a d a s i g n i f i c a n t e f f e c t o n h a r v e s t e d a r e a l l . I n t h e c u r r e n t s p e c i f i c a t i o n o f t h e i n t e r n a t i o n a l c o m p o n e n t . l a g g e d r e v e n u e i s u s e d i n p l a c e o f l a g g e d p r i c e . R e v e n u e w i l l p r o v i d e a b e t t e r m e a s u r e o f p r o d u c e r c o n s i d e r a - t i o n s b y t a k i n g t h e i n c o m e g e n e r a t i n g e f f e c t s o f y i e l d g r o w t h i n t o a c c o u n t . O t h e r r e l e v a n t v a r i a b l e s w i l l p r o x y p o l i c y o r n o n - y i e l d t e c h n i c a l i n n o v a t i o n : H A t i . f ( H A t - 1 1 . R E V t - 1 1 . R E V t - 1 ° . X t 1 ) w h e r e : H A 1 ; 1 I H a r v e s t e d a r e a o f c r o p i i n y e a r t ( 1 0 0 0 H A ) R E V t - 1 1 I G r o s s r e v e n u e p e r h e c t a r e f o r c r o p i i n y e a r t - l p w e h r e i r o d e : i n s t r . e ( M u s n : i s s a i d n h u a d t e b n i c d u g e d a a m l i s d R P Y e s c e l o V D i t ) o n 3 r L E t n s l t a a u t t ' J s . c p g — i k h h o h l ' o a a l o t e i h i i l a s E ' t i k R I V J I R t f S p v s i r t l a y p o e c r _ I Y a m 1 i l e I . J d t R e ' o e - l b t J w v l d o - e g c s p m a s e o g m i o r a j s x a r o a r y n e r l k n r o g = w n o d e d f u i a f u e t e e n 1 _ 4 r e r i M f t d d n c c h f a £ o p r g C e e t s E - f o r a c h p h L p i l t a a g r i Y c c l g t r o f L r i e e a u a d t D o n i p l u s R p i o c n a a o c i i ' J n r c O . J n f y n n t g d i b g ( o p e o I y n g o i P i p g c r o : h d d e e e t r o m s n u q i e r S a e r d n n d s : a i i t r r c c t m o a e a i k e n e l s x s t g g t e o t i k 3 e i i s a o t c n m h a e a t r t n . a o a n s d b e 3 n r a d g 1 _ l e n i t ' o n O i 1 3 i e t r j e q i d c u i u t t i a o z t n i n 1 o g t i 2 n A a o s n u s a s d t . : 4 8 t h e c r o p w a s f o u n d t o r e d u c e t h e b i a s f r o m y e a r t o y e a r d r o u g h t s w h i l e l o w e r i n g r e v e n u e e x p e c t a t i o n s d u r i n g l o n g e r A l t h o u g h t h e t h r e e y e a r l a g c o r r e c t e d d o w n w a r d b i a s . t h r e e d e g r e e s o f f r e e d o m a r e l o s t . W h i l e t h i s d o e s n o t n e c e s s a r i l y p r e s e n t a p r o b l e m f o r e s t i m a t i o n s b a s e d o n s a m p l e e x c e e d i n g 2 0 o b s e r v a t i o n s . m o s t s o y b e a n d a t a b e g i n s i n 1 9 6 4 . U n d e r t h e s e c i r c u m s t a n c e s . t h e l o s s o f t h r e e d a t a p o i n t s c o u l d r e s u l t i n s i g n i f i c a n t l o s s o f e x p l a n a t o r y p o w e r . T h e r e f o r e . i n t h e c a s e o f s o y b e a n s . t h e t r e n d y i e l d w a s d e t e r m i n e d a n d u s e d a s a p r o x y f o r a c t u a l p a s t y i e l d . I n c o u n t r i e s w h e r e a m a r k e t i n g b o a r d o r s i m i l a r a g e n c y h a s a m o n o p o l y o n e i t h e r g r a i n e x p o r t s o r a l l d e l i v e r i e s i t c a n d r i v e a w e d g e b e t w e e n d o m e s t i c a n d w o r l d p r i c e s ( S p r i g g s 1 9 7 8 & B r a y . e t . a 1 . 1 9 8 1 ) . I n t h i s c a s e p r o d u c e r s r e s p o n d t o a m i x o f d o m e s t i c a n d w o r l d p r i c e s a s w e l l a s t h e p o l i c y m m - e m M 4 9 M A I ; 1 = f ( H A t - 1 1 . R E V I t 1 . R E V I t ° . E S t — 1 i ) w h e r e : H A t 1 I H a r v e s t e d a r e a o f c r o p i i n y e a r t ( 1 0 0 0 H A ) R E V I t i E x p e c t e d p e r h e c t a r e r e v e n u e f o r c r o p i i n y e a r t R E V - t a I E x p e c t e d p e r h e c t a r e r e v e n u e f o r c o m p e t i n g c r o p s i n y e a r t E s t — 1 1 I T o t a l e n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t - 1 ( 1 0 0 0 M T ) I n t h e E u r o p e a n C o m m u n i t y . t h e C o m m o n A g r i c u l t u r a l P o l i c y ( C A P ) g e n e r a t e s p r i c e s f o r p r o d u c e r s t h a t b e a r n o r e l a t i o n t o t h e w o r l d p r i c e . T h e i m p o s i t i o n o f t a r i f f b a r r i e r s a n d i n t e r v e n t i o n p r i c e s h a s r e s u l t e d i n w h a t K o e s t e r r e f e r s t o a s “ p o l i t i c a l p r i c e s " 1 4 . O b s e r v a t i o n o f t h e r e a l b o r d e r p r i c e f a c i n g t h e E C a n d E C p r o d u c e r p r i c e s i n d i c a t e s t h a t t h e s e p r i c e s h a v e n o t m o v e d t o g e t h e r a n d t h e r a t i o h a s a c t u a l l y d e c l i n e d ( F i g u r e s 3 . 7 a 8 3 . 7 b ) . - u - " - . 1 “ 0 " a n ’ 4 - 4 s I - I - . : 1 a e - - . E u " - _ ' ” d . . . M I , 4 g . . a s - I " ' 4 ( . 1 n o - I I m q - I " a g 3 . 1 1 . : 1 “ m e 3 1 ‘ 4 “ I 1 " - 4 I I I | 1 . 4 “ 0 " 1 . 4 t 1 . - I . “ . . d ‘ . - T r fi fi — t U V V ‘ U ‘ U U U U U U U U U U U U U U U I I I i T I I V r t V I I V U I m a s s e s e e e m n n u m m n n m n - m e s u ” I O U - C U O C D V I R T I ’ R N W R T I D M C C “ u I u 0 - - O m a . W h e a t b . C o a r s e G r a i n s F i g u r e 3 . 7 a A b . R e a l B o r d e r a n d P r o d u c e r P r i c e s f o r W h e a t a n d C o a r s e G r a i n s i n t h e D e v e l o p e d M a r k e t s . l a n d ’ f l o U o r s n i d i g e o n r n f t p i h r c e o a d n C u t A c c o e f P e . r i p n r n n t t s i o n o f i t i c i e e c r e v s e . c c u r p r i r c e e d s i w n o u e t l h d e e b q u a t i o n : t h e 5 0 T h e r e f o r e . t h e h a r v e s t e d a r e a e q u a t i o n s f o r t h e D e v e l O p e d M a r k e t s u s e e x o g e n o u s p o l i c y p r i c e s f o r w h e a t a n d c o r n t o g e n e r a t e o w n a n d c o m p e t i n g c r o p r e v e n u e . I n i t i a l l y . t h e i n t e r v e n t i o n p r i c e w a s u s e d i n t h e f o r m u l a t i o n . H o w e v e r . w h e a t a n d c o r n p r i c e s w e r e v e r y c l o s e l y c o r r e l a t e d . P r o d u c e r p r i c e s w e r e t e s t e d a n d f o u n d t o b e l e s s c o r r e l a t e d b u t s h o w e d t h e s a m e t r e n d s a s i n t e r v e n t i o n p r i c e s “ . I n t h e S o v i e t B l o c . t h e c o l l e c t i v e f a r m i n g s t r u c t u r e o f t h e S o v i e t U n i o n g r e a t l y i n f l u e n c e s p r o d u c t i o n . A c r e a g e a l l o c a t i o n s a r e d e t e r m i n e d b y p o l i c y a s o p p o s e d t o p r o d u c e r r e s p o n s e t o w o r l d p r i c e s i g n a l s . A l t h o u g h i t w a s i n i t i a l l y t h e o r i z e d t h a t t h e r e m i g h t b e a p r i c e r e l a t i o n s h i p b e t w e e n h a r v e s t e d a r e a a n d p r i c e b a s e d o n o u t f l o w s o f h a r d c u r r e n c y f o r g r a i n i m p o r t s . w h e n w h e a t a n d c o a r s e g r a i n h a r v e s t e d a r e a s w e r e e s t i m a t e d a s a f u n c t i o n o f r e a l b o r d e r p r i c e s u n e x p e c t e d s i g n s a n d i n s i g n i f i c a n t t - s t a t i s t i c s a p p e a r e d . D e s p i t e t h e f a c t t h a t t h e S o v i e t U n i o n a t t e m p t s t o r e d u c e d o m e s t i c i n s t a b i l i t y b y m a k i n g u p s h o r t f a l l s t h r o u g h t r a d e a n d a l l o w i n g t h e m a j o r e x p o r t e r s t o c a r r y s t o c k s . e n d i n g s t o c k p o l i c i e s w e r e f o u n d t o b e a n a r e a s o n a b l y e f f e c t i v e p o l i c y p r o x y . W h e n a d u m m y v a r i a b l e f o r t h e p e r i o d 1 9 6 0 - 7 1 ( a f t e r w h i c h t h e r e w a s a s h i f t f r o m s e l f - s u f f i c i e n c y i n p r o d u c t i o n ) w a s i n c l u d e d . e x p e c t e d s i g n s 5 1 n a t i v S B - f ( H A t - 1 1 . E S t - 1 1 . E S t - 1 3 . D V 6 0 7 1 ) w h e r e : H A 1 ; 1 I H a r v e s t e d a r e a o f c r o p i i n y e a r t ( 1 0 0 0 H A ) E s t — 1 1 I T o t a l e n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t - l ( 1 0 0 0 M T ) E s t - 1 3 I T o t a l e n d i n g s t o c k s o f c o m m o d i t y j i n y e a r t - 1 ( 1 0 0 0 M T ) D V 6 0 - 7 1 I 1 i n t h e y e a r s 6 0 - 7 1 . 0 e l s e w h e r e N e t i m p o r t s c a n a l s o p r o v i d e a p r o x y f o r a g o v e r n m e n t ’ s p o l i c y o n s e l f - s u f f i c i e n c y i n p r o d u c t i o n . I f l a g g e d n e t i m p o r t s a r e i n c l u d e d o n t h e r i g h t - h a n d s i d e o f a h a r v e s t e d a r e a e q u a t i o n a p o s i t i v e c o e f f i c i e n t i s e x p e c t e d . T h i s f o r m u l a t i o n w a s u s e d i n e s t i m a t i n g h a r v e s t e d a r e a s f o r t h e N I C s ( w h e a t ) a n d t h e L D C s ( c o a r s e g r a i n s ) . H o w e v e r . t h e p o s i t i v e s i g n o n n e t i m p o r t s w i l l r e s u l t i n a d e c l i n e i n p r o d u c t i o n i f a n i m p o r t i n g c o u n t r y b e c o m e s a n e t e x p o r t e r . T h i s w a s f o u n d t o b e t h e c a s e i n e s t i m a t i n g c o a r s e g r a i n h a r v e s t e d a r e a f o r C h i n a . H i s t o r i c a l l y . t h e e q u a t i o n t r a c k e d v e r y w e l l b u t i n a n e x - a n t e f o r e c a s t t h e e m e r g e n c e o f C h i n a a s a c o n s t a n t n e t e x p o r t e r ( n e g a t i v e i m p o r t s ) r e s u l t e d i n a d e c l i n e i n h a r v e s t e d a r e a . A s p l i n e w a s d e f i n e d s u c h t h a t i m p o r t s r e m a i n e d p o s i t i v e b u t t h e r e s u l t s w e r e i n c o n c l u s i v e . T h e r e f o r e . t h i s f o r m u l a t i o n w a s d r o p p e d f r o m t h e C h i n e s e h a r v e s t e d a r e a e q u a t i o n s . T h e p a r t i a l a d j u s t m e n t m o d e l i s a p p l i e d t o a l l p r i m a r y c r o p s a n d t h e r e s u l t s a r e s u m m e d t o g e n e r a t e t h e c r o p l a n d b a s e . D o u b l e c r o p p i n g i s c o u n t e d a s t w i c e t h e h a r v e s t e d a r e a . H a r v e s t e d a r e a e q u a t i o n s f o r s e c o n d a r y o i l s e e d c r o p s w e r e e s t i m a t e d a s t h e f u n c t i o n o f a t i m e t r e n d a n d n o t 5 2 i n c l u d e d i n c r o p l a n d b a s e . A l t h o u g h t h e u s e o f t r e n d s r e m o v e s p r i c e r e s p o n s i v e n e s s f r o m t h e e q u a t i o n , t h e a r e a i n q u e s t i o n i s g e n e r a l l y s m a l l . A s m e n t i o n e d p r e v i o u s l y . t h e p u r p o s e o f e s t i m a t i n g p r o d u c t i o n f o r t h e s e c o n d a r y c r o p s i s t o a c t a s a v a r i a b l e i n d e t e r m i n i n g c r u s h c a p a c i t y a n d t h e a v a i l a b i l i t y o f a l t e r n a t i v e o i l s a n d m e a l s . M i t c h e l l s u g g e s t s a n a l t e r n a t i v e m e t h o d f o r d e t e r m i n i n g h a r v e s t e d a r e a s . T h i s m e t h o d b e g i n s w i t h a s s u m p t i o n t h a t e s t i m a t i n g c r o p l a n d b a s e w i l l p r o v i d e a v a r i a b l e d e n o t i n g t o t a l l a n d a v a i l a b i l i t y . C r o p l a n d b a s e c a n b e e s t i m a t e d e i t h e r u n d e r t h e a s s u m p t i o n s o f N e r l o v e ’ s p a r t i a l a d J u s t m e n t m o d e l o r a s a s i m p l e t i m e t r e n d . T h e h a r v e s t e d a r e a s o f t h e s m a l l e s t r e l e v a n t c r o p ( s > a r e e s t i m a t e d u s i n g t h e p a r t i a l a d j u s t m e n t m o d e l a n d s u b t r a c t e d f r o m t h e c r o p l a n d b a s e t o g e n e r a t e a r e s i d u a l h a r v e s t e d a r e a f o r t h e l a r g e s t r e l e v a n t c r o p . E s t i m a t i o n o f t h e t w o s m a l l e s t r e g i o n s w i t h t h e l a r g e s t t a k e n a s a r e s i d u a l r e s u l t s i n a s m a l l e r p e r c e n t a g e e s t i m a t i o n e r r o r t h a n i f t h e l a r g e s t a r e a w a s e s t i m a t e d . H o w e v e r , t h i s m e t h o d h a s s e v e r a l d i s a d v a n t a g e s . I f c r o p l a n d b a s e i s e s t i m a t e d a s a t i m e t r e n d . a n a s s u m p t i o n i s m a d e t h a t . s u b j e c t t o t h e g r o w t h i n c r o p l a n d b a s e . t h e g r o w t h o f a l l h a r v e s t e d a r e a s w i l l s u m t o z e r o . I n o t h e r w o r d s , i f t h e h a r v e s t e d a r e a o f o n e c r o p i n c r e a s e s a t a f a s t e r r a t e t h a n t h e r a t e o f c r o p l a n d b a s e i t w i l l m e a n t h a t t h e r e i s a r e d u c t i o n i n t h e r e s i d u a l a r e a . E s t i m a t i n g t h e h a r v e s t e d a r e a f o r e a c h c r o p w i l l p e r m i t a m o r e r e a l i s t i c p i c t u r e o f p a s t u r e r e d u c t i o n a n d m o v e m e n t s o u t o f n o n - 5 3 e s t i m a t e d c r o p s . E s t i m a t i o n o f t h e c r o p l a n d b a s e a s a p a r t i a l a d j u s t m e n t m o d e l w o u l d r e q u i r e t h e a d d i t i o n o f a r e t u r n f r o m a l t e r n a - t i v e u s e s o f t h e l a n d . O t h e r w i s e . i n t r o d u c t i o n o f c r o p l a n d b a s e a s a r i g h t - h a n d v a r i a b l e i n t h e h a r v e s t e d a r e a e q u a t i o n w i l l r e s u l t i n m u l t i c o l l i n e a r i t y i f t h e s a m e r e v e n u e v a r i a b l e s a r e u s e d i n b o t h t h e c r o p l a n d b a s e a n d a c r e a g e e q u a t i o n s . I n c o n s t r u c t i n g t h e i n t e r n a t i o n a l c o m p o n e n t . a l l t h r e e s t r u c t u r e s w e r e t e s t e d . T h e r e s u l t s o f i n c l u d i n g c r o p l a n d b a s e a s a f u n c t i o n o f r e v e n u e v a r i a b l e s w a s f e l t t o b e r a t h e r u n s t a b l e : t h i s w a s i n k e e p i n g w i t h t h e r e s u l t s n o t e d b y F i s c h e r a n d F r o h b e r g i n t h e I I A S A m o d e l l s . W h e n t h e i n d i v i d u a l l y e s t i m a t e d h a r v e s t e d a r e a w e r e s u m m e d a n d c o m p a r e d t o t h e c r o p l a n d b a s e e s t i m a t e d a s a t i m e t r e n d . i t w a s f e l t t h a t t h e f i t w a s b e t t e r a n d t h e n u m b e r o f t u r n i n g p o i n t e r r o r s w e r e f e w e r . A l t h o u g h t h e r e i s a d a n g e r o f a a c c i d e n t a l l y i m p o s i n g a n e x o g e n o u s s h o c k w h i c h e x p a n d s t h e s u m o f a l l h a r v e s t e d a r e a s b e y o n d a r e a s o n a b l e c r o p l a n d e x p a n s i o n . t h i s c a n b e c o n t r o l l e d b y b o u n d i n g t h e s u m o f t h e h a r v e s t e d a r e a s t o w i t h i n h i s t o r i c l e v e l s o r p e r i o d s o f m o s t r a p i d g r o w t h . F u r t h e r m o r e . t h e s u m o f t h e e s t i m a t e d h a r v e s t e d a r e a s t e n d t o b e l e s s t h a n t w o - t h i r d s o f t h e t o t a l c r o p l a n d b a s e ( T a b l e 3 . 2 ) . T h e r e f o r e . f o r t h e p u r p o s e s o f e s t i m a t i o n t h e h a r v e s t e d a r e a f o r e a c h c r o p w a s e s t i m a t e d s e p e r a t e l y . 5 4 T a b l e 3 . 2 C r o p H a r v e s t e d A r e a a s a F u n c t i o n o f T o t a l C r o p l a n d B a s e ” - 1 9 8 0 ( 1 0 0 0 H e c t a r e s ) C r o p A r e a C r o p l a n d B a s e % H a r v . E x p o r t e r s A r g e n t i n a 1 2 9 6 7 3 5 2 0 0 3 6 . 8 A u s t r a l i a 1 5 5 6 9 4 4 4 0 0 3 5 . 0 C a n a d a 1 8 7 8 4 4 4 3 5 0 4 2 . 4 B r a z i l 2 4 6 0 0 6 1 9 5 0 3 9 . 7 U n i t e d S t a t e s 1 1 8 9 8 1 1 9 0 6 2 4 6 2 . 4 I m p o r t e r s - D e v e l o p e d M a r k e t s 4 6 8 1 0 1 0 5 6 5 3 4 4 . 3 N . I . C . s " 6 5 9 6 5 2 1 1 0 . 1 L . D . O . s 1 0 4 7 0 6 4 5 4 9 1 6 . 2 S o v i e t B l o c 1 3 6 9 1 5 2 8 5 7 1 5 4 7 . 9 L . D . C . s 1 5 8 2 2 7 5 1 4 0 5 3 3 0 . 8 C h i n a 6 8 9 7 2 9 9 2 0 0 6 9 . 5 W o r l d 6 1 2 9 5 4 1 4 5 2 2 1 5 4 2 . 2 § i § l 1 3 _ ! i e l g . A n e f f o r t w a s m a d e t o e s t i m a t e c r o p y i e l d a s s o m e t o t h e r t h a n s i m p l e t i m e t r e n d s . B a s e d u p o n t h e t h e o r y t A r e a h i n g h a t p a r t o f t h e v a r i a t i o n i n y i e l d s h o u l d b e a s s o c i a t e d w i t h t h e a p p l i c a t i o n o f f e r t i l i z e r : y i e l d s w e r e e s t i m a t e d a s a f u n c t i o n o f p r i c e r e c e i v e d p e r h e c t a r e a n d t h e b o r d e r p r i c e o f f e r t i l i z e r l s . T h e r e s u l t s w e r e i n c o n c l u s i v e . H o w e v e r . s i m p l y e s t i m a t i n g y i e l d a s a t i m e t r e n d : Y L D t i = f < T I M E > r e p r e s e n t s a g o o d f i r s t a p p r o x i m a t i o n b u t i s s u b j e c t t o s o r t s o f e r r o r s . I n t h e l o n g - r u n . t h e i n t r o d u c t i o n o f a l l h i g h y i e l d i n g v a r i e t i e s o r a l a r g e s c a l e i n c r e a s e i n f e r t i l i z e r ' C r o p l a n d C o r r e s p o n d s t o " A r a b l e L a n d a n d P e r m a n e n t C r o p s - F . A . 0 . P r o d u c t i o n Y e a r b o o k 1 9 8 1 ’ * E x c l u d i n g T a i w a n 5 5 u s e d u r i n g t h e e s t i m a t i o n p e r i o d . w o u l d r e s u l t i n u p w a r d b i a s l a t e r i n t h e f o r e c a s t p e r i o d i f t h e r e w a s b e e n a y i e l d p l a t e a u o r m a r g i n a l l a n d w a s b r o u g h t i n t o c u l t i v a t i o n . I n t h e s h o r t - r u n i t i s d i f f i c u l t t o i n c l u d e t h e e f f e c t s o f w e a t h e r . W h i l e i t i s n o t p o s s i b l e t o a l t e r t h e e r r o r i n y e a r t o y e a r v a r i a t i o n . t h e l o n g e r r u n e r r o r w a s c o r r e c t e d t h r o u g h . t h e i n c l u s i o n o f h a r v e s t e d a r e a : Y L D t i - f ( T I M E . a n t i ) w h e r e i n a r e a s o f m a x i m u m c u l t i v a t i o n . t h e a d d i t i o n o f m a r g i n a l l a n d w o u l d r e s u l t i n l o w e r o v e r a l l y i e l d g r o w t h : o r u s e o f a l o g - i n v e r s e f u n c t i o n a l f o r m : Y L D t i = f ( l n ( T I M E ) ) t o i n d i c a t e t h a t y i e l d s p l a t e a u o v e r t i m e . U s i n g a f u n c - t i o n a l f o r m o t h e r t h a n l i n e a r r u n s a r i s k o f a s s u m i n g t h a t y o u k n o w m o r e a b o u t t h e s t r u c t u r e t h a n c a n b e p r o v e d . T h e r e f o r e . y i e l d s w e r e e s t i m a t e d a s a s i m p l e t i m e t r e n d a s w e l l a s i n a l o g - l i n e a r a n d l o g - i n v e r s e . C o m p a r i s o n o f t h e t - s t a t i s t i c s . F - s t a t i s t i c s . l o g - l i k e l i h o o d a n d t h e s u m o f s q u a r e d r e s i d u a l s i n d i c a t e d t h a t i n t h e m a j o r i t y o f t h e c a s e s u s i n g t h e l o g - l i n e a r f o r m a t a c h i e v e d s t a t i s t i c s a s g o o d a s o r b e t t e r t h a n t h o s e e s t i m a t e d u s i n g a l i n e a r f o r m . 3 . 5 . 2 N e t E x p o r t s T h e f o r m u l a t i o n o f n e t e x p o r t e q u a t i o n s i s h i g h l y d e p e n d e n t u p o n t h e m a n n e r i n w h i c h t r a d e i s c o n d u c t e d . U n d e r a c o m p e t i t i v e t r a d e m o d e l . p r i c e w i l l s h i f t t o e q u a t e 8 l - J E D E n l y a n d d e m a n d t h e r e b y c l e a r i n g t h e m a r k e t . U n d e r t h i s 5 6 f o r m u l a t i o n . n e t t r a d e b e c o m e s t h e r e s i d u a l o f p r o d u c t i o n . c o n s u m p t i o n a n d s t o c k h o l d i n g p o l i c i e s f o r a l l c o u n t r i e s . H o w e v e r . i n a w o r l d w h e r e m a r k e t s a r e i m p e r f e c t a n d p o l i c y i n t e r v e n t i o n o c c u r s t h i s w i l l n o t b e t h e c a s e . U n d e r t h i s f o r m u l a t i o n . t h e m a r k e t p r i c e c a n r e m a i n a b o v e t h a t w h i c h e q u a t e s s u p p l y a n d d e m a n d a n d t h e m a r k e t m u s t b e d i v i d e d a m o n g t h e e x p o r t e r s . U n d e r a c a r t e l a r r a n g e m e n t . m e m b e r s m a y c o l l u d e e x p l i c i t l y . a s c e n a r i o i n v e s t i g a t e d b y M i t c h e 1 1 1 7 o r i m p l i c i t l y . a s s u g g e s t e d b y S p r i g g s l e . t o d i v i d e u p m a r k e t s h a r e s . I n t h e i n t e r n a t i o n a l g r a i n t r a d e n o f o r m a l a g r e e m e n t e x i s t s : t h e p r i c e f l o o r i s u n i l a t e r a l l y s e t b y t h e U . S . t o s a t i s f y a d o m e s t i c c o n s t i t u e n c y . A s l o n g a s t h e f l o o r i s m a i n t a i n e d . o t h e r e x p o r t e r s c a n u n d e r c u t t h e U . S . p r i c e a n d g a i n m a r k e t s h a r e . S i n c e t h e v a r i o u s e x p o r t e r s h a v e d i f f e r e n t p o l i c y o b j e c t i v e s ( e g ; m a x i m i z a t i o n o f s a l e s . g r e a t e s t s a l e s a t t h e h i g h e s t p r i c e . s t a b i l i t y o f p r o d u c e r p r i c e s o r i n c r e a s e d f o r e i g n e x c h a n g e e a r n i n g s s u b j e c t t o l o w d o m e s t i c p r i c e s l g ) . t h r e e c l a s s i f i c a t i o n s w e r e c r e a t e d t o h e l p e x p l a i n v a r i o u s f o r m s o f t r a d e b e h a v i o r b y t h e r e g i o n s . T h e d i f f e r e n t c l a s s i f i c a t i o n s o f t h e r e g i o n s r e s u l t i n t h r e e d i f f e r e n t s p e c i f i c a t i o n s o f t h e t r a d e e q u a t i o n s . A r g e n t i n a . B r a z i l . a n d A u s t r a l i a h a v e b e e n c l a s s i f i e d a s s u r p l u s e x p o r t e r s . A r g e n t i n a i s s u f f e r i n g f r o m a b a l a n c e o f p a y m e n t s d e f i c i t w h i c h r e q u i r e s t h a t i t e a r n a s m u c h f o r e i g n e x c h a n g e a s p o s s i b l e . C h i a n g a n d B l a i c h ’ s s t u d y o f " t A h r r g o e u n g t h i n i a n c a r t e t a e s m e p d t s e x t p o o r a t b s s o r r a b t h s e u r p p t l h y a n s h b o y c k s - x p o r t s . O n c e t h e g o v e r n m e n t h a s i n s u r e d t h a t d o m e s t i c n e e d s 5 7 t h e A r g e n t i n e g r a i n m a r k e t i n g s y s t e m 2 0 p o i n t s t o t h e r e l a t i v e l y s m a l l a m o u n t o f g r a i n s t o r a g e c a p a c i t y a v a i l a b l e . T h i s l a c k o f s t o r a g e w o u l d i n d i c a t e A r g e n t i n e p r o d u c t i o n m u s t m o v e i n t o e i t h e r d o m e s t i c c o n s u m p t i o n o r e x p o r t c h a n n e l s w i t h a f e w m o n t h s o f h a r v e s t . S h a r p l e s a n d G o o d l o e c o n c u r : a c c u m u l a t i n g s t o c k s . " 2 1 B a s e d u p o n e v i d e n c e p r e s e n t e d b y b o t h S p r i g g s a n d S h a r p l e s e t a l . . A u s t r a l i a m a y b e c l a s s i f i e d a s a s u r p l u s e x p o r t e r i n b o t h t h e w h e a t a n d c o a r s e g r a i n m a r k e t s . A l t h o u g h h e h y p o t h e s i z e s t h a t A u s t r a l i a i s f o r c e d t o h o l d w h e a t s t o c k s i f t h e p r i c e a t w h i c h A u s t r a l i a i s p r e p a r e d t o e x p o r t w h e a t f a l l s b e l o w a m i n i m u m a c c e p t a b l e t o t h e U n i t e d S t a t e s a n d C a n a d a . S p r i g g s c l a i m s t h a t . . . " A c c o r d i n g t o i n d u s t r y p e o p l e . i t a p p e a r s t h e A W B a i m s t o h a v e a s u f f i c i e n t c a r r y o v e r t o m e e t d o m e s t i c r e q u i r e m e n t s a n d s e l l t h e r e m a i n d e r o n t h e e x p o r t m a r k e t a t t h e g o i n g w o r l d p r i c e . " 2 2 . L i k e A r g e n t i n a . l i m i t e d s t o r a g e c a p a c i t y r e q u i r e s t h a t a s m u c h o f a d j u s t m e n t f r o m a d o m e s t i c s u p p l y s h o c k a s p o s s i b l e b e t h r o u g h t r a d e . B r a z i l . i s a l s o s u f f e r i n g f r o m a s e v e r e b a l a n c e o f p a y m e n t c r i s i s . T h e r e f o r e . i n o r d e r t o e a r n f o r e i g n e x c h a n g e . B r a z i l h a s e m b a r k e d u p o n a p r o g r a m o f i n c r e a s i n g t h e p r o d u c t i o n o f e x p o r t a b l e c o m m o d i t i e s . W i l l i a m s a n d T h o m p s o n 2 3 f o r m u l a t e d t h e i r m o d e l i n s u c h a : n a n n e r t h a t t h e t r a d e - o f f w a s b e t w e e n d o m e s t i c s u p p l y a n d a r e m e t . t h e b a l a n c e i s e x p o r t e d . 5 8 T h e r e w o u l d a p p e a r t o b e g e n e r a l a g r e e m e n t a m o n g t h e a u t h o r s t h a t t h e s e c o u n t r i e s h a v e n o i n t e r e s t i n h o l d i n g s t o c k s f o r s p e c u l a t i v e p u r p o s e s . T h e r e f o r e . t h e s e a g e n c i e s r a r e l y h o l d s t o c k s a t l e v e l s a b o v e t h o s e w h i c h a s s u r e d o m e s t i c p i p e l i n e s u p p l i e s . A n y s h o r t f a l l o r r e a s o n a b l e i n c r e a s e i n p r o d u c t i o n w i l l m a n i f e s t i t s e l f t h r o u g h t h e v a r i a b i l i t y o f e x p o r t s . I n s p e c i f y i n g t h e m o d e l f o r t h e s u r p l u s e x p o r t e r c l a s s . s t o c k s a r e s e t a s p o l i c y o r a s a f u n c t i o n o f t h e s i z e o f t h e d o m e s t i c s u p p l y a n d a l l g r a i n n o t c o n s u m e d d o m e s t i c a l l y i s m a r k e t e d t h r o u g h e x p o r t c h a n n e l s . T h i s p o l i c y c a n b e e x p e c t e d t o r e s u l t i n s u b - s t a n t i a l p r i c e c o m p e t i t i o n : t h e r e f o r e e x p o r t s b e c o m e t h e r e s i d u a l e q u a t i o n i n t h e c o u n t r y m o d e l w i t h n o d e p e n d e n c e o n p r i c e : N E t i = a s t - 1 i + P R O D t i - c o n s t i - a s t i w h e r e : N E t i 8 N e t e x p o r t s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) P R O D t 1 a P r o d u c t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 H T ) C O N S t i 8 C o n s u m p t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) s s t i = E n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) T h e D e v e l o p e d M a r k e t s . l e d b y t h e E u r o p e a n C o m m u n i t y a r e s u r p l u s e x p o r t e r s f o r c e d t o h o l d s t o c k s a s a r e s u l t o f t h e e c o n o m i c s o f t h e i r p r o t e c t i o n i s t p o l i c i e s . U n d e r i d e a l c o n d i t i o n s . t h e D e v e l o p e d M a r k e t s w o u l d a c c e p t w h a t e v e r g r a i n i s o f f e r e d t o t h e m a r k e t i n g a g e n c y a t t h e i n t e r v e n t i o n p r i c e a n d e x p o r t i t b y s u b s i d i z i n g t h e c o s t d o w n t o t h e 5 9 w o r l d m a r k e t p r i c e . F a c e d w i t h i n c r e a s i n g w h e a t p r o d u c t i o n i n t h e f a c e o f s t a g n a t i n g d e m a n d . t h e E u r o p e a n C o m m u n i t y w a s f o r c e d t o c o m m i t m o r e m o n e y t o e x p o r t s u b s i d y . C o n c u r r e n t l y t h e h i g h v a r i a b l e l e v y o n c o a r s e g r a i n s l e a d t o i n c r e a s e d s u b s t i t u t i o n o f t a r i f f - f r e e s t a r c h e s a n d a d e c r e a s e i n C A P r e v e n u e s . T h e n e t e x p o r t e q u a t i o n f o r w h e a t f o r t h e D e v e l o p e d M a r k e t s i s e s t i m a t e d a s a f u n c t i o n o f t h e d o m e s t i c s u p p l y o f w h e a t a n d t h e c o s t o f s u b s i d y : H h t , D e v H u t s a m a t £ < s u t h W h t , s u a s x o t h h t > H n t , D e v n u t s . N e t E x p o r t s o f w h e a t f r o m t h e D e v e l o p e d M a r k e t s i n y e a r t ( 1 0 0 0 M T ) w h e r e : N E t S U P L t w h t 8 D o m e s t i c s u p p l y o f w h e a t ( B e g i n n i n g S t o c k s + P r o d u c t i o n ) i n y e a r t ( 1 0 0 0 M T ) S U B S I D t h h t 8 T h e s u b s i d y o n w h e a t e x p o r t s H M ! D e v H u t s P t - t h e p r o d u c e r p r i c e o f w h e a t ) i n t h e E C i n y e a r t T h e r e m a i n i n g e x p o r t e r s . C a n a d a a n d t h e U n i t e d S t a t e s . a r e s p e c i f i e d a s r e s i d u a l s u p p l i e r s t o t h e w o r l d m a r k e t . T h e y f a c e a r e s i d u a l p o o l o f d e m a n d u n f i l l e d b y t h e s u r p l u s e x p o r t e r s : R E S t i . E N I t i ' J - i N E t i ' h j = l h = 1 w h e r e : R E S t i 8 R e s i d u a l p o o l o f i m p o r t s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) N I t i ' J a N e t i m p o r t s o f c o m m o d i t y i b y i m p o r t e r j i n y e a r t ( 1 0 0 0 M T ) N E t i ' h = N e t e x p o r t s o f c o m m o d i t y i b y s u r p l u s e x p o r t e r h i n y e a r t ( 1 0 0 0 M T ) C a n a d a . w h i c h s e e k s t o m a x i m i z e p r o d u c e r r e t u r n s s u b j e c t t o t h e c o s t o f s t o r a g e . w i l l c o m p e t e w i t h t h e U . S . N E t i v U S a R E S t i _ N a t l - w a n n a 6 0 f o r t h i s p o o l a n d i n c r e a s e s t o c k l e v e l s d u r i n g p e r i o d s o f l o w p r i c e s : N E t i . C a n a o a = i . ( R E s t J . . C a m a a a , P t : E s t - i ) H o w e v e r . i f C a n a d i a n s t o c k l e v e l s b e c o m e e x c e s s i v e . C a n a d a w i l l e x h i b i t s u r p l u s e x p o r t e r b e h a v i o r a n d m a r k e t a n y s u r p l u s e s a g g r e s s i v e l y . A n e x a m p l e o f t h i s b e h a v i o r o c c u r r e d i n t h e e a r l y 1 9 7 0 ’ s . I n t h a t c a s e . e n d i n g s t o c k s l e v e l s a r e t a r g e t e d a n d n e t e x p o r t s b e c o m e t h e r e s i d u a l o f p r o d u c t i o n . c o n s u m p t i o n a n d s t o c k s . N e t e x p o r t s b y t h e U n i t e d S t a t e s a r e t h e r e s i d u a l i n t h e s e r i e s o f e x p o r t e q u a t i o n s : A s n o t e d p r e v i o u s l y . t h e r e i s a s e p a r a t i o n b e t w e e n c r o p y e a r s f o r t h e m a j o r e x p o r t e r s . I n t h e w h e a t a n d c o a r s e g r a i n s e c t o r s . t h e r e i s e n o u g h o v e r l a p t o a s s u m e t h a t t h e m a r k e t s f o r a l l e x p o r t e r s c l e a r i n t h e s a m e p e r i o d . H o w e v e r . i n t h e s o y c o m p l e x t h e r e i s a b o u t a 6 m o n t h d i f f e r e n c e b e t w e e n c r o p y e a r s i n t h e s o u t h e r n a n d n o r t h e r n h e m i s p h e r e s . G i v e n s u c h a n o v e r l a p . t h e r e i s a q u e s t i o n o f w h e t h e r c r o p y e a r 1 i n A r g e n t i n a a n d B r a z i l s h o u l d c o r r e - s p o n d t o c r o p y e a r 1 o r 2 i n t h e U . S . E i t h e r w a y . i t i s f e l t t h a t t h e r e w i l l b e i n c o m p l e t e c l e a r a n c e i n a g i v e n y e a r . T h e r e f o r e . t h e s o y p r o d u c t e x p o r t e q u a t i o n s f o r t h e U . S . a r e s e m i - d e f i n i t i o n a l e q u a t i o n s : 6 1 N E t i p U S a a + 3 * R E S t i w h e r e : N E t i ' U S s N e t e x p o r t s o f s o y p r o d u c t i b y t h e U . S . a t t i m e t ( 1 0 0 0 M T ) R E S t 1 = R e s i d u a l p o o l o f e x p o r t d e m a n d o f s o y p r o d u c t i a t t i m e t ( 1 0 0 0 M T ) I n c o m p l e t e c l e a r a n c e i s r e p r e s e n t e d b y t h e c o e f f i c i e n t 8 = 1 . I n e i t h e r e q u a t i o n a l f o r m . t h e U . S . c a n n o t d i r e c t l y i n f l u e n c e t h e q u a n t i t y i t e x p o r t s . H o w e v e r . t h e U . S . c a n i n f l u e n c e g l o b a l s u p p l y a n d d e m a n d c o n d i t i o n s b y a d j u s t i n g d o m e s t i c a g r i c u l t u r a l p o l i c y v a r i a b l e s o r m a c r o e c o n o m i c p o l i c i e s . T h e i n t e r a c t i o n w h i c h o c c u r s i n t h e d o m e s t i c c o m p o n e n t e f f e c t s s u p p l y a n d / o r d e m a n d a n d i s t h e n c a r r i e d t h r o u g h t h e p r i c e v a r i a b l e i n t o t h e i n t e r n a t i o n a l c o m p o n e n t . 3 . N e t m o r A s w i t h n e t e x p o r t e q u a t i o n s . t h e f o r m u l a t i o n o f t h e n e t i m p o r t e q u a t i o n s d e p e n d u p o n t h e m a n n e r i n w h i c h c o u n t r i e s t r a d e . U n d e r c o n d i t i o n s o f f r e e m a r k e t s / t r a d e . i m p o r t s w o u l d e q u a t e d o m e s t i c s u p p l y a n d c o n s u m p t i o n . U n d e r t h e s e c o n d i t i o n s . i m p o r t s w o u l d b e f o r m u l a t e d a s a r e s i d u a l : N I t i . E s t - 1 i + P R O D t i - c o n s t i — e s t i w h e r e : N I t i a N e t i m p o r t s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 N T ) P R O D t i 8 P r o d u c t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) C O N S t i = C o n s u m p t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) E s t i = E n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) H o w e v e r . i f t r a d e o c c u r s o n a m o r e r e s t r i c t e d b a s i s ‘ e i t h p o l i c y i n t e r v e n t i o n s d r i v i n g a w e d g e b e t w e e n r e a l a n d w h e r e : N S P P P P 1 1 ; U t t t C i P 5 C I 1 L 8 t 1 a 8 a P P P N C t e n i i i P r r r i a a a a r i o o o r r P b y c c c y P y e e e e e e e e c e g a r a r p r f f f c n c i a n t t a t t p i p c s c 0 s 0 e o t l ( a i n i o u o ( 1 t g t m m b 1 0 n m s p a a t 0 d t 0 d i e r 0 o i o t m e i m M c t a u e m M e k T y t n l s ) p T s e t o t ) ) i a S r i c r . o i o t c y D s f n m o u c y o o f p o e d m s m c . P . c l m r t o n p m a i m i o y o i d m d e i t y o i n s ( m e i t s p o a t i r i d y e r t y d i t u y i c i e n i t n a i r o n + t 6 2 e f f e c t i v e d e m a n d t h r o u g h t a x e s a n d s u b s i d i e s . t h e n n e t i m p o r t s s h o u l d b e e s t i m a t e d d i r e c t l y a s a f u n c t i o n o f p r i c e . p r o d u c t i o n a n d o t h e r r e l e v a n t v a r i a b l e s . I n t h a t c a s e . c o n s u m p t i o n b e c o m e s t h e r e s i d u a l e q u a t i o n . A b b o t t a n d M i t c h e 1 1 2 4 a r g u e t h a t t h e r e a l i t i e s o f i n t e r n a t i o n a l g r a i n t r a d e m o r e c l o s e l y r e s e m b l e t h e s e c o n d s c e n a r i o . A l m o s t a l l l e s s d e v e l o p e d c o u n t r i e s h a v e p a r a - s t a t i a l s a n d m a n y o f t h e m o r e d e v e l o p e d c o u n t r i e s u s e m a r k e t i n g b o a r d s t o r e g u l a t e i m p o r t s . F o r m a n y o f t h e s e c o u n t r i e s s t a b l e / l o w f o o d p r i c e s a r e a p r i o r i t y . w h i l e f o r t h e E . C . s t a b l e / h i g h p r i c e s a r e d e s i r e d t o m a i n t a i n p r o d u c e r i n c o m e . B o t h o f t h e s e c a s e s r e s u l t i n a d i v e r g e n c e b e t w e e n d o m e s t i c a n d w o r l d p r i c e . T h e r e f o r e . i t i s f e l t t h a t b i a s w o u l d r e s u l t f r o m a t t e m p t i n g t o e s t i m a t e c o n s u m p t i o n b a s e d u p o n w o r l d p r i c e s . I m p o r t s a r e e s t i m a t e d o n a p e r c a p i t a b a s i s t o s e p a r a t e t h e e f f e c t s u p o n i m p o r t d e m a n d o f p r i c e s . p r o d u c t i o n a n d i n c o m e f r o m i n c r e a s e s i n p o p u l a t i o n : N 1 1 ; 1 8 f ( S U P L t i . P t 1 . P t 5 . P t ° . P C I N C t ) I n t t . e i s o e u t n e r e t e c t n o g t a i e a r t h . . e s e s W o t i m s s s v t t b i - a i e o e t n w r t i a f p w h h f e s i t v s i a o e t t w n w f e c e s e c r i i s f h h d n o a o t g e n w m t w e e n o l t s h a a a c n a d n h t t e l t t t s r e t u h f s i w e m e s l d e t t o t a i c a e e n t b w r t e d n h t e f o h e h o l e s r g x n e r e v e o l a e p t n i c u r e d f t i s i i ’ p i s e a a t r s o r . c i p h m a t o i t g c e t o n p s a f a n a S e p y l e d g o r u b n u i n o d t d r s y . d p l b t b r o e h t e a p p e s e e f a h g t d l f c y q w u n n a E o r h u i o b u e d i a a e m u c w d t f r e e e n s f t o c c e r w a n y t u f i m r i e r n n t s o h p o o s e h i t r a v r e a e a e a n v m t h n v i i n s t s t r n o s o n r a m m e e i t g r t t n a r e r a a e e i o i n p a i r n t b k r k n r p e M s o M n a c i a t D d c t a a f a o e g h c n - u e o u n r u r d a g a a s r g m b d C a i t w p p i I s o d o o o g g b m t f u p f s n o r r m r r a l p o p g . o s t t o u p m a a e l i i d o s s u i i r y n l i m o n y i n t . i s o f d e r n e n t n n d y a p ) n 0 m t m f t f s t t w i e s o a y o u e w o a c r t i t v l r p r o a e s a h r i m e . t t o t 1 o r e e e l r r p l w p b d : t e c o u h h e r e 9 b w T y d s e l e r r t m 8 s h a h h . . n d e 2 s o a i o s e i e e h t h d l d d e s e y D i a D g v g w i a r s ( e h m o h o t e r n e e s t i v a p v e f i d v i o w v v e o e s f o f e g o t s o l e e r r l s - r h f r t u u o t o e o h a p l p s p d a t o e t n p d 6 3 T h e p r i c e s o f a l l g o o d s a r e i n r e a l b o r d e r p r i c e s . T h i s m a k e s i m p o r t s d e p e n d e n t u p o n g o v e r n m e n t p o l i c i e s a f f e c t i n g e x c h a n g e r a t e s a s w e l l a s d o m e s t i c s u p p l y . D o m e s t i c s u p p l y w i l l m e e t a p e r c e n t a g e o f c o n s u m p t i o n n e e d s . h o w m u c h o f d o m e s t i c r e q u i r e m e n t s w i l l b e c a n b e f i l l e d b y d o m e s t i c p r o d u c t i o n w i l l b e a n i m p o r t a n t v a r i a b l e i n d e t e r m i n i n g i m p o r t d e m a n d . I n c o m e i s a m e a s u r e o f i m p r o v e d d i e t a r y s t a t u s a n d i m p l i c i t l y . t h e d e m a n d f o r m e a t ( l i v e s t o c k . h o g s o r p o u l t r y ) i n d e t e r m i n i n g d e m a n d f o r f e e d s . D e r i v e d d e m a n d f o r i m p o r t s o f c o a r s e g r a i n f o r f e e d i s e x p e c t e d t o b e a n e g a t i v e f u n c t i o n o f s o y m e a l p r i c e . : . . a 2 . D L E . I . . . . . . . . . . . S , R N O E I m T E T U C R r N U 5 : O E s D P V O E R e X E R w P m E s e C a m I R o P w s D E L C R I O W R P D E L C R I O W R P . . Y o L s P P M U S S T C N T E T N S O E P M M O D O C m S ° T 5 R r o t c e S s d e e s l i O - t n e n o p m o O C S . N R H O E / I ” P M 5 I Y 0 L E P P M U @ P 0 M E U S S S M N S O T R O E T . C . ; 3 U C N ; ; U . . E D P V O E R Y M I R P m l a n o i t a n r e t n I . 8 . 3 e . . . . . . . . . . . . . . : s = ' ' 5 ‘ D L E P C M E U S 0 N 8 O C o L s P P o U s S S o T s R O o I P s r ” u g i F S M N E T E X P O R T S S O Y M S O Y O I L ‘ K E T S O Y O I L 8 0 N E T I M P O R T S D < P O R T S 6 4 S P d a r h o i U t i r e e r n s e P i d r g L e c s t f = i i u b o J o y s y n m 8 r l t o e e e d i u h a r . P f p s m r P m y c e t e l e e e e n a p i a a r c r v e n t c s d f v u o r f l r e o e a q i t a i o i i n p i e b a r o v i n i y b m o u a t t l u f s l y t a h e l l e a e r t d a l . t r i o s e . e a e h c y n m s i i o v s e t o m m a n y a s v p p y l ( ( t a b o o o l i 1 c 0 e r r f o e a t t g w w 0 n s s t a h : s 0 s h n i u b o c e c c M o p y f a e h p T r s e ) l s t f q m r y a s h e u u e o y d a t t u o q v e a e s f m i D i o v u a r n e e l t e b s e o s e o b r h l s c f m i e o t i a o g r n p i t r d r t r e e e d u u a i t s t m f e e p o s o r r r t t d A o r s s v o e w T f M n p d t a o u e h t l r e m k a p e c n g . 6 5 b e i n k e e p i n g w i t h t h e f i n d i n g s o f K o e s t e r : “ T h e m o s t i m p o r t a n t d e t e r m i n a n t f o r u s e o f f e e d - g r a i n s e e m s t o b e t h e p r i c e r a t i o s b e t w e e n g r a i n a n d s o y a a n d c a s s a v a . " 2 5 T h e s t r u c t u r e o f t h e s o y b e a n c o m p l e x a s p r e s e n t e d i n t h e m o d e l r e q u i r e s t h a t i m p o r t d e m a n d f o r s o y m e a l a n d s o y o i l d r i v e t r a d e i n t h e e n t i r e c o m p l e x ( F i g u r e 3 . 8 ) . T h e d e m a n d f o r i m p o r t s o f s o y m e a l i s p r e s e n t e d a s a f u n c t i o n o f i n c o m e ( a p r o x y f o r m e e t d e m a n d ) . t h e d o m e s t i c s u p p l i e s o f s o y b e a n s / m e a l . r a p e s e e d a n d s u n f l o w e r s e e d a n d t h e p r i c e o f s o y b e a n s i n t h o s e c o u n t r i e s w i t h d o m e s t i c c r u s h i n g f a c i l i t - i e s : P C T S M N I t = f ( P C I N C t . S U P L t i . S U P L t 3 . P t i ) w h e r e : P C T S M N I t 8 P e r c a p i t a n e t i m p o r t s o f s o y m e a l e q u i v a l e n t ( s o y m e a l p l u s t h e p e r c e n t a g e c o n t e n t o f s o y m e a l i n s o y b e a n s ) i n y e a r t ( 1 0 0 0 M T ) P C I N C t 8 P e r c a p i t a r e a l G . D . P . i n y e a r t S U P L t i a P e r c a p i t a d o m e s t i c s u p p l y ( c r u s h + b e g i n n i n g s t o c k s ) o f s o y m e a l i n y e a r t ( 1 0 0 0 M T ) P e C : H l i a f n n . h r t a a o o l s i . e o o e a e b s e e e e e i i s t u x l T S M N I t h H n ‘ P C U U t y e e t N i m A e l t e i I n C I P P l h q t m b t e n i . P S S P R v o k f f g i n n r . T S M N I t N L L t g u e u y e h h a t i C o t i J = t d n n d v v n c d C t t a s a a i e e l f y o n a P y e s a e a w v o p p d u r = 8 - ( r e b e N t t l l h r e e i t e f 1 i a e e e e u o a q e o r a t i r i 0 P P b P c n u r d c s i l o r t r n e l s I = e e e n e e 0 m a m u e e o i i m d t e e ( P C P e c y i y o m i c s n d i n f t t a a s y c e e q o e c c n p M f r e e o m m a s o a l t e . r r g r t i 0 i a o n t i c d n z l l r a u n a a a o n u T d n n y g i e a e p t ) I p e r i r i t p p r w s o h t b i a f e a o d N v e i i n i t h h c i t r r e e s a l n a t f e o S 0 o o T e r a h s s a e t o c a t C a n t t g t t t s h e e t o a n o n c m t p h l t a a a e t p c t g e t o e f f e ( ( . i e s e d h o h r r r g . i m o f a t n r f e e r o d t d 1 M d e u e t m a p r l a c ) U m m 0 m r m e s i h t a s I i r r i ( P 0 e n s e l k o t o a e n s e e l f v u t ( n r w h e d v w s T m m v a d e a b i e h o a a n h o a e n e v s c e s r l d o y l c a c a r r u l n i l m u t g o e i L e o s s ) s y s o o t n a d r e s s f a t i s t y o . ) i e D c m o c a m a f m c r h u g e r t e c s i e m T . i s n y e p h t q y i c a u e a l P s p s s s n o r d a s n d v m s p e t t c l . o u s u d l r i a d h u a a h h i m e a . f o e n n i a a p o i a e u n u t h J . i o t r p o p t o e c r l s o i e n c i i p t t n p y p r o i i t g n h e n g a s l l m n l y l t s i e n g n u s s p e a e o s o y o e y i d r r r m v p h . u s s b o e w x t y e y m n t d y P t b a ( c f m s e l m q l e l s l r n u m t l a f y e r m l o y o c e e a a e s e i i e r a t e e u s h r i n a u g s h n p c i a o e a s i l u o i n a b p o r e t t i e e f . n l t r y t s t n s a i n l e o r u i R e e y a e r e e i f e w t w f h o N a r + a r n e a . h i m t d e m p s e ) c d i e h y h o g v s t s o o d o c i I l r l i a w e l o t i t w d e r t e n m m r h f o s h w h e l l v ) y e n t a t e o l . . p c T e i t o c s a o t h r t l i l i e e l r e u h e s b l c e e h h a o . g t s s e i t e d ) a e n n d l M G t b o d t e t t i h l p 6 6 ‘ a m o u n t s o f c o n c e n t r a t e s f o r f e e d i n g : ( 1 0 0 0 M T ) w d i o w w q o d m i u e i m i a f h l l a m v p n e l a n o i i n r t n d a r n e e A l l u t r h i o n h e r e : P M D f p m a s e E S s m I P P . h o A S l i t n m o t p O p P N L L e b L U y n e d a C a m y h o N r C I t t t P i e e m e n r i S I t p b 1 J I g a l t c n o e N I I I r i y I I l r h f r d s I i c P i P u e u e o t P P P m h c e t n a e d t i f c O t P r l e s T y M m e n s a P e c r s m e e e e e a r o o e E q h a p q c o n e q o r r r a o v c y t a A u o u r y s n d . ( r u n 1 - b o l f e t a t b e a h t t o a f I h a a 0 n p p p s o i i a r L a b d e m r i o u i t c c c r P s f 0 e n e n t v s y a l e t C c 0 v e a a a c a g a l o l i y i d e n i s l o e N p l t i i i n m o s n ( g i e o t d r C i e M n p y i t t t i 1 i a l e n y . d o t t n i y b g e T a a a n 0 m t b i s o s s t . a t n t f e e n ) o e 0 p o o e s o m r d d a i S g a i f o e 0 f y s t n s ( a e y U e o o n f r n e i o a e o s d r n e s o P a m s m g s i m a M t s y m d s L i l s t e t c t y o e t e r m b o e d t i T l t y o s o s a o a ) a e d e y s a i c i t n G t n i i c i m ( l a m . l k t t n e e d l e a m . i i t m 1 e a a s ( 1 t l U . ) e u o e o i u 0 m n d a h q l e S s p a c D c s 0 / s n e l P P q d - t i p r n s s r 0 e i m d d L . u o i P a h v p t p u o u d p i m i s M d e a l p f s s p l s M s a t v f e m E d i l y u o i p p T o c 3 L P l t o r o e t i f b o o n y y ( p a s o A p i d f n e l l o s y n s y t . ) ) t e i r m f i n f y t e i t y a u . s n c o a t s i u l s h e o p a l o ( t o n c e n l i o o e ) c n i a f m o i m p o r m d l ) u T l o f p u o n s y d . a e h s i y r n r i l s . y h r d r a o l u e y + e p h s i i a t e t i s t c t a p i e l h n h a g v h r i y o h l l e s s T u o e f c n e e c e t d e t u i e s n s : n y e r n d e d a s i e c h s m a t e e a u n m e e m t a a r t m i t a e i t s g r a n o h o e t a n n h e d n e f t t d n d O b w t e f e e . P P S S P p S i r y m a d o C I U C U t r t l t y o d e m h d t M d i e n c T r : u e u e t d d h o . g ) 6 7 a s a w h o l e a n d s o y m e a l i n p a r t i c u l a r : P M E A L t I f ( M A R G I N t . O S D S U P t ) M A R G I N t I C r u s h m a r g i n “ 9 k a . 7 9 5 4 3 5 ” “ ; _ p 5 0 5 0 2 3 7 1 ) . 1 7 5 ) a t t i m e t ( 1 0 0 0 M T ) 6 8 f o r s o y o i l . e s p e c i a l l y i n t h e l e s s d e v e l o p e d c o u n t r i e s a n d t h e n e w l y i n d u s t r i a l i z i n g c o u n t r i e s o f E a s t A s i a . i t w a s f e l t t h a t t h e e f f o r t r e q u i r e d t o b o t h m a i n t a i n a d a t a b a s e o f t h i s a d d i t i o n a l i n f o r m a t i o n a s w e l l a s c o l l i n e a r i t y r e s u l t - i n g f r o m t h e h i g h s u b s t i t u t a b i l i t y i n o i l s 2 6 w a r r a n t e d e x c l u s i o n o f t h e s e v a r i a b l e s . T h e e q u a t i o n d e t e r m i n i n g i m p o r t s o f s o y o i l i n c r u d e f o r m a s s u m e s t h a t i f a c o u n t r y / r e g i o n i m p o r t s s o y b e a n s f o r c r u s h i n g . t h e o i l r e l e a s e d i n t h e c r u s h p r o c e s s w i l l f i l l a p o r t i o n o f t h e i m p o r t r e q u i r e m e n t . T h e r e f o r e . b y s u b t r a c t - i n g s o y b e a n i m p o r t s m u l t i p l i e d b y t h e c r u s h r a t i o f r o m t h e d e m a n d f o r s o y o i l e q u i v a l e n t . t h e i m p o r t s o f s o y o i l c a n b e d e t e r m i n e d . 3 m t m i n A c c e p t a n c e o f t h e a r g u m e n t s f a v o r i n g t h e e s t i m a t i o n o f i m p o r t s r e q u i r e s t h a t c o n s u m p t i o n b e c o m e s t h e r e s i d u a l i n e a c h r e g i o n a l s y s t e m : c o u s t i a s s t - 1 1 + P R O D t i - N I t i - E S t i w h e r e : C O N S t 1 I C o n s u m p t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) P R O D t 1 I P r o d u c t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) N I t 1 I N e t i m p o r t s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) E s t 1 I E n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) H o w e v e r . a l l e x p o r t i n g c o u n t r i e s w i l l f i r s t s a t i s f y d o m e s t i c d e m a n d b e f o r e c o m p l e t e l y c o m m i t t i n g g r a i n t o t h e e x p o r t m a r k e t . w h m e c w u s o h e e c t m r r h i p e e m e : : E t a t s h t i t e o n C P P i C r g P P O t O t C m c s t N c I a a o c o N 1 ! S N t f m r n S 1 t 1 t o p t t s t C i e o I I I P n i f h P P I I I r e o a r r i P y P r c d f m P c c e e n e e a e £ e e e i n o r i i . r a r < r t t l a c e c b f e t y c n f f t y o r h a n p i o o a a t a u a i i p r c c r p t v p y c s . i i e o o e i e o u t t m m l t t a o P m b a p m a e t a r f a m s c M ( l o t v v o t I r e d e a a c t d i . o T m e i n i n o t i n ) e t a t l s n t u ( n y l s a s t u y r M u t ’ p b u T e e p a s m i m G q o a ) i p . l p r t u l c t y D s i i i t 1 i o i t c i e r n m . ' o y y o c e c m P C o o s n n y o . , m n o v e d i t o m d f a p o a i n h f o a r c f r t t d t n d : c y h c t e i y a u o e t a e o s b c i a m m u d l t e r m m s d o i e > s o e o i w n s e t d r i z i i i f i i y n o t t o a e y y n l n a l d r i i o o w f t s a n 6 9 G r a i n c o n s u m p t i o n f o r t h e e x p o r t i n g c o u n t r i e s h a s b e e n d i v i d e d i n t o t w o e q u a t i o n s . f o o d ( h u m a n ) c o n s u m p t i o n a n d f e e d ( a n i m a l ) c o n s u m p t i o n . T h i s w i l l r e q u i r e e s t i m a t i o n o f d i f f e r e n t p r i c e a n d i n c o m e e l a s t i c i t i e s a n d a m e a s u r e o f t h e s u b s t i t u t a b i l i t y o f w h e a t a n d c o a r s e g r a i n f o r f o o d a n d r e s i d u a l c o n s u m p t i o n . E s t i m a t i o n o f t h e e q u a t i o n f o r a c o m m o d i t y ’ s p r i m a r y u s e ( w h e a t f o r f o o d . c o a r s e g r a i n f o r f e e d ) i s r e l a t i v e l y s t r a i g h t f o r w a r d . I n k e e p i n g w i t h s t a n d a r d d e m a n d t h e o r y . i t . c a n b e e x p e c t e d t o b e a f u n c t i o n o f t h e o w n . a l t e r n a t i v e a n d . i n t h e c a s e o f c o a r s e g r a i n s . c o m p l e m e n t a r y c o m m o d i t y p r i c e . a n d i n c o m e : C O N S t 1 . I f ( P t 1 . P t ‘ . P t C . P C I N C t ) P t 1 I P r i c e o f c o m m o d i t y i i n y e a r t P t . I P r i c e o f s u b s t i t u t e c o m m o d i t i e s i n y e a r t C O N S t i I E s t - 1 1 + ( E s t _ 1 ° ° ! ’ ° 9 3 " , p R O D t n o y a e a n 1 \ l C ) S I J P R t l “ c I R a t i o o f d o m e s t i c s u p p l i e s ( p r o d u c t i o n + b e g i n n i n g s t o c k s ) o f c o m m o d i t y i a n d c o m p e t i n g c o m m o d i t y c i n y e a r t P C I N C t I P e r c a p i t a r e a l G . D . P . i n y e a r t T h e s p e c i f i c a t i o n o f a s u r p l u s e x p o r t e r ' i s s u c h t h a t u n l e s s p r o d u c t i o n i s a b n o r m a l l y l a r g e . e n d i n g s t o c k s a r e a c o n - s t a n t . T h i s r e s u l t s i n a l m o s t n o v a r i a b i l i t y o f s t o c k s f o r t h e s u r p l u s e x p o r t e r w i t h r e a l b o r d e r p r i c e s d e t e r m i n e d b y w o r l d s u p p l y a n d d e m a n d c o n d i t i o n s . T h e r e f o r e . t h e d o m e s t i c s u p p l y r a t i o i s i n c l u d e d i n a d d i t i o n t o p r i c e s a s a m e a s u r e o f s c a r c i t y f a c i n g t h e d o m e s t i c p r o d u c e r b e f o r e t h e c r o p m o v e s i n t o t h e e x p o r t m a r k e t . T h e e s t i m a t e o f w h e a t c o n s u m p t i o n i n t h e D e v e l o p e d M a r k e t s i n c l u d e s t h e s u b s i d y a s a p o l i c y v a r i a b l e . I f t h e c o s t s o f e x p o r t i n g E u r o p e a n g r a i n b e c o m e s g r e a t . t h e E C m i g h t u n d e r t a k e t o e n c o u r a g e e x p a n d e d d o m e s t i c c o n s u m p t i o n . T h e m o d e l i s s p e c i f i e d s o t h a t t h e c o n s u m p t i o n o f s o y p r o d u c t s i s i n e i t h e r a s o y m e a l o r s o y o i l e q u i v a l e n t . d e s p i t e c o n s u m p t i o n o f w h o l e b e a n s i n C h i n a a n d t h e N . I . C . s . n o a l l o w a n c e i s m a d e f o r w h o l e b e a n c o n s u m p t i o n . T h e e q u a t i o n f o r c o n s u m p t i o n i s d e f i n e d a s : N I t b o y p e a n _ _ a s g o y o e a n N I t i - E s t 1 ) I c r u s h r a t i o 1 * w h e r e : C O N S t 1 I C o n s u m p t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) 5 0 v D e a n . - . . ' I P r o d u c t i o n o z s o y b e a n s i n y e a r t ( 1 0 0 0 M T ) P R O D t 7 1 " I t m n n m l - N e t i m p o r t s o f s o y b e a n s i n y e a r t ( 1 0 0 0 M T ) E S t H ’ H I I I E n d i n g s t o c k s o f s o y b e a n s i i n y e a r t ( 1 0 0 0 M T ) N I t 1 I N e t i m p o r t s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 H T ) E s t i I E n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 H T ) § i § i § _ 5 n § i n s _ fi t n s h n . T h e e n d i n g s t o c k e q u a t i o n s f o r e a c h r e g i o n w i l l d e p e n d u p o n i t s r o l e i n t h e i n t e r n a t i o n a l m a r k e t . A s d i s c u s s e d i n p r e v i o u s s e c t i o n s . t h e r e g i o n s d e s i g n a t e d a s s u r p l u s e x p o r t e r s w i l l n o t w i l l i n g l y c a r r y s t o c k s a b o v e t h e p i p e l i n e l e v e l . I f t h e r e f o r e . e n d i n g s t o c k q u a n t i t y i s a p o l i c y d e c i s i o n . i t i s n e c e s s a r y t o i n v e s t i g a t e w h i c h v a r i a b l e s m i g h t i n f l u e n c e t h e e n d i n g s t o c k l e v e l . P r o d u c t i o n c a n h a v e a v e r y g r e a t e f f e c t u p o n t h e l e v e l o f e n d i n g s t o c k s h e l d b y s u r p l u s e x p o r t e r s : S m e E m n r e s t i v - f ( S U P L t 1 ) w h e r e : E s t - 1 . 9 ” “ E l m - t r I E n d i n g s t o c k s o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) S U P L t i I P r o d u c t i o n o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 H T ) U n d e r t h i s f o r m u l a t i o n . e n d i n g s t o c k s w o u l d b e a s p l i n e f u n c t i o n . T h e f l o o r c o u l d e i t h e r b e a c o n s t a n t r e p r e s e n t i n g m i n i m u m s t o c k p o l i c i e s o r a f u n c t i o n o f d e m a n d r e p r e s e n t i n g t h e s i z e o f t h e p i p e l i n e . D u r i n g p e r i o d s o f v e r y l a r g e h a r v e s t s . t h e i n f r a s t r u c t u r e m a y b e i n c a p a b l e o f m o v i n g t h e g r a i n i n t o e x p o r t c h a n n e l s a n d i n v o l u n t a r y s t o c k h o l d i n g 5 " " 5 ‘ S C U O P N L S t I i t I i I 3 0 d e p 9 D p ( " " o r E 1 i 0 m o x n u s 0 e y E t c e c n i M t a t d c T e r i i d o ) g u c ) n s t n p s o n t s l f ( 1 0 p o o y u 0 c m 0 c f d n ( k p o s t m M b e m i T g o o o ) i n i m n c n o t o i y f m g i c o o d s i m i t n m t o o Y y c d e k i s a t r y + t i 7 2 c o u l d o c c u r . F o r e x a m p l e . A r g e n t i n a h a s a v e r y p o o r r a i l n e t w o r k a n d o n l y l i m i t e d s t o r a g e c a p a c i t y a t t h e p o r t . A l t h o u g h t h e m a r k e t i n g s y s t e m i s g e n e r a l l y o r d e r l y . a l a r g e c r o p c a n s w a m p t h e i n f r a s t r u c t u r e a n d r e s u l t i n b o t t l e n e c k s s p r e a d i n g t h r o u g h o u t t h e s y s t e m . C h i a n g a n d B l a i c h 2 7 f o u n d t h a t i n t h e e v e n t o f b o t t l e n e c k s a t t h e p o r t t e r m i n a l s . r a i l c a r s w e r e u s e d t o s u p p l e m e n t s t o r a g e c a p a c i t y . T h i s i n c r e a s e d t h e i r t u r n - a r o u n d t i m e a n d s h i f t e d b o t t l e n e c k s b a c k t o t h e r a i l h e a d . D u r i n g s e v e r a l p e r i o d s . v e r y g o o d w h e a t c r o p s i n A u s t r a l i a h a v e a l s o r e s u l t e d i n i n c r e a s e d e n d i n g s t o c k s . C o n s t r a i n t s o n s t o r a g e c a p a c i t y l e d t o t h e i n s t i t u t i o n o f d e l i v e r y q u o t a s i n 1 9 6 9 . A l t h o u g h t h e s e q u o t e s e n d e d i n 1 9 7 4 . t h e l e g a l p o w e r t o r e i n s t a t e t h e m s t i l l e x i s t s . I f t h e g o v e r n m e n t o r m a r k e t i n g b o a r d o f a s u r p l u s e x p o r t e r a t t e m p t s t o e s t i m a t e d o m e s t i c c o n s u m p t i o n f o r t h e y e a r b e f o r e a l l o w i n g e x p o r t s . a n d h a s h i s t o r i c a l l y l i m i t e d e x p o r t s i f a c t u a l c o n s u m p t i o n e x c e e d e d e s t i m a t e d . t h e l i m i t i n g o f e x p o r t s c o u l d i n c r e a s e s t o c k s i f a c t u a l c o n s u m p - t i o n f a l l s s h o r t o f e s t i m a t e s : a s t i f ’ m ’ " ‘ m ’ = f ( S U P L t i . C 0 N S I t i ) i i n y e a r t ( 1 0 0 0 M T ) w h e r e : E s t i ' w h t w p T s t A b g r h i h t e h s o e e e a l e r o a v t s r t l r c c t m e w i e e d e k e r e : f u C t r n l I n s n e a h e t e n t m n o a n e f a w v i e r l S R O d E e s e r l t h n o . E P N C a r u g e e o n t t e . t O N i t e e e e t 1 D S 1 i i t i a o d a T t t n s t n c f s U l o h I I i 1 o o e n e n e a a u r i a e p n 1 ( E I I N n e t e t s r r n q e d x p p i t a e l o d u d 0 ( ( P C i i t p e c v i a l r d i i 0 r o n p 1 1 ( i a e o r h n i n 0 0 1 n 0 o n e g e r i i e g d t S z r 0 0 x g d s l 0 t o n a . t d e i M 0 s u 0 u 0 p i a s t d e t s o 0 t n n C p t t T c m n i i d ) o t M M o t p r e o w e C r e o e ) ) . l m o i s T e c k o c k o M c n t h t s C i c i t T T s n ) k n o s e a n t e t a e s o s v t n f o p x n h f l e n o o r o o o r n g t o a t r p e a s f e t e d f f c r d e d r e F a d r c o b f O b u t i a m m m o o w i l b b s e e i c o c m e h c a s R i t s a n i o u m o m l o g t l r l h n m o m d j s e p t w o t s d o i n o e t h b c t o y e l i d t d c w i o e o a w c t i y i t h g c w l m o k w p c t y t i h k a o e s h o e y c s w s y d i t c i l i t a l a o h l i i i i h w c t a r e c i i n i h h r o a e s t n n e e y p e s t s e h h s C i n t t e e h y n h s r e y e r e i s e t e C e a C y a y c l i n d l o C e a e r o a e o d d c c u r a a n f v k n s a i a e a r r . e l t s a m n b f s n t t r i t e a l . t t d a d s y f d l . a a l e o r r F t i n n c h e e O I n d e n s R k t i f n g s . c t e h a e r e 7 3 A n a t t e m p t w a s m a d e t o t e s t t h i s t h e o r y b y e s t i m a t i n g e x p e c t e d c o n s u m p t i o n a s t h e g r o w t h p e r c a p i t a c o n s u m p t i o n o v e r v a r y i n g l e n g t h s o f t i m e a d j u s t i n g f o r e x p e c t e d p o p u l a - t i o n . I n g e n e r a l t h e r e s u l t s h a d u n e x p e c t e d s i g n s . T h e r e - f o r e . e x p e c t e d c o n s u m p t i o n w a s d r o p p e d f r o m a l l e q u a t i o n s w i t h t h e e x c e p t i o n o f c o a r s e g r a i n s t o c k s i n A r g e n t i n a . E n d i n g s t o c k s f o r C a n a d a a n d t h e U n i t e d S t a t e s a r e t h e m a r k e t c l e a r i n g e q u a t i o n s f o r t h o s e r e g i o n s : E s t 1 I E s t - 1 1 + P R O D t 1 - C O N S t i - N E t i a L fi o y a ° n r l a d . . . { x _ é F s 5 ‘ m ¥ i n ~ ‘ i g fi 9 t n s u $ z : m ; m i : x : b § m s : m : w x m ¥ fi ‘ w + \ s t e a k 7 4 n o t a r e s i d u a l b u t a r e d e t e r m i n e d b y g o v e r n m e n t p r o g r a m s a n d p r o d u c e r e x p e c t a t i o n s . T h e r e f o r e i t i s n e c e s s a r y t o d e v e l o p e q u a t i o n w h i c h e s t a b l i s h t h e r u l e s f o r a c c u m u l a t i o n a n d r e l e a s e o f F O R a n d C C C s t o c k s . T h e r e a r e t h r e e m a j o r t u r n i n g p o i n t s i n t h e a c c u m u l a - t i o n a n d r e l e a s e r u l e ( F i g u r e 3 . 9 ) . I f t h e p r i c e i s l e s s t h a n t h e l o a n r a t e p l u s i n t e r e s t a n d c a r r y i n g c h a r g e s t h e p r o d u c e r h a s n o i n c e n t i v e t o r e d e e m h i s l o a n a n d t h e g r a i n h e l d u n d e r C C C o r F O R w i l l i n c r e a s e . T h e l o w e r t h e e x p e c t e d p r i c e r e l a t i v e t o t h e l o a n r a t e . t h e m o r e g r a i n w i l l b e s t o r e d a s a g r e a t e r n u m b e r o f p r o d u c e r s p a r t i c i p a t e F i g u r e 3 . 9 . P r i c e - P o l i c y S t o c k C h a n g e R e l a t i o n s h i p a n d a g r e a t e r p e r c e n t a g e o f c r o p i s e n t e r e d i n t o t h e p r o g r a m . W h e n p r i c e s a r e e x p e c t e d t o b e a b o v e t h e l o a n r a t e p l u s i n t e r e s t a n d s t o r a g e t h e r e i s l i t t l e i n c e n t i v e f o r a p r o d u c e r t o e n t e r t h e p r o g r a m . T h i s w o u l d c o r r e s p o n d t o a " s t e a d y - s t a t e " ( t h e s h a d e d a r e a i n F i g u r e 3 . 9 ) w h e r e t h e r e i s r e l a t i v e l y l i t t l e a c c u m u l a t i o n o r r e l e a s e . I f p r i c e s r i s e t o a p o l i c y e s t a b l i s h e d t r i g g e r . t h e 7 5 g o v e r n m e n t w o u l d b e g i n t o r e l e a s e g r a i n o n t o t h e m a r k e t . I t i s a s s u m e d t h a t i n t h e i n t e r e s t s o f p r i c e s t a b i l i t y t h e a m o u n t r e l e a s e d w o u l d b e m a n a g e d . T h e q u a n t i t y o f g r a i n r e l e a s e d w o u l d d e p e n d u p o n t h e u p w a r d p r e s s u r e o n p r i c e . T h e r e f o r e . a c u b i c f u n c t i o n w a s s e l e c t e d a s t h e f o r m w h i c h c o u l d p r o v i d e a s m o o t h c u r v e w i t h t h e c o r r e c t s h a p e : P t i : w i : w 2 P t i ' w 3 L i s t O C R t i 3 f ‘ I L L o a n R t e t : ] ’ I L P L o a n R t e t Z ] ’ l _ L o a n R t e t g ] w h e r e : / \ S t o c k t 1 I C h a n g e i n p o l i c y e n d i n g s t o c k s f o r c o m m o d i t y i a t t i m e t ( m i l l i o n B u ” ) P t i ' " I W o r l d p r i c e o f c o m m o d i t y i a t t i m e t ( 3 / M T ) L o a n R t e t 1 I L o a n r a t e f o r c o m m o d i t y i a t t i m e t ( S / M T ) O n e o f t h e s h o r t c o m i n g s o f a c u b i c f o r m f o r a n e n d i n g s t o c k e q u a t i o n i s i t s p o t e n t i a l t o b e e x p l o s i v e i f p r i c e s a r e v e r y h i g h o r v e r y l o w . T h e r e f o r e . i t w a s n e c e s s a r y t o r e s t r i c t t h e t o t a l a m o u n t o f C C C s t o c k s t o b e n o g r e a t e r t h a n t o t a l e n d i n g s t o c k s m i n u s a p r e s e t m i n i m u m : C C C g , E S - M i n E S a n d F O R s t o c k s a r e r e s t r i c t e d t o b e n o g r e a t e r t h a n t o t a l e n d i n g s t o c k s m i n u s t h e m i n i m u m m i n u s C C C : F O R g . E S - M i n E S - C C C R e l e a s e o f s t o c k s w e r e c o n s t r a i n e d t o b e n o m o r e t h a n t h e t o t a l s t o c k l e v e l : ' P o l i c y e n d i n g s t o c k s a r e e s t i m a t e d i n m i l l i o n b u s h e l s f o r c o m p a t i b i l i t y w i t h s t o c k s c a l c u l a t e d i n t h e d o m e s t i c m o d e l . S e e C h a p t e r I V f o r f u r t h e r d e t a i l s o n m o d e l l i n k a g e . w a s r a t h e r d i f f i c u l t t o d e t e r m i n e . A t f i r s t g l a n c e i t w o u l d 7 6 P I N c e r t i f i c a t e s a r e h a n d l e d i n t w o w a y s . T h e p h y s i c a l r e l e a s e o f t h e c e r t i f i c a t e s i s b y i n c r e a s i n g t h e m i n i m u m l e v e l o f f r e e s t o c k s b y t h e q u a n t i t y o f P I K c e r t i f i c a t e s w h o s e r e d e m p t i o n i s e x p e c t e d i n a g i v e c r o p y e a r : C C C + F O R g _ E S - ( M I N E S + P I K ) S e c o n d l y . t h e m a r k e t w i l l r e c o g n i z e t h a t t h e r e a n a m o u n t o f C C C s t o c k e q u a l t o t h e q u a n t i t y o f o u t s t a n d i n g P I K c e r t i f i c a t e s w h i c h w i l l b e r e l e a s e d . T h e m a r k e t a d a p t s i t s e x p e c t a t i o n s o f g r a i n o n t h e m a r k e t b y a d d i n g t h a t q u a n t i t y o f P I X g r a i n t o f r e e s t o c k s . I n t h e m o d e l t h i s i s a c h i e v e d b y i n c r e a s i n g t h e p e r c e n t a g e o f C C C g r a i n w h i c h i s i n c l u d e d i n t h e s t o c k / u t i l i z a t i o n r a t i o . A n e x a m p l e o f t h e e f f e c t s o f a o n e t i m e i s s u a n c e o f 5 0 0 m i l l i o n b u s h e l s o f P I K c e r t i f i c a t e s w i l l b e p r e s e n t e d i n C h a p t e r V I . E n d i n g s t o c k s f o r t h e n e t i m p o r t e r s a r e p r i m a r i l y a f u n c t i o n o f e i t h e r d o m e s t i c o r t o t a l s u p p l y . H o w e v e r . v a r i a b l e s s u c h a s i n c o m e a n d p r i c e s h o u l d b e c o n s i d e r e d i n a t t e m p t i n g t o e s t i m a t e t h e s i z e o f e n d i n g s t o c k s . E s t i m a t i n g e n d i n g s t o c k s w i t h i n c o m e a s a v a r i a b l e h y p o t h e s i z e s t h a t i n c r e a s e s i n i n c o m e w h i c h i n t u r n i n c r e a s e c o n s u m p t i o n w i l l i n c r e a s e t h e d e m a n d f o r p i p e l i n e s t o c k s . T h e r e f o r e . s t e a d y g r o w t h i n i n c o m e s s h o u l d l e a d t o i n c r e a s e s i n s t o c k l e v e l s o v e r t i m e . W h i l e t h e o r y o f s p e c u l a t i v e d e m a n d i n d i c a t e s t h a t p r i c e s h o u l d p l a y a n i m p o r t a n t r o l e i n t h e e s t i m a t i o n o f a n e n d i n g s t o c k s e q u a t i o n . t h e m a n n e r i n w h i c h i t e n t e r e d t h e e q u a t i o n c c o a m n m o b d e i t y . u s e d F a o s r t a h p e r o p x u y r p o o f s e t s h e o f v e l a s u t e i m o a f t i h o o n l d t i h n e g c o r i u l s s h e e m d a s r n g i i n 7 7 a p p e a r t h a t t h e c o s t o f h o l d i n g e n d i n g s t o c k s w o u l d b e t h e o p p o r t u n i t y c o s t o f e i t h e r b o r r o w i n g o r l e n d i n g t h e c a p i t a l u s e d i n p u r c h a s i n g t h e g r a i n f o r s t o r a g e . T o t e s t t h i s t h e o r y . t h e 6 m o n t h E u r o d o l l a r r a t e ( L I B O R ) w a s s e l e c t e d a s a p r o x y f o r i n t e r n a t i o n a l i n t e r e s t r a t e s . W h e n e n d i n g s t o c k s w e r e r e g r e s s e d a g a i n s t t h e L I B O R i t w a s n o t f o u n d t o b e s i g n i f i c a n t f o r a n y c o u n t r y / r e g i o n . P r i c e i t s e l f w a s i n c l u d e d a s a n i n d e p e n d e n t v a r i a b l e t o t e s t t h e t h e o r y o f s p e c u l a t i v e d e m a n d . I f e n d i n g s t o c k s a r e a c c u m u l a t e d d u r i n g p e r i o d s o f l o w p r i c e s a n d d r a w n d o w n d u r - i n g p e r i o d s o f h i g h e r p r i c e s . i t w o u l d b e e x p e c t e d t h a t p r i c e w o u l d b e n e g a t i v e l y s i g n e d . A l t h o u g h t h a t w a s t h e c a s e f o r a n u m b e r i m p o r t e r s . a f a i r n u m b e r e x h i b i t e d p o s i t i v e s i g n s . T h i s s i g n m i g h t b e e x p e c t e d i f s o m e c o u n t r i e s s e e k t o m i n i m i z e d o m e s t i c i n s t a b i l i t y b y h o l d i n g h i g h e r l e v e l s o f s t o c k d u r i n g p e r i o d s o f s h o r t s u p p l y : s s t i - f ( S U P L t 1 . P t 1 . P C I N C t ) w h e r e : S U P L t i I P e r c a p i t a d o m e s t i c s u p p l y ( p r o d u c t i o n + b e g i n n i n g s t o c k s ) o r p e r c a p i t a t o t a l s u p p l y ( p r o d u c t i o n + b e g i n n i n g s t o c k s p l u s i m p o r t s ) o f c o m m o d i t y i i n y e a r t ( 1 0 0 0 M T ) P t i I P r i c e o f c o m m o d i t y i i n y e a r t P C I N C t I P e r c a p i t a r e a l G . D . P . i n y e a r t T h e d e c i s i o n t o h o l d s o y p r o d u c t s e i t h e r i n t h e w h o l e b e a n f o r m o r a s c o m p o n e n t p r o d u c t s w i l l b e a f u n c t i o n o f t h e d e c i s i o n t o c r u s h d o m e s t i c a l l y o r i m p o r t t h e i n d i v i d u a l 7 8 o n e o f i t s c o m p o n e n t f o r m s . T h e t o t a l s u p p l y o f t h e c o m m o d i t y w i l l b e c o m p r i s e d o f b e g i n n i n g s t o c k s o f t h e c o m m o d i t y p l u s t h e c o m m o d i t y e q u i v a l e n t o f b e g i n n i n g s t o c x s . p r o d u c t i o n . i m p o r t s a n d e n d i n g s t o c k s : a s t i . f < M A R G I N t . s u t h i J w h e r e : E S t 1 I P e r c a p i t a e n d i n g s t o c k s o f s o y p r o d u c t i a t t i m e t ( 1 0 0 0 M T ) M A R G I N t I C r u s h m a r g i n ( ( P 3 L 7 9 5 + P S ° Y ° 1 I . 1 7 5 ) - [ g o n e - I n ) a t t i m e t S U P L t 1 I P e r c a p i t a s u p p l y o f t h e s o y p r o d u c t ( b e g i n n i n g s t o c k s + i m p o r t s + ( b e g i n n i n g s t o c k s o f s o y b e a n + p r o d u c t i o n o f s o y b e a n s I n e t i m p o r t s o f s o y b e a n s ) I c r u s h r a t i o ) o f p r o d u c t i i n y e a r t ( 1 0 0 0 M T ) T h e s e v a r i a b l e s f o r m a s y s t e m o f e q u a t i o n s f o r e a c h r e g i o n . T h e r e g i o n s b u i l d u p o n p a s t p r i c e s f o r p r o d u c t i o n a n d i n t e r a c t t h r o u g h p r i c e s t o d e t e r m i n e t r a d e . c o n s u m p t i o n . a n d s t o c k s . I t m u s t b e r e m e m b e r e d t h a t t h i s r e p r e s e n t s o n l y a b r o a d o u t l i n e f o r a l l r e g i o n s . I n d i v i d u a l c o u n t r y / r e g i o n e q u a t i o n s w i l l f o l l o w i n t h e s t a t i s t i c a l a p p e n d i x . a W S N a S 9 M 7 8 E b P 1 1 1 2 D 3 4 U Q M R P P 5 I 1 S o 4 A o ( . . . e 9 n n ; e a a 9 . o . e g . . . n e 1 0 c r y a n u A f f d s 8 d i g s d 8 y r l . d r o i t s . . u p d v i v c 6 v i 1 e m D n n s U J e g p S i S n . H g d y d ; a l S D G 8 y n p e o e n S O a 9 D H ) D r D D e g - a a 1 U A o D . i o t P r a l u s u n u i g i o s 9 . S m i o r e r _ 8 . G n e m i c h n y o A s p p o c y c n i b n s D _ 8 s c 5 S E a s i n i a h . t p p e . . e . n I a i n a i G fi e i h . 2 S l i c g l t u L . . . l - n l t g s g “ : d g s i s i a B D o E E l l . . l 1 3 y y t 0 M P 1 p u i " . e e g i 3 e . n t 4 0 t g p f s 5 R B r g . J 0 . “ a r m f e C a t r t 8 E a ( “ l n S S . v m h i J r 2 a e 3 r o i p a i a d i s . l ) H e t W o L e i g " - r r M W t n r o 1 c n c s : e t p a S M s a h c 3 t r i a m e r g s c g 9 e A G I d i t t t D u h 2 s e § i E s n o m . . y t s e t b r n 7 i e e o t i . e . . , 2 t s h s v e c h n b a 2 a s w y c 1 s m m ( t c i o i A n l . h i t o i 9 n N D t . . 9 i b t a h n n l " i 1 B e t W . e n t t " e 1 i d o n - e i n e . g l g . t m y t M 9 o c 1 t R a " l t l t . e a a 8 J o s k S f a A e T u A . 7 y r c d 2 : a . a “ t n 3 B G f s h h l o . o ; t m r r 1 J 1 2 l " e d d G a r n ) a i t b a e A 9 " N g 9 n : . : . d e l r a r n 2 g 3 e d o g 5 A " D A E J S r o K r i g f p g G e M s o r 3 M r e 8 o t g - ( e ’ E D a r v l 5 D o b y n l i t . f e g . ) R t g a s q a . r L i e o 2 . c r e “ a e i g o : W 1 w u l C e i A a c s n b C u e 3 l a 9 T o N p m ; n a G a n u b n a . . . a . l y s ( 5 o 8 e n e l 7 a a y t u R . l . t . r d l ; 3 p c a h P r y 9 2 t ; i i i M a C a t n D u h t i ) i h f . l 3 i ' 1 W S d c c a r d . o u 1 D R F n n n . h o " - o 9 r . t e 9 e C y r h n r C g g D o v 7 i 9 e o e F n f e ( u 8 o r s e . e C c 8 m r t . . l e 2 a J B d n e t M o a a a e C r N o o F " 3 . . : 3 o o . 7 y n o o f t d e e l l o H E l r o l d g G M c u i r g r " . Y . E n i o d m e u f a . . . n Q : l l d t o v n t s o n g . m o : D g o ( o S C D I c o o o n n s n l m E O M L a y t t p : . i e C E m i n g 9 p n n G e e l o 9 . r A J v o e ; n E g 0 o o o r m : i i C r g u n g t N g r 3 r m o n i r e n t a g h - o e o : . e 0 a s w o g t i d m c s e n U i m e f R r n r n t g t l e s . t c C . c i u l o i i c c t e a t p l e t g I g n g s o p . m A e R n , l e G n 9 s s e a v i D a o n e t o : i o § u R 1 E N f a o m c n . n u m e c s o t d 7 t r r e g E C g a s P e e u F v 4 l i l m s . 6 . i § . O a n s d m a t i t r a r r n § d o u n o e S r u p a r a e ) . 0 m o a a . a v n E s 4 _ a u l g t s r a n U u c m l n t e d 0 g t t J i p a z n u a f g £ , - r c m f t a h e n . p n o i 1 s i E e h e f i l e . o E W n c s 9 n n i x n . . o s g i n u t t s 8 g z p t 8 t m t f o a i i 1 r o o : ( 6 4 R e p t g m g e a o 5 3 i i i . y n n ) o i t a g s 4 a . r o l t n g . t e 7 9 N t h e I I O f f i c e ) . M a y 1 9 8 4 . 6 . M i t c h e l l . n g b g l R i c ; M g d e l 1 0 . M i t c h e l l . W . P - 1 7 1 a 1 1 1 t ( 1 1 S A 1 A A R 1 A U F 1 1 I S A Q O D C R G W A F o A D g B F 2 n l s n s y 9 3 o 4 o h e 9 1 5 y 6 7 v e g e e i 8 9 p a g . f n e g p A . d e s s 7 7 n n s e u s e 9 s r a p n s g r s p a p r l E . . . . . . . . U s D o F U G J b S S t t i r i n u t u p n e D m : ) l p m i r y , Z s . a i s . o s . o U r o i u a u m b c e s l m p p l d l l i . S p s i t : : 1 s M M s n l n o m i n l e u h w t t e i r r t t p t e U e i e 9 c t _ a i t f e v u a i n i i u p e n A n B O O . C E i r s a v o c r i e ) 2 e a c t e e p c c h i a r p i - . o y r T 9 n e e R 4 E o A n i C I l i c h s e r l t t g g p r t y a 2 - d n g t h e f n a d y D a h e t 5 g g f d t O n . g g a e t l 2 g e s i . I p 3 P r h e l s s l o s o o r e o G c l 1 . p i 0 a K n t 0 O a o f - n f t a r n e s p r e d . . . a 2 . v a C r o F h 4 t A C t E n c n g s o O w r o E b . p . . r e a o G u o s e t i F e 6 e H g d A t m t A R S g A y b a l s t s s M o r l g m s o 6 o o o M g o l i i t e S t p g e t m a e _ i o f u t n n N u p i P r b m c o f c a c s a r p W r e S n h 2 t b s a a o h d o c t i r e h e w t o i e a . e o n t n d e t t t f c a e m U o k c c r m a a e m c I 1 r . . . t r f i i i h a i . u f _ h l r h n i : r s i u W 9 o n t r M i s . l n 5 d n a n s t 9 t o c h s g v u l . l z t 4 : f d h o o A n d c z . a a l l u m a 7 m p e o l . . u e . 1 r e w d m d A i l l 5 C b 9 o r v 6 t n i . r r A 5 a n 3 i 1 p v o o G e n c l E c g A e S e t l 8 i x 5 t 9 t 0 u o n e t 8 r p i s a v i i z t t a l l g R A . e s t e e 9 g o 8 a o n 1 a e P i e s g w U u " h l r 8 ' ( c I F W K r M a r “ l l ( " n m u m . . i n c " £ . l n S i o o n t a c d E u r n E i c s N i l . i 5 r A n A m o l i o i p a P G u n i s s a ( M : ' s c f a c t d u u e Y C c a y c b a o o l h o m u h e n E ; s l l n i . i i E v e W i o A a o C l n l m d s v W S c P n e n e o m o t s . n o i n n d t i l . u l o a o e A a o g F m g p f u c a o a 0 2 u t _ n S l r m g ' o t l t G b i r r r “ d m n d M p m R r z fi t u l i r o e n i a i o a e r a s i e . s " c m a n i a d o c n h l i r p s c g a P a i o ( i . c o r b M m . e . e n P g t t a c y l c b ‘ ' W R a s h l l k " i e s e . e e i r u a a i t G s r g s e y r D o e R 1 s E r " r o h 0 R . A 9 r s s o l r d g l g o e A c t t s c G e p ' a C n t g ) h y g g m 7 l M f i 0 u s m 1 r v r o s o c i r m u . i . e 6 g I d i . ' n l e e 9 L n a a a e o e r e p s n r . r ) t n c a C g r a 7 r . o A i r f s a m t . s h a i r " v G h 1 t a i E 9 u i u 6 n s m l . T e r N D T i g g c e r i x i n c 9 S ) c T c 1 1 s a t h n M a a v e t E v T t i a 2 n d s 1 n o o a F r n c a e o h a " s a g o 8 a a t h y : h s . a c d e l c e e r h i n n r : a t 9 S r m . t e d r C m s o l e t I B I q g t J i e 9 e e p i g . h n s u 9 L l e l l l a h T l l . s g e " t 8 i n . d e a o h n U f n a t 2 i c t t 1 l c n e e : g n T l a : e ‘ s e n r o S D a o ' n e s A s o P u r t a t n c u s v 2 o ' k a o n n o b m - s a I M n C S n a M o a r . t a s r S t u t m i t i d r i r a C d C r : i 1 n p i d a o r i i c E n e i o t t a a n c A 2 . i t x ( M e 2 . ) A p n f g “ . i e . t o Z s r e d c y o h . e 3 t h f n A C g . a l v a t m k n f o a f e S p t p o e e s e r . x e - 8 0 ( N o v e m b e r 1 9 5 8 ) : 8 6 1 - 8 8 0 S u p p l y o f G p g l n i n A u s t r a l i a b y J o h n S p r i g g s . F A E R - 1 5 0 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e ) . J u n e 1 9 7 8 : 1 4 . u G p g l p l p A u s t r a l i a : J . D . F o r b e s . R . D . H u g h e s . a n d T . K . 8 1 2 0 . U . S . D e p a r t m e n t o f A g r i c u l t u r e . E c o n o m i c R e s e a r c h S e r v i c e . W W W ; B y S h e - h i W i l s o n C h i a n g . a n d O s w a l d P . B l a i c h . S t a f f R e p o r t N o . A G E 3 8 3 0 9 1 6 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e ) . N o v e m b e r 1 9 8 3 . 2 1 . U . S . D e p a r t m e n t o f A g r i c u l t u r e . E c o n o m i c R e s e a r c h S e r v i c e . G a i ' I m l a t o n e f r U . S . E g l l g x , B y J e r r y A . S h a r p l e s a n d C a r o l G o o d l o e . S t a f f R e p o r t N o . A G E S 8 4 0 3 1 9 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e ) . M a y 1 9 8 4 . p . 3 2 . 2 2 . S p r i g g s . ’ s ' " x o r t S l o f W e P - 1 5 2 3 . G a r y W . W i l l i a m s a n d R o b e r t L . T h o m p s o n . “ B r a z i l i a n S o y b e a n P o l i c y : T h e I n t e r n a t i o n a l E f f e c t s o f I n t e r v e n - t i o n . “ A m g p l g a p J g p p p a l p f A g p l c u l p u r g l E c o n o m l c s 6 6 . n o . 4 ( N o v e m b e r 1 9 8 4 ) : 4 8 8 - 4 9 8 : U . S . D e p a r t m e n t o f A g r i c u l t u r e . E c o n o m i c R e s e a r c h S e r v i c e . T h e B r g g l l l g p S p y p g g p I n g p g t r y ; T m ' u n v e n ' o . B y G a r y W . W i l l i a m s a n d R o b e r t L . T h o m p s o n . F A E R - 2 0 0 . O c t o b e r 1 9 8 4 . 2 4 . A b b o t t . “ D e v e l o p i n g C o u n t r i e s a n d I n t e r n a t i o n a l G r a i n T r a d e " : M i t c h e l l . G l p p a l R i g e M g d g l . 2 5 . K o e s t e r . P g l l c z Q p p l p n p . p . 2 2 . 2 6 . G a r y W . W i l l i a m s a n d R o b e r t L . T h o m p s o n . B r a g i l i a p S I 9 — 1 1 ' I 3 1 » 1 1 - n — t 0 1 8 1 E ’ _ — . ' e _ v - n - 9 . P . 4 9 2 2 7 . C h a i n g a n d B l a i c h . A p g g p p l p g ’ g G g g l p M g p k g p l p g S y s t e m . C H A P T E R I V M O D E L L I N K A G E C A P A B I L I T Y T h e m o d e l p r e s e n t e d i n t h e p r e v i o u s c h a p t e r i s a c o m p l e t e l y s e l f - c o n t a i n e d m o d e l o f t h e w o r l d . H o w e v e r . t h e M S U A g r i c u l t u r a l M o d e l h a s a t w o o t h e r c o m p o n e n t s . a d o m e s t i c “ c r o p s u p p l y a n d d e m a n d m o d e l a n d a d o m e s t i c l i v e s t o c k s u p p l y a n d d e m a n d m o d e l 1 ( F i g u r e 4 . 1 ) . A l t h o u g h t h e s e t w o c o m p o n e n t s l a c k “ s t a n d a l o n e “ c a p a b i l i t i e s ( i e : t h e y r e q u i r e t h e i n p u t o f e n d o g e n o u s v a r i a b l e s f r o m t h e i n t e r n a t i o n a l c o m p o n e n t o r e a c h o t h e r ) . t h e y p r o v i d e a f a r r i c h e r p o l i c y f r a m e w o r k t h a n t h a t w h i c h h a s b e e n i n c l u d e d i n t h e s i m p l e U . S . r e g i o n o f t h e i n t e r n a t i o n a l c o m p o n e n t . T h e r e f o r e . f o r d o m e s t i c p o l i c y a n a l y s i s i t w a s f e l t t h a t t h e i n t e r n a t i o n a l c o m p o n e n t s h o u l d h a v e t h e c a p a c i t y t o b e l i n k e d w i t h e i t h e r o r b o t h o f t h e d o m e s t i c c o m p o n e n t s . T h e s o l u t i o n p a c k a g e u s e d b y t h e m o d e l i s a G a u s s - S e i d e l I t e r a t i v e M e t h o d ( G S I M ) c r e a t e d b y t h e A g r i c u l t u r a l E c o n o m i c s P r o g r a m i n g O f f i c e a t M . S . U . 2 . T h e p r o g r a m i s w r i t t e n a n d c o m p i l e d i n F o r t r a n a n d c o n t a i n s t w o i m p o r t a n t f e a t u r e s w h i c h p e r m i t t h e l i n k a g e o f t h e c o m p o n e n t s t h r o u g h s w i t c h e s a n d “ b l o c k - i f " s t a t e m e n t s . F i r s t . t h e m o d e l i s d r i v e n b y s u b r o u t i n e c a l l e d X M O D L . T h i s s u b r o u t i n e m a y ’ D o m e s t i c d e n o t e s U . S . r e g i o n 8 2 C H A P T E R I V M O D E L L I N K A G E C A P A B I L I T Y T h e m o d e l p r e s e n t e d i n t h e p r e v i o u s c h a p t e r i s a c o m p l e t e l y s e l f - c o n t a i n e d m o d e l o f t h e w o r l d . H o w e v e r . t h e M S U A g r i c u l t u r a l M o d e l h a s a t w o o t h e r c o m p o n e n t s . a d o m e s t i c “ c r o p s u p p l y a n d d e m a n d m o d e l a n d a d o m e s t i c l i v e s t o c k s u p p l y a n d d e m a n d m o d e l 1 ( F i g u r e 4 . 1 ) . A l t h o u g h t h e s e t w o c o m p o n e n t s l a c k " s t a n d a l o n e " c a p a b i l i t i e s ( i e : t h e y r e q u i r e t h e i n p u t o f e n d o g e n o u s v a r i a b l e s f r o m t h e i n t e r n a t i o n a l c o m p o n e n t o r e a c h o t h e r ) . t h e y p r o v i d e a f a r r i c h e r p o l i c y f r a m e w o r k t h a n t h a t w h i c h h a s b e e n i n c l u d e d i n t h e s i m p l e U . S . r e g i o n o f t h e i n t e r n a t i o n a l c o m p o n e n t . T h e r e f o r e . f o r d o m e s t i c p o l i c y a n a l y s i s i t w a s f e l t t h a t t h e i n t e r n a t i o n a l c o m p o n e n t s h o u l d h a v e t h e c a p a c i t y t o b e l i n k e d w i t h e i t h e r o r b o t h o f t h e d o m e s t i c c o m p o n e n t s . T h e s o l u t i o n p a c k a g e u s e d b y t h e m o d e l i s a G a u s s - S e i d e l I t e r a t i v e M e t h o d ( G S I M ) c r e a t e d b y t h e A g r i c u l t u r a l E c o n o m i c s P r o g r a m i n g O f f i c e a t M . S . U . 2 . T h e p r o g r a m i s w r i t t e n a n d c o m p i l e d i n F o r t r a n a n d c o n t a i n s t w o i m p o r t a n t f e a t u r e s w h i c h p e r m i t t h e l i n k a g e o f t h e c o m p o n e n t s t h r o u g h s w i t c h e s a n d “ b l o c k - i f " s t a t e m e n t s . F i r s t . t h e m o d e l i s d r i v e n b y s u b r o u t i n e c a l l e d X M O D L . T h i s s u b r o u t i n e m a y * D o m e s t i c d e n o t e s U . S . r e g i o n 8 2 “ E V N A C S O C > C ‘ I I G . H J N 1 L I l V N O L N V N L N V C N V V O V d d W ) F E O L O ( E ‘ W fl J . W W L N I E I B E E S C L I C 0 C I S V O G N d B l ] — 0 I E S I W 8 L J ( B t L N A ‘ O 0 l . . O B L N C 0 V 3 A O O d 3 i H I ) E 3 0 l O d d = O : X N ; I ! W V H 1 i E l I E < L < ‘ — _ — > 9 m x $ a m m 3 w u u a “ 1 W u m ¥ M w e ? n a £ n L “ > > * - < — — - > 3 m u s m e u m - m u m m e r x z e n o t e p o u O t N N S v o O O O M V l a n N fi C a N O v W fl N J a E h E K B D i V v o W V a E O O W a ' n B O l O B S I o O o V c o B 1 B O V fl C N N C J i I 9 A N A a 0 1 O 0 V d 0 I 0 3 0 X ' 3 ' D I l 3 0 3 1 d = 3 $ O 9 = d e r n i t n o t x s v ' I ' fi I x n fi t a 8 3 L ' a i u r - i n I n d o b c n k i F n t o t o c 6 u s u r e g n r i n e o i s t r . p e n u t x e b s 2 d a 2 c 6 ° " ' o - 3 > " F . L " m . b t ‘ ' C ~ ' l = 3 ‘ h a c r e m d o o i p i m n u t e t t l l v p t t i e i o e i v d n r n e t e e n e s h d n a s o i i w c o n a e h k n n t i c i l h t o 2 c a o r 5 s m e u c a p c b o r n S m o p o M o r m e e t a e e U p u o s n o t n h t n A a i e t n r t e e o i d t t i u n b : s c l a e g n n r h v l d y t c o i 1 r t h n e 2 o e c e M m s t k r p o u h n o d b c r a e r o e n t l o m e e u s 3 t i u p n o o c t t m n n o a i s a e n n j l n s e o o s . i f r t t s o f 8 4 e i t h e r c o n t a i n t h e c o d e d e q u a t i o n s ( i n a s h o r t m o d e l ) o r c a l l a n u m b e r o f s u b r o u t i n e s w h i c h c o n t a i n a s e r i e s o f c o d e d e q u a t i o n s ( i n a l a r g e r m o d e l ) . S e v e r a l o f t h e s e s u b r o u t i n e s w o u l d t h e n m a k e u p a c o m p o n e n t " . T h e u s e r m a y s p e c i f y . i n X M O D L . t h e o r d e r i n w h i c h t h e s u b r o u t i n e s a r e c a l l e d : t h e s u b r o u t i n e s a r e g r o u p e d i n t o c o m p o n e n t s w h i c h a r e c a l l e d a s a b l o c k . T h e s e c o n d f e a t u r e o f t h e G S I M p a c k a g e u s e f u l i n p r o v i d i n g l i n k a g e c a p a b i l i t y i s a c o m m a n d w h i c h p e r m i t s t h e s e l e c t i o n o f c o m p o n e n t s . T h e S E L C c o m m a n d i s a s w i t c h w h i c h p e r m i t s c o m p o n e n t s t o b e d e a c t i v a t e d d u r i n g s o l u t i o n . T w o S E L C c o m m a n d s a r e u s e d . o n e l i n k s t h e d o m e s t i c c o m p o n e n t s t o t h e i n t e r n a t i o n a l c o m p o n e n t a n d o n e l i n k s o n l y t h e l i v e s t o c k c o m p o n e n t t o t h e i n t e r n a t i o n a l c o m p o n e n t . E a c h S E L C c o m m a n d a p p e a r s t w i c e i n t h e m o d e l . T h e S E L C c o m m a n d i s u s e d i n t h e X M O D L s u b r o u t i n e t o c a l l o r i g n o r e t h e c o m p o n e n t s d u r i n g m o d e l s o l u t i o n a n d i s a l s o u s e d i n t h e E X P R T S s u b r o u t i n e t o s h u t o f f t h e s m a l l U . S . c o m p o n e n t a n d c o n v e r t d o m e s t i c q u a n t i t i e s t o m e t r i c e q u i v a l e n t s i f t h e c o m p o n e n t s a r e l i n k e d . I f t h e i n t e r n a t i o n a l c o m p o n e n t s t a n d s a l o n e . t h e c o n v e r s i o n s a r e i g n o r e d a n d t h e U . S . r O Q i o n i s s w i t c h e d o n ( F i g u r e 4 . 2 ) . D O M E S T I C U N K A G E S U . 5 . R E G I O N $ 5 5 8 5 1 R E V E N U E / H A I - W E D t . H m n e w p a o o u c n o u . G D P . ' c o n s u m e s ~ W M . — ‘ _ _ _ / ‘ I \ _ I : 3 w “ I ‘ : . J t o ' 5 ' : { \ — m o m s : I : s o u n u " ‘ m a . . . c u ‘ o n T m ' 1 ' + — / m m m t A L C C C F 1 s u r e 4 . 2 . I n t e r n a t i o n a l C o m p o n e n t D o m e s t i c L i n k a g e s ! U . S . R e g i o n 8 6 c o m p o n e n t r e q u i r e d a n a d d i t i o n a l S E L C s w i t c h a n d t h e a d d i t i o n o f a n e w s u b r o u t i n e . T h e s u b r o u t i n e i s c a l l e d o n l y w h e n t h e S E L C s w i t c h i s o n a n d l i n k s t h e i n t e r n a t i o n a l c e m p o n e n t t o t h e l i v e s t o c k c o m p o n e n t b y c o n v e r t i n g n o m i n a l G u l f p r i c e s t o r e a l p r o d u c e r p r i c e s a n d c o n v e r t i n g a n i m a l s u p p l y t o m e t r i c f e e d d e m a n d . T h e s w i t c h a l s o s h u t s o f f o n l y t h e f e e d d e m a n d e q u a t i o n s i n t h e U . S . r e g i o n s . t h e e q u a t i o n s g e n e r a t i n g s u p p l y . f o o d / s e e d d e m a n d . i m p o r t s a n d e n d i n g s t o c k s c o n t i n u e t o o p e r a t e ( F i g u r e 4 . 3 ) . A P Q “ I T O I N I ” 8 7 U N K A G E C O M P O N E N T m , d R E V E N U E / H A o o u e s n c M I N T ‘ G R A I N A N I M A L C O N S U M E D ‘ U N I T S a r m m s ’ l P 1 9 u r e 4 . 3 . U . S . L i v e s t o c k M o d e l L i n k a g e s / U . S . R e g i o n 8 8 N o t e s t o C h a p t e r I V . 1 . M . D . I n g c o . J . H . H i l k e r a n d J . R . B l a c k . A n E c o n o m e t r l c d e U . S v o c k S e c f o r P o l i c A n a l s i s a n d L g n g - R u n F o r g g a g t l p g . M i c h i g a n S t a t e U n i v e r s i t y . 8 6 - 3 0 . A p r i l 1 9 8 6 A g r i c u l t u r a l E c o n o m i c s S t a f f P a p e r N o . D e p a r t m e n t o f 2 . C h r i s W o l f . M R f M i c h i g a n S t a t e A g r i c u l t u r a l E c o n o m i c s P r o g r a m m i n g O f f i c e . U n i v e r s i t y . J u n e 1 9 7 9 C H A P T E R V M O D E L P E R F O R M A N C E 5 . 1 E g u a t l g p E v a l p a t i o n P r o c e d u r e S t a t i s t i c s p r o v i d e d d u r i n g t h e e s t i m a t i o n o f i n d i v i d u a l e q u a t i o n s ( R 2 . F - s t a t i s t i c s . t - s t a t i s t i c s . D u r b i n - W a t s o n s t a t i s t i c s ) c a n p r o v i d e d e t a i l s o f a n - e q u a t i o n ’ s s t a t i s t i c a l p r o p e r t i e s b u t c a n n o t p r o v i d e d e t a i l s o f h o w i t w i l l f i t w h e n s i m u l a t e d w i t h i n a s y s t e m o f e s t i m a t e d e q u a t i o n s . E s t i m a t i o n o f t h e m o d e l f o l l o w e d t h r e e s t a g e s . I n t h e f i r s t s t a g e . t h e e q u a t i o n s w e r e e s t i m a t e d a n d c h e c k e d f o r t h e s t a n d a r d r e g r e s s i o n s t a t i s t i c s m e n t i o n e d a b o v e . A t - s t a t i s t i c o f l e s s t h a n 2 f o r a n i n d i v i d u a l v a r i a b l e d i d n o t n e c e s s a r i l y d i s q u a l i f y i t f r o m i n c l u s i o n . A l t h o u g h i f a v e r y l o w t - s t a t i s t i c w a s p r e s e n t t h e v a r i a b l e w o u l d b e e x c l u d e d . a s o u n d t h e o r e t i c a l b a s i s a n d a n e x p e c t e d s i g n w o u l d o f t e n o v e r r i d e t h e e f f e c t s o f a l o w t - s t a t i s t i c . I f t h e s i g n w a s o n e w h i c h c o u l d n o t b e e x p l a i n e d t h e o r e t i c a l l y . t h e v a r i a b l e w a s e x c l u d e d . T h e p r e s e n c e o f s e r i a l c o r r e l a - t i o n i n d i c a t e s t h a t t h e r e i s s o m e t h i n g w r o n g w i t h t h e s p e c i f i c a t i o n o f t h e m o d e l a n d a d d i t i o n a l w o r k i s r e q u i r e d . T h e r e f o r e . a n e q u a t i o n w i t h t r o u b l e s o m e D u r b i n W a t s o n s t a t i s t i c s w a s n o t c o r r e c t e d t h r o u g h a n a u t o r e g r e s s i v e e r r o r s p e c i f i c a t i o n . E i t h e r t h e e q u a t i o n w a s r e - e s t i m a t e d o r t h e s e r i a l c o r r e l a t i o n w a s n o t e d . T h e s t a t i s t i c a l p r o p e r t i e s 8 9 9 0 f o r e a c h e q u a t i o n w i l l b e p r e s e n t e d i n a p p e n d i c e s . T h e s e c o n d s t a g e o f t h e e s t i m a t i o n p r o c e d u r e l i n k e d a l l t h e e q u a t i o n s i n a r e g i o n a s a r e c u r s i v e b l o c k a n d t h e m o d e l . c o n s i s t i n g o f 2 5 - 3 5 e q u a t i o n s w a s s o l v e d w i t h h i s t o r i c y i e l d s a n d p r i c e s . T h i s w a s d o n e t o t e s t t h e p r e d i c t i v e c a p a b i l i t y o f t h e r e g i o n w h e r e e x o g e n o u s f a c t o r s ( w o r l d p r i c e s ) w e r e c o n t r o l l e d b u t e r r o r s o f i n t e r n a l c o n s i s t e n c y w a s n o t ” . T h e c o m p a r a t i v e p l o t s o f t h e r e s u l t s c o m p a r e d t o t h e a c t u a l a p p e a r a s “ R e g i o n a l M o d e l S i m u l a t i o n s “ i n t h e a p p e n d i c i e s . F i n a l l y . f o l l o w i n g t h e e s t i m a t i o n o f a l l e q u a t i o n s . t h e m o d e l w a s c o n s t r u c t e d a n d a n e x - p o s t f o r e c a s t w a s g e n e r a t e d . T h e m o d e l w a s s i m u l a t e d u s i n g t h e G S I M p a c k a g e f o r t h e p e r i o d 1 9 7 5 - 1 9 8 4 . T h e m o d e l u s e d a c t u a l y i e l d s t o s i m u l a t e s h o r t - r u n v a r i a b i l i t y n o t c a p t u r e d i n a t r e n d f o r e c a s t o f y i e l d s b u t r e m o v e d t h e c o n t r o l s o n p r i c e t o a l l o w t h e r e g i o n a l b l o c k s t o i n t e r a c t . T h e r e s u l t s p r e s e n t e d b e l o w w i l l b e t h o s e f r o m t h e e x - p o s t f o r e c a s t a n d p l o t s o f t h e a c t u a l a n d f o r e c a s t v a l u e s w i l l b e p r e s e n t e d i n t h e s t a t i s t - i c a l a p p e n d i c e s . I t s h o u l d b e n o t e d t h a t t h e p l o t s o f t h e r e g i o n a l s i m u l a t i o n s a n d e x - p o s t f o r e c a s t s c o v e r d i f f e r e n t t i m e p e r i o d s a n d h a v e d i f f e r e n t s c a l e s . 5 . 2 M e a s u r e s o f A c c u r a c y T w o m e a s u r e s o f a c c u r a c y c a n b e u s e d t o j u d g e t h e q u a l i t y o f a m o d e l . A b s o l u t e a c c u r a c y c a n b e e v a l u a t e d b y ’ A d e s c r i p t i o n o f t h i s p r o c e d u r e c a n b e f o u n d i n S h a g a m a n d F e r r i s . 9 1 o b s e r v a t i o n o f t h e p r e d i c t e d v a l u e s v i s - a — v i s t h e o b s e r v e d v a l u e s . R e l a t i v e a c c u r a c y c o m p a r e s t h e r e s u l t s o f t h e f o r e c a s t e r r o r s w i t h t h e e r r o r s f r o m a n a l t e r n a t i v e f o r e - c a s t i n g m e t h o d . S e v e r a l a l t e r n a t i v e f o r e c a s t i n g m e t h o d s h a v e b e e n u s e d i n o t h e r e v a l u a t i o n s . T h e s i m p l e s t c o m p a r i - s o n u s e s a m o d e l o f n o - c h a n g e f r o m t h e p r e v i o u s p e r i o d . G r a n g e r a n d N e w b o l d l s u g g e s t t h a t t h e r e h a s b e e n a t r e n d a w a y f r o m n o - c h a n g e m o d e l s a n d t o w a r d s m o r e c o m p l e x a u t o - r e g r e s s i v e o r B o x - J e n k i n s m o d e l s . H o w e v e r . i n t h e i n t e r e s t s o f s i m p l i c i t y . t h e n o - c h a n g e m o d e l w i l l b e u s e d f o r c o m p a r i - 8 0 1 ' ! e 5 . ” A e c T h r e e m e a s u r e s o f a b s o l u t e a c c u r a c y w i l l b e p r e s e n t e d i n t h i s c h a p t e r . H e a n a b s o l u t e p e r c e n t a g e e r r o r s ( M A P E ) a r e d e f i n e d a s T - ' s — a : M A P E = % . 2 _ ' Y t x , Y ‘ : t = l t “ w h e r e : Y t ‘ a s i m u l a t e d v a l u e o f Y Y t a 3 a c t u a l v a l u e o f Y T 8 n u m b e r o f p e r i o d s i n s i m u l a t i o n C a l c u l a t i n g a m e a n a b s o l u t e p e r c e n t a g e e r r o r h a s a d v a n t a g e s o v e r c a l c u l a t i n g a m e a n p e r c e n t a g e e r r o r . M e a n p e r c e n t a g e e r r o r e s t i m a t i o n w i l l n e t p o s i t i v e a n d n e g a t i v e e r r o r s t h e r e b y p r e s e n t i n g a l o w e r e s t i m a t e o f e r r o r t h a n i f e r r o r s w e r e e i t h e r a l l p o s i t i v e o r n e g a t i v e . H o w e v e r . M A P S h a s a b i a s f a v o r i n g e s t i m a t e s w h i c h a r e b e l o w t h e a c t u a l v a l u e . A l o w f o r e c a s t c a n n e v e r b e o f f b y m o r e t h a n 1 0 0 % b u t a h i g h f o r e c a s t h a s n o l i m i t . 9 2 A s e c o n d m e a s u r e o f a b s o l u t e a c c u r a c y i s t h e r o o t - m e a n - s q u a r e p e r c e n t a g e e r r o r ( R M S P E ) d e f i n e d a s : ‘ 3 ‘ 4 . R M S P E = i { i f F Y m — t s n ‘ v t ‘ fi . 7 5 " — L — ' t “ . . J \ . c = l w h e r e : Y t ‘ a s i m u l a t e d v a l u e o f Y Y t a 8 a c t u a l v a l u e o f Y T a n u m b e r o f p e r i o d s i n s i m u l a t i o n A s w i t h R A P E . R M S P E m e a s u r e s h o w c l o s e l y t h e v a r i a b l e f o r e c a s t i n q u e s t i o n t r a c k s i t s h i s t o r i c a l d a t a b u t p e n a l i z e s l a r g e e r r o r s m o r e h e a v i l y . T h i s c a n h a v e s e r i o u s r e p e r c u s s i o n s i f t h e a c t u a l n u m b e r s a r e s m a l l . A l t h o u g h A r m s t r o n g 2 p r e s e n t s e v i d e n c e t h a t R o o t M e a n S q u a r e E r r o r a n d M e a n A b s o l u t e E r r o r m e a s u r e m e n t s a r e m o r e p o p u l a r t h a n t h e i r p e r c e n t a g e c o u n t e r p a r t s . t h e y a r e i n t e r v a l m e a s u r e s w h i c h r e q u i r e t h a t t h e u s e r k n o w t h e b a s e f r o m w h i c h t h e y d e v i a t e . T h e p e r c e n t a g e a c c u r a c y m e a s u r e s a r e i n r a t i o f o r m a t a n d d o n o t r e q u i r e t h e r e a d e r t o k n o w t h e b a s e . A t h i r d m e a s u r e o f a b s o l u t e a c c u r a c y i s t o m e a s u r e t h e n u m b e r o f t u r n i n g p o i n t e r r o r s ( T P E ) . T P E s a c t a s a m e a s u r e o f a m o d e l ’ s a b i l i t y t o f o r e c a s t c h a n g e s i n d i r e c t i o n : A c t u a l C h a n g e , - F o r e c a s t + a b C h a n g e - c d P o s i t i o n s " b “ a n d c “ i n t h e b o x a b o v e c o r r e s p o n d t o t u r n i n g p o i n t e r r o r s . T h e u s e f u l n e s s o f T P E i s s o m e w h a t m o r e l i m i t e d a s a m e a s u r e o f a c c u r a c y . T h e f a c t t h a t a t u r n i n g p o i n t e r r o r o c c u r r e d i s n o t e n o u g h e v i d e n c e t o c o n d e m n a n ‘ _ L : 1 9 . 9 3 e q u a t i o n . t h e m a g n i t u d e o f t h e e r r o r a n d t h e e f f e c t t h a t e r r o r h a s u p o n t h e e n t i r e s y s t e m w i l l d i f f e r f r o m e q u a t i o n t o e q u a t i o n . 5 . 2 . ; R e l g t i v e A g c g r a c x R e l a t i v e a c c u r a c y c a n b e m e a s u r e d w i t h T h i e l ’ s i n e q u a l - i t y c o e f f i c i e n t . T h i e l ’ s i n e q u a l i t y c o e f f i c i e n t p r o v i d e s a m e a s u r e o f f o r e c a s t i n g e r r o r b y c o m p u t i n g t h e R M S P E a c r o s s t h e e n t i r e f o r e c a s t p e r i o d b u t s c a l e d t o f a l l b e t w e e n 0 a n d l : \ ‘ % t i l ( Y t s - Y t a ) 2 U < l ) a 1 T : g { 1 I . . \ ‘ T . - t g l ( Y t 3 ) 2 ” \ i . F t é l ( 3 t 6 ) 2 w h e r e : Y t s - s i m u l a t e d v a l u e o f Y Y t fl 8 a c t u a l v a l u e o f Y T = n u m b e r o f p e r i o d s i n s i m u l a t i o n I f 0 ( 1 ) = 0 t h e n Y t s = Y t fl a n d t h e r e i s a p e r f e c t f i t . I f U < l > = 1 t h a n t h e f i t i s a s b a d a s p o s s i b l e . I t i s p o s s i b l e t o d e c o m p o s e T h i e l ’ s i n e q u a l i t y c o e f f i - c i e n t i n t o p r o p o r t i o n s o f i n e q u a l i t y 5 V 3 - V b ) 2 U " a : i E ( Y s - Y a ) 2 T = 1 ’ 1 ' . ’ 2 U S a 1 i c o n - a a ) 2 ? t 9 1 ( { t ° - { t a ) 2 U 0 a 2 ( 1 - 9 3 0 2 0 5 l I ? t é l ( Y t s Y t a ) 2 h fi u e r e : Y 5 a n d U ; a r e t h e m e a n a n d s t a n d a r d d e v i a t i o n o f Y ‘ s Y ; a n d 0 3 a r e t h e m e a n a n d s t a n d a r d d e v i a t i o n o f Y t a ‘ 3 5 p r o v i d e s a m e a s u r e o f t h e p r o p o r t i o n o f e r r o r d u e t o 9 4 b i a s . U s r e p r e s e n t s t h e p r o p o r t i o n o f e r r o r d u e t o d i f - f e r e n c e s i n t h e v a r i a n c e s o f t h e a c t u a l a n d t h e p r e d i c t e d v a l u e s . U C m e a s u r e s u n s y s t e m a t i c e r r o r . S i n c e U M + a s . U C . 1 a d e s i r a b l e e q u a t i o n w o u l d h a v e v e r y l o w v a l u e s f o r U M a n d U s a n d a v a l u e c l o s e t o l f o r D C . T h i s w o u l d i n d i c a t e t h a t t h e m a ) o r i t y o f p r e d i c t i o n e r r o r w a s d u e t o r a n d o m e r r o r . A n u m b e r o f a u t h o r s 3 a r g u e d t h a t 0 ( 1 ) . a l t h o u g h s t i l l o f t e n c i t e d . w a s o f q u e s t i o n a b l e u s e . G r a n g e r a n d N e w b o l d p r o v e t h a t u n d e r c e r t a i n c a s e s . a p e r f e c t f o r e c a s t o f X t c a n c a u s e U < l > = l . F u r t h e r m o r e . B l i e m e l a r g u e s t h a t w h e n c h a n g e s a r e m e a s u r e d a l l f o r e c a s t i n g m o d e l s w i l l d o b e t t e r t h a n a n a i v e m o d e l . F o r c o m p a r i s o n w i t h n o - c h a n g e ( " n a i v e " ) m o d e l s . t h e y r e c o m m e n d e d a n o t h e r m e a s u r e . a l s o d e v e l o p e d b y T h i e l : U ( 2 ) = w h e r e : Y t s 8 s i m u l a t e d v a l u e o f Y Y t a 8 a c t u a l v a l u e o f Y T I n u m b e r o f p e r i o d s i n s i m u l a t i o n I f 0 ( 2 ) < 1 . t h e m o d e l i s a n i m p r o v e m e n t o v e r t h e n o - c h a n g e m o d e l : i f U ( 2 ) > 1 . t h e m o d e l i s w o r s e t h a n a n o - c n a n g e ‘ n o d e l . 5 5 . 2 . ; U s i n g A c c u r a c y M e a s u r e s t o J u d q g P e r f o r m a n c e R e s u l t s I n t h e s e c t i o n s w h i c h f o l l o w . t h e s t a t i s t i c s d i s c u s s e d a b o v e w i l l b e p r e s e n t e d a l o n g w i t h a n a r r a t i v e f o r e a c h r e g i o n . T h e s t a t i s t i c s a r e p r e s e n t e d a s a s e r i e s o f 9 5 b e n c h m a r k s . t h e y s h o u l d n o t h o w e v e r b e t a k e n a s t h e f i n a l a r b i t e r o f t h e q u a l i t y o f t h e m o d e l o r e v e n o f t h e i n d i v - i d u a l e q u a t i o n s . T o m a k e t h a t d e c i s i o n . i t i s n e c e s s a r y t o d e t e r m i n e w h y c e r t a i n e q u a t i o n s f a i l e d a n d h o w t h e i r f a i l u r e a f f e c t e d o t h e r e q u a t i o n s i n t h e s y s t e m . E q u a t i o n s w i t h " b a d " s t a t i s t i c s m a y b e “ g o o d ” e q u a t i o n s r e s p o n d i n g w e l l t o " s m a l l " e r r o r s i n o t h e r " g o o d " e q u a t i o n s . T h e p r o b l e m m i g h t b e t h a t a “ s m a l l " e r r o r i n t h e p r o d u c t i o n f o r i n s t a n c e i s " l a r g e " r e l a t i v e t o e n d i n g s t o c k s . T h e r e f o r e i t i s n e c e s s a r y t o u n d e r s t a n d t h e l i n k a g e s o f w h o l e m o d e l t o c o m p l e t e l y j u d g e t h e i n d i v i d u a l e q u a t i o n s . 5 P ’ m e O v e r a l l , t h e p e r f o r m a n c e o f t h e i n t e r n a t i o n a l m o d e l w a s g o o d . A s a r e s u l t o f l a r g e n u m b e r o f e q u a t i o n s . t h e a c c u r a c y m e a s u r e s r e s u l t i n g f r o m t h e s i m u l a t i o n w i l l b e p r e s e n t e d i n t a b u l a r f o r m a n d w i l l b e c l a s s i f i e d b y r e g i o n a n d c o m m o d i t y . Y i e l d s w i l l b e e x c l u d e d f r o m t h e s e t a b l e s b e c a u s e a c t u a l y i e l d s w e r e u s e d t o g e n e r a t e t h e e x - p o s t f o r e c a s t . A s i n t h e p r e v i o u s c h a p t e r s . r e l e v a n t p o i n t s w i l l b e d i s c u s s e d f o r e a c h e q u a t i o n t y p e . 5 . 3 . P r r m a n R s ' f o U n i t d S t a t e s A l t h o u g h t h e e q u a t i o n s f o r U n i t e d S t a t e s a c r e a g e w e r e ' g e n e r a l l y h a d l o w p e r c e n t a g e e r r o r s . s e v e r a l n o t i c e a b l e a p p r o p ' r i E a s t t e i l m y a t l i a o b n e l t d e a d a a p f p o e r n d a i l c l i e r s e . g i o n s w i l l b e f o u n d i n t h e 9 6 p r o b l e m s e x i s t b o t h i n e s t i m a t i o n ( A p p e n d i x A ' ) a n d p e r - f o r m a n c e ( T a b l e 5 . 1 ) . T h e m a j o r i t y o f e q u a t i o n s h a d M A P E s o f l e s s t h a n 2 0 % w i t h h a l f h a v i n g M A P E s o f l e s s t h e n 1 1 % . 0 f t h e t h r e e w h i c h e x c e e d e d 2 0 % o n l y o n e w a s a n e s t i m a t e d e q u a t i o n . H o w e v e r , s e r i a l c o r r e l a t i o n w a s p r e s e n t i n a b o u t h a l f t h e e q u a t i o n s a n d t h e r e w a s a f a i r l y h i g h n u m b e r o f t u r n i n g p o i n t e r r o r s . F r o m a n p e r f o r m a n c e s t a n d p o i n t p r o b a b l y t h e m o s t s i g n i f i c a n t p r o b l e m s i n t h e U . S . a r e t h e w h e a t n e t e x p o r t e q u a t i o n ( w N E U S ) a n d t h e w h e a t h a r v e s t e d a r e a e q u a t i o n ( w H A U S ) . M u c h o f t h e p r o b l e m i n b o t h e q u a t i o n s c a n b e t r a c e d t o t h e r e s t r i c t i o n t h a t t h e U . S . i s t h e r e s i d u a l s u p p l i e r t o t h e w o r l d m a r k e t . T h i s f o r c e s a l l t h e e r r o r s i n t h e r e s t o f t h e m o d e l ’ s t r a d e e q u a t i o n s i n t o t h e U . S . A s a r e s u l t . t h e e q u a t i o n u n d e r e s t i m a t e s w h e a t e x p o r t s f o r 8 o f t h e t e n y e a r o f f o r e c a s t . L o w e x p o r t s r e s u l t i n e s t i m a t e d w h e a t e n d i n g s t o c k s ( W E S U S ) w h i c h a r e a l m o s t 5 0 % a b o v e a c t u a l l e v e l s i n 1 9 7 8 a n d 1 9 7 9 . W h e n l a g g e d e n d i n g s t o c k s a r e i n c l u d e d a s a p r o x y f o r g o v e r n m e n t p o l i c i e s i n W H A U S , h i g h e n d i n g s t o c k s b o t h m a s k a n d c o m p o u n d p r o b l e m s i n t h a t e q u a t i o n . T h e p r o b l e m i n ” H A U S i s m a s k e d b y a s t o c k c u s h i o n w h i c h k e e p s p r i c e s f r o m r i s i n g a n d c o m p o u n d e d b y p u t t i n g d o w n w a r d p r e s s u r e o n l a n d e x p a n s i o n . A l t h o u g h t h e e r r o r p e r c e n t a g e s a r e l o w t h e ‘ e q u a t i o n u n d e r e s t i m a t e s a r e a f o r t h e p e r i o d 1 9 7 9 - 8 2 . T h e — . _ a 0 L 0 4 L r 2 s 6 S o 9 4 6 t L e c L L s L 9 e s . e 9 9 6 E o 6 t O e o O 6 o o L 9 L z o : 9 c 9 4 - - 0 n ’ ' ' ' ' ' ' ' ' - ' ' ' ° ° ' ° ' ° ' ‘ ' ‘ ' ' ° . 0 o 0 0 O o 0 O t o o 0 o 0 0 u o o 0 O o O o o o u " a n . o u o o 0 o 0 o ' * ° T Q C Y Q i D n Q B s I e T ( Z 6 9 0 9 r 0 t O 0 0 t 0 o o . ' ' ' ° ' ' ' . O 0 0 0 o " o o n 9 4 0 6 9 9 e . E o 2 s s o e s 0 o 6 e o t I s S g ’ 0 - s Q z 2 4 6 O 9 0 s 9 t e s 9 E z e s O e 9 e e s 2 c L . e ° e L n ' ' ' ' ' ' ' ° ' ' ' ' ' ' ' : ' ° ° ‘ ' ' ° ' 0 - A ‘ t s 0 0 o t : : ! o o O o o o u : o 0 o o : O o r o O " q l t p t e a r t q e s e 9 L o t 4 ( z 3 2 e o 0 9 L O e 8 e v t t r ( ' 0 t 1 ' " o 0 z t s 0 0 t 0 o t o o 0 0 0 t t o I 0 z o t I 0 . o 0 T s n o " 0 o o 0 o o o 0 o o " 0 0 o I o 0 o o l o o o o o o a z ' . - ' ' ° ' ' ' ° ' ' ' ' ' ' ' ' ' ‘ ' ° ' ' ° ' ’ e ‘ o O ; 0 e 1 a 4 y _ . a _ 1 e _ y 3 a § e £ a _ s e q q e e s e a s s _ t _ n A _ o 3 e 1 s § n £ a ! a _ v _ . _ s t e a : e p t i 6 6 6 8 9 8 9 0 0 S " e § ' ' ' ' ’ ' ' ' ‘ ' t L l 0 0 9 9 8 ? ! 9 9 L A fl 9 8 ! 1 ! t 8 S t e n s e s n p o e v e a n - a s b e s e o e ' E 9 6 B G E . I I . 9 ’ I { " 6 S B . " ' " " ' ' " ' " ' " L L B 0 ' ' ' ' ' . . e O L Q 6 6 l s € 6 S G L U S 6 6 ' ' ' ' ' ' ' ' ‘ ' ' " ' ' ' ‘ U ' ' ' ' ° ' o u " 0 O O O " " U " " " " u O O O 0 f ; 0 0 0 O O O O 0 O O " T l V ' ' q 1 I fl 1 e g fi 0 o e . . 0 a — - 1 d 8 s c e 3 C $ 8 9 s s s s c . I U $ e S B B $ 3 - . n 3 0 s n . O 0 B 0 s B B . 8 0 0 n s S ' ' R 8 0 n B S fl 0 0 x N " 0 3 n u R O G 0 3 l O O 0 0 n 9 O 0 0 0 o S e I R S 0 8 0 3 8 0 v o S S Z 0 ' 8 v 3 0 0 B 8 e V u fl O 0 m S 3 I fl 3 O " ! d 8 N 6 u o J 3 3 3 3 I 8 n N 3 s a A H O H 0 . a N O I 3 0 fl 0 s s H 6 fl fl 5 3 3 3 1 a J : g s B B J S 8 . s B S S 3 8 . E ? 7 e a t q e t q s q g e o u s s s a j s e d ' e ' u 9 9 ' ! 8 0 ' ! S E ' Z 0 " ! 9 9 " 8 " ! 9 9 ' ! 0 9 ' : 9 8 ' : ' 0 ‘ " ' e ' u ' C ‘ l l L S ' t 0 " : 0 ' " S G ' ! 8 8 ' ! ' I ‘ ! ’ n o v a - t a n s : n o r a - 9 8 s y s t e m r e t u r n s t o e q u i l i b r i u m i n 1 9 8 1 w h e n e s t i m a t e d w h e a t s t o c k s f a l l 2 2 3 b e l o w a c t u a l l e v e l s a n d e s t i m a t e d w h e a t p r i c e s i n c r e a s e 2 2 3 a b o v e a c t u a l l e v e l s . T h i s e n c o u r a g e s t h e e x p a n s i o n o f w h e a t a r e a a t a t i m e w h e n a c t u a l a r e a i s f a l l i n g . T h e s a m e s p i l l o v e r p r o b l e m s e x i s t i n t h e c o a r s e g r a i n a n d s o y c o m p l e x e n d i n g s t o c k e q u a t i o n s . H o w e v e r . b o t h t h e c o a r s e g r a i n h a r v e s t e d a r e a ( F H A U S ) a n d t h e s o y b e a n h a r - v e s t e d a r e a ( S H A U S ) e q u a t i o n s a r e b e t t e r e q u a t i o n s . T h e y e x h i b i t f e w e r a n d m o r e m i n o r t u r n i n g p o i n t e r r o r s a n d t h e T h i e l s t a t i s t i c s i n d i c a t e t h a t t h e m a j o r i t y o f e r r o r i n t h e e q u a t i o n s c a n b e t r a c e d t o r a n d o m f a c t o r s . I t s h o u l d b e n o t e d h o w e v e r t h a t n e i t h e r F H A U S n o r S H A U S u s e l a g g e d e n d i n g s t o c k s a s i n d e p e n d e n t v a r i a b l e s . T h e r e i s c u r r e n t l y n o s o y b e a n s e t - a s i d e p r o g r a m . t h e r e f o r e n o t h e o r e t i c a l r e a s o n f o r i n c l u d i n g l a g g e d s t o c k s i n S H A U S . L a g g e d s t o c k s h a d e x p e c t e d s i g n s a n d w e r e s i g n i f i c a n t i n F H A U S . h o w e v e r . t h e m o d e l m i s s e d b a d l y i n t h e P . I . K . y e a r 1 9 8 3 . w h e n a d u m m y w a s i n c l u d e d f o r 1 9 8 3 . m u l t i - c o l l i n e a r i t y w a s p r e s e n t . T h e r e f o r e . F E S U S ( - 1 ) w a s d r o p p e d f r o m t h e e q u a t i o n . I t i s f e l t t h a t p a r t o f t h e p r o b l e m i n w u a u s c a n b e e l i m i n a t e d i n t h e w h e a t s e c t o r b y d e v e l o p i n g a b e t t e r s e t o f p r o x i e s f o r a c r e a g e - c o n t r o l . A n a t t e m p t w a s m a d e t o e s t i m a t e b o t h F H A U S a n d w a a u s u s i n g p o l i c y s t o c k s ( F . 0 . R . a n d C . C . C ) i n s t e a d o f t o t a l e n d i n g s t o c k s . S u r p r i s i n g l y . t h e y w e r e f o u n d t o h a v e a l m o s t n o s t a t i s t i c a l s i g n i f i c a n c e . I t w i l l b e n e c e s s a r y t o b u i l d a s e t o f m o r e c o m p l e x . p o l i c y O a v u b i l t s l o f 1 * u t o e f o l l u e 0 T t e a h u l e r s u n u e c i m h n o a g f o n f g h v t p t e o m h i i e i n s n t s c s e h t d a h n c g a n e d e h f a o t n g n r i e g n e n e c e t a r c h s a a e t e d b c a e t l a v t u u h d a e e e l . m i p a n l j e u o d s f r i a t t s h y e o h a f e b t t h l e u s o t e 9 9 d r i v e n e q u a t i o n s o r s i m p l y c o n s t r a i n w h e a t a r e a b a s e d u p o n " e x p e r t o p i n i o n " . U n l e s s t h e c o n c e p t o f b a l a n c i n g t h e m o d e l a c r o s s a l l c r o p y e a r s i s e l i m i n a t e d . b o t h Q N E U S a n d F N E U S w i l l c o n t i n u e t o c o l l e c t a l l t h e e r r o r s i n t h e g r a i n s e c t o r a n d d i s t r i b u t e t h e m i n t o t h e U . S . r e g i o n . T h e e f f e c t o f u n s t a b l e e n d i n g s t o c k s o n p r i c e i s g r e a t e r i n t h e o i l s e e d s e c t o r a n d i n c o a r s e g r a i n s t h a n i n w h e a t b e c a u s e t h e U . S . h a s a l a r g e r p r o p o r t i o n o f t o t a l c o a r s e g r a i n a n d s o y c o m p l e x s t o c k s . E v e n t h e e s t i m a t e d s o y b e a n c o m p l e x e x p o r t e q u a t i o n s ( S M N E U S . S O N E U S . S N E U S ) a r e s t i l l t h e r e s i d u a l o f e r r o r s i n o t h e r r e g i o n s . T h e p r o b l e m o f l a r g e e r r o r s i n s o y c o m p l e x s t o c k s i s s i m p l y n o t a s w o r r i s o m e a s t h e s i z e o f t h e n u m b e r s i n d i c a t e b e c a u s e t h e q u a n t i t i e s s t o r e d a r e r a t h e r s m a l l . N o n e t h e l e s s . i t i s a p r o b l e m w h i c h o n e h a s t o l i v e w i t h g i v e n t h e s p e c i f i c a t i o n o f t h e m o d e l . I n g e n e r a l . t h e c o n s u m p t i o n e q u a t i o n . e s p e c i a l l y t h o s e f o r t h e m a j o r u s e o f t h e c o m m o d i t y ( w h e a t f o r f o o d a n d c o a r s e g r a i n f o r f e e d ) h a v e l o w e r r o r s a n d m i s s n o m a j o r t u r n i n g p o i n t s . W h e a t f o r f o o d ( W F O D U S ) i s t h e e q u a t i o n w i t h t h e l a r g e s t n u m b e r o f T P E s . t h e t o t a l e r r o r o f m i s s e d c h a n g e * i s l e s s t h a n fi x f o r e a c h t u r n i n g p o i n t . T h e o n l y n o t a b l e e r r o r i s t h e h i g h p e r c e n t a g e e r r o r i n t h e w h e a t f o r f e e d c o n s u m p t i o n ( W F E D U S ) e q u a t i o n . T h e e q u a t i o n m i s s e s 4 ¥ i w b h p t c i h - m h o i o i a a l > 9 D o t e t e p e r g o i m r a d h n n e o i l . W n n 1 m e d m o s p s x e e v r r e e t t i i 1 e t e i d n r r u a 1 a r o e c p b r u f t u e c c e q n q i h n c i t t t t o t r d i 9 s o g h o c c u n r i 8 r i e t e a o o s a p s a s 4 o a s r n w i s i p u . . n p l e e a t t ( s . n l g m e n s n i p . s e t r U f . n F s h h a a P e e o o n . s i v o S o o R p t a n d t 1 t J 3 r C 3 i ‘ < ‘ “ 3 ( r . m a c n c e : o n s u m h o h o c p f ( W r e w d o o t r a e t e n n F w i i s n a i O i e o v n e r . i s n c o D n a e t n t o n c A g n i t A e a e l o R ) d t C o l n c r r a y h h t n a l o s r r e a h c p s h u e s o r p o o r s e - t s e a m o g e p t u h m d p v h e g g r i e a l p l o a o r t t s r t d c g r i p n r h e i u o i u a i - i t I i e e n n s i c I n s g h r e t e n I g a t n a e c n r y a f m a i . n s e o e r f i p t c f ( g e n u t g a h p r i e e s r i i a r i A a c s i s c o n p p t c t a p p r d r ( f e i n e a i o o t s e A h i o o s t e n o c c t w t c x F t n o e r s H h s d i a a i f f o e d c t ( T a R ) p H c r o o o r A k e B h f f n w o A a ) t a e i b i d R t d e o r . F o g A x r i s u e c r a l s u n e n f e s u b ) g t o e q . e l e n c n n s h u d r t e o o e a i f m w t t t f T i o p e o e i p n O r r l / o i n p A e u s i A y o f l o s m i c s e R r a b i l i t y . 1 0 0 e r r o r w h e n i t o n l y d e c l i n e d i n o n e p e r i o d o f t h e t h r e e p e r i o d d e c l i n e i n w h e a t f e e d i n g d u r i n g 1 9 7 9 - 8 1 . P e r h a p s t h e i n c l u s i o n o f a d u m m y v a r i a b l e d u r i n g t h a t p e r i o d c o u l d h a v e a n y s e r i o u s p r o b l e m s i n t h e c o n s u m p t i o n e q u a t i o n . 5 , 3 . g E g r f g g m a n c g R e s g l t s f o r A r g e n t i n a T h e A r g e n t i n e p r o d u c t i o n e q u a t i o n s f o r e c a s t v e r y w e l l c o n s i d e r i n g t h a t t h e e q u a t i o n s w e r e e s t i m a t e d u s i n g r e a l 5 . 2 ) . B o t h w h e a t h a r v e s t e d a r e a ( W H A A R ) a n d s o y b e a n h a r v e s t e d a r e a ( S H A A R ) h a v e a v e r y l o w n u m b e r o f t u r n i n g 1 9 8 3 . T h e c o n s u m p t i o n e q u a t i o n s s u f f e r e d f r o m t h e l a c k o f r e l e v a n t i n t e r n a l p r i c e d a t a . O f t h e s i x e s t i m a t e d c o n s u m p - e 5 1 u g n i f i c a n t i n t h e A r g e n t i n e g r a i n c o n s u m p t i o n e q u a t i o n s . I n a n O Q T ' . T T E 0 S 0 9 O 9 O Z 8 O O S O O 3 O . O E T C 0 O L T Z 9 T O O 0 . O O 0 O O “ ' ‘ ‘ ' ‘ ' ' ' ' ' ' ’ ' . ' ‘ ' ' . ' ' ' I ' O O O O O O 0 O O 0 0 O " O O " O O O 0 O l 9 T 3 ' T 9 O S ’ 9 Z L 0 8 C Z Z V S ' T . T 0 9 L L 1 0 T T O 0 O O U 0 0 T T O O n . O . Z 9 T Z T . o ' ’ ' ' ' ' ' ' ' ' ' ' ' . ' ' ' ‘ ' . ' ' I 3 0 O O 0 O 0 0 0 O O O O " O O " O 0 O O O l 3 T T ( ' § e Q ) [ u L | r q u e b s v S i l 0 E 3 E 5 ’ 0 9 0 E Z O G € 9 L E E O ' ‘ T 9 9 S 9 L G 4 0 G L E 0 Z O O Z 6 L L i " 0 ' ' ' ‘ ' ' ' ' ' ‘ ' ' ' ' ' ' ' ' ' ‘ ’ 0 s O 0 O " O 0 " O O O O O O 0 0 T T T T 0 9 G 9 G O 0 T T 0 O 0 O T . T Z s . ' ‘ ' ’ ' ' ' l ] 2 o ' ; 9 s O o I y Q a ' - s L t o 0 0 O O O " O O ° A z r t 1 q s r s e n s e q z e e s e y O O O 0 O O O O O O O O O O O O O O O O . e ' e a T T T T T T T . T T T T T T T T T T T T e T - s e I . I I I I I I I I I I I I I I I I u I I I q : y C " T 9 T 9 Z ’ Z S S T T T O Z 9 e S S Z ’ a t A e o z s L O G O 0 O € € ( 8 S 6 L C U ' G 8 9 ( O 0 8 n s t e ‘ ' T T T s 6 ‘ I ° ' ' ' ' ' e ' ' ‘ ' ' ' ' ' ' ‘ ' ' ' U ' ' ' ' ' n e T 6 6 T T 9 6 T T O S T E O Z Z 8 O 6 9 9 S 9 8 ' ‘ T I l I s b l l T T 9 Z 9 T T T T T Z L T 8 8 T T T 8 0 9 ’ o e u z y e e e s p o t - ° ' y 9 0 O C 0 S 0 e 6 2 0 L O 6 9 L 8 O Z O 6 e e 0 T 0 9 L s - ° ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ‘ ' ' ' t ' ' ' " ' ’ e V 6 9 9 6 4 9 T 6 Z V u O T l 6 8 0 u O S O O 6 6 O " O d Z Z 0 E T T S 8 8 € ’ T T T t e n s e s n p o e v e a n - a s b e s e o t e - s u o O ; t z s t e 0 e t d 3 - 0 x 0 3 . . . 1 ( 3 1 ’ L ’ O T G ' O 9 9 ' 0 9 6 ' 0 8 6 ‘ 0 T Z ' O 9 9 ' 0 B O ‘ O E L ‘ O ’ L ' O O O ' O T G ' O . . . " 0 9 ' 0 O O ' O 9 8 ' 0 0 9 ‘ 0 6 0 ' 0 O O ' O 9 " 0 O T ' O Z S ' O G T ' O 8 9 ' 0 ’ 6 ' 0 9 9 ' 0 E O ' O 8 9 ' 0 8 0 ‘ 0 0 " 0 O I ¢ € > 0 . 4 « O O ( D 3 ; 3 a g s a z 9 8 ' 0 Z Z ' O Z Z ' O G T ' O S T ’ O L T ' O 9 T ' O L O ’ O 9 0 ' 0 ’ T ' O € T ' 0 G O ' O ' O ' l l 9 0 ‘ 0 O Z ' O 6 0 ' 0 G O ' O 0 " 0 9 0 ' 0 9 0 ’ 0 . . . " 9 0 ' 0 O T I T O T I T O T I ’ O T I ’ O T I D O T I S ' D ' I l O T I T 3 6 0 ' 9 9 T 8 ’ 9 0 O ' Z S T O ' L E T O ‘ Z S Z O ' O S T T S ' Z € 6 ' O 6 6 ‘ 0 ' 0 ' " ' I ‘ T l ' 0 ' " 0 9 ' : ' 0 ' " - e - u L O ' T T L ' T 6 T “ ! G T ' C ' O ' T l 9 " ! . . . " z c ' t a e ' z ' O ' I I c c ' t L T ' Z ' 0 ' " 9 8 ' ! - e - u 9 T “ ! 2 2 ' ! - e ' u 8 0 ' ! 8 9 ' ! ' e - u e L ° ° 8 ' 3 3 3 0 4 . 0 “ V 3 3 0 5 , L ' O 8 ' 3 3 " : . . . " e u v a fl s . . . " I ' V H N O S . . . " s U V S N R S T S ' O 8 V 1 3 u d ' . ° ° s a v a a o s . . . " e u v a a fl s 8 9 . 0 U V O O O S 9 9 . 0 E V O O R B L 5 ° 0 I ' V H B 8 " 0 e e U V ‘ S . . . " e u v o a d s ‘ I ' T l ' 5 5 _ U " q u B 9 9 . 0 U V S ‘ J . . . " e U V S K J t L ° 0 U V U O J J 2 9 . 0 " V 0 3 1 1 . . . " e U V I O O J ( 9 ' 0 8 " “ ! 9 L ' O e e U V A J . . . " I U V O U C J " U T ' 3 5 - " ! ' 3 5 O L ' O I v a n “ . . . " e U V I K fl ’ 9 ' 0 3 . 0 0 1 “ 6 0 . 0 I ' G I J H . . . . I U V I O O H 3 3 . 0 I ' V H H 9 8 . 0 e e U V A H . . . " e U ' O ' d fl 1 " “ ! ' 3 T 3 ' T 1 . 1 8 " 9 7 3 . “ 1 T ‘ E h e i l i t y d o m e s t i c p o l i c y b u f f e r t h e d o m e s t i c c o n s u m e r f r o m 1 0 2 t h e h i g h U s p r o p o r t i o n s a n d l o w D u r b i n - W a t s o n s t a t i s t i c s f o r F F O D A R a n d W F E D A R w o u l d i n d i c a t e t h a t t h e r e i s a v a r i a b l e m i s s i n g f r o m t h e e q u a t i o n s w h i c h e s t i m a t e d t h e c o n s u m p t i o n o f g r a i n f o r s e c o n d a r y p u r p o s e s . P r i m a r y c o n s u m p t i o n o f g r a i n ( W F O D A R . F F E D A R . S M C O A R . a n d S O C O A R ) t e n d e d t o b e b e t t e r e q u a t i o n s f r o m b o t h a s t a t i s t i c a l a n d p e r f o r m a n c e s t a n d p o i n t . W i t h t h e e x c e p t i o n o f w r o o a a a l l e q u a t i o n s e x h i b i t e d g o o d D u r b i n - W a t s o n s t a t i s t i c s . f a i r a d j u s t e d R 2 s a n d a h i g h p r o p o r t i o n o f f o r e c a s t e r r o r a t t r i b u t a b l e t o r a n d o m f a c t o r s . H o w e v e r . t h e n u m b e r o f t u r n i n g p o i n t s e r r o r s a r e h i g h e n o u g h t o b e a c a u s e f o r c o n c e r n . w F O D A R r e p r e s e n t s a p r o b l e m e q u a t i o n f r o m a n e s t i m a t i o n s t a n d p o i n t . D e s p i t e a g o o d D u r b i n W a t s o n s t a t i s t i c . t h e e q u a t i o n e x h i b i t s a l o w a d j u s t e d R 2 a n d m i s s e d a s i g n i f i c a n t d o w n t u r n i n c o n s u m p t i o n i n t h e l a t e 1 9 6 0 s . I n i t i a l e s t i m a - t i o n a t t e m p t s i n c l u d e d r e a l i n c o m e a n d t h e r a t i o o f s u p p l y m e n t i o n e d a b o v e . R e a l i n c o m e w a s f o u n d t o h a v e a n u n e x p e c t e d s i g n a n d t h e s u p p l y r a t i o w a s i n s i g n i f i c a n t . T h e f i n a l e s t i m a t i o n u s e d r e a l b o r d e r p r i c e s a n d a t i m e t r e n d a s r i g h t h a n d s i d e v a r i a b l e s . I n t h e e x - p o s t f o r e c a s t . t h e e q u a t i o n m i s s e d a s i g n i f i - < = a n t d e c l i n e i n 1 9 7 6 a n d e x h i b i t s a h i g h d e g r e e o f v o l a t i l - : i t y i n 1 9 8 2 - 8 4 . i n a c t u a l i t y a p e r i o d o f s t a b l e f o o d C N D n s u m p t i o n . W h i l e i t i s p o s s i b l e t o e x p l a i n t h i s v a r i a t i o n ~ 1 1 ! 1 9 8 3 - 8 4 a s a r e s u l t c o a r s e g r a i n p r i c e v o l a t i l i t y . i n 1 0 3 p r i c e v o l a t i l i t y . A g a i n . t h i s p r o b l e m u n d e r s c o r e s t h e n e e d t o r e f o r m u l a t e c o n s u m p t i o n e q u a t i o n s u s i n g i n t e r n a l p r i c e s f o r d o m e s t i c c o n s u m p t i o n . C l a s s i f y i n g A r g e n t i n a a s a s u r p l u s e x p o r t i n g r e g i o n f o r c e s t h e e s t i m a t i o n o f e n d i n g s t o c k e q u a t i o n s . I f a s u r p l u s e x p o r t i n g r e g i o n i s p r e p a r e d t o o f f e r g r a i n a t b e l o w w o r l d m a r k e t p r i c e s . t h e l e v e l w i l l b e d e t e r m i n e d b y p o l i c y . . A t t e m p t s t o d e v e l o p a s e t o f p o l i c y p r o x i e s g e n e r a l l y r e s u l t e d i n e q u a t i o n s w h i c h w e r e t r e n d d e p e n d e n t . A s a r e s u l t . a f a i r l y h i g h n u m b e r o f t u r n i n g p o i n t e r r o r s w e r e p r e s e n t . S e c o n d l y . t h e l e v e l o f s t o c k s h e l d b y a s u r p l u s e x p o r t e r w i l l b e l o w . T h e v a r i a b i l i t y o f t h e s e s t o c k s g i v e n t h e i r s i z e l e d t o l a r g e p e r c e n t a g e e r r o r s . W i t h t h e e x c e p t i o n o f W F O D A R i n 1 9 8 3 . t h e e f f e c t s o f a l l o t h e r e r r o r s i n t h e A r g e n t i n e e q u a t i o n s d o n o t a p p e a r t o s p i l l o v e r i n t o t h e r e s i d u a l e x p o r t e q u a t i o n s ( W N E A R . F N E A R . S H E E A R S O E E A R ) . T h e M A P E s a r e a l l a b o u t 1 5 % a n d t h e c l o s e n e s s o f t h e R M S P E s w o u l d i n d i c a t e t h a t t h e r e a r e n o i n d i v i d u a l l a r g e e r r o r s . T h e r e a r e t w o o r l e s s t u r n i n g p o i n t e r r o r s i n t h e r e s i d u a l e x p o r t e q u a t i o n s . P M E L A R . t h e e q u a t i o n w h i c h d i v i d e s s o y m e a l e q u i v a l e n t e x p o r t s ( S M E E A R ) i n t o s o y m e a l a n d s o y o i l n e t e x p o r t s m a d e a l l t h e t u r n i n g p o i n t s d u r i n g t h e f o r e c a s t p e r i o d . A l t h o u g h i t t r a c k s w e l l d u r i n g t h e f i r s t f i v e y e a r s o f t h e f o r e c a s t . o v e r e s t i m a t i o n o f s o y b e a n p r o d u c t i o n i n t h e e a r l y 1 9 8 0 ’ s 1 0 4 i n c r e a s e s t h e n e g a t i v e e f f e c t s o y b e a n s u p p l y o n c r u s h i n g ' . T h i s w i d e n s t h e e r r o r i n P M E L A R t o a b o u t 2 3 p e r c e n t a g e p o i n t s i n 1 9 8 2 . P M E L A R t i m e s t h e r e s i d u a l e q u a t i o n S M E E A R d e t e r m i n e s t h e b r e a k d o w n o f s o y m e a l e q u i v a l e n t e x p o r t s i n t o t h e i r c o m p o n e n t p a r t s . T h e r e f o r e . t h e e r r o r i n P N E L A R u n d e r s t a t e s s o y m e a l a n d s o y o i l e x p o r t s a n d o v e r e s t i m a t e s s o y b e a n e x p o r t s . T h i s f e e d s b a c k i n t o t h e U . S . r e g i o n . a f f e c t i n g e x p o r t s . e n d i n g s t o c k s a n d h e n c e p r i c e . 5 . r f o r m a n c e R e s u t s f A u s t r a l i a T h e p e r f o r m a n c e o f A u s t r a l i a n e q u a t i o n s w a s h a m p e r e d b y t h e l a c k o f i n t e r n a l p r i c e s i n e s t i m a t i o n . S t i l l t h e r e g i o n a l e q u a t i o n s p e r f o r m e d q u i t e w e l l . w i t h e v e r y e q u a t i o n p e r f o r m i n g b e t t e r t h a n a n o - c h a n g e m o d e l . T h e m o s t i m p o r t a n t e q u a t i o n s f r o m t h e m o d e l ’ s s t a n d p o i n t . p r o d u c t i o n a n d e x p o r t s h a d l o w p e r c e n t a g e e r r o r s a n d r e l a t i v e l y f e w s e r i o u s t u r n i n g p o i n t e r r o r s ( T a b l e 5 . 3 ) . T h e y i e l d e q u a t i o n s ( W Y A U . F Y A U ) s u f f e r e d f r o m t h e r e s t r i c t i o n o f b e i n g a t i m e t r e n d i n a n a r e a w h i c h h a s a g r e a t d e a l o f v a r i a b i l i t y . U n d e r n o r m a l c o n d i t i o n s . a n e g a t i v e a d j u s t e d R 2 w o u l d n o t b e a c c e p t a b l e f o r a n y e q u a t i o n . H o w e v e r a l m o s t a l l o f t h e y i e l d v a r i a b i l i t y i s d u e t o w e a t h e r . A s m e n t i o n e d i n C h a p t e r I I I . a n u m b e r o f o t h e r s t r u c t u r e s w e r e t r i e d b u t w e r e n o m o r e s u c c e s s f u l . * A s n o t e d i n C h a p t e r I I I . s o y b e a n s u p p l y w i l l h a v e a n e g a t i v e c o e f f i c i e n t i n t h e P M E A L e q u a t i o n b e c a u s e i n c r e a s e d s u p p l i e s o f b e a n s c a n c h o k e e x i s t i n g c r u s h c a p a c i t y . ' c fl " " r fi 1 4 1 . . 6 5 0 0 8 3 2 0 5 4 8 2 2 7 5 2 2 9 9 8 9 9 8 9 a 8 a . . . . . . . . . . . . . . . . 0 0 0 0 0 0 0 0 0 0 0 0 n 0 n 0 1 4 . 9 6 8 2 1 1 0 a 1 1 4 2 5 . . . . . . . . 1 0 0 0 0 0 n 0 0 ' " " l 8 2 4 4 3 2 8 . 6 7 0 0 0 5 2 . . . . . . . . . 0 0 0 n 0 0 0 0 U ' - " T E a ( i U l a r t s u 8 9 0 8 8 3 2 . 3 1 4 2 9 3 8 a . . . . . . . . 0 n 1 1 1 0 0 0 . y t i l i b a A 3 3 8 . 7 6 9 7 0 7 0 9 2 i 1 . 1 ) u 0 0 0 0 0 1 0 1 0 1 0 r 1 2 1 a . . r l ) . . . . . . . . . . . . . . . a 3 o f 0 I 0 0 0 0 0 0 0 0 0 0 0 v 0 0 n . f 5 s e c l i b t a s T i t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a C . . a 1 1 1 1 1 1 . 1 1 1 1 1 1 . 1 1 t I n / / / / / / I D / / I / / / r e h t a e w e t S 1 2 3 3 3 1 1 2 4 5 5 4 2 4 a y u c m a i r s l u c c A o t s d l . . 9 9 8 6 6 1 1 e . . . . . . . . i ) 0 0 I 8 7 0 2 0 y W 1 1 1 1 2 3 2 l a u t c a . 1 . . 4 0 2 3 n d a 5 o e a a 7 0 5 6 . . . . . . . . i s n 2 2 n 1 1 n 1 t u a u t q s E a c a 5 5 3 4 2 9 e . . . . l . 1 1 4 8 6 8 8 r 9 4 a . a 2 6 5 a a a . . . . . . . . . . . . . . o n 0 0 0 n 0 n n 0 0 n 0 0 n 0 f o o e O - s i ' ' ' ' i P n U U U U ' " U U “ ' U U - f A A A x U A A U U A ' U A A U U e U i O A N D D A A O A N U D D A A D E A R A O E S E R A O A E E S O O P Y H C F F N E P H C F N E Y F W W F W W W F W W F F F F F F W W ' " t t i s n o E u a t i o n S t a t i s t i c s T h e i l S t a t i s t i c s P e r f o r m a n c e S t a t i s t i c s t h a t n . a . 2 . 7 9 2 . 5 9 n . a . 2 . 1 7 1 . 9 6 n . a . 1 . 2 2 6 . 0 n . a . 6 . 0 1 3 . 3 1 9 . 1 1 2 . 2 1 0 . 2 2 8 . 4 6 . 7 n . a . 6 . 7 1 5 . 3 2 4 . 1 1 7 . 5 1 2 . 0 4 1 . 4 1 2 . 3 D . . . 1 2 . 3 2 4 . 7 2 7 . 3 2 2 . 9 2 9 . 8 3 9 . 3 0 . 1 6 n . a . 0 . 9 8 0 . 5 2 0 . 5 8 0 . 5 8 0 . 4 3 0 . 5 7 0 . 0 2 n . a . 0 . 0 4 0 . 0 6 0 . 0 7 0 . 0 0 0 . 0 2 0 . 0 0 0 . 0 0 D . . . 0 . 1 4 0 . 0 1 0 . 0 3 0 . 0 5 0 . 1 5 0 . 0 2 1 0 5 1 0 6 T h e w h e a t h a r v e s t e d a r e a e q u a t i o n ( W H A A U ) e x h i b i t e d b e t t e r e r r o r s t a t i s t i c s t h a n t h o s e f o r c o a r s e g r a i n a r e a ( F H A A R ) d e s p i t e l o w e r e q u a t i o n s t a t i s t i c s a n d a g r e a t e r p e r c e n t a g e o f b i a s e r r o r . T h e p o o l e d p r i c e p o l i c i e s o f t h e A u s t r a l i a n W h e a t B o a r d d r i v e a w e d g e b e t w e e n w o r l d a n d p r o d u c e r p r i c e s . T h e e q u a t i o n s u s e r e a l b o r d e r p r i c e s t o d r i v e p r o d u c e r e x p e c t a t i o n s : t h i s i s p r o b a b l y t h e s o u r c e o f t h e b i a s . L a g g e d w h e a t r e v e n u e . a l t h o u g h c o r r e c t l y s i g n e d w a s n o t s i g n i f i c a n t i n W H A A U . A l t h o u g h F H A A U s u f f e r s f r o m f o u r T P E s . o n l y t w o h a v e l a r g e e n o u g h t o s p i l l o v e r i n t o c o a r s e g r a i n p r o d u c t i o n ( F P R O A U ) . I n n e i t h e r c a s e w a s t h e s p i l l o v e r e f f e c t e n o u g h t o c r e a t e o v e r - e s t i m a t i o n i n c o a r s e g r a i n e x p o r t s . A s i n A r g e n t i n a . s i g n i f i c a n t p r o b l e m s e x i s t i n a t t e m p t — i n g t o m o d e l d o m e s t i c g r a i n d e m a n d . R e a l i n c o m e w a s a n i m p o r t a n t f a c t o r ( A p p e n d i x C ) b u t u s i n g d o m e s t i c s u p p l i e s a s p r o x y f o r a v a i l a b i l i t y o f g r a i n o n t h e d o m e s t i c m a r k e t w a s i n s u f f i c i e n t t o c a p t u r e t h e v a r i a b i l i t y o f d e m a n d . S i n c e ' t h e m a r k e t i n g b o a r d i n s u r e s s t a b l e d o m e s t i c s u p p l i e s . a g o o d ( S e a l o f t h e v a r i a b i l i t y o f f e e d d e m a n d i s p r o b a b l y n o t t h e r e s u l t o f s u p p l y s h o c k s a s m u c h a s t h e r e s u l t o f c h a n g e s i n a n i m a l n u m b e r s . I n a c o u n t r y w h e r e m u c h o f t h e l i v e s t o c k i s [ D z r o d u c e d f o r e x p o r t . r e a l i n c o m e w i l l n o t b e a s g o o d a p r o x y 1 3 c m r c h a n g e s i n l i v e s t o c k p r o d u c t i o n . O t h e r v a r i a b l e s s u c h G l e e t h e w o r l d p r i c e o f w o o l w i l l h a v e a l a r g e e f f e c t o n s t o c k i 3 ! ? o d u c t i o n : a s w i l l n o n - e c o n o m i c v a r i a b l e s s u c h a s d r o u g h t . T h e p e r f o r m a n c e o f t h e w h e a t e x p o r t e q u a t i o n w a s n o t 1 0 7 g r e a t l y a f f e c t e d b y e r r o r s p i l l o v e r f r o m t h e e s t i m a t e d e q u a t i o n s . W N E A U h a d l o w p e r c e n t a g e e r r o r s a n d o n e t u r n i n g p o i n t e r r o r . A f a i r p r o p o r t i o n o f f o r e c a s t e r r o r c a n b e t r a c e d t o b i a s e r r o r i n W H A A U . C o a r s e g r a i n e x p o r t s ( F N E A U ) s u f f e r e d m o r e f r o m v a r i a b i l i t y e r r o r t h a n f r o m b i a s . A l t h o u g h s m a l l i n a b s o l u t e s i z e a n d a t t r i b u t a b l e t o r a n d o m f a c t o r s . t h e e r r o r s w e r e l a r g e r e l a t i v e t o t h e s i z e o f A u s t r a l i a n e x p o r t s . T h i s r e s u l t e d i n a h i g h M A P E f o r F N E A U b u t i s n o t e s p e c i a l l y s e r i o u s f r o m t h e p e r s p e c t i v e o f t h e e n t i r e m o d e l . 5 , 3 , 4 P g r f g g m a n g g R g s g l g g f o r B r a z i l A l l b u t t h r e e B r a z i l i a n e q u a t i o n s p e r f o r m e d b e t t e r t h a n a n o - c h a n g e m o d e l . T h e m o s t s e r i o u s p r o b l e m s o c c u r r e d i n c o a r s e g r a i n s w h e r e o v e r e s t i m a t i o n o f p r o d u c t i o n l e d t o i n c r e a s e s i n e n d i n g s t o c k s a n d a s i g n i f i c a n t d e c r e a s e i n i m p o r t s ( T a b l e 5 . 4 ) . W h e a t h a r v e s t e d a r e a ( W H A B R ) i s o n e o f t h e f e w h a r - v e s t e d a r e a e q u a t i o n s w i t h a M A P S o f m o r e t h a n 1 0 % . M u c h o f t h i s e r r o r c a n b e t r a c e d t o s t r u c t u r a l f a c t o r s . A l t h o u g h t h e e q u a t i o n s h o w s t h e c o r r e c t s i g n s f o r b o t h o w n a n d c o m p e t i n g l a g g e d r e v e n u e s . l a g g e d w h e a t r e v e n u e i s J u s t b a r e l y s i g n i f i c a n t w h i l e c o a r s e g r a i n r e v e n u e i s n o t s i g n i f i c a n t ( A p p e n d i x D ) a t a l l . O f t h e 3 t u r n i n g T P E s o n l y o n e . 1 9 7 9 . i s s i g n i f i c a n t e n o u g h t o r e s u l t i n a l a r g e u n d e r e s t i m a t i o n o f w h e a t p r o d u c t i o n . E v e n t h o u g h d o m e s t i c s u p p l y i s a r i g h t - h a n d s i d e v a r i a b l e i n t h e w h e a t i m p o r t e q u a t i o n t h e u n d e r - 4 9 7 9 6 5 9 0 0 0 . . 8 . 8 4 8 1 1 7 7 8 2 5 8 0 8 6 4 6 6 2 8 9 7 0 . a 8 . . . . . . . . . . . . . . . I 8 9 9 9 6 9 9 8 6 8 6 8 . . . . . . . . . . . . 0 0 0 0 0 0 D 0 0 0 n 1 0 I 0 0 0 0 0 0 0 0 0 0 0 0 1 3 . 6 7 0 5 . 1 2 7 0 4 6 1 1 1 2 6 2 1 0 2 0 0 1 . . a 0 0 0 0 0 1 0 0 1 0 1 2 . . . . . ) . . . . . . . . . . . . . . 0 I 0 0 0 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 1 1 . 7 2 2 1 1 7 7 4 0 6 8 1 0 0 0 1 0 1 0 0 1 1 2 0 . . . . . . . . . . . . . . . I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 8 4 7 4 4 9 4 7 0 2 . . 8 6 0 3 9 8 8 7 7 8 9 3 2 . 7 8 8 9 a 0 0 7 6 a 7 8 8 2 7 8 4 9 a 2 6 7 3 3 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 0 n 0 0 0 1 1 1 1 1 n 0 0 n 0 0 0 0 0 0 0 0 0 0 0 0 . y t i l i b a i 2 . 3 2 4 7 1 1 0 0 3 . . . . . . . I 0 0 0 I 0 0 2 6 2 3 3 7 6 6 5 9 7 8 5 r . 0 0 0 0 0 0 0 0 1 a 2 0 0 1 a . . . . . . . . . . . v . . . 0 n 0 0 0 0 0 0 0 0 0 0 0 0 C u s a s c i t s i t ! a u t S l i ) e 2 h ( T 0 l i z a r B r o f 4 . s 5 c i e t l s b i r e h t a e w e t a l u m i a t s T a c t i E . 0 0 0 0 0 a 1 1 1 1 . 1 I I / n I / 4 5 5 4 3 S t P s T y i c t a a r t u S E c P c e S A c I n R a m r o f s r p e a P n s c i t s i . D t O a D t S n o i t a 2 u R q E . a n i a £ § _ ' ' . . 7 7 3 a 7 7 9 6 a 1 1 4 8 8 0 s . . . . . . . . . . . . . . . 5 5 0 n 1 1 1 4 n 4 2 6 5 8 0 9 9 4 o 1 1 1 2 6 t 1 . 8 8 0 0 0 a . . . . . . 9 9 n 8 8 4 7 3 1 1 s d l e 5 i 1 . y . 0 4 2 4 l a u t c a n d s . 0 4 6 6 . o e 8 9 8 5 . 6 . 4 8 0 . . . ‘ a a 7 4 1 5 3 2 7 4 6 . . . a a 3 6 3 i s s . . . . . . . . . . . . . . ) ) . u . . t . . " n 2 1 1 1 1 1 1 n 1 1 1 1 I I n n 2 n a a 2 6 2 . 1 x s - a l 6 8 8 a 7 . . . . . l I 0 0 n 0 0 s a s £ _ n u t q s E a c l e a r n o o f i t t i s n o i P “ ' ' ' ' ' ' f - R R R R a " e " R 3 R R R R " R R R R ” e x B R R B R B R B R R s a B 8 ' B B R R E R B B B B B B D R R O B N B B O B N B B h t O 0 R E E E E S S B O L E B B B R A O I S R A O I S x n R 0 8 A C E E E N N E E E S P H C N E a P H C N E s Y Y P Y H 3 O H O H O M H H O E W W W W W W Q F F F F F F fi S 8 S 8 S S P S ' S S S " S S S fi n e s t n . a . 0 . 1 1 0 . 7 2 n . a . 0 . 7 1 0 . 4 1 " 0 . . 0 . 5 3 0 . 9 7 0 . 9 5 0 . 9 7 n . a . n . a . 0 . 8 4 n . a . n . a . n . a . 0 . 9 4 0 . 8 1 0 . 7 7 n . a . 2 . 9 5 2 . 4 5 n . a . 1 . 8 1 2 . 1 7 n N : 4 d 1 9 . 2 n . a . 1 9 . 2 8 . 3 1 2 . 2 4 5 . 5 a a F . M I M G ' O O N Q O O H 0 Q 0 ( 0 6 0 0 5 0 9 0 3 0 1 0 1 4 0 d 2 1 . 5 n . a . 2 1 . 5 8 . 9 1 5 . 3 5 6 . 7 2 9 1 . 0 2 2 4 . 0 1 6 . 2 2 4 . 2 6 6 . 6 3 / 1 0 " s ' s 5 I 1 0 4 / 1 0 5 I 1 0 3 / 1 0 1 I 1 0 n . a . 3 / 1 0 1 1 1 0 2 / 1 0 0 / 1 0 0 / 1 0 1 I 1 0 1 / 1 0 3 / 1 0 1 I 1 0 2 / 1 0 4 / 1 0 3 / 1 0 " ( 1 ) 0 . 0 8 n . a . 0 . 0 8 0 . 0 5 0 . 3 6 0 . 3 2 0 . 1 6 n . a . 0 . 2 5 0 0 0 ‘ 0 . 3 6 0 . 4 1 0 . 0 4 n . a . 0 . 0 4 0 . 0 4 0 . 0 0 0 . 1 5 0 . 0 0 n . a . 0 . 2 6 0 . 2 7 0 . 0 8 0 . 3 2 I C M B s i g n i f i c a n t l y i n c r e a s e c o a r s e g r a i n i m p o r t s ( F N I B R ) . T h e 1 0 9 e s t i m a t a t i o n d i d n o t r a i s e i m p o r t s . I n s t e a d t h e r e w a s a d e c l i n e i n W E S B R a n d t h e r e s i d u a l W C O N B R . T h e o t h e r m a j o r e r r o r i n W H A B R i s o c c u r r e d i n 1 9 8 3 w h e n a n o v e r e s t i m a t i o n i n t h e 1 9 8 2 w h e a t p r i c e s p i l l e d o v e r i n t o B r a z i l i a n w h e a t r e v e n u e . E v e n t h o u g h W H A B R m a d e t h e t u r n i n g p o i n t . a r e a d i d n o t d e c r e a s e a s m u c h a s t h e a c t u a l v a l u e . I n t h i s c a s e t h e e r r o r w a s s m a l l i n a b s o l u t e t e r m s b u t l a r g e r e l a t i v e t o t h e a m o u n t o f w h e a t a r e a . H e n c e t h e l a r g e p e r c e n t a g e e r r o r . O n e w o u l d f i r s t t e n d t o s u s p e c t t h a t t h e u s e o f r e a l b o r d e r p r i c e s i s r e s p o n s i b l e f o r t h e l o w c o r r e l a t i o n b e t w e e n t h e r e v e n u e s a n d h a r v e s t e d a r e a . H o w e v e r . n e i t h e r c o a r s e g r a i n h a r v e s t e d a r e a ( F H A B R ) n o r s o y b e a n h a r v e s t e d a r e a ( S H A B R ) s u f f e r f r o m h i g h l e v e l s o f b i a s e r r o r . T h e r e f o r e . i t w o u l d s e e m t h a t W H A B R i s m o s t l i k e l y s u f f e r i n g f r o m a m i s s i n g v a r i a b l e . F H A B R a n d S H A B R h a v e b e t t e r p e r f o r m a n c e s t a t i s t i c s a l t h o u g h t h e D u r b i n - W a t s o n f o r F H A B R i s i n t h e i n d e t e r m i n a n t r e g i o n a n d t h e D u r b i n - h f o r S H A B R i n d i c a t e s t h e p r e s e n c e o f s e r i a l c o r r e l a t i o n . T h e T h e i l s t a t i s t i c s f o r b o t h i n d i c a t e t h a t t h e l a r g e s t p r o p o r t i o n o f f o r e c a s t e r r o r i s t h e r e s u l t o f r a n d o m f a c t o r s . H o w e v e r . a f a i r p r o p o r t i o n o f f o r e c a s t e r r o r f o r F H A B R i s t h e r e s u l t o f v a r i a n c e e r r o r : t h i s i s n o t i c e a b l e i n t h e 2 T P E s a n d t h e m o r e s i g n i f i c a n t o v e r - e s t i m a t i o n i n 1 9 8 2 . I n 1 9 8 0 . t h e t u r n i n g p o i n t e r r o r i s n o t e n o u g h t o e q u a t i o n s . G i v e n t h e l o w e r r o r s i n c o n s u m p t i o n b o t h s o y m e a l 1 1 0 e r r o r s p i l l s o v e r i n t o t h e r e s i d u a l c o n s u m p t i o n e q u a t i o n . H o w e v e r . i n 1 9 8 2 F H A B R m a k e s t h e t u r n i n g p o i n t b u t f a i l s t o d e c r e a s e a r e a a s m u c h i n h i s t o r y . A g a i n . t h e i n c r e a s e d s u p p l y s p i l l s o v e r i n t o b o t h c o n s u m p t i o n a n d e n d i n g s t o c k s . U n l i k e t h e 1 9 8 0 T P E . i n 1 9 8 3 F H A B R i s o n t a r g e t . ' S u p p l y i s h i g h e n o u g h t o t u r n B r a z i l i n t o a n e x p o r t e r o f c o a r s e g r a i n s . I n t h e f o l l o w i n g y e a r ( 1 9 8 4 ) t h e c o a r s e g r a i n p r i c e s h o c k o f 1 9 8 3 i n c r e a s e s F H A B R w h e n i n s h o u l d f a l l a n d B r a z i l i a n c o a r s e g r a i n e x p o r t s i n c r e a s e f u r t h e r . T h e r e f o r e . e v e n t h o u g h t h e m a j o r i t y o f t h e e r r o r i n F N I B R i s r a n d o m t h e r e i s s i g n i f i c a n t s p i l l o v e r i n t o t h e r e s t o f t h e m o d e l . W h e a t n e t i m p o r t s ( W N I B R ) h a s l o w p e r c e n t a g e e r r o r s b u t s u f f e r s f r o m a h i g h n u m b e r o f t u r n i n g p o i n t e r r o r s a n d s o m e b i a s e r r o r . M u c h o f t h i s e r r o r c a n b e t r a c e d t o t h e i n c l u s i o n o f r e a l w h e a t p r i c e s w h i c h a l t h o u g h c o r r e c t l y s i g n e d i s i n s i g n i f i c a n t . O n l y o n e t u r n i n g p o i n t e r r o r r e s u l t s i n a n e r r o r o f m o r e t h a n 1 m i l l i o n t o n s . T h e e q u a t i o n s e s t i m a t i n g c o n s u m p t i o n o f s o y m e a l e q u i v a l e n t ( S M C O B R ) a n d s o y o i l e q u i v a l e n t ( S O C O B R ) a r e t h e b e s t e q u a t i o n s i n t h e r e g i o n . B o t h e q u a t i o n s h a v e h i g h a d j u s t e d R 2 s a n d s h o w n o s i g n s o f s e r i a l c o r r e l a t i o n . I n t h e e x - p o s t f o r e c a s t b o t h e q u a t i o n s h a v e a l o w n u m b e r o f t u r n i n g p o i n t e r r o r s a n d t h e T h e i l s t a t i s t i c s i n d i c a t e t h a t m o r e t h a n 9 0 % o f t h e f o r e c a s t e r r o r w a s c a u s e d b y r a n d o m f a c t o r s . S o y b e a n c o m p l e x e x p o r t s a r e e s t i m a t e d a s r e s i d u a l o c n r l u y s 7 * h f T o P D r E u s r o i i a g h n l v a e 1 n 9 d s 8 e t 1 o r r h i B e u a r s z e i l i m d p a u l c i t c u a l i s n a a m t l e i l a o y l e s i w f p s o o r r t t h t e e h d n m a r o x e y p s b o t e r o n f s e d . a t s e e t t h o l l l e q u i v a l e n t e x p o r t s ( S H E E B R ) a n d s o y o i l e q u i v a l e n t e x p o r t s ( S O E E B R ) e x h i b i t s m a l l e r r o r s a n d a l o w n u m b e r o f t u r n i n g p o i n t e r r o r s . T h e h i g h e r r o r f o r s o y b e a n e x p o r t s ( S N E B R ) a n d e n d i n g s t o c k s ( S E S B R ) w a s t h e r e s u l t o f s p i l l o v e r f r o m S H A B R . T h e t w o l a r g e s t e r r o r s i n S H A B R o c c u r r e d i n 1 9 8 1 a n d 1 9 8 2 w h e n t h e e s t i m a t e m i s s e d t w o o f i t s t h r e e t u r n i n g p o i n t s a n d o v e r s h o t t h e e s t i m a t e d v a l u e s b y 7 . 6 % a n d 9 . 5 % . T h e i n c r e a s e i n d o m e s t i c s u p p l y i n 1 9 8 1 a n d l o w e r e d t h e p e r c e n t a g e o f s o y m e a l e q u i v a l e n t e x p o r t e d a s m e a l * a n d i n c r e a s e d s o y b e a n e n d i n g s t o c k s . T h e o v e r e s t i m a t i o n o f s o y b e a n p r o d u c t i o n a n d b e g i n n i n g s t o c k s i n 1 9 8 2 r e s u l t e d i n a s i m i l a r o v e r e s t i m a t i o n o f s o y b e a n e x p o r t s i n 1 9 8 2 . E s t i m a t i o n o f e n d i n g s t o c k s a s a f u n c t i o n o f p o l i c y r e q u i r e d p o l i c y p r o x i e s . T h e m o s t c o m m o n f o r m u l a t i o n i n c l u d e d s u p p l y . W h i l e s u p p l y w a s s i g n i f i c a n t i n e s t i m a - t i o n . t h e s p i l l o v e r f r o m e r r o r s i n h a r v e s t e d a r e a r e s u l t e d i n l a r g e e r r o r s i n t h e l e v e l s o f e n d i n g s t o c k s . H o w e v e r . a s m e n t i o n e d e a r l i e r . t h e e f f e c t s o f o v e r - e s t i m a t i o n s o f s t o c k l e v e l s w e r e o n l y s i g n i f i c a n t f o r t w o p e r i o d s o f c o a r s e g r a i n i m p o r t s a n d t w o p e r i o d s o f s o y b e a n i m p o r t s . 5 . 3 . 5 E g g f g g m g n g e R g g g l t g j g r C a n a d a T h e e q u a t i o n s f o r C a n a d a p e r f o r m e d r e a s o n a b l y w e l l ( T a b l e 5 . 5 ) . D e s p i t e a h i g h n u m b e r o f t u r n i n g p o i n t e r r o r s . 9 9 L 9 9 9 L . 8 6 9 L b ' T T a 6 6 L L 9 L . 9 9 9 L 9 9 0 O L l l ' ' ' ' ' ' . ' ' ' ' ‘ ' ' ' ‘ 0 O O O 0 " 0 0 0 0 " O O 0 O 0 s O Z Z T . O Z Z O Z € T O e O O " ' ’ ' ' ‘ ' ' 0 ' ' ' ' ‘ ' ' ‘ Z Z Z P T T E O E E 9 E 0 T T ' c O O O " O O O O O O O O O u O O o r n - 1 O T T O 6 Z O L O S O O 0 T T ’ 1 O O 0 O l Z . T O O O T T Z Z O 9 0 “ ' ' ' ' ' ’ ' . ' ' ' ‘ ' ' ' ' 1 O O 0 O " O O O O O O O O O O " : t r ( - 9 L L 6 G O i L O ’ 9 ’ O 6 0 0 ° u 9 9 L O O L n Z . 9 6 9 O L 6 0 e e ' ' ' i ! ' ' ' ' . ' ' ' ' ' ‘ ' ' p O O O T " T 0 T T 0 O u ! 0 O 0 e u e o . A q t t t q . g s 9 6 G L 8 9 9 9 9 B 9 G 8 9 r ( 0 ° o 0 O 0 0 O 0 T . 0 0 0 0 O 0 T T j e } ' ' ' ' ' ' M ' . ' ' ‘ ' p ' ' ' ' 9 ) O 0 0 O 0 0 " 0 h 0 0 0 O 0 O O u ' e 9 s t O u T a Q r P i m L e e x s q a e e s s t O O O O O O e e O O O O O O O O 0 - ; a T T ° T T T T T T T T T t T T - e s I u I I I I I I I l I I I I I u i A Z Z S ’ V t S t O Z S L ’ E T b a s s i e e t n a n s S 9 6 9 9 L Z e T T T e T T 6 9 E t - - o ' d ' ' ' ' ' ' - ' ' e ' - ' ’ ' ' o Z e S u L 8 9 Z 6 9 T u T 9 9 O O 9 y T o H Z T ! T T Z T Z 8 u H e a 1 0 3 3 ° - 9 5 9 6 6 O 0 L L 0 8 O e e T T e ' ‘ ' ' ' - ' ' ' ' ' ' ' ' ' t ° o : s p t e 6 6 9 6 T u O Z Z L 9 9 9 V A 9 u d ! T T T Z Z c o r n - 1 1 0 1 9 0 0 1 1 9 t e n a s e a p c e t e u n v n a b e a e o t e o i u o o ; r u q t e u o r d ; - - x a 3 . . . l J l Z - e - u O t ' t L E ' I Z T ' T - e - u 6 8 ' ! Q L ‘ t ° e - u - s - u 9 0 ' ! 9 9 ' ! 0 8 ' ! - e - u O G ’ Z O O ' Z ' 9 ' u . . . " s V O S B J 9 6 . 0 V O S N J 9 8 . 0 V 0 0 0 5 ! Z L ' O V O G B J J . . . " s V O N O O J 1 9 . 0 V O V H J $ 9 . 0 s e ' O ‘ J . . . " s V O O U d J 1 0 1 1 3 5 — 3 9 3 3 3 5 . . . “ . V o s a fl 0 9 . 0 V O S N H 9 3 . 0 V 0 0 0 3 " t € ° 0 V 0 0 3 3 “ . . . " s V O N O O M 9 L ° 0 V O ' H G L 9 ' 0 e s V O A M . . . " e v o o a d fl 3 " “ 3 A s d i s c u s s e d i n C h a p t e r I I I . C a n a d i a n e x p o r t s a r e 1 1 3 m o d e l . B o t h w h e a t h a r v e s t e d a r e a ( W H A C A ) a n d c o a r s e g r a i n h a r v e s t e d a r e a h a v e 0 ( 2 ) s t a t i s t i c s w h i c h i n d i c a t e t h a t t h e y a r e i n f e r i o r t o a n o - c h a n g e m o d e l . H o w e v e r . w h e n c o u p l e d w i t h a c t u a l y i e l d s t h e s t a t i s t i c s i m p r o v e d r a m a t i c a l l y . T h e m a j o r i t y o f e r r o r c a n b e t r a c e d r a n d o m f a c t o r s . T h e l a r g e s t e r r o r o c c u r r e d i n 1 9 8 4 w h e n t h e p r i c e s h o c k o f 1 9 8 3 r a i s e d c o a r s e g r a i n r e v e n u e p e r h e c t a r e r e l a t i v e t o w h e a t r e v e n u e a n d e n c o u r a g e d a n e x p a n s i o n o f c o a r s e g r a i n a r e a a t t h e e x p e n s e o f w h e a t a r e a . W h e a t c o n s u m p t i o n . b o t h f o r f e e d ( W F E D C A ) a n d f o r f o o d a n d r e s i d u a l c o n s u m p t i o n ( W P O D C A ) a r e s u p e r i o r t o n o - c h a n g e m o d e l s . C o a r s e g r a i n c o n s u m p t i o n f a i r s l e s s w e l l : b o t h f o o d ( F F O D C A ) a n d f e e d c o n s u m p t i o n ( F F E D C A ) a r e i n f e r i o r t o n o - c h a n g e m o d e l s . B o t h e q u a t i o n s h a v e T h i e l s t a t i s t i c s w h i c h i n d i c a t e t h e p r e s e n c e o f b i a s . T h e e q u a t i o n s a r e s p e c i f i e d s o l e l y a s f u n c t i o n s o f c o a r s e g r a i n s u p p l i e s ( F F E D C A ) o r i n c o m e a n d c o a r s e g r a i n s u p p l y ( F F O D C A ) . a t t e m p t s t o i n c l u d e p r i c e s o f o w n o r c o m p e t i n g c o m m o d i t i e s w e r e i n e f f e c t i v e ( A p p e n d i x E ) . T h i s c o u l d b e a r e s u l t o f t h e t w o t i e r e d p r i c e p o l i c y a d m i n i s t e r e d b y t h e C a n a d i a n W h e a t B o a r d . A t e s t c o u l d b e m a d e b y u s i n g t h e i n t e r n a l p r i c e i n s t e a d o f t h e w o r l d p r i c e a s a r i g h t - h a n d s i d e v a r i a b l e . T h e c o a r s e g r a i n c o n s u m p t i o n e q u a t i o n s t e n d t o f o l l o w e r r o r s i n p r o d u c t i o n a n d e n d i n g s t o c k s v e r y c l o s e l y . T h e r e s u l t i s a l a r g e n u m b e r o f m i s s e d t u r n i n g p o i n t s . 1 1 4 f u n c t i o n o f s u p p l y a n d t h e s i z e o f t h e r e s i d u a l p o o l o f i m p o r t d e m a n d n o t f i l l e d b y t h e s u r p l u s e x p o r t i n g r e g i o n s . T h i s r e s u l t s i n e r r o r s w h i c h a r e t r a n s f e r e d t h r o u g h t h e m o d e l f r o m o t h e r e q u a t i o n s . A l m o s t n o b i a s e x i s t s i n e i t h e r t h e w h e a t e x p o r t e q u a t i o n ( W N E C A ) o r t h e c o a r s e g r a i n e x p o r t e q u a t i o n ( F N E C A ) . T h e r e f o r e . t h e e r r o r c a n b e t r a c e d t o v a r i a b i l i t y a n d r a n d o m f a c t o r s a s o p p o s e d t o p o o r l y s p e c i f i e d e q u a t i o n s . C a n a d i a n e n d i n g s t o c k r e p r e s e n t t h e e q u a t i o n s w h i c h c l e a r t h e r e g i o n . A s w i t h t h e e x p o r t e q u a t i o n s . o n l y a s m a l l p e r c e n t a g e o f e r r o r c a n b e f o u n d a t t r i b u t a b l e t o b i a s . V a r i a b i l i t y i s a s i g n i f i c a n t p r o b l e m d u e t o v a r i a b i l i t y i n w h e a t c o n s u m p t i o n a n d c o a r s e g r a i n i m p o r t s . 5 . 3 . 6 P g r f g g m g n c e R g g u l t g f o r t h e D e v e l o p e g M a r k e t s H o d e l i n g t h e p o l i c y d r i v e n d e v e l o p e d m a r k e t e c o n o m i e s p r e s e n t e d a n u m b e r o f p r o b l e m s . N o n e t h e l e s s . t h e m a j o r i t y o f t h e e q u a t i o n s r e s p o n d e d w e l l i n t h e e x - p o s t f o r e c a s t ( T a b l e 5 . 6 ) . H o w e v e r . s e v e r a l p r o b l e m s c a n b e n o t e d . p r i m a r i l y i n t h e s o y b e a n c o m p l e x . W h e a t h a r v e s t e d a r e a ( W H A D H ) a n d c o a r s e g r a i n a r e a ( F H A D M ) w e r e o r i g i n a l l y e s t i m a t e d a s N e r l o v i a n l a g s u s i n g t h e s a m e s t r u c t u r e a s t h e o t h e r r e g i o n s . H o w e v e r . a s a r e s u l t o f d i s c u s s i o n s c o n c e r n i n g a p r o p o s a l f o r a E u r o p e a n t r a d e l i b e r a l i z a t i o n s c e n a r i o 4 i t w a s d e t e r m i n e d t h a t a m o d i f i c a t i o n o f t h e e x i s t i n g s t r u c t u r e w o u l d b e a p p r o p r i a t e . A s a r e s u l t o f t h e C o m m o n A g r i c u l t u r a l P o l i c y m o v e m e n t i n t o w h e a t a n d c o a r s e g r a i n s h a s b e e n a t t h e e x p e n s e o f Z 9 G 9 ’ 0 O 6 L 9 . " ' ’ ' ' . O 0 0 " O 0 Z Z E 9 E ' O 8 O Z T e ' ' ' ' ’ ' O 0 O O u O 8 8 0 0 ' ' 0 0 = 5 T 1 3 1 1 ' Q B e z T e T x 6 ‘ 9 8 V S ( ’ ' 9 9 9 O G 0 9 9 6 9 6 S 9 L 6 9 ° ' ' T s T 9 9 O q L 8 9 9 E O 9 Z E 9 9 9 0 9 6 9 L B G e 0 0 ” L - s l ' ' ' ’ ' ' ' ' ' ' ' ‘ ' ' ' ' ' ' ' ' ‘ ' ' ' ' ' ' u T O 0 0 T T u 0 0 O 0 0 0 0 “ O 0 O 0 0 0 O O 0 O " O ? A a r t t q s p e d o t e s 9 e O O O u O O 0 O 0 O O 0 0 " 0 0 0 0 O O 0 0 O 0 0 O a " 0 T T T ' Z L E 9 T T T ' ’ 8 9 9 r 9 9 6 9 8 O O O 8 Z 9 6 O 0 0 O O T 0 0 0 e 0 O 0 0 0 0 8 T T T e O O 0 O O 0 0 0 ' ' ' ' ' ’ ' ' ° ‘ ' ' ’ ' ' ' ' ' ' ' ' e ' ’ ' ' ' ' ' ' q 9 s . o T ; fi W ' m m l e e . t t O o 0 c O c o O 0 0 O o e e q z s e s 6 s s 6 6 6 : 6 6 a e 6 5 / / / r 1 1 . ' . a a t r t t t T t t r T : r . 1 . x 1 1 1 1 1 e s s / z / u i t r / 0 I ' I 1 i 0 ’ 9 : z / 8 z ‘ : z t 9 : e : t t t t t : e T r a a s s e e . s o " S : e l l s s L 5 6 9 L 4 9 o 9 s 9 O O 9 5 e 9 o 4 4 e e t n a 4 y A e Z Z s L 9 " t : : z : 9 t . t t : : c 9 9 s o 1 e 0 ' ' l . ' ' ' ' 0 ' ‘ ' ' ' ' ° ° I ' ' ' ' ° ' e ’ ' ' ' ' ' - . t t 1 “ ‘ s o T : t t t 8 s t z : 2 e u v : l " a a e n a o e o o y ; . ' ' e 0 E 9 9 o L 9 3 9 9 s 9 4 6 e 9 O 9 0 . t t C t 0 t t t e p r e ° ' ' ‘ 9 ' ° ' ' ' ' ' ' ' ° ' ' ‘ t . ° ° ’ ' ' ’ ° ' ' e z Z 9 : : t : 0 " 9 z U z t 9 : 9 " L 9 s 9 6 2 L : 9 9 l d t : t : : T : h t e n s e s Z 9 6 0 8 8 9 0 u p s . . ' . Q T 8 U 8 8 o o ' . . . " 6 " s . . . ' ° . ' ' r e ' " " " " z T Z 8 ! ! m I : " T I e n a b e g s o . . T . . T . 3 0 6 8 ' B 5 " ' . . . . . . 8 9 9 9 6 5 e T t T . . 6 . . L . . . . . . . 5 G 0 6 9 9 6 9 9 L 9 9 5 & 9 5 a . . ° . . . . . . . . . . . . . ' 0 ' . ' ' T . ‘ ' . ° . e ' ' " " 0 0 0 0 0 " " " O O 0 0 u a " " O " " " . 0 0 0 0 0 0 ° 0 ; 1 ' 3 § ' 5 5 _ r 1 z 1 e 0 o 3 g e e e c e s . s _ U ' . I " " s s . “ ' . ' I . fl " ' ” " " “ 3 - m " " C . " 0 0 Q I n a . Q “ G " ” 0 ” C O n c 0 C G " 0 G 0 0 x O O 0 0 fl N Q a I O K a O 0 0 O O H o 1 I I a e 1 i 3 0 3 3 § ' v a 3 0 O I g U C v O ! 5 8 ' O O o 3 K 3 a N I n 3 ' z d a 3 A 3 O K ! d A O ! 3 a 4 H A H o ‘ K 0 O N u 0 n 3 U 0 3 " . fl M n “ “ “ “ H J J J ! ‘ l : S S B s s B 3 a B B s 8 . 5 § e 1 1 5 « a s s z s g x s a a x O I B O < D O < D O < D O < 3 0 < 3 0 1 9 D 6 1 0 O a s s a s s g s s a s s ( D O ¢ D O < 3 0 < D O { 3 0 < D O 0 d 0 G V ’ T T O ' T ' 0 ‘ " 6 9 ' T 9 " T ' U ' l l s u p p l y o f w h e a t . t h e a m o u n t t h e E C m u s t p a y t o e x p o r t g r a i n 1 1 6 p a s t u r e l a n d a n d v e g e t a b l e c r o p s . I n t h e e v e n t o f a r e d u c t i o n i n t h e l e v e l o f s u p p o r t . i t w a s f e l t t h a t t h e a r e a p l a n t e d t o w h e a t a n d c o a r s e g r a i n s w o u l d n o t r e t u r n t o t h e o r i g i n a l u s e . T h e r e f o r e . t h e e q u a t i o n w a s m o d e l e d a s a N e r l o v i a n l e g w i t h t h e r a t i o o f o w n a n d c o m p e t i n g c r o p r e v e n u e p r o v i d i n g t h e m e c h a n i s m f o r a d j u s t m e n t ( A p p e n d i x F ) . I n t h e e x - p o s t f o r e c a s t b o t h e q u a t i o n s s u f f e r f r o m a f a i r d e g r e e o f b i a s e r r o r . T h i s o c c u r s b e c a u s e t h e e q u a - t i o n s a r e n o t d e s i g n e d t o c a p t u r e a l l o f t h e p o l i c y r u l e s . A l t h o u g h F H A D H e x h i b i t s 5 T P E . n o n e c a u s e s a e r r o r o f m o r e t h e 6 % . E v e n f o r t h i s " w o r s t " T P E ( 1 9 8 4 ) t h e g r o w t h i n p r o d u c t i o n i s d r i v e n b y y i e l d . T h e d i f f e r e n c e i n g r o w t h r a t e s f o r F P R O D M b e t w e e n 1 9 8 3 a n d 1 9 8 4 i s o n l y 0 . 5 % . S o y b e a n a r e a ( S H A D M ) a l s o s u f f e r s f r o m s o m e b i a s a n d h a s a M A P E g r e a t e r t h a n 1 0 3 b u t t h e a m o u n t o f a r e a i s g e n e r a l l y l e s s t h a n 2 5 0 . 0 0 0 h e c t a r e s f o r t h e e n t i r e r e g i o n . S i n c e t h e e n d o f t h e l a s t d e c a d e . t h e E u r o p e a n C o m m u n i t y s u f f e r e d f r o m a n o v e r a b u n d a n c e o f w h e a t . E v e n t h o u g h h i s t o r i c a l l y t h e D e v e l o p e d M a r k e t s h a v e b e e n t r e a t e d a s a i m p o r t i n g r e g i o n . i t w a s n e c e s s a r y t o d e v e l o p a s e t o f e q u a t i o n s w h i c h c a p t u r e g o v e r n m e n t a t t e m p t s t o d i s p o s e o f t h i s s u r p l u s . d o m e s t i c a l l y a n d t h r o u g h e x p o r t m a r k e t i n g . T h e r e f o r e . t h e D e v e l o p e d M a r k e t s i s t h e o n l y r e g i o n w i t h e s t i m a t e d i m p o r t a n d c o n s u m p t i o n e q u a t i o n s . W h e a t f o r f e e d c o n s u m p t i o n ( W F E D D M ) i s a N e r l o v i a n l a g e q u a t i o n w h e r e w h e a t f e e d i n g i s a d j u s t e d b y t h e d o m e s t i c 1 1 7 a n d t h e p r i c e o f s o y b e a n m e a l . T h e e q u a t i o n t r a c k s a c t u a l f e e d i n g v e r y c l o s e l y : h o w e v e r . t h e l a r g e i n c r e a s e i n w h e a t p r o d u c t i o n i n 1 9 8 0 l e d t o a n o v e r e s t i m a t i o n o f W F E D D M . A s d o m e s t i c s u p p l i e s o f w h e a t c o n t i n u e d t o i n c r e a s e W F E D D M r e m a i n e d a b o v e a c t u a l l e v e l s b y a p p r o x i m a t e l y 1 2 3 o v e r a c t u a l l e v e l s . I n r e t r o s p e c t . s u p p l y s h o u l d p r o b a b l y o n l y e n t e r t h e e q u a t i o n a f t e r 1 9 7 9 . T h e w h e a t t r a d e e q u a t i o n ( W N I D M ) i s a v e r y g o o d e q u a t i o n . t r a c k i n g a c t u a l l e v e l s v e r y c l o s e l y . T h e o n l y p e r i o d i t m i s s e s i s t h e b u m p e r c r o p y e a r 1 9 8 4 w h e n t h e E C c a m e u n d e r r a t h e r s e v e r e p r i c e c o m p e t i t i o n a n d f e l l s h o r t o f t h e i r e x p o r t t a r g e t s . T h e l a r g e M A P E i n W N I D M i s t h e r e s u l t o f t h e p e r i o d w h e n t h e D e v e l o p e d M a r k e t s b e c a m e e x p o r t e r s . T h e a c t u a l l e v e l o f e x p o r t s w a s 1 8 . 0 0 0 m e t r i c t o n s . t h e m o d e l i n d i c a t e d t h a t t h e E C w o u l d i m p o r t 2 5 0 . 0 0 0 m e t r i c t o n s . A l t h o u g h t h e s e t r a d e f i g u r e s a r e i n s i g n i f i c a n t . t h e c a l c u l a t e d e r r o r w a s o v e r 1 0 0 0 8 . T h e i m p o r t e q u a t i o n s f o r c o a r s e g r a i n s ( F N I D M ) . s o y m e a l e q u i v a l e n t ( S M E I D M ) a n d s o y o i l e q u i v a l e n t ( S O E I D M ) p e r f o r m e d w e l l . S e r i o u s p r o b l e m s e x i s t i n P M E L D H . t h e e q u a t i o n w h i c h d i v i d e s s o y m e a l e q u i v a l e n t i m p o r t s i n t o i m p o r t s o f s o y m e a l a n d s o y b e a n . T h e e q u a t i o n h a s s e r i o u s b i a s e r r o r a n d a U ( 2 ) w h i c h i n d i c a t e s t h a t i t i s o n l y m a r g i n a l l y b e t t e r t h a n a n o - c h a n g e m o d e l . T h i s p r o b l e m h o w e v e r . d o e s n o t s e e m c a u s e s e v e r e p r o b l e m s i n t h e c o m p o n e n t i m p o r t e q u a t i o n s . A l t h o u g h t h e M A P E i n s o y o i l i m p o r t s i s r a t h e r h i g h t h e m a x i m u m e r r o r i s l e s s t h e 5 0 0 . 0 0 0 m e t r i c t o n s . a 6 L 4 L O U n ' ' ‘ ' ' ' 0 U O 0 0 O 0 Z 6 9 L ' i n 9 0 ' . 0 9 T 1 3 T e 1 " c c c c c 0 T 0 0 O 0 0 T O T T Z T 0 Z 0 0 . e e z t z O 0 z 9 S 6 6 G Z S ’ ’ 9 8 O 9 8 T t 0 ' - e 9 n ' ' ' ' ’ ' ' ' ' ' ' ' ' ' ’ ' ’ ' ' ' ' ' . ° ' f 1 c c c c c " u u 0 O 0 0 O O O O 0 O 0 O 0 O O 0 0 a 6 a u T n T ( o ' £ c 6 c s v 9 8 6 E 0 6 6 0 6 9 9 8 2 9 8 T T . ° - . o Q c s c 0 c 1 9 8 9 L 9 9 9 L S 9 L 9 9 9 9 9 . ° e e " J fl ' ' ' ' ' ' ' ' ' ' ' ' ' . ° ' ' ' ’ ‘ ' ' ' - A p c c ! t t t 0 O 0 0 0 0 0 u u 0 0 0 0 u 0 0 O O 0 e d o t e a e $ 1 z t t t q e t e a s 2 “ e e e q s o m } e t 4 z e q q s e s s a e o s y t a a - s t e a s s t e e o u A e a s t n a t a o z s s s e a p a o t n ; s s i s e v d . t A t e n s O e T Q C ' ’ ’ ' ' 6 Z 6 V e s 9 e t . . . _ 9 e c s n p T T 0 T O e L 4 s 9 s . . . L v o e 0 0 0 O 0 Q ' ‘ ’ ' ' ' ' ‘ ' . . . ' ' ‘ ' ' ' ' ' v e ' " " T T Z O " U " " " " t t ! t t : a n t t Q - B a a " 0 1 1 . I b m s a s t s - e u d O ; t z a t e u o t d m - o x a 3 . . . 1 1 1 3 9 6 ' 0 6 4 ' 0 6 9 ' 0 9 9 ' 0 ' 9 ' " T O ' O 3 . 3 3 8 3 3 3 3 3 2 3 2 2 O T G C D O < D C ) O ( D < D C ) O ( 3 C ) 0 Z O ' O L V ' O s c ' c e x t ( ' 6 ! 9 ' e t s c ' c s / z s ' c t z ' 9 t z t ' c 6 / 8 O ' L Z Z 9 ' L 6 t t ' c 6 1 : 9 ' 6 : c ' t z t c ' c 6 1 8 v ' t t e ' c t c t ' c s i t 9 ' s : t ' t z L O ' O s i s 9 ' e t s ' t t t c ' c s / e c ' c t c ' s t c ' c . t i e 6 ' 9 : 6 ' 0 : e c ' c 6 1 : 9 ' 9 v ' s t c ' c s / t t ' z t L ' s v c ' c 5 1 0 4 ' 9 8 ' 4 - e - u ' e ' u ' e ' u e ' u 9 0 ' 0 6 ! ! L ' 9 e ' L c o ' o c t / v t ' s t 9 ' 9 1 c t ' c c t / v 2 ' 9 : 9 ' c t c c ' c c t / c 6 ' 0 4 ' 0 t c ' c c t / 9 s ' z c ' t . . . " . . . " . . . " . . . u t c ' c c t / t s ' z c ' t c t ' c c t / r 9 ' 0 : s ' L t c c ' o c t / c t ' L t L ' E T t c ' c c t / e 9 " 5 ' : t c ' c c t / z s ' z L ' Z . . . " 0 . . " 0 . . “ . . . " t c ' c c t / z 6 ’ 8 4 ' 8 3 ‘ 5 g g s u g g g v g ( ' 9 0 T 0 9 1 L O ' O 0 1 8 3 3 2 6 ' 0 0 1 9 3 0 8 Z S ' O 0 1 6 3 fl 8 ' . ' " a 0 1 I N S ' . ' " a 0 1 1 l 0 6 " ' " a 0 1 T N fl S 9 4 ' 0 0 1 1 3 3 6 6 9 ' 0 0 1 1 8 0 8 9 6 ' 0 0 1 I I I S ' . ' " a 0 1 0 0 0 3 " ' " a 0 1 0 0 fl 3 L G ' O 0 1 V fl 9 6 " 0 a a 0 1 A S ' U ' " . 0 1 0 8 4 8 ‘ l ' T l I U 5 ' 0 ' I l I B : O L ' O 0 1 5 3 3 9 9 ' 0 0 1 I I J " ' " a 0 1 fl 0 0 $ L L ' O 0 1 V “ ! 8 6 ' 0 a a 0 1 A J ' 9 ' " a 0 1 0 8 d J ‘ I U T ' 3 5 7 5 ' 3 5 5 5 0 9 ' 0 0 1 5 3 0 9 9 ' 0 0 1 1 8 3 ' 0 ' " a 0 1 l 0 0 0 8 6 ' 0 0 1 V H G 9 6 ' 0 a a 0 1 A fl ‘ 9 ’ " a 0 1 O U d fl ' 5 ' 3 1 3 1 1 9 5 . 3 . 7 P g r g g g m a n g g R g g g l t g f o r t 9 : L e s ; D e v e l o p e d C o u n t r i e s T h e s t a t i s t i c a l r e s u l t s f r o m t h e e x - p o s t f o r e c a s t i n d i c a t e t h a t t h e e q u a t i o n s f o r t h e L e s s D e v e l o p e d C o u n t r y r e g i o n p e r f o r m e d v e r y w e l l . I t i s h o w e v e r . i m p o r t a n t t o n o t e t h a t t h e m a g n i t u d e o f t h e d a t a i s l a r g e . T h e r e f o r e . a s m a l l r e l a t i v e e r r o r c a n h a v e s e r i o u s s p i l l o v e r i m p l i c a t i o n s f o r t h e r e s t o f t h e m o d e l . T h e e q u a t i o n s e s t i m a t i n g w h e a t a r e a ( W H A L D ) . c o a r s e g r a i n a r e a ( F H A L D ) a n d s o y b e a n a r e a ( S H A L D ) p e r f o r m e d v e r y w e l l a c r o s s m o s t o f t h e f o r e c a s t p e r i o d ( T a b l e 5 . 7 ) . H o w e v e r . t h e c o e f f i c i e n t o n c o a r s e g r a i n r e v e n u e i s a l m o s t t h r e e t i m e s a s l a r g e a s t h o s e f o r s o y b e a n o r w h e a t a r e a ( A p p e n d i x G ) . T h e r e f o r e . a s a r e s u l t o f t h e c o a r s e g r a i n p r i c e s h o c k i n 1 9 8 3 . t h e w h e a t a n d c o a r s e g r a i n h a r v e s t e d a r e a e q u a t i o n s w e r e o f f i n 1 9 8 4 * . F H A L D m i s s e d m o s t b a d l y . o v e r e s t i m a t i n g a c t u a l a r e a b y a l m o s t 1 0 . 0 0 0 h e c t a r e s ( 9 % ) . E v e n s o . t h e o v e r e s t i m a t i o n i n a r e a i n 1 9 8 4 w a s l o w e r e d b y a r e d u c t i o n o f c o a r s e g r a i n i m p o r t s i n 1 9 8 3 . T h e e r r o r i n h a r v e s t e d a r e a s p i l l e d o v e r i n t o p r o d u c - t i o n ( F P R O L D ) . e x a c e r b a t e d b y a d e c l i n e i n c o a r s e g r a i n y i e l d s i n 1 9 8 4 . A s a r e s u l t . F P R O L D o v e r e s t i m a t e d a c t u a l p r o d u c t i o n . T h e e f f e c t s o f o v e r a n d u n d e r e s t i m a t i o n i n p r o d u c t i o n h a v e a s i g n i f i c a n t e f f e c t o n c o m m o d i t y t r a d e . I m p o r t s o f w h e a t a n d c o a r s e g r a i n s a r e n o t d e p e n d e n t u p o n p r i c e . A s * T h e s o y b e a n c o m p l e x e q u a t i o n s c a n o n l y b e c o m p a r e d u n t i l 1 9 8 3 . A c t u a l d a t a w a s n o t a v a i l a b l e a f t e r 1 9 8 3 . 1 m 9 a 7 c 8 r o e ’ r * v r a o r r i T s p i l l e d h a e b s l e e s t . h r e o e v e c r o u t n o t r a i f e f s e c t i a r e t m u p s o e r d d n i e m a h t n e d i w e n i 1 9 g h t 7 i 9 n - g o f 1 2 0 m e n t i o n e d i n C h a p t e r I I I . t h e p o l i c y o b j e c t i v e s o f m a n y l e s s d e v e l o p e d c o u n t r i e s i s t o m a i n t a i n s t a b l e p a t t e r n s o f c o n s u m p t i o n . T h e r e f o r e . t h e s e c o u n t r i e s w i l l e n t e r w o r l d m a r k e t s t o m a k e u p t h e d i f f e r e n c e b e t w e e n p r o d u c t i o n a n d d e s i r e d c o n s u m p t i o n l e v e l s r e g a r d l e s s o f p r i c e ’ . T h e r e s u l t s o f t h e e x - p o s t f o r e c a s t i n d i c a t e t h a t v e r y l i t t l e o f t h e e r r o r i n t h e i m p o r t e q u a t i o n s f o r w h e a t ( W N I L D ) a n d c o a r s e g r a i n s ( F N I L D ) c a n b e t r a c e d t o b i a s . A l t h o u g h E N I L D h a s a h i g h e r n u m b e r o f t u r n i n g p o i n t e r r o r s a n d M A P E . W N I L D h a s a 0 ( 2 ) g r e a t e r t h a n 1 . T h e p e r i o d o f w o r s t e r r o r f o r W N I L D c a n b e t r a c e d t o 1 9 8 3 a n d 1 9 8 4 . I n 1 9 8 3 s p i r a l i n g i n f l a t i o n i n P e r u . M e x i c o a n d I s r a e l ” c a u s e d a d r a m a t i c d e c l i n e i n r e a l i n c o m e s . o n e o f t h e d r i v e r s o f i m p o r t d e m a n d . T h i s p r o b l e m w a s f i r s t n o t i c e d i n t h e e s t i m a t i o n p r o c e d u r e . I n 1 9 8 4 W N I L D o v e r - e s t i m a t e d i m p o r t s a s a r e s u l t o f t h e d e c l i n e i n w h e a t a r e a r e l a t i v e t o c o a r s e g r a i n a r e a . O F t h e 4 T P E S i n F N I L D o n l y 2 a r e o f a n y s i g n i f i c a n c e . I n 1 9 7 8 F H A L D m i s s e d a t u r n i n g p o i n t a n d F N I L D o v e r e s t i m a t e d i m p o r t s . I n 1 9 8 3 t h e d e c l i n e i n r e a l i n c o m e h a d t h e s a m e d e p r e s s i n g e f f e c t u p o n c o a r s e g r a i n s a s w h e a t . H o w e v e r . w h i l e t h e m o d e l m a d e t h e r e q u i r e d t u r n s . t h e e f f e c t s o f t h e ’ G r a i n c a n b e o b t a i n e d t h r o u g h c o n c e s s i o n a r y s a l e s . o u t r i g h t f o o d a i d o r p u r c h a s e d w i t h f u n d s b o r r o w e d o n t h e i n t e r n a t i o n a l c r e d i t m a r k e t s . ‘ 1 2 1 1 9 8 0 . A s a r e s u l t o f i n c r e a s e d i m p o r t s i n 1 9 7 8 e n d i n g s t o c k s i n c r e a s e d . F o r t h e t w o p e r i o d s t h e s e s t o c k s r e m a i n e d i n t h e s y s t e m . i m p o r t d e m a n d f o r 1 9 7 9 a n d 1 9 8 0 r e m a i n e d d e p r e s s e d . L o w i m p o r t d e m a n d r e d u c e d g o v e r n m e n t p r e s s u r e t o e x p a n d c o a r s e g r a i n a r e a a n d b y 1 9 8 1 F E S L D f e l l b e l o w a c t u a l l e v e l s . T h e r e f o r e . w h e n t h e r e c e s s i o n o f 1 9 8 1 r e d u c e d i n c o m e s i n t h e L D C s . r e d u c e d d o m e s t i c s u p p l i e s k e p t F N I L D f r o m f a l l i n g b y a s m u c h a s t h e a c t u a l l e v e l s . H o w e v e r . w h i l e t h e i m p o r t e r r o r s i n 1 9 7 9 a n d 1 9 8 1 w e r e l a r g e i n p e r c e n t a g e t e r m s ( 5 0 % f o r e a c h y e a r ) . t h e i r s p i l l o v e r e f f e c t w a s a b o u t 2 5 % o f t h e e r r o r i n F N E U S i n e a c h o f t h e t w o y e a r s . I m p o r t s o f s o y m e a l e q u i v a l e n t ( S M E I L D ) a n d s o y o i l e q u i v a l e n t ( S O E I L D ) t e n d t o t r a c k t h e i r a c t u a l v a l u e s f a i r l y c l o s e l y . I t i s a s s u m e d t h a t s o y m e a l i m p o r t e d w i l l b e i m p o r t e d a s l i v e s t o c k f e e d s u p p l e m e n t s . S M E I L D u s e d l a g g e d i n c o m e a s a p r o x y f o r t h e l i v e s t o c k c y c l e a n d t h e s u p p l i e s o f o t h e r o i l s e e d s ( r a p e s e e d . p e a n u t . p a l m . e t c . ) f o r a n i n d i c a t i o n o f a v a i l a b l e a l t e r n a t i v e s . T h e e q u a t i o n f o r e c a s t w e l l . A l t h o u g h t h e r e w e r e 3 t u r n i n g p o i n t s e r r o r s . n o n e o f t h e m g e n e r a t e d a n e r r o r o f m o r e t h a n 5 0 0 . 0 0 0 M e t r i c t o n s . S O E I L D h a d c u r r e n t i n c o m e a s a r i g h t h a n d s i d e v a r i a b l e w h i c h a c t e d m o r e l i k e a t i m e t r e n d . L i k e S M E I L D . S O E I L D m i s s e d t h r e e t u r n i n g p o i n t s . T h e e f f e c t s t w o o f t h e t u r n i n g p o i n t e r r o r s w e r e n o t i c e a b l e b u t a m o u n t e d t o l e s s t h a n 3 0 0 . 0 0 0 M e t r i c t o n s . r e a s i T q u s T T e l o w e e n e s s s E ( u s q u f e r e r o o c t u m r r r r i c i a t b i o e o e h r m e t o r n v e r t o s h u s h a h s a n f e i e o n e m e i t t s u f t d o v q i n l i d e r T a u m e e o s t e h o r i a q W s n t u u l e g n i v t u N u h f r i o l a a a I i s r n e n o a s s o a l f n l o t y n l L o t f i n e ( T d . i c e O n t o b i e g t o t n c o h t l a y e d s a n f e h e t b r p A i n t o r 5 r i s a l o s p b 9 h i o n . t n r . t o e 7 e l r m t i 8 t i r 9 . s e e e a a a g r s s r ) c e h m h t t e o f l i e r e m 1 x x e i e r r t a n n p o e o o e n e S - p v r f c v i o e d ( s o r r r r e s g d O 1 . s t e s q t E 9 t e t u e w t I 8 s h e t A i f e O ) i i o a l a a e a b w r h a d h L o 3 r a t s c h o r t r n e s h h n a e b r d c o e r s a i o o u r a v t r a s u m s g r e h s p h n ( p t h o i s a r o S r l t d e r f H i d e . l e i g n A t o n r n e L d i o a s r e d O d t o n l e w s i h n e a m c h t ) c e i s r o ( W a e i o n a r h e s s a m N t f e t a w I a t t t a e a o d L t d s t w e n w p O i h e t a r q o e ) o t l e r h u n o l n h e e e a y b d a l a s t i n u i . t s a r i a d C n e o s t t 1 s n i h 9 t s o e n 7 6 1 2 2 P M E L L D . t h e e q u a t i o n w h i c h d i v i d e s i m p o r t s o f e q u i v a - l e n t w a s e s t i m a t e d a s a f u n c t i o n o f p a s s e d a n d c u r r e n t c r u s h i n g m a r g i n s a n d a t i m e t r e n d . T h e r e s u l t w a s a s m o o t h c u r v e w h i c h h a d c o n s i d e r a b l e v a r i a n c e e r r o r . T h e d i f f e r e n c e b e t w e e n t h e f o r e c a s t v a l u e o f P M E L L D a n d t h e a c t u a l v a l u e v a r i e d b y a s m u c h a s 1 1 p e r c e n t a g e p o i n t s . T h e t u r n i n g p o i n t e r r o r s i n P M E L L D w e r e o f t e n s m a l l b u t t h e e r r o r i n 1 9 8 1 r e s u l t e d i n t h e o v e r e s t i m a t i o n o f s o y b e a n i m p o r t s b y 5 5 0 . 0 0 0 M e t r i c t o n s . I n t h e o t h e r e q u a t i o n s t h e h i g h M A P E s w e r e t h e r e s u l t o f t h e l o w v a l u e s o f i m p o r t s o r e n d i n g s t o c k s . E x t u n t r i e z fl L _ _ _ _ J fl c c c E c o c 9 9 c 9 L 6 9 S 0 . . T 9 c L a c c c S c c z . L . . c 9 S L L L 5 9 9 c a e ' ' ' ' ' ' ' 0 ' ' . ' ' ' . ' ' ' ’ ' ' ' ' c t " c c O c c 0 “ 0 c 0 0 u 0 O O O O c o o z c t c z 9 c S Z 0 t . . t t t z c L z S t s c c v z 9 t c Z c e v T Z Z . c . . z t c t e e ' ' ' ' ' ' ' ' ’ ' ' ' ' ' . ' ' ' . . ' ' ' L e o c ' " c 0 c c O c c c " c c O O O u c c c c c t D _ _ i T _ i Q _ u ' _ n T c _ c c L e c e c 9 Z S z t c c S Q c c c fl c Z t c Z c c c c T T O c . c c c c . . . t t t t . . o o ‘ ' fl . ' ' ' ’ ' ' . ' . ' ' ' ' ' ' ' ' ' ' ' ' Q c c c O " o c c c c O O O c c u c c c c O c u B S u t T i T ( i ' c L S S 9 t c L Z c S a e O 9 v 9 r v a t o Q S ) . . c L 0 L c c z O L L 9 z s s T L t 9 z . . . . d L n . ' ' ’ ' ' ' ' ' ' ' ‘ ' ' ' ‘ ' ' ' ' ’ . . O t t T T t c O c t " O u O O c 0 O 0 c c t u x a T T O c z c t z z e S 9 9 ’ c Z 6 c 9 c e ( . . . t t p c c o c c c c c T 0 c t 0 0 0 c T T t t t . . . e ' ' ' ' ' ' ' ' ‘ ' ' ' ' ' ' ' ’ ' ' i . ' . . O d c c c c c n " c O c c 0 0 c 0 c c 0 O u c c 0 u ' o S t e . a 1 e 0 a . 9 _ m 1 s e _ _ e t O O O O O O O O O O 6 6 6 6 G 6 6 6 6 G . ' . e a T T T T T T T T I T T I I / I / I / / I . e . § q I I I s I I I I I ’ ? I I E 6 € 8 Z 8 . ' . 9 ? d L t S Z Z V Z Z S u Z S Z u u s a _ o s _ ; e . . s § 9 9 9 O 9 S 8 8 O 2 S 9 S Z S 9 S 9 . T T ' 0 e ' ' ‘ ‘ ' . ‘ ' ' ’ ' ' ' ' ' ' ' ' ' ' e . § " s 9 E L 9 e Z 9 9 9 9 9 P 9 6 F O G 9 O 9 . ' . § t o u u 3 " 2 Z Z Z T T T T T Z ! u u § a e . r a . i 1 . e 0 . s 3 9 fi 4 9 4 9 9 O O 0 9 ( 8 8 8 9 9 ( 9 S . e T . . ' 0 ; a ' ' ' ‘ ' ' ' ' ' ‘ “ ' ' ' ' ’ § . ' ' ' . " " e 9 ? 9 S 0 6 ! u u 2 9 9 O T f S 9 9 O O " 9 A d fl T T 8 Z T T T T Z T 3 o e z n ' b 0 s 1 v 1 ' F Z 9 S 6 9 Z S 6 ' ’ . 0 0 ' ' ' 1 Z 2 O G S 8 L O L 0 0 . . . e e e 1 ' ‘ ‘ ' ‘ ’ ’ ‘ ' ‘ ‘ . . 0 ' ' - 9 " " Z ! T T " " " u u u T : T T T 1 8 a c t u v ' ' ' ' ' ' ' ' ' ' t S c z S c 8 O c c T t T ‘ o v 0 9 0 v 0 9 O O t 6 9 L c c c s S c S c S u ' ' ' ' ' ' ' ' ' ' ' ’ ‘ ' ' ' ’ ' ' ' ' ' ‘ s s n u u u " " u u u " c 0 O c c c O c 0 c O c O " " f a t t a y — a i a s — . . . . . . . . . u c . o c . o o . o o o o . t c 0 c w o o 0 o o 0 . 1 1 . 1 r t s 1 1 1 . 1 1 o o 1 1 1 o 1 1 1 z n 1 1 1 O n o 0 u o 0 c o 1 1 1 r i w a u 8 v c 3 3 v 3 T o a 5 1 c a 1 o o i v t u u t x a n 3 a A o u d n u 1 3 o d 1 u u o u u 0 u o u a S ' I H A n M n n A n a s 3 s s s 3 s 5 g s s s s 9 s d s s 1 J 2 3 ' A q t t t q e t z e a J e q q e e s e q e t n s t e o i e p t e t A t e n z o e p e e n s e e p e x o ; a e o d - x 3 . . " 0 T 1 . “ b a T ' " ° T 1 T U T } . 0 a V S ‘ O S E ' T - e - u O O ' Z T L ' O ' e ' u p e r i o d s w h e n c o a r s e g r a i n p r i c e s w e r e s e v e r e l y i n e r r o r . A t 1 2 4 a n d 1 9 8 1 ) . A s c a n b e n o t e d b y o b s e r v a t i o n o f t h e U 5 s t a t i s t i c . a p p r o x i m a t e l y h a l f o f t h e f o r e c a s t e r r o r f o r W N I L D c a n b e a t t r i b u t e d t o v a r i a n c e . T h e e r r o r s i n 1 9 7 9 a n d 1 9 8 1 a r e c a u s e d s o l e l y b y t h e e r r o r s i n W H A L D . H o w e v e r . t h e e r r o r s i n 1 9 7 6 . 1 9 8 3 a n d e s p e c i a l l y 1 9 8 4 a r e p a r t i a l l y t h e r e s u l t o f e r r o r s i n t h e s u p p l y o f c o a r s e g r a i n s . I n 1 9 8 4 . h i g h r e v e n u e e n c o u r a g e d t h e e x p a n s i o n o f c o a r s e g r a i n a r e a a t t h e e x p e n s e o f w h e a t . T h e e f f e c t o f t h e i n c r e a s e i n w h e a t s u p p l y i s s o g r e a t t h a t i t o v e r w h e l m s t h e d e c l i n e i n W H A L D a n d w h e a t i m p o r t s d e c l i n e . S O E I L O a l s o t r a c k e d t h e a c t u a l v a l u e s v e r y w e l l . A l m o s t n o n e o f t h e f o r e c a s t e r r o r c o u l d b e t r a c e d t o b i a s a n d o n l y o n e t u r n i n g p o i n t e r r o r c o u l d b e c o n s i d e r e d s e r i o u s . S O E I L O i s e s t i m a t e d a s a f u n c t i o n o f r e a l i n c o m e . s o y o i l p r i c e s a n d a d u m m y v a r i a b l e i n 1 9 7 3 . I n f l a t i o n a r y p r e s s u r e s r e d u c e i n c o m e s i n 1 9 8 3 a n d S O E I L O d e c l i n e s w h e n a c t u a l i m p o r t s i n c r e a s e . A l t h o u g h t h e a b s o l u t e a m o u n t o f e r r o r i s a p p r o x i m a t e l y 1 5 0 . 0 0 0 m e t r i c t o n s . t h e e r r o r i s a p p r o x i m a t e l y 1 2 % . C o a r s e g r a i n i m p o r t s a r e n o t a f f e c t e d b y s u p p l y ( A p p e n d i x H ) . I m p o r t s a r e a f u n c t i o n o f t h e p r e V i o u s p e r i o d ’ s c o n s u m p t i o n . w h e a t p r i c e s a n d c u r r e n t a n d l a g g e d c o a r s e g r a i n p r i c e s . T h i s r e s u l t s i n a c o n s i d e r a b l y m o r e v o l a t i l e i m p o r t e q u a t i o n . T h e e r r o r i s o f t e n s i g n i f i c a n t ( 5 . 5 m i l l i o n m e t r i c t o n s i n 1 9 8 4 ) a n d c a n b e t r a c e d t o g s i r o n o y w b t e 1 9 h a 8 * n 3 i . n i T s p i o o s m h y r m t w e s o a l w l h d u i i c m r h p e o s r d u t e l c s t l i i f n s r e o m m a d i u n r t i a n i g i n c r e n a e t s d h e a d a t t p t e u r h l i e t p o e x o d . r y p s e l n T a s h u e i g s h o t f e i s a r 1 2 5 t h e s a m e t i m e . t h e u s e o f l a g g e d f e e d p r i c e s a s a p r o x y f o r t h e d e m a n d f o r p o u l t r y f e e d a m o n g O P E C m e m b e r s w o r s e n s w h e a t p r i c e e r r o r s i n 1 9 8 4 . B a s e d u p o n t h e a b n o r m a l l y h i g h p r i c e o f c o a r s e g r a i n s i n 1 9 8 3 . t h e d e m a n d f o r f e e d d e c l i n e s i n 1 9 8 4 . ” A d e c l i n e i n i m p o r t s i n c r e a s e s s t o c k l e v e l s i n t h e U . S . a n d C a n a d a a n d d e p r e s s e s c o a r s e g r a i n p r i c e . S M E I L O h a s t h r e e t u r n i n g p o i n t e r r o r s . t w o o f w h i c h a r e s e r i o u s . B o t h t h e t u r n i n g p o i n t s a r e a f f e c t e d b y o v e r - e s t i m a t i o n o f s o y b e a n p r i c e s i n 1 9 7 6 a n d 1 9 8 3 . T h e d o w n t u r n i n i m p o r t s i n 1 9 8 3 i s c o m p o u n d e d b y r e d u c e d r e a l i n c o m e s . P M E L L O w h i c h d i v i d e s i m p o r t s o f s o y m e a l e q u i v a l e n t i n t o i m p o r t s o f s o y m e a l a n d s o y b e a n s h a s g o o d p e r f o r m a n c e p r o p e r t i e s . A l m o s t a l l o f t h e f o r e c a s t e r r o r i s d u e t o r a n d o m f a c t o r s a n d n o n e o f t h e t u r n i n g p o i n t e r r o r s a c c o u n t f o r m o r e t h a n 7 p e r c e n t a g e p o i n t s o f e r r o r . H o w e v e r . w h e n t h e e r r o r s i n S M E I L O a n d P M E L L O a r e c o m b i n e d . t h e U ( 2 ) s t a t i s t i c s f o r t h e s o y b e a n i m p o r t ( S N I L O ) a n d s o y m e a l i m p o r t ( S M N I L O ) e q u a t i o n s i n d i c a t e t h a t t h e y a r e i n f e r i o r t o n o - c h a n g e m o d e l s . B e g i n n i n g i n 1 9 8 0 . P M E L L O c o n s i s t e n t l y o v e r e s t i m a t e s t h e p e r c e n t a g e o f s o y m e a l e q u i v a l e n t i m p o r t e d a s s o y m e a l . C o n c u r r e n t l y . t h e e s t i m a t e d r a t e o f g r o w t h o f i m p o r t s i n s o y m e a l e q u i v a l e n t i s a l s o u n d e r e s t i m a t e d . T h e r e f o r e . t h e W s c 5 e d I p a E t o . e r e n n d S 3 r a r n s d u L i . t o c p O o 9 i r e s i s t o r P n h y . t t e F t T o d s s n t o r i i r a b e g n a r c a a e t u t A f e l a s t e r d r e t g g u a z d n o h i l e q f n i e m e r h e a i a r e e s d m i c o n t e r s o r a n u e i s C s g r o t b e t t h a n e o a i a e i m R p t n l f e r u l s t g a y e a h t f o t e t e s r r e h w o f u t r i a l r l e e n o e y b ( S H a t t s w e i c A n s h a 1 a a a N d . e p a r r s s F t o r e e d i q s r E f h n r ( S o i r e g u t T f e e s n t C ) . L r x o t a h a T O m r e h t n b h h e e i e u l e a t o q m r d m e i N o n u a b v n c e e . s w a j e 5 o o w ‘ r e t o . s w a v l i r 9 t f h r e l o o e s o e i r e s t i m a t e . ' a s y n t n t c t d a g r a e n f d t a d r h w u o r a r u f e h o r A e c a r h e a h n e a i w t g e n r g a a d l h e e h c y e i a p e r i v o r e x a ( N t c s i p e n s i n a i p r i l s l r b t e l e e h p s N . c i t C a e a a ) U z r a f c e i W n o g n o I H c t t d r T e A r ) e 1 2 6 s e r i o u s p r o b l e m f r o m t h e s t a n d p o i n t o f t h e r e g i o n b u t d o e s n ’ t h a v e a g r e a t i m p a c t u p o n w o r l d s o y b e a n o r s o y m e a l t r a d e . I n s u f f i c i e n t d a t a w a s a v a i l a b l e o n s o y b e a n c o m p l e x e n d i n g s t o c k s . I t w a s t h e r e f o r e a s s u m e d t h a t s t o c k s a r e m i n i m a l . H o w e v e r . i f s u f f i c i e n t s t o c k s a r e h e l d i n t h e f u t u r e a n d i t b e c o m e s n e c e s s a r y t o e s t i m a t e e q u a t i o n s . s p a c e h a s b e e n l e f t i n t h e m o d e l o f s o y b e a n c o m p l e x s t o c k s . B o t h t h e w h e a t e n d i n g s t o c k ( W E S L O ) a n d c o a r s e g r a i n e n d i n g s t o c k ( F E S L O ) e q u a t i o n s a r e e s t i m a t e d a s f u n c t i o n s o f r e a l i n c o m e . s u p p l y a n d p r i c e . T h e r e f o r e . b o t h e q u a t i o n s m i s s b a d l y i n 1 9 8 3 w h e n i n c o m e d e c l i n e s a n d c o a r s e g r a i n p r i c e s r i s e . T h e p r o b l e m c o n t i n u e s i n 1 9 8 4 w h e n i n c r e a s e d c o a r s e g r a i n p r o d u c t i o n a n d r e d u c e d w h e a t p r o d u c t i o n c a u s e d 1 9 8 3 . t h e e q u a t i o n s t r a c k e d w e l l . O O O 8 L ' T T T T 8 V 0 O ' ' ' ’ ' ' ' O O O 0 " O O 6 8 ' 0 9 ° T e 1 e . t T a 1 e . u Q n S e a T T p 9 9 9 S E . T e 1 " . 9 V Z O s 1 . ' ' ’ ' 0 " 0 Z T T t t e t a a s n p 6 u ' x S A ' r T m fi s _ ' " _ l _ 3 3 O c c c a c c c c c s ' . ’ s 6 6 G 6 S a 6 6 6 5 6 0 § T t t t t t t t t t / I I 1 1 r I 1 1 / 1 1 1 ' A Q T I I Q D I J O A 3 . 0 3 . . “ O } £ I / l l ) ' / / / / / c T G e e : Q 9 z 8 2 » 9 : . ' e . 0 _ T u z v v : t z e e z " " m _ e _ t _ a 3 s 9 s 6 S c 9 z 9 t 9 0 9 z 8 9 9 c s t t T t ' . ‘ I t n I t I s § ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' t § c ' 9 6 s S c L c t L s s t 1 T v 6 t c 9 9 z v . ’ 0 . 0 ' ' ' ' a fl v 9 Z " “ " t T T t t z e z 0 : 0 z s ! t ! 3 e _ t s _ O _ P A . o l e fl I O T s A l n l o c v D t e n z a s t e a - t a n a s ' ’ T ' . 9 Z 6 € 8 9 L D 0 Z I . 9 L S 9 9 L S ' ' ‘ ’ . ' ’ ' ' ' ‘ ' U " 0 Z T T U " : T T T n 9 o . v . a “ - a 1 b . n s 0 a 5 t a - t 0 - 3 u 0 0 } t 1 fi t l 0 e t d t - o 8 a 3 . . . l J Z 7 C ) O < 3 € ) O < 3 C ) O < 3 ¢ ) O < D 3 8 3 8 § 8 8 2 8 8 § 8 fl 0 O L O ' O T O ' O ' e ' u 9 0 ' 0 0 0 0 6 6 0 6 6 6 6 0 0 a s s s s g s s z t s a C ) O ¢ D C ’ O ¢ H < ) ¢ I O - e - c o $ 8 2 R 3 3 R 8 3 3 8 $ h n O 0 0 0 0 0 0 0 0 0 6 6 6 3 3 3 8 8 3 3 2 8 8 0 3 E O ' O m e t a s t a s e s e o u e e e o y a e a t s ' t S S ' Z c z ' t ' I ‘ U - e - u ' 0 ’ " t c ' z S 9 ' T t c ' t . . . " . . . " 9 9 ' T s a ' t . . . " 9 9 ' 0 9 ‘ 8 3 : 0 6 ' 0 O K S H O B 5 9 . 0 O N S I H S . . . " e O N I N s . . . " a O K I N O B . . . " . O I I K R S 9 5 . 0 0 ' 1 3 u 0 $ 5 . 0 O N I H O S 9 5 ° C 9 . 1 . " 3 . . . " a O N O O O B . . . " e O K O O H S 3 5 . 0 O K V H S 6 9 . 0 a a O N A B . . . " . O K O U d S I ' T l ' 3 5 - 0 " § T B § 9 9 . 0 0 ‘ 9 3 ! 9 5 . 0 0 . 1 . 3 . . . " e O I N O O J 9 5 . 0 O I V H J Z L ' O e e O K A J . . . " e O K O U G J ' 0 1 ' 3 5 _ " 3 ' 3 5 T L ' O 0 N 5 ! “ 9 9 . 0 O K I I H . . . " e O N K O O H 9 5 . 0 0 ‘ 7 " “ ‘ 9 ' 0 . . O I A H . . . " e O K O U d fl 1 " ‘ H i s o c c u r r i n g w h i c h i s n o t b e i n g c a u g h t b y t h e o t h e r v a r i - 1 2 8 e q u a t i o n ( F H A N C ) h a s o n l y a s m a l l p r o p o r t i o n o f b i a s o r v a r i a n c e e r r o r . W h e a t a r e a i n t h e N I C s i s v e r y s m a l l . o n l y a n a v e r a g e o f 2 0 . 0 0 0 h e c t a r e s f o r t h e e n t i r e r e g i o n . T h e r e f o r e . a n y d e v i a t i o n s i n a r e a w i l l a p p e a r a s a l a r g e p e r c e n t a g e e r r o r . W H A N C t r a c k s w e l l . t h e r e i s o n l y o n e t u r n i n g p o i n t e r r o r g e n e r a t i n g a 1 0 % e r r o r . H o w e v e r . i n 1 9 8 4 w h e a t a r e a d e c l i n e s t o 7 . 0 0 0 h e c t a r e s . W H A N C d e c l i n e s a s w e l l b u t t o 1 4 . 0 0 0 h e c t a r e s . T h i s r e s u l t s i n a n e r r o r o f 1 0 0 8 . m a k i n g t h e e q u a t i o n a p p e a r m u c h w o r s e t h a n i t a c t u a l l y i s . S o y b e a n a r e a i n t h e N I C s . a l t h o u g h l a r g e r t h a n w h e a t a r e a h a s t r e n d e d d o w n o v e r t i m e . S H A N C i s e s t i m a t e d a s a f u n c t i o n o f l a g g e d a r e a . s o y b e a n r e v e n u e a n d a l o g a r i t h m i c t i m e t r e n d . L n C t i m e ) w a s c h o s e n t o r e p r e s e n t a s l o w i n g i n t h e r a t e o f d e c r e a s e a s t h e a r e a a p p r o a c h e d z e r o . I t w i l l n o t h o w e v e r . p r e v e n t S H A N C f r o m g o i n g n e g a t i v e . L i k e s o y b e a n a r e a . c o a r s e g r a i n a r e a h a s a l s o d e c l i n e d s t e a d i l y o v e r t i m e . T h e r e f o r e . F H A N C w a s e s t i m a t e d w i t h a t i m e t r e n d i n a d d i t i o n t o w h e a t a n d c o a r s e g r a i n r e v e n u e s a n d l a g g e d e n d i n g s t o c k s . T h e t i m e t r e n d . w h e a t r e v e n u e a n d l a g g e d e n d i n g s t o c k s h a v e n e g a t i v e c o e f f i C i e n t s . W h e a t r e v e n u e i s i n s i g n i f i c a n t a n d t h e r e i s a h i g h d e g r e e o f c o r r e l a t i o n b e t w e e n t i m e a n d l a g g e d a r e a . A l t h o u g h p r o d u c t i o n i s l e s s t h a n a m i l l i o n m e t r i c t o n s i n w h e a t a n d s o y b e a n s . t h e f a c t t h a t t w o o f t h e h a r v e s t e d a r e a e q u a t i o n s r e q u i r e d t i m e t r e n d s i n d i c a t e s t h a t a s h i f t e q u a t i o n s o c c u r r e d i n 1 9 7 8 . T h e s e e r r o r s o c c u r r e d i n 1 2 9 a b l e s . R i c e i s t h e m a j o r s t a p l e i n t h i s r e g i o n a n d g o v e r n - m e n t p o l i c i e s a r e g e a r e d t o p r o v i d i n g s t a b l e p r o d u c t i o n t h r o u g h h i g h s u p p o r t p r i c e s . I f t h e m o d e l i s t o c a p t u r e m o r e d e t a i l i n t h e N I C s r i c e s u p p l y a n d p r i c e p o l i c i e s s h o u l d b e i n c l u d e d i n t h e e s t i m a t i o n p r o c e d u r e . A n y f o r e c a s t e r r o r s i n t h e p r o d u c t i o n e q u a t i o n s a p p e a r t o b e t o o s m a l l t o h a v e a n e f f e c t u p o n t h e i m p o r t e q u a t i o n s . N o n e o f t h e i m p o r t e q u a t i o n s s u f f e r f r o m b i a s e r r o r . W h e a t i m p o r t s h a v e o n l y o n e p e r i o d w h e n t h e e r r o r i s g r e a t e r t h a n 1 0 % a n d t h a t c a n b e t r a c e d t o 1 9 8 4 w h e n o v e r e s t i m a t i o n o f w h e a t p r i c e a n d u n d e r e s t i m a t i o n o f c o a r s e g r a i n p r i c e r e s u l t e d i n a d r a m a t i c d e c l i n e i n i m p o r t s . O n l y r e a l i n c o m e a n d c o a r s e g r a i n p r i c e w a s f o u n d t o b e s i g n i f i c a n t i n t h e e s t i m a t i o n o f c o a r s e g r a i n i m p o r t s ( F N I N C ) . T h e e l a s t i c i t y o f p r i c e i s c o n s i d e r a b l y l o w e r f o r c o a r s e g r a i n i m p o r t s t h a n i t i s f o r w h e a t i m p o r t s . T h e e f f e c t s o f p r i c e s h o c k s w e r e n o t a s g r e a t o n F N I N C . T h e e q u a t i o n s f o r s o y m e a l e q u i v a l e n t i m p o r t s ( S M E I N C ) a n d s o y o i l e q u i v a l e n t i m p o r t s ( S O E I N C ) w e r e e s t i m a t e d a s f u n c t i o n s o f r e a l i n c o m e . d o m e s t i c s u p p l i e s o f o i l a n d m e a l e q u i v a l e n t a n d t h e p r i c e o f s o y b e a n s ( S M E I N C ) a n d s o y o i l ( S O E I N C ) . T h i s m a d e t h e e q u a t i o n s m o r e s u s c e p t a b l e t o i n t e r n a l e r r o r s . H o w e v e r . t h e s e d e m a n d e q u a t i o n s w e r e d r i v e n p r i m a r i l y b y i n c o m e w h i c h a c t e d a s a t r e n d o v e r t i m e . T h e e f f e c t w e r e r e l a t i v e l y s m o o t h c u r v e s w i t h f a i r l y h i g h n u m b e r s o f t u r n i n g p o i n t e r r o r s . T h e l a r g e s t e r r o r s f o r b O t h 1 3 0 e s t i m a t i o n a s w e l l a n d a r e t h e r e s u l t s o f a m i s s i n g v a r i a b l e a s o p p o s e d t o s p i l l o v e r f r o m o t h e r e q u a t i o n s . D e s p i t e a h i g h a d j u s t e d R 2 . P M E L N C a p p e a r s t o b e s u f f e r i n g f r o m a m i s s i n g v a r i a b l e . P M E L N C w a s e s t i m a t e d a s a f u n c t i o n o f i m p o r t s o f s o y m e a l e q u i v a l e n t . l a g g e d s o y m e a l e n d i n g s t o c k s a n d a d u m m y v a r i a b l e f r o m 1 9 7 4 o n . T h e m a j o r i t y o f e r r o r i n P H E L N C c a n b e t r a c e d t o e r r o r s i n t h e s o y m e a l e n d i n g s t o c k s ( S M E S N C ) . O v e r e s t i m a t i o n o f s o y m e a l e n d i n g s t o c k s i n 1 9 7 5 - 1 9 7 7 r e s u l t s i n s e r i o u s u n d e r e s t i m a - t i o n i n P N E L N C i n t h e e a r l y p e r i o d . T h i s p r o b l e m i s m o d i f i e d b y i n c l u d i n g t o t a l s o y m e a l e q u i v a l e n t s u p p l y ” a s o n e o f t h e i n d e p e n d e n t v a r i a b l e s i n S H E S N C . H o w e v e r . s t o c k p i l i n g o f s o y m e a l e q u i v a l e n t i s a f a i r l y r e c e n t e v e n t a n d t h e q u a n t i t i e s s t o r e d a r e v e r y s m a l l . T h e v o l a t i l i t y o f t h i s e q u a t i o n b r e a e d s f u r t h e r i n s t a b i l i t y b y s p r e a d i n g i n t o b o t h s o y m e a l e q u i v a l e n t i m p o r t s a n d t h e p e r c e n t a g e i m p o r t e d a s p r o d u c t s . A l t h o u g h t h e e f f e c t s o f e r r o r s i n t h e i m p o r t e q u a t i o n i s s m a l l r e l a t i v e t o t h e e n t i r e m o d e l . t h i s e q u a t i o n s h o u l d b e r e - e s t i m a t e d a s s o o n a s a s u f f i c i e n t t i m e s e r i e s i s a v a i l a b l e . 5 . 3 . 1 0 P e r f g r m a n c e R e s u l t s f o r t h e S o v i e t B l o g F o r a n u m b e r o f r e a s o n s . t h e S o v i e t B l o c r e p r e s e n t s o n e o f t h e m o s t s e r i o u s p r o b l e m s i n t h e e n t i r e m o d e l . G e n e r a l l y t h e r e g i o n a l m o d e l i s d r i v e n b y p o l i c y d e c i s i o n s a s o p p o s e d t o r e c o g n i z a b l e e c o n o m i c t h e o r y ( A p p e n d i x J ) . D e s p i t e h i g h * T o t a l s o y m e a l e q u i v a l e n t s u p p l y e q u a l s d o m e s t i c s o y m e a l e q u i v a l e n t s u p p l y p l u s s o y m e a l e q u i v a l e n t i m p o r t s . e 9 v L 9 O - s 5 s L 6 L e 0 . L o 9 V b L L e 9 6 z 6 O . t I a 6 L Z e t v t 0 6 e I . t ' - ' ' ’ ' - . ' ' ‘ ' ‘ - ° ' ‘ ' ' - ' . - o 0 o u 0 O O " O o O 0 O o 0 o o o 0 o O u o 9 9 9 9 0 v O o 9 E e 9 O o 0 0 a - I t t 0 . 0 9 0 0 6 e t L o 0 I t 0 v 0 I o 0 . O t o . ' - ' ' ° - - ‘ - . ' ' ‘ ‘ - . - ' - - ' ' ' 0 0 0 0 u o o O o " O O 0 o 0 o 0 O o u o o 0 . a fl _ _ _ _ _ s n ' _ 3 _ Y _ 3 _ ' _ 1 _ 0 0 o s Z 0 G Q 9 9 z z 0 E 0 O o t t - 0 t . 1 n 0 0 o o o 0 e . t . t 0 I L L 9 s z 6 6 L L o ' n - ‘ - ’ ' - 1 _ o u 0 0 o 0 - o . . ' ' ' ' ' ‘ ' ° - ' ' ‘ - ' . " o 0 o O O O o 0 o 0 0 o O O u 8 _ _ _ I i o Y £ o . L 9 L z z € 0 L 0 8 6 0 G O 0 9 s z 9 - I 0 . L t 6 9 Q E z s z 0 9 8 L E v 9 v z L 9 9 9 e L . . fl g L ' ' ' ' ' - ' - ’ ' ' - . . - ' ' “ - ' ' ‘ ' a e t a o s e ( I O 0 0 o u t o 0 o " 0 0 O Z u 0 O ! ! ! t I t Z Z Z E F ' O O O I I e s ) ’ ' ' ' ' - O o n O O O u O O I ; ' G e o . r q a e e ' K Q V T T Q ' ? 3 ° A x s q q e e u l r a n q r 3 0 0 0 O 0 O 6 O 0 O 6 0 O 0 O S 6 O O 0 ' ' ' e n 6 1 I I I i I I 1 1 I 1 1 1 I 1 I 1 I / / 0 0 e q e $ / / / / I / I Z ? ] / / 8 8 / / / / / / ’ ' ' e s s r " 8 9 O 8 C ! " 9 Q Z E u e . G 9 ? ! E z x e o q t n s e 9 8 9 L 8 8 G S 8 O 9 6 8 E 9 S 9 r s 0 T I ' ° ‘ a d ‘ ‘ ' ' ' ' ' ' ' ' ' ' ' ‘ ' ' ' ' e 9 e " 0 ” n e 9 L L 9 Z L L 6 1 G 0 3 8 8 L 9 8 L 9 ' ' ' o a " u " 0 8 9 8 ’ 3 3 9 E E 1 ! t o u 8 1 t v e l a o e p t y 9 9 9 9 e 4 9 L L 9 4 9 9 9 9 L V 0 O 8 9 0 e e ' - ' x ‘ ' ' ' ' ' ' ' ' ' ’ ' ' ' ' ' ' ' ' ' r ' ° ' e V 9 9 9 9 9 8 9 Z l 8 E L 8 1 “ u 6 9 9 9 9 9 9 u d ! 9 2 8 I I 1 ! 3 8 3 9 ' O t ‘ n i o T . Q ' 9 V 9 O 8 - - I . ' 1 9 T 8 2 L O 9 0 e e O . e 0 I ° - ' ' ' ' . ' ' ' ' ' ' Z : u u u Z : u ! ! I ! Q S " 0 1 1 ' “ 3 n P o O t . a " e n 1 b . a 9 9 I 0 O 1 U 0 O } F Q Q I ' U O V d I - ' “ O S e e s 1 3 . 1 Z Z ' O S I ' O 9 0 ' 0 9 0 ' 0 Z I ' O 6 0 ' 0 I I ' O 9 0 ' 0 9 0 ' 0 - e - u 9 0 ‘ 0 ’ 8 ' 0 ( 0 ‘ 0 8 0 ' 0 8 0 ' 0 ° e ' u E O ‘ O - e ° u - e ' u - e ° u L E ‘ Z 6 6 ' ! L I ' Z ' e ' u - e - u E L ' I E O ' Z ° e - u ' 3 ’ " s G S I N S ‘ 9 ' “ s G S I N O S ' 5 ' " s G S I N H S 6 4 ' 0 G S T S H d 9 6 ' 0 8 5 1 3 0 8 ’ 6 ' 0 S S I S H S ' 9 ' " . 8 8 0 0 0 8 ' 9 ' " s B S O O fl S 6 6 ' 0 E S V H S I 9 ° 0 « . 8 8 5 3 ' e ' u e B S O H d S W 8 9 ' 0 8 8 5 3 3 1 6 ' 0 S S I N J " ' " s B S N O D J Z G ‘ O E S V H J G Q ' O s s R S A J ' 9 ' " s E S O U d J ' U T I I g ‘ I ' I F B fi I O ' O 8 9 8 3 6 L O ' O G S I M “ ' 9 ' " s G S N O O fl Z L ' O E S V H H 9 9 ' 0 s s fi S A fl " ' " s G S O H d M m c o m p e t i n g c r o p s w e r e u s e d a s r i g h t - h a n d s i d e v a r i a b l e s . 1 3 2 a d j u s t e d s t t h e a r e a e q u a t i o n s s u f f e r f r o m c o n s i d e r a b l e b i a s a n d v a r i a n c e e r r o r a n d t h i s e r r o r s p i l l e d o v e r i n t o t h e i m p o r t d e m a n d a n d e n d i n g s t o c k e q u a t i o n s ( T a b l e 5 . 1 0 ) . S e c o n d l y . t h e a m o u n t o f p r o d u C t i o n a n d i m p o r t s i s l a r g e i n a b s o l u t e q u a n t i t y . T h e r e f o r e . a s m a l l p e r c e n t a g e e r r o r i n t r a d e c o u l d h a v e s e r i o u s i m p l i c a t i o n s f o r t h e r e s t o f t h e m o d e l . T h e r e w e r e a n u m b e r o f p r o b l e m s i n t h e e s t i m a t i o n o f t h e h a r v e s t e d a r e a e q u a t i o n s f o r t h e S o v i e t B l o c . F i r s t . t h e e x p a n s i o n a n d c o n t r a c t i o n o f a c r e a g e i s a “ t o p d o w n " p o l i c y d e c i s i o n . W h e n e s t i m a t i o n w a s a t t e m p t e d a s a f u n c t i o n o f b o r d e r p r i c e r e v e n u e s . r e v e n u e w a s n o t f o u n d t o b e s i g n i f i c a n t . I t w a s t h e r e f o r e n e c e s s a r y t o f i n d a s i m p l e p o l i c y p r o x y . I n i t i a l l y . l a g g e d i m p o r t s w e r e c h o s e n a s a p r o x y f o r t h e S o v i e t g o v e r n m e n t ’ s d e s i r e t o m i n i m i z e f o r e i g n c u r r e n c y t r a n s a c t i o n s . H o w e v e r . a p r o b l e m i n h e r e n t i n u s i n g l a g g e d i m p o r t s a s v a r i a b l e s i n t h e h a r v e s t e d a r e a e q u a t i o n i s t h a t i f a p o l i c y d e c i s i o n i s m a d e t o l i m i t i m p o r t s ( e v e n d u r i n g a p e r i o d o f p r o d u c t i o n s h o r t f a l l ) t h e r e i s t h e r i s k o f a c o n t r a c t i o n i n a c r e a g e t h e f o l l o w i n g y e a r ’ s . T h e r e f o r e . d e s p i t e r e s e r v a t i o n s a b o u t t h e r e l i a b i l i t y o f S o v i e t e n d i n g s t o c k d a t a . l a g g e d s t o c k s o f o w n a n d ' T h i s p r o b l e m b e c a m e a p p a r e n t d u r i n g a s c e n a r i o a n a l y z i n g t h e e f f e c t s o f l i v e s t o c k s l a u g h t e r d u e t o n u c l e a r c o n t a m i n a t i o n i n t h e U k r a i n e . T h e i n i t i a l l i v e s t o c k s l a u g h t e r r e d u c e d t h e d e m a n d f o r i m p o r t s o f f e e d . T h e f o l l o w i n g y e a r . c o a r s e g r a i n a r e a d e c r e a s e d . F o r f u r t h e r d e t a i l s o n t h e m e t h o d s o f c o r r e c t i o n s e e S h a g a m a n d H i l k e r . y e a r . I n 1 9 8 2 t h e F N I S B a l s o r e p r e s e n t s o v e r t h r e e - q u a r t e r s 1 3 3 W i t h t h e e x c e p t i o n o f l o w t - s t a t i s t i c s f o r w h e a t e n d i n g s t o c k s i n t h e w h e a t a c r e a g e e q u a t i o n . t h e s i g n s a n d o t h e r t — s t a t i s t i c s w e r e a c c e p t a b l e . A l t h o u g h t h e r e w a s l i t t l e b i a s e r r o r p r e s e n t . t h e w h e a t h a r v e s t e d a r e a e q u a t i o n ( W H A S B ) w a s i n f e r i o r t o a n o - c h a n g e m o d e l . M u c h o f t h i s e r r o r c a n b e t r a c e d t o 1 9 8 3 a n d 1 9 6 4 a n d w a s t h e r e s u l t o f d r o u g h t . A c c o r d i n g t o t h e U . S . D . A . 5 . l o w m o i s t u r e r e s u l t e d i n t h e r e s e e d i n g o f w h e a t a c r e a g e t o c o a r s e g r a i n s . T h i s r e s e e d i n g c o u l d n o t b e f o r e c a s t b y W H A S B . T h e e r r o r i n W H A S B s p i l l s o v e r i n t o W P R O S B b u t t h e e r r o r i n p r o d u c t i o n i s n o t l a r g e e n o u g h a f f e c t t h e w h e a t i m p o r t e q u a t i o n . T h e c o a r s e g r a i n a c r e a g e e q u a t i o n ( P H A S E ) p e r f o r m s q u i t e w e l l . M o r e b i a s i s p r e s e n t i n t h e e q u a t i o n a n d t h e n u m b e r o f t u r n i n g p o i n t e r r o r s i s l a r g e b u t t h e p e r c e n t a g e e r r o r i s s m a l l l i t t l e e r r o r s p i l l s o v e r i n t o t h e p r o d u c t i o n e q u a t i o n s . B o t h w h e a t i m p o r t ( W N I S B ) a n d c o a r s e g r a i n i m p o r t ( F N I S B ) e q u a t i o n s p e r f o r m w e l l . N e i t h e r s h o w s a n y b i a s e r r o r a n d F N I S B h a s o n l y 1 m a j o r t u r n i n g p o i n t e r r o r . T h e p e r c e n t a g e e r r o r s a r e r a t h e r l a r g e b u t i n t h e c a s e o f w h e a t t h e e r r o r s d i d n ’ t c a u s e s i g n i f i c a n t p r o b l e m s i n t h e i n t e r n a - t i o n a l m a r k e t . T h e - e f f e c t s o f t h e c o a r s e g r a i n e r r o r s w e r e c o n s i d e r a b l y m o r e s i g n i f i c a n t . F N I S B h a s e r r o r s o f a l m o s t 1 0 m i l l i o n t o n s i n 1 9 7 8 a n d 1 9 8 3 . I n 1 9 7 8 t h i s i s a l m o s t t h r e e q u a r t e r s o f e r r o r i n U . S . c o a r s e g r a i n e x p o r t s i n t h a t S o y b e a n a c r e a g e ( S H A S B ) i s e s t i m a t e d a s a f u n c t i o n o f 1 3 4 o f t h e e r r o r i n U . S . c o a r s e g r a i n e x p o r t s . T h e p o t e n t i a l l y d i s a s t r o u s e f f e c t s o f b o t h o f t h e s e f o r e c a s t i n g e r r o r s w e r e m a s k e d b y U . S . p r o d u c t i o n e r r o r s i n t h e O p p o s i t e d i r e c t i o n . T h i s k e p t U . S . e n d i n g s t o c k s h i g h a n d p r e v e n t m a j o r p r i c e d i s t o r t i o n s . E s t i m a t i o n r e s u l t s f o r e n d i n g s t o c k e q u a t i o n s o f w h e a t ( W E S S B ) a n d c o a r s e g r a i n s ( F E S S B ) w e r e h i g h l y u n s a t i s - f a c t o r y . S t o c k s a r e d e t e r m i n e d b y p o l i c y a n d p o l i c y d e c i s i o n s a r e d i f f i c u l t t o i n c l u d e i n t h e c o n t e x t o f t h i s m o d e l . B o t h e q u a t i o n s o r i g i n a l l y u s e d s u p p l y a n d p r i c e . B o t h w e r e p o s i t i v e l y s i g n e d . t h e p o s i t i v e p r i c e i s i n k e e p i n g w i t h S h a r p l e s a n d G o o d l o e ’ s c o n t e n t i o n t h a t t h e S o v i e t U n i o n t r a n s f e r s i n s t a b i l i t y t o t h e w o r l d m a r k e t 7 . H o w e v e r i t w a s t h e s t a t i s t i c a l r e s u l t s i n d i c a t e d t h a t a p r o x y v a r i a b l e w a s m i s s i n g . W E S S B w a s r e — e s t i m a t e d a n d t h e l a g g e d s t o c k t o u t i l i z a t i o n r a t i o n w a s i n c l u d e d . T h e r e s u l t s w e r e c o n s i d e r a b l y b e t t e r b u t t h e e q u a t i o n s t i l l m i s s e s b a d l y i n 1 9 8 2 - 8 4 . T h e e n t i r e s o y b e a n s e c t o r i s v e r y p o o r . D e s p i t e h i g h a d j u s t e d s t a n d n o s e r i a l c o r r e l a t i o n . a l l e s t i m a t e d s o y b e a n c o m p l e x e q u a t i o n s s h o w h i g h p e r c e n t a g e s o f b i a s e r r o r a n d a r e i n f e r i o r t o n o - c h a n g e m o d e l s . W i t h t h e e x c e p t i o n o f s o y o i l e q u i v a l e n t n e t i m p o r t s . w o r l d p r i c e s w e r e n o t f o u n d t o b e s i g n i f i c a n t i n a n y s o y b e a n c o m p l e x e q u a t i o n . _ T h i s w o u l d i n d i c a t e t h a t a l l f a c e t s o f s o y b e a n p r o d u c t i o n a n d u s e i s d e t e r m i n e d b y p o l i c y . 1 3 5 l a g g e d s o y b e a n i m p o r t s a n d a t i m e t r e n d . T h i s f o r m u l a t i o n f u n c t i o n e d q u i t e w e l l u n t i l t h e m o d e l m i s s e d t h e d e c l i n e i n s o y m e a l e q u i v a l e n t i m p o r t s i n 1 9 8 2 a n d 1 9 8 3 . E r r o r s i n t h e s o y m e a l e q u i v a l e n t i m p o r t s ( S H E I S B ) a n d p e r c e n t a g e m e a l e q u a t i o n s c a u s e d a n o v e r e s t i m a t i o n o f s o y b e a n i m p o r t s ( S N I S B ) a n d t h e e f f e c t s s p i l l e d o v e r i n t o t h e h a r v e s t e d a r e a e q u a t i o n . I m p o r t s o f s o y m e a l e q u i v a l e n t a n d t h e d e c i s i o n t o i m p o r t e q u i v a l e n t a s s o y m e a l o r s o y b e a n s i s a p r i m a r i l y a f u n c t i o n o f t h e a v a i l a b l e s u p p l y o f o t h e r o i l s e e d ( s u n f l o w e r a n d r a p e s e e d ) . B o t h t h e s e a r e e s t i m a t e d a r e c r u d e l y e s t i m a t - e d s o t h e y m i s s y e a r t o y e a r f l u c t u a t i o n s . T h e e q u a t i o n s m i s s e d t h e l a r g e s u n f l o w e r c r o p o f 1 9 8 2 w h i c h r e d u c e d s o y b e a n i m p o r t s i n 1 9 8 3 . T h e t r a c k i n g e r r o r s f o r t h e t w o e q u a t i o n s a r e i n o p p o s i t e d i r e c t i o n s f o r t h e e n t i r e e x - p o s t f o r e c a s t . P H E L S B u n d e r e s t i m a t e s a n d S M E I S B o v e r e s t i m a t e s : t h e r e s u l t i s a c o r r e c t f o r e c a s t f o r S H N I S B a n d a s h i f t o f a l l t h e e r r o r t o S N I S B w h i c h b a d l y o v e r e s t i m a t e s s o y b e a n i m p o r t s . 5 . 3 . ; 1 P e r f o r m a n g e R e s u l t s f o r C h i n g T h e q u a l i t y o f t h e C h i n e s e e q u a t i o n s w a s s u r p r i s i n g . I t w a s e x p e c t e d t h a t . l i k e t h e S o v i e t B l o c t h e e q u a t i o n s w o u l d r e q u i r e a l a r g e n u m b e r o f p o l i c y v a r i a b l e s ( A p p e n d i x K ) . H o w e v e r b i a s e r r o r w a s n o t a p r o b l e m i n a n y e s t i m a t e d e q u a t i b n s ( T a b l e 5 . 1 1 ) . T h e m a j o r i t y o f t h e e q u a t i o n s f o r e c a s t w e l l . T h e o n l y s i g n i f i c a n t p r o b l e m s i n t h e g r a i n s e c t o r o c c u r r e d i n 1 9 8 3 0 2 8 9 . C 8 8 8 9 a U . . . . . 0 0 0 n 0 3 1 0 0 e 0 0 1 1 1 a 0 0 0 0 5 4 8 9 . 1 2 6 9 8 6 0 . 1 1 1 6 . . . . . . . . . . . . . . . 0 0 0 0 n 0 n 0 0 0 0 0 0 0 0 s c i t s i 5 0 2 0 . t ' 0 a 1 0 0 a . . . . . 0 t 0 n 0 0 0 S l i ) e 3 h ( ' 0 . . 7 0 2 0 3 9 0 6 5 4 4 2 0 7 a 0 5 5 9 5 6 6 7 8 7 9 a a 0 T . . . . . . . . . . . . . . . 1 1 n 0 0 0 0 7 n 0 0 0 0 3 0 1 1 . . . 2 3 3 3 8 3 2 2 3 3 2 8 2 5 4 i 0 0 a 0 1 0 0 2 0 e 0 0 0 0 4 6 7 5 1 a . . . . . . . . . . . . . . . . . . . . 0 n 0 0 0 n 0 0 0 0 0 0 0 n 0 0 0 0 0 0 . y t i l i b a r a v r e h t a e w e n i h C r o f 1 s 1 c . i 5 t s e i l t b a s a t c T S i 0 0 0 0 . t 1 1 1 1 a y s 1 / / . / t c i 4 0 n 4 1 a t r a u t c S E 6 6 3 4 . c . . . . . A 1 1 4 2 S . H n 3 R a l u m i s o t s d l . . 3 3 4 4 . . . . . ] . 4 6 0 9 0 0 0 0 0 e a . . . . . . . . . . i 1 1 I 3 7 3 3 n 5 5 4 3 1 2 0 y 2 8 4 0 7 8 7 4 1 9 1 l e u t c e ‘ 9 . . . 6 6 7 2 n d a a a 9 3 5 4 8 o e . . . . . . . . i s n 1 1 1 1 1 u n n t . . 7 6 1 a a 8 6 9 . . . . . n 0 0 n 0 ; n ' ” ' ' ’ ' ' ' H H H H H H H H H ' H H " " " i C H C H C H H C H C C C C C C C H H H H O C U C O C C N O C E E E C O O E C O C a R A O I R A O I R A C C E E N E N P H C N P H N P C H H O H O O N H Y Y Y U U U ” U W S F F F S S S F F S S S S S S W a u t q s E a c l e e r n o o f i t t i s n o i P f - e x D E ' " t h a n E u a t i o n S t a t i s t i c s n . a . 0 . 9 6 0 . 8 9 n . a . 0 . 7 3 n . a . 0 . 5 9 0 . 8 6 0 . 8 3 0 . 6 9 n . a . n . a . 0 . 9 5 n . a . n . a . n . a . 0 . 6 2 1 . 7 7 n . a . 2 . 0 2 n . a . 0 . 7 4 2 . 1 8 n . a . 1 . 9 8 P e r f o r m a n c e ” A P E T P E 2 / 1 0 n . a . 4 / 1 0 2 / 1 0 1 / 1 0 3 / 1 0 n . a . 4 / 1 0 2 / 9 2 / 9 2 / 9 2 / 9 0 / 9 5 / 9 6 / 1 0 U ( 1 ) 0 . 1 0 n . a . 0 . 6 7 0 . 3 6 0 . 8 8 0 . 0 6 n . a . 0 . 0 5 0 . 0 6 0 . 0 0 0 . 0 1 n . a . 0 . 0 1 0 . 0 7 0 . 1 2 0 . 0 1 0 . 9 2 0 . 2 0 0 . 9 7 0 . 0 1 0 . 1 6 n . a . 0 . 0 1 0 . 0 7 0 . 0 1 0 . 7 8 n . a . 0 . 9 4 0 . 8 7 0 . 9 9 0 . 9 7 n . a . 0 . 9 8 0 . 7 7 0 . 6 9 0 . 8 1 0 . 0 2 0 . 8 0 0 . 0 1 0 . 4 8 1 3 6 5 m m t ( . o o r T 3 . 1 a d d a b e e c l l l e 3 s e d A T . l e h P t r 5 t e e e f e h t r . o r h o o 1 l f e u r 2 a p o g ) . r e e i h r g r r n m e i a r t s o n o h t t d g r e h s R r s r u h p i l w i e e c e h u e i u g c s t t n l e d a U g e u t . q r s i a S u e l o . f a s n s g t u U s r i l . t t . n n c o t S i o h o s k e f e t s w n h P a e d w e r c r i e i e n r c p c g e u r e i m i E f t l e v g e a o t c u r f i k a i o e r n s u c o t o o r o e i r n e r g c q t o g a u u g o f a n s n a i s e o l o r - l n c - t d t e a h c s a h t n n e b g e 1 3 7 a n d 1 9 8 4 a n d c a n b e t r a c e d t o t h e c o a r s e g r a i n p r i c e s h o c k . T h e o v e r e s t i m a t i o n o f c o a r s e g r a i n p r i c e s i n 1 9 8 3 r e s u l t e d i n o v e r e s t i m a t i o n o f w h e a t i m p o r t s ( W N I C H ) a n d u n d e r e s t i m a - t i o n o f c o a r s e g r a i n i m p o r t s ( F N I C H ) . I n 1 9 8 4 o v e r e s t i m a - t i o n o f c o a r s e g r a i n a c r e a g e c a n b e t r a c e d t o i n c r e a s e d c o a r s e g r a i n r e v e n u e r e l a t i v e t o w h e a t . D e s p i t e w h a t a p p e a r t o b e a p p a l l i n g p e r f o r m a n c e s t a t i s t i c s . t h e r e a r e o n l y m i n o r p r o b l e m s i n t h e s o y b e a n s e c t o r . C h i n a h a s f l u c t u a t e d b e t w e e n b e i n g a n e x p o r t e r a n d i m p o r t e r o f s o y m e a l e q u i v a l e n t . A s t h e r e s i d u a l o f p r o d u c - t i o n a n d c o n s u m p t i o n . S H E E C H a n d S O E E C H c o l l e c t t h e r e s i d u a l e r r o r . T h e a b s o l u t e e r r o r f o r e a c h e q u a t i o n i s l e s s t h a n 3 7 5 . 0 0 0 m e t r i c t o n s : h o w e v e r . r e l a t i v e t o t h e q u a n t i t y o f e x p o r t s t h e e r r o r i s e x t r e m e l y l a r g e i n t w o y e a r s . T h i s b i a s e s t h e M A P E s . S O N E C H i s t h e m a r k e t c l e a r i n g e q u a t i o n f o r t h e C h i n e s e o i l s e e d s e c t o r . T h e r e f o r e . i t c o n t a i n s t h e s u m o f a l l e r r o r . A L t h o u g h t h e e q u a t i o n e s t i m a t i o n d o e s n ’ t c o m e c l o s e t o t h e a c t u a l l e v e l o f e x p o r t s . t h e e r r o r s p i l l i n g o v e r i n t o t h e i n t e r n a t i o n a l o i l s e e d m a r k e t i s l e s s t h a n 4 0 0 . 0 0 0 m e t r i c t o n s . C U s U 7 3 5 5 7 8 . . . 0 0 0 2 7 3 4 2 1 . . . s 0 0 0 c i t s i t H a U t S l i ) e 2 h ( 1 0 2 0 0 0 . . . 0 0 0 7 0 3 4 1 6 s T 0 . . . e c i r P r o 1 1 0 ) 1 1 6 f ( . . . 1 1 0 1 2 0 0 0 0 1 s . c 5 i t e s l i b t s a a c T t i E S t P 0 0 0 ' 1 1 1 s T / / / y i 3 1 2 c t a a r t u S E 9 c P . 1 7 . . c e S A c M 0 1 0 2 2 1 n R a m ' r o f E r e P . . . A 8 6 9 2 1 6 P H 1 1 s c i t s . i w 0 1 3 9 1 9 t . . . . a D 1 2 1 t S n o i t a 2 u fi q E 1 9 1 1 . . . 0 5 8 6 9 P P U P P S S N P 0 . 7 8 1 . 9 1 1 4 . 4 1 8 . 4 4 / 1 0 0 . 0 8 1 . 2 4 0 . 0 0 0 . 0 1 0 . 9 9 1 3 8 1 3 9 e s t i m a t e d . T h i s w o u l d i n d i c a t e t h a t t h e e q u a t i o n i s t o o r e s p o n s i v e t o c h a n g e s i n t h e s t o c k / u t i l i z a t i o n r a t i o . I n p r e v i o u s p r i c e m o d e l i n g e x p e r i e n c e s d u m m y v a r i a b l e s w e r e i n c l u d e d f o r t h e p e r i o d s o f g r e a t f l u c t u a t i o n ( 1 9 7 3 - 7 5 . 1 9 8 3 ) . T h i s r e s u l t e d i n l o w c o e f f i c i e n t s f o r t h e s t o c k / u t i l i z a t i o n v a r i a b l e s b u t i t w a s a l s o f e l t t h a t " e v e r y t h i n g i n t e r e s t i n g " h a d b e e n d u m m i e d o u t . T h e m o d e l m i g h t b e a f i n e e x - p o s t m o d e l . p u t w o u l d l a c k r e s p o n s i v e n e s s i n e x - a n t e f o r e c a s t s . T h e r e f o r e . t h e m o r e r e s p o n s i v e e q u a t i o n s w e r e s e l e c t e d ( A p p e n d i x L ) . T h e r e i s a l s o a n o t h e r f a c t o r w h i c h a f f e c t e d t h e p e r f o r m a n c e o f t h e p r i c e e q u a t i o n s i n a n e x - p o s t f o r e c a s t . A s d i s c u s s e d i n C h a p t e r I I I . t h e s t o c k / u t i l i z a t i o n r a t i o i s c o m p r i s e d o f c o n s u m p t i o n . e x p o r t s a n d e n d i n g s t o c k s i n t h e U . S . w h e r e t h e r e l e v a n t s t o c k n u m b e r s f o r t h e U . S . a r e f r e e s t o c k s . T h e e q u a t i o n s w h i c h f o r e c a s t a c c u m u l a t i o n a n d r e l e a s e o f g o v e r n m e n t h e l d s t o c k s w e r e e s t i m a t e d a s r u l e s a s o p p o s e d t o b a s e d u p o n h i s t o r i c d a t a . D u e t o p o t e n t i a l i n s t a b i l i t y . i t w a s r e c o m m e n d e d t h a t t h e a c t u a l v a l u e s f o r p o l i c y s t o c k s b e u s e d i n t h e e x - p o s t f o r e c a s t . I n p e r i o d s o f l o w p r i c e t h e g o v e r n m e n t w o u l d h a v e a c c u m u l a t e d s t o c k s : i n p e r i o d s o f h i g h p r i c e s s t o c k s w o u l d h a v e b e e n r e l e a s e d . T h i s w o u l d h a v e h a d a n d e f i n i t e s m o o t h i n g e f f e c t o n t h e p e r f o r m a n c e o f t h e p r i c e e q u a t i o n s . t h e q u e s t i o n i s h o w m u c h . T h e r e w e r e n o e x - p o s t t e s t s p e r f o r m e d u p o n t h e p o l i c y s t o c k r u l e s . T h e y w e r e u s e d i n t h e b a s e l i n e a n d s c e n a r i o 1 4 0 f o r e c a s t s ( c o v e r e d i n t h e f o l l o w i n g c h a p t e r ) a n d a p p e a r e d t o p e r f o r m s a t i s f a c t o r i l y . T h i s t e n d s t o i n d i c a t e t h a t w i t h p o l i c y s t o c k s a c t i n g a s a s m o o t h i n g f a c t o r ( a s t h e y a r e s u p p o s e d t o i n t h e r e a l w o r l d ) t h e p r i c e e q u a t i o n s a r e a c c e p t a b l e . 1 4 1 N o t e s t o C h a p t e r V . l . C . W . J . G r a n g e r a n d P . N e w b o l d . “ S o m e c o m m e n t s o n t h e E v a l u a t i o n o f E c o n o m i c F o r e c a s t s . " A p p l i e d E c o n o m i c s . 5 ( 1 9 7 3 ) P B S - 4 7 2 . J . S c o t t A r m s t r o n g . L o n g - R a n g e F o r e c a s t i n g F r o m C r y s p p l B a l i t o C p m p u t e r . S e c o n d E d i t i o n . J o h n W i l e y a n d S o n s . N e w Y o r k . 1 9 8 5 . P . 3 6 0 . 3 . C . W . J . G r a n g e r a n d P . N e w b o l d . " S o m e c o m m e n t s o n t h e E v a l u a t i o n o f E c o n o m i c F o r e c a s t s . " A p p l i e d E c o n p m i c s . 5 ( 1 9 7 3 ) P 3 5 - 4 7 : F r i e d h e l m W . B l i e m e l . " T h i e l ’ s F o r e c a s t A c c u r a c y C o e f f i c i e n t : A C l a r i f i c a t i o n . " J o u r n a l o f 4 . S h a y l e S h a g a m . H . S A r i c u u r e M o d e l S c n a r i o A n a l y s i s : F i v e P e r c e n t R e d u c t i o n i n U . § 3 C r o p P r o d u c t i o n - S c e n p r i o A n a l y s i s : A g p i c u l t u r a l P o l i c y L i b e r a l i z a t i o n i n t h e E u r o p p a n C o m m u p i t y . M i c h i g a n S t a t e U n i v e r s i t y . D e p a r t m e n t o f A g r i c u l t u r a l E c o n o m i c s . S t a f f P a p e r N u m b e r 8 6 - 3 6 . 5 . S h a y l e S h a g a m a n d J a m e s H i l k e r . M . S . U . A g r i c u l t u r e M o d e l S c e n a r i o A n a l y s i s : L o n g - R u n E f f e c t s o f g r p o l a n d a n d A n i m a i A b a n d o n m e n t I n t h e S o v i e t U n i o p D p e t p N u c l e a r C o n t a m i n a t i o n i n t h e U k p a i n p . M i c h i g a n S t a t e U n i v e r s i t y . D e p a r t m e n t o f A g r i c u l t u r a l E c o n o m i c s . S t a f f P a p e r N o . 8 6 - 3 9 . 6 . U . S . D e p a r t m e n t o f A g r i c u l t u r e . E c o n o m i c R e s e a r c h S e r v i c e . U . S . S . R . O u t l o o k a n d S i t u a t i o n R e p o r t . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e ) . V a r i o u s I s s u e s . 7 . U . S . D e p a r t m e n t o f A g r i c u l t u r e . E c o n o m i c R e s e a r c h S e r v i c e . P o l i c y . B y J e r r y A . S h a r p l e s a n d C a r o l G o o d l o e . S t a f f R e p o r t N o . A G E S 8 4 0 3 1 9 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e ) . M a y 1 9 8 4 . p . 3 4 . C H A P T E R V I B A S E L I N E F O R E C A S T A N D S C E N A R I O A N A L Y S I S H a v i n g r u n t h e m o d e l i n a n e x - p o s t f o r e c a s t o v e r 1 0 y e a r s t h e n e x t l o g i c a l s t e p i s t o r u n a n e x - a n t e f o r e c a s t f o r t h e n e x t 1 0 y e a r s . O n c e a b a s e l i n e f o r e c a s t h a s b e e n g e n e r a t e d a s h o r t p o l i c y s c e n a r i o w i l l b e r u n t o a n a l y z e t h e m o d e l ’ s a b i l i t y t o f o r e c a s t p o l i c y s h o c k s . 6 . 1 E x o g p n o u s M o d e l A s s u m p t i o n s T h e A g r i c u l t u r e M o d e l r e q u i r e s a n u m b e r o f e x o g e n o u s a s s u m p t i o n s t o f o r e c a s t a b a s e l i n e . E x o g e n o u s f o r e c a s t s f o r f o u r o f t h e s e v a r i a b l e s : i n c o m e . i n f l a t i o n . e x c h a n g e r a t e s a n d p o p u l a t i o n m u s t b e f o r p r e p a r e d f o r e a c h r e g i o n i n t h e m o d e l . I n a d d i t i o n t h r e e o t h e r e x o g e n o u s v a r i a b l e s m u s t b e f o r e c a s t f o r t h e U n i t e d S t a t e s . T h e l o a n r a t e f o r w h e a t a n d c o r n i s d e t e r m i n e d b y l e g i s l a t i o n a n d i s a v a i l a b l e f r o m o u t - s i d e s o u r c e s . T h e p r i c e o f s o y o i l i s d e t e r m i n e d i n t h e d o m e s t i c c o m p o n e n t w h e n t h e i n t e r n a t i o n a l m o d e l i s l i n k e d t o t h e d o m e s t i c m o d e l . S i n c e t h e c o m p o n e n t s a r e n o t l i n k e d . t h e w o r l d s o y o i l p r i c e m u s t b e e x o g e n o u s l y f o r e c a s t . . 1 . M a - c o n o m i c A s s u m t i o n s a t A s m e n t i o n e d i n C h a p t e r I I I . t h e m o d e l d o e s n o t g e n e r a t e i n c o m e . i n f l a t i o n . e x c h a n g e r a t e s o r p o p u l a t i o n . 1 4 2 1 4 3 F o r e c a s t s o f t h e s e v a r i a b l e s c a n b e o b t a i n e d f r o m a v a r i e t y o f s o u r c e s . T h e u s u a l p r o c e d u r e i s t o g e n e r a t e a t r e n d f o r e c a s t o f t h e p a s t t e n y e a r s a n d m o d i f y t h a t t r e n d b y " e x p e r t o p i n i o n " w h i c h c a n b e f o u n d i n t h e O . E . C . D . O u t l o o k . t h e W o r l d B a n k ’ s p r i g D p v e i o p m g n p R g p o r t . U . N . p o p u l a t i o n f o r e c a s t s a n d p r i v a t e s e c t o r f o r e c a s t s . B a s e d u p o n t h e s e s o u r c e s t h e e x o g e n o u s a s s u m p t i o n s h a v e b e e n d e r i v e d f o r e a c h r e g i o n ( T a b l e s 6 . 1 - 6 . 4 ) . T a b l e 6 . 1 P o p u l a t i o n A s s u m p t i o n s ( x G r o w t h ) 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 - 9 5 U . S . 0 . 8 8 0 . 9 1 0 . 9 0 0 . 9 0 0 . 8 9 0 . 8 0 A r g e n t i n a 1 . 0 8 1 . 0 8 1 . 0 8 0 . 9 7 0 . 9 7 0 . 9 7 A u s t r a l i a 1 . 1 5 1 . 0 5 0 . 9 8 0 . 9 8 0 . 9 8 0 . 9 8 B r a z i l 2 . 2 0 2 . 2 0 2 . 0 7 2 . 0 7 2 . 0 7 2 . 0 7 C a n a d a 1 . 3 4 1 . 3 4 1 . 1 3 1 . 1 3 1 . 1 3 1 . 1 3 D e v . M k t s . 0 . 4 9 0 . 4 8 0 . 4 8 0 . 4 8 0 . 4 8 0 . 4 8 L . D . C . s 2 . 2 0 2 . 2 0 2 . 2 0 2 . 2 0 2 . 2 0 2 . 2 0 L . D . O . s 2 . 5 9 2 . 5 9 2 . 5 9 2 . 5 9 2 . 5 9 2 . 5 9 N . I . C . s 1 . 5 2 1 . 5 2 1 . 5 2 1 . 5 2 1 . 5 2 1 . 5 2 S o v i e t B l o c 0 . 7 4 0 . 7 4 0 . 6 2 0 . 6 2 0 . 6 2 0 . 6 2 C h i n a 1 . 2 4 1 . 2 0 1 . 1 9 1 . 1 9 1 . 1 7 1 . 1 5 T a b l e 6 . 2 R e a l G r o s s D o m e s t i c P r o d u c t A s s u m p t i o n s ( k G r o w t h ) 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 - 9 5 U . S . 2 . 1 0 2 . 1 0 2 . 1 0 2 . 1 0 2 . 1 0 2 . 1 0 A r g e n t i n a 3 . 5 7 3 . 5 7 3 . 5 7 3 . 5 7 3 . 5 7 3 . 5 7 A u s t r a l i a 0 . 3 2 0 . 3 2 0 . 3 2 0 . 3 2 0 . 3 2 0 . 3 2 B r a z i l 3 . 6 0 3 . 6 0 3 . 6 0 3 . 6 0 3 . 6 0 3 . 6 0 C a n a d a 3 . 1 6 . 3 . 1 6 3 . 1 6 3 . 1 6 3 . 1 6 3 . 1 6 D e v . M k t s . 2 . 1 3 2 . 0 8 2 . 1 3 2 . 1 3 2 . 1 3 2 . 1 3 L . D . C . s 3 . 7 7 3 . 7 7 3 . 7 7 3 . 7 7 3 . 7 7 3 . 7 7 L . D . O . s 4 . 2 5 4 . 2 5 4 . 2 5 4 . 2 5 4 . 2 5 4 . 2 5 N . I . C . s 5 . 6 5 5 . 6 5 5 . 6 5 5 . 6 5 5 . 6 5 5 . 6 5 r S o v i e t B l o c 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 3 . 0 0 C h i n a 6 . 0 0 6 . 0 0 6 . 0 0 6 . 0 0 6 . 0 0 4 . 0 0 1 4 4 T a b l e 6 . 3 C o n s u m e r P r i c e I n d e x A s s u m p t i o n s ( 3 G r o w t h ) 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 - 9 5 U . S . 3 . 6 3 . 0 3 . 9 4 . 5 4 . 7 4 . 9 A r g e n t i n a 2 2 7 . 3 2 2 7 . 3 2 2 7 . 3 2 2 7 . 3 2 2 7 . 3 2 2 7 . 3 A u s t r a l i a 1 0 . 7 1 0 . 7 1 0 . 7 1 0 . 7 1 0 . 7 1 0 . 7 B r a z i l 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 C a n a d a 4 . 9 4 . 8 4 . 8 4 . 8 4 . 8 4 . 8 D e v . M k t s . 6 . 4 6 . 4 6 . 4 6 . 4 6 . 4 6 . 4 L . D . C . s 2 0 2 . 3 2 0 2 . 3 2 0 2 . 3 2 0 2 . 3 2 0 2 . 3 2 0 2 . 3 L . D . O . s 8 . 1 8 . 1 8 . 1 8 . 1 8 . 1 8 . 1 N . I . C . s 9 . 3 9 . 3 9 . 3 9 . 3 9 . 3 9 . 3 S o v i e t B l o c 6 . 4 6 . 4 6 . 4 6 . 4 6 . 4 6 . 4 C h i n a 8 . 0 8 . 0 8 . 0 8 . 0 8 . 0 8 . 0 T a b l e 6 . 4 E x c h a n g e R a t e A s s u m p t i o n s ( N a t . C u r r e n c y / U S S - 2 G r o w t h ) 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 - 9 5 A r g e n t i n a 2 2 3 . 5 2 2 3 . 5 2 2 3 . 5 2 2 3 . 5 2 2 3 . 5 2 2 3 . 5 A u s t r a l i a 1 0 . 7 1 0 . 7 1 0 . 7 1 0 . 7 1 0 . 7 1 0 . 7 B r a z i l 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 1 3 2 . 5 C a n a d a 3 . 0 0 . 7 0 . 7 0 . 7 1 . 4 1 . 1 D e v . M k t s . - 9 . 2 - 1 . 0 - 1 . 0 5 - 0 . 2 - 0 . 1 0 . 0 L . D . C . s 1 3 . 4 1 3 . 4 1 3 . 4 1 3 . 4 1 3 . 4 1 3 . 4 L . D . O . s 8 . 1 8 . 1 8 . 1 8 . 1 8 . 1 8 . 1 N . I . C . s 6 . 8 6 . 8 6 . 8 6 . 8 6 . 8 6 . 8 S o v i e t B l o c - 9 . 2 - 1 . 0 - 1 . 0 5 - 0 . 2 - 0 . 1 0 . 0 C h i n a 1 2 . 0 1 0 . 0 8 . 0 8 . 0 8 . 0 8 . 0 6 . ‘ m t ' o T h e 1 9 8 5 F a r m B i l l e s t a b l i s h e d t h e b a s i s f o r l o a n r a t e a s s u m p t i o n s f o r w h e a t a n d c o r n f o r t h e n e x t f i v e y e a r s . A l t h o u g h t h e S e c r e t a r y o f A g r i c u l t u r e h a s t h e a u t h o r i t y t o l o w e r t h e s e r a t e s b y u p t o 2 0 % a n d h a s i n d i c a t e d h i s i n t e n t i o n t o e x e r c i s e h i s a u t h o r i t y . t h e m o d e l w i l l u s e t h e 1 9 8 6 l o a n r a t e s f o r t h e f i r s t f i v e y e a r s o f t h e f o r e c a s t . B e y o n d t h a t t i m e t h e r e a l l o a n r a t e s w i l l r e m a i n f a i r l y c o n s t a n t b u t t h e n o m i n a l r a t e w i l l i n c r e a s e b y t h e r a t e o f e x p e c t e d i n f l a t i o n ( T a b l e 6 . 5 ) . O 1 D U 1 4 5 T a b l e 6 . 5 L o a n R a t e A s s u m p t i o n s ( s l B u s h e l ) 1 9 6 5 1 9 8 7 1 9 3 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 x e W h e a t . 2 . 4 0 2 . 4 0 2 . 5 0 2 . 4 0 2 . 4 0 2 . 5 2 2 . 5 4 2 . 7 7 2 . 9 1 C o r n 1 . 9 2 1 . 9 2 1 . 9 2 1 . 9 2 1 . 9 2 2 . 0 1 2 . 1 1 2 . 2 2 2 . 3 3 2 . 4 4 B a s e d u p o n l a r g e s o y o i l s t o c k s a n d s t o c k s o f c o m p e t i n g o i l s . i t i s f o r e c a s t t h a t r e a l s o y o i l p r i c e s w i l l r e m a i n l o w t h r o u g h o u t t h e e n t i r e f o r e c a s t p e r i o d . P r i c e s w i l l b e w i t h i n t h e 9 . 2 0 - 8 . 3 5 p e r p o u n d r a n g e ( T a b l e 6 . 6 ) . T a b l e 6 . 6 N o m i n a l W o r l d S o y o i l P r i c e A s s u m p t i o n s ( c e n t s / l b ) 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 2 0 . 9 2 2 2 . 0 7 2 3 . 2 5 2 4 . 7 1 2 6 . 1 9 2 7 . 9 4 2 9 . 7 0 3 0 . 5 0 3 2 . 0 0 3 3 . 4 1 6 F e a t R e l t s R e d u c t i o n o f t h e l o a n r a t e s f o r c o r n a n d w h e a t i n 1 9 8 6 r e d u c e s a c r e a g e i n b o t h c o m m o d i t i e s . H o w e v e r . t h e g r o w t h i n c o n s u m p t i o n a n d i m p o r t d e m a n d l a g b e h i n d p r o d u c t i o n g r o w t h a n d e n d i n g s t o c k s c o n t i n u e t o i n c r e a s e f o r a l l c o m m o d i t i e s . T h i s d e p r e s s e s p r i c e s t h r o u g h t h e e n d o f t h e d e c a d e . A l t h o u g h n o m i n a l p r i c e s b e g i n t o i n c r e a s e i n t h e s e c o n d h a l f o f t h e f o r e c a s t p e r i o d . r e a l p r i c e s c o n t i n u e t o t r e n d d o w n w a r d . 6 . 3 . ; W h e a p D e s p i t e t h e d e c l i n e i n w h e a t p r i c e s r e l a t i v e t o c o a r s e g r a i n s . g l o b a l w h e a t p r o d u c t i o n c o n t i n u e d t o i n c r e a s e a t a p p r o x i m a t e l y 2 . 5 8 p e r y e a r t h r o u g h t h e f o r e c a s t p e r i o d 1 4 6 ( T a b l e 6 . 7 ) . D u r i n g t h e s a m e p e r i o d . n e t t r a d e i n c r e a s e d b y a p p r o x i m a t e l y 1 . 7 5 8 p e r y e a r . M o s t o f t h e w e a k n e s s i n i m p o r t d e m a n d w a s t h e r e s u l t o f i n c r e a s e d d o m e s t i c s u p p l i e s i n b o t h t h e L D C r e g i o n a n d t h e S o v i e t B l o c . A n e x p a n s i o n o f t h e l a n d b a s e i n t h e L D C s l e d t o i n c r e a s e s i n w h e a t a r e a . P r o d u c t i o n o f w h e a t i n c r e a s e d b y a p p r o x i m a t e l y 4 . 5 x p e r y e a r . r e d u c i n g L D C d e p e n d e n c e u p o n t h e o u t s i d e s o u r c e s f o r w h e a t . A l t h o u g h w h e a t i m p o r t s i n c r e a s e d s l i g h t l y i n 1 9 8 6 a n d 1 9 8 8 . t h e r e w a s a s t e a d y d e c l i n e i n i m p o r t s d u r i n g t h e r e s t o f t h e p e r i o d . I m p r o v e d m o i s t u r e c o n d i t i o n s i n 1 9 8 6 w i l l p e r m i t t h e S o v i e t U n i o n t o b e g i n s o w i n g w i n t e r w h e a t i n a r e a r e c e n t l y p l a n t e d t o c o a r s e g r a i n s . A l t h o u g h t h e i n c r e a s e s i n a r e a a r e m i n i m a l . ( l e s s t h a n 2 % p e r y e a r ) . a r e t u r n t o t r e n d y i e l d g r o w t h e x p a n d s p r o d u c t i o n b y m o r e t h a n 2 3 . I t s h o u l d b e n o t e d t h a t m o s t o f t h i s i n c r e a s e o c c u r s i n t h e f i r s t h a l f o f t h e f o r e c a s t p e r i o d a n d t e n d s t o r e p r e s e n t m o r e o f a r e t u r n t o t h e t r e n d s o f t h e l a t e 1 9 7 0 ’ s t h a n a m a j o r p o l i c y s h i f t . L a t e r i n t h e p e r i o d t h e g r o w t h o f p r o d u c t i o n t e n d s t o s l o w a n d a l t h o u g h w h e a t i m p o r t s d o i n c r e a s e m o r e r a p i d l y t h a n i n t h e l a s t h a l f o f t h e 1 9 8 0 ’ s t h e y d o n o t a p p r o a c h t h e g r o w t h r a t e s o f t h e l a t e 1 9 7 0 ’ s . A s a r e s u l t o f t h e s l o w g r o w t h i n i m p o r t d e m a n d . t h e r e i s a n i n c r e a s e i n w h e a t e n d i n g s t o c k s b y a l l m a j o r e x - p o r t e r s . T h e U . S . c o n t i n u e s t o l o s e m a r k e t s h a r e . p r i m a r i l y o n t h e w e a k n e s s o f t h e e x p o r t m a r k e t i n g e n e r a l a n d t h e s t r e n g t h o f E C e x p o r t s i n p a r t i c u l a r . . 2 3 1 - - - 5 9 9 - 1 — - - - - _ - 4 9 - 9 6 - 9 . 1 - 6 2 1 3 6 9 4 9 . 1 1 2 1 2 3 - u - - - - - - - - - - - - - - u 9 4 n 9 . c I 7 o 1 - 1 - - - - - 1 5 - 9 5 9 - . 1 4 1 1 - - - - c n u 0 o 4 9 - 4 9 - 2 1 1 1 9 0 - - - - - - - ~ . 1 9 3 1 1 / 8 o 9 1 - S R o A . E - Y — - P - O - 8 2 R 8 - 8 C . 9 - - 1 3 . - S o 1 1 N O T - - - - C 4 9 . 1 1 1 6 J 3 I I I R T E M N O I - - - - - - - — - — L 6 - 8 — 9 1 g L I M N I . T E 5 E 8 9 1 . 6 2 1 H S E C N A L A 4 5 B 8 2 R 1 8 9 . 4 1 U L O A L U F T C T A A 3 0 E 8 4 9 . . . E D R A E R B T M E V L O A N N - O R I E G B E M R E - C A E R D T N I E . S K U S O E O A L O N U T I L U T C O N X E N E G O R I A T . A S 8 U R O T A R I I R S L E A N R I G T A N S R I U O G A N U D O L . R R R E O V O W T E W E O H E H U T D N I S . T E R D N O E U P T J M - R I Y O L P U E T J R E H N W 1 3 5 1 D N A T A E N S Y S L L E L A I A U R C Q E I E S P Y T A T O D H S T O T N S W U E S I E D L R E A A L M Z - O K ' T K R A M . S Y A O I M T S R M 2 I C A A C O L T O / C O B S S W O L A A D N I I L D T O S I T B T B E R N R N E L S L T L I P A T - I U P A O O 7 . 6 E L B A T R A A T O B T R T E Z O D R N L U O O E S A L A P A E T E S T P I ’ R N D A C D I A X N V S G . S M I V C B I D T N S E A E U R . O D H I C A A D U S L C M S A . E C U . S T T M . E E O U N N D T O E P P Y X S E E P R O R T R O E C N C 1 2 3 I / / F O R E C A S T P R E L I M 1 9 8 7 E X P O R T P R I C E . S / M T . 1 4 1 7 7 2 8 2 8 6 4 3 6 7 3 0 0 L 2 1 . i o a 4 0 3 8 6 4 I 7 9 3 5 7 2 9 9 8 2 1 1 5 3 9 0 5 3 5 2 2 4 3 5 7 L 7 9 6 3 5 9 6 I 8 9 4 7 I 2 5 6 0 5 8 4 2 I I 5 3 9 1 7 5 1 5 2 7 2 4 6 0 3 8 L 2 1 5 3 9 0 2 0 5 3 6 9 L 4 6 9 2 7 9 2 I 5 3 8 7 6 1 7 1 0 2 L 3 7 8 L 7 8 2 1 5 3 8 8 0 4 4 6 9 5 L 3 7 7 9 6 6 2 I 4 3 8 4 2 3 4 3 6 9 L 2 7 6 7 6 3 2 I ‘ 3 5 6 7 6 2 8 5 3 0 3 5 0 8 7 “ 2 5 9 4 9 1 0 7 5 3 7 3 8 2 9 I 3 6 9 7 6 6 5 8 0 0 8 9 8 3 9 7 6 8 4 I 3 7 6 9 8 8 2 I 4 3 8 5 6 9 4 2 3 9 4 E I L L G L A J L 2 2 2 3 2 O 7 7 I 3 0 3 0 9 5 1 1 0 6 0 4 8 2 2 2 3 9 0 9 3 2 8 5 0 4 5 1 0 9 5 9 4 6 2 2 2 2 3 1 6 1 5 6 0 1 4 2 9 8 5 8 4 ” 6 2 9 0 2 8 0 7 3 2 0 7 5 7 4 I 2 2 I 2 I 9 0 9 2 9 9 I 0 9 3 2 8 5 4 7 4 9 2 2 I 4 5 4 9 6 3 0 2 2 3 7 4 4 6 4 8 2 2 1 2 2 7 5 1 5 5 0 5 2 3 6 4 4 5 4 6 2 2 1 2 I 8 3 6 4 7 6 1 0 9 2 2 5 3 4 5 4 3 2 2 I 2 I 8 9 4 I 9 0 2 9 3 2 5 0 3 4 5 3 6 2 2 I 2 2 8 4 6 6 0 9 0 6 3 7 4 3 7 3 2 5 6 5 0 9 7 4 6 4 3 7 4 ‘ “ 4 9 2 3 4 2 6 3 2 I 0 4 L 4 9 3 ‘ 5 4 8 2 3 8 P R O D U C T I O N 9 0 % 4 2 5 8 0 7 3 1 0 0 0 0 0 0 L 2 7 4 0 L 2 3 3 0 3 3 2 1 7 6 9 3 9 1 I 3 1 1 6 0 7 3 7 5 3 5 3 0 0 9 0 4 0 0 2 6 1 9 6 9 3 3 9 9 3 2 1 7 6 8 6 8 2 9 9 I 7 7 7 0 1 9 0 I 9 0 L 5 9 7 L 6 3 3 9 6 2 2 1 7 5 8 2 8 1 0 I I 6 4 7 4 2 6 5 9 3 I 2 8 I I 9 9 L 5 6 6 6 4 3 3 9 ” 2 I I 7 7 2 I 2 2 0 2 0 2 3 0 I 7 8 9 L 4 4 5 2 2 3 3 9 9 2 I I 7 5 8 I 8 I I 7 5 3 3 7 6 4 I 2 5 7 I 9 7 8 L 2 L 3 7 0 3 3 9 5 2 I I 7 5 8 0 8 6 4 9 7 5 0 4 6 2 3 6 6 I 2 7 7 L 9 9 2 2 8 3 3 9 2 2 I I 6 4 8 0 7 I 5 I I 5 4 I 9 8 9 6 4 3 I 5 5 I 7 8 7 I 6 5 0 8 6 3 3 9 8 2 I I 6 4 4 l 8 5 4 3 8 0 7 8 0 8 9 3 5 I . 8 0 6 1 5 L 7 4 4 2 3 9 4 3 1 1 6 4 7 9 7 1 2 1 5 I 2 3 9 9 0 3 9 0 9 0 I I 0 5 0 3 4 4 9 3 2 2 9 4 9 1 5 0 5 2 I 3 5 3 2 I I 3 6 0 6 0 8 9 5 5 4 I ” 2 6 2 6 3 9 3 7 I 9 I 0 0 L 8 3 0 4 9 8 7 0 1 8 3 2 I I 7 H 8 5 6 8 3 9 4 4 6 4 0 1 8 1 4 6 L 2 5 4 0 7 L 0 2 7 0 2 2 I 6 I 7 4 S I E S K n 3 R E / A M C M 0 L O C A A A L D N T I N B E I L 0 L I P I S T A A T T O E Z . D R N E L S A L A E C D A T E . I E . N D R P I L N S G S V V C I D B O N R A U R O E D I C A A U S D L C H 9 9 7 8 2 4 9 0 2 3 1 8 0 6 4 4 5 0 7 0 4 4 9 L 3 9 7 5 1 4 3 I I 6 8 7 6 2 0 7 1 3 1 1 2 8 7 6 4 4 5 7 6 6 0 3 9 0 3 4 4 1 4 7 6 6 6 9 0 5 9 I 9 3 9 0 6 4 4 4 3 6 L 6 2 8 9 3 L 7 M 0 4 0 6 5 6 9 8 4 9 8 0 6 4 9 5 6 4 4 3 0 5 6 3 1 8 8 3 7 3 0 4 2 % 5 3 5 2 7 0 2 8 0 6 5 9 I 6 4 4 3 7 4 2 m 0 8 7 3 4 4 2 5 4 6 1 1 2 0 4 6 9 5 6 4 4 2 4 4 8 8 9 8 6 3 L 3 7 7 2 9 6 3 I 5 7 2 2 3 5 9 2 8 0 8 6 4 4 L L 3 4 5 7 8 5 4 8 3 7 7 2 9 3 I 2 9 5 I 6 5 2 8 9 0 9 0 8 6 3 ‘ L 7 2 0 2 6 8 “ 4 5 3 6 7 2 9 3 I 6 3 4 0 3 2 5 0 5 7 4 6 L 7 I 9 3 2 a 9 7 4 6 7 2 4 9 4 7 9 9 2 5 3 4 9 7 2 4 7 4 7 2 3 0 2 5 7 1 8 3 6 7 5 8 0 7 7 7 0 I 9 0 8 5 3 4 7 9 I 2 M 3 8 0 4 0 I I 9 I 9 3 5 8 8 2 8 5 9 ‘ 2 5 3 4 2 8 L 8 5 3 6 2 4 4 3 3 7 H 9 3 2 0 7 6 8 2 1 4 1 0 1 4 6 1 0 5 2 4 0 6 7 2 1 2 6 1 4 2 3 3 6 1 9 3 2 8 4 A U S T R A L I A A R G E N T I N A s o v i s r B L O C D E V E L O P E D M A R K E T S N C O T A L l 3 E N D I N G S T O C K S 9 7 0 . 4 1 . 9 8 . 0 2 . . . 3 6 7 . 4 4 L 6 2 4 3 6 4 L 3 I 1 6 0 7 8 8 7 0 0 3 2 5 7 5 4 I 4 I 4 I 6 4 I 9 3 I 5 I 4 I 2 5 9 0 5 6 7 0 7 3 I 3 I 5 4 ” I u g 5 4 L 5 0 4 9 9 3 4 6 0 6 4 0 2 1 5 4 0 L 4 ? 5 4 L 0 1 3 8 2 9 3 2 2 5 0 6 6 9 I 5 M 4 “ L u s 5 3 L 4 8 0 9 5 0 1 4 0 3 5 8 0 0 “ 4 5 L M 3 5 3 L 9 I 2 9 9 2 0 0 3 0 1 6 7 9 7 5 3 3 L 4 L 5 3 4 I 4 I 3 I I 8 7 9 5 8 5 3 0 9 6 5 8 4 5 3 2 3 9 4 3 1 4 4 9 7 3 8 4 0 5 5 3 7 5 5 3 3 2 7 4 3 8 1 4 1 2 0 I 6 I 9 8 6 4 8 0 8 5 8 6 9 2 3 5 3 5 3 2 m 7 4 9 9 5 8 5 0 4 4 4 5 1 8 5 8 9 5 2 1 . 0 1 I 6 5 7 8 8 7 3 0 3 6 2 5 8 7 8 8 2 0 5 5 4 m I 2 4 7 1 5 2 3 0 1 4 2 5 5 9 7 8 2 3 2 5 4 8 9 E L S A O L E I N C O M E ' S B R A Z I L O P E C N I C ‘ S W O R L D T O T A L / 3 r a t e i n t h e e a r l y 1 9 9 0 ’ s a n d r e m a i n t h e r e t h r o u g h t h e e n d o f 1 4 8 G i v e n t h e h i g h l e v e l s o f s u p p o r t u n d e r t h e C A P . D e v e l o p e d M a r k e t p r o d u c t i o n c o n t i n u e s t o e x p a n d a t J u s t o v e r 2 x p e r y e a r . H o w e v e r . w i t h i m p o r t d e m a n d i n c r e a s i n g o n l y m o d e s t l y . t h e E C m u s t e i t h e r e x p a n d i t s e x p o r t m a r k e t s h a r e o r d r o w n i n i t s s u r p l u s . A l t h o u g h e x p o r t s b y t h e D e v e l o p e d M a r k e t i n c r e a s e b y a l m o s t 7 8 p e r y e a r . t h i s i s i n s u f f i c i e n t t o p r e v e n t c o n t i n u e d s t o c k a c c u m u l a t i o n . T h e m a r k e t s h a r e s o f C a n a d a . A u s t r a l i a a n d A r g e n t i n a r e m a i n f a i r l y c o n s t a n t d u r i n g t h e p e r i o d . D e c r e a s e s i n p e r a c r e c o a r s e g r a i n r e v e n u e r e l a t i v e t o w h e a t r e v e n u e e n c o u r a g e d a s l i g h t i n c r e a s e i n t h e a r e a p l a n t e d t o w h e a t i n t h e f i r s t 4 y e a r s o f t h e f o r e c a s t . H o w e v e r . a s w h e a t p r i c e s d e c l i n e i n t h e m i d d l e p a r t o f t h e f o r e c a s t . t h e r e i s a r e t u r n t o c o a r s e g r a i n a r e a . A r g e n t i n a i n c r e a s e s s o y b e a n a r e a a t t h e e x p e n s e o f w h e a t i n t h e e a r l y 1 9 9 0 ’ s a n d a t t h e e n d o f t h e p e r i o d . T h i s p r e v e n t s A r g e n t i n e w h e a t p r o d u c t i o n f r o m i n c r e a s i n g b y m o r e t h a n a n a n n u a l a v e r a g e o f 1 . 5 % . A s t h e r e s i d u a l e x p o r t e r . t h e U n i t e d S t a t e s s e e s o n l y a s l i g h t i n c r e a s e i n t h e q u a n t i t y o f g r a i n e x p o r t e d . T h e U . S . g o v e r n m e n t a b s o r b s t h e m a j o r i t y o f t h e s t o c k i n c r e a s e . b y t h e e n d o f t h e p e r i o d a l m o s t a l l U . S . w h e a t e n d i n g s t o c k s a r e u n d e r C . C . C . l o a n . H o w e v e r . d e s p i t e s u b s t a n t i a l w h e a t a c r e a g e r e d u c t i o n i n 1 9 8 6 a n d f u r t h e r r e d u c t i o n s i n t h e l a s t h a l f o f t h e f o r e c a s t . t r e n d y i e l d g r o w t h b o o s t s w h e a t p r o d u c t i o n e v e r y y e a r o f t h e f o r e c a s t . E v e n w i t h r e c o r d g o v e r n m e n t s t o c k p i l i n g . w h e a t p r i c e s f a l l b e l o w t h e l o a n 1 4 9 t h e f o r e c a s t p e r i o d . 6 . 3 . ; C o a r s e Q g g i n g T h e c o a r s e g r a i n p i c t u r e l o o k s e q u a l l y b l e a k w i t h r e a l p r i c e s f a l l i n g t h r o u g h t h e e n d o f t h e d e c a d e ( T a b l e 6 . 8 ) . T r a d e g r o w t h i s s o m e w h a t m o r e r o b u s t . i n c r e a s i n g a t a p p r o x - i m a t e l y 4 . 2 % p e r y e a r . T h i s i s f a s t e r t h a n t h e 1 . 5 3 a n n u a l g r o w t h o f w o r l d c o a r s e g r a i n p r o d u c t i o n . H o w e v e r . e n d i n g s t o c k a c c u m u l a t i o n i n t h e U n i t e d S t a t e s r e m a i n s a i n c r e a s i n g b u r d e n w i t h o v e r 8 b i l l i o n b u s h e l s o f c o r n u n d e r g o v e r n m e n t l o a n p r o g r a m b y t h e e n d o f t h e f o r e c a s t p e r i o d . - S t e a d y i n c o m e g r o w t h a m o n g t h e m i d d l e i n c o m e c o u n t r i e s “ ( e s p e c i a l l y t h e N I C s ) a n d a c o n t i n u a t i o n o f t h e S o v i e t p o l i c y o f u p g r a d i n g d i e t s l e d t o i n c r e a s e d i m p o r t s o f c o a r s e g r a i n . A l t h o u g h n o t a p p r o a c h i n g t h e l e v e l s o f t h e l a t e 1 9 7 0 ’ s S o v i e t B l o c i m p o r t s o f c o a r s e g r a i n i n c r e a s e d a t a n a v e r a g e a n n u a l r a t e o f a l m o s t 7 x p e r y e a r . T w o f a c t o r s a r e r e s p o n s i b l e f o r t h i s . F i r s t . t h e r e w a s a d e c l i n e i n t h e r a t e o f g r o w t h i n p r o d u c t i o n a s l a n d s r e c e n t l y p l a n t e d t o c o a r s e g r a i n w e r e r e t u r n e d t o w h e a t p r o d u c t i o n . S e c o n d l y . t h e w h e a t c o a r s e - g r a i n p r i c e r a t i o f a v o r s c o a r s e g r a i n i m p o r t s : t h e r e f o r e . t h e r e i s a n i n c e n t i v e t o r e v e r s e t h e r e c e n t t r e n d a n d u s e i m p o r t m o r e c o a r s e g r a i n f o r a n i m a l f e e d . I n t h e N I C s . l o w p r i c e s c o a r s e g r a i n p r i c e s a n d s t e a d y ' T h e m i d d l e i n c o m e c o u n t r i e s a r e d e f i n e d a s B r a z i l . t h e L D C s a n d t h e N I C s i n t h e g r a i n s e c t o r a n d t h e L D C s a n d N I C s i n t h e o i l s e e d s s e c t o r . 5 8 9 8 9 . . 1 3 1 4 3 9 6 9 . . 4 2 1 3 8 9 3 9 . 1 8 1 1 2 4 9 9 0 . . 3 “ 1 1 9 2 9 . 1 8 0 1 0 3 9 2 9 . 1 3 0 1 9 2 3 8 9 . 1 3 0 1 . 1 / 3 5 3 4 S 9 . 1 3 0 1 3 6 . 9 9 R T A S E A Y C E P R O O R 7 F C 3 9 1 . S N O T C I 9 6 R 0 8 T . 9 E 1 1 M 9 N O I L M L I 5 3 I L 3 M E 9 3 . R 1 N P I . T E E 4 O H 3 O S 9 1 L . L E L C A N U A T L C A A B 3 8 9 1 N I A R G 1 0 6 L 4 1 E T S M R / A S D C . E D C L A L I L T R R D P A O T T . R E B M E V . O E N D - A R R E T B M L . K O O L T U O A N I O L I A T R A T U S T U I A S . N R I E A V R E G W N O U D H O L R R . O O H R T E B E M E H E U T D T P N I E S S T - D R R E O P E T M B R I O O T P C E T O R E N Y S L L E L A I A U R C D E I E S P Y A T D S U D T N O I T A Z I L S H A A O I D T I N T o S R L I - T L N 8 . 6 - E L O A A T B a R P D N R U o O X S G P A E T E N G S S . A R U . C A A U M I O I T C U D O T U C I T S E B M S T A R O . E T U N D P N O P S E R R O C 1 M N E T E X P O R T S 7 2 0 9 7 6 5 7 8 0 9 0 6 9 6 1 4 5 5 6 7 0 5 5 5 6 1 2 6 7 5 6 7 9 L 0 4 2 5 1 3 4 5 6 6 8 8 6 7 0 3 8 9 0 2 2 5 5 5 7 5 2 1 2 7 0 2 5 5 2 0 2 5 5 5 6 2 8 1 2 7 9 2 2 1 5 2 7 5 5 5 5 9 4 2 6 9 1 9 3 3 7 0 5 4 H 4 7 2 2 6 9 1 5 3 8 8 6 5 4 3 2 6 9 : 6 0 6 5 1 0 2 5 4 2 2 3 5 1 2 6 8 3 6 8 7 2 0 4 4 0 9 9 9 1 1 5 7 2 4 8 4 5 9 3 5 H 0 7 7 9 7 8 4 0 4 5 5 9 1 5 6 2 5 7 1 4 0 9 1 1 0 9 6 3 0 5 1 4 1 3 9 0 4 3 1 . 3 1 1 2 ' 8 9 4 9 3 8 6 9 5 0 9 4 1 2 2 8 5 4 2 1 . 3 1 1 1 6 4 9 8 7 6 2 8 7 8 9 3 1 0 2 7 0 3 2 1 . 3 1 1 1 1 5 1 4 8 2 5 9 9 4 6 9 3 1 9 1 6 6 3 2 1 1 — 2 4 1 1 0 5 8 9 8 8 3 6 9 2 4 8 2 1 7 1 5 2 3 2 1 . 2 4 1 0 1 6 7 4 8 2 0 2 1 2 2 8 2 4 6 1 5 8 3 2 1 . 2 1 1 9 8 9 1 9 9 1 8 2 7 0 8 2 L 4 . 0 4 4 3 2 1 . 2 ' 1 9 2 1 8 0 9 0 5 4 0 9 9 1 2 3 0 3 2 2 2 1 . 2 1 1 9 8 8 4 0 6 5 4 6 6 7 8 1 2 3 0 2 9 2 2 1 . 2 1 1 8 5 0 2 0 6 6 0 9 2 6 7 1 2 2 0 1 5 2 2 1 . 2 1 1 8 3 0 8 8 6 7 7 2 0 5 3 0 2 2 0 1 9 2 2 1 . 2 1 1 7 6 7 3 5 7 9 5 3 9 6 9 2 8 2 2 9 7 2 1 1 . 2 1 7 8 4 0 6 2 1 3 4 2 0 3 9 0 9 6 1 3 1 1 S T D E K 2 R / A S C M 4 L 0 E A L D M T B E 0 L 0 P C I S T T 0 N Z C . E L S A I A E C D I E . N . R P I L V V C I D B O N R O E D H I 0 S D L C M U “ H m w n v 8 8 2 6 0 2 4 7 2 2 8 1 0 6 0 7 5 7 7 1 6 3 6 6 6 2 1 2 0 8 1 3 8 4 2 1 3 3 1 1 1 9 4 5 6 3 8 9 5 4 1 3 6 2 6 6 0 6 9 3 5 9 5 3 6 6 0 2 1 3 2 9 8 1 2 8 4 2 1 2 2 1 1 1 9 0 2 9 9 6 7 6 2 6 9 4 3 8 6 0 5 2 0 4 7 4 2 5 6 4 2 1 2 9 8 1 2 8 4 2 1 0 2 1 1 1 9 6 8 3 4 4 2 7 1 9 3 1 4 4 5 9 5 6 7 3 5 3 1 5 6 8 2 8 4 2 1 8 8 2 2 1 1 1 2 4 6 6 3 9 9 2 9 5 9 4 0 5 9 4 9 4 H 3 2 0 4 5 2 2 8 4 2 1 " z a n n ‘ 1 1 0 0 1 3 3 6 0 6 8 5 7 5 9 4 5 L 0 2 L L 4 5 9 2 7 7 1 2 8 4 2 1 5 8 2 1 1 1 1 8 4 1 0 3 6 9 8 4 8 6 0 5 8 3 L 8 8 0 0 9 3 5 6 2 2 7 8 6 0 2 3 2 1 4 2 1 1 1 a 9 3 2 7 2 2 6 3 7 4 7 6 2 4 8 2 4 5 6 8 0 8 2 5 9 2 6 6 0 1 8 3 2 1 2 1 1 1 8 7 6 9 9 1 8 4 0 6 4 5 7 9 4 7 0 L 3 4 6 0 6 0 5 5 2 : 0 1 3 2 1 1 2 2 1 1 1 8 2 8 8 4 4 1 0 7 1 5 7 8 3 5 7 9 6 3 4 5 0 8 L 5 0 2 1 1 1 0 7 8 3 3 8 7 9 4 2 2 0 0 2 4 7 8 4 2 9 1 4 7 0 6 1 1 2 1 7 6 0 1 8 3 2 1 3 2 1 1 1 8 3 4 2 3 9 4 5 4 4 5 7 2 1 1 8 9 6 8 7 8 5 9 0 7 1 4 2 5 0 0 9 3 2 1 9 2 1 1 1 7 2 3 3 4 7 1 3 6 6 5 9 1 6 0 9 7 6 8 8 0 2 8 1 5 1 1 3 5 8 1 9 3 2 1 7 6 S T E S K . 3 R E I A H C H 0 L O m A A L 0 T I N 8 E I L 0 L I 9 I S T A A T E Z C . D R N E L S A L A E C D A T E . I E , N R P I L N S G S V V C I U B O N R A U R 0 E H 0 C A A U S D L C M H 0 7 2 7 9 4 5 8 2 4 7 0 4 L 3 9 3 9 7 6 4 7 7 9 0 3 2 1 2 4 4 8 7 2 2 2 3 2 2 1 1 9 7 6 0 4 5 6 0 5 3 1 2 1 7 0 3 9 0 4 5 4 3 5 7 9 9 6 1 2 4 4 8 7 2 2 1 1 2 1 1 9 5 6 9 0 1 9 6 3 1 4 6 1 9 0 3 8 7 9 3 1 2 3 6 8 8 9 0 1 4 4 8 7 2 2 1 9 2 2 1 1 3 6 8 6 8 1 2 2 9 7 0 2 4 0 3 8 3 3 2 9 L 0 5 8 7 3 0 1 4 3 8 7 2 2 1 8 2 2 1 1 8 1 6 6 6 6 5 9 3 7 9 4 4 0 0 3 8 8 0 6 0 8 4 7 6 fl 8 1 6 5 7 7 7 7 8 9 4 9 6 7 0 3 8 7 3 8 4 9 0 4 6 5 3 9 0 3 3 7 6 2 2 1 “ 1 2 1 1 0 5 3 5 7 8 5 0 6 2 5 8 9 0 3 8 3 8 6 2 9 4 3 6 4 6 9 9 3 3 7 6 2 2 1 3 1 1 8 9 4 9 6 4 1 2 3 4 1 2 1 1 9 3 7 8 4 5 0 8 2 2 6 4 0 8 9 3 7 6 2 2 1 2 8 1 1 1 1 8 2 6 7 0 6 6 9 6 3 9 4 0 9 3 7 2 1 3 7 7 0 1 5 3 4 8 9 3 2 7 6 2 2 1 0 1 1 " 7 3 5 7 1 6 8 6 5 1 6 8 8 9 3 7 4 0 1 4 8 0 2 5 2 0 7 9 3 2 7 6 2 2 1 9 7 : 1 8 2 2 4 6 7 9 6 8 2 5 1 1 8 3 7 5 6 0 1 1 9 1 6 2 5 6 8 3 2 8 5 2 2 1 7 7 0 0 4 8 0 8 3 9 2 2 4 6 4 8 3 7 4 4 2 1 1 2 1 0 0 5 6 8 8 2 2 9 6 2 3 1 7 7 : 1 1 6 1 5 3 3 7 4 6 9 4 2 4 4 0 3 7 7 2 2 0 2 7 1 6 0 2 4 7 2 2 9 5 2 2 1 4 : 1 1 S T E S K . 3 R E / A M C M 0 L O m A A A L D T I N B E I L 0 L I P I S T A A T T O E Z C . D R N E L S A L A E C D A T E . I E ; N D R P I L N S G S V V C I O B U N R A U R . 0 E D H I 0 C A A U S D L C M U E N D I N G S T O C K S 5 6 9 0 4 2 7 0 8 8 8 1 1 5 0 7 7 “ 3 1 L 1 1 2 4 6 9 8 3 9 8 0 8 9 8 1 5 5 7 7 6 1 3 1 1 4 6 1 1 1 1 2 3 6 9 3 1 7 9 0 7 9 7 1 6 6 1 1 1 1 2 3 6 9 0 0 5 0 0 5 7 7 0 7 5 0 7 6 2 3 L L % 1 2 3 5 9 5 9 3 1 0 3 6 6 0 8 5 5 6 6 2 3 1 1 m 1 5 6 9 7 7 0 2 0 3 7 6 0 8 5 1 6 6 2 3 1 1 6 5 1 1 9 1 1 6 5 8 4 7 6 1 0 0 5 5 0 8 5 6 6 5 2 3 L L O 9 1 1 7 5 8 0 6 3 0 0 9 4 5 0 7 5 8 6 5 2 2 1 1 1 1 1 8 5 8 5 5 1 8 0 7 1 4 1 6 5 9 6 5 1 2 1 1 2 7 1 ‘ 0 6 8 1 6 1 6 0 1 5 4 2 8 6 7 6 5 1 3 1 1 0 1 1 5 6 9 5 9 6 2 0 0 4 3 2 2 5 8 6 5 0 3 9 4 1 8 6 6 8 4 6 3 0 0 8 1 2 2 3 8 5 3 9 3 L L 5 8 7 7 6 5 9 3 8 0 1 6 2 3 6 3 1 3 9 9 3 1 1 0 ‘ . 3 6 S T E S u . a E / A I C M 0 L 0 m A A A L 0 T I N B E I L 0 L I P I S T A A T T o E Z C : D R N E L S A L A E C D A T E . I E . N D R P I L N S G S V V C I O B O N R A U R . 0 E D H I 0 C A A U S D L C M U E C E O N A N U S E D - R E G I 8 E X C L U D E S T D N 5 V L 1 ‘ 1 S M 2 A A 8 5 R T 8 R R A 0 S E P E Y X D E U W L T 9 . . m C N I 1 2 3 4 1 5 1 i n c o m e g r o w t h e n c o u r a g e i n c r e a s e d f e e d i n g o f c o a r s e g r a i n . C o a r s e g r a i n i m p o r t s a v e r a g e a p p r o x i m a t e l y 5 3 p e r y e a r . I m p o r t g r o w t h i n c r e a s e r a p i d l y u n t i l t h e 1 9 9 0 a n d t h e n a s p r i c e s b e g i n t o r i s e , i n c r e a s e a t a d e c r e a s i n g r a t e . B r a z i l i a n p r o d u c e r s . f a c e d w i t h h i g h e r r e v e n u e f r o m s o y b e a n s r e l a t i v e t o w h e a t o r c o a r s e g r a i n s . i n c r e a s e s o y b e a n a r e a a t t h e e x p e n s e o f w h e a t a n d c o a r s e g r a i n s . L o w e r p e r c a p i t a s u p p l i e s o f b o t h c o m m o d i t i e s a s w e l l a s l o w c o a r s e g r a i n p r i c e s e n c o u r a g e i m p o r t s o f c o a r s e g r a i n . H o w e v e r . i m p o r t g r o w t h w i l l c o n t i n u e t o b e l i m i t e d b y f o r e i g n e x c h a n g e c o n s t r a i n t s a n d c o n t i n u e d d e b t b u r d e n s . T h e r e f o r e , t h e i n c r e a s e i n i m p o r t s b y B r a z i l d o e s n ’ t r e p r e s e n t a n i n c r e a s e i n p e r c a p i t a c o n s u m p t i o n l e v e l s a s m u c h a s a m a i n t e n a n c e o f c u r r e n t s t a n d a r d s g i v e n t h e d e c r e a s e i n g r a i n p r o d u c t i o n . A b u n d a n t s u p p l i e s o f g r a i n i n t h e L D C s a n d t h e D e v e l o p - e d H a r k e t s d e p r e s s i m p o r t d e m a n d b y b o t h r e g i o n s . L o w s o y m e a l p r i c e s a n d a b u n d a n t w h e a t s u p p l i e s e n c o u r a g e s t h e o v e r f e e d i n g o f p r o t e i n t o l i v e s t o c k i n t h e E C . w h i l e t h e r e i s s t i l l s o m e g r o w t h i n i m p o r t d e m a n d f o r c o a r s e g r a i n s . p r i m a r i l y b y J a p a n . t h e q u a n t i t y i m p o r t e d g r o w s a p p r o x - i m a t e l y 3 8 p e r y e a r . T h e i n c r e a s e i n L D C l a n d a r e a t r a n s l a t e d i n t o a n i n c r e a s e i n c o a r s e g r a i n c u l t i v a t i o n . P r o d u c t i o n i n c r e a s e s a n a v e r a g e o f 1 . 7 x p e r y e a r o r 1 9 . 5 m i l l i o n t o n s f o r t h e f o r e c a s t p e r i o d . T h i s i n c r e a s e . c o u p l e d w i t h f o r e i g n e x c h a n g e c o n s t r a i n t s . e n c o u r a g e c o n s u m p t i o n o f d o m e s t i c 5 % p e r y e a r . t h e U . S . s h a r e o f t h e w o r l d c o a r s e g r a i n m a r k e t 1 5 2 g r a i n . T h e r e f o r e . t h e r e i s a i n c r e a s e o f l e s s t h a n e x p e r y e a r i n i m p o r t d e m a n d . C o n s u m p t i o n i s m a i n t a i n e d t h r o u g h i n c r e a s e d p r o d u c t i o n a n d b y s o m e d r a w d o w n o f c o a r s e g r a i n e n d i n g s t o c k s . C o a r s e g r a i n p r o d u c t i o n b y c o m p e t i n g e x p o r t e r s r e m a i n s f a i r l y c o n s t a n t . C a n a d i a n a g r i c u l t u r e s u f f e r s a r e t r e n c h - m e n t s i m i l a r t o t h a t e x p e r i e n c e d b y t h e U . S . T h e r e i s a d e c l i n e i n t h e t o t a l c r o p l a n d b a s e u n t i l t h e b e g i n n i n g o f t h e 1 9 9 0 ’ s . M o s t o f t h i s d e c l i n e m a n i f e s t s i t s e l f i n a n a v e r a g e a n n u a l d e c l i n e i n c o a r s e g r a i n a r e a o f J u s t u n d e r 1 x . A l t h o u g h t h e d e c l i n e i n a r e a i s m o r e t h a n o f f s e t b y y i e l d i n c r e a s e s . t h e i n c r e a s e i n p r o d u c t i o n i s m a t c h e d b y a n i n c r e a s e i n d o m e s t i c l i v e s t o c k f e e d i n g . T h e r e f o r e . t h e r e i s v e r y l i t t l e e x t r a f o r m o v e m e n t i n t o e x p o r t c h a n n e l s a t l o w w o r l d p r i c e s . A u s t r a l i a n a n d A r g e n t i n e c o a r s e g r a i n p r o d u c t i o n i n c r e a s e a n n u a l l y b y a p p r o x i m a t e l y 3 . 8 % a n d 5 % r e s p e c t i v e l y . A s i n t h e c a s e o f C a n a d a . l o w c o a r s e g r a i n a n d s o y m e a l p r i c e s e n c o u r a g e i n c r e a s e d d o m e s t i c f e e d i n g o f c o a r s e g r a i n . A l t h o u g h A u s t r a l i a n a n d A r g e n t i n e e x p o r t s i n c r e a s e . t h e t o t a l g r o w t h i n e x p o r t s b e t w e e n 1 9 8 6 a n d 1 9 9 5 i s l e s s t h a n 1 . 6 m i l l i o n m e t r i c t o n s f o r A U s t r a l i a a n d 5 . 5 m i l l i o n m e t r i c t o n s f o r A r g e n t i n a . . I n t h e c a s e o f t h e U . S . . t h e i n c r e a s e i n w o r l d i m p o r t d e m a n d i s s o m e w h a t o f f s e t b y i n c r e a s e d A r g e n t i n e e x p o r t s . A l t h o u g h c o a r s e g r a i n e x p o r t s b y t h e U . S . i n c r e a s e b y a l m o s t A s a r e s u l t o f l o w p r i c e s . i m p o r t d e m a n d f o r s o y m e a l 1 5 3 r e m a i n s a p p r o x i m a t e l y 7 4 x f o r t h e e n t i r e f o r e c a s t p e r i o d . H o w e v e r . w h i l e t h e r a t e o f g r o w t h i n 0 . 5 . e x p o r t s e x c e e d s t h e r a t e o f g r o w t h i n p r o d u c t i o n . t h e g r o w t h i n q u a n t i t y o f p r o d u c t i o n ( 4 9 . 2 M M T ) e x c e e d s t h e g r o w t h i n q u a n t i t y e x p o r t e d ( 2 6 . ? M M T ) . T h e r e f o r e d e s p i t e a d e c l i n e i n c o a r s e g r a i n a r e a . U . S . e n d i n g s t o c k s c o n t i n u e t o i n c r e a s e a n d d e s p i t e i n c r e a s e d g r a i n u n d e r g o v e r n m e n t l o a n . c o r n p r i c e s f a l l . L i k e w h e a t p r i c e s . c o r n p r i c e s i n c r e a s e m o r e s l o w l y t h a n t h e l o a n i n t h e l a s t h a l f o f t h e f o r e c a s t p e r i o d . A l t h o u g h t h e y n e v e r f a l l b e l o w t h e l o a n r a t e . t h e y a r e s i t t i n g o n t h e l o a n b y t h e e n d o f t h e p e r i o d . 6 . a C m x S u b s t a n t i a l c a r r y o v e r f r o m t h e b u m p e r s o y b e a n c r o p o f 1 9 8 5 k e e p s s o y b e a n s t o c k s h i g h d e s p i t e a r e d u c t i o n i n p r o d u c t i o n i n 1 9 8 6 a n d e x e r t s d o w n w a r d p r e s s u r e o n b o t h s o y b e a n a n d s o y m e a l p r i c e s . L o w c o a r s e g r a i n p r i c e s s t i m u l a t e s i m p o r t d e m a n d . t h i s d r a w s s t o c k s d o w n a n d i n c r e a s e s p r i c e s t h o u g h t h e e n d o f t h e d e c a d e . H o w e v e r . i n t h e l a s t h a l f o f t h e f o r e c a s t p e r i o d c o n t i n u e d r e d u c t i o n i n w h e a t a n d c o a r s e g r a i n p r i c e s r e l a t i v e t o s o y b e a n p r i c e e n c o u r a g e s e x p a n s i o n o f s o y b e a n a r e a i n a l l e x p o r t i n g r e g i o n s . A s B r a z i l a n d A r g e n t i n a i n c r e a s e t h e i r s h a r e o f t h e s o y b e a n c o m p l e x e x p o r t m a r k e t . e n d i n g s t o c k s o f s o y b e a n s i n t h e U . S . a c c u m u l a t e t o r e c o r d l e v e l s . T h i s d e p r e s s e s s o y m e a l p r i c e s t o a p e r i o d l o w o f $ 1 4 5 . 3 5 p e r m e t r i c t o n i n 1 9 9 3 b e f o r e s t a g i n g a s l i g h t r e c o v e r y ( T a b l e 6 . 9 - 6 . 1 1 ) . 5 9 9 1 1 7 . 4 7 2 4 5 9 4 9 1 . 2 5 2 3 2 9 4 9 1 . 9 3 2 2 4 9 4 9 1 . 9 3 2 1 9 9 0 9 . 1 4 4 2 0 0 9 8 9 . . 6 . 0 1 1 2 2 5 2 9 8 8 2 9 1 . 6 3 2 8 7 8 3 9 1 . 0 1 2 7 5 8 9 9 . 1 9 8 1 6 7 8 7 9 . 1 4 7 . E D A R T L A N O I G E R - A R T N I S E D U L C X E . S D E E S L I O O L R O H - C A F S I A S D A S B U P E E H S T - T N C . 0 1 1 I 5 6 3 7 9 1 . 5 0 2 4 0 8 0 9 . 1 7 2 2 O D N E A T R O O T P E D R E T S R A E V R N A O E C Y N P E O E R B C E P V 3 0 E A 8 0 9 . 1 9 9 2 ) . T M / S ( 2 ' S S S H - T A C T O A D A . L S N I ' O Z C A I R N E . E 3 T K / R E E B K L T C C R O R A R D T S T D I R P A S P A T O S N E M ' C E O I S E T E O M O P P ‘ M A D M L K A D M R A T S S E L O B C N S N E O O R T T A P O E I C L P I C S O R R T O T N T D T T O N R L I P O O X P P g E I O E I - T E X M D X V S N U N D I S L I E U E L E ' - A . Z G G V C D T G C E I S D . S T T I N O N . R D R E I A R S A I A L D U B D M A I D N . E E 1 2 3 U N N E / l / T A B L E 6 . 9 U O R L O S O Y B E A N B A L A N C E S H E E T . I N M I L L I O N M E T R I C T O N S . l 1 . A C T U A L P R E L I M F O R E C A S T - - - - - - . - - - D - - - ‘ . . . . . . . . . . . . o n - o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c - . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . U . S . A R G E N T I N A / 2 B R A Z I L / 2 C H I N A T O T A L e x p o n r s ' . - O fi fi * n O ' V N . . N ' Q I D " U ’ V N V F I O I D ' O V N o m e n s N 6 6 4 a n — - o h o N N F M M e c u m G e o m m n 0 v o e ” 0 5 0 5 0 1 F Q N O U H D O Q O D O N m V N 2 6 . 2 6 . I O N . . . — . — ‘ N N C D ' F h ' N ' I n . - . - . - O P N I fl f ~ . . ' N N H " « w h e n m o r o n O ' m v m m w ' w o O N O O O Q - N O Q w w w h o o — n m h - « a n e w o — n v w O n v w n o v m v w m n m n o F ' N V Q m u m m u h — N n m O n m h e F " N fl ¢ v a v v O v u w n u n — o n m n n e m C ’ . N P R O D U C T I O N U . S . A R G E N T I N A B R A Z I L D E V E L O P E D M A R K E T S L D C ‘ S M I D - I N C O M E ’ S S O V I E T B L O C C H I N A W O R L D T O T A L a n I D O d o m D F ' O I D m m * m V F ' Q O N c a n n — - o e Q V V V O T ' W O N H Q I n I n F F ” 0 " O V I D " ? ! " 9 1 ‘ 9 ” “ m e L D " N V N I " 1 9 " “ 0 ” 1 0 " N I D " N l fl " N O O ’ Q M N L D V H N O T “ 9 " " m N m . - . - e - v m m m n n m n - n n h m — — O v h m v a t h m v - c t o s m c m s m w b — m v v — O V O N ' I O O D N F I D G I D M O ' I V I D N I D I D U I ' 0 ' " " O F V D N Q ' N m H fi m v m v m — e h o n e w n w — m n " I ' 9 . — — o a v m — m — m a w e @ m N Q ' * fl h m O c h n v - m m m m w v e O n m w w o n N " O ’ O V h w n n w n m N o n w o fl o m m v n w n v . " . b m ' N t D t ' N D O v v v - t D C ' N D m e n — m n v O V N ' W O O . - F H V ’ W H Q ’ h n m r m n m . . . ; . . n e w — m n m e - e - h u h — o n e e — e v v n m . - N " V M ' I D M F u s 1 5 4 . E D A R T L A N D I G E R - A R T N I S E D U L C X E . S D E E S L I O D L R O U - . N A E C B A Y F O S I S A S D A T S B N U E P L E E A H S V T - I T U N Q C I O E D N D E A N T A R O O T L P A E D E R M E T Y S R O A S E V R S N A O E E C D Y U N L P E O E R B C C N I E N P V O E A I S H T - P T A M C U T O S A D N A O . L S C N I ' O Z C T . 0 2 . S S A I N s T S T r E E 3 T n K K l R o R R O L A D E R N E L B T A . R D V C 2 p A A T S S P O N I E / x M M 4 M O ' C ' C P U A P e I / T E O Q E O E O A 2 D M A M D L L A R E N L L E O N N E O O / B B N S I A P C A O I P C L S I E L I T D T L T T O N I T R A O N T L T N L I I A S E T N O I S E A L I O O N E U E Z N E - ‘ I P E E Z N ' I ' A H E M T T L . . G A I S V C V D M S G A I V C V O . R R H E D O I U . R R E I H D O U C A B D M L S S B D C M U A L S N O C T G Y C A R D N D A S I 1 2 3 4 / I l / T A B L E 6 . 1 0 U O R L O S O Y M E A L B A L A N C E S H E E T . I N M I L L I O N M E T R I C T O N S . / 1 . A C T U A L P R E L I M F O R E C A S T U . S . E X P O R T P R I C E ( S / 2 0 8 . 0 0 1 3 9 . 0 0 1 5 9 . 1 1 1 1 4 . 8 3 1 2 8 . 0 1 1 4 7 . 6 4 1 7 2 . 7 9 1 8 5 . 8 9 1 6 5 . 5 0 1 5 0 . 1 5 1 4 5 . 3 5 1 5 4 . 4 4 1 7 5 . 2 5 N E T E X P O R T S 1 " m e 0 N D F m m n h n U ’ D I " N O O I ‘ I D 0 " “ I D U H D - ‘ S D I ‘ ' N F I n a n m a c - r Q O Q N O n u n w o — a w a n - O H N N ' O - n O n m o n c o o — a ~ m m m w m u m o . - w ' - 1 0 0 1 9 0 . V H O D . - ( ” I N I D ' N . - O Q V N O . - V O N D Q Q N Q ' V F Q N I D Q n n m v - n . - ' O " ' Q N N N E T I M P O R T S n m m w m m n m w v u n m w w m n m o n O N O Q C D a c u m e n O ' C O N C D Q fl v w v ' 0 0 ’ 0 “ ) o v v m o e n e m a o - n m m N B V F O m — n m m ' O ' m n o - n m o O m w v h Q ' t h m n w n o h — N m b m u n — N b — w a m m m o u a w n v w O N N H O h - N V I D N N N v v - e - 1 - N N N N N N N e - e — I " N N N N N N N N N N I ' M D O ’ V D V ' F I D ' N . - . — . - w e — . - . — W ' V t h n w O O m v o m n w m m o — v m h m n m e V N fl t h — N O m v u n m w m v m v — v v m h n m h ' O N O N N O O F Q " fi 0 h fl w m v o — I n v o u n b v n v - v n m o v - m n h m o v ' m O h N N v n o o w w — v - o a m m m n w m u N n u m w O o o m m o h m O N Q n n u m w o w h F Q F Q H Q D Q N m a m m m w m m " 5 ‘ 9 0 “ t h ' - n n m m m o n m m v n o v a m e n - v m m h — h e — r s e m u m m D n u a n c e s v v m e e 0 1 0 " o a Q o h h h ' 5 I D I D E N D I N G S T O C K S U . S . E N T I N A B R A Z I L E L O P E O M A R K E T S L D C ' S M I D - I N C O M E ' S W O R L D T O T A L 9 ’ 9 5 ? ? ? # V O fi t h t v v v t f fi 6 6 9 9 1 9 9 9 9 9 9 3 9 9 9 9 9 9 3 9 9 ” N H D H N O v v v v v w ? w t 9 9 v ~ 9 w e e v v v fi 1 f 9 9 9 “ ° " s w e r v e N N N - w - 1 ' 5 5 . . - 5 9 9 O 1 . . - . - . - . - 4 9 9 . 1 - - . . - - . - 3 9 - 9 - 1 C O Q O O O O O 2 9 C 9 O 1 O I - . . - . . 1 9 - 9 - 1 . . - . - . - 0 . 9 . 9 - 1 . - - - . o . 9 o 8 - 9 u 1 . . - - - . - 8 - 8 - 9 . 1 T S A C E R - - . . . O g . F Q 7 8 9 1 . 1 / . S N O 6 T 8 9 1 C I R T E M M N I 5 O L 8 I E L R 9 1 L P I M N I . T 4 8 9 1 E L E A H U S T E C A C 3 N 8 9 . E D A R T L A N O I G E R - A R T N I S E D U L C X E . S D E E S L I O D L R D U ~ C A F . N A E S B I V A S O D A S S B U T P N E E E H S L T ' A T V N C I I O U Q D N E E A T D R N O O A T P E D L R E I T O S Y R A E O V S R N A O S E C E Y D N U P E O E R B C E L C N I P V N E A O . 2 . S H I A 1 1 ‘ T T P A C T M D A U D S A . N L S O N C I ' O Z C L A B L I O Y D S O L R O H 1 1 , S T R O 2 P / X S A I T D R N E E B T N E L L L K T A R A R D . C A T A T O N S E V A 2 S l N T I E / 4 O M O A C P ' P I O T L T E E O U A M D A R Q L S N B D N E O D N S E R O T L T R I T R I T O L N R T D L A T O L I P C L I E S 6 P E T P Z N P . N O O I A T N I S L I O N U I . Z ' ' E U A E O E L E L B A T X M S G A I M S G C A V G C D T V E I . R H R U R N R E D I A R O U A B C S I A U L A B S D D M T E N T N E O N C 1 2 3 4 / l l l U . S . E X P O R T P R I C E 1 3 / 6 7 3 . 0 0 6 5 0 . 0 0 4 4 0 . 9 4 4 6 1 . 2 1 4 8 6 . 4 5 5 1 2 . 5 7 5 4 4 . 7 4 5 7 7 . 3 9 6 1 5 . 9 0 6 5 4 . 9 2 6 7 4 . 6 8 7 0 5 . 5 2 7 3 6 . 4 3 n m v m n H u e e e n m o N I ' m o m m a N ' ( " I m e o m o fi t m w e m e “ H D 1 9 1 0 ” n e u n n o 5 1 1 1 a n « n e w s e n e m m 0 " ! ! ! “ s m e a r a m m o - e - g n - . n ' N D E V E L O P E D M A R K E T S ' L D C ' S M I D - I N C O M E ' S l 3 S O V I E T B L O C T O T A L I M P O R T S I n ; H O N O — { 6 — ( n e c r - s . N - ’ a n — . 5 . a . & r u w fl o n N { T H Y - 1 ‘ “ - n n o - - a o . a ; ‘ a G fi Q f m # 9 w s n V i v " ? ' 6 m o o o o m w o n o m e o w “ h t h n G N N Q fi fi w w m m n m fi v . e C a n c u n - v e n o m V C O N W W O N ' Q Q o , W . 4 9 0 0 0 5 1 9 6 0 ? N 1 L a p i n M A R K E T S I u c o n e ' s E A o s n w - n n o m t ' o c c m « n e e — 4 0 " H ' N — h m r ‘ O m N H " " ' O C é n ' t h ' h l fl B , N H “ - - - C § O H O ' O O ' D O I n N fl fl - - - U b Q N fl fi - " " O 4 ~ a ; ; - b F N Q Q H Q N Q N u fl n p u w fi r u t - r " I ' H ‘ H ~ Q I D P I I ‘ F O H N I ‘ V ' ’ N n " " " 1 ° “ S Y N - - - “ o - w w m - o h n v ~ « n - u — m m n m v n n o w o - N N - H C . N - - _ - - - - - . m - E N D I N G S T O C K S I D " ' N N I D " . s e w N w Q - n 1 0 " 1 ' 1 N I D " . Q ' H N W ' O m - n fl n - a “ 7 " H N W ’ F V ’ N N " . m - fl - ' — ' m O N O v O ' ‘ U - e - w ' o — 1 , - I - I w a - n - n N - 1 5 6 1 5 7 e q u i v a l e n t i n c r e a s e s a p p r o x i m a t e l y 3 % p e r y e a r . H o w e v e r . s t e a d y d e m a n d i n t h e s o y o i l s e c t o r k e e p s s o y b e a n p r i c e s s o m e w h a t h i g h e r t h a n t h o s e f o r t h e i n d i v i d u a l c o m p o n e n t s . T h i s r e s u l t s i n a w o r s e n i n g c r u s h m a r g i n a n d i m p o r t s o f s o y m e a l a t t h e e x p e n s e o f s o y b e a n s . L e a d b y g r o w t h i n S O V i e t B l o c a n d D e v e l o p e d M a r k e t d e m a n d . s o y b e a n i m p o r t s i n c r e a s e a t a n a n n u a l r a t e o f 2 % . A l t h o u g h t h e S o v i e t B l o c a n d t h e D e v e l o p e d M a r k e t s i n c r e a s e i m p o r t s o f s o y m e a l s l i g h t l y . t h e m a j o r i t y o f g r o w t h i n s o y m e a l i m p o r t s i s d r i v e n b y t h e L D C s a n d N I C s . T h e i n c r e a s e i n s o y m e a l d e m a n d f a v o r s A r g e n t i n a a n d B r a z i l . B o t h r e g i o n s h a v e e x p a n d e d c r u s h c a p a c i t y a n d t h e i n c r e a s e i n d o m e s t i c s u p p l y a l l o w s t h e m t o a g g r e s s i v e l y m a r k e t s o y m e a l . T h e U . S . s h a r e o f t h e s o y m e a l e x p o r t m a r k e t d e c l i n e s f r o m 3 8 % i n 1 9 8 6 t o J u s t u n d e r 1 8 % b y 1 9 9 5 . 6 . 3 S c e n a r i o A n a l y s i s : T h e E f f e g t s o f P . I . K . C e r t i f i c a t e s o n I n t e r n a t i o n a l G r a i n M a r k e t s o . a U A s g r a i n e n d i n g s t o c k s h e l d b y t h e v . 5 g o v e r n m e n t i n c r e a s e . t h e i r d i s p o s a l b e c o m e s a m a j o r p r o b l e m . U n l i k e t h e 1 9 5 0 ’ s . t h e U . S . c a n l o n g e r d i s p o s e o f s u r p l u s e s w i t h e x p o r t e n h a n c e m e n t s . T h e p o t e n t i a l e x p o r t m a r k e t s n o l o n g e r e x i s t a n d t h e r e a r e n o w m o r e c o m p e t i t o r s . O n e s c h e m e f o r t h e d i s p o s a l o f s u r p l u s g r a i n i s t h e i s s u a n c e o f P a y m e n t - i n - K i n d ( P I K ) c e r t i f i c a t e s a s p a y m e n t f o r p a r t i C i p a t i o n i n g o v e r n m e n t p r o g r a m s . P I X c e r t i f i c a t e s a r e e s s e n t i a l l y p r o m i s s o r y n o t e s o f f e r i n g p r o d u c e r s g r a i n f r o m g o v e r n m e n t s t o c k s i n l i e u o f c a s h . T h e P I K p r o g r a m w a s 1 5 8 i n i t i a l l y e s t a b l i s h e d i n 1 9 8 3 w h e n p r o d u c e r s w e r e o f f e r e d c o r n P I X c e r t i f i c a t e s i n e x c h a n g e f o r p a r t i c i p a t i n g i n a c r e a g e r e d u c t i o n p r o g r a m s . U n d e r t h e p r o v i s i o n s o f t h e 1 9 8 5 f a r m b i l l . P I K c e r t i f i c a t e s w i l l b e i s s u e d a s p a r t o f t h e p r o g r a m p a y m e n t s m a d e t o p a r t i c i p a t i n g f a r m e r s . T h e s e c e r t i f i c a t e s w i l l b e s i m i l a r t o t h o s e i s s u e d i n 1 9 8 3 w i t h t h r e e d i f f e r e n c e s . F i r s t . t h e l i f e o f t h e c e r t i f i c a t e w i l l b e s h o r t e r . g e n e r a l l y r e q u i r i n g r e d e m p t i o n w i t h a y e a r a n d s e c o n d l y . t h e c e r t i f i c a t e w i l l b e d e n o m i n a t e d i n d o l l a r v a l u e a s o p p o s e d t o b u s h e l v a l u e s . T h i r d . t h e c e r t i f i c a t e s w i l l b e g e n e r i c . g o o d f o r a n y C C C o w n e d c o m m o d i t y o t h e r t h a n p e a n u t s o r t o b a c c o . T h e c e r t i f i c a t e s w i l l h a v e v a l u e i n t r a d e a n d c a n b e b o u g h t a n d s o l d l i k e g r a i n . T h i s h a s s e r i o u s i m p l i c a t i o n s f o r t h e g r a i n m a r k e t i n g s y s t e m . I f g o v e r n m e n t s t o c k s o f g r a i n a r e " o f f " _ t h e m a r k e t u n t i l t h e t r i g g e r p r i c e i s r e a l i z e d b u t c e r t i f i c a t e s g o o d f o r o f f - t h e - m a r k e t g r a i n a r e f r e e l y t r a d e d . i s t h e g r a i n o n o r o f f t h e m a r k e t ? T h e a n s w e r i s t h a t w h i l e t h e g r a i n i s p h y s i c a l l y o f f - t h e - m a r k e t u n t i l t h e c e r t i f i c a t e i s r e d e e m e d . t h e m a r k e t a n t i c i p a t e s i t s r e l e a s e b y t r a d i n g c e r t i f i c a t e s . T h e M S U A g r i c u l t u r e m o d e l w i l l a t t e m p t t o e x p l o r e t h e i m p a c t s o f t h e i s s u a n c e P I K c e r t i f i c a t e s o n t h e g r a i n m a r k e t s . T h i s s c e n a r i o w i l l m e a s u r e t h e c h a n g e s c a u s e d b y a s i n g l e i s s u a n c e o f 5 0 0 m i l l i o n b u s h e l s o f c o r n P I K c e r t i f i c a t e s r e d e e m e d a f t e r o n e y e a r . 1 5 9 T h i s s c e n a r i o w i l l r e p r e s e n t a s i m p l i f i c a t i o n o f t h e p r o b l e m . I n r e a l i t y t h e c e r t i f i c a t e s w o u l d b e f o r $ 5 0 0 m i l l i o n a n d w o u l d b e c o n v e r t e d t o b u s h e l s a t t h e m a r k e t r a t e . A l t h o u g h t h e m o d e l c o u l d h a v e b e e n p r o g r a m e d t o c o n v e r t a d o l l a r a m o u n t t o b u s h e l e q u i v a l e n t . t o s a v e i t e r a t i v e s t e p s a b u s h e l e q u i v a l e n t v a l u e w a s p r e - e n t e r e d . I n t h i s s i m p l e r e p r e s e n t a t i o n t h e c e r t i f i c a t e s c a n b e r e d e e m e d f o r e i t h e r w h e a t o r c o a r s e g r a i n . F o r i l l u s t r a t i v e p u r p o s e s i t i s a s s u m e d t h a t h a l f o f t h e c e r t i f i c a t e s w i l l b e r e d e e m e d f o r w h e a t a n d t h e o t h e r h a l f f o r c o a r s e g r a i n s . 6 . 4 E c f n Y e a R f C r t f ' c a t s T h e o v e r a l l e f f e c t s o f a o n e t i m e r e l e a s e i n P I K c e r t i f i c a t e s r e d e e m e d a t t h e e n d o f a y e a r i s m i n i m a l . A l t h o u g h t h e r e l e a s e o f C C C g r a i n i n t o " f r e e s t o c k s “ g e n - e r a t e s s o m e p r o d u c t i o n a n d c o n s u m p t i o n s h i f t s . t h e e x i s t i n g q u a n t i t i e s o f f r e e s t o c k s t e n d t o c u s h i o n t h e p r i c e d e c l i n e . A l t h o u g h t h e r e i s a 7 % d e c l i n e i n w h e a t p r i c e s i n 1 9 8 7 . t h e p e r c e n t a g e d e c l i n e s i n c o a r s e g r a i n a n d s o y b e a n p r i c e s a r e c o n s i d e r a b l y l e s s a n d b y 1 9 9 1 a l l p r i c e s d e v i a t e f r o m t h e b a s e l i n e b y l e s s t h a n 1 8 . T h e r e i s s o m e n o t i c e a b l e s u b s t i t u t i o n b e t w e e n c o a r s e g r a i n a n d w h e a t c o n s u m p t i o n . H o w e v e r . t h e s e d e v i a t i o n s p r e t t y w e l l w o r k t h e m s e l v e s o u t o f t h e s y s t e m b y t h e t h i r d y e a r o f t h e f o r e c a s t . I n 1 9 8 9 l o w c o a r s e g r a i n r e v e n u e p e r h e c t a r e r e l a t i v e 1 6 0 6 . 2 . 1 a n g g g g g g i g s G i v e n t h e l e v e l s o f c o r n e n d i n g s t o c k s i n 1 9 8 6 . t h e r e l e a s e o f t h e e q u i v a l e n t o f 2 5 0 m i l l i o n b u s h e l s c o r n f r o m C C C s t o c k s h a s v e r y l i t t l e e f f e c t o n t h e g r a i n m a r k e t s ( T a b l e 6 . 1 2 ) . C o r n p r i c e s i n 1 9 8 7 d e c r e a s e $ 3 . 1 0 p e r m e t r i c t o n ( 0 . 0 8 / b u ) f r o m t h e b a s e l i n e l e v e l . T h e p r i c e d e c l i n e i s l i m i t e d b y a n i n c r e a s e o f a p p r o x i m a t e l y 1 8 0 m i l l i o n b u s h e l s i n f a r m e r o w n e d r e s e r v e s . A l t h o u g h t h e r e i s a s u b s t i t u t i o n o f r e l a t i v e l y c h e a p e r w h e a t f o r c o a r s e g r a i n s f o r f e e d c o n s u m p t i o n i n b o t h t h e S o v i e t B l o c a n d i n C h i n a . t h e d e c r e a s e i n U . S . e x p o r t s a n d s u b s e q u e n t i n c r e a s e i n t o t a l U . S . e n d i n g s t o c k s a r e i n s u f f i - c i e n t t o p r o d u c e a n y d o w n w a r d p r e s s u r e o n c o r n p r i c e s . . T h e S o v i e t B l o c d e c r e a s e s i m p o r t s b y 2 0 0 . 0 0 0 m e t r i c t o n s a n d C h i n a i n c r e a s e s e x p o r t s b y t h e s a m e a m o u n t . I n t h e y e a r f o l l o w i n g t h e r e d e m p t i o n o f t h e c e r t i f - i c a t e s . c o a r s e g r a i n p r i c e s r e m a i n $ 1 . 1 0 a t o n ( $ . 0 3 / b u ) b e l o w b a s e l i n e l e v e l s . T h e d e c l i n e i n w h e a t r e v e n u e p e r h e c t a r e r e l a t i v e t o c o a r s e g r a i n h a s e n c o u r a g e d a s h i f t i n t o c o a r s e g r a i n a r e a b y a l m o s t a l l m a j o r e x p o r t e r s a n d d e s p i t e i n c r e a s e d w o r l d - w i d e c o n s u m p t i o n t h e U . S . c o n t i n u e s t o l o s e s m a r k e t s h a r e w h e n c o m p a r e d t o t h e b a s e l i n e . A s a r e s u l t o f i n c r e a s e d e n d i n g s t o c k s . t h e b u r d e n o f p r i c e a d j u s t m e n t f a l l s t o t h e g o v e r n m e n t . A l t h o u g h C C C s t o c k s r e m a i n o v e r 1 6 0 m i l l i o n b u s h e l s b e l o w b a s e l i n e l e v e l s . t h e r e a r e 1 8 0 m i l l i o n b u s h e l s m o r e i n F O R . m m m o o fi w n n e s o s m e o m I o O o z < h w w 0 w d u v o 0 a 5 0 w C m I n H V o O s v 3 a 0 « O o O n H o fl p F e m M a M o 0 0 ¢ A 0 p 0 o o : o o o 4 o 0 3 o n m o H m P H O U H I m . H N P 0 0 . p s i ~ 0 0 . “ 0 . 0 " 0 8 fi s h F 0 . ” “ 0 . . w ! # 0 0 0 g 3 “ “ A . \ : U . 0 . 0 . 0 ” 0 0 N 0 F ° 0 ° ” 0 0 0 . “ 0 0 0 . 0 . 0 “ . 0 ° 0 8 0 0 0 “ 0 0 0 : l g 0 0 8 0 . 0 “ “ 0 ’ 0 8 0 0 0 8 0 ° 0 8 0 . 0 : 0 ° 0 3 0 ° 0 0 . 0 ‘ 0 : 0 0 0 ” . a g a : 0 0 ° 0 0 ° O 0 . 0 0 . 0 0 ° 0 0 ° O 0 . . 0 . 0 0 ° 0 0 ° . g . 0 8 9 0 8 0 0 8 . 0 8 0 0 8 0 0 8 0 0 8 . 0 8 . 0 8 0 0 8 E : 0 0 0 0 0 0 0 0 k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 9 0 . 0 0 0 8 0 0 8 N 0 0 . 0 0 8 0 0 0 0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 0 i : . 0 . 0 0 ° . 0 “ 9 0 ° 0 0 “ 0 0 “ 0 0 ° . 0 . . 0 . 0 0 ° . o : 0 0 8 . 0 8 0 0 3 . 0 8 . 0 8 . 0 : 0 0 8 . 0 8 O 0 8 0 0 8 6 0 . 0 0 0 ° 0 0 0 . 0 0 0 ” 0 0 ° 0 0 0 “ 0 0 ° 0 0 0 “ 0 0 ° 0 0 * 0 0 ° I 3 . 0 8 0 ° 0 8 0 ° 0 8 . 0 8 0 . 0 “ . 0 0 8 0 . 0 ” . . 0 8 0 0 “ “ 0 0 8 a g r " : . N ‘ 0 0 ° 0 ° 0 N O 0 “ 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 ° 9 0 ° . 0 0 I 9 " 0 0 8 1 0 0 V ” 0 0 : 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 i i I I : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 9 " 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 5 . 0 0 ° 9 0 ° 0 0 0 “ 0 ° 0 ” 0 0 ° . 0 . 0 0 0 ” 0 0 0 “ 0 0 ° 0 0 ° . g 0 0 8 0 0 8 0 ° 0 8 0 ° 0 8 0 0 8 . 0 8 0 ° 0 3 0 ° 0 3 0 0 8 0 0 8 9 ’ 0 . 0 0 0 I 0 0 ” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 9 0 . 0 0 0 0 8 # 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 . 0 0 8 a s . f . 0 0 ° 0 0 ° 0 0 “ 0 0 ” 0 0 ° 0 0 ° 0 0 ” . 0 “ . 0 “ 0 0 ° . 9 : 0 0 8 0 0 8 , 0 0 ‘ ” 0 0 0 ° O 0 8 0 0 8 O 0 : 0 0 8 . 0 8 0 0 8 g 8 0 0 ! 0 0 0 0 0 0 0 0 V 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 9 0 . 0 . 0 0 8 0 0 0 0 0 0 0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 0 i t " . . 0 . 0 0 ° 0 0 ” 0 . 0 ” 9 0 “ 0 0 ° 0 0 ° . 0 . 0 0 ° 9 0 ” ' g . 0 8 . 0 8 ” 0 ‘ ” 0 ’ 0 P ‘ “ 0 ' 0 . 0 8 0 0 8 . 0 8 9 0 8 0 0 : i t 0 0 . 0 0 ° 0 0 ” 0 0 ° 0 0 “ 0 0 ° 0 0 ° . 0 “ 0 0 ° . 0 ” . g . 0 8 0 0 8 . 0 8 0 0 8 . 0 . ” 0 0 8 . 0 8 . 0 : . 0 8 0 0 3 6 0 . 0 0 0 0 0 0 0 0 0 “ 0 0 0 " 0 0 D 0 0 “ a 0 0 0 0 0 h 0 0 0 0 0 ” . 9 " . 0 8 0 0 8 0 0 " 0 0 0 ” . 0 0 ” ” 0 0 2 0 0 8 . 0 8 0 0 8 . 0 8 { ’ 0 0 : 8 0 0 0 0 0 0 1 0 0 k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 . 9 " . 0 8 . 0 8 0 ° 0 8 0 0 8 0 0 8 0 0 8 . 0 8 . 0 8 . 0 8 . 0 8 i i . 3 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 9 . 0 0 0 0 8 0 0 8 0 0 0 0 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 0 0 p 0 8 0 0 0 0 0 0 0 0 0 » 0 0 0 V 0 0 0 0 0 h 0 0 “ 0 0 0 0 0 0 0 0 0 . 9 " . 0 8 0 0 8 0 0 " 0 ° 0 8 0 0 8 0 0 8 O 0 8 0 0 8 0 0 8 0 0 8 2 . 0 0 0 0 0 0 H 0 0 ” 0 0 0 0 0 “ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 9 0 . 0 0 0 8 0 0 v ” 0 0 8 0 0 8 0 0 k 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 a t ” . H i . 0 0 ° 0 0 ° 0 0 ” 0 0 0 ” O 0 ” . 0 . 0 0 0 “ 0 . 0 ” 0 0 0 ” 0 . 0 “ t 0 0 8 0 0 8 0 0 “ ” 0 ° 0 8 0 0 ” . . 0 8 $ 0 ” . 0 0 0 ” . 0 ° 0 8 0 . 0 ” . g a . i . I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 R 9 . , 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 E N . 0 0 ° 0 0 “ O 0 . . 0 . 0 0 ° 0 0 ° 0 0 ° . 0 0 . . 0 . 0 0 ° ' g . 0 8 “ 0 “ » . 0 8 . 0 8 0 0 8 0 0 8 0 0 8 . 0 8 . 0 8 . 0 8 i n : 0 0 ° 0 0 ° 0 0 “ . 0 . 0 0 ° 0 0 ° 0 0 ° . 0 . . 0 . 0 0 ° . g . 0 8 . 0 8 P 0 3 . 0 8 . 0 8 0 0 8 . 0 8 . 0 8 . 0 8 9 0 8 0 0 U 0 0 0 0 0 0 0 0 0 0 0 0 ” 0 0 0 0 0 0 0 0 $ 0 0 H 0 0 - . 0 0 v . a : 0 0 8 0 0 8 0 0 ’ . . 0 ” . . 0 8 0 0 8 . 0 8 . 0 8 . 0 8 . 0 8 I “ : a : 0 0 ° 0 0 0 ” 0 0 ° 0 0 ° 0 0 0 “ . 0 . 0 0 ° . 0 . ° 0 ° 0 0 ° . g 9 0 8 0 ° 0 F ° 0 0 8 0 0 8 0 ° 0 8 . 0 8 0 0 8 . 0 8 0 0 8 0 0 8 i i I ” : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' 9 % 0 0 8 9 0 8 0 0 8 . 0 8 . 0 8 o 0 0 8 . 0 8 O 0 8 0 0 8 . 0 8 P 8 0 0 0 0 1 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 9 0 . 0 0 0 0 8 I 0 0 0 . 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 2 . . 0 0 0 0 0 0 k 0 0 ” 0 0 0 0 0 H . 0 0 k 0 0 k 0 0 0 0 0 0 0 0 0 R 9 0 . . . 0 0 8 1 0 0 0 . . 0 0 ” . 0 0 8 0 0 h “ 0 0 h ” 0 0 k ” 0 0 8 0 0 8 0 0 8 a t “ . f . ° 0 ° . 0 0 O 0 ” O s . O 0 ” . 0 “ 0 0 ° 9 0 ° 0 0 0 “ 0 0 ° R 9 " 0 0 8 0 0 8 0 0 ' ” 0 0 8 0 0 v " 0 0 v “ 0 0 8 0 0 8 1 0 0 ” . 0 0 8 g 3 “ 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 0 0 0 0 0 . 9 ! . 0 0 3 . 0 8 0 0 8 . 0 8 0 0 8 ” 0 . . . 0 8 . 0 8 . 0 8 . 0 8 £ 5 0 . 0 . 0 0 ° 0 0 ° 0 0 ° 0 0 ° 0 0 “ . 0 . 0 0 . 0 0 ° 0 0 ° R f 0 0 8 0 0 8 0 0 8 0 0 8 0 0 8 8 0 8 0 0 8 0 0 8 0 0 8 0 0 8 i t 0 0 . . 0 0 0 0 ° 0 0 “ 0 0 ° 0 0 ° . 0 . . 0 . . 0 0 0 0 . I 9 ! . 0 0 8 0 0 8 0 0 8 " ” 0 0 0 0 0 8 0 0 8 . 0 0 8 0 0 8 0 0 8 0 0 8 0 0 . 0 0 0 0 0 0 0 0 0 . I 0 0 » 0 0 ” 0 0 M 0 0 . 0 0 0 0 0 ” 0 0 k . g . 0 8 . 0 8 . 0 0 . 0 ° 0 8 . 0 “ . 0 0 “ . 0 0 “ . . 0 " . 0 0 ” ” . 0 8 0 E 0 0 0 0 E w e " 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . o : 3 1 0 0 0 . 0 0 0 0 . 0 0 0 0 » . A F a L t s t e h s g t t s O r o h h l s e h i ’ a o r ( T e t n w g s e g R e w a o s o i f a o r $ a r e h t p r p e 7 f o i v t b i e a n e . e o c e l l w n r s a n 6 e h r r k i c r m u t 7 e n s e l p a e a m i 6 t r c f t l a t r v p t . e t e r h o . . e t o m i n t e e 3 d o a k r p u a k o t ) , f s e s n t i r c s e r e e e k 1 e d e c i l e p c c i i o D h w f r r s n i e n o o a t t e o f r r s i e e e i m a s e t t r c a s 2 s s U o h a 0 i r a t i i i S b s e t o m l t . i l s m s a e u n e n h y m o i o t l a l i a o a i l e l i a n l d n s 5 g p b t w r e . o e u l r n n e ( 0 t n e d l e t i e . m t n e o . t i 2 a t h C t e n n h 1 s h n o o a s c w e a / e s o s n d n b r h n b m e a s d u e e u e S i d i o ) i s a t a o s r g i f n h s h t v i a e n g e o e b n i t i g f n t l n p o e x c n i s e s x l r t l o e i e o c k s . o o B p m o w e a a s c w l o f d r s n a . C u e p s a t c l k C r a s p r T s y e c h t b e o r t r t i i l n n m e b a C r t e r i a i h t . l s e i e e c i f h h w p c n i d a r u l g e n h l e d r e t t i 1 l e o c f E t v r m f n o n 9 e o . h e a e f t a t 8 v r r d r r C e o 7 r o e . : o y u k c l s w u c e a s e t e i e e a c i m h l r i t t n e i a e y s h d n n t e h e t a d h e 1 6 2 t o b o t h w h e a t a n d s o y b e a n s e n c o u r a g e a s h i f t o u t o f c o a r s e g r a i n a r e a . T h i s r e d u c e s U . S . e n d i n g s t o c k s b e l o w b a s e l i n e l e v e l s . C o u p l e d w i t h l e v e l s o f d o m e s t i c c o n s u m p t i o n a b o v e b a s e l i n e l e v e l s . c o a r s e g r a i n p r i c e s a p p r o a c h b a s e l i n e l e v e l s . F o r t h e r e m a i n d e r o f t h e f o r e c a s t p e r i o d . p r i c e s r e m a i n s l i g h t l y b e l o w b a s e l i n e l e v e l s a s l o w e r w h e a t a n d s o y b e a n r e v e n u e s e n c o u r a g e a s l i g h t s h i f t i n t o c o a r s e g r a i n a r e a i n 1 9 9 0 . H o w e v e r . t h e p r i c e d e c l i n e s i n h e r e n t i n a s t o c k b u i l d u p a r e d a m p e n e d b y c o n t i n u e d t h e g r o w t h o f g o v e r n m e n t s t o c k s . B y t h e e n d o f t h e p e r i o d . c o a r s e g r a i n p r i c e s a r e o n l y 9 . 3 4 p e r m e t r i c t o n b e l o w b a s e l i n e l e v e l s . 6 . 4 . 2 w h g e t m m m o n u n o o m > o « m o o u o « o z c « 0 « « m « u o c c s m n a a u « n o m « o u e o « m « o 0 c n o u . « v m « « o u o o o u o : n s a o c 3 : 0 0 0 « q u e u e 0 0 0 0 0 0 0 0 0 0 0 - « 3 0 0 0 0 4 0 0 0 9 0 0 0 4 0 0 3 6 0 0 0 0 0 0 0 0 « « 0 « . « . 0 0 0 0 0 « 5 0 0 0 0 0 0 3 . 0 0 » 0 8 . 0 8 . 0 0 0 . 0 . 0 0 . 0 0 0 . 0 8 . 0 3 . 0 0 5 . ? 0 0 . 0 - 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 . 0 « . 0 . 0 . 0 0 . 0 0 . 0 0 . 0 « . 0 - « . 0 . 0 . 0 0 0 . . - 0 0 0 3 0 0 0 0 0 0 . 0 . 0 0 . ? 0 0 . 0 . a n d . « 0 . ? 0 0 . ? 0 0 . ? 0 0 . « . . 0 0 . 0 . 8 . 0 0 0 0 0 9 0 « . 0 . 0 . 9 . 0 . 0 . « . 0 . « . 0 . 0 . 0 . 0 . 0 . 0 . 0 - 0 . 0 . 0 . 0 . 0 . . . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 3 0 0 0 0 0 0 0 . 0 0 0 . 0 8 . 0 3 . ? 0 0 . 0 8 . 0 8 . 0 8 . 0 8 . 0 0 0 . 0 0 0 0 0 . 8 0 0 . 0 0 . 0 0 . 0 « . 0 . 0 . 0 0 . 0 a . . . 0 . 0 0 . 0 0 . 0 0 3 0 0 0 0 0 0 0 0 . 0 0 0 . 0 3 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 8 . 0 8 . 0 0 0 . 0 0 0 0 0 . 8 0 0 . 0 0 . 0 0 . 0 0 . 0 « . 0 0 . 0 « . 0 0 . 0 0 . 0 0 . 0 0 0 0 0 0 0 . « 0 0 0 0 0 0 0 0 0 . 0 8 2 . 0 g 0 0 . 0 0 0 . 0 8 . 0 0 0 . 0 3 . 0 3 . 0 0 0 . 0 8 . 0 a n . . . 0 0 . 0 0 0 0 0 . 8 0 0 . 0 0 . 0 0 . 0 « . o « . 0 0 . 0 « . o 0 . 0 « . 0 0 . 0 0 0 0 0 0 3 0 3 3 0 0 0 . 0 . 0 0 . 0 . 0 0 . 0 . . 3 . ? 3 . ? 3 . 0 . . 3 . 0 . 0 0 . ? « « . o 0 0 . 0 0 0 0 0 . 8 0 « . 0 . « . 0 . « . 0 : « . 0 . « . 0 . « . 0 . « . 0 . 0 . ? « . o 0 . 0 . 0 0 a 8 . 0 8 . 0 8 . 0 0 0 . 0 8 . 0 0 0 . 0 0 0 . 0 . 0 1 0 3 . ? 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 « . 0 « . o n « . o « . 0 . 0 . 0 0 0 0 . . 8 . 0 0 0 . 0 m « . a 0 1 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 . 8 0 0 . 0 0 . 0 « . o « . o 0 . 0 0 . 0 0 . 0 0 . 0 « . 0 0 . 0 0 0 . . - 0 0 0 3 0 0 0 0 0 0 . 0 8 . 0 8 . 0 8 . 0 0 0 . 0 8 . 0 0 0 . 0 0 « . o . a n d 8 . 0 0 0 0 0 8 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 « . 0 0 . 0 . 0 . 0 0 . 0 0 0 « 0 0 0 : 0 0 a n d a n d a n d 0 a . . . 3 . 0 « 0 . 0 « 0 . 0 a n . . . 0 0 . 0 8 . 0 0 0 0 0 8 0 « . o « . 0 . « . 0 « . o 0 . 0 « . o « . o « . o « . o 0 . 0 . 0 6 8 . 0 8 . 0 8 . 0 0 0 . 0 0 0 . 0 8 . 0 0 0 . 0 8 . 0 0 0 . 0 8 . 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 3 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 . 0 0 0 . 0 0 0 . 0 8 . 0 0 0 . 0 0 0 . 0 0 0 0 0 8 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 3 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 8 . 0 8 . 0 0 0 . 0 3 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 0 0 - 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 0 0 0 0 0 8 0 0 . 8 0 0 8 0 0 8 0 0 8 0 6 8 0 0 8 0 0 : 0 0 . 8 . 0 8 0 0 I : I 0 . 0 0 . 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 « 0 9 ! 0 . 0 0 0 0 0 0 0 0 0 8 « I ; « « o O I « « 0 0 0 N « . ? 9 N 0 ? fl « 0 0 ¢ “ 0 0 ! a 0 ? : 0 0 ! 8 . 0 8 . 0 3 I « . 9 0 « 0 0 0 « 0 0 0 N 0 0 0 « 0 0 0 N 0 0 0 N 0 9 0 0 0 0 0 0 0 0 0 0 0 0 . 3 8 0 0 8 0 0 8 0 0 8 0 0 8 . 0 8 0 0 O « 0 0 8 0 0 8 0 0 8 . 0 0 . 0 0 6 I « . 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 « 0 0 0 . 0 0 0 0 0 0 0 g 8 . 0 8 0 0 « « 0 0 8 0 0 8 0 0 8 0 0 8 . 0 N « 0 O 8 0 0 8 0 0 0 0 . 6 I 0 . 0 6 . 0 « 0 0 0 . 0 0 . 0 0 0 0 0 0 0 « . 0 0 . 0 0 0 0 0 & 8 - 1 0 . 0 2 8 . 0 8 . 0 8 0 ° 8 0 0 8 0 0 8 0 0 8 . 0 8 0 0 8 . 0 8 0 0 0 . 0 0 8 I 0 . 0 0 0 0 0 . 0 0 . 0 0 . 0 0 0 0 0 . 0 0 . 0 0 . 0 0 0 0 ' « l : « 0 ‘ I « 0 O 0 « 0 O 0 « 0 O 0 « 0 0 “ . 0 « 9 . 0 8 . 0 n « . ? 8 . 0 8 . 0 3 I « . 0 « . 0 « 0 0 « . 0 N 0 0 0 0 0 ' 0 0 « . 0 . - 0 0 0 0 0 0 0 . 0 8 0 . 0 0 0 « . 0 0 0 : 0 ? 8 0 0 8 0 0 : 0 0 8 . 0 0 . 0 0 . - 8 . 0 8 0 0 3 I « . 0 0 « 0 0 0 « . 0 0 0 0 0 « 0 0 « n o 0 0 0 « 0 0 0 0 . 0 0 0 0 0 . : 5 0 0 0 0 8 0 0 8 . 0 . 8 . 0 « n o ? 8 0 0 8 . 0 8 . 0 8 . 0 8 0 0 I ; I « . 0 0 0 . 0 0 0 0 0 0 0 « . 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 . 0 0 « « § 0 0 0 0 0 0 0 0 0 0 . 0 8 0 0 8 . 0 ' 0 0 : 0 0 2 0 0 8 0 0 8 0 0 0 . 0 0 6 I « . 0 « . 0 « 0 0 0 0 0 0 0 0 « 0 0 N 0 0 « . 0 0 . 0 0 0 0 0 3 8 0 0 9 0 0 0 0 0 0 . 0 . 0 0 0 5 0 . 0 . 0 0 0 8 0 0 « . 0 0 8 0 0 8 0 0 0 . 0 0 6 I « . 0 « . 0 « 0 ° « 0 0 « 0 0 « 0 0 0 . 0 « . 0 0 . 0 0 . 0 0 0 i n 0 4 " : 8 0 0 8 0 6 . 0 0 0 8 0 0 8 . 0 8 0 0 8 . 0 « 0 0 0 8 0 0 8 0 0 0 : 0 6 I 0 . 0 0 . 0 « . 0 0 . 0 0 . 0 0 . 0 0 0 0 « . 0 0 0 0 0 0 0 ' « o 8 0 0 . x . « 8 0 0 I 0 0 0 ! 0 0 0 ? ‘ 8 . 0 8 . 0 0 0 8 0 0 8 0 0 8 . 0 0 . 0 0 6 I 0 0 0 0 . 0 0 0 0 « 0 0 0 « 0 0 0 0 . 0 N o ? 6 0 0 9 . 0 0 0 0 g 8 0 0 8 0 0 8 . 0 8 0 0 8 . 0 8 0 0 8 . 0 I 9 0 0 ” . 0 0 0 8 0 0 I : I 0 0 0 0 0 0 0 0 0 0 0 ° 0 . 0 0 . 0 0 0 0 « 0 0 « o ? 0 0 ° 0 . : : « 0 . Q u a d ” . 0 0 8 . 0 : 0 0 8 . 0 “ 0 0 8 . 0 « . 0 0 R N 0 0 8 0 0 . 0 . 0 0 6 I « 0 0 « . 0 « 0 0 « 0 ° 0 0 ° « 0 0 0 0 0 0 . 0 « . 0 0 . 0 0 . 0 . 8 0 0 « . 0 0 0 8 0 ° N 0 0 0 - 8 . 0 8 0 0 l « o « I 8 0 0 3 0 « 0 8 0 0 0 . 0 0 6 I 0 0 0 « 0 0 0 0 . 0 « 0 9 . - 0 0 0 0 0 ° « . 0 0 9 0 0 « . 0 ! 0 . 0 3 8 . 1 0 . 0 3 8 0 0 8 0 0 6 . 0 « 0 8 0 0 ' 0 0 « h e . . « 0 0 . 0 n . « . 8 0 0 8 . 0 3 I 0 . 0 0 . 0 « . 0 ! 0 0 0 « . 0 « . 0 0 0 0 « . O I 0 . 0 0 . 0 0 0 3 ! 8 0 0 8 . 0 8 0 ° 8 . 0 3 . 0 0 2 0 0 - 8 0 0 t o ? 8 . 0 8 . 0 0 . 0 0 4 0 I 0 . 0 0 . 0 0 0 0 0 . 0 « o ? « . 9 0 0 0 0 « 0 0 ! 0 . 0 0 0 0 . « g 8 0 0 8 . 0 8 . 0 8 . 0 0 0 . 0 . 0 0 0 8 . 0 « 0 . 0 0 0 . 0 8 . 0 0 . 0 0 6 I 0 . 0 0 . 0 0 . 0 0 . 0 « . 0 « . 0 0 0 0 N 0 0 « 0 0 0 . 0 0 } n « . o 3 0 0 0 . 0 0 0 0 0 . 0 0 0 0 « . « I 8 0 « 0 0 . 0 0 8 0 0 0 0 . 0 0 0 8 . 0 O fl o o 0 . 0 0 0 0 0 . 0 0 0 « . « 0 « 0 . 0 0 N O . « 8 0 « 0 ° « 0 0 0 h 0 . h l 0 . 0 a h l \ l v a n : g £ « 0 : « 0 : « N 0 0 « « 0 0 « 8 . « . 3 « C . . « b ‘ . « ! « M a . . 0 O H Q O F m m d 1 9 9 5 w h e n t h e y a r e 5 . 2 0 p e r m e t r i c t o n a b o v e t h e b a s e l i n e . 1 6 4 P r o d u c t i o n d e c i s i o n s f o r 1 9 8 8 a r e b a s e d u p o n p r i c e s r e c e i v e d i n 1 9 8 7 . S i n c e r e v e n u e e x p e c t a t i o n s f o r w h e a t h a v e f a l l e n r e l a t i v e t o c o a r s e g r a i n i n t h e s c e n a r i o t h e r e i s s h i f t o u t o f w h e a t a r e a a n d i n t o c o a r s e g r a i n i n m o s t r e g i o n s . L o w e r p r o d u c t i o n i n m o s t e x p o r t i n g c o u n t r i e s r e s u l t s i n a 3 0 0 , 0 0 0 m e t r i c t o n i n c r e a s e i n w h e a t i m p o r t s o v e r b a s e l i n e l e v e l s i n 1 9 8 8 . C o u p l e d w i t h r e d u c e d w h e a t e x p o r t s f r o m b o t h A u s t r a l i a a n d A r g e n t i n a , r e s p e c t i v e C a n a d i a n a n d U . S . e x p o r t s o f w h e a t a r e 2 0 0 . 0 0 0 a n d 3 0 0 . 0 0 0 m e t r i c t o n s h i g h e r t h a n t h o s e i n t h e b a s e l i n e . T h e r e f o r e . e v e n t h o u g h C C C w h e a t s t o c k s i n t h e U . S . r e m a i n 1 9 0 m i l l i o n b u s h e l s b e l o w t h e b a s e l i n e l e v e l . t h e e x p o r t e r s t o c k t o u t i l i z a t i o n r a t i o i s 1 9 . 5 3 b e l o w t h e b a s e l i n e l e v e l . W h e a t p r i c e s p e r m e t r i c t o n i n 1 9 8 8 i n c r e a s e t o 9 . 1 0 b e l o w b a s e l i n e l e v e l s . I n 1 9 8 9 t h e s i t u a t i o n i s r e v e r s e d a s h i g h e r e x p e c t e d r e t u r n s p e r a c r e f o r w h e a t r e l a t i v e t o c o a r s e g r a i n s r e s u l t s i n i n c r e a s e d w h e a t p r o d u c t i o n a n d d e c r e a s e d c o a r s e g r a i n p r o d u c t i o n w h e n c o m p a r e d t o t h e b a s e l i n e . A g a i n . w h e a t p r i c e s f a l l a n d c o a r s e g r a i n p r i c e s i n c r e a s e . T h e l o w e r l e v e l s o f U . S . w h e a t s t o c k s r e l a t i v e t o e x p o r t e r c o n s u m p t i o n t e n d s t o i n c r e a s e t h e s i z e o f t h e w h e a t p r i c e d e v i a t i o n s r e l a t i v e t o t h o s e f o r c o a r s e g r a i n . F o r t h e r e m a i n d e r o f t h e f o r e c a s t p e r i o d w h e a t p r i c e s r e m a i n b e l o w b a s e l i n e l e v e l s . g r a d u a l l y i n c r e a s i n g u n t i l T m h a e r g r i e n l a e l a s l e o n f o g u e s r e m t P e I f K f e c c e t r s t i o f n i e c t a h t e s g r f a o i r n o m n a e r k r y e e t a . h T a h d e o n l y W T h e s o y b e a n c o m p l e x . a l t h o u g h n o t d i r e c t l y a f f e c t e d b y t h e i s s u a n c e o f g e n e r i c c e r t i f i c a t e s i s a f f e c t e d b y b o t h i n c r e a s e s i n p r o d u c t i o n a s r e v e n u e e x p e c t a t i o n s c h a n g e a n d a s c h a n g e s i n w h e a t a n d c o a r s e g r a i n f e e d i n g c h a n g e t h e q u a n t i t i e s o f s o y m e a l r e q u i r e d i n a n a n i m a l r a t i o n . T h e i n i t i a l i m p a c t s o f t h e d e c l i n e i n w h e a t a n d c o a r s e g r a i n p r i c e s a r e v e r y s l i g h t . I n 1 9 8 7 t h e r e i s a l m o s t n o c h a n g e i n t h e s o y m e a l c o n s u m e d a n d v e r y l i t t l e c h a n g e i n e i t h e r s o y b e a n o r s o y m e a l p r i c e s ( T a b l e 6 . 1 4 ) . H o w e v e r . l o w c o a r s e g r a i n p r i c e s o f e n c o u r a g e a n e x p a n s i o n o f s o y b e a n a r e a i n b o t h C h i n a a n d t h e U n i t e d S t a t e s . S o y b e a n p r o d u c t i o n i n c r e a s e s b y 3 0 0 . 0 0 0 m e t r i c t o n s a b o v e b a s e l i n e p r o j e c t i o n s i n t h e U . S . . a l m o s t a l l o f t h e i n c r e a s e m a n i f e s t s i t s e l f h i g h e r s t o c k l e v e l s a n d r e d u c e d p r i c e s r e l a t i v e t o t h e b a s e l i n e . S o y b e a n c o m p l e x p r i c e s r e a c h t h e i r m a x i m u m d e v i a t i o n s i n 1 9 8 9 a n d s u b s e q u e n t l y r e t u r n t o b a s e l i n e l e v e l s a s t h e U . S . . A r g e n t i n a a n d B r a z i l s h i f t l a n d i n t o c o a r s e g r a i n t o w a r d t h e m i d d l e o f t h e f o r e c a s t p e r i o d . U . S . s o y b e a n e q u i v a l e n t e n d i n g s t o c k s d e c l i n e t o l e v e l s b e l o w t h o s e i n t h e b a s e l i n e f o r t h e r e m a i n d e r o f t h e f o r e c a s t p e r i o d w h i c h r e s u l t s i n s l i g h t u p w a r d d e v i a t i o n i n p r i c e s f o r t h e l a s t f o u r y e a r o f t h e f o r e c a s t . 6 . § S c e n a r i o C o n g l g s i g n g m m m a u g I O H m 0 0 Z fl H H H O C m a w n o « e m o fl h v « m « u o n o n o n m O > Q 0 0 C a 0 0 8 ° 0 0 3 8 0 0 8 C 9 0 0 9 9 9 0 0 9 9 ( 9 ( 0 0 0 < D ( 1 1 < 1 ’ ( 4 ) 3 0 0 0 0 0 6 9 5 3 ) 5 3 9 3 ! 9 0 9 C 9 9 0 ( 0 0 0 9 9 9 9 0 N 0 6 ( 0 D 1 ¢ 1 | 1 0 0 i D D 9 9 3 2 ! ! 3 4 9 ! 9 9 0 0 0 0 0 0 0 ( 9 0 0 9 9 9 9 9 ( 0 9 ( 0 0 ( ‘ 0 ’ 1 0 ‘ ( G 1 D 1 : 0 9 9 ! ° ! 3 ’ 9 3 ) 9 0 0 0 . " 0 0 0 2 9 ( 9 0 0 9 9 9 { 9 9 0 { 0 9 0 0 ( ’ 1 1 ( 4 ’ 1 1 ' 1 ’ 0 9 9 ) . 3 3 3 5 9 ) 3 6 9 0 0 0 0 0 ) 9 0 d 0 « ° b - 9 9 0 g 8 9 ’ 8 1 ’ 8 G ’ 2 ° 6 s 9 ° 8 . ° 9 g ° 3 9 ' ‘ 3 ? 3 5 d i ? 9 ~ I 8 t 9 9 8 ° 9 g 9 8 9 8 9 9 8 ( 3 8 ( ' ° ° 0 0 . 8 9 ° s 8 9 8 9 9 9 8 ° ° ° 0 0 8 ° 9 8 8 9 9 9 9 z 8 8 8 0 0 ° ° { ’ 8 ¢ D 8 s 8 ° 9 9 9 8 9 9 8 8 0 0 1 0 0 . ' 9 ° 8 3 0 0 8 9 9 9 9 ! ° ° . 0 8 ' ° ° . I 8 ' ° ° 0 a 8 ° ° 9 a 8 ° ° O a 8 ° ° 0 a 8 ° ° 0 a 8 ° " . 0 a : « 9 0 . 0 0 0 . 0 - « . 0 . 0 0 . . . - 0 . 0 . 3 . 0 « 6 . 9 9 0 . 9 9 « . 9 0 1 . 0 n 0 9 « A P : O O O H V 7 9 0 « 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 0 « . 9 - 9 9 . 9 9 . 9 8 ‘ s ; 0 9 fl ¢ O « m o s a m o o m m a n 0 0 0 0 0 0 0 0 9 « « 9 0 0 0 0 0 0 0 0 9 0 0 0 J 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 « 0 0 0 0 0 0 ' 0 « > « 0 l m 0 0 0 0 « I I « 0 9 9 . 9 9 9 . 9 9 . 9 9 . 9 9 9 . 9 9 9 . 9 9 . 9 9 . 9 0 9 . « 0 9 9 . 9 « . 9 - 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 0 9 . 9 « . 9 ° 8 9 ° 6 . 9 9 « . 9 - é 0 0 . 9 0 0 . 9 n « . 9 9 N . 9 - « « . 9 « 0 . 9 - 3 9 . 9 v « . 9 - h « . 9 0 n . 9 . N 0 0 « « Q O « 9 « . « « . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 0 . 9 « . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 0 . 9 « . 9 « 9 9 9 9 . 9 « . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 « 1 . 9 9 9 . n - 0 9 . 9 - 9 0 . « - 9 9 . 0 - 9 9 9 « 9 9 0 9 9 . 9 9 9 . 9 9 . 9 9 0 . 9 9 . 9 9 9 . 9 . 9 9 . 9 9 9 . 9 ! « . 9 0 9 9 . 9 9 . 9 « 0 . 9 9 9 . 0 - 9 « . fl - N h . « - $ 9 . ? - @ 9 9 « 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . « « . 9 9 9 . 9 9 9 . 9 9 9 . 9 9 9 . 9 9 9 . 9 H . 5 3 . 9 fl ? 6 I 9 9 . 4 - 9 9 . " - 0 9 . n - 9 9 9 « 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 6 6 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 9 . 9 9 . 9 9 0 . 9 « . 9 n u . « - R h . « - , « b . 9 - O H . « - h 9 0 « £ 0 0 m a c o fi u o a > o o 0 . 0 « « 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 . 3 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 « 0 0 0 2 . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 . 0 0 0 0 0 « 0 « 0 0 « 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 3 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 . 0 0 0 3 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 « « 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 . 0 0 0 3 0 0 0 0 0 . 9 9 9 9 9 9 9 I I B « I U . 9 9 9 9 9 1 0 I 9 9 « l U I « D I I . 9 I D I I A U I I I I O O I H O « ‘ 9 « l . 9 0 0 0 0 6 0 . n . o m a n h U B O O I e 0 0 0 0 0 0 0 0 3 0 0 0 1 . 0 0 9 9 9 9 1 9 I I O I O O I H 9 « 9 9 « I 0 9 9 9 3 9 I 9 9 9 4 0 9 8 9 4 9 I 0 & 8 ! I O I O « I § I O I h l o e l n k l ! 9 9 . 9 0 0 0 0 1 9 0 9 . 9 0 | « I U 9 9 . 9 0 0 0 0 1 0 I 9 . 9 « 0 0 0 0 9 0 0 . 0 0 0 0 0 0 0 0 9 . 9 0 I « 0 0 0 9 0 0 0 0 . 0 0 0 0 0 0 0 0 9 . 9 . n . : n h I D I I I h i s 0 0 . 0 0 0 0 0 0 0 0 0 2 . 0 0 0 . 0 0 ' 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 2 . 0 0 0 . 0 0 0 0 0 0 0 0 0 2 . . . 0 0 0 0 0 0 . 0 . . . - u n o ~ o > a a v m $ « . m m H n O F m m d 1 6 7 a n t i c i p a t i o n o f t h e r e l e a s e f r o m g o v e r n m e n t s t o c k s e x e r t e d d o w n w a r d p r e s s u r e o n p r i c e s i n t h e g r a i n a n d o i l s e e d m a r k e t s . H o w e v e r . l o w e r p r i c e s r e d u c e s g r a i n s u p p l i e s i n t h e f o l l o w i n g y e a r a n d c a u s e d s o m e m i n o r f l u c t u a t i o n i n g r a i n p r i c e r e l a t i v e t o t h e b a s e l i n e f o r e c a s t t h r o u g h t h e m i d d l e p a r t o f t h e f o r e c a s t . L o w e r g r a i n p r i c e s r e l a t i v e t o t h e b a s e l i n e d u r i n g t h i s p e r i o d r e s u l t e d i n a s l i g h t p r o d u c t i o n s h i f t i n t o o i l s e e d s i n c r e a s i n g d o w n w a r d p r e s s u r e o n s o y b e a n a n d s o y m e a l p r i c e s . T h e r e a f t e r . t h e f l u c t u a t i o n s s t a b i l i z e a n d t h e m o d e l r e t u r n s t o a p p r o x i m a t e b a s e l i n e l e v e l s b y t h e e n d o f t h e f o r e c a s t p e r i o d . C H A P T E R 7 C O N C L U S I O N S A N D R E C O M M E N D A T I O N S F O R F U R T H E R R E S E A R C H H a v i n g r u n t h e i n t e r n a t i o n a l c o m p o n e n t o f t h e M . S . U . A g r i c u l t u r e M o d e l t o g e n e r a t e a n e x - p o s t f o r e c a s t , a n e x - a n t e f o r e c a s t b a s e l i n e a n d a s c e n a r i o . i t s h o u l d b e p o s s i b l e t o d r a w a s e t o f c o n c l u s i o n s f r o m t h e m o d e l p e r f o r m a n c e . I n d e p t h s t u d i e s o f t h e c a p a b i l i t y o f t h e m o d e l i n s c e n a r i o w o r k w i l l b e c o v e r e d i n f o r t h c o m i n g w o r k s . 7 C o n ‘ i n “ r o m v i o n 0 o ‘ l P ’ o m I n g e n e r a l , t h e m o d e l p e r f o r m e d q u i t e w e l l . S i g n i f - i c a n t p r o b l e m s e x i s t i n a n u m b e r o f r e g i o n s , m o s t n o t a b l y i n t h e S o v i e t B l o c w h e r e t h e s p i l l o v e r o f e r r o r c a u s e s s e v e r e d i s t o r t i o n s i n t h e r e s t o f t h e m o d e l . O t h e r r e g i o n s h a v e i n t e r n a l s p i l l o v e r p r o b l e m s b u t . f o r t h e m o s t p a r t t h e a b s o l u t e e r r o r v a l u e s a r e s m a l l a n d t h e s p i l l o v e r i n t o t h e m o d e l i s m i n i m a l . H o w e v e r , o n e c a n n o t s i m p l y s a y t h a t b e c a u s e t h e m o d e l c o n s i s t s o f a n u m b e r o f m i n i m a l e r r o r s . t h e r e i s n o t h i n g w r o n g w i t h t h e m o d e l . S e n a t o r E v e r e t t D i r k s o n i s q u o t e d a s c o m m e n t i n g a b o u t t h e d e f e n s e b u d g e t : " a b i l l i o n d o l l a r s h e r e a n d a b i l l i o n d o l l a r s t h e r e a n d p r e t t y s o o n y o u ’ r e t a l k i n g a b o u t r e a l m o n e y . " T h e s a m e l o g i c a p p l i e s t o t h e m e a s u r e - m e n t o f e r r o r i n t h e m o d e l . O v e r t h r e e - q u a r t e r s o f t h e 1 6 8 1 6 9 e r r o r i n U . S . c o a r s e g r a i n e x p o r t s i n 1 9 8 2 c a n b e t r a c e d t o a n e r r o r i n S o v i e t B l o c i m p o r t s . t h e o t h e r q u a r t e r o f t h e e r r o r i s s t i l l 3 m i l l i o n m e t r i c t o n s . T h e r e s t r i c t i o n s o f t h e p a s s i v e s u p p l i e r a n d s t o c k h o l d e r p l a c e d u p o n t h e m o d e l b y u s i n g a t r a d e h i e r a r c h y f o r c e a l l t h e e r r o r s i n t o t h e e n d i n g s t o c k s o f t h e U n i t e d S t a t e s . T h i s b r e e d s i n s t a b i l i t y , e s p e c i a l l y i n t h e c o a r s e g r a i n a n d s o y b e a n s e c t o r s w h e r e p r i c e s a r e d e t e r m i n e d b y t h e s t o c k t o u t i l i z a t i o n r a t i o w i t h t h e v a s t m a j o r i t y o f s t o c k s h e l d b y t h e U n i t e d S t a t e s . W h e a t i s l e s s o f a p r o b l e m b e c a u s e a l a r g e r p r o p o r t i o n o f s t o c k s a r e h e l d b y c o m p e t i n g e x p o r t e r s . S o m e o f t h e e r r o r s i n i n d i v i d u a l r e g i o n s c a n b e t r a c e d t o t h e u s e o f r e a l b o r d e r p r i c e s a s o p p o s e d t o i n t e r n a l c o u n t r y p r i c e s . A l t h o u g h t h e e s t i m a t i o n o f i m p o r t e q u a t i o n s b a s e d u p o n r e a l b o r d e r p r i c e s w o r k e d w e l l f o r i m p o r t e r s . t h e e f f i c i e n c y o f c o n s u m p t i o n e q u a t i o n s f o r e x p o r t e r s a n d p r o d u c t i o n e q u a t i o n s f o r a l l r e g i o n s w a s r e d u c e d b y t h e u s e r e a l b o r d e r p r i c e s . A n u m b e r o f f a c t o r s s p e a k i n f a v o r o f u s i n g r e a l b o r d e r p r i c e s : e a s e o f c o l l e c t i o n . s i m p l i c i t y i n n o t h a v i n g t o d e t e r m i n e t a x e s a n d s u b s i d i e s a n d c o m p a c t n e s s o f t h e m o d e l . H o w e v e r . s i n c e i t i s p r i c e p o l i c i e s w h i c h d r i v e a g r i c u l t u r e i n m o s t o f t h e r e g i o n s . i t i s d i f f i c u l t t o a n a l y z e t h e e f f e c t o f c h a n g e s i n g o v e r n m e n t p o l i c i e s w i t h o u t l o o k i n g a t t h e p r i c e s f a c e d b y p r o d u c e r s a n d c o n s u m e r s i n e x p o r t i n g c o u n t r i e s . 1 7 0 A n o t h e r s o u r c e o f r e g i o n a l e r r o r i n t h e m o d e l c a n b e t r a c e d t o e s t i m a t i o n o f e n d i n g s t o c k s . A s M i t c h e l l n o t e d . i s v e r y d i f f i c u l t t o c a p t u r e t h e v a r i a b i l i t y o f s t o c k s . I n m o s t r e g i o n s . t h e e n d i n g s t o c k e q u a t i o n s t e n d e d t o h a v e t h e g r e a t e s t p e r c e n t a g e e r r o r . T h i s e r r o r s p i l l s o v e r i n t o d o m e s t i c s u p p l y . a v a r i a b l e i n t h e i m p o r t e q u a t i o n s o f a l m o s t e v e r y r e g i o n . I f t h e q u a n t i t y o f s t o c k s h e l d i s s m a l l ( a s i n t h e c a s e o f t h e N I C s o r L D O s ) t h e e f f e c t s o f t h e s p i l l o v e r d o n o t h a v e a s i g n i f i c a n t i m p a c t u p o n t h e m o d e l . H o w e v e r . i f t h e v a r i a t i o n i s s i g n i f i c a n t ( B r a z i l ) o r t h e q u a n t i t i e s o f s t o c k s a r e l a r g e ( L D C s o r S o v i e t B l o c ) , t h e s p i l l o v e r o f e r r o r c a n b e s i g n i f i c a n t . F i n a l l y . t h e m o d e l i n g o f s o y b e a n c o m p l e x t r a d e t h r o u g h t h e e s t i m a t i o n o f e q u a t i o n s f o r i m p o r t d e m a n d o f e q u i v a l e n t s a n d t h e e s t i m a t i o n o f a n e q u a t i o n f o r d e c i s i o n t o c r u s h d o m e s t i c a l l y h a d m i x e d r e s u l t s . G e n e r a l l y . t h e i m p o r t d e m a n d e q u a t i o n s w e r e g o o d . T h e P M E A L e q u a t i o n s w e r e s p o t t y : i n c a s e s w h e r e p o l i c i e s w e r e e a s i l y m o d e l e d ( t h e D e v e l o p e d M a r k e t s ) t h e r e s u l t s w e r e q u i t e s a t i s f a c t o r y . I n o t h e r c a s e s . w h e r e p o l i c y w a s n o t a s c l e a r o r t h e i m p o r t o f s o y b e a n s w a s a r e l a t i v e l y r e c e n t p h e n o m e n o n ( C h i n a o r t h e S o v i e t B l o c ) t h e r e s u l t s r a n g e d f r o m p o o r t o i n e s t i m a b l e . T h e c o m b i n a t i o n o f t h e t w o e q u a t i o n s o f t e n c r e a t e d l a r g e e r r o r s i n t h e c o m p o n e n t i d e n t i t i e s . F o r t u n a t e l y m o s t o f t h e r e g i o n s w i t h l a r g e p e r c e n t a g e e r r o r s p l a y e d a s m a l l r o l e i n t r a d e . e c o n o m i c u n i t c o n s i s t i n g o f T h e E u r o p e a n C o m m u n i t y a n d t h e G i v e n t h e s p e c i f i c o b s e r v a t i o n s i n t h e p r e v i o u s c h a p t e r a n d t h e g e n e r a l c o m m e n t s p r e s e n t e d a b o v e . i t i s p o s s i b l e t o r e c o m m e n d a n u m b e r o f m o d i f i c a t i o n s t o t h e m o d e l . ‘ G i v e n m a n p o w e r c o n s t r a i n t s a n d t h e e n t h u s i a s m o f t h e a n a l y s t . s o m e o f t h e s e m o d i f i c a t i o n s m a y b e l e s s p r a c t i c a l t h a n o t h e r s . A l l o f t h e m a r e w o r t h y o f c o n s i d e r a t i o n . T o b e e n a b l e t h e a n a l y s t t o p e r f o r m a h i g h e r d e g r e e o f p o l i c y a n a l y s i s . e s p e c i a l l y r e l a t i n g t o i s s u e s o f f r e e t r a d e t h e m o d e l s h o u l d f o l l o w t h e e x a m p l e o f t h e F . A . P . m o d e l a n d m o v e t o i n t e r n a l c o u n t r y p r i c e s . A l t h o u g h t h e c o l l e c t i o n o f t h i s d a t a p r e s e n t s d i f f i c u l t i e s . t h e a d v a n t a g e s o f e x p l o r i n g t h e e f f e c t s o f t a x e s a n d s u b s i d i e s w o u l d b e t r e m e n d o u s . S e c o n d l y . u s i n g r e a l i n t e r n a l p r i c e s w o u l d p e r m i t t h e e s t i m a t i o n o f c o n s u m p t i o n e q u a t i o n s f o r b o t h i m p o r t e r s a n d e x p o r t s . S i n c e c o n s u m p t i o n v a r i e s l e s s t h a n e n d i n g s t o c k s . e n d i n g s t o c k s c o u l d b e c o m e t h e r e s i d u a l a n d c r e a t e a m o r e s t a b l e m o d e l . T h e a g g r e g a t i o n o f s e v e r a l r e g i o n s s h o u l d b e r e c o n - s i d e r e d . J a p a n a n d t h e E u r o p e a n C o m m u n i t y n o l o n g e r a r e c o n s t r a i n e d b y t h e s a m e p o l i c i e s . A l t h o u g h b o t h o f f e r c o n s i d e r a b l e p r o t e c t i o n t o t h e i r p r o d u c e r s . t h e E C m u s t n o w c o n s i d e r s u r p l u s d i s p o s a l . a p r o b l e m n o t f a c i n g t h e m o d e l e d c o m m o d i t i e s i n J a p a n e s e a g r i c u l t u r e . T h e r e f o r e . a b e t t e r a g g r e g a t i o n w o u l d p l a c e J a p a n w i t h t h e N I C s a n d p l a c e S o u t h A f r i c a w i t h t h e L D C s . T h i s w o u l d c r e a t e a g e o g r a p h i c / - v a r i a b l e s r e p r e s e n t i n g t h o s e c o m p e t i n g c o m m o d i t i e s i t i s 1 7 2 r e m a i n i n g c o u n t r i e s o f W e s t e r n E u r o p e . J a p a n a n d t h e N I C s w o u l d c o r r e s p o n d m o r e c l o s e l y t o E a s t A s i a . T h e s e n e w a g g r e g a t i o n h a s s e v e r a l a d v a n t a g e s . D a t a c o l l e c t i o n w o u l d b e s i m p l i f i e d b e c a u s e m u c h o f t h e d a t a p r i n t e d i n c i r c u l a r s i s a g g r e g a t e d b y g e o g r a p h i c r e g i o n . S e c o n d l y . t h e n e w a g g r e g a t i o n s w o u l d m o r e c l o s e l y f o l l o w e c o n o m i c a n d a g r i c u l t u r a l p o l i c i e s a n d c o n s u m p t i o n p a t t e r n s c o m m o n t o t h a t r e g i o n . T h e r e d o e s n o t s e e m t o b e a n y a g r e e m e n t o n t h e “ c o r - r e c t ” w a y t o e s t i m a t e a r e a . T h e r e s e e m e d t o b e g e n e r a l a g r e e m e n t a m o n g t h e a u t h o r s o f t h e m o d e l s d e s c r i b e d i n C h a p t e r I I t h a t i t i s n o t p r a c t i c a l t o e s t i m a t e c r o p l a n d b a s e a s a n y t h i n g o t h e r t h a n a t i m e t r e n d . T h e M . S . U . m o d e l a t t e m p t e d t o s i d e s t e p t h e i s s u e b y e s t i m a t i n g a l l t h e h a r v e s t e d a r e a e q u a t i o n s i n d i v i d u a l l y . T h i s w a s s u c c e s s f u l i n m o s t c a s e s . H o w e v e r . i n A u s t r a l i a t h e d i f f e r e n c e i n t h e r e l a t i v e s i z e o f t h e a r e a s g e n e r a t e d a v e r y l a r g e c r o s s e l a s t i c i t y i n t h e s m a l l e r o f t h e t w o a r e a s . T h e c o e f f i c i e n t o n w h e a t r e v e n u e i n t h e w h e a t a r e a e q u a t i o n i s 4 4 3 . 1 w h i l e t h e c o e f f i c i e n t o n c o a r s e g r a i n r e v e n u e i s - 2 1 1 0 . 0 . G i v e n t h e s i z e o f t h e c r o s s c o e f f i c i e n t i t w a s n o t i c e d t h a t i t w a s p o s s i b l e f o r a s i m u l t a n e o u s a n d p r o p o r t i o n a l d e c l i n e i n c o a r s e g r a i n a n d w h e a t p r i c e s t o i n c r e a s e t o t a l a r e a b y c a u s i n g e x p l o s i v e g r o w t h i n w h e a t a r e a . . I t i s o b v i o u s t h a t w h e a t a n d c o a r s e g r a i n s a r e n o t t r u l y c o m p e t i n g c o m m o d i t i e s i n l a n d u s e . I n t h e a b s e n c e o f m o d e l e s t i m a t e s t h r e e s p e c i f i c s t o c k s . F O R , C C C a n d t h e 1 7 3 n e c e s s a r y t o r e s t r i c t t h e a r e a o f t h a t c r o p n o t t o b e m o r e t h a n a s e t p e r c e n t a g e o f t o t a l a r e a . T h e r o l e r i c e p l a y s i n t h e w o r l d g r a i n m a r k e t r a i s e s a n o t h e r c o n s i d e r a t i o n f o r r e s e a r c h . I n m u c h o f t h e w o r l d . r i c e n o t w h e a t c o m p e t e s w i t h c o a r s e g r a i n s b o t h f o r h u m a n a n d f e e d c o n s u m p t i o n . A s s o m e p o i n t e i t h e r t h e p r i c e o r a v a i l a b l e s u p p l y o f r i c e w i l l b e c o m e a d e t e r m i n i n g f a c t o r i n t h e p r o d u c t i o n a n d i m p o r t d e c i s i o n s o f a n u m b e r o f r e g i o n s . S o m e c o n s i d e r a t i o n s h o u l d b e g i v e n t o i n c l u d i n g r i c e i f n o t a s s e p e r a t e p r i m a r y c o m m o d i t y . a t l e a s t w i t h i n a r e g i o n . F i n a l l y . a s t h i s m o d e l i n g e x e r c i s e a s s h o w n . t h e u s e o f a t r a d e h i e r a r c h y i s n o t w i t h o u t i t s l i m i t a t i o n s . T h e U . S . a c c u m u l a t e s a l l t h e e r r o r i n t h e m o d e l t h r o u g h t h e e x p o r t e q u a t i o n s . T h e e r r o r i s t h e n p a s s e d i n t o t h e e n d i n g s t o c k e q u a t i o n s a n d f r o m t h e r e i n t o p r i c e . T h e e q u a t i o n e s t i m a t i o n a n d p e r f o r m a n c e s t a t i s t i c s f o r t h e p r i c e e q u a t i o n s i n d i c a t e t h a t t h e m a j o r i t y o f t h e f o r e c a s t e r r o r l i e s i n v a r i a b i l i t y a n d r a n d o m f a c t o r s . T h i s i n t u r n i s t r a c e d b a c k t o t h e v a r i a b i l i t y i n t h e e n d i n g s t o c k e q u a t i o n s . T h i s p o i n t s t o t h e n e e d f o r a s e t o f e q u a t i o n s w h i c h s t a b i l i z e t h e l e v e l s o f s t o c k c o n s i d e r e d i n t h e p r i c e d e t e r - m i n a t i o n e q u a t i o n . . T h e m o d e l c o n t a i n s t w o s u c h e q u a t i o n s w h i c h w e r e n o t u s e d i n t h e e x - p o s t f o r e c a s t . A s d i s c u s s e d i n C h a p t e r I I I t h e s t o c k / u t i l i z a t i o n e q u a t i o n d o e s n o t c o n s i d e r a l l U . S . e n d i n g s t o c k s . T h e 1 7 4 r e m a i n i n g f r e e s t o c k s . O n l y a p e r c e n t a g e o f t h e F O R a n d C C C s t o c k s a r e c o n s i d e r e d . T h e p e r c e n t a g e i s e s t i m a t e d a s a s i m p l e t i m e a n d p r i c e d e p e n d e n t v a r i a b l e . H i g h p r i c e s r e l a t i v e t o t h e l o a n r a t e w o u l d i n c r e a s e t h e p e r c e n t a g e o f p o l i c y s t o c k s c o n s i d e r e d . L o w p r i c e s w o u l d d e c r e a s e t h e p e r c e n t a g e a n d t h e h i g h / l o w p e r c e n t a g e s c h a n g e d o v e r t i m e . S i n c e t h e e q u a t i o n s d e t e r m i n i n g p o l i c y s t o c k s w e r e e s t i m a t e d a s a r u l e a n d n o t t h r o u g h t h e u s e o f a c t u a l d a t a p o i n t s . i t w a s f e l t t h a t i t w o u l d b e h a r d e r t o t r a c k e r r o r i f t h e e q u a t i o n s w e r e t e s t e d i n t h e e x - p o s t f o r e c a s t . T h e r e f o r e a c t u a l l e v e l s o f C C C a n d F O R s t o c k s w e r e u s e d . S i n c e t h e s e r u l e s c o u l d a d j u s t s t o c k l e v e l s t o s m o o t h t h e w i d e s w i n g s w h i c h o c c u r r e d i n t h e p r i c e e q u a t i o n s . i t i s h a r d t o s a y h o w b a d t h e s t o c k / p r i c e e q u a t i o n s r e a l l y a r e . I n t h e e x - a n t e f o r e c a s t s a n d t h e P I K s c e n a r i o s b o t h e q u a - t i o n s f u n c t i o n e d q u i t e w e l l . O n e p r o b l e m w i t h t h e p o l i c y s t o c k e q u a t i o n i s t h a t g i v e n a c u b i c f u n c t i o n a l f o r m . p o l i c y s t o c k e q u a t i o n a r e i n h e r e n t l y u n s t a b l e . A t v e r y l o w o r v e r y h i g h p r i c e s . t h e m o d e l w i l l b e s i t t i n g a t t h a t v e r y e l a s t i c p a r t o f t h e c u r v e w h e r e s m a l l c h a n g e s i n p r i c e w i l l c a u s e l a r g e a m o u n t s o f g r a i n t o b e a c c u m u l a t e d o r r e l e a s e d . T h i s c a n c a u s e m a s s i v e g y r a t i o n s a n d p r e v e n t t h e m o d e l f r o m c o n v e r g i n g . A s e c o n d p r o b l e m i s t h a t t h e e q u a t i o n d e t e r m i n i n g t h e p e r c e n t a g e o f s t o c k s c o n s i d e r e d i n t h e s t o c k / u t i l i z a t i o n f o r m u l a i s n o t a s m o o t h f u n c t i o n a l r u l e b u t r a t h e r t h e 1 7 5 c h o i c e o f o n e o f t w o p e r c e n t a g e s “ . I f a s m o o t h f u n c t i o n a l r u l e c o u l d b e e s t i m a t e d . t h e p r i c e e q u a t i o n w i l l b e c o n - s i d e r a b l y s m o o t h e r . T h e o t h e r o p t i o n f o r s m o o t h i n g t h e s t o c k / u t i l i z a t i o n r a t i o w o u l d b e t o e s t i m a t e a s p e c u l a t i v e s t o c k d e m a n d e q u a t i o n f o r t h e U . S . T h i s w o u l d c o n t a i n a l l t h e s t o c k s c o n s i d e r e d b y t h e m a r k e t i n p r i c e d e t e r m i n a t i o n . T h e r e m a i n i n g s t o c k s w o u l d n o t b e c o n s i d e r e d b y t h e m a r k e t i n d e t e r m i n i n g p r i c e . T h e y c o u l d b e d i v i d e d i n t o C C C a n d F O R a c c o r d i n g t o t h e r u l e s c u u r e n t l y u s e d . A l t h o u g h t h i s f o r m u l a t i o n w o u l d n o t p r o v i d e a n a c c u r a t e f o r e c a s t o f t h e a c t u a l l e v e l s o f s t o c k h e l d u n d e r l o a n . i t w o u l d p r o v i d e a f o r e c a s t o f s h a d o w s t o c k s u n d e r t h e F I R c e r t i f i c a t e p r o g r a m . 7 . 3 C o n g l g d i g g O b s e r v a t i g g g T h e i n t e r n a t i o n a l c o m p o n e n t o f t h e M . S . U . m o d e l i s n o t w i t h o u t i t s s h o r t c o m i n g s . H o w e v e r . i t w a s n o t d e s i g n e d t o b e a p e r f e c t f o r e c a s t i n g m o d e l . I t w a s d e s i g n e d t o b e a t o o l f o r u n d e r s t a n d i n g t h e i n t e r - r e l a t i o n s h i p s i n i n t e r - n a t i o n a l a g r i c u l t u r e a n d h o w t h e e f f e c t s o f p o l i c y o r e x o g e n o u s s h o c k s w i l l i m p a c t u p o n p a r t i c u l a r r e g i o n s a n d g l o b a l a g r i c u l t u r e a s a w h o l e . A l t h o u g h l a r g e i n f o r m a t a n d n u m b e r o f e q u a t i o n s t h e m o d e l i s s i m p l e e n o u g h t o t r a c e t h e e f f e c t s o f a s h o c k t h r o u g h t h e s y s t e m . I t s s i m p l i c i t y a l s o p e r m i t s t h e m o d e l t o b e m o d i f i e d o r t r i c k e d i n t o p e r f o r m i n g a b r o a d s p e c t r u m * S e v e r a l a t t e m p t s w e r e m a d e t o d e r i v e a s m o o t h f u n c t i o n b u t a l l a t t e m p t s f a i l e d . l 7 6 o f p o l i c y a n a l y s i s w i t h v e r y l i t t l e s e t - u p t i m e . I n i t s c u r r e n t f o r m , t h e m o d e l h a s b e e n u s e d t o a n a l y z e t h e e f f e c t s o f a 5 x r e d u c t i o n i n U . S . p r o d u c t i o n . t h e r e d u c t i o n o f C A P t a x e s a n d s u b s i d i e s i n t h e E C . t h r e e s p e c i f i c G A T T p r o p o s a l s f o r a g r i c u l t u r a l q u o t a r e d u c t i o n s i n t h e U . S . a n d t h e E C . t h e l o n g t e r m a b a n d o n m e n t o f a g r i c u l t u r a l l a n d a n d l i v e s t o c k d e s t r u c t i o n i n t h e S o v i e t U n i o n a s a r e s u l t o f n u c l e a r c o n t a m i n a t i o n a n d m o s t r e c e n t l y . t h e i m p l i c a t i o n s o f t h e u s e o f P I K c e r t i f i c a t e s . A s a n e x a m p l e o f t h e s p e e d a t w h i c h t h e m o d e l c a n b e s e t - u p f o r s c e n a r i o a n a l y s i s . t h e P I K e x e r c i s e w a s r u n a n d a d r a f t s e c t i o n g e n e r a t e d w i t h i n 1 2 h o u r s . I n a d d i t i o n t o i t s b a s i c f u n c t i o n s t h e i n t e r n a t i o n a l c o m p o n e n t h a s t h e c a p a c i t y t o b e l i n k e d w i t h o t h e r . m o r e c o m p l e x m o d e l s f o r i n d e p t h a n a l y s i s . C h a p t e r I V . p r e s e n t s t h e l i n k a g e s b e t w e e n t h e i n t e r n a t i o n a l g r a i n m o d e l a n d a U . S . g r a i n m o d e l a n d / o r a U . S . l i v e s t o c k m o d e l . t h e r e i s n o r e a s o n w h y i t c a n n o t b e l i n k e d w i t h m o d e l s o f o t h e r r e g i o n s i n t h e s a m e m a n n e r . F r o m a f o r e c a s t i n g s t a n d p o i n t t h e s i m p l i c i t y o f m o d e l h a s i t s d i s a d v a n t a g e s . T h e m o d e l d o e s n o t d e a l e x p l i c i t l y w i t h m o s t o f t h e p o l i c y i n t e r a c t i o n s ( t a x e s a n d s u b s i d i e s ) w h i c h d r i v e a g r i c u l t u r e i n m u c h o f t h e w o r l d . t h o u g h t h e s e a r e i m p l i c i t i n t h e p r o d u c t i o n a n d t r a d e e q u a t i o n s . M o d i f i c a t i o n s m u s t b e m a d e t h e a n a l y s t b a s e d u p o n h i s s k i l l s a n d J u d g e m e n t . T h e M . S . U . A g r i c u l t u r e M o d e l w a s d e s i g n e d t o b e a n a n a l y s t c o n t r o l l e d m o d e l . I t s s t r e n g t h i s i n t h e 1 7 7 l a t i t u d e p r o v i d e d t o a n a n a l y s i s t i n f o r m u l a t i n g t h e q u e s t i o n s . T h e m o d e l w i l l n o t p r o d u c e a p r e s c r i p t i o n . b u t r a t h e r a s e t o f r e a c t i o n s w h i c h c a n b e i n t e r p r e t e d t o p r o v i d e a c l e a r e r u n d e r s t a n d i n g o f c o m p l e x a g r i c u l t u r a l i n t e r a c t i o n s . B I B L I O G R A P H Y B I B L I O G R A P H Y " D e v e l o p i n g C o u n t r i e s a n d P h . D . T h e s i s M a s s a c h u s e t t s A b b o t t . P h i l i p C h a s e . M a y 1 9 7 6 I n t e r n a t i o n a l T r a d e . " I n s t i t u t e o f T e c h n o l o g y . . " M o d e l i n g I n t e r n a t i o n a l G r a i n T r a d e w i t h G o v e r n m e n t C o n t r o l l e d M a r k e t s . " m e r i c a n J o u r n a l g f n o . 1 ( F e b r u a r y 1 9 7 9 ) : 2 2 - 3 1 . A g r i c u l r u r g l E g g n o m r g g 6 1 . A b k i n . M i c h a e l H . C o g g e p t s B e h i n d I I A S A ’ s F o o d A n g A g r i g u l r g r g M g d g l . A g r i c u l t u r a l E c o n o m i c s S t a f f P a p e r N o . 8 1 - 7 8 . M i c h i g a n S t a t e U n i v e r s i t y . D e c e m b e r i 9 8 1 J . S c o t t . L o n g - R a n g e F g r g g a s t i n g : F r o m C r y s t a l S e c o n d E d i t i o n . N e w Y o r k : J o h n w i l e y A r m s t r o n g . B a l l t o C o m p u t e r . a n d S o n s . 1 9 8 5 . B l i e m e l . F r i e d h e l m W . " T h i e l ’ s F o r e c a s t A c c u r a c y C o e f f i c i e n t : A C l a r i f i c a t i o n " . J o u r n a l o f M a r k e t i n g R e s e a r c h . 1 0 ( 1 9 7 3 ) P 4 4 4 - 4 4 6 . B r a n d o w . A . E . " A N o t e o n t h e N e r l o v i a n E s t i m a t e o f S u p p l y E l a s t i c i t y . " J o u r n a l o f F a r m E c o n o m i c ; 4 0 . n o . 3 l 9 5 8 ) : 7 1 9 - 7 2 2 ( A u g u s t a n d R i c h a r d G . J u s t . " E f f e c t s o f R o b e r t G . . R a t e C h a n g e s o n U . S . A g r i c u l t u r e . ” A m e r i c a n ‘ ( F e b r u a r y C h a m b e r s . E x c h a n g e J o u r n a l o f A g r i c u l t u r a l E c o n o m i c s 6 3 . n o . i 3 2 - 4 6 1 9 8 1 ) : D e s a i . P a d m a . " S o v i e t G r a i n a n d W h e a t I m p o r t D e m a n d s i n 1 9 8 1 - 8 5 . “ A m g r i c a n J o u r n a l o f A g r i c u l t u r a l E c o n o m i c s 6 4 . n o . 2 . M a y 1 9 8 2 : 3 1 2 - 3 2 2 . " T h e B a s i c L i n k e d F i s c h e r . G u n t h e r a n d K l a u s F r o h b e r g . S y s t e m o f t h e F o o d a n d A g r i c u l t u r e P r o g r a m a t I I A S A : M a t h e m a t i c a l A n O v e r v i e w o f ' t h e N a t i o n a l M o d e l s . ” M o d e l i n g 3 ( 1 9 8 2 ) . E c o n o m i g F o r b e s . J . D . . R . D . H u g h e s . a n d T . K . w a r l e y . I n t e r v e n t i o n a n d R e g u l a t i o n i n C a n a d i a n A g r i c u l t g r e . E c o n o m i c C o u n c i l o f C a n a d a a n d T h e I n s t i t u t e 1 9 8 2 . O t t a w a : f o r R e s e a r c h o n P u b l i c P o l i c y . " R t e h a e g e E r s ’ t s i m d Q g g b k B n C . H s K K L M e o i c u n e b C . n s r a _ _ _ _ e t l a _ D H J P A P B r H W S _ P S P d e l s e a r e g a y g l y _ r a t y r a i s n n c u . . . e s s r r a l o a p s t l s t o t e f t e H i r . e l . n m m r m l " t . - r a P U s d a i f g e A e i e r u b y t r t o s l g C e a A U 9 7 F i i . n 1 1 e i 9 r c . h " r : g n e o n D n x b d n . e a r i g l : . E p l v i e i 8 9 . r t . I T m a i e 6 ) A a d s y s h y e i t P A c a e s r m i n e B b T h e . p r t r G a g Q t l A d r r f n o t u t o g u . H e e v A r o i e d d g i l a . p r h C s s f d e t K o o r s w t e g l b e o o i k a e i r S t E o E t n i o r c i G c t q g i g g r g n h u D U 1 n r o u o c e e n a . s m a a l 9 S t t i a o o e U t U H e e t i n u 9 r o i e S C . d n a r t r o r R . l n D e z . a m h l i i t t 7 f v i t i s c h S o m n e e - 0 r " n i t 9 g v a . s a l . . " s s e e d r U a 3 G t f t E t i c ( a T l y O e p u w t r p i u t t t e n . m i n n ; S u b g P R e g M v F C r t h o . i e a a i A y h S n s " h n . e o G J S a t t o t i c . l n s r . r a c 0 e r i d g e : E c r u r . t M a e e U h . e v , s r r a n s i e G t k s s p g S s c r e u i u n T t . e 1 a t s b b M . i o h a i i l i 9 m i a n 1 8 n C l i c T z h e o r t 1 g 9 a i s h d 8 z . n t h i . 4 . a y e g f d d a M I T " d . a n a n m i c s . u J a l r g y d a l C o r i i r s g h r C o A c g g e l a g z u a n y u n n o O l r s n g d o I W f c o i e t c f n y a t . 1 7 9 G r a n g e r . C . W . J . a n d P . N e w b o l d . " S o m e C o m m e n t s o n t h e E v a l u a t i o n o f E c o n o m i c F o r e c a s t s . " g p l i e d § g o g o m i c s . S ( 1 9 7 3 ) : 3 5 - 4 7 H o u c k . J a m e s P . a n d P a u l W . G a l l a g h e r . " T h e P r i c e R e s p o n s i v e n e s s o f U . S . C o r n Y i e l d s “ . A m e r i c a n J o u r n a l o f A g r i c u l r u r a l E c o n o m i c s 5 8 . n o . 4 . ( N o v e m b e r l 9 7 6 ) : 7 3 1 - 7 3 4 I n g c o . M . D . . J . R . H i l k e r a n d J . R . B l a c k . A § g o n o m e t r i c M o d e l 2 ; t a g U . S . L i v g s r o g k S g c t g r f o r P o l i c y A n a l y s i s a n d n g g - R u n F o r e c a s r l n g . A g r i c u l t u r a l E c o n o m i c s S t a f f P a p e r N o . 8 6 - 3 0 . M i c h i g a n S t a t e U n i v e r s i t y . A p r i l 1 9 8 6 J o h n s o n . D . G a l e . a n d K a r e n M c C o n n e l l . P r o s p e g t a f o r S o v l e t A g r l g u l t g r g l g r h e l 2 8 0 g . B l o m i n g t o n : I n d i a n a U n i v e r s i t y P r e s s . 1 9 8 3 . t h e r o a n o m m u n i t : I m l i c a t i o n s o f D e v e l o i n C o u n t r i e s . R e s e a r c h R e p o r t 3 5 . I n t e r n a t i o n a l F o o d P o l i c y R e s e a r c h I n s t i t u t e . N o v e m b e r 1 9 8 2 . K m e n t a . J a n . E l e m e n t s o f E c g n o m e t r i c s . N e w Y o r k : T h e M a c m i l l a n C o m p a n y . 1 9 7 1 L a r d y . N i c h o l a s R . " P r i c e s . M a r k e t s a n d t h e C h i n e s e m e c n J o n a 0 i t u r a ‘ E o n o m i c g 6 1 . n o . 2 ( M a y 1 9 7 9 ) : 1 9 9 - 2 1 2 . M i t c h e l l . D o n a l d 0 . " G l o b a l R i c e M o d e l : C o n c e p t u a l i z a t i o n a n d D e s i g n " . U n p u b l i s h e d P a p e r . F e b r u a r y 1 9 8 3 . A S D C E F g t e o x A r a p o n E i t a p o R u c e l U t n u i r e g - t r g l m a S e t S O n i n . r v t v n a e e n l r o s l s f y ( W a E i c t o y n . A o e h g r f i r v n S s o G i i g U . S . m i c s S t a f f P a p c c t r e u o a l . n i t n . u r e A i D n n . . C E c u : E A . c o s o t n G n r o o o a m v e e e m l r n r i i N o . 8 6 - 3 9 . M i c c a r n s . i m . c e t n S A y t b n a a J P t l o r i y h i s s n n t i t i s i S c n p o s r g f i g g h a i n g a n d s . 1 8 0 _ _ _ _ _ _ _ _ . " A n E v a l u a t i o n o f F a c t o r s C o n t r i b u t i n g t o t h e G r o w t h o f W o r l d G r a i n T r a d e D u r i n g t h e 1 9 7 0 s U s i n g a G l o b a l M o d e l " . S e m m i n a r p r e s e n t e d a t t h e A n n u a l M e e t i n g o f t h e A m e r i c a n A g r i c u l t u r a l E c o n o m i c s A s s o c i a t i o n . A u g u s t 5 . 1 9 8 5 . N a y l o r . T h o m a s H . C o m n n t g ; S i n u l a t i g n E x p e r i m e n t s w i t h e ' s f " c n o c t m s . J o h n W i l e y a n d S o n s . I n c . 1 9 7 1 . N e r l o v e . M . " 0 n t h e N e r l o v e E s t i m a t e o f S u p p l y E l a s t i c i t y : A R e p l y . ” a l o f " a m c o i c s 4 0 . n o . 3 ( S e p t e m b e r 1 9 5 8 ) : 7 2 3 - 7 2 7 N e r l o v e . M . a n d W . A d d i s o n . " S t a t i s t i c a l E s t i m a t i o n o f L o n g - R u n E l a s t i c i t i e s o f S u p p l y a n d D e m a n d . " J o u r n a l o f F a r m g c n n n m i c s 4 0 . n o . 4 ( N o v e m b e r 1 9 8 2 ) : 8 6 1 - 8 8 0 P i n d y c k . R o b e r t S . a n d D a n i e l L . R u b e n f e l d . E c o n o m e t g i c M o d e l s a n d E c o n o m i c E o r e c a s n s . S e c o n d E d i t i o n . N e w Y o r k : M c G r a w - H i l l B o o k C o m p a n y . 1 9 8 1 S h a g a m . S h a y l e . M . U A r i c u l u e M o d e ‘ e n a r i o A n a ‘ s i s : i v P e n t R e d u c t i o n ' U . . C r o P r o d u c t i o n - S c e n a r i o A n a l y s i s : A g r i c u l t u r a l P o l i c y L i b e r a l i z a t i o n i n g h e E u r o n e n n C o m m u n i t y , D e p a r t m e n t o f A g r i c u l t u r a l E c o n o m i c s S t a f f P a p e r N u m b e r 8 6 - 3 6 . M i c h i g a n S t a t e U n i v e r s i t y . S h a g a m . S h a y l e a n d J a m e s H i l k e r . M . S . U . A g r i c u l t u r e M o d e l S c e n e i o A n a l s i : o n - n “ ' e c t s o f C r o l a n d a n d A n i m a l A b a n d o n m e n t I n t h e S o v i e t U n i o n D u e t o N u c l e a r C o n t a m i n a t i o n i n t h e U k r a i n e . D e p a r t m e n t o f T a n g . A n t h o n y M . " C h i n a a s a F a c t o r i n t h e W o r l d F o o d S i t u a t i o n “ . n n g g i g a n J o n g n n l Q : A g g i g n l n n g n ; E c o n o m i c s . 6 6 n o . 2 . ( M a y 1 9 8 4 ) : 3 2 4 - 3 3 1 _ _ _ _ _ _ _ _ " A C r i t i c a l A p p r a i s a l o f t h e C h i n e s e M o d e l o f D e v e l o p m e n t “ . I n A g r i g u l g u g a l D e v e l o n m e n t i n t h g T h i r d W n n l d . e d i t e d b y C a r l K . E i c h e r a n d J o h n M . S t a a t z . B a l t i m o r e : T h e J o h n s H o p k i n s U n i v e r s i t y P r e s s . 1 9 8 4 . O f f i c e . J u n e 1 9 7 8 ) _ . _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ _ _ _ O _ E A D . E A _ M R _ . _ _ f _ g . n u G _ o o . a t e r r . p r E C f _ _ _ d n p c p 8 : c g i o S . i W . . . e i l n p u e 4 e J T g n a 0 . l G A a h - e . t o n 5 p e n 2 u v J a B 9 b r C e a e n W a a n r y p n n e o g n a . e o P h i o 9 y : 8 m n e n r r E . a i n d n J ( m i m a n l g W i E e n r n d r K m n c n y e a a o a o t i s n G u r n L h 1 t d n e p l n m u t s d r k 1 t r P o d u t i o n g i i 5 g i u I a L t ) m n c F b r I n i i t s y o u p d u . e n d R D t g i S r i e l p O n . e - a g u a l t E W a p D L l n s a R n o i e . O a e n S d r f v C l C e d i . s : A P m c o r N t m s r t I d a e ' t o o L G u f . . c u o n a C f t f e a J o S . d M k e v c i n o 1 D o e c i t d m R k 9 e r r y p e e y . 3 c a . n L o p e m A i n o F a r e a t i s ( W ' m t S e g v b t n r e t s e r n t o s r f c t N h r o P h f u o o . 1 e i r f e l c . i n i t k 9 R b a A e G t g 8 g u n y n d T r a d e n . o ) e o i h p n t 3 t r r r n i O e S t g n L r 8 T ) n 3 N a r o 0 n a o n 3 . d d 1 e 7 a l ( G G V E 1 8 1 U . S . D e p a r t m e n t o f A g r i c u l t u r e . E c o n o m i c R e s e a r c h S e r v i c e . I h n I m p l i c a p i o n p o f E n t a p l i s n i n g n . § , W h g a p B o a r d . b y C . E . B r a y . P . L . P a a r l b e r g a n d F . D . H o l l a n d . F A E R - 1 6 4 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . A p r i l 1 9 8 3 ) _ _ _ _ _ _ _ _ . A g g g n t i n a ’ s G r a i n M a r k e t i n g S y s t e m . b y S h a s h i W i l s o n C h a i n g a n d O s w a l d . P . B l a i c h . S t a f f R e p o r t N o . A G E 5 8 3 0 9 1 6 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . N o v e m b e r 1 9 8 3 ) E z p p p n c t s t h r o u g h 1 9 9 0 . b y E d w a r d C o o k . R o b e r t C u m m i n g s . a n d T h o m a s A . V a n k a i . F A E R - 1 9 5 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . F e b r u a r y 1 9 8 4 ) _ _ _ _ _ _ _ _ ’ F - v k E m : P s c t s f o t h e 1 2 8 0 ’ ; . b y W i l l i a m T . C o y l e . F A E R - 1 7 7 . ( W a s h i n g t o n . D . 0 . : G o v e r n m e n t P r i n t i n g O f f i c e . F e b r u a r y 1 9 8 3 ) . P e f o r m a a n d t r u c t u e o f r i c u t u e i E n n p g ; n _ § n ; p p g , b y R u t h E l l i s o n . F A E R - 1 8 4 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . A u g u s t 1 9 8 3 ) Q i l s p n d s S e c p o p s . b y M i l e s J . M i e l k e . F A E R - 2 0 6 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . S e p t e m b e r 1 9 8 4 ) P o l i c i e s : S o m e U . S . S p r a t e g i e s . b y P h i l i p L . P a a r l b e r g a n d J e r r y A . S h a r p l e s . F A E R - 2 0 4 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . A u g u s t 1 9 8 4 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . A p r i l 1 9 8 3 ) 1 8 2 _ _ _ _ _ _ _ _ . T h e W p r l d G p a i n - O i l s e e d s - L i v e s t o g k ( G O L ) M o d e l . A S i m p l i f i e d V e r s i o n . b y K a r e n L i u a n d V e r n o n O . R o n i n g e n . E R S S t a f f R e p o r t N o . A G E 5 8 5 0 1 2 8 ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . F e b r u a r y 1 9 8 5 ) _ _ _ _ _ _ _ _ . G l o b a l ' o c K s o f G r a i n : I m l i c a t i o n s f o r U . S . P g l i c y . b y J e r r y A . S h a r p l e s a n d C a r o l G o o d l o e . S t a f f R e p o r t N o . A G E s e 4 0 3 1 9 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . M a y 1 9 8 4 ) _ _ _ _ _ _ _ _ . T h e B r a z i l i a n S p y b e a n I n d u s t r y : E c o n o m i g S t r n g t u r e a n g I n t e r v e n t i o n . b y G a r y W . W i l l i a m s a n d R o b e r t L . T h o m p s o n . F A E R - Z O O . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . O c t o b e r 1 9 8 4 ) _ _ _ _ _ _ _ _ . U . S . S R . O t o k a d S t u i n e o t . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e ) . V a r i o u s I s s u e s . U . S . D e p a r t m e n t o f A g r i c u l t u r e . F o r e i g n A g r i c u l t u r a l S e r v i c e . . B p a z i l ; A g p i c u l t n r a l a n d T r a d e P o l i c i e s . b y M a r t h a S t a n c i l l . F A S M - 3 0 5 . ( W a s h i n g t o n . D . C . : G o v e r n m e n t P r i n t i n g O f f i c e . S e p t e m b e r 1 9 8 1 ) W i l l i a m s . G a r y W . a n d R o b e r t L . T h o m p s o n . “ B r a z i l i a n S o y b e a n P o l i c y : T h e I n t e r n a t i o n a l E f f e c t s o f I n t e r v e n t i o n . " A m e r i c a n J o u r n a l o f A g r i c u l t u r a l E c o n o m i c s 6 6 . n o . 4 ( N o v e m b e r 1 9 8 4 ) : 4 8 8 - 4 9 8 W o l f . C h r i s . G S I M R e f e r e n c e M a n u a l . D e p a r t m e n t o f A g r i c u l t u r a l E c o n o m i c s P r o g r a m m i n g O f f i c e . M i c h i g a n S t a t e U n i v e r s i t y . J u n e 1 9 7 9 i t . t . I a H , M v s u u l f i fl fl fi t fi t b ; i . 3 . . t . . . } . » ; 1 f : ‘ . . . o . J . U . k . Q 1 l . ! . 1 4 : . I . . é . 2 . - . . i 7 8 l 9 . . k " o t 0 n . l . . ’ ' 6 l 1 . ? 8 s 4 . h . . h t . i l . i l . w u x . . . o 3 . . 2 . ‘ . v a v r . . : r . ’ » 3 2 . . . 1 1 v i . . . fi . u 1 . ’ t e - l . . t . . - . . l I d l w \ 3 ( h ' ‘ b ! O u d 1 a K l 3 3 h f . . L h + . l w v o ‘ 1 . 3 1 v l . . 9 . U . » - . . . - . 0 . - . v . . ’ d t . . . : - : - , . . . . : z . 1 . . v L { 1 r . . i ) . n 1 . o 3 . . , t . . ' ’ c . _ y ' ( . . I ' p I 5 . . . . . ; . l . . . . . - . . . i . b c . 1 . . . . - - . . C A a n o t d . 3 . I I . 3 . . . . . . 1 . . 3 3 1 : . 3 » 4 ! 9 ‘ 3 . . ‘ . N . o f u . h - u l { t H ; , i . . 6 . . U . . v . “ . a [ < - . - 3 ’ ‘ . l ‘ 3 - Q . | I . ' ‘ . . . - “ n . h . l . 7 . " ‘ ‘ $ . 3 0 ' I \ 0 . 3 , ' : . . ‘ . . . . . " 3 . . ' - u 2 9 n , ; ’ I : . ‘ ' ‘ I . I u ‘. 3 : I . ‘ A . o ' 0 t . . , t ; 9 u 5 ‘ . u p ‘ 0 2 ' : u « ' I . t . . ' | . o ~ I . ‘ . . 0 : ' , ~ ' | L . I , ' - " , ‘ u " d . : . 0 I ‘ - . 1 ‘ ' o , . v ' . n ' : . } v 4 0 . ‘ ‘ . ‘ . u 9 . g . . 1 ' - ‘ . o ‘ : ' . . 3 . ' ‘ , : a ' I " . I , . a ‘ ' , . a , s ' t : . ‘ 0 ' . m . . 3 ' n , I o a c . . v v . . . . l . . . l . l . u . l . a v . 5 . . . v i l i . o 3 9 % ; . . . 6 . ! ) ‘ N 1 ‘ l e l - L I . s ‘ u A - t ] ‘ u : 1 . . . . . . . L b . - : 7 1 ! . . . . 3 § J . 7 9 1 \ l | ‘ . r Z K v o - v . . . l l . . . . . 6 . . R c . l l . ~ 3 ¥ 1 . . . ¢ r $ . l l t 1 . : 5 . 1 2 5 - ? . I ? 1 . : O ‘ l ‘ l l ‘ O V I t I l f ‘ i n v l 1 . ! a ‘ 1 . . . ! v . v \ . o ¢ v \ 4 . . o : ‘ . a . C . 0 > § ‘ n n . | t v l u } ‘ l - u \ fl . u ¢ l v - t . ‘ o ' t v ¢ . v . 4 . ; v . . 3 L . { 0 0 1 0 . 0 1 . 1 ‘ n 9 2 . > 7 . . r . r o . v ! C h i . t t l 1 g c l n n n o l t v l l l ’ l 0 | ! § c | V Q . v . ‘ . ‘ 0 4 ' C ‘ n I 1 I . ' ~ ‘ I I . . A l . . ‘ . I I . 0 ! i n I ! » > V U N I - m u t t . . . t u o v . V I » : K v n . . . . v l . h v u l ’ 1 l a . m . u l o o . . I v n u o o f o 1 . 2 0 . . . P . v v . n u v . I t : I u 4 ‘ I ’ l l u v i h o l l v a fi q ( N 0 9 3 0 . l I ' c I 1 5 . 7 . 2 . 4 . i n ? » . . . l m o v l fi l o d i o i i . ‘ J l a O . l o a k : 1 . 5 . I . b . . . . . . . . . u l } ! I u ' 1 i t . . 1 3 . } ! 7 . . . ! ! ! o a fi t j ‘ . . X N . - t a . . t n v fl l v - 1 u u t . a 3 a . . . . l l y . l l a . . . . l t l o : . [ . £ - J o h n . 0 I u I n O o o l fi ‘ t n I U A O l d fi ' l l O l ‘ - ‘ \ . v 5 0 t ‘ l p ’ . ~ 9 0 . A l l ' l t ’ . . . I I ‘ f . . “ . ‘ . ’ . A D l R C u 1 1 . ‘ P 9 4 0 0 5 0 3 0 ! ! ! » ( A . n . ' - ’ . ; a A . I t l a ‘ . l . l ' u v fl ; z t i t u . 1 " . . n . . A . 1 ! . : 3 . 5 5 . 1 . 1 ? f ) : . . . r . t t a t fl . - . l . i t . f i . r 1 & $ > 3 : 3 0 . 2 . d i z f t f s c l i ‘ t t . t L ! I I 1 A O I O V I 0 ‘ U I Q ‘ ‘ 5 u . [ l " ’ § l " l - l c ‘ t l ' . ~ a . - I . . . 1 1 - . . ! 3 . . ( c z . . . . . . r ¥ | . l 1 : l . : 5 1 . l l - . . 0 ‘ A H E R A R Y M i c h i g a n S t a t e U n i v e r s i t y A N I N T E R N A W T I I T O H N A L L I N C A K G A R G I E U C L A T P U A R B A I L L I T T R Y A D E M O D E L S h a y l a D a n i e l S h a g a m D e p a r t m e n t o f A g r i c u l t u r a l E c o n o m i c s V O L U M E I I A T H E S I S S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r s i t y i n p a r t i a l F u l f i l l m e n t o f t h e r e q u i r e m e n t s . f o r t h e d e g r e e o f M A S T E R O F S C I E N C E 1 9 8 7 A P P E N D I C I E S S S S S S S S S S S S Y O O P H H H H N O E R U A C C N N E E E S O S U O O E E S U S U U U U . U U S U S U S S S S . . S S S . S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i . . S . . . . . . . . . . . o . . . . . . . . . . . y . . . . . . . . . . . b . . . . . . . . . . . e . . . . . . . . . . . a . . . . . . . . . . . n . . . . . . . . . . . . . . . . . . . . . . C o P H Y S S S S S S S S r a i o o o o o o o o m o r e y y y y y y y y p d v l m o m o m o b b l u e d e i e i o i e e e c s a l a l a l a a x t t l l l n n i e E N E o d q a E N E N n E n u t q e n d e n A i u t t d i d i v r E i n i v . e E x E n g n . a x p x g g n p t t i i o o n C p o p S C o o r o S t S o n r t o t r t n s t s t o c o s u s c k c s u m k s k m p s s A P P E N D I X A E Q U A T I O N S T A T I S T I C S - U N I T E D S T A T E S w h e a t W P R O U S . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A U S . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a “ Y U S . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d W C O N U S . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W E E D U S . . . . . . . . . . . . . . . . . . . . . . F e e d C o n s u m p t i o n H F O D U S . . . . . . . . . . . . . . . . . . . . . . F o o d & R e s i d u a l C o n s u m p t i o n H N E U S . . . . . . . . . . . . . . . . . . . . . . . N o t E x p o r t s w E S U S . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O U S . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A U S . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a F Y U S . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N U S . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F F E D U S . . . . . . . . . . . . . . . . . . . . . . F e e d C o n s u m p t i o n F F O D U S . . . . . . . . . . . . . . . . . . . . . . F o o d & R e s i d u a l C o n s u m p t i o n F N E U S . . . . . . . . . . . . . . . . . . . . . . . N e t E x p o r t s F E S U S . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s 1 8 3 P O O O : m a 1 - 0 2 ” ( S H ‘ I ‘ I H O Z 3 9 ' i a i i i l i l l 6 8 1 9 ' I 7 8 1 9 ' 1 9 R E G I O l 7 N ' I 7 4 1 9 ' 1 2 A L H O D E L 9 S I 7 6 ' l ? 8 1 9 ' l 8 8 1 9 ' 1 8 2 1 9 ' 1 9 8 4 I M U L A T I O N ' I ' I V " l l L l l { . l l l l l l l l L l o Q 5 1 % 1 6 . 1 1 1 6 1 é 3 6 3 % 3 5 3 5 E U X A h e T W L a - t P 9 O 7 1 T S 5 - P r o d F 1 c O 9 - t R 8 i E 4 E o # - u C A S T T I M A T E D - U n i t e d S t a t ° 8 S n - a — - - A C & b . F i g u r e A . l . 1 8 4 7 8 8 8 8 - 1 4 . 4 2 2 7 1 . 6 1 8 5 3 . 9 3 0 3 6 . 1 0 4 - 0 3 . 4 3 3 6 0 . 6 9 3 5 1 . 9 4 1 - 5 5 . 2 0 1 1 5 2 . 4 5 5 1 4 9 . 1 0 9 ‘ F D C ’ C D ( : I fl l 3 ( 1 - ' 3 n : n l n t 1 1 4 F ‘ f ‘ r 1 P U " J " ' I I V ' T V V V V ' C 1 2 3 1 fl l ) ( 8 * ’ 3 1 2 1 fl 1 U W h e a t H a r v e s t e d A r e a - U n i t e d S t a t e s 3 5 M ! t r r r 3 - ‘ 2 5 m 4 1 5 “ 2 7 F i g u r e A . 2 . a & b . 3 2 . 3 1 . . 1 9 3 2 9 . 2 3 . 1 4 7 1 7 0 2 1 0 2 3 9 . 2 3 2 2 0 . 2 5 . 2 4 . 2 3 . 3 3 1 3 5 4 1 8 5 a « " 3 . ~ . . . . ‘ . . . . . . 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 1 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I H A T E D U n i t e d S t a t e s 1 8 6 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 2 1 O b s e r v a t i o n s 1 9 8 4 L S / / D e p e n d e n t V a r i a b l e i s W H A U S T - S T A T . V A R I A B L E C O E F F I C I E N T S T D . E R R O R 2 - T A I L S I G . C - 1 3 0 5 8 . 9 0 6 7 9 9 1 . 7 2 1 7 - 1 . 6 3 4 0 5 4 1 0 . 1 2 3 W H A U S ( - 1 ) 0 . 4 9 8 9 7 6 5 0 . 1 7 0 1 5 9 0 2 . 9 3 2 4 1 2 9 0 . 0 1 0 W R U S 4 ( - 1 ) 1 3 4 0 . 5 2 3 9 1 3 1 5 . 9 5 4 1 1 . 0 1 8 6 7 0 8 0 . 3 2 5 F R U S 4 ( - 1 ) - 8 2 8 . 1 9 9 4 1 1 0 8 2 . 6 9 0 8 - 0 . 7 6 4 9 4 5 5 0 . 4 5 6 W E S U S ( - 1 ) - 0 . 2 0 4 9 4 2 3 0 . 1 1 8 8 8 6 2 - 1 . 7 2 3 8 5 3 3 0 . 1 0 5 Y E A R 4 1 3 . 6 8 5 5 7 1 8 9 . 9 7 8 4 4 2 . 1 7 7 5 3 9 6 0 . 0 4 6 R - s q u a r e d 0 . 8 3 2 9 7 5 M e a n o f d e p e n d e n t v a r 2 4 1 1 9 . 9 0 A d j u s t e d R - s q u a r e d 0 . 7 7 7 2 9 9 S . D . 0 * d e p e n d e n t v a r 4 3 8 5 . 9 5 2 S . E . o f r e g r e s s i o n 2 0 6 9 . 7 8 2 S u m o f s q u a r e d r e s i d 6 4 2 5 9 9 5 6 D u r b i n - W a t s o n s t a t 1 . 5 4 8 7 8 6 F - s t a t i s t i c 1 4 . 9 6 1 3 3 L o g l i k e l i h o o d - 1 a o . o o z 9 T P E 4 7 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : 1 3 e 1 1 9 6 4 2 7 9 4 . 3 1 2 0 1 6 2 . 0 1 7 3 6 7 . 7 1 : I ' * : 1 1 9 6 5 1 2 5 1 . 7 8 2 0 0 8 0 . 0 1 8 8 2 8 . 2 1 : * : 1 1 9 6 6 - 1 0 . 9 1 6 6 2 0 0 8 0 . 0 2 0 0 9 0 . 9 1 : z e : 1 1 9 6 7 1 9 6 4 . 1 8 2 3 6 4 4 . 0 2 1 6 7 9 . 8 1 : * 1 : 1 1 9 6 8 - 1 2 4 0 . 1 7 2 2 1 8 6 . 0 2 3 4 2 6 . 2 1 * 1 : 3 1 9 6 9 - 2 1 9 8 . 4 0 1 9 0 6 8 . 0 2 1 2 6 6 . 4 3 : * 1 : 1 1 9 7 0 - 1 2 0 0 . 8 5 1 7 6 5 1 . 0 1 8 8 5 1 . 9 1 : * 1 : I 1 9 7 1 - 3 3 9 . 9 1 2 1 9 2 9 8 . 0 1 9 6 3 7 . 9 1 : * 1 : 1 1 9 7 2 - 1 5 8 9 . 6 1 1 9 1 4 3 . 0 2 0 7 3 2 . 6 1 : t 1 : 3 1 9 7 3 - 7 7 7 . 7 1 7 2 1 9 1 3 . 0 2 2 6 9 0 . 7 3 : * 1 : 1 1 9 7 4 - 1 5 7 4 . 6 7 2 6 4 5 4 . 0 2 8 0 2 8 . 7 : : e : : I 1 9 7 5 - 3 8 5 . 3 0 4 2 8 1 2 6 . 0 , 2 8 5 1 1 . 3 1 : * : 1 1 9 7 6 9 3 . 3 3 7 4 2 8 6 9 2 . 0 2 8 5 9 8 . 7 : : 1 * : 1 1 9 7 7 8 8 2 . 9 8 5 2 6 9 9 3 . 0 2 6 1 1 0 . 0 1 * : : : 1 1 9 7 8 - 2 4 3 3 . 1 9 2 2 8 6 5 . 0 2 5 2 9 8 . 2 1 : * : 1 1 9 7 9 1 1 . 1 8 9 8 2 5 2 7 5 . 0 2 5 2 6 3 . 8 1 : 1 * : 1 1 9 8 0 1 3 5 7 . 7 9 2 8 7 8 4 . 0 2 7 4 2 6 . 2 1 a 1 : s 1 1 9 8 1 4 0 4 1 . 5 7 3 2 6 3 5 . 0 2 8 5 9 3 . 4 1 : 1 * : 1 1 9 8 2 5 3 7 . 5 8 4 3 1 5 4 0 . 0 3 1 0 0 2 . 4 1 * : 1 : 1 1 9 8 3 - 2 9 8 5 . 9 1 2 4 8 4 4 . 0 2 7 8 2 9 . 9 1 : 1 * 3 1 1 9 8 4 1 8 0 1 . 9 3 2 7 0 8 5 . 0 2 5 2 8 3 . 1 I N D E P E N D E N T V A R I A B L E S W H A U S - W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R 0 8 4 I W h e a t R e v e n u e p e r H e c t a r e ( Q I H A ) ( W Y U S < - 3 ) + W Y U S ( - 2 ) + W Y U S ( - l ) + W Y U S ) / 4 I W P / C P I U S F R U S 4 8 C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( S I H A ) ( F Y U S ( - 3 ) * F Y U S ( - 2 ) + F Y U S ( - l ) * F Y U S ) / 4 * F P / C P I U S W E S U S 8 W h e a t E n d i n g S t o c k s ( 1 0 0 0 N T ) Y E A R I 1 9 6 0 8 6 0 . 1 9 6 1 - 6 1 . . . . . 1 8 7 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n 8 . 0 . M a x i m u m M i n i m u m . W H A U S 2 4 1 1 9 . 9 0 5 4 3 8 5 . 9 5 2 0 3 2 6 3 5 . 0 0 0 1 7 6 5 1 . 0 0 0 W H A U 8 ( - 1 ) 2 3 7 0 7 . 3 3 3 4 4 9 9 . 1 2 6 1 3 2 6 3 5 . 0 0 0 1 7 6 5 1 . 0 0 0 N R U S 4 ( - 1 ) 3 . 5 1 2 1 8 4 9 1 . 1 7 2 2 0 0 3 7 . 1 3 8 4 7 7 0 2 . 2 4 0 8 9 7 0 F R U S 4 ( - 1 ) 6 . 0 6 5 3 5 7 1 1 . 5 9 5 7 3 9 6 9 . 8 1 9 1 2 8 0 4 . 3 0 1 2 9 5 0 W E S U S ( - 1 ) 2 4 1 4 4 . 1 9 0 8 1 8 2 . 7 9 5 1 4 1 2 3 2 . 0 0 0 9 2 5 3 . 0 0 0 0 Y E A R 7 4 . 0 0 0 0 0 0 6 . 2 0 4 8 3 6 8 8 4 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n W H A U S , W H A U S . 1 8 3 2 0 5 4 8 . 1 . 0 0 0 0 0 0 0 W H A U S , W H A U S ( - 1 ) 1 4 8 9 2 1 7 2 . 0 . 7 9 2 4 1 9 8 W H A U S , W R U S 4 ( - 1 ) 2 8 7 6 . 2 3 5 2 0 . 5 8 7 4 1 9 0 W H A U S , F R U S 4 ( - 1 ) 4 2 4 9 . 3 8 1 9 0 . 6 3 7 5 1 3 2 W H A U S , W E S U S ( - 1 ) 2 5 1 9 3 5 2 . 2 0 . 0 7 3 7 0 7 7 W H A U S , Y E A R 1 9 3 6 1 . 8 1 0 0 . 7 4 7 0 3 5 1 W H A U S ( - 1 ) , W H A U S ( - 1 ) 1 9 2 7 8 2 2 4 . 1 . 0 0 0 0 0 0 0 W H A U S ( - 1 ) , W R U S 4 ( - 1 ) 1 4 0 2 . 1 1 9 4 0 . 2 7 9 1 5 4 3 W H A U S ( - 1 ) , F R U S 4 ( - 1 ) 2 4 3 2 . 5 2 8 9 0 . 3 5 5 7 6 0 0 W H A U S ( - 1 ) , W E S U S ( - 1 ) 1 5 0 3 8 3 6 5 . 0 . 4 2 8 9 0 4 0 W H A U S ( - 1 ) , Y E A R 2 0 5 2 2 . 4 2 9 0 . 7 7 1 8 9 7 3 W R U S 4 ( - 1 ) , W R U S 4 ( - 1 ) 1 . 3 0 8 6 2 2 4 1 . 0 0 0 0 0 0 0 W R U 8 4 ( - 1 ) , F R U S 4 ( - 1 ) 1 . 6 6 3 9 3 3 2 0 . 9 3 4 0 3 1 1 W R U S 4 ( - 1 ) , W E S U S ( - 1 ) - 4 5 6 4 . 8 5 6 6 - 0 . 4 9 9 7 0 4 1 N R U S 4 ( - 1 ) , Y E A R 2 . 0 9 0 7 3 5 4 0 . 3 0 1 8 2 5 7 F R U S 4 ( - 1 ) , F R U S 4 ( - 1 ) 2 . 4 2 5 1 2 8 5 1 . 0 0 0 0 0 0 0 F R U S 4 ( - 1 ) , W E S U S ( - 1 ) - 4 6 5 5 . 0 8 9 2 - 0 . 3 7 4 3 2 9 1 F R U S 4 ( - 1 ) , Y E A R 4 . 4 9 5 0 3 2 1 0 . 4 7 6 6 8 3 0 W E S U S ( - 1 ) , W E S U S ( - 1 ) 6 3 7 6 9 6 5 3 . 1 . 0 0 0 0 0 0 0 N E S U S ( - 1 ) , Y E A R 2 5 0 1 5 . 6 6 7 0 . 5 1 7 3 3 2 0 Y E A R , Y E A R 3 6 . 6 6 6 6 6 7 1 . 0 0 0 0 0 0 0 s a u s e u . s s 0 - u s a s s u a ~ 0 u a u s u “ 0 a u - 4 u u a o u u s n ~ u u ” s - e s s a - s s u s s s e s e ~ s ‘ u ~ “ e s s s a s “ a s “ a u s s s e u - - ” n u s s s a s e s e s ‘ s s n . “ s 1 8 8 U n i t e d S t a t e s W h e a t Y i e l d S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W Y U S V A R I A B L E C O E F F I C I E N T S T D . E R R O R 0 . 2 2 7 5 3 7 1 7 . 2 5 5 D - 0 6 0 . 0 0 4 5 8 4 2 C - 1 . 0 0 5 1 3 8 2 W H A U B - 3 . 1 4 9 D - 0 5 ' Y E A R 0 . 0 5 2 3 6 7 0 0 . 8 9 7 0 1 4 0 . 8 8 7 2 0 6 0 . 0 9 7 6 5 6 1 . 3 1 9 7 4 0 2 3 . 3 7 9 2 4 R - s q u a r e d A d J u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - W a t s o n s t a t L o g l i k e l i h o o d ( H e t r i c T o n s p e r H e c t a r e ) T - S T A T . - 4 . 3 4 0 0 8 5 9 1 1 . 4 2 3 3 4 1 M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i o 2 - T A I L 5 1 8 . 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 2 . 0 5 2 1 3 7 0 . 2 9 0 7 7 3 0 . 2 0 0 2 6 9 9 1 . 4 5 5 6 5 R e s i d u a l P l o t o b s 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 . 0 0 a ~ 0 0 0 t 0 . 0 I N D E P E N D E N T V A R I A B L E S W H A U S 3 Y E A R 3 1 9 6 0 8 6 0 . 1 9 6 l = 6 1 . R E S I D U A L 0 . 0 7 4 9 0 - 0 . 0 0 4 7 4 ' 0 . 0 1 9 3 8 0 . 0 2 0 3 3 “ 0 . 0 2 7 5 5 - 0 . 0 3 8 5 4 - 0 . 0 2 4 3 1 0 . 0 5 2 7 6 0 . 0 5 1 8 0 “ 0 . 0 2 0 1 8 0 . 1 7 7 4 5 0 . 0 3 5 7 3 . 0 . 2 0 3 8 2 0 . 0 2 1 4 0 “ 0 . 0 3 2 8 8 . 0 . 1 1 4 2 7 - 0 . 2 4 5 5 5 . 0 . 0 3 8 0 8 ‘ 0 . 0 2 5 5 6 0 . 1 1 3 5 2 0 . 0 9 0 0 3 0 . 0 9 1 7 8 0 . 0 6 7 1 3 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) A C T U A L 1 . 6 0 6 3 7 - 1 . 6 7 9 8 0 1 . 6 9 4 5 9 1 . 7 3 1 8 2 1 . 7 3 8 8 9 1 . 7 8 2 2 7 1 . 7 3 4 6 5 1 . 9 0 9 9 9 2 . 0 5 9 5 8 2 . 0 8 4 5 8 2 . 2 8 2 7 2 2 . 1 9 8 2 5 2 . 1 2 4 7 7 1 . 8 3 3 2 2 2 . 0 5 8 1 7 2 . 0 3 8 4 4 2 . 0 6 2 9 1 2 . 1 1 3 9 7 2 . 2 9 7 9 2 2 . 2 5 1 2 2 2 . 3 2 2 5 1 2 . 3 8 5 8 6 2 . 6 5 0 8 2 2 . 6 0 7 9 8 F I T T E D 1 . 5 3 1 4 7 1 . 6 8 4 5 4 1 . 7 1 3 9 5 1 . 7 1 1 4 9 1 . 7 6 6 4 4 1 . 8 1 8 8 1 1 . 7 5 8 9 6 1 . 8 5 7 2 3 2 . 0 0 7 7 8 2 . 1 0 4 7 6 2 . 1 0 5 2 7 2 . 1 6 2 5 2 2 . 1 2 7 6 6 2 . 0 3 7 0 4 2 . 0 3 6 7 6 2 . 0 7 1 3 1 2 . 1 7 7 1 7 2 . 3 5 9 5 2 2 . 3 3 6 0 0 2 . 2 7 7 8 8 2 . 2 0 8 9 9 2 . 2 9 5 8 3 2 . 5 5 9 0 4 2 . 5 4 0 8 5 1 8 9 S M p L 1 9 6 1 - 1 9 6 4 2 4 O b s e r v a t i o n s W S e r i e s M e a n 8 . 0 . M a x i e u e M i n i m u m M u m 1 . . . . I H Y U S 2 . 0 5 2 1 3 6 7 0 . 2 9 0 7 7 3 0 2 . 6 5 0 8 2 1 0 1 . 6 0 6 3 6 7 0 W H A U B 2 3 4 8 0 . 0 4 2 4 4 6 7 . 9 1 9 6 3 2 6 3 5 . 0 0 0 1 7 6 5 1 . 0 0 0 Y E A R 7 2 . 5 0 0 0 0 0 7 . 0 7 1 0 6 7 8 8 4 . 0 0 0 0 0 0 6 1 . 0 0 0 0 0 0 W m m u m C o v a r i a n o e C o r r e l a t i o n W W Y U 9 , W Y U 9 0 . 0 8 1 0 2 6 0 ' 1 . 0 0 0 0 0 0 0 W Y U 8 , W H A U 9 6 3 1 . 2 4 5 0 9 0 . 5 0 7 0 1 6 4 W Y U 8 , Y E A R 1 . 7 6 7 4 8 6 6 0 . 8 9 7 0 1 6 6 W H A U S , W H A U B 1 9 1 3 0 5 4 4 . 1 . 0 0 0 0 0 0 0 W H A U 8 , Y E A R 2 3 5 5 7 . 2 7 1 0 . 7 7 8 0 6 8 8 Y E A R , Y E A R 4 7 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 a r O D C O ! ) “ 9 ' a - o s a m z c h - t r c r a c z : 1 d 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 4 1 9 % . 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 ’ 1 a . 7 7 7 5 7 é 8 0 3 1 3 9 3 5 s h 1 9 0 F i g u r e A . 3 . a & b . 2 5 m - 2 m m 1 5 “ 3 1 2 8 . 2 7 . 2 6 . 2 4 2 1 1 9 . . 0 0 1 . 2 7 9 - - c a n I 0 3 4 ' 3 1 2 - . 9 9 0 I 2 3 . ' 2 2 . 3 4 5 h . 0 2 3 7 0 ' R E G I O N A L M O D E L S I H U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - - E S T I H A T E D T o t a l W h e a t C o n s u m p t i o n - U n i t e d S t a t e s P > C D < O 1 1 m 1 ~ fl J C Z S W ‘ J ‘ ° Q K i k ‘ l r i . P D I Z 3 1 ~ u . 0 M ¢ 7 9 7 9 . 7 7 7 9 7 9 9 0 9 % 9 9 9 9 9 4 1 9 1 1 2 5 9 9 1 9 9 9 9 m o 5 m . ° 2 5 m - ' ~ 4 5 % 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N W Q . J 2 4 - 6 . 9 9 9 . 9 1 9 . 9 4 9 . 7 7 7 - . 7 0 7 ' . 9 9 9 » . 9 9 9 : I ' I ‘ V Y ' T f E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L . _ - — E S T I H A T E D F i g u r e A . 4 . a & b . W h e a t F e e d C o n s u m p t i o n - U n i t e d S t a t e s P e r C a p i t a W h e a t F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) P R W W F P S U U S - 8 t O ( W R W h e P e a R a l / U U S C . + o S a W . r E s S W e U h G ( a r - t S e a 1 i ) P n ) r / i ( S c F u e p P p R l O y U S ( S I i S o U + R H F a T t E ) S ( - 1 ) ) 1 9 2 U n i t e d S t a t e s 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W F E D n u s - I m m u - m - I n V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . W I n “ . . - C - 7 . 1 6 6 5 3 1 2 1 3 . 3 8 1 6 5 3 - 0 . 5 3 5 6 9 8 5 0 . 5 9 8 P C W F E D ( - 1 ) 0 . 8 2 4 5 3 6 6 0 . 1 2 1 0 8 7 6 6 . 8 0 9 4 2 2 2 0 . 0 0 0 W F S U P R 8 5 . 1 1 3 0 5 8 3 2 . 5 6 8 9 3 7 2 . 6 1 3 3 2 0 1 0 . 0 1 7 W P U B - 9 . 7 0 1 4 3 6 9 2 . 7 7 2 2 3 0 5 - 3 . 4 9 9 5 0 5 8 0 . 0 0 2 W W W - I I " . . . - R - s o u a r e d 0 . 7 9 3 7 0 3 M e a n o f d e p e n d e n t v a r 1 7 . 7 1 6 6 3 A d j u s t e d R - s o u a r e d 0 . 7 6 2 7 5 9 9 . 0 . o f d e p e n d e n t v a r 1 2 . 6 7 8 0 4 S . E . o f r e g r e s s i o n 6 . 1 7 5 1 4 6 S u m o f s q u a r e d r e s i d 7 6 2 . 6 4 6 6 D u r b i n - W a t s o n s t a t 2 . 4 0 3 4 3 6 F - s t a t i s t i c 2 5 . 6 4 9 2 4 L o g l i k e l i h o o d - 7 5 . 5 5 9 4 5 T P E 7 / 2 4 m m - W m n m M I C - m u m “ . . . - R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 t . u u u u u u u u u u u u u u u u u u u u u ‘ u . t 4 a a - - 9 - — - - - - - - - - - - 9 - - - - 9 - - - 0 s o a . 0 8 . s o I . u 0 . 0 . e s . 8 e s 8 . ‘ O . I . 0 . C . . 8 8 . I . . 8 . 0 . 0 a ‘ I ' I m u s - 3 . - . . . . I N D E P E N D E N T V A R I A B L E S “ 4 . 3 2 4 5 8 “ 6 . 1 0 2 3 1 “ 4 . 1 4 1 3 1 “ 0 . 0 4 1 6 2 9 . 6 6 7 7 4 “ 4 . 1 6 1 7 0 “ 7 . 9 8 1 2 5 1 3 . 3 3 8 3 0 . 4 0 7 2 0 “ 3 . 9 7 4 6 3 6 . 6 6 0 5 9 “ 3 . 4 3 8 8 3 9 . 2 8 4 9 0 0 . 6 6 9 1 6 “ 2 . 5 5 9 7 1 7 . 5 0 0 7 7 “ 1 . 8 0 2 8 4 “ 4 . 3 7 6 4 5 “ 7 . 0 9 6 2 2 “ 0 . 3 2 8 1 2 1 . 4 6 1 4 3 5 . 1 6 8 5 8 “ 0 . 1 1 3 1 5 6 . 5 1 6 4 1 5 . 1 0 3 4 6 4 . 0 2 6 6 3 7 . 8 0 1 3 4 2 0 . 4 4 7 8 1 3 . 8 4 8 2 4 . 9 3 1 8 1 2 1 . 1 4 9 9 2 5 . 2 4 1 8 2 5 . 6 1 8 1 3 4 . 3 7 8 3 2 6 . 0 6 0 0 1 6 . 3 7 4 9 4 . 9 7 5 4 5 4 . 7 8 7 7 0 9 . 3 6 0 6 7 2 3 . 8 5 1 2 1 9 . 4 3 9 3 1 0 . 4 0 1 7 7 . 0 5 1 9 0 1 5 . 7 3 2 0 2 2 . 8 4 0 5 4 3 . 5 1 5 0 5 1 . 7 4 5 0 W P / C P I U S 1 0 . 8 4 1 0 1 1 . 2 0 5 8 8 . 1 6 7 9 4 7 . 8 4 2 9 6 1 0 . 7 8 0 0 1 8 . 0 0 9 9 1 2 . 9 1 3 1 7 . 8 1 1 6 5 2 4 . 8 3 4 6 2 9 . 5 9 2 8 2 7 1 7 1 7 7 2 9 . 4 9 8 9 7 . 0 8 9 9 8 8 . 6 9 1 3 8 4 . 1 1 8 5 4 1 1 . 9 2 0 4 1 6 . 3 5 0 5 2 1 . 2 4 2 2 1 4 . 7 7 8 1 1 4 . 1 4 8 1 1 6 . 0 6 0 2 2 1 . 3 7 9 1 3 8 . 3 4 6 4 5 1 . 8 5 8 1 1 9 3 S M P L 1 9 6 1 - 1 9 6 4 2 4 O b s e r v a t i o n s 1 . . . . . . 1 3 m . . - W S e r i e s M e a n 8 . 0 . M a x i m u m M i n i m u m D C W F E D p 1 7 . 7 1 6 6 3 1 1 2 . 6 7 8 0 4 1 5 1 . 7 4 4 9 7 0 4 . 0 2 6 6 3 3 0 P C H F E O ( - 1 ) _ 1 5 . 7 4 8 7 6 9 1 0 . 6 7 3 4 8 4 4 3 . 5 1 4 9 7 0 4 . 0 2 6 6 3 3 0 H F S U P R 0 . 3 3 4 7 8 7 1 0 . 0 4 1 2 5 7 6 0 . 4 5 8 1 1 3 1 0 . 2 7 8 6 1 3 5 W P U S 1 . 7 1 0 5 7 4 2 0 . 4 6 6 2 4 5 4 3 . 2 8 5 7 1 4 0 1 . 1 7 5 6 5 4 0 I 1 . . “ m m C o v a r i a n c e C o r r e l a t i o n m m “ m u m - W - P C W F E D . P C W F E D 1 5 4 . 0 3 5 5 3 1 . 0 0 0 0 0 0 0 P C H F E D , P C W F E O ( - 1 ) 9 3 . 5 7 7 2 6 9 0 . 7 2 1 5 9 8 1 P C W F E D , W F S U D R 0 . 1 8 8 9 4 6 1 0 . 3 7 6 9 3 3 9 P C H F E D , W P U 8 - 2 . 9 9 1 1 9 0 3 - 0 . 5 0 6 3 1 3 6 P C W F E O ( - 1 ) , P C W F E D ( - 1 ) 1 0 9 . 1 7 6 4 6 1 . 0 0 0 0 0 0 0 P C W F E O ( - 1 ) , W F S U P R - 0 . 0 0 3 5 3 1 7 - 0 . 0 0 8 3 6 8 6 P C N F E D ( - 1 ) , H P U S - 0 . 3 9 7 6 5 9 6 - 0 . 0 7 9 9 5 2 7 W F S U D R , W F S U P R 0 . 0 0 1 6 3 1 3 1 . 0 0 0 0 0 0 0 W F S U P R . W P U S - 0 . 0 0 5 4 6 4 8 - 0 . 2 8 4 2 4 7 1 W P U S , W D U S 0 . 2 2 6 5 6 3 1 1 . 0 0 0 0 0 0 0 ‘ O D C > C > C 3 1 0 1 4 ' 9 * J C S Z I U z : 4 + ~ r * r + + > c : z ! 1 4 ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 W U h n e i a t t e d F o S o t d a t d a e n s R e s i d u a l C o n s u m p t i o n - 2 1 “ a m 1 9 m 1 8 “ m a n 1 6 . 1 5 “ 2 0 . 4 2 0 2 0 . 1 8 8 1 9 . 8 8 8 1 9 . 8 1 9 1 9 . 8 8 3 1 9 . 0 8 8 1 8 . 8 1 9 1 8 . 8 5 2 1 8 . 2 8 8 1 8 . 0 1 8 . F i g u r e A . 5 . a 6 b . 1 9 4 ‘ . . . ' e e e e e e ' 1 9 6 8 1 9 7 8 1 9 7 2 R E G I O N A L N O D E L S I M U L A T I O N 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 C C . e e e e e e s ” . . . . 1 9 8 4 E X - P O S T F O R E C A S T A C T U A L 1 9 7 5 - ' - - E S T I M A T E D ' 1 9 8 4 9 9 9 9 D 5 P e r C a p i t a W h e a t F o o d a n d R e W D Y F V E S 6 A U 9 R P 7 R 0 - 8 8 W h 9 W ( 1 1 e 6 P ( a 0 R I O t f - / U 6 C S Y 0 o + E , a S 9 W a A E 1 r R e U 6 . S 1 5 G ( - 0 r - 6 . a 1 1 i ) 6 , n ) 9 s / i d u a l C o n s u a p t i o n ( 1 0 0 0 M T ) l O S ( . . F u . O . P . p R p R . y U Y S E * R A F a R t E i S o U S . E 0 ( . - 1 ) 7 0 ) ) 1 9 5 U n i t e d S t a t e s ' S M D L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s D C H F D D m V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . W W I C 6 2 . 7 9 5 7 2 6 4 . 6 0 2 9 8 3 7 1 3 . 6 4 2 3 9 6 0 . 0 0 0 H F S U P R 2 4 . 2 7 2 5 8 9 1 1 . 0 8 6 2 6 6 2 . 1 8 9 4 2 8 7 0 . 0 4 1 Y E A R 0 . 1 5 5 5 6 6 3 0 . 0 6 4 8 6 7 1 2 . 3 9 8 2 3 2 1 0 . 0 2 6 D V 6 9 7 0 - 4 . 2 8 7 8 8 3 7 1 . 4 6 8 4 3 7 7 - 2 . 9 2 0 0 3 1 1 0 . 0 0 8 W I . . . “ 3 . . . . . - R - s d u a r e d 0 . 6 0 9 3 3 0 M e a n o f d e p e n d e n t v a r 8 1 . 8 4 3 1 1 A d J u s t e d R - s q u a r e d 0 . 5 5 0 7 2 9 8 . 0 . o f d e p e n d e n t v a r 2 . 9 3 6 2 6 5 S . E . o f r e g r e s s i o n 1 . 9 6 8 1 0 9 S u m o f s q u a r e d r e s i d 7 7 . 4 6 9 0 8 D u r b i n - H a t s o n s t a t 1 . 9 6 8 1 4 7 F - s t a t i s t i c 1 0 . 3 9 8 0 3 L o g l i k e l i h o o d - 4 8 . 1 1 6 4 2 T P E 5 / 2 1 W W W . . . m u n - m 1 I R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D W " I - . . . - - - “ - 1 x 1 x 1 1 9 6 1 1 . 7 5 8 0 2 8 2 . 9 0 6 0 8 1 . 1 4 8 0 1 8 1 4 1 1 1 9 6 2 1 . 3 0 8 2 1 8 2 . 3 0 4 1 8 0 . 9 9 5 9 1 : 4 1 a 1 1 9 6 3 - 1 . 1 1 7 0 2 7 9 . 5 4 4 5 8 0 . 6 6 1 5 1 a 1 4 a 1 1 9 6 4 1 . 2 6 3 3 0 8 2 . 1 6 1 7 8 0 . 8 9 8 4 1 4 8 1 a 1 1 9 6 5 - 3 . 8 3 0 9 7 7 6 . 6 1 8 6 8 0 . 4 4 9 6 1 s 1 4 1 1 9 6 6 1 . 9 4 0 1 1 8 2 . 0 9 7 1 8 0 . 1 5 7 0 1 x 1 4 x 1 1 9 6 7 0 . 8 2 4 8 6 8 0 . 8 0 6 2 7 9 . 9 8 1 3 1 a 4 1 8 1 1 9 6 8 - 1 . 4 1 1 9 4 7 9 . 1 9 3 9 8 0 . 6 0 5 8 1 8 1 i i 1 1 9 6 9 0 . 6 4 5 5 9 7 7 . 3 5 3 5 7 6 . 7 0 7 9 1 s 4 1 s 1 1 9 7 0 - 0 . 6 4 5 5 9 7 6 . 8 3 9 8 7 7 . 4 8 5 4 1 4 s 1 z 1 1 9 7 1 - 3 . 0 7 3 8 3 7 8 . 1 0 8 4 8 1 . 1 8 2 3 1 8 4 1 a 1 1 9 7 2 - 1 . 2 6 2 8 4 8 0 . 1 0 9 6 8 1 . 3 7 2 4 1 i r 9 1 x 1 1 9 7 3 - 0 . 7 3 6 4 5 8 0 . 4 4 4 5 8 1 . 1 8 1 0 1 4 1 i l 1 9 7 4 - 1 . 9 8 7 5 7 8 0 . 4 7 2 3 8 2 . 4 5 9 9 1 i 1 s 4 1 1 9 7 5 3 . 6 6 1 6 1 8 6 . 5 7 2 2 8 2 . 9 1 0 6 1 x 1 i 1 1 9 7 6 1 . 4 5 9 6 3 8 4 . 8 8 3 5 8 3 . 4 2 3 9 1 i i 1 i 1 1 9 7 7 - 1 . 3 4 8 4 6 8 2 . 2 9 6 6 8 3 . 6 4 5 0 1 i 1 9 x 1 1 9 7 8 0 . 5 3 1 0 4 8 2 . 8 8 3 3 8 2 . 3 5 2 3 1 i 1 O l 1 9 7 9 2 . 0 9 2 3 2 8 4 . 2 8 8 6 8 2 . 1 9 6 3 1 i 1 i 1 1 9 8 0 2 . 6 1 3 4 4 8 6 . 5 1 9 7 8 3 . 9 0 6 3 1 i 1 a 1 1 9 8 1 0 . 2 0 0 4 2 8 4 . 4 7 6 6 8 4 . 2 7 6 2 I I 9 1 i 1 1 9 8 2 - 0 . 3 0 6 4 4 8 3 . 3 8 7 1 8 3 . 6 9 3 6 1 8 o l a 1 1 9 8 3 - 1 . 4 2 6 1 0 8 5 . 4 0 1 2 8 6 . 8 2 7 3 1 i 1 s 1 1 9 8 4 I N D E P E N D E N T V A R I A B L E S . . . . . . . . . . . . . . . . . 8 4 . 5 6 5 7 8 5 . 7 1 7 0 0 O t h e r w i s e 1 9 6 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s W W I : 3 . . . . . - S e r i e s M e a n S . D . M a x i m u m M i n i m u m W I . P C H F O D 8 1 . 8 4 3 1 1 2 2 . 9 3 6 2 6 4 6 8 6 . 5 7 2 2 1 0 7 6 . 6 1 8 6 3 0 H F S U P R 0 . 3 3 4 7 8 7 1 0 . 0 4 1 2 5 7 6 0 . 4 5 8 1 1 3 1 0 . 2 7 8 6 1 3 5 Y E A R 7 2 . 5 0 0 0 0 0 7 . 0 7 1 0 6 7 8 8 4 . 0 0 0 0 0 0 6 1 . 0 0 0 0 0 0 D V 6 9 7 0 0 . 0 8 3 3 3 3 3 0 . 2 8 2 3 2 9 9 1 . 0 0 0 0 0 0 0 ' 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n W h a m - n u n . . . - D C U F O D , P C U F O D 8 . 2 6 2 4 1 4 5 1 . 0 0 0 0 0 0 0 D C H F O D , U F S U D R 0 . 0 6 3 8 1 6 4 0 . 5 4 9 6 8 8 1 P C H F O D , Y E A R 1 1 . 5 0 3 2 4 5 0 . 5 7 8 1 2 7 4 , P C H F O D , D V 6 9 7 0 - 0 . 3 9 5 5 4 0 2 - 0 . 4 9 7 8 7 6 9 H F S U P R , H F S U R R 0 . 0 0 1 6 3 1 3 1 . 0 0 0 0 0 0 0 H F S U P R , Y E A R 0 . 1 2 2 6 5 0 8 0 . 4 3 8 6 9 7 3 ' H F S U P R , D V S 9 7 0 - 0 . 0 0 1 1 9 9 0 - 0 . 1 0 7 4 0 5 8 Y E A R , Y E A R 4 7 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 Y E A R . D V 6 9 7 0 - 0 . 2 5 0 0 0 0 0 - 0 . 1 3 0 6 7 1 7 8 9 6 9 7 0 . 0 V 6 9 7 0 0 . 0 7 6 3 8 8 9 1 . 0 0 0 0 0 0 0 m l . . . - ! ! ! 1 1 ~ 1 - 0 2 1 0 K H P ‘ I H O ' I ' U ‘ V ' Z V U I 3 1 ~ 7 5 7 6 ' 7 7 7 5 7 3 5 6 5 1 5 2 5 3 5 1 1 9 7 2 7 5 1 i ! ! ! 2 5 8 8 8 8 C O O P 2 2 5 8 8 8 - 2 8 8 8 8 8 1 1 7 5 8 8 8 1 1 5 8 8 8 8 1 2 5 8 8 8 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N 2 5 2 . 3 5 5 2 3 9 . 4 0 5 1 - 2 2 5 . 4 5 3 . 2 1 3 . 5 1 7 2 0 0 . 5 7 1 1 5 7 . 5 2 5 1 7 1 . 5 7 3 1 5 1 . 7 3 3 1 4 5 . 7 5 7 I 1 3 5 . 5 4 1 E E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - - E S T I N A T E D F i g u r e A . 6 . a & b . w h e a t N e t E x p o r t s - U n i t e d S t a t e s 1 9 7 8 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 4 1 1 1 1 1 1 1 1 1 1 1 “ ' r 1 O 0 0 N E T T O N S 4 4 H 4 2 . I 3 9 . L . 3 5 . L 3 3 . I 3 5 ‘ 3 2 7 . N 2 5 . n 2 2 . 1 . 1 5 . . 9 8 4 1 2 8 ' 2 8 8 - 4 5 0 8 1 2 . 7 7 4 9 3 8 0 9 8 2 8 0 4 2 2 1 9 8 R E G I O N A L M O D E L S I N U L A T I O N 7 5 7 5 _ 7 7 7 5 7 5 5 6 5 1 5 2 5 3 5 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I M A T E D F i g u r e A . 7 . a 8 b . w h e a t E n d i n g S t o c k s - U n i t e d S t a t e s P > C D < O ! : 8 1 4 5 i ~ 1 C 1 2 1 U : : 4 1 * r ' r 1 r > c z z ! 1 9 ' " V ' U V ' 7 5 7 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 4 7 a 7 3 7 r s e G r a i 3 n 5 6 5 1 5 2 5 3 5 1 P r o d u c t i o n - U n i t e d S t a t e s F i g u r e A . 8 . a 8 b . C o 5 5 m 4 5 m 4 8 4 4 3 4 3 1 2 8 3 5 . a m 2 5 5 2 5 2 “ . 1 5 5 5 5 1 m . 8 4 0 . 2 8 7 “ 4 1 . 3 9 . 3 8 . 7 3 3 1 7 9 - . 0 7 2 . 8 1 8 . 9 8 8 2 8 . 2 3 . 4 1 1 8 8 7 1 9 9 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - - E S T I M A T E D P > C 3 < O 3 1 8 1 3 € 3 ~ 1 3 1 2 n u n ( 3 2 4 1 7 1 ‘ r 1 h ’ c 1 2 : 1 n 1 7 ( 1 - 7 3 1 2 1 fl l U 2 r 5 3 5 1 e a - U n i t e d F i g u r e A . 9 . a 6 b . C o a r s e G r a i n H a r v e s t e d A 1 9 8 8 1 9 7 8 1 9 2 R E G I O N A L 1 M 9 4 O D E L 1 9 S 6 7 I 1 9 7 M U L A T 8 I O N 1 9 8 8 1 9 8 2 1 9 8 4 r fi ' I ' T T U U U U ' U U T ' U I 7 3 7 3 7 7 7 3 7 3 5 3 5 1 5 4 2 5 W 3 7 5 W 3 5 1 m 3 2 5 . a m 4 1 3 4 3 1 4 8 . 4 4 . 4 3 . . 4 8 8 3 9 . 3 8 . 3 8 . . 9 0 4 3 3 . . 8 2 8 3 8 8 7 3 1 0 9 3 8 1 7 1 7 9 8 4 2 2 8 8 2 0 0 E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L 1 - - - E S T I M A T E D S t a t e s . 2 0 1 U n i t e d S t a t e s C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 8 4 — 1 9 5 4 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F H A U S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 3 0 8 9 8 . 6 2 6 4 6 7 4 . 0 1 0 1 6 . 6 1 0 7 3 1 7 0 . 0 0 0 F H A U S ( - 1 ) 0 . 1 2 6 7 8 4 0 0 . 1 1 0 0 6 8 2 1 . 1 5 1 8 6 7 5 0 . 2 6 6 F R U S 4 ( - 1 ) 2 5 2 4 . 3 9 6 9 5 0 4 . 4 2 0 8 2 5 . 0 0 4 5 4 5 4 0 . 0 0 0 W R U S 4 ( - 1 ) - 2 9 1 2 . 5 7 5 5 6 9 3 . 3 0 2 3 5 - 4 . 2 0 1 0 1 7 8 0 . 0 0 1 D 9 8 3 ' - 9 6 5 6 . 9 6 3 4 1 2 6 9 . 3 3 0 2 - 7 . 6 0 7 9 2 0 7 0 . 0 0 0 R - s q u a r e d 0 . 8 3 0 3 7 1 M e a n o f d e p e n d e n t v a r 4 0 7 4 5 . 3 3 A d j u s t e d R - s q u a r e d 0 . 7 8 7 9 6 4 S . D . o f d e p e n d e n t v a r 2 5 7 8 . 9 9 6 S . E . o f r e g r e s s i o n 1 1 8 7 . 5 6 0 S u m o f s q u a r e d r e s i d 2 2 5 6 4 7 6 6 D u r b i n - W a t s o n s t a t 1 . 9 6 7 9 7 2 F - s t a t i s t i c 1 9 . 5 8 0 9 1 L o g l i k e l i h o o d - 1 7 5 . 5 1 5 2 6 / 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 4 : 1 1 9 6 4 4 5 3 . 6 8 3 3 9 3 1 4 . 0 3 8 8 6 0 . 3 1 : 4 1 : 1 1 9 6 5 - 1 8 7 . 6 6 5 3 8 8 9 4 . 0 3 9 0 8 1 . 7 1 : 4 1 : 1 1 9 6 6 - 7 8 2 . 8 6 6 3 9 6 3 6 . 0 4 0 4 1 8 . 9 1 : 1 4 : 1 1 9 6 7 1 0 6 3 . 6 4 4 0 8 8 1 . 0 3 9 8 1 7 . 4 1 : 1 4 : 1 1 9 6 8 3 3 2 . 4 4 8 3 9 3 7 9 . 0 3 9 0 4 6 . 6 1 : 4 1 : 1 1 9 6 9 - 1 1 0 9 . 1 8 3 8 6 6 5 . 0 3 9 7 7 4 . 2 1 4 : 1 : 1 1 9 7 0 - 1 5 6 1 . 3 9 4 0 1 5 8 . 0 4 1 7 1 9 . 4 1 : 1 : 4 1 1 9 7 1 1 2 9 5 . 8 6 4 2 9 2 8 . 0 4 1 6 3 2 . 1 1 4 : 1 : 1 1 9 7 2 - 1 8 0 2 . 9 8 3 7 9 5 2 . 0 3 9 7 5 5 . 0 1 : 4 1 : 1 1 9 7 3 - 1 0 9 0 . 1 8 4 1 2 4 2 . 0 4 2 3 3 2 . 2 1 : 1 4 : 1 1 9 7 4 2 4 4 . 5 1 4 4 0 3 6 8 . 0 4 0 1 2 3 . 5 1 : 4 1 : 1 1 9 7 5 - 1 0 7 9 . 9 6 4 2 3 3 0 . 0 4 3 4 1 0 . 0 1 : 1 4 : 1 1 9 7 6 8 2 7 . 8 2 7 4 2 9 7 7 . 0 4 2 1 4 9 . 2 1 : 1 : 4 1 1 9 7 7 1 3 5 0 . 4 7 4 3 9 4 9 . 0 4 2 5 9 8 . 5 1 : 1 4 : 1 1 9 7 8 1 4 7 . 7 5 0 4 2 7 8 2 . 0 4 2 6 3 4 . 3 1 : 4 1 : 1 1 9 7 9 - 1 0 3 1 . 8 1 4 1 4 8 5 . 0 4 2 5 1 6 . 8 1 : 4 1 : 1 1 9 8 0 - 6 0 1 . 3 7 4 4 1 0 3 2 . 0 4 1 6 3 3 . 4 1 : 1 4 : 1 1 9 8 1 2 6 1 . 1 1 4 4 3 1 5 9 . 0 4 2 8 9 7 . 9 1 : 1 : 4 1 1 9 8 2 1 8 4 0 . 1 0 4 2 9 4 8 . 0 4 1 1 0 7 . 9 1 : 4 : 1 1 9 8 3 9 . 1 0 - 1 3 3 2 4 9 1 . 0 3 2 4 9 1 . 0 1 : 1 : 4 1 1 9 8 4 1 4 3 0 . 0 0 4 3 0 8 2 . 0 4 1 6 5 2 . 0 I N D E P E N D E N T V A R I A B L E S C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( S I H A ) ( F Y U S ( - 3 ) + F Y U S ( - 2 ) + F Y U S ( - 1 ) + F Y U S ) / 4 ! F P / C P I U S W h e a t R e v e n u e p e r H e c t a r e ( S I H A ) ( W Y U S ( - 3 ) * W Y U S ( - 2 ) * W Y U S ( - 1 ) + W Y U S ) / 4 ! W P / C P I U S r n a u s . F R U S 4 . 1 4 5 1 1 5 4 . D v e a . 1 I f < Y E A R . E 0 . 0 O t h e r w i s e 1 3 3 ) 2 0 2 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s ‘ S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A U S 4 0 7 4 5 . 3 3 3 2 5 7 8 . 9 9 6 2 4 3 9 4 9 . 0 0 0 3 2 4 9 1 . 0 0 0 F H A U S ( - 1 ) 4 0 7 1 9 . 0 9 5 2 5 5 6 . 7 4 1 8 4 3 9 4 9 . 0 0 0 3 2 4 9 1 . 0 0 0 F R U S 4 1 - 1 ) 6 . 0 6 1 1 3 5 1 1 . 5 9 6 0 4 6 0 9 . 8 1 9 1 3 1 0 4 . 3 0 1 2 9 7 0 W R U S 4 ( - 1 ) 3 . 4 8 7 1 8 1 1 1 . 1 7 4 5 3 9 8 7 . 1 3 8 4 7 6 0 2 . 2 4 0 8 9 7 0 D V 8 3 0 . 0 4 7 6 1 9 0 0 . 2 1 8 2 1 7 9 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n F H A U S , F H A U S 6 3 3 4 4 9 6 . 7 1 . 0 0 0 0 0 0 0 F H A U S , F H A U S ( - 1 ) - 7 7 1 7 5 8 . 2 7 - 0 . 1 2 2 8 9 4 7 F H A U S , F R U S 4 ( - 1 ) 1 3 5 1 . 4 3 8 3 0 . 3 4 4 7 3 8 2 F H A U S , W R U S 4 ( — 1 ) 6 3 5 . 0 1 7 2 9 0 . 2 2 0 1 1 8 4 F H A U S , D V B 3 - 3 9 3 . 0 6 3 4 9 - 0 . 7 3 3 3 4 9 4 F H A U S ( - 1 ) , F H A U S ( - 1 ) 6 2 2 5 6 4 6 . 1 1 . 0 0 0 0 0 0 0 F H A U S ( - 1 ) , F R U S 4 ( - 1 ) 2 0 3 . 9 3 8 3 5 0 . 0 5 2 4 7 5 4 F H A U S ( - 1 ) , W R U S 4 ( - 1 ) 3 6 0 . 8 2 0 8 8 0 . 1 2 6 1 6 1 4 F H A U S ( - 1 ) , D V B 3 1 0 6 . 1 3 8 3 2 0 . 1 9 9 7 4 8 9 F R U S 4 ( - 1 ) , F R U S 4 ( - 1 ) 2 . 4 2 6 0 5 9 7 1 . 0 0 0 0 0 0 0 F R U S 4 ( - 1 ) , W R U S 4 ( - 1 ) 1 . 6 7 7 8 1 0 8 0 . 9 3 9 7 6 4 7 F R U S 4 ( - 1 ) , D V 8 3 - 0 . 0 0 9 1 1 2 1 - 0 . 0 2 7 4 7 0 8 W R U S 4 ( - 1 ) , W R U S 4 ( - 1 ) 1 . 3 1 3 8 5 1 2 1 . 0 0 0 0 0 0 0 W R U S 4 ( - 1 ) , D V B 3 - 0 . 0 1 8 6 9 1 3 - 0 . 0 7 6 5 7 2 3 D 9 8 3 , D V 8 3 0 . 0 4 5 3 5 1 5 1 . 0 0 0 0 0 0 0 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) 2 0 3 U n i t e d S t a t e s C o a r s e G r a i n Y i e l d S M P L 1 9 6 1 1 9 8 4 2 4 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s F Y U S ( M e t r i c T o n s p e r H e c t a r e ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . 0 . 1 1 9 8 7 2 5 ' 1 . 5 8 5 8 2 7 2 C F H A U S Y E A R D V 8 3 0 . 8 5 6 0 7 5 0 . 8 3 4 4 8 6 0 . 3 4 7 7 3 4 2 . 0 1 7 9 4 1 . 6 . 5 1 5 0 2 0 R - s q u a r e d A d a u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - U a t s o n s t a t L o g l i k e l i h o o d 1 . 7 8 0 9 2 4 7 4 . 8 5 8 D - 0 5 0 . 0 1 2 1 8 6 8 0 . 6 1 5 7 6 9 5 - 2 . 0 0 8 0 1 4 4 - 0 . 3 7 2 8 2 9 8 9 . 8 3 6 2 3 4 3 - 2 . 5 7 5 3 5 8 5 0 . 0 5 8 0 . 7 1 3 0 . 0 0 0 0 . 0 1 8 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c 4 . 3 0 7 4 7 2 0 . 8 5 4 7 3 2 2 . 4 1 8 3 7 3 3 9 . 6 5 3 7 8 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 0 4 3 * t 4 8 8 8 t 5 5 . 5 5 ‘ . 0 5 5 0 5 5 5 5 5 5 5 5 5 5 u 5 5 5 5 5 5 “ 0 5 5 5 5 5 0 5 0 5 5 5 0 5 “ ~ 5 - — - « — - « « ~ « n « « « 5 « » » 5 4 5 8 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 0 . 0 1 1 0 0 0 . 0 0 8 9 2 0 . 0 7 5 1 2 - 0 . 2 8 7 5 6 2 . 9 7 5 2 4 3 . 1 1 8 0 8 3 . 2 8 0 6 7 3 . 0 9 6 1 2 2 . 9 6 4 2 4 3 . 1 0 9 1 6 3 . 2 0 5 5 5 3 . 3 8 3 6 8 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 0 . 1 7 4 7 8 0 . 0 2 0 8 9 0 . 2 5 5 4 8 0 . 0 6 5 9 3 0 . 1 6 6 9 7 3 . 6 8 5 9 4 3 . 6 3 8 4 8 3 . 9 7 0 4 0 3 . 9 2 7 9 3 4 . 1 6 1 7 7 3 . 5 1 1 1 6 3 . 6 1 7 6 0 3 . 7 1 4 9 2 3 . 8 6 2 0 0 3 . 9 9 4 8 0 3 . 5 1 4 9 7 4 . 3 5 5 0 2 4 . 7 7 5 9 5 4 . 5 1 3 5 0 3 . 7 2 7 2 1 4 . 3 7 1 3 7 4 . 5 1 3 5 1 4 . 5 7 1 5 0 5 . 1 7 5 1 5 5 . 7 3 4 1 7 4 . 5 2 2 7 2 5 . 7 0 3 9 3 5 . 5 2 5 3 0 4 . 1 9 9 0 1 5 . 4 5 5 1 2 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 - 0 . 4 7 2 6 6 0 . 2 2 8 6 8 0 . 4 0 9 6 2 0 . 0 8 5 9 9 - 0 . 8 3 6 1 1 - 0 . 2 7 6 2 9 - 0 . 2 4 2 3 0 - 0 . 1 8 6 4 8 0 . 1 7 9 0 9 0 . 5 9 1 7 2 - 0 . 4 4 7 8 0 0 . 3 5 2 0 5 0 . 3 5 0 7 3 3 J 4 D - 1 6 - 0 . 2 2 7 7 7 4 . 0 8 7 6 3 4 . 1 5 7 3 4 4 . 3 6 7 3 3 4 . 4 2 7 6 2 4 . 5 6 3 3 2 4 . 6 4 7 6 6 4 . 7 5 5 8 1 4 . 8 5 8 0 8 4 . 9 9 9 0 9 5 . 1 4 2 4 5 5 . 2 7 0 5 3 5 . 3 5 1 8 8 5 . 4 7 5 5 7 4 . 1 9 9 0 1 5 . 7 1 2 8 9 I N D E P E N D E N T V A R I A B L E S F H A U S ' Y E A R 8 1 9 6 0 * 6 0 , 1 9 6 1 . 6 1 , D V 8 3 8 1 I £ < Y E A R . E 0 . 8 3 ) 0 O t h e r w i s e 2 0 4 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s I . S e r i e s M e a n S . D . M a x i m u m M i n i m u m ” W F Y U S 4 . 3 0 7 4 7 1 6 0 . 8 5 4 7 3 1 6 5 . 8 2 6 3 0 2 0 2 . 9 7 5 2 4 5 0 F H A U S 4 0 9 1 8 . 0 8 3 2 4 6 0 . 4 5 9 0 4 3 9 4 9 . 0 0 0 3 2 4 9 1 . 0 0 0 Y E A R 7 2 . 5 0 0 0 0 0 7 . 0 7 1 0 6 7 8 8 4 . 0 0 0 0 0 0 6 1 . 0 0 0 0 0 0 D V 8 3 0 . 0 4 1 6 6 6 7 0 . 2 0 4 1 2 4 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 W C o v a r i a n c e C o r r e l a t i o n W F Y U 8 , F Y U 8 0 . 7 0 0 1 2 5 8 1 . 0 0 0 0 0 0 0 F Y U 8 , F H A U 8 5 8 9 . 5 6 1 6 8 0 . 2 9 2 5 2 7 5 F Y U S , Y E A R 5 . 0 2 9 2 7 0 5 0 . 8 6 8 3 0 7 7 F Y U 8 , D V 8 3 - 0 . 0 0 4 5 1 9 3 - 0 . 0 2 7 0 2 8 9 F H A U S , F H A U 8 5 8 0 1 6 1 4 . 4 1 . 0 0 0 0 0 0 0 F H A U 8 , Y E A R 1 1 4 9 . 6 2 5 0 0 . 0 6 8 9 5 0 7 F H A U 8 , D V 8 3 - 3 5 1 . 1 2 8 4 7 - 0 . 7 2 9 5 2 2 9 Y E A R , Y E A R ' 4 7 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 Y E A R , D V 8 3 0 . 4 3 7 5 0 0 0 0 . 3 1 6 2 8 7 5 D V 8 3 , D V 8 3 0 . 0 3 9 9 3 0 6 1 . 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 0 5 1 7 m ‘ 1 . . . - " 1 0 1 6 m . 0 " . 0 . ' 0 u . 5 . . . 1 5 5 1 1 5 , . H . - " ' 3 ' 5 . 0 , 1 - 1 1 m ‘ “ - . , T a g a r “ . 0 . 1 3 m m N 5 1 2 m 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 8 1 9 8 2 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 5 5 . 5 4 5 4 M 1 . 1 . 9 0 9 1 " I ‘ \ : I 1 5 5 . 2 7 2 - / / \ f L 1 5 4 . 5 3 5 - / \ \ / L 1 5 0 m t / , ’ ' 1 I 1 4 7 . 3 5 2 ' ’ / t \ \ / 1 O ' : / . 1 4 1 1 4 3 . 7 2 5 - \ / : 1 4 0 . 0 5 5 - / / j 3 1 3 5 . 4 5 2 - / I 1 ' 1 3 2 . 5 1 5 I . « - A j 7 3 7 3 - 7 7 7 3 7 3 5 0 5 1 5 2 5 3 5 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . _ - - E S T I M A T E D F i g u r e A . 1 0 a 8 b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - U n i t e d S t a t e s d l > ( > C > C 3 1 8 1 9 ' i r J C I Z I U l : 4 r ‘ f ‘ f 1 P ) C 1 2 ! 1 8 ' I I I U U I U V T ' U U V ‘ fi ' T F i g u r e A . 1 1 . a 8 b . C o a r s e G r a i n F e e d C o n s u m p t i o n - U n i t e d 2 0 6 1 4 5 . 4 % 1 4 5 5 1 5 4 1 m m - 1 2 5 1 3 5 - n e w u s e » 1 1 m m - 1 m m 1 % . 1 9 6 8 1 9 7 8 1 9 7 2 1 9 7 4 1 9 7 6 1 9 ' 1 8 1 9 8 8 1 9 8 2 1 9 8 4 R E G I O N A L M O D E L , S I M U L A T I O N 1 3 8 1 2 4 1 1 4 1 3 8 . 1 3 2 . 1 3 0 . 1 2 7 . . 0 7 9 4 8 7 ' 8 3 8 2 1 3 8 9 1 . 9 8 8 1 2 2 . 1 1 9 . 1 1 7 . 3 4 8 7 2 4 1 0 2 . 4 8 0 5 0 5 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 - - - E S T I M A T E D S t a t e s 2 0 7 U n i t e d S t a t e s P e r C a p i t a C o a r s e G r a i n F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s A C F F E D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 2 7 4 . 3 5 8 7 9 8 2 . 2 4 7 0 6 1 3 . 3 3 5 7 8 8 4 0 . 0 0 3 P C R B D A 2 . 3 1 5 0 8 8 1 0 . 8 3 1 2 8 6 6 2 . 7 8 4 9 4 5 8 0 . 0 1 2 F A U S 8 3 0 . 6 4 0 3 2 8 2 0 . 2 3 3 7 9 0 - 1 . 5 1 4 3 1 4 8 0 . 1 4 6 F W S U R R 4 8 . 2 0 5 7 1 8 2 5 . 3 8 7 4 6 4 1 . 8 9 8 8 0 0 1 0 . 0 7 3 D V 7 4 O N - 8 2 . 6 1 2 2 4 9 2 4 . 2 5 0 7 9 6 8 3 . 4 0 6 5 7 8 9 0 . 0 0 3 R - s a u a r e d 0 . 6 9 2 4 1 1 M e a n o f d e p e n d e n t v a r 5 8 2 . 3 4 2 4 A d J u s t e d R - s d u a r e d 0 . 6 2 7 6 5 6 S . D . o f d e p e n d e n t v a r 4 9 . 1 4 9 4 3 S . E . o f r e g r e s s i o n 2 9 . 9 9 0 9 9 S u m o f s q u a r e d r e s i d 1 7 0 8 9 . 7 4 D u r b i n - W a t s o n s t a t 1 . 3 0 8 5 5 4 F - s t a t i s t i e 1 0 . 6 9 2 6 9 L o g 1 1 1 1 4 1 i h o o d - 1 1 2 . 5 7 2 7 T P E 5 / 2 4 5 4 - 1 5 0 4 1 P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 2 1 2 1 1 9 6 1 5 9 . 8 3 9 2 6 0 5 . 7 9 8 5 4 5 . 9 5 9 1 2 1 4 2 1 1 9 6 2 2 5 . 0 0 2 8 5 8 1 . 6 3 4 5 5 6 . 6 3 1 1 2 4 1 2 1 1 9 6 3 - 9 . 2 1 5 6 8 5 5 9 . 7 7 1 5 6 8 . 9 8 6 1 4 2 1 2 1 1 9 6 4 - 4 0 . 6 5 6 9 5 3 4 . 6 6 6 5 7 5 . 3 2 3 1 2 4 1 2 1 1 9 6 5 - 2 . 3 8 0 4 2 5 9 5 . 6 8 2 5 9 8 . 0 6 2 1 4 1 2 1 1 9 6 6 - 3 2 . 7 4 0 1 5 8 6 . 4 6 2 6 1 9 . 2 0 2 1 4 2 1 2 1 1 9 6 7 - 4 6 . 8 3 4 4 5 9 2 . 2 3 5 6 3 9 . 0 6 9 1 2 4 1 2 1 1 9 6 8 - 2 5 . 6 5 0 7 6 1 0 . 2 4 4 6 3 5 . 8 9 4 1 2 4 2 1 1 9 6 9 1 . 5 7 1 9 1 6 3 4 . 7 0 0 6 3 3 . 1 2 8 1 2 1 2 1 1 9 7 1 9 . 5 0 5 2 2 6 5 2 . 9 3 8 6 4 3 . 4 3 2 1 2 1 2 4 1 1 9 7 2 3 9 . 2 7 4 2 6 7 5 . 9 6 0 6 3 6 . 6 8 6 1 2 1 4 2 1 1 9 7 3 2 0 . 3 5 4 6 6 5 7 . 1 8 5 6 3 6 . 8 3 0 1 4 1 2 1 1 9 7 4 - 3 2 . 2 8 1 2 4 9 2 . 0 7 9 5 2 4 . 3 6 0 1 2 1 2 1 1 9 7 5 7 . 8 5 8 4 2 5 3 4 . 5 4 2 5 2 6 . 6 8 3 1 2 4 1 2 1 1 9 7 6 - 2 1 . 7 4 9 5 5 1 9 . 0 2 9 5 4 0 . 7 7 8 1 2 4 1 2 1 1 9 7 7 - 1 0 . 6 3 1 1 5 4 0 . 5 4 7 5 5 1 . 1 7 8 1 2 1 4 2 1 1 9 7 8 2 5 . 0 6 3 0 6 1 0 . 8 6 8 5 8 5 . 8 0 5 1 2 1 4 2 1 1 9 7 9 2 3 . 7 3 1 4 6 1 4 . 7 7 4 5 9 1 . 0 4 2 1 2 4 1 2 1 1 9 8 0 - 6 . 7 5 9 6 8 5 3 9 . 2 7 3 5 4 6 . 0 3 3 1 2 8 2 1 1 9 8 1 1 . 7 5 9 8 2 5 5 8 . 6 3 3 5 5 6 . 8 7 3 1 2 1 2 4 1 1 9 8 2 3 9 . 9 4 3 2 5 9 9 . 9 1 4 5 5 9 . 9 7 1 1 2 4 1 2 1 1 9 8 3 - 2 5 . 2 0 2 5 5 0 0 . 9 9 8 5 2 6 . 2 0 0 1 x 4 2 1 1 9 8 4 8 1 . 7 3 1 9 2 5 6 1 . 0 7 0 5 6 2 . 8 0 2 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l G D P P e r C a p i t a G D P U S / C P I U S / P O P U S F 9 0 5 8 R e a l U . S . C o a r s e G r a i n P r i c e ( S I M T ) W P / C P I U S F W S U P R 8 C o a r s e G r a i n / W h e a t S u p p l y R a t i o ( W P R O U S + W E S U S ( - 1 ) ) / ( F P R O U S * F E S U S ( - l ) ) D V 7 4 0 N 8 1 I £ ( Y E A R . G E . 7 4 ) 0 O t h e r w i s e 2 0 8 B U R L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s H S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F F E D 5 8 2 . 3 4 2 4 2 4 9 . 1 4 9 4 2 9 6 7 5 . 9 6 0 0 0 4 9 2 . 0 7 8 6 0 P C R G D P 1 0 5 . 0 9 8 4 4 1 2 . 6 6 3 5 9 2 1 2 1 . 2 6 5 1 0 7 8 . 0 9 0 0 0 0 F P U S 1 . 4 1 5 5 4 8 1 0 . 3 2 0 4 7 7 4 2 . 2 7 1 4 2 9 0 0 . 9 2 7 8 3 5 1 F N S U P R 3 . 0 2 6 7 8 3 9 0 . 3 4 1 3 8 4 6 3 . 5 8 9 2 0 2 0 2 . 1 8 2 8 6 7 0 D V 7 4 O N 0 . 4 5 8 3 3 3 3 0 . 5 0 8 9 7 7 4 _ 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C F F E D , P C F F E D 2 3 1 5 . 0 1 3 6 1 . 0 0 0 0 0 0 0 D C F F E D . P C R B D P - 4 0 . 4 0 4 1 1 3 - 0 . 0 6 7 7 3 8 2 P C F F E D , F P U S - 0 . 8 4 9 2 7 5 2 - 0 . 0 5 6 2 6 2 1 P C F F E D . F H S U P R 1 0 . 8 0 0 1 1 8 0 . 6 7 1 6 6 0 0 P C F F E D , D V 7 4 O N - 1 3 . 9 1 8 4 0 6 - 0 . 5 8 0 5 7 1 8 P C R B D P , P C R B D D 1 5 3 . 6 8 4 6 3 1 . 0 0 0 0 0 0 0 P C R B D P , F D U S 0 . 0 1 1 2 0 7 8 0 . 0 0 2 8 8 1 7 P C R G D P , F H S U P R - 0 . 4 4 4 7 7 5 4 - 0 . 1 0 7 3 5 5 2 P C R B D P , D V 7 4 O N 4 . 5 3 2 1 7 8 3 0 . 7 3 3 7 2 7 8 F D U S , F P U S ‘ 0 . 0 9 8 4 2 6 4 1 . 0 0 0 0 0 0 0 F P U S , F H S U P R 0 . 0 2 6 1 1 5 0 0 . 2 4 9 0 7 6 6 F P U S . D V 7 4 O N - 0 . 0 1 0 6 7 2 7 - 0 . 0 6 8 2 7 5 3 F N S U P R , F N S U P R 0 . 1 1 1 6 8 7 5 1 . 0 0 0 0 0 0 0 F H S U P R , D V 7 4 O N - 0 . 0 8 7 7 1 1 1 - 0 . 5 2 6 7 3 9 0 D V 7 4 O N , D V 7 4 O N 0 . 2 4 8 2 6 3 9 1 . 0 0 0 0 0 0 0 H > C 3 < O : : m 1 ~ 4 > c z 1 m l € 4 fi ” f ‘ f + * ) C 5 2 3 5 m 3 1 m 2 5 m 1 5 . 1 0 m 3 1 . 2 0 1 2 9 . 2 9 . 2 8 . 2 5 . 4 4 1 2 3 . 9 7 5 2 2 . 5 1 f 2 1 . 0 4 5 1 9 . 5 8 0 1 9 . 1 1 5 ~ 4 1 ! F i g u r e A . 1 2 . a & b . 2 0 9 e e e e ‘ e e e . . . " 1 9 6 8 1 9 7 0 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 0 1 9 8 2 R E G I O N A L M O D E L S I H U L A T I O N 1 9 8 4 8 3 8 ' - 3 7 1 F 7 6 7 6 1 5 7 6 7 9 a b 3 1 8 5 8 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - - E S T I M A T E D C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n - U n i t e d S t a t e s 3 3 P e r C a p i t a C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n U n i t e d S t a t e s 2 1 0 ( 1 0 0 0 H T ) E h M J ' u n i - x s m s 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s D C F F O D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - B T A T . 2 - T A I L S I B . C - 1 0 7 . 8 1 0 0 4 1 2 . 3 0 9 0 2 8 - 8 . 7 5 8 6 1 5 1 0 . 0 0 0 Y E A R 2 . 5 7 4 2 3 9 0 0 . 1 2 9 5 6 1 0 1 9 . 8 6 8 9 3 8 0 . 0 0 0 F P U S - 2 1 . 0 7 4 8 1 9 6 . 4 1 5 1 8 4 4 - 3 . 2 8 5 1 4 6 2 0 . 0 0 4 " 9 0 8 1 1 . 3 6 0 4 5 7 4 . 0 9 3 7 0 6 7 2 . 7 7 5 1 0 3 0 0 . 0 1 2 D C F 5 8 1 - 1 ) 0 . 0 7 1 2 3 4 9 0 . 0 0 9 2 9 0 7 7 . 6 6 7 3 6 1 2 0 . 0 0 0 W 8 4 2 0 . 0 7 8 4 9 1 4 . 5 0 4 6 9 6 5 4 . 4 5 7 2 3 5 0 0 . 0 0 0 R - s q u a r e d 0 . 9 7 4 7 9 0 M e a n o f d e p e n d e n t v a r 8 5 . 2 1 1 5 5 A d J u s t e d R - s q u a r e d 0 . 9 6 7 7 8 8 S . D . o f d e p e n d e n t v a r 2 0 . 4 7 5 5 6 8 . 2 . o f r e g r e s s i o n 3 . 6 7 4 9 0 4 B u s o f s q u a r e d r e s i d 2 4 3 . 0 8 8 5 D u r b i n - H a t s o n s t a t 0 . 9 9 7 2 9 0 F - s t a t i s t i c 1 3 9 . 2 0 3 0 L o g 1 i k e l i h o o d - 6 1 . 8 3 8 9 9 T P E 4 / 2 4 R e s i d u a l p l o t o b s R E S I D U A L A C T U A L F I T T E D 1 2 4 I 2 1 1 9 6 1 - 3 . 2 4 1 4 4 6 7 . 6 7 9 3 7 0 . 9 2 0 7 1 2 1 4 1 1 1 9 6 2 0 . 3 0 5 1 6 . 6 7 . 1 0 0 9 6 6 . 7 9 5 7 1 2 1 4 1 1 1 9 6 3 2 . 8 4 7 7 7 6 8 . 6 1 6 6 6 5 . 7 6 8 8 1 2 4 1 1 1 1 9 6 4 - 0 . 7 9 5 7 3 6 8 . 2 5 7 9 6 9 . 0 5 3 6 1 1 1 1 4 1 1 9 6 5 5 . 9 6 2 7 2 7 0 . 3 4 4 8 6 4 . 3 8 2 1 1 2 1 2 4 1 1 9 6 6 5 . 0 6 8 8 4 7 0 . 5 6 8 8 6 5 . 4 9 9 9 : I 1 I I 8 9 6 7 1 . 5 4 8 2 3 7 1 . 4 2 0 7 6 9 s 7 7 “ 1 2 4 2 1 1 9 6 9 - 0 . 0 8 1 7 3 7 3 . 4 5 0 8 7 3 . 5 3 2 5 1 4 2 1 1 1 1 9 7 0 - 4 . 5 6 4 4 2 7 0 . 8 8 5 1 7 5 . 4 4 9 6 1 4 1 1 2 1 1 9 7 1 - 5 . 3 1 8 5 1 7 1 . 9 4 4 5 7 7 . 2 6 3 0 1 2 4 1 1 1 1 9 7 2 - 2 . 3 3 1 7 4 7 5 . 8 7 9 0 7 8 . 2 1 0 7 1 2 4 1 1 1 1 9 7 3 - 2 . 5 7 0 6 5 7 7 . 4 2 9 1 7 9 . 9 9 9 7 1 2 1 4 2 1 1 9 7 4 0 . 8 5 1 1 0 7 5 . 4 0 8 0 7 4 . 5 5 6 9 1 2 1 1 4 1 1 9 7 5 5 . 0 4 9 0 0 8 3 . 8 1 7 2 7 8 . 7 6 8 2 1 1 1 4 2 1 1 9 7 6 0 . 5 6 5 4 9 8 1 . 7 6 4 8 8 1 . 1 9 9 3 1 1 4 1 1 1 1 9 7 7 - 2 . 9 5 9 2 6 8 5 . 5 0 2 2 8 8 . 4 6 1 4 1 4 2 1 2 1 1 9 7 9 - 4 . 0 8 9 7 4 9 9 . 2 3 5 8 1 0 3 . 3 2 6 1 2 1 4 1 1 9 8 2 3 . 4 9 3 2 8 1 2 0 . 5 4 6 1 1 7 . 0 5 3 1 2 1 1 1 1 9 8 3 2 . 0 3 9 6 4 1 2 6 . 9 6 4 1 2 4 . 9 2 4 1 2 4 2 1 1 9 8 4 7 . 5 D - 1 5 1 3 5 . 3 4 7 1 3 5 . 3 4 7 I N D E P E N D E N T V A R I A B L E S Y E A R 8 1 9 6 0 - 6 0 , 1 9 6 1 - 6 1 . . . . . F P U S 3 R e a l 0 . 5 . C o a r s e G r a i n P r i c e ( $ 1 M ? ) W P / C P I U S W P U S a R e a l U . S . w h e a t P r i c e ( s l fl T ) w P / C P I U S P C F E S a P e r C a p i t a C o a r s e G r a i n E n d i n g S t o c k s ( 1 0 0 0 M T ) F E S U S / P O P U S D V 8 4 I l I £ ( Y E A R . 5 0 . 8 4 ) 0 O t h e r w i s e 2 1 1 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F F O D 8 5 . 2 1 1 5 4 8 2 0 . 4 7 5 5 5 6 1 3 5 . 3 4 7 3 0 6 7 . 1 0 0 8 9 0 Y E A R 7 2 . 5 0 0 0 0 0 7 . 0 7 1 0 6 7 8 8 4 . 0 0 0 0 0 0 6 1 . 0 0 0 0 0 0 F D U S 1 . 4 1 5 8 9 6 3 0 . 3 2 0 2 9 9 0 2 . 2 7 1 4 2 9 0 0 . 9 1 9 9 0 4 8 H P U S - 1 . 7 3 2 4 2 7 0 0 . 4 7 1 1 3 0 3 3 . 2 8 5 7 1 4 0 1 . 1 9 7 3 0 3 0 P C F E S 1 - 1 ) 2 2 0 . 5 5 5 5 5 9 7 . 3 1 2 9 4 1 4 2 6 . 5 1 1 0 0 7 1 . 6 0 1 5 9 0 D V 8 4 0 . 0 4 1 6 6 6 7 0 . 2 0 4 1 2 4 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C F F O D . P C F F O D 4 0 1 . 7 7 9 7 3 1 . 0 0 0 0 0 0 0 D C F F O D , Y E A R 1 2 3 . 5 3 7 6 8 0 . 8 9 0 3 5 2 8 P C E F O D . F P U S - 2 . 6 0 9 3 8 3 5 - 0 . 4 1 5 1 7 3 9 P C F F O D , N P U B - 1 . 6 2 7 6 0 9 0 - 0 . 1 7 6 0 5 8 4 P C F F O D , P C F E S ( - 1 ) - 6 7 . 5 2 4 9 5 8 - 0 . 0 3 5 3 6 2 4 P C F F O D , D V 8 4 2 . 0 8 8 9 8 9 9 0 . 5 2 1 5 4 2 4 Y E A R , Y E A R 4 7 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 Y E A R , F D U S - 0 . 4 0 2 5 7 1 9 - 0 . 1 8 5 4 7 5 4 Y E A R , H P U S - 0 . 0 2 2 3 6 3 3 - 0 . 0 0 7 0 0 4 8 Y E A R , P C F E S ( - 1 ) - 2 4 7 . 9 4 4 2 5 - 0 . 3 7 5 9 9 4 8 Y E A R , D V 8 4 0 . 4 7 9 1 6 6 7 0 . 3 4 6 4 1 0 2 F P U S , F P U S 0 . 0 9 8 3 1 6 8 1 . 0 0 0 0 0 0 0 F P U S , H P U S 0 . 1 2 9 0 1 3 7 0 . 8 9 2 1 1 8 7 F P U S , P C F E S ( - 1 ) - 7 . 7 4 5 7 0 8 9 - 0 . 2 5 9 3 0 9 5 F P U S , D V 8 4 - 0 . 0 2 0 6 6 6 3 - 0 . 3 2 9 8 3 4 8 H P U S , H P U S 0 . 2 1 2 7 1 5 3 1 . 0 0 0 0 0 0 0 H P U S , P C F E S ( - 1 ) - 1 4 . 6 7 9 0 5 1 - 0 . 3 3 4 0 9 4 8 H D U S , D V 8 4 - 0 . 0 1 1 0 5 5 7 - 0 . 1 1 9 9 5 9 4 P C F E S 1 - 1 ) , P C F E S ( - 1 > 9 0 7 5 . 2 3 3 1 1 . 0 0 0 0 0 0 0 P C F E S ( - 1 ) , D V 8 4 - 3 . 5 9 6 3 5 2 0 - 0 . 1 8 8 9 2 1 2 D V 8 4 , D V 8 4 0 . 0 3 9 9 3 0 6 1 . 0 0 0 0 0 0 0 2 1 2 1 0 0 0 N E T T O N S 1 “ l ' I r l ' T ' ' l r l ' l ' 1 9 6 8 1 9 7 0 1 9 7 2 1 9 1 4 1 9 1 1 6 1 9 7 8 1 9 8 0 1 9 0 2 1 9 9 4 R E G I O N A L M O D E L S I H U L A T I O N 7 0 . 9 2 2 : 2 5 7 . 8 3 1 ' : 0 4 . 2 7 9 , 1 : 1 5 1 . 2 1 2 7 : I 5 2 . 3 7 2 E 0 5 5 . 2 2 1 1 N 5 2 . 0 7 3 I 4 8 . 9 2 1 : 1 " « 1 . 7 7 0 : T 4 2 . 4 1 2 7 6 7 6 ' 7 7 7 6 7 é a b o i 2 5 3 5 6 1 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L - - - E S T I H A T E D F i g u r e 8 . 1 3 . a 8 . 1 : . C o a r s e G r a i n N e t E x p o r t s - U n i t e d S t a t e s “ - 9 1 2 2 - . 8 . 1 4 . 1 2 8 . b . C S o t a a r t s e e s G r a i n E n d i n g S t o c k s - U n i t e d 2 1 3 1 1 0 0 0 0 1 0 0 0 H E T T O N 3 1 m 1 ' l ' l a r 1 r I , l . f . 1 9 5 0 1 9 7 0 1 9 7 2 1 9 9 4 1 9 7 6 1 9 7 0 1 9 0 0 1 9 0 2 1 9 0 4 R E G I O N A L M O D E L S I H U L A T I O N 2 2 . 2 2 2 ' 1 4 2 5 . 2 1 4 “ : 7 7 . 2 0 2 - l " 0 9 . 2 2 1 C 2 ; 2 1 . 2 2 0 E ( 3 0 2 . 2 0 2 : . 3 4 2 . 2 2 2 ~ 2 7 . 2 4 0 : . 1 1 2 2 . 2 2 0 : ' 1 ' 2 1 . 2 2 4 E E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - ' - E S T I M A T E D F i s r t a r e A . 1 5 . a 2 b . S o y b e a n P r o d u c t i o n - U n i t e d S t a t e s 2 1 4 1 O O 0 M E T T O N S 2 “ I I T ‘ l . 1 I I r I I 1 r 2 I ; 1 9 6 8 1 9 7 0 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 0 1 9 8 2 1 9 9 4 R E G I O N A L M O D E L S I M U L A T I O N 0 0 . 2 0 2 L : 1 : 2 7 . 2 2 7 ' : 1 . 2 4 . 9 1 1 : 1 _ 2 2 . 2 0 0 : I 4 9 . 8 2 0 : - ( 3 4 0 . 9 7 2 : 2 ; 8 8 4 4 . 2 2 9 C 1 4 1 . 0 2 4 » 1 1 9 ' 2 9 . 0 2 2 r j 7 2 0 . 2 9 2 P 1 O A 7 2 7 2 ‘ 7 7 7 2 7 9 2 0 2 1 2 2 2 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — 1 - - E S T I M A T E D ' 1 1 1 1 1 9 5 2 ' 1 1 1 1 4 1 % ' 1 9 1 1 ' 1 1 1 0 ' 1 9 1 2 ' 1 1 1 4 4 1 > C > C > C n i fl l l f i r ' fl l l l fl l U g ; 4 1 ' r ‘ f 1 P 1 C 1 2 1 J 1 0 1 C 1 " 0 ’ 0 1 0 1 0 I Y F T W V V ' ' 1 l f i g u r e A . 1 6 . a 8 . b . S o y b e a n H a r v e s t e d A r e a - U n i t e d S t a t e s 2 8 . 2 7 . 2 8 . 2 5 . 2 4 . 2 3 . . 9 5 8 2 2 . 2 1 . - 2 0 . 0 4 3 1 9 8 ' 3 4 8 5 0 1 8 5 3 1 1 1 2 8 3 4 1 8 2 1 5 R E G I O N A L M O D E L S I M U L A T I O N 7 2 7 0 7 7 7 2 7 9 2 0 2 1 2 3 2 2 2 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D 2 1 6 U n i t e d S t a t e s S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) 2 1 1 1 5 1 . 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S H A U S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 1 2 6 0 6 . 8 4 3 6 5 8 3 . 7 9 0 3 - 1 . 9 1 4 8 3 0 6 0 . 0 7 5 S H A U S ( - 1 ) 0 . 7 4 7 0 7 9 2 0 . 1 6 0 5 4 7 7 4 . 6 5 3 3 1 6 4 0 . 0 0 0 F R U S 4 ( - 1 ) - 1 1 9 5 . 7 8 0 3 2 5 8 . 1 2 4 2 4 - 4 . 6 3 2 5 7 6 6 0 . 0 0 0 S R U S 4 1 - 1 ) 1 4 1 6 . 9 2 3 5 2 4 7 . 3 7 5 5 6 5 . 7 2 7 8 2 3 4 0 . 0 0 0 Y E A R 2 4 2 . 0 4 8 2 0 1 2 7 . 8 9 7 1 1 1 . 8 9 2 5 2 2 9 0 . 0 7 8 R - s p u a r e d 0 . 9 7 1 5 1 9 M e a n o f d e p e n d e n t v a r - 2 1 4 0 9 . 8 5 A d J u s t e d R - s o u a r e d 0 . 9 6 3 9 2 4 6 . 0 . o f d e p e n d e n t v a r 4 8 4 3 . 2 5 2 S . E . o f r e g r e s s i o n 9 1 9 . 9 1 0 6 S u m o f s p u a r e d r e s i d 1 2 6 9 3 5 3 2 D u r b i n - H a t s o n s t a t 2 . 7 9 6 4 3 0 F - s t a t i s t i c ' 1 2 7 . 9 1 6 9 L o g 1 1 1 1 1 2 1 1 1 1 0 0 0 - 1 6 1 . 9 0 7 2 T P E 8 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E E 1 2 1 4 2 1 1 9 6 5 1 8 2 . 3 2 3 1 3 9 4 1 . 0 1 3 7 5 8 . 7 1 2 4 1 1 1 1 9 6 6 - 1 3 7 . 9 7 8 1 4 7 9 0 . 0 1 4 9 2 8 . 0 1 2 1 4 2 1 1 9 6 7 6 0 9 . 7 6 5 1 6 1 0 9 . 0 1 5 4 9 9 . 2 1 2 4 1 2 1 1 9 6 8 - 1 4 9 . 2 8 5 1 6 7 5 1 . 0 1 6 9 0 0 . 3 1 2 4 1 1 1 1 9 6 9 - 1 8 4 . 5 9 7 1 6 7 2 9 . 0 1 6 9 1 3 . 6 1 2 1 4 1 1 1 9 7 0 5 3 5 . 2 2 8 1 7 0 9 8 . 0 1 6 5 6 2 . 8 1 2 4 1 2 1 1 9 7 1 - 2 1 0 . 8 0 5 1 7 2 8 2 . 0 1 7 4 9 2 . 8 1 2 4 1 2 1 1 9 7 2 - 6 2 6 . 4 2 1 1 8 4 8 8 . 0 1 9 1 1 4 . 4 1 2 4 1 2 1 1 9 7 3 - 8 2 . 3 8 5 7 2 2 5 2 8 . 0 2 2 6 1 0 . 4 1 4 1 2 1 1 9 7 4 - 9 4 1 . 0 6 3 2 0 7 7 7 . 0 _ 2 1 7 1 8 . 1 1 2 1 2 4 1 1 9 7 5 1 3 5 8 . 7 0 2 1 6 9 8 . 0 2 0 3 3 9 . 3 1 2 4 1 2 1 1 9 7 6 - 8 7 1 . 4 3 0 1 9 9 9 2 . 0 2 0 8 6 3 . 4 1 4 2 1 2 1 1 9 7 7 - 1 0 3 2 . 6 8 2 3 4 0 3 . 0 2 4 4 3 5 . 7 1 2 1 4 2 1 1 9 7 8 4 0 4 . 8 2 2 2 5 7 6 4 . 0 2 5 3 5 9 . 2 1 2 1 1 4 1 1 9 7 9 1 2 2 5 . 5 6 2 8 4 6 7 . 0 2 7 2 4 1 . 4 1 2 4 2 1 1 9 8 0 - 5 5 . 9 8 7 3 2 7 4 4 3 . 0 2 7 4 9 9 . 0 1 2 4 1 2 1 1 9 8 1 - 1 6 5 . 5 6 3 2 6 7 7 6 2 0 2 6 9 4 1 . 6 1 2 1 2 4 1 1 9 8 2 1 3 8 7 . 5 7 2 8 1 0 2 . 0 2 6 7 1 4 . 4 1 4 2 1 2 1 1 9 8 3 - 1 7 4 7 . 1 1 2 5 3 0 3 . 0 2 7 0 5 0 . 1 1 2 1 4 2 1 1 9 8 4 5 0 1 . 3 4 1 2 6 7 5 6 . 0 2 6 2 5 4 . 7 I N D E P E N D E N T V A R I A B L E S : E S H A U S 2 5 1 2 0 3 4 E K F Q ‘ M 5 4 Y E E J Q E Q S o y b e a n H a r v e s t e d A r e a ( H A ) S o y b e a n R e v e n u e p e r H e c t a r e < 5 / H A ) ( F o r e c a s t S o y b e a n Y i e l d ) 4 S P / C P I U S C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( 3 / H A ) ( F Y U S < - 3 ) 4 F Y U S ( - 2 ) + F Y U S ( - l ) + F Y U S ) / 4 4 F P / C P I U S 1 9 6 0 - 6 0 . 1 9 6 1 8 6 1 . 2 1 7 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S H A U S 2 1 4 0 9 . 8 5 0 4 8 4 3 . 2 5 2 4 2 8 4 6 7 . 0 0 0 1 3 9 4 1 . 0 0 0 S H A U S t - 1 ) 2 0 6 9 5 . 1 5 0 5 0 6 2 . 5 1 2 2 2 8 4 6 7 . 0 0 0 1 2 4 6 2 . 0 0 0 F R U S 4 ( - 1 ) 6 . 1 4 1 5 4 6 9 1 . 5 9 3 2 6 7 2 9 . 8 1 9 1 3 1 0 4 . 3 0 1 2 9 7 0 S R U S 4 1 - 1 ) 5 . 5 5 2 2 6 0 1 1 . 4 5 5 1 6 2 6 8 . 6 4 6 8 1 8 0 3 . 9 4 6 2 2 7 0 Y E A R 7 4 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 4 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S H A U S . S H A U S 2 2 2 8 4 2 3 9 . 1 . 0 0 0 0 0 0 0 S H A U S . S H A U S ( - 1 ) 2 1 8 8 2 7 0 2 . 0 . 9 3 9 4 5 1 1 S H A U S . F R U S 4 ( - 1 ) 3 1 9 4 . 6 3 9 5 0 . 4 3 5 7 8 5 3 S H A U S . S R U S 4 ( - 1 ) 2 0 3 9 . 3 6 6 8 0 . 3 0 4 5 9 5 2 S H A U S , Y E A R 2 5 7 4 6 . 5 7 5 0 . 9 4 5 8 5 5 4 S H A U S ( - 1 ) , S H A U S ( - 1 ) 2 4 3 4 7 5 7 8 . 1 . 0 0 0 0 0 0 0 S H A U S ( - 1 ) . F R U S 4 ( - 1 ) 3 7 4 4 . 4 1 1 1 0 . 4 8 8 6 5 8 2 S H A U S 1 - 1 ) , S R U S 4 ( - 1 ) 1 1 2 1 . 6 6 8 3 0 . 1 6 0 2 7 4 1 S H A U S ( - 1 ) , Y E A R 2 7 1 9 0 . 0 7 5 0 . 9 5 5 6 2 3 2 F R U S 4 ( - 1 ) , F R U S 4 ( - 1 ) 2 . 4 1 1 5 7 5 3 1 . 0 0 0 0 0 0 0 F R U S 4 1 - 1 ) . S R U S 4 ( - 1 ) 1 . 6 6 0 4 9 7 5 0 . 7 5 3 9 0 1 3 F R U S 4 ( - 1 ) . Y E A R 3 . 8 3 4 7 0 8 3 0 . 4 2 8 2 3 8 9 S R U S 4 < - 1 ) , S R U S 4 ( - 1 ) 2 . 0 1 1 6 2 3 4 1 . 0 0 0 0 0 0 0 S R U S 4 ( - 1 ) . Y E A R 1 . 3 9 0 9 0 2 6 0 . 1 7 0 0 6 9 9 Y E A R . Y E A R 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 ‘ . . . - “ O O " O O O O - . . . “ - . . . . . u ‘ . . . . . . . . . u ” * L C I C S Z ' s L n ( Y E A R ) 2 1 8 U n i t e d S t a t e s S o y b e a n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s ‘ L S l l D e p e n d e n t V a r i a b l e i s S Y U S ” m u n - I W M . - V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . W m n - m - W m m m C - 3 . 6 5 6 2 3 1 5 1 . 5 0 4 2 3 7 8 - 2 . 4 3 0 6 2 0 7 0 . 0 2 5 L O B T 1 . 2 7 7 8 2 8 6 0 . 3 4 9 7 0 2 2 3 . 6 5 4 0 4 8 5 0 . 0 0 2 W W R - s q u a r e d 0 . 4 1 2 7 1 1 M e a n o f d e p e n d e n t v a r 1 . 8 3 9 3 2 2 A d j u s t e d R - s q u a r e d 0 . 3 8 1 8 0 2 S . D . o f d e p e n d e n t v a r 0 . 1 6 7 5 6 8 S . E . o f r e g r e s s i o n 0 . 1 3 1 7 5 1 S u m o f s q u a r e d r e s i d 0 . 3 2 9 8 0 9 D d r b i n - H a t s o n s t a t 2 . 3 3 0 0 7 1 F - s t a t i s t i c 1 3 . 3 5 2 0 7 L o g l i k e l i h o o d 1 3 . 8 1 6 8 2 . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 6 4 - 0 . 1 2 7 3 8 1 . 5 3 0 7 3 1 . 6 5 8 1 1 1 9 6 5 - 0 . 0 2 7 1 1 1 . 6 5 0 8 1 1 . 6 7 7 9 2 1 9 6 6 0 . 0 1 1 0 9 1 . 7 0 8 5 2 1 . 6 9 7 4 3 1 9 6 7 - 0 . 0 6 6 9 5 1 . 6 4 9 7 0 1 . 7 1 6 6 5 1 9 6 8 0 . 0 6 2 9 4 1 . 7 9 8 5 2 1 . 7 3 5 5 8 1 9 6 9 0 . 0 8 9 2 1 1 . 8 4 3 4 5 1 . 7 5 4 2 3 1 9 7 0 0 . 0 2 1 4 5 1 . 7 9 4 0 7 1 . 7 7 2 6 2 1 9 7 1 0 . 0 6 1 4 1 1 . 8 5 2 1 6 1 . 7 9 0 7 4 1 9 7 2 0 . 0 6 1 8 4 1 . 8 7 0 4 6 1 . 8 0 8 6 1 1 9 7 3 0 . 0 4 3 3 4 1 . 8 6 9 5 9 1 . 8 2 6 2 4 1 9 7 4 - 0 . 2 5 0 4 2 1 . 5 9 3 2 0 1 . 8 4 3 6 3 1 9 7 5 0 . 0 8 1 2 9 1 . 9 4 2 0 7 1 . 8 6 0 7 8 1 9 7 6 - 0 . 1 2 3 5 0 1 . 7 5 4 2 0 1 . 8 7 7 7 0 1 9 7 7 0 . 1 6 0 7 6 2 . 0 5 5 1 6 1 . 8 9 4 4 1 1 9 7 8 0 . 0 6 3 1 4 1 . 9 7 4 0 3 1 . 9 1 0 9 0 1 9 7 9 0 . 2 3 4 1 0 2 . 1 6 1 2 7 1 . 9 2 7 1 7 1 9 8 0 - 0 . 1 6 0 6 1 1 . 7 8 2 6 4 1 . 9 4 3 2 5 1 9 8 1 0 . 0 6 2 6 5 2 . 0 2 1 7 7 1 . 9 5 9 1 2 1 9 8 2 0 . 1 4 6 4 0 2 . 1 2 1 2 0 1 . 9 7 4 8 0 1 9 8 3 “ 0 . 2 3 0 8 9 1 . 7 5 9 4 0 1 . 9 9 0 2 9 1 9 8 4 - 0 . 1 1 2 7 8 1 . 8 9 2 8 1 2 . 0 0 5 5 9 8 0 0 2 2 8 I N D E P E N D E N T V A R I A B L E S 2 1 9 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s - M e a n S . D . M a x i m u m M i n i m u m 1 . . . S Y U S 1 . 8 3 9 3 2 2 1 0 . 1 6 7 5 6 7 7 2 . 1 6 1 2 7 4 0 1 . 5 3 0 7 3 3 0 L 0 8 7 4 . 3 0 0 6 9 7 0 0 . 0 8 4 2 4 4 4 4 . 4 3 0 8 1 7 0 4 . 1 5 8 8 8 3 0 W C o v a r i a n c e C o r r e l a t i o n W m - 8 Y U 8 , S Y U 8 0 . 0 2 6 7 4 1 8 1 . 0 0 0 0 0 0 0 S Y U S . L O B T 0 . 0 0 8 6 3 7 0 0 . 6 4 2 4 2 6 2 L D B T , L 0 © T 0 . 0 0 6 7 5 9 2 1 . 0 0 0 0 0 0 0 m P O O O 3 1 8 1 4 ’ i r 3 C 5 2 1 0 : : 4 I r I * r ' r + r > c : z ! 1 4 ' I U U ' r V I U I U I V I I U T 1 9 6 8 1 9 0 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 0 1 9 8 2 1 9 8 4 0 \ 1 Q 7 6 1 1 7 6 v é 3 6 3 1 3 5 8 5 J s h 2 m 1 9 . 1 8 “ u m 1 6 ” 1 5 ' 1 4 m 1 3 m 1 2 ‘ n e w 1 c c ' . 1 9 . 5 4 1 1 9 . 0 3 1 ' 1 8 . 5 2 1 1 8 . 0 1 1 1 1 . 5 0 1 1 8 . 9 9 1 1 8 . 4 8 1 1 5 . 9 7 1 1 5 . 4 8 1 1 4 . 9 5 1 2 2 0 ’ e e . . . . . 5 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e A . 1 7 . a & b . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - U n i t e d S t a t e s - d u . o s j r E g . A o Y F - 4 R r e f V O a t o n 1 4 P u s i 1 q u b 4 N C M V E M N D E R P 7 A P S E G U 4 R U o U P D S S y S R A S D L P S : : 2 : : : : : : : : : : : : : : : : : I D Y S S ’ I c r a 7 A U D d 1 : : : : : : : : : z : : : : : : : 4 : : R v E P B e d W 4 E P s A P 4 R S R 1 e t ( B - g s h l E q e e n o - L s r o o R 4 N D E 8 8 8 8 8 a e - l S u s d s 4 ) N E C - ~ - d t n 4 4 V P P a a I O 6 P a u S O 4 0 1 0 2 E 0 . 2 . . : l : : : : : r z : : : : : : : : : : A U / f t / 4 4 l l l 0 i ) F . 7 . 5 0 P R S C < h C 8 v 8 F 7 2 0 2 0 4 1 4 4 I G / P U Y e 6 U P a . I 4 9 8 0 0 9 7 8 4 C 8 - 8 9 4 8 I 3 0 0 2 4 7 8 5 E 1 . . . N 2 8 7 5 5 9 9 3 1 4 . 2 8 . T 5 4 6 0 5 9 4 9 8 1 4 9 3 4 8 8 t 4 0 A C D . I E r . I l 7 4 S . B P P U A w S U e 9 4 L I S R i S n 5 . . E U P s 1 t : : : : : : : : : : : z : : : : : : : : 9 S * S e S S e r / o . E 6 o C 6 8 5 4 9 4 4 S 6 3 7 0 7 P y O 1 y o S : : : : : : : : T 0 3 0 8 2 D . . . . . . 2 5 1 1 2 5 8 5 1 3 : : : : : : : : : : z : p U a 7 1 a u S . C O n 8 n n M a P e 6 e s E R 4 5 8 0 9 e . u - P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E 0 0 1 5 2 S M S F T i S 4 l a l U , R 3 2 0 a m s 0 0 D E o 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 t ) p S R 8 3 4 2 0 8 0 2 1 o a s 8 5 7 9 3 5 7 9 4 8 8 0 2 3 4 1 O 7 0 4 5 1 n t . 8 8 8 7 b 8 6 7 7 7 7 7 7 7 7 7 8 8 8 8 a 8 P P . r . r t ( i - d d q t . . . S . . . . . . . . . . . . . . . . . — - - e e u i c I 0 2 9 1 8 8 7 8 7 3 7 8 1 4 0 3 3 0 5 8 e e T . . e . e . . r U 8 9 7 1 8 8 0 8 5 - 7 2 7 9 4 8 0 2 4 1 4 3 4 2 0 p p a D 7 9 9 4 7 3 4 5 8 8 8 8 D 0 4 3 0 9 8 8 8 - o o f t f f i s s R - - - - - — - - - - - i i . o l E 3 3 2 0 3 0 0 0 1 1 2 0 0 3 2 1 0 0 1 1 c c n ) a s s r i t e o a d u a i T l 1 R 0 R S R G S E S 4 e D M e 9 e M q U A T . - 9 2 7 8 8 n n e T 7 8 0 3 9 e e S 5 7 3 1 8 d d d A 5 0 8 1 7 7 0 1 2 7 8 3 1 5 3 0 1 5 9 1 L 7 7 5 8 9 8 7 8 2 4 9 1 8 4 5 8 8 0 4 8 ( ( ( 9 1 5 4 7 n n r s s S S M N 2 L 2 7 8 2 9 3 9 3 5 5 7 8 4 8 3 9 7 1 0 2 - T A 0 0 0 0 0 6 7 6 1 0 2 4 7 3 3 5 8 8 4 9 0 8 7 5 4 8 8 3 8 1 1 . . . . . 9 8 6 0 / 5 8 8 8 7 7 F 5 8 5 8 8 8 8 7 8 8 8 7 7 8 L 0 0 0 0 4 . . . . 2 9 5 8 1 4 I 0 4 1 5 4 1 1 9 7 2 1 9 0 8 3 r r A 3 2 8 8 7 8 1 0 7 5 2 4 2 5 0 0 5 1 7 2 ) ) S S ( l - - ) S 0 0 0 4 4 1 5 5 2 0 T . . . . . . . . . . . . . . . . . . . . M 1 8 8 0 0 2 4 8 0 1 9 7 T 2 4 0 9 1 0 2 8 2 3 7 1 9 9 2 5 2 3 1 4 5 1 8 1 2 3 3 E 5 2 8 4 2 9 8 4 4 1 2 5 8 4 4 9 8 . 9 9 9 2 D 5 6 8 3 4 8 4 5 4 3 8 5 8 8 1 9 . 1 8 8 0 6 8 3 9 5 2 3 2 8 7 0 9 0 9 4 4 8 7 2 3 1 0 5 1 R O U S - + E S S U P S 8 3 4 8 4 t t e 5 5 8 8 A 5 5 8 8 7 8 8 7 8 8 8 7 7 8 7 4 9 8 8 7 s C 3 5 7 5 3 8 5 7 8 2 1 2 7 1 3 9 7 2 8 3 0 8 8 2 2 i v v T . . . . . . . . . . . . . . . . . . . . a a d U 3 7 1 0 4 9 1 3 7 3 1 5 2 3 5 8 3 0 9 0 l / E fl E M S T T U U 1 2 2 1 U n i t e d S t a t e s P e r C a p i t a S o y e e a l E q u i v a l e n t C o n s u m p t i o n ” ( 1 0 0 0 M T ) S M P L ' 1 9 8 5 - : 0 O b s e r v a t i o n s L 9 / / D e p e n d e n t V a r i a b l e i s P T S M C O 1 9 8 4 2 2 2 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S M C O 6 9 . 5 1 2 9 7 9 1 0 . 1 0 1 6 7 8 8 3 . 8 0 5 8 7 0 5 3 . 3 3 2 1 7 0 P C R B D P ( - 1 ) 1 0 7 . 8 5 3 4 6 9 . 0 7 2 7 7 1 5 1 2 1 . 0 6 6 7 0 8 7 . 6 3 6 0 9 0 ' S M P U S 2 . 3 3 2 0 8 9 9 0 . 7 7 6 3 4 5 4 . 4 . 9 6 8 8 9 8 0 1 . 1 0 2 3 0 0 0 , D V 7 4 0 . 0 5 0 0 0 0 0 0 . 2 2 3 6 0 6 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 Y E A R 7 4 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 4 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 F P U S 1 . 4 1 1 6 6 2 5 0 . 3 5 1 5 6 2 8 2 . 2 7 1 4 2 9 0 0 . 9 2 7 8 3 5 1 . . . - . . . : I 3 . . . " . . . I C o v a r i a n c e C o r r e l a t i o n ” m s - m u u u — I m - u - u - I I . . . - . . . . P T S M C O , P T S M C O 9 6 . 9 4 1 7 1 2 1 . 0 0 0 0 0 0 0 P T S M C O , P C R G D P ( - 1 ) 7 5 . 9 5 7 5 3 2 0 . 8 7 2 3 9 6 1 P T S M C O , S M P U S - 1 . 9 3 4 7 6 9 9 - 0 . 2 5 9 6 9 1 2 P T S M C O , D V 7 4 - 0 . 4 1 9 4 l 5 9 - 0 . 1 9 5 4 5 3 2 P T S M C O , Y E A R 5 2 . 4 2 6 5 0 1 0 . 9 2 3 4 2 0 9 P T S M C O , F P U S - l . 0 0 3 4 4 9 6 - 0 . 2 9 7 4 2 3 - P C R G D P ( - 1 ) , P C R G D P ( - 1 ) 7 8 . 1 9 9 4 2 4 1 . 0 0 0 0 0 0 0 P C R G D P ( - 1 ) , S M P U S - 0 . 2 3 5 5 6 6 1 - 0 . 0 3 5 2 0 4 2 P C R G D P ( - 1 ) , D V 7 4 0 . 3 4 3 6 5 1 9 0 . 1 7 8 3 0 7 7 P C R G D P ( - 1 ) , Y E A R 4 4 . 3 6 7 4 4 5 - 0 . 8 7 0 0 9 5 3 P C R G D P ( - 1 ) , F P U S 0 . 2 3 7 5 8 9 4 0 . 0 7 8 4 0 8 0 S M P U S , S M P U S 0 . 5 7 2 5 7 6 6 1 . 0 0 0 0 0 0 0 S M P U S , D V 7 4 0 . 0 0 4 0 0 5 8 0 . 0 2 4 2 9 0 2 S M P U S , Y E A R - 0 . 9 2 0 0 0 8 3 - 0 . 2 1 0 8 5 2 7 S M P U S , F P U S 0 . 1 4 5 5 0 1 9 0 . 5 6 1 1 6 0 4 D V 7 4 , D V 7 4 0 . 0 4 7 5 0 0 0 1 . 0 0 0 0 0 0 0 D V 7 4 , Y E A R - 0 . 0 2 5 0 0 0 0 - 0 . 0 1 9 8 9 2 9 D V 7 4 , F P U S 0 . 0 3 8 6 9 7 8 0 . 5 1 8 1 7 3 4 . Y E A R , Y E A R 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , F P U S - 0 . 4 5 1 2 7 7 3 ‘ r 0 . 2 2 3 9 3 1 F P U S , F P U S 0 . 1 1 7 4 1 6 6 1 . 0 0 0 0 0 0 0 8 1 0 > < O : ) “ 9 ' 4 - D E E W z a h ‘ t F i h h c 1 1 1 1 1 1 1 8 1 E q u i v a l e n t C o n s u m p t i o n - U n i t e d 2 2 3 3 5 1 1 0 1 2 5 . l A a 1 1 ‘ C . I . ~ ' \ s e e e e e e ' . 1 9 6 8 1 9 7 0 1 9 7 2 1 9 7 4 1 9 7 6 1 9 7 8 1 9 8 0 1 9 8 2 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N ~ 1 3 a y 9 1 3 1 1 a 1 5 a 8 . . § . 0 0 5 7 - . - . . . . 7 5 7 8 F i g u r e A . 1 8 . a & b . ' 7 7 7 8 7 8 8 0 8 1 8 2 8 3 8 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L S o y o i l S t a t e s — - — E S T I M A T E D 2 2 4 U n i t e d S t a t e s P e r C a p i t a S o y o i l E q u i v a l e n t C o n s u m p t i o n ' ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P T S O C O 1 9 8 4 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 8 T A I L S I B . I C . - 2 . 7 3 0 7 3 7 9 2 . 6 2 2 5 5 5 4 - 1 . 0 4 1 2 5 0 8 0 . 3 1 2 P C R G D P 0 . 1 0 8 4 3 9 6 0 . 0 3 1 1 5 1 1 3 . 4 8 1 0 8 9 7 0 . 0 0 3 P C D S O S 0 . 1 9 7 6 2 5 4 0 . 0 2 8 2 4 9 6 6 . 9 9 5 6 9 3 5 0 . 0 0 0 I I R - s q u a r e d 0 . 9 4 5 6 7 5 M e a n o f d e p e n d e n t v a r 1 6 . 6 3 0 1 3 A d j u s t e d R - s q u a r e d 0 . 9 3 9 2 8 4 S . D . o f d e p e n d e n t v a r 2 . 6 3 5 9 7 5 S . E . o f r e g r e s s i o n 0 . 6 4 9 5 2 0 S u m o f s q u a r e d r e s i d 7 . 1 7 1 8 9 3 D u r b i n - w a t s o n s t a t 1 . 4 2 3 4 8 1 F - s t a t i s t i c 1 4 7 . 9 6 6 5 L 0 9 l i k e l i h o o d - 1 8 . 1 2 3 1 4 T P E 2 / 2 0 . - . . . . " . . . . . . . . . . . . . . I m u n - . . . . . . u s n s c n u u 3 . 8 3 . . . . 1 . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 4 : 1 1 9 6 5 0 . 2 3 9 4 9 1 1 . 8 9 7 1 1 1 . 6 5 7 6 1 : 4 1 : 1 1 9 6 6 - 0 . 5 5 2 0 8 1 2 . 0 5 0 9 1 2 . 6 0 3 0 1 : 4 1 : 1 1 9 6 7 - 0 . 1 6 9 8 5 1 3 . 1 1 4 8 1 3 . 2 8 4 7 1 4 1 : 1 1 9 6 8 - 0 . 6 0 7 8 2 1 3 . 9 7 0 1 1 4 . 5 7 8 0 1 : * 1 : 1 1 9 6 9 - 0 . 2 2 1 4 5 1 5 . 2 7 8 0 1 5 . 4 9 9 5 1 : 4 : 1 1 9 7 0 - 0 . 0 1 1 1 9 1 4 . 7 8 8 1 1 4 . 7 9 9 3 1 : 1 4 : 1 1 9 7 1 0 . 2 0 3 2 7 1 4 . 9 4 8 1 1 4 . 7 4 4 8 1 : 1 : 4 1 1 9 7 2 0 . 9 2 7 9 6 1 6 . 5 0 7 4 1 5 . 5 7 9 4 1 : 4 1 : 1 1 9 7 3 - 0 . 5 6 6 3 1 1 6 . 5 0 0 8 1 7 . 0 6 7 1 1 : 4 : 1 1 9 7 4 - 0 . 0 5 3 2 6 1 5 . 6 4 7 2 1 5 . 7 0 0 4 1 : 1 4 : 1 1 9 7 5 0 . 3 0 2 7 9 1 7 . 1 5 1 6 1 6 . 8 4 8 8 1 : 1 * : 1 1 9 7 6 0 . 0 8 3 6 1 1 6 . 7 0 4 3 1 6 . 6 2 0 7 1 4 1 : 1 1 9 7 7 - 0 . 5 9 0 1 9 1 7 . 6 6 2 2 1 8 . 2 5 2 4 1 - : * 1 : 1 1 9 7 8 - 0 . 2 6 6 7 6 1 9 . 0 0 8 4 1 9 . 2 7 5 1 1 4 : 1 : 1 1 9 7 9 - 1 . 6 0 3 5 0 1 9 . 1 5 3 8 2 0 . 7 5 7 3 1 : 1 * : 1 1 9 8 0 0 . 1 2 9 3 5 1 9 . 1 0 1 0 1 8 . 9 7 1 6 1 : 1 4 : 1 1 9 8 1 0 . 5 3 2 2 7 2 0 . 3 1 1 8 1 9 . 7 7 9 5 1 : 1 4 1 1 9 8 2 0 . 5 9 4 9 4 2 0 . 2 3 4 7 1 9 . 6 3 9 7 1 : 1 : 4 1 1 9 8 3 0 . 9 9 6 7 5 1 9 . 1 4 9 1 1 8 . 1 5 2 3 1 ' : 1 4 1 1 9 8 4 0 . 6 3 1 9 9 1 9 . 4 2 3 3 1 8 . 7 9 1 3 3 . . . “ . . - l . - I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l G D P P e r C a p i t a G D P U S / C P I U S / P O P U S P C D S O S 8 P e r C a p i t a S u p p l y o f S o y o i l E q u i v a l e n t ( 1 0 0 0 M T ) ( S E S U S ( - l ) + S P R O U S ) 8 . 1 7 5 + S O E S U S C - l ) ’ S o y o i l E q u i v a l e n t C o n s u m p t i o n 8 ( S E S U S ( - l ) + S P R O U S - S N E U S - S E S U S ) 8 . 1 7 5 7 S O E S U S ( - l ) - S O N E U S - S O E S U S 2 2 5 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s . . I S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S O C O 1 6 . 6 3 0 1 2 6 2 . 6 3 5 9 7 4 8 2 0 . 3 1 1 7 9 0 1 1 . 8 9 7 0 7 0 P C R G D P 1 0 9 . 5 3 4 9 1 . 2 0 3 2 4 9 9 1 2 1 . 2 6 5 1 0 9 . 3 1 6 9 0 0 P C D S O S 3 7 . 8 6 4 2 3 8 9 . 0 4 5 7 9 3 8 5 3 . 1 2 0 0 6 0 2 2 . 1 5 0 5 4 0 . 8 . . . . . . I I . . . = = . . I C o v a r i a n c e C o r r e l a t i o n s u n - m a u u - s I . - . . . . 8 . P T S O C O , P T S O C O 6 . 6 0 0 9 4 4 8 1 . 0 0 0 0 0 0 0 P T S O C O , P C R 8 D P 1 8 . 2 5 0 2 0 1 0 . 8 8 8 4 1 7 0 P T S O C O , P C D S O S 2 1 . 5 7 2 6 5 2 0 . 9 5 2 3 3 9 9 P C R G D P , P C R G D P 6 3 . 9 2 8 6 4 3 1 . 0 0 0 0 0 0 0 P C R B D P , P C D S O S 5 7 . 2 6 8 9 5 2 0 . 8 1 2 3 8 7 1 P C D S O S , P C D S O S 7 7 . 7 3 5 0 6 7 1 . 0 0 0 0 0 0 0 3 ’ C ' 2 1 . . I . . . ‘ ¢ . ' H > C 3 ( 0 3 1 8 9 ' 1 — 3 1 2 1 0 . ] 8 3 1 F T 4 I 8 V 0 1 P D I 0 8 1 Z 8 1 8 3 1 1 ~ 5 5 F i g u r e A . 1 9 . a 8 b . S o y m e a l N e t E x p o r t s - U n i t e d S t a t e s 2 2 6 8 M 7 8 8 0 - 5 e : 1 D 1 1 e . 8 . 8 J . . . e e . ’ e . . I ~ . . . 8 O . . 0 ~ . ‘ . . a a e e 8 8 e a 8 2 m 6 7 6 8 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 9 8 1 8 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N . 1 2 0 . 8 8 5 ' . 2 5 0 . 8 1 5 . 8 8 0 . 8 4 5 . 5 1 1 . 0 7 8 : . 8 4 1 C . 2 0 8 v a v r v v 7 8 7 8 7 7 7 8 7 8 8 0 8 1 8 2 8 8 8 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 ~ — - E S T I M A T E D U n i t e d S t a t e s S o y m e a l N e t E x p o r t s S M P L 1 9 8 4 ' - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S M N E U S 2 2 7 ( 1 0 0 0 M T ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . 1 8 4 . 6 3 4 1 7 3 3 7 . 2 9 2 6 0 _ 0 . 5 4 7 4 0 0 6 0 . 5 9 1 S M R E S 1 . 0 1 5 4 6 1 2 0 . 0 8 0 2 0 8 3 1 2 . 6 6 0 3 0 6 0 . 0 0 0 D V 7 9 2 2 2 . 2 2 1 7 4 8 9 . 0 7 0 3 0 2 . 4 9 9 0 7 1 7 0 . 0 2 3 R - s q u a r e d 0 . 9 2 1 6 0 1 M e a n o f d e p e n d e n t v a r 4 3 9 0 . 3 5 0 A d j u s t e d R - s q u a r e d 0 . 9 1 2 3 7 8 S . D . o f d e p e n d e n t v a r 1 5 4 6 . 1 5 5 S . E . o f r e g r e s s i o n 4 5 7 . 6 7 7 7 S u m o f s q u a r e d r e s i d 3 5 6 0 9 7 1 . D u r b i n - N a t s o n s t a t 1 . 4 7 9 6 1 8 F - s t a t i s t i c - 9 9 . 9 2 0 1 9 L o g l i k e l i h o o d - 1 4 9 . 2 7 6 9 T P E 3 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 4 1 : 1 1 9 6 4 - 2 1 0 . 1 4 5 1 8 4 7 . 0 0 2 0 5 7 . 1 4 1 : 4 1 : 1 1 9 6 5 - 1 3 5 . 8 2 4 2 3 6 0 . 0 0 2 4 9 5 . 8 2 1 : 4 1 : 1 1 9 6 6 - 3 1 8 . 3 6 4 2 4 1 0 . 0 0 2 7 2 8 . 3 6 1 : 4 1 : 1 1 9 6 7 - 1 2 3 . 7 5 1 2 6 3 0 . 0 0 2 7 5 3 . 7 5 1 : * 1 : 1 1 9 6 8 - 2 8 6 . 2 3 5 2 7 6 2 . 0 0 3 0 4 8 . 2 3 1 : 1 * : 1 1 9 6 9 3 3 . 9 5 2 5 3 6 6 1 . 0 0 3 6 2 7 . 0 5 1 : 1 4 : 1 1 9 7 0 4 5 . 9 0 2 2 4 1 3 6 . 0 0 4 0 9 0 . 1 0 1 4 : 1 : 1 1 9 7 1 - 8 4 8 . 2 9 8 3 4 5 2 . 0 0 4 3 0 0 . 3 0 1 4 : 1 : 1 1 9 7 2 - 5 9 2 . 3 7 4 4 3 0 4 . 0 0 4 8 9 6 . 3 7 1 : 1 : 1 1 9 7 3 8 1 8 . 0 0 0 5 0 3 3 . 0 0 4 2 1 5 . 0 0 1 : 1 : 4 1 1 9 7 4 — 6 7 3 . 0 4 4 3 9 0 0 . 0 0 3 2 2 6 . 9 6 1 : 1 4 : 1 1 9 7 5 3 9 1 . 0 7 3 4 6 6 7 . 0 0 4 2 7 ' . 9 3 1 : 1 4 : 1 1 9 7 6 ~ 2 8 9 . 6 1 3 4 1 3 6 . 0 0 3 8 4 6 . 3 9 1 : * : 1 1 9 7 7 - 3 . 8 6 7 1 3 5 5 1 6 . 0 0 5 5 1 9 . 8 7 1 4 : 1 : 1 1 9 7 8 - 5 6 4 . 7 3 0 5 9 9 7 . 0 0 6 5 6 1 . 7 3 1 : 4 : 1 1 9 7 9 1 . 9 D - l 3 , 7 1 9 8 . 0 0 7 1 9 8 . 0 0 1 : 1 : 4 1 1 9 8 0 6 4 0 . 2 2 6 8 1 5 4 . 0 0 5 5 1 3 . 7 7 5 : 4 : : : 1 9 8 1 - 2 2 2 . 8 1 7 8 2 8 8 . 0 0 8 4 8 8 . 8 2 : : 1 4 : 1 1 9 8 2 2 4 4 . 7 1 2 6 4 4 9 . 0 0 6 2 0 4 . 2 9 ; : 1 4 : 1 1 9 8 3 1 6 9 . 6 8 2 4 9 3 1 . 0 0 4 7 6 1 . 3 2 I h I t > E p E N D E N T V A R I A B L E S S n R E S 8 R e s i d u a l P o o l o f S o y m e a l I m p o r t D e m a n d ( 1 0 0 0 M T ) S M N I D M + S M N I S B + S M N I L D + S M N I L O + S M N I N I - S M N E C H - S M N E A R - S M N E B R D " ' 7 9 = 1 I £ < Y E A R . E O . 7 9 ) 0 O t h e r w i s e S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s 2 2 8 S e r i e s M e a n S . D . M a x i m u m M i n i m u m S M N E U S 4 3 9 0 . 3 5 0 0 , 1 5 4 6 . 1 5 5 1 7 1 9 6 . 0 0 0 0 1 8 4 7 . 0 0 0 0 S M R E S 4 0 8 1 . 5 0 0 0 1 3 6 3 . 4 4 3 6 2 8 0 . 0 0 0 0 1 8 4 4 . 0 0 0 0 D V 7 9 0 . 0 5 0 0 0 0 0 . 2 2 3 6 0 6 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 I C o v a r i a n c e C o r r e l a t i o n 8 . - . . . . S M N E U S , S M N E U S 2 2 7 1 0 6 5 . 8 1 . 0 0 0 0 0 0 0 S M N E U S , S M R E S 1 8 9 2 3 0 3 . 7 0 . 9 4 4 8 8 0 8 S M N E U S , D V 7 9 1 4 0 . 2 8 2 5 0 0 . 4 2 7 1 1 2 1 S M R E S , S M R E S 1 7 6 6 0 2 9 . 4 1 . 0 0 0 0 0 0 0 S M R E S , D V 7 9 8 0 . 9 7 5 0 0 0 0 . 2 7 9 5 7 9 4 D V 7 9 , D V 7 9 0 . 0 4 7 5 0 0 0 1 . 0 0 0 0 0 0 0 P > C D 3 ? ' C O l i fl l 4 * I - D C : 1 n ( 7 ‘ - \ \ / l L l fi l l l l l l l I U U ' U T — Y ' I ‘ U I T T U I . . - : : 4 e 1 ~ r - u s - r - . . 1 4 > c 1 2 . . . . . . 2 1 0 9 0 3 0 0 4 0 9 3 1 2 1 4 9 1 0 § F i g u r e A . 2 0 . a & b . S o y o i l N e t E x p o r t s - U n i t e d S t a t e s 2 2 9 S W 1 ' 0 I I 3 % 6 7 6 8 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 B B 8 1 8 2 9 3 R E G I O N A L M O D E L S I M U L A T I O N . 7 7 2 . 6 4 1 - i f 7 0 7 0 - 7 7 1 0 7 0 0 6 0 1 o i 0 5 0 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - — E S T I M A T E D S o y o i l N e t E x p o r t s ( 1 0 0 0 M T ) . 2 3 0 U n i t e d S t a t e s S M P L 1 9 6 4 - 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S O N E U S 1 9 8 3 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . ’ 2 - T A I L S I B . C ' 1 7 2 . 5 1 9 5 4 3 3 . 5 8 1 9 0 3 5 . 1 3 7 2 7 7 1 0 . 0 0 0 S O R E S 0 . 8 5 1 0 8 7 3 0 . 0 5 4 3 2 2 7 1 5 . 6 6 7 2 5 8 0 . 0 0 0 D V 7 9 3 9 8 . 9 5 1 9 4 5 6 . 0 7 9 4 3 6 7 . 1 1 4 0 5 0 5 0 . 0 0 0 . R - s q u a r e d 0 . 9 5 3 4 0 8 M e a n o f d e p e n d e n t v a r 6 8 9 . 8 0 0 0 A d j u s t e d R - s q u a r e d 0 . 9 4 7 9 2 6 S . D . o f d e p e n d e n t v a r 2 3 5 . 5 6 5 1 S . E . o f r e g r e s s i o n 5 3 . 7 5 5 2 4 S u m o f s q u a r e d r e s i d 4 9 1 2 3 . 6 4 D u r b i n - N a t s o n s t a t 2 . 6 9 5 7 6 7 F - s t a t i s t i c 1 7 3 . 3 3 2 L o g 1 1 k e l i h o o d - 1 0 6 . 4 4 2 4 T P E 3 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 4 1 : 1 1 9 6 4 - 5 . 3 8 2 7 6 6 0 8 . 0 0 0 6 1 3 . 3 8 3 1 4 : 1 : 1 1 9 6 5 - 7 0 . 9 7 5 1 4 1 9 . 0 0 0 4 8 9 . 9 7 5 1 : 1 4 : 1 1 9 6 6 2 2 . 7 0 6 4 4 8 8 . 0 0 0 - 4 6 5 . 2 9 4 1 : 1 : 1 1 9 6 7 4 . 0 4 7 7 5 4 3 7 . 0 0 0 3 2 . 9 5 2 1 4 : 1 : 1 1 9 6 8 - 1 0 4 . 3 3 7 3 9 5 . 0 0 0 4 9 9 . 3 3 7 1 : 1 4 1 1 9 6 9 4 9 . 3 4 1 2 6 4 4 . 0 0 0 5 9 4 . 6 5 9 1 : 1 4 : 1 1 9 7 0 3 3 . 6 3 4 6 7 9 0 . 0 0 0 7 5 6 . 3 6 5 1 : 1 4 1 1 9 7 1 4 9 . 5 5 4 2 6 3 4 . 0 0 0 5 8 4 . 4 4 6 1 : 1 : 1 1 9 7 2 1 1 . 0 4 6 6 4 8 4 . 0 0 0 4 7 2 . 9 5 3 1 : 4 1 : 1 1 9 7 3 - 3 9 . 8 3 1 7 6 5 1 . 0 0 0 6 9 0 . 3 2 1 : 4 : 1 1 9 7 4 - 3 . 5 4 9 0 1 - 4 6 6 . 0 0 0 4 6 9 . 5 4 9 1 : 4 1 : 1 1 9 7 5 - 1 5 . 4 8 4 9 4 4 3 . 0 0 0 4 5 8 . 4 8 5 1 : 1 : 4 1 1 9 7 6 5 8 . 8 2 9 2 7 0 2 . 0 0 0 6 4 3 . 1 7 1 1 : 4 1 : 1 1 9 7 7 - 2 2 . 5 1 9 9 9 3 3 . 0 0 0 9 5 5 . 5 2 0 1 : 1 4 : 1 1 9 7 8 1 6 . 6 6 9 2 1 0 5 9 . 0 0 1 0 4 2 . 3 3 1 : 4 : 1 1 9 7 9 - 1 . 2 D - 1 4 1 2 2 0 . 0 0 1 2 2 0 . 0 0 1 : 1 : 1 1 9 8 0 1 0 . 8 6 9 4 7 4 0 . 0 0 0 7 2 9 . 1 3 1 1 : 1 : 4 1 1 9 8 1 8 3 . 5 0 4 1 9 4 2 . 0 0 0 8 5 8 . 4 9 6 1 4 : 1 : 1 1 9 8 2 - 1 1 0 . 7 1 3 9 1 8 . 0 0 0 1 0 2 8 . 7 1 1 . : 1 4 : 1 1 9 8 3 3 2 . 5 9 1 1 8 2 3 . 0 0 0 7 9 0 . 4 0 9 8 . . . . . . I N D E P E N D E N T V A R I A B L E S S O R E S 8 R e s i d u a l P o o l o f S o y o i l I m p o r t D e m a n d ( 1 0 0 0 M T ) S O N I D M + S O N I S B * S O N I L D + S O N I L O + S O N I N I - S O N E C H - S O N E A R - S O N E B R D V 7 9 8 1 I f < Y E A R . E 0 . 7 9 ) 0 O t h e r w i s e S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s 2 3 1 S e r i e s M e a n S . D . M a x i m u m M i n i m u m S O N E U S 6 8 9 . 8 0 0 0 0 2 3 5 . 5 6 5 0 8 1 2 2 0 . 0 0 0 0 3 9 5 . 0 0 0 0 0 S O R E S 5 8 4 . 3 5 0 0 0 1 . 8 3 8 1 2 1 0 2 2 . 0 0 0 0 3 0 6 . 0 0 0 0 0 D v 7 9 0 . 0 5 0 0 0 0 0 . 2 2 3 6 0 6 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S O N E U S , S O N E U S 5 2 7 1 6 . 3 6 0 1 . 0 0 0 0 0 0 0 S O N E U S , S O R E S 4 6 6 2 7 . 3 7 0 0 . 9 0 2 6 0 7 4 S O N E U S , D V 7 9 2 6 . 5 1 0 0 0 0 0 . 5 2 9 7 7 3 5 S O R E S , S O R E S 5 0 6 2 1 . 9 2 ? 1 . 0 0 0 0 0 0 0 S O R E S , D V 7 9 8 . 8 8 2 5 0 0 0 0 . 1 8 1 1 4 2 0 D V 7 9 , D V 7 9 0 . 0 4 7 5 0 0 0 1 . 0 0 0 0 0 0 0 6 7 6 8 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 P > C D < O : : m 1 ~ fl J C Z S W r e r n o 3 1 ~ F i g u r e A . 2 1 . a & b . S o y b e a n N e t E x p o r t s - U n i t e d S t a t e s 3 m ? 2 5 M 1 2 N ” - 2 4 2 1 1 9 2 3 . 2 2 . 2 0 . J " u r - n 1 : n u : 7 m : J ” : m . n . m . w . 6 0 9 6 5 2 8 3 4 6 1 8 2 3 2 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D 2 3 3 U n i t e d S t a t e s S o y b e a n N e t E x p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 4 . r 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S N E U S 1 9 8 3 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 1 4 9 . 9 0 2 1 1 4 3 9 . 7 9 7 6 7 0 . 3 4 0 8 3 3 0 . 7 3 7 S R E S 0 . 9 9 7 1 2 3 0 . 0 2 7 9 8 8 9 3 5 . 6 2 5 6 5 8 0 . 0 0 0 R - s q u a r e d 0 . 9 8 6 0 1 6 M e a n o f d e p e n d e n t v a r 1 4 6 0 5 . 0 0 A d j u s t e d R — s q u a r e d 0 . 9 8 5 2 3 S . D . o f d e p e n d e n t v a r 6 2 4 5 . 5 9 9 S . E . o f r e g r e s s i o n 7 5 8 . 8 0 4 7 S u m o f s q u a r e d r e s i d 1 0 3 6 4 1 2 1 D u r b i n - W a t s o n s t a t 2 . 3 8 6 9 9 2 F - s t a t i s t i c 1 2 6 9 . 1 8 8 L o g l i k e l i h o o d - 1 5 9 . 9 6 0 1 T P E 1 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 4 : 1 1 9 6 4 1 3 1 . 9 4 2 5 7 7 4 . 0 0 5 6 4 2 . 0 6 1 : 1 4 : 1 1 9 6 5 2 0 8 . 7 3 9 6 8 2 0 . 0 0 6 6 1 1 . 2 6 1 : 1 4 : 1 1 9 6 6 1 0 3 . 9 0 4 7 1 1 9 . 0 0 7 0 1 5 . 1 0 1 : 4 1 : 1 1 9 6 7 - 1 8 9 . 8 5 7 7 2 5 5 . 0 0 7 4 4 4 . 8 6 1 : 4 1 : 1 1 9 6 8 - 5 0 5 . 3 6 0 7 8 0 5 . 0 0 8 3 1 0 . 3 6 1 : 1 4 : 1 1 9 6 9 5 1 1 . 1 5 5 1 1 7 7 3 . 0 1 1 2 6 1 . 8 1 - : 1 4 : 1 1 9 7 0 2 4 5 . 0 1 8 1 1 8 0 6 . 0 1 1 5 6 1 . 0 1 4 : 1 : 1 1 9 7 1 - 7 9 0 . 3 2 1 1 3 4 4 . 0 2 1 3 4 . 3 1 : 1 : 4 1 1 9 7 2 7 8 6 . 0 4 0 1 3 0 4 8 . 0 1 2 2 6 2 . 0 1 : 1 : 4 1 1 9 7 3 1 0 3 6 . 0 1 1 4 6 7 3 . 0 1 3 6 3 7 . 0 1 : 4 1 : 1 1 9 7 4 - 5 6 5 . 6 7 0 1 1 4 5 0 . 0 1 2 0 1 5 . 7 1 : 4 - 1 : 1 1 9 7 5 - 3 9 6 . 6 0 8 1 5 1 0 7 . 0 1 5 5 0 3 . 6 1 1 4 1 : 1 1 9 7 6 - 2 8 2 . 2 3 4 1 5 3 5 1 . 0 1 5 6 3 3 . 2 1 : 4 1 : 1 1 9 7 7 - 6 1 8 . 5 6 0 1 9 0 6 1 . 0 1 9 6 7 9 . 6 1 4 : 1 : 1 1 9 7 8 - 1 1 6 1 . 9 5 2 0 1 1 7 . 0 2 1 2 7 8 . 9 1 : 1 : 4 1 1 9 7 9 1 0 2 0 . 4 4 2 3 8 1 8 . 0 2 2 7 9 7 . 6 1 4 : 1 : 1 1 9 8 0 - 1 5 6 1 . 9 6 1 9 7 1 2 . 0 2 1 2 7 4 . 0 1 : 1 4 : 1 1 9 8 1 6 4 0 . 7 6 3 2 5 2 8 5 . 0 2 4 6 4 4 . 2 1 - : 1 4 : 1 1 9 8 2 3 6 3 . 6 8 4 2 4 6 3 4 . 0 2 4 2 7 0 . 3 1 : 1 : 4 1 1 9 8 3 1 0 2 4 . 8 3 2 0 1 4 8 . 0 1 9 1 2 3 . 2 I N D E P E N D E N T V A R I A B L E S S R E S 8 R e s i d u a l P o o l o f S o y b e a n I m p o r t D e m a n d ( 1 0 0 0 M T ) S N I D N + S N I S B + S N I L D * S N I L O 4 S N I N I - S N E C H - S N E A R - S N E B R w a m Z fi r ” fi v e I ” e m u N o o o m 0 1 < m n w o a m m W W M m m a m m o m . o . z m x w a c a z w a u a c a m z m c m s p o o m . o o o o n n m . m o o o m u n m m . o o o m u s h . o o o o m m m m p b b o e . m o o e m p o . o o u o M b m o w . o o o m m o m . o o o o n o < m 1 w m 3 n m 0 0 1 1 m ~ m n w 0 3 m z m c m a m z m c m m u o u v u u w . » . o o o o o o o m z m c m . m m m m n o w h b u u . 0 . 0 0 H o m u h m m m m a m m m m u o v m o o m m . H . O O O Q O O O » 1 0 3 ( 0 l 1 fl 1 4 ' 8 ~ 3 C 3 2 1 0 H > C > < O ! : 8 " 3 : 1 1 5 6 7 6 8 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 T V U ' V ' i r I I V V " I — V ' 7 7 7 0 7 0 0 0 0 1 0 1 0 5 0 1 2 3 5 R E G I O N A L M O D E L S I M U L A T I O N 4 1 8 . 9 0 0 3 8 7 . 7 0 0 ' 3 5 9 . 5 0 0 3 2 1 . 3 0 0 2 7 4 . 0 0 0 2 4 0 . 7 0 0 2 1 8 . 5 0 0 3 0 0 1 0 0 T I 1 9 0 . 1 8 2 . 7 3 7 0 F i g u r e A . 2 2 . a 0 b . A C T U A L E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 - - - E S T I M A T E D S o y m e a l E n d i n g S t o c k s - U n i t e d S t a t e s 2 3 6 U n i t e d S t a t e s S o y n e a l E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S M E S U S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C ~ 5 3 6 . 0 5 2 4 1 2 4 0 . 4 1 5 6 3 - 2 . 2 2 9 6 9 0 4 0 . 0 4 0 S O P U S 2 7 . 5 1 8 7 4 6 7 . 6 3 6 8 9 0 6 3 . 6 0 3 3 9 6 7 0 . 0 0 2 S M E E S 0 . 0 1 4 4 4 4 6 0 . 0 0 9 7 1 2 6 1 . 4 8 7 1 9 7 8 0 . 1 5 6 Y E A R 6 . 9 4 4 0 4 1 2 3 . 4 7 4 0 3 0 1 1 . 9 9 8 8 4 3 1 0 . 0 6 3 R - s q u a r e d 0 . 5 9 2 1 7 8 M e a n o f d e p e n d e n t v a r 2 2 0 . 7 0 0 0 A d j u s t e d R - s q u a r e d 0 . 5 1 5 7 1 2 S . D . 0 + d e p e n d e n t v a r 1 0 3 . 9 3 0 7 S . E . o f r e g r e s s i o n 7 2 . 3 2 6 2 4 S u m o f s q u a r e d r e s i d 8 3 6 9 7 . 3 5 D u r b i n - W a t s o n s t a t 2 . 0 3 5 6 8 2 F - s t a t i s t i c 7 . 7 4 4 2 7 3 L o g l i k e l i h o o d - 1 1 1 . 7 7 1 1 T P E 7 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 4 : 1 1 9 6 5 3 . 4 4 5 8 9 1 1 9 . 0 0 0 1 1 5 . 5 5 4 1 : 1 4 : 1 1 9 6 6 1 6 . 8 7 4 0 1 2 5 . 0 0 0 1 0 8 . 1 2 6 1 : 1 4 : 1 1 9 6 7 2 2 . 8 7 9 4 1 3 2 . 0 0 0 1 0 9 . 1 2 1 1 : 4 1 : 1 1 9 6 8 - 1 9 . 2 4 4 4 1 4 2 . 0 0 0 1 6 1 . 2 4 4 1 : 4 1 : 1 1 9 6 9 - 4 5 . 3 8 3 4 1 2 4 . 0 0 0 1 6 9 . 3 8 3 1 : 4 1 : 1 1 9 7 0 - 1 6 . 0 7 6 3 1 3 2 . 0 0 0 1 4 8 . 0 7 6 1 : 1 4 : 1 1 9 7 1 5 3 . 3 8 1 4 1 7 4 . 0 0 0 1 2 0 . 6 1 9 1 : 4 1 : 1 1 9 7 2 - 1 S . 6 4 4 S 1 6 6 . 0 0 0 1 8 1 . 6 4 4 1 : 1 : 4 1 1 9 7 3 7 8 . 4 8 6 2 4 6 0 . 0 0 0 3 8 1 . 5 1 4 1 : 4 1 : 1 1 9 7 4 - 2 9 . 6 1 0 9 3 2 5 . 0 0 0 3 5 4 . 6 1 1 1 : 1 : 4 1 1 9 7 5 8 5 . 9 8 8 2 3 2 2 . 0 0 0 2 3 6 . 0 1 2 1 : 4 1 : 1 1 9 7 6 - 3 1 . 0 8 3 7 2 0 7 . 0 0 0 2 3 8 . 0 8 4 1 : 4 1 : 1 1 9 7 7 - 3 4 . 0 3 0 0 2 2 0 . 0 0 0 2 5 4 . 0 3 0 1 : 4 1 : 1 1 9 7 8 - 3 1 . 1 5 7 9 2 4 2 . 0 0 0 2 3 . 1 5 8 1 4 : 1 : 1 1 9 7 9 - 9 0 . 5 2 9 1 2 0 5 . 0 0 0 2 9 5 . 5 2 9 1 4 : 1 : 1 1 9 8 0 - 1 1 0 . 4 0 4 1 4 8 . 0 0 0 2 5 8 . 4 0 4 1 : 4 1 : 1 1 9 8 1 - 5 3 . 1 7 0 0 1 5 9 . 0 0 0 2 1 2 . 1 7 0 1 : 1 : 4 1 1 9 8 2 1 7 9 . 7 1 5 4 3 0 . 0 0 0 2 5 0 . 2 8 5 1 : 4 1 : 1 1 9 8 3 - 2 3 . 6 1 3 6 2 3 1 . 0 0 0 2 5 4 . 6 1 4 . 1 : 1 4 : 1 1 9 8 4 5 9 . 1 7 7 6 3 5 1 . 0 0 0 2 9 1 . 8 2 2 I N D E P E N D E N T V A R I A B L E S S O P U S 8 R e a l U . S . S o y o i l P r i c e ( S I M T ) S O P / C P I U S ‘ S M E E S = S o y n e a l E q u i v a l e n t E n d i n g S t o c k s ( 1 0 0 0 N T ) ( S E S U S ( - 1 ) * S P R O U S - S N E U S ) 4 . 7 9 S + S M E S U S ( - l ) - S M C O U S - S M N E U S Y E A R 8 1 9 6 0 3 6 0 , 1 9 6 1 8 6 1 , . . . 2 3 7 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S M E S U S 2 2 0 . 7 0 0 0 0 1 0 3 . 9 3 0 7 0 4 6 0 . 0 0 0 0 0 1 1 9 . 0 0 0 0 0 S O P U S 6 . 3 8 3 9 4 0 9 2 . 2 8 1 6 8 1 9 1 2 . 8 9 6 2 9 0 3 . 7 8 2 2 4 6 0 S M E E S 4 4 1 2 . 9 4 3 4 2 2 0 1 . 0 1 2 9 7 9 9 8 . 0 2 0 0 8 6 7 . 1 5 0 5 0 Y E A R 7 4 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 4 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n ‘ S M E S U S , S M E S U S 1 0 2 6 1 . 5 1 0 1 . 0 0 0 0 0 0 0 S M E S U S , S O P U S 1 0 5 . 4 2 0 7 0 0 . 4 6 7 9 5 4 2 S M E S U S , S M E E S 7 7 9 5 7 . 2 5 5 0 . 3 5 8 7 2 9 0 S M E S U S , Y E A R 2 9 5 . 1 5 0 0 0 0 . 5 0 5 2 9 0 7 S O P U S , S O P U S 4 . 9 4 5 7 6 8 7 1 . 0 0 0 0 0 0 0 S O P U S , S M E E S - 1 4 1 4 . 7 2 6 4 - O . 2 9 6 5 3 1 7 S O P U S , Y E A R - 1 . 4 7 5 4 3 2 6 - 0 . 1 1 5 0 5 5 3 S M E E S , S M E E S ‘ 4 6 0 2 2 3 5 . 1 1 . 0 0 0 0 0 0 0 S M E E S , Y E A R 7 2 5 9 . 6 3 5 2 0 . 5 8 6 8 6 0 1 Y E A R , Y E A R 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 » - 1 0 0 0 : m 4 i r D : C S I I U P O O C ! : 9 “ N 8 a a R E G I O N A L M O D E L S I M U L A T I O N r u u v v fi ‘ r r r I ' t r v r r I 7 0 7 b 0 . 7 7 7 0 7 0 0 0 0 1 0 5 S o y o i l E n d i n g S t o c k s - U n i 0 t 5 0 2 1 e d S t a t e s F i g u r e A . 2 3 . a 8 - 2 3 0 ‘ 8 8 8 ' 7 W ‘ 6 5 5 1 $ 5 . 0 5 . . . . - 1 m 6 7 6 8 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 7 5 9 . 9 5 5 7 0 5 . 5 5 7 ' 5 5 1 . 7 7 9 5 9 7 . 5 9 0 5 4 3 . 5 0 2 4 5 9 . 5 1 3 4 3 5 . 4 2 5 3 5 1 . 3 3 5 3 2 7 . 2 4 9 2 7 3 . 1 5 9 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D S o y o i l E n d i n g S t o c k s ( 1 0 0 0 M T ) 2 3 9 U n i t e d S t a t e s S M P L 1 9 6 5 e 1 9 8 4 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S O E S U S g - - V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A 1 L S I G . C - 3 7 9 . 8 0 7 1 5 2 7 8 . 5 5 3 0 3 - 1 . 3 6 3 5 0 0 3 0 . 1 9 2 S O E E S 0 . 0 9 6 3 0 2 9 0 . 0 4 4 8 9 0 6 2 . 1 4 5 2 7 7 8 0 . 0 4 8 Y E A R . 2 2 9 6 8 1 7 4 . 1 6 1 5 0 0 3 1 . 9 7 7 5 7 5 7 0 . 0 6 5 D V 8 0 2 8 9 . 0 7 1 5 2 9 2 . 3 1 3 0 1 8 3 . 1 3 1 4 2 7 5 0 . 0 0 6 R é s q u a r e d 0 . 7 5 2 3 6 3 M e a n o f d e p e n d e n t v a r 3 7 2 . 8 0 0 0 A d j u s t e d R - s q u a r e d 0 . 7 0 5 9 3 1 S . D . 0 * d e p e n d e n t v a r 1 5 2 . 2 1 1 3 S . E . o 4 r e g r e s s i o n 8 2 . 5 4 1 3 6 S u m o 4 s q u a r e d r e s i d 1 0 9 0 0 9 . 2 D u r b i n - W a t s o n s t a t 1 . 8 4 2 3 4 4 F - s t a t i s t i c 1 6 . 2 0 3 5 5 L o g l i k e l i h o o d - 1 1 4 . 4 1 3 3 T P E 7 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 4 : 1 1 9 6 5 1 8 . 3 0 6 9 2 1 0 . 0 0 0 1 9 1 . 6 9 3 1 z 1 4 : 1 1 9 6 6 3 9 . 3 0 6 0 2 7 0 . 0 0 0 2 3 0 . 6 9 4 1 : 4 1 ’ : 1 1 9 6 7 - 2 6 . 4 6 9 3 2 4 5 . 0 0 0 2 7 1 . 4 6 9 1 4 : 1 : 1 1 9 6 8 - 1 5 9 . 8 2 4 1 8 8 . 0 0 0 3 4 7 . 8 2 4 1 : 4 1 : 1 1 9 6 9 - 7 1 . 1 4 6 8 2 4 6 . 0 0 0 3 1 7 . 1 4 7 1 : 1 4 : 1 1 9 7 0 7 4 . 7 2 2 6 3 5 0 . 0 0 0 2 7 5 . 2 7 7 1 : 1 4 1 1 9 7 1 8 4 . 2 1 7 7 3 5 6 . 0 0 0 2 7 1 . 7 8 2 1 : 4 1 : 1 1 9 7 2 - 2 8 . 6 1 7 1 2 3 4 . 0 0 0 2 6 2 . 6 1 7 1 : 1 4 : 1 1 9 7 3 2 6 . 0 5 5 5 3 6 0 . 0 0 0 3 3 3 . 9 4 4 1 4 1 : 1 1 9 7 4 - 8 5 . 9 5 4 5 2 5 4 . 0 0 0 3 3 9 . 9 5 4 1 : 1 : 4 1 1 9 7 5 1 6 2 . 6 3 5 5 6 7 . 0 0 0 4 0 4 . 3 6 5 1 : 1 4 : 1 1 9 7 6 2 3 . 4 4 0 2 3 5 0 . 0 0 0 3 2 6 . 5 6 0 1 : 4 1 : 1 1 9 7 7 - 2 8 . 6 7 1 9 3 3 1 . 0 0 0 3 5 9 . 6 7 2 1 : 4 1 : 1 1 9 7 8 - 2 4 . 5 4 7 0 3 5 2 . 0 0 0 3 7 6 . 5 4 7 1 : 1 4 : 1 1 9 7 9 6 1 . 3 7 4 1 5 4 9 . 0 0 0 4 8 7 . 6 2 6 1 : 4 : 1 1 9 8 0 0 . 0 0 0 0 0 7 8 7 . 0 0 0 7 8 7 . 0 0 0 1 : 1 4 - : 1 1 9 8 1 4 8 . 3 2 7 5 5 0 0 . 0 0 0 4 5 1 . 6 7 3 1 : 1 4 : 1 1 9 8 2 6 3 . 8 2 3 8 5 7 2 . 0 0 0 5 0 8 . 1 7 6 1 4 1 : 1 1 9 8 3 - 8 8 . 3 3 8 5 3 2 7 . 0 0 0 4 1 5 . 3 3 9 1 4 ' 1 : 1 1 9 8 4 - 8 8 . 6 4 0 5 4 0 8 . 0 0 0 4 9 6 . 6 4 1 I N D E P E N D E N T V A R I A B L E S S O E E S I S o y o i l E q u i v a l e n t E n d i n g S t o c k s ( 1 0 0 0 M T ) ( S E S U S ( - 1 ) 4 S P R O U S - S N E U S ) 4 . 1 7 S + S O C O U S < - l ) - S O C O U S - S O N E U S Y E A R 3 1 9 6 0 8 6 0 , 1 9 6 1 - 6 1 , . . . D V 8 0 = 1 I f < Y E A R . E 0 . 8 0 ) 0 O t h e r w i s e . 2 4 0 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s - S e r i e s M e a n S . D . M a x i m u m M i n i m u m S O E S U S 3 7 2 . 8 0 0 0 0 1 5 2 . 2 1 1 2 8 7 8 7 . 0 0 0 0 0 1 8 8 . 0 0 0 0 0 S O E E S 1 2 9 8 . 4 2 7 3 5 8 2 . 6 8 7 8 2 2 2 7 7 . 8 2 5 0 3 7 9 . 7 4 9 2 0 Y E A R 7 4 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 4 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 D V 8 0 0 . 0 5 0 0 0 0 0 0 . 2 2 3 6 0 6 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S O E S U S , S O E S U S 2 2 0 0 9 - 8 6 0 1 . 0 0 0 0 0 0 0 S O E S U S , S O E E S 6 2 4 1 3 . 5 4 8 0 . 7 4 0 7 5 1 4 S O E S U S , Y E A R 5 5 4 . 3 5 0 0 0 0 . 6 4 8 0 0 6 8 S O E S U S , D V 8 0 2 0 . 7 1 0 0 0 0 0 . 6 4 0 5 0 8 1 S O E E S , S O E E S 3 2 2 5 4 8 . 8 4 1 . 0 0 0 0 0 0 0 S O E E S , Y E A R 2 0 8 9 . 4 3 3 1 0 . 6 3 8 0 2 0 9 S O E E S , D V 8 0 4 8 . 9 6 9 8 8 1 0 . 3 9 5 6 2 5 7 - Y E A R , Y E A R 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , D V 8 0 0 . 2 7 5 0 0 0 0 0 . 2 1 8 8 2 1 5 D V 8 0 , D V 8 0 0 . 0 4 7 5 0 0 0 1 . 0 0 0 0 0 0 0 P O O O 3 1 1 1 8 “ ! * 0 2 1 0 ' 6 7 6 8 6 9 s 7 8 7 1 7 2 7 3 m 7 4 7 5 7 6 7 7 7 8 m 7 9 8 8 8 1 8 2 8 3 d t ° O . D C l O ~ a u . fl 3 1 fl - ” e u 2 4 1 1 5 h r 1 6 5 a ! - 5 m 9 1 R E G I O N A L M O D E L S I M U L A T I O N 3 . 3 0 2 . a s a - - . 4 1 3 i . 4 0 9 : . 5 2 9 . 5 3 0 . 3 3 0 . 3 9 1 . . 1 4 1 . 3 0 2 1 5 1 6 1 1 1 6 1 é a b s i 3 5 3 5 a n E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - - E S T I M A T E D F i g u r e A . 2 3 . a & b . S o y b e a n E n d i n g S t o c k s - U n i t e d S t a t e s W W W w F F F F W W W W F F F F S S S S S S S S S S S P S S C F N E P Y H F P H Y F F C N E Y M O P O M H M E O O M M N R A O A E O E S R A A E O O E S R A C E E E A C S E E N N E O A N R D D A A O A R D N D A A O R A O O S S E A E E L E A A R A . A A A R R A R R A R . A A . R A A A A A R A A A A R R . R . R R R . . R . . R . . R R . . R R R R R . R R R R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E P P H Y T F F N T H Y F F N E P H Y S S x S S S S S S S S n r r a i o e o e o a i e o e n r a i o o o o o o o o o o d o o r e t e o t t r e e o t d o r e y y y y y y y S y y y d v l d d a a v l d d i m o m o m o m o i d d v l b M b u e d l E n u e d l n e i e i a i e i u e d e E E e c s C & x g c s C & x g a l a l a l a l c s a E a t t t t C o p C o p t t n A n l l l l o n R S o o R n S o i e i e i a R E E E N o d n s e r t n s e t r o d o d E E E E q n q N N e n s u s t o s u s t o n n q u d q t n n e e E u A c u m i s u m i s c A A u i u d d i i x t t r m p d k r d m p k r n i i i i v v p E e p t u s e p t u s e g n n v . v . o x E E a t i a a t i a . . a g g r x x p i o l i o l C S N t p p o o n o n o t S C S e r o o N e n n C C o n o t t e t t r r d o o n s o c o t t t s n n s u c k c s s E a u u m p s s x p s s u m k k s E x s m m p t o p S p p t i r o M t t i o r t N i i o n t s E o o n s A n n R A P P E N D I X B E Q U A T I O N S T A T I S T I C S - A R G E N T I N A W h e a t C o a r s e G r a i n S o y b e a n C o m p l e x 2 4 2 P > C D C O l i fl t i t 1 ~ ) C 1 2 1 U l i d t ‘ f ' r 4 F I C 9 5 2 - 9 1 8 O : 7 1 4 9 ‘ 9 F i g u r e B . l . a & b . W h e a t P r o d u c t i o n - A r g e n t i n a 2 4 3 m o o r 1 5 8 8 8 - 1 2 5 8 8 - . . . 1 , fl 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 8 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 4 . 3 2 7 1 3 . 5 8 2 ' 1 2 . 8 3 6 1 1 . 6 9 1 1 0 . 7 4 ! f t ‘ 8 3 t f r i t l t r f t fi i v v r v u 1 s 7 6 ' 1 1 1 5 1 6 a b 8 1 3 5 3 5 3 4 E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L - - - E S T I M A T E D ‘ 1 ) C > C > C I T Y j V T ' T I V U z 1 h “ “ t F ¢ 0 0 * 0 3 ( 8 2 1 8 1 2 1 8 fl l i t 1 5 i 5 0 r ' 3 1 2 1 8 1 0 I L I I J A L L I 0 1 8 1 2 1 3 4 - 1 f 3 1 8 1 3 F i g u r e B . 2 . a & b . . 1 4 4 . 7 9 2 ' . 4 4 1 . 0 8 9 . 7 3 7 . 3 8 8 . 0 3 4 . 8 8 2 . 3 3 1 . 9 7 9 2 4 4 . - a t , \ I . A . L e e - A “ “ . . . . . - . 2 . m . - . 1 . - R E G I O N A L M O D E L S I M U L A T I O N Q h 1 5 1 6 1 1 1 6 1 1 8 0 3 1 3 1 8 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - - E S T I M A T E D w h e a t H a r v e s t e d A r e a - A r g e n t i n a A r g e n t i n a w h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 5 1 9 8 4 - 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t £ 2 4 5 V a r i a b l e i s W H A A R V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 3 6 4 6 . 1 8 4 2 2 2 5 7 . 3 4 8 8 - 1 . 6 1 5 2 5 0 6 0 . 1 2 7 H H A A R ( - I ) 0 . 3 1 0 3 9 6 0 0 . 1 6 6 0 4 6 8 1 . 8 6 9 3 2 8 3 0 . 0 8 1 S E A R ( - 1 ) - 1 0 9 8 . 8 8 8 7 3 1 3 . 9 3 1 8 2 - 3 . 5 0 0 4 0 5 8 0 . 0 0 3 N R A R ( - 1 ) 1 6 7 9 . 3 2 6 4 6 5 4 . 7 3 6 3 4 . 2 . 5 6 4 8 8 9 5 0 . 0 2 2 T I M E 1 0 2 . 5 5 3 6 9 3 1 . 5 3 4 8 5 9 3 . 2 5 2 0 7 3 9 0 . 0 0 5 R - s q u a r e d 0 . 6 0 8 3 1 3 M e a n o f d e p e n d e n t v a r 5 1 9 7 . 0 5 0 A d j u s t e d R - s q u a r e d 0 . 5 0 3 8 6 3 S . D . o f d e p e n d e n t v a r 9 9 0 . 9 9 9 7 S . E . o f r e g r e s s i o n 6 9 8 . 0 3 0 2 S u m o f s q u a r e d r e s i d 7 3 0 8 6 9 1 . D u r b i n - W a t s o n s t a t 2 . 0 3 4 9 3 9 F - s t a t i s t i c 5 . 8 2 3 9 7 6 L o g 1 i k e l i h o o d - 1 5 6 . 4 6 7 2 T P E . ‘ 5 , 2 0 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 4 : 1 : 1 1 9 6 5 - 8 3 5 . 0 3 7 _ 4 6 0 1 . 0 0 5 4 3 6 . 0 4 1 : 1 4 : 1 1 9 6 6 4 0 2 . 5 7 1 ' 5 2 1 4 . 0 0 4 8 1 1 . 4 3 1 : 1 4 1 1 9 6 7 6 6 6 . 2 0 7 5 8 1 2 . 0 0 5 1 4 5 . 7 9 1 : 1 4 : 1 1 9 6 8 5 3 8 . 4 0 9 5 8 3 7 . 0 0 5 2 9 8 . 5 9 ‘ 1 : 1 4 : 1 1 9 6 9 9 0 . 8 8 6 2 5 1 9 1 . 0 0 5 1 0 0 . 1 1 1 1 4 : 1 : 1 1 9 7 0 - 1 0 3 3 . 3 9 3 7 0 1 . 0 0 4 7 3 4 . 3 9 : 1 : 1 4 : 1 1 9 7 1 7 0 . 1 6 5 0 4 3 1 5 . 0 0 4 2 4 4 . 8 3 1 : 1 4 : 1 1 9 7 2 5 6 7 . 5 7 0 4 9 6 5 . 0 0 4 3 9 7 . 4 3 1 : 1 4 : 1 1 9 7 3 5 4 3 . 3 2 3 3 9 5 8 . 0 0 3 4 1 4 . 6 8 . 1 4 : 1 : 1 1 9 7 4 - 1 0 1 9 . 5 9 4 2 3 3 . 0 0 5 2 5 2 . 5 9 : 1 : 1 4 L : ’ 1 1 9 7 5 1 8 0 . 9 5 3 5 2 7 0 . 0 0 5 0 8 9 . 0 5 1 : 1 4 : 1 1 9 7 6 6 1 9 . 0 2 9 6 4 2 8 . 0 0 5 8 0 8 . 9 7 1 4 : 1 : 1 1 9 7 7 - 9 3 4 . 8 2 0 3 9 1 0 . 0 0 4 8 4 4 . 8 2 1 : 1 4 : 1 1 9 7 8 2 1 7 . 4 9 5 4 6 8 5 . 0 0 4 4 6 7 . 5 0 1 : 4 1 : 1 1 9 7 9 - 3 2 7 . 5 0 4 4 7 8 7 . 0 0 5 1 1 4 . 5 0 1 4 : 1 : 1 1 9 8 0 - 8 5 1 . 6 6 3 5 0 2 3 . 0 0 5 8 7 4 . 6 6 1 : 4 : 1 1 9 8 1 4 . 0 9 8 6 0 5 9 2 6 . 0 0 5 9 2 1 . 9 0 1 : 1 : 4 1 1 9 8 2 8 6 7 . 8 5 1 7 3 2 0 . 0 0 6 4 5 2 . 1 5 1 : 1 4 : 1 1 9 8 3 2 3 3 . 9 8 9 6 8 8 0 . 0 0 6 6 4 6 . 0 1 1 : 4 : 1 1 9 8 4 - 0 . 5 4 5 9 5 5 8 8 5 . 0 0 5 8 8 5 . 5 5 I N D E P E N D E N T V A R I A B L E S W H A A R a w h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R A R a w h e a t R e v e n u e p e r H e c t a r e ( S I H A ) ( W Y A R ( - 3 ) + W Y A R ( - 2 > + W Y A R ( - 1 ) + W Y A R J I 4 4 W P 4 X R A R / C P I A R S R A R 8 S o y b e a n R e v e n u e p e r H e c t a r e ( S I H A ) ( F o r e c a s t S Y A R ) ~ S P I X R A R / C P I A R T I M E 8 1 9 6 0 8 6 0 , 1 9 6 1 - 6 1 , . . . . 2 4 6 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m W H A A R 5 1 9 7 . 0 5 0 0 9 9 0 . 9 9 9 7 : 7 3 2 0 . 0 0 0 0 3 7 0 1 . 0 0 0 0 W H A A R ( - 1 ) 5 2 0 9 . 5 5 0 0 1 0 0 1 . 6 5 3 3 7 3 2 0 . 0 0 0 0 3 7 0 1 . 0 0 0 0 Z S R E V ( - 1 ) 1 . 9 2 4 3 1 6 2 0 . 7 6 4 6 3 8 5 3 . 6 5 7 7 1 9 0 1 . 0 4 6 6 2 0 0 w R A R ( - 1 ) 1 . 0 1 2 6 5 0 0 0 . 3 4 0 9 9 7 4 1 . 8 0 7 9 5 5 0 0 3 5 3 6 8 9 3 9 T I M E 7 4 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 4 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n N H A A R , W H A A R 9 3 2 9 7 6 . 4 5 1 . 0 0 0 0 0 0 0 N H A A R , W H A A R ( - 1 ) 4 1 8 6 5 3 . 5 2 0 . 4 4 3 9 5 6 2 N H A A R , Z S R E V ( - 1 ) - 1 6 4 . 7 9 7 3 2 - 0 . 2 2 8 9 2 6 9 N H A A R , w R A R ' - 1 ) 1 5 . 0 5 6 3 7 3 0 . 0 4 6 8 9 9 9 W H A A R , T I M E 2 5 4 . 5 7 5 0 0 . 4 0 4 7 9 3 5 “ H A A R ( — 1 ) , N H A A R ( - 1 ) 9 5 3 1 4 3 . 9 5 1 . 0 0 0 0 0 0 0 N H A A R ( - 1 ) , Z S R E V ( - 1 ) 3 2 . 1 6 9 1 4 0 0 . 0 4 4 2 1 2 2 w H A A R ( — 1 ) , w R A R ( - 1 ) 5 . 7 5 6 3 4 8 1 ' 0 . 0 1 7 7 4 0 1 N H A A R ( - 1 ) , T I M E 1 4 4 7 . 8 7 5 0 0 . 2 5 7 1 9 1 1 Z S R E V ( - 1 ) , Z S R E V ( - 1 ) 0 . 5 5 5 4 3 8 4 1 . 0 0 0 0 0 0 0 Z S R E V 1 - 1 ) , N R A R ( - 1 ) 0 . 1 6 3 4 6 8 4 . 0 . 6 5 9 9 3 7 8 Z S R E V ( - 1 ) , T I M E 1 . 5 7 0 5 5 0 0 0 . 3 6 5 4 5 8 4 W R A R ( - 1 ) , N R A R ( - 1 ) 0 . 1 1 0 4 6 5 3 1 . 0 0 0 0 0 0 0 N R A R ( - 1 ) , T I M E 0 . 0 7 2 1 1 8 1 0 . 0 3 7 6 3 0 1 T I M E , T I M E 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 1 2 4 7 A r g e n t i n a w h e a t Y i e l d S M P L 1 9 6 0 - 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s w Y A R 1 9 8 3 ( M e t r i c T o n s p e r H e c t a r e ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 4 . 1 2 5 8 5 6 9 1 . 8 7 7 2 0 0 8 - 2 . 1 9 7 8 7 7 2 0 . 0 3 9 L O S T 1 . 3 1 4 0 0 2 7 0 . 4 4 0 0 2 9 0 2 . 9 8 6 1 7 3 1 0 . 0 0 7 R - s g u a r e d 0 . 2 8 8 4 2 3 M e a n o f d e p e n d e n t v a r 1 . 4 7 8 3 2 A d j u s t e d R - s q u a r e d 0 . 2 5 6 0 7 8 S . D . o f d e p e n d e n t v a r 0 . 2 4 3 5 7 4 S . E . o f r e g r e s s i o n 0 . 2 1 0 0 8 5 S u m o f s q u a r e d r e s i d 0 . 9 7 0 9 8 2 D u r b i n - w a t s o n s t a t 1 . 4 2 7 0 7 4 F — s t a t i s t i c 8 . 9 1 7 2 3 0 L o g 1 i k e l i h o o d 4 . 4 3 5 4 9 3 1 1 : : . 7 , 2 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 4 1 : 1 1 9 6 0 - 0 . 1 5 3 8 2 1 : 1 0 0 3 1 1 . 2 5 4 1 2 1 : 1 4 : 1 1 9 6 1 0 . 0 1 9 1 1 1 . 2 9 4 9 6 1 . 2 7 5 8 4 1 : 1 : 4 1 1 9 6 2 0 . 2 2 4 8 2 1 . 5 2 2 0 3 1 . 2 9 7 2 1 1 : 1 : 4 1 1 9 6 3 0 . 2 5 6 8 2 1 . 5 7 5 0 5 1 . 3 1 8 2 3 1 : 1 : 4 1 1 9 6 4 - 0 . 4 9 6 4 4 1 . 8 3 5 3 7 1 . 3 3 8 9 3 1 : 4 1 : 1 1 9 6 5 - 0 . 0 3 8 0 7 1 . 3 2 1 2 3 1 . 3 5 9 3 0 1 : 4 1 : 1 1 9 6 6 - 0 . 1 8 1 2 4 1 . 1 9 8 1 2 . 3 7 9 3 6 1 : 4 1 : 1 1 9 6 7 - 0 . 1 3 9 6 6 1 . 2 5 9 4 6 . 3 9 9 1 2 1 4 : 1 : 1 1 9 6 8 - 0 . 4 3 5 2 1 0 . 9 8 3 3 8 . 1 . 4 1 8 5 9 1 : 4 1 : 1 1 9 6 9 - 0 . 0 8 5 4 3 1 . 3 5 2 3 1 . 4 3 7 7 7 1 : 4 1 : 1 1 9 7 0 - 0 . 1 2 7 3 1 1 . 3 2 9 3 7 1 . 4 5 6 6 8 1 : 4 1 : 1 1 9 7 1 - 0 . 1 5 8 9 8 1 . 3 1 6 3 4 1 . 4 7 5 3 2 1 : 4 1 : 1 1 9 7 2 - 0 . 1 0 3 9 7 1 . 3 8 9 7 3 1 . 4 9 3 6 9 1 : 1 4 : 1 1 9 7 3 0 . 1 4 5 5 8 1 . 6 5 7 4 0 1 . 5 1 1 8 2 1 : 4 1 : 1 1 9 7 4 - 0 . 1 1 9 3 5 1 . 4 1 0 3 5 1 . 5 2 9 7 0 1 : 1 4 : 1 1 9 7 5 0 . 0 7 8 8 5 1 . 6 2 6 1 9 1 . 5 4 7 3 3 1 : 1 4 : 1 1 9 7 6 0 . 1 4 6 5 3 1 . 7 1 1 2 6 1 . 5 6 4 7 4 1 : 4 1 : 1 1 9 7 7 - 0 . 1 2 4 1 1 1 . 4 5 7 8 0 1 . 5 8 1 9 1 1 : 1 4 : 1 1 9 7 8 0 . 1 3 0 0 5 1 . 7 2 8 9 2 1 . 5 9 8 8 7 1 : 1 4 : 1 1 9 7 9 0 . 0 7 6 4 7 1 . 6 9 2 0 8 1 . 6 1 5 6 1 1 : 4 1 : 1 1 9 8 0 - 0 . 0 8 3 2 6 1 . 5 4 8 8 7 1 . 6 3 2 1 4 1 4 : 1 : 1 1 9 8 1 - 0 . 2 4 7 8 5 1 . 4 0 0 6 1 1 . 6 4 8 4 6 1 : 1 : 4 1 1 9 8 2 0 . 3 1 6 2 9 1 . 9 8 0 8 7 1 . 6 6 4 5 8 1 : 1 4 : 1 1 9 8 3 0 . 1 0 7 2 8 1 . 7 8 7 7 9 1 . 6 8 0 5 1 I N D E P E N D E N T V A R I A B L E S L O G T ' L n ( T I M E ) H N ¢ D m x n r ” 0 0 0 I - p o m u m 4 o c u s 1 < a n w o n u m s x p n a 3 0 0 : m . o . z m s t c a z u n u a c a £ < D m p . 6 4 m u n o m o . n b u m u u m p . 0 m o m u 4 0 0 . 0 m u u m p o r o a d 6 . M o a o u p u o . o o o u u p m 6 . 6 » m m o o o 4 . 0 0 6 u s u o n o < m 1 w m o n m n o x w m p m n u o : £ < D m . £ < b m 0 . 0 u 0 m u o n » . o o o o o o o . £ < D m . r o m d 0 . 0 » M 3 4 0 0 o . u u u o m o o . r 0 m 4 . r o m a 0 . 0 0 0 4 0 0 0 H . o o o o o o o 3 1 8 1 4 ' ! r i C : 1 n ( 3 7 5 8 1 9 7 5 , 7 6 1 9 . 7 7 1 9 . 7 8 1 9 . 7 9 1 9 , 8 8 1 9 . 8 1 1 9 . 8 2 1 9 . 8 3 1 9 1 9 8 4 u 3 1 u 4 " u U ' U ‘ 1 I r 1 4 3 1 2 ! 1 6 ~ s s ' I ' I a I s s s s ' I V U ' I I I 2 4 9 5 5 9 9 5 2 5 0 4 5 1 1 1 - 4 7 5 0 - » 5 4 5 9 0 1 4 2 5 9 « 4 9 9 9 1 0 0 0 ' ” R E G I O N A L M O D E L S I M U L A T I O N . 1 8 8 . 0 2 3 . 8 7 9 . 7 3 8 . 5 9 3 . 4 5 0 . 3 0 7 . 1 8 4 . 0 2 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e B . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - A r g e n t i n a é 1 ) ( > C > C l i fl t i 1 ‘ 3 . ‘ 8 . . ‘ A g - . . . ~ - - A 4 : D 1 A 5 M C » I D ( > C > C 3 1 8 1 1 ' 1 2 * 1 3 ( i ' J C I Z h 1 ‘ r ‘ V ' ( 0 1 2 C 1 - i F i g u r e B . 4 . a & b . 9 3 7 8 4 9 . 7 8 1 . 8 7 3 . 5 8 8 . 4 9 8 . 4 0 8 . 3 2 0 . 2 3 2 . 1 1 0 0 ‘ . 1 4 4 . 9 0 0 2 5 0 1 1 I 1 1 B a n : ; ? v 1 9 7 6 4 . 8 1 : a n 1 8 7 8 1 9 ? ? R E G I O N A L M O D E L S I M U L A T I O N 7 0 0 ' 3 0 0 : 1 0 0 7 0 0 5 0 0 3 0 0 A C T U A L 1 5 8 5 F O R E C A S T - 1 9 8 4 E X - P O S T 1 9 7 5 - — ' - E S T I M A T E D W h e a t F e e d C o n s u m p t i o n - A r g e n t i n a P e r C a p i t a W h e a t F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) 0 0 0 0 0 8 * I O O O O I O O O I O I * I 8 8 * 8 8 I I 8 8 . I 8 8 8 8 . I . I 8 8 . I 8 * . . . 8 0 0 . 0 0 0 . 0 8 8 . 8 8 8 8 8 . . 0 . O 8 8 . O 8 . . 8 . 8 . 0 O I P W C N C R D G E G R P D A E P R N D E N 8 8 T R G W a P V e l A a A e D h R R t ( W P R O I / / I A n A C C c B P o L o I a E A m r S e R s R ’ W E S P P R e O G ( r P r - / e A A a 1 R C i ) a n ) p / i ( S t u F a p P p R l O y A R R * a F t E i S o A R ( - 1 ) ) 2 5 1 A r g e n t i n a S M P L 1 9 6 1 - 2 2 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W F E D 1 9 8 2 V A R I A B L E C O E F F I C I E N T S T D . E R R O R c ‘ - 0 . 0 2 0 0 4 6 2 P C R B D P 2 . 3 5 5 2 6 1 5 N C G R A R 0 . 0 0 6 2 0 4 0 0 . 0 1 4 0 4 0 6 1 . 2 4 4 5 2 6 0 0 . 0 0 5 7 1 5 2 T ~ S T A T . - 1 . 4 2 7 7 2 9 3 1 . 8 9 2 4 9 6 8 1 . 0 8 5 5 2 0 0 2 - T A I L S I G . 0 . 1 7 0 0 . 0 7 4 0 . 2 9 1 0 . 1 7 2 6 7 9 0 . 0 8 5 5 9 3 0 . 0 0 7 3 6 6 1 . 3 1 7 0 1 5 7 8 . 4 3 5 4 6 R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - W a t s o n s t a t L o g l i k e l i h o o d S . D . M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r . S u m o f s q u a r e d r e s i d F - s t a t i s t i c T P E ' 6 / 2 1 0 . 0 0 7 7 1 0 0 . 0 0 7 7 0 3 0 . 0 0 1 0 3 1 1 . 9 8 2 8 4 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D * 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 t 4 4 t i a . * 3 - - - - - - - - - - - . . . ‘ - - - - - - * * . . . - - - - - - - - . . _ - * t 4 I I I I I : 0 . 0 0 4 2 4 0 . 0 0 7 3 8 . - 0 . 0 0 1 5 7 - 0 . 0 0 6 5 4 - 0 . 0 0 5 3 8 - 0 . 0 0 1 8 1 0 . 0 0 0 2 1 - 0 . 0 0 0 1 1 0 . 0 0 0 7 2 7 0 . 0 0 4 0 5 - 0 . 0 0 7 0 6 - 0 . 0 0 5 1 6 - 0 . 0 0 5 9 1 - 0 . 0 0 3 4 2 0 . 0 2 5 1 8 0 . 0 0 9 7 0 - 0 . 0 0 1 1 2 - 0 . 0 0 2 7 7 - 0 . 0 0 1 7 1 - 0 . 0 0 0 6 4 0 . 0 0 0 4 2 - 0 . 0 0 0 5 9 0 . 0 0 6 6 2 0 . 0 0 6 7 2 0 . 0 0 6 8 6 0 . 0 0 6 9 0 0 . 0 0 6 2 7 0 . 0 0 6 8 9 0 . 0 0 7 3 2 0 . 0 0 6 2 3 0 . 0 0 7 7 3 0 . 0 0 1 3 1 0 . 0 0 1 2 0 0 . 0 0 2 2 1 0 . 0 0 2 0 1 0 . 0 0 7 4 9 0 . 0 3 7 7 0 0 . 0 2 0 4 7 0 . 0 0 7 4 3 0 . 0 0 3 6 6 0 . 0 0 7 2 0 0 . 0 0 5 3 1 0 . 0 0 5 2 3 0 . 0 0 6 8 6 0 . 0 0 2 3 8 - 0 . 0 0 0 6 6 0 . 0 0 8 4 3 0 . 0 1 3 4 4 0 . 0 1 1 6 5 0 . 0 0 8 7 0 0 . 0 0 7 1 2 0 . 0 0 6 3 4 0 . 0 0 7 0 1 0 . 0 0 5 3 5 0 . 0 0 8 2 6 0 . 0 0 7 3 7 0 . 0 0 7 9 2 0 . 0 1 0 9 1 0 . 0 1 2 5 2 0 . 0 1 0 7 7 0 . 0 0 8 5 6 0 . 0 0 6 4 3 0 . 0 0 8 9 1 0 . 0 0 5 9 5 0 . 0 0 4 8 1 0 . 0 0 7 4 5 2 5 2 S M P L 1 9 6 1 — 1 5 5 2 2 2 O b s e r v a t i o n s S e r i e s M e a n 8 . 0 . M a x i m u m M i n i m u m P C W F E D 0 . 0 0 7 7 0 9 8 0 . 0 0 7 7 0 3 0 0 . 0 3 7 6 9 6 7 0 . 0 0 1 2 0 4 8 P C R G D P 0 . 0 1 0 0 0 5 3 0 . 0 0 1 3 3 6 5 0 . 0 1 1 9 8 0 7 0 . 0 0 5 8 2 1 7 W C G R A R 0 . 6 7 5 5 1 7 2 0 . 2 9 1 0 2 7 7 1 . 6 6 1 4 8 7 0 0 . 3 6 3 2 1 9 3 - l C o v a r i a n c e ' C o r r e l a t i o n I P c h E D , P C W F E D 5 . 6 6 4 0 - 0 5 1 . 0 0 0 0 0 0 0 P C N F E D , P C R G D P 3 . 4 2 4 0 - 0 6 0 . 3 4 8 3 8 1 9 P C W F E D , N C G R A R 0 . 0 0 0 2 7 6 8 0 . 1 2 9 3 3 4 1 P C R G D P , P C R G D P 1 . 7 0 5 0 - 0 6 1 . 0 0 0 0 0 0 0 P C R G D P , W C G R A R - 9 . 5 4 5 D - 0 5 - 0 . 2 5 7 0 9 5 3 W C G R A R , N C B R A R 0 . 0 8 0 8 4 7 3 1 . 0 0 0 0 0 0 0 2 5 3 1 0 O O H E T T O N S 3 6 W i h — 1 — 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 7 8 1 9 ? 9 1 9 8 9 1 9 8 1 1 9 9 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N M I n g m a : I 1 3 5 7 : L L fl a i - 1 . . L S B S E I A A u s b 0 4 . 3 1 2 E N 4 J 1 B : a x u o » : 1 . 3 . 9 0 4 ' 1 J 6 3 » 7 5 7 6 7 ? 1 6 7 5 a b 8 1 o i 3 5 a n E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e B . 5 . a & b . w h e a t F o o d a n d R e e i d u a l C o n s u m p t i o n - A r g e n t i n a 2 5 4 A r g e n t i n a P e r C a p i t a W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W F O D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 0 . 2 3 4 8 6 2 8 0 . 0 3 0 0 9 5 3 7 . 8 0 3 9 6 5 6 0 . 0 0 0 W P A R - 0 . 0 3 4 6 6 2 8 0 . 0 3 0 0 7 5 7 - 1 . 1 5 2 5 1 6 4 0 . 2 6 3 F P A R 0 . 0 7 4 7 9 6 8 0 . 0 4 0 5 4 5 8 1 . 8 4 4 7 4 8 4 0 . 0 8 0 T I M E - 0 . 0 0 1 2 7 2 7 0 . 0 0 0 3 5 3 7 - 3 . 5 9 8 0 3 8 5 0 . 0 0 2 R - s o u a r e d 0 . 6 0 1 5 8 0 M e a n o f d e p e n d e n t v a r 0 . 1 6 2 0 7 8 A d j u s t e d R - s q u a r e d 0 . 5 4 1 8 1 7 S . D . o f d e p e n d e n t v a r 0 . 0 1 6 3 0 4 S . E . o i r e g r e s s i o n 0 . 0 1 1 0 3 6 S u m o f s q u a r e d r e s i d 0 . 0 0 2 4 3 6 D u r b i n - W a t s o n s t a t 2 . 1 5 7 3 2 2 F - s t a t i s t i c 1 0 . 0 6 6 0 9 L o l i k e l i h o o d 7 6 . 2 9 1 8 3 9 “ ’ 3 5 . 7 4 2 . 4 " - . . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 4 1 : 1 1 9 6 1 - 0 . 0 0 8 3 0 0 . 1 6 7 7 4 0 . 1 7 6 0 4 1 : 4 1 : 1 1 9 6 2 - 0 . 0 0 8 7 2 0 . 1 7 0 6 4 0 . 1 7 9 3 6 1 : 4 1 : 1 1 9 6 3 ~ 0 . 0 0 5 1 6 0 . 1 7 4 0 0 0 . 1 7 9 1 6 1 : 1 4 : 1 1 9 6 4 0 . 0 0 2 7 6 0 . 1 7 4 7 8 0 . 1 7 2 0 2 1 4 : 1 : 1 1 9 6 5 - 0 . 0 1 5 9 4 0 . 1 5 8 6 6 0 . 1 7 4 5 9 1 : 1 4 : 1 1 9 6 6 0 . 0 0 4 3 7 0 . 1 7 4 4 3 0 . 1 7 0 0 6 1 z 1 : 4 1 1 9 6 7 0 . 0 1 8 3 2 0 . 1 8 5 3 5 0 . 1 6 7 0 3 1 : 4 1 : 1 1 9 6 8 - 0 . 0 0 8 6 6 0 . 1 5 7 9 4 0 . 1 6 6 6 0 1 : 1 : 4 1 1 9 6 9 0 . 0 2 4 6 4 0 . 1 9 5 7 7 0 . 1 7 1 1 4 1 : 4 1 : 1 1 9 7 0 - 0 . 0 0 0 8 5 0 . 1 6 9 4 7 0 1 1 7 0 3 3 1 : 1 : 4 1 1 9 7 1 0 . 0 1 8 8 9 0 . 1 7 9 7 7 0 . 1 6 0 8 8 1 : 4 : 1 1 9 7 2 - 0 . 0 0 0 7 7 0 . 1 7 4 1 3 0 . 1 7 4 9 0 1 : 1 4 : 1 1 9 7 3 0 . 0 0 4 9 2 0 . 1 6 8 0 5 0 . 1 6 3 1 3 1 : 1 4 : 1 1 9 7 4 0 . 0 0 7 6 7 0 . 1 7 0 8 6 0 . 1 6 3 1 9 1 : 1 4 : 1 1 9 7 5 0 . 0 0 1 5 5 0 . 1 6 8 8 3 0 . 1 6 7 2 8 1 4 : 1 : 1 1 9 7 6 - 0 . 0 1 8 6 9 0 . 1 3 9 7 3 0 . 1 5 8 4 1 1 : 4 1 : 1 1 9 7 7 ~ 0 . 0 0 4 4 4 0 . 1 5 4 1 8 0 . 1 5 8 6 3 1 : 4 1 : 1 1 9 7 8 — 0 . 0 0 4 4 8 0 . 1 4 6 0 0 0 . 1 5 0 4 8 1 : 4 1 : 1 1 9 7 9 - 0 . 0 0 5 9 7 0 . 1 3 6 7 4 0 . 1 4 2 7 1 1 a 4 1 : 1 1 9 8 0 - 0 . 0 0 6 4 9 0 . 1 3 4 5 6 0 . 1 4 1 0 5 1 : 1 4 : 1 1 9 8 1 0 . 0 0 6 1 4 0 . 1 4 4 6 5 0 . 1 3 8 5 1 1 : 4 1 : 1 1 9 8 2 - 0 . 0 0 3 3 0 . 1 4 5 7 5 0 . 1 4 9 1 0 1 : 4 : 1 1 9 8 3 - 2 . S D - 0 6 0 . 1 5 3 3 2 0 . 1 5 3 3 1 : 1 4 : 1 1 9 8 4 0 . 0 0 2 5 6 0 . 1 4 4 5 2 0 . 1 4 1 9 5 I N D E P E N D E N T V A R I A B L E S W P A R 8 R e a l A r g e n t i n e W h e a t P r i c e W P 4 X R A R / C P I A R : F P A R 8 R e a l A r g e n t i n e C o a r s e G r a i n P r i c e F P 4 X R A R / C P I A R ‘ T I H E = 1 9 6 0 - 6 0 . 1 9 6 1 - 6 1 , . . . . 2 5 5 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C W F O D 0 . 1 6 2 0 7 7 8 0 . 0 1 6 3 0 3 7 0 . 1 9 5 7 7 4 6 0 . 1 3 4 5 6 0 9 ' W P A R 0 . 7 0 1 1 6 5 6 0 . 2 2 1 0 7 3 7 1 . 2 4 1 8 5 6 0 0 . 3 3 4 1 1 3 6 F P A R 0 . 5 8 5 4 1 6 4 0 . 1 6 8 3 9 3 7 0 . 9 2 3 4 6 4 1 0 . 2 4 5 8 4 0 0 T I M E 7 2 . 5 0 0 0 0 0 7 . 0 7 1 0 6 7 8 8 4 . 0 0 0 0 0 0 6 1 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C N F O D . P C W F O D 0 . 0 0 0 2 5 4 7 1 . 0 0 0 0 0 0 0 P C W F O D , W P A R 0 . 0 0 1 4 4 0 8 0 . 4 1 7 1 2 4 3 P C W F O D , F P A R 0 . 0 0 1 4 0 7 3 0 . 5 3 4 8 9 1 8 P C W F O D , T I M E - 0 . 0 7 6 9 4 3 5 - 0 . 6 9 6 4 3 9 0 W P A R , W P A R 0 . 0 4 6 8 3 7 2 1 . 0 0 0 0 0 0 0 W P A R , F P A R 0 . 0 3 3 4 2 1 2 0 . 9 3 6 7 8 9 4 W P A R , T I M E - 0 . 4 4 3 5 7 4 3 - 0 . 2 9 6 0 9 2 7 F F A R , F P A R 0 . 0 2 7 1 7 4 9 1 . 0 0 0 0 0 0 0 F F A R . T I M E - 0 . 4 1 8 9 6 6 0 - 0 . 3 6 7 1 5 6 6 T I M E . T I M E 4 7 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 H > C 3 ( 0 l = fl l i r 1 r 1 C 1 2 1 ” l i d F ' F ‘ 0 1 4 a 1 x 3 l C a 5 U 2 I s a c n . . ! 1 4 ~ “ 9 1 7 5 1 9 7 6 I ? ? 1 9 1 9 7 3 1 9 7 9 | 8 9 1 9 r 8 1 1 9 r 8 2 1 9 , 8 3 1 9 T 9 9 4 m : 1 T T 1 I ~ I ' U ' U I ' 2 5 6 m m 1 8 1 3 1 3 1 1 1 9 9 % 1 B M ‘ 7 m - 6 M 1 5 0 9 9 ' 3 0 9 0 1 2 0 9 9 - 1 1 m R E G I O N A L M O D E L S I M U L A T I O N . 4 4 0 . 5 7 9 . 7 1 5 . 5 5 7 . 9 9 5 . 1 8 5 . 2 7 5 . 4 1 4 . 5 5 3 . 0 9 2 F i g u r e 8 . 6 . a & b . 7 5 7 6 7 ? 7 6 1 é 3 6 8 % 3 5 8 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ' — - - E S T I M A T E D W h e a t N e t E x p o r t s - A r g e n t i n a 8 3 P > C 3 < O z : m a ~ 4 > c z : m 3 4 F “ I F 1 P D C Z R E G I O N A L M O D E L S I M U L A T I O N I T W I r I I ' r 7 r U r ' " " F i g u r e 8 . 7 . 6 & b . A C T U W A h L e a t E - n d - i n - g E S S t T o I c M k A s T E D - A r g e n t i n a - 1 3 I . - - ‘ - I O I a 2 5 7 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 9 8 ' 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 & Q N 7 s 7 é 7 1 7 6 v é 3 6 a ? 3 2 3 5 e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 . 2 5 8 A r g e n t i n a P e r C a p i t a W h e a t E n d i n g S t o c k s ( 1 0 0 0 H T ) S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 0 . 0 1 0 7 4 4 5 0 . 0 2 5 4 0 2 1 0 . 4 2 2 9 7 8 5 0 . 6 7 7 D V 6 3 6 4 0 . 1 0 4 5 3 9 3 0 . 0 1 1 5 6 4 0 9 . 0 4 0 0 4 6 0 0 . 0 0 0 . P C R G D P 1 . 7 3 4 3 8 6 7 2 . 5 1 7 1 8 2 8 0 . 6 8 9 0 1 9 0 0 . 4 9 8 R - s q u a r e d 0 . 7 9 5 5 8 0 M e a n o f d e p e n d e n t v a r 0 . 0 3 6 7 5 1 A d j u s t e d R - s q u a r e d 0 . 7 7 6 1 1 1 S . D . o f d e p e n d e n t v a r 0 . 0 3 2 9 7 0 S . E . o f r e g r e s s i o n 0 . 0 1 5 6 0 0 S u m o f s q u a r e d r e s i d 0 . 0 0 5 1 1 1 D u r b i n - W a t s o n s t a t 2 . 2 4 6 3 2 7 F - s t a t i s t i c 4 0 . 8 6 4 7 3 L o g 1 i k e l i h o o d 6 7 . 3 9 8 7 4 T P E e 9 / 2 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 a 1 4 a 1 1 9 6 0 0 . 0 1 1 9 9 0 . 0 3 8 3 5 0 . 0 2 6 3 6 1 : 4 1 1 1 1 9 6 1 - 0 . 0 1 1 9 1 0 . 0 1 2 0 1 0 . 0 2 3 9 2 1 z 1 4 : 1 1 9 6 2 0 . 0 0 3 7 0 ' 0 . 0 2 4 5 4 0 . 0 2 0 8 4 1 4 : 1 : 1 1 9 6 3 - 0 . 0 2 5 4 2 0 . 1 0 6 1 4 0 . 1 3 1 5 6 1 : 1 : 4 1 1 9 6 4 0 . 0 2 5 4 2 0 . 1 5 7 7 7 0 . 1 3 2 3 5 1 4 : 1 : 1 1 9 6 5 - 0 . 0 2 2 0 9 0 . 0 0 7 8 9 0 . 0 2 9 9 8 1 4 : 1 : 1 1 9 6 6 - 0 . 0 1 8 2 9 ' 0 . 0 1 0 8 9 0 . 0 2 9 1 9 1 : 1 4 1 1 9 6 7 0 . 0 1 6 8 2 0 . 0 4 4 2 1 0 . 0 2 7 4 0 1 : 1 4 : 1 1 9 6 8 0 . 0 0 9 4 1 - 0 . 0 3 6 7 8 0 . 0 2 7 3 7 ‘ 1 : 1 4 : 1 1 9 6 9 0 . 0 0 5 0 9 0 . 0 3 3 2 9 0 . 0 2 8 2 1 1 : 4 : 1 1 9 7 0 0 . 0 0 0 6 3 0 . 0 2 8 4 2 0 . 0 2 7 7 9 : : 1 : , : 1 9 7 1 - o . 0 1 3 3 7 ' o . 0 1 5 5 7 0 . 0 2 5 7 5 1 4 : 1 : 1 1 9 7 2 - 0 . 0 1 7 7 7 0 . 0 1 1 0 3 0 . 0 2 8 8 0 1 I 1 4 : 1 1 9 7 3 0 . 0 1 1 7 3 0 . 0 4 1 3 4 0 . 0 2 9 6 1 1 : 4 1 : 1 1 9 7 4 - 0 . 0 0 2 9 2 ' 0 . 0 2 8 3 1 0 . 0 3 1 2 3 - 1 1 4 1 : 1 1 9 7 5 - 0 . 0 0 3 0 4 0 . 0 2 8 4 8 0 . 0 3 1 5 2 1 I 1 ' : 4 1 1 9 7 6 0 . 0 3 0 0 8 ' 0 . 0 6 0 4 2 0 . 0 3 0 3 5 : 1 z 1 4 : 1 1 9 7 7 0 . 0 1 3 6 8 0 . 0 4 3 7 0 0 . 0 3 0 0 2 ; 1 : 1 4 : 1 1 9 7 8 0 . 0 1 2 4 7 . 0 . 0 4 0 3 3 0 . 0 2 7 8 6 1 : 4 1 : 1 1 9 7 9 - 0 . 0 1 2 0 5 0 . 0 1 6 1 2 0 . 0 2 8 1 7 1 : 4 1 : 1 1 9 8 0 - 0 . 0 1 3 4 8 . 0 . 0 1 4 6 2 0 . 0 2 8 1 0 1 : 4 : 1 1 9 8 1 8 . 5 D - 0 5 0 . 0 2 7 0 1 0 . 0 2 6 9 3 1 : 1 4 8 1 1 9 8 2 0 . 0 0 5 7 3 0 . 0 3 2 8 2 0 . 0 2 7 0 9 1 z 4 : : : 1 9 8 3 - 0 . 0 0 6 4 6 ' o . 0 2 2 1 7 0 . 0 2 8 6 3 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P / C P I A R / P O P A R D V 6 3 6 4 I 1 I £ ( T I M E . E 0 . 6 3 . O R . T I M E . E 0 . 6 3 ) 0 O t h e r w i s e 2 5 9 S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s ’ S e r i e s M e a n S . D . M a x i m u m M i n i m u m F C N E S 0 . 0 3 6 7 5 1 3 0 . 0 3 2 9 7 0 2 0 . 1 5 7 7 7 0 4 0 . 0 0 7 8 9 0 0 D V 6 3 6 4 0 . 0 8 3 3 3 3 3 0 . 2 8 2 3 2 9 9 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 P C R G D F 0 . 0 0 9 9 7 1 9 0 . 0 0 1 2 9 7 0 0 . 0 1 1 9 8 0 7 0 . 0 0 5 8 2 1 7 C o v a r i a n c e C o r r e l a t i o n P C W E S , P C N E S 0 . 0 0 1 0 4 1 7 1 . 0 0 0 0 0 0 0 P C W E S , D V 6 3 6 4 0 . 0 0 7 9 3 3 6 0 . 8 8 9 3 5 8 3 P C W E S , P C R 8 D P - 3 . 3 8 9 D - 0 7 - 0 . 0 0 8 2 6 9 9 D V 6 3 6 4 , D V 6 3 6 4 0 . 0 7 6 3 8 8 9 1 . 0 0 0 0 0 0 0 D V 6 3 6 4 , P C R G D P - 2 . 9 9 9 D - 0 5 - 0 . 0 8 5 4 5 6 7 P C R G E P , P C R G D P 1 . 6 1 2 D - 0 6 1 . 0 0 0 0 0 0 0 R E G I O N A L M O D E L S I M U L A T I O N A C E U o X A a T C L r P 9 - s 1 e O 7 G S 5 - r T a F 1 n - - i O 9 - R 8 P E 4 E r C A S T S o T d I u M c A t T i E o D n - A r g e n t i n a F i g u r e 8 . 8 . a & b . 2 6 0 1 9 7 5 1 9 7 5 1 9 7 7 1 9 7 9 1 9 7 9 1 9 9 9 1 9 1 1 1 1 9 9 2 1 9 9 3 1 9 9 4 2 5 m 1 0 0 0 M E T T 0 N ' 5 1 3 9 9 0 2 4 . 4 5 2 . M 2 5 . 0 0 0 - - I 2 1 . 5 2 7 I L ' 2 0 . 0 4 5 I : ' 1 5 . 5 5 2 I c , 1 7 . 0 5 0 1 N 1 5 . 5 9 7 - 1 4 . 1 1 5 I 5 1 2 . 5 5 5 I 1 ' 1 1 . 1 5 0 I 7 5 7 s . 7 7 . 7 5 7 5 5 0 5 % 5 2 3 5 3 4 ‘ 9 ? 5 1 9 7 6 1 9 G ? ? I R E O N A 3 L 9 ? 8 M O D E 1 L 9 9 9 S 1 9 I M U L 8 A 9 T I O N 1 9 8 1 l 8 ? 4 4 ) . s 3 5 ! 3 . 1 0 I p ‘ I 6 E X - 1 P 9 O 7 S 5 _ T - - F 1 O 9 - R 8 E 4 E C S A T S I T M A T E D A C T U C A o L a F i g u r e 8 . 9 . 6 0 b . r s e G r a i n H a r v e s t e d A r e a “ ' A r g e n t i n a 2 6 1 l I I 1 g 9 5 . . . . ‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0 1 i , H 5 & 6 9 1 L “ . x ’ fl “ - ~ . H # e ~ " ” \ I : . ’ I I E i I f I I I I " I ; i . . . 1 C - - E f f , 1 : 3 [ y . T 3 1 3 % " : 1 “ ' . ' , 1 1 1 1 F ‘ 2 1 . 2 " E 5 8 8 1 1 1 _ Q g _ , 1 S i _ E ; 1 9 5 9 9 i l . M I 7 . 3 5 4 L 7 . 3 3 5 L 7 . 0 4 4 I ' 3 . 7 1 5 3 3 . 3 5 4 5 . 0 3 5 H 5 . 7 4 4 : E 5 . 4 1 3 - c 5 . 0 3 4 I 1 ' 4 . 7 3 5 I A R 7 5 7 5 7 7 7 5 7 5 3 0 3 1 3 2 3 5 3 4 E S C o a r s e ( ( F W Y Y A A R R ( ( - - G 3 3 r a i n ) ) + + F W Y Y A A R R R e ( ( v - - e 2 2 n ) ) u + + e F W Y Y p A A e R R r ( ( - - H 1 1 e ) ) c + + t F W a Y Y r A A e R R J ) ( $ 4 4 I / I 4 4 H F W A P P ) 4 4 X X R R A A R R / / C C P P I I A A R R A r g e n t i n a C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 2 0 O b s e r v a t i o n s 1 9 6 4 1 9 8 3 2 6 2 L 8 / / D e p e n d e n t V a r i a b l e i s F H A A R V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 4 4 2 8 . 9 6 5 4 9 4 9 . 6 0 9 9 3 4 . 6 6 3 9 8 3 8 0 . 0 0 0 D V 7 1 7 9 - 1 6 7 3 . 6 0 6 2 3 2 0 . 4 2 5 2 9 - 5 . 2 2 3 0 7 7 6 0 . 0 0 0 F H A A R ( — 1 ) 0 . 3 7 0 0 8 9 8 0 . 1 7 1 1 8 3 4 2 . 1 6 1 9 4 9 5 0 . 0 4 7 W R A R ( - 1 ) - 2 1 8 5 . 8 0 0 6 6 6 8 . 2 0 8 6 4 - 3 . 2 7 1 1 3 4 9 0 . 0 0 5 F R A R ( - 1 ) 1 3 9 3 . 0 7 0 0 6 1 3 . 5 7 8 2 2 2 . 2 7 0 4 1 3 2 0 . 0 3 8 R - s o u a r e d 0 . 7 3 5 9 7 0 M e a n o f d e p e n d e n t v a r 5 9 6 6 . 0 5 0 A d j u s t e d R - s q u a r e d 0 . 6 6 5 5 6 2 S . D . o f d e p e n d e n t v a r 6 8 3 . 9 9 7 3 S . E . o f r e g r e s s i o n 3 9 5 . 5 5 9 7 S u m o 4 s q u a r e d r e s i d 2 3 4 7 0 1 2 . D u r b i n - W a t s o n s t a t 1 . 7 5 3 4 2 9 F - s t a t i s t i c 1 0 . 4 5 2 9 4 L o g l i k e l i h o o d - 1 4 5 . 1 0 8 0 1 1 : ; . 6 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 4 : 1 : 1 1 9 6 4 - 4 8 7 . 6 3 9 . 4 8 8 8 . 0 0 5 3 7 5 . 6 4 1 I 4 1 : 1 1 9 6 5 ~ 2 1 2 . 8 1 3 5 0 8 6 . 0 0 2 9 8 . 8 1 1 4 1 : 1 1 9 6 6 - 3 8 4 . 6 3 3 5 2 2 5 . 0 0 5 6 0 9 . 6 3 1 : 1 4 : 1 1 9 6 7 4 3 . 5 8 1 9 5 6 8 3 . 0 0 5 6 3 9 . 4 2 1 : 1 4 : 1 1 9 6 8 3 3 0 . 5 1 1 6 0 3 7 . 0 0 5 7 0 6 . 4 9 1 : 1 : 4 1 1 9 6 9 4 6 3 . 1 9 2 6 8 0 5 . 0 0 6 3 4 1 . 8 1 1 : 1 4 : 1 1 9 7 0 6 7 . 1 4 6 3 7 1 0 8 . 0 0 7 0 4 0 . 8 5 1 : 1 4 : 1 1 9 7 1 8 8 . 7 1 5 7 5 5 1 8 . 0 0 5 4 2 9 . 2 8 1 1 1 1 4 1 1 9 7 2 2 7 . 2 8 6 . 6 8 9 4 . 0 0 6 2 6 6 . 7 1 : : 1 4 : 1 1 9 7 3 1 4 8 . 4 5 5 6 8 6 5 . 0 0 6 7 1 6 . 5 5 1 : 1 4 : 1 1 9 7 4 1 7 1 . 0 3 5 . 5 8 5 3 . 0 0 5 6 8 1 . 9 6 1 4 1 : 1 1 9 7 5 - 3 8 1 . 1 9 2 . 5 6 0 8 . 0 0 5 9 8 9 . 1 9 1 : 1 : 4 1 1 9 7 6 5 0 7 . 6 5 8 . 6 0 2 3 . 0 0 5 5 1 5 . 3 4 1 4 : 1 : 1 1 9 7 7 - 4 8 0 . 5 5 9 5 8 9 8 . 0 0 6 3 7 8 . 5 6 1 4 1 : 1 1 9 7 8 - 3 7 1 . 3 1 3 6 1 0 9 . 0 0 6 4 8 0 . 3 1 1 : 4 1 : 1 1 9 7 9 - 8 8 . 7 1 5 7 4 6 0 7 . 0 0 4 6 9 5 . 7 2 1 : 1 : 4 1 1 9 8 0 4 8 8 . 7 4 3 6 2 0 4 . 0 0 5 7 1 5 . 2 6 1 : 4 1 : 1 1 9 8 1 - 2 1 2 . 3 5 0 6 3 8 7 . 0 0 6 5 9 9 . 3 5 1 : 4 1 : 1 1 9 8 2 - 6 0 . 5 7 8 6 , 6 3 5 0 . 0 0 6 4 1 0 . 5 8 1 : 4 1 : 1 1 9 8 3 - 2 5 6 . 5 3 0 6 1 7 3 . 0 0 6 4 2 9 . 5 3 I N D E P E N D E N T V A R I A B L E S F H A A R F R A R W R A R D V 7 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) W h e a t R e v e n u e p e r H e c t a r e < 5 / H A ) 1 7 9 1 I f < T I M E . G E . 7 1 0 O t h e r w i s e . A N D . T I M E . L E . 7 9 ) . 2 6 3 S M P L 1 9 6 4 - 1 9 8 3 : 0 O b s e r v a t i o n s - S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A A R 5 9 6 6 . 0 5 0 0 6 8 3 . 9 9 7 3 4 7 1 0 8 . 0 0 0 0 4 6 0 7 . 0 0 0 0 D V 7 1 7 9 0 . 1 0 0 0 0 0 0 0 . 3 0 7 7 9 3 5 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 F H A A R ( - 1 ) 5 9 1 9 . 9 0 0 0 7 0 0 . 2 4 4 2 4 7 1 0 8 . 0 0 0 0 4 6 0 7 . 0 0 0 0 N R A R ( - 1 ) 1 . 0 1 5 7 1 9 5 0 . 3 4 2 4 3 2 9 1 . 8 0 7 9 5 5 0 0 . 5 3 6 8 9 3 8 ' F R A R ( - 1 ) 1 . 2 4 4 5 2 5 3 0 . 3 9 2 3 7 4 4 2 . 1 2 6 7 7 2 0 0 . 6 9 4 2 3 0 3 C o v a r i a n c e C o r r e l a t i o n F H A A R , F H A A R 4 4 4 4 5 9 . ? 1 . 0 0 0 0 0 0 0 F H A A R , D V 7 1 7 9 - 9 0 . 3 5 5 0 0 0 - 0 . 4 5 1 7 6 7 2 F H A A R , F H A A R ( - 1 > 1 6 0 7 6 3 . 7 6 0 . 3 5 3 3 1 3 8 F H A A R , N R A R ( - 1 ) - 5 5 . 5 1 7 8 1 4 - 0 . 2 4 9 5 0 4 8 F H A A R , F R A R ( - 1 ) - 3 . 5 5 8 6 5 1 0 - 0 . 0 1 3 9 5 7 5 D V 7 1 7 9 , D V 7 1 7 9 0 . 0 9 0 0 0 0 0 1 . 0 0 0 0 0 0 0 D V 7 1 7 9 , F H A A R ( - 1 ) 6 8 . 8 6 0 0 0 0 0 . 3 3 6 3 0 5 8 D V 7 1 7 9 . N R A R ( - 1 ) ' - 0 . 0 1 7 5 0 4 0 - 0 . 1 7 4 8 1 5 2 D V 7 1 7 9 , F R A R ( - 1 ) - 0 . 0 0 2 4 9 4 6 - 0 . 0 2 1 7 4 2 7 F H A A R ( - 1 ) , F H A A R i - 1 ) 4 6 5 8 2 4 . 8 9 1 . 0 0 0 0 0 0 0 F H A A R < - 1 ) , W R A R i - 1 ) 8 . 5 8 1 9 9 6 6 0 . 0 3 7 6 7 3 8 F H A A R ( - 1 ) . F R A R ( - 1 ) 8 7 . 8 4 1 7 8 7 0 . 3 3 6 5 3 2 W R A R ( — 1 ) , N R A R i - 1 ) 0 . 1 1 1 3 9 7 2 1 . 0 0 0 0 0 0 0 N R A R ( - 1 ) , F R A R ( - 1 ) 0 . 1 1 1 6 2 6 4 0 . 8 7 4 5 1 5 0 F R A R ( - 1 ) . F R A R ( - 1 ) 0 . 1 4 6 2 5 9 8 1 . 0 0 0 0 0 0 0 A r g e n t i n e C o a r s e G r a i n Y i e l d S M P L 1 9 6 0 - 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F Y A R 1 9 8 3 ( M e t r i c T o n s p e r H e c t a r e ) a s “ . . . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 3 1 8 . C ~ 1 8 . 1 0 9 9 4 9 2 . 3 5 6 3 8 0 3 - 7 . 6 8 5 4 9 4 8 0 . 0 0 0 L O G T 4 . 7 7 0 6 5 5 3 0 . 5 5 2 3 5 2 0 8 . 6 3 6 9 8 3 6 0 . 0 0 0 R - s q u a r e d 0 . 7 7 2 2 5 1 M e a n o f d e p e n d e n t v a r 2 . 2 3 6 7 5 8 A d j u s t e d R - s q u a r e d 0 . 7 6 1 8 9 9 S . D . o f d e p e n d e n t v a r 0 . 5 4 0 4 4 0 S . E . o f r e g r e s s i o n 0 . 2 6 3 7 1 1 S u m o f s e u a r e d r e s i d 1 . 5 2 9 9 6 1 D u r b i n - w a t s o n s t a t 2 . 1 7 2 4 8 6 F - s t a t i s t i c 7 4 . 5 9 7 4 9 L o g l i k e l i h o o d - 1 . 0 2 0 7 8 6 T P E s 7 / 2 3 ' I . " R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 4 : 1 1 9 6 0 2 0 . 1 7 7 8 4 1 . 6 0 0 6 0 1 . 4 2 2 7 6 1 : 1 4 : 1 1 9 6 1 0 . 1 9 7 8 3 1 . 6 9 9 4 5 1 . 5 0 1 6 1 1 : 4 1 : 1 1 9 6 2 - 0 . 0 5 6 5 8 1 . 5 2 2 6 0 1 . 5 7 9 1 8 1 : 4 : 1 1 9 6 3 0 . 0 0 7 7 2 1 . 6 6 3 2 1 . 6 5 5 5 2 1 : 4 1 : 1 1 9 6 4 - 0 . 1 4 6 9 7 1 . 5 8 3 6 7 1 . 7 3 0 6 5 1 : 1 4 : 1 1 9 6 5 . 2 0 8 7 5 2 . 0 1 3 3 7 1 . 8 0 4 6 2 1 : 1 4 : ' 1 1 9 6 6 0 . 1 4 7 8 1 2 . 0 2 5 2 1 . 8 7 7 4 5 1 : 4 1 : 1 1 9 6 7 - 0 . 1 9 5 8 9 1 . 7 5 3 3 1 . 9 4 9 1 9 1 4 1 : 1 1 9 6 8 - 0 . 2 6 6 3 5 1 . 7 5 3 5 2 ' 2 . 0 1 9 8 7 1 : 4 : 1 1 9 6 9 0 . 0 1 1 8 8 2 . 1 0 1 4 0 2 . 0 8 9 5 2 1 : : 4 z 1 1 9 7 0 0 . 0 2 2 4 8 2 . 1 8 0 6 4 2 . 1 5 8 1 6 1 4 : 1 : 1 1 9 7 1 - 0 . 5 3 0 8 3 1 . 6 9 5 0 0 2 . 2 2 5 8 3 1 : 4 1 : 1 1 9 7 2 - 0 . 0 7 7 1 5 2 . 2 1 5 4 0 2 . 2 9 2 5 5 1 : 1 4 : 1 1 9 7 3 0 . 1 6 4 8 8 . 5 2 3 2 3 2 . 3 5 8 3 6 1 : 4 1 : 1 1 9 7 4 - 0 . 1 1 8 9 7 2 . 3 0 4 2 9 2 . 4 2 3 2 6 1 4 : 1 : 1 1 9 7 5 - 0 . 3 1 8 0 8 2 . 1 6 9 2 2 2 . 4 8 7 3 0 1 : 1 4 : 1 1 9 7 6 0 . 1 9 3 9 9 2 . 7 4 4 4 8 2 . 5 5 0 4 8 1 : 1 : 4 1 1 9 7 7 0 . 4 6 4 9 8 3 . 0 7 7 8 2 2 . 6 1 2 8 5 1 : 1 4 : 1 1 9 7 8 0 . 1 1 4 9 2 2 . 7 8 9 3 3 2 . 6 7 4 4 1 1 4 : 1 i 1 1 9 7 9 - 0 . 4 7 5 7 9 2 . 2 5 9 3 9 2 . 7 3 5 1 8 1 : 1 : 4 1 1 9 8 0 ' 0 . 5 7 1 6 7 3 . 3 6 6 8 6 2 . 7 9 5 1 9 1 : 1 4 a 1 1 9 8 1 0 . 0 2 5 6 2 2 . 8 8 0 0 7 2 . 8 5 4 4 5 1 i 4 1 z 1 1 9 8 2 - 0 . 0 5 2 9 9 2 . 8 6 0 0 0 2 . 9 1 2 9 9 1 : 4 1 : 1 1 9 8 3 - 0 . 0 7 0 7 6 2 . 9 0 0 0 5 2 . 9 7 0 8 1 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( T I M E ) . 2 6 5 S M P L ' 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s S e r i e s M e a n ‘ S . D . M a x i m u m M i n i m u m F Y A R 2 . 2 3 6 7 5 8 1 0 . 5 4 0 4 4 0 4 3 . 3 6 6 8 6 0 0 1 . 5 2 2 6 0 1 0 L O S T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n F V A R , F Y A R 0 . 2 7 9 9 0 6 0 1 . 0 0 0 0 0 0 0 F Y A R . L O B T 0 . 0 4 5 3 0 9 8 0 . 8 7 8 7 7 8 0 L O G T . L O G T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 w > c > i " < O I € M i ~ H J C 2 1 m 5 5 m , - R E G I O N A L M O D E L S I H U L A T I O N / 1 b 5 . A C T ' 1 1 E U T A X A o r L t g - a e 1 l n 1 P 9 t 5 F 1 s 5 1 O 7 C i S 5 . n o T a a _ - - r 5 6 5 % 5 1 5 5 . 5 4 O 9 - e R 8 E 4 E G C S r A T a S I i T M n A T C E o D n s u m p t i o n - » - I : F 1 . . . . . . . . . . 2 5 5 5 0 5 5 2 9 5 4 5 1 5 9 0 1 3 4 5 “ 1 5 0 2 5 1 9 2 4 1 o 3 1 q 4 7 l F 4 F a a q D o C 2 e 3 1 ~ e u a 1 5 F i g u r e 3 . 1 0 a & 2 6 6 5 m . 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 2 6 7 1 5 5 5 1 1 A 3 , 1 3 5 5 1 } f ! o 1 fl . . . . . ' / \ 0 i ‘ \ “ i n 1 1 ‘ j ‘ a J ’ % \ : n . - ' r ' 1 . E 1 4 " ' 3 . g " - l - . r . . . . T 3 D { ‘ 1 3 ‘ 1 ' . . ' . 1 ' ; . 3 " . . 3 . 1 ; - . r = 1 - ' 1 1 I " ' 1 I T s 3 i f 1 / " i o u m i ‘ 1 5 : i N i i s 1 4 3 9 0 ‘ ‘ 1 1 7 5 “ 3 ' 1 6 1 9 ? ? 3 . 9 7 8 1 9 ? ? 1 9 8 9 1 9 8 1 1 9 8 2 1 ' 3 8 R E G I O N A L M O D E L S I M U L A T I O N 1 . 4 4 1 a 7 . 1 5 3 : I 5 . 5 5 9 - 1 . . 5 . 5 5 5 1 L 5 . 2 1 1 : 3 5 . 9 1 1 I N 5 . 5 5 4 I 5 . 3 9 0 : M g 5 . 0 9 . I T 4 . 8 0 2 ' 1 5 1 5 . 1 1 1 5 1 5 5 6 5 1 5 5 5 5 5 4 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e B . l l . a & b . C o a r s e G r a i n F e e d C o n s u m p t i o n - A r g e n t i n a P e r C a p i t a C o a r s e G r a i n F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) P R e e r a l C a A p r i g t e a n t D i o n m e e s C t o i a c r s o C e a G r r s a e i n G r P a r i i n c e S u p p l y A r g e n t i n a 2 6 8 s m s L 1 9 6 1 - 3 a b s e r v a t i o n s 1 9 8 3 L S / / D e p e n d e n t V a r i a b l e i s R C F F E D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 0 . 0 0 6 6 4 6 2 0 . 0 4 2 9 5 4 7 0 . 1 5 4 7 2 5 0 0 . 8 7 9 P C R G D R ( - 1 ) 9 . 8 2 6 8 2 6 6 4 . 1 5 1 9 3 1 4 2 . 3 6 6 8 0 8 5 0 . 0 2 9 P C F D S 0 . 1 6 7 4 4 8 8 0 . 0 4 4 6 3 0 6 3 . 7 5 1 8 8 5 5 0 . 0 0 1 . F P A R ‘ - 0 . 0 3 8 6 5 2 5 0 . 0 4 1 4 7 2 7 - 0 . 9 3 1 9 9 7 0 0 . 3 6 4 S M P A R 0 . 0 2 1 5 5 0 1 0 . 0 1 7 8 7 2 0 1 . 2 0 5 8 0 3 1 0 . 2 4 4 R - s e u a r e d 0 . 6 8 8 9 9 4 M e a n o f d e p e n d e n t v a r 0 . 1 9 4 4 9 6 A d j u s t e d R - s a u a r e d 0 . 6 1 9 8 8 2 S . D . o f d e p e n d e n t v a r 0 . 0 3 7 2 8 0 S . E . a 4 r e g r e s s i o n 0 . 0 2 2 9 8 5 S u m o 4 s q u a r e d r e s i d 0 . 0 0 9 5 0 9 D u r b i n - w a t s o n s t a t 2 . 3 7 5 2 5 9 F - s t a t i s t i c 9 . 9 6 9 1 7 6 L o g 1 i k e l i n o o d 5 6 . 9 6 0 6 0 T P E a 5 / 2 2 R e s z d u a i - l o t D D S R E S I D U A L A C T U A L F I T T E D ' 2 1 : 4 1 1 9 6 1 0 . 0 2 5 0 6 0 . 1 8 8 8 8 0 . 1 6 3 8 2 . 4 : 1 : 1 1 9 6 2 - 0 . 0 3 6 8 6 0 . 0 9 2 7 0 0 . 1 2 9 5 5 1 : 4 : 1 1 9 6 3 - 0 . 0 0 1 6 4 0 . 1 3 0 3 1 0 . 1 3 1 9 5 1 : 4 1 : 1 1 9 6 4 - 0 . 0 0 3 3 8 0 . 1 5 4 8 4 0 . 1 5 8 2 2 1 = 1 4 : 1 1 9 6 5 0 . 0 0 3 8 1 0 . 1 8 3 7 7 0 . 1 7 9 9 6 1 : 4 1 : 1 1 9 6 6 - 0 . 0 0 2 4 3 0 . 1 9 0 0 0 0 . 1 9 2 4 2 ‘ : 4 1 : 1 1 9 6 7 - 0 . 0 0 6 2 4 0 . 1 8 0 0 9 0 . 1 8 6 3 3 2 4 1 : 1 1 9 6 8 - 0 . 0 1 4 8 8 0 . 1 6 3 3 5 0 . 1 7 8 2 3 1 z 1 4 : 1 1 9 6 9 0 . 0 1 0 9 0 0 . 2 1 3 1 0 0 . 2 0 2 2 0 1 : 4 ' 1 1 1 9 7 0 - 0 . 0 1 6 9 2 ' 0 . 1 9 4 3 2 0 . 2 1 1 2 3 1 : 1 : 4 1 1 9 7 1 0 . 0 5 3 4 4 ' 0 . 2 2 8 5 8 0 . 1 7 5 1 4 1 : 4 : : 1 1 9 7 2 - 0 . 0 0 5 9 1 0 . 2 3 0 7 9 0 . 2 3 6 7 0 1 : 1 : 4 1 1 9 7 3 0 . 0 3 1 6 1 0 . 2 5 3 3 0 . 2 2 1 7 3 1 : 4 1 : 1 1 9 7 4 - 0 . 0 1 2 0 8 0 . 1 8 2 8 3 0 . 1 9 4 9 1 1 4 1 : 1 1 9 7 5 - 0 . 0 2 1 2 0 ' 0 . 1 7 8 6 9 0 . 1 9 9 8 9 : : 4 : 1 1 9 7 6 - 0 . 0 0 0 8 6 0 . 2 3 7 9 9 0 . 2 3 8 8 5 1 : 4 1 ' : 1 1 9 7 7 - 0 . 0 1 2 4 5 . 0 . 2 " 0 5 5 0 . 2 3 3 0 0 1 _ : 1 2 1 1 9 7 8 0 . 0 1 7 7 0 0 . 2 4 3 1 4 0 . 2 2 5 4 5 1 : 1 4 a 1 1 9 7 9 0 . 0 0 6 4 2 0 . 1 7 4 0 2 0 . 1 6 7 6 0 1 4 9 1 : 1 1 9 8 0 - 0 . 0 2 9 9 0 . 0 . 1 9 9 7 2 . 2 2 9 6 2 : : 4 1 : 1 1 9 5 1 - o . 0 1 4 1 0 0 . 2 0 0 2 1 ' . 2 1 4 3 1 1 : 1 4 : 1 1 9 8 2 0 . 0 0 2 9 6 0 . 2 0 7 3 4 0 . 2 0 4 3 8 1 : 1 : 4 1 1 9 8 3 0 . 0 2 6 9 5 0 . 2 2 4 8 4 0 . 1 9 7 8 9 I N D E P E N D E N T V A R I A B L E S G D P A R / C P I A R / P O P A R R e a l G D P P e r C a p i t a ( F E S A R ( - 1 ) + F P R O A R ) / P O P A R W P 4 X R A R / C P I A R P C R G D P 8 P C F D S 3 F P A R = S M P A R 8 S M P 9 X R A R / C P I A R R e a l A r g e n t i n e S o v s e a l P r i c e ( S I M T ) 1 2 6 9 S M P L 1 9 6 1 - 1 9 8 3 2 3 - 0 b s e r v a t i o n s S e r i e s M e a n S . D . M a < i m u m M i n i m u m 8 3 " : — _ = = = = — 2 - - - - - ‘ = = = = = = = = = = = P C F F E D 0 . 1 9 4 4 9 6 0 0 . 0 3 7 2 8 0 4 0 . 2 5 3 3 4 4 1 0 . 0 9 2 6 9 7 2 P C R G D P ( - 1 ) 0 . 0 0 9 9 5 7 1 0 . 0 0 1 3 2 4 1 0 . 0 1 1 9 8 0 7 0 . 0 0 5 8 2 1 7 P C F D S 0 . 5 4 9 5 2 2 7 0 . 1 2 3 8 1 7 8 0 . 7 4 5 3 9 6 6 0 . 3 1 6 4 0 7 0 F P A R 0 . 5 9 1 5 5 4 6 0 . 1 6 9 7 9 2 2 0 . 9 2 3 4 6 4 1 0 . 2 4 5 8 4 0 0 S M R A R 0 . 9 6 7 5 7 5 2 0 . 3 9 5 7 6 8 5 2 . 4 9 3 7 2 6 0 0 . 4 3 4 9 6 2 7 C o v a r i a n c e C o r r e l a t i o n P C F F E D , P C F F E D 0 . 0 0 1 3 2 9 4 1 . 0 0 0 0 0 0 0 P C F F E D , P C R B D P ( - 1 ) 2 . 9 5 5 0 - 0 5 0 . 6 2 5 8 8 4 8 P C F F E D , P C F D S 0 . 0 0 3 2 8 8 0 0 . 7 4 4 6 7 9 5 P C F F E D , F P A R - 0 . 0 0 0 4 1 1 2 - 0 . 0 6 7 9 1 3 5 P C F F E D , S H P A R 0 . 0 0 2 7 4 1 5 0 . 1 9 4 2 5 7 8 P C R G D P ( - 1 ) , P C R B D P ( - 1 ) 1 . 6 7 7 D - 0 6 1 . 0 0 0 0 0 0 0 P C R G D P ( - 1 ) , P C F D S 6 . 9 4 1 D - 0 5 0 . 4 4 2 6 3 2 1 P C R G D P ( - 1 ) , F P A R - 9 . 0 5 1 D - 0 6 - 0 . 0 4 2 0 8 6 9 P C R G D P ( - 1 ) , S M P A R 5 . 1 0 2 0 - 0 5 0 . 1 0 1 7 7 5 7 P C F D S , P C F D S 0 . 0 1 4 6 6 4 3 1 . 0 0 0 0 0 0 0 P C F D S , F P A R - 0 . 0 0 1 3 6 9 8 - 0 . 0 6 8 1 1 9 1 P C F D S , S M P A R 0 . 0 0 4 5 1 9 0 0 . 0 9 6 4 1 0 7 F P A R , F P A R 0 . 0 2 7 5 7 5 9 1 . 0 0 0 0 0 0 0 F P A R , S M P A R 0 . 0 4 5 1 5 0 5 0 . 7 0 2 4 3 9 2 S M P A R , S H P A R 0 . 1 4 9 8 2 2 6 1 . 0 0 0 0 0 0 0 a b O > C O 1 1 0 1 1 ' i - D C S Z J U ! i u i F ‘ F ‘ i r v i F v 4 1 3 v i v ( i 5 2 t r i i ! i 1 1 ~ V 2 7 0 l t i m fi t 1 2 9 0 1 1 1 1 m " 1 8 3 1 9 9 0 1 * 3 9 9 + 1 9 0 + 1 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 9 1 9 ? ? 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 . 2 3 0 1 . 1 8 8 ' 1 . 1 0 7 1 . 0 4 8 . 9 8 4 . 9 2 3 . 8 8 1 . 8 0 0 . 7 3 9 . 8 7 ? E X - P O S T F O R E C A S T 1 9 7 5 “ 1 9 8 4 A C T U A L - — - E S T I M A T E D F i g u r e 3 . 1 2 . a & b . C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n - A r g e n t i n a = C o a r s e G r ( a 1 i 0 n 0 0 F o M r T ) H u m a n & R e s i d u a l C o n s u m p t i o n P e r . 2 7 1 A r g e n t i n a P e r C a p i t a C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 N T ) 8 M P L 1 9 6 1 - 2 4 O b s e r v a t i o n s 1 9 8 4 L 8 / / D e p e n d e n t V a r i a b l e i s P C F F O D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 0 . 0 1 9 6 7 8 9 0 . 0 0 8 5 2 2 2 2 . 3 0 9 1 4 5 0 0 . 0 3 2 P C F F O D 1 - 1 ) 0 . 4 1 0 0 8 9 9 0 . 1 3 4 6 7 4 4 3 . 0 4 5 0 4 6 5 0 . 0 0 6 C G W R A R 0 . 0 0 8 8 0 0 3 0 . 0 0 3 8 6 4 8 2 . 2 7 7 0 0 8 0 0 . 0 3 4 D V 7 5 0 N - 0 . 0 2 0 2 2 7 8 0 . 0 0 4 9 0 0 6 - 4 . 1 2 7 6 2 4 9 0 . 0 0 1 m R - s q u a r e d 0 . 7 5 0 3 6 1 M e a n o f d e p e n d e n t v a r 0 . 0 4 4 3 9 1 A d j u s t e d R - s q u a r e d 0 . 7 1 2 9 1 5 S . D . o f d e p e n d e n t v a r 0 . 0 1 8 8 7 6 8 . 8 . o f r e g r e s s i o n 0 . 0 1 0 1 1 4 S u m o f s q u a r e d r e s i d 0 . 0 0 2 0 4 6 D u r b i n - N a t s o n s t a t 1 . 5 2 3 5 3 2 F - s t a t i s t i c 2 0 . 0 3 8 5 7 L o l i k e l i h o o d 7 8 . 3 8 6 1 9 9 I P 4 1 2 1 . 2 1 . . . . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 4 : 1 : 1 1 9 6 1 - 0 . 0 1 1 9 1 0 . 0 3 7 0 1 0 . 0 4 8 9 2 1 : 4 1 : 1 1 9 6 2 - 0 . 0 0 7 5 7 0 . 0 3 6 9 0 0 . 0 4 4 4 8 1 : 4 : 1 1 9 6 3 - 0 . 0 0 0 3 6 0 . 0 4 3 0 2 0 . 0 4 3 3 8 1 : 1 4 : 1 1 9 6 4 0 . 0 0 2 5 9 0 . 0 4 5 2 1 0 . 0 4 2 6 2 1 : 4 1 : 1 1 9 6 5 - 0 . 0 0 5 9 0 0 . 0 4 2 1 1 0 . 0 4 8 0 1 1 : 4 : 1 1 9 6 6 0 . 0 0 0 4 2 0 . 0 5 2 1 1 0 . 0 5 1 6 9 1 : 1 4 : 1 1 9 6 7 0 . 0 0 3 1 9 0 . 0 5 6 2 3 0 . 0 5 3 0 4 1 : 4 : 1 1 9 6 8 0 . 0 0 0 2 6 0 . 0 5 7 3 3 0 . 0 5 7 0 7 1 : 1 4 : 1 1 9 6 9 0 . 0 0 4 2 4 0 . 0 6 3 7 6 0 . 0 5 9 5 3 1 4 : 1 : 1 1 9 7 0 - 0 . 0 2 2 5 2 0 . 0 4 7 5 4 0 . 0 7 0 0 6 1 : 4 1 : 1 1 9 7 1 - 0 . 0 0 9 3 5 0 . 0 4 3 9 6 0 . 0 5 3 3 1 1 : 1 : 4 1 1 9 7 2 0 . 0 1 6 8 3 0 . 0 7 3 3 9 0 . 0 5 6 5 6 1 : 1 : 4 1 1 9 7 3 0 . 0 1 9 9 1 0 . 0 9 2 9 1 0 . 0 7 3 0 0 1 : 1 4 1 1 9 7 4 0 . 0 1 0 1 9 0 . 0 8 5 3 7 0 . 0 7 5 1 8 1 4 : 1 : 1 1 9 7 5 - 0 . 0 1 4 0 9 0 . 0 3 2 9 4 0 . 0 4 7 0 3 1 : 1 4 : 1 1 9 7 6 0 . 0 0 3 1 9 0 . 0 2 9 1 5 0 . 0 2 5 9 7 1 : 4 1 : 1 1 9 7 7 - 0 . 0 0 4 9 3 0 . 0 2 8 9 5 0 . 0 3 3 8 8 1 : 4 : 1 1 9 7 8 — 0 . 0 0 0 6 9 0 . 0 2 7 5 3 0 . 0 2 8 2 2 1 : 1 4 z 1 1 9 7 9 0 . 0 0 4 7 3 0 . 0 2 5 8 0 0 . 0 2 1 0 7 1 : 4 1 : 1 1 9 8 0 - 0 . 0 0 5 9 9 0 . 0 2 6 5 6 0 . 0 3 2 5 5 1 : 4 : 1 1 9 8 1 0 . 0 0 0 3 1 0 . 0 2 9 5 9 0 . 0 2 9 2 8 1 : 1 4 : 1 1 9 8 2 0 . 0 0 7 5 8 0 . 0 3 0 0 1 0 . 0 2 2 4 2 1 a 1 4 : 1 1 9 8 3 0 . 0 0 5 3 4 0 . 0 2 9 2 6 0 . 0 2 3 9 2 1 : 1 4 a 1 1 9 8 4 0 . 0 0 4 5 3 0 . 0 2 8 7 4 0 . 0 2 4 2 0 I N D E P E N D E N T V A R I A B L E S P C F F O D C G W R A R 3 D V 7 5 0 N 8 C a p i t a F F O D A R / P O P A R C o a r s e G r a i n / W h e a t S u p p l y R a t i o ( F E S A R ( - l ) + F P R O A R ) / ( W E S A R ( - l ) + W P R O A R ) l I f < T I M E . G E . 7 S ) 0 O t h e r w i s e 8 M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s . 2 7 2 S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F F O D 0 . 0 4 4 3 9 0 6 0 . 0 1 8 8 7 5 7 0 . 0 9 2 9 0 8 9 0 . 0 2 5 8 0 0 7 P C F F O D ( - 1 ) 0 . 0 4 4 9 3 9 7 0 . 0 1 8 5 9 0 1 0 . 0 9 2 9 0 8 9 0 . 0 2 5 8 0 0 7 C G w R A R 1 . 6 7 1 6 0 4 4 0 . 5 6 9 2 6 7 3 2 . 7 5 3 1 5 8 0 0 . 6 0 1 8 7 0 4 D V 7 5 0 N ' 0 . 4 1 6 6 6 6 7 0 . 5 0 3 6 1 0 2 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 . C o v a r i a n c e C o r r e l a t i o n P C F F O D . P C F F O D 0 . 0 0 0 3 4 1 4 1 . 0 0 0 0 0 0 0 P C F F O D , P C F F O D ( - 1 ) 0 . 0 0 0 2 4 0 7 0 . 7 1 5 8 8 3 3 P C F F O D , C B W R A R 0 . 0 0 3 0 1 4 4 . 2 9 2 7 2 9 2 P C F F O D , D V 7 5 O N - 0 . 0 0 6 4 7 4 1 ~ 0 . 7 1 0 6 6 5 0 P C F F O D ( - 1 ) , P C F F O D ( - 1 ) 0 . 0 0 0 3 3 1 2 1 . 0 0 0 0 0 0 0 P C F F O D ( - 1 ) , C G w R A R 0 . 0 0 1 9 3 9 0 0 . 1 9 1 1 9 0 4 P C F F O D ( - 1 ) , D V 7 5 0 N - 0 . 0 0 4 3 4 3 3 - 0 . 4 8 4 0 9 0 2 C G N R A R , C G W R A R 0 . 3 1 0 5 6 2 5 1 . 0 0 0 0 0 0 0 C G W R A R , D V 7 5 0 N 0 . 0 2 5 4 0 0 1 0 . 0 9 2 4 5 0 4 D V 7 5 O N . D V 7 5 O N . 2 4 3 0 5 5 6 , 1 . 0 0 0 0 0 0 0 1 5 1 m 2 5 0 0 1 9 7 5 1 9 7 6 . 7 ? 1 9 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 " ? 3 M " ‘ F > C > C I C 3 1 0 1 1 ~ 4 ' 3 C 1 2 » 1 3 : d t " f “ r 4 P ) C 2 1 ! 1 1 1 ' ~ 1 7 § 7 6 ’ 1 1 7 5 1 9 3 6 o i 8 5 3 5 3 4 2 7 3 1 2 5 9 9 1 m m L ' 1 5 0 8 5 M 1 R E G I O N A L M O D E L S I M U L A T I O N 1 8 . 8 2 7 1 8 . 4 1 2 ' 1 4 . 1 9 7 1 2 . 9 8 2 1 1 . 7 8 7 1 0 . 8 8 2 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e 3 . 1 3 . a & b . C o a r s e G r a i n N e t E x p o r t s - A r g e n t i n a 1 . 0 n u 0 M u E m i T A U M u S M . i r . L , i n . N M a i 2 7 4 R E G I O N A L M O D E L S I M U L A T I O N 7 i 7 é 7 6 7 0 8 0 o i o i 8 5 3 4 7 5 - P O S T F O R E C A S T E X ' 1 9 8 4 1 9 7 5 - - — E S T I M A T E D A C T U A L - A r s e n t i n a C o a r s e G r a i n E n d i n g S t o c k s B . l 4 . a & b . r i g u r e 2 7 S A r g e n t i n a P e r C a p i t a C o a r s e G r a i n E n d i n g S t o c k s ( 1 0 0 0 M T ) e n p u 1 9 6 3 - 1 9 9 : ~ 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e 1 s P C F E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - E T A T . 2 - T A I L S I B . C . 0 . 0 2 0 6 4 5 3 0 . 0 0 2 0 5 3 2 1 0 . 0 5 5 1 5 6 0 . 0 0 0 P C F T A R 0 . 1 7 5 7 1 4 4 0 . 0 2 9 0 9 6 3 6 . 0 3 9 0 7 0 0 0 . 0 0 0 F 1 8 1 0 . 0 0 8 8 0 1 5 0 . 0 0 3 9 1 4 1 _ 2 . 2 4 8 6 6 4 7 0 . 0 3 8 D V 7 9 - 0 . 0 2 9 6 0 5 3 0 . 0 0 6 6 1 9 9 - 4 . 4 7 2 1 9 2 4 0 . 0 0 0 ' R - s o u a r e d 0 . 7 3 0 8 5 6 M e a n o f d e p e n d e n t v a r 0 . 0 1 8 8 1 2 A d j u S t e d R - s a u a r e d 0 . 6 8 3 3 6 1 S . D . o f d e p e n d e n t v a r 0 . 0 0 9 7 7 7 S . E . o 4 r e g r e s s i o n 0 . 0 0 5 5 0 2 S u m - o f s q u a r e d r e s i d 0 . 0 0 0 5 1 5 D u r b i n - w a t s o n s t a t 1 3 4 3 7 4 8 1 F - s t a t i s t i : ’ 1 5 . 3 8 7 7 7 L o g 1 i k e l i h o o o 8 1 . 6 7 7 4 2 T P E : - 3 ’ 2 0 R E S i d U i l P l o t o b s R E S I D U A L A C T U A L E I T T E D 1 : 1 4 : 1 1 9 6 3 0 : 0 0 3 4 1 ‘ 0 . 0 1 7 6 5 0 . 9 1 4 2 4 : : 4 : : 1 9 6 4 - n . 5 0 3 0 4 ' 0 . 0 1 1 3 4 0 . 0 1 4 3 7 1 : 4 : 1 1 9 6 5 0 . 0 0 1 4 0 0 . 0 0 7 9 4 0 . 0 0 6 5 4 1 : 4 : 1 1 9 6 6 0 . 0 0 3 9 0 0 . 0 1 5 3 8 0 . 0 1 1 4 8 1 : ' 4 : 1 1 9 6 7 0 . 0 0 0 3 9 . 0 . 0 1 7 8 5 0 . 0 1 7 4 6 1 4 : ' : 1 1 9 6 8 - 0 . 0 0 9 1 5 0 . 0 1 3 3 7 0 . 0 2 2 5 2 1 : 4 1 : 1 1 9 6 9 - 0 . 0 0 4 7 3 0 . 0 0 8 2 4 0 . 0 1 2 9 6 1 : 1 : 4 1 1 9 7 0 0 . 0 0 5 7 3 0 . 0 3 5 9 6 0 . 0 3 0 2 2 1 : 1 4 : 1 1 9 7 1 0 . 0 0 2 1 3 0 . 0 1 2 6 3 0 . 0 1 0 5 0 . : 1 : 4 1 1 9 7 2 0 . 0 1 1 1 9 0 . 0 2 8 6 6 0 . 0 1 7 4 7 1 : 1 4 : 1 1 9 7 3 0 . 0 1 3 0 6 0 . 0 1 3 9 8 0 . 0 1 0 9 2 1 : 1 : 4 1 1 9 7 4 0 . 0 0 6 7 6 0 . 0 4 3 3 4 0 . 0 3 6 5 8 1 : 4 1 : 1 1 9 7 5 - 0 . 0 0 1 0 2 0 . 0 3 1 7 1 0 . 0 3 2 7 3 1 : 1 4 : 1 1 9 7 6 0 . 0 0 1 1 4 0 . 0 1 8 3 2 0 . 0 1 7 1 8 1 s 1 4 : 1 1 9 7 7 0 . 0 0 0 4 8 0 . 0 2 8 6 9 0 . 0 2 8 2 0 1 : 4 1 : 1 1 9 7 8 - 0 . 0 0 2 6 3 0 . 0 1 4 2 6 0 . 0 1 6 8 9 1 : 4 : 1 1 9 7 9 - 1 . 0 D - 1 8 0 . 0 0 5 8 3 0 . 0 0 5 8 3 1 4 : 1 : 1 1 9 8 0 - 0 . 0 0 9 3 4 0 . 0 1 2 5 7 0 . 0 2 1 9 1 1 : 4 1 : 1 1 9 8 1 - 0 . 0 0 3 3 7 0 . 0 2 2 5 5 0 . 0 2 5 9 2 1 4 a 1 : 1 1 9 8 2 - 0 . 0 0 6 6 7 . 0 . 0 1 4 4 0 0 . 0 2 1 0 7 1 x ' 4 a 1 1 9 8 3 0 . 0 0 0 3 4 0 . 0 2 0 3 8 0 . 0 2 0 0 4 I N D E P E N D E N T V A R I A B L E S P C F T A R = T a r g e t C o n s u m p t i o n L e v e l ( 1 0 0 0 M T ) ( A n E s t i m a t e o f e x p e c t e d c o n s u m p t i o n b a s e d u p o n a 3 y e a r a v e r a g e o f t h e g r o w t h o f c o n s u m p t i o n . ) ( ( ( ( ( F C O N A R ( - 3 ) - F C O N A R C - 4 ) ) / F C O N A R ( - 4 ) ) 4 ( ( F C O N A R ( — 2 ) - F C O N A R ( - 3 ) ) / F C O N A R ( - 3 ) ) 4 ( ( F C O N A R ( - l ) - F C O N A R ( - 2 ) > / F C O N A R ( - 2 ) ) ) / 3 4 F C O N A R ( - l ) ) / P O P A R F 1 5 1 = S p l i n e f o r L a r g e C r o p s ( 1 0 0 0 M T ) P C P R O I £ ( P C P R O . G T . . 5 3 ) 0 O t h e r w i s e D V 7 9 = 1 I f < T I M E . 5 0 . 7 9 ) 0 O t h e r w i s e S N P L 1 9 6 3 - 1 9 8 3 2 1 D o s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F E S 0 . 0 1 8 8 1 1 6 0 . 0 0 9 7 7 7 3 0 . 0 4 3 3 3 8 6 0 . 0 0 5 8 2 9 4 P C F T A R - 0 . 0 2 0 6 6 3 1 0 . 0 4 8 6 7 0 2 0 . 0 8 4 1 6 7 4 - 0 . 0 9 0 3 2 2 8 F 1 8 1 0 . 3 6 4 3 5 7 8 0 . 3 2 5 5 5 7 1 0 . 7 3 9 6 6 0 1 0 . 0 0 0 0 0 0 0 D V 7 9 0 . 0 4 7 6 1 9 0 0 . 2 1 8 2 1 7 9 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C F E S , P C F E S 9 . 1 0 4 D - 0 5 1 . 0 0 0 0 0 0 0 P C F E S , P C F T A R 0 . 0 0 0 2 2 6 5 0 . 4 9 9 6 8 4 3 P C F E S , F 1 8 1 0 . 0 0 0 9 5 9 6 0 . 3 1 6 5 4 5 4 P C F E S , D V 7 9 - 0 . 0 0 0 6 1 8 2 - 0 . 3 0 4 2 3 2 9 P C F T A R , P C F T A R 0 . 0 0 2 2 5 6 0 1 . 0 0 0 0 0 0 0 P C F T A R , F 1 3 1 - 0 . 0 0 2 5 1 8 2 - 0 . 1 6 6 8 7 2 4 P C F T A R , D V 7 9 0 . 0 0 4 9 9 1 9 0 . 4 9 3 5 1 9 3 F 1 8 1 , F 1 8 1 0 . 1 0 0 9 4 0 4 1 . 0 0 0 0 0 0 0 F 1 8 1 , D V 7 9 - 0 . 0 1 7 3 5 0 4 - 0 . 2 5 6 4 3 6 9 < D V 7 9 , D V 7 9 0 . 0 4 5 3 5 1 5 1 . 0 0 0 0 0 0 0 ! : fl l i - 4 r ) C 1 2 1 0 a o 3 : 4 1 u " t a ‘ r d h a ‘ ) u C 1 2 : : 1 - n n - 6Q N 2 7 7 C 1 C > C > r ’ 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 ? 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N . 8 7 5 7 5 7 6 - 7 ? 7 6 1 é 3 6 o i o i 8 5 a n E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I H A T E D F i g u r e B . l $ . a & b . S o y b e a n P r o d u c t i o n - A r g e n t i n a p v w m r 1 0 n < 3 0 m w v u é v - v n a r r ' v r r fi v - v — r ‘ . ‘ r u n e - u m r w r r - v r - r v - q r a w - u r n ' - ( ( 1 . i 0 $ 1 4 n . . h — . 1 g N ‘ 4 6 - N o e 4 l 0 ~ a 3 ¢ \ N o . o : 8 - ~ 1 I 5 \ I ? ; a \ t \ \ \ \ * x \ \ \ W V I I Y V ' Y T j — Y I T W H 3 é e C : J 3 a F ' ' 3 o fi ' t \ \ \ I I r T I r - - o 0 - o a h 1 b . [ h o o w o a n n E e o ; n ' fl J m 2 7 8 T S I H L J F ' C C K t h R E G I O N A L M O D E L S I M U L A T I O N 2 - P O S T F O R E C A S T E X - 1 9 8 4 1 9 7 5 m — - E S T I M A T E D A C T U A L S o y b e a n H a r v e s t e d A r e a - A r g e n t i n a F i g u r e B . 1 6 . a & b . . 2 7 9 A r g e n t i n a S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S H A A R 2 - T A I L S I G . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . O - 1 0 1 . 6 9 1 3 9 2 2 . 4 2 4 6 4 - 0 . 8 3 0 6 4 4 8 0 . 4 1 9 S H A A R ( - 1 ) 0 . 9 7 0 2 6 6 8 0 . 0 7 8 8 8 8 3 1 2 . 2 9 9 2 4 5 0 . 0 0 0 N R A R ( - 1 ) - 1 5 6 . 2 6 1 0 7 1 4 7 . 0 2 8 5 2 - 1 . 0 6 2 7 9 4 3 0 . 3 0 5 S R A R X 1 — 1 ) 1 6 9 . 4 0 6 4 0 6 6 . 5 6 9 5 8 2 2 . 5 4 4 8 0 1 9 0 . 0 2 2 S P L 7 6 3 . 3 3 8 1 5 3 5 1 . 8 1 0 6 5 9 5 1 . 8 4 3 6 1 1 9 0 . 0 8 5 R - s q u a r e d 0 . 9 8 2 4 8 5 M e a n o f d e p e n d e n t v a r 9 5 5 . 9 0 0 0 A d j u s t e d R - s q u a r e d 0 . 9 7 7 8 1 5 S . D . o f d e p e n d e n t v a r 1 0 6 5 . 5 2 7 S . E . o f . r e g r e s s i o n 1 5 8 . 7 0 7 0 S u m o + s q u a r e d r e s i d 3 7 7 8 1 8 . 9 D u r b i n - w a t s o n s t a t 2 . 1 8 8 9 3 9 F - s t a t i s t i c - 2 1 0 . 3 5 6 8 L o g l i k e l i h o o d - 1 2 6 . 8 4 3 1 T P E 4 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L _ A C T U A L F I T T E D 1 1 1 * 1 1 1 9 6 5 7 9 . 5 1 8 4 1 6 . 0 0 0 0 e 6 3 . 5 1 8 4 1 1 1 * 1 1 1 9 6 6 4 5 . 9 3 8 9 1 7 . 0 0 0 0 - 2 8 . 9 3 8 9 1 1 1 * 1 1 1 9 6 7 5 0 . 5 4 1 5 2 0 . 0 0 0 0 - 3 0 . 5 4 1 5 1 1 1 * 1 1 1 9 6 8 2 6 . 7 6 3 9 2 8 . 0 0 0 0 1 . 2 3 6 1 1 ' 1 1 * 1 1 1 9 6 9 - 6 . 3 6 5 4 7 2 6 . 0 0 0 0 3 2 . 3 6 5 5 1 1 * 1 1 1 1 9 7 0 - 1 8 . 2 7 6 5 3 6 . 0 0 0 0 5 4 . 2 7 6 5 1 1 * 1 1 1 1 9 7 1 - 2 2 . 9 7 5 2 6 8 . 0 0 0 0 9 0 . 9 7 5 2 1 1 1 * 1 1 1 9 7 2 1 9 . 1 4 3 5 1 5 7 . 0 0 0 1 3 7 . 8 5 7 1 1 * 1 1 1 1 9 7 3 - 1 3 5 . 2 7 3 3 4 4 . 0 0 0 4 7 9 . 2 7 3 1 1 * 1 1 1 1 9 7 4 - 4 4 . 9 3 8 5 3 5 6 . 0 0 0 4 0 0 . 9 3 9 1 1 1 * 1 1 1 9 7 5 1 9 . 4 5 9 5 4 3 4 . 0 0 0 4 1 4 . 5 4 0 1 1 * 1 1 1 1 9 7 6 - 9 4 . 7 4 9 9 6 6 0 . 0 0 0 7 5 4 . 7 5 0 1 1 1 * 1 1 1 9 7 7 1 3 6 . 1 1 4 1 2 5 0 . 0 0 1 1 1 3 . 8 9 1 1 * 1 1 1 1 9 7 8 - 4 9 . 0 9 5 5 1 6 0 0 . 0 0 1 6 4 9 . 1 0 1 1 1 * 1 1 1 9 7 9 9 5 . 0 3 3 4 2 0 3 0 . 0 0 1 9 3 4 . 9 7 1 * 1 1 1 1 1 9 8 0 - 4 9 8 . 3 0 7 1 7 4 0 . 0 0 2 2 3 8 . 3 1 1 : 1 * . 1 1 1 9 8 1 2 8 . 0 1 5 1 1 9 8 6 . 0 0 1 9 5 7 . 9 8 1 1 1 * 1 1 1 9 8 2 9 5 . 4 6 5 4 2 2 8 1 . 0 0 2 1 8 5 . 5 3 1 1 1 1 1 1 9 8 3 2 0 5 . 7 6 8 - 2 8 0 0 . 0 0 2 5 9 4 . 2 3 1 1 1 * : 1 1 9 8 4 6 8 . 2 1 8 9 3 2 6 9 . 0 0 3 2 0 0 . 7 8 I N D E P E N D E N T V A R I A B L E S S H A A R = S o y b e a n H a r v e s t e d A r e a ( H A ) S R A R = S o y b e a n R e v e n u e p e r H e c t a r e ( S / H A ) ( F o r e c a s t S o y b e a n Y i e l d ) * S P / C P I A R W R A R = W h e a t R e v e n u e p e r H e c t a r e ( S / H A ) ( W Y A R ( - 3 > + w Y A R ( - 2 ) * W Y A R ( - 1 ) + W Y A R ) / 4 * F P / C P I A R S P L 7 6 = T I M E I f ( T I M E . G E . 7 6 ) 0 O t h e r w i s e 2 8 0 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m m i n i m u m S H A A R 9 5 5 . 9 0 0 0 0 1 0 6 5 . 5 2 7 4 3 2 6 9 . 0 0 0 0 1 6 . 0 0 0 0 0 0 S H A A R ( - 1 ) 7 9 3 . 2 5 0 0 0 9 3 4 . 0 2 0 8 4 2 8 0 0 . 0 0 0 0 1 6 . 0 0 0 0 0 0 N R A R ( - 1 ) 1 . 0 1 2 6 5 0 0 0 . 3 4 0 9 9 7 4 1 . 8 0 7 9 5 5 0 0 . 5 3 6 8 9 3 9 S R A R X ( - 1 ) 1 . 9 2 4 3 1 6 2 0 . 7 6 4 6 3 8 4 3 . 6 5 7 7 1 9 0 1 . 0 4 6 6 2 0 0 S P L 7 6 3 6 . 0 0 0 0 0 0 4 0 . 8 7 2 0 7 3 8 4 . 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 ' C o v a r i a n c e C o r r e l a t i o n S H A A R , S H A A R 1 0 7 8 5 8 1 . 2 1 . 0 0 0 0 0 0 0 S H A A R , S H A A R ( - 1 ) . 9 2 9 9 5 9 . 2 2 0 . 9 8 3 6 0 1 3 S H A A R , W R A R ( - 1 ) - 1 7 . 6 3 2 3 6 1 - 0 . 0 5 1 0 8 2 4 S H A A R , S R A R X ( - 1 ) 1 8 6 . 1 9 5 3 9 0 . 2 4 0 5 6 0 7 S H A A R , S P L 7 6 3 6 8 7 1 . 8 0 0 ' 0 . 8 9 1 2 0 8 8 S H A A R ( - 1 ) , S H A A R ( - 1 ) 8 2 8 7 7 5 . 1 9 1 . 0 0 0 0 0 0 0 S H A A R ( - 1 ) , W R A R ( - 1 ) - 2 8 . 5 8 3 5 6 8 - 0 . 0 9 4 4 6 8 1 S H A A R ( - 1 ) , S R A R X ( - 1 ) 9 8 . 3 5 5 1 0 6 0 . 1 4 4 9 6 4 2 S H A A R ( - 1 ) , S P L 7 6 3 1 3 6 3 . 9 5 0 0 . 8 6 4 8 1 6 4 N R A R ( - 1 ) , N R A R ( - 1 ) 0 . 1 1 0 4 6 5 3 1 . 0 0 0 0 0 0 0 W R A R ( - 1 1 , S R A R X ( - 1 ) 0 . 1 6 3 4 6 8 4 0 . 6 5 9 9 3 7 9 N R A R ( - 1 ) , S P L 7 6 - 0 . 0 9 8 8 1 1 1 - 0 . 0 0 7 4 6 2 8 S R A R X ( - l ) , S R A R X ( - 1 ) 0 . 5 5 5 4 3 8 3 1 . 0 0 0 0 0 0 0 S R A R X ( - 1 ) , 8 P L 7 6 6 . 6 5 4 4 7 2 1 0 . 2 2 4 1 3 3 7 S P L 7 6 , 8 P L 7 6 1 5 8 7 . 0 0 0 0 1 . 0 0 0 0 0 0 0 A r g e n t i n a S o y b e a n Y i e l d S M P L 1 9 6 4 - 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t 1 9 8 4 2 8 1 V a r i a b L e i s S Y A R ( M e t r i c T o n s p e r H e c t a r e ) a n - 2 - V A R I A B L E C O E F F I C I E N T 8 T D ; E R R O R T - S T A T . 2 - T A I L 8 1 8 . C - 1 8 . 2 4 1 3 5 2 . 7 2 4 5 5 9 5 - 6 . 6 9 5 1 5 8 6 0 . 0 0 0 L O G T 4 . 6 2 1 7 7 8 1 0 . 6 3 3 4 0 0 1 7 . 2 9 6 7 7 5 5 0 . 0 0 0 R - s q u a r e d 0 . 7 3 6 9 9 8 M e a n o f d e p e n d e n t v a r 1 . 6 3 5 5 0 9 A d j u s t e d R - s q u a r e d 0 . 7 2 3 1 5 6 S . D . o f d e p e n d e n t v a r 0 . 4 5 3 5 4 1 S . E . o f r e g r e s s i o n 0 . 2 3 8 6 3 5 S u m o f s q u a r e d r e s i d 1 . 0 8 1 9 8 6 D u r b i n - N a t s o n s t a t 2 . 1 5 3 8 5 6 F - s t a t i s t i c 5 3 . 2 4 2 9 3 L o g 1 i k e l i h o o d 1 . 3 4 2 3 9 0 T P E 7 / 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 * 1 1 1 9 6 4 0 . 0 8 2 4 2 1 . 0 6 2 5 0 0 . 9 8 0 0 8 1 1 1 * 1 1 1 9 6 5 0 . 0 7 3 2 6 1 . 1 2 5 0 0 1 . 0 5 1 7 4 1 1 1 * 1 1 1 9 6 6 0 . 1 1 3 0 0 1 . 2 3 5 2 9 1 . 1 2 2 3 0 1 1 * 1 1 1 1 9 6 7 - 0 . 0 9 1 8 0 1 . 1 0 0 0 0 1 . 1 9 1 8 0 1 1 * 1 1 1 1 9 6 8 - 0 . 1 1 7 4 2 1 . 1 4 2 8 6 1 . 2 6 0 2 7 1 * 1 1 1 1 1 9 6 9 - 0 . 2 8 9 2 8 1 . 0 3 8 4 6 1 . 3 2 7 7 5 1 1 1 * 1 1 9 7 0 0 . 2 4 4 6 4 1 . 6 3 8 8 9 1 . 3 9 4 2 4 1 * 1 1 1 1 1 9 7 1 - 0 . 3 1 2 7 4 1 . 1 4 7 0 6 1 . 4 5 9 8 0 1 1 1 * 1 1 1 9 7 2 0 . 2 0 8 0 4 1 . 7 3 2 4 8 1 . 5 2 4 4 4 1 1 * 1 1 1 1 9 7 3 - 0 . 1 4 6 3 4 1 . 4 4 1 8 6 1 . 5 8 8 2 0 1 * 1 1 1 1 1 9 7 4 - 0 . 2 8 8 7 2 1 . 3 6 2 3 6 1 . 6 5 1 0 8 1 1 * 1 1 1 1 9 7 5 - 0 . 1 1 1 7 3 1 . 6 0 1 3 8 1 . 7 1 3 1 1 1 1 1 : * 1 1 9 7 6 0 . 3 4 6 8 8 2 . 1 2 1 2 1 1 . 7 7 4 3 3 1 1 1 1 * 1 1 9 7 7 0 . 3 2 5 2 6 2 . 1 6 0 0 0 1 . 8 3 4 7 4 1 1 1 1 1 1 9 7 8 7 0 . 4 1 8 1 2 2 . 3 1 2 5 0 1 . 8 9 4 3 8 1 1 * 1 1 1 1 9 7 9 - 0 . 1 7 9 8 6 1 . 7 7 3 4 0 1 . 9 5 3 2 6 1 1 * 1 1 1 9 8 0 9 . 4 D - 0 5 2 . 0 1 1 4 9 2 . 0 1 1 4 0 1 1 1 * 1 1 1 9 8 1 0 . 0 2 0 8 2 2 . 0 8 9 6 3 2 . 0 6 8 8 1 1 * 1 1 1 1 1 9 8 2 - 0 . 2 8 4 2 2 1 . 8 4 1 3 0 2 . 1 2 5 5 2 1 1 1 * 1 1 9 8 3 0 . 2 3 8 1 0 2 . 4 1 9 6 4 2 . 1 8 1 5 4 1 * 1 1 1 1 9 8 4 - 0 . 2 4 8 5 2 1 . 9 8 8 3 8 2 . 2 3 6 9 0 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( Y E A R ) 2 8 2 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S Y A R 1 . 6 3 5 5 0 9 4 0 . 4 5 3 5 4 1 3 2 . 4 1 9 6 4 3 0 1 . 0 3 8 4 6 2 0 L O G T 4 . 3 0 0 6 9 7 0 0 . 0 8 4 2 4 4 4 4 . 4 3 0 8 1 7 0 4 . 1 5 8 8 8 3 0 " C o v a r i a n c e C o r r e l a t i o n S Y A R , 8 Y A R 0 . 1 9 5 9 0 4 5 1 . 0 0 0 0 0 0 0 S Y A R , L O G T 0 . 0 3 1 2 3 9 3 0 . 8 5 8 4 8 6 2 L O B T , L O G T 0 . 0 0 6 7 5 9 2 1 . 0 0 0 0 0 0 0 a t O > < O I - a a ‘ n ‘ K K L z . D " ) ! ' a : K 5 G n t 4 W m I l b ) ‘ - » - - a I d - 1 % 2 1 ‘ a : i ; ' r 1 C 1 2 fi l M 1 * ” n 3 ; i i — l o - l i 0 I . l . I - ' . d I ~ \ ‘ - \ U I ' " " " l P > C D < O z : m i ~ 4 ' 3 C 1 2 D ( 7 1 1 6 7 9 3 6 o i o i 8 5 a n F i g u r e B . l 7 . a & b . 8 3 3 . . 9 5 0 ‘ . 0 4 8 5 8 7 5 4 2 4 9 8 . 4 5 0 . 4 0 4 . 3 5 8 . 3 1 2 . 2 8 8 . 2 2 0 . 2 8 3 ' 8 ' 0 . " " " " " " o . . . . . . a 5 R E G I O N A L M O D E L S I M U L A T I O N 8 5 4 1 4 2 2 3 7 3 3 3 4 2 9 5 2 5 8 2 1 7 1 7 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - — - E S T I M A T E D S o y m e a l E q u i v a l e n t C o n s u m p t i o n - A r g e n t i n a 2 8 4 A r g e n t i n a P e r C a p i t a S o y m e a l E q u i v a l e n t C o n s u m p t i o n * ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C S M E C V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 0 1 0 9 8 9 7 0 . 0 0 8 2 8 8 0 - 1 . 3 2 5 9 8 4 7 0 . 2 0 5 P C R G D P ( - 1 ) 1 . 2 2 3 1 4 6 6 0 . 7 9 9 9 7 4 5 1 . 5 2 8 9 8 1 9 0 . 1 4 7 ' P C S M D S 0 . 0 5 9 8 9 4 9 0 . 0 1 7 2 8 0 4 3 . 4 6 6 0 6 4 7 0 . 0 0 3 P C S M E C ( — 1 ) 0 . 4 3 5 7 9 4 7 0 . 1 6 6 1 7 7 3 2 . 6 2 2 4 6 9 0 0 . 0 1 9 R - s q u a r e d 0 . 8 7 2 9 7 9 M e a n o f d e p e n d e n t v a r 0 . 0 0 7 9 8 1 A d j u s t e d R - s q u a r e d 0 . 8 4 7 5 7 5 S . D . o f d e p e n d e n t v a r 0 . 0 0 6 2 7 6 S . E . o f r e g r e s s i o n 0 . 0 0 2 4 5 0 S u m o f s q u a r e d r e s i d 9 . 0 1 0 - 0 5 D u r b i n - w a t s o n s t a t 1 . 7 1 1 4 9 7 F - s t a t i s t i c 3 4 . 3 6 3 5 4 L o g l i k e l i h o o d 8 9 . 5 0 5 9 6 T P E 3 5 / 1 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : * 1 : 1 1 9 6 5 - 0 . 0 0 0 9 7 0 . 0 0 0 2 5 0 . 0 0 1 2 2 1 * 1 : 1 1 9 6 6 - 0 . 0 0 2 5 7 ' 0 . 0 0 0 2 0 0 . 0 0 2 7 7 : = * : : 1 1 9 6 7 - 0 . 0 0 1 8 6 ' 0 . 0 0 0 3 7 0 . 0 0 2 2 3 1 : * 1 : 1 1 9 6 8 - 0 . 0 0 0 3 3 0 . 0 0 0 7 5 0 . 0 0 1 0 8 1 : * 1 : 1 1 9 6 9 - 0 . 0 0 0 3 9 0 . 0 0 0 8 5 0 . 0 0 1 2 4 1 : * 1 : 1 1 9 7 0 - 0 . 0 0 0 5 8 0 . 0 0 1 3 6 0 . 0 0 1 9 3 1 : * : 1 1 9 7 1 0 . 0 0 0 1 2 0 . 0 0 2 0 5 0 . 0 0 1 9 3 1 : 1 : * 1 1 9 7 2 ‘ 0 . 0 0 3 6 1 0 . 0 0 6 9 2 0 . 0 0 3 3 1 1 : 1 1 * 1 1 9 7 3 0 . 0 0 2 7 6 0 . 0 0 8 7 3 0 . 0 0 5 9 8 1 : 1 : * 1 1 9 7 4 0 . 0 0 4 8 1 ' 0 . 0 1 2 5 0 0 . 0 0 7 6 9 1 * : 1 : 1 1 9 7 5 - 0 . 0 0 3 0 2 0 . 0 0 7 5 9 0 . 0 1 0 6 1 1 : * = 1 1 9 7 6 - 3 . B D - 0 5 ' 0 . 0 0 9 9 1 0 . 0 0 9 9 5 1 : * 1 : 1 1 9 7 7 - 0 . 0 0 0 8 4 0 . 0 1 1 6 1 0 . 0 1 2 4 5 1 : 1 * : 1 1 9 7 8 0 . 0 0 0 8 2 _ 0 . 0 1 5 2 1 0 . 0 1 4 3 9 1 : 1 * : 1 1 9 7 9 0 . 0 0 1 1 6 0 . 0 1 5 4 4 0 . 0 1 4 2 9 1 : : * 1 : 1 9 8 0 0 . 0 0 0 5 5 ' 0 . 0 1 4 8 7 0 . 0 1 4 3 1 1 : 1 * : 1 1 9 8 1 0 . 0 0 0 7 0 0 . 0 1 5 7 5 0 . 0 1 5 0 5 1 * : 1 : 1 1 9 8 2 - 0 . 0 0 4 6 4 0 . 0 0 9 7 9 0 . 0 1 4 4 3 1 : 1 * : 1 1 9 8 3 0 . 0 0 0 7 0 0 . 0 1 7 4 8 0 . 0 1 6 7 9 I N D E P E N D E N T V A R I A B L E S P C S M E C O ( 1 0 0 0 M T ) . P C R G D P G D P A R / C P I A R / P O P A R P C S M D S ( ( S E S A R ( - l ) * S o y n e a l E q u i v a l e n t C o n s u m p t i o n S E S A R ) * . 7 9 5 + S M E S A R ( - l ) S N E A R R e a l G D P P e r C a p i t a ( S E S A R ( - l ) S M N E A R S M E S A R + S P R O A R S o y m e a l E q u i v a l e n t C o n s u m p t i o n P e r C a p i t a S o y m e a l D o m e s t i c S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) + S P R O A R ) * . 7 9 5 + S M E S A R ( - l ) ) / P O P A R 2 8 5 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m R C S M E C 0 . 0 0 7 9 8 0 6 0 . 0 0 6 2 7 5 9 0 . 0 1 7 4 8 1 9 0 . 0 0 0 2 0 3 0 P C R G D P ( - 1 ) 0 . 0 1 0 3 7 9 3 0 . 0 0 0 7 9 1 4 0 . 0 1 1 9 8 0 7 0 . 0 0 9 3 3 0 8 . P C S M D S 0 . 0 5 3 2 9 2 9 0 . 0 5 9 2 8 5 3 . 2 0 0 0 3 1 7 0 . 0 0 1 0 0 3 6 P C S M E C ( - 1 ) 0 . 0 0 7 0 7 4 3 0 . 0 0 6 0 6 7 4 0 . 0 1 5 7 5 3 4 0 . 0 0 0 2 0 3 0 C o v a r i a n c e C o r r e l a t i o n P C S M E C , P C 8 M E C 3 . 7 3 1 D - 0 5 1 . 0 0 0 0 0 0 0 P C S M E C , P C R B D P ( - 1 ) 3 . 6 1 3 D - O 7 0 . 0 7 6 7 8 7 9 P C S M E C , P C 8 M D 8 0 . 0 0 0 3 0 6 0 0 . 8 6 8 0 9 7 7 P C S M E C , P C 8 M E C ( - 1 ) 3 . 1 6 8 D - 0 5 0 . 8 7 8 1 1 2 6 P C R G D P ( - 1 ) , P C R 8 D P ( - l ) 5 . 9 3 4 D - 0 7 1 . 0 0 0 0 0 0 0 P C R B D P ( - 1 ) , P C S M D S - 8 . 4 9 6 D - 0 6 - 0 . 1 9 1 1 4 5 3 P C R B D P < ~ 1 ) , P C S M E C ( - 1 ) 3 . 3 1 4 D - 0 7 0 . 0 7 2 8 5 5 5 P C S M D 8 , P C S M D S 0 . 0 0 3 3 2 9 8 1 . 0 0 0 0 0 0 0 P C 8 M D S , P C S M E C ( - 1 ) 0 . 0 0 0 2 6 8 4 0 . 7 8 7 4 8 0 7 P C 8 M E C ( - 1 ) , P C S M E C ( - 1 ) 3 . 4 8 8 D - 0 5 1 . 0 0 0 0 0 0 0 l a t a i O 3 I 3 > < - O e . a ; w x 1 “ n N . 1 , A ; . 1 1 ‘ . I - ‘ - | - - - . . A I - m a L Z : " f i “ i * m 5 ‘ - o ' u \ l a “ 1 0 3 . C n : ) 1 1 2 1 U » 1 0 3 ( 0 ! 1 1 4 ; ( 1 « I l i I ) 3 l - - ‘ J ' J 5 ~ ' l . 1 u 1 e £ " r ‘ I O ' I I U V V I 8 U 1 4 * 1 r 3 C 1 2 1 U ' 2 8 6 h ; - c 1 1 c 3 : 1 - . . . M N 1 9 ? 3 1 9 ? ? 1 9 3 % 1 9 8 1 1 9 8 2 R E G I O N A L M O D E L S I M U L A T I O N 1 8 8 . . 8 9 3 ' 1 5 8 . 1 4 0 . 1 2 4 . 1 0 8 . 8 2 . 7 8 . 8 0 . 4 4 . 1 7 2 7 4 8 8 3 8 5 8 3 5 2 8 4 7 3 4 1 7 3 8 2 3 0 7 2 5 2 - 7 6 v é 3 1 8 2 3 5 e d - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ~ ~ E S T I M A T E D F i g u r e 8 . 1 8 . a & b . A r g e n t i n a S o y o i l E q u i v a l e n t C o n s u m p t i o n - 2 8 7 A r g e n t i n a S o y o i l E q u i v a l e n t C o n s u m p t i o n ’ ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S O E C O V A R I A B L E C O E F F I C I F N T S T D . E R R O R T - - S T A T . 2 - T A I L S I P C - 2 3 2 . 8 1 4 2 3 1 8 5 . 5 8 3 3 1 - 1 . 2 5 4 4 9 9 8 0 . 2 2 9 S D S A R 0 . 0 1 4 2 9 0 0 0 . 0 0 7 3 3 3 0 1 . 9 4 8 7 2 0 1 0 . 0 7 0 S O E C O ( - 1 ) 0 . 1 6 6 0 3 7 7 0 . 2 7 7 5 6 5 3 0 . 5 9 8 1 9 3 3 0 . 5 5 9 T I M E 3 . 4 4 7 5 6 0 6 2 . 6 7 4 3 0 6 7 . 2 8 9 1 4 1 8 0 . 2 1 7 R - s q u a r e d 0 . 8 6 1 9 6 3 M e a n o f d e p e n d e n t v a r 5 6 . 4 6 9 7 4 A d j u s t e d R - s q u a r e d 0 . 8 3 4 3 5 6 S . D . o f d e p e n d e n t v a r 6 1 . 1 6 1 6 7 S . E . o f r e g r e s s i o n 2 4 . 8 9 2 4 2 S u m o f s q u a r e d r e s i d 9 2 9 4 . 4 8 7 D u r b i n - w a t s o n s t a t 1 . 8 7 2 4 3 9 F - s t a t i s t i c 3 . 2 2 2 2 L o g 1 i k e l i h o o d - 8 5 . 7 9 0 8 4 T P E = 6 / 1 8 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 * 1 1 1 9 6 5 9 . 3 4 4 2 7 . 1 . 2 2 5 0 0 - 8 . 1 1 9 2 7 1 1 1 * 1 1 1 9 6 6 4 . 6 9 6 6 5 0 . 2 2 5 0 0 - 4 . 4 7 1 6 5 1 1 1 * 1 1 1 9 6 7 4 . 2 5 0 7 8 3 . 2 7 5 0 0 - 0 . 9 7 5 7 8 1 1 * : 1 1 9 6 8 - 1 . 0 9 9 7 0 ' 2 . 1 5 0 0 0 3 . 2 4 9 7 0 1 1 * 1 1 1 9 6 9 - 1 . 2 6 4 0 8 5 . 3 7 5 0 0 6 . 6 3 9 0 8 1 1 * 1 1 1 1 9 7 0 - 3 . 5 8 2 9 7 7 . 5 2 5 0 0 1 1 . 1 0 8 0 1 1 * 1 1 1 1 9 7 1 - 5 . 5 6 2 6 6 9 . 8 5 0 0 0 1 5 . 4 1 2 7 1 1 * 1 1 1 1 9 7 2 - 5 . 9 9 7 1 6 1 6 . 2 5 0 0 2 2 . 2 4 7 2 1 1 * 1 1 1 1 9 7 3 - 7 . 0 3 3 4 9 2 3 . 5 2 5 0 3 0 . 5 5 8 5 1 1 1 1 * 1 1 9 7 4 3 7 . 9 2 1 0 _ 7 5 . 4 5 0 0 3 7 . 5 2 9 0 1 : * 1 1 1 1 9 7 5 - 1 5 . 1 0 2 1 3 6 . 2 2 5 0 5 1 . 3 2 7 1 1 1 1 * 1 1 1 9 7 6 5 . 2 9 5 8 0 6 3 . 8 7 5 0 5 8 . 5 7 9 2 1 1 1 * 1 1 1 9 7 7 6 . 4 8 7 2 6 _ 9 2 . 4 2 5 0 8 5 . 9 3 7 7 1 * 1 1 1 1 1 9 7 8 - 6 0 . 7 1 5 1 . 4 5 . 7 0 0 0 1 0 6 . 4 1 5 1 * 1 1 1 1 1 9 7 9 - 4 0 . 8 4 3 7 6 0 . 9 7 5 0 1 0 1 . 8 1 9 1 1 1 1 * 1 1 9 8 0 3 7 . 7 8 0 2 . 1 4 3 . 8 2 5 1 0 6 . 0 4 5 1 1 1 * 1 1 1 9 8 1 9 . 2 4 4 9 2 1 4 2 . 2 2 5 1 3 2 . 9 8 0 1 1 1 * 1 1 1 9 8 2 6 . 4 2 7 6 4 1 4 1 . 4 7 5 1 3 5 . 0 4 7 1 1 1 * 1 1 1 9 8 3 1 9 . 7 5 2 4 2 0 1 . 3 5 0 1 8 1 . 5 9 8 I N D E P E N D E N T V A R I A B L E S S D S A R = S o y b e a n S u p p l y ( 1 0 0 0 M T ) S E S A R ( - l ) + S P R O A R S O E C O = S o y o i l e q u i v a l e n t c o n s u m p t i o n ( 1 0 0 0 M T ) T I M E = 1 9 6 0 = 6 0 . 1 9 6 1 : 6 1 . . . . * S o y o i l E q u i v a l e n t C o n s u m p t i o n = ( S E S A R < - l ) * S P R O A R - S N E A R . S E S A R ) * . 1 7 5 * S O E S A R < - 1 ) - S O N E A R - S O E S A R 2 8 8 S M P L 1 9 6 5 — 1 9 8 3 * 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M i n i m u m S O E C O 5 6 . 4 6 9 7 3 6 1 . 1 6 1 6 7 4 2 0 1 . 3 5 0 0 0 0 . 2 2 5 S D S A R 1 8 5 7 . 0 5 2 6 2 1 4 5 . 0 1 6 3 7 3 3 2 . 0 0 0 0 2 8 . 0 0 0 0 0 0 S O E C O ( - 1 ) 4 5 . 9 3 6 8 4 2 5 1 . 2 5 4 9 7 3 1 4 3 . 8 2 5 0 0 0 . 2 2 5 T I M E 7 4 . 0 0 0 0 0 0 5 . 6 2 7 3 1 4 3 3 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S O E C O , S O E C O 3 5 3 . 8 6 8 8 1 . 0 0 0 0 0 0 0 S O E C O , S D S A R 1 1 3 4 7 5 . 4 9 0 . 9 1 3 0 0 5 1 S O E C O , S O E C O ( - 1 ) 2 5 7 6 . 8 3 1 0 0 . 8 6 7 6 6 4 2 S O E C O , T I M E 2 9 1 . 5 8 9 4 8 0 . 8 9 4 2 7 7 7 S D S A R , S D S A R 4 3 5 8 9 3 1 . 8 1 . 0 0 0 0 0 0 0 S D S A R , S O E C O ( - 1 ) 9 3 1 4 1 . 6 2 8 0 . 8 9 4 2 4 8 7 S D S A R , T I M E 1 0 3 6 1 . 3 6 8 0 . 9 0 6 0 7 9 8 S O E C O ( - 1 ) , S O E C O ( - 1 ) 2 4 8 8 . 8 0 5 3 1 . 0 0 0 0 0 0 0 " S O E C O ( - 1 ) , T I M E 2 4 1 . 5 0 5 2 7 0 . 8 8 3 8 3 3 6 T I M E , T I M E 3 0 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 ” F ) ( > C > C 4 ‘ 3 C 1 2 n I P > C 3 < O z : n t i - 4 - 3 C 1 2 n I . 2 2 2 a . . . - . . 2 . . i . . . . . . 1 . 1 . 2 . 4 a t - d o o h n o i t a n « ' 3 b : : u a ‘ 0 e ‘ ‘ m m 3 . . 6 I : “ n " . 1 . P - 5 5 J J D H O A 8 ‘ 5 I I I ' U U ' U ' U ' U ' V ' U ' U 7 5 7 a 7 1 7 6 7 é 8 0 8 1 8 2 3 5 8 4 ~ 3 8 - 4 ~ 1 1 n 1 3 1 1 8 K ‘ . ‘ h 6 " 1 7 0 . 1 5 3 . 1 3 5 . . 0 2 0 1 0 0 . 8 2 . 8 5 . 4 7 . 3 0 . 1 2 . 2 8 9 " e ‘ J J - A H A . . . ‘ 1 ‘ 8 “ M W - O M “ ” I " R E G I O N A L M O D E L S I M U L A T I O N 8 4 4 1 0 3 ' 5 8 1 4 7 8 9 3 7 3 8 5 8 5 4 3 1 2 7 7 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e B . l S . a & b . S o y m e a l E n d i n g S t o c k s - A r g e n t i n a . 2 9 0 A r g e n t i n a S o y m e a l E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 6 - 1 9 8 3 1 8 ' O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S M E S A R T - E T A T . 2 - T A I L S I B . V A R I A B L E C O E F F I C I E N T S T D . E R R O R C - 2 2 4 . 8 5 0 9 5 9 0 . 2 7 0 3 3 6 - 2 . 4 9 0 8 6 2 0 0 . 0 2 5 8 1 0 . 0 7 5 8 9 1 5 0 . 0 1 4 9 9 2 5 5 . 0 6 1 9 5 4 1 0 . 0 0 0 T I M E 3 . 2 3 6 3 1 8 8 1 . 2 2 1 6 2 9 8 2 . 6 4 9 1 8 1 4 0 . 0 1 8 R - s q u a r e d . 0 . 7 8 9 8 1 3 M e a n o f d e p e n d e n t v a r 2 6 . 7 2 2 2 2 A d j u s t e d R - s q u a r e d 0 . 7 6 1 7 8 8 S . D . o f d e p e n d e n t v a r 4 9 . 1 1 4 2 8 S . E . o f r e g r e s s i o n 2 3 . 9 7 1 1 8 S u m o f s q u a r e d r e s i d 8 6 1 9 . 2 6 3 D u r b i n - w a t s o n s t a t 0 . 9 2 9 3 2 2 F - s t a t i s t i c 2 8 . 1 8 2 5 3 L o g l i k e l i h o o d - 8 1 . 0 8 3 3 4 T P E . 4 / 1 7 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 * 1 1 1 9 6 6 1 2 . 2 5 3 9 1 . 0 0 0 0 0 - 1 1 . 2 5 3 9 1 1 1 * 1 1 1 9 6 7 1 1 . 0 1 7 6 3 . 0 0 0 0 0 - 8 . 0 1 7 5 8 1 1 1 * 1 1 1 9 6 8 4 . 7 8 1 2 6 ' 0 . 0 0 0 0 0 - 4 . 7 8 1 2 6 1 1 * 1 1 1 9 6 9 1 . 5 4 4 9 5 0 . 0 0 0 0 0 - 1 . 5 4 4 9 5 1 1 * 1 1 1 9 7 0 0 . 3 0 8 6 3 2 . 0 0 0 0 0 1 . 6 9 1 3 7 1 1 * 1 1 1 1 9 7 1 - 2 . 9 2 7 6 9 2 . 0 0 0 0 0 4 . 9 2 7 6 9 1 1 * 1 1 1 1 9 7 2 - 6 . 1 6 4 0 1 2 . 0 0 0 0 0 8 . 1 6 4 0 1 1 1 1 * 1 1 1 9 7 3 1 8 . 5 9 9 7 3 0 . 0 0 0 0 1 1 . 4 0 0 3 1 1 * 1 1 1 9 7 4 - 1 . 6 3 6 6 5 1 3 . 0 0 0 0 1 4 . 6 3 6 6 1 1 * 1 1 1 1 9 7 5 - 2 . 8 7 2 9 7 1 5 . 0 0 0 0 1 7 . 8 7 3 0 1 : * 1 : 1 1 9 7 6 - 1 7 . 1 0 9 3 “ 4 . 0 0 0 0 0 2 1 . 1 0 9 3 1 1 * 1 1 1 1 9 7 7 - 1 5 . 0 2 3 0 1 4 . 0 0 0 0 2 9 . 0 2 3 0 1 * 1 1 1 1 1 9 7 8 - 5 3 . 3 1 4 8 9 . 0 0 0 0 0 6 2 . 3 1 4 8 1 * 1 1 1 1 1 9 7 9 - 2 5 . 3 7 4 6 1 6 . 0 0 0 0 4 1 . 3 7 4 6 1 1 * 1 1 1 1 9 8 0 - 1 2 . 0 5 4 6 2 2 . 0 0 0 0 3 4 . 0 5 4 6 1 1 1 * 1 1 1 9 8 1 1 4 . 6 8 0 9 5 2 . 0 0 0 0 3 7 . 3 1 9 1 1 1 1 1 * 1 1 9 8 2 5 7 . 4 7 2 8 9 8 . 0 0 0 0 4 0 . 5 2 7 2 1 1 1 * 1 1 1 9 8 3 1 5 . 8 1 7 9 1 9 8 . 0 0 0 1 8 2 . 1 8 2 I N D E P E N D E N T V A R I A B L E S 5 1 = S o y b e a n D o m e s t i c S u p p l y I f ( S o y b e a n D o m e s t i c S u p p l y . G T . ( - 2 0 6 0 3 . 3 8 9 + 2 9 7 . 6 6 7 8 0 9 T I M E ) ) 0 O t h e r w i s e T I M E = 1 9 6 0 = 6 0 . 1 9 6 1 = 6 l . . . . 2 9 1 S M P L 1 9 6 6 - 1 9 8 3 1 8 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S M E S A R 2 6 . 7 2 2 2 2 2 4 9 . 1 1 4 2 7 9 1 9 8 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 5 1 1 3 7 . 9 2 6 0 7 4 3 4 . 9 9 7 9 3 1 8 2 3 . 9 0 1 0 0 . 0 0 0 0 0 0 0 T I M E 7 4 . 5 0 0 0 0 0 5 . 3 3 5 3 9 1 3 . 0 0 0 0 0 0 6 6 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S M E S A R , S M E 8 A R 2 2 7 8 . 2 0 0 6 1 . 0 0 0 0 0 0 0 S M E S A R , S I 1 6 7 7 8 . 7 0 7 0 . 8 3 1 5 4 7 6 S M E S A R , T I M E 1 6 2 . 5 2 7 7 8 0 . 6 5 6 3 2 8 1 8 1 , 8 1 1 7 8 7 1 0 . 8 0 1 . 0 0 0 0 0 0 0 8 1 , T I M E 9 9 3 . 7 4 6 0 3 0 . 4 5 3 0 9 5 1 T I M E , T I M E 2 6 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 d a t - s u n u “ u n 3 a $ . . 3 . . t J F D C > C > C ! : 0 1 4 9 1 ~ J C 1 2 1 I U 5 : . " 3 2 . . 2 . t . ‘ - i ‘ F > C > C > C ! : 1 “ W I I I I I I I V I U V I I " T ’ I ' 7 s 7 0 7 1 7 6 7 0 8 0 3 1 3 2 8 5 8 3 5 4 . 4 8 . 4 3 . 3 7 . 3 2 . 2 8 . 2 1 . 1 5 . 1 0 . . 8 2 0 2 9 2 “ ‘ 3 S b 4 - 1 L 3 ” 8 “ “ « a n a l - u m - I . J ' 4 . h t l l ‘ “ - 4 5 1 . 4 1 . . . “ S h a w n - . 1 1 o u r - 0 M 4 . 1 0 4 ’ I u L i . £ 2 1 2 5 4 7 8 1 ‘ 2 8 8 7 7 8 2 8 3 7 9 0 2 9 8 8 0 5 3 1 2 . . . . . 1 8 5 n ‘ 0 1 . “ “ 1 4 “ ! “ t h m e a l “ i n “ a . « d a m a r i a R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ‘ - — - E S T I M A T E D F i g u r e B . 2 0 . a & b . S o y o i l E n d i n g S t o c k s - A r g e n t i n a A r g e n t i n a S o y o i l E n d i n g S t o c k s S M P L 1 9 6 9 - 1 5 O b s e r v a t i o n s 1 9 8 3 ( 1 0 0 0 M T ) L S / / D e p e n d e n t V a r i a b l e i s S O E S A R = 1 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C - 3 . 5 4 7 0 0 5 2 3 . 2 2 0 6 5 8 2 - 1 . 1 0 1 3 2 9 3 0 . 2 9 2 S O D S A R 0 . 0 3 4 9 9 1 8 0 . 0 0 6 0 1 1 7 5 . 8 2 0 5 8 3 0 0 . 0 0 0 ' M A R B I N 0 . 3 6 4 0 7 9 3 . 2 0 8 8 7 9 7 1 . 7 4 3 0 1 0 0 0 . 1 0 7 R - s q u a r e d 0 . 7 3 8 8 5 2 M e a n o § d e p e n d e n t v a r 1 0 . 5 3 3 3 3 A d j u s t e d R - s q u a r e d 0 . 6 9 5 3 2 S . D . o f d e p e n d e n t v a r 1 4 . 8 9 9 0 3 S . E . o f r e g r e s s i o n 8 . 2 2 3 8 4 7 S u m o f s q u a r e d r e s i d 8 1 1 . 5 7 9 8 D u r b i n - N a t s o n s t a t 0 . 9 3 9 5 4 3 F - s t a t i s t i c 1 6 . 9 7 5 4 4 L o g l i k e l i h o o d - 5 1 . 2 1 6 0 7 1 1 : 5 3 2 / 1 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D ‘ 1 : * 1 . : 1 1 9 6 9 - 1 . 0 8 7 5 8 0 . 0 0 0 0 0 1 . 0 8 7 5 8 1 : 1 * : 1 1 9 7 0 2 . 4 0 8 1 5 0 . 0 0 0 0 0 - 2 . 4 0 8 1 5 1 : 1 * : 1 1 9 7 1 5 . 1 4 5 0 0 1 . 0 0 0 0 0 - 4 . 1 4 5 0 0 1 : i 1 : 1 1 9 7 2 - 3 . 4 7 4 7 4 3 . 0 0 0 0 0 6 . 4 7 4 7 4 1 : * 1 : 1 1 9 7 3 - 2 . 5 1 4 2 6 3 . 0 0 0 0 0 5 . 5 1 4 2 6 1 : 1 : * 1 1 9 7 4 1 0 . 4 2 5 2 8 . 0 0 0 0 0 - 2 . 4 2 5 1 9 1 : 1 * : 1 1 9 7 5 2 . 8 0 1 4 2 4 . 0 0 0 0 0 1 . 1 9 8 5 8 1 : 1 * : 1 1 9 7 6 2 . 5 2 8 7 1 3 . 0 0 0 0 0 0 . 4 7 1 2 9 1 * 1 : 1 1 9 7 7 - 8 . 9 0 1 9 0 4 . 0 0 0 0 0 1 2 . 9 0 1 9 1 * : 1 : 1 1 9 7 8 - 1 4 . 0 7 4 2 4 . 0 0 0 0 0 1 8 . 0 7 4 2 1 * 1 : 1 1 9 7 9 - 8 . 3 2 3 2 8 1 2 . 0 0 0 0 2 0 . 3 2 3 3 1 : * 1 : 1 1 9 8 0 - 5 . 4 3 7 3 3 8 . 0 0 0 0 0 1 3 . 4 3 7 3 1 : * ' 1 : 1 1 9 8 1 - 1 . 9 1 3 0 5 1 8 . 0 0 0 0 1 9 . 9 1 3 0 1 : 1 : 1 1 9 8 2 1 2 . 8 9 6 7 4 0 . 0 0 0 0 2 7 . 1 0 3 3 1 : 1 : * 1 1 9 8 3 9 . 5 2 1 1 7 5 0 . 0 0 0 0 ‘ 4 0 . 4 7 8 8 I N D E P E N D E N T V A R I A B L E S ( 1 0 0 0 M T ) S O D S A R = S o y o i l E q u i v a l e n t D o m e s t i c S u p p l y ( ( S E S A R ( - l ) + S P R O A R ) * . 1 7 S + S O E S A R C - l ) M A R G I N = S o y b e a n C r u s h M a r g i n ( S M P * X R A R / C P I A R ) * . 7 9 5 * ( S P Q X R A R / C P I A R ) ( S O P * X R A R / C P I A R ) * . 1 7 5 - m Z m r “ c a n I “ e m u H u . o a m m 1 < m n w o n m N w fi m m x w m m 3 0 m : m . U . 3 0 x » 3 c 3 _ z w d a a c a m o m m D m H 0 . m u u u u u H 6 . m o o o m m m o . o o o o o o 0 . 0 0 0 0 0 0 0 m o o m b m b a o . m p b o o H m o . p o m o m H u m u . » o o o H m . m u m a o c 3 D m m H z l u . u o o m s o o » ~ . M O O M H O M H . M O V Q H O l u o . m h v p o o 0 0 < m 1 u m 3 n m 0 0 3 1 m u m ¢ w 0 3 m o m m b x . m o m w b m N O V . H m M N M » . O O O O O O O m o m m b m . m o o m b m b a u m . o m h m . o . m m o w o n o m o m m b m . Z D m O H Z l o . ~ m p u m u u 1 0 . 0 M 0 h o u h w o o m D m . m o o m D m u b u u m u . w u H . o o o o o o o m o o m b m . 3 D m m H Z l w w o h . o u m u 1 0 . n e m o u 0 u Z D m m H Z . 3 D m m H Z u p u . o m m u o 9 . 0 0 0 0 0 0 0 L * . . 3 4 ‘ . w 3 4 P D “ C D . : 9 C 3 K : 1 4 T 4 ‘ . 1 1 2 I . t ( 4 A " 3 1 1 . - . I ( l l - i ‘ t 0 I O 3 1 5 9 ' 4 > c z : m P > C 3 < O 3 3 “ 1/ n l i j l l l l " " 2 9 5 U : 1 E l . 1 U - 1 . " ! I I * 9 1 3 " ' ~ 0 5 . C “ . I ~ E 1 1 . 4 . . _ r W ‘ M I - b - fl g w . . 4 fi w l - - ‘ . . ‘ 1 1 ? n o " " I I — c . - M ! ) r 1 0 ' 3 . . a ' 4 3 R E G I O N A L M O D E L S I M U L A T I O N 3 9 4 . 9 0 1 3 5 0 . 9 1 1 3 1 9 . 9 2 2 2 9 2 . 9 3 2 2 4 3 . 9 4 3 2 1 4 . 9 5 3 . 1 8 0 . 9 9 4 3 1 4 9 . 9 7 4 I 1 1 2 . 9 9 4 7 9 . 9 9 9 3 ' ' ' ' I ' I ' 7 5 7 6 F i g u r e B . 2 1 . a & b . A C T U A L 7 7 7 ° 7 é ‘ 6 3 1 8 5 3 3 3 4 P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 E X - ~ - - E S T I M A T E D S o y b e a n E n d i n g S t o c k s - A r g e n t i n a A r g e n t i n a S o y b e a n E n d i n g S t o c k s S M P L 1 9 6 6 1 8 O b s e r v a t i o n s 1 9 8 3 2 9 6 ( 1 0 0 0 M T ) L S / / D e p e n d e n t V a r i a b l e i s S E S A R 2 - T A I L S I G . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . C - 7 2 . 1 7 2 1 3 4 1 1 4 . 2 3 6 3 8 - 0 . 6 3 1 7 7 8 9 0 . 5 3 8 . S P A R 4 1 2 . 3 3 2 7 2 1 3 8 . 7 4 3 8 0 2 . 9 7 1 9 0 0 2 0 . 0 1 1 S M F A R - 2 8 8 . 5 1 6 4 2 1 0 8 . 3 1 4 5 1 - 2 . 6 6 3 6 9 1 4 0 . 0 1 9 S N E A R l - l ) 0 . 0 6 3 9 1 8 3 0 . 0 2 8 6 0 8 5 2 . 2 3 4 2 3 9 0 0 . 0 4 4 S S U R A R ( - 1 ) - 2 2 . 3 3 5 4 6 5 1 5 . 7 0 5 2 5 5 - 1 . 4 2 2 1 6 4 2 ' o . 1 7 9 R — s g u a r e d 0 . 7 9 3 2 3 M e a n o f d e p e n d e n t v a r 1 7 0 . 8 8 8 9 A d j u s t e d R - s g u a r e d 0 . 7 2 9 4 6 8 S . D . o f d e p e n d e n t v a r 9 8 . 5 0 9 4 1 S . E . o f r e g r e s s i o n 5 1 . 2 3 3 6 S u m o f s q u a r e d r e s i d 3 4 1 2 8 . 4 8 D u r b i n - W a t s o n s t a t 2 . 5 0 1 7 6 6 F - s t a t i s t i c ~ 1 2 . 4 5 9 8 1 L o g l i k e l i h o o d - 9 3 . 4 6 8 5 3 T P E - 7 / 1 7 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : e 1 : 1 1 9 6 6 - 3 0 . 6 3 5 9 3 5 . 0 0 0 0 6 5 . 6 3 5 9 1 : 1 4 : 1 1 9 6 7 1 2 . 8 4 9 2 4 4 . 0 0 0 0 3 1 . 1 5 0 8 1 : 1 * : 1 1 9 6 8 1 0 . 3 8 0 0 5 8 . 0 0 0 0 4 7 . 6 2 0 0 1 : 1 * : 1 1 9 6 9 3 3 . 2 1 8 8 6 0 . 0 0 0 0 2 . 7 8 1 2 1 : * 1 : 1 1 9 7 0 - 2 7 . 2 2 1 6 7 6 . 0 0 0 0 1 0 3 . 2 2 2 1 : * 1 : 1 1 9 7 1 - 5 . 7 1 0 9 1 9 2 . 0 0 0 0 9 7 . 7 1 0 9 1 : 4 1 : 1 1 9 7 2 - 3 0 . 5 4 6 5 1 3 4 . 0 0 0 1 6 4 . 5 4 6 1 : 1 * : 1 1 9 7 3 3 6 . 5 1 5 5 3 0 7 . 0 0 0 2 7 0 . 4 8 4 1 : * 1 : 1 1 9 7 4 - 5 . 8 7 7 9 1 2 1 8 . 0 0 0 2 2 3 . 8 7 8 1 : 1 * : 1 1 9 7 5 2 6 . 1 0 4 8 2 3 5 . 0 0 0 2 0 8 . 8 9 5 1 : 1 : * 1 1 9 7 6 6 4 . 0 3 8 5 2 8 7 . 0 0 0 2 2 2 . 9 6 2 1 4 : 1 : 1 1 9 7 7 - 9 4 . 2 0 2 6 1 4 7 . 0 0 0 2 4 1 . 2 0 3 1 * 1 : 1 1 9 7 8 - 4 7 . 1 9 3 2 2 2 7 . 0 0 0 2 7 4 . 1 9 3 1 : * 1 : 1 1 9 7 9 - 1 7 . 4 9 8 0 2 0 4 . 0 0 0 2 2 1 . 4 9 8 1 : 1 * : 1 1 9 8 0 4 1 . 6 5 6 3 2 3 5 . 0 0 0 1 9 3 . 3 4 4 1 * 1 : 1 1 9 8 1 - 4 7 . 8 5 1 0 1 0 7 . 0 0 0 1 5 4 . 8 5 1 1 : 1 : * 1 1 9 8 2 9 1 . 8 0 1 4 3 3 2 . 0 0 0 2 4 0 . 1 9 9 1 : 9 1 : 1 1 9 8 3 - 9 . 8 2 7 0 5 2 7 8 . 0 0 0 2 8 7 . 8 2 7 I N D E P E N D E N T V A R I A B L E S S P A R = R e a l A r g e n t i n e S o y b e a n P r i c e ( S / M T ) S P 9 X R A R / C P I A R S M P A R = R e a l A r g e n t i n e S o y m e a l P r i c e ( S / M T ) S P fi X R A R / C P I A R S N E A R = S o y m e a l N e t E x p o r t s ( 1 0 0 0 M T ) S S U R A R = S o y b e a n S t o c k / C o n s u m p t i o n R a t i o S E S A R / ( S E S A R ( - l > + S P R O A R - S N E A R - S E S A R ) S M P L 1 9 6 6 - 1 9 8 3 1 8 O b s e r v a t i o n s 2 9 7 S e r i e s M e a n S . D . M a x i m u m M i n i m u m S E S A R 1 7 0 . 8 8 8 8 9 9 8 . 5 0 9 4 1 4 0 0 0 0 0 3 5 . 0 0 0 0 0 0 S P A R 1 . 2 2 4 4 7 4 0 0 . 4 3 6 8 0 4 8 2 . 3 9 9 3 7 9 0 0 . 5 2 5 4 0 0 5 S M P A R 0 . 9 7 5 1 3 8 1 0 . 4 4 5 4 3 1 9 2 . 4 9 3 7 2 6 0 0 . 4 3 4 9 6 2 7 ‘ S N E A R ( - 1 ) 7 7 1 . 3 3 3 3 3 1 0 8 2 . 4 4 3 2 2 7 7 6 . 0 0 0 0 0 . 0 0 0 0 0 0 0 S S U R A R ( _ 1 ) 1 . 3 3 3 6 9 0 9 1 . 4 7 1 8 3 6 0 5 . 0 0 0 0 0 0 0 0 . 0 5 0 3 0 5 6 C o v a r i a n c e C o r r e l a t i o n S E S A R , S E S A R 9 1 6 4 . 9 8 7 7 1 . 0 0 0 0 0 0 0 S E S A R , S P A R 6 . 3 6 1 6 6 8 7 0 . 1 5 6 5 4 1 5 S E S A R , S M P A R 1 . 3 0 9 8 7 1 9 0 . 0 3 1 6 0 7 7 S E S A R , S N E A R ( - 1 ) 4 0 2 8 4 . 4 2 6 0 . 4 0 0 0 1 6 5 S E S A R , S S U R A R ( - 1 ) - 1 0 9 . 6 3 9 3 6 - 0 . 8 0 0 6 6 8 8 S P A R , S P A R 0 . 1 8 0 1 9 8 6 1 . 0 0 0 0 0 0 0 S P A R , S M P A R 0 . 1 7 2 1 4 6 1 0 . 9 3 6 8 1 1 1 S P A R , S N E A R ( - 1 ) - 2 7 9 . 2 1 1 2 9 - 0 . 6 2 5 2 6 4 8 S P A R , S S U R A R é - l ) 0 . 0 1 9 0 9 1 3 0 . 0 3 1 4 4 2 1 S M P A R , S M P A 0 . 1 8 7 3 8 6 8 1 . 0 0 0 0 0 0 0 S M P A R , S N E A R ( - 1 ) - 2 2 5 . 3 5 2 6 5 - 0 . 4 9 4 8 7 9 9 S M P A R , S S U R A R ( - l ) 0 . 0 5 3 8 7 3 1 0 . 0 8 7 0 0 7 1 ' S N E A R ( - 1 ) , S N E A R ( - 1 ) 1 1 0 6 5 8 9 . 8 1 . 0 0 0 0 0 0 0 , S N E A R ( - - 1 1 , S S U R A R ( - 1 ) ‘ - 8 8 0 . 3 5 5 1 5 - - 0 . 5 8 5 0 8 2 3 . J I S ' S U R A R ( - 1 ) . , S S U R A R ( - 1 ) 2 . 0 4 5 9 5 1 2 1 . 0 0 0 0 0 0 0 » 1 0 3 ( 0 1 1 0 1 4 ' i r 3 C 1 2 A I 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 9 1 9 7 9 1 9 9 9 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 b a 3 1 o I ' T I T F I " I u n F n 1 F . D . . . C Z 1 1 4 * F i g u r e B . 2 2 . a & b . S o y m e a l E q u i v a l e n t N e t E x p o r t s - 2 9 8 9 9 9 9 5 0 8 9 ' 3 1 1 m - 2 9 9 9 - 1 0 8 3 ‘ ’ 0 8 . . . . 7 0 8 . 2 3 9 . 7 7 2 . 3 0 5 . 8 3 8 . 3 7 1 . 9 8 9 . 5 0 2 . 4 3 8 - R E G I O N A L M O D E L S I M U L A T I O N I 7 6 7 9 , 7 7 7 9 7 9 9 6 9 1 9 2 9 3 9 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D A r g e n t i n a P O O O ! : 1 1 1 4 4 - 0 2 1 0 Z H ‘ F ‘ F H O Z 7 5 7 9 F i g u r e B . 2 3 . a & b . 7 S A 7 o r 7 9 7 9 9 6 9 1 9 y g o e i n l t i E n q a u i v a l e n t N e t E 2 x . 9 t p o r 3 9 4 s - 2 9 9 1 2 5 8 1 1 0 0 1 3 1 7 5 8 ' S W ' 2 5 8 1 0 9 1 : . . , . . r . . . 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N . 9 7 9 . 9 9 3 . . 7 9 9 . 9 9 2 I . 5 9 7 : . 3 1 0 - . 2 1 4 . . 1 1 9 - ~ 1 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D “ ' 0 0 0 : 3 1 9 4 ! " 0 2 1 U Z H ‘ F ‘ F H O Z 3 1 r 0 . 0 9 7 % 5 1 1 7 6 1 9 m 1 9 ? ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 V U ' U ' I Y U V ' 7 9 7 9 7 7 7 9 7 9 9 6 9 1 9 2 9 3 9 4 3 0 0 2 . 5 2 . 9 9 1 . 5 - R E G I O N A L M O D E L S I M U L A T I O N . 7 0 9 . 9 3 9 . 9 9 7 . 4 9 7 . 4 2 9 . 3 9 9 . 2 9 9 - . 2 2 0 : . 1 9 1 I . 0 9 1 E E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e B . 2 4 . a & b . P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y n e a l - A r g e n t i n a P S e D r S c e n t a g e S o v n e a l E q u i v a l e n t E x p o r t e d a s S o y m e a l P S e o r y c m e e n a t l a g S e u p S p o l y y m e a l ( 1 0 E 0 q 0 u i M v T a ) A R l e n t i m p o r t e d a s S o y m e a l 3 0 1 A r g e n t i n a S M P L 1 9 7 5 - 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P M E A L 1 9 8 3 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = C - 8 . 5 5 1 5 5 8 3 1 . 4 9 5 1 4 5 1 - 5 . 7 1 9 5 5 0 9 0 . 0 0 2 P H E A L ( - 1 ) 0 . 7 0 9 4 6 1 2 0 . 0 8 0 2 5 6 6 8 . 8 3 9 9 0 6 5 0 . 0 0 0 S D S A R - 0 . 0 0 0 1 2 5 3 2 . 9 5 1 0 - 0 5 - 4 . 2 4 6 7 2 4 3 - 0 . 0 0 8 T I M E 0 . 1 1 4 9 1 9 9 0 . 0 2 0 0 4 0 4 5 . 7 3 4 4 2 5 8 0 . 0 0 2 3 2 : 3 2 : 3 3 : = = = = = 8 = = = = = = = = = = = = = = = = = = 2 : = 3 = = = = 2 2 2 2 : 2 8 8 3 3 2 2 2 2 3 2 8 8 3 8 3 3 8 8 3 8 3 R - s o u a r e d 0 . 9 5 0 4 9 7 M e a n o f d e p e n d e n t v a r 0 . 3 7 0 9 5 1 A d j u s t e d R - s q u a r e d 0 . 9 2 0 7 9 5 8 . 0 . o f d e p e n d e n t v a r 0 . 2 2 4 3 2 1 S . E . o f r e g r e s s i o n 0 . 0 6 3 1 3 1 S u m o f s q u a r e d r e s i d 0 . 0 1 9 9 2 8 D u r b i n - u a t s o n s t a t 2 . 4 8 1 5 7 7 F - s t a t i s t i o 3 2 . 0 0 1 3 3 L o o l i k e l i h o o d 1 4 . 7 3 7 4 1 = = = = = = = = = = = = = = = = = = 3 2 : 3 : = 2 : = 2 8 : 8 : = = 8 : : = = = = 2 : 3 8 8 8 3 2 8 3 2 2 2 2 8 2 3 2 3 2 8 3 8 2 8 8 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L - F I T T E D : 3 x _ z — — _ _ _ _ _ _ _ _ _ _ = = _ — - 2 - - 2 - 2 2 - x s x x = x : = = = = : x z s s z s : : i : * : 1 9 7 5 0 . 0 7 7 4 1 0 . 7 3 9 8 8 0 . 6 6 2 4 7 : * : : : £ 1 9 7 6 - 0 . 1 0 6 1 5 0 . 3 9 6 2 0 0 . 5 0 2 3 5 : : * t : : 1 9 7 7 - 0 . 0 1 2 8 2 0 . 1 9 1 1 8 0 . 2 0 4 0 0 : : : * : : 1 9 7 8 0 . 0 3 9 7 2 0 . 1 0 5 3 9 0 . 0 6 5 6 8 2 : ‘ : : : 1 9 7 9 - 0 . 0 0 8 9 1 , 0 . 1 1 3 3 3 0 . 1 2 2 2 4 : . : * : : : 1 9 8 0 - 0 . 0 0 4 7 8 0 . 2 5 3 4 3 0 . 2 5 8 2 1 3 : : ‘ : : 1 9 8 1 0 . 0 2 7 0 1 0 . 4 1 4 1 8 0 . 3 8 7 1 7 I : ‘ : : 1 9 8 2 - 0 . 0 0 1 9 5 0 . 6 2 3 9 6 0 . 6 2 5 9 1 3 : ‘ : : : 1 9 8 3 - 0 . 0 0 9 5 3 0 . 5 0 1 0 1 0 . 5 1 0 5 3 = = — - — = K : - I N D E P E N D E N T V A R I A B L E S P M E A L S E S A R ( - 1 ) + S P R O A R 1 9 6 0 = 6 0 . 1 9 6 1 = 6 1 , . . . T I M E 3 0 2 S M P L 1 9 7 5 - 1 9 8 3 9 O b s e r v a t i o n s fi _ . _ _ ; _ ‘ _ _ _ - _ _ 3 . . - — 2 - - - = = = = = = = = = = = = = = = z = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = S e r i e s M e a n 5 . 0 . M a x i m u m M i n i m u m = = = = = = = = = - - “ = - = - - - 2 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = P M E A L 0 . 3 7 0 9 5 0 7 0 . 2 2 4 3 2 1 2 0 . 7 3 9 8 7 8 3 0 . 1 0 5 3 9 4 6 P M E A L ( - 1 ) 0 . 4 2 6 3 9 4 2 0 . 3 0 6 9 3 6 9 1 . 0 0 0 0 0 0 0 0 . 1 0 5 3 9 4 6 S D S A R 3 6 5 9 . 6 6 6 7 1 8 2 3 . 1 9 0 0 7 3 3 2 . 0 0 0 0 9 1 3 . 0 0 0 0 0 T I M E 7 9 . 0 0 0 0 0 0 2 . 7 3 8 6 1 2 8 8 3 . 0 0 0 0 0 0 7 5 . 0 0 0 0 0 0 = = = = = = = = = a x = = = = a x = = = = = = 2 = g - - = = - - 2 - - - = = - - - - - - - - - - - 2 2 - 2 1 — x : x C o v a r i a n c e C o r r e l a t i o n P M E A L . P M E A L 0 . 0 4 4 7 2 8 9 1 . 0 0 0 0 0 0 0 P M E A L . P M E A L ( - 1 ) 0 . 0 4 6 8 9 3 5 0 . 7 6 6 2 0 5 7 P M E A L . $ D $ A R - 4 0 . 9 8 2 4 8 9 - 0 . 1 1 2 7 3 2 4 P M E A L . T I M E 0 . 0 3 5 7 5 6 7 0 . 0 6 5 4 8 0 1 P M E A L ( - 1 ) . P M E A L ( - 1 ) 0 . 0 8 3 7 4 2 5 1 . 0 0 0 0 0 0 0 P M E A L ( - 1 ) . $ D $ A R - 1 9 9 . 9 3 3 0 1 - 0 . 3 8 1 8 3 1 6 P M E A L ( - 1 ) . T I M E — 0 . 3 1 6 0 7 4 8 - 0 . 4 2 3 0 2 1 7 S D S A R . S D S A R 2 9 5 4 6 8 6 . 0 1 . 0 0 0 0 0 0 0 S D S A R , T I M E 4 0 3 8 . 3 3 3 3 0 . 9 0 9 8 9 6 8 ' T I M E . T I M E 6 . 6 6 6 6 6 6 7 1 . 0 0 0 0 0 0 0 = 3 8 : = = = = = = = = = 8 = 8 8 8 8 8 3 2 2 8 2 = = = = = = 8 8 8 ! - u S E R - 2 - ’ 3 3 8 = = = 8 8 8 = 8 = = = = 3 = = = = = a b O D C O l i n t i r I F J C I Z I U 1 9 7 5 1 9 7 6 1 9 7 7 1 9 9 9 1 9 7 9 1 9 9 9 1 9 9 1 1 9 9 2 1 9 n ” . . . - : : 4 1 7 r fi ' I ' I ' ' V r . V . V 4 l . ' I 3 ( 5 2 : : i - 3 0 3 3 5 9 1 a 3 9 9 9 - . 2 5 9 9 ‘ 2 9 9 9 » 1 5 9 9 - 1 9 9 8 1 5 9 9 1 J _ J . R E G I O N A L M O D E L S I M U L A T I O N 9 3 1 9 9 4 . 3 3 4 . 1 0 1 ' . 8 6 8 . 6 3 5 . 4 0 2 . 1 6 9 . 9 3 8 . 7 0 4 . 4 7 1 . 2 3 3 P F i g u r e B . 2 5 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L ~ - - E S T I M A T E D S o y m e a l N e t E x p o r t s - A r g e n t i n a d f D < > C > C l i fl l i r 4 1 3 C 1 2 n I a t p c > C > C 3 1 0 1 4 ' i h l C 2 1 0 1 F i g u r e B . 2 6 . a 9 b . S o y o i 1 9 7 5 1 9 9 5 1 9 9 7 1 9 7 9 1 9 9 9 1 9 9 9 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 7 9 7 9 7 7 7 l 9 7 9 9 0 9 1 9 2 9 9 9 4 N e t E x p o r t s - A r g e n t i n a 4 5 1 2 6 2 1 2 1 4 0 4 . 3 5 7 . 3 0 9 . 2 1 5 . 1 6 6 . 7 4 . 2 6 . 3 0 4 R E G I O N A L M O D E L S I M U L A T I O N . 4 2 0 2 9 0 ' 1 0 0 9 4 0 . 7 9 0 E 9 2 0 - 4 9 0 I . 9 0 0 . 1 4 0 9 9 0 ~ U E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — - E S T I M A T E D H > C 3 < O 3 1 0 4 “ a > c 9 I z : m 3 1 F u u T u U ' I ' U U I ' u V F 1 F D ( n d 2 n fi 3 1 ~ 7 9 7 9 ' 7 7 7 9 7 9 9 0 9 1 9 9 9 9 9 4 3 0 5 4 8 0 8 3 8 8 0 ‘ 5 . 9 9 4 ' 3 8 9 0 . . . . , . . . — — 1 9 7 5 1 9 7 6 1 9 7 ' ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N . 9 4 1 . 9 3 9 - . 1 3 9 . 7 3 2 . 3 2 9 - . 9 2 9 _ . 9 2 2 - . 1 1 9 : . 7 1 9 3 . 3 1 3 ' E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — — - E S T I M A T E D F i g u r e B . 2 7 . a & b . S o y b e a n N e t E x p o r t s - A r g e n t i n a A P P E N D I X C E Q U A T I O N S T A T I S T I C S - A U S T R A L I A w h e a t W P R O A U . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n w H A A U . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a W Y A U . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d w C O N A U . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W F E D A U . . . . . . . . . . . . . . . . . . . . . . F e e d C o n s u m p t i o n W F O D A U . . . . . . . . . . . . . . . . . . . . . . F o o d & R e s i d u a l C o n s u m p t i o n W N E A U . . . . . . . . . . . . . . . . . . . . . . . N e t E x p o r t s W E S A U . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O A U . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A A U . . . . . . . . . . . . . . . . . . . . . . . 8 a r v e s t e d A r e a F Y A U . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N A U . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u n p t i o n F F E D A U . . . . . . . . . . . . . . . . . . . . . . F e e d C o n s u m p t i o n F F O D A U . . . . . . . . . . . . . . . . . . . . . . F o o d 9 R e s i d u a l C o n s u m p t i o n F N E A U . . . . . . . . . . . . . . . . . . . . . . . N e t E x p o r t s F E S A U . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s 3 0 6 P O O C ! ? ” 1 1 ~ 4 0 2 ” ( r e r u o z 3 1 ~ 1 m . r . . . - . . . . . . ~ ' - . _ 5 9 9 9 6 9 I 9 7 . 1 7 : 2 7 . 3 7 . 9 7 , 5 7 . 5 7 9 — 7 - 7 7 7 7 r 8 . 9 7 I 9 9 . 1 3 . 2 3 - - ! 3 3 1 3 4 7 9 7 9 7 7 7 9 7 9 9 0 9 1 9 2 9 9 9 4 3 0 7 2 W W + 2 9 l l fl 3 1 1 5 9 9 9 1 R E G I O N A L M O D E L S I M U L A T I O N 2 2 . 9 9 7 2 1 . 1 2 9 . 1 9 . 9 9 9 1 9 . 2 4 4 : 1 9 . 9 0 3 9 1 9 . 3 9 1 1 3 . 9 2 0 1 2 . 4 7 9 1 1 . 0 3 9 I 9 . 9 9 7 E E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e C . l . a & b . W h e a t P r o d u c t i o n - A u s t r a l i a f ' — U ' V U ' T ' U ' U T I ‘ W r f I I T a b O > < O : I fl I O i r b J Z H I M o n : n r u c 1 — » : ” ! " 1 0 1 1 4 9 9 9 1 9 1 3 9 9 9 1 1 2 9 9 9 1 1 1 9 9 9 1 1 9 9 9 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 9 1 3 1 1 1 1 2 ( 3 P 1 F I T F G Z 1 2 . . 9 6 6 . 4 6 0 1 0 . 1 0 . . 6 7 5 . 3 4 7 . 6 1 9 . 5 7 2 . 0 4 4 5 1 6 9 3 2 4 0 3 3 0 8 v 7 \ 1 fi J - I - I - I - I - I - I - I - i 9 9 9 ' 1 9 2 9 9 9 4 7 5 - 2 6 2 7 9 2 9 7 9 9 9 9 ' 1 9 2 9 9 R E G I O N A L M O D E L S I M U L A T I O N I ’ 7 9 7 9 7 7 7 9 7 9 9 0 9 1 9 2 9 9 9 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e C . 2 . a & b . W h e a t H a r v e s t e d A r e a - A u s t r a l i a . 3 0 9 A u s t r a l i a W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W H A A U V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C - 1 7 1 . 4 1 7 6 9 2 9 0 6 . 8 7 8 ? - 0 . 0 5 8 9 6 9 7 0 . 9 5 4 W H A A U ( 4 1 ) 0 . 8 0 4 7 6 6 3 0 . 2 4 2 5 9 0 0 3 . 3 1 7 3 9 2 1 0 . 0 0 5 T I M E 7 9 . 0 8 5 4 9 6 6 0 . 8 5 8 6 6 9 1 . 2 9 9 4 9 4 4 0 . 2 1 3 W R A U 1 - 1 ) 4 4 3 . 1 0 6 8 3 8 3 4 . 0 2 9 2 0 0 . 5 3 1 2 8 4 6 0 . 6 0 3 F R A U ( - l ) - 2 1 1 0 . 0 4 7 6 1 4 0 0 . 4 3 3 2 - l . 5 0 6 7 1 0 6 0 . 1 5 3 N E S A U ( - 1 ) - 0 . 3 6 7 1 0 8 5 0 . 1 0 7 5 2 9 7 - 3 . 4 1 4 0 2 0 2 0 . 0 0 4 R - s q u a r e d 0 . 8 8 8 0 1 7 M e a n o f d e p e n d e n t v a r 9 4 9 1 . 5 2 4 A d j u s t e d R - s q u a r e d 0 . 8 5 0 6 8 9 8 . 0 . o f d e p e n d e n t v a r 1 8 7 8 . 4 9 9 S . E . o f r e g r e s s i o n 7 2 5 . 8 6 6 6 S u m o f s q u a r e d r e s i d 7 9 0 3 2 3 4 . D u r b i n - W a t s o n s t a t 2 . 5 9 2 3 0 8 F - s t a t i s t i c 2 3 . 7 8 9 7 2 L o g l i k e l i h o o d ~ 1 6 4 . 5 9 9 4 T P E 7 7 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : 9 : : : 1 9 6 4 - 8 1 . 7 1 2 7 7 2 5 2 . 0 0 3 3 3 . 7 1 : 9 : : : : 1 9 6 5 - 7 7 2 . 3 3 6 7 0 8 8 . 0 0 7 8 6 0 . 3 4 1 : : * : 1 1 9 6 6 5 0 7 . 0 4 1 8 4 2 7 . 0 0 7 9 1 9 . 9 6 : : : 9 : 1 1 9 6 7 5 9 3 . 1 3 8 9 0 8 2 . 0 0 8 4 8 8 . 8 6 1 : 1 : 4 1 1 9 6 8 8 0 5 . 5 2 1 0 8 4 6 . 0 1 0 0 4 0 . 7 : : : 9 : : 1 9 6 9 2 5 3 . 4 7 5 9 4 8 6 . 0 0 9 2 3 2 . 5 3 1 e : 1 : 1 1 9 7 0 - 1 2 8 4 . 9 1 6 4 7 9 . 0 0 7 7 6 5 . 9 1 : : 1 * : 2 1 9 7 1 4 7 3 . 7 6 ? 7 1 3 8 . 0 0 - 6 6 6 4 . 2 3 : 9 : : : 1 1 9 7 2 - 7 8 2 . 3 4 8 7 6 0 4 . 0 0 8 3 8 6 . 3 5 1 : 1 e 1 1 9 7 3 7 1 1 . 7 0 6 8 9 4 8 . 0 0 8 2 3 . 2 9 1 : * 1 : 1 1 9 7 4 - 4 8 4 . 1 5 8 8 3 0 8 . 0 0 8 7 9 2 . 1 6 2 : * : 1 1 9 7 5 - 3 . 5 1 0 3 3 8 5 5 5 . 0 0 8 5 5 8 . 5 1 1 : 1 * : 1 1 9 7 6 5 5 . 7 0 7 6 8 9 5 6 . 0 0 8 9 0 0 . 2 9 1 : 1 9 : 1 1 9 7 7 1 9 2 . 3 3 9 9 5 5 . 0 0 9 7 6 2 . 6 6 1 9 : 1 : 1 1 9 7 8 - 1 0 0 9 . 5 ? 1 0 2 4 9 . 0 1 1 2 5 8 . 6 : : 1 : 9 1 1 9 7 9 9 1 2 . 1 5 6 1 1 1 5 5 . 0 1 0 2 4 0 . 9 1 : 9 : : 1 9 8 0 2 5 . 0 4 8 2 1 1 2 8 3 . 0 1 1 2 5 8 . 0 1 : * : : 1 1 9 8 1 - 1 6 6 . 0 7 6 1 1 8 8 5 . 0 1 2 0 5 1 . 1 1 4 : : : 1 9 8 2 - 6 6 5 . 6 5 6 1 1 5 2 0 . 0 1 2 1 8 5 . 7 1 : 1 * : 1 1 9 8 3 1 0 7 . 7 3 7 1 2 9 0 8 . 0 1 2 8 0 0 . 3 1 : 1 9 : 1 1 9 8 4 6 1 2 . 8 7 6 1 2 2 0 0 . 0 1 1 5 8 7 . 1 I N D E P E N D E N T V A R I A B L E S W H A A U = W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R A U = W h e a t R e v e n u e p e r H e c t a r e ( S / H A ) < W Y A U < - 3 ) + W Y A U ( - 2 ) + W Y A U ( - l ) + W Y A U ) / 4 9 W P 9 X R A U / C P I A U F R A U = C o a r s e G r a i n R e v e n u e p e r H e c t a r e < 5 / H A ) ( F Y A U ( - 3 ) + F Y A U ( - 2 ) * F Y A U ( - 1 ) + F Y A U ) / 4 9 F P 9 X R A U / C P I A U T I M E = 1 9 6 0 8 6 0 . 1 9 6 1 8 6 1 . . . . . W E S A U = W h e a t E n d i n g S t o c k s ( 1 0 0 0 M T ) 3 1 0 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s I “ I 3 . . S e r i e s M e a n S . D . M a x i m u m M i n i m u m W H A A U 9 4 9 1 . 5 2 3 8 1 8 7 8 . 4 9 8 7 1 2 9 0 8 . 0 0 0 6 4 7 9 . 0 0 0 0 W H A A U ( - 1 ) 2 2 8 . 0 9 5 2 1 8 6 7 . 5 4 2 6 1 2 9 0 8 . 0 0 0 6 4 7 9 . 0 0 0 0 T I M E 7 4 . 0 0 0 0 0 0 6 . 2 0 4 8 3 6 8 8 4 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 W R A U 1 - 1 ) 2 . 0 3 9 2 2 4 4 0 . 4 2 5 4 9 4 9 3 . 1 5 8 1 4 0 0 1 . 4 4 4 1 9 2 0 F R A U 1 - 1 ) 1 . 6 2 1 4 7 1 9 0 . 2 6 2 7 7 2 8 2 . 2 5 6 6 2 4 0 1 . 2 4 1 8 4 8 0 W E S A U ( - 1 ) 2 9 9 1 . 0 9 5 2 2 2 7 4 . 2 7 7 6 7 5 8 6 . 0 0 0 0 5 6 5 . 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n W H A A U , W H A A U 3 3 6 0 7 2 1 . 3 1 . 0 0 0 0 0 0 0 W H A A U , W H A A U ( - 1 ) 2 7 9 1 9 6 0 . 0 0 . 8 3 5 6 3 5 9 W H A A U , T I M E 8 7 1 5 . 4 2 8 6 0 . 7 8 5 1 2 1 3 W H A A U , W R A U ( - 1 ) - 2 4 8 . 3 5 9 6 3 - 0 . 3 2 6 2 6 0 9 W H A A U , F R A U ( - 1 ) ~ - 2 1 1 . 0 4 0 0 9 - 0 . 4 4 8 9 1 3 8 W H A A U , W E S A U ( - 1 ) ' 7 8 1 8 3 2 . 3 3 0 . 1 9 2 1 5 3 6 W H A A U ( - 1 ) , W H A A U ( - 1 ) 3 3 2 1 6 3 3 . 5 1 . 0 0 0 0 0 0 0 W H A A U ( - 1 ) , T I M E . 8 6 4 1 . 2 3 8 1 0 . 7 8 3 0 0 4 8 W H A A U ( - 1 ) , W R A U ( - 1 ) - 2 6 0 . 1 7 4 9 9 - 0 . 3 4 3 7 8 7 4 W H A A U < - 1 ) . F R A U ( - 1 ) — 2 1 0 . 8 9 1 3 6 - 0 . 4 5 1 2 2 9 2 W H A A U ( - 1 ) , W E S A U ( - l ) 2 4 3 6 0 1 1 . 8 0 . 6 0 2 2 1 9 4 T I M E , T I M E 3 6 . 6 6 6 6 6 7 1 . 0 0 0 0 0 0 0 T I M E , W R A U ( - 1 ) - 0 . 8 5 7 8 9 7 7 - 0 . 3 4 1 1 9 2 9 T I M E , F R A U ( - 1 ) - 0 . 3 0 8 8 0 0 7 - 0 . 1 9 8 8 6 4 3 T I M E , W E S A U ( - 1 ) 3 8 4 0 . 8 0 9 5 0 . 2 8 5 7 8 4 2 W R A U ( - 1 ) , W R A U ( - 1 ) 0 . 1 7 2 4 2 4 7 1 . 0 0 0 0 0 0 0 W R A U 1 - 1 ) , F R A U ( - 1 ) 0 . 0 8 4 7 5 9 9 0 . 7 9 5 9 8 4 7 W R A U ( - 1 ) , W E S A U ( - 1 ) - 3 5 7 . 6 9 3 8 3 - 0 . 3 8 8 1 1 7 2 F R A U ( - 1 ) , F R A U ( - 1 ) 0 . 0 6 5 7 6 1 5 1 . 0 0 0 0 0 0 0 F R A U ( - 1 ) , W E S A U ( - 1 ) - 2 2 9 . 6 3 7 7 3 - 0 . 4 0 3 4 6 7 6 N E S A U 1 - 1 ) , W E S A U ( - 1 ) 4 9 2 6 0 3 6 . 8 1 . 0 0 0 0 0 0 0 D E N I L N O D G E T P E N = T L n V ( A T R I I H A E B ) L E S 3 1 1 A u s t r a l i a W h e a t Y i e l d ( M e t r i c T o n e p e r H e c t a r e ) S M R L 1 9 6 0 - 1 9 8 4 2 5 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W Y A U V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 8 . C 0 . 0 2 7 9 0 1 6 2 . 1 8 7 7 1 8 0 0 . 0 1 2 7 5 3 8 0 . 9 9 0 L O G T . 2 8 7 5 0 5 2 0 . 5 1 2 0 1 0 9 0 . 5 6 1 5 2 1 7 0 . 5 8 0 R - s q u a r e d 0 . 0 1 3 5 2 4 M e a n o f d e p e n d e n t v a r 1 . 2 5 6 0 1 0 A d j u s t e d R - s q u a r e d - 0 . 0 2 9 3 6 7 S . D . o f d e p e n d e n t v a r 0 . 2 5 4 5 1 2 S . E . o f r e g r e s s i o n 0 . 2 5 2 2 2 S u m o f s q u a r e d r e s i d 1 . 5 3 3 6 0 5 D u r b i n - W a t s o n s t a t 2 . 7 9 3 2 6 9 F - s t a t i s t i c 0 . 3 1 5 3 0 7 L o g l i k e l i h o o d - 0 . 5 8 2 7 8 4 T P E - 1 3 / 2 4 - I R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 * : 1 1 9 6 0 0 . 1 6 4 6 9 1 . 3 6 9 7 4 1 . 2 0 5 0 5 1 : * 1 : 1 1 9 6 1 - 0 . 0 8 0 7 3 1 . 1 2 9 0 7 1 . 2 0 9 8 0 1 : 1 * : 1 1 9 6 2 0 . 0 3 8 7 9 1 . 2 5 3 2 . 2 1 4 4 7 1 : 1 * : 1 1 9 6 3 0 . 1 1 9 4 1 1 . 3 3 8 4 8 . 2 1 9 0 7 1 : 1 a : 1 1 9 6 4 0 . 1 6 0 4 3 1 . 3 8 4 0 3 1 . 2 2 3 6 0 1 * 1 : 1 1 9 6 5 - 0 . 2 3 1 0 2 0 . 9 9 7 0 4 1 . 2 2 8 0 6 1 : 1 : * 1 1 9 6 6 0 . 2 7 4 4 9 1 . 5 0 6 9 4 . 2 3 2 5 1 4 : 1 : 1 1 9 6 7 - 0 . 4 0 5 7 9 0 . 8 3 0 9 8 1 . 2 3 6 7 7 1 : _ 1 * : 1 1 9 6 8 0 . 1 2 3 8 9 1 . 3 6 4 9 3 ‘ 1 . 2 4 1 0 3 1 : * 1 : 1 1 9 6 9 - 0 . 1 3 3 4 9 1 . 1 1 1 7 4 1 . 2 4 5 2 3 1 : * 1 : 1 1 9 7 0 - 0 . 0 3 1 5 9 1 . 2 1 7 7 8 1 . 2 4 9 3 7 1 : * 1 : 1 1 9 7 1 - 0 . 0 4 7 7 8 1 . 2 0 5 6 6 . 2 5 3 4 4 1 * : 1 : 1 1 9 7 2 - 0 . 3 9 0 8 2 0 . 8 6 6 6 5 1 . 2 5 7 4 7 1 : 1 * : 1 1 9 7 3 0 . 0 7 8 2 0 1 . 3 3 9 6 3 1 . 2 6 1 4 3 1 : 1 4 : 1 1 9 7 4 0 . 1 0 1 6 5 1 . 3 6 7 0 0 1 . 2 6 5 3 4 1 : 1 * : 1 1 9 7 5 0 . 1 3 1 3 8 1 . 4 0 0 5 8 1 . 2 6 9 2 0 1 : 1 * : 1 1 9 7 6 0 . 0 4 4 5 4 1 . 3 1 7 5 5 1 . 2 3 0 1 1 * : 1 : 1 1 9 7 7 - 0 . 3 3 5 5 3 0 . 9 4 1 2 4 . 2 7 6 7 7 1 : 1 : * 1 1 9 7 8 0 . 4 8 4 5 7 1 . 7 6 5 0 5 1 . 2 8 0 4 8 1 : 1 4 : 1 1 9 7 9 0 . 1 6 7 3 1 1 . 4 5 1 4 5 1 . 2 8 4 1 4 1 ' * : 1 : 1 1 9 8 0 - 0 . 3 2 5 6 0 0 . 9 6 2 1 6 1 . 2 8 7 7 6 1 : 1 * : 1 1 9 8 1 0 . 0 8 6 2 1 1 . 3 7 7 5 3 . 2 9 1 3 3 1 * : 1 : 1 1 9 8 2 - 0 . 5 2 4 3 7 0 . 7 7 0 4 9 . 2 9 4 8 6 1 : 1 , : * 1 1 9 8 3 0 . 3 9 8 5 1 1 . 6 9 6 8 5 1 . 2 9 8 3 4 1 : 1 i : 1 1 9 8 4 _ 0 . 1 3 2 6 4 1 . 4 3 4 4 3 1 . 3 0 1 7 8 3 1 2 S M P L 1 9 6 0 . - 1 9 8 4 2 5 O b s e r v a t i o n s S e r i e s M e a n 5 . 0 . M a x i m u m M i n i m u m W Y A U 1 . 2 5 6 0 1 0 4 0 . 2 5 4 5 1 1 8 1 . 7 6 5 0 5 0 0 0 . 7 7 0 4 8 6 1 L O G T . 2 7 1 6 0 5 0 0 . 1 0 2 9 4 5 7 4 . 4 3 0 8 1 7 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n W Y A U . W Y A U 0 . 0 6 2 1 8 5 2 1 . 0 0 0 0 0 0 0 W Y A U . L O B T 0 . 0 0 2 9 2 5 0 0 . 1 1 6 2 9 1 0 L D G T , L D G T 0 . 0 1 0 1 7 3 9 1 . 0 0 0 0 0 0 0 P > C D < O : “ ) T I H ! — 0 2 1 0 4 : K 0 H ‘ 0 - f ‘ r H O Z O D G J ¢ ° ' ” 3 H 1 ~ ” a m ‘ I . . . . . . . . . . " . . . . . . ” . . . . . , - ' 1 . 3 . . a . . . . . . . . . . . . . . . . . . 6 9 I 9 7 l 1 7 ' 2 7 l 3 7 I 4 7 ' 5 7 I 6 7 I 7 7 ' 8 7 M 9 7 8 9 8 1 8 2 9 3 8 4 7 5 7 6 7 7 7 5 7 9 8 0 9 % 5 7 8 8 8 4 3 1 3 4 5 0 0 3 5 8 8 - 2 5 m - 2 1 m R E G I O N A L M O D E L S I M U L A T I O N . 9 7 5 . 5 0 0 . - . 6 2 5 I . 4 5 0 I . 2 7 5 I . 1 0 0 I . 9 2 5 I . 7 5 0 I . 5 7 5 I . 3 9 9 I E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ~ — ~ E S T I M A T E D F i g u r e C . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - A u s t r a l i a 3 1 4 2 5 m ? 1 0 0 Z U I H 0 M 1 5 ” E T 7 m e o . N s 1 5 1 1 0 i . _ . . . . S 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 9 9 1 3 2 9 3 3 4 R E G I O N A L M O D E L S I M U L A T I O N M I I . z x n e - L 2 2 m 5 » L 2 J 1 5 - g 1 . 9 5 4 - L 8 5 3 - N . L 7 2 3 - " L 5 9 2 - E L 4 6 2 ’ T L 3 3 1 : L 2 « ) - 0 7 5 7 6 7 7 7 a 7 9 8 0 a 1 9 2 a : 9 2 1 N . S E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 - - m - A C T U A L 4 - - - E S T I M A T E D F i g u r e C . 4 . a & b . W h e a t F e e d C o n s u m p t i o n - A u s t r a l i a 3 1 5 A u s t r a l i a P e r C a p i t a W h e a t F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F C W F E D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 0 7 4 8 5 6 0 0 . 0 2 3 4 5 2 6 - 3 . 1 9 1 8 0 4 1 0 . 0 0 5 P C R G D P 1 8 9 6 . 1 1 9 4 3 3 0 . 2 9 1 4 3 5 . 7 4 0 7 4 6 7 0 . 0 0 0 P C W P R O ( - 1 ) 0 . 0 3 5 5 1 2 3 0 . 0 1 8 0 0 3 4 1 . 9 7 2 5 3 0 2 0 . 0 6 3 P C F E S 1 - 1 ) . 2 0 0 1 6 5 1 0 . 1 1 7 4 1 5 6 ' - 1 . 7 0 4 7 5 7 6 0 . 1 0 4 R - s q u a r e d 0 . 6 9 6 4 4 4 M e a n o f d e p e n d e n t v a r 0 . 0 8 0 9 4 0 A d j u s t e d R - s q u a r e d 0 . 6 5 0 9 1 1 S . D . o f d e p e n d e n t v a r 0 . 0 3 2 5 7 2 S . E . o 5 r e g r e s s i o n 0 . 0 1 9 2 4 5 S u m 0 5 s q u a r e d r e s i d 0 . 0 0 7 4 0 7 D u r b i n - W a t s o n s t a t 2 . 1 6 5 8 4 0 F - s t a t i s t i c 1 5 . 2 9 5 2 4 L o g 1 i k e l i h o o d 6 2 . 9 4 5 7 6 T P E £ 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : 1 5 a 1 1 9 6 1 0 . 0 0 7 6 3 0 . 0 4 4 9 3 0 . 0 3 7 3 0 1 : 5 1 s 1 1 9 6 2 - 0 . 0 0 1 9 2 0 . 0 3 7 7 1 0 . 0 3 9 6 3 1 : 5 1 : 1 1 9 6 3 - 0 . 0 1 2 9 0 0 . 0 3 8 2 6 0 . 0 5 1 1 7 1 : 1 : 5 1 1 9 6 4 0 . 0 2 6 7 7 0 . 0 8 4 5 1 0 . 0 5 7 7 4 1 z 5 : 1 1 9 6 5 0 . 0 0 0 7 8 0 . 0 6 3 3 0 0 . 0 6 2 5 2 1 5 5 1 : 1 1 9 6 6 - 0 . 0 0 2 8 6 0 . 0 5 1 8 1 0 . 0 5 4 6 7 1 : 5 1 : 1 1 9 6 7 - 0 . 0 0 2 1 8 0 . 0 6 4 5 8 0 . 0 6 6 7 6 1 5 : 1 2 1 1 9 6 8 — 0 . 0 2 2 0 2 0 . 0 3 7 3 9 0 . 0 5 9 4 0 1 : 5 1 : 1 1 9 6 9 - 0 . 0 1 2 8 6 0 . 0 6 0 3 6 0 . 0 7 3 2 2 1 : 5 1 : 1 1 9 7 0 - 0 . 0 1 1 1 6 0 . 0 5 2 2 0 0 . 0 6 3 3 6 1 : 1 5 : 1 1 9 7 1 0 . 0 0 8 7 2 0 . 0 6 3 5 2 0 . 0 5 4 8 0 1 2 1 : 5 1 1 9 7 2 0 . 0 2 4 1 9 0 . 0 9 4 0 1 0 . 0 6 9 8 2 1 z 1 5 : 1 1 9 7 3 0 . 0 0 9 4 0 0 . 0 9 1 6 3 0 . 0 8 2 2 3 1 5 : 1 : 1 1 9 7 4 - 0 . 0 2 2 9 0 0 . 0 7 2 9 9 0 . 0 9 5 8 9 1 : 5 : 1 1 9 7 5 — 0 . 0 0 0 9 3 0 . 0 9 7 1 9 0 . 0 9 8 1 2 1 1 5 1 : 1 1 9 7 6 - 0 . 0 1 1 7 6 0 . 0 8 9 0 9 0 . 1 0 0 8 5 1 : 5 1 : 1 1 9 7 7 - 0 . 0 0 3 9 3 0 . 0 9 0 2 0 0 . 0 9 4 1 4 1 : 5 1 : 1 1 9 7 8 - 0 . 0 0 3 5 2 0 . 0 8 7 0 5 0 . 0 9 0 5 7 1 : 1 a 5 1 1 9 7 9 0 . 0 2 6 8 7 0 . 1 3 2 8 7 0 . 1 0 6 0 0 1 : 5 : 1 1 9 8 0 0 . 0 0 0 4 8 0 . 1 1 3 6 8 0 . 1 1 3 2 0 1 5 : 1 : 1 1 9 8 1 - 0 . 0 3 5 9 0 0 . 0 7 0 6 0 0 . 1 0 6 5 0 1 : 1 : 5 1 1 9 8 2 0 . 0 4 0 7 1 0 . 1 6 2 1 2 0 . 1 2 1 4 1 1 8 1 5 : 1 1 9 8 3 0 . 0 1 6 4 5 0 . 1 2 0 2 9 0 . 1 0 3 8 4 1 : 5 1 s 1 1 9 8 4 - 0 . 0 1 7 1 6 0 . 1 2 2 2 7 0 . 1 3 9 4 2 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P A U / C P I A U / P O P A U P C W P R O 8 W h e a t P r o d u c t i o n P e r C a p i t a ( 1 0 0 0 M T ) W P R O A U / P O P A U P C F E S 8 C o a r s e G r a i n E n d i n g S t o c k s P e r C a p i t a F P R O A U / P O P A U ( 1 0 0 0 M T ) 3 1 6 S M P L 1 9 6 2 - 1 9 8 4 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C W F E D 0 . 0 8 2 5 0 5 8 0 . 0 3 2 3 6 7 4 0 . 1 6 2 1 2 1 2 0 . 0 3 7 3 8 5 5 P C R G D P 7 . 2 1 2 D - 0 5 . 2 6 7 D - 0 5 9 . 1 0 9 D - 0 5 4 . 8 8 4 0 - 0 5 F C W P R O ( - 1 ) 0 . 8 5 5 6 9 9 6 0 . 2 4 4 1 7 4 9 1 . 4 2 4 1 2 2 0 0 . 5 0 0 0 0 0 0 P C F E S ( - 1 ) 0 . 0 4 7 1 9 4 6 0 . 0 3 7 4 7 0 8 0 . 1 2 8 9 3 6 9 0 . 0 0 1 7 5 5 9 - C o v a r i a n c e C o r r e l a t i o n P C W F E D . P C W F E D 0 . 0 0 1 0 0 2 1 1 . 0 0 0 0 0 0 0 P C W F E D . P C R G D P 3 . 0 2 4 0 - 0 7 0 . 7 7 1 1 3 5 8 P C W F E D , P C W P R O ( - 1 ) 0 . 0 0 3 2 6 1 1 0 . 4 3 1 3 7 8 2 P C W F E D , P C F E S ( - 1 ) 0 . 0 0 0 1 0 8 4 0 . 0 9 3 4 5 8 8 P C R G D P , P C R G D P 1 . 5 3 5 D - 1 0 1 . 0 0 0 0 0 0 0 P C R G D P , P C W P R O ( - 1 ) 8 . 9 1 5 D - 0 7 0 . 3 0 1 2 9 7 1 P C R E D P , P C F E S ( - 1 ) 1 . 4 4 7 D - 0 7 0 . 3 1 8 6 9 6 1 P C W P R O ( - 1 ) , P C W P R O ( - 1 ) 0 . 0 5 7 0 2 9 1 1 . 0 0 0 0 0 0 0 P C W P R O ( - 1 ) , P C F E S ( - 1 ) 0 . 0 0 2 4 8 7 6 0 J 2 8 4 2 4 9 6 P C F E S ( - 1 ) , P C F E S ( - 1 ) 0 . 0 0 1 3 4 3 0 1 . 0 0 0 0 0 0 0 “ ' 0 0 0 ! “ 1 1 ~ % 0 2 ” ( Z H ' F ‘ ‘ . - F ‘ H O - Z - ‘ : “ “ 1 3 - ~ 4 — 0 2 0 ( 1 9 1 9 7 1 1 2 7 1 1 4 7 5 7 1 7 7 7 9 1 1 s o 1 1 1 2 1 3 8 4 7 ° 7 7 7 5 7 § 5 0 5 1 5 2 5 3 5 4 2 5 0 0 2 2 5 0 2 8 8 0 1 7 5 0 1 5 0 9 * 1 3 5 9 1 1 M 1 7 5 0 3 1 7 R E G I O N A L M O D E L S I M U L A T I O N 5 2 2 ’ - . 4 5 5 - . 3 9 0 I . 3 2 4 I . 2 5 9 I . 1 9 3 I . 1 2 7 I . 0 5 1 I ’ 1 F i g u r e C . 5 . a & b . 7 5 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L - - - E S T I M A T E D W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n A u s t r a l i a A u s t r a l i a 3 1 8 P e r C a p i t a W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 M T ) S N P L 1 9 6 1 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W F O D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 0 . 1 1 4 9 4 1 2 0 . 0 3 7 5 5 8 5 3 . 0 6 0 3 2 0 6 0 . 0 0 6 P C R G D P 5 1 6 . 6 7 2 3 7 4 1 3 . 1 1 0 1 1 1 . 2 5 0 6 8 9 2 0 . 2 2 D V 7 5 O N - 0 . 0 7 1 3 7 1 7 0 . 0 0 9 4 8 2 6 - 7 . 5 2 6 5 6 6 2 0 . 0 0 0 W C G R A U 0 . 0 0 3 3 8 8 3 0 . 0 0 5 3 7 4 4 0 . 6 3 0 4 5 3 1 0 . 5 3 6 _ - R - s q u a r e d 0 . 8 6 4 0 4 6 M e a n o f d e p e n d e n t v a r 0 . 1 3 1 6 0 0 A d j u s t e d R - s q u a r e d 0 . 8 4 3 6 5 3 S . D . o f d e p e n d e n t v a r 0 . 0 3 3 8 1 1 S . E . o f r e g r e s s i o n 0 . 0 1 3 3 6 9 S u m o f s q u a r e d r e s i d 0 . 0 0 3 5 7 5 D u r b i n - W a t s o n s t a t 1 . 9 5 8 9 4 6 F - s t a t i s t i c 4 2 . 3 6 9 5 1 L o l i k e l i h o o d 7 1 . 6 8 8 7 8 9 " ’ 3 “ ; 1 1 1 2 1 . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 5 1 : 1 1 9 6 1 - 0 . 0 0 8 5 7 0 . 1 4 0 7 6 0 . 1 4 9 3 3 1 : 1 5 : 1 1 9 6 2 0 . 0 0 1 7 4 0 . 1 5 3 4 5 0 . 1 5 1 7 0 1 : 5 1 : 1 1 9 6 3 - 0 . 0 0 8 4 5 0 . 1 4 6 0 3 0 . 1 5 4 4 8 1 : 5 1 : 1 1 9 6 4 - 0 . 0 0 7 6 1 0 . 1 4 8 8 8 0 . 1 5 6 4 9 1 : 1 5 : 1 1 9 6 5 0 . 0 0 9 0 9 0 . 1 6 4 1 8 0 . 1 5 5 0 9 1 : 1 5 : 1 1 9 6 6 0 . 0 0 4 2 3 0 . 1 6 0 2 6 0 . 1 5 6 0 3 1 : 1 5 : 1 1 9 6 7 0 . 0 0 3 1 9 0 . 1 6 1 8 6 0 . 1 5 8 6 8 1 : 1 : 5 1 1 9 6 8 0 . 0 1 7 3 7 0 . 1 7 7 7 7 0 . 1 6 0 4 0 1 5 : 1 : 1 1 9 6 9 - 0 . 0 1 4 6 6 0 . 1 4 6 8 2 0 . 1 6 1 4 8 1 : 5 : 1 1 9 7 0 - 0 . 0 0 0 3 9 0 . 1 5 7 6 3 0 . 1 5 8 0 2 1 : 1 5 : 1 1 9 7 1 0 . 0 0 3 7 0 0 . 1 6 0 5 1 0 . 1 5 6 8 1 1 - 5 : 1 1 9 7 2 0 . 0 0 0 2 3 0 . 1 5 8 5 0 0 . 1 5 8 2 7 1 : 1 5 : 1 1 9 7 3 0 . 0 0 9 7 2 0 . 1 7 2 8 7 0 . 1 6 3 1 5 1 - 5 1 : 1 1 9 7 4 - 0 . 0 0 9 5 9 0 . 1 5 4 6 7 0 . 1 6 4 2 6 1 5 : 1 : 1 1 9 7 5 - 0 . 0 2 3 0 2 0 . 0 6 9 2 6 0 . 0 9 2 2 8 1 : 1 : 5 1 1 9 7 6 0 . 0 1 9 1 6 0 . 1 1 3 5 4 0 . 0 9 4 3 8 1 : 1 5 : 1 1 9 7 7 0 . 0 0 2 7 9 0 . 0 9 5 0 7 0 . 0 9 2 2 8 1 : 5 1 : 1 1 9 7 8 - 0 . 0 0 4 1 1 0 . 0 8 9 2 1 0 . 0 9 3 3 1 1 : 1 5 : 1 1 9 7 9 0 . 0 0 3 8 5 0 . 0 9 9 3 1 0 . 0 9 5 4 6 1 : 1 : 5 1 1 9 8 0 0 . 0 2 6 6 2 0 . 1 2 2 2 0 . 0 9 5 6 4 1 z 5 1 : 1 1 9 8 1 - 0 . 0 0 1 7 3 0 . 0 9 4 7 8 0 . 0 9 6 5 0 1 : 1 5 : 1 1 9 8 2 0 . 0 0 6 9 3 0 . 1 0 5 7 3 0 . 0 9 8 8 0 1 - 5 1 : 1 1 9 8 3 - 0 . 0 0 1 4 7 0 . 0 9 4 2 8 0 . 0 9 5 7 4 1 5 : 1 : 1 1 9 8 4 - 0 . 0 2 9 0 3 0 . 0 7 0 7 9 0 . 0 9 9 8 2 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P A U / C P I A U / P O P A U W C G R A U = W h e a t / C o a r s e G r a i n S u p p l y R a t i o ( W E S A U ( - l ) 5 W P R O A U ) / ( F E S A U ( - l ) + F P R O A U ) D V 7 S O N 8 l I f < T I M E . G E . 1 9 7 5 ) 0 O t h e r w i s e 3 1 9 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C N F O D 0 . 1 3 1 6 0 0 0 0 . 0 3 3 8 1 0 9 0 . 1 7 7 7 6 8 5 0 . 0 6 9 2 5 8 5 P C R G D P 7 . 1 0 3 D - 0 5 1 . 3 4 9 0 - 0 5 9 . 1 0 9 0 - 0 5 4 . 5 9 4 D - 0 5 D V 7 5 O N 0 . 4 1 6 6 6 6 7 0 . 5 0 3 6 1 0 2 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 W C G R A U 2 . 8 6 1 9 4 8 0 0 . 6 7 2 6 2 0 3 3 . 9 4 5 8 4 9 0 1 . 6 5 3 9 9 6 0 C o v a r i a n c e C o r r e l a t i o n P C W F O D , P C W F O D 0 . 0 0 1 0 9 5 5 1 . 0 0 0 0 0 0 0 P C W F O D , P C R G D P - 3 . 0 0 0 0 — 0 7 - 0 . 6 8 6 2 3 2 4 P C W F O D , D V 7 5 O N - 0 . 0 1 5 0 7 4 4 - 0 . 9 2 3 7 8 5 6 P C W F O D , W C G R A U 0 . 0 0 7 5 9 6 0 0 . 3 4 8 5 3 3 0 P C R G D P , P C R S D P 1 . 7 4 5 0 - 1 0 1 . 0 0 0 0 0 0 0 P C R G D P , D V 7 5 O N 5 . 2 1 5 D - 0 6 0 . 8 0 0 7 1 8 4 P C R G D P , W C G R A U - 5 . 3 1 7 D — 0 6 - 0 . 6 1 1 3 3 9 3 D V 7 5 0 N , D V 7 5 O N . 2 4 3 0 5 5 6 1 . 0 0 0 0 0 0 0 D V 7 5 O N , W C G R A U - 0 . 1 2 4 3 3 9 4 - 0 . 3 8 3 0 2 5 4 W C B R A U , W C 8 R A U 0 . 4 3 3 5 6 7 3 1 . 0 0 0 0 0 0 0 7 1 7 7 7 3 7 4 7 B 7 1 7 7 7 7 7 1 a b 9 1 8 7 7 7 3 4 ” ' 0 0 0 3 1 5 “ 1 r 4 5 3 1 2 3 1 ~ 1 7 5 9 0 1 . 0 2 0 % ~ 1 1 " : 2 5 0 5 ‘ , 1 9 7 9 1 6 . 1 5 . 1 4 . 1 3 . 1 2 . H . 1 0 . 1 5 5 5 5 1 1 2 5 5 5 « 1 5 5 5 5 . 7 5 5 5 1 - 3 5 5 5 5 1 7 1 1 7 1 8 ' 7 2 6 7 3 4 7 4 1 7 4 9 I 7 5 7 I . 7 5 5 5 . 7 7 2 I . 7 5 0 3 2 0 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e C . 6 . a & b . W h e a t N e t E x p o r t s - A u s t r a l i a P > C D C O ! : 0 1 9 5 1 ~ > C 1 2 n I : q " I 1 ' o » ~ u U ' r 1 r u U ' " 4 < 1 ‘ ~ 3 U ¢ I z k fi ! 1 ‘ 1 ~ I ’ I ' I U ' F i g u r e C . 7 . a & b . 8 . 1 1 4 . 5 7 0 . 7 9 8 . 0 2 8 . 4 8 2 . 7 1 0 . 9 3 8 . 1 8 8 . 3 4 2 ' . 2 5 4 . 3 2 1 0 " “ J “ J 6 3 ' 5 ' : . . . s " - 5 . 3 M ' 5 1 ) ( 4 3 “ J J . I s s 3 . ” Q . " a : m . 5 : ‘ ~ 5 1 ~ 5 2 a ' 9 1 : - ‘ 0 0 : ! " 6 3 o o _ r e . - 0 3 N G ) R E G I O N A L M O D E L S I M U L A T I O N 7 5 7 5 7 g 7 g 7 7 8 0 5 1 5 2 5 3 5 4 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L — ’ - — E S T I M A T E D W h e a t E n d i n g S t o c k s - A u s t r a l i a 3 2 2 A u s t r a l i a . P e r C a p i t a W h e a t E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 0 - 1 9 8 2 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 0 7 6 1 9 2 9 0 . 0 5 8 2 5 4 4 - 1 . 3 0 7 9 3 3 9 0 . 2 0 6 P C W P R O 0 . 2 8 6 0 8 2 2 0 . 0 7 0 2 0 3 1 4 . 0 7 5 0 6 5 0 0 . 0 0 1 D V 6 8 6 9 0 . 4 0 0 3 5 9 7 0 . 0 5 1 5 4 5 8 7 . 7 6 7 0 6 1 5 0 . 0 0 0 R - s q u a r e d 0 . 8 4 5 8 6 3 M e a n o f d e p e n d e n t v a r 0 . 1 9 4 7 2 2 A d j u s t e d R - s q u a r e d 0 . 8 3 0 4 4 9 S . D . o f d e p e n d e n t v a r 0 . 1 5 9 6 9 5 S . E . o f r e g r e s s i o n 0 . 0 6 5 7 5 7 S u m o f s q u a r e d r e s i d 0 . 0 8 6 4 8 0 D u r b i n - W a t s o n s t a t 1 . 2 1 4 5 5 4 F - s t a t i s t i c 5 4 . 8 7 7 4 2 L o g l i k e l i h o o d 3 1 . 5 7 2 8 2 T P E : 2 / 2 2 ' R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D I : * I : I 1 9 6 0 - 0 . 0 3 4 9 3 0 . 0 9 6 2 1 0 . 1 3 1 1 3 I : * I : I 1 9 6 1 - 0 . 0 2 9 7 3 0 . 0 7 6 4 9 0 . 1 0 6 2 2 I * I : I 1 9 6 2 - 0 . 0 5 7 0 1 0 . 0 8 9 2 9 0 . 1 4 6 3 1 I * : I : I 1 9 6 3 - 0 . 0 7 6 6 2 0 . 0 8 0 3 7 0 . 1 5 6 9 8 I * : I : I 1 9 6 4 - 0 . 0 9 2 3 3 0 . 0 8 8 5 4 0 . 1 8 0 8 7 I : * I : I 1 9 6 5 - 0 . 0 3 3 3 5 0 . 0 6 7 9 5 0 . 1 0 1 3 1 I : * I : I 1 9 6 6 - 0 . 0 2 0 1 0 0 . 2 1 6 9 0 0 . 2 3 6 9 9 I : I * : I 1 9 6 7 0 . 0 4 0 4 2 0 . 1 4 7 2 0 0 . 1 0 6 7 8 I : * I : I 1 9 6 8 - 0 . 0 4 5 1 6 0 . 6 3 1 6 4 0 . 6 7 6 8 0 I : I * : I 1 9 6 9 0 . 0 4 5 1 6 0 . 6 1 5 4 2 0 . 5 7 0 2 5 I : I ' : I 1 9 7 0 0 . 1 8 8 7 3 0 . 2 9 2 9 7 0 . 1 0 4 2 4 I : I * : I 1 9 7 1 0 . 0 0 8 3 4 0 . 1 2 2 4 1 0 . 1 1 4 0 7 I : * I : I 1 9 7 2 - 0 . 0 2 3 9 8 0 . 0 4 2 8 7 0 . 0 6 6 8 5 I : * I : I 1 9 7 3 - 0 . 0 3 1 9 7 0 . 1 4 8 1 3 0 . 1 8 0 1 1 I : * I : I 1 9 7 4 - 0 . 0 3 9 9 4 0 . 1 2 1 0 2 0 . 1 6 0 9 6 I : I * : I 1 9 7 5 0 . 0 2 1 2 7 0 . 1 9 1 8 6 0 . 1 7 0 5 9 I : * I : I 1 9 7 6 - 0 . 0 1 2 1 0 0 . 1 5 2 3 2 0 . 1 6 4 4 2 I * I ° I 1 9 7 7 — 0 . 0 5 7 7 5 0 . 0 5 4 9 7 0 . 1 1 2 7 1 I : I * : I 1 9 7 8 0 . 0 3 9 3 4 0 . 3 2 3 5 4 0 . 2 8 4 2 0 I : I * : I 1 9 7 9 0 . 0 5 1 1 7 0 . 2 9 4 1 4 0 . 2 4 2 9 7 I : * : I 1 9 8 0 0 . 0 0 3 9 2 0 . 1 3 9 1 4 _ 0 . 1 3 5 2 2 I : I : * I 1 9 8 1 0 . 0 8 9 2 7 0 . 3 2 6 7 9 . 0 . 2 3 7 5 2 I : I * I 1 9 8 2 0 . 0 6 7 3 5 0 . 1 5 8 4 3 0 . 0 9 1 0 8 I N D E P E N D E N T V A R I A B L E S P C W P R O 8 W h e a t P r o d u c t i o n P e r C a p i t a ( 1 0 0 0 M T ) W P R O A U / P O P A U D V 6 8 6 9 = 1 I £ ( T I M E . E 0 . 6 8 . O R . T I M E . E 0 . 6 9 ) 0 O t h e r w i s e 3 2 3 S M P L 1 9 6 0 - 1 9 8 2 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C W E S 0 . 1 9 4 7 2 1 8 0 . 1 5 9 6 9 5 5 0 . 6 3 1 6 4 0 3 0 . 0 4 2 8 6 8 0 P C W P R O 0 . 8 2 5 2 9 0 3 0 . 2 1 1 5 3 7 2 1 . 2 5 9 7 4 9 0 0 . 5 0 0 0 0 0 0 D V 6 8 6 9 0 . 0 8 6 9 5 6 5 0 . 2 8 8 1 0 4 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C W E S , P C W E S 0 . 0 2 4 3 9 3 8 1 . 0 0 0 0 0 0 0 P C W E S , P C W P R O 0 . 0 1 9 9 4 3 3 0 . 6 1 7 1 9 5 8 P C W E S . D V 6 8 6 9 0 . 0 3 7 2 8 7 5 0 . 8 4 7 2 7 9 3 P C W P R O . P C W P R O 0 . 0 4 2 8 0 2 4 1 . 0 0 0 0 0 0 0 P C W P R O , D V 6 8 6 9 0 . 0 1 9 2 2 8 4 0 . 3 2 9 8 4 7 4 D V 6 8 6 9 . D V 6 8 6 9 0 . 0 7 9 3 9 5 1 1 . 0 0 0 0 0 0 0 P O O C : m a % 0 2 0 ( m m 1 ' I Z I T ' V ' I I I I I F T I u u F q ‘ F D C Z 3 1 ~ a a m s s F i g u r e C . 8 . a & b . C o a r s e G r a i n P r o d u c t i o n - A u s t r a l i a 3 2 4 . T J - H 6 9 7 ' 9 7 ? I 2 i s 7 ' 4 ' 3 5 i s 7 ' 7 7 ' 9 7 3 8 ' 3 3 ‘ 1 9 2 a s 3 4 R E G I O N A L M O D E L S I M U L A T I O N . 9 0 1 . 2 7 r J M O J M O J M O J 1 9 J 1 9 - . 4 8 9 - . 3 5 3 : . 2 2 3 . E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e C . 9 . a & b . C o a r s e G r a i n H a r v e s t e d A r e a - A u s t r a l i a 3 2 5 s s m q 1 5 m « 0 o 3 3 ' 0 5 ‘ H E 4 5 W ‘ C T 4 3 3 0 4 A R F ! 3 a m , , . . 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 9 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N M I I . 6 . 8 8 3 _ I ; L B J M 8 ' - / : I 6 . 2 5 3 : / I 0 5 . 9 3 9 - N . 5 . 9 2 2 : ; E 4 . 9 9 2 : 1 c 4 . 9 7 7 - j T 4 . 3 8 2 - I A 4 . 0 4 7 r - 3 R a a o 0 f r 0 u o i E 7 5 7 a 7 7 7 a 7 9 s o B I . 9 2 9 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . _ - - E S T I M A T E D C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) I N D E P E N D E N R s t T C W ( o h V a A r e Y a A W A I e B G L r E a S i R - e 3 v ) e + n W U < n u Y e A H U a p ( r e - v e r 2 e n ) s u H + t e e W e d p t A e a U c Y r A r < r e * - H 1 e 1 a ) e ) ( c * + S ( t W F I 1 Y a H Y 0 A r A A 0 U e U ) 0 ) ) H $ 4 4 A I n * ) H F W ( / / A ) P P * - X X R R A A U U / / C C P P I I A A U U A u s t r a l i a 3 2 6 S M P L 1 9 6 4 2 1 O b s e r v a t i o n s 1 9 8 4 L S / / D e p e n d e n t V a r i a b l e i s F H A A U V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T . 2 - T A I L 8 1 8 . C - 2 7 3 9 . 8 4 0 3 9 0 5 . 7 9 6 0 2 - 3 . 0 2 4 7 8 7 3 0 . 0 0 8 T I M E 1 0 7 . 7 0 5 6 5 1 0 . 1 8 5 8 0 3 1 0 . 5 7 4 0 9 5 0 . 0 0 0 W R A U ( - 1 ) - 1 3 0 3 . 5 9 3 2 2 4 0 . 4 9 4 2 : - s . 4 2 0 ¢ e o o 0 . 0 0 0 F R A U ( - 1 ) 8 7 2 . 1 1 5 8 9 3 7 3 . 4 9 7 1 4 2 . 3 3 5 0 0 0 2 0 . 0 3 2 R - s q u a r e d 0 . 9 3 1 0 1 1 M e a n o f d e p e n d e n t v a r 3 9 8 6 . 1 9 0 A d j u s t e d R - s q u a r e d 0 . 9 1 8 8 3 6 S . D . o f d e p e n d e n t v a r 9 2 4 . 9 2 7 3 S . E . o f r e g r e s s i o n 2 6 3 . 5 0 5 2 S u m o f s q u a r e d r e s i d 1 1 8 0 3 9 5 . D u r b i n - W a t s o n s t a t 1 . 9 9 8 5 0 8 F - s t a t i s t i c 7 6 . 4 7 1 5 9 L o g l i k e l i h o o d - 1 4 4 . 6 3 4 5 T P E 3 / 2 1 s R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D ' I I * : I 1 9 6 4 7 0 . 8 8 9 7 g ' § § 3 § : 0 0 2 4 2 7 . 1 1 I I I * : I 1 9 6 5 1 3 5 . 6 2 7 2 7 3 5 . 0 0 2 5 9 9 . 3 7 I : * I : I 1 9 6 6 - 8 4 . 8 1 9 6 3 0 4 5 . 0 0 3 1 2 9 . 8 2 I : * I : I 1 9 6 7 - 1 1 4 . 5 5 0 2 7 1 4 . 0 0 2 8 2 8 . 5 5 I : I * : I 1 9 6 8 5 4 . 1 2 1 0 3 2 0 . 0 0 3 1 5 5 . 8 8 I : 4 : I 1 9 6 9 - 1 4 . 7 5 9 8 3 3 8 0 . 0 0 3 3 9 4 . 7 6 I : I * : I 1 9 7 0 2 1 3 . 3 2 4 2 4 0 . 0 0 4 0 2 6 . 1 7 I I I : 4 I 1 9 7 1 3 4 7 . 7 4 7 4 5 1 6 . 0 0 4 1 6 8 . 2 5 I : * I : I 1 9 7 2 - 1 8 2 . 9 0 8 3 9 1 8 . 0 0 4 1 0 0 . 9 1 I 4 : I : I 1 9 7 3 - 4 9 7 . 3 0 8 3 7 0 2 . 0 0 - 4 1 9 9 . 3 1 I : I * 2 I 1 9 7 4 2 2 5 . 4 8 3 3 3 0 7 . 0 0 3 0 8 1 . 5 2 I : I 4 : I 1 9 7 5 2 . 2 2 6 3 8 8 9 . 0 0 3 2 6 . 7 9 I : * I : I 1 9 7 6 - 4 2 . 0 9 2 8 3 9 2 3 . 0 0 3 9 6 5 . 0 9 I : 4 I : I 1 9 7 7 - 2 2 2 . 8 1 6 4 3 6 8 . 0 0 4 5 9 0 . 8 2 I : 4 I : I 1 9 7 8 - 7 2 . 4 2 3 1 4 6 9 5 . 0 0 4 7 6 7 . 4 2 I * : I : I 1 9 7 9 - 3 0 6 . 2 3 0 4 1 9 7 . 0 0 4 5 0 3 . 2 3 I : I 4 : I 1 9 8 0 6 5 . 6 2 5 8 4 2 8 6 . 0 0 4 2 2 0 . 3 7 I I I 4 : I 1 9 8 1 1 0 0 . 6 1 8 4 8 3 3 . 0 0 4 7 3 2 . 3 I * : I : I 1 9 8 2 - 4 5 6 . 0 1 1 4 4 9 4 . 0 0 4 9 5 0 . 0 1 I : I : 4 I 1 9 8 3 3 8 0 . 8 6 1 5 7 8 1 . 0 0 5 4 0 0 . 1 4 I : I : * I 1 9 8 4 3 3 6 . 9 0 2 5 9 7 9 . 0 0 5 6 4 2 . 1 0 F H A A U = F R A U = C o a r s e G r a i n R e v ( F Y A U < - 3 ) + F Y A U ( - 2 ) + F Y A U ( W R A U = T I M E = 1 9 6 0 8 6 0 , 1 9 6 1 = 6 1 , 3 2 7 S M P L 1 9 6 4 - 1 9 8 4 2 1 _ O b s e r v a t i o n s ~ S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A A U 3 9 8 6 . 1 9 0 5 9 2 4 . 9 2 7 2 7 5 9 7 9 . 0 0 0 0 2 4 9 8 . 0 0 0 0 T I M E 7 4 . 0 0 0 0 0 0 6 . 2 0 4 8 3 6 8 8 4 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 N R A U I - 1 ) 2 . 0 3 9 2 2 4 4 0 . 4 2 5 4 9 4 9 3 . 1 5 8 1 4 0 0 1 . 4 4 4 1 9 2 0 F R A U ( - 1 ) 1 . 6 2 1 4 7 1 9 . 0 . 2 6 2 7 7 2 8 2 . 2 5 6 6 2 4 0 . 2 4 1 8 4 8 0 C o v a r i a n c e C o r r e l a t i o n F H A A U , F H A A U 8 1 4 7 5 2 . 8 2 1 . 0 0 0 0 0 0 0 F H A A U , T I M E , 4 7 9 8 . 2 3 8 1 0 . 8 7 7 8 7 5 9 F H A A U , W R A U ( - 1 ) - 2 4 3 . 2 4 9 9 6 - 0 . 6 4 8 9 9 3 1 F H A A U , F R A U ( - 1 ) - 8 6 . 3 9 9 4 7 5 - 0 . 3 7 3 2 6 0 8 T I M E , T I M E 3 6 . 6 6 6 6 6 7 1 . 0 0 0 0 0 0 0 T I M E , W R A U ( - 1 ) - 0 . 8 5 7 8 9 7 7 - 0 . 3 4 1 1 9 2 9 T I M E , F R A U ( - 1 ) - 0 . 3 0 8 8 0 0 7 - 0 . 1 9 8 8 6 4 3 W R A U ( - 1 ) , W R A U ( - 1 ) 0 . 1 7 2 4 2 4 7 1 . 0 0 0 0 0 0 0 W R A U ( - 1 ) , F R A U ( - 1 ) 0 . 0 8 4 7 5 9 9 0 . 7 9 5 9 8 4 7 F R A U ( - 1 ) , F R A U ( - 1 ) 0 . 0 6 5 7 6 1 5 1 . 0 0 0 0 0 0 0 A u s t r a l i a 3 2 8 C o a r s e G r a i n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M P L 1 9 6 0 - 2 5 O b s e r v a t i o n s 1 9 8 4 L S / / D e p e n d e n t V a r i a b l e i s F Y A U V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I b S I G . C - 3 . 2 8 3 1 2 7 6 1 . 6 5 0 9 5 8 8 - 1 . 9 8 8 6 1 8 7 0 . 0 5 9 L O G T 1 . 0 4 8 2 6 5 0 0 . 3 8 6 3 8 8 4 2 . 7 1 2 9 8 2 4 0 . 0 1 2 R - s q u a r e d 0 . 2 4 2 4 3 1 M e a n o f d e p e n d e n t v a r 1 . 1 9 4 6 4 6 A d j u s t e d R - s g u a r e d 0 . 2 0 9 4 9 3 S . D . 0 + d e p e n d e n t v a r 0 . 2 1 9 1 7 2 S . E . o f r e g r e s s i o n 0 . 1 9 4 8 6 7 S u m o f s q u a r e d r e s i d 0 . 8 7 3 3 8 0 D u r b i n - W a t s o n s t a t 2 . 7 3 9 3 7 0 F - s t a t i s t i c 7 . 3 6 0 2 7 3 L o . l i k e l i h o o d 6 . 4 5 4 7 8 5 9 W E 2 1 . 9 . 2 . 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D I : I 4 : I 1 9 6 0 0 . 1 5 0 9 1 1 . 1 5 9 7 4 1 . 0 0 8 8 3 I : 4 I : I 1 9 6 1 - 0 . 0 5 2 3 3 0 . 9 7 3 8 3 1 . 0 2 6 1 6 I : I 4 : I 1 9 6 2 0 . 0 4 8 6 0 1 . 0 9 1 8 1 1 . 0 4 3 2 0 I : 4 : I 1 9 6 3 0 . 0 1 5 1 3 1 . 0 7 5 1 0 1 . 0 5 9 9 8 I : I 4 : I 1 9 6 4 0 . 0 3 7 6 1 1 . 1 1 4 0 9 1 . 0 7 6 4 8 I 4 : I : I 1 9 6 5 - 0 . 2 1 7 7 8 0 . 8 7 4 9 5 1 . 0 9 2 7 4 I : I 4 : I 1 9 6 6 0 . 1 6 5 8 1 1 . 2 7 4 5 5 1 . 1 0 8 7 4 I 4 : I : I 1 9 6 7 - 0 . 3 7 1 7 4 0 . 7 5 2 7 6 1 . 1 2 4 5 0 I : I 4 : I 1 9 6 8 0 . 0 5 1 5 5 1 . 1 9 1 5 9 - 1 . 1 4 0 0 4 I : 4 I : I 1 9 6 9 - 0 . 0 5 9 1 8 1 . 0 9 6 1 5 1 . 1 5 5 3 4 I : I 4 : I 1 9 7 0 0 . 1 2 7 2 2 1 . 2 9 7 6 4 1 . 1 7 0 4 2 I z I 4 : I 1 9 7 1 0 . 1 0 0 3 6 1 . 2 8 5 6 5 1 . 1 8 5 2 9 I 4 : I : I 1 9 7 2 - 0 . 2 6 9 3 7 0 . 9 3 0 5 8 1 . 1 9 9 9 5 I : I 4 : I 1 9 7 3 0 . 0 5 7 0 6 1 . 2 7 1 4 7 1 . 2 1 4 4 1 I : I 4 : I 1 9 7 4 0 . 1 1 5 4 5 1 . 3 4 4 1 2 1 . 2 2 8 6 7 I . : I 4 I 1 9 7 5 0 . 1 9 6 7 0 1 . 4 3 9 4 5 1 . 2 4 2 7 4 I : I 4 : I 1 9 7 6 0 . 0 2 7 0 8 1 . 2 8 3 7 1 . 2 5 6 6 3 I 4 : I : I 1 9 7 7 - 0 . 2 9 7 3 5 0 . 9 7 2 9 9 1 . 2 7 0 3 3 I : I : 4 I 1 9 7 8 0 . 2 2 8 1 8 1 . 5 1 2 0 3 1 . 2 8 3 8 6 I : I 4 I 1 9 7 9 0 . 1 8 0 2 7 1 . 4 7 7 4 8 1 . 2 9 7 2 1 I : 4 I : I 1 9 8 0 - 0 . 0 9 3 8 8 1 . 2 1 6 5 2 1 . 3 1 0 4 0 I : I 4 : I 1 9 8 1 0 . 0 4 6 5 4 ‘ 1 . 3 6 9 9 6 1 . 3 2 3 4 2 I 4 : I : I 1 9 8 2 - 0 . 4 6 6 2 3 0 . 8 7 0 0 5 1 . 3 3 6 2 8 I e I : 4 I 1 9 8 3 0 . 2 6 0 9 4 1 . 6 0 9 9 3 1 . 3 4 8 9 9 I : I 4 : I 1 9 8 4 0 . 0 1 8 4 5 1 . 3 8 0 0 0 1 . 3 6 1 5 4 I N D E P E N D E N T V A R I A B L E S L O G T = L n < T I M E ) 3 2 9 S M P L 1 9 6 0 - 1 9 8 4 2 5 O b s e r v a t i o n s S e r i e s M e a n 5 . 0 . M a x i m u m M i n i m u m F Y A U 1 . 1 9 4 6 4 6 3 0 . 2 1 9 1 7 2 0 1 . 6 0 9 9 2 9 0 0 . 7 5 2 7 6 3 5 L O G T 4 . 2 7 1 6 0 5 0 . 0 . 1 0 2 9 4 5 7 4 . 4 3 0 8 1 7 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n F Y A U , F Y A U 0 . 0 4 6 1 1 4 9 1 . 0 0 0 0 0 0 0 F Y A U , L O G T 0 . 0 1 0 6 6 4 9 0 . 4 9 2 3 7 2 9 L O G T , L O B T 0 . 0 1 0 1 7 3 9 1 . 0 0 0 0 0 0 0 ‘ F > C > C I C ! I H I 4 ' 1 ~ J C I Z I U 5 9 7 ' 9 7 1 7 ' 2 7 ' 3 7 ' 4 7 ‘ 5 7 6 7 ' 7 7 ' 8 7 ' 9 3 ' 9 9 1 9 ' 2 9 ' 3 9 4 u z » : : ) r U T 4 4 7 4 ' U U r a ‘ r r 0 ' T ' V V ' I 1 F : « J C I n Z o l i I k I 9 ~ - 3 3 0 3 5 0 0 3 0 3 3 ' 2 5 0 0 5 2 9 8 8 - 1 5 8 8 - 1 m R E G I O N A L M O D E L S I M U L A T I O N . 8 4 1 . 6 2 0 ' . 3 9 9 . 1 7 8 . 9 5 7 . 7 3 5 . 5 1 4 . 2 9 3 - . 0 7 2 : . 8 5 1 E 7 s 7 6 . 7 7 7 0 7 9 8 0 8 7 3 2 8 5 9 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I M A T E D F i g u r e 0 . 1 0 a A b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - A u s t r a l i a N N N N I I 4 1 ‘ r N ‘ r N 4 1 3 ( 5 2 i i i r a o - . . - 7 5 7 6 F i g u r e C . l l . a & b . 7 o u C A 7 7 5 7 9 3 a s r t s r e a l G i r a a i n F e 0 e 3 1 3 2 3 3 3 4 d C o n s u m p t i o n - 3 3 1 3 0 0 0 1 ' 1 f r 0 2 3 m 0 0 a n c h M E T " u . . 1 5 0 0 I T O N . s 1 0 0 0 W 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 8 9 R E G I O N A L M O D E L S I M U L A T I O N . 9 1 3 . 7 3 5 ' . 5 5 2 I . 3 0 7 I . 2 1 1 : m u s : . 8 6 0 Z . 5 9 5 Z . 5 0 9 . 3 3 4 E E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L - I - - E S T I M A T E D P e r C a p i t a C o a r s e G r a i n F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) 3 3 2 A u s t r a l i a s a n 1 9 5 1 - 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C F F E D 1 9 8 4 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 0 . 1 2 4 8 4 5 3 0 . 0 4 1 6 8 5 6 2 . 9 9 4 9 2 7 3 0 . 0 0 7 F P A U - 0 . 0 6 7 8 8 9 5 0 . 0 2 4 7 5 1 4 - 2 . 7 4 2 8 6 0 2 0 . 0 1 3 S M P A U 0 . 0 2 3 8 4 5 8 0 . 0 0 8 5 1 7 6 2 . 7 9 9 5 9 3 8 0 . 0 1 1 P C F D S 0 . 1 2 2 4 9 3 1 0 . 0 4 4 6 5 3 7 2 . 7 4 3 1 7 9 8 0 . 0 1 3 , R - s q u a r e d 0 . 5 5 9 2 2 M e a n o f d e p e n d e n t v a r 0 . 1 3 2 5 1 1 A d j u s t e d R - s g u a r e d 0 . 4 9 3 1 1 3 S . D . o f d e p e n d e n t v a r 0 . 0 3 3 5 0 2 S . E . o f r e g r e s s i o n 0 . 0 2 3 8 5 2 S u m o f s q u a r e d r e s i d 0 . 0 1 1 3 7 9 D u r b i n - W a t s o n s t a t 1 . 5 2 2 5 8 7 F - s t a t i s t i c 8 . 4 5 8 3 2 2 L o g 1 i k e l i h o o d 5 7 . 7 9 4 3 7 T P E 5 / 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D I : 4 I : I 1 9 6 1 - 0 . 0 0 8 3 4 0 . 0 9 5 9 2 0 . 1 0 4 2 7 I : I * : I 1 9 6 2 0 . 0 1 7 0 5 0 . 1 2 1 4 2 0 . 1 0 4 3 7 I z I 4 : I 1 9 6 3 0 . 0 1 4 6 0 0 . 1 1 4 1 6 0 . 0 9 9 5 6 I : I 4 : I 1 9 6 4 0 . 0 1 7 9 7 0 . 1 1 6 8 3 0 . 0 9 8 8 6 I : 4 I : I 1 9 6 5 - 0 . 0 1 4 7 0 0 . 0 8 9 2 0 0 . 1 0 3 9 0 I : I : 4 I 1 9 6 6 0 . 0 3 0 3 8 0 . 1 4 3 3 0 . 1 1 6 9 5 I 4 : I : I 1 9 6 7 - 0 . 0 2 7 8 2 0 . 0 9 0 5 1 0 . 1 1 8 3 3 I * : I : I 1 9 6 8 - 0 . 0 2 8 9 4 0 . 0 9 9 5 0 0 . 1 2 8 4 4 I : 4 I : I 1 9 6 9 - 0 . 0 1 3 3 0 0 . 1 1 8 0 3 0 . 1 3 1 3 2 I : 4 I : I 1 9 7 0 - 0 . 0 1 5 4 8 0 . 1 2 6 2 2 0 . 1 4 1 7 0 : : I : 4 : 1 9 7 1 0 . 0 3 8 3 7 0 . 2 0 5 3 4 0 . 1 5 7 9 5 I : I 4 : I 1 9 7 2 0 . 0 0 7 7 0 0 . 1 8 0 6 5 0 . 1 7 2 9 5 I : I 4 : I 1 9 7 3 0 . 0 2 1 4 4 0 . 1 2 5 1 9 0 . 1 0 3 7 4 I : 4 I : I 1 9 7 4 - 0 . 0 0 6 2 5 0 . 0 9 1 9 7 0 . 0 9 8 2 2 I 4 : I : I 1 9 7 5 - 0 . 0 3 7 4 7 0 . 0 8 9 7 0 0 . 1 2 7 1 8 I 4 : I : I 1 9 7 6 - 0 . 0 3 5 1 2 0 . 1 2 0 8 1 0 . 1 5 5 9 3 I : I * : I 1 9 7 7 0 . 0 0 3 2 0 0 . 1 3 9 6 1 0 . 1 3 6 4 0 I : 4 I : I 1 9 7 8 - 0 . 0 0 7 4 2 0 . 1 5 6 1 3 0 . 1 6 3 5 5 I : 4 I : I 1 9 7 9 - 0 . 0 1 7 9 9 0 . 1 3 6 8 7 0 . 1 5 4 8 6 I : 4 I : I 1 9 8 0 - 0 . 0 0 8 7 7 0 . 1 3 1 9 3 0 . 1 4 0 7 0 I : I : 4 I 1 9 8 1 0 . 0 3 2 0 7 0 . 1 9 2 6 3 0 . 1 6 0 5 6 I : I : 4 I 1 9 8 2 0 . 0 3 2 6 6 0 . 1 6 4 1 6 0 . 1 3 1 5 0 I : I 4 : I 1 9 8 3 0 . 0 0 8 8 5 0 . 1 6 9 1 2 0 . 1 6 0 2 6 I : 4 I : I 1 9 8 4 - 0 . 0 0 2 7 1 0 . 1 5 6 0 5 0 . 1 5 8 7 6 I N D E P E N D E N T V A R I A B L E S P C F D S = P e r C a p i t a D o m e s t i c C o a r s e G r a i n S u p p l y - ( F E S A U ( - 1 ) * F P R O A U ) / P O P A U F P A U = R e a l A r g e n t i n e C o a r s e G r a i n P r i c e ( S I M T ) W P 5 X R A U / C P I A U S M P A U = R e a l A r g e n t i n e S o y m e a l P r i c e S M P fi X R A U / C P I A U 3 3 3 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F F E D 0 . 1 3 2 5 1 1 0 0 . 0 3 3 5 L 2 2 0 . 2 0 6 3 3 6 9 0 . 0 8 9 2 0 1 1 F P A U 1 . 3 7 5 2 7 1 3 0 . 2 5 8 3 6 9 0 1 . 8 8 6 2 7 9 0 0 . 9 0 5 6 5 8 5 S M P A U 2 . 2 2 4 3 0 7 6 0 . 6 8 8 8 3 0 0 5 . 0 7 6 8 5 0 0 1 . 1 3 1 9 9 4 0 P C F D S 0 . 3 9 1 7 9 2 0 0 . 1 2 6 3 7 1 8 0 . 6 1 6 5 1 5 0 0 . 2 1 3 1 6 9 4 a . . . I I . . . ‘ . . . . . . . " . . I I . . . - C o v a r i a n c e C o r r e l a t i o n P C F F E D , P C F F E D 0 . 0 0 1 0 7 5 6 . 1 . 0 0 0 0 0 0 0 P C F F E D , F P A U — 0 . 0 0 3 9 9 5 8 - 0 . 4 8 1 6 9 6 0 ’ P C F F E D , S M P A U 0 . 0 0 1 8 9 2 5 0 . 0 8 5 5 7 4 3 P C F F E D , P C F D S 0 . 0 0 2 3 2 7 7 0 . 5 7 3 6 9 2 1 F P A U , F P A U 0 . 0 6 3 9 7 3 1 1 . 0 0 0 0 0 0 0 F P A U , S M P A U 0 . 0 9 0 3 3 9 3 0 . 5 2 9 6 7 2 9 F P A U , P C F D S - 0 . 0 1 4 7 5 1 1 - 0 . 4 7 1 4 3 1 0 S N P A U , S M P A U 0 . 4 5 4 7 1 6 5 1 . 0 0 0 0 0 0 0 S M P A U , P C F D S - 0 . 0 2 3 0 0 0 9 - 0 . 2 7 5 7 1 8 1 P C F D S , P C F D S 0 . 0 1 5 3 0 4 4 1 . 0 0 0 0 0 0 0 P > C D C O 1 : m i ~ H J C Z I W 9 F O D C O Z I H I J - U S d F ) ( J ~ D C S Z I U 3 9 h 0 6 9 V T F i g u r e C . 1 2 - . - 7 8 r 7 - 1 F - 2 7 F e - 7 3 - 7 w 4 - 7 q 5 - H 6 7 - F - 7 7 - 7 F 8 - 7 ! 9 - 8 T 8 - - ! 1 8 - ! 8 8 ! 8 - 3 H 8 4 a & b . C C o o a n r s s u e m p G t r i a o i n n F o - o A d u s a t n r d a l R i e a s i d u a l 3 3 4 R E G I O N A L M O D E L S I M U L A T I O N 9 4 0 . 5 0 0 6 9 3 . 5 0 0 ' 6 4 6 . 5 0 0 7 9 9 . 5 0 0 7 5 2 . 5 0 0 7 0 5 . 5 0 0 6 5 8 . 5 0 0 6 1 1 . 5 0 0 5 6 4 . 5 0 0 5 1 7 . 5 0 0 I T V U I I V U I ‘ I I I 7 3 7 6 7 7 7 6 7 é 8 0 3 % 8 i 8 5 _ e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - — - E S T I M A T E D P e r C a p i V a t o n i A F P P k e f r - R C P C e d N e I C F r l A R d a s u i l . u q b 4 R A S D L - d u . o s j r E g I I I I I I I I I I I I I I I I I I I I I I I I t A D G R e i U t o i a s s 4 4 u s d s a t 4 r i d a C L P s r R o o 4 4 B S D - g s h : : : : : : : : : : : : : : : : : : : : : : : : E n o q e e 4 4 4 4 n 1 9 N 3 4 6 6 0 . 6 4 : : : : : : : : : : : : : : : : : : : : : : F 6 5 2 3 I 5 3 4 . C 3 5 7 6 5 1 I 6 1 0 0 0 7 1 0 3 E 3 7 . . . 9 . l o t 4 4 4 : 4 * i a C - - d n t e o a u a l 4 4 4 F 0 7 1 0 P 4 4 E . . . 3 O 0 0 1 0 4 I I I I I I I I I I I I I I I I I I I I I I I e 8 = s A ( C R F o e E a a S r l - G s l r t ) a r U A ( u F n l P i S R a u O n p U C l ) o y / a P r P O s r s e G r a i F o o a n d R e s i d T 0 0 0 2 S 5 9 9 8 6 T 6 1 0 2 3 5 3 5 9 6 6 7 7 4 6 d t d q d S . . . . . . . . . . . . . . . . . . . . . . . . i n u - - e e u i c 2 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 6 2 p p a D 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 D a l C o n s u m p t i o n T . . . . e e r - 4 0 5 4 2 2 U 9 4 2 1 3 4 9 7 5 8 8 2 8 7 5 8 7 - 5 n 2 3 0 n e A 3 7 3 8 8 4 8 1 3 0 2 4 2 6 9 8 9 3 8 8 0 5 8 6 S d 3 6 9 8 d d 6 L 8 0 6 8 3 2 2 5 7 0 3 7 8 2 8 2 5 8 4 1 1 1 T A T . 2 - 6 2 5 2 e e 2 2 1 0 n n r 8 7 7 4 t t e A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 1 3 s . . . . . . . . . . . C . . . . . . . . . . . . . 4 8 0 5 i v v 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a d U 5 5 7 6 7 8 5 7 6 6 7 3 3 3 5 6 3 3 6 4 4 4 4 4 r r 8 0 6 2 A 9 1 8 8 3 2 9 7 3 5 0 6 2 1 2 3 2 6 0 5 0 L 5 3 3 1 5 7 4 5 9 1 8 8 7 8 3 5 4 6 3 3 6 7 2 1 1 1 3 3 2 0 5 6 9 9 4 2 0 2 9 7 4 8 7 0 4 5 2 A 0 0 0 0 0 0 0 1 T ‘ . . . . I . . . F 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 0 0 0 7 0 I . . . . . . . . . . . . . . . . . . . . . . . . . 0 1 2 0 1 5 0 2 2 4 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 5 5 1 7 T 7 3 6 7 6 6 6 6 6 6 6 7 4 4 4 4 5 3 5 4 5 3 4 5 8 1 0 7 1 9 E 8 2 1 6 3 1 0 7 2 4 6 4 5 3 5 5 0 4 0 1 7 3 8 3 8 0 4 0 2 0 D 8 8 1 4 2 9 3 7 0 5 4 7 2 1 4 7 6 9 7 1 7 3 2 . 9 2 5 1 9 6 8 8 5 3 7 7 9 3 0 3 3 2 7 2 2 9 6 2 0 9 2 1 t a P r i c e D . . . . 2 0 0 0 5 2 0 2 . E 2 3 M S 2 9 F S T 8 5 R e 7 4 P u . - I I I I I I I I I I I I I I I I I I I I I I I I R 5 3 a 5 5 m s o 9 D E 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 . O 2 2 3 0 n t b 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 7 8 R 0 5 7 8 o 2 3 5 9 4 6 7 8 0 2 3 4 6 8 9 5 7 a s 1 1 1 0 2 3 4 r A C r U G o o f t f f i s s - R - - - - - - - - - - - - a a E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 p i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 e P e 2 4 3 6 8 4 4 4 p A A u s t r a l i a 3 3 5 ( 1 0 0 0 M T ) S M P L 1 9 5 1 — 2 4 O b s e r v a t i o n s 1 9 8 4 L S l l D e p e n d e n t V a r i a b l e i s P C F F O D I N D E P E N D E N T V A R I A B L E S P C R G D P G D P A U / C P I A U / P O P A U P C F D S 8 R e a l I n c o m e P e r C a p i t a F P A U F P 4 X R A U / C P I A U 3 3 6 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i é n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F F O D 0 . 0 5 5 0 0 8 9 0 . 0 1 5 7 2 1 9 0 . 0 8 2 5 0 0 0 0 . 0 3 1 8 2 4 8 P C F D S 0 . 3 9 1 7 9 2 0 0 . 1 2 6 3 7 1 8 0 . 6 1 6 5 1 5 0 0 . 2 1 3 1 6 9 4 F P A U 1 . 3 7 5 2 7 1 3 0 . 2 5 8 3 6 9 0 1 . 8 8 6 2 7 9 0 0 . 9 0 5 6 5 8 5 P C R B D P 7 . 1 0 3 D - 0 5 1 . 3 4 9 0 - 0 5 9 . 1 0 9 D - 0 5 4 . 5 9 4 D — 0 5 C o v a r i a n c e C o r r e l a t i o n . - . . . - P C F F O D , P C F F O D 0 . 0 0 0 2 3 6 9 1 . 0 0 0 0 0 0 0 P C F F O D , P C F D S - 0 . 0 0 0 3 8 5 0 - 0 . 2 0 2 2 2 5 3 P C F F O D , F P A U 0 . 0 0 0 1 6 4 8 0 . 0 4 2 3 4 4 8 P C F F O D , P C R G D P - 1 . 3 2 8 D - 0 7 - 0 . 6 5 3 2 8 7 6 P C F D S , P C F D S 0 . 0 1 5 3 0 4 4 1 . 0 0 0 0 0 0 0 P C F D S , F P A U - 0 . 0 1 4 7 5 1 1 - 0 . 4 7 1 4 3 1 0 P C F D S , P C R 8 D P 1 . 1 4 4 D - 0 6 0 . 6 9 9 8 0 2 6 F P A U , F P A U 0 . 0 6 3 9 7 3 1 1 . 0 0 0 0 0 0 0 F P A U , P C R B D P - 1 . 8 4 4 D - 0 6 , - 0 . 5 5 1 8 2 7 8 P C R G D P , P C R B D P 1 . 7 4 5 D - 1 0 1 . 0 0 0 0 0 0 0 : m a % 0 2 0 ( m Z u H ‘ s I s ‘ 3 fl u F H u O Z n M - - . 9 6 . 1 7 . 2 7 . 3 7 7 8 . 4 7 , 5 7 . 6 7 . 7 7 - r 8 7 - - 7 e 9 - - 8 r 8 - ! 8 - 1 s 8 - 2 - ! 8 - 3 - s 8 4 Y I I U I t r ' U U f I r i T j r ' 7 s 7 é . 7 7 F i g u r e C . l B . a & b . C o a r s 7 e 6 . 7 6 3 6 3 % 8 2 3 5 e a G r a i n N e t E x p o r t s - A u s t r a l i a 3 3 7 6 8 8 8 0 0 0 * “ R E G I O N A L M O D E L S I M U L A T I O N ~ 1 3 . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - — E S T I M A T E D 3 3 8 2 . * l 0 1 5 m 0 0 I M I ' M E 7 5 & 1 T o 8 1 N S - s m , , , . e , ‘ . 6 9 . 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 3 1 8 2 8 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N L 4 0 7 - M L Z T T - I 1 . 1 3 7 h L I n c a : - P L . 8 6 7 t I . 7 1 2 - 0 5 9 7 Z N ' . . 4 6 3 - M . 3 2 6 I 1 - . I s a t 7 6 7 6 7 7 7 6 7 6 8 0 3 % 8 2 6 6 8 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - — E S T I M A T E D F i g u r e C . l 4 . a & b . C o a r s e G r a i n E n d i n g S t o c k s - A u s t r a l i a P e r C a p i t a C o a r s e G r a i n E n d i n g S t o c k s ( 1 0 0 0 M T ) - . * - . . . - . - . - . . . u . . . . . . - . . . . — — . . . . D ( e F v P i R a O t A i U o n + F F r E o S m A U T ) r e I n f d < < D F o P m R e O s A t U i + c F E S S u A p U p < l - y l ) ) ( 1 0 0 0 M T ) . 3 3 9 A u s t r a l i a S M P L ‘ 1 9 6 6 - 1 9 8 4 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C F E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . Z - T A I L S I G . C 0 . 0 3 1 4 4 6 6 S U P D E V - 0 . 2 0 5 1 2 2 9 0 . 0 0 7 6 2 2 4 0 . 0 4 3 5 1 8 5 0 . 0 0 1 0 . 0 0 0 4 . 1 2 5 5 6 4 5 - 4 . 7 1 3 4 6 1 2 0 . 5 6 6 5 1 1 0 . 5 4 1 0 1 2 0 . 0 2 1 8 9 1 1 . 1 5 0 2 8 8 0 . 0 5 8 4 7 3 0 . 0 3 2 3 1 3 0 . 0 0 8 1 4 7 2 2 . 2 1 6 7 2 R - s q u a r e d - A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - W a t s o n S t a t M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c . L o g l i k e l i h o o d - 4 6 . 7 0 8 4 7 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 5 6 0 O . . 0 . 6 . 6 O . O . . 6 O . . 0 . 6 O . O . . 0 O . . 0 . 0 ‘ . 0 I 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 - 0 . 0 3 4 4 3 - 0 . 0 2 0 0 4 0 . 0 3 3 3 6 0 . 0 3 3 9 5 0 . 0 2 5 6 2 - 0 . 0 2 2 3 4 - 0 . 0 1 6 7 2 - 0 . 0 1 0 0 9 - 0 . 0 1 1 8 3 - 0 . 0 0 8 9 1 0 . 0 0 8 2 0 0 . 0 2 0 8 4 0 . 0 3 4 6 5 - 0 . 0 0 2 2 5 0 . 0 0 5 5 9 - 0 . 0 1 3 8 5 0 . 0 0 9 6 9 - 0 . 0 1 8 8 9 - 0 . 0 1 2 5 6 0 . 0 4 6 5 5 0 . 0 3 1 1 0 0 2 1 0 5 6 6 0 . 1 1 2 6 4 0 . 1 2 8 9 4 0 . 0 8 1 5 3 0 . 0 3 8 0 9 0 . 0 4 6 7 9 0 . 0 3 7 1 5 0 . 0 4 9 9 6 0 . 0 5 6 1 7 0 . 0 5 3 5 6 0 . 1 0 2 6 5 0 . 0 5 7 8 2 0 . 0 3 7 7 8 0 . 0 2 9 1 4 0 . 0 0 9 3 5 0 . 0 4 4 9 9 0 . 0 4 1 1 2 0 . 0 8 0 9 8 0 . 0 5 1 1 4 0 . 0 7 2 3 0 0 . 0 7 8 7 0 0 . 1 0 3 3 1 0 . 1 0 3 8 7 0 . 0 5 4 8 1 0 . 0 5 6 8 8 0 . 0 4 8 9 8 0 . 0 5 8 8 7 0 . 0 4 7 9 7 0 . 0 3 2 7 2 0 . 0 6 8 0 0 0 . 0 6 0 0 7 0 . 0 3 2 1 9 0 . 0 4 2 9 9 - 0 . 0 0 0 3 4 0 . 0 6 3 8 8 0 . 0 5 3 6 7 I N D E P E N D E N T V A R I A B L E S S U P D E V = 0 O t h e r w i s e + 3 5 0 * T I M E ) . G T . - 2 2 0 0 0 3 4 0 S M P L 1 9 6 6 - 1 9 8 4 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F E S 0 . 0 5 8 4 7 3 4 0 . 0 3 2 3 1 2 5 0 . 1 2 8 9 3 6 9 0 . 0 0 9 3 5 4 4 S U P D E V - 0 . 1 3 1 7 5 8 7 0 . 1 1 8 5 6 6 3 0 . 1 5 4 9 4 0 7 - 0 . 3 5 3 0 9 1 3 C o v a r i a n c e C o r r e l a t i o n I P C F E S , P C F E S 0 . 0 0 0 9 8 9 1 1 . 0 0 0 0 0 0 0 P C F E S , S U P D E V - 0 . 0 0 2 7 3 1 8 - 0 . 7 5 2 6 6 9 5 S U P D E V , S U P D E V 0 . 0 1 3 3 1 8 1 1 . 0 0 0 0 0 0 0 S S S S S S S S S S S P S S P H Y M M O O E M O M O H N R A B C E C E E E N N E S E O B R O S O S B E E E E L B B B B R . B B R R B B B B B R R R . . R R . . R R R R R . . . . . . . . . . . O . . . . . . . . . . . . . D . . . . . . . . . . . . . O . . . . . . . . . . . . . O . . . . . . . . . . . . . I . . . . . . . . . . . . . O . . . . . . . . . . . . . O . . . . . . . . . . . . . O . . . . . . . . . . . . O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . O . . . . . . . . . . . . . O . . . . . . . . . . . . . O . . . . . . . . . . . . . O . . . . . . . . . . . . . O P H Y S S S S S S S S S S x r a 1 o o o o o o o o o o o r e y y y y y y y y y y S d v l b b m o m o m o m o N u e d e e E e i e i e i e i c s a E a a l a l a l a l t t n B n 1 1 l l 1 e E R E E N o d q q E E n E E N e N n u u q d n n E q e t e A u i u i d i d x t t i v i v r i n i p E v . v . e n g n o E x E . . g a g r x p x C S o t S N e o r o C S N t e p o p o t n o t d e t r t r n o s c o t s t t s u c k c E a s s m p s s p x m k u k x s s E p t p a o n s t o i r i r o t o t n s n E B R A P P E N D I X D E Q U A T I O N S T A T I S T I C S - B R A Z I L W h e a t W P R O B R . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A B R . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a W Y B R . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d w C O N B R . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W N I B R . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s W E S B R . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O B R . . . . . . . . . . . . . . . P r o d u c t i o n F H A B R . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a F Y B R . . . . . . . . . . . . . . . . . . . . . . . . Y i a l d F C O N B R . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I B R . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s F E S B R . . . . . . . . . . . . . . . . . . . . . . . E n d 1 n g S t o c k s S o y b e a n C o m p l e x 3 4 1 P > C 3 < O a 1 c z : m 3 4 F " I F 4 F 3 ( 2 3 3 ~ m c a : m : a : 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 9 8 1 8 2 8 3 8 4 _ 7 5 7 6 7 ? 7 é v é s o 3 % 3 5 3 5 a s 3 4 2 ~ a n 1 : N s : a : a s R E G I O N A L M O D E L S I M U L A T I O N 3 2 . 9 7 2 ' » 2 . 3 0 9 3 2 . 6 4 6 I 1 4 8 4 : 2 2 t I 1 . 3 2 1 : . 1 5 3 I . 9 9 5 : . 3 3 3 I . 3 7 0 E E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ~ - - E S T I M A T E D F i g u r e D . l . a & b . W h e a t P r o d u c t i o n - B r a z i l » 7 0 3 ( 0 : a i n ) ( l — » : l I l fl ) U : : n m a a u z : 4 + * r ° r a Q v U a c U z z U U ’ I ' I V T N ' n : n r ) c a R M ” - — . » 3 . 1 : . n u n ( f ' I V fi 7 7 2 7 7 7 4 7 s 7 6 7 7 7 s 7 7 7 3 7 1 7 2 3 3 7 3 . 7 ? 7 3 7 3 s o 3 % 3 2 3 3 3 4 4 3 3 3 7 7 7 N o n a n n . 7 7 5 . 2 5 1 . 0 1 9 . 7 8 7 . 5 5 4 . 3 2 2 . 0 9 0 . 8 5 7 . 6 2 5 3 5 9 9 7 7 . 4 8 4 ‘ 3 4 3 R E G I O N A L M O D E L S I M U L A T I O N 5 " ‘ U W ' U 7 8 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e D . 2 . a & b . W h e a t H a r v e s t e d A r e a - B r a z i l ( F Y B R ( - 3 ) + F Y B R ( - 2 ) + F Y B R ( - 1 ) + F Y B R ) / 4 * F P * X R B R / C P I B R B r a z i l W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) 3 4 4 E M P L 1 9 6 4 - 1 9 9 4 2 1 O b s e r v a t i o n s L 5 / / D e p e n d e n t V a r i a b l e 1 3 N H A B R V A R I A B L E C D E E = I C I E N T 8 T 0 . E R R O R T - S T A T . 2 - T A I L S I G . I I I I . . . C 3 6 4 . 9 2 9 0 6 5 7 6 . 1 1 4 1 2 0 . 6 3 3 4 3 1 9 0 . 5 3 5 w H A B R ( - 1 ) 0 . 7 8 0 4 5 2 5 0 . 1 1 5 5 2 7 3 . 7 5 5 5 7 0 5 0 : 0 0 0 N R B R ( - 1 ) 2 0 . 2 3 0 8 7 9 1 5 . 0 7 9 5 7 3 $ . 3 4 1 6 0 8 3 0 . 1 9 7 F R B R ( - 1 ) - 1 2 . 5 0 4 1 0 5 1 2 . 5 1 7 2 4 6 - 0 . 9 9 8 9 5 0 1 0 . 3 3 2 I . - . . - . I . . . R - s q u a r e d 0 . 7 6 1 4 1 6 M e a n o 4 d e p e n d e n t v a r 1 9 6 7 . 7 6 2 A d J u s t e d R - s a u a r e a 0 . 7 1 9 3 1 3 S . D . o f d e p e n d e n t v a r 1 0 9 1 . 0 6 1 S . E . o f r e g r e s s i o n 5 7 8 . 0 4 3 4 S u m 6 5 s q u a r e d r e s i d 5 6 8 0 2 8 1 . D u r b i n - W a t s o n s t a t 2 . 4 5 1 5 9 3 7 F - s t a t i s t i c 1 8 . 0 8 4 5 5 L o g l i k e l i h o o d - 1 3 1 . 1 3 1 3 T P E 8 / 2 1 E I . _ R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D ' : 4 : : : 1 9 6 4 - 2 5 5 . 8 4 8 2 6 0 . 0 0 0 3 1 5 . 8 4 8 9 : 4 : = : 1 9 6 5 - 3 3 1 . 8 6 1 2 9 0 . 0 0 0 6 2 1 . 8 6 1 : : 3 : : : 1 9 6 6 - 2 5 0 . 1 2 4 3 5 0 . 0 0 0 6 0 0 . 1 2 4 : : s : : : 1 9 6 7 - 2 4 8 . 8 7 6 4 8 0 . 0 0 0 7 2 8 . 8 7 6 3 : 4 : : : 1 9 6 8 - 1 6 2 . 9 3 2 7 9 0 . 0 0 0 9 5 2 . 9 3 2 : : : 4 : 1 1 9 6 9 2 3 0 . 5 2 0 1 4 0 7 . 0 0 1 1 7 6 . 4 8 : : : e : : 1 9 7 0 4 9 6 . 1 6 1 1 8 9 5 . 0 0 1 3 9 8 . 8 4 : : : 4 2 : 1 9 7 1 4 3 1 . 1 6 7 2 2 6 1 . 0 0 1 8 2 9 . 8 3 : 4 : : : : 1 9 7 2 - 7 7 9 . 6 2 1 1 5 0 0 . 0 0 2 2 7 9 . 6 2 3 : i 4 : : 1 9 7 3 3 5 9 . 8 1 4 1 8 3 9 . 0 0 1 4 7 9 ; 1 9 2 ' : 4 : : 1 9 7 4 - 2 4 . 5 4 7 2 , 2 4 7 1 . 0 0 2 4 9 5 . 5 5 ‘ : t 4 : 1 1 9 7 5 2 2 9 . 2 3 2 9 3 1 . ( 3 0 2 7 0 1 . 7 6 : : : : 9 3 1 9 7 6 6 6 4 . 8 8 6 5 4 0 . 0 0 2 3 7 5 . 1 1 : : 4 : : : 1 9 7 7 - 8 5 . 6 4 4 5 3 1 5 3 . 0 0 3 2 3 8 . 6 4 : : * : z 1 9 7 8 - 2 3 . 7 4 2 6 2 8 1 2 . 0 0 2 8 3 5 . 7 4 : : : : 4 : 1 9 7 9 1 2 0 1 . 3 2 3 8 3 2 . 0 0 2 6 3 0 . 6 8 7 4 : : 1 1 9 8 0 — ' 6 2 . 7 4 0 3 0 6 2 . 0 0 3 6 2 4 . 7 4 : 4 : : : : 1 9 8 1 - 9 5 6 . 0 2 1 1 9 2 2 . 0 0 ' 2 8 7 8 . 0 2 : : 1 : * : 1 9 8 2 7 0 0 . 4 2 9 2 8 2 8 . 0 0 2 1 2 7 . 5 7 : 3 : : : : 1 9 8 3 - 6 7 9 . 2 1 5 1 9 0 0 . 0 0 2 5 7 9 . 2 1 : : 7 * : : 1 9 8 4 4 7 . 6 4 1 8 1 8 0 0 . 0 0 1 7 5 2 . 3 6 = 1 . I N D E P E N D E N T V A R I A B L E S W H A B R 8 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R B R 3 W h e a t R e v e n u e p e r H e c t a r e ( $ I H A ) < W Y B R ( - 3 ) * W Y B R ( - 2 ) + W Y B R ( - l ) + W Y B R ) / 4 3 W P R X R B R / C P I B R F R B R = C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( s / H A ) 3 4 5 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x z m u m M i n i m u m w H A B R 1 9 6 7 . 7 6 1 9 1 0 9 1 . 0 6 1 0 3 3 2 . 0 0 0 0 2 6 0 . 0 0 0 0 0 N H A B R ( - 1 ) 1 8 9 1 . 8 0 9 5 1 1 5 6 . 8 5 6 2 3 8 3 2 . 0 0 0 0 2 0 5 . 0 0 0 0 0 W R B R ( - 1 ) 6 5 . 1 2 1 1 5 9 1 8 . 7 9 1 1 0 7 1 1 9 . 2 1 5 5 0 4 4 . 8 2 9 3 5 0 F E B R ( - 1 ) 9 5 . 2 5 6 1 6 0 2 2 . 4 9 7 9 5 8 1 4 5 . 2 7 3 6 0 6 4 . 2 9 2 1 0 0 C o v a r i a n c e C o r r e l a t i o n N H A B R . N H A B R 1 1 3 3 7 2 7 . 7 1 . 0 0 0 0 0 0 0 W H A B R . W R B R ( - 1 ) 6 4 3 7 . 0 0 1 9 . 3 2 9 6 6 4 0 N H A B R . F E B R ( - 1 ) 5 6 5 9 . 8 1 4 9 ~ 0 . 2 4 2 1 0 2 6 W H A B R ( - 1 ) . W H A B R ( - 1 ) 1 2 7 4 5 8 6 . 8 1 . 0 0 0 0 0 0 0 w H A B R ( - 1 ) . N R B R ( - 1 ) 5 2 6 1 . 5 5 1 0 0 . 2 5 4 1 3 9 0 W H A E R ( - 1 ) . F R B R ( - 1 ) 5 7 0 2 . 6 9 0 7 0 . 2 3 0 0 6 2 9 W R B R ( - 1 ) . W R 8 R ( - 1 ) 3 3 6 . 2 9 1 1 6 1 . 0 0 0 0 0 0 0 W R B R ( - 1 ) . F R B P ( - 1 ) 3 5 7 . 7 1 0 9 1 0 . 8 8 8 4 3 5 7 F E B R ( — 1 ) . F R 5 R ( - 1 ) 4 8 2 . 0 5 5 3 1 . 0 0 0 0 0 0 0 3 4 6 B r a z i l W h e a t Y i e l d ( M e t r i c T o n e p e r H e c t a r e ) S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W Y B R V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 5 3 6 8 2 3 0 . 6 5 0 5 3 0 1 - 0 . 8 2 5 2 0 8 7 0 . 4 1 9 Y E A R 0 . 0 2 0 7 5 9 1 0 . 0 1 0 2 7 8 2 2 . 0 1 9 7 2 2 4 0 . 0 5 6 W H A B R - 7 . 3 1 5 0 - 0 5 3 . 1 2 5 0 - 0 5 ’ - 1 . 1 9 4 3 0 1 o . 2 4 6 R - s q u a r e d 0 . 1 9 0 4 1 2 M e a n o f d e p e n d e n t v a r 0 . 8 2 2 3 8 2 A d j u s t e d R - s q u a r e d 0 . 1 1 3 3 0 8 S . D . o f d e p e n d e n t v a r . 2 0 0 6 9 6 S . E . o i r e g r e s s i o n 0 . 1 8 8 9 8 4 S u m o f s q u a r e d r e s i d 0 . 7 5 0 0 1 7 D u r b i n - W a t s o n s t a t 2 . 9 5 2 0 7 5 F - s t a t i s t i c 2 . 4 6 9 5 5 3 L o g l i k e l i h o o d 7 . 5 3 4 0 2 9 H J T P E R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : * 1 : 1 1 9 6 0 - 0 . 0 4 7 9 2 0 . 6 1 9 4 7 0 . 6 6 7 3 9 1 : * 1 : 1 1 9 6 1 - 0 . 1 6 3 1 8 0 . 5 3 1 9 1 0 . 6 9 5 1 0 1 : 1 : * 1 1 9 6 2 0 . 2 1 7 6 6 0 . 9 4 8 1 5 0 . 7 3 0 4 9 1 : 1 : 1 1 9 6 3 - 0 . 2 6 8 2 0 0 . 4 8 7 8 0 0 . 7 5 6 0 0 1 : 1 * : 1 1 9 6 4 0 . 0 9 6 4 9 0 . 8 6 9 2 3 0 . 7 7 2 7 4 1 : * 1 z 1 1 9 6 5 - 0 . 0 2 5 7 8 0 . 7 6 5 5 2 0 . 7 9 1 3 0 1 : 1 4 : 1 1 9 6 6 0 . 0 4 6 6 1 0 . 8 5 4 2 9 0 . 8 0 7 6 7 1 : 4 1 : 1 1 9 6 7 - 0 . 0 5 8 5 0 0 . 7 6 0 4 2 ' 0 . 8 1 8 9 2 1 : 1 * : 1 1 9 6 8 0 . 0 6 1 4 8 0 . 8 7 8 4 8 0 . 8 1 7 0 0 1 : 1 : 1 1 9 6 9 0 . 0 2 1 8 7 0 . 8 1 4 5 0 0 . 7 9 2 6 3 1 : 1 * : 1 1 9 7 0 0 . 1 3 7 8 8 0 . 9 1 5 5 7 0 . 7 7 7 6 9 1 : 1 4 : 1 1 9 7 1 0 . 1 2 7 9 3 0 . 8 9 9 6 0 0 . 7 7 1 6 7 1 4 : 1 : 1 1 9 7 2 - 0 . 3 8 5 4 3 0 . 4 6 2 6 7 0 . 8 4 8 1 0 1 : 1 : i 1 1 9 7 3 0 . 2 6 0 3 4 1 . 1 0 4 4 1 0 . 8 4 4 0 6 1 : 1 : * 1 1 9 7 4 0 . 3 3 8 0 3 1 . 1 5 6 6 2 0 . 8 1 8 5 9 1 : 1 : 1 1 9 7 5 - 0 . 1 9 5 6 7 0 . 6 1 0 0 3 0 . 8 0 5 7 0 1 : 1 4 : 1 1 9 7 6 0 . 1 2 6 5 7 0 . 9 0 8 4 7 0 . 7 8 1 9 1 1 * 1 : 1 1 9 7 7 - 0 . 1 7 5 7 3 0 . 6 5 5 2 5 0 . 8 3 0 9 8 1 : 1 * : 1 1 9 7 8 0 . 0 8 0 2 9 0 . 9 5 6 9 7 0 . 8 7 6 6 8 1 : * 1 : 1 1 9 7 9 — 0 . 0 7 1 5 2 0 . 7 5 1 3 0 0 . 8 2 2 8 3 1 : * 1 : 1 1 9 8 0 - 0 . 0 2 5 9 7 0 . 8 7 3 9 4 0 . 8 9 9 9 1 1 : 1 * z 1 1 9 8 1 0 . 1 4 9 4 2 1 . 1 5 3 4 9 1 . 0 0 4 0 6 1 * : 1 : 1 1 9 8 2 - 0 . 3 0 4 7 3 0 . 6 5 3 8 2 0 . 9 5 8 5 5 1 : 1 * : 1 1 9 8 3 0 . 0 5 8 0 7 1 . 1 0 5 2 6 1 . 0 4 7 1 9 I N D E P E N D E N T V A R I A B L E S Y E A R 3 1 9 6 0 8 6 0 . 1 9 6 1 : 6 1 . . . . W H A B R 3 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) 3 4 7 8 M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s 3 8 . 3 8 3 3 3 3 S e r i e s M e a n S . D . M a x i m u m M i n i m u m W Y B R 0 . 8 2 2 3 8 1 7 0 . 2 0 0 6 9 6 4 1 . 1 5 6 6 1 7 0 0 . 4 6 2 6 6 6 7 Y E A R 7 1 . 5 0 0 0 0 0 7 . 0 7 1 0 6 7 8 8 3 . 0 0 0 0 0 0 6 0 . 0 0 0 0 0 0 W H A B R 1 7 0 9 . 7 0 8 3 1 1 8 6 . 5 6 7 8 3 3 2 . 0 0 0 0 2 0 5 . 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n W Y B R , W Y B R 0 . 0 3 8 6 0 0 8 1 . 0 0 0 0 0 0 0 N Y B R . Y E A R 0 . 5 0 0 4 8 0 7 0 . 3 6 7 9 9 8 6 W Y B R , W H A 8 R 4 1 . 5 5 0 5 3 7 0 . 1 8 2 0 6 5 6 Y E A R , Y E A R 4 7 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 Y E A R , W H A B R 6 7 5 6 . 1 8 7 5 0 . 8 4 0 2 4 8 1 W H A B R . W H A B R 1 3 4 9 2 7 9 . 0 1 . 0 0 0 0 0 0 0 2 3 3 8 2 8 3 3 3 8 3 3 3 3 . 8 8 3 2 : " * 0 0 0 : H ‘ t ‘ t n o 3 1 ~ . . . . . - . - ' 9 9 9 4 ‘ b 3 4 8 7 5 8 8 " 7 8 9 9 ‘ 6 5 8 8 1 6 3 8 9 ‘ 5 5 9 9 ‘ 5 8 9 M 4 5 9 8 ‘ 3 8 9 8 f 1 u _ m 1 7 9 7 1 7 2 7 3 7 ‘ 4 7 5 7 ' 5 7 7 7 s 7 9 9 ' 9 9 1 8 2 a s 7 4 ( 1 1 2 0 — ! a m : R E G I O N A L M O D E L S I M U L A T I O N u 0 l l ‘ 7 1 7 s 7 0 7 7 7 6 7 0 0 0 8 % 3 5 8 5 3 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e D . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - B r a z i l ' \ / a w } H > C 3 < O 1 2 fl 1 4 ' i ~ ) C 2 2 1 U : 1 » " u ‘ r f a I e ' j t ‘ r a i r s a c z u u r r ’ I U I U T U u I ! T t i “ u ’ u I I U 3 4 9 5 5 9 9 9 5 9 9 9 4 . 4 5 9 9 } . i ? ‘ " ” ' 4 9 0 0 1 . 3 . . . . . . m p g . \ g ’ 3 : 9 9 1 : 3 9 9 9 : 9 5 9 9 1 2 8 8 9 4 1 5 9 9 . . . , 7 7 7 9 7 9 9 9 9 1 9 2 9 9 R E G I O N A L M O D E L S I M U L A T I O N . 3 7 8 . 0 9 9 ' . 8 2 0 . 5 4 1 . 2 6 3 . 9 8 4 . 7 0 5 . 4 2 6 . 1 4 7 . 8 6 8 7 3 7 6 ' 7 7 7 0 7 0 8 0 3 1 a i 3 5 8 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e D . 4 . a & b . W h e a t N e t I m p o r t s - B r a z i l m u o N H P 0 0 H o a fl u n o 8 5 0 0 0 2 0 0 H l u O H n u A p o o o : 4 0 m E U r h w m b I h w m w m m D u n m 1 < m n u 0 5 m w w o r m \ \ O m o m z n m z d < 0 1 u m o w m u m v n z z m ( D m u n m r m O U M fl fl H n H m 2 4 m a c . m m m m m A l m d r q . M I A D H r m u m . n 0 . 0 m m m m m m 0 . 0 0 w p m b o m . u m m m m fl m 0 . 0 0 0 u n m m o u m m . m m q u m w . m r » m o m q u . w b fl q o u m 0 . 0 0 0 U n z u m 1 0 . 4 » m m m o u 0 . u u b m & m w 1 m . m m m m m m u 0 . 0 0 0 t u m m - 1 m . m p fl U I O m w . m w m c l o m 1 0 . 0 m m m m w r 0 . 3 0 m m i n o c n 1 n n o . < b fl m w b 3 0 9 3 o m 0 0 0 0 3 0 0 5 4 ( . 1 0 . 0 m m m o m D u u c u n n n m I I D C I S I n 0 . 0 0 m u w h m . U . 0 m n u u n z n n v w < 0 1 0 . 0 0 0 0 0 0 m . m . 0 1 1 0 0 1 - 0 0 3 0 3 0 . 0 0 u m b m w a s o m I n c - 1 n d 1 n u w n 0 . 0 0 0 m 0 0 U c 1 u w d l t m ¢ m o z w e r e » . m p o m b w fi l m e m e w n e u n u m . fl w m m & V o n e r n w w r o o n n o u . m e b 4 0 m q \ m w m u u u Q C A H D a c e O o u m m e U C D F D U A C D F fl u q d m u 2 u 2 * u 2 ~ 0 0 » 0 . 0 0 m m o 0 . 0 w 0 6 0 0 . 0 m q m u 2 u 2 0 n 2 p m m m 0 . 0 0 0 m u 0 . 0 m m w a 0 . 0 m w m u 2 u 2 u 2 u m m w 0 . 0 0 m 0 m 0 . 0 m 0 0 0 0 . 0 m m 0 0 2 t u 2 u 2 “ 0 0 6 1 0 . 0 0 m m u 0 . 0 m w m w 0 . 0 m m m m 2 u 2 u 2 u m m m 1 0 . 0 0 0 0 0 0 . 0 m w u w 0 . 0 w o w m 2 n 2 * 2 2 p w m m 0 . 0 0 0 0 0 0 . 0 m m m m 0 . 0 m m m » 2 u 2 0 2 2 u m m q 0 . 0 0 m m m 0 . 0 m 0 m u 0 . 0 m q m m 2 2 2 0 2 6 " w o w 0 . 0 0 0 0 u 0 . 0 m m q é 0 . 0 m m m » 2 u t 2 u 2 u w m m 1 0 . 0 0 » m m 0 . 0 m p v b 0 . 0 m w m m 2 u 2 u 2 9 0 0 0 1 0 . 0 0 0 0 » 0 . 0 » m r m 0 . 0 » m b m 2 u t 2 n 2 9 0 % » I o . o o u m m 0 . 0 » m m m 0 . 0 m O b V 2 u t 2 u 2 p w q m 1 0 . o o u m m 0 . 0 u o q q 0 . 0 w m m m 2 2 0 u 2 q u w 1 m . » U l o m 0 . 0 m m p m 0 . 0 m m h p 2 2 t 2 u 2 u m fl k 1 0 . 0 0 m p u 0 . 0 » 0 0 0 0 . 0 m p u m 2 u 2 2 0 2 u w fl m 0 . 0 0 u m m 0 . 0 m u u u 0 . 0 w 0 » 0 2 n 2 0 u 2 u m fl m o . o o o w & 0 . 0 m m w m 0 . 0 m r h b 2 a t u 2 p m q q m . & U l o m 0 . 0 u m m m 0 . 0 u m fl q 2 2 2 2 2 ” m u m 0 . 0 0 m m o 0 . 0 w k m u 0 . 0 u m u 0 2 u 2 2 t 2 “ 0 0 0 o . o o u u m 0 . 0 & » u o 0 . 0 u e u m 2 . 0 2 2 2 a m m o 1 0 . 0 0 m m w 0 . 0 w m m b 0 . 0 u u o q 2 u 2 u 2 u w m h l o . o o u o m 0 . 0 w m m w 0 . 0 u m w m 2 2 2 n 2 p w m m 1 0 . 0 0 m m m 0 . 0 w p m b 0 . 0 w m m u 2 u t 2 2 2 u w m w 1 0 . 0 0 » m m 0 . 0 w a q » 0 . 0 w m m m H Z D M V M Z O M Z H C D N H D W P N M v o w n o v a z o o » H 5 0 0 5 . v a n n o n p n o O v a w \ O v a m \ O fl w a v o c b m u 0 0 8 n a v p n a U O S O I fl u n c v o o n m c v v p < A p o o o : 4 5 A t m m w w n l p v 9 € v w 0 w w v \ v o v w w 8 0 w ” 9 w o n » w H a N A H A o a € 3 . 0 0 v fl p n o S fl n x w m w \ o v a w 3 5 1 S M P L 1 9 6 1 - 1 9 8 3 2 3 D o s e r v a t i o n s S e r i e s M e a n S . D . M a x z m u m M i n i m u m P C N N I 0 . 0 2 9 2 0 5 4 0 . 0 0 6 0 0 8 1 0 . 0 4 1 2 9 9 5 0 . 0 1 8 4 8 2 5 P C R B D P 0 . 0 0 0 8 3 2 1 0 . 0 0 0 2 7 0 5 0 . 0 0 1 0 8 5 3 0 . 0 0 0 2 7 8 0 P C H D S 0 . 0 1 8 2 3 0 2 0 . 0 0 8 9 1 8 1 0 . 0 3 3 5 4 1 0 0 . 0 0 3 9 2 0 0 N P B R 7 9 . 8 7 3 5 7 7 1 9 . 7 9 2 5 5 3 1 4 0 . 9 9 0 0 0 5 4 . 2 1 2 4 0 0 C o v a r i a n c e C o r r e l a t i o n p c w ~ 1 . p c h 1 P C H N I . P C R B D D p c w ~ 1 . p c w n s p c w ~ 1 , u p a a P C R B D P . P C R B D P D C R G D p , p c s t p c n s n p , w p a n . p c w o s , p c u o s D C N D S , H P B R H D B R , N P B R 3 . 4 5 3 0 - 0 5 7 e 4 4 O D - C ’ 7 0 . 0 1 1 8 8 4 6 7 . 0 0 1 D - 0 8 1 . 8 8 5 D - 0 6 0 . 0 0 0 9 4 2 9 7 . 6 0 7 D - 0 5 0 . 0 0 6 8 6 9 2 3 7 4 . 7 1 2 7 4 1 . 0 0 0 0 0 0 0 0 . 4 7 8 5 3 8 9 0 . 1 3 9 7 3 9 3 0 . 1 0 4 4 8 5 1 1 . 0 0 0 0 0 0 0 0 . 7 2 9 9 3 0 0 0 . 1 8 4 0 9 3 9 1 . 0 0 0 0 0 0 0 0 . 0 4 0 8 8 5 7 1 . 0 0 0 0 0 0 0 » 0 0 0 0 : m a ! - 0 2 1 0 P > C D ‘ O I M H Z H O 1 - 0 2 0 [ § § § § U ' T U I — ' V F i g u r e 0 . 5 . 0 & b . 3 5 2 1 2 5 0 8 7 9 . 7 9 5 . 7 1 1 . 6 2 8 . 5 4 2 . 4 5 7 . 3 7 3 . 2 8 9 . 2 0 4 . 1 2 0 . m n m n * m : m ? 5 : ? 8 0 0 8 0 0 4 0 0 6 0 0 2 0 0 O . C C C O C . L - “ 2 _ 2 _ _ ‘ 2 2 . 4 . . J ‘ l u ‘ 4 ‘ A . “ 4 - 2 4 . . - A m n m a a M R E G I O N A L H O D E L S I M U L A T I O N A C T U A L ' 7 ? 7 6 7 é 8 0 o i o i 8 5 8 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 - - - E S T I M A T E D W h e a t E n d i n g S t o c k s - B r a z i l 3 5 3 B r a z i l P e r C a p i t a W h e a t E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T . 2 - T A I L S I G . C - 0 . 0 0 2 8 5 9 3 0 . 0 0 2 4 2 2 9 - 1 . 1 8 0 1 2 3 6 0 . 2 5 3 _ P C W E S < - 1 ) 0 . 9 7 4 2 1 5 2 0 . 2 4 2 6 6 4 0 4 . 0 1 4 6 6 7 3 0 . 0 0 1 W P B R 3 . 3 5 1 0 - 0 5 2 . 0 5 4 D — 0 5 1 . 6 3 1 7 8 2 8 0 . 1 2 0 W C O N U R ( - 1 ) 6 . 6 1 3 D - 0 5 2 . 6 8 2 0 - 0 5 2 . 4 6 5 5 0 7 8 0 . 0 2 4 D V 7 2 D N - 0 . 0 0 1 2 8 3 5 0 . 0 0 0 7 5 0 8 - 1 . 7 0 9 6 2 0 6 0 . 1 0 5 R - s q u a r e d 0 . 5 1 7 3 4 3 M e a n o f d e p e n d e n t v a r 0 . 0 0 4 3 0 3 A d j u s t e d R - s q u a r e d 0 . 4 1 0 0 8 6 S . D . o f d e p e n d e n t v a r 0 . 0 0 2 0 2 1 S . E . o f r e g r e s s i o n 0 . 0 0 1 5 5 2 S u m o f s q u a r e d r e s i d 4 . 3 4 0 - 0 5 D u r b i n - W a t s o n s t a t 2 . 1 7 3 0 4 4 F - s t a t i s t i c 4 . 8 2 3 3 8 7 L o g l i k e l i h o o d 1 1 8 . 9 5 1 8 “ 1 . 3 2 1 . 1 1 3 ; R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : * 1 : 1 1 9 6 1 - 0 . 0 0 0 7 4 0 . 0 0 2 7 8 0 . 0 0 3 5 2 1 : i 1 : 1 1 9 6 2 - 0 . 0 0 0 7 6 _ 0 . 0 0 2 7 0 0 . 0 0 3 4 6 1 : 1 * : 1 1 9 6 3 0 . 0 0 1 4 4 0 . 0 0 4 5 7 0 . 0 0 3 1 3 1 : * 1 : 1 1 9 6 4 - 0 . 0 0 0 7 7 ' 0 . 0 0 4 3 6 0 . 0 0 5 1 2 1 : 1 * : 1 1 9 6 5 0 . 0 0 1 3 4 ' 0 . 0 0 5 8 0 0 . 0 0 4 4 7 1 : 1 * : 1 1 9 6 6 0 . 0 0 0 6 5 0 . 0 0 6 2 9 0 . 0 0 5 6 4 1 : 1 : * 1 1 9 6 7 0 . 0 0 2 3 0 . 0 . 0 0 7 9 9 0 . 0 0 5 6 9 1 : 1 1 1 1 9 6 8 0 . 0 0 0 3 4 0 . 0 0 7 7 7 0 . 0 0 7 4 3 1 : * 1 : 1 1 9 6 9 - 0 . 0 0 0 5 4 0 . 0 0 6 2 8 0 . 0 0 6 8 2 1 * : 1 : 1 1 9 7 0 - 0 . 0 0 2 0 5 0 . 0 0 3 4 8 0 . 0 0 5 5 3 ‘ 1 : * 1 : 1 1 9 7 1 - 0 . 0 0 1 2 2 0 . 0 0 1 8 9 0 . 0 0 3 1 1 1 : * 1 : 1 1 9 7 2 - 0 . 0 0 0 6 1 0 . 0 0 1 2 4 0 . 0 0 1 8 4 1 : i 1 : 1 1 9 7 3 - 0 . 0 0 0 4 4 . 0 . 0 0 3 4 0 0 . 0 0 3 8 4 1 : 1 * : 1 1 9 7 4 0 . 0 0 0 6 2 _ 0 . 0 0 4 3 8 0 . 0 0 3 7 7 1 : * 1 : 1 1 9 7 5 ~ 0 . 0 0 0 3 3 . 0 . 0 0 3 7 3 0 . 0 0 4 0 6 1 : 1 : * 1 1 9 7 6 0 . 0 0 2 1 1 . 0 . 0 0 4 7 7 0 . 0 0 2 6 6 1 : * 1 : 1 1 9 7 7 - 0 . 0 0 1 1 6 0 . 0 0 2 2 2 0 . 0 0 3 3 9 1 1 * 1 : 1 1 9 7 8 - 0 . 0 0 1 3 3 0 . 0 0 0 6 9 0 . 0 0 2 0 2 1 : 1 * : 1 1 9 7 9 0 . 0 0 0 3 7 . 0 . 0 0 5 5 0 0 . 0 0 5 1 4 1 : * : 1 1 9 8 0 - 3 . 2 0 - 0 5 0 . 0 0 5 1 4 0 . 0 0 5 1 7 1 : 1 : * 1 1 9 8 1 0 . 0 0 3 5 0 ' 0 . 0 0 7 4 3 0 . 0 0 3 9 3 1 * 1 1 1 1 1 9 8 2 - 0 . 0 0 2 1 5 ' 0 . 0 0 3 7 1 0 . 0 0 5 8 7 1 : 0 1 : 1 1 9 8 3 - 0 . 0 0 0 5 4 0 . 0 0 2 8 3 0 . 0 0 3 3 7 I N D E P E N D E N T V A R I A B L E S P C W E S a P e r C a p i t a W h e a t E n d i n g S t o c k s ( 1 0 0 0 M T ) W E S B R / P O P B R W P B R = R e a l B r a z i l i a n W h e a t P r i c e W P * X R B R / C P I B R W C O N U R 8 W h e a t C o n s u m p t i o n / S t o c k R a t i o ( W C O N B R / W E S B R ) D V 7 2 0 N 8 1 I £ ( T I N E . G E . 7 2 ) 0 O t h e r w i s e 3 5 4 S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m p C W E S 0 . 0 0 4 3 3 3 2 0 . 0 0 2 0 2 0 7 0 . 0 0 7 9 8 9 2 0 . 0 0 0 6 9 0 6 P C W E S ( - 1 ) 0 . 0 0 4 3 0 4 8 0 . 0 0 2 0 1 9 5 0 . 0 0 7 9 8 9 2 0 . 0 0 0 6 9 0 6 w P B R 7 9 . 3 6 1 6 0 4 1 9 . 8 8 5 2 2 1 1 4 0 . 9 9 0 0 0 5 4 . 2 1 2 4 0 0 W C O N U R ( - 1 ) 1 4 . 8 0 2 3 1 7 1 7 . 0 7 7 9 1 8 8 7 . 0 3 8 4 6 0 4 . 1 4 0 9 6 9 0 D V 7 2 O N 0 . 5 2 1 7 3 9 1 0 . 5 1 0 7 5 3 9 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C W E S , P C N E S 3 . 9 0 6 0 - 0 6 ' 1 . 0 0 0 0 0 0 0 P C W E S , P C W E S ( - 1 ) 2 . 1 4 1 0 - 0 6 0 . 5 4 8 4 2 1 9 P C N E S , W P 8 R - 0 . 0 0 5 5 5 1 3 - 0 . 1 4 4 4 3 3 4 P C W E S , W C O N U R ( - 1 ) - 0 . 0 0 3 7 2 4 8 - 0 . 1 1 2 8 4 1 9 P C N E S , D V 7 2 O N - 0 . 0 0 0 2 8 6 3 - 0 . 2 9 0 0 1 2 2 P C W E S 1 - 1 ) , P C W E S ( - 1 ) 3 . 9 0 1 D - 0 6 1 . 0 0 0 0 0 0 0 P C W E S ( - 1 ) , W P 8 R - 0 . 0 1 9 7 7 3 6 - 0 . 5 1 4 7 8 3 5 ‘ P C W E S ( - 1 ) , W C O N U R ( - 1 ) - 0 . 0 2 1 4 4 3 4 - 0 . 6 5 0 0 2 1 3 - P C W E S ( - 1 ) , D V 7 2 O N - 0 . 0 0 0 3 2 8 0 - 0 . 3 3 2 4 5 4 3 W P B R , W P 8 R 3 7 8 . 2 2 9 7 6 ' 1 . 0 0 0 0 0 0 0 W P B R , W C O N U R ( - 1 ) 9 1 . 0 8 5 4 0 8 0 . 2 8 0 4 0 6 9 W P B R , D V 7 2 O N 3 . 8 8 4 3 5 7 6 0 . 3 9 9 8 3 6 3 W C O N U R ( - 1 ) , W C O N U R ( - 1 ) 2 7 8 . 9 7 4 6 1 1 . 0 0 0 0 0 0 0 W C O N U R ( - 1 ) , D V 7 2 O N 3 . 3 7 7 4 5 4 8 0 . 4 0 4 8 0 7 1 D V 7 2 O N , D V 7 2 0 N 0 . 2 4 9 5 2 7 4 1 . 0 0 0 0 0 0 0 T 7 " ' 0 0 0 r e " ! 1 - 1 3 1 2 7 0 7 0 ' 7 7 7 0 7 0 0 0 0 1 8 2 0 3 0 3 3 5 5 _ 2 5 m ' 2 2 5 9 9 1 . . . - o . . - 2 9 " . . . . . " . . . . - n o o ' o ' . a 1 7 5 8 9 ‘ ‘ 1 5 8 9 8 1 U 1 : : c > - a - 4 1 n : : i 1 2 5 1 9 . 7 9 7 1 7 2 7 : 1 7 4 7 5 7 5 7 7 7 8 7 9 s o 1 1 8 2 8 3 8 4 R E G I O N A L ' H O D E L S I M U L A T I O N 2 0 . 0 7 7 2 7 . 0 4 2 ' - 2 5 . 0 0 7 ’ 2 3 . 9 7 2 2 2 . 4 2 7 2 0 . 9 0 2 r 1 9 . 3 0 7 : 1 7 . 0 3 2 5 1 0 . 2 9 7 : 1 4 . 7 0 2 E ~ 1 3 B K - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L w - - E S T I M A T E D F i g u r e 0 . 6 . 0 & b . C o a r s e G r a i n P r o d u c t i o n - B r a z i l P > C 3 ( 0 m 1 n 7 c a - a a z n r m z : 4 + ' r * r 1 r ) c : z 2 2 fl l ) ( 1 - > 3 ) 2 1 “ ) U j U " 1 4 9 9 9 7 r 9 9 9 1 1 2 9 9 9 1 9 9 9 9 . 6 9 1 8 1 6 1 4 1 4 1 2 1 1 1 ' 1 £ 0 1 1 7 7 7 1 . 3 3 3 . 8 7 2 ' . 0 1 0 1 5 . . 6 8 7 . 0 2 3 1 3 . 1 2 . . 0 4 0 . 3 7 3 3 4 8 3 6 3 7 0 2 3 5 6 ‘ l r 1 7 7 7 7 , 7 5 7 7 7 7 7 7 7 7 7 1 7 2 7 7 R E G I O N A L M O D E L S I M U L A T I O N 7 0 7 0 7 7 7 0 7 0 0 0 0 1 0 2 8 3 0 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I H A T E D F i g u r e D . 7 . a & b . C o a r s e G r a i n H a r v e s t e d A r e a - B r a z i l B r a z i l 3 5 7 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 8 1 6 O b s e r v a t i o n s 1 7 9 3 L S / / D e p e n d e n t V a r i a b l e i s F H A B R V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T 2 - T A I L S I B . C 6 2 4 6 . 1 1 8 4 5 8 5 . 3 4 0 5 5 1 0 . 6 7 0 9 1 4 0 . 0 0 0 C L B B R ( - 1 ) 0 . 2 1 4 5 0 5 8 0 . 0 2 8 0 9 3 3 7 . 6 3 5 4 7 2 9 0 . 0 0 0 F R B R ( - 1 ) 7 0 . 1 8 3 9 2 2 1 4 . 5 9 9 7 7 0 4 . 8 0 7 1 9 3 8 0 . 0 0 1 W R E R ( - 1 ) - 5 3 . 6 6 5 4 5 5 1 2 . 7 2 0 4 8 5 - 4 . 2 1 8 8 2 1 4 ' 0 . 0 0 1 S R B R ( - 1 ) - 9 . 6 5 2 9 2 5 4 3 . 3 5 8 2 0 3 9 - 2 . 8 7 4 4 3 1 0 0 . 0 1 5 R - s q u a r e d 0 . 8 9 9 7 2 9 M e a n o f d e p e n d e n t v a r 1 1 4 3 5 . 3 1 A d j u s t e d R - s q u a r e d 0 . 8 6 3 2 6 6 S . D . o f d e p e n d e n t v a r 1 1 3 4 . 0 9 4 S . E . o f r e g r e s s i o n 4 1 9 . 3 5 9 9 S u m o f s q u a r e d r e s i d 1 9 3 4 4 9 0 . D u r b i n - W a t s o n s t a t 1 . 4 4 2 3 2 0 F - s t a t i s t i c 2 4 . 6 7 5 5 5 L o g l i k e l i h o o d - 1 1 0 . 3 2 5 1 T P E : - 2 R e s i d u a l o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 t 1 1 9 6 8 4 2 5 . 7 6 4 9 7 1 8 . 0 0 9 2 9 2 . 2 4 1 : 1 : 1 1 9 6 9 ‘ 2 0 2 . 3 8 3 9 9 1 8 . 0 0 9 7 1 5 . 6 2 1 : 1 : 1 1 9 7 0 - 2 3 2 . 9 3 1 1 0 6 8 6 . 0 1 0 9 1 8 . 9 1 : 1 : 1 1 9 7 1 - 3 4 9 . 0 5 7 1 0 7 1 7 . 0 1 1 0 6 6 . 1 1 : 1 : 1 1 9 7 2 - 2 2 9 . 2 2 8 1 0 1 0 3 . 0 1 0 3 3 2 . 2 1 : 1 : t 1 1 9 7 3 4 6 3 . 7 9 2 . 1 1 4 2 8 . 0 1 0 9 6 4 . 2 1 : 1 : 1 1 9 7 4 - 2 5 . 8 7 6 3 1 0 9 5 0 . 0 1 0 9 7 5 . 9 1 X 1 : 1 1 9 7 5 - 4 2 8 . 7 3 3 1 1 3 2 4 . 0 1 1 7 5 2 . 7 1 : 1 : 1 1 9 7 6 - 1 4 4 . 6 2 5 1 2 1 1 3 . 0 1 2 2 5 7 . 6 1 : 1 : 1 1 9 7 7 - 1 3 9 . 7 0 3 1 1 3 7 5 . 0 1 1 5 1 4 . 7 1 t : 1 : 1 1 9 7 8 - 5 2 9 . 2 7 0 . 1 1 5 4 6 . 0 1 2 0 7 5 . 3 1 ' : 1 : 1 1 9 7 9 - 1 6 4 . 5 0 1 1 1 8 4 6 . 0 1 2 0 1 0 . 5 1 : 1 : x 1 1 9 8 0 6 9 4 . 1 3 9 1 3 0 5 3 . 0 1 2 3 5 8 . 9 1 : 1 2 * 1 1 9 8 1 4 4 7 . 5 6 6 1 3 6 7 6 . 0 1 3 2 2 8 . 4 1 : 1 ' : 1 1 9 8 2 - 1 5 9 . 4 9 6 1 1 4 4 6 . 0 1 1 6 0 5 . 5 1 : 1 : 1 1 9 8 3 1 6 9 . 7 7 5 1 3 0 6 6 . 0 1 2 8 9 6 . 2 I N D E P E N D E N T V A R I A B L E S C L B B R F R B R U R B R W R B R C r o p l a n d B a a e ( 1 0 0 0 H A ) W h e a t R e v e n u e p e r H e c t a r e ( S / H A ) ( F o r e c a s t S o y b e a n Y i e l d ) R S P R X R B R / C P I B R C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( $ I H A ) < F Y B R ( - 3 ) + F Y B R ( - 2 ) * F Y B R ( - 1 ) + F Y B R ) / 4 - F P ~ X R B R / C P I B R W h e a t R e v e n u e p e r H e c t a r e < $ I H A ) ( W Y B R ( - 3 ) * W Y B R ( - 2 ) * W Y B R ( - 1 ) + W Y B R ) / 4 R W P R X R B R / C P I B R S M P L 1 6 O b s e r v a t i o n s 1 9 6 8 — 1 9 8 3 3 5 8 ‘ _ - - — - — - - — - — - — _ _ - — _ - _ — _ - _ _ — - — — _ - _ ‘ — _ — - e — — — — C - “ — - - e - - _ _ — - - u - _ — - — * — — — — . - — ~ — - — ~ — — — - — _ — — — - . — - — — e — - — - — . — _ — - — — — — - — - — - - — e — — . - - a — - — — — u - m ~ - n a _ — — - ‘ - _ — _ - ~ - — - _ - _ — _ _ - e - e . u c — - - — _ — - — - — _ — e — _ - — — — — o ~ - ~ - — _ — - - - - — — - — — — _ — - — — - — e — — _ - _ - - _ — _ . — - - — - _ - c - — e — _ . . - - o - - — — — — _ ’ e ~ — u — ~ o — o - — . e v _ — - - _ - ’ - — — — — — — “ ~ — - — _ — _ — ~ _ — _ - ‘ — — — o - — . . - 1 3 6 7 6 . 0 0 0 2 4 6 0 0 . 0 0 0 1 3 7 . 2 7 2 4 0 1 1 9 . 2 1 5 5 0 2 8 4 . 0 9 0 8 0 1 0 8 5 6 . 0 0 0 6 4 . 2 9 2 0 9 0 4 4 . 8 2 9 3 5 0 1 1 2 . 3 3 9 5 0 S R B R ( - 1 ) , S R B R ( — 1 ) F H A B R 1 1 4 3 5 . 3 3 1 1 3 4 , 0 9 3 9 C L B B R ( — 1 > 1 8 8 4 2 . 3 7 5 4 8 1 1 . 2 3 7 2 F R B R ( — 1 ) 9 3 . 2 4 0 6 2 2 1 . 8 5 0 9 6 7 N R B R ( - 1 ) 6 6 . 4 0 7 7 3 0 2 0 . 6 4 9 7 1 3 S R B R ( - 1 ) 1 9 1 . 2 0 3 2 0 5 7 . 9 8 0 5 3 0 C o v a r i a n c e F H A B R , F H A B R 1 2 0 5 7 8 3 . 3 F H A B R , O L B B R ( - 1 ) 4 2 4 3 3 4 6 . 3 F H A B R , F R B R ( - 1 ) 1 1 0 1 5 . 1 1 7 F H A B R , N R B R ( - 1 ) 5 9 1 3 . 2 4 7 0 F H A B R , S R E R ( - 1 ) 2 9 1 1 9 . 8 3 6 C L B B R ( - 1 ) , C L B B R ( - 1 ) 2 1 7 0 1 2 5 4 . C L B B R ( - 1 ) , F R B R ( - 1 ) 4 0 9 2 7 . 5 3 7 C L B B R ( - 1 ) , W R B R ( - 1 ) 3 3 3 5 8 . 8 9 1 C L B B R ( - 1 ) , S R B R ( - 1 ) 1 5 4 7 6 4 . 7 9 F R B R ( - 1 ) , F R B R ( - 1 ) 4 4 7 . 6 2 3 2 1 F R B R ( - 1 ) , N R B R ( - 1 ) 3 8 2 . 0 9 6 2 3 F R B R ( - 1 ) , S R B R ( - 1 ) 8 9 8 . 6 5 6 0 8 N R 8 R ( — 1 ) , W R B R ( - 1 ) 3 9 9 . 7 5 9 9 9 W R B R ( — 1 ) , S R B R ( - 1 ) 6 8 4 . 3 6 6 4 4 3 1 5 1 . 6 3 3 0 1 . 0 0 0 0 0 0 0 0 . 8 2 9 5 2 8 7 0 . 4 7 4 1 3 0 8 0 . 2 6 9 3 3 4 3 0 . 4 7 2 3 7 4 5 1 . 0 0 0 0 0 0 0 0 . 4 1 5 2 5 6 9 0 . 3 5 8 1 5 3 8 0 . 5 9 1 7 8 2 3 1 . 0 0 0 0 0 0 0 0 . 9 0 3 2 6 8 4 0 . 7 5 6 6 0 5 3 1 . 0 0 0 0 0 0 0 0 . 6 0 9 7 0 7 1 1 . 0 0 0 0 0 0 0 1 3 5 9 B r a z i l C o a r s e G r a i n Y i e l d ( M e t r i c T o n e p e r H e c t a r e ) S M P L 1 9 6 0 - I 9 8 3 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F Y B R I n . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 4 . 5 3 0 4 4 9 6 0 . 9 6 3 4 5 4 2 - 4 . 7 0 2 2 9 8 8 0 . 0 0 0 L O G T 1 . 4 0 2 9 1 9 7 0 . 2 2 5 8 4 0 4 6 . 2 1 1 9 9 6 4 0 . 0 0 0 R - s q u a r e d 0 . 6 3 6 8 9 7 M e a n o f d e p e n d e n t v a r 1 . 4 5 2 9 6 3 A d j u s t e d R - s q u a r e d 0 . 6 2 0 3 9 3 S . D . o f d e p e n d e n t v a r 0 . 1 7 5 0 0 4 S . E . o i r e g r e s s i o n 0 . 1 0 7 8 2 4 S u m o f s q u a r e d r e s i d 0 . 2 5 5 7 7 1 D u r b i n - w a t s o n s t a t 1 . 6 9 8 2 9 2 F - s t a t i s t i c 3 8 . 5 8 8 9 0 L o g l i k e l i h o o d 2 0 . 4 4 3 7 8 T P E a 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 * 1 1 1 9 6 0 0 . 0 9 3 2 7 1 . 3 0 6 8 6 1 . 2 1 3 5 9 1 : 1 * : 1 1 9 6 1 0 . 0 6 2 9 1 1 . 2 9 9 6 9 1 . 2 3 6 7 8 1 : 1 * : 1 1 9 6 2 0 . 0 5 4 1 9 1 . 3 1 3 7 8 1 . 2 5 9 5 9 1 * 2 1 : 1 1 9 6 3 - 0 . 1 2 5 1 5 1 . 1 5 6 8 9 1 . 2 8 2 0 4 1 a 1 4 : 1 1 9 6 4 0 . 0 3 3 1 1 . 3 7 7 4 3 1 . 3 0 4 1 3 1 : * 1 : 1 1 9 6 5 - 0 . 0 2 3 1 6 1 . 3 0 2 7 3 1 . 3 2 5 8 8 1 : 1 : 1 1 9 6 6 0 . 0 3 0 9 0 1 . 3 7 8 2 0 1 . 3 4 7 3 0 1 : * 1 : 1 1 9 6 7 - 0 . 0 3 5 6 8 1 . 3 3 2 7 1 1 . 3 6 8 4 0 1 : * 1 : 1 1 9 6 8 - 0 . 0 7 7 3 9 1 . 3 1 1 7 9 ' 1 . 3 8 9 1 8 1 : 1 : 1 1 9 6 9 0 . 0 2 9 4 4 1 . 4 3 9 1 0 1 . 4 0 9 6 6 1 : 4 1 : 1 1 9 7 0 - 0 . 0 8 6 6 0 1 . 3 4 3 2 5 1 . 4 2 9 8 5 1 = * 1 : 1 1 9 7 1 - 0 . 0 3 5 1 7 1 . 4 1 4 5 7 1 . 4 4 9 7 5 1 : 4 1 : 1 1 9 7 2 - 0 . 0 4 4 2 5 1 . 4 2 5 1 2 1 . 4 6 9 3 7 1 : 4 1 : 1 1 9 7 3 - 0 . 0 3 8 0 7 1 . 4 5 0 6 5 1 . 4 8 8 7 2 1 : 0 : 1 1 9 7 4 0 . 0 1 0 7 3 1 . 5 1 8 5 4 1 . 5 0 7 8 1 1 7 1 0 : 1 1 9 7 5 0 . 0 7 3 6 8 1 . 6 0 0 3 2 1 . 5 2 6 6 4 1 : 1 4 : 1 1 9 7 6 0 . 0 9 1 4 5 1 . 6 3 6 6 7 1 . 5 4 5 2 2 1 0 : 1 7 1 1 9 7 7 - O . 3 3 3 2 3 1 . 2 3 0 3 3 1 . 5 6 3 5 6 1 4 : 1 : 1 1 9 7 8 - 0 . 1 4 3 2 4 1 . 4 3 8 4 2 1 . 5 8 1 6 6 1 : 1 1 * 1 1 9 7 9 0 . 1 3 4 9 7 1 . 7 3 4 5 1 1 . 5 9 9 5 4 1 : 1 1 * 1 1 9 8 0 0 . 1 3 9 3 5 1 . 7 5 6 5 3 1 . 6 1 7 1 8 1 : 1 * 7 1 1 9 8 1 0 . 0 7 8 3 9 1 . 7 1 3 0 0 1 . 6 3 4 6 1 1 : 1 0 : 1 1 9 8 2 0 . 0 8 8 1 7 1 . 7 4 0 0 0 1 . 6 5 1 8 2 1 7 * 1 : 1 1 9 8 3 - 0 . 0 1 8 8 2 1 . 6 5 0 0 1 1 . 6 6 8 8 3 I . . . . - . . . . . . I N D E P E N D E N T V A R I A B L E S L O G T = L n < T I M E > 3 6 0 S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F Y B R 1 . 4 5 2 9 6 2 6 0 . 1 7 5 0 0 3 7 1 . 7 5 6 5 3 1 0 1 . 1 5 6 8 8 9 0 L O G T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n F Y B R , F Y B R 0 . 0 2 9 3 5 0 2 1 . 0 0 0 0 0 0 0 F Y B R , L O G T 0 . 0 1 3 3 2 4 4 0 . 7 9 8 0 5 8 4 L O G T , L O G T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 P > C 3 < O x : m 1 ~ a > c z : m : : 4 1 - r ° r 4 1 3 ( 1 2 3 1 ~ . 1 7 a 7 2 . 3 7 . 4 7 1 5 7 , 6 7 fi L f 7 7 j 7 9 . 9 7 1 ‘ 9 9 f 1 9 fi L T 9 2 . 3 9 9 4 7 0 7 0 ' 7 7 7 0 7 9 9 0 0 1 0 2 0 3 0 l l L L L l l 4 3 6 1 2 5 9 9 9 ‘ 7 2 2 5 9 9 1 ' v 2 9 9 9 9 - v 1 7 5 9 9 ‘ 1 5 9 9 9 1 1 7 5 7 7 5 7 9 R E G I O N A L N O D E L S I N U L A T I O N 2 0 . 0 7 2 2 0 . 0 0 0 2 4 . 0 4 0 2 3 . 0 3 7 2 2 . 0 2 9 2 1 . 0 1 3 2 0 . 0 0 2 1 9 . 9 9 0 - 1 7 . 9 7 0 : 1 0 . 9 0 7 ' E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L 1 - - - E S T I M A T E D F i g u r e 0 . 8 a & b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - B r a z i l : m a ! - 0 2 1 0 : u 1 I T : 8( u 4 1 ‘ r ‘ r I I - I - r I I 1 I + > c : 2 ! 7 7 ~ I I r v v l u v 7 9 7 9 7 7 7 9 7 9 9 0 9 % 9 2 ~ 9 9 e a 3 6 2 2 5 9 1 1 - 2 9 0 9 1 1 5 9 9 1 1 9 9 9 1 5 3 9 + 1 1 6 9 9 1 : - 1 9 9 9 3 - 1 s a a 1 ' - 2 e a a ‘ . 0 0 0 * “ R E G I O N A L M O D E L S I M U L A T I O N . 4 7 3 . 5 9 8 . 1 9 0 . 7 8 2 . 3 7 4 - . O 3 4 “ . 4 4 1 - . 8 4 9 . 2 5 7 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - > E S T I M A T E D F i g u r o D . 9 . a & b . C o a r s e G r a i n N e t I m p o r t s - B r a z i l B r a z i l 3 6 3 P e r C a p i t a C o a r s e G r a i n N e t I m p o r t s ( 1 0 0 0 M T ) S H P L 1 9 0 1 F 2 4 O b s e r v a t i o n s 1 9 8 4 L 8 / / D e p e n d e n t V a r i a b l e i s P C F N I V A R I A B L E C O E F F I C I E N T 3 T D . E R R O R T - B T A T . 2 - T A I L S I B . C P C R B D P P C F D S P C N D B F P B R D V 7 9 R - s q u a r e d A d j u s t e d R - s q u a r e d 8 . E . o f r e g r e s s i o n D u r b i n - H a t s c n s t a t - L o g l i k e l i h o o d 0 . 0 5 4 9 4 3 2 2 0 . 7 4 5 4 0 2 “ 0 . 3 0 3 5 1 0 4 “ 0 . 3 4 3 3 2 9 8 “ 0 . 0 0 0 1 9 5 0 0 . 0 1 6 8 5 7 7 0 . 7 7 4 2 3 9 0 . 7 1 1 5 2 7 0 . 0 0 5 1 1 5 2 . 1 5 6 2 8 7 9 6 . 0 0 9 2 4 0 . 0 1 3 6 1 3 3 5 . 7 1 0 7 5 9 1 0 . 0 6 5 6 2 6 5 0 . 1 7 5 8 9 3 5 8 . 2 7 1 0 - 0 5 ‘ 0 . 0 0 5 4 8 0 6 4 . 0 3 5 9 9 1 7 3 . 6 3 2 6 3 7 3 “ 4 . 6 2 4 3 1 2 7 “ 2 . 3 5 7 9 5 6 0 3 . 0 7 5 8 6 5 0 0 . 0 0 1 0 . 0 0 2 0 . 0 0 0 0 . 0 6 7 0 . 0 3 0 0 . 0 0 7 M e a n o f d e p e n d e n t v a r - 0 . 0 0 2 9 4 0 S . D . C H d e p e n d e n t v a r S u n o f s q u a r e d r e s i d F - s t a t i s t i c “ E 0 . 0 0 9 5 2 4 0 . 0 0 0 4 7 1 1 2 . 3 4 6 0 6 5 / 2 4 R e s i d u a l P l o t 4 . 8 8 0 . I . 8 . 0 0 I . . 8 O . . 0 I . 8 0 . 0 I . I . . 0 . 0 O . I . . 8 I . 0 . . 8 8 . 4 4 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P B R / C P I B R / C P I B R P C F D S = P e r C a p i t a D o m e s t i c C o a r s e G r a i n S u p p l y ( F E S B R ( - 1 ) + F P R O B R ) / P O P B R p c w o s = P e r C a p i t a D o m e s t i c W h e a t S u p p l y ( 1 0 0 0 M T ) ( W E S B R ( - 1 ) + W P R O B R ) / P O P B R F P B R a R e a l B r a z i l i a n C o a r s e G r a i n P r i c e F P Q X R B R / C P I B R D V 7 9 - 1 I f < T I M E . 2 0 . 7 9 ) 0 O t h e r w i s e o b s 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 - - - u ” - u “ - “ “ u u u n - C u n n o o . . . . . . “ R E S I D U A L 0 . 0 0 4 5 5 “ 0 . 0 0 3 0 4 “ 0 . 0 0 3 7 6 0 . 0 0 3 1 2 0 . 0 0 3 4 1 0 . 0 0 4 1 1 “ 0 . 0 0 2 3 9 0 . 0 0 4 3 4 “ 0 . 0 0 9 3 0 “ 7 . 7 D “ 0 6 0 . 0 0 6 5 4 “ 0 . 0 0 2 4 3 “ 0 . 0 0 1 7 4 0 . 0 0 0 4 9 “ 0 . 0 0 9 3 4 “ 0 . 0 0 3 6 1 0 . 0 0 3 7 7 0 . 0 0 4 5 2 0 . 0 0 7 6 8 “ 0 . 0 0 2 3 0 “ 0 . 0 0 4 7 2 0 . 0 0 1 1 9 “ 0 . 0 0 0 5 7 A C T U A L 0 . 0 0 0 7 6 - 0 . 0 0 8 7 2 “ 0 . 0 0 0 1 8 “ 0 . 0 0 6 3 0 “ 0 . 0 0 7 0 1 - 0 . 0 0 5 1 9 . - 0 . 0 1 3 1 0 - 0 . 0 0 6 2 5 - 0 . 0 1 9 0 0 - 0 . 0 0 9 6 6 “ 0 . 0 0 1 3 0 8 . 2 9 - 0 5 - 0 . 0 1 2 9 6 “ 0 . 0 0 9 0 8 ' - 0 . 0 1 3 9 2 - o . 0 1 1 7 0 0 . 0 1 0 4 0 0 . 0 1 3 7 9 0 . 0 1 7 0 4 0 . 0 0 0 9 0 - 0 . 0 0 4 0 0 . 0 . 0 0 1 1 0 0 . 0 0 1 2 7 0 . 0 0 0 0 0 F I T T E D “ 0 . 0 0 3 7 9 “ 0 . 0 0 5 6 3 0 . 0 0 3 5 7 “ 0 . 0 0 9 4 2 “ 0 . 0 1 0 4 2 “ 0 . 0 0 9 2 9 “ 0 . 0 1 0 2 7 “ 0 . 0 1 0 6 0 “ 0 . 0 0 9 7 0 “ 0 . 0 0 9 6 6 “ 0 . 0 0 7 3 4 0 . 0 0 2 5 1 “ 0 . 0 1 1 2 2 “ 0 . 0 0 9 5 7 “ 0 . 0 0 4 5 0 “ 0 . 0 0 9 1 7 0 . 0 1 2 6 9 0 . 0 0 9 2 7 0 . 0 1 7 3 4 “ 0 . 0 0 6 7 0 - 0 . 0 0 2 5 9 0 . 0 0 5 0 3 3 . 2 0 “ 0 5 0 . 0 0 7 1 3 ( 1 0 0 0 M T ) 3 6 4 B H P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s I “ . . . - I S e r i e s M e a n S . D . H a x i n u n M i n i m u m m m m m m m - n u c m P C F N I - 0 . 0 0 2 9 3 9 7 0 . 0 0 9 5 2 4 3 0 . 0 1 7 8 4 1 7 ” - 0 . 0 1 8 9 9 6 3 P C R G D P 0 . 0 0 0 6 4 7 3 0 . 0 0 0 2 7 5 0 0 . 0 0 1 0 8 5 3 0 . 0 0 0 2 7 8 0 P C F D S 0 . 1 7 4 1 0 1 3 0 . 0 1 6 9 8 4 2 0 . 1 9 9 0 8 8 9 0 . 1 3 6 0 5 8 4 P C H D S 0 . 0 1 8 1 8 3 0 0 . 0 0 8 7 2 5 1 0 . 0 3 3 5 4 1 0 0 . 0 0 3 9 2 0 0 F P B R 6 6 . 3 0 1 2 5 4 1 3 . 2 5 8 3 5 9 9 7 . 4 6 7 0 0 0 4 7 . 2 9 6 1 9 0 0 9 7 9 0 . 0 4 1 6 6 6 7 0 . 2 0 4 1 2 4 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 m u m - m m . - - C o v a r i a n c e C o r r e l a t i o n I . . . w ‘ - P C F N 1 , P C F N I 8 . 6 9 3 0 - 0 5 1 . 0 0 0 0 0 0 0 P C F N I , P C R G D P 1 . 2 5 3 1 3 - 0 6 0 . 4 9 9 0 8 0 4 P C F N I , P C F D S - 8 . 6 1 9 D - 0 5 - 0 . 5 5 5 9 7 9 5 P C F N I , P C N D S 9 . 1 3 6 0 9 0 6 0 . 1 1 4 7 1 8 2 P C F N I , F P B R ' - 0 . 0 1 8 9 7 7 6 - 0 . 1 5 6 8 1 9 1 P C F N I , D V 7 9 0 . 0 0 0 8 6 5 9 0 . 4 6 4 7 4 8 7 P C R B D P , P C R G D P 7 . 2 4 6 0 - 0 8 1 . 0 0 0 0 0 0 0 P C R G D P , P C F D S - 3 . 2 4 7 D - 0 7 - 0 . 0 7 2 5 4 6 4 P C R G D P , P C W D S 1 . 5 9 8 0 - 0 6 0 . 6 9 4 9 2 6 8 P C R B D P , F P B R 0 . 0 0 0 2 3 7 0 0 . 0 6 7 8 3 5 8 P C R G D P , D V 7 9 1 . 4 5 7 0 - 0 5 0 . 2 7 0 8 4 3 9 P C F D S , P C F D B 0 . 0 0 0 2 7 6 4 1 . 0 0 0 0 0 0 0 P C F D S , P C N D S 1 . 6 9 2 0 - 0 5 0 . 1 1 9 1 1 2 0 P C F D S , F P B R - 0 . 0 3 7 5 8 0 5 - 0 . 1 7 4 1 4 5 0 P C F D S , D V 7 9 0 . 0 0 0 1 7 3 7 0 . 0 5 2 2 8 3 5 P C N D S , P c w D S 7 . 2 9 6 0 - 0 5 1 . 0 0 0 0 0 0 0 P C W D S , F P B R - 0 . 0 0 5 1 1 1 1 - 0 . 0 4 6 1 0 3 7 P C N D S , D V 7 9 0 . 0 0 0 3 0 6 9 0 . 1 7 9 8 1 1 0 F P B R , F P B R 1 6 8 . 4 5 9 7 6 1 . 0 0 0 0 0 0 0 F P B R , D V 7 9 - 0 . 2 4 9 2 3 0 5 - 0 . 0 9 6 0 9 4 9 D V 7 9 , D V 7 9 0 . 0 3 9 9 3 0 6 1 . 0 0 0 0 0 0 0 s c u m - . . . . . . : 1 : 1 0 4 ! - 0 2 7 0 5 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 3 9 3 1 3 2 3 3 ” - ¢ Z H ‘ I - ‘ ‘ t u i i l v t r F I H O Z ! 2 3 ~ 3 6 5 O O O P R E G I O N A L M O D E L S I M U L A T I O N . 2 0 4 . 9 9 0 . 7 0 0 . 4 1 7 . 1 2 0 . 0 3 9 - . 0 4 9 . 2 0 0 - . 0 2 9 i - . 3 1 0 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e D . l O . a & b . C o a r s e G r a i n E n d i n g S t o c k s - B r a z i l 3 d 3 e 0 J 2 1 o 7 o d t q e o o e x e e g z e t u g u p t u B s q o o x e “ l 0 " I I - D - - - 0 - - c - - - a - . - - . - - . . D U . - . 0 g . I . s o P I e 0 O I e s 0 . u p 0 . - - ' - - 0 - . a - . . - e . d ) e 3 J 3 5 o 8 e 8 d ) t - u 1 o ( o ; + q 3 e d t 8 0 3 8 0 8 9 1 + 9 0 3 N g I i 8 e 8 t ( u / d s O n d d 8 d 8 t A ( I N 0 0 0 1 ) 8 3 9 0 0 ' 0 9 2 : 0 0 ‘ 0 I S S U O ' O # 1 1 1 0 ' 0 Q Q Z I Q ' O 2 3 : 1 0 ‘ 0 1 : 2 0 0 ' 0 3 6 0 0 0 ' 0 2 2 4 0 0 ' 0 8 3 2 0 0 ' 0 6 2 3 0 0 ‘ 0 I I E O O ' O 9 : 0 0 0 ' 0 A L L O O ' D 0 8 1 : 0 ' 0 E I I E O ' O 9 : 9 2 0 ' 0 9 3 9 2 0 ' 0 2 9 3 2 0 ' 0 9 v 9 2 0 ' 0 2 2 2 0 ' 0 2 6 9 3 0 ' 0 1 3 0 2 0 ' 0 3 8 0 2 C } ' G S L S O O ' O 0 9 7 0 0 ' 0 L E E O O ’ O 9 9 3 1 0 ' 0 I I I I O ' O 0 3 6 0 0 ' 0 9 L 0 0 0 ' 0 1 6 0 0 0 ' 0 0 : 6 0 0 ' 0 9 1 9 0 0 ‘ 0 £ 6 3 0 0 ' 0 0 0 2 0 0 ' 0 8 1 8 0 0 ' 0 5 : 2 0 0 ' 0 9 2 1 3 0 ' 0 S L Z E O ' O B t 9 3 0 ' 0 2 8 8 9 0 ' 0 Q S B v O ' O 3 : 3 2 0 ‘ 0 6 1 9 9 0 ' 0 1 8 9 3 0 ‘ 0 : v 9 3 0 ' 0 6 1 6 : 0 ‘ 0 a u r a s - 9 9 0 0 ( I L ' 3 9 ' a u r i ) ; 1 I = N O T L A G S i L O d 5 9 1 0 0 ' 0 0 6 0 0 0 ' 0 “ # 1 2 0 0 ' 0 - E L O O O ' O 6 8 1 0 0 ' 0 - E L Z O O ' O - S S E O O ' O - 9 0 - 0 2 ‘ 1 - L 6 1 0 0 ' 0 8 9 1 0 0 ' 0 t Q O O O ‘ O 6 8 1 0 0 ' 0 E B L O O ' O 3 9 0 0 0 ' 0 - 9 3 0 1 0 ' 0 — E V B O O ' O - 8 3 0 1 0 ‘ 0 - L S Z I O ' O 3 6 3 1 0 ' 0 . 9 3 3 0 0 ' 0 - t B I I O ' O 3 6 0 0 0 ' O “ 8 7 . 2 9 1 3 0 ' { ' - E 9 1 0 Q ’ 0 — 0 8 6 1 2 8 6 1 3 8 6 1 1 8 6 1 0 8 6 1 6 L 6 1 8 6 6 1 L L 6 1 9 L 6 1 Q L 6 1 # 4 6 1 2 L 6 1 Z L 6 1 1 6 6 1 0 4 6 1 6 9 6 1 8 9 6 1 L 9 6 1 9 9 6 1 S 9 6 1 0 9 6 1 2 9 6 1 3 9 6 1 1 9 6 1 S 3 1 8 V I E V A I N S Q N S d E O N I = = “ “ = = = = = = = = = = = = = = 4 4 4 4 a V 0 ' G E i i I : 7 5 8 1 3 0 7 0 8 8 1 5 3 8 S O D z z g - — ' I v n p z s a a ‘ E — S 7 9 / 6 9 5 9 0 9 - 2 3 2 0 8 0 0 0 ' 0 2 9 2 : 1 0 ' 0 ' 0 0 0 9 1 0 ' 0 0 1 5 3 4 p a a e n b s + 6 w n s J E A g u a p u s o a p * 0 J E A g u a p u a a a p § D U 8 3 ” 3 4 1 a t a s z i e q s — g D O U H I I E H I I 5 0 1 2 0 2 5 u o s g e m - u t q a n a 0 6 1 s s a u b e u 1 o ' 3 ' ; o a u e n o s — a p e g s n y p g Z 6 3 2 2 ' 8 8 : 0 4 9 9 9 ' : 1 : 9 9 0 0 ' 0 2 0 2 0 3 8 ' 0 ‘ 0 3 0 3 2 8 ‘ 0 ' G ' S 0 0 0 ' 0 0 1 0 ‘ 0 0 0 9 ' 0 2 3 1 1 9 0 0 ' 0 - 4 0 0 0 2 0 9 ' 3 3 0 0 0 : 0 4 ' 0 — O O O L E O O ' O 9 9 1 2 9 6 0 ' 0 9 2 1 9 9 1 0 ' 0 1 4 9 0 9 3 0 ' 0 - N O I L A G 0 9 9 9 0 2 3 ' 0 5 9 1 3 0 . 0 2 0 9 1 1 0 ' 0 - 3 ' 8 1 5 7 1 0 1 - 3 ' i H i S - i 3 0 8 3 3 ' 0 1 8 1 N 3 1 3 1 3 3 3 8 3 3 1 8 0 1 8 0 0 ( I N 0 0 0 1 ) u u a p u a o a a , / s j s u o z a p n a a s q a y : 0 8 6 1 - 1 9 6 1 7 0 w : 8 3 5 3 5 5 1 € 1 0 8 0 d E fi 9 9 8 S M P L ' 1 9 0 1 — 1 9 8 4 3 6 7 2 4 O b s e r v a t i o n s - E e r 1 e : r e a m S . D . M a x i m u m M i n i m u m P C F E S . 0 . 0 1 6 9 8 9 7 0 . 0 1 5 3 8 3 3 0 . 0 4 8 8 2 6 8 0 . 0 0 0 7 6 1 5 P C T F S 0 . 1 7 1 1 6 0 6 0 . 0 1 4 1 1 7 5 0 . 1 9 9 0 8 4 8 0 . 1 4 8 8 5 6 7 D V 7 1 0 N 0 . 5 8 3 3 3 3 3 0 . 5 0 3 6 1 0 2 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n . P C F E S , P C F E S 0 . 0 0 0 2 2 6 8 1 . 0 0 0 0 0 0 0 P C F E S , P C T F S 4 . 9 7 4 D - 0 5 0 . 2 3 8 9 9 1 7 P C F E S , D V 7 1 0 N - 0 . 0 0 6 5 5 3 8 - 0 . 8 8 2 7 3 9 8 P C T F S . P C T F S 0 . 0 0 0 1 9 1 0 1 . 0 0 0 0 0 0 0 P C T F S , D V 7 1 0 N - 6 . 7 6 1 D - 0 6 - 0 . 0 0 0 9 9 2 4 0 . 2 4 3 0 5 5 6 - 1 . 0 0 0 0 0 0 0 D V 7 I O N , D V 7 1 0 N ” ' 0 0 0 3 1 7 1 # % 0 2 0 ( z c h ‘ t r i I 8 7 . 1 7 . 2 7 F — “ + 3 7 . 7 4 , 5 7 . 6 7 . 7 7 . 8 7 . 9 7 , 8 8 . 1 8 8 8 8 3 8 4 u u u u r r r h u u u v I D I Z : a m 7 5 7 6 7 7 7 6 7 9 a b 8 % a é 8 5 8 3 2 8 8 8 8 ‘ F ‘ 1 6 . 1 6 . 1 5 . 1 4 . 1 3 . 1 3 . 1 2 . 1 1 1 5 8 8 8 - 1 8 8 8 8 " 5 8 8 8 " 9 3 6 1 5 3 ' 3 7 9 8 0 1 8 2 2 0 4 4 2 6 5 . 4 8 7 1 0 . . 9 3 0 7 0 9 3 6 8 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I H A T E D F i g u r e 0 . 1 1 . 5 & b . S o y b e a n P r o d u c t i o n - B r a z i l P > C 3 ( 0 m m n q b w m m S H ‘ F F H O m o Z o a : a 8 1 q 0 1 - 3 u q 1 a 2 1 m 8 0 ( v ' : - 7 9 ‘ U I U I I I U I I U V U U I I I I U 7 s 7 s 7 7 7 6 7 9 a b 9 % B i 9 3 9 3 3 6 9 1 9 9 9 9 9 9 9 9 9 1 3 9 9 9 + L 7 9 9 9 4 “ W V 5 9 9 9 1 + 4 8 8 8 7 ' 3 9 9 9 1 3 9 9 9 1 1 1 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 ' f R E G I O N A L M O D E L S I M U L A T I O N . 5 0 7 . 1 8 2 ' . 8 5 7 . 5 3 1 . 2 0 5 . 8 8 1 . 5 5 5 . 2 3 0 . 9 0 5 . 5 8 0 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - — E S T I H A T E D F i g u r e D . 1 2 . a & b . S o y b e a n H a r v o o t o d A r e a - B r a z i l S o y b e a n H a r v e s t e d A r e a S C o o y a b r n e s a e ( F Y B R < - n R r e a v i e n ) + F Y B G 3 ( u 1 0 0 0 H e c t a r e s ) e e ( R R p e 2 e n ) r u + e F v - H Y e p B c e R t r ( a - r H 1 e e ) ( t F $ a Y I B r H e R c + A ) ( / S 4 I ~ H F A P ) / ) C P I B R B r a z i l 3 7 0 S M P L 1 9 6 8 - 1 9 8 3 1 6 O b s e r v a t i o n s L 8 / / D e p e n d e n t V a r i a b l e i s S H A B R V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 3 3 1 . 6 7 0 7 8 5 3 6 . 3 1 0 6 2 0 . 6 1 8 4 3 0 4 . 0 . 5 4 8 S H A B R ( - 1 ) 0 . 8 9 4 6 8 0 9 0 . 0 5 1 1 2 5 0 1 7 L 4 9 9 8 7 9 0 . 0 0 0 S R B R 1 9 1 ) 5 . 6 2 7 8 4 5 2 3 . 6 5 7 8 4 1 9 1 . 5 3 8 5 6 9 8 0 . 1 5 0 F R B R ( - 1 ) - 3 . 3 1 2 7 1 5 4 8 . 5 6 3 9 5 8 4 - 0 . 3 8 6 8 2 0 6 0 . 7 0 6 R - s o u a r e d 0 . 9 7 8 7 0 0 M e a n 0 7 d e p e n d e n t v a r 5 8 6 2 . 8 1 3 A d j u s t e d R - s q u a r e d 0 . 9 7 3 3 7 5 S . D . o f d e p e n d e n t v a r 2 9 0 1 . 0 2 5 S . E . o 4 r e g r e s s i o n 4 7 3 . 3 6 6 1 S u m o f s q u a r e d r e s i d 2 6 8 8 9 0 6 . D u r b i n - W a t s o n s t a t . . 2 9 0 0 4 4 F - s t a t i s t i c 1 8 3 . 7 9 2 7 L o g l i k e l i h o o d - 1 1 8 . 9 5 9 5 T P E . 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 . * 1 : 1 1 9 6 8 - 4 9 7 . 8 0 4 9 0 6 . 0 0 0 1 4 0 3 . 8 0 1 : * 1 : 1 1 9 6 9 - 2 4 8 . 8 8 2 1 3 1 9 . 0 0 1 5 6 7 . 8 8 1 : * 1 : 1 1 9 7 0 - 1 7 0 . 7 0 4 1 7 1 6 . 0 0 1 8 8 6 . 7 0 1 : 1 : * 1 1 9 7 1 5 4 7 . 7 4 2 2 8 4 0 . 0 0 2 2 9 2 . 2 1 : 1 4 : 1 1 9 7 2 1 8 8 . 7 4 7 3 6 1 5 . 0 0 3 4 2 6 . 2 5 1 : 1 * 1 1 1 9 7 3 4 2 4 . 5 3 5 1 4 3 . 0 0 4 7 1 8 . 4 7 1 : 9 1 : 1 1 9 7 4 - 8 6 . 0 8 1 7 5 8 2 4 . 0 0 5 9 1 0 . 0 8 1 : * 1 : 1 1 9 7 5 - 9 2 . 4 6 1 4 6 4 1 7 . 0 0 6 5 0 9 . 4 6 1 : 1 * : 1 1 9 7 6 2 0 5 . 0 0 6 7 0 7 0 . 0 0 6 8 6 4 . 9 9 1 : * 1 : 1 1 9 7 7 - 1 6 6 . 8 3 0 7 7 8 2 . 0 0 7 9 4 8 . 8 3 1 : 1 : 1 1 9 7 8 3 4 . 5 8 5 8 8 2 5 6 . 0 0 8 2 2 1 . 4 1 1 : 1 * : 1 1 9 7 9 1 5 4 . 9 4 0 8 7 7 4 . 0 0 8 6 1 9 . 0 6 1 : * 1 : 1 1 9 8 0 - 4 3 8 . 3 9 7 8 4 8 5 . 0 0 8 9 2 3 . 4 0 1 4 : 1 : 1 1 9 8 1 - 6 4 9 . 0 9 2 8 2 0 2 . 0 0 8 8 5 1 . 0 9 1 ' : * : : 1 1 9 8 2 - 2 3 2 . 6 6 7 8 1 3 6 . 0 0 8 3 6 8 . 6 7 1 : 1 : * 1 1 9 8 3 1 0 2 7 . 3 6 3 2 0 . 0 0 8 2 9 2 . 6 4 I N D E P E N D E N T V A R I A B L E S S H A B R S R B R F R B R S o y b e a n H a r v e s t e d A r e a ( H A ) ( F o r e c a s t S o y b e a n Y 1 e l d ) * S P / C P I B R M E fi F 6 6 6 m . . w Q H H m a a m m x < w n w o n m H . - 7 7 7 7 7 7 " N u 1 1 1 1 1 “ ' 7 1 | I ' l u u u u u u u u u u u u u u 1 ' l " : 1 N 1 “ 7 7 7 7 7 “ m m z a m m 3 0 w : w . o . z m s t c a K w s w a c a “ n u " " fl u n u u n u u n u u u u " u u u u u u u u u u u u u u u u u fl u u u u " " " fl l u l l l l w u " U H { I d - I ' l - m : m I D m . » A I L ; m m m _ u m m w m o m . m fl m m m u n m . h u fl m . . . . 0 . 1 . H Q H M Q u m . & m n o o w D m n m a l a v m a l p v m I D m m . m I D m m m I D m m . m I D m m A I H V m I D m m . m m m m m l p o m I b m m . n m m n m l e m I b m m A I M V . m I D m m A I ~ V m I D m m A I M V . m m m m A I H V m l b m m e s p o . fi n m m e u w o m m m n l l e w U U fi m m fi l p w u p ” 6 0 6 . 0 m m 6 u o n . H u m m u . 6 m o m u o H H . m m O fl D V u u ‘ n o < w fi p w 3 n m M m m fl n m w . fl m o m o o m u . o W O M V Q H . H H m e fl n . u m m w m o m fl a u . w fl n h p u . u u u m e u o . b & m H H m H . D H H D m 0 m . & w & 0 m L L N . & H H H H 0 H H O . Q Q O O 8 0 4 9 . 0 0 0 0 u m 6 . o o o m o e m u . n u m a o f l . - . 1 9 0 0 . 0 0 0 0 5 . J J J . . . Q O O O ” H U . H H O U O 0 0 3 1 m ~ w n 6 0 3 H I H H N I u H H . 0 3 0 0 0 0 0 0 . 0 m o u o u u o . & m u o u u u 0 . 6 0 6 0 V 4 w H . 0 0 0 0 0 0 0 0 . 0 0 4 6 4 m u 0 . 9 H k m m w o . 0 0 0 8 8 0 0 7 ‘ . . . 1 . " . . n u l l . . . I W . s . . L . w o \ . l . 1 ¢ . l . . - ~ d . . . m e l n . . u . . n . . - 6 . - 6 . 6 3 7 2 B r a z i l S o y b e a n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M R L 1 9 6 4 - 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S Y B R 1 9 8 3 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 9 . 5 7 2 0 2 5 4 2 . 3 0 8 0 0 5 8 - 4 . 1 4 7 3 1 4 3 0 . 0 0 1 L O G T _ 2 . 5 6 0 2 0 5 7 0 . 5 3 7 3 8 1 2 4 . 7 6 4 2 2 6 7 0 . 0 0 0 R - s q u a r e d 0 . 5 5 7 7 1 6 M e a n o 9 d e p e n d e n t v a r 1 . 4 2 1 9 8 7 A d j u s t e d R - s q u a r e d 0 . 5 3 3 1 4 5 S . D . o f d e p e n d e n t v a r . 2 7 7 1 3 4 S . E . o f r e g r e s s i o n 0 . 1 8 9 3 5 7 S u m o f s q u a r e d r e s i d 0 . 6 4 5 4 0 9 D u r b i n - N a t s o n s t a t 1 . 3 7 8 2 3 7 F - s t a t i s t i c 2 2 . 6 9 7 8 6 L o g l i k e l i h o o d 5 . 9 5 7 2 6 4 T P E . 5 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : 1 9 : : 1 9 6 4 0 . 1 3 5 0 8 1 . 2 1 0 6 5 1 . 0 7 5 5 7 1 : 1 4 a 1 1 9 6 5 0 . 0 9 6 5 5 1 . 2 1 1 8 1 1 . 1 1 5 2 7 1 : 1 * : 1 1 9 6 6 0 . 0 1 5 5 8 1 . 1 6 9 9 3 1 . 1 5 4 3 5 1 4 : - 1 : 1 1 9 6 7 - 0 . 2 8 7 0 4 0 . 9 0 5 8 2 1 . 1 9 2 8 5 1 : * 1 : 1 1 9 6 8 - 0 . 0 6 4 1 2 1 . 1 6 6 6 7 1 . 2 3 0 7 8 1 : 4 1 : 1 1 9 6 9 - 0 . 1 2 4 1 1 1 . 1 4 4 0 5 1 . 2 6 8 1 6 1 : 4 1 : 1 1 9 7 0 - 0 . 0 9 4 6 2 . 2 1 0 3 7 1 . 3 0 5 0 0 1 : * 1 : 1 1 9 7 1 - 0 . 0 5 0 4 7 1 . 2 9 0 8 5 1 . 3 4 1 3 1 1 : 4 : 1 1 9 7 2 0 . 0 0 9 3 3 1 . 3 8 6 4 5 ' 1 . 3 7 7 1 2 1 : 1 i : 1 1 9 7 3 0 . 1 1 8 9 7 1 . 5 3 1 4 0 1 . 4 1 2 4 4 1 : 1 : 0 1 1 9 7 4 0 . 2 5 1 2 2 1 . 6 9 8 4 9 1 . 4 4 7 2 7 1 : 1 : 4 1 1 9 7 5 0 . 2 6 7 9 4 1 . 7 4 9 5 7 1 . 4 8 1 6 3 1 z 1 : 0 1 1 9 7 6 0 . 2 5 4 3 3 1 . 7 6 9 8 7 1 . 5 1 5 5 4 1 4 : 1 s 1 1 9 7 7 - 0 . 3 2 2 9 7 1 . 2 2 6 0 3 1 . 5 4 9 0 1 1 4 : 1 : 1 1 9 7 8 - 0 . 3 4 1 7 4 1 . 2 4 0 3 1 1 . 5 8 2 0 5 1 : 1 4 a 1 1 9 7 9 0 . 1 1 2 7 2 1 . 7 2 7 3 8 1 . 6 1 4 6 6 1 : 1 0 z 1 1 9 8 0 0 . 1 4 4 5 3 1 . 7 9 1 4 0 1 . 6 4 6 8 7 1 : * 1 : 1 1 9 8 1 - 0 . 1 1 3 8 1 1 . 5 6 4 8 6 1 . 6 7 8 6 7 1 : 1 e : 1 1 9 8 2 0 . 1 0 2 8 5 1 . 8 1 2 9 3 1 . 7 1 0 0 8 1 : e 1 : 1 1 9 8 3 - 0 . 1 1 0 2 1 1 . 6 3 0 9 0 1 . 7 4 1 1 1 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( Y E A R ) 3 7 3 S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s = = 2 ’ S S Q Q Z S e r i e s M e a n S . D . M a x i m u m M i n i m u m S Y B R 1 . 4 2 1 9 8 6 9 0 . 2 7 7 1 3 4 2 1 . 8 1 2 9 3 0 0 0 . 9 0 5 8 1 7 2 L O S T 4 . 2 9 4 1 9 1 0 0 . 0 8 0 8 3 9 2 4 . 4 1 8 8 4 0 0 4 . 1 5 8 8 8 3 0 C o v a r i a n c e C o r r e l a t i o n 3 8 8 8 8 8 8 3 3 : 3 S Y B R . S Y B R 0 . 0 7 2 9 6 3 2 1 . 0 0 0 0 0 0 0 S Y B R , L O G T 0 . 0 1 5 8 9 4 3 0 . 7 4 6 8 0 4 0 L O G T , L O G T 0 . 0 0 6 2 0 8 2 1 . 0 0 0 0 0 0 0 3 7 4 1 0 0 0 M E T T O N S h 9 8 1 1 1 7 2 7 8 7 4 7 5 7 6 7 7 7 8 7 8 8 8 8 1 8 2 8 8 R E G I O N A L M O D E L S I M U L A T I O N 1 1 5 8 9 0 3 . 3 8 0 ' 1 - 0 3 J 6 8 - 0 2 5 5 3 9 2 J 8 9 ~ M 2 J n 9 r E 2 . . . : T . D 2 4 3 8 7 T 1 . 8 8 4 t 0 L 6 7 1 - N . . . . . . . . . s 7 5 7 s 7 7 7 s 7 9 s o 8 1 8 2 3 3 3 4 1 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L 1 — - - E S T I M A T E D F i g u r e D . 1 3 . a & b . S o y n e a l E q u i v a l e n t C o n s u m p t i o n - B r a z i l 3 7 5 B r a z i l P e r C a p i t a S o y n e a l E q u i v a l e n t C o n s u m p t i o n “ ( 1 0 0 0 M T ) E M P L 1 9 6 5 ' 1 9 O b S e r v a t i o n s 1 9 8 1 L 8 / / D e p e n d e n t V a r i a b l e i s E C S M E C V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . c - 0 . 0 0 9 7 3 7 1 0 . 0 0 2 5 5 0 3 - 3 . 8 1 8 0 2 5 0 . 0 0 2 P C R G D P 3 1 . 1 4 5 4 1 1 7 . 3 3 5 5 3 1 0 4 . 2 4 5 8 2 9 1 0 . 0 0 1 P C S M D S 0 . 0 4 6 9 7 4 7 0 . 0 4 6 6 9 0 1 1 . 0 0 6 0 9 5 0 0 . 3 2 9 R - s a u a r e d 0 . 9 5 3 8 3 7 M e a n 0 + d e p e n d e n t v a r 0 . 0 1 4 7 7 3 A d j u s t e d R - s o u a r e d 0 . 9 4 8 0 6 6 S . D . o f d e p e n d e n t v a r 0 . 0 1 0 0 1 6 S . E . o f r e g r e s s i o n 0 . 0 0 2 2 8 3 S u m o f s q u a r e d r e s i d 8 . 3 4 0 - 0 5 D u r b i n - w a t s o n s t a t 1 . 7 5 8 9 0 3 F - s t a t i s t i c 1 6 5 . 2 9 8 1 L o g 1 i k e l i h o o d 9 0 . 2 3 8 7 2 T P E . 5 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : * 1 1 1 1 9 6 5 - 0 . 0 0 0 5 4 0 . 0 0 2 1 7 0 . 0 0 2 7 0 7 1 : 1 * : 1 1 9 6 6 0 . 0 0 0 5 3 0 . 0 0 3 2 3 0 . 0 0 2 6 9 1 : 1 * : 1 1 9 6 7 0 . 0 0 0 2 2 0 . 0 0 2 4 5 0 . 0 0 2 2 4 1 : 4 1 : 1 1 9 6 8 - 0 . 0 0 1 1 4 0 . 0 0 3 1 8 0 . 0 0 4 3 3 1 : * 1 1 1 1 9 6 9 - 0 . 0 0 1 7 4 0 . 0 0 3 2 1 0 . 0 0 4 9 6 1 : 1 9 : 1 1 9 7 0 0 . 0 0 1 5 0 0 . 0 0 6 1 8 0 . 0 0 4 6 8 1 : 4 1 1 1 1 9 7 1 - 0 . 0 0 1 3 2 0 . 0 0 4 9 3 0 . 0 0 6 2 4 1 1 1 : * 1 1 7 2 0 . 0 0 3 6 5 0 . 0 1 2 0 9 ' 0 . 0 0 8 4 5 1 : 1 * : 1 1 9 7 3 0 . 0 0 1 9 0 0 . 0 1 4 7 9 0 . 0 1 2 8 8 1 : 4 1 : 1 1 9 7 4 , - 0 . 0 0 1 8 2 0 . 0 1 4 2 0 0 . 0 1 6 0 2 1 4 : 1 : 1 1 9 7 5 - 0 . 0 0 3 2 0 0 . 0 1 4 9 0 0 . 0 1 8 1 1 1 : * 1 : 1 1 9 7 6 - 0 . 0 0 1 0 0 0 . 0 2 0 2 7 0 . 0 2 1 2 7 1 : 4 : 1 1 9 7 7 - 0 . 0 0 0 1 2 0 . 0 2 1 2 9 0 . 0 2 1 4 1 1 : 1 1 * 1 1 9 7 8 0 . 0 0 2 3 8 0 J 0 2 5 4 3 0 . 0 2 3 0 6 1 : 1 - 1 1 9 7 9 0 . 0 0 5 4 0 0 . 0 3 1 9 7 0 . 0 2 6 5 8 1 4 1 1 1 9 8 0 - 0 . 0 0 2 2 1 0 . 0 2 7 1 1 0 . 0 2 9 3 2 1 1 * 1 1 1 9 8 1 - 0 . 0 0 1 7 2 ' 0 . 0 2 4 2 2 0 . 0 2 5 9 3 1 - 4 : 1 1 9 8 2 - 0 . 0 0 0 2 5 0 . 0 2 5 4 1 0 . 0 2 5 6 6 3 : * 1 1 1 9 8 3 - 0 . 0 0 0 5 2 0 . 0 2 3 6 5 0 . 0 2 4 1 7 I N D E P E N D E N T V A R I A B L E S P C R G D P G D P B R / C P I B R P C S M D S = = R e a l G D P P e r C a p i t a I P O P B R S o y m e a l D o m e s t i c S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( ( S E S B R ( - 1 ) + S P R O B R ) * . 7 9 5 + S M E S B R ( - 1 ) ) / P O P B R * S o y n e a l E q u i v a l e n t C o n s u m p t i o n a S E S B R ) ~ . 7 9 5 + S M E S B R ( - 1 ) S N E B R - - S M N E B R - ( S E S B R ( - 1 ) + S P R O B R - S M E S B R 3 7 6 5 1 4 1 — 1 - 1 " 7 ' 6 3 - . 1 9 8 7 1 9 ‘ b s e r v a t i o n s ‘ S e r i e s M e a n S . D . M a x i m u m . M i n i m u m = = = = = = = = = = — = - - — — — — — — — — — — — — — = - ‘ - L ' — 2 2 : : P C S M E C 0 . 0 1 4 7 7 3 4 0 . 0 1 0 0 1 6 5 0 . 0 3 1 9 7 3 0 0 . 0 0 2 1 6 6 6 P C R E D P 0 . 0 0 0 6 9 4 6 0 . 0 0 0 2 5 5 6 0 . 0 0 1 0 8 5 3 0 . 0 0 0 3 7 3 7 P C S M D S 0 . 0 6 1 2 2 0 7 0 . 0 4 0 1 5 6 4 0 . 1 1 2 0 1 6 6 0 . 0 0 7 1 6 7 9 C o v a r i a n c e C o r r e l a t i o n P C S M E C . F C S M E C 9 . 5 0 5 0 — 0 5 1 . 0 0 0 0 0 0 0 P C S M E C , F C R G D R 2 . 3 6 5 0 - 0 6 _ 0 . 9 7 5 1 4 9 4 P C S M E C , P C S M D S 0 . 0 0 C 3 6 1 9 0 . 9 4 9 6 4 4 7 P C R G D P , P C R S D P 6 . 1 8 9 D - 0 8 1 . 0 0 0 0 0 0 0 P C R G D F . P C S M D S 9 . 3 1 5 0 - 0 6 0 . 9 5 7 9 4 2 4 P C S M D S , P C S M D S ' 0 . 0 0 1 5 2 7 7 . 1 . 0 0 0 0 0 0 0 t P O O O : m a H O Z W I - F I a 4 5 9 - 7 3 I 7 1 I - I : 2 F - - 3 7 I - H - - 4 v . - 5 7 - - E 5 7 - I - 5 7 7 - - - - 3 7 - - 7 - 9 7 - - s - o - 3 F 1 - - - - 4 a t O > ‘ C D T ’ I < U - O - U ' U ' ‘ V “ “ T U U I T U ’ U ' U I ( 0 2 0 — ! # 1 7 1 3 3 7 7 2 9 8 0 R E G I O N A L M O D E L S I M U L A T I O N . 6 4 4 . 5 8 2 ' . 4 8 0 . 3 9 9 . 3 1 7 . 2 3 5 . 1 5 3 . 0 7 1 . 9 9 9 . 9 0 7 7 5 7 6 7 % 7 6 v é 8 6 8 % 8 5 8 3 e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e 0 . 1 4 . a & b . S o y o i l E q u i v a l e n t C o n s u m p t i o n - B r a z i l B r a z i l 3 7 8 S o y o i l E q u i v a l e n t C o n s u m p t i o n ” ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C S D E C V A R I A B L E 1 9 8 3 C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 0 0 3 7 6 2 2 0 . 0 0 0 8 7 2 1 - 4 . 3 1 3 9 2 4 0 0 . 0 0 1 P C R G D P 1 3 . 3 8 8 4 1 2 2 . 4 7 6 4 3 1 2 5 . 4 0 6 3 3 3 0 . 0 0 0 P C S D D S 0 . 1 2 2 1 2 4 5 0 . 0 6 9 1 3 6 3 1 . 7 6 6 4 2 9 4 0 . 0 9 6 R - s q u a r e d 0 . 9 7 2 1 7 9 ‘ M e a n o f d e p e n d e n t v a r 0 . 0 0 7 2 4 0 A d j u s t e d R - s q u a r e d 0 . 9 6 8 7 0 1 S . D . o f d e p e n d e n t v a r 0 . 0 0 4 5 6 5 S . E . o f r e g r e s s i o n 0 . 0 0 0 8 0 8 S u m o f s q u a r e d r e s i d 1 . 0 4 D - 0 5 D u r b i n - W a t s o n s t a t 1 . 4 6 0 4 2 6 F - s t a t i s t i c 2 7 9 . 5 4 9 6 L o g l i k e l i h o o d 1 0 9 . 9 8 0 5 T P E a 5 / 1 8 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : * 1 : 1 1 9 6 5 - 0 . 0 0 0 5 3 0 . 0 0 1 1 1 0 . 0 0 1 6 4 1 : * 1 = 1 1 9 6 6 - 0 . 0 0 0 4 2 . 0 . 0 0 1 2 3 0 . 0 0 1 6 5 1 : * 1 : 1 1 9 6 7 - 0 . 0 0 0 2 0 ' 0 . 0 0 1 2 4 0 . 0 0 1 4 4 1 * 1 : 1 1 9 6 8 - 0 . 0 0 0 8 7 0 . 0 0 1 4 9 0 . 0 0 2 3 6 1 : * 1 : 1 1 9 6 9 - 0 . 0 0 0 5 7 . 0 . 0 0 2 0 9 0 . 0 0 2 6 6 1 : 1 : * 1 1 9 7 0 0 . 0 0 0 9 9 0 . 0 0 3 5 8 0 . 0 0 2 5 8 1 : 1 * 1 1 9 7 1 0 . 0 0 0 7 8 0 . 0 0 4 1 2 0 . 0 0 3 3 5 1 : 1 * : 1 1 9 7 2 0 . 0 0 0 4 3 0 . 0 0 4 8 1 0 . 0 0 4 3 8 1 : 1 : * 1 1 9 7 3 0 . 0 0 0 9 3 0 . 0 0 7 3 7 0 . 0 0 6 4 4 1 : * 1 : 1 1 9 7 4 - 0 . 0 0 0 5 5 0 . 0 0 7 4 6 0 . 0 0 8 0 1 1 : * 1 : 1 1 9 7 5 - 0 . 0 0 0 7 1 0 . 0 0 8 2 6 0 . 0 0 8 9 6 1 : * 1 : 1 1 9 7 6 - 0 . 0 0 0 1 2 . 0 . 0 1 0 2 3 0 . 0 1 0 3 5 1 : 1 * : 1 1 9 7 7 0 . 0 0 0 4 7 0 . 0 1 0 7 2 0 . 0 1 0 2 6 1 : 1 : * 1 1 9 7 8 0 . 0 0 1 3 8 . 0 . 0 1 2 3 3 0 . 0 1 0 9 4 1 : 1 : 1 1 9 7 9 0 . 0 0 0 1 7 . 0 . 0 1 2 8 5 0 . 0 1 2 6 8 1 * : 1 : 1 1 9 8 0 - 0 . 0 0 1 7 4 0 . 0 1 2 1 6 0 . 0 1 3 9 0 1 : * 1 : 1 1 9 8 1 - 8 . 8 D - 0 5 0 1 0 1 2 1 5 0 . 0 1 2 2 4 1 : 1 * : 1 1 9 8 2 0 . 0 0 0 3 5 ' 0 . 0 1 2 5 5 0 . 0 1 2 2 0 1 : 1 * : 1 1 9 8 3 0 . 0 0 0 2 9 0 . 0 1 1 8 0 0 . 0 1 1 5 1 I N D E P E N D E N T V A R I A B L E E P C R G D P P C S O D S = R e a l G D P P e r C a p i t a G D P B R / C P I B R / P O P B R S o y o i l D o m e s t i c S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) < ( S E S B R ( - 1 ) + S P R O B R ) ~ . 1 7 5 ¢ S O E S B R ( - 1 ) ) / P O P B R ' S o y o i l E q u i v a l e n t C o n s u m p t i o n 8 S N E B R S E S B R ) ~ . 1 7 5 * S O E S B R ( - 1 ) ( S E S B R ( - 1 ) - S O N E B R - + S P R O B R S O E S B R S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s 3 7 9 S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C S D E C 0 . 0 0 7 2 3 9 5 0 . 0 0 4 5 6 4 8 0 . 0 1 2 8 5 2 7 0 . 0 0 1 1 0 8 5 P C R G D P 0 . 0 0 0 6 9 4 6 0 . 0 0 0 2 5 5 6 0 . 0 0 1 0 8 5 3 0 . 0 0 0 3 7 3 7 P C S O D S 0 . 0 1 3 9 3 4 3 0 . 0 0 9 1 5 5 2 0 . 0 2 5 6 6 5 1 0 . 0 0 1 6 2 1 0 C o v a r i a n c e C o r r e l a t i o n P C S O E C , P C S O E C 1 . 9 7 4 0 - 0 5 1 . 0 0 0 0 0 0 0 P C S O E C , P C R B D P , 1 . 0 8 7 D - 0 6 0 . 9 8 3 2 3 6 0 P C S O E C , P C S D D S 3 . 8 0 0 0 - 0 5 0 . 9 5 9 8 7 2 6 P C R G D P , P C R G D P 6 . 1 8 9 0 - 0 8 1 . 0 0 0 0 0 0 0 P C R G D P , P C S U D S 2 . 1 1 4 D - 0 6 0 . 9 5 3 7 0 9 1 P c s o o s , r c s o n s 7 . 9 4 1 0 - 0 5 1 . 0 0 0 0 0 0 0 P O O l : l ) ( 6 a O j ; - x f i I I ' I T V T I U i r ' ' ' T j ' i r : m a ! * 0 2 0 ( H > C D < O : " 1 1 ~ 1 — 0 2 0 [ 3 8 0 R E G I O N A L H O D E L S I H U L A T I O N 6 3 4 . 2 2 6 5 7 6 . 6 2 5 ' 5 2 3 . 0 2 2 4 6 7 . 4 1 9 4 1 1 . 6 1 6 3 5 6 . 2 1 3 3 0 0 . 6 1 0 2 4 5 . 0 0 7 1 6 9 . 4 0 4 1 3 3 . 8 0 1 7 3 7 6 7 7 7 a 7 8 8 0 3 1 8 2 3 5 a 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e 0 . 1 5 . 6 & b . S o y n o a l E n d i n g S t o c k s - B r a z i l S o y n e a l E n d i n g S t o c k s P e r C a p i t a ( 1 0 0 0 M T ) . I u . 0 I . . o . o . 0 O . . . o e . I u . O . a . 0 . * 4 . I . . . I o n . I . . a g . . I I - . . I O . a . I 3 8 1 B r a z i l S M P L 1 9 6 9 - 1 9 8 3 1 5 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C S M E S V A R I A B L E C O E F F I C I E N T S T D . 8 - 0 . 0 0 1 1 5 6 5 P C R G D P ( - 1 ) 2 . 3 5 8 4 7 5 3 D V 7 9 0 . 0 0 3 7 1 4 1 S M S U R 0 . 0 1 2 0 9 7 7 I . . . I ' 0 . 9 5 4 6 5 8 0 . 9 4 2 2 9 2 5 0 . 0 0 0 3 7 1 2 . 3 4 7 6 9 3 9 9 . 5 3 5 6 0 R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - N a t s o n s t a t L o g l i k e l i h o o d R e s i d u a l P l o t 0 * . . - - - - - - * . . n o . . o - . . - - - - O - . . - - * . . . . a 0 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P B R / C P I B R / P O P B R D V 7 ? 8 1 I £ ( T I H E . E 0 . 7 9 ) 0 O t h e r w i s e S M S U R = S M E S B R ( - l ) / S M C O B R ( - 1 ) C D . 8 8 8 0 8 3 8 9 5 0 . 0 0 0 . 0 . 7 6 1 9 4 7 7 0 . 0 0 0 4 4 4 2 0 . 0 0 3 4 3 0 6 I n - m n n l l n n u u m m s n n m n u M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c T P E I I Z o b s 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 ' 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 3 3 T - S T A T . 3 - - . . fi g 2 - T A I L S l G . - i . 9 3 9 3 3 8 7 " = " 5 ? 8 T 3 " ' 3 . 0 9 5 3 2 4 3 8 . 3 6 0 5 8 6 3 3 . 5 2 6 3 8 5 6 R E S I D U A L - 4 . 9 D - 0 5 5 . 9 D - 0 5 - 0 . 0 0 0 1 5 0 . 0 0 0 1 5 0 . 0 0 0 2 7 - 4 . 2 D - 0 5 - 0 . 0 0 0 1 6 6 . 4 0 - 0 5 - 0 . 0 0 0 1 6 6 . 9 0 - 0 5 2 . 0 0 - 1 9 0 . 0 0 0 1 9 0 . 0 0 0 7 9 - 0 . 0 0 0 7 7 - 0 . 0 0 0 2 5 A C T U A L 0 . 0 0 0 1 6 0 . 0 0 0 2 6 0 . 0 0 0 3 4 0 . 0 0 0 4 2 0 . 0 0 0 6 7 0 . 0 0 0 8 4 0 . 0 0 1 0 1 0 . 0 0 1 2 8 0 . 0 0 1 3 7 0 . 0 0 1 6 1 0 . 0 0 5 3 5 0 . 0 0 3 6 6 0 . 0 0 3 9 8 0 . 0 0 2 2 9 0 . 0 0 2 0 6 I L e g g e d S o y n a a l S t o c k / C o n s u m p t i o n R a t i o 0 . 0 1 0 0 . 0 0 0 0 . 0 0 5 0 . 0 0 1 6 8 7 0 . 0 0 1 5 4 4 1 . 5 1 0 - 0 6 7 7 . 2 0 0 3 4 F I T T E D 0 . 0 0 0 2 0 0 . 0 0 0 2 0 0 . 0 0 0 4 8 0 . 0 0 0 2 7 0 . 0 0 0 4 0 0 . 0 0 0 8 8 0 . 0 0 1 1 7 0 . 0 0 1 2 2 0 . 0 0 1 5 3 0 . 0 0 1 5 4 0 . 0 0 5 3 5 0 . 0 0 3 4 7 0 . 0 0 3 1 9 0 . 0 0 3 0 7 0 . 0 0 2 3 1 S M P L 1 9 6 9 - 1 9 8 3 1 5 O b s e r v a t i o n s - S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C S M E S 0 . 0 0 1 6 8 6 8 0 . 0 0 1 5 4 4 0 0 . 0 0 5 3 4 8 2 0 . 0 0 0 1 5 5 4 P C R G D P ( - 1 ) 0 . 0 0 0 7 4 0 6 0 . 0 0 0 2 3 7 7 0 . 0 0 1 0 8 5 3 0 . 0 0 0 4 3 2 3 D V 7 9 0 . 0 6 6 6 6 6 7 0 . 2 5 8 1 9 8 9 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 S M S U R 0 . 0 7 0 1 7 6 1 0 . 0 5 1 7 9 9 0 0 . 1 8 8 2 3 9 2 0 . 0 2 4 4 8 7 7 C o v a r i a n c e C o r r e l a t i o n P C S M E S , P C S M E S 2 . 2 2 5 D - 0 6 1 . 0 0 0 0 0 0 0 P C S M E S , P C R B D P ( - 1 ) 2 . 7 9 5 D - 0 7 0 . 8 1 6 0 2 9 5 P C S M E S , D V 7 9 0 . 0 0 0 2 4 4 1 0 . 6 5 6 0 3 1 5 P C S M E S , S M S U R 4 . 6 1 5 0 - 0 5 0 . 6 1 8 3 1 9 8 P C R G D P 1 - 1 ) , P C R B D P ( - 1 ) 5 . 2 7 2 D - 0 8 1 . 0 0 0 0 0 0 0 P C R G D P ( - 1 ) , D V 7 9 1 . 2 6 9 0 - 0 5 0 . 2 2 1 5 7 2 8 P C R B D P ( - 1 ) , S M S U R 8 . 9 2 8 D - 0 6 0 . 7 7 7 0 6 1 9 D V 7 9 , D V 7 9 0 . 0 6 2 2 2 2 2 1 . 0 0 0 0 0 0 0 D V 7 9 , S M S U R . - 0 . 0 0 1 3 9 9 6 - 0 . 1 1 2 1 2 3 7 S M S U R , S M S U R 0 . 0 0 2 5 0 4 3 1 . 0 0 0 0 0 0 0 l 0 0 O M E T T O N S 1 O 0 2 5 3 . 0 x n . 2 m m M a n . . 5 ' m 7 . T n 1 1 ; C ' m 8 . 1 2 1 T m m . 0 N S F i g u r e 7 5 0 a n y . 7 5 0 2 M ) : 7 M ) : . 2 m 1 : . 7 m 1 . 2 m : - . 7 m 1 » 2 “ ) : 3 8 3 " " J ‘ 1 3 I n " ) 6 3 R E G I O N A L M O D E L S I M U L A T I O N 7 5 7 ' ~ 7 6 ' 7 7 7 8 - 7 8 8 0 3 1 8 2 3 5 8 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D 0 . 1 6 . 6 & b . S o y o i l E n d i n g S t o c k s - B r a z i l 3 8 4 B r a z i l S o y o i l E n d i n g S t o c k s P e r C a p i t a ( 1 0 0 0 H T ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C S O E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 3 . 7 4 5 0 - 0 5 0 . 0 0 0 1 1 6 9 0 . 3 2 0 3 9 5 6 0 . 7 5 3 P C S O D S 0 . 0 5 0 6 0 9 6 0 . 0 0 7 3 4 8 3 6 . 8 8 7 2 8 1 7 0 . 0 0 0 D V 7 9 0 . 0 0 0 9 4 2 9 0 . 0 0 0 2 9 3 2 3 . 2 1 5 5 1 5 7 0 . 0 0 5 R - s q u a r e d 0 . 8 3 0 3 3 8 M e a n o f d e p e n d e n t v a r 0 . 0 0 0 7 9 2 A d j u s t e d R - s q u a r e d 0 . 8 0 9 1 3 0 S . D . 0 + d e p e n d e n t v a r 0 . 0 0 0 6 2 3 S . E . o f r e g r e s s i o n 0 . 0 0 0 2 7 2 S u m o f s q u a r e d r e s i d 1 . 1 8 0 — 0 6 D u r b i n - N a t s o n s t a t 1 . 6 7 8 7 3 1 F - s t a t i s t i c ' 3 9 . 1 5 2 5 1 L o g l i k e l i h o o d 1 3 0 . 6 5 1 3 T P E s 7 I . - . - . . I u m . . “ - u . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 8 . “ 8 8 . " I . . . 1 s * 1 s 1 1 9 6 5 - 6 . 2 D - 0 5 6 . 2 D - 0 5 0 . 0 0 0 1 2 1 a a 1 z 1 1 9 6 6 - 7 . 7 D - 0 5 J 6 . O D - 0 5 0 . 0 0 0 1 4 1 a * 1 : 1 1 9 6 7 - 4 . 9 D - 0 5 ' 7 . 0 D - 0 5 0 . 0 0 0 1 2 1 s * 1 : 1 1 9 6 8 - 7 . 0 D - 0 5 9 . 1 D - 0 5 0 . 0 0 0 1 6 1 : * 1 a 1 1 9 6 9 - 4 . 9 D - 0 5 0 . 0 0 0 1 6 0 . 0 0 0 2 0 1 : * : 1 1 9 7 0 1 . 6 D - 0 6 0 . 0 0 0 2 7 0 . 0 0 0 2 7 1 : * 1 : , 1 1 9 7 1 - 6 . B D - 0 5 0 . 0 0 0 3 4 0 . 0 0 0 4 0 1 : 8 1 : 1 1 9 7 2 - 8 . 4 D - 0 5 0 . 0 0 0 4 5 0 . 0 0 0 5 3 1 : 1 : 0 1 1 9 7 3 0 . 0 0 0 7 2 0 . 0 0 1 5 0 0 . 0 0 0 7 8 1 : 1 1 i 1 1 9 7 4 0 . 0 0 0 4 6 0 . 0 0 1 4 6 0 . 0 0 1 0 0 1 : a 1 : 1 1 9 7 5 - 0 . 0 0 0 1 5 0 . 0 0 0 9 5 0 . 0 0 1 1 1 1 * 1 : 1 . 1 9 7 6 - 0 . 0 0 0 3 0 0 . 0 0 0 9 3 0 . 0 0 1 2 3 1 s 5 1 s 1 1 9 7 7 - 0 . 0 0 0 1 2 . 0 . 0 0 0 8 8 0 . 0 0 1 0 0 1 : 1 8 : 1 1 9 7 8 0 . 0 0 0 1 0 0 . 0 0 1 0 7 0 . 0 0 0 9 7 1 a * : 1 1 9 7 9 2 . 3 D - 1 9 0 . 0 0 2 2 6 0 . 0 0 2 2 6 1 1 a 1 : 1 1 9 8 0 - 0 ; 0 0 0 1 4 0 . 0 0 1 2 0 0 . 0 0 1 3 4 1 s 1 : 8 1 1 9 8 1 - 0 . 0 0 0 3 7 0 . 0 0 1 4 6 0 . 0 0 1 0 9 1 a : 1 a 1 1 9 8 2 - 0 . 0 0 0 3 2 ' 0 . 0 0 0 8 7 0 . 0 0 1 1 9 1 : a 1 : 1 1 9 8 3 - 0 . 0 0 0 1 7 2 0 . 0 0 0 9 7 0 . 0 0 1 1 4 I ] l u a u - m I N D E P E N D E N T V A R I A B L E S S O D S B R = S o y o i l E q u i v a l e n t D o m e s t i c S u p p l y ( 1 0 0 0 M T ) ( S E S B R < - l ) + S P R O B R ) * . 1 7 5 + S O E S B R ( - l ) D V 7 9 8 l I £ ( T I M E . E 0 . 7 9 ) 0 O t h e r w i s e 3 8 5 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m ' M i n i m u m P C S O E S 0 . 0 0 0 7 9 2 3 0 . 0 0 0 6 2 2 8 0 . 0 0 2 2 6 3 7 6 . 0 2 9 0 - 0 5 P C S O D S 0 . 0 1 3 9 3 4 3 0 . 0 0 9 1 5 5 2 0 . 0 2 5 6 6 5 1 0 . 0 0 1 6 2 1 0 D V 7 9 0 . 0 5 2 6 3 1 6 0 . 2 2 9 4 1 5 7 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C S O E S , P C S O E S ' 3 . 6 7 4 D - 0 7 1 . 0 0 0 0 0 0 0 P C S O E S , P C S O D S 4 . 5 8 6 0 - 0 6 0 . 8 4 8 9 3 9 6 P C S O E S , D V 7 9 7 . 7 4 4 0 - 0 5 0 . 5 7 2 1 4 1 5 P C S O D S , P C S O D S 7 . 9 4 1 D - 0 5 1 . 0 0 0 0 0 0 0 P C S O D S , D V 7 9 0 . 0 0 0 6 0 1 2 0 . 3 0 2 1 3 9 8 D V 7 9 , D V 7 9 1 0 . 0 4 9 8 6 1 5 1 . 0 0 0 0 0 0 0 3 8 6 a u - 1 0 0 1 m 0 a " . . . T . - " ' ~ 5 . “ . . . T 5 9 0 1 ' 0 1 N _ S B . , . . . 7 9 7 1 7 2 ' 1 3 ' 1 4 7 5 7 6 7 7 7 B . 7 9 8 9 8 1 9 2 3 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N M I L L 7 3 2 L L a m i - L 4 3 4 : H 1 . 2 8 6 : E 1 4 3 1 : R . 9 8 8 z I . a m a : C . 6 9 1 : . s w z - T . 3 m 3 3 7 5 7 6 7 " ! 7 6 7 é a c " : 8 1 8 i 8 5 a n S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . _ — - E S T I M A T E D F i g u r e D . l 7 . a & b . S o y b e a n E n d i n g S t o c k s - B r a z i l 3 8 7 B r a z i l P e r C a p i t a S o y b e a n E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C S E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T . 2 - T A I L S I B . C - 0 . 0 0 2 7 1 8 1 0 . 0 0 3 3 3 1 9 - 0 . 8 1 5 7 7 8 4 0 . 4 2 8 P C R G D P 1 0 . 9 1 2 5 0 2 9 . 4 5 5 8 3 1 8 1 . 1 5 4 0 4 9 9 0 . 2 6 8 M A R G I N 2 . 2 6 4 D - 0 6 7 . 5 3 2 D - 0 5 0 . 0 3 0 0 5 4 8 0 . 9 7 6 D V 7 6 0 . 0 0 7 1 0 9 5 0 . 0 0 2 4 7 7 2 2 . 8 7 0 0 1 3 4 0 . 0 1 2 P C S D S - 0 . 0 2 4 5 5 6 3 0 . 0 5 2 6 5 2 8 - 0 . 4 6 6 3 8 2 3 0 . 6 4 8 S N E B R ( - 1 ) 1 . 9 3 3 0 - 0 6 6 . 8 7 8 D - 0 7 2 . 8 1 0 1 0 9 7 0 . 0 1 4 R - s q u a r e d 0 . 8 2 8 2 5 2 M e a n o f d e p e n d e n t v a r 0 . 0 0 5 5 1 1 A d j u s t e d R - s q u a r e d 0 . 7 6 6 9 1 3 S . D . o f d e p e n d e n t v a r 0 . 0 0 4 2 2 4 S . E . o f r e g r e s s i o n 0 . 0 0 2 0 3 9 S u m o f s q u a r e d r e s i d 5 . 8 2 D - 0 5 D u r b i n - w a t s o n s t a t 1 . 2 9 5 3 7 3 F - s t a t i s t i c 1 3 . 5 0 2 9 3 L o g 1 i k e l 1 h a n d 9 9 . 0 9 1 1 8 T P E 5 ’ 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 * : 1 1 9 6 5 0 . 0 0 0 9 1 0 . 0 0 2 3 6 0 . 0 0 1 4 4 1 : * 1 : 1 1 9 6 6 - 0 . 0 0 0 1 6 0 . 0 0 1 2 9 0 . 0 0 1 4 5 1 : * 1 : 1 1 9 6 7 - 0 . 0 0 0 1 4 0 . 0 0 1 5 8 0 . 0 0 1 7 2 1 : * 1 : 1 1 9 6 8 - 0 . 0 0 0 2 2 0 . 0 0 1 6 0 0 . 0 0 1 8 2 1 : 1 * : 1 1 9 6 9 0 . 0 0 0 5 0 0 . 0 0 2 8 6 0 . 0 0 2 3 6 1 : * 1 : 1 1 9 7 0 - 0 . 0 0 0 5 5 0 . 0 0 1 3 9 0 . 0 0 1 9 4 1 : 1 * : 1 1 9 7 1 0 . 0 0 1 1 6 0 . 0 0 2 9 7 0 . 0 0 1 8 1 1 : * 1 : 1 1 9 7 2 - 0 . 0 0 0 7 1 0 . 0 0 2 9 1 - 0 . 0 0 3 6 2 1 : * 1 : 1 1 9 7 3 - 0 . 0 0 1 5 9 0 . 0 0 4 0 0 0 . 0 0 5 6 0 1 * z 1 : 1 1 9 7 4 - 0 . 0 0 2 3 2 0 . 0 0 5 6 9 0 . 0 0 8 0 2 1 : 1 : * 1 1 9 7 5 0 . 0 0 3 3 8 0 . 0 1 2 9 6 0 . 0 0 9 5 8 1 : * : 1 1 9 7 6 - 1 . 9 D - 1 9 0 . 0 1 6 7 9 0 . 0 1 6 7 9 1 : 1 : 1 1 9 7 7 0 . 0 0 0 3 1 0 . 0 0 9 5 9 0 . 0 0 9 2 8 1 : 1 * 1 1 9 7 8 0 . 0 0 2 0 9 0 . 0 0 8 1 7 0 . 0 0 6 0 8 1 : 1 : * 1 1 9 7 9 0 . 0 0 3 9 3 0 . 0 0 9 4 3 0 . 0 0 5 5 0 1 : 1 * : 1 1 9 8 0 0 . 0 0 0 7 0 0 . 0 0 8 5 5 0 . 0 0 7 8 5 1 : * 1 : 1 1 9 8 1 - 0 . 0 0 0 8 1 0 . 0 0 5 6 8 0 . 0 0 6 4 8 1 : * 1 : 1 1 9 8 2 — 0 . 0 0 1 6 5 0 . 0 0 2 5 2 0 . 0 0 4 1 6 1 * : 1 : 1 1 9 8 3 - 0 . 0 0 2 5 3 0 . 0 0 4 5 4 0 . 0 0 7 0 8 1 * 1 1 : 1 1 9 8 4 - 0 . 0 0 2 3 0 0 . 0 0 5 3 3 0 . 0 0 7 6 3 I N D E P E N D E N T V A R I A B L E S P C R G D P = G D P B R / C P I B R / P O P B R M A R G I N R e a l I n c o m e P e r C a p i t a S o y b e a n C r u s h M a r g i n ( S M P * X R B R / C P I B R ) ' . 7 9 5 + ( S P * X R B R / C P I B R ) S N E B R P C S D S S o y a e a l N e t E x p o r t s ( S O P ' X R B R / C P I B R ) . . 1 7 5 ( 1 0 0 0 M T ) P e r C a p i t a S o y b e a n S u p p l y ( S E S B R < - 1 ) + S P R O B R ) / P O P B R D V 7 6 1 I f ( T I N E . E 0 . 0 O t h e r w i s e 7 6 ) ( 1 0 0 0 M T ) 3 8 8 S M P L 1 9 6 5 - 1 9 8 4 _ 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C S E S 0 . 0 0 5 5 1 1 2 0 . 0 0 4 2 2 3 9 0 . 0 1 6 7 9 3 7 0 . 0 0 1 2 9 0 2 P C R B D P 0 . 0 0 0 7 0 9 8 0 . 0 0 0 2 5 7 9 0 . 0 0 1 0 8 5 3 0 . 0 0 0 3 7 3 7 M A R B I N - 0 . 3 3 3 5 6 2 8 7 . 4 7 7 6 7 4 6 1 8 . 5 8 1 7 8 0 - 9 . 9 8 6 6 4 8 0 D V 7 6 0 . 0 5 0 0 0 0 0 0 3 2 2 3 6 0 6 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 P C S D S 0 . 0 7 8 4 0 1 0 0 . 0 4 9 6 0 2 4 0 . 1 3 8 9 2 3 5 0 . 0 0 8 9 2 7 7 S N E B R 1 - 1 ) 1 0 6 2 . 6 0 0 0 1 1 6 9 . 0 7 1 2 3 5 1 6 . 0 0 0 0 - 4 5 5 . 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C S E S , P C S E S 1 . 6 9 5 D - 0 5 1 . 0 0 0 0 0 0 0 P C S E S , P C R G D P 6 . 0 7 2 D - 0 7 0 . 5 8 6 7 5 6 6 P C S E S , M A R G I N - 0 . 0 1 2 8 4 2 8 - 0 . 4 2 8 0 0 8 3 P C S E S , D V 7 6 0 . 0 0 0 5 6 4 1 0 . 6 2 8 7 1 2 0 P C S E S , P C S D S 0 . 0 0 0 1 3 9 1 0 . 6 9 8 6 3 6 6 P C S E S , S N E B R ( - 1 ) . 3 . 5 4 1 8 8 3 5 0 . 7 5 5 0 0 9 4 P C R G D P , P C R B D P 6 . 3 1 9 D - 0 8 1 . 0 0 0 0 0 0 0 P C R G D P , M A R G I N - 0 . 0 0 0 7 3 6 2 - 0 . 4 0 1 8 6 2 6 P C R G D P , D V 7 6 6 . 4 8 2 D - 0 6 , 0 . 1 1 8 3 1 9 9 P C R G D P , P C S D S 1 . 1 6 1 D - 0 5 0 . 9 5 5 4 1 5 2 P C R G D P , S N E B R ( - 1 ) 0 . 0 8 1 9 6 1 8 0 . 2 8 6 1 5 0 6 M A R G I N , M A R B I N 3 . 1 1 9 8 3 6 1 . 0 0 0 0 0 0 0 M A R G I N , D V 7 6 - 0 . 4 8 2 6 5 4 2 - 0 . 3 0 3 8 5 1 2 M A R G I N , P C S D S - 0 . 1 3 4 5 2 5 5 - 0 . 3 8 1 7 7 8 4 M A R G I N , S N E B R ( - 1 ) - 2 4 8 4 . 0 5 1 9 - 0 . 2 9 9 1 0 9 0 D V 7 6 , D V 7 6 0 . 0 4 7 5 0 0 0 1 . 0 0 0 0 0 0 0 D V 7 6 , P C S D S 0 . 0 0 2 5 3 0 1 0 . 2 4 0 1 1 9 7 D V 7 6 , S N E B R ( - 1 ) 1 1 3 . 2 7 0 0 0 0 . 4 5 6 1 0 5 5 P C S D S , P C S D S 0 . 0 0 3 3 7 4 1 . 0 0 0 0 0 0 0 P C S D S , S N E B R ( - 1 ) 2 6 . 9 4 0 2 6 2 0 . 4 8 9 0 2 8 5 S N E B R 1 - 1 ) , S N E B R ( — 1 ) 1 2 9 8 3 9 1 . 1 1 . 0 0 0 0 0 0 0 " 1 0 0 0 3 1 1 1 1 “ ) - 0 2 0 ( z 1 O I I Q ‘ 1 3 Q r T 3 fl 1 2 3 3 O C Q I ~ U p ~ t O r O T ' U T I \ ; g l 1 A J l L 3 8 9 t 1 2 5 8 9 1 9 9 9 9 1 ' 7 5 9 6 - $ 6 8 0 - 2 5 8 9 - ' H r H ‘ 7 ' 9 7 1 7 ' 2 7 5 7 ' 1 7 ' 5 1 ' 5 7 5 7 ' 3 7 9 8 ‘ 9 9 1 3 2 a s 8 4 R E G I O N A L M O D E L S I M U L A T I O N 8 . 2 5 3 1 . 7 3 3 ~ / \ ‘ . 2 2 1 . 7 0 4 . 1 3 7 . 3 7 0 _ . . 1 5 3 » ' / « . 3 3 3 I + ‘ { : : : ; \ / J . 1 1 3 : . \ ’ . 3 0 3 : ’ - K / _ t 7 3 7 3 ' 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — - - E S T I M A T E D F i g u r e D . 1 8 . a & b . S o y a a a l E q u i v a l e n t N e t E x p o r t s - B r a z i l 3 9 0 1 2 5 I I ‘ I 1 1 9 9 9 9 « - 0 0 0 7 5 1 9 - M E 5 6 0 8 - T T 2 5 8 9 - ' O N 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 B 7 9 8 9 9 1 8 2 8 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 . 3 3 7 , \ . H 1 . 2 3 9 - - / \ 3 I L 1 4 1 : / \ 1 L 1 . 0 4 2 - \ ’ , A / 1 1 - . 3 4 4 : \ \ - \ \ . ’ i I - / . . m w - / 1 0 3 \ . . 7 4 7 + 1 v / 1 N 3 4 9 : \ ‘ ~ / 4 . . N " T . 4 5 3 b 7 3 7 3 - 7 7 7 3 7 3 3 0 3 1 3 2 _ 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L — - - E S T I M A T E D - B r a z i l F i g u r e D . 1 9 . a 3 b . S o y o i l E q u i v a l e n t N e t E x p o r t s A . _ _ _ . . . _ _ I r V T ' j V ‘ I 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 3 9 1 1 . 1 1 . 8 1 3 . 9 5 ' 9 ' 1 3 ' 1 1 ' 1 2 1 ' 3 ' 1 4 7 s ' 1 6 7 ' 1 ' 1 3 1 9 s o 1 1 3 2 7 3 R E G I O N A L M O D E L S I M U L A T I O N 1 . 0 1 7 . 3 7 4 - . 9 3 1 . 3 3 3 . 3 4 4 . 3 0 1 . 7 3 3 . 7 1 3 . 3 7 1 E . 3 2 3 i I ‘ M f ‘ fi F i g u r e D . 2 0 . a 3 b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 - - — E S T I M A T E D P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y a e a l - B r a z i l 3 9 2 B r a z i l P e r c e n t a g e S o y n e a l E q u i v a l e n t E x p o r t e d a s S o y n e a l i M F L £ 9 7 1 - 1 5 8 4 1 4 U C E Q F V a T I O fi ? L E 1 ' D e s s n o e n t v a r z s o l e i s P M E A L V A R I A B L E C O E F F I C I E N T E T D . E R R O R T - E T A T . 2 - T A I L S I B . C 0 . 7 3 7 9 2 1 0 0 . 1 6 1 7 9 0 5 4 . 5 6 0 9 6 6 4 0 . 0 0 1 , C S U P B R - 0 . 3 8 1 4 4 1 9 0 . 0 8 8 4 9 9 4 - 4 . 3 1 0 1 0 5 3 0 . 0 0 1 P M E A L 1 - 1 3 0 . 6 2 0 4 9 9 7 0 . 1 1 7 6 9 7 6 5 . 2 7 1 9 8 4 4 0 . 0 0 0 I I I - . - . . . I . R - s g u a r e d - 0 . 8 6 4 0 6 5 M e a n o f d e p e n d e n t v a r 0 . 7 7 1 8 6 6 A d j u s t e d R - s e u a r e d 0 . 8 3 9 3 4 9 S . D . o f d e p e n d e n t v a r 0 . 1 8 3 1 9 8 S . E . o 4 r e g r e s s i o n 0 . 0 7 3 4 2 8 S u m o f s q u a r e d r e s i d 0 . 0 5 9 3 0 9 D u r b i n - w a t s o n s t a t 1 . 6 6 4 3 9 8 F - s t a t i s t i c 3 4 . 9 6 0 5 0 L o g 1 1 1 : e l i h o o d 1 8 . 3 8 3 2 6 T P E : 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D t : 1 * 1 1 1 9 7 1 0 . 0 0 8 9 1 0 . 6 5 1 3 1 0 . 6 4 2 4 0 1 * 1 ; - 1 1 9 7 2 - 0 . 1 1 6 8 8 0 . 4 9 2 9 7 0 . 6 0 9 8 5 1 1 1 * 1 1 1 9 7 3 0 . 0 5 8 4 8 0 . 5 1 4 3 9 0 . 4 5 5 9 1 1 1 s 1 1 1 1 9 7 4 - 0 . 0 2 2 7 0 0 . 5 5 3 3 0 . 5 7 6 0 6 1 1 * 2 1 1 1 9 7 5 - 0 . 0 3 6 1 7 0 . 6 0 7 4 1 0 . 6 4 3 5 8 1 1 1 * 1 1 1 9 7 6 0 . 0 5 6 0 1 0 . 7 2 2 7 6 0 . 6 6 6 7 4 1 1 1 * 1 1 1 9 7 7 0 . 0 4 8 0 2 0 . 9 2 2 4 3 0 . 8 7 4 4 0 ‘ 1 1 * 1 1 1 9 7 8 0 . 0 1 2 4 1 0 . 9 4 2 9 3 0 . 9 3 0 5 2 1 1 1 1 * 1 1 9 7 9 0 . 1 1 2 0 2 0 . 8 9 2 1 2 , 0 . 7 8 0 1 0 1 1 1 * 1 1 1 9 8 0 0 . 0 4 9 8 5 0 . 9 5 4 8 6 0 . 9 0 5 0 1 1 1 1 * 1 1 1 9 8 1 0 . 0 4 4 0 2 1 . 0 4 8 3 0 . 1 . 0 0 4 2 8 1 * 1 1 ' 1 1 1 9 8 2 - 0 . 0 7 7 8 8 0 . 8 8 7 3 0 0 . 9 6 5 1 8 1 1 * 1 1 1 1 9 8 3 - 0 . 0 3 3 1 9 0 . 8 7 2 2 6 0 . 9 0 5 4 4 1 * 1 1 1 1 1 9 8 4 - 0 . 1 0 2 9 1 0 . 7 4 3 7 3 0 . 8 4 6 6 4 I N D E P E N D E N T V A R I A B L E S P M E A L = C S U P B R 8 C h a n g e i n S o y b e a n S u p p l y P e r c e n t a g e S o y n e e l E q u i v a l e n t I a p o r t e d a s S o y n e e l ( S E S B R ( - l ) + S P R O B R ) / ( S E S B R ( - 2 ) + S P R O B R ( - l ) ) 3 9 3 E M P L 1 9 7 1 - 1 9 9 4 1 4 O b s e r v a t i o n s . — S e r i e s M e a n S . D . M a x i m U m M i n i m u m P M E A L 0 . 7 7 1 8 6 5 9 0 . 1 8 3 1 9 8 4 1 . 0 4 8 2 9 5 0 0 . 4 9 2 9 7 4 1 C S U P B R 1 . 1 7 8 4 0 6 0 0 . 2 4 4 7 1 1 6 1 . 6 2 5 2 6 8 0 0 . 8 1 7 9 1 9 7 P M E A L 1 - 1 ) 0 . 7 7 9 1 1 1 2 0 . 1 8 4 0 0 4 1 1 . 0 4 8 2 9 5 0 0 . 4 9 2 9 7 4 1 C o v a r i a n c e C o r r e l a t i o n R M E A L . P M E A L 0 . 0 3 1 1 6 4 4 . 1 . 0 0 0 0 0 0 0 P M E A L . C E U F § R - 0 . 0 3 0 0 3 6 0 - 0 . 7 2 1 5 2 3 P M E A L . P M E A L ( - 1 ) 0 . 0 2 4 9 3 3 2 0 . 7 9 6 5 5 2 1 C S U P B R . C S U F B R 0 . 0 5 5 6 0 6 4 1 . 0 0 0 0 0 0 0 C S U P B R . P M E A L ( - 1 1 - 0 . 0 1 4 2 2 3 1 - 0 . 3 4 0 1 6 9 8 P M E A L ( - 1 ) . P M E A L ( - 1 ) 0 . 0 3 1 4 3 9 1 1 . 0 0 0 0 0 0 0 H > C D < O K I M i " H J C Z S M 3 O 1 O h 7 1 ‘ j T r Q Q V 7 G 4 F 3 I O 1 I 2 U ' T I v r a v l V 3 U V 1 ‘ ~ b 3 9 4 9 9 9 9 F 8 9 9 9 ‘ 7 | | 9 1 6 9 " - 5 9 9 9 ‘ 4 9 9 | 1 3 9 9 9 ' 2 9 9 9 1 1 1 9 9 9 9 m I 7 1 1 7 1 7 ' 2 7 1 7 3 1 7 ‘ 5 7 ’ 5 7 7 7 ' 3 7 ‘ 9 3 ' 9 . 9 1 9 2 3 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N . 7 5 3 . 2 3 3 ' . 7 7 0 . 2 7 3 . 7 3 3 . 2 3 3 . 3 0 1 . 3 0 3 . 3 1 3 1 . 3 2 4 E 7 3 7 3 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e D . 2 1 . a & b . S o y a e a l N e t E x p o r t s - B r a z i l 1 - 1 0 0 0 3 m 1 ~ 1 - 0 2 0 ( w > c o w C z i n a - w 1 3 3 ( i . 1 7 7 9 . 3 7 . 4 7 1 5 7 7 2 . 6 7 . 7 7 . 8 7 J - - . 9 7 r f 8 - 9 1 . 1 8 1 2 8 . 3 8 8 4 fi r fi f f — i r v ‘ r r v I I V ' 0 1 2 0 - 1 3 9 5 1 2 5 9 ‘ 9 9 9 1 9 9 9 * f 7 5 9 ‘ R E G I O N A L M O D E L S I M U L A T I O N 1 . 1 3 3 1 . 0 3 1 . 9 9 3 . 9 0 3 . 3 1 3 . 7 3 0 . 3 4 3 . 5 3 3 . 4 3 7 » . 3 3 0 E 7 3 7 3 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - ' - - E S T I M A T E D F i g u r e D . 2 2 . a 3 b . S o y o i l N e t E x p o r t s - B r a z i l H > C D < O : : m 1 ~ a > c z : m u 3 fl 1 h l " h f F 1 fl fi F ‘ 3 ( 2 H 7 9 7 1 7 2 7 3 1 ‘ 1 7 I 5 7 m 7 7 . 9 . 7 7 9 7 9 9 9 9 1 Y Y [ V I V I — 3 9 6 4 I 9 9 r 3 9 9 9 1 2 9 9 - 1 m O 1 ' 1 9 9 9 R E G I O N A L M O D E L S I M U L A T I O N . 1 3 4 . 7 9 2 - : . 4 2 0 I . 0 4 3 . 3 7 3 - . 3 0 4 C . 9 3 2 3 . 3 3 0 . 1 3 3 - . 1 3 4 7 3 7 3 F i g u r e D . 2 3 . a 3 b . - 7 7 7 3 7 3 3 0 3 1 3 2 3 3 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — - - E S T I M A T E D S o y b e a n N e t E x p o r t s - B r a z i l 8 4 A P P E N D I X E E Q U A T I O N S T A T I S T I C S - C A N A D A w h e a t W P R O C A . . . . . . . . . . . . . . . . . . . . . . P r o d u o t i o n W H A C A . . . . . . . . . . . . . . . . . . . . . . . H s r v e s t s d A r c s w Y C A . . . . . . . . . . . . . . . . . . . . . . . . Y i s 1 d w C O N C A . . . . . . . . . . . . . . . . . . . . . . T o t s 1 C o n s u m p t i o n W F E D C A . . . . . . . . . . . . . . . . . . . . . . F s o d C o n s u m p t i o n w F O D C A . . . . . . . . . . . . . . . . . . . . . . F o o d & R e s i d u a l C o n s u m p t i o n W N E C A . . . . . . . . . . . . . . . . . . . . . . . N o t E x p o r t s W E S C A . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O C A . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A C A . . . . . . . . . . . . . . . . . . . . . . . H s r v s s t s d A r s s F Y C A . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N C A . . . . . . . . . . . . . . . . . . . . . . T o t s l C o n s u m p t i o n F F E D C A . . . . . . . . . . . . . . . . . . . . . . F e e d C o n s u m p t i o n F F O D C A . . . . . . . . . . . . . . . . . . . . . . F o o d 3 R e s i d u a l C o n s u m p t i o n F N E C A . . . . . . . . . . . . . . . . . . . . . . . N s t E x p o r t s F E S C A . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s 3 9 7 3 9 8 3 5 9 9 9 1 3 9 9 9 9 “ ' 0 0 2 5 m - 0 M 2 1 3 3 3 1 E T 1 5 m ~ 3 1 3 3 3 3 1 N S S W W T ' 1 ‘ 1 1 1 4 * r . 6 9 7 9 7 1 7 2 7 3 7 4 ' 2 5 7 6 7 7 7 8 7 9 8 9 9 1 8 2 9 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N 2 3 . 1 1 3 H 2 4 . 3 3 3 x I 2 3 . 3 2 5 5 l — 2 2 . 3 3 1 E : ’ 2 1 . 1 3 7 : o 1 2 : 2 2 : : N ° _ . 1 7 . 4 0 4 - M 1 6 . 1 6 0 F T 1 4 . 9 1 3 I 7 % 7 3 . 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - — E S T I M A T E D F i g u r e E . l . a & b . W h e a t P r o d u c t i o n - C a n a d a 3 9 9 l O O O H E C T A R E S 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 9 9 9 1 9 2 9 3 9 4 R E G I O N A L M O D E L S I M U L A T I O N M I L 1 3 . ‘ 5 8 : 1 , 1 2 . 9 7 4 - - I 1 2 . 4 9 2 7 7 \ . . — — \ ’ / . \ : 0 1 2 . 0 1 0 - / \ , r ‘ 9 ’ - r / \ I ” \ N 1 1 . 3 2 3 » / \ 3 , \ . v / \ ’ \ - 1 1 1 . 0 4 7 - \ / . \ H ' / / \ E 1 0 . 5 8 5 / \ ‘ C 1 0 . 0 3 3 : 7 \ j T 9 . 3 0 9 : \ : A 9 . 1 1 9 » 1 g 7 3 7 3 7 7 7 3 7 3 3 0 3 % 3 7 3 9 3 5 1 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - ' E S T I M A T E D F i g u r e E . 2 . a 3 b . W h e a t H a r v e s t e d A r e a - C a n a d a 4 C K ) C a n a d a W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 2 1 O b s e r v a t i o n s L 8 / / D e p e n d e n t V a r i a b l e i s W H A C A 1 9 8 4 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 1 3 2 8 8 . 5 4 9 2 7 2 1 . 5 5 2 8 4 . 8 8 2 7 0 8 5 0 . 0 0 0 W H A C A 1 - 1 ) 0 . 5 2 5 7 7 4 1 0 . 1 1 6 8 3 0 2 4 . 5 0 0 3 2 5 3 0 . 0 0 0 N E S C A ( - 1 ) - 0 . 3 1 2 8 9 5 1 0 . 0 5 7 1 4 7 9 - 5 . 4 7 5 1 8 3 2 0 3 0 0 0 w R C A ( - 1 ) 3 3 3 . 1 9 0 2 6 6 4 6 . 1 9 1 8 6 0 . 5 1 5 6 2 1 3 0 . 6 1 3 F R C A ( - 1 ) - 1 4 2 6 . 2 8 4 2 8 2 9 . 9 5 6 9 9 - 1 . 7 1 8 5 0 3 7 0 . 1 0 5 R - s q u a r e d 0 . 8 2 2 7 7 1 M e a n a ? d e p e n d e n t v a r 1 0 6 9 5 . 1 9 A d j u s t e d _ R - s q u a r e d 0 . 7 7 8 4 6 4 S . D . o f d e p e n d e n t v a r 2 0 0 6 . 1 2 6 S . E . o f r e g r e s s i o n 9 4 4 . 2 3 5 8 S u n 0 ‘ s q u a r e d r e s i d 1 4 2 6 5 3 0 0 D u r b i n - W a t s o n s t a t 2 . 5 0 4 8 7 6 F - s t a t i s t i c 1 8 . 5 6 9 6 8 L o g 1 i k e l 1 h o o d - 1 7 0 . 8 0 0 3 T P E 6 / 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 4 1 : 1 1 9 6 4 - 1 7 1 . 5 3 5 1 2 0 1 8 . 0 1 2 1 8 9 . 5 1 : 4 1 : 1 1 9 6 5 - 5 7 0 . 0 9 3 1 1 4 5 3 . 0 1 2 0 2 3 . 1 1 : * 1 : 1 1 9 6 6 ~ 1 3 8 . 1 7 5 1 2 0 1 6 . 0 1 2 1 5 4 . 2 1 : 1 4 1 1 9 6 7 9 3 3 . 6 8 0 1 2 1 9 0 . 0 1 1 2 5 6 . 3 1 : 1 4 : 1 1 9 6 8 7 0 6 . 3 2 4 1 1 9 0 8 . 0 1 1 2 0 1 . 7 1 : 1 4 : 1 1 9 6 9 7 8 3 . 7 5 1 1 0 1 0 2 . 0 9 3 1 8 . 2 5 1 4 : 1 : 1 1 9 7 0 - 1 6 2 3 . 6 6 5 0 5 2 . 0 0 6 6 7 5 . 6 6 1 : 1 : 4 1 1 9 7 1 1 6 8 7 . 8 0 7 8 5 4 . 0 0 6 1 6 6 . 2 0 1 4 1 : 1 1 9 7 2 - 9 0 3 . 3 2 3 8 6 4 0 . 0 0 9 5 4 3 . 3 2 1 : 4 1 : 1 1 9 7 3 ~ 5 9 5 . 9 8 9 9 5 7 5 . 0 0 1 0 1 7 1 . 0 1 : 4 1 : 1 1 9 7 4 - 5 3 0 . 8 8 1 8 9 3 5 . 0 0 9 4 6 5 . 8 8 1 : 4 1 : 1 1 9 7 5 - 5 7 8 . 0 9 6 9 4 7 9 . 0 0 1 0 0 5 7 . 1 1 : 4 : 1 1 9 7 6 2 6 . 1 0 1 1 1 1 2 5 2 . 0 1 1 2 2 5 . 9 1 4 : 1 : 1 1 9 7 7 - 1 2 5 6 . 2 5 1 0 1 1 8 . 0 1 1 3 7 4 . 2 1 : 4 1 : 1 1 9 7 8 - 3 0 7 . 6 9 2 1 0 5 8 4 . 0 1 0 8 9 1 . 7 1 : 1 4 : 1 1 9 7 9 6 9 1 . 0 0 7 1 0 4 8 9 . 0 9 7 9 7 . 9 9 1 : 1 4 : 1 1 9 8 0 1 7 8 . 9 2 2 1 1 0 9 8 . 0 1 0 9 1 9 . 1 1 : 1 : 4 1 1 9 8 1 1 1 3 0 . 1 3 1 2 4 2 7 . 0 1 1 2 9 6 . 9 1 : * 1 : 1 1 9 8 2 - 4 5 4 . 9 4 9 1 2 5 5 4 . 0 1 3 0 0 8 . 9 1 : 1 : 4 1 1 9 8 3 9 8 3 . 5 7 8 1 3 6 9 7 . 0 1 2 7 1 3 . 4 1 : 4 : 1 1 9 8 4 9 . 3 4 2 7 2 1 3 1 5 8 . 0 1 3 1 4 8 . 7 I N D E P E N D E N T V A R I A B L E S W H A C A = W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R C A = W h e a t R e v e n u e p e r H e c t a r e ( s / H A ) ( W Y C A ( - 3 ) + W Y C A ( - 2 ) + W Y C A ( - l ) + W Y C A ) / 4 ~ W P * X R C A / C P I C A F R C A = C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( $ I H A ) ( F Y C A ( - 3 ) + F Y C A ( - 2 ) + F Y C A ( - 1 ) + F Y C A ) / 4 * F P * X R C A / C P I C A W E S C A = W h e a t E n d i n g S t o c k s ( 1 0 0 0 M T ) $ 0 9 m z v r s o m e 1 w o w ; u » o u u n w < m n w o a u “ . - . . . . u n l l " . " " . ' I ” I m m x w m u 3 0 m : w . u . z m x w a c a a n w a c a “ ' E l b a » H o o o u . » o o m o o o . p m u u h u m o u . o o o u o u m . o o o o s z n h a l p v p o u o o . o o u H o m o . u u m o ” m o o u . o o o u o u n . o o o o z m m n D A I H s H u a u a . u u m u n a b . o u o u N fl h u n . o o o m o u m . o o o o t w n b a l p e u . ~ a a ~ m o u 0 . 0 H h u p fl u n . 4 m 3 M H o o N . o o p n p o o w w n » . 1 p s u . u o a u o w o o . u u o o u u ¢ u . u h q q a m o N . u u o u o m o E " " i . . . " . . g ' . u . . " n I I I U ' u . u u u " ' " ' = § n o < m w w w n n m n o 1 1 0 ~ m n u o a I : ' “ i : l . ' l " . " ' = . . " u " u g ' u u u u n u ' u a ' l n £ I D O D . E I D O D u u m m o u . w H . o o o o o o o t i b n b . 2 x b n b a l w v m u u u m m o . h o . o m fl m o o o £ I b fi b . £ m m n b a l n s l o o u p m n u . o 1 0 . 0 » u u a o o £ I b fi b . £ m n D A I » C H o u . u fl w h fl o . o u m o w o n t i b n b . fl m n b h l u s V s . n o m w u u 0 . 0 3 0 m u o m 2 1 3 0 3 . 1 » . . z z b n b a l p s w u e u p h n . c u . o o o o o o o Z I a n A I H C . £ m m n > A 1 n s I p u o m q w o . u I o . p u m o o o m E I b n b a l p a . z m n > . 1 » s I p a u . o p u a o 1 0 . 0 m o u p o u E r b n b i l p s . n m n b fi l u s I p u n . o e n o o 1 0 . » M 0 3 & 0 ¢ z m m n b A I A ~ 3 2 m m n b fi l p s m u m o q n w u . H . o o o o o o o Z M m O D A I H s a z m n b fi l p s I m o o o . w h h o I O . U V 0 0 N V 3 2 m m n b i l p s . w m n b a l p s I m b o w . m u u u 1 0 . 0 u o p h m o z m n b i l p s . £ m n b 2 1 H s o . u 0 o p o q fl ~ . o o o o o o o E m n b h l w 3 4 n m n b a l p s 0 . 0 u u m o m m 0 . 0 u M h m m u fl m n b . l p s . w m n D A l p s o . u fl o u n o o ~ . o o o o o o o - - - - - - . - 0 - C - C - - - - - - - O - - - 4 0 - - - * - C - O - O - - - - - O . - - - 1 4 0 2 C a n a d a W h e a t Y i e l d S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W Y C A ( M e t r i c T o n s p e r H e c t a r e ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I E S I G . “ m m . . . " C - 7 . 5 2 8 4 7 7 7 ' 1 . 9 9 0 1 7 9 8 - 3 . 7 8 2 8 1 2 9 0 . 0 0 1 L O G T 2 . 1 6 1 0 3 3 3 0 . 4 6 6 5 1 2 0 4 . 6 3 2 3 2 0 5 0 . 0 0 0 “ u m - s n u n l n u m - I m u n u D I S H - n - I . . . R - s q u a r e d 0 . 4 9 3 7 6 9 M e a n o f d e p e n d e n t v a r 1 . 6 8 8 2 6 7 A d j u s t e d R - s q u a r e d 0 . 4 7 0 7 5 8 S . D . o f d e p e n d e n t v a r 0 . 3 0 6 1 6 0 S . E . o f r e g r e s s i o n 0 . 2 2 2 7 2 8 S u m o f s q u a r e d r e s i d 1 . 0 9 1 3 7 6 D u r b i n - W a t s o n s t a t 2 . 0 8 1 8 9 2 F - s t a t i s t i c 2 1 . 4 5 8 3 9 L o g l i k e l i h o o d 3 . 0 3 2 8 5 5 ' 9 1 9 E R e s i d u a l P l o t 1 9 6 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 ' 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 ‘ I l ' e 4 a e e e a * “ ” O I O O O O “ “ ” O I “ O O O O 0 0 . . . . . . # 0 0 0 8 0 8 8 . . . “ * 4 ' 4 ! 0 0 1 } I N D E P E N D E N T V A R I A B L E S L O G T = L n ( T I M E ) 0 . 1 0 1 2 1 - 0 . 6 0 2 4 0 0 . 0 2 7 9 6 0 . 3 3 9 8 4 - 0 . 0 9 8 6 3 0 . 0 5 0 6 6 0 . 3 4 8 3 3 - 0 . 2 3 4 2 1 - 0 . 1 0 4 5 5 0 . 1 8 6 6 9 0 . 1 3 3 5 6 0 . 1 5 1 6 7 - 0 . 0 3 3 6 8 - 0 . 0 5 5 7 3 - 0 . 2 8 4 7 8 - 9 . l D - 0 5 0 . 2 6 5 8 7 0 . 1 0 4 4 1 0 . 1 1 1 3 1 - 0 . 2 7 5 6 6 - 0 . 2 1 4 9 7 0 . 0 2 7 8 2 0 . 1 3 5 0 1 - 0 . 0 7 9 6 3 o b s R E S I D U A L A C T U A L 1 - . . - . . 8 3 F I T T E D 1 . 4 2 0 7 5 1 . 3 1 9 5 4 0 . 7 5 2 8 6 1 . 3 5 5 2 6 1 . 4 1 8 3 6 1 . 3 9 0 4 0 1 . 7 6 4 8 1 1 . 4 2 4 9 8 1 . 3 6 0 3 8 1 . 4 5 9 0 1 1 . 5 4 3 1 8 1 . 4 9 2 5 1 1 . 8 7 3 8 3 1 . 5 2 5 5 1 1 . 3 2 5 7 9 . 1 . 5 5 8 0 0 1 . 4 8 5 4 7 1 . 5 9 0 0 2 1 . 8 0 8 2 6 1 . 6 2 1 5 7 1 . 7 8 6 2 2 1 . 6 5 2 6 6 1 . 8 3 4 9 9 1 . 6 3 5 2 1 . 6 7 9 8 6 1 . 7 1 3 5 4 1 . 6 8 7 6 2 1 . 7 4 3 3 5 1 . 4 8 7 9 7 1 . 7 7 2 7 5 1 . 8 0 1 6 7 1 . 8 0 1 7 6 2 . 0 9 6 2 5 1 . 8 5 0 5 8 1 . 9 6 3 0 4 1 . 8 5 8 6 3 1 . 9 9 7 8 3 1 . 8 8 6 5 2 1 . 6 3 8 3 8 1 . 9 1 4 0 5 1 . 7 2 6 2 6 1 . 9 4 1 2 3 1 . 9 9 5 9 0 1 . 9 6 8 0 7 2 . 1 2 9 6 0 1 . 9 9 4 5 9 1 . 9 4 1 1 5 2 . 0 2 0 7 8 1 . 8 . 3 . . . . a a n . . . . . . . . . i " . 3 ' : " - 3 § ' g " ' - : . § : ' § n o o o o o o o . 5 o n o ¢ o o o . o . p o o q . p u o d m o m o u o n . o I n ¢ u n o m o . o . k m o d . ¢ u > z o o o o o o o . 5 n m m m o m o . o ¢ u > 3 . ¢ u > 3 . n . " . " ' n u l . § = " g n a n ' “ a . : § " " ' n " u u " 3 ' : : a " = " : c o a v a a e g g o u m U C M w L M > o u " I ' n ' " . - . " " " " " a n u u n u ' " " " ' i l " " " l " ' I n n a u ' : 5 : " . n o n ¢ m ¢ o o . ¢ o o c m m u ¢ . ¢ m u n fl o o o . o « H B O V O N . ¢ F 0 0 4 « h n m fi n b . o O O O O ® N « . N N O Q H O O M . O C h a fi m m o . u ¢ U > 3 " fl ' . ' I " E " fl . fl ' l . " l " ' u n a u a u u n a n ' u ' . " ' n n ' . . l . . ' a ' = . l . . " n E d e w c u z e n e w x e z . a . m o n e : m a g n u m u n n u u u u n I “ I . " i ' . . . ' . fl fl ' " a " n n ' n u " . " " ' " " " . . ' . l " ' . a : " . ' n e c o fi v a > s e m n o e n m w o a l 0 0 9 “ s z m m o v 4 0 4 “ E M F 1 1 5 7 5 8 “ 0 0 - o u s e s - L n 5 s t E i T : . 8 9 9 1 r T O N S . , . . . 7 ? . : 3 7 4 3 ‘ 5 2 ' 6 7 7 7 3 7 9 3 9 8 1 9 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N 5 . 5 3 1 H 5 . 7 0 5 » 4 I 5 5 5 4 : ‘ . D \ 1 L 5 . 4 5 5 - I " ‘ \ I \ 4 L b ' A / \ V / \ 4 I 5 . 3 3 0 t " , - — " \ V . 0 5 . 2 0 5 E / / 4 N 5 . 0 5 0 ‘ : j 4 . 9 5 4 - / . M 4 . 8 2 9 ' . / / I 1 ' 4 . 7 0 4 c ' 7 5 7 5 . 7 7 7 6 7 0 8 0 3 % 5 5 5 5 5 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e E . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - C a n a d a 4 0 5 l 0 0 0 M E T T O N 1 s 1 2 5 9 . . . . . . . 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 3 9 8 1 3 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N M I 1 . . 2 . 5 4 7 ‘ 1 - 2 . 5 2 5 “ - L 2 . 4 0 5 r I 2 . 2 5 1 - O 2 1 5 9 3 N ' _ . 2 . 0 5 5 » . H 1 . 9 1 4 7 ’ : E 1 . 7 9 2 - j T 1 . 5 7 0 i 1 1 . 5 4 5 E I T 4 0 7 5 7 5 7 7 7 5 7 9 5 0 5 ' 1 5 2 5 5 1 5 5 1 N S E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e E . 4 . a & b . W h e a t F e e d C o n s u m p t i o n - C a n a d a . . - u - u - ‘ - - - - - - . - - - u u u u u u - u - - . - ‘ u - a . . ‘ C O O D u u u u O u O C C C O D O . . . . . u u ‘ - n u . n C a n a d a 4 M 3 6 P e r C a p i t a W h e a t F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) S H P L 1 9 6 1 - 2 3 O b s e r v a t i o n s L 8 / / D e p e n d e n t V a r i a b l e i s P c h E D 1 9 8 3 V A R I A B L E C O E F F I C I E N T C ' 0 . 0 4 9 9 0 4 5 P C R G D P P C W D S W P C A 4 6 4 . 0 3 1 6 8 0 . 0 5 0 7 4 0 4 0 . 0 0 7 4 2 9 3 S T D . 0 . 0 4 9 4 1 0 8 1 3 7 . 7 4 4 1 5 0 . 0 1 9 9 4 7 5 0 . 0 0 8 4 6 5 9 - 1 . 0 0 9 9 9 2 9 3 . 3 6 8 7 9 4 2 2 . 5 4 3 6 9 3 0 0 . 8 7 7 5 5 0 3 2 - T A I L ' S I E . C 3 2 5 0 . 0 0 3 0 . 0 2 0 0 . 3 9 1 R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o 7 r e g r e s s i o n D u r b i n - W a t s o n s t a t L o g l i k e l i h o o d 0 . 4 0 8 2 6 3 0 . 3 1 4 8 3 1 0 . 0 1 2 5 5 3 1 . 2 9 8 9 2 7 7 0 . 2 5 1 5 6 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u n o f s q u a r e d r e s i d F - s t a t i s t i c 0 . 0 8 4 0 7 2 0 . 0 1 5 1 6 5 0 . 0 0 2 9 9 4 4 . 3 6 9 6 1 9 7 1 7 5 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 5 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 1 1 9 8 2 1 9 8 3 0 . 0 0 6 2 1 - 0 . 0 0 0 9 0 - 0 . 0 0 6 8 6 - 0 . 0 0 6 8 5 - 0 . 0 0 9 4 6 - 0 . 0 0 8 5 0 - 0 . 0 0 7 0 3 - 0 . 0 0 4 4 5 0 . 0 1 0 0 6 0 . 0 1 2 9 4 0 . 0 1 8 3 7 0 . 0 1 4 3 9 0 . 0 0 2 9 3 0 . 0 0 0 6 2 0 . 0 0 4 1 1 - 0 . 0 1 1 4 3 - 0 . 0 2 6 7 1 0 . 0 1 0 9 2 0 . 0 1 3 0 1 - 0 . 0 0 1 1 4 ‘ 0 . 0 0 9 1 6 - 0 . 0 1 7 4 3 0 . 0 1 6 3 9 0 . 0 6 5 7 9 0 . 0 6 4 6 4 0 . 0 7 7 1 6 0 . 0 6 6 0 1 0 . 0 6 9 3 6 0 . 0 7 7 9 6 0 . 0 7 1 5 5 0 . 0 5 4 2 7 0 . 1 0 9 7 5 0 . 1 0 1 1 3 0 . 1 0 2 3 2 0 . 0 9 4 4 1 0 . 0 5 6 9 1 0 . 0 7 5 5 5 0 . 0 7 9 5 5 0 . 0 7 5 9 9 0 . 0 6 3 5 7 0 . 1 0 3 5 3 0 . 1 0 7 0 5 0 . 0 5 7 2 3 0 . 0 5 4 3 9 0 . 0 7 5 6 0 0 . 1 0 5 7 1 0 . 0 5 9 5 8 0 . 0 6 5 5 5 0 . 0 8 4 0 3 0 . 0 7 2 8 6 0 . 0 7 8 8 2 . 0 . 0 8 6 4 6 0 . 0 7 8 6 2 0 . 0 8 8 7 2 . 0 . 0 9 9 6 9 0 . 0 8 8 1 9 0 . 0 8 3 9 5 0 . 0 8 0 0 2 0 . 0 8 3 9 8 0 . 0 7 5 2 3 0 . 0 7 5 7 4 0 . 0 8 7 4 2 0 . 0 9 0 5 9 0 . 0 9 2 9 1 0 . 0 9 4 0 3 0 . 0 8 8 3 7 0 . 0 9 3 5 4 0 . 0 9 3 0 3 0 . 0 9 2 3 2 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P C A / C P I C A / P O P C A P C W D S = W h e a t S u p p l y P e r C a p i t a W P C A = W P Q X R C A / C P I C A ( 1 0 0 0 M T ) ( W E S C A ( - l ) * W P R O C A ) / P O P C A R e a l C a n a d i a n W h e a t P r i c e fi O fl m z fi r ~ 0 0 » I n o w “ N u 0 0 5 5 1 < 0 3 n o n e . . . : = U " : . I . . § . " ' . " . ' . . . . . . ‘ I ' . " . § " " . . ' l . : g " 3 " m e 1 p o e 3 . 0 3 m . u . z u x u a c a z n a n B C i 5 . . . . . . “ " . . . : U U U E U U U I U E ' l ' . " . " ' . : § ' 5 ' . . “ . ' . I v n z fi m u . 0 . 0 m p o w p m 0 . 0 » u p e & fl o . » o o u p m o 0 . 0 0 u m V 0 5 u n m m o v o . m u e o l o u n . u m b o u o u o . o o o p u m u 0 . N o q o l o u v n z o m 0 . 6 0 6 6 0 0 0 o . n u o a u u o p . 0 9 0 0 0 6 0 ” . 0 6 0 0 0 0 0 t u n » u . m u o u u u o 0 . 0 e o o o u o « . m p o o p u o » . M m m o p u o § § . : ' : U " § E § i g u . n " n o < u x w e o n e n o s x e p e n u o : . . . . . . . § § : . ' E U E E U U ' : § : ' § ' U E : E U t n z fl m o . w n z fl m u 0 . 0 0 0 M H 0 0 6 . 0 0 0 0 0 0 0 0 0 8 n m o . w n m m u t » . q u o I O V o . u m m u o m n u n z n m o . v n z o m . 0 . 0 0 0 4 0 p q o . n u u u » p n 0 n z fl m o . £ v n b I o . o o n o » u e 1 0 . n u s m u n e m o m m a ? 5 0 3 6 2 0 a . « m m — T a o » . o o o o o o o v n m m o v . v n z u m 1 N . H N V U I o e 1 0 . 5 m o o e o » m o m e n t . z t O D M . o u m o l o o o . n 0 5 u u a o V n z u m . v n t u m . . 0 . 0 0 u 0 u o u p . o o o o o o o t n E O m . £ v n v 1 0 . 0 5 m u o u u 1 0 . n o o m u n w t h n b . z t n b o . n o u n u e e » . o o o o o o o , ! : 1 1 1 1 " ! * 0 2 1 0 K H F ‘ F O U H U Q Q O Z : ) “ 0 1 U ~ N P ) — 0 2 0 ( a N U O N F i g u r e 5 . 5 . 6 7 5 5 7 5 7 7 7 5 7 5 5 0 5 1 5 2 5 5 5 4 . b . W C h a e n a a t d a F o o d a n d R e s i d u a l 5 0 1 1 6 0 1 1 9 6 1 0 1 1 - 4 0 8 3 7 5 1 7 3 5 5 1 + 3 2 : 1 1 7 ' . . . W " . 3 1 1 1 1 2 7 5 5 1 . . . . . m - 2 5 9 0 2 2 5 5 2 1 1 1 . . A _ . . s 9 7 5 7 1 7 2 7 2 7 4 7 s 7 6 7 7 7 a 7 9 s o 1 1 7 2 7 2 O < D C > P 1 fl R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I M A T E D e s e e e e e o u u u u u e e u u o e ‘ 0 n a u q u u u a e u e e - C - - O - . . . . - - . - . - - . - - . . - - . . u - u u . . . - - - - - - C . . . - - - - u u u u ' 0 5 9 0 u 5 u u u u u 5 - a n u a . s u 0 C a n a d a 1 0 0 9 P e r C a p i t a W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 M T ) S H P L 1 9 6 1 - 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W F O D 1 9 8 3 V A R I A B L E C O E F F I C I E N T C 0 . 1 6 0 2 7 6 2 W C G R C A P C W D S W P C A R - s q u a r e d A d j u s t e d R - s o u a r e d S . E . o f r e g r e s s i o n D u r b i n - W a t s o n s t a t L o g l i k e l i h o o d 1 1 1 7 8 0 . 0 2 8 0 1 9 1 , - 0 . 0 3 7 5 9 0 4 - 0 . 0 0 6 7 6 7 6 0 . 3 6 0 0 5 5 0 . 2 5 9 0 1 1 0 . 0 1 0 0 8 6 1 . 4 3 7 4 4 2 7 5 . 2 8 4 0 7 S T D . 0 . 0 3 0 5 5 4 2 0 . 0 0 8 8 0 2 2 0 . 0 1 6 5 8 0 0 0 . 0 0 6 6 5 1 3 E R R O R T - S T A T . I 5 . 2 4 5 6 3 5 1 3 . 1 8 3 1 9 4 5 - 2 . 2 6 7 2 1 0 5 - 1 . 0 1 7 4 9 9 1 H e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c 2 - T A I L S I G . 0 . 0 0 0 0 . 0 0 5 0 0 0 3 3 0 0 . 3 2 2 I 0 . 1 3 1 6 2 8 0 . 0 1 1 7 1 7 0 . 0 0 1 9 3 3 3 . 5 6 3 3 5 0 l l R e s i d u a l P l o t O b ! R E S I D U A L A C T U A L F I T T E D 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 - 0 . 0 0 8 6 6 - 0 . 0 0 2 5 0 0 . 0 1 5 9 1 0 0 0 0 3 3 6 0 . 0 1 0 9 8 0 . 0 0 7 7 9 - 0 . 0 0 2 5 4 - 0 . 0 0 1 2 8 - 0 . 0 1 5 9 7 - 0 . 0 0 9 2 6 - 0 . 0 0 5 1 6 - 0 . 0 0 4 0 1 — 0 . 0 0 0 2 1 - 0 . 0 0 1 5 1 - 0 . 0 0 6 7 5 0 . 0 1 0 2 8 0 . 0 2 4 3 9 - 0 . 0 0 6 3 2 - 0 . 0 0 4 5 0 - 0 . 0 0 7 5 3 0 . 0 0 5 6 1 - 0 . 0 0 1 2 6 0 a 0 a . . - - - - . - - . . O - . - - . . - “ ‘ . - . - . . - . . . . . . - u . - . . . . . . 0 0 I N D E P E N D E N T V A R I A B L E S P C W D S W C G R C A = W P C A W h e a t S u p p l y P e r C a p i t a ( W E S C A ( - l ) + W P R O C A ) / P O P C A W h e a t / C o a r s e G r a i n S u p p l y R a t i o ( W E S C A ( - 1 ) 9 W P R O C A ) / ( F E S C A ( - l ) R e a l C a n a d i a n W h e a t P r i c e W P 5 X R C A / C P I C A 0 . 1 4 6 6 9 0 . 1 3 7 1 5 0 . 1 4 7 5 4 0 . 1 4 1 7 5 0 . 1 4 5 3 2 0 . 1 3 9 7 3 G o 1 3 6 5 0 . 1 3 2 1 3 0 . 1 0 7 4 7 0 . 1 1 6 9 5 0 . 1 1 9 7 5 0 . 1 2 3 5 2 0 . 1 2 1 5 7 0 . 1 2 9 5 2 0 . 1 2 4 3 3 0 . 1 4 3 0 7 0 . 1 5 3 5 2 0 . 1 2 1 3 7 0 . 1 2 4 6 0 0 . 1 2 3 4 1 0 . 1 2 7 9 4 0 . 1 3 0 5 3 0 . 1 2 5 6 2 ( 1 0 0 0 M T ) 0 . 1 5 5 3 5 0 . 1 3 9 6 8 0 . 1 3 1 9 2 0 . 1 3 8 1 9 0 . 1 3 7 3 5 0 . 1 3 1 9 6 0 . 1 3 9 1 9 0 . 1 3 3 4 1 0 . 1 2 6 4 4 - 0 . 1 2 6 2 3 0 . 1 2 4 9 4 0 . 1 2 7 8 3 0 . 1 2 1 7 8 0 . 1 3 1 3 3 0 . 1 3 1 0 8 0 . 1 3 2 7 9 0 . 1 2 9 4 3 0 . 1 2 7 6 9 0 . 1 2 9 1 0 0 . 1 3 1 2 4 0 . 1 2 5 7 1 0 . 1 2 4 9 2 0 . 1 2 9 8 8 * F P R O C A ) 0 0 0 0 0 0 0 . ” o o n u n o n . o « 0 5 3 . 5 0 5 3 0 n n m o o u . 0 1 « n o n m o o . 0 1 « 0 5 3 . m 6 3 0 5 0 0 0 0 0 0 0 . “ b o n o n ¢ o . o m o z u m . m 6 3 0 1 u m n m o n . 0 1 u a m b n n o . 0 1 « 0 5 3 . c u m m u z o e k m n m 0 . o . k 0 m o m ¢ o . o I m a z u m . ¢ u ¢ m u a 0 0 0 0 0 0 0 . “ m n ¢ 3 0 0 0 . 0 « 0 3 6 0 3 . 0 0 m 0 0 3 n n b n o o o . 0 1 e m n m o o o . 0 1 « 0 5 3 . 6 0 5 3 0 5 3 5 6 0 m m o . 0 1 n o n o ¢ 4 m . m u m a z u a . a o u z u a 0 4 m 0 0 ~ ¢ . o o m m w a o o . o « 0 5 0 0 3 . 6 0 5 3 0 5 0 0 0 0 0 0 0 . ” n 3 m 3 0 0 0 . 0 0 0 5 3 0 5 . 6 0 5 3 0 0 . . . . n a a ' " : " n . " n a l l n u u a a ' i ' g ' g a a i g g i u i a 0 0 5 0 0 5 0 1 2 0 0 e u c a p t a > 0 u " a s . a a . . . “ M a i l ' E ' E R I ' M ' E ' : : " : § o m u o m m fi . q O N A Q O A M . M o n 0 0 0 0 ¢ . o o n w n o n m . n « 0 & 3 0 0 N O M ¢ o . a 0 e 0 0 0 h o . « 0 N O H 0 « N . O 0 0 0 0 ¢ 0 ¢ . « m a z u m o m o u n o o . « O N ¢ O m M O . N b h H O h H W . O h ¢ 0 0 fl o m . « « 0 1 0 0 3 n u c ¢ h o u . 0 O M N m H D H . O o o u h a u o . o O m N 0 ~ H « . o G o n z u m . . . . . . ” " . e n s u e “ : E d e w x e t . a . m n e e : n e w i e m E a : " " ' . " = ' . u . : 3 " . - a c o w p e > i o m n o M N ” m o d I « fi n d J m t m 0 H 0 1 0 0 0 M E T T O N S 2 1 M 2 0 . I 1 9 L - 1 5 2 ’ 1 7 ( 3 1 5 l l 1 5 . 1 4 M 1 3 . 1 ' 1 2 . 2 5 5 5 5 7 - : . 5 5 5 . 4 5 5 . 4 5 4 . 5 5 5 5 5 2 - . 5 5 1 8 8 0 . 7 2 9 4 1 1 7 1 7 2 7 7 4 7 5 7 6 7 7 7 3 7 ? 3 3 1 3 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N 7 5 . 7 7 7 5 7 9 5 0 5 1 5 2 5 5 5 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e E . 6 . a 8 . b . W h e a t N e t E x p o r t s - C a n a d a < 4 1 2 C a n a d a W h e a t N e t E x p o r t s ( 1 0 0 0 M T ) S M P L 2 3 1 9 6 1 - O b s e r v a t i o n s 1 9 8 3 L S / / D e p e n d e n t V a r i a b l e i s W N E C A V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 — T A I L 8 1 8 . C - 4 5 6 8 . 1 8 1 8 2 7 7 3 . 9 3 4 5 - 1 . 6 4 6 8 2 4 0 0 . 1 1 5 W N I R E S 0 . 2 6 6 3 6 5 5 0 . 0 3 0 1 8 0 9 8 . 8 2 5 6 4 0 2 0 . 0 0 0 W D S C A 0 . 2 4 5 1 6 7 8 0 . 0 7 9 6 4 5 2 3 . 0 7 8 2 4 7 6 0 . 0 0 6 R - s q u a r e d 0 . 8 1 7 2 5 8 M e a n o f d e p e n d e n t _ v a r 1 3 6 7 5 . 6 5 A d j u s t e d R - s q u a r e d 0 . 7 9 8 9 8 4 S . D . o f d e p e n d e n t v a r 3 7 6 3 . 1 1 2 S . E . o f r e g r e s s i o n 1 6 8 7 . 1 8 4 S u m o 2 s q u a r e d r e s i d 5 6 9 3 1 7 9 7 D u r b i n - W a t s o n . s t a t 1 . 0 4 3 4 1 8 F - s t a t i s t i c 4 4 . 7 2 2 0 2 L o g l i k e l i h o o d - 2 0 1 . 9 3 7 1 3 T P E R e s i d u a l P l o t o b s R E S I D U A L ' A C T U A L F I T T E D : : : I 2 : 1 9 6 1 7 0 9 . 7 9 2 9 7 4 4 . 0 0 9 0 3 4 . 2 1 : 1 i t : 3 1 9 6 2 6 6 3 . 9 6 7 9 0 1 8 . 0 0 8 3 5 4 . 0 3 : : I : t 1 1 9 6 3 2 4 5 5 . 8 1 1 6 1 8 1 . 0 1 3 7 2 5 . 2 : 1 I x : I 1 9 6 4 1 6 2 5 . 7 8 1 0 8 7 5 . 0 9 2 4 9 . 2 2 : : 1 1 t 1 1 9 6 5 2 3 8 4 . 9 5 1 5 9 1 8 . 0 1 3 5 3 3 . 0 : : I t : i 1 9 6 6 9 7 0 . 7 1 6 1 4 0 2 4 . 0 1 3 0 5 3 . 3 : _ t : i : I 1 9 6 7 - 1 9 9 9 . 3 0 9 1 4 5 . 0 0 1 1 1 4 4 . 3 : x : : : 1 1 9 6 8 - 1 8 6 2 . 9 9 8 3 2 3 . 0 0 1 0 1 8 6 . 0 : t : 1 : : 1 9 6 9 r 2 0 0 6 . 2 2 9 4 3 0 . 0 0 1 1 4 3 6 . 2 : : t 1 : 1 1 9 7 0 - 1 1 6 l . 2 0 1 1 8 4 6 . 0 1 3 0 0 7 . 2 : : 3 t 2 1 1 9 7 1 1 3 7 3 . 8 2 1 3 7 1 0 . 0 1 2 3 3 6 . 2 : : t : : : 1 9 7 2 - 1 8 6 . 2 0 5 1 5 6 9 2 . 0 1 5 8 7 8 . 2 : : t 1 : I 1 9 7 3 - 1 0 6 5 . 6 4 1 1 4 1 4 . 0 1 2 4 7 9 . 6 : : t : 1 1 9 7 4 6 3 . 5 9 9 4 1 0 7 3 9 . 0 1 0 6 7 5 . 4 : : t : : I 1 9 7 5 - 1 5 4 2 . 9 2 . 1 2 2 5 3 . 0 1 3 7 9 5 . 9 : : : t : : 1 9 7 6 8 0 5 . 7 4 7 1 3 4 4 6 . 0 1 2 6 4 0 . 3 7 : t : : ' i 1 9 7 7 - 6 8 6 . 9 1 9 1 5 9 9 7 . 0 1 6 6 8 3 . 9 : : t : : i 1 9 7 8 - 8 1 9 . 0 5 8 , 1 3 0 6 1 . 0 1 3 8 8 0 . 1 1 : t I : : 1 9 7 9 - 7 2 4 . 8 5 2 1 5 8 8 3 . 0 1 6 6 0 7 . 9 : t : : : : 1 9 8 0 - 2 0 5 1 . 4 6 1 6 2 6 2 . 0 1 8 3 1 3 . 5 : t : : 1 : 1 9 8 1 - 1 8 9 6 . 1 5 1 8 4 4 7 . 0 2 0 3 4 3 . 2 : : i : t 7 1 9 8 2 2 6 0 2 . 8 8 2 1 3 6 8 . 0 1 8 7 6 5 . 1 1 : : 5 I : 1 9 8 3 2 3 4 5 . 8 5 2 1 7 6 4 . 0 1 9 4 1 8 . 2 I N D E P E N D E N T V A R I A B L E S 8 R e s i d u a l P o o l o f I m p o r t D e m a n d A f t e r S u r p l u s ( 1 0 0 0 M T ) W N I B R * W N I D M + W N I L D * W N I S B * W N I O P + W N I L O * W N I R E S E x p o r t e r s h a v e E x p o r t e d W N I N I + W N I C H - W N E A R - U D S C A 8 W h e a t S u p p l y ( 1 0 0 0 M T ) W E S C A ( - l ) + W P R O C A W N E A U I 4 1 3 S M P L 1 9 6 1 - 1 9 9 3 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m I w N E C A 1 3 6 7 5 . 6 5 : 3 7 6 3 . 1 1 2 1 2 1 7 6 4 . 0 0 0 3 2 3 . N N I R E S 3 9 3 0 1 . 2 1 7 1 1 9 2 6 . 2 0 2 6 2 8 0 6 . 0 0 0 2 1 9 3 3 . 0 0 0 N D S C A 3 1 7 1 4 . 3 9 1 4 5 1 9 . 3 3 0 2 4 1 4 5 0 . 0 0 0 2 3 3 8 4 . 0 0 0 C o v a r i a n c e C o r r e l a t i o n ' w N E C A , N N E C A 1 3 5 4 5 3 1 6 . 1 . 0 0 0 0 0 0 0 W N E C A , N N I R E S 3 6 6 9 5 0 4 2 . 0 . 8 5 4 7 9 7 5 N N E C A , N D S C A 5 2 8 5 0 6 9 . 0 0 . 3 2 4 8 8 8 7 N N I R E S , N N I R E S 1 3 6 0 5 0 1 9 3 1 . 0 0 0 0 0 0 0 N N I R E S , N D S C A 1 8 5 9 8 1 5 . 2 0 . 0 3 6 0 7 4 4 N D S C A , N D S C A 1 9 5 3 6 3 3 0 . 1 . 0 0 0 0 0 0 0 H > C D < O : l fl i - 4 > c z : m 3 1 F ‘ 1 F 1 F D ( 2 V U U I U U U U ' U ' T ' I r T U T [ 7 9 7 ' 1 2 ' 2 7 3 ' 2 4 ' 5 5 7 6 7 " : 7 8 7 9 s o 3 1 3 2 3 1 J l l l l l l l l l l L l l 7 6 7 6 ‘ 7 ' } 7 6 7 5 ' ) 8 6 8 % 8 5 3 5 3 E X ~ 1 1 ! n N f 0 2 5 9 9 9 1 4 1 4 5 ' 9 R E G I O N A L M O D E L S I N U L A T I O N 1 5 . 7 3 8 1 4 . 7 8 9 ' 1 3 . 8 8 1 1 2 . 9 2 2 1 1 . 9 8 3 1 1 . 0 4 4 1 0 . 1 0 5 9 . 1 8 8 - 8 . 2 2 7 7 . 2 8 8 l E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - 1 - E S T I H A T E D F i g u r e E . 7 . a & b . W h e a t E n d i n g S t o c k s - C a n a d a 6 9 7 3 7 1 7 2 7 1 7 4 7 5 7 1 7 7 7 9 7 9 s o 1 1 1 2 1 3 8 4 7 3 7 3 . 7 7 7 3 7 9 3 6 3 1 3 2 3 3 3 4 2 7 5 0 8 ! 1 2 5 3 9 9 1 O 0 0 2 2 5 % - M 5 2 3 3 3 3 - ; 1 7 5 3 3 N s 1 5 3 3 3 2 3 . 5 3 7 1 1 2 5 . 3 9 7 3 L I - 2 4 . 3 3 3 2 3 . 9 7 3 - 2 ' 2 3 . 1 1 3 : 0 2 2 . 2 5 3 N 2 1 . 3 9 3 ' 2 0 . 5 3 3 - - M 1 9 . 3 7 3 : 1 ' 1 3 . . 8 1 8 - 4 1 5 R E G I O N A L H O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' — - E S T I H A T E D . F i g u r e E . 8 . a 3 b . C o a r s e G r a i n P r o d u c t i o n - C a n a d a z 1 h “ 1 r m 1 o P 3 ( 2 e e e : e 1 1 q 7 7 q 0 4 q 3 7 o 2 1 7 7 3 1 7 3 7 3 7 7 7 3 7 9 3 0 3 1 3 2 3 3 3 4 4 1 6 1 9 8 9 0 9 5 9 8 ‘ 9 6 8 8 ‘ 3 5 0 8 - 8 6 9 9 1 7 5 8 8 ‘ 7 0 0 8 ‘ 6 5 9 0 ‘ 6 9 1 9 7 1 0 0 0 ’ “ 1 3 7 7 1 2 1 2 7 4 0 1 3 3 : 7 7 7 3 7 4 7 7 7 7 7 7 7 7 7 9 7 7 7 1 7 7 7 7 7 4 R E G I O N A L M O D E L S I M U L A T I O N . 3 5 3 . 2 5 9 ' . 9 3 4 . 3 3 9 . 3 7 4 - . 0 3 0 . 7 8 5 . 1 . 4 3 0 : . 1 9 3 ' . 9 0 0 : F i g u r e E . 9 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — ~ - E S T I H A T E D C o a r s e G r a i n H a r v e s t e d A r e a - C a n a d a o e u e e o o e o e e e e u “ n a l - D - e - - a - . u . . - . 0 - ( E Y C A < - 3 ) + F Y C A ( - 2 ) + F Y C A ( - 1 ) + F Y C A ) / 4 * F P * X R C A / C P I C A 1 4 1 7 C a n a d a C o a r e e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 2 1 O b s e r v a t i o n s ’ L S I ! D e p e n d e n t 1 9 8 4 V a r i a b l e i s F H A C A C O E F E I C I E N T E T D . V A R I A B L E E R R O R T - S T A T . 2 - T A I L S I B . C 2 6 8 4 . 1 9 1 2 F H A C A ( - 1 ) 0 . 7 4 2 2 6 7 8 F R C A ( - 1 ) 2 4 . 0 7 6 3 2 W R C A 1 - 1 ) - 6 6 1 . 3 4 0 8 8 4 1 5 . 6 7 2 2 4 F E S C A ( - 1 ) - 0 . 2 5 0 3 8 8 2 0 . 1 2 3 9 5 5 1 “ s u m a c - “ c u m n n s x s s u m s m m R - s o u a r e d 0 . 6 0 4 3 9 1 M e a n o f d e p e n d e n t v a r A d j u s t e d R - s o u a r e d _ 0 . 5 0 5 4 8 9 S . D . o f d e p e n d e n t v a r S . E . o f r e g r e s s i o n _ 6 0 6 . 1 5 4 1 S u m o 2 s q u a r e d r e s i d D u r b i n - W a t s o n s t a t 1 . 2 9 4 6 0 6 F - s t a t i a t i c L o g l i k e l i h o o d - 1 6 1 . 4 9 2 2 T P E 1 2 7 8 . 7 8 8 2 0 . 1 8 1 2 1 9 1 4 9 4 . 9 0 8 5 6 2 . 0 9 9 0 1 1 6 4 . 0 9 5 9 6 8 7 1 . 6 6 5 1 0 8 2 - 1 . 5 9 1 0 1 5 3 - 2 . 0 1 9 9 9 0 7 0 . 0 5 2 0 . 0 0 1 0 . 1 1 5 0 . 1 3 1 0 . 0 6 0 m m - 7 9 9 5 . 5 7 1 8 6 1 . 9 7 5 8 5 8 7 8 7 6 4 . 6 . 1 1 1 0 0 1 9 / 2 1 I R e s i d u a l P l o t I g . * a * “ u n o l fl u u u n u u u " - 3 3 0 0 * u u u u e e I I I a I N D E P E N D E N T V A R I A B L E S F H A C A F R C A o b s 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E S I D U A L - 7 9 1 . 9 6 4 - 2 1 8 . 2 4 9 - 3 0 3 . 8 1 0 - 1 9 6 . 2 9 8 1 3 7 . 5 6 5 5 6 7 . 4 0 7 3 4 1 . 3 7 8 1 4 1 7 . 1 7 - 2 4 9 . 4 9 8 - 7 0 . 3 6 5 2 2 3 9 . 2 6 3 - 4 6 8 . 6 2 2 - 2 6 4 . 4 6 3 1 1 7 . 2 3 2 ' ' 2 0 3 . 7 5 8 ~ 3 7 3 . 3 8 9 4 5 6 . 1 6 0 9 3 9 . 8 4 2 1 8 0 . 5 9 9 - 4 2 1 . 2 9 5 - 8 3 4 . 9 5 0 A C T U A L 6 3 4 0 . 0 0 ' 6 8 2 7 . 0 0 , 7 2 6 8 . 0 0 , 7 3 0 7 . o o . 7 6 2 5 . 0 0 7 8 4 8 . 0 0 8 0 8 1 . 0 0 . 9 8 2 5 . 0 0 8 9 0 5 . 0 0 ' 3 9 1 3 . 0 0 . 8 6 0 4 . 0 0 8 2 6 0 . 0 0 8 1 1 4 . 0 0 8 2 3 3 . 0 0 7 4 7 6 . 0 0 6 7 5 3 . 0 0 7 6 8 6 . 0 0 . 9 1 6 5 . 0 0 8 8 5 1 . 0 0 7 7 9 9 . 0 0 8 0 2 2 . 0 0 C o a r a e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) C o a r a e G r a i n R e v e n u e p e r H e c t a r e ( $ I H A ) F I T T E D ' I 7 1 3 1 . 9 6 7 0 4 5 . 2 5 7 5 7 1 . 8 1 7 5 0 3 . 3 0 7 4 8 7 . 4 4 7 2 8 0 . 5 9 7 7 3 9 . 6 2 8 4 0 7 . 8 3 ' 9 1 5 4 . 5 0 8 9 8 8 . 3 7 8 3 6 4 . 7 4 8 7 2 8 . 6 2 8 3 7 8 . 4 6 8 1 1 5 . 7 2 7 6 7 9 . 7 6 7 1 2 6 . 3 9 7 2 2 9 . 8 4 8 2 2 5 . 1 6 8 6 7 0 . 4 0 8 2 2 0 . 3 0 8 8 5 6 . 9 5 W R C A W h e a t R e v e n u e p e r H e c t a r e ( Q I H A ) ( W Y C A ( - 3 ) + W Y C A ( - 2 ) + W Y C A ( - 1 ) * W Y C A ) / 4 * W P * X R C A / C P I C A F E S C A C o a r e e G r a i n E n d i n g S t o c k e ( 1 0 0 0 M T ) 0 0 0 0 0 0 0 . " O o h fl n m o . 0 _ 0 0 0 0 0 0 0 . " . O t h o ¢ 0 . 0 . n m m ¢ N H O . t 0 0 0 0 0 0 0 . » o n n a a N ¢ . 0 o o o m n o u . o o m n h a m w . 0 0 0 0 0 0 0 . u H m o m £ 0 0 . 0 0 M ¢ fl m 0 « . 0 H m 0 0 w n fl . 0 n 0 3 5 m ¢ £ . 0 0 0 0 0 0 0 0 . “ « . n h o n h 0 H O h t h fl . m H h 5 0 u £ 0 h . 0 C a n w N . M ¢ m m m fl m m o . 0 o o m n 0 n n . 0 ¢ n . £ « m n o ¢ ¢ H 0 ¢ u . o m a H ¢ u m a . fl fl u o m . & fl N ¢ ¢ h O N H & . 0 ¢ O B O fl h ¢ 0 fl . fl h o H M u h . 0 £ u 0 m . n t h h ¢ 0 N . a fl fl h 0 h c o u u m g m g g n u “ a u o q u m m u . 2 5 1 6 ¢ u m m u “ a n v a u m m u . fl a u o a u m z 2 5 1 6 « u m g . fl a u u a u m z “ M u v a u m m u . h d u o ¢ u m u m a n a q u m z . 2 ~ 1 3 ¢ u m u 2 6 1 3 ¢ u w m . h fi u v ¢ u m u 2 6 1 3 ¢ u m m u . n a n v ¢ u ¢ : u . a n o c u m a . h fl u v a u ¢ x u A a u v q u m u . m a u v ¢ u ¢ : u 2 5 1 3 ¢ u ¢ 1 3 . 2 5 1 3 ¢ u ¢ 1 3 . M u v a u m m u . ¢ u q x u “ o u v a u m z . ¢ u a x u . a u a q u m m . ¢ u q x u m fl u o q u a x u . ¢ u ¢ : m « u q : u . ¢ u ¢ x u " a n n u a l u u c m H L m > o u 0 0 0 0 . 0 0 h fi Q O a N H 0 0 . N 0 N 0 ” 0 H M . H 0 0 0 0 . 0 ¢ m 0 0 0 0 0 . 0 ¢ H £ 0 0 0 0 . 0 0 0 5 O n u fi ¢ m h . m 0 N ¢ h h ¢ H . n 0 0 0 0 . n fl m m 0 0 0 0 . n m m 0 H o o w . ¢ ¢ N a h h n m ¢ u v . 0 0 H H O 0 B N . 0 n m 0 0 0 . ¢ m m ¢ m m h 0 . w o m ¢ N n 0 . h m n n B O N H ¢ ¢ « . H O h n m fi o m . n 0 m N 4 . H n 0 0 0 ~ h M . M 0 0 h A a l v ¢ u m m m A u l v d u m z A d l v ¢ u m u A a l v ¢ u q l u ¢ U ¢ I u E d e a c 5 z . D ' m c m m r m m v t m m 0 H 0 m c o w p m > t m m n o " H 0 m m 1 Q 0 0 » 4 0 2 m O O O O O O I O O O O O C O ‘ 8 * 0 * 8 8 8 8 8 8 8 0 0 8 8 8 8 8 8 “ “ “ 8 8 . . . . 0 0 ‘ 4 1 9 C a n a d a C o a r s e G r a i n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s F Y C A V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . “ - m m - u - m x n a a u s l I I I - . I - B - I I I C I I I ” 8 = C - 1 4 . 1 1 1 6 5 3 1 . 5 2 2 7 4 3 4 - 9 . 2 6 7 2 5 6 3 0 . 0 0 0 L O S T 3 . 8 4 3 0 1 8 8 0 . 3 5 6 9 4 1 7 1 0 . 7 6 6 5 1 7 0 . 0 0 0 . . . - “ a n u s “ . . . j u n - . 8 . . . R - s q u a r e d . - 0 . 8 4 0 4 8 5 M e a n o f d e p e n d e n t v a r 2 . 2 7 8 7 1 1 A d j u s t e d R - s q u a r e d 0 . 8 3 3 2 3 4 S . D . o f d e p e n d e n t v a r 0 . 4 1 7 3 0 8 S . E . o f r e g r e s s i o n 0 . 1 7 0 4 1 6 S u m o f s q u a r e d r e s i d 0 . 6 3 8 9 1 5 D u r b i n - W a t s o n s t a t 1 . 7 4 8 9 7 1 F - s t a t i s t i c 1 1 5 . 9 1 7 9 L o g l i k e l i h o o d 9 . 4 5 7 9 2 9 8 T P E I 7 * R e s i d u a l P l o t ' 3 I t ~ 0 e s ‘ u e e s s u e e e e e e u u u 3 3 3 3 3 3 3 3 3 3 * u e e * u e e e e . 0 a s 0 * I N D E P E N D E N T V A R I A B L E S L O G T L n ( T I N E ) o b s R E S I D U A L A C T U A L a s “ m m - m s “ a s . s u u m a n u u s u s s u n - s u m n u n n n c n 1 9 6 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 0 . 0 2 7 5 6 - 0 . 3 9 3 5 3 0 . 1 2 7 1 8 0 . 1 7 0 4 8 - 0 . 0 0 7 6 1 0 . 1 3 2 0 9 0 . 1 6 8 6 8 - 0 . 1 8 4 1 9 0 . 0 4 1 9 7 0 . 0 3 5 7 5 0 . 1 3 5 0 6 0 . 1 5 6 2 5 - 0 . 0 1 3 4 9 - 0 . 1 1 6 8 5 - 0 . 4 4 7 6 6 ' 0 . 1 2 2 4 2 0 . 0 1 6 2 6 0 . 0 8 5 5 2 0 . 0 0 1 1 6 0 . 0 4 2 4 2 0 . 0 9 3 3 2 0 . 0 5 7 4 2 0 . 1 7 3 1 6 - 0 . 1 7 8 5 3 1 . 6 5 0 5 5 1 . 2 9 2 9 8 1 . 8 7 6 1 8 1 . 9 8 0 9 7 1 . 8 6 3 4 1 2 . 0 6 2 6 9 2 . 1 5 7 9 5 1 . 8 6 2 8 7 2 . 1 4 5 9 7 ' 2 . 1 9 5 8 5 2 . 3 5 0 4 5 2 . 4 2 6 1 6 2 . 3 1 0 1 6 2 . 2 5 9 8 1 1 . 9 8 1 2 9 2 . 3 5 8 1 1 2 . 5 4 7 6 9 2 . 6 6 7 1 9 2 . 6 3 2 4 2 2 . 7 2 2 6 4 2 . 8 2 1 8 8 2 . 8 3 3 7 1 2 . 9 9 6 6 1 2 . 6 9 1 5 0 F I T T E D 1 . 6 2 2 9 9 1 . 6 8 6 5 1 ' 1 . 7 4 9 0 0 1 . 8 1 0 4 9 1 . 8 7 1 0 1 1 . 9 3 0 6 0 1 . 9 8 9 2 7 2 . 0 4 7 0 6 2 . 1 0 4 0 0 2 . 1 6 0 1 0 2 . 2 1 5 3 9 2 . 2 6 9 9 1 2 . 3 2 3 6 6 2 . 3 7 6 6 7 2 . 4 2 8 9 5 2 . 4 8 0 5 4 2 . 5 3 1 4 3 2 . 5 8 1 6 7 2 . 6 3 1 2 6 2 . 6 8 0 2 2 2 . 7 2 8 5 6 2 . 7 7 6 3 0 2 . 8 2 3 4 5 2 . 8 7 0 0 3 4 2 0 S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m 3 . . . . 8 8 8 8 3 8 3 8 8 I I H H . F Y C A 2 . 2 7 8 7 1 1 2 0 . 4 1 7 3 0 7 9 2 . 9 9 6 6 1 1 0 1 . 2 9 2 9 8 3 0 L O G T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n 1 . “ 8 . 8 3 8 8 8 8 : F Y C A . F Y C A 0 . 1 6 6 8 8 9 8 1 . 0 0 0 0 0 0 0 F Y C A . L O G T 0 . 0 3 6 4 9 9 5 0 . 9 1 6 7 7 9 6 L O G T , L O B T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 a r > C > C > C 3 1 8 1 7 ' 1 - J C 1 2 1 0 : : 4 1 * r ' r 1 » > c : = ! 1 9 ' W I I I I ‘ I U ' 7 3 7 3 A C T . E U 7 7 7 3 X A L - P 9 1 O 7 T S 5 - - - 7 3 F 1 R 8 O 9 - E 4 E C 3 S 0 A T S I T M 3 1 3 2 3 3 3 4 A T E D F i g u r e 8 . 1 0 a A b . 2 9 9 9 9 1 F 1 1 9 9 9 9 7 1 8 9 9 9 1 1 1 1 9 9 9 1 4 2 1 — v T 7 1 | 7 7 7 ' 7 7 7 7 ' 1 7 2 7 7 1 4 7 5 1 ‘ 6 7 7 R E G I O N A L N O D E L S I H U L A T I O N 2 0 . 1 9 . 1 9 . 1 8 . 1 3 2 7 1 8 ' 3 0 5 8 9 1 1 8 . 4 7 8 1 8 . 0 8 5 1 7 . 8 5 1 1 7 . 2 3 8 1 8 . 8 2 4 1 8 . 4 1 1 T o t a l C o a r s e G r a i n C o n s u m p t i o n - C a n a d a . . . . . . . . . . . . . . - ' - 7 0 0 0 : m 4 1 - 0 2 1 1 1 I H P ‘ I H 1 1 1 1 1 1 1 5 5 1 5 4 4 3 2 3 9 5 9 5 5 7 9 7 9 % 9 9 1 3 . 1 7 ~ 9 3 9 - 9 9 T V I ‘ U T I I ' V T O f Z 3 1 ' ' U T ' I . r T 4 2 2 1 " " F r " " — T " ' 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 9 9 9 1 8 3 9 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 7 . 8 0 3 1 7 . 2 4 8 ' 1 8 . 8 8 9 1 8 . 5 3 2 1 8 . 1 7 5 1 5 . 8 1 8 1 5 . 4 8 1 1 5 . 1 0 4 1 4 . 7 4 7 1 4 . 3 9 0 7 3 7 3 , 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - - E S T I N A T E D F i g u r e E . l l . a & b . C o a r s e G r a i n F e e d C o n s u m p t i o n - C a n a d a P e r C a p i t a C o a r s e G r a i n F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) C a n a d a 4 2 3 S M P L 1 9 6 1 — 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s - F C F F E D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T H T . 2 - T A I L S I G C 0 . 2 5 6 4 4 5 8 0 . 0 4 9 6 9 0 0 5 . 1 6 0 9 1 6 0 0 . 0 0 0 P C F D S 0 . 3 4 5 9 7 2 9 0 . 0 4 5 5 0 4 4 7 . 6 0 3 0 6 6 5 0 . 0 0 0 R - s q u a r e d 0 . 7 3 3 5 2 5 M e a n o f d e p e n d e n t v a r 0 . 6 3 0 0 5 4 A d j u s t e d R - s q u a r e d 0 . 7 2 0 8 3 6 S . D . o f d e p e n d e n t v a r 0 . 0 6 6 9 6 8 S . E . o f r e g r e s s i o n ' 0 . 0 3 5 3 8 3 S u m o f s q u a r e d r e s i d 0 . 0 2 6 2 9 1 D u r b i n - W a t s o n s t a t 1 . 1 1 7 7 4 3 F - s t a t i s t i c 5 7 . 8 0 6 6 2 L o g l i k e l i h o o d 4 5 . 2 6 5 6 1 7 T P E R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 t 1 1 1 1 1 9 6 1 - 0 . 0 6 4 6 5 0 . 4 1 7 3 0 0 . 4 8 1 9 4 1 1 t 1 1 1 1 9 6 2 - 0 . 0 0 3 8 2 0 . 5 5 4 4 9 0 . 5 5 8 3 0 1 1 t 1 1 1 1 9 6 3 - 0 . 0 2 5 1 9 _ 0 . 5 6 7 3 5 0 1 5 9 2 5 5 1 1 1 t 1 1 1 9 6 4 0 . 0 0 4 7 0 0 . 5 6 9 9 9 0 . 5 6 5 3 0 1 1 1 t 1 1 1 9 6 5 0 . 0 2 8 0 2 0 . 6 0 4 0 7 0 . 5 7 6 0 5 1 1 1 t 1 1 9 6 6 0 . 0 3 7 2 0 0 . 6 3 7 3 6 0 . 6 0 0 1 6 1 1 1 t 1 1 1 9 6 7 0 . 0 3 0 3 3 0 . 5 9 7 3 5 0 . 5 6 7 0 2 1 1 I 1 1 1 9 6 8 - 0 . 0 0 0 9 8 0 . 5 9 7 7 8 0 . 5 9 8 7 6 1 1 1 t 1 1 1 9 6 9 0 . 0 0 8 2 5 0 . 6 5 4 8 3 0 . 6 4 6 5 7 1 1 1 t 1 1 1 9 7 0 0 . 0 1 6 1 8 0 . 6 9 2 0 7 0 . 6 7 5 9 0 ' 1 1 1 t 1 1 1 9 7 1 0 . 0 0 4 4 7 0 . 7 2 5 1 0 . 0 . 7 2 0 6 3 1 1 1 1 t 1 1 9 7 2 0 . 0 4 1 0 1 0 . 7 1 5 6 2 0 ; 6 7 4 6 1 1 1 1 1 1 1 9 7 3 0 . 0 7 4 4 8 ' 0 . 7 3 5 0 7 0 . 6 6 0 5 9 1 1 t 1 1 1 9 7 4 - 0 . 0 0 1 0 4 0 . 6 1 2 5 0 0 . 6 1 3 5 4 1 : 1 : : ‘ 1 1 9 7 5 - 0 . 0 0 5 6 2 0 . 3 3 1 1 5 0 . 6 3 6 7 7 1 1 t 1 1 1 1 9 7 6 - 0 . 0 2 1 7 7 0 . 6 1 7 0 6 0 . 6 3 8 8 3 1 1 t 1 1 ' 1 1 9 7 7 - 0 . 0 3 0 8 9 0 . 6 3 5 7 0 0 . 6 6 6 5 9 1 1 t 1 1 1 1 9 7 8 - 0 . 0 2 5 2 1 0 . 6 3 8 1 4 0 . 6 6 3 3 5 1 1 1 1 t 1 1 9 7 9 0 . 0 3 9 5 2 ' O . 6 7 2 9 1 0 . 6 3 3 4 0 1 1 1 t 1 1 1 9 8 0 0 . 0 0 8 9 3 0 . 6 4 0 4 0 0 . 6 3 1 4 7 1 t 1 1 1 1 1 9 8 1 - 0 . 0 5 9 7 6 0 . 6 4 0 2 6 0 . 7 0 0 0 3 1 t 1 1 1 1 1 9 8 2 - 0 . 0 5 8 6 7 0 . 6 6 2 1 2 0 . 7 2 0 7 9 1 1 1 * 1 1 1 9 8 3 0 . 0 0 4 5 4 ' 0 . 6 7 2 6 2 0 . 6 6 8 0 9 I N D E P E N D E N T V A R I A B L E S P C F D S ' P e r C a p i t a D o e e s t i c C o a r s e ( F E S C A ( - 1 ) + F P R O C A ) / P O P C A G r a i n S u p p l y ( 1 0 0 0 M T ) 4 2 4 S M F L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n l m u m P C F F E D 0 . 6 3 0 0 5 4 4 0 . 0 6 6 9 6 7 7 0 . 7 3 5 0 7 0 2 0 . 4 1 7 2 9 6 1 P C F D S 1 . 0 7 9 8 7 8 1 0 . 1 6 5 7 7 9 4 . 3 4 2 1 4 4 0 0 . 6 5 1 7 7 8 9 C o v a r i a n c e C o r r e l a t i o n = = = = = = = — ~ - — 2 2 = - ~ — - - - P C F F E D , P C F F E D 0 . 0 0 4 2 8 9 7 1 . 0 0 0 0 0 0 0 P C F F E D , P C F D S 0 . 0 0 9 0 9 4 9 0 . 8 5 6 4 6 0 7 P C F D S , P C F D S 0 . 0 2 6 2 8 7 9 ‘ 1 . 0 0 0 0 0 0 0 4 2 5 2 7 5 . ? 1 2 5 W ‘ 0 0 2 2 5 0 1 0 1 1 2 . - E T 1 7 5 0 J T 0 1 5 3 0 * N s 1 2 5 6 I T , ¢ , 1 1 ‘ r m 6 9 7 B 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 9 8 1 8 2 8 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N M i . 2 . 5 1 : 1 1 . . . . . . . g I 2 . 2 9 5 F : O 2 . 1 8 6 - N 2 . 0 7 1 E 1 . 9 6 8 ; M 1 . 1 5 9 1 : E 1 . 7 5 0 : ‘ 1 . 6 4 1 : " 1 ‘ 1 . 5 3 2 E 0 g ; E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - — - E S T I M A T E D F i g u r e E . 1 2 . a 8 . b . C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n - C a n a d a u . 0 * u u u u fi u ' fl u * u u u u u u u u u s a u . I “ u 4 2 6 C a n a d a P e r C a p i t a C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 N T ) S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F C F F D D h V A R I A B L E C O E F F I C I E N T S T D . E R R O R 8 . . . : = 0 . 0 1 5 0 2 2 6 1 3 9 . 4 5 3 4 7 0 . 0 1 9 2 0 9 8 C 0 . 0 4 9 8 7 9 8 P C R G D P - 1 9 5 . 7 2 1 9 0 P C F D S 0 . 0 5 8 7 3 4 2 T - S T A T . 3 . 3 2 0 a n 3 2 2 — 1 . 4 0 3 4 9 2 5 3 . 0 5 7 5 0 7 3 2 - T A I L 5 1 8 . 0 . 0 0 3 0 . 1 7 6 0 . 0 0 6 I . . . . . m 8 ‘ R - s q u a r e d ~ A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - N a t s o n s t a t L o g l i k e l i h o o d 0 . 3 4 2 0 7 5 0 . 2 7 6 2 8 3 0 . 0 1 0 6 8 5 1 . 3 7 4 2 4 1 7 3 . 3 6 7 1 3 S . D . M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c 0 . 0 9 3 9 7 6 0 . 0 1 2 5 6 0 0 . 0 0 2 2 8 3 5 . 1 9 9 3 1 1 1 0 T P E R e s i d u a l P l o t o b s - . - . . . ' 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 * 1 * i t ' 3 ‘ ' u u ” o n * 0 . u u u u " . * ” u u u u u u u u « a s R E S I D U A L 0 . 0 0 5 4 9 0 . 0 0 0 6 3 - 0 . 0 0 9 9 7 - 0 . 0 0 4 7 6 - 0 . 0 0 6 2 3 0 . 0 0 0 7 6 0 . 0 0 2 6 5 0 . 0 0 2 5 0 0 . 0 0 2 4 8 - 0 . 0 0 1 5 0 0 . 0 1 3 0 4 0 . 0 1 1 6 3 0 . 0 0 5 1 9 0 . 0 0 5 0 2 - 0 . 0 0 9 4 1 - 0 . 0 0 4 7 9 - 0 . 0 3 2 3 8 - 0 . 0 0 3 9 0 0 . 0 0 9 7 3 ' 0 . 0 1 4 0 9 0 . 0 1 0 6 0 - 0 . 0 1 1 4 5 0 . 0 0 0 5 8 A C T U A L 0 . 0 8 1 5 0 0 . 0 8 8 9 8 0 . 0 8 3 7 6 0 . 0 8 3 6 5 0 . 0 8 3 2 3 0 . 0 9 3 4 7 0 . 0 8 9 4 7 0 . 0 9 4 1 6 0 . 1 0 1 7 1 0 . 1 0 2 2 5 _ 0 . 1 2 3 3 9 0 . 1 1 3 2 4 0 . 1 0 2 9 0 0 . 0 9 3 4 4 . 0 . 0 8 3 0 2 0 . 0 8 6 5 4 0 . 0 6 3 4 5 0 . 0 9 1 1 9 0 . 0 9 8 8 6 0 . 1 0 2 6 7 0 . 1 1 0 6 4 0 . 0 9 3 5 9 0 . 0 9 6 3 5 F I T T E D 0 . 0 7 6 0 1 0 . 0 8 8 3 6 0 . 0 9 3 7 3 0 . 0 8 8 4 2 0 . 0 8 9 4 6 0 . 0 9 2 7 1 0 . 0 8 6 8 1 0 . 0 9 1 6 7 0 . 0 9 9 2 3 0 . 1 0 3 7 5 0 . 1 1 0 3 6 0 . 1 0 1 6 0 0 . 0 9 7 7 1 0 . 0 8 8 4 2 0 . 0 9 2 4 3 0 . 0 9 1 3 3 0 . 0 9 5 8 2 0 . 0 9 5 0 9 0 . 0 8 9 1 3 0 . 0 8 8 5 8 0 . 1 0 0 0 4 0 . 1 0 5 0 3 0 . 0 9 5 7 6 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P C A / C P I C A / P O P C A P C F D S 8 C o a r s e G r a i n S u p p l y P e r C a p i t a ( F E S C A ( - l ) * F P R O C A ) / P O P C A 4 2 7 \ S M P L 1 9 6 1 — 1 9 8 3 2 3 O b s e r v a t i o n s - — _ _ — — — - — - - - — — — - _ — - - — - - - - - - — ‘ — — _ — - — — - — — - — — — - — — - — — _ — - — — — - - — — — — — - S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F F O D 0 . 0 9 3 9 7 5 8 0 . 0 1 2 5 5 9 8 0 . 1 2 3 3 9 0 5 0 . 0 6 3 4 4 5 0 P C R G D P 9 . 8 7 6 0 - 0 5 2 . 2 8 4 0 - 0 5 0 . 0 0 0 1 2 8 5 6 . 2 0 7 D — 0 5 P C F D S 1 . 0 7 9 8 7 8 1 0 . 1 6 5 7 7 9 4 1 . 3 4 2 1 4 4 0 0 . 6 5 1 7 7 8 9 C o v a r i a n c e C o r r e l a t i o n P C F F D D , P C F F O D 0 . 0 0 0 1 5 0 9 1 . 0 0 0 0 0 0 0 P C F F O D , P C R G D P 5 . 0 9 9 D - 0 8 0 . 1 8 5 8 7 6 2 P C F F D D , P C F D S 0 . 0 0 1 0 4 8 7 0 . 5 2 6 5 7 0 7 P C R G D P , P C R G D P 4 . 9 8 8 D — 1 0 1 . 0 0 0 0 0 0 0 P C R B D P , P C F D S 2 . 5 3 0 D - 0 6 0 . 6 9 8 7 9 5 8 P C F D S , P C F D 8 0 . 0 2 6 2 8 7 9 1 . 0 0 0 0 0 0 0 4 2 8 l 0 0 0 H E T T O N 5 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 3 9 3 1 3 2 3 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N 5 . 9 1 4 1 1 5 . 3 0 0 - I 5 . 2 1 0 3 1 ‘ : 4 . 9 7 2 3 I 4 . 0 5 8 E o 4 . 3 4 5 : N 4 . 0 3 1 . - 3 . 7 1 7 : 1 1 3 . 4 0 3 3 T 3 . 0 8 9 ; F i g u r e 8 . 1 3 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 - - - E S T I M A T E D C o a r s e G r a i n N e t E x p o r t s - 8 5 8 4 C a n a d a C a n a d a C o a r s e G r a i n N e t E x p o r t s S M P L 1 9 6 1 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F N E C A 4 2 9 ( 1 0 0 0 H T ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T 2 - T A I L S I G . C ~ 5 1 2 8 . 1 3 8 7 1 2 2 . 9 7 7 2 — 4 . 5 6 6 5 5 6 6 0 . 0 0 0 F D S C A 0 . 2 8 7 4 3 9 6 0 . 0 6 1 3 6 0 5 4 . 6 8 4 4 4 2 9 0 . 0 0 0 F N I R E S 0 . 0 1 9 4 9 9 3 0 . 0 1 4 0 5 8 2 1 . 3 8 7 0 4 0 3 0 . 1 8 0 R - s q u a r e d 0 . 7 8 4 0 5 7 M e a n o f d e p e n d e n t v a r 2 4 1 6 . 5 8 3 A d j u s t e d R - s q u a r e d 0 . 7 6 3 4 9 1 S . D . o f d e p e n d e n t v a r 1 9 9 5 . 1 3 5 S . E . o f r e g r e s s i o n 9 7 0 . 2 7 8 8 S u m o f s q u a r e d r e s i d 1 9 7 7 0 2 5 8 D u r b i n - W a t s o n s t a t 1 . 4 0 0 1 8 7 F - s t a t i s t i c 3 8 . 1 2 3 8 5 L 0 3 l i k e l i h o o d 1 9 7 . 5 1 4 1 1 1 , ; _ 7 1 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 1 * 1 1 9 6 1 1 5 7 5 . 2 4 . 1 0 4 . 0 0 0 - 1 4 7 1 . 2 4 1 1 1 * 1 1 1 9 6 2 7 4 . 0 5 8 2 - 1 0 2 . 0 0 0 - 1 7 6 . 0 5 8 1 1 1 * 1 1 1 9 6 3 1 4 9 . 7 6 4 6 3 2 . 0 0 0 4 8 2 . 2 3 6 1 1 1 e 1 ' 1 1 9 6 4 . 3 5 4 . 2 3 1 ‘ 5 2 3 . 0 0 0 1 6 8 . 7 6 9 1 1 * 1 1 1 1 9 6 5 - 6 8 . 9 8 6 8 4 1 9 . 0 0 0 4 8 7 . 9 8 7 1 1 * 1 1 1 1 9 6 6 - 4 2 7 . 0 6 7 5 5 6 . 0 0 0 9 8 3 . 0 6 7 1 1 e 1 1 1 1 9 6 7 - 3 6 9 . 5 4 7 . 1 5 6 . 0 0 0 5 2 5 . 5 4 7 1 * 1 1 1 1 1 9 6 8 - l 3 9 7 . 0 5 - 3 1 4 . 0 0 0 1 0 8 3 . 0 5 1 * 1 1 1 1 1 9 6 9 — 1 0 3 2 . 6 0 9 5 0 . 0 0 0 1 9 8 2 . 6 0 1 1 1 1 * 1 1 9 7 0 1 1 2 9 . 3 4 3 7 8 3 . 0 0 2 6 5 3 . 6 6 1 1 1 1 * 1 1 9 7 1 1 1 1 2 . 1 3 4 8 3 5 . 0 0 3 7 2 2 . 8 7 1 1 * 1 1 1 1 9 7 2 - 5 4 2 . 5 0 9 2 6 6 3 . 0 0 3 2 0 5 . 5 1 1 * 1 1 1 1 1 9 7 3 - 1 7 9 1 . 5 5 1 2 1 4 . 0 0 3 0 0 5 . 5 5 1 1 * 1 1 1 1 9 7 4 - 4 4 9 . 8 9 0 1 7 9 8 . 0 0 2 2 4 7 . 8 9 1 1 1 e 1 1 9 7 5 9 3 7 . 4 7 9 3 9 7 2 . 0 0 3 0 3 4 . 5 2 1 1 1 * 1 1 1 9 7 6 4 0 5 . 1 9 6 0 3 6 1 1 . 0 0 3 2 0 5 . 8 0 1 1 * 1 1 1 1 9 7 7 - 5 3 7 . 6 6 8 3 3 7 5 . 0 0 3 9 1 2 . 6 7 1 * 1 1 1 1 9 7 8 - 9 8 8 . 5 9 4 . 3 0 5 9 . 0 0 4 0 4 7 . 5 9 1 1 * 1 1 1 1 9 7 9 - 5 9 1 . 1 9 5 3 2 4 8 . 0 0 3 8 3 9 . 1 9 1 1 e 1 1 1 1 9 8 0 ~ 6 5 7 . 0 6 0 " 2 9 3 2 . 0 0 3 5 8 9 . 0 6 1 1 1 1 * 1 1 9 8 1 1 1 4 1 . 2 0 . 6 0 7 1 . 0 0 4 9 2 9 . 8 0 1 1 1 * 1 1 1 9 8 2 . 2 2 9 . 3 6 9 . 5 4 8 3 . 0 0 5 2 5 3 . 6 3 1 1 1 1 * 1 1 9 8 3 1 7 6 8 . 8 8 5 8 6 0 . 0 0 4 0 9 1 . 1 2 1 1 * 1 1 1 9 8 4 - 2 3 . 1 6 7 4 3 1 7 0 . 0 0 3 1 9 3 . 1 7 I N D E P E N D E N T V A R I A B L E S F N I R E S 8 R e s i d u a l P o o l o f I m p o r t D e m a n d A f t e r S u r p l u s E x p o r t e r s h a v e E x p o r t e d ( 1 0 0 0 M T ) F N I B R + F N I D H + F N I L D + F N I S B 1 F N I O P + F N I L O + F N I N I + F N I C H - F N E A R F N E A U F D S C A 8 C o a r s e G r a i n S u p p l y ( 1 0 0 0 N T ) F E S C A ( - l ) + F P R O C A 4 3 0 S M F L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s . . - - g - 3 2 - : 2 - _ — S e r i e s M e a n S . D . E M a x i m u m M i n i m u m F N E C A 2 4 1 6 . 5 8 3 3 1 9 9 5 . 1 3 4 9 6 0 7 1 . 0 0 0 0 — 3 1 4 . 0 0 0 0 0 F D S C A ' 2 3 6 3 5 . 5 8 3 4 9 6 7 . 8 1 1 8 3 1 8 0 0 . 0 0 0 1 1 9 0 8 . 0 0 0 F N I R E S 3 8 5 1 0 . 0 4 2 2 1 6 8 3 . 1 8 4 - 7 9 2 3 7 . 0 0 0 1 2 0 0 4 . 0 0 0 C o v a r i a n c e C o r r e l a t i o n F N E C A , F N E C A 3 8 1 4 7 0 6 . 4 ‘ 1 . 0 0 0 0 0 0 0 F N E C A , F D S C A 8 3 0 3 8 2 7 . 6 ‘ _ 0 . 8 7 4 2 2 7 2 F N E C A , F N I R E S 3 0 9 8 0 3 9 2 . 0 . 7 4 7 2 6 5 6 F D S C A , F D S C A 2 3 6 5 0 8 5 6 . 1 . 0 0 0 0 0 0 0 F D S C A , F N I R E S 7 7 2 1 4 7 3 2 . 0 . 7 4 7 9 8 9 3 F N I R E S , F N I R E S 4 5 0 5 7 0 4 3 7 1 . 0 0 0 0 0 0 0 ‘ V O D C O ! ) “ 4 ' 1 - 3 1 2 1 0 < x i ~ F ‘ l F ° ° i 9 § F D 9 I Z 9 1 3 1 1 ~ 9 7 5 7 6 7 7 7 6 7 8 8 0 9 1 1 2 8 5 8 4 4 3 1 7 & 1 6 W 1 5 0 " “ . f s 1 1 1 1 1 1 1 ' 1 2 1 1 ' 1 1 7 1 1 1 1 2 R E G I O N A L M O D E L S I N U L A T I O N O N . T T U V T V ' E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — 1 - - E S T I N A T E D F i g u r e 8 . 1 4 . a & b . C o a r s e G r a i n E n d i n g S t o c k s - C a n a d a " q . ‘ ‘ 1 ‘ : : 4 1 1 r 1 r 1 m n . | ~ a > c z z 3 1 a I I I G fl a 1 3 e C - 1 - 1 1 ~ 3 a fi i fl l fl ( V I N U U I T V V I I T T Y ' 7 6 7 6 7 7 7 6 C o a r s e G r a 7 i 9 8 6 o i 8 5 8 5 e a n H a r v e s t e d A r e a - C a n a d a 4 1 6 1 8 8 8 8 9 5 8 8 ‘ 9 8 8 8 ‘ 8 5 8 8 - L 8 8 8 8 1 7 5 8 8 1 7 8 8 8 - * 6 5 8 8 ‘ 6 9 7 8 7 1 C > C > C > F ‘ ( n u n 2 | 3 1 - i f i f fl i n x ' ~ — ~ 4 ‘ 7 n I 1 ~ 4 fl - - H ' - - F - " F - - H ' 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N . 5 5 3 . 2 5 9 ' . 9 6 4 . 8 6 9 . 3 7 4 - . 0 8 0 . 7 9 5 . . 4 9 0 . 1 9 5 . 9 0 0 T I F i g u r e E . 9 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L _ , _ - E S T I H A T E D 4 1 7 ' C a n a d a C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) E M P L 1 9 6 4 - 1 ° 8 4 2 1 O b s e r v a t i o n s ' L S I ! D e p e n d e n t V a r i a c l e i s F H A C A _ I . I V A R I A B L E C O E F ? I C I E N T E T D . E R R O R T — S T A T . 2 - T A I L 5 1 6 . r - 1 C 2 6 8 4 . 1 9 1 2 1 2 7 8 . 7 8 8 2 2 . 0 9 9 0 1 1 6 0 . 0 5 2 F H A C A ( - 1 ) 0 . 7 4 2 2 6 7 8 0 . 1 8 1 2 1 9 1 4 . 0 9 5 9 6 8 7 0 . 0 0 1 F R C A ( - 1 ) 8 2 4 . 0 7 6 3 2 4 9 4 . 9 0 8 5 6 1 . 6 6 5 1 0 8 2 0 . 1 1 5 N R C A ( - 1 ) - 6 6 1 . 3 4 0 8 8 4 1 5 . 6 7 2 2 4 - 1 . 5 9 1 0 1 5 3 0 . 1 3 1 F E S C A 1 - 1 ) - 0 . 2 5 0 3 8 8 2 0 . 1 2 3 9 5 5 1 - 2 . 0 1 9 9 9 0 7 0 . 0 6 0 m n u s - m m n s n n m - m m m m . - R - s a u a r e d 0 . 6 0 4 3 9 1 M e a n o f d e p e n d e n t v a r 7 9 9 5 . 5 7 1 A d j u S t e d R - s a u a r e d . 0 . 5 0 5 4 8 9 S . D . o f d e p e n d e n t v a r 8 6 1 . 9 7 5 8 S . E . o f r e g r e s s i o n , 6 0 6 . 1 5 4 1 ‘ S u m o f s q u a r e d r e s i d 5 8 7 8 7 6 4 . D u r b i n - W a t s o n s t a t 1 . 2 9 4 6 0 6 F - s t a t i s t i c 6 . 1 1 1 0 0 1 L o g l i k e l i h o o d - 1 6 1 . 4 9 2 2 T P E 9 ’ 2 1 I m . n I n fl a m m - R e a i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D ' m s . 1 4 : 1 : 1 1 9 6 4 - 7 9 1 . 9 6 4 6 3 4 0 . 0 0 7 1 3 1 . 9 6 : , 4 : : : 1 9 6 5 - 2 1 e . 2 4 9 ‘ 5 3 2 7 . 0 0 - 7 0 4 5 . 2 5 1 a 4 i : 1 1 9 6 6 ~ 3 0 3 . 8 1 0 . 7 2 6 8 . 0 0 7 5 7 1 . 6 1 1 : 4 1 : 1 1 9 6 7 - 1 9 6 . 2 9 8 , 7 3 0 7 . 0 0 7 5 0 3 . 3 0 1 z 1 . : 1 1 9 6 8 1 3 7 . 5 6 5 _ 7 6 2 5 . 0 0 7 4 8 7 . 4 4 1 : 1 4 1 1 9 6 9 5 6 7 . 4 0 7 7 8 4 8 . 0 0 7 2 8 0 . 5 9 1 : 1 4 : 1 1 9 7 0 3 4 1 . 3 7 8 8 0 8 1 . 0 0 7 7 3 9 . 6 2 1 2 1 : § 1 1 9 7 1 1 4 1 7 . 1 7 , 9 8 2 5 . 0 0 8 4 0 7 . 8 3 1 : * 1 i 1 1 9 7 2 - 2 4 9 . 4 9 8 { 8 9 0 5 . 0 0 ‘ 9 1 5 4 . 5 0 1 : * 1 : 1 1 9 7 3 - 7 0 . 3 6 5 2 8 9 1 8 . 0 0 8 9 8 8 . 3 7 1 : : § : 1 1 9 7 4 2 3 9 . 2 6 3 , 8 6 0 4 . 0 0 8 3 6 4 . 7 4 1 : * 1 : 1 1 9 7 5 - 4 6 8 . 6 2 2 8 2 6 0 . 0 0 8 7 2 8 . 6 2 1 x 4 1 z 1 1 9 7 6 - 2 6 4 . 4 6 3 . 8 1 1 4 . 0 0 8 3 7 8 . 4 6 1 z 1 * : 1 1 9 7 7 1 1 7 . 2 8 2 8 2 3 3 . 0 0 8 1 1 5 . 7 2 1 : * 1 z 1 1 9 7 8 - 2 0 3 . 7 5 8 7 4 7 6 . 0 0 7 6 7 9 . 7 6 1 : 4 1 : 1 1 9 7 9 - 3 7 3 . 3 8 9 6 7 5 3 . 0 0 7 1 2 6 . 3 9 1 : 1 4 : 1 1 9 8 0 4 5 6 . 1 6 0 7 6 8 6 . 0 0 7 2 2 9 . 8 4 1 : 1 : 9 1 1 9 8 1 9 3 9 . 8 4 2 . 9 1 6 5 . 0 0 8 2 2 5 . 1 6 1 : 1 4 : 1 1 9 8 2 1 8 0 . 5 9 9 8 8 5 1 . 0 0 8 6 7 0 . 4 0 1 : * 1 « a 1 1 9 8 3 - 4 2 1 . 2 9 5 7 7 9 9 . 0 0 8 2 2 0 . 3 0 1 4 : 1 : 1 1 9 8 4 - 8 3 4 . 9 5 0 8 0 2 2 . 0 0 8 8 5 6 . 9 5 I 1 . . . I N D E P E N D E N T V A R I A B L E S F H A C A 8 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) F R C A 8 C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( S I H A ) ( F Y C A ( - 3 ) + F Y C A ( - 2 ) + F Y C A ( - 1 ) * F Y C A ) / 4 n F P 9 ! R C A / C P I C A w R C A 3 W h e a t R e v e n u e p e r H e c t a r e ( Q I H A ) ( W Y C A ( - 3 ) + W Y C A < - 2 ) + W Y C A ( - 1 ) + W Y C A ) / 4 ~ W P * X R C A / C P I C A F E S C A 8 C o a r s e G r a i n E n d i n g S t o c k . ( 1 0 0 0 M T ) m O O O O O O O . ~ O o h o h m o . o . 0 0 0 0 0 0 0 . “ . O t h o ¢ 0 . 0 . n m w ¢ N H G . O 0 0 0 0 0 0 0 . " o m n H fl N ¢ . O o o o m n fl u . o o m n h « M N . O O O O O O O . « H m o m o o o . o o m ¢ o m 0 « . o ” m o o fi n m . o D O O B m ¢ fl . O 0 0 0 0 0 0 0 . “ w . n h o n h ¢ a O h m m h fl . m m h h o ~ £ 0 h . o O a n m n fl . m ¢ m m w m m m o . 0 o o m n w h n . o # n . o ~ m n o ¢ ¢ H O ¢ H . 0 N « H ¢ H m . N fl H o m . m n N ¢ ¢ h O N M & . & ¢ O B O O D ¢ 0 N . 0 B e u n u h . 0 0 « O m . a m h 0 h ¢ 0 N . « N £ h 0 h “ fl u v q u m m u . fi fl u v ¢ u m m u A d n v q u m m u . fl fi u v c u m 3 2 3 1 5 « u m 3 . 2 3 1 5 ¢ u m 3 “ d u v m u m m u . fl d u v ¢ u m u “ H u v q u m z . fi fl u v ¢ u m u A n u v ¢ u w m . fi d u v ¢ u m u 2 3 1 5 ¢ u m m u . n fl u v ¢ u q x u h fl u v c u m a . h fl u v a u ¢ x u . « 1 v q u m n . fi fl u v ¢ u ¢ 1 m A u u v ¢ u ¢ 1 m . a d u v ¢ u ¢ x u A m u v ¢ u m m u . ¢ u ¢ 1 u “ fl u v a u m 3 . ¢ u ¢ x u A fl u v q u m m . ¢ u q x u “ M t v q u q x u . ¢ u ¢ 1 u a u q : u . ¢ u ¢ x u c o fl u m a m a a n u m u c m w n m > o u 0 0 0 0 . 0 0 h m Q O a N H O Q . N o w w m o m m . fl O O O 0 . 0 ¢ H 0 O O Q 0 . 0 ¢ H 0 0 0 0 0 . 0 0 0 h O Q H N ¢ m N . m O N ¢ h h ¢ H . m O O O O . n N m m O O O O . n N m 0 d o o m . ¢ ¢ m fl M N H M ¢ H 0 . 0 H n o o h h . o H m w o o . ¢ m m ¢ m m h & . w o m ¢ N h & . h m n n B O N H Q V n . H 0 h fl N ¢ O M . H o m N ¢ . fl fl 0 h ¢ M N M . M G D L A a l v ¢ u m m m A ~ | v ¢ u m z A a l v c u m u A u l v ¢ u ¢ 1 u « U G I H 3 3 : : t h e n e u x m z . o . m c m « . 1 7 , M W " u t m . ~ 0 H 0 ¢ m w m c o w v m > n u m n o « u # m u « s z m 0 . . O . I * 0 . . O * . I . O . 0 . I . O . O . I . O . 0 0 0 . I . I . O . I . O fi w w o o a o a o O O O H O O G u a v a < H I H Q “ I O H H H O 8 0 : 0 0 0 8 m u n d a n o v m z n r 6 0 0 0 I ” e m u N a o o u a x < m n w o n u r m \ \ o e n o a n e n a < 0 1 u m a p a n o fl < n b c p m u p m r m n o m m a n H m z q m a c . m m m o m a n m a p a . u n a p o r m H m . . . - g g ' . . ' i . . " : ' a l l - ' l u ' n l - u u u u u : u l ' " ' . " " " . ' o u ' g " n 1 6 ¢ . » p p o u u u . u n m u a u a 1 0 . n o u n u o u o . o o o r 0 6 4 « . m a u o u m m o . u u o o ¢ » u H o . q o o u ~ u o . o o o “ . . . . . . . . . . . . m l u n c u 1 o n . . o . m ¢ o h m u 3 0 0 : 0 + a n u n a n n a n < 0 1 ” . m u m u p » b a o c u n u n m l u n c u 1 o n o . m u u u u ¢ m . u . 0 + n l n o a n n n n < u 1 0 . 9 » V u o m m . m . 0 * s e m a n a a w o : o . » u o a » o m c a 0 * u n c u s o n w e a u n 0 . 0 u m o u u o c s u u a l t u a u o : O a h u u . u ¢ m o u w fi l a e u n w u n u n u u u . o » u o r o w w a e u w z o o n 0 . 6 0 V o n o « . . . — 0 m r o u n d a b w v p o a D o m m m m H O C D r g i g g l a u a a ' u g ' g ' . - a l I . ‘ 0 0 . . . . . . . . . . “ O I I O O I O C O O O I O O O O * I O O O O O O O O O O I “ * I t . 8 . * 0 0 ~ 0 . 0 ‘ ' l 0 # . . . . 8 . . . . . . . . o t . e . u . o o . o c . . . . . I . . . . . . . . . o a . l . . . . . . . . . . . H o m o w o o » m e o w n o o n ” 0 0 % n o o n H 0 0 0 H O O V p o e m p 0 0 0 “ O N O n o u n p o fl n w fl fl w u fi fl k w e d “ w o u o ” o d d p 0 4 0 n o fl o H o m o a n » p o m “ p o m “ 0 . 0 M V U O I O . M 0 M H H 0 . » N fl u m O o p V O b m 1 0 . 0 0 V 0 H 0 . 9 M N O Q O o u m m b m 1 0 . n m h u o 0 . 0 h u o fl 0 . 0 H fl fl u O o u u fl o 0 O . p u 0 N M I O . O H H # 0 1 0 . n n b m u l O . # b V 0 0 - 0 0 H N M ‘ N 0 . 0 H O N 0 0 . 0 m U U N 0 . 0 0 H H O 0 . 0 & N # N 0 . 0 0 M M M 0 . 0 0 V b N 0 . 9 V H H O l O . » fl m u w D n fl C D r fl H d fl m u : ‘ . . . - I " . ' p . 0 u 0 u u p . 0 M M 0 0 p . N o M o m H . 0 m o m ~ u . m fl o ~ m . w . u ¥ o o o p . 0 m o o fl » . m » O h o u . m 0 u # u u . m fl u o u H . 0 0 N 0 0 p . 0 u o o o N . n u fl o u p . 0 m o n v ” . m o n m fl H . 0 6 V O G N . » ¢ U O V . M . » 0 ¢ O O N . » o u m u N . w o o » 0 N . u u 0 b u ” . m u u u o N . & N & u o N . N 0 0 0 u N . M H O n o N . u n w 0 0 ” . m u o m » N . H fl o o fl H . 0 m u n o N . b m m o u “ . m u m u w N . o m O U h M . u # fl o o N . u u u & u H . 0 0 fl u e N . u m n o u H . 0 M N 6 N N . G M H N O M . V N N O & H . 0 0 0 H N “ . m w w m m N . V u m u o N . m u u fl n N . V fl o m o H . 0 0 0 0 » ” . m n u b u n . 0 0 u u o N . m u o o u H Z O M fl M Z O M Z H ( ) Z H > w r m m 7 0 0 % r a a fi m e v u u n u " " ' n u ' n n " § ' n n n a u . n n u ' u u n ' n " ” u n u u n ' u u a . ' = " . u . i " ' . ' “ n o o o o o o o . 3 o n o ¢ o o o . o 6 0 0 4 . 6 6 0 ; c o n n o fl o . o n o o e o m o . o 6 6 0 4 . ¢ u > u o o o o o o o . 3 m o m m o o « . o ¢ u > u . ¢ u > u " g u n . “ n I " c o w u a u o g g o u m u c m w g m > o u O D ¢ H ¢ O O . ¢ 0 0 ¢ m m a ¢ . ¢ m a h n o o o . o « H B O Q Q N . ¢ F 0 0 4 O M O 0 N O N . ~ O a u fl o o o . fl O B O M h n ¢ . O N a a h t h . N ¢ U > u ' n n . " ' u n a ' n u a n n n n n u u ' u n n n n n " n “ a n ” n n ' . n u n u u n u u u u l l n l u u a a n " u u " " ' u 6 3 5 5 c “ : e n e w x u : . a . m c a n : n m w g o m u n . " ' " fl ' l ' u a . a c o u u a > g u n n o o n w o o d I 0 0 0 “ J a z m O N ? ‘ * > C > C > C : : n r a - 1 ~ ) C 5 2 1 U 9 9 1 7 ’ 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 : W I I U I I : 4 1 7 r 1 r a r > c 1 2 3 1 - 7 E 7 6 . 7 7 7 6 7 9 3 6 a ? 3 5 8 5 8 4 2 8 8 8 8 1 7 2 0 . 1 9 . 1 9 . 1 9 1 9 a n l o : 1 3 2 1 9 8 8 8 1 1 3 8 8 8 1 1 5 8 8 8 1 7 1 9 ' 3 0 5 . 9 9 1 1 9 . 4 7 9 9 9 1 2 3 9 9 2 4 4 1 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1 ! 8 I . I 1 " x 1 l R E G I O N A L N O D E L S I M U L A T I O N 2 m : - 1 7 . ’ 1 7 . a s . 1 6 . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - — E S T I N A T E D F i g u r e 3 . 1 0 a 8 b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - C a n a d a H > C D < O z i fl l 4 ' i - ) C Z Z I U 3 1 h " t r v Y ‘ U ‘ U ' U U i U h D ( 2 : 2 4 ' t U V I T ' t I 7 5 7 é _ 7 7 7 6 7 9 a b 8 1 1 5 3 5 8 8 4 2 2 1 1 1 1 1 1 6 5 8 8 ‘ . , . . . 1 1 6 " " ' 1 5 5 1 1 - 1 5 1 1 1 1 1 4 5 1 1 “ 1 4 8 9 0 . , 1 3 5 8 8 1 3 8 8 8 1 2 5 8 8 - ‘ - ' W 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 ? ? 8 7 9 8 8 8 1 8 2 8 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 7 . 6 0 3 1 7 . 2 4 6 ' 1 9 . 9 9 9 1 6 . 9 3 2 1 9 . 1 7 5 1 5 . 9 1 9 1 9 . 4 9 1 1 3 . 1 0 4 1 4 . 7 4 7 1 4 . 3 9 0 r B K - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — v — 4 - E S T I M A T E D F i g u r a E . 1 1 . a & b . C o a r a a G r a i n F a a d C o n s u m p t i o n - C a n a d a a 8 r O 0 0 3 i E . . a o s t a s s r i t 1 V r e o a a 9 a C n d t i d u a l : t - n n d u s s t t t t t 1 p r e R C e d N e i 9 C p I F r l v a d P a r C a S 2 L R D A S L M 3 S . - d u o 7 P s j r g E 1 L O / q u b . b / u s i l 7 5 : : : : : : 1 1 : 1 1 1 : : 3 1 : 1 1 1 : : 3 e D A P r e f - k s a t n V o i i t t t a C 6 a e D t A i R e 1 t n B h S s - g i d L s r o o o e E q e n o R e : : : : : : : : : : : : : : 1 : i : : : : : s G r a i a F 2 3 b F 5 4 l I 6 5 e C 4 9 ' P l o t n E 2 5 . 5 : : I 7 4 0 4 0 0 1 t x t t t C D D . . E T 0 0 F a a d i . . . s N 9 8 7 . 7 0 1 P C 3 0 5 7 6 5 8 3 7 5 F 3 8 2 4 6 F S 5 6 3 3 1 T 2 3 2 3 1 : : : : t : : : : : : : : : : : : : a : : 1 t o n s u m p t i o n ( 1 0 0 0 M T ) . 0 0 4 4 5 E 9 M S S F 5 R 6 e . u - 1 1 1 1 1 1 1 1 1 3 1 1 I 1 1 1 1 1 1 : 1 1 ' 1 O 0 t 4 n . R 9 0 D a m s o 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 R 0 4 0 a s 2 1 3 5 4 6 7 8 0 1 2 4 1 9 3 6 8 0 2 5 7 9 3 b 6 6 6 6 6 6 6 7 7 6 7 7 6 7 7 7 8 8 8 7 7 7 8 5 7 p p a c D 0 6 0 2 3 0 4 2 3 2 1 0 0 0 2 7 0 3 3 5 0 0 5 o o 4 t f f i d d q t e e u i s s R — - - - - - - - - - - E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S . . . . . . . . . . . . . . . . . . . . . . . 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T . . e e r 1 — 6 n n e T 0 3 e e S d d 6 0 d A T . 2 - T 9 0 n n r 1 6 t t e 6 6 s 0 5 i v v r r a a d A 0 0 0 0 0 5 I . . . . . 7 L 0 0 6 0 0 . S 0 0 0 6 6 0 I 0 2 9 6 B . 5 9 6 6 4 8 2 1 0 0 3 2 6 8 U 3 4 4 5 7 0 8 6 1 5 0 1 8 4 1 4 5 8 8 0 9 9 4 6 1 7 2 9 0 1 A 8 0 2 3 0 2 4 7 4 6 8 5 7 9 6 5 L 2 5 9 0 1 1 2 0 8 8 3 4 5 7 7 8 2 3 7 4 9 2 6 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ . ' ‘ C . . . . . . . . . . . . . . . . . . . . . . . T 4 5 5 7 6 6 5 6 5 6 5 7 7 6 6 6 6 6 6 6 6 6 6 U 1 5 6 6 0 3 9 9 9 5 A 4 7 9 7 7 4 4 7 7 2 L 4 3 9 3 3 8 0 3 7 0 9 0 9 5 7 8 6 7 5 3 2 5 1 0 ' i 3 1 1 3 3 3 7 4 6 4 7 5 5 2 1 7 5 0 2 0 2 8 2 6 0 5 1 0 7 4 2 1 6 1 9 2 7 0 5 6 0 0 6 2 2 4 1 F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I . . : . . . . . . . . ; . . . . . . . . . . . T 4 5 5 5 5 6 5 5 6 6 7 6 6 6 6 6 6 6 6 6 7 7 6 T 8 5 9 6 7 0 6 9 7 4 7 2 6 1 3 3 6 6 3 3 0 2 6 E 1 8 2 5 0 6 7 8 6 5 4 0 0 3 6 8 3 1 6 3 0 0 8 D 9 3 5 3 1 6 0 0 7 5 9 6 5 5 7 8 5 3 4 4 0 7 0 0 5 0 6 5 2 7 6 0 4 1 3 4 9 7 3 9 5 0 7 3 9 9 t x : : : 1 : 1 1 1 3 : : 1 1 1 : 1 I 2 3 : C a n a d a 4 2 3 I N D E P E N D E N T V A R I A B L E S P C F D S 8 P a r C a p i t a D o n a - t i c C o a r a a ( F E S C A ( - 1 ) + F P R O C A ) / P O P C A G r a i n S u p p l y ( 1 0 0 0 M T ) S M F L 1 9 6 1 - 1 9 8 3 2 : O b s e r v a t i o n s 1 . 3 4 2 1 4 4 0 - — — _ — - — — - - — — a — - u — n - — - — — — — - — - - - — — — — — — — - - — — - — - - - — 0 . 4 1 7 2 ? 6 1 0 . 6 5 1 7 7 8 9 C o r r e l a t i o n S e r i e s M e a n P C F F E D 0 . 6 3 0 0 5 4 4 0 . 0 6 6 9 6 7 7 P C F D S 1 . 0 7 9 8 7 8 1 0 . 1 6 5 7 7 9 4 C o v a r i a n c e P C F F E D , P C F F E D 0 . 0 0 4 2 8 9 7 P C F F E D , P C F D S 0 . 0 0 9 0 9 4 9 P C F D S , P C F D S 0 . 0 2 6 2 8 7 9 1 . 0 0 0 0 0 0 0 0 . 8 5 6 4 6 0 7 1 . 0 0 0 0 0 0 0 4 2 5 2 7 5 0 1 1 2 5 m " 0 0 2 2 5 8 1 0 a 2 M “ . E T 1 7 5 0 ' T 0 1 5 % N 5 1 2 5 6 , . . 6 9 7 B 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 ‘ 9 9 1 8 2 8 3 8 4 R E G I O N A L M O D E L S I M U L A T I O N M I f . . 2 . 5 1 3 L 2 . 4 0 4 ' I 2 . 2 9 5 0 2 . 1 8 6 N 2 . 0 1 1 1 . 9 6 8 M 1 . 3 5 9 E 1 . 1 5 0 ‘ 1 . 6 4 1 ' 1 ‘ 1 . 5 3 2 0 1 5 1 6 1 7 1 6 1 1 ' ; 3 6 8 1 3 2 3 : 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L w — ~ E S T I M A T E D F i g u r e E . 1 2 . a & b . C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n - C a n a d a . - C o . I * * a - n . - I u I . I c . 8 . I . O . I * - ' n N - _ * . . * . . - O - . n - O o . - 8 n I - I - . I . - c n I o . n I o I - I o . - I I . - C o I - I I . - C o * a - u * 4 2 6 C a n a d a P e r C a p i t a C o a r s e G r a i n F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C F F O D A — . — T - S T A T . 2 - T A I L 8 1 8 . . 0 . 0 0 3 0 . 1 7 6 0 . 0 0 6 V A R I A B L E C O E F F I C I E N T S T D . E R R O R 0 . 0 1 5 0 2 2 6 3 . 3 2 0 3 2 2 1 3 9 . 4 5 3 4 7 — 1 . 4 0 3 4 9 2 5 0 . 0 1 9 2 0 9 8 3 . 0 5 7 5 0 7 3 8 0 . 0 4 9 8 7 9 8 P C R B D P - 1 9 5 . 7 2 1 9 0 P C F D S 0 . 0 5 8 7 3 4 2 3 . . . . 1 R - s q u a r e d . A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n — N a t s o n s t a t 0 . 0 9 3 9 7 6 0 . 0 1 2 5 6 0 0 . 0 0 2 2 8 3 5 . 1 9 9 3 1 1 0 . 3 4 2 0 7 5 0 . 2 7 6 2 8 3 0 . 0 1 0 6 8 5 1 . 3 7 4 2 4 1 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c L o g l i k e l i h o o d I O T P E R e s i d u a l P l o t 1 9 ‘ . I I I . * 0 . * 0 . u I . o n u 0 3 * " u u I . u I . 0 0 I I n o l o a . I N D E P E N D E N T V A R I A B L E S P C R G D P G D P C A / C P I C A P C F D S 7 3 . 3 6 7 1 3 I P O P C A = R e a l I n c o m e P e r C a p i t a o b s ’ 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 ( F E S C A ( - 1 ) * F P R O C A ) / P O P C A R E S I D U A L 0 . 0 0 5 4 9 0 . 0 0 0 6 3 - 0 . 0 0 9 9 7 - 0 . 0 0 4 7 6 - 0 . 0 0 6 2 3 0 . 0 0 0 7 6 0 . 0 0 2 6 5 0 . 0 0 2 5 0 0 . 0 0 2 4 8 - 0 . 0 0 1 5 0 0 . 0 1 3 0 4 0 . 0 1 1 6 3 0 . 0 0 5 1 9 0 . 0 0 5 0 2 - 0 . 0 0 9 4 1 - 0 . 0 0 4 7 9 - 0 . 0 3 2 3 8 - 0 . 0 0 3 9 0 0 . 0 0 9 7 3 ' 0 . 0 1 4 0 9 0 . 0 1 0 6 0 - 0 . 0 1 1 4 5 0 . 0 0 0 5 8 8 C o a r s e G r a i n S u p p l y P e r C a p i t a A C T U A L 0 . 0 8 1 5 0 0 . 0 8 8 9 8 0 . 0 8 3 7 6 0 . 0 8 3 6 5 0 . 0 8 3 2 3 0 . 0 9 3 4 7 0 . 0 8 9 4 7 0 . 0 9 4 1 6 0 . 1 0 1 7 1 0 . 1 0 2 2 5 _ 0 . 1 2 3 3 9 0 . 1 1 3 2 4 0 . 1 0 2 9 0 0 . 0 9 3 4 4 . 0 . 0 8 3 0 2 0 . 0 8 6 5 4 0 . 0 6 3 4 5 0 . 0 9 1 1 9 0 . 0 9 8 8 6 0 . 1 0 2 6 7 0 . 1 1 0 6 4 0 . 0 9 3 5 9 0 . 0 9 6 3 5 F I T T E D 0 . 0 7 6 0 1 0 . 0 8 8 3 6 0 . 0 9 3 7 3 0 . 0 8 8 4 2 0 . 0 8 9 4 6 0 . 0 9 2 7 1 0 . 0 8 6 8 1 0 . 0 9 1 6 7 0 . 0 9 9 2 3 0 . 1 0 3 7 3 0 . 1 1 0 3 6 0 . 1 0 1 6 0 0 . 0 9 7 7 1 0 . 0 8 8 4 2 0 . 0 9 2 4 3 0 . 0 9 1 3 3 0 . 0 9 5 8 2 0 . 0 9 5 0 9 0 . 0 8 9 1 3 0 . 0 8 8 5 8 0 . 1 0 0 0 4 0 . 1 0 3 0 3 0 . 0 9 5 7 6 S M P L ’ 5 ‘ ? « £ a n 5 1 9 6 1 - 1 9 8 3 O b s e r v a t i o n s 4 2 7 S e r i e s M e a n S . D . M i n i m u m P C F F D D 0 . 0 9 3 9 7 5 8 0 . 0 1 2 5 5 9 8 " 9 0 5 0 . 0 6 3 4 4 5 0 P C R G D P 9 . 8 7 6 D - 0 5 2 . 2 8 4 0 — 0 5 0 . 0 0 0 1 2 8 5 6 . 2 0 7 D - 0 5 R C F D S 1 . 0 7 9 8 7 8 1 0 . 1 6 5 7 7 9 4 1 . 3 4 2 1 4 4 0 0 . 6 5 1 7 7 8 9 C o v a r i a n c e C o r r e l a t i o n P C F F O D , P C F F O D 0 . 0 0 0 1 5 0 9 1 . 0 0 0 0 0 0 0 P C F F O D , P C R 8 D P 5 . 0 9 9 D - 0 8 0 . 1 8 5 8 7 6 2 P C F F O D , P C F D S 0 . 0 0 1 0 4 8 7 0 . 5 2 6 5 7 0 7 P C R G D P , P C R G D P 4 . 9 8 8 D - 1 0 1 . 0 0 0 0 0 0 0 P C R B D R , P C F D S 2 . 5 3 0 0 - 0 6 0 . 6 9 8 7 9 5 8 P C F D S , P C F D S 0 . 0 2 6 2 8 7 9 1 . 0 0 0 0 0 0 0 P > C ? i 3 ( 0 x : m 1 ~ S J C Z S M 6 9 7 8 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 8 4 “ z . 1 0 h 3 " t r i h c l : 8 a . » : 4 1 0 u 1 s 7 8 1 1 1 9 1 9 3 0 8 1 9 2 3 3 9 4 F i g u r e E . 1 3 . a & b . C o a r s e G r a i n N e t E x p o r t s - C a n a d a 4 2 8 R E G I O N A L M O D E L S I M U L A T I O N . 9 1 4 . 0 0 0 - - . 2 9 0 I . 9 1 2 I . 9 9 3 I . 3 4 9 . 0 3 1 . . 1 1 1 . 4 0 3 . 0 9 9 ~ 1 3 E X 9 P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I M A T E D 4 2 9 C a n a d a C o a r s e G r a i n N e t E x p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F N E C A V A R I A B L E C O E F F I C I E N T T - S T A T 2 — T A I L 8 1 8 . C - 5 1 2 8 . 1 3 8 7 1 1 2 2 . 9 7 7 2 - 4 . 5 6 6 5 5 6 6 0 . 0 0 0 F D S C A 0 . 2 8 7 4 3 9 6 0 . 0 6 1 3 6 0 5 4 . 6 8 4 4 4 2 9 0 . 0 0 0 F N I R E S 0 . 0 1 9 4 9 9 3 0 . 0 1 4 0 5 8 2 1 . 3 8 7 0 4 0 3 0 . 1 8 0 R - s q u a r e d 0 . 7 8 4 0 5 7 M e a n o f d e p e n d e n t v a r 2 4 1 6 . 5 8 3 A d j u s t e d R - s q u a r e d 0 . 7 6 3 4 9 1 S . D . o f d e p e n d e n t v a r 1 9 9 5 . 1 3 5 S . E . o f r e g r e s s i o n 9 7 0 . 2 7 8 8 S u m o f s q u a r e d r e s i d 1 9 7 7 0 2 5 8 D u r b i n - W a t s o n s t a t 1 . 4 0 0 1 8 7 F - s t a t i s t i c 3 8 . 1 2 3 8 5 L o g l i k e l i h o o d 1 9 7 . 5 1 4 1 T P E g " " - 7 1 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 1 * 1 1 9 6 1 1 5 7 5 . 2 4 . 1 0 4 . 0 0 0 - 1 4 7 1 . 2 4 1 1 1 * 1 1 1 9 6 2 7 4 . 0 5 8 2 - 1 0 2 . 0 0 0 - 1 7 6 . 0 5 8 1 1 1 * 1 1 1 9 6 3 1 4 9 . 7 6 4 6 3 2 . 0 0 0 4 8 2 . 2 3 6 1 1 1 * 1 ' 1 1 9 6 4 3 5 4 . 2 3 1 , 5 2 3 . 0 0 0 1 6 8 . 7 6 9 1 1 * 1 1 1 1 9 6 5 - 6 8 . 9 8 6 8 4 1 9 . 0 0 0 4 8 7 . 9 8 7 1 1 * 1 1 1 1 9 6 6 - 4 2 7 . 0 6 7 5 5 6 . 0 0 0 9 8 3 . 0 6 7 1 1 * 1 1 1 1 9 6 7 - 3 6 9 . 5 4 7 . 1 5 6 . 0 0 0 5 2 5 . 5 4 7 1 * 1 1 1 1 1 9 6 8 - 1 3 9 7 . 0 5 - 3 1 4 . 0 0 0 1 0 8 3 . 0 5 1 1 1 1 1 1 9 6 9 - 1 0 3 2 . 6 0 9 5 0 . 0 0 0 1 9 8 2 . 6 0 1 1 1 1 * 1 1 9 7 0 1 1 2 9 . 3 4 3 7 8 3 . 0 0 2 6 5 3 . 6 6 1 1 1 1 * 1 1 9 7 1 1 1 1 2 . 1 3 4 8 3 5 . 0 0 3 7 2 2 . 8 7 1 1 1 1 1 1 9 7 2 - 5 4 2 . 5 0 9 2 6 6 3 . 0 0 3 2 0 5 . 5 1 1 * 1 1 1 1 1 9 7 3 - 1 7 9 1 . 5 5 1 2 1 4 . 0 0 3 0 0 5 . 5 5 1 1 * 1 1 1 1 9 7 4 - 4 4 9 . 8 9 0 1 7 9 8 . 0 0 2 2 4 7 . 8 9 1 1 1 * 1 1 9 7 5 9 3 7 . 4 7 9 3 9 7 2 . 0 0 3 0 3 4 . 5 2 1 1 1 9 1 1 1 9 7 6 4 0 5 . 1 9 6 . 3 6 1 1 . 0 0 3 2 0 5 . 8 0 1 1 1 1 1 1 9 7 7 - 5 3 7 . 6 6 8 3 3 7 5 . 0 0 3 9 1 2 . 6 7 1 * 1 1 1 1 9 7 8 - 9 8 8 . 5 9 4 . 3 0 5 9 . 0 0 4 0 4 7 . 5 9 1 1 1 1 1 1 9 7 9 - 5 9 1 . 1 9 5 3 2 4 8 . 0 0 3 8 3 9 . 1 9 1 1 1 1 1 1 9 8 0 - 6 5 7 . 0 6 0 ‘ 2 9 3 2 . 0 0 3 5 8 9 . 0 6 1 1 1 1 * 1 1 9 8 1 1 1 4 1 . 2 0 . 6 0 7 1 . 0 0 4 9 2 9 . 8 0 1 1 1 * 1 1 1 9 8 2 . 2 2 9 . 3 6 9 . 5 4 8 3 . 0 0 5 2 5 3 . 6 3 1 1 1 1 1 1 9 8 3 1 7 6 8 . 8 8 5 8 6 0 . 0 0 4 0 9 1 . 1 2 1 1 * 1 1 1 9 8 4 - 2 3 . 1 6 7 4 3 1 7 0 . 0 0 3 1 9 3 . 1 7 I N D E P E N D E N T V A R I A B L E S F N I R E S 8 R e s i d u a l P o o l o f I m p o r t D e m a n d A f t e r S u r p l u s E x p o r t e r s h a v e E x p o r t e d ( 1 0 0 0 M T ) F N I B R + F N I D M + F N I L D + F N I S B 9 F N I O P + F N I L O + F N I N I 9 F N I C H - F N E A R - F N E A U F D S C A - C o a r s e G r a i n S u p p l y ( 1 0 0 0 M T ) F E S C A ( - l ) * F P R O C A 4 3 0 S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s . . . — S e r i e s M e a n S . D . ‘ M a x i m u m M i n i m u m F N E C A 2 4 1 6 . 5 8 3 3 1 9 9 5 . 1 3 4 9 6 0 7 1 . 0 0 0 0 — 3 1 4 . 0 0 0 0 0 F D S C A 2 3 6 3 5 . 5 8 3 4 9 6 7 . 8 1 1 8 3 1 8 0 0 . 0 0 0 1 1 9 0 8 . 0 0 0 F N I R E S 3 8 5 1 0 . 0 4 2 2 1 6 8 3 . 1 8 4 - 7 9 2 3 7 . 0 0 0 1 2 0 0 4 . 0 0 0 C o v a r i a n c e C o r r e l a t i o n F N E C A , F N E C A 3 8 1 4 7 0 6 . 4 1 . 0 0 0 0 0 0 0 F N E C A , F D S C A 8 3 0 3 8 2 7 . 6 ' _ 0 . 8 7 4 2 2 7 2 F N E C A , F N I R E S 3 0 9 8 0 3 9 2 . 0 . 7 4 7 2 6 5 6 F D S C A , F D S C A 2 3 6 5 0 8 5 6 . 1 . 0 0 0 0 0 0 0 F D S C A , F N I R E S 7 7 2 1 4 7 3 2 . 0 . 7 4 7 9 8 9 3 F N I R E S , F N I R E S 4 5 0 5 7 0 4 3 7 1 . 0 0 0 0 0 0 0 4 3 1 ‘ 1 1 " " 1 1 o 9 M 1 0 ° m m M E " ' 5 ‘ . T 6 m 1 . - . 4 T 1 0 s u m N . 1 s _ m ' 1 . 1 ' g ' 1 , 6 4 6 6 6 0 7 9 7 2 7 4 7 6 7 9 8 9 8 2 R E G I O N A L M O D E L S I M U L A T I O N 7 J 3 ” ; H 1 . 3 5 3 : I 0 . 9 2 4 - L C A N S - I I . 8 . 0 0 8 : 0 5 . 8 3 7 . 5 N 5 . 2 0 . : 4 J W 9 - M L 3 m 1 t T 3 3 2 1 : 1 0 1 0 1 7 1 0 7 9 0 0 0 1 0 1 0 3 0 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e E . 1 4 . a & b . C o a r s e G r a i n E n d i n g S t o c k s - C a n a d a A N I N T E R N A T I O N A L A G R I C U L T U R A L T R A D E M O D E L w I T H L I N K A G E C A P A B I L I T Y V O L U M E I I I S h a y l e D a n i e l S h a c a n A T H E S I S S u b m i t t e d t o M i c h i g a n S t a t e U n i v e r S i t y i n p a r t i a l F u l f i l l m e n t o f t h e r e q u i r e m e n t s . f o r t h e d e g r e e o f M A S T E R O F S C I E N C E D e p a r t m e n t o f A g r i c u l t u r a l E c o n o m i c s 1 9 8 7 A P P E N D I X F E Q U A T I O N S T A T I S T I C S - D E V E L O P E D M A R K E T S W h e a t W P R O D H . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A D N . . . . . . . . . . . . . . . . . . . . . . . H a r v a s t e d A r e a W Y D N . . . . . . . . . . . . . . . . . . . . . . . . Y i a l d W C O N D H . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W F E D D H . . . . . . . . . . . . . . . . . . . . . . F e a d C o n s u m p t i o n H F O D D H . . . . . . . . . . . . . . . . . . . . . . F o o d & R e s i d u a l C o n s u m p t i o n W N I D N . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s U E S D H . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O D H . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A D N . . . . . . . . . . . . . . . . . . . . . . . H a r v a s t e d A r e a F Y D H . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N D H . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I D H . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s F E S D N . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s S o y b e a n C o m p l e x S P R O D N . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n S H A D E . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a S Y D H . . . . . . . . . . . . . . . . . . . . . . . . Y i a l d S H C O D H . . . . . . . . . . . . . . . . . . . . . . S o y m a a l E q u i v . C o n s u m p t i o n S O C O D H . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . C o n s u m p t i o n S H E I D H . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . N e t I m p o r t s S O E I D N . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . N e t I m p o r t s P H E L D N . . . . . . . . . . . . . . . . . . . . . . X S M E I D M I m p o r t e d a s S M N I D M S H N I D N . . . . . . . . . . . . . . . . . . . . . . S o y m e a 1 N e t I m p o r t s S O N I D N . . . . . . . . { . . . . . . . . . . . . . S o y o i l N e t I m p o r t s S N I D H . . . . . . . . . . . . . . . . . . . . . . . S o y b a a n N e t I m p o r t s S N E S D H . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E n d i n g S t o c k s S O E S D N . . . . . . . . . . . . . . . . . . . . . . S o y o i l E n d i n g S t o c k s S E S D H . . . . . . . . . . . . . . . . . . . . . . . S o y b a a n E n d i n g S t o c k s 4 3 2 T I V ' " " 7 § 7 6 A C T 7 X A % L E U v 9 9 é 0 7 - 1 7 é F 1 R 8 O 9 - E 4 E e C S d A T S I T M 7 3 5 — - — 3 % 8 5 3 3 e a A T E D 7 5 “ 1 0 0 0 H E T T O N S n 8 9 . I a s . L 8 0 . L 7 6 . I 7 2 0 a n N 6 4 n 6 0 . T 5 5 . 5 1 4 3 3 2 7 6 1 2 7 ' 9 7 9 8 3 0 . 8 8 2 . 3 3 3 . 3 8 5 - 2 3 6 0 8 8 . 9 3 9 - R E G I O N A L N O D E L S I N U L A T I O N F i g u r e F . l . a & b . W h e a t P r o d u c t i o n D e v e l o p e d M a r k e t s 4 3 4 2 1 H 1 m o . . ’ a . 0 ‘ . . 1 0 1 M 1 , , . . - - ' H . O n m m . . ' 0 ' . . . . ' 0 ‘ . E C T A R E S R E G I O N A L M O D E L S I M U L A T I O N H I L 1 9 A H 8 . 1 / ; L L ’ ) / ' 1 9 . 1 2 5 ’ - / . I - r ’ . 0 1 6 . 6 3 2 . / / . N 1 6 . 6 4 0 I / \ / / 2 1 6 . 2 4 7 - . \ / 1 ¥ \ / 1 H 1 7 . 9 5 5 - \ / « E 1 7 . 6 6 2 - \ [ 1 ’ 1 C 1 7 . 3 6 9 » \ / I T 1 7 . 0 7 7 - / 1 A 1 6 7 8 4 : ‘ R . g 7 6 7 6 - 7 7 7 6 7 6 6 6 8 1 a é 6 6 e a F i g u r e F . 2 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D W h e a t H a r v e s t e d A r e a - D e v e l o p e d M a r k e t s 4 3 4 1 0 0 0 H E C T A R E S R E G I O N A L M O D E L S I M U L A T I O N M I L L 1 9 . 4 1 6 I 1 9 . 1 2 5 ' : 0 1 6 1 m 2 t N 1 8 . 5 4 0 t 1 8 J M 7 : H 1 7 A 5 5 t 8 1 7 . 6 6 2 ~ C 1 7 . 3 6 9 : T 1 7 x n 7 : A p R 1 6 . 7 8 4 I g 7 5 7 6 . 7 7 7 6 7 9 6 6 6 ' 1 8 i 6 1 ' ; a d E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e F . 2 . a & b . W h e a t H a r v e s t e d A r e a - D e v e l o p e d M a r k e t s T h e r e l e v a n t p r i c e s f o r d e t e r m i n i n g r e v e n u e a r e t h e E C D e v e l o p e d H a r k e t s 4 3 5 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M D L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s H H A D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 8 1 0 . 0 5 2 1 0 5 0 1 3 . 2 4 5 9 - 0 . 1 6 1 5 8 2 4 0 . 6 7 4 W H A D M ( - 1 ) 0 . 7 6 9 8 5 9 5 0 . 1 4 7 9 9 7 9 5 . 2 0 1 8 2 6 5 0 . 0 0 0 H F R R 1 - 1 ) 5 0 5 8 . 8 9 7 6 2 8 9 7 . 7 7 7 6 1 . 7 4 5 7 8 5 3 0 . 1 0 0 D V 7 7 - 2 2 7 1 . 6 6 6 1 6 3 4 . 0 8 2 8 1 - 3 . 5 8 2 6 0 1 5 0 . 0 0 2 R - s a u a r e d 0 . 7 2 5 7 6 2 M e a n o f d e p e n d e n t v a r 1 8 8 1 5 . 8 5 A d j u s t e d R - s q u a r e d 0 . 6 7 4 3 4 3 S . D . o f d e p e n d e n t v a r 1 0 3 8 . 0 8 2 S . E . o f r e g r e s s i o n 5 9 2 . 3 9 5 7 S u m o f s o u a r e d r e s i d 5 6 1 4 9 2 3 . D u r b i n - H a t s o n s t a t 2 . 2 1 7 5 8 7 F - s t a t i s t i c 1 4 . 1 1 4 5 2 L o g 1 1 1 1 4 1 i h o o d — 1 5 3 . 8 3 0 8 T P E 5 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 : 4 1 1 9 6 4 6 6 1 . 8 2 4 2 0 5 7 7 . 0 1 9 9 1 5 . 2 1 : 1 : 4 1 1 9 6 5 7 3 6 . 5 5 1 2 0 7 6 3 . 0 2 0 0 2 6 . 4 1 4 : 1 : 1 1 9 6 6 - 1 1 6 3 . 8 6 1 9 3 0 6 . 0 2 0 4 6 9 . 9 1 : 4 1 : 1 1 9 6 7 - 5 1 . 7 6 3 3 1 9 3 1 9 . 0 1 9 3 7 0 . 8 1 : 1 : 4 1 1 9 6 8 7 3 7 . 1 1 3 1 9 9 5 0 . 0 1 9 2 1 2 . 9 1 : 1 4 : 1 1 9 6 9 2 6 5 . 8 8 2 1 9 5 4 5 . 0 1 9 2 7 9 . 1 1 : 1 4 : 1 1 9 7 0 3 0 9 . 4 0 7 1 9 2 4 5 . 0 1 8 9 3 5 . 6 1 : 1 4 : 1 1 9 7 1 2 5 2 . 6 9 7 1 9 3 0 9 . 0 1 9 0 5 6 . 3 1 : 4 1 : 1 1 9 7 2 - 6 9 . 3 4 6 2 1 8 9 8 0 . 0 1 9 0 4 9 . 3 1 : 4 1 : 1 1 9 7 3 - 5 5 8 . 3 6 7 1 8 2 5 9 . 0 1 8 8 1 7 . 4 1 : 4 : 1 1 9 7 4 ~ 3 7 . 9 1 3 2 1 8 6 5 5 . 0 1 8 6 9 2 . 9 1 4 : 1 : 1 1 9 7 5 - 9 5 7 . 5 2 3 1 7 2 7 5 . 0 1 8 2 3 2 . 5 1 : 1 4 : 1 1 9 7 6 5 5 7 . 0 1 2 1 8 3 9 2 . 0 1 7 8 3 5 . 0 1 : 4 : 1 1 9 7 7 - 2 . I D - 1 2 1 6 6 3 8 . 0 1 6 6 3 8 . 0 1 : 1 4 : 1 1 9 7 8 3 1 8 . 7 3 3 1 7 8 5 1 . 0 1 7 5 3 2 . 3 1 4 x 1 : 1 1 9 7 9 - 8 5 3 . 9 3 2 1 7 5 6 8 . 0 1 8 4 2 1 . 9 1 : 1 * : 1 1 9 8 0 5 9 . 1 9 1 3 1 8 2 0 5 . 0 1 8 1 4 5 . 8 1 a 4 1 : 1 1 9 8 1 - 1 6 4 . 2 2 2 ‘ 1 8 3 6 4 . 0 1 8 5 2 8 . 2 1 1 1 4 : 1 1 9 8 2 1 9 8 . 6 7 5 1 9 0 4 3 . 0 1 8 8 4 4 . 3 1 x 4 1 : 1 1 9 8 3 - 2 4 0 . 1 6 2 1 9 0 7 3 . 0 1 9 3 1 3 . 2 I N D E P E N D E N T V A R I A B L E S W H A D M = W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W F R R = W h e a t R e v e n u e / C o a r s e G r a i n R e v e n u e R a t i o ( W Y D M ( - 3 ) * W Y D M ( - 2 > + W Y D M ( - l ) * W Y D M ) / 4 * W P * * X R D M / C P I D M ( F Y D M ( - 3 ) + F Y D M ( - 2 ) + F Y D M ( - l ) + F Y D M ) / 4 * F P * * X R D M / C P I D M D V 7 7 = 1 I £ ( Y E A R . E 0 . 7 7 ) 0 O t h e r w i s e p r o d u c e r p r i c e s . 9 3 6 S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s S e r i e s M e a n ' S . D . M a x i m u m M i n i m u m W H A D M 1 8 8 1 5 . 8 5 0 1 0 3 8 . 0 8 1 8 2 0 7 6 3 . 0 0 0 1 6 6 3 8 . 0 0 0 H H A D M ( - 1 ) 1 8 8 6 2 . 3 0 0 1 0 7 0 . 4 7 3 0 2 0 7 6 3 . 0 0 0 1 6 6 3 8 . 0 0 0 H F R R ( - 1 ) 1 . 0 3 1 4 8 2 6 0 . 0 5 6 6 6 3 2 1 . 0 9 9 1 4 5 0 0 . 9 2 5 2 7 0 1 D V 7 7 0 . 0 5 0 0 0 0 0 0 . 2 2 3 6 0 6 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e ‘ C o r r e l a t i o n W H A D M . H H A D M 1 0 2 3 7 3 3 . 2 1 . 0 0 0 0 0 0 0 W H A D M . W H A D M ( - 1 ) 7 4 2 1 9 2 . 0 5 0 . 7 0 3 0 4 8 6 H H A D M . W F R R ( - 1 ) - 1 4 . 9 7 6 3 7 3 - 0 . 2 6 8 0 0 9 4 W H A D M , D V 7 7 - 1 0 8 . 8 9 2 5 0 - 0 . 4 9 3 8 0 7 6 W H A D M ( - 1 ) , W H A D M ( - 1 ) 1 0 8 8 6 1 6 . 9 1 . 0 0 0 0 0 0 0 H H A D M ( - 1 ) , H F R R ( - 1 ) - 2 9 . 5 1 3 9 9 0 - 0 . 5 1 2 1 8 5 4 W H A D M ( - 1 ) . D V 7 7 - 2 3 . 5 1 5 0 0 0 - 0 . 1 0 3 4 0 9 5 H F R R ( — 1 ) , W F R R ( - 1 ) 0 . 0 0 3 0 5 0 2 1 . 0 0 0 0 0 0 0 W F R R ( - 1 ) . D V 7 7 0 . 0 0 3 3 8 3 1 0 . 2 8 1 0 6 5 8 D V 7 7 . D V 7 7 0 . 0 4 7 5 0 0 0 1 . 0 0 0 0 0 0 0 U O < O H 0 0 0 0 z o n x a fl n € 7 0 0 " < A 0 9 0 A w u A z o n fl w o 4 0 5 0 0 0 H m a n d a fi m v m z u r A m m o 1 M e n u m a o a u e 1 < l n w o s e r m \ \ 0 0 0 0 3 0 0 3 4 c s 1 w u o u o w u t < 0 3 C D m H D m e n o m w fl H n H M Z A m a c . m a n o r A l m fi n d . N I A D H F m H m . n I m p . q e u m u m H . u & m m o u m l a m . s w w u m m 0 . 0 0 0 r 0 0 4 u . q r w ¢ 0 » u 0 . w » ¢ u m m m H m . m h m u u m 0 . 0 0 0 3 1 0 0 : 0 1 0 0 0 . 0 u m o w m 3 0 0 5 0 1 0 0 0 0 3 0 0 3 4 ( 0 1 m . 4 m m m w 0 D n c c n a l n m l a a c w x e n 0 . m w m m 0 » m . o . 0 1 0 0 0 0 3 0 0 3 4 < 0 1 0 . m w 0 m m # m . m . 0 1 1 I u 1 l l l w o z 0 . ~ m 0 m fl m w a s 0 1 m a c m 1 0 0 1 a n 0 0 . ¢ m m m w m o c 1 a u 3 l t l e u 0 3 n a m e H . m & m o m w fl l m d m n w m a w n w w w . m b b m V o n w e r e p w j o o n H m . ¢ q m o m m o u w n c u » u a o « o a u m m m m u c n r n n a c n r n H a a m u n u u 1 u " a m m o o . o m w u m “ . m u m m m H . 4 4 u m m " u " 1 u " H a m » o . o p o u m “ . m u m m m H . w m m m m “ u u u 1 " 5 6 m m o . m 1 m 1 m m . m o m a m “ . m m a m q " u 1 u u ” “ m o m n o . p o p m m H . m e m u m m . o m u m m n u u 1 u u m e r o . o m 1 m o m . m o m m u m . p 1 1 u m “ u n 1 u " H m m u 0 . 0 1 4 4 0 u . m m p o m m . m u u u " 1 . n u “ a m m m 1 0 . 5 4 2 m u m . » 1 m a u m . u m t o m " u n 1 “ ” e m u 0 . 5 1 m 4 1 w . m m u a u m . » o q 1 u " u 1 u " C o m m n o . o o o u 1 m . 1 w s m m m . 1 m m u m " 1 n u " A m m o u o . » u u u m m . 1 m o m m m . m u m u m " 1 u u u 1 H u g o n o . m m m o m w . u q m m m w . m u m o o " u " 1 u u ” w a s 0 . 0 5 4 0 » m . q u u q m m . 4 ¢ o 1 q " u 1 " u u k u m n o . 0 p r p m . m o q m m m . m m o w o “ u 1 u " ” m u m a o . o o m m m m . m m u m p m . m o o o m “ u u 1 " e m u » o . » u m o p u . a u q » m m . m q m p m “ ” 1 u u “ H o q u n o . » m m m u m . m m u u u u . o u m m m " 1 u u u " ” m u m u o . m 1 m m m w . m m m m u n . 2 u p u u “ 1 n i u u q u q 1 o . m o m u u m . m m q o m u . m o m 1 o " u i 1 u " ” m a m 0 . 2 » m u m u . u m m o m “ . m m o u m " . 1 u u " ” m u m n o . 0 u m o m u . u m p m m u . u u u m m i . a u 1 " H o m o o . m 1 m m m “ . m m m m p 6 . 1 m m w u " u 1 " u 2 s o m e 1 0 . 0 m m m m n . 1 q p u o n . 1 m q w u “ . n . 1 “ H m m m 0 . 5 m o m m u . 4 1 m 4 u u . m m q q u ” u u 1 u " H m m u o . o m u m » n . 4 0 0 u 4 u . m u u u m H z o m v m z o m Z d ( D w a w r m m F 0 0 4 I P b a fi m e V 1 4 3 8 S M D L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m H Y D M 2 . 7 5 3 6 2 9 7 0 . 5 9 0 3 5 3 9 3 . 7 4 8 7 2 7 0 1 . 8 5 6 9 9 0 0 L O S T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n W Y D M , W Y D M 0 . 3 3 3 9 9 6 2 1 . 0 0 0 0 0 0 0 N Y D M . L O E T 0 . 0 5 4 5 4 8 6 0 . 9 6 8 5 1 3 6 L O B T . L O G T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 4 3 8 S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m H Y D M 2 . 7 5 3 6 2 9 7 0 . 5 9 0 3 5 3 9 3 . 7 4 8 7 2 7 0 1 . 8 5 6 9 9 0 0 L O S T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n W Y D M , W Y D M 0 . 3 3 3 9 9 6 2 1 . 0 0 0 0 0 0 0 N Y D M . L O B T 0 . 0 5 4 5 4 8 6 0 . 9 6 8 5 1 3 6 L O G T . L O G T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 . . . 0 . . ' 3 7 . 3 . . 1 ' O . . . . 0 0 . 7 . 4 R E G I 7 T “ 6 5 9 8 4 6 3 9 8 6 1 7 6 6 6 5 5 6 6 6 5 5 I 5 1 . . . . . . . . . . “ I m I 1 H 1 0 9 1 2 3 4 6 6 7 6 0 1 2 4 3 6 6 9 7 8 I 1 5 9 2 5 8 1 4 7 O 3 y ' 7 ' i 5 2 r » : 1 : - r - - ' C i o o o H 2 7 T O N S f M I L I 0 N M T 7 6 7 6 F i g u r e F . 3 . a & b . 7 o a T M 1 , . . . . . . . ‘ s e . . - - - - " " 8 1 8 2 8 3 . O B - ' 7 9 ’ - . - - # , , . . . 7 8 S I M U L A T I O N . . . . a e e e e e e e e a s e . - ” 7 6 M A L 7 ? L O D E . " " 4 . 1 . 4 1 1 < 1 . h s p e d 7 6 h e a t r a k l e W s t 7 t 6 a C o n b s 6 1 6 7 8 3 u m p t i o n - D e v e l o 5 N 7 4 3 9 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - — E S T I M A T E D 7 2 7 3 7 4 7 5 7 6 7 7 7 3 7 9 3 3 3 1 3 2 3 3 . . 1 1 1 C I ; i 7 6 7 6 7 7 7 6 E U W X A h L e P 9 - a 1 t O 7 F S 5 - e T e - - d A C T . 4 . a 6 b . 9 7 F 1 8 0 6 1 O 9 - C R 8 o E 4 E n C S s A T u S I m T M p A t T i E o D n 6 - 3 . l 2 2 3 I 2 6 6 6 1 D e v e l o p e d 3 3 3 3 3 1 0 2 5 m 0 ° N . E 7 1 5 3 3 3 1 ‘ 0 1 3 3 3 3 . N . S 5 3 3 3 M ’ I I . L 2 6 . 0 3 8 I 2 4 . 3 6 1 0 2 2 . 6 6 9 N 2 1 . 0 2 4 1 9 . 3 5 9 ’ 5 ‘ 1 7 . 6 9 4 T 1 6 . 0 2 9 1 4 . 3 6 4 T 1 2 . 6 9 9 0 1 1 . 0 3 4 N 5 F i g u r e F 4 4 0 “ s e fl . . . I . . . a e e e e e e e e e e e ' a e ~ . . . . . . e f . . R E G I O N A L M O D E L S I M U L A T I O N M a r k e t s 4 4 1 D e v e l o p e d M a r k e t s P e r C a p i t a w h e a t F e e d C o n s u m p t i o n ( 1 0 0 0 M T ) E H P L 1 9 5 1 - 1 9 8 4 2 4 O b s e r v a t z o n s L S I ! D e p e n d e n t v a r i a b l e 1 5 P C N F E D V A R I Q B L E C O E F F I C I E N T S T D . E P R O F T - S T A T . 2 - T A I L S I G . C - 0 . 0 2 3 6 6 4 4 0 . 0 0 5 4 7 1 2 - 4 . 3 2 5 2 7 8 1 0 . 0 0 0 P C W F E D 1 - 1 ) 0 . 8 0 4 5 1 0 1 0 . 1 1 6 3 6 2 3 6 . 9 1 3 8 3 7 7 0 . 0 0 0 S U B S I l 0 . 0 0 4 4 0 3 7 0 . 0 0 1 3 2 7 9 3 . 3 1 6 3 4 1 2 0 . 0 0 4 S H P E C U 0 . 0 0 1 6 8 8 9 0 . 0 0 0 6 7 6 0 2 . 4 9 8 4 3 7 8 0 . 0 2 2 P C D w S U 0 . 1 6 4 2 4 5 3 0 . 0 3 5 4 8 7 4 4 . 6 2 8 2 6 6 8 0 . 0 0 0 D V 8 3 0 . 0 0 9 5 8 7 4 0 . 0 0 2 2 8 7 9 4 . 1 9 0 4 9 9 8 0 . 0 0 1 R - e e u a r e d 0 . 9 3 5 9 3 8 M e a n o f d e p e n d e n t v a r 0 . 0 2 7 9 5 2 A d j u s t e d R - s o u e r e d 0 . 9 1 8 1 4 3 S . D . o f d e p e n d e n t v a r 0 . 0 0 7 3 6 0 8 . 8 . o f r e g r e e e x o n 0 . 0 0 2 1 0 6 S u m o f s q u a r e d r e s i d 7 . 9 8 D - 0 5 D u r b i n - H a t e o n s t a t 2 . 2 5 2 1 5 6 F - s t a t i s t x c 5 2 . 5 9 5 4 9 L o g l i k e l i h o o d 1 1 7 . 3 1 2 1 T P E 5 / 2 4 P e s i d u a l P l o t 0 0 5 R E S I D U A L A C T U A L F I T T E D : : * 1 : 1 1 9 6 1 - 0 . 0 0 1 7 2 0 . 0 1 8 8 6 0 . 0 2 0 5 8 1 : 4 1 : 1 1 9 6 2 - 0 . 0 0 0 6 6 0 . 0 2 1 7 2 0 . 0 2 2 3 8 1 4 : 1 : 1 1 9 6 3 - 0 . 0 0 2 3 0 . 0 1 9 4 0 0 . 0 2 1 7 6 1 : 1 t : 1 1 9 6 4 0 . 0 0 1 9 0 0 . 0 2 2 5 9 0 . 0 2 0 6 9 : 4 : 1 : 1 1 9 6 5 - 0 . 0 0 2 3 8 0 . 0 2 2 5 9 0 . 0 2 4 9 6 : : e : : 1 1 9 6 6 - 0 . 0 0 0 3 9 0 . 0 2 1 9 5 0 . 0 2 2 3 1 : 4 1 : 1 1 9 6 7 - 0 . 0 0 0 8 1 0 . 0 2 3 5 0 - 0 2 4 3 1 : : 1 : 1 1 9 6 8 0 . 0 0 1 1 0 0 . 0 2 6 4 4 0 . 0 2 5 3 4 1 : 1 : fi 1 1 9 6 9 0 . 0 0 2 9 1 0 . 0 3 0 5 0 0 . 0 2 7 5 9 1 : 1 : 4 1 1 9 7 0 0 . 0 0 3 4 7 0 . 0 3 1 3 4 0 . 0 2 7 8 7 1 : 4 1 z 1 1 9 7 1 - 0 . 0 0 0 9 8 0 . 0 3 0 2 9 0 . 0 3 1 2 7 1 : 1 § : 1 1 9 7 2 0 . 0 0 0 8 8 0 . 0 3 4 8 0 0 . 0 3 3 9 2 1 : 6 1 : 1 1 9 7 3 - 0 . 0 0 0 9 4 0 . 0 2 7 0 3 0 . 0 2 7 9 6 1 : 1 : 9 1 1 9 7 4 0 . 0 0 3 2 4 0 . 0 2 8 1 6 0 . 0 2 4 9 1 1 4 : 1 . : 1 1 9 7 5 - 0 . 0 0 4 4 4 0 . 0 2 2 3 0 . 0 2 5 6 7 1 z * 1 : 1 1 9 7 6 - 0 . 0 0 0 4 9 0 . 0 2 3 2 8 0 . 0 2 3 7 7 1 : 1 * : 1 1 9 7 7 0 . 0 0 1 3 5 0 . 0 2 3 6 0 . 0 2 3 0 1 1 : 1 : 1 1 9 7 8 0 . 0 0 1 1 8 0 . 0 2 7 1 7 0 . 0 2 5 9 9 1 : 1 6 : 1 1 9 7 9 0 . 0 0 0 5 9 . 0 2 7 8 9 0 . 0 2 7 3 1 1 : * 1 : 1 1 9 8 0 - 0 . 0 0 1 0 6 0 . 0 2 9 1 0 0 . 0 3 0 1 6 1 : 4 : 1 1 9 8 1 - 2 . 0 D - 0 5 0 . 0 3 0 5 5 0 . 0 3 0 5 7 1 : 1 9 : 1 1 9 8 2 0 . 0 0 0 6 0 0 . 0 3 3 7 6 0 . 0 3 3 1 6 1 3 * : 1 1 9 8 3 6 . 1 D - 1 8 0 . 0 4 5 9 1 0 . 0 4 5 9 1 1 : 9 1 : 1 1 9 8 4 - 0 . 0 0 0 9 7 0 . 0 4 8 4 3 0 . 0 4 9 4 0 I N D E P E N D E N T V A R I A B L E S P C W F E D 8 W h e a t F e d P e r C a p i t e ( 1 0 0 0 M T ) N E E D D M / P O R D M S U B S I D I 8 R e e l E x p o r t S u b s i d y ( w P D M 2 X R D M / C P I D N ) ~ ( W P 4 X R D M / C P I D M ) S N P E C U 8 R e e l D e v e l o p e d M a r k e t S o y n e a l P r i c e S M P - X R D M / C P I D M P C D W S U 3 D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) < w s s n n < - 1 > + N P R O D H J I P O P D M D V 8 3 8 l I £ ( Y E A R . E 0 . 8 3 ) 0 O t h e r w i s e . 0 6 N m J fi P H o o p I w o m b U h D a m m 1 < m d u o j m m m 1 u m m E m m a m . U . z m x p a c a Z u n u a c a w n z n m m 0 . 0 n u o m n w 0 . 0 0 0 u m o n c . 0 6 m h n o n c . 0 5 m m m o n n n z n m o a l w o 0 . 0 m o m n o o 0 . 0 0 0 0 6 6 m c . 0 6 m p o m 0 . 0 H m m m n n m c m m u u o . m u u u p n w c . ¢ ~ u m m u u 0 . 0 0 0 H u n m 1 0 . 0 m o n p o o - m z n m n c M . u a o m u u H 0 . 0 0 0 0 M p p m . n p m o p n o H . w m n u m o o n n o s m c 0 . H > H o u p o 0 . 0 m o m p u m o . n 0 6 6 m u n o . H H n m o w h o c m u 0 . 0 6 5 0 0 0 0 o . n o » ~ n b w H . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 n o < m x w m n n m n 0 1 x m p w d u o o n n z n m o . n n z fl m o . m . ~ o ~ o l o m H . o o o o o o o t n z fl m o 1 0 0 8 fl m o A l u o u . o u u o l o m o . m m u p p m o u n z m m o . m c m m u p 1 0 . 0 0 p o o u o I o . q u p o ~ m v n z fi m o . m z n m n c I o . o o p a o o w 1 0 . n u p o p u o n n z fl m o . fi n o z m c 0 . 0 0 0 5 9 m m o . m p u u o u o n n z n m o . o < m u 0 . 0 0 0 0 6 m b o . m ~ o m b u o n n z fl m o A I ~ 3 . n n £ fl m o fi l e o u . m o e o l o m 5 . 0 0 0 0 0 0 0 n n z n m o l u u v . m c m m 5 5 v n z n m o l n w w . m x n m n c w o z n m o l n p v . n n o z m c 1 0 . 0 0 H ¢ m m 0 1 0 . 0 0 H m o m o m . m u u o l o m I Q . O A H X H I O H 0 0 1 : . n n m n u b m O . m e m 0 0 0 u n z n m u l l p v . o < m u 0 . 0 0 0 m m o e o . m n n m m m o m c m m H H 1 m c m m H u 0 . e m u e p u & H . o o o o o o o m c m m H H . m z n m n c o . o u u o b u o O . H o o o o p o m c m m H » . fi n o z m c n o . o o u u u m u I 0 . p m o ¢ o ~ o m c m m u u . o < m u 1 0 . 0 5 0 H m u u I Q . » M ¢ M 0 0 0 m a fi m n c 1 m z n m n c o . m o u m m u w 5 . 0 0 0 0 0 0 0 m z n m n c . n n o z m c 1 0 . 0 0 0 6 0 m m I o . m p o a m m u m z m m n c . o < m u 1 0 . 0 m o m p p o I o . u u m m o o m fi n o z m c . n n o z m c 0 . 0 0 0 3 0 u 6 5 . 0 0 0 0 0 0 0 . n n o z m c . o < m m 0 . 0 0 H u m m o o . u u m u u p m o < m u . o < m u c . 0 u o o u o o H . o o o o o o o I I I N . 4 4 2 P C W F E D ( - 1 ) . S U B S I 1 P C N F E D ( - 1 ) , S M P E C U P C N F E D ( — 1 ) . P C D W S U P C W F E D ( - 1 ) . D V 8 3 5 0 5 5 1 1 . 5 0 5 5 1 1 S U B S I 1 . S M P E C U S U B S I 1 . P C D N S U s u s s : 1 , n v e 3 S M P E C U . S M P E C U S M P E C U . P C D w s u s m p s c u . o v s 3 P C D N S U . P C D N S U P c o w s u . o v a 3 D v a z . o v a z - 0 . 0 0 1 4 5 2 9 - 0 . 0 0 1 2 9 8 6 8 . 5 3 7 D - 0 5 0 . 0 0 0 2 8 9 1 0 . 1 6 7 1 1 3 4 0 . 0 3 3 6 4 3 0 - 0 . 0 0 3 7 7 2 1 - 0 . 0 1 0 1 5 3 7 0 . 5 6 3 8 2 7 2 - 0 . 0 0 7 6 9 8 8 - 0 . 0 2 6 8 4 1 9 0 . 0 0 0 4 0 3 4 0 . 0 0 1 3 6 8 0 0 . 0 3 9 9 3 0 6 - Q . 6 0 0 6 1 9 6 - ' . ' . ' . 1 9 2 2 7 4 5 0 . 7 1 8 2 6 9 6 0 . 2 4 4 5 2 5 9 1 . 0 0 0 0 0 0 0 0 . 1 0 9 6 0 1 6 - 0 . 4 5 9 4 0 1 0 - 0 . 1 2 4 2 9 9 0 1 . 0 0 0 0 0 0 0 - 0 . 5 1 0 4 5 5 3 - 0 . 1 7 8 8 9 0 5 . 1 . 1 : ; ( : ) ( : ) ( : ) t j 1 4 ; ) ( : p 0 . 3 3 8 3 3 4 8 1 . 0 0 0 0 0 0 0 S H P L 1 9 6 1 1 9 8 4 2 4 O b s e r v a t i o n s B e r l e s M e a n S . D . M a x z m u m M z n l m u m P c h E D 0 . 0 2 7 9 5 2 1 0 . 0 0 7 3 5 9 9 0 . 0 4 8 4 2 9 6 0 . 0 1 8 8 5 9 2 P C N F E D ( - 1 ) 0 . 0 2 6 8 2 0 9 0 . 0 0 6 0 4 4 5 0 . 0 4 5 9 1 4 5 0 . 0 1 8 8 5 9 2 S U E S I l 0 . 5 3 7 7 1 2 7 0 . 4 1 7 5 8 7 3 0 . 9 6 7 1 3 2 8 - 0 . 6 8 9 9 4 9 0 ' S M P E C U 2 . 3 4 0 8 3 7 1 0 . 7 6 7 0 3 4 1 5 . 2 4 8 6 1 2 0 1 . 1 5 2 2 5 9 0 P C D N S U 0 . 1 4 1 9 7 1 0 0 . 0 2 0 5 1 7 8 0 . 2 0 4 6 2 7 2 0 . 1 1 2 5 6 8 4 D V 8 3 0 . 0 4 1 6 6 6 7 0 . 2 0 4 1 2 4 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t 1 o n P c h E D . P c h E D . 5 . 1 9 1 D - 0 5 1 . 0 0 0 0 0 0 0 P C N F E D . P C N F E D ( - 1 ) 3 . 6 3 7 D - 0 5 0 . 8 5 3 1 1 8 0 P C N F E D . S U B S I I - 0 . 0 0 1 0 9 3 0 — 0 . 3 7 1 1 0 1 2 P C N F E D , S M P E C U - 0 . 0 0 1 4 6 6 2 - 0 . 2 7 1 0 1 5 0 P C W F E D . P C D N S U 0 . 0 0 0 1 1 8 3 0 . 8 1 7 7 9 7 6 P C W F E D , D V 8 3 0 . 0 0 0 7 4 8 4 0 . 5 1 9 8 4 3 0 P C N F E D ( - 1 ) , P c h E D ( — 1 ) 3 . 5 0 1 0 - 0 5 1 . 0 0 0 0 0 0 0 ? “ H R ! : 1 " 4 ' % - ) C z : n 1 1 r v v v v v v v v v v v v I I L I A l L L L L D J l e l l F i g u r e F . 5 . a 8 b . W h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n C O O P 4 7 . 4 6 . 4 6 . 4 6 . 4 6 . 4 5 . 4 5 . 4 5 . 4 5 . . 7 7 1 : H i ! 2 ( D P I F I ‘ P Q Z 4 4 1 6 9 9 0 2 ' 6 3 6 3 7 0 1 0 3 5 3 7 5 7 0 0 3 8 4 4 3 ” ’ 0 . . . 4 . _ _ o o o f ' . . . . 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 R E G I O N A L H O D E L S I M U L A T I O N “ a m m o q 1 r ! 7 é 7 7 7 6 v é a b 8 i a é E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D D e v e l o p e d M a r k e t s 3 3 8 A 8 3 D e v e l o p e d M a r k e t a . 4 4 4 P e r C a p i t a w h e a t F o o d a n d R e s i d u a l C o n s u m p t i o n ( 1 0 0 0 M T ) E M F L 1 9 6 1 - 1 9 8 3 2 3 D b s e r v a t z o n s L S I ! D e o e n d e n t V a r z a b l e I S P c h O D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 0 . 1 3 . 0 9 8 9 4 0 . 0 0 5 0 7 4 5 2 5 . 8 1 3 3 7 6 0 . 0 0 0 Y E A R - 0 . 0 0 0 4 6 9 7 5 . 6 6 8 0 - 0 5 - B . 2 8 6 6 3 4 8 O . 0 0 0 N P D H - 0 . 0 0 1 0 1 7 3 0 . 0 0 0 8 0 7 6 - 1 . 2 5 9 6 8 1 9 0 . 2 2 2 R - s q u a r e d 0 . 8 1 8 2 6 7 M e a n o f d e p e n d e n t v a r 0 . 0 9 5 3 7 6 fi d j u s t e d R - s q u a r e d 0 . 8 0 0 0 9 3 S . D . o f d e p e n d e n t v a r 0 . 0 0 3 2 2 9 S . E . o f r e g r e s s i o n 0 . 0 0 1 4 4 4 S u m o f s q u a r e d r e s i d 4 . 1 7 D - 0 5 D u r b i n - N a t s o n s t a t 0 . 9 0 8 3 9 6 F - s t a t i s t i c 4 5 . 0 2 5 6 7 L o g l i k e l i h o o d 1 1 9 . 4 0 0 6 T P E 4 / 2 3 R e s i d u a l F l o : o b s R E S I D U Q L A C T U A L F I T T E D ? : 1 * : i 1 9 6 1 0 . 0 0 0 9 4 0 . 1 0 0 9 0 0 . 0 9 9 9 6 3 = = : 9 : 1 9 6 2 0 . 0 0 2 3 2 0 . 1 0 1 8 8 0 . 0 9 9 5 6 : : 1 * : : 1 9 6 3 0 . 0 0 0 8 9 . 1 0 0 0 5 0 . 0 9 9 1 7 : : * : : : 1 9 6 4 - 0 . 0 0 1 0 0 0 . 0 9 7 7 9 0 . 0 9 8 7 9 : : z * : : 1 9 6 5 0 . 0 0 0 5 1 0 . 0 9 9 1 4 0 . 0 9 8 6 3 : : * 2 : : 1 9 6 6 - 0 . 0 0 0 6 9 0 . 0 9 7 2 8 0 . 0 9 7 9 8 : : * : : : 1 9 6 7 - 0 . 0 0 0 9 8 0 . 0 9 6 7 1 0 . 0 9 7 6 9 : * : : : : 1 9 6 8 - 0 . 0 0 1 5 1 0 . 0 9 5 7 3 0 . 0 9 7 2 4 : : 4 : : : 1 9 6 9 - 0 . 0 0 1 1 3 0 . 0 9 5 9 8 0 . 0 9 7 1 1 : 4 : t = : 1 9 7 0 - 0 . 0 0 1 5 3 0 . 0 9 4 9 9 0 . 0 9 6 5 4 : : * : : i 1 9 7 1 - 0 . 0 0 0 3 3 0 . 0 9 5 8 6 0 . 0 9 6 1 9 : * : : : : 1 9 7 2 - 0 . 0 0 1 8 6 0 . 0 9 3 3 7 0 . 0 9 5 2 3 : : * : : : 1 9 7 3 - 0 . 0 0 1 2 3 0 . 0 9 2 3 6 0 . 0 9 3 6 0 : : : * : : 1 9 7 4 0 . 0 0 1 2 1 0 . 0 9 4 9 6 0 . 0 9 3 7 5 : : : : : 1 9 7 5 0 . 0 0 0 5 8 0 . 0 9 4 3 6 0 . 0 7 3 7 : : : * : : 1 9 7 6 0 . 0 0 0 1 2 0 . 0 9 3 9 4 0 . 0 9 3 8 2 : : : : : 1 9 7 7 0 . 0 0 2 1 3 0 . 0 9 5 5 9 0 . 0 9 3 4 6 : : : 9 : z 9 7 8 0 . 0 0 0 9 1 0 . 0 9 3 8 9 0 . 0 9 2 9 8 : : : : 4 : 1 9 7 9 0 . 0 0 1 5 5 0 . 0 9 4 0 0 ' ) . 0 9 2 4 5 : : : : * : 1 9 8 0 0 . 0 0 1 9 0 0 . 0 9 3 9 9 0 . 0 9 2 0 9 : : : * : : 1 9 8 1 0 . 0 0 0 9 3 0 . 0 9 2 6 6 0 . 0 9 1 7 7 : * : : : : 1 9 8 2 - 0 . 0 0 1 9 3 0 . 0 8 9 2 4 0 . 0 9 1 1 7 1 * : : : : 1 9 8 3 - 0 . 0 0 1 7 7 0 . 0 8 8 9 7 0 . 0 9 0 7 5 I N D E P E N D E N T V A R I A B L E S Y E A R 8 1 9 6 0 8 6 0 . l 9 6 1 = 6 1 . . . . U P D H = R e a l D e v e l o p e d M a r k e t B o r d e r W h e a t P r i c e W P 9 X R D M / C P I D M . P fi m m Z fi F H o m e I H o w ” U H D a m m 1 < w « » 0 3 m m m 3 w m m 3 0 m : m . o . z m x H a c s z p a u a c a n n z n o o 0 . 0 0 m u u m u 0 . 0 0 u m n o m o . w o p m u m o 0 . 0 m m n u u m < m b m u m . o o o o o o 0 . 0 m m u u o o m u . 0 o o o o o 0 3 . 0 0 0 0 0 0 £ 0 0 3 “ . 0 0 0 3 m m o 0 . 3 4 m 0 m m o H . 0 m u m b o o H . 3 0 u m 0 3 0 n o < m 3 u w j n m 0 0 1 1 m ~ w 6 4 0 3 n n z fl o o . n n z fl o o o . n w o c l o o 3 . 0 0 0 0 0 0 0 n n z fl o o . < m b m 1 0 . 0 3 m v m h m I o . m o o m u m u n o : n o o . z n o z o . o o o o ¢ m ~ 0 . 3 3 0 4 0 m u < m » m . < m b m 3 9 . 0 0 0 0 0 0 3 . 0 0 0 0 0 0 0 < m b m . £ n o z I H . m ¢ o u m u m n o . m o m m o u u 2 0 0 3 . 2 3 0 : o . m ~ o u u p m 3 . 0 0 0 0 0 0 0 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 J l L l l L J l L J l l l l I m 7 2 I ' T V ' Y f V ' V T V V ' T r l 0 0 0 H . E T ’ 1 ' C ) N . 8 6 . 5 8 3 H 4 . 2 7 8 I 1 . 9 9 3 L - . 2 9 2 1 - - 2 . s 7 1 I ~ 4 . 8 8 1 0 4 . 1 4 3 N - 9 . 4 3 1 5 - 1 1 . 7 1 6 T - 1 4 . 0 0 1 F i g u r e F . 6 . a & b . 4 4 6 R E G I O N A L M O D E L S I M U L A T I O N I - ‘ 7 ‘ \ I H ‘ 7 6 7 6 ' 7 1 7 8 7 8 8 0 8 1 8 2 8 5 e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - ’ - ' E 5 T I H A T E D W h e a t N e t I m p o r t s - D e v e l o p e d M a r k e t s D e v e l o p e d M a r k e t a P e r C a p i t a W h e a t N e t I m p o r t s E M F L 1 9 6 1 - 2 4 O b s e r v a t i o n s 1 9 9 4 4 4 7 ' ( 1 0 0 0 M T ) L S X I D e p e n d e n t V a r 1 a b l e 1 5 P C N N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 0 . 0 9 4 0 1 9 5 0 . 0 0 7 3 3 2 5 1 2 . 8 2 2 2 4 1 0 . 0 0 0 F C D W S U - 0 . 6 0 9 0 0 2 9 0 . 0 4 6 7 3 3 1 - 1 3 . 0 3 1 5 2 2 0 . 0 0 0 S U B S I l 0 . 0 0 3 2 1 9 6 0 . 0 0 2 2 9 6 2 1 . 4 0 2 1 3 0 8 0 . 1 7 5 9 - e a u a r e d 0 . 9 1 9 2 3 7 M e a n 0 + d e p e n d e n t v a r 0 . 0 0 9 2 9 0 A d J u s t e d R - s q u a r e d 0 . 9 1 1 5 4 5 S . D . 0 + d e p e n d e n t v a r 0 . 0 1 3 7 3 4 S . E . o f r e g r e 5 5 1 o n 0 . 0 0 4 0 8 5 S u m o f s q u a r e d P E S l d 0 . 0 0 0 3 5 0 D u r o i n - W a t s o n s t a t 1 . 0 7 2 1 2 3 F - s t a t i s t i c 1 1 9 . 5 0 9 9 L o g 1 1 1 : 6 1 i h o o d 9 9 . 5 6 0 8 6 T P E 6 / 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 2 : 8 3 8 - - _ _ _ _ _ _ 1 : 1 0 : 1 1 9 6 1 0 . 0 0 3 2 0 0 . 0 3 1 7 3 0 . 0 2 8 5 3 : : 1 4 1 1 9 6 2 0 . 0 0 4 3 5 0 . 0 2 0 2 0 0 . 0 1 5 8 4 1 : 1 * : 1 1 9 6 3 0 . 0 0 0 3 5 - 0 . 0 2 4 1 7 0 . 0 2 3 8 2 1 3 * 1 : 1 1 9 6 4 — 0 . 0 0 2 1 0 0 . 0 1 6 2 3 0 . 0 1 8 3 3 1 : 1 4 : 1 1 9 6 5 0 . 0 0 2 6 7 0 . 0 1 9 2 2 0 . 0 1 6 5 5 1 : 1 + : 1 1 9 6 6 0 . 0 0 0 8 4 0 . 0 2 2 6 7 0 . 0 2 1 8 3 1 : 1 * : 1 1 9 6 7 0 . 0 0 0 7 3 0 . 0 1 4 8 8 0 . 0 1 4 1 5 1 : 1 : * 1 1 9 6 8 0 . 0 0 5 2 1 0 . 0 1 6 2 3 0 . 0 1 1 0 2 1 : 0 1 : : 1 9 6 9 - 0 . 0 0 2 4 7 0 . 0 1 3 9 3 0 . 0 1 6 4 0 1 : 1 4 : 1 1 9 7 0 0 . 0 0 3 1 1 0 . 0 2 7 3 6 0 . 0 2 4 2 5 : : : 4 : : 1 9 7 1 0 . 0 0 2 6 4 0 . 0 1 7 4 9 0 2 0 1 4 8 5 1 : 1 * : 1 1 9 7 2 0 . 0 0 1 2 3 0 . 0 1 1 6 5 0 . 0 1 0 4 2 1 : 1 * : 1 1 9 7 3 0 . 0 0 1 9 5 0 . 0 1 2 2 8 0 . 0 1 0 3 4 1 : 1 4 : 1 1 9 7 4 0 . 0 0 3 8 4 0 . 0 0 6 0 4 0 . 0 0 2 2 0 1 * 1 : 1 1 9 7 5 - 0 . 0 0 4 0 3 0 . 0 0 7 0 2 0 . 0 1 1 0 5 1 : * 1 : 1 1 9 7 6 — 0 . 0 0 3 8 8 0 . 0 0 8 4 1 0 . 0 1 2 2 9 1 : * 1 - : 1 1 9 7 7 - 0 . 0 0 3 8 4 0 . 0 1 2 3 0 0 . 0 1 6 1 4 1 : * 1 : 1 1 9 7 8 - 0 . 0 0 1 4 1 0 . 0 0 4 6 2 0 . 0 0 6 0 2 1 * 1 : 1 1 9 7 9 — 0 . 0 0 4 3 8 - 3 . 7 D - 0 5 0 . 0 0 4 3 4 1 4 1 : 1 1 9 8 0 - 0 . 0 0 4 4 9 - 0 . 0 0 8 0 6 — 0 . 0 0 3 5 7 1 * : 1 : 1 1 9 8 1 - 0 . 0 0 6 7 4 - 0 . 0 0 8 2 4 - 0 . 0 0 1 5 0 1 4 1 : 1 1 9 8 2 - 0 . 0 0 4 4 0 - 0 . 0 1 3 2 1 - 0 . 0 0 8 8 1 1 : * 1 : 1 1 9 8 3 - 0 . 0 0 1 5 4 - 0 . 0 1 2 8 8 - 0 . 0 1 1 3 4 1 : 1 : 1 1 9 8 4 0 . 0 0 9 1 6 - 0 . 0 2 1 0 2 - 0 . 0 3 0 1 8 2 : = = - — - = 8 = = = = = = = = = = = = = = = = = = 8 8 = = I N D E P E N D E N T V A R I A B L E S S U B S I D l 8 R e a l E x p o r t S u b s i d y < w v b fl o x a n n / C P I D n 1 - < w p ~ X R D M / C P I D M > ( 1 0 0 C 1 l f T ) P C D W S U 8 D o m e e t i c W h e a t S u p p l y P e r C a p i t a ( W E S D H ( - l ) + W P R O D M ) / P O P D M M X fi F “ 0 0 » I H o m b U h D u m m 1 < m n 0 0 3 m . b h m m m fi u m m 3 0 m : w . 0 . z w x u a c a i j u a c a n n z z H 0 . 0 0 0 n 0 0 0 o . c ~ u u u u o 0 . 0 u p u u p o I 0 . Q m p o m 0 b fi n o z m c Q . H » H n u » 0 0 . 0 0 0 m p u m o . n o b o n u m o . ~ ~ n m o m ¢ m c m m H H o . m u u u n u o . n ~ u m fl u o . o o u p u w n o . 0 m o o p o o n o < m z ~ m 3 n m n o x z m w d e O J n n z z H . n n £ z H 0 . 0 0 0 H m 0 m H . 0 0 0 0 0 0 0 n n z z a . n n o z m c I o . o o o m m u m I o . o m p m H u M w n z z u . m c m m H H o . o c m m u m u 0 . 0 H m m u m u v n o z w c . n n o z m c 0 . 0 0 0 6 0 0 » H . 0 0 0 0 0 0 0 n n o z m c a m c m m H H I o . o o u u v m ~ I o . ¢ m o b o u o m c m m e m e m m H H O . H O V u u u b H . 0 0 0 0 0 0 0 H > C D < O : ” “ 4 4 - 0 5 2 0 ( 3 1 F " I P 1 P D C Z l J L J l l l l l ’ I 1 9 I I I 1 8 0 0 ' 1 7 0 0 9 I S I I I 1 5 " . 1 4 " . 1 3 " . 1 2 " . 1 1 8 0 0 . 0 . 7 3 7 4 4 4 9 e e e ‘ e . e 0 9 ” e e 0 0 " . 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 R E G I O N A L M O D E L S I H U L A T I O N 2 0 . 1 9 . 1 8 . 2 3 9 3 1 3 3 9 3 - 1 7 . 4 7 1 : 1 3 . 5 4 3 : 1 5 . 3 2 5 : 1 4 . 7 0 2 I 1 3 . 7 3 0 . 1 2 . 3 5 7 1 1 . 3 3 4 ~ 1 3 F i g u r e F . 7 . a & b . A C T U A L 3 1 - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 E X W h e a t E n d i n g S t o c k s - 3 6 - - - E S T I M A T E D D e v e l o p e d M a r k e t s 4 5 0 1 1 N 1 o . 2 ” . 3 , ; 0 0 9 3 1 1 3 3 > . _ . \ ~ I H m ‘ E T m T 0 w i l l N l S 5 “ ' . . ' _ 6 4 6 6 6 8 7 0 7 2 7 4 ' 2 6 7 8 8 0 8 2 R E G I O N A L H O D E L S I M U L A T I O N 1 1 1 . 9 4 9 L Q 5 . 0 3 . 5 2 4 - . / : I 1 0 5 . 0 9 9 I / I f : : 1 O L 6 7 4 t ( / 1 I 9 8 . 2 . . 5 / 3 . _ / , " . . n / 7 - 0 9 4 . 3 2 3 E \ \ j / : N 9 1 4 m m 1 ’ 1 3 7 . 9 7 3 1 3 H 3 4 . 5 4 3 ; I T 3 1 . 1 2 3 t I 7 5 7 3 . 7 7 7 3 7 9 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e F . 8 . a & b . C o a r s e G r a i n P r o d u c t i o n - D e v e l o p e d M a r k e t a 1 4 6 6 s o 7 3 7 2 7 1 7 1 7 1 8 3 1 2 H > C D < O : 1 3 1 3 4 - 3 1 2 3 1 m 3 1 h " f r i h 3 ( 2 m l fl ) ( 4 ' b l l fl t m 4 5 1 2 1 5 3 3 2 9 3 3 3 “ = . 2 3 5 3 3 . . . . . . . - - - - ~ . . . . . , , , , . . . . - - . . . , . . . I 2 1 3 3 3 ' 1 2 7 5 3 3 . , « " ~ . 2 7 3 3 3 , 2 - 7 ’ 2 1 5 3 3 ' 2 6 3 3 3 . 2 5 5 3 3 2 5 3 3 3 , . , . , . ' 1 1 . 1 . ; . 1 R E G I O N A L M O D E L S I M U L A T I O N 2 9 . 2 1 3 2 3 . 9 7 1 - - 2 3 . 7 2 7 I 2 3 . 4 3 2 2 3 . 2 3 3 2 7 . 9 9 4 » 2 7 . 7 4 9 2 7 . 5 0 5 : 2 7 . 2 3 1 ’ » 2 7 . 0 1 3 : 7 5 7 3 7 7 7 3 7 9 3 0 3 1 3 2 3 3 3 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e F . 9 . a & b . C o a r s e G r a i n H a r v e s t e d A r e a - D e v e l o p e d M a r k e t a D e v e l o p e d M a r k e t s 4 5 2 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M D L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F H R D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T R T . 2 - T R I L S I G . C 9 2 8 2 . 8 6 2 9 5 2 0 7 . 7 4 9 9 1 . 7 8 2 5 0 9 4 0 . 0 9 4 F H R D H ( - 1 ) 0 . 4 4 4 7 5 0 1 0 . 1 7 4 3 5 6 0 2 . 5 5 0 8 1 6 5 0 . 0 2 1 F H R R ( - 1 ) 5 7 2 5 . 3 7 0 2 2 6 7 7 . 6 9 7 6 2 . 1 3 8 1 6 9 1 0 . 0 4 8 D V 7 3 0 N 1 1 7 7 . 0 7 4 7 4 0 5 . 1 7 3 7 5 2 . 9 0 5 1 1 0 9 0 . 0 1 0 R - e o u a r e d 0 . 7 5 7 7 6 1 M e a n o f d e p e n d e n t v a r 2 7 8 4 6 . 7 0 R d g u s t a d R - s o u a r e d 0 . 7 1 2 3 4 1 S . D . o f d e p e n d e n t v a r 1 0 5 4 . 1 0 2 5 . 2 . o f r e p r e s s i o n 5 6 5 . 3 5 5 5 S u m o f s o u a r e d r e s i d 5 1 1 4 0 3 0 . D u r a i n - H a t s o n s t a t 1 . 6 9 4 2 1 3 F - s t a t i a t i c 1 6 . 6 8 3 4 6 L o g l i k e l i h o o d - 1 5 2 . 8 9 6 4 T T E 6 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D . 4 2 1 2 1 1 9 6 4 - 9 8 6 . 7 1 5 2 5 5 5 0 . 0 2 6 5 3 6 . 7 1 4 2 1 2 1 1 9 6 5 - 9 6 1 . 7 2 3 2 5 4 8 3 . 0 2 6 4 4 4 . 7 1 2 1 2 4 1 1 9 6 6 7 5 6 . 8 1 5 2 6 8 4 3 . 0 2 6 0 8 6 . 2 1 2 1 3 2 1 1 9 6 7 4 1 5 . 1 9 3 2 7 0 8 3 . 0 2 6 6 6 7 . 8 1 2 : 4 2 1 1 9 6 8 6 6 . 9 0 6 7 2 7 0 1 9 . 0 2 6 9 5 2 . 1 1 2 : 3 2 1 1 9 6 9 3 3 . 5 6 8 0 2 7 4 5 6 . 0 2 7 4 2 2 . 4 1 2 1 d 2 1 1 9 7 0 3 4 7 . 8 6 4 2 8 0 0 6 . 0 2 7 6 5 8 . 1 1 2 1 2 3 1 1 9 7 1 7 3 5 . 4 7 1 2 8 2 0 9 . 0 2 7 4 7 3 . 5 1 2 5 1 2 1 1 9 7 2 - 4 0 7 . 3 7 9 2 7 2 2 1 . 0 2 7 6 2 8 . 4 1 2 1 4 2 1 1 9 7 3 2 8 2 . 5 9 6 2 8 6 2 4 . 0 2 8 3 4 1 . 4 1 2 4 2 1 1 9 7 4 2 4 . 2 2 4 2 2 8 5 3 3 . 0 2 8 5 0 8 . 8 1 2 3 1 2 1 1 9 7 5 - 5 6 . 7 7 2 6 2 9 2 8 1 . 0 2 9 3 3 7 . 8 1 9 2 1 2 1 1 9 7 6 - 6 2 9 . 8 4 5 2 8 2 7 1 . 0 2 8 9 0 0 . 8 1 2 1 3 2 1 1 9 7 7 4 0 7 . 5 9 9 2 8 6 5 0 . 0 2 8 2 4 2 . 4 1 2 1 4 2 1 1 9 7 8 3 0 9 . 5 6 4 2 8 7 4 6 . 0 2 8 4 3 6 . 4 1 2 1 4 1 1 9 7 9 5 8 5 . 7 4 5 2 9 1 0 7 . 0 2 8 5 2 1 . 3 1 2 4 1 2 1 1 9 8 0 - 3 1 2 . 4 0 7 2 8 4 2 6 . 0 2 8 7 3 8 . 4 1 2 3 2 1 1 9 8 1 - 1 4 . 7 2 8 8 2 8 5 2 9 . 0 2 8 5 4 3 . 7 1 9 2 1 2 1 1 9 8 2 - 6 6 9 . 4 8 6 2 7 7 2 9 . 0 2 8 3 9 8 . 5 1 2 : 3 2 1 1 9 8 3 7 3 . 5 1 0 9 2 8 1 6 8 . 0 2 8 0 9 4 . 5 I N D E P E N D E N T V A R I A B L E S F H A D M 8 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) F W R R 8 C o a r s e G r a i n / W h e a t R e v e n u e R a t i o ( F Y D M < - 3 ) * F Y D M ( - 2 ) + F Y D M ( - l ) + F Y D M ) ! § : § P * ~ § B R § £ § P I D M ( H Y D M ( - 3 ) * W Y D M ( - 2 ) + W Y D M ( - l ) + W Y D M ) / 4 * W P ’ * X R D M / C P I D M D V 7 3 0 N 3 1 I £ ( T I M E . G E . 7 3 ) 0 O t h e r w i s e * T h e r e l e v a n t p r i c e s f o r d e t e r m i n i n g r e v e n u e a r e t h e E C p r o d u c e r p r i c e s . 4 5 3 S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s ‘ S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H R D M 2 7 8 4 6 . 7 0 0 1 0 5 4 . 1 0 1 7 2 9 2 8 1 . 0 0 0 2 5 4 8 3 . 0 0 0 F H R D M ( - 1 ) 2 7 7 6 6 . 7 0 0 1 0 8 8 . 5 8 4 7 2 9 2 8 1 . 0 0 0 2 5 4 8 3 . 0 0 0 F N R R ( - 1 ) 0 . 9 7 2 3 7 4 3 0 . 0 5 5 5 5 5 5 1 . 0 8 0 7 6 5 0 0 . 9 0 9 7 9 8 3 D V 7 3 O N 0 . 5 5 0 0 0 0 0 0 . 5 1 0 4 1 7 8 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n F H R D M . F H R D M 1 0 5 5 5 7 3 . 9 1 . 0 0 0 0 0 0 0 F H A D M . F H A D M ( - 1 ) F H A D M . F H R R ( - 1 ) F H R D M . D V 7 3 O N F H R D M ( - 1 ) . F H R D M ( - 1 ) F H Q D M ( - 1 ) . F H R R ( - 1 ) F H A D H ( - 1 ) . D V 7 3 D N F U R R ( - 1 ) . F H R R ( - 1 ) F U R R ( - 1 ) . D V 7 3 O N D V 7 3 O N . D V 7 3 0 N 8 5 3 5 3 2 . 5 6 - 8 . 2 7 2 9 3 2 8 3 8 7 . 5 1 5 0 0 1 1 2 5 7 6 5 . 9 - 1 7 . 3 3 3 8 7 5 3 8 4 . 1 6 5 0 0 0 . 0 0 2 9 3 2 1 - 0 . 0 1 3 0 4 1 7 0 . 2 4 7 5 0 0 0 0 . 7 8 3 0 7 3 6 - 0 . 1 1 2 7 5 5 4 0 . 7 5 8 1 5 2 5 1 . 0 0 0 0 0 0 0 - 0 . 3 0 1 7 0 5 0 0 . 7 2 7 7 9 0 1 1 . 0 0 0 0 0 0 0 - - 0 . 4 8 4 1 2 4 0 1 . 0 0 0 0 0 0 0 3 . . . , U O < O H 0 0 0 0 Z D H X O F D O O O H I O Q H O M : < u e p a A z o n fl w o fl o a u 0 0 H m o n d n fi o o m z u r H m m o . 1 H m m m m : o a u l 1 < n a u 0 3 m r m \ \ O n o - 3 0 0 3 4 c u 1 u u o u n u m fi < 0 3 ( D m H D m r m n o m fl fl H n H m z a m d o . m m m o m A l m d n d . m c d n H r m u m . n I p m . u u m m p p H . ¢ u m 0 u w » 1 H 0 . w u m m m 0 0 . 0 0 0 F o n d k . & u o u m u m o . w b u m m w m u m . m m m 0 2 m 0 . 0 0 0 n u u a c u x n n o . m m m m m 2 3 2 » : o m a n o n s n n z n < m 1 m . m m q u p D a o c l d l n m I e D C I 1 n n 0 . m fl q m m m m . o . o m 0 0 0 0 3 0 0 3 4 < m 1 0 . 5 4 0 m m u m . m . 0 1 1 l a 1 e u u w o z o . p m m u m m w a s O m e a c e x n n 1 e m u n o . m o o w m u o c 1 a w 3 1 t l n u 0 3 I d e a H . & m m p m b “ l u w n d w u n w n u m m . b m m p r o e e r l w w z o o n u o . m o u u m r e s p e c t » u ~ o ~ o n e m m m H U C D F D n 4 C D r “ H a d m u “ u u t u “ H m m o 0 . 0 m b m 0 m . ~ fl m w m m . p o q u m “ n t u u " “ m m p . t o . o m m m w m . w a m m m . ~ m » w m “ u t n u ” H m m m 1 0 . 0 4 q u m . m u m 0 0 m m u m u » " u t u u u H m m w 1 0 . 0 m m m m m . m m m 0 m m . m m ¢ m m " u t u u “ “ w o k 1 0 . 0 0 0 u m m . m » m m m m . m w m 0 0 " u t u u “ p m m m 1 0 . 0 0 m m m m u m p u u m . & m & o o " u " t u ” p m m m 0 . 0 » 0 0 0 m . m m o m w m . m m u m b " u " t u " u m m q 0 . 0 m u b o m . m m m m m W . u m m m m “ u " t u " H m m m 0 . 0 u u fl m m . m m m u m m . m m b u w “ n “ t u “ H m m m 0 . 0 w u 0 m m . q m m u m m . q m m q m “ u t u u u q u o 1 0 . 0 u m u u m . < w & m ¢ m . u w u 4 m " u u u 4 “ s o u p o . q u m p u . o m b p m m . m u m m p " u u t u " H w fl m 0 . 0 4 u p m m . m m b u h m . m p m p m " u n u t “ u m fl u o . m m m m m u . m o w u ¢ m . w 0 0 m r “ a u t u " u m fl e o . » m u m m w . p m u o q u . o r p o m " 4 u u “ u m fl u I o . w q m & w m . m m & w m u . » o o m m " 4 u u u “ “ m u m I o . w u o m m m . m o m m w m . » q u m ” u n t n " u m fl q o . o < o o m “ . m m m o u w . m u q m & " u n t “ “ u m q m 0 . H u u u m w . k m m m u “ . m fl m w m " u u t u " u m d m 0 . o m u ¢ u w . # p u u 0 w . w u m o m . " u n u ” a m m o o . w m m » » w . q & & » & u . w m m o w " t u u 2 “ m a p 1 0 . 0 m p m u w . m m p m ¢ w . & & m w ~ u u t u u " H m m m 1 0 . 0 4 0 2 m w . b m u h m u . ¢ m q m m " 4 u u u " p m m w I o . u 0 0 0 » w . m u p m u w . u m » m m H Z O M V N Z O N Z H ( D w a w r m m F 0 0 4 4 r a A H m e v w a m z u r m e o I “ m m m m r 0 U I I 1 < h d u o s u m m 1 w n u 3 s t : m . U . B N X H B C B z u s u a c a W < 0 3 w . m m q u 0 m 0 . b u p m m m m w . q r b p # m o m . p p m m m m o r 0 m 4 & . m m b m fl p u 0 . 0 0 m m m w m b . 4 H m m b o o b . 0 w a b m 0 n o < m 1 w m z n m n o 1 1 n p n a w o s fl < 0 3 . fl < 0 3 o . m p w p o m m 0 . 0 0 0 0 0 0 0 fl < o z . r 0 0 4 0 . 0 r m m m m m o . m w m & m o m F 0 m 4 . F 0 m 4 0 . 0 0 m & w fl m H . 0 0 0 0 O O O H > C 3 < O 3 1 m 1 ~ a > c z : m 3 1 h 7 1 P V ' U T U I ‘ 1 U F ‘ 3 1 2 ! : 4 ‘ I T I T 1 + 1 1 I L L L l J [ 1 3 5 8 8 8 1 3 0 8 0 0 1 2 5 | I I 1 1 5 8 8 8 7 5 4 5 6 7 6 7 7 7 0 7 9 R E G I O N A L M O D E L S I M U L A T I O N . e e ‘ . . . f . e . 8 1 8 2 1 3 3 . 1 9 0 1 3 1 . 9 3 8 ' 1 3 0 . 8 8 2 1 2 9 . 4 2 8 1 2 8 . 1 7 4 1 2 8 . 9 2 0 1 2 5 . 8 8 8 1 2 4 . 4 1 2 1 2 3 . 1 2 1 . 1 5 9 ' \ 1 Q I F i g u r e F . 1 0 a 8 b . 7 6 ' 7 1 E X A C T U A L 7 6 7 é a b - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 8 1 e é - - - E S T I M A T E D D e v e l o p e d M a r k e t s 8 3 3 5 T o t a l C o a r s e G r a i n C o n s u m p t i o n - 0 3 P O O C 3 1 n t a ~ l 1 4 h ‘ f f l d t > C 1 2 l : i - { 0 “ I “ . . . u . . 0 . e ’ a " o . . 3 . . . " “ u . “ . 4 4 . “ . . . 7 2 7 3 7 4 7 5 7 6 R E G I O N A L H O D 7 E 7 L 7 8 H S I 7 9 8 8 8 1 8 2 8 3 U L A T I O N E I F i g u r e F . 1 1 . a 6 b . C o a r s e G r a i n N e t I m p o r t s - D e v e l o p e d “ . 3 5 8 8 8 3 8 8 8 8 I n 2 1 C 3 - 4 4 2 . 4 4 1 3 7 . 8 5 2 3 5 . 2 5 8 3 2 . 8 8 3 3 0 . 4 8 9 2 8 . 0 7 4 2 5 . 8 8 0 2 3 . 2 8 8 2 0 . 8 9 1 4 0 . 0 4 8 ' 4 5 7 v é 7 6 7 ? v é 7 é 8 0 8 % 8 2 S i 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L _ , - - E S T I H A T E D M a r k e t s 7 2 7 3 7 1 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 3 1 h 7 1 F O F D H I 3 1 ~ 7 5 7 5 7 7 7 3 7 3 5 0 5 % 3 2 5 3 4 5 7 4 5 8 8 8 1 0 4 8 8 8 8 O a o : 5 ' . a 3 5 8 8 8 7 E . 3 . . 4 " . ' . " " “ . . . ‘ 1 ‘ g m " . . . ' - - . - " T 3 3 3 3 3 ' ~ " U s “ 0 . N S 2 5 8 8 8 R E G I O N A L H O D E L S I H U L A T I O N 8 3 4 2 . 4 4 1 4 0 . 0 4 5 ' 1 / . \ 3 7 . 5 5 2 - ' / 3 5 . 2 5 3 5 { 3 2 . 3 5 3 : 4 ’ 3 0 . 4 5 9 h 2 3 . 0 7 4 2 5 . 5 3 0 2 3 . 2 3 5 2 0 . 5 9 2 I E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D 8 4 F i g u r e F . 1 1 . a & b . C o a r s e G r a i n N e t I m p o r t s - D e v e l o p e d M a r k e t s C o a r s e G r a i n N e t I m p o r t s ( 1 o o i o F C D D r ( ( 1 m m c n E I A e e e S £ S s s D P o ( t t M g Y 4 i ( i f X E c c - R C A W C n a H 1 ) E o D R h o o r / . e a u s + C G a r g P E t . s h F I e P G D S R r S M 8 u a 3 O G o ) p r D x ~ ) y n a I p N a m n . l i e > 8 C l P S O e P u a r p D n p M d ( S H P a y C - p a X P l + C D S V M 8 P 3 E 0 C N P I I 0 i 0 0 M T ) t e s P s a r a R D M C a C v / ( a P p 1 t I i 0 o D t 0 M 0 a R ) e - M p . T ) ( 1 l 2 0 a 0 c 0 e T ) M 1 4 5 8 D e v e l o p e d M a r k e t s P e r C a p i t a S H P L 1 ° 6 1 - 2 ? O b s e r v a t i o n s L 8 / / D e p e n d e n t V a r i a b l e : 5 P C F N I v G R I A E L E C O E F P I C I E N T S T D . E F F O E T - E T 4 T . E - T A I L 8 1 8 . C 0 . 0 9 8 2 3 8 0 0 . 0 1 7 6 4 9 4 5 . 5 7 1 7 5 8 5 0 . 0 0 0 P C R G D P 5 7 2 9 1 . 7 5 5 1 1 5 6 1 . 4 7 1 4 . 9 5 5 4 0 3 7 0 . 0 0 0 P C D W S U - 0 . 2 0 9 5 4 2 3 0 . 1 3 6 1 1 4 9 - 1 . 5 3 9 4 5 1 2 0 . 1 4 2 P C D F S U - 0 . 5 2 9 0 1 2 3 0 . 1 4 5 8 0 2 2 - 3 . 6 2 8 2 8 6 8 0 . 0 0 2 C S M P E C 0 . 0 0 4 9 9 6 2 0 . 0 0 2 3 7 9 5 2 . 0 9 9 7 0 3 0 0 . 0 5 1 D V B E O N - 0 . 0 1 2 4 2 1 4 0 . 0 0 7 6 0 1 9 - 1 . 6 3 5 2 9 9 8 0 . 1 2 0 G - s a u a r e d 0 . 7 9 2 8 8 3 M e a n o f d e p e n d e n t v a r 0 . 0 5 9 6 9 7 A d j u s t e d R - s a u a r e d 0 . 7 3 1 9 6 7 S . D . o 2 d e p e n d e n t v a r 0 . 0 1 1 2 0 4 9 . 2 . o f r e g r e s s i o n 0 . 0 0 5 8 0 0 S u m 0 + s a u a r e d r e 5 1 o 0 . 0 0 0 5 7 2 D u r b i n - U a t s o n s t a t 1 . 0 1 0 7 3 6 F - s t a t i s t z c 1 3 . 0 1 5 8 7 L o g l i k e l i h o o d 8 9 . 2 8 6 9 ° T P E 3 / 2 3 P e e i d u a l P l o t : 0 5 F E S I ‘ U A L A C T U A L F I T T E D 1 4 2 I 2 1 1 9 6 1 - 0 . 0 1 1 2 9 0 . 0 3 6 9 1 0 . 0 4 8 2 0 1 2 4 1 : 1 1 9 6 2 - 0 . 0 0 3 2 7 0 . 0 4 1 6 1 0 . 0 4 4 8 8 1 2 : 2 1 1 9 6 3 0 . 0 0 1 0 8 0 . 0 4 8 8 8 0 . 0 4 7 8 0 1 2 4 1 2 : 1 9 6 4 — 0 . 0 0 1 3 5 0 . 0 5 0 3 1 0 . 0 5 1 6 6 1 2 1 2 4 1 1 9 6 5 0 . 0 0 8 1 5 0 . 0 6 2 4 8 0 . 0 5 4 3 3 1 2 1 : 4 : 1 9 6 6 0 . 0 0 6 6 1 0 . 0 5 6 0 9 0 . 0 4 9 4 8 1 2 z 2 4 1 1 9 6 7 0 . 0 0 8 6 0 0 . 0 5 4 6 : 0 . 0 4 6 0 3 1 2 1 4 2 1 1 9 6 8 0 . 0 0 7 4 1 0 . 0 5 3 0 0 0 . 0 4 9 5 9 1 : 4 : 2 1 1 9 6 9 — 0 . 0 0 2 7 4 0 . 0 5 3 3 9 0 . 0 5 6 1 3 1 4 1 2 . 1 9 7 0 — 0 . 0 0 5 8 4 0 . 0 5 9 4 0 0 . 0 6 5 2 1 2 4 1 2 . 1 9 7 1 - 0 . 0 0 5 3 9 0 . 0 4 7 6 1 0 . 0 5 3 0 0 1 2 4 1 2 1 1 9 7 2 - 0 . 0 0 1 5 1 0 . 0 6 2 7 9 0 . 0 6 4 2 9 1 2 1 4 2 1 1 9 7 3 0 . 0 0 4 2 6 0 . 0 6 6 9 9 0 . 0 6 2 7 3 1 : i 1 : 1 1 9 7 4 — O . C 1 0 2 7 0 . 0 6 5 4 2 C ) . 0 5 8 2 0 1 2 4 : 2 1 1 9 7 5 - 0 . 0 0 1 1 3 0 . 0 6 7 7 0 . 0 6 8 9 2 1 2 1 2 4 1 1 9 7 6 0 . 0 0 6 7 4 0 . 0 9 0 2 7 0 . 0 8 3 5 4 1 2 4 2 1 1 9 7 7 ~ 0 . 0 0 0 1 8 0 . 0 6 9 8 9 0 . 0 7 0 0 7 1 2 1 4 : 1 1 9 7 8 0 . 0 0 5 6 0 0 . 0 6 9 7 4 0 . 0 6 4 1 3 1 2 1 2 1 1 9 7 9 0 . 0 0 1 9 1 0 . 0 6 8 9 5 0 . 0 6 7 0 5 1 2 4 1 2 1 1 9 8 0 - 0 . 0 0 0 7 5 0 . 0 5 7 2 0 0 . 0 5 7 9 5 1 2 4 1 2 1 1 9 8 1 - 0 . 0 0 3 9 8 0 . 0 6 3 7 1 0 . 0 6 7 6 9 1 4 1 2 1 1 9 8 2 - 0 . 0 0 6 1 7 0 . 0 6 4 1 2 0 . 0 7 0 2 9 1 2 4 2 1 1 9 8 : 5 . 3 0 - 1 9 0 . 0 6 1 8 4 0 . 0 6 1 8 4 I N D E P E N D E N T V A R I A B L E S P C R G D P G D P D H / C P I D M / P O P D N R e e l I n c o m e P e r C a p i t a ( W E S D M ( - 1 ) * P R O D M ) / P O P D M P C D U S U ' P C D F S U 8 0 O t h e r w i s e 4 5 9 S M F ' L 1 9 8 1 - - 1 9 8 3 2 3 O b s e r v a t i o n s E e r 1 e s M e a n S . D . M a x z m u m M i n z m u m F ' C F N I 0 . 0 5 9 6 9 8 8 0 . 0 1 1 2 0 3 8 0 . 1 3 9 1 : 1 2 7 4 8 ( ' 1 . 0 3 8 9 0 9 4 P C R G D P . 5 8 1 0 - 0 6 3 . 9 7 0 0 — 0 7 2 . 0 3 8 0 - 0 6 9 . 0 4 2 8 - 0 7 P C D N S U 0 . 1 3 9 2 4 6 8 0 . 0 1 5 9 3 4 7 0 . 1 7 4 5 6 2 2 0 . 1 1 2 5 6 8 4 P C D F S U 0 . 1 9 4 1 1 7 2 0 . 0 2 8 9 6 5 1 0 . 2 4 3 6 6 1 0 0 . 1 4 8 1 2 2 5 C S M P E C 0 . 6 4 0 9 9 6 5 0 . 7 7 8 3 8 7 0 2 . 2 3 3 3 1 4 0 0 . 0 0 0 0 0 0 0 D V 8 3 O N 0 . 0 4 3 4 7 8 3 0 . 2 0 8 5 1 4 4 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r x a n c e C o r r e l a t i o n P C F N I . P C F N I 0 . 0 0 0 1 2 0 1 1 . 0 0 0 0 0 0 0 P C F N I , P C R G D P 3 . 0 1 5 0 - 0 9 0 . 7 0 8 6 9 7 9 P C F N I , P C D W S U 6 . 3 6 9 D - 0 5 0 . 3 7 2 9 4 8 3 P C F N I , P C D F S U 0 . 0 0 0 1 7 2 7 0 . 5 5 6 2 7 0 9 P C F N I . C S M P E C 0 . 0 0 5 6 6 3 8 0 . 6 7 8 9 8 4 3 P C F N I . D V 8 3 D N F C R B D F , F C F G D F P C E G D P . P C D N 8 8 F C F G D F . F C D F 9 U P C R G D P . C S M P E C P C R G D P . D V 8 3 G N F c n w s u , F C D w s u F c n w s u . F C D F s u P C D N S U . C S M P E C P C D N S U , D V 8 3 D N F C D F S U , F C D F 5 U P C D F S U . C S M P E C P C D F S U . D V 8 3 D N C S M P E C , C S M P E C C S M P E C , D V 8 3 D N D V 8 3 D N , D V 8 3 O N 9 . 3 1 7 0 - 0 5 . 5 0 8 0 - 1 3 4 . 5 6 0 0 - 0 9 1 . 0 4 1 0 - 0 8 2 . 1 7 8 D - 0 7 1 . 9 8 9 0 - 0 8 0 . 0 0 0 2 4 2 9 0 . 0 0 0 ; 7 0 9 6 0 . 0 0 7 2 4 4 2 0 . 0 0 1 5 3 5 5 0 . 0 0 0 8 0 2 5 0 . 0 1 4 7 9 6 4 0 . 0 0 0 6 7 1 0 0 . 5 7 9 5 4 3 4 0 . 0 2 9 4 4 1 6 0 . 0 4 1 5 8 7 9 0 . 0 4 1 6 9 3 8 1 0 0 0 0 0 0 0 4 . 3 . 7 5 3 6 ( ) ( J ' o 0 . 9 4 8 5 4 5 0 0 . 7 3 8 9 2 2 9 0 . 2 5 1 2 4 3 6 0 7 0 1 2 8 5 8 0 . 8 1 0 5 9 8 3 0 . 4 8 3 1 2 8 3 0 . 8 8 8 1 0 7 8 . 1 1 6 1 4 9 2 - . - - a - - - 4 6 0 2 “ 1 1 7 5 “ 0 0 o 1 3 “ M E 1 2 5 “ T T 1 m 0 N S 7 5 “ 7 2 7 3 7 4 7 ' 5 7 6 7 7 7 B 7 9 8 0 8 1 8 2 8 3 R E G I O N A L H O D E L S I M U L A T I O N 1 6 A K B H 7 6 . 7 1 0 ' * I 1 5 . 3 1 5 t ‘ - H . 5 7 9 - ; 1 3 J u a - 0 7 2 . 9 2 7 : N 7 2 . 7 3 7 F 7 7 . 3 3 6 : M 1 0 4 u o r T 9 J 1 4 : 7 6 7 6 ' 7 5 7 é 7 é 8 6 8 % S i 8 5 e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - - E S T I M A T E D F i g u r e F . 1 2 . a & b . C o a r s e G r a i n E n d i n g S t o c k s - D e v e l o p e d M a r k e t s - . . C - . - - - . - - . . - - . . - - - - - - - - - . - - - - — - - D - - - - O - - D - - . - . - O - I . O u - - - - - - - - - 4 6 1 D e v e l o p e d M a r k e t s P e r C a p i t a C o a r s e G r a i n E n d i n g S t o c k s S M P L 1 9 6 1 - 1 9 6 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C F E S V R R I R B L E C O E F F I C I E N T S T D . E R R O R 0 . 0 0 4 3 0 9 3 0 . 0 2 1 9 6 6 6 C - 0 . 0 0 7 2 9 2 9 P C D F S U 0 . 1 5 6 9 2 9 1 0 . 7 0 6 4 7 6 0 . 6 9 4 5 9 6 0 . 0 0 2 9 6 4 1 . 4 4 7 3 6 6 1 0 2 . 1 4 1 0 R - s d u a r e d R d J u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - H a t s o n s t a t L o g l i k e l i h o o d S . D . S u m o f F - s t a t i s t i c T - S T Q T . ( 1 0 0 0 H T ) - l . 6 9 2 3 7 1 6 7 . 1 4 3 9 2 3 3 M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r s q u a r e d r e s i d 2 - T R I L S I B . 0 . 1 0 5 0 . 0 0 0 0 . 0 2 3 1 7 0 0 . 0 0 5 4 0 0 0 . 0 0 0 1 6 7 5 1 . 0 3 5 6 4 R e s i d u a l P l o t o b s 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 6 1 9 7 9 1 9 6 0 1 9 8 1 1 9 8 2 1 9 8 3 5 t I - . e c - - - . - n - n - - - t t 3 I N D E P E N D E N T V A R I A B L E S P C D F S U R E S I D U A L 0 . 0 0 1 3 3 0 . 0 0 2 2 6 0 . 0 0 1 5 1 - 0 . 0 0 2 1 5 0 . 0 0 1 5 6 0 . 0 0 3 7 2 0 . 0 0 0 4 0 - 0 . 0 0 2 1 6 - 0 . 0 0 4 0 4 - 0 . 0 0 1 6 0 - 0 . 0 0 4 2 1 - 0 . 0 0 4 6 6 - 0 . 0 0 1 4 2 0 . 0 0 5 6 0 - 0 . 0 0 0 3 1 0 . 0 0 2 6 3 0 . 0 0 1 5 6 0 . 0 0 0 9 7 - 0 . 0 0 0 5 0 0 . 0 0 4 5 6 - 0 . 0 0 0 9 6 0 . 0 0 0 7 0 - 0 . 0 0 4 6 1 G C T U R L 0 . 0 1 7 2 6 0 . 0 1 6 5 5 0 . 0 1 6 5 5 0 . 0 1 4 6 9 0 . 0 1 6 1 5 0 . 0 2 3 4 0 0 . 0 2 1 6 0 0 . 0 1 9 1 9 0 . 0 1 7 7 1 0 . 0 1 9 9 5 0 . 0 2 0 9 7 0 . 0 1 6 3 6 0 . 0 2 4 5 3 0 . 0 3 2 0 6 0 . 0 2 5 3 6 0 . 0 2 5 0 7 0 . 0 2 6 5 9 0 . 0 2 9 7 7 0 . 0 2 6 5 6 0 . 0 3 5 5 1 0 . 0 2 6 6 0 0 . 0 2 7 4 2 0 . 0 2 0 7 6 F I T T E D 0 . 0 1 5 9 5 0 . 0 1 6 2 7 0 . 0 1 7 0 4 0 . 0 1 6 6 5 0 . 0 1 6 5 6 0 . 0 1 9 6 7 0 . 0 2 1 2 1 0 . 0 2 1 3 5 0 . 0 2 1 7 5 0 . 0 2 1 5 6 0 . 0 2 5 1 6 0 . 0 2 3 2 3 0 . 0 2 5 9 6 0 . 0 2 6 2 6 0 . 0 2 5 6 7 0 . 0 2 2 4 4 0 . 0 2 7 0 4 0 . 0 2 6 6 0 0 . 0 2 9 0 6 0 . 0 3 0 9 4 0 . 0 2 7 7 6 0 . 0 2 6 7 2 0 . 0 2 5 5 9 8 D o e e s t i c C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( F E S D N ( - l ) + F R O D H ) / P O P D N b o w m R U F ” m m ” I “ m m “ m m D u m n 1 < m d n o z m m n 1 w m m 3 c m : m . b . 3 w x u a c s z u z w a c a u n fl m m 0 . 0 m u p m m u 0 . 0 0 m b 0 0 w 0 . 0 m m w 0 fl m 0 . 0 » & m m m m u n fl m c p o . m m u m » w w 0 . 0 u m k o u m O . m o o m m b u O . u m m o w p m 0 0 < O 1 w m 3 0 m n o 1 1 m ~ m d w 0 3 U fl fl m m . n n fl m m u n fi m m . n n fl m c u u n fl m c n . u n fl m c u m . fl m m 0 l o m 0 . 0 0 0 9 m 4 m 0 . 0 0 H m m fl m 9 . 0 0 0 0 0 0 0 0 . 0 m m w o w fl n . O O O O O O O a - 7 0 0 0 m 3 m M 4 7 - a 0 g 2 7 0 z H ' r - r n o 3 7 ' § § § § § § § F i g u r e F . 1 3 . a & b . S o y b e a n P r o d u c t i o n - D e v e l o p e d M a r k e t s 3 9 6 . 3 7 0 . 3 4 4 . 3 7 7 . . 2 0 0 2 6 4 . 2 3 3 . 2 7 2 . 7 6 5 . 7 5 9 . 2 9 7 l l . 3 0 0 4 0 0 4 6 3 . o f . . J a r " fl . . . - 0 . 0 0 . . . . ~ l a . . . . . . f ' . ' ~ e ~ . . e e e . 7 2 7 3 7 7 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N f . L / : ~ . 1 C / : t : 3 3 . I I I Z ‘ , - 7 % 7 % ' 7 ? 7 6 v é 8 0 8 3 3 5 3 3 e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 6 4 A C T U A L - — - ’ E 5 T I N A T E D 6 E i 5 E E i a 7 2 7 3 7 7 7 5 7 6 7 7 7 8 7 9 0 9 8 1 8 2 8 3 § § § § § § § § » 1 \ 0 | 7 7 | 7 l 7 7 7 7 7 7 7 7 7 7 7 7 1 H > C D < O n : m 7 c 4 1 0 1 2 n 1 m H > C 3 7 O n : m 1 c 4 1 > 1 2 n 1 m F i g u r e F . 1 4 . a & b . S M o a y r b k e e a t n s H a r v e s t e d A r e a - D e v e l o p e d 4 6 4 a . e e ' . ‘ 0 e " . 0 } . R E G I O N A L N O D E L S I M U L A T I O N 2 2 1 . 2 0 0 - 2 0 9 . . 1 9 2 . 1 0 0 . 1 7 4 . 1 0 3 . 1 5 1 . 1 4 0 . 1 2 0 . 1 1 0 . 2 0 0 1 7 % 7 0 ' 7 7 7 6 7 9 3 0 3 1 3 2 s h Q Q E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 6 4 A C T U A L - ' — - E S T I M A T E D D e v e l o p e d M a r k e t s S o y b e a n H a r v e s t e d 8 M P L 1 9 6 5 — 1 9 8 3 1 9 O b s e r v a t i o n s 4 6 5 A r e a ( 1 0 0 0 H e c t a r e s ) L S / / D e n e n d e n t V a r 1 a b l e i s S H A D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 1 5 0 . 7 0 6 8 2 9 1 . 5 9 3 0 8 2 1 . 6 4 5 3 9 5 3 0 . 1 2 2 S H A D M ( - 1 ) 0 . 7 7 8 1 5 4 5 0 . 1 1 5 5 5 7 7 6 . 7 3 3 9 0 4 9 0 . 0 0 0 F R D H 3 ( - 1 ) - 2 7 . 1 5 5 5 1 6 1 2 . 8 7 4 2 9 8 - 2 . 1 0 9 2 8 1 3 0 . 0 5 3 S R D H 4 ( - 1 ) 3 . 7 0 6 5 4 3 3 4 . 5 0 8 0 8 7 3 0 . 8 2 2 1 9 8 7 0 . 4 2 5 S N I D M ( - 1 ) 0 . 0 0 1 8 4 4 6 0 . 0 0 0 9 1 1 4 2 . 0 2 3 8 4 5 2 0 . 0 6 3 R - s q u a r e d 0 . 8 7 9 3 0 0 M e a n o f d e p e n d e n t v a r 1 4 9 . 0 0 0 0 A d j u s t e d R - s q u a r e d 0 . 8 4 4 8 1 4 S . D . o f d e p e n d e n t v a r 3 8 . 2 0 7 0 4 5 . 2 . 0 4 r e g r e s s i o n 1 5 . 0 5 1 1 6 S u m o f s q u a r e d r e s i d 3 1 7 1 . 5 2 3 D u r b i n - w a t s o n s t a t 2 . 1 9 4 6 4 7 F - s t a t i s t i c 2 5 . 4 9 7 4 2 L o g 1 i k e l i h o o d - 7 5 . 5 7 6 3 5 T P E 7 / 1 9 R e 5 1 d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : : * : : 1 9 6 5 4 . 7 8 9 1 4 1 9 3 . 0 0 0 1 8 8 . 2 1 1 : : : * : : 1 9 6 6 5 . 3 2 3 1 8 0 . 0 0 0 1 7 4 . 1 6 8 : : * : : 1 1 9 6 7 - 1 1 . 2 4 5 7 1 5 4 . 0 0 0 1 6 5 . 2 4 6 : : : * : : 1 9 6 8 4 . 0 3 2 2 9 1 3 6 . 0 0 0 1 3 1 . 9 6 8 : : : * : : 1 9 6 9 6 . 5 7 6 6 2 1 1 8 . 0 0 0 1 1 1 . 4 2 3 : : : 4 : : 1 9 7 0 2 . 2 5 2 2 1 0 7 . 0 0 0 1 0 4 . 7 4 8 : : : 4 : : 1 9 7 1 3 . 0 5 3 0 7 1 1 1 . 0 0 0 1 0 7 . 9 4 7 : 4 : : : : 1 9 7 2 - 1 6 . 3 2 4 6 1 0 0 . 0 0 0 1 1 6 . 3 2 5 : : 4 : : : 1 9 7 3 - 1 . 8 7 2 2 3 1 1 3 . 0 0 0 1 1 4 . 8 7 2 : : : : * : 1 9 7 4 1 9 . 2 0 2 9 1 4 3 . 0 0 0 1 2 7 . 7 9 7 : : * : : : 1 9 7 5 - 5 . 0 8 3 4 3 1 1 9 . 0 0 0 1 2 4 . 0 8 3 : : * : : : 1 9 7 6 - 1 3 . 3 4 0 9 1 1 3 . 0 0 0 1 2 6 . 3 4 1 : 4 : : : : 1 9 7 7 - 1 9 . 5 2 1 0 1 1 1 . 0 0 0 1 3 0 . 5 2 1 : : : : 4 : 1 9 7 8 2 8 . 5 6 7 1 1 6 6 . 0 0 0 1 3 7 . 4 3 3 : : 4 : : 1 9 7 9 0 . 6 2 8 1 4 1 8 4 . 0 0 0 1 3 . 3 7 2 : 4 : : : : 1 9 8 0 - 1 9 . 2 5 4 7 1 7 9 . 0 0 0 1 9 8 . 2 5 5 2 : * i : 7 1 9 8 1 - 1 . 3 5 7 5 0 1 8 5 . 0 0 0 1 6 6 . 3 5 8 : : * : : : 1 9 8 2 - 7 . 8 9 1 7 2 1 9 2 . 0 0 0 1 9 9 . 8 9 2 1 : : : ‘ 4 : 1 9 8 3 2 0 . 9 5 7 7 2 2 7 . 0 0 0 2 0 6 . 0 4 2 I N D E P E N D E N T V A R I A B L E S - 1 S H A D M 8 S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) S R D M 4 . S o y b e a n R e v e n u e p e r H e c t a r e ( S / H A ) ( F o r e c a s t S o y b e a n Y 1 e l d ) ~ S P / C P I D M F R D M I C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( S I H A ) ( F Y D M < - 3 ) # F Y D M ( - 2 > + F Y D M ( 1 ) + F Y D M ) / 4 - F P D “ ~ X R D M / C P I D M S N I D M 8 S o y b e a n N e t I m p o r t s ( 1 0 0 0 H A ) 4 6 6 » S H P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a ' i m u m M 1 n 1 m u m S H A D M 1 4 9 . 0 0 0 0 0 3 8 . 2 0 7 0 3 8 2 2 7 . 0 0 0 0 0 1 0 0 . 0 0 0 0 0 S H A D M ( - 1 ) F R D M 3 ( - 1 ) S R D M 4 ( - 1 ) 1 4 9 . 0 0 0 0 0 5 . 7 7 5 4 5 6 2 3 . 9 2 0 5 9 5 4 3 8 . 2 0 7 0 3 8 0 . 3 8 9 5 7 9 5 0 . 9 5 9 7 0 8 4 2 2 7 . 0 0 0 0 0 6 . 6 8 5 8 1 1 0 6 . 5 6 7 4 9 2 0 1 0 0 . 0 0 0 0 0 5 . 2 2 8 6 0 0 2 . 7 5 8 2 8 8 0 S N I D M 1 — 1 ) 1 3 3 6 4 . 5 2 5 1 8 3 . 6 1 3 1 - 2 0 8 7 4 . 0 0 0 5 4 3 6 . 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S H A D M , S H A D M 1 3 8 2 . 9 4 7 4 1 . 0 0 0 0 0 0 0 S H A D M . S H A D M ( - 1 ) 1 1 3 8 . 8 4 2 1 0 . 8 2 3 4 8 9 1 S H A D M . F R D M 3 ( - 1 ) - 9 . 2 6 4 5 8 6 4 - 0 . 6 5 7 0 0 3 6 S H A D M , S R D M 4 ( : 1 ) - 1 6 . 3 8 3 8 8 7 - 0 . 4 7 1 6 4 5 2 S H A D M . S N I D M ( - 1 ) 8 H A D M ( - l ) . S H A D M ( - 1 ) S H A D M ( - 1 ) . F R D M 3 ( - 1 ) S H A D M ( - 1 ) . S R D M 4 ( - 1 ) S H A D M ( - 1 ) , S N I D M ( - 1 ) F R D M 3 ( - 1 ) , F R D M 3 ( - 1 ) F R D M 3 ( - 1 ) . S R D M 4 ( - 1 ) F R D M 3 ( - 1 ) , S N I D M ( - 1 ) S R D M 4 ( - 1 ) . S R D M 4 ( - 1 ) S R D M 4 ( — 1 ) . S N I D M ( - l ) S N I D M ( - 1 ) . S N I D M ( - 1 ) 7 5 3 4 1 . 6 8 4 1 3 8 2 . 9 4 7 4 - 4 . 7 3 9 3 8 5 2 - 1 7 . 9 7 9 9 0 6 ' 3 4 6 . 0 0 0 0 0 0 . 1 4 3 7 8 4 1 0 . 1 3 5 6 9 1 0 - 1 1 7 9 . 1 5 0 4 0 . 8 7 2 5 6 4 3 - 1 0 5 2 . 9 1 8 2 2 5 4 5 5 6 4 2 . 0 . 4 0 1 5 5 0 8 1 . 0 0 1 3 0 0 1 3 1 ) - 0 . 3 3 6 0 9 6 3 - 0 . 5 1 7 5 9 0 0 0 . 0 0 1 8 4 4 1 1 . 0 0 0 0 0 0 0 0 . 3 8 3 0 8 6 4 - 0 . 6 l 6 3 4 1 9 1 . 0 0 0 0 0 0 0 - 0 . 2 2 3 4 1 0 7 1 . 0 0 0 0 0 0 0 1 4 6 7 D e v e l o p e d M a r k e t a S o y b e a n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M R L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S Y D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - S . 5 0 0 6 9 3 0 . 2 0 1 5 2 2 5 - 4 . 5 7 8 1 0 2 3 0 . 0 0 0 L D G T 1 . 5 9 0 2 9 8 7 0 . 2 7 9 7 5 4 8 5 . 6 8 4 6 1 7 4 0 . 0 0 0 R - s q u a r e d 0 . 6 4 2 2 5 3 M e a n o f d e p e n d e n t v a r . 1 . 3 2 8 3 5 3 A d j u s t e d R - s d u a r e d 0 . 6 2 2 3 7 8 S . D . 0 ? d e p e n d e n t v a r 0 . 1 6 0 4 1 6 S . E . o f r e g r e s s i o n 0 . 0 9 8 5 7 7 S u m o f s a u a r e d r e s i d 0 . 1 7 4 9 1 4 D u r o i n - w a t s o n s t a t 1 . 5 2 0 8 8 9 F - s t a t i s t i c 3 2 . 3 1 4 8 7 L o g l i k e l i h o o d 1 9 . 0 1 3 1 5 R e s i d u a l P l o t o p s R E S I D U A L A C T U A L F I T T E D : : 4 1 : i 1 9 6 4 - 0 . 0 4 7 0 9 1 . 0 6 6 0 8 1 . 1 1 3 1 7 : : : 4 : : 1 9 6 5 0 . 0 6 9 4 2 1 . 2 0 7 2 5 1 . 1 3 7 8 3 : : * 1 : : 1 9 6 6 - 0 . 0 3 4 3 3 1 . 1 2 7 7 8 1 . 1 6 2 1 1 : : 1 4 : t 1 9 6 7 0 . 0 8 0 2 1 1 . 2 6 6 2 3 1 . 1 8 6 0 2 : : 1 * : 1 1 9 6 8 0 . 0 7 7 1 8 1 . 2 8 6 7 6 1 . 2 0 9 5 9 : : * : : : 1 9 6 9 — 0 . 0 3 7 8 9 1 . 1 9 4 9 2 . 2 3 2 8 0 : : * : : 1 1 9 7 0 - 0 . 0 3 1 3 8 1 . 2 2 4 3 0 1 . 2 5 5 6 8 3 * : 1 z 1 1 9 7 1 - 0 . 1 1 6 0 8 1 . 1 6 2 1 6 . 2 7 8 2 4 : : : ¥ : 1 1 9 7 2 0 . 0 4 9 5 2 1 . 3 5 0 0 0 1 1 3 0 0 4 8 ! : : + : : 1 9 7 3 0 . 0 6 6 9 6 1 . 3 8 9 3 8 1 . 3 2 2 4 2 1 : : * : : 1 9 7 4 0 . 0 2 6 5 7 1 . 3 7 0 6 3 1 . 3 4 4 0 6 1 : * : : : 1 9 7 5 - 0 . 0 2 0 8 6 1 . 3 4 4 5 4 1 . 3 6 5 4 0 : i 1 : : 1 9 7 6 - 0 . 0 9 4 4 3 1 . 2 9 2 0 3 1 . 3 8 6 4 7 1 : : * : : 1 9 7 7 0 . 0 3 4 1 9 1 . 4 4 1 4 4 1 . 4 0 7 2 5 1 = 4 : : 1 9 7 8 - 6 . 5 D - 0 5 1 . 4 2 7 7 1 1 . 4 2 7 7 8 1 : 4 : : : 1 9 7 9 - 0 . 0 1 8 6 9 1 . 4 2 9 3 5 1 . 4 4 8 0 3 1 * : : : : 1 9 8 0 - 0 . 1 9 4 3 0 . 2 3 7 4 1 . 4 6 8 0 4 1 : * : : : 1 9 8 1 - 0 . 0 4 9 9 6 1 . 4 3 7 8 4 1 . 4 8 7 7 9 1 : * : = : 1 9 8 2 ' - 0 . 0 3 8 5 6 1 . 4 6 8 7 5 1 . 5 0 7 3 1 ‘ : : : * : 1 9 8 3 0 . 2 7 9 5 8 1 . 8 0 6 1 7 1 . 5 2 6 5 8 I N D E P E N D E N T V A R I A B L E S L O G T - L n ( Y E A R ) 4 6 8 ‘ S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S Y D M 1 . 3 2 3 5 3 4 0 . 1 6 0 4 1 6 0 1 . 8 0 6 1 6 7 0 1 . 0 6 6 0 7 9 0 L O G T 4 . 2 9 4 1 9 1 0 0 . 0 8 0 8 3 9 2 4 . 4 1 8 8 4 0 0 4 . 1 5 8 8 8 3 0 C o v a r i a n c e C o r r e l a t i o n S Y D M . S Y D M 0 . 0 2 4 4 4 6 6 1 . 0 0 0 0 0 0 0 S Y D M . L O G T 0 . 0 0 9 8 7 2 9 0 . 8 0 1 4 0 6 8 0 . 0 0 6 2 0 8 2 1 . 0 0 0 0 0 0 0 L D B T . L O G T i i ” ' 0 0 0 l i fl l i ' i - ) C : 2 n I l : 4 5 ‘ f ' r 4 0 3 C 5 3 I : 4 - . g ’ U O ‘ s . . o l . . . . . 7 2 7 3 7 4 7 5 7 6 R E G I O N A L M O D 7 E ? L 7 8 M S I 7 9 8 0 8 1 8 2 8 3 U L A T I O N : i : : R ; : _ _ j £ : 1 5 7 6 7 ? 7 6 7 6 a b 8 % B i 8 3 8 4 F i g u r e F . 1 S . a & b . S o y m o a l E q u i v a l e n t C o n s u m p t i o n - 1 7 5 . 0 5 2 3 . 9 3 5 . 2 3 . 0 1 9 2 1 . 1 8 7 2 0 . 2 7 1 1 9 . 3 5 5 1 3 . 4 3 9 1 7 . 5 2 2 1 6 . 6 0 8 2 2 . 1 0 3 - 4 6 9 E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L — I - - E S T I M A T E D D e v e l o p e d M a r k e t a ‘ 1 ) ( > C > C x : n t a ~ 4 ~ J C S I I U i . . 3 7 6 1 5 9 3 5 6 ' r p r - M x : 4 N + * N r * r c » > M M c N : z M M ! 1 N 1 ~ ” R E G I O N A L N O D E L S I M U L A T I O N ; — - — - — A \ . , , 7 ‘ L \ ‘ “ _ ‘ - “ , 7 5 7 6 ’ 7 5 7 é F i g u r e F . 1 6 . e & b . S D o e y v o e i l l o p u E e q d 7 i M é 8 0 8 % v a a r l k e e n t t s C o n s u . i % S 6 m | l 1 \ _ l l l l l . l l 8 3 8 3 p t i o n - 4 7 0 3 m m - 2 7 5 9 * 2 5 0 M 3 2 5 0 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 A . 6 3 7 . 5 7 9 . 5 2 0 . 4 6 2 r . ‘ 0 3 : . 3 1 5 P 0 \ . 2 3 5 F . / / E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I N A T E D P > C ) ( O l i n f i “ 4 ' 3 ( 2 2 n I 3 1 4 F ' r ' ‘ f 4 T ' I 0 U 3 ( 1 2 ' I I U ' l U ' T U ' U ' I ' i fl l i a 4 ' 3 ( 2 3 n I 1 6 7 6 . 7 ? 7 6 7 9 s o F i g u r e F . 1 7 . a & b . S M o a y r n k e e a t l a E q u i v a l e n t 1 1 1 1 1 1 1 1 ? a é 8 4 m p o r t s - D e v e l o p e d a I 4 7 1 2 7 5 1 1 2 5 1 1 1 , % 1 7 5 1 . 1 a . “ , . . . . . . . . . 1 2 5 1 0 1 1 1 1 1 7 2 7 3 7 1 7 5 7 6 7 7 7 8 7 9 8 1 8 1 8 2 8 3 R E G I O N A L N O D E L S I M U L A T I O N 2 4 . 7 2 6 2 3 . 8 1 1 2 2 . 8 9 7 2 1 . 9 8 3 2 1 . 0 6 8 2 0 . 1 5 4 1 9 . 2 4 0 1 8 . 3 2 5 1 7 . 4 1 1 1 6 . 4 9 7 0 " I I A l l \ m ( J E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I N A T E D D e v e l o p e d M a r k e t a 4 7 2 P e r C a p i t a S o y a e a l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L 8 / / D e p e n d e n t V a r i a b l e i s P T S M N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 — T A I L S I G . C - 0 . 0 1 0 4 4 4 0 0 . 0 0 3 5 9 0 8 - 2 . 9 0 8 5 6 1 6 0 . 0 1 1 S P D H - 0 . 0 0 1 4 8 4 4 0 . 0 0 0 7 5 3 4 - 1 . 9 7 0 3 2 1 8 0 . 0 6 8 P C R N I 1 . 1 1 0 1 0 2 8 0 . 2 5 0 5 2 2 7 4 . 4 3 1 1 4 7 4 0 . 0 0 0 P C O S S U - 2 . 1 3 4 3 7 3 3 0 . 8 1 3 0 0 9 7 - 2 . 6 2 5 2 7 4 1 0 . 0 1 9 P C R G D P 2 6 8 6 2 . 8 5 5 2 5 1 0 . 0 4 5 3 1 0 . 7 0 2 1 3 9 0 . 0 0 0 R - s q u a r e d 0 . 9 8 1 3 0 2 M e a n o f d e p e n d e n t v a r 0 . 0 3 1 9 1 9 A d j u s t e d R - s q u a r e d 0 . 9 7 6 3 1 6 S . D . o f d e p e n d e n t v a r 0 . 0 1 1 9 4 4 8 . 8 . o f r e g r e s s i o n ’ 0 . 0 0 1 8 3 8 S u m o f s q u a r e d r e s i d 5 . 0 7 D - 0 5 D u r b i n - W a t s o n s t a t 2 . 4 2 2 4 1 1 F - s t a t i s t i c 1 9 6 . 8 0 4 6 L o g 1 1 k e l i h o o d 1 0 0 . 4 7 8 2 T P E 2 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : : * : 1 1 9 6 4 0 . 0 0 1 2 0 0 . 0 1 3 6 5 0 . 0 1 2 4 5 : : : : * : 1 9 6 5 0 . 0 0 2 5 6 0 . 0 1 6 4 8 0 . 0 1 3 9 2 I : * : : 1 9 6 6 1 . 7 D - 0 5 0 . 0 1 6 7 7 0 . 0 1 6 7 6 ! : * : : : 1 9 6 7 - 0 . 0 0 1 2 3 0 . 0 1 7 3 2 0 . 0 1 8 5 5 : * : : : 1 9 6 8 - 0 . 0 0 1 8 9 0 . 0 1 8 8 8 0 . 0 2 0 7 7 : : * : : 1 1 9 6 9 - 0 . 0 0 0 8 6 0 . 0 2 4 0 2 0 3 0 2 4 8 8 : * : : : 1 9 7 0 — 0 . 0 0 1 8 9 0 . 0 2 5 3 3 0 . 0 2 7 2 2 : : * 2 : l 1 9 7 1 - 0 . 0 0 1 0 1 0 . 0 2 7 0 9 0 . 0 2 8 1 0 : : : 4 : : 1 9 7 2 0 . 0 0 0 6 0 0 . 0 2 7 2 1 0 . 0 2 6 6 1 1 : : * : 2 1 9 7 3 0 . 0 0 0 4 6 0 . 0 3 1 5 5 0 . 0 3 1 0 9 = : * : : : 1 9 7 4 ~ 0 . 0 0 1 6 0 0 . 0 3 0 7 1 0 . 0 3 2 3 1 3 : : * : : 1 9 7 5 _ 0 . 0 0 1 5 9 0 . 0 3 5 3 0 . 0 3 3 8 0 3 : * : : : 1 9 7 6 - 0 . 0 0 0 8 1 0 . 0 3 5 1 7 0 . 0 3 5 9 8 3 : 2 : é : 1 9 7 7 0 . 0 0 3 2 1 0 . 0 4 2 9 4 0 . 0 3 9 7 3 1 * : : 1 1 9 7 8 - 0 . 0 0 2 0 2 0 . 0 4 4 4 7 0 . 0 4 6 4 9 1 : : * : : 1 9 7 9 0 . 0 0 1 2 0 0 . 0 4 7 7 9 0 . 0 4 6 5 9 : : 4 : : : 1 9 8 0 - 0 . 0 0 0 2 8 0 . 0 4 2 3 4 0 . 0 4 2 6 3 1 z : : * t 1 9 8 1 0 . 0 0 2 6 2 0 . 0 4 9 8 4 0 . 0 4 2 2 i : 4 : : : 1 9 8 2 - 0 . 0 0 1 7 9 0 . 0 4 7 8 1 0 . 0 4 9 6 0 : : * : : 1 9 8 3 - 8 . 3 D — 0 5 0 . 0 4 3 6 2 0 . 0 4 3 7 0 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l G D P P e r C a p i t a G D P D H / C P I D H / P O P D H P C O S S U I P e r C a p i t a S u p p l y o f R a p e s e e d a n d S u n f l o w e r S e e d M e a l ( 1 0 0 0 M T ) ( R P R O D M ~ . 5 9 + N P R O D N ) ~ . 4 7 5 ) / P O P D H P C R N I a P e r C a p i t a I n p o r t a o f R o o t s a n d T u b e r e ( 1 0 0 0 M T ) R N I D M / P O P D N S P D N - R e a l D e v e l o p e d M a r k e t S o y b e a n P r i c e S P R X R D M / C P I D N ] . U S N P L 1 9 6 4 - 2 0 O b s e r v a t i o n s 1 9 8 3 4 7 3 S e r i e s M e a n 0 . M a x i m u m M i n i m u m F T S M N I S P D M P C R N I P C O S S U P C R G D P 0 . 0 3 1 9 1 9 5 2 . 9 8 5 2 0 6 9 0 . 0 0 6 3 1 4 2 0 . 0 0 2 4 5 5 1 . 6 7 6 0 - 0 6 0 . 0 1 1 9 4 3 9 0 . 7 8 1 1 2 6 8 0 . 0 0 4 9 5 8 8 0 . 0 0 1 3 4 5 4 3 . 2 9 9 D — 0 7 0 . 0 4 9 8 3 9 6 5 . 0 5 0 0 3 6 0 0 . 0 1 7 8 0 7 1 0 . 0 0 5 3 4 6 8 2 . 0 3 8 0 — 0 6 0 . 0 1 3 6 5 1 3 1 . 8 5 3 9 4 5 0 0 . 0 0 1 3 7 8 3 0 . 0 0 0 8 9 7 5 1 . 0 7 5 0 - 0 6 C o v a r i a n c e C o r r e l a t i o n P T S M N I . P T S M N I P T S M N I . S P D H P T S M N I . P C R N I P T S M N I . P C O S S U P T S M N I . P C R G D P S P D M . S P D M S P D M . P C R N I S P D M . P C O S S U S P D M . P C R G D P P C R N I . P C P N I P C R N I . P C O S S U P C R N I . P C R G D P P C O S S U . P C O S S U P C O S S U . P C R B D P P C R G D P , P C R G D P 0 . 0 0 0 1 3 5 5 - 0 . 0 0 4 9 7 5 7 5 . 1 4 4 0 - 0 5 . 2 9 3 D - o 5 3 . 5 7 8 0 - 0 9 0 . 5 7 9 6 5 1 1 - 0 . 0 0 2 3 6 4 0 9 0 . 0 0 0 4 9 2 7 - 9 . 4 6 5 D - 0 8 2 . 3 3 6 D - 0 5 5 . 7 3 3 0 - 0 6 1 . 2 7 4 0 - 0 9 1 . 7 2 0 0 - 0 6 3 . 5 3 9 0 - 1 0 1 . 0 3 4 0 — 1 3 1 . 0 0 0 0 0 0 0 - 0 . 5 6 1 3 9 4 4 0 . 9 1 4 2 2 3 7 0 . 8 4 7 2 0 2 7 0 . 9 5 5 6 8 5 8 1 . 0 0 0 0 0 0 0 - 0 . 6 4 2 4 3 6 0 _ - 0 . 4 9 3 4 8 6 8 - 0 . 3 8 6 6 0 4 8 1 . 1 : ) ( : ) ( : ) ( : ) ( : ) ( : 1 ( : ) 0 . 9 0 4 6 1 7 3 0 . 8 2 0 0 0 7 2 1 . 0 0 0 0 0 0 0 0 . 8 3 9 3 2 2 7 1 . C ) C ) C ) 0 0 1 : ) C ) ” a . 3 ” . = 0 " ' ~ o ~ o f ~ . ~ ~ " . - ” . 9 " . - ) 7 ‘ 1 o 0 c H 3 T T 0 N 5 2 2 2 2 1 5 0 5 7 5 2 7 0 . 7 ’ 1 1 > ' 0 . " 5 ' “ m “ , 2 ” . 5 ° 4 7 4 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N Z l D b i r l " h i x 2 . 8 4 5 - 2 . 7 7 4 - 3 / ‘ - I 3 2 . 7 0 4 I I I 2 . 5 3 3 : I I 3 ; 2 . . » a n \ Z I 1 ' 2 . 4 9 2 : : \ \ \ ; 2 . 4 2 2 » I 2 T 2 . 3 5 7 E Z : O 2 . 2 3 1 » I I N 2 . 2 1 0 E ; S e . . . . ' 7 5 7 s 7 7 7 8 7 Q 8 6 a ? 8 2 8 5 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e F . 1 8 . e & b . S o y o i l E q u i v a l e n t I m p o r t s - D e v e l o p e d M a r k e t s 1 4 7 5 D e v e l o p e d M a r k e t . P e r C a p i t a S o y o i l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) S M P L 2 0 1 9 6 4 - 1 9 8 3 O b s e r v a t i o n s L 5 1 ! D e p e n d e n t V a r i a b l e i s P T S O N I U A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 — T A I L S I G . C - 0 . 0 0 1 2 9 0 5 0 . 0 0 0 6 8 1 8 - 1 . 8 9 2 8 0 8 9 0 . 0 7 7 P C R G D P 4 1 7 2 . 0 9 6 2 4 9 5 . 3 3 1 9 5 8 . 4 2 2 8 2 8 6 0 . 0 0 0 P C D D S U - 0 . 3 2 8 6 5 9 2 0 . 1 3 8 3 3 5 8 - 2 . 3 5 8 0 6 1 0 . 0 3 0 S P D M ' - 0 . 0 0 0 2 3 2 9 0 . 0 0 0 1 2 5 0 - 1 . 8 6 2 6 4 0 3 0 . 0 8 1 R - s a u a r e d 0 . 9 2 1 6 0 8 M e a n o f d e p e n d e n t v a r 0 . 0 0 4 2 4 2 A d j u s t e d R - s q u a r e d 0 . 9 0 6 9 0 9 S . D . o f d e p e n d e n t v a r 0 . 0 0 1 1 4 0 S . E . o 4 r e g r e s s i o n 0 . 0 0 0 3 4 8 S u m o f s q u a r e d r e s i d 1 . 9 4 D - 0 6 D u r b i n - N a t s o n s t a t 1 . 9 5 5 1 5 0 F - s t a t i s t i c 6 2 . 7 0 0 4 4 L o g l i k e l i h o o d 1 3 3 . 1 2 6 4 T P E 3 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 * 1 1 9 6 4 0 . 0 0 0 3 0 0 . 0 0 2 3 9 0 . 0 0 2 0 9 1 : 1 * 1 1 9 6 5 0 . 0 0 0 3 3 0 . 0 0 2 5 7 0 . 0 0 2 2 4 1 : 1 * : 1 1 9 6 6 3 . 0 D - 0 5 0 . 0 0 2 6 1 0 . 0 0 2 5 8 1 : * 1 : 1 1 9 6 7 - 0 . 0 0 0 2 2 0 . 0 0 2 6 9 0 . 0 0 2 9 1 1 * : 1 : 1 1 9 6 8 - 0 . 0 0 0 3 9 0 . 0 0 2 8 7 0 . 0 0 3 2 7 1 : * : 1 1 9 6 9 1 . 1 D - 0 6 0 . 0 0 3 7 8 0 . 0 0 3 7 8 1 * 1 : 1 1 9 7 0 - 0 . 0 0 0 3 1 0 . 0 0 3 7 0 . 0 0 4 0 9 1 : * 1 : 1 1 9 7 1 - 0 . 0 0 0 2 8 0 . 0 0 3 9 6 0 . 0 0 4 2 3 1 : i : 1 1 9 7 2 - 1 . 9 D - 0 5 0 . 0 0 3 9 8 0 . 0 0 4 0 0 1 : 1 4 : 1 1 9 7 3 0 . 0 0 0 2 6 0 . 0 0 4 9 2 0 . 0 0 4 6 6 1 : * 1 : 1 1 9 7 4 - 8 . 6 D - 0 5 0 . 0 0 4 5 2 0 . 0 0 4 6 1 1 : 1 4 : 1 1 9 7 5 8 . 0 D - 0 5 0 . 0 0 4 8 9 0 . 0 0 4 8 1 1 : * : 1 1 9 7 6 - 1 . l D - 0 5 0 . 0 0 4 7 5 0 . 0 0 4 7 6 1 : 1 * : 1 1 9 7 7 0 . 0 0 0 1 6 0 . 0 0 5 3 0 . 0 0 5 1 4 1 : 1 * : 1 1 9 7 8 9 . 3 0 - 0 5 0 . 0 0 5 4 0 0 . 0 0 5 3 0 1 : 1 * 1 1 9 7 9 0 . 0 0 0 3 1 0 . 0 0 5 8 5 0 . 0 0 5 5 3 1 * : 1 : 1 1 9 8 0 - 0 . 0 0 0 4 5 0 . 0 0 4 8 2 0 . 0 0 5 2 1 : 1 * : 1 1 9 8 1 0 . 0 0 0 2 6 0 . 0 0 5 6 7 0 . 0 0 5 4 1 1 : 1 : * 1 1 9 8 2 0 . 0 0 0 6 3 0 . 0 0 5 7 6 0 . 0 0 5 1 4 1 * : 1 : 1 1 9 8 3 - 0 . 0 0 0 7 0 0 . 0 0 4 3 3 0 . 0 0 5 0 2 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e e l G D P P e r C a p i t a G D P D M / C P I D M / P O P D M P C O S S U 8 P e r C a p i t a S u p p l y o f R a p e S e e d a n d S u n f l o w e r S e e d 0 1 1 ( 1 0 0 0 M T ) ( ( R P R O D H - . 3 9 + N P R O D M ) - . 4 1 ) / P O P D M S P D H 8 R e e l D e v e l o p e d M a r k e t S o y b e a n P r i c e S P ! X R D N / C P I D H € 3 7 6 S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t 1 o n s S e r i e s M e a n S . D . M a x z m u m M 1 n i m u m R T S O N I 0 . 0 0 4 2 4 2 2 0 . 0 0 1 1 4 0 1 0 . 0 0 5 8 4 5 5 0 . 0 0 2 3 8 8 6 R C R G D P 1 . 6 7 6 0 - 0 6 3 . 2 9 9 D - 0 7 2 . 0 3 8 0 - 0 6 1 . 0 7 5 0 - 0 6 P C D O S U 0 . 0 0 2 3 2 8 1 0 . 0 0 1 3 0 3 1 0 . 0 0 4 9 3 1 3 0 . 0 0 0 8 6 8 2 S P D M 2 . 9 8 5 2 0 6 9 0 . 7 8 1 1 2 6 8 5 . 0 5 0 0 3 6 0 1 . 8 5 3 9 4 5 0 C o v a r i a n c e C o r r e l a t i o n P T S O N I . P T S O N I 1 . 2 3 5 0 - 0 6 1 . 0 0 0 0 0 0 0 P T S O N I , P C R G D P 3 . 3 7 2 0 - 1 0 0 . 9 4 3 5 7 8 6 P T S O N I . P C D O S U 1 . 0 6 9 0 - 0 6 0 . 7 5 7 6 1 8 4 P T S O N I , S P D M - 0 . 0 0 0 3 5 5 5 - 0 . 4 2 0 2 1 6 9 P C R G D P . R C R G D P 1 . 0 3 4 D - 1 3 1 . 0 0 0 0 0 0 0 P C R G D P . P C D D S U 3 . 5 3 8 0 - 1 0 0 . 8 6 6 1 8 2 2 R C R G D P . S P D M - 9 . 4 6 5 D - 0 8 - 0 . 3 8 6 6 0 4 8 P C D D S U . P C D D S U 1 . 6 1 3 D - 0 6 1 . 0 0 0 0 0 0 0 R C D D S U . S P D M - 0 . 0 0 0 5 3 0 5 — 0 . 5 4 8 6 4 4 3 S P D M . S P D M 0 . 5 7 9 6 5 1 1 1 . 0 0 0 0 0 0 0 L J l l l l l l l l l l l l l i l l l a 4 7 7 Y — 7 2 7 3 7 1 7 5 7 1 7 7 1 1 1 ' 9 1 ‘ 0 1 1 1 ' 2 1 3 R E G I O N A L M O D E L S I M U L A T I O N . 3 5 7 / . 3 5 0 - , / . 3 4 4 . 3 3 7 . 3 3 1 . 3 2 4 . 3 1 3 - . 3 1 1 . 3 0 4 ~ . 2 9 3 ‘ ' Y — T T V T Y V ' m u - m h 7 5 7 é 7 7 7 3 7 3 8 0 8 1 8 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D P i s u r e F . 1 9 . a & b . P e r c e n t a g e S o y m e a l E q u i v a l e n t I m p o r t e d a a S o y n e a l - D e v e l o p e d M a r k e t a 4 7 8 D e v e l o p e d M a r k e t a P e r c e n t a g e S o y e e a l E q u i v a l e n t I m p o r t e d a e S o y n e a l S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r 1 a o l e i s P M E A L V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 0 . 2 4 0 8 9 8 1 0 . 0 1 3 2 0 4 0 1 8 . 2 4 4 3 7 2 0 . 0 0 0 M A R G I N - 0 . 0 3 9 9 5 2 2 0 . 0 1 7 5 2 6 2 - 2 . 2 7 9 5 6 3 0 0 . 0 3 8 M A R G I N ( - 1 ) - 0 . 0 3 5 5 2 7 9 0 . 0 1 7 3 7 5 2 - 2 . 0 4 4 7 4 9 5 0 . 0 5 9 T D S S U P 1 . : 8 0 D - 0 5 3 . 2 8 9 D - 0 6 4 . 1 9 5 3 1 6 4 0 . 0 0 1 R — s o u a r e d 0 . 7 8 9 0 6 3 M e a n 0 + d e p e n d e n t v a r 0 . 2 4 2 2 8 0 { A d j u s t e d R - s q u a r e d 0 . 7 4 6 8 7 5 S . D . o f d e p e n d e n t v a r 0 . 0 3 0 1 9 2 £ 5 . E . o f r e g r e s s i o n 0 . 0 1 5 1 9 0 S u m o f s q u a r e d r e s i d 0 . 0 0 3 4 6 1 [ D u r b i n - W a t s o n s t a t 2 . 1 9 9 4 2 9 F - s t a t i s t i c 1 8 . 7 0 3 7 4 L _ o g l i k e l i h o o d 5 4 . 8 4 0 7 4 T P E 9 / 1 9 : 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : 1 : * 1 1 9 6 5 0 . 0 2 6 0 5 0 . 2 3 9 6 4 0 . 2 1 3 5 8 : : 1 * : 1 1 9 6 6 0 . 0 0 4 1 1 0 . 2 2 0 0 3 0 . 2 1 5 9 2 : : * 1 : 1 1 9 6 7 - 0 . 0 0 6 2 5 0 . 2 2 5 7 9 0 . 2 3 2 0 4 5 : * 1 : 1 1 9 6 8 - 0 . 0 1 2 5 4 0 . 2 2 4 4 9 0 . 2 3 7 0 3 1 : * 1 : 1 1 9 6 9 - 0 . 0 1 4 5 3 0 . 2 0 3 6 3 0 . 2 1 8 1 6 1 : : : 4 1 1 9 7 0 0 . 0 1 7 4 3 0 . 2 2 9 8 6 0 . 2 1 2 4 5 1 : * : : 1 1 9 7 1 - 0 . 0 1 1 2 1 0 . 2 1 9 4 5 0 . 2 5 0 6 6 1 : : 4 : : 1 9 7 2 0 . 0 0 1 6 4 0 . 2 2 0 5 2 0 . 2 1 8 8 7 5 : * : = 1 1 9 7 5 - 0 . 0 1 1 3 2 0 . 1 9 1 5 7 0 . 2 0 2 8 8 : : * 1 : 1 1 9 7 4 - 0 . 0 0 8 9 0 . 2 1 3 1 6 0 . 2 2 2 0 5 1 : 1 * : 1 1 9 7 5 0 . 0 0 8 2 7 0 . 2 4 9 3 4 0 . 2 4 1 0 7 : : * 1 : 1 1 9 7 6 - 0 . 0 0 2 1 1 0 . 2 5 2 1 0 0 . 2 5 4 2 2 1 : 1 * 1 1 9 7 7 0 . 0 1 5 7 4 0 . 2 6 7 9 9 0 . 2 5 2 2 5 : : * 1 : 1 1 9 7 8 - 0 . 0 0 4 4 9 0 . 2 5 8 9 1 0 . 2 6 3 4 0 1 : * 1 : 1 1 9 7 9 - 0 . 0 1 2 4 0 0 . 2 5 3 9 0 0 . 2 6 6 3 0 1 : 4 = : 1 9 8 0 0 . 0 0 0 3 4 0 . 2 7 8 3 0 0 . 2 7 7 9 6 1 = 1 4 : : 1 9 8 1 0 . 0 0 9 5 8 0 . 2 8 7 3 1 0 . 2 7 7 7 4 : * : 1 : 1 1 9 8 2 - 0 . 0 2 3 5 0 0 . 2 5 8 3 1 0 . 2 8 1 8 1 ‘ : 1 : * 1 1 9 8 3 0 . 0 2 4 0 8 0 . 3 0 9 0 2 0 . 2 8 4 9 4 § § ¥ I N D E P E N D E N T V A R I A B L E S n A R G I N - S o y b e a n C r u s h H e r g i n ( S H P - X R D M / C P I D H ) 9 . 7 9 5 + ( S O P - X R D N / C P I D M ) ~ . 1 7 5 - ( S P - X R D H / C P I D M ) . r t J S S U P = T o t a l D o n e e t i c S u p p l y o f O i l s e e d N e a l e ( 1 0 0 0 M T ) ( R P R O D M * . $ 9 + N P R O D M ~ . 4 7 5 ) * ( S E S D M ( - 1 ) + S P R O D M ) * . 7 9 5 * S M E S D H ( - l ) m Z B F “ n o w I H o m u M n 0 0 m m w < m d w o j m . v a m m z p m m 3 0 w : m . U . z w x p a c a Z p a p a c a o z m p r 0 . n p n u u o o 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 6 0 6 0 0 0 0 Z D m m H z a l p o 0 . H u m n p m n o . n u o m u p u 0 . m o p m o m o 0 . 0 n u u o m 0 z p n m e z 0 . u u n o o m h 5 . m u p m m p h 0 . m 0 p m o m 0 0 . 0 n 0 u 0 m 0 4 0 m m c 0 n w m q . o n w u H u m p . u n o m b m u m . 0 0 m 0 m o m . 0 u o o o . n o < m z w m a n m n o x j m p m d p o a n z m b r . 0 3 m 0 r 0 . 0 0 0 m 0 u 0 p . O o o o o o o n : m » r . 3 b m m m z . l p e 1 0 . 0 0 u o p u m 1 0 . m o u u u m 0 3 M D F . 3 D m m H z 1 0 . 0 0 0 p m o p 1 0 . 0 u p m o m p n z m b r . 4 0 m m c n m u . p o w w p m 0 . 4 0 0 0 0 0 0 3 3 m m H 2 2 1 p 6 . 3 D m m H z l l p c 0 . 0 m o n u m u “ . 0 0 0 0 0 0 0 J D M m H Z A I N V . 3 D a n z 0 . 0 H 0 0 0 0 H 0 . u m m m u o w 3 D n m e z l l p v . 4 o m m c n 1 0 0 . c o m w u p 1 0 . n o m u p w p z b a n z . 3 D fi m H z 0 . 0 m 0 0 m n p 0 . 0 0 0 0 0 0 0 Z D m m H z . A D m m c n 1 ~ 0 m . u m 0 0 p 1 0 . u 0 m u o u p 4 0 m m c n . a o m m c n H E H 0 0 0 0 . 0 “ . 0 0 5 0 0 0 0 0 - 1 0 0 0 : m 4 Q O I W R E G I O I . O W r H ' F Q F Q H O Z : a Q G C U U U V r T ' r I I U T V ‘ T ' T V 7 5 7 8 , t “ i g u r e F . 2 0 . a 8 . b C T U A . N 7 L o 7 A S A L M O D E L S I M U L A T I O N 1 1 1 6 \ 1 1 1 1 ’ r 1 1 1 1 1 1 1 1 1 1 1 8 1 8 2 E D I o M r A t T s - D e v e l o p e d M a r k e t s 7 6 7 9 — l - N e - t E I y n e a 8 S m 0 T p 4 8 0 9 0 0 ' B i l l . “ e e e e n o . . . e e . . . . . ~ ’ e ' 5 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 8 3 . 8 4 5 . 2 6 8 ' . 8 8 0 . 4 9 8 . 1 1 5 . 7 8 8 . 3 5 1 . 9 8 8 . 5 8 8 . 2 0 3 I X J H I L ‘ J l 1 4 2 1 8 4 0 3 ( J E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 P > C D < O : m a S O Z W F ° 0 0 z m e d O 9 0 2 “ w r ' v v v v f ' j ‘ T T ' Y 7 3 7 4 7 5 7 8 R E G I O N A L M O D 7 E 7 L 7 8 M S I 7 9 8 8 8 1 8 8 8 8 U L A T I O N 1 1 , ‘ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A . C T U A L — S o y o i l N — e — E S T t I m p o I r M t A s T E D - D e v e l o p e d M a r k e t s t “ i g u r o F . 2 1 . a s . b - 1 5 3 . . 6 3 8 ‘ ~ 2 4 1 - 3 2 9 . . 2 1 9 . 0 1 1 ~ 5 9 2 . ~ 8 8 0 . ~ 7 6 8 . ~ 8 5 8 . ‘ 9 4 3 . - 4 1 7 8 4 4 4 2 7 8 0 2 5 9 4 3 8 5 1 7 7 9 6 8 4 8 1 / I 1 . . 7 5 7 8 7 7 7 8 7 8 8 0 8 1 8 2 8 3 8 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N r e r n o : 4 L L n n n e l n 1 1 1 l 1 j 7 7 1 1 1 l L n n 1 n 1 n 1 1 n L . E ’ l g u r e F . 2 2 . a & b A . C T U A S L o y b e a - 1 n - N e - t E D E I S m T p I o M r A t T s - D e v e l o p e d M a r k e t s 4 8 2 w e . 1 w a s } . W N . o - ~ ~ * ° ' 0 l e l l 0 - ’ 1 1 1 7 5 8 8 E . “ " 2 " T 1 5 “ . 0 8 8 . “ m . . . 0 0 0 ' “ 1 r ( 3 1 2 5 8 ' L t d = 5 1 m m 7 2 7 8 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 8 3 2 0 . 8 4 8 1 9 . 8 2 1 ' : 1 8 . 0 0 8 : 1 8 . 3 7 1 1 1 7 . 8 4 8 1 1 8 . 8 2 0 1 1 8 . 1 8 8 : 1 8 . 4 7 0 1 4 . 7 4 8 1 4 . 0 2 0 ’ . — - ' a w e a b 7 8 7 8 7 7 7 8 7 8 8 0 8 1 8 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 4 » 0 0 0 : m A Q O I W ‘ 8 0 8 ( V ' T T 9 I 1 ' T ' I 1 3 8 1 # 4 1 0 : 2 ” ( R E G I O N A L M O D E L S I M U L A T I O N l t l l l l A I I I O O O . l I 1 / U O I I I I O I I I I - F u l g u r e F . 2 3 . a & b . S M o a y r - k e e e t l s E n d i n g S t o c k s - D e v e l o p e d 4 8 3 7 4 5 . 5 0 0 8 9 4 . 5 0 0 - 6 4 3 . 5 0 0 5 9 2 . 5 0 0 5 4 1 . 5 0 0 4 9 0 . 5 0 0 4 3 9 . 5 0 0 5 0 0 5 0 0 3 8 8 . 3 3 7 . 2 8 6 . 5 0 0 ' 8 4 0 3 M m ( J 7 8 7 8 7 7 7 8 7 8 8 0 8 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - 1 - - E S T I M A T E D 4 8 4 D o v - l o p o d M a r k - t s S o y n o a l E n d i n g S t o c k . ( 1 0 0 0 H T ) E M R L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L 3 / / D e p e n d e n t V a r 1 a o l e i s S M E S D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 — T A I L S I G . c - 2 5 2 . 0 1 9 7 9 7 4 . 3 6 5 8 1 7 - 3 . 3 8 8 9 1 9 7 0 . 0 0 % S M S U P 0 . 0 3 4 4 7 1 9 0 . 0 0 3 0 9 3 3 1 1 . 1 4 3 8 9 7 0 . 0 0 0 M A R G I N 1 4 3 . 9 8 4 9 5 9 3 . 0 0 5 8 0 7 1 . 5 4 8 1 2 8 6 0 . 1 4 0 F ? - S Q U B P E O 0 . 8 8 8 1 7 2 M e a n o f d e n e n d e n t v a r 3 6 3 . 8 5 0 0 d e j u s t e d R - s q u a r e d 0 . 8 7 5 0 1 6 S . D . o f d e p e n d e n t v a r 2 3 6 . 2 5 5 5 E S . E . o f r e g r e s s i o n 8 3 . 5 2 3 6 0 S u m o f s q u a r e d r e s i d 1 1 8 5 9 5 . 3 £ 3 t 1 r b i n - w a t s o n s t a t 2 . 3 3 5 1 6 6 F - s t a t i s t i c 6 7 . 5 0 9 7 1 ( . 0 9 l i k e l i h o o d - 1 1 5 . 2 5 6 2 T P E 5 / 2 0 - - R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : : : * : : 1 9 6 4 7 4 . 0 0 1 5 8 6 . 0 0 0 0 1 1 . 9 9 8 5 : : : 8 : : 1 9 6 5 4 . 7 7 8 1 4 1 1 7 . 0 0 0 1 1 2 . 2 2 2 _ : : : * : : 1 9 6 6 1 6 . 3 4 6 0 9 0 . 0 0 0 0 7 3 . 6 5 4 0 1 : : * : : 1 9 6 7 4 9 . 2 5 3 1 2 1 . 0 0 0 7 1 . 7 4 6 2 : : i * : 2 1 9 6 8 4 3 . 6 9 2 8 1 3 9 . 0 0 0 9 5 . 3 0 7 2 2 : * : : : 1 9 6 9 - 6 4 . 7 0 9 5 1 7 9 . 0 0 0 2 4 3 . 7 0 9 : : * : : £ 1 9 7 0 - 6 7 . 8 6 4 1 1 7 2 . 0 0 0 2 3 9 . 8 6 4 1 * : i : l 1 9 7 1 - 9 9 . 4 6 9 6 1 4 4 . 0 0 0 2 4 3 . 4 7 0 : : * : : i 1 9 7 2 - 1 4 . 3 8 2 0 3 1 8 . 0 0 0 3 3 2 . 3 8 2 1 : : * : : 1 9 7 3 6 2 . 1 3 5 1 4 8 0 . 0 0 0 4 1 7 . 8 6 5 : : * : : : 1 9 7 4 - 5 5 . 3 9 7 3 2 9 1 . 0 0 0 3 4 6 . 3 9 7 2 : * i : i 1 9 7 5 - 5 1 . 8 0 9 0 3 4 8 . 0 0 0 3 9 9 . 8 0 9 ; a s : : : : 1 9 7 6 - 1 2 5 . 2 1 0 2 6 1 . 0 0 0 3 8 4 . 2 1 0 1 : : : * 1 1 9 7 7 1 2 5 . 1 5 8 6 5 7 . 0 0 0 5 3 1 . 8 4 2 : : : : i : 1 9 7 8 1 0 8 . 0 3 1 6 9 7 . 0 0 0 5 8 8 . 9 6 9 1 § : : 3 1 9 7 9 - 8 2 . 6 8 6 1 5 7 3 . 0 0 0 6 5 5 . 6 8 6 1 : i : * i 1 9 8 0 1 1 9 . 4 3 5 6 6 8 . 0 0 0 5 4 8 . 5 6 5 1 * : : : : 1 9 8 1 ~ 1 1 1 . 3 0 8 5 6 6 . 0 0 0 6 7 7 . 3 0 8 : : : * : : 1 9 8 2 6 2 . 8 7 1 9 7 4 2 . 0 0 0 6 7 9 . 1 2 8 ' : : * : : 1 9 8 3 5 . 1 3 3 3 1 6 2 8 . 0 0 0 6 2 2 . 8 6 7 a ‘ s — _ I N D E P E N D E N T V A R I A B L E S $ 1 1 3 0 ? I I T o t a l S o y n o e l E q u i v a l e n t S u p p l y ( 1 0 0 0 M T ) ( S E S D M ( - 1 ) + ( S E S D M ( - 1 ) + S P R O D M + S N I D M - S E S D M ) * . 7 9 5 * S M N I D M ) H A R G I N = - S o y b o e n C r u s h M a r g i n ( S M P I X R D M / C P I D M ) * . 7 9 5 + ( S P 9 X R D M / C P I D M ) ( S O P ’ X R D M / C P I D M ) * . 1 7 5 - m z fi r ” o o h I n o D a m 0 1 < w n w o n m H fl m u $ 0 0 m m 1 u m m 3 m m : m . o . z m x u a c a 3 u j u 3 c a m z m m o z w w w . m m o o o n u o . m m m m o u p m . o o o o c m o . o o o o o o m z m c n H o u o o . n n u o u m o . m m o o n o w u o . o n o o ~ m m . o ~ o o 3 D m m H z o . u u u u o o o o . m n m v p m o o . m o p m o m o 0 . H n o u m m o n U < m fi u m 3 n m n o 1 x m p w n p 0 3 m 3 m m o z . m 3 m m u z u . m m . m m u H . 0 0 0 0 0 0 0 m 3 m m 0 3 . m 3 m c w p a m n u o u . u o . o u h o m u o m 2 m m o 3 . 3 p m m n z I w u . m m u u m o 1 0 . n o o o a o u m 3 m c n . m 3 m c w b M fi M h b m u . 9 . 0 0 0 0 0 0 0 m 3 m c n . 3 n m m ~ z I m o ¢ . h v o u m 1 0 . 3 0 m m 0 3 m 3 D 3 0 H 2 . 3 D m m H z 0 . 0 9 m h o p m H . o o o o o o o H > C > < O : m a 4 0 2 0 P ) ( O > C : ) " 7 ' 1 ' 0 : 2 0 1 3 5 4 3 1 8 1 0 1 6 4 F i g u r e F . 2 4 . a 8 . b . 2 8 2 . 2 4 6 . 2 0 9 . 1 7 3 . 1 3 7 . . 2 3 3 . 9 9 8 2 8 . fi l l 3 5 0 3 0 ' 2 3 ' 2 " 1 5 0 1 0 . S O I . 8 8 2 . 6 4 7 ' 4 1 1 1 7 5 9 4 0 7 0 4 4 6 9 7 6 2 4 8 6 . . o ~ m . p c o . . . I c e “ : 0 ' ' “ o o ' . . ' . o o ° “ o f . . ' o f . . - ' " 7 2 7 3 7 4 7 5 7 6 7 7 7 0 7 9 B B 8 1 0 2 R E G I O N A L M O D E L S I M U L A T I O N * I i : b - ; ' i t I I I ! \ I b - \ ‘ ’ - \ J b - V r - . 7 5 7 8 7 7 7 8 7 8 8 0 8 1 8 2 8 8 s h E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ‘ - — - E S T I M A T E D S o y o i l E n d i n g S t o c k s - D e v e l o p e d M a r k e t s 8 3 ( R P R O D M * . 4 1 + N P R O D M * . 3 9 ) 4 8 7 D e v e l o p e d M a r k e t s S o y o i l E n d i n g S t o c k . ( 1 0 0 0 M T ) S M R L 1 9 6 4 — 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S O E S D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 8 1 . 7 6 0 2 1 3 1 9 . 7 0 5 7 1 0 - 4 . 1 4 9 0 6 2 1 0 . 0 0 1 S O D S U 0 . 6 2 8 1 5 7 5 0 . 0 9 3 1 6 4 8 6 . 7 4 2 4 3 3 7 0 . 0 0 0 O S O S U - 0 . 1 5 8 8 2 0 3 0 . 0 3 2 1 6 0 4 - 4 . 9 3 8 3 7 4 4 0 . 0 0 0 S N I D M 0 . 0 1 2 7 7 4 6 0 . 0 0 2 3 7 6 6 5 . 3 7 5 2 0 1 5 0 . 0 0 0 R - s g u a r e d 0 . 9 4 0 6 0 9 M e a n 0 + d e p e n d e n t v a r 1 1 7 . 6 5 0 0 A d j u s t e d R - s g u a r e d 0 . 9 2 9 4 7 3 S . D . o f d e p e n d e n t v a r 1 0 2 . 0 6 4 1 S . E . o f r e g r e s s i o n 2 7 . 1 0 5 0 1 S u m o f s q u a r e d r e s i d 1 1 7 5 4 . 9 1 D u r b i n - W a t s o n s t a t 2 . 2 5 5 8 5 1 F - s t a t i s t i c 8 4 . 4 6 7 2 7 [ . 0 9 l i k e l i h o o d - 9 2 . 1 4 1 7 1 2 / 2 0 R e s i d u a l P l o t ‘ o b s R E S I D U A L A C T U A L F I T T E D = 3 - : : 3 : 4 i 1 9 6 4 4 9 . 3 3 7 9 1 5 . 0 0 0 0 - 3 4 . 3 3 7 9 3 : : * : : 1 9 6 5 8 . 0 6 3 1 9 2 3 . 0 0 0 0 1 4 . 9 3 6 8 : : * : : : 1 9 6 6 — 1 6 . 4 9 0 3 2 6 . 0 0 0 0 4 2 . 4 9 0 3 : : * : : : 1 9 6 7 - 3 . 5 2 8 1 6 2 4 . 0 0 0 0 2 7 . 5 2 8 2 : : 0 : : 1 9 6 8 9 0 . 9 6 0 4 7 3 1 . 0 0 0 0 3 1 . 9 6 0 5 : : 4 : : : 1 9 6 9 - 2 1 . 6 2 3 4 3 8 . 0 0 0 0 5 9 . 6 2 3 4 : * : : : 1 9 7 0 - 2 7 . 0 6 8 5 4 4 . 0 0 0 0 7 1 . 0 6 8 5 : : * : : : 1 9 7 1 - 7 . 6 5 1 3 7 3 . 0 0 0 0 8 0 . 6 5 1 4 3 : * : : 1 9 7 2 0 . 1 5 7 9 1 5 2 . 0 0 0 0 5 1 . 8 4 2 1 : : * : : : 1 9 7 3 - 1 9 . 1 7 4 0 6 7 . 0 0 0 0 8 6 . 1 7 4 0 : : : : 4 : 1 9 7 4 4 5 . 9 7 6 4 1 1 5 . 0 0 0 6 9 . 0 2 3 6 : 4 : : : : 1 9 7 5 - 3 2 . 6 1 3 8 8 6 . 0 0 0 0 1 1 8 . 6 1 4 ‘ : : 4 : : 1 9 7 6 6 . 0 2 6 8 2 1 0 6 . 0 0 0 9 9 . 9 7 3 2 3 : 1 * : : 1 9 7 7 1 . 9 9 8 1 4 1 4 8 . 0 0 0 1 4 6 . 0 0 2 ‘ : 4 : : : 1 9 7 8 - 1 4 . 5 6 9 0 2 2 6 . 0 0 0 2 4 0 . 5 6 9 ‘ : : : 4 : 1 9 7 9 5 7 . 5 5 1 9 3 6 6 . 0 0 0 3 0 8 . 4 4 8 f : 4 : : : 1 9 8 0 - 5 . 0 1 7 6 9 2 9 2 . 0 0 0 2 9 7 . 0 1 8 : : 4 : : : 1 9 8 1 - 1 8 . 7 9 4 6 2 4 7 . 0 0 0 2 6 5 . 7 9 5 1 : : * : : 1 9 8 2 9 . 7 2 1 9 7 2 0 8 . 0 0 0 1 9 8 . 2 7 8 ' : * : : : 1 9 8 3 - 1 1 . 3 4 2 9 1 6 6 . 0 0 0 1 7 7 . 3 4 3 = § ‘ § _ . . . . _ _ . I N D E P E N D E N T V A R I A B L E S $ 0 5 8 0 I S o y o i l E q u i v a l e n t D o n e e t i c S u p p l y ( 1 0 0 0 M T ) ( S E S D M ( - 1 > v S P R O D M ) * . 1 7 5 * S O E S D M < - 1 ) 0 3 0 5 0 = - S u p p l y o f R a p e s e e d a n d S u n f l o w e r e e e d 0 1 1 ( 1 0 0 0 1 1 7 ) l l . 9 0 0 m Z D F “ 0 0 6 I . w o m u m o O o m m 3 < m d w 0 3 m m m w p m m 3 m m : m . U . z m x p a c a Z u j w s c a m o m m o z p p u . 0 m o o o “ 0 0 . 0 0 6 6 “ “ 0 0 . 0 0 0 0 0 H m . o o o o o o m o o m c m n b . o n m n m 6 0 0 . 0 0 0 4 0 o n b . p w u o o p m . u m o o o o o m o m c m a m . 0 6 0 0 0 m o o . 0 m m m 6 H o m w . u m o o ” 0 3 . 0 0 0 0 0 m z H o z . x w u m u o . u m o m u u o . p m u m n o n o o . a o o m p u o . o o o o n o < m 1 p m o n m 0 0 3 1 m p m n w o o m o m m o z . m o m m o z o m o o . m n u m 9 . 0 0 0 0 0 0 0 m o m m o 3 . m 0 o m c ” u n a m . o o m o . m fl o p o u u w o m m o x . o m o m c H o m o ~ . m u m o . u u o ¢ m m o m o m m o 3 . m z H o 3 h u u b o m . u a o . m v m m o a ~ m o o m c . m o o m c m o o m o . o o m w . o o o o o o o m o o m o . o m o m c 0 8 0 6 0 . 6 0 8 0 . o p u m m u m m o o m c . m z H o 3 u m p m n m . m m o . m p o o m m w o m o m c . 0 m 0 m c n m u m m 0 . n u H . o o o o o o o o m o m c . m z m o 3 ” H u m p u p . m o . m 6 6 ~ m o m m z H o 3 . m z H o 3 m m o o o m p o . p . 0 0 0 0 0 0 0 I a i h \ e P O O O : n a 4 0 2 0 x . * e l r * . ° : l 3 1 “ 7 ‘ 7 ' 0 ‘ 2 “ ‘ ‘ ‘ ‘ ‘ 7 8 7 8 7 7 7 8 7 8 E U X A S L o - y 1 b P 9 e O 7 a T S 5 — n F 1 n O 9 — d - E - R 8 i E 4 E n C T A . F 1 S u r e F . 2 5 . a 8 . b : J 3 4 3 o . n . 5 " ‘ “ ‘ m " ' 0 a n r mM e 0 C I 3 3 . _ _ - - ) R E G I O N A L M O D E L S I M U L A T I O N / n A o 1 I 4 I I I _ l I . 1 A L L A L A A L A 0 A T 8 C S g 8 1 8 2 S T I S M t A o T c E k D s - D e v e l o p e d 4 8 9 A “ . 3 4 2 “ ? J ” : J ” : £ fl J “ m m n m 5 ” » J ” 8 4 n g k o u D e v e l o p e d M a r k e t a 4 9 0 S o y b e a n E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S E S D M V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T . 2 - T A I L S I G . c 9 3 . 5 9 7 8 2 8 1 2 4 . 2 2 7 1 2 0 . 7 5 3 4 4 1 2 0 . 4 6 2 S B S U P 0 . 0 2 3 9 4 8 2 0 . 0 0 9 5 8 8 9 2 . 4 9 7 4 9 6 2 0 . 0 2 4 M A R G I N 1 3 7 . 7 6 5 2 9 1 4 1 . 8 2 0 4 2 0 . 9 7 1 4 0 6 6 0 . 3 4 6 D V 7 7 O N 5 8 1 . 0 8 9 9 9 1 1 3 . 9 5 8 5 3 5 . 0 9 9 1 3 5 0 . 0 0 0 R - s q u a r e d 0 . 9 2 2 8 1 6 M e a n o f d e p e n d e n t v a r 6 9 3 . 5 0 0 0 A d j u s t e d R - s q u a r e d 0 . 9 0 8 3 4 4 S . D . o f d e p e n d e n t v a r 4 0 4 . 5 3 5 5 S . E . o f r e g r e s s i o n _ 1 2 2 . 4 7 2 3 S u m o f s q u a r e d r e s i d 2 3 9 9 9 1 . 3 D u r b i n - W a t s o n s t a t 1 . 4 7 9 3 2 F — s t a t i s t i c 6 3 . 7 6 5 4 2 L o g l i k e l i h o o d — 1 2 2 . 3 0 5 0 4 / 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 g 4 : 1 1 9 6 4 - 3 . 1 7 9 8 7 2 7 6 . 0 0 0 2 7 9 . 1 8 0 1 1 1 * : 1 1 9 6 5 1 6 . 8 5 1 2 3 7 2 . 0 0 0 3 5 5 . 1 4 9 1 : 1 4 : 1 1 9 6 6 3 6 . 1 9 6 5 3 5 6 . 0 0 0 3 1 9 . 8 0 4 1 : 1 4 : 1 1 9 6 7 7 2 . 9 4 4 3 3 8 7 . 0 0 0 3 1 4 . 0 5 6 : : * 1 : 1 1 9 6 8 - 1 8 . 5 0 7 1 3 0 9 . 0 0 0 3 2 7 . 5 0 7 1 : 4 1 : 1 1 9 6 9 - 4 3 . 5 0 5 8 4 0 7 . 0 0 0 4 5 0 . 5 0 6 : : 1 4 : 1 1 9 7 0 4 5 . 1 5 9 7 4 7 3 . 0 0 0 4 2 7 . 8 4 0 1 : 4 = 1 1 9 7 1 - 3 . 5 2 8 8 3 4 2 2 . 0 0 0 4 2 5 . 5 2 : : 1 4 : 1 1 9 7 2 6 4 . 7 1 0 6 5 7 4 . 0 0 0 5 0 9 . 2 8 9 : 4 : 1 : 1 1 9 7 3 - 1 5 5 . 3 6 1 4 2 1 . 0 0 0 5 7 6 . 3 6 1 3 : 4 1 : 1 1 9 7 4 - 4 2 . 8 9 6 6 4 5 2 . 0 0 0 4 9 4 . 8 9 7 = : 1 4 : 1 1 9 7 5 3 4 . 3 2 8 0 5 4 1 . 0 0 0 5 0 6 . 6 7 2 1 : 4 : 1 1 9 7 6 - 3 . 2 1 1 0 8 4 8 5 . 0 0 0 4 8 8 . 2 1 1 : : 4 1 : 1 1 9 7 7 - 9 o . 7 3 2 1 0 6 6 . 0 0 1 1 5 6 . 7 3 = : 4 1 : 1 1 9 7 8 - 8 5 . 6 6 5 6 1 1 0 7 . 0 0 1 1 9 2 . 6 7 = : 1 * = 1 1 9 7 9 9 . 3 0 1 6 6 1 2 4 7 . 0 0 1 2 3 7 . 7 0 3 4 : 1 : 1 1 9 8 0 - 2 7 7 . 5 5 5 8 7 5 . 0 0 0 1 1 5 2 . 5 6 ; : 4 : 1 1 9 8 1 - 2 . o 2 7 8 1 1 2 1 5 . 0 0 1 2 1 7 . 0 3 ; 1 1 : 4 1 1 9 8 2 2 7 3 . 1 6 7 1 5 2 9 . 0 0 1 2 5 5 . 8 3 ' = 1 g 4 1 1 9 8 3 1 7 3 . 5 1 3 1 3 5 6 . 0 0 1 1 8 2 . 4 9 a a g ‘ I N D E P E N D E N T V A R I A B L E S 3 3 8 1 : ? ” A n o n - I > V ' 7 7 o n = T o t a l S o y b e a n S u p p l y ( 1 0 0 0 M T ) ( S E S D M ( - l ) + S P R O D M S o y b e a n C r u s h M a r g i n ( S M P G X R D M / C P I D M ) 9 . 7 9 5 + ( S O P - X R D M / C P I D M ) - . 1 7 5 - ( S P G X R D M / C P I D M ) I l I £ ( Y E A R 0 O t h e r w i s e . G E . 7 7 ) * S N I D M ) 1 4 9 1 D v 7 7 0 N . D v 7 7 0 N 0 . 2 2 7 5 0 0 0 S M P L 1 9 6 4 - 1 9 8 5 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M l n i m u m S E S D M 6 9 3 . 5 0 0 0 0 4 0 4 . 5 3 5 5 4 1 5 2 9 . 0 0 0 0 2 7 6 . 0 0 0 0 0 S B S U P 1 4 4 0 9 . 4 0 0 5 4 9 4 . 5 0 8 1 2 2 4 0 6 . 0 0 0 5 6 7 8 . 0 0 0 0 M A R G I N 0 . 3 7 3 3 9 6 6 0 . 2 2 5 7 1 8 6 0 . 8 6 1 5 0 5 9 0 . 1 2 9 3 6 5 0 D V 7 7 0 N 0 . 3 5 0 0 0 0 0 0 . 4 8 9 3 6 0 5 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S E S D M . S E S D M 1 5 5 4 6 6 . 5 5 1 . 0 0 0 0 0 0 0 S E S D M , S B S U P 1 8 8 1 9 2 6 . 8 0 . 8 9 1 2 7 0 3 S E S D N , H A R G I N - 3 2 . 4 4 1 2 6 0 — 0 . 3 7 3 9 8 1 4 S E S D M . D V 7 7 0 N 1 7 7 . 0 2 5 0 0 0 . 9 4 1 2 9 4 3 S B S U P , S B S U P 2 8 6 7 8 0 5 0 . 1 . 0 0 0 0 0 0 0 S B S U P . M A R G I N - 4 2 6 . 6 1 3 7 8 - 0 . 3 6 2 1 0 1 9 S B S U P . D V 7 7 0 N 2 1 5 7 . 8 6 0 0 0 . 8 4 4 8 0 7 5 ‘ M A R G I N . M A R G I N 0 . 0 4 8 4 0 1 5 1 . 0 0 0 0 0 0 0 M A R B I N . D V 7 7 D N - 0 . 0 4 9 7 2 1 5 - 0 . 4 7 3 8 3 1 8 1 . 0 0 0 0 0 0 0 A P P E N D I X G E Q U A T I O N S T A T I S T I C S - L E S S D E V E L O P E D C O U N T R I E S W h e a t W P R O L D . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A L D . . . . . . . . . . . . . . . . . . . . . . . H a r v e a t e d A r e a W Y L D . . . . . . . . . . . . . . . . . . . . . . . . Y 1 e l d w C O N L D . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W N I L D . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t a W E S L D . . . . . . . . . . . . . . . . . . . . . . . E n d 1 n g S t o c k s C o a r a e G r a i n F P R O L D . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A L D . . . . . . . . . . . . . . . . . . . . . . . H a r v e e t e d A r e a F Y L D . . . . . . . . . . . . . . . . . . . . . . . . Y 1 e l d F C O N L D . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I L D . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s F E S L D . . . . . . . . . . . . . . . . . . . . . . . E n d 1 n g S t o c k s S o y b e a n C o m p l e x S P R O L D . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n S H A L D . . . . . . . . . . . . . . . . . . . . . . . H a r v e a t e d A r e a S Y L D . . . . . . . . . . . . . . . . . . . . . . . . Y 1 e l d S N C O L D . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . C o n a u m p t i o n S O C O L D . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . C o n s u m p t i o n S M E I L D . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . N e t I m p o r t s S O E I L D . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . N e t I m p o r t s P N E L L D . . . . . . . . . . . . . . . . . . . . . . x S N E I L D I m p o r t e d a a S M N I L D S N N I L D . . . . . . . . . . . . . . . . . . . . . . S o y m e a l N e t I m p o r t s S O N I L D . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t I m p o r t s S N I L D . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t I m p o r t s S H E S L D . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E n d i n g S t o c k s S O E S L D . . . . . . . . . . . . . . . . . . . . . . S o y o i l E n d i n g S t o c k s S E S L D . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n E n d i n g S t o c k s 4 9 2 T I T F ' r ' V ' V V ' V V 1 5 T é . 7 7 7 6 7 0 8 0 3 1 0 2 3 5 8 4 1 0 0 0 H E T T O N S N 3 3 . I 3 5 . L 3 2 . 1 _ 7 9 . I 7 0 O 1 3 . 1 ' 7 0 . M 0 7 . . r B 4 . 6 1 2 3 4 3 6 8 4 3 2 . 4 3 3 5 8 4 3 3 1 6 3 7 7 3 3 . 3 2 9 4 9 3 R E G I O N A L M O D E L S I M U L A T I O N T U E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e G . 1 . a & b . W h e a t P r o d u c t i o n - L e a s D e v e l o p e d C o u n t r i e s P ) C D ‘ O : fl i fl ) f i ~ > 3 ) 2 ! fl l U = 1 4 7 1 r 4 4 3 1 W U U U ' T ' 2 I U I U I U ' U ' T f I : : 1 n 1 c 1 — » 3 1 2 1 n 1 u F i g u r e G . 2 . a & b . W h e a t H a r v e s t e d A r e a - L e s a D e v e l o p e d 5 3 9 9 9 5 2 9 9 9 5 1 9 9 9 5 9 9 9 9 1 4 9 9 9 9 1 9 9 9 9 9 1 9 7 9 9 9 1 4 6 9 9 9 4 5 9 9 9 . « 1 4 9 9 9 3 1 3 1 4 4 5 2 . . 9 1 3 ' . 0 3 3 . 1 3 3 4 3 . 4 3 . 4 7 . 4 3 . 4 3 . 7 3 3 3 2 3 4 3 3 3 3 3 7 2 3 3 3 3 4 9 4 V ’ 7 4 7 9 7 9 7 7 7 9 7 9 9 9 9 1 9 2 9 9 R E G I O N A L M O D E L S I M U L A T I O N 7 5 7 6 7 7 7 é 7 9 8 0 8 1 8 5 8 3 e a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D C o u n t r i e s H > C > < O : 1 4 7 l F 4 F D I Z n : n f Y I I T f U U I I I V l U — v v a v f ) ( i - b fl l l l fl l U 5 2 9 9 9 1 5 1 9 9 9 1 5 9 9 9 9 1 4 9 9 9 3 7 9 9 9 9 9 1 4 7 8 8 6 7 4 6 8 9 9 4 5 9 9 9 9 4 9 9 9 ( 0 1 3 1 ” a » - a c 1 1 0 : n 3 1 3 1 4 7 4 4 F i g u r e G . 2 . a & b . 3 2 . . 3 1 3 ' . 0 3 3 . 1 3 3 4 3 . 4 3 . . 3 3 3 4 3 . 4 3 . . 3 3 3 7 3 3 3 2 3 4 3 3 7 2 3 3 3 3 4 9 4 7 4 7 9 7 9 7 7 7 9 7 9 9 9 R E G I O N A L M O D E L S I M U L A T I O N 9 2 9 9 7 6 7 6 7 7 7 6 7 6 3 0 8 1 5 7 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — - - E S T I M A T E D C o u n t r i e s 8 6 W h e a t H a r v e s t e d A r e a - L e s s D e v e l o p e d 4 9 5 L e s s D e v e l o p e d C o u n t r i e s W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M D L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W H A L D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 6 . C 3 4 9 6 . 9 6 8 3 3 4 6 6 . 5 4 0 6 1 . 0 0 8 7 7 7 5 0 . 3 2 7 W H A L D ( - 1 ) 0 . 9 9 3 7 2 3 5 0 . 0 8 0 0 0 0 0 1 2 . 4 2 1 5 4 6 0 . 0 0 0 F R L D 4 ( - 1 ) - 4 1 7 4 . 5 7 5 2 2 7 7 7 . 8 0 6 2 - 1 . 5 0 2 8 3 1 7 0 . 1 5 1 U R L D 4 ( - 1 ) 1 2 1 0 . 3 2 1 5 1 1 3 3 . 3 7 9 9 1 . 0 6 7 8 8 6 9 0 . 3 0 1 R - s o u a r e d 0 . 9 4 4 3 9 9 M e a n o f d e p e n d e n t v a r 4 5 2 4 0 . 1 0 A d g u s t e d R - s q u a r e d 0 . 9 3 4 5 8 7 S . D . o f d e p e n d e n t v a r 4 7 4 2 . 3 8 8 S . E . o f r e g r e s s i o n 1 2 1 2 . 9 1 3 S u m o f s q u a r e d r e s i d 2 5 0 0 9 6 9 2 D u r b i n - W a t s o n s t a t 2 . 1 1 6 7 5 6 F - s t a t i s t i o 9 6 . 2 4 9 6 1 L o g l i k e l i h o o d - 1 7 6 . 6 9 5 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 s 4 1 s 1 1 9 6 4 - 7 1 4 . 8 8 9 3 8 4 9 2 . 0 3 9 2 0 6 . 9 1 x e 1 x 1 1 9 6 5 - ' 6 2 . 5 5 1 3 8 5 8 5 . 0 3 9 1 4 7 . 6 1 4 s 1 : 1 1 9 6 6 - 2 3 3 8 . 8 1 3 6 8 7 9 . 0 3 9 2 1 7 . 8 1 z 4 x 1 1 9 6 7 2 9 . 5 3 2 8 . 3 7 7 6 3 . 0 3 7 7 3 3 . 5 1 9 1 7 * 1 1 9 6 8 1 5 0 8 . 9 3 4 0 6 3 2 . 0 3 9 1 2 3 . 1 1 z 1 * 3 1 1 9 6 9 2 1 0 . 4 5 0 4 2 0 3 7 . 0 4 1 8 2 6 . 5 1 s 1 4 : 1 1 9 7 0 5 8 3 . 7 8 2 4 3 2 5 5 . 0 4 2 6 7 1 . 2 " 1 s 1 4 : 1 1 9 7 1 1 0 7 2 . 8 6 4 4 7 5 3 . 0 4 3 6 8 0 . 1 1 1 * 1 z 1 1 9 7 2 - 1 3 7 . 9 7 5 4 5 6 9 6 . 0 4 5 8 3 4 . 0 1 z * 1 x 1 1 9 7 3 - 4 5 0 . 7 0 4 4 5 1 2 8 . 0 4 5 5 7 8 . 7 1 a 4 z 1 1 8 7 4 ' 3 . 9 9 0 1 2 4 5 2 3 0 . 0 4 5 2 2 6 . 0 1 s * 1 s 1 1 9 7 5 - 6 5 0 . 6 5 4 4 4 5 6 5 . 0 4 5 2 1 5 . 7 1 a 1 a 4 1 1 9 7 6 2 7 5 6 . 1 6 4 7 8 6 1 . 0 4 5 1 0 4 . 8 1 x 4 1 s 1 1 9 7 7 - 4 4 6 . 3 0 2 4 7 7 9 3 . 0 4 8 2 3 9 . 3 1 z t x 1 1 9 7 8 5 9 . 4 7 8 4 4 8 2 7 9 . 0 4 8 2 1 9 . 5 1 x 1 9 a 1 1 9 7 9 8 7 0 . 5 2 3 4 9 8 4 3 . 0 4 8 9 7 2 . 5 1 * 1 I s 1 1 9 8 0 - 1 4 3 7 . 3 5 4 9 4 0 5 . 0 5 0 8 4 2 . 3 1 a 4 1 9 1 1 9 8 1 - 3 6 9 . 3 3 4 4 9 7 5 6 . 0 5 0 1 2 5 . 3 1 * 1 I 1 1 1 9 8 2 — 1 4 5 1 . 5 0 4 9 7 8 9 . 0 5 1 2 4 0 . 5 1 z 1 * 1 1 1 9 8 3 1 1 2 8 . 6 3 5 1 9 6 8 . 0 5 0 8 3 9 . 4 1 a l 4 _ : 1 1 9 8 4 3 3 5 . 7 2 8 5 2 3 3 3 ; 0 5 1 9 9 7 . 3 I N D E P E N D E N T V A R I A B L E S W H A L D 8 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R L D 4 8 W h e a t R e v e n u e P e r H e c t a r e ( S / H A ) ( W Y L D ( - 3 ) + W Y L D ( - 2 ) + W Y L D ( * 1 ) + W Y L D ) / 4 * W P 9 X R L D / C P I L D F R L D 4 3 C o a r s e G r a i n R e v e n u e P e r H e c t a r e ( S I H A ) ( F Y L D ( - 3 ) * F Y L D ( - 2 ) * F Y L D ( - l ) + F Y L D ) / 4 * F P * X R L D / C P I L D fi w m $ 3 2 1 w M a m e . I H m m . . . ’ m » D u n m 1 < m w u 0 3 m - m n 1 w n m - 3 m m : m . d . z m x u a c a 3 u 3 0 3 c 3 t I D r U b u m b o . 0 m m b d r m . w m m b m m m u w . 0 0 0 w m m q m . o o o t I D F U A l u o 0 0 m m u . w m u 0 0 m m . u o m m m u w m m . o o o w m m u m . o o o fl m r o a a l p v ” . m o m w p q u O . m m m o m 0 ~ “ . m w m w e m c 0 . m w b m ~ b u t m r U b A l u v m . o w w ~ m u fl O . u o o u m m m w . fl m m w m m c H . p m m m o w o 0 0 < m 1 u m d n m n o 1 1 m ~ m d u o s t I D F U . £ I D r U m p b p m m m w . u . o o o o o o o E I D F U . £ I D F U A I » V m o u m fl m m m . O . m m fl b m p m t I D F U . fl m F U b . I p o w w w . m o m h m o . m 0 m o m m w t I D F U A I H V . t I D F U . I » v m O fl m u m m fl . H . O O O O O O O s : v r o . 1 p v . m m r o a e u u v : I n r o e n u o . z m r o 1 . u u v n m r o ¢ a u p v . n m r o r e u p v n m r o 1 . n » v . z m r o 1 . u a o : m r o r . u p v . z m r o 1 a u p v m m n . » u r m m m p o u . m m m u o . o m u a o m t 0 1 2 m m m p p q 0 . 1 m m m m o m O . U fl w w u 0 m 0 . 0 fl fl u 0 m m p . 0 0 0 0 0 0 0 O . m m w m fl m m p . 0 0 0 0 0 0 0 4 9 7 L e s s D e v e l o p e d C o u n t r i e s W h e a t Y i e l d S M P L 1 9 6 0 - 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W Y L D 1 9 8 3 ( M e t r i c T o n s p e r R e c t a r e ) V A R I A B L E ' C D E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 9 1 6 . C - 1 0 . 0 9 9 5 8 2 0 . 4 9 4 0 2 7 9 - 2 0 . 4 4 3 3 4 3 0 . 0 0 0 L D G T 2 . 6 5 2 2 6 0 4 0 . 1 1 5 8 0 3 6 2 2 . 9 0 3 0 9 3 0 . 0 0 0 R - s o u a r e d 0 . 9 5 9 7 4 8 M e a n o f d e p e n d e n t v a r 1 . 2 1 2 2 3 2 A d J u s t e d R - s q u a r e d 0 . 9 5 7 9 1 8 S . D . o f d e p e n d e n t v a r 0 . 2 6 9 5 1 7 S . E . o f r e g r e s s i o n 0 . 0 5 5 2 8 9 S u m o f s q u a r e d r e s i d 0 . 0 6 7 2 5 0 D u r b i n — W a t s o n s t a t 1 . 1 9 1 4 0 9 F - s t a t i s t i c 5 2 4 . 5 5 1 7 L o g l i k e l i fi o o d 3 6 . 4 7 4 1 7 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 4 1 1 9 6 0 0 . 0 5 9 3 5 0 . 8 1 9 0 4 0 . 7 5 9 6 9 1 1 1 4 1 1 1 9 6 1 0 . 0 5 0 5 1 0 . 8 5 4 0 4 0 . 8 0 3 5 3 1 1 1 1 4 1 1 9 6 2 0 . 0 8 2 9 8 0 . 9 2 9 6 3 0 . 8 4 6 6 5 1 1 1 4 1 1 1 9 6 3 0 . 0 1 5 1 9 0 . 9 0 4 2 8 0 . 8 8 9 0 9 1 1 * 1 1 1 1 9 6 4 - 0 . 0 5 2 0 5 0 . 8 7 8 8 1 0 . 9 3 0 8 6 1 1 4 1 1 1 9 6 5 - 0 . 0 0 2 3 8 0 . 9 6 9 6 0 0 . 9 7 1 9 8 1 * 1 1 1 1 1 9 6 6 - 0 . 0 8 7 6 9 0 . 9 2 4 7 8 1 . 0 1 2 4 7 1 * 1 1 1 1 9 6 7 - 0 . 0 5 7 0 7 0 . 9 9 5 2 9 1 . 0 5 2 3 6 1 1 1 * 1 1 1 9 6 8 0 . 0 3 1 6 2 1 . 1 2 3 2 8 1 . 0 9 1 6 5 1 1 4 1 1 1 1 9 6 9 - 0 . 0 1 8 7 6 1 . 1 1 1 6 2 1 . 1 3 0 3 7 1 1 4 1 1 1 1 9 7 0 - 0 . 0 3 9 8 8 1 . 1 2 8 6 6 1 . 1 6 8 5 3 1 1 1 * 1 1 1 9 7 1 0 . 0 3 3 8 3 1 . 2 3 9 9 8 1 . 2 0 6 1 6 1 1 1 4 1 1 1 9 7 2 0 . 0 2 0 3 2 1 . 2 6 3 5 7 1 . 2 4 3 2 5 1 * 1 1 1 1 1 9 7 3 - 0 . 0 7 8 5 9 1 . 2 0 1 2 5 1 . 2 7 9 8 4 1 4 1 1 1 1 1 9 7 4 - 0 . 1 2 3 6 8 1 . 1 9 2 2 4 1 . 3 1 5 9 2 1 1 4 1 1 1 9 7 5 0 . 0 0 2 9 5 1 . 3 5 4 4 7 1 . 3 5 1 5 2 1 1 1 4 1 1 1 9 7 6 0 . 0 5 0 6 8 1 . 4 3 7 3 3 1 . 3 8 6 6 5 1 1 4 1 1 1 1 9 7 7 - 0 . 0 2 3 3 5 1 . 3 9 7 9 7 1 . 4 2 1 3 2 1 1 4 : 1 1 1 9 7 8 - 0 . 0 1 2 0 0 1 . 4 4 3 5 5 1 . 4 5 5 5 5 1 1 1 * 1 1 1 9 7 9 0 . 0 0 9 4 7 1 . 4 9 8 8 1 1 . 4 8 9 3 3 1 1 4 1 1 1 1 9 8 0 — 0 . 0 2 7 8 7 1 . 4 9 4 8 3 1 . 5 2 2 7 0 1 1 1 * 1 1 1 9 8 1 0 . 0 2 9 1 5 1 . 5 8 4 7 9 1 . 5 5 5 6 4 1 1 1 1 * 1 1 9 8 2 0 . 0 7 1 9 8 1 . 6 6 0 1 7 1 . 5 8 8 1 9 1 1 1 1 * I 1 9 8 3 0 . 0 6 5 2 8 1 . 6 8 5 6 1 1 . 6 2 0 3 3 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( T I M E ) S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s 4 9 8 S . D . M a x 1 m u m S e r i e s M e a n M i n i m u m N Y L D 1 . 2 1 2 2 3 2 4 0 . 2 6 9 5 1 7 3 1 . 6 8 5 6 1 4 0 ‘ 0 . 6 1 9 0 4 2 0 L O G T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n H Y L D , W Y L D 0 . 0 6 9 6 1 2 9 1 . 0 0 0 0 0 0 0 W Y L D . L O G T 0 . 0 2 5 1 9 0 1 0 . 9 7 9 6 6 7 1 L O G T , L D G T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 4 9 9 l l S D I B ‘ F 1 1 1 9 9 9 9 1 1 0 1 9 5 9 9 9 “ 0 0 1 9 9 9 9 9 1 1 - - - - - 1 1 9 5 9 9 9 1 » f 9 9 0 9 “ 3 5 9 9 9 1 1 - " 1 - 1 0 3 9 9 1 9 " T 5 3 9 “ . . . . . . . . . . ' S 1 9 1 9 1 . i . . 7 3 7 4 7 5 ' 1 6 7 ? ' 1 8 ' 1 9 3 9 3 1 8 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N M I L 1 2 3 . 7 3 0 / 1 1 1 . . 1 1 3 . 3 3 1 ; » / - 1 ' . ' - . 1 o 4 1 3 2 _ 1 1 1 1 0 3 . 3 3 3 : j 1 0 L 5 & | : ‘ a 3 3 . 7 3 3 I 1 2 3 4 . 3 3 3 - 1 1 ' 3 0 . 1 3 7 - 1 3 3 . 3 3 3 : J T 3 0 . 5 3 3 . o 4 N 7 3 7 6 7 7 7 3 7 3 3 0 3 1 3 1 3 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e G . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - L e s s D e v e l o p e d C o u n t r i e s d t D < > C > C l i fl l 4 ~ 4 ' 3 ( 1 2 n I : : 4 1 * r ‘ r 1 ~ > c 1 : ! = fl l 4 ' 9 ~ J C I Z I U V U V Y ' V ‘ F i g u r e G . 4 . a & b . W C h o e u a n t t r N i a e t s I m p o r t s - L e s s D e v e l o p e d 5 0 0 1 ' 1 5 “ 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 ? 8 1 9 ? ? 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L H O D E L S I M U L A T I O N 3 3 . 3 1 3 3 3 . 2 3 2 1 3 4 . 2 7 1 3 2 . 2 5 0 3 0 . 2 2 3 2 3 . 2 0 9 2 3 . 1 3 3 2 4 . 1 3 7 2 2 . 1 4 3 2 0 . 1 2 3 I r v v v t 1 v u v r E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D 5 0 1 L e s s D e v e l o p e d C o u n t r i e s P e r C a p i t a W h e a t N e t I m p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 6 . C 0 . 0 0 9 8 3 1 6 0 . 0 0 2 2 3 0 7 4 . 4 0 7 4 9 0 4 0 . 0 0 0 A C R G D P 2 3 4 0 6 . 3 3 9 7 6 3 1 . 4 8 6 1 3 . 0 6 7 0 7 4 8 0 . 0 0 6 P C D W S U - 0 . 2 5 9 9 7 3 3 0 . 0 8 6 6 7 7 7 - 2 . 9 9 9 3 1 0 7 0 . 0 0 7 W P L D ( - 1 ) - 0 . 0 0 4 6 4 5 6 0 . 0 0 1 6 3 1 7 - 2 . 8 4 7 0 8 5 2 0 . 0 1 0 F P L D t - 1 ) 0 . 0 0 9 8 2 8 1 0 . 0 0 2 5 1 4 7 3 . 9 0 8 2 6 3 6 0 . 0 0 1 R - s o u a r e d 0 . 6 2 1 5 3 0 M e a n o f d e p e n d e n t v a r 0 . 0 1 3 8 8 2 A u g u s t e d R - s d u a r e d 0 . 5 4 1 8 5 2 S . D . o f d e p e n d e n t v a r 0 . 0 0 1 8 9 0 S . E . o f r e g r e s s i o n 0 . 0 0 1 2 7 9 S u m o f s q u a r e d r e s i d 3 . 1 1 D - 0 5 D u r b i n - W a t s o n s t a t 1 . 0 9 6 8 6 9 F - s t a t i s t i c 7 . 8 0 0 5 1 7 L o g l i k e l i h o o d 1 2 8 . 6 1 9 9 T P E 5 / 2 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 4 1 1 1 1 9 6 1 - 0 . 0 0 0 9 1 0 . 0 1 1 6 3 0 . 0 1 2 5 4 1 1 4 1 1 1 1 9 6 2 - 0 . 0 0 0 4 5 0 . 0 1 1 3 0 0 . 0 1 1 7 5 1 4 1 1 1 1 1 9 6 3 - 0 . 0 0 1 4 2 0 . 0 1 1 7 4 0 . 0 1 3 1 7 1 1 4 1 1 1 1 9 6 4 - 0 . 0 0 0 9 4 0 . 0 1 3 4 7 0 . 0 1 4 4 2 1 1 1 4 1 1 1 9 6 5 0 . 0 0 0 2 9 0 . 0 1 4 8 0 0 . 0 1 4 5 1 1 1 1 1 4 1 1 9 6 6 0 . 0 0 2 4 6 0 . 0 1 8 1 3 0 . 0 1 5 6 6 1 1 1 4 1 1 9 6 7 0 . 0 0 1 3 8 0 . 0 1 5 8 5 0 . 0 1 4 4 7 1 1 1 4 1 1 1 9 6 8 0 . 0 0 0 4 3 0 . 0 1 1 9 0 0 . 0 1 1 4 7 1 1 1 1 1 1 9 6 9 0 . 0 0 0 1 5 0 . 0 1 2 0 9 0 . 0 1 1 9 4 1 1 4 1 1 1 1 9 7 0 - 0 . 0 0 1 0 7 0 . 0 1 3 1 3 0 . 0 1 4 2 0 1 1 4 1 1 1 1 9 7 1 - 0 . 0 0 0 4 6 0 . 0 1 3 2 9 0 . 0 1 3 7 6 1 1 1 4 1 1 1 9 7 2 0 . 0 0 0 4 7 0 . 0 1 1 7 3 0 . 0 1 1 2 5 1 1 4 1 1 1 1 9 7 3 - 0 . 0 0 0 2 8 0 . 0 1 6 2 1 0 . 0 1 6 4 8 1 1 1 4 1 1 1 9 7 4 0 . 0 0 0 9 5 0 . 0 1 6 8 8 0 . 0 1 5 9 4 1 1 4 1 1 1 1 9 7 5 - 0 . 0 0 0 8 0 0 . 0 1 5 7 3 0 . 0 1 6 5 3 1 1 1 4 1 1 9 7 6 _ 0 . 0 0 1 3 2 0 . 0 1 4 6 4 0 . 0 1 3 3 2 1 1 * 1 1 1 1 9 7 7 - 0 . 0 0 0 6 9 0 . 0 1 2 5 8 0 . 0 1 3 2 8 1 4 1 1 1 1 9 7 8 - 0 . 0 0 1 3 9 0 . 0 1 2 7 0 0 . 0 1 4 1 0 1 1 4 1 1 1 1 9 7 9 - 0 . 0 0 1 0 2 0 . 0 1 3 2 5 ' 0 . 0 1 4 2 7 1 4 1 1 1 1 1 9 8 0 - 0 . 0 0 1 6 9 0 . 0 1 2 8 2 0 . 0 1 4 5 1 1 1 4 1 1 1 1 9 8 1 - 0 . 0 0 0 4 5 0 . 0 1 4 8 4 0 . 0 1 5 2 9 1 1 1 4 1 1 1 9 8 2 0 . 0 0 0 4 3 0 . 0 1 3 2 4 0 . 0 1 2 8 1 1 1 1 1 4 1 1 9 8 3 0 . 0 0 2 3 4 0 . 0 1 5 3 9 0 . 0 1 3 0 5 1 1 1 4 1 1 9 8 4 0 . 0 0 1 3 5 0 . 0 1 5 8 1 0 . 0 1 4 4 6 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P L D / C P I L D / P O P L D P C D W S U 8 D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S L D ( - 1 ) + W P R O L D ) / P O P L D W P L D I R e a l L D C W h e a t P r i c e ( $ I M T ) W P 4 X R L D / C P I L D F P L D 8 R e a l L D C C o a r s e G r a i n P r i c e ( S I M T ) F P 0 X R L D / C P I L D S M P L 1 9 6 1 - 2 4 O b s e r v a t i o n s 5 0 2 S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C W N I 0 . 0 1 3 8 8 2 2 0 . 0 0 1 8 9 0 3 0 . 0 1 8 1 2 5 0 . 0 1 1 3 0 4 6 P C R B D P 4 . 4 1 3 D - 0 7 1 . 0 2 8 D - 0 7 5 . 8 5 2 0 - 0 7 2 . 7 8 2 9 - 0 7 P C D W S U 0 . 0 4 6 4 3 0 5 0 . 0 0 8 7 5 2 5 0 . 0 5 8 9 4 3 1 0 . 0 3 3 4 2 2 2 W P L D ( - 1 ) 1 . 6 5 9 2 3 0 9 0 . 4 0 8 2 7 2 3 3 . 1 0 7 8 3 4 0 1 . 1 2 5 8 9 2 0 F P L D ( - 1 ) 1 . 3 7 3 5 4 1 3 0 . 2 5 1 2 1 2 3 2 . 1 4 8 4 5 9 0 1 . 0 6 0 6 3 6 0 C o v a r i a n c e C o r r e l a t i o n P C H N I , P C W N I 3 . 4 2 4 D - 0 6 1 . 0 0 0 0 0 0 0 P C W N I , P C R G D P 3 . 8 7 4 D - 1 1 0 . 2 0 8 1 2 2 9 p c w ~ 1 , n c n u s u P C W N I , W P L D ( - 1 ) P C W N I . F P L D ( - 1 ) p C R G D p , p C R G D p p c n s o p , n c o w s u P C R B D D , W D L D ( - 1 ) P C R B D P , F P L D ( - 1 ) p c o w s u , p c v u s u p c n u s u , p r D < — 1 ) P C D W S U , F P L D ( - 1 ) W P L D ( - 1 ) , W D L D ( - 1 ) W P L D ( - 1 ) , F P L D ( - 1 ) F P L D ( - 1 ) , F P L D ( - 1 ) - 3 . 5 l 3 D - 0 8 0 . 0 0 0 3 1 5 3 0 . 0 0 0 2 7 2 4 1 . 0 1 2 D - 1 4 7 . 9 1 6 D - 1 0 1 . 0 6 7 D - 0 8 5 . 8 2 3 D - 0 9 7 . 3 4 1 D - 0 5 0 . 0 0 0 2 5 5 1 0 . 0 0 0 1 7 3 7 0 . 1 5 9 7 4 1 0 0 . 0 8 8 9 2 7 0 0 . 0 6 0 4 7 8 1 - 0 . 0 0 2 2 1 5 7 0 . 4 2 6 3 0 3 6 0 . 5 9 8 5 5 7 4 1 . 0 0 0 0 0 0 0 0 . 9 1 8 3 7 4 9 0 . 2 6 5 3 6 7 3 0 . 2 3 5 3 7 4 8 1 . 0 0 0 0 0 0 0 0 . 0 7 4 5 0 5 0 0 . 0 8 2 4 5 6 8 1 . 0 0 0 0 0 0 0 0 . 9 0 4 7 4 4 9 1 . 0 0 0 0 0 0 0 5 0 3 1 0 0 0 M E T T 0 N 3 I I 7 5 0 1 , . 1 9 7 5 1 9 1 % 1 9 ? ? 1 9 1 8 1 9 ' 1 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L M O D E L S I H U L A T I O N M I L 2 4 . 8 6 1 I f 2 3 . 1 1 1 : I x " ~ € 2 ' . 9 7 ' P / / . 1 o . , . N 2 0 . 5 2 . : / ) ’ . 1 9 . 2 1 1 - , o / 1 1 / a 1 1 . 1 3 1 - / . E 1 1 . 5 9 : » . , " . T 1 5 . 2 4 7 » / \ ‘ \ . / / 3 1 3 . 9 0 2 I / T 1 2 . 5 5 1 1 . / 0 N 7 3 7 1 ' s 7 " : 7 6 7 1 " : 5 6 a i 8 5 8 5 9 4 ' : S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e G . 5 . a & b . W h e a t E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s S G M L L e s s D e v e l o p e d C o u n t r i e s W h e a t E n d i n g S t o c k s P e r C a p i t a ( 1 0 0 0 M T ) S M D L 1 9 6 1 - 1 9 8 4 2 4 O b s e r v a t i o n s L 5 / / D e p e n d e n t V a r i a b l e i s P C W E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C — 0 . 0 0 5 0 3 5 1 0 . 0 0 1 8 6 6 6 - 2 . 6 9 7 5 1 5 9 0 . 0 1 3 P C D N S U 0 . 3 3 7 1 9 6 7 0 . 0 3 4 6 6 2 1 9 . 7 2 8 1 0 0 0 ‘ 0 . 0 0 0 N P L D - 0 . 0 0 1 4 7 5 5 0 . 0 0 0 7 4 0 1 - 1 . 9 9 3 6 4 1 1 0 . 0 5 9 R - s q u a r e d 0 . 8 1 8 4 8 0 M e a n o f d e p e n d e n t v a r 0 . 0 0 8 1 5 4 A d J u s t e d R - s d u a r e d 0 . 8 0 1 1 9 3 S . D . o f d e p e n d e n t v a r 0 . 0 0 3 2 0 9 S . E . o f r e g r e s s i o n 0 . 0 0 1 4 3 1 S u m o f s q u a r e d r e s i d 4 . 3 0 D - 0 5 D u r b i n - W a t s o n s t a t 0 . 8 4 1 2 9 2 F - s t a t i s t i c 4 7 . 3 4 4 9 9 L o g 1 1 k e l i h o o d 1 2 4 . 7 3 5 1 T P E 5 / 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 4 1 1 1 9 6 1 0 . 0 0 1 1 1 0 . 0 0 5 0 5 0 . 0 0 3 9 5 1 1 1 4 1 1 9 6 2 0 . 0 0 1 3 7 0 . 0 0 6 2 8 0 . 0 0 4 9 2 1 1 1 4 1 1 1 9 6 3 0 . 0 0 0 7 9 0 . 0 0 5 8 4 0 . 0 0 5 0 5 1 1 4 1 1 1 1 9 6 4 - 0 . 0 0 0 2 6 0 . 0 0 4 2 3 0 . 0 0 4 4 9 1 1 4 1 1 1 9 6 5 - 9 . 0 D - 0 6 0 . 0 0 5 1 6 0 . 0 0 5 1 6 1 1 1 1 1 1 9 6 6 0 . 0 0 0 1 9 0 . 0 0 4 2 8 . 0 . 0 0 4 0 9 1 1 1 1 1 1 9 6 7 0 . 0 0 0 2 3 0 . 0 0 4 9 5 0 . 0 0 4 7 2 1 1 4 1 1 1 1 9 6 8 - 0 . 0 0 0 3 1 0 . 0 0 6 6 1 0 . 0 0 6 9 2 1 4 1 1 1 1 1 9 6 9 - 0 . 0 0 2 0 0 0 . 0 0 5 8 5 0 . 0 0 7 8 5 1 4 1 1 1 1 9 7 0 - 0 . 0 0 1 5 7 . 0 . 0 0 6 1 3 0 . 0 0 7 7 0 1 1 4 1 1 1 9 7 1 6 . 2 D - 0 5 0 . 0 0 9 2 3 0 . 0 0 9 1 7 1 4 1 1 1 1 1 9 7 2 - 0 . 0 0 2 0 7 0 . 0 0 7 5 2 0 . 0 0 9 5 9 1 1 4 1 1 1 1 9 7 3 - 0 . 0 0 0 8 5 0 . 0 0 5 5 1 0 . 0 0 6 3 6 1 1 4 1 1 1 1 9 7 4 - 0 . 0 0 0 3 2 0 . 0 0 6 1 0 0 . 0 0 6 4 2 1 1 1 1 4 1 1 9 7 5 0 . 0 0 1 9 9 0 . 0 0 9 5 3 0 . 0 0 7 5 4 1 1 1 1 1 1 9 7 6 0 . 0 0 3 6 9 0 . 0 1 5 4 3 0 . 0 1 1 7 4 1 1 1 4 1 1 1 9 7 7 0 . 0 0 1 1 8 0 . 0 1 3 7 8 0 . 0 1 2 6 1 1 1 4 1 1 1 1 9 7 8 - 0 . 0 0 0 4 3 0 . 0 1 0 9 9 0 . 0 1 1 4 2 1 1 4 1 1 1 1 9 7 9 - 0 . 0 0 0 4 9 0 . 0 1 0 2 3 0 . 0 1 0 7 1 1 4 1 1 1 1 1 9 8 0 — 0 . 0 0 1 7 0 0 . 0 0 8 4 0 0 . 0 1 0 1 0 1 1 4 1 1 1 1 9 8 1 - 0 . 0 0 1 2 5 0 . 0 0 9 4 7 0 . 0 1 0 7 2 1 1 4 1 1 1 1 9 8 2 - 0 . 0 0 1 1 0 0 . 0 0 9 9 2 0 . 0 1 1 0 2 1 1 1 1 1 1 9 8 3 0 . 0 0 0 2 3 0 . 0 1 1 9 4 0 . 0 1 1 7 1 1 1 1 4 1 1 9 8 4 0 . 0 0 1 5 4 0 . 0 1 3 2 6 0 . 0 1 1 7 2 I N D E P E N D E N T V A R I A B L E S P C D W S U 8 D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S L D ( - 1 ) + W P R O L D ) / P O P L D W P L D I R e a l L D C W h e a t P r i c e ( S / M T ) W P 4 X R L D / C P I L D w o w m z u r 3 0 m » I u m m t m 4 0 a m u 1 < m d u o z u m m 1 w n m 3 0 1 3 m . U . 3 m x p a c 3 z p s u s c s U n z m m 0 . 0 0 m p m w m 0 . 0 0 w m o m o 0 . 0 » m 1 m m o 0 . 0 0 1 m w m m a n t h 0 . 0 1 m b w 0 m 0 . 0 0 m v m m m 0 . 0 m m m b m u 0 . 0 w w b m m m E u r o ” . m q m o r u u 0 . 1 0 m m o q b w . p o u m m 1 0 p . p m m m w m 0 n o < m 1 w m s n m 0 0 1 1 m w m d w o z p n z m m . p n z m m m . m m m c l o m p . O O O O O O O U n z m m . p n o t m c m . w m w c l o m O . m m m m 0 m m 0 0 2 m m . z p r o I m . < m m c l o m 1 0 . 0 m u m p m u U U U t h 1 p n v t h V . w b u b l o m p . 0 0 0 0 0 0 0 D o c t m c . t p r o 0 . 0 0 0 m m u m o . p m » ¢ u e p Z U P U . t U F U O . » m u o m u p » . O O O O O O O W P > C D < O ! 1 fl l 4 ' i ~ J C 1 2 n I 3 2 4 1 ‘ f ‘ ' f U U ' T V ' T U ' V V j Y V fi T I 1 4 1 C 1 2 l 1 fl 1 4 ‘ i - J C I E I U l l L l l l l l l L l l 1 1 5 8 8 8 1 ' 3 5 8 8 8 . 7 3 1 1 8 F i g u r e G . 6 . a & b . 1 1 4 . 1 1 2 . 1 1 0 . 1 0 0 . 1 0 0 . 1 0 4 . 1 0 2 . ' 0 0 . 9 8 . 1 1 8 8 8 8 1 1 8 5 8 8 8 1 1 9 9 9 9 9 1 9 5 9 9 9 1 9 8 8 8 8 1 . 4 1 8 3 0 5 ' 3 5 1 3 1 7 2 8 3 2 5 0 2 1 0 1 . 2 1 4 9 1 1 5 5 0 6 v 1 7 5 v s 7 7 7 9 7 9 9 9 R E G I O N A L M O D E L S I M U L A T I O N 9 1 3 2 9 3 7 5 7 6 7 1 7 6 7 9 a b 9 % E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D C o a r s e G r a i n P r o d u c t i o n C o u n t r i e s 0 u . a : A 8 5 - L e s s D e v e l o p e d P ) C D C O B : H 1 3 ( i - D U J I I U I U l i i i ‘ r ‘ r ' F 1 C 1 2 n : fl l ) ( 4 - » 3 1 2 1 0 1 U ' " " f V V I r v t v v fi r 1 r \ \ J l L l l l l L l l 7 5 7 6 7 ? 1 6 7 § - 9 6 o i o i o i e a C o a r s e G r a i n H a r v e s t e d A r e a - L e s s 5 0 7 1 1 2 9 9 9 1 - 1 1 1 9 9 9 5 9 1 1 9 9 9 9 9 9 1 9 9 9 9 9 9 9 1 9 9 9 9 9 9 1 9 7 9 9 9 9 1 9 5 9 9 9 9 1 9 5 9 9 9 9 . . , . . " - - . 1 9 4 9 9 9 9 ‘ , , = " J 7 3 3 ’ 4 7 5 2 ‘ 6 7 ? 1 ‘ 8 7 9 3 8 8 1 8 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N 1 1 5 . 1 1 4 . 3 4 3 1 8 0 ' F i g u r e G . 7 . e & b . 1 1 3 . 1 1 1 1 0 4 0 1 8 . 8 5 3 1 1 0 . 1 0 9 . 1 0 8 . 1 0 7 . 1 0 8 . 8 8 9 5 2 8 3 8 2 1 8 8 0 3 5 . 8 7 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D D e v e l o p e d C o u n t r i e s 5 0 8 L e s s D e v e l o p e d C o u n t r i e s C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F H A L D - V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 6 . C 4 8 9 5 4 . 6 5 5 7 1 7 8 4 8 . 3 0 9 2 . 7 4 2 8 1 7 6 0 . 0 1 5 F H A L D ( - 1 ) 0 . 4 8 6 0 2 1 1 0 . 1 6 4 7 1 1 4 2 . 9 5 0 7 4 3 5 0 . 0 1 0 F R L D 4 ( - 1 ) 9 0 2 0 . 1 1 0 3 5 0 5 9 . 8 3 1 4 1 . 7 8 2 6 8 9 9 0 . 0 9 5 F N I L D ( - 1 ) 0 . 6 3 0 8 6 3 6 0 . 1 5 6 7 3 3 2 4 . 0 2 5 0 8 0 0 0 . 0 0 1 H R L D 4 ( - 1 ) - 3 8 1 0 . 8 9 9 6 2 2 0 5 . 1 7 7 9 - 1 . 7 2 8 1 5 9 7 0 . 1 0 4 R - s q u a r e d 0 . 8 1 5 6 4 0 M e a n o f d e p e n d e n t v a r 1 0 4 1 5 6 . 6 A d J u s t e d R - s q u a r e d 0 . 7 6 6 4 7 7 S . D . o f d e p e n d e n t v a r 3 5 0 8 . 2 9 7 S . E . o f r e g r e s s i o n 1 6 9 5 . 3 5 8 S u m o f s q u a r e d r e s i d 4 3 1 1 3 5 7 3 D u r b i n - w a t s o n s t a t 1 . 9 8 0 8 1 8 F - s t a t i s t i c 1 6 . 5 9 0 5 9 L o g l i k e l i h o o d - 1 7 4 . 2 1 4 9 ' T P E 4 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 * s 1 a 1 1 9 6 4 - 2 0 3 6 . 2 2 9 7 9 6 9 . 0 1 0 0 0 0 5 . 1 : e 1 x 1 1 9 6 5 - 7 1 8 . 0 9 7 9 9 0 5 9 . 0 9 9 7 7 7 . 1 1 9 * 1 : 1 1 9 6 6 - 1 3 3 6 . 5 5 9 9 6 4 8 . 0 1 0 0 9 8 5 . 1 : 1 e 1 1 9 6 7 1 5 8 6 . 3 5 1 0 3 0 7 2 . 1 0 1 4 8 6 . 1 : 1 x 1 1 9 6 8 6 4 6 . 3 0 1 1 0 2 3 2 5 . 1 0 1 6 7 9 . 1 a 1 z * 1 1 9 6 9 3 9 3 5 . 4 5 1 0 3 7 7 6 . 9 9 8 4 0 . 6 1 s 1 * : 1 1 9 7 0 1 7 9 . 4 7 6 1 0 3 7 2 8 . 1 0 3 5 4 9 . 1 3 * 1 : 1 1 9 7 1 - 1 0 1 9 . 8 4 1 0 2 3 7 9 . 1 0 3 3 9 9 . 1 i : 1 a 1 1 9 7 2 - 2 9 6 8 . 7 8 9 7 9 6 4 . 0 1 0 0 9 3 3 . 1 z 1 x * 1 1 9 7 3 2 5 5 0 . 4 2 1 0 5 8 4 5 . 1 0 3 2 9 5 . 1 : e 1 z 1 1 9 7 4 - 4 8 5 . 5 1 3 1 0 4 3 1 2 . 1 0 4 7 9 8 . 1 : 1 * z 1 1 9 7 5 1 6 9 . 0 0 4 1 0 5 9 0 7 . 1 0 5 7 3 8 . 1 : 1 * : 1 1 9 7 6 2 6 5 . 0 1 3 1 0 5 2 7 3 . 1 0 5 0 0 8 . 1 a e 1 x 1 1 9 7 7 - 4 5 5 . 5 5 3 1 0 5 3 6 5 . 1 0 5 8 2 1 . 1 : e z 1 1 9 7 8 - 1 1 3 . 6 2 7 1 0 6 5 0 0 . 1 0 6 6 1 4 . 1 a e z 1 1 9 7 9 - 3 8 . 0 5 3 1 1 0 5 8 3 9 . 1 0 5 8 7 7 . 1 : * 1 : 1 1 9 8 0 - 6 1 5 . 6 6 9 1 0 7 0 1 9 . 1 0 7 6 3 5 . 1 : 1 3 1 1 9 8 1 6 1 2 . 0 5 9 1 1 0 9 1 7 . 1 1 0 3 0 5 . 1 : 1 z 1 1 9 8 2 4 3 6 . 9 3 5 1 0 7 5 4 5 . 1 0 7 1 0 8 . 1 : 9 1 : 1 1 9 8 3 - 5 9 3 . 1 0 0 1 0 8 6 8 9 . 1 0 9 2 8 2 , I N D E P E N D E N T V A R I A B L E S F H A L D 3 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) F R L D 4 = C o a r s e G r a i n R e v e n u e P e r H e c t a r e ( S I M T ) ( F Y L D ( - 3 ) + F Y L D ( - 2 ) + F Y L D ( - 1 ) + F Y L D ) / 4 ~ F P I X R L D / C P I L D W R L D 4 8 W h e a t R e v e n u e P e r H e c t a r e ( 5 / H A ) ( W Y L D ( - 3 ) + W Y L D ( - 2 ) * W Y L D ( - 1 ) + W Y L D ) / 4 * w P * X R L D / C P I L D F N I L D = C o a r s e G r a i n N e t I m p o r t s ( 1 0 0 0 M T ) 5 0 9 5 M P ; 1 9 6 4 - 1 9 5 3 2 0 O b s e r v a t z o n s Q Q Q Q Q Q Q Q = - = = = = = = = 3 = = ' - = = B B - = = = B B = = = B = = = 8 = = = = = = = = = = = = = = = 1 S e r i e s M e a n S . D . M a x 1 m u m M i n i m u m F H A L D 1 0 4 1 5 6 . 5 5 3 5 0 8 . 2 9 6 8 1 1 0 9 1 7 . 0 0 9 7 9 6 4 . 0 0 0 F H A L D ( — 1 ) 1 0 3 6 0 1 . 9 5 3 6 2 8 . 7 4 3 1 1 1 0 9 1 7 . 0 0 9 7 5 9 7 . 0 0 0 F R L D 4 1 - 1 ) 1 . 1 8 7 8 2 2 9 0 . 2 5 5 8 1 2 1 1 . 8 3 5 1 4 5 0 0 . 8 3 4 6 1 4 3 F N I L D ( — 1 ) 2 8 2 8 . 3 5 0 0 3 9 3 7 . 6 7 5 8 1 1 3 8 1 . 0 0 0 — 2 5 8 1 . 0 0 0 0 . w R L D 4 1 - 1 ) 2 . 0 0 7 2 5 1 1 0 . 7 0 7 9 5 9 0 3 . 7 5 5 3 9 6 0 1 . 1 6 9 5 0 9 0 F H A L D . F H A L D F H A L D . F H A L D ( - 1 ) F H A L D . F R L D 4 ( - 1 ) F H A L D . F N I L D ( - 1 ) F H A L D , H R L D 4 ( - 1 ) F H A L D 1 - 1 ) , F H A L D ( - 1 ) F H A L D 1 - 1 ) , F R L D 4 ( - 1 ) F H A L D 1 - 1 ) , F N I L D ( - 1 ) F H A L D ( - 1 ) , N R L D 4 ( - 1 > F R L D 4 ( - 1 ) , F R L D 4 ( - 1 ) F R L D 4 ( - 1 ) , F N I L D ( - 1 ) F R L D 4 ( - 1 ) , H R L D 4 ( - 1 ) F N I L D ( - 1 ) , F N I L D ( - 1 ) F N I L D ( - 1 ) , N R L D 4 ( - 1 ) N R L D 4 < - 1 ) , H R L D 4 ( - 1 ) C o v a r i a n c e 1 1 6 9 2 7 3 9 . 8 8 6 0 3 3 6 . 8 4 2 6 . 4 7 2 4 0 1 1 0 3 3 2 0 1 . 1 4 6 3 . 3 0 8 8 1 2 5 0 9 3 8 8 . 2 8 0 . 7 5 1 3 7 8 5 1 7 2 3 0 . 8 1 3 4 4 . 8 5 5 3 0 . 0 6 2 1 6 7 8 5 3 1 . 1 6 2 6 8 0 . 1 5 8 9 7 3 1 1 4 7 3 0 0 2 6 . 1 8 8 6 . 7 2 9 5 0 . 4 7 6 1 4 5 6 C o r r e l a t i o n 1 . 0 0 0 0 0 0 0 0 . 7 3 2 6 1 2 1 0 . 5 0 0 2 0 7 2 0 . 8 4 0 7 0 1 1 0 . 6 2 0 1 6 6 0 ' 1 . 0 0 0 0 0 0 0 0 . 3 1 8 3 6 1 9 0 . 6 2 7 4 4 9 3 0 . 5 5 1 0 4 5 7 1 . 0 0 0 0 0 0 0 0 . 5 5 5 0 6 3 9 0 . 9 2 3 9 9 7 8 1 . 0 0 0 0 0 0 0 0 . 7 1 2 4 2 3 1 1 . 0 0 0 0 0 0 0 5 1 C ) L e s s D e v e l o p e d C o u n t r i e s C o a r s e G r a i n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M p L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L 5 / / D e p e n d e n t V a r i a b l e i s F Y L D 2 - T A I L S I B . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . C - 3 . 1 4 2 2 5 8 0 0 . 2 5 3 7 1 2 0 - 1 2 . 3 8 5 1 3 5 0 . 0 0 0 L O G T 0 . 9 3 9 3 6 5 6 0 . 0 5 9 4 7 1 9 1 5 . 7 9 5 1 2 2 0 . 0 0 0 R - s q u a r e d » 0 . 9 1 8 9 6 4 M e a n o f d e p e n d e n t v a r 0 . 8 6 4 1 0 9 A d J u s t e d R - s q u a r e d 0 . 9 1 5 2 8 1 S . D . o f d e p e n d e n t v a r 0 . 0 9 7 5 5 2 S . E . o f r e g r e s s i o n 0 . 0 2 8 3 9 4 S u m o f s q u a r e d r e s i d 0 . 0 1 7 7 3 7 D u r b i n - H a t s o n s t a t 2 . 1 8 0 7 7 7 F - s t a t i s t i c 2 4 9 . 4 8 5 9 L o g l i k e l i h o o d 5 2 . 4 6 7 5 8 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 e : 1 1 9 6 0 0 . 0 1 5 3 7 0 . 7 1 9 2 0 0 . 7 0 3 8 3 1 3 e 1 s 1 1 9 6 1 - 0 . 0 1 6 1 9 0 . 7 0 3 1 6 0 . 7 1 9 3 6 1 s 1 * z 1 1 9 6 2 0 . 0 2 0 9 7 0 . 7 5 5 6 0 0 . 7 3 4 6 3 1 8 1 . * : 1 1 9 6 3 0 . 0 1 4 9 9 0 . 7 6 4 6 5 0 . 7 4 9 6 6 1 : 1 * : 1 1 9 6 4 0 . 0 0 3 8 9 0 . 7 6 8 3 5 0 . 7 6 4 4 5 1 e : 1 : 1 1 9 6 5 - 0 . 0 3 5 8 5 0 . 7 4 3 1 7 0 . 7 7 9 0 2 1 : * 1 z 1 1 9 6 6 - 0 . 0 0 8 3 0 0 . 7 8 5 0 6 0 . 7 9 3 3 6 1 z 1 * : 1 1 9 6 7 0 . 0 1 3 8 2 0 . 8 2 1 3 1 0 . 8 0 7 4 9 1 : 1 * : 1 1 9 6 8 0 . 0 1 7 0 1 0 . 8 3 8 4 2 0 . 8 2 1 4 0 1 : * 1 z 1 1 9 6 9 - 0 . 0 2 3 6 2 0 . 8 1 1 5 0 0 . 8 3 5 1 2 1 9 1 i z 1 1 9 7 0 0 . 0 2 1 6 3 0 . 8 7 0 2 7 0 . 8 4 8 6 3 1 : * 1 : 1 1 9 7 1 - 0 . 0 0 5 0 8 0 . 8 5 6 8 7 0 . 8 6 1 9 6 1 i s 1 : 1 1 9 7 2 - 0 . 0 4 4 1 8 0 . 8 3 0 9 2 0 . 8 7 5 0 9 1 * 1 : 1 1 9 7 3 - 0 . 0 2 9 4 4 0 . 8 5 8 6 1 0 . 8 8 8 0 5 1 G 2 1 z 1 1 9 7 4 - 0 . 0 3 4 0 0 0 . 8 6 6 8 3 0 . 9 0 0 8 3 1 9 1 s * 1 1 9 7 5 0 . 0 5 2 9 4 0 . 9 6 6 3 9 0 . 9 1 3 4 4 1 z 1 z 4 1 1 9 7 6 0 . 0 3 7 5 5 0 . 9 6 3 4 4 0 . 9 2 5 8 8 1 x i 1 : 1 1 9 7 7 - 0 . 0 1 6 6 2 0 . 9 2 1 5 4 0 . 9 3 8 1 6 1 : 1 * x 1 1 9 7 8 0 . 0 2 1 9 7 0 . 9 7 2 2 5 0 . 9 5 0 2 8 1 3 1 a 1 1 9 7 9 - 0 . 0 2 8 1 1 0 . 9 3 4 1 5 0 . 9 6 2 2 5 1 x 1 * a 1 1 9 8 0 0 . 0 1 5 5 2 0 . 9 8 9 5 9 0 . 9 7 4 0 7 1 : 1 ' s e 1 1 9 8 1 0 . 0 4 2 2 8 1 . 0 2 8 0 1 0 . 9 8 5 7 4 1 e x 1 : 1 1 9 8 2 - 0 . 0 4 3 1 8 0 . 9 5 4 0 8 ' 0 . 9 9 7 2 6 1 x 1 i s 1 1 9 8 3 0 . 0 0 6 6 0 1 . 0 1 5 2 4 1 . 0 0 8 6 5 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( T I M E ) 5 1 1 S M P L 1 9 6 0 - 1 9 8 - 2 4 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F Y L D 0 . 6 6 4 1 0 9 1 0 . 0 9 7 5 5 1 6 1 . 0 2 8 0 1 2 0 0 . 7 0 3 1 6 4 2 L O G T 4 . 2 6 4 9 7 1 1 0 . 0 9 9 5 5 1 8 4 . 4 1 8 8 4 0 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n F Y L D , F Y L D 0 . 0 0 9 1 1 9 8 1 . 0 0 0 0 0 0 0 F Y L D , L O G T 0 . 0 0 8 9 2 1 7 0 . 9 5 8 6 2 6 4 L O G T , L D G T 0 . 0 0 9 4 9 7 6 1 . 0 0 0 0 0 0 0 » 1 0 3 ( 0 l : 1 fl 4 ' i h l C 2 : 9 9 ! 2 1 F " t ‘ r 4 ' v 9 9 9 9 9 9 5 1 . 9 9 3 « 1 9 " 9 4 9 L 9 R 9 E _ G I O _ 9 A 9 N _ _ 9 9 L M O D E L — 9 9 S I — M — 9 A 9 L U — — 9 9 N T I O — 1 . 9 9 — — 9 1 — 9 9 3 v ( ' 5 2 ! t I " 4 ' 1 - 1 C 2 1 0 [ v 1 fi r v r r I f ' ' v ' i T P L I L J L L I L I L [ F i g u r e G . 8 . s 6 b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - L e s s 5 1 2 1 2 5 9 9 9 1 1 1 2 9 9 9 9 1 1 1 5 9 9 9 1 1 1 9 9 9 9 1 1 9 5 9 9 9 1 1 9 9 9 8 9 1 9 5 9 9 9 1 1 2 0 . 8 1 3 1 1 8 . 8 5 8 ' 1 1 8 . 7 9 8 1 1 4 . 7 4 1 1 1 2 . 8 8 4 1 1 0 . 8 2 7 1 0 8 . 5 7 0 1 0 5 . 5 1 3 1 0 4 . 4 5 5 1 0 2 . 3 9 8 V I L 4 1 7 3 7 6 7 1 7 9 7 9 9 6 9 % 9 9 9 3 O I n ) E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I H A T E D D e v e l o p e d C o u n t r i e s 5 1 3 1 2 5 9 9 1 1 1 1 1 9 9 9 9 1 1 r — r — d ' o . ' . . 5 . . . . . . o ' " - 1 0 9 5 9 9 1 1 N . E I T 5 8 9 9 “ 1 7 ~ . . . . . . . . 0 2 5 9 9 1 1 - - - - - - N 1 S a ” " 3 " 9 " s " 9 ' 9 ' ' r 1 1 1 7 ? 1 9 7 9 9 9 9 1 9 2 9 3 R E G I O N A L M O D E L S I M U L A T I O N M I L . 1 . , 1 0 . 9 3 9 I 1 0 . 0 5 4 ' ~ * . 0 9 . 1 3 9 - N - . . . 2 ’ 1 9 . 2 3 4 - I 1 1 7 . 3 9 9 - I E 9 . 5 1 3 - I 1 . 5 . 9 3 0 - 2 4 . 7 4 5 - 1 1 - 3 . 3 3 0 : I 0 2 . 9 7 3 - j N . . . . . . . S 7 5 7 6 7 7 7 a 7 9 s o 9 1 9 9 3 3 9 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e G . 9 . a & b . C o a r s e G r a i n N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s 5 1 4 L e s s D e v e l o p e d C o u n t r i e s ( F E S L D ( - l ) * F P R O L D ) / P O P L D C o a r s e G r a i n N e t I m p o r t s P e r C a p i t a ( 1 0 0 0 M T ) S M A L 1 9 6 1 - 1 9 8 3 . 2 3 O b s e r v a t i o n s L 5 / / D e p e n d e n t V a r i a b l e i s P C F N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - “ A I L S I G . C 0 . 0 1 4 3 0 1 5 0 . 0 0 3 7 7 1 2 3 . 9 2 3 4 3 0 0 . 0 0 1 P C R G D P 2 3 0 6 6 . 3 6 7 4 4 0 9 . 2 7 2 2 5 . 2 3 1 3 3 2 0 0 . 0 0 0 P C D F S U - 0 . 2 5 6 4 1 1 9 0 . 0 4 6 4 2 5 2 - 5 . 5 2 3 1 1 4 8 0 . 0 0 0 P C D U S U - 0 . 0 9 7 3 6 7 0 0 . 0 5 2 8 3 6 0 - 1 . 8 4 2 8 1 4 6 0 . 0 8 1 R - s q u a r e d 0 . 8 9 4 1 1 2 M e a n o f d e p e n d e n t v a r 0 . 0 0 1 7 7 0 A d j u s t e d R - s q u a r e d 0 . 8 7 7 3 9 2 S . D . o f d e p e n d e n t v a r 0 . 0 0 2 3 9 0 - S . E . o f r e p r e s s i o n 0 . 0 0 0 8 3 7 S u m o f s q u a r e d r e s i d 1 . 3 3 D - 0 5 D u r b i n - H a t s o n s t a t 1 . 9 3 9 1 6 5 F - s t a t i s t i c 5 3 9 4 7 8 1 0 L o g l i k e l i h o o d 1 3 2 . 5 3 7 2 T P E 7 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 1 4 9 1 1 9 6 1 0 . 0 0 0 5 1 0 . 0 0 0 6 9 0 . 0 0 0 1 8 1 9 1 9 * 1 1 9 6 2 0 . 0 0 1 0 7 0 . 0 0 0 3 2 - 0 . 0 0 0 7 5 Z 1 9 1 * 9 1 1 9 6 3 0 . 0 0 0 7 2 - 0 . 0 0 0 1 4 - 0 . 0 0 0 8 6 ! 1 9 i 1 9 1 1 9 6 4 - 0 . 0 0 0 7 0 - 0 . 0 0 0 9 3 - 0 . 0 0 0 2 3 ‘ 1 * 9 1 9 1 1 9 6 5 - 0 . 0 0 1 0 2 - 0 . 0 0 0 3 7 0 ' 0 0 0 6 5 1 1 9 1 9 1 1 9 6 6 8 . 5 D - 0 5 0 . 0 0 0 7 3 0 . 0 0 0 6 4 1 9 1 4 9 1 1 9 6 7 0 . 0 0 0 8 2 0 . 0 0 0 1 2 - 0 . 0 0 0 7 0 1 i 1 9 1 1 9 6 8 - 0 . 0 0 0 9 4 - 0 . 0 0 2 0 7 - 0 . 0 0 1 1 3 1 9 4 1 9 1 1 9 6 9 — 7 . 3 D - 0 5 - 7 . 5 D - 0 5 - 2 . 0 D - 0 6 1 - 9 1 9 1 1 9 7 0 0 . 0 0 0 1 9 - 0 . 0 0 0 4 7 - 0 . 0 0 0 6 6 1 s 9 1 9 1 1 9 7 1 - 0 . 0 0 1 9 0 - 0 . 0 0 0 7 6 0 . 0 0 1 1 4 1 9 4 1 9 1 1 9 7 2 - 0 . 0 0 0 2 0 0 . 0 0 2 4 5 0 . 0 0 2 6 5 1 9 1 9 1 1 9 7 3 0 . 0 0 0 1 5 0 . 0 0 2 5 2 0 . 0 0 2 3 7 1 9 s 9 1 1 9 7 4 5 . 0 D - 0 5 0 . 0 0 2 8 3 0 . 0 0 2 7 8 1 9 4 9 1 1 9 7 5 - 5 . 6 D - 0 7 0 . 0 0 1 9 0 0 . 0 0 1 9 0 1 9 1 4 1 1 9 7 6 0 . 0 0 0 8 9 0 . 0 0 2 1 1 0 . 0 0 1 2 2 1 9 1 * 9 1 1 9 7 7 0 . 0 0 0 7 0 0 . 0 0 3 0 2 0 . 0 0 2 3 2 1 9 i 1 9 1 1 9 7 8 - 0 . 0 0 0 6 1 0 . 0 0 2 5 1 0 . 0 0 3 1 2 1 9 1 * 9 1 1 9 7 9 0 . 0 0 0 3 3 0 . 0 0 5 8 2 0 . 0 0 5 4 9 1 9 1 9 * 1 1 9 8 0 0 . 0 0 1 0 7 0 . 0 0 6 6 2 0 . 0 0 5 5 6 1 4 9 1 9 1 1 9 8 1 - 0 . 0 0 1 1 7 0 . 0 0 2 8 7 0 . 0 0 4 0 4 1 9 s 1 9 1 1 9 8 2 - 0 . 0 0 0 3 8 0 . 0 0 5 5 6 0 . 0 0 5 9 4 1 9 _ 1 4 9 1 1 9 8 3 0 . 0 0 0 4 0 0 . 0 0 5 4 5 0 . 0 0 5 0 5 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P L D / C P I L D / P O P L D P C D W S U = D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S L D ( - l ) + H P R O L D ) / P O P L D P C D F S U = D o m e s t i c C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) 5 1 4 : L e s s D e v e l o p e d C o u n t r i e s ( F E S L D ( - l ) * F P R O L D ) / P O P L D C o a r s e G r a i n N e t I m p o r t s P e r C a p i t a ( 1 0 0 0 M T ) S M P L 1 9 6 1 - 1 9 8 3 _ 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C F N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 0 . 0 1 4 3 0 1 5 0 . 0 0 3 7 7 1 2 3 . 7 9 2 3 4 3 0 0 . 0 0 1 P C R B D P 2 3 0 6 6 . 3 6 7 4 4 0 9 . 2 7 2 2 5 . 2 3 1 3 3 2 0 0 . 0 0 0 P C D F S U - 0 . 2 5 6 4 1 1 9 0 . 0 4 6 4 2 5 2 - 5 . 5 2 3 1 1 4 8 0 . 0 0 0 P C D H S U - 0 . 0 9 7 3 6 7 0 0 . 0 5 2 8 3 6 0 - 1 . 8 4 2 8 1 4 6 0 . 0 8 1 R - s q u a r e d 0 . 8 9 4 1 1 2 M e a n o f d e p e n d e n t v a r 0 . 0 0 1 7 7 0 A d J u s t e d R - s q u a r e d 0 . 8 7 7 3 9 2 S . D . o f d e p e n d e n t v a r 0 . 0 0 2 3 9 0 - S . E . o f r e p r e s s i o n 0 . 0 0 0 8 3 7 S u m o f s q u a r e d r e s i d 1 . 3 3 D - 0 5 D u r b i n - N a t s o n s t a t 1 . 9 3 9 1 6 5 F - s t a t i s t i c 5 3 9 4 7 8 1 0 L o g l i k e l i h o o d 1 3 2 . 5 3 7 2 T ? E 7 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 1 * 9 1 1 9 6 1 0 . 0 0 0 5 1 0 . 0 0 0 6 9 0 . 0 0 0 1 8 1 9 1 9 * 1 1 9 6 2 0 . 0 0 1 0 7 0 . 0 0 0 3 2 - 0 . 0 0 0 7 5 . 1 9 1 4 : 1 1 9 5 3 0 . 0 0 0 7 2 — o . 0 0 0 1 4 - o . o o o a s i 9 9 4 1 9 1 1 9 5 4 - o . o o o 7 o - o . 0 0 0 9 3 - o . o o o a s j 1 * 9 1 9 1 1 9 6 5 - 0 . 0 0 1 0 2 - 0 . 0 0 0 3 7 0 . 0 0 0 6 5 : 1 9 1 * 9 1 1 9 6 6 8 . 5 D - 0 5 0 . 0 0 0 7 3 0 . 0 0 0 6 4 ' 1 9 1 * 9 1 1 9 6 7 0 . 0 0 0 8 2 0 . 0 0 0 1 2 - 0 . 0 0 0 7 0 1 a 1 9 1 1 9 6 8 - 0 . 0 0 0 9 4 - 0 . 0 0 2 0 7 - 0 . 0 0 1 1 3 1 9 * 1 9 1 1 9 6 9 - 7 . 3 D - 0 5 - 7 . 5 D - 0 5 - 2 . 0 D - 0 6 1 - 9 1 4 9 1 1 9 7 0 0 . 0 0 0 1 9 — 0 . 0 0 0 4 7 - 0 . 0 0 0 6 6 1 * 9 1 9 1 1 9 7 1 - 0 . 0 0 1 9 0 - 0 . 0 0 0 7 6 0 . 0 0 1 1 4 1 9 * 1 9 1 1 9 7 2 - 0 . 0 0 0 2 0 0 . 0 0 2 4 5 0 . 0 0 2 6 5 1 9 1 * 9 1 1 9 7 3 0 . 0 0 0 1 5 0 . 0 0 2 5 2 0 . 0 0 2 3 7 1 9 4 9 1 1 9 7 4 5 . 0 D - 0 5 0 . 0 0 2 8 3 0 . 0 0 2 7 8 1 9 * 9 1 1 9 7 5 - 5 . 6 D - 0 7 0 . 0 0 1 9 0 0 . 0 0 1 9 0 1 9 1 * 1 1 9 7 6 0 . 0 0 0 8 9 0 . 0 0 2 1 1 0 . 0 0 1 2 2 1 9 1 * 9 1 1 9 7 7 0 . 0 0 0 7 0 0 . 0 0 3 0 2 0 . 0 0 2 3 2 1 9 * 1 9 1 1 9 7 8 - 0 . 0 0 0 6 1 0 . 0 0 2 5 1 0 . 0 0 3 1 2 1 9 1 * 9 1 1 9 7 9 0 . 0 0 0 3 3 0 . 0 0 5 8 2 0 . 0 0 5 4 9 1 9 1 9 * 1 1 9 8 0 0 . 0 0 1 0 7 0 . 0 0 6 6 2 0 . 0 0 5 5 6 1 * 9 1 9 1 1 9 8 1 - 0 . 0 0 1 1 7 0 . 0 0 2 8 7 0 . 0 0 4 0 4 1 9 * 1 9 1 1 9 8 2 - 0 . 0 0 0 3 8 0 . 0 0 5 5 6 0 . 0 0 5 9 4 1 9 - 1 * 9 1 1 9 8 3 0 . 0 0 0 4 0 0 . 0 0 5 4 5 0 . 0 0 5 0 5 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P L D / C P I L D / P O P L D p c o w s u = D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S L D ( - l ) + W P R O L D ) / P O P L D P C D F S U = D o m e s t i c C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) 5 1 5 : S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F N I 0 . 0 0 1 7 6 9 6 0 . 0 0 2 3 8 9 9 0 . 0 0 6 6 2 3 4 - 0 . 0 0 2 0 7 0 4 P C R E D A 4 . 3 7 6 8 - 0 7 1 . 0 3 4 0 - 0 7 5 . 8 5 2 D - 0 7 2 . 7 8 2 0 - 0 7 D C D F S U 0 . 0 7 0 7 9 9 2 0 . 0 0 4 1 5 3 0 0 . 0 7 7 4 0 8 4 0 . 0 6 3 5 3 7 3 P C D N S U 0 . 0 4 5 9 3 3 3 0 . 0 0 8 5 9 5 7 0 . 0 5 8 9 4 3 1 0 . 0 3 3 4 2 2 2 C o v a r i a n c e ‘ C o r r e l a t i o n P C F N I , P C F N I 5 . 4 8 3 D - 0 6 1 . 0 0 0 0 0 0 0 P C F N I , P C R B D P 1 . 9 9 3 D - 1 0 0 . 8 4 3 2 9 8 1 P C F N I , P C D F S U - 6 . 5 8 8 D - 0 8 - 0 . 6 9 1 8 7 4 3 P C F N I , P C D N S U 1 . 4 3 5 0 - 0 5 0 . 7 3 0 4 7 7 5 P C R B D P , P C R G D P 1 . 0 2 3 D - 1 4 1 . 0 0 0 0 0 0 0 P C R G D P , P C D F S U - 1 . 5 4 1 D - 1 0 - 0 . 3 7 5 2 8 8 2 P C R G D P , P C D N S U 7 . 8 1 6 D - 1 0 0 . 9 1 9 3 2 4 8 P C D F S U , P C D F S U 1 . 6 5 0 0 - 0 5 1 . 0 0 0 0 0 0 0 P C D F S U , P C D H S U - 1 . 2 5 0 0 - 0 5 . - 0 . 3 8 8 1 7 5 9 P C D H S U , P C D H S U 7 . 0 8 7 0 - 0 5 1 . 0 0 0 0 0 0 0 1 ’ ' 1 , . x - \ ' \ " / f , 1 / \ . 1 1 l ‘ " — a — l — M ‘ . 1 1 1 3 1 3 2 3 3 7 9 A M U L 9 3 N T I O . _ \ S 8 7 \ I - - ° \ H ‘ x D E L 7 — . - J _ . x " ' 1 4 ’ / " { 1 ' 5 1 E G I O / R . . \ ' ’ 1 6 A L \ N 1 1 1 n ‘ 1 4 3 3 2 9 3 ' 9 0 9 8 0 9 e 9 H 9 9 1 1 " 9 9 m 9 1 1 1 1 1 1 . 1 3 0 5 9 4 . . . . . . . . . . 1 9 3 8 2 0 2 7 3 9 9 4 5 0 5 3 2 2 1 0 0 9 9 8 3 7 2 7 : 1 0 0 1 5 9 1 1 w 9 9 1 fl 1 1 » 1 1 1 ’ , + + ' u 7 3 - I - - - - I - - - 1 o 0 0 N E T T 0 N S M I L L 0 I N 1 5 T o N S 1 . E U C X A o L a - 1 P 9 r s e C T A . F i g u r e G . l O . a & b \ O 7 K 1 ' O M S 5 — G ? T r F 1 O 9 - i n - - a R 8 4 E E E C S n A T d S I i T M n A g T E S D t o c k s - L e s s 5 1 6 D e v e l o p e d C o u n t r i e s 5 1 7 L e s s D e v e l o p e d C o u n t r i e s P e r C a p i t a C o a r s e G r a i n E n d i n g S t o c k s 5 M 9 - 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a o l e V A R I A B L E 1 C O E F F I C I E : 5 3 ( 1 0 0 0 M T ) 5 p a p a ; N T S T D . E R R O R T - S T A T . a - T a : - s z a . 2 Q = — - ' = = = = = — - = - = — . — - — - - — " — . - . = - — - 3 - = = = B B = — - 8 8 3 8 3 - 8 = . ’ - 0 . 0 1 7 9 9 8 7 0 . 0 0 4 4 8 1 3 - 4 . 0 1 6 4 1 0 3 0 . 0 0 1 P C F S U P 0 . 3 6 3 0 2 4 3 0 . 0 5 8 6 9 1 6 6 . 1 8 5 2 9 1 0 0 . 0 0 0 - 0 . 0 0 1 3 7 5 6 0 . 0 0 0 6 6 6 2 - 2 . 0 6 4 9 2 5 8 0 . 0 5 3 - 0 . 0 0 3 8 9 7 7 0 . 0 0 0 8 4 6 0 — 4 . 6 0 6 9 7 8 1 0 . 0 0 0 R - s q u a r e d 0 . 7 4 0 2 5 0 M e a n o f d e p e n d e n t v a r 0 . 0 0 6 2 7 8 A d j u s t e d R - s q u a r e d 0 . 6 9 9 2 3 7 S . D . o f o e p e n o e n t v a r 0 . 0 0 1 4 3 2 S . E . o f r e g r e s s i o n 0 . 0 0 0 7 8 5 S u m o f s o u a r e d r e s i d 1 . 1 7 D — 0 5 D u r b i n - w a t s o n s t a t 1 . 8 0 0 2 0 6 F - s t a t i s t i c 1 8 . 0 4 9 1 3 L o g l i k e l i h o o d 1 3 4 . 0 0 1 5 T P E 3 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 3 ’ — = : s = - 3 8 8 = = = : - = - Q - - - 2 3 8 - 8 8 1 9 1 * 9 1 1 9 6 1 0 . 0 0 0 3 5 0 . 0 0 5 4 3 0 . 0 0 5 0 7 1 9 1 * 9 1 1 9 6 2 0 . 0 0 0 5 4 0 . 0 0 6 5 8 0 . 0 0 6 0 4 1 9 1 * 9 1 1 9 8 3 0 . 0 0 0 5 6 0 . 0 0 7 1 7 0 . 0 0 6 6 1 1 9 1 * 1 1 9 6 4 0 . 0 0 0 7 9 0 . 0 0 7 0 6 0 . 0 0 6 2 7 1 9 1 9 1 1 9 8 5 0 . 0 0 0 4 4 0 . 0 0 5 9 4 0 . 0 0 5 5 0 1 9 1 9 * 1 1 9 6 6 0 . 0 0 0 9 3 0 . 0 0 7 3 7 0 . 0 0 6 4 5 1 9 * 1 9 1 1 9 6 7 - 0 . 0 0 0 5 2 0 . 0 0 7 8 8 0 . 0 0 8 3 8 1 9 * 1 9 1 1 9 6 8 — 0 . 0 0 0 5 0 0 . 0 0 6 9 9 0 . 0 0 7 4 9 1 9 1 , 9 * 1 1 9 6 9 0 . 0 0 1 3 7 0 . 0 0 8 1 9 0 . 0 0 6 8 3 1 9 * 9 1 1 9 7 0 - 1 . 2 D - 1 8 0 . 0 0 4 2 8 0 . 0 0 4 2 8 1 * 9 1 9 1 1 9 7 1 - 0 . 0 0 1 6 5 0 . 0 0 4 0 1 0 . 0 0 5 6 6 1 9 * 1 9 1 1 9 7 2 - 0 . 0 0 0 3 3 0 . 0 0 3 3 1 0 . 0 0 3 6 4 1 9 * 1 9 1 1 9 7 3 - 0 . 0 0 0 1 5 0 . 0 0 5 2 7 0 . 0 0 5 4 2 1 9 * 1 9 1 1 9 7 4 - 0 . 0 0 0 5 7 0 . 0 0 5 3 1 0 . 0 0 5 8 8 1 9 1 * 9 1 1 9 7 5 0 . 0 0 0 2 4 0 . 0 0 7 4 3 0 . 0 0 7 1 9 1 9 * 1 9 1 1 9 7 6 - 0 . 0 0 0 2 0 0 . 0 0 8 4 3 0 . 0 0 8 6 3 1 9 * 1 9 1 1 9 7 7 - 0 . 0 0 0 2 8 0 . 0 0 7 1 4 0 . 0 0 7 4 2 1 9 1 9 1 1 9 7 8 — 0 . 0 0 1 0 8 0 . 0 0 5 6 8 0 . 0 0 6 7 7 1 9 1 9 1 1 9 7 9 - 0 . 0 0 0 8 3 0 . 0 0 4 9 2 0 . 0 0 5 7 5 1 9 1 9 * 1 1 9 8 0 0 . 0 0 1 2 8 0 . 0 0 7 8 2 0 . 0 0 6 5 4 1 9 * 1 9 1 1 9 8 1 - 0 . 0 0 0 3 0 0 . 0 0 7 6 1 0 . 0 0 7 9 1 1 9 * 1 9 1 1 9 8 2 - 7 . 2 D - 0 5 0 . 0 0 5 3 0 . 0 0 5 4 1 1 9 * 9 1 1 9 8 3 - 6 . 7 D - 0 6 0 . 0 0 5 2 6 0 . 0 0 5 2 7 — 2 3 8 3 - x = - - 2 2 2 2 2 2 = — = E — _ - I N D E P E N D E N T V A R I A B L E S P C F S U P 8 T o t a l C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( F E S L D ( - l ) + F P R O L D + F N I L D ) / P O P L D F P L D R e a l L D C C o a r s e G r a i n P r i c e ( S / H T ) F P i X R L D / C P I L D D V 7 0 = l I £ ( Y E A R . E 0 . 7 0 ) 0 O t h e r w i s e 5 1 8 » S M P L 1 9 8 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s ' M e a n S . D . M a x i m u m M i n i m u m P C F E S ‘ 0 . 0 0 6 2 7 8 4 0 . 0 0 1 4 3 1 8 0 . 0 0 8 4 3 1 4 0 . 0 0 3 3 0 9 8 D V 7 0 , D V 7 0 0 . 0 4 1 5 8 7 9 P C F S U S 0 . 0 7 2 5 6 8 8 0 . 0 0 3 0 3 7 3 0 . 0 7 8 5 0 6 7 0 . 0 6 5 9 8 6 4 F O L D 1 . 3 7 9 5 5 2 3 0 . 2 5 5 0 8 7 3 2 . 1 4 8 4 5 9 0 1 . 0 6 0 6 3 6 0 D V 7 0 0 . 0 4 3 4 7 8 3 0 . 2 0 8 5 1 4 4 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C F E S , P C F E S 1 . 9 6 1 D - 0 6 1 . 0 0 0 0 0 0 0 P C F E S , P C F S U P 2 . 6 3 4 D - 0 6 0 . 6 3 3 3 1 5 3 P C F E S , F P L D - 0 . 0 0 0 1 1 3 4 - 0 . 3 2 4 5 1 9 1 P C F E S , D V 7 0 - 8 . 7 0 3 D - 0 5 - 0 . 3 0 4 7 6 9 4 P C F S U P , P C F S U P 8 . 8 2 4 D - 0 6 1 . 0 0 0 0 0 0 0 P C F S U P , F P L D - 0 . 0 0 0 1 2 4 4 - 0 . 1 6 7 8 2 8 4 P C F S U P , D V 7 0 0 . 0 0 0 1 8 9 9 0 . 3 1 3 4 2 7 3 F P L D , F P L D 0 . 0 6 2 2 4 0 4 1 . 0 0 0 0 0 0 0 F P L D , D V 7 0 - 0 . 0 0 4 4 6 4 3 - 0 . 0 8 7 7 4 7 7 1 . 0 0 0 0 0 0 0 5 1 9 s n e a k . . . e . . . . 1 1 0 O 0 M E T ; 1 1 - 1 0 i N 1 s 4 3 9 3 1 3 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N M I L ‘ - 1 . 2 . 9 2 7 . ~ - , I 2 . 7 7 0 - ’ / / ‘ 0 2 . 6 1 4 P / : : N 2 . 4 5 7 : . Z : 2 . 3 0 1 C j j H 2 . 1 4 5 1 I : 5 1 . 9 1 9 1 9 . I i T 1 . 0 3 2 » 1 1 T L e n s - : j 0 1 . 5 1 9 : : j g 7 5 7 1 ' s ' 7 7 7 6 7 0 8 0 3 1 5 5 3 5 8 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e G . l l . a 8 b . S o y b e a n P r o d u c t i o n - L e s s D e v e l o p e d C o u n t r i e s ’ F > C > C > C 3 3 1 h 1 C 1 ~ 9 3 1 2 1 fl 1 U S H ‘ F P H O Z : 1 3 1 0 4 9 5 1 2 1 1 1 1 1 ( l I ' I ' U ' 7 5 F i g u r e G . l Z . a 6 1 U . \ | I I I I I I I C U I I I I I I I I I 7 b 3 . - 7 7 7 3 7 S C o o y u b n e t a r n i e a H s 3 r 3 0 3 1 3 v e s t e d A r e a 2 - L e s s D e v e l o p e d 5 2 0 2 5 0 0 1 9 2 M 1 l S W ‘ 1 m 5 W ‘ 1 9 1 1 1 9 6 9 1 9 1 1 1 1 9 1 2 1 9 7 4 1 9 1 6 1 9 1 8 1 9 8 9 1 9 1 2 R E G I O N A L M O D E L S I M U L A T I O N . 2 7 5 . 1 8 5 . 3 4 5 . 3 3 5 . 7 2 5 1 . 3 1 5 : . 5 0 5 I . 3 9 5 I . 2 3 5 O I L A + L I J A J I I I J L I I I 1 l 0 u s a b E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D D 4 S S D F H R R V A L L 8 L D D 0 = = 8 = S S C l ( < o o o F F y y a I o Y b b r £ r L e e s < e D a a c e Y < n n a E - H R t r R > s G A 3 a e a + r v S i F . v e o n Y 2 e n y 0 L s u b R D . t e e e ( e a - v 8 d n 0 p 2 e e n ) ) A Y + r u r e i F e H e Y a e l p L ( 1 0 d c e D t > r ( a ~ 1 r S H ) 0 e P e * 0 l c F S H P a L A I I r D ) H L e ) ( C t Y ) A D / ( 4 S * / F H P A L ) D * X R L D / C P I L D 5 2 1 L e s s D e v e l o p e d C o u n t r i e s S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) . . - - 5 " . 3 - . 1 9 6 5 - . - 1 ' : 8 ; 1 9 D D S E P V E I 1 0 W S L S / / D e p e n d e n t V e r i a o k e i s S H A L D ’ V A R I A B L E C O E F F I C I E N T S T D . E R R O R 7 — 9 7 5 7 . a — T a z t 5 : 5 . - - - - - - - - ‘ - 3 - - - - 8 “ = 8 - ‘ = “ = = = 8 = = = = . B = C - 2 8 9 5 . 9 1 0 5 1 5 7 5 . 5 4 4 2 - 1 . 8 3 8 0 3 7 5 0 . 0 8 9 S H A L D ( - 1 ) 0 . 6 0 9 5 8 8 7 0 . 2 5 1 4 2 0 8 2 . 4 2 4 5 7 5 2 0 . 0 3 1 S R L D 4 ( - 1 ) 4 7 . 1 6 0 9 2 6 5 2 . 8 0 1 5 3 0 0 . 8 9 3 1 7 3 5 0 . 3 8 8 F R L D 4 ( - 1 ) - 2 0 6 . 8 5 8 1 7 1 6 8 . 7 9 4 7 0 - 1 . 2 2 5 5 0 1 6 0 . 2 4 2 D V 8 0 - 3 7 9 . 0 9 9 9 7 1 1 9 . 7 3 5 2 1 - 3 . 1 8 6 1 5 2 9 0 . 0 0 7 Y E A R 4 8 . 0 5 9 3 4 5 2 5 . 6 1 9 3 1 2 1 . 8 7 5 9 0 3 1 0 . 0 8 3 R - s c u a r e o 0 . 9 7 6 8 0 1 M e a n o f d e p e n d e n t v a r 1 2 3 9 . 5 3 A d j u s t e d R - s q u a r e d 0 . 9 6 7 8 7 8 S . D . o f d e p e n d e n t v a r 5 8 5 . 3 7 7 5 S . E . o f r e g r e s s i o n 1 0 4 . 9 1 4 4 S u m o f s q u a r e d r e s i d 1 4 3 0 9 1 . 4 D u r b i n - U a t s o n s t a t 1 . 7 8 8 1 5 5 F - s t a t i s t i c 1 0 9 . 4 7 3 9 L o g l i k e l i h o o d - 1 1 1 . 7 6 4 4 T T E ( H 1 8 R e s i d u a l P l o t , o b s R E S I D U A L A C T U A L F I T T E D 1 9 1 * 9 1 1 9 6 5 7 7 . 7 4 4 9 4 8 4 . 0 0 0 4 0 6 . 2 5 5 1 9 1 * 9 1 1 9 6 6 8 2 . 3 7 8 3 5 4 9 . 0 0 0 4 6 6 . 6 2 2 ' 1 9 * 9 1 1 9 6 7 7 . 3 8 2 3 0 5 6 5 . 0 0 0 5 5 7 . 6 1 8 ; 1 9 1 4 9 1 1 9 5 3 1 5 . 3 7 9 5 5 5 9 . 0 0 0 5 4 2 . 1 2 1 1 1 ' 9 1 4 9 1 1 9 6 9 3 1 . 3 8 8 4 7 6 7 . 0 0 0 7 3 5 . 6 1 2 ; 1 9 * 1 9 1 1 9 7 0 - 5 4 . 7 9 4 6 7 8 0 . 0 0 0 8 3 4 . 7 9 5 . 1 9 * 1 9 1 1 9 7 1 - 7 6 . 2 9 1 0 8 1 3 . 0 0 0 8 8 9 . 2 9 1 - 1 9 * 1 9 1 1 9 7 2 - 6 8 . 1 7 2 5 9 3 5 . 0 0 0 1 0 0 1 . 1 7 1 9 1 * 9 1 1 9 7 3 2 1 . 2 1 5 3 1 1 5 7 . 0 0 1 1 3 5 . 7 8 1 9 1 9 1 1 9 7 4 - 1 3 . 8 7 0 3 1 1 8 4 . 0 0 1 1 9 7 . 8 7 1 9 * 1 9 1 1 9 7 5 - 5 6 . 1 8 2 1 1 2 3 0 . 0 0 1 2 8 6 . 1 8 1 * 9 1 9 1 1 9 7 6 ~ 1 1 4 . 7 5 7 1 2 5 7 . 0 0 1 3 7 1 . 7 6 1 9 * 1 9 1 1 9 7 7 - 8 1 . 9 5 6 3 1 4 5 1 . 0 0 1 5 3 2 . 9 6 1 9 * 1 9 1 1 9 7 8 - 9 2 . 4 7 0 1 1 5 6 6 . 0 0 1 6 5 8 . 4 7 1 9 1 * 1 1 9 7 9 9 8 . 6 1 2 9 1 8 7 9 . 0 0 1 7 8 0 . 3 9 1 9 i 9 1 1 9 8 0 - 1 . 0 D - 1 3 1 5 9 7 . 0 0 1 5 9 7 . 0 0 1 9 1 9 * 1 1 9 8 1 2 6 4 . 6 5 9 2 1 3 7 . 0 0 1 8 7 2 . 3 4 1 9 * 1 9 1 1 9 8 2 - 5 9 . 1 1 4 3 2 2 0 2 . 0 0 2 2 6 1 . 1 1 1 9 1 * 9 1 1 9 8 3 1 5 . 3 4 7 1 2 3 3 0 . 0 0 2 3 1 4 . 6 5 I N D E P E N D E N T V A R I A B L E S 0 O t h e r w i s e Y E A R 1 9 6 0 = 6 0 . 1 9 6 1 : 6 1 , . . . u m p w m r 0 0 m m w m l m m m m w n r r 0 m e e u o o y u m m m < S D c m u b & m H r m D e a A d m U o m u l l 1 M I O < r d U e m n I 3 m 0 “ 0 2 w 0 fl m . . ¥ w 5 . 3 w 9 8 w 0 - m w 5 m fl m O m . . m w m O : 0 m 0 m m O m 9 0 b w O m 4 m u e Q m 9 q m m O ’ 9 [ ] 1 r m u n n t w * ~ - m m fl u w w w 3 1 ” . . x u 3 : 3 F H J H S C E m m w . w fl fl m r H i m : G m m e m H . 0 0 w b b o m n o < m 1 u w 3 0 m m x r r u . m l n r u m I n r o . m I n r o A u p v m 1 0 r u . m m r 8 9 . u p v m x n r o . n m r o b h u e v m 1 n r u . u < m o m r n r o . < m n m m 1 0 r 8 1 1 0 0 . m x n r c . 1 5 0 m x n r o h u p o . m m r o k fi u u v m 1 » r c . u e v . w m r 0 9 1 1 5 0 m x n r u . u p v . c < m o m l n r u fl u e v . < m n m m m r o b . u p v . m m r o b fi u e v m m r 0 9 fi n u v . n m r o b a 1 p e m m r o ¢ fl n p v . o < m o m m r 8 9 . n e v . < m n m n m r o b fi u p v . n m r o r e u e v n m r 8 9 . n u e . o < m 0 n m r o p A n p v . < m D m o c m o . u < m o o < m o . < m n m < m n m . < m v m m m e m q m . c u m m b . m m k 9 m m m . 0 0 w u v m H m . m m m w w m w o » m . u m m ¢ m m m b m m . 0 w w w w . m m m m w 0 0 . 0 0 0 9 0 0 m m . u m m m 9 9 m m m m . m m m b 0 . w m m w ¢ 0 0 0 . 8 0 0 8 0 0 9 0 . 0 m p q m m p m . m m o e m u fl 0 . 0 0 9 m m m u 0 . 0 8 0 0 0 0 m 0 . m m m u m 9 0 0 . 0 b m m m s m 0 . w p m q m m m 0 0 . 0 0 0 0 0 0 m 0 . 0 0 0 0 G O O D . M I O 0 0 0 0 0 0 0 . 0 0 0 0 0 0 r m 9 . 0 0 0 0 0 L m t . O C O C C m . 0 m q m m 0 0 0 . 0 M b m e t m 0 . . 0 0 0 0 0 0 0 m m . 0 0 0 0 . 0 0 2 . 0 0 0 0 0 0 0 0 . 0 m m m k e w 0 . 0 0 w w u u u 0 . 9 0 0 9 m m 9 0 . 8 9 0 0 M m m 0 . 0 0 9 0 0 0 m H . 0 0 0 0 0 0 0 0 . b o m m b b m 0 . 0 m m m m m u 0 . w m m m m o w 0 . 0 4 0 m 0 m m p . 0 0 0 0 0 0 0 0 . 0 0 0 9 0 0 0 0 . 0 0 0 0 m m w 0 . m w m m 0 m m 0 . 0 0 0 0 0 0 0 0 . » v m m m m u 0 . b u m m p m u 8 . 0 0 0 0 0 0 0 0 . m m m ~ m m m 2 . 0 0 0 0 0 0 0 ' 5 2 3 L e s s D e v e l o p e d C o u n t r i e s S o y b e a n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S H E ; 1 9 6 4 - 1 9 5 3 2 0 O b s e r v a t i o n s L 5 i f D e o e n o e n t V a r i a b l e i s 6 9 2 0 _ V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 6 1 6 . C - 1 5 . 2 3 0 0 9 1 3 . 6 2 3 7 6 7 7 - 4 . 2 0 2 8 3 3 1 0 . 0 0 1 L O G T 3 . 8 7 8 5 8 1 2 0 . 8 7 6 0 2 7 2 4 . 4 2 7 4 6 6 6 0 . 0 0 0 S H A L D - 0 . 0 0 0 2 8 2 1 0 . 0 0 0 1 1 9 2 - 2 . 3 6 6 7 0 0 8 0 . 0 3 0 R - s o u a r e o 0 . 8 1 3 1 0 7 M e a n o f d e n e n O e n t ' v a r 1 . 0 8 6 4 1 2 A u g u s t e d R - s q u a r e d 0 . 7 9 1 1 2 0 S . D . o f d e p e n d e n t v a r 0 . 1 7 4 9 4 1 S . E . o f r e g r e s s i o n 0 . 0 7 9 9 5 4 S u m o f s o u a r e d r e s i d 0 . 1 0 8 6 7 5 D u r b i n - H a t s o n s t a t 1 . 3 5 5 5 4 5 ' F - s t a t i s t i c 3 5 . 9 5 0 5 5 L o g l i k e l i h o o d 2 3 . 7 7 2 5 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 4 1 9 1 1 9 6 4 - 0 . 0 2 7 5 9 0 . 7 3 6 0 8 0 . 7 6 3 6 7 1 9 * 1 9 1 1 9 6 5 - 0 . 0 5 3 4 3 0 . 7 7 0 6 6 0 . 8 2 4 0 9 1 9 4 1 9 1 1 9 6 6 - 0 . 0 3 0 7 2 0 . 8 3 4 2 4 0 . 8 6 4 9 7 1 ' 9 1 * 9 1 1 9 6 7 0 . 0 2 2 8 1 0 . 9 4 1 5 9 0 . 9 1 8 7 8 1 9 1 9 * 1 1 9 6 8 0 . 1 6 2 5 6 1 . 1 1 2 2 9 0 . 9 4 9 7 3 1 9 1 * 9 1 1 9 6 9 ' 0 . 0 6 7 1 4 1 . 0 4 3 0 3 0 . 9 7 5 8 9 1 9 * 1 ‘ 9 1 1 9 7 0 - 0 . 0 5 8 8 0 0 . 9 6 9 2 3 1 . 0 2 8 0 3 : 4 : : 9 : 1 9 7 1 - 0 . 0 5 5 3 5 0 . 9 9 1 3 9 1 . 0 7 3 7 4 1 9 * 1 9 1 1 9 7 2 - 0 . 0 5 8 2 8 1 . 0 3 5 2 9 1 . 0 9 3 5 7 1 9 * 1 9 1 1 9 7 3 - 0 . 0 2 3 9 5 1 . 0 6 0 5 0 1 . 0 8 4 4 5 1 9 i : 9 1 1 9 7 4 - 0 . 0 1 1 3 6 1 . 1 1 8 2 4 1 . 1 2 9 6 0 1 9 1 9 * 1 1 9 7 5 0 . 1 0 3 6 7 1 . 2 7 2 3 1 . 1 6 8 6 9 1 9 * 1 9 1 1 9 7 6 - 0 . 0 6 6 0 7 1 . 1 4 6 3 8 1 . 2 1 2 4 5 1 9 fi 1 9 1 1 9 7 7 - 0 . 0 3 1 9 9 1 . 1 7 6 4 3 1 . 2 0 8 4 2 1 9 1 * 9 1 1 9 7 8 ‘ 0 . 0 4 2 8 0 1 . 2 6 8 8 4 1 . 2 2 6 0 4 1 9 1 - 9 4 1 1 9 7 9 0 . 1 5 1 8 5 1 . 3 3 9 0 1 1 . 1 8 7 1 6 1 9 1 * 9 1 1 9 8 0 0 . 0 1 6 3 8 1 . 3 3 1 8 7 1 . 3 1 5 4 9 1 9 1 * 9 1 1 9 8 1 0 . 0 4 8 3 6 1 . 2 5 9 7 1 1 . 2 1 1 3 5 1 * 9 1 9 1 1 9 8 2 - 0 . 0 9 1 2 0 1 . 1 4 9 4 1 1 . 2 4 0 6 1 1 4 1 9 1 _ 1 9 8 3 - 0 . 0 7 9 8 4 1 . 1 7 1 6 7 1 . 2 5 1 5 1 _ _ _ _ _ _ - _ _ _ - - - _ - - - - - g g I N D E P E N D E N T V A R I A B L E S L O G T = L n ( Y E A R > S H A L D = S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) 5 2 4 S w fi t 1 9 6 4 - 1 9 8 2 2 0 O b s e r v a t i o n s 8 = ‘ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : = = = = = = = = S e r i e s M e a n S . D . M a x 1 m u m M 1 n 1 m u m = - = — — - = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = S Y L D . . 0 8 6 4 1 1 9 0 . 1 7 4 9 4 1 0 1 . 3 3 9 0 1 0 : 0 . 7 3 6 0 8 2 5 L O G ' 4 . 2 9 4 1 9 1 0 0 . 0 8 0 8 3 9 2 4 . 4 1 8 8 4 0 0 4 . 1 5 8 8 8 3 0 S H A L D 1 2 0 1 . 3 5 0 0 5 9 4 . 1 8 9 7 9 2 3 3 0 . 0 0 0 0 4 8 4 . 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n = — — = = = = = = - - - - - — — — - — - - — = = = = - = - _ z _ - _ = _ = s _ — — — _ = = = = S Y L D , S Y L D 0 . 0 2 9 0 7 4 1 1 . 0 0 0 0 0 0 0 S Y L D , L O E T 0 . 0 1 1 6 4 6 9 0 . 8 6 6 9 0 7 6 S Y L D , S H A L D 7 6 . 3 3 9 1 2 1 0 . 7 7 3 0 4 8 7 L O B T , L O G T 0 . 0 0 6 2 0 8 2 1 . 0 0 0 0 0 0 0 L D G T , S H A L D 4 4 . 0 7 4 8 7 0 0 . 9 6 5 8 7 3 5 S H A L D , S H A L D 3 3 5 4 0 8 . 4 3 1 . 0 0 0 0 0 0 0 F i g u r e 6 . 1 3 . a & b . S L o e y s e m s a D l e v E e q l u o i p v e a d l e C n o t u n C t o r n i s e u s m p t i o n - 5 2 5 1 0 0 0 H E T T 0 N S R E G I O N A L M O D E L S I M U L A T I O N M I L L L 4 . . . . : ; ’ . . . . ‘ I 4 . 3 2 4 ~ - 4 o 4 . 0 3 3 : 3 3 N 3 . 7 4 1 : 3 3 3 . 4 5 0 : 3 3 M 3 . 1 5 : : Z 3 E 2 . 9 5 1 I 3 ‘ T 9 - 2 . 5 7 s 1 - - ‘ 1 ‘ 2 . 2 9 4 E 0 1 . 9 9 2 : : 1 g 7 3 7 5 7 7 7 E 7 9 5 0 5 ‘ 1 5 2 5 9 8 4 E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L — - - E S T I M A T E D 5 2 6 3 9 9 9 ‘ ! 1 0 2 5 9 9 1 0 0 2 9 9 9 1 M E I T 1 5 9 9 1 T 0 1 8 9 8 1 N S 5 5 8 3 4 — — ! , y . , , ' 1 ' 1 4 ' 1 5 ' 1 6 ' 1 ? 7 8 ' 1 9 3 9 3 1 8 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N M I A L . 2 . 5 2 4 r ; . 1 . . 2 4 ‘ 5 ' b N . “ ‘ d I 2 . 2 7 5 : I I 0 2 . 1 0 7 : I j N 1 . 9 3 4 - I I M 1 . 7 5 2 C I I E 1 . ! ! D t I 1 7 r ' . " 7 : _ . ‘ 1 . 2 4 5 t I 1 - 1 . 0 7 2 I o . . . . . . . . . T N 7 5 7 5 7 7 7 5 7 9 5 0 5 1 5 2 5 3 5 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e G . 1 4 . a & b . S o y o i l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d C o u n t r i e s 1 9 7 5 1 9 7 6 1 9 1 9 4 1 7 9 9 n 9 1 n - 1 0 2 n - 4 4 4 - ' U U ' T V ' ' Y Y 7 5 7 5 9 . 7 ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 ’ I I l J I l / l C I I I I l i ‘ l l I J I I I I I I I I I I I l l l l l l l l l J 7 7 7 5 7 5 5 0 5 1 5 2 5 2 7 2 5 0 0 1 . - . - - e " ' . ' . " “ ° ° ° ° ° . 1 1 0 3 . ‘ o , 6 0 . 0 " " . . m n 1 5 . . . . . " . . . a o . E ‘ 5 ' . . . l T . . . . . . . 1 0 0 0 T O N 5 5 8 3 R E G I O N A L M O D E L S I M U L A T I O N . 5 2 3 . 3 9 1 I . 1 5 5 3 . 5 5 5 . 7 5 3 . 5 5 0 . 3 7 7 . 1 7 5 . 9 7 2 . 7 5 9 7 0 1 2 0 — ) a n : a u . D h E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — — E S T I M A T E D F i g u r e G . l $ . a & b . S o y m e a l E q u i v a l e n t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s 5 2 8 1 L e s s D e v e l o p e d C o u n t r i e s P e r C a p i t a S o y m e a l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s P T S M N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . ' 2 - T A I L 5 1 6 . C - 0 . 0 0 1 2 7 2 0 0 . 0 0 0 1 2 8 7 - 9 . 8 8 1 7 4 4 9 0 . 0 0 0 P C R B D P ( - 1 ) 4 7 3 8 . 3 3 5 8 3 7 1 . 6 1 8 4 1 1 2 . 7 5 0 5 4 1 0 . 0 0 0 P C D S S U - 0 . 0 6 0 7 7 7 1 0 . 0 2 3 3 6 1 2 - 2 . 6 0 1 6 2 4 2 0 . 0 1 9 R - s q u a r e d 0 . 9 4 3 9 7 9 M e a n o f d e p e n d e n t v a r 0 . 0 0 0 7 0 4 A d J u s t e d R - s q u a r e d 0 . 9 3 6 9 7 7 S . D . o f d e p e n d e n t v a r 0 . 0 0 0 3 8 9 S . E . o f r e g r e s s i o n 9 . 7 7 D - 0 5 S u m o f s q u a r e d r e s i d 1 . 5 3 D - 0 7 D u r b i n - N a t s o n s t a t 1 . 7 5 6 3 5 1 F - s t a t i s t i c 1 3 4 . 8 0 4 6 L o g l i k e l i h o o d 1 5 0 . 1 0 7 9 T T E 4 / 1 9 - R e s i d u a l P l o t ' o b s R E S I D U A L A C T U A L F I T T E D 1 9 1 * 9 1 1 9 6 5 4 . 3 D - 0 5 0 . 0 0 0 2 8 0 . 0 0 0 2 4 1 9 * 1 9 1 1 9 6 6 - 1 . 4 D — 0 5 0 . 0 0 0 2 7 0 . 0 0 0 2 8 1 9 ° * 1 9 1 1 9 6 7 - 2 . S D - 0 5 0 . 0 0 0 2 7 0 . 0 0 0 2 9 1 9 1 * 9 1 1 9 6 8 4 . 9 D - 0 5 0 . 0 0 0 3 7 0 . 0 0 0 3 2 1 9 1 * 9 1 1 9 6 9 4 . 9 D - 0 5 0 . 0 0 0 4 0 0 . 0 0 0 3 5 1 9 1 * 9 1 1 9 7 0 5 . 7 D - 0 5 0 . 0 0 0 4 8 0 . 0 0 0 4 2 1 * 9 1 9 1 1 9 7 1 - 0 . 0 0 0 1 9 0 . 0 0 0 3 5 0 . 0 0 0 5 4 1 9 * ‘ 1 9 ‘ 1 1 9 7 2 - 6 . 2 D - 0 5 0 . 0 0 0 3 8 0 . 0 0 0 4 4 1 9 1 5 9 1 1 9 7 3 7 . 3 D - 0 5 0 . 0 0 0 5 2 0 . 0 0 0 4 4 1 * 9 1 9 1 1 9 7 4 - 0 . 0 0 0 1 5 0 . 0 0 0 5 0 0 . 0 0 0 6 5 1 * 1 9 1 1 9 7 5 - 0 . 0 0 0 1 0 0 . 0 0 0 5 5 0 . 0 0 0 6 5 1 9 1 9 5 1 1 9 7 6 0 . 0 0 0 1 4 0 . 0 0 0 8 6 0 . 0 0 0 7 2 1 9 1 * 9 1 1 9 7 7 6 . 2 D - 0 5 0 . 0 0 1 0 1 0 . 0 0 0 9 4 1 9 1 * 9 1 1 9 7 8 ' 8 . 4 D - 0 5 0 . 0 0 1 0 9 0 . 0 0 1 0 1 1 9 1 * 1 1 9 7 9 9 . 6 D - 0 5 0 . 0 0 1 1 6 0 . 0 0 1 0 7 1 . 9 * 1 9 1 1 9 8 0 - 3 . 5 D - 0 5 0 . 0 0 1 2 2 0 . 0 0 1 2 6 1 5 9 1 9 1 1 9 8 1 - 0 . 0 0 0 1 1 0 . 0 0 1 1 2 0 . 0 0 1 2 4 1 9 * 1 9 1 1 9 8 2 - 4 . 5 0 - 0 5 0 . 0 0 1 2 5 0 . 0 0 1 2 9 1 9 1 * 9 1 1 9 8 3 8 . 2 D - 0 5 0 . 0 0 1 3 1 0 . 0 0 1 2 2 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l G D P P e r C a p i t a G D P L D / C P I L D / P O P L D P C O S S U = P e r C a p i t a S u p p l y o f P e a n u t . R a p e s e e d , S u n f l o w e r S e e d a n d P a l m K e r n e l M e a l s ( 1 0 0 0 M T ) ( P P R O L D * . 4 1 + R P R O L D * . 5 9 + N P R O L D * . 4 7 5 + K P R O L D * . 5 2 ) / P O P L D 5 2 9 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m . M i n i m u m P T S M N I 0 . 0 0 0 7 0 4 1 0 . 0 0 0 3 8 9 2 0 . 0 0 1 3 0 5 5 0 . 0 0 0 2 6 6 2 P C R B D P 1 - l ) 4 . 5 4 0 D - 0 7 9 . 2 9 4 D - 0 8 5 . 8 5 2 D - 0 7 3 . 3 1 9 D - 0 7 P C O S S U 0 . 0 0 2 8 8 3 8 0 . 0 0 1 4 7 8 4 0 . 0 0 4 6 5 3 7 0 . 0 0 0 9 4 3 4 C o v a r i a n c e C o r r e l a t i o n P T S M N I , P T S M N I 1 . 4 3 5 D - 0 7 _ 1 . 0 0 0 0 0 0 0 P T S M N I , P C R B D P ( - 1 ) 3 . 2 8 8 D - 1 1 0 . 9 5 9 3 1 2 8 P T S M N I , P C O S S U 3 . 3 3 7 D - 0 7 0 . 6 1 2 1 7 0 7 P C R G D P ( - 1 ) , P C R G D P ( - 1 ) 8 . 1 8 2 0 - 1 5 1 . 0 0 0 0 0 0 0 P C R G D P ( - 1 ) , P C O S S U 9 . 6 9 9 D - 1 l - - 0 . 7 4 5 1 5 2 2 P C O S S U , P C O S S U 2 . 0 7 1 D - 0 8 1 . 0 0 0 0 0 0 0 5 3 0 3 m 1 2 5 % * 0 0 I 0 fl u n w M E 1 5 % fi T . T I N T ! 0 3 N s s w ‘ h . , m 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 7 B 1 9 ' 1 9 1 9 8 8 1 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N M I L I f 2 . 2 3 3 1 2 . 9 2 3 - 4 . 1 0 > - _ \ 1 N 9 A w o t - \ \ . 9 . 3 0 4 - 3 j M 9 . 3 4 : 9 » 1 j E . . ‘ 8 ' E : : 1 ‘ 1 ‘ 9 . 3 9 3 r I I 9 . 9 3 3 I I I T . 9 9 3 - : j 0 - 8 3 4 r I I N - 4 s 7 9 " ; ' 7 3 - 7 " : 7 3 7 3 3 6 3 9 3 2 3 1 ' ; 3 4 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e G . 1 6 . a & b . S o y o i l E q u i v a l e n t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s L e s s D e v e l o p e d C o u n t r i e s 5 3 1 P e r C a p i t a S o y o i l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P T S O N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 0 0 0 9 6 0 7 . . 0 . 0 0 0 1 8 5 5 - 5 . 1 7 8 6 1 6 2 0 . 0 0 0 P C R G D P 4 1 9 0 . 5 3 6 ? 3 5 7 . 0 7 6 4 8 1 1 . 7 3 5 6 8 4 0 . 0 0 0 S O P L D ( - 1 ) - 5 . 3 1 7 D - 0 5 1 . 5 9 6 D - 0 5 - 3 . 3 3 0 7 6 4 4 0 . 0 0 4 R - s q u a r e d 0 . 8 9 8 4 0 7 M e a n o f d e p e n d e n t v a r 0 . 0 0 0 6 6 2 A d j u s t e d R - s q u a r e d 0 . 8 8 5 7 0 7 S . D . o f d e p e n d e n t v a r 0 . 0 0 0 4 0 3 S . E . o f r e g r e s s i o n 0 . 0 0 0 1 3 6 S u m o f s q u a r e d r e s i d 2 . 9 7 D - 0 7 D u r b i n - w a t s o n s t a t 1 . 9 0 5 8 8 0 E i f t a t i s t i c 7 0 . 3 4 5 2 7 L o g l i k e l i h o o d 1 4 3 . 7 9 1 0 5 “ R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 ' 1 * 9 1 1 9 6 5 7 . 6 D - 0 5 0 . 0 0 0 2 1 0 . 0 0 0 1 3 1 9 1 * 9 1 1 9 6 6 8 . 7 D - 0 5 0 . 0 0 0 2 5 0 . 0 0 0 1 6 1 9 * 9 1 1 9 6 7 - 5 . 2 D - 0 6 0 . 0 0 0 2 3 0 . 0 0 0 2 3 1 9 * 1 9 1 1 9 6 8 - 6 . Z D - 0 5 0 . 0 0 0 2 5 0 . 0 0 0 3 2 1 9 * 1 9 1 1 9 6 9 - 7 . S D - 0 5 0 . 0 0 0 3 1 0 . 0 0 0 3 9 1 9 1 * 9 1 1 9 7 0 7 . 4 0 - 0 5 0 . 0 0 0 4 9 0 . 0 0 0 4 2 1 9 * 1 9 1 1 9 7 1 - 1 . 9 D - 0 5 0 . 0 0 0 4 3 0 . 0 0 0 4 5 1 9 * 1 9 1 1 9 7 2 - 0 . 0 0 0 1 1 0 . 0 0 0 4 0 0 . 0 0 0 5 1 1 9 * 1 9 1 1 9 7 3 - 5 . 4 D - 0 5 0 . 0 0 0 5 4 0 . 0 0 0 6 0 1 9 1 * 9 1 1 9 7 4 6 . 4 D - 0 5 0 . 0 0 0 4 0 0 . 0 0 0 3 4 1 9 * 1 9 1 1 9 7 5 - 5 . 7 D - 0 5 0 . 0 0 0 4 5 0 . 0 0 0 5 0 1 9 * 9 1 1 9 7 6 5 . 8 0 - 0 6 0 . 0 0 0 9 4 0 . 0 0 0 9 3 1 9 * 9 1 1 9 7 7 5 . 9 D - 0 6 0 . 0 0 0 8 9 0 . 0 0 0 8 9 1 * 9 1 9 1 1 9 7 8 - 0 . 0 0 0 1 7 0 . 0 0 0 7 6 0 . 0 0 0 9 2 1 9 * 1 9 1 1 9 7 9 - 5 . 4 D - 0 5 0 . 0 0 1 0 3 0 . 0 0 1 0 8 1 9 - 1 9 * 1 1 9 8 0 0 . 0 0 0 1 8 0 . 0 0 1 3 2 0 . 0 0 1 1 4 1 * 9 1 9 1 1 9 8 1 - 0 . 0 0 0 2 7 0 . 0 0 0 9 6 0 . 0 0 1 2 2 1 9 9 1 * 9 . I 1 9 8 2 3 . 9 0 - 0 5 0 . 0 0 1 2 8 0 . 0 0 1 2 4 1 ~ 9 1 9 * 1 1 9 8 3 0 . 0 0 0 3 3 _ 0 . 0 0 1 4 4 0 . 0 0 1 1 1 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l G D P P e r C a p i t a G D P L D / C P I L D / P O P L D S O P L D = S O P R X R L D / C P I L D + R e a l L e s s D e v e l o p e d M a r k e t S o y o i l P r i c e ( S / M T ) 9 I 1 1 1 5 3 2 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S O N I 0 . 0 0 0 6 6 2 4 0 . 0 0 0 4 0 3 0 0 . 0 0 1 4 4 3 5 0 . 0 0 0 2 0 8 4 P C R G D P 4 . 6 5 6 D - 0 7 9 . 0 5 9 D - 0 8 5 . 8 5 2 0 - 0 7 3 . 4 0 0 0 - 0 7 S O P L D 1 - 1 ) 6 . 1 7 3 4 9 0 9 2 . 0 2 6 5 1 8 2 1 2 . 1 9 8 1 2 0 3 . 8 7 9 1 2 1 0 I _ = - C o v a r i a n c e C o r r e l a t i o n P T S O N I , P T S O N I 1 . 5 3 9 D - 0 7 1 . 0 0 0 0 0 0 0 P T S O N I . P C R B D P 3 . 1 4 8 0 - 1 1 0 . 9 0 9 9 2 5 5 P T S O N I , S O P L D ( - l ) - 0 . 0 0 0 1 1 9 6 - 0 . 1 5 4 6 C 1 2 P C R B D P , P C R G D P 7 . 7 7 5 D - 1 5 1 . 0 0 0 0 0 0 0 P C R G D P , S O P L D ( - 1 ) 2 . 0 8 2 0 - 0 8 0 . 1 1 9 6 8 1 0 S O P L D ( - 1 ) , S O P L D ( - 1 ) 3 . 8 9 0 6 3 0 0 1 . 0 0 0 0 0 0 0 3 . 3 5 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 ? ? . 8 0 1 9 . 8 1 1 9 . 8 3 1 9 1 9 8 2 9 1 9 1 9 4 9 9 \ 9 9 9 9 \ 1 1 1 1 9 1 . 9 9 4 9 1 9 7 3 7 3 7 7 7 3 7 9 3 0 3 9 3 2 5 3 3 0 . 5 5 1 ? 0 9 6 0 + 1 0 . 5 5 4 1 9 . 5 9 1 8 . 4 5 9 R E G I O N A L M O D E L S I M U L A T I O N . 3 3 7 . 3 3 3 - . 3 3 9 I . 3 9 3 I . 4 9 9 i . 4 3 3 . 4 4 4 - . 4 2 0 E . 3 9 3 . 3 7 2 L l Q Q . Q h E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e G . l 7 . a & b . P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y m e a l - L e s s D e v e l o p e d C o u n t r i e s 5 3 4 : L e s s D e v e l o p e d C o u n t r i e s P e r c e n t a g e S o y n e a l E q u i v a l e n t I m p o r t e d a s S o y n e a l S M p L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P M E A L V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 6 . C - 0 . 9 8 9 4 0 8 9 0 . 2 4 8 7 6 9 5 - 3 . 9 7 7 2 1 2 0 0 . 0 0 1 M A R G I N - 0 . 1 1 7 0 5 8 6 0 . 1 0 2 8 2 5 8 - 1 . 1 3 8 4 1 7 0 0 . 2 7 3 M A R G I N 1 - 1 ) - 0 . 1 4 3 6 4 7 6 0 . 0 6 7 5 5 6 4 - 2 . 1 2 6 3 3 6 1 0 . 0 5 0 Y E A R 0 . 0 1 8 1 4 8 0 0 . 0 0 3 3 3 2 6 5 . 4 4 5 6 5 0 5 0 . 0 0 0 R - s q u a r e d 0 . 8 0 1 6 0 6 M e a n o f d e p e n d e n t v a r 0 . 3 4 4 7 7 1 A d J u s t e d R - s q u a r e d . 0 . 7 6 1 9 2 7 ‘ S . D . o f d e p e n d e n t v a r 0 . 1 4 5 2 6 1 S . E . o f r e g r e s s i o n 0 . 0 7 0 8 7 7 S u m o f s q u a r e d r e s i d 0 . 0 7 5 3 5 3 D u r b i n - H a t s o n s t a t 1 . 6 3 4 3 9 1 F - s t a t i s t i c 2 0 . 2 0 2 3 9 L o g l i k e l i h o o d 2 5 . 5 7 5 2 8 T P E 6 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 * 1 9 1 1 9 6 5 - 0 . 0 1 3 6 6 0 . 0 2 4 7 0 0 . 0 3 8 3 6 1 9 1 * 9 1 1 9 6 6 0 . 0 1 6 5 6 0 . 2 1 4 6 1 0 . 1 9 8 0 6 1 9 * 1 9 1 1 9 6 7 - 0 . 0 3 1 6 2 0 . 2 1 0 7 1 0 . 2 4 2 3 2 1 * 9 1 9 1 1 9 6 8 - 0 . 1 0 4 3 5 0 . 1 5 5 0 0 0 . 2 5 9 3 5 1 9 * 1 9 1 1 9 6 9 - 0 . 0 5 1 5 7 0 . 1 9 1 3 5 0 . 2 4 2 9 2 1 9 1 * 1 1 9 7 0 0 . 0 6 8 1 8 0 . 3 1 2 3 8 0 . 2 4 4 2 0 1 9 1 9 * 1 1 9 7 1 0 . 1 5 5 6 9 0 . 4 6 1 8 5 0 . 3 0 6 1 6 1 9 1 * 9 1 1 9 7 2 0 . 0 4 1 4 0 0 . 3 2 2 2 0 0 . 2 8 0 8 1 1 9 * 9 1 1 9 7 3 0 . 0 0 4 6 3 0 . 2 5 0 8 4 0 . 2 4 6 2 1 1 9 * 1 9 1 1 9 7 4 - 0 . 0 3 9 1 7 0 . 2 9 6 6 7 0 . 3 3 5 8 4 1 9 * 1 9 1 1 9 7 5 - 0 . 0 2 9 8 9 0 . 3 6 8 1 8 0 . 3 9 8 0 7 1 9 1 * 9 1 1 9 7 6 0 . 0 6 2 8 0 0 . 4 8 5 1 6 0 . 4 2 2 3 5 1 9 * 1 9 1 1 9 7 7 - 0 . 0 4 1 8 8 0 . 4 0 6 9 6 0 . 4 4 8 8 3 1 9 1 9 1 1 9 7 8 - 0 . 0 8 3 4 6 0 . 3 6 0 5 6 0 . 4 4 4 0 2 1 9 1 * 9 1 1 9 7 9 0 . 0 6 1 1 6 0 . 5 1 3 9 7 0 . 4 5 2 8 1 1 9 * 1 9 1 1 9 8 0 - 0 . 0 2 l 2 4 0 . 4 5 9 0 6 0 . 4 8 0 2 9 1 9 1 9 * ' 1 1 9 8 1 0 . 0 8 4 6 0 0 . 5 9 8 4 3 0 . 5 1 3 8 2 1 9 * 1 9 1 1 9 8 2 - 0 . 0 2 8 5 3 0 . 4 5 9 3 6 0 . 4 8 7 8 9 1 9 * 1 9 1 1 9 8 3 - 0 . 0 4 9 6 8 0 . 4 5 8 6 6 0 . 5 0 8 3 3 I N D E P E N D E N T V A R I A B L E S M A R G I N Y E A R S o y b e a n C r u s h M a r g i n ( S M P A X R L D / C P I L D ) ~ . 7 9 5 + ( S P ' X R L D / C P I L D ) 1 9 6 0 = 6 0 . 1 9 6 1 = 6 1 . ( S O P * X R L D / C P I L D > * . 1 7 5 - 5 3 5 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P M E A L 0 . 3 4 4 7 7 0 9 0 . 1 4 5 2 6 1 2 0 . 5 9 8 4 2 5 2 0 . 0 2 4 7 0 0 5 M A R G I N 0 . 0 0 1 1 3 3 4 0 . 1 6 8 4 7 7 6 0 . 4 2 0 6 0 3 2 - 0 . 2 2 7 5 8 9 2 M A R G I N ( - 1 ) 0 . 0 6 0 1 3 9 7 0 . 2 7 1 9 1 0 8 0 . 9 5 6 8 6 3 6 - 0 . 2 2 7 5 8 9 2 Y E A R 7 4 . 0 0 0 0 0 0 5 . 6 2 7 3 1 4 3 8 3 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P M E A L , P M E A L 0 . 0 1 9 9 9 0 2 - m 1 . 0 0 0 0 0 0 0 P M E A L . M A R G I N - 0 . 0 0 8 3 5 6 4 - 0 . 3 6 0 4 2 0 1 P M E A L , M A R G I N ( - 1 ) - 0 . 0 2 1 7 1 8 0 - 0 . 5 8 0 3 9 8 0 P M E A L , Y E A R 0 . 6 5 7 1 7 2 7 0 . 8 4 8 6 1 3 3 M A R G I N , M A R G I N 0 . 0 2 6 8 9 0 8 1 . 0 0 0 0 0 0 0 M A R B I N , M A R B I N ( - 1 ) 0 . 0 0 7 0 8 4 3 0 . 1 6 3 2 3 3 3 M A R G I N , Y E A R - 0 . 2 3 0 9 3 3 1 - 0 . 2 5 7 1 1 2 8 M A R G I N 1 - 1 ) , M A R B I N ( - 1 ) 0 . 0 7 0 0 4 4 1 1 . 0 0 0 0 0 0 0 M A R G I N ( - 1 ) , Y E A R - 0 . 5 9 6 6 0 0 4 - 0 . 4 1 1 5 6 3 7 Y E A R , Y E A R 3 0 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 5 3 6 1 O 0 0 M E T T O N S R E G I O N A L M O D E L S I M U L A T I O N M I L 1 . 9 . 2 9 3 _ I 9 . 9 3 3 1 ' y e ? g 9 . 0 7 3 E 3 j . 9 3 4 ~ 3 j M . 3 3 4 I J E . 7 4 3 : : I 1 - . 3 3 3 L I I . 3 2 2 I 3 j 1 ‘ . 4 9 2 Z I I 0 . 3 0 9 i 3 ‘ N - ‘ 3 7 9 7 3 . 7 7 7 3 7 9 3 0 3 9 3 2 3 9 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - — - E S T I M A T E D F i g u r e G . 1 8 . a & b . S o y a e a l N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s 9 4 9 s 9 5 7 7 7 3 7 9 e a 3 1 e a 3 9 5 3 7 1 0 0 0 M E T T O N S 1 M I t 9 . 9 7 3 9 . 3 3 3 1 1 9 . 3 9 2 E 9 . 3 4 9 7 9 . 4 0 3 R 9 . 2 3 3 ( I : 9 . 9 2 0 . 9 7 7 T . 8 3 4 o . 6 9 1 N S R E G I O N A L M O D E L S I M U L A T I O N L 4 e g ‘ 1 : I : I I . - 1 E I l L - 1 : . / : 1 - 7 3 7 3 7 7 7 9 7 9 3 0 3 9 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e G . 1 9 . a 8 b . S o y o i l N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s 5 3 8 l 0 0 0 M E T T 0 N S 9 ' 3 7 4 9 ‘ 5 7 6 7 ? 7 8 ' 1 9 3 9 3 1 8 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N M I L 1 - - I 1 . 7 7 0 - o 9 . 3 3 9 3 I j N 9 . 3 0 9 I I I 9 . 3 7 9 E \ I \ I M 1 . 2 4 8 : : \ \ ; 5 9 . 9 9 3 - I I T . 3 3 7 I I l T . 3 3 7 E I 1 0 . 7 2 7 I - 1 N . 3 3 3 - - I s . . . . . . . . . T ‘ 7 3 7 3 7 7 7 3 7 9 3 0 3 9 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e G . 2 0 . a & b . S o y b e a n N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s 5 3 8 2 9 0 0 9 7 1 1 7 5 9 * 0 0 I S B N 0 1 2 5 8 * M E 1 3 9 9 1 T T 7 5 9 + 0 g N . 3 3 S 2 5 9 , . . 2 ' 3 1 ' 4 ? 5 7 6 7 ? T 8 ' 3 9 3 9 3 1 8 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N M I L L . I 1 . 1 7 0 - o 9 . 3 3 3 ~ - I N 1 . 5 0 9 P : 9 . 3 7 3 : \ 2 \ I H 9 . 2 4 3 - I \ V ‘ E 9 . 9 9 3 - I ‘ T . 3 3 7 - I I T . 3 3 7 E I I 0 . 7 2 7 t I I N . 3 3 3 - I 1 s . . . . . - . . . T 7 3 7 3 7 7 7 3 7 3 s o 3 9 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ~ — - E S T I M A T E D F i g u r e 6 . 2 0 . 3 & b . S o y b e a n N e t I m p o r t s - L e s s D e v e l o p e d C o u n t r i e s ‘ f > C > C > C 3 1 3 ( 3 “ i ' J C 3 2 n I d r > C I I U > V C I L I I I I I A L L > I C V r r ' ! f : 3 1 6 7 l - J C S Z I U j r I . V I . U i r I I I O I D I I O I I I I I I L / l l l l l l l l l l l l L 7 3 7 3 7 7 7 3 7 3 3 6 3 9 3 2 5 3 9 1 9 7 5 1 9 ? 6 1 9 7 7 1 9 7 9 1 9 9 9 1 9 3 9 1 9 9 1 1 9 8 2 1 9 3 3 R E G I O N A L M O D E L S I M U L A T I O N 3 3 3 . 2 1 1 3 2 4 . 3 3 3 2 3 3 . 0 3 3 2 4 1 . 4 7 7 1 9 9 . 3 9 9 1 3 3 . 3 2 1 1 1 3 . 7 4 3 7 3 . 1 3 3 3 3 . 3 3 3 7 7 . 9 9 2 I / O ” I Q 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e 6 . 2 1 . 3 & b . S o y n e e l E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s L S e o s y s n e D a e l v e E l n o d p i e n d g C S o t u o n c t k r s i e s 5 4 0 ( 1 0 0 0 M T ) S M P L 1 9 7 3 - 1 9 8 3 1 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S M E S L D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 8 . C - 8 3 9 . 7 0 5 5 2 2 2 8 . 7 5 8 1 3 - 3 . 6 7 0 7 1 3 4 0 . 0 0 8 M A R G I N ( - 1 ) 2 6 4 . 3 8 6 3 1 7 0 . 9 3 3 8 1 5 3 . 7 2 7 2 2 5 3 0 . 0 0 7 S M N I L D 0 . 1 1 5 2 1 8 8 0 . 0 7 2 3 2 8 4 1 . 5 9 2 9 9 4 1 0 . 1 5 5 P C R G D P 1 - 1 ) 1 . 7 3 O D + 0 9 5 2 1 8 3 6 8 1 5 3 . 3 1 4 5 9 2 7 0 . 0 1 3 R — g q u a r e d 0 . 9 4 6 2 6 8 M e a n o f d e p e n d e n t v a r 1 4 1 . 0 0 0 0 A d J u s t e d R - s q u a r e d 0 . 9 2 3 2 3 9 S . D . o f d e p e n d e n t v a r 1 3 3 . 5 4 2 5 S . E . o f r e g r e s s i o n 3 6 . 9 9 8 9 0 S u m o f s q u a r e d r e s i d 9 5 8 2 . 4 3 0 D u r b i n - N a t s o n s t a t 2 . 4 6 3 7 8 5 F - s t a t i s t i e 4 1 . 0 9 1 7 0 L o g 1 i k e l i h o o d - 5 2 . 8 4 2 1 8 T P E 0 / 1 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 9 3 9 1 1 9 7 3 - 0 . 2 6 5 0 5 1 5 . 0 0 0 0 1 5 . 2 6 5 0 1 9 3 1 9 1 1 9 7 4 - 1 9 . 4 9 9 3 2 5 . 0 0 0 0 4 4 . 4 9 9 3 1 9 1 9 O I 1 9 7 5 5 1 . 6 5 3 3 5 . 0 0 0 0 0 - 4 6 . 6 5 3 3 1 9 3 1 9 1 1 9 7 6 - 2 4 . 3 9 6 1 1 9 . 0 0 0 0 4 3 . 3 9 6 1 1 9 1 3 9 1 1 9 7 7 1 7 . 9 7 6 6 8 1 . 0 0 0 0 6 3 . 0 2 3 4 1 9 3 1 9 1 1 9 7 8 - 1 2 . 7 8 3 7 9 8 . 0 0 0 0 1 1 0 . 7 8 4 1 i 1 9 1 1 9 7 9 - 3 7 . 6 8 4 2 1 3 8 . 0 0 0 1 7 5 . 6 8 4 1 9 1 9 1 1 9 8 0 4 . 2 1 1 5 4 2 8 6 . 0 0 0 2 8 1 . 7 8 8 1 3 9 1 9 1 1 9 8 1 - 4 3 . 4 3 5 1 1 9 6 . 0 0 0 2 3 9 . 4 3 5 1 9 1 3 9 I 1 9 8 2 2 6 . 3 8 2 1 3 0 1 . 0 0 0 2 7 4 . 6 1 8 1 9 1 3 1 1 9 8 3 3 7 . 8 3 9 8 3 8 7 . 0 0 0 3 4 9 . 1 6 0 I N D E P E N D E N T V A R I A B L E S S M N I L D 8 S o y n e a l N e t I m p o r t s ( 1 0 0 0 M T ) M A R G I N 8 S o y b e a n C r u s h M a r g i n ( S M P 9 X R L D / C P I L D ) * . 7 9 5 + ( S O P 3 X R L D / C P I L D ) 3 . 1 7 S - ( S P 3 X R L D / C P I L D ) P C R G D P = R e a l I n c o m e P e r C a p i t a G D P L D / C P I L D / P O P L D 5 4 1 S M P L 1 9 7 3 - 1 9 8 3 1 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S M E S L D 1 4 1 . 0 0 0 0 0 1 3 3 . 5 4 2 5 0 3 8 7 . 0 0 0 0 0 5 . 0 0 0 0 0 0 0 M A R G I N ( - 1 ) 0 . 0 0 6 0 9 1 4 0 . 1 9 8 3 9 5 8 0 . 4 2 0 6 0 3 2 - 0 . 2 2 7 5 8 9 2 S M N I L D 6 8 1 . 5 4 5 4 5 3 8 8 . 5 7 5 7 0 1 2 3 6 . 0 0 0 0 1 6 7 . 0 0 0 0 0 P C R G D P 1 - 1 ) 5 . 2 0 7 D - 0 7 5 . 8 3 S D - 0 8 5 . 8 5 2 0 - 0 7 4 . 1 7 7 0 - 0 7 C o v a r i a n c e C o r r e l a t i o n S M E S L D , S M E S L D 1 6 2 1 2 . 3 6 4 1 . 0 0 0 0 0 0 0 S M E S L D , M A R G I N ( - 1 ) - 1 . 1 3 0 4 5 2 4 - 0 . 0 4 6 9 3 4 6 S M E S L D , S M N I L D 4 2 6 7 3 . 6 3 6 0 . 9 0 4 6 0 1 3 S M E S L D , P C R B D P ( - 1 ) 6 . 2 0 0 0 - 0 6 0 . 8 7 5 2 2 8 9 M R R G I N ( - 1 ) , M A R G I N ( - 1 ) 0 . 0 3 5 7 8 2 6 1 . 0 0 0 0 0 0 0 M A R G I N ( - 1 ) , S M N I L D - 1 9 . 1 9 9 9 4 3 - 0 . 2 7 3 9 5 8 4 M A R G I N 1 - 1 ) , P C R 6 D P ( - 1 ) - 4 . 8 4 4 D - 0 9 - 0 . 4 6 0 3 1 6 3 S M N I L D , S M N I L D 1 3 7 2 6 4 . 6 1 1 . 0 0 0 0 0 0 0 S M N I L D , P C R B D P ( - 1 ) 1 . 8 4 6 D - 0 5 0 . 8 9 5 7 6 7 5 P C R G D P 1 - 1 ) , P C R G D P ( - 1 ) 3 . 0 9 5 D - 1 5 1 . 0 0 0 0 0 0 0 ‘ * > C > C > C l : fl I 3 ' ! r t C z : n t P > C 3 ( 0 § § T ’ I ' § I § § § § § § § " ’ I U T ' V " . V ' I ' P l l i l J L k ‘ l l l l l l l l L l l ' l I L l l l l l l I I O I t l l l - U I n 2 : C 3 ' 4 - i l n : 3 4 0 5 . 3 6 9 . 3 3 4 . 2 9 9 . 2 6 3 . 2 2 8 . 1 9 2 . 1 5 7 . 1 2 2 . B B . 5 4 2 R E G I O N A L M O D E L S I M U L A T I O N \ m b e 7 5 7 6 7 5 v é 7 9 a b 8 % B i 8 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e G . 2 2 . a & b . S o y o i l E n d i n g S t o c k s - L e s s D e v e l o p e d C o u n t r i e s 5 4 3 L e s s D e v e l o p e d C o u n t r i e s S o y o i l E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 6 5 — 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S O E S L D V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 6 . C - 2 8 . 8 6 3 7 8 8 1 8 . 4 4 1 8 8 4 - 1 . 5 6 5 1 2 1 5 0 . 1 3 7 S O D S U 0 . 2 8 8 7 7 4 0 0 . 0 7 5 6 9 2 7 3 . 8 1 5 0 8 4 0 0 . 0 0 2 D V 7 7 O N 1 0 6 . 3 0 4 6 7 4 1 . 7 8 6 1 7 4 2 . 5 4 4 0 1 5 3 0 . 0 2 2 R - s q u a r e d 0 . 9 3 0 0 8 0 M e a n o f d e p e n d e n t v a r 1 2 0 . 4 7 3 7 A d j u s t e d R - s q u a r e d 0 . 9 2 1 3 4 0 S . D . o f d e p e n d e n t v a r 1 3 3 . 3 9 4 7 S . E . o 1 r e g r e s s i o n 3 7 . 4 1 2 3 2 S u m o f s q u a r e d r e s i d 2 3 9 4 . 9 1 D u r b i n - N a t s o n s t a t 1 . 7 2 7 8 4 6 F - s t a t i s t i c 1 0 6 . 4 1 7 0 L o g 1 i k e l i h o o d - 9 4 . 1 4 5 2 6 T P E 4 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 * a 1 1 9 6 5 1 0 . 3 0 7 1 5 . 0 0 0 0 0 - 5 . 3 0 7 0 5 1 : 1 * z 1 1 9 6 6 1 6 . 5 0 5 9 1 4 . 0 0 0 0 - 2 . 5 0 5 9 4 1 : 1 * a 1 1 9 6 7 8 . 5 1 0 3 9 1 3 . 0 0 0 0 4 . 4 8 9 6 1 1 : * 1 . z 1 1 9 6 8 - 7 . 3 7 9 8 8 9 . 0 0 0 0 0 1 6 . 3 7 9 9 1 : * 1 : 1 1 9 6 9 - 9 . 1 6 6 5 4 1 0 . 0 0 0 0 1 9 . 1 6 6 5 1 : 1 * : 1 1 9 7 0 6 . 4 9 7 1 5 2 1 . 0 0 0 0 1 4 . 5 0 2 8 1 : 1 * : 1 1 9 7 1 7 . 6 2 0 8 5 3 0 . 0 0 0 0 2 2 . 3 7 9 2 1 : * : 1 1 9 7 2 2 . 2 7 1 5 5 3 2 . 0 0 0 0 2 9 . 7 2 8 5 1 : * 1 : 1 1 9 7 3 - 1 5 . 7 1 9 3 3 0 . 0 0 0 0 4 5 . 7 1 9 3 1 : * 1 a 1 1 9 7 4 - 1 8 . 2 7 8 0 3 5 . 0 0 0 0 5 3 . 2 7 8 0 1 : 1 * : 1 1 9 7 5 4 . 5 6 4 6 5 7 0 . 0 0 0 0 6 5 . 4 3 5 4 1 : * 1 : 1 1 9 7 6 - 5 . 7 3 3 8 8 6 9 . 0 0 0 0 7 4 . 7 3 3 9 1 * : 1 a 1 1 9 7 7 - 3 8 . 6 9 7 6 1 5 6 . 0 0 0 1 9 4 . 6 9 8 1 . : 1 : * 1 1 9 7 8 6 3 . 1 5 9 4 2 9 9 . 0 0 0 2 3 5 . 8 4 1 1 * : 1 : 1 1 9 7 9 - 4 6 . 3 5 5 5 2 6 1 . 0 0 0 3 0 7 . 3 5 6 1 * 1 : 1 1 9 8 0 - 3 4 . 8 6 0 0 2 5 0 . 0 0 0 2 8 4 . 8 6 0 1 * 1 z 1 1 9 8 1 - 3 7 . 5 8 9 8 2 7 3 . 0 0 0 3 1 0 . 5 9 0 1 z * 1 s 1 1 9 8 2 - 9 . 1 7 9 7 2 2 8 9 . 0 0 0 2 9 8 . 1 8 0 1 : 1 a * 1 1 9 8 3 . 1 0 3 . 5 2 3 4 2 3 . 0 0 0 3 1 9 . 4 7 7 I N D E P E N D E N T V A R I A B L E S S O D S U = S o y o i l E q u i v a l e n t D o m e s t i c S u p p l y ( 1 0 0 0 M T ) ( S E S L D ( - l ) + S P R O L D ) * . 1 7 5 + S O E S L D ( - 1 ) D V 7 7 O N = l I f < Y E A R . G E . 7 7 ) 0 O t h e r w i s e 5 4 4 S M F L 1 9 6 5 — 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S O E S L D 1 2 0 . 4 7 3 6 8 1 3 3 . 3 9 4 7 2 4 2 3 . 0 0 0 0 0 5 . 0 0 0 0 0 0 0 S O D S U 3 8 1 . 5 1 8 4 2 2 7 3 . 5 9 3 1 6 8 3 8 . 1 5 0 0 0 8 1 . 5 7 5 0 0 0 D V 7 7 O N . 3 6 8 4 2 1 1 0 . 4 9 5 5 9 4 6 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n S O E S L D , S O E S L D 1 6 8 5 7 . 6 1 8 1 . 0 0 0 0 0 0 0 S O E S L D . S O D S U 3 2 8 3 3 . 5 1 3 0 . 9 4 9 6 3 0 3 S O E S L D , D V 7 7 O N 5 8 . 2 9 9 1 6 9 0 . 9 3 0 8 4 6 8 S O D S U , S O D S U 7 0 9 1 3 . 5 7 4 1 . 0 0 0 0 0 0 0 S O D S U , D V 7 7 O N 1 1 6 . 2 2 7 4 3 0 . 9 0 4 8 1 1 0 D V 7 7 O N . D V 7 7 O N 0 . 2 3 2 6 8 7 0 1 . 0 0 0 0 0 0 0 a 1 > C > C > C 3 : fl l i - i - J C I Z I U P > C 3 ( 0 3 1 0 1 4 ‘ i - l C ! } n I F i g u r e 6 . 2 3 . 6 & b . 2 5 0 1 5 4 5 P . 2 m 1 _ _ _ _ _ _ - _ _ _ _ J 1 9 7 5 1 9 7 6 / 1 9 ? ? 1 9 7 8 1 9 ? 9 1 9 8 9 i 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N 4 7 3 . 3 0 0 4 5 0 . 4 0 0 " 4 2 2 . 0 0 0 3 9 3 . 0 0 0 3 8 5 . 2 0 0 3 3 0 . 3 0 0 1 3 0 3 . 4 0 0 I 2 3 0 . 0 0 0 I 2 5 1 . 5 0 0 : 2 2 3 . 2 0 0 8 0 8 1 3 3 O ( J E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D S o y b e a n E n d i n g S t o c k s - L e e s D e v e l o p e d C o u n t r i e s 3 3 3 5 E 5 0 7 9 M S F S T R 9 3 5 2 . e u - P E 3 3 1 2 0 . . 8 . T N 5 5 7 2 8 8 . 4 2 8 6 5 0 . 8 6 9 0 0 6 6 9 5 8 0 8 9 2 7 T D . 2 0 0 8 8 . . 5 S 7 9 4 9 1 . 0 0 . . * * 1 I 6 6 2 0 C 9 7 5 9 - * o t 0 0 5 1 I 9 6 6 0 1 3 a s a a s : s : a x x x s 3 a a I 3 V a t o n i S A r S M e f - k R B A d e N H e I D R C I d r a l A S L G R e t i B U D I - g s h A R D S L - d u . o q u b . s J r E g u s i l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 * * 8 L E N o s r o R * u s d s - I a z s 3 a a a s s 3 s s s a I s q e n o 3 e * D S a s s i r i t d * e a o u ‘ * * * * o o m y e b C - d - n t a * * s e l 1 O 5 0 0 5 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 E = . . 3 * i F 2 8 5 5 l * * F . 0 1 . P * c a n N O 7 4 0 n 8 . t 6 6 6 6 6 7 7 7 7 7 7 7 8 8 8 7 7 7 b 8 R 6 0 8 1 o a s 6 5 7 8 0 2 4 9 3 5 6 7 0 2 3 8 9 1 1 7 R 4 3 8 D a m E s o 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o f o t f f i R - - - - - - - ~ - - - ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R 0 0 0 0 2 5 4 1 2 6 / 8 1 1 1 1 I 1 . . . . 0 1 0 F 3 7 7 4 4 5 9 7 8 2 2 2 3 3 L 0 0 0 0 1 . 9 4 5 7 5 1 5 . I 5 0 1 7 5 9 3 6 9 5 4 1 0 2 4 0 2 0 5 2 1 . 0 . . . 4 4 0 T 1 0 8 6 . . . . . . . 1 6 . . 7 1 2 . 4 9 . 0 0 . . 9 4 2 T . . . . 6 9 3 9 5 5 5 . . 0 0 1 6 . 5 6 8 1 . 7 . 9 9 7 4 E 1 3 0 9 9 6 3 6 7 6 1 4 4 5 0 7 0 4 7 9 7 . 6 0 D 5 5 2 1 5 6 4 3 7 4 1 6 9 1 4 5 5 7 7 3 . 2 4 6 8 9 4 6 9 4 9 2 6 6 7 5 2 1 ; ; T R T . 2 - T 8 3 2 7 n n r ' 8 2 2 5 t t e A 3 8 9 4 8 2 3 4 2 4 2 4 4 2 6 2 4 1 1 4 8 8 0 s C 5 8 9 8 0 6 0 5 8 5 8 1 2 9 7 0 3 3 0 8 0 3 6 i v v . T . . . . . 9 . . 9 6 5 6 3 7 8 0 0 1 a a d 0 U 0 0 0 0 0 0 0 . . . . . . . . . . . r r A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 9 3 6 e e ) . . T . e . e r 0 8 U 4 9 0 3 5 9 5 0 2 1 5 3 5 4 9 3 3 - n e 8 5 6 9 n 2 A 8 4 8 6 7 6 2 6 4 3 5 1 3 0 1 4 2 M 2 S 4 5 7 2 d d d 4 L 6 9 8 0 8 6 5 9 2 2 8 5 3 7 7 0 0 5 T 1 2 2 0 p p a c D 9 8 4 8 6 3 6 7 8 9 5 9 6 6 3 1 5 7 . - - e e u i I . . . . . 0 . . . . . . . . . . . . 6 d d q t S 5 2 7 8 6 . 3 3 5 9 6 7 3 1 7 8 2 5 3 0 T 0 ) s s E 1 4 2 2 9 1 5 6 1 3 1 3 7 7 1 7 1 1 1 0 M p p l S e o t y b e a n I m p o r S t u s ( 1 0 0 0 5 L e s s D e v e l o p e d C o u n t r i e s S o y b e a n E n d i n g S t o c k s S M P L 1 9 6 5 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t 1 9 8 3 ( 1 0 0 4 6 0 I f ? ) V a r i a b l e i s S E S L D I N D E P E N D E N T V A R I A B L E S S B S U P ( S E S L D ( - l ) + S P R O L D ) M A R G I N = S o y b e a n C r u s h M a r g i n ( E H H P H X R I J L A C P I L J D ) * . 7 € E 5 * ( S P fi X R L D / C P I L D ) S N I L D ( S O P * X R L D / C P I L D ) * . 1 7 5 1 9 8 3 5 4 7 S M P L 1 9 6 5 - 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S E S L D 2 0 1 . 2 1 0 5 3 1 6 0 . 4 8 7 6 5 4 9 3 . 0 0 0 0 0 2 0 . 0 0 0 0 0 0 S B D S U 1 6 1 5 . 8 9 4 ? 9 3 7 . 9 1 9 7 4 3 1 8 5 . 0 0 0 0 4 0 9 . 0 0 0 0 0 S N I L D 7 6 2 . 5 7 8 9 5 4 7 4 . 0 2 0 9 0 1 8 3 5 . 0 0 0 0 2 7 8 . 0 0 0 0 0 M A R B I N 0 . 0 0 1 1 3 3 4 0 . 1 6 8 4 7 7 6 0 . 4 2 0 6 0 3 2 - 0 . 2 2 7 5 8 9 2 C o v a r i a n c e C o r r e l a t i o n S E S L D , S E S L D 2 4 4 0 0 . 6 9 3 1 . 0 0 0 0 0 0 0 S E S L D , S B D S U 1 3 0 4 9 8 . 2 3 0 . 9 1 5 1 2 0 8 S E S L D , S N I L D 6 5 2 4 1 . 2 4 ? 0 . 9 0 5 2 4 1 0 S E S L D , M A R B I N - 7 . 7 3 9 7 8 7 0 - 0 . 3 0 2 1 5 2 5 S B D S U , S B D S U 8 3 3 3 9 3 . 7 8 1 . 0 0 0 0 0 0 0 S B D S U , S N I L D 3 6 6 7 9 4 . 8 5 0 . 8 7 0 8 4 5 6 S B D S U , M A R B I N - 4 1 . 6 9 7 3 2 0 - 0 . 2 7 8 5 3 6 0 S N I L D , S N I L D 2 1 2 8 6 9 . 7 2 1 . 0 0 0 0 0 0 0 S N I L D . M A R G I N - 1 7 . 5 8 6 8 5 2 - 0 . 2 3 2 4 5 0 0 M A R G I N , M A R G I N 0 . 0 2 6 8 9 0 8 1 . 0 0 0 0 0 0 0 A P P E N D I X H E Q U A T I O N S T A T I S T I C S - L E S S D E V E L O P E D O I L E X P O R T E R S W h e a t W P R O L O . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A L O . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a W Y L O . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d W C O N L O . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W N I L O . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s W E S L O . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O L O . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A L O . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a F Y L O . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N L O . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I L O . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s F E S L O . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s S o y b e a n C o m p l e x S P R O L O . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n S H A L O . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a S Y L O . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d S M C O L O . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . C o n s u m p t i o n S O C O L O . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . C o n s u m p t i o n S M E I L O . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . N e t I m p o r t s S O E I L O . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . N e t I m p o r t s P M E L L O . . . . . . . . . . . . . . . . . . . . . . x S M E I L O I m p o r t e d a s S M N I L D S M N I L D . . . . . . . . . . . . . . . . . . . . . . S o y m e a l N e t I m p o r t s S O N I L O . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t I m p o r t s S N I L O . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t I m p o r t s 5 4 8 “ . . . a 1 5 1 5 1 " : 1 3 1 9 1 9 3 ' 1 : 3 2 1 9 7 9 7 1 7 2 1 3 1 4 3 C 3 » ) C D C O I I F i ' H J . C ‘ u n n : U a a a Z 1 m K H ‘ 0 1 F e 0 e 1 a 1 ~ 4 - 4 a a F H O Z 3 1 fl 4 - 4 > c z : m 5 4 9 R E G I O N A L M O D E L S I M U L A T I O N . 1 3 1 . 9 4 3 ~ ' . 1 0 3 . 4 3 3 I . 2 2 9 : . 9 3 9 : . 1 9 0 . 3 1 0 - . 2 1 0 : . 0 3 1 1 5 1 6 1 1 1 3 1 9 3 0 3 1 . 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e H . l . a & b . W h e a t P r o d u c t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s l ‘ . . 3 . . . 1 A A J ‘ M ‘ n . . . _ - . ‘ . A A ‘ A . ‘ 3 ' 3 H > C 3 ( 0 m l fl i t i ' b i l fl l m 3 1 h ‘ f F 1 F 3 1 2 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 3 9 8 1 9 2 8 3 5 5 0 1 1 1 5 9 9 1 7 1 9 9 9 9 1 ‘ 9 5 9 9 1 8 5 9 9 8 9 9 9 1 7 5 9 9 1 L 1 R E G I O N A L M O D E L S I M U L A T I O N . 3 3 2 ‘ , ’ \ 4 . 0 3 1 « . 9 1 2 ~ . 3 3 1 . 1 3 2 . 9 3 1 . 3 1 2 i . 3 3 1 C . . . : t . 2 3 1 P 7 5 7 6 7 7 1 3 1 9 3 0 3 1 3 2 3 3 a 4 m I H Z J > ° 4 f ) fl l m E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — — E S T I M A T E D F i g u r e H . 2 . a & b . W h e a t H a r v e s t e d A r e a - L e s s D e v e l o p e d O i l E x p o r t e r s 5 5 % L e s s D e v e l o p e d O i l E x p o r t e r s W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W H A L O V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 1 0 3 9 2 . 9 5 9 2 6 2 0 . 8 1 4 1 3 . 9 6 5 5 4 6 1 0 . 0 0 1 W H A L O ( - 1 ) 0 . 0 1 9 2 1 7 3 0 . 2 3 2 0 3 3 7 0 . 0 8 2 8 2 1 1 0 . 9 3 5 W R L O 4 ( - 1 ) 7 7 2 . 4 8 9 6 5 6 1 5 . 3 4 5 9 4 1 . 2 5 5 3 7 4 6 0 . 2 2 9 F R L O 4 1 - 1 ) - 1 8 1 6 . 7 7 9 0 1 0 3 3 . 9 4 7 5 - 1 . 7 5 7 1 2 9 0 0 . 0 9 9 D V 6 0 7 3 - 8 6 7 . 9 9 8 3 3 3 8 8 . 8 2 3 3 8 - 2 . 2 3 2 3 7 1 7 0 . 0 4 1 R - s q u a r e d 0 . 6 1 3 9 3 6 M e a n o f d e p e n d e n t v a r 8 6 2 7 . 2 5 0 A d j u s t e d R - s q u a r e d 0 . 5 1 0 9 8 5 S . D . o f d e p e n d e n t v a r 8 6 7 . 3 0 6 3 S . E . o f r e g r e s s i o n 6 0 6 . 5 0 3 8 S u m o f s q u a r e d r e s i d 5 5 1 7 7 0 2 . D u r b i n - W a t s o n s t a t 2 . 2 6 0 5 6 9 F - s t a t i s t i c 5 . 9 6 3 4 0 9 L o g 1 i k e l i h o o d - 1 5 3 . 6 5 6 2 T P E e 8 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 * z 1 : 1 1 9 6 4 - 7 0 0 . 2 7 5 7 1 9 3 . 0 0 7 8 9 3 . 2 8 1 a * 1 z 1 1 9 6 5 - 5 7 . 0 0 2 0 7 6 0 1 . 0 0 7 6 5 8 . 0 0 1 : * 1 : 1 1 9 6 6 - 3 8 4 . 1 6 2 7 1 6 2 . 0 0 7 5 4 6 . 1 6 1 : 1 * : 1 1 9 6 7 3 8 9 . 7 1 0 ' 8 2 0 1 . 0 0 7 8 1 1 . 2 9 1 : 1 1 * 1 1 9 6 8 6 3 9 . 9 3 4 9 0 4 0 . 0 0 8 4 0 0 . 0 7 1 : * 1 : 1 1 9 6 9 ~ 5 2 . 2 7 4 3 8 4 5 3 . 0 0 8 5 0 5 . 2 7 1 : : * 1 : 1 9 7 0 5 5 2 . 1 0 8 8 6 8 4 . 0 0 , 8 1 3 1 . 8 9 1 : 1 : 1 1 9 7 1 - 5 0 1 . 0 7 8 7 5 4 0 . 0 0 8 0 4 1 . 0 8 1 : 1 * : 1 1 9 7 2 4 2 6 . 7 0 0 8 9 0 1 . 0 0 8 4 7 4 . 3 0 1 : * 1 1 1 1 9 7 3 - 3 1 3 . 6 6 0 7 5 6 5 . 0 0 7 8 7 8 . 6 6 1 * : 1 : 1 1 9 7 4 - 7 0 3 . 6 4 2 8 3 5 7 . 0 0 9 0 6 0 . 6 4 1 : 1 a * 1 1 9 7 5 8 9 6 . 2 0 8 9 4 9 0 . 0 0 8 5 9 3 . 7 9 1 : 1 : * 1 1 9 7 6 6 9 3 . 4 1 7 9 7 6 6 . 0 0 9 0 7 2 . 5 8 1 * : 1 = 1 1 9 7 7 - 8 8 6 . 1 6 0 8 3 1 9 . 0 0 9 2 0 5 . 1 6 1 z 1 * : 1 1 9 7 8 4 1 . 3 8 6 8 9 2 7 1 . 0 0 9 2 2 9 . 6 1 1 : * 1 : 1 1 9 7 9 - 2 9 3 . 9 1 2 9 0 7 4 . 0 0 9 3 6 7 . 9 1 1 : * 1 : 1 1 9 8 0 - 7 1 . 4 1 5 1 9 4 4 1 . 0 0 9 5 1 2 . 4 2 1 : 1 : * 1 1 9 8 1 8 0 6 . 0 6 5 1 0 0 0 3 . 0 9 1 9 6 . 9 3 1 : * 1 : 1 1 9 8 2 - 7 8 . 9 2 0 2 9 4 9 7 . 0 0 9 5 7 5 . 9 2 1 : * 1 : 1 1 9 8 3 - 4 0 3 . 0 2 8 8 9 8 7 . 0 0 9 3 9 0 . 0 3 I N D E P E N D E N T V A R I A B L E S W H A L O 8 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R L O 4 = W h e a t R e v e n u e P e r H e c t a r e ( S / H A ) ( W Y L O ( - 3 ) + W Y L O ( - 2 ) * W Y L O ( - 1 ) + W Y L O ) / 4 * W P ~ X R L O / C P I L O F R L O 4 = C o a r s e G r a i n R e v e n u e P e r H e c t a r e ( s / H A ) ( F Y L O ( - 3 ) * F Y L O ( - 2 ) + F Y L O ( - 1 ) + F Y L O ) / 4 * F P * X R L O / C P I L O D V 6 0 7 3 = 1 I f < Y E A R . G E . 6 0 . O R . Y E A R . L E . 7 3 ) 0 O t h e r w i s e w w w m fi fl r “ o o h I w o m u n o u n m $ 1 < w n w 0 3 m m m w w m m 2 0 m : m . u . . w a w a c a u n a w a c a E I D F D w a n u . n u 0 0 m e w . w o o u m H o o o u . 0 0 0 w w w H . 0 0 0 0 s x b r u n l w o m u u fi . & 0 0 0 o ~ 0 . u m m 0 m H o o o u . o o 0 N w m u . 0 0 0 0 E a r n h a l w o “ . m o M 0 u H M 0 . u m u u m e 0 H . 0 0 H u p u o w . u m m u u u 0 fl m r o e a l p v “ . m n m u u n o 0 . u & e u o m & N . u m u o m e o 9 . » . 0 u 0 0 0 u c o o u w 0 . u 0 0 0 0 0 0 0 . u ~ w fl m o m ” . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 ” I . . . " N E I E E I I ' n o < m 1 w m n n m n o 1 1 m ~ m n w o n I . U g l a a u n l " : £ I b F 0 . £ I D F D M u e m o o . n o n . 0 0 0 0 0 0 0 i x b r o t i I D r D A I w e e m w o u 1 . 0 0 0 . u w n u m u m E m b r o u s z O h h l w o 1 0 6 . 0 0 % H m 0 1 0 . w u h o q h o £ I D F D . e r n h a l w e I H M N . m 0 u fl u 1 0 . 0 0 a n n u E I D r 0 . U < & 0 V u 1 N 0 0 . & M fl 0 0 1 0 . V o u u m u o E I D F O A I H V . 2 b e o n l p 0 m 0 u u e o . o e H . 0 0 0 0 0 0 0 E x p r o h l p e . £ m r o h h l p v 1 0 0 0 . 0 » 9 0 0 1 0 . H m o u u m u E x p r o a l u o . fl m r o h fi l w o 1 ~ V 0 . m m n h m 1 0 . n o p o o w o E I D F D A I A V . U < 0 0 V M 1 N V 0 . e m 0 0 0 1 0 . 0 0 H b m m u E m F O h . 1 » 0 . z m r n k a l w o 0 . u m u o p o o 0 . 0 0 0 0 0 0 0 z m r o e a l w o . fl m r o h fi l w o 0 . w m u fl n u o 0 . m o w u fl fl u z m r 0 6 2 1 0 0 . 0 < e o q u 1 0 . 0 u 0 m 0 0 % 1 0 . 0 0 0 0 m m w e r o e a l w o t m m F D h A v a 0 . H n u u w u u H . 0 0 0 0 0 0 0 fl m r o e A I H 0 . U < & 0 4 u 0 . 0 u n u o o o o . u m m o m 0 0 0 < 0 0 V H . 0 < 0 0 V M 0 . N u 0 0 0 0 0 p . 0 0 0 0 0 0 0 i . I I . . . " . . . 6 0 0 - D * - . - - 8 - 0 0 0 0 O - D - . 0 - 0 0 0 0 - - - - 0 - * 0 . 8 u u u a a a a a o a - - O - C . I 0 - - C - . - I - a - u u u u 0 - . - - u - C . - C 5 5 3 L e s s D e v e l o p e d O i l E x p o r t e r s W h e a t Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s W Y L O m n m n e 1 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T ‘ S T A T . 2 - T A I L S I G . m u n - a m n s - a u u u - m - n u u m m u m - . . . . . . - C - 2 . 2 1 3 5 0 0 0 0 . 5 2 5 0 8 1 1 “ 4 . 2 1 5 5 3 9 1 0 . 0 0 0 L O G T 0 . 7 1 1 7 5 6 0 0 . 1 2 3 0 8 2 7 5 . 7 8 2 7 4 6 6 0 . 0 0 0 R - s q u a r e d 0 . 6 0 3 1 7 6 M e a n o f d e p e n d e n t v a r 0 . 8 2 2 1 1 9 A d j u s t e d R - s q u a r e d 0 . 5 8 5 1 3 8 S . D . o f d e p e n d e n t v a r 0 . 0 9 1 2 3 4 S . E . o f r e g r e s s i o n 0 . 0 5 8 7 6 4 S u m o f s q u a r e d r e s i d 0 . 0 7 5 9 7 0 D u r b i n - W a t s o n s t a t . 2 . 2 4 0 2 2 9 F - s t a t i s t i c 3 3 . 4 4 0 1 6 L o g l i k e l i h o o d 3 5 . 0 1 1 1 1 T P E - 3 4 2 3 _ _ _ R e s i d u a l P l o t * 0 s a a a t a 4 ! ‘ o a a a o a u a o o s u o s a a u u u u u u u u u u u u u a 8 * J ! * o b s R E S I D U A L A C T U A L ” m u m - " u m . . . - m - u - m u O C - I m - m c u . 1 9 6 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 0 . 0 2 2 8 1 0 . 0 0 0 8 8 0 . 0 7 0 6 0 0 . 0 1 4 9 5 - 0 . 0 7 2 0 7 - 0 . 0 3 1 1 6 - 0 . 0 8 1 9 7 0 . 0 2 1 7 8 0 . 0 6 5 0 0 - 0 . 0 0 9 7 8 - 0 . 0 3 3 2 2 - 0 . 0 6 9 2 9 0 . 1 6 0 9 1 - 0 . 0 3 7 3 5 - 0 . 0 4 6 0 7 - 0 . 0 0 5 4 4 0 . 0 6 0 4 2 - 0 . 0 4 7 4 8 - 0 . 0 6 6 0 4 0 . 0 2 5 7 1 0 . 0 2 9 9 5 0 . 0 2 0 4 4 0 . 0 5 2 9 8 - 0 . 0 4 6 5 8 0 . 7 2 3 4 9 0 . 7 1 3 3 1 0 . 7 9 4 6 1 0 . 7 5 0 3 5 0 . 6 7 4 5 4 0 . 7 2 6 4 8 0 . 6 8 6 5 4 0 . 8 0 1 0 0 0 . 8 5 4 7 6 0 . 7 9 0 3 7 0 . 7 7 7 1 8 0 . 7 5 1 1 9 0 . 9 9 1 3 5 0 . 8 0 2 9 1 0 . 8 0 3 8 8 0 . 8 5 4 0 6 0 . 9 2 9 3 5 0 . 8 3 0 7 5 0 . 8 2 1 3 8 0 . 9 2 2 2 0 0 . 9 3 5 3 9 0 . 9 3 4 7 2 0 . 9 7 5 9 9 0 . 8 8 5 0 6 F I T T E D 0 . 7 0 0 6 7 0 . 7 1 2 4 4 0 . 7 2 4 0 1 0 . 7 3 5 4 0 0 . 7 4 6 6 1 0 . 7 5 7 6 5 0 . 7 6 8 5 1 0 . 7 7 9 2 2 0 . 7 8 9 7 6 0 . 8 0 0 1 5 0 . 8 1 0 3 9 0 . 8 2 0 4 9 0 . 8 3 0 4 4 0 . 8 4 0 2 6 0 . 8 4 9 9 4 0 . 8 5 9 5 0 0 . 8 6 8 9 2 0 . 8 7 8 2 3 0 . 8 8 7 4 1 0 . 8 9 6 4 8 0 . 9 0 5 4 3 ‘ 0 . 9 1 4 2 8 0 . 9 2 3 0 1 0 . 9 3 1 6 4 I N D E P E N D E N T V A R I A B L E S L O G T = L n < T I M E ) w m k m z n r 5 0 0 0 1 0 0 m m M e D a m e x < m n p o a m u ' a u . " l “ ' u u u u u m n 1 w m m z m m a m . o . K m e a c a z w a w a c a £ < r 0 0 . m M M H H m 0 0 . 0 0 p m u h u 0 . 0 0 p u h 0 u 0 . 0 0 b u 0 0 0 r 0 0 4 h . n 0 & 0 0 p u 0 . 0 0 0 u u p m 0 . 0 0 m m b o o b . 0 0 h u h u o “ I l s ” I n o < m 1 w m n n n n 0 1 1 n ~ m n w o a £ < r o . £ < r o 0 . 0 0 0 0 0 0 0 “ . 0 0 0 0 0 0 0 £ < r o . r 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 H 0 r 0 0 0 . r o m d 0 . 0 0 0 0 0 0 0 p . 0 0 0 0 0 0 0 “ * > C > C > C 3 1 8 1 1 “ 4 - 3 ( 1 2 n I : : 4 > * r ' r q u a c z z 3 1 fl l 4 ~ i - ) C z : n t a 7 ' 1 1 1 1 7 2 7 3 7 4 ' 1 5 ' 1 6 7 ' 1 7 9 ' 1 9 a b 3 1 9 2 3 3 4 2 2 5 “ 2 1 1 1 1 0 1 1 1 7 5 “ 1 5 m 1 2 5 m m m 7 5 8 9 2 2 . 4 7 3 2 1 . 5 7 5 2 0 . 6 7 7 1 9 . 7 7 8 1 8 . 8 8 0 1 7 . 9 8 2 1 7 . 0 8 4 1 8 . 1 8 8 1 5 . 2 8 7 1 4 . 3 8 9 5 5 5 1 6 9 e e e e e e e e . I R E G I O N A L M O D E L S I H U L A T I O N . \ L 7 3 7 8 7 5 7 6 7 9 8 0 8 ? 3 i 3 5 a n E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L — — - E S T I M A T E D F i g u r e H . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s 3 1 7 1 1 ” ) - 0 2 0 ( 7 6 7 6 7 7 7 8 7 8 3 6 8 1 8 2 8 5 a 1 1 5 0 . 0 % 1 1 2 5 “ “ 0 0 1 “ 0 7 5 0 9 1 1 5 0 1 m , 2 5 0 0 I 6 9 M I L 1 4 4 5 4 “ 1 - 1 3 . 8 1 7 C I 1 2 . 9 3 1 - 3 ’ 1 2 . 1 4 4 - 1 1 . 3 0 7 - 1 " 1 0 . 4 7 1 : 8 9 . 5 3 4 ' - 1 - 8 . 7 9 8 - 7 . 9 6 1 - T 7 . 1 2 4 C 0 . N S 5 5 6 ' . 8 " I ’ 0 ‘ . 7 ' 0 7 1 7 2 7 3 7 4 7 5 7 1 7 7 7 1 7 9 1 ’ 1 1 1 1 1 2 8 3 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L — — — E S T I M A T E D F i g u r e H . 4 . a & b . W h e a t N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s 5 5 0 ' L e s s D e v e l o p e d O i l E x p o r t e r s P e r C a p i t a W h e a t N e t I m p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 2 — 1 9 8 3 2 2 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 8 . C 0 . 0 2 8 0 9 6 5 0 . 0 0 7 8 5 4 9 3 . 5 7 6 9 4 5 8 0 . 0 0 2 P C R B D P 1 1 7 5 0 . 8 0 7 9 1 5 . 8 3 4 1 1 1 2 . 8 3 0 7 1 6 0 . 0 0 0 W A L D - 0 . 0 0 1 1 0 3 7 0 . 0 0 0 7 5 6 3 - 1 . 4 5 9 2 8 7 3 0 . 1 6 3 P C D W S U - 0 . 5 1 3 5 1 4 3 0 . 1 4 8 0 6 0 5 - 3 . 4 6 8 2 7 2 7 0 . 0 0 3 P C D F S U - 0 . 2 3 4 5 0 9 6 0 . 0 8 4 5 4 3 6 - 2 . 7 7 3 8 3 0 2 0 . 0 1 3 R - s q u a r e d 0 . 9 5 9 2 9 3 M e a n o f d e p e n d e n t v a r 0 . 0 1 9 5 1 9 A d J u s t e d R - s q u a r e d 0 . 9 4 9 7 1 5 S . D . o f d e p e n d e n t v a r 0 . 0 0 9 9 5 0 S . E . o f r e g r e s s i o n 0 . 0 0 2 2 3 1 S u m o f s q u a r e d r e s i d 8 . 4 6 D - 0 5 D u r b i n - W a t s o n s t a t 1 . 8 1 7 2 0 7 F - s t a t i s t i c 1 0 0 . 1 5 5 5 L o g l i k e l i h o o d 1 0 5 . 9 3 3 5 T P E . 2 ’ 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D I 1 x 1 s 4 1 1 9 6 2 0 . 0 0 2 5 9 0 . 0 0 6 8 8 0 . 0 0 4 2 9 1 1 4 1 x 1 1 9 6 3 - 0 . 0 0 1 0 3 0 . 0 0 7 1 4 0 . 0 0 8 1 8 1 z 4 a 1 1 9 6 4 8 . 9 D - 0 5 0 . 0 0 9 6 9 0 . 0 0 9 6 1 1 4 z 1 a 1 1 9 6 5 - 0 . 0 0 3 0 6 0 . 0 0 7 9 0 0 . 0 1 0 9 6 1 . 4 1 z 1 1 9 6 6 - 0 . 0 0 2 2 3 0 . 0 1 1 1 8 0 . 0 1 3 4 1 1 1 4 1 s 1 1 9 6 7 - 0 . 0 0 0 7 4 0 . 0 1 0 4 5 0 . 0 1 1 1 9 1 a 1 4 1 1 1 9 6 8 0 . 0 0 1 4 5 0 . 0 0 9 6 1 0 . 0 0 8 1 6 1 s 4 s 1 1 9 6 9 6 . 5 0 - 0 5 0 . 0 1 0 8 3 0 . 0 1 0 7 7 1 8 1 4 s 1 1 9 7 0 0 . 0 0 1 5 9 0 . 0 1 3 5 4 0 . 0 1 1 9 5 1 z 4 z 1 1 9 7 1 6 . 7 D - 0 5 0 . 0 1 7 2 7 - 0 . 0 1 7 2 0 1 1 4 1 : 1 1 9 7 2 - 0 . 0 0 0 3 2 0 . 0 1 3 6 9 0 . 0 1 4 0 1 1 : 1 1 4 1 1 9 7 3 0 . 0 0 3 6 5 0 . 0 2 0 1 2 0 . 0 1 6 4 7 1 a 4 1 s 1 1 9 7 5 - 0 . 0 0 1 6 7 0 . 0 2 3 7 7 0 . 0 2 5 4 4 1 s 4 1 a 1 1 9 7 6 - 0 . 0 0 1 9 7 0 . 0 2 2 3 2 0 . 0 2 4 2 9 1 a 4 1 a 1 1 9 7 7 - 0 . 0 0 0 5 1 0 . 0 2 8 4 7 0 . 0 2 8 9 8 1 i 4 1 1 1 1 9 7 8 - 0 . 0 0 1 1 7 0 . 0 2 7 0 9 0 . 0 2 8 2 5 1 s 1 z 4 1 1 9 7 9 0 . 0 0 2 9 3 0 . 0 3 3 7 2 0 . 0 3 0 8 0 1 x 1 4 : 1 1 9 8 0 0 . 0 0 1 8 8 0 . 0 3 2 4 0 0 . 0 3 0 5 2 1 s 4 : 1 1 9 8 1 1 . 7 0 - 0 5 0 . 0 3 0 8 9 0 . 0 3 0 8 7 1 i 4 1 1 1 1 9 8 2 - 0 . 0 0 1 3 8 0 . 0 3 1 4 1 0 . 0 3 2 7 9 1 1 1 1 4 1 1 9 8 3 0 . 0 0 3 1 7 0 . 0 3 7 2 5 0 . 0 3 4 0 8 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P L O / C P I L O / P O P L O P C D W S U 8 D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S L O ( - l ) + W P R O L O ) / P O P L O P C D F S U 8 D o m e s t i c C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( F E S L O ( - l ) + F P R O L O ) / P O P L O W P L O a R e a l L D O W h e a t P r i c e ( S / N T ) W P R X R L O / C P I L O 5 5 8 S M P L 1 9 6 2 - 1 9 8 3 2 2 O b s e r v a t i o n s I “ n a n - u m n n u u n c u . - S e r i e s M e a n S . D . M a x i m u m M i n i m u m . . . . . — P C N N I 0 . 0 1 9 5 1 8 6 0 . 0 0 9 9 5 0 3 0 . 0 3 7 2 4 9 0 0 . 0 0 6 8 8 3 3 P C R G D P 1 . 9 2 3 D - 0 6 7 . 8 0 4 D - 0 7 3 . 0 3 9 D - 0 6 9 . 8 3 9 D - 0 7 H D L O 2 . 3 1 5 2 4 7 1 0 . 7 4 9 4 0 2 5 4 . 4 4 4 3 2 7 0 1 . 2 8 8 8 4 2 0 P C D W S U 0 . 0 3 0 6 5 9 5 0 . 0 0 4 2 3 6 8 0 . 0 4 0 1 7 9 2 0 . 0 2 3 4 0 3 8 P C D F S U 0 . 0 5 4 9 1 8 6 0 . 0 0 7 9 6 0 1 0 . 0 7 3 4 1 9 1 0 . 0 4 4 4 5 7 0 “ m m - “ u m 1 . . . . - C o v a r i a n c e C o r r e l a t i o n I . I I P C H N I , P C W N I 9 . 4 5 1 0 - 0 5 1 . 0 0 0 0 0 0 0 P C W N I , P C R B D P 7 . 0 9 5 D - 0 9 0 . 9 5 7 1 6 4 7 P C W N I , W P L O - 0 . 0 0 3 4 1 4 5 - 0 . 4 7 9 7 0 8 9 D C H N I , P C D W S U 1 . 8 1 2 D - 0 5 0 . 4 5 0 3 6 5 2 . P C U N I , P C D F S U - 5 . 4 7 O D - 0 5 - 0 . 7 2 3 5 3 9 1 P C R G D D , P C R G D P 5 . 8 1 4 D - 1 3 1 . 0 0 0 0 0 0 0 P C R B D D , W P L O - 2 . 5 2 1 0 - 0 7 - 0 . 4 5 1 5 3 5 8 P C R B D P , P C D W S U 1 . 8 3 5 D - 0 9 0 . 5 8 1 2 9 0 4 F C R B D P , P C D F S U - 3 . 9 5 4 D — 0 9 - 0 . 6 6 6 8 3 4 8 W P L D . N P L O 0 . 5 3 6 0 7 6 6 1 . 0 0 0 0 0 0 0 ' W P L O , P C D W S U - 0 . 0 0 1 3 3 5 3 - 0 . 4 4 0 5 7 9 8 U P L O , D C D F S U 0 . 0 0 2 3 3 0 1 0 . 4 0 9 2 0 0 6 D C D W S U , P C D W S U 1 . 7 1 3 D - 0 5 1 . 0 0 0 0 0 0 0 P C D W S U , P C D F S U - 1 . 6 5 9 D - 0 5 - 0 . 5 1 5 2 2 7 4 P C D F S U , P C D F S U 6 . 0 4 8 D - 0 5 1 . 0 0 0 0 0 0 0 I { P > C D < O : m e q o z m S H F ‘ Q V N H O U Q H N N M ” " 7 O Z : ) 0 1 ~ 1 - 0 2 0 ( 5 5 9 4 0 0 9 1 ' I A — . “ L I I a : . , n . . 3 3 1 r a w - - 3 3 3 3 1 . v " 1 ' h . 1 1 1 1 . . . ' - 4 9 . 5 3 3 1 - : g 1 a “ . . 1 ‘ 1 “ [ 0 I 2 8 9 9 1 * 1 ‘ I 1 5 9 9 ' 1 F . . . - ’ 1 2 : } . . . . - f l . ‘ 1 . 1 1 9 “ 1 ' { E D - 5 % ’ 1 2 . " . ‘ - : 3 . . . ” ‘ 7 1 - " I ' 5 9 8 . H ' , # 1 9 7 3 7 1 7 2 7 : 1 7 1 7 ' 5 7 9 7 7 7 9 7 9 9 3 9 ' 1 9 2 9 9 R E G I O N A L M O D E L S I M U L A T I O N J “ J ” J ” A m A “ 3 ” 3 n A ” a n - 0 3 E 7 9 7 3 7 7 7 3 7 3 3 6 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 - - * - A C T U A L — - - E S T I M A T E D F i g u r e H . 5 . a 8 b . W h e a t E n d i n g S t o c k s - L e s s D e v e l o p e d O i l E x p o r t e r s u u . u u u u u u o u o u u u u u u u u u u u u ‘ u u u u u u n u u u u u u u u u ‘ u n u u u . 5 6 0 L e s s D e v e l o p e d O i l E x p o r t e r s W h e a t E n d i n g S t o c k s P e r C a p i t a ( 1 0 0 0 M T ) s a n 1 9 6 2 - ' 1 9 3 3 2 2 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C H E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T R I L 5 1 6 . m - I m u s - . m - m m - m - n m - C - 0 . 0 1 0 0 1 8 1 0 . 0 0 2 2 0 8 9 - 4 . 5 3 5 2 6 7 7 0 . 0 0 0 D C R B D D 3 2 8 3 . 7 0 4 4 3 5 6 . 9 2 8 3 0 9 . 1 9 9 8 9 9 3 0 . 0 0 0 H D L D 0 . 0 0 0 3 6 5 9 0 . 0 0 0 3 3 6 9 1 . 0 8 6 1 4 4 8 0 . 2 9 2 P C D H S U 0 . 2 7 0 9 7 8 4 0 . 0 6 5 3 4 6 1 4 . 1 4 6 8 1 9 0 - 0 . 0 0 1 ' W m R - s q u a r e d , 0 . 9 2 4 2 0 8 M e a n o f d e p e n d e n t v a r 0 . 0 0 5 4 5 3 a u g u s t - d R - s q u a r e d 0 . 9 1 1 5 7 6 S . D . o f d e p e n d e n t v a r 0 . 0 0 3 3 6 6 S . E . o f r e g r e s s i o n 0 . 0 0 1 0 0 1 S u m o f s q u a r e d r e s i d 1 . 8 0 0 - 0 5 D u r b i n - W a t s o n s t a t 1 . 9 5 4 0 2 1 F - s t a t i s t i c 7 3 . 1 6 3 7 3 L o g l i k e l i h o o d 1 2 2 . 9 4 3 7 T P E 8 5 , 2 1 . ‘ ‘ . . . - . - - R e s i d u a l P l o t o b s R E S I D U A L R E T U R L F I T T E D W M M W 1 9 6 2 - 5 . 6 D - 0 5 0 . 0 0 2 1 3 0 . 0 0 2 1 8 1 9 6 3 - 0 . 0 0 0 6 5 0 . 0 0 1 5 4 0 . 0 0 2 1 9 1 9 6 4 . 0 . 0 0 0 2 5 0 . 0 0 1 5 0 0 . 0 0 1 2 4 1 9 6 5 - 6 . 5 D - 0 5 0 . 0 0 1 8 0 0 . 0 0 1 8 7 1 9 6 6 - 0 . 0 0 0 1 0 0 . 0 0 0 9 8 0 . 0 0 1 0 8 1 9 6 7 - 0 . 0 0 0 5 0 0 . 0 0 2 0 7 0 . 0 0 2 5 6 1 9 6 8 - 0 . 0 0 0 8 7 0 . 0 0 3 2 0 0 . 0 0 4 0 8 1 9 6 9 - 0 . 0 0 0 4 2 0 . 0 0 2 4 7 0 . 0 0 2 8 9 1 9 7 0 0 . 0 0 1 2 5 0 . 0 0 4 0 4 0 . 0 0 2 8 0 1 9 7 1 . 0 . 0 0 0 6 2 0 . 0 0 2 8 0 0 . 0 0 2 1 8 1 9 7 2 0 . 0 0 0 4 1 0 . 0 0 5 9 3 ' 0 . 0 0 5 5 2 1 9 7 3 - 0 . 0 0 0 3 2 0 . 0 0 4 4 3 0 . 0 0 4 7 5 1 9 7 4 - 0 . 0 0 0 6 5 0 . 0 0 6 8 4 0 . 0 0 7 4 8 1 9 7 5 0 . 0 0 2 2 1 0 . 0 1 0 6 6 0 . 0 0 8 4 5 1 9 7 6 0 . 0 0 0 7 2 0 . 0 1 0 6 0 0 . 0 0 9 8 7 1 9 7 7 0 . 0 0 0 7 4 0 . 0 0 8 6 0 0 . 0 0 7 8 6 1 9 7 8 - 0 . 0 0 1 6 6 0 . 0 0 5 9 2 . 0 . 0 0 7 5 8 1 9 7 9 0 . 0 0 0 5 4 0 . 0 0 8 4 4 0 . 0 0 7 9 0 1 9 8 0 0 . 0 0 0 5 3 0 . 0 1 0 0 5 0 . 0 0 9 5 2 1 9 8 1 - 0 . 0 0 1 0 5 0 . 0 0 9 2 1 0 . 0 1 0 2 6 1 9 8 2 - 0 . 0 0 1 6 7 0 . 0 0 8 2 2 0 . 0 0 9 8 9 1 9 8 3 0 . 0 0 0 7 3 0 . 0 0 8 5 1 0 . 0 0 7 7 8 . 4 s 3 ¢ 0 . . . . . - - u - . . . . . . . h . . . . o c n o o n o u o o o o ' . . . - . ‘ I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P L O / C P I L O / P O P L O P C D W S U 8 D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S L O ( - l ) + W P R O L 0 ) / P O P L O W P L O I R e a l L D O W h e a t P r i c e ( $ 1 M ? ) W P R X R L O / C P I L O 5 6 1 S M P L 1 9 8 2 - 1 9 8 3 2 2 O b s e r v a t i o n s . . . S e r i e s H e a n 5 . 0 . M a x i m u m M i n i m u m . . . - - . . P C W E S 0 . 0 0 5 4 5 2 8 0 . 0 0 3 3 8 5 8 0 . 0 1 0 8 8 1 8 0 . 0 0 0 9 8 2 1 P C R G D P 1 . 9 2 3 D - 0 8 7 . 8 0 4 0 - 0 7 3 . 0 3 9 0 - 0 8 9 . 8 3 9 0 - 0 7 W P L O 2 . 3 1 5 2 4 7 1 0 . 7 4 9 4 0 2 5 4 . 4 4 4 3 2 7 0 1 . 2 8 8 8 4 2 0 P C D W S U 0 . 0 3 0 8 5 9 5 0 . 0 0 4 2 3 8 8 0 . 0 4 0 1 7 9 1 0 . 0 2 3 4 0 3 8 , m u s s - m m “ : ” m n s a n u n m s n l m u - a m C o v a r i a n c e C o r r e l a t i o n “ m u c u s - " m a s s u n - m . . . . . . . " a n . . . “ P C W E S , P C W E S 1 . 0 8 1 0 - 0 5 1 . 0 0 0 0 0 0 0 P C W E S , P C R G D P 2 . 3 1 4 0 - 0 9 0 . 9 2 2 9 1 8 8 P C W E S , W P L D - 0 . 0 0 0 9 9 3 4 - 0 . 4 1 2 8 1 8 8 P C W E S , P C D W S U 1 . 0 1 8 0 - 0 5 0 . 7 4 7 8 2 7 5 P C R B D P , P C R B D P 5 . 8 1 4 0 - 1 3 1 . 0 0 0 0 0 0 0 P C R G D P , W P L O - 2 . 5 2 1 D - 0 7 - 0 . 4 5 1 5 3 5 8 P C R G D P , P C D W S U 1 . 8 3 5 0 - 0 9 0 . 5 8 1 2 9 0 4 W P L O , W P L O 0 . 5 3 8 0 7 8 8 1 . 0 0 0 0 0 0 0 W P L O , P C D W S U - 0 . 0 0 1 3 3 5 3 - 0 . 4 4 0 5 7 9 8 P C D W S U , P C D W S U 1 . 7 1 3 D - 0 5 1 . 0 0 0 0 0 0 0 " j ' P O O O : m a 1 - 3 0 2 1 0 : ) 9 1 ~ l - O Z I U F i g u r e H . 6 . a & b . r C O o i a l s E e x p G o r r a t i e n r s P r o d u c t i o n - L e s a D e v e l o p e d 5 6 2 1 7 5 3 1 1 7 3 3 3 1 1 5 1 1 1 1 1 1 3 1 1 5 5 3 3 1 1 5 3 3 0 1 1 1 5 3 1 1 . . 1 m { _ W u - . . ” - 1 9 ' 1 ‘ 4 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 % 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 ' 1 1 1 1 l I 1 1 i 1 1 R E G I O N A L M O D E L S I M U L A T I O N 1 3 . 2 7 3 1 7 . 7 7 1 1 7 . 2 3 9 1 3 . 7 3 7 1 3 . 2 3 3 1 5 . 7 3 3 : 1 3 . 2 3 0 : 1 4 . 7 5 3 : 1 1 . 2 5 3 : 1 3 . 7 5 1 E Z D H F ‘ P H Z E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — - - E S T I M A T E D 5 6 3 1 7 5 W 1 1 7 m - - - - - - - - - ° 1 6 5 W < 0 ° 1 1 1 1 1 1 . 2 1 5 5 3 1 1 C ' r 1 5 W 1 A 7 R l fi u y E 1 9 7 4 1 9 ? 5 1 9 7 6 1 9 ? ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N M A I 1 3 . 7 1 : \ 1 . 1 3 . 4 3 1 - L 1 3 . 2 0 3 E I 1 3 . 9 3 3 L 0 1 3 . 7 0 4 : x 1 3 . 4 3 1 : H 1 3 . 1 9 9 : 8 1 4 . 9 4 3 : c 1 4 . 3 9 4 : T 1 4 . 4 4 1 : A ’ _ R 7 3 7 3 7 7 7 3 7 9 3 0 3 1 3 2 3 3 3 4 E S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e H . 7 . a 3 b . C o a r s e G r a i n H a r v e s t e d A r e a - L e s s D e v e l o p e d O i l E x p o r t e r s L C e o s a s r s e D e v G e r l a o i p n e d H a O r i v l e s E t x e p d s o r A t r e e r a ( 1 0 0 0 H e c t a r e s ) 5 6 4 S M P L 1 9 8 8 - 1 8 O b s e r v a t i o n s 1 9 8 3 L S / / D e p e n d e n t V a r i a b l e i s F H A L O _ q V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 1 3 3 8 4 . 2 5 2 1 0 7 9 . 0 4 8 9 1 2 . 3 8 5 2 3 8 0 . 0 0 0 F R L O 4 ( - 1 ) 2 5 1 8 . 5 0 5 5 1 0 2 8 . 2 7 2 2 ‘ 2 . 4 5 4 0 3 2 8 0 . 0 3 0 S R L O 4 ( - 1 ) - 8 0 9 . 7 2 8 5 3 4 8 8 . 9 1 3 1 0 - 1 . 2 5 2 2 2 8 7 0 . 2 3 4 D V 8 0 7 3 2 4 5 9 . 3 7 1 7 5 1 8 . 1 8 8 2 8 4 . 7 4 8 1 1 5 0 0 . 0 0 0 R - s q u a r e d 0 . 8 9 7 8 5 7 M e a n o f d e p e n d e n t v a r 1 8 4 8 9 . 0 0 A d j u s t e d R - s q u a r e d 0 . 8 2 2 0 7 1 S . D . 0 % d e p e n d e n t v a r 1 5 7 8 . 2 9 8 S . E . o f r e g r e s s i o n 9 8 9 . 0 4 4 3 S u m o f s q u a r e d r e s i d 1 1 2 8 8 5 8 3 D u r b i n - W a t s o n s t a t 2 . 0 0 0 1 7 2 F - s t a t i s t i c 9 . 2 2 9 9 9 3 L o g l i k e l i h o o d - 1 3 0 . 4 2 2 5 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : s 1 1 1 1 9 8 8 4 8 4 . 8 1 2 1 8 4 0 1 . 0 1 7 9 1 8 . 4 2 : I * 3 1 9 8 9 9 0 3 . 8 7 0 1 8 8 5 9 . 0 1 7 9 5 5 . 3 : : : 3 : : 1 9 7 0 8 3 9 . 8 8 8 1 8 9 7 2 . 0 1 8 1 3 2 . 3 1 : 3 1 : 1 1 9 7 1 - 8 8 5 . 8 1 0 1 7 5 9 1 . 0 1 8 2 7 8 . 8 1 3 : 1 : : 1 9 7 2 - 2 3 8 2 . 5 5 1 5 0 8 2 . 0 1 7 4 4 4 . 8 1 : 1 4 : 1 1 9 7 3 8 2 0 . 3 9 2 1 8 5 8 8 . 0 1 7 7 4 7 . 8 1 1 1 z 1 1 9 7 4 5 2 0 . 3 1 9 1 7 4 3 8 . 0 1 8 9 1 5 . 7 3 3 : 1 : 1 1 9 7 5 - 1 2 0 3 . 9 8 1 5 8 2 8 . 0 1 7 0 3 0 . 0 1 : 4 : 1 1 9 7 8 8 8 . 1 3 8 4 1 8 4 4 9 . 0 1 8 3 8 2 . 9 1 3 3 : 1 1 9 7 7 2 2 2 . 0 9 7 1 5 0 8 1 . 0 1 4 8 5 8 . 9 1 : 3 : : 1 9 7 8 - 3 5 . 5 7 8 4 1 5 0 8 0 . 0 1 5 0 9 5 . 8 1 : 3 : : 1 1 9 7 9 - 8 4 5 . 8 2 4 1 4 3 1 5 . 0 1 4 9 8 0 . 8 1 : 1 : 1 1 9 8 0 4 5 8 . 3 9 4 1 5 8 8 7 . 0 1 5 2 0 8 . 8 1 2 3 : I 1 9 8 1 2 5 1 . 4 9 8 1 5 7 4 1 . 0 1 5 4 8 9 . 5 3 2 * 1 : 1 1 9 8 2 - l 7 2 . 8 5 0 1 4 8 5 5 . 0 1 5 0 2 7 . 8 1 : 3 : 1 1 9 8 3 5 3 9 . 7 9 2 1 5 9 2 1 . 0 1 5 3 8 1 . 2 I N D E P E N D E N T V A R I A B L E S F H A L O 8 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) F R L O 4 8 C o a r s e G r a i n R e v e n u e P e r H e c t a r e ( E / H A ) ( F Y L O ( - 3 ) * F Y L O ( - 2 ) v F Y L O ( - 1 ) + F Y L O ) / 4 R F P * X R L O / C P I L O S R L O 4 = S o y b e a n R e v e n u e P e r H e c t a r e ( $ l H A ) ( F o r e c a s t S o y b e a n Y i e l d ) * S P ~ X R L O / C P I L O D V 6 0 7 3 = 1 I £ ( Y E A R . G E 6 0 . O R . Y E A R . L E 7 3 ) 0 O t h e r w i s e 5 6 5 8 M P L 1 9 8 8 - 1 9 8 3 1 8 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A L O 1 8 4 8 9 . 0 0 0 1 5 7 8 . 2 9 8 5 1 8 9 7 2 . 0 0 0 1 4 3 1 5 . 0 0 0 F R L O 4 ( - 1 ) 1 . 5 5 9 3 3 4 0 . 3 7 9 8 3 9 9 2 . 3 8 3 0 8 8 0 1 . 1 1 9 5 8 8 0 S R L O 4 ( - 1 ) 2 . 3 0 3 0 8 0 0 . 8 1 1 1 2 8 3 4 . 9 8 8 7 0 8 0 1 . 7 3 1 7 5 2 0 D V 8 0 7 3 0 . 3 7 5 0 0 0 0 0 . 5 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n F H A L O , F H A L O 2 3 2 9 4 2 2 . 1 1 . 0 0 0 0 0 0 0 F H A L O , F R L O 4 ( - 1 ) 2 0 2 . 4 8 9 0 8 0 . 3 8 0 7 0 1 8 F H A L O , 8 R L O 4 ( - 1 ) 3 2 3 . 8 1 7 9 8 0 . 2 8 9 9 8 1 1 F H A L O , D V 8 0 7 3 5 3 3 . 8 8 7 5 0 0 . 7 2 2 2 8 2 8 F R L O 4 < - 1 ) , F R L O 4 ( - 1 ) 0 . 1 3 5 2 8 1 0 1 . 0 0 0 0 0 0 0 F R L O 4 3 - 1 ) , S R L O 4 ( - 1 ) 0 . 2 1 8 0 1 4 9 0 . 7 5 4 7 8 7 5 F R L O 4 ( - 1 ) , D V 8 0 7 3 - 0 . 0 0 2 1 3 7 5 - 0 . 0 1 2 0 0 5 2 S R L O 4 ( - 1 ) , S R L O 4 ( - 1 ) 0 . 8 1 8 8 0 8 8 1 . 0 0 0 0 0 0 0 S R L O 4 ( - 1 ) , D V 8 0 7 3 0 . 0 8 1 2 4 7 7 0 . 1 8 1 0 8 8 4 D V 8 0 7 3 , D V 8 0 7 3 0 . 2 3 4 3 7 5 0 1 . 0 0 0 0 0 0 0 _ _ _ = = = — — = — = — s e u u u u o e * e c u a s - s a n u a s u u u u s o u a e u e e u u * e e n 5 6 6 L e s s D e v e l o p e d O i l E x p o r t e r s C o a r s e G r a i n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S M F L 1 9 8 0 - 1 9 8 3 2 4 O b s e r v a t i o n s - L S / / D e p e n d e n t V a r i a b l e i s F Y L O . . . " . 8 . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 8 . u C - 3 . 3 8 1 1 0 7 3 0 . 7 4 0 7 8 9 4 - 4 . 5 3 7 1 9 8 7 0 . 0 0 0 L O G T 0 . 9 9 1 8 7 9 7 0 . 1 7 3 8 4 8 2 5 . 7 1 2 0 7 1 8 0 . 0 0 0 I . . . " R - s Q u a r e d 0 . 5 9 7 2 7 4 M e a n o f d e p e n d e n t v a r 0 . 8 8 9 2 3 1 A d j u s t e d R - s q u a r e d 0 . 5 7 8 9 8 9 S . D . a ? d e p e n d e n t v a r 0 . 1 2 7 7 8 8 S . E . o i r e g r e s s i o n 0 . 0 8 2 9 0 5 S u m o f s q u a r e d r e s i d 0 . 1 5 1 2 1 0 D u r b i n - N a t s o n s t a t 0 . 7 1 1 2 3 4 F - s t a t i s t i c 3 2 . 8 2 7 7 8 L o g l i k e l i h o o d 2 8 . 7 5 1 1 9 T P E . 5 , 2 3 m u m s - " m m n - u m u - m - m m “ m I I R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D s h u n t s - m u n " . . . - . m n n m m m c u l c u u a s m n a u a s c m u u n n n ' e : 1 9 8 0 0 . 0 8 5 5 5 0 . 7 8 5 5 4 0 . 8 9 9 9 9 1 9 8 1 0 . 0 2 7 0 3 0 . 7 4 3 4 2 0 . 7 1 8 3 9 1 9 8 2 0 . 0 9 8 3 3 0 . 8 2 8 8 5 0 . 7 3 2 5 1 1 9 8 3 0 . 1 0 2 4 9 0 . 8 5 0 8 7 0 . 7 4 8 3 8 1 9 8 4 0 . 1 2 7 7 1 0 . 8 9 1 7 1 0 . 7 8 4 0 0 1 9 8 5 - 0 . 0 4 0 7 8 0 . 7 3 8 8 3 0 . 7 7 9 3 8 1 9 8 8 - 0 . 0 8 3 0 5 0 . 7 1 1 4 8 0 . 7 9 4 5 3 1 9 8 7 - 0 . 0 7 7 0 1 0 . 7 3 2 4 3 0 . 8 0 9 4 4 1 9 8 8 - 0 . 0 8 7 1 7 0 . 7 5 8 9 7 0 . 8 2 4 1 4 1 9 8 9 - 0 . 0 5 9 3 8 0 . 7 7 9 2 8 0 . 8 3 8 8 2 1 9 7 0 - 0 . 0 8 8 4 1 0 . 7 8 8 4 7 0 . 8 5 2 8 9 1 9 7 1 - 0 . 1 2 7 0 9 0 . 7 3 9 8 7 0 . 8 8 8 9 8 1 9 7 2 - 0 . 1 0 8 8 0 0 . 7 7 4 0 4 0 . 8 8 0 8 3 1 9 7 3 - 0 . 0 9 2 3 3 0 . 8 0 2 1 9 0 . 8 9 4 5 1 1 9 7 4 0 . 0 3 8 5 9 0 . 9 4 4 8 0 0 . 9 0 8 0 1 1 9 7 5 0 . 0 1 3 0 9 0 . 9 3 4 4 1 0 . 9 2 1 3 2 1 9 7 8 - 0 . 0 7 7 0 8 0 . 8 5 7 3 8 0 . 9 3 4 4 8 1 9 7 7 - 0 . 0 0 2 2 0 0 . 9 4 5 2 3 0 . 9 4 7 4 2 1 9 7 8 0 . 0 0 3 8 5 0 . 9 8 3 8 8 0 . 9 8 0 2 2 1 9 7 9 0 . 0 3 9 7 1 1 . 0 1 2 5 7 0 . 9 7 2 8 8 1 9 8 0 0 . 1 2 5 8 8 1 . 1 1 1 0 0 0 . 9 8 5 3 4 1 9 8 1 0 . 0 8 8 4 5 1 . 0 8 4 1 1 0 . 9 9 7 8 8 1 9 8 2 0 . 1 1 4 7 8 1 . 1 2 4 8 0 1 . 0 0 9 8 3 1 9 8 3 - 0 . 0 3 9 8 1 0 . 9 8 2 0 4 ' 1 . 0 2 1 8 5 * # * a t = 1 : 4 a t a 0 * - - - - - . - O o o * * - - - - 0 - . - - - - - . . . . - - O D O O O O O O O O Q D C O O O e 8 I N D E P E N D E N T V A R I A B L E S L O G T I L n ( T I N E ) m m fl m z n r w o o o I “ e m u u p o a u m x < m n w o n m “ u n I m m 1 w m m 3 m m : m . o . Z U X A B C B J u a n a c a n u n . ' " " " . ' u u u u l ‘ fl < r o o . m o o m u o m o . p m u u o v u ~ . H M ¢ 0 0 3 0 o . u u u # v o u r 0 0 4 . m o a o u p p 0 . 0 0 0 m u p m 3 . 3 » m m b o o b . 0 0 3 u b u o “ I n o < m 1 w w a n m 0 0 1 1 n ~ m c w 0 3 u . n a ' : " l u u u ' . = n a g ' - n ' i ' u u n a u u u fl ' g n < r o . fl < r o 0 . 0 » 0 0 3 3 3 ~ . o o o o o o o fl < r o . r o m fi 0 . 0 0 0 3 M 0 m o . u fl m m u u u r 0 m 4 . r o m 4 0 . 0 0 0 3 0 u o » . o o o o o o o ' J : : : D e c c P > C 3 ( 0 4 > c . J I I . : ' - lD ! z D f C a . - . b e s w m « 3 1 4 3 ‘ r ‘ r 4 1 ) C : 2 3 3 fl l i ~ a > c z : m > 1 l l | l 1 < l ¢ l l l l | i l l | l l l 0 o 5 6 8 m . . . - s - d m a n m D R E G I O N A L M O D E L S I H U L A T I O N 2 5 . 6 7 6 3 2 4 . 6 6 1 . 2 3 . 6 4 6 2 2 . 6 3 0 2 1 . 6 1 5 2 0 . 6 0 0 1 9 . 5 8 5 1 8 . 3 6 9 1 7 . 5 5 4 1 6 . 5 3 9 * 8 4 O U 7 5 7 6 7 1 7 6 7 é a b 8 % B i E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - ’ - E S T I H A T E D F i g u r e H . 8 . a & b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s d 1 ) ( > C > C Z : fl I i - 1 r J C 3 2 fi l : H ‘ . r 8 r H O 0 O 2 Q O G 2 1 3 1 O 4 * U N 1 - J C 3 2 1 0 5 6 9 I Z S U F 1 M 3 7 5 “ w 5 M 3 2 5 m i P ' 1 9 7 4 1 9 1 ' 5 1 9 % 1 9 ? ? 1 9 7 8 1 9 ' ” 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L H O D E L S I H U L A T I O N ‘ 9 6 3 » . a s o : - . 1 4 9 3 . 6 4 2 E x ‘ K 1 . 5 3 3 b / / . . \ f . 4 2 6 : / J N E . 2 1 4 - , - . 1 0 1 3 , / 7 6 7 é 7 i 7 é 7 é 8 0 8 1 3 1 8 3 a a E X - P O S T F O R E C A S T 1 8 7 5 - 1 9 8 4 A C T U A L 1 . - - E S T I M A T E D F i g u r e H . 9 . a & b . C o a r s e G r a i n N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s 5 7 0 L e s s D e v e l o p e d O i l E x p o r t e r s C o a r s e G r a i n N e t I m p o r t s P e r C a p i t a ( 1 0 0 0 M T ) S H D L 1 9 8 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a o i e i s A C F N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 8 . C - 0 . 0 1 1 0 9 7 7 0 . 0 0 5 9 4 1 9 - 1 . 8 8 7 8 9 7 8 0 . 0 7 9 P C R G D P 7 6 2 0 . 8 4 5 3 7 9 8 . 5 1 7 3 8 9 . 5 4 3 7 4 4 1 0 . 0 0 0 F D L O - 0 . 0 0 3 5 9 5 5 0 . 0 0 2 9 0 5 7 - 1 . 2 3 7 3 9 5 8 0 . 2 3 3 H A L O 0 . 0 0 4 0 5 5 3 0 . 0 0 1 8 2 8 8 2 . 2 1 9 8 8 8 5 0 . 0 4 0 F P L O ( - 1 ) - 0 . 0 0 8 3 2 1 1 0 . 0 0 1 4 9 3 0 - 5 . 5 7 3 2 3 8 0 0 . 0 0 0 R - s o u a r e d 0 . 9 5 9 8 1 8 M e a n o f d e p e n d e n t v a r 0 . 0 0 7 1 0 2 A d J u s t e d R - s o u a r e o 0 . 9 4 7 7 3 8 8 . 0 . o f d e p e n d e n t v a r 0 . 0 0 9 1 8 0 S . E . o f r e g r e s s i o n 0 . 0 0 2 0 9 9 S u m o f s q u a r e d r e s i d 7 . 4 9 0 - 0 5 D u r b i n - u a c s o n s t a t 1 . 3 8 2 4 3 1 F - s t a t i s c i c 8 0 . 7 9 0 8 8 L o g 1 i n e l i h o o d 1 1 2 . 8 8 8 4 T P E 5 / 2 3 R e s i d u a l P l o t o o s R E S I D U A L A C T U A L F I T T E D 3 4 1 a 1 1 9 8 1 - 0 . 0 0 2 2 4 - 0 . 0 0 0 1 2 0 . 0 0 2 1 2 1 a 4 : a 1 1 9 8 2 - 0 . 0 0 0 2 7 2 . 9 0 - 0 5 0 . 0 0 0 3 0 1 4 s 1 x 1 1 9 8 3 - 0 . 0 0 3 1 0 - 0 . 0 0 0 5 0 0 . 0 0 2 8 0 1 x 1 4 a 1 1 9 8 4 0 . 0 0 0 3 7 0 . 0 0 0 3 1 - 8 . 8 8 - 0 5 1 3 1 4 a 1 1 9 8 5 0 . 0 0 0 2 1 0 . 0 0 0 1 1 - 0 . 0 0 0 1 0 3 3 1 4 a 1 1 9 6 6 0 . 0 0 0 9 0 - 0 . 0 0 0 1 5 - 0 . 0 0 1 0 4 1 z 1 4 z 1 1 9 8 8 0 . 0 0 0 2 5 0 . 0 0 1 0 1 0 . 0 0 0 7 7 3 a 4 s 1 1 9 8 9 3 . 7 D - 0 5 - 0 . 0 0 0 2 9 - 0 . 0 0 0 3 2 1 s 1 4 a 1 1 9 7 0 0 . 0 0 0 8 5 0 . 0 0 1 1 3 0 . 0 0 0 2 8 3 z ' 1 4 3 1 1 9 7 1 0 . 0 0 1 7 0 0 . 0 0 3 1 2 0 . 0 0 1 4 3 1 x 4 1 s 3 1 9 7 2 - 0 . 0 0 0 8 7 0 . 0 0 2 5 4 0 . 0 0 3 2 1 3 a 3 s 4 ' 3 1 9 7 3 0 . 0 0 2 7 0 0 . 0 0 4 1 8 0 . 0 0 1 4 8 1 s 4 1 x 1 1 9 7 5 - 0 . 0 0 0 8 9 0 . 0 0 4 8 8 0 . 0 0 5 7 7 1 a 4 1 1 1 1 9 7 8 - 0 . 0 0 0 1 8 0 . 0 0 7 9 5 0 . 0 0 8 1 0 1 a i 1 3 1 1 9 7 7 - 0 . 0 0 1 1 9 0 . 0 1 1 5 4 0 . 0 1 2 7 3 1 4 x 1 x 1 1 9 7 8 - 0 . 0 0 2 8 1 . 0 . 0 1 2 2 7 0 . 0 1 5 0 8 1 4 x 1 a 1 1 9 7 9 - 0 . 0 0 3 2 0 0 . 0 1 4 3 7 ~ 0 . 0 1 7 5 7 1 s 4 a 1 1 9 8 2 - 0 . 0 0 0 1 2 0 . 0 2 8 0 3 0 . 0 2 8 1 5 1 8 1 8 O 1 1 9 8 3 0 . 0 0 4 0 2 0 . 0 2 7 4 5 0 . 0 2 3 4 3 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P L O / C P I L O / P O P L O P C F C O N 8 C o a r s e G r a i n C o n s u m p t i o n P e r C a p i t a ( 1 0 0 0 M T ) F C O N L O / P O P L O W P L O I R e a l L D O W h e a t P r i c e ( S I M T ) U P ' X R L O / C P I L O F P L O 3 R e a l L D O C o a r s e G r a i n P r i c e ( S I M T ) F P D X R L O / C P I L O 5 7 1 S M A u 1 9 6 1 - 1 9 8 3 2 3 G o s e r v a c i o n s S e r i e s M e a n 5 . 0 . M a x i m u m M i n i m u m F C F N I 0 . 0 0 7 1 0 2 4 0 . 0 0 9 1 8 0 4 0 . 0 2 7 4 5 0 9 - 0 . 0 0 0 4 9 7 3 Q C R G D P 1 . 8 8 4 0 - 0 6 7 . 8 5 5 D - 0 7 3 . 0 3 9 0 - 0 6 9 . 8 3 9 0 - 0 7 A C F C U N ( - 1 ) 0 . 0 6 0 8 6 0 9 0 . 0 0 7 2 2 3 0 0 . 0 7 2 7 4 6 5 0 . 0 4 6 7 2 2 2 F A L O 1 . 9 4 7 4 3 5 6 0 . 5 5 1 0 4 2 9 3 . 0 7 2 3 8 2 0 1 . 0 7 3 5 2 2 0 H A L O 2 . 3 3 6 4 0 1 5 0 . 7 3 9 1 6 8 0 4 . 4 4 4 3 2 7 0 1 . 2 8 8 8 4 2 0 F P L D 1 - 1 ) 1 . 9 9 1 4 9 4 3 0 . 5 2 9 7 1 0 8 3 . 0 7 2 3 8 2 0 1 . 0 7 3 5 2 2 0 - . . . - I . - . I C o v a r i a n c e C o r r e l a t i o n P C ? N I . D C F N Z 8 . 0 6 2 D - 0 5 1 . 0 0 0 0 0 0 0 A C F N I , P C R B D D 6 . 0 0 5 0 - 0 9 0 . 8 7 0 5 8 2 3 A C F N I , P C F C O N ( - 1 ) 1 . 8 0 5 0 - 0 5 0 . 2 8 4 6 5 5 4 P C F N I , F P L O - 0 . 0 0 3 7 4 5 8 - 0 . 7 7 4 1 1 7 9 D C F N I , H P L O - 0 . 0 0 4 0 9 1 1 - 0 . 6 3 0 2 9 5 0 D C F N I . F P L D ( - 1 ) - 0 . 0 0 3 5 3 2 8 - 0 . 7 5 9 4 8 8 4 fi C R B D D , D C R B D A 5 . 9 0 2 0 - 1 3 1 . 0 0 0 0 0 0 0 § C R G D D , P C F C D N ( - 1 ) 8 . 5 9 0 0 - 1 1 0 . 0 1 5 8 2 9 1 P C R G D P , F A L O - 2 . 5 7 1 D - 0 7 - 0 . 6 2 1 0 2 4 9 A C R G D P , N 9 L D - 2 . 5 9 4 D - 0 7 - 0 . 4 6 7 1 4 2 0 P C R G D P . F P L D ( - 1 > - 1 . 9 3 4 D - 0 7 - 0 . 4 8 6 0 1 5 0 A C F C D N 1 - 1 ) , D C F C D N ( - 1 ) 4 . 9 9 0 0 - 0 5 1 . 0 0 0 0 0 0 0 A C E C D N 1 - 1 1 , F A L D - 0 . 0 0 1 0 4 5 0 - 0 . 2 7 4 4 9 1 3 D C F C D N 1 - 1 ) , H P L O - 0 . 0 0 1 6 2 5 5 - 0 . 3 1 8 3 0 2 9 P C F C D N ( - 1 ) , F P L D ( - 1 ) - 0 . 0 0 0 6 6 3 8 - 0 . 1 8 1 3 7 8 4 F A L D , F A L O 0 . 2 9 0 4 4 6 1 . 1 . 0 0 0 0 0 0 0 F D L O , H D L O 0 . 3 6 2 8 7 1 4 0 . 9 3 1 3 8 5 3 F A L O , F P L O ( - 1 ) 0 . 2 2 9 0 0 1 4 0 . 8 2 0 1 9 8 8 W A L D , H A L D 0 . 5 2 2 6 1 4 1 1 . 0 0 0 0 0 0 0 H A L O , F A L O ( - 1 ) 0 . 2 9 4 3 6 4 9 0 . 7 8 5 9 7 5 9 F A L 0 1 - 1 1 , F P L D ( - 1 ) 0 . 2 6 8 3 9 3 8 1 . 0 0 0 0 0 0 0 I : 5 7 2 1 5 1 i “ 1 1 1 2 5 9 1 ' 0 1 0 1 8 9 8 1 3 0 ; . . a . 3 W 1 “ “ “ 4 5 ' 1 u { 3 f “ g E z . x i ! 1 T . 3 9 1 . i j : ' f 1 T 3 5 8 H 1 : 0 1 N 3 s 1 - a s a 1 . . 6 9 7 B 7 1 7 2 ’ 1 3 2 ‘ 4 7 5 7 6 " z " ? ’ 2 3 3 ‘ 9 3 8 3 1 ‘ 3 2 8 3 R E G I O N A L N O D E L S I N U L A T I O N M I 1 . 3 5 3 : ‘ - 1 . 2 5 0 f g 1 J 8 3 - 1 . 5 - ° : 1 : N ' . A u s - 1 4 . 1 7 1 . E . 8 7 4 1 : T A N S : a n s » T e s e a 4 s s a o 7 3 7 6 7 7 7 a 7 9 s o 8 1 3 2 8 3 8 4 N S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - — E S T I M A T E D F i g u r e H . 1 0 . a & b . C o a r s e G r a i n E n d i n g S t o c k s - L e s s D e v e l o p e d 0 1 1 E x p o r t e r s P S L 2 R A D S L 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 1 P I P F e M 2 S - d u . o r C a L O / q u p . P s J r E g s V a t o n i e D A P P k r e f - b / u s i l 4 1 p C r e R ' F C e e d H 4 i 9 P v p I D a l C R r d 4 4 a e A G F e t i L 1 1 1 1 1 1 1 1 1 1 6 R 1 : 1 1 1 1 1 1 1 : : 4 N D E P D S E P U C C N P R F D L G D E O s 8 r O 0 0 7 0 4 4 3 3 1 1 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 1 I / t O I L 3 E i . 6 . . e 4 G r l I 1 3 1 1 o t a F 0 9 0 0 P 4 F p 0 . 0 2 l 4 L I o l ) A C i ( n D B P c c O - e C 2 3 1 3 4 E s L C C i d L A U o o s r R 4 N 2 O - g B D t n S s h 4 8 8 8 9 a C - d n t a l e o E n o d e e - n n s t 1 V a s s i r i t d 4 e o a u 4 u s s d 4 R O s L T R G D R ( a V P s a E l A L e S l e D o e F n E P C n F 1 0 5 3 2 E S 6 9 0 3 8 a I 2 5 9 0 0 0 0 2 1 i i E 0 4 3 3 . . . 5 . 0 0 5 7 3 s 9 9 0 3 N . T 4 5 0 0 . 1 2 3 0 4 2 I 4 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 1 1 1 1 1 1 1 2 5 2 4 4 r P e P e 4 1 S e O o o P r P r / a * a e O s F s L R O C G O G a r L r p a O a i i ) i t / n n t a C o a r d i n g S t 0 0 0 T A T . 3 6 8 1 e e 4 0 4 2 r n n N 5 7 5 9 v v i 0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T 0 0 d a a U 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 ) r r A 0 0 0 0 1 1 0 1 0 0 0 1 2 2 3 2 3 3 3 0 0 2 - T 7 6 L 7 6 6 6 4 3 6 1 2 4 7 4 6 2 2 3 1 4 2 2 3 1 1 I 0 8 8 3 5 6 6 4 8 2 9 6 5 7 0 9 7 8 0 1 A 0 0 0 0 0 0 ' I . . . . . . . 1 1 1 ' F 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 1 9 L 0 0 0 0 0 I . . . . . . . . . . . . . . . . . . . . . 0 . 9 0 0 3 0 0 5 . T 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 S 1 7 0 0 8 1 D 2 T 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 p i t a ( 1 0 0 I G . 6 0 0 5 D 7 6 7 9 9 2 2 0 5 0 0 0 7 6 3 5 5 3 2 9 6 9 7 9 6 0 4 5 5 9 8 4 9 8 8 5 7 5 5 2 3 4 0 5 7 3 1 1 0 5 0 - 6 E 0 0 0 0 0 0 1 1 1 0 - 1 1 2 2 2 3 3 2 2 2 0 M T ) 7 3 7 6 e t t A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 0 s . . C . . . . . . . . . . . . . . . . . . a . . S T 1 0 0 0 D . 0 . . . 5 0 0 0 . 0 0 0 0 0 9 E 5 8 M S F T R 5 6 1 e u - P 4 . 4 4 3 3 3 1 3 3 3 3 3 3 3 3 3 1 1 3 1 1 1 3 3 3 1 7 2 4 2 A - n n e 0 0 0 0 0 3 4 2 2 1 0 3 2 2 0 1 2 2 5 8 0 6 S d d d L 5 5 8 8 5 5 5 0 9 4 6 9 7 6 6 2 3 2 2 1 2 2 8 8 7 1 o 8 R 8 9 9 o a I 2 s 3 5 4 6 7 8 9 0 2 4 3 5 6 1 7 8 9 0 2 3 1 1 r u P c k s - e e u I i 1 4 5 8 4 0 0 0 0 0 1 0 0 0 8 0 0 0 0 0 0 0 t 1 d d d S . . . . . . . . . . . . . . . . . . . . . . s 2 s E 9 2 4 7 0 8 5 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 y l e o o f t 7 p L i f f i / R - - - - - - - - - - - p O c 1 7 9 2 p p a c D D D D D 0 0 0 0 D D 0 0 0 0 D 0 0 0 0 0 0 0 ( T . . . . e e r - - - - - 0 0 0 0 0 - 0 0 0 - 0 0 0 0 0 0 0 U P ( s 2 E R 5 9 2 D a n s o 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 . O 0 5 6 n t b 6 6 6 6 6 6 7 6 6 7 7 7 7 7 7 7 7 7 8 8 8 8 S O P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 a P e / r N C T ) 5 7 3 L e s s D e v e l o p e d O i l E x p o r t e r s F P fi X R L O / C P I L O 5 7 4 S M F L 1 9 6 2 - 1 9 8 3 2 2 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F E S 0 . 0 0 1 5 5 6 8 0 . 0 0 1 0 6 9 0 0 . 0 0 3 4 8 3 4 0 . 0 0 0 2 7 8 5 P C R G D P 1 . 9 2 3 D - 0 6 7 . 8 0 4 D - 0 7 3 . 0 3 9 0 - 0 6 9 . 8 3 9 D - 0 7 F P L O 1 . 9 3 7 8 0 9 5 0 . 5 6 2 0 2 7 6 3 . 0 7 2 3 8 2 0 1 . 0 7 3 5 2 2 0 P C D F S U 0 . 0 5 4 9 1 8 6 0 . 0 0 7 9 6 0 1 0 . 0 7 3 4 1 9 1 0 . 0 4 4 4 5 7 0 C o v a r i a n c e C o r r e l a t i o n P C F E S , P C F E S 1 . 0 9 1 D - 0 6 1 . 0 0 0 0 0 0 0 P C F E S , P C R B D P 6 . 7 3 4 D - 1 0 0 . 8 4 5 6 8 3 8 P C F E S , F P L O - 0 . 0 0 0 5 1 3 7 - 0 . 8 9 5 6 7 1 1 P C F E S , P C D F S U - 4 . 3 4 a D - 0 6 - 0 . 5 3 5 2 7 4 4 P C R B D P , P C R 6 D P 5 . 8 1 4 D - 1 3 1 . 0 0 0 0 0 0 0 P C R G D P , F P L O - 2 . 6 0 1 D - 0 7 - 0 . 6 2 1 2 2 3 5 P C R B D P , P C D F S U - 3 . 9 5 4 D - 0 9 - 0 . 6 6 6 8 3 4 8 F P L O , F P L O 0 . 3 0 1 5 1 7 0 1 . 0 0 0 0 0 0 0 F P L O , P C D F S U 0 . 0 0 2 1 7 3 5 0 . 5 0 8 9 7 4 1 P C D F S U , P C D F S U 6 . 0 4 8 D - 0 5 1 . 0 0 0 0 0 0 0 " ' 0 0 0 5 % ; w , m i . 2 ' n 7 1 3 N ' , w . v s r r . m ' . n a , e . w a l u P O O O § § § 3 § 1 1 1 1 1 1 1 1 1 1 1 1 4 X 1 1 1 \ 1 1 / § 1 § § § 1 1 1 " ! - 0 2 1 0 1 b - n J n I A A L ( 1 1 2 0 - ! H M S 8 7 7 9 5 9 9 9 9 9 5 9 8 9 9 7 5 9 7 9 9 1 - 6 5 9 6 9 9 5 5 9 5 7 5 ' 1 ‘ r 1 1 I t 1 ' q 1 1 v a . 8 0 0 8 5 5 . 8 3 3 . 8 1 0 . 7 8 8 . 7 8 5 . 7 4 3 . 7 2 1 . 8 9 8 . 8 7 8 . 4 0 0 8 . . . - . - . 8 . . . ' I I a s e ' " : R E G I O N A L M O D E L S I M U L A T I O N . L 1 O u . D A 7 6 7 5 7 6 v é 8 0 3 % B i E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ~ - - E S T I M A T E D F i g u r e H . l l . a & b . S o y b e a n P r o d u c t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s S 7 6 u m 1 1 W 9 _ . . . . . . 0 . . . . . . . . . " - - « . . . J ' ° . " ” " ” . 0 " . o 9 8 8 f ' H . 3 : E 8 “ . . . . . . P ' C . . . . . . . T e . . . . . . . A 7 . . . . . . . . . . . R . . - " E 3 6 ” 1 9 6 4 1 9 6 6 1 9 6 9 1 9 7 9 1 9 2 1 9 7 4 1 9 7 6 1 9 7 9 1 9 9 9 1 9 9 2 R E G I O N A L M O D E L S I M U L A T I O N g 1 1 M B . v + L 1 2 : : ' : L ' . I . . 9 7 7 - A ‘ \ ; H . 9 5 4 - / Z : E . 9 3 1 - I j C s o : 3 - « I . 8 8 5 E : : R . 3 0 2 : I 1 E . 8 3 9 * - : d 5 7 6 7 6 7 " : 7 6 7 9 3 6 8 % 8 5 3 : } 3 4 E X - P O S T F O R E C A S T 1 9 7 5 — 1 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e H . 1 2 . a & b . S o y b e a n H a r v e s t e d A r e a - L e s s D e v e l o p e d O i l E x p o r t e r s 8 8 * 8 - 8 u 8 - 8 . 8 8 . . 8 . 8 8 8 8 O - . . 8 . 8 - n 8 I ! 1 * 8 - 8 I 8 . 8 o 8 8 8 . . . 8 O 8 - 8 D 8 D 8 O 8 8 8 8 * . . 8 . 8 8 8 8 8 U - . . ! . 0 . L e s s D e v e l o p e d O i l E x 5 7 p o r t e r s 7 S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S H P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S H A L O V A R I A B L E C O E F F I C I E N T 8 T D . E R R O R T - S T A T . 2 - T A I L S I B . - 1 8 8 . 2 9 0 . 3 5 7 9 C S H A L O ( - 1 ) - S R L O X ( - 1 ) F R L O 4 ( - 1 ) Y E A R - 1 0 5 . 7 0 R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - N a t s o n s t a t L o g l i k e l i h o o d R e s i d u a l P l o t : 0 : * t e a a . 0 l l 0 . s o . 0 I . O . a s I . s o 0 . a s I . * a s s o a s u I . I N D E P E N D E N T V A R I A B L E S S H A L O S R L O X 4 5 1 0 9 0 9 5 9 1 0 . 1 2 4 6 2 6 0 . 7 6 7 3 1 8 0 . 7 0 0 8 3 7 7 2 . 2 0 3 7 9 2 . 3 5 2 0 1 9 - 1 0 5 . 3 6 9 1 * 4 1 9 . 9 9 1 7 5 0 . 2 7 7 0 9 1 4 3 5 . 2 9 3 7 8 1 7 4 . 3 7 2 6 1 8 7 . 2 8 8 6 8 1 2 - 0 . 4 4 8 3 2 9 1 1 . 2 9 1 6 6 4 1 1 . 6 8 1 2 4 3 3 - 1 . 4 2 1 3 5 0 9 1 . 3 8 9 0 8 8 9 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o i s q u a r e d r e s i d F - s t a t i s t i c T P E o b s 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 R E S I D U A L I ' 4 1 . 5 5 6 9 3 8 . 4 9 8 1 ' 1 5 , . 1 0 2 7 . 4 9 2 6 7 7 5 . 5 9 5 3 4 1 . 4 1 7 3 ' 3 6 . 1 2 2 8 - 3 6 . 2 3 7 8 4 8 . 3 8 3 8 - 2 4 . 3 2 7 2 2 7 . 8 4 3 1 1 4 . 4 4 9 4 8 9 . 0 3 8 5 - 4 . 5 5 9 8 7 4 7 . 4 4 1 3 - 1 4 8 . 2 1 8 - 8 . 9 6 7 2 3 - 8 . 2 6 1 9 3 S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) S o y b e a n R e v e n u e p e r H e c t a r e ( 5 / H A ) A C T U A L 6 6 1 . 0 0 0 6 4 5 . 0 0 0 7 3 7 . 0 0 0 6 1 4 . 0 0 0 7 3 8 . 0 0 0 3 4 9 . 0 0 0 8 7 2 . 0 0 0 9 2 4 . 0 0 0 9 4 3 . 0 0 0 9 5 4 . 0 0 0 ' 8 7 7 . 0 0 0 8 9 4 . 0 0 0 9 8 0 . 0 0 0 1 0 $ . 0 0 1 0 0 9 . 0 0 1 0 2 9 . 0 0 8 4 2 . 0 0 0 9 2 7 . 0 0 0 9 4 7 . 0 0 0 ( F o r e c a s t S o y b e a n Y i e l d ) a S P n X R L O / C P I L O F R L O 4 C o a r s e G r a i n R e v e n u e p e r H e c t a r e ( $ I H A ) 0 . 6 6 1 0 . 2 1 7 0 . 1 1 5 0 . 1 7 7 0 . 1 8 7 8 6 8 . 6 3 1 6 1 3 2 . 0 0 9 8 7 2 9 8 7 . 4 2 1 1 . 5 4 1 9 7 9 / 1 9 F I T T E D 6 6 2 . 0 4 1 6 8 6 . 5 5 7 6 9 8 . 5 1 2 7 6 7 . 1 0 2 7 3 0 . 5 0 7 7 7 3 . 4 0 5 8 3 0 . 5 8 3 8 8 7 . 8 7 7 . 9 8 4 . 2 3 8 9 0 5 . 6 1 6 9 0 1 . 3 2 7 8 6 6 . 1 5 7 9 6 5 . 5 5 1 9 6 7 . 9 6 1 1 0 1 3 . 5 6 9 8 1 . 5 5 9 9 9 0 . 2 1 8 9 3 5 . 9 6 7 ( F Y L O ( - 3 ) + F Y L O ( - 2 ) + F Y L O < 1 > * F Y L O ) / 4 * F P * X R L O I C P I L O Y E A R 1 9 6 0 = 6 0 . 1 9 6 1 3 6 1 0 5 7 8 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s I S e r i e s M e a n S . D . M a x i m u m M i n i m u m S H A L D 8 6 8 . 6 3 1 5 8 1 3 2 . 0 0 9 7 7 1 0 5 7 . 0 0 0 0 6 1 4 ; 0 0 0 0 0 S H A L O ( - 1 ) 8 5 2 . 3 6 8 4 2 1 4 0 . 5 7 4 7 0 1 0 5 7 . 0 0 0 0 6 1 4 . 0 0 0 0 0 S R L O X ( - 1 ) 2 . 2 2 6 8 1 5 0 . 8 3 5 0 8 2 0 5 . 2 3 5 1 8 1 0 1 . 6 9 2 1 5 3 0 F R L O 4 ( - 1 ) 1 . 6 1 5 6 6 2 5 0 . 3 7 1 9 9 1 2 2 . 3 8 3 0 6 6 0 1 . 1 1 9 5 6 6 0 Y E A R 7 4 . 0 0 0 0 0 0 5 . 6 2 7 3 1 4 3 8 3 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 “ . . - . . . I . - - - . . - C o v a r i a n c e C o r r e l a t i o n . . . - M C I . . . I m l S H A L O , S H A L O 1 6 5 0 9 . 3 9 1 1 . 0 0 0 0 0 0 0 S H A L O , S H A L O ( - 1 ) 1 4 5 6 9 . 6 0 9 0 . 8 2 8 7 3 5 2 S H A L O , S R L O X ( - 1 ) 8 . 0 4 6 2 9 0 3 0 . 0 7 7 0 4 4 5 S H A L O , F R L O 4 ( - 1 ) - 1 3 . 3 8 9 0 8 8 ‘ - O . 2 8 7 8 0 1 7 S H A L O , Y E A R 5 4 9 . 2 1 0 5 3 0 . 7 8 0 3 9 1 8 S H A L O ( - 1 ) , S H A L O ( - l ) ' 1 8 7 2 1 . 1 8 0 1 . 0 0 0 0 0 0 0 S H A L D ( - 1 ) , S R L D X ( - 1 ) 1 2 . 7 1 5 7 5 7 0 . 1 1 4 3 3 7 1 S H A L O ( - l ) , F R L O 4 ( - 1 ) - 8 . 1 8 8 3 1 7 1 - O . 1 6 5 2 8 6 0 S H A L O ( - 1 ) , Y E A R 6 1 7 . 2 1 0 5 3 0 . 8 2 3 5 8 0 6 S R L O X ( - l ) , S R L O X ( - 1 ) 0 . 6 6 0 6 5 8 7 1 . 0 0 0 0 0 0 0 S R L O X ( - 1 ) , F R L 0 4 ( - 1 ) 0 . 2 1 7 3 6 2 3 0 . 7 3 8 5 9 0 3 S R L D X ( - 1 ) , Y E A R - 1 . 2 5 7 2 6 1 5 - 0 . 2 8 2 4 0 7 6 F R L D 4 ( - 1 ) , F R L 0 4 ( - 1 ) 0 . 1 3 1 0 9 4 4 1 . 0 0 0 0 0 0 0 F R L D 4 ( - 1 ) , Y E A R - 0 . 9 3 8 1 2 8 6 - O . 4 7 3 0 5 2 8 Y E A R , Y E A R 3 0 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 I m m “ . “ - 8 8 5 7 9 L e s s D e v e l o p e d O i l E x p o r t e r s S o y b e a n Y i e l d S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S Y L O ( M e t r i c T o n s p e r H e c t a r e ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C - 2 . 9 0 2 7 9 2 0 0 . 6 2 5 3 9 4 6 ‘ - 4 . 6 4 1 5 3 7 0 0 . 0 0 0 L 0 5 7 0 . 8 4 7 3 0 1 4 0 . 1 4 5 6 1 2 8 5 . 8 1 8 8 6 4 8 0 . 0 0 0 - - . . . - R - s q u s r e d 0 . 6 5 2 9 0 6 M e a n o f d e p e n d e n t v a r 0 . 7 3 5 6 8 2 A d J u s t e d R - s q u a r e d 0 . 6 3 3 6 2 3 S . E . o f r e g r e s s i o n 0 . 0 5 1 3 1 0 5 . D . S u m o f s q u a r e d r e s i d 0 . 0 4 7 3 8 8 o f d e p e n d e n t v a r 0 . 0 8 4 7 6 9 D u r b i n — N a t s o n s t a t 1 . 5 9 1 9 7 6 F - s t a t i s t i c 3 3 . 8 5 9 1 9 L o g l i k e l i h o o d 3 2 . 0 7 2 3 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 1 e 1 1 9 6 4 0 . 0 5 1 3 8 0 . 6 7 2 4 1 0 . 6 2 1 0 4 1 : 1 e : 1 1 9 6 5 0 . 0 2 6 9 5 0 . 6 6 1 1 2 0 . 6 3 4 1 7 1 : 1 * : 1 1 9 6 6 0 . 0 2 4 2 1 0 . 6 7 1 3 2 0 . 6 4 7 1 1 1 4 : 1 : 1 1 9 6 7 - 0 . 0 6 6 9 1 0 . 5 9 2 9 4 0 . 6 5 9 8 5 1 : * 1 : 1 1 9 6 8 - 0 . 0 2 5 8 2 0 . 6 4 6 5 8 0 . 6 7 2 4 0 1 : 1 * : 1 1 9 6 9 0 . 0 3 8 8 0 0 . 7 2 3 5 8 0 . 6 8 4 7 7 1 = e 1 z 1 1 9 7 0 - 0 . 0 1 6 1 6 0 . 6 8 0 8 0 0 . 6 9 6 9 6 1 3 * 1 : 1 1 9 7 1 - 0 . 0 3 6 9 6 0 . 6 7 2 0 2 0 . 7 0 8 9 8 1 * : 1 : 1 1 9 7 2 - 0 . 0 6 0 6 6 0 . 6 6 0 1 7 0 . 7 2 0 8 3 1 : * 1 : 1 1 9 7 3 - 0 . 0 2 9 9 9 0 . 7 0 2 5 3 0 . 7 3 2 5 2 1 : e 1 : 1 1 9 7 4 - 0 . 0 3 5 4 5 0 . 7 0 8 6 0 0 . 7 4 4 0 5 1 : a : 1 1 9 7 5 0 . 0 0 2 8 5 0 . 7 5 8 2 7 0 . 7 5 5 4 2 1 _ 3 1 e z 1 1 9 7 6 0 . 0 2 6 4 2 0 . 7 9 3 0 6 0 . 7 6 6 6 4 1 : 1 * : 1 1 9 7 7 0 . 0 3 0 4 4 0 . 8 0 8 1 6 0 . 7 7 7 7 2 1 : 1 e 1 1 9 7 8 0 . 0 5 2 4 1 0 . 8 4 1 0 6 0 . 7 8 8 6 5 1 : 1 4 1 1 9 7 9 0 . 0 5 0 9 0 0 . 8 5 0 3 5 0 . 7 9 9 4 5 1 : 1 * : 1 1 9 8 0 0 . 0 0 6 2 2 0 . 8 1 6 3 3 0 . 8 1 0 1 1 1 : * : 1 1 9 8 1 - 0 . 0 0 2 3 4 0 . 8 1 8 2 9 0 . 8 2 0 6 3 1 s 1 : * 1 1 9 8 2 0 . 0 8 5 9 1 0 . 9 1 6 9 4 0 . 8 3 1 0 3 1 * s 1 : 1 1 9 8 3 - 0 . 1 2 2 1 8 0 . 7 1 9 1 1 0 . 8 4 1 3 0 I N D E P E N D E N T V A R I A B L E S L O G T = L n < Y E A R > M O O m z m r 6 6 0 6 u s o m e n o o a u n 1 < e n u o a e ' - 8 8 . “ . . . I 1 . 8 m s x w o e 3 0 s : m . c . z s x n a c a z w a w s c a 8 - 5 8 . 5 8 . 8 8 - 8 8 . H m < r o 0 . 4 H u e m n o o . o m s u o m m 0 . 0 H o e u e u 0 . 0 0 N 0 5 6 6 r o a d e . u m s p o u o 0 . 0 m 0 m u o n 6 . 6 » m m b o o h . u u m m m u o E ' E ' i i " . 8 E 8 “ . . . ' 8 8 8 8 8 " 8 8 8 8 8 8 8 8 8 8 8 5 8 8 8 8 8 8 8 i 8 n o < o x w o a n s 0 0 1 1 m ~ u « » o : g i ' g g g a ' u a g i g ' u u g g m < r o . m < r o o . o o o m u o & u . o o o o o o o m < r o . r o m 4 o . o o u n o o n o . m o m o n o p r o m 4 . r o m 4 0 . 0 0 0 M o m m » . o o o o o o o 5 8 1 3 9 9 9 ? 1 2 5 9 9 1 0 0 2 9 9 9 1 ' 0 , , 1 5 m 8 . . . . . . . . . T 1 9 9 9 1 " " " - T . . . . . . . . ' 0 5 9 9 N 5 9 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 9 9 9 1 3 2 9 3 R E G I O N A L M O D E L S I M U L A T I O N M I 7 ' L L 2 . 0 3 4 - . 1 . . 2 . 4 4 0 . . 3 3 I 2 . 2 8 2 - I / i 0 2 . 0 7 0 : I / . N 1 . 6 9 1 - 1 2 ’ I 1 . 7 0 5 , I I g 1 . 5 1 9 - 3 3 T 1 . 3 3 3 : I : 1 . 1 4 7 - - . 1 - . 9 8 1 - I g 7 3 7 1 ' s 7 7 7 6 7 0 8 0 3 1 6 7 8 0 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L 1 — - - E S T I M A T E D F i g u r e H . 1 3 . a & b . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - L e s s D e v e l o p e d O i l E x p o r t e r s z : m 1 ~ a a c z z m P > C 3 < O 3 1 5 1 9 ' i - J C S Z n 1 a 6 P I I I I I \ I I I I I I U I I I I I I I I O < D C > P 7 9 2 4 7 1 . 0 9 1 7 4 8 . 7 0 0 . 8 5 4 . 8 0 9 . 5 8 3 . 5 1 7 . . 7 1 9 4 2 5 . 3 8 0 . 5 8 2 7 9 9 1 ‘ . 7 5 7 7 1 9 7 ' 7 7 1 7 2 7 ' 3 7 4 “ R E G I O N A L M O D E L S I M U L A T I O N 7 7 7 ' 9 s o 8 1 1 2 1 3 3 2 4 5 5 8 7 8 9 0 2 1 2 5 4 4 8 8 9 5 1 1 8 4 ( D u . 7 6 7 6 7 7 7 6 7 9 8 0 8 1 8 7 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — - E S T I M A T E D F i g u r e H . 1 4 . a & b . S o y o i l E q u i v a l e n t C o n s u m p t i o n - D e v e l o p e d O i l E x p o r t e r s 8 4 5 8 3 2 5 9 8 7 I I 1 2 m ? 0 0 1 5 9 9 “ 0 M I B U B W E . T 5 9 9 1 ' T p . . . . . . . . . - 0 9 N 5 - 5 9 1 , . . , . , 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 9 9 9 1 9 2 9 3 R E G I O N A L M O D E L S I M U L A T I O N M I L A 1 . . 2 . 0 4 9 _ - I 1 . 9 9 5 r I - , - . 0 1 . 6 8 9 : ‘ ‘ N 1 . 4 9 7 : I / / 3 1 . 9 1 9 : V ’ - H 1 . 1 2 9 - 3 3 E . 9 4 4 - I I T . 7 9 0 ~ I j T . 5 7 8 I I : o . 3 9 2 : : 7 g 7 9 7 9 7 7 7 9 7 9 8 0 8 1 8 2 8 5 3 9 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - ' - E S T I M A T E D F i g u r e H . 1 5 . a & b . S o y m e a l E q u i v a l e n t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s E E x q e C 9 1 5 4 t p u E 0 5 0 . 6 . . i . 1 o i s 7 3 N 5 0 8 0 6 8 9 I 8 6 4 0 8 0 0 1 1 9 9 L O / q u b s r “ . 9 L P e e P M 8 . s j r E g . . S - d . u o . . 1 S L I R S A D L m . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 s b / u s i l C s V a o t n i D a e p v i e t l a e D A P S D k r f e - r e R C P V e e d W i d L N P r s o o R 9 4 t n B O D g - h s 9 9 1 9 v p I c 7 L R d a r l , a e A G 4 6 e D R t i 1 1 1 1 1 1 : : 1 : 9 1 1 1 1 1 1 1 p S - n n o e o E e q o n s u d e s l l a F 0 0 0 7 P i e 1 i E . . . 6 9 e o d y O e a V I 1 9 a C - - - d n t r i t e o a d u a l 9 9 1 8 r O 0 0 0 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 s t a s s i 9 9 b 0 F 0 0 4 l I 1 0 3 . m l 9 o 9 9 T 0 8 0 1 . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r v t a e l r e P T S H S s n N T 0 0 6 0 t I D . . 6 . . 0 0 8 0 0 0 . 0 0 5 4 8 6 4 0 1 7 1 9 9 5 8 5 8 4 7 3 1 - 9 9 9 I a E 0 0 8 0 M S S 1 F R 9 1 4 9 e u - . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 p D R 5 2 3 9 a m s ; o 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 a 1 f f i R - - - - - - - - - . o O 8 5 0 0 n t b 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 r t R 3 0 2 7 o a o o f t 9 5 / ‘ s 4 6 5 7 8 9 0 1 2 3 4 5 6 8 7 9 0 1 ( 1 0 0 0 M T T . . . . e e r P 0 5 4 5 n n e T e 6 1 3 3 e 6 4 9 1 d S d d 0 0 - U 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 3 0 A 2 3 2 4 4 5 4 1 6 0 2 8 1 6 6 2 1 L 5 5 5 2 9 6 9 9 9 2 5 2 8 9 5 0 1 A T . 6 1 3 6 n r n 0 5 1 6 t e t 0 9 0 A 0 0 0 0 3 4 0 0 0 0 0 0 0 0 0 - 4 1 1 8 ' s . . . . . . . . C . . . . . . . . . . - - - e e u i I 0 0 0 0 0 0 0 0 0 7 0 0 0 0 1 0 0 0 2 4 5 3 p p a c 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 d d q t S . . . . . . . . . . . . . . . . . . s s 7 0 4 E 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 ) 7 5 5 9 i u v v 0 7 0 T 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 - T r r a a d ’ U 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A - - 0 - 0 0 0 0 0 0 1 1 2 2 4 2 4 L 0 0 1 0 2 3 1 3 2 4 2 6 6 2 5 3 6 5 5 5 0 5 0 3 6 5 9 1 1 1 1 8 9 0 0 4 A 0 0 0 0 0 0 3 4 - - - - I . . . . . . . 4 m F 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L 0 0 0 0 m 0 4 0 . I . . . . . . . . . . . . . . . . . . 5 0 0 5 0 0 0 7 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 1 0 0 3 1 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 - 4 4 E 0 0 0 - 0 0 0 0 0 1 1 1 1 2 1 3 2 4 8 . 0 0 6 8 D 3 2 0 5 2 3 5 1 8 4 8 2 4 9 7 2 8 3 8 6 7 7 I 5 5 8 7 3 2 0 1 1 4 9 9 3 0 5 2 3 1 R e a l L D O S o y b e a n P r i c e ( S / M T ) 5 8 4 I N D E P E N D E N T V A R I A B L E S P C R G D P G D P L O / C P I L O / P O P L O S P L O = S P L O R X R L O / C P I L O D V 7 4 O N 8 1 I £ ( Y E A R . 0 O t h e r w i s e G E . 7 4 ) 8 R e e l G D P P e r C a p i t a S M P L 1 9 6 4 - 1 9 8 1 1 8 O b s e r v a t i o n s 5 8 5 S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S M N I 0 . 0 0 1 2 0 8 1 0 . 0 0 1 4 6 6 5 0 . 0 0 4 5 3 5 9 3 . 4 2 5 0 - 0 5 P C R B D P 1 . 9 0 8 0 - 0 6 7 . 3 3 9 0 - 0 7 3 . 0 0 2 0 - 0 6 1 . 1 3 2 0 - 0 6 S P L O 4 . 1 6 8 1 0 9 1 1 . 1 7 0 9 2 1 8 7 . 2 6 2 6 8 0 0 2 . 2 8 0 1 8 9 0 D V 7 4 O N 0 . 4 4 4 4 4 4 4 0 . 5 1 1 3 1 0 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 u C o v a r i a n c e C o r r e l a t i o n P T S M N I , P T S H N I 2 . 0 3 1 0 - 0 6 1 . 0 0 0 0 0 0 0 P T S H N I , P C R G D P 8 . 6 8 8 0 - 1 0 0 . 8 5 4 7 3 0 8 _ P T S H N I , S P L O 1 - 0 . 0 0 1 0 4 7 6 - 0 . 6 4 5 9 5 5 7 P T S M N I , D V 7 4 O N 0 . 0 0 0 5 5 3 2 0 . 7 8 1 1 1 4 7 P C R B D P , P C R G D P 5 . 0 8 6 D - 1 3 1 . 0 0 0 0 0 0 0 P C R G D P , S P L O - 3 . 5 6 2 D - 0 7 - 0 . 4 3 8 9 0 3 7 P C R G D P , D V 7 4 O N 3 . 4 3 2 0 - 0 7 0 . 9 6 8 3 1 9 8 S P L O , S P L O 1 . 2 9 4 8 8 8 1 1 . 0 0 0 0 0 0 0 S P L O , D V 7 4 O N - 0 . 2 7 8 1 1 1 1 - 0 . 4 9 1 8 4 6 7 D V 7 4 O N , D V 7 4 O N 0 . 2 4 6 9 1 3 6 1 . 0 0 0 0 0 0 0 . . . - . . . " m a s H > C 3 < O 3 1 n 1 4 ' i - l C l i n ( P > C 3 < O l i fl l i ' i ~ > C 1 2 n I — ? : 5 . f f U 3 4 3 2 5 9 5 5 8 - 6 1 3 . 5 6 9 . 5 2 5 . 4 3 0 . 4 3 3 . 3 9 2 . . 0 1 3 3 0 3 . . 3 8 3 E 5 8 6 7 9 1 1 - 6 9 9 1 ' 5 9 0 7 1 4 9 9 7 “ 3 9 1 4 » . - 2 9 9 7 7 . . . . . . : 3 1 9 9 1 . . . . . . . . . . . . . . . . . . . . . . . . . v 5 9 7 e 7 1 7 2 7 7 7 4 7 s 7 6 7 7 7 a 7 9 7 ' 1 1 1 9 2 3 7 R E G I O N A L M O D E L S I M U L A T I O N 2 1 8 9 0 3 5 3 7 2 7 2 9 5 7 5 4 3 . 3 2 3 1 1 1 1 4 — 1 1 1 1 . . . . . . . . . . . . . < . . . . . . . 8 4 O Q . 7 5 7 8 7 7 7 8 7 9 8 0 8 1 8 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — 1 - - E S T I M A T E D F i g u r e H . 1 6 . a & b . S o y o i l E q u i v a l e n t I m p o r t s - L e e s D e v e l o p e d O i l E x p o r t e r s e D s a . O * . - - - - - - - C u u u u u u * O . C - . - - 0 0 0 0 * - 0 4 - - * - - - - - - - - - - ‘ “ - 0 0 0 0 0 0 0 0 0 - s n e . s 5 8 7 ' L e s s D e v e l o p e d O i l E x p o r t e r s P e r C a p i t a S o y o i l E q u i v a l e n t I e p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 4 1 8 O b s e r v a t i o n s 1 9 8 1 L S / / D e p e n d e n t V a r i a b l e i s P T S O N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . " . . . - ” m u . . 0 . 0 0 0 2 3 2 1 0 . 0 0 0 2 3 8 8 0 . 9 7 1 8 2 9 6 0 . 3 4 8 P C R B D P 5 5 3 . 9 3 1 4 7 6 3 . 9 0 7 9 0 4 8 . 6 6 7 6 5 2 1 0 . 0 0 0 S O P L D - 6 . 7 1 4 D - 0 5 1 . 8 8 9 D - 0 5 - 3 . 5 5 4 4 8 5 0 0 . 0 0 3 D V 7 3 0 . 0 0 0 7 5 4 1 0 . 0 0 0 2 4 7 5 3 . 0 4 6 4 5 8 5 0 . 0 0 9 R - s q u a r e d 0 . 9 0 3 2 8 0 m e a n 0 ‘ d e p e n d e n t v a r 0 . 0 0 0 7 3 3 A d j u s t e d R - s q u a r e d 0 . 8 8 2 5 5 4 S . D . o f d e p e n d e n t v a r 0 . 0 0 0 5 2 0 S . E . o f r e g r e s s i o n 0 . 0 0 0 1 7 8 S u m o f s q u a r e d r e s i d 4 . 4 4 D - 0 7 D u r b i n - H a t s o n s t a t 1 . 7 9 1 0 5 3 F - s t a t s t i c 4 3 . 5 8 2 4 7 L o g 1 1 1 1 0 1 1 1 1 0 0 1 1 1 3 2 . 1 1 1 7 T P E " 2 7 1 7 1 " * t a R e s i d u a l P l o t 9 I t I N D E P E N D E N T V A R I A B L E S P C R G D P S O P L O D V 7 3 a R e a l G D P P e r C a p i t a G D P L O / C P I L O / P O P L O R e a l L e s a D e v e l o p e d M a r k e t S o y b o i l P r i c e ( s / M T ) S O P O X R L O / C P I L O 1 I £ < Y E A R . E 0 . 7 3 ) 0 O t h e r w i s e o b s 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 v — R E S I D U A L 3 . 1 0 - 0 5 4 . 5 0 - 0 5 - 0 . 0 0 0 1 5 - 0 . 0 0 0 1 8 - 0 . 0 0 0 2 0 0 . 0 0 0 1 5 0 . 0 0 0 1 9 9 . 6 D - 0 5 0 . 0 0 0 1 0 6 . 4 0 - 2 1 - 9 . 4 D - 0 5 - 0 . 0 0 0 1 4 - 0 . 0 0 0 3 2 0 . 0 0 0 3 5 4 . 3 0 - 0 5 - 6 . 1 D - 0 6 - 4 . 1 D - 0 5 0 . 0 0 0 1 1 A C T U A L 0 . 0 0 0 1 8 0 . 0 0 0 1 9 0 . 0 0 0 1 2 0 . 0 0 0 2 0 0 . 0 0 0 2 1 0 . 0 0 0 4 8 0 . 0 0 0 4 7 0 . 0 0 0 5 4 0 . 0 0 0 4 4 0 . 0 0 0 7 7 0 . 0 0 0 6 0 0 . 0 0 1 0 0 0 . 0 0 0 7 8 0 . 0 0 1 5 2 0 . 0 0 1 1 7 0 . 0 0 1 3 1 0 . 0 0 1 4 8 0 . 0 0 1 7 4 F I T T E D 0 . 0 0 0 1 5 0 . 0 0 0 1 5 0 . 0 0 0 2 6 0 . 0 0 0 3 8 0 . 0 0 0 4 2 0 . 0 0 0 3 2 0 . 0 0 0 2 8 0 . 0 0 0 4 5 0 . 0 0 0 3 3 0 . 0 0 0 7 7 0 . 0 0 0 6 9 0 . 0 0 1 1 4 0 . 0 0 1 0 9 0 . 0 0 1 1 7 0 . 0 0 1 1 3 0 . 0 0 1 3 1 0 . 0 0 1 5 2 0 . 0 0 1 6 3 5 8 8 S M P L 1 9 6 4 - 1 9 8 1 1 8 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S O N I 0 . 0 0 0 7 3 3 0 . 0 0 0 5 1 9 9 0 . 0 0 1 7 4 1 5 0 . 0 0 0 1 1 7 0 P C R G D P 1 . 9 0 8 D - 0 6 . 3 3 9 D - 0 7 3 . 0 0 2 D - 0 6 1 . 1 3 2 D - 0 6 S O P L O 8 . 9 0 0 7 8 2 1 3 . 2 6 8 5 8 2 4 1 7 . 4 4 3 7 9 0 3 . 9 2 6 2 5 1 0 D V 7 3 0 . 0 5 5 5 5 5 6 . 0 . 2 3 5 7 0 2 3 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 m a u m m u s n n a n m a m m - u u n n - . . u m . . m n . n . s . n u u s s a n C o v a r i a n c e C o r r e l a t i o n m P T S O N I . P T S O N I 2 . 5 5 2 D - 0 7 1 . 0 0 0 0 0 0 0 P T S O N I , P C R G D P 3 . 2 4 4 D - 1 0 0 . 9 0 0 2 5 6 7 P T S O N I , S O P L O - 0 . 0 0 0 7 3 7 2 - 0 . 4 5 9 3 8 2 8 P T S O N I , D V 7 3 1 . 8 3 0 0 - 0 6 0 . 0 1 5 8 1 4 1 P C R G D P , P C R B D P 5 . 0 8 6 D — 1 3 1 . 0 0 0 0 0 0 0 P C R B D P , S O P L O - 7 . 5 4 0 D - 0 7 - 0 . 3 3 2 8 2 8 9 P C R G D P , D V 7 3 - 1 . 0 6 O D - 0 8 - 0 . 0 6 4 8 7 8 5 S O P L O , S O P L O 1 0 . 0 9 0 0 9 6 1 . 0 0 0 0 0 0 0 S O P L O . D V 7 3 0 . 4 7 4 6 1 1 6 0 . 6 5 2 2 8 7 0 D V 7 3 , D V 7 3 0 . 0 5 2 4 6 9 1 1 . 0 0 0 0 0 0 0 i v — v I l l h l i l L n 7 9 7 9 7 7 7 9 7 9 8 0 8 ' 1 8 2 n L n i n I l L _ _ L 5 8 9 1 . 9 % 9 . 9 “ I . 8 . . . . . . . . . . . . . . . . . . “ , 9 . 7 “ " . . . - W " . 9 . 5 7 O 9 . 5 7 8 . 4 1 0 . 3 1 . . . - . . . . . . 9 . 2 “ 7 1 . 1 w . , . . _ 1 9 7 1 7 1 7 2 7 1 7 4 7 5 7 1 7 7 7 1 7 1 1 1 1 1 1 2 1 2 i I v v R E G I O N A L M O D E L S I M U L A T I O N . 8 7 2 ‘ ’ . 8 9 8 - ' I F - " . 7 9 8 ' . 7 8 1 . 7 2 4 . 8 8 7 E . 8 8 0 - . 8 1 9 i . 8 7 8 E . 5 9 9 : 8 4 m “ a E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - ’ E S T I M A T E D F i g u r e H . 1 7 . a & b . P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y a e a l - L e s s D e v e l o p e d O i l E x p o r t e r s 5 9 C 1 L e s s D e v e l o p e d O i l E x p o r t e r s P e r c e n t a g e S o y n e a l E q u i v a l e n t I m p o r t e d a s S o y m e a l S M P L 1 9 6 4 1 8 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P M E A L 1 9 8 1 V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . I C - 1 . 7 1 5 9 4 2 9 0 . 5 4 4 1 2 0 2 - - 3 . 1 5 3 6 0 9 8 0 . 0 0 8 M A R G I N - 0 . 1 7 3 2 7 1 4 0 . 0 9 2 1 5 7 5 - 1 . 8 8 0 1 6 5 6 0 . 0 8 3 S P R O L O 0 . 0 0 0 8 5 5 7 0 . 0 0 0 3 3 9 3 2 . 5 2 2 1 4 2 4 0 . 0 2 6 - Y E A R 0 . 0 2 2 6 2 6 1 0 . 0 1 0 1 0 3 6 2 . 2 3 9 4 0 9 9 0 . 0 4 3 D V 7 3 0 . 2 2 7 2 0 2 4 0 . 0 9 3 7 0 6 3 2 . 4 2 4 6 2 3 8 0 . 0 3 1 W W . I . . . w e . " R - s q u a r e d 0 . 9 2 8 5 0 6 M e a n o f d e p e n d e n t v a r 0 . 4 7 0 4 1 8 A d j u s t e d R - s q u a r e d 0 . 9 0 6 5 0 7 S . D . o f d e p e n d e n t v a r 0 . 2 7 5 6 6 6 S . E . o f r e g r e s s i o n 0 . 0 8 4 2 8 9 S u m o f s q u a r e d r e s i d 0 . 0 9 2 3 6 1 D u r b i n - H a t s o n s t a t 1 . 8 9 2 2 3 5 F - s t a t i s t i c 4 2 . 2 0 8 1 6 L o g l i k e l i h o o d 2 1 . 9 1 0 9 5 T P E e 5 / 1 7 I I . W . C I R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D I 1 1 9 1 1 1 9 6 4 0 . 0 0 1 7 0 0 . 1 3 5 8 7 0 . 1 3 4 1 7 1 1 9 1 1 1 1 9 6 5 - 0 . 0 4 6 1 8 0 . 0 4 4 5 1 0 . 0 9 0 6 9 1 1 1 9 1 1 1 9 6 6 0 . 0 5 0 9 5 0 . 2 1 8 4 6 0 . 1 6 7 5 1 7 9 1 7 1 1 1 9 6 7 - 0 . 1 0 3 5 8 0 . 0 8 8 2 2 0 . 1 9 1 8 1 1 1 9 1 1 1 1 9 6 8 - 0 . 0 6 3 8 5 0 . 1 1 5 1 4 0 . 1 7 8 9 9 1 9 1 : 1 1 1 9 6 9 - 0 . 0 8 7 8 6 0 . 1 4 4 8 1 0 . 2 3 2 6 7 1 1 1 1 9 1 1 9 7 0 0 . 1 7 2 1 5 0 . 5 2 7 8 8 0 . 3 5 5 7 3 1 1 1 1 9 1 1 9 7 1 0 . 0 9 4 6 6 0 . 5 1 0 8 3 0 . 4 1 6 1 6 1 1 1 9 1 1 1 9 7 2 0 . 0 6 6 0 0 0 . 3 9 0 7 1 0 ( 3 2 4 7 1 1 1 9 1 1 1 9 7 3 1 . 3 - 1 6 0 . 6 7 1 9 7 0 . 6 7 1 9 7 1 1 9 1 1 1 1 9 7 4 - 0 . 0 0 8 6 4 0 . 5 6 8 3 7 0 . 5 7 7 0 2 1 1 9 1 1 1 1 9 7 5 - 0 . 0 3 9 6 4 0 . 5 2 0 0 6 0 . 5 5 9 7 0 1 1 1 9 1 1 9 7 6 ' 0 . 0 8 4 9 2 0 . 7 4 0 5 7 0 . 6 5 5 6 5 1 1 9 1 1 1 9 7 7 - 0 . 0 0 4 0 1 0 . 7 1 2 6 9 0 . 7 1 6 6 9 1 1 9 1 1 1 1 9 7 8 - 0 . 0 6 5 7 5 0 . 7 5 6 1 2 0 . 8 2 1 8 7 1 1 1 1 1 1 9 7 9 0 . 0 1 1 3 3 0 . 8 2 1 3 3 0 . 8 1 0 0 0 1 9 1 1 1 1 1 9 8 0 - 0 . 0 8 9 7 9 0 . 7 5 1 6 5 0 . 8 4 1 4 4 1 1 1 9 1 1 ' 1 9 8 1 0 . 0 2 7 5 8 0 . 7 4 8 3 2 0 . 7 2 0 7 5 I N D E P E N D E N T V A R I A B L E S M A R G I N S P R O L O Y E A R D V 7 3 S o y b e a n C r u s h M a r g i n ( S M P - X R L O / C P I L O ) 9 . 7 9 5 9 ( S P 9 X R L O / C P I L O ) S o y b e a n P r o d u c t i o n ( 1 0 0 0 M T ) 1 9 6 0 8 6 0 , 1 I f ( Y E A R 1 9 6 1 8 6 1 . . E 0 . 7 3 ) 0 O t h e r w i s e L S O P ? X $ H J 1 / C P I L I I ¥ ~ . 1 7 S - 5 9 1 S M R L 1 9 6 4 - 1 9 8 1 1 8 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P M E A L 0 . 4 7 0 4 1 8 4 0 . 2 7 5 6 6 5 9 0 . 8 2 1 3 3 3 8 0 . 0 4 4 5 1 3 7 M A R G I N 0 . 0 0 1 6 0 9 4 0 . 2 4 2 9 2 2 6 0 . 6 3 7 1 8 2 5 - 0 . 2 6 1 5 4 8 0 S P R O L O 6 2 3 . 6 1 1 1 1 1 5 8 . 1 6 7 1 3 8 8 9 . 0 0 0 0 0 3 9 7 . 0 0 0 0 0 Y E A R 7 2 . 5 0 0 0 0 0 5 . 3 3 8 5 3 9 1 8 1 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 - D V 7 3 0 . 0 5 5 5 5 5 6 0 . 2 3 5 7 0 2 3 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P M E A L . P M E A L 0 . 0 7 1 7 6 9 9 1 . 0 0 0 0 0 0 0 P M E A L , M A R G I N - 0 . 0 1 3 8 9 3 9 - 0 . 2 1 9 6 8 3 7 P M E A L . S P R O L O 3 8 . 1 8 1 1 2 4 0 . 9 2 7 1 9 9 2 P M E A L , Y E A R 1 . 2 8 2 3 9 2 0 0 . 9 2 2 6 5 4 2 P M E A L , D V 7 3 0 . 0 1 1 1 9 7 4 0 . 1 8 2 4 7 1 1 M A R G I N , M A R B I N 0 . 0 5 5 7 3 3 0 ' 1 . 0 0 0 0 0 0 0 M A R B I N , S P R O L O - 4 . 4 5 0 4 1 8 6 - 0 . 1 2 2 6 4 2 3 M A R B I N , Y E A R - 0 . 2 1 4 0 9 7 9 - 0 . 1 7 4 8 0 1 8 M A R B I N , D V 7 3 0 . 0 1 9 4 3 3 9 0 . 3 5 9 3 7 9 2 S P R O L O , S P R O L O 2 3 6 2 7 . 0 1 5 1 . 0 0 0 0 0 0 0 S P R O L O , Y E A R 7 3 6 . 1 9 4 4 4 0 . 9 2 3 1 6 1 0 S P R O L O . D V 7 3 2 . 3 5 4 9 3 8 3 0 . 0 6 6 8 8 4 1 Y E A R , Y E A R 2 6 . 9 1 6 6 6 7 1 . 0 0 0 0 0 0 0 Y E A R , D V 7 3 0 . 0 2 7 7 7 7 8 0 . 0 2 3 3 7 4 1 D V 7 3 , D V 7 3 1 . 0 0 0 0 0 0 0 0 . 0 5 2 4 6 9 1 5 9 2 3 9 9 9 l 0 1 5 1 1 7 0 ° 1 1 1 1 + . M E T 5 9 9 1 ' T “ M m 0 9 N 5 - 5 8 8 I g . 1 I . T 7 3 , I 1 6 9 7 9 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 9 7 9 9 9 9 1 9 2 9 3 R E G I O N A L M O D E L S I M U L A T I O N M I a I . 1 . 8 0 2 - 1 - 1 . 4 8 9 : I i ( I ) 1 . 3 0 4 - Z ’ 4 D o / 1 N 1 . 1 5 5 g / ‘ 1 . 0 0 8 - - . M . 8 8 7 ; 3 E . 7 0 8 - - . 1 ' . 8 8 9 - 3 3 4 1 0 - I j T 2 8 1 I I O . ’ N 7 5 7 9 7 7 7 9 7 9 8 0 8 1 8 2 8 9 8 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e H . 1 8 . a & b . S o y m e a l N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s V “ * 0 0 0 3 1 1 7 # ! * 0 2 2 0 I a 7 6 F 9 - 7 - 0 - I F - H 7 1 - I 7 - 2 H 7 - 3 I I I I - 7 4 T I 7 I 5 I 7 I 6 I I I I I 7 7 I 7 ! 3 - I - 9 7 - - - - ! 8 7 - B - l - - - 2 8 - - V 8 3 H O O § O § § 3 1 § § § § § § § , 8 1 - 1 2 4 1 0 ! - 0 2 1 0 p 1 1 1 1 4 1 L l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 8 7 8 7 7 7 8 7 8 8 0 8 % 8 5 l l 1 l l A 5 5 9 . 5 2 2 . 4 8 5 . 4 4 8 . 4 1 1 . 3 7 4 . 3 3 7 . 3 0 0 . 2 6 3 . 2 2 8 . 5 9 9 * 5 9 3 ‘ R E G I O N A L H O D E L S I M U L A T I O N \ \ l \ l j _ a : ( J c o 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e H . 1 9 . a & b . S o y o i l N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s P > C D < O : : m 1 ~ 4 > c z : m P > C 3 ( l 3 3 0 3 3 : fl l i ~ 4 ' ) C : 2 n I 3 3 j 1 3 3 3 3 3 3 3 3 3 3 3 W I I O I I I I I ' I O I I I O I I I O O O 5 1 3 4 7 4 3 4 2 9 3 2 . 7 9 7 . 3 3 2 4 3 0 . 3 3 3 . 5 2 7 3 9 2 . 2 3 7 2 9 3 . 2 3 3 . 2 0 9 . 1 8 3 . 1 2 2 9 3 7 3 5 2 7 1 7 5 9 4 7 o 7 1 7 2 7 3 7 4 7 s 7 s 7 7 7 s 7 9 7 8 3 1 7 2 7 3 R E G I O N A L M O D E L S I M U L A T I O N d O Q ‘ 4 Q a Q 0 O 0 ' O ‘ O M Q Q 0 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e H . 2 0 . a & b . S o y b e a n N e t I m p o r t s - L e s s D e v e l o p e d O i l E x p o r t e r s A P P E N D I X I E Q U A T I O N S T A T I S T I C S - N E W L Y I N D U S T R I A L I Z E D C O U N T R I E S w h e a t W P R O N I . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A N I . . . . . . . . . . . . . . . . . . . . . . . H e r v e s t e d A r e a w Y N I . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d W C O N N I . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W N I N I . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s W E S N I . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O N I . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A N I . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a F Y N I . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N N I . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I N I . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s F E S N I . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s S o y b e a n C o m p l e x S P R O N I . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n S H A N I . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a S Y N I . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d S N C O N I . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . C o n s u m p t i o n S O C O N I . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . C o n s u m p t i o n S M E I N I . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . N e t I m p o r t s S O E I N I . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . N e t I m p o r t s P M E L N I . . . . . . . . . . . . . . . . . . . . . . x S M E I N I I m p o r t e d a s S M N I N I S H N I N I . . . . . . . . . . . . . . . . . . . . . . S o y m e a l N e t I m p o r t s S O N I N I . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t I m p o r t s S N I N I . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t I m p o r t s S N E S N I . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E n d i n g S t o c k s S O E S N I . . . . . . . . . . . . . . . . . . . . . . S o y o i l E n d i n g S t o c k s S E S N I . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n E n d i n g S t o c k s 5 9 5 5 9 6 1 l 0 1 ° 1 o 1 E \ \ . 4 - ” ’ \ : ' ~ : ‘ - " a “ . o f f i \ . . . . . . . . . . . . . . ‘ N — W ’ 1 T W e . . . ” . . . . . . o . . 1 N ' 1 7 4 7 5 7 6 7 7 7 7 7 9 ' 3 9 9 1 3 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N 1 1 8 8 . 8 3 8 7 K 7 7 0 M 1 J 6 8 : ’ \ I 0 ' u 8 J 8 1 : I 0 1 1 2 . 4 1 8 : I M 8 8 . 0 4 7 j E 8 8 . 8 7 8 : 3 1 - 8 8 . 8 0 2 : 2 5 4 . 9 3 0 : i 1 ‘ 4 0 . 8 8 8 L ‘ 3 Z B J B O : N . S F i g u r e I . 1 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ' - - E S T I M A T E D w h e a t P r o d u c t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s H > C D < O m i fl ) f d - b J Z H I W = 1 8 3 c a - > a z n t m 5 7 7 8 7 ' 1 7 2 7 ' 3 7 4 7 5 7 s 7 7 7 a 7 7 3 8 7 ' 1 7 2 7 3 8 8 8 3 1 O 3 8 0 8 8 4 2 8 4 7 3 9 . - b - - ' N . \ r \ \ \ / . - ' 4 \ I : \ / " / « ‘ 7 " 2 \ 7 8 7 8 7 7 7 8 7 8 8 0 a i 8 2 8 3 8 4 O < D C > P 1 4 3 8 . 3 3 . 3 0 . 2 7 . 2 4 . 2 1 . " L 8 8 8 1 V ‘ / 1 1 1 . 3 . 8 7 7 E - 5 9 7 1 9 9 , R E G I O N A L M O D E L S I M U L A T I O N 7 3 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e 1 . 2 . a & b . W h e a t H a r v e s t e d A r e a - N e w l y I n d u s t r i a l i z e d C o u n t r i e s ( F Y N I ( - 3 ) + F Y N I { - 2 ) * F Y N I ( - l ) * F Y N I ) / 4 * F P * X R N I / C P I N I 5 9 8 . N e w l y I n d u s t r i a l i z e d C o u n t r i e s W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S H P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L 8 / / D e p e n d e n t V a r i a b l e i s N H A N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . ’ C 8 . 5 4 6 8 6 8 1 9 . 7 3 3 6 9 8 7 0 . 8 7 8 0 6 9 9 0 . 3 9 3 N H A N I ( - 1 ) 0 . 8 9 5 2 3 7 9 0 . 0 5 3 5 7 6 3 1 6 . 7 0 9 5 9 8 0 . 0 0 0 W R N I 4 ( - 1 ) 1 0 . 8 8 4 2 2 3 2 . 6 7 7 1 9 2 1 4 . 0 6 5 5 3 6 9 0 . 0 0 1 F R N I 4 ( - 1 ) - 1 6 . 5 8 7 3 9 7 4 . 2 6 4 0 3 3 6 - 3 . 8 9 0 0 7 1 9 0 . 0 0 1 ' R - s q u s r e d 0 . 9 6 9 2 1 2 H e e n o f d e p e n d e n t v s r 5 5 . 6 0 0 0 0 A d j u s t e d R - s q u a r e d 0 . 9 6 3 4 3 9 S . D . o f d e p e n d e n t v a r 3 6 . 9 9 4 1 7 S . E . o f r e g r e s s i o n 7 . 0 7 3 6 6 2 S u m o f s q u a r e d r e s i d 8 0 0 . 5 8 7 2 D u r b i n - W s t s o n s t a t . 1 . 7 2 2 3 7 5 F - s t s t i s t i c 1 6 7 . 8 9 1 5 L o g 1 1 k e l 1 h o o d - 6 5 . 2 7 4 9 0 T P E 3 / 2 0 ‘ 3 . . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : 8 : 1 1 9 6 4 - 0 ; 2 3 7 2 4 1 0 0 . 0 0 0 1 0 0 . 2 3 7 1 : 1 8 : 1 1 9 6 5 2 . 1 7 0 2 1 1 0 4 . 0 0 0 1 0 1 . 8 3 0 1 : 1 : * 1 1 9 6 6 9 . 0 3 7 4 3 1 0 9 . 0 0 0 9 9 . 9 6 2 6 1 : 1 * : 1 1 9 6 7 2 . 8 6 9 6 7 1 0 9 . 0 0 0 1 0 6 . 1 3 0 1 : * 1 : 1 1 9 6 8 - 4 . 7 6 4 5 8 1 0 2 . 0 0 0 1 0 6 . 7 6 5 1 : 1 s : 1 1 9 6 9 4 . 4 0 4 5 8 1 0 1 . 0 0 0 9 6 . 5 9 5 4 1 : 1 4 : 1 1 9 7 0 4 . 1 6 3 1 8 8 9 . 0 0 0 0 8 4 . 8 3 6 8 1 * : 1 : 1 1 9 7 1 - 1 0 . 0 4 8 3 6 4 . 0 0 0 0 7 4 . 0 4 8 3 1 i : 1 : 1 1 9 7 2 - 1 4 . 7 5 5 1 4 4 . 0 0 0 0 5 8 . 7 5 5 1 1 : 1 : 1 _ 1 9 7 3 4 . 7 4 8 9 6 3 7 . 0 0 0 0 3 2 . 2 5 1 0 1 : 1 * : 1 1 9 7 4 0 . 6 6 1 0 5 4 4 . 0 0 0 0 ” 4 3 . 3 3 8 9 1 : 1 4 : 1 1 9 7 5 2 . 0 2 5 8 3 3 8 . 0 0 0 0 3 5 . 9 7 4 2 1 : * 1 : 1 1 9 7 6 - 3 . 9 1 0 2 5 2 8 . 0 0 0 0 3 1 . 9 1 0 3 1 : 8 1 : 1 1 9 7 7 - 1 . 5 7 2 4 5 1 7 . 0 0 0 0 1 8 . 5 7 2 4 1 : 1 : 1 1 9 7 8 5 . 3 1 6 9 4 1 3 . 0 0 0 0 7 . 6 8 3 0 6 1 : 1 : 1 1 9 7 9 5 . 0 1 4 7 0 1 4 . 0 0 0 0 8 . 9 8 5 3 0 1 : 1 : § 1 1 9 8 0 9 . 9 9 8 9 5 2 9 . 0 0 0 0 1 9 . 0 0 1 1 1 * 1 1 : 1 1 9 8 1 - 8 . 2 6 8 0 0 ’ 2 1 . 0 0 0 0 2 9 . 2 6 8 0 1 i : 1 : 1 1 9 8 2 - 7 . 7 6 8 5 4 2 1 . 0 0 0 0 2 8 . 7 6 8 5 1 : 1 * : 1 1 9 8 3 0 . 9 1 2 9 6 2 8 . 0 0 0 0 2 7 . 0 8 7 0 I N D E P E N D E N T V A R I A B L E S W H A N I = W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R N 1 4 = W h e a t R e v e n u e P e r H e c t a r e ( W Y N I ( - 3 ) + W Y N I ( - 2 ) + W Y N I ( - l ) + W Y N I ) / 4 8 W P 8 X R N I / C P I N I F R N 1 4 8 C o a r s e G r a i n R e v e n u e P e r H e c t a r e S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s I 5 9 9 S e r i e s H e a n S . D . M a x i m u m M i n i m u m W H A N I 5 5 . 6 0 0 0 0 0 3 6 . 9 9 4 1 6 7 1 0 9 . 0 0 0 0 0 1 3 . 0 0 0 0 0 0 W H A N I ( - 1 ) 5 9 . 1 0 0 0 0 0 3 7 . 5 5 2 6 3 0 1 0 9 . 0 0 0 0 0 1 3 . 0 0 0 0 0 0 W R N I 4 ( - 1 ) 4 . 2 4 4 4 9 1 4 1 . 2 1 9 7 9 8 7 8 . 0 1 6 7 5 9 0 2 . 9 7 3 0 3 7 0 F R N I 4 ( - 1 ) 3 . 1 3 8 1 3 0 5 0 . 8 4 1 4 4 2 2 5 . 1 5 9 8 1 6 0 2 . 0 2 7 5 5 1 0 l W H A N I , W H A N I N H A N I , W H A N I ( - 1 ) N H A N I , W R N I 4 ( - 1 ) u H A N 1 , F R N I 4 < - 1 ) W H A N I ( - 1 ) , W H A N I ( - 1 ) W H A N I ( - 1 ) , W R N I 4 ( - 1 ) W H A N I ( - 1 ) , F R N I 4 ( - 1 ) u R N 1 4 c - 1 ) , w R N 1 4 ( - 1 ) W R N I 4 ( - 1 ) , F R N I 4 ( - 1 ) F R N I 4 ( - 1 ) , F R N I 4 ( - 1 ) C o v a r i a n c e C o r r e l a t i o n 1 m . 1 1 - 8 1 3 0 0 . 1 4 0 0 1 . 0 0 0 0 0 0 0 1 2 7 6 . 6 9 0 0 0 . 9 6 7 3 6 0 3 - 1 6 . 0 3 1 0 1 0 - 0 . 3 7 3 9 5 2 0 - 1 7 . 5 8 2 8 9 8 ~ 0 . 5 9 4 5 7 8 7 1 3 3 9 . 6 9 0 0 1 . 0 0 0 0 0 0 0 - 1 9 . 4 6 2 3 4 1 - 0 . 4 4 7 2 4 2 4 - 1 7 . 4 3 3 7 9 4 - 0 . 5 8 0 7 6 9 3 1 . 4 1 3 5 1 3 3 1 . 0 0 0 0 0 0 0 0 . 8 4 3 5 6 6 9 0 . 8 6 5 1 3 4 3 - 0 . 6 7 2 6 2 3 7 1 . 0 0 0 0 0 0 0 “ I I I “ . 8 8 8 . . - “ “ ” “ C C O I . 0 ‘ I O I I I O * I M I U O O O O I O t t O O O O . . . . . O . O t O “ “ # “ * . . O O O O O O O O O “ O . . . . . . ” u “ O O * t i ” “ 0 0 “ ” ” 0 0 0 Z O C P V H o Q C O W H H O H H N O Q o o c a fl fl w n u € 3 0 0 fl < w o P a A z a d fl w n H o o n 0 0 H m o o n o n o v m z w r “ 0 0 0 I H o m u M b c a n n x < m n u o o n r m \ \ c o m m o n - a n < 8 1 M D U ~ 0 n o z < z H ( D m u b m r m n o m w fl n n u m z a m 4 o . m m m o m A l w q b d . M I H D H r . m H m . 3 % . . . n I p u . ¢ u u o n u “ . m u u a n m » I b . 0 u u n q m q 0 . 0 0 » r 0 9 4 a . » m m u p n m 0 . 0 0 m u m n u 0 . 0 0 0 m 0 0 u 0 . 0 0 0 E u 3 " . . . " m I I A C I 1 I a 0 . h o o m u m Z o o : 0 * a n n o a n l o n < I 1 N . h o m u o u b n u c n n o n a l a n c l x o n 0 . b u u o o n m . u . 0 + n o n l o n o o n ( l 1 0 . u o u u » 0 m . m . . o * 1 I m 1 e u n u o : 0 . h N o o p u w a s 0 * u n a l a l o w o u w n b . O b o u u u 0 c 1 o u n l t t n u o o o u t » 0 . 0 N 0 u n o u n a n t n n u n u n N » . V u u o o r a m u n w o u w z o o n I n n . o o o o u N I I M Q C t H * * V H O " * * I I I I I I I I I I I H Z U v a Z U M Z d ( D m e w r m m P O O fi u F D A H H Z M V o n e n o o o w e a n p o o m “ n o w H o c k n o o n H o m o “ 0 0 “ p 0 0 0 ” 0 0 0 ” 0 & 0 a n d » n o u n ” 0 % “ u o fl b n o u n “ O N O “ c u d n o u n ” O d o ” 0 0 0 p o m » p o m ” w o m u m m m H U C D P O . “ H fl fl b O o b b o m o O . N 0 m u N I O . N N D O O O u p u u fl u l o o o u m m w l 0 . 0 fl 0 & w I O . O O O H U O . p b b u 0 I O . O M H O V l o n o o n u fl I O . O M O U O l o o u u o u o I 0 8 0 0 0 N 0 I o o u 0 V fl u l 0 8 N 0 H 0 V I H . O & H u M 0 . 0 H Q O O O o u o m n b O o u b n u fl I O . 0 0 H 0 0 O o u u u m V “ . O u m b fl b fl fl C D F u . o n o q o u . u o a o m n . 0 u o o o » . o ~ n u 8 n . ~ o o o o 0 . 0 0 0 0 0 n . 0 u o u o ” . 0 0 0 0 0 n . 0 0 u u u n . n o q u u n . u o u ~ m n . u u o u m n . u o m 8 m u . o u q o u n . u o 8 u u n . n u o m a _ . o 8 u m o n . » ~ u o u u . u u o q u u . u u a n o u . u a u u m ” . m u u o o u . u u m u o 8 . 0 0 8 8 0 fl n d fi m b E . p . 0 0 M o o H . V O M » o p u m u p n o p . 0 0 0 u 0 p . 0 0 0 M u N . O N 0 » 0 N . O o u u u N . » U O ~ » ” . m u m u o ” . m fl o u o ” . m u o u o N . M 0 0 0 fl N . b fl fl u h N . U u u u u N . U V N N O ” . O M m u n ” . m m u o m M o V u m fl u N o fl o N V fl N . m # O » N N . m o m m u n . 0 u o m u “ . O O M N N “ . O U N O O ' § ' § . i é u u i g a g . § £ a § i 0 0 0 0 0 0 0 . “ o n o ¢ o o o . o 8 8 0 4 . 8 6 0 ; m n o m ¢ o n . o H u h h o n o . o 8 8 0 4 . H z > 3 0 0 0 0 0 0 0 . " o n o m n n m . o H z > 3 . u z > 3 . . . . . . " E i . . . " " ' . " ' l " § ' : ' ! c o n v a a o L L o u o u c a w g a > o u . i “ . . - " . " " : " ' . " " u " ' . " ' . " ' a . . " ' E : . ' . E ' - E . . " : u o n ¢ m ¢ o o . ¢ 0 0 ¢ m m « ¢ . ¢ m n n n o o o . o « a b o c o m . ¢ k m O J o n s fl fl n o . a 0 0 N ¢ H h o . ¢ « C a n n o n . 0 H m o n m o c . n , H Z > 3 - . . " . I . ' ' . " . ' . . - . . . . : e n e m a “ : e a e w x a z . o . m c u e : m o u t o m . - - . . . ' l . : . : ' . ' . . " . " . . - . ' I . " " " " ' l ' " . . “ ' . ' fl " i ' : ' : " fi ' " a c o u u m > g m n n o # N H m w a I 0 0 0 ” J m t m H 0 0 6 0 2 1 0 0 0 M E T T O N S 2 5 9 8 , . . . 1 7 7 e 7 1 7 2 7 a 7 4 7 5 7 5 7 7 7 s 7 9 s o 9 1 9 2 9 3 R E G I O N A L M O D E L S I M U L A T I O N H I I - 4 . 3 3 2 q L 4 . 2 0 2 : f 2 C I ) 4 . 0 5 2 : \ : N 3 . 9 0 2 ' \ : 3 . 7 3 2 \ - . ' , . . — « . \ / I H 3 8 . 0 . ’ \ / . \ J E 3 . 4 3 1 _ / \ / \ x : “ r 3 . 3 0 1 : / . \ \ / ’ \ \ / f 3 . 1 3 1 - / « T 3 . 0 0 1 1 3 0 L N 7 5 7 3 7 7 7 3 7 0 3 0 3 1 3 2 3 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . , _ - E S T I M A T E D F i g u r e I . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 0 3 “ W W 1 o l fl m fl 1 0 0 M 3 5 3 9 1 E T 1 . 3 9 9 9 1 0 I . . . N . . s 2 5 9 0 . , , r 0 9 ' 7 8 7 ' 1 7 2 7 3 7 4 7 5 7 5 7 7 ' 3 9 7 9 9 0 3 1 9 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N M I L 4 . 3 4 7 I f 4 . 1 3 2 - ' ; 4 . 0 3 7 - 7 - 0 . / \ - N 3 . 3 3 2 : / \ 3 . 7 2 3 - 7 ’ \ H 3 . 3 7 3 - / « — ” . “ - \ 3 E 3 . 4 1 3 - / \ 1 ' 3 . 2 3 3 7 / - 3 . 1 0 3 - Z T 2 . 3 3 4 ~ ‘ 0 I N 7 5 7 3 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 5 1 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e I . 4 . a & b . W h e a t N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s t s ( 1 0 0 0 M T ) I m p o i E 2 3 3 0 6 6 . . . . s 7 5 N 5 7 6 0 5 2 1 . T 7 0 5 1 4 F 0 4 9 1 7 r C 9 2 8 2 8 I 4 9 5 1 3 0 7 0 0 2 x r P s j E r g P e S L 1 5 H S - d . u o R S A L D m C a p L O / q u b . u b / u s i , 1 s V 1 a t n o e D A W P F P r e - f R s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I P P P W F D S P S P U E U C N C C P P D R D N D N E F G W I I i d L U U o r o s R 9 t n B S S - s g h a t E N = = = = 1 r e R P P C C e d W e N 9 i d v p I C D D N N r a ! t a 6 e I I A u F R s e t i t : : : : z : : : t : : : : s D = W - n n u s d s t W W e D o o e P e o e E q e - n o e 3 x t T R G D ( ( D R W R a V 1 t 9 a C - - - e o a n d t h t s a s s e r i t c 3 i E . . . . I . 8 0 0 1 0 r O 0 m i d u a l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A C i ( i < I n I I R I s N N s R I / t I I N N t I N t A N e l l l S S e X a V P m E E m - a a N e b F 9 0 5 4 0 l t L I o C l l a F 0 0 1 0 1 t P x c B P c - c - C / C t l I 7 2 7 9 7 e C 7 3 1 7 7 o t 3 E N ) ) m P W C W C S e I h I o h o P P a r a r I / e + 2 a e a N O e t W W s t s 6 7 . R 8 9 7 e u - P a E . E 3 4 3 M 2 3 S S F W T . R 9 7 2 m s 5 4 D o 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 n — O 9 0 4 t 7 8 0 1 p b 6 7 7 7 7 7 7 7 7 7 8 8 8 R 5 3 5 2 7 o a s 0 9 2 3 4 5 6 7 9 3 8 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I T 0 0 0 0 0 N S 2 2 3 9 8 D . . . . . . t W 1 5 2 0 4 t t N I S R R P C u O O G r G a p N r N i r p p I a I c a 0 0 0 4 0 i l ) i > e i ‘ 0 0 0 7 7 1 t y / n I n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . a P P . : r P : : : : : : : : : : : : : : P e P e o o f t f + i d d q t s s S . . . . . . . . . . . . . . . E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a y ) R - - - - - - - - C l T e T A T . 2 - T A I L 4 . T . . . e r e 0 1 0 U 2 0 1 0 1 1 0 2 1 1 2 1 . 6 - 4 6 6 n e n 5 A 7 2 6 7 4 3 7 0 0 8 1 0 9 1 8 8 0 0 8 S d d d L 8 3 0 3 9 4 5 3 5 3 6 9 5 2 7 1 2 2 2 2 p p a c D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ' - - - e e u i I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 2 1 5 3 r n n 0 4 5 0 2 3 e e t t 7 3 8 8 6 e . 0 0 0 A 0 0 0 0 0 0 0 0 0 0 0 0 2 1 9 5 4 s 1 m C . . . . . . . . . . . . . . . 0 5 9 8 9 i v v T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 6 3 5 3 2 D 3 4 4 T 4 4 4 4 4 4 4 4 4 4 4 4 4 0 1 6 . m 3 7 - - 5 E 6 2 1 0 1 4 2 0 1 5 4 5 7 2 1 0 2 0 7 D 8 6 9 7 9 7 4 8 5 2 4 9 2 0 3 0 3 5 6 2 4 6 2 6 6 0 8 2 2 7 7 0 1 1 M T ) 0 0 0 0 0 3 5 0 0 . . . . . . . . . 3 / 3 . F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 m 0 2 0 2 . 1 . I . . . . . . . . . . . . . . 0 2 3 2 2 4 0 7 9 5 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T ) ( 1 0 0 r r . . A 1 6 0 1 2 3 1 1 2 4 4 3 9 7 9 0 a a a d U 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 0 t 3 2 L 0 6 8 6 6 2 5 2 1 4 3 5 8 4 0 7 9 5 6 8 7 8 0 0 8 5 1 5 ’ M P S O O ( P e P u P s r N r N p / i I p I M c p i P t e a r ( a 1 p 0 i C ( s / M T ) 6 0 4 : N e w l y I n d u s t r i a l i z e d C o u n t r i e s F P - X R N I / C P I N I 6 0 5 S M P L 1 9 6 9 - 1 9 8 3 1 5 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C W N I 0 . 0 4 3 3 2 3 0 . 0 0 2 7 0 0 0 0 . 0 4 9 3 5 1 0 0 . 0 3 9 8 5 0 8 P C D W S U 0 . 0 0 6 6 3 2 0 . 0 0 1 3 9 4 4 0 . 0 0 9 6 3 0 9 0 . 0 0 4 9 6 7 7 W P N I 1 . 8 6 1 2 1 9 5 0 . 6 1 6 5 3 3 0 3 . 5 8 2 1 9 9 0 1 . 3 4 7 8 9 8 0 P C D F S U 0 . 0 4 3 6 0 4 5 0 . 0 0 8 1 3 9 3 0 . 0 5 4 5 4 8 6 0 . 0 2 8 7 3 7 9 F P N I 1 . 5 4 3 6 1 8 0 . 3 9 8 6 8 6 0 2 . 4 7 6 3 8 9 0 1 . 0 6 2 4 6 1 0 8 . . " I I 1 . 3 . 8 . - . . 3 3 . . . C o v a r i a n c e C o r r e l a t i o n I l I n c a s s u n n s s x n : P C W N I , P C W N I 6 . 8 0 4 0 - 0 6 1 . 0 0 0 0 0 0 0 P C W N I , P C D W S U - 8 . 2 8 3 D - 0 7 - 0 . 2 3 5 7 2 8 6 P C W N I , W P N I - 0 . 0 0 0 4 7 2 5 - 0 . 3 0 4 1 1 9 7 P C W N I , P C D F S U - 1 . 2 9 9 D - 0 5 - 0 . 6 3 3 2 1 1 9 P C W N I , F P N I - 0 . 0 0 0 2 3 1 7 - 0 . 2 3 0 6 0 9 1 P C D N S U , P C D W S U 1 . 8 1 5 D - 0 6 1 . 0 0 0 0 0 0 0 P C D W S U , W P N I - 0 . 0 0 0 3 8 3 1 - 0 . 4 7 7 4 8 7 1 P C D W S U , P C D F S U 4 . 9 8 5 D — 0 7 0 . 0 4 7 0 6 2 4 P C D W S U , F P N I - 0 . 0 0 0 1 4 2 0 - 0 . 2 7 3 7 4 0 9 N P N I , N P N I 0 . 3 5 4 7 7 2 1 1 . 0 0 0 0 0 0 0 W P N I , P C D F S U 0 . 0 0 2 2 8 8 7 0 . 4 8 8 6 4 9 8 W P N I , F P N I 0 . 2 1 2 3 3 7 8 0 . 9 2 5 5 5 7 0 P C D F S U , P C D F S U 6 . 1 8 3 D - 0 5 1 . 0 0 0 0 0 0 0 P C D F S U , F P N I 0 . 0 0 1 6 5 3 6 0 . 5 4 5 9 6 5 2 F P N I , F P N I 0 . 1 4 8 3 5 3 8 1 . 0 0 0 0 0 0 0 3 1 8 1 4 ' ! r i C 2 1 ” ( v ¢ r > C > 1 C 3 > C 3 1 0 1 4 * i r l C 1 2 1 U 3 3 3 I T U U ' U V ' U I ' U - ! 2 3 ' j l l j l l l J l l I J C > C > C > 1 “ 0 0 7 5 7 2 4 0 4 3 5 7 3 2 2 F i g u r e I . S . a & b . 5 3 1 7 6 9 9 1 * $ 5 9 1 1 5 9 9 1 L 4 5 9 1 “ . 7 3 2 . 0 2 3 5 3 6 . . 8 9 5 4 2 5 . 3 9 3 . . 7 8 0 . 0 5 7 2 8 6 . 6 0 6 1 1 . 7 9 1 8 1 3 5 1 a . . . . 3 1 7 9 J 2 5 3 7 3 9 9 1 — — — — — _ . _ — _ _ _ _ 1 3 ‘ 7 a 7 3 7 4 7 s ’ 1 6 7 7 7 9 7 7 a s 7 1 a R E G I O N A L M O D E L S I H U L A T I O N 3 3 1 3 1 5 5 4 7 0 3 4 7 T A I L J L L 7 8 7 3 7 7 7 3 7 8 3 6 3 1 3 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D W h e a t E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 3 3 8 4 _ A A A _ A “ ‘ . _ A _ - . h - M _ A . 3 W S 2 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 R 8 A D L P I P W h M 3 S - u d . o e P L O / u q b . j s r 8 g a t b / s u i 1 s V t a n o i e D A P k P W e r f - 1 r E e R C C P a d o W 9 v p I C D r R N d a l n d i 1 t n B S D - s g h 6 e A W a e i I t G R * 4 : n n d L U P s i r o o R 4 : : : : : : : 1 : : s : : : : : z : : : : C N C P D D R E W G P S D E U P N I N D E N T 8 = 8 o e E q e e o * 4 D G R R c 3 i E . 4 . . 8 r O 0 3 0 0 S t o 1 V 9 a C - d n t . e o a r i t s t a s s i d u a l g - n n s u d s * * * 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 1 i N 1 1 t I I / I 4 * i ( A C I n ' * * N s R I E V m P e a S e A N l l < W o e e D M T ) 1 0 2 1 T e e T . . . e e r . - 2 3 0 n n e 8 S 0 6 7 d d d 7 i 0 - e e u I 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 B 0 1 3 5 5 p p a c 0 D 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 U 1 0 0 0 - 1 0 1 0 0 1 2 0 0 1 1 0 0 - - 0 1 0 8 0 2 4 1 A 8 0 0 4 9 8 6 1 7 0 3 3 3 9 1 4 0 0 1 1 1 L 3 5 2 8 9 6 2 9 7 7 3 8 3 7 6 5 5 0 4 5 a a p i t P I 8 7 2 5 0 0 0 1 1 4 : k s b F 0 . 3 0 l I 5 6 0 0 e C 9 0 9 9 l o t F 0 1 9 0 a F 4 4 4 c - B P C c l L I o ) E L W m W S N h e h E 8 8 7 5 . e i . . 2 . : : : : : : : : : : : : : : : : : : : z : : e + I e a W 1 6 0 7 7 r C P 0 0 1 4 2 C 7 1 1 1 3 N 3 5 s 2 7 0 6 7 0 5 T 1 5 0 9 . 4 P r O a P / a t W e P t S R P P E 4 6 0 2 9 S * N p i t a ( 1 0 0 S T 0 0 6 0 D . . . 4 . 0 1 . 0 0 8 7 0 E 1 3 8 0 F M S S T R 8 9 9 5 e u . - P 1 5 1 R m 7 a s D E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 o 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 O 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 y / t P a u O r C p N i a I p I c p l ) e i O 3 6 1 0 n t . b 6 7 8 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 8 8 R 7 5 3 7 a o 1 1 1 s 2 3 4 5 6 7 9 8 0 2 3 4 5 6 7 8 9 0 2 3 o o f t f f i - R - - - - — - - - - - - P e P r N I ( 5 / M 0 T d d q t s s 0 E 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 0 C . S . . . . . . . . . . . . . . . . . . . . . . ) A T . 2 - T 7 5 5 n n 5 r 7 8 6 0 e t t A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 3 3 . . . 8 s C . . . . . . . . . . . . . . . . . . . . ( 0 0 5 5 i v v T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a a d U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r r A 1 1 1 1 1 2 5 5 6 4 4 5 5 5 1 6 6 5 3 7 4 4 5 6 6 L 2 0 1 1 6 5 8 2 7 3 1 4 3 8 2 7 4 1 2 7 9 3 . 4 5 3 0 6 9 8 1 5 9 9 6 3 4 2 5 3 7 6 8 5 7 1 0 0 0 M . I G . 2 0 - 6 E 2 2 0 1 1 3 2 2 5 6 4 2 5 4 6 5 4 6 6 5 5 5 5 4 4 0 5 D 0 0 8 6 9 6 6 4 7 3 9 9 0 6 2 5 7 2 2 3 2 5 5 7 6 5 9 5 8 9 9 3 4 2 7 0 0 5 0 8 9 4 3 5 1 8 2 3 6 7 A 0 0 0 0 0 0 2 1 1 9 / I . . . . . . . 2 F 0 0 0 0 0 0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 0 4 0 7 4 2 D 1 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 7 0 0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 2 L 0 0 0 0 0 0 3 I . . . . . . . ) . . . . . . . . . . . . . . . . 6 0 3 ' 7 N e w l y I n d u s t r i a l i z e d C o u n t r i e s W P * X R N I / C P I N I 6 C H 3 W P N I , W P N I 0 . 2 3 5 2 7 0 3 S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s N e a n S . D . M a x i m u m M i n i m u m P C W E S 0 . 0 0 4 2 4 7 1 0 . 0 0 2 0 4 6 1 0 . 0 0 7 1 2 9 7 0 . 0 0 1 0 3 1 3 P C D W S U 0 . 0 0 6 1 5 4 2 0 . 0 0 1 3 7 4 1 0 . 0 0 9 6 3 0 9 0 . 0 0 3 9 9 5 2 P C R G D P 8 . 0 3 4 0 - 0 6 3 . 6 5 7 D - 0 6 1 . 4 3 0 0 - 0 5 4 . 1 0 8 D - 0 6 W P N I 1 . 8 4 1 0 5 4 8 0 . 4 9 5 9 4 7 9 3 . 5 8 2 1 9 9 0 1 . 3 4 7 8 9 8 0 C o v a r i a n c e C o r r e l a t i o n P C W E S , P C W E S 4 . 0 0 4 D - 0 6 1 . 0 0 0 0 0 0 0 P C W E S , P C D W S U 1 . 6 1 4 0 - 0 6 0 . 6 0 0 2 6 9 2 P C W E S , P C R G D P 4 . 6 0 2 0 - 0 9 0 . 6 4 2 9 4 9 3 P C W E S , W P N I - 7 . 3 9 4 D - 0 5 - 0 . 0 7 6 1 8 0 5 P C D W S U , P C D W S U 1 . 8 0 6 D - 0 6 1 . 0 0 0 0 0 0 0 P C D W S U , P C R G D P 4 . 7 6 5 0 - 1 0 0 . 0 9 9 1 3 2 0 P C D W S U , W P N I - 0 . 0 0 0 2 4 0 1 - 0 . 3 6 8 3 0 4 4 P C R G D P , P C R G D P 1 . 2 7 9 D - 1 1 1 . 0 0 0 0 0 0 0 P C R G D P , W P N I - 2 . 2 1 3 D - 0 7 - 0 . 1 2 7 5 6 2 6 1 . 0 0 0 0 0 0 0 6 0 9 2 2 5 0 7 7 1 0 0 0 M E T T O N S R E G I O N A L N O D E L S I H U L A T I O N M I L 1 . 9 3 5 . I L 1 . 3 3 0 : ' ‘ I 1 . 7 7 3 1 « O ' 4 N 1 . 5 0 9 : 1 L 5 3 4 - 3 H 1 . 4 5 9 ' : E 1 . 3 5 3 - ) : 1 . 1 4 3 . I T 1 . 0 3 7 I V ‘ 4 ’ « 0 . N ’ 7 5 7 3 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e I . 6 . a & b . C o a r s e G r a i n P r o d u c t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s » 1 0 0 0 : : 1 1 1 0 1 — a m m o c H 8 6 4 6 6 A 6 0 7 0 T 2 7 4 7 6 7 0 0 0 0 2 7 3 7 3 7 7 7 3 7 3 3 6 3 1 3 5 3 5 3 4 1 1 0 0 1 0 0 0 9 0 0 8 0 0 7 0 0 1 6 0 0 * 5 0 0 * 4 3 3 . 3 0 0 7 3 1 4 9 4 m t n : : > - 4 c > m : n 0 < D C > 2 5 . 7 7 8 . . 8 2 5 5 8 4 . 8 3 5 . 5 8 9 . 5 4 2 . . 8 7 5 4 4 7 . 4 0 0 . 3 2 5 9 7 5 2 7 5 9 2 5 5 7 5 2 2 5 1 7 5 ~ 6 1 0 . . . . . . . . ’ O I O I O Q 1 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e I . 7 . a & b . C o a r s e G r a i n H a r v e s t e d A r e a - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 1 1 N e w l y I n d u s t r i a l i z e d C o u n t r i e s C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t 1 9 8 3 V a r i a b l e i s F H A N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 2 0 4 6 . 0 0 8 0 7 3 7 . 6 8 0 7 ? 2 . 7 7 3 5 6 8 4 0 . 0 1 5 F H A N I ( - 1 ) 0 . 3 2 0 1 1 4 5 0 . 2 0 3 6 0 2 8 1 . 5 7 2 2 4 9 4 0 . 1 3 8 F R N I 4 ( - 1 ) 8 7 . 0 0 9 9 1 6 4 3 . 2 6 2 8 1 0 2 . 0 1 1 1 9 4 3 0 . 0 6 4 W R N I 4 ( - 1 ) - 1 8 . 1 7 9 6 8 6 2 3 . 5 8 9 2 7 8 - 0 . 7 7 0 6 7 5 8 0 . 4 5 4 F E S N I ( - 1 ) - 0 . 0 7 6 3 1 0 4 0 . 0 4 4 6 7 8 6 - 1 . 7 0 7 9 8 3 6 . 1 1 0 Y E A R - 2 2 . 4 4 3 2 3 3 8 . 6 5 8 7 8 2 9 - 2 . 5 9 1 9 6 1 6 0 . 0 2 1 R - s q u a r e d 0 . 9 6 2 5 1 3 H e a n o f d e p e n d e n t v a r 7 3 4 . 4 0 0 0 A d j u s t e d R - s q u a r e d 0 . 9 4 9 1 2 5 S . D . o f d e p e n d e n t v a r 2 1 0 . 1 9 0 7 S . E . o f r e g r e s s i o n 4 7 . 4 0 9 7 7 S u m o f s q u a r e d r e s i d 3 1 4 6 7 . 6 1 D u r b i n - W a t s o n s t a t 2 . 6 2 9 5 2 4 F - s t a t i s t i : 7 1 . 8 9 2 1 7 L o g l i k e l i h o o d - 1 0 1 . 9 8 8 6 J P : 7 7 2 0 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 : * 1 : 1 1 9 6 4 - 3 7 . 9 2 8 7 . 9 6 9 . 0 0 0 1 0 0 6 . 9 3 1 : 1 s : 1 1 9 6 5 4 0 . 4 9 7 3 . 1 0 3 3 . 0 0 9 9 2 . 5 0 3 1 * : 1 : 1 1 9 6 6 ~ 4 9 . 9 0 5 3 . 9 4 9 . 0 0 0 9 9 8 . 9 0 5 1 : 1 * : 1 1 9 6 7 1 7 . 8 8 2 4 9 6 2 . 0 0 0 9 4 4 . 1 1 8 1 : 1 1 * 1 1 9 6 8 5 3 . 5 6 7 7 9 5 1 . 0 0 0 8 9 7 . 4 3 2 1 : * 1 : 1 1 9 6 9 - 7 . 1 1 6 0 6 8 8 0 . 0 0 0 8 8 7 . 1 1 6 1 s : 1 : 1 1 9 7 0 — 4 9 . 0 1 4 2 _ 8 1 3 . 0 0 0 8 6 2 . 0 1 4 1 : * 1 : 1 1 9 7 1 - 4 . 6 2 4 1 2 8 2 3 . 0 0 0 8 2 7 . 6 2 4 1 : 1 * : 1 1 9 7 2 ' 2 0 . 3 8 8 8 7 7 1 . 0 0 0 7 5 0 . 6 1 1 1 : 1 4 : 1 1 9 7 3 1 1 . 4 9 6 5 8 1 4 . 0 0 0 8 0 2 . 5 0 3 1 : 1 e : 1 1 9 7 4 8 . 6 2 4 5 5 8 2 4 . 0 0 0 8 1 5 . 3 7 5 1 : 1 : i 1 1 9 7 5 6 2 . 7 6 6 8 8 5 0 . 0 0 0 7 8 7 . 2 3 3 1 s : 1 : 1 1 9 7 6 - 8 5 . 8 3 3 0 6 3 4 . 0 0 0 7 1 9 . 8 3 3 1 : 1 : s 1 1 9 7 7 6 4 . 9 9 4 3 6 5 7 . 0 0 0 5 9 2 . 0 0 6 1 : 1 4 : 1 1 9 7 8 1 7 . 8 8 1 2 5 7 6 . 0 0 0 5 5 8 . 1 1 9 1 : * 1 : 1 1 9 7 9 - 2 3 . 3 8 5 9 4 5 5 . 0 0 0 4 7 8 . 3 8 6 1 : s 1 : 1 1 9 8 0 - 2 5 . 0 5 4 6 4 3 2 . 0 0 0 ' 4 5 7 . 0 5 5 1 : 4 1 : 1 1 9 8 1 - 4 0 . 3 6 0 6 4 4 8 . 0 0 0 4 8 8 . 3 6 1 1 : * 1 : 1 1 9 8 2 - 5 . 3 6 0 0 8 4 1 5 . 0 0 0 4 2 0 . 3 6 0 1 : 1 * : 1 1 9 8 3 3 0 . 4 8 3 0 4 3 2 . 0 0 0 4 0 1 . 5 1 7 I N D E P E N D E N T V A R I A B L E S F H A N I = W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) F R N I 4 8 C o a r s e G r a i n R e v e n u e P e r H e c t a r e ( F Y N I ( ~ 3 ) + F Y N I ( - 2 ) * F Y N I ( - 1 ) + F Y N I ) / 4 * F P I X R N I / C P I N I W R N I 4 = W h e a t R e v e n u e P e r H e c t a r e < W Y N I < ~ 3 > + W Y N I ( - 2 ) * W Y N I ( - l ) + W Y N I ) / 4 * W P * X R N I / C P I N I F E S N I = C o a r s e G r a i n E n d i n g S t o c k s ( 1 0 0 0 M T ) Y E A R = 1 9 6 0 = 6 0 . 1 9 6 1 8 6 1 . . . . 6 1 2 S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A N I 7 3 4 . 4 0 0 0 0 2 1 0 . 1 9 0 7 4 1 0 3 3 . 0 0 0 0 4 1 5 . 0 0 0 0 0 F H A N I ( - 1 ) 7 5 8 . 7 5 0 0 0 2 0 1 . 3 3 7 0 8 1 0 3 3 . 0 0 0 0 4 1 5 . 0 0 0 0 0 F R N I 4 1 - l ) 3 . 1 3 8 1 3 0 5 0 . 8 4 1 4 4 2 2 5 . 1 5 9 8 1 6 0 2 . 0 2 7 5 5 1 0 W R N I 4 ( - 1 ) 4 . 2 4 4 4 9 1 4 1 . 2 1 9 7 9 8 7 8 . 0 1 6 7 5 9 0 2 . 9 7 3 0 3 7 0 F E S N I t - I ) 1 3 2 0 . 9 5 0 0 6 1 2 . 3 0 0 9 6 2 4 9 1 . 0 0 0 0 1 3 8 . 0 0 0 0 0 Y E A R 7 3 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 3 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n F H A N I , F H A N I 4 1 9 7 1 . 1 4 0 1 . 0 0 0 0 0 0 0 F H A N I , F H A N I ( - 1 ) 3 8 0 5 0 . 6 5 0 0 . 9 4 6 4 5 7 5 F H A N I , F R N I 4 ( - 1 ) - 4 6 . 9 7 1 2 6 7 - 0 . 2 7 9 5 5 7 3 F H A N I , W R N I 4 ( - 1 ) - 4 4 . 4 4 1 7 6 0 - 0 . 1 8 2 4 5 9 3 F H A N I , F E S N I ( - 1 ) - 8 1 I 6 4 . 8 8 0 - o . 3 3 3 3 4 4 o F H A N I , Y E A R - 1 1 2 7 . 4 0 0 0 - 0 . 9 5 4 3 4 8 1 F H A N I ( - 1 ) , F H A N I ( - 1 ) 3 8 5 0 9 . 7 8 7 1 . 0 0 0 0 0 0 0 F H A N I ( — 1 ) , F R N I 4 ( - 1 ) - 4 3 . 8 0 8 8 5 2 - 0 . 2 7 2 2 0 1 3 F H A N I ( - 1 ) , W R N I 4 ( - 1 ) . - 5 1 . 9 5 3 6 7 9 - 0 . 2 2 2 6 7 9 8 F H A N I ( - 1 ) , F E S N I ( - l ) - 6 3 9 8 9 . 5 1 2 - 0 . 5 4 6 3 8 2 1 F H A N I ( - 1 ) , Y E A R - 1 0 5 6 . 3 2 5 0 - 0 . 9 3 3 5 0 4 0 F R N I 4 ( - 1 ) , F R N I 4 ( - 1 ) 0 . 6 7 2 6 2 3 7 1 . 0 0 0 0 0 0 0 F R N I 4 ( - 1 ) , W R N I 4 ( - 1 ) 0 . 8 4 3 5 6 6 9 ' 0 . 8 6 5 1 3 4 3 F R N I 4 ( - 1 ) , F E S N I ( - 1 ) 3 3 1 . 1 0 8 9 8 0 . 6 7 6 4 8 4 9 F R N I 4 ( - 1 ) , Y E A R 2 . 2 6 6 5 8 5 8 0 . 4 7 9 2 8 1 0 W R N I 4 ( - 1 ) , W R N I 4 ( - 1 ) 1 . 4 1 3 5 1 3 3 1 . 0 0 0 0 0 0 0 W R N I 4 ( - 1 ) , F E S N I ( - 1 ) 2 6 5 . 3 3 2 5 3 0 . 3 7 3 9 5 0 2 W R N I 4 ( - 1 ) , Y E A R 2 . 4 6 2 4 1 1 0 0 . 3 5 9 1 8 2 2 F E S N I ( - 1 ) , F E S N I ( - 1 ) 3 5 6 1 6 6 . 8 5 1 . 0 0 0 0 0 0 0 F E S N I ( - 1 ) , Y E A R 2 5 6 1 . 4 7 5 0 0 . 7 4 4 3 3 3 5 Y E A R , Y E A R 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 0 4 # 0 0 # 6 1 3 N e w l y I n d u s t r i a l i z e d C o u n t r i e s C o a r s e G r a i n Y i e l d ( M e t r i c T o n s p e r H e c t a r e ) S H P L 1 9 6 0 - 1 9 8 3 2 4 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F Y N I u V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . W W ‘ . . . ‘ . 3 . . . . W C - 1 6 . 0 5 3 2 0 1 2 . 3 1 7 2 9 6 9 - 6 . 9 2 7 5 5 4 6 0 . 0 0 0 L O G T 4 . 2 5 0 1 1 2 6 0 . 5 4 3 1 9 0 6 7 . 8 2 4 3 4 8 7 0 . 0 0 0 . . . . . . “ I m m R - s e u a r e d 0 . 7 3 5 6 4 2 M e a n o f d e p e n d e n t v a r 2 . 0 7 3 4 0 6 A d j u s t e d R - s q u a r e d 0 . 7 2 3 6 2 6 S . D . o f d e p e n d e n t v a r 0 . 4 9 3 3 0 6 S . E . 0 9 r e g r e s s i o n 0 . 2 5 9 3 3 7 S u m o f s q u a r e d r e s i d 1 . 4 7 9 6 2 9 D u r b i n - W a t s o n s t a t 1 . 6 2 7 3 2 7 F - s t a t i s t i c 6 1 . 2 2 0 4 3 L o g l i k e l i h o o d - 0 . 6 1 9 3 7 9 ‘ I N D E P E N D E N T L O G T s * - - - : 1 - - 4 - - - - ¢ - - - - - - - - - 4 - - a 0 a fi * L n ( T I M E ) 1 " { - V A R I A B L E S 1 - - - . - - u - - - - u - - . . . . - - - . . - . . - - u . . - - - - - - . . - . - - . o o b s 1 9 6 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 R E S I D U A L 0 . 1 3 9 1 4 0 . 1 8 2 9 5 - 0 . 0 1 4 0 2 - 0 . 5 5 3 4 1 - 0 . 1 4 8 8 4 - 0 . 0 9 5 9 7 0 . 1 6 0 2 9 0 . 1 3 9 1 2 0 . 1 2 8 2 3 0 . 1 0 6 6 3 0 . 1 0 4 8 6 0 . 1 0 5 2 2 - 0 . 0 1 5 4 6 - 0 . 2 3 2 1 1 0 . 0 8 9 3 2 0 . 1 0 1 0 4 - 0 . 6 9 3 5 9 - 0 . 0 1 5 7 6 0 . 6 0 2 6 7 0 . 2 0 3 4 3 0 . 0 2 1 6 9 - 0 . 0 6 7 9 0 - 0 . 1 3 1 2 7 - 0 . 1 1 6 2 6 A C T U A L 1 . 4 3 7 5 7 1 . 6 0 1 4 2 1 . 4 7 3 5 6 1 . 0 0 2 1 3 1 . 4 7 3 6 8 1 . 5 9 2 4 5 1 . 9 1 5 5 9 1 . 9 5 6 3 4 2 . 0 0 3 4 1 2 . 0 4 8 8 6 2 . 1 0 3 2 4 2 . 1 6 8 8 9 2 . 1 0 7 6 5 1 . 9 4 9 6 3 2 . 5 2 3 3 3 2 . 3 9 7 6 5 1 . 6 5 9 3 1 2 . 3 9 2 6 9 3 . 0 6 5 9 7 2 . 7 2 0 3 3 2 . 5 9 2 5 9 2 . 5 5 5 3 0 2 . 5 4 4 5 3 2 . 6 1 1 1 1 R e s i d u a l P l p t F I T T E D 1 . 3 4 8 2 3 1 . 4 1 8 4 8 1 . 4 8 7 5 8 1 . 5 5 5 5 9 1 . 6 2 2 5 2 1 . 6 8 8 4 2 1 . 7 5 3 3 0 1 . 8 1 7 2 2 1 . 8 8 0 1 8 1 . 9 4 2 2 3 2 . 0 0 3 3 8 2 . 0 6 3 6 7 2 . 1 2 3 1 1 2 . 1 8 1 7 4 2 . 2 3 9 5 6 2 . 2 9 6 6 1 2 . 3 5 2 9 0 2 . 4 0 8 4 6 2 . 4 6 3 3 0 2 . 5 1 7 4 5 2 . 5 7 0 9 1 2 . 6 2 3 7 0 2 . 6 7 5 8 5 2 . 7 2 7 3 7 g i ! ‘ § § § ' § O O O O O O O . « 0 h 0 ¢ o o o . o P O D J . P D D J k n o c k h m . o o n o n o ¢ o . o P 0 0 4 6 H 2 > u O O O O O O O . « O A A N H N N . O H z > u 6 H z > u : . i i . . ' g i ' . c o w v d a e t t o u s u c a w t a > o u § - : " ' . ' : ' § : = ' g ' " : ' i l i § § § ' O D ¢ H ¢ O O . ¢ o o c m m « ¢ . ¢ m H D D 0 0 0 . 0 « a b o c o fl . ¢ P 0 0 4 O O A A N O O . A O N B O D O O . ” m n o m m o ¢ . o D Q O ¢ M B O . N u z > u § - ' : : ' § . ' u ' g 5 . . . . . . - i ' 5 . . . " 8 3 6 5 : “ : E d e w x fi z . o . m c o s : n e w t e m . i . . ' . " " ' . i ' . ! " ' l . " I . - " " " " . ' . " E : § ' : " 0 c 0 w 0 0 > i fl e n o e m H 0 0 “ I 0 0 0 “ J m t m 0 H 0 9 1 O > 3 C O : : m 1 ~ a > c z : m 3 s 9 7 1 ' 1 1 1 2 7 3 7 4 7 ‘ 5 7 6 7 7 7 9 7 9 1 3 a 1 3 2 3 3 6 1 5 1 2 0 0 0 F 1 1 9 8 0 1 1 9 0 0 0 4 R E G I O N A L M O D E L S I M U L A T I O N M I L 1 1 . 4 2 3 1 - / j 1 . . 1 0 . 3 0 5 ~ / 1 I 1 0 . 1 3 1 - - . 0 9 . 5 5 7 - I I N 3 . 3 3 2 - Z I 3 . 3 0 3 - I 1 1 " 7 . 5 3 4 - I I g T A N G : ‘ 1 5 . 4 3 5 - - ‘ ' 1 ' 5 . 3 1 2 - - I g 7 3 7 3 7 7 7 3 7 3 3 0 3 1 3 2 3 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — - E S T I M A T E D F i g u r e I . 8 . a & b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s “ * 0 0 0 : 3 1 : 1 3 ) " 0 2 0 . 1 : M H ! - 0 2 1 1 ( L A I I I L I L J A L L A F i g u r e I . 9 . a & b . C o a r s e G r a i n N e t I m p o r t s - N e w l y 2 0 1 4 1 - e r 6 1 6 1 5 1 1 4 1 1 1 8 9 9 9 1 } { 3 % 1 I t . . . . 4 . . . . . . . . “ M d ? " - . - . 2 1 : 1 1 1 ' ' 1 . 5 " I “ ; 1 i f 1 5 9 1 1 1 . x " 1 . . . a ' 1 j ‘ " w fi f fi . 3 2 5 9 1 1 I , “ “ ‘ 7 ' f r " i a t j ? 1 . j 5 9 7 a ' 1 1 ' 1 2 ' 1 3 7 4 . 7 5 ' 1 6 ' 1 7 ' 1 9 ' 1 9 3 0 3 1 ' 3 2 3 3 R E G I O N A L M O D E L S I M U L A T I O N 6 a s u e e q o e e . 1 1 ( 8 M 0 M U V F r r ‘ I r r I I I I ’ I - T I 7 3 7 3 . 7 7 7 3 7 3 3 0 3 1 3 2 3 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D 8 4 I n d u s t r i a l i z e d C o u n t r i e s . ” s . s e s s a - s s o t . . . - . - . - . u - s . o u u s s s a u fi u . . u u u o . . c 0 s e e u s e s e ‘ u u u u u — d u u n fi n u u 6 1 7 N e w l y I n d u s t r i a l i z e d C o u n t r i e s C o a r s e G r a i n N e t I m p o r t s P e r C a p i t a ( 1 0 0 0 M T ) S H P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s P C F N I n u m - V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . a - T A I L 5 1 8 . . . . - . 1 C - 0 . 0 8 8 6 8 4 8 0 . 0 1 0 9 1 0 6 - E . 6 a 9 0 7 4 3 0 . 0 1 6 P C R B D P 1 0 9 3 1 . 3 1 7 5 1 9 . 7 8 8 0 0 2 1 . 0 3 0 3 3 8 0 . 0 0 0 F P N I - 0 . 0 0 5 9 9 7 5 0 . 0 0 5 7 6 1 6 - 1 . 0 4 0 9 4 1 8 0 . 3 1 0 R - s q u a r e d 0 . 9 6 1 1 4 7 H e a n o f d e p e n d e n t v a r 0 . 0 4 9 9 6 3 A d J u s t e d R - s q u a r e d 0 . 9 5 7 2 6 2 S . D . o f d e p e n d e n t v a r 0 . 0 4 1 3 8 8 S . E . o f r e g r e s s i o n 0 . 0 0 8 5 5 6 S u m o f s q u a r e d r e s i d 0 . 0 0 1 4 6 4 D u r b i n - H a t s o n s t a t 1 . 7 6 6 1 9 8 F - s t a t i s t i e 2 4 7 . 3 8 3 6 L o g 1 1 1 4 8 1 1 1 1 0 0 6 7 3 . 4 7 6 9 5 T P E 5 / 2 3 W R e s i d u a l P l o t . . . . . . . . . . . . . . . . . o b s 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 ' 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 . . 0 fi 0 0 s 3 ‘ 0 3 0 u u u u u u u u u n u u u u n u u u u u u u u 0 0 o o o o o o o o o o R E S I D U A L 0 . 0 0 4 1 0 0 . 0 0 4 0 0 - 0 . 0 0 0 8 7 - 0 . 0 0 3 2 6 ~ 0 . 0 0 5 3 7 - 0 . 0 0 7 6 0 - 0 . 0 0 2 6 5 - 0 . 0 0 3 0 6 - 0 . 0 0 5 4 0 - 0 . 0 0 1 3 5 0 . 0 0 8 9 6 0 . 0 1 7 3 1 0 . 0 0 3 5 6 - 0 . 0 0 8 4 7 0 . 0 0 3 6 6 - 0 L 0 0 2 5 1 - 0 . 0 0 1 0 6 0 . 0 0 9 7 1 - 0 . 0 1 9 8 9 - 0 . 0 0 5 8 6 0 . 0 0 3 2 1 0 . 0 1 6 0 1 - 0 . 0 0 3 1 9 . . . . . 0 . 0 1 1 9 4 0 . 0 1 2 4 5 0 . 0 0 9 1 1 0 . 0 0 5 7 6 0 . 0 0 4 1 3 0 . 0 0 4 6 9 0 . 0 1 2 1 6 ' 0 . 0 1 5 0 3 0 . 0 1 8 6 0 0 . 0 2 5 0 6 0 . 0 4 0 3 1 0 . 0 4 9 4 0 0 . 0 4 5 9 6 0 . 0 4 0 6 1 0 . 0 5 5 6 3 0 . 0 6 6 2 3 0 . 0 3 1 2 1 0 . 1 0 3 3 2 0 . 0 9 1 0 2 0 . 0 9 3 4 3 0 . 1 0 9 7 3 0 . 1 2 6 7 4 0 . 1 1 6 4 9 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P N I / C P I N I / P O P N I F P N I = R e a l N I C C o a r s e G r a i n P r i c e F P 5 X R N I / C P I N I ( S / M T ) 0 . 0 0 7 8 3 F I T T E D 0 . 0 0 8 4 5 0 . 0 0 9 9 7 0 . 0 0 9 0 2 0 . 0 0 9 5 0 0 . 0 1 2 3 0 0 . 0 1 4 8 1 0 . 0 1 8 1 4 0 . 0 2 4 0 0 0 . 0 2 6 4 1 0 . 0 3 1 3 5 _ 0 . 0 3 2 1 0 0 . 0 4 2 3 9 0 . 0 4 9 0 9 0 . 0 5 1 9 8 0 . 0 6 8 7 9 0 . 0 8 2 2 6 0 . 0 9 8 6 1 0 . 1 1 0 9 1 0 . 1 0 4 2 8 0 . 1 0 6 5 7 0 . 1 1 0 7 3 0 . 1 1 9 6 8 S H P L 1 9 6 1 - 1 9 6 3 2 3 O b s e r v a t i o n s 8 8 3 . 3 3 8 2 ” . 6 1 8 S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F N I 0 . 0 4 9 9 6 3 5 0 . 0 4 1 3 8 8 1 0 . 1 2 6 7 4 0 9 0 . 0 0 4 1 3 3 0 P C R G D P 8 . 0 3 4 0 - 0 6 3 . 6 5 7 0 - 0 6 1 . 4 3 0 8 - 0 5 4 . 1 0 8 8 - 0 6 F P N I 1 . 5 3 0 1 0 0 1 0 . 3 2 9 9 1 5 8 2 . 4 7 6 3 8 9 0 1 . 0 6 2 4 6 1 0 a u u m u n m I . m u c u s - . . . . . . C o v a r i a n c e C o r r e l a t i o n P C F N I , P C F N I 0 . 0 0 1 6 3 8 5 1 . 0 0 0 0 0 0 0 P C F N I , P C R G D P 1 . 4 1 8 D - 0 7 0 . 9 7 9 3 0 7 2 P C F N I , F P N I - 0 . 0 0 4 1 7 0 8 - 0 . 3 1 9 3 3 1 3 P C R G D P , P C R B D P 1 . 2 7 9 0 - 1 1 1 . 0 0 0 0 0 0 0 P C R B D P , F P N I - 3 . 2 4 4 D - 0 7 - 0 . 2 8 1 1 1 9 0 F P N I , F P N I 0 . 1 0 4 1 1 2 1 1 . 0 0 0 0 0 0 0 a + o > c o ! : 1 " 6 ' % ' 3 ( 2 2 n I l i 4 F ‘ F ' F D ” 4 M 1 3 I ( 5 2 3 2 fl L O - O - f ‘ i r - " ‘ i r " l C 2 1 ” ( F i g u r e I . 1 0 . a 8 b . C o a r s e G r a i n E n d i n g S t o c k s - N e w l y 6 1 9 a 4 ' a s a s 7 9 ' 7 2 ' 7 4 ' 7 5 7 e ’ 7 9 9 7 R E G I O N A L M O D E L S I M U L A T I O N . 4 2 5 . 2 9 4 t - . 1 3 3 i . 0 3 1 E . 7 8 8 . 6 3 7 . 3 7 4 . 2 4 3 7 5 7 6 7 7 7 3 7 9 3 0 3 % 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L * - - E S T I M A T E D I n d u s t r i a l i z e d C o u n t r i e s 6 2 0 N e w l y I n d u s t r i a l i z e d C o u n t r i e s P e r C a p i t a C o a r s e G r a i n E n d i n g S t o c k s ( 1 0 0 0 M T ) S H P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C F E S 8 : 8 8 " : ‘ V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . s c u m - m m " : I h a s n ‘ t - u n n a s C - 0 . 0 1 9 6 5 5 7 0 . 0 0 2 9 8 4 2 - 6 . 5 8 6 6 5 5 0 0 . 0 0 0 P C D F S U 0 . 7 2 6 7 6 5 3 0 . 0 6 8 2 9 9 3 1 0 . 6 4 0 8 8 5 0 . 0 0 0 P C R B D P 1 0 1 0 . 9 5 0 5 1 7 1 . 4 9 5 5 4 5 . 8 9 4 9 0 8 4 0 . 0 0 0 ” S M B I I S B B B . . . . . 8 . . . 3 R - s q u a r e d 0 . 8 9 2 9 9 5 M e a n o f d e p e n d e n t v a r 0 . 0 1 7 8 3 3 A d j u s t e d R - s q u a r e d 0 . 8 8 2 2 9 4 S . D . o f d e p e n d e n t v a r 0 . 0 0 8 5 0 3 S . E . o f r e g r e s s i o n 0 . 0 0 2 9 1 7 S u m o f s q u a r e d r e s i d 0 . 0 0 0 1 7 0 D u r b i n - w a t s o n s t a t 1 . 5 6 1 0 5 4 F - s t a t i s t i c 8 3 . 4 5 3 3 6 L o g l i k e l i h o o d 1 0 3 . 2 2 6 5 T P E 2 ’ 2 3 “ s u m a c - u n u s u a s x a l 3 8 8 m : 3 8 3 8 8 8 . 8 8 8 8 m 8 8 8 . 8 8 . . . I 3 2 8 3 3 8 : = = = = = = = = = = 3 = = = = = = 8 = = = = = s R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D H 1 1 * 1 1 1 1 9 6 1 - 0 . 0 0 1 4 8 0 . 0 0 3 5 4 0 . 0 0 5 0 1 1 1 1 * 1 1 1 9 6 2 0 . 0 0 0 6 0 0 . 0 0 5 8 4 0 . 0 0 5 2 4 1 1 1 * 1 1 1 9 6 3 0 . 0 0 1 0 8 0 . 0 0 2 6 1 0 . 0 0 1 5 3 1 1 1 * 1 1 1 9 6 4 0 . 0 0 2 2 1 0 . 0 0 7 8 4 0 . 0 0 5 6 3 1 1 * 1 1 1 1 9 6 5 - 0 . 0 0 2 2 5 0 . 0 0 9 5 2 0 . 0 1 1 7 7 1 * 1 1 1 1 1 9 6 6 ~ 0 . 0 0 3 6 0 0 . 0 1 1 3 5 0 . 0 1 4 9 5 1 1 * 1 1 1 1 9 6 7 - 0 . 0 0 1 8 9 0 . 0 1 4 4 0 0 . 0 1 6 2 9 1 * 1 1 1 1 1 9 6 8 - 0 . 0 0 3 7 0 0 . 0 1 4 9 5 0 . 0 1 8 6 4 1 1 * 1 1 1 9 6 9 0 . 0 0 0 1 6 0 . 0 1 7 8 4 ‘ 0 . 0 1 7 6 8 1 1 * 1 1 1 1 9 7 0 - 0 . 0 0 0 5 5 0 . 0 1 8 0 8 0 . 0 1 8 6 3 1 1 1 * 1 1 1 9 7 1 0 . 0 0 2 6 1 0 . 0 2 2 0 9 0 . 0 1 9 4 9 1 1 1 1 * 1 1 9 7 2 0 . 0 0 3 3 4 0 . 0 2 4 0 1 0 . 0 2 0 6 7 1 1 1 1 * 1 1 9 7 3 0 . 0 0 3 4 8 0 . 0 2 6 0 1 0 . 0 2 2 5 3 1 1 * 1 1 1 1 9 7 4 - 0 . 0 0 1 6 9 0 . 0 2 5 8 9 0 . 0 2 7 5 9 1 1 1 * 1 1 1 9 7 5 0 . 0 0 0 7 4 0 . 0 2 9 2 3 0 . 0 2 8 4 9 1 1 1 1 * 1 1 9 7 6 0 . 0 0 3 8 7 0 . 0 2 5 5 9 0 . 0 2 1 7 2 1 1 1 * 1 1 9 7 7 0 . 0 0 3 2 0 0 . 0 2 8 5 8 0 . 0 2 5 3 8 1 1 1 * 1 1 9 7 8 0 . 0 0 3 0 5 0 . 0 3 3 6 7 0 . 0 3 0 6 3 1 * . 1 1 1 1 1 9 7 9 - 0 . 0 0 7 4 7 0 . 0 2 2 2 3 0 . 0 2 9 7 0 1 1 * 1 1 1 1 9 8 0 - 0 . 0 0 0 4 3 0 . 0 1 9 4 1 0 . 0 1 9 8 3 1 1 * 1 1 1 1 9 8 1 - 0 . 0 0 1 4 5 0 . 0 1 6 4 3 0 . 0 1 7 8 7 1 1 * 1 1 1 9 8 2 - 7 . 8 D - 0 5 0 . 0 1 5 1 2 0 . 0 1 5 2 0 1 1 1 * 1 1 1 9 8 3 0 . 0 0 0 2 5 0 . 0 1 5 9 4 0 . 0 1 5 6 9 I N D E P E N D E N T V A R I A B L E S P C D F S U = D o n s e t i c C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( F E S N I ( - l ) + F P R O N I ) / P O P N I P C R G D P = R e a l I n c o m e P e r C a p i t a G D P N I / C P I N I / P O P N I 6 2 1 S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m r s u a n a u c u n c u s u u n s . . - - - . . P C F E S 0 . 0 1 7 8 3 3 2 0 . 0 0 8 5 0 2 6 0 . 0 3 3 6 7 3 1 0 . 0 0 2 6 1 2 9 P C D F S U 0 . 0 4 0 4 0 7 4 0 . 0 0 9 1 8 2 4 0 . 0 5 4 5 4 8 6 0 . 0 2 3 1 1 8 9 P C R G D P 8 . 0 3 4 D - 0 6 3 . 6 5 7 D - 0 6 1 . 4 3 0 D - 0 5 4 . 1 0 8 D - 0 6 a s s - m m r m n n a - u s a n u n s u s u m “ . C o v a r i a n c e C o r r e l a t i o n m a s n m c a - l H l a s a g n a - 2 3 3 3 . “ - . . - P C F E S , P C F E S 6 . 9 1 5 D - 0 5 1 . 0 0 0 0 0 0 0 P C F E S , P C D F S U 6 . 2 8 0 0 - 0 5 0 . 8 4 0 8 7 6 6 P C F E S , P C R G D P . 1 . 5 9 4 D - 0 8 0 . 5 3 5 9 0 3 9 P C D F S U , P C D F S U 8 . 0 6 5 D - 0 5 1 . 0 0 0 0 0 0 0 P C D F S U , P C R G D P 4 . 1 3 7 D - 0 9 0 . 1 2 8 8 0 5 8 P C R B D P , P C R G D P 1 . 2 7 9 D - 1 1 1 . 0 0 0 0 0 0 0 - . . - I I . . . ” I H > C D < O 1 1 m a ~ I r J C I Z I U » 3 1 ) ( > C > C 3 1 8 1 4 ' ! r i C : : 0 ( L L I | 1 1 1 1 1 1 1 1 \ 1 ; 1 6 5 1 7 6 7 7 7 3 7 9 3 0 3 % 3 1 3 3 F i g u r e I . l l . a 8 b . S o y b e a n P r o d u c t i o n - N e w l y 2 7 1 2 5 4 8 8 . 3 7 0 . 3 5 3 . 3 3 7 . 3 2 0 . 3 0 4 . 2 8 7 . 2 3 8 . 8 2 3 3 3 7 8 5 2 3 8 7 8 8 2 . 3 9 7 . 9 1 2 ' 4 2 7 - 7 9 3 ’ 6 2 2 7 3 7 4 ' I 7 5 7 6 7 ? R E G I O N A L M O D E L S I M U L A T I O N 7 5 m 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D I n d u s t r i a l i z e d C o u n t r i e s » ) C 3 1 0 : I fl l ) ( 1 - b 3 1 2 n u n ( P > C D ‘ O n : n t ) ( 4 ~ > 3 1 9 1 3 1 u l 5 8 5 . 8 5 8 1 ' . . . . . . . J r l l I L fi i L i F i g u r e I . 1 2 . a 8 b . S o y b e a n H a r v e s t e d A r e a - N e w l y 2 9 1 2 2 7 3 0 3 . . 2 8 4 b 2 7 8 . 2 8 5 . 2 5 3 . 2 4 0 . . 8 7 8 2 1 4 . 2 0 2 . 1 8 9 . 6 2 3 7 3 7 4 7 3 7 1 7 7 7 e 7 9 s o 7 1 7 2 7 3 R E G I O N A L M O D E L S I M U L A T I O N 9 8 1 5 4 7 8 2 9 1 1 2 3 9 5 l l I L J L l l l l l J l 9 8 1 2 4 4 5 2 8 7 3 7 3 , 7 7 7 3 7 3 3 0 3 % 3 3 3 3 3 4 E X 5 P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 - - - E S T I M A T E D I n d u s t r i a l i z e d C o u n t r i e s 6 2 4 N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S H A N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 2 7 4 2 . 0 5 2 5 6 3 9 . 1 7 3 7 5 4 . 2 8 9 9 9 5 5 , 0 . 0 0 1 S H A N I ( - 1 ) 0 . 3 6 0 4 8 5 7 0 . 1 6 4 8 7 5 1 2 . 1 8 6 4 1 6 1 0 . 0 4 5 L O G T - 6 0 5 . 9 5 3 6 3 1 4 0 . 7 3 9 0 0 - 4 . 3 0 5 5 1 3 4 0 . 0 0 1 S R N I ( - 1 ) 1 4 . 5 7 6 3 2 7 5 . 1 8 2 5 6 8 2 2 . 8 1 2 5 6 8 2 0 . 0 1 3 R - s q u a r e d 0 . 9 4 0 4 8 7 M e a n 0 * d e p e n d e n t v a r 2 9 1 . 5 2 6 3 A d j u s t e d R - s q u a r e d 0 . 9 2 8 5 8 4 S . D . o f d e p e n d e n t v a r 6 1 . 9 2 3 2 2 S . E . o f r e g r e s s i o n 1 6 . 5 4 8 1 9 S u m o 4 s q u a r e d r e s i d 4 1 0 7 . 6 3 8 D u r b i n - w a t s o n s t a t . 1 . 8 5 9 0 5 2 F e s t a t i s t i c . 7 9 . 0 1 5 1 1 L o g 1 1 k e l i h o o d - 7 3 . 0 3 3 3 9 T P E 3 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 ' * 1 1 1 1 9 6 5 - 4 . 2 7 1 7 9 3 5 9 . 0 0 0 3 6 3 . 2 7 2 1 3 1 1 1 1 1 9 6 6 - 3 9 . 2 0 8 9 3 2 8 . 0 0 0 3 6 7 . 2 0 9 1 1 1 * 1 1 1 9 6 7 1 2 . 8 5 1 7 3 6 0 . 0 0 0 3 4 7 . 1 4 8 1 1 1 * 1 1 1 9 6 8 1 2 . 3 3 0 6 3 5 9 . 0 0 0 3 4 6 . 6 6 9 1 1 1 * 1 1 1 9 6 9 1 0 . 8 5 2 8 3 4 8 . 0 0 0 3 3 7 . 1 4 7 1 1 1 * 1 1 1 9 7 0 9 . 8 8 6 0 2 3 3 5 . 0 0 0 3 2 5 . 1 1 4 1 1 * 1 1 1 1 9 7 1 - 6 . 0 5 9 9 7 3 1 1 . 0 0 0 3 1 7 . 0 6 0 1 _ 1 1 0 1 1 1 9 7 2 1 4 . 0 5 4 9 3 1 8 . 0 0 0 3 0 3 . 9 4 5 1 1 1 1 * 1 1 9 7 3 2 0 . 1 0 8 6 3 5 6 . 0 0 0 3 3 5 . 8 9 1 1 1 * 1 1 1 1 9 7 4 - 6 . 3 3 1 4 0 3 2 7 . 0 0 0 3 3 3 . 3 3 1 1 1 1 * 1 1 1 9 7 5 3 . 5 4 6 9 4 3 1 0 . 0 0 0 3 0 6 . 4 5 3 1 1 i 1 1 1 1 9 7 6 - 4 . 8 3 5 6 7 2 7 7 . 0 0 0 2 8 1 . 8 3 6 1 1 * 1 1 1 1 9 7 7 - 4 . 7 1 6 9 4 2 7 5 . 0 0 0 2 7 9 . 7 1 7 1 1 1 * 1 ’ 1 1 9 7 8 8 . 0 6 2 4 1 2 6 6 . 0 0 0 2 5 7 . 9 3 8 1 * 1 1 ' 1 1 1 9 7 9 - 2 7 . 0 8 5 3 2 2 2 . 0 0 0 2 4 9 . 0 8 5 1 * 1 1 1 1 1 9 8 0 - 1 7 . 0 1 9 1 1 9 8 . 0 0 0 2 1 5 . 0 1 9 1 1 1 * 1 1 1 9 8 1 4 . 3 1 2 4 8 2 1 0 . 0 0 0 2 0 5 . 6 8 8 1 1 * 1 1 1 9 8 2 0 . 2 7 6 2 5 1 9 1 . 0 0 0 1 9 0 . 7 2 4 1 1 1 * 1 1 1 9 8 3 1 3 . 2 4 6 4 1 8 9 . 0 0 0 1 7 5 . 7 5 4 I N D E P E N D E N T V A R I A B L E S S H A N I S R N I 4 S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) S o y b e a n R e v e n u e p e r H e c t a r e ( S / H A ) ( F o r e c a s t S o y b e a n Y i e l d ) * S P / C P I N I L O G T l n < Y E A R ) 6 2 5 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m _ M i n i m u m S H A N I 2 9 1 . 5 2 6 3 2 6 1 . 9 2 3 2 2 2 3 6 0 . 0 0 0 0 0 1 8 9 . 0 0 0 0 0 S H A N I ( - 1 ) 2 9 9 . 1 5 7 8 9 5 7 . 3 5 1 9 9 6 3 6 0 . 0 0 0 0 0 1 9 1 . 0 0 0 0 0 L O G T 4 . 3 0 1 3 1 2 4 0 . 0 7 6 3 3 7 2 4 . 4 1 8 8 4 0 0 4 . 1 7 4 3 8 8 0 S R N I ( - 1 ) 3 . 2 9 4 9 0 0 9 1 . 0 4 0 4 0 4 4 5 . 4 2 1 4 1 5 0 2 . 0 7 8 8 9 1 0 C o v a r i a n c e C o r r e l a t i o n S H A N I , S H A N I 3 6 3 2 . 6 7 0 4 1 . 0 0 0 0 0 0 0 S H A N I , S H A N I ( - 1 ) 3 1 3 2 . 6 0 1 1 0 . 9 3 1 0 7 3 8 S H A N I , L O B T - 4 . 0 8 6 3 3 9 2 - 0 . 9 1 2 4 8 4 6 S H A N I , S R N I ( - 1 ) - 1 2 . 9 6 0 1 2 3 - 0 . 2 1 2 3 4 1 3 S H A N I ( - 1 ) , S H A N I ( - 1 ) 3 1 1 6 . 1 3 3 0 1 . 0 0 0 0 0 0 0 S H A N I ( - 1 ) , L O G T - 3 . 6 1 6 9 6 4 7 - 0 . 8 7 2 0 4 8 0 S H A N I ( - 1 ) , S R N I ( - 1 ) - 1 2 . 5 1 5 7 0 7 - 0 . 2 2 1 4 0 4 2 L O G T , L O G T ‘ 0 . 0 0 5 5 2 0 7 1 . 0 0 0 0 0 0 0 L O B T , S R N I ( - 1 ) 0 . 0 3 8 6 1 0 2 0 . 5 1 3 1 5 0 1 S R N I ( - 1 ) , S R N I ( - 1 ) 1 . 0 2 5 4 7 0 7 1 . 0 0 0 0 0 0 0 6 2 6 » N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y b e a n Y i e l d S M P L 1 9 6 4 - 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S Y N I 1 9 8 2 ( M e t r i c T o n s p e r H e c t a r e ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I S . C - 1 1 . 0 8 4 4 7 4 1 . 0 1 6 6 6 7 2 - 1 0 . 9 0 2 7 5 6 0 . 0 0 0 L O G T 2 . 8 2 1 4 8 8 8 0 . 2 3 7 0 7 9 7 1 1 . 9 0 1 0 1 2 0 . 0 0 0 R - s q u a r e d 0 . 8 9 2 8 3 5 M e a n o f d e p e n d e n t v a r 1 . 0 1 3 0 2 7 A d j u s t e d R - s q u a r e d 0 . 8 8 6 5 3 1 S . D . o f d e p e n d e n t v a r 0 . 2 3 1 0 9 2 S . E . o f r e g r e s s i o n 0 . 0 7 7 8 4 4 S u m o f s q u a r e d r e s i d 0 . 1 0 3 0 1 4 D u r b i n - N a t s o n s t a t 1 . 2 4 5 9 4 4 F - s t a t i s t i c 1 4 1 . 6 3 4 1 L o g l i k e l i h o o d 2 2 . 6 0 4 8 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 * 1 1 1 9 6 4 0 . 0 3 5 8 6 0 . 6 8 5 6 3 0 . 6 4 9 7 7 1 1 * 1 1 1 1 9 6 5 - 0 . 0 3 3 3 5 0 . 6 6 0 1 7 0 . 6 9 3 5 1 1 1 * 1 1 1 1 9 6 6 - 0 . 0 1 7 0 8 0 . 7 1 9 5 1 0 . 7 3 6 5 9 1 1 * 1 1 1 1 9 6 7 - 0 . 0 1 7 9 1 0 . 7 6 1 1 1 0 . 7 7 9 0 2 1 1 1 * 1 1 1 9 6 8 0 . 0 4 8 2 6 0 . 8 6 9 0 8 0 . 8 2 0 8 2 1 1 * 1 1 1 1 9 6 9 - 0 . 0 1 7 1 8 0 . 8 4 4 8 3 0 . 8 6 2 0 1 1 1 * 1 1 1 1 9 7 0 - 0 . 0 2 7 9 8 0 . 8 7 4 6 3 0 . 9 0 2 6 1 1 1 * 1 1 1 1 9 7 1 - 0 . 0 1 3 3 7 0 . 9 2 9 2 6 0 . 9 4 2 6 3 1 * 1 1 1 1 1 9 7 2 - 0 . 0 8 5 8 7 0 . 8 9 6 2 3 0 . 9 8 2 0 9 1 * 1 1 1 1 1 9 7 3 - 0 . 1 4 1 8 0 0 . 8 7 9 2 1 1 . 0 2 1 0 1 1 1 1 1 * 1 1 9 7 4 0 . 1 0 5 7 4 1 . 1 6 5 1 4 1 . 0 5 9 4 0 1 1 1 * 1 1 9 7 5 0 . 0 7 6 9 2 1 . 1 7 4 1 9 1 . 0 9 7 2 7 1 1 1 1 * 1 1 9 7 6 0 . 1 1 8 0 7 1 . 2 5 2 7 1 1 . 1 3 4 6 4 1 1 1 1 * 1 1 9 7 7 0 . 1 3 7 5 7 1 . 3 0 9 0 9 1 . 1 7 1 5 2 1 1 1 * 1 1 1 9 7 8 ‘ 0 . 0 1 3 8 7 1 . 2 2 1 8 0 1 . 2 0 7 9 3 1 1 1 * 1 1 1 9 7 9 0 . 0 3 0 9 0 1 . 2 7 4 7 8 1 . 2 4 3 8 8 1 * 1 1 1 1 1 9 8 0 - 0 . 1 0 7 6 5 1 . 1 7 1 7 2 1 . 2 7 9 3 7 1 1 * 1 1 1 1 9 8 1 - 0 . 0 3 3 4 6 1 . 2 8 0 9 5 1 . 3 1 4 4 2 1 * ' 1 1 1 1 9 8 2 - 0 . 0 7 1 5 5 1 . 2 7 7 4 9 1 . 3 4 9 0 3 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( Y E A R ) 0 N “ m a fi r m o o n I n o o n ” 0 o a u 0 1 < w n w o a u ' . ' i g u ' l l . . . : . ' . m u t w d u 3 0 p : m . o . 3 p x w a c a Z u a w a c a ' " I ' n ' a u g ' fl l i n . = - ' i " . ' . . . : ' § " . ' : : m < Z H » . 0 » u o m u u 0 . M u p o o u o p . u o o o o n o 0 . o o o p m u m F 0 0 4 & . N m u o u o u 0 . 0 u n o p w b . 6 0 0 V H o o b . » u m m m u o : g g ' l . - - " ' § - ' - i n o < t 1 w p d n o 1 n o s x e w p w w o a . . . . : § § " I " ' E " E : N ' £ § § . i : - i ' i m < z n . m < z n 0 . 0 0 0 u o n m p . 0 0 0 0 0 0 0 m < z ~ . r 0 0 4 0 . 0 » 0 0 0 0 0 0 . 0 6 6 m o o u r o m q . r o m d 0 . 0 0 0 0 0 6 » 0 . 0 0 0 0 0 0 0 : 1 m 9 ~ H J C Z S W 3 1 F 7 1 ” F 1 N F M D ( M ' I U ' 2 r “ ' I ' I ' I U . . . 3 1 " 5 - ‘ - . a . > c z : m ] 1 l 6 2 8 3 1 1 1 2 7 5 9 + 2 5 9 9 1 2 2 5 1 1 2 M 1 1 7 5 0 1 1 5 1 1 ' O < D C > P 1 9 7 7 1 9 1 8 1 9 7 9 1 9 9 9 1 9 9 1 1 9 1 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N . 5 5 5 - , . 3 9 5 - ' . 2 4 1 . 0 5 4 . 9 2 1 . 1 7 0 . 5 1 4 . 4 5 7 . 1 4 3 - ‘ 0 3 4 m U 1 5 v é - 7 ? 7 6 7 5 a b 8 % 8 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - — E S T I M A T E D F i g u r e 1 . 1 3 . 6 & b . S o y m e a l E q u i v a l e n t C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s H n > C D ( ? t ” a . p 0 f 4 > c z : m P > C D < O : : m 1 ~ e > c z : m 2 5 0 1 4 7 7 9 a 7 8 1 9 1 9 7 9 1 9 8 9 , 8 1 1 9 1 9 8 2 , 8 3 1 9 P ' \ | | | 0 | l l | 1 1 1 1 1 1 1 1 1 1 6 2 9 ~ 1 n ) : R E G I O N A L M O D E L S I M U L A T I O N \ 4 3 5 . 0 3 1 4 1 3 . 0 4 2 - 3 9 1 . 0 5 4 : 3 3 9 . 0 5 5 ; 3 4 7 . 0 7 3 : 3 2 5 . 0 3 3 E 2 3 1 . 1 1 1 ~ 2 5 9 . 1 2 2 * 2 3 7 . 1 3 4 - 8 4 O 0 ' 7 5 7 6 7 7 7 3 7 9 3 0 3 1 3 3 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e I . 1 4 . a & b . S o y o i l E q u i v a l e n t C o n s u m p t i o n - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 3 0 2 5 m 1 0 0 0 H E T T O N S 1 9 7 7 1 9 7 3 1 9 7 9 1 9 8 9 1 9 8 1 1 9 9 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N N I L L 2 . 3 6 2 L / I 2 . 1 9 1 - ' g , a ’ . 0 2 . 0 2 0 I I 3 N 1 . 3 4 9 I I I H 1 . 3 7 9 I I E L 5 0 0 : 2 . 1 . 1 . 3 3 7 f 2 1 1 . 1 3 3 - - - i - - 4 1 - . 9 9 5 » - . o . 3 2 4 E 3 l N . . . . . . . . T . s 7 5 7 3 7 7 7 3 7 9 3 0 3 1 3 2 3 3 3 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — - E S T I M A T E D F i g u r e I . l S . a & b . S o y m e a l E q u i v a l e n t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 3 1 N e w l y I n d u s t r i a l i z e d C o u n t r i e s P e r C a p i t a S o y a e a l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) S H P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P T S M N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C 0 . 0 1 3 0 0 3 0 0 . 0 0 3 8 8 9 0 3 . 3 4 3 4 9 9 1 0 . 0 0 5 P C R S D P 1 8 4 1 . 8 7 7 3 1 2 8 . 5 4 8 9 9 1 4 . 3 2 8 2 1 3 0 . 0 0 0 S P N I - 0 . 0 0 3 1 0 6 8 0 . 0 0 0 6 5 5 6 - 4 . 7 3 8 6 7 0 2 0 . 0 0 0 P C S H D S - 0 . 6 2 2 3 2 2 6 0 . 2 2 4 8 2 4 2 - 2 . 7 6 8 0 4 1 0 0 . 0 1 5 D V 7 2 0 . 0 0 5 5 9 8 2 ~ 0 . 0 0 2 2 8 4 0 2 . 4 5 1 0 8 4 5 0 . 0 2 8 R - s q u a r e d 0 . 9 6 2 2 9 9 M e a n o f d e p e n d e n t v a r 0 . 0 1 4 1 9 9 A d j u s t e d R - s q u a r e d 0 . 9 5 1 5 2 7 S . D . o f d e p e n d e n t v a r 0 . 0 0 7 7 5 8 S . E . o f r e g r e s s i o n 0 . 0 0 1 7 0 8 S u m o f s q u a r e d r e s i d 4 . 0 8 D - 0 5 D u r b i n - w a t s o n s t a t 1 . 8 1 0 1 9 9 F - s t a t i s t i c 8 9 . 3 3 5 9 1 L o g l i k e l i h o o d 9 7 . 0 1 3 4 5 T P E 2 1 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 e 1 1 1 9 6 5 0 . 0 0 0 6 2 0 . 0 0 2 9 2 0 . 0 0 2 3 0 1 1 e 1 1 1 9 6 6 0 . 0 0 0 1 1 0 . 0 0 5 8 9 0 . 0 0 5 7 8 1 1 1 * 1 1 1 9 6 7 0 . 0 0 0 3 4 0 . 0 0 5 8 7 0 . 0 0 5 5 3 1 1 * 1 1 1 1 9 6 8 - 0 . 0 0 0 6 7 0 . 0 0 7 3 1 0 . 0 0 7 9 8 1 1 3 1 1 1 9 6 9 - 5 . 7 D - 0 5 0 . 0 1 0 1 5 0 . 0 1 0 2 1 1 1 3 1 1 1 1 9 7 0 - 0 . 0 0 0 4 4 0 . 0 0 8 9 8 0 . 0 0 9 4 2 1 1 3 1 1 1 1 9 7 1 - 0 . 0 0 0 9 3 0 . 0 1 0 9 8 0 . 0 1 1 9 1 1 1 * 1 1 1 9 7 2 2 . 7 D - 1 8 0 . 0 0 9 5 7 0 . 0 0 9 5 7 1 1 * 1 1 1 1 9 7 3 - 0 . 0 0 0 1 7 0 . 0 0 8 3 2 0 . 0 0 8 4 8 1 1 1 * 1 1 1 9 7 4 0 . 0 0 1 1 4 0 . 0 1 2 7 2 0 . 0 1 1 5 8 1 1 1 * 1 1 9 7 5 0 . 0 0 1 8 6 0 . 0 1 4 0 6 0 . 0 1 2 2 0 1 1 3 1 1 1 1 9 7 6 - 0 . 0 0 0 5 7 0 . 0 1 2 0 2 0 . 0 1 2 6 0 1 * 1 1 1 1 1 9 7 7 - 0 . 0 0 2 1 2 0 . 0 1 6 8 9 0 . 0 1 9 0 0 1 1 1 e 1 1 9 7 8 0 . 0 0 1 7 1 0 . 0 2 2 4 9 0 . 0 2 0 7 8 1 3 1 1 1 1 1 9 7 9 - 0 . 0 0 3 9 1 0 . 0 1 8 9 9 0 . 0 2 2 9 0 1 1 3 1 1 1 1 9 8 0 - 0 . 0 0 1 3 5 0 . 0 2 1 7 7 0 . 0 2 3 1 2 1 1 1 * 1 1 1 9 8 1 0 . 0 0 0 1 9 0 . 0 2 4 4 7 0 . 0 2 4 2 9 1 1 1 1 9 1 1 9 8 2 0 . 0 0 2 4 2 0 . 0 2 8 5 8 0 . 0 2 6 1 5 1 1 1 e 1 1 9 8 3 0 . 0 0 1 8 3 0 . 0 2 7 8 0 0 . 0 2 5 9 7 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l G D P P e r C a p i t a G D P N I / C P I N I / P O P N I S P N I = R e a l N I C S o y b e a n P r i c e ( S I M T ) S P - X R N I / C P I N I P C S M D S = P e r C a p i t a D o m e s t i c S o y m e a l S u p p l y ( 1 0 0 0 M T ) ( ( S M E S N I ( - l ) + ( S E S N I ( - l ) + S P R O N I ) 9 . 7 9 5 > / P O P N I D V 7 2 = l I £ ( Y E A R . E 0 . 7 2 ) 0 O t h e r w i s e S M P L 1 9 6 5 - 1 9 O b s e r v a t i o n s s e n - u s u u n u n u s u s u u - a s a - " a u c n s a a s s g u n c s s m a s a s l s u u u u n u l n s 1 9 8 3 6 3 2 S e r i e s M e a n S . D . M a x i m u m M i n i m u m . I I P T S M N I 0 . 0 1 4 1 9 9 0 0 . 0 0 7 7 5 8 2 0 . 0 2 8 5 7 5 6 0 . 0 0 2 9 2 0 0 P C R G D P 8 . 8 3 0 D — 0 6 3 . 5 3 5 D - 0 6 1 . 4 3 0 D - 0 5 4 . 4 3 7 D - 0 6 S P N I 3 . 2 5 0 8 0 7 7 0 . 8 5 9 2 5 4 5 5 . 5 2 0 2 7 3 0 2 . 1 5 9 2 9 9 0 P C S M D S 0 . 0 0 8 4 5 7 4 0 . 0 0 2 0 6 7 0 0 . 0 1 3 2 9 4 7 0 . 0 0 5 0 4 6 9 D V 7 2 0 . 0 5 2 6 3 1 6 0 . 2 2 9 4 1 5 7 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 s u n - l u m m n a a - m “ S u m - I I n B - - I n . . C o v a r i a n c e C o r r e l a t i o n I . . . m u n - m x s m - m n m a m u u a s s m u u m - n - P T S M N I , P T S M N I 5 . 7 0 2 D - 0 5 1 . 0 0 0 0 0 0 0 P T S M N I , P C R B D P 2 . 4 6 1 D - 0 8 0 . 9 4 7 1 8 2 8 P T S M N I , S P N I - 0 . 0 0 2 4 5 6 6 - 0 . 3 8 8 9 8 9 6 P T S M N I , P C S M D S - 5 . 2 5 8 D - 0 6 - 0 . 3 4 6 1 2 0 2 P T S M N I , D V 7 2 - 0 . 0 0 0 2 4 3 4 - 0 . 1 4 4 3 7 0 0 P C R G D P , P C R G D P 1 . 1 8 4 D - 1 1 1 . 0 0 0 0 0 0 0 P C R G D P , S P N I - 6 . 9 5 7 D - 0 7 - 0 . 2 4 1 7 3 7 3 P C R G D P , P C S M D S - 2 . 0 7 5 D - 0 9 - 0 . 2 9 9 7 9 7 1 P C R G D P , D V 7 2 - 1 . 1 6 0 D - 0 7 - 0 . 1 5 0 9 9 8 9 S P N I , S P N I 0 . 6 9 9 4 5 9 5 1 . 0 0 0 0 0 0 0 S P N I , P C S M D S - 0 . 0 0 0 5 2 8 8 - 0 . 3 1 4 2 7 4 2 S P N I , D V 7 2 0 . 1 1 9 4 4 5 6 0 . 6 3 9 5 9 6 5 P C S M D S , P C S M D S 4 . 0 4 7 D - 0 6 1 . 0 0 0 0 0 0 0 P C S M D S , D V 7 2 — 9 . 9 9 7 D - 0 5 - 0 . 2 2 2 5 4 1 1 D V 7 2 , D V 7 2 0 . 0 4 9 8 6 1 5 1 . 0 0 0 0 0 0 0 - I n n a - s u m a u n - n - g a a s c n n a a s m a s n m a m s a a m a a u u - u a a 1 1 9 9 1 9 1 9 1 9 1 1 1 9 1 2 1 9 1 3 O ‘ I I I I I I I I I I I O U I I I " - 1 0 0 0 ! : 1 1 1 1 ” ! - 0 2 0 1 P > C D C O : “ 1 1 ~ 1 - 1 0 O 2 1 1 ( I 6 3 3 1 3 5 0 1 3 0 9 1 2 5 1 1 1 1 1 1 9 ? ? 1 9 7 8 R E G I O N A L M O D E L S I M U L A T I O N 3 3 3 . 9 3 2 3 3 0 . 4 7 1 3 3 7 . 0 1 0 3 1 3 . 5 4 3 - 2 9 0 . 0 3 7 2 3 3 . 3 2 3 : 2 4 3 . 1 3 4 ; 2 1 9 . 7 0 3 5 1 9 3 . 2 4 2 ' 1 7 2 . 7 3 1 : \ 7 3 7 3 F i g u r e I . 1 6 . a & b . 3 4 a u . 7 7 7 3 7 9 3 0 3 1 3 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D S o y o i l E q u i v a l e n t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 3 4 : N e w l y I n d u s t r i a l i z e d C o u n t r i e s P e r C a p i t a S o y o i l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) S M P L 1 9 6 5 - 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t 1 9 3 3 V a r i a b l e i s P T S O N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . 8 0 . 0 0 2 1 3 7 3 0 . 0 0 0 7 0 3 6 3 . 0 3 7 5 9 8 7 0 . 0 0 8 P C R B D P 3 2 3 . 9 6 7 6 7 2 2 . 8 3 4 9 2 4 1 4 . 1 8 7 3 7 7 0 . 0 0 0 S O P N I - 0 . 0 0 0 1 3 3 3 3 . 6 7 7 0 - 0 5 - 3 . 6 2 5 7 4 9 0 0 . 0 0 2 P C S O D S - 0 . 9 9 3 8 9 3 5 0 1 3 9 0 9 0 1 5 - 2 . 5 4 2 5 6 7 7 ‘ 0 . 0 2 3 R - s q u a r e d . 0 . 9 4 0 3 8 4 M e a n o f d e p e n d e n t v a r 0 . 0 0 2 7 2 0 A d j u s t e d R - s q u a r e d 0 . 9 2 8 4 6 1 S . D . o f d e p e n d e n t v a r 0 . 0 0 1 2 3 3 S . E . o f r e g r e s s i o n 0 . 0 0 0 3 3 0 S u m 3 1 s q u a r e d r e s i d 1 . 6 3 D - 0 6 D u r b i n - w a t s o n s t a t 1 . 6 5 1 6 1 4 F - s t a t i s t i c 7 8 . 8 6 9 9 8 L o g l i k e l i h o o d 1 2 7 . 6 1 2 1 T P E 2 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 3 1 3 1 1 9 6 5 - 0 . 0 0 0 1 4 0 . 0 0 0 6 8 0 . 0 0 0 8 1 1 1 * 1 3 1 1 9 6 6 - 4 . 3 D ¢ 0 5 0 . 0 0 1 4 4 0 . 0 0 1 4 8 1 3 1 * 3 1 1 9 6 7 3 . 6 D - 0 5 0 . 0 0 1 4 1 0 . 0 0 1 3 7 1 3 * 1 3 1 1 9 6 8 - S . O D - 0 5 0 . 0 0 1 6 1 0 . 0 0 1 6 6 1 3 1 3 * 1 1 9 6 9 0 . 0 0 0 4 0 0 . 0 0 2 2 5 0 . 0 0 1 8 5 1 3 1 3 3 1 1 9 7 0 0 . 0 0 0 1 6 0 . 0 0 1 9 6 0 . 0 0 1 8 1 1 3 3 1 1 1 1 9 7 1 - 0 . 0 0 0 1 2 0 . 0 0 2 3 1 0 . 0 0 2 4 3 1 3 3 1 3 1 1 9 7 2 - 3 . 1 D - 0 5 0 . 0 0 2 1 0 0 . 0 0 2 1 3 1 3 3 3 1 1 9 7 3 2 . 1 D - 0 5 0 . 0 0 1 7 3 0 . 0 0 1 7 1 1 3 1 ' 1 * 1 1 9 7 4 0 . 0 0 0 3 9 0 . 0 0 2 5 4 0 . 0 0 2 1 5 1 3 1 * 3 1 1 9 7 5 2 . 5 D - 0 5 0 . 0 0 2 5 6 0 . 0 0 2 5 4 1 3 3 1 3 1 1 9 7 6 - 0 . 0 0 0 7 1 0 . 0 0 2 2 6 0 . 0 0 2 9 7 1 3 1 1 3 1 1 9 7 7 - 0 . 0 0 0 4 4 0 . 0 0 3 1 8 0 . 0 0 3 6 2 1 3 1 3 3 1 1 9 7 8 0 . 0 0 0 1 6 0 . 0 0 3 9 0 0 . 0 0 3 7 4 1 3 1 1 1 1 9 7 9 - 0 . 0 0 0 5 0 0 . 0 0 3 5 6 0 . 0 0 4 0 6 1 3 1 e 3 1 1 9 8 0 0 . 0 0 0 1 8 0 . 0 0 4 4 9 0 . 0 0 4 3 1 1 1 3 1 3 1 1 9 8 1 - 2 . 6 D - 0 5 0 . 0 0 4 1 1 0 . 0 0 4 1 4 ' 1 1 1 3 1 1 9 8 2 0 . 0 0 0 3 4 0 . 0 0 4 8 0 0 . 0 0 4 4 5 1 3 1 3 1 1 9 8 3 0 . 0 0 0 3 5 0 . 0 0 4 8 0 0 . 0 0 4 4 4 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l G D P P e r C a p i t a G D P N I / C P I N I / P O P N I S O P N I = R e a l N e w l y I n d u s t r i a l i z e d ( s l M T ) S O P - X R N I / C P I N I P C S O D S = D o m e s t i c S o y o i l S u p p l y P e r C a p i t a ( S O E S N I ( - l ) + ( S E S N I ( - l ) C o u n t r i e s S o y o i l P r i c e ( 1 0 0 0 M T ) ' * S F W N J N I ) 4 3 . 1 7 E S ) / P C W H V I 6 3 5 S H P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m . I l . . . . . . . . P T S O N I 0 . 0 0 2 7 1 9 8 0 . 0 0 1 2 3 2 9 0 . 0 0 4 7 9 8 0 0 . 0 0 0 6 7 6 8 P C R G D P 8 . 8 3 0 0 - 0 6 3 . 5 3 5 D - 0 6 1 . 4 3 0 D - 0 5 4 . 4 3 7 D - 0 6 S O P N I 6 . 8 8 6 7 1 8 5 2 . 4 2 6 7 0 6 7 1 4 . 0 5 9 9 8 0 3 . 8 8 5 7 9 3 0 P C S D D S 0 . 0 0 1 3 6 8 4 0 . 0 0 0 2 2 9 9 0 . 0 0 1 7 0 9 5 0 . 0 0 0 9 2 7 3 I I . . . - a . . . “ C o v a r i a n c e C o r r e l a t i o n . . . - - 1 P T S O N I , P T S D N 1 1 . 4 4 O D - 0 6 1 . 0 0 0 0 0 0 0 P T S O N I , P C R B D P 3 . 8 8 2 D - 0 9 0 . 9 4 0 2 3 6 6 P T S O N I , S D P N I - 0 . 0 0 1 0 6 1 5 - 0 . 3 7 4 5 0 7 6 P T S O N I , P C S D D S 4 . 5 4 1 D - 0 8 0 . 1 6 9 1 2 8 8 P C R B D P , P C R B D P 1 . 1 8 4 D - 1 1 1 . 0 0 0 0 0 0 0 P C R G D P , S O P N I - 1 . 7 6 O D - 0 6 - 0 . 2 1 6 5 4 2 7 P C R G D P , P C S O D S 1 . 8 9 3 D - 1 0 0 . 2 4 5 8 2 0 7 S O P N I , S O P N I 5 . 5 7 8 9 6 2 9 1 . 0 0 0 0 0 0 0 S O P N I , P C S O D S - 0 . 0 0 0 2 5 4 0 - 0 . 4 8 0 5 6 6 1 P C S O D S , P C S O D S 5 . 0 0 7 D - 0 8 1 . 0 0 0 0 0 0 0 I . . . . . . - I I 3 1 . 1 9 7 ? 5 1 2 1 9 1 8 ‘ 9 1 9 7 ‘ 1 9 8 9 1 9 8 1 1 1 9 8 2 1 9 8 & I I I I I I I I O l l l l l l 6 3 6 0 . 2 5 9 o n 2 2 5 1 1 . 0 . 2 0 0 1 1 3 . 1 7 5 1 8 . 1 5 0 1 R E G I O N A L M O D E L S I M U L A T I O N . 2 3 4 . 2 2 0 3 . 2 0 3 I . 1 9 3 : . 1 7 9 . 1 3 3 . 1 3 2 . 1 3 3 - \ / . 1 2 3 . 1 1 1 n i n i L L J 1 L 1 U j U U U U I L ' I U F W ' / \ 8 4 a u . 7 3 7 3 7 7 7 3 7 3 3 0 3 1 3 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e I . l 7 . a 3 b . P e r c e n t a g e S o y m e a l E q u i v a l e n t E x p o r t e d a s S o y m e a l - N e w l y I n d u s t r i a l i z e d C o u n t r i e s N P e e w r l c y e n I t n a d g u e s t S r o i y a n l e i a z l e d E q C u o i u v n a t l r e s i n e t I m p o r t e d a s S o y m e a l 6 3 7 S M P L 1 9 6 5 — 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P M E A L 1 9 8 3 2 - T A I L S I G . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . C 0 . 0 0 2 6 8 6 4 0 . 0 0 9 9 5 4 5 0 . 2 6 9 8 6 5 3 0 . 7 9 1 T S M N I 8 . 4 1 4 D - 0 5 1 . 5 8 9 D - 0 5 5 . 2 9 5 5 3 5 3 0 . 0 0 0 D V 7 4 0 N 0 . 0 8 7 9 3 6 3 0 . 0 1 4 5 7 7 7 6 . 0 3 2 2 3 2 3 - 0 . 0 0 0 S M E S N I t - i ) - 0 . 0 0 0 4 2 8 9 0 . 0 0 0 1 2 1 6 - 3 - 5 2 8 5 4 5 6 0 . 0 0 3 R - s q u a r e d 0 . 9 5 2 4 9 9 M e a n o f d e p e n d e n t v a r 0 . 1 1 8 5 8 5 A d j u s t e d R - s q u a r e d 0 . 9 4 2 9 9 9 S . D . o f d e p e n d e n t v a r 0 . 0 7 8 5 4 3 S . E . o f r e g r e s s i o n 0 . 0 1 8 7 5 2 S u m o 3 s q u a r e d r e s i d 0 . 0 0 5 2 7 5 D u r b i n - H a t s o n s t a t 2 . 5 1 1 4 1 2 F - s t a t i s t i c 1 0 0 . 2 6 0 6 L o g 1 i k e l i h o o d 5 0 . 8 3 8 4 4 T P E 6 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 3 1 3 1 1 1 9 6 5 0 . 0 1 4 2 2 0 . 0 3 0 6 4 0 . 0 1 6 4 2 1 3 1 3 1 1 9 6 6 - 0 . 0 1 9 0 9 0 . 0 1 1 8 9 0 . 0 3 0 9 8 1 3 1 3 1 1 9 6 7 - 0 . 0 1 7 3 5 0 . 0 1 4 4 5 0 . 0 3 1 8 0 1 3 1 3 3 1 1 9 6 8 0 . 0 0 1 0 3 0 . 0 4 0 8 2 0 . 0 3 9 7 9 1 3 1 3 3 1 1 9 6 9 0 . 0 0 7 8 2 0 . 0 6 3 5 0 0 . 0 5 5 6 9 1 3 1 3 3 1 1 9 7 0 0 . 0 2 8 5 5 0 . 0 7 9 1 0 0 . 0 5 0 5 5 1 3 3 1 3 1 1 9 7 1 - 0 . 0 0 6 2 5 0 . 0 5 6 2 6 0 . 0 6 2 5 1 1 3 3 1 3 1 1 9 7 2 - 0 . 0 3 0 5 6 0 . 0 2 5 3 1 0 . 0 5 5 8 7 1 3 1 3 3 1 1 9 7 3 0 . 0 2 1 6 4 0 . 0 7 1 4 4 0 . 0 4 9 8 0 1 3 1 1 1 1 9 7 4 - 0 . 0 1 8 7 3 0 . 1 4 5 3 9 0 . 1 6 4 1 2 1 1 1 3 3 1 1 9 7 5 0 . 0 0 3 5 9 0 . 1 7 6 9 5 0 . 1 7 3 3 6 1 3 1 3 3 1 1 9 7 6 0 . 0 1 6 5 6 0 . 1 7 9 4 1 0 . 1 6 2 8 5 1 3 3 1 3 1 1 9 7 7 - 0 . 0 0 8 8 8 0 . 1 8 4 9 9 0 . 1 9 3 8 7 1 3 1 3 3 1 1 9 7 8 ‘ 0 . 0 1 1 5 2 0 . 2 2 4 1 5 0 . 2 1 2 6 2 1 3 1 3 1 1 1 9 7 9 0 . 0 1 1 2 7 0 . 1 5 2 7 4 0 . 1 4 1 4 7 1 3 3 1 3 1 1 9 8 0 - 0 . 0 2 4 2 5 0 . 1 4 0 9 4 0 . 1 6 5 2 0 1 3 1 3 : 1 1 9 8 1 0 . 0 1 5 8 5 0 . 2 0 3 6 6 0 . 1 8 7 8 1 1 3 1 3 1 1 1 9 8 2 0 . 0 0 7 6 7 0 . 2 3 9 6 5 0 . 2 3 1 9 8 1 1 3 1 3 1 1 9 8 3 - 0 . 0 1 4 6 1 0 . 2 1 1 8 2 0 . 2 2 6 4 3 I N D E P E N D E N T V A R I A B L E S T S M N I = S o y m e a l E q u i v a l e n t I m p o r t s ( 1 0 0 0 N T ) S N I N I 3 . 7 9 5 + S M N I N I D V 7 4 0 N = 1 I £ ( Y E A R . G E . 7 4 ) 0 O t h e r w i s e S M E S N I = S o y n e a l N e t I m p o r t s ( 1 0 0 0 M T ) 6 3 8 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P M E A L 0 . 1 1 8 5 8 5 2 0 . 0 7 8 5 4 2 8 0 . 2 3 9 6 5 0 3 0 . 0 1 1 8 9 3 8 T S M N I 1 0 3 1 . 0 1 9 5 6 6 1 . 9 4 2 9 3 2 2 8 6 . 6 6 5 0 1 6 3 . 2 0 5 0 0 D V 7 4 O N 0 . 5 2 6 3 1 5 8 0 . 5 1 2 9 8 9 2 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 S M E S N I t - I ) 3 9 . 9 4 7 3 6 8 6 4 . 8 7 8 9 2 5 1 6 4 . 0 0 0 0 0 0 . 0 0 0 0 0 0 0 “ m m - m m m u a n s a s s n . . . - s a n s n m s a s s u n - m u n g - - . “ C o v a r i a n c e C o r r e l a t i o n “ I n n m m m s s u u I n n ' s - m s n m a a 8 3 - . . . . . - P M E A L , P M E A L 0 . 0 0 5 8 4 4 3 1 . 0 0 0 0 0 0 0 P M E A L , T S M N I 4 3 . 2 1 0 0 4 8 0 . 8 7 7 2 8 1 5 P M E A L , D V 7 4 O N 0 . 0 3 5 4 6 6 0 0 . 9 2 9 1 3 5 3 P M E A L , S M E S N I ( - 1 ) 2 . 7 6 9 3 3 1 3 0 . 5 7 3 6 4 8 8 T S M N I , T S M N I 4 1 5 1 0 6 . 9 4 1 . 0 0 0 0 0 0 0 T S M N I , D V 7 4 O N 2 5 7 . 4 1 2 3 8 0 . 8 0 0 1 6 9 1 T S M N I . S M E S N I ( - 1 ) 3 3 4 6 4 . 5 0 7 0 . 8 2 2 5 1 0 3 D V 7 4 O N , D V 7 4 O N 0 . 2 4 9 3 0 7 5 1 . 0 0 0 0 0 0 0 D V 7 4 O N , S M E S N I ( - 1 ) 1 8 . 9 2 2 4 3 8 0 . 6 0 0 1 3 1 4 S M E S N I ( - 1 ) , S M E S N I ( - 1 ) 3 9 8 7 . 7 3 4 1 1 . 0 0 0 0 0 0 0 j u - m u m u n u s m s u a - 1 9 7 9 1 9 7 9 1 9 9 9 1 9 8 1 1 9 8 2 e . u t r i V ' L L | + 1 L 1 L 1 1 1 1 1 1 1 4 1 1 1 F i g u r e I . l e . a & b . S I o n y d m u e s a t l r N a e l t i z i I e m d p o C r o t u s n - r i t N e e s w l y l 0 0 0 M E T T 0 N S l 0 ( ) 5 8 ' 0 5 ' 0 . 4 5 9 . H 4 0 8 . 1 5 3 5 7 T I a n . 2 5 ! . T 2 0 4 . 0 1 5 3 . g 1 0 2 . . 5 8 0 0 1 . 3 6 3 9 5 3 3 1 1 5 5 0 + E U 4 5 0 1 4 0 0 1 3 5 9 ‘ 3 0 9 3 5 0 2 9 0 . 1 9 ? ? R E G I O N A L M O D E L S I M U L A T I O N 6 1 3 6 4 6 6 8 0 7 4 8 7 8 0 8 1 3 8 4 8 8 8 0 T I I I I U I I I ‘ 1 C O ‘ 1 ‘ 1 Q Q a ; 0 . O O O ‘ Q N O E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D ( . 3 O b H > C 3 ( 0 : . 3 1 1 1 4 3 - 3 0 2 1 1 ( H > C 3 1 9 7 7 1 9 1 8 1 9 1 9 1 9 9 9 1 9 8 1 1 9 8 2 1 9 8 3 < 1 O z s “ I ' I ' U I ' 0 f U ' U ' W 1 1 ’ 2 1 - 1 0 ! — 0 2 0 ( l l l l A 6 4 0 ‘ { H 1 { f r r . a l e . 1 . 0 \ V / . - - 2 0 1 O . " . - . - " ' " 4 3 0 * R E G I O N A L M O D E L S I M U L A T I O N 3 5 . 7 5 5 2 3 . 3 7 5 2 2 . 1 9 5 1 4 . 9 1 5 7 . 5 3 5 . 3 5 5 ~ 5 . 9 2 5 - 1 4 . 2 0 5 - 2 1 . 4 3 5 - \ , s e , - 2 3 . 7 5 5 - ‘ 1 ’ ‘ v 1 1 L L 1 1 1 + L 1 1 4 1 \ n p / / / a n O a : a n N ' a u a 9 . 7 5 7 3 7 7 7 3 7 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — _ - E S T I M A T E D F i g u r e I . 1 9 . a & b . S o y o i l N e t I m p o r t s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s F i g u r e I . 2 0 . a & b . S I o n y d b u e s a t n r i N a e l t i z I e m d p o C r o t u s n - r i t N e e s w l y 6 4 1 2 5 . ? 2 2 5 0 1 1 o 2 . 1 0 0 1 7 5 1 1 1 M 1 . v E 1 5 W 1 “ 1 - 1 - . 1 . 1 3 5 0 O 2 1 m . . . 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 9 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N M I L 2 . 2 5 7 - 1 x ’ 1 . 2 . 1 1 5 1 3 I 1 . 9 5 5 3 3 0 1 . 5 1 4 C 3 j N 1 . 5 5 3 » I 3 M 1 . 5 1 2 E I 1 E 1 . 3 5 2 : - ' 1 ‘ 1 . 2 1 1 : I 3 1 . 0 0 0 r : T . 9 0 9 I I o . . . . . . . . T . N 7 5 7 8 7 7 7 8 ' 7 9 8 0 8 1 8 2 8 3 8 4 S E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 - A C T U A L . 1 . - E S T I M A T E D H ) C D ‘ O ! : 5 1 1 “ i ' J C I Z n I ‘ f > I C > C > C I - I I T ' U r T U U T U ‘ I I I ‘ L I I I I I I I I I L 7 5 7 5 ' 7 7 7 5 7 9 5 6 5 1 5 2 I I I O I I I I I I A L L A J A L 6 4 2 . . . - fi e “ . . . . ' 5 ' . O n e s . . ‘ . . . . - 7 5 1 ' s o 2 5 . . 1 9 ? ? 1 9 7 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 R E G I O N A L M O D E L S I M U L A T I O N 1 7 5 . 4 7 3 1 5 7 . 5 9 7 1 3 9 . 3 2 1 1 2 0 . 7 4 5 1 0 2 . 1 5 9 5 3 . 5 9 3 5 5 . 0 1 5 4 5 . 4 4 0 ' 2 7 . 5 5 4 9 . 2 5 5 : J J 1 O U G b ( fl 2 1 ( 3 - 4 ' 5 D 1 2 ! E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e I . 2 1 . a & b . S o y m e a l E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 4 3 % N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y m e a l E n d i n g S t o c k s ( 1 0 0 0 M T ) S M P L 1 9 7 7 — 1 9 8 3 7 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S M E S N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 1 4 5 5 . 3 1 2 1 9 4 7 . 2 5 4 2 2 1 . 5 3 6 3 4 8 0 0 . 2 2 2 - S M S U P 0 . 0 8 9 7 5 2 0 0 . 0 6 9 8 5 0 4 1 . 2 8 4 9 1 7 2 0 . 2 8 9 Y E A R — 1 8 . 7 5 1 0 2 6 1 3 . 5 7 4 1 7 8 - 1 . 3 8 1 3 7 4 7 0 . 2 6 1 _ M A R S I N ( - 1 ) 3 7 0 . 2 0 5 0 6 1 2 5 . 0 6 1 8 5 2 . 9 6 0 1 7 5 7 0 . 0 6 0 m u m M C I - . - . . . . - R - s q u a r e d 0 . 8 4 3 9 4 0 M e a n o f d e p e n d e n t v a r 1 3 2 . 7 1 4 3 A d j u s t e d R - s q u a r e d 0 . 6 8 7 8 8 0 S . D . o f d e p e n d e n t v a r 4 4 3 1 5 0 1 8 S . E . o f r e g r e s s i o n 2 4 . 6 6 5 7 0 S u m o f s q u a r e d r e s i d 1 8 2 5 . 1 9 0 D u r b i n - fl a t s o n s t a t 1 . 2 7 9 8 8 9 F - s t a t i s t i c 5 . 4 0 7 7 8 8 L o g 1 1 k e l i h o o d - 2 9 . 4 0 4 9 2 T P E 0 / 7 I I I R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D I 1 3 3 1 1 1 1 9 7 7 - 2 2 . 4 7 6 2 4 2 . 0 0 0 0 6 4 . 4 7 6 2 1 3 3 3 1 1 9 7 8 - 0 . 7 3 4 4 3 1 6 4 . 0 0 0 1 6 4 . 7 3 4 1 3 1 3 3 1 1 9 7 9 2 0 . 6 8 3 3 1 5 6 . 0 0 0 1 3 5 . 3 1 7 1 3 1 3 3 1 1 9 8 0 8 . 0 5 7 7 4 1 5 1 . 0 0 0 1 4 2 . 9 4 2 1 3 1 3 3 1 1 9 8 1 2 1 . 3 2 2 3 1 1 9 . 0 0 0 9 7 . 6 7 7 7 1 3 3 1 1 1 1 9 8 2 - 1 1 . 0 2 1 6 1 2 7 . 0 0 0 1 3 8 . 0 2 2 1 3 3 1 3 1 1 9 8 3 - 1 5 . 8 3 1 2 1 7 0 . 0 0 0 1 8 5 . 8 3 1 I N D E P E N D E N T V A R I A B L E S S M S U P = T o t a l S o y m e a l E q u i v a l e n t S u p p l y ( 1 0 0 0 M T ) ( S M E S N I < - l ) + 5 M N I N I + < S E S N I ( - l ) + S P R O N I + S N I N I ) 3 . 7 9 S ) M A R G I N = S o y b e a n C r u s h M a r g i n ( S M P 3 X R N I / C P I N I ) 3 . 7 9 5 + ( S O P 3 X R N I / C P I N I ) 3 . 1 7 S - ( S P O X R N I / C P I N I ) Y E A R = 1 9 6 0 8 6 0 . l 9 6 1 = 6 1 , . . . 6 4 4 S M P L 1 9 7 7 - 1 9 8 3 7 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S M E S N I 1 3 2 . 7 1 4 2 9 4 4 . 1 5 0 1 7 7 1 7 0 . 0 0 0 0 0 4 2 . 0 0 0 0 0 0 S M S U P 2 3 1 2 . 2 0 2 8 4 1 9 . 2 8 6 8 2 2 8 0 8 . 2 2 0 0 1 6 2 5 . 2 7 0 0 Y E A R 8 0 . 0 0 0 0 0 0 2 . 1 6 0 2 4 6 9 8 3 . 0 0 0 0 0 0 7 7 . 0 0 0 0 0 0 M A R G I N ( - 1 ) - 0 . 0 8 1 1 4 5 8 0 . 1 0 8 0 7 2 6 0 . 0 9 4 0 3 1 2 - 0 . 2 5 0 8 8 2 9 C o v a r i a n c e C o r r e l a t i o n S M E S N I , S M E S N I 1 6 7 0 . 7 7 5 5 1 . 0 0 0 0 0 0 0 ” S M E S N I , S M S U P 9 3 0 8 . 3 2 8 8 0 . 5 8 6 6 4 4 3 S M E S N I , Y E A R 3 9 . 0 0 0 0 0 0 0 . 4 7 7 0 6 2 8 S M E S N I , M A R B I N ( - 1 ) 3 . 5 2 7 4 5 8 3 0 . 8 6 2 5 0 3 3 S M S U P , S M S U P 1 5 0 6 8 6 . 9 4 1 . 0 0 0 0 0 0 0 S M S U P , Y E A R 7 2 7 . 8 7 2 8 7 0 . 9 3 7 5 3 5 5 S M S U P , M A R G I N ( - 1 ) 2 5 . 4 7 8 4 1 0 0 . 6 5 5 9 8 2 7 Y E A R , Y E A R 4 . 0 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , M A R B I N ( - 1 ) 0 . 1 3 1 4 8 4 0 0 . 6 5 7 0 5 3 8 M A R B I N ( - 1 ) , M A R G I N ( - 1 ) 0 . 0 1 0 0 1 1 2 1 . 0 0 0 0 0 0 0 * 1 0 0 0 3 1 1 1 1 " 1 - 3 0 2 0 1 P > C D 1 O 1 9 7 9 1 9 9 9 1 9 9 9 1 9 9 1 1 9 9 2 1 9 9 9 l l l j l l i l J l l l l l l l l l 2 1 1 0 2 0 — ! a m : 3 7 . 3 3 . 2 9 . 2 5 . 1 7 . 1 3 . . 7 5 0 I . 5 5 0 - . 9 5 0 E 1 5 1 9 7 7 1 5 0 ‘ 2 5 0 3 5 0 - . 4 5 0 5 5 0 5 5 0 6 4 5 _ - R E G I O N A L M O D E L S I M U L A T I O N a “ a a 5 7 5 7 5 7 7 7 5 7 9 5 0 5 1 5 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e I . 2 2 . a & b . S o y o i l E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 4 6 . N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y o i l E n d i n g S t o c k s ( 1 0 0 0 M T ) S M F L 1 9 7 7 - . 1 9 8 3 7 O b s e r V a t i o n s L S ( / D e p e n d e n t V a r i a b l e i s S O E S N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 5 8 . 5 9 3 8 7 0 4 . 1 3 3 3 1 9 4 ' 1 4 . 1 7 5 9 8 4 0 . 0 0 0 S O N I N I 0 . 2 4 5 5 8 2 5 , 0 . 0 7 6 1 6 3 0 3 . 2 2 4 4 3 2 8 0 . 0 3 2 S O P N I - 5 . 3 6 6 4 4 8 1 0 . 7 2 5 9 3 1 3 - 7 . 3 9 2 5 0 1 2 0 . 0 0 2 - R - s q u a r e d 0 . 9 3 3 8 1 8 M e a n o f d e p e n d e n t v a r 2 9 . 2 8 5 7 1 A d j u s t e d R - s q u a r e d 0 . 9 0 0 7 2 7 S . D . o f d e p e n d e n t v a r 7 . 5 6 5 5 8 6 S . E . o f r e g r e s s i o n 2 . 3 8 3 7 3 1 S u m o f s q u a r e d r e s i d 2 2 . 7 2 8 7 0 D u r b i n - fl a t s o n s t a t 2 . 5 5 8 1 1 9 F - s t a t i s t i c 2 8 . 2 1 9 8 1 L o g l i k e l i h o o d - 1 4 . 0 5 4 5 8 1 / 7 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 3 1 3 3 1 1 9 7 7 0 . 2 9 8 5 3 2 2 . 0 0 0 0 2 1 . 7 0 1 5 1 . 3 1 3 1 1 9 7 8 2 . 3 4 5 0 3 2 3 . 0 0 0 0 2 0 . 6 5 5 0 1 3 3 1 3 1 1 9 7 9 - 1 . 8 6 6 6 0 2 7 . 0 0 0 0 2 8 . 8 6 6 6 1 3 3 1 3 1 1 9 8 0 - 0 . 7 7 6 1 9 3 8 . 0 0 0 0 3 8 . 7 7 6 2 1 3 3 1 3 1 1 9 8 1 - 0 . 3 0 2 8 1 3 4 . 0 0 0 0 3 4 . 3 0 2 8 1 3 1 3 1 1 9 8 2 2 . 6 9 2 3 2 3 9 . 0 0 0 0 3 6 . 3 0 7 7 1 3 1 3 1 1 9 8 3 - 2 . 3 9 0 2 9 2 2 . 0 0 0 0 2 4 . 3 9 0 3 I N D E P E N D E N T V A R I A B L E S S O N I N I = S o y o i l N e t I m p o r t s ( 1 0 0 0 M T ) S O P N I = R e a l N I C S o y o i l P r i c e ( S / M T ) S O P 3 X R N I / C P I N I 6 4 7 S M P L 1 9 7 7 - 1 9 8 3 7 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S O E S N I 2 9 . 2 8 5 7 1 4 7 . 5 6 5 5 8 6 2 3 9 . 0 0 0 0 0 0 2 2 . 0 0 0 0 0 0 S O N I N I 4 . 2 8 5 7 1 4 3 3 . 2 3 7 7 5 3 2 9 . 0 0 0 0 0 0 - 1 4 . 0 0 0 0 0 0 S O P N I 5 . 6 5 7 4 9 4 8 1 . 3 8 8 8 7 3 9 7 . 3 7 8 0 2 9 0 3 . 8 8 5 7 9 3 0 C o v a r i a n c e ' C o r r e l a t i o n S O E S N I , S O E S N I 4 9 . 0 6 1 2 2 4 1 . 0 0 0 0 0 0 0 S O E S N I , S O N I N I 1 4 . 7 7 5 5 1 0 0 . 1 7 2 1 2 0 4 S O E S N I , S O P N I - 7 . 8 6 1 0 0 2 2 - 0 . 8 7 2 8 0 9 2 S O N I N I , S O N I N I 1 5 0 . 2 0 4 0 8 1 . 0 0 0 0 0 0 0 S O N I N I , S O P N I 4 . 1 2 0 4 1 3 0 0 . 2 6 1 4 6 3 1 S O P N I , S O P N I 1 . 6 5 3 4 0 3 4 1 . 0 0 0 0 0 0 0 “ ? ) C ) 1 ) ( ! : 1 " 4 ' 1 r 3 1 1 2 n I P > C 3 1 O ! : 1 " 4 ' % ' 3 ( 1 2 n 1 2 m + . . . . - . - M J l L l l l l l l 7 5 7 5 7 7 7 5 7 5 5 0 5 1 5 5 3 1 5 . 2 9 2 . 2 5 5 . 2 4 4 . 2 2 0 . 1 9 5 . 1 7 2 . 1 4 5 . 1 2 4 . 1 0 0 . 3 5 0 3 0 0 1 2 5 9 1 1 5 0 1 9 ? ? 1 9 7 9 1 9 7 9 1 9 9 9 1 9 9 1 1 9 9 2 1 9 9 3 R E G I O N A L M O D E L S I M U L A T I O N 7 1 5 5 4 2 : 5 5 7 : 4 9 1 I 4 1 5 I 3 4 0 2 5 5 1 5 9 - 1 1 3 : 0 3 5 E \ l I l l a u - a b E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — — - E S T I M A T E D F i g u r e I . 2 3 . a & b . S o y b e a n E n d i n g S t o c k s - N e w l y I n d u s t r i a l i z e d C o u n t r i e s 6 4 E ! N e w l y I n d u s t r i a l i z e d C o u n t r i e s S o y b e a n E n d i n g S t o c k s 1 9 8 3 S M P L 1 9 6 5 1 9 O b s e r v a t i o n s ( 1 0 0 0 M T ) L S / / D e p e n d e n t V a r i a b l e i s S E S N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T . 2 - T A I L S I G . C 1 4 5 5 . 9 5 8 8 4 5 7 . 7 9 1 2 2 3 . 1 8 0 3 9 9 2 0 . 0 0 6 M A R B I N - 7 5 . 0 4 7 9 4 4 7 0 . 1 6 4 5 0 0 - 1 . 0 6 9 5 9 9 9 0 . 3 0 2 S B S U P 0 . 2 4 4 7 5 5 1 0 . 0 6 7 0 5 0 9 3 . 6 5 0 2 8 9 0 0 . 0 0 2 . Y E A R - 2 2 . 3 4 3 9 3 9 7 . 5 2 4 9 0 1 0 - 2 . 9 6 9 3 3 3 2 0 . 0 1 0 R - s q u a r e d 0 . 5 6 8 3 6 1 M e a n o f d e p e n d e n t v a r 1 8 7 . 4 2 1 1 A d j u s t e d R - s q u a r e d 0 . 4 8 2 0 3 3 S . D . o f d e p e n d e n t v a r 7 2 . 9 3 7 8 1 S . E . o f r e g r e s s i o n 5 2 . 4 9 3 2 7 S u m o f s q u a r e d r e s i d 4 1 3 3 3 . 1 6 D u r b i n - W a t s o n s t a t 1 . 6 1 4 3 2 7 F - s t a t i s t i c 6 . 5 8 3 7 5 5 L o g 1 i k e l i n o o d - 9 9 . 9 6 7 1 5 T P E 5 ’ 1 9 . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 3 1 1 1 9 6 5 1 6 . 1 6 4 6 1 9 0 2 0 0 0 1 7 3 . 8 3 5 1 3 1 3 3 1 1 9 6 6 7 9 . 0 2 9 7 2 7 7 . 0 0 0 1 9 3 . 9 7 0 1 3 3 : 3 1 1 9 6 7 - 1 0 . 1 3 8 6 1 9 3 . 0 0 0 . 2 0 3 . 1 3 9 1 3 3 1 3 1 1 9 6 8 - 3 7 . 3 0 7 9 1 5 8 . 0 0 0 1 9 5 . 3 0 8 1 3 3 3 1 1 9 6 9 0 . 8 0 6 9 3 1 8 6 . 0 0 0 1 8 5 . 1 9 3 1 3 3 1 3 1 1 9 7 0 - 1 1 4 . 3 7 3 5 4 . 0 0 0 0 1 6 8 . 3 7 3 1 3 1 3 1 1 9 7 1 - 5 2 . 5 8 5 4 1 1 5 . 0 0 0 1 6 7 . 5 8 5 1 3 1 3 3 1 1 9 7 2 1 4 . 5 6 4 3 1 1 3 . 0 0 0 9 8 . 4 3 5 7 1 3 1 3 3 1 1 9 7 3 1 6 . 0 7 0 7 8 4 . 0 0 0 0 6 7 . 9 2 9 3 1 3 1 3 3 1 1 9 7 4 6 4 . 6 8 3 5 2 2 4 . 0 0 0 1 5 9 . 3 1 6 1 1 3 3 1 1 9 7 5 2 . 0 3 0 5 7 1 7 9 . 0 0 0 1 7 6 . 9 6 9 1 3 3 1 3 1 1 9 7 6 - 3 4 . 2 4 1 9 8 8 . 0 0 0 0 1 2 2 . 2 4 2 1 3 1 3 3 1 1 9 7 7 6 . 4 9 1 8 7 1 6 5 . 0 0 0 1 5 8 . 5 0 8 1 3 1 3 3 1 1 9 7 8 9 0 . 3 0 8 7 3 2 6 . 0 0 0 2 3 5 . 6 9 1 1 3 3 1 3 1 1 9 7 9 - 5 . 2 5 3 6 0 2 1 2 . 0 0 0 2 1 7 . 2 5 4 1 3 1 3 3 1 1 9 8 0 3 8 . 8 1 8 1 2 7 3 . 0 0 0 2 3 4 . 1 8 2 1 3 3 1 3 1 1 9 8 1 - 2 0 . 8 1 6 5 2 3 6 . 0 0 0 2 5 6 . 8 1 7 1 3 3 1 3 1 1 9 8 2 — 2 9 . 9 7 1 3 2 3 9 . 0 0 0 2 6 8 . 9 7 1 1 1 3 1 3 1 1 9 8 3 - 2 4 . 2 8 0 6 2 5 3 . 0 0 0 2 7 7 . 2 8 1 I N D E P E N D E N T V A R I A B L E S S B S U P = T o t a l S o y b e a n S u p p l y ( 1 0 0 0 M T ) ( S E S N I C - l ) + S P R O N I + S N I N I ) M A R G I N = S o y b e a n C r u s h M a r g i n ( S M P - X R N I / C P I N I ) 3 . 7 9 5 + ( S P 3 X R N I / C P I N I ) Y E A R = 1 9 6 0 8 6 0 . 1 9 6 1 : 6 1 . . . . ( S O P 3 X R N I / C P I N I ) 3 . 1 7 S - 6 S £ I S M F L 1 9 6 5 — 1 9 8 3 1 9 O b s e r v a t i o n s I . . . . 8 S e r i e s M e a n 8 . 0 . M a x i m u m M i n i m u m S E S N I 1 8 7 . 4 2 1 0 5 7 2 . 9 3 7 8 0 9 3 2 6 . 0 0 0 0 0 5 4 . 0 0 0 0 0 0 M A R G I N - 0 . 0 0 1 0 8 4 7 0 . 1 8 5 4 9 8 9 0 . 4 8 4 3 1 4 1 - 0 . 2 5 0 8 8 2 9 S B S U P 1 5 7 2 . 3 1 5 8 6 3 3 . 0 2 1 1 6 2 7 1 6 . 0 0 0 0 7 4 5 . 0 0 0 0 0 Y E A R 7 4 . 0 0 0 0 0 0 5 . 6 2 7 3 1 4 3 8 3 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 . C o v a r i a n c e C o r r e l a t i o n S E S N I , S E S N I 5 0 3 9 . 9 2 8 0 1 . 0 0 0 0 0 0 0 S E S N I , M A R G I N - 4 . 1 8 8 5 6 5 6 - 0 . 3 2 6 7 7 7 7 S E S N I , S B S U P 2 3 3 8 7 . 3 4 1 0 . 5 3 4 6 7 6 4 S E S N I , Y E A R 1 4 2 . 0 5 2 6 3 0 . 3 6 5 3 2 2 6 M A R B I N , M A R G I N 0 . 0 3 2 5 9 8 8 1 . 0 0 0 0 0 0 0 M A R G I N , S B S U P - 3 4 . 4 3 3 9 2 1 - 0 . 3 0 9 5 3 3 8 M A R G I N , Y E A R - O . 2 9 9 2 2 1 4 - 0 . 3 0 2 5 7 3 7 S B S U P , S B S U P 3 7 9 6 2 5 . 4 8 1 . 0 0 0 0 0 0 0 S B S U P , Y E A R 3 2 2 7 . 3 6 8 4 0 . 9 5 6 3 3 5 4 Y E A R , Y E A R 3 0 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 A P P E N D I X J E Q U A T I O N S T A T I S T I C S - S O V I E T B L O C W h e a t W P R O S B . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n U H A S B . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a W Y S B . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d W C O N S B . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n U N I S B . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s H E S S B . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s C o a r s e G r a i n F P R O S B . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A S B . . . . . . . . . . . . . . . . - . . . . . . H a r v e s t e d A r e a F Y S B . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N S B . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I S B . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s F E S S B . . . . . . . . . . . . . . . . . . . . . . . E n d i n g S t o c k s S o y b e a n C o m p l e x S P R O S B . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n S H A S B . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a S Y S B . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d S M C O S B . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . C o n s u m p t i o n S O C O S B . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . C o n s u m p t i o n S M E I S B . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . N e t I m p o r t s S O E I S B . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . N e t I m p o r t s P M E L S B . . . . . . . . . . . . . . . . . . . . . . % S M E I S B I m p o r t e d a s S M N I S B S M N I S B . . . . . . . . . . . . . . . . . . . . . . S o y m e a l N e t I m p o r t s S O N I S B . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t I m p o r t s S N I S B . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t I m p o r t s 6 5 1 6 9 7 0 7 1 7 2 7 3 7 4 1 5 “ 7 7 7 8 7 9 1 1 0 8 1 8 2 “ * 0 0 0 3 1 1 1 # 4 - 0 2 1 1 ( Z H ’ V ‘ F H O Z : m 4 1 - 0 2 0 [ 6 5 2 1 6 0 0 0 0 1 5 0 0 0 0 s 5 e 5 O s s o I . 5 I . r r r r ' s 1 3 “ “ 3 ' - ' - e . 5 s . 0 Q . 5 . ' . s . 0 1 1 0 0 0 0 1 0 0 0 0 0 R E G I O N A L M O D E L S I M U L A T I O N 1 5 3 . 4 7 1 1 4 5 . 9 5 2 1 4 0 . 4 3 3 1 3 3 . 9 1 4 1 2 7 . 3 9 5 ~ 1 2 0 . 5 7 5 : 1 1 4 . 3 5 7 1 1 0 7 . 5 3 5 1 1 0 1 . 3 1 9 : 9 4 . 5 0 0 E 7 5 7 5 7 7 7 5 7 9 5 0 5 1 5 2 5 9 5 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — 1 - - E S T I M A T E D F i g u r e J . l . a & b . W h e a t P r o d u c t i o n - S o v i e t B l o c 7 1 7 2 7 7 7 4 7 s 7 s 7 7 7 s 7 1 s o 8 1 3 2 I L I J K J J I L J J J J J A a m 1 0 ‘ o 7 3 . 0 H . E 7 0 0 0 0 4 ? C T ; . a s a a a 1 ~ E S 6 “ M I L . 7 2 . 5 1 7 1 . 7 1 . 2 5 2 : ' 1 7 0 . 0 4 7 E 0 5 5 . 5 1 2 7 N 5 7 . 5 7 7 : H 5 5 . 3 4 2 E E 5 5 . 1 0 7 : C 5 3 . 5 7 2 ; 1 ' 5 2 . 5 3 7 - A 5 1 . 4 0 2 E R E 5 F i g u r e J . 2 . a & b . W h e a t H a r v e s t e d A r e a - S o v i e t B l o c 6 5 3 ‘ N . . . . . . 0 o o . . . . . . ‘ ° . o o o a " I I I . . . . " \ o u o a o . . . . . . . ” W l R E G I O N A L M O D E L S I M U L A T I O N 7 5 7 5 7 7 7 6 7 5 5 0 5 1 5 2 5 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 - - - A C T U A L — - - E S T I M A T E D 8 4 I I 1 a s S o v i e t B l o c 6 5 4 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S H P L ‘ 1 9 6 1 2 2 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s w H A S B ‘ 1 9 8 2 2 - T A I L S I G . V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . C 5 2 6 8 6 . 2 9 6 1 1 9 4 7 . 3 2 0 4 . 4 0 9 8 8 4 1 0 . 0 0 0 W H A S B ( - 1 ) 0 . 2 8 4 0 1 2 1 0 . 1 6 4 4 0 0 9 1 . 7 2 7 5 5 7 7 0 . 1 0 3 D V 6 0 7 1 2 0 2 7 . 0 2 0 4 1 5 6 7 . 6 1 9 3 1 . 2 9 3 0 5 6 5 0 . 2 1 4 F N I S B ( - 1 ) - 0 . 3 2 1 0 6 5 6 0 . 0 8 9 8 4 2 0 - 3 . 5 7 3 6 6 8 2 0 . 0 0 3 " N N I S B t - l ) 0 1 2 1 9 8 3 3 6 0 . 0 7 9 1 6 2 0 2 . 7 7 7 0 1 1 3 0 . 0 1 3 D V B O 4 4 6 4 . 6 5 7 7 2 1 8 9 . 2 7 4 9 2 . 0 3 9 3 3 1 7 0 . 0 5 8 R - s q u a r e d 0 . 8 4 6 2 7 3 M e a n o f d e p e n d e n t v a r 7 3 6 2 7 . 2 7 A d j u s t e d R - s q u a r e d 0 . 7 9 8 2 3 3 S . D . 0 ‘ d e p e n d e n t v a r 4 0 9 6 . 6 5 6 S . E . o f r e g r e s s i o n 1 8 4 0 . 1 5 5 S u n o f s q u a r e d r e s i d 5 4 1 7 8 7 3 0 D u r b i n - N a t s o n s t a t 2 . 1 1 9 0 9 8 F - s t a t i s t i c 1 7 . 6 1 6 1 0 L o g l i k e l i h o o d - 1 9 3 . 1 0 1 0 T P E 5 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 4 1 1 9 6 2 1 7 2 7 . 7 0 7 7 5 5 5 . 0 7 5 8 2 7 . 3 1 5 1 1 1 1 1 9 6 3 - 2 2 7 3 . 8 5 7 4 6 1 5 . 0 7 6 8 8 8 . 8 1 1 5 1 1 1 1 9 6 4 - 6 4 0 . 2 0 8 7 8 3 0 9 . 0 7 8 9 4 9 . 2 1 1 1 1 * 1 1 9 6 5 2 1 2 7 . 2 7 8 0 1 9 2 . 0 7 8 0 6 4 . 7 1 1 5 1 1 1 9 6 6 9 1 . 6 9 5 2 8 0 1 9 5 . 0 8 0 1 0 3 . 3 1 1 0 1 1 1 1 9 6 7 - 5 5 7 . 1 3 5 7 7 3 5 9 . 0 7 7 9 1 6 . 1 1 1 1 * 1 1 1 9 6 8 1 5 6 3 . 1 9 7 7 9 8 5 . 0 7 6 4 2 1 . 8 1 1 1 5 1 1 1 9 6 9 1 3 3 0 . 8 8 7 7 2 7 7 . 0 " 7 5 9 4 6 . 1 1 1 5 1 1 1 1 9 7 0 - 4 2 7 . 6 9 3 7 5 4 8 1 . 0 7 5 9 0 8 . 7 1 1 5 1 1 1 1 9 7 1 - 7 8 2 . 9 1 5 7 4 6 9 7 . 0 7 5 4 7 9 . 9 1 * 1 1 1 1 1 9 7 2 - 2 5 6 2 . 4 5 6 9 2 7 1 . 0 7 1 8 3 3 . 5 1 1 * 1 1 1 9 7 3 5 5 . 9 1 2 5 7 3 4 9 0 . 0 7 3 4 3 4 . 1 1 1 * 1 1 1 1 9 7 4 - 1 4 2 2 . 6 9 7 0 3 1 8 . 0 7 1 7 4 0 . 7 1 1 1 i 1 1 1 9 7 5 1 2 5 9 . 6 4 7 1 9 8 1 . 0 7 0 7 2 1 . 4 1 1 1 1 1 1 9 7 6 5 4 8 . 7 0 9 6 9 8 6 3 . 0 6 9 3 1 4 . 3 1 1 1 * 1 1 1 9 7 7 1 5 0 2 . 1 8 7 2 1 4 7 . 0 7 0 6 4 4 . 8 1 1 1 1 5 1 1 9 7 8 3 7 1 2 . 0 3 7 3 1 3 5 . 0 6 9 4 2 3 . 0 1 * 1 1 1 1 1 9 7 9 - 1 8 6 6 . 2 0 6 6 9 4 1 . 0 6 8 8 0 7 . 2 1 1 4 1 1 1 9 8 0 - 7 . 9 D - 1 2 7 1 1 9 2 . 0 7 1 1 9 2 . 0 1 1 * 1 1 1 1 9 8 1 - 1 9 8 . 0 8 1 6 8 2 9 3 . 0 6 8 4 9 1 . 1 1 1 5 1 1 1 1 9 8 2 - 1 0 2 9 . 0 5 6 6 6 9 6 . 0 6 7 7 2 5 . 0 I N D E P E N D E N T V A R I A B L E S W H A S B 2 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) U N I S B a w h e a t N e t I m p o r t s ( 1 0 0 0 M T ) F N I S B 3 C o a r s e G r a i n N e t I m p o r t s ( 1 0 0 0 M T ) D V 6 0 7 1 = 1 I f ( Y E A R . G E . 6 0 . A N D . Y E A R . L E . 7 1 ) 0 O t h e r w i s e D V B O 8 1 I £ ( Y E A R . 5 0 . 8 0 ) 0 O t h e r w i s e 6 5 5 S H P L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s . - . . I . I I I - . . . . . - S e r i e s M e a n S . D . M a x i m u m M i n i m u e “ r I l . . . ‘ “ ‘ I : . . . . . . . . N H A S B 7 3 6 2 7 . 2 7 3 4 0 9 6 . 6 5 5 8 8 0 1 9 5 . 0 0 0 6 6 6 9 6 . 0 0 0 N H A S B ( - 1 ) 7 3 7 8 2 . 8 1 8 3 8 8 0 . 1 9 7 2 8 0 1 9 5 . 0 0 0 6 6 9 4 1 . 0 0 0 D V 6 0 7 1 0 . 5 0 0 0 0 0 0 0 . 5 1 1 7 6 6 3 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 F N I S B ( - 1 ) 8 2 3 5 . 0 0 0 0 1 0 3 9 6 . 8 7 3 2 9 6 8 3 . 0 0 0 - 1 5 2 8 . 0 0 0 0 H N I S B ( - 1 ) 6 4 2 8 . 9 0 9 1 7 8 4 9 . 9 7 1 3 2 3 5 3 1 . 0 0 0 - 3 5 0 9 . 0 0 0 0 D V 8 0 0 . 0 4 5 4 5 4 5 0 . 2 1 3 2 0 0 7 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 a n m m n u x a m s x m u a n m n n n u m m C o v a r i a n c e C o r r e l a t i o n m u m - m u m : “ I n n - n n n m n n n u m u m u m m m - z H H A 8 8 , N H A S B 1 6 0 1 9 7 4 4 . 1 . 0 0 0 0 0 0 0 U H A S B , W H A S B ( - 1 ) 1 0 5 1 4 1 2 0 . 0 . 6 9 2 9 3 5 8 H H A S B , D V 6 0 7 1 1 6 6 2 . 4 0 9 1 0 . 8 3 0 6 9 2 2 H H A S B , F N I S B ( - 1 ) - 3 2 5 0 9 3 5 7 . - 0 . 7 9 9 6 1 2 5 U H A 8 8 , N N I S B ( - 1 ) - 1 2 4 7 4 0 8 2 . - 0 . 4 0 6 3 6 3 2 “ H A S B , D V 8 0 - 1 1 0 . 6 9 4 2 1 - 0 . 1 3 2 7 7 3 1 “ H A S B ( - 1 ) , w H A S B ( - 1 ) 1 4 3 7 1 5 7 0 . 1 . 0 0 0 0 0 0 0 U H A S B ( - 1 ) , D V 6 0 7 1 1 3 7 6 . 5 0 0 0 0 . 7 2 6 1 9 6 4 U H A 8 8 ( - 1 ) , F N I S B ( - 1 ) - 2 6 4 9 3 9 7 3 . - 0 . 6 8 8 0 0 8 7 “ H A S B ( - 1 ) , W N I S B ( - 1 ) - 1 5 8 1 0 1 5 3 . - 0 . 5 4 3 7 7 3 0 N H A S B ( - 1 ) , D V 8 0 ~ 3 1 0 . 9 9 1 7 4 - 0 . 3 9 3 8 3 0 9 D V 6 0 7 1 , D V 6 0 7 1 0 . 2 5 0 0 0 0 0 1 . 0 0 0 0 0 0 0 D V 6 0 7 1 , F N I S B ( - 1 ) - 4 1 2 0 . 5 4 5 5 - 0 . 8 1 1 3 0 4 1 D V 6 0 7 1 , N N I S B ( - 1 ) - 2 0 7 7 . 8 6 3 6 - 0 . 5 4 1 8 5 2 0 D V 6 0 7 1 , D V 8 0 - 0 . 0 2 2 7 2 7 3 - 0 . 2 1 8 2 1 7 9 F N I S B ( - 1 ) , F N I S B ( - 1 ) 1 0 3 1 8 1 5 5 5 1 . 0 0 0 0 0 0 0 F N I S B ( - 1 ) , H N I S B ( - 1 ) 5 8 1 5 2 9 2 5 . 0 . 7 4 6 4 5 5 9 F N I S B ( - 1 ) , D V 8 0 8 3 1 . 3 6 3 6 4 0 . 3 9 2 9 1 9 0 “ N 1 8 8 ( - 1 ) , N N I S B ( - 1 ) 5 8 8 2 1 0 4 7 . 1 . 0 0 0 0 0 0 0 N N I S B t - 1 ) , D V 8 0 4 4 0 . 8 2 2 3 1 0 . 2 7 5 9 3 7 2 D V 8 0 , D V 8 0 0 . 0 4 3 3 8 8 4 1 . 0 0 0 0 0 0 0 S o v i e t B l o c W h e a t Y i e l d ( H e t r i c T o n s p e r H e c t a r e ) S M P L - 1 9 6 0 - 1 9 8 2 2 3 O b s e r v a t i o n s 6 5 6 L S / / D e p e n d e n t V a r i a b l e i s W Y S B V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 1 0 . 4 4 8 3 2 0 1 . 8 3 0 9 0 3 8 - 5 . 7 0 6 6 4 6 1 0 . 0 0 0 L O G T 2 . 8 1 1 9 1 8 0 0 . 4 2 9 8 5 8 4 6 . 5 4 1 4 9 8 6 0 . 0 0 0 R - s q u a r e d 0 . 6 7 0 8 0 1 M e a n o f d e p e n d e n t v a r 1 . 5 2 5 6 1 7 A d j u s t e d R - s q u a r e d 0 . 6 5 5 1 2 5 S . D . o f . d e p e n d e n t v a r 0 . 3 2 9 9 8 7 S . E . o f r e g r e s s i o n 0 . 1 9 3 7 8 8 S u m o f s q u a r e d r e s i d 0 . 7 8 8 6 3 2 D u r b i n - W a t s o n s t a t 2 . 0 1 4 8 7 0 ' F - s t a t i s t i c 4 2 . 7 9 1 2 0 L o g l i k e l i h o o d 6 . 1 5 3 3 3 1 3 - : R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 5 1 1 1 9 6 0 0 . 0 8 7 7 3 1 . 1 5 2 3 7 1 . 0 6 4 6 4 1 1 1 5 1 1 1 9 6 1 0 . 0 3 1 7 1 1 . 1 4 2 8 3 1 . 1 1 1 1 2 1 1 5 1 1 1 1 9 6 2 - 0 . 0 1 9 7 0 1 . 1 3 7 1 4 1 . 1 5 6 8 4 1 5 1 1 1 1 1 9 6 3 - 0 . 3 0 0 9 6 0 . 9 0 0 8 8 1 . 2 0 1 8 4 1 1 5 1 1 1 1 9 6 4 - 0 . 0 6 5 5 9 1 . 1 8 0 5 3 . 2 4 6 1 2 1 5 1 1 1 1 1 9 6 5 - 0 . 2 7 2 0 2 1 . 0 1 7 6 9 1 . 2 8 9 7 2 1 1 1 5 1 1 9 6 6 0 . 2 0 3 4 5 1 . 5 3 6 0 9 1 . 3 3 2 6 5 1 1 5 1 1 1 1 9 6 7 - 0 . 0 4 4 8 0 1 . 3 3 0 1 4 . 1 . 3 7 4 9 3 1 1 1 5 1 1 1 9 6 8 0 . 1 0 6 6 8 1 . 5 2 3 2 7 1 . 4 1 6 5 9 1 1 5 1 1 1 1 9 6 9 - 0 . 0 9 2 9 7 1 . 3 6 4 6 8 1 . 4 5 7 6 4 1 1 1 5 1 1 1 9 7 0 0 . 1 2 8 4 6 1 . 6 2 6 5 5 1 . 4 9 8 1 0 1 1 1 5 1 1 9 7 1 0 . 1 8 9 3 0 1 . 7 2 7 2 9 1 . 5 3 7 9 9 1 1 1 5 1 1 1 9 7 2 0 . 1 0 6 7 1 1 . 6 8 4 0 2 1 . 5 7 7 3 1 1 1 1 1 5 1 1 9 7 3 0 . 3 0 8 1 7 1 . 9 2 4 2 8 1 . 6 1 6 1 0 1 1 1 5 1 1 1 9 7 4 0 . 0 2 5 7 7 . 1 . 6 8 0 1 2 1 . 6 5 4 3 6 1 5 1 1 1 1 1 9 7 5 - 0 . 3 7 3 2 3 1 . 3 1 8 8 8 1 . 6 9 2 1 0 1 1 1 5 1 1 1 9 7 6 0 . 1 5 8 5 8 1 . 8 8 7 9 2 1 . 7 2 9 3 5 1 1 5 1 1 1 9 7 7 - 0 . 0 0 9 3 6 1 . 7 5 6 7 5 1 . 7 6 6 1 0 1 1 1 1 1 1 9 7 8 0 . 3 4 0 6 5 2 . 1 4 3 0 4 1 . 8 0 2 3 9 1 1 5 1 1 1 1 9 7 9 - 0 . 0 7 8 0 8 1 . 7 6 0 1 3 1 . 8 3 8 2 1 1 1 5 1 1 1 9 8 0 - 0 . 0 0 8 5 4 1 . 8 6 5 0 4 1 . 8 7 3 5 8 1 5 1 1 1 1 1 9 8 1 - 0 . 2 8 8 8 4 1 . 6 1 9 6 7 1 . 9 0 8 5 1 1 1 5 1 1 1 1 9 8 2 - 0 . 1 3 3 1 1 1 . 8 0 9 9 0 1 . 9 4 3 0 1 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( T I M E ) 6 5 7 S M P L 1 9 6 0 - 1 9 8 2 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m W Y S B 1 . 5 2 5 6 1 7 4 0 . 3 2 9 9 8 6 9 2 . 1 4 3 0 3 7 0 0 . 9 0 0 8 7 7 8 L O G T 4 . 2 5 8 2 8 1 2 0 . 0 9 6 1 1 4 9 4 . 4 0 6 7 1 9 0 4 . 0 9 4 3 4 5 0 C o v a r i a n c e C o r r e l a t i o n W Y S B , W Y S B 0 . 1 0 4 1 5 6 9 1 . 0 0 0 0 0 0 0 N Y S B , L O G T 0 . 0 2 4 8 4 7 3 0 . 8 1 9 0 2 4 4 L O G T , L O G T 0 . 0 0 8 8 3 6 4 1 . 0 0 0 0 0 0 0 5 9 7 0 7 1 7 2 7 1 7 4 7 5 7 1 7 7 7 1 7 1 1 5 1 1 7 2 V I I ‘ I I I I ' I ' U U ' T ‘ l 7 1 5 “ 1 1 5 m 0 ( ) ° m e n I ! E : 1 1 1 5 1 5 5 ' T o 1 2 - . N . S 1 1 “ . M I L 1 5 1 . 4 5 4 L 1 4 7 . 9 2 7 I 1 4 4 . 3 9 9 0 1 4 0 . 5 7 1 N 1 3 7 . 3 4 4 1 3 3 . 5 1 5 . M E 1 3 0 . 2 5 5 . 1 ‘ 1 2 5 . 7 5 1 1 2 3 . 2 3 3 1 r 1 1 9 . 7 0 5 ( 3 N ' : S € fl 5 8 R E G I O N A L M O D E L S I M U L A T I O N W U 5 7 5 7 7 7 5 7 9 5 0 5 1 5 2 5 5 5 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e J . 3 . a & b . T o t a l w h e a t C o n s u m p t i o n - S o v i e t B l o c P > C 3 ( 0 3 1 5 1 5 ' 2 - 1 C 2 1 0 ( 3 1 5 " t P 1 5 3 1 2 3 1 fl 1 5 ~ i - D C 2 1 0 ( A F i g u r e J . 4 . a & b . 2 5 5 0 6 5 9 2 3 . . 3 6 7 1 9 . 1 7 . 2 1 1 5 4 5 2 2 7 2 1 7 7 I . 0 5 2 ' 1 2 . 1 0 . 9 5 7 5 9 2 ‘ . 7 9 7 1 . 7 0 2 . 5 0 7 : 1 9 7 ' 0 7 1 7 7 7 3 R E G I O N A L 7 4 7 ‘ 5 7 5 7 7 7 a 7 9 9 ‘ 5 9 1 1 2 M O D E L S I M U L A T I O N \ — — _ . ” A H 5 1 5 2 5 5 5 4 E X - P O S T F O R E C A S T 1 9 7 5 A C T U A L - 1 9 8 4 ~ - - E S T I M A T E D W h e a t N e t I m p o r t s - S o v i e t B l o c 6 6 0 S o v i e t B l o c P e r C a p i t a W h e a t N e t I m p o r t s ( 1 0 0 0 M T ) S M O L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s P C W N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 0 . 0 5 0 1 0 4 4 0 . 0 1 0 8 5 2 8 4 . 6 1 6 7 0 6 1 0 . 0 0 0 P C R B D P 2 8 8 . 4 2 1 1 4 9 1 . 6 8 7 4 4 1 3 . 1 4 5 6 9 9 6 0 . 0 0 6 D C D W S U - 0 . 2 3 5 2 2 3 3 0 . 0 3 6 2 8 7 5 - 6 . 4 8 2 2 1 5 2 0 . 0 0 0 _ D C D F S U - 0 . 0 6 8 7 6 2 5 0 . 0 6 8 6 5 2 5 - 1 . 0 0 1 6 0 3 4 0 . 3 1 W 7 2 0 . 0 3 1 6 4 3 4 0 . 0 0 7 9 7 2 0 3 . 9 6 9 3 0 3 5 0 . 0 0 1 W 0 . 0 1 5 3 8 0 4 0 . 0 0 6 5 9 3 7 2 . 3 3 2 5 8 6 8 0 . 0 3 3 R - s q u a r e d 0 . 9 0 1 3 2 1 M e a n o f d e p e n d e n t v a r 0 . 0 1 9 2 1 3 A d j u s t e d R - s a u a r e d 0 . 8 7 0 4 8 4 S . D . o f d e p e n d e n t v a r 0 . 0 2 1 3 5 7 8 . E . o f r e g r e s s i o n 0 . 0 0 7 6 8 6 S u m o f s q u a r e d r e s i d 0 . 0 0 0 9 4 5 D u r b i n - W a t s o n s t a t 1 . 2 5 9 8 2 1 F - s t a t i s t i n 2 9 . 2 2 8 3 5 L o g 1 1 R e l i h o o d 7 9 . 3 5 9 5 5 T P E 1 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 5 1 1 1 1 1 9 6 1 - 0 . 0 1 3 8 9 - 0 . 0 0 0 7 4 0 . 0 1 3 1 5 1 5 1 1 1 1 1 9 6 2 - 0 . 0 1 2 0 6 0 . 0 0 1 5 8 0 . 0 1 3 6 3 1 1 1 1 5 1 1 9 6 3 0 . 0 0 8 8 3 0 . 0 3 9 3 6 0 . 0 3 0 5 3 1 1 1 5 1 1 1 9 6 4 0 . 0 0 6 0 9 0 . 0 1 6 7 8 0 . 0 1 0 6 9 1 1 1 1 5 1 1 9 6 5 0 . 0 1 4 1 2 0 . 0 3 1 1 9 0 . 0 1 7 0 7 1 1 1 5 1 1 9 6 6 0 . 0 0 7 1 8 0 . 0 0 4 7 2 - 0 . 0 0 2 4 6 1 1 5 1 I 1 9 6 7 - 6 . 3 D - 0 5 - 0 . 0 0 2 5 2 - 0 . 0 0 2 4 5 1 1 5 1 1 ‘ 1 9 6 8 0 . 0 0 0 1 9 - 0 . 0 0 9 6 7 . 0 . 0 0 9 8 6 1 1 5 1 1 1 1 9 6 9 - 0 . 0 0 6 0 3 - 0 . 0 0 8 2 7 . 0 . 0 0 2 2 3 1 1 9 1 1 1 1 9 7 0 - 0 . 0 0 2 1 5 - 0 . 0 0 0 1 5 0 . 0 0 2 0 0 5 5 ‘ . 5 I 0 1 9 7 1 . O e 0 0 2 8 0 0 0 M 0 e 0 0 5 5 5 1 1 5 1 1 1 9 7 2 0 . 0 0 0 0 0 0 . 0 4 6 5 6 0 . 0 4 6 5 6 5 0 0 3 ‘ . 0 1 9 7 3 0 e 0 0 9 5 9 0 e ” 7 3 ‘ . O e 0 0 2 3 5 1 5 1 1 I 1 9 7 4 - 0 . 0 0 7 3 7 0 . 0 0 2 1 5 0 . 0 0 9 5 2 1 1 5 1 1 1 1 9 7 5 - 0 . 0 0 3 4 8 0 . 0 3 3 7 9 0 . 0 3 7 2 7 1 1 * 1 1 1 1 9 7 6 - 0 . 0 0 0 5 8 0 . 0 1 8 1 5 0 . 0 1 8 7 4 1 1 e 1 1 1 1 9 7 7 - 0 . 0 0 0 8 9 0 . 0 2 1 2 5 0 . 0 2 2 1 4 1 1 1 5 1 1 1 9 7 8 0 . 0 0 3 2 2 0 . 0 1 6 0 3 0 . 0 1 2 8 1 1 1 4 1 1 1 1 9 7 9 - 0 . 0 0 3 5 1 0 . 0 4 0 5 3 0 . 0 4 4 0 5 1 1 1 5 1 1 1 9 8 0 0 . 0 0 2 6 5 0 . 0 4 8 8 7 0 . 0 4 6 2 2 g 5 . 5 0 1 9 8 1 ' 3 . “ a s 0 5 8 3 6 0 . 0 5 5 3 9 1 1 1 5 1 1 1 9 8 2 0 . 0 0 0 8 9 0 . 0 5 3 3 2 0 . 0 5 2 4 4 I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P S B / C P I S B / P O P S B p c n w s u = D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S S B ( - l ) 5 W P R O S B ) / P O P S B P C D F S U = D o m e s t i c C o a r s e G r a i n S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( w s s s a c - 1 > + W P R O S B ) / P O P S B D V 7 2 = 1 I f < Y E A R . 5 0 . 7 2 ) 0 O t h e r w i s e D V 7 9 0 N = l I £ ( Y E A R . G E . 7 9 ) 0 O t h e r w i s e 6 6 1 S H P L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s m S e r i e s M e a n S . D . M a x i m u m M i n i m u m P O N N I 0 . 0 1 9 2 1 3 5 0 . 0 2 1 3 5 7 5 0 . 0 5 8 3 6 2 1 ~ 0 . 0 0 9 6 7 2 5 P C R B D D 0 . 0 0 0 2 2 3 2 5 . 6 5 3 0 - 0 5 0 . 0 0 0 2 9 9 0 0 . 0 0 0 1 3 7 0 D O D H S U 0 . 3 3 4 7 8 3 0 0 . 0 5 6 4 9 7 5 0 . 4 1 7 4 3 2 0 0 . 2 0 1 7 4 3 9 P C D F S U 0 . 3 0 1 7 2 0 5 0 . 0 6 3 7 7 1 5 0 . 4 0 6 0 7 3 8 0 . 2 0 3 0 2 0 6 D V 7 2 0 . 0 4 5 4 5 4 5 0 . 2 1 3 2 0 0 7 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 D V 7 9 O N 0 . 1 8 1 8 1 8 2 0 . 3 9 4 7 7 1 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 m C o v a r i a n c e C o r r e l a t i o n . . . - I ' m . . . P C H N I , P C N N I 0 . 0 0 0 4 3 5 4 1 . 0 0 0 0 0 0 0 P C H N I , P C R G D D 5 . 9 9 4 0 - 0 7 0 . 5 2 0 0 9 6 1 P O N N I , P C D H S U - 0 . 0 0 0 5 2 1 0 - 0 . 4 5 2 3 1 1 5 P C H N I , P O D F S U 0 . 0 0 0 4 2 4 3 0 . 3 2 6 3 3 5 0 P C U N I , D V 7 2 0 . 0 0 1 2 4 2 9 0 . 2 8 5 9 5 7 0 P C H N I , D V 7 9 O N 0 . 0 0 5 6 4 7 0 0 . 7 0 1 6 6 4 2 D C R G D P , P C R B D P 3 . 0 5 1 D - 0 9 1 . 0 0 0 0 0 0 0 P C R B D D , P C D N S U 1 . 1 5 2 D - 0 6 0 . 3 7 7 9 7 7 3 D C R G D D , P C D F S U 3 . 1 0 9 0 - 0 6 0 . 9 0 3 3 8 1 5 P O R B D D , D V 7 2 1 . 5 0 7 D - 0 7 0 . 0 1 3 1 0 2 1 D C R G D P , D V 7 9 O N 1 . 2 9 8 0 - 0 5 0 . 6 0 9 1 4 6 5 P C D H S U , D C D H S U 0 . 0 0 3 0 4 6 9 1 . 0 0 0 0 0 0 0 P C D N S U , P C D F S U 0 . 0 0 1 5 3 3 9 0 . 4 4 6 0 0 9 9 P C D H S U , D V 7 2 0 . 0 0 0 1 2 7 7 0 . 0 1 1 1 1 0 2 P C D H S U , D V 7 9 O N - 0 . 0 0 2 2 8 9 6 - 0 . 1 0 7 5 4 3 8 D C D F S U , P O D F S U 0 . 0 0 3 8 8 1 9 1 . 0 0 0 0 0 0 0 P C D F S U , D V 7 2 0 . 0 0 0 2 3 8 2 0 . 0 1 8 3 5 1 2 A C D F S U , D V 7 9 O N 0 . 0 0 9 6 1 0 1 0 . 3 9 9 9 0 7 7 D V 7 2 , D V 7 2 0 . 0 4 3 3 8 8 4 1 . 0 0 0 0 0 0 0 . D V 7 2 , D V 7 9 O N - 0 . 0 0 8 2 6 4 5 - 0 . 1 0 2 8 6 8 9 D W 9 O N , D V 7 9 O N 0 . 1 4 8 7 6 0 3 1 . 0 0 0 0 0 0 0 W W . . . - 7 1 7 2 7 3 7 4 7 s 7 1 7 7 7 1 7 9 1 1 1 1 1 1 1 1 r e r : U I I I I ' T ' I m 6 ' a q o I I U ' I U ' I z U m 6 6 2 3 1 1 1 1 4 1 1 2 5 1 1 1 4 : 0 0 2 1 1 1 1 1 0 M 1 5 1 1 1 E e . T 1 1 1 1 1 * ' 2 ; 5 1 1 1 N s 1 I . I . . e . . s a a . R E G I O N A L M O D E L S I M U L A T I O N 1 8 . 9 4 1 1 7 . 1 8 7 1 5 . 4 3 3 1 3 . 8 7 9 1 1 . 9 2 5 . 1 7 2 8 . 4 1 8 8 . 8 8 4 4 . 9 1 0 3 . 1 5 8 F i g u r e J . 5 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - — E S T I M A T E D W h e a t E n d i n g S t o c k s - S o v i e t B l o c 6 6 3 S o v i e t B l o c W h e a t E n d i n g S t o c k s P e r C a p i t a ( 1 0 0 0 M T ) S H A L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s L S / / D e o e n d e n t V a r i a b l e i s P C W E S V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 9 1 6 . C — 0 . 0 9 3 4 7 9 3 0 . 0 2 3 4 2 7 6 - 3 . 9 9 0 1 3 6 9 0 . 0 0 1 P C D W S U 0 . 2 3 6 l 4 6 4 0 . 0 5 7 5 3 7 7 4 . 1 0 4 2 0 5 7 0 . 0 0 1 H P S B 0 . 0 3 9 1 7 8 9 0 . 0 1 0 6 2 0 0 3 . 6 8 9 1 8 1 3 0 . 0 0 2 D V 6 6 6 9 0 . 0 5 5 0 9 4 5 0 . 0 1 0 3 5 3 0 5 . 3 2 1 5 9 4 4 0 . 0 0 0 W S U R ( - 1 ) - 0 . 0 6 1 9 6 3 3 0 . 0 4 1 7 8 4 3 - 1 . 4 8 2 9 3 2 9 0 . 1 5 6 R - s d u a r e d 0 . 8 4 6 6 9 8 M e a n o f d e p e n d e n t v a r 0 . 0 3 3 3 9 9 A d J u s t e d R - s d u a r e d 0 . 8 1 0 6 2 7 S . D . o f d e p e n d e n t v a r 0 . 0 2 9 5 2 0 S . E . o f r e g r e s s i o n 0 . 0 1 2 8 4 6 S u n o f s q u a r e d r e s i d 0 . 0 0 2 8 0 5 D u r b i n - W a t s o n s t a t 1 . 7 3 9 2 1 2 F - s t a t i s t i c 2 3 . 4 7 3 1 0 L o g l i k e l i h o o d 6 7 . 4 2 2 9 7 T P E 4 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 * 1 1 1 1 1 9 6 1 - 0 . 0 1 5 1 5 0 . 0 0 4 2 8 0 . 0 1 9 4 3 1 * 1 1 1 1 1 9 6 2 - 0 . 0 1 5 6 7 0 . 0 0 6 7 8 0 . 0 2 2 4 5 1 1 1 4 1 1 1 9 6 3 0 . 0 0 9 7 0 0 . 0 1 5 9 2 0 . 0 0 6 2 2 1 1 1 1 4 1 1 9 6 4 0 . 0 2 2 0 8 0 . 0 4 2 8 7 0 . 0 2 0 7 9 1 1 1 4 1 1 1 9 6 5 0 . 0 1 0 5 4 0 . 0 1 7 4 2 0 . 0 0 6 8 8 1 1 4 1 1 1 9 6 6 0 . 0 0 0 1 2 0 . 0 9 4 5 3 0 . 0 9 4 4 1 1 1 1 1 4 1 1 9 6 7 0 . 0 1 5 3 2 0 . 0 9 0 9 3 0 . 0 7 5 6 1 1 1 1 4 1 1 1 9 6 8 0 . 0 1 0 1 2 0 . 0 9 5 4 2 0 . 0 8 5 3 0 1 4 1 1 1 1 1 9 6 9 - 0 . 0 2 5 5 6 0 . 0 4 4 1 0 0 . 0 6 9 6 6 1 1 4 1 1 1 1 9 7 0 - 0 . 0 0 5 5 9 0 . 0 2 0 8 1 0 . 0 2 6 4 0 1 1 1 1 1 1 9 7 1 0 . 0 0 0 9 3 0 . 0 2 6 9 6 0 . 0 2 6 0 3 1 1 1 4 1 1 1 9 7 2 0 . 0 0 3 4 7 0 . 0 3 1 5 4 0 . 0 2 8 0 8 1 1 4 1 1 1 1 9 7 3 - 0 . 0 0 2 6 9 0 . 0 6 5 9 5 0 . 0 6 8 6 3 1 1 4 1 1 1 1 9 7 4 - 0 . 0 0 2 8 8 0 . 0 3 9 6 2 0 . 0 4 2 5 0 1 1 e 1 1 1 1 9 7 5 - 0 . 0 0 9 0 4 0 . 0 0 6 5 8 0 . 0 1 5 6 2 1 1 1 4 1 1 1 9 7 6 0 . 0 0 4 9 2 0 . 0 2 8 9 6 0 . 0 2 4 0 4 1 4 1 1 1 1 9 7 7 - 0 . 0 1 3 4 9 0 . 0 0 5 8 3 0 . 0 1 9 3 2 1 1 1 1 * 1 1 9 7 8 0 . 0 1 5 5 2 0 . 0 5 0 2 6 0 . 0 3 4 7 4 1 1 s 1 1 1 9 7 9 0 . 0 0 0 5 3 0 . 0 1 7 1 9 0 . 0 1 6 6 6 1 1 4 1 1 1 1 9 8 0 - 0 . 0 0 6 2 9 0 . 0 1 4 8 6 0 . 0 2 1 1 5 1 1 1 4 1 1 1 9 8 1 0 . 0 0 4 2 5 0 . 0 0 7 1 3 0 . 0 0 2 8 8 1 1 * 1 1 1 1 9 8 2 - 0 . 0 0 1 1 4 0 . 0 0 6 8 6 0 . 0 0 8 0 0 I N D E P E N D E N T V A R I A B L E S P C D W S U = D o m e s t i c W h e a t S u p p l y P e r C a p i t a ( 1 0 0 0 M T ) ( W E S S B ( - l ) + W P R O S B ) / P O P S B P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P S B / C P I L S B / P O P S B W S U R 3 W h e a t S t o c k / U t i l i z a t i o n R a t i o ( W E S S B / W C O N S B ) D V 6 6 6 9 = l I f < Y E A R . G E . 6 6 . A N D . Y E A R . L E . 6 9 ) 0 O t h e r w i s e 6 6 4 S M A L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C H E S 0 . 0 3 3 3 9 9 3 0 . 0 2 9 5 2 0 1 0 . 0 9 5 4 1 8 7 0 . 0 0 4 2 8 1 9 P C D N S U 0 . 3 3 4 8 1 4 7 0 . 0 5 6 4 8 0 6 0 . 4 1 7 4 3 2 0 0 . 2 0 1 7 4 3 9 H P S B 1 . 1 3 7 0 4 7 7 0 . 2 6 9 2 1 2 4 1 . 8 3 4 4 0 6 0 0 . 7 7 8 7 7 9 6 D V 6 6 6 9 0 . 1 8 1 8 1 8 2 0 . 3 9 4 7 7 1 0 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 H S U R ( - 1 ) 0 . 1 0 8 9 7 0 5 0 . 0 9 9 7 2 2 3 0 . 3 4 5 1 5 8 6 0 . 0 1 5 8 2 6 4 ' C o v a r i a n c e C o r r e l a t i o n P C N E S , P C U E S 0 . 0 0 0 8 3 1 8 1 . 0 0 0 0 0 0 0 P C “ E S . P C D H S U 0 . 0 0 1 0 0 4 8 0 . 6 3 1 3 3 5 5 P C U E S . N P S B 0 . 0 0 2 1 2 2 0 0 . 2 7 9 7 3 3 8 A C R E S . 1 3 9 6 6 6 9 0 . 0 0 8 6 9 9 1 0 . 7 8 2 0 1 7 4 P C N E S , H S U R ( - 1 ) 0 . 0 0 1 5 3 9 4 0 . 5 4 7 8 3 1 8 P C D N S U . P C D H S U 0 . 0 0 3 0 4 5 1 1 . 0 0 0 0 0 0 0 P C D U S U , H P S B - 0 . 0 0 1 9 0 8 2 - 0 . 1 3 1 4 7 3 5 P C D H S U . D V 6 6 6 9 0 . 0 0 9 3 0 5 2 0 . 4 3 7 2 0 4 3 P C D U S U , H S U R ( - 1 ) 0 . 0 0 2 4 5 6 2 0 . 4 5 6 8 6 0 6 N P S B . H P S B 0 . 0 6 9 1 8 1 0 1 . 0 0 0 0 0 0 0 H D S B , D V 6 6 6 9 - 0 . 0 0 0 6 5 8 8 - 0 . 0 0 6 4 9 4 1 H P S B , H S U R ( - 1 ) 0 . 0 0 1 6 3 7 7 0 . 0 6 3 9 0 8 5 D V 6 6 6 9 , D V S 6 6 9 0 . 1 4 8 7 6 0 3 1 . 0 0 0 0 0 0 0 D V 6 6 6 9 . H 5 U R ( - 1 ) 0 . 0 2 6 9 2 4 5 0 . 7 1 6 4 9 7 0 H S U R ( - 1 ) , H 8 U R ( - 1 ) 0 . 0 0 9 4 9 2 5 1 . 0 0 0 0 0 0 0 u 1 1 1 1 m m e r m . 1 m s M 1 3 2 a m a m m ” ' 0 0 0 : m a ! - 0 2 1 1 ( Z H ‘ I ‘ F H O Z : m e ! " 0 2 1 0 1 3 7 6 7 ? F i g u r e J . 6 . d & b . C o a r s — r 3 _ " - . $ " ° . , . . - . . . . . ° ' ° 9 7 9 9 0 9 1 9 2 9 3 9 1 G r a i n P r o d u c t i o n - S o v i e t B l o c 1 e 6 6 5 ’ 0 9 0 3 3 0 1 1 7 ' 0 1 1 7 2 7 1 7 4 1 5 7 1 7 ' 1 7 1 7 9 1 0 a 1 1 2 R E G I O N A L M O D E L S I M U L A T I O N 1 9 4 . 9 9 9 1 5 9 . 5 9 9 E “ 1 5 2 . 4 9 1 1 4 9 . 3 9 3 _ 1 4 0 . 2 9 9 - 1 3 4 . 1 9 9 1 2 9 . 0 9 9 1 2 2 . 0 0 0 1 1 5 . 9 0 1 » 1 0 9 . 9 0 3 E E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ~ - - E S T I M A T E D . 2 7 _ 3 7 ‘ 4 7 , ' 5 7 m 7 6 7 7 7 8 7 9 8 0 8 1 . 8 2 3 3 s ? a i P > C D < O 3 1 fl ) ( 4 ' 9 1 2 fl 7 m 3 J F " I F ¢ P D C Z m i fl ) ( fl ' b i l fl t m F i g u r e J . 7 . a & b . C o a r s e G r a i n H a r v e s t e d A r e a - S o v i e t 7 5 0 0 0 + F * 7 0 . 6 9 . 6 6 . 6 6 . 6 7 . 6 6 . 6 5 . 6 4 . 6 3 . ' 9 6 4 6 4 - ' 7 3 2 2 9 9 5 3 1 Z 9 0 5 Z . 0 1 3 ' 3 4 1 Z 5 0 9 6 6 6 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D B l o c 6 6 7 ' S o v i e t B l o c C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F H A S B V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . C 4 8 4 9 1 . 7 5 3 9 1 0 8 . 6 9 0 9 5 . 3 2 3 6 7 9 7 0 . 0 0 0 F H A S B ( - 1 ) 0 . 1 8 3 9 9 7 1 0 . 1 5 7 4 4 2 0 1 . 1 6 8 6 6 5 9 0 . 2 5 9 F N I S B 1 - 1 ) 0 . 4 9 0 9 4 0 0 0 . 1 2 6 5 4 3 3 3 . 8 7 9 6 1 9 2 0 . 0 0 1 D V 6 0 7 1 - 7 3 2 9 . 0 6 5 2 2 1 3 0 . 4 9 0 2 - 3 . 4 4 0 0 8 4 0 0 . 0 0 3 ‘ D V 8 0 - 1 0 1 2 5 . 1 4 0 2 8 3 8 . 3 4 4 7 - 3 . 5 6 7 2 6 9 2 0 . 0 0 2 I R - s q u a r e d , 0 . 9 4 6 5 8 5 M e a n 0 + d e p e n d e n t v a r 5 9 0 4 1 . 6 8 A d j u s t e d R - s q u a r e d 0 . 9 3 4 0 1 7 S . D . o f d e p e n d e n t v a r 9 7 5 2 . 0 5 7 S . E . a ? r e g r e s s i o n 2 5 0 5 . 0 3 3 S u m 0 9 s q u a r e d r e s i d 1 . 0 7 D + 0 8 D u r b i n - H a t s o n s t a t 2 . 6 5 6 4 9 6 F - s t a t i s t i c 7 5 . 3 1 5 5 2 L o g 1 1 1 : 0 1 i h o o d - 2 0 0 . 5 5 3 9 T P E 1 1 / 2 2 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 4 1 1 1 9 6 1 1 5 7 2 . 9 5 5 1 4 0 5 . 0 4 9 8 3 2 . 1 1 1 4 1 1 1 1 9 6 2 - 5 0 2 . 9 0 3 4 9 3 6 8 . 0 4 9 8 7 0 . 9 1 1 1 4 1 1 1 9 6 3 2 1 0 0 . 3 6 5 2 2 9 9 . 0 5 0 1 9 8 . 6 1 1 1 4 1 1 1 9 6 4 1 9 1 . 6 9 0 5 0 8 8 2 . 0 5 0 6 9 0 . 3 1 4 ' 1 1 1 1 1 9 6 5 - 3 4 8 5 . 9 0 4 7 3 0 6 . 0 5 0 7 9 1 . 9 1 1 4 1 1 1 1 9 6 6 - 1 8 7 1 . 9 6 4 7 6 9 1 . 0 4 9 5 6 3 . 0 1 1 4 1 1 1 1 9 6 7 - 2 1 6 . 3 0 6 4 9 6 3 4 . 0 4 9 8 5 0 . 3 1 1 4 1 1 1 1 9 6 8 - 1 2 0 9 . 9 0 4 9 1 8 3 . 0 5 0 3 9 2 . 9 1 1 1 1 4 1 1 9 6 9 3 6 0 8 . 8 6 5 4 0 4 2 . 0 5 0 4 3 3 . 1 1 1 4 1 1 1 9 7 0 - 1 5 4 . 3 0 4 5 1 0 8 5 . 0 ' 5 1 2 3 9 . 3 1 1 4 1 1 1 9 7 1 - 3 2 . 5 8 8 7 5 1 5 3 7 . 0 5 1 5 6 9 . 6 1 1 4 1 1 1 1 9 7 2 - 1 3 7 6 . 7 0 6 0 2 6 7 . 0 6 1 6 4 3 . 7 1 1 4 1 1 1 1 9 7 3 - 9 9 4 . 6 2 7 6 2 8 1 7 . 0 6 3 8 1 1 . 6 1 1 1 4 1 1 1 9 7 4 3 4 4 . 5 9 5 6 4 1 0 6 . 0 6 3 7 6 1 . 4 1 1 1 4 1 1 9 7 5 2 3 4 6 . 1 4 6 5 8 6 9 . 0 6 3 5 2 2 . 9 1 4 1 1 1 1 1 9 7 6 - 3 6 2 4 . 2 3 6 7 1 8 7 . 0 7 0 8 1 1 . 2 1 1 1 1 4 1 1 9 7 7 3 1 4 2 . 3 2 6 9 2 4 1 . 0 6 6 0 9 8 . 7 1 4 1 1 1 1 1 9 7 8 - 4 6 6 5 . 4 2 6 5 1 0 0 . 0 6 9 7 6 5 . 4 1 1 1 4 1 1 1 9 7 9 8 5 6 . 4 7 3 7 0 5 6 2 . 0 6 9 7 0 5 . 5 1 1 4 1 1 1 9 8 0 1 . 1 D - 1 1 6 4 3 7 2 . 0 6 4 3 7 2 . 0 1 1 1 1 4 1 1 9 8 1 3 9 0 7 . 3 1 7 7 5 6 4 . 0 7 3 6 5 6 . 7 1 1 4 1 1 1 9 8 2 6 4 . 1 2 4 1 7 7 4 0 0 . 0 7 7 3 3 5 . 9 I N D E P E N D E N T V A R I A B L E S P H A S E 8 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) F N I S B 8 C o a r s e G r a i n N e t I m p o r t s ( 1 0 0 0 M T ) D V 6 0 7 1 8 1 I f < Y E A R . G E . 6 0 . A N D . Y E A R . L E . 7 1 ) 0 O t h e r w i s e D V 8 O 8 1 I £ ( Y E A R . G E . 8 0 ) 0 O t h e r w i s e 6 6 8 S M P L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A S B 5 9 0 4 1 . 6 8 2 9 7 5 2 . 0 5 7 2 7 7 5 6 4 . 0 0 0 4 7 3 0 6 . 0 0 0 F H A 5 8 ( - 1 ) 5 7 7 8 2 . 4 5 5 9 0 3 0 . 5 4 5 ? 7 7 5 6 4 . 0 0 0 4 7 3 0 6 . 0 0 0 F N I S B ( - 1 ) 8 2 3 5 . 0 0 0 0 1 0 3 9 6 . 8 7 3 2 9 6 8 3 . 0 0 0 - 1 5 2 8 . 0 0 0 0 D V 6 0 7 1 0 . 5 0 0 0 0 0 0 0 . 5 1 1 7 6 6 3 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 D V 8 0 0 . 0 4 5 4 5 4 5 0 . 2 1 3 2 0 0 7 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 u m C o v a r i a n c e C o r r e l a t i o n F H A S B . F H A 5 8 9 0 7 7 9 7 7 4 . 1 . 0 0 0 0 0 0 0 F H A S B , F H A S B ( - 1 ) 7 5 5 6 0 7 5 0 . 0 . 8 9 8 8 5 4 5 F H A S B , F N I S B ( - 1 ) 8 7 2 2 8 4 4 5 . 0 . 9 0 1 2 8 5 8 F H A S B , D V 6 0 7 1 - 4 3 1 9 . 3 8 6 4 - 0 . 9 0 6 6 8 7 2 F H A 8 8 , D V 8 0 2 4 2 . 2 8 7 1 9 0 . 1 2 2 0 8 1 2 F H A S B ( - 1 ) , F H A S B ( - 1 ) 7 7 8 4 3 9 0 4 . 1 . 0 0 0 0 0 0 0 F H A S B ( - 1 ) , F N I S B ( - 1 ) 8 0 3 8 3 9 8 4 . 0 . 8 9 6 9 2 5 1 F H A S B ( - 1 ) , D V 6 0 7 1 - 3 7 7 3 . 4 0 9 1 - 0 . 8 5 5 3 6 5 2 F H A S B ( - 1 ) , D V 8 0 5 8 0 . 8 8 8 4 3 0 . 3 1 6 0 7 7 4 F N I S B ( - 1 ) , F N I S B ( - 1 ) 1 0 3 1 8 1 5 5 5 1 . 0 0 0 0 0 0 0 F N I S B ( - 1 ) . D V 6 0 7 1 - 4 1 2 0 . 5 4 5 5 - 0 . 8 1 1 3 0 4 1 F N I S B ( - 1 ) . D V 8 0 8 3 1 . 3 6 3 6 4 0 . 3 9 2 9 1 9 0 D V 6 0 7 1 , D V 6 0 7 1 0 . 2 5 0 0 0 0 0 1 . 0 0 0 0 0 0 0 D V 6 0 7 1 , D V 8 0 - 0 . 0 2 2 7 2 7 3 - 0 . 2 1 8 2 1 7 9 0 . 0 4 3 3 8 8 4 1 . 0 0 0 0 0 0 0 D V 8 0 , D V 8 0 6 6 9 S o v i e t B l o c C o a r a e G r a i n Y i e l d ( H e t r i c T o n s p e r H e c t a r e ) S M P L 1 9 6 0 — 1 9 8 2 7 ’ O b s e r v a t i o n s 5 " L S / / D e p e n d e n t V a r i a b l e i s F Y S B V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C - 0 . 7 8 6 0 0 0 2 0 . 5 0 1 9 0 7 2 - 1 . 5 6 6 0 2 6 8 0 . 1 3 3 Y E A R 0 . 0 5 0 1 7 7 2 0 . 0 1 3 0 9 5 5 3 . 8 3 1 6 4 2 9 0 . 0 0 1 F H A S B - 1 . 6 8 1 D - 0 5 9 . 1 3 3 D - 0 6 - 1 . 8 4 0 8 4 5 9 0 . 0 8 1 R - s q u a r e d 0 . 5 9 3 4 9 3 M e a n o f d e p e n d e n t v a r 1 . 7 9 0 7 8 8 A d j u s t e d R - s q u a r e d 0 . 5 5 2 8 4 3 S . D . o f d e p e n d e n t v a r 0 . 2 6 5 6 7 7 S . E . o f r e g r e s s i o n 0 . 1 7 7 6 5 8 S u m o f s q u a r e d r e s i d 0 . 6 3 1 2 4 7 D u r b i n - W a t s o n s t a t 2 . 0 8 2 7 0 1 F - s t a t i s t i c 1 4 . 5 9 9 8 4 L o g l i k e l i h o o d 8 . 7 1 3 2 6 6 T P E 4 / 2 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 4 1 1 1 9 6 0 0 . 0 6 6 6 5 1 . 4 5 5 7 6 1 . 3 8 9 1 1 1 1 4 1 1 1 1 9 6 1 - 0 . 0 3 4 2 3 1 . 3 7 6 3 5 1 . 4 1 0 5 8 1 1 4 1 1 1 1 9 6 2 - 0 . 0 2 4 3 5 1 . 4 7 0 6 5 1 . 4 9 5 0 0 1 * 1 1 1 1 1 9 6 3 - 0 . 2 1 0 6 9 1 . 2 8 5 2 1 1 . 4 9 5 9 0 1 1 1 4 1 1 1 9 6 4 0 . 0 7 0 2 3 1 . 6 4 0 1 3 1 . 5 6 9 9 0 1 4 1 1 1 1 1 9 6 5 - 0 . 2 6 0 0 4 1 . 4 2 0 1 6 1 . 6 8 0 2 0 1 1 1 4 1 1 1 9 6 6 0 . 0 6 1 7 8 1 . 7 8 5 6 8 , 1 . 7 2 3 9 0 1 1 4 1 - 1 1 1 9 6 7 - 0 . 0 5 3 2 2 1 . 6 8 8 2 0 1 . 7 4 1 4 1 1 1 4 1 1 1 1 9 6 8 - 0 . 0 2 9 9 2 1 . 7 6 9 2 5 1 . 7 9 9 1 7 1 1 1 4 1 1 1 9 6 9 0 . 0 9 0 8 6 1 . 8 5 8 5 2 1 . 7 6 7 6 6 1 1 1 4 1 1 1 9 7 0 0 . 0 8 8 9 3 1 . 9 5 6 4 8 1 . 8 6 7 5 5 1 1 1 4 1 1 1 9 7 1 0 . 0 5 0 6 8 1 . 9 6 0 8 1 1 . 9 1 0 1 3 1 1 4 1 1 1 1 9 7 2 ‘ 0 . 0 1 2 7 8 1 . 8 0 0 7 5 1 . 8 1 3 5 3 1 1 1 1 1 1 9 7 3 0 . 3 2 6 6 5 _ 2 . 1 4 7 4 9 1 . 8 2 0 8 4 1 1 1 4 1 1 9 7 4 0 . 1 9 1 7 7 2 . 0 4 1 1 2 1 . 8 4 9 3 5 1 4 1 1 1 1 1 9 7 5 ~ 0 . 2 3 8 3 9 1 . 6 3 1 5 0 1 . 8 6 9 8 8 1 1 1 1 1 1 9 7 6 0 . 3 5 2 8 2 2 . 2 5 0 7 2 1 . 8 9 7 9 0 1 1 1 4 a 1 1 9 7 7 0 . 0 2 9 6 2 1 . 9 4 3 1 7 1 . 9 1 3 5 5 1 1 1 4 1 1 1 9 7 8 0 . 1 4 6 8 7 2 . 1 8 0 2 1 2 . 0 3 3 3 4 1 1 * 1 1 1 1 9 7 9 - 0 . 1 6 7 6 5 1 . 8 2 4 0 4 1 . 9 9 1 6 9 1 4 1 1 1 1 1 9 8 0 - 0 . 2 4 5 1 7 1 . 9 0 0 7 6 2 . 1 4 5 9 4 1 * 1 1 1 1 1 9 8 1 - 0 . 2 1 4 4 9 1 . 7 5 9 8 4 1 . 9 7 4 3 3 1 1 1 4 1 1 1 9 8 2 0 . 0 1 4 0 8 2 . 0 4 1 3 4 2 . 0 2 7 2 6 I N D E P E N D E N T V A R I A B L E S Y E A R 8 1 9 6 0 8 6 0 , F H A S B = 1 9 6 1 8 6 1 , . I 0 C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H A ) 6 7 0 S M P L 1 9 6 0 - 1 9 8 2 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F Y 8 8 1 . 7 9 0 7 8 8 4 0 . 2 6 5 6 7 7 3 2 . 2 5 0 7 1 8 0 1 . 2 8 5 2 0 6 0 Y E A R 7 1 . 0 0 0 0 0 0 6 . 7 8 2 3 3 0 0 8 2 . 0 0 0 0 0 0 6 0 . 0 0 0 0 0 0 F H A S B 5 8 6 3 5 . 3 9 1 9 7 2 5 . 0 4 1 3 7 7 5 6 4 . 0 0 0 4 7 3 0 6 . 0 0 0 C o v a r i a n c e C o r r e l a t i o n F Y S B , F Y S B 0 . 0 6 7 5 1 5 6 1 . 0 0 0 0 0 0 0 F Y S B , Y E A R 1 . 2 4 8 3 8 7 1 0 . 7 2 4 3 0 4 2 F Y S B , F H A S B 1 3 4 2 . 5 0 5 3 0 . 5 4 3 2 1 9 3 Y E A R , Y E A R 4 4 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , F H A S B 5 7 0 6 6 . 0 8 7 0 . 9 0 4 5 0 9 0 F H A S B , F H A S B 9 0 4 6 4 4 1 1 . 1 . 0 0 0 0 0 0 0 ‘ 1 0 0 0 3 : 1 " 4 ' 4 ~ ) C 1 2 n I 3 1 4 h 5 9 7 0 7 1 7 1 7 1 1 4 7 1 7 1 7 1 7 1 7 1 1 ‘ 0 1 1 1 1 ‘ j f ‘ ‘ r 1 h 1 C 1 2 i r I ' U ' f r r I J 6 7 1 1 9 “ m m 7 u s e : . 1 5 m 1 : 5 . 3 . 3 , " . " - - . . . . ‘ . . . . . . " N W T ' 1 3 - 1 1 2 m 1 * 1 m m 1 1 m 9 m a - " . R E G I O N A L M O D E L S I M U L A T I O N 1 8 4 . 9 5 4 1 7 9 . 1 0 2 1 7 3 . 2 4 9 1 9 7 . 3 9 7 1 5 1 . 5 4 5 1 5 5 . 5 9 2 1 4 9 . 8 4 0 ' 1 4 3 . 9 9 7 1 3 8 . 1 3 5 1 3 2 . 2 9 2 : a U s 0 A 7 5 7 6 7 1 7 6 7 § 8 0 3 % 8 1 ( n 1 : C 1 " ! ~ i l fl 1 l E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - ' E S T I H A T E D F i g u r e J . 8 . a A b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - S o v i e t B l o c : 1 7 1 1 ” 4 - 0 2 0 ( 3 1 F T I P 1 P D ( 2 l I T I I I I I I I U 1 I U ' T I I I T fl l i r 4 ' 3 ( 1 2 n I 3 i “ ' 4 1 9 7 ’ 0 7 1 1 2 7 3 1 4 7 ' 5 7 6 1 7 7 1 1 9 a b 9 1 1 2 l l l l l l l l l L l l l l 6 7 2 ” H f 2 5 1 m 0 0 0 * ” 1 5 0 1 1 ‘ . s e e ' “ . ” ~ ' e C I 0 I 0 . . . I R E G I O N A L M O D E L S I M U L A T I O N 2 8 . 6 8 9 2 8 . 9 3 3 ‘ 2 4 . 5 0 0 2 2 . 5 7 5 2 0 . 5 4 7 1 5 . 5 1 7 1 5 . 4 8 7 1 4 . 4 5 7 1 2 . 4 2 7 1 0 . 3 9 7 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — ’ - - E S T I M A T E D F i g u r e J . 9 . a & b . C o a r s e G r a i n N e t I m p o r t s - S o v i e t B l o c " ’ 0 0 0 : ” 1 9 ' ! - 0 2 0 ( : : 4 1 7 r ' r 4 1 3 ( 5 ' 9 7 ' 0 7 1 7 1 7 a 7 4 7 ' 5 7 1 7 7 7 1 7 ' 9 1 ' 0 1 1 1 2 r I ' U I I 1 ' I I ' T T I I ' U I I T 2 3 1 1 1 4 ! — 0 2 0 ( 7 5 7 % 7 7 7 6 7 6 3 6 8 1 3 5 3 5 3 4 u s e r 3 0 1 m 1 5 1 1 1 1 2 0 1 1 0 1 1 5 1 1 4 1 M 1 5 ‘ 1 2 8 . 9 9 8 2 9 . 2 4 . 2 2 . 2 0 . 1 8 . 1 9 . 1 4 . 1 2 . 1 0 . 6 7 2 a . . . . . p e e e " . . . . . . . . . . ~ . e e . . . . . e R E G I O N A L M O D E L S I M U L A T I O N 9 3 8 * 9 0 8 5 7 8 5 4 7 5 1 7 4 8 7 4 5 7 4 2 7 3 9 7 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e J . 9 . a & b . C o a r s e G r a i n N e t I m p o r t s - S o v i e t B l o c . u u u fi u u . 4 4 . u 9 9 u u u u . . . 0 u - 6 7 3 S o v i e t B l o c C o a r s e G r a i n N e t I m p o r t s P e r C a p i t a 1 9 9 2 9 1 9 1 . 1 9 6 1 - 2 ! O b s e r v a t i o n s L 8 l l D e p e n d e n t V a r i a b l e i s P C F N I V A R I A H J W I C I E N T S T D . E R R O R 0 . 0 2 1 1 5 2 4 1 0 1 . 3 2 0 8 8 0 . 0 3 3 8 2 8 9 0 . 0 7 2 7 0 2 4 0 . 0 8 3 1 7 7 6 0 . 0 1 4 0 5 4 1 - 0 . 0 2 6 5 3 9 4 6 9 2 . 3 7 1 9 7 - 0 . 0 9 9 5 3 3 9 - 0 . 2 5 8 2 0 3 9 - 0 . 0 2 9 9 7 7 5 0 . 0 2 7 0 4 2 9 0 . 9 3 0 7 3 3 0 . 9 0 9 0 8 7 0 . 0 0 7 7 6 5 2 . 0 0 7 5 5 1 7 9 . 1 6 4 9 3 2 D e m o m m F 9 9 9 9 9 9 9 l l - s q u a r e d A d j u s t e d R - s q u a r e d 8 . 2 . o f r e g r e s s i o n D u r b i n - H a t s o n s t a t L o g l i k e l i h o o d T P E T - B T A T . ( 1 0 0 0 M T ) - 6 e 2 5 4 6 2 9 9 6 . 9 3 3 4 5 9 2 - 2 . 6 4 6 6 7 1 5 - 3 a 5 3 6 3 1 7 3 ' 1 . 2 9 9 0 6 9 4 1 . 9 2 4 2 0 3 0 M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r S u e o f s q u a r e d r e s i d F - s t a t i s t i c 2 - T R I L 9 1 9 . 0 . 2 2 5 0 . 0 0 0 0 . 0 1 5 . 0 . 0 0 3 0 . 2 1 5 0 . 0 7 2 0 . 0 2 2 5 7 3 0 . 0 2 5 7 5 3 0 . 0 0 0 9 5 5 4 2 . 9 9 7 9 7 I v e R e s i d u a l p l o t o b s 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 8 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 9 9 n u n - 5 0 5 5 a n 9 9 9 9 . 9 a n u s - u n a n n o - 9 9 - . ‘ - - . . . . . ~ 5 I N D E P E N D E N T V A R I A B L E S 2 5 5 1 m m 0 . 0 0 1 1 9 0 . 0 0 5 7 1 - 0 . 0 0 6 9 9 0 . 0 1 0 4 9 - 0 . 0 0 3 6 5 0 . 0 0 0 7 0 - 0 . 0 0 9 1 5 - 0 . 0 0 6 0 9 0 . 0 0 2 0 4 - 0 . 0 0 0 9 1 0 . 0 0 1 5 9 0 . 0 0 3 0 5 0 . 0 0 2 9 9 - 0 . 0 0 7 6 1 - 0 . 0 0 1 6 0 0 . 0 0 2 2 6 0 . 0 0 4 4 6 0 . 0 0 4 5 2 0 . 0 0 6 5 1 0 . 0 0 1 6 6 0 . 0 0 9 6 0 - 0 . 0 1 9 6 7 W - 0 . 0 0 4 5 5 - 0 . 0 0 0 2 9 - 0 . 0 0 0 5 6 0 . 0 0 1 5 6 - 0 . 0 0 1 7 6 - 0 . 0 0 0 5 0 0 . 0 0 0 5 5 0 . 0 0 1 2 4 0 . 0 0 0 7 4 0 . 0 0 5 5 5 0 . 0 2 0 0 7 0 . 0 2 2 9 6 0 . 0 2 0 0 1 0 . 0 1 7 2 9 0 . 0 5 4 0 6 0 . 0 2 7 5 6 0 . 0 4 4 4 6 0 . 0 4 7 7 1 0 . 0 6 6 6 7 0 . 0 6 7 9 4 0 . 0 7 3 6 2 0 . 0 3 2 3 7 F I T T E D - 0 . 0 0 5 7 3 - 0 . 0 0 5 0 0 0 . 0 0 5 4 2 - o . 0 0 5 9 3 0 . 0 0 1 5 9 - 0 . 0 0 1 2 0 0 . 0 0 9 7 1 , 0 . 0 o 7 3 3 - 0 . 0 0 1 3 0 0 . 0 0 5 4 7 0 . 0 1 5 4 9 0 . 0 1 9 9 1 0 . 0 1 7 1 2 0 . 0 2 4 9 0 0 . 0 5 5 5 5 0 . 0 2 5 3 0 0 . 0 3 9 9 9 0 . 0 4 3 1 5 0 . 0 5 0 1 5 0 . 0 5 5 1 5 0 . 0 5 5 0 2 0 . 0 5 2 0 4 P C R G D P - R e a l I n c o m e P e r C a p i t a G D P S B / C P I S B / P O P S B P C D W S U 8 D o m e s t i c S u p p l y o f W h e a t P e r C a p i t a ( 1 0 0 0 M T ) ( W E S S B ( - l i + W P R O S B ) / P O P S B P C D F S U I D o m e s t i c S u p p l y o f C o a r s e G r a i n P e r C a p i t a ( 1 0 0 0 M T ) ( F E S S B ( - l ) + F P R O S B ) / P O P S B F P S B = R e a l S o v i e t B l o c C o a r s e G r a i n P r i c e ( s / M T ) F P 4 X R S B / C P I S B W P S B - R e a l S o v i e t B l o c W h e a t P r i c e ( 5 / M T ) W P fl X R S B / C P I S B 6 7 4 8 M P L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s . - I m j . . . - s g r i g g M e a n S . D . M a x i m u m M i n i m u m m ‘ . . . - . . . . ' - P C F N I 0 . 0 2 2 5 7 3 1 0 . 0 2 5 7 5 3 4 0 . 0 7 3 6 2 0 4 - 0 . 0 0 4 5 4 9 9 P C R G D P 0 . 0 0 0 2 2 3 2 5 . 6 5 3 D - 0 5 0 . 0 0 0 2 9 9 0 0 . 0 0 0 1 3 7 0 P C D W S U 0 . 3 3 4 7 8 3 0 0 . 0 5 6 4 9 7 5 0 . 4 1 7 4 3 2 0 0 . 2 0 1 7 4 3 9 P C D F S U 0 . 3 0 1 7 2 0 5 0 . 0 6 3 7 7 1 5 0 . 4 0 6 0 7 3 8 0 . 2 0 3 0 2 0 6 F 1 3 8 8 0 . 9 4 6 6 0 0 9 0 . 2 0 7 4 7 8 0 1 . 2 6 8 1 3 3 0 0 . 5 6 9 3 7 2 8 W 9 8 8 1 . 1 3 7 0 4 7 7 0 . 2 6 9 2 1 2 4 1 . 8 3 4 4 0 6 0 0 . 7 7 8 7 7 9 6 I . . . W m I . . - C o v a r i a n c e C o r r e l a t i o n . . . - . . - W W P C F N I , P C F N I 0 . 0 0 0 6 3 3 1 1 . 0 0 0 0 0 0 0 D C F N I , P C R B D P 1 . 2 2 9 D - 0 6 0 . 8 8 4 1 0 0 2 P C F N I , R C D W S U 0 . 0 0 0 1 2 8 0 0 . 0 9 2 1 5 4 6 P C F N I , F C D F S U 0 . 0 0 1 0 4 2 0 0 . 6 6 4 6 5 0 9 P C F N I , F 9 8 8 - 0 . 0 0 3 7 4 3 2 - 0 . 7 3 3 9 0 5 5 P C F N I . W 9 8 8 - 0 . 0 0 3 4 3 1 8 - 0 . 5 1 8 5 6 1 6 P C R B D P , P C R B D P 3 . 0 5 1 D - 0 9 1 . 0 0 0 0 0 0 0 P C R B D P , D C D W S U 1 . 1 5 2 D - 0 6 0 . 3 7 7 9 7 7 3 P C R B D P , P C D F S U 3 . 1 0 9 D - 0 6 0 . 9 0 3 3 8 1 5 D C R G D P , F 1 3 8 8 - 8 . 0 7 0 D - 0 6 - 0 . 7 2 0 8 0 4 4 P C R B D P , W 9 8 8 - 8 . 0 9 1 D - 0 6 - 0 . 5 5 6 9 6 2 0 P C D W S U , D C D W S U 0 . 0 0 3 0 4 6 9 1 . 0 0 0 0 0 0 0 P C D W S U , P C D F 8 U 0 . 0 0 1 5 3 3 9 . 0 . 4 4 6 0 0 9 9 P C D W S U , F 1 3 8 8 - 0 . 0 0 1 6 8 2 3 ' - 0 . 1 5 0 3 5 1 1 P C D W S U , W 9 8 8 - 0 . 0 0 1 8 9 6 8 - 0 . 1 3 0 6 5 0 7 P C D F S U , D C D F S U 0 . 0 0 3 8 8 1 9 1 . 0 0 0 0 0 0 0 P C D F S U , F 9 8 8 - 0 . 0 0 6 3 7 2 5 - 0 . 5 0 4 5 6 5 2 P C D F S U , W 9 8 8 - 0 . 0 0 5 9 6 2 9 - 0 . 3 6 3 8 6 3 0 F 9 8 8 , F 9 8 8 0 . 0 4 1 0 9 0 4 1 . 0 0 0 0 0 0 0 F 1 3 8 8 , W 9 8 8 0 . 0 4 7 1 8 9 2 0 . 8 8 5 0 7 2 5 W 9 8 8 , W 9 8 8 0 . 0 6 9 1 8 1 0 1 . 0 0 0 0 0 0 0 6 7 S l O 0 O M E T T O N s I 1 ' 1 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 R E G I O N A L M O D E L S I M U L A T I O N M I . 3 7 L Q J E B L 8 J H 3 I 3 . 2 3 1 1 / ’ \ - \ . 1 0 7 J M 9 / \ 1 N 7 x n 5 , , / \ g L u a » h - r / ‘ N . E s A m 1 : ' T 5 . 3 1 9 ; : 4 J 5 7 + : T 4 J 5 4 + j S 7 5 7 5 7 7 7 3 7 3 3 0 3 1 3 5 3 3 3 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I M A T E D F i g u r e J . l O . a 8 b . C o a r s e G r a i n E n d i n g S t o c k s - S o v i e t B l o c s 6 r O 0 0 0 0 2 i E . . . . e G a F 0 0 0 0 b F 0 4 0 1 l I 6 9 7 7 r e C 9 9 0 6 P L S 2 R A S D L H 2 S d - u . o e r ” . O / q u b . e J r E g C s V a t o n 1 b / u e i 1 a e D A r e f - P k p 1 r e R F D H e d C e i t a C o a r 9 v p I 9 V C D d a r 1 6 a e A 8 6 F R t e 1 1 t n B S 8 4 - g s h 1 d L U e r o o o e E q e n o - n n e t a s s r i t u s d 1 V e o a 9 e C - d n t a i n i E 0 2 2 3 . . . 7 . N 9 8 2 9 s 6 6 0 . 0 I 6 2 9 0 0 0 0 9 1 T 3 8 0 0 4 P 2 5 3 7 0 n . 0 0 0 0 g 0 1 0 0 E C 8 3 2 8 4 n d i S T 0 0 0 0 D . . . . F 7 2 4 2 8 E S 9 4 3 7 3 S t E 6 2 3 3 l I S S R 6 9 4 e 9 u . ? R 4 0 0 a n 8 D O 3 5 8 n t 9 . o 1 R 7 6 2 o a c o o f t k s ( 1 0 0 0 8 7 - 1 n n e 4 6 7 6 B d d d T R T 7 8 8 5 e e 7 2 0 1 n n r . . T . . e e r 1 1 3 5 p p a c - e i e u f f i d d q t s e 0 2 5 8 8 t t e M T ) 2 - T . 4 3 9 0 s 0 8 3 5 v v i r r a a d A 0 0 0 0 0 0 0 . . . I . . . . L 3 0 0 0 0 0 0 1 8 9 2 0 5 5 0 0 0 9 0 1 0 0 5 6 2 3 6 1 8 . _ 1 5 8 2 6 3 1 7 6 2 9 6 - u u u t u u u u u u u u u u u u u u u u t u u u u # u u . u u 0 u u u u u u u u u t u u u u u u 8 D R o e n a a l e t S i o c v i C e o t a r B s l e o c G r C a o i a n r u S e s p G p r l a y i n P e P r r i c e S o v i e t B l o c 6 7 6 R e s i d u a l P l o t R E S H M K I . R C H K L F F H E D t t c t . t t t 0 0 I N D E P E N D E N T P C D F S U # V A R I A B L E S p ' 0 q 0 ) - 0 . 0 0 3 7 4 - 0 . 0 0 4 1 2 - 0 . 0 0 0 6 7 0 . 0 0 0 0 0 0 . 0 0 0 2 2 - 0 . 0 0 0 3 5 0 . 0 0 2 0 3 0 . 0 0 2 2 0 0 . 0 0 2 6 4 - 0 . 0 0 0 5 4 0 . 0 0 4 6 9 0 . 0 0 1 2 5 - 0 . 0 0 0 9 7 - 0 . 0 0 0 7 2 0 . 0 0 5 6 7 - 0 . 0 0 1 3 2 0 . 0 0 0 6 5 0 . 0 0 2 9 6 - 0 . 0 0 0 3 2 - 0 . 0 0 3 3 3 - 0 . 0 0 7 6 6 ( F E S S B ( - 1 ) + F P R O S B ) / P O P S B F P S B F P 9 X R S B / C P I S B D V 6 4 1 I f < Y E A R . 5 0 . 0 O t h e r w i s e 6 4 ) 0 . 0 0 7 9 0 0 . 0 0 9 0 9 0 . 0 3 1 2 1 0 . 0 1 2 3 1 0 . 0 1 3 0 4 0 . 0 1 3 7 3 0 . 0 1 4 4 9 0 . 0 1 7 0 5 0 . 0 1 4 1 1 0 . 0 1 7 9 1 0 . 0 1 7 4 7 0 . 0 1 9 7 3 0 . 0 1 9 0 9 0 . 0 1 5 0 4 0 . 0 2 4 9 9 0 . 0 1 3 7 3 0 . 0 1 7 3 9 0 . 0 1 7 7 4 0 . 0 1 3 9 5 0 . 0 1 1 3 4 0 . 0 0 9 9 2 C a p i t a 0 . 0 1 1 5 4 0 . 0 1 2 2 1 0 . 0 1 1 2 5 0 . 0 3 1 2 1 0 . 0 1 2 0 9 0 . 0 1 3 3 9 0 . 0 1 1 7 0 0 . 0 1 2 2 9 0 . 0 1 4 4 1 0 . 0 1 4 9 5 0 . 0 1 3 0 3 0 . 0 1 5 2 2 0 . 0 2 0 7 2 0 . 0 1 9 9 1 0 . 0 1 4 9 0 0 . 0 1 9 3 2 0 . 0 1 7 0 7 0 . 0 1 9 7 3 0 . 0 1 4 7 9 0 . 0 1 4 1 7 0 . 0 1 4 9 5 0 . 0 1 7 4 9 ( 1 0 0 0 M T ) ( S I M T ) 6 7 7 B M P L 1 9 6 1 - 1 9 8 2 2 2 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F E S 0 . 0 1 5 6 1 6 1 0 . 0 0 5 3 5 2 4 0 . 0 3 1 2 1 1 1 0 . 0 0 7 8 0 1 6 P C D F S U 0 . 3 0 1 7 2 0 5 0 . 0 6 3 7 7 1 5 0 . 4 0 6 0 7 3 8 0 . 2 0 3 0 2 0 6 F 9 6 8 0 . 9 4 6 6 0 0 9 0 . 2 0 7 4 7 8 0 1 . 2 6 8 1 3 3 0 0 . 5 6 9 3 7 2 8 D V 6 4 0 . 0 4 5 4 5 4 5 0 . 2 1 3 2 0 0 7 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C F E S . P C F E S 2 . 7 3 5 D - 0 5 1 . 0 0 0 0 0 0 0 D C F E S , P C D F S U 0 . 0 0 0 1 0 7 1 0 . 3 2 8 8 4 8 0 P C F E S , F P S B 0 . 0 0 0 1 2 8 7 0 . 1 2 1 4 3 5 2 P C F E S . D V 6 4 0 . 0 0 0 7 0 8 9 0 . 6 5 0 7 7 7 4 P C D F S U , P C D F S U 0 . 0 0 3 8 8 1 9 ‘ 1 . 0 0 0 0 0 0 0 P C D F S U , F P S B - 0 . 0 0 6 3 7 2 5 - 0 . 5 0 4 5 6 5 2 P C D F S U . D V 6 4 - 0 . 0 0 2 3 5 4 8 - 0 . 1 8 1 4 4 2 0 F P S B , F P S B 0 . 0 4 1 0 9 0 4 1 . 0 0 0 0 0 0 0 F 9 5 8 , D V 6 4 0 . 0 0 8 8 2 8 0 0 . 2 0 9 0 7 5 4 D V 6 4 , D V 6 4 0 . 0 4 3 3 8 8 4 1 . 0 0 0 0 0 0 0 6 9 7 ' 1 7 1 7 7 7 a 7 1 7 ’ 5 7 6 7 7 7 1 7 9 1 ' 1 1 1 1 7 6 7 8 m a r 1 1 1 1 1 1 0 1 1 0 , 0 1 - 3 1 1 1 1 1 : . . . » - - 9 1 1 1 M 2 8 ‘ 1 T 7 “ 1 “ ' ° ~ . . . . . : T 0 1 m 2 1 1 1 1 1 1 R E G I O N A L M O D E L S I M U L A T I O N M I L L 2 4 4 V 7 7 " ' £ F T - _ _ 1 l I f 1 . 2 0 7 - t \ ’ I 1 I - ‘ - . 1 0 1 . 1 9 9 I _ 1 N 1 . 1 9 1 - - « 1 - - . . 1 . 0 9 4 ~ - . a 1 . 0 9 9 7 - : l 2 1 . 0 1 9 - 3 3 T . 9 3 1 . I 2 T . 9 « 3 - I I . 9 0 0 - 3 3 O - - 1 N 7 5 7 6 7 7 7 9 7 9 9 0 9 1 9 2 9 3 9 4 S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - — - E S T I M A T E D F i g u r e 3 . 1 1 . 9 6 b . S o y b e a n P r o d u c t i o n - S o v i e t B l o c » 1 0 > C O = n n > c 9 - > 7 : n 1 m : : 4 1 7 r ° r H O J C I I 6 9 7 8 7 1 7 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 8 8 1 8 2 9 7 7 7 9 7 9 9 0 9 1 9 9 9 1 U I U 1 S D 3 1 - 1 ( ) l fl I : 1 1 1 “ 1 3 “ 1 2 “ 1 1 W 1 . 1 . 4 2 0 1 . 3 7 7 ' 1 . 3 3 4 1 . 2 2 1 1 . 2 4 8 1 . 2 0 5 1 . 1 6 2 1 . 1 1 9 - 1 . 0 7 0 1 . 0 3 3 6 7 9 R E G I O N A L M O D E L S I M U L A T I O N 7 9 O u : E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e J . 1 2 . e 6 b . S o y b e a n H a r v e s t e d A r e a - S o v i e t B l o c S o v i e t B l o c 6 8 0 S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S H A S B V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . m u C - 2 8 4 . 3 5 1 1 1 3 3 1 . 1 3 4 5 2 - 0 . 8 5 8 7 1 7 8 0 . 4 0 4 S H A S B ( - 1 ) 0 . 5 8 5 4 7 0 9 0 . 1 8 5 5 7 2 3 3 . 1 5 4 9 4 7 2 0 . 0 0 7 Y E A R 9 . 7 9 1 0 7 7 7 6 . 6 4 6 3 1 8 4 1 . 4 7 3 1 5 8 1 0 . 1 6 1 , S N I S B ( - 1 ) 0 . 0 2 5 0 4 6 1 0 . 0 2 3 2 4 9 4 1 . 0 7 7 2 8 0 0 0 . 2 9 8 . . . - . . - . R - s q u a r e d 0 . 9 4 6 5 2 2 M e a n o f d e p e n d e n t v a r 1 0 8 6 . 8 9 5 A d J u s t e d R - s q u a r e d 0 . 9 3 5 8 2 6 S . D . o f d e p e n d e n t v a r 1 7 3 . 7 0 9 5 S . E . o f r e g r e s s i o n 4 4 . 0 0 4 9 6 S u n o f s q u a r e d r e s i d 2 9 0 4 6 . 5 4 D u r b i n - U a t s o n s t a t 1 . 7 2 6 1 2 3 F - s t a t i s t i c 8 8 . 4 9 6 4 6 L o g 1 1 1 1 4 1 1 1 1 0 0 9 - 9 6 . 6 1 5 9 9 T P E 6 / 1 9 9 9 4 1 9 0 4 1 P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 4 1 1 1 1 9 6 5 - 1 4 . 9 9 5 7 9 6 7 . 0 0 0 9 9 1 . 9 9 6 1 1 : 4 1 1 1 9 6 6 5 . 5 9 3 1 2 9 7 7 . 0 0 0 ' 9 7 1 . 4 1 7 1 1 1 4 1 1 1 9 6 7 1 9 . 1 9 6 0 9 0 6 . 0 0 0 9 9 7 . 9 1 4 1 1 4 1 1 1 1 9 6 8 - 6 . 4 8 1 7 5 9 0 7 . 0 0 0 9 1 3 . 4 9 2 1 1 4 1 1 1 1 9 6 9 - 1 9 . 3 9 9 9 9 0 9 . 0 0 0 9 2 7 . 3 9 0 1 1 1 4 1 1 1 9 7 0 1 4 . 7 7 5 3 9 5 2 . 0 0 0 9 3 7 . 2 2 5 1 : 1 1 4 1 1 9 7 1 6 3 . 7 9 2 0 1 0 3 7 . 0 0 9 7 3 . 2 1 9 1 : 4 1 1 1 1 9 7 2 - 6 . 3 0 9 2 5 1 0 3 2 . 0 0 1 0 3 9 . 3 1 1 1 4 1 1 1 1 9 7 3 - 6 . 7 1 7 3 7 1 0 4 9 . 0 0 1 0 5 5 . 7 2 1 1 1 z 4 1 1 9 7 4 5 3 . 4 1 7 9 1 1 1 3 . 0 0 1 0 5 9 . 5 9 1 4 1 1 : 1 . 1 9 7 5 - 1 0 2 . 2 9 0 1 0 1 1 . 0 0 1 1 1 3 . 2 9 1 4 1 1 : 1 1 9 7 6 ~ 5 7 . 9 0 4 6 1 0 4 7 . 0 0 1 1 0 4 . 9 0 1 1 4 1 1 1 1 9 7 7 - 3 0 . 5 5 0 3 1 0 9 3 . 0 0 1 1 2 3 . 5 5 1 1 1 4 1 1 1 9 7 9 1 4 . 2 5 6 6 1 1 7 2 . 0 0 1 1 5 7 . 7 4 1 1 1 1 4 1 1 9 7 9 5 3 . 9 4 3 5 1 1 2 9 2 . 0 0 1 2 3 9 . 1 6 1 1 1 4 : 1 1 9 9 0 3 4 . 9 9 9 7 1 3 5 1 . 0 0 1 3 1 6 . 1 0 1 1 4 1 1 1 1 9 9 1 - 7 . 6 1 4 2 1 1 3 4 2 . 0 0 1 3 4 9 . 6 1 1 : 4 1 1 1 1 9 9 2 - 3 3 . 0 6 0 9 1 3 2 1 . 0 0 1 3 5 4 . 0 6 1 1 1 4 1 1 1 9 9 3 2 5 . 4 5 0 3 1 3 7 3 . 0 0 1 3 4 7 . 5 5 I N D E P E N D E N T V A R I A B L E S S H A S B S N I S B 8 S o y b e a n N e t I m p o r t s Y E A R 8 1 9 6 0 8 6 0 . 1 9 6 1 8 6 1 , . . . 8 S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) ( 1 0 0 0 M T ) S M A L 1 9 6 5 - 1 9 O b s e r v a t i o n s 1 9 8 3 6 8 1 S e r i e s M e a n S . D . m a x i m u m M i n i e u e S H A S B 1 0 8 6 . 8 9 4 7 1 7 3 . 7 0 9 4 9 1 3 7 3 . 0 0 0 0 8 6 7 . 0 0 0 0 0 S H A S B ( - 1 ) 1 0 6 1 . 7 8 9 5 1 6 4 . 2 7 6 0 5 1 3 5 1 . 0 0 0 0 8 6 7 . 0 0 0 0 0 Y E A R 7 4 . 0 0 0 0 0 0 5 . 6 2 7 3 1 4 3 8 3 . 0 0 0 0 0 0 6 5 . 0 0 0 0 0 0 S N I S B ( - 1 ) 1 0 0 0 . 5 2 6 3 9 2 1 . 9 3 2 2 9 2 5 0 9 . 0 0 0 0 6 4 . 0 0 0 0 0 0 . . . . I I “ . . . C o v a r i a n c e C o r r e l a t i o n S H A S B . S H A S B 2 8 5 8 6 . 8 3 1 1 . 0 0 0 0 0 0 0 S H A S B , S H A S B ( - 1 ) 2 5 9 0 6 . 5 5 7 0 . 9 5 8 2 8 1 2 S H A S B . Y E A R 8 8 3 . 0 0 0 0 0 0 . 9 5 3 4 9 2 0 S H A S B , S N I S B ( - 1 ) 1 2 9 5 6 1 . 5 3 0 . 8 5 3 9 5 4 2 S H A S B ( - 1 ) , S H A S B ( — 1 ) 2 5 5 6 6 . 2 7 1 1 . 0 0 0 0 0 0 0 S H A S B ( - 1 ) , Y E A R 8 2 2 . 8 4 2 1 1 0 . 9 3 9 5 5 4 9 S H A 8 8 ( - 1 ) , S N I S B ( - 1 ) 1 1 5 0 5 7 . 4 3 0 . 8 0 1 9 0 4 2 Y E A R , Y E A R 3 0 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , S N I S B ( - 1 ) 4 2 9 2 . 7 8 9 5 0 . 8 7 3 4 1 4 7 S N I S B ( - 1 ) , S N I S B ( - 1 ) 8 0 5 2 2 4 . 4 6 1 . 0 0 0 0 0 0 0 I 1 . . . . . - m - - . - - 0 9 s s s s a s - s o s s s s . . . O - - s a o s s e o s s s - - - - . . - - . - . - . o o . - s s . u s o O s s - s a - - - - - s o s s 0 o 0 s t - s s s o - . - o s s s . a s s s . . - . - - - o s s s s s s - s - - C . s a s a o s s a * s s s a s a . . . . . . . - . . u . . . . . . “ — . . . . - . 6 8 2 S o v i e t B l o c S o y b e a n Y i e l d S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s S Y S B ( H e t r i c T o n s p e r H e c t a r a ) I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I B . . . . . . . “ I I M . C - 2 . 1 9 4 8 0 3 9 0 . 5 7 4 0 6 9 2 - 3 . 8 2 3 2 3 9 4 0 . 0 0 1 Y E A R 0 . 0 5 9 9 7 2 2 0 . 0 1 4 1 5 0 9 4 . 2 3 8 0 3 7 0 0 . 0 0 1 S H A S B - 0 . 0 0 1 3 7 9 8 0 . 0 0 0 4 8 0 1 - 2 . 8 7 4 0 9 6 7 0 . 0 1 1 . . . . . - R - s q u a r e d 0 . 6 4 5 9 5 0 M e a n o f d e p e n d e n t v a r 0 . 7 2 6 6 1 2 A d J u s t e d R - s d u a r e d 0 . 6 0 4 2 9 7 8 . 0 . o f d e p e n d e n t v a r 0 . 1 8 3 8 9 5 S . E . o f r e g r e s s i o n 0 . 1 1 5 6 7 9 S u n o f s q u a r e d r e s i d 0 . 2 2 7 4 8 8 O u r b i n - H a t s o n s t a t 2 . 0 3 1 8 2 7 F - s t a t i s t i c 1 5 . 5 0 7 9 0 L o g 1 1 1 1 4 1 1 1 1 6 0 9 1 6 . 3 9 5 1 2 T P E 6 / 2 0 R e s i d u a l P l o t . . . - m 1 ' 1 4 - - . - “ . . . . . . “ o - a n - - - - - - - - - - - - * - - o t o - o b s 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 ' 1 9 8 1 1 9 8 2 1 9 8 3 R E S I D U A L - 0 . 0 6 6 7 0 - 0 . 0 0 6 5 1 0 . 1 5 0 2 7 0 . 0 8 1 3 0 0 . 0 0 5 4 5 - 0 . 1 4 9 9 7 0 . 0 5 2 9 8 0 . 0 6 1 9 5 - 0 . 2 5 0 5 8 - 0 . 0 5 7 0 0 - 0 . 0 4 2 5 4 0 . 2 2 6 4 0 - 0 . 0 7 1 2 4 - 0 . 0 5 4 9 0 0 . 0 5 5 6 1 0 . 1 1 7 5 6 - 0 . 0 8 7 6 9 - 0 . 0 2 2 0 6 - 0 . 0 4 4 2 7 A C T U A L 1 0 . 3 4 0 4 0 0 . 5 0 0 5 8 0 . 7 0 3 5 3 0 . 6 5 4 5 3 0 . 6 3 7 2 7 0 . 5 3 9 0 5 0 . 7 4 2 6 5 0 . 6 9 4 3 1 0 . 4 4 8 6 4 0 . 6 7 8 7 4 0 . 6 6 4 8 7 1 . 1 3 4 5 2 0 . 8 4 7 1 8 0 . 8 6 0 0 2 0 . 9 2 1 5 0 0 . 8 6 2 2 3 0 . 8 5 6 4 0 0 . 7 2 3 5 5 0 . 8 7 8 1 2 0 . 8 4 4 1 4 F I T T E D 0 . 4 0 7 1 0 0 . 5 0 7 0 9 0 . 5 5 3 2 7 0 . 5 7 3 2 2 0 . 6 3 1 8 2 0 . 6 8 9 0 3 0 . 6 8 9 6 7 0 . 6 3 2 3 6 0 . 6 9 9 2 3 0 . 7 3 5 7 4 0 . 7 0 7 4 1 0 . 9 0 8 1 2 0 . 9 1 8 4 2 0 . 9 1 4 9 2 0 . 8 6 5 8 9 0 . 7 6 0 2 8 0 . 7 3 8 8 4 0 . 8 1 1 2 4 0 . 9 0 0 1 8 0 . 8 8 8 4 1 I N D E P E N D E N T V A R I A B L E S Y E A R 3 1 9 6 0 8 6 0 . 1 9 6 1 = 6 1 , . . . S H A S B = S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) S M R L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s 6 8 3 I . . . I S e r i e s M e a n S . D . M a x i m u m M i n i m u m S Y S B 0 . 7 2 6 6 1 1 6 0 . 1 8 3 8 9 5 1 1 . 1 3 4 5 2 0 0 0 . 3 4 0 4 0 1 8 Y E A R 7 3 . 5 0 0 0 0 0 5 . 9 1 6 0 7 9 8 8 3 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 S H A S B 1 0 7 7 . 3 5 0 0 1 7 4 . 3 8 1 4 0 1 3 7 3 . 0 0 0 0 8 6 7 . 0 0 0 0 0 m I l C o v a r i a n c e C o r r e l a t i o n I S Y S B , S Y S B 0 . 0 3 2 1 2 6 5 1 . 0 0 0 0 0 0 0 S Y S B . Y E A R 0 . 7 1 1 5 0 4 5 0 . 6 8 8 4 1 4 2 S Y S B , S H A S B 1 5 . 8 8 5 0 1 4 0 . 5 2 1 4 2 7 1 Y E A R , Y E A R 3 3 . 2 5 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , S H A S B 9 2 9 . 5 2 5 0 0 0 . 9 4 8 4 2 5 7 S H A S B , S H A S B 2 8 8 8 8 . 4 2 8 1 . 0 0 0 0 0 0 0 P O O O ! : 1 7 1 4 1 1 - 0 2 0 [ z : 4 1 * O r ' r O 4 Q | 3 C 3 I U V r ‘ V T Q V ' f r I r v v 2 C O O 3 : ” 1 U U G 4 ‘ 4 ‘ 3 ( 3 2 n 1 1 4 1 1 J A l L 1 _ l _ l I I L L A 1 1 1 1 I I I I O I I I I I ‘ U F i g u r e J . 1 3 . a & b . 8 “ 7 1 1 1 m 1 5 . 1 1 1 1 3 “ 2 “ I “ 6 9 1 ' 1 1 1 1 1 2 7 3 . 4 9 3 . 7 0 2 . 3 2 2 . 9 4 1 . 5 9 1 . 1 9 0 . 7 9 9 . 4 1 9 . 0 3 9 6 8 4 s e m i " . . . . s . . . . . . s e e e e ’ s s f ” . 7 1 1 ' 5 1 1 1 ' 1 1 1 1 1 9 R E G I O N A L M O D E L S I M U L A T I O N 1 ' 1 1 1 1 2 \ O M O 7 5 7 6 7 " : 1 1 ’ s 7 9 9 0 9 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L ~ 1 ~ - E S T I M A T E D S o v i e t B l o c 8 4 ! S o y - c a l E q u i v a l e n t C o n s u m p t i o n - . . . » . . . , 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 U 1 i m 8 . 1 3 1 : " 1 1 ~ 9 0 2 1 0 3 H T I ‘ I \ 1 H O Z : 1 1 1 4 ! - 0 2 0 ( 1 1 1 1 1 1 3 . 9 Q Q 1 a Q Q Q 0 1 Q O O O O M O ( J 6 8 5 . . . . . s s e e s e e e " . 0 0 0 ' " ' 1 R E G I O N A L M O D E L S I M U L A T I O N . 9 9 7 - - . 9 4 0 I . 9 9 9 I . 9 2 9 : . 7 9 9 I . 7 1 1 . 9 9 4 . 5 9 9 I . 5 3 9 : 8 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I H A T E D F i g u r e J . 1 4 . a & b . S o y o i l E q u i v a l e n t C o n s u m p t i o n - S o v i e t B l o c F ° 0 0 : : 1 1 1 4 4 - 0 2 1 1 ( 4 4 - 1 9 0 9 1 1 9 a l : fl I 1 8 ~ 1 1 4 d b ' D t l i l U 1 1 1 1 1 1 1 4 1 s 1 1 1 1 1 1 1 1 1 ’ 1 1 1 1 1 7 9 7 7 7 9 7 9 9 0 9 1 9 9 9 9 9 4 6 . 5 ‘ 3 0 9 3 2 9 ! ] . 4 9 2 . 9 2 2 . 4 9 9 . 1 5 3 . 9 1 9 . 4 9 3 . 1 4 9 . 9 1 4 . 4 7 9 Z I D P i P t ' h 1 3 . 1 5 7 ' - 6 8 6 s e e ’ " " . . . 1 1 1 1 O . . . “ ‘ . s e e ‘ 2 0 " ” s 0 ' . s " ‘ \ e s e e . s . R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - - - E S T I M A T E D F i g u r e J . l $ . a 9 b . S o y n e a l E q u i v a l e n t I n p o r t s - S o v i e t B l o c . . . . . . 9 0 9 9 I O O I O O O O | 4 O O O O O O I O O . . . . . 9 0 . 9 “ S o v i e t B l o c P e r C a p i t a S o y n e a l E q u i v a l e n t I m p o r t s S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S V A R I A B L E C O E F F I C I E N T 6 8 7 / / D e p e n d e n t V a r i a b l e i s P T S M N I C - 0 . 0 1 2 8 0 1 5 P C R G D P ( - 1 ) P C O S S U R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - N a t s o n s t a t L o g l i k e l i h o o d 1 1 0 . 9 6 3 9 5 - 0 . 4 6 3 4 5 7 4 0 . 9 4 2 7 9 8 0 . 9 3 5 6 4 8 0 . 0 0 1 4 2 1 2 . 1 7 0 5 6 6 9 9 . 2 3 8 2 3 S T D . E R R O R 0 . 0 0 3 9 1 2 0 6 . 8 3 4 8 5 4 5 0 . 3 9 5 5 6 0 3 T - S T A T . ( 1 0 0 0 M T ) 3 2 9 9 1 6 . 2 3 5 0 1 3 - 1 . 1 7 1 6 4 7 9 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d F - s t a t i s t i c 1 9 E 0 . 0 0 5 0 . 0 0 0 . 2 5 8 0 . 0 0 9 0 6 2 0 . 0 0 5 6 0 3 3 . 2 3 D - 0 5 1 3 1 . 9 5 6 4 6 / 1 9 R e s i d u a l P l o t 1 * I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l G D P P e r C a p i t a G D P S B / C P I S B / P O P S B P C O S S U - M e a l ( 1 0 0 0 M T ) ( N P R O S B * . 4 4 1 + R P R O R S B * . 4 3 5 ) / P O P S B { 1 o b s 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 R E S I D U A L 0 . 0 0 1 2 3 0 . 0 0 0 8 2 - 0 . 0 0 0 4 9 - 0 . 0 0 1 0 6 - 0 . 0 0 1 1 1 - 0 . 0 0 1 0 2 0 . 0 0 0 3 6 0 . 0 0 1 1 6 0 . 0 0 0 5 0 - 0 . 0 0 1 1 0 0 . 0 0 0 5 3 - 0 . 0 0 0 4 7 - 0 . 0 0 1 2 5 0 . 0 0 0 3 5 0 . 0 0 0 2 4 0 . 0 0 2 0 8 - 0 . 0 0 0 6 1 0 . 0 0 2 8 1 - 0 . 0 0 2 9 6 A C T U A L 0 . 0 0 1 2 7 0 . 0 0 1 9 5 0 . 0 0 1 9 5 0 . 0 0 2 6 0 0 . 0 0 3 5 6 0 . 0 0 4 1 1 0 . 0 0 6 0 7 0 . 0 0 9 3 3 0 . 0 0 7 3 4 0 . 0 0 7 5 9 0 . 0 1 1 4 9 0 . 0 1 1 1 2 0 . 0 1 1 2 3 0 . 0 1 4 0 0 0 . 0 1 5 2 3 0 . 0 1 7 3 4 0 . 0 1 5 2 2 0 . 0 1 9 4 0 0 . 0 1 3 5 0 F I T T E D 3 . 9 D - 0 5 0 . 0 0 1 1 2 0 . 0 0 2 3 4 0 . 0 0 3 6 6 0 . 0 0 4 6 8 0 . 0 0 5 1 3 0 . 0 0 5 7 1 0 . 0 0 7 1 7 0 . 0 0 6 8 4 0 . 0 0 8 6 8 0 . 0 1 0 9 5 0 . 0 1 1 6 0 0 . 0 1 2 4 8 0 . 0 1 3 6 5 0 . 0 1 4 9 9 0 . 0 1 5 2 6 0 . 0 1 5 8 3 0 . 0 1 5 5 9 0 . 0 1 6 4 5 P e r C a p i t a S u p p l y o f S u n f l o w e r S e e d a n d R a p e s e e d 6 8 8 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S M N I 0 . 0 0 9 0 6 1 8 0 . 0 0 5 6 0 3 4 0 . 0 1 8 4 0 2 1 0 . 0 0 1 2 6 8 8 P C R G D P ( — 1 ) 0 . 0 0 0 2 3 6 2 4 . 9 2 4 D - 0 5 0 . 0 0 0 2 9 9 0 0 . 0 0 0 1 5 2 1 P C O S S U 0 . 0 0 9 3 6 6 6 0 . 0 0 0 8 5 0 8 0 . 0 1 1 8 4 0 0 0 . 0 0 8 4 6 5 1 C o v a r i a n c e C o r r e l a t i o n P T S M N I , P T S M N I 2 . 9 7 5 D - 0 5 1 . 0 0 0 0 0 0 0 P T S M N I , P C R G D P ( - 1 ) 2 . 5 3 1 D - 0 7 0 . 9 6 8 4 4 7 6 P T S M N I , P C O S S U 1 . 0 0 0 D - 0 7 0 . 0 2 2 1 4 5 9 P C R G D P ( - 1 ) , P C R G D P ( - 1 ) 2 . 2 9 7 0 - 0 9 1 . 0 0 0 0 0 0 0 P C R G D P ( - 1 ) , P C O S S U 3 . 7 6 6 D - 0 9 ‘ 0 . 0 9 4 8 7 8 8 P C O S S U , P C O S S U 6 . 8 5 8 D - 0 7 1 . 0 0 0 0 0 0 0 A ” ' 0 0 0 ! ! ! 1 1 ~ 1 — 0 2 0 ( 1 1 1 ' 1 1 1 1 1 1 1 1 1 1 s 1 1 1 1 1 1 1 1 1 ‘ 1 1 1 1 1 P > C D < O I I U U U ' U ' U ' U ' x : m 1 ~ H J C l i M 7 7 7 9 7 9 9 0 9 1 9 2 9 9 9 4 ‘ w 6 8 9 R E G I O N A L M O D E L S I M U L A T I O N 9 2 9 . 9 5 4 7 7 9 . 4 9 0 - 7 9 0 . 1 0 9 9 9 0 . 7 9 2 9 9 1 . 9 5 9 5 9 1 . 9 9 9 5 9 2 . 9 0 9 4 9 9 . 2 9 5 - 4 9 9 . 9 9 1 : 9 9 4 . 4 9 7 3 7 5 7 9 F i g u r e J . 1 6 . a & b . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L [ — 1 - - E S T I M A T E D S o y o i l E q u i v a l e n t I m p o r t s - S o v i e t B l o c a R e a l S o v i e t B l o c S o y o i l P r i c e ( S I M T ) 6 9 0 S o v i e t B l o c P e r C a p i t a S o y o i l E q u i v a l e n t I m p o r t s ( 1 0 0 0 M T ) 3 M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P T S O N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L B I G . 3 . . - . I : C 9 . 4 9 0 D - 0 5 0 . 0 0 0 2 7 7 4 0 . 3 4 2 1 3 3 4 0 . 7 3 7 P C R G D P 6 . 8 0 7 2 2 2 5 0 . 7 8 4 0 0 1 5 8 . 6 8 2 6 6 4 8 0 . 0 0 0 S O P S B - 0 . 0 0 0 2 0 0 9 2 . 7 9 8 D - 0 5 - 7 . 1 8 0 9 1 4 7 0 . 0 0 0 D V 6 7 6 9 — 0 . 0 0 0 5 3 1 6 9 . 5 2 8 D — 0 5 - 5 . 5 7 9 4 9 9 1 0 . 0 0 0 R - s q u a r e d 0 . 9 6 0 6 6 0 M e a n o f d e p e n d e n t v a r 0 . 0 0 0 8 3 1 A d j u s t e d R - s q u a r e d 0 . 9 5 3 2 8 4 S . D . o f d e p e n d e n t v a r _ 0 . 0 0 0 6 0 0 S . E . o ? r e g r e s s i o n 0 . 0 0 0 1 3 0 S u m o f s q u a r e d r e s i d 2 . 6 9 D - 0 7 D u r b i n - N a t s o n s t a t 1 . 9 3 9 4 3 1 F - s t a t i s t i c 1 3 0 . 2 3 6 3 L o g 1 1 1 1 4 1 i h o o d 1 5 2 . 9 6 2 6 E 4 / 2 0 3 3 3 8 3 3 8 8 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D H 1 1 1 1 4 1 1 9 6 4 0 . 0 0 0 1 8 0 . 0 0 0 2 9 0 . 0 0 0 1 1 1 1 : 4 1 3 1 9 6 5 5 . 7 D - 0 5 0 . 0 0 0 2 1 0 . 0 0 0 1 5 : 4 : 1 1 1 9 6 6 - 0 . 0 0 0 1 4 0 . 0 0 0 2 8 0 . 0 0 0 4 2 1 1 4 1 : 1 1 9 6 7 - 6 . 2 D - 0 5 8 . 1 0 - 0 5 0 . 0 0 0 1 4 1 1 4 1 1 1 1 9 6 8 - 6 . 9 D - 0 5 0 . 0 0 0 1 3 0 . 0 0 0 2 0 : 1 1 4 1 1 9 6 9 0 . 0 0 0 1 3 0 . 0 0 0 1 8 5 . 2 0 - 0 5 : 1 * 1 : 1 9 7 0 3 . 0 0 - 0 6 0 . 0 0 0 5 7 0 . 0 0 0 5 7 : 1 * : 1 1 1 9 7 1 - 0 . 0 0 0 1 0 0 . 0 0 0 7 1 0 . 0 0 0 8 1 : * 1 1 : : 1 9 7 2 - 0 . 0 0 0 1 5 . 0 . 0 0 0 5 4 0 . 0 0 0 6 9 1 1 1 4 1 1 1 9 7 3 3 . 6 D - 0 5 0 . 0 0 0 3 1 0 . 0 0 0 2 7 1 : 1 4 : 1 1 9 7 4 6 . 0 0 - 0 5 0 . 0 0 0 6 0 0 . 0 0 0 5 4 1 1 : 4 1 1 1 9 7 5 9 . 5 D - 0 5 0 . 0 0 1 2 9 0 . 0 0 1 2 0 : 1 9 : : 1 1 9 7 6 - 5 . 8 D - 0 5 0 . 0 0 0 9 9 0 . 0 0 1 0 5 1 4 1 1 1 1 1 9 7 7 - 0 . 0 0 0 2 4 0 . 0 0 0 9 2 0 . 0 0 1 1 6 1 : 1 4 1 1 1 9 7 8 6 . 7 D - 0 5 0 . 0 0 1 3 8 0 . 0 0 1 3 2 1 1 4 1 1 1 1 9 7 9 - - . 2 D - 0 5 0 . 0 0 1 4 5 0 . 0 0 1 4 8 : 1 1 4 : 1 1 9 8 0 4 . 5 D - 0 5 0 . 0 0 1 6 5 0 . 0 0 1 6 1 : 1 4 1 1 : 1 9 8 1 - 3 . 6 D - 0 5 0 . 0 0 1 6 5 0 . 0 0 1 6 9 1 1 1 : 4 1 1 9 8 2 0 . 0 0 0 2 6 0 . 0 0 1 9 3 0 . 0 0 1 6 8 1 1 4 1 1 1 1 9 8 3 - 5 . 5 D - 0 5 0 . 0 0 1 4 5 0 . 0 0 1 5 0 K I N D E P E N D E N T V A R I A B L E S P C R G D P G D P S B / C P I S B / P O P S B S O P S B S O P 5 X R S B / C P I S B D V 6 7 6 9 8 l I £ ( Y E A R . G E . 0 O t h e r w i s e 6 7 8 R e a l G D P P e r C a p i t a . A N D . Y E A R . L E . 6 9 ) 6 9 1 S M P L 1 9 6 4 - 1 9 8 3 2 0 O b s e r v a t i o n s I S e r i e s M e a n S . D . M a x i m u m M i n i m u m P T S O N I 0 . 0 0 0 8 3 1 1 0 . 0 0 0 5 9 9 9 0 . 0 0 1 9 3 2 4 8 . 1 3 4 0 - 0 5 ' P C R G D P 0 . 0 0 0 2 3 9 4 5 . 0 0 3 D - 0 5 0 . 0 0 0 3 0 0 4 0 . 0 0 0 1 5 2 1 S O P S B 4 . 0 4 8 6 9 4 0 1 . 2 9 3 4 2 1 5 7 . 1 9 9 9 6 6 0 2 . 0 8 2 3 9 8 0 D V 6 7 6 9 0 . 1 5 0 0 0 0 0 0 . 3 6 6 3 4 7 5 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 3 8 3 3 8 8 3 . : 3 3 3 8 ' 8 : C o v a r i a n c e C o r r e l a t i o n P T S O N I , P T S O N I 3 . 4 1 9 D - 0 7 1 . 0 0 0 0 0 0 0 P T S O N I , P C R B D P 2 . 5 6 5 0 - 0 8 0 . 8 9 9 6 5 8 2 P T S O N I , S O P S B - 0 . 0 0 0 4 8 7 9 - 0 . 6 6 1 8 9 9 4 P T S O N I , D V 6 7 6 9 ' - 0 . 0 0 0 1 0 5 0 - 0 . 5 0 2 8 0 8 1 P C R G D P , P C R G D P 2 . 3 7 8 0 - 0 9 1 . 0 0 0 0 0 0 0 P C R G D P . S O P S B - 2 . 8 7 l D - 0 5 - 0 . 4 6 7 0 3 7 9 P C R G D P , D V 6 7 6 9 - 6 . 9 5 5 D - 0 6 - 0 . 3 9 9 4 2 7 2 S O P S B , S O P S B 1 . 5 8 9 2 9 2 2 1 . 0 0 0 0 0 0 0 S O P S B , D V 6 7 6 9 - 0 . 0 5 0 4 6 8 2 - 0 . 1 1 2 1 1 4 2 D V 6 7 6 9 , D V 6 7 6 9 0 . 1 2 7 5 0 0 0 1 . 0 0 0 0 0 0 0 6 9 7 ’ 0 7 1 7 2 7 0 7 4 7 5 ’ 1 6 7 7 7 0 7 9 0 ' 0 0 1 0 0 6 9 2 0 . 9 1 0 . 9 0 , , . . . . . . 0 . 0 1 - . . . . . . 0 . 1 0 0 . 7 5 v 0 . 7 0 . . . . . . . . . , . . ‘ 3 5 0 . 5 0 R E G I O N A L M O D E L S I M U L A T I O N . 7 0 0 3 : 0 4 - - . 7 3 0 I . 7 1 2 : . 0 0 0 : . 0 0 0 I . 0 3 4 Z . 0 0 0 i . 5 0 1 I . 0 0 0 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . . . , _ E S T I H A T E D F i g u r e J . l 7 . a & b . P e r c e n t a g e S o y n e a l E q u i v a l e n t E x p o r t e d a a S o y n e a l - S o v i e t B l o c 6 9 3 S o v i e t B l o c P e r c e n t a g e S o y s e a l E q u i v a l e n t I m p o r t e d a s S o y n e a l S H P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P M E A L V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 0 . 7 6 0 2 9 2 5 0 . 1 0 5 9 9 3 2 7 . 1 7 3 0 3 2 2 0 . 0 0 0 O S M S U P 6 . 3 4 9 D - 0 5 3 . 1 1 9 D - 0 5 2 . 0 3 5 6 0 8 0 0 . 0 6 0 S P R O S B - 0 . 0 0 0 1 8 7 2 4 . 7 8 3 D - 0 5 - 3 . 9 1 3 7 1 1 2 0 . 0 0 1 o w n s - 0 . 1 3 3 1 4 0 7 0 . 0 2 6 9 4 6 5 - 4 . 9 4 0 9 3 6 4 0 . 0 0 0 ' R - s q u a r e d 0 . 8 2 3 1 9 3 M e a n o f d e p e n d e n t v a r 0 . 7 9 7 3 4 4 A d J u s t e d R - s q u a r e d 0 . 7 8 7 8 3 1 S . D . o f d e p e n d e n t v a r 0 . 0 9 7 1 3 5 S . E . o f r e g r e s s i o n 0 . 0 4 4 7 4 2 S u m o f s q u a r e d r e s i d 0 . 0 3 0 0 2 8 D u r b i n - H a t s o n s t a t 2 . 3 7 1 2 2 5 F - s t a t i s t i o 2 3 . 2 7 9 4 0 L o g 1 1 1 1 . 1 i h o o d 3 4 . 3 1 5 9 0 T P E ” 1 9 W I W m R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 4 1 1 1 1 9 6 5 - 0 . 0 1 2 4 1 0 . 8 6 1 2 8 0 . 8 7 3 6 9 1 1 1 4 1 1 1 9 6 6 0 . 0 3 4 8 5 0 . 8 7 5 9 0 0 . 8 4 1 0 5 1 1 1 1 4 1 1 9 6 7 0 . 0 6 7 0 3 0 . 9 2 3 2 4 0 . 8 5 6 2 2 1 1 4 1 1 1 1 9 6 8 - 0 . 0 3 6 3 6 0 . 8 2 6 9 9 0 . 8 6 3 3 5 1 1 1 4 1 1 1 9 6 9 0 . 0 3 6 5 8 0 . 9 0 2 4 7 0 . 8 6 5 8 9 1 1 1 1 4 1 1 9 7 0 0 . 0 5 4 7 4 0 . 8 9 4 8 6 0 . 8 4 0 1 2 1 1 4 1 1 1 1 9 7 1 - 0 . 0 0 9 7 1 0 . 8 5 1 4 5 0 . 8 6 1 1 6 1 4 1 1 1 1 1 9 7 2 - 0 . 1 0 2 0 3 0 . 7 8 5 6 2 0 . 8 8 7 6 5 1 1 1 4 1 1 1 9 7 3 0 . 0 2 9 0 9 0 . 9 4 0 1 1 0 . 9 1 1 0 2 1 1 4 1 1 1 1 9 7 4 - 0 . 0 0 8 5 4 0 . 8 7 1 8 3 , 0 . 8 8 0 3 7 1 1 4 1 1 1 1 9 7 5 - 0 . 0 1 5 1 8 0 . 6 1 7 9 2 0 . 6 3 3 1 0 1 1 4 1 1 1 9 7 6 - 0 . 0 0 0 3 6 0 . 6 9 8 1 5 0 . 6 9 8 5 1 1 1 1 4 1 1 1 9 7 7 0 . 0 1 4 6 8 0 . 7 2 1 9 1 0 . 7 0 7 2 3 1 1 4 1 1 1 1 9 7 8 - 0 . 0 2 8 7 4 ' 0 . 6 3 8 6 3 0 . 6 6 7 3 7 1 1 1 4 1 1 1 9 7 9 0 . 0 2 9 6 0 0 . 6 8 1 8 1 0 . 6 5 2 2 1 1 1 1 4 1 1 1 9 8 0 0 . 0 0 8 2 3 0 . 7 7 1 5 8 0 . 7 6 3 3 5 1 4 1 1 1 1 1 9 8 1 - 0 . 0 6 3 2 1 0 . 7 4 2 1 3 0 . 8 0 5 3 4 1 1 1 4 1 1 1 9 8 2 0 . 0 2 1 7 8 0 . 8 0 3 5 7 0 . 7 8 1 7 9 1 1 4 1 1 1 1 9 8 3 - 0 . 0 2 0 0 2 0 . 7 4 0 1 1 0 . 7 6 0 1 2 I N D E P E N D E N T V A R I A B L E S O S M S U P a S u p p l y R a p e s e e d a n d S u n f l o w e r s e e d N e a l ( 1 0 0 0 M T ) R P R O S B ~ . 4 3 5 + N P R O S B 4 . 4 4 1 D V 7 5 7 9 a l I £ ( Y E A R . G E . 7 5 . A N D . Y E A R . L E . 7 9 ) 0 O t h e r w i s e S P R O S B 8 S o y b e a n P r o d u c t i o n ( 1 0 0 0 N T ) 6 9 4 S M P L 1 9 6 5 - 1 9 8 3 1 9 O b s e r v a t i o n s m l I . . . S e r i e s M e a n S . D . M a x i m u m M i n i m u m P M E A L 0 . 7 9 7 3 4 4 3 0 . 0 9 7 1 3 4 7 0 . 9 4 0 1 0 6 1 0 . 6 1 7 9 1 9 7 O S M S U P 3 5 7 0 . 5 8 7 6 3 6 8 . 3 5 7 1 2 4 4 7 3 . 3 8 7 0 3 0 6 5 . 7 3 9 0 S P R O S B 8 2 5 . 8 9 4 7 4 2 6 2 . 4 1 1 6 6 1 1 7 5 . 0 0 0 0 4 3 4 . 0 0 0 0 0 D V 7 5 7 9 0 . 2 6 3 1 5 7 9 0 . 4 5 2 4 1 3 9 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 W C o v a r i a n c e C o r r e l a t i o n l P H E A L , P M E A L 0 . 0 0 8 9 3 8 6 1 . 0 0 0 0 0 0 0 P M E A L , O S M S U P - 4 . 5 0 0 1 2 2 7 - 0 . 1 3 2 7 5 8 4 P M E A L , S P R O S B - 1 7 . 3 1 4 1 0 8 - 0 . 7 1 7 0 0 7 7 P M E A L , D V 7 5 7 9 - 0 . 0 3 3 0 6 8 8 - 0 . 7 9 4 3 0 8 6 O S M S U P , O S M S U P 1 2 8 5 4 5 . 5 5 1 . 0 0 0 0 0 0 0 O S M S U P , S P R O S B 3 4 2 5 5 . 9 7 ? 0 . 3 7 4 0 8 0 7 O S M S U P , D V 7 5 7 9 4 6 . 9 3 3 7 0 7 0 . 2 9 7 2 7 6 7 S P R O S B . S P R O S B 6 5 2 3 5 . 6 7 3 1 . 0 0 0 0 0 0 0 S P R O S B , D V 7 5 7 9 5 4 . 6 5 9 2 8 0 0 . 4 8 5 9 8 8 4 D V 7 5 7 9 , D V 7 5 7 9 0 . 1 9 3 9 0 5 8 1 . 0 0 0 0 0 0 0 W I . . . 6 9 5 7 0 m - 1 6 0 “ ” 0 0 5 0 " " n o . 0 0 0 0 1 . . a 4 8 8 8 1 . fl . E " 0 " " e T ’ " 0 ' 3 M 7 . . r ‘ . ~ T - - s . . . . - ' o 2 . N “ 0 0 0 9 . 9 " . . . S I “ ' . _ 6 9 7 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 8 0 8 1 8 2 R E G I O N A L M O D E L S I N U L A T I O N N I L L I 5 . 8 1 3 . O 5 . 4 7 0 ' : N 0 . 1 2 1 : 4 . 7 8 4 t g 4 . 4 4 1 - T 4 4 5 8 : 3 . 7 8 5 : T 3 . 4 1 3 : 0 3 . 0 7 0 N 2 . 7 2 7 - S 7 3 7 0 7 ? 1 0 7 9 0 0 0 1 0 0 0 0 0 4 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e J . 1 8 . a & b . S o y m e a l N e t I m p o r t s - S o v i e t B l o c 3 “ 1 m 0 ° 3 1 o C M 2 W 7 E T 1 m T o 0 . - ° ' N . s ‘ 1 " , 6 9 l 0 0 0 4 9 7 . 9 0 1 P 4 0 3 . 0 0 2 ' ~ M 4 0 9 . 7 5 3 ; E 3 0 0 . 0 0 4 1 1 ‘ 3 2 1 . 0 0 0 - R 2 7 7 . 4 0 0 - I 2 3 3 . 3 0 7 : C 1 0 9 . 2 0 0 . T 1 4 0 . 1 0 9 I 0 1 0 1 . 0 6 0 1 N S 6 9 6 ~ e q . . e f ' P e e e e e . 7 ' 0 7 1 7 2 7 0 7 4 7 ' 5 7 5 7 7 7 0 7 9 0 ' 0 0 1 0 7 . R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - ~ - E S T I M A T E D F i g u r e J . l S . a & b . S o y o i l N e t I m p o r t s - S o v i e t B l o c H > C D < O 2 1 h 4 - fl ° 3 C 1 2 fl ( : : 1 4 “ 1 7 r 1 4 D C 1 2 ! : 1 " 4 * } r i C 3 : 0 ( . " 5 5 T 3 0 0 0 2 5 “ 2 “ 1 5 “ I “ 5 . 0 3 . 5 7 3 3 . 3 4 9 ' ~ 3 . 1 2 4 2 . 9 0 0 2 . 8 7 5 2 . 4 5 1 2 . 2 2 8 2 . 0 0 1 1 . 7 7 7 1 . 5 5 2 6 9 7 O C 0 ‘ . . . . ' . . . I . s 9 7 0 7 1 7 2 7 0 7 1 7 ‘ 5 7 0 7 7 7 0 7 9 0 ' 0 0 1 1 2 R E G I O N A L M O D E L S I M U L A T I O N r ' U ' r T 7 0 7 0 7 7 7 0 7 9 0 0 0 1 9 2 0 3 0 1 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — — - E S T I M A T E D F i g u r e J . 2 0 . a & b . S o y b e a n N e t I m p o r t s - S o v i e t B l o c A P P E N D I X K E Q U A T I O N S T A T I S T I C S - C H I N A W h e a t W P R O C H . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n W H A C H . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a W Y C H . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d W C O N C H . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n W N I C H . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s C o a r s e G r a i n F P R O C H . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n F H A C H . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t a d A r e a F Y C H . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d F C O N C H . . . . . . . . . . . . . . . . . . . . . . T o t a l C o n s u m p t i o n F N I C H . . . . . . . . . . . . . . . . . . . . . . . N e t I m p o r t s S o y b e a n C o m p l e x S P R O C H . . . . . . . . . . . . . . . . . . . . . . P r o d u c t i o n S H A C K . . . . . . . . . . . . . . . . . . . . . . . H a r v e s t e d A r e a S Y C H . . . . . . . . . . . . . . . . . . . . . . . . Y i e l d S M C O C H . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . C o n s u m p t i o n S O C O C H . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . C o n s u m p t i o n S M E E C H . . . . . . . . . . . . . . . . . . . . . . S o y m e a l E q u i v . N e t E x p o r t s S O E E C H . . . . . . . . . . . . . . . . . . . . . . S o y o i l E q u i v . N e t E x p o r t s S M N E C H . . . . . . . . . . . . . . . . . . . . . . S o y m e a l N e t E x p o r t s S O N E C H . . . . . . . . . . . . . . . . . . . . . . S o y o i l N e t E x p o r t s S N E C H . . . . . . . . . . . . . . . . . . . . . . . S o y b e a n N e t E x p o r t s 6 9 8 g 3 1 1 1 # ! — 0 2 0 ( : : 4 1 ‘ r - r 4 1 3 ( 5 2 : : 7 7 1 4 1 - 0 2 1 1 1 l l l l l l l l l l 7 0 7 0 7 7 7 9 7 9 0 0 0 1 0 2 0 9 0 0 0 0 " ' 0 5 . 3 0 0 7 0 . 7 0 0 7 1 . 0 2 1 0 0 . 2 0 1 0 1 . 5 0 1 0 0 . 7 4 1 0 1 . 9 0 1 4 7 . 2 2 1 4 2 . 4 0 1 8 0 . 5 4 0 “ 6 9 9 1 ' 1 1 1 7 0 7 2 7 1 7 1 7 1 1 0 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . _ - 1 - E S T I M A T E D F i g u r e K . l . a 0 b . W h e a t P r o d u c t i o n - C h i n a 0 4 P O a s m a O C = 1 fl ) ( % - > 1 2 0 7 m z 1 0 7 1 r 1 4 3 1 2 n : m > c 0 - > 1 : 0 1 m 1 4 1 1 1 1 7 0 7 ' 2 7 ' 1 7 1 7 1 1 0 1 ‘ 7 . 1 1 7 0 7 0 7 7 7 0 7 9 0 0 0 1 0 2 0 3 0 4 7 0 0 R E G I O N A L M O D E L S I M U L A T I O N 2 9 . 2 7 2 2 9 . 0 7 4 ' - 2 0 . 0 7 0 2 0 . 0 7 7 2 0 . 4 7 0 2 0 . 2 0 0 2 0 . 0 0 1 2 7 . 0 0 3 2 7 . 0 0 4 2 7 . 4 0 0 5 L L L E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - * - E S T I M A T E D F i g u r e K . 2 . a 0 b . W h e a t H a r v e s t e d A r e a - C h i n a ” ' 0 0 0 : 1 1 1 0 1 — 5 3 7 0 0 ( Z H F ‘ F H O Z : 1 1 7 7 1 0 4 4 7 2 1 1 1 0 ( 1 1 1 1 F i g u r e K . 2 . a & b . W h e a t H a r v e s t e d A r e a - C h i n a 2 8 2 8 2 9 . 2 9 . 2 8 . 2 8 . 2 8 . 2 7 . 2 7 . 2 7 . 2 3 W 2 7 2 0 7 4 ' - 0 7 0 3 0 7 7 b 4 7 0 I . 2 0 0 : . 0 0 1 I 0 0 3 I 0 0 4 - 4 0 0 E 7 0 0 i 1 g L 1 1 . 1 1 1 7 0 7 2 7 1 7 1 7 1 1 0 0 R E G I O N A L M O D E L S I M U L A T I O N \ 7 0 7 0 7 7 7 0 7 9 0 0 0 1 0 2 0 9 0 4 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L - - - E S T I M A T E D 1 1 a b > C > C > C l i fl l i f i - t fl l l l fl l U K H F ‘ F H O Z : 3 7 7 7 0 4 3 7 2 1 7 1 1 1 ( 1 1 1 1 1 1 1 [ F i g u r e K . 2 . a 8 b . W h e a t H a r v e s t e d A r e a - C h i n a 7 0 0 2 1 0 0 0 , « - . . I 1 4 1 1 1 1 7 0 7 7 7 0 7 1 7 1 1 0 1 1 R E G I O N A L M O D E L S I M U L A T I O N 0 ' 2 9 . 2 7 2 / , , . a 2 9 . 0 7 4 ' - / \ / 2 0 . 0 7 0 : . ' \ 2 0 . 0 7 7 : ; \ / 2 0 . 4 7 0 E / \ / 4 2 0 . 2 0 0 - / \ / - 2 8 . 0 8 1 7 . \ / 2 7 . 0 0 3 : 1 2 7 . 5 8 4 - ‘ V \ ' 2 7 . 4 0 0 I ‘ \ J D 1 L J . 7 0 7 0 7 7 7 9 7 9 0 0 0 1 0 7 0 3 0 4 E X - P O S T F O R E C A S T 1 9 7 5 - l 9 8 4 A C T U A L — ' - - E S T I M A T E D 1 1 7 0 1 C h i n a W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s W H A C H V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 1 6 1 6 3 . 0 7 6 3 8 5 0 . 9 4 8 1 4 . 1 9 7 1 6 8 0 0 . 0 0 1 W H A C H ( - 1 ) 0 . 3 2 3 1 6 9 0 . 1 6 2 5 6 9 8 2 . 0 0 7 2 4 1 2 0 . 0 6 1 W R C H 4 ( - 1 ) 5 5 8 . 1 4 2 6 2 1 5 2 . 5 5 5 3 3 3 . 6 5 8 6 2 4 1 0 . 0 0 2 . D V 7 8 8 0 1 1 8 3 . 3 3 0 7 4 3 4 . 8 4 5 5 6 2 . 7 2 1 2 6 6 5 0 . 0 1 5 R - s q u a r e d 0 . 9 2 0 3 1 4 M e a n o f d e p e n d e n t v a r 2 6 9 8 1 . 5 2 A d j u s t e d R - s q u a r e d 0 . 9 0 6 2 5 2 S . D . o f d e p e n d e n t v a r 1 8 0 6 . 1 2 4 S . E . o 7 r e g r e s s i o n 5 5 3 . 0 0 5 0 S u m o f s q u a r e d r e s i d 5 1 9 8 8 4 8 . D u r b i n - W a t s o n s t a t 1 . 7 7 2 6 7 8 F - s t a t i s t i c 6 5 . 4 4 5 8 0 L o g l i k e l i h o o d - 1 6 0 . 2 0 1 7 T P E 3 / 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 1 1 4 1 1 9 6 4 7 9 9 . 7 9 0 2 5 4 0 8 . 0 2 4 6 0 8 . 2 1 1 4 1 1 1 1 9 6 5 - 4 6 5 . 3 6 8 2 4 7 0 9 . 0 2 5 1 7 4 . 4 1 4 1 1 1 1 1 9 6 6 - 1 0 6 9 . 3 1 2 3 9 1 9 . 0 2 4 9 8 8 . 3 1 1 1 4 1 1 1 9 6 7 3 5 0 . 5 7 1 2 5 2 9 9 . 0 2 4 9 4 8 . 4 1 4 1 1 1 1 1 9 6 8 - 7 6 9 . 1 9 5 2 4 6 5 8 . 0 2 5 4 2 7 . 2 1 1 4 1 1 1 1 9 6 9 - 1 2 9 . 5 2 6 2 5 1 6 2 . 0 2 5 2 9 1 . 5 1 1 1 4 1 1 1 9 7 0 1 6 1 . 5 2 4 2 5 4 5 8 . 0 2 5 2 9 6 . 5 1 1 1 4 1 1 1 9 7 1 1 0 3 . 7 4 8 2 5 6 3 9 . 0 2 5 5 3 5 . 3 1 1 1 1 4 1 1 9 7 2 6 6 6 . 4 9 3 2 6 3 0 2 . 0 2 5 6 3 5 . 5 1 1 1 4 1 1 1 9 7 3 2 . 4 6 3 9 2 6 4 3 9 . 0 - 2 6 3 5 6 . 5 1 4 1 1 1 1 1 9 7 4 - 6 1 7 . 9 5 7 2 7 0 6 1 . 0 2 7 6 7 9 . 0 1 1 4 1 1 1 1 9 7 5 - 1 0 0 . 7 5 1 2 7 6 6 1 . 0 2 7 7 6 1 . 8 1 1 1 1 4 1 1 9 7 6 6 2 2 . 9 8 2 2 8 4 1 7 . 0 2 7 7 9 4 . 0 1 1 1 4 1 1 1 9 7 7 4 7 8 . 9 0 1 2 8 0 6 5 . 0 2 7 5 8 6 . 1 1 1 1 4 1 1 9 7 8 5 5 5 . 0 1 5 2 9 1 8 3 . 0 2 8 6 2 8 . 0 1 1 1 4 1 1 1 9 7 9 4 8 . 2 3 7 7 2 9 3 5 7 . 0 2 9 3 0 8 . 8 1 4 1 1 1 1 9 8 0 - 6 0 3 . 2 5 3 2 9 2 2 8 . 0 2 9 8 3 1 . 3 1 1 4 1 1 1 1 9 8 1 - 1 8 2 . 6 8 7 2 8 3 0 7 . 0 2 8 4 8 9 . 7 1 1 4 1 1 1 1 9 8 2 - 3 4 7 . 9 7 7 2 7 9 4 0 . 0 2 8 2 8 8 . 0 1 1 1 4 1 1 1 9 8 3 . 3 7 4 . 1 4 2 2 9 0 5 0 . 0 2 8 6 7 5 . 9 1 1 1 4 1 1 1 9 8 4 4 2 . 1 5 7 9 2 9 3 5 0 . 0 2 9 3 0 7 . 8 I N D E P E N D E N T V A R I A B L E S W H A C H = W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R C H 4 = W h e a t R e v e n u e P e r H e c t a r e ( S I H A ) ( W Y C H ( - 3 ) + W Y C H ( - 2 ) + W Y C H ( - l ) + W Y C H ) / 4 ¢ W P 4 X R C H / C P I C H D V 7 8 8 0 = l I f < Y E A R . G E . 7 8 . O R . Y E A R . L E . 7 8 ) 0 O t h e r w i s e 7 0 2 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m N H A C H 2 6 9 8 1 . 5 2 4 1 8 0 6 . 1 2 4 1 2 3 5 7 . 0 0 0 2 3 9 1 9 . 0 0 0 w H A C H ( - 1 ) 2 6 7 1 5 . 8 5 7 1 8 5 0 . 0 9 8 8 2 9 3 5 7 . 0 0 0 2 3 7 7 1 . 0 0 0 w R C H 4 ( - 1 ) 3 . 4 6 0 7 0 1 1 1 . 7 7 2 2 9 9 6 6 . 5 6 6 8 8 8 0 1 . 2 3 3 1 1 7 0 D V 7 8 8 0 0 . 1 4 2 8 5 7 1 0 . 3 5 8 5 6 8 6 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n W H A C H , W H A C H 3 1 0 6 7 4 6 . 8 1 . 0 0 0 0 0 0 0 N H A C H , W H A C H ( - 1 ) 2 9 3 3 2 4 9 . 4 0 . 9 2 1 7 1 3 1 “ H A C H , W R C H 4 ( - 1 ) 2 7 1 8 . 8 7 4 8 0 . 8 9 1 8 5 4 1 N H A C H , D V 7 8 8 0 3 2 4 . 9 2 5 1 7 0 . 5 2 6 8 0 8 6 N H A C H ( - 1 ) , W H A C H ( - 1 ) 3 2 5 9 8 7 2 . 0 1 . 0 0 0 0 0 0 0 H H A C H ( - 1 ) , N R C H 4 ( - 1 ) 2 6 9 7 . 5 6 8 4 0 . 8 6 3 8 3 2 8 W H A C H ( - 1 ) , D V 7 8 8 0 3 0 7 . 4 9 6 6 0 0 . 4 8 6 7 0 1 2 N R C H 4 ( - 1 ) , W R C H 4 ( - 1 ) 2 . 9 9 1 4 7 2 3 1 . 0 0 0 0 0 0 0 N R C H 4 ( - 1 ) , D V 7 8 8 0 0 . 1 4 2 7 7 0 3 0 . 2 3 5 8 9 4 5 D V 7 8 8 0 , D V 7 8 8 0 0 . 1 2 2 4 4 9 0 1 . 0 0 0 0 0 0 0 o - s - a s . . 4 a - u - - u e t - 4 u ‘ - u e 4 u e - 4 u e - t u s - e - a e u o - e - s 0 u e 4 - t s - o . a 0 u e a s - a . u e - s a . e - u e t - - - u o s n a o s e a b o - s e 7 0 3 C h i n a w h e a t Y i e l d ( M e t r i c T o n e p e r H e c t a r e ) S H P L 1 9 6 0 - 1 9 8 4 2 5 O b s e r v a t i o n s L S l l D e o e n a e n t V a r i a b l e i s H Y C H V A R I A B L E C O E F F I C I E N T S T D . E R R O R 1 . 9 4 9 5 2 6 4 0 . 4 5 6 2 6 4 8 C - 2 3 . 7 3 8 9 9 2 L O S T 5 . 9 0 1 5 0 7 8 m R - s o u a r e d A d i u s t e d R - s o u a r e d S . E . o f r e g r e s s i o n D u r b i n - H a t s o n s t a t L o o l i k e l i h o o d 0 . 8 7 9 1 3 7 0 . 8 7 3 8 8 2 0 . 2 3 0 1 0 7 0 . 6 2 1 5 8 5 2 . 2 9 9 0 2 9 9 . D . S u m o f F - s t a t i s t i o T - S T A T . - 1 2 . 1 7 6 8 0 0 1 2 . 9 3 4 3 9 1 M e a n o f d e o e n a e n t v a r o f o e o e n d e n t v a r s a u a r e d r e s i d 2 - T A I L 5 1 8 . 0 . 0 0 0 0 . 0 0 0 1 . 4 6 9 9 1 8 0 . 6 4 7 9 5 2 1 . 2 1 7 8 3 7 1 6 7 . 2 9 8 5 R e s i d u a l p l o t o b s 1 9 6 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 4 4 “ 4 4 I N D E P E N D E N T V A R I A B L E S L O G T = L n ( T I M E ) R E S I D U A L 0 . 3 5 8 2 7 0 . 0 3 5 8 9 0 . 0 7 4 8 9 0 . 0 6 5 4 6 0 . 0 1 5 5 3 0 . 1 2 4 4 9 0 . 0 7 0 6 1 0 . 0 5 0 9 0 - 0 . 0 4 9 0 4 - 0 . 1 6 4 2 5 - 0 . 1 8 7 1 4 - 0 . 1 4 6 7 2 - 0 . 1 3 1 6 4 - 0 . 2 4 8 8 8 - 0 . 1 5 1 3 7 - 0 . 1 0 2 6 5 - 0 . 0 4 5 8 0 - 0 . 4 3 2 4 4 - 0 . 1 2 7 2 5 0 . 0 8 9 4 6 - 0 . 2 3 2 6 3 - 0 . 0 8 7 9 8 0 . 1 8 1 5 2 0 . 4 6 2 9 0 0 . 5 7 7 8 8 A C T U A L 0 . 7 8 2 0 9 0 . 5 5 7 2 5 0 . 6 9 2 2 1 0 . 7 7 7 2 1 0 . 8 2 0 2 1 1 . 0 2 0 6 8 1 . 0 5 6 9 0 1 . 1 2 5 9 3 1 . 1 1 3 4 3 1 . 0 8 4 3 7 1 . 1 4 6 4 0 1 . 2 7 0 5 2 1 . 3 6 8 1 5 1 . 3 3 2 3 1 1 . 5 1 0 1 1 1 . 6 3 8 0 5 1 . 7 7 3 0 6 1 . 4 6 3 5 7 1 . 8 4 4 9 1 2 . 1 3 6 8 0 1 . 8 8 8 9 4 2 . 1 0 6 9 0 2 . 4 4 8 8 2 2 . 8 0 1 7 2 2 . 9 8 7 3 9 F I T T E D 0 . 4 2 3 8 2 0 . 5 2 1 3 6 0 . 6 1 7 3 2 0 . 7 1 1 7 5 0 . 8 0 4 6 9 0 . 8 9 6 1 9 0 . 9 8 6 2 9 1 . 0 7 5 0 4 1 . 1 6 2 4 7 1 . 2 4 8 6 2 1 . 3 3 3 5 3 1 . 4 1 7 2 5 1 . 4 9 9 7 9 1 . 5 8 1 1 9 1 . 6 6 1 4 8 1 . 7 4 0 7 0 1 . 8 1 8 8 6 1 . 8 9 6 0 1 1 . 9 7 2 1 6 2 . 0 4 7 3 4 2 . 1 2 1 5 7 2 . 1 9 4 8 8 2 . 2 6 7 3 0 2 . 3 3 8 8 3 2 . 4 0 9 5 1 7 0 4 S M P L 1 9 6 0 - 1 9 8 4 2 5 O b s e r v a t i o n s I . . . - . - S e r i e s M e a n S . D . M a x i m u m M i n i m u m H Y C H 1 . 4 6 9 9 1 7 5 0 . 6 4 7 9 5 1 8 2 . 9 8 7 3 9 4 0 0 . 5 5 7 2 5 0 1 L O G T 4 . 2 7 1 6 0 5 0 0 . 1 0 2 9 4 5 7 4 . 4 3 0 8 1 7 0 4 . 0 9 4 3 4 5 0 . . . - m m . “ n u - “ m u c u s " . . - C o v a r i a n o e C o r r e l a t i o n . . . - . . . I H Y C H . H Y C H 0 . 4 0 3 0 4 7 9 1 . 0 0 0 0 0 0 0 H Y C H . L O B T 0 . 0 6 0 0 4 1 3 0 . 9 3 7 6 2 3 2 L O B T . L O B T 0 . 0 1 0 1 7 3 9 1 . 0 0 0 0 0 0 0 “ ' 0 0 0 ! ! ! 1 1 ~ ) 1 - 0 2 1 1 ( K H P ‘ F H O Z : m a 1 - 0 2 1 1 ( 1 9 1 5 1 9 7 7 1 9 7 9 1 9 1 9 1 9 8 9 1 9 8 1 1 9 9 1 1 9 9 9 1 9 9 4 7 5 7 6 7 7 7 6 7 0 3 0 3 1 8 1 3 3 0 4 1 m r 9 W 1 8 8 8 8 8 1 7 M 1 6 6 8 0 0 1 5 8 8 8 8 1 9 7 5 7 0 5 R E G I O N A L M O D E L S I M U L A T I O N 9 3 . 3 8 0 3 3 . 2 2 4 - - 0 3 . 0 0 7 : 7 7 . 9 5 0 : 7 2 . 0 1 3 : 0 7 . 5 7 7 : 6 2 . 5 4 0 5 7 . 4 0 3 5 2 . 2 0 0 4 7 . 1 3 0 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' — - E S T I M A T E D F i g u r e K . 3 . a & b . T o t a l W h e a t C o n s u m p t i o n - C h i n a i i H > C D < O ! ) " 9 ' a 0 ' ' 5 - 8 ‘ o : = m i i F ‘ l F ‘ P D I Z D O l i Q O M U H n l i r i - J C I Z I U ' U I — I ' I ' I U ' D U I U T 8 8 " 1 5 “ ! 1 2 5 W 1 F i g u r e K . 4 . a & b . 1 3 . 1 2 . . 9 9 8 . 8 2 5 . 8 5 2 . 4 7 9 7 0 6 1 9 1 5 1 9 7 9 1 9 7 7 1 9 7 9 1 9 1 9 1 9 9 9 1 9 9 1 1 9 9 2 1 9 9 9 1 9 9 4 3 4 4 1 7 1 . 1 3 3 . 9 8 0 . 7 8 7 R E G I O N A L M O D E L S I M U L A T I O N 7 5 7 0 7 7 7 6 7 0 8 0 3 1 o i 8 5 a 4 E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L - - - E S T I M A T E D W h e a t N e t I m p o r t s - C h i n a 7 T T 7 C h i n a P e r C a p i t a W h e a t N e t I m p o r t s ( 1 0 0 0 H T ) S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s P C W N I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . . 2 - T A I L S I B . 0 0 . 0 1 0 2 0 1 6 0 . 0 0 1 8 1 8 6 5 . 6 0 9 6 7 4 5 0 . 0 0 0 P C W P R O . 2 1 1 6 1 0 0 0 . 0 7 7 5 3 0 3 - 2 . 7 2 9 3 8 3 4 0 . 0 1 4 8 1 2 7 4 6 . 8 1 2 1 5 4 2 . 7 9 9 4 9 5 . 0 6 0 4 5 4 4 0 . 0 0 0 W P C H - 0 . 0 0 1 1 5 3 6 0 . 0 0 1 6 4 2 8 - 0 . 7 0 2 2 2 7 3 0 . 4 9 2 F P C H 0 . 0 0 3 2 8 3 4 0 . 0 0 2 8 3 0 3 1 . 1 6 0 0 8 8 2 0 . 2 6 1 R - s q u a r e d 0 . 7 2 1 9 8 6 M e a n o f d e p e n d e n t v a r 0 . 0 0 7 3 2 7 A d j u s t e d R - s q u a r e d 0 . 6 6 0 2 0 5 9 . 0 . o f d e p e n d e n t v a r 0 . 0 0 3 0 2 8 S . E . o f r e g r e s s i o n 0 . 0 0 1 7 6 5 S u m o f s q u a r e d r e s i d 5 . 6 1 0 - 0 5 D u r b i n - W a t s o n s t a t 2 . 0 1 7 4 8 8 F - s t a t i s t i : 1 1 . 6 8 6 2 1 L o g l i k e l i h o o d 1 1 5 . 9 8 9 7 T P E ” 2 3 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D : 1 x 1 1 1 1 9 6 1 - 0 . 0 0 0 6 4 0 . 0 0 7 2 4 0 . 0 0 7 8 8 : 1 1 1 1 1 1 9 6 2 - 0 . 0 0 0 3 1 0 . 0 0 7 1 4 0 . 0 0 7 4 4 : : t 1 1 1 9 6 3 4 . 4 0 - 0 5 0 . 0 0 7 3 7 0 . 0 0 7 3 2 1 1 1 1 1 1 9 6 4 3 . 0 0 - 0 5 0 . 0 0 6 9 7 0 . 0 0 6 9 4 1 1 1 1 t 1 1 9 6 5 0 . 0 0 2 5 2 0 . 0 0 8 6 5 0 . 0 0 6 1 3 1 1 1 x : 1 1 9 6 6 0 . 0 0 0 5 5 0 . 0 0 6 7 0 0 . 0 0 6 1 5 1 1 1 t 1 1 1 9 6 7 0 . 0 0 0 6 4 0 . 0 0 5 4 2 0 . 0 0 4 7 8 1 1 1 1 1 1 1 9 6 8 - 0 . 0 0 1 0 3 0 . 0 0 4 5 0 0 . 0 0 5 5 4 1 1 t : 1 1 1 9 6 9 - 0 . 0 0 0 1 5 0 . 0 0 6 3 5 0 . 0 0 6 5 0 1 1 1 1 1 1 9 7 0 - 0 . 0 0 2 0 9 0 . 0 0 4 4 1 0 . 0 0 6 5 0 1 1 1 1 1 1 9 7 1 - 0 . 0 0 1 5 6 0 . 0 0 3 4 8 0 . 0 0 5 0 4 1 1 4 1 1 1 9 7 2 9 . 1 0 - 0 5 0 . 0 0 6 0 6 0 . 0 0 5 9 7 1 1 t 1 1 1 9 7 3 - 4 . 1 0 - 0 5 0 . 0 0 6 3 2 0 . 0 0 6 3 6 1 1 : 1 1 1 1 9 7 4 0 . 0 0 0 2 0 0 . 0 0 6 3 2 0 . 0 0 6 1 2 1 1 1 1 1 1 9 7 5 - 0 . 0 0 1 9 1 0 . 0 0 2 3 8 0 . 0 0 4 2 9 1 : 1 1 1 1 9 7 6 0 . 0 0 0 1 1 0 . 0 0 3 3 7 0 . 0 0 3 2 6 1 1 1 1 t 1 1 9 7 7 0 . 0 0 3 7 8 0 . 0 0 9 0 6 0 . 0 0 5 2 8 1 t 1 1 1 1 1 9 7 8 - 0 . 0 0 3 2 8 0 . 0 0 8 3 6 0 . 0 1 1 6 4 1 1 1 1 1 1 1 9 7 9 - 0 . 0 0 1 0 2 0 . 0 0 9 0 9 0 . 0 1 0 1 1 1 1 1 t 1 1 1 9 8 0 0 . 0 0 1 5 5 0 . 0 1 3 9 7 0 . 0 1 2 4 2 1 1 1 : 1 1 1 9 8 1 0 . 0 0 1 9 9 0 . 0 1 3 1 9 0 . 0 1 1 2 1 1 1 1 8 1 1 9 8 2 0 . 0 0 1 7 4 0 . 0 1 2 8 0 0 . 0 1 1 0 7 1 1 t 1 1 1 1 9 8 3 - 0 . 0 0 1 2 2 0 . 0 0 9 3 7 0 . 0 1 0 5 8 I N D E P E N D E N T V A R I A B L E S P C W P R O 8 W h e a t P r o d u c t i o n P e r C a p i t a ( 1 0 0 0 M T ) W P R O C H / P O P C H 5 1 = R e a l I n c o m e P e r C a p i t a A f t e r 1 9 7 7 ( G D P C H / C P I C H / P O P C H ) 9 D V 7 8 0 N W h e r e : D V 7 8 O N 8 1 I f < Y E A R . G E . 7 8 ) 0 O t h e r w i s e W P C H = R e a l C h i n e s e W h e a t P r i c e ( s l M T ) W P - X R C H / C P I C H F P C H = R e a l C h i n e s e C o a r s e G r a i n P r i c e ( S I M T ) F P 9 X R C H / C P I C H 7 0 8 S M P L 1 9 6 1 - 1 9 8 3 2 3 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C W N I 0 . 0 0 7 3 2 7 2 0 . 0 0 3 0 2 8 5 0 . 0 1 3 9 6 9 2 0 . 0 0 2 3 8 0 4 P C W P R O 0 . 0 4 3 7 0 2 5 0 . 0 1 4 7 6 3 2 0 . 0 7 9 4 0 4 9 0 . 0 2 1 6 3 6 8 5 1 9 . 9 4 6 0 - 0 7 1 . 7 1 7 D - 0 6 4 . 2 7 3 D - 0 6 0 . 0 0 0 0 0 0 0 W P C H 2 . 3 2 3 5 5 7 4 0 . 6 9 7 6 0 6 9 4 . 0 4 6 4 3 1 0 1 . 5 0 8 6 8 1 0 ‘ F P C H 1 . 9 2 5 4 0 3 3 0 . 4 8 6 2 6 1 5 2 . 9 2 7 1 3 1 0 1 . 2 6 2 9 8 3 0 C o v a r i a n c e C o r r e l a t i o n I P C W N I , P C W N I 8 . 7 7 3 0 - 0 6 1 . 0 0 0 0 0 0 0 P C W N I , P C W P R O 2 . 0 0 6 D - 0 5 0 . 4 6 9 1 7 0 3 P C W N I , S 1 3 . 8 0 2 D - 0 9 0 . 7 6 4 2 1 3 8 P C W N I , W P C H 0 . 0 0 0 3 7 5 0 0 . 1 8 5 5 5 5 1 P C W N I , F P C H 0 . 0 0 0 1 7 3 2 0 . 1 2 2 9 8 3 7 P C W P R O , P C W P R O 0 . 0 0 0 2 0 8 5 1 . 0 0 0 0 0 0 0 P C W P R O , 8 1 2 . 0 4 6 0 - 0 8 0 . 8 4 3 7 5 5 3 ' P C W P R O , W P C H 0 . 0 0 5 8 3 5 1 0 . 5 9 2 3 3 4 8 P C W P R O , F P C H 0 . 0 0 4 4 7 7 8 0 . 6 5 2 1 1 4 8 3 1 , 3 1 2 . 8 2 1 D - 1 2 1 . 0 0 0 0 0 0 0 S 1 , W P C H 4 . 2 0 9 0 - 0 7 0 . 3 6 7 3 0 8 3 S 1 , F P C H 2 . 6 4 4 0 - 0 7 0 . 3 3 0 9 5 5 6 W P C H , W P C H 0 . 4 6 5 4 9 6 5 1 . 0 0 0 0 0 0 0 W P C H , F P C H 0 . 3 0 1 6 6 8 7 0 . 9 2 9 7 2 5 3 F P C H , F P C H 0 . 2 2 6 1 6 9 8 1 . 0 0 0 0 0 0 0 P > C 3 ( 0 3 i fl fl ' d - o s a m z 1 4 1 ' r ' r 4 1 3 ( 1 2 ! 1 0 1 0 ' i ' J C z : n t U ' U I ' U I F i g u r e K . 5 . a & b . 7 0 9 6 ‘ 1 5 - I R E G I O N A L M O D E L S I M U L A T I O N e . e e e e e e s e e e e ' . . . . . ‘ e ' 0 . ” a “ . . . 0 . 1 1 0 5 . 4 1 0 1 0 1 . 2 2 8 9 7 8 8 8 4 7 1 . 0 4 3 9 2 . . 0 7 5 . 4 9 2 8 0 . 7 8 . . 9 4 1 6 7 . 1 2 4 7 5 7 I E X - P O S T F O R E C A S T A C T U A L C o a r s e G r a i n P r o d u c t i o n 1 9 7 5 ' 1 9 8 4 B i 8 1 8 5 - — - E S T I M A T E D - C h i n a 8 4 6 ' 1 1 1 1 1 a 1 2 1 ‘ 4 1 ‘ 5 1 1 s o 1 2 1 4 4 2 5 3 ‘ l n " 1 m 0 ‘ 3 3 7 5 9 3 H 0 s 3 5 0 9 9 1 1 E C 3 2 5 w T A R 3 ‘ 1 E 3 2 1 5 3 1 ; 5 4 M I L L 4 0 . 0 3 0 _ ( I ) 3 3 . 3 4 1 : N 3 7 . 3 5 3 : 3 9 . 4 1 3 - 1 1 3 9 . 2 3 1 - E l 3 4 . 1 0 1 - ( 3 3 2 . 9 1 9 - 1 ‘ 3 1 . 7 2 9 1 . A 3 0 . 5 4 3 : R 2 9 . 3 5 9 - E S 7 1 0 R E G I O N A L M O D E L S I M U L A T I O N 7 5 7 6 7 1 7 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - — E S T I M A T E D F i g u r e K . 6 . a & b . C o a r s e G r a i n H a r v e s t e d A r e a - C h i n a C o a r s e G r a i n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) C h i n a S M P L 1 9 6 4 7 1 1 . - 1 9 8 4 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s F H A C H V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . C 2 4 5 9 4 . 2 3 1 7 0 8 0 . 5 0 9 1 . 4 3 9 9 0 0 9 0 . 1 6 9 F H A C H ( - 1 ) 0 . 7 7 5 4 4 2 0 0 . 1 6 5 7 8 3 2 4 . 6 7 7 4 4 7 6 0 . 0 0 0 W R C H 4 ( - 1 ) - 7 7 7 . 5 6 5 6 0 7 9 2 . 7 7 3 3 0 - 0 . 9 8 0 8 1 7 1 0 . 3 4 1 - F R C H 4 ( - 1 ) 1 1 2 5 . 9 2 9 0 9 0 0 . 7 4 5 6 1 . 2 4 9 9 9 6 7 0 . 2 2 9 Y E A R - 2 4 5 . 3 1 2 8 7 1 8 8 . 6 4 0 2 9 - 1 . 3 0 0 4 2 6 7 0 . 2 1 2 R - s q u a r e d 0 . 9 1 0 0 1 2 M e a n o f d e p e n d e n t v a r 3 6 4 0 8 . 2 9 A d j u s t e d R - s q u a r e d 0 . 8 8 7 5 1 4 S . D . o f d e p e n d e n t v a r 4 2 6 9 . 6 4 8 S . E . o f r e g r e s s i o n 1 4 3 1 . 9 9 2 S u m o f s q u a r e d r e s i d 3 2 8 0 9 5 9 6 D u r b i n - W a t s o n s t a t 2 . 1 7 6 4 2 4 F - s t a t i s t i c 4 0 . 4 5 0 1 6 L o g 1 i k e l i h o o d - 1 7 9 . 5 4 5 7 7 / 2 1 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 1 4 1 1 1 1 9 6 4 - 6 9 2 . 2 0 9 3 9 6 4 1 . 0 4 0 3 . . 2 1 1 * 1 1 1 1 9 6 5 - 6 9 8 . 4 2 0 3 9 6 6 4 . 0 4 0 3 6 2 . 4 1 1 1 1 1 1 1 9 6 6 - 5 8 7 . 9 2 4 3 9 6 8 3 . 0 4 0 2 7 0 . 9 1 1 * 1 1 1 1 9 6 7 - 2 1 3 . 2 6 4 3 9 7 1 1 . 0 3 9 9 2 4 . 3 1 1 1 * 1 1 1 9 6 8 2 3 3 . 7 7 3 3 9 7 1 6 . 0 3 9 4 8 2 . 2 1 1 1 * 1 1 1 9 6 9 3 7 1 . 7 6 4 3 9 7 3 3 . 0 3 9 3 6 1 . 2 1 1 * 1 1 1 9 7 0 1 1 0 . 4 8 7 3 9 7 4 6 . 0 3 9 6 3 5 . 5 1 1 1 * 1 1 1 9 7 1 1 8 6 . 9 2 7 3 9 7 5 6 . 0 3 9 5 6 9 . 1 1 1 1 4 1 1 1 9 7 2 8 3 3 . 2 5 8 3 9 6 7 3 . 0 ' 3 8 8 3 9 . 7 1 1 1 4 1 1 1 9 7 3 8 2 0 . 3 6 0 3 9 8 9 2 . 0 3 9 0 7 1 . 6 1 1 1 1 * 1 1 9 7 4 1 7 7 7 . 1 6 4 0 1 1 8 . 0 3 8 3 4 0 . 8 1 1 1 1 4 1 1 9 7 5 1 9 2 6 . 8 6 4 0 6 2 3 . 0 3 8 6 9 6 . 1 1 1 1 1 1 1 9 7 6 - 4 3 2 5 . 1 0 3 3 9 9 9 . 0 3 8 3 2 4 . 1 1 1 1 1 1 1 1 9 7 7 4 4 4 . 6 4 3 3 3 9 0 0 . 0 3 3 4 5 5 . 4 1 1 1 * 1 1 1 9 7 8 2 3 4 . 9 5 0 3 3 5 1 9 . 0 3 3 2 8 4 . 0 1 1 1 * 1 1 1 9 7 9 1 0 6 5 . 2 7 3 7 0 8 . 0 3 2 6 4 2 . 7 1 1 1 * 1 1 1 9 8 0 2 8 6 . 9 0 1 3 2 5 1 8 . 0 3 2 2 3 1 . 1 1 1 1 1 1 1 1 9 8 1 - 6 3 8 . 2 6 6 3 1 1 2 5 . 0 3 1 7 6 3 . 3 1 1 1 1 1 1 1 9 8 2 - 6 5 3 . 5 4 0 2 9 2 8 1 . 0 2 9 9 3 4 . 5 1 1 1 4 1 1 1 9 8 3 7 1 8 . 6 9 8 2 9 5 6 8 . 0 2 8 8 4 9 . 3 1 1 * 1 1 1 1 9 8 4 - 1 2 0 2 . 3 3 2 9 0 0 0 . 0 . 3 0 2 0 2 . 3 I N D E P E N D E N T V A R I A B L E S F H A C H 3 W h e a t H a r v e s t e d A r e a ( 1 0 0 0 H A ) W R C H 4 8 W h e a t R e v e n u e P e r H e c t a r e ( W Y C H ( - 3 ) + W Y C H ( - 2 ) + W Y C H ( - 1 ) * W Y C H ) / 4 * W P ~ X R C H / C P I C H F R C H 4 3 C o a r s e G r a i n R e v e n u e P e r H e c t a r e ( F Y C H ( - 3 ) + F Y C H ( - 2 ) + F Y C H ( - 1 ) + F Y C H ) / 4 * F P 9 X R C H / C P I C H Y E A R = 1 9 6 0 3 6 0 , 1 9 6 1 8 6 1 , . . . 7 1 2 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m F H A C H 3 6 4 0 8 . 2 8 6 4 2 6 9 . 6 4 8 4 4 0 6 2 3 . 0 0 0 2 9 0 0 0 . 0 0 0 F H A C H ( - 1 ) 3 6 9 1 4 . 1 4 3 3 9 6 6 . 5 8 4 9 4 0 6 2 3 . 0 0 0 2 9 2 8 1 . 0 0 0 H R C H 4 1 - 1 ) 3 . 4 6 0 7 0 1 1 1 . 7 7 2 2 9 9 6 6 . 5 6 6 8 8 8 0 1 . 2 3 3 1 1 7 0 F R C H 4 ( - 1 ) 3 . 5 8 2 2 3 6 3 1 . 5 6 5 6 0 4 7 7 . 4 5 3 6 5 3 0 1 . 4 8 5 4 2 6 0 Y E A R 7 4 . 0 0 0 0 0 0 6 . 2 0 4 8 3 6 8 8 4 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n F H A C H , F H A C H 1 7 3 6 1 8 0 7 . 1 : 0 0 0 0 0 0 0 F H A C H , F H A C H ( - 1 ) 1 5 0 7 2 7 1 7 . 0 . 9 3 4 4 8 4 2 F H A C H , N R C H 4 ( - 1 ) - 5 6 2 2 . 7 7 3 3 - 0 . 7 8 0 2 0 8 4 F H A C H , F R C H 4 ( - 1 ) - 5 0 7 6 . 6 2 1 4 - 0 . 7 9 7 4 2 5 0 F H A C H , Y E A R - 2 2 2 3 8 . 0 0 0 - 0 . 8 8 1 3 7 8 7 F H A C H ( - 1 ) , F H A C H ( - 1 ) 1 4 9 8 4 5 6 8 . 1 . 0 0 0 0 0 0 0 F H A C H 1 - 1 ) , W R C H 4 ( - 1 ) - 4 8 8 5 . 5 0 8 3 - - 0 . 7 2 9 7 0 1 4 F H A C H ( - 1 ) , F R C H 4 ( - 1 ) - 4 6 4 0 . 2 5 8 4 ' - 0 . 7 8 4 5 7 1 6 F H A C H ( - 1 ) , Y E A R ~ 1 9 8 8 8 . 2 8 6 - 0 . 8 4 8 4 7 5 9 W R C H 4 ( - 1 ) , N R C H 4 ( - 1 ) 2 . 9 9 1 4 7 2 3 1 . 0 0 0 0 0 0 0 W R C H 4 ( - 1 ) , F R C H 4 ( - 1 ) 2 . 5 5 3 8 4 4 4 0 . 9 6 6 4 1 6 8 w R C H 4 ( - 1 ) , Y E A R 9 . 7 1 7 0 8 7 4 0 . 9 2 7 8 0 7 6 F R C H 4 C - 1 ) , F R C H 4 ( - 1 ) 2 . 3 3 4 3 9 8 0 1 . 0 0 0 0 0 0 0 F R C H 4 ( - 1 ) , Y E A R 8 . 6 4 5 9 1 8 2 0 . 9 3 4 5 1 8 6 Y E A R , Y E A R 3 6 . 6 6 6 6 6 7 1 . 0 0 0 0 0 0 0 . . u u - . u u - - u u - - u u - u - u - u - u u - u - u u - - - u u . . u u - . u u . - 1 u u - - fi u - - u u - “ u u . - u u . . u u - - u u . . u u u u . z n u u ; . . . - - . u u u u . u . u - u 7 1 3 C h i n a C o a r s e G r a i n Y i e l d ( H e t r i o T o n s p e r H e c t a r e ) S M D L 1 9 6 0 - 1 9 8 4 2 5 O b s e r v a t i o n s L 5 / / D e p e n d e n t V a r i a b l e i s F Y C H V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T R T . W m . “ C 0 . 1 4 0 7 7 8 4 Y E A R 0 . 0 5 7 3 2 5 2 F H Q C H ' 5 - 6 1 4 0 ‘ 0 5 0 . 9 0 1 7 3 0 2 0 . 0 0 6 7 9 9 2 1 . 2 3 6 0 - 0 5 0 . 1 5 6 1 2 0 3 8 . 4 3 1 1 7 5 5 - 5 . 3 4 9 3 6 4 9 2 - T R I L 5 1 8 . 0 . 8 7 7 0 . 0 0 0 0 . 0 0 0 . . . . I R - s o u a r e d A d . ) u s t e d R - s d u a r e d S . E . o f r e g r e s s i o n D u r b i n - H a t s o n s t a t L o g l i k e l i h o o d 0 . 9 5 9 6 6 1 0 . 9 5 5 9 9 4 0 . 1 4 1 1 2 9 0 . 7 4 0 4 1 1 1 5 . 0 7 6 4 0 8 . D . T P E M e a n o f d e p e n d e n t v a r o f d e p e n d e n t v a r S u m o f s o u a r e d r e s i d F - s t a t i s t i o 1 . 8 2 9 8 9 7 0 . 6 7 2 7 6 0 0 . 4 3 8 1 8 6 2 6 1 . 6 8 7 8 3 / 2 5 R e s i d u a l P l o t o b s R E S I D U R L R C T U R L F I T T E D . . . - W I 1 9 6 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 ' I 4 4 4 4 4 I N D E P E N D E N T V A R I A B L E S Y E A R 3 1 9 6 0 3 6 0 . 1 9 6 1 8 6 1 . . . . F H A C H 8 C o a r s e G r a i n H a r v e s t e d A r e a - 0 . 2 5 2 8 0 - 0 . 0 8 1 6 3 0 . 0 5 6 5 0 0 . 0 6 5 3 7 0 . 0 7 4 4 0 0 . 0 4 8 3 0 0 . 1 1 6 2 5 0 . 2 7 1 8 8 0 . 0 8 9 2 7 0 . 0 1 8 0 0 0 . 0 9 9 2 8 0 . 0 3 6 9 8 - 0 . 1 4 4 0 2 - 0 . 0 8 9 9 4 - 0 . 0 7 3 3 9 - 0 . 0 5 6 2 8 - 0 . 1 7 3 9 2 - 0 . 2 2 7 0 1 - 0 . 0 3 7 3 2 0 . 0 2 4 9 4 0 . 0 1 4 0 1 - 0 . 1 2 9 4 2 - 0 . 0 9 0 4 2 0 . 1 9 0 4 1 0 . 2 5 0 5 5 0 . 7 9 5 1 9 0 . 9 4 2 3 3 1 . 1 3 2 3 6 1 . 1 9 6 8 3 1 . 2 6 2 0 0 1 . 2 9 1 7 0 1 . 4 1 5 7 2 1 . 6 2 6 8 3 1 . 5 0 1 2 1 1 . 4 8 6 1 5 1 . 6 2 3 8 9 1 . 6 1 8 2 5 1 . 5 0 0 0 6 1 . 5 9 6 9 9 ~ 1 . 6 5 5 9 2 1 . 6 9 6 9 4 2 . 0 7 4 7 7 2 . 0 8 5 5 5 2 . 3 5 7 7 7 2 . 4 6 4 8 4 2 . 5 8 9 9 5 2 . 5 9 5 9 8 2 . 8 1 4 2 8 3 . 1 3 3 4 6 3 . 2 8 8 4 8 ( 1 0 0 0 H A ) 1 . 0 4 7 9 9 1 . 0 2 3 9 6 1 . 0 7 5 8 6 1 . 1 3 1 4 6 1 . 1 8 7 6 0 1 . 2 “ “ 1 . 2 9 9 4 7 1 . 3 5 4 9 5 1 . 4 1 1 9 4 1 . 4 6 8 1 4 1 . 5 2 4 6 1 1 . 5 8 1 2 7 1 . 6 4 4 0 8 1 . 6 8 6 9 2 1 . 7 2 9 3 0 1 . 7 5 3 2 2 2 . 2 4 8 6 8 2 . 3 1 2 5 6 2 . 3 9 5 0 8 2 . 4 3 9 9 1 2 . 5 7 5 9 4 2 . 7 2 5 4 1 2 . 9 0 4 7 0 2 . 9 4 3 0 4 3 . 0 3 7 9 4 7 1 4 S M P L 1 9 6 0 - 1 9 8 4 2 5 O b s e r v a t i o n s ” W W . S e r i e s M e a n S . D . M a x i m u m M i n i m u m F Y C H 1 . 8 2 9 8 9 7 4 0 . 6 7 2 7 5 9 6 3 . 2 8 8 4 8 3 0 0 . 7 9 5 1 9 3 9 Y E A R 7 2 . 0 0 0 0 0 0 7 . 3 5 9 8 0 0 7 8 4 . 0 0 0 0 0 0 6 0 . 0 0 0 0 0 0 F H A C H 3 6 8 6 3 . 7 6 0 4 0 4 7 . 0 5 4 2 4 0 6 2 3 . 0 0 0 2 9 0 0 0 . 0 0 0 m m W I M H ‘ C o v a r i a n c e C o r r e l a t i o n . . . . . . l r m . . . m - F Y C H , F Y C H 0 . 4 3 4 5 0 1 2 1 . 0 0 0 0 0 0 0 F Y C H , Y E A R 4 . 5 2 7 3 7 6 1 0 . 9 5 2 4 6 5 8 F Y C H , F H A C H - 2 3 8 0 . 2 9 7 3 . - 0 . 9 1 0 6 7 0 1 Y E A R . Y E A R 5 2 . 0 0 0 0 0 0 1 . 0 0 0 0 0 0 0 Y E A R , F H A C H - 2 3 3 8 0 . 4 8 0 - O . 8 1 7 6 6 8 2 W . F H A C H 1 5 7 2 3 5 0 2 . 1 . o o o o o o o v 1 9 7 5 1 9 1 1 1 1 9 7 7 1 9 7 1 1 1 9 1 1 1 9 8 0 1 9 1 1 1 1 9 9 2 1 9 1 1 3 1 9 8 4 H I D C > C > C 3 1 0 1 1 “ % - ) C : 1 n ( x : 4 1 * r ' r 4 1 3 ( 5 2 l 1 fl l i ~ i - D C z : n 1 7 1 5 1 W ! ” “ 1 9 - 1 8 5 . 1 8 W 1 ’ 7 5 1 w . fl o fi e e e e . . . ‘ . . a s m 1 1 1 m 1 _ _ _ _ _ _ _ _ _ _ _ . 1 1 1 1 1 1 1 1 1 1 1 1 R E G I O N A L N O D E L S I M U L A T I O N 1 0 2 . 5 9 0 A 9 8 . 7 9 1 ‘ 9 4 . 9 9 3 1 9 1 . 1 9 5 1 8 7 . 3 9 7 : 8 3 . 5 9 8 : 7 9 . 8 0 0 7 8 . 0 0 2 7 2 . 2 0 3 8 8 . 4 0 5 7 5 7 6 7 ' 7 7 6 7 9 8 0 s i 3 1 8 3 3 5 1 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 — — - E S T I M A T E D F i g u r e K . 7 . a & b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - C h i n a f . 7 5 6 0 8 0 0 1 9 1 1 0 > C O : 1 1 7 1 r 1 1 3 1 2 . 7 6 1 9 1 9 ? ? 1 9 7 8 1 9 ? ? 1 9 8 8 . 8 1 1 9 w 8 3 1 9 1 9 8 2 7 9 7 9 7 7 7 9 7 9 9 0 9 1 9 9 9 9 — — A _ A . - - . . . A _ . . - A A A - 4 ‘ 1 9 8 4 l l l l l l l j i l l I 7 1 5 1 1 1 9 1 9 9 1 9 5 9 1 1 1 9 M 1 ° ‘ m m m m ' 1 s t ' 7 M 1 6 5 9 9 9 1 . . . ” s e e s e e e e " ' . " ° ‘ e e s s e m a n o - a ' d F I I R E G I O N A L N O D E L S I N U L A T I O N 1 0 2 . 5 9 0 / 9 9 . 7 9 1 9 4 . 9 9 9 9 1 . 1 9 5 9 7 . 9 9 7 9 9 . 9 9 9 7 9 . 9 0 0 : 7 9 . 0 0 2 7 2 . 2 0 9 - 9 9 . 4 0 9 : . ( ” 2 5 0 - 6 H F " ! O 5 . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - ' - - E S T I M A T E D F i g u r e K . 7 . a 6 b . T o t a l C o a r s e G r a i n C o n s u m p t i o n - C h i n a F ° 0 0 : n a ! - 0 2 1 1 ( K H F ‘ F H O Z : m 4 ! - 0 2 0 ( i 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 7 8 1 9 7 9 1 9 8 8 1 9 8 1 1 9 8 2 1 9 8 3 1 9 . 8 4 T T ' I ‘ V V ' " r ' 7 9 7 9 7 7 7 7 9 7 9 9 0 9 1 9 2 9 9 9 2 1 l m f ” “ 1 9 - 1 8 5 m 1 8 W 1 7 5 1 m 6 5 “ 1 6 m . 7 8 1 0 2 . 9 8 . 9 4 . 9 1 . 8 7 . 8 3 . 7 9 . . 0 0 2 7 2 . 6 3 . 7 1 5 O . . . . . - . . . . . - . . . A . . . . . 5 9 0 7 9 1 9 9 3 1 9 5 3 9 7 5 9 3 3 0 0 2 0 3 4 0 5 R E G I O N A L M O D E L S I M U L A T I O N E X - P O S T F O R E C A S T 1 9 7 5 ~ 1 9 8 4 A C T U A L 4 — - - E S T I M A T E D F i g u r e K . 7 . a 8 b . T o t a l C o a r a e G r a i n C o n s u m p t i o n - C h i n a 1 9 7 5 1 9 7 6 1 9 7 ? 1 9 ' 1 ' 8 1 9 7 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 Z H ' F ‘ F H O Z u aq o 1 — 0 9 EO 2 1 1 ( 7 9 7 9 7 7 7 9 7 9 9 0 9 1 9 2 9 9 9 4 7 1 6 m U ‘ 1 3 “ } 1 0 0 2 M 1 1 . “ . . . " . . . . . " o - q . . . . . . o s ' T ' " . . . fi . . “ b . . . . . . . o 1 . 4 T . . . . 0 . ' H I 1 . . . ” . . . . . E a “ I E “ P a m ' 1 ‘ 1 1 1 1 1 9 1 1 ; 0 1 N 1 1 1 9 0 1 5 4 m R E G I O N A L M O D E L S I M U L A T I O N ' 4 F 1 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - — E S T I M A T E D F i g u r e K . 8 . a 8 b . C o a r s e G r a i n N e t I m p o r t s - C h i n a 4 - - - - - — - - - - 1 4 0 . I . I . I . I . 3 . O . O . D . O . O . O . I . O . . . . - . . . . . . . ” . . . . - . . . . - # O - O . - - . O . I . . - . . . ” - 0 . . 4 - - - - - . O . I . O . O * . « I . . . . . . . ” . . - . 4 . I “ C h i n a P e r C a p i t a C o a r s e G r a i n N e t I m p o r t s 3 M P L ' 1 9 4 1 - 2 4 O b s e r v a t i o n s 1 9 8 4 L 9 l l D e p e n d e n t V a r i a b l e i s P C F N I 7 1 7 ( 1 0 0 0 - M T ) V A R I A B L E C O E F F I C I E N T 8 T D . E R R O R T - S T A T . 2 - T A I L S I B . C 8 1 P C F P R O F P C H W P C H D V 8 4 O N 0 . 0 0 6 0 3 5 0 4 9 5 . 1 1 8 2 3 - 0 . 0 7 6 6 5 6 0 - 0 . 0 0 1 8 5 1 7 0 . 0 0 1 4 9 5 1 - 0 . 0 0 4 8 0 2 9 0 . 0 0 1 9 8 3 6 1 2 1 . 3 1 3 9 9 0 . 0 2 7 8 0 7 3 0 . 0 0 0 8 0 5 7 0 . 0 0 0 5 6 4 1 0 . 0 0 0 7 5 4 3 v — 3 . 0 4 2 4 6 7 3 4 . 0 8 1 2 9 5 5 ' 2 . 7 5 6 6 8 1 5 - 2 . 2 9 8 2 9 8 7 2 . 6 5 0 4 8 4 7 ' 6 . 3 6 6 9 1 8 5 0 . 0 0 7 0 . 0 0 1 0 . 0 1 3 0 . 0 3 4 0 . 0 1 6 0 . 0 0 0 R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o f r e g r e s s i o n D u r b i n - W a t s o n s t a t L o g l i k e l i h o o d 0 . 7 8 9 2 4 0 0 . 7 3 0 6 9 6 0 . 0 0 0 6 5 8 1 . 9 7 8 9 5 5 1 4 5 . 2 1 2 0 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u e o f s q u a r e d r e s i d F - s t a t i s t i c T P E 0 . 0 0 0 4 7 7 0 . 0 0 1 2 6 9 7 . 8 0 0 - 0 6 1 3 . 4 9 1 0 7 7 / 2 4 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 9 4 4 t 0 0 1 9 6 1 1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 8 1 9 7 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 6 . 0 0 - 0 6 - 0 . 0 0 0 4 1 0 . 0 0 0 3 0 - 0 . 0 0 0 3 8 - 0 . 0 0 0 4 0 - 0 . 0 0 0 1 9 0 . 0 0 0 4 4 - 0 . 0 0 0 2 4 0 . 0 0 0 2 5 0 . 0 0 0 5 6 - 5 . 0 D - 0 6 0 . 0 0 0 5 2 0 . 0 0 0 6 0 - 0 . 0 0 0 2 4 - 0 . 0 0 0 8 8 - 8 . 6 D - 0 5 - 2 . 6 D - 0 5 0 . 0 0 1 6 6 0 . 0 0 0 1 2 - 0 . 0 0 0 7 9 - 0 . 0 0 0 9 6 0 . 0 0 0 7 0 - 0 . 0 0 0 5 6 0 . 0 0 0 0 0 0 . 0 0 1 8 0 0 . 0 0 0 4 8 0 . 0 0 1 0 0 5 . 7 D - 0 5 - 0 . 0 0 0 2 4 - 7 . 9 D - 0 5 0 . 0 0 0 1 1 - 4 . 5 D - 0 5 0 . 0 0 0 0 0 - 3 . 7 D - 0 5 4 . 5 D ° 0 5 0 . 0 0 0 7 8 0 . 0 0 2 0 3 0 . 0 0 0 1 9 - 0 . 0 0 0 3 8 - 0 . 0 0 0 2 4 - 6 . 9 D - 0 5 0 . 0 0 3 1 2 0 . 0 0 1 9 8 0 . 0 0 0 6 6 0 . 0 0 1 1 2 0 . 0 0 2 5 6 - 4 . 9 D - 0 5 ' 0 . 0 0 3 3 3 0 . 0 0 1 7 9 0 . 0 0 0 8 9 0 . 0 0 0 7 0 0 . 0 0 0 4 4 0 . 0 0 0 1 6 0 . 0 0 0 1 1 - 0 . 0 0 0 3 3 0 . 0 0 0 1 9 - - 0 . 0 0 0 2 5 - 0 . 0 0 0 9 0 5 . 0 0 - 0 5 0 . 0 0 0 2 9 0 . 0 0 1 4 3 0 . 0 0 0 4 2 0 . 0 0 0 5 0 - 0 . 0 0 0 1 : - 4 . 4 9 - 0 s 0 . 0 0 1 4 9 0 . 0 0 1 9 9 0 . 0 0 1 4 : 0 . 0 0 2 0 9 0 . 0 0 1 9 9 0 . 0 0 0 5 1 - o . 0 0 3 3 3 I N D E P E N D E N T V A R I A B L E S P C F P R O 8 C o a r s e G r a i n P r o d u c t i o n P e r C a p i t a F P R O C H / P O P C H 5 1 8 R e a l I n c o m e P e r C a p i t a A f t e r 1 9 7 7 ( G D P C H / C P I C H / P O P C H ) 1 D V 7 8 0 N W h e r e : D V 7 8 0 N a l I £ ( Y E A R . G E . 7 8 ) 0 O t h e r w i s e W P C H = R e a l C h i n e s e W h e a t P r i c e ( S I M T ) W P ~ X R C H I C P I C H F P C H = R e a l C h i n e s e C o a r s e G r a i n P r i c e F P O X R C H / C P I C H D V 4 0 0 N 8 1 I f < Y E A R . G E . 8 4 ) 0 O t h e r w i s e ( 1 0 0 0 M T ) ( S / M T ) 7 1 8 S M P L 1 9 6 1 1 1 9 8 4 2 4 O b s e r v a t i o n s a . . - - . S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C F N I 0 . 0 0 0 4 7 7 4 0 . 0 0 1 2 6 8 9 0 . 0 0 3 1 1 5 5 - 0 . 0 0 3 3 3 3 3 8 1 1 . 1 5 4 D - 0 6 1 . 8 5 3 D - 0 6 4 . 8 3 1 D - 0 6 0 . 0 0 0 0 0 0 0 P C F P R O 0 . 0 7 6 2 4 0 4 0 . 0 0 8 0 2 0 7 0 . 0 9 2 1 4 1 1 0 . 0 5 6 5 3 8 1 F P C H 1 . 9 4 9 9 6 5 0 0 . 4 8 9 8 6 9 8 2 . 9 2 6 1 2 8 0 1 . 2 7 3 1 4 7 0 W P C H 2 . 3 5 8 4 5 6 4 0 . 7 0 2 7 8 8 7 4 . 0 4 5 0 3 7 0 1 . 5 0 9 3 7 5 0 D V 8 4 O N 0 . 0 4 1 6 6 6 7 0 . 2 0 4 1 2 4 1 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 8 . l I C o v a r i a n c e C o r r e l a t i o n P C F N I , P C F N I 1 . 5 4 3 D - 0 6 1 . 0 0 0 0 0 0 0 P C F N I , 9 1 2 . 2 3 4 0 - 1 0 0 . 0 9 9 1 7 8 2 P C F N I , P C F P R O - 2 . 3 1 1 D - 0 6 - 0 . 2 3 6 8 9 9 9 P C F N I , F P C H - 1 . 9 6 5 D - 0 5 - 0 . 0 3 2 9 8 5 9 P C F N I , W P C H 8 . 7 6 3 D - 0 5 0 . 1 0 2 5 4 2 6 P C F N I , D V 8 4 O N - 0 . 0 0 0 1 5 8 8 - 0 . 6 3 9 6 8 9 2 5 1 , 5 1 3 . 2 8 9 D - 1 2 1 . 0 0 0 0 0 0 0 9 1 , P C F P R O 1 . 0 8 6 D - 0 8 0 . 7 6 2 5 3 8 9 5 1 , F P C H 3 . 4 1 1 D - 0 7 0 . 3 9 2 2 3 6 3 5 1 , W P C H 5 . 3 1 6 D - 0 7 0 . 4 2 6 0 3 1 3 9 1 , D V 8 4 O N 1 . 5 3 2 0 - 0 7 0 . 4 2 2 7 3 3 3 P C F P R O , P C F P R O 6 . 1 6 5 0 - 0 5 1 . 0 0 0 0 0 0 0 P C F P R O , F P C H 0 . 0 0 1 5 3 4 9 0 . 4 0 7 6 2 9 3 P C F P R O , W P C H 0 . 0 0 2 0 4 8 9 0 . 3 7 9 2 8 2 7 P C F P R O , D V 8 4 O N 0 . 0 0 0 6 6 2 5 0 . 4 2 2 2 5 9 9 F P C H , F P C H 0 . 2 2 9 9 7 3 5 1 . 0 0 0 0 0 0 0 F P C H , W P C H 0 . 3 0 7 9 0 5 8 0 . 9 3 3 2 4 5 3 F P C H , D V 8 4 O N 0 . 0 2 1 9 4 4 9 0 . 2 2 9 0 0 3 1 W P C H , W P C H 0 . 4 7 3 3 3 2 3 1 . 0 0 0 0 0 0 0 W P C H , D V 8 4 O N 0 . 0 3 2 4 8 6 8 0 . 2 3 6 3 0 3 9 D V 8 4 O N , D V 8 4 O N 0 . 0 3 9 9 3 0 6 1 . 0 0 0 0 0 0 0 ! 1 0 1 4 2 ! r i C z 1 n 1 X t H F ‘ F D C 9 ' fi v H u O 0 Z 3 O O fi v r v w v 1 u v v v u v v v 3 1 4 C 1 ‘ Q 4 Q a 0 2 1 0 / \ \ \ / \ J A J I L L L L I A 7 1 9 1 1 " . I “ . 5 . . ' . . 0 0 ° F ' 3 . . . : ‘ 5 ; 7 0 3 3 « r 6 0 3 0 ' . . . , . . 6 6 6 8 7 O 7 2 7 4 7 6 7 8 8 9 8 2 8 4 R E G I O N A L M O D E L S I M U L A T I O N . 3 4 9 . 5 1 1 . 1 7 4 . 5 3 5 . 4 9 3 . 1 5 0 . 5 2 2 . 4 8 5 . 1 4 7 . 3 0 9 5 L 7 9 7 9 7 7 7 9 7 9 9 0 9 1 9 9 9 9 9 4 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e K . 9 . a 6 b . S o y b e a n P r o d u c t i o n - C h i n a 5 5 ' 5 9 7 9 7 2 7 4 7 b 7 3 s h ' 9 2 3 4 3 4 h “ t r a O h O a c Q z ' N m Q l fl Q " " " i " Q f fi ' b Q Q l Q l fl t m 0 0 0 ' " m l fl i i b ' d f i fi i m 7 2 0 9 H 3 5 % O 3 . 4 7 5 W + 7 e a a 1 ’ 6 5 W . R E G I O N A L M O D E L S I M U L A T I O N . 3 2 3 . 1 5 8 . 9 3 3 . 3 1 1 . 6 3 9 . 4 3 3 . 2 9 4 . 1 2 2 * . 9 4 9 Z . 7 7 7 : ' V t r r E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D F i g u r e K . 1 0 . a & b . S o y b e a n H a r v e s t e d A r e a - C h i n a . a I I - . . O . o I I . u u u u u u a u . O 3 . . u u D u . g u . I * . I . g . I . u u u u * g u 0 . . g u u 0 . 3 I 7 2 1 C h i n a S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H e c t a r e s ) S H F L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S H A C H S T D . E R R O R T - S T A T . 2 - T A I L S I G . 3 3 . 5 : 0 . 0 0 0 0 . 0 1 2 ' 0 . 0 0 0 0 . 0 0 0 V A R I A B L E C O E F F I C I E N T 9 6 3 . 0 4 0 0 8 0 . 0 9 9 6 6 2 1 2 3 0 . 5 4 9 6 8 7 2 . 6 3 4 3 4 1 6 . 7 8 3 6 6 9 0 2 . 8 4 1 8 8 3 7 4 . 7 6 4 7 5 4 4 - 4 . 7 8 6 8 4 4 0 C 6 5 3 2 . 9 4 5 2 S H A C H ( - 1 ) 0 . 2 8 3 2 2 8 1 D V B I O N 1 0 9 8 . 5 1 2 6 F R C H 4 ( - 1 ) - 3 4 7 . 6 8 9 2 6 7 6 8 6 . 2 0 0 6 0 5 . 0 4 0 6 8 6 1 9 1 5 . 4 0 . 8 7 6 0 8 0 0 . 8 5 2 8 4 5 2 3 2 . 0 9 8 5 M e a n o f d e p e n d e n t v a r S . D . o f d e p e n d e n t v a r S u m o f s q u a r e d r e s i d 1 . 5 6 2 2 9 6 F - s t a t i s t i c 3 7 . 7 0 5 1 3 - 1 3 5 . 0 9 0 6 T P E 4 / 2 0 R - s q u a r e d A d j u s t e d R - s q u a r e d S . E . o 7 r e g r e s s i o n D u r b i n - W a t s o n s t a t ‘ L o g l i k e l i h o o d R e s i d u a l * 7 * 2 1 ‘ 1 1 : * I N D E P E N D E N T V A R I A B L E S P l o t o b s 1 9 6 5 1 9 6 6 1 9 6 7 1 9 6 8 1 9 6 9 1 9 7 0 1 9 7 1 1 9 7 2 1 9 7 3 1 9 7 4 1 9 7 5 1 9 7 6 1 9 7 7 1 9 7 8 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E S I D U A L - 1 6 4 . 0 8 9 1 2 9 . 0 4 0 3 1 2 . 5 2 0 9 5 . 2 1 2 6 1 6 9 . 6 7 9 - 7 6 . 9 3 5 6 - 6 0 . 2 1 3 1 - 3 4 7 . 4 0 6 - 7 9 . 1 4 1 5 1 7 0 . 7 3 7 3 0 . 0 2 6 6 - 4 3 4 . 1 7 6 - 2 2 5 . 0 7 2 5 9 . 0 1 8 7 1 8 3 . 6 2 1 2 3 7 . 1 8 0 1 0 8 . 8 9 2 1 6 4 . 9 9 6 - 3 6 8 . 3 0 2 9 4 . 4 1 3 4 = S o y b e a n H a r v e s t e d A r e a ( 1 0 0 0 H A ) C o a r a e G r a i n R e v e n u e P e r H e c t a r e A C T U A L 8 5 9 3 . 0 0 8 4 2 5 . 0 0 8 5 0 3 . 0 0 8 3 6 3 . 0 0 8 3 2 9 . 0 0 7 9 8 5 . 0 0 7 7 9 1 . 0 0 7 5 8 3 . 0 0 7 4 0 8 . 0 0 7 2 6 1 . 0 0 6 9 9 9 . 0 0 6 6 9 1 . 0 0 6 8 5 0 . 0 0 7 1 4 4 . 0 0 7 2 4 7 . 0 0 7 2 2 6 . 0 0 8 0 2 4 . 0 0 8 4 1 9 . 0 0 7 5 9 7 . 0 0 7 2 8 6 . 0 0 F I T T E D 8 7 5 7 . 0 9 8 2 9 5 . 9 6 8 1 9 0 . 4 8 8 2 6 7 . 7 9 8 1 5 9 . 3 2 8 0 6 1 . 9 4 7 8 5 1 . 2 1 7 9 3 0 . 4 1 ' 7 4 8 7 . 1 4 7 0 9 0 . 2 6 6 9 6 8 . 9 7 7 1 2 5 . 1 8 7 0 7 5 . 0 7 7 0 8 4 . 9 8 7 0 6 3 . 3 8 6 9 8 8 . 8 2 7 9 1 5 . 1 1 8 2 5 4 . 0 0 7 9 6 5 . 3 0 7 1 9 1 . 5 9 ( F Y C H ( - 3 ) * F Y C H ( - 2 ) + F Y C H ( - 1 ) * F Y C H ) / 4 I F P 9 X R C H / C P I C H S H A C H F R C H 4 = D V B I O N = 1 I f ( Y E A R 0 O t h e r w i s e . G E . 8 1 ) 7 2 2 S M P L 1 9 6 5 - 1 9 8 4 2 0 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m S H A C H 7 6 8 6 . 2 0 0 0 6 0 5 . 0 4 0 6 3 8 5 9 3 . 0 0 0 0 6 6 9 1 . 0 0 0 0 S H A C H ( - 1 ) 7 8 2 2 . 3 5 0 0 7 8 8 . 7 3 3 5 8 1 0 0 0 9 . 0 0 0 6 6 9 1 . 0 0 0 0 D V 8 1 0 N 0 . 2 0 0 0 0 0 0 0 . 4 1 0 3 9 1 3 1 . 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 F R C H 4 ( - 1 ) 3 . 6 8 7 0 7 6 8 1 . 5 2 8 7 7 5 1 7 . 4 5 3 6 5 3 0 1 . 7 5 6 4 1 4 0 C o v a r i a n c e C o r r e l a t i o n S H A C H , S H A C H 3 4 7 7 7 0 . 4 6 1 . 0 0 0 0 0 0 0 S H A C H , S H A C H ( - 1 ) 3 7 4 5 7 3 . 9 8 0 . 8 2 6 2 2 6 5 S H A C H , D V 8 1 0 N 2 9 . 0 6 0 0 0 0 0 . 1 2 3 1 9 3 9 S H A C H , F R C H 4 ( - 1 ) — 4 7 9 . 3 4 1 9 2 - 0 . 5 4 5 4 9 8 6 S H A C H ( - 1 ) , S H A C H ( - 1 ) 5 9 0 9 9 5 . 6 3 1 . 0 0 0 0 0 0 0 S H A C H ( - 1 ) , D V 8 1 0 N - 1 . 1 7 0 0 0 0 0 - 0 . 0 0 3 8 0 4 8 S H A C H ( - 1 ) , F R C H 4 ( - 1 ) - 5 9 9 . 5 9 4 8 0 - 0 . 5 2 3 4 3 2 1 D V 8 1 0 N , D V 8 1 0 N 0 . 1 6 0 0 0 0 0 1 . 0 0 0 0 0 0 0 D V 8 1 0 N , F R C H 4 ( - 1 ) 0 . 4 2 0 9 8 1 2 0 . 7 0 6 3 1 3 2 F R C H 4 ( - 1 ) , F R C H 4 ( - 1 ) 2 . 2 2 0 2 9 5 7 1 . 0 0 0 0 0 0 0 7 2 3 C h i n a S o y b e a n Y i e l d S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S Y C H ( m e t r i c T o n e p e r H e c t a r e ) V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 8 1 8 . C - 4 . 7 0 4 4 9 8 2 1 . 0 6 0 8 5 9 7 - 4 . 4 3 4 6 0 9 2 0 . 0 0 0 L O G T 1 . 3 3 3 7 4 4 4 0 . 2 4 6 6 2 6 5 5 . 4 0 7 9 5 2 1 0 . 0 0 0 - m m m s m I n . . . " ” n u n s - l u g s - R - s q u a r e d 0 . 6 0 6 1 8 5 M e a n o f d e p e n d e n t v a r 1 . 0 3 1 5 3 2 A d j u s t e d R - s q u a r e d 0 . 5 8 5 4 5 7 S . D . o 9 d e p e n d e n t v a r 0 . 1 4 4 3 1 5 S . E . o f r e g r e s s i o n 0 . 0 9 2 9 1 7 S u m o f s q u a r e d r e s i d 0 . 1 6 4 0 3 8 D u r b i n - N a t s o n s t a t 1 . 9 5 5 3 8 9 F - s t a t i s t i c 2 9 . 2 4 5 9 5 L o g l i k e l i h o o d 2 1 . 1 5 0 1 6 I R a m m s u n u u - u s - u c u m - n u n s R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 - 1 * 1 1 1 1 9 6 4 - 0 . 0 5 6 1 0 0 . 7 8 6 2 9 0 . 8 4 2 3 9 1 * 1 1 1 1 1 9 6 5 - 0 . 1 4 8 5 3 0 . 7 1 4 5 4 0 . 8 6 3 0 7 1 1 1 1 * 1 1 9 6 6 0 . 0 9 8 1 7 0 . 9 8 1 6 0 0 . 8 8 3 4 3 1 1 1 * 1 1 1 9 6 7 0 . 0 6 9 1 1 0 . 9 7 2 6 0 0 . 9 0 3 4 9 1 1 1 4 1 1 1 9 6 8 0 . 0 3 8 1 3 0 . 9 6 1 3 8 0 . 9 2 3 2 5 1 1 4 1 1 1 1 9 6 9 - 0 . 0 2 6 6 4 0 . 9 1 6 0 8 0 . 9 4 2 7 2 1 1 1 1 4 1 1 9 7 0 0 . 1 2 8 8 9 1 . 0 9 0 8 0 0 . 9 6 1 9 1 1 1 1 1 * 1 1 9 7 1 0 . 1 2 4 2 9 1 . 1 0 5 1 2 0 . 9 8 0 8 3 1 4 1 1 1 1 1 9 7 2 - 0 . 1 4 8 8 9 0 . 8 5 0 5 9 0 . 9 9 9 4 8 1 1 1 1 4 1 1 9 7 3 0 . 1 1 1 9 8 1 . 1 2 9 8 6 1 . 0 1 7 8 8 1 1 * 1 1 1 1 9 7 4 - 0 . 0 0 7 2 4 1 . 0 2 8 7 8 1 . 0 3 6 0 2 1 1 4 1 1 1 1 9 7 5 - 0 . 0 1 9 4 9 1 . 0 3 4 4 3 . 1 . 0 5 3 9 3 1 1 * 1 1 1 1 9 7 6 - 0 . 0 7 9 2 1 0 . 9 9 2 3 8 1 . 0 7 1 5 9 1 1 4 1 1 1 1 9 7 7 - 0 . 0 2 9 1 7 1 . 0 5 9 8 5 1 . 0 8 9 0 3 1 1 4 1 1 1 1 9 7 8 - 0 . 0 4 7 3 1 1 . 0 5 8 9 3 1 . 1 0 6 2 4 1 4 1 1 1 1 9 7 9 9 0 . 0 9 3 8 4 1 . 0 2 9 3 9 1 . 1 2 3 2 3 1 1 * 1 1 1 1 9 8 0 - 0 . 0 4 1 2 0 1 . 0 9 8 8 1 1 . 1 4 0 0 1 1 1 1 * 1 1 1 9 8 1 0 . 0 0 5 5 7 1 . 1 6 2 1 4 1 . 1 5 6 5 7 1 * 1 1 1 1 1 9 8 2 - 0 . 1 0 0 3 6 1 . 0 7 2 5 7 1 . 1 7 2 9 4 1 1 1 1 * 1 1 9 8 3 0 . 0 9 5 6 1 1 . 2 8 4 7 2 1 . 1 8 9 1 0 1 1 1 1 * 1 1 9 8 4 0 . 1 2 6 2 4 1 . 3 3 1 3 2 1 . 2 0 5 0 8 I N D E P E N D E N T V A R I A B L E S L O G T = 1 n ( Y E A R ) 7 2 4 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m - 3 8 . 8 2 8 S Y C H 1 . 0 3 1 5 3 2 3 0 . 1 4 4 3 1 4 9 1 . 3 3 1 3 2 0 0 0 . 7 1 4 5 3 5 1 L O G T 4 . 3 0 0 6 9 7 0 0 . 0 8 4 2 4 4 4 4 . 4 3 0 8 1 7 0 4 . 1 5 8 8 8 3 0 C o v a r i a n c e C o r r e l a t i o n S Y C H , S Y C H 0 . 0 1 9 8 3 5 0 1 . 0 0 0 0 0 0 0 S Y C H , L O G T 0 . 0 0 9 0 1 5 0 0 . 7 7 8 5 7 8 5 L O G T , L O G T 0 . 0 0 6 7 5 9 2 1 . 0 0 0 0 0 0 0 P > C D C O b 1 9 9 ” 3 7 m 5 U ‘ . “ m 4 1 1 5 1 m I w m fi h i f . . ............. .. ' " - - . . - . . . . . . . . - Z H ' F Q ‘ I Q H G O Z : m G O MN ‘ 4 L O 1 O a G G ) U - 0 2 1 1 ( F i g u r e K . 1 1 . a & b . S C o h y i m n e a a l E q u i v a l e n t C o n s u m p t i o n - 7 2 5 m o ” " 6 5 . . 1 9 ? 5 1 9 7 8 1 9 ? ? 1 9 ? 8 1 9 7 9 1 9 8 8 1 9 8 1 1 9 8 8 1 9 8 8 1 9 8 4 C “ a _ — ‘ - A A n n - A A . . . m : z c > e — 1 m : z R E G I O N A L M O D E L S I M U L A T I O N J 8 4 m U 7 3 7 8 7 7 7 5 7 9 8 0 a ? 8 2 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D O 0 0 6 0 . E . 9 . F 1 6 2 0 F 1 3 . 0 I 5 8 5 0 C 0 5 5 1 C - - d t n I 1 1 3 4 3 0 0 0 0 E . 3 2 1 9 9 . . . 1 N 3 9 4 4 9 8 8 0 T 6 2 0 7 . 1 6 0 1 5 2 5 3 3 7 5 7 6 5 1 T 0 0 4 6 D . . 7 . . 0 1 8 0 8 1 . 7 4 3 3 5 M S S F S 6 0 0 7 3 a l P l o t 9 3 0 V t n a o i A P P P Y r e f - k R C C C E e d H e I 8 D R A d r a l A 9 M G R R e t i B 8 S D - g s h R A S D L - d . u o o u o . s J r E g s i u l L E o e n o e u s d s a s s r i t i d o e a u e 0 U P s r o o R u ‘ u u t u n u u u u o a u u u u u u u u ‘ P P C C S O P M R S O U = 8 S S P a N ( o P e n P C R y d r R P n O R O e C C S C O a H a u H C l / p n * H P i f . * P . O t l 4 r P a o 3 4 o C w 8 ) d S H e / u u r P + c p O n d O t p P S P i l C e P o y H e R E R R O R 6 7 2 D e . u - 1 o C 3 6 - a 7 m s D o 9 2 8 0 n 7 t . 1 7 5 5 o a b 6 s 4 P M f H e e * o o f t r . C a T . . . . e e r U - - 4 0 4 8 n n e A 0 S 4 9 4 0 d o d L 5 7 1 1 1 o o a c D D - - e e u i I 7 f f i R - d o q t S . s s E 7 T A T . a - T 9 8 7 9 e e 4 2 8 0 n n r 5 8 6 5 t t e 5 0 7 1 s 7 6 7 6 v v i A 0 C . T 0 a a d U 0 r r A 8 L 2 2 A 0 0 0 0 0 0 2 2 I . . . . . . 4 . F 0 L 0 3 1 0 0 0 0 . 0 1 6 8 0 0 7 8 I . T 0 C t s 6 a t p o + i n t s ( 1 R a e 0 P o l 4 ( 1 0 e 0 R d 0 O . C M H T u ) t 0 P T ~ 0 e . ) a 4 M n 4 I 8 8 - 0 E 8 B . 6 6 0 0 D 3 0 5 6 8 0 . R a p e s e e d S 0 7 3 9 6 0 D 3 T 0 + 7 2 6 C h i n a P e r C a p i t a S o y s e a l E q u i v a l e n t C o n s u m p t i o n ” ( 1 0 0 0 M T ) 8 0 1 1 9 6 6 - 1 9 6 4 2 1 O b s e r v a t i o n s L S l l D e o e n d e n t V a r i a b l e i s D C S M E C 1 9 6 5 ' 0 . 0 0 0 3 5 0 . 0 0 6 1 3 0 . 0 0 6 4 8 1 9 6 6 0 . 0 0 0 1 5 0 . 0 0 8 2 2 0 . 0 0 8 0 7 1 9 6 7 ' 0 . 0 0 0 1 2 0 . 0 0 8 0 1 0 . 0 0 8 1 4 1 9 6 8 - 0 . 0 0 0 3 5 0 . 0 0 7 6 5 0 . 0 0 7 9 9 1 9 6 9 - 5 . 7 D - 0 5 0 . 0 0 7 1 6 0 . 0 0 7 2 2 1 9 7 0 0 . 0 0 0 1 8 0 . 0 0 7 9 0 0 . 0 0 7 7 2 1 9 7 1 0 . 0 0 0 1 9 0 . 0 0 7 6 9 0 . 0 0 7 5 0 1 9 7 2 9 . 7 0 - 0 5 0 . 0 0 5 8 3 0 . 0 0 5 7 3 1 9 7 3 0 . 0 0 0 7 6 0 . 0 0 7 7 1 0 . 0 0 6 9 5 1 9 7 4 ' 6 . 5 D - 0 5 0 . 0 0 6 2 8 0 . 0 0 6 3 4 1 9 7 6 ' 0 . 0 0 0 2 4 0 . 0 0 5 7 2 0 . 0 0 5 9 6 1 9 7 7 ' 0 . 0 0 0 2 0 0 . 0 0 6 1 3 0 . 0 0 6 3 3 1 9 7 8 - 6 . 5 D - 0 5 0 . 0 0 6 2 0 0 . 0 0 6 2 7 1 9 7 9 0 . 0 0 0 5 0 0 . 0 0 6 5 0 0 . 0 0 6 0 1 1 9 8 0 0 . 0 0 0 3 0 0 . 0 0 6 5 4 0 . 0 0 6 2 4 1 9 8 1 0 . 0 0 0 4 9 0 . 0 0 7 4 7 0 . 0 0 6 9 7 1 9 8 2 ' 0 . 0 0 0 2 7 0 . 0 0 6 2 7 0 . 0 0 6 5 4 1 9 8 3 ' 0 . 0 0 0 5 1 0 . 0 0 6 3 3 0 . 0 0 6 8 4 1 9 8 4 ' 0 . 0 0 0 3 3 0 . 0 0 6 0 2 0 . 0 0 6 3 5 I N D E P E N D E N T V A R I A B L E S P C R G D P = R e a l I n c o m e P e r C a p i t a G D P C H / C P I C H / P O P C H ’ S o y n e a l E q u i v a l e n t C o n s u m p t i o n = ( S P R O C H - S N E C H ) * . 7 9 5 - S M N E C H 7 2 7 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C S M E C 0 . 0 0 6 8 6 1 0 0 . 0 0 0 8 6 4 4 0 . 0 0 8 8 3 0 0 0 . 0 0 5 7 8 0 0 P C S P R O 0 . 0 0 9 0 5 0 8 0 . 0 0 1 2 7 6 5 0 . 0 1 1 1 6 3 1 0 . 0 0 7 0 8 4 9 P C O M S U 0 . 0 0 3 6 5 1 7 0 . 0 0 8 4 3 8 9 0 . 0 0 8 5 7 1 6 0 . 0 0 0 5 0 5 9 D C R G D P 3 . 0 5 6 D - 0 6 7 . 7 3 5 D - 0 7 4 . 8 3 1 D - 0 6 1 . 8 6 3 D - 0 6 Y E A R 7 4 . 0 0 0 0 0 0 6 . 2 0 4 8 3 6 8 8 4 . 0 0 0 0 0 0 6 4 . 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n P C S M E C , P C S M E C 7 . 1 1 6 D - 0 7 1 . 0 0 0 0 0 0 0 P C S M E C , P C S P R O 9 . 3 1 8 0 - 0 7 0 . 8 8 6 7 6 1 3 P C S M E C , P C O M S U - 1 . 0 4 1 D - 0 6 - 0 . 5 1 9 7 8 3 2 D C S M E C , P C R B D P - 3 . 2 7 6 D - 1 0 - 0 . 5 1 4 5 0 5 4 P C S M E C , Y E R R - 0 . 0 0 2 9 9 2 9 - 0 . 5 8 5 9 1 6 2 P C S P R O , D C S P R O 1 . 5 5 2 D - 0 6 1 . 0 0 0 0 0 0 0 P C S P R O , P C O M S U - 1 . 0 6 4 D - 0 6 - 0 . 3 5 9 6 7 7 9 P C S P R O , P C R B D P - 3 . 3 6 4 D - 1 0 - 0 . 3 5 7 7 5 1 E P C S P R O , Y E A R - 0 . 0 0 3 7 5 6 6 - 0 . 4 9 8 0 1 9 1 P C O M S U , P C O M S U 5 . 6 3 7 D - 0 6 1 . 0 0 0 0 0 0 0 P C O M S U , P C R B D P 1 . 7 0 6 D - 0 9 0 . 9 5 8 0 9 8 7 D C O M S U , Y E A R 0 . 0 1 3 4 9 1 1 0 . 9 3 8 3 9 7 2 P C R G D P , P C R G D P 5 . 6 9 8 D - 1 3 1 . 0 0 0 0 0 0 0 P C R G D P , Y E A R 4 . 3 9 0 D - 0 6 0 . 9 6 0 4 6 6 2 Y E A R , Y E A R 3 6 . 6 6 6 6 6 7 1 . 0 0 0 0 0 0 0 . s . . a 9 a r O D C O x l fl i ' H J C Z S W 3 1 F 7 1 P - I O P D C Z 3 ‘ 8 ¢ a ‘ 8 ‘ 8 1 - 8 ‘ ‘ 8 fi 8 ‘ o ‘ 8 0 9 ' 9 - e z a m 7 7 7 8 7 8 8 0 8 1 8 2 4 L 4 4 L 1 1 1 1 1 1 1 1 1 1 1 1 7 2 8 . . . - . ' l 9 1 : 1 8 8 1 1 1 3 3 1 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 ? 8 . . . . o e e ' e e e q . . . “ . . . . . . R E G I O N A L M O D E L S I M U L A T I O N ' 1 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 1 4 7 8 7 8 F i g u r e K . 1 2 . a 6 b . 0 u s E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D S o y o i l E q u i v a l e n t C o n s u m p t i o n 8 4 - C h i n a 7 2 9 C h i n a P e r C a p i t a S o y o i l E q u i v a l e n t C o n s u m p t i o n ' ( 1 0 0 0 M T ) 8 M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s L S / / D e o e n d e n t V a r i a b l e i s P C S O E C V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 8 . C 0 . 0 0 0 4 0 6 3 0 . 0 0 0 2 6 2 1 1 . 5 5 0 1 8 2 8 0 . 1 4 0 D C R B D P 9 1 . 8 0 1 5 2 8 8 2 . 8 6 6 2 0 1 1 . 1 0 7 8 2 8 4 0 . 2 8 3 P C S P R O 0 . 1 0 8 7 3 5 8 0 . 0 1 6 5 4 6 6 6 . 5 7 1 4 8 5 6 0 . 0 0 0 D C O O S U - 0 . 0 5 8 5 9 2 1 0 . 0 5 3 3 4 4 6 - 1 . 0 9 8 3 6 8 4 0 . 2 8 7 R - s o u a r e d 0 . 7 3 9 7 9 4 M e a n o f o e o e n d e n t v a r 0 . 0 0 1 5 7 0 A d j u s t e d R - s q u a r e d 0 . 6 9 3 8 7 5 8 . D . o f d e p e n d e n t v a r 0 . 0 0 0 1 5 6 S . E . o f r e g r e s s i o n 8 . 6 4 D - 0 5 S u m o f s q u a r e d r e s i d 1 . 2 7 D - 0 7 D u r o i n - H a t s o n s t a t 1 . 4 2 1 1 7 1 F - s t a t i s t i c 1 6 . 1 1 0 9 1 L o g l i k e l i h o o d 1 6 8 . 9 0 8 6 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L E I T T a fl 1 1 1 e 1 1 1 9 6 4 4 . 0 D - 0 5 0 . 0 0 1 8 1 0 . 0 0 1 7 7 1 4 1 1 1 1 1 9 6 5 - 0 . 0 0 0 1 6 0 . 0 0 1 3 4 0 . 0 0 1 5 0 1 1 4 1 1 1 1 9 6 6 - 8 . 3 D - 0 6 0 . 0 0 1 8 0 0 . 0 0 1 8 1 1 1 8 1 1 1 1 9 6 7 - 5 . 4 D - 0 6 0 . 0 0 1 7 6 0 . 0 0 1 7 6 1 1 8 1 1 1 1 9 6 8 - 7 . 1 D - 0 6 0 . 0 0 1 6 8 0 . 0 0 1 6 9 1 1 * 1 1 1 1 9 6 9 - 1 . 4 D - 0 5 0 . 0 0 1 5 7 0 . 0 0 1 5 9 1 1 1 8 1 1 1 9 7 0 9 . 8 D - 0 6 0 . 0 0 1 7 4 0 . 0 0 1 7 3 1 1 1 8 1 1 1 9 7 1 8 . 4 D - 0 6 0 . 0 0 1 7 0 0 . 0 0 1 7 0 1 1 8 1 1 1 1 9 7 2 - 2 . 2 D - 0 5 0 . 0 0 1 3 5 0 . 0 0 1 3 7 1 1 8 1 1 1 1 9 7 4 - 7 . 7 D - 0 5 0 . 0 0 1 3 9 0 . 0 0 1 4 7 1 1 1 1 1 1 1 1 9 7 7 0 . 0 0 0 1 1 0 . 0 0 1 5 5 0 . 0 0 1 4 4 1 1 1 O 1 1 1 9 7 8 1 . 9 0 . 0 5 0 . 0 0 1 4 9 0 . 0 0 1 4 7 1 1 1 1 8 » 1 1 9 7 9 9 . 1 D - 0 5 0 . 0 0 1 5 5 0 . 0 0 1 4 6 1 1 1 1 8 1 1 9 8 1 0 . 0 0 0 1 5 0 . 0 0 1 7 3 0 . 0 0 1 5 7 1 1 1 8 1 1 1 9 8 2 9 . 1 D ~ 0 6 0 . 0 0 1 5 2 0 . 0 0 1 5 1 1 1 8 1 1 1 1 9 8 3 - 7 . 5 D - 0 5 0 . 0 0 1 5 4 0 . 0 0 1 6 2 1 8 1 1 1 1 1 9 8 4 - 0 . 0 0 0 1 5 0 . 0 0 1 4 8 0 . 0 0 1 6 3 M I N D E P E N D E N T V A R I A B L E S P C R G D P 8 R e a l I n c o m e P e r C a p i t a G D P C H / C P I C H / P O P C H P C S P R O = S o y m e a l P r o d u c t i o n P e r C a p i t a ( 1 0 0 0 M T ) S P R O C H / P O P C H P C O O S U = P e r C a p i t a S u p p l y o f C o t t o n s e e d . P e a n u t . R a p e s e e d a n d S u n f l o w e r S e e d O i l s ( 1 0 0 0 M T ) ( C P R O C H ~ . 1 1 5 + P P R O C H - . 1 5 9 + R P R O C H * . 3 4 6 + N P R O C H * . 4 0 ) / P O P C H * S o y o i l E q u i v a l e n t C o n s u m p t i o n ( S P R O C H S N E C H ) * . 1 9 5 S M O E C H 7 3 0 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m P C S O E C 0 . 0 0 1 5 6 9 7 0 . 0 0 0 1 5 6 2 0 . 0 0 1 8 0 6 1 0 . 0 0 1 3 4 3 1 P C R G D P 3 . 0 5 6 D - 0 6 7 . 7 3 5 D - 0 7 4 . 8 3 1 D - 0 6 1 . 8 6 3 D - 0 6 R C S P R O 0 . 0 0 9 0 5 0 8 0 . 0 0 1 2 7 6 5 0 . 0 1 1 1 6 3 1 0 . 0 0 7 0 8 4 9 D C O O S U 0 . 0 0 1 7 2 7 9 0 . 0 0 1 1 6 8 7 0 . 0 0 4 0 7 2 5 0 . 0 0 0 4 1 8 5 m I . . . W C o v a r i a n c e C o r r e l a t i o n P C S O E C , P C S O E C 2 . 3 2 2 D - 0 8 1 . 0 0 0 0 0 0 0 P C S O E C , P C R B D P - 3 . 2 1 2 D - 1 1 - 0 . 2 7 9 2 6 9 0 P C S O E C , P C S R R O 1 . 6 1 2 D - 0 7 0 . 8 4 8 9 0 7 2 D C S O E C , D C O O S U - 4 . 4 4 8 D - 0 8 - 0 . 2 5 5 9 2 0 2 F C R B D P , D C R B D P 5 . 6 9 8 0 - 1 3 1 . 0 0 0 0 0 0 0 R C R E D P , P C S R R O - 3 . 3 6 4 D - 1 0 - 0 . 3 5 7 7 5 1 2 R C R B D R , P C O O S U 8 . 1 6 7 D - 1 0 0 . 9 4 8 6 3 7 5 D C S D R O , R C S R R O 1 . 5 5 2 0 - 0 6 1 . 0 0 0 0 0 0 0 R C S P R O , P C O O S U - 3 . 9 7 S D - 0 7 - 0 . 2 7 9 8 6 7 3 D C O O S U , D C O O S U 1 . 3 0 1 D - 0 6 1 . 0 0 0 0 0 0 0 . . . . P > C D C O 1 1 n 1 4 ~ a o z m ‘ 1 ' 1 1 1 1 5 . . . . 3 ' 1 2 " $ F i g u r e K . l 3 . a & b . S o y n e a l E q u i v a l e n t E x p o r t s - C h i n a 7 3 1 3 5 fl k . ' e e s . . ~ . q N ‘ 1 ' - n 8 . A . ' . . . " " s e e e . . . a ’ . 1 9 7 5 1 9 7 6 1 9 7 7 1 9 ' ” 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N M I L a w e ‘ L . - p / s m - - . I . , / - 0 J ” : I j N . 5 9 9 " : 2 . 4 4 3 1 " - 1 M . 2 3 7 C - 1 E J u - - j T - . 0 2 4 L - 2 ' . ' B O - - . 1 T 3 3 6 ' 3 1 O ' - . N 7 5 7 c ; 1 1 7 1 7 9 8 6 3 % B i 3 ! : 3 1 S E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L — - - E S T I M A T E D » 0 0 0 : m a ! * 0 2 0 ( P O O C 4 9 « 4 1 I i ‘ 1 : ‘ o ' e e . . . . c . 5 0 1 . 9 7 5 _ % 1 9 . 7 ? 1 9 . 1 8 1 9 ' . " U U ' U ' . 1 7 : 1 - 7 3 7 6 7 ? ‘ ~ 7 . 6 1 _ . 8 9 1 9 9 7 9 . 8 2 1 9 . 8 3 1 9 1 9 8 1 1 9 8 4 _ . — — 7 é ’ - 8 . 0 3 % 8 5 - 8 3 . 8 4 7 3 2 1 5 0 1 4 5 0 4 “ R E G I O N A L M O D E L S I M U L A T I O N 9 2 . 4 1 2 3 2 . 2 3 5 ' - 2 7 . 9 4 0 - 8 8 . H O ' 1 4 5 . 2 9 2 U I I I I I I I I I I I I I I I I I P L M E 1 ' - 2 0 8 . 4 6 8 . ~ 2 e a . o 4 4 - I ' T ~ 3 2 3 . 1 2 1 - I 0 4 1 3 1 . 9 9 7 » A , J N » a — — t — — — 0 \ / “ o — — - o ’ . . S E X - P O S T F O R E C A S T 1 9 7 5 ' 1 9 8 4 A C T U A L 1 - - — E S T I M A T E D F i g u r e K . 1 4 . a & b . S o y o i l E q u i v a l e n t E x p o r t s - C h i n a H > C D < O : n a ] — 0 2 0 [ K H ‘ l ‘ t H O Z : m a a o z m - ‘ 1 3 O “ . . . . “ N I M I : - - - u - - - u - - - u - - - . - . . . . . . . . . . . . . . . . . . . . . . . ' " I ' r U U ' r V ' \ 7 6 7 6 7 1 7 6 7 6 8 0 6 % 6 2 F i g u r e K . 1 5 . a & b . S o y n e a l N e t E x p o r t s - C h i n 1 . . . . _ . . _ _ _ . a 7 3 3 1 m ' 1 . “ 6 0 0 * S fl j 1 9 7 5 1 9 7 6 1 9 ? ? 1 9 ' ” 1 9 7 9 1 9 8 0 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N \ \ 6 6 6 . 6 6 6 4 9 1 . 1 8 5 4 1 6 . 7 0 6 6 4 2 . 2 2 6 2 6 7 . 7 4 6 1 6 3 . 2 6 6 1 1 6 . 7 6 6 4 4 . - 3 0 . 1 7 5 - , , - 1 0 4 . 6 5 6 3 1 * 1 \ . \ . 8 4 a U E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L — - - E S T I M A T E D C h i n a 7 3 4 S o y n e a l N e t E x p o r t s ( 1 0 0 0 M T ) S M P L 1 9 7 6 — 1 9 8 3 8 O b s e r v a t i o n s L S / / D e p e n d e n t V a r i a b l e i s S M N E C H V A R I A B L E C O E F F I C I E N T S T D . E R R O R T — S T A T . 2 - T A I L 8 1 8 . C - 4 8 0 8 . 6 0 0 1 1 6 4 6 . 0 5 4 3 - 2 . 9 2 1 2 8 8 8 0 . 0 4 3 S P R O C H 0 . 1 7 0 7 5 5 7 0 . 0 6 6 9 1 7 8 2 . 5 5 1 7 2 4 3 0 . 0 6 3 S M E C O . 2 5 4 9 7 0 4 0 . 0 5 9 8 6 1 2 - 4 . 2 5 9 3 6 1 1 0 . 0 1 3 Y E A R 6 5 . 9 8 1 0 1 2 2 6 . 0 3 6 2 9 5 2 . 5 3 4 1 9 3 6 0 . 0 6 4 R - s o u a r e d 0 . 9 7 1 4 3 0 M e a n o f d e p e n d e n t v a r 2 0 5 . 7 5 0 0 A d j u s t e d R - s q u a r e d 0 . 9 5 0 0 0 2 S . D . d 4 d e p e n d e n t v a r 2 2 3 . 8 2 6 3 S . E . o f r e g r e s s i o n 5 0 . 0 4 8 0 4 S u m 6 4 s q u a r e d r e s i d 1 0 0 1 9 . 2 2 D u r b i n - W a t s o n s t a t 1 . 8 9 3 8 5 9 F - s t a t i s t i c 4 5 . 3 3 5 2 8 L o g 1 i k e l i h o o d - 3 9 . 8 8 2 7 9 T P E 2 ’ 8 R e s i d u a l 6 1 6 1 o b s R E S I D U A L A C T U A L ’ F I T T E D 1 : 1 * 1 1 1 9 7 6 4 4 . 7 7 4 0 1 7 . 0 0 0 0 - 2 7 . 7 7 4 0 1 1 4 1 1 1 9 7 7 1 . 4 5 8 6 0 2 9 . 0 0 0 0 2 7 . 5 4 1 4 1 4 1 1 1 1 1 9 7 8 ~ 7 8 . 4 9 5 0 2 9 . 0 0 0 0 1 0 7 . 4 9 5 1 1 1 * 1 1 1 9 7 9 5 . 8 1 6 0 8 6 6 . 0 0 0 0 6 0 . 1 8 3 9 1 1 * ‘ 1 1 1 1 9 8 0 - 9 1 1 0 4 3 9 1 7 0 . 0 0 0 1 7 9 . 1 0 4 1 1 1 * 1 1 1 9 8 1 2 1 . 5 9 0 7 2 4 5 . 0 0 0 2 2 3 . 4 0 9 1 1 1 * 1 1 1 9 8 2 3 1 . 1 7 2 9 5 4 0 . 0 0 0 5 0 8 . 8 2 7 1 1 4 1 1 1 1 9 8 3 - 1 7 . 2 1 2 9 5 5 0 . 0 0 0 5 6 7 . 2 1 3 I N D E P E N D E N T V A R I A B L E S S P R O C H = S o y b e a n P r o d u c t i o n ( 1 0 0 0 M T ) S M E C O 8 S o y n e a l E q u i v a l e n t C o n s u m p t i o n ( 1 0 0 0 M T ) ( S P R O C H - S N E C H ) * . 7 9 5 - S M N E C H Y E A R = 1 9 6 0 = 6 0 , 1 9 6 1 = 6 1 , . . . S H P L 1 9 7 6 - 1 9 8 3 8 O b s e r v a t i o n s 7 3 5 8 W - “ m m S e r i e s M e a n S . D . M a x i m u m M i n i m u m ' 3 8 . 3 3 : . S M N E C H 2 0 5 . 7 5 0 0 0 2 2 3 . 8 2 6 3 0 ' 5 5 0 . 0 0 0 0 0 1 7 . 0 0 0 0 0 0 S P R O C H 8 1 2 2 . 5 0 0 0 1 1 1 3 . 2 7 7 0 9 7 6 0 . 0 0 0 0 6 6 4 0 . 0 0 0 0 S M E C O 6 3 4 6 . 2 4 2 5 6 5 5 . 3 1 6 5 0 7 4 7 0 . 4 7 5 0 5 3 6 3 . 5 6 0 0 Y E A R 7 9 . 5 0 0 0 0 0 2 . 4 4 9 4 8 9 7 8 3 . 0 0 0 0 0 0 7 6 . 0 0 0 0 0 0 I C o v a r i a n c e C o r r e l a t i o n S M N E C H . S M N E C H 4 3 8 3 5 . 9 3 8 1 . 0 0 0 0 0 0 0 S M N E C H , S P R O C H _ 1 9 3 0 1 9 . 3 8 0 . 8 8 5 2 7 5 6 E M N E C H , S M E C O 7 6 0 8 3 . 4 6 3 0 . 5 9 2 8 1 6 1 S M N E C H . Y E A R 4 3 9 . 8 7 5 0 0 0 . 9 1 6 9 2 6 4 S P R O C H , S P R O C H 1 0 8 4 4 6 2 . 5 1 . 0 0 0 0 0 0 0 S P R O C H . S M E C O 5 5 8 7 7 7 . 9 0 0 . 8 7 5 3 4 0 1 S P R O C H , Y E A R 2 2 7 8 . 1 2 5 0 0 . 9 5 4 7 5 2 1 S M E C O , S M E C O 3 7 5 7 5 9 . 7 6 1 . 0 0 0 0 0 0 0 S M E C O . Y E A R 1 1 5 9 . 0 6 8 9 ' 0 . 8 2 5 2 2 9 0 - Y E A R , Y E A R 5 . 2 5 0 0 0 0 0 1 . 0 0 0 0 0 0 0 3 2 s u n - " . 1 . 8 3 3 3 . 7 3 6 1 0 0 0 M E T T O N S 1 9 ? 5 1 9 % 1 9 ? ? 1 9 1 8 1 9 1 ‘ 9 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L M O D E L S I M U L A T I O N 1 0 0 0 4 : - 1 9 ¢ 0 3 I 1 ‘ ! " : : E - : : T I I I R Z - . I . : : I c - 1 9 0 . 8 . Z 1 T — 2 8 5 . 1 I I c " ) - 3 8 1 ’ 6 E . . a ” . - - _ . \ ‘ ~ ¢ _ _ . ¢ . _ _ ¢ . . _ . ¢ / ’ . “ € - — - ; 5 7 3 v i ; 1 ’ 7 7 6 v é 3 6 o i o i a s 3 3 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I H A T E D F i g u r e K . 1 6 . a & b . S o y o i l N o t E x p o r t s - C h i n a 7 3 7 1 5 0 0 F 1 ‘ 1 1 0 O 0 5 3 0 1 N " ~ ' 1 E g . . . . , , . . m . . - . . . " T : . ‘ . O . I . . . . . . . . . . . . . - a b T 5 W ; O I i N 1 1 9 7 5 1 9 7 6 1 9 7 ? 1 9 % 1 9 ? ? 1 9 8 9 1 9 8 1 1 9 8 2 1 9 8 3 1 9 8 4 R E G I O N A L H O D E L S I M U L A T I O N M I L I . 7 6 0 ' : ‘ 0 . m m _ . ; N . 4 3 9 : / m \ / , . . a — 1 . 2 1 9 - k / \ / . J T ‘ . 0 4 2 : . — . — . _ . . t I ' . 2 0 2 : : T - . 3 6 3 : : O - . 5 2 3 4 g 7 6 7 6 7 " : 7 6 7 é 8 0 8 % 8 5 8 5 3 a h E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I M A T E D F i g u r e K . 1 7 . a & b . S o y b e a n N e t E x p o r t s - C h i n a A P P E N D I X L P R I C E E Q U A T I O N S T A T I S T I C S ” P O C O O O O O O O O O O O O O O O . . . . . . C O O O w h . a t P r i c . F P . . . . . . . . . . . . . . . . . . . . . . . . . . . C o o r s e G r o i n P r i c e 5 M P . . . . . . . . . . . . . . . . . . . . . . . . . . S o y n e o l P r i c e S P O C O O O O O O C D C O O O O O O O O O O O . . . - O S O Y b e a n P r i c e 7 3 8 " C I 2 5 1 9 6 6 1 9 5 3 1 9 7 a 1 9 7 2 1 m 1 m . , m 1 1 m . . 7 2 1 9 1 9 ‘ 3 4 V ' I ' I U ' U T I ' W ' I ' I l l l l l l l l l l l l . F i g u r e L . 1 . o & b . W h e a t P r i c e - U . S . G u l f D 0 L L A R S P E R M E T T 0 N D 0 L i n o ’ 2 1 7 0 . s ‘ 6 2 . 1 5 5 . p a n . i i 1 4 0 . R a n . 1 2 5 . 2 ‘ H 7 . 1 . T ( H T 0 N . 0 8 9 7 3 9 7 5 1 5 0 4 1 1 l l 1 I l l i i l R E G I O N A L H O D E L S I M U L A T I O N 9 2 8 3 4 5 7 3 3 1 8 2 0 ' 9 4 3 7 8 5 8 - 3 a 5 7 5 7 6 7 7 7 6 7 % 8 0 s i 3 5 8 5 E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L - - - E S T I H A T E D 7 4 C ) U n i t e d S t a t e s W h e a t P r i c e / L o a n R a t e R a t i o ( $ / H T ) S R R L 1 9 6 6 - 1 9 6 4 1 9 O b s e r v a t i o n s L S l l D e p e n d e n t V a r i a b l e i s H P L R H T V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L 5 1 6 . C - 0 . 1 0 6 2 6 3 3 0 . 2 7 6 6 3 3 9 - 0 . 3 9 1 0 7 6 7 0 . 7 0 1 W S R 0 . 6 6 9 1 6 5 6 0 . 1 1 5 5 3 3 6 7 . 6 9 6 1 6 5 0 0 . 0 0 0 H 6 9 1 . - 0 . 0 0 4 6 3 5 0 0 . 0 0 0 6 1 7 6 - 5 . 6 6 7 9 0 6 4 0 . 0 0 0 R - s e u a r e d 0 . 6 0 5 1 6 0 M e a n o f d e o e n d e n t v a r 1 . 7 3 0 4 4 6 R d J u s t e d R - s o u a r e d 0 . 7 6 0 6 0 5 S . D . o f o e o e n o e n t v a r 0 . 7 7 2 0 2 9 S . E . o f r e g r e s s i o n 0 . 3 6 1 4 5 0 S u e o f s o u a r e d r e s i d 2 . 0 9 0 3 4 3 D u r b i n - H a t s o n s t a t 1 . 9 1 3 6 6 6 F - s t a t i s t i c 3 3 . 0 5 9 3 6 L o g l i k e l i h o o d - 5 . 9 9 2 2 6 1 T P E 4 / 1 9 R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D 1 4 x 1 i 1 1 9 6 6 - 0 . 5 0 1 9 7 1 . 4 6 3 9 6 1 . 9 6 5 9 5 1 x 4 1 : 1 1 9 6 7 - 0 . 0 6 2 7 6 1 . 3 6 7 9 6 1 . 4 3 0 7 5 1 i 1 z 4 1 1 9 6 6 0 . 4 6 6 5 1 1 . 3 6 7 9 6 0 . 6 6 1 4 6 1 3 1 4 : 1 1 9 6 9 0 . 2 6 9 9 9 1 . 1 6 0 0 4 0 . 6 7 0 0 5 1 z 4 : 1 1 9 7 0 0 . 0 0 3 4 6 1 . 3 1 2 0 1 1 . 3 0 6 5 2 1 : 4 1 : 1 1 9 7 1 - 0 . 0 6 1 7 2 1 . 3 2 0 0 6 1 . 3 6 1 7 6 1 4 z 1 3 1 . 1 9 7 2 - 0 . 7 7 7 1 7 2 . 0 0 0 0 2 2 . 7 7 7 1 9 1 x 1 : 4 1 1 9 7 3 0 . 5 4 5 0 3 3 . 6 5 5 9 0 3 . 3 1 0 6 7 1 3 1 4 a 1 1 9 7 4 0 . 1 5 3 9 6 3 . 2 1 1 6 3 3 . 0 5 7 6 7 1 a 1 3 4 1 1 9 7 5 0 . 4 7 6 2 6 3 . 0 0 0 0 7 2 . 5 2 1 7 9 1 : 4 1 z 1 1 9 7 6 - 0 . 1 7 5 3 5 1 . 3 5 5 5 6 1 . 5 3 0 9 3 1 s 4 1 z 1 1 9 7 7 - 0 . 2 5 7 2 6 1 . 4 0 4 4 4 1 . 6 6 1 7 0 1 z 4 1 : 1 1 9 7 6 - 0 . 1 2 1 2 1 1 . 6 3 3 9 6 1 . 7 5 5 1 9 1 : 1 4 1 1 9 7 9 0 . 3 7 7 1 4 1 . 6 7 9 9 4 1 . 5 0 2 6 0 1 a 1 4 z 1 1 9 6 0 0 . 1 1 9 9 5 1 . 6 4 9 9 9 1 . 5 3 0 0 4 1 a 4 1 3 1 1 9 6 1 - 0 . 0 9 2 3 6 1 . 3 2 6 1 2 1 . 4 2 0 5 0 1 a 4 z 1 1 9 6 2 - 0 . 0 0 6 7 2 1 . 2 0 0 4 0 1 . 2 0 7 1 2 1 i 4 1 3 1 1 9 6 3 - 0 . 2 1 2 4 4 1 . 1 4 3 6 0 1 . 3 5 6 2 4 1 x 4 1 s 1 1 9 6 4 - 0 . 1 6 5 3 3 1 . 2 2 2 6 4 1 . 4 0 7 9 7 I N D E P E N D E N T V A R I A B L E S H U S R = W h e a t U t i l i z a t i o n / S t o c k R a t i o f o r M a j o r E x p o r t e r s W N E A R + W C O N A R W N E A U + W C O N A U ‘ ” N E C A + W C O N C A . W E S A R W E S A U W E S C A ( W C O N D N - W N I D H ) * W N E U S + W C O N U S W E S D H W E S U S - a - w c c c - B 4 W F O R W S P L = S l o p e S h i f t e r ( W S U R fi Y E A R * ( Y E A R . G E . 7 9 ) ) * w h e a t U t i l i z a t i o n f o r t h e D e v e l o p e d M a r k e t s a r e i n c l u d e d o n l y f o r t h o s e p e r i o d s w h e n t h e D e v e l o p e d M a r k e t s a r e e x p o r t e r s . 7 4 1 S M D L 1 9 6 6 - 1 9 O b s e r v a t i o n s S e r i e s R e a n S . D . M i n i m u m M a x i m u m W W H P L R M T 1 . 7 3 0 4 4 7 7 0 . 7 7 2 0 2 9 1 3 . 6 5 5 9 0 0 0 1 . 1 4 3 7 9 9 0 H U S R 2 . 4 6 4 3 1 6 5 0 . 6 1 6 0 4 4 0 3 . 6 4 5 3 2 4 0 1 . 1 0 0 2 5 7 0 H S P L 7 6 . 0 4 6 3 9 0 1 1 5 . 2 9 0 4 7 2 5 4 . 6 1 6 6 0 0 . 0 0 0 0 0 0 0 _ - I C o v a r i a n c e C o r r e l a t i o n . . . - W W W W H P L R M T , H D L R M T 0 . 5 6 4 6 5 6 9 1 . 0 0 0 0 0 0 0 H P L R M T . H U S R 0 . 3 6 4 0 1 0 6 0 . 6 4 3 3 9 4 1 H D L R M T , H S D L - 2 4 . 4 2 1 0 2 6 - 0 . 2 6 9 6 1 3 0 H U S R . H U S R 0 . 6 3 0 6 7 9 0 1 . 0 0 0 0 0 0 0 U U S R , H S P L 3 6 . 1 7 5 7 6 6 0 . 4 2 6 3 1 3 6 H S P L . H S P L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 5 9 2 . 3 1 9 1 . 0 0 0 0 0 0 0 - - - - - - - - . . . . . . _ " . - ' . . . . . . - 5 . . . 0 0 7 r - t a o m 3 1 1 1 1 0 $ 3 1 1 1 4 ! * 0 2 U O ‘ F ‘ F D O S ” ( 1 1 1 " ” a — o z 1 1 2 2 5 5 ' j T ’ T U ' I 7 4 2 1 7 3 1 5 1 1 - e s " 1 9 1 1 1 9 6 9 1 9 1 9 1 9 7 2 1 9 7 4 1 9 1 1 1 9 1 9 1 9 1 1 1 1 1 2 1 9 1 1 4 4 b 0 0 ‘ R E G I O N A L M O D E L S I M U L A T I O N 1 9 0 . 5 9 7 , / \ 1 7 9 . 1 5 5 » / \ 1 5 7 . 7 7 9 1 5 5 . 3 5 9 1 4 4 . 9 5 0 1 3 3 . 5 5 1 1 2 2 . 1 4 2 1 1 0 . 7 3 2 9 9 . 3 2 3 5 7 . 9 1 4 a m : E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 6 4 A C T U A L ~ - - E S T I M A T E D F i g u r e L . 2 . a 6 b . C o a r s e G r a i n P r i c e - U . S . G u l f C o a r s e G r a i n U t i l i z a t ( F S U R R Y E A R * ( Y E A R . G E . i 7 o n / S t o c k R a t i o f o r M a j o r 9 ) ) 7 4 3 U n i t e d S t a t e s C o r n P r i c e / L o a n R a t e R a t i o 9 9 9 1 1 9 6 6 - 1 9 5 4 1 9 O b s e r v a t i o n s ( S I M T ) L S / / D e p e n d e n t V a r i a b l e i s F A L R M T m m “ I N D E P E N D E N T V A R I A B L E S F U S R = E x p o r t e r s F N E A R + F C O N A R * F N E A U + F C O N A U F E S A R F E S A U F N E U S + F C O N U S F E S U S - a 4 C C C C - 3 4 0 F 0 R F S P L = S l o p e S h i f t e r V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . W W W - m n n n u m - u - n a m u - m C 0 . 0 7 1 5 0 4 2 0 . 1 5 2 4 4 0 5 0 . 4 6 9 0 6 2 9 0 . 6 4 5 F U S R 0 . 3 1 2 5 0 9 2 0 . 0 2 5 1 5 6 3 1 2 . 4 2 2 6 6 6 0 . 0 0 0 F S P L - 0 . 0 0 1 3 7 0 6 0 . 0 0 0 1 6 4 0 - 6 . 3 5 9 6 4 9 1 0 . 0 0 0 . . M W m - n m - I . W R - s q u a r e d 0 . 9 2 1 7 1 3 M e a n o f o e o e n d e n t v a r 1 . 6 4 4 2 6 4 A d J u s t e d R - s o u a r e d 0 . 9 1 1 9 2 6 S . D . o f d e o e n d e n t v a r 0 . 5 9 6 3 0 3 S . E . o f r e g r e s s i o n 0 . 1 7 7 5 5 6 S u m o f s o u a r e d r e s i o 0 . 5 0 4 4 3 1 D u r b i n - U a t s o n s t a t 1 . 9 0 3 5 0 3 F - s t a t i s t i c 9 4 . 1 6 6 5 6 L o g l i k e l i h o o d 7 . 5 1 3 4 1 3 T P E 4 / 1 9 W W I I I - . . . . . . - W . . . - . R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D . . . - . . . . . . “ 1 a 4 1 : 1 1 9 6 6 - 0 . 0 5 9 6 3 1 . 3 6 0 6 6 1 . 4 4 0 7 0 1 : 4 1 z 1 1 9 6 7 - 0 . 0 2 5 5 3 . 1 7 1 3 7 1 . 1 9 6 9 0 1 : 1 4 9 1 1 9 6 6 0 . 1 2 2 4 4 1 . 2 3 6 1 3 1 . 1 1 5 6 9 1 s 1 4 z 1 1 9 6 9 0 . 1 4 0 1 3 1 . 3 5 2 3 2 1 . 2 1 2 1 9 1 4 1 : 1 1 9 7 0 - 0 . 1 6 6 7 2 1 . 4 6 5 6 2 1 . 7 4 3 4 1 : 4 1 z 1 1 9 7 1 - 0 . 0 7 5 4 7 1 . 2 7 6 1 1 1 . 3 5 1 5 6 1 z 1 4 a 1 1 9 7 2 0 . 0 3 3 9 5 2 . 0 6 6 7 0 2 . 0 3 2 7 5 1 : 1 : 1 1 9 7 3 0 . 2 9 0 0 1 2 . 9 6 1 6 0 2 . 6 7 1 7 9 1 : 1 : 1 1 9 7 4 0 . 2 7 7 0 6 3 . 0 1 6 1 4 _ 2 . 7 4 1 0 7 1 4 : 1 : 1 1 9 7 5 - 0 . 3 0 1 2 0 2 . 7 0 9 1 7 3 . 0 1 0 3 7 1 4 : 1 : 1 1 9 7 6 - 0 . 2 5 5 0 7 1 . 7 0 6 6 3 1 . 9 6 1 7 0 1 z 1 4 : 1 1 9 7 7 0 . 1 2 6 3 7 1 . 3 1 5 0 3 1 . 1 6 6 6 6 1 z 1 4 z 1 1 9 7 6 0 . 0 7 2 3 6 1 . 4 4 0 0 0 1 . 3 6 7 6 4 1 z 4 1 a 1 1 9 7 9 - 0 . 0 4 2 7 5 1 . 4 6 0 9 0 1 . 5 2 3 6 5 1 8 1 a 4 1 1 9 6 0 0 . 2 0 1 6 2 1 . 6 0 6 6 6 1 . 4 0 7 0 4 1 : 4 1 : 1 1 9 6 1 - 0 . 1 6 6 3 9 1 . 2 0 6 3 6 1 . 3 7 4 7 6 1 a 1 4 z 1 1 9 6 2 0 . 0 1 6 9 4 1 . 2 3 9 9 6 1 . 2 2 3 0 5 1 : 4 1 8 1 1 9 6 3 - 0 . 0 7 6 1 4 1 . 3 6 6 0 5 1 . 4 6 4 1 9 1 s 4 1 9 1 1 9 6 4 - 0 . 0 6 9 9 9 1 . 1 9 5 3 6 1 . 2 6 5 3 5 F E S C A F N E C A + F C O N C A * S M D L 1 9 6 6 1 9 O b s e r v a t i o n s . . . . . . . 7 4 4 . . . . . . . . . . . . . . . . . . . . . . S e r i e s M e a n S . D . M a x i m u m M i n i m u m W “ W u - m “ F P L R M T 1 . 6 4 4 2 6 4 1 0 . 5 9 6 3 0 2 6 3 . 0 1 6 1 4 1 0 1 . 1 7 1 3 6 5 0 F U B R 5 . 9 7 6 6 2 5 4 1 . 7 0 3 1 1 5 1 9 . 4 0 4 0 6 1 0 3 . 3 4 1 3 0 7 0 F S D L 2 1 5 . 2 0 6 9 2 2 6 1 . 3 1 3 1 4 5 6 1 . 6 0 7 1 0 0 . 0 0 0 0 0 0 0 C o v a r i a n c e C o r r e l a t i o n W . . . “ - F P L R M T . F D L R M T 0 . 3 3 9 1 2 5 7 1 . 0 0 0 0 0 0 0 F P L R M T , F U S R 0 . 7 3 5 0 4 6 4 0 . 7 6 1 4 3 1 6 F P L R M T . F S P L - 6 0 . 4 6 0 0 7 6 - 0 . 4 0 6 1 9 4 9 F U S R . F U S R 2 . 7 4 7 9 3 6 0 1 . 0 0 0 0 0 0 0 F U S R , F S P L 9 0 . 2 5 7 6 0 3 0 . 2 1 4 0 7 2 4 F S P L . F S P L 6 4 6 9 0 . 6 3 1 1 . 0 0 0 0 0 0 0 2 “ 4 ’ . ‘ . _ c " . . . ' . . I . . . ' r j ' i I ' V ' o o r r b w m O ' N ” S M H 4 0 2 o o r ‘ r o w m U ' M ” : m a H 0 2 F i g u r e L . 3 . a 6 b . S o y m e a l P r i c e - 4 4 x D e c a t u r 7 4 5 3 9 1 1 4 2 5 1 1 1 . . . - 0 0 " . 1 5 0 1 ' 1 9 1 1 ‘ 1 9 1 1 ' 1 9 1 1 1 ' 1 9 1 2 1 9 1 4 1 9 1 1 1 9 1 9 1 9 1 1 1 1 9 1 2 1 9 9 4 R E G I O N A L M O D E L _ S I M U L A T I O N 3 0 3 . 6 0 6 2 6 6 . 2 7 9 2 6 6 . 9 5 2 2 5 1 . 6 2 5 2 3 4 . 2 9 6 2 1 6 . 9 1 1 - 1 9 9 . 6 4 4 ~ 1 6 2 . 9 1 1 : 1 6 4 . 9 9 0 : 1 4 1 . 6 6 3 : . E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L . _ - 1 - E S T I M A T E D 7 4 6 U n i t e d S t a t e s R e a l S o y m e a l P r i c e ( $ / M T > 1 9 6 6 - 1 9 O b s e r v a t i o n s ' L S l l D e p e n d e n t V a r i a b l e i s S M A U S S H D L 1 9 6 4 . . . - I _ l I V A R I A B L E C O E F F I C I E N T S T D . E R R O R T - S T A T . 2 - T A I L S I G . . m - C - 0 . 0 6 1 6 2 9 6 0 . 5 2 0 5 1 0 6 - 0 . 1 5 6 6 2 6 4 0 . 6 7 7 F D U S 1 . 0 4 3 6 1 5 9 0 . 3 2 1 7 3 7 9 3 . 2 4 3 6 6 3 1 0 . 0 0 5 S M U S R 0 . 1 1 7 6 3 5 6 0 . 0 2 7 5 0 6 1 4 . 2 6 3 9 6 1 2 0 . 0 0 1 S P L S S - 0 . 0 0 0 7 7 4 1 0 . 0 0 0 5 6 5 3 - 1 . 3 6 9 4 2 4 9 0 . 1 9 1 W R - s b u a r e d _ 0 . 7 0 9 5 7 7 M e a n o f - o e b e n d e n t v a r 2 . 3 3 0 7 0 2 A d j u s t e d R - s a u a r e d 0 . 6 5 1 4 9 2 S . D . o f d e p e n d e n t v a r 0 . 7 9 6 2 6 7 S . E . o f r e g r e s s i o n 0 . 4 7 1 2 6 5 S u m o f s o u a r s d r e s i d 3 . 3 3 1 3 6 1 D u r b i n - H a t s o n s t a t 2 . 1 1 2 7 9 1 F - s t a t i s t i c 1 2 . 2 1 6 2 7 L o g l i k e l i h o o d - 1 0 . 4 1 9 7 6 T P E 1 / 1 9 . I m ' - M R e s i d u a l P l o t o b s R E S I D U A L A C T U A L F I T T E D W W I 1 2 4 1 2 1 1 9 6 6 - 0 . 2 9 6 6 6 2 . 2 0 5 0 6 2 . 5 0 3 7 4 1 2 1 4 2 1 1 9 6 7 0 . 3 1 2 5 4 2 . 0 9 3 5 6 1 . 7 6 1 0 4 1 2 1 4 2 1 1 9 6 6 0 . 4 1 7 6 0 1 . 9 3 6 0 2 1 . 5 1 6 4 2 1 2 1 4 2 1 1 9 6 9 0 . 0 9 6 2 6 1 . 9 4 3 3 7 1 . 6 4 5 1 1 1 4 2 1 2 1 1 9 7 0 - 0 . 6 5 5 0 4 1 . 6 3 7 3 7 2 . 6 9 2 4 1 1 4 2 1 2 1 1 9 7 1 - 0 . 7 6 3 6 5 2 . 0 2 5 0 5 2 . 6 0 6 9 0 1 2 1 2 4 1 1 9 7 2 1 . 0 4 6 7 7 4 . 9 6 6 9 0 3 . 9 2 0 1 2 1 : 4 1 2 1 1 9 7 3 - 0 . 1 6 9 1 4 2 . 9 9 2 9 5 3 . 1 6 2 0 9 1 4 1 2 1 1 9 7 4 - 0 . 4 6 6 0 1 2 . 4 1 2 2 1 2 . 6 9 6 2 1 1 2 4 2 1 1 9 7 5 0 . 0 2 4 5 6 2 . 4 9 4 4 9 2 . 4 6 9 9 1 1 2 1 4 2 1 1 9 7 6 0 . 2 4 2 6 0 3 . 1 6 7 2 6 2 . 9 4 4 6 7 1 2 4 1 2 1 1 9 7 7 - 0 . 1 1 1 9 6 2 . 4 4 9 5 9 2 . 5 6 1 5 5 1 2 1 4 2 1 1 9 7 6 0 . 0 6 3 6 4 2 . 6 4 5 2 0 2 . 5 6 1 5 6 1 2 1 4 2 1 1 9 7 9 0 . 2 4 1 4 3 2 . 2 7 6 0 5 2 . 0 3 4 6 2 1 2 1 4 2 1 1 9 6 0 0 . 3 1 6 4 5 2 . 4 0 4 0 0 2 . 0 6 5 5 5 1 2 4 1 2 1 1 9 6 1 - 0 . 0 6 9 2 1 1 . 6 2 9 7 1 1 . 9 1 6 9 2 1 2 1 4 2 1 1 9 6 2 0 . 0 5 1 5 1 1 . 7 6 7 7 2 1 . 7 1 6 2 1 1 2 4 2 1 1 9 6 3 0 . 0 2 9 1 5 1 . 7 2 0 4 3 1 . 6 9 1 2 6 é 8 9 1 8 1 1 9 6 4 - 0 . 0 5 4 6 6 1 . 0 9 4 3 7 1 . 1 4 9 0 5 I N D E P E N D E N T V A R I A B L E S F P U S R e a l C o a r a e G r a i n P r i c e F P / C P I U S S H U S R ( S I M T ) S N E U S fi . 7 9 5 + S M C O U S + S M N E U S S E S U S * . 7 9 5 4 S M E S U S F S P L = S l o p e S h i f t e r ( F S U R R Y E A R * ( Y E A R . G E . 7 9 ) ) S o y n e a l E q u i v a l e n t U t i l i z a t i o n / S t o c k R a t i o S M A L 1 9 O b s e r v a t i o n s 1 9 6 6 - 1 9 6 4 7 4 7 S e r i e s M e a n S . D . M a x i m u m M i n i m u m S M D U S 2 . 3 3 0 7 0 2 4 0 . 7 9 6 2 6 7 2 4 . 9 6 6 6 9 6 0 1 . 0 9 4 3 7 0 0 F D U S 1 . 4 0 6 6 3 0 6 0 . 3 6 0 6 9 0 2 2 . 2 7 1 4 2 9 0 0 . 9 1 9 9 0 4 6 S M U S R 6 . 4 2 2 6 6 0 1 4 . 0 4 4 9 5 6 6 1 9 . 0 6 6 4 7 0 2 . 6 3 7 5 0 4 0 S P L S S 6 5 . 1 5 3 7 6 7 2 0 5 . 0 2 0 5 3 6 0 7 . 4 1 7 5 0 0 . 0 0 0 0 0 0 0 I C o v a r i a n c e C o r r e l a t i o n m m m m S M D U S . S M P U S 0 . 6 0 3 7 2 2 3 1 . 0 0 0 0 0 0 0 S M D U S . F D U S 0 . 1 5 3 3 2 2 1 0 . 5 6 2 0 7 2 5 S M P U S . S M U S R 1 . 9 2 3 1 5 5 6 0 . 6 2 6 6 6 9 4 S M P U S . S D L S S - 5 3 . 9 4 6 6 7 9 - 0 . 3 4 7 9 2 9 2 F D U S . F D U S 0 . 1 2 3 2 5 0 2 1 . 0 0 0 0 0 0 0 F D U S . S M U S R 0 . 0 7 6 3 1 6 7 0 . 0 5 6 6 6 2 6 F F U S . S D L S S - 1 9 . 9 6 0 6 7 7 - 0 . 2 6 5 2 0 6 6 S M U S R . S M U S R 1 5 . 5 0 0 5 4 9 1 . 0 0 0 0 0 0 0 S M U S R . S P L S S - 1 9 . 2 4 9 6 5 0 - 0 . 0 2 4 5 0 1 5 S D L S S . S D L S S 3 9 6 2 1 . 1 3 2 1 . 0 0 0 0 0 0 0 ' 1 1 _ 5 “ ” 9 - . ' 1 . 3 . 9 4 5 1 . 9 5 , 9 1 , 2 1 1 1 9 1 5 1 9 9 9 . 9 9 . 4 9 > 2 5 5 . 2 0 0 7 1 7 1 1 3 0 3 0 ( ! T M ” 0 0 ' l ‘ f 3 1 2 0 ( O ' M O S ! * 0 2 7 4 8 3 : 9 1 9 + 3 9 0 1 1 5 0 1 - 2 0 % * 4 " ) : R E G I O N A L M O D E L S I M U L A T I O N 3 3 5 . 5 5 1 ’ 1 3 2 1 . 6 2 4 - 3 0 1 . 6 9 0 - 2 9 3 . 1 5 1 2 1 9 . 5 2 4 9 2 6 5 . 5 9 0 2 5 1 . 9 5 1 2 3 3 . 0 2 3 2 2 4 . 0 9 0 2 1 0 . 1 5 1 : H M S E X - P O S T F O R E C A S T 1 9 7 5 - 1 9 8 4 A C T U A L 1 ~ - - E S T I M A T E D F i g u r e L . 4 . a & b . S o y b e a n P r i c e - 0 . 5 . G U L F o \ N 4 « m " u o ¢ u L . m > a u n > \ a . . u c . e 6 o c s c c a a H u m o o g . g ) n 4 u i 1 o m a g g 5 u 3 m 6 u g u 5 m 4 m a i 6 z h 5 m g a k . - o e - . - 0 - I - 9 . . 2 . - - I O . . . . . . 4 . i t : 4 4 I : i t I t ‘ 1 O . I . O . I . I . C . I . I I O ' . . I . O I O I O O I I . . . I I O O O O I I I O Q * . 0 0 0 5 5 2 a a o x o m u n o w n k 2 \ m v n b 2 \ m v U fl h m H O O E h o m u m z m m m q m ¢ H 1 ¢ > F z m a z m a m Q Z H a c m . m N N ¢ O ¢ . m m w N M O . D ¢ N “ H H . D M N H h m . o m N H h ¢ . O B N O o fl . o h N 0 ¢ H . « ¢ N H O « . O N N o o fl . M O N O fl w . m m fl . m h m . n h fl « M H . ¢ 6 N w w w . m fl u N O fl . m n u m m fl . H H H N 0 ¢ N . o m w h h m . m m 0 0 ¢ . h 0 u W h m . o n u w w w . 0 0 » 0 0 0 . 5 N N 0 0 0 . 9 0 N 0 0 0 . 0 m u o o o . ¢ ¢ m 0 N ¢ . n 0 N O M ¢ . N n N o m h . h h w O ¢ N . M ¢ N o n o . ¢ m w o w e . m o m o H n . M m 0 0 . H H N . h m . N ¢ u o o h . o H “ o w n . « H o m o . o o fl 9 0 4 0 . 0 3 o H n . N o u O m w . 0 « w 0 0 h . u m fi 0 0 m . o o « . . E . . " - m n o ¢ & . N 1 o n o n . 0 « O N M 0 . m ~ 1 D h ¢ o o . m o m ¢ ¢ . ¢ a N N a ¢ O . ¢ 1 W h o n n . u o o a w m . n fl m fl o . n u N Q H O W . H H m o m fl . ¢ ¢ w m w . W « l « 0 0 ¢ . H H 1 O M N 0 0 . ¢ B O N m n . fl l H m 0 & . o fl l m h w w 0 . n w n w n w . m m e fl o ¢ . H o n w h u . fl l h m o m m . 4 n m r k u u J G D F U ¢ J ¢ D n n m m m v m v n M 0 0 " . N m m u « m o m 0 0 0 » O h m " w h o “ h h o m O b o u W h o a ¢ h o « B r o d ” h m “ ” k w " 0 5 0 a 0 0 0 m w fi m w h fl o m fl fl m u ” M G M c a m e m a c n t - t A : Q : I t . m . o . . . . . . . . . . e . D . e m . u . . . . e . . . a . . 1 n e n m a . * I 0 6 5 m 5 4 3 6 5 6 6 2 ‘ 5 ~ \ ~ n 5 5 " . fl m n 6 w 4 . 5 m m 5 h u h n ¢ . 4 n 6 4 4 5 . 0 6 5 . . l . . o o o . o o o o . o 6 5 6 . 0 m ¢ u 0 5 « . u n w h o o n h . n u . h ¢ o m o o n . O I u fl u u w u a u m m w D w n a L u U L Q n o I 4 0 3 3 m L a > u c u u c u a u o 4 o . a . m 1 3 > u c o u c u n u u 4 0 : 5 0 : $ 5 . 5 5 ! . . . 4 o ¢ o h u o . o o n m o o c o . o o m N o o m o . o 0 0 6 0 0 . 0 5 1 b o o n w a o x w a u n J N H O N H O . « a q u a c o n u u 3 I C w n L a o m o n u m . o u c o a a n o t u o t * 6 . m . m 0 n 5 5 m 0 . o U U L I a u n I m 0 5 0 5 3 4 0 6 H m o n m o . o u e L n n o n l m # H Q M O & « . O . 1 0 m t h o o m b . o m t m t o u o o m H . M 1 U . m H m J H ¢ F I N . k ¢ h m l k m o m m m # 0 0 " I # 0 0 " J m t m 0 0 4 n m c o o n x o m u o u o u m 0 0 0 4 c : n h n \ m v m v h ( . D 0 n n a b n W u 4 l m m m I n t w n n z o n 1 u g w m r m b v w . o A 1 o D n : o w a n I o u z m m u u u u u u u u u u u u u * u u u u u u u * u O 1 O m o M . . M u u . o . u H o o o n u o e fl m g m . o 1 i . n o m 4 I w 4 4 9 4 4 w " u u n m n u u u m u “ u " " n u n u u w 4 t 4 g C e n u . o h o I u a w n w u n m c H 4 i a n n 4 4 . 4 H b p u ~ ” o o 4 ' . m w q u 0 . . 6 . u u u u u u u u u u u u u u u u u u 4 u 4 " i ! l a n . u n c a . u u w m n C u w w I I . 4 4 . m D m o r “ U “ ” u H M " “ " “ I u “ " ” ” " " “ “ ” “ d . . . . ' 0 0 o m a 0 o 0 g z q a h u o O o . . . m H m 3 q u M u 6 u 0 O u 4 f o N u H 6 M o & V m 4 4 m o 0 4 3 m w fl « m o 0 0 0 g . u a l p “ “ w ” “ u ” ” ” ” ” “ n ” “ w m m ” w M 6 u " " ” m a u 0 u 2 m n I u " " u " a u " ” m o a o 0 u o m u o . 3 n m i n u 4 5 s u u m 0 0 4 n n o e o o m 0 n o m a 0 o 0 o g 0 o e o o e m m w a m o 0 d n a n 4 w 4 u u 4 n p b u n m 0 o “ n d 6 n 0 n m 0 m m m m . » m o u b ' 4 + w m l I 1 1 1 1 l 1 a e m h h u u ” « p w w w “ u » p H 4 ” 9 4 m a m A u p . g n a 1 l n . . n n 5 m o fl ~ a a n 1 a a c 0 n u n b u n U M u u 0 m o o 0 o n p 0 m 0 0 » g C m O m 5 u o m M w m o m » o u H 4 b o u o D M u w 4 u m o u o m m o o m u N m fl u n u r fl o 4 u 0 m u o . o 4 u m o m u M o u 0 o m n c n a n m . . . . . o . . m u . . H . . w u u 9 9 m m . 6 u u . . 4 . w u . . b 0 w . 0 . o . . o 4 4 n o o a m o o o . o o b m 3 a fi fi o a - u u i o u q o n n n b . 0 w H ” n H w u M m w w n N M u m N ” ” w . a g u 4 a fl o n u o 0 o u u b w a o m 4 u u o 4 1 0 w q - m m < < u w § o o o m w d . u 4 9 n C . . . . . . 0 . m w m u h H d w u 4 6 9 w . . . . . . . . . . . . . 1 1 i w u D m 4 o u 4 m m m w u o N u a 4 o 0 0 0 1 4 N . o p r & w m o 0 n u o o p a u m u n o 0 0 0 : o o o o o 0 o o o o o o o o o o o 0 0 0 b 0 o o 4 p u u ~ fl . H . . . 4 o m w “ ” H u M w w \ “ o n M n m m M m n m m w N w ~ o u . H m o r E 0 o . m m 0 0 w u w n H m u o 0 u u u m u 4 w w H o . 4 » o . H d . . 4 4 w H w n m p u w » o o o o u u w w » u . n . ' . . . . . a m u . . . . . . . . . . . . . u 4 fl b p 9 9 m u 0 w m u 4 n m . . 0 u n w u u H 3 u fl & u m 0 u M u o b o o fl u u u 0 4 fl fl u o u 0 m m m n m m o w m o o p n u u m 4 m u u p H n 4 m u o 6 9 4 » . fl fi w c a r fl o a m a n n a . m a i v o o a @ 8 4 0 0 A m x z a u m z v r n o o n 1 N » o a u n 1 < n n w o o u r m \ \ o a u a n n a a n < 0 1 w ~ b ~ a m u m 1 w fi m b I H Z U M D M Z O N Z H C D w a w r m m A W \ Z Q V m z v u m o < 9 0 0 p V H M O A m \ z fi v m o w u m O V O H H 0 0 4 0 0 S M P L 1 9 6 4 - 1 9 8 4 2 1 O b s e r v a t i o n s S e r i e s M e a n S . D . M a x i m u m M i n i m u m I S P 1 9 8 . 1 4 6 6 7 7 4 . 4 3 7 3 6 6 2 9 9 . 0 0 0 0 0 9 9 . 9 4 0 0 0 0 5 " ? 1 5 3 . 3 2 5 2 6 0 . 2 4 1 1 5 9 2 5 2 . 4 2 0 0 0 7 7 . 3 9 0 0 0 0 S O P 4 2 4 . 6 6 0 0 0 1 7 6 . 5 2 5 4 8 6 9 5 . 1 1 0 0 0 1 8 5 . 6 3 0 0 0 C o v a r i a n c e C o r r e l a t i o n S P , S P 5 2 7 7 . 0 6 8 3 1 . 0 0 0 0 0 0 0 S P , S M P 3 9 7 2 . 7 1 8 5 0 . 9 3 0 2 3 5 2 S P , S O P 1 0 6 2 8 . 8 2 3 0 . 6 6 5 3 1 0 9 S M P , S M P 3 4 5 6 . 1 8 7 9 1 . 0 0 0 0 0 0 0 S M P , S O P 6 5 6 2 . 3 9 0 3 0 . 6 4 9 9 3 8 4 2 9 6 7 7 . 3 7 6 1 . 0 0 0 0 0 0 0 S O P . S O P