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ABSTRACT

EXPERIMENTAL AND THEORETICAL STUDIES OF
DUAL LASER IONIZATION (DLI) IN FLAMES

by

Yen-Yuan James Wu

Dual or Direct Laser Ionization (DLI) spectroscopy is a
recently developed flame spectrometric technique for trace
element detection. In the DLI experiment the analyte is
first resonantly excited by a dye laser, then is promoted to
the ionization continuum by a separate nitrogen laser, and
the subsequent ionization signal is collected by a set of
biased probes. In this study, DLI was used to
simultaneously measure the mobility coefficients and the
diffusion coefficients of various ions in laminar-flow
Hz-oz—kr flames, and hence the temperature of flames can be

calculated by the Einstein relation.

Recent studies in our laboratory have shown that the
time-resolved DLI signal consists two temporal components,
i.e. a short and strong electron signal followed some
microseconds later by a longer and weaker ion signal. Our
studies also have shown that the time-resolved DLI signals
can be modeled effectively by one-dimensional Fokker-Planck

equations with various drift functions. Through proper non-



linear least-square curve-fitting procedures, details of ion
transport processes under the influence of an electric field
in flames can be revealed. It is particularly of interest
that this study shows a relationship between the diffusion
coefficient of cations and the bias-voltage applied to the
probes. Theoretical treatment of this phenomenon indicates
that it is mainly due to ion-ion repulsion. A computer
simulation has partially confirmed this argument. The
diffusion coefficients and mobility coefficients of
different ions in various flame compositions obtained agree
reasonably with one another and also with the values
reported by other workers. The vertical temperature profile
of stoichiometric and fuel-rich H2-02-Ar flames were
measured with various ions, such as sodium, lithium,

calcium, and strontium. The results are in agreement with

one another and literature values.
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CHAPTER I

INTRODUCTION

A. Overview

Early experimental and theoretical studies of the
diffusion and drift of ions in gases were started soon after
the publication by Roentgen in 1895 of his discovery of X-
rays. Several physicists (1,2), including Roentgen himself,
observed that X-rays render gases electrically conducting.
The properties of gaseous conductivity were explained by
Thompson and Rutherford on the hypothesis that the
éonduction is due to the production of small charged
particles, i.e. ions and electrons. 1In their 1896 paper,
Thompson and Rutherford indicated a method for measuring the
sum of the mobilities of the positive and negative ions.
Three years later, Townsend (3) published the first attempt
to measure the diffusion coefficients of gaseous ions.

These investigations marked the beginning of quantitative
studies of ionized gases and have made important
contributions to the growth of modern physics, both in the
development of theories and experimental techniques.

-1 -



-2 -
In spite of the concentration of effort in this area
for more than half a century, many of the léng-recognized
problems have been only partly solved. Notwithstanding the
ingenuity and skill of the early workers, most of the
mobility data obtained before 1960 are of no more than
historical interest today. Apparently no reliable direct
measurements of diffusion coefficients of gaseous ions were

made until the 1960's (4).

Some of the recent measurements of ion mobilities were
done in flames (5-7). Often a Langmuir probe was applied to
relate the measured current to ionic mobilities (8-11). 1In
recent years, a laser beam has been employed to generate an

ion source in the flame (12,13).

Laser-enhanced ionization (LEI) is a relatively new
technique which can detect analytes in a flame by forming
ions with the aid of a laser and a pair of electrodes, which
have a bias voltage applied to them (14). With this
technique, time-resolved signals can be obtained (7), which
can be used to determine the ion mobilities. Smyth and
Mallard have used this technique to determine the mobility
coefficients of various ions with a wide range of atomic
weights in different flames. The results were compared with
the results from the Langevin theory of ion mobility. Lin,
Hunt and Crouch (15) applied a technique similar to LEI,

which is now called Dual or Direct Laser Ionization (DLI),
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and were able to determine both mobility coefficients and
diffusion coefficients of ions without using the Langmuir
probe theory, from these the flame temperature could be
determined with the Einstein equation (16). The results

agree with the measurements of other workers very well.

Further investigations of time-resolved DLI signals in
our laboratory have shown that there exist two temporal
components, i.e. an early electron signal followed some
microseconds later by a longer and weaker ion signal. Other
workers have observed similar features in LEI (7,17). Two
temporal components in the DLI signals imply that the model
of ambipolar diffusion, which is one of the basic
assumptions Lin made in his work, is not a complete
treatment. The Fokker-Planck equation with appropriate
drift functions turns out to be a superior modei. The
biggest advantage of the Fokker-Planck equation is that it
can treat ion mobility and diffusion simultaneously.
Through proper modelling of the DLI signals with a set of
one-dimensional Fokker-Planck equations, curve fitting
techniques can help reveal all details of the ion transport
processes in the flame under the influence of an electric

field.

To verify the validity of a Fokker-Planck model for DLI
signals, a study has been made by varying two parameters:

the dc voltage applied on the electrodes and the position of



- 4 -
the laser focal point in the flame. Modelling and curve
fitting unveiled a dependence between the diffusion
coefficient and the applied electric field. However,
extrapolation to zero voltage gave reasonable values for the
diffusion coefficients of various metal ions, provided that
ambipolar diffusion is still assumed. These results showed
that the interaction among charged particles in the flame
should be taken into account, also. To treat the
interaction among ions quantitatively, a FORTRAN program was
constructed to simulate the DLI processes in the flame.
Results from simulations showed that the repulsion forces
among ions play an extremely important role, which was not

anticipated previously.

Using the ion mobilities and diffusion coefficients
determined by the newly developed model, flame temperatures
were calculated via the Einstein relation (16). Various
ions were tested and the temperatures at different heights
in the flame were measured. All measurements agreed with

one another and other investigators' works reasonably.

In addition to the investigations of the applications
of the Fokker-Planck equation to DLI, the same idea was also
applied to HPLC signals, since the equilibrium of solutes
between stationary and mobile phases simulates a diffusion
process and the mobile phase movement simulates the ion

mobility. It has been found that the exponentially modified
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Gaussian function (EMG), which is a popular semiempirical
formula for modelling chromatographic peaks (18), is the .
solution of a particular Fokker-Planck equation. This
derivation implies that most of the chromatographic
processes can be treated much more precisely by rigorous
mathematical models, rather than semiempirical equations.
The treatment of HPLC signals with the Fokker-Planck model
provided better curve fitting results than those from using

the EMG.

B. Review and Historical

B-1 Ion mobilities

Data on ion mobilities and diffusion coefficients are
of both theoretical and practical interest. Research on
this subject was started nearly a century ago and a
substantial volume of literature has now accumulated.
However, recent studies of atmospheric and astrophysical
phenomena have revealed that gaseous ions play a much more
important role in nature than was previously suspected. The
present understanding is still insufficient to explain many

of the observations (19).

As mentioned previously, one year after X-rays were

discovered, Thompson and Rutherford (1) invented a method
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for measuring the sum of the mobilities of positive and
negative ions. The first measurements of ion mobilities in
gases were made by Rutherford in 1897 (20). In that paper,
he gave the mean of the values of the mobilities of positive
and negative ions for air, oxygen, carbon dioxide, and
nitrogen. However, Rutherford's measurements were soon
superseded by the more accurate measurements of Zeleny (21)

in 1900.

As an ion moves through a gas under a uniform electric
field, it gains energy from the field but loses energy
during collisions with other molecules. The drift velocity,

vd, of ions (cm-sec'1) is thus defined as follows:

Vg = M E [1]

where p is the mobility coefficient (cm2-volt™l.sec™!) and E
is the electric field strength (volt-cm™1l). The mobility
coefficient u is independent of the electric field strength
E. Equation [1] is valid only when the energy acquired from
the electric field between collisions is small relative to
the thermal energy (22). A quantitative criterion for the

limits of its applicability can thus be described as

follows:
------ << 1 [2]

where m is the mass of the gaseous ion. The condition
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defined by equation (2] is call the "low field limit". If
the relative importance of the thermal and field energies is
reversed, it is called the "high field limit". It is not
difficult to show that the ratio of the electric field
intensity to the gas pressure, EB/p, is an extremely
important parameter since it determines the mean energy
acquired from the electric field, and hence the value of ion
mobilities (22). The dependence of mobility upon the
pressure p of the gas was investigated first by Rutherford.
Since in his method ions were produced through photoelectric
emission from a plane cathode, only the behavior of negative
ions was observed. He found that in a pressure range from
34 to 765 torr, the product of pressure p and ion mobility
u p was effectively a constant. Langevin (23), in his more
extensive experiments, arrived at a similar conclusion.
Since then, most experimentalists have reported the results
of their measurements in terms of E/p, or E/po, where Py is
the "reduced pressure,” normalized to 0°C. Upon closer
examination, it is obvious that the ion mobilities can be
accounted for more precisely by the gas number density, N,
rather than p. McDaniel and Mason (22) have suggested
replacement of the E/p term by E/N to avoid ambiguity in
comparing experimental results. Huxley, Crompton and Elford
(24) suggested that the units of E/N be named the "Townsend"
or "Td”". This designation of the new unit has attained

widespread usage in the last twenty years (22).
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In 1903, Soon after the first measurements of the
mobility of gaseous ions, Langevin (25) published a theory
of ionic mobility based on the kinetic theory of gases. It
now appears to be the most useful and significant classical
treatment of the mobility problem. The equation obtained by

Langevin is:

Ho= - B &

where L denotes the mean free path, m is the ionic mass, and
Ve is the mean thermal speed of ions. Comparison with
experiments showed equation [3] to be deficient. The
calculated values are always too high by about a factor of
four (19). It was obvious to Langevin that one source of
error was the assumption that the mean free path of the ion
is the same as that of a molecule of the same species. A
mechanism which would shorten the ionic mean free path
substantially would definitely have to be developed.
Furthermore, the crude nature of the mean free path
calculations was apparent, and it was evident that more

rigorous methods should be applied.

In 1905, Langevin (26) extended the dynamical theory of
gases as founded by Maxwell and Boltzmann to derive accurate
formulae for the coefficient of inter-diffusion of pairs of
gases. He then proceeded to derive a formula for the

mobility of a gaseous ion on the assumption that a neutral
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molecule of the gas behaves as a perfectly elastic sphere
which becomes polarized under the influence of the
electrostatic field of the ions. Langevin also assumed that
the random thermal speeds of the ions followed Maxwell's
distribution law, in other words, the field energy is
negligible compared with the thermal energy. The complete

Langevin equation (in Hasse's notation) is:

U= A (m———mmmmm—e y1/2 [4]

where m and M are the masses of the ion and molecule,
respectively, p is the density of the gas, and € is the
dielectric constant of the gas. A is a function of the sum
of the radii of ion and molecule in a collision, which had
been recalculated by Hasse (27). Notice the fact that the
mobility expressed in equation [4] contains no dependence on
the charge of the ion; however, temperature dependence is

implied in a constant pressure environment.

Two distinctly different theories (23) involving the
concept of polarization attraction were then developed. One
proposal, which is called the "cluster-ion theory," was that
neutral molecules are attracted to and permanently bound by
the ion because of its charge. Also, the increased size and
mass of the ion which result from this attachment are
responsible for the low observed value of the mobility. An

opposing view was the "small-ion theory," in which the
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assumption was made that the size of the ion is relatively
unimportant, since the ions are retarded in their motion
principally by momentum transfers which are due to the
action of the attractive forces. The concept of the ionic
cluster is rarely useful. Experimental evidence shows ion
clusters can be formed in some gases under certain
conditions, however, only at low temperatures (22). For
most applications the "small-ion limit" of equation [4] has
been utilized. As the sum of the radii of the ion and
molecule in a collision approaches zero, the value of the
function A in equation [4] approaches 0.5105 (Langevin gave
0.505) and the equation simplifies to a form dependent only
on the bulk properties of the gas and the atomic or
molecular weight of the ion. This theory has been applied
to a large number of atomic and small molecular ions in
nonreacting gases at room temperature and also in flame
environments, and provides an excellent description of ion

mobilities (22).

The study of ion mobilities has made considerable
progress since 1905. However, it is interesting to point
out that Langevin's work remained unnoticed for about twenty
years, until Hasse (27) published his paper in 1926 with
some modifications of his calculations. During the period
before 1926, the most important investigations of the
theories of ion mobility were done by Chapman (28) and

Enskog (29). They developed a rigorous kinetic theory for
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gases composed of spherically symmetric (monatomic)
particles. Their expression for the mutual diffusion
coefficient lead to excellent predictions of ion mobilities;
(28-30). In 1931, Hasse and Cook (31,32) used the Chapman-
Enskog theory to improve the calculation of ion mobilities,
however, their attempt does not seem to represent a general

refinement over Langevin's model.

In 1934, the earliest investigation of ion mobilities
based upon quantum mechanics was published by Massey and
Mohr (33). Dalgarno and Williams (34) have investigated the
second-order correction term in the Chapman-Enskog
expression for the mutual diffusion coefficient and obtained
approximate solutions for lithium and helium ions. This
results indicated that the ion mobilities increased with

increasing temperature (35), in contrast to gas molecules.

Wannier (36,37) extended the theory of ion mobilities
to the high E/p region, in which the energy derived from the
field is comparable to the thermal energy. Although his
theory is mainly applicable to the high-field region, it
also yielded results of considerable interest at low E/p.
His theory indicated that the drift velocity should show no
dependence on temperature in the high-field region.

However, in the low-field region, the drift velocity should
vary directly with E/p regardless of the interactions among

gas particles. Wannier's theory concerning the variation of
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drift velocity with EB/p has been verified by Hornbeck (38)
and Varney (39) in studies of the noble gasés, oxygen,
nitrogen, and carbon monoxide. More refined models then
were used by Kihara (40), Mason and Schamp (41), and Perel
(42). All results showed that Langevin's treatment, which
now is usually referred to as the first-order approximation,
is often accurate enough. Higher-order corrections to the

mobility were shown to be small.

The measurement of ion mobilities was considerably
advanced in precision and reliability by the introduction of
time-of-flight methods in 1928. Tyndall, Starr, and Powell
(43) invented a four-gauze electrical shutter apparatus and
measured the mobilities of alkali metal ions in various
noble gas environments. Beaty (44-47) has improved this
apparatus and measured the mobility of positive ions of
argon in the parent gas over an E/po range extending from
about 1 to 80 volt-cm l-mmHg™l. Hornbeck (38,48) invented a
method which uses an ultraviolet light source to generate
pulses of photoelectrons and produces a Townsend avalanche.
The ionic drift velocity is also determined by measuring the
arrival time of ions. Hornbeck extended the E/p° range to
1000 voltocm'lommxg'l. Other accurate measurements were
made by Bionde and Chanin (49-52), McAfee et al. (53),
Miller et al. (54), Young and Edelson, et al. (55), and
Smith et al. (56). Those people applied the afterglow

method and the mass spectrometer extensively. Since then
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the general consensus is that experimental values of ion
mobilities should not be formally accepted unless a mass

spectrometer has been employed (22).

Direct determinations of ion mobilities in flames have
been very limited (6,7,10) despite the interest in gas
reactions at high temperatures. Most determinations have
used a Langmuir probe (11) to derive mobilities from the
measured current. However, since the dependence of the ion
current on mobility is not clearly established, the reported
ion mobilities have shown large variations (57). Smyth and
Mallard (6,7) applied the LEI techniques to measure the ion
mobilities of alkali metal ions in air-acetylene and oxygen-
carbon monoxide flames. The results were compared with

Langevin's theoretical values.

B-2 Diffusion Coefficient

Diffusion is the process by which matter is transported
from one part of a system to another as a result of random
motion. Transfer of heat by conduction is also due to
random motions of molecules and there is an obvious analogy
between the two processes. Fick (58), who recognized this
resemblance and then adopted the mathematical equation of
heat conduction derived by Fourier in 1822, made the first

treatment of the diffusion processes on a quantitative basis
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in 1855. The mathematical theory of diffusion in isotropic
substances is therefore based on the hypothesis that the
rate of transfer of a diffusive subject through a unit area
in an arbitrarily chosen frame is proportional to the
concentration gradient measured normal to the unit area
plane. This hypothesis can be written in mathematical terms
as:
dP
J=-D -—- (5]
?q
where J (sec'locm'z), sometimes called the "flux", is the
rate of transfer of the diffusive subject per unit area, D

2-sec'l), and P can be

is the diffusion coefficient (cm
interpreted as the concentration (cm'3) of the diffusive
subject at coordinate q and time t. The negative sign in
equation [5] is due to the fact that the direction of
diffusion is always opposite to the direction of increasing

concentration. The change of concentration P versus time

thus can be written as follows:

?dP ®
——-—= = —=—== [ J(q,t) - J(q+dq.t) ] (6]
>t ?q
where
aJ(q,t)
J(q+dq,t) = J(q,t) + (-=-====-- ) dq. (71
¥q

On combining equations [5] through [7], the well-known
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equation of continuity can be derived.

---- = D ---=- (8]

Equation (8] is also called the time-dependent diffusion
equation of Fick's Second Law, while equation [5] is known
as Fick's First Law. Numerous books and review articles

devoted to diffusion processes are available (59).

The theoretical investigation of diffusion processes in
ionized gases and the measurement of diffusion coefficients
of ions were never easy tasks. Most measurements of
diffusion coefficients were carried out along with the
measurements of ion mobilities, in fact, as a by-product of
the measurements of ion mobilities. Hence equation [8] is
usually used along with a mobility term to describe the
essential part of the transport phenomena of gaseous ions.
The details will be covered later in this chapter. As
mentioned before, it is generally acceptable that no
reliable direct measurements of ionic diffusion coefficients
were made before the 1960's. In fact, the first precise and
accurate measurement of ionic diffusion coefficients may be
dated back only to 1968 (22). However, the studies on this
subject were started much earlier. 1In 1899, Townsend (3)
published the first attempt to measure the diffusion
coefficients. He was able to deduce the diffusion

coefficients by measuring the ratio of losses of ions when
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the ionized gas travelled through narrow metal tubes of
different lengths. The somewhat difficult theory deduced
from Maxwell's equations of transport was also given by

Townsend. The result can be written as follows with modern

symbols:
] e
-o- = oo (91
D kT

where p is the mobility coefficient (cm?.volt™l.gec™l) of

2-sec'l). e is

the ions, D is the diffusion coefficient (cm
the electron charge, k is the Boltzmann constant, and T is
the absolute temperature. It is interesting to point out
that equation [9] had previously been deduced by Nernst (19)
in 1889 for electrolytic ions, although his theoretical
treatment was not strictly applicable to ionized gases.
However, for some unknown reasons equation [9] is often
called the "Einstein Formula." Einstein certainly employed
this formula in his research on Brownian motion, as will be
mentioned later in this chapter; however, equation [9] was
already well known at that time. In actuality, Einstein
himself has acknowledged this fact (16). Conventionally,

equation [9] is used to derive the ionic diffusion

coefficients if the mobility coefficient is known (19).

The direct measurements of diffusion coefficients were
mainly by the drift-tube method along with the measurements

of ion mobilities, as mentioned earlier. Drift tubes were
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first used at the end of the nineteenth century and have
been applied to the study of ionic drift velocities almost
continuously since then (3). A conventional ionic drift
tube usually consists of a gas container, an ion source, a
set of electrodes that establishes a uniform axial
electrostatic field along which the ions drift, and a
detector at the end of the tube. The drift field E causes
the ions to "swarm" through the gas. The drift velocity and
diffusion rate of a gaseous ion are functions of the field
strength, pressure, and temperature. A time-resolved
spectrum is usually taken for the determination of ion
mobilities and dAiffusion coefficients (19). It is expected
that the shape and width of the time-resolved spectrum would
depend strongly on the value of the diffusion coefficient D.
With this idea, the first reliable measurement was made by
Moseley (60), subsequently followed by McDaniel et al. (61).
Soon after Moseley's publication, the drift-tube mass
spectrometer was introduced and the time-resolved spectrum
of gaseous ion could be measured much more precisely.
However, due to the inherent difficulty of relating the
time-resolved signals to diffusion coefficients, this

probably could not be much better determined (19).

Recently, Lin, Crouch and Hunt (15) has used simple
models to determine both mobility and diffusion coefficients

of ions, as mentioned before.
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The real challenge in this subject is to find the
solution of the transport equation describing the drift and
diffusion of the ions in the apparatus used for an
experiment. This can be treated most efficiently by solving
the Fokker-Planck equation with suitable drift functions.
The essence, development, and application of the Fokker-
Planck equation will be covered in later sections of this

chapter.

B-3 Dual Laser Ionization

Among the many laser-based analytical techniques
developed in the last two decades, laser-enhanced ionization
(LEI) has proven to be particularly useful for the
determination of trace metal elements. A closely related
technique, dual or direct laser ionization (DLI), which has
improved the sensitivity of LEI under circumstances, is

under investigation in our laboratory.

The irradiation of a sample reservoir, such as a flame
or discharge plasma, by a light beam at a frequency selected
right at the resonant transition of the analyte may induce a
variation of local charge density, which usually can be
measured as a voltage or current change. This variation of
electric phenomena is due to the change of the ionization

rate within the sample reservoir, and is commonly called the
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opto-galvanic effect (OGE). The first observation of the
OGE was published in 1925 by Foote and Mohler (62,63). In
their investigations of the photoionization of alkali metal
elements, they observed cesium ions by using space-charge
amplification in a thermionic diode which was irradiated
with a tungsten lamp at wavelengths chosen below the
photoionization threshold. Due to the limited signal
magnitudes obtainable with conventional light sources, the
OGE was nearly completely overlooked for 50 years until very
powerful light sources, namely lasers, became popular in
analytical laboratories. With a laser as the light source,
OGE was first applied to analytes in a flame environment in
1976 by Green et al. (64) at the National Bureau of
Standards (NBS), and this new application of OGE is now more
aptly called LEI. Dramatic progress has been achieved since

1976 (65).

The basic principles of the LEI technique have been
described in numerous articles (65-73). Briefly, the
mechanism of LEI process can be portrayed as follows: gas
phase analytes in a flame are first promoted to a selected
excited state by a dye laser tuned at the resonant
frequency; then, the excited atoms are further elevated to
the ionization continuum, mainly by collisions with foreign
gas molecules in the flame. The ions formed in the flame
are collected by a pair of electrodes with bias voltages.

LEBI differs from conventional flame spectroscopic methods,
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such as absorption, emission, and laser-induced
fluorescence, in at least two ways. First, the ionization
continuum states of analytes are involved, in contrast to
the conventional optical methods which deal exclusively with
the discrete states. Second, the detector of LEI is a pair
of electrodes instead of an optical detector, such as a
photomultiplier. This difference in detector can provide
many advantages over the conventional optical methods.
Thorough reviews of the development of laser-induced
analytical spectroscopies, including LEI, have been given by
Lin (74) and Curran (75), hence, later in this section only

recent advances in LEI methods are reviewed.

Dual or direct laser ionization (DLI), which has been
under investigation in our laboratory since 1979 (76), is
closely related to LEI in instrument design. However, in
basic principles it is, in fact, an extension of resonance
ionization spectroscopy (RIS) to the flame cell. In RIS
laser radiation is used to photoionize the atoms or
molecules directly (77), while in LEI the ionization process
is assisted by collisions among excited analytes and foreign
gas molecules in the flame. DLI differs from LEI in that a
second laser is applied to promote the excited analytes to
the ionization continuum. However, for some elements the
collisional ionization mechanism still can compete, or even
dominate over the photoionization mechanism and effectively

turn DLI back, in principle, to LEI (78). 1In the DLI
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experiment performed in our laboratory the analyte, after
being nebulized into the flame cell, is first resonantly
excited by a dye laser tuned to a wavelength at the resonant
transition. Then is promoted to the ionization continuum by
a separate nitrogen laser (337.1 nm). The subsequent
ionization signal is collected by a pair of voltage-biased
nichrome-wire probes. The electrical, rather than optical,
nature of signal detection leads to high sensitivity, as
many of the common limitations on signal collection that are
found in conventional spectroscopic techniques are avoided

(74).

There are at least two advantages of DLI, compared with
the conventional optical methods, worth mentioning. First,
DLI is definitely free from most of the optical
interferences, such as scattering of the laser light, sﬁray
light, and flame background emission. This is ﬁart of the
reason why DLI usually provides very good detection limits
and high sensitivity (79), provided that the interferences
caused by easily ionized matrix constituents are kept low,
as they usually are. Second, DLI supplies a very
convenient, inexpensive and high-intensity ion source in the
‘flame environment. Since there is an electric field built
up between the electrodes, ion transport between the laser
focal point (the ion source) and the electrodes involves
both mobility and diffusion. Hence DLI provides a very good

tool to study ion transport processes in the flame
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environment. The high efficiency of ion collection, coupled
with a high intensity ion source, gives very stable and
reproducible time-resolved DLI signals, from which both the

ion mobility and diffusion coefficient can be deduced.

Recent developments in LEI have focused on the
practical aspects, and various methods have been used to
improve the performance of LEI. One major concern has been
poor sample transport efficiency, which is inherent with
premixed sample introduction into flames or plasmas (80).
Hall and Green (81) reported the use of a total consumption
burner and showed that it can enhance the collisional
ionization for copper and give better detection limits.
They also compared premixed burners with total consumption
burners for sample analysis by LEI (82). Also, Hall and
Green (83) used a total consumption burner with prior
desolvation of discrete sample volumes in a home-made
microcondenser or a commercial graphite furnace. The
desolvation with a graphite furnace was examined in much
greater detail; however, the microcondenser generally
performed better and gave a lower detection limit. In the
best case, sample desolvation permitted the improvement of
detection limits for manganese by two orders of magnitude.
With both the graphite furnace and the microcondenser, the
discrete sampling gives a low concentration environment and
effectively reduces the electrical interference. Also, Turk

and Watters have tried an ICP as the atomization source (84)



-23-
and Bykov et al. (85) have used various flames and a
graphite furnace as atomization sources to evaluate certain
interfering matrices. A new interface that can lower the
pressure of the gas analyte from the flame was also reported
(86). Replacing the dc detection system with the microwave
detection frequencies for LEI to minimize the perturbation
on the flame combustion has been suggested, as well (87).
Axner et al. (88) reported on detection limits for LEI in
flames for several metal elements. They used a pulsed
excimer laser for excitation. Detection limits in the part-
per-billion to part-per-trillion range were obtained for 13
elements. Some detection limits from their work compare

favorably with those reported previously in the literature.

Stepwise LEI techniques have also been investigated by
people. Omenetto et al. (89) have employed two lasers, one
tuned at 291.832 nm and the other at either 377.572 or
276.781 nm, to excite the analyte. By increasing the
population at the metastable 2P3/2 level, a 38-fold
enhancement of the LEI signal was obtained. Axner et. al
(90) also showed that by a two-laser excitation method, the
LEI signal for Mg can be enhanced at least two orders of
magnitude. Smith et al. (91) reported that, for lithium,
the ionization yield from a single-step excitation at
670.784 nm increased from 0.26%, to 58% from a two-step
excitation (670.784 + 460.286 nm) mechanism. They also have

presented a simple theoretical treatment of the ionization
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process in order to estimate the effective collisional
ionization rate coefficients by order of magnitude.

Havrilla and Choi (92) have employed both of the single and
stepwise excitation schemes to measure the detection limit
of zinc. They tried seven zinc transitions, including
resonance lines at 213.8 and 307.6 nm, and obtained
detection limits ranging from 10 ppm to 1 ppb. Generally
speaking, the stepwise scheme is more effective and
selective than single step processes. However, it also
leads to a substantial increase in the analysis complexity.
An even more complicated system is also worth mentioning
here. Turk and Omenetto (93) have used a two-step scheme to
photoionize strontium directly. The strontium ions produced
were then monitored by a third laser, colinear and counter-
propagating in the flame, tuned to an ionic fluorescence
transition, and delayed in time with respect to the ionizing
beams. Although their work is beyond the scope of DLI, the
fast decay of ions they have observed might be helpful in

constructing better theoretical models for LEI processes.

In addition, LEI was successfully employed for isotopic
analysis, and hyperfine splitting was revealed by using
hollow cathode-type sampling source (94-96). LEI has also
been applied to high-resolution spectroscopy in recent

studies of uranium (97-98) and lutetium (99).

The complete quantum mechanical theory of LEI has still
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not been fully developed. However, many characteristics of
LRI can be explained by a simple rate-equation argument
(100). Curran et al. (78) examined the energy schemes of
DLI processes. They demonstrated that for lithium, sodium,
calcium, and strontium, the second, fixed-wavelength laser
can enhance the electrical signal up to three orders of
magnitude. For some elements, the lack of enhancement was
explained in terms of the decline of photoionization cross
sections with increasing energy overshoot into the
ionization continuum, and the competition between
photoionization and collisional ionization. Considerations
applicable to the optimization of DLI experiments were also
discussed. The mechanism of the LEI signal in a glow
discharge and the perturbation of the laser source on the
discharge character were discussed by Burakov et al. (101).
The plasma characteristics for copper (102) and uranium
(103) hollow cathode lamps were examined and simple plasma

models discussed.

The theoretical aspects of electrical phenomena and the
electrical interferences shown in LEI and DLI processes have
drawn considerable attention. Curran et al. (79) have
studied the electrical interference for DLI. Reasonable
signal recovery ratios were observed as long as the laser
focal point was inside the ion sheath. High concentrations
of easily ionizable matrix components appear to extend the

linearity of analytical curves, however, the noise levels
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may be higher due to photoionization of the matrix
components. As previously mentioned, Nippoldt and Green
(104) have shown that taking the LEI signal right after the
aspiration started may effectively suppress the electrical
interferences in the flame. Bykov et al. (85) have used
various flames and a graphite furnace as atomization sources
to evaluate certain interfering matrices, too. Havrilla et
al. (105) have developed a point charge model based on
induction theory to explain LEI and account for the effects
of the alkali metals. Also, the signal suppression by easily
ionized elements and the determination of ion fractions in
the sources were studied by Hall and Green (106). Berthoud
et al. (107) observed two temporal peaks from LEI signals.
They believe that both of the two peaks are due to
electrons. The data reported by them indicates that the
mobility coefficient of electrons may be as large as 3000
cm?.volt l.sec™l. Mallard and Smyth (6,7) have applied the
same argument in order to calculate the mobility

coefficients of various metal elements in flames.

There are a few very good review articles worth
mentioning. Ingle and Crouch (100) have given a brief but
‘accurate description of DLI and LEI in their recent book.
Travis et al. (65,108) have given two thorough and
comprehensive reviews of the development and progress, in
1982 and 1984. The 1984 review placed more emphasis on the

theory and principles of the technique. In addition, Camus
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(109) has reviewed the general aspects of LEI. Book
chapters written by Schenck et al. (66), Travis et al. (67),
and Travis et al. (71) also provided excellent descriptions
about the general background of the LEI technique. Alkemade
et al. (110) has given an extensive review of the behaviors
of metal ions in various flames. Various aspects of LEI
instrumentation and performance in trace metal analysis were
discussed by Kuzyakov (111). Berthoud (112) discussed the

LEI technique on the aspects of general instrumentation.

B-4 The Fokker-Planck Equation

Interest in linear and non-linear fluctuations of
thermodynamic variables and in the stochastic methods for
treating them has grown rapidly in the last few decades. 1In
contrast to deterministic models, a common characteristic of
all stochastic problems is that the treatment is focused on
a property which is the result of superposition of a large
number of variables. The values of the stochastic variables
are governed by certain probability laws, but not by
classical mechanics. It has been shown by van Kampen (113)
that a well-defined set of deterministic kinetic equations
for the classical mechanical variables can be extracted from
the stochastic equations if the physical parameter which
scales the fluctuations can be determined and taken to the

limit of vanishing fluctuations. The most well-known
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classical applications of stochastic mechanics in chemistry
are the Debye-Hickel (DHL) theory of electrolyte solutions
(114) and the Lindenmann-Hinshelwood-Marcus theory (now is
called the RRKM theory) of uni-molecular reaction rates
(115). In quantum mechanics a qualitative stochastic
description is often used to justify the perturbation and
variation methods of solving the Schroedinger equation for
atoms that contain two or more electrons (116). A
quantitative stochastic treatment of quantum mechanics still
has serious difficulties, however, some would argue it has
conceptual advantages over the wave mechanical approach

(117).

The treatment of fluctuations of a system made up of
many small units is not at all new. The first publication,
which dealt with gaseous systems, was presented by Boltzmann
in 1872 (118). 1In his work, Boltzmann derived an equation,
which is now called the "Boltzmann Equation", to determine
the evolution of the distribution function of molecules in
the gaseous phase which are sufficiently dilute that only
two-body interactions are ever important. For equilibrium
states the treatment yields the Maxwell-Boltzmann
distribution of molecular velocities; for non-equilibrium
states, where mass and heat flow are present, it gives the
macroscopic laws with kinetic coefficients, such as the

viscosity coefficient and the heat conductivity.
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From 1905 to 1908, Albert Einstein published five short
papers about Brownian motion (16). He showed that the

2.3ec”l) and the so-called

diffusion coefficient D (cm
"mobility" of Brownian particles, u, are related by the

following equation:
D= pukT [10]

where k is the Boltzmann constant and T is the absolute
temperature of the fluid in which Brownian particles are
immersed. To test the validity of this equation, Binstein
himself checked it with existing data on sugar molecules in
water. The establishment of the first complete and absolute
proof of the equation has been credited to Perrin (119).
According to Kubo (120), it is interesting to note (16) that
when Einstein was working on the theory of Brownian motion
he did not know at first that such motion had already been
observed by the Scottish botanist Robert Brown in 1827, when
Brown was working with small particles originating from
pollen floating on water (121). More interestingly,
Einstein did not initiate his research on Brownian motion to
develop stochastic mechanics, but for proving the atomic
theory (122). However, the outcome of Einstein's theory has
not only finally convinced even the strongest opponents of
the validity of atomic theory, but also has motivated
development of mathematical theories of stochastic
processes. Numerous applications have been made in physics,

chemistry, economics, and almost every other discipline of
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science. Of all the diverse methods of treating stochastic
processes, the remainder of this section concentrates on the
development and applications of a special approximate
representation of the master equation (123), namely, the

one-dimensional Fokker-Planck equation.

The Fokker-Planck equation was first used by Fokker
(124) and Planck (125) to describe the Brownian motion of
particles. It is mainly used as an approximate description
for any Markoff process in which the individual jumps are
small. Einstein's model of Brownian motion, in this sense,
is a special case of the Fokker-Planck equation. Planck
derived the general non-linear Fokker-Planck equation from
an arbitrary master equation assuming only that each jump
has to be small (125). 1In 1931, Kolmogorov (126)
contributed a mathematically rigorous derivation by reducing
all jumps to infinitely small steps. Hence, the Fokker-
Planck equation is also called the forward Kolmogorov

equation.

The general Fokker-Planck equation for one variable q

has the form:

>P >2 (DP)  (hP)
—_——— ¥ eecccca—- + —————— (11]
ot 2q? 2q

where P is the conditional propagator, D is the diffusion

2

coefficient (cm -sec'l) which can be a function of q, and h
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is the drift function (cm-sec'l). The conditional
propagator P is usually expressed as a function of both q

and t:

The Fokker-Planck equation has two alluring features.
First it is a differential equation rather than a
differentio-integral equation. Even though it is still
difficult to obtain analytical solutions except for a few
special cases (127), at least it is easier to handle. More
important is the fact that it does not require knowledge of
the entire kernel but merely of the diffusion coefficient D
as a function of q, and the drift function h. For any real
stochastic process these can be determined with a minimum of
detailed knowledge about the underlying mechanism. By
solving the Fokker-Planck equation one obtains distribution
functions from which any averages of macroscopic variables
are obtained by integration. Since the application of the
Fokker-Planck equation is not restricted to systems near the
equilibrium state, it has often been employed to describe
the evolution of non-equilibrium thermodynamic systems for a
small number of stochastic variables. More specifically,
-the Fokker-Planck equation, which involves fluctuations that
reflect the range of the microscopic variables, can give
both the proper conditional propagators which are consistent
with given macroscopic constraints, and the vestige of the

consequent variations in the time development of the
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stochastic variables, by which the system is characterized.
Many review articles and books on the Fokker-Planck equation

exist (123,128,129).

A process described by equation (11] with a
vanishing drift function and a constant diffusion
coefficient is called a Wiener process. The equation for
the conditional propagator P=P(qf,tf|qo,to) is then the

diffusion equation:
==== = D ===z- [12]

with the initial condition:
P(qf'tflqo'to) = b(qf-qo) ’ [13]

The solution for tf > to reads as follows:

P(Qerte|qy,ty) = ———=—==———-—sos exp (-=-==-=-=-- ) (14]

If the drift function h is linear with a constant diffusion
coefficient, it is called the Ornstein-Uhlenbeck process
(130). The equation can be written as follows:

>P »2p > (hP)

=== = D -=-=- + ——————- [15]

ot 2q? 2q
where

h = -agq (16]
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with the initial condition the same as equation [13]. The
term a is a constant (sec”l).

The Ornstein-Uhlenbeck process may be equally well
described by a linear Langevin equation with Gaussian
Langevin forces. Because for a linear transformation of
variables a Gaussian distribution will remain Gaussian, the
conditional propagator must also be a Gaussian distribution.
The general solution of the Ornstein-Uhlenbeck process

reads:

Pl(Qe,te|qqrty) = ——======g===== exp(-======3-== ) (17]
£%¢ld % [2#D(1-72)]1/2 2D (1-72)

where

v = exp(-a(tf-t )) (18]

0

In the limit where a approaches zero, equation [17] reduced
to the result for a Wiener process, equation [14]. Notice
that equation [17] is valid for both negative and positive a

values (130).

Onsager and Machlup have derived a similar integral
method to treat linear fluctuations from the Langevin
equation (131,132). They formulated this principle for
linear fluctuations, with the aid of a function now called
the Onsager-Machlup function. The definition and use of the

Onsager-Machlup function have been extended recently by
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Graham (133), and several articles have been published since
then to discuss this and its theoretical consequences (134-
138). Moreau (139) has applied the Onsager-Machlup function
systematically to the non-linear fluctuations of a
thermodynamic variable, and Dekker (140) has given a
detailed derivation of the functional integral
representation of general diffusion processes in curved

spaces.

One powerful method for solving the Fokker-Planck
equation is the use of functional path integral techniques.
Pioneering research on path integrals has been done by
Wiener for Brownian motion (141-144). This method was
applied by Onsager and Machlup (131,132) to treat
fluctuations in chemical systems near to the equilibrium
state. Recent extensions of the method have made possible
new applications to cluster growth in homogeneous nucleation
(145), to the kinetics of phase transitions (146), and to

other problems in non-equilibrium thermodynamics (147).

The path integral approach gives the expression for the
conditional propagator P(qt,tf|q°,to) associated with a

stochastic differential equation:

-1 tf .
exp ( ---- L(q,q.t) dt ) [19)
2D to
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where the integration runs over all functions q(t) with
q(to)- 9, and q(tt)-qf. The conditional propagator gives
the probability of observing the value qg for the stochastic
variable q at time t. The term L(q,q.,t) in equation [19]

is commonly called the thermodynamic Lagrangian. Several
different representations of thermodynamic Lagrangians have
been reported (133-135,137,140,148,149). The evaluation of
the conditional propagator in equation [19] by Laplace's
method was first carried out by Wiegel (150,151) and
subsequently by others (139,152,153). Since then the path
integral techniques have been coupled frequently with the
so-called Onsager-Machlup-Laplace (OML) approximation to
obtain the conditional propagators associated with the
Fokker-Planck equations. The OML approximation is exact for
linear Gaussian processes, i.e., if the underlying
mechanical force is linear (131,132). Hongler (154) has
presented a class of interesting Fokker-Planck equations for
which the exact conditional propagators are analytically
solvable. This has provided a standard for comparison with
the results from OML approximations. K.L.C. Hunt and Ross
(155) recently proved that the thermodynamic Lagrangian is
unique for single-variable processes or for multi-variable
processes in flat spaces. Subsequently P.M. Hunt, K.L.C.
Hunt and Ross (156) discussed the validity of OML
approximations. They also prescribed an algorithm that can
be used to solve equation [19] numerically. This algorithm

was applied in this dissertation to simulate the DLI signals
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under linear and non-linear electric fields. The details

are covered in later chapters and appendices.

C. Overview of the Dissertation

This dissertation contains eight chapters and four
appendices. This first chapter has introduced the main idea
of work. The general background and the historically
related literature of the theories and measurements of ion
mobility coefficients and diffusion coefficients has been
reviewed. Since a detailed account of the development of
laser-enhanced ionization (LEI), dual or direct laser
ionization (DLI), and other related laser-based ionization
techniques have been given by Lin (74) and Curran (75), only
the developments from 1983 to the present were emphasizéd.
However, all related background was briefly reviewed and
most of the key literature was cited to make that section a
self-contained essay. The section on the Fokker-Planck
equations covered some historical accounts in order to show
the essence of this important and powerful equation, and
along with the coupling with path integral techniques and

the Onsager-Machlup-Laplace (OML) approximation.

Chapter II describes the experimental set-up used to
obtain the data presented in the main body of this thesis.

The DLI experimental system is described briefly in order to
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give a rough profile of the system. Since this work relied
heavily on the use of a microcomputer interfaced boxcar
integrator, a more detailed description of this aspect is

given.

Chapter III deals with the time-resolved DLI signals.
Evidence is provided to show that the DLI signal is composed
of two separate, but often overlapped signals. The reasons

for this phenomenon are also discussed.

Chapter IV introduces the application of the Fokker-
Planck equation for the ion transport processes of DLI. The
one-dimensional Fokker-Planck equation is derived from the
basic assumptions of the DLI ion transport model. Various
forms of the Fokker-Planck equations are derived and solved
either analytically or numerically. The results are
interpreted in order to explicate the essence of the time-

resolved DLI signals.

Chapter V describes the theory and procedures utilized
for comparisons of the theoretical model and DLI signals.
The DLI signals for sodium ions under different conditions
were chosen to demonstrate the validity of the theoretical
model. Non-linear curve fitting techniques are applied to
the sodium DLI signals in order to extract the essential
parameters, such as the mobility and diffusion coefficients.

The curve fitting reveals a dependence between the diffusion
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coefficient and the applied electric field, which is
interpretable. However, the temperature of the hydrogen-
oxygen—-argon flame can still be calculated by the Einstein

relation.

Chapter VI describes a FORTRAN simulation program which
simulates the DLI processes with different parameters in
order to explain the interdependence of the diffusion
coefficient and the applied electric field. However, due to
the deficiencies of the one-dimensional model, this program
can only show the relationship between the diffusion
coefficient and the electric field. It can not duplicate
actual DLI processes. New algorithms that can simulate the
diffusion and drifting processes more effectively are also

described.

Chapter VII presents the temperature profile of
hydrogen-oxygen-argon flames measured by using different
metal ions. The results agree reasonably well with the

literature values.

Finally in Chapter VIII, the work is summarized and

recommendations for future studies are made.

Appendix A contains the FORTRAN listing of the program
which gives the numerical solutions of a Fokker-Planck

equation with various piece-wise linear drift functions.
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Appendix B includes the FORTRAN source code of the non-
linear curve fitting programs and their output formats.
Appendix C is the FORTRAN source code for the simulation
program. Appendix D describes the application of the

Fokker-Planck equation to an HPLC system.
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CHAPTER II

EXPERIMENTAL

A. Overview

The dual laser ionization (DLI) system used in this
work is analogous to that used in laser-enhanced ionization
(LEI) experiments. However, in addition to the tunable dye
laser, another laser beam is used to photoionize the excited

atoms in the flame cell.

FPigure 2-1 shows a simplified schematic diagram of the
experimental system used in this work. A dye laser beam and
a portion of the nitrogen pump laser beam are directed into
a flame cell so that they overlap spatially and temporally.
The ions generated by the laser pulses are then collected by
a pair of voltage-biased probes immersed in the flame. The
current detected is converted into a voltage by a current-
to-voltage converter. The output voltage signal from the
amplifier is the input of the boxcar integrator, which is
triggered synchronously by radio frequency noise produced
when the N2 pumping laser is fired. The output from the
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boxcar integrator is sent to a front panel meter and a
strip-chart recorder, or to a microcomputer, which is
interfaced with the boxcar integrator through the back
panel. The microcomputer usually (i) downloads controller
programs from the mainframe PDP/11-23, (ii) takes control
parameters from the user through a terminal, (iii) controls
the scanning functions of the boxcar integrator, (iv) takes
data from the boxcar integrator, and (v) uploads the data to

the mainframe for future data processing.

Except for the microcomputer interfaced boxcar
integrator system, the details of the DLI experimental setup
have been described by Lin (1) and Curran (2); hence only
the general characteristics of each individual component are
mentioned in this chapter. However, the function of the
microcomputer interfaced boxcar integrator system will be

portrayed in detail in later sections.

B. Laser System

In a typical DLI experiment, a nitrogen-laser pumped,
tunable dye laser is focused into the flame cell to promote
atoms from the ground state to a excited state. A portion
of the nitrogen laser beam is deflected by a mirror and then
focused into the flame cell to be temporally and spatially

coincident with the dye laser in order to photoionize the
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excited atoms. A simplified schematic diagram that shows
the experimental arrangement of the optical elements for the

dual laser system is depicted in Figure 2-2.

The nitrogen (N2) laser (Model 0.5-150, NRG Inc.,
Madison, WI), as shown in Figure 2-2, is used both as a
pumping source for the tunable dye laser and as the ionizing
beam in DLI experiments. The rated peak power output of the
nitrogen laser at a repetition rate of 60 Hz is 500 kW; the
portion of the beam split off and used for ionization had a
radiant power between 100 and 150 kW. The nitrogen laser
beam is focused by a quartz lens and its focal area was
determined to be (2.0 £ 0.4) x 10™% cm?. The general
specifications of the nitrogen laser are given in Table 2-1.
The major disadvantage of the nitrogen laser as a pumping
source is the radio frequency interference (RFI) broadcast
when the breakdown of the spark gap occurs. This introduces
noise to all of the associated electronics. A Faraday cage
made of 0.50 mm copper plates was placed around the nitrogen
laser to minimize this noise. It was found that cleaning up
the spark gas electrodes or replacing them sufficiently
often can effectively reduce the RFI noise and reduce the
pulse-to-pulse laser power fluctuations. Electrodes were
usually cleaned by sandpaper, and the replacement electrodes
were copied from the originals by the machine shop. A
strict cleaning schedule was maintained since the stability

of the nitrogen laser output is extremely important to the
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Figure 2-2.

Simplified schematic diagram of the dual laser
system. B, boxcar; DL, dye laser; F, flame; L,
lens; M, mirror; O, oscilloscope; PL, pump

laser (nitrogen laser); R, x-t chart recorder,

S, signal; TL, trigger line.
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Table 2-1. Specifications of the Nitrogen Laser

Repetition Rate 1 - 60 Hz
Peak Power at 60 Hz 0.5 MW
Pulse Duration 5 ns FWHM
Average Power at 60 Hz 150 mW
Power Requirement at 120 volts, 60 Hz 10 amp

Beam Divergence 3.8 mrad x 10.7 mrad
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reproducibility of the time-resolved DLI spectra.

During the operation of the nitrogen laser, the
pressure of pre-purified grade nitrogen (Airco Inc., Murray
Hill, NJ) was usually varied between 20 to 28 psi while the
laser tube pressure was maintained at 72 torr. To avoid
short term variations in the tube and spark gap pressures, a
dual stage pressure regulator (Model 580, Airco Inc., Murray
Hill, NJ) was adopted. The laser was operated at 20 Hz for

most DLI experiments.

The nitrogen-pumped tunable dye laser used in these
experiments essentially follows the original design
described by Hansch (3). A laser dye solution in a slightly
tilted quartz cuvette having mono-layer anti-reflection
coatings (Type 509, Precision Cells, Inc., Hicksville, NY)
is incorporated into a short optical cavity formed between a
diffraction grating and a partially reflecting output
coupler. The organic dyes in the cuvette are optically
pumped by the repetitively pulsed nitrogen laser placed at a
ninety-degree angle to the cavity. A cylindrical quartz
lens focuses the nitrogen laser beam to a narrow line inside
the quartz cuvette. The subsequent fluorescence radiation
is collected by an achromatic inverting telescope (Model
1592, Oriel Corp., Stamford, CN) which collimates and
expands the incoming beam in order to cover a larger

fraction of the grating surface and consequently reduce the
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output radiation bandwidth. Similarly, the second order of
the plane diffraction grating (48 square millimeter ruled
area with 1180 lines/mm, blaze wavelength 2500 A) is used to
reduce the bandwidth of the output pulses further. The
grating is mounted backwards on the sine-bar of a Czerny-
Turner grating monochromator (Model EU-700, GCA/McPherson
Instruments, Acton, MA) to provide the rotation function
needed for tuning the dye laser. The dye laser system must
be aligned routinely with a visible, 5 mW randomly polarized
helium neon laser (Model 05-LHR-151, Melles Griot, Irvine,
CA). A detailed alignment procedure was designed by Curran
and is described elsewhere (2). The output of the dye laser
can be measured by a joulemeter (Model J3-05, Molectron

Corp., Sunnyvale, CA) and an oscilloscope.

A summary of the dyes used in this work along with
their wavelength ranges and typical peak output powers is
given in Table 2-2. The wavelength ranges covered by
various organic dyes when pumped by a nitrogen laser are
shown in Figure 2-3. The temporal overlap and pulse shapes
of the nitrogen and dye lasers obtained by Curran (2) with a
PIN photodiode (Model 4220, Hewlett Packard, Palo Alto, CA)
are shown in Figure 2-4. Figure 2-4 suggests that
temporally the ion distribution at the beginning of the ion
transport processes can be approximated by a Dirac delta
function. In order to increase the power density of the

laser, a lens with a 15-cm focal length was set at an
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Table 2-2. Characteristics of the Dye Laser

Excitation Beam - Hédnsch design, nitrogen laser-pumped
dye laser

Typical Peak Power at Analytical Line - 5 kW

Approximate Wavelength

Laser Dye Range (nm)
PBBO? 395 - 410
Stilbene? 410 - 440
Coumarin 4602 450 - 480
Rhodamine 6GP 565 - 605
DCM® 630 - 710

a Dyes obtained from Exciton Chemical Co., Inc., Dayton, OH.

b Dye obtained from Eastman Kodak Co., Rochester, NY.
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Figure 2-4. Temporal overlap and pulse shapes of the
N2 ( 8B) and dye ( o ) lasers.

(Taken from FP.M. Curran, Ph.D. dissertation,
Michigan State University, 1983).
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appropriate position between the front mirror and’the flame.
The focal area of the dye laser through the lens was
determined to be (1.0 + 0.3) x 103 cm?. From this
measurement, it is clear that the initial spatial
distribution of ions is not a true Dirac delta function. 1In
fact, the initial distribution of ions should be
approximated by an exponentially modified Gaussian function.

More details will be covered in Chapter III.

C. Flame Cell

A laminar-flow, premixed, hydrogen-oxygen-argon flame
was used in this work. This flame is similar to the one
designed by Lijnse and Elsenaar (4) and has been described
by both van Dijk (5) and Lin (1). Extensive reviews of the
properties of this flame can be found in the books written
by Ingle and Crouch (6), and Alkemade et al. (7). Hence, in
this section only the significance and a general description

of this flame will be provided.

The burner is of the Meker type; the gas mixture
emanates from the burner head through 631 circular holes of
0.5 mm diameter and 5 mm length, which are arranged in
concentric circles with a 2 mm interval between successive
rings. The height of the primary combustion zone is

approximately 2 mm. The burner head is cooled by a water
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jacket (5).

Pre-purified grade hydrogen, oxygen, and argon gases
are divided into two branches to form the inner and mantle
flames, respectively. The pressures of each branch of the
flame are controlled by dual pressure regulators. Oxygen
and argon gases are premixed first in a mixing chamber
fitted with a safety spring; the subsequent gas mixture is
then mixed with hydrogen before reaching the burner head.
This design can effectively eliminate the spontaneous
combustion of the hydrogen and oxygen gases inside the
mixing chamber and prevent flashback. The analyte is
introduced into the inner flame through a pneumatic
nebulizer designed by Curran (2). Argon is the nebulizing
gas. The flow rates of gases are controlled by six
precision flowmeters (Series FM-1050, Matheson Instruments,
Horsham, PA). 1In general, the central and mantle argon gas
settings used gave a flow rate of approximately 3.2 L-min"l.
The mantle flame hydrogen and oxygen flow rate settings gave
a stoichiometric mixture of 1.0 Lemin~! and 0.50 L-min71,
respectively. To obtain maximum DLI signals, the hydrogen

and oxygen settings of the central flame usually were

adjusted to be slightly fuel-rich.

The laminar-flow, premixed Hz-oz—Ar flame is one of the
most important premixed flames (4,8). Although it gives low

temperature flames, it has very low flame background
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emission and less ionization interferences than air-
acetylene flames. In fact, laminar-flow, premixed flames
are less turbulent, less audibly noisy, and have less flame
flicker than turbulent flames (9). The mantle flame
prevents entrainment of air and smooths the radial
temperature distribution of the inner flame. It is usually
kept at the same temperature as the inner flame to avoid
heat transfer between the inner and the mantle flame, and
thus turbulent convection inside the inner flame. These
characteristics furnish a less complicated environment for
theoretiéal modelling of ion transport processes, as will be

discussed in detail in later chapters.

D. Signal Detection

The ions formed by the laser pulses, which occur on the
nanosecond scale, are collected by a pair of voltage-biased
nichrome probes immersed in the flame cell. Usually the
laser focal point is placed near the lower probe in order to
get the maximum DLI signal. The current sensed by the
probes is converted to voltage by an operational amplifier;
the output of the amplifier then goes to the input port of
the boxcar integrator. Figure 2-5 shows a block diagram of
the experimental set-up of the DLI signal detection system.
In this work, the upper probe is connected to virtual ground

and serves as the anode, while a high-voltage power supply
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(Model 3K10B, Power Designs, Inc., Westbury, NY), which is
switched to supply a negative voltage, is connected to the
lower probe. The lower then serves as the cathode. Hence
the electrons generated by the laser pulses will be
collected by the upper probe (anode) and the positive metal
ions will be collected by the lower probe (cathode). The
probes are placed parallel to each other in a plane
perpendicular to the burner head. The probes were typically
4-10 mm apart; the lower probe is placed about 10 mm above
the burner head in order to get stable and reproducible DLI
signals. Each probe is mounted on a micrometer-driven
translation stage with a positional accuracy of $0.01 mm.
Both probes can be moved three-dimensionally inside the
flame. Figure 2-6 shows the arrangement of the electrodes
in the flame and the designation of mathematical terms used

in later chapters.

The probes used to collect the ionization signal were
either nichrome or iridium wires of which the diameters were
almost always 0.025" (0.64 mm). Nichrome wire, which was
most often used in this work, is very inexpensive. 1In
addition, it can satisfactorily resist the high temperature
environment of the flame. However, analyte contamination
usually grows gradually on the surface of the nichrome wire
upon continued use. Also, leaching from the probe may lead
to significant electrical interference when different

analytes are introduced into the flame over a short time



Displacement
from beam, q

Figure 2-6.

Q=-q, b— ——— \ [
b S e

- 65 -

/ \
/ \
/ \
\
/ \
VR - i Anode
\
[ . <
— — L] D (‘ L2
e — — Cathode

|

Schematic diagram of the probe configuration.
The anode and cathode were positioned hori-
zontally and parallel to the colinear dye and
N2 laser beams L1 and Lz. The center of the
laser beams usually are focused about 10 mm
above the burner head. The vertical "displace-
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period. To ensure the reproducibility of the time-resolved
DLI signals, probes must be cleaned with sandpaper or

replaced frequently.

The current-to-voltage converter was designed and
constructed by Curran (2); the circuitry is shown in Figure
2-7. The operational amplifier used was an "Ultra Fast"
JFET amplifier (LH0O032CG, National Semiconductor, Santa
Clara, CA). The slew rate of this amplifier is 500 volts
per micro-second, and its bandwidth is 70 MHz. The ground
of the amplifier is connected to the ground of the high-
voltage power supply: the whole amplifier module is mounted
on the burner base in order to reduce the length of the
probe cables and minimize the RFI interference. The power
supply (%15 V) for the amplifier module is made from a
commercial power supply (AD902, Analog Devices, Norwood, MA)
in a homemade circuit board framed in a shielded case. The
input current can be conducted to the amplifier either
directly or through a high pass filter network before being
amplified. The gain of the amplifier is switch selectable
among 104, 5 x 104, 10%, 5 x 10°, and 2 x 10%, with feedback
resistors of 10, 50, 100, 500, and 2000 kQ, respectively.

If the filter is applied to the input signals, the gain will
be frequency dependent due to the RC circuit. The filter
for the amplifier was found to be essential for the low-
frequency flame noise when an air-acetylene flame was used.

However, it also distorts the time-resolved signal in the
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Hz—oz-Ar flame, hence in this work the filter was not
applied. If the high pass filter is by-passed, the slew
rate of the LH0032CG amplifier guarantees minimum distortion
if the time scale of the DLI signals being observed is at
microsecond level. In fact, the design of the amplifier has
limited the functions of the boxcar integrator in detecting
time-resolved signals with a short aperture delay range.
However, since the shape of the time-resolved DLI signal
during the first tenths of a microsecond, or even the first
few microseconds, was not of major concern in this work,
this restriction due to the amplifier could be practically

ignored.

E. Boxcar Integrator

The boxcar integrator provides a relatively simple
method of signal enhancement for repetitive signals,
especially those with short pulse durations and low duty
cycles. It allows the recovery of signals that are
synchronized with external trigger pulses from random
noise. With a continuously variable gate delay generator,
'the sampling gate can be positioned anywhere along the
signal waveform to produce a time-resolved plot of the input
signal. A block diagram of a boxcar integrator is shown in

Figure 2-8.
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The boxcar integrator (Model 162-164, Princeﬁon Applied
Research Corp., Princeton, New Jersey) used in our
laboratory is composed of three major parts: a model 162
boxcar averager main frame with a model 163 sampling
integrator, and a model 164 gated integrator module. The
boxcar integrator can be controlled by a microcomputer

through the back panel.

The model 162 mainframe determines the time delay for
the aperture and provides signal conditioning for the
output. The sampling gate of both the model 163 and the
model 164 can be positioned anywhere along the signal
waveform by adjusting the &% initial A or B dial, or it can
be time-scanned across all or a portion of the signal by

adjusting the scan signal.

The aperture delay is the time between the trigger
pulse and the opening time of the aperture in the gated
integrator. 1In our experiments, the boxcar integrator was
triggered synchronously by radio frequency noise produced
when the N2 pumping laser is fired. The length of the
aperture delay is determined by the aperture delay range and
a % Initial setting. The aperture delay range determines
the time duration along the waveform of the input signal
that the boxcar integrator will scan through upon the
trigger pulses. The aperture delay range can be set from

100 nanoseconds to 50 milliseconds by a switch on the front
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panel of the boxcar integrator. The % Initial control,
which determines the percentage of the aperture delay range
setting that the boxcar integrator should wait for before
opening the gate. It can be set by two continuously
variable 10 turn precision potentiometers, the % Initial A
and the & Initial B switches. 1In the default setup, %
Initial A controls the signal from channel A, which takes
signals from the Model 163, while % Initial B controls
channel B, which takes signals from the model 164. 1In
scanning mode, the aperture delay is also affected by the
scan signal. When the internal scan mode is chosen, the
boxcar integrator will generate a voltage ramp which slowly
sweeps the aperture delay from the limit set by the %
Initial control to the limit set by the aperture delay range
control. 1In contrast, when the external scan mode is
chosen, the ramp signal can be supplied externally via back
panel connectors. In our experiment, the scan signal is
usually controlled by the microcomputer through the
interface. Mathematically, the aperture delay can be
expressed as follows:

R * (%I + 10V)
D& ~crmmmmmmrr e = [1]

where D is the aperture delay, R is the aperture range with
the same units as that of D, %I is the % Initial A or B, and
V is the ramp voltage supplied by the boxcar integrator

(internal scan mode) or the external circuitry (external
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scan mode). In fact, there is a so-called "dead time" delay
of about 75 nanoseconds before the boxcar aperture opens to
manipulate the signal. This restriction, due to the design,
limits the function of the boxcar integrator to a certain
extent. However, since the lifetime of ions produced by the
laser pulse is on the order of microseconds, it is not
necessary to employ a delay line to prevent the signal from
appearing prior to the gate. The aperture signal is also
sent to three different comparators. The first comparator
determines when the delay ramp has reached full scale, and
resets the ramp generation circuitry. The other two
comparators generate the gate signals for the model 163 and

1e64.

The second main function of the mainframe is to provide
various combinations of the channel A and B outputs. For
the output port, the model 162 supplies a filter to help
reduce the noise components of the signal. The time
constant for this filter is switch selectable from the front

panel, and can vary from 0.1 millisecond to 10 seconds.

The model 164 gated integrator allows greater
flexibility in the aperture duration selection than the
model 163, and is the module with which the data were
acquired. The gate-width of the sampling duration, or the
aperture duration, can be selected from 5 nanoseconds to 5

milliseconds by a continuously variable switch. The model
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164 has built-in circuitry that will integrate the input
signals, upon receiving the external trigger pulse, for a
time period determined by the setting of the aperture
duration switch on the front panel. Two different modes of
operation may be selected for the integration. When the sum
averaging mode is chosen, the result of each integration is
added linearly to the previous values until the output is
overloaded. The output in this mode is simply the average
of N repetitions. For white noise the signal-to-noise ratio
(SNR) can be improved by the square root of N. The summing
mode is analogous to linear integration with an analog
integrator. When the exponential averaging mode is chosen,
the difference between the input and output signals is
integrated, and the output signal asymptotically approaches
the input signal. After about 5 time constants of the
integrator, the output will be essentially the same as the
input, and there will be no further change in the output
signal. The exponential mode is analogous to low-pass
filtering with an RC filter, and is the mode normally used.
The value for the time constant is switch-selectable from

the front panel of the model 164 mainframe.

In contrast, the model 163 utilizes a selection of
plug-in sampling units to obtain non-adjustable sampling
gate widths ranging from 75 picoseconds to 1 nanosecond.
Consequently, the model 163 is preferably employed to sample

a fast signal such as nanosecond fluorescence decays.
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However, for time-integrated signals or for longer decay
times, the model 164 is preferred because its variable gate
width can be adjusted to obtain a maximum signal-to-noise
ratio. Although a baseline sampling gate, associated only
with the model 163, would be useful to eliminate the
distortion caused by baseline drift on time-scanned signals,

such distortion seemed negligible in these experiments.

F. Microcomputer and Boxcar Integrator Interface

The boxcar integrator is interfaced and controlled by a
microcomputer through the back panel. The details of the
interface and microcomputer are described elsewhere (10-11).
The processor chosen is the Intel 8085A, an 8-bit data, 16-
bit address device, which runs at 3 MHz and has a maximum
address of 64K bytes. The microcomputer interfaced system
is always running under the external trigger mode of the
boxcar integrator. It is first triggered by the gate out
from the model 164, then sends out the scan signal to the
model 164 and reads in the output signal. The signal is
converted into digital form by a 12-bit analogue-to-digital
converter and stored in the memory of the microcomputer.
When the delay ramp reaches full scale, the microcomputer
sends out a signal to reset the boxcar integrator. A block
diagram of the various functions of the boxcar integrator

and the functional board of the microcomputer is shown in
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Figure 2-9.

In this work, the microcomputer generally functions
in two modes. In the single-point mode, it sends out delay
signals according to the aperture delay range and the %
Initial A or B settings from the boxcar integrator, then
reads in and stores the output signals in the memory until
the memory is full. The whole process can be interrupted
anytime. This mode is mainly used to scan over the
effective wavelength range of the dye laser in order to get
the maximum signal. A signal versus wavelength plot for

sodium ions is given in Figure 2-10.

In the linear scan mode, the number of interrupts per
data point (Ni), the starting point of the scan (Ps), the
length the scan (L), the scan increment (S), and the number
of points per scan increment (Ns) can be chosen by the user.
The starting delay signal (Ds) can be calculated by the

following equation:

D, = A * ( ----- + ---2- ) [2]

where Ar is the aperture delay range set from the front
panel of the boxcar integrator. The "effective" aperture
delay range (Ar') can be calculated by the following

equation:
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processor interfaced boxcar system.

(Taken from J.D. Stanley, Masters thesis,
Michigan State University, 1982).
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Figure 2-10. Dual laser ionization signals of sodium cation

at 5890 A and 5896 A.
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Ar' = Ar X ( =————- + ————- ) (3]

where L ranges from 0 to 255. The relation between the scan
increment and the real time (tr) along the input signal

waveform can be expressed as follows:

t, = —-fo--me- (4]

The number of interrupts per data point, Ni' is usually
chosen to fulfill the 5 RC time constant requirement for a
stable signal, and the number of points per scan increment,

N is chosen to account for the noise from the lasers. The

sl
time for each scan (Ts) thus can be calculated:

; J G J— (5]
where Lf is the laser pulse frequency (Hertz).

The data taken by the microcomputer then is then
uploaded to the PDP/11-23 mainframe for future data

'processinq. The details of the data processing will be

described in later chapters.
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CHAPTER III

DUAL LASER IONIZATION SIGNALS

A. Introduction

This chapter discusses the temporal behavior of the
dual or direct laser ionization (DLI) signals in a laminar
flow hydrogen-oxygen—argon flame. In DLI, two laser beams
that overlap both spatially and temporally are employed to
enhance the ionization processes in flame environments. The
first laser is a tunable dye laser which promotes the
analyte from the ground state to a resonant excited state;
the second laser is a nitrogen laser with a fixed wavelength
(337.1 nm) which produces photoionization from the excited
atoms. Previous research and publications from our
laboratory (1-6) have demonstrated that DLI, which is
closely related to laser-enhanced ionization (LEI), can
yield signals 2 to 3 orders of magnitude larger than those
obtained with LEI (4) for some ionization schemes. DLI has
shown much promise, with detection limits for some elements
near the part-per-trillion level, and has been successfully
utilized for the analysis of some types of real samples (6).

- 80 -
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However, neither LEI nor DLI in flames has yet been
applied to routine analysis in typical analytical
laboratories. One of the major reasons is that general
applications of these techniques, which are derived directly
from the opto-galvanic effect (OGE), suffers from a
susceptibility to severe signal depression when the sample
contains even moderate levels of.elements which can
partially ionize via unassisted thermal ionization in the
flame, most notably the alkali metals (7-9). This problem
has been partially solved by Turk (10) for LEI and his
description was based, in turn, on the extensive and well-
documented studies of electrical phenomena in combustion
systems by Lawton and Weinberg (11). Briefly, Turk found
that if the laser focal point, i.e. the analyte ion source,
is close enough to the surface of the cathode, or within the
charge sheath around the cathode, complete signal recovery

could be expected. This also applies to DLI.

Curran (3), in his studies of electrical interferences
of DLI in flames, showed that the addition of easily ionized
matrix components such as cesium, lithium, and potassium had
little or no effect on the signal recovery for sodium,
lithium and strontium. This is due to the fact that DLI
employs a second photon that provides sufficient energy to
ionize the analyte from a resonant excited state and, hence,
for some excitation schemes, the dependence of the

ionization signal upon collisional processes in the flame is
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reduced substantially. In other words, a colder flame, such
as the hydrogen-oxygen-argon flame used by Curran, can be
adopted to suppress the unassisted thermal ionization of
matrix ions and still supply the same or even better signal
recovery and detection limits. However, elements with small
or even moderate cross sections to nitrogen laser photons,
such as indium, cesium, and potassium (4), still are
dependent on the rate of collisional ionization and will
show little or no improvement in signal recovery over LEI.
In addition, some elements from the sample matrix might
interfere even more in DLI, probably due to off-resonant

multi-photon ionization.

To make DLI, which is perhaps the least expensive set-
up among all dual laser techniques, applicable to real
samples with complex and unknown matrices, a more selective
signal collection process must be designed. Since the
arrival time of sample ions is a function of the ion
mobilities, investigations of the temporal behavior of DLI
signals can reveal the possibility of improving the
selectivity of DLI by blocking out the interference signals
with an appropriate boxcar aperture. Besides, Lin (2) has
established a method which can extract ion mobilities and
diffusion coefficients of various ions from time-resolved
DLI signals; hence flame temperatures can be determined by

the well-known Einstien relation. To further confirm and
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improve Lin's method, understanding more details about the

temporal behavior of DLI signals is essential.

B. Theoretical

B-1 Ion Mobilities

The response of flames to external fields has been
extensively studied by Lawton and Weinberg (11). At the
moment an electric field is applied to a flame, positive
ions begin to move toward the cathode; negative ions and
electrons, in contrast, move toward the anode. The drift
velocity (cmosec'l) of each individual species depends on

its mobility and can be expressed as follows:

v=nuE (1]

2 1

where p is the mobility coefficient (cm“.volt™ .sec” 1) of

the charged species and E is the electric field (volt-cm-l)
applied to the flame. The mobility of a charged species
depends inversely on its mass and thus the mobility of
electrons will be much higher than those of positive ions.
'Since the ions and electrons are generated at the same rate
in the flame, the greater electron extraction rate results
in a buildup of net positive charge near the cathode in the

flame. This process will continue until a steady state

distribution of positive ions is built up around the cathode
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which effectively neutralizes the negative potential of the
cathode beyond the so-called "charge sheath”. Under this
circumstance, virtually the entire potential difference
between the cathode and anode is sustained across the charge

sheath, as shown on Figure 3-1.

B-2 Blectric Fields in Flames

In an idealized, one-dimensional, and diffusion free
approximation, the charge sheath around the cathode under
the influence of an applied electrical potential can be
expressed according to the terms designated on Figure 2-6 by

the following equations:

Ay (qs -q), gq9s qg (2]
and

o, 9, > 9 > qg [3]

where E is the effective electric field (volt‘cm-l) along
the q axis, q4 is the edge of the charge sheath, and As
(volt-cm-z) is the slope of the E-q plot. As can be

expressed as follows:

(4]

where rc is the ionization rate of the flame per unit volume
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Figure 3-1. Pictorial representation of Lawton's model
concerning the sub-saturated electric field in
a flame environment. The symbol @ indicates

the laser focal point.
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(cm'3-sec"1), e is the electronic charge (1.62::10'19 coul),

u, is the mobility coefficient (cm?-volt l.sec™l)of the
matrix ions in the flame, and Eo is the vacuum permittivity
(8.854x10'14 coul-volt l.cm™1). The spatial distribution of
electrical potential can be described as follows:

1

- ——— - 2
v As (qs q)“, q

<q<gq (5]
2 -]

C

and

v=20, q29q [6]

The edge of the charge sheath can be calculated by the

following equation:

2V
q = (——-2)1/2 _ q_ (7]
A
s
where Va is the applied potential (volt). From equations

[2] to [7]., the electric field on the surface of the cathode

(qsqb) can be calculated by the following equation:
= 1/2
Ec (2VaAs) (8]

According to Lawton and Weinberg (11), equations [2] through
(8] describe the so-called "sub-saturation" condition in the
flame. Figure 3-2 shows the calculated spatial distribution
of the electric field and electrical potential with various
ionization rates (rc) and applied voltages (Va) under sub-

saturated conditions. When Va is large enough, the electric
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Figure 3-2.

(a) The calculated spatial distribution of electric

(b)

field and electrical potential in a flame environ-
ment with various ionization rates (rc) under the
sub-saturated condition. The bias potential applied
is -750 V on the cathode. A, A', 1011 ecm™3-sec7!;
B, B', 1012 cn 3-sec”l; ¢, c', 1013 cm3-sec7l.

The dashed lines indicate distributions in the

absence of a flame (rc = 0).

The calculated spatial distribution of electric
field and electrical potential in a flame environ-
ment with various applied voltages (Va) under the
sub-saturated condition. The ionization rate is
1012 cm™3:sec™. A, A', -750 V on the cathode;

B, B', -1000 V; C, C', -1250 vV; D, D', -1500 V.
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field can be "saturated", as described by equation [9].

1
V. = -— A

2
a 2 (q, + !

For this condition, we have

89 -

(9]

dg = 4, (10]
where the electric field can be expressed as follows:

E=A4;, (q; - Q). 9. $ Q5 q, (11]
and the electrical potential can be described by the
following equation:

1

E = -;- Ay (@, - q),, 9, £ q < q, (12]

However, when the electric field is very high, or,
1 2
va > -;- As (qc + qa) (13]

then the distribution of the

electric field is "super-

saturated." Under this condition, the effective electrical

field should be written as follows:

E=0A2(q -2+ 1Y%, q >a>-q (14

where Ea is the electric field at the surface of the anode.

The relation between Ea and Va is derived as follows:
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1
va 2 (qc + qa) [ As (qc + qa) + Ea ] +
2 2 2 2.1/72
(q +q.) A_(q +q )+[A_“(q +q_)“+E_“]
--S--8 _ 1n¢-8--CS--a____s___c__a __.3a ___. | (15]
ZAS Ea

E, can be obtained from equation [15] by Newton's method.
The spatial distribution of the electrical potential can be
expressed by the following equation:

1

V=--—-1(q,+q
2 C

2 2 2 ,1/2 _
a) [ A (qc + qa) + E, ]

1
-— (qc + q) [ Asz (qc + q)2 + Eaz ]
2

/2,

------ IR R e e L e | [16]
2 2 211/2
2A As(qc+q) + [As (qc+q) +E_ ]
Figure 3-3 shows the spatial distribution of the electric
field and the electrical potential for the super-saturated

condition.

Generally, air/acetylene flames contain a high
concentration of background ions, i.e. they have a high
ionization rate, and can be described by equations [2]
through [8] very well (10,12). However, the hydrogen-

oxygen-argon flame used in our laboratory is a relatively
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Figure 3-3. The spatial distribution of the electric field
and the electrical potential for the super-

saturated condition.
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"clean" flame which contains fewer background ions and has a
much lower ionization rate. Equation [13] shows that this
kind of flame is much easier to saturate or super-saturate,

even under moderate applied voltages.

B-3 Behavior of Charged Particles in Flames

A flame sample cell under the influence of an electric
field can be thought of, in principle, as an electrolytic
cell. Any perturbation imposed on the cell can be sensed by
the electrodes. Applying voltage to an electrode can be
viewed as an action of pumping electrons into or removing
them from the electrode. Hence on the surface of the
electrode there always exists a so-called "charge sheath"
(13] if the mobilities of the positively and negatively
charged particles are not the same. This charge sheath
usually possesses a capacitance, C (coul-volt'l). According

to the following equation:

V= - (17]

where Q is charge (coulomb). It is obvious that when a
variation of local charge occurs, a relatively big voltage
can be sensed by the electrodes, provided that the
capacitance C is sufficiently small. This is exactly the

case of the experimental set-up used in our laboratory.
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Since the volume ionization rate of the hydrogen-oxygen-
argon flame is low, the capacitance of the charge sheath is
also low. When a laser pulses are imposed to the flame
cell, it creates a change of the local charge density.
Under the influence of the electrical field, charge
separation occurs nearly instantly due to the big difference
of the mobilities of positive ions and electrons. This
effect can be viewed as a quick injection of charges to a
capacitor of which the capacitance is rather small. Hence a
capacitive effect which induces variations of charges and
voltages can be sensed nearly momentarily by the electrode.
The rapidity with which the electrode will sense the charge
flow, or the voltage change, has nothing to do with the
mobilities of ions and electrons, and hence is not affected
by the bias voltage on the electrodes (Va) or the distance
between the laser focal point and the electrodes (qa and
qc). The signals due to the capacitive effect has been
observed by Berthoud et al. (13). They reported that it can

be detected about 100 nanoseconds after the laser pulse.

At the onset of the perturbation, the velocity of the
charged particle can be described by the following equation:
dv
m ---- + kv = Q_ E (18]
dt
where m is the mass (kg) of the particle, k is the viscous

force coefficient, and Qe is the charge of the particle. At
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steady state, we have:

m---- =0 (19]

Upon substitution of equation (1] into equation [18] and

integration, we have:
v=uE (1- exp (-Qet/um) ) [20]

Hence, the time constant for the establishment of a steady-
state current is:
nm

T = - [21)

Qe

Assuming that the mobility coefficient of sodium is 30.2

cmz-volt']‘-sec"1 (2); it can be shown that

T. + = 7.09 x 10710 gec. (22]

Na

Also, it has been shown that the time constant for electrons

can be as small as 3 x 10" 12 seconds (13).

Due to the capacitive effect discussed earlier, it can
be expected that when laser pulses perturb the flame system,
at least two temporal signals can be observed. One is the
signal due to the fast moving electrons with the capacitive
effect, and the other is due to direct charge collection
through the electrodes. Smyth and Mallard (14,15) have

shown the existence of two temporal components of the LEI
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signal with short laser pulses. They observed a short
electron signal followed some microseconds later by a longer
and weaker ion signal. Berthoud et al. have observed two
temporal electron signals (13), both on the nanoseconds time

scale.

C. Experimental

C-1 Apparatus

A complete description of the DLI experimental system
used in this study has been given elsewhere (1,5-6) and a
brief description of the microcomputer interfaced boxcar
system has been presented in section F of Chapter II. In all
cases, the resonant laser radiation was produced by a
Hansch-type dye laser pumped by a nitrogen laser (Model 0.5-
150, NRG, Inc. Madison, WI). Part of the nitrogen laser
beam was used to provide the the radiation for
photoionization. For sodium, the dye laser was tuned to the
381/2 - 393/2 transition (589.0 nm). The laser powers were
adjusted each time to ensure the same ionization rate of the
analyte in the flame. The sample emanated from a circular
Méker burner which produces a laminar-flow flame. In all
cases both the central and mantle hydrogen-oxygen-argon

flames were adjusted to be fuel rich (Argon 3.2 L-min'l,

hydrogen 1.2 L-min'i, oxygen 0.5 L-min'l). Atomic sodium
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was obtained by nebulizing 20 ppm sodium chloride solution
into the flame with a pneumatic nebulizer. The probe
configuration with the designation of symbols is depicted in
Figure 2-6. Sodium ions were collected at the bottom probe
(cathode) the position in the flame can be varied. The
laser focal point was always kept 18 mm above the burner
head to ensure a constant temperature environment. In all
cases data were collected with a boxcar integrator in the
exponential averaging mode. Multiple points were taken and
stored in the microcomputer for each aperture duration in
order to minimize the noise due to the pulse-to-pulse laser
power variations. Since all DLI current signals were
converted into voltages through the inverting input of an
operational amplifier, all the signals shown in this chapter
are inverted, i.e. the more negative values mean a larger

signal amplitude.

C-2 Reagents

All solutions were prepared from reagent grade sodium
chloride dissolved in distilled, deionized water. The laser
dye chosen for this study was rhodamine 6G (Eastman Kodak
Co.) with a concentration of 7.5 x 10~3 M in absolute
ethanol. It was used without further purification. To
maintain the stability of the dye laser, the dye solution

was replaced every ten working hours.
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D. Results and Discussions

D-1 Temporal Behavior of DLI Signals

In this section the time-resolved DLI signals are
presented as a function of the lower probe position (qc),
the upper probe position (qa). and the applied potential
(Va).

It has been found that the shape of the time-resolved
DLI signals (hereafter simply called the DLI signals)
changes dramatically with the distance (qc) between the
laser focal point and the lower probe. For a fixed qc, the
shape of the DLI signal may also change significantly with
the applied voltage (Va)' Figure 3-4 shows a typical DLI
signal collected when the positions of both probes were
adjusted to achieve maximum DLI signal. For obtaining
maximum DLI signals, the lower probe was usually located
about 0.50+0.10 mm below the laser focal point. The signal
shows a very good exponential-decay behavior if the
appropriate bias voltage is applied. The DLI signal shown
in Figure 3-4, which was recorded at an applied voltage of
100 volts, has an exponential-decay lifetime of 3.707
microseconds. 1In fact, Figure 3-4 shows only the later part
of the DLI signal; the early part of the DLI signal was not

shown simply because it is too fast to be observed by our
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Figure 3-4. A typical DLI signal for sodium cations. The
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experimental set-up. Other experiments have shown that the
lifetime of the exponential decay increases'with increasing
distance between the lower probe (cathode) and the laser
focal point (qc). However, the signal intensity (peak
amplitude) decreases with increasing q.- To compensate for
the signal loss and obtain less noisy DLI signals, higher
bias voltages were applied. However, results from curve
fitting showed that the DLI signals behaved differently in

time when the applied voltage was increased.

Figure 3-5 shows a DLI signal obtained when the lower
probe was placed just below the laser focal point and a 600
volts bias voltage was applied. Each plotted point was an
average of 30 data points collected by the boxcar. The
solid-line curve was drawn from the results of data fitting
with an exponential decay function and gives a lifetime of
10.3 microseconds. A significant deviation between the DLI
signal and the exponential decay can be observed. Other DLI
signals have been collected repeatedly with more averaging
and have shown rather high reproducibility. Figure 3-6
shows a DLI signal when the lower probe was located 2.00 mm
below the laser focal point and a 500 V bias voltage was
applied. Again, a significant deviation between the DLI
signal and the exponential-decay model can be observed. The
lifetime obtained from curve fitting is 13.7 microseconds.

If the lower probe was placed near the combustion zone, only
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Figure 3-5. DLI signal for sodium cations when the lower
probe was placed just below the laser focal
point (qc=0.0 mm) with a 600 V bias voltage
applied. Each plotted point was an average of
30 data points recorded by the microcomputer.
The solid line was drawn from the results of a
fit to an exponential decay. The lifetime from

the curve fitting is 10.292 us.
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Figure 3-6. DLI signal for sodium cations when the lower
probe was located 2.00 mm below the laser focal
point (qc=2.0 mm) with a 500 V bias voltage
applied. Each plotted point was an average of
30 data points recorded by the microcomputer.
The solid line was drawn from the results of a
fit to an exponential decay. The lifetime from

the curve fitting is 17.740 us.
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a weak but seemingly exponential decaying DLI signal could

be observed.

Figure 3-7 shows a DLI signal recorded on a strip chart
recorder at 100 V bias voltage with the lower probe
(cathode) located 2.00 mm below the laser focal point. The
distance between the lower and upper probes was 5.00 mm. A
second temporal peak which was never previously observed in
our laboratory is apparent. The lifetime of the exponential
decay of the DLI signal is 11.1 microseconds when the data
points were curve-fitted by deleting all the points that
formed the second peak. By contrast, the lifetime was 3.707
microseconds when the probe was located 0.50 mm below the
laser focal point. The averaged DLI signal and the curve
obtained from fitting data to an exponential-decay function
are shown in Figure 3-8. The observation of two components
to the temporal DLI signal implies that the exponential
decay component of the DLI signal is due to the collection
of electrons on the upper electrode (anode). This is
consistent with the observations made by Smyth and Mallard
(14,15) for LEI signals. They observed that the short
electron signal usually appears earlier with much higher
intensity and ion signal emerges microseconds later with a

much smaller intensity and a longer lifetime.

Figure 3-9 shows a set of DLI signals for sodium ions

taken at various distances, qc, between the laser focal
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Figure 3-7. DLI signal for sodium cations recorded with a
strip-chart recorder. Notice that the signal is
inverted, i.e. a downward signal is a stronger
DLI signal. The second temporal peak can be
seen clearly from this plot. (Va=100 v,

qc=2.00 mm, qa=3.00 mm) .
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Figure 3-8. DLI signal for sodium cations from Figure 3-7
with averaged signal points. The solid line was
drawn from the results of a curve fitting of the
data to an exponential-decay model. The life-
time of the exponential decay of the DLI signal
is 11.079 us when the data points were smoothed
by deleting all the points that formed the

second peak.
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Figure 3-9. The DLI signals for sodium cations taken at
various distances (qc) between the laser focal
point and the lower probe (i.e., the cathode).
(Va= 180 Vv, qa=1.00 mm, Ar=50.0 us, R=5.0 us,

%I=2.0%, tr=0.9766 us, Ns=15).

A, qc=1.02 mm; B, qc=1.12 mm; C, qc=1.22 mm;
D, qc=1.32 mm; E, qc=1.42 mm; F, qc=1.52 mm;

G, qc=1.62 mm; H, qc=1.82 mm.
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point and the lower probe (cathode). All of the siqnals
were taken with a bias voltage of 180 V; the upper probe
(anode) was placed 1.00 mm above the laser focal point. The
aperture duration was chosen to be 5 microseconds with an
aperture delay range of 50 microseconds. The % Ini knob was
set at 2.0 % (i.e. 1.0 microsecond initial delay). The scan
increment between each data point was 0.9766 microseconds;
and the microcomputer recorded 15 points per datum. With
180 volts of bias voltage, the electron peak appeared much
earlier than the second peak; hence it could not be observed
with the boxcar integrator. Thus the peaks shown in Figure
3-9 are only the peaks attributes to the ions. Figure 3-9
shows clearly two facts. First, the arrival time of the
peak increases when the distance between the laser focal
point and the lower probe increases. Second, the height of

the second peak decreases significantly when qc increases.

To confirm that the peaks shown in Figure 3-9 are
truly due to sodium ions, a second series of DLI signals was
taken. Figure 3-10 shows this set of DLI signals taken at
various distances, qg between the laser focal point and the
upper probe (anode). The lower probe was fixed at 2.00 mm
below the laser focal point. All other parameters were
chosen to be exactly the same as those in Figure 3-9.
Figure 3-10 reveals even more information. First, as the
anode was moved away from the laser focal point, an

exponential-decay shape signal with high intensity starts to
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Figure 3-10. The DLI signals for sodium cations taken at
various distances (qa) between the laser focal
point and the upper probe (i.e., the anode).
(Va= 180 V, qc=2.00 mm, Ar=50.0 us, R=5.0 us,

%I=2.0%, tr=0.9766 us, Ns=15).

A, qa=0.00 mm; B, qa=1.50 mm; C, qa=2.50 mm;

D, qa=3.50 mm; E, qa=4.50 mm.
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emerge. Since the anode collects electrons, the emergence
of the early part of the DLI signals with increasing probe
distances (qa) verifies that this component is due to
electrons. Second, since electrons.have much a higher
mobility coefficient than the ions, signals due to electrons
should appear much earlier in time than the ion signals.
Only the later part of the electron peak can be observed if
the boxcar integrator is not sufficiently fast. Figure 3-10
confirms this statement. Third, the electron signal is, in
fact, very short, and decays exponentially. This statement
can be further strengthened by referring to Figure 3-8.
Fourth, the electron peaks possess much higher signal
intensity than the ion peaks. Again Figure 3-8 helps ratify

this statement.

If all parameters are chosen carefully an intense ion
signal can be obtained with a yet observakle electron signal
&s shown in Figure 3-11. From these observations, it should
be possible to choose the most effective boxcar scan range
in order to block out the background signals and increase
the detection limits for the analysis of real samples. The
'cathode was placed 3.00 mm below the laser focal point and
4.00 mm below the anode. Sodium was aspirated into the
flame, and the bias voltage applied was 200 volts. The
aperture duration was chosen to be 5 microseconds with an
aperture delay range of 50 microseconds. The % Ini knob was

set at 3.0 % (i.e. 1.50 microsecond initial delay). The
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Figure 3-11. A typical DLI signal for sodium cations. The

experimental parameters were chosen in order to
obtain maximum amount of ion signals.
(Va= 200 v, qc=3.00 mm, qa=1.00 mm, Ar=50.0 us,

R=5.0 us, %$I=3.0%, tr=0.5882 us, Ns=10).
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scan increment between each data point was 0.5882
microseconds; and the microcomputer recorded 10 points per
datum. Figure 3-11 shows clearly two facts. First, there
exists a time period during which the ion signal is truly
the predominate component of the DLI signal. This time
period can be chosen so as to discriminate against most of
the background signals. Second, the curve fitting shows
that the DLI signal consists of two temporal components. An
electron peak with high signal intensity appears early in
time under most circumstances and decays exponentially. The
ion peak appears later in time with a skewed Gaussian shape.
In fact, if both the ion and electron peaks can be modelled
precisely, the electron signal may thus be subtracted from
the DLI signal in order to further improve the detection
limits of DLI technique. Smyth and Mallard have shown that
different ions will appear at different times (15) if they
have a significant difference in mobility coefficients.
However, even if the background signal overlaps with the
analyte ion signal, the entire spectrum still can be
deconvovled provided a suitable mathematical model is
available. The next chapter is devoted to deriving
pertinent mathematical models, and the advantages and
disadvantages of the various models will be examined.

Chapter 1V discusses the curve fitting techniques in detail.

From the above discussions and the experimental results

shown in Figures 3-5 through 3-11, the following conclusions
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can be reached concerning the DLI signals:

(i) The DLI signal is composed of two temporal
components. A short, but strong, electron peak
which appears very early in time , followed by a

weak, but broad, ion peak.

(ii) The peak which appears early in time always decays

exponentially if it is solely due to electronmns.

(iii) If the lower probe (cathode) is placed close enough
to the laser focal point and an appropriate bias
voltage is applied, the later part of the DLI signal
shows an exponential decay. In this case the ion
peak may have weakly merged into the electron peak
and may not be observed separately. If the bias
voltage is small, the ion peak becomes very broad
and merges into the background. Again, the DLI
signal decays exponentially. However, if too high a
bias voltage is applied, the ion peak distorts the
electron peak and the combined signal no longer

decays exponentially anymore.

(iv) If the cathode is sufficiently far from the laser
focal point and an appropriate bias voltage is
applied, the ion peak can be observed clearly.

However, the DLI signal during that time period will
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be the sum of the electron signal and the ion
signal. If too high a bias voltage is applied, the
ion peak will again merge into the electron peak. A
small part of the ion peak usﬁally can be seen at
the very beginning of the DLI signal. Nevertheless,
the later part of the DLI signal no longer shows an

exponential decay.

(v) If the cathode is too far away from the laser focal

point, only the electron peak can be observed.

D-2 Electron Signals

A detailed theoretical treatment of the behavior of
electrons in a flame environment under the influence of a
possibly very complicated electric field is beyond the scope
of this thesis. Hence this section is devoted to finding a
relatively simple model which can explain the behavior of

electrons in DLI process.

Electrons behave very differently than ions. As might
be expected, electrons usually possesses mobility and
diffusion coefficients much higher than ions by orders of
magnitude. Because of its small mass, the electrons can be
accelerated rapidly by an electric field, and it loses very

little energy in elastic collisions with other particles in
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the flame (16). Therefore electrons can acquire kinetic
energy from an electric field faster than ions. Even with
only a weak electric field imposed on the gas through which
the electrons are moving, the average energy of electrons
may be far in excess of the thermal energy calculated by
Boltzmann's Law. In other words, for electrons usually the
drift term in the Fokker-Planck equation overrides the
diffusion term. Berthoud et al. (13) have indicated that
the time constant for electrons to attain steady-state
mobility is about 3 picoseconds, as discussed previously in

Section B-3 of this chapter.

In addition, from the results of DLI experiments in our
laboratory Lin, et al. (2) have shown that in the flame
environment, the behavior of ions can be modelled by
ambipolar diffusion. Ambipolar diffusion usually starts
from a neutral mixture of positive ions and electrons with
very high density. The more mobile electrons diffuse faster
and outrun the slow-moving positive ions. This causes a
charge-separation electric field that acts to retard the
diffusion of the electrons and to enhance the diffusion of
the positive ions, thus maintaining charge neutrality. The
'enhanced diffusion of positive ions is called ambipolar
diffusion (17). A pictorial representation of the charge
separation due to ambiploar diffusion is shown in Figure 3-

2

12. The ambipolar diffusion coefficient Da (cm -sec-l) for

a high density mixture of electrons and positive ions is
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Figure 3-12. Pictorial representation of charge separation

of a plasma cluster due to ambipolar diffusion.
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twice of the magnitude of the diffusion coefficient D for
ions alone, provided the kinetic temperatures of both

species are the same; i.e.,
D = 20D (23]

Since the pulse widths of both lasers are about 5
nanoseconds, we may assume that at the instant when the
laser pulses turned off, a steady-state ambipolar diffusion

has already built up at the laser focal point.

Based on the previous discussion, we propose the

following for the behavior of electrons in the DLI process:

(i) At the moment the lasers are fired, the electrons
start to move to the anode. They contribute to the
early part of the electron peak through both the
capacitive effect and/or direct charge collection

processes on the surface of the anode.

(ii) After a short time period, the depletion of
electrons at the laser focal point causes ambipolar

diffusion to be built up gradually.

(iii) After the short time period of the depletion of
electrons at the laser focal point (hereafter simply
called the transition stage) described in step (ii),

the electrons can be described effectively by the
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ambipolar diffusion model. A steady-state ambipolar
process thus governs the behavior of both ions and

electrons.

From our proposed mechanism, step (i) can explain why
electrons can reach the anode at such an early stage of the
DLI processes. After a very complicated transition stage,
step (iii) explicates the reason why the electron peak still

possesses a tail at late stages of the DLI processes.

To explain why the electron peak decays exponentially,
a relatively simple and straightforward model is presented
here, with the assumption that at step (iii) the mobility of
electrons is no longer important. We may start from the
equation of continuity:

d?P(q,t) azP(q,t)
————————— = D - = [24]

where P(q,t) is the electron density function and Da is the

2.sec”l) of the electrons.

ambipolar diffusion constant (cm
Since a steady state has already been built up, we may apply

the method of separation of variables:
P(q,t) = P(t) * P(q) [25]

If we substitute equation [25] into equation [24], the

following equation can be derived:
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............. 2 ===Cee cmmeeea [26]

Equating both sides of equation [26])] to a time constant -1

yields:
1 dP(t) 1
------------- = - ——- [27]
P(t) dt T
and
D a2p (q) 1
a
.......... 5= = - --- (28]
P(q) dq T
Equation [27] gives:
P(t) = A exp(-t/T) (29]

Since A can be included as a factor in the P(q) function as
part of the normalization constant, there is no loss of

generality in rewriting equation [29] as follows:

P(t) = exp(-t/T) [30]

Either equation ([29] or equation [30] can be used to
describe the temporal behavior of electrons in the later
stage of the DLI process. Due to the ambipolar diffusion
feature of the electrons, it is reasonable to impose the
following two boundary conditions as a first order

approximation:
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------- = 0 [31]

where q, is the coordinate of the laser focal point and is
defined as qoso here. This boundary condition implies that
the laser focal point possesses the highest electron density
all the time. Considering the attractive force between the
electrons and the much slower-moving ion cloud, we may
perceive this as a reasonable approximation. Also, we may

have,
P(qa) = 0 [32]

where qq is the coordinate of the anode, as designated in
Figure 2-6. Equation [32] implies that the anode behaves
like an infinite sink for electrons. It is also assumed
that the rate of the electrode kinetics are also infinitely

rapid. Equation [28] thus gives:
---------- = (2k-1) --- [33]

where k is an integer greater than or equal to 1. We may
choose the fundamental mode solution to describe the

behavior of electrons. This yields:

-4 25 -1 _2
T 4 n D, q, (34]

where Tt is the lifetime of the exponential decay of the
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electron peak. Assume that at the moment the lasers are
turned off, the total number of ions is N. We may then
write the complete solution of P(q,t) for the fundamental

mode as follows:

P(q,t) = —=———- * exp(-t/t) * cos(--—--- ) [(35]

The physical interpretation of equation [35]) is depicted in
Figure 3-13. Briefly, this model assumes that there is a
steady-state distribution between the laser focal point and
the upper probe (anode) which builds up at the very moment
when both lasers are turned off. The anode behaves like an
infinite sink and the electron population thus decays

exponentially with time.

D-3 Charge Separation Process

Before examining the shape of the ion peaks, it is
important to understand why there exist two separate
components of the DLI signals. Since a closed loop of
current flow is always required, common sense will deny the
idea that the electrons and ions can be collected
separately, not to mention that they can be counted
additively. However, if the background ionization from the
matrix components and the self-ionization of the flame

itself are considered, it is clear that the electron signal
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Figure 3-13. The physical interpretation of equation [35].
This plot shows that the model of separation of
variables assumes that there is a steady-state
distribution between the laser focal point and
the anode which builds up at the very moment
when both lasers go off (tf=0). The anode
behaves like an infinite sink and the electron
populations thus decays exponentially versus
time. The solid line is the spatial
distribution of electrons at tf=0 and the dash
lines are the electron distribution at later
times. Notice that the area under each curve

stands for the total population of electrons

and it decays exponentially versus time.
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RESULT FROM THE METHOD OF SEPARATION OF VARIABLES

P(q,t) = -==-- * exp(-t/1) * cos(----- )

LASER FOCAL
POINT ANODE

Figure 3-13.
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can be detected by the anode separately since meanwhile the
cathode can absorb the background ions in the flame and
fulfill the requirement of constructing a closed current
loop. The very same argument can also be applied to the
cathode reactions. Nevertheless, this argument cannot
guarantee that the electron and ion peaks will be additive
all the time during a DLI signal collection process. If the
volume ionization rate of the dual laser ionization is far
exceeding that of the background flame, at a stage the
electrodes will be collecting electrons and ions which are
both formed by the dual laser ionization of the analytes. A
complete treatment of the transition stage for step (ii)
proposed in Section D-2 is clearly required. However, since
the experimental results showed that counter compensation
from the background to the signal collecting processes at
both electrodes can be assumed at the later stage of the DLI
processes, the signals are assumed to be always additive

throughout this thesis.

In Figure 3-14 a charge separation process is sketched
for a flame with biased probes. The separation is assumed
to begin immediately after the lasers were turned off.
Notice that in Figure 3-14, Lawton's model of "charge
sheath” is adopted, and the electric field is not the same
everywhere along the g-axis but rather piece-wise linear.

In the sketches of the electron and ion distribution curves,

it is assumed that a high bias voltage is applied and the
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Figure 3-14. A sketch of the charge separation processes
under the influence of a high bias voltage at
tf>0. This process started immediately after
the laser pulses went off. Lawton's model of
"charge sheath” is adopted here and the
electric field (the solid line) is thus piece-
wise linear. The distribution curves of ions
electrons were calculated by the Fokker-Planck
equation with a piece-wise linear drift
function. The ambipolar diffusion effect was
ignored. Notice that the the shape of the
distribution curves for ions and electrons are

not pure Gaussian.
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interaction between electrons and ions (i.e. the ambipolar
diffusion effect) can be safely ignored. Even so, due to
the piece-wise linear electric field, the shape of the
distribution curves for electrons and ions are still not
purely Gaussian. The theoretical effects of the piece-wise
linear electric field on the distribution curves were
calculated by a simple Fokker-Planck equation, and are
depicted in Figure 3-14. The implications and the formalism
of the Fokker-Planck equations are discussed in detail in

Chapter 1V.

D-4 Ion signals

Close examination of Figures 3-9 and 3-10 reveals that
the arrival times of the peak maxima of the ion signals is a
function of the distance between the laser focal point and
the lower probe (cathode). The width of the ion peaks is in
turn a function of the peak maxima arrival time. These
observations imply that the transport phenomena for ions in
the DLI process are both mobility and diffusion dependent.
Experimental results from our laboratory have shown that the
mobility and diffusion processes are both involved, and can
be treated separately by assuming the existence of steady
states (2). However, when the bias voltage applied to the
electrodes increases to a certain extent, it has been found

that the DLI signals no longer decay exponentially. Curve
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fitting has also shown that the ion signals, which are
obtained by subtracting the electron peaks from the DLI
signals, are significantly skewed from pure Gaussian
distributions. This implies that the steady-state, pure
diffusion model proposed by Lin is not suitable when the
bias voltage applied to the electrodes is sufficiently high.
Therefore, a new model which can treat the interactions
between the mobility and diffusion processes simultaneously,
for ions and electrons under different shapes of the
electric fields, is clearly required. The one-dimensional
Fokker-Planck equation was chosen to try to reconcile all
the different mechanisms of the DLI processes under

investigation in our laboratory.

One of the important applications of the the time-
resolved DLI ion signal is that it can be used to disclose
the values of the mobilities and diffusion coefficients of
analyte ions. Lin et al. (2,5) have shown that by assuming
an ambipolar model, the diffusion coefficients of various
ions can be calculated. By solving a linear hyperbolic
equation, Lin (1,5) was also able to calculate the mobility
coefficients of various ions. With the aid of the Einstein
formula given in equation [9] of Chapter I, the temperature
of the flame was calculated. Lin's data agreed with

literature values very well.

A close examination of Lin's model shows that Lin was,
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in fact, solving the Fokker-Planck equation with a constant
drift function separately while assuming that ambipolar
diffusion exists. In other words, the interactions between
the ion mobility and diffusion are completely ignored. The
Fokker-Planck equations are capable of treating the
mobility, diffusion, and the interactions between the two
accurately. Hence through proper modelling and curve
fitting procedures, the mobility and diffusion coefficients
of ions can be extracted simultaneously from one time-
resolved DLI experiment. In turn the flame temperature can
be calculated. The details of the new model are covered in
the next three chapters of this thesis. The treatment of
ion signals and the Fokker-Planck formalism are discussed,
and more experimental results are presented to portray the

ion transport phenomena.

Another potential application of the ion peaks in the
DLI signals is to increase the detection limit of the DLI
technique for real sample analysis. This idea has already
been presented in Section D-1 along with the discussion of

the implications of Figure 3-11.

D-5 Shape of the Electric Field

Before closing this chapter, the electric field built

up in the relatively clean hydrogen-oxygen-argon flame



- 133 -

produced by a laminar-flow Méker burner will be discussed.

Besides revealing several features of the electron
peaks of the DLI signals, Figure 3-10 also implies that the
fuel-rich hydrogen-oxygen-argon flame probably is "super-
saturated" when a bias voltage of 180 volts are applied.
From Figure 3-10, it is clear that as the upper electrode
(anode) is displaced from the laser focal point, the peak
maxima of the ion signals arrive later. Since the distance
between the lower probe (cathode) and the laser focal point
was kept the same, the only explanation is that the electric
field changes as the anode was moved. However, equations
(2] and [3] indicate that the shape of the electric field
should be independent of the position of the anode.
According to Lawton's model, the only explanation is that
the electric field between the electrodes has been super-
saturated. This phenomenon has been examined carefully.

The same results were always obtained unless more than 500
ppm of cesium was added to the analyte solution. A high
concentration of cesium in the analyte solution often caused
the input o: the boxcar to be overloaded. Hence in all of
the models constructed in this thesis, a super-saturated

electric field between the electrodes is always assumed.

Equations [14] through [16] describe the magnitudes of
the electric field and electrical potential along the q-

coordinate. They were previously given in in Section B-2
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and Figure 3-3. These equations are all extremely lengthy
and complicated. In addition, when the flame is perturbed
by the laser pulses, the inductive effect due to the fast-
moving electrons and the transport phenomena of ions and
electrons moving through space will further disturb the
steady-state charge distribution in the flame. The entire
situation thus becomes even more complicated. In order to
avoid the sophistication of mathematics, a reasonable but

less complicated version of equation [14] is desired.

For a relatively clean flame like the hydrogen-oxygen-
argon flame used in our laboratory, it is reasonable to
assume that the ionization rate, As' of the background

matrix per unit volume per second is very small, or

2 _ 2 -
As (qa q) << Ea' q, > q > q, [36]

Hence the series expansion of equation [14] can be obtained

as follows :
E = E + == et + e (37]

The first order approximation of equation [14] then is:

_ 2
E = Ea + k(qa q) (38]
where
1 Asz
Kk = =ce —==-- [39]
2 E
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Practically, equation [39] can be further simplified by
assuming that the distance between the laser focal point and
the cathode is reasonably small, or that the first
derivative of the second term in equation [38] is reasonably

small. This yields:

E = Ea + k'(qa - q) l [40]
where
2
A (q.*+q.)
k' = --8___lc¢_’a’_ [41]
Ea

Equation [41] has been applied to various Fokker-Planck
equations with good results. To further simplify the model,
we may assume that the second derivative of the second term

in equation [38] is zero:

----- = 0 [42]

A =0 [43]
which makes:

E = E_ (44]

In this condition, Ea can be obtained by applying
L'Hospital's rule to the right hand side of gquation [16],

which gives:



- 136 -

E = ———ee-B___ [45]

In turn equations [44] and [45] give the extremely useful

approximation:

E = eeececcecccee- [46]

Equation [46] applies in the extreme condition under which
no background ions are present in the flame. This condition
also has been applied to the Fokker-Planck equation and

again yields very good results in most circumstances.

Equations ([14], [38], [40], and ([46] offer different
orders of approximation to the electric field in the flame.
Their usefulness depend on how sophisticated a model that is
actually needed. Notice that the derivation of equations
(36] through [46] implies that if the bias voltages applied
are sufficiently large in a relatively clean flame, the
electric field can be safely assumed to be linear even it is
truly super-saturated. This assumption may help to simplify

the already complicated DLI processes.
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E. Conclusion

Experimental results have be presented in this chapter
to confirm that the time resolved DLI signal has two
temporal components: a short and strong electron peak
followed some microseconds later by a longer and weaker ion
peak. The temporal behavior of DLI signals taken under
various probe positions and bias voltages were discussed.
General conclusions were drawn in order to give a clear
picture of the temporal DLI processes. An explanation of
the reason why the electron signal and ion signal can be
detected separately and treated additively was given. The
shape of the electron signal was investigated and described.
A theoretical treatment was given to strengthen the argument
that, with the experimental set-up in our laboratory, the
electron signal always decays exponentially versus time.
Experimental results also revealed that the interaction
between ion mobility and diffusion cannot be ignored if the
bias voltage is high. Discussions concerning the modelling
of the ion signals were given. The necessity of adopting

the Fokker-Planck equation was established.

Also, Lawton's model concerning the shape of the
electric field in a flame environment was presented.
Experimental results have shown that in a hydrogen-oxygen-

argon flame under fuel-rich conditions, the electric field
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is almost always super-saturated. Several approximations of
the super-saturated electric fields in the flame environment

were derived and interpreted.

The potential application of the time-resolved DLI
technique to real samples was suggested. The possibility of
extracting mobility and diffusion coefficients of ions from
a single DLI experiment in order to determine the flame
temperature was considered. This feature is examined in

future chapters.
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CHAPTER 1V

THE FOKKER-PLANCK EQUATION

A. Introduction

Dual laser ionization (DLI) spectrometry is a powerful
analytical technique for the detection of trace metals (1).
An Nz-laser pumped dye laser, which is tuned to a resonant
transition wavelength, is used to excite the analyte
atomized in a flame. The excited analyte atoms are then
photoionized by an N2 laser beam (337.1 nm). The ions
produced during the laser pulses are collected by a pair of
nichrome wires (probes) immersed in the flame. Various bias
voltages were applied to the probes in order to obtain
optimum signal detection. An electric field is built up
between probes. 1Ion transport to the probe (cathode) thus
involves ion mobility. As indicated in the previous
chapter, the ion peaks of the time-resolved DLI signals
become broader when the arrival times of the peak maxima get
longer. This suggests that the diffusion of ions has to be

considered in addition to their mobility.

- 141 -
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Further investigations of time-resolved DLI signals

have shown that there exist two temporal components, i.e. a
short electron signal followed some microseconds later by a
longer and weaker ion signal. The shape of the time-
resolved DLI signals can vary tremendously with the change
of experimental variables such as applied voltage, flame
background current, and the position of laser focal point

with respect to the collection to the probes.

In order to be able to systematically predict the
effect of experimental variables on the time-resolved DLI
signals, a suitable mathematical model is required. As
indicated in the previous chapter, the mathematical model
may be used to help determine the appropriate aperture
duration and aperture delay of the boxcar integrator, in
order to block out most of the background interference and
to obtain lower detection limits (1). It may also be used
to find the experimental conditions which exclude the
contribution of the electron peak to the time-resolved DLI
signal, and enable further lowering of the detection limits
through curve fitting techniques. 1In addition, a suitable
mathematical model may be employed to help determine both
.the mobility and the diffusion coefficients of analyte ions

in the flame, hence the flame temperature can be calculated.

Mathematical models which describe the signal

collection processes of laser-enhanced ionization (LEI) and
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DLI have been reported (2-4). Berthoud et al. (3) used a
diffusion-free model to calculate the mobility of electrons.
Havrilla et al. (4) treated the ion cluster as a point
charge and proposed a signal detection mechanism with the
aid of Lawton's model, which predicts the shapes of the
electric fields in the flame. Lin et al. (2) proposed a
steady-state approximation to calculate the diffusion
coefficients of analyte ions in the flame. Also, a model
with a linear, hyperbolic partial differential equation was
employed by Lin et al. in order to measure the mobility
coefficients of ions. However, none of the previous workers
has investigated the interactions between ion diffusion and
ion mobility. Experimental results presented in the
previous chapter show that in many cases the interactions
between diffusion and mobility of ions cannot be ignored if
high flexibility of the DLI technique is demanded.
Therefore, a new model which can simultaneously treat both
factors is required. 1In fact, solving the Fokker-Planck
equation with appropriate drift functions turns out to be an

appealing choice.

The biggest advantage of the Fokker-Planck equation is
that it can treat ion mobility and diffusion simultaneously
under various experimental conditions. Through proper
modelling of the DLI signals with a set of one-dimensional
Fokker-Planck equations, curve fitting techniques can help

reveal details of the ion transport processes in a flame
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under the influence of an electric field. This chapter is
devoted to the derivations of the Fokker-Planck equations in
order to construct a more flexible and effective
mathematical model for DLI processes. The interpretations

of various drift functions will also be discussed.

B. Derivation of the Fokker-Planck equation

The transport phenomena of ions and electrons in a
flame environment under the influence of an electric field
consist of at least four factors, namely: diffusion,
migration, convection, and mutual interactions of electrons
and ions. In this chapter, only the first three factors are
considered since presumably the interactions among electrons
and ions can treated by the ambipolar diffusion assumption
(2). Also, the discussion in this chapter is devoted to the
ion peaks of the time-resolved DLI signals, since the
experimental results mentioned in the previous chapter have
shown that the electron peaks usually decay exponentially in

the later stage of the DLI processes.

The most obvious factor of the three is the migration
of ions under the influence of the electric field. This
factor can be expressed mathematically by the following

equation:

J(q,t) = u E(q) P(q.t) [1]
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where J(q,t) is the ion flux (ions-sec'l-cm'z)

., H is the ion
mobility coefficient (em2.sec l.vo1t™1), E(q) is the
electric field (volt-cm-l), and P(q,t) is the conditional

=3). The ion flux is a

propagator or ion density (ions-cm
function of both the g-coordinate and time, as is the ion
density. According to the discussion in Section D-2,
Chapter III concerning the shape of the electric field, the
term E(q) is assumed to be a function of the gq-coordinate

only in order to keep the model from getting too

complicated.

The factor most often ignored in the DLI process is
diffusion. The diffusion of ions due to the ion density

gradients can be expressed as follows:

J(q,t) = - D ————————- (2]

2

where D (cm -sec’l) is the diffusion coefficient of the

ions.

The convection factor is due to elastic collisions of
the analyte ions with other flame particles. Since the
flames used in this work were generated by a laminar-flow
Méker burner, there is some justification for omitting this
factor from the one-dimensional model proposed here. The

ion flux due to convection can be written as follows:

J(q.t) = v(q) P(q.,t) [3]
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where v(q) is the burning velocity (cmosec-l) of the

laminar-flow burner.

Upon combination of all the three above mentioned

factors, a complete equation for the ion flux is obtained:

dP(q, t)
J(q,t) = pE(q)P(q,t) - D -—==—==—- + v(q)P(q,t)

The change of ion density at point q can be written as

follows:

dP(q,t) d
......... = -=-- [ J(q,t) - J(g+dq.t) |

J(q+dq.t) = J(q,t) + (-====——-- ) dq

Substitution of equations [5] and ([6] into equation (4]

yields:

......... =D -——-=z=-== 4+ =——= (h(q)P(q,t))

where h(q) is the so-called "drift function" which is

defined as follows:

h(q) = - ( uE(q) + v(q) )

Equations [7] and [8] constitute the one-dimensional

(4]

(5]

(6]

[7]

(8]
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Fokker-Planck equation that is suitable for the DLI

processes.

C. Analytical Solutiomns

C-1. Steady-State Approximations

In our laboratory, Lin (2) has proposed a method to
solve equation (7] under extreme conditions. By assuming
both that the diffusion term is not as important as the
migration term under high and constant electric field, and
that the convection term is negligible, equation [7] can be

reduced as follows:
--------- =uE --------- (91

This equation can be solved by the method of separation of
variables. The solution of equation [9] thus is written as

follows (2):
P(q,t) =n exp(-q/qc) * exp(—at/qc) [10]

where q. is the distance between the laser focal point and
the lower probe (cathode), as designated in Figure 2-6. The

term a (cm-sec™l) is difined as follows

a =pnE (11)
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Equation [10] implies that the ion density function has
been assumed to be a steady-state distribution when the
method of separation of variables was adopted. In addition,
the ion density function decays exponentially with time.

Lin et al. were able to calculate the mobility coefficients

of ions with the aid of equations [(10] and [11].

Under the condition that the electric field is absent,
equation (7] can be reduced to:

2P (q, t) 22p(q, t)
————————— =D == [12]

The analytical solution of equation [12] has already been
given in equation [31], chapter III. For ions, that
equation can be re-written as follows:

nnw -t qnm

P(q,t) = -==-- * exp(----) * cos(----- ) (13]

2qc T 2q

where t is the lifetime of this process and was defined as:

4 2 -1 2
T 4 Da q. (14]

In equation [14], Da stands for the ambipolar diffusion
coefficient for the ions only. The interpretation of this

equation has been discussed in detail as in chapter III.

From the above brief discussion, it is clear that Lin

was solving the one-dimensional Fokker-Planck equation
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separately. The outcome of Lin's work is quite satisfactory
and the currnet work takes advantage of his investigations.
The result from his work assumes that ambipolar diffusion
always applies in the DLI process. However, from the
experimental results obtained here, it can be concluded that
what Lin observed was the electron signal rather than the
ion signal. Nevertheless, due to the effectiveness of the
ambipolar diffusion, the later part of the electron signal

possesses the same diffusion coefficient as ions.

C-2 Path Integral Formalism

A full understanding of the DLI signal detection
process relies on treating all of the diffusion, migration,
and convection terms together. Due to the level of
complexity of the mathematics involved, the one-dimensional

Fokker-Planck equation is adopted.

Functional path integral techniques are extremely
powerful for solving the Fokker-Planck equation. A brief
review of the development of the path integral was given in
Chapter I, Section B-4. Path integral techniques are
frequently coupled with the Onsager-Machlup-Laplace (OML)
approximation. The OML approximation is exact when the
drift function h(q) is linear. A later part of this chapter

will show that the OML approximation is also exact for
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piece-wise linear drift functions.

For the Fokker-Planck equation with a constant
diffusion coefficient D, the path integral techniques yields

(5,6):
P(qf,tflqo,to) = J Dlq(t)] =

-1 te .
exp { ---- L(q.,q.t) dt | [15]
2D ty

The term P(qf.tf|qo,t0) is the conditional propagator (cm-l)
which indicates the probability of observing the value qe

for the stochastical variable q at time t At time t=0

f.
(to), the conditional propagator is a Dirac delta function.

Plag . te|dg.-ty) = 8(qe-qq) (16]

The integration of equation [15] runs over all functions

q(t) under the following designations:
q(to) = q, (17]

and

q(tf) de [18]

A differentiable path that minimizes the thermodynamic
action S always satisfies the Euler-Lagrange equation. If
there is only one such path, it determines the OML

approximation as follows (5-12):
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_ dq -s(q)
P(Qg te|dy ty) = (4wD) 1/2 (--=£-)"1/2 gxp(--ooooo- )
dqo 2D
[19]
where
tf .
s(q) = L(q,q,t) dt (20]
t
The term L(qg,q.t) is the Lagrangian, which, in turn is
described as follows:
[ ] 1 L ] 2
L(q.,q.,t) = --- [ (q(t) + h(q))° - 2Dh'(q) ] [21]
2

Equation [20] should be evaluated along the path qc(t) for

which the action is minimum.

All the analytical solutions and numerical solutions of
the Fokker-Planck equations with various drift functions in
this chapter were solved according to the algorithm defined

above.

C-3 Constant Drift Function

As mentioned in the previous chapter, the electric

field in the laminar-flow hydrogen-oxygen-argon flame is, in
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fact, super-saturated. If we further assume that the
burning velocity of the flame is a constant along the q-
coordinate, i.e. the convection term is no longer a function

of q, we may rewrite the drift function as follows:

h=-a [22]
where

a = uE + v (23]

The solution of equation [7] is given as follows:
P(qe.te|qy ty) = —==--—-=755- exp [----S-==2--- } [24]

Notice the unit of the conditional propagator P(qf,tflqo,to)
is cm'l. Equation (24] is an exact solution of equation (7]

with a constant drift function and it is already normalized.

Equation [24] is evidently of a Gaussian form. The
physical interpretation of equation [24] is clear. The
conditional propagator can be viewed as the ion density
distribution which changes with time. Since the solution is
always Gaussian in the time span, the spreading process is,
'in fact, a pure diffusion process. The numerator of the
exponential term implies that the peak maximum is moving

with a constant velocity Vion where

ion
= uk + v [25]
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Equation (24] nicely offers a less complicated and
fairly intuitive interpretation of the DLI brocess. A
pictorial interpretation of equation [24] is given in Figure

4-1.

However, since the DLI processes occur on the
microsecond time scale and the position of the cathode is
fixed, i.e. it is not possible to physically scan the probe
along the q-coordinate in such a short time period, equation
[24] is not that useful in modelling the DLI processes. A
conditional propagator with the units of sec”1 is, in fact,
much more useful. The following section is thus devoted to

deriving a conditional propagator with the more appropriate

units.

C-4 Practical Modification

If we assume that the cathode behaves like an infinite
sink which can absorb ions infinitely fast and thus does not
impose any extra charge to distort the electric field near
the surface of the electrode, the conditional propagator
given in equation (24] can be modified to have the units of

sec™ 1,

Since equation [24] offers a normalized distribution

function for ions, we may relate the time-dependent total
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Ion distribution versus time diagram. This

diagram was drawn from equation [24] by

2

assuming D = 11.3 cm -sec_1 and u = 30.4
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A, 5 us; B, 10 us; C, 15 us; D, 20 us after the

laser pulse.
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DLI signal, s to the distribution function as follows:

total’
e
Therefore the DLI signal, Stime' collected by the cathode

over a time interval 4dt can be defined as follows:
S_. =T ———=S=s=- [27]

S can be viewed as the ion flux which passes the

time
cathode. Substitution of equation [26] into equation [27]

yields:
q¢
S,. = = =—=—m Plag/te|qp ty) da (28]
q

According to the Leibnitz rule, equation [28] can be
rewritten as:

j S | ) (29]

S, = - -——= P(qg.tslq..t dq
time q dt £'E£1°0 70

The integral given in equation [29] has to run from negative
infinity to q in order to assure the normalization of the
distribution function. If q is chosen to be negative

infinity, equation [29] yields:

S | —-me-SsooeoZe—o exp {---=-=-=-=--- } (30]
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Equation [30] is normalized and has units of sec . The
physical interpretation of equation [30] is, in fact, very
different from that of equation [24]; however, it still

provides insight.

Equation ([(30] has a few interesting implications.

First, it predicts that the ion peak will appear when
Qe = atf [31]

This implication agrees with the point charge approximation.
Second, the value of Equation [30] approaches zero when tf
approaches zero, i.e. there is no signal at time zero.
Mathematically, this implication can be expressed as

follows:

Limit S_., =0 (32]
£30 time
Equation ([32] can be proved by applying L'Hospital's rule to

the right hand side of equation [30].

The idea of deriving a complementary conditional

propagator with a unit of sec™1

can help treat the skewness
of the DLI signals. Besides, the physical interpretation,
in fact, makes perfect sense. A plot of equation [30]

versus time is given in Figure 4-2.
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C-5 Linear Drift Function

As mentioned in Section B-2, Chapter III, when the

electric field is saturated, it can be expressed as follows:
E=A; (q -~ Q). -q,<4q5q, (33]

where As is defined in equation (4], Chapter III. This

provides a linear drift function,
h=-na (q - (34]

This is, in fact, the well-known Ornstein-Uhlenbeck process
(13). The analytical solution of this case has been given

in equations [17] and [18]), Chapter I.

C-6 Piece-wise Linear Drift Function

When the electric field is sub-saturated, it can be

described as follows:
E = As (qs - q), qsgq (35]
and

E =0, qg < q S q, (36]

The term As is defined in equation [4], Chapter III, and all
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the q-coordinates were designated in Figure 2-6, while dg is
the thickness of the space charge sheath around the cathode.
The electric field described by equations [35] and [36] is
called a piece-wise linear field since the slope of the
electric field changes at point qg - When the laser focal
point is inside the non-zero electric field region, the
piece-wise linear case still allows ions, through random
motion, to enter the zero electric field region. If the ion
carries enough momentum upon entering the zero electric
field region, it may never turn back and reach the cathode.
That is the reason why in this case the analytical solution
of the Ornstein-Uhlenbeck process (13) cannot be applied,
even when the laser focal point is inside the non-zero
electric field region. 1In the Ornstein-Uhlenbeck processes,
all the ions eventually reach the cathode since space

extends to infinity.

The analytical solution of the piece-wise linear case
was obtained by path integral techniques with the Onsager-
Machlup-Laplace (OML) approximation. The formalism
described in Section C-2 of this chapter was followed. The

solution reads as follows:

= -1/2 _-1/2

(-—-£-)"1/2 exp(-—mam-- ) (371
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where
dq q q
e S . 0. (38)
dp, mAq, + Py mAQe + Pg
and
c 1
S(q ) = Ath + -;‘- (quf -QOPO)
m
A
- -== (ag? - qp?) [39]
2

2

where D is the diffusion coefficient (cm -sec'l). The term A

(sec™l) is defined as follows:

A=uaA [40]

The terms Py and P¢ (g-cm-sec-l) are the initial and final
momenta of the ions. They are defined as follows:

mA ( 2q£eAtf - qo(eZAtf+1) )
Pg = —~mmTToTmSomgigT Tt o (41]

and

mA ( qf(eZAtf + 1) - 2q0eAtf )
Pg = ——mmmm--dmmogT oo S e (42)

Notice that the conditional propagator has the units of em™1

and is only a function of the gq-coordinate and time. The
validity of equations (37] through ([(42] has been confirmed

by comparing the predicted values (propagator versus time)
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at various qf with those from the numerical method described

in Section E of this chapter.

Since substitution of equations [37] through ([42] back
into equation [7] makes both sides of equation [7]
identical, the analytical solution of the Fokker-Planck
equation with a piece-wise linear drift function is exact.
Taking the limit of A approaching zero, the result of a
Wiener process (14), equation [14], chapter I, can be

recovered.

D. Further Treatments

D-1. Introduction

Close examination of the assumptions made in the
previous sections indicates that the analytical solutions of
the Fokker-Planck equations with various drift functions can
give reasonable approximations for the detection processes
of DLI signals. A few assumptions are indeed over-
simplified from the real DLI process. From the outcomes of
the curve fitting methods described in the next chapter, it
is obvious that further treatment beyond the Fokker-Planck

formalism is needed.

One of the unrealistic assumptions that over-simplified

the treatment of the real DLI processes is from equation
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(16] of this chapter. The assumption that the DLI process
starts from a Dirac delta function has two implications. 1In
the scale of time, the laser pulses are assumed to be
extremely short in comparison with that of DLI process. 1In
the scale of space, the ions are assumed to be confined in a
volume which is negligible compared to the distance between
the laser focal point and the cathode, q.- Examination of
Figure 2-4 shows that the length of the temporal overlap of
the nitrogen laser and the dye laser is only 3.1
nanoseconds, which is negligible when compared with the
microsecond time scale of the DLI experiment. However, as
indicated in Section B, Chapter II, the focal area of the
dye laser through the lens was determined to be (1.0 £+ 0.3)
* ].0'3 cmz, i.e. the diameter of the corresponding focal
area is (0.36 £ 0.03) mm (15). The dimensions of the laser

focal point are not negligible with respect to q.-

Also, in the previous sections, the burning velocity v

was almost always assumed to be insignificant in the DLI
process. This assumption is not necessarily true, either.
The burning velocity of the hydrogen-oxygen-argon flame from
the Méker burner is about 500 cmesec™l (16). If we assume
that the mobility coefficient of the analyte ion is about
25.0 cmz-volt'l-sec'l, this factor will be comparable to the
ion mobility if the bias voltage applied to the electrodes
is less than 20 volts when the distance between anode and

cathode is 1.00 cm. Usually, this factor will cause at
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least 10 % error.

The results of curve fitting revealed that there exist
strong mutual repulsion forces among ions in the early stage
of the DLI process. This mutual repulsion was also not
accounted for by the drift functions chosen for solving the

Fokker-Planck equations.

In order to compensate for the errors caused by the

over-simplified assumptions of the treatment of DLI process

mentioned above, further treatment is required.

D-2. Convolution Method

To account for the finite dimensions of the laser focal
point, convolution of the analytical solution with a
reasonable initial space function is a natural choice. 1If
the interaction among ions can be ignored, the laser focal
point can be represented by a summation of infinitely thin
slices which drift and diffuse independently. Therefore,
the DLI signals at any time tf can be represented by the
integration of conditional propagators with different q,

values. This treatment can be expressed as follows:

qlp

0 P(qf'tf|q0-£'t0) v(t) df. [43]

PDLI(tf) = [
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where qlp is the diameter of the laser focal point and V(¢)
is the space distribution function of ions at the laser
focal point at the very instant when the laser pulses went
off. However, since the mutual repulsion of ions at the
laser focal point cannot be omitted, a time-independent

space distribution function is not very suitable.

However, if we view the transition from the electron-
depletion and charge-separation stage to the ambipolar-
diffusion stage (mentioned in Section D-2, Chapter III) as a
random mixing process, a time-based exponential decay
function can be used to account for much of the over-
simplified assumptions we have made. The exponential decay
is well-known as the result of a mixing process with an
infinite mixing rate in a chamber of finite and fixed
dimensions. The time constant of the exponential decay
often can be interpreted as a function of the size of the

mixing chamber.

Also, as mentioned in Section C-3, a conditional

propagator with a unit of sec”1

may give better simulation
of the DLI signals. Therefore we suggest that a modified
conditional propagator convoluted with a time based
exponential decay function may give the best description of
the ion peaks of DLI signals. Indeed, the results of the

curve fitting methods described in the next chapter confirm

this proposal.
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E. Numerical Solutions

E-1. Introduction

This section describes the computer algorithm which can
provide numerical solutions of the Fokker-Planck equations
with various drift functions. The computer algorithm is
designed according to path integral techniques with the
Onsager-Machlup-Laplace (OML) approximation. The formalism

described in Section C-2 of this chapter was followed.

The numerical method has many advantages, as it can
treat nearly any kind of drift function. 1Indeed, this is
the most general method available that can give good
approximate solutions to the Fokker-Planck equations with
non-linear drift functions. 1In addition, numerical
approximations can be used to verify the validity of
complicated analytical solutions of the Fokker-Planck

equations.

E-2. Computer Algorithm

This section gives a brief overview of the programming

strategy and a concise algorithm which can be followed step-
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by-step to construct a working program. A list of FORTRAN

source code which contains all details of this algorithm is

given in Appendix A.

To find the conditional propagator at time tt
numerically, a differentiable classical trajectory q(t) has
to be defined first. This trajectory must start from point
q, at time to and end at point de by time tf. It may not be
unique; however, it usually carries the minimum
thermodynamic action S(qc) and satisfies the Euler-Lagrange
equation. Usually, the minimal-action path can be found by
providing an approximate initial momentum Py then
iteratively adjusting the value until the trajectory ends
within a tolerable interval at qe by time tf. After the
minimal-action path q€(t) is determined and the initial
momentum Po is known, the preexponential factor can be
rearranged as follows and calculated by the central

difference method.

(44]

Then the minimum thermodynamic action can be obtained by
integrating the thermodynamic Lagrangian along the minimal-

action path q€(t).

The computer algorithm can be summarized step-by-step

as follows:
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(i) Design the drift function h(q) that can describe

the chemical system appropriately.

(ii) According to the drift function h(q) designed in
step (i), express the following equations

analytically in terms of q:

m
V(qQ) = - === ( h(q@)2 - 2ph'(q) ) (45]
2
i 1 2
L(qgq.,q,t) = - -—— ( (@ + h(q) )¢ - 2Dh'(q) ) [46]
2
dq p
————m ——— [(47]
dt m
dp dV(q)
mim = m mmmmieo [48)
ot 2q
dS(qc)
------- = L(Qo&,t) (49]
dt

(iii) Set up two integrators:

<1> The first shall solve equations [47] and [48]
simultaneously. (i.e., integrate both equations
simultaneously versus time).

<2> The second shall solve equations [47] to [49]

simultaneously
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(iv) Use Newton's method to determine the correct

initial momentum iteratively.

<1> Supply an estimated initial momentum Pqy-

<2> Call the first integrator established in step
(iii) and evaluate the integrations of q(t) and

0 to tf.

<3> Compare the q outcome from step <2> with qf.

p(t) from t

If the difference is within the tolerance
range, go to step (v).

<4> Use Newton's method to estimate a new initial
momentum p,.

<5> Go to <1>.

(v) Call the second integrator set up in step (iii)
with the Py from <5>, step (iv) to evaluate the
thermodynamic action S(q€) along the the minimal-

action path.

(vi) Use the central difference method iteratively to
evaluate the preexponential factor according to

equation ([44].

(vii) Calculate the numerical value of the conditional
propagator P(qo,t0|qf,tf) according to equation
[19] .
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The FORTRAN source code and related input and output
documents are given in Appendix A. The integrator used is
the subroutine DVERK from the IMSL library pack. DVERK is a
differential equation solver which is designed according to
the Runge-Kutta-Verner fifth and sixth order method. All

the source codes were run on a DEC VAX 11/750 computer.

F. Conclusion

In this chapter, the relationships between the Fokker-
Planck equations and the signal detection process of dual
laser ionization (DLI) were discussed. A one-dimensional
Fokker-Planck equation was derived in accordance with the
ion transport phenomena prevalent in DLI. Various
analytical solutions to the Fokker-Planck equations with
different drift functions were given. The implications of
each drift function mentioned were discussed. Also, a
different interpretation of the models and results published
by Lin, et al. (2) was suggested. A modified form of the

conditional propagator with units of sec"1

was proposed, and
its physical implications were discussed. An exponentially
modified conditional propagator was proposed and the
validity of that treatment was also examined. A brief
description of the numerical method was given at the end of

the chapter and the related FORTRAN source code was included

in Appendix A.
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The transport processes in DLI are, in fact, much more
complicated than the simple, one-dimensional Fokker-Planck
equations presented in this chapter can manage. However,
the results of curve fitting to be presented in next chapter
suggest that the Fokker-Planck formalism is indeed the
correct approach. More research .is needed before the

transport processes in DLI can be fully understood.
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CHAPTER V

FLAME TEMPERATURE MEASUREMENT

A. Introduction

One of the important applications of the dual laser
ionization (DLI) technique is making flame temperature
measurement (1). As mentioned in the previous chapﬁers,
signal collection in DLI involves both ion mobility and
diffusion. Since the ion transport phenomena of DLI can be
modelled well by the one-dimensional Fokker-Planck equations
with appropriate drift functions, both mobility and
diffusion coefficients can be extracted from the ion peaks
of the DLI signals through proper curve fitting methods.

The flame temperature thus can be calculated with the

Einstein relation (2-3).

The main purpose of this chapter is to demonstrate the
capability of the previously-proposed Fokker-Planck
formalism in modelling the DLI process. In this chapter, a
series of time-resolved DLI signals collected under various
bias voltages were modelled by an exponentially modified

- 173 -
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Fokker-Planck propagator. Results from curve fitting of the
data to the model are presented and interpreted. The
outcome of the data treatment revealed a dependence of the
ion diffusion coefficients upon the bias voltage. A rough

model thus is constructed to explain this phenomenon.

B. Theoretical

In order to simultaneously treat ion mobility, ion
diffusion, and especially the interaction between them
during DLI signal collection, the Fokker-Planck formalism is
adopted. As mentioned in Section D-5, Chapter III, the
hydrogen-oxygen-argon flame used in this study can easily
reach the so-called "super-saturation" (4) even if only a
moderate bias voltage was applied to the electrode pair. 1In
this study, the bias voltages (Va) used were as high as 870
volts, which were far beyond the requirement of reaching the
super-saturation. The electric field thus can be expressed

as follows:

E, = ———--2-—- (1]

where Ea (volts-cm_l) is the electric field between the
probes, q, is the distance between the upper probe (anode)
and the laser focal point, and q. is the distance between

the lower probe (cathode) and the laser focal point. The
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probe configuration with term designations is depicted in

Figure 2-6. The Fokker-Planck equation is thus as follows:

dP(q, t) 22p(q,t) >
--------- = D -----3---- + -=-= (h(q)P(q,t)) (2]
ot 2q 2q

where P(q,t) is the conditional propagator (cm-l), D is the

diffusion coefficient (cmz-sec'l) of the analyte ions, and

h(q) is the associated drift function (cm-sec‘l). It can be
defined as follows:

h(q) = - a (3]
where

a = uE + v (q) (4]
here p is the mobility coefficient (em2-volt l.sec™!) of the

analyte ion and the term vf(q) is the upward burning
velocity (cm-sec'l) of the flame. Since the magnitude of
the burning velocity and its variation versus the q-
coordinate, which is defined along the direction of flame
propagation (refer to Figure 2-6), are relatively small in
comparison to the first term at the right hand side of
equation [2], the term vf(q) is thus assumed to be
independent of the q-coordinate throughout this study.
Notice that equation (4] thus shows that the drift function

h(q) is no longer a function of the g-coordinate.

The exact analytical solution of equation [2] under the
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conditions defined by equations (3] and [4] can be obtained
by applying the functional path integral techniques with the
Onsager-Machlup-Laplace (OML) approximation (5-12). The
details of the OML approximation were given in Chapter 1IV,

Section C-2. The solution is given as follows:

P(q,t) = ———=—=Fz=>- exp (-—-------- ) [5]

The units of the conditional propagator P(q,t) are em™ 1,

As mentioned in Section C-3, Chapter VI, a conditional

1 is more appropriate for the

propagator with units of sec”
modelling of the time-resolved DLI signals. According to
the mathematical procedures described in that section,

equation [5] can be modified to give:

Pt(qf't) = ST TTTITsTR75 exp [~---=-===-- } (6]

The conditional propagator of equation [6) can be
interpreted as the DLI ion signal at time t when the cathode
is located at point de- However, equation [6] assumes that
at time zero (i.e. the very moment the laser pulses went
off) the ion cluster can be treated as a point charge. As
mentioned in Section D-1, Chapter IV, the diameter of the
laser focal point is about 0.36 mm, which is not small at
all in comparison to the distance between the laser focal

point and the cathode q.- In addition, during the
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transition stage, which is before a steady-state ambipolar
diffusion of electrons has been reached, the ions in the
laser focal point can be viewed as being in a mixing
chamber. To compensate for the indefinite thickness and the
effect of the mixing process, equation [6] must be modified.
An exponentially modified conditipnal propagator is thus
adopted. The modified model can be expressed mathematically

as follows:

exp (-—==-S------———---- ) * exp (- ----) d¢ (7]
4D(t-¢) T
where ¢ is a dummy variable for the integration and ti is

the time constant of the convoluted exponential decay.

The electron peak of the DLI signals, as already
discussed in Section D-2, Chapter III, can be described as
follows:

t

Pe(qf,t) = exp (- =----) (8]

Te

where Te is the time constant of the electron peak of the

DLI signal.

The combination of equations (7] and (8) yields a

mathematical model which can describe the DLI signals
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reasonably. The equation reads:
PDLI(qf’t) = Ci Pi(qf,t) + Ce Pe(qf,t) + cb [9]

where Ci is the amplitude of the ion peak, Ce is the

amplitude of the electron signal, and C, is the baseline of

b
the DLI signal.

C. Experimental

C-1 Apparatus

A complete description of the DLI experimental system
used in this study has been given elsewhere (13-15). 1In all
cases, the ions were produced by focusing two lasers at the
same point in the flame (approximately 1.2 cm above the
burner head) and well away from the combustion region. One
laser is a nitrogen laser (Model 0.5-150, NRG, Inc. Madison,
WI) with a fixed wavelength (337.1 nm). The other is a
Hansch-type tunable dye laser which was pumped by part of
the beam from the nitrogen laser. The dye laser was tuned
to a resonance transition to excite the analyte atoms and
the nitrogen laser was used to photoionize the excited
atoms. For sodium, the dye laser was tuned to the 381/2 -
3P3/2 transition (589.0 nm). The nitrogen laser beam is

focused by a quartz lens; the focal area was determined to

be (2.0 + 0.4) x 10™% cm? (14). The focal area of the dye
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laser was (1.0 £ 0.3) x 10~3 cmz. The length of the laser
pulse is about 5 nanoseconds. The laser powers were

adjusted to ensure the ionization rate of the analyte in the

flame was constant.

In this study, a relatively cool hydrogen-oxygen-argon
flame was burned from a laminar flow, premixed, circular
Méker burner (16). The flame was shielded by a mantle flame
of the same composition as the central flame to prevent the
entrainment of air. The burning velocity of the flame was
approximately 103 cm-sec_1 (17) . The hydrogen-oxygen-argon

flame was adjusted to be fuel-rich (Argon 3.2 L-min-l,

1, oxygen 0.5 L-min~1) throughout this

hydrogen 1.2 Lemin~
study. Atomic sodium was obtained by nebulizing a 20.0 ppm
sodium chloride solution into the flame with a pneumatic
nebulizer. The ion density of the flame was about 108 -
1010 cm™3 when the laser pulses were off (17).

The DLI signals were detected by a pair of 0.7 mm
diameter nichrome probes. Throughout the studies described
in this chapter, the upper probe was connected to the
virtual ground of an operational amplifier. It collected
'electrons and served as the anode. A negative voltage from
a high-voltage power supply (Model 3K10B, Power Designs,
Inc., Westbury) was supplied to the lower probe. The lower

probe collected ion signals and served as the cathode. The

probe configuration with term designations is depicted in
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Figure 2-6.

All the data were collected by a boxcar integrator
(Model 162-164, Princeton Applied Research Corp. Princeton,
New Jersey) and stored in a microcomputer. A more complete
description of the microcomputer interfaced boxcar
integrator system has been presented previously in section
F, Chapter II. Briefly, the microcomputer with an
associated interface board controlled the scan function of
the boxcar integrator through its back panel and read the
output from the boxcar integrator. Multiple readings at
each aperture delay in a scan were taken and stored in the
microcomputer in order to average the noise due to the
variation of laser pulse powers. Since all the DLI current
signals were converted into voltage by an operational
amplifier current follower circuit, all the signals shown in
this chapter are inverted, i.e. the DLI signals are drawn
downward and all baselines are placed at the top of the

plots.

C-2 Reagents

All solutions are prepared from reagent grade sodium
chloride dissolved in distilled, deionized water. The laser
dye chosen for this study was rhodamine 6G (Eastman Kodak

Co.) with a concentration of 7.5 x 1073 M in absolute
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ethanol. It was used without further purification. 1In
order to maintain the stability of the dye laser output, the
dye solutions were replaced approximately every ten hours of

the working time.

C-3 Experimental Conditions

In order to demonstrate the capability of the Fokker-
Planck formalism in extracting the mobility and diffusion
coefficients of various ions in a fuel-rich hydrogen-oxygen-
argon flame, a set of DLI signals was taken at various bias
voltages. The atomic ion was chosen to be sodium since
there are sufficient literature values available for
comparison. The applied bias voltages ranged from 10 to 870
volts. The distance, q.: between the laser focal point and
the lower probe (cathode) was 3.00 mm. The distance between
the upper probe (anode) and lower probe was 4.50 mm. The
boxcar aperture duration was chosen to be 5 microseconds
with an aperture delay range of 50 microseconds. The % Ini
knob was set at 2.0 % (i.e. 1.0 microsecond initial delay).
The scan increment between each data points was 0.9766
microseconds; and the microcomputer recorded 30 points per

data point.
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D. Data Treatment

The data fitting program was constructed by calling
appropriate subroutines from the well-known MINPACK package
released by the Argonne National Laboratory, Argonne,
Illinois (4). For the calculation of the integral contained
in equation (7], subroutines from the IMSL package were

called.

Briefly, MINPACK is a package of FORTRAN subroutines
for the numerical solution of systems of nonlinear equations
and nonlinear least squares problems. 1In this study, the
double precision version of the LMDIF subroutine was chosen
to fit the experimental results from DLI measurements.
Subroutine LMDIF is designed to minimize the sum of the
squares of residuals of M nonlinear functions in N
variables. Its main algorithm is a modification of the
Lavenberg-Marquardt algorithm (18). This subroutine can
determine the minimum of the surface of the sum of the
squares of residuals effectively. LMDIF does not require
the user to supply the set of equations that calculate the
Jacobian of the functions versus each parameter, hence it
may not be able to reach the minimum as quickly as other
subroutines in the same pack, such as LMDER. Due to this

deficiency, a curve fitting of about 100 data points may
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take hours of CPU time when the program is implemented on a

DEC VAX 11/750 minicomputer.

The algorithm of the main driver of the curve fitting

program can be summarized as follows:

(i) Input experimental results.
(ii) Input initial estimates of all parameters.
(iii) Input experimental conditions.

(iv) Call LMDIF subroutine from MINPACK-1 to search for

the minimum of the sum of the squares of residuals.
(v) LMDIF calls an external function to evaluate the
residual for each data point.

(vi) To evaluate the exponentially modified Fokker-
Planck propagator, the external function called by
LMDIF calls the DVERK subroutine from the IMSL
package.

(vii) Output results.

A complete list of FORTRAN source code of the main
driver ZMIDF3 and related input and output file formats are

given in Appendix B.

The greatest drawback of all curve fitting algorithms
currently available , especially the Lavenberg-Marquardt
algorithm (18) adopted by MINPACK-1l, is the low tolerance of

improper initial estimates of parameters. Unfortunately,
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they have to be supplied by the user. Improper initial
estimates may cause a divergence of one or more of the
parameter values. Since LMDIF possesses so low a tolerance
to the improper initial estimates, a version of the curve
fitting program which is based on equation [9], but with a
Fokker-Planck propagator which is not modified by the
exponential decay function, was constructed to supply the
initial estimates. A series of external functions based on
equation [9], written with different constraints, are also

included in Appendix B.

To evaluate the parameters properly, occasionally the
data points must be weighted by their standard deviations in
order to obtain more information about the data sets for
future treatments. The standard deviation of each data
point, which is due to the variation of laser pulse powers,
was calculated from the multiple points taken by the boxcar
integrator at the same aperture delay during the DLI
measurement. A different version of curve fitting program
which can weight each data point according to its standard
deviation was also constructed. Related subroutines are

included in Appendix B.

In this study, the experimental data were fit according
to equation [9]). There are seven parameters to be specified
by the data fitting procedure. The following is a summary

of these seven parameters:
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(i) Cb - the baseline of the DLI signals which can be

adjusted from the front panel.

(ii) C; - the amplitude of the ion peak.

(iii) Ce ~ the amplitude of the electron peak.

(iv) D - the diffusion coefficient of the analyte ions.
(v) @« - the velocity of the analyte ions during the

signal collection period.

(vi) Ty the time constant of the exponential decay
function which is convolved with the DLI ion
peaks.

(vii) Tt - the time constant of the electron peak.

E. Results

Figure 5-1 shows the relationship between the moving
velocity a (cm-sec'l) of sodium ions due to the influence of
the electric field and the applied bias voltage (Va). To
calculate the mobility coefficient of the sodium ion,
equation [1l] may be substituted into equation [4] to yield

the following relation:

(10]

Thus the slope is:
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Ion velocity versus bias voltage diagram for
sodium cations. The slope of the straight line

is 54.06 cm-sec l.volt™1, which gives a
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.sec “.volt .

The intercept is about -680 cm-sec-l, which

gives a burning velocity of 680 cm-sec 1.

mobility coefficient of 24.33 cm
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slope = ---==---- (11)

and the intercept is:
intercept = v, (12]

Linear regression yields a slope of (54.06 + 0.66)

1-volt'l and an intercept of -680 cm°sec-1. This

2 1

cm-sec

gives a mobility coefficient (24.33 t 0.30) cm“-sec ~-:volt~

and a flame burning velocity of 680 cm-sec l. A comparison
of this results with the literature values reported by other

workers is given in Table 5-1 (1,19,20).

Figure 5-2 shows the relationship between diffusion
coefficient (D) of sodium ion and the applied bias voltages
(Va). A dependence of the diffusion coefficient on the
applied bias voltage is cleared revealed. This indicates
that the mutual repulsion among ions must not be ignored.
However, fitting the diffusion coefficients into a power

series and taking the extrapolation to the zero voltage

gives the ambipolar diffusion coefficient (1). An

2 1

ambipolar diffusion coefficient of (8.23 *+ 0.05) cm“-sec
thus is yielded. Therefore, the diffusion coefficient can
be determined to be 4.10 cmz'sec-l. A comparison of the
diffusion coefficient from this work with the reported

literature values is given in Table 5-2 (21-23).
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TABLE 5-1. A Comparison of Mobility Coefficients for

Sodium Cations in H2/02/Ar Flames

Author Mobility Coefficient Reference
Wu 24.3 cm?-v 1l.gec"? this work
Tyndall 25.4 cm?-v l.gec™? (19)
Mallard (2350K) 25.8 cm?.v l.gec”? (20)
Langevin Theory 25.8 cm2.v l.gec”? (20)

Lin 30.2 cm?.v 1l.gec7? (1)
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TABLE 5-2. A Comparison of Diffusion Coefficients for

Sodium Cations in Hz/oz/Ar Flames

Author Diffusion Coefficient Reference
Ginsel 3.2 cm?-sec”! (21)
Wu 4.1 cm?.sec71 this work
Lin 5.7 cm?.sec”1 (1)
Ashton 5.5 - 13 cm?.sec”! (22)
Snelleman 9.9 cm2.sec”1 (23)



- 191 -
The flame temperature can be obtained by applying the

Einstein relation (2):

eD
T =---- (13]
kun
where T is the temperature (degree K) of the flame, e is the
electron charge (coulomb), and k is the Boltzmann constant
(Joule-K'l). Equation [13] yields a flame temperature of
(1967 £ 27) K at a 95% confidence level. A comparison of
the flame temperatures for similar hydrogen-oxygen-argon
flames obtained by line-reversal and dual laser ionization

methods with the data from this work is given in Table 5-3

(24,25).

F. Discussion

To explain the relationship between the diffusion
coefficient D obtained from curve fittings and the bias
voltages Va applied to the electrodes, mutual repulsion
among the positive ions in the flame environment has to be
considered. The following is a rough model which can be

used to justify the observations shown in Figure 5-2.

According to the data shown in Figure 5-2, we may
assume that in the beginning stage of the ion transport

process the displacements of the analyte ions due to
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TABLE 5-3. A Comparison of H2/02/Ar Flame Temperatures

Author Temperature Method Reference
Wu 1967 K DLI Na®t this work
Hooymayers 1990 K Line Reversal (24)
Lijnse 2000 K Line Reversal (25)
Lin 2014 K DLI Li‘ (1)
Hooymayers 2070 K Line Reversal (24)
Lijnse 2136 K Line Reversal (25)
Lin 2171 K DLI Na* (1)
Hooymayers 2210 K Line Reversal (24)
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diffusion are very small, in comparison to those due to the
mutual repulsion among ions, and thus can be ignored for a
primary treatment. The initial ion density (co, esu-cm-3)
is assumed to be in thermal equilibrium with the flahe and
is uniform throughout the laser focal point at the very
moment when the laser pulse shut off. Equation [2] can be
reduced as follows:

dC [

----- = ---= (v c) (14]
ot °q

where vy is the drift velocity (cm-sec'l) due to mutual
repulsion among ions. Partial differentiation gives the
following form:

oC AV, oC

----- =c--=%- o+ v, - [15]
dt ?2q °q

The second term in equation [15] can be dropped immediately
since the mutual repulsion of ions in which we are
interested will prevent the ion density ¢ from varying

rapidly with q in a short time period (26). This gives:
----- = c ---=- (16]

The relation between \A and the mobility coefficient is as

follows:

v. = u E (17]
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where Er is the electric field due to mutual repulsion of

ions. Poisson's law gives:

i - -4 rc (18]

where Vr is the electrical potential (volts) due to mutual

repulsion of ions. Also we have:

E_ = - -—-—-Z- (19]

Combining equations (18] and [19]) gives the following:

----- =4 mc (20]

Substitution of equations [17] and [20] into equation (16]
yields:
dc s
- === =4 wuc (21]
dt
Rearrangement of equation ([21] gives the relation between
the ion density ¢ and time t.

dc

- =—g-- =4 7w u dt (22]

c2

Integration of equation [22] gives the following equation:

1 1
——— - =4 wut [23)
(o] Co
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Rearrangement of equation [23]) yields:

P —— [24]

A numerical estimate shows that if the initial ion density

3 in a collision-free environment, it

is about 10% esu-cm”
will take 32 microseconds for the ion density to decrease by
a factor of 100 provided that the mobility coefficient of

2.v01t l.gec™l. Notice that

the ion is chosen to be 25 cm
this value falls right into the time scale of the DLI

signals.

The mutual repulsion, which is the main factor causing
the ion cluster to spread, is directly proportional to the
ion density c. Equation [24] clearly indicates that the ion

density decreases versus time.

We may assume that the ion cluster has a width of di
(cm). Viewed from along the gq-coordinate, the sheath is
seen to contain a charge e and can be expressed as

follows:
= d. ¢ [25]

According to Gauss's theorem, the electric field outside the

laser focal point can be written as:

E=2n e; (26]
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The analyte ions at the edge of the ion cluster thﬁs will be
moving under the influence of the electric field defined by
equation [26], and the drift velocity can be written as

follows:

Vi =2 mue (27]

The distance that the ions at the edge of the ion cluster

may move along the g-coordinate can thus be expressed as:
q=21rueit (28]

However, it is well known that the displacement of ions

through diffusion can also be written as follows:
q = (2p,0)1/2 [29]

where Di is the corresponding diffusion coefficient due to
mutual repulsion of ions. Combination of equations [28] and

(29] gives the following relation:

D, =2 v p e.?% ¢t (30]
Substitution of equations [24] and ([25] into equation [30]
gives the following equation:

D, = ——=——mmee=feeZaene [31]

Equation [31] indicates that Di decreases when t increases.
Since Di is a function of time, we may interpret the

contribution of mutual repulsion of ions to the observed
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diffusion coefficient D, which is designates as (Di)t, as an
average of Di over a time period te. The term (Di)t thus

can be calculated as follows:

1 te 2  pl dl2 c02 t

(Di)t = ---- R o dt [32]
t 0 (4 nucec, t +1)

b 4 0
Integration of equation [32] yields:

q,? 1

(D) = ——=-- (In(dmucyte+l) + ———-----——- -1) [33]
8tf 41ucotf+1

Since S is at is sufficiently large (26) after the laser
pulse goes off, it takes only nanoseconds to make the

following condition be valid:

4 7w pn €y t >» 1 [34]

The second and third terms of the right hand side of
equation ([33] can be dropped. Thus equation ([33] can be

rewritten as follows:

d, 2
(D.), = 2o 1n(4wucotf) [35]

i't
8t

Equation [35]) indicates that when tf is increased, the
time-averaged diffusion coefficient (Di)t due to mutual
repulsion will decrease since the first derivative of (Di)t

versus time is negative. Also,

9. = » E, t, [36]
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where q. (cm) is the distance between the laser focal point
the the cathode (lower probe) and Ea is the electric field

between the probes. Also, Ea can be expressed as follows:

E, = --——==--- [37]

Substitution of equation [37] into equation.[36] yields the

following equation:

¢, = —-S__-¢c.la__ | [38]

Substitution of equation (38] into [35] thus yields an
equation which shows the relation between the time-averaged
diffusion coefficient (Di)t and the applied voltages Va.

The equation reads:

B
(Di)t = A Va ln (-—---) [39]
v
a
where
2
d
A= ————=Xo____ [(40]
8qc(qc+qa)
and
B = Avcoqc(qc+qa) (41]

Equation [39] shows that when the bias voltage Va is

increased, the time-averaged diffusion coefficient (Di)t
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also increases. This is because when Va is increased, the
ion transport time tf will decrease according to equation
[38], hence the bigger Di from the early stages of mutual
ion repulsion takes more weight in the time averaging of Di
and in turn makes (Di)t bigger. Figure 5-3 shows a set of
mutual-repulsion versus q-coordinate curves made by the
simulation program described in the next chapter. Curves
at various times after the laser pulses shut off are plotted
to illustrate how the mutual repulsion decays versus time.
Figure 5-4 shows the values of (Di)t versus applied voltage
va with various mobility coefficients pn. It clearly shows
that the time-averaged diffusion coefficient (Di)t increases
dramatically versus Va. Additional mathematical
investigations of this phenomenon should be pursued in the
future. In the next chapter a simulation program, which
also confirms the importance of the effect of mutual

repulsion, will be presented.

G. Conclusion

This chapter has demonstrated the capability of the
Fokker-Planck formalism to model the DLI process. Through
curve fitting methods, the mobility coefficient and
diffusion constant of sodium ion in the hydrogen-oxygen-
argon flame were calculated. Also the temperature of the

flame was calculated by the Einstein relation. The



Figure 5-3.
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Ion repulsion versus space coordinate at various
times. The laser focal point is located at the
position x=0, the cathode is placed at the
positive x-coordinate and the anode is placed at
negative. The ion repulsion is a measure of the
electric field due to neighbor ions and each
grid scale on the y-axis stands for 1.0 x 106
voltsycm'l. Positive ion repulsion values means
that the electric field due to mutual ion
repulsion will push ions toward the cathode.

Notice that the ion clusters moves toward

cathode and disperses when time elapses.

A, 0.167 us; B, 1.00 us; ¢, 10.0 us; D, 30.0 us

after laser pulses went off.
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Figure 5-4. Time-averaged diffusion coefficient (Di)t versus
applied voltages Va for various ion mobilities.
This plot is drawn from equation [39]. Notice
that even if the ion mobility is small, the
time-averaged diffusion coefficient (Di)t still

changes dramatically with Va and gives values
2 1

over 100 cm®-sec ~, in contrast with the 4.1
crnz-sec.1 for sodium cation. (c0=1.0x1011

. -3 - =
esu-cm ~, q, 0.2 ¢cm, q, 0.3 cm, dizo.l cm)
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dependence between the diffusion coefficient and bias

voltage was also discussed.
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CHAPTER VI

SIMULATION STUDIES OF MUTUAL REPULSION OF IONS

A. INTRODUCTION

The technique of dual laser ionization (DLI)
spectrometry has been developed in our laboratory, and is
now well established as a very sensitive analytical tool and
a most versatile flame diagnostic method (1-6). 1In DLI
measurements, analyte atoms are nebulized into a flame and
photoionized by two simultaneous laser pulses. Electrons
and ions generated by the laser pulses are then collected by
a pair of nichrome probes on which a bias voltage is
applied. However, as mentioned in the previous chapter, the
DLI signal collection process not only involves ion mobility
and diffusion, as commonly suggested, but also involves the
mutual interactions among ions and electrons in a flame
environment. These interactions are not yet clearly
understood. Experimental results show that under high bias
voltages, ions tend to diffuse more quickly than expected.
Mutual repulsion among ions was proposed as a major reason
for this phenomenon. Hence one of the main purposes of this

- 207 -
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chapter is using computer simulation to show the effect of

the mutual repulsion of ions on DLI signal detection.

We may consider the hydrogen-oxygen-argon flame used in
our experiments as a gas-filled cavity to which an electric
field is applied. The electrons move to the anode (upper
electrode) while the positive ions move to the lower probe
(cathode). 1In studies of such cavities the interaction
between the negative and positive charges can be neglected
provided that the ion density is lower than 107 to 108
ions-cm-3: otherwise the space charge effects produced by

the Coulomb forces become important and must be taken into

account.

In order to investigate the space charge effects, the
Fokker-Planck equations were adopted. However, many of the
partial differential equations which result from non-
equilibrium thermodynamic systems cannot be readily solved
by analytical methods. The one-dimensional Fokker-Planck
equation (FPE) with a nonlinear drift function is one of the
well-known examples. Consequently, a knowledge of the
methods for obtaining numerical solutions to these partial
differential equations is very important to the chemistry

community.

To solve the Fokker-Planck equations with different

drift functions, two approaches have been used. The first
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approach was to solve the FPE by the functional path
integral techniques (7-8) coupled with the Onsager-Machlup-
Laplace (OML) approximation (9-14). The conditional
propagators associated with the process of interest thus can
be obtained. The second approach was to simulate the
initially defined stochastical variables in a time frame.
The latter approach is perhaps more direct and intuitive.
In addition, it is always possible to expand the simulation
algorithms from one-dimensional to three-dimensional systems

for more sophisticated conditions.

B. THE FOKKER-PLANCK EQUATION

A one dimensional Fokker-Planck equation can be written
as follows:
°
--------- =D ---3- P(q,t) + ---=- h(q)P(q.,t) (1)
?%q
where P(q,t) is the conditional propagator or, in this
chapter, the ion density matrix (cm-3) at coordinate q and

2

time t, D is the diffusion coefficient (cm -sec-l), and h(q)

is the drift function (cm-sec™1).

Throughout this chapter, a constant diffusion
coefficient is assumed in order to distinguish its

contribution to the spreading of ion peaks from those due to
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the mutual repulsion of ions. Also, the ion-ion mutual
repulsion was viewed as part of the drift fﬁnction and the
algorithms for simulating the diffusion and drift processes

were employed separately.

C. ALGORITHM FOR DIFFUSION

C-1 Introduction

The purpose of this section is to find a generalized
finite difference equation that can simulate the diffusion
term of a Fokker-Planck equation with higher accuracy. The
conventional algorithm are reviewed and examined; a new and
effective algorithm derived from Lagrange polynomials is

examined and implemented.

C-2 Basic Definitions

Any discussion of the digital simulation of problems
involving diffusion begins with a consideration of the
combined form of Fick's second law (15).

> 22

--=-=- P(q,t) = D ---=- P(q,t) (2]
14 dq

Equation [2) is also commonly called the equation of
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continuity; and indeed it is the Fokker-Planck equation with
a vanishing drift function. 1Its analytical solution can be
expressed as follows:
1 -(q-qo)2

P(q,t) = —===———-—o——s—oe exp(--—---=--- ) (3]
(4D (t-t,))1/2 4D (t-t

where
qy = q(to) [4]

Equation [3] can be derived from numerous ways. It was
given first by Albert Einstein (16) and is now commonly
called the particular solution of the equation of
continuity. This particular solution requires that the ion
density matrix starts as a Dirac delta function at time zero
and turns into a Gaussian distribution at time greater than

Zero.

It will be shown later that the simulation of a
Gaussian process is a rather difficult subject, even today.
In fact, when the mutual repulsion among ions must be
considered, none of the commonly-used algorithms reported in
the literature (17-19) gives satisfactory results. In order
to make the discussion in this chapter clear, we begin with

the basic or commonly-used algorithms.

A generalized finite difference equation, which is a

combination of both forward difference and backward



- 212 -

difference approximations (17), can be written as follows to
represent equation [2]:

1

-—= [ u(q,t+t) - u(q,t) ]

T

D
= -;5 [ QU(t) + (1-Q)U(t+T) ] (5]

where t indicates the time propagation interval, & indicates
the space interval between each cell element of the ion
density matrix being considered, and Q is the degree of
implicitness of equation [5]. Also, u(q,t) indicates the
cell element of the ion density matrix, P(q,t), at any given
space coordinate q and time t, of which the value is already
normalized. The term U(t) represents the finite difference
format of the second derivative of P(q,t) at time t, which

will be discussed in more detail later. Equation (5] may be

readily rearranged to yield:

u(q,t+t) - (l—Q)DmU(t+t) = U(q,t) + QDmU(t) [6]
where
Dt
Dm = -;5— (7]

The critical dimensionless parameter Dm is conventionally
called the "model diffusion coefficient" (20) which, along
with the degree of implicitness r, will determine the

stability of equation [6]. Although the assignment of a
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value to Dm is arbitrary, it is by no means unrestricted.
An optimum value of Dm has to be chosen to prevent the the

divergence of the ion density matrix (19).

C-3 Conventional methods

To make the computer algorithm work efficiently, a few
parameters should be chosen very carefully. The first
parameter, which determines the effectiveness of the entire
algorithm, is the finite difference format of the second
derivative U(t). The second parameter, which determines the
stability of the performance of the algorithm, is the degree
of implicitness Q. The third parameter, which determines
the speed of the algorithm, is the model diffusion
coefficient Dm’ We shall examine these parameters
individually in order to obtain a method for optimizing

them.

Conventionally, the term U(t) can be defined as
follows:

U(t) = u(q-3,t) - 2u(q,t) + u(gq+s,t) [8]

If Q is chosen to be zero, we have the so-called "pure
forward difference algorithm” (19). Equation [6] thus can

be rearranged as follows:
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u(q,t+t) = u(q,t) +

Dm [ u(gq-&,t) - 2u(q,t) + u(g+d,t) ] (9]

Equation [9] contains only one unknown value, u(q,t+t),
and is written explicitly for this unknown. For an array
u(q) with a dimension n, it is reasonable to impose zeros on
both u(ql,t) and u(qn,t) as boundary conditions at any time
t. The numerical computation of the values of the dependent

variable can thus be made one point a time.

Equation [9] is certainly a simple one to formulate,
and it is especially easy to use for computing the values of
u(q,t) at each point in time. 1In addition, since the finite
difference analog is correct to the second-order in the
variable q, reasonable results can be expected. However,
for a numerical analog to be of any merit, it must converge
to the solution of the corresponding differential equation
when the finite increments, & and t, are decreased in size.
Analysis has shown (17) that a very restrictive relationship
between the sizes of § and t must be satisfied in order to
‘make the outcomes of equation [9] approach the real solution
of equation [2]. This restrictive relationship can be

formulated as follows (17):

--=- 2 D_ >0 (10]
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Equation [10] is rather critical. 1In order to minimize
the truncation errors in the q analogs, thevsize of & must
be small. If the value of Dm is chosen to be larger than
0.5, divergence is almost always guaranteed. However, due
to the truncation errors, even if equation [10] is strictly
followed, oscillation may still occur (17). Reported values
of D, usually are about 0.2 (20). It is obvious that this
restriction will limit the speed of the time propagation

seriously if high accuracy is demanded.

To relieve the algorithm from the restriction of
equation [10], one of the natural choices is to assign Q a
value other than 0. Usually, the value of Q can be chosen
as 0.5. This choice is the so-called Crank-Nicholson
formulation (18). Equation [6] can thus be rearranged as

follows:
Dmu(q-é.t+t) + (-2-2Dm)u(q,t+t) + Dmu(q+6,t+t)
= -Dmu(q-G,t) + (-2+2Dm)u(q,t) - Dmu(q+6,t) (11)]

The same boundary conditions imposed on equation ([9] can
also be applied to equation [11]. The resulting set of

equations thus can be generalized as follows:
A x P(q,t+1t) = A' x P(q,t) [12]

where A and A' are tridiagonal coefficient matrices. The

matrices P(q,t) and P(q,t+t) are column matrices of which
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the elements are the cell elements u(q,t) and u(q,t+t),
respectively. Since all the values on the right hand side
of equation [11] are known, this equation can be readily
solved by the Thomas method (18). This method requires more
computation per time step than the forward difference
method. However, a larger time increment can be used for
this algorithm (20). Since equation [12] is the result of
successive applications of the forward and backward
equations and thus will be stable for any value of Dm‘ As a
consequence, fewer time steps are required to compute values
of the dependent variable for a given elapsed time. 1In
general, equation [12] is always preferred for obtaining

numerical solutions to parabolic differential equations.

To evaluate the effectiveness of equation [11], a
FORTRAN program was written based on the Thomas method to
simulate equation [2]. Parameters chosen for this trial

program are listed in Table I.

Two comparisons are made between the results from the
FORTRAN program and those calculated by Einstein's
particular solution of the equation of continuity. Since
the kinetics of the stochastic processes under investigation
are strongly affected by the mutual repulsion among ions,
the values of the ion density matrix in the high density
regime are much more important than those in the low density

regime. Thus a comparison of the maximum peak height can
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TABLE 6-1. Parameters Chosen for Simulation of Diffusion

Item Value Units
Diffusion Coefficient 5.65 cm?-sec”?
Cell Width 1.00 x 1074 cm

Laser Pulse Length 5.00 ns
Starting Time 5.00 ns

Ending Time 10.0 ns



- 218 -
serve as an indicator in order to show how effective
equation [11]) is. Also, the base-line peak width is also a
good indicator to show how much the simulation peaks are
skewed. The comparisons of peak heights versus various Dm
is depicted in Figure 6-1, and the comparison of peak width

versus Dm is shown in Figure 6-2.

Figure 6-1 shows that equation (8) gives rather
unstable values of maximum peak height when the value of Dm
is large. Although decreasing the Dm values causes the peak
height to converge to a value of 1193.5, in comparison with
the true value of 1186.8, a positive 0.56% error still
exists. Inevitably, the mutual repulsion calculated
according to this ion density matrix will be larger than it
should be, and thus the dispersing rate will also be
greater. Even worse, Figure 6-2 shows that equation [11]
makes the dispersing rate of ions faster in the low density
regime than those in the high density regime. As a result
of these two effects, the ion density matrix will dispersg
faster than it should. It is also rather interesting to
note that equation [11] requires Dm be smaller than 0.03 to
assure a stable result of the second-order differentiation.
This value is obviously much smaller than 0.2, the commonly
reported value (20). There is thus no advantage over the

Crank-Nicholson method.

It can be concluded that equation [11l] is not the best
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Figure 6-1. Deviations of the maximum peak height versus

| the logarithm of the model diffusion
coefficient. The simulated peak heights were
obtained by implementing equation [11l] in the
simulation program. The theoretical peak

height was calculated by equation ([3].
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peak widths were obtained by implementing
equation [11] in the simulation program. The
theoretical peak width was calculated by
equation (3].

A, simulated data; B, theoretical values.
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choice for handling Gaussian shape peaks. Other more

effective methods must be sought.

C-4 Development of a New Algorithm

Numerical differentiation is usually used to estimate
the derivative of a function for which selected values are
stored in a matrix. It is generally recommended (17) that
numerical differentiation be avoided whenever possible,
because approximate values of derivatives will inevitably be
less accurate than the functional values from which they are
derived. In fact, the derivative is the limit of the
difference quotient, and in the latter we normally divide
the difference of two similar quantities by a relatively
small number. Furthermore, if a given function is estimated
by a polynomial, the difference in the values calculated may
be small, but the derivatives may differ considerably.

Hence it is plausible to conclude that numerical
differentiation is delicate, in contrast to numerical
integration. 1In fact, numerical integration usually is
affected much less by the inaccuracies of function values

since it normally smooths the functional values.

The problem the new algorithm encounter is how it can
perform numerical differentiation delicately. It has been

suggested in the previous section that the conventional
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methods are not satisfactory even if the function is smooth.
One way to improve the accuracy is to decrease the size of
the space interval 8. This choice is impractical since it
will require more memory than a mini-mainframe can afford.
Another choice is to smooth the function via interpolation
and extrapolation after polynomial fitting. The latter
guarantees accuracy; however, a great deal of CPU time will
be consumed. Thus the compromise is to seek a function that
can partially smooth the curve while taking the second

derivative at each point.

It is well-known (17) that the Lagrange polynomial can
describe most non-linear functions effectively. Since the
explicit form of Lagrange's classical formula usually
smooths the function to a certain extent, a more accurate
approximation can be expected by differentiating suitable
Lagrange polynomials. In this study, a fifth-order Lagrange
polynomial was chosen as a compromise between speed and
accuracy. Thus the term U(t) can be defined as follows:

1
u(t) = (—I;-) [ —u(q+25,t) + 16u(q+d,t) - 30u(q+s,t)

+ 16u(q-8,t) - u(qg-25,t) ] (13]

From the discussion in the previous section, inserting
equation [13] into the Crank-Nicholson formulation (Q=0.5)
will be a natural choice in order to increase the stability

of the performance of the algorithm. Thus equation (6] can
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be readily rearranged as follows:
Czu(q+26,t+t) + Clu(q+6,t+t) + cDu(q+6,t+t) +

Clu(q—B,t+t) + C2u(q-26,t+t)

= Cz'u(q+25,t) + Cl'u(q+6,t) + CD’u(q+6,t) +
Cl'u(q—s,t) + Cz'u(q-zs,t) (14]
where:
CD = 24 + 30Dm [15-1]
C, = -16D (15-2]
C, =D, [(15-3]
and:
Cp' = 24 - 30D [15-4]
C,' = 16D, (15-5]
C,' = -D_ (15-6]

Equation [14] along with equations [15-1] to [15-6])
give second-order accuracy in both the space coordinate and
in time. From the experience gained in dealing with
conventional methods, we learned that a different degree of
implicitness will give a different stability of the
performance of the algorithm, and a different ability of

determining the second derivative around the inflection
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point. In order to optimize the parameters involved both

Q=0.4 and Q=0.6, in addition to Q=0.5, were tested, too.

When the implicitness Q changes, equation [14] is still
valid, only the definitions of the coefficients have to be
rearranged. When Q=0.4, the coefficient sets for equation

[14] are as follows:

CD = 60 + QODm (16-1])

C, = —48D (16-2]

C2 = 3Dm (16-3]
and:

CD' = 60 - GODm (16-4]

Cl' = 32Dm [(16-5]

Cz' = -2Dm [16-6]

When Q=0.6, the coefficient sets of equation [14] are as

follows:
Cp = 60 + 60D (17-1]
c, = -32p (17-2)
C, = 2D (17-3]
and:

C.' =60 - 90Dm (17-4]
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Cl' = 48Dm (17-5]

C2' = -JDm (17-6]

In these implementations, it is again reasonable to

impose the following boundary conditions:

u(q,.t) =0 (18-1]
u(qa+6,t) =0 (18-2]
u(qc,t) =0 (18-3]
u(qc-B,t) =0 [18-4]

where qq and q.- according to the designations in Figure 2-
6, are the coordinates of the anode and the cathode,
respectively. The term & is the thickness of each cell of
the ion density matrix. In programming, qQ, and q. stand for
the first and nth elements of the one-dimensional array

while & is designated as a "counter" integer.

The resulting set of equations for each implementation
with different implicitness can be thus generalized as

follows:
A x P(q,t+t) = A' x P(q,t) (19]

Where A and A' are fifth-order positive definite band
symmetrical matrices, while P(q,t) and P(q,t+t) are referred

to as column matrices, of which the elements are the cell
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elements u(q,t) and u(q,t+t), respectively. Since all the
values on the right hand side of equation [19] are known,
this equation can be readily solved by calling subroutines
from the IMSL FORTRAN library. Although this algorithm is
much more time consuming than conventional methods, the
accuracy of the differentiation is improved. 1In addition,
the choice of the size of the time propagation interval, =,

can be increased by orders of magnitude.

In order to evaluate the effectiveness of equation [14]
with different degrees of implicitness, a series of FORTRAN
programs were written and tested. All the parameters chosen
for the testing programs were the same as those listed in

Table I, this chapter.

The results from the simulations were compared with
each other and with those from Einstein's particular
solution of the equation of continuity. Figure 6-3 shows
that all the three degrees of implicitness give very good
approximations of the maximum peak heights, provided that
the value of Dm is sufficiently small. Notice that the
value of Dm can be as large as 1.0 with reasonable results.
Comparing the range of values that can be assigned to Dm' it
is obvious that the new algorithm behaves much better than

the conventional Crank-Nicholson method.

Figure 6-4 shows that the different degrees of
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Figure 6-3. Deviations of the maximum peak height versus
the logarithm of the model diffusion
coefficient. The simulated peak heights were
obtained by implementing equation [14] in the
simulation program with different degrees of
implicitness. The theoretical peak height was

calculated by equation [3].

A: 40 % implicitness (Q=0.4)
B: 50 % implicitness (Q=0.5)

C: 60 % implicitness (Q=0.6).
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Peak width at baseline versus the logarithm of
the model diffusion coefficient. The simulated
peak widths were obtained by implementing
equation [14] in the simulation program with
different degrees of implicitness. The
theoretical peak width was calculated by

equation [3].

A: 40 % implicitness (Q=0.4)
B: 50 % implicitness (Q=0.5)
C: 60 % implicitness (Q=0.6).

D: Theoretical value.
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implicitness give roughly the same base-line peak width.
This reveals that each algorithm tend to disperse the
Gaussian peaks more quickly than it should in the low
density regime. Thus other comparisons should be made in

order to find the best degree of implicitness.

A third comparison was made by calculating the average
square deviation for each simulation according to the

following equation:
- 2
( u(qj,tf) c(qj,tf) ] [20]

where 6 is the sum of squares of deviations between the
numerical approximations and the real values. The variable
tf indicates the time when the ion density matrix was
examined. The term c(qj,tf) is the numerical value
calculated by equation [3] at position qj and time tf, where
the term j serves as the integer counter. The number of
cell elements n in the one-dimensional ion density matrix is

defined as follows:

n = ———=—==—- + 1 (21]

e
Q
.
(2
o
|

= u(qa+j6,tf) (22]

(7]
Q
(&
d
rh
[

= c(qa+j6,tf) (23]
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Figure 6-5 shows the relation between the average
square deviation and Dm for the implementations with
different degrees of implicitness. This comparison shows
that the implementation with higher implicitness (Q=0.6)
perform better than that with less implicitness (Q=0.4) when
the value of Dm is large. However, in order to extend the
effectiveness of the algorithm to a wide Dm range, the
implicitness of Q0=0.5 is adopted for later programming.
Figure 6-6 shows a comparison of % errors of maximum peak
heights between the conventional Crank-Nicholson algorithm
and the new algorithm developed in this section. The
conventional algorithm has a much narrower working range in
terms of model diffusion coefficient and tends to disperse
more quickly than the new algorithm. From Figure 6-6, we
may indeed claim that the new algorithm is a real
improvement over the conventional the Crank-Nicholson

algorithm.

D. DRIFT FUNCTION

D-1 Introduction

The purpose of this section is to find a generalized
finite difference equation that can simulate the drift term
of the Fokker-Planck equation with higher accuracy. The

conventional algorithm is reviewed; a new and effective



Figure 6-5.
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The logarithm of the average of the squares of
the deviations between the simulated and
theoretical values versus the logarithm of the
model diffusion coefficient. The simulated
values were obtained by implementing equation
(14] in the simulation program with different
degrees of implicitness. The theoretical

values were calculated by equation [3].

A: 60 % implicitness (Q=0.4)
B: 50 % implicitness (Q=0.5)

C: 40 % implicitness (Q=0.6).
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Figure 6-6. A comparison of the deviations of the maximum
peak heights from different simulation
algorithms. The x-axis is the logarithm of

the model diffusion coefficient.

A: 50 % implicitness (Q=0.4), equation [11];
B: 40 % implicitness (Q=0.4), equation ([14];
C: 50 % implicitness (Q=0.5), equation [14];

D: 60 % implicitness (Q=0.6), equation [14].
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algorithm is derived in order to deal with the complications

associated with the introduction of the drift function.

D-2 Basic Definitions

In this section, the intention is to find an algorithm

that can simulate the following equation effectively.

- -]
_— P(q't) = === h(Q)P(q,t) [24]
dt dq
where P(q,t) is the conditional propagator or the ion
density matrix (cm_3) at coordinate q and time t. The term

h(q) is the drift function (cm-sec'l) of the ion propagation

under the influence of an electric field.

Conventionally, the basic simulation algorithm only
handles first-order differentiation with a constant drift
function. Equation [24] must be rewritten by the following
formulation if the conventional algorithm is adopted.

® -
=== P(QIt) = - b --- P(q't) [25]
>t dq
where b (cm-sec_l) is a constant. However, the mutual
repulsion of ions varies along with the gq-coordinate. 1In

other words, the conventional algorithm is not suitable for
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our purpose.

Equation ([24] must be written in the following form if
the drift function is dependent on the g-coordinate.
d d
---- P(q,t) = h(q) ---- P(q,t) +
ot 2q

)
P(q.t) ---- h(q) [26]
°q
Equation [26], indeed, obliges us to derive a new algorithm
in order to deal with the non-constant drift function.
However, before we start to invent an applicable algorithm

the conventional "centered difference method"” has to be

reviewed.

D-3 Conventional Algorithm

For the centered difference method, the finite
difference analogs are centered in both space and time with
respect to the grid points at which the values of the
dependent variables are determined. In accordance with the
conventional Crank-Nicholson formulation, the space
derivative at the (tk+t/2) time level is approximated as the
average of the space derivatives at the time levels for tk
and (tk+t). This analog can be expressed mathematically by

the following equations and term designations.
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For the sake of clarity, we begin with defining some
fundamental terms. In order to overcome the complexity of
mathematics involved in this section, more strict term

designations are used.

]

r = ——= [27]
2
T

s = ——- (28]
2

-

--=--u(q,t) = u_(q.-r,t +s8) (29]

>q q ) k

-

---=-u(q,t) = u_(q.-r,t, +s8) [30]

>t t ) k

where & (cm) indicates the space interval between each cell
element of the ion density matrix, and t (sec) indicates the
time propagation interval, which are the same as before.
Also, the term u(q,t) indicates the cell element of the ion
density matrix, P(q,t), at any given space coordinate qj and
time tk' of which the value is already normalized. The
subscript j and k are integer counters for space and time,
respectively. According to the term designation from

equation [29], the space derivative at point (qj-r,tk+s) can

be written as follows:
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1 ul(q.,t +1t) - u(q;-5,t, +1)
uq(qj—r,tk+s) = --= ——l k2 ik .

Notice that a 50% implicitness is implied in equation [31].

In a similar manner, the time derivative at the space
coordinate (qj-6/2) is approximated by the average of the

time derivatives at the space positions for q. and (qj-é).

J
It can be written as follows:
1 u(q.,t, +1t) - u(q..t,.)
u (q.-r,t, +s) = ——-= ( —=—==d-- - Ik,
t ] k 2 T

Both equations [31] and [32] can be proved as correct to the
second-order (17). Consequently, substitution of equations

[31]) and [32] into equation [25] yields:

b 1
( —g- + —;- ) u(qj.tk+t) =
b 1
( -g- - -;- ) u(qj-a,tk+r) -ulgy.t) )+
b 1
( === + === u(qj—a'tk) [33]

) T
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It has been shown (17) that equation [33] is stable for any

ratio of &/x.

Equation [33] describes equation [25] in finite
difference elements explicitly. For a typical set of
initial and boundary conditions, u(qj,tk) will be known for
all values of q at time zero and for all values of t at the
boundary points. It is thus interesting to point out that
the values of u(qj,tk) at the first space position could be
computed for as many time levels as desired before any
values at the second space position were computed. This
characteristic may be used in simulating the decay of
Gaussian distributions with a vanishing diffusion
coefficient. For instance, the ideal condition of the

output from the uv detector of a flow injection analysis.

D-4 Development of a New Algorithm

The main purpose of this section is to derive a new
finite difference equation that can describe equation [26]
effectively. The derivation is rather complicated, hence

only the basic term designations and results are given here.

Again, we start from designate some fundamental terms
for the new algorithm that can deal with a drift function of

which the functional values are dependent on the q-
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coordinate.

1 u(q.,t,. +t) - ul(q.
u, (q.-r,t. +s) = === ( St St S 1 ----- +
t k 2 T
u(q.-8,t, +1t) - u(q.-8,t,.)
e AL ikl e
T
1 u(qg.,t,+t) - u(q.-5,t, _+1)
u_(q.-r,t,+s) = -—-=-= ( ——dl kD . S +
a7k 2 5
u(q..t,.) - u(q.-5,t.)
SR S . S P . 2 ) [35]
]
°®
----h(q) = h_(q.-r,t, +s)
>q qQ ) k
h(q.) - h(q.-9%)
= mmeedeeeeo o doo__ [(36]
]
h(q.) - h(q.-98)
h(q) = S R " S [(37]
2
1
u(q,t) = -;- ( u(qj,tk+t) + u(qj—B,tk+t) +
u(qj,tk) + u(qj-G,tk) ) [(38]

where the terms ut(qj-r,tk+s) and uq(qj-r,tk+s) have the
‘same meanings as before. Substitution of equations [34]
through [38]) into equation ([26] gives a surprisingly neat

format:
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( —?igjl— + -}- ) ul(qg,,t +t) =
5 T 3Tk

( -Bigi:gl— - -1- ) u(q.-8,t, +1) -

-3 T J k
- L

5 T 3Tk

h(q.-3) 1
( ----6---- - —;- ) u(qj—B,tk) (39]

Equation [39] is conservative in so far as the boundary
conditions defined in equations [18-1] through [18-4] are

met.

E. THE SIMULATION PROGRAM

E-1 Introduction

The simulation of DLI signal detection involves
diffusion, drift due to the electric field , and drift due
to mutual repulsion of ions. The interactions between ions
and electrons are not included since they can be nicely

managed by the model of ambipolar diffusion.

Due to the complexity of the new diffusion algorithm,

an effective matrix manipulation subroutine was required in
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order to speed up the computation. The developmeht of such
a subroutine is beyond the scope of this thesis; hence
subroutine LEQ2PB was called from the IMSL library package.
Given an n by n positive definite symmetric band matrix A
and an n by m matrix B, subroutine LEQ2PB solves the set of
linear equations AX = B for X. A is stored in symmetric
band storage mode and B in full storage mode. Subroutine
LEQ2PB algo invokes iterative refinement to improve the
accuracy of the solution. In fact, subroutine LEQ2PB
supplies more flexibility than is really needed; hence it
dramatically slows down the speed of the diffusion
algorithm. However, the accuracy of the simulation may be

improved.

In the simulation, the mutual repulsion of ions is
treated in accordance with the time-dependent electric
field. For each cell element, the effective electric field
can be calculated by summing up the electric fields induced
by all other cell elements. The induced electric field
E(qj,tk) (volt-cm™ 1) at position q;, time t, is calculated

J
according to the following equation:

E(qy,ty) = B( I -==-3-225- - I —-=-S-50o- ) [37]
i=1 (j-i) “® i=j+1 (i-3)

where u(qi.tk) is the ion density (ions-cm-3) at position

q.

i’ time tk. The term B is a proportional constant which is

used to adjust the units.
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In the algorithm described in this section, diffusion
and drift are treated separately. At the beginning of each
time propagation step, diffusion is simulated first. The
simulation of the drift term is then based on the new ion
density matrix generated by the diffusion algorithm. After
the time interval t, was propagated, the curve fitting
program introduced in Section D, Chapter V, was then used to
extract the "effective" diffusion coefficient to which both

diffusion and mutual repulsion contribute.

E-2 Description of the Simulation Program

The simulation program can be summarized as follows:

(i) Define program and simulation parameters.

(ii) Assume that the ion distribution is Gaussian at 5
nanoseconds. Calculate the initial ion density
matrix array by using equation [3].

(iii) Set up the coefficient matrix for calculating the
diffusion term according to equations [13] through
(15]. Call subroutine LEQ2PB from IMSL to perform
the matrix calculation.

(iv) Record the fraction of ions that has reached the
detector.

(v) Calculate the electric field due to the mutual

repulsion of ions based on the ion density
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matrix calculated in step (iii) for each cell
element to construct the drift function h(q)
numerically.

(vi) Calculate the drift term. If the electric field
is too strong, divide this step into sub-steps in
order to reduce truncation errors.

(vii) Report the fraction of ions that has reached the
detector.

(viii) Normalize the ion density matrix. Go to step (iii)
for another step of time propagation.

(ix) Output.

The simulation program is listed in Appendix C. All of
the technical details are documented along with the FORTRAN

source code.

F. RESULTS AND DISCUSSION

The simulation program described in the previous
section has been employed to investigate the contribution of
mutual repulsion of ions to the "effective" diffusion
coefficient. The test runs assumed that the laser pulses
were off after 5 nanoseconds and at that time the ion
density matrix simulates a Gaussian peak. The diffusion

2.g5ec71

2

coefficient was chosen to be 5.0 cm and the mobility

1

coefficient was chosen to be 25.0 cm2.-volt l.sec™l. since
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the burning velocity is very small in comparison with the
contribution of the electric field, it was left out. The
distance between probes was assumed to be 5.00 mm while the
distance between the laser focal point and the lower probe
(cathode) was assumed to be 2.00 mm. The ion density in the
flame, which determines the intensity of mutual repulsion of
ions, was assumed to be 1.0 x 1010 ions-ecm™3. The output
from the simulation program was then treated by the curve
fitting program ZMDIF3 in order to extract the "effective"

diffusion coefficient. The program ZMDIF3 was described in

Section D, Chapter V.

Figure 6-7 shows the relation between the ion velocity
(cm-sec-l) and the bias voltage (volts). The plot shows a
rather straight line of which the slope is (51.71 + 0.48)
cm-volt-l-sec-l. In accordance with equation [11], Chapter
V, the "effective" mobility coefficient of ions is (25.86 %
0.24) cm?.volt™l.sec™. 1t is only about 3% different from
the initial setting. This result can be viewed as an

evidence showing that equation [39] is highly successful as

a new algorithm.

Figure 6-8 (a) shows the "effective" diffusion
coefficients generated with the same set of parameters as
Figure 6-7. The values are rather unstable and are roughly
all the same. This indicates that mutual repulsion of ions

was not important in this case. A second series of
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Figure 6-7. 1Ion velocity versus bias voltage plot. The
velocities were obtained from the simulation
program. The slope of the plot is 51.71 + 0.48
which yields a mobility coefficient of

25.86 + 0.24 cm?-volt l.sec”l.
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Figure 6-8. 1Ion diffusion coefficient versus bias voltage
plot. The ion diffusion coefficient were
obtained from the simulation program.

A: ion density is 1.0 x 1011 ions.-cm™3;

B: ion density is 1.0 x 1010 jong.em™3.
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simulations was then performed. Curve (b) shows the
"effective" diffusion coefficients generated under the same
parameters as the previous simulation series except the ion

011 jons.-em 3. curve (b)

density was increased to 1.0 x 1
shows a tendency for increasing values of the "effective"
diffusion coefficient as the bias voltage is increased.

This tendency supports the proposal made in the previous
chapter that the relationship between diffusion coefficients
and bias voltages is due to the mutual repulsion of iomns.
However, at 700 V, the "effective" diffusion coefficient is

2 1, which is much smaller than the

2.gec71,

only 19 cm“-sec”

experimental result of 892 cm

Reducing the distance between the lower electrode and
the laser focal point may efficiently increase the value of
the "effective" diffusion coefficient. A value of 392
cmz-sec'1 has been obtained from different settings of
parameters with an assumed voltage of 4000 volts.
Nevertheless, our simulation program was not able to
duplicate the values obtained by experiments exactly.
Additional efforts in optimizing the parameter settings in

order to simulate the real DLI signal collection process

will be required in the future.
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G. CONCLUSIONS

In this chapter, the conventional Crank-Nicholson
method which solves parabolic partial differential equations
numerically was reviewed. A new algorithm which
incorporates the smoothing ability of the Lagrange
polynomial with the Crank-Nicholson formulation was
developed. Tests showed that the new algorithm performs
much better than the old method in simulating the diffusion
term in the Fokker-Planck equation. Also, a new algorithm
that can numerically solve linear hyperbolic partial
differential equations and simulate the drift term in the
Fokker-Planck equations was derived. Real simulation showed

that this new algorithm also works satisfactorily.

A program which simulates the DLI signal collection
process was constructed and tested. Results showed that it
can simulate the drift term very well. However, the results
can only partially support the explanation proposed in the
previous chapter that the observed relationship between the
"effective" diffusion coefficient and the bias voltage is
due to the mutual repulsion of ions. The general trend of
the simulated "effective" diffusion coefficient showed that
the mutual repulsion of ions may be an important factor
under certain circumstances, such as when a very high bias

voltage is applied.
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CHAPTER VII

FLAME TEMPERATURE PROFILES

A. INTRODUCTION

This chapter describes dual-laser-ionization (DLI)
measurements of the vertical temperature profiles of a
laminar-flow hydrogen-oxygen-argon flame at both fuel-rich,

non-stoichiometric and stoichiometric conditions.

As detailed in previous chapters, the time-resolved DLI
signals collected under various bias voltages can be
precisely modelled by the Fokker-Planck equation, and the
mobility and diffusion coefficients of the metal ion can
thus be extracted by curve fitting methods. The flame
temperatures can then be calculated by the Einstein relation
(1,2). In this study, various metal ions were utilized in
flame temperature measurements in order to demonstrate
the the validity and advantages of the DLI method. The
results of the temperature measurements are in reasonable

accordance with literature values.

- 254 -
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B. EXPERIMENTAL
B-1 Flame Cell

A laminar-flow, premixed, hydrogen-oxygen-argon flame
was used in this study. Details of the properties of this
flame have been covered in Section C, Chapter II. Hence, in

this section only a brief description will be given.

The burner is of the Méker type; the gas mixture
emanates from the burner head through 631 circular holes of
0.5 mm diameter and 5 mm length, which are arranged in
concentric circles with a 2 mm interval between successive
rings. The height of the primary combustion zone is
approximately 0.5-2 mm. The burner head is cooled by a
water jacket. Pre-purified grade hydrogen, oxygen, and
argon gases are divided into two branches to form the inner
and mantle flames, respectively. The pressures of each
branch of the flame are controlled by dual pressure
regulators. The analyte is introduced into the inner flame

through a pneumatic nebulizer. Argon is the nebulizing gas.

The flow rates of gases are controlled by six precision
flowmeters (Series FM-1050, Matheson Instruments, Horsham,
PA). When the flame is adjusted to have a fuel-rich, non-

stoichiometric composition, the central and mantle argon gas
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settings used gave a flow rate of approximately 3.2 L-min_l.
The mantle flame hydrogen and oxygen flow rate settings gave
a stoichiometric mixture of 1.0 L-min ! and 0.50 L-min~1,
respectively. To obtain maximum DLI signals, the hydrogen
and oxygen settings of the central flame usually were

adjusted to be 1.6 L-min~! and 0.50 L.min~?1, respectively.

For stoichiometric flames, the central and mantle argon
gas settings used gave a flow rate of approximately 3.2
L°min'1. The hydrogen and oxygen flow rate settings of both
mantle and central flames were 1.0 L-min~l and 0.50 L-min-l.

respectively.

B-2 Apparatus

A complete description of our DLI experimental system
has been presented elsewhere (3-5). Details of the
procedures and instruments utilized for this study have been

covered in Chapter V.

In this study, the laser beams and probes were
carefully aligned at the beginning of each laboratory
session. The distance between the laser focal point and the
upper probe was 2.5 mm, and the distance between probes was
always 5.0 mm; i.e., the relative positions of the laser

focal point and the electrodes were fixed throughout the
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working period. The burner head was moved up and down in
order to adjust the position of the laser focal point in the
flame; the vertical flame temperature profile can thus be

obtained.

At each vertical point in the flame, eight different
bias voltages ranging from 50 to 400 volts were used.
Multiple data sets were taken when the ion peak was not well
resolved. The aperture duration of the boxcar integrator
was chosen to be 5 microseconds. The aperture delay ranges
were determined according to the shape of each individual
peak. Usually, 30 readings were taken at each aperture
delay range and later averaged for additional noise
reduction. All data taken by the boxcar were stored in the
memory of the microcomputer, and then uploaded to the

mainframe PDP/11-23 for further treatment.

B-3 Reagents

All solutions were prepared from reagent grade
chemicals and dissolved in distilled, deionized water.
Solutions containing sodium, lithium, and calcium were
prepared from the chloride salts, while the strontium

solution was prepared from its nitrate salt.

The following laser dyes were obtained commercially and
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used without further purification: Rhodamine 6G (Eastman
Kodak Co.; 7.5x1073 M in ethanol; 3s,,,33p;,,. 589.0 nm) for
sodium analysis: Coumarin 460 (Exciton Chemical Co., Inc.;
1.0x10"2 M in ethanol; 5s95p, 460.7 nm) for strontium
analysis; DCM (Exciton Chemical Co., Inc.; 5.0x 10”3 M in
dimethyl sulfoxide; 2s892p, 670.7 nm) for lithium analysis;
and Stilbene 420 (Exciton Chemical Co., Inc.: 3.5 xlO-3 M in

methanol; 4s34p, 422.7 nm) for calcium analysis.

C. RESULTS OF VERTICAL FLAME TEMPERATURE PROFILE

MEASUREMENTS

The temperature profiles of both stoichiometric and
fuel-rich, non-stoichiometric H2-02—Ar flames are reported
according to the vertical height of the laser focal point
above the burner head. In this study, sodium, lithium, and
calcium ions were used in the measurements of the vertical
temperature profile of the fuel-rich, non-stoichiometric H2-
oz—Ar flame. For the measurements of the temperature

profile of the stoichiometric H -Oz-Ar flame, sodium and

2
strontium ions were used.
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C-1 Non-Stoichiometric Hydrogen-Oxygen-Argon Flame

The results of the DLI measurements of the fuel-rich,
non-stoichiometric hydrogen-oxygen-—-argon flame with sodium
ions are given in Table 7-1. The mobility coefficients and
diffusion coefficients of sodium ions at various vertical
heights (above the burner head) in the flame were calculated
according to the methods detailed in Chapter V. The flame
temperature at each vertical point in the flame was

calculated by the Einstein relation (1,2).

The vertical temperature profile of the fuel-rich
hydrogen-oxygen-argon flame measured with sodium shows a
smooth trend. The flame temperature reaches a maximum at a
position about 10 to 12 mm above the burner head. Ion
signals became weaker and noisier above this region. When
the vertical height is more than 15 mm above the burner
head, ion signals were too weak to be resolved by the curve
fitting methods presented in Chapter V; thus no temperature
measurements could be made in this region. The vertical
temperature profile measured with sodium ions is plotted in

Figure 7-1.

The results of the DLI measurements of the fuel-rich,
non-stoichiometric hydrogen-oxygen-argon flame with lithium

ions are given in Table 7-2. A plot which shows the flame
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Table 7-1. Non-stoichiometric H2-02—Ar Flame Temperature
Profile Measurements with Sodium Ions

Mobility Diffusion
Height Coefficient Coefficient Temperature
(mm) (cm2.v~1l.571) (cm2.571) (K)
7.5 28.84 3.47 1396
7.5 30.16 3.54 1360
8.0 26.00 3.75 1674
8.0 25.27 3.71 1704
9.0 25.23 4.12 1895
10.0 24.33 4.12 1967
10.0 24.07 4.07 1962
10.5 23.77 4.07 1987
11.0 24.09 4.02 1936
11.5 22.93 3.89 1969
12.0 22.29 3.77 1963
12.5 21.16 3.52 1931
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temperatures measured by lithium ions versus vertical height
above the burner head is given in Figure 7-2. Again, a
smooth temperature profile is observed. The flame
temperature reaches a maximum at a position about 9 to 12 mm
above the burner head. Beyond this region, ion signals
began to decrease dramatically and the DLI signals became
much noiser than those in the high temperature regime.
However, ion signals with reasonable strength still could be
collected in the region up to 17.5 mm above the burner head;
At 20.0 mm above the burner head, no ion signal could be

observed.

Measurements of the flame temperature with calcium ions
presented some difficulties. Possibly due to the low ion
mobility of calcium and/or the formation of CaOH (11) in the
flame, the intensities of the ion peaks were almost always
low and noisy. Multiple data sets were taken for further
averaging. When the laser focal point was placed 12.0 mm or
higher above the burner head, no ion signals could be
observed. The results of the DLI measurements with calcium
ions are given in Table 7-3 and the temperature profile is

plotted in Figure 7-3.

Measurements of the flame temperature with strontium
ions in the fuel-rich, non-stoichiometric hydrogen-oxygen-
argon flame have been tried. However, no ion signal was

observed.
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Table 7-2. Non-stoichiometric H2
Profile Measurements with Lithium Ions

-Oz-Ar Flame Temperature

Mobility Diffusion
Height Coefficient Coefficient Temperature

(mm) (cm2.v~1l.871) (cm?.s71) (K)

8.5 29.02 4.68 1871
10.5 28.15 4.81 1983
12.0 28.43 4.79 1955
13.5 31.06 4.80 1793
15.5 35.13 3.94 1302
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Table 7-3. Non-stoichiometric H2-02-Ar Flame Temperature

Profile Measurements with Calcium Ions

Mobility Diffusion
Height Coefficient Coefficient Temperature
(mm) (cm2-v l.s71)  (cm2.571) (K)
7.5 19.36 2.41 1445
9.0 16.13 2.75 1978
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The results of the DLI measurements of the fuel-rich,
non-stoichiometric hydrogen-oxygen-argon flame with various
metal ions mentioned above are given in Table 7-4. A
vertical temperature profile measured with various metal
ions is plotted in Figure 7-4. Figure 7-4 shows that the
DLI temperature measurements with various metal ions at
different heights in the flame are generally consistent with
one another. However, at the same point in the flame, the
flame temperatures measured with different ions may differ
as much as 66°C (Table 7-4, 11.0 mm above the burner head).
This difference may be attributed to the low ion mobility of

calcium ions in the flame.

C-2 Stoichiometric Hydrogen-Oxygen-Argon Flame

The results of DLI temperature measurements of the
stoichiometric hydrogen-oxygen-argon flame with sodium ions
are given in Table 7-5. 1In the stoichiometric flame, the
flame color became invisible at 15 mm above the burner head.
However, reasonable intensities of sodium ion signals still
could be collected at 20.5 mm above the burner head. The
vertical temperature profile measured with sodium ions is

plotted in Figure 7-5.

The results of the DLI temperature measurements of the

stoichiometric hydrogen-oxygen-argon flame with strontium
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Table 7-4. Non-stoichiometric H2-02-Ar Flame Temperature
Profile Measurements with Various Ions

Mobility Diffusion Flame

Ion Height Coefficient Coefficient Temperature
(mm) (cm?.v~1l.g71) (cm2~s'1) (K)

Na‘t 7.5 28.84 3.47 1396
Na 7.5 30.16 3.54 1360
Ca 7.5 19.36 2.41 1450
Na 8.0 26.00 3.75 1674
Na‘ 8.0 25.27 3.71 1704
Lit 8.5 29.02 4.68 1870
Nat 9.0 25.23 4.12 1895
cat 9.0 16.13 2.75 1980
Nat 10.0 24.33 4.12 1967
Na‘ 10.0 24.07 4.07 1962
Lit 10.5 28.15 4.81 1985
Nat 10.5 23.77 4.07 1987
Na‘ 11.0 24.09 4.02 1936
cat 11.0 17.01 2.64 1870
Na‘ 11.5 22.93 3.89 1969
Nat 12.0 22.29 3.77 1963
Lit 12.0 28.43 4.79 1957
Na‘ 12.5 21.16 3.52 1931
Na*t 13.0 22.58 3.44 1768
Lit 13.5 31.06 4.60 1793
Lit 15.5 35.13 3.94 1304
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Table 7-5. Stoichiometric Hz-oz-Ar Flame Temperature
Profile Measurements with Sodium Ions

Mobility Diffusion
Height Coefficient Coefficient Temperature

(mm) (em2.v"1.571) (cm?.s71) (K)

5.5 27.51 4.44 1873
8.5 30.20 5.57 2140
11.5 30.48 5.52 2102
14.5 30.57 5.61 2130
16.5 30.35 5.57 2130
17.5 28.70 5.49 2220
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ions are given in Table 7-6. Reasonable intensitiés of
strontium ion signals could only be collected up to 14.5 mm
above the burner head. The vertical temperature profile

measured with strontium ions is plotted in Figure 7-6.

The results of the DLI temperature measurements of the
stoichiometric hydrogen-oxygen-argon flame with both sodium
and strontium ions are given in Table 7-7. The vertical
temperature profile measured with both metal ions is
plotted in Figure 7-7. Figure 7-7 shows that the DLI
temperature measurements with both metal ions at various
heights in the flame are reasonably consistent with each
other. However, at the same point in the flame, the flame
temperatures measured with different ions may differ as much
as 40°C (Table 7-7, 14.5 mm above the burner head), and the
results from repeated measurements with the strontium ion may
differ as much as 38°C (Table 7-7, 6.5 mm above the burner
head). This difference may be, again, attributed to the low

ion mobility of strontium ions in the flame.

D. DISCUSSION

As shown in Figure 7-4 and 7-7, it is evident that
the flame temperatures measured with heavy metal ions (i.e.,
calcium and strontium) are not as reliable as those from

lighter metal ions. For the fuel-rich, non-stoichiometric
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Table 7-6. Stoichiometric H2-02-Ar Flame Temperature

Profile Measurements with Strontium Ions

- — — —— — — ———— - - ————— - - —— — — ——— —— — - S S n D  ———— - ———— —

Mobility Diffusion
Height Coefficient Coefficient Temperature
(mm)  (cm2.v7l.s71)  (cm2?.s71) (K)
6.5 17.29 2.67 1792
6.5 17.13 2.59 1754
7.5 15.45 2.51 1885
10.0 14.53 2.55 2036
12.5 14.41 2.71 2183
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Table 7-7. Stoichiometric Hz-OZ-Ar Flame Temperature
Profile Measurements with Various Ions

Mobility Diffusion Flame

Ion Height Coefficient Coefficient Temperature
(mm) (ecm2.v™1.5871) (cm2.s71) (K)

Na*t 5.5 27.51 4.44 1873
srt 6.5 17.29 2.67 1792
srt 6.5 17.13 2.59 1754
sr* 7.5 15.45 2.51 1885
Na*t 8.5 30.20 5.57 2140
srt 10.0 14.53 2.55 2036
Na*t 11.5 30.48 5.52 2102
sr* 12.5 14.41 2.71 2183
Na*t 14.5 30.57 5.61 2130
sr* 14.5 13.32 2.49 2170
Na*t 16.5 30.35 5.57 2130
Na*t 17.5 28.70 5.49 2220



- 276 -

N
(7]

N
'S

1]

2.2

2.1

2.0

S S DU B

1.9

Temperature (x1000, K)

1.8

SN U
[}

1.7

o L

; T T T T T T T T T T T T 71—
6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0

1.6

>
o

Helght Above Burner Head (mm)

Figure 7-7. Stoichiometric H2—02-Ar flame temperature
profile measurements with various ions at
different heights above the burner head.

(O: sodium; m: Strontium)



- 277 -
hydrogen-oxygen-argon flame, in the region about 9 to 12 mm
above the burner head the temperature measurements with
lithium and calcium are only reasonably consistent with one
another. The temperature measured with calcium at 11.0 mm
above the burner head is significantly lower than the
surrounding measurements. Also, the flame temperature with
calcium ion measured at 9.0 mm above the burner head seems
too high. For the stoichiometric hydrogen-oxygen-argon
flame, the flame temperatures measured with strontium ions
in the region about 7 to 11 mm above the burner head
appears to be too low in comparison with those measured with
sodium ions. However, considering the maximum 5 percent
difference among the flame temperature measurements with
various ions, we see that DLI can provide very reasonable

and consistent temperature data in laminar-flow flames.

A comparison of the mobility and diffusion coefficients
of sodium ions from this study with previously reported
values (6-9) is given in Table 7-8. The range of both
diffusion and mobility coefficients measured at various
heights in two different hydrogen-oxygen-argon flame

compositions are consistent with the literature values.

A comparison of the mobility and diffusion coefficients
of lithium ions from this study with the reported literature
values (1,7,8,10) is given in Table 7-9. The range of the

mobility coefficients measured at various heights in the
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Table 7-8. A Comparison of Diffusion and Mobility
Coefficients of Sodium in Various Flames

Mobility Diffusion
Author Coefficient Coefficient Reference
(em2.v-1.g71) (cm?.871)
Ginsel‘®) -— 3.2 (6)
wu (P) 21.2 - 30.2 3.4 - 4.1 Table 7-1
Smyth (¢ 25.7 - (7)
Langevin (¢} 25.8 -— (7)
Lin{(d) 30.2 5.65 (1)
wu (e 27.5 - 30.6 4.4 - 5.9 Table 7-5
Ashton (f) - 5.5 - 13 (8)
Snelleman(9) - 9.9 (9)

(a) Hz-o2

K; (c¢) CZHZ-A1r flame, 2350 K; (4) Hz

(e) H2—02-Ar flame, 1873-2311 K; (f) H2-02-N2 flame, 1920-

-Ar flame, 2100 K; (b) Hz-oz—Ar flame, 1360-1987

—Oz—Ar flame, 2171 K;

2520 K; (g) C,H,-O,-N, flame, 2440 K.

272 72 72
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Table 7-9. A Comparison of Diffusion and Mobility

Coefficients of Lithium in Various Flames

Mobility Diffusion
Author Coefficient Coefficient Reference
(em2.v~1.571) (cm2.s571)
wula) 28.2 - 42.2 2.9 - 4.8 Table 7-2
smyth (P) 32.4 -—- (7)
Lin (¢! 38.6 6.7 (1)
Langevin(b) 38.7 - (7)
Ashton (4 --- 8.5 (8)
Ashton (d) ——- 6.8 - 11.8 (10)

(a) H -Oz—Ar flame, 801-1983 K; (b) C,H,-Air flame, 2350

272
-02-N2 flame, 1920-

2

K; (c¢) H2-02-Ar flame, 2014 K; (c) Hz

2520 K.
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fuel-rich, non-stoichiometric hydrogen-oxygen-argon flame
is consistent with the literature values. However, the
diffusion coefficients measured in this study appear to be
lower than all the reported values. This result may
possibly be attributed to the low flame temperature
environment, which favors the formation of LiOH in the flame

used in this study.

A comparison of the mobility and diffusion coefficients
of calcium ions from this study with the reported literature
values (7,11) is given in Table 7-10. The range of the
mobility coefficients measured at various heights in the
fuel-rich, non-stoichiometric hydrogen-oxygen-argon flame
are consistent with the literature values. However, the
diffusion coefficients measured in this study appear to be
lower than all the reported values. Again, this result may
be attributable to the low flame temperature environment,

ﬁhich favors the formation of CaOH in the flame.

A comparison of the mobility and diffusion coefficients
of strontium ions from this study with the reported
'literature values (7,11) is given in Table 7-11. The ranges
of both mobility and diffusion coefficients measured at
various heights in the stoichiometric hydrogen-oxygen-argon
flame appear to be lower than the literature values. This
result may also be attributed to the low flame temperature

environment, which favors the formation of SrOH in the
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Table 7-10. A Comparison of Diffusion and Mobility
Coefficients of Calcium in Various Flames

Mobility Diffusion
Author Coefficient Coefficient Reference
(em2.v~1.g71) (cm2.s71)
smyth (3) 16.1 -—- (7)
Wu (P) 17.0 - 19.4 2.4 - 2.7 Table 7-3
Ashton (¢! - 3.1 - 5.2 (11)
Langevin (3) 22.6 -— (7)

(a) C2H2-Air flame, 2350 K; (b) Hz-oz-Ar flame, 1445-1978

K: (¢) H2-02_N2 flame, 1920-2520 K.
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Table 7-11. A Comparison of Diffusion and Mobility
Coefficients of Strontium in Various Flames

e e S ———

Mobility Diffusion
Author Coefficient Coefficient Reference
(em2.v-1l.g71) (em?.s71)
wula) 13.3 - 17.3 2.5 - 2.7 Table 7-6
Ashton(b) -— 2.7 - 4.8 (11)
Smyth (¢! 18.0 - (7)
Lanqevin(d) 19.9 —— (7)

(a) H2-02—Ar flame, 1754-2183 K; (b) H2-02-N2 flame, 1920-

2520 K; (c) C2H2-Air flame, 2350 K; (4) CO-O2 flame,

temperature not available.
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flame.

A comparison of the flame temperatures obtained in this
study with literature values (1,12-14) measured at similar
hydrogen-oxygen-argon flame compositions is given in Table
7-12. The temperatures measured with various metal ions at
a height of about 10.0 mm above the burner head are chosen
for comparison. All the temperatures measured in this study
are self-consistent among the different probe ions chosen,
although they appear to be slightly lower than the reported
values. However, considering the maximum 5 percent
difference among the flame temperature measurements with
various ions in this study, our results are in reasonable

agreement with the literature values.

E. CONCLUSIONS

Earlier in this dissertation it was shown that the
Fokker-Planck model can be used to treat time-resolved DLI
signals, hence reasonably consistent flame temperatures
should be calculatable. The experimental study reported in
this chapter confirms the applicability of the Fokker-Planck
model in flame temperature measurements. In addition, all
data from DLI temperature measurements show that diffusion

coefficient increases with increasing temperature while
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Table 7-12. A Comparison of H -Oz-Ar Flame Temperatures

2
Flame Composition
(Liter-min~1) Temperature Method Reference
----------------- (K) Employed
Bz 02 Ar
1.6 0.5 3.2 1967 (a) DLI Na‘ Table 7-1
1.6 0.5 3.2 1978 (P) DLI ca®t Table 7-3
1.6 0.5 3.2 1983(¢c) pLI Li* Table 7-2
1.00 0.65 3.45 1990 Line Reversal (12)
1.5 0.75 4.5 2000 Line Reversal (13)
1.0 0.5 3.2 2014 DLI Li* (1)
1.0 0.5 3.2 20136 () DLI srt Table 7-6
1.00 0.5 3.45 2070 Line Reversal (12)
1.0 0.5 3.2 2102(¢) DLI Na‘t Table 7-5
2.0 1.0 4.0 2136 Line Reversal (13)
1.0 0.5 3.2 2171 DLI Na't (1)
1.30 0.65 3.45 2210 Line Reversal (12)

(a) 10.0 mm; (b) 9.0 mm; (c¢) 10.5 mm; (4) 10.0 mm;
(e) 11.5 mm above the burner head.
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mobility coefficient increases with decreasing temperature.
The smooth trends of both diffusion and mobility
coefficients versus flame temperature are in agreement with
the theoretical predications (2,14). Although the
temperatures reported in this study are somewhat lower than
the literature values, they are very consistent with one
another, and they may in fact be the most accurate

measurements to date.

This study also suggests that the exponential function
has over-compensated the thickness of the laser focal area
which would make the extrapolations of the diffusion
coefficients smaller than the true values. It is also
worth pointing out that the standard deviations of the
mobility coefficients measured in our laboratory are almost
always much smaller than those reported by others (1,7,14).
However, the calculated diffusion coefficient usually
contributes the major portion of the standard deviation of
each temperature calculation. A better model, which could
explain the relationship between the calculated diffusion
coefficient and bias voltage, is desired in order to make

the DLI temperature measurements more accurate.
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CHAPTER VIII

CONCLUSIONS AND FUTURE PROSPECTS

A. REVIEW AND CONCLUSIONS

A-1 Dual Laser Ionization Signals

In this study, we have demonstrated that there are two
temporal components in the dual laser ionization (DLI)
signal. In a DLI measurement, usually a short and strong
electron peak will be detected first, followed by a longer
and weaker ion peak some microseconds later. Experimental
results were presented to confirm this conclusion. Also,
the temporal behavior of DLI signals taken with different
bias voltages at various probe positions was discussed. It
has been shown that both the bias voltage and the probe
position can strongly affect the shape of the DLI signal.
‘The general factors that influence the shape of DLI signals

were given in Chapter III.

Theoretical treatment and experimental results showed
that under nearly all conditions, the electron signal decays

- 288 -



- 289 -
exponentially versus time. Upon inspection of the shapes of
the ion signals, we found that the interaction between ionic
mobility and ion diffusion cannot be ignored in most
circumstances. Hence the necessity of adopting a
sophisticated model, such as the Fokker-Planck equation, was

suggested.

Regarding the flame environment, we have also found
that in most cases the flame is sufficiently clean to allow
the electric field between the probes to reach the so-called
"super-saturation condition"; thus the electric field can be
viewed as constant along the moving ion's path. 1In
accordance with Lawton's model (1), several approximations
for the super-saturation condition were derived and
interpreted. All assumptions made were then confirmed by

the curve fitting method introduced in Chapter V.

It was also proposed that the mutual repulsion among
ions should not be ignored if the applied bias voltages were
high. A simulation program was constructed with some newly
developed algorithms to demonstrate the importance of the
mutual repulsion effect. Additional efforts must be devoted
in the future to make the simulation program more flexible
and effective, and to apply it to more realistic model

systems.
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A systematic method based on the Fokker-Planck
formalism was developed to extract both ion diffusion
coefficients and ionic mobility coefficients from the DLI
signals. The flame temperature can thus be calculated with
reasonable accuracy by applying the well-known Einstein
equation. Flame temperature profiles measured with

different metal ions were presented in Chapter VII.

A-2 The Fokker-Planck Equation

The applicability of the Fokker-Planck equation to the
DLI technique was confirmed. The theoretical treatment in
Chapter IV has shown that a general, one-dimensional Fokker-
Planck equation can model the basic characteristics of the
DLI signal collection process. Several Fokker-Planck
equations with various drift functions were solved
analytically. All drift functions were designed in
accordance with the different shapes of electric field
between the probes; interpretations of the various drift
functions were also given.

A modified conditional propagator with units of s'1 was
derived. In order to handle the indefinite size of the
laser focal point, the new propagator was then convoluted
with an exponential decay function to form an exponentially

modified conditional propagator. Curve fitting results
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showed that this new formulation can be used to model the

DLI signal collection process effectively.

In this study, the Fokker-Planck formalism was applied
widely and successful results were obtained. Certain
evidence suggests that the one-dimensional Fokker-Planck
equations may not be sophisticated and flexible enough to
treat the DLI process thoroughly, there is, however, no
doubt that this approach is fundamentally correct and

effective.

B. FUTURE PROSPECTS

B-1 DLI Techniques

In this study, we have examined Lawton's model
carefully. PFor each type of electric field proposed by
Lawton, a corresponding Fokker-Planck equation with the
appropriate drift function was constructed. These equations
were either already solved analytically or were susceptible
to solution by the numerical method described in Chapter 1IV.
To take advantage of these new mathematical models, a few

new projects can be pursued.

As mentioned in Chapter III, an understanding of the

time-resolved DLI signals can help scientists determine the
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most effective aperture delay and aperture duration, in
order to obtain maximum ion signal and at the same time
block out most of the noise due to the sample matrix. This
approach is definitely worth trying. In addition, since the
ion peak can be modelled by the Fokker-Planck equation
rather precisely, as demonstrated in Chapter Vv, it is
possible to use software to subtract the electron signal
from the total DLI signal. This approach should make the
DLI technique more sensitive if all the experimental

variables can be optimized.

In order to gain a more thorough understanding of the
DLI ion collection process, additional experiments should be
performed, such as adding more easily ionized elements to
the analyte solution to remove the super-saturation
condition. Observation of the behavior of the DLI time-
resolved signals under such conditions can help confirm the

applicability of the Fokker-Planck formalism.

A better understanding of the dependence <f the bias
voltage and diffusion coefficient is also worth pursuing.
An improved version of the simulation program which can also
deal with the interaction between electrons and ions may

help explain the dependence more effectively.
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B-2 Fokker-Planck Formalism

In recent years the invéstigation of chromatographic
peak profiles has become increasingly important, especially
from the viewpoint of understanding and characterizing the
chromatographic process, and ultimately optimizing
resolution (2). A chromatographic column is normally
assumed to act as a Gaussian operator, broadening a delta-
function input into a Gaussian distribution as it passes
through the column. However, ideal Gaussian profiles are
rarely, if ever, observed since a number of intracolumn and
extracolumn processes may lead to peak asymmetry (3). Thus,
in practice peaks are usually skewed. The exponentially
modified Gaussian (EMG) peak shape model is widely accepted
as a more accurate model for real chromatographic peaks than
a simple Gaussian function. The development,
characterization, and the theoretical and experimental
justification of the EMG model have been thoroughly reviewed
(4). Unfortunately, nearly every chromatographer realizes
that the EMG model does not have a strong theoretical
background. It is just an empirical tool that works well.
Other functions besides the EMG have been introduced to
characterize chromatographic peak profiles (5); however,

only limited success has been obtained.



- 294 -

Theoretically, the chromatographic processes can be
modelled in detail by solving the Fokker-Planck equation
with suitable drift functions. In our laboratory, we have
found that chromatographic peak profiles can be skewed even
when only the Gaussian operator is applied. This discovery
is strong evidence that the EMG actually over compensates
the skewing effect from the chromatographic processes.

Also, HPLC data taken by a microcomputer has been fit by
both the EMG and the exponentially modified Fokker-Planck
equation. Results show that the latter can supply better
parameter sets with reasonable physical interpretation.
Moreover, the Fokker-Planck equation can be decomposed into
a form that will be easier to use in computer programming.
More interestingly, clues have been found that EMG can be
proven as one of the solutions of the Fokker-Planck equation
with an alternative drift function. Examination of the
drift function that induces the EMG may then show that the
EMG is no more than a particular solution of the Fokker-
Planck equation that oversimplifies the true chromatographic

process.

The Fokker-Planck formalism can be applied also to the
time-of-flight mass spectroscopy (TOF-MS), which is one of
the major categories of mass spectrometry. In this
technique, the spread of electron beams caused by space-
charge forces is the chief limiting factor. On account of

space charge, repulsive forces exist so that beams, parallel
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at their origin, become divergent, or beams oriqiﬁally
convergent fail to converge (6). In the best case, the
resolution of the spectra is still relatively lower than

that of other mass spectroscopic techniques.

Since the TOF-MS has a delta-function-like ion source,
a Fokker-Planck equation with a suitable drift function (7)
can serve as an ideal model to describe the ion motion. The
effort can be initiated with the simulation of the ion-
moving process (8) in a TOF mass spectrometer, by modifying
an existing computer algorithm which has already been
developed for simulating the dual laser ionization (DLI)
process. The results can be used to construct a new
algorithm which can deconvolute the peaks from the TOF mass

spectrum and, hence, the resolution can be increased (9).
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APPENDIX A

FOKKER-PLANCK EQUATION NUMERICAL SOLVER

I. FORTRAN LISTING

el s e e iz e s e s e s e e e e s e e e e e e e e e e e e K2 e X2 K2 )

PROGRAM FPLI

R R S S S S S T e I R S S S E S EEEEESIEEIEEERERRERE S

YEN-YUAN JAMES WU JUL-8-1985
DEPARTMENT OF CHEMISTRY

MICHIGAN STATE UNIVERSITY

EAST LANSING, MICHIGAN 48824

THIS THE MAIN DRIVER OF PROGRAM FPLII

THE FOLLOWING DOCUMENTATION SUMMARIZES ALL THE INFORMATION OF THE
COMMON BLOCKS.

- DEFAULT REAL*8 FOR ALL VARIABLES UNLESS OTHERWISE SPECIFIED.

I RS EEEEEEEEETEETEREREIEEEERIS=SSRR = S EIEIZ=I==

CHARACTER*10 FLPV

INTEGER NFLPV

INTEGER PNSTRT, PNPNT, PNNNN
LOGICAL FLAGl, FLAG2

COMMON BLOCKS FOR PARAMETER INPUT

COMMON /FILNAM/ FLPV

COMMON /FILLEN/ NFLPV

COMMON /PCA/ PCEC, PCAMU, PCVP, PCEMS, PCAJKS
COMMON /PCB/ TOLDVR, TOLEQ1l, TOLEQ3

COMMON /PVA/ PVRC, PVBV, PVVA, PVMOBF, PVAJKS
COMMON /PNB/ PNSTRT, PNPNT, PNNNN

COMMON /PVB/ PVTI, PVXW, PVXC, PVBJK4, PVBJKS
COMMON /PV1/ PVION1, PVDFU1l, PVMOBl1, PV1JK4

COMMON /PV2/ PVION2, PVDFU2, PVMOB2, PV2JK4
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COMMON /PVE/ PVDFUE, PVMOBE, PVEJK3

COMMON BLOCKS FOR MAIN DRIVER

COMMON /MDRC1/ MDRC1A, MDRC1B
COMMON /MDRC1/ FLAGl, FLAG2
COMMON /MDRC2/ MDRC2A

COMMON /MDRC2/ PVTI

COMMON BLOCKS FOR INDIVIDUAL SUBROUTINE

TXT1
COMMON /TXT1/ TXT1A, TXT1B
COMMON /TXT1/ DSXS, DSXA
EQAIl
COMMON /AI1C/ AILCA, AI1CB, AIICC, AI1CD
COMMON /AIlC/ TOLDVR, TOLY1l, Y1FNL, GUESS
COMMON /AI1M/ AI1MA, AI1MB, AIIMC, AI1MD
COMMON /AIlM/ TIME, XAI, Y1AI, Y2AI
EQAI2
COMMON /AI2C/  AI2CA
COMMON /AI2C/  TOLDVR
COMMON /AI2M/ AI2MA, AI2MB, AI2MC, AI2MD, AI2NME
COMMON /AI2M/ TIME, XAI, YIAI, Y2AI, Y3AI
EQAI3
COMMON /AI3C/  AI3CA, AI3CB, AI3CC, AI3CD
COMMON /AI3C/ MASS, TOLDVR, ADELTA, TOLSLP
COMMON /AI3M/  AI3MA, AI3MB, AI3MC, AI3MD
COMMON /AI3M/ TIME, Y1AI, Y2AI, YRATIO
FXAIl
COMMON /AIF1/ AIF1A, AIF1B, AIF1C
COMMON /AIF1/ MASS, HEQ21, HEQ22
FXAI2
COMMON /AIF2/ AIF2A, AIF2B, AIF2C, AIF2D, AIF2E, AIF2F
COMMON /AIF2/ MASS, ADELTA, HEQ21, HEQ22, HEQ31l, HEQ32
EQAEl
COMMON /AE1C/ AE1CA, AE1CB, AE1CC, AE1CD, AEICE
COMMON /AE1C/ TOLDVR, TOLY1l, Y1FNL, GUESS, DSXSAE
COMMON /AE1M/ AE1MA, AE1MB, AEI1MC, AE1MD, AEIME
COMMON /AE1M/ TIME, XAE, YIAE, Y2AE, XENDMD
EQAE2
COMMON /AE2C/  AE2CA
COMMON /AE2C/  TOLDVR
COMMON /AE2M/ AE2MA, AE2MB, AE2MC, AE2MD, AE2ME
COMMON /AE2M/ TIME, XAE, YIAE, Y2AE, Y3AE
FXAEL
COMMON /AEF1/ AEF1A, AEF1B, AEF1C, AEF1D
COMMON /AEF1/ DSXSAE, MASS, HEQ2l, HEQ22
FXAE2
COMMON /AEF2/ AEF2A, AEF2B, AEF2C, AEF2D, AEF2E, AEF2F,
+ AEF2G, AEF2H
COMMON /AEF2/ DSXSAE, MASS, ADELTA, HEQ21, HEQ22, HEQ31,
+ HEQ32, HEQ33



- 299 -

C
c IR R R R R R RS EEEEEE SRR EST
C
IMPLICIT REAL*8 (A-H, 0-2)
C
CHARACTER*10 FLPV
C
INTEGER NFLPV
INTEGER PNSTRT, PNPNT, PNNNN
INTEGER NCOUNT

REAL*8 PVTI

REAL*8 AI1MA, AI1MB, AI1MC, AI1MD

REAL*8 AI2MA, AI2MB, AI2MC, AI2MD, AI2ME
REAL*8 AI3MA, AI3MB, AI3MC, AI3MD

REAL*8 TIME

REAL*8 XAI, Y1AI, Y2AI, Y3AI, RRAI

COMMON /FPILNAM/ FLPV
COMMON /FILLEN/ NFLPV
COMMON /PNB/ PNSTRT, PNPNT, PNNNN
COMMON /MDRC2/ PVTI
COMMON /AI1M/  AILMA, AI1MB, AIIMC, AI1MD
COMMON /AI2M/ AI2MA, AI2MB, AI2MC, AI2MD, AI2ME
COMMON /AI3M/ AI3MA, AI3MB, AI3MC, AI3MD
COMMON /AI4M/  AI4MA, AI4MB, AI4MC, AI4MD, AI4NME
C
ARRRARRARR  SECTION 1 AXRARRAAXR
c
CALL GTCML
CALL PAR
CALL CNST
CALL TXT1
CALL TXT2
CALL OPEN7

DO 800, NCOUNT = PNSTRT, PNSTRT+PNPNT-1
TIME = FLOAT(NCOUNT) * PVTI

AI1MA = TIME
CALL EQAIl

XAI = AI1MB

YIAI = AILNC

Y2AI = AI1MD

AI2MA

AI2MB = 0.0

AI2MC = 0.0

AI2MD = Y2AI

AI2ME = 0.0
CALL EQAI2

Y3AI = AI2ME

TIME
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AI3MA = TIME
AI3MB = Y1AI
AI3NC = Y2AI
CALL EQAI3
RRAI = AI3MD
C
AI4MA = TIME
AI4MB = Y1AI
AI4MC = Y2AI
AI4MD = Y3AI
AI4ME = RRAI
CALL EQAI4
C
800 CONTINUE
c
CLOSE (UNIT=7)
CALL OPEN7
CALL EQAIS
CLOSE (UNIT=7,DISPOSE='DELETE')
c
STOP
C ~R= Ko R —Re R Ko R —Re —cRoe =R Ko ke =Ko =Ko ke —ke —%-
C THE FOLLOWING STATEMENT IS THE LAST CARD OF PROGRAM FPLI
C —%= —Ke —Re - R ke R —Re ccRoe R —Re K= =R —Re ke ke K-
END
SUBROUTINE GTCML
C
c AR R R R S S I R S S R S S S E S SRR ERS IS SRS SRS EaEE
C
C THIS SUBROUTINE WILL GET THE NECESSARY INFORMATION FROM THE COMMAND
C LINE
C
c R R R I R R SN C EEEE RS S EESRE SRS EIITIRER
C
CHARACTER*10 FLPV
INTEGER NFLPV
C
COMMON /FILNAM/ FLPV
COMMON /FILLEN/ NFLPV
C
ARRARRARAR  SECTION 1 ARRRRARARR
c
CALL LIBSGET_FOREIGN (FLPV, 'FILENAME: ', NFLPV)
C
aarkkarrt®  THE RETURN STATEMENT ARARRRRRAX
C
RETURN
C ~%= =R —Re —Re Ko Ko —Re =R ccleoe —Re ohe =Ko —Re =Re ke —K= —%-
C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE GTCML
C ~Re —ke =R —he R =K =R =R —cRee =R =R R =R =R —R= —Re R
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SUBROUTINE PAR

PCA(1)
PCA(2)
PCA(3)
PCA(4)
PCA(5)

PCB(1)
PCB(2)
PCB(3)

PVA(1)
PVA(2)
PVA(3)
PVA(4)
PVA(S)

PNB (1)
PNB(2)
PNB(3)

PVB(1)
PVB(2)
PVB(3)
PVB(4)
PVB(5)

PV1(1)
PV1(2)
PV1(3)
PV1(4)

PV2(1)
PV2(2)
PV2(3)
PV2(4)

PVE(1)
PVE(2)
PVE(3)

= PCEC ; ELEMENTARY CHARGE

= PCAMU ; ATOMIC MASS UNIT

= PCVP ¢ VACUUM PERMITTIVITY

= PCEMS 7 REST MASS OF ELECTRONS

= H

= TOLDVR ; TOLERANCE OF DVERK

= TOLEQL ; TOLERANCE OF EQXX1 FOR MOMENTUM SHOOTING
= TOLEQ3 ; TOLERANCE OF EQXX3 FOR RATIO CALCULATION
= PVRC ; VOLUME IONIZATION RATE

= PVBV ; BURNING VELOCITY

= PVVA : VOLTAGE APPLIED ACROSS ELECTRODES
= PVMOBF ; DIFFU COEF BKGRND ION

= H

= PNSTRT ; STARTING POINT

= PNPNT ; NUMBER OF POINTS

= H

= PVTI ; TIME INTERVAL BETWEEN EACH STEP

= PVXW ; DISTANCE BETWEEN PROBES

= PVXC : DISTANCE BETWEEN LASER SPOT AND CATHODE
= ’

= PVION1 ; ATOMIC MASS OF ION 1

= PYDFU1 ; DIFUSSION COEFFICIENT OF ION 1

= PVMOB1 ; MOBILITY COEFFICIENT OF ION 1

= ’

= PVION2 ; ATOMIC MASS OF ION 2

= PVDFU2 ; DIFUSSION COEFFICIENT OF ION 2

= PVMOB2 ; MOBILITY COEFFICIENT OF ION 2

= ’

= PVDFU2 ; DIFUSSION COEFFICIENT OF ELECTRON
= PVYMOB2 ; MOBILITY COEFFICIENT OF ELECTRON
= H

IMPLICIT REAL*8 (A-H, 0-2)

CHARACTER*10 FLPV
CHARACTER*40 FLIN1, FLIN2

INTEGER LUNIN1, LUNIN2
INTEGER NFLPV
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INTEGER PNB(3)
INTEGER PNSTRT, PNPNT, PNNNN

c
REAL*8 PCA(5), PCB(3)
REAL*8 PVA(5), PVB(5), PV1(4), PV2(4), PVE(3)
REAL*8 PCEC, PCAMU, PCVP, PCEMS, PCAJKS
REAL*8 TOLDVR, TOLEQl, TOLEQ3
REAL*8 PVRC, PVBV, PVVA, PVMOBF, PVAJKS
REAL*8 PVTI, PVXW, PVXC, PVBJK4, PVBJKS
REAL*8 PVIONl1, PVDFU1l, PVMOB1, PV1JK4
REAL*8 PVION2, PVDFU2, PVMOB2, PV2JK4
REAL*8 PVDFUE, PVMOBE, PVEJK3
c
COMMON /FILNAM/ FLPV
COMMON /FILLEN/ NFLPV
COMMON /PCA/ PCEC, PCAMU, PCVP, PCEMS, PCAJKS
COMMON /PCB/ TOLDVR, TOLEQ1l, TOLEQ3
COMMON /PVA/ PVRC, PVBV, PVVA, PVMOBF, PVAJKS
COMMON /PNB/ PNSTRT, PNPNT, PNNNN
COMMON /PVB/ PVTI, PVXW, PVXC, PVBJK4, PVBJKS
COMMON /PV1/ PVION1, PVDFUl, PVMOBl1l, PV1JK4
COMMON /PV2/ PVION2, PVDFU2, PVMOB2, PV2JK4
COMMON /PVE/ PVDFUE, PVMOBE, PVEJK3
C
kaxxaxaaxx DEFINITION OF LOCAL VARIABLES **#akaaixx
C
LUNIN1 = 1
FLIN1 = 'SYS$SYSDEVICE: [WU.FPLIA.FOR]FPLI.PC'
c
LUNIN2 = 2
FLIN2 = 'SYS$SYSDEVICE: [WU.FPLIA.PV]' // FLPV(1:NFLPV) // '.PV'
C
RARRRARRARR  SECTION 1 ARRRRARRAR
C
OPEN ( UNIT=LUNIN1, NAME=FLINl1, STATUS='OLD',
+ CARRIAGECONTROL='LIST', ERR=914, READONLY )
c
READ (LUNIN1, 882, ERR=916, END=918)
READ (LUNIN1, 882, ERR=916, END=918)
READ (LUNIN1, 882, ERR=916, END=918)
C

DO 165, I =1, 5

READ (LUNIN1, 882, ERR=916, END=918)

READ (LUNIN1, 884, ERR=916, END=918) PCA(I)
165 CONTINUE

c
PCEC = PCA(1)
PCAMU = PCA(2)
PCVP = PCA(3)
PCEMS = PCA(4)
PCAJK5 = PCA(5)
o

READ (LUNIN1, 882, ERR=916, END=918)
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READ (LUNIN1, 882, ERR=916, END=918)
READ (LUNIN1, 882, ERR=916, END=918)

DO 167, I =1, 3

READ (LUNIN1, 882, ERR=916, END=918)

READ (LUNIN1, 884, ERR=916, END=918) PCB(I)
167 CONTINUE :

c
TOLDVR = PCB(1)
TOLEQ1 = PCB(2)
TOLEQ3 = PCB(3)
c
CLOSE (LUNIN1)
C
AkkAkAAXAX  SECTION 2 RAXAARRARAR
C
OPEN ( UNIT=LUNIN2, NAME=FLIN2, STATUS='OLD',
+ CARRIAGECONTROL='LIST', ERR=924, READONLY )
C
READ (LUNIN2, 882, ERR=1926, END=928)
READ (LUNIN2, 882, ERR=1926, END=928)
READ (LUNIN2, 882, ERR=1926, END=928)
C

DO 245, I =1, 5

READ (LUNIN2, 882, ERR=1926, END=928)

READ (LUNIN2, 884, ERR=1926, END=928) PVA(I)
245 CONTINUE

C
PVRC = PVA(1)
PVBV = PVA(2)
PVVA = PVA(3)
PVMOBF = PVA(4)
PVAJKS = PVA(S5)
c
READ (LUNIN2, 882, ERR=2926, END=928)
READ (LUNIN2, 882, ERR=2926, END=928)
READ (LUNIN2, 882, ERR=2926, END=928)
c

DO 248, I =1, 3

READ (LUNIN2, 882, ERR=2926, END=928)

READ (LUNIN2, 886, ERR=2926, END=928) PNB(I)
248 CONTINUE

c
PNSTRT = PNB(1)
PNPNT = PNB(2)
PNNNN = PNB(3)
C
READ (LUNIN2, 882, ERR=3926, END=928)
READ (LUNIN2, 882, ERR=3926, END=928)
READ (LUNIN2, 882, ERR=3926, END=928)
C

DO 251, I =1, 5
READ (LUNIN2, 882, ERR=3926, END=928)
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READ (LUNIN2, 884, ERR=3926, END=928) PVB(I)
251 CONTINUE

PVTI = PVB(1)
PVXW PVB(2)
PVXC PVB(3)
PVBJK4 = PVB(4)
PVBJKS5 = PVB(5)

READ (LUNIN2, 882, ERR=4926, END=928)
READ (LUNIN2, 882, ERR=4926, END=928)
READ (LUNIN2, 882, ERR=4926, END=928)

DO 255, I =1, 4

READ (LUNIN2, 882, ERR=4926, END=928)

READ (LUNIN2, 884, ERR=4926, END=928) PV1(I)
255 CONTINUE

PVION1
PVDFU1
PVMOB1
PV1JK4

PV1(1)
PV1(2)
PV1(3)
PV1(4)

READ (LUNIN2, 882, ERR=5926, END=928)
READ (LUNIN2, 882, ERR=5926, END=928)
READ (LUNIN2, 882, ERR=5926, END=928)

DO 265, I =1, 4

READ (LUNIN2, 882, ERR=5926, END=928)

READ (LUNIN2, 884, ERR=5926, END=928) PV2(I)
265 CONTINUE

PVION2
PVDFU2
PVMOB2
PV2JK4

PV2(1)
PV2(2)
PV2(3)
PV2(4)

READ (LUNIN2, 882, ERR=5926, END=928)
READ (LUNIN2, 882, ERR=5926, END=928)
READ (LUNIN2, 882, ERR=5926, END=928)

DO 275, I =1, 3

READ (LUNIN2, 882, ERR=5926, END=928)

READ (LUNIN2, 884, ERR=5926, END=928) PVE(I)
275 CONTINUE

PVDFUE
PVMOBE
PVEJK3

PVE(1)
PVE(2)
PVE(3)

c
CLOSE (LUNIN2)
C
rakananrixt  THE RETURN STATEMENT AAAXRRAARR
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C
RETURN
C
Ranaxaxnaxx  ERROR STATEMENTS ARAXRARKAR
c
914 STOP 'LIPAR ERR=914 : CANNOT OPEN FPLI.PC FILE'
916 STOP 'LIPAR ERR=916 : READING ERROR IN FPLI.PC FILE'
918 STOP 'LIPAR ERR=918 : NOT ENOUGH DATA IN FPLI.PC FILE'
C
924 STOP 'LIPAR ERR=924 : CANNOT OPEN FPLI.PV FILE'
1926 STOP 'LIPAR ERR=1926 : READING ERROR IN FPLI.PV FILE - PVA'
2926 STOP 'LIPAR ERR=2926 : READING ERROR IN FPLI.PV FILE - PNB'
3926 STOP 'LIPAR ERR=3926 : READING ERROR IN FPLI.PV FILE - PVB'
4926 STOP 'LIPAR ERR=4926 : READING ERROR IN FPLI.PV FILE - PV1'
5926 STOP 'LIPAR ERR=5926 : READING ERROR IN FPLI.PV FILE - PV2'
928 STOP 'LIPAR ERR=928 : NOT ENOUGH DATA IN FPLI.PV FILE'
c
AXKARAARAR  PORMATS ARRAARRANR
C
882 FORMAT (' ')
884 FORMAT (48X, G15.8)
886  FORMAT (48X, I6)
c
RakARAkAk%  THE END STATEMENT RAXARARKAR
c
C =% =Ko —Re —Re e e Ko Ko cckoe Ko ke —Re e R —Re ke ko
C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE PAR
C %= == —Re ke —Re Ko ke R cckoo Ko Ko Ko —Re —Re —R= K= k=
END
SUBROUTINE CNST
C
C I R R I R N S S S T E RIS EREESIEESEI ST ESEXBRITSS
C
C THIS SUBROUTINE SETS UP ALL THE NECESSARY CONSTANTS AND PUT THE
C VALUES INTO SEPARATE COMMON BLOCKS
C
c AR SRS EERIR TSN EEREESRES SRS - S[EISEnTEs=EEE===
C
IMPLICIT REAL*8 (A-H, 0-2)
C
REAL*8 PCEC, PCAMU, PCVP, PCEMS, PCAJKS
REAL*8 TOLDVR, TOLEQl, TOLEQ3
REAL*8 PVRC, PVBV, PVVA, PVMOBF, PVAJKS
REAL*8 PVTI, PVXW, PVXC, PVBJK4, PVBJKS
REAL*8 PVION1, PVDFU1l, PVMOBl1, PV1JK4
REAL*8 PVION2, PVDFU2, PVMOB2, PV2JK4
REAL*8 PVDFUE, PVMOBE, PVEJK3
C
REAL*8 PI, DELTA, DELTAl, DELTA2, DELTAE, DSXS, DSXA
C
REAL*8 MDRC2A
REAL*8 TXT1A, TXT1B
REAL*8 AIICA, AI1CB, AI1CC, AI1CD



(s N Xz Nz Xzl

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMMON
COMMON
COMMON
COMMON
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AI2CA

AI3CA, AI3CB, AI3CC, AI3CD

AI4CA, AI4CB

AIF1A, AIF1B, AIF1C

DSXSAI

AIF2A, AIF2B, AIF2C, AIF2D, AIF2E, AIF2F
AE1CA, AE1CB, AE1CC, AEICD, AE1CE

AE2CA

AEF1A, AEF1B, AEF1C, AEr1D

AEF2A, AEF2B, AEF2C, AEF2D, AEF2E, AEr2F,
AEF2G, AEF2H

/PCA/ PCEC, PCAMU, PCVP, PCEMS, PCAJKS
/PCB/ TOLDVR, TOLEQ1l, TOLEQ3

/PVA/ PVRC, PVBV, PVVA, PVMOBF, PVAJKS
/PVB/ PVTI, PVXW, PVXC, PVBJK4, PVBJKS
/PV1/ PVION1, PVDFUl, PVMOB1, PV1JK4

/PV2/ PVION2, PVDFU2, PVMOB2, PV2JK4

/PVE/ PVDFUE, PVMOBE, PVEJK3

/MDRC2/ MDRC2A

/TXT1/  TXT1A, TXT1B

/AI1C/  AILCA, AI1CB, AI1CC, AI1CD

/AI2C/  AI2CA

/AI3C/  AI3CA, AI3CB, AI3CC, AI3CD

/AI4C/  AI4CA, AI4CB

/AIF1/  AIF1A, AIF1B, AIFiC

/AIF2/  AIF2A, AIF2B, AIF2C, AIF2D, AIF2E, AIF2F

/AE1C/  AE1CA, AE1CB, AE1CC, AE1CD, AE1CE

/AE2C/  AE2CA

/AEF1/  AEF1A, AEF1B, AEF1C, AEF1D

/AEF2/ AEF2A, AEF2B, AEF2C, AEF2D, AEF2E, AEF2F,
AEF2G, AEF2H

UNIVERSAL CONSTANTS

AR R R I T EE S EE SRR EESEIEESR

PI
DELTA
DELTAl
DELTA2

DELTAE

= 3.141592653589793

SQRT ( (PVRC * PCEC) / (PCVP * PVMOBF) )

PVMOB1 * DELTA

PVMOB2 * DELTA

PVMOBE * DELTA

DSXS = SQRT ( 2.0 * PVVA / DELTA )

DSXA = PVXW - PVXC
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A I R R I R I EEEEIEREEE IS EREEEREIRNERT RIS
FPLITXT1.FOR
COMMON /TXT1/ TXT1A, TXT1B
COMMON /TXT1/ DSXS, DSXA
TXTIA = DSXS
TXT1B = DSXA
FPLI.FOR
AR I R S I R R R R e EEE E S E SRS EEESRSSEREEESE=S
COMMON /MDRC1/  MDRC1A, MDRC1B
COMMON /MDRC1/ FLAGl, FLAG2
COMMON /MDRC2/  MDRC2A
COMMON /MDRC2/ PVTI

MDRC2A = PVTI

FPLIEQAI1.FOR

COMMON /AI1C/  AI1CA, AI1CB, AI1CC, AIICD
COMMON /AI1C/  TOLDVR, TOLY1l, Y1FNL, GUESS

AI1CA

TOLDVR

AI1CB TOLEQ1
AIlCC = PVXC

AI1CD

SQRT ( 3.0 * PCAMU * PVION1 * 1.38E-16 * 1700.0 )

FPLIEQAI2.FOR

COMMON /AI2C/  AI2CA
COMMON /AI2C/  TOLDVR

AI2CA = TOLDVR

FPLIEQAI3.FOR

COMMON /AI3C/  AI3CA, AI3CB, AI3CC, AI3CD
COMMON /AI3C/ MASS, TOLDVR, DELTAl, TOLSLP
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AI3CA = PCAMU * PVION1
AI3CB = TOLDVR
AI3CC = DELTAL
AI3CD = TOLEQ3
FPLIEQAI4.FOR
R I R R R R R R S R R e T R S s s e =
COMMON /AIAC/ AI4CA, AI4CB
COMMON /AI4C/ HEAD, PVDFUL
AI&CA = 4.0 * PI * PVDFU1
AI4CA = 1.0 / SQRT(AI4CA)
AI4CB = PYDFUL
FPLIFXAIL.FOR
A R R R R R B E R R e R S EN SRS SN REIEINERREREED
COMMON /AIF1/ AIF1A, AIF1B, AIFiC
COMMON /AIF1/ MASS, HEQ21, HEQ22
AIFIA = PCAMU * PVION1
AIF1B = AIF1A * DELTAl * DELTAL
DSXSAI = DSXS - PVXC
AIFIC = AIF1B * DSXSAI - AIF1A * DELTAL * PVBV
FPLIFXAI2.FOR
R Rl A R R R R R I R S R RS SN RE SRS EREEES
COMMON /AIF2/ AIF2A, AIF2B, AIF2C, AIF2D, AIF2E, AIF2F
COMMON /AIF2/ MASS, DELTA1, HEQ21, HEQ22, HEQ31, HEQ32
AIF2L = PCAMU * PVION1
AIF2B = DELTA1
AIF2C = AIF2A * DELTAL * DELTAL
DSXSAI = DSXS - PVXC
AIF2D = AIF2C * DSXSAI - AIF2A * DELTAL * PVBV
AIF2E = DELTA1 * DSXSAI - PVBV

AIF2F = 2.0 * PVDFUl * DELTAl
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FPLIEQAE1l.FOR

COMMON /AE1C/ AE1CA, AE1CB, AE1CC, AE1CD, AE1CE
COMMON /AE1C/  TOLDVR, TOLY1l, Y1FNL, GUESS, DSXSAE

AE1CA = TOLDVR

AE1CB = TOLEQl

AE1CC = DSXA

AE1CD = SQRT ( PCEMS ) * SQRT ( 3.0 * 1.38E-16 * 1700.0 )

AE1CE = DSXS + DSXA - PVXVW

AR R S R R R R T R S E E RS EEEEEETEREESEREERS=

FPLIEQAE2.FOR

COMMON /AE2C/  AE2CA
COMMON /AE2C/  TOLDVR

AE2CA = TOLDVR

R I S I R I S S I I I R S R T T S SIS REEESERSEESEIERE
FPLIFXAE1.FOR
COMMON /AEF1/ AEF1A, AEF1B, AEF1C, AEF1D
COMMON /AEF1/ DSXSAE, MASS, HEQ21, HEQ22
AEF1A = DSXS + DSXA - PVXW
AEF1B = PCENMS
AEF1C = PCEMS * DELTAE * DELTAE
AEF1D = AEF1C * AEF1A + PCEMS * DELTAE * PVBV
AR R R R R I R R R S S S SR ES S SRESREREESESRERESSS
FPLIFXAE2.FOR
COMMON /AEF2/ AEF2A, AEF2B, AEF2C, AEF2D, AEF2E, AEFZF,
+ AEF2G, AEF2H
COMMON /AEF2/ DSXSAE, MASS, DELTAE, HEQ21, HEQ22, HEQ31,
+ HEQ32, HEQ33
AEF2A = DSXS + DSXA - PVXW

AEF2B = PCENMS
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AEF2C = DELTAE
AEF2D = PCEMS * DELTAE * DELTAE
AEF2E = AEF2D * AEF2A + PCEMS * DELTAE * PVBV
AEF2F = DELTAE * AEF2A + PVBV
AEF2G = 2.0 * PVDFUE * DELTAE
AEF2H = PVBV
R wRe —Re wfle e R che el calee wefle che e =B =B whe ke K-
THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE CNST
R wRe wfe =2fRe wfe cfec e =fe caflce cflc oflc cflc oflc =fc ofc - =X
END
SUBROUTINE TXT1
A R R S R S R R R IR EEIEIEEERERET R
THIS SUBROUTINE WILL WRITE THE FIRST PART OF THE TEXT PAGE
THE LOGIC UNIT NUMBER FOR WRITING THE TEXT FILE WILL BE ALWAYS 01
IR R R I R R S A S RS S SIS S S NSRRI

IMPLICIT REAL*8 (A-H, 0-2)

CHARACT

ER*10 FLPV

CHARACTER*40 FLTXT

INTEGER
INTEGER
INTEGER

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

NFLPV
LUNTXT
PNSTRT, PNPNT,

PCEC, PCAMU,
TOLDVR, TOLEQ1,
PVRC, PVBY,
PVTI, PVXW,
PVION1, PVDFU1,
PVION2, PVDFU2,
PVDFUE, PVMOBE,
DSXS, DSXA
TIMES, TIMEE

/FILNAM/ FLPV
/FILLEN/ NFLPV
/PCA/ PCEC,
/PCB/ TOLDVR,
/PVA/ PVRC,
/PNB/ PNSTRT,
/PVB/ PVTI,
/PV1/ PVION1,

PNNNN

PCVP,
TOLEQ3
PVVA,
PVXC,
PVYMOB1,
PVMOB2,
PVEJK3

PCANMU,
TOLEQ1,
PVBY,
PNPNT,
PVXVW,
PVDFU1,

PCENS,

PVMOBF,
PVBJK4,
PV1JK4
PV2JK4

PCVP,
TOLEQ3
PVVA,
PNNNN
PVXC,
PYMOB1,

PCAJKS

PVAJKS
PVBJKS

PCEMS, PCAJKS
PVMOBF, PVAJKS

PVBJK4, PVBJKS
PV1JK4



- 311 -

COMMON /PV2/ PVION2, PVDFU2, PVMOB2, PV2JK4
COMMON /PVE/ PVDFUE, PVMOBE, PVEJK3
COMMON /TXT1/ DSXS, DSXA

~
AXARRAAAAR  SECTION 1 ANARARRARR
c
LUNTXT = 1
FLTXT= 'SYS$SYSDEVICE: (WU.FPLIA.TXT]' // FLPV(1:NFLPV) // '.TXT'
c
OPEN ( UNIT=LUNTXT, NAME=FLTXT, STATUS='NEW',
+ CARRIAGECONTROL='LIST', ERR=9024 )
c
ARARRRAXAR  SECTION 2 RARRRRRRAR
c

210 FORMAT (' ')
211 FORMAT (' ',
+ ' ')

212 FORMAT ('s:::::sscss::=zz=:s38s.ssssszss:ssssss:z:sssssss',

+ 'zazzxzzzzzzax=s==sz=====x=")

WRITE (LUNTXT, 212)

WRITE (LUNTXT, 214) FLPV(1:NFLPV), FLPV(1:NFLPV), FLPV(1:NFLPV)
214 FORMAT ('FILENAME : ', A10, 10X, A10, 10X, A10)

WRITE (LUNTXT,212)

WRITE (LUNTXT, 215)
215  FORMAT('SPECIAL COMMENTS ON THIS DATA SET:')
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 211)

c
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 220) PCEC, PCAMU, PCVP
220 FORMAT ('PCEC =', G14.6, ' PCAMU =', G14.6,
+ ' PCVP =', Gl14.6)
WRITE (LUNTXT, 224) PCEMS, PCAJKS
224 FORMAT ('PCEMS =', G14.6, ' PCAJK5=', Gl14.6)
c
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 230) TOLDVR, TOLEQl, TOLEQ3
230 FORMAT ('TOLDVR=',6 G14.6, ' TOLEQl=', G14.6,
+ ' TOLEQ3=', G14.6)
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 232) PVRC, PVBV, PVVA
232 FORMAT ('PVRC =', G14.6, ' PVBV =',6 G14.6,
+ ' PVVA =', G14.6)
WRITE (LUNTXT, 234) PVMOBF, PVAJKS
234 FORMAT ('PVMOBF=', G14.6, ' PVAJKS=', G14.6)
c

WRITE (LUNTXT, 210)
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WRITE (LUNTXT, 240) PVTI, PVXW, PVXC

240 FORMAT ('PVTI =',6 Gl4.6, ' PVXW =',6 Gl4.6,
+ ' PVXC =', G14.6)
WRITE (LUNTXT, 244) DSXS, DSXA
244 FORMAT ('DSXS =', G14.6, ' DSXA =', G14.6)
C
WRITE (LUNTXT, 210)
WRITE (LUNTXT, 246) PVION1l, PVDFUl, PVMOB1
246 FORMAT ('PVION1=',6 G14.6, ' PVDFUl=', G14.6,
+ ' PVMOB1=', G14.6)
WRITE (LUNTXT, 248) PVION2, PVDFU2, PVMOB2
248 FORMAT ('PVION2=', G14.6, ' PVDFU2=', G14.6,
+ ' PVMOB2=', G14.6)
WRITE (LUNTXT, 250) PCEMS, PVDFUE, PVMOBE
250 FORMAT ('PCEMS =', G14.6, ' PVDFUE=', G14.6,
+ '  PVMOBE=', G14.6)
C
WRITE (LUNTXT, 210)
VRITE (LUNTXT, 256) PNSTRT, PNPNT, PNSTRT+PNPNT-1
256 FORMAT (' START ', Il4, °', RANGE ', I14, ', END ', Il14)
TIMES = FLOAT (PNSTRT) * PVTI
TIMEE = FLOAT (PNPNT) * PVTI
WRITE (LUNTXT, 258) TIMES, PVTI, TIMEE
258 FORMAT (7X, G14.6, ',' G24.6, ',' G22.6)
WRITE (LUNTXT, 210)
C
RETURN
C
AXRAARKAAX  ERROR STATEMENTS ARKAARAR%%k
C
9024 STOP 'FPLI ERR=9024 : CANNOT OPEN FPLI*** TXT FILE'
C
C %= ~Re R ke =R R Ko =R ccKoe —Re R R —Re R R k= ke
C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE TXT1
C ~Re - R —he =Ko —Re R Ko —cRee =N K= =K ke =R -k -k —R-
END
SUBROUTINE TXT2
C
C I I I R R S R S R T S T RS E SIS SRS EEEE RS
c

C THIS SUBROUTINE WILL WRITE THE SECOND PART OF THE TEXT PAGE

C THE LOGIC UNIT NUMBER FOR WRITING THE TEXT FILE WILL BE ALWAYS 01

¢ IMPLICIT REAL*8 (A-H, 0-2)
‘ INTEGER LUNTXT
: REAL*8 AIF2A, AIF2B, AIF2C, AIF2D, AIF2E, AIF2F

COMMON /AIF2/ AIF2A, AIF2B, AIF2C, AIF2D, AIF2E,

® COMMON /AIF2/ MASS, ADELTA, HEQ21, HEQ22, HEQ3l,

AIF2F
HEQ32
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COMMON /AEF2/ AEF2A, AEF2B, AEF2C, AEr2D, AEF2E, AEF2r,

+ AEF2G, AEF2H :
* COMMON /AEF2/ DSXSAE, MASS, DELTAE, HEQ21, HEQ22, HEQ3l1,
* + HEQ32, HEQ33
C
LUNTXT = 1
C
ARXRRXXRAR  SECTION 1 AAkkkhhkns
C
110 FPORMAT (' ')
111  FORMAT (' e e e ’,
+ 0 e - — - — —— —— - - — L} )
C

WRITE (LUNTXT, 111)
WRITE (LUNTXT, 120)

120 FORMAT ('EQUATIONS USED IN FCNXXX ROUTINE')
WRITE (LUNTXT, 111)

WRITE (LUNTXT, 110)
WRITE (LUNTXT, 130)
130 FORMAT ('EQAIl: YPRIME(1) = Y(2) / MASS')
WRITE (LUNTXT, 140)
140 FORMAT ('EQAI2: YPRIME(2) = HEQ21 * Y(1) + HEQ22')
WRITE (LUNTXT, 150)
150 FORMAT ('EQAI3: HEQ3 = YPRIME(1) + DELTAI * Y(1) + HEQ31')
WRITE (LUNTXT, 152)
152  FORMAT (' YPRIME(3) = 0.5 * ( HEQ3 * HEQ3 - HEQ32 )')

WRITE (LUNTXT, 110)
WRITE (LUNTXT, 160) AIF2A, AIF2C, AIF2D
160 FORMAT ('MASS =', G14.6, ' HEQ21 =',k G14.6,
' HEQ22 =', G14.6)
WRITE (LUNTXT, 162) AIF2B, AIF2E, AIF2F
162 FORMAT ('DELTAI=', G14.6, ' HEQ3l1l =', G14.6,
' HEQ32 =', G14.6)
WRITE (LUNTXT, 110)
WRITE (LUNTXT, 111)

WRITE (LUNTXT, 110)
WRITE (LUNTXT, 230)

230 FORMAT ('EQAEl: YPRIME(1)
WRITE (LUNTXT, 240)

240 FORMAT ('EQAE2: YPRIME(2)
WRITE (LUNTXT, 242)

242 FORMAT (' YPRIME(2)
WRITE (LUNTXT, 250)

250 FORMAT ('EQAE3: HEQ3A = YPRIME(1) + DELTAE * Y(1) + HEQ31')
WRITE (LUNTXT, 252)

252 FORMAT (' YPRIME(3) = 0.5 * ( HEQ3A * HEQ3A - HEQ32 )')
WRITE (LUNTXT, 254)

254 FORMAT ('EQAEB: HEQ3B = YPRIME(1l) + HEQ33')
WRITE (LUNTXT, 256)

256 FORMAT (' YPRIME(3) = 0.5 * ( HEQ3B * HEQ3B )')

Y(2) / MASS')

HEQ21 * Y(1) - HEQ22')

0.00')
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WRITE (LUNTXT, 110)

WRITE (LUNTXT, 260) AEF2A, AEF2D, AEF2E
260 FORMAT ('DSXSAE=', G14.6, ' HEQ21 =', G14.6,

+ '  HEQ22 =', G14.6)

WRITE (LUNTXT, 262) AEF2B, AEF2F, AEF2G

262 FORMAT ('MASS =', Gl14.6, ' HEQ31 =', G14.6,
+ ' HEQ32 =', G14.6)

WRITE (LUNTXT, 266) AEF2C, AEF2H
266 FORMAT ('DELTAE=',6 Gl14.6, ' HEQ33 =', G14.6)

WRITE (LUNTXT, 110)

WRITE (LUNTXT, 111)

WRITE (LUNTXT, 350) 12
350 FORMAT (Al)

CLOSE (LUNTXT)

RETURN
THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE TXT2
- wfe =R efle wle e ofe clhle caflea wflec -Re —Xe =Fe =Re =fRa =Re K-

END

SUBROUTINE OPEN7
AR T R R R I S E I NI S SN R SR EES R SEREE SRR ==
THIS SUBROUTINE WILL OPEN CHENNEL 7 WITH EXTENSION .TMP
AR S R R S S R R S S RS S SRS RIS EESESEERsEs

IMPLICIT REAL*8 (A-H, 0-2)

CHARACTER*10 FLPV
CHARACTER*40 FLTXT

INTEGER NFLPV

COMMON /FILNAM/ FLPV
COMMON /FILLEN/ NFLPV

AARAARRAXR  SECTION 1 ARAARRARARR

C

C

C

c

FLTXT= 'SYSSSYSDEVICE: (WU.FPLIA.TXT]' // FLPV(1:NFLPV) // '.TXT'
FLTXT= 'SYSSSYSDEVICE: [WU.FPLIA.FOR]' // FLPV(1:NFLPV) // '.THP'

OPEN ( UNIT=7, NAME=FLTXT, STATUS='UNKNOWN',
+ CARRIAGECONTROL='LIST', ERR=9024 )

RETURN

9024 STOP 'OPEN7 ERR=9024 : CANNOT OPEN FPLI*** TMP FILE'



C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE OPEN7
c e =R oRe oo olRe =Re =Re =flec —clee =l = R wle oflec ofec clc =Re =R
END
SUBROUTINE OPENS
C
c AR R R I e R R EEE R TR EEEEE SIS
C THIS SUBROUTINE WILL OPEN CHENNEL 8 WITH EXTENSION .MUL
C AFTER THE OPERATION IS DONE, THE .TMP FILE WILL BE DELETED
c AR EE R R R E R S R R R R ISR ESEEEEREEEESIS RSS2l
C
IMPLICIT REAL*8 (A-H, 0-2)
C
CHARACTER*10 FLPV
CHARACTER*40 FLTXT
c
INTEGER NFLPV
C
COMMON /FILNAM/ FLPV
COMMON /FILLEN/ NFLPV
C
RRRRRARRARR SECTION 1 ARRRKRRRARRR
C
FLTXT= 'SYS§SYSDEVICE: (WU.FPLIA.TXT]' // FLPV(1:NFLPV) // '.MUL'
C
OPEN ( UNIT=8, NAME=FLTXT, STATUS='NEW',
+ CARRIAGECONTROL='LIST', ERR=9024 )
c
RETURN
C

9024 STOP 'OPEN8 : ERR=9024 : CANNOT OPEN FPLI*** MUL FILE'
c

C =%= =Re =Ko —Re oke =R —Re —Re —choe —Re ke —Re =K =k =k —ke -k
C THE FOLLOWING STATEHENT IS THE LAST CARD OF SUBROUTINE OPENS8
END

SUBROUTINE EQAIl

THIS SUBROUTINE WILL FIND THE CORRECT MOMENTUM, Y(2), FOR FIXED TIME
INTERVAL (TIME) AND DISTANCE (Y1FNL) UNDER CONDITION A FOR ION I.

XAI ¢ RETURN VALUE OF X, WHEN RETURN EQUALS TIME OR XEND
; SECOND
X TIME, FOR DVERK USE

¢ THEORETICALLY, IT REALLY COULD BE STARTED FROM
0.0 SECOND WITHOUT LOSING GENERALITY

AFTER THIS ROUTINE IS COMPLETED, X SHOULD HAVE
THE SAME VALUE AS XEND. OR A NEGATIVE IND
VALUE WILL BE ISSUED

-e

s NN Nz N Nz Ee Nz e Nz N Kz Nz K K XKe!
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VALUE SET UP BY MAIN DRIVER FOR XEND
SECOND
SHOULD NOT BE CHANGED BY THIS SUBROUTINE

TIME

we wo oo

TIME INTERVAL, FOR DEVRK USE

SECOND

THE OUTPUT VALUE AFTER CALL DVERK COULD BE SMALLER
THAN THE ORIGINAL SET UP

“e weo oo

Y1FNL DISTANCE BETWEEN LASER SPOT AND PROBE

CENTIMETER

-e oo

Y1AI RETURN VALUE OF Y(1)

CENTIMETER

POSITION OF ION AT TIME XEND

WHEN SUBROUTINE FPEQ1 IS FINISHED, WE SHOULD HAVE

Y1AI = YIFNL WHERE TOLYl = TOLEQ1

e we “o oo

Y(1) POSITION, FOR DVERK USE

CENTIMETER

“«e oo

Y2AI RETURN VALUE OF Y(2)

GRAM * CENTIMETER / SECOND

INITIAL MOMENTUM OF THE ION THAT WILL REACH "Y1FNL"
POSITION AT "TIME" SECONDS

ACTUALLY, Y2AI IS THE VALUE THIS SUBROUTINE WANTS TO

SHOOT.

.o “o oo

~-e

Y(2)

MOMENTUM, FOR DVERK USE

TOLY1 TOLERANCE OF THE POSITION

TOLY1 = ABS(Y1AI-Y1FNL)

«e oo

GUESS THE INITIAL MOMENTUM OF IONS
ACTUALLY, THIS IS A NUMBER THE USER SHOULD GUESS

NOW IS CALCULATED BY SUBROUTINE CNST

.o “we o0

AR R R S R I S R S N R SRR ESERESEsSEEEEs
IMPLICIT REAL*8 (A-H, 0-2)
INTEGER N, IND, NW, IER

REAL*8 TOLDVR, TOLY1l, Y1FNL, GUESS

REAL*8 TIME, XAI, Y1AI, Y2AI, Y3AI
REAL*8 X, Y(2), XEND, TOL, c(24), w(2,9)
REAL*8 Y10LD1, Y10LD2, Y20LD1l, Y20LD2, Y2SAVE
REAL*8 YT1, YT2, YT3, YT4, YDIF

COMMON /AI1C/ TOLDVR, TOLYl1l, Y1FNL, GUESS
COMMON /AIlM/ TIME, XAI, Y1AI, Y2AI
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EXTERNAL FCNAIl

NW
N
IND
TOL

2
2
1
TOLDVR

AakkRARAX  SECTION 1 ARRRARARRR

FIND DATA POINTS FOR FIRST SLOPE

a0 00

X = 0.00
Y(1) = 0.00
Y(2) = 0.00
XEND = TIME
Y20LD1 = Y(2)

IND =1

CALL DVERK(N,FCNAIl, X,Y,XEND,TOL,IND,C, NW,V, IER)
IF (IND.LT.0 .OR. IER.GT.0) GO TO 999

Y10LD1 = Y(1)

X
Y(1)
Y(2) = GUESS
XEND = TIME
Y20LD2 = Y(2)

0.0
o.o

IND =1

CALL DVERK(N,FCNAIl, X, Y,XEND,TOL,IND,C,NW,W, IER)
IF (IND.LT.0 .OR. IER.GT.0) GO TO 999

Y10LD2 = Y(1)

ARk xAk  SECTION 2 ARARARRARR

HERE IS THE ITERATION LOOP WHICH WILL SHOOT THE CORRECT YFCN1(2)
VALUE

THIS ALGORITHM ASSUMES THAT YFCN1(1) IS A FUNCTION OF YFCN1(2)
AND THIS FUNCTION IS RESONABLLY SMOOTH

THIS THE CORE OF THE SHOOTING LOOP

ez e R e e e e e e N N2

200 CONTINUE
X = 0.00
Y(1) = 0.00
YT1 = Y20LD2 - Y20LD1
YT2 = Y10LD2 - Y10LD1
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YT3 = Y10LD2 - Y1FNL
YT4 = YT1 * YT3 / YT2
Y(2) = Y20LD2 - YT4
XEND = TIME

Y2SAVE = Y(2)

IND =1
CALL DVERK(N,FCNAIl,X,Y,XEND, TOL, IND,C,NV, ¥, IER)
IF (IND.LT.O .OR. IER.GT.O0) GO TO 999

YDIF = ABS( Y(1) - Y1FNL )
IF (YDIF .LE. TOLY1l) GO TO 300
Y1OLD1 = Y1O0LD2
Y1OLD2 = Y(1)
Y20LD1 = Y20LD2
Y20LD2 = Y2SAVE
write (6, 198) yloldl, ylold2, guess, y2oldl, y2o0ld2, ydif,
+ ytl, yt2, yt3, yt4d
198 format (' ', 3e20.12)
GO TO 200

noa

kkxaraxat  SECTION 3 AXARARARAR

TRANSFER RESULTS BACK TO THE MAIN DRIVER

a0 00

300 CONTINUE
XAI = X
Y1AI = Y(1)
Y2AI = Y2SAVE
RETURN

axkxhAxAx  SECTION 4 AARRRRARRR

GOD BLESS YOU.....
OTHERWISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN

a0 »r0n

999 CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', I3, ' 1IER= ', I4)
TYPE*, 'YOU STUPID KID, TRY AGAIN!'
TYPE*, ' '
TYPE*, 'OR YOU WANT TO GO HOME NOW.'
STOP ' FPLIEQAII.FOR I HOPE YOU CAN FIGURE WHAT HAPPENS.'

C ~%e =Ko —he <Ko —fhe Ko =R =R ——Ree =R =Ko —he —Ke R —Re R k=
C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE EQAIl
C =Re <Ko —Re R —Re —he —fe —he —choe Ko =R Ko ke =R =Ko ke k-



- 319 -

SUBROUTINE EQAI2

c
C BRI SRR EE SRR IS ETI=EIREE
C
C THIS SUBROUTINE WILL CLACULATE THE LAGRANGIAN OF THE WINNING PROCESS
C UNDER CONDITION A FOR ION I
C
C R R N T E LTSRN ER RS S RIBEI IR SE =
c
IMPLICIT REAL*8 (A-H, 0-2)
C
INTEGER N, IND, NW, IER
C
REAL*8 TOLDVR
REAL*8 TIME, XAI, Y1AI, Y2AI, Y3AI
REAL*8 X, Y(3), XEND, TOL, C(24), W(3,9)
C
COMMON /AI2C/ TOLDVR
COMMON /AI2M/ TIME, XAI, Y1AI, Y2AI, Y3AI
C
EXTERNAL FCNAI2
C
N =3
IND =1
NW =3
TOL = TOLDVR
C
X = XAI
Y(1) = Y1AI
Y(2) = Y2AI
Y(3) = Y3AI
XEND = TIME
C
C
ARRARRARAR  SECTION 1 ARAARRRRAX
C
C
C FIND THE LAGRANGIAN
C
C
CALL DVERK(N,FCNAI2, X,Y,XEND,TOL,IND,C,NW,VW,IER)
IF (IND.LT.O .OR. IER.GT.0) GO TO 999
C
XAI =X
Y3AI = Y(3)
C
RETURN
C
c
RARRARAAALY  SECTION 2 ARRARRRRAR
C
C

C GOD BLESS YOU.....
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C OTHERWISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN

c

C

999 CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', I3, ' IER= ', I4)

TYPE*, 'YOU STUPID KID, TRY AGAIN!'
mg*' [ ]
TYPE*, 'OR YOU WANT TO GO HOME NOW.'
STOP 'FPLIEQAI2.FOR. SO, WHAT HAPPENS?'

C =% =Xe —he ke —Re —He —Ke =Ko —ckoe oke Ao —Ke Ko =Ko ke k- —k-
C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE EQAI2
C ~R= —Re =R R —Re ke R Ko —oRee —Re R —Ke R —Re —he k- -k
END
SUBROUTINE EQAI3
c
c R S N SR S R S S S S S S S S S S S S S e S S S S SRS S SN S SESEERES
C
C THIS SUBROUTINE CALCULATES THE PARTIAL DIFFERENTIATION OF THE FINAL
C Y1AI VS. THE INITIAL MOMENTUM (Y2AI/MASS) BY THE CENTRAL DIFFERENCE
C METHOD FOR ION I UNDER CONDITION A
C
c R R e S R R R S S S S S S S S R S S S R S S e S S S S SRS SRS E S SRS E=Es
c
IMPLICIT REAL*8 (A-H, 0-2)
C
INTEGER N, IND, NW, IER
c
REAL*8 MASS, TOLDVR, ADELTA, TOLSLP
REAL*8 TIME, Y1AI, Y2AI, YRATIO
REAL*8 X, Y(2), XEND, TOL, c(24), W(3,9)
REAL*8 Y2RTIO, YSLPR
REAL*8 Y1H, Y2H, YSLPH
REAL*8 Y1L, Y2L, YSLPL
c
COMMON /AI3C/  MASS, TOLDVR, ADELTA, TOLSLP
COMMON /AI3M/ TIME, Y1AI, Y2AI, YRATIO
c
EXTERNAL FCNAIl
C
NW = 2
N =2
TOL = TOLDVR
c
C
ARARRARAAR  SECTION 1 AARRRAAARR
c
C
Y2RTIO = 1.0E-01
C

120 X = 0.0
Y(1) = 0.0
Y(2) = Y2AI * ( 1.0 + Y2RTIO)



- 321 -

XEND = TIME

IND =1

Y2H = Y(2)

CALL DVERK(N,FCNAIl, X, Y,XEND,TOL,IND,C,NW,W,IER)
IF (IND.LT.O .OR. IER.GT.0) GO TO 999

Y1H = Y(1)
C
YSLPH = (Y1H - Y1AI) / (Y2H - Y2AI)
(o
X = 0.0
Y(1) = 0.0
Y(2) = Y2AI * ( 1.0 - Y2RTIO)
IND =1
Y2L = Y(2)
CALL DVERK (N,FCNAIl,X,Y,XEND,TOL,IND,C,NW,W,IER)
IF (IND.LT.0 .OR. IER.GT.0) GO TO 999
Y1L = Y(1)
(o
YSLPL = (Y1AI - Y1L) / (Y2AI - Y2L)
C
YSLPR = ABS(1.0 - YSLPH/YSLPL)
Y2RTIO = Y2RTIO * 0.10
IFr (YSLPR .LT. TOLSLP) GO TO 140
GO TO 120
C
140 YRATIO = 0.50 * (YSLPH + YSLPL) * MASS
c
RETURN
c
C

ARARARRXAR  SECTION 3 ARRAXRRARR

GOD BLESS YOU.....
OTHERVISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN

[z Xz Nz X Kz Kg!

999 CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', I3, ' IER= ', Id4)
TYPE*, 'YOU STUPID KID, TRY AGAIN!'
TYPE*, ' e
TYPE*, 'OR YOU WANT TO GO HOME NOW.'
STOP 'FPLIEQAI3.FOR. WELL, SOMETHING FOR YOU TO THINK.'

C =R e —fe —fe —fe —he —Re —Re —chee =Ko —R= =Re —Re —Re —R= —R- k-

C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE EQAI3

C %= —Re —Re —Re —he —Re —Re —Re —oRoe =R —Re R —Re —Re K- —Re K-
END

SUBROUTINE EQAI4
c

c AR R R R R R R I I R SRS ESES S EEESEESEEEEREERRRR

C THBIS PROGRAM WILL CALCULATE THE VALUE OF PROPAGATOR

c I R R R R S E S E S S S S S S S SIS SRS S S S EITITT [
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IMPLICIT REAL*8 (A-H, 0-2)
CHARACTER*10 FLPV

INTEGER NFLPV
INTEGER NCOUNT

REAL*8 TIME, YI1AI, Y2AI, Y3AI, RRAI
REAL*8 HEAD, PVDFUl
REAL*8 HEADT, RRAIT, Y3AIT

COMMON /FILNAM/ FLPV

COMMON /FILLEN/ NFLPV

COMMON /AI4C/  HEAD, PVDFUl

COMMON /AI4M/ TIME, Y1AI, Y2AI, Y3AI, RRAI

HEADT = LOG (HEAD)

RRAIT = LOG(1.0 / SQRT(RRAI))

Y3AIT = -1.0 * Y3AI / (2.0 * PVDFUl)
PROP = HEADT + RRAIT + Y3AIT

ADDED ON APR-07-86
PROPR = DEXP (PROP)
CHANGED ON APR-07-86
WRITE (1, 720) TIME, Y1AI, Y2AI, Y3AI, RRAI, PROP
720 FORMAT (2E13.4, 4E20.11)
WRITE (1, 720) TIME, Y1AI, Y2AI, Y3AI, RRAI, PROP, PROPR
720 FORMAT (2E13.4, 5E20.11)
WRITE (7, 730) TIME, PROP
730 FORMAT (' ',2E20.11)
RETURN
R =he =R =R whRe =R =R whe ceBee e R R R R R K- K-
THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE EQAI4
R =R =R wBe wfe =R cfhe wfe cecfee wla cfhe che e wXe wfe —KRa K-
END
SUBROUTINE EQAIS
R R R e R EEE SR E SIS ES SIS ISR ETTRESTR=
THIS PROGRAM WILL CALCULATE THE VALUE OF PROPAGATOR
AR R s R S I T S S eSS S S E S S S S S SR ESEIEIREES

INPLICIT REAL*8 (A-H, 0-2)

REAL*8 TIME, PROP
REAL*8 TIMEM, PROPM, DIF

READ (7, 120) TIME, PROP
120 FORMAT (1X, 2E20.11)
TIMEM = TIME
PROPM = PROP
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150 READ (7, 120, END=220) TIME, PROP
IF (PROP .GT. PROPM) THEN
TIMEM = TIME
PROPM = PROP
ELSE
ENDIF
GOTO 150

220 DIF = PROPM - 2.30

REWIND (UNIT=7)

CALL OPENS8

WRITE (8, 230) TIMEM, PROPM, DIF
230 FORMAT ('TX', 3E20.11)
235 READ (7, 120, END= 320) TIME, PROP
MASKED ON APR-07-86

PROP = PROP - DIF

PROP = EXP(PROP)

WRITE (8, 240) TIME, PROP
240 FORMAT ('RD', 26G15.6)

GOTO 235

320 CLOSE (UNIT=8)

RETURN
R =R wle R =B —he R R caBee =R =Re =R =Re =B =B =R =R
THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE EQAIS
R =R =B =R =R =R =R =B —eRee —he =R =R =R =R =B =R K
END
SUBROUTINE FCNAI1 (N, X, Y, YPRIME)
R R R R R I R R e S SRR E S EE SRR REEIT TR
THIS SUBROUTINE WILL BE CALLED FROM DVERK UNDER CONDITION A FOR ION I
R R R I R I R e S S SRS S S E S S SIS S S EEEEITRETTIRER
IMPLICIT REAL*8 (A-H, 0-2)
INTEGER N
REAL*8 X, Y(N), YPRIME(N)

REAL*8 MASS, HEQ21, HEQ22
COMMON /AIF1/ MASS, HEQ21, HEQ22
ii = ii + 1
write (6, 998) ii, y(1)
998 format ( ' use equal ', i4, ' times', e20.12)
YPRIME(1) = Y(2) / MASS
YPRIME(2) = HEQ21 * Y(1) + HEQ22

RETURN



C ~Re =Ko —Re —Re —Re —Re ke —Re coRem —Re ok —Re ke —Re ke —k- —R-

C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE FCNAIl

C =R =R —Ke —Re =R Ko =R =Ko ——Ree —Re —Re —Ke —Ro R k- —Ro ko
END

c

SUBROUTINE FCNAI2 (N, X, Y, YPRIME)

C AR R S R I I R EE S EE RSN EEREEREEERSERRREES

C

C THIS SUBROUTINE WILL BE CALLED FROM DVERK UNDER CONDITION A FOR ION I
C AND CALCULATE THE LAGRANGIAN VALUE

C
C m==== === =z
(o
IMPLICIT REAL*8 (A-H, 0-Z)
C
INTEGER N
C
REAL*8 MASS, ADELTA, HEQ21, HEQ22, HEQ31, HEQ32
REAL*8 X, Y(N), YPRIME(N)
REAL*8 HEQ3
C
COMMON /AIF2/  MASS, ADELTA, HEQ21, HEQ22, HEQ31, HEQ32
C
c write (7, 998) y(1), y(2), y(3)
c 998 format (' ', 3e20.11)
YPRIME(1) = Y(2) / MASS
C
YPRIME(2) = HEQ21 * Y(1) + HEQ22
C
C HEQ3 = YPRIME(1) + ADELTA * Y(1) + HEQ31
HEQ3 = YPRIME(1l) - ADELTA * Y(1) - HEQ31l
(o YPRIME(3) = 0.5 * ( HEQ3 * HEQ3 - HEQ32 )
YPRIME(3) = 0.5 * ( HEQ3 * HEQ3 + HEQ32 )
C
RETURN
C - =R ehe =R R —he el el caclee afe =B B =R e =X =B =R
C THE FOLLOWING STATEMENT IS THE LAST CARD OF SUBROUTINE FCNAI2
C -l wle o el ole cle e wfle cacllce =l =fa cfec <R wfe =oRe =R <K=

END



- 325 -

II. COMMAND FILES

II-1 FPLI.COM File

$ FOR FPLI

$ FOR FPLIGTCML

$ FOR FPLIPAR

$ FOR FPLICNST

$ FOR FPLITXT1

$ FOR FPLITXT2

$ FOR FPLIEQAIl

$ FOR FPLIEQAI2

$ FOR FPLIEQAI3

$ FOR FPLIEQAI4

$ FOR FPLIEQAIS

$ FOR FPLIFXAIl

$ FOR FPLIFXAI2

$ FOR FPLIOPEN

$ LINK FPLI, FPLIGTCML, FPLIPAR, -
FPLITXT1, FPLICNST, FPLITXT2, -
FPLIEQAI1, FPLIEQAI2, FPLIEQAI3, -
FPLIEQAI4, FPLIEQAIS, -
FPLIFXAIl, FPLIFXAI2, -
FPLIOPEN, -

IMSL/LIB
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III. INPUT FILES

III-1 FPLI.PC File

/PCA/
AR R R R R R R S R S s TSR EREREEEEEE
C
Elementary Charge PCEC = +0.16021917E-18
C
Atomic Mass Unit PCAMU = +0.16605310E-23
(o
Vacuum Permittivity PCVP = +0.88544000E-13
(o
Rest Mass of Electron PCEMS = +0.91095345E-27
o
+0.00000000E+00
AR R R I S N I EEE R EEEEEEEEEERESEERESIRNERBRR
/PCB/
BEESERETSSSI=SSIJEXR=| = t 3+ + + P+t + + + ¢+ £+ 3+ £+ £ ¢ t 23ttt 1
C
Tolerance of DVERK TOLDVR = +0.10000000E-08
C
Tolerance of EQXX1 TOLEQl1 = +0.10000000E-05
(o
Tolerance of EQXX3 TOLEQ3 = +0.10000000E-05
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III-2 LIATRYA1.PV File

/PVA/

c

Volume Ionization Rate r(c) PVRC = +0.20000000E+14
‘ Burning Velocity v(B) PVBV = +0.50000000E+03
¢ Voltage Applied V(a) PVVA = +0.10000000E+03
¢ Bkgrnd Ion Mobi Coef (Na) PVMOBF = +0.30200000E+02
¢ +0.00000000E+00
/PNB/ N
: _— - -
Starting Point ( >= 1) PNSTRT = +1
¢ Number of Points PNPNT = +30
C +0
s
E ............................................... e
Time Interval PVTI = +0.10000000E-05
¢ Distance Between Probes X(w) PVXW = +0.60000000E+00
C_ Laser Cathode Distance X(c) PVXC = +0.20000000E+00
¢ +0.00000000E+00
¢ +0.00000000E+00
/PV1/ T o
TS SToSeoooosoosoionoiosoisooooooo
Mass of Ion 1, (Na) PVION1 = +0.22989770E+02
€ Diffusion Coefficient (Na) PVDFUl = +0.56500000E+01
¢ Mobility Coefficient (Na) PVMOB1 = +0.30200000E+02
¢ +0.00000000E+00
/PV2/ ) T
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Mass of Ion 2, (*) PVION2 = +0.00000000E+00

‘ Diffusion Coefficient (*) PVDFU2 = +0.00000000E+00

¢ Mobility Coefficient (*) PVMOB2 = +0.00000000E+00

¢ | +0.00000000E+00

s T

: e _— ——————————————
Ditf. Coef. of Electrons PVDFUE = +0.10000000E+04

z Mobi. Coef. of Electrons PVMOBE = +0.50000000E+04

+0.00000000E+00
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IV. OUTPUT FILE

IV-1 FPLI.TXT File

FILENAME :  LOWFIELD LOWFIELD LOWFIELD

SPECIAL COMMENTS ON THIS DATA SET:

PCEC = 0.160219E-18 PCAMU = 0.166053E-23 PCVP = 0.885440E-13
PCEMS = 0.910953E-27 PCAJKS= 0.000000E+00

TOLDVR= 0.100000E-08 TOLEQl= 0.100000E-05 TOLEQ3= 0.100000E-05

PYRC = 0.800000E+14 PVBV = 500.000 PYVA = 200.000

PVMOBF=  24.3300 PVAJKS= 0.000000E+00

PVTI = 0.100000E-05 PVXW = 0.450000 PVXC = 0.300000

DSXSs = 0.404953 DSXA = 0.150000

PVION1=  22.9898 PVDFUl=  4.12000 PVMOB1=  24.3300

PVION2= 0.000000E+00 PVDFU2= 0.000000E+00 PVMOB2= 0.000000E+00

PCEMS = 0.910953E-27 PVDFUE= 1000.00 PVMOBE=  5000.00
START 15, RANGE 1, END 15

0.150000E-04, 0.100000E-05, 0.100000E-05

EQUATIONS USED IN FCNXXX ROUTINE

EQAIl: YPRIME(1) = Y(2) / MASS

EQAI2: YPRIME(2) = HEQ21 * Y(1) + HEQ22

EQAI3: HEQ3 = YPRIME(1) + DELTAI * Y(1) + HEQ3l
YPRIME(3) = 0.5 * ( HEQ3 * HEQ3 - HEQ32 )

0.129784E-13
489014.

MASS = 0.381752E-22 HEQ21 = 0.134453E-12 HEQ22
DELTAI= 59346.3 HEQ31 = 5728.55 HEQ32

EQAEl: YPRIME(1) = Y(2) / MASS

EQAE2: YPRIME(2) = HEQ21 * Y(1) - HEQ22
YPRIME(2) = 0.00

EQAE3: HEQ3A = YPRIME(1) + DELTAE * Y(1) + HEQ31
YPRIME(3) = 0.5 * ( HEQ3A * HEQ3A - HEQ32 )
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EQAEB: HEQ3B = YPRIME(1) + HEQ33
YPRIME(3) = 0.5 * ( HEQ3B * HEQ3B )

DSXSAE= 0.104953 HEQ21 = 0.135500E-12 HEQ22 = 0.142266E-13
MASS = 0.910953E-27 HEQ31l = 0.128051E+07 HEQ32 = 0.243922E+11
DELTAE= 0.121961E+08 HEQ33 = 500.000
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APPENDIX B

CURVE FITTING PROGRAM WITH MINPACK-1

FORTRAN LISTING

PROGRAM LMDIFD ! DOUBLE PRECISION VERSION

YEN-YUAN JAMES WU JUNE 22, 1986

DEPARTMENT OF CHEMISTRY

MICHIGAN STATE UNIVERSITY

EAST LANSING, MICHIGAN 48824

FILENAME: ZMDIF3.FOR

FUNCTION: 9 PARAMETERS, 9 CONSTANTS, 300 DATA POINTS

CHANGING: YX(M) = YX(M) * 1.0E-06

1. PURPOSE.
THE PURPOSE OF LMDIFD IS TO MINIMIZE THE SUM OF THE SQUARES OF M
NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS THEN
CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

2. PROGRAM PARPMETERS.
MAXIMUM NUMBER OF PARAMETERS THIS PROGRAM CAN HANDLE: 9
MAXIMUM NUMBER OF DATA POINTS THIS PROGRAM CAN TAKE: 300
INPUT DATA FILE FORMAT: (2X,2G15.6), OR MULPLT COMPATIBLE
OUTPUT DATA FILE 1: *.FIT FILE, CONTAINS ALL FITTING PARAMETERS
OUTPUT DATA FILE 2: *.MUL FILE, A MULPLT COMPATIBLE FILE
OUTPUT DATA FILE 3: *.2?? NOT USED
ALL THE REAL NUMBERS HERE ARE OF DOUBLE PRECISION

3. DESCRIPTION OF THE MAIN SUBROUTINE.
THE MAIN SUBROUTINE CALLED FROM MINPACK IS LMDIF.FTN(MD12.FTN).
IT SHOULD BE CALLED ACCORDING TO THE FOLLOWING STATEMENTS.
SUBROUTINE LMDIF(FCN,M,N,X, FVEC,FTOL,XTOL, GTOL,MAXFEV,EPSFCN,
* DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC, LDFJAC,
* IPVT,QTF,WAl,WA2,WA3,WAY4)
INTEGER M,N,MAXFEV,MODE, NPRINT, INFO,NFEV, LDFJAC

- 331 -
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INTEGER IPVT(N)

DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR

DOUBLE PRECISION X(N), FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),

* WA1(N) ,WA2(N) ,WA3(N),WA4 (M)

EXTERNAL FCN
PARAMETERS DESIGNATED AS INPUT PARAMETERS MUST BE SPECIFIED ON
ENTRY TO LMDIF AND ARE NOT CHANGED ON EXIT, WHILE PARAMETERS
DESIGNATED AS OUTPUT PARAMETERS NEED NOT BE SPECIFIED ON ENTRY
AND ARE SET TO APPROPRIATE VALUES ON EXIT FROM LMDIF.

USER SUPPLIED FCN
FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES
THE FUNCTIONS. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT
IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

END
THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS THE
USER WANTS TO TERMINATE EXECUTION OF LMDIF. 1IN THIS CASE SET
IFLAG TO A NEGATIVE INTEGER.

OTHER SUBPROGRAMS REQUIRED FROM MINAPCK.
DPMPAR.FTN(MINPACK.004) , ENORM.FTN(MDO3.FTN),
FDJAC2.FTN(MDOS5.FTN) , LMPAR.FTN(MD14.FTN), QRFAC.FTN(MD18.FTN),
QRSOLV.FTN(MD19.FTN)

THE IMAGE FILE CAN BE BUILT BY USING THE FOLLOWING COMMAND LINES
. 'P1' = DRIVER.FTN, WHICH IS THE MAIN DRIVER SUPPLIED BY THE
.; USER. FCN SUBROUTINE SHOULD BE INCLUDED IN DRIVER.FTN
.ENABLE SUBSTITUTION
.IF P1 = "" _ASKS P1 DRIVER NAME
FOR 'P1'='P1'/-TR
FOR MD12=MD12/-TR
FOR MINPACK04=MINPACK.004/-TR
.7 FOR PDP/11, USE THE FOLLOWING COMMAND
FOR MD03=MDO3A/-TR
.; FOR VAX/11, USE THE FOLLOWING COMMAND
.; FOR MD03=MD03/-TR
FOR MD05=MD05/-TR
FOR MD14=MD14/-TR
FOR MD18=MD18/-TR
FOR MD19=MD19/-TR
.OPEN TTKB.CMD
.DATA 'P1'='P1’',MD12,MINPACKO4,MD03,MD05,MD14,MD18,MD19
.DATA /
.DATA CLSTR=F77CLS,FCSRES:RO
.DATA //



- 333 -

.CLOSE TTKB.CMD

PIP 'P1'.TSK;*/DE

TKB @TTKB

PIP TTKB.CMD;*/DE, 'P1'.0BJ;*

.EXIT

aon anoan

IMPLICIT DOUBLE PRECISION (A-H,0-2)

IMPLICIT INTEGER (I-N)

INTEGER J,M,N,MAXFEV,MODE,NPRINT, INFO,NFEV, LDFJAC,NWRITE

INTEGER IPVT(9)

INTEGER TI, KB, IN, IOIN, OUT1, OUT2, OUT3

INTEGER LINLEN

DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR, FNORM

DOUBLE PRECISION X(9),FVEC(300),DIAG(9),FJAC(300,9),QTF(9)

DOUBLE PRECISION WA1(9),WA2(9),WA3(9),WA4(300)

DOUBLE PRECISION ENORM,DPMPAR

DOUBLE PRECISION YX(300), YY(300), CSTFCN(9)

EXTERNAL FCN

BYTE BINFL(80), BOTFL1(80), BOTFL2(80), BOTFL3(80)

BYTE LINTXT(80)

COMMON /DATA1l/ YX, YY, CSTECN
C SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION AND
C GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED, THESE ARE
C THE RECOMMENDED SETTINGS.

FTOL = DSQRT(DPMPAR(1))

XTOL = DSQRT(DPMPAR(1))

GTOL = 0.0D+00

C DATA FTOL,XTOL,GTOL
(o * /0.526835606386175D-08, 0.526835606386175D-08, 0.0D+00/
DATA FACTOR,MAXFEV,MODE, NPRINT,EPSCN, M
* /1.0D+02, 800, 1, 0, 0.0D+00, 0/
DATA KB,TI,IN,OUT1,0UT2,0UT3 /5, 6, 4, 1, 2, 3/
C - - —— - - - - o - - — - - = - - ——— -
C ASK FOR DATA FILE NAME
C _____________________________________________________________________

WRITE (TI, 120)
120 FORMAT ('SDATA FILE NAME: ')

READ (KB, 140) IOIN, (BINFL(I),I=1,80)
140 FORMAT (Q80A1l)

BINFL(IOIN+1) = 0

C
OPEN (UNIT=IN, NAME=BINFL, STATUS='OLD',
+ CARRIAGECONTROL="LIST', ERR=9000,
+ READONLY)

C READ IN THE DATA

150 M=M+1

160 READ (IN, 170, END=180, ERR=9010) LINLEN, LINTXT

170 FORMAT(Q80Al)
IF (LINTXT(1).NE.'R' .OR. LINTXT(2).NE.'D') GOTO 160
DECODE (LINLEN,177,LINTXT,ERR=9010) YX(M), YY(M)

177 FORMAT (2X, 2G15.6)
YX(M) = YX(M) * 1.0B-06
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GOTO 150
180 CLOSE (IN)
M=NM-1
WRITE (TI, 190) M
190 FORMAT (/, ' #*xx THERE ARE', I4, ' DATA POINTS **x', /)
LDFJAC = M
c - - - - - - - - — - -~ - = = " = = - - - - - - - - - -
C OPEN THE .FIT OUTPUT FILE
C ____________ - e R P ——
DO 310, I=1, IOIN-3
BOTFL1 (I)=BINFL(I)
310 CONTINUE
BOTFL1 (IOIN-2) 'F'
BOTFL1(IOIN-1) ‘T’
BOTFL1(IOIN) = 'T'
BOTFL1 (IOIN+1) 0
OPEN (UNIT=OUT1, NAME=BOTFL1, STATUS='UNKNOWN',
+ CARRIAGECONTROL='LIST', ERR=9030,
+ ACCESS='APPEND’)
WRITE (OUT1, 330) 1, (BINFL(I), I=1,IOIN), 2
330 FORMAT (A1, °'DATA FILE: ', 80Al1, Al)
WRITE (OUT1, 335)
335 FORMAT (/,' THIS FITTING IS DONE BY ZMDIF3.FOR!')
WRITE (OUT1, 350) M
THIS DATA FILE HAS', I4, ' POINTS.')

C == - - - - - - > - - - - - - - - - - - - - - - - - - - - - - -

C TAKE INITIAL ESTIMATES X(N)

WRITE (TI, 510)

510 FORMAT ('SNUMBER OF PARAMETERS (MAXIMUM 9): ')
READ (KB, 520) N

520 FORMAT(I1)

TYPE*, ' '
DO 550, I= 1, N
WRITE (TI, 530) I
530 FORMAT ('S X(', 11, "): ")
READ (KB, 540) X(I)
540 FORMAT (G20.0)
550 CONTINUE
WRITE (OUT1, 570) N
570 FORMAT (' THIS FITTING HAS', I2, ' PARAMETERS.', /)
WRITE (OUT1, 580) (X(I), I=1,N)
580 FORMAT (' INITIAL APPROXIMATION OF PARAMETERS:', //

* 3X, 'X(1) - X(3) = ', 3Dp15.7, /
* 3X, 'X(4) - X(6) = ', 3Dp15.7, /
* X, 'X(7) - X(9) = ', 3015.7, /)
WRITE (TI, 585) (X(I), I=1,N)
585 FORMAT (//, '  INITIAL APPROXIMATION OF PARAMETERS:', /
* 3x, 'x(1) - X(3) = ', 3D15.7, /

»

3X, 'X(4) - x(6) = ', 3D15.7, /
* 3X, 'xX(7) - X(9) = ', 3D15.7)



c - -
C TAKE CONSTANTS CSTFCN(NCNST)
[T L e D L DT ettt L D L ettt
mz*' [ ]
WRITE (TI, 610)
610 FORMAT ('SNUMBER OF CONSTANTS (MAXIMUM 9): ')
READ (KB, 620) NCNST
620 FORMAT(I2)
C
TYPE*, ' '
DO 650, I= 1, NCNST
WRITE (TI, 630) I
630 FORMAT ('S CSTFCN(', I1, '): ')
READ (KB, 640) CSTFCN(I)
640 FORMAT (G15.0)
650 CONTINUE
WRITE (OUT1, 670) NCNST
670  FORMAT (/,' THIS FITTING HAS', I2, ' CONSTANTS.', /)
WRITE (OUT1, 680) (CSTFCN(I), I=1,NCNST)
680  FORMAT (' VALUES OF CONSTANTS:', //
* 3Xx, 'C(1) - ¢(3) = ', 3p15.7, /
* 3X, 'C(4) - c(6) = ', 3D15.7, /
* X, 'C(7) - C(9) = ', 3D15.7, /)
WRITE (TI, 685) (CSTFCN(I), I=1,NCNST)
685 FORMAT (//, ' VALUES OF CONSTANTS:', /
* 3X, 'C(1) - c(3) = ', 3D15.7, /
* 3X, 'C(4) - c(6) = ', 3D15.7, /
* 3X, 'C(7) - ¢c(9) = ', 3D15.7, /)
c _____________________________________________________________________
C CALLING LMDIF (MD12)
C =——m—cmca- - - e e e e e e e e = = = = -
IFLAG = 1
CALL FCN(M,N,X,FVEC,IFLAG)
FNORM = ENORM(M,FVEC)
WRITE (OUT1, 710) FNORM
710 FORMAT (/, ' THE INITIAL L2 NORM OF THE RESIDUALS ',D15.7 /)
WRITE (TI, 720) FNORM
720  FORMAT (' THE INITIAL L2 NORM OF THE RESIDUALS ',D15.7)
mg*' [ ]
TYPE*, ' I AM WORKING VERY HARD NOW. BE PATIENT, PLEASE!'
CALL LMDIF(FCN,M,N,X, FVEC,FTOL,XTOL,GTOL,MAXFEV, EPSFCN,
* DIAG, MODE,FACTOR,NPRINT, INFO,NFEV, FJAC, LDFJAC,
* IPVT,QTF,WAl,WA2,WA3,WA4)
c
FNORM = ENORM(M,FVEC)
c ————————————————————————————————————————————————
C WRITE OUT THE RESULTS
C - - - - - - - - - - - - -~ - - - - - - - - - - -
WRITE (OUT1, 920)
920 FORMAT (/,' RESULTS FROM LMDIF CURVE FITTING ')
WRITE (OUT1, 930) FNORM, NFEV,INFO, (X(J),J=1,N)
930 FORMAT (/, 2X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

®

2X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
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2X,15H EXIT PARAMETER,16X,I10 //
2X,27H FINAL APPROXIMATE SOLUTION //
3X, 'Xx(1) - x(3) = ‘', 3D15.7, /
33X, 'X(4) - x(6) = ', 3D15.7, /
3x, 'X(7) - X(9) = ', 3D15.7, /)

WRITE (TI, 940) FNORM,NFEV,INFO, (X(J),J=1,N)

940 FORMAT (/, 2X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 /
2X,31H NUMBER OF FUNCTION EVALUATIONS,I10 /
2X,15H EXIT PARAMETER,16X,I10 //
2X,27H FINAL APPROXIMATE SOLUTION /
3X, 'X(1) - X(3) = ', 3D15.7, /
3X, 'Xx(4) - x(6) = ', 3p15.7, /
3X, 'X(7) - X(9) = ', 3D15.7, /)

WRITE (OUT1, 950) (BOTFL1(I), I=1,IOIN)

WRITE (TI, 950) (BOTFL1(I), I=1,IOIN)

950 FPORMAT (/, '  RESULTS IN: ', 80Al)

C - - - - - - - - - - = - — - - - - -~ - - - - - - - - - - -

C OPEN THE MULPLOT FILE

C ......................................

DO 1110, I=1, IOIN-3
BOTFL2 (I)=BINFL(I)
1110 CONTINUE
BOTFL2(IOIN-2) = 'M’
BOTFL2 (IOIN-1) '’
BOTFL2(IOIN) = 'L'
BOTFL2 (IOIN+1) 0
OPEN (UNIT=0UT2, NAME=BOTFL2, STATUS='NEW',
+ CARRIAGECONTROL="LIST', ERR=9030)
WRITE (OUT1, 1130) (BOTFL2(I), I=1,IOIN)
WRITE (TI , 1130) (BOTFL2(I), I=1,IOIN)
1130 FORMAT ('  PLOT IN: ', 80A1)
WRITE (OUT1, 1140) 12
1140 FORMAT (A1)

c - - - - - ——— — - - — - -~ - - - - - - - - - - = - - - - - - - - - — -

C MAKE THE MULPLOT FILE

C FORMAT ('RD', 4G15.6) X, Y, FIT_VALUE, Y-FIT_VALUE

C - - - - —— - -

IFLAG = 1
CALL FCN(M,N,X,FVEC, IFLAG)
DO 1303, I=1,M
FJAC(I,1) = FVEC(I)
1303 CONTINUE
IFLAG = 97
CALL FCN(M,N, X, FVEC, IFLAG)
VRITE (OUT2, 1305) (BINFL(I), I=1,IOIN)
1305 FORMAT ('TX THE DATA FILE IS: ', 30Al)
WRITE (OUT2, 1306)
1306 FORMAT ('TX THIS FITTING IS DONE BY ZMDIF3.FOR!')
WRITE (OUT2, 1307) M
1307 FORMAT ('TX NUMBER OF DATA POINTS: ', I3)
DO 1330, I =1, M
VRITE (OUT2, 1310) YX(I), YY(I), FVEC(I), FJAC(I,1)
1310 FORMAT ('RD', 4G15.6)

* % % % »

* % % % % »
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1330 CONTINUE
CLOSE (OUT1)
CLOSE (0UT2)
c e ————————————— e e e e e
C ERROR MESSAGES
C =~ e
GOTO 9999
9000 TYPE*, ' '
TYPE*, '  *** LMDIFD: CAN NOT FIND THE DATA FILE *xx'
GOTO 9999
9010 TYPE%, ' '
TYPE*, '  *** LMDIFD: DATA FILE FORMAT WRONG **x'
GOTO 9999
9030 TYPE*, ' '
TYPE*, '  *** LMDIFD: CANNOT OPEN FILE ***'
9999  WRITE (TI,9998) 7, 7, 1
9998  FORMAT (/, ' *%%x EXCELLENT JOB, DEAR! **x', 3A1)
STOP
C LAST CARD OF DRIVER FOR WLF.FTN
C

END

SUBROUTINE FCN(M,N,X, FVEC, IFLAG)
C ---------- - - —— - - - = - - - - - - - - - - - - - - - . - - - - - - -
C ZMDIF2, UNNORMALIZED FPE EQN, SIMPLEST VERSION
C ----------------------------------- - - - —— -~ - -~ - - -

IMPLICIT DOUBLE PRECISION (A-H,0-2)
IMPLICIT INTEGER (I-N)
INTEGER M, N,IFLAG
INTEGER I
DOUBLE PRECISION X(N),FVEC(M)
DOUBLE PRECISION YX(300), YY(300), CSTFCN(9)
DOUBLE PRECISION CC1l1, CC12, CCl, CC21, CC22, CC2, CC
DOUBLE PRECISION BB2, BB3
COMMON /DATAl/ YX, YY, CSTFCN
DATA PI /3.141592653589793238462643/
IF (IFLAG .EQ. 97) GO TO 97
IF (IFLAG .NE. 0) GO TO 5
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN
C __________________________________________
C CALCULATE ERROR SURFACE
c - = o e = = = = = - — — - — - - - -
5 CONTINUE

X(1) = ABS(X(1))

X(2) = ABS(X(2))

X(3) = ABS(X(3))

X(4) = ABS(X(4))

X(5) = ABS(X(5))

DO10I =1, M
CCll = CSTFCN(1) + X(2) * YX(I)
CC12 = 4.0 * SQRT(PI*X(3)*YX(I)) * YX(I)
CC1 = CC11 / cc12
CC21 = CSTFCN(1) - X(2)*YX(I)
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CC22 = 4.0 * X(3) * YX(I)
CC2 = DEXP(-CC21%*CC21/CC22)
CC3 = X(4) * DEXP(-YX(I)/X(5))
CC = -X(1) * CC1 * CC2 - CC3 + X(6)
FVEC(I) = YY(I) - CC

10 CONTINUE
GO TO 100
C - - - = = e e e
C CALCULATE FITTINB VALUE
C - - = o o
97 CONTINUE
X(1) = ABS(X(1))
X(2) = ABS(X(2))
X(3) = ABS(X(3))
X(4) = ABS(X(4))
X(5) = ABS(X(5))
DO I=1,6 M
CCl1l = CSTFCN(1) + X(2) * YX(I)
CC12 = 4.0 * SQRT(PI*X(3)=*YX(I)) * YX(I)
CC1 = CC11 / cC12
CC21 = CSTFCN(1) - X(2)*YX(I)
CC22 = 4.0 * X(3) * YX(I)
CC2 = DEXP(-CC21*CC21/CC22)
CC3 = X(4) * DEXP(-YX(I)/X(5))
CC = -X(1) * CC1 * CC2 - CC3 + X(6)
FVEC(I) = CC
90 CONTINUE
100 CONTINUE
RETURN
C LAST CARD OF SUBROUTINE FCN FOR LMDIFD.FTN
C e S S S R S S S S S T e s s s s e SRS ESEs=EEs
END
SUBROUTINE FCN(M,N,PAR,FVEC, IFLAG)
c S R R S S S R S R R R R R I R R S S eSS RS ssEEnEEEEEs
C 1. SUBROUTINE FCN FOR ZMDIF3.FOR.
C 2. THIS PROGRAM IS MODIFIED FROM [WU.FPE.FD23PACK]FXFPT.FOR;2
C 3. THIS SUBROUTINE WILL CALCULATE THE EM-FP-T FUNCTION VALUE
C 4. CALLED BY ZMDIF3.FOR (LMDIF).
c R S R S S I S e e R S S s S S e e S s S s EEEE s EEEEEEEEsEEEE

IMPLICIT REAL*8 (A-H,0-2)
IMPLICIT INTEGER (I-N)
INTEGER TI, KB, IN, IOIN, OUT1, OUT2, OUT3
C THE LMDIF PART
: INTEGER M,N,IFLAG
REAL*8 PAR(N) ,FVEC (M)
C THE DVERK PART
INTEGER NEQ, IND, NW, IER
REAL*8 X, Y(2), XEND, TOL, C(24), W(2,9)
REAL*8 TOLDVR
C FOR THIS ROUTINE
INTEGER MFLAG, NPAR
REAL*8 CORE, SQT, BLP, BUP, PROP
C COMMON BLOCK
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DOUBLE PRECISION YX(300), YY(300), CSTFCN(9)
REAL*8 IRTIO1, IAPHA2, IDIFU3, ERTIO4, ETAOS, BASE6, ITAO7
REAL*8 QF, TIME, HEAD
COMMON /DATAl/ YX, YY, CSTFCN
COMMON /DATA2/ IRTIO1, IAPHA2, IDIFU3, ITAO7, QF, TIME, HEAD
EXTERNAL EQZM3
IF (MFLAG .EQ. 89) GOTO 11
CONSTANTS FOR DVERK
DATA KB,TI,IN,OUT1,0UT2,0UT3 /5, 6, 4, 1, 2, 3/

NW =2

NEQ = 2

TOL = 0.10E-07

PI = 3.141592653589793238462643
Y(2) = 0.00

MFLAG = 89

QF = CSTFCN(1)

11 IF (IFLAG .EQ. 97) GO TO 217
IF (IFLAG .NE. 0) GO TO 105
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

RETURN
105 CONTINUE
IRTIO1l = ABS(PAR(1))
IAPHA2 = ABS(PAR(2))
IDIFU3 = ABS(PAR(3))
ERTIO4 = ABS(PAR(4))
ETAOS = ABS(PAR(5))
BASE6 = -ABS(PAR(6))
= ABS(PAR(7))

ITAO?

WRITE (TI,109) (PAR(NPAR), NPAR=1,N)
WRITE (OUT1,109) (PAR(NPAR), NPAR=1,N)
109  FORMAT (' ', 7G15.6)

CORE = QF + 175.0*IDIFU3/IAPHA2
SQT = SQRT(CORE*CORE - QF*QF)
BUP = (CORE+SQT) / IAPHA2
BLP = (CORE-SQT) / IAPHA2
HEAD = 1.0/ (4.0 * DSQRT(PI))
DO 198 I =1, M
TIME = YX(I)
IF ((TIME.LE.BLP) .OR. (TIME.GE.BUP)) GOTO 170
IF (TIME.LE.BLP) GOTO 170
XEND = TIME - BLP
X = 0.00
Y(1) = 0.00
IND = 1
CALL DVERK(NEQ,EQZM3,X,Y,XEND,TOL,IND,C, NW, W, IER)
IF (IND.LT.O .OR. IER.GT.0) GO TO 999
PROP = -Y(1) - ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
GOTO 180
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170 PROP = -ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
180 FVEC(I) = YY(I) - PROP
198 CONTINUE

RETURN
c - - - — - ———— - ——— - — - - —— — - - > - - -
C CALCULATE ERROR SURFACE
C ----- - = > = = > = - - —— - - - - -
217 CONTINUE
IRTIO1 = ABS(PAR(1))
IAPHA2 = ABS(PAR(2))
IDIFU3 = ABS(PAR(3))
ERTIO4 = ABS(PAR(4))
ETAO5 = ABS(PAR(5))
BASE6 = -ABS(PAR(6))
ITAO7 = ABS(PAR(7))
C
CORE = QF + 175.0*IDIFU3/IAPHA2
SQT = SQRT(CORE*CORE - QF*QF)
BUP = (CORE+SQT) / IAPHA2
BLP = (CORE-SQT) / IAPHA2
HEAD = 1.0 / (4.0 * DSQRT(PI))
DO 298, I =1, M
TIME = YX(I)
IF ((TIME.GE.BUP) .OR. (TIME.LE.BLP)) GOTO 270
XEND = TIME - BLP
X = 0.00
Y(1) = 0.00
IND = 1
CALL DVERK(NEQ,EQZM3,X,Y,XEND, TOL, IND,C,NW,VW,IER)
IF (IND.LT.O0 .OR. IER.GT.0) GO TO 999
PROP = -Y(1) - ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
GOTO 280
270 PROP = -ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
280 FVEC(I) = PROP
298 CONTINUE
RETURN
C
C GOD BLESS YOU.....

C OTHERWISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN
999 CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', 13, ' IER= ', I4)
mst' [}
STOP ' EQZM3.FOR, I HOPE YOU CAN FIGURE OUT WHAT HAPPENED.'

LAST CARD OF ZMDIF3.FCN (SUBROUTINE FCN FOR ZMDIF3.FOR).
R I S S S S R R N SRS SRS S S EEEEEEESERE=EE=sEsS=
END
SUBROUTINE EQZM3 (N, X, Y, YPRIME)
A R R I S S S R R S R S e I S I R S S E SIS S S S S S S s T EES = E=REEs
1. THIS SUBROUTINE IS MODIFIED FROM EQFPT.FOR
2. THIS SUBROUTINE WILL BE CALLED FROM DVERK
3. FP-EM-T CASE

a0

a0
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R R R R R S I R N I I S S S S e e s e s s s
IMPLICIT REAL*8 (A-H, 0-2)
INTEGER N
REAL*8 X, Y(N), YPRIME(N)
REAL*8 DIFF, PART1, P21, P22, PART2, P31, PART3

REAL*8 IRTIO1, IAPHA2, IDIFU3, ITAO7, QF, TIME, HEAD
COMMON /DATA2/ IRTIO1l, IAPHA2, IDIFU3, ITAO7, QF, TIME, HEAD

DIFF = TIME - X
PART1 = (QF+IAPHA2*DIFF) / (DSQRT(IDIFU3*DIFF)*DIFF)
P21 = QF - IAPHA2*DIFF
P22 = 4.0 * IDIFU3 * DIFF
PART2 = DEXP(-P21*P21/P22)
P31 = X / ITAO7
PART3 = DEXP(-P31)
YPRIME(1) = IRTIO1 * HEAD * PART1 * PART2 * PART3
YPRIME(2) = 0.0

RETURN

LAST CARD OF ZMDIF3.EQN (SUBROUTINE EQZM3 FOR ZMDIF3.FOR).
R R R R R R R R S R R R R R S S S S SRS S IR NRRRREIE IR
END
SUBROUTINE FCN(M,N,PAR,FVEC, IFLAG)
1. SUBROUTINE FCN FOR ZMDIF4.FOR
2. THIS PROGRAM IS MODIFIED FROM [WU.FPE.FD23PACK]FXFPT.FOR;2
3. THIS SUBROUTINE WILL CALCULATE THE EM-FP-T FUNCTION VALUE
4. CALLED BY ZMDIF4.FOR (LMDIF).
S S S I T R S S S S S S S eSS EE ST EEEEZEZEEEEEES
IMPLICIT REAL*8 (A-H,0-Z)
IMPLICIT INTEGER (I-N)
INTEGER TI, KB, IN, IOIN, OUT1, OUT2, OUT3
THE LMDIF PART
INTEGER M,N,IFLAG
REAL*8 PAR(N),FVEC(M)
THE DVERK PART
INTEGER NEQ, IND, NW, IER
REAL*8 X, Y(2), XEND, TOL, C(24), W(2,9)
REAL*8 TOLDVR
FOR THIS ROUTINE
INTEGER MFLAG, NPAR
REAL*8 CORE, SQT, BLP, BUP, PROP
COMMON BLOCK
DOUBLE PRECISION YX(300), YY(300), YS(300), CSTFCN(9)
REAL*8 IRTIO1, IAPHA2, IDIFU3, ERTIO4, ETAOS, BASE6, ITAO7
REAL*8 QF, TIME, HEAD
COMMON /DATA1l/ YX, YY, YS, CSTFCN
COMMON /DATA2/ IRTIO1, IAPHA2, IDIFU3, ITAO7, QF, TIME, HEAD
EXTERNAL EQZM3

IF (MFLAG .EQ. 89) GOTO 11
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C CONSTANTS FOR DVERK
DATA KB,TI,IN,OUT1,0UT2,0UT3 /5, 6, 4, 1, 2, 3/
NW =2
NEQ = 2
TOL = 0.10E-07
PI = 3.141592653589793238462643
Y(2) = 0.00
MFLAG = 89
QF = CSTFCN(1)

11 IF (IFLAG .EQ. 97) GO TO 217
IF (IFLAG .NE. 0) GO TO 105
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN

105 CONTINUE
IRTIOL
IAPHA2
IDIFU3
ERTIO4
ETAOS
BASE6
ITAO7

ABS(PAR(1))
ABS (PAR(2))
ABS (PAR(3))
ABS (PAR(4))
ABS (PAR(5))
~ABS (PAR(6))
ABS (PAR(7))

WRITE (TI,109) (PAR(NPAR), NPAR=1,N)
WRITE (OUT1,109) (PAR(NPAR), NPAR=1,N)
109 FORMAT (' ', 7615.6)

OO0

CORE = QF + 175.0*IDIFU3/IAPHA2
SQT = SQRT(CORE*CORE - QF*QF)
BUP = (CORE+SQT) / IAPHA2
BLP = (CORE-SQT) / IAPHA2
HEAD = 1.0 / (4.0 * DSQRT(PI))
DO 198 I =1, M
TIME = YX(I)
C IF ((TIME.LE.BLP) .OR. (TIME.GE.BUP)) GOTO 170
IF (TIME.LE.BLP) GOTO 170
XEND = TIME - BLP
X = 0.00
Y(1) = 0.00
IND = 1
CALL DVERK(NEQ,EQZM3,X,Y,XEND,TOL,IND,C,NW,W,IER)
IF (IND.LT.0 .OR. IER.GT.0) GO TO 999
PROP = -Y(1) - ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
GOTO 180
170 PROP = -ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
180 FVEC(I) = (YY(I) - PROP) / YS(I)
198 CONTINUE

RETURN
C ---------------------------
C CALCULATE ERROR SURFACE
C =cccccccmcccmcccccccccccccccccmcmcccceceeccc e cem———————————— e ————

217 CONTINUE
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ABS(PAR(1))
ABS (PAR(2))
ABS (PAR(3))
ABS (PAR(4))
ABS(PAR(5))
~ABS (PAR(6))
ABS (PAR(7))

IRTIOL
IAPHA2
IDIFU3
ERTIO4
ETAOS
BASE6
ITAO7

CORE = QF + 175.0*IDIFU3/IAPHA2
SQT = SQRT(CORE*CORE - QF*QF)
BUP = (CORE+SQT) / IAPHA2
BLP = (CORE-SQT) / IAPHA2
HEAD =1.0 / (4.0 * DSQRT(PI))
DO 298, I =1, M
TIME = YX(I)
IF ((TIME.GE.BUP) .OR. (TIME.LE.BLP)) GOTO 270
XEND = TIME - BLP
X = 0.00
Y(1) = 0.00
IND = 1
CALL DVERK(NEQ,EQZM3,X,Y,XEND, TOL, IND,C,NW,V,IER)
IF (IND.LT.0 .OR. IER.GT.0) GO TO 999
PROP = -Y(1) - ERTIO4 * DEXP(-TIME/ETAOS5) + BASE6
GOTO 280
270 PROP = -ERTIO4 * DEXP(-TIME/ETAOS) + BASE6
280 FVEC(I) = PROP
298 CONTINUE
RETURN
C
C GOD BLESS YOU.....
C OTHERWISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN
999 CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', I3, ' 1IER= ', I4)
' TYPE*, ' '
STOP ' EQZM3.FOR, I HOPE YOU CAN FIGURE OUT WHAT HAPPENED.'

C LAST CARD OF ZMDIF4.FCN (SUBROUTINE FCN FOR ZMDIF4.FOR).

c R R R R R S R R R S S S S S e s R s e s EmEsEssEEs

SUBROUTINE EQZM3 (N, X, Y, YPRIME)
R R S R S S S S S SRR S S RSl EESs= ===
1. THIS SUBROUTINE IS MODIFIED FROM EQFPT.FOR
2. THIS SUBROUTINE WILL BE CALLED FROM DVERK
3. FP-EM-T CASE
AR ERRN SRS S ESREEESREER = === ===== ===
INPLICIT REAL*8 (A-H, 0-2)
INTEGER N
REAL*8 X, Y(N), YPRIME(N)
REAL*8 DIFF, PART1, P21, P22, PART2, P31, PART3

nnanaan

REAL*8 IRTIO1, IAPHA2, IDIFU3, ITAO7, QF, TIME, HEAD
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COMMON /DATA2/ IRTIO1, IAPHA2, IDIFU3, ITAO7, QF, TIME, HEAD

DIFF = TIME - X
PART1 = (QF+IAPHA2*DIFF) / (DSQRT(IDIFU3*DIFF)*DIFF)
P21 = QF - IAPHA2*DIFF
P22 = 4.0 * IDIFU3 * DIFF
PART2 = DEXP(-P21*P21/P22)
P31 = X / ITAO7
PART3 = DEXP(-P31)
YPRIME(1) = IRTIO1 * HEAD * PART1 * PART2 * PART3
YPRIME(2) = 0.0
c
RETURN
C
C LAST CARD OF ZMDIF4.EQN (SUBROUTINE EQZM3 FOR ZMDIF4.FOR).

C EESEEEETERDRARSRNIERIRNIREE=III == =2===

END
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II. OUTPUT FILES

DATA FILE: [WU.LASER.DATB3]GAAOlA.SSD
THIS FITTING IS DONE BY ZMDIF2.FOR!

THIS DATA FILE HAS 52 POINTS.
THIS FITTING HAS 6 PARAMETERS.

INITIAL APPROXIMATION OF PARAMETERS:

X(1) - X(3) = 0.1902570D-04 0.1751380D+04 0.8911500D+02
X(4) - X(6) = 0.2177590D+00 0.1891410D-03 -0.3133050D+01

THIS FITTING HAS 1 CONSTANTS.
VALUES OF CONSTANTS:
C(1) - c(3) = 0.2000000D+00

THE INITIAL L2 NORM OF THE RESIDUALS 0.9528573D+00

RESULTS FROM LMDIF CURVE FITTING
FINAL L2 NORM OF THE RESIDUALS 0.3015916D-01
NUMBER OF FUNCTION EVALUATIONS 79
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
X(1) - X(3) = 0.6052223D-05 0.2584936D+04 0.7187254D+02
X(4) - X(6) = 0.6111747D-01 0.1187015D-03 -0.3152037D+01

RESULTS IN: (WU.LASER.DATB3]GAAOlA.FIT
PLOT IN: (WU.LASER.DATB3]GAAO1A.MUL
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DATA FILE: [WU.LASER.DATB3]GAAO1A.SSD
THIS FITTING IS DONE BY ZMDIF3.FOR!

THIS DATA FILE HAS 52 POINTS.
THIS FITTING HAS 7 PARAMETERS.

INITIAL APPROXIMATION OF PARAMETERS:

X(1) - X(3) = 0.1306570D+03 0.2585650D+04 0.7200700D+02
X(4) - X(6) = 0.6113190D-01 0.1185060D-03 -0.3152050D+01
X(7) - X(9) = 0.4633640D-07

THIS FITTING HAS 1 CONSTANTS.
VALUES OF CONSTANTS:
C(1) - c(3) = 0.2000000D0+00

THE INITIAL L2 NORM OF THE RESIDUALS 0.3018972D-01

RESULTS FROM LMDIF CURVE FITTING
FINAL L2 NORM OF THE RESIDUALS 0.3017522D-01
NUMBER OF FUNCTION EVALUATIONS 805
EXIT PARAMETER 5
FINAL APPROXIMATE SOLUTION
X(1) - X(3) = 0.2501513D+03 0.2584719D+04 0.7196516D+02
X(4) - X(6) = 0.6106031D-01 0.1181542D-03 -0.3152121D+01
X(7) - X(9) = 0.2421763D-07

RESULTS IN: [WU.LASER.DATB3]GAAO1lA.FIT
PLOT IN: (WU.LASER.DATB3]GAAO1A . MUL



APPENDIX C

SIMULATION PROGRAM

FORTRAN LISTING

s Ne Rz Nz Nz Kz Nz Kz Ks]

QOO0 O0O0O0n0n0An

PROGRAM CN5A3
S I R R R S S R e S N R EE S S SRS
THIS PROGRAM SIMULATES THE CONCENTRATION VERSUS TIME CURVE.
(1) DIFFUSION IS SIMULATED BY CRANK-NICHOLSON METHOD ALONG WITH
THE LAGRANGE'S DIFFERENTIATED 5-POINT POLYNOMIAL TO ADDRESS
THE SECOND DERIVATIVE
(2) THE DRIFT FUNCTION IS SIMULATED BY 5-POINT CENTERED DIFFERENCE
APPROXIMATION.
(3) THE SIGNAL IS CALCULATED BY AN IMPOSED BOUNDARY CONDITION.
R E I R S T T R e s S s R RS EEnNEER R
IMPLICIT REAL*8 (A-H,0-2)
INTEGER TI
INTEGER NTSTEP
INTEGER NDO, NBLANK, NORIGN, NDIMEN, NSTART, NEND
INTEGER QPN, QPNC, QPIA, QPIB, QPM, QPIDGT, QPIER
REAL*8 PI
REAL*8 CEQU(205)
REAL*8 QPAA(205,3), QPBB(205), QPWK(205,5), QPXX(205)
REAL*8 QPD1, QPD2
REAL*8 DIFFUS, DMODEL, ALPHA, AMODEL
REAL*8 CWIDTH, TRANGE, TWIDTH, TLASER
REAL*8 CNAAD, CNAAl, CNAA2, CNBBD, CNBB1, CNBB2
REAL*8 CEQUH, QPXXH, QPXXL
R R R S R R I I R R R R R R S S s s s s s T s ===
INTEGERS OF DIMENSIONS OF ARRAYS AND MATRICES
NDO : The number of space points. This number is preferred to be
an odd number.
NBLANK : Number of buffer points on each end of the distribution
matrix. NBLANK = 2 for the 5-point Crank-Nicholson Method.
NORIGN : The space point index of the pulse ion-source space point.
For the 5-point Crank-Nicholson Method, NORIGN is preferred
to be an integer ends with a 3 if NDO is a multiple of 10.
NDIMEN : The dimension of all working arrays. (NDIMEN=NDO+2*NBLANK)
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NSTART
NEND
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The starting point index of DO LOOPs. (NSTART=NBLANK+1)
The end point index of DO LOOPs. (NEND=NDO+BLANK)

ARRYS AND MATRICES

CEQU
QPAA

QPBB
QPWK

QPDD
QPXX

.o

(OUTPUT) The working array of the distribution matrix which
is calculated by the analytical solution of Fokker-Planck
Equation. (NDIMEN)

(INPUT of LEQ2PB) The coefficient matrix of the diffusion
function. This matrix is stored in Band Symmetric Storage
Mode. (NDIMEN,3) .

(INPUT/OUTPUT of LEQ2PB) The Input and output array of the
distribution matrix. (NDIMEN)

(OUTPUT of LEQ2PB) Vector or matrix having QPN* (QPNC+3)
locations used as work storage. On return, the first

QPN* (QPNC+1) locations of QPWK will contain the matrix QPL
stored in Band Storage Mode where QPAA = QPL * transp-QPL
Note that the diagonal elements of QPL are stored in
reciprocal form. (NDIMEN,S5)

(INPUT/OUTPUT) Working array of the coefficients of the
drift function. (NDIMEN)

Temporary working array of the distribution matrix for drift
function calculations. (NDIMEN)

PARAMETERS FOR CALLING IMSL LEQ2PB

QPN

QPNC
QPIA
QPIB

QPM

QPIDGT

QPD1
QPD2
QPIER

e o0 oo

(INPUT of LEQ2PB) Order of QPAA and the number of rows in

QPBB. (QPN=NDIMEN)

(INPUT of LEQ2PB) Number of upper or lower co-diagonals in

QPAA. QPNC = 2 for the 5-point Crank-Nicholson Method.

(INPUT of LEQ2PB) Row dimension of the coefficient matrix.

(QPIA=NDIMEN)

(INPUT of LEQ2PB) Row dimension of the distribution matrix.

(QPIB=NDIMEN)

(INPUT of LEQ2PB) Number of right hand side columns in the

distribution matrix. QPM = 1 for the 5-point Crank-

Nicholson Method.

(OUTPUT of LEQ2PB) The number of digits in the answer which

vere unchanged after the first iterative improvement.

(OUTPUT of LEQ2PB) Components of the determinant of QPAA.

(OUTPUT of LEQ2PB) Det (QPAA) = QPD1 * 2.0 ** QPD2.

(OUTPUT of LEQ2PB) Error Parameter.

QPIER = 0 indicates a successful run.

QPIER = 129 indicates that the matrix QPAA is
algorithmically not positive definite.

QPIER = 130 indicates that iterative improvement failed to
converge. The matrix QPAA is too ill-conditioned.

SYSTEM DEFINING PARAMETERS

DIFFUS
DMODEL

Diffusion coefficient of the ion. (cm*cm/sec)
Model diffusion coefficient of the ion. (dimensionless)
DMODEL=DIFFUS*TWIDTH/ (CWIDTH) **2
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anan

ALPHA

AMODEL

TLASER
TRANGE
NTSTEP
TWIDTH

CWIDTH
CEQUH

QPXXH
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Drift constant of the ion which is composed of the flow rate
of the carrier gas, the electrical field applied through
biased voltage on the probes, and the attraction/repulsion
forces among electrons and ions. (cm/sec)

Model drift constant of the ion. (dimensionless)
AMODEL=(AMODL1-AMODL2) / (AMODL1+AMODL2) where
AMODL1=ALPHA/CWIDTH and AMODL2=1.0/TWIDTH

The laser pulse lifetime (sec)

The propagating time interval of the simulation. (sec)
Number of steps for time propagation.

The width of each propagating time step. (sec)
TWIDTH=(TRANGE-TLASER) /FLOAT (NTSTEP)

The width of the one-dimensional space cell. (cm)

The sum of the space distribution (probability function)
over the whole space that is calculated by the theoretical
method. This number should equal to 1.00 exactly.

The sum of the space distribution (probability function)
over the whole space that is calculated by the theoretical
method at TIME=TLASER. This number may not equal to 1.00
exactly due to the limitation from the finite difference
method. Further adjustment is usually required.

The sum of the space distribution (probability function)
over the whole space at TIME=TLASER after adjustment. This
number should equal to 1.00 exactly.

CNBBD
CNBB1

CNBB2

The value of the diagonal array of the coefficient matrix
QPAA.

The value of the first off-diagonal array of the coefficient
matrix QPAA.

The value of the second off-diagonal array of the
coefficient matrix QPAA.

The value of the diagonal array of the distribution matrix
QPBB.

The value of the first off-diagonal array of the
distribution matrix QPBB.

The value of the second off-diagonal array of the
distribution matrix QPBB.

HERE COMES THE REAL PROGRAMMING

THE OFFICIAL PI VALUE FROM ABRAMOWITZ AND STEGUN

PI = 3.1415926535
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DEFINE THE DIH!NSION OF ALL VORKING ARRAYS WITH BUFFER POINTS

NDO = 501
NBLANK = 2

NORIGN = (NDO-1)/2 + (NBLANK+1)
NORIGN = 300 + (NBLANK+1)
NDIMEN = NDO + 2 * NBLANK

NSTART NBLANK +1
NEND NDO + NBLANK
NQRIIA = 50

DIFFUS: DIFFUSION CONSTANT (cm*cm/Sec)
----- -—=- ---- User define term -----
DIFFUS = 5.00

CMOBIL: MOBILITY COEFFICIENT (cn*cn/Sec/Volt)

-- User define term -----
CMOBIL = 25.0

TLASER = 0.1000E-06

CWIDTH: THE WIDTH OF THE SPACE CELL (cm)
=== == == -- ---- User define term -----
CWIDTH = 0.1000E-02

TRANGE: ENDING TIME OF SIMULATION (chro-Sec)
------------ -- User define term -----

NTSTEP: NUMBER OF PROPAGATING STEPS
--------------------------------- User define term -----
NTSTEP = 90
NJUMP =1
RICNST: CONSTANT FOR CALCULATING REPULSION FORCB AMONG IONS
RIO1 : 1.439 860 521 025 E-07 (VOLT/CM)
RI0O2 : TOTAL NUMBER OF IONS
RIO2A : ION DENSITY (IONS/CC)
RI0O2B : VOLUME OF LASER FOCAL POINT (CC)
RI0O2C : TO COMPENSATE THE SLIDE WIDTH (= CWIDTH)
RI0O3 : TO COMPENSATE TBE SLIDE DISTANCE

RIO1 = 1. 4398605210253-07
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RIO2A = 1.00E+11
RI02B = 2.00E-06
RI02C = CWIDTH
RI0O2 = RIO2A * RIO2B * RIO2C
RI0O3 = CWIDTH * CWIDTH
RICNST = CMOBIL * RIO1 * RIO2 / RIO3

C - - — - - - - > = - - - - - - = = - - - - - - — - - — - - - - — — - - - - - - - - -
C NUMBER ADJUSTMENT FOR USER'S CONVENIENCE
c ----------------------------------------------------------------------
TRANGE = TRANGE / 1.0E+06
TWIDTH = (TRANGE) / FLOAT(NTSTEP)
DRIFTH = CWIDTH / TWIDTH
DMODEL = DIFFUS * TWIDTH / (CWIDTH)**2
c - - - e m e e e e e e e e ————————— e e —————

C CLEAN UP THE BOUNDARY CELLS (THIS PART IS FOR SOME SHAKY COMPILERS
C AND BLURRY BRAINS)

C -------------------------------------------------------
DO 1020, I = 1, NBLANK
CEQU(I) = 0.0
QPBB(I) = 0.0
QPXX(I) = 0.0
QRII(I) = 0.0
QRXX(I) = 0.0
1020 CONTINUE
C

DO 1022, I = NDIMEN-NBLANK+1, NDIMEN

CEQU(I) = 0.0
QPBB(I) = 0.0
QPXX(I) = 0.0
QRII(I) = 0.0
QRXX(I) = 0.0

1022 CONTINUE

HERE IS THE THEORETICAL CALCULATION

USE THE ANALYTICAL SOLUTION FROM FOKKER-PLANCK EQUATION TO CALCULATE
THE THEORETICAL DISTRIBUTION MATRIX

* FOKKER-PLANCK EQUATION = FPE-CF-X
TIME = TRANGE
CEQUl1 = 1.0 / ( 2.0 * DSQRT( PI * DIFFUS * TIME ))
CEQU2 = 4.0 * DIFFUS * TIME
CEQU3 = ALPHA * TIME
CEQUH = 0.0
DO 1200, I = NSTART, NEND
QSIM = CWIDTH * FLOAT(I-NORIGN) - CEQU3
CEQU(I) = CEQUl1 * DEXP(-QSIM*QSIM / CEQU2)

2NN NNz Nz e Ne Xz s Ke e Ne]
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CEQUH = CEQUH + CEQU(I)
1200 CONTINUE
CEQUH = CEQUH * CWIDTH
R R R R R I S S I R S S S s s S S S S S S s s T ST S S S EE SRR

HERE IS THE SIMULATION

CALCULATE THE STARTING DISTRIBUTION MATRIX BY USING GAUSSIAN
DISTRIBUTION FUNCTION AT TIME=TLASER, ie. THE SIMULATION IS
ALWAYS STARTED AFTER TLASER SECONDS

s Kz Nz X2 Kz Kz Nz K K Kz K Xz

TIME
QPXX1

TLASER
1.0 / ( 2.0 * DSQRT( PI * DIFFUS * TIME ))

QPXX2 = 4.0 * DIFFUS * TIME

QPXXH = 0.0

DO 2200, I = NSTART, NEND

QSIM = CWIDTH * FLOAT(I-NORIGN)

QPXX(I) = QPXX1 * DEXP(-QSIM*QSIM / QPXX2)

QPXXH = QPXXH + QPXX(I)

2200 CONTINUE

QPXXB = QPXXH * CWIDTH
C ........... I — - -
C FOR FINITE DIFFERENCE METHOD CASE, THE SUM OF THE CONTENTS IN EACH
C SPACE CELL OF THE DISTRIBUTION MATRIX CAN BE OFF-NORMALIZATION.
C HERE WE FIX AND REPORT THIS PROBLEH.

QPXXL = 0.0
DO 2400, I = NSTART, NEND
QPXX(I) = QPXX(I) / QPXXH
QPXXL = QPXXL + QPXX(I)
2400 CONTINUE
QPXXL = QPXXL * CWIDTH

WRITE (TI, 2420) QPXXH, QPXXL
2420 FORMAT ( ' QPXXH = °', G15 6, 6X, 'QPXXL = ', G15.6)
SET UP THE NECESSARY CONSTANTS FOR 5-POINT CRANK-NICHOLSON HBTHOD
WITH THE COEFFICIENTS FROM THE LAGRANGIAN POLYNOMIAL
* THE FOLLOWING SETUP COMES FROM 50% BXPLICIT AND 50% IHPLICIT
DERIVATION.

a0 n

CNAAD = 24.0 + 30.0*DMODEL
CNAAl = -16.0 * DMODEL
CNAA2 = DMODEL

CNBBD = 24.0 - 30.0*DMODEL
CNBB1 = 16.0 * DMODEL
CNBB2 = -DMODEL
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C SET UP THE COEFFICIENT MATRIX (QPAA) FOR LEQ2PB
C -
DO 2600, I = 1,NDIMEN

QPAA(I,1) = CNAA2
QPAA(I,2) = CNAAl
QPAA(I,3) = CNAAD
2600 CONTINUE
QPAA(1,1) = 0.0
QPAA(2,1) = 0.0
QPAA(1,2) = 0.0
C -—-- ettt tlle bttty
C SET UP THE PARAMETERS FOR CALLING LEQ2PB FROM IMSL
C ----------------------------------------------------------------------
QPN = NDIMEN
QPNC = 2
QPIA = QPN
QPIB = QPN
QPM =1
c ---------------- - — - - - - - - - - - = - - - - - = - - - - -

c ---------- I p—
QPBB (NSTART) = 0.0
QPBB(NEND) = 0.0

TOTALI = 0.0
TOTALE = 0.0
TOTALS = 0.0
IJUMP =0
C
DO 6000, J= 1, NTSTEP
c
SIGNLE = 0.0
SIGNLI = 0.0
C ----------------------------------------------------------------------

DO 3200, IDIFU = NSTART, NEND

QPBB (IDIFU) = CNBB2 * (QPXX(IDIFU-2)+QPXX(IDIFU+2)) +
+ CNBB1 * (QPXX(IDIFU-1)+QPXX(IDIFU+l1)) +

+ CNBBD * QPXX(IDIFU)
3200 CONTINUE

C -- HERE IS THE LEQ2PB e R

CALL LEQ2PB (QPAA, QPN, QPNC, QPIA, QPBB

’ QPIB 2

+ QPM, QPIDGT, QPD1, QPD2, QPWK, QPIER)

WRITE (TI, 3220) QPIDGT, QPIER
3220 FORMAT (2X, 'QPIDGT = ', I4, 6X, 'QPIER

DO 3240, IDIFU = NSTART, NEND

="', I4)

IF (QPBB(IDIFU) .LT. 0.0) QPBB(IDIFU)=0.0

3240 CONTINUE
QPXXH = 0.0
DO 3242, IDIFU = NSTART, NEND
IF (QPBB(IDIFU) .EQ. 0.0) THEN

QPBB(IDIFU) = (QPBB(IDIFU-2)+QPBB(IDIFU-1) +
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C QPBB (IDIFU+1)+QPBB (IDIFU+2)) /4.0
ELSE
END IF
QPXXH = QPXXH + QPBB(IDIFU)
3242 CONTINUE

QPXXAJ = 1.0 - TOTALS * CWIDTH
QPXXH = QPXXH * CWIDTH / QPXXAJ
QPXXL = 0.0
DO 3244, IDIFU = NSTART, NEND
QPBB (IDIFU) = QPBB(IDIFU) / QPXXH
QPXXL = QPXXL + QPBB(IDIFU)
3244 CONTINUE
QPXXL = (QPXXL+TOTALS) * CWIDTH

C
SIGNLE = SIGNLE + QPBB(NSTART)
QPBB(NSTART) = 0.0
SIGNLI = SIGNLI + QPBB (NEND)
QPBB(NEND) = 0.0
P e mmm e e ——— e ————————————————
C NOW TREAT THB DRIFT FUNCTION
c - e m—em e ————————————
C * FIRST CALCULATE THE REPULSION FORCE AMONG IONS
C ............ - - - - - - - ———— - ——— - - -
DO 4200, IQRII = NSTART, NEND
C
RIPUSH = 0.0
RIDRAW = 0.0
C
IF (IQRII .EQ. NSTART) GOTO 4140
c

DO 4120, IPUSH = NSTART, IQRII-1
IRIDST = IQRII - IPUSH
IRIDST = IRIDST * IRIDST
RIPUSH = RIPUSH + DABS(QPBB(IPUSH))/FLOAT(IRIDST)
4120 CONTINUE

IF (IQRII .EQ. NEND) GOTO 4180

4140 DO 4160, IDRAW = IQRII+1, NEND

IRIDST = IDRAW - IQRII

IRIDST = IRIDST * IRIDST

RIDRAW = RIDRAW + DABS (QPBB (IDRAW))/FLOAT(IRIDST)
4160 CONTINUE

c
4180 QRII(IQRII) = (RIPUSH-RIDRAW) * RICNST
C
4200 CONTINUE
C - - - - > 2 > = = = = - - - - - - - - -

C * FIND THE HOST +/- DRIFT FACTOR DUE TO ION REPULSION

c - - e e —meme—c e ———————————————
RILOV = 0.0
RIHIGH = 0.0
REPULS = 0.0




4400
C
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DO 4400, IQRII= NSTART, NEND
IF (QRII(IQRII) .LT. RILOW) THEN
RILOW = QRII(IQRII)
ELSE IF (QRII(IQRII) .GT. RIHIGH) THEN
RIHIGH = QRII(IQRII)
ELSE
END IF
REPULS = REPULS + DABS(QRII(IQRII))
CONTINUE

C * DETERMINE THE TYPE OF TIME PROPAGATION

5100

5120

5140

ZILOW RILOW
ZIRIGH = RIHIGH
RILOW RILOW + ALPHA
RIHIGH = RIHIGH + ALPHA
IF (RILOW .GE. 0.0) THEN
IF (RIHIGH .LE. DRIFTH) THEN
GOTO 5100
ELSE
GOTO 5200
END IF
ELSE

IBKSTP = INT(DABS(RILOW)/DRIFTH) + 1
RFORWD = FLOAT (IBKSTP) *DRIFTH
IDRSTP = INT((RIHIGH+RFORWD)/DRIFTH) + 1
RQRTIO = FLOAT (IBKSTP)/FLOAT(IDRSTP)
IF (IDRSTP .LE. NQRIIA) THEN
GOTO 5400
ELSE
GOTO 5500
END IF
END IF

IDRFLG = 1
DO 5120, IQRII = NSTART, NEND
QRII(IQRII) = QRII(IQRII) + ALPHA
CONTINUE
QPXXSS = 0.0
DO 5140, IQRII = NSTART, NEND
DRCNTX = QRII(IQRII) + DRIFTH
DRCNTA = (QRII(IQRII-1) - DRIFTH) * QPXX(IQRII-1)
DRCNTB = (QRII(IQRII) - DRIFTH) * QPBB(IQRII)
DRCNTC = (QRII(IQRII-1) + DRIFTH) * QPBB(IQRII-1)
QPXX(IQRII) = (DRCNTA - DRCNTB + DRCNTC) / DRCNTX
QPXXSS = QPXXSS + QPXX(IQRII)
CONTINUE
QPXXAJ = 1.0 - (TOTALS+SIGNLI+SIGNLE) * CWIDTH
IF (QPXXAJ .LE. 1.0E-08) GOTO 6200
QPXXSS = QPXXSS * CWIDTH / QPXXAJ
DO 5160, IQRII = NSTART, NEND
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QPBB (IQRII) = QPXX(IQRII) / QPXXSS
5160 CONTINUE

SIGNLE = SIGNLE + QPBB (NSTART)

QPBB (NSTART) = 0.0

SIGNLI = SIGNLI + QPBB (NEND)

QPBB (NEND) = 0.0

GOTO 5800
C ----------------------------------
C * RILOW > 0.0 AND RIHIGH > DRIFTH
C - - - - - - = — > = = = = — - - - ———

5200 IDRFLG = 2

IDRSTP = INT(RIHIGH/DRIFTH) + 1

DO 5220, IQRII = NSTART, NEND

QRII(IQRII) = (QRII(IQRII)+ALPHA) / FLOAT(IDRSTP)

5220 CONTINUE
DO 5280, IDRIFT = 1, IDRSTP
QPXXSs = 0.0
DO 5240, IQRII = NSTART, NEND

DRCNTX = QRII(IQRII) + DRIFTH

DRCNTA = (QRII(IQRII-1) - DRIFTH) * QPXX(IQRII-1)

DRCNTB = (QRII(IQRII) - DRIFTH) * QPBB(IQRII)

DRCNTC = (QRII(IQRII-1) + DRIFTH) * QPBB(IQRII-1)

QPXX(IQRII) = (DRCNTA - DRCNTB + DRCNTC) / DRCNTX

QPXXSS = QPXXSS + QPXX(IQRII)

5240 CONTINUE
QPXXAJ = 1.0 - (TOTALS+SIGNLI+SIGNLE) * CWIDTH
IF (QPXXAJ .LE. 1.0E-08) GOTO 6200
QPXXSS = QPXXSS * CWIDTH / QPXXAJ
DO 5260, IQRII = NSTART, NEND

QPBB (IQRII) = QPXX(IQRII) / QPXXSS
5260 CONTINUE

SIGNLE = SIGNLE + QPBB (NSTART)

QPBB (NSTART) = 0.0

SIGNLI = SIGNLI + QPBB (NEND)

QPBB (NEND) = 0.0
5280 CONTINUE

GOTO 5800
C - - o o e e e > = = o = = e
C * RILOW < 0.0 AND IDRSTP <= NQRIIA (=50)
C - = - = = = - - - — - — - ——-———

5400 IDRFLG = 4
RFORWD = FLOAT(IBKSTP)*DRIFTH + ALPHA
KBKSTP = IBKSTP
A1MODL = DRIFTH * RQRTIO
A2MODL = A1MODL / CWIDTH
A3MODL = 1.0 / TWIDTH
AAMODL = (A2MODL-A3MODL) / (A2MODL+A3MODL)

WARNF = 0.0
DO 5410, IQRII = NSTART, NSTART+KBKSTP-1
WARNF = WARNF + QPBB(IQRII)
5410 CONTINUE
WARNA = 1.0E-06 / CWIDTH
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VARNB = WARNF * CWIDTH * 1.0E+06
IF (WARNF. GE. WARNA) GOTO 9524

DO 5420, IQRII = NSTART, NEND-KBKSTP
KQRII = IQRII + KBKSTP
QPBB (IQRII) = QPBB(KQRII)
QRII(IQRII) = (QRII(KQRII)+RFORWD) / FLOAT(IDRSTP)
5420 CONTINUE
DO 5422, IQRII = NEND-KBKSTP+1, NEND
QPBB (IQRII) = 0.0
QRII(IQRII) = DRIFTH
5422 CONTINUE

DO 5480, IDRIFT = 1, IDRSTP
QPXXss = 0.0
DO 5440, IQRII = NSTART, NEND

DRCNTX = QRII(IQRII) + DRIFTH

DRCNTA = (QRII(IQRII-1) - DRIFTH) * QPXX(IQRII-1)
DRCNTB = (QRII(IQRII) - DRIFTH) * QPBB(IQRII)
DRCNTC = (QRII(IQRII-1) + DRIFTH) * QPBB(IQRII-1)

QPXX(IQRII) = (DRCNTA - DRCNTB + DRCNTC) / DRCNTX
QPXXSS = QPXXSS + QPXX(IQRII)
5440 CONTINUE
DO 5442, IQRII = NSTART, NEND
- QRXX(IQRII) = AAMODL * (QRXX(IQRII-1)-QRII(IQRII))
C + QRII(IQRII-1)
5442 CONTINUE
QPXXAJ = 1.0 - (TOTALS+SIGNLI+SIGNLE) * CWIDTH
IF (QPXXAJ .LE. 1.0E-08) GOTO 6200
QPXXSS = QPXXSS * CWIDTH / QPXXAJ
DO 5460, IQRII = NSTART, NEND
QPBB (IQRII) = QPXX(IQRII) / QPXXSS
QRII(IQRII) = QRXX(IQRII)
5460 CONTINUE
SIGNLE = SIGNLE + QPBB(NSTART)
QPBB(NSTART) = 0.0
SIGNLI = SIGNLI + QPBB(NEND)
QPBB(NEND) = 0.0
5480 CONTINUE
GOTO 5800
c ..... ——— - — - - — = = = = = -
C * RILOW < 0.0 AND IDRSTP >= NQRIIA (=50), A REAL HEADACHE
c ..........................
5500 IDRFLG = 5
IBKCLE = INT(IDRSTP/NQRIIA)
RFORWD = FLOAT (IBKSTP)*DRIFTH + ALPHA
A1MODL = DRIFTH * RQRTIO
A2MODL = A1MODL / CWIDTH
A3MODL = 1.0 / TWIDTH
AAMODL = (A2MODL-A3MODL) / (A2MODL+A3MODL)
RBKSTP = FLOAT (NQRIIA)*RQRTIO
KBKSTP = INT(RBKSTP) + 1
A6MODL = (FLOAT(KBKSTP)-RBKSTP) * DRIFTH
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ATMODL = A6MODL / CWIDTH

ASMODL = 1.0 / TWIDTH
ABMODL = (A7MODL-A8MODL) / (A7MODL+A8MODL)
KDRSTP = IDRSTP - NQRIIA * IBKCLE

DO 5505, IQRII = NSTART, NEND
QRII(IQRII) = (QRII(IQRII)+RFORWD) / FLOAT(IDRSTP)
5505 CONTINUE

DO 5590, IIBKCL = 1, IBKCLE

WARNF = 0.0
DO 5510, IQRII = NSTART, NSTART+KBKSTP-1
WARNF = WARNF + QPBB(IQRII)
5510 CONTINUE
WARNA = 1.0E-06 / CWIDTH
WARNB = WARNF * CWIDTH * 1.0E+06
IF (WARNF. GE. WARNA) GOTO 9524

DO 5520, IQRII = NSTART, NEND-KBKSTP
KQRII = IQRII + KBKSTP
QPBB (IQRII) = QPBB(KQRII)
QRII(IQRII) = QRII(KQRII)
5520 CONTINUE
DO 5522, IQRII = NEND-KBKSTP+1, NEND
QPBB (IQRII) = 0.0
QRII(IQRII) = DRIFTH
5522 CONTINUE

DO 5530, IQRII = NSTART, NEND
QPXX(IQRII) = ABMODL * (QPXX(IQRII-1)-QPBB(IQRII))

C + QPBB(IQRII-1)
QRXX(IQRII) = ABMODL * (QRXX(IQRII-1)-QRII(IQRII))
c + QRII(IQRII-1)

5530 CONTINUE
DO 5532, IQRII = NSTART, NEND
QPBB (IQRII) = QPXX(IQRII)
QRII(IQRII) = QRXX(IQRII)

5532 CONTINUE

DO 5580, IDRIFT = 1, NQRIIA
QPXXss = 0.0
DO 5540, IQRII = NSTART, NEND
DRCNTX = OQRII(IQRII) + DRIFTH
DRCNTA = (QRII(IQRII-1) - DRIFTH) * QPXX(IQRII-1)
DRCNTB = (QRII(IQRII) - DRIFTH) * QPBB(IQRII)
DRCNTC = (QRII(IQRII-1) + DRIFTH) * QPBB(IQRII-1)
QPXX(IQRII) = (DRCNTA - DRCNTB + DRCNTC) / DRCNTX
QPXXSS = QPXXSS + QPXX(IQRII)
5540 CONTINUE
DO 5542, IQRII = NSTART, NEND
QRXX (IQRII) = AAMODL * (QRXX(IQRII-1)-QRII(IQRII))
C + QRII(IQRII-1)



- 359 -

5542 CONTINUE
QPXXAJ = 1.0 - (TOTALS+SIGNLI+SIGNLE) * CWIDTH
IF (QPXXAJ .LE. 1.0E-08) GOTO 6200
QPXXSS = QPXXSS * CWIDTH / QPXXAJ
DO 5560, IQRII = NSTART, NEND
QPBB(IQRII) = QPXX(IQRII) / QPXXSS
QRII(IQRII) = QRXX(IQRII)
5560 CONTINUE
SIGNLE = SIGNLE + QPBB(NSTART)
QPBB (NSTART) = 0.0
SIGNLI = SIGNLI + QPBB (NEND)
QPBB(NEND) = 0.0
5580 CONTINUE

5590 CONTINUE

RBKSTP = FLOAT (KDRSTP) *RQRTIO
KBKSTP = INT(RBKSTP) + 1
A6MODL = (FLOAT (KBKSTP)-RBKSTP) * DRIFTH
ATMODL = A6MODL / CWIDTH
ASMODL = 1.0 / TWIDTH
ABMODL = (A7MODL-A8MODL) / (A7MODL+A8MODL)
IDRSTP = KDRSTP

VWARNF = 0.0
DO 5610, IQRII = NSTART, NSTART+KBKSTP-1
WARNF = WARNF + QPBB(IQRII)
5610 CONTINUE
WARNA = 1.0E-06 / CWIDTH
WARNB = WARNF * CWIDTH * 1.0E+06
IF (WARNF. GE. WARNA) GOTO 9524

DO 5620, IQRII = NSTART, NEND-KBKSTP
KQRII = IQRII + KBKSTP
QPBB (IQRII) = QPBB(KQRII)
QRII(IQRII) = QRII(KQRII)
5620 CONTINUE
DO 5622, IQRII = NEND-KBKSTP+1, NEND
QPBB(IQRII) = 0.0
QRII(IQRII) = DRIFTH
5622 CONTINUE
C
DO 5630, IQRII = NSTART, NEND
QRXX(IQRII) = ABMODL * (QRXX(IQRII-1)-QRII(IQRII))

C + QRII(IQRII-1)
QPXX(IQRII) = ABMODL * (QPXX(IQRII-1)-QPBB(IQRII))
c + QPBB (IQRII-1)

5630 CONTINUE
DO 5632, IQRII = NSTART, NEND
QPBB (IQRII) = QPXX(IQRII)
QRII(IQRII) = QRXX(IQRII)

5632 CONTINUE
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DO 5680, IDRIFT = 1, IDRSTP
QPXXSSs = 0.0
DO 5640, IQRII = NSTART, NEND

DRCNTX = QRII(IQRII) + DRIFTH

DRCNTA = (QRII(IQRII-1) - DRIFTH) * QPXX(IQRII-1)
DRCNTB = (QRII(IQRII) - DRIFTH) * QPBB(IQRII)
DRCNTC = (QRII(IQRII-1) + DRIFTH) * QPBB(IQRII-1)

QPXX(IQRII) = (DRCNTA - DRCNTB + DRCNTC) / DRCNTX
QPXXSS = QPXXSS + QPXX(IQRII)
5640 CONTINUE
DO 5642, IQRII = NSTART, NEND
QRXX(IQRII) = AAMODL * (QRXX(IQRII-1)-QRII(IQRII))
c + QRII(IQRII-1)
5642 CONTINUE
QPXXAJ = 1.0 - (TOTALS+SIGNLI+SIGNLE) * CWIDTH
IF (QPXXAJ .LE. 1.0E-08) GOTO 6200
QPXXSS = QPXXSS * CWIDTH / QPXXAJ
DO 5660, IQRII = NSTART, NEND
QPBB(IQRII) = QPXX(IQRII) / QPXXSS
QRII(IQRII) = QRXX(IQRII)
5660 CONTINUE
SIGNLE = SIGNLE + QPBB (NSTART)
QPBB (NSTART) = 0.0
SIGNLI = SIGNLI + QPBB(NEND)
QPBB(NEND) = 0.0
5680 CONTINUE
GOTO 5800

5800 CONTINUE
IF (SIGNLI .LT. 0.0) GOTO 5802
TOTALI = TOTALI + SIGNLI

5802 IF (SIGNLE .LT. 0.0) GOTO 5804
TOTALE = TOTALE + SIGNLE
5804 TOTALS = TOTALI + TOTALE

TIME = FLOAT(J) * TWIDTH * (1.0E+06)

SIGNLI = -SIGNLI * FLOAT(NTSTEP) / (TRANGE*1.0E+06)

SIGNLE = -SIGNLE * FLOAT(NTSTEP) / (TRANGE*1.0E+06)
IFr (IJUMP .EQ. NJUMP) THEN

WRITE (2, 5840) TIME, SIGNLI, SIGNLE

5840 FORMAT ('RD', 3G15.6)
IJUMP = 0
ELSE
IJUMP = IJUMP + 1
END IF
WRITE (9, 5842) TIME, SIGNLI, TOTALS*CWIDTH,
C IDRFLG, ZIHIGH, ZILOW, REPULS
5842 FORMAT (' ', F10.6, 2G15.6, I2, 3G10.2)

IF (TOTALS*CWIDTH .GE. 1.00) GOTO 6200
C mrmmm e e e e e e e e — - —————————————— o o e o e e o e
C THE TIME PROPAGATION CYCLE ENDS HERE




c --- e e END DO 6000
6000  CONTINUE |

C ———————————————————————

C REPORT THE TOTAL SIGNAL FOR REFERENCE

C ——————————————————————————————————————————————————
6200 TOTALI = TOTALI * CWIDTH

TOTALE = TOTALE * CWIDTH
TOTALS = TOTALS * CWIDTH
WRITE (9, 6210) TOTALI, TOTALE, TOTALS
6210 FORMAT (' TOTALI = ', F10.6, ' TOTALE = ', F10.6,
(o ! TOTALS = ', F10.6)

C NOW WRITE OUT THE RESULT HOPEFULLY THEY VILL MAKE SOME SENSE

C - - e o 0 o e e -

ERROR1 = 0.0
ERROR2 = 0.0
DO 8200, I = NBLANK+1, NEND
QSIM = CWIDTH * FLOAT(I-NORIGN)
CEQQ = CEQU(I) - QPXX(I)
ERRA = CEQQ * CEQQ
ERROR1 = ERROR1 + ERRA
IF (I .EQ. NORIGN) GOTO 8100
ERRB = ERRA / (QSIM*QSIM)
ERROR2 = ERROR2 + ERRB
8100 WRITE (1, 8120) QSIM, CEQU(I), QPXX(I), CEQQ
8120 FORMAT ('RD', 4G15.6)
8200 CONTINUE

EROOT = FLOAT( NDIMEN - 2 * NBLANK - 1)
ERROR1 = DSQRT(ERROR1/EROOT)
ERROR2 = DSQRT (ERROR2/ (EROOT-1.0))
WRITE (TI, 8220) ERROR1, ERROR2
8220 FORMAT (2X, 'ERROR1 = ', G15.6, 'ERROR2 = ', G15.6)

GOTO 9900
9524 WRITE (TI, 9526) IDRFLG, WARNB
9526 FORMAT (' IDRFLG = ', I2, ' WARNF = ', G15.6)
STOP 'MORE THAN 1 ppm SIGNAL LOST DUE TO IBKSTP.'
c
9900 STOP 'CONGRATULATION, YOU GET BY. DUMMY'
END



APPENDIX D

APPLICATIONS OF THE FOKKER-PLANCK EQUATION TO HPLC DATA

I. INTRODUCTION

This appendix demonstrates the applications of the
exponentially modified Fokker-Planck flux equation to the

HPLC data.

A chromatographic column is normally assumed to act as
a Gaussian operator. The input is commonly referred to as a
Dirac delta function, which is broadened into a Gaussian
distribution when passing through the column (1). However,
pure Gaussian peaks are not found experimentally. This is
because noncolumn factors such as dead volume, detector
time-constants, and injection profile convolute the Gaussian
distribution (2). Schmauch (3), as well as Johnson and
Stross (4), have shown that detector dead-volume will
exponentially modify a chromatographic peak. The
exponentially modified Gaussian function (EMG) hence is
utilized to describe the chromatographic peaks:
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where A is the peak amplitude, tr is the center of gravity
of the Gaussian component, o is the standard deviation of
the Gaussian, T is the time constant of the exponential

decay, and ¢ is the dummy variable of integration. Equation

(1) can be alternatively written as follows:

Ao 10 (t-tr) z 2
£(t) = —--—¢ exp(-(-)12 - —---E- ) exp(-¢2)de (2]
t(2) 2 T T )
where:
t-t 1
z = ( ---%- ) ( ---— ) (3]
o-o/t (2)%

Equation (1], in fact, is the exponentially modified
form of the Fokker-Planck propagator (cm-l) with a linear
drift function. However, the chromatographic signal is
actually a flux function (sec'l) rather than a propagator.
Hence the following exponentially modified Fokker-Planck
flux function is proposed as a model in the least-square

fitting of the chromatographic signals.

« (qe +alt-¢) )

P(gqeo,t) = | ==——=Scccccccccea-- "
£ I 0 4(«D)1/2(t-¢)3/2

-( qp - alt-¢) )2 ¢
exp [ et T ) x exp (- ---) d& [4]
4D(t-¢) T



- 364 -
where P(qf,t) is the chromatographic signal, Qe is the
column length, a is the moving speed of thevanalyte, D is
the pseudo diffusion coefficient due to retention, tf is the
retention time of the analyte, ¢ is a dummy variable for the
integration, and t is the time constant of the convoluted
exponential decay. Equation [4] is normalized and has units

of sec 1.

II. EXPERIMENTAL

Six HPLC data sets were obtained under various flow
rates ranging from 0.5 ml/min to 1.6 ml/min. The specific
system was made up of a mobile phase that contained 50%
methanol (MeOH) and 50% H.O. The sample was 0.001 molality

2

phenol (aq) with a volume of 20 microliter. An ODS (C1 )

8
column was employed at 25°c.

III. RESULTS AND DISCUSSION

Both equation [1l] and equation [4] were used to least-
square fit the HPLC data. For computer programming,

equation (1] was modified as follows:



1 02 t-t
£(x) = A (----) exp( —-=3- - -=-- £
21 2t T
1 t-tr o
(1 + erf( - —==p (====%- - -——- ) ) + B (5]
(2)% g T

where B is the signal baseline.

The FORTRAN programs of both equation [4] and [5] are

listed in section V.

Through the curve fitting study, it has been found that
generally the exponentially modified Fokker-Planck flux
function gives better fitting results with smaller average
square deviation and thus describe the shape of the

liquid chromatographic signal more closely.

Figure D-1 shows the relationship between the moving
speed of analyte a and flow rate. The linear relationship
indicates that the retention time of the analyte can be
predicted by equation [4] rather accurately. Figure D-2
shows the relationship between the pseudo diffusion constant
and the flow rate. The linear relationship indicates that
the partition coefficient of the analyte in the C18 column
can be calculated and utilized to predict the shape of the

chromatographic signal.
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V. FORTRAN LISTING

SUBROUTINE FCN(M,N,PAR,FVEC, IFLAG)
FIRST CARD OF FXFPT.FOR. (SUBROUTINE FCN FOR DIFPT.FOR).
- + + -+ 4 -1+ 11 -+ ¢4 t+ -+ 2 2+t P -+ + + 3+ P P -+ 3 3+ 3+t + 3+ 3+ 3+ 113
THIS PROGRAM IS MODIFIED FROM FXFPT.FOR
1. Only the difinition of CNST is changed.
3+ + ¥+ + ¢+ 4+ ++ ++ +- ¢+ 3 1+ + 323333 2 32t 1 3 3 P+ + -+ 3+ + ¢+ + + 3+ 3+t 3+t 3+t 33 3+t + 1
THIS SUBROUTINE WILL CALCULATE THE NEW EMG FUNCTION VALUE
CALLED BY DIFPT.FOR (LMDIF).
CASE FP-EM-T
E+ 2 + - + 3+ ++ + + + - F - -+ + + + t 3+ + + 3+ 3+ + 4+ + 3+t + 3+ + 1+ 3+t 13
IMPLICIT REAL*8 (A-H,0-2)
IMPLICIT INTEGER%*4 (I-N)
C THE LMDIF PART
INTEGER*4 M,N,IFLAG
REAL*8 PAR(N) ,FVEC(M)
C THE DVERK PART
INTEGER*4 NEQ, IND, NW, IER
REAL*8 X, Y(2), XEND, TOL, C(24), W(2,9)
REAL*8 TOLDVR
C FOR THIS ROUTINE
INTEGER*4 MFLAG
REAL*8 CORE, SQT, BLP, BUP, PROP
C COMMON BLOCK
REAL*8 RATIOl1, BASLN2, ALPHA3, D4, TAOS
REAL*8 QF, TIME, CNST
REAL*8 TT(300), YY(300)
COMMON /MAIN/ RATIO1, BASLN2, ALPHA3, D4, TAOS,
+ QF, TIME, CNST
COMMON /DATA/ TT, YY
EXTERNAL EQFPT

s XKz Nz Xz R Kz Ke XKs)

IF (MFLAG .EQ. 89) GOTO 11
C CONSTANTS FOR DVERK
NW =2
NEQ = 2
TOL = 0.10E-08
PI = 3.141592653589793238462643
Y(2) = 0.00
MFLAG = 89

11 IF (IFLAG .EQ. 97) GO TO 217
IF (IFLAG .NE. 0) GO TO 105
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN

105 CONTINUE
RATIO1 = ABS(PAR(1))
BASLN2 = ABS(PAR(2))



109

[z Xz Kz Ee X

170
180
198
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ALPHA3 = ABS(PAR(3))
D4 = ABS(PAR(4))
TAO5 = ABS(PAR(S))

WRITE (6,109) PAR(1), PAR(2), PAR(3), PAR(4), PAR(5)
WRITE (1,109) PAR(1), PAR(2), PAR(3), PAR(4), PAR(S)

FORMAT (' ', 5615.6)

CORE = QF + 175.0*D4/ALPHA3
SQT = SQRT(CORE*CORE - QF*QF)
BUP = (CORE+SQT) / ALPHA3
BLP = (CORE-SQT) / ALPHA3

DO 198 I =1, M
TIME = TT(I)

IF ((TIME.LE.BLP) .OR. (TIME.GE.BUP)) GOTO 170

CNST1 = DEXP(-TIME/TAO5)

CNST2 = 2.0 * TAO5 * (1.0-CNST1) * ALPHA3 * DSQRT(PI)

CNST = 1.0 / CNST2

= TIME - BLP
X = 0.00

Y(1) = 0.00

IND = 1

CALL DVERK(NEQ, EQFPT,X,Y,XEND, TOL, IND,C,NW,W, IER)
IF (IND.LT.O .OR. IER.GT.0) GO TO 999

PROP = Y(1) + BASLN2
GOTO 180
PROP = BASLN2
FVEC(I) = YY(I) - PROP
CONTINUE
RETURN

CALCULATE ERROR SURFACE

anan

217

CONTINUE
RATIOL
BASLN2
ALPHA3
D4
TAOS

ABS (PAR(1))
ABS (PAR(2))
ABS(PAR(3))
ABS (PAR(4))
ABS (PAR(5))

CORE = QF + 175.0*D4/ALPHA3
SQT = SQRT(CORE*CORE - QF*QF)
BUP = (CORE+SQT) / ALPHA3
BLP = (CORE-SQT) / ALPHA3

DO 298, I =1, M
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TIME = TT(I)
IF ((TIME.GE.BUP) .OR. (TIME.LE.BLP)) GOTO 270
CNST1 = DEXP(-TIME/TAOS)

o
c
c CNST2 = 2.0 * TAO5 * (1.0-CNST1) * ALPHA3 * DSQRT(PI)
c CNST = 1.0 / CNST2

o

SOLD - = - = - - - - - - = - m e oo oo oo oo oo
XEND = TIME - BLP
X =0.00
Y(1) = 0.00
IND = 1

CALL DVERK(NEQ,EQFPT,X,Y,XEND,TOL, IND,C, NV, W, IER)
IF (IND.LT.O .OR. IER.GT.0) GO TO 999
PROP = Y(1) + BASLN2
GOTO 280
270 PROP = BASLN2
280 FVEC(I) = PROP
298 CONTINUE
RETURN
c
C GOD BLESS YOU.....
C OTHERWISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN
999  CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', I3, ' IER= ', I4)
TYPE*, ' '
STOP ' FPLIEQAI1.FOR, I HOPE YOU CAN FIGURE WHAT HAPPENS.'
C
C LAST CARD OF FXFPT.FOR. (SUBROUTINE FCN FOR DIFPT.FOR).
C 3t 3+ 2 P 2 P+t 3Pt 3 A 33 3 A 3 A A3 2 a3 3
END
SUBROUTINE FCN(M,N,PAR,FVEC, IFLAG)
FIRST CARD OF FXEMG.FOR. (SUBROUTINE FCN FOR DIEMG.FOR).
R S N S S S T S S e s R S S e e R e S S S e R S S e S S EESEESSESEsSs===ss
THIS PROGRAM IS MODIFIED FROM FXFPQ.FOR
S S R S S S S e S S S R S S R S S R S R S s s s S S S s S s SR E s REEEEEEEEEE
THIS SUBROUTINE WILL CALCULATE THE EMG FUNCTION VALUE
CALLED BY DIEMG.FOR (LMDIF).
CASE EMG
R I S R I S S R I R S S S I R e e e RS TSRS SRS EREEEEEEEEEEEEs
CORRESPONDING CHART:
RATIO1 = ABS(PAR(1))
BASLN2 = ABS(PAR(2))
SIGMA3 = ABS(PAR(3))
TAO4 ABS (PAR(4))
TGS ABS (PAR(5))

2Nz K Nz Kz Kz XKz Nz Kz N e N Kz N Xg!

IMPLICIT REAL*8 (A-H,0-2)

IMPLICIT INTEGER*4 (I-N)
C THE LMDIF PART

INTEGER*4 M,N,IFLAG

REAL*8 PAR(N),FVEC(M)
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C FOR THIS ROUTINE
REAL*8 RATIO1, BASLN2, SIGMA3, TAO4, TGS

REAL*8 PI, TIME, DERF
REAL*8 PROP

C COMMON BLOCK
REAL*8 TT(300), YY(300)
COMMON /DATA/ TT, YY

C ---------------------------------------------------------------------
PI = 3.141592653589793238462643
RATIO1 = ABS(PAR(1))
BASLN2 = ABS(PAR(2))
SIGMA3 = ABS(PAR(3))
TAO4 = ABS(PAR(4))
TGS = ABS(PAR(5))
C
Al = SIGMA3 / TAO4
A2 = 0.5 * A1l * Al
PART1 = 0.5 / TAO4
c
11 IF (IFLAG .EQ. 97) GO TO 217
IF (IFLAG .NE. 0) GO TO 105
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN
C
105 CONTINUE
C

WRITE (6,109) PAR(1), PAR(2), PAR(3), PAR(4), PAR(5)
WRITE (1,109) PAR(1), PAR(2), PAR(3), PAR(4), PAR(S)
109  FORMAT (' ', 5G15.6)

C
DO 198 I =1, M
TIME = TT(I)
EZ = ( (TIME-TG5)/SIGMA3 - SIGMA3/TAO4 ) / -SQRT(2.0)
IF (EZ.LT.0.0) GOTO 125
PART3 = 1.0 - DERF(EZ)
GOTO 127
125 PART3 = 1.0 + DERF(-EZ)
127 AA = (TIME-TGS5) / TAO4

PART2 = EXP( A2-AA )
PROP = RATIO1 * PART1 * PART2 * PART3 + BASLN2
180 FVEC(I) = YY(I) - PROP
198 CONTINUE
RETURN

CALCULATE ERROR SURFACE

217 CONTINUE

anOan

DO 298 I =1, M
TIME = TT(I)
EZ = ( (TIME-TGS5)/SIGMA3 - SIGMA3/TAO4 ) / -SQRT(2.0)
IF (EZ.LT.0.0) GOTO 225
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PART3 = 1.0 - DERF(EZ)

GOTO 227
225 PART3 = 1.0 + DERF(-EZ)
2217 AA = (TIME-TGS) / TAO4

PART2 = EXP( A2-AA )
PROP = RATIO1l * PART1 * PART2 * PART3 + BASLN2
FVEC(I) = PROP
298 CONTINUE
RETURN
C
C GOD BLESS YOU.....
C OTHERWISE YOU WILL HAVE TO USE THIS STUPID PART REALLY OFTEN
999 CONTINUE
WRITE (6, 1000) IND, IER
1000 FORMAT (' IND= ', I3, ' 1IER= ', I4)
TYPE*, ' '
STOP ' FXEMG.FOR, I HOPE YOU CAN FIGURE WHAT HAPPENS.'
C
C LAST CARD OF FXEMG.FOR. (SUBROUTINE FCN FOR DIFPQ.FOR).

c R R S S S S S s s s s S S e S S S s S e S S S S s S e S S s s e s s RS



