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ABSTRACT

BRAIN CONNECTIVITY ANALYSIS USING INFORMATION THEORY
AND STATISTICAL SIGNAL PROCESSING

By

Zhe Wang

Connectivity between different brain regions generates our minds. Existing work on brain

network analysis has mainly been focused on the characterization of connections between

the regions in terms of connectivity and causality. Connectivity measures the dependence

between regional brain activities, and causality analysis aims to determine the directionality

of information flow among the functionally connected brain regions, and find the relationship

between causes and effects.

Traditionally, the study on connectivity and causality has largely been limited to linear

relationships. In this dissertation, as an effort to achieve more accurate characterization

of connections between brain regions, we aim to go beyond the linear model, and develop

innovative techniques for both non-directional and directional connectivity analysis. Note

that due to variability in the brain connectivity of each individual, the connectivity between

two brain regions alone may not be sufficient for brain function analysis, in this research, we

also conduct network connectivity pattern analysis, so as to reveal more in-depth information.

First, we characterize non-directional connectivity using mutual information (MI). In

recent years, MI has gradually appeared as an alternative metric for brain connectivity,

since it measures both linear and non-linear dependence between two brain regions, while

the traditional Pearson correlation only measures the linear dependence. We develop an

innovative approach to estimate the MI between two functionally connected brain regions

and apply it to brain functional magnetic resonance imaging (fMRI) data. It is shown that:



on average, cognitively normal subjects show larger mutual information between critical

regions than Alzheimer’s disease (AD) patients.

Second, we develop new methodologies for brain causality analysis based on directed

information (DI). Traditionally, brain causality is based on the well-known Granger Causality

(GC) analysis. The validity of GC has been widely recognized. However, it has also been

noticed that GC relies heavily on the linear prediction method. When there exists strong

nonlinear interactions between two regions, GC analysis may lead to invalid results. In this

research, (i) we develop an innovative framework for causality analysis based on directed

information (DI), which reflects the information flow from one region to another, and has no

modeling constraints on the data. It is shown that DI based causality analysis is effective

in capturing both linear and non-linear causal relationships. (ii) We show the conditional

equivalence between the DI Framework and Friston’s dynamic causal modeling (DCM), and

reveal the relationship between directional information transfer and cognitive state change

within the brain.

Finally, based on brain network connectivity pattern analysis, we develop a robust method

for the AD, mild cognitive impairment (MCI) and normal control (NC) subject classification

under size limited fMRI data samples. First, we calculate the Pearson correlation coeffi-

cients between all possible ROI pairs in the selected sub-network and use them to form a

feature vector for each subject. Second, we develop a regularized linear discriminant analysis

(LDA) approach to reduce the noise effect. The feature vectors are then projected onto a

subspace using the proposed regularized LDA, where the differences between AD, MCI and

NC subjects are maximized. Finally, a multi-class AdaBoost Classifier is applied to carry out

the classification task. Numerical analysis demonstrates that the combination of regularized

LDA and the AdaBoost classifier can increase the classification accuracy significantly.
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Chapter 1

Introduction

In this chapter, first, a brief overview of fMRI based functional brain connectivity analysis

is provided, illustrating the backgrounds of connectivity analysis. Second, different topics of

functional connectivity analysis, including non-directional connectivity analysis, directional

connectivity (or causality) analysis, and network connectivity pattern analysis are presented.

Finally, the major contributions of this dissertation are highlighted.

1.1 Overview of Brain Connectivity Analysis

The brain is a communication network. At the neuron level, information exchanges are

achieved through communications between synapses. At the system level, different brain

regions formulate a dynamic communication network, and connectivity between the brain

regions generates our minds.

In neuroscience, connectivity analysis plays a critical role since it can provide insight-

ful information in understanding brain functions and dysfunctions. Brain researchers are

increasingly looking for advanced computational analysis tools to assist them in understand-

ing the functions and dysfunctions of specific brain connectivities. At the same time, driven

by the revolution in information theory, the communications area has accumulated rich

methodologies for system modeling, design, signal processing and extraction, and network

characterization and evaluation. To this end: can we develop innovative computational
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analysis tools for brain connectivity analysis by exploiting advanced methodologies in com-

munications? How can these tools help us understand patterns of functional connectivities?

As an effort to address these problems, this research aims to take the advantages of

functional magnetic resonance imaging (fMRI) to develop innovative modeling and analysis

methodologies for brain connectivity analysis by exploiting advanced techniques in commu-

nications, especially tools in information theory and network characterization; apply these

methodologies to brain network analysis, and explore how the proposed techniques can help

us identify connectivity problems and understand why the brain fulfills or fails a cognitive

task.

1.2 Revisit of the Existing Work

In brain connectivity analysis, there are three closely related components: non-directional

connectivity analysis, directional connectivity (or causality) analysis, and network connec-

tivity pattern analysis. In this section, we revisit the existing work on these three topics.

1.2.1 Non-directional Functional Connectivity Analysis of Brain

Regions

Connectivity among the brain regions during a cognitive activity helps us understand brain

functions and perform disease analysis. For decades, Pearson correlation [1] has widely

been used as a quantitative metric to characterize the functional connectivity between two

different brain regions. In recent years, mutual information (MI) has gradually appeared as

an alternative metric for brain connectivity. The underlying argument is that: the Pearson

correlation coefficient only measures the linear dependence, while MI measures both linear
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and non-linear dependence between two brain regions. Moreover, MI has a clear physical

meaning: it represents the information successfully transmitted over the two brain regions

under consideration.

In [1], Tsai et al. used MI to build the brain activation map. They showed that MI was

robust in quantifying the relationship between any two fMRI time series. An outstanding

merit of the MI approach was that, it does not depend on the a priori assumptions about the

relationship between the protocol time line and the fMRI voxel temporal response, and yet

could be as effective as Pearson correlation for calculating activation maps. In [2], Michiel

et al. applied MI to the decoding algorithm in feature selection from high dimensional data.

Their results showed that, comparing with analysis of variance (ANOVA) based method, MI

is efficient in selecting very few but strongly informative voxels, and meanwhile can achieve

the same or even better generalization or overall performance. In [3], Chai et al. used mul-

tivariate mutual information to select voxels in decoding natural scene categories from the

human brain. Their experiments showed that, comparing with the classical variance-based

“most active selection” method [4], MI based voxel selection could improve the decoding

accuracy significantly. In [5], Gomez-Verdejo et al. used MI to identify regionally specific

effects produced by a particular cognitive task, and showed that MI could confirm known

functional connections identified by Pearson correlation, and can also discover new connec-

tions.
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1.2.2 Directional Functional Connectivity Analysis of Brain Re-

gions

Causality analysis aims to find the relationship between causes and effects. It provides

insightful information on how brain regions interact with each other during a cognitive

task [6]. In general, causality analysis tries to determine whether the values of one time series

are useful in predicting the future values of another time series. Since 1990s, a number of

frameworks have been applied to fMRI based causality analysis, including Granger Causality

(GC), Bayesian Network, Dynamic Causal Modeling (DCM), Transfer Entropy (TE) and

Directed Information (DI).

Granger Causality The first practical causality analysis framework was proposed by

Granger in 1969 [7]. The main idea is, if two signals X1 and X2 form a causal relation-

ship, then, instead of using the past values of X2 alone, the information contained in the

past values of X1 will help to predict X2. More specifically, the calculation of Granger

Causality is based on the linear prediction models. Suppose Xn
1 = [X1(1), X1(2), ..., X1(n)]

and Xn
2 = [X2(1), X2(2), ..., X2(n)] are two time series observed from two brain regions,

respectively. Granger Causality compares the prediction errors er and ẽr in the following

equations:

X2(k + 1) =
L−1∑
l=0

alX2(k − l) + er, (1.1)

X2(k + 1) =
L−1∑
l=0

[blX1(k − l) + clX2(k − l)] + ẽr, (1.2)

for k = 1, 2, ..., n. Here, er is the error of predicting X2 based only on the previous values
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of X2, and ẽr is the error of predicting X2 based on both the previous values of X2 and

the previous values of X1. If ẽr is much smaller than er, that is, the introduction of the

previous values of X1 can improve the prediction accuracy, then we say there is a Granger

causal relationship between X1 and X2.

In literature, there have been growing interests in the use of Granger Causality analysis

to identify causal interactions in neuroscience [8]. GC has been successfully applied to fMRI

data, EEG measurements, as well as neural level signals [9–11]. In these pioneering work,

the validity and computational simplicity of Granger Causality have been widely recognized.

At the same time, it has also been noticed that GC relies on the linear prediction method.

When there exist instantaneous and/or strong nonlinear interactions between two regions,

GC analysis may lead to invalid results [11].

Bayesian Network In [12], J. Pearl summarized the framework of Bayesian Network for

causal inference. The argument behind it is that: if a causal relationship exists between two

factors X and Y , the introduction of factor X may change the distribution of another factor

Y . That is, P (Y |X) 6= P (Y ).

Since 2000, the analyses based on Bayesian Networks have demonstrated successful appli-

cations [13,14]. Modified Bayesian Network has been applied to fMRI data by incorporating

the vector autoregressive model used in GC [14]. From a general perspective, the vector

autoregressive model based Bayesian Network framework can be regarded as a variation of

the Granger Causality analysis.

Dynamic Causal Modeling In 2003, Friston proposed the framework of Dynamic Causal

Modeling to describe the general interactions among a group of brain regions [15]. DCM

assumes that the invisible neurostate X, the (external) input U , the observed BOLD signal

Y , the parameter θ that characterizes the connectivities between two brain regions, and
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the independent noise Ω form a dynamic system that could be described by the following

equations:

Ẋ = f(X,U, θ) and Y = Λ(X) + Ω, (1.3)

where Λ represents a cascade of differential equations which map the neurostate X to the

observed BOLD signal Y . Relying on the EM algorithm, DCM has been implemented on both

fMRI and EEG data [16]. In practical applications, due to the computational complexity,

DCM is usually used as a confirmatory approach. That is, the users need to put forward

different connectivity models and then compare them based on their likelihood evaluated

under DCM [17].

Transfer Entropy Another widely applied causal measurement in neuroscience is Transfer

Entropy (TE). TE was introduced in 2000 by Schreiber [18]. It measures the decrease of

entropy in one signal Y after another signal X has been observed:

TX→Y
4
= H (Yt | Yt−1:t−L)−H (Yt | Yt−1:t−L, Xt−1:t−L) (1.4)

in which H denotes the entropy operator, Yt−1:t−L = [Yt−L, ..., Yt−1], Xt−1:t−L =

[Xt−L, ..., Xt−1].

The first exploration of applying transfer entropy in causality description was conducted

by Sporns et al. on the sensorimotor network in 2006 [19]. TE has also been applied in

MEG data to evaluate non-linear connectivity [20], and used for fMRI data [21] to detect

the directed flow of information between brain regions.

As an information theoretic framework, transfer entropy does not rely on any model
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assumptions of the signals. However, current algorithms on TE estimation have not been

proved to be convergent [22]. Also, in [18, 23], it was shown that the amplitude of transfer

entropy could not accurately quantify the strength of influence between brain regions.

Directed Information Directed Information is an information theoretic metric, which was

first introduced by Massey when studying communication channels with feedback [24]. It

measures the directed information flow from one time series X to another time series Y ,

denoted as I(X → Y ). If I(X → Y ) > I(Y → X), then we say X has more influence on Y ,

or X is the causal side in the connectivity.

DI is a universal method. Unlike GC, which mainly relies on the linear prediction theory,

or linear modeling for the involved parameters, the DI-based causality analysis does not

have any modeling constraint on the sequences to be evaluated, hence, can be used to

characterize more general relationships. This advantage of DI has been reported in recent

advances in causality analysis [22, 25, 26]. In [27], it was pointed out that GC analysis is

effective in detecting linear or nearly linear causal relationship, but may have difficulty in

capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is

more effective in capturing both linear and nonlinear causal relationships. In [28], Liu et

al. applied DI to the EEG data and compared the result with that of GC. Their conclusion

was that DI based approach could be superior to GC in capturing the instantaneous and

nonlinear causal relationship in EEG data. Moreover, in [29], it was shown that the Granger

Causality graphs of stochastic processes can be generated from the DI framework, and the

authors indicated that the DI theory provides an adequate framework for the connectivity

inference problems in neuroscience applications. A comprehensive investigation of DI can be

found in [30].
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1.2.3 Network Connectivity Pattern Analysis of Brain Regions

Both directional connectivity and non-directional connectivity analysis study the connection

between two brain regions. As will be shown in Chapter 4, although analysis based on pair-

wise connection could provide insights into the brain network, the information from merely

two regions are far from enough to reveal the general functional connectivity patterns. As

a result, both of the two aforementioned analyses are inadequate in solving problems that

involve multiple brain regions, such as the classification of Alzheimer’s Disease (AD) patients,

Mild Cognitive Impairment (MCI) patients and normal control (NC) subjects based on fMRI

data. The underlying argument is that: due to variability in the brain connectivity of each

individual, the connectivity between two brain regions alone may not provide comprehensive

information for brain analysis; network connectivity pattern analysis, which looks for subtle

changes in the pattern of connectivity among multiple or all regions in the sub-network, may

reveal more in-depth information.

1.2.4 Motivations and Problem Identification

After revisiting the existing work, we identify the major problems in today’s brain connec-

tivity analysis as follows.

• Connections between brain regions: going beyond the linear model. Existing

work on brain connectivity analysis has mainly been focused on the characterization of

connections between the regions in terms of connectivity and causality [31]. Connectiv-

ity measures the dependence between regional brain activities, and tells us which brain

regions are functionally connected during a cognitive task [32]. Moving one step fur-

ther, causality analysis aims to determine the directionality of information flow among
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the functionally connected brain regions [33,34].

Traditional connectivity analysis mainly relies on the Pearson correlation, which only

measures the linear dependence between the regions [35–37]. Traditional causality

analysis largely relies on the Granger Causality (GC) approach [38, 39]. Again, GC

is based on the linear prediction technique [40]. It is effective in detecting linear or

nearly linear causal relationship, but may have difficulty in capturing nonlinear causal

relationships [40]. As can be seen, the study on connectivity and causality has largely

been limited to linear relationships. For more accurate characterization of connections

between brain regions, we need to go beyond the linear model.

• Relationships between representative causality analysis frameworks. GC, DI

and DCM are three representative causality analysis frameworks in brain connectivity

analysis. In literature, the relationships between GC and DCM, and between GC and

DI have been investigated. A missing link here is: what is the relationship between

DCM and DI? To fill the missing link, and reveal the connection between DCM and

DI, we need both theoretical and numerical analyses of the equivalence between DCM

and DI in characterizing the causal relationship between two brain regions.

• Reliable classifications of brain diseases based on size limited fMRI data.

Accurate distinction of AD and MCI patients from normal subjects is critical for early

diagnosis and treatment of brain disorders. However, the size of fMRI data samples

is generally quite limited, which has become a major bottleneck in fMRI based AD,

MCI and NC classification. The underlying reason is that, when the sample size is

small, most existing classifiers suffer from severe noise effects, due to both biological

variability and measurement noise. New methodologies have to be developed for robust
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AD, MCI and NC classification.

1.3 Summary of Dissertation Contributions

The main contributions of this dissertation are summarized in the following.

In Chapter 2, we explore the estimation of mutual information to measure the non-

directional connectivities between brain regions. Traditional non-directional connectivity

analysis mainly relies on the Pearson correlation, which only measures the linear depen-

dence between the regions. Motivated by this observation, in this chapter, we propose to

measure the non-directional connectivities with mutual information, which measures both

linear and nonlinear relationships between brain regions. An innovative MI estimator is de-

veloped. The major steps include: de-correlation of data segments, kernel-based estimation

of the probability density function, and Monte Carlo Integration. The proposed MI esti-

mator is applied to experimental fMRI data obtained from Alzheimer disease patients and

normal subjects. The numerical result is consistent with clinical observations.

In Chapter 3, we conduct fMRI based causality analysis in brain connectivity by exploit-

ing the directed information based framework. First, we introduce the core concepts in the

directed information framework. Second, we present how to conduct causality analysis using

directed information measures between two time series. We provide the detailed procedure

on how to calculate the DI for two finite time series. The two major steps involved here

are optimal bin size selection for data digitization, and probability estimation. Finally, we

demonstrate the applicability of DI based causality analysis using both the simulated data

and experimental fMRI data, and compare the results with that of the Granger Causality

analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly

10



linear causal relationship, but may have difficulty in capturing nonlinear causal relationships.

On the other hand, DI based causality analysis is more effective in capturing both linear and

non-linear causal relationships. Moreover, it is observed that brain connectivity among dif-

ferent regions generally involves dynamic two-way information transmissions between them.

Our results show that when bidirectional information flow is present, DI is more effective

than GC to quantify the overall causal relationship.

In Chapter 4, we explore the discrete Dynamic Causal Modeling (DDCM) and its rela-

tionship with DI and GC. First, we revisit DDCM, and demonstrate the relationship between

DDCM and the conventional continuous time DCM. Second, we show that under certain con-

ditions, DDCM and DI are equivalent in characterizing the causal relationship between two

brain regions. Recall that traditionally, the accuracy of DI estimation is based on the accu-

racy of probability or statistic estimation, and hence requires the data length be sufficiently

long. This equivalence between DDCM and DI, in fact, also provides a simple but effective

method for DI estimation under limited data length. Finally, we illustrate the similarities

and differences between DDCM and GC.

In Chapter 5, we develop a reliable method for AD, MCI and NC classification that is

robust with respect to size limited fMRI data samples, by exploiting brain network connec-

tivity pattern analysis. First, we propose a regularized LDA approach, which aims to reduce

the noise effect by using two shrinkage methods. The first shrinkage method moves the

estimated mean of each class towards the overall mean, and the second one shifts the esti-

mated covariance matrix for each class towards the identity matrix. Second, we investigate

the relationship between LDA-based and Maximum Likelihood (ML) based classification or

decision making methods. Finally, we conduct the connectivity pattern classification of AD,

MCI and NC subjects by applying the regularized LDA and AdaBoost classifier based ap-
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proach. Numerical analysis shows that: in comparison with the original LDA approach [41],

the regularized LDA can reduce the noise effect and increase the classification accuracy sig-

nificantly. Our analysis also confirms the previous findings that the hippocampus and the

isthmus of the cingulate cortex are closely involved in the development of AD and MCI.

In Chapter 6, we summarize the conclusions and present some potential directions for

future research.
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Chapter 2

Brain Functional Connectivity

Analysis Using Mutual Information

This chapter considers measuring brain functional connectivity using mutual information

(MI). First, we explain the advantage of MI based analysis over the conventional correlation

based analysis. Second, we propose a novel approach for MI estimation by exploiting kernel-

based probability density function (pdf) estimation and optimization under the maximum

likelihood criteria. Finally, the proposed estimator is applied to true fMRI data obtained

from Alzheimer’s Disease (AD) patients and normal control (NC) subjects. The numerical

analysis demonstrates the effectiveness of the proposed approach and shows that the MI

based analysis result is consistent with clinical observations.

2.1 Introduction

Connectivity analysis based on functional Magnetic Resonance Imaging (fMRI) data helps

to reveal insights on brain functioning and disease analysis [42]. For decades, an important

metric in measuring functional connectivities has been the Pearson correlation coefficient.

In recent years, mutual information (MI) has been applied as an alternative metric for

the reason that it measures not only linear dependence between two time series but also

non-linear relationships, and meanwhile has a clear physical meaning. It represents the
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information successfully transmitted on the brain links. It was pointed out in [3, 5] that

MI is more informative compared to traditional metrics because it could confirm known

functional connections as well as discovering new connections.

Since the last decade, there has been a growing interest in applying MI on fMRI data

analysis. In [1], Tsai et al. used MI to build the brain activation map. They showed that

MI was robust in quantifying the relationship between any two fMRI temporal response

waveforms. An outstanding merit of the MI approach was that, it does not depend on the

priori assumptions about the relationship between the protocol time line and the fMRI voxel

temporal response, and yet could be as effective as other methods for calculating activation

maps. In [2], Michiel et al. applied MI in the decoding algorithm in selecting features

from high dimensional data. Their results showed that, compared to analysis of variance

(ANOVA) based method, MI was efficient in selecting very few but strongly informative

voxels and meanwhile achieved the same or even better generalization performance. In [43],

Afshin-Pour et al. applied MI in the activation detection. They carried out experiment in

real datasets for group analyses using the general linear model, and showed that MI is a

more sensitive metric than the Jaccard overlap metric.

In literature, a dominant approach for MI calculation has been the k nearest neighbor

(kNN) estimator. This approach has been discussed throughly in [44]. The main idea is:

when two sets of high dimensional data points are independently and identically distributed

(iid), the estimation bias in the kNN density estimator will be demolished when calculating

the KL distance, and the final estimator will be asymptotically unbiased. There are two

limitations with this approach: first, the choice of k is highly empirical. The choice involves

tradeoffs between the estimation bias and variance, with smaller k leads to lower bias and

higher variance [44]. An empirical choice of k is
√
n. In fact, previous works on MI estimation
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did not provide any discussions on how to choose k to ensure accurate estimation. Second,

applying kNN estimator on two time series could face the problem of data independence.

When data points are not independently distributed, it is not guaranteed the final result

would converge to the true value.

In this chapter, we propose to estimate MI using a novel approach to evaluate the MI

in the region level to analyze the functional connectivity of Default Mode Network (DMN)

in the brain. Note that the data segments from the fMRI data are generally correlated

with each other, which introduces skewness in the distribution [44]. In this chapter, first,

we apply a linear transformation to the fMRI data such that the covariance matrix of the

transformed data is close to the identity matrix. Second, we present an effective approach

for MI estimation by exploiting kernel-based probability density function estimation and

optimization under the maximum likelihood criteria. Finally, the proposed estimator is

applied to true fMRI data obtained from Alzheimer’s Disease (AD) patients and normal

control (NC) subjects. The numerical analysis demonstrates the effectiveness of the proposed

approach and shows that the MI based analysis result is consistent with clinical observations.

The rest of this chapter is organized as follows. In Section II, we outline the existing

approaches used in brain connectivity analysis. In Section III, we present the proposed

kernel based estimator, and the corresponding algorithms. Numerical results are provided

in Section IV, and we conclude in Section V.

Notation: The uppercase letters (X,Y ,...) denote random variables, and the lowercase

letters (x,y,...) denote the possible values they can acquire.
−→
X = [X1, X2, ..., Xd] denotes

a time series vector, where Xi is the ith sample. For any x, fX(x) denotes the probability

density function (pdf) of X, and fXY (x, y) the joint probability density function for (X, Y ).

The log function log(∗) denotes the base 2 logarithm.
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2.2 Existing Approaches

In this section, we revisit some representative approaches in the measurement of functional

connectivities, and discuss some of their limitations.

2.2.1 Pearson Correlation versus Mutual Information

In fMRI studies, a widely used statistical metric in brain functional connectivity analysis is

the Pearson correlation coefficient, which measures the linear dependence between two time

series. It is defined as:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
, (2.1)

where X̄ and Ȳ represent the mean of the two time series {X} and {Y }, respectively. For

further statistical hypotheses testing, the Fisher’s Z-transformation is generally applied to

regulate distribution:

z =
1

2
ln

(
1 + r

1− r

)
= tanh−1(r). (2.2)

The introduction of Fisher’s transform could also be used to stabilize the variance of data

points for regression based or ANOVA techniques, which has been explored in [42].

While the Pearson correlation coefficient is efficient in capturing linear correlations, it is

an inaccurate measure when the regional activities in brain show non-linear characteristics.

Moreover, as statistical metrics, the correlation coefficient r, as well as its Fisher transform

z, do not really reflect the connection strength comprehensively. The mutual information,
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on the other hand, denoted the information successfully transmitted through a channel, has

a more clear physical meaning in measuring the strength of a connection. This motivates

applying MI analysis in measuring the brain functional connectivity.

The mutual information for two random variables X and Y is defined as:

I(X;Y ) =

∞∫
−∞

∞∫
−∞

fXY (x, y)log
fXY (x, y)

fX(x)fY (y)
dxdy. (2.3)

For fMRI data, which is composed of time series, the mutual information is carried out on

segments rather than single points of the data. In this chapter, we choose the length of one

segment, d, to be the rough duration of the Hemodynamic Response in terms of sampling

periods. That is,

I(
−→
X ;
−→
Y ) =

∫
Rd

∫
Rd

fXY (−→x ,−→y )log
fXY (−→x ,−→y )

fX(−→x )fY (−→y )
d−→x d−→y . (2.4)

2.2.2 Limitations with the Existing Work on MI estimation

Although MI has considerable advantages over the Pearson correlation coefficient, current

work on estimating MI has its own limitations.

A widely exploited algorithm to estimate mutual information of high dimensional data

is built upon the k nearest neighbor (kNN) estimator. Given n samples with dimension d,

this estimator calculates the pdf as:

f(−→xi) =
1

2

Γ(d/2 + 2)

πd/2
1

r(−→xi)d
, (2.5)
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in which r(−→xi) is the Euclidean distance from −→xi to its kth nearest neighboring points, and

Γ(∗) the Gamma function [3].

There are several concerns related to the kNN estimator. First, the choice of k is not a

well-defined problem and usually solved by heuristic techniques [45]. Second, the underlying

assumption of the kNN estimator is that: the data points are identically and independently

distributed (i.i.d.). Otherwise, the algorithm can not be guaranteed to converge to the true

value. In fMRI studies, however, even under resting state, the time series points can not be

simplified as i.i.d processes. Third, the MI calculation in [3] is based on individual single

data points. However, information contained in the time changing Hemodynamic waveforms

are certainly more informative than that in single data points.

Hence, unlike previous approaches in [3], the proposed estimation of mutual information

will be carried out on segments rather than single points (see Section III). The segment

length is roughly the same as that of one Hemodynamic Response. Moreover, we resort to

the non-parameterized kernel method to estimate the probability density function, and try

to reduce inter-dependence of data points by data preprocessing.

2.3 The proposed approach for MI estimation

In this section, we present the proposed MI estimator. The major steps in the estimator

include: de-correlation of data segments, kernel-based estimation of the probability density

function, and Monte Carlo Integration for MI estimation.
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2.3.1 De-correlation of Data Segments

The data segments from the fMRI data are generally correlated with each other, which

introduces skewness in the distribution [44]. To fix this problem, we propose to adopt the

whitening transform on the data segments before estimating the probability density function

such that the covariance matrix of the transformed data is close to the identity matrix:

Given a set of d-dimensional data −→x , with mean −→µ and covariance matrix Σ =

E(−→x −−→µ )(−→x −−→µ )T . Its eigenvalue decomposition is Σ = φΛφ−1, in which Λ is a diagonal ma-

trix, with the eigenvalues as its diagonal elements, and φ the eigenvectors of the covariance

matrix. Define the whitening transform as:

−→x ′ = AT−→x , (2.6)

where A = φΛ−1/2. After the transform, the new data sets will have mean AT−→µ and

covariance I. In fact:

E(AT−→x − AT−→µ )(AT−→x − AT−→µ )T

= (φΛ−1/2)T • φΛφ−1 • φΛ−1/2 (2.7)

= I, (2.8)

where we used the fact that φT = φ−1. It can be seen from (2.8) that, after the linear

transformation, the covariance is now an identity matrix, which means the transformed data

segments are linearly uncorrelated with each other.

19



In [44], Wang et al. also proposed a similar approach to deal with skewness problem of

the distribution. The difference between their approach and the proposed approach is that

they treat two sets of data {−→X} and {−→Y } jointly, with the assumption that they follow the

same distribution. More specifically, instead of calculating the overall covariance matrix Σ

for {−→X} and {−→Y } in (2.6) separately, they calculated the covariance matrix as:

Σ =
1

2n− 1
[
n∑
i=1

(
−→
Xi −

−→̂
µ )(
−→
Xi −

−→̂
µ )T

+
n∑
i=1

(
−→
Yi −

−→̂
µ )(
−→
Yi −

−→̂
µ )T ], (2.9)

where
−→̂
µ = 1

2n [
n∑
i=1

−→
Xi +

n∑
i=1

−→
Yi ].

We believe that this approach is not suitable in our application scenario because it requires

that two sets of data share the same statistical property, which may not be practical in fMRI

data as Hemodynamic Responses diverse considerably among different brain regions. For

this reason, in our analysis here, we choose to analyze {−→X} and {−→Y } separately.

2.3.2 Kernel-Based Estimation of Probability Density Function

The kernel-based estimation is an alternative framework to the assumption based parametric

estimation. Originally, the kernel-based approach was introduced to address the problem of

the phase uncertainty or origin uncertainty [46]. The basic idea is to calculate the average

of kernel functions K on each point that falls into a pre-specified kernel window. More

specifically, given a set of data points {εi|i ∈ [1,m]}, the kernel estimation for the probability
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density function at any point x is given by:

f̂(x) =
1

m

m∑
i=1

K

(
x− εi
h

)
, (2.10)

in which h is the bandwidth for the kernel function. For any d-dimensional data vector

−→x = [x1, ..., xj , ..., xd], the estimation function can be extended as:

f̂(−→x ) =
1

mh1h2...hd

m∑
i=1

Kh(−→x ,−→εi ), (2.11)

where

Kh(−→x ,−→εi ) =
d∏
j=1

K

(
xj − εij
hj

)
. (2.12)

The kernel function K for a continuous variable x is often chosen as the Gaussian func-

tion [46]:

K(h, ε, x) =
1

2
√
π
e
− (x−ε)2

4h2 . (2.13)

2.3.3 Optimal Kernel Bandwidth Estimation

The bandwidth h for the kernel function has a significant influence on the estimation ac-

curacy. Unlike the choice of k in the kNN estimator, here h can be chosen theoretically

according to the Cross Validation Maximum Likelihood (CV-ML) criteria. More specifically,
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the bandwidth h is chosen to maximize the leave-one-out log likelihood function given by:

L =
m∑
i=1

logf̂−i(−→εi ), (2.14)

in which the leave-one-out function f̂−i(−→εi ) is defined as:

f̂−i(−→εi ) =
1

(m− 1)h1h2...hd

∑
j 6=i

Kh(−→εi ,−→εj ). (2.15)

It can be shown that pdf estimation under this criteria could yield a result that will approach

the real density in a Kullback-Leibler entropy sense [46].

The maximization problem for the likelihood function L in (2.14) belongs to a category

of optimization problems, and can be solved reliably using various algorithms [46,47]. In this

chapter, we choose the downhill simplex method, because the complexity of the log likelihood

makes the differentiate operation quite computationally infeasible, and classical second-order

optimization method like Quasi-Newton algorithm is difficult to be implemented. More

details about downhill simplex method could be found in [47]. The algorithm is implemented

as follows:

At the initial step, randomly construct a simplex of d + 1 vertices in a d dimensional

definition domain of the function L(h). Order the vertices according to the function values,

i.e., L(h1) ≥ L(h2) ≥ ... ≥ L(hd+1). Then, calculate the centroid point h0 and iteratively

execute following steps: Reflection, Expansion, Contraction and Reduction.

• Reflection: A reflected point hr is computed as h0 + α(h0 − hd+1). If the reflected

point is better than hd but worse than h1, then reconstruct the simplex by replacing

hd+1 with hr.
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• Expansion: If hr outperforms h1, compute the expanded point he = h0 +γ(h0−hd+1).

If he is better than hr, construct the new simplex by replacing hd+1 with he; else,

replace hd+1 with hr.

• Contraction: If hr is inferior to hd, compute the contracted point hc = h0 + ρ(h0 −

hd+1). Check if hc is better than hd+1. If yes, reconstruction the simplex by replacing

hd+1 with hc; else, execute the Reduction step.

• Reduction: Replace all but the best point with hi = h1 + σ(hi − h1).

The values of α, γ, ρ and σ are set to be 1, 2, −1/2 and 1/2, respectively. The algorithm

ends after a predefined number of iterations. It can be guaranteed that when the function

is locally smooth, an optimal solution could be reached [47].

2.3.4 MI Estimation Through Monte Carlo Integration

The Monte Carlo integration method is used here to calculate the MI after the prob-

ability distribution function has been obtained. For notation simplicity, let i(−→x ,−→y ) =

fXY (−→x ,−→y )log fXY (−→x ,−→y )
fX(−→x )fY (−→y )

. Then, to calculate the MI I =
∫
Rd

∫
Rd
i(−→x ,−→y )d−→x d−→y , the algo-

rithm uniformly samples a finite space with a volume of V , and generates P samples

{(−→xi ,−→yi ), i ∈ [1, P ]}. The mutual information, then, can be estimated as:

IP ≈
V

N

P∑
i=1

i(−→xi ,−→yi ). (2.16)

Since the definition domain of a Gaussian function is infinite, sampling on the whole space is

impossible. Therefore, we limit the sampling space within the interval [µ−3σ, µ+3σ], where

µ and σ denote the mean and standard deviation of the Gaussian function, respectively.
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Convergence: It can be shown by the Law of Large Numbers (LLN) [48]: as P goes to

infinity, the approximation in (2.16) will converge to the real value of I, i.e., lim
P→∞

IP = I.

2.4 Numerical Results

In this section, we will apply the proposed approach to resting state fMRI data collected

from both Alzheimer’s Disease patients and normal control subjects.

Brain networks operate in a cohesive manner of connections between nodes. A progressive

weakening trend of functional connectivities has been observed in the default mode network

(DMN) in AD patients [42]. In the following, we will evaluate MI between two regions

of DMN, the posterior cingulate cortex (PCC) and superior frontal gyrus (SFG). In the

data collection process, eleven patients with mild-to-moderate probable AD and twelve age-

and education-matched healthy normal control subjects were recruited to participate in

this study. The MRI experiment was conducted on a GE 3T Signa R© HDx MR scanner

(GE Healthcare, Waukesha, WI) with an 8-channel head coil. To study resting-state brain

function, echo-planar images, starting from the most inferior regions of the brain, were

acquired for 7 minutes with the following parameters: 38 contiguous 3-mm axial slices in an

interleaved order, time of echo = 27.7 ms, time of repetition = 2500 ms, flip angle = 80◦,

field of view = 22 cm, matrix size = 64 × 64, ramp sampling, and with the first four data

points discarded. Each volume of slices was acquired 164 times. Common pre-processing

procedures on resting state fMRI data were carried as detailed in [42]. Then, we carried out

the proposed approach on the pre-processes fMRI data.

Figure 1 and figure 2 show the calculated mutual information for connections between

PCC and SFG. As expected, the connections experienced a decrease in AD patients compared
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to NC subjects. Figure 1 shows the probability distribution function of two groups. Because

of the existence of outliers in each group, two pdf curves can not be separated completely.

However, it is clear that in group level, normal subjects have shown stronger connectivities

over the AD patients.
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Figure 2.1: Comparison of probability density function between AD patients and NC subjects
using MI analysis.

Normal Patient
0.5

1.0

1.5

2.0

2.5

3.0

M
I 
(b

it
s)

Figure 2.2: Box plots between AD patients and NC subjects using MI analysis.

Figure 2 shows the boxplots for the two groups. It can be seen that the median suffered

a 35.6%’s decrease in AD patients compared to NC subjects. This result is consistent with
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previous clinical research finding. Significant difference on the MI between PCC and SFG

was found between the two groups based on independent two-sample t test (p = 0.04).

2.5 Summary

In this chapter, we considered the measurement of functional brain connectivities using

mutual information. We proposed a novel approach for the estimation of MI, which was

composed of three major components: de-correlation, kernel based estimation of probability

density function and Monte Carlo Integration for MI estimation. The analysis results ob-

tained using the proposed method were consistent with clinical observations in the AD data

sets.
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Chapter 3

Causality Analysis of fMRI Data

Based on The Directed Information

Theory Framework

This chapter aims to conduct fMRI based causality analysis in brain connectivity by ex-

ploiting the directed information (DI) theory framework. Unlike the well known Granger

Causality (GC) analysis, which relies on the linear prediction technique, the directed infor-

mation theory framework does not have any modeling constraints on the sequences to be

evaluated and ensures estimation convergence. Moreover, it can be used to generate the

Granger Causality graphs. In this chapter, first, we introduce the core concepts in the di-

rected information framework. Second, we present how to conduct causality analysis using

directed information measures between two time series. We provide the detailed procedure

on how to calculate the DI for two finite time series. The two major steps involved here

are optimal bin size selection for data digitization, and probability estimation. Finally, we

demonstrate the applicability of DI based causality analysis using both the simulated data

and experimental fMRI data, and compare the results with that of the Granger Causality

analysis. Our analysis indicates that GC analysis is effective in detecting linear or nearly

linear causal relationship, but may have difficulty in capturing nonlinear causal relationships.
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On the other hand, DI based causality analysis is more effective in capturing both linear and

non-linear causal relationships. Moreover, it is observed that brain connectivity among dif-

ferent regions generally involves dynamic two-way information transmissions between them.

Our results show that when bidirectional information flow is present, DI is more effective

than GC to quantify the overall causal relationship.

3.1 Introduction

Causality analysis provides important information on how brain regions interact with each

other to accomplish a cognitive task [6]. In general, causality analysis tries to determine

whether the values of one time series X is useful in predicting the future values of another

time series Y . Here, we will first briefly revisit the work on causality analysis in literatures,

including Granger Causality (GC), Bayesian Network, Dynamic Causal Modeling (DCM)

and Transfer Entropy (TE). Then, we will introduce the Directed Information (DI) frame-

work, explain why we adopt it, and how to apply it for causality analysis.

3.1.1 Some Representative Techniques on Causality Analysis

Granger Causality The first practical causal analysis framework was proposed by Granger

in 1969 [7]. The fundamental idea is, if two signals X and Y form a causal relationship,

then, instead of using the past value of Y alone, the information contained in the past

values (or lagged values) of X will help to predict Y . More specifically, the calculation

of Granger Causality is based on the autoregressive or linear prediction models. Suppose

Xn = [X1, X2, ...Xn] and Yn = [Y1, Y2, ...Yn] are two time series. The most commonly used

method in Granger Causality analysis is to compare the following two prediction errors ei
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and ẽi:

Yi =
L∑
j=1

ajYi−j + ei (3.1)

Yi =
L∑
j=1

[bjYi−j + cjXi−j ] + ẽi (3.2)

Here, ei is the error of prediction Yi based only on the previous value of Y , (Yi−1, ...Yi−L),

and ẽi is the error of predicting Yi based on both the previous values of Y , (Yi−1, ...Yi−L), and

the previous values of X, (Xi−1, ...Xi−L). In practical analysis, Granger Causality can be

tested using a nested model comparison based on the F statistics [49]. If ẽi is much smaller

than ei, that is, the introduction of the previous value of X can improve the prediction

accuracy, then we say there is a Granger Causal relationship between X and Y .

Since 1990s, there have been growing interests in the use of Granger Causality analysis to

identify causal interactions in neuroscience [8]. An early exploitation of GC in neuroscience

was carried out by Bernasconi et al. in electrophysiological data [50]. Their paper veri-

fied the applicability of GC for electrophysiological data, particularly EEG measurements.

Goebel et al. presented an application of GC on the fMRI data [51, 52]. They applied the

GC approach to a dynamic sensorimotor mapping paradigm. Bressler et al. applied GC

analysis to examine the blood oxygen level-dependent (BOLD) time series corresponding to

the top-down control signals from the frontal and parietal cortex [53]. Hu et al. applied GC

analyses on fMRI data to evaluate the causal relationship among specific brain regions, so

as to understand the impact of amnesic mild cognitive impairment (aMCI) on brain con-

nectivity [10]. Wen et al. carried out simulations on neural signals to examine GC in both

neural level (neural GC) and fMRI level (fMRI GC) [54,55].
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David et al. applied GC (together with Dynamic Causal Modeling) in a combination of

fMRI and EEG data [11]. Their experiments showed that as the hemodynamics (i.e., the

blood flow or the circulation) vary from region to region, GC may not be applied directly

on the fMRI signals. However, when the hemodynamic effects were explicitly removed, GC

test can perform effective causality analysis in linear relationships.

As a well-known technique, the validity and computational simplicity of Granger Causal-

ity have been widely recognized. However, it has also been noticed that GC relies heavily

on the linear prediction method. When there exist instantaneous and/or strong nonlinear

interactions between two regions, GC analysis may lead to invalid results [11]. To address

this problem, several approaches on nonlinear Granger Causality have been proposed in liter-

ature. For example, in [56], Bezruchko et al. proposed an autoregression model constructed

in the form of a polynomial. More recently, Marinazzo et al. proposed a method to gener-

alize GC to include the nonlinear case using the kernel technique [57]. The copula approach

has been applied for GC assessment in [9,58]. A comprehensive discussion on nonlinear GC

could be found in [59].

Bayesian Network In [12], J. Pearl summarized the framework of Bayesian Network for

causal inference. The argument behind it is that: if a causal relationship exists between two

factors X and Y , the introduction of factor X may change the distribution of another factor

Y . That is, P (Y |X) 6= P (Y ).

Since 2000, the analyses based on Bayesian Networks have demonstrated successful appli-

cations [13,14]. Luessi et al. [14] modified the Bayesian Network and applied it to fMRI data

by incorporating the vector autoregressive model used in GC. Their result was in consistent

with that of the GC analysis. From a general perspective, the vector autoregressive model

based Bayesian Network framework can be regarded as a variation of the Granger Causality
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analysis.

Dynamic Causal Modeling In 2003, Friston proposed the framework of Dynamic Causal

Modeling (DCM) to describe the general interactions among a group of brain regions [15].

DCM assumes that the invisible neurostate x, the (external) input u, the parameter θ that

characterizes the connection between two brain regions, and the independent noise ω form

a complex dynamic system that could be described by the following equations:

ẋ = f(x, u, θ) and y = L(θ, h(x)) + ω, (3.3)

where h(x) represents a cascade of differential equations which connect the neurostate to

changes in blood volume and deoxyhemoglobin content, and L represents a non-linear output

function which relates θ and h(x) to the observed BOLD signal y [16].

With the help of EM algorithm, DCM has been attempted on both fMRI and EEG

data [16]. Some concerns with this framework are [17]: (1) As the observation model in

DCM is non-linear, estimating the latent variable that describes the neuronal activity could

be quite difficult. (2) DCM is a confirmatory approach, for which the users have to start

with different connectivity describing models, then rank them based on an approximation of

the model evidences.

Transfer Entropy Another widely applied causal measurement in neuroscience is Transfer

Entropy (TE). TE was introduced in 2000 by Schreiber [18]. It measures the decrease of

entropy in one signal Y after another signal X has been observed:

TX→Y
4
= H (Yt | Yt−1:t−L)−H (Yt | Yt−1:t−L, Xt−1:t−L) (3.4)
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in which H denotes the entropy operator, Yt−1:t−L = [Yt−L, ..., Yt−1] ,Xt−1:t−L = [Xt−L, ..., Xt−1].

Similar to GC, TE measures how much additional information the past values of process

X contains about the future observations of Y , given that we already knew the past values

of Y . The quantity measured by TE is the amount of predictive information rather than

the size of causal effect or coupling strength. In [23], it was pointed out that TE can

differentiate between interactions in the process of information storage and those in the

process of information transfer.

The first exploration of applying transfer entropy in causality description was conducted

by Sporns et al. on the sensorimotor network in 2006 [19]. Vicente et al. [18] applied TE in

the magnetoencephalography (MEG) data and showed that TE was an effective metric for

non-linear connectivity, especially for sensor-level MEG signals. Lizier et al. [21] developed

a framework that combined multivariate mutual information and transfer entropy together.

They used TE to analyze fMRI time series to detect the directed flow of information between

brain regions involved in a visuo-motor tracking task.

As an information theoretic framework, a major advantage of Transfer Entropy is that it

does not does not rely on any model assumptions of the signals. However, current algorithms

on TE estimation have not been proved to be convergent [22]. Also, in [18,23], it was shown

that the amplitude of transfer entropy could not accurately quantify the strength of influence

between brain regions.

3.1.2 Proposed Approach: DI Based Causality Analysis

In the discussions above, we revisited some representative methods on causality analysis.

These methods are either limited to an existing model on the time series under investigation,

or cannot guarantee convergence or validity in practical estimation. In an effort to overcome
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these weaknesses, we propose to adopt the directed information theory framework.

Directed Information Given two random sequences Xn and Yn, the directed information

from Xn to Yn is defined as a sum of some conditional mutual information:

I(Xn → Yn)
4
=

n∑
i=1

I(Xi;Yi|Yi−1), (3.5)

where Xi = [X1, X2, ..., Xi], Yi = [Y1, Y2, ..., Yi]. First introduced by Massey to study

communication channel with feedback [24], DI has been proved to be an effective tool for

network analysis in communications [60] and neuroscience [25, 26]. As an information theo-

retical metric, DI shares some similarities with Transfer Entropy. Both of them do not rely

on any model assumptions of the signals. Moreover, it was pointed in [29] and [23] that: as

time goes to infinity, DI may approximate the rate of transfer entropy.

The DI framework is adopted here for the following reasons: (i) It is a universal method.

Unlike GC, which mainly relies on the linear prediction theory, or linear modeling for the

involved parameters, the DI based causality analysis does not have any modeling constraint

on the sequences to be evaluated, hence can be used to characterize more general relation-

ships. (ii) It is well defined with specific physical meaning. Recall that the amplitude of

TE cannot reflect the strength of dependence between brain regions, the amplitude of DI

reflects the information flow from Xn → Yn, hence has a clear physical meaning. (iii) It

has been shown in [29] that the Granger Causality graphs could be obtained using the DI

framework. As can be seen, directed information theory provides an adequate framework for

the connectivity inference problems in neuroscience applications.

In literature, there has been a limited number of references on applications of directed

information in neuroscience [22, 28]. Quinn et al. applied DI in studying neuron spike

33



recording by introducing a Markov Process model for the signal. Liu et al. applied DI

to the EEG data and compared the result with that of GC. Their conclusion was that DI

based approach could be superior to GC in capturing the instantaneous and nonlinear causal

relationship from EEG data.

Chapter Overview In this chapter, first, we introduce the core concepts in the directed

information framework. Second, we present how to conduct causality analysis using direct

information measures between two time series. We provided the detailed procedure on how to

calculate the DI for two finite time series. The two major steps involved here are optimal bin

size selection for data digitization, and probability estimation. Finally, we demonstrate the

effectiveness of directed information based causality analysis using both the simulated data

and experimental fMRI data, and compare the results with that of the Granger Causality

analysis. For practical evaluation, we collected both stimulation fMRI data with a well

defined block-design scene-object fMRI paradigm [61, 62] and resting-state fMRI data. Our

analysis indicates that GC analysis is effective in detecting linear or nearly linear causal

relationship, but has difficulty in capturing nonlinear causal relationships. On the other

hand, DI based causality analysis can be used to capture both linear and non-linear causal

relationships. Moreover, it is observed brain connectivity among different regions generally

involves dynamic two-way information transmissions between them. Our results show that

when bidirectional information flow is involved, DI is a more effective than GC to quantify

the overall causal relationship.
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3.2 Methods

Let uppercase letters (X,Y ,...) denote random variables, and lowercase letters (x,y,...) the

possible values they can acquire. For n ∈ N , define Xn = [X1, X2, ...Xn], where Xi is the

ith sample. Each Xi is a random variable taken from the same finite alphabet Ω, with

cardinality |Ω|. For any xi ∈ Ω, P (xi) = Prob{Xi = xi} denotes the probability for Xi

to take the value xi; and P
Xi|Xi−1(xi|xi−1) = Prob{Xi = xi|xi−1 = [x1, x2, ...xi−1]} the

conditional probability that the current sample Xi is xi, given that the previously observed

sequence is xi−1 = [x1, x2, ..., xi−1]. Without extra explanation, the log function log(∗)

denotes the base 2 logarithm.

3.2.1 Core Concepts in the Directed Information Framework

Entropy A fundamental concept in information theory is entropy, which is a measure of

uncertainty. For a random variable X, the entropy of X is defined as:

H(X) = −
∑
xi∈Ω

P (xi)logP (xi). (3.6)

The entropy of a random variable X represents the minimum average number of bits needed

for loseless encoding of each symbol of X.

For a random sequence Xn, the entropy could be calculated according to the chain rule:

H(Xn) = H(X1) +H(X2|X1) + ...+H(Xn|Xn−1) (3.7)

=
n∑
i=1

H(Xi|Xi−1). (3.8)
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Mutual Information Mutual Information (MI) measures the decrease of uncertainty of one

random variable after observing another one. The definition of mutual information between

two random variables X and Y is:

I(X;Y ) = H(Y )−H(Y |X) (3.9)

=
∑
x,y

P (x, y)log
P (x, y)

P (x)P (y)
, (3.10)

here H(Y ) is the total uncertainty (or information) in Y , and H(Y |X) is the uncertainty (or

information) left in Y after X is observed. It’s clear that mutual information is a symmetric

measurement: for two random variables X and Y , I(X;Y ) = I(Y ;X). Mutual information

measures the dependence between two random variables. If X = Y , then H(Y |X) = 0,

and I(X;Y ) = H(X) = H(Y ). If X and Y are independent, then I(X;Y ) = 0. Unlike

the Pearson Correlation Coefficient which only measures the linear dependence between two

random variables, mutual information includes both linear and non-linear dependence. For

this reason, in recent years, there has been a growing interest in applying MI to neuroscience

to measure the coupling strength among different brain regions or groups of neurons [63,64].

For two random sequences Xn and Yn, the mutual information could also be calculated

using a chain rule:

I(Xn; Yn) = H(Yn)−H(Yn|Xn) (3.11)

=
n∑
i=1

H(Yi|Yi−1)−H(Yi|Yi−1,Xn) (3.12)

=
n∑
i=1

I(Xn;Yi|Yi−1). (3.13)

Directed Information Since both correlation and mutual information are non-directional,
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in 1990, Massey refined Markov’s work and proposed the concept of directed information

(DI) [24] aiming to measure the directed information flow from one random sequence to

another. Given Xn and Yn, the directed information from Xn to Yn is defined as:

I(Xn → Yn) =
n∑
i=1

I(Xi;Yi|Yi−1). (3.14)

Recall that the causally conditional entropy is defined as:

H(Yn||Xn) =
n∑
i=1

H(Yi|Yi−1,Xi), (3.15)

then it follows from (3.14) and (3.15) that:

I(Xn → Yn) = H(Yn)−H(Yn||Xn). (3.16)

On the other hand,

I(Xn; Yn) = H(Yn)−H(Yn|Xn) (3.17)

= I(Xn → Yn) + I(Yn−1 → Xn) (3.18)

= I(Xn−1 → Yn) + I(Yn−1 → Xn)

+
n∑
i=1

I(Xi;Yi|Xi−1,Yi−1). (3.19)

In (3.19), the first term I(Xn−1 → Yn) specifies the directed information flow from Xn

to Yn, the second term I(Yn−1 → Xn) specifies the reverse directed information from Yn to

Xn, and the third one represents the conditional mutual information shared by both Xn and

Yn. DI reflects directional and interactive influence between two random sequences, and
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has recently been applied to characterize the connectivity between different brain regions

[22,28].

Directed Information and Granger Causality Granger Causality (GC) [7, 22] has long

been used in identifying causal relations between two random series. The main idea behind

the Granger Causality analysis is that, if one random process X causally influences another

random variable Y, then the knowledge of previous values of X will help to decrease errors

in predicting future values of Y. The calculation of Granger Causality is based on the

autoregressive or linear prediction models.

As can be seen from (3.1), the traditional Granger Causality analysis relies on the lin-

ear prediction models. Its nonlinear extensions generally still rely on the “linear-in-the-

parameter” modeling [29]. The directed information, on the other hand, contains no re-

quirement on models, and hence provides the freedom to characterize more generalized re-

lationships. In [29], Amblard and Olivier investigated the relationship between directed

information and Granger Causality, and showed that Granger Causality graphs could be

obtained using directed information. They further pointed out that, directed information

theory provided an adequate information theoretical framework for the connectivity inference

problems in neuroscience applications.

3.2.2 Directed Information Calculation and Causality Analysis

Developing practical estimators for directed information measures is always a challenging

problem. Over the last two decades, a limited number of directed information estimators

have been purposed. In [22], Quinn et al. utilized DI to infer causality based on neural

spike recordings. Their estimator is built upon the assumption that the random sequences

corresponding to spike recordings form stationary ergodic Markov processes and adopts the
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simple General Linear Model(GLM). As a result, the causally conditional entropy can be

simplified as E[gJK(Y ll−J , Xl−(K−1)l
)], in which g is a log-probability function, and J and

K denote the orders of the Markov Processes. Although this method is not model free, its

validity has been verified in discovering causal relations among groups of neurons. Verdu et

al. purposed a K-nearest neighbor(KNN) based estimator for KL distance [44]. This idea

has been adopted in the work by Chai et al. to estimate entropy and mutual information [3].

Theoretically, directed information could be estimated after obtaining other information

theoretical measures like entropy and mutual information. However, the KNN estimator

is based on the assumption that samples in the random sequences are independent and

identically distributed (i.i.d). Also, this approach requires a large number of data points.

In this chapter, we calculate the directed information I(Xn → Yn) by exploiting the

method initiated by Weissman et al. [30]. This approach is universal, and not limited to any

modeling assumptions on the random sequences. There are two parts in the estimation.

Part I This part has three steps.

1. Estimate H(Yn) :

H(Yn) =
1

n

n∑
i=1

∑
yi+1

P (yi+1|yi)log
1

P (yi+1|yi)
(3.20)

≈ 1

n

n∑
i=1

∑
xi+1,yi+1

P (xi+1, yi+1|xi,yi)

× log
1

P (yi+1|yi)
. (3.21)
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2. Estimate the H(Yn||Xn) :

H(Yn||Xn) =
1

n

n∑
i=1

log
1

P (yi|yi−1,xi)
(3.22)

≈ − 1

n

n∑
i=1

∑
xi+1,yi+1

P (xi+1, yi+1|xi,yi)

× log
P (xi+1, yi+1|xi,yi)

P
xi+1|XiY i

(xi+1|xi,yi)
. (3.23)

3. It then follows that I(Xn → Yn) can be estimated as H(Yn)−H(Yn||Xn).

Part II For validity of this estimation, it has been shown in the work by Weissman et

al. [30] that as n→∞, Î(Xn → Yn) converges to the expected real value of I(Xn → Yn).

To measure the causal influence of one region on another, we resort to Dn = I(Xn →

Yn)− I(Yn → Xn). Using (3.19), we have:

Dn = I(Xn → Yn)− I(Yn → Xn) (3.24)

= [I(Xn; Yn)− I(Yn → Xn)]

− [I(Xn; Yn)− I(Xn → Yn)] (3.25)

= I(Xn−1 → Yn)− I(Yn−1 → Xn). (3.26)

As shown in (3.24), Dn is the difference of two directed information between Xn and Yn.

If Dn is positive, that is, I(Xn−1 → Yn) > I(Yn−1 → Xn), then we say that Xn shows

more influence on Yn, and can be interpreted as the causal driver during the connectivity;

otherwise we say Yn shows more influence on Xn.

To make the result more comparable, we will use γ = Dn/I(Xn; Yn) instead of Dn.

Clearly, γ ∈ [−1, 1]. When |γ| approaches 1, it can be said with high confidence that there
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does exist a causal influence between two stochastic processes; while if |γ| is adjacent to 0,

it is more likely that no clear causal relationship exists, or the samples in random sequences

are subject to strong noises. Therefore, in the simulations, a threshold based method is

developed in interpreting the γ metric.

The causality analysis of two brain regions helps us to understand which region is more

likely to be the causal driver during a particular connectivity. However, we would like to

point out that brain connectivity between two different regions generally involves dynamic

two-way information transmission between them, rather than a fixed one-way source to

destination relationship.

3.2.3 Practical evaluation

Based on our discussions in Section 2.2, for practical evaluation of the directed information,

the main point is how to estimate the probabilities involved in (3.20) accurately from discrete

time data or observations.

There are two major issues in probability estimation. First, how to choose the optimal

bin size for digitization. Second, how to estimate the probability of a particular sequence

after the random sequence has been mapped into a series of symbols.

3.2.3.0.1 Optimal Bin Size for Time Series Digitization The first problem in di-

rected information estimation of fMRI signals is digitization. If the bin size is too large, then

it results in considerable approximation error, and cannot reflect the true data distribution

accurately. If the bin size is too small, then the number of samples falling into each bin tends

to be 0 or 1 due to the very limited data length. As a result, the probability estimation

become inaccurate. In fact, when the bin size is too large or too small, the estimated DI
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will approach zeros, due to the limited data length. Here we choose to use the bin size that

minimizes the Integrated Mean Square Error (IMSE) between the estimated probability and

its true value [65].

The random sequences in those fMRI signals acquire values in the real number field,

while the directed information probability estimation can be carried out only for discrete,

finite-size alphabets. Hence, mapping real-valued numbers into the symbols within a finite

alphabet is the first step for further procedures. In the digitization process, we adopt the

traditional histogram methods to estimate the probability of the data points falling into each

of the bins representing symbols in the alphabet.

Suppose the true probability distribution function (pdf) of a random variable X is

f(x),and the estimated pdf is f̂(x), the IMSE is defined as:

IMSE =

∫
E{f̂(x)− f(x)}2dx. (3.27)

For a random sequence of length n, the optimal bin size that minimizes the IMSE is given

by:

h∗n = {n
6

∫ ∞
−∞

f ′(x)2dx}−1/3, (3.28)

Assume the random sequence xn was sampled from a white stochastic process with distribu-

tion: f(x) = 1√
2πσ

e
− (x−µ)2

2σ2 . Here µ is the mean and σ the standard deviation of the signal.
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Then the optimal bin size for digitization can be obtained:

h∗n =

n6
∞∫
−∞

[−(x− µ)e
− (x−µ)2

2σ2 /
√

2πσ3]2dx


−1/3

(3.29)

=

n6
∞∫

0

u2e−u
2
du/πσ3


−1/3

(Let u = x−µ
σ ) (3.30)

=

{
n

6

1

4
√
πσ3

}−1/3

(3.31)

≈ 3.49σn−1/3. (3.32)

The results in (3.31) relies on the fact that
∞∫
0
e−x

2
dx =

√
π/2. In this chapter, the fMRI

data sequence is regarded as a Gaussian random process. For digitization, the bin size is

chosen according to (3.32).

3.2.3.0.2 Probability Estimation After digitization, real-valued fMRI time courses

become a sequence of symbols {xn} within an alphabet Ω. Denote the alphabet as Ω =

{x|x ∈ {0, 1, ...M − 1}}, where M = |Ω|; N0, N1, ...NM−1 represent the counts for each

symbol in the alphabet, respectively. The next step is to estimate the sequence probabilities

P (xi) and P (xi|xi−1), i ∈ [1, N ]. Here we will resort to the Krichevsky-Trofimov (KT)

estimator [66] for the probability estimation. The primary reason of using the KT estimator

is that this estimator is universal and does not put any specific modeling constraints on the

random sequence. It has been shown in [30, 66] that although KT estimator is not optimal,

the bias it introduces will be upper bounded.

KT estimator first assigns 0 to the initial value for the sequence probability, and updates

this value as the sequence goes on. In each step, the algorithm analyzes the current sequence

and generates a list of count numbers for each symbol in the alphabet. Denote this list as
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{N0, N1, ...NM−1}. The algorithm goes as follows:

Initialize:

X = {∅}, {N0, N1, ...NM−1} = {0, 0, ..., 0}, P (∅) = 0

Loop:

while i ≤ n do

xi ← {xi−1, Xi = j}, j ∈ [0,M − 1];

{N0, N1, ...NM−1} ← {N0, N1, ..., Nj + 1, ...NM−1};

P (xi)← P (xi−1)× Nj+0.5

N0+N1+...NM−1+M/2

end while

After estimating the probability P (xn), the conditional probability P
Xi+1|Xi

(xi+1|xi) can

be obtained as P (xi+1)/P (xi).

3.3 Materials

3.3.1 Data Acquisition

Fourteen right-handed healthy college students (7 males, 23.4±4.2 years of age) from Michi-

gan State University volunteered to participate in this study and signed consent forms ap-

proved by the Michigan State University Institutional Review Board. The experiment was

conducted on a 3T GE Signa HDx MR scanner (GE Healthcare, Waukesha, WI) with an

8-channel head coil.

For each subject, fMRI datasets were collected on a visual stimulation condition with a

scene-object fMRI paradigm and then on a resting-state condition. The parameters for the

fMRI scan were: gradient-echo EPI, 36 contiguous 3-mm axial slices in an interleaved order,
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time of echo (TE) = 27.7 ms, time of repetition (TR) = 2500 ms, flip angle = 80◦, field of

view (FOV) = 22 cm, matrix size = 64 × 64, ramp sampling, and with the first four data

points discarded.

On the visual stimulation fMRI condition, each volume of images were acquired 192 times

(8 min) while a subject was presented with 12 blocks of visual stimulation after an initial 10

s ’resting period. In a predefined randomized order, the scenery pictures were presented in 6

blocks and the object pictures were presented in other 6 blocks. All pictures were unique. In

each block, 10 pictures were presented continuously for 25 s (2.5 s for each picture), followed

with a 15 s baseline condition (a white screen with a black fixation cross at the center).

The subject needed to press his/her right index finger once when the screen was switched

from the baseline to picture condition. Stimuli were displayed in color in full screen on a

1024×768 32-inch LCD monitor (Salvagione Design, Sausalito, CA) placed at the back of the

magnet room. The LCD subtended 10.2◦× 13.1◦ of visual angle. On the resting-state fMRI

(rs-fMRI) condition, each volume of images were acquired 164 times (6 min and 50 s) after a

subject was informed to relax, keep his/her eyes closed and stay awake throughout the scan.

After the above functional data acquisition, high-resolution volumetric T1-weighted spoiled

gradient-recalled (SPGR) images with cerebrospinal fluid suppressed were obtained to cover

the whole brain with 120 1.5-mm sagittal slices, 8◦ flip angle and 24 cm FOV. These images

were used to identify anatomical locations.

3.3.2 fMRI Data Pre-processing and Analysis

All stimulus fMRI data pre-processing and analysis for each subject were conducted with

AFNI software (Cox, 1996) as described in Henderson et al. [61]. Essentially, slice-timing

correction and rigid-body motion correction were carried. Spatial blurring with a full width
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half maximum of 4 mm was applied to reduce random noise. Multiple linear regressions

(using the “3dDeconvolve” routine in AFNI) were applied on a voxel-wise basis to find the

magnitude change when each picture condition was presented, followed with general linear

tests to find the statistical significances between stimulus conditions.

The regions of interest (ROI) in this study were defined in the Talairach coordinate

space [67]. Regions showing preferential activation to scenes over objects (voxel-based p-

value < 10−4) in the right and left parahippocampal gyri were defined as the right and left

PPA [61]. The right and left V1 ROIs were defined as the regions activated by pictures

(voxel-based p-value < 10−10) within Brodmann area 17. Because there was a high level of

activation at and around V1, a highly conservative p value threshold was chosen to define

relatively focal ROIs. The right and left SMC spherical ROIs with 6-mm radius were defined

with the centers at (R36, P22, S54) and (L38, P26, S50) correspondingly in the Talairach

coordinate space (R = Right, L = Left, P = Posterior, S = Superior). The SMC coordinate

locations were defined by Witt et al. [68] and the ROIs were created as in Zhu et al. [69]. The

time courses from the stimulation fMRI dataset that were already pre-processed as above

were detrended and had their baselines removed also. The spatially averaged time course at

each of the above ROIs was generated for the causality analyses discussed later.

The rs-fMRI pre-processing was also processed in AFNI [70] as commonly applied in the

field and as described in details in Zhu et al. [69]. Essentially, slice-timing correction and

rigid-body motion correction were carried. Spatial blurring with a full width half maximum

of 4 mm was applied to reduce random noise. The time courses were detrended and the

baselines were removed. Brain global, cerebrospinal fluid and white-matter mean signals

were modeled as nuisance variables and removed from the time courses. Finally, the time

courses were band-pass filtered to the range of 0.009 Hz – 0.08 Hz. The spatially averaged
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time course at each of the above ROIs was generated for the causality analyses discussed

later.

3.3.3 Simulated Data

The simulated data was synthesized from the fMRI data corresponding to the primary visual

cortex (V1). Recall that the total number of samples in the time series at V1 is 192, as

described earlier. Denote this sequence as xn = [x1, x2, ..., xn], where n = 192. Here we will

use two sets of simulated data.

Set I For i ∈ [1, 2, ..., 192], the first group of simulated data yn1 = [y1,1, y1,2, ..., y1,n] was

obtained as:

y1,i = 0.3 ∗ xi + 0.2 ∗ xi−1. (3.33)

It’s clear that Xn has a causal influence on Yn. The true fMRI data and the simulated

data set I form a linear causal relationship.

Set II For further comparison, we introduced another group that had a nonlinear rela-

tionship with the true fMRI data. For i ∈ [1, 2, ..., 192], the second set of simulated data

yn2 = [y2,1, y2,2, ..., y2,n] was obtained as:

y2,i =

{
1 if xi ≥ 0;
0 if xi < 0.

(3.34)

Clearly, the nonlinear relationship in the second group is difficult to be captured by a

linear autoregression model. It has also introduced a significant change in the power level in

comparison with true fMRI data.

To make the data more realistic, we added white Gaussian noise to yn1 and yn2 , where the
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noise is of zero mean and variance σ2
0. In the simulation, the Signal-to-Noise Ratio (SNR),

which was calculated as 20log(σx/σ0), was set in a range between 4 dB and 20 dB. Before

performing fMRI causality analysis, we carry out both DI based causality analysis and the

GC analysis over xn and yn for method validation. The analysis based on simulated data

helps to set up a threshold for the metric γ = [I(Xn−1 → Yn)−I(Yn−1 → Xn)]/I(Xn; Yn).

Note that the subtraction operation in γ may help to reduce the noise effect in fMRI data. In

the Granger Causality analysis, the parameter F-test was adopted to generate the p-value.

The max lag in the test was set to be 2.

3.4 Results

In this section, we demonstrate the effectiveness of DI based causality analysis using both

stimulated and acquired fMRI data, and compare the results with that of the GC analysis.

3.4.1 Causality between the fMRI data and its descending simu-

lated data

In this subsection, we validate the DI based causality analysis approach using fMRI data

and the simulated data generated from it.

DI based Causality Analysis

Fig.1(a) and 1(b) present the DI based causality analysis results corresponding to the

fMRI data and the simulated data set I. Fig.1(a) shows the comparison of mutual information

I(xn; yn1 ), directed information I(xn → yn1 ) and the reversed directed information I(yn1 →

xn). In this example, SNR = 8 dB. Clearly, I(xn → yn1 ) > I(yn1 → xn). As can be seen,

the estimated Directed Information shows a clear surplus from xn → yn1 , which implies that
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Figure 3.1: Directed Information based test results: mutual information, directed informa-
tion and the γ metric. Here xn denotes the fMRI data, yn1 the simulation data set I, and
yn2 the simulation data set II. (a) MI and DI between xn and yn1 ; (b) γ versus SNR corre-
sponding to xn and yn1 ; (c) MI and DI between xn and yn2 ; (d) γ versus SNR corresponding
to xn and yn2 .
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there is a causal relationship between xn and yn1 , and xn is more likely to be the cause as

expected.

Figure 1(b) shows the values of γ versus different SNR levels. As can be seen, when

the SNR is above 6 dB (i.e., the noise level is relatively low), we can observe a clear causal

relationship from xn → yn1 . As the noise level gets higher, i.e. when SNR < 5 dB, the

causal relationship becomes ambiguous.

The results corresponding to the fMRI data xn and the simulated data set II, yn2 , are

shown in Fig.1(c) and 1(d). As can be seen, the results are similar with that corresponding to

xn and yn1 . Again, the DI based causality analysis indicates that there is a causal relationship

between xn and yn2 , and xn is more likely to be the causal part as expected.

It should be noted that the relationship between yn1 and xn is linear, but the relationship

between yn2 and xn is nonlinear. It can be seen that the DI based causality analysis is

effective in the nonlinear case as well. The analysis results are consistent with our priori

knowledge that there is a causal relationship between xn and yn1 , and xn and yn2 , with xn

as the causal side in both cases.

Based on our simulation results on xn and yn1 , which is more similar with true fMRI data

than yn2 , we found that:

• γ ∈ [0.1, 1] implies that X has more causal influence on Y; accordingly, γ ∈ [−1,−0.1]

implies that Y has more causal influence on X;

• γ ∈ [−0.1, 0.1] implies that there is no clear dominant influence between X and Y.

Granger Causality Analysis We then apply GC analysis to xn and yn1 , and xn and yn2 , the

results are shown in Fig.3.2. Fig.3.2(a) and Fig.3.2(b) show the p-value of the GC analysis

corresponding to xn → yn1 and yn1 → xn, respectively. As can be seen, there is a clear
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Figure 3.2: Inter-region GC test results based on fMRI data and two sets of simulation
data generated from it. (a) test results for the direction xn → yn1 ; (b) test results for the
direction yn1 → xn; (c) test results for the direction xn → yn2 ; (d) test results for the direction
yn2 → xn.
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causal relationship from xn → yn1 ; most medians in the boxes indicate a highly significant

casual relationship (p < 0.0002, which is much smaller than the commonly accepted p-value

0.01) [71]. These results lead to the expected conclusion that two random sequences xn and

yn1 are Granger Causally related. However, for the test on xn and yn2 , in which the causal

relationship is completely nonlinear, the Granger Causality test was not able to capture

the causal relationship xn → yn2 . In both 3.2(c) and 3.2(d), most medians in the boxes

indicate that there is no significant causal relationship between these two time sequences

(0.2 < p < 0.6), leading to an unexpected conclusion that xn and yn2 are not causally

related.

3.4.2 Causality analysis based only on the Experimental fMRI

Data

In this section, we apply both DI based causality analysis and GC analysis to the exper-

imental fMRI data. We collected both stimulation based fMRI data with a well-defined

block-design scene-object fMRI paradigm as discussed earlier [61,62], and resting-state fMRI

data. Recall that in the scene-object paradigm, subjects viewed blocks of scenery and object

pictures. They were asked to press a button once under the right index finger when they

saw a block of pictures. We test the robustness of our causality analysis techniques against

some expected outcomes: under the stimulation fMRI paradigm, the primary visual cortex

(V1) and nearby regions are activated first, followed with activation in the parahippocampal

place area (PPA) for higher level scene processing. Some but relatively small activations

in the left sensorimotor cortex (SMC) is also expected following V1 activations. Overall

sequential neuronal activity is not expected between the right and left homologous regions
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Figure 3.3: Inter-region γ values of directed information based causality analysis.

above. Under the resting-state condition, neuronal activity is not expected to occur in a

sequential manner among above regions.

DI based Causality Analysis Here we examine the potential causal relationship between

left V1 and left PPA, left V1 and left SMC under both resting state and visual stimulation

conditions. The directed information based γ values are shown in Figure 3.3. In resting

state condition, the medians of the γ values are within the [-0.1,0.1] region. The left V1

does not exhibit a dominating causal influence over other regions, including left PPA and

left SMC. However, under the simulation paradigm, the γ values for left V1→ left PPA and

left V1 → left SMC increase significantly. In other words, under the stimulation, left V1

shows stronger influences over left PPA, as well as left SMC, as expected.

Figure 3.4 shows the γ values between the right and left homologous brain regions in

both resting state and stimulus-based state. As can be seen, the median values are well

below 0.1. That is, the directed information based causality analysis indicates that there is

no dominating influence between the left and right homologous brain regions.

Granger Causality Analysis As in the DI based analysis, we carry parallel GC analyses
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Figure 3.4: Inner-region (left-right) γ values of the directed information based causality
analysis.
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Figure 3.5: Inter-region Granger Causality test result.
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between brain regions (Figure 3.5). For the left V1– left PPA pair (Figure 3.5 (a) and (c)),

GC analyses indicate that there is a dominating influence of left V1 over left PPA under

both resting-state (median p = 0.004) and stimulation (median p = 0.0005) conditions.

However, causal relationship between left V1 and left PPA is not expected in the resting

state condition. With the Granger Causality analysis, it is difficult to distinguish between

the resting state and stimulus-based state, as the p-values in both states are small enough

to indicate a causal relationship. For the left V1–left SMC pair (Figure 3.5 (b) and (d)),

the Granger Causality analysis seems to have reversed the expected causal relationship, and

indicates that SMC is more likely to be the cause.

Figure 3.6 shows the results of the GC analysis for the right and left homologous brain

regions, including V1, PPA and SMC. The results indicated that the information flow be-

tween each pair of homologous regions was very unbalanced, and varied significantly in most

cases. This is contradicting to the expected non-sequential activation between them, as it

is believed that the right and left homologous regions should not have significant sequential

activation.

3.4.3 Impact of Hemodynamics on DI Based Causality Analysis

In this subsection, we evaluate the impact of hemodynamics (i.e. the blood flow or the

circulation) on the performance of DI based causality analysis. We take a representative

model for the hemodynamic response function h(t) = t8.6e−t/0.547 [72]. Let x(t) be the

sawtooth waveform (to mimic the situation under periodic stimulation), and y(t) = 0.3x(t)+
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Figure 3.6: Inner-region (left-right) Granger Causality test results.
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0.2x(t− 1). Clearly, x(t) is the causal side. Define:

x̂(t) = hx(t) ∗ x(t), (3.35)

ŷ(t) = hy(t) ∗ y(t). (3.36)

Recall that the Dirac delta function, defined as

δ(t) = 0,∀t 6= 0,

∞∫
−∞

δ(t)dt = 1,

is generally used to model the impulse response of an ideal communication channel. We

conduct DI based causal analysis for x̂ and ŷ under the following scenarios:

• Group 1:

– case 1.1: hx(t) = δ(t), hy(t) = δ(t);

– case 1.2: hx(t) = h(t), hy(t) = h(t);

– case 1.3: hx(t) = δ(t), hy(t) = 3δ(t);

• Group 2:

– case 2.1: hx(t) = δ(t), hy(t) = δ(t);

– case 2.2: hx(t) = 0.3h(t) + 0.2h(t− 1), hy(t) = 0.3h(t) + 0.2h(t− 1);

– case 2.3: hx(t) = h(t), hy(t) = 0.3h(t) + 0.2h(t− 1);

– case 2.4: hx(t) = h(t), hy(t) = 0.7h(t) + 0.4h(t− 1);

• Group 3:
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– case 3.1: hx(t) = δ(t), hy(t) = δ(t);

– case 3.2: hx(t) = h(t), hy(t) = h(2t);

The results are shown in Figure 3.7. We look at Group 1 first. It can be observed

that, when the hemodynamic response functions hx(t) and hy(t) are identical, the causal

relationship between x̂(t) and ŷ(t) would be the same with that of x(t) and y(t). That is,

x̂(t) is the causal part. However, in case 1.3, when the power level of ŷ(t) is much higher

than that of x̂(t), the causal relationship is either reversed or becomes ambiguous.

In Group 2, we consider the multipath channel model. For case 2.1 and case 2.2, we can

see clearly that x̂(t) is the causal side, but in case 2.3, the power level of ŷ(t) is higher than

that of x̂(t), again, the causal relationship is reversed or becomes ambiguous.

In Group 3, we consider the case when the hemodynamic response hy(t) changes much

faster than hx(t). From Figure 3.7(c), it can be seen that this did not bother the DI based

method. We can see clearly that x̂(t) is the causal side.

For comparison purpose, we examine the impact of hemodynamics on GC analysis as

well. In most cases, GC cannot distinguish which one is the casual side. Due to space limits,

only the results for case 2.4 are shown here. Please refer to Figure 8. As can be seen, based

on the p-values, both x(t) and y(t) are identified as the causal side by GC. Our analysis

indicates that GC is more sensitive to hemodynamic effects.

3.4.4 Summary of Results

In the simulations, we first performed DI based causality analysis between the fMRI data

and the simulated data, and compared the results with that of the GC analysis. Two sets

of simulated data were generated from the fMRI data. Set I is obtained by convolving the
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Figure 3.7: DI under different hemodyamic response functions.
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Figure 3.8: Granger Causality test results of case 2.4.

fMRI data with a simple causal model; Set II is obtained by mapping the positive points in

the fMRI data to 1, and the negative points to zeros. The simulation results showed that

the Granger Causality analysis could identify the cause clearly between the fMRI data and

data set I, but failed for the test corresponding to data set II, due to the severe nonlinearity

of the data. The directed information based approach, on the other hand, can identify the

cause accurately in both cases as long as the SNR is above 5dB.

As can be seen, GC analysis is effective in detecting linear or nearly linear causal relation-

ship, but has difficulty in capturing nonlinear causal relationships. The underlying argument

is that GC analysis relies heavily on the linear prediction theory, or linear modeling of the

involved parameters. The directed information based causality analysis, on the other hand,

does not have any modeling constraints on the sequences to be evaluated, hence can be used

to capture both linear and non-linear causal relationships.

We then applied both the DI based analysis and the GC analysis to examine the causal

relationship in V1–PPA, V1–SMC, as well as the right and left homologous brain regions,

including V1, PPA and SMC. From the DI based analysis, we observed that: (i) In the
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resting state, there is no dominant cause for both the V1–PPA and V1–SMC pairs. (ii) In

the stimulation based state, V1 turns out to be the cause in the V1-SMC pair. For the

V1–PPA pair, although not as strong as in the V1–SMC pair, V1 is more likely to be the

cause part. (iii) For both the resting state and the stimulus-based state, there is no dominant

cause observed in the right and left homologous brain regions. For the GC analysis, it can

be seen that: (i) The results for the V1–PPA are consistent with that of the DI analysis.

(ii) For the V1–SMC pair, the results corresponding to resting state are also consistent with

the DI analysis; however, in the stimulation based state, it shows that SMC is more likely

to be the cause, which is contradicting with the expected sequential brain activation (V1 to

SMC). In this paradigm, the activity in SMC is weak, which could be a reason that the GC

analysis could not detect the sequential activity. (iii) The information flows between each

pair of homologous regions were not balanced in most cases, which is contradicting to the

expected non-sequential activation between them.

Finally, we evaluate the impact of hemodynamic effects on DI based causality analysis

method using simulated data. we observed that: (i) even if the hemodynamic response

function of the driving side changes slower than that of the other side, the proposed DI

method can still identify the causal side accurately. (ii) However, when the power level

of the driving side is much lower than that of the other side, then the causal relationship

may be reversed or become ambiguous. This is because that: in the digitization process,

higher power level maps to higher entropy; as in BOLD, higher fMRI amplitude implies more

significant activity levels. We will investigate more on this in the future.

Our results indicate that DI is an effective technique to quantify the overall causal rela-

tionship. It is also observed that brain connectivity between two different regions generally

involves dynamic two-way information transmission between them, rather than a fixed one-
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way source to destination relationship.

3.5 Summary

In this chapter, we presented the directed information framework and showed how to apply

it for fMRI causality analysis. We provided the detailed procedure on how to calculate

the DI for two finite time series. The two major steps involved here are optimal bin size

selection for data digitization, and probability estimation. We applied the DI based causality

analysis to both the simulated data and experimental fMRI data, and compared the results

with that of the Granger Causality analysis. Our results indicated that GC analysis is

effective in detecting linear or nearly linear causal relationship, but has difficulty in capturing

nonlinear causal relationships. On the other hand, DI based causality analysis is effective

in capturing both linear and non-linear causal relationships. Moreover, it was observed that

brain connectivity among different regions generally involves dynamic two-way information

transmissions between them. Our results showed that when bidirectional information flow

is present, DI is more effective than GC to quantify the overall causal relationship.

We would also like to point out that with DI based approach, the performance improves

as the data size increases. This is because the probability estimation gets more accurate as

we have more samples. For future work, we would continue our research on functional and

effective brain connectivity by combining the conventional information theory, the directed

information framework as well as the network-level information theory.
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Chapter 4

Discrete DCM and Its Relationship

with Directed Information and

Granger Causality

In this chapter, we explores the discrete Dynamic Causal Modeling (DDCM) and its rela-

tionship with Directed Information (DI) and Granger Causality (GC). First, we demonstrate

the relationship between DDCM and the continuous DCM. Second, we prove the conditional

equivalence between DDCM and DI in characterizing the causal relationship between two

brain regions. This equivalence between DDCM and DI also provides an effective method

for DI estimation. Moreover, it is shown that when the hemodynamic system is invert-

ible, the DI-based causal relationship between the neurostates of two brain regions is the

same with that between the observed BOLD signals. Finally, we illustrate the similarities

and differences between DDCM and GC. Although they share a similar mathematic form,

the causality measures they utilize are completely different. The theoretical techniques are

demonstrated using fMRI data obtained under both resting state and stimulus based state.

Our numerical analysis is consistent with that reported in previous study.
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4.1 Introduction

Causality analysis aims to find the relationship between causes and effects. It provides

insightful information on how brain regions interact with each other during a cognitive

task [6]. In general, causality analysis tries to determine whether the values of one time

series are useful in predicting the future values of another time series. Since 1990s, a number

of frameworks have been applied to fMRI based causality analysis. Among them, Granger

Causality (GC), Directed Information (DI), and Dynamic Causal Modeling (DCM) are three

representative approaches. In this chapter, we will revisit these three causality analysis

frameworks, discuss the relationships between them, especially the relationship between

DCM and DI.

Granger Causality The first practical causality analysis framework was proposed by

Granger in 1969 [7]. The main idea is, if two signals X1 and X2 form a causal relation-

ship, then, instead of using the past values of X2 alone, the information contained in the

past values of X1 will help predict X2. More specifically, the calculation of Granger Causal-

ity is based on the linear prediction models. Suppose Xn
1 = [X1(1), X1(2), ..., X1(n)] and

Xn
2 = [X2(1), X2(2), ..., X2(n)] are two time series observed from two brain regions, respec-

tively. Granger Causality compares the prediction errors er and ẽr in the following equations:

X2(k + 1) =
L−1∑
l=0

alX2(k − l) + er, (4.1)

X2(k + 1) =
L−1∑
l=0

[blX1(k − l) + clX2(k − l)] + ẽr, (4.2)

for k = 1, 2, ..., n. Here, er is the error of predicting X2 based only on the previous values
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of X2, and ẽr is the error of predicting X2 based on the previous values of both X2 and

X1. If ẽr is much smaller than er, that is, the introduction of the previous values of X1 can

improve the prediction accuracy, then we say there is a Granger causal relationship between

X1 and X2.

In literature, there have been growing interests in applying GC to identify causal inter-

actions in the brain [8–11]. For example, in [10], Hu et al. applied GC analysis on fMRI

data to evaluate the causal relationship among specific brain regions, so as to understand

the impact of amnesic mild cognitive impairment (aMCI) to brain connectivity. In [11],

David et al. applied GC (together with Dynamic Causal Modeling) to a combination of

fMRI and EEG data. Their experiments showed that as the hemodynamics (i.e., the blood

flow or the circulation) vary from region to region, GC may not be applied directly on the

fMRI signals. However, when the hemodynamic effects were explicitly removed, GC test can

perform effective causality analysis in linear relationships.

As a widely accepted technique, the validity and computational simplicity of Granger

Causality have been appreciated. However, it has also been noticed that GC relies heavily

on the linear prediction method. When there exist instantaneous and/or strong nonlinear

interactions between two regions, GC analysis may lead to invalid results [11,27]. To address

this problem, several approaches on nonlinear Granger Causality have been proposed. For

example, in [56], Bezruchko et al. proposed an auto-regression model constructed in the

form of a polynomial. More recently, Marinazzo et al. proposed a method to generalize GC

to include the nonlinear case using the kernel technique [57]. The copula approach has been

applied for GC assessment in [9,58]. A comprehensive discussion on nonlinear GC could be

found in [59].

Directed Information Directed Information is an information theoretic metric, which was
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first introduced by Massey when studying communication channels with feedback [24]. It

measures the directed information flow from one time series X to another time series Y ,

denoted as I(X → Y ). If I(X → Y ) > I(Y → X), then we say X has more influence on Y ,

or X is the causal side in the connectivity.

DI is a universal method. Unlike GC, which mainly relies on the linear prediction theory,

or linear modeling for the involved parameters, the DI-based causality analysis does not

have any modeling constraint on the sequences to be evaluated, hence, can be used to

characterize more general relationships. This advantage of DI has been reported in recent

advances in causality analysis [22, 25, 26]. In [27], it was pointed out that GC analysis is

effective in detecting linear or nearly linear causal relationship, but may have difficulty in

capturing nonlinear causal relationships. On the other hand, DI-based causality analysis is

more effective in capturing both linear and nonlinear causal relationships. In [28], Liu et

al. applied DI to the EEG data and compared the result with that of GC. Their conclusion

was that DI based approach could be superior to GC in capturing the instantaneous and

nonlinear causal relationship in EEG data. Moreover, in [29], it was shown that the Granger

Causality graphs of stochastic processes can be generated from the DI framework, and the

authors indicated that the DI theory provides an adequate framework for the connectivity

inference problems in neuroscience applications. A comprehensive investigation of DI can be

found in [30].

Dynamic Causal Modeling In 2003, Friston proposed the framework of Dynamic Causal

Modeling to describe the general interactions among a group of brain regions [15]. DCM

assumes that the invisible neurostate X, the (external) input U , the observed BOLD signal

Y , the parameter θ that characterizes the connectivities between different brain regions, and

the independent noise Ω form a dynamic system that could be described by the following
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equations:

Ẋ = f(X,U, θ) and Y = Λ(X) + Ω, (4.3)

where Λ represents a cascade of differential equations which map the neurostate X to the

observed BOLD signal Y . Relying on the EM algorithm, DCM has been implemented on both

fMRI and EEG data [16]. In practical applications, due to the computational complexity,

DCM is usually used as a confirmatory approach. That is, the users need to put forward

different connectivity models and then compare them based on their likelihood evaluated

under DCM [17].

Compared with GC, DCM provides a more comprehensive characterization of the dy-

namic interactions between multiple regions. In [73], Friston et al. pointed out that GC and

DCM were complementary to each other: GC models the causal dependency among observed

responses, while DCM models the causal interactions among the hidden neurostates. On the

other hand, in [74], Friston provided an example to show that DCM and GC may generate

different results given the same dataset. The underlining argument is that: DCM takes into

account both the external input and the biological variations of the hemodynamic response,

which are not involved in GC.

To this end, it can be seen that the relationships between GC and DCM, and between

GC and DI have been investigated in literature. While GC is efficient in detecting linear

causal relationships, both DI and DCM can be used to characterize more general causal

relationships. A missing link here is: what is the relationship between DCM and DI?

In this chapter, we aim to fill this missing link, and explore the connection between

DCM and DI. First, we revisit the discrete DCM (DDCM), and demonstrate the relationship

68



between DDCM and the conventional continuous time DCM. Second, we show that under

certain conditions, DDCM and DI are equivalent in characterizing the causal relationship

between two brain regions. Recall that traditionally, the accuracy of DI estimation is based

on the accuracy of probability or statistic estimation, and hence requires the data length be

sufficiently long. This equivalence between DDCM and DI, in fact, also provides a simple

but effective method for DI estimation under limited data length. More specifically, the

major contributions of this chapter can be summarized as:

1. We demonstrate the relationship between DDCM and the continuous time DCM, and

confirm the validity of DDCM. In DCM, the neural dynamics within the brain are

described using a differential equation. Conventionally, DDCM is obtained from DCM

in two steps: first, sampling the continuous DCM and approximating the differential

equation with a difference equation; second, modeling the hemodynamic response as

an LTI system, and characterizing it with a convolution. In this chapter, rather than

using approximation, we prove that when the input to the neural dynamic system is

a constant, then DDCM can be strictly derived from DCM under the noise free case.

Our result further demonstrates the validity and accuracy of the DDCM model.

2. We reveal the conditional equivalence between DDCM and DI in characterizing the

causal relationship between two brain regions. More specifically, assuming that the

dynamical neural system is causal, the neurostate and the noise at each region are

normally distributed, and the external input is a constant, we show that DDCM and

DI are equivalent in characterizing the causal relationship between two brain regions.

We also show that when the hemodynamic system is invertible, then the DI-based

causal relationship between the neurostates of two brain regions is the same with that
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between the observed BOLD signals. Finally, this equivalence between DDCM and DI

provides a simple method for DI estimation.

3. We illustrate the similarities and differences between DDCM and GC. Although GC

and DDCM share a similar mathematic form, DDCM determines the causality based on

values of the connectivity coefficients, while GC determines the causality by comparing

the prediction errors. In addition, both the external input and the biological variations

of the hemodynamic response are taken into account in DDCM, but are not involved

in GC.

4. We validate the theoretical results with fMRI data obtained under both resting state and

stimulus based state. Numerical result shows that both DDCM and DI can capture

the causal relationships between the primary visual cortex (V1), the parahippocampal

place area (PPA), and between V1 and the sensorimotor cortex (SMC). As expected,

in the stimulus based state, V1 has shown significant causal influence over PPA and

SMC; in the resting state, no clear causal relationship can be observed. Our results

are consistent with that reported in previous study [27].

The rest of this chapter is organized as follows. In Section II, we revisit DDCM and

demonstrate its relationship with the continuous time DCM. In Section III, we prove the

conditional equivalence between DDCM and DI in characterizing the causal relationship

between two brain regions. The similarities and differences between DDCM and GC are

illustrated in Section IV. We present the numerical results in Section V, and conclude in

Section VI.
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4.2 Discrete Dynamic Causal Modeling

In continuous time DCM, the invisible neurostates of d brain regions are denoted by a

vector X = [X1, X2, ..., Xd]
t, where each Xi, i = 1, 2, ..., d, represents the neurostate of

the ith region. The basic idea of DCM is that, the neurostate X, the external input U ,

the connectivity matrices Ã and B̃ that describe the connections among brain regions, the

observed BOLD signal Y and the independent noise can be formulated as a complex dynamic

system, characterized as:

Ẋ(t) = ÃX(t) + B̃U(t) + Ω1(t), (4.4)

Y(t) = Λ̃(X(t)) + Ω2(t), (4.5)

where Ω1(t) and Ω2(t) are the state noise and observation noise, and Λ̃ represents the

mapping from the neurostate X(t) to the observed BOLD signal Y(t).

The functional connectivity in DCM is mainly characterized by matrix Ã [8]. For instance,

in a model with two brain regions, that is, d = 2 and X = [X1, X2]t, the connectivity matrix

Ã will be:

Ã =

 Ã11 Ã12

Ã21 Ã22

 . (4.6)

Here, for i, j = 1, 2, Ãii measures the influence of the past values of Xi on its future values,

and Ãji measures the influence of past values of Xi on the future values of Xj . The absolute

values of Ã12 and Ã21 describe the causal relationship between the two regions: when |Ã12| >

|Ã21|, it means that X2 has imposed more influence over X1; and when |Ã21| > |Ã12|, it

means that X1 has imposed more influence over X2 [17, 75].
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It can be seen from equations (4.4) and (4.5) that the continuous time DCM characterizes

the dynamic neural system using two continuous-time equations. However, parameter esti-

mation in continuous time equations faces considerable challenges in practical applications.

To overcome this difficulty, there have been efforts to simplify DCM to a more tractable

form, such as the switching linear dynamic model (SLDS) [75] and multivariate dynamical

model (MDS) [17]. In both approaches, the continuous time equations are discretized, and

the mapping between the neurostate and the BOLD signal is approximated as an LTI sys-

tem, characterized using a convolution. That is, the discrete DCM (DDCM) model can be

obtained as:

X(k + 1) = AX(k) +BU(k) + Ω1(k), (4.7)

Y(k) =
M∑
m=0

Λ(m)X(k −m) + Ω2(k), (4.8)

where A is the connectivity matrix, {Λ(m),m = 0, 1, · · ·M} denotes the convolution coeffi-

cients corresponding to the hemodynamic response, and Ω1(k) and Ω2(k) denote the noise

terms independent of the brain state and the input.

Consider the case of two regions, region 1 and region 2, where equation (4.7) can be

rewritten as:

 X1(k + 1)

X2(k + 1)

 =

 A11 A12

A21 A22


 X1(k)

X2(k)

+

 B1

B2

U(k) +

 Ω11(k)

Ω12(k)

 . (4.9)

Similar to the continuous time DCM, coefficients A12 and A21 actually measure the causal

relationship between region 1 and region 2. More specifically, if |A21| > |A12|, then X1 is

more likely to be the casual side, and vice versa. The same analysis holds when multiple
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brain regions are under investigations [17,75].

As can be seen, equation (4.7) is obtained by approximating the continuous time differ-

ential equation in DCM with a difference equation. Here, we will show that, in the noise-free

case, when the external input is a constant, DDCM can be directly derived from DCM. For

this purpose, we need to prove the following Lemma first.

Lemma 1 For a differential equation Ẋ(t) = ÃX(t) + B̃U(t), where Ã and B̃ are deter-

ministic matrices, the solution to the equation is:

X(t) = eÃtX(0) +

∫ t

0
eÃ(t−τ)B̃U(τ)dτ. (4.10)

Proof Taking the derivatives on both side of equation (4.10), the left hand side of the

equation would be Ẋ(t). Given that U(t) is causal, the right hand side would be:

d

dt
[eÃtX(0) +

∫ ∞
0

u(t− τ)eÃ(t−τ)B̃U(τ)dτ ]

= ÃeÃtX(0) +

∫ ∞
0

d

dt
u(t− τ)eÃ(t−τ)B̃U(τ)dτ +

∫ ∞
0

u(t− τ)
d

dt
eÃ(t−τ)B̃U(τ)dτ

= ÃeÃtX(0) +

∫ ∞
0

δ(t− τ)eÃ(t−τ)B̃U(τ)dτ +

∫ ∞
0

u(t− τ)ÃeÃ(t−τ)B̃U(τ)dτ

= ÃeÃtX(0) + eÃ(t−τ)B̃U(τ)|τ=t + Ã

∫ t

0
eÃ(t−τ)B̃U(τ)dτ

= Ã[eÃtX(0) +

∫ t

0
eÃ(t−τ)B̃U(τ)dτ ] + B̃U(t)

= ÃX(t) + B̃U(t), (4.11)

in which u(t) is the unit step function, and δ(t) the Dirac delta function. That means,

X(t) = eÃtX(0) +
∫ t

0 e
Ã(t−τ)B̃U(τ)dτ is the solution to equation Ẋ(t) = ÃX(t) + B̃U(t). �

To illustrate the relationship between DCM and DDCM, assume there is no background

noise, and the external input is a constant, i.e., U(t) = U . In this case, sampling the
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neurostate in equation (4.10) at t = kT , where k = 0, 1, 2..., and T the sampling period, we

get:

X(kT ) = eÃkTX(0) +

∫ kT

0
eÃ(kT−τ)B̃Udτ. (4.12)

Accordingly, the neurostate at time t = (k + 1)T is

X((k + 1)T ) = eÃ(k+1)TX(0) +

∫ (k+1)T

0
eÃ( (k+1)T−τ )B̃Udτ. (4.13)

Subtracting eÃTX(kT ) from X((k + 1)T ), we have:

X((k + 1)T )− eÃTX(kT ) =

∫ (k+1)T

0
eÃ( (k+1)T−τ )B̃Udτ −

∫ kT

0
eÃ( (k+1)T−τ )B̃Udτ

=

∫ (k+1)T

kT
eÃ( (k+1)T−τ)B̃Udτ

= Ã−1(eÃT − I)B̃U. (4.14)

Let A = eÃT and B = Ã−1(eÃT − I)B̃, we can rewrite equation (4.14) as:

X( (k + 1)T ) = AX(kT ) +BU. (4.15)

When the sampling period T is fixed, we can simplify equation (4.15) as:

X(k + 1) = AX(k) +BU. (4.16)

This confirms the validity of the DDCM model, and the relationship between DCM and

DDCM.
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In the following sections, we will investigate the relationship of DDCM with the DI-based

causality analysis framework and the Granger Causality analysis.

4.3 The Relationship between DDCM and Directed

Information

In this section, we show that, under certain assumptions, DI and DDCM are equivalent in

characterizing the causal relationship between different brain regions.

4.3.1 Directed Information based Causality Analysis

Directed Information is a causality analysis framework based on information theory. It was

first introduced by Massey to study the capacity of a communication channel with feed-

backs [24]. The amplitude of DI has a clear physical meaning: it reflects the information

flow from one time series Xn
1 to another, Xn

2 . In [29], it was pointed out that the directed

information theory provides an effective and adequate framework for the connectivity in-

ference problems in neuroscience applications, as the Granger Causality graphs could be

derived using DI.

The directed information from one time series Xn
1 to another Xn

2 is calculated as [24]:

I(Xn
1 → Xn

2 ) =
n∑
k=1

[h(X2(k)|Xk−1
2 )− h(X2(k)|Xk−1

2 ,Xk
1)], (4.17)

where Xk
i = [Xi(1), Xi(2), ..., Xi(k)], i = 1, 2, and h denotes the differential entropy operator.

If I(Xn
1 → Xn

2 ) is greater than I(Xn
2 → Xn

1 ), we say Xn
1 has more causal influence over Xn

2 ;

otherwise Xn
2 has more causal influence over Xn

1 .
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Practical evaluation of directed information measures has been a challenging problem.

Over the last two decades, a limited number of directed information estimators have been

purposed [3, 22, 30]. In the following subsections, we will derive the theoretical form of DI

under certain assumptions, and investigate its relationship with DDCM.

4.3.2 DDCM and Directed Information

When deriving the relationship between DDCM and DI, we impose the following assumptions

to make the problem more tractable: (i) The dynamic neural system under investigation is

a causal system, which means for each brain region, the current value of the neurostate

depends only on previous values of neurostates of the region and its related regions. (ii) For

each region, both the neurostate and the background noise are normally distributed, and the

variances are the same in related brain regions. More specifically, for each k = 1, 2, · · · , n,

the variances corresponding to the neurostate and the background noise are σ2
x and σ2

0,

respectively. (iii) The external input U is a constant. This assumption is reasonable when

the changing rate of the external input is much slower than that of neurostates.

In the following analysis, let the uppercase letters (X,Y ,...) denote random variables,

and the lowercase letters (x,y,...) the possible values they can acquire. In particular,

x1(k) and x2(k) denote the possible values X1(k) and X2(k) can acquire, and ω11(k)

and ω12(k) denote the possible values Ω11(k) and Ω12(k) can acquire. Given a time se-

ries Xn = [X(1), X(2), ..., X(n)], n ∈ N , for any x(k), k = 1, 2, . . . n, P (x(k)) denotes the

probability for X(k) to take the value x(k), and P (x(k)|xk−1) the conditional probabil-

ity that the current sample X(k) is x(k), given that the previously observed sequence is

xk−1 = [x(1), x(2), ..., x(k − 1)].

Following equation (4.9), the conditional probability P (x2(k) | xk−1
2 ,xk1) can be written
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as:

P (x2(k) | xk−1
2 ,xk1) = P (A21x1(k − 1) + A22x2(k − 1) +B2U + ω12(k − 1) | xk−1

2 ,xk1)

= P (A21x1(k − 1) + A22x2(k − 1) +B2U + ω12(k − 1) | xk−1
2 ,xk−1

1 )

= P (ω12(k − 1)). (4.18)

This implies that, for each k = 1, 2, · · · , n, the conditional probability density function of

the neurostate X2(k) given Xk−1
2 and Xk

1 is Gaussian with variance σ2
0.

It is well known that given a Gaussian random variable Ξ with variance σ2
ξ , the corre-

sponding differential entropy h(Ξ) can be calculated as:

h(Ξ) =
1

2
log 2πeσ2

ξ . (4.19)

Therefore, based on equations (4.18) and (4.19), the differential entropy corresponding to

the neurostate X2(k) given Xk−1
2 and Xk

1 can then be calculated as:

h(X2(k)|Xk−1
2 ,Xk

1) =
1

2
log 2πeσ2

0. (4.20)

Similarly, the conditional probability P (x2(k) | xk−1
2 ) can be simplified as:

P (x2(k) | xk−1
2 ) = P (A21x1(k − 1) + A22x2(k − 1) +B2U + ω12(k − 1) | xk−1

2 )

= P (A21x1(k − 1) + ω12(k − 1)). (4.21)
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As a result, the corresponding differential entropy will be:

h(X2(k)|Xk−1
2 ) =

1

2
log 2πe(A2

21σ
2
x + σ2

0), (4.22)

where σ2
x is the variance of the neurostate, which is assumed to have no significant changes

among related regions and within the observation frame.

Based on equations (4.18) to (4.22), the directed information can then be obtained as:

I(Xn
1 → Xn

2 ) =
n∑
k=1

[
1

2
log 2πe(A2

21σ
2
x + σ2

0)− 1

2
log 2πeσ2

0]

=
n

2
log(1 + A2

21
σ2
x

σ2
0

)

=
n

2
log(1 + cA2

21); (4.23)

where c = σ2
x/σ

2
0 is the ratio of the power of neural activities and the noise power. Similarly,

we can prove that I(Xn
2 → Xn

1 ) = (n/2)log(1 + cA2
12).

It can be seen from equation (4.23) that after the parameters in DDCM have been

obtained, the directed information from one region to another can be calculated accordingly.

That is, equation (4.23) provides an effective method for the estimation of DI.

Note that when c > 0, log(1 + cx2) is a monotonically increasing function. Based on the

discussions above, we can obtain the following proposition:

Proposition 4.1 If |A21| > |A12|, then I(Xn
1 → Xn

2 ) > I(Xn
2 → Xn

1 ), that is, region 1 is

more likely to be the causal side; otherwise, we will have I(Xn
2 → Xn

1 ) > I(Xn
1 → Xn

2 ), and

region 2 is more likely to be the causal side.

Proposition 4.1 is in accordance with the previous analysis for DDCM: the causality

analysis can be carried out based on the absolute values of the coefficients of the connectivity
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matrix. This means, for a causal dynamic neural system with a constant external input,

when the neurostate and the background noise are normally distributed, DI and DDCM are

equivalent in characterizing the causal relationship between two brain regions.

On the other hand, in practice, we can only observe the BOLD signal Yn rather than the

neurostate Xn. That is, given two brain regions, region 1 and region 2, the calculation of DI

can only be carried out on the observations Yn
1 and Yn

2 rather than the neurostates Xn
1 and

Xn
2 . The natural questions are: will the causal relationship obtained from the neurostates

of two brain regions be maintained in the observed BOLD signals? Whether DDCM is

still equivalent with DI concerning the observed BOLD signals in charactering the causal

relationship between two brain regions?

In the following, we will prove that: in the observation noise-free case, as long as the

hemodynamic system is invertible, DI calculated using the estimated neurostates is equal to

the DI calculated using the observed signals.

Following equation (4.8), for each k = 1, 2, · · ·n, the values of the observed BOLD signals

of region l, l = 1, 2, can be written as

yl(k) =
M∑
m=0

Λl(m)xl(k −m) + Ω2l(k). (4.24)
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When there is no observation noise, equation (4.24) can be rewritten in the matrix form:



yl(1)

yl(2)

yl(3)

...

yl(k)


=



Λl(0) 0 0 · · · 0

Λl(1) Λl(0) 0 · · · 0

Λl(2) Λl(1) Λl(0) · · · 0

...
...

...
. . .

...

0 0 0 · · · Λl(0)





xl(1)

xl(2)

xl(3)

...

xl(k)


. (4.25)

That is, we have

ykl = Λl,kx
k
l , k = 1, 2, · · ·n, l = 1, 2, (4.26)

where ykl = [yl(1), yl(2), · · · , yl(k)]T , xkl = [xl(1), xl(2), · · · , xl(k)]T , and Λl,k is a k × k

matrix shown in equation (4.25). It can be seen from equation (4.26) that the determinant

of matrix Λl,k equals to |Λl(0)|k. Therefore, if Λl(0) 6= 0, then Λl,k is invertible. Hence

for k = 1, 2, · · ·n, and l = 1, 2, the values of the neurostate xkl can be recovered from the

observed BOLD signal ykl through xkl = Λ−1
l,kykl .

As a result, the conditional probability P (y2(k) | yk−1
2 ,yk1) can be written as:

P ( y2(k) | yk−1
2 ,yk1 ) = P ( y2(k) | Λ2,k−1xk−1

2 ,Λ1,kx
k
1 )

= P ( y2(k) | xk−1
2 ,xk1 )

= P (
M∑
m=0

Λ2(m)x2(k −m) | xk−1
2 ,xk1 )

= P ( Λ2(0)x2(k) | xk−1
2 ,xk1 )

= P ( Λ2(0)[A21x1(k − 1) + A22x2(k − 1) +B2U + ω12(k − 1)] | xk−1
2 ,xk1 )

= P ( Λ2(0)[A21x1(k − 1) + A22x2(k − 1) +B2U + ω12(k − 1)] | xk−1
2 ,xk−1

1 )

= P ( Λ2(0)ω12(k − 1) ) (4.27)
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This implies that, for each k = 1, 2, · · · , n, the conditional probability density function of

Y2(k) given Yk−1
2 and Yk

1 is Gaussian with variance Λ2
2(0)σ2

0. Therefore, Following equation

(4.19), the differential entropy corresponding to Y2(k) given Yk−1
2 and Yk

1 can then be

calculated as:

h(Y2(k)|Yk−1
2 ,Yk

1) =
1

2
log 2πeΛ2

2(0)σ2
0. (4.28)

Similarly, the conditional probability P (y2(k)|yk−1
2 ) can be simplified as:

P (y2(k) | yk−1
2 ) = P (Λ2(0)[A21x1(k − 1) + A22x2(k − 1) +B2U + ω12(k − 1)] | Λ2,k−1xk−1

2 )

= P (Λ2(0)[A21x1(k − 1) + ω12(k − 1)]). (4.29)

As a result, the corresponding differential entropy will be

h(Y2(k)|Yk−1
2 ) =

1

2
log 2πeΛ2

2(0)(A2
21σ

2
x + σ2

0), (4.30)

where σ2
x is the variance of neurostate, which is assumed to have no significant differences

among related regions.

Based on equations (4.28) and ((4.30), we have:

I(Yn
1 → Yn

2 ) =
n∑
k=1

[
1

2
log 2πeΛ2

2(0)(A2
21σ

2
x + σ2

0)− 1

2
log 2πeΛ2

2(0)σ2
0]

=
n

2
log(1 + A2

21
σ2
x

σ2
0

)

=
n

2
log(1 + cA2

21); (4.31)
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where c = σ2
x/σ

2
0 is the ratio of the power of neural activities and the noise power. Similarly,

we can prove that I(Yn
2 → Yn

1 ) = (n/2) log(1 + cA2
12).

Comparing equation (4.31) with equation (4.23), we can see that in the noise-free case, as

long as the hemodynamic system is invertible, DI obtained from the observed BOLD signal

equals to the DI obtained from the neurostate, that is, I(Yn
1 → Yn

2 ) = I(Xn
1 → Xn

2 ) and

I(Yn
2 → Yn

1 ) = I(Xn
2 → Xn

1 ).

Proposition 4.2 If |A21| > |A12|, then I(Yn
1 → Yn

2 ) > I(Yn
2 → Yn

1 ), that is, region 1 is

more likely to be the causal side; otherwise, we will have I(Yn
2 → Yn

1 ) > I(Yn
1 → Yn

2 ), and

region 2 is more likely to be the causal side.

Proposition 4.2 implies that in the noise-free case, as long as the hemodynamic system is

invertible, the DI-based causal relationship between the neurostates of two brain regions is

the same with that between the observed BOLD signals, and DCM and DI are still equivalent

in characterizing the causal relationship between brain regions.

4.3.3 Discussions

In the previous subsection, we prove that under certain assumptions, DI and DDCM are

equivalent to each other in characterizing the causal relationship between two brain regions.

However, such an equivalence may not be generalized to the multi-region DDCM. The reason

is that: when more than two regions are involved in DDCM, the causal relationship between

two regions should take their interactions with other regions into account.
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When multiple brain regions are under investigation, equation (4.7) would be


X1(k + 1)

...

XN (k + 1)

 =


A11 · · · A1N

...
. . .

...

AN1 · · · ANN




X1(k)

...

XN (k)

+


B1

...

BN

U +


Ω11(k)

...

Ω1N (k)

 , (4.32)

where N is the number of regions. For any two different regions, region i and region j,

i, j = 1, 2, · · ·N, under the same assumptions in Section III.B, the conditional probability

P (xj(k)|xk−1
j ,xki ) can be written as:

P (xj(k) | xk−1
j ,xki ) = P (

N∑
l=1

Ajlxl(k − 1) +BjU + ω1j(k − 1) | xk−1
j ,xki )

= P (
∑
l 6=i,j

Ajlxl(k − 1) + ω1j(k − 1)). (4.33)

Similarly, the conditional probability P (xj(k) | xk−1
j ) can be simplified as:

P (xj(k) | xk−1
j ) = P (

N∑
l=1

Ajlxl(k − 1) +BjU + ω1j(k − 1) | xk−1
j )

= P (
∑
l 6=j

Ajlxl(k − 1) + ω1j(k − 1)). (4.34)

It can be seen from equations (4.33) to (4.34) that for each k = 1, 2, · · ·n, the items

within the sum
∑
l 6=i,j

Ajlxl(k− 1) may be correlated with each other. As a result, DI cannot

be derived with the same approach shown in equations (4.18) to (4.22). Therefore, unlike

the two-region case, when multiple regions are involved, whether the causal relationships

characterized by DDCM and DI are equivalent is still an open problem.
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4.4 The Relationship between DDCM and Granger

Causality

Granger Causality (GC) is the first practical causality analysis framework for time series. It

can be applied directly to any given time series to detect the coupling among brain regions.

The main idea is, if two signals X1 and X2 form a causal relationship, then, instead of using

the past values of X2 alone, the information contained in the past values of X1 will help to

predict X2. More specifically, the calculation of Granger Causality is based on the linear pre-

diction models. Suppose Xn
1 = [X1(1), X1(2), ..., X1(n)] and Xn

2 = [X2(1), X2(2), ..., X2(n)]

are two time series observed from two brain regions. Granger Causality compares the pre-

diction errors er and ẽr in the following equations:

X2(k + 1) =
L−1∑
l=0

alX2(k − l) + er, (4.35)

X2(k + 1) =
L−1∑
l=0

[blX1(k − l) + clX2(k − l)] + ẽr, (4.36)

for k = 1, 2, ..., n. Here, er is the error of predicting X2 based only on the previous values

of X2, and ẽr is the error of predicting X2 based on both the previous values of X2 and the

previous values of X1. If ẽr is much smaller than er, that is, the introduction of the previous

values of X1 can improve the prediction accuracy, then we say there is a Granger causal

relationship between X1 and X2. In practical analysis, GC can be tested using a nested

model comparison based on the F statistics [49].

Since 1990s, there have been growing interests in applying Granger Causality analysis to

identify causal interactions in neuroscience [8]. GC has been successfully applied to fMRI
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data, EEG measurements, as well as neural level signals [9]. In these pioneering work, the

validity and computational simplicity of Granger Causality have been widely recognized.

To show the differences between GC and DDCM, rewrite equations (4.35) and (4.36) as

follows:

 X2(k + 1)

X2(k + 1)

 =
L−1∑
l=0

 al 0

bl cl


 X1(k − l)

X2(k − l)

+

 er

ẽr

 . (4.37)

Comparing equation (4.37) with equations (4.7) and (4.9), we can see that, as in the state

equation in DDCM, GC applies an auto-regression model to the observed sequences. How-

ever, there are several major differences between GC and DDCM:

First, GC uses the regression error terms rather than the coefficient matrices to determine

the causal relationship between the two sequences. This means, the causality measures used

in GC and DDCM are completely different. Second, in [74], Friston provided an example

to show that DCM and GC could generate different results given the same dataset. The

underlining argument is that: both the external input U and the biological variance of the

hemodynamic response are taken into account in DDCM but are not involved in GC. Finally,

it has also been noticed in [11] that because GC relies on the linear prediction method, when

there exist instantaneous and/or strong nonlinear interactions between two regions, GC

analysis may lead to invalid results.

4.5 Numerical Analysis

In this section, we briefly describe how to validate the equivalence of DDCM and DI between

two regions using experimental fMRI data obtained under both resting state and stimulus
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based state.

4.5.1 Data Acquisition

Fourteen right-handed healthy college students (7 males, 23.4±4.2 years of age) from Michi-

gan State University volunteered to participate in this study and signed consent forms ap-

proved by the Michigan State University Institutional Review Board. The experiment was

conducted on a 3T GE Signa HDx MR scanner (GE Healthcare, Waukesha, WI) with an

8-channel head coil.

For each subject, fMRI datasets were collected on a visual stimulation condition with a

scene-object fMRI paradigm and then on a resting-state condition. The parameters for the

fMRI scan were: gradient-echo EPI, 36 contiguous 3-mm axial slices in an interleaved order,

time of echo (TE) = 27.7 ms, time of repetition (TR) = 2500 ms, flip angle = 80◦, field of

view (FOV) = 22 cm, matrix size = 64 × 64, ramp sampling, and with the first four data

points discarded.

On the visual stimulation fMRI condition, each volume of images were acquired 192

times (8 min) while each subject was presented with 12 blocks of visual stimulation after

an initial 10 s “resting” period. In a predefined randomized order, the scenery pictures were

presented in 6 blocks and the object pictures were presented in other 6 blocks. All pictures

were unique. In each block, 10 pictures were presented continuously for 25 s (2.5 s for each

picture), followed with a 15 s baseline condition (a white screen with a black fixation cross

at the center). The subject needed to press his/her right index finger once when the screen

was switched from the baseline to picture condition. Stimuli were displayed in color in full

screen on a 1024 × 768 32-inch LCD monitor (Salvagione Design, Sausalito, CA) placed at

the back of the magnet room. The LCD subtended 10.2◦ × 13.1◦ of visual angle. On the
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resting-state fMRI (rs-fMRI) condition, each volume of images were acquired 164 times (6

min and 50 s) after a subject was informed to relax, keep his/her eyes closed and stay awake

throughout the scan. After the above functional data acquisition, high-resolution volumetric

T1-weighted spoiled gradient-recalled (SPGR) images with cerebrospinal fluid suppressed

were obtained to cover the whole brain with 120 1.5-mm sagittal slices, 8◦ flip angle and 24

cm FOV. These images were used to identify anatomical locations.

4.5.2 fMRI Data Pre-processing and Analysis

All stimulus fMRI data pre-processing and analysis for each subject were conducted with

AFNI software (Cox, 1996) as described in Henderson et al. [61]. Essentially, slice-timing

correction and rigid-body motion correction were conducted. Spatial blurring with a full

width half maximum of 4 mm was applied to reduce random noise. Multiple linear regressions

(using the “3dDeconvolve” routine in AFNI) were applied on a voxel-wise basis to find the

magnitude change when each picture condition was presented, followed with general linear

tests to find the statistical significances between stimulus conditions.

The regions of interest (ROI) in this study were defined in the Talairach coordinate

space [67]. Regions showing preferential activation to scenes over objects (voxel-based p-

value < 10−4) in the right and left parahippocampal gyri were defined as the right and left

PPA [61]. The right and left V1 ROIs were defined as the regions activated by pictures

(voxel-based p-value < 10−10) within Brodmann area 17. Because there was a high level of

activation at and around V1, a highly conservative p value threshold was chosen to define

relatively focal ROIs. The right and left SMC spherical ROIs with 6 mm radius were defined

with the centers at (R36, P22, S54) and (L38, P26, S50) correspondingly in the Talairach

coordinate space (R = Right, L = Left, P = Posterior, S = Superior). The SMC coordinate
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locations were defined by Witt et al. [68] and the ROIs were created as in Zhu et al. [69]. The

time courses from the stimulation fMRI dataset that were already pre-processed as above

were detrended and had their baselines removed also. The spatially averaged time course at

each of the above ROIs was generated for the causality analyses discussed later.

The rs-fMRI pre-processing was also processed in AFNI [70] as commonly applied in the

field and as described in details in Zhu et al. [69]. Essentially, slice-timing correction and

rigid-body motion correction were carried. Spatial blurring with a full width half maximum

of 4 mm was applied to reduce random noise. The time courses were detrended and the

baselines were removed. Brain global, cerebrospinal fluid and white-matter mean signals

were modeled as nuisance variables and removed from the time courses. Finally, the time

courses were band-pass filtered to the range of 0.009 Hz – 0.08 Hz. The spatially averaged

time course at each of the above ROIs was generated for the causality analyses discussed

later.

4.5.3 Result

In this subsection, we validate the equivalence of DDCM and DI between two regions using

experimental fMRI data obtained under both resting state and stimulus based state.

Recall that in the scene-object paradigm, subjects viewed blocks of scenery and object

pictures. They were asked to press a button with the right index finger when they saw a

block of pictures. We test the robustness of our causality analysis techniques against some

expected outcomes: under the stimulation fMRI paradigm, the primary visual cortex (V1)

and nearby regions are activated first, followed with activation in the parahippocampal place

area (PPA) for higher level scene processing. Some but relatively small activations in the left

sensorimotor cortex (SMC) is also expected following V1 activations. Under the resting-state
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Figure 4.1: Estimations results of DDCM with the experimental fMRI data.

condition, neuronal activity is not expected to occur in a sequential manner among above

regions.

The simulation result of V1 and PPA under both resting and stimulus based states are

shown in Figure (4.1(a)) and (4.1(b)). It can be seen that under the resting state, V1 does

not exhibit a dominating influence over PPA. However, under the stimulus based state, |A21|

is increased considerably compared to |A12|. In other words, V1 shows stronger influences

over PPA as expected. Figure (4.1(c)) and (4.1(d)) have shown a similar pattern for the

regions V1 and SMC.

In our previous study [27], we have carried out DI based causality analysis on the same
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Figure 4.2: Results of directed information based causality analysis.

dataset. The corresponding result is shown in Figure (4.2), where the causal relationship

between two brain regions is measured with the metric γ. Given two time series Xn
1 and Xn

2 ,

γ is calculated as

γ =
I(Xn

1 → Xn
2 )− I(Xn

2 → Xn
1 )

I(Xn
1 ; Xn

2 )
, (4.38)

where I(Xn
1 ; Xn

2 ) is the mutual information between two time series. Clearly, γ ∈ [−1, 1].

When |γ| approaches 1, it can be said with high confidence that there does exist a causal

influence between two brain regions; while if |γ| is adjacent to 0, it is more likely that no

clear causal relationship exists, or the samples in random sequences are subject to strong

noises.

It can be seen that in the resting state, the medians of the γ values are within the

range [−0.1, 0.1]. V1 does not exhibit a dominating causal influence over PPA and SMC.

However, under the stimulus based state, the γ values for V1 → PPA and V1 → SMC

increase significantly. In other words, under the stimulus based state, V1 shows stronger

influences over PPA, as well as SMC.
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From Figure (4.1) and Figure (4.2), we can see that the causality analysis result obtained

with DDCM is in consistent with our previous analysis using the directed information in [27].

4.5.4 Summary of Result

In this section, we applied DDCM to the experimental fMRI data to examine the causal

relationship in V1–PPA and V1–SMC region pairs. We observed that under the resting

state there was no dominant causal influence for both pairs; while under the stimulus based

states, V1 turned out to exhibit more influence over PPA and SMC. The result is consistent

with the expectations and our previous result using DI.

4.6 Summary

This chapter investigated the discrete time DCM (DDCM) and its relationship with Directed

Information (DI) and Granger Causality (GC). First, we demonstrated the relationship be-

tween DDCM and the continuous time DCM. Rather than using approximation, we proved

that when the input to the neural dynamic system is a constant, then DDCM can be strictly

derived from DCM under the noise free case. This result further validates the DDCM model.

Second, based on information theory, we revealed the conditional equivalence between DDCM

and DI in characterizing the causal relationship between two brain regions. More specifi-

cally, assuming that the dynamic neural system is causal, the neurostate and the noise at

each region are normally distributed, and the external input is a constant, we showed that

DDCM and DI are equivalent in characterizing the causal relationships between two brain

regions. This equivalence between DDCM and DI provides a simple method for DI estima-

tion. We also showed that when the hemodynamic system is invertible, the DI-based causal
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relationship between the neurostates of two brain regions is the same with that between

the observed BOLD signals. However, it should be pointed out that conditional equivalence

between DDCM and DI needs further investigation when multiple regions are involved. Fi-

nally, we illustrated the similarities and differences between DDCM and GC. Although they

share a similar mathematic form, the causality measures they utilize are completely different.

Note that GC detects the causal relationship between the observed signals, and DCM de-

tects the causal connections of the hidden neurostates. The conditional equivalence between

GC and DCM remains an interesting problem. The theoretical techniques are demonstrated

using fMRI data obtained under both resting state and stimulus based state. Our numerical

analysis is consistent with that reported in previous study.
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Chapter 5

Classification of Alzheimer’s Disease,

Mild Cognitive Impairment and

Normal Control Subjects Using

Resting-State fMRI based Network

Connectivity Analysis

This chapter proposes a robust method for the Alzheimer’s Disease (AD), mild cognitive

impairment (MCI) and normal control (NC) subject classification under size limited fMRI

data samples, by exploiting brain network connectivity pattern analysis. First, we select

regions of interest (ROIs) within the default mode network (DMN) to formulate a sub-

network. We calculate the Pearson correlation coefficients between all possible ROI pairs in

the sub-network and use them to form a feature vector for each subject. Second, we propose

a regularized linear discriminant analysis (LDA) approach, where we take shrinkage based

regularization procedures to reduce the noise effect (including both biological variability and

measurement errors) due to limited sample size. The feature vectors are then projected onto

a one-dimensional axis using the proposed regularized LDA, where the differences between
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AD, MCI and NC subjects are maximized. Based on the Central Limit Theorem, we show

that when used for fMRI based brain analysis, LDA is equivalent to the optimal maximum

likelihood based classification method. Finally, a decision tree based multi-class AdaBoost

classifier, which is robust to noise effect, is applied to the projected one-dimensional vectors

to carry out the classification task. Numerical analysis demonstrates that the combination of

regularized LDA and the AdaBoost classifier can increase the classification accuracy signifi-

cantly. Our analysis confirms the previous findings that the hippocampus and the isthmus

of the cingulate cortex are closely involved in the development of AD and MCI.

5.1 Introduction

Alzheimer’s Disease (AD) is the most common form of dementia, and causes problems with

memory, thinking and behavior. It is a degenerative brain disorder, characterized by progres-

sive deterioration of nerve cells, eventually leading to cell death. Mild Cognitive Impairment

(MCI) is a condition in which people show a slight, but noticeable and measurable decline

in cognitive capabilities, beyond what is considered normal for their age. Older people with

MCI may or may not progress to AD, though they have a higher risk of doing so. Accurate

distinction of AD and MCI from normal control (NC) subjects is critical for early diagnosis

and treatment of brain disorders.

Traditional AD and MCI diagnosis methods are generally based on positron emission

tomography (PET) and cerebrospinal fluid (CSF) [76]. In recent years, there has also been

an increasing interest in noninvasive diagnosis methods based on electroencephalography

(EEG) [77], structural magnetic resonance imaging (MRI) [78], and functional magnetic

resonance imaging (fMRI) [36,79].
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In literature, the majority of existing noninvasive classification approaches rely on MRI

and EEG. In [80], Pritchard et al. analyzed spectral-band measures of EEG data acquired

from AD patients and NC subjects. They found that classifiers based on multivariate discrim-

inant analysis [81] and the nearest neighbor approach could typically achieve a two-category

(AD and NC) classification accuracy of 80% when applied to EEG data. At the same time,

they showed that the accuracy could be improved if nonlinear EEG measures were added.

In [82], Magnin et al. applied the support vector machine (SVM) classifier to the whole-

brain anatomical MRI data acquired from AD patients and NC subjects. They formulated

feature vectors for classification using gray matter information extracted from T1-weighted

MR images of AD, MCI and NC subjects, and achieved a two-category classification accu-

racy of 94.5%. In [83], Korolev et al. combined data from clinical biomarkers, MRI signals,

and plasma biomarkers and developed a classifier to predict whether an MCI patient would

develop Alzheimer’s disease over a three-year period. Their prediction accuracy was 80%.

More recently, fMRI, which maps brain activities to metabolic changes (such as the

blood-oxygen-level dependent (BOLD) contrast) in cerebral blood flow, has also been used

to classify AD, MCI and NC subjects [36, 79]. The underlying argument is that cerebral

blood flow and neuronal activation are coupled. That is, when a particular brain region

becomes active, blood flow to that region also increases.

Compared with EEG, fMRI data can display active brain areas more directly, has much

better spatial resolution throughout the brain. Unlike structural MRI which mainly reflects

the anatomical information of brain tissues and structure, fMRI focuses more on functional

brain activities, and can provide more direct measurement on how different brain regions

are involved in particular brain activities, hence provide more insight on the changes of

functional brain connectivity during the evolution of MCI and AD.
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In [36], Wang et al. extracted two intrinsically anti-correlated networks using resting

state fMRI data from 14 AD patients and 14 NC subjects, and applied a Pseudo-Fisher

Linear Discriminative Analysis (pFLDA) on the high dimensional feature vectors. Their

two-category classification accuracy was 83%. In [79], Chen et al. applied the same technique

to larger datasets. Similarly, the accuracy of two-category classification of AD patients and

NC subjects was 82%.

While structural MRI has been widely applied to clinical diagnosis of brain disorders,

fMRI has mainly been used for research purposes. As a result, the size of fMRI data samples

is generally quite limited, which has become a major bottleneck in fMRI based AD, MCI and

NC classification. The underlying reason is that, when the sample size is small, most existing

classifiers suffer from severe noise effects, due to both biological variability and measurement

noise.

Motivated by this observation, in this chapter, we develop a reliable method for AD,

MCI and NC classification that is robust with respect to size limited fMRI data samples,

by exploiting brain network connectivity pattern analysis. More specifically, we take multi-

ple regions of interest (ROIs) in the brain, formulate a sub-network, and then analyze the

network connectivity pattern by evaluating the correlation between all ROI pairs within the

sub-network. The underlying argument is that: due to variability in the brain connectivity

of each individual, the connectivity between two brain regions alone may not be sufficient

to distinguish NC subjects from patients with cognitive impairments; brain network connec-

tivity pattern analysis, which looks for subtle changes in the pattern of connectivity among

multiple or all regions in the sub-network, may reveal more in-depth information.

The proposed classification scheme can be described as follows. First, we select an ROI

sub-network and formulate the feature vectors by calculating the Pearson correlation coef-
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ficients between all pairs of ROIs. In this chapter, we formulate the ROI sub-network by

selecting regions within the default mode network (DMN), which denotes the network of

brain regions that are active when the brain is at the resting state [84]. Prior resting-state

fMRI studies have demonstrated that the DMN is affected by AD [42, 85–88]. More specif-

ically, in this chapter, we select the right and left hippocampi and isthmus of the cingulate

cortices (ICCs) (4 regions) as our ROI sub-network. This is because that both hippocampus

and ICC are part of the DMN, and can be well defined anatomically through the FreeSurfer

software [88], even in brains with abnormal anatomy [42]. It has also been demonstrated [42]

that the functional connection between hippocampus and ICC was reduced in AD. Second, we

propose a regularized linear discriminant analysis (LDA) approach, where we take shrinkage

based regularization procedures to reduce the noise effect (including both biological vari-

ability and measurement errors) due to limited sample size. The feature vectors are then

projected onto a one-dimensional axis using the proposed regularized LDA, where the dif-

ferences between AD, MCI and NC subjects are maximized. Based on the Central Limit

Theorem, we show that when used for fMRI based brain functioning classification, LDA is

equivalent to the optimal maximum likelihood based classification method. Finally, a deci-

sion tree based multi-class AdaBoost classifier, which is robust to noise effect, is applied to

the projected one-dimensional vectors to carry out the classification task.

The major results of this chapter can be summarized as:

1. We propose a regularized LDA approach, which aims to reduce the noise effect by using

two shrinkage methods. The first shrinkage method moves the estimated mean of each

class towards the overall mean, and the second one shifts the estimated covariance

matrix for each class towards the identity matrix. Numerical analysis shows that: in

comparison with the original LDA approach [41], the regularized LDA can reduce the
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noise effect and increase the classification accuracy significantly.

2. We investigate the relationship between LDA-based and Maximum Likelihood (ML)

based classification or decision making methods. Recall that LDA aims to separate two

or more classes by projecting them into a subspace or direction where different classes

show most significant differences [41]. In this chapter, we prove that when the original

data are normally distributed, LDA is equivalent to maximizing the log-likelihood

function of the projected data. Note that there are millions of neurons within one fMRI

voxel, according to the Central Limit Theorem, the overall fMRI signal corresponding

to each voxel follows the normal distribution approximately. This implies that when

used for fMRI based brain functioning classification, LDA is equivalent to the optimal

ML based classification method.

3. We conduct the connectivity pattern classification of AD, MCI and NC subjects by ap-

plying the regularized LDA and AdaBoost classifier based approach. First, we calculate

the Pearson correlation coefficients between all possible pairs of the ROIs within the

group to formulate the feature vectors. Second, the feature vectors are then projected

onto a one-dimensional axis using the proposed regularized LDA, where the differences

between AD, MCI and NC subjects are maximized. Finally, we construct the decision

tree based on the projected feature vectors and carry out the classification using the

multi-class AdaBoost classifier.

In this chapter, we choose to utilize the AdaBoost classifier instead of the naive

Bayesian classifier, since it has been observed consistently in literature that: the Ad-

aBoost classifier could achieve significantly higher classification accuracy than the naive

Bayesian classifier when the sample size is very limited [89]. Our numerical results
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demonstrate that: (i) LDA-Bayesian classifier can achieve a three-category (AD, MCI

and NC) classification accuracy of 44%; (ii) LDA-AdaBoost classifier can increase the

accuracy to 69%; (iii) when AdaBoost is combined with the regularized LDA, the

accuracy can be further increased to 75%.

As expected, it is also observed that compared with AD and NC subjects, it is more

difficult for the classifier to identify MCI subjects. The classification accuracy for AD

and NC are as high as 80% and 83%, respectively, while the accuracy for MCI is only

63%. Our analysis also confirms the previous findings that the hippocampus and the

isthmus of the cingulate cortex are closely involved in the development of AD and MCI.

The rest of this chapter is organized as follows. In Section II, we present the proposed reg-

ularized LDA approach, and explore the relationship between LDA based and the Maximum

Likelihood based classification methods. In Section III, we describe the ROI sub-network

formulation, and elaborate how to perform AD, MCI and NC classification through connec-

tivity pattern analysis. In Section IV we present the numerical results, and we conclude in

Section V.

5.2 Regularized Linear Discriminant Analysis

In this section, first, we revisit the Linear Discriminant Analysis method. Second, we in-

tegrate two shrinkage methods with the original LDA to formulate the regularized LDA.

Finally, we investigate the relationship between LDA and the ML estimation method.
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5.2.1 Linear Discriminant Analysis

Linear Discriminant Analysis aims to separate two or more classes by projecting them into

a subspace or direction where different classes show most significant differences [41]. Here,

we illustrate the basic idea of LDA using the three-class case. Suppose we have a set of

d−dimensional vector samples X = {x1,x2, ...,xn}, where n1 of them are from the first

class, denoted as C1, and n2 of them are from the second class, denoted as C2, and the

remaining n3 = n− n1 − n2 of them are from the third class, denoted as C3. For i = 1, 2, 3,

the mean and scatter matrix (i.e., the scaled covariance matrix) of each of the three classes

are defined as:

µi =
1

ni

∑
x∈Ci

x, (5.1)

Si =
∑
x∈Ci

(x− µi)(x− µi)
t. (5.2)

Consider the projection of vectors in X to a new d−dimensional space:

y = Wx, x ∈ X, (5.3)

where W is a d×d matrix to be determined by the LDA algorithm. In this chapter, we only

utilize the first dimension y of projected vector y where the differences among three classes

are maximized. As a result, Equation (5.3) can be rewritten as:

y = wtx, (5.4)
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where wt is the first row of the matrix W . For i = 1, 2, 3, let

C̃i = {y = wtx | x ∈ Ci}. (5.5)

Define µ = 1
n

n∑
i=1

xi as the overall mean, SW =
3∑
i=1

Si as the within-class scatter matrix, and

the between-class scatter matrix SB as:

SB =
3∑
i=1

ni(µi − µ)(µi − µ)t. (5.6)

LDA seeks a transform vector w that maximizes the following objective function:

J(w) =
wtSBw

wtSWw
. (5.7)

It can be proved [41,81] that to maximize Equation (5.7), w should satisfy

S−1
W SBw = λw, (5.8)

for some constant λ. Performing eigenvalue decomposition to matrix S−1
W SB , LDA then

chooses the eigenvector corresponding to the largest eigenvalues of the matrix S−1
W SB as w.

As will be shown in Section III, various classifiers, such as the Bayesian classifier and the

AdaBoost classifier can then be applied to the projected vectors {yi = wtxi}ni=1 for further

classification.
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5.2.2 Regularized LDA

The original LDA algorithm has been widely applied in supervised learning problems [81].

However, as mentioned earlier, when the total number of subjects is small, the estimated

statics suffer considerably from the noise effect caused by both biological variability and

measurement error, leading to low classification accuracy. For our fMRI based AD, MCI

and NC classification, due to the very limited sample size, LDA together with the Bayesian

classifier could only achieve an accuracy that is under 50%. To reduce the noise effect, we

propose to regulate the original LDA using two shrinkage methods.

5.2.2.0.3 Shrinkage of the Mean The first shrinkage method, originally proposed by

Tibshirani et al. [90] for gene expression profiling, adjusts the estimated mean vectors. In our

case, let C =
3⋃
i=1

Ci be the whole sample set. Recall that for any x ∈ C, x = [x(1), · · · ,x(d)]t.

For i = 1, 2, 3, k = 1, · · · , d, define µi,k ,
1
ni

∑
x∈Ci

x(k), and µk ,
1
n

∑
x∈C

x(k), where

ni = |Ci| and n = n1 + n2 + n3. Let µi = [µi,1, µi,2, ..., µi,d]
t, and µ = [µ1, µ2, ..., µd]

t. The

algorithm first calculates the following variances:

ξ2
k =

1

n− 3

3∑
i=1

∑
x∈Ci

[x(k)− µi,k]2, k = 1, · · · , d. (5.9)

Then for i = 1, 2, 3, and k = 1, · · · , d, the scaled distance of µi,k to the centroid µk is

calculated as:

di,k =
µi,k − µk
miξk

, (5.10)
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where mi =
√

1/ni + 1/n. After that, the distance is shrunken as follows:

di,k ← sign(di,k)max(0, |di,k| − δ), (5.11)

where δ is a positive step size determined through cross-validation [81]. Now based on

Equation (5.10), the shrinkage is achieved as follows:

µi,k ← µk +miξkdi,k. (5.12)

As can be seen from (5.11) and (5.12), each dimension of µi has been shrunken towards

the overall mean. This shrinkage method is essentially based on the t test between the mean

of each class and the overall mean at every dimension. Recall that the t score of two sets of

random variables {z1} and {z2}, which have the same standard deviation Sz, is defined as:

t =
µz1 − µz2

sz
√

1
nz1

+ 1
nz2

, (5.13)

where µz1 = E{z1} , µz2 = E{z2}, and nZ1
and nZ2

are the sample sizes [91]. In this

shrinkage method, for i = 1, 2, 3, k = 1, · · · , d, the t score between each µi,k and µk pair is

defined as a distance in (5.10). If the distance di,k is small, i.e., if di,k < δ, then most likely

it is caused by the noise effect. In this case, the shrinkage method forces di,k to be zero, and

therefore reduces the noise effect.

5.2.2.0.4 Shrinkage of the Covariance Matrix The second shrinkage method, pro-

posed by Friedman et al. [92], regulates the estimation of covariance matrix Si for each class
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as:

Si ← (1− ε)Si + εI, i = 1, 2, 3, (5.14)

where I is the identity matrix, and ε a positive number determined through cross-validation.

The basic idea of this shrinkage method is that: when the sample size is small, the estimated

covariance matrix Si, i = 1, 2, 3, generally becomes non-invertible. By adding a small per-

turbation to the slightly scaled covariance matrix, the adjusted or shrunken Si will generally

become invertible as expected.

After the regularized LDA transform, the feature vectors are projected into a set of real

valued numbers. After that, a selected classifier can be applied to the transformed data for

further classification.

5.2.3 LDA and the ML Estimation

In this subsection, we demonstrate that when the original data from all classes are normally

distributed, then LDA is equivalent to the ML method. For i = 1, 2, 3, assuming each vector

xj in class Ci has the same probability density function (pdf):

fX(x;µi,Σi) =
1√

2πd|Σi|
exp{−1

2
(x− µi)

tΣi
−1(x− µi)}. (5.15)

Consider a general linear transform defined by:

y = Wx. (5.16)
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where W is a d × d matrix. For the transformed data, the probability density function

becomes:

fY (y; µ̃i, Σ̃i) =
1√

2πd|Σ̃i|
exp{−1

2
(y − µ̃i)

tΣ̃−1
i (y − µ̃i)}, (5.17)

where i = 1, 2, 3, µ̃i = Wµi, and Σ̃i = WΣiW
t.

Recall that in LDA, we try to find W such that the difference among different classes is

maximized in the transformed space. Without loss of generality, we assume that the major

difference lies in the first dimension of the transformed vector y only, and the remaining d−1

dimensions make little contributions. Under this assumption, µ̃i and Σ̃i can be decomposed

as:

µ̃i =

 µ̃1
i

µ̃d−1

 , Σ̃i =

Σ̃1
i 0

0 Σ̃d−1

 , (5.18)

since for each i, µ̃d−1
i ≈ µ̃d−1, Σ̃d−1

i ≈ Σ̃d−1. Accordingly, the matrix W can also be

decomposed as

W =

 W 1

W d−1

 . (5.19)

In this case, we have µ̃1
i = W 1µi, µ̃d−1

i = W d−1µ̃i, Σ̃1
i = W 1ΣiW

1t and Σ̃d−1
i =

W d−1ΣiW
d−1t.

For fairness, in LDA based classification, the sample size of the three classes is assumed

to be the same, i.e., n1 = n2 = n3 = n/3. With the probability density function given in
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(5.17), the log-likelihood function of the transformed data can be written as [93]:

L(W ) =
3∑
i=1

∑
y∈C̃i

log fY (y; µ̃i, Σ̃i)

= nlog|W | − n

2
log(2π)d −

3∑
i=1

ni
2
log|Σ̃1

i |

− 1

2

3∑
i=1

∑
x∈Ci

(W 1x− µ̃1
i )
t(Σ̃1

i )
−1(W 1x− µ̃1

i )

− n

2
log|Σ̃d−1|

− 1

2

∑
x∈C

(W d−1x− µ̃d−1)t(Σ̃d−1)−1(W d−1x− µ̃d−1) (5.20)

To find the optimal W that maximizes L(W ), set
∂L(W )

∂Σ̃1
i

= 0 and
∂L(W )

∂Σ̃d−1 = 0, we get:

Σ̃1
i = W 1SWW 1t, (5.21)

Σ̃d−1 = W d−1SBW
d−1t. (5.22)

Substitute (5.21) and (5.22) into (5.20) and remove the constant items, the optimization of

L(W ) is equivalent to optimizing the following function:

Leq(W ) = nlog|W | − n

2
log|W 1SWW

1t| − n

2
log|W d−1SBW d−1t|. (5.23)

The optimal choice of W will satisfy the differential equation:

dLeq(W )

dW
= 0. (5.24)

It was shown in [94–96] that the partial differential equations are satisfied when W is com-

106



posed of eigenvectors of the matrix S−1
W SB .

If we only keep the eigenvector corresponding to the largest eigenvalue of S−1
W SB , then

we obtain the LDA algorithm presented in Section 5.2.1. As can be seen, LDA is equivalent

to the ML method.

5.3 Classification of AD, MCI and NC Subjects based

on Connectivity Pattern Analysis

In this section, we formulate the ROI sub-network, and perform AD, MCI and NC Subjects

classification through connectivity pattern analysis, by exploiting the proposed Regularized

LDA.

5.3.1 ROI Sub-Network Formulation and Connectivity Pattern

Analysis

The default mode network (DMN) is one of the well studied networks at the resting state [84].

Prior resting-state fMRI studies have demonstrated that the DMN is affected by AD [42,85–

88]. Both hippocampus and ICC are part of the DMN, and can be well defined anatomically

through the FreeSurfer software [88], even in brains with abnormal anatomy [42]. The

paper by Zhu et al. [42] specifically demonstrated that the functional connection between

hippocampus and ICC was reduced in AD.

Motivated by the observations above, in this chapter, we select the right and left hip-

pocampi and ICCs (4 regions) as our ROI sub-network. Our connectivity pattern analysis

is carried out following the procedure below.
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First, we calculate the Pearson correlation coefficients between all possible pairs of the

ROIs within the group to formulate the feature vectors. As we now have 4 regions in the ROI

sub-network, for each subject i, we can obtain a d−dimensional (d = 6) vector xi, consisting

of the Pearson correlation coefficients for each pair of ROIs. When we have n subjects, we

get the feature vector set {x1, · · · ,xn}.

Second, using the proposed regularized LDA, we map {x1, · · · ,xn} to a one-dimensional

subspace or axis, where the differences between AD, MCI and NC subjects are maximized,

and denote the projected vectors as {y1, · · · , yn}.

Finally, we construct the decision tree based on {y1, · · · , yn} and carry out the classifi-

cation using the multi-class AdaBoost classifier.

In the following subsections, we will provide more details on decision tree construction,

and multi-class classification using AdaBoost.

5.3.2 Basic Decision Tree Construction

In the classification procedure, we will construct T = 50 basic decision trees. Each decision

tree divides the LDA projected data set yi, i = 1, · · · , n, into K regions, and each region is

called a leaf node. Here, the number of regions, K, and the boundaries for all the regions are

chosen by the decision tree algorithm to minimize the Gini impurity coefficient IG [97]. More

specifically, assuming yi ∈ ci, where ci ∈ {C̃1, C̃2, C̃3}. Here C̃1, C̃2, C̃3 denote the projected

data set corresponding to AD, MCI and NC subjects, respectively. For k = 1, 2, ..., K,

without loss of generality, suppose km data samples {(yk1
, ck1

), (yk2
, ck2

), ..., (ykm , ckm)}

are assigned to node k, where ykl
∈ {yi}, ckl ∈ {C̃1, C̃2, C̃3}, kl = 1, · · · , km. The Gini

108



impurity coefficient of node k is calculated as:

IG(k) =

km∑
ki=1

fki(1− fki), (5.25)

where fki =
number of occurance of cki

within node k

km
.

For any given input y to be classified, if y falls within the boundaries of node k, then it

will be assigned to node k, and paired with the majority class inside this node. Note that

in our case, yi, i = 1, · · · , n, are all real-valued numbers. That is, {yi} ∈ R. In this case,

the boundary between two neighboring regions is reduced to a point, and hence each reigon

corresponds to an interval on the R axis.

The decision tree is a weak classifier. In most applications, it needs to be incorporated

with an ensemble classifier to achieve higher accuracy. Some representative ensemble algo-

rithms include Bagging and Boosting [98]. Note that the naive Bayesian classifier is subject

to severe overfitting problems when the sample size is limited, leading to low classification

accuracy. In the following, we will apply the AdaBoost algorithm to construct the ensemble

classifier, due to its robustness under noise effect [81, 89].

5.3.3 The Multi-Class AdaBoost Classifier

The multi-class AdaBoost classifier is built upon an ensemble of weak decision tree classi-

fiers [89]. Given a set of labeled data {(y1, c1), (y2, c2), ..., (yn, cn)}, where ci ∈ {C̃1, C̃2, C̃3},

the algorithm first starts with an empty ensemble and T decision trees, as constructed above.

Each sample yi in the date set is given an initial weight wi = 1/n, where i = 1, 2, · · · , n.

Then for t = 1, 2, · · · , T , the algorithm will iteratively implement the following procedures:

1. Weighted Classification Error Calculation Apply a weak decision tree classifier t to
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the samples and calculate the weighted classification error. More specifically, let

I(ci, c̃i) =

{
1 if ci 6= c̃i,
0 if ci = c̃i,

(5.26)

where c̃i is the assigned class for sample yi, and ci is the true class yi belongs to. Then the

weighted classification error et would be

et =
n∑
i=1

wi I(ci, c̃i). (5.27)

2. Voting Weight Assignment Based on the weighted classification error et, the algorithm

will assign a voting weight αt for the weak decision tree classifier t as follows:

αt = ln
1− et
et

+ ln2, (5.28)

and then add classifier t into the ensemble.

3. Weight Update Before the next iteration, the weight of each data sample yi is updated

as follows:

wi ← wie
αtI(ci,c̃i), (5.29)

wi ←
wi
n∑
i=1

wi

. (5.30)

The procedure in (5.30) ensures that the weights {wi}, i = 1, 2, · · · , n, form a probability

distribution with
n∑
i=1

wi = 1. As can be seen, after the update, those samples which have

been incorrectly classified in current iteration will have higher weights in the next iteration.

4. Final Classification After T iterations, there will be T decision trees in the ensemble.
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The final classification is a weighted majority votes of each of those classifiers.

As will be shown in the next Section, the combination of regularized LDA and AdaBoost

can achieve much higher accuracy in AD, MCI and NC classification than the conventional

approach based on the original LDA and the Bayesian classifier.

5.4 Numerical Analysis

5.4.1 fMRI Data Acquisition

In our data collection process, 10 patients with mild-to-moderate probable Alzheimer’s Dis-

ease, 11 patients with MCI and 12 age- and education-matched healthy NC subjects were

recruited to participate in this study. The fMRI experiment was conducted on a GE 3T

Signa R© HDx MR scanner (GE Healthcare, Waukesha, WI) with an 8-channel head coil. To

study resting-state brain function, echo-planar images, starting from the most inferior re-

gions of the brain, were acquired for 7 minutes with the following parameters: 38 contiguous

3mm axial slices in an interleaved order, time of echo = 27.7ms, time of repetition = 2500ms,

flip angle = 80◦, field of view = 22cm, matrix size = 64× 64, ramp sampling, and with the

first four data points discarded. Each volume of slices was acquired 164 times. Common

pre-processing procedures on resting state fMRI data were carried as detailed in [42].

5.4.2 Performance Comparison of Different Classification Algo-

rithms

In this subsection, we present the classification performance of the proposed method and

compare it to existing methods. Since the size of data samples is small, the performance
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of the classifier is evaluated by the Leave-One-Out (LOO) cross-validation. As described

earlier, the ROIs used are the hippocampus and ICC from both hemispheres of the brain.

LDA
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Figure 5.1: Comparison of 3-category (AD, MCI, NC) classification results.

Figure (5.1) shows the performance of three classifiers. In the first one, a naive Bayesian

classifier is employed after the original LDA transform. As can be seen, its final accuracy is

only 44%. As explained in Section II, the main reason of such an unsatisfying performance is

that: when the number of data samples is small, the estimation of class means and covariance

matrices in LDA suffers from severe noise effect, leading to overfitting. In the second one,

the original LDA is combined with the AdaBoost classifier. As can be seen, accuracy is

increased to 69% by AdaBoost. The third one is what we proposed, the regularized LDA

is combined with the AdaBoost classifier. The shrinkage operations in the regularized LDA

can reduce the noise effect in the estimation, and further improve the accuracy to 75%.

Figure 5.2 shows the classification results of all the three classes of subjects using regu-

larized LDA and the AdaBoost classifier. As expected, compared with NC subjects and AD

patients, it is more difficult for the classifier to identify MCI patients, and the classification

accuracy for MCI patients is much lower than that for AD and NC subjects.
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Figure 5.2: Regularized LDA with AdaBoost classifier: classification accuracy for different
categories.

5.5 Summary

This chapter proposed a reliable method for AD, MCI and NC subject classification that is

highly robust under size limited fMRI data samples, by exploiting brain network connectivity

pattern analysis. To do it, first, we selected the right and left hippocampi regions and

isthmus of the cingulate cortices (ICCs) as our ROI sub-network, and calculated the Pearson

correlation coefficients between all possible ROI pairs and used them to form a feature

vector for each subject. Second, the vectors were projected into a one-dimensional axis

using the proposed regularized LDA approach, where the differences between AD, MCI

and NC subjects were maximized. Shrinkage based regularization procedures were taken

to reduce the noise effect due to the limited sample size. Finally, a decision tree based

multi-class AdaBoost classifier, which is robust to noise effect, was applied to the projected

one-dimensional vectors to perform the classification.

Both the theoretical and numerical analysis demonstrated that: (i) The regularization

methods and the AdaBoost classifier can increase the classification accuracy significantly;
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(ii) Brain network connectivity analysis, which evaluates the changes in the pattern of con-

nectivity among multiple or all regions in the sub-network, can reveal in-depth information

about brain connectivity and result in relatively accurate classification of AD, MCI and NC,

especially when the sample size is very limited; (iii) Our analysis confirms the previous find-

ings that the hippocampus and the isthmus of the cingulate cortex are closely involved in

the development of AD and MCI.

Potentially, the proposed framework can be applied to other classification problems as

well, especially under limited sample size.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Brain functional connectivity analysis has been shown as an essential method in revealing

the organization of brain networks, identifying function hubs and discovering biological pat-

terns. In this research, we developed innovative modeling and analysis methodologies by

exploiting advanced techniques in network communication and information theory, and ex-

ploring how the proposed techniques can help us understand cognitive process and identify

brain problems.

First, in Chapter 2, we considered the measurement of non-directional connectivities

between brain regions using mutual information. We proposed a novel approach for the

estimation of MI, which was composed of three major components: de-correlation, kernel

based estimation of probability density function and Monte Carlo Integration. The proposed

MI estimator was applied to experimental fMRI data obtained from Alzheimer’s Disease

patients and normal subjects. The numerical result was consistent with clinical observations.

Next, in Chapter 3, we presented the directed information framework and showed how

to apply it for fMRI causality analysis. We provided the detailed procedure on how to

calculate the DI for two finite time series. The two major steps involved here are optimal

bin size selection for data digitization, and probability estimation. We applied the DI based

causality analysis to both the simulated data and experimental fMRI data, and compared the
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results with that of the Granger Causality analysis. Our results indicated that GC analysis is

effective in detecting linear or nearly linear causal relationship, but has difficulty in capturing

nonlinear causal relationships. On the other hand, DI based causality analysis is effective

in capturing both linear and non-linear causal relationships. Moreover, it was observed that

brain connectivity among different regions generally involves dynamic two-way information

transmissions between them. Our results showed that when bidirectional information flow

is present, DI is more effective than GC to quantify the overall causal relationship.

Then, in Chapter 4, we investigated the discrete time DCM (DDCM) and its relation-

ships with Directed Information and Granger Causality. First, we demonstrated the rela-

tionship between DDCM and the continuous time DCM. Rather than using approximation,

we proved that when the input to the neural dynamic system is a constant, then DDCM can

be strictly derived from DCM under the noise free case. This result further validates the

DDCM model. Second, based on information theory, we revealed the conditional equivalence

between DDCM and DI in characterizing the causal relationships between two brain regions.

More specifically, assuming that the dynamic neural system is causal, the neurostate and

the noise at each region are normally distributed, and the external input is a constant, we

showed that DDCM and DI are equivalent in characterizing the causal relationships between

two brain regions. This equivalence between DDCM and DI provides a simple method for

DI estimation. We also showed that when the hemodynamic system is invertible, the DI-

based causal relationship between the neurostates of two brain regions is the same with that

between the observed BOLD signals. However, it should be pointed out that conditional

equivalence between DDCM and DI needs further investigation when multiple regions are

involved. Finally, we illustrated the similarities and differences between DDCM and GC.

Although they share a similar mathematic form, the causality measures they utilize are
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completely different. Note that GC detects the causal relationship between the observed

signals, and DCM detects the causal connections of the hidden neurostates. The conditional

equivalence between GC and DCM remains an interesting problem. The theoretical tech-

niques were demonstrated using fMRI data obtained under both resting state and stimulus

based state. Our numerical analysis was consistent with that reported in previous study.

Finally, in Chapter 5, we proposed a reliable method for AD, MCI and NC subject classi-

fication that is highly robust under size limited fMRI data samples, by exploiting brain net-

work connectivity pattern analysis. To do it, first, we selected the right and left hippocampi

regions and isthmus of the cingulate cortices (ICCs) as our ROI sub-network, and calculated

the Pearson correlation coefficients between all possible ROI pairs and used them to form a

feature vector for each subject. Second, the vectors were projected into a one-dimensional

axis using the proposed regularized LDA approach, where the differences between AD, MCI

and NC subjects were maximized. Shrinkage based regularization procedures were taken

to reduce the noise effect due to the limited sample size. Finally, a decision tree based

multi-class AdaBoost classifier, which is robust to noise effect, was applied to the projected

one-dimensional vectors to perform the classification.

Both the theoretical and numerical analysis demonstrated that: (i) The regularization

methods and the AdaBoost classifier can increase the classification accuracy significantly;

(ii) Brain network connectivity analysis, which evaluates the changes in the pattern of con-

nectivity among multiple or all regions in the sub-network, can reveal in-depth information

about brain connectivity and result in relatively accurate classification of AD, MCI and NC,

especially when the sample size is very limited; (iii) Our analysis confirms the previous find-

ings that the hippocampus and the isthmus of the cingulate cortex are closely involved in

the development of AD and MCI.
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Potentially, the proposed framework can be applied to other classification problems as

well, especially under limited sample size.

6.2 Future Work

We propose the following directions for the future research.

Brain network connectivity pattern analysis – from Pearson correlation to mutual informa-

tion

• In Chapter 2 and Chapter 5, interesting results had been drawn based on mutual infor-

mation and network connectivity pattern analysis. Further research can be conducted

on MI (including multi-voxel MI) based network connectivity pattern analysis. It is

important to develop new classification algorithms based on the mutual information

characteristics of part of the subjects, compare the classification results with those

from the Pearson-based approach, and explore the possibility of developing MI as a

new biomarker for AD diagnosis, especially at the early stage.

• In addition to the existing data set, future research can also be conducted on the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/) data

set, where more than 200 resting-state fMRI datasets have been collected from aged

normal subjects, and MCI and AD patients. Some subjects have multiple time points,

and the dataset size continues to grow. The ADNI dataset is freely available to re-

searchers.

Understanding causality from a network perspective
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• For causality analysis, traditionally, only two regions are considered at a time. Note

that the dependence relationship between two time series may not be conserved when

additional observations are taken into account. Further research is needed to study

the causality between two brain regions while taking additional regions into consider-

ation, and investigate the relationship between the extended discrete DCM model and

multivariate DI theory.

Stability analysis of the brain network

• Brain network stability is essentially an uncharted area. While the stability on func-

tional brain activity measures has been studied by examining the variations of various

measures along the time and spatial domain [99], and the stability of brain network

topology has been studied in [100], existing work on brain network stability has been

very limited. It is important for the future research to explore how to characterize

brain stability quantitatively, model the information processing at the region level,

and evaluate network communication pattern changes in different groups of subjects.
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