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ABSTRACT

IMPROVING INDOOR POSITIONING VIA MOBILE SENSING

By

Chen Qiu

Accurate indoor position and movement information of devices enables numerous op-

portunities for location based services. Services such as guiding users through buildings,

highlighting nearby services within shopping malls, or tracking the number of steps taken

are some of the opportunities available when accurate positioning information is computed

by devices. GPS provides accurate localization results in an outdoor environment, such as

navigation information for vehicles. Unfortunately, GPS cannot be applied indoors pervasively

due to the various interferences.

Indoor localization has been a challenging and significant topic in recent decades. Although

extensive research has been dedicated to this field, accurate indoor location information

remains a challenge without the incorporation of expensive devices or sophisticated infras-

tructures within buildings. We explored one practical approach for indoor map construction

and four representative resolutions for indoor positioning.

Considering most indoor localization approaches are based upon indoor maps, we develop

techniques to construct indoor maps. Since indoor maps might be dynamic and updated

regularly, we present iFrame, a dynamic approach that uses mobile sensing techniques for

constructing 2-dimensional indoor maps. We abstract the unknown map as a matrix and use

mobile devices that incorporate three mobile sensing technologies - accelerometers to support

dead reckoning, Bluetooth RSSI detection, and WiFi RSSI detection. The layouts of rooms

and hallways can be constructed automatically within 5-10 minutes.

Based on the indoor map, we propose four indoor localization approaches by leveraging

mobile sensing techniques.

First, although GPS can not help indoor localization directly, we propose iLoom, which



adopts a user’s motion behaviors built by GPS information to enhance indoor localization.

iLoom leverages an Acceleration Range Box to improve a user’s acceleration value used for

computing dead reckoning. By transfer learning the information from users’ motion behaviors

to the Acceleration Range Box, iLoom improves the Acceleration Range Box to achieve more

accurate indoor positioning results.

Second, we introduce CRISP - a prototype that leverages opportunities of the interaction

of multiple smartphones to enhance indoor positioning. When mobile devices cooperate and

share position information iteratively, the localization accuracies of mobile devices increases

gradually. In addition, based upon the obtained location information, CRISP provide a

pedometer that can avoid the accumulative errors caused by accelerometers.

Third, we present SilentWhistle, a mobile prototype that incorporates acoustic information

and motion traces on smartphones to locate users. When users encounter each other or related

beacons, by measuring the relation between sound strength and distance, the initial location

information obtained by dead reckoning can be enhanced by triangulations transferred from

sound strength. Centralized and distributed models of SilentWhistle can avoid the incorrect

location messages spreading based on the fault tolerance property.

Finally, by employing mobile robots in indoor scenarios, we propose AirLoc to improve

the indoor positioning accuracies on smartphones. When a robot is near a smartphone, the

robot sends accurate location information to users’ smartphones via Bluetooth. In AirLoc, we

design dynamic programming algorithms to generate the optimal serving routes for a single

robot. Then, we extend the single robot model to multi-robot model. In our simulation, the

multi-robots are organized by an unbalanced tree and serve areas by the Distance/Density

First Algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Challenges and Motivation

Obtaining location information is fundamental, significant and challenging in mobile comput-

ing and pervasive computing areas. For outdoor scenarios, GPS [49] has been widely used.

The accuracy and performance of GPS are satisfactory for most applications. Nevertheless,

GPS is generally not suitable to locate certain objects indoors, since microwaves will be

attenuated and scattered by roofs, walls and other objects [34].

In the past decades, extensive research has attempted to locate people in indoor environ-

ments with the high-accuracy, convenience, and low-cost, but the results of these approaches

are not satisfactory [41, 30]. Traditional device-based indoor localization approaches can

achieve high accuracy, however, the cost of these systems and the inconvenience constrain

their further development [14, 55, 51, 87, 43, 27]. Although device-free indoor localization,

such as fingerprint indoor positioning, does not depend on expensive devices, the complex data

training and high computational complexity are still challenging [91, 4, 83]. More researchers

employ smartphones to localize people by using some inertial sensing techniques. Nevertheless,

the computed locations are not accurate due to the errors of sensing, such as the deviations of

accelerations and the noise of visible lights and sounds [71, 3, 32, 90]. Therefore, we ask the

question: can we provide approaches to improve smartphones’ localization accuracies with

affordable complexity? By leveraging mobile sensing techniques, we design, implement, and

evaluate accurate indoor localization approaches and the related location based applications.

Most indoor localization mechanisms depend on known indoor maps [15, 2, 54]. In reality,

for some situations, users of smartphones cannot obtain the indoor floor plan. Even if

users have the indoor plan, the layouts of rooms and hallways often change. We design and
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implement an approach to construct the dynamic indoor map with inertial sensing techniques.

Based on the above analysis and discussion, in this chapter, we introduce one approach

for constructing indoor floor plan and four prototypes for improving indoor positioning.

1.2 Indoor Floor Plan Construction via Mobile Sensing

Many pervasive computing applications depend upon maps for navigation and support of

location based services. Maps are commonly available for outdoor pervasive applications

from a variety of sources. An individual can determine their location outdoors on these maps

via GPS. Indoor pervasive applications may also need to know the layout of rooms, doorways

and hallways of buildings, and the objects and obstacles within them, however indoor maps

of buildings are less prevalent [15, 2, 69]. Moreover, indoor maps may need to be dynamic

and updated regularly since the layout changes when objects and obstacles are added or

removed by people within the building. We propose iFrame [58], a dynamic approach that

leverages existing mobile sensing capabilities for constructing indoor floor plans. We explore

how iFrame users may collaborate and contribute to constructing 2-dimensional indoor maps

by merely carrying smartphones or other mobile devices, and to allow their mobile devices to

share information with other users’ devices.

1.3 Improving Indoor Localization Accuracy by Learning Outdoor
Motion Behaviors

Smartphones are equipped with many low-cost sensors. As a result, opportunities open

for smartphones to serve as a platform for many challenging applications, including indoor

localization [77, 3, 75, 39]. By employing accelerometers on smartphones, dead reckoning is an

intuitive and common approach to generate a user’s indoor motion trace [71, 9]. Nevertheless,

dead reckoning often deviates from the ground truth due to noise in the sensing data. We

propose iLoom, an indoor localization approach that benefits by transferring learning from
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tracking outdoor motions to the indoor environment [60]. Via sensing data on a smartphone,

iLoom constructs two datasets: relatively accurate outdoor motions from GPS and less

accurate indoor motions from accelerometers. Then, iLoom leverages an Acceleration Range

Box to improve a user’s acceleration value used for computing dead reckoning. After using a

transfer learning algorithm to the two datasets, iLoom boosts the Acceleration Range Box to

achieve better indoor localization results. In addition, iLoom exploits indoor GPS exception

cases, pedometer, and average speed estimation to further improve dead reckoning.

1.4 Cooperation among Smartphones to Improve Indoor Position-
ing

Modern smartphones are equipped with sensors and radios that can detect movement and

can be used to predict location. Dead reckoning applications on a smartphone may attempt

to track a person’s movement or locate a person within an indoor environment [71, 9]. We

propose CRISP [57] - CoopeRating to Improve Smartphone Positioning, which assumes that

dead reckoning have inaccuracies, but leverages opportunities of the interaction of multiple

smartphones. Each smartphone computes its own position, and then shares it with other

nearby smartphones. The signal strengths of multiple radios that are used on smartphones

estimate distances between the devices. While individual smartphones provide inaccurate

positioning information, accuracy may increase when several smartphones cooperate and

share position information through multiple iterations. CRISP is an inexpensive means to

improve position information and possibly lead to better results for a number of applications,

including exercise profiling.
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1.5 Indoor Positioning with Assistant from Acoustic Sensing on
Smartphones

Although existing mobile sensing techniques can improve indoor localization accuracies, the

time of scanning and building connections is time consuming. Sometimes, when samples

are collected by mobile devices, the users of devices move to other locations. We introduce

SilentWhistle[59], a passive indoor localization system with real time and fault tolerance

features based on the daily uses of smartphones. By detecting and filtering the received audio

frequencies, we decode the frequencies to location information. When users encounter each

other or related beacons, by measuring the relation between sound strength and distance, the

initial location information obtained by dead reckoning can be enhanced by triangulations

transferred from sound strength. Centralized and distributed models can avoid the incorrect

location messages spreading based on the fault tolerance property.

1.6 Multi-robots assisted Indoor Localization

Since most existing smartphone applications cannot avoid accumulative errors when calculat-

ing position and movement, we propose a novel approach, AirLoc - Adopting mobile robots to

assist indoor Localization of smartphones [56]. A moving robot employs a Bluetooth adapter

and a known map to assist a smartphone to reduce its localization error. When a robot is near

a smartphone, the robot sends accurate location information to users’ smartphones via Blue-

tooth. We design a path planning strategy for a robot to enhance the localization accuracies

of smartphones over extended time periods. Moreover, in order to promote the single robot

approach, we extend it to the multi-robot assisted indoor localization by simulation. The

multi-robots are organized by an unbalanced tree and serve areas by the Distance/Density

First Algorithm.
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1.7 Structure of the Content

This rest of this dissertation proposal is organized as follows: Chapter 2 reviews the related

work in indoor localization and map construction areas. We present the automatic indoor

map construction approach in Chapter 3. Chapters 4-7 introduce four indoor localization

prototypes: Chapter 4 studies improving indoor localization by profiling outdoor movement

on smartphones; A prototype that leverages cooperation among smartphones to provide

accurate indoor positioning is introduced in Chapter 5; We enhance the existing indoor

localization approaches via acoustic sensing techniques in Chapter 6; Chapter 7 explores

mobile robot assisted indoor localization. We presents work in progress and proposes the

future work in Chapter 8.

5



CHAPTER 2

BACKGROUND SURVEY

Location services are essential and important for mobile computing and wireless networks. For

outdoor positioning, Global Positioning System (GPS) is widely accepted and has satisfactory

performance. Unfortunately, GPS signals are rarely accessible indoors. Therefore, indoor

localization has been a challenging and significant topic in industry and academia. Within

the ubiquitous deployment of wireless networks and devices, the past decades have witnessed

extensive indoor localization techniques. In this chapter, we introduce four types of classical

indoor localization approaches. In addition, within the development of indoor localization

and other location based services, the means to construct an indoor map to support these

services is important. We will also show the related work for this issue.

2.1 Device Based Indoor Localization

Traditional indoor positioning approaches, aiming to provide LBS indoors, can be categorized

to two types: device-based and device-free. Device-based indoor localization relies on special

devices, such as ultrasound [14, 79, 55], RFID [51, 20, 25, 87, 43], and infrared [27, 6] devices.

Whereas some of these systems can obtain accurate location information, the costs of the

devices and their inconvenience limit their further development. For example, Cricket [55] is

a typical device-based systems. As Cricket, it has location beacons attached to the ceiling of

a building and receivers. People carry receivers to obtain RF signal transmitted from the

location beacons on the celling periodically. Cricket can locate the position of a user within

3cm. Although people often carry smartphones, the current smartphones do not integrate

these devices. SpotON [20] uses RFID tagging technology for three dimensional location

sensing based on radio signal strength analysis. The specific tag hardwares are required for
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the implementation.

2.2 Device Free Indoor Localization

Apart from device-based indoor localization, device-free approaches do not need users to carry

extra devices and can provide users’ locations by analyzing different types of signals. For most

device-free approaches [91, 4, 89, 83, 67, 84, 8, 81, 88], RSSI, Channel State Information (CSI),

and WiFi backscatter are used to construct a fingerprint map. A fingerprint approach selects

the best-matching position in the radio map as the mobile object’s position. Nevertheless,

building the off-line map and signal processing can be a significant challenge.

In RADAR [4], one of classical device-free method, multiple WiFi Access Points (APs)

are heard at each location. Some stations provide overlapping coverage of the area of interest.

RADAR makes use of a signal propagation model to estimate the object location to a great

accuracy. LiFS [78] observe the results of WiFi signal variations caused by body interferences

and power fading. By analyzing the signal variations in different sites, LiFS localize users

without bounded devices.

In fact, for most of device-free approaches, they can only achieve room-level accuracy. In

addition, training the radio-map and signal analysis are labor-intensive and time-consuming.

2.3 Simultaneous Localization and Mapping (SLAM)

Some indoor environments, such as convention centers, museums, and hospitals provide

various location services. Mobile robots may be able to supply certain services to users, such

as advertisement and music. These robots have the abilities to establish their own positions

and orientations within the frame of reference. By using a camera or an infrared sensor, the

robot can find its route in an indoor environment and avoid dangerous situations by SLAM

(Simultaneous localization and mapping) approaches. Besides, the robots can calibrate their

positions computed by SLAM to ensure their high localization accuracies [13, 73, 44]. In
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(a) (b)

Figure 2.1 Indoor map generation by Google Tango.

addition, robots use SLAM [13, 1, 72] to create a new map within an unknown environment,

or to update a map within a known environment. For example, Google Tango combines 3D

motion tracking with depth sensing to give your mobile device the ability to know where it

is and how it moves through space [22]. Based on the extensive off-line training and image

collections, the Google indoor map team has build the indoor floorplan of more than 1000

sites, such as famous shopping malls and airports. Also, the robots can compute and calibrate

their current location information. For example, Turtlebot [16], one of the common robots,

has two application (gmapping and amcl) to help it find a reasonable route in one room and

compute correct positions.

But SLAM highly relies on the sensors, such as laser or camera. Besides, current SLAM

approaches, the robots can only compute location information for themselves, other mobile

devices (as smartphones, PDA) cannot obtain location information by interacting with the

robots.

2.4 Smartphone Based Indoor Positioning

With the proliferation of smartphones, more researchers use sensors on smartphones to localize

people. Dead reckoning [71, 9] is a common method to estimate user’s current location by

physical formulas. But the accelerations obtained from sensors often includes some noise,

for example, the direction obtained from accelerometer is different from the people’s real

direction. The accumulative errors grows sharply within the time increase. To address the
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Figure 2.2 Smartphone based indoor localization.

problem, UnLoc [77] employs a virtual landmark to assist dead reckoning. The landmark

is the sensing signatures naturally existing in indoor environment. Dead reckoning tracks

locations between different landmarks. However, the deviations still occur sometimes.

CUPID [68] utilizes WiFi physical layer information to extract the signal strength and

uses geometry to locate an object, it achieves the accuracy around 3 meters in complex office

environments. SAIL [46] employs the propagation delay of the signal traversing between single

WiFi AP and smartphone to eliminate the errors caused by dead reckoning. Nevertheless,

the localization results for these two approaches are not highly accurate.

By using computer vision and other sensing technologies [3, 32, 85, 62, 75, 42, 39, 80,

40, 7, 33], some researchers fuse the data from accelerometers, camera sensors, and acoustic

sensors to provide solutions for indoor localization. Through employing the Visible Light

Communication devices, PIXEL [90] provides a localization mechanism by just using the

strength of visible lights. It can achieve the sub-meter level results. LiTell [93] and Luxapose

[33] analyze the fixtures and frequencies of lights, by distinguish the features of light sources in

different locations, smartphone can predict the locations where they are. However, the signal
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processing and recognition in indoor environments are still challenging for these systems.

By applying the geometry algorithms, Beep [45] uses PC microphones connected to

desktops serving as acoustic sensors to compute the location of a roaming device. Current

smartphones also can generate an acoustic signal for geometry computation. They provide

capacities to localize smartphone users.

2.5 Indoor Map Reconstruction

Many researchers have designed mobile systems to rebuild indoor maps. Since people use

smartphones and other mobile devices in their daily lives, some approaches propose to build

indoor maps by smartphones. In the computer vision area, researchers activate camera sensors

on smartphones to construct the map [15, 74, 29, 66]. JigSaw [15] leverages camera sensors to

obtain images and adopts point cloud algorithms to piece together images to reconstruct the

indoor floor plan. Sextant [74] combines the photos obtained by smartphones with gyroscope

information to draw the map. Though these vision based approaches can build the indoor

map by smartphones or other specific devices, the procedure of image processing is still

challenging. Some work uses the dead reckoning by accessing data from accelerometers and

gyroscopes to generate the trajectories of users [2, 54]. They analyze these trajectories and

sensing data of elevators and entrances to construct the map. Nevertheless, the deviations and

errors of dead reckoning often reduce the accuracies. Other approaches use WiFi signatures

and a series of algorithms to discover the layout of buildings, but the WiFi noise is difficult

to process [24, 69].
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CHAPTER 3

AUTOMATIC INDOOR FLOOR PLAN CONSTRUCTION VIA MOBILE
SENSING

3.1 Introduction

Map availability is essential for Location Based Services [34], such as tracking and localization

services. In outdoor environments, Google Map, Yahoo Map and other services provide

outdoor maps for the users of mobile devices. Unfortunately, maps are much less commonly

available for indoor environments. In order to provide indoor floor plans, many people may

need to dedicate significant time to construct the floor plans and make them available to

commercial channels. Google Indoor Map [94] has collected over 1,000 indoor floor plans

of airports and shopping malls in U.S. and Japan. These maps are built manually, which

may be tedious and high cost. Although some approaches for building indoor floor plans

have been proposed [54, 2, 15], the accuracies of generated indoor maps and the complexity

of computation need to be improved. Moreover, even if the indoor maps are constructed,

the layouts within these buildings may often change. For example, furniture within one

room might be moved. This leads to our question: Can we generate a dynamic indoor map

automatically and accurately without complex data training?

In this chapter, we design and evaluate iFrame, an light-weight approach that leverages

mobile sensing data to construct dynamic floor plans of complex indoor environments

automatically. iFrame does not require commercial negotiation with providers of indoor maps.

By opening the iFrame application on smartphones and by walking around the targeted

indoor environments, users passively construct the floor plan. We abstract the indoor map as

an m⇥n matrix. Each grid in the matrix has the same shape and area. Grids in the matrix

are described by a value between two extreme states: 0 - the grid is vacant, 1- the grid is
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completely occupied by objects. The value between 0 and 1 represents the percentage of the

area that an object occupies the grid.

As illustrated in Figure 1, users leverage dead reckoning to obtain their motion traces.

For locations a user visits that are identified by dead reckoning, the grid location will be

marked vacant. Because dead reckoning may deviate from the ground truth, we seek to

enhance its accuracy and therefore the proper identification of the status of grids in the

matrix by employing 1) a Markov chain and average speed prediction to calibrate the trace

deviation and 2) Bluetooth and WiFi radios to compensate for the deviation errors. We

assume the Bluetooth RSSI received from another device to be related to distance [70]. We

suppose abrupt changes in WiFi signal strength is related to obstacle detection [21]. When a

user turns on the Bluetooth option and if a Bluetooth adapter can detect other Bluetooth

devices, then we set the grids on the link between Bluetooth adapters to 0 (vacant). Since

WiFi signal strength is more sensitive to obfuscation rather than to distances, and if the

WiFi signal strength decreases abruptly, then the grids that on the link are recorded as 1.

Because the common discovery procedures for Bluetooth and WiFi components are time

consuming, it may cause time delay to receive sensing information. We speed up the discovery

procedure by interrupting the scanning mechanism at the program level. Considering the

imperfections of each method, Curve Fit Fusion (CFF) is introduced to combine the methods

for improving the output matrices. By executing iFrame on 3-5 users’ smartphones iteratively

within 5-10 minutes, we can obtain a two dimensional floor plan for a 12m ⇥ 6m office room.

Even if iFrame users walk daily by an unattended mode, the system is able to generate the

floor plan of a room within 7 hours. Since the generated map is built by real time sensing

information, even if the layouts of rooms change, the changes can be represented on the

map. By introducing Anchor Points (such as entrances, stairs, and elevators), the traces

generated by dead reckoning can be initialized and calibrated. As numbers of iFrame users

who share their information increases, the constructed floor plans generated from a larger

data set drawn from a larger set of users will have a lower error rate and will be generated
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within a shorter amount of time.

Our work therefore makes following contributions: First, although some approaches have

adopted crowd sourcing as a means to rebuild the indoor floor plans, iFrame is the first of

its kind to measure RSSI values with other scanned mobile devices to help construct the

layout of indoor environments. Second, we design a sensor fusion approach to combine and

enhance the indoor maps computed by dead reckoning, Bluetooth, and WiFi RSSI detections.

Third, iFrame is convenient to deploy and may be used passively by smartphones’ users.

The mobile sensing mechanism allows iFrame to represent the layout changes of buildings.

As more users collaborate, improved resolution and clarity of the maps are generated. In

addition, iFrame can cooperate with common wireless Access Points to further enhance the

accuracies of indoor map. Some special elements in an indoor map, such as doors, chairs,

elevators can be represented on the generated floor plan. The Bluetooth and WiFi detection

speeds satisfy the real-time requirement of mobile computing.

3.1.1 System Design

3.1.1.1 Overview of iFrame

iFrame leverages existing smartphone and mobile device technology without the need of

complex training to construct floor plans within buildings. Before constructing an indoor

map, we formulate the unknown map as a matrix. Each element in the matrix represents a

grid on the map. Each grid is marked in one of two states: empty or object. As shown in

Fig. 3.1, the procedure of map construction is composed of three phases:

1. iFrame is a system based on mobile sensing. Smartphone users adopt the sensing

techniques to set the status of each element in matrix iteratively: i) dead reckoning, ii)

Bluetooth, and iii) WiFi detections. By interrupting the scanning periods, we improve

the speed that both Bluetooth and WiFi detect other devices.
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Figure 3.1 System overview of iFrame.

2. Based upon the data collected by sensors on smartphones, iFrame fuses the output

matrices of the three methods via Curve Fit Fusion (CFF), which is supported on the

cloud server. Then, iFrame combines the matrices built from multiple mobile devices

and filters the noises caused by the temporary shadow.

3. iFrame draws the layout in each room and hallway. By introducing Anchor Points

(such as entrances, stairs, and elevators), the map of a indoor building is constructed

completely.

Table 3.1 Main notations in iFrame

Terms Definition
(x

↵

, y
↵

) Position of users ↵
RecRSSI RSSI values the users received
M Matrix of abstracted map
T
b

Threshold of Bluetooth Detection
T
w1, Tw2 Thresholds of WiFi Detection

Dist(A,B) Euclidean distance between A and B
V
i,j

Shadow value of element (i,j) in M
V
BL

Shadow values on the Bluetooth link
V
WL

Shadow values on the WiFi link
M

f

Matrix generated by sensing approach f
S
f

Shadow rates computed by sensing approach f
M

di
Matrix generated by device i

EBV Error of Block Value
B

m⇥n

EBV for element M(m,n) in M

3.1.1.2 Map Matrix

Our task is to build the two dimension indoor floor plan. However, the initial two dimension

map is unknown except for the size of the area. We divide the map into grids, and each grid
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is processed as an element in a matrix M. All grids are squares with the same size. If a grid

is vacant, it is defined as an empty grid. We set the value of corresponding element in the

matrix to 0. If a grid is totally occupied by an object, it is defined as an object grid. The

corresponding element in the matrix is 1. The Shadow Rate is the amount that an object

partially occupies the matrix element. If the size of the grid is 1m2 and the objects in the

grid occupy 0.7m2, we define the shadow rate of the grid as 0.7. Vi,j refers the value of a

element in matrix M. The matrix M is as follows:

M =

2

66666664

V1,1 . . V1,n

. .

. .

Vm,1 Vm,n

3

77777775

(3.1)

3.1.1.3 Dead Reckoning Detection

When a user enters a grid on the map, the grid has empty space for the user to occupy. The

grids on the user’s motion traces will have their status marked as empty (0). Hence, the

user’s motion traces in a building are able to describe the layout of the building.

iFrame uses dead reckoning [71, 9] to obtain the user’s motion traces. Based on the

accurate initial position, the application executing on the mobile device computes movement

distance in each segment continuously.

An accelerometer is an inertial sensor that is suitable for a user’s activity recognition.

Mobile devices sense the acceleration on three axes orthogonal to one another periodically.

We set the time length of each period to be 1 second. The formula to compute acceleration

is in equation (3.2). The symbol g refers to the earth gravity, ax, ay and az refer to the

acceleration received on the Ox, Oy and Oz. By the obtained acceleration in each period,

the movement distance of a mobile device in time period n is based on the equation (3.2).

Parameter vn�1 and an�1 refer to the velocity and acceleration from the previous time
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period, tn refers to the time length of the current period. Sn refers to the vector of movement

distance in the current period. As shown in Fig. 3.2, if the application on a smartphone

computes movement distance in each segment by (3.2) continuously, it can obtain the whole

trace of mobile device.

~a = (ax, ay, az � g), ~Sn � ~Sn�1 =

1

2

~an�1t
2
n + ~vn�1tn

(3.2)

For dead reckoning, as shown in Fig. 3.3, we leverage sensors on the smartphone

(accelerometer, magnetometer, and gyroscope) to estimate the user’s step length and obtain

heading direction.

Unfortunately, dead reckoning has limitations: if the acceleration and orientation values

from the smartphone do not reflect the human body’s acceleration, for example, when

the smartphone is held in a user’s hand, and the hand shakes, the obtained accelerations

are incorrect. The generated trace will deviate from the ground truth. Furthermore, the

accelerometers on most smartphones are not highly accurate. A common sensor used for

indoor localization [63] may have an error of 308 meters within one minute due to a 0.5

degree deviation occurs on the orientation sensor.
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To improve the accuracy of dead reckoning, we proposed a trace prediction approach

relying on a Markov chain. A Markov chain is a sequence of random variables X1, X2, ...,

Xn. Given the present state, if both conditional probabilities are well defined, the future is

conditionally independent of the past as formula (3.3).

P (Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) =

P (Xn+1 = x|Xn = xn)
(3.3)

In our model, Markov chain is abstracted as a directed graph:

1) Each grid in the map refers to a node, the edges in graph are labeled by the probabilities

of moving from one grid at time n to the other grid at time n+1.

2) As Fig. 3.4, the user can only move to a neighbor grid/node from time n to time n+1.

This action is represented by the transition matrix from time n to time n+1. For each grid,

since the number of potential transition grids are 8, the size of transition matrix is 8 ⇥ 8.

If the user goes to a non-neighbor node, it needs more than one step. The value k is the

number of steps for transferring grids.

P

⇢
X(nm + k) = j|X(nm) = im

�
is the transition probability by moving k steps at time

n. It is recorded as Pi,j(n, n+ k) for short. It indicates the probability that the user is in

the state/grid i at time n, and after the transition of k steps, it goes to the state/grid j.

Pi,j(n, n+ k) depends on initial state/grid i, the final state/grid j, the number of steps k,
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instead of time n. Therefore, the transition probability of k steps can be defined as:

Pi,j(k) = Pi,j(n, n+ k) = P

⇢
X(n+ k) = j|X(n) = i

�
(3.4)

When k = 1, Pi,j(1) is a one step transition probability. The matrix of one step transition

is recorded as P (1). For n steps transition probability, the transfer probability is Pi,j(n). The

corresponding matrix is the n step transition probability matrix, named P (n). By applying

C-K equation [17], we can obtain:

P (n) = P · P (n� 1) = P (n� 1) · P => P (n) = Pn (3.5)

For P (1), the corresponding Pi,j value refers to the probability of moving from state/grid

i to state/grid j. Since we can count the times from i to j as numi,j , then

Pi,j =
numi,jPn
j=1 numi,j

(1 6 i, j 6 n) (3.6)

After obtaining the one step transfer probability matrix, we are able to compute the

transition probability matrix of k steps by P (k) = P k.

To predict the user’s selection for the next step, it is necessary to consider both the

historical and the current information of the user’s traces. The information that is closer

to the current time period will have more influence on the user’s decision for the next step.

According to this strategy, we provide the prediction formula as follow:

X(t) = a1H(t� 1)P + a2H(t� 2)P 2
+ ...+ anH(t� n)Pn (3.7)

In formula (3.7), t is time period of next grid, t-1 refers to the previous time period of

t. X(t) is the prediction probability for the next grid/state. H(i) denotes the states of the

next grid’s previous i grids and the factors a1, a2, ..., ak from 1 to k are used to decide their

next grids (a1 � a2 � ... � ak). Then, we select the maximum element in X(t), and take the

maximum element’s corresponding grid as the prediction grid for the next step.
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Figure 3.4 Markov chain state transition. The user moves from the current grid to the neighbor grid.

When the user predicts the grids that are his/her next moving targets, if the motion trace

computed by formula (3.2) does not include the predicted grids, the acceleration values for

this time period will be replaced by the retrieved accelerations in the previous time period.

Then, our system recalculates the current segment of motion trace.

3.1.1.4 Bluetooth Detection

Received Signal Strength Indicator (RSSI), in units of “dBm”, is a measurement of the power

present in a received radio signal. RSSI can be recorded from the components of most mobile

devices, such as WiFi adapters and Bluetooth adapters. Bluetooth RSSI values received

from the other devices are related to the distance between the devices. Shorter distances

often represent stronger RSSI values [70]. We evaluated the RSSI-distance mapping relations

for the Bluetooth adapters on Samsung Galaxy smartphones and Samsung Tablets. These

mapping relations are pre-trained and stored as hash maps.

If two devices can detect each other, we assume that the link between the two devices has

open space. We estimate the distance between the two devices from the initial map. The

positions of the two devices are obtained through dead reckoning. If the corresponding RSSI
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values from RSSI-distance relation are close to the received RSSI values (the error range

is 3dBm), namely, we assume no interference on the link. The elements VBL between the

link in M are set as 0. When the received RSSI is less than the corresponding RSSI values

(beyond the error range), there might be some interference on the link. It is unreasonable to

set all the values of elements on the link in M as 0. The procedure of Bluetooth detection is

described in Algorithm 1.

Algorithm 1 Bluetooth Detection Algorithm
Input:

(x↵, y↵), (x� , y�), RecRSSI↵, RecRSSI� , VBL(x, y);
Output:

The latest VBL(x, y);
1: // Use the prepared Hashmap to compute

// the estimated RSSI by known positions
2: Dist(↵,�)  

q
(x↵ � x�)

2 + (y↵ � y�)
2

3: EstRSSI  HashMap(Dist(↵,�));
4: if (RecRSSI↵ +RecRSSI�)/2� EstRSSI < Tb then
5: for each VBL(x, y) do
6: // Once the RecRSSI is close to Estimated RSSI,
7: // we add 0 for the elements on Bluetooth link
8: VBL(x, y)  VBL(x, y) + 0;
9: cnt  cnt+1 & VBL(x, y)  VBL(x, y) / cnt;

10: end for
11: end if

3.1.1.5 WiFi Detection

Wi-Fi Direct enables devices to connect with each other without requiring a wireless access

point. It also can provide RSSI values for each of the connected devices. Wi-Fi Direct is

supported by most current smartphones. In contrast to Bluetooth RSSI, WiFi RSSI values

are not as sensitive to the distance within a short range. However, the value of WiFi RSSI

is susceptible to the interference between the link [8]. It is thus desirable to uses WiFi to

describe the object on the map. Figure 3.5 illustrates a preliminary observation. Alice and

Bob are two user of iFrame. They build connections via Wi-Fi Direct first. Then, Alice

walks from position 1 to position 2. On her way from position 1 to position 2, there is a
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(a) Dead reckoning detection. (b) Bluetooth link detection. (c) WiFi Direct link detection.

Figure 3.6 Approaches for constructing the map matrix M: (a) Dead reckoning trace determines the space
areas; (b) Bluetooth link determines the space areas; (c) WiFi Direct connection detects the obstruction.

cabinet between user Alice and Bob. Once Alice crosses the cabinet, the received WiFi signal

strength from Bob has an obvious abrupt signal change. Based upon this phenomenon, we

formulate the WiFi Detection in Algorithm 2.

In Algorithm 2, two events are pre-defined as follow:

Event (I): The differential value between the received RSSI value and the RSSI estimated

by the distance is greater than the threshold Tw1.

Event (II): The WiFi RSSI between the two users drops abruptly (more than the threshold

Tw2) from the previous period.

Only when the users want to make contributions to indoor map construction, the WiFi

and Bluetooth adapters are broadcasting and scanning. The adapters will be idle when users

do not build an indoor floor plan.

Fig. 3.6 demonstrates how the three sensing approaches work and perform.
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Algorithm 2 WiFi Detection Algorithm
Input:

(x↵, y↵), (x� , y�), RecRSSI↵, RecRSSI� , VWL(x, y);
Output:

The latest VWL(x, y);
1: for each time period i do
2: // Use prepared Hashmap to compute the estimated RSSI by known positions
3: Dist(↵, �)  

q
(x↵ � x�)2 + (y↵ � y�)2

4: EstRSSI  HashMap(Dist(↵, �));
5: if Event (I) and Event (II) are satisfied then
6: // Event (I):
7: // |EstRSSI� (RecRSSI↵ +RecRSSI�)/2| > Tw1
8: // Event (II):
9: // |(RecRSSI↵ +RecRSSI�)i � (RecRSSI↵

10: // +RecRSSI�)i�1| > Tw2
11: for each VWL(x, y) do
12: // When RecRSSI is close to Estimated RSSI,
13: // we add 1 for the elements on WiFi link
14: VWL(x, y)  VWL(x, y) + 1;
15: cnt  cnt+1 & VWL(x, y)  VWL(x, y) / cnt;
16: end for
17: end if
18: end for

3.1.2 Enhance real-time property

For most BLE devices detection, the discovering period of a BLE adapter is more than 20

seconds. However, user’s motion may change continuously. For example, once a certain round

of BLE detection does not finish, the user’s of smartphone may have left the position or even

the environment where he was. Namely, the BLE detection should be synchronized with

smartphone’s users’ motion behaviors. In our approach, once our program has detected three

BLE devices, we interrupt the discovering program and restart the new procedure. Based on

our observation from Android BLE detection, as shown in Fig. 3.7, the average discovery

round for 15 BLE beacons can be reduced from 40 seconds to 5 seconds.

In addition, for WiFi detection, there exists the similar problem. We also "interrupt"

the process of WiFi detection. By detecting three nearby WiFi devices, we restart the new
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Figure 3.7 Reduce the scanning period by interruption.

scanning procedure and drop the following processing. The average discovery round for 10

WiFi devices can be reduced from 20 second to 5 seconds.

3.1.2.1 Matrix Fusion Mechanism

We introduced three techniques: dead reckoning, Bluetooth detection, and WiFi detection to

set the values on the map matrix. However, there are some shortcomings for each of them: 1)

dead reckoning can describe the user’s motion traces, but the estimated positions often deviate

the ground truth. For example, the accelerometer on a smartphone represents the acceleration

of the smartphone rather than a human’s movement. Once a user’s body motion is different

from the smartphone’s motion, dead reckoning computation will fail due to the deviation.

Though we designed the prediction mechanism to correct such errors, the deviations still

occur sometimes; 2) Bluetooth detection approach may ignore some interferences that are

lower than the threshold between the link; 3) WiFi detection cannot represent some vacant

grids on the link that have detected objects. Therefore, the matrix computed by the three

approaches includes errors. In order to refine the results, iFrame merges the three methods
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and generates improved results.

We proposed Curve Fit Fusion (CFF) to combine the matrices computed by the three

methods. According to the samples from the training data, we select a proper proportion to

assign different weights to the three methods.

8
>>>><

>>>>:

a+ b+ c = 1

a⇥MD + b⇥MB + c⇥MF = M

a : b : c = BD
�1

: BB
�1

: BF
�1

(3.8)

Bm⇥n =

vuut
nX

j=1

mX

i=1

(�Vij)2,�V = |Vg � Ve| (3.9)

As given in equation (3.8), MD, MB , MF denote the matrices computed after using dead

reckoning, Bluetooth and WiFi detections. M is the matrix computed by combining the

three techniques. The factors a, b, and c decide the proportion of MD, MB , MF . SD, SB ,

SF refer to the shadow rates of the three approaches in a room.

A special metric is introduced in equation (3.9). Error of Block Value (EBV) is the error

value of the estimated shadow rate in each grid. Vg refers to the real shadow rate in each

grid. Ve is the shadow rate computed by our approach. If we use an m⇥ n matrix, the Error

of Block Value is defined as Bm⇥n, which is the average error value of all the grids.

We collect a small-scale training dataset: by changing the layouts in three rooms, for

various types of layouts, each has a different shadow rate. Then, we compute the shadow

rate and error value for each case. By applying different approaches, in Fig. 3.8, each sample

on the figure is a case we tested. The figure illustrates the relation between the shadow rates

and the error values for these cases.

As given in equation (3.10), BD, BB , BF refer to the error values caused by dead

reckoning, Bluetooth and WiFi detections. After applying the curve fit tool, we can compute

the values of ↵ and �. By knowing ↵ and �, once we obtain the shadow rates, it is easy to
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calculate the proper a, b, and c values from equation (3.8).

(BD, BB , BF ) = (↵1,↵2,↵3) · (SD, SB , SF ) + (�1, �2, �3) (3.10)

3.1.2.2 Multi-device Combination

Since iFrame is a crowd sourcing mechanism, all the users of mobile devices collect and upload

sensing data. Therefore, it is significant how we organize data computed from each mobile

device. Our system provides three types of organizations:

1) Maximum Space: Md1

S
Md2

...
S

Mdn�1
S

Mdn

2) Minimum Space: Md1

T
Md2

...
T

Mdn�1
T

Mdn
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3) Mean Value:
q

(M2
d1

+M2
d2

+ ...+M2
dn�1

+M2
dn

)/n

Mdi
denotes the matrix computed by device i. The Space Maximum represents the

combination matrix that has the most space. The Space Minimum is the combination matrix

that remains the least space. The Mean Value is between these two extremes. We adopt the

Mean Value as the default mechanism to merging sensing data from different devices.

3.1.2.3 Crowd Noise Filter

One situation is non-negligible: if there exist so many users who are stationary in one room

or a hallway, the generated shadow map might include some errors. The people’s bodies may

tend to yield some shadows in the generated map. To reduce these “temporary shadows,”

iFrame checks the motion trace of each user periodically and considers if a user does not

change his/her position within 5 minutes, iFrame will not use his/her data until he/she leaves

the position.

In addition, if many people are in a room or hallway, regardless if the people’s bodies

are stationary or not, there might be interference for the smartphones’ radio signals. The

presence of large numbers of people often cause variations of RSSI values [82, 92]. Based

on this phenomenon, we need to detect the room with high crowd density and amend the

variations of the RSSI caused by the presence of many human’s bodies.

Three steps are taken as a heuristic solution for filtering crowd noises:

1) We divide the matrix M into sub-matrices from M1 to Mn. Each keeps the same size.

For Mi (0 i  n), in a certain time period, we focus on three features: the number of users,

the sum of variation of Bluetooth RSSI for all the devices, and the sum of variation of WiFi

RSSI for all the devices.

2) By the three proposed features, we assume each Mi is a sample on a three dimensional

space. The three features represent the three dimensions. By employing the K-means

algorithm, we divide the sub-matrices into three types: high crowd noise level, normal crowd
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noise level, and low crowd noise level as Fig. 3.9.

3) For the matrices tagged with high crowd noise level, we take actions to reduce the

noise: since the matrices MB and MF made by Bluetooth and WiFi RSSI detections are

interfered by human bodies, these data are will not be adopted. Only dead reckoning is

acceptable for the matrices with high crowd noise level. Matrices with normal or low level

crowd noise still use the three key techniques together.

3.1.3 Extend Rooms to a Building

3.1.3.1 Anchor Points Analysis

In addition to the rooms and hallways of a building, there are some special places, such as

entrances, elevators, and stairs. When people walk in a building, these places should be

recognized as the initial positions of dead reckoning and the joints of rooms/hallways. These

places are named Anchor Points. Our existing approach can detect the layout of a room and

hallway, nevertheless, it has not recognized Anchor Points.

In order to detect the Anchor Points in indoor buildings, first, we employ the techniques

found in CrowdInside [2] and note that the motions of users have their own acceleration

ranges: 1) stationary: 0-5m/s2; 2) elevators: 0-4.1m/s2; 3) walking: 0-13.2m/s2; 4) stairs: 0-

20.2m/s2. iFrame analyzes the types of Anchor Points via their acceleration signatures. Then,

we adopt 1) correlation between the acceleration values on different axes and 2) variance

of acceleration magnitude to further classify Anchor Points. According to the obtained

accelerations and analysis patterns proposed in CrowdInside, we identify Anchor Points on

our map approximately.

Considering the entrances of a building are the initial positions of users’ motion traces, we

not only need to recognize them but also need to obtain their locations. When a smartphone

receives a GPS sample, the user can assume he/she is in an outdoor environment. When a

user enters a building, the GPS samples will disappear. A common method of estimating the
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Figure 3.11 Leverage GPS information and barometer to detect the building entrances.

entrance positions is recording the position where the latest GPS signal was received and the

position where the GPS disappeared, and then compute the middle point as the position of

the entrance. Actually, while a user is walking in a building, e.g., when he/she is close to

a window, he/she might receive GPS samples on his/her smartphone occasionally. These

GPS samples are named indoor GPS samples (iGPS for short). Therefore, the middle point

between the position of receiving the latest GPS and the position where the GPS disappeared

may contain errors.

Since the different temperatures and layouts in indoor and outdoor environments, the

values of air pressure between indoor and outdoor environments may be different. When a

user of smartphone enters a building, the values of air pressure will vary on the barometer

that is integrated on the smartphone. As Fig. 3.11 shows, we adopt this phenomenon to

detect the entrance of the building. When we compute the middle point between the position

where the user received the latest GPS and the position where the GPS disappeared, and

there exist a variation in air pressure, the middle point can be recognized as the entrance

of the building. Based upon our observation, the variation of air pressure should be greater

than 0.03Pha. An additional explanation is necessary: this approach only can be applied for

the places where indoor and outdoor environments have differential air pressures caused by

temperature or other factors.

To identify stairs and elevators in a building, we leverage two types of information to
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Figure 3.12 The air pressure recordings of a smartphone user goes up and down in a building.

Time (seconds)
0 5 10 15 20 25 30

A
cc

e
le

ra
tio

n
 (

m
/s

2
)

-20

-10

0

10

20
  X axis
  Y axis
  Z axis

Walk Sit Walk 

Exceptional  

Point 

Figure 3.13 The accelerometer recordings of a smartphone user passed by a chair (smartphone in left hand).

recognize them: acceleration and air pressure. First, as the measurement in CrowdInside [2],

when users of smartphones go on stairs and stand on elevators, the accelerations represent

their own ranges. Second, when the users of iFrame cross levels in a building, the air pressure

will change continuously. Since most modern smartphones integrate a barometer, the values

of air pressure can be detected. As in Fig. 3.12, the variations of air pressure caused by

changing levels in a building can be recorded by the barometer on smartphones. The numbers

near the arrows refer to how many levels the user crossed. Therefore, when both of the two

conditions are satisfied, we can identity the positions are elevators or stairs.

3.1.3.2 Hallway Assembling

In a building, hallways are separated by walls. Computer vision based approaches often use

complex image algorithms to gather the layouts separated by walls and the walls themselves.

iFrame solves this problem by: 1) users cannot cross the wall, therefore, dead reckoning

detection will not set the related element in M as 0; 2) if a user in a room and a user out of
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a room can detect each other, WiFi and Bluetooth detections cooperate together to mark

the wall related elements as 1. More samples can rebuild the wall more clearly. This method

does not need extra computation and can avoid image gathering.

3.1.3.3 Exceptional Points

In real environments, there exists some grids that are occupied by objects but still can

be passed by users. These points includes three features: 1) from the perspective of dead

reckoning, it can be passed through; 2) for Bluetooth and WiFi detections, it can be detected

as an obstruction; 3) in a certain time periods, as illustrated in Fig. 3.13, the values of

accelerations keep a relatively stable state. The parameters that define the stable state are

discussed in the evaluation section. If these three conditions can be satisfied concurrently, we

recognize the grid as an "Exceptional Point" and mark the corresponding grid as "1".

For example, if a chair is in the grid, even if the grid can be described as "occupied" on the

shadow map, the user can sit on the chair and leave the chair at any time. For a certain chair,

we observe the detecting results by using the three proposed conditions. We tested the case

100 times. Our approach could detect the chair 92 times as an "Exceptional Point". Some

other objects on the floorplan can be treated as "Exceptional Point". For example, a shopping

cart, mobile cabinet (cabinet including wheels) satisfy the three conditions because of their

movable features. Although the chair can be detected by the definition of "Exceptional

Point", the "Exceptional Point" are not limited to chairs. The shopping carts and mobile

cabinets (cabinet including wheels) also satisfy the three conditions because of their movable

features.

3.1.4 Leverage Deployed Infrastructures to Enhance Shadow Map

Although iFrame does not depend on the pre-installed devices (such as WiFi Access Points

and Bluetooth Beacons) in a building, iFrame is able to leverage these devices to improve
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Figure 3.14 Use pre-installed infrastructures to improve the indoor map.

dead reckoning. If the pre-installed wireless devices can share their positions, once a fixed

device is close (within one grid) to a user of a smartphone, the user’s computed position

from dead reckoning will be replaced by the device’s accurate position. The distance between

the wireless device and the user’s smartphone is computed by the prepared RSSI-distance

relations. Considering the position of the installed wireless device is known and accurate, the

device also can be treated as an Anchor Point in Fig. 3.14(a).

In addition, even if the pre-installed devices are stationary, they are able to communicate

with mobile devices via Bluetooth and WiFi. As presented in Fig. 3.14(b), the wireless links

between the pre-installed devices and mobile devices can describe the states of the grids on

the shadow maps. Namely, although iFrame is not an infrastructure-based system, it is able

to cooperate with the fixed infrastructures that are deployed in indoor environments.

3.1.5 Energy Saving

Most smartphone sensing approaches consume much energy. For example, the smartphones

that use a camera sensor to generate street scenarios have to face the challenge of high energy

consumption if the camera is always running. However, if the camera is turned off, important

images may be lost. iFrame improves the energy issue by the follows aspects: First, for dead

reckoning, considering the sampling frequencies are highly related to energy consumption,

when the smartphone detects that the acceleration variation on any one of axises changes
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more than 2m/s2 within 1 minute, we assume the smartphone is not stable. Namely, dead

reckoning may include more errors and the sampling frequency of the smartphone will be

reduced. Once the smartphone detects that the acceleration variation all the axises changes

within 2m/s2 in 1 minute, the sampling frequency will increase. For Bluetooth and WiFi

detection, because the proposed "interrupt mechanism" is more energy consuming than

default device discovery, if the radio adapters can discovery any nearby device within 3

minutes, they will adopt the "interrupt mechanism" to detect devices. Otherwise, they will

use the default duty cycle to detect devices.

3.1.6 Evaluation and Discussion

3.1.6.1 Experiment Setup

We prototype iFrame on Samsung Galaxy S5 smartphones and Google Nexus 7 tablets, which

support various types of inertial sensors. The version of Android is 4.4. In the experiments

and simulations, users leverage Bluetooth adapters, WiFi adapters, and accelerometers. The

corresponding sampling frequencies of these components are 0.2-0.06Hz, 0.25-0.5Hz, and 5Hz

respectively. We implement dead reckoning to generate a user’s motion trajectory: 1) we

calculate the movement direction and the motion distance in each segment and 2) merge

computed segments in each time period. When the smartphone detects the acceleration

variations on all the of axises change less than 2m/s2 within 1 minute, to save energy, the

sampling frequency of accelerometer will adjust to 0.5HZ. Once the smartphone detects the

acceleration variations on any axis change more than 2m/s2 within 1 minute, the sampling

frequency will return 5Hz. After turning on these sensors, the users carry the mobile devices

and walk freely in the indoor scenarios. Initially, we set the shadow value of each grid as

1. For the size of each grid, if the size is too large, the accuracy of the rebuilt map will be

constrained. On the contrary, once the size of grid is too small, the complexity of computation

will increase sharply. In our evaluation, we set the size of each grid as 0.5m⇥0.5m.
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Figure 3.15 The case study of indoor floor plan reconstruction. Within the time increase, the generated
shadow map is closer to the ground truth. The group including the three methods outperforms other two
groups.

For Bluetooth and WiFi detections, the distance-RSSI relations for the smartphones are

trained off-line and stored in hash tables. We estimate the layouts between each of the

connected smartphones via the proposed algorithms. Empirically derived thresholds Tb=

3dBm, Tw1= 4dBm, Tw2= 4dBm are proposed in Algorithms 1 and 2. When we combine

the three sensing approaches, the initial values of a, b and c are 1/3. We adopt Mean Value

pattern to merge the matrices computed from all the mobile devices.

In our evaluation, we seek to answer these questions: 1) Does iFrame construct the indoor

layout of a building successfully? 2) Can iFrame detect the change of layout of a room? 3)

Can our matrix fusing mechanism improve the output results? 4) Can an increase in the

number of users enhance the accuracy or speed up the rebuilding process? 5) Can iFrame

cooperate with deployed wireless Access Points in indoor environments? 6) Are anchor points

recognized successfully in the generated floor plan?
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Figure 3.16 The case study of rebuilding the changed floor plan. After we changed the positions of trash cans
and tables, iFrame still can build the accurate indoor shadow map within 5 to 10 minutes.

3.1.7 Indoor Environment Measurement

3.1.7.1 Room Measurement

We conducted an experiment in the eLANS Lab of Michigan State University. As shown in

Fig. 3.15, we transform the floor plan of a room into a two dimension map described by a

shadow based matrix. The gradient color (from black to white) in each grid represents the

shadow state. Three users carry smartphones and walk freely in the room. The smartphones

are put into the users’ pockets. It is easier to detect the objects between wireless links. We

only leverage the samples collected in the pockets to build a motion trace. To distinguish the

relative position of smartphones, two types of sensors are used: embedded proximity (IR)

and light sensors. By using the detection mechanism proposed by Yang [86], we are able to

detect the smartphone in pocket or out of pocket.

By executing our approach for 10 minutes, iFrame constructs the indoor floor plan. With

the time increasing, the estimated map reflects the ground truth better. For example, the

generated shadow map in the 10th minute is more accurate than the shadow map in the 5th

minute.

In order to verify our approach is able to represent the latest version of the indoor map,

we changed the layout of the room. The proposed algorithm in iFrame ran continuously with

unattended mode. Then, we conducted the same experiment in the changed scenario. Even

if the trash cans and tables have been moved, as Fig. 3.16, the new generated map is still

close to the ground truth.
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Note that when people work or live in a room, there is little possibility to walk continuously.

Therefore, we did an experiment that more closely resembles people’s daily life. There were

three users of iFrame in a room. They can walk, stop, sit, and chat in the room for 1 hour.

In this case, each user adopts Noom Walk [50] and S-Health [31] Pedometer applications

on their smartphones, and record the number of steps they have walked. Fig. 3.10 depicts

that even if there exists some differences for the step numbers counted by the two applications,

within the increasing of the number of steps, the Errors of Block Values are reduced gradually.

Then, we executed a similar experiment within 30 minutes, the experimental results are close

to what we obtained in the 1 hour’s group.

To analyze the effectiveness of each technique, we did the following experiments. First, we

only used dead reckoning approach to build the map. Then, we added Bluetooth detection

and did the experiment. In the end, we combined the three technologies together. As shown

in Fig. 3.15 and Fig. 3.18(a), we conclude each technique can improve the accuracy of the

map. By repeating the comparison 10 times, Fig. 3.18(b) provides the confidence interval for

each approach and shows that our conclusion is not coincidental.

There are three participants in the above experiments to collect samples to construct

the map. We observe two other control groups for 10 minutes: 1) One participant has

iFrame. Since no other person can establish a connection to him/her, only the dead reckoning

technique is available; 2) Five participants use iFrame, combining the three approaches

together. We repeat the experiments 12 times. Fig. 18(c) shows that with an increasing

number of users, namely, more samples of matrices computed by iFrame can boost the

accuracy of map construction. Additionally, the groups with more users cost less time to

achieve a low error rate.

In our measurement, since the users of iFrame cover the rooms fully, the indoor maps are

generated completely. However, in certain cases, the users may not pass by some areas in

a room. These areas (named "blind area") cannot be described by our sensing approaches.

To reduce the "blind area" on the map, once iFrame cannot receive the data samples from
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Figure 3.17 Floor plan case study for the rooms over a long time.
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Figure 3.18 Experimental results for single room case study.
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Figure 3.19 Results of the extended experiments.

certain areas for 1 hour, iFrame sends a message to users to suggest to visit the "blind area".

In contrast to letting volunteers walk frequently and cover the full space of the eLANS lab

within 10 minutes, we did an experiment in a living room of apartment (the size is known),

which is closer to a real world scenario. Three users of iFrame enter and leave the room freely.

Our system collected the data from three iFrame users in one day (from 10AM to 5PM), as

shown in Fig. 3.17, by applying the "blind area" messages, the shadow map can achieve a

low Error of Block Value (0.041).
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Figure 3.20 Markov chain prediction for multiple rooms.
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Figure 3.21 Markov chain prediction in one room.

Table 3.2 Different groups of a, b, and c values

a b c
Low Shadow Rate 0.430 0.353 0.217
Normal Shadow Rate 0.412 0.324 0.264
High Shadow Rate 0.345 0.225 0.430

3.1.7.2 Building Measurement

In Fig. 3.22, we extend our approach to a building with multiple rooms and hallways. When

iFrame builds the map of each single room, we also collect a, b, c values (Low/Normal/High

shadow rate) for assigning weights to dead reckoning, Bluetooth and WiFi detections. The

three groups are shown in Table 3.2. Once a user enters a room, after the first time period

scanning, if the average shadow rate of a room is less than 0.1, it will choose a low shadow

rate related to a, b, c values. If the average shadow rate is more than 0.25, it will use a high

shadow rate related values. Other cases will adopt the normal shadow rate related values.

As shown in Fig. 3.19, although all of these experimental scenarios stay at a low error levels,

the rooms with lower shadow rates have less errors.

iFrame obtains improved results from combining the three types of output matrices. The

selection of a, b, c is based on CFF. To verify the effectiveness of CFF, we did the following
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Figure 3.22 Extend our evaluation from single room to the whole building via recognizing the anchor points.

comparisons: under the same condition as the previous evaluation, we set the values of a, b

and c as 1/3, rather than selecting the values of a, b and c by the proposed method. Fig.

3.19 shows the Errors of Block Values of 12 places without changing the initial values of

a, b, c and the control group using CFF. We can make two interesting observations from

the comparisons. First, the evaluation results confirm CFF enhances the accuracy of map

construction effectively. Another observation is that the group with five users has better

performance than the group having three users.

Next, we study the benefit of the Markov chain and Average Speed predictions, which

aim to correct the deviations from dead reckoning. We keep the above experiment conditions,

but delete the Markov chain prediction mechanism and conduct iFrame 10 times in 12 rooms.

As represented in Fig. 3.20, we observe that the group with the Markov chain prediction

outperforms the other one. Then, we only concentrate on room 1 and run iFrame for 800

seconds. Two groups of results are illustrated in Fig. 3.21. With the time increase, the

group with Markov Chain prediction has less error of deviation distance. Error of Euclidean

Distance is the distance (in meters) between the ground truth and the estimated position.

Besides, we concentrate on how ASM improves the dead reckoning. We curve fit the historic

average speeds and predict the average speed in the current time period. Each time period is

30 seconds. As presented in Fig. 3.23, we set 5m/s, 2m/s, 0.5m/s, and 0.1m/s as the error
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Figure 3.23 ASM comparison with different thresholds.
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Figure 3.24 Experimental results of using fixed AP.
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Figure 3.25 Number of recognized Exceptional Points.

ranges of predicted average speeds and compare these control groups. We conclude 1) AAS

improves the accuracies of dead reckoning and 2) 2m/s is the most suitable error range of

AAS.

We select the Mean Value mechanism to merging sensing data from different users. When

we use Maximum Space and Minimum Space organizations to collecting data, the average

Errors of Block Values in the building are reduced by 0.012 and 0.009.

The Anchor Points (e.g., entrances, stairs, and elevators) were identified in our system as

shown in Fig. 3.22. Table 3.3 lists the recognition results for these Anchor Points. Only one

stair and one entrance on our map were mis-classified.
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Table 3.3 Confusion matrix for classifying different anchor positions

Elevator Stairs Entrance Other FP FN
Elevator 9 0 0 0 0% 0%
Stairs 0 20 0 1 0% 4.8%
Entrance 0 0 20 1 0% 4.8%
Other 0 0 0 40 5% 0%

The above evaluations do not contain fixed wireless Access Points (AP), such as wireless

routers and bluetooth beacons. To validate iFrame is able to work with fixed access points,

we add Access Points in the experimental scenario as in Fig. 3.24. In the first group, each

room does not include any AP. In the second group, there is one fixed AP in each room.

There are 2 AP in each room for the third group. As presented in Fig. 3.24, we show 1) the

accuracies of reconstructed map can be improved by adding fixed AP and 2) the accuracies

will increase by using more APs.

We focus on the recognition of Exceptional Points. Within 10 seconds, if the variations

of accelerations on each axis are within certain thresholds, the state is defined as "stable

state". Based upon the above experimental scenario, we deploy 20 chairs as the Exceptional

Points. Once a user of iFrame passes by a chair, if the "stable state" can be detected by our

system, the chair will be distinguished as an Exceptional Point. We tested different threshold

of defining the "stable state" (0.1m/s2, 1m/s2, and 10m/s2). When we choose 1m/s2 as

the variation range of accelerations on each axis, the results are more accurate. Fig. 3.25

illustrates that three users of iFrame walk freely and ran our approach within 15 minutes. All

the Exceptional Points on the map are recognized gradually. Although there is only one false

positive case, it is the empty grid that is close to a chair that is distinguished as a real chair.

In the end, we discuss the real-time features of existing approaches. For the above

experiments, the Bluetooth and WiFi adapters resume when the whole discovery round

finishes. By keeping the same experimental conditions, we modified the original detection

models by interrupting the duty cycle of device discovering, once the program obtains a

certain number of devices, the serving round of device discovery will resume immediately.

As shown in Table. 3.3, we compare the control groups with different number of detected

40



Table 3.4 Different groups of a, b, and c values

a b c
Low Shadow Rate 0.430 0.353 0.217
Normal Shadow Rate 0.412 0.324 0.264
High Shadow Rate 0.345 0.225 0.430

Table 3.5 Control groups of using different number of detected devices

EBV 2 mins 4 mins 6 mins 10 mins
One Device 0.409 0.233 0.126 0.031
Three Devices 0.356 0.185 0.090 0.015
Five Devices 0.365 0.189 0.093 0.017
Finished 0.376 0.192 0.096 0.019

devices in a partial list. When we set three as the number of devices in the detection list, we

obtain the best results.

3.1.7.3 Discussion

In contrast to other map construction approaches, iFrame is a light-weight and low complexity

application.

Users of iFrame upload their accelerations and received RSSI values from cooperating with

other devices periodically. The prepared distance-RSSI hash maps stored on the cloud server

transfer the received RSSI values to distances continuously. Aiming to reduce computational

burden on each smartphone, we deploy four critical tasks on the server instead of running it

on smartphones: i) Forming the initial shadow map for a single smartphone, ii) Combine

the matrices collected from various devices, iii) Refine the shadow map via Curve Fit Fusion

(CFF), and iv) Filter the temporary shadow to enhance the accuracy of the indoor map.

Although iFrame deployed tasks to a cloud, the cloud server does not need to process

complex images or simulate people’s micro-activities, such as shaking hands. In this subsection,

we analyze the computational complexity of each corresponding task: i) iFrame adopts formula

(3.2) and Markov chain prediction to generate the motion trace. Since the complexity of

formula (3.2) is O(n2), the complexity of Markov chain prediction is O(n3) (the transfer

matrix is O(n2), after the k steps’ transitions, the complexity of Markov chain prediction

is O(k ⇥ n2)). ii) We adopt the Mean Value model to merge the matrices built by different

41



devices, the complexity of the Mean Value model is O(n2). iii) Solving the equation of CFF

to compute the B value for each grid on the shadow map, the complexity of the CFF is

O(n2). iv) Conducting the crowd noise filter for each sub matrix, because the filter relies on

k-means clustering, the complexity of this approach is O(n(di⇥u+1) ⇥ log n) (u is the number

of cluster, di is dimension of each point to be clustered, n refers to the number of rooms to

cluster). When we apply iFrame, the number of u, di are both set to three. Considering the

number of rooms in iFrame is not beyond 500 for most of buildings, iFrame can manage to

accurately construct the indoor map with such computational complexity.

Based on our experimental conditions, our experiments are conducted from 5 minutes

to 7 hours. The number of users are less than 6. For short-term data collection, users may

not cover some corners on the floorplan. This phenomenon may cause some errors. In the

future, we can prolong the time period and let more of experiments. Also, more users can

participate the procedure of indoor map construction. If users in a building can share the

motion data of their daily routines, using crowdsourcing, the additional data samples could

improve the accuracy of indoor shadow map.

3.1.8 Conclusion

We introduce a light-weight and high-speed indoor map construction approach called iFrame.

After abstracting the unexplored map as a matrix, and by combining dead reckoning and

RSSI detection techniques, iFrame judges whether the subareas in an indoor environment

are empty or not. Each of proposed technologies compensates the shortcomings of others by

adopting a matrix fusing mechanism. Our approach selects proper parameters for merging

data automatically and yields a clear shadow map for each room within 5-10 minutes.
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CHAPTER 4

IMPROVING INDOOR LOCALIZATION BY PROFILING OUTDOOR
MOVEMENT ON SMARTPHONES

4.1 Introduction

Indoor localization is a fundamental service for various location based applications. Despite

the extensive research and development of indoor positioning systems [41, 55, 51, 87, 43, 91, 4],

localization service is not yet pervasive indoors. Since the capabilities of smartphones have

become more powerful, many researchers use smartphones to locate people. Apart from the

traditional device-based and device-free indoor localization approaches, smartphone-based

approaches capture people’s motions and traces by analyzing the acceleration, light, sound

and other signals [71, 3, 90, 9, 75, 39, 62].

Although inertial sensing on smartphones can capture people’s movement via the sensing

data, there are some shortcomings: the sensing information, such as the 3-D acceleration from

a smartphone does not always reflect features of a person’s movements; the data training

task is difficult: the size of data is small for statistical location accuracy and the learning

algorithm is significantly complex for a smartphone. Based on this point of view, we ask

the question: Can we enhance smartphone users’ capabilities to locate themselves accurately

without complex indoor training and an extra, perhaps expensive, infrastructure?

In this chapter, we propose iLoom (indoor Localization through transferring learning of

outdoor motion), an accurate and low-cost indoor localization system that integrates an

off-the-shelf dead reckoning, GPS information, and a transfer learning mechanism. Our idea

is inspired by the observation that, when users walk indoors or outdoors, some features of

their walking patterns, such as the average speed and acceleration are not greatly affected by

the different environments. Hence, we use outdoor walking behaviors to assist users’ indoor
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Figure 4.1 iLoom in Action: employ outdoor data to improve indoor positioning

localization.

Initially, iLoom provides a sensing service on a smartphone that detects whether the

smartphone is indoors or outdoors. Then, iLoom uses a dead reckoning approach [71]. An

Acceleration Range Box is introduced to filter the accelerations that do not represent the

user’s movement. To determine the range of the Acceleration Range Box, iLoom collects

the average speed and acceleration from the indoor and outdoor environments. Since the

outdoor motion data using GPS is more accurate than movement determined by accelerometer

data, iLoom not only uses indoor datasets but also uses the outdoor GPS datasets. In the

outdoor dataset, we employ Transfer Learning [52] to select the parts of accelerations for

which people’s outdoor movement behaviors are similar to indoor motions and add the chosen

outdoor data to the indoor datasets for boosting the effectiveness of the Acceleration Range

Box.

Three additional techniques for using outdoor/indoor information are proposed to enhance

the original dead reckoning method: iLoom adopts a pedometer to construct other types of

Acceleration Range Boxes that reduce the errors of indoor localization; indoor GPS exception

cases are used to decrease deviations; since people’s average speeds of movement typically do

not change sharply, we eliminate some incorrect accelerations by average speed prediction.

We prototype iLoom and conduct a set of experiments in indoor and outdoor scenarios.

Fifteen volunteers’ cases have been studied. The evaluation results demonstrate iLoom
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enhances the original dead reckoning approach effectively. The error of indoor localization

is within 0.35 meter. Also, iLoom does not request users to do special off-line training. By

opening iLoom and the GPS option for daily walking, iLoom can estimate indoor position

more accurately.

In summary, we make the following contributions:

• We employ outdoor GPS information and other sensing data obtained from smartphones

to detect whether the smartphone is indoors or outdoors.

• While many researchers have used dead reckoning as a means to specify a user’s position,

to the best of our knowledge, iLoom is the first of its kind to transfer the outdoor

motion information to the indoor dataset for boosting indoor localization automatically.

• Indoor GPS Exception, Pedometer Measurements, and Average Speed filter are imple-

mented to assist the dead reckoning method.

4.2 System Design

4.2.1 System Overview

(a) Sensing Data Collection 
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(b) Environment Detection (d) Enhance Dead Reckoning Optimization Methods 
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Figure 4.2 System architecture of iLoom.

Fig. 4.2 presents the system architecture of iLoom. iLoom has four steps: a) leveraging

the inertial sensors on a smartphone to obtain the acceleration, GPS, air pressure, cell

signal, light and magnetic information; b) using the acquired sensing data, iLoom detects the

indoor/outdoor environments with high accuracy by applying k-means clustering algorithm;
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c) iLoom proposes the Acceleration Range Box, a range of accelerations in different directions,

to filter the incorrect accelerations that lead to the errors in the dead reckoning. In order to

characterize the Acceleration Range Box, we construct a relation from the user’s average speed

to the average acceleration in each time period. Taking the average speed as the bridge, iLoom

chooses the transfer learning approach to transfer the worthwhile outdoor GPS information

to the dataset that stores acceleration samples that were received indoors. d) by the Average

Acceleration Range Box constructed by transfer learning and other optimization technologies,

iLoom calibrates the errors of dead reckoning to archive accurate indoor localization results.

Our system involves three other approaches to assist the indoor localization: 1) iLoom

adopts the third-party pedometer to modify and boost the Acceleration Range Box; 2)

although a user walks indoor, he/she may receive the GPS signal occasionally. Such GPS

samples cannot be used for indoor positioning and may cause a false positive when a

localization system detects the user is indoors or outdoors. In iLoom, we design an approach

that not only avoids such mistakes but also improves indoor localization accuracy; 3) since the

user’s average speed will not likely vary sharply in a short time slot, we define a mechanism

that filters the average speeds that change suddenly.

4.2.2 Indoor and Outdoor Detection

Before transferring the useful motion data from outdoors to indoors, we need to identify

the samples obtained from the smartphones that belong to either the indoor or outdoor

environments. An intuitive detection scheme estimates the positions via GPS. When the

smartphone receives a GPS sample, the user can assume he/she is in an outdoor environment.

In reality, while a user is walking in a building, e.g., when he/she is close to a window, he/she

might receive GPS samples on his/her smartphone occasionally. However, these samples do

not represent the user when outdoors.

To tackle this problem, IODetector [95] adopts three types of information on the smart-

phones: light intensity, cell signal strength, and magnetic sensor values. Even if each of them
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cannot determine the environment, IODetector aggregates them and provides the solution.

Via IODetector, researchers in the University of Edinburgh constructively introduced a

semi-supervised learning model to analyze the indoor/outdoor location of smartphones [61].

They used more than three types of sensors on smartphones to collect physical signals. By

applying the semi-supervised learning model, the accuracy of IODetector increases to 92.5%.

In this section, we introduce a novel approach, GAPO. By leveraging the GPS, Air

Pressure, and Other cyber-physical information on the smartphones (light intensity, cell

signal strength, magnetic sensing values), we distinguish the indoor/outdoor context for the

smartphones.

Apart from the two above approaches, the proposed purpose of iLoom is to transfer outdoor

GPS information to improve indoor positioning. Hence, GPS samples can be borrowed to

detect environments. Considering both the current and historical information, a parameter

tsi (t ime sequence index of GPS) is defined as formula (4.1):

tsi = (

tX

i=1

�⇥ 2

i
)/(

tX

i=1

2

i
) (4.1)

where t is the number of time periods, i refers to the time period. � can be set as 0 or 1 (if

the smartphone gets the sample in time period i, � equals to 1, otherwise, it is set as 0). For

tsi, the obtained GPS samples that are closer to current time period will be assigned more

weight.

Additionally, modern smartphones include barometers. Highly accurate air pressure can

be easily accessed. The accuracy of the barometer, such as the barometers on the Samsung

Galaxy smartphones, can achieve within 0.1hPa. Although air pressure is determined by

many factors, the differences of temperatures in indoor and outdoor scenarios often cause

the variations of air pressure. Therefore, we add air pressure as a feature for distinguishing

indoor and outdoor environments. After leveraging K-means algorithms, GAPO categorizes

these samples into indoor and outdoor datasets.

We conducted a preliminary observation to explore GAPO: one user of a smartphone
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Table 4.1 Confusion matrix for the samples representing the indoor/outdoor detection results.

Indoor (ground truth) Outdoor (ground truth)
Indoor (estimate) N

ii

N
io

Outdoor (estimate) N
oi

N
oo

Table 4.2 Successful rates of distinguishing indoor/outdoor environments in different scenarios.

GPS Only IODetector GAPO
Sports Center 82.50% 78.50% 94.00%
Laboratory Building 77.00% 70.50% 92.50%

walks freely, receives 1000 samples from outdoor/indoor environments, and conducts GAPO

to detect the environments. We compare the estimated indoor/outdoor results with the

ground truth. Table 4.1 is a confusion matrix for representing the detection results. N

in Table 4.1 denotes the number of samples. The metric Pe in formula (4.2) refers to the

successful rate of estimating the indoor/outdoor environment. As shown in Table 4.2, by

comparing the Pe values within other approaches in two different buildings, GAPO archives

better performance.

Pe = (Nii +Noo)/(Nii +Nio +Noi +Noo) (4.2)

4.2.3 Dead Reckoning is Not Enough

Dead reckoning has been widely used in indoor localization, especially for the smartphone

based approaches [71]. After receiving the acceleration values on smartphones periodically,

the motion distance of a mobile device in time period n is generated by formulas (4.3) and

(4.4). The parameters ax, ay, az are the projections of acceleration ~a on the x, y, and z axes.

~Dn is the movement distance in the current period. vn�1 and an�1 are the velocity and

acceleration from the previous time period. tn refers to the time length of the current period.

A smartphone user can obtain his/her motion trace by calculating movement distance in

each segment continuously.

~a = (ax, ay, az � g) (4.3)
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~Dn =

1

2

~an�1t
2
n + ~vn�1tn (4.4)

Although dead reckoning is easy to implement, a major difficulty in dead reckoning is

that a smartphone only records its own accelerations rather than the accelerations of the

human body’s motion. In practice, when users of smartphones collect their motion data via

smartphones, some cases often occur, such as giving a phone call to a friend, sending messages

via typing on the screen, and swing the hands holding the smartphones. These behaviors

incur serious deviations from a person’s walking pattern. Moreover, such errors grows with

time because the next motion segment is calculated from the current one with inaccuracy.

Due to these reasons, the dead reckoning trajectories are accurate in the beginning, but

diverge from the ground truth over time.

4.2.4 Initial Noise Filtering

When we employ dead reckoning as a means to locate people, it is necessary to filter obtained

accelerations that cause serious errors. In iLoom, even thought we do not detect the place

of a smartphone (in a pocket, on a user’s hand, near an ear of user) and recognize human’s

activities in detail, we still set basic constraints for collected accelerations. Because the

reasonable range of human bodies’ motions is within 0-5m/s2 on x, y and z axes [37], we

preliminarily eliminate the acceleration beyond the range while collecting the data from

accelerometers.

4.2.5 Acceleration Range Box

Every user has his/her own motion features. For example, when people walk regularly (not

considering jumping, running, and other special movements), the values of acceleration and

average speed on the x, y, and z directions should be in certain ranges. Inspired by this

point, we propose a technique to enhance dead reckoning: if we can estimate the maximum

accelerations on x, y, and z directions, they can be abstracted as the three sides of a cuboid.
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Figure 4.4 A user’s abnormal accelerations can be detected when he is not walking by using the Acceleration
Range Box.

The cuboid is called Acceleration Range Box (arb). As Fig. 4.3 shown, when we adopt dead

reckoning to generate the a user’s motion trace, if the acceleration value is out of arb, we

assume the value is invalid. We will utilize the acceleration in the previous period to replace

the invalid acceleration. Fig. 4.4 represents a user’s accelerations on x axis. Once the values

of accelerations is beyond the boundary of arb, the user’s motion cannot be recognized as

walking.

Since we introduced the Acceleration Range Box (arb), a big challenge is how to build an

efficient arb for each user. A brute-force approach is 1) recording all the accelerations on x, y,

and z axes of a smartphone; 2) finding the maximum value in each direction as the side of a
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box. However, such arb cannot reflect people’s motion feature and some invalid acceleration

values will be accepted.

In iLoom, although we do not categorize people’s movements in detail, a practical metric

to classify people’s motions is introduced. The metric is Average Speed (v) of people’s

movement in a certain time period. For a certain Range of Speed, we assume there is a

specific arb for a user. For example, a user’s Average Speed in 1 minute is 1.4m/s, the related

arb is 2.4m/s2 on x axis, 1.4m/s2 on y axis, and 1.4m/s2 on z axis.

We then construct an arb for each certain v. In an indoor environment, as in formulas

(4.3) and (4.4), we can capture the v in each segment through dividing the moving distance

by time t. For the outdoor localization, the v in each time period can be obtained via GPS.

For each time length of t, we record the maximum values of the acceleration on the three

directions and form the arb. If there are more than one arb in a speed range, we will compute

the average value of maximal acceleration on each direction and make use of it as the side of

a cuboid. The newly generated box is named Average Acceleration Range Box (arb).

For a certain Range of Speed (Rv), it also has its corresponding arb. Therefore, we can

create the relation between Range of Speed and Average Acceleration Range Box. This

relation in outdoor environments is named Ro(Rv, arb) (Ro for short), and it is named

Ri(Rv, arb) in indoor environments (Ri for short).

4.2.6 Can Outdoor Localization Help Indoor Localization

For dead reckoning based indoor localization, because the accelerations obtained from the

accelerometer may not be consistent with the human body’s motion, the indoor v might be

computed incorrectly. However, since GPS has a relatively accurate performance in outdoor

environments, the outdoor v dose not have such a problem. The corresponding Ro is often

more accurate than Ri.

Therefore, we propose an audacious conjecture: could we transfer the useful data from

Ro to Ri, and build a better relation to improve the dead reckoning approach?
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In fact, for one person, his/her walking style changes little whenever he/she is indoor

or outdoor. For every speed range of each person, there is a particular distribution, e.g, a

male adult whose age is 30, his speed range is mainly distributed from 1.2m/s to 1.7m/s

[? ]. If we select the useful and highly accurate samples from Ro and combine them to Ri,

it is probable to build a larger and more accurate relation. For each speed range, we will

re-compute the corresponding arb. If the new arb is more suitable for dead reckoning, it can

boost the localization results.

4.2.7 Transfer Learning from Outdoor to Indoor

In this subsection, we start to transfer the worthwhile information from the outdoor motion

dataset to the indoor motion dataset. In this paper, we employ Transfer Learning [52]. It

stores knowledge obtained from solving one problem and use it to a similar problem.

In iLoom, we study the useful instances from Ro and apply them on Ri, which are different

but similar to Ro. In each instance, it consists two features: Average Speed (v) and Average

Acceleration Range Box (arb).

When we apply transfer learning, the main challenge of transition is: for a certain user,

even if his/her walking behavior is similar whenever he/she is indoor or outdoor, there is a

small amount of differences in the speed distribution between Ri and Ro. On the perspective

of Ri, we need to 1) choose the instances that keep the same-distributions as Ri from Ro,

and 2) transfer these instances to Ri.

First, we define S and T to represent the test dataset (indoor information) and the

training dataset (outdoor information). SVM [26] is the default classifier. We select part of

the labeled training data having the similar distribution as the test data (indoor information)

to build a better classifier. These data are named same-distribution training data (Ts), the

size of Ts is m. The training data, whose distribution is different from the test data, are

named diff-distribution training data (Td), the size of Td is n.

X and Y are two instance spaces. Xs and Xd represent same-distribution instance space

52



Table 4.3 Main notations in the design of iLoom

Symbols Definition
v, R

v

Average Speed, Range of Average Speed
a
rb

, a
rb

Acceleration Range Box, Average Acceleration Range Box
R
i

(R
v

, a
rb

) Relation between R
v

and a
rb

in indoor environment
R
o

(R
v

, a
rb

) Relation between R
v

and a
rb

in outdoor environment
R
c

(R
v

, a
rb

) Relation between R
v

and a
rb

in combined dataset
X

s

,X
d

same-distribution / different-distribution instance space
S
d

,S
s

diff-distribution / same-distribution as sample space
L set of category labels, L= (0, 1)
mf boolean mapping function from X to Y
S,T test dataset and training dataset
k size of the test set S that is unlabeled
T
s

, T
d

same-distribution / diff-distribution training dataset
n,m size of T

s

and T
d

w weight vector for dataset
h
t

hypothesis from X ! Y
✏
t

error of h
t

on same-distribution training dataset
p probability of instances transferred from T to R

i

(R
v

, a
rb

)

and different-distribution instance space. Y = {0, 1} is the set of category labels. Concept

mf is a boolean mapping function from X to Y , and let X = Xs [Xd. mf(x) is the return

value of label for the data instance/sample x.

From Ro, we can obtain 1) inadequate labeled same-distribution training data Ts, 2)

diff-distribution training data Td, and 3) some unlabeled test data S.

Our task is to train a classifier mf 0 : X ! Y that minimizes the prediction error on the

unlabeled dataset S. In the proposed approach, the prediction operation is defined as: if we

use the arb and dead reckoning to localize people, and if the deviation distance is within 1m,

the prediction is successful; otherwise, the prediction is a failure.

To achieve this goal, we adopt the TrAdaBoost approach [10]: for diff-distribution training

instances, when they are wrongly predicted due to the distribution modified by the learned

model, these instances could be recognized as the most dissimilar instances to the same-

distribution instances. TrAdaBoost provides a mechanism to decrease the weights of these

instances in order to weaken their impacts.

Algorithm 3 illustrates the procedure of TrAdaBoost. In each iteration round, once a

diff-distribution training instance in Ro is not predicted successfully, the instance may conflict

with the same-distribution training data. Hence, it is necessary to reduce its training weight

w to decrease its effect. We multiply the weight by the factor �|ht(xi)�mf(xi)|, which is in the
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Algorithm 3 Algorithm of Transfer Boosting
Input:

T , S, Ri(v, arb), Ro(v, arb)
Output:

The updated Ri(v, arb) including the transferred instances
1: Set weight vector w1  (w1

1, ..., w
1
n+m).

2: while N>0 do
3: N ��;
4: Let pt  wt/(

Pn+m
i=1 wt

i).
5: Call SVM/SVMt;
6: (T with distribution pt over T ) [ S.
7: Get back to hypothesis: ht : X ! Y .
8: Estimate the error of ht on Ts:

✏t  
Pn+m

i=n+1
wti⇥|ht(xi)�mf(xi)|Pn+m

i=n+1 w
t
i

9: Set �t  ✏t/(1� ✏t), (✏t < 0.5) and � = 1/(1 +
p
2lnn/N).

10: Update the new weight vector:

wt+1
i  

8
<

:
wt
i�

|ht(xi)�mf(xi)|
t , 1  i  n

wt
i�

|�ht(xi)�mf(xi)|
t , n+ 1  i  n+m

.

11: sort instances in Ro(v, arb) by the latest wt+1
i

12: end while
13: transfer p% instances with higher weights in T to Ri(v, arb)

range of (0,1]. In the next round, the misclassified diff-distribution training instances will have

less effect for the transfer learning procedure than the current round. By times of iterations,

the diff-distribution training instances in Ro that are proximate to the same-distribution

instances will have higher training weights, whereas the diff-distribution training instances

that are dissimilar to the same-distribution ones will have lower weights. Thus, the instances

having large training weights in Ro can help the learning algorithm to train better classifiers.

After executing the transfer boosting, we only transfer the p% instances with higher

weights to assist the classification approach. The probability of transferred instances in Ro is

determined by the experience. The theoretical analysis and mathematical proof of transfer

boosting algorithm are in the literature [10].

Via transferring the same-distribution instances from Ro to Ri, our system obtains a new

relation Rc(Rv, arb) (Rc for short) in the combined dataset. Thus, a user can employ the
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Figure 4.5 The procedure of transfer learning in iLoom.

constraint made by the newly generated arb to enhance dead reckoning localization.

4.2.8 Employing Pedometer to Improve Dead Reckoning

Most common smartphones can support and run a pedometer application. Samsung Galaxy

Smartphones provide an off-the-shelf application named S Health to count the number of

a person’s walking steps. Some brands of wearable devices, such as Fitbit, Jawbone, etc,

also contain electronic pedometers. The inaccuracy of current pedometer monitors has been

shown to be around 9% [37].

In the procedure of transfer learning, the average speed (v) is the bridge to connect the

outdoor and the indoor information. In an indoor environment, the average speed not only

can be computed by acceleration, but also can be obtained by leveraging the third-party

pedometers. Based upon the two types of obtained average speeds, iLoom calculates two

types of corresponding arb. For each speed range, we update the Acceleration Range Box by

averaging the values of the two arb. Then, we employ the updated Acceleration Range Box

to calibrate the dead reckoning.

Algorithm 4 illustrates how iLoom exploits pedometers to optimize the existing Accelera-
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Algorithm 4 Pedometers Improve Acceleration Range Box
Input:

vi, Li - average speed, length steps of the pedometer user i
np - number of pedometers
nA - number of Acceleration Range Boxes

Output:
The updated arb for each sample

1: for i=0; i < np; i++ do
2: Li  a⇥Fi + b (or Fi  a⇥Li + b)

// step frequency Fi and step length Li has a linear relation
3: Initialize: vi  Fi⇥Li, j  nA, cnt  0;
4: while j > 0 do
5: if |vi-vj | < �SR

// if the average speeds are in the same range, merge the different arb. �SR is the threshold.
then

6: arbi  arbi + arbj , cnt  cnt+1;
7: end if
8: // Caculate the average value of different arb

arbj  arbj / cnt , j  j-1;
9: end while

10: end for

tion Range Boxes. Li, et al. proposed that step frequency and step length has a linear relation

[39], we conduct curve fitting for collected data and compute the factor values of a and b.

Thus, if we obtain the step frequency of people by pedometers, we can estimate the step

length of people. Also, once a user inputs his/her known step length, he/she could calculate

his/her step frequency according to the linear relation. Based on these information, we can

modify the arb via pedometers on the mobile devices by algorithm 10. The experimental

performance of this approach will be displayed in the evaluation section.

4.2.9 Indoor GPS Exception

Anchor Points were applied in location service systems [2]. They are the positions in the

environment with unique sensing signatures. Anchor Points can be used to reset the motion

traces if a user reaches one of them. They are classified to two categories: 1) the points can

be recognized by inertial sensors, such as stairs, elevators, etc; 2) the points could receive

GPS on smartphones, as building entrances and windows.
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Figure 4.6 Indoor GPS Exceptions calibrate the deviations caused by dead reckoning. The generated motion
trace using IGE is more close to the ground truth.

In iLoom, we focus on the second type of Anchor Point. For some entrances in an indoor

building, by obtaining the position information through GPS, they are often marked as the

initial positions of motion traces.

We have discussed the indoor/outdoor detection, there exists an interesting phenomenon:

although within indoor rooms, people still may receive some GPS samples from the windows

or other places near the outdoors. When we predict the environments are indoor or outdoor,

these samples are seen as false information and should be disposed. These samples, named

Indoor GPS Exception (IGE), provide an accuracy of better than 3.5 horizontal meters [? ].

They also can be employed for calibrating some obvious deviation caused by dead reckoning:

while a user is conducting dead reckoning for building the motion trace, when he/she is near

the window and gets a IGE, if the estimated position by dead reckoning is out of the range

of IGE, we can assume the estimated position has a serious deviation, thus, we will adopt

the position of IGE to replace it.

Here we conducted an experiment: a user of iLoom walks and stops arbitrarily in a room

for 10 minutes, he get 12 indoor GPS samples from the window. The GPS has a range of

errors within 3.5 meters. As Fig. 4.6, 2 samples in the 12 IGE are helpful for dead reckoning.

Therefore, IGE samples can calibrate the obvious deviation.
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4.2.10 Filtering Noises by Average Speed

Note that the accelerometers on smartphones are not highly accurate, when we compute

indoor average speed, the average speed values may still include some errors. The method to

detect and rectify the incorrect indoor average speed is important.

When people walk and stop, the speeds of movements are continuous. This implies the

speeds of people’s movement have temporal features: for a certain time period, the speed of

people should be correlated to the speeds of previous time periods and following time periods.

We propose an approach to describe the correlation.

Once the detected average speed does not comply with the correlation, we assume it is

average speed noise. The average speed is divided into m time periods. Each time period

contains 20 seconds. In every m segments, we curve fit the average speed values as the linear

function (5.5):

fi(x) = ki · x+ b (4.5)

where x is the value of average speed; ki is the slope in segment i; b refers to the intercept.

In linear function (4.5), we set a margin range for b, and the margin area is from b��b to

b+�b. If the obtained average speed values are in the area between b��b to b+�b, we

will accept them as valid values. Otherwise, the as values will be disposed as noise.

The critical step is estimating the margin area for period n. To compute the margin area,

we need to know three factors: the slope ki, the values of b��b, and b+�b. For slope ki

and b values, we strike a balance between the historical and current information of users’

speeds. The average speed, which is close to current time period n, will have more weight on

the user’s decision for the next step. We provide the formula (4.6) for computing ki and b

values. ⇥ in formula (4.7) is the factor for assigning different weights.
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The value of �b is the based on experience, in our design, the default value of �b is 0.5m/s.

After detecting the invalid average speed, we use compensating v to replace them. iLoom

adopts an directive and practical method to compute the compensating value: calculate the

average speed in the previous 10 valid samples.

4.2.11 Energy Saving

iLoom leverages multiple sensors on smartphones. Sensing procedures on smartphone, such

as GPS, obtaining accelerations, and light sensing cause obvious energy consumption. In

this subsection, we provide a strategy to save energy. For outdoor GPS sensing, we realize

that if a user keeps stationary for long time, it is not helpful for building the model of user’s

walking behaviors. Therefore, we define the condition: if the user obtains GPS location

information that the variations on x, y and z axes are less than 0.2 meters within 3 minutes,

we can dispose corresponding GPS samples and turn off the accelerometer, camera sensor,

and barometer. Only the GPS component is still working. Once the condition is not satisfied,

the three sensing components will resume. For indoor data collection, we turn off the sensing

components (including camera sensor, barometer, and GPS) for the time periods that a user

are keep stationary. We define that when the user’s variation of accelerations on the three

axes are within 0.1m/s2 in 1 minute, the sensing components will turn off. Once the variation

of accelerations are beyond 0.1m/s2 on each axis, the sensing components will turn on again.

Algorithms 5 and 6 describe our energy saving strategy.
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Algorithm 5 Algorithm of Indoor Energy Saving
Input:

arb, initial motion state of the smartphone
Output:

Updated motion state of the smartphone, updated arb.
1: Set State Active.
2: for each time slot (1min) do
3: if arb < 0.1m/s2 then
4: Disable barometer, camera sensor, and GPS
5: State Stationary
6: else if then
7: slot  slot + 1
8: Enable barometer, camera sensor, and GPS
9: State Active

10: end if
11: end for

Algorithm 6 Algorithm of Outdoor Energy Saving
Input:

initial location (x,y), initial motion state of the smartphone
Output:

Updated motion state of the smartphone, updated location.
1: Set State Active.
2: for each time slot t (3min) do
3: if Dist((x, y)t � (x, y)t�1) < 0.2m then
4: Disable barometer, camera sensor, and accelerometer
5: State Stationary
6: else if then
7: slot  slot + 1
8: Enable barometer, camera sensor, and accelerometer
9: State Active

10: end if
11: end for

4.2.12 Reduce the Training Burden

So far, our analysis is based on a single user. Before a person uses the iLoom to obtain

his/her locations, a procedure of light-weight training is required. If we extend our approach

to more users, the training task can be further reduced.

In the multi-user model of iLoom, we provide an approximate solution for reducing the

training load: People with the similar ages and heights often have the similar movement

habits [65]. We categorize users into different groups by ages and heights. For each group of
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people, after data collection and transfer boosting we construct a special Rc. The relation

is stored in a hash map on the remote server. When the user logs in the iLoom system,

after inputing his/her age and height, he/she will get a correlated Rc to assist the indoor

localization.

4.3 Implementation and Evaluation

In this section, we attempt to answer the following questions: 1) Whether Acceleration Range

Box, Average Speed Filter, Pedometer, and IGE can help dead reckoning indoor localization?

2) After applying transfer boosting algorithm, does the newly generated Acceleration Range

Box have better performance than the original one? 3) Does GAPO pre-process the sensing

data successfully? 4) Can iLoom be applied on both the single user and the multi-user

models?

4.3.1 Experiment Setup

We implement iLoom on the Android platform (version 4.4) and evaluate its performance on

two types of smartphones (Samsung Galaxy S5 and Google Nexus 5). All of the smartphones

are equipped with standard sensors that include GPS, accelerometer, barometer, light and

magnetic sensors. Initially, we focus on the single-user model. A user of iLoom walks

arbitrarily and stores sensing data in both the outdoor and the indoor environments. He

holds the smartphone in his hand or puts it in the pocket. Fig. 4.7 depicts the scenarios and

routes that the user collects data. For outdoor scenario, the user carried the smartphone

walked and stopped for 4 hours, the time period of each sample is 10 seconds. For indoor

scenario, the user walked 10 minutes with the smartphone. The sampling frequency is 0.2

HZ. After collecting data indoor and outdoor, we built the Ro and Ri for people’s motion

behaviors. The Euclidean distance between the ground truth and estimated position is defined

as the metric of localization error.

61



smartphone 
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outdoor environment.
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sampling of GPS.

Figure 4.7 Collect data in different scenarios while a user of smartphone is walking.
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(a) Sample distribution in outdoor
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(b) Sample distribution in indoor
environments
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Figure 4.8 The procedure of transfer learning. The bars in each figure represent the average speed range and
the associated acceleration range box. After adding parts of samples from (a) to (b), the combined samples
in (c) have more useful samples.

4.3.2 Acceleration Range Box Evaluation

Fig. 4.8 (a)-(b) represent the distributions of average speed for outdoor and indoor collections.

Although most of samples distribute between the range from 1.2m/s to 1.6m/s, the two

distributions still have some differences. After applying the transfer learning approach on

them, the combination data distribution varies as Fig. 4.8 (c).

We first validate the effectiveness of the Acceleration Range Box. When the user is

walking in the indoor scenario, iLoom records the average error of distance within the growth

of time. The user adopts the Average Acceleration Range Box (arb) as a constraint while

computing the motion trace by formula (4.3). As Fig. 4.9 shows, the localization accuracy is

greatly and consistently improved by 60.4%. We repeat the comparison 10 times and the

results remain the same. The shadow areas in Fig. 4.9 refer to the confidence intervals.

Based upon the results in Fig. 4.9, we measure the performance of transfer boosting. We

use the transferred arb to replace original arb trained from the indoor environment. Figure
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Figure 4.9 Acceleration Range Box improves the accuracy of dead reckoning.
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Figure 4.10 Transfer Learning improves the accuracy of dead reckoning.
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Figure 4.11 The comparison result of preprocessing and not taking preprocessing.

4.10 provides the experimental results of the comparison: although all of the three groups

can enhance dead reckoning, the two groups using the arb combined with transferred outdoor

and indoor data outperform the group just using arb from indoor environments. In iLoom,

we choose SVM and SVMt [26] as the classifiers. In Fig. 4.10, both of the two classification

algorithms fit the transfer learning approach, and SVMt performs better than SVM. By

repeating the experiments 10 times, the final error of indoor localization is less than 0.35

meter.

When we transfer the instances with higher weight in outdoor dataset T to Ri(v, arb),

the proportion of the transferred instances (p%) is significant. If we do not transfer enough

instances in T to Ri(v, arb), iLoom can not achieve the optimal localization accuracies. If
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Table 4.4 The relation between each user’s localization errors and the duration of outdoor data collection.

User / Duration 0.2 Hour 1 Hours 2 Hours 4 Hours 8 Hours
User A 0.532m 0.432m 0.399m 0.388m 0.384m
User B 0.570m 0.424m 0.404m 0.392m 0.387m

Table 4.5 Successful rates of two indoor/outdoor detection methods under different scenarios.

Dining Hall Residence Hall Library
IODetector 87.24% 88.61% 91.43%

GAPO 94.32% 95.05% 95.15%

iLoom transfers excessive instances to Ri(v, arb), the instances that are not similar to the

instances in Ri(v, arb) may include noise. In our evaluation, the optimal p% value is 74.8%

for SVMt and 73.5% for SVM.

Depending on the above experiment conditions, we concentrate on the relations between

indoor localization errors and the duration of outdoor data collection. By measuring the

average indoor deviations of two iLoom users under different time lengths of outdoor data

training, Table 4.4 supports our claim 1) within the duration of outdoor data collection

increasing, each user’s indoor localization accuracy improves gradually; 2) iLoom is able to

enhance indoor positioning without long-term and extensive pre-training.

Figure 4.13 illustrates that, in a real indoor scenario (160m⇥40m), a user’s dead reckoning

trace is closer to the actual one via adopting transfer learning approach.

4.3.3 Performance of GAPO

The existing evaluations rely on preprocessing. In this section, we analyze the approach

of preprocessing (GAPO) in detail. The function of GAPO is to distinguish data samples’

environments. To validate GAPO is efficacious, we provided a control group. One group is the

experiment result adopting GAPO and the other group does not use it. As shown in Fig. 4.12,

we can conclude the group without preprocessing the false data cannot achieve the improved

performance. To further explore the performance of GAPO, we execute the environment

detection for three different buildings by receiving data samples both indoors and outdoors.

Table V provides the comparison of Pe values between GAPO and the other classical detection
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(c) IGE reduces the errors caused
by dead reckoning.

Figure 4.12 Three other techiques to improve indoor localization: Average Speed Filter, Pedometer approach,
and Indoor GPS Exception.

approach (IODetector). GAPO attains higher successful rate than IODetector. Although

GAPO may cost more energy for smartphones due to the usage of GPS, the GPS is not

working all the time for a user. The energy consumed is within a reasonable range.

4.3.4 Evaluation of Ancillary Approaches

4.3.4.1 Pedometer

As mentioned in the design section, we introduce the third-party pedometers on smartphone

to help build the arb. In our experiment, we install the S-Health [31] and Noom [50], two

pedometers are highly praised on Google Play Store, on the Samsung Galaxy S5 smartphones.

First, the user provides his step length to the pedometers. According to the known step

length, the user runs iLoom with the two pedometers by the proposed algorithm. The

threshold value of �SR is set as 0.1m/s. The two additional datasets for arb are formed in

the database on the smartphone. Next, we leverage the two additional datasets to assist the

existing dataset and build the new arb. One is arb from S-Health, the other is the arb from

both Noom and S-Health. From Fig. 4.12(b), by applying the arb from Noom and S-Health,

the improvements are much larger than what we observed without pedometers.
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Figure 4.13 Motion traces are generated by dead reckoning and iLoom. iLoom reduces the distance
deviations caused by dead reckoning.

4.3.4.2 Indoor GPS Exception (IGE)

Indoor GPS Exception can be utilized to reduce the obvious error caused by dead reckoning

when a user receives a GPS sample in an indoor environment. In the above experiment,

we received 23 such exceptional samples when the user walked in the indoor building. By

assuming an error range of 3.5 meters, we find that when people are close to the windows,

there are 6 samples that are out of the range. Then, we recompute the motion trace for these

6 segments. Such motion trace is generated 20 times. The Fig. 4.12(c) plots the reduced

errors of the 6 segments by IGE (95% confidence interval). The positioning results containing

more IGE outperform the results with less IGE.

4.3.4.3 Average Speed Prediction

We have designed the Average Speed filter to enhance the indoor localization accuracy. Fig.

4.12(a) compares the positioning results by using the average speed prediction and without

the prediction. In this comparison, we test different values of �b (0.1m/s, 0.5m/s, and

1m/s), we believe 1) Average Speed filtering yields the results with less errors; 2) when �b

equals to 0.5m/s, the Average Speed filter performs best. If the range of estimated speed

is too large, it could receive some invalid samples. However, when the estimated speed

range is not enough, it might loose some worthwhile information. Considering the trade-off
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between correctness and effectiveness, the default value of �b (0.5m/s) is the best case in

real measurement.

4.3.5 Energy Saving Measurement

We have compared two groups for measuring proposed energy saving strategy. We recorded

the energy consumption information of one user in previous experimental observation by an

Android application (Battery Widget Pro). We repeated our experiments by applying the

energy saving approach. The time slot of energy recording is 1 second. For outdoor training

procedure, by using the energy saving approach, iLoom reduces energy consumptions from

13.3% to 6.8%. For the indoor training and localization procedure, the power consumption

of iLoom reduces from 14.3% to 7.2%. For the whole test case, the power consumption of

iLoom reduces from 13.1% to 7.1%.

In our evaluation section, the sampling frequency of acceleration is 5HZ. Actually, the

energy consumption is related to the frequency of accelerometer readings. Lower acceleration

frequencies cause less energy consumption. However, the lower frequencies reduce the number

of data samples. We build a control group for the case study. We changed the sampling

frequency from 5HZ to 2HZ. Other experimental conditions are not modified. For the whole

study, the power consumption of iLoom decreases from 7.1% to 6.6%. But the accuracy of

indoor localization is 2.13m. This result is not as good as a high frequency control group.

4.3.6 Multi-User Model

iLoom supports two working models: single-user and multi-user. We have evaluated the

single-user model in the above discussion. For multi-user model, the users’ heights are highly

related to the users’ average speeds [65]. In this paper, we did such an experiment: we

collected 15 volunteers’ average speeds, accelerations and heights. The heights of these

volunteers are approximately categorized to five levels: 1.65m, 1.70m, 1.75m, 1.80m, 1.85m.
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Table 4.6 The relation between users’ heights and accelerations.

Height / Sides X side Y side Z side
165cm±2.5cm 1.821m/s2 1.034m/s2 0.525m/s2

170cm±2.5cm 1.914m/s2 1.122m/s2 0.567m/s2

175cm±2.5cm 2.011m/s2 1.234m/s2 0.610m/s2

180cm±2.5cm 2.140m/s2 1.304m/s2 0.630m/s2

185cm±2.5cm 2.327m/s2 1.453m/s2 0.679m/s2

Table 4.7 The comparison of localization deviation in different sites.

Model / Site Entrance Exit Hallway Office PC Lab
Single-user 0.424m 0.476m 0.392m 0.287m 0.398m
Multi-user 0.454m 0.503m 0.422m 0.314m 0.423m

All the volunteers are 20-30 years old. For each user, we obtained the corresponding Rc for

them. The person with higher height has a larger range of accelerations. The relation from

height to Rc is stored in the iLoom system. Once a user inputs his/her height, iLoom will

choose the approximate height for him/her and provide a related Rc for the user.

In practice, the multi-user model is not as accurate as the single user model. For example, a

person with 1.69m will be assigned the 1.70m type’s Rc, but there still exists some differences.

We compare the differences of the two models: for single-user model, we adopt the above

experiment (the height of user is 1.73m); for multi-user model, we let the user with the height

of 1.73m choose the type of 1.75m’s information and did the control group measurement as

what the user did in single-model. We choose 6 observation points to record the deviations

of the two models. The differences between the single-model and multi-model are listed in

Table 4.7. Even though the multi-user model has more errors than single-user model, the

localization results of multi-model is still convincing.

4.3.7 Long-Term Observation of iLoom

Finally, we evaluate the feasibility of extending iLoom as a daily use application. On the

perspective of indoor dataset, when a certain user walks in different indoor environments,

his/her walking style may vary sometimes. For example, if iLoom users walk in a shopping

mall, they may walk slowly and stop frequently when they are browsing some products.

Even if the proposed filters can reduce some useless samples, we still need to focus on the
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(a) Indoor localization results of user1 walking in dif-
ferent indoor/outdoor scenarios.

(b) Indoor localization results of user2 walking in dif-
ferent indoor/outdoor scenarios.

Figure 4.14 Evaluation results of iLoom in three days.

localization results in various indoor scenarios. Additionally, for the existing experiments,

the volunteers walked and collected the outdoor data continuously in a fixed time period. In

this subsection, we extended the procedure of outdoor data collection to 3 days seamlessly.

Users walked, stopped, and kept smartphones out of their pocket in their daily life. By

applying iLoom, Fig. 4.14 indicates 1) the indoor localization accuracies increase with

profiling more outdoor motion data and 2) the indoor positioning accuracies are within 0.4m

even in challenging conditions where a user walked in different indoor and outdoor scenarios.

We believe the transfer boosting approach reduces the influence of the samples that cannot

represent user’s normal walking styles.

4.4 Conclusion

In this chapter we propose one key conjecture: could we transfer a user’s worthwhile outdoor

motion information to indoor movement data and enhance indoor localization ? We presents

iLoom, an indoor localization mechanism that utilizes the users’ outdoor walking features.

iLoom selects the dead reckoning to locate people indoors and introduces an Acceleration

69



Range Box to optimize the user’s received accelerations. For building an accurate Acceleration

Range Box, the sensed data from indoor and outdoor environments are processed: since

certain people’s moving behaviors are proximate in indoor and outdoor environments, we

combine the data describing the outdoor motion by accurate GPS and the data of the indoor

movements via transfer boosting. Experiments and simulations from 15 users and 3 real

buildings demonstrate iLoom not only improves dead reckoning but also does not need extra

infrastructure and data training for certain scenarios. The accuracy of indoor localization

reaches up to 0.35 meter.
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CHAPTER 5

COOPERATION AMONG SMARTPHONES TO IMPROVE INDOOR
POSITIONING

5.1 Introduction

Modern smartphones or tablets are equipped with sensors, such as accelerometer, gyroscope,

rotation vector, and orientation sensors, and multiple types of radios, which can detect

movement and can be used to predict location. Dead reckoning [71] can calculate a person’s

current positions by using a previously determined position. The parameters that dead

reckoning needs are obtained by the accelerometer and orientation sensors on the smartphones.

The performance of dead reckoning relies on the measurement accuracy of these sensors.

In fact, the accumulative errors caused by the inertial sensors are difficult to avoid. As a

common sensor used for localization, UM6 [63], small errors of the orientation estimate causes

serious deviation of the computed location. With only 0.5 degree error of the orientation

sensor, an error of 308 meters can occur within a minute.

Furthermore, new devices are introduced regularly for health monitoring and exercise

profiling, which include detecting the movement of people for the purposes of counting the

number of steps a person takes on a daily basis. It is said that walking 10,000 steps a

day is important exercise that the human body needs to stay fit. Therefore, by building a

pedometer using the accelerometer on the smartphones, the application on smartphones can

provide health and medical information to users, such as number of steps and burning calories.

These pedometers count users’ steps by using their own algorithms. However, since the

data obtained from accelerometers are not accurate and the algorithms are not perfect, the

accuracy of such pedometers is not ideal. Smartphones may be paired with such pedometers,

or may use their internal sensors.
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We propose a new approach, CRISP - CoopeRating to Improve Smartphone Positioning,

which assumes that dead reckoning have inaccuracies, but leverages opportunities of the

interaction of multiple smartphones to improve accuracy. Each smartphone computes its

own position, and then shares it with nearby smartphones. Furthermore, the signal strengths

of multiple radios are used on smartphones to estimate distances between the devices. The

idea is that while individual smartphones may provide some positioning (possibly inaccu-

rate) information, opportunities of accuracy improvement occur when several smartphones

cooperate and share position information. Accuracy may improve as multiple iterations of

information sharing and computations are made. Via indoor experimentation and simulation,

we evaluate our approach and believe it is promising as an inexpensive means to improve

position information and possibly lead to better results for exercise profiling.

The main contributions of CRISP include the following aspects:

1. While many researchers have used RSSI as a means to measure distances between

positions [70], to the best of our knowledge, CRISP is the first of its kind to interact

with other scanned mobile devices held by other users in order to improve a user’s own

localization accuracy.

2. We design and evaluate an approach to improve the accuracy of a pedometer application

on a smartphone by RSSI measurement rather than only judging accelerometer data.

3. We combine the RSSI from Zigbee and Bluetooth detected on mobile devices, and

design a WiFi filter to reduce the noise.

5.2 Overview of Design

Before introducing details about our design, we provide a short overview of the components

used in design. Figure 5.1 shows the overall architecture.

Our system has two mechanisms on a user’s mobile device:
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1) Our system periodically measures the accelerometer on a user’s mobile device. By

simulating a user’s walking mode as a formula, we compute the user’s position by the improved

dead reckoning including Average Speed Prediction (ASP).

2) When a user encounters other users, CRISP periodically broadcasts Bluetooth, Zigbee

and WiFi signals to the other users’ devices that are nearby. By receiving the RSSI values

from other detected devices, a mobile analyzes the variation of the RSSI in each period.

Since the WiFi signal is sensitive to interference, if the variation of the WiFi RSSI is beyond

a threshold, we assert that the RSSI values received in this period are invalid because of

interference and recompute using historical data.

A practical challenge is that how to use RSSI values to help a user locate himself accurately

without any extra devices. In our system, after obtaining RSSI from detected mobile devices

and other Access Points (AP), the user uses the mapping relation between RSSI and the

Euclidean Distance to estimate the distance between these devices. These relations of different

mobile devices are trained off-line and can be accessed on the cloud. After obtaining the

distance between each pair of devices, all devices in the detected range can form a triangle

or polygon. The initial position of each vertex is generated by dead reckoning. The user

computes its own position by using the distances to other devices and other devices’ locations.

By iteration, the errors of estimated positions decrease effectively. A mechanism of choosing

the estimated positions between dead reckoning and geometry computation is executed in

each period. In addition, we employ triangle inequality theorem to filter some interferences

[76].

CRISP also designs a model for counting the user’s walking steps. This model can reduce

the errors caused by common pedometers on the smartphones.
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Figure 5.1 Framework of CRISP.

5.3 Design of CRISP

5.3.1 Dead Reckoning

In CRISP, we design a mechanism named Average Speed Prediction (ASP) for calibrating

the deviations caused by dead reckoning. In reality, when users of smartphones walk or stop,

their motion speeds are continuous. Namely, the speeds of users’ motions have temporal

features: for a certain time period, the speed of user is correlated to the speeds of previous

time periods and following time periods. Based upon this perspective, we provide an approach

to enhance the original dead reckoning. If the computed average speed does not comply with

the temporal correlation feature, the speed is an exceptional speed. Then, as shown in Fig.

5.2, there are n time periods. Each time period contains 25 seconds. For every m segments,

we curve fit the average speed values as the linear function (5.1):

Et(x) = kt · x+ b (5.1)

where x is the value of average speed; kt is the slope in segment t; b refers to the intercept.

For the proposed linear function, we assume a margin range for b, and the margin area is from

b��b to b+�b. Once the average speeds are not in the margin ranges between b��b and

b+�b, the average speeds will be disposed as exceptional speed and the received accelerations

will be replaced: CRISP leverages a practical approach to obtain the compensating value: 1)

calculate the average speed in the previous 10 valid samples and 2) use the corresponding

accelerations to replace the disposed items. The average speed values in the margin area will

74



!"!

  1   3  2     t-1    t   t+1

Upper Bound:

Lower Bound:

Linear Function:

1.6 

1.5 

1.4 

1.3 

1.2 

1.1

Number of Time Periods
Av

er
ag

e 
S

pe
ed

 (m
/s

)
 Valid Speed

 Invalid Speed

Range of 
Estimated Speed

Et+1(x)+ ∆b

Et+1(x)− ∆b

Et+1(x)

Figure 5.2 Average Speed prediction for the time period t+1.

be accepted by CRISP.

Then, the key step is estimating the margin range for time period t. When we predict

the margin range, we make balance between the historical and current information of users’

speeds: although all the average speeds before time period t will influence the margin range

of time period t, the average speed that is closer to the current time period t will have more

weight on the determination. In order to compute the margin area, we need to calculate

three factors: 1) the slope kt, 2) the values of b��b, and 3) b+�b. We provide the formula

(5.2) for computing kt and b values. ⇥ in formula (5.3) is the factor for assigning different

weights. In our design, the default value of �b is 0.5m/s.

2

64
kt

�n

3

75 =

2

64
kt�1

�t�1

3

75⇥ !t�1 +

2

64
kt�2

�t�2

3

75⇥ !t�2 + ...+

2

64
k1

�1

3

75⇥ !1 (5.2)

!t =
2

t�1

2

t�1
+ 2

t�2
+ ...+ 2

1 (5.3)

5.3.2 Distance and RSSI

Received Signal Strength Indicator (RSSI) is a common measurement of the power present

in a received radio signal, with "dBm" as the unit of RSSI. RSSI is easy to collect on most

mobile devices. Although the RSSI values often vary due to interference and path loss, RSSI

values obtained from the other devices are highly related to the distance between the devices.
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Shorter distances often represents stronger RSSI. In CRISP, we build the RSSI-distance

mapping relation by collecting the data that represents the distances and RSSI values for

different types of popular mobile devices.

In our preparation phase, we evaluate the RSSI-distance mapping relation for the Samsung

Galaxy S5 smartphone, Samsung Tablet 4, and Google Nexus 5 tablet. The RSSI is obtained

from the Bluetooth Adapter. For example, if the distance between Samsung S5 smartphone

and Samsung Tablet 4 is 5 meters in an empty room, the RSSI is -66 dBm. The training

relation does not consider interference and other factor fading the RSSI values. These noises

and exceptions will be handled by the WiFi filter. These mapping relations are stored in

the database on a cloud server. In addition, even if training the mapping relation may bring

labor and time costs, since the types of mobile devices in our work are popular, the obtained

relations can serve common Android based mobile devices.

5.3.3 Triangular Calculation Localization

5.3.3.1 Triangular Calculation Model

In CRISP, the goal of triangular calculation is to locate a user’s position by knowing other

detective devices’ locations and RSSI values. To illustrate this idea, we provide an example:

as shown in Figure 5.3, three users (Alice, Bob, and Carson) hold mobile devices that have

Bluetooth adapters. In each time period, we assume they form a triangle. After turning on

the Bluetooth option, each receives Bluetooth RSSI values from the other two users. Then,

we can obtain the length of the three sides of the triangle by the distance-RSSI mapping

relation. If Alice hopes to locate herself and she knows positions of Carson and Bob (Bob

and Carson’s positions are computed by the dead reckoning and sent to Alice when they

encounter), Alice can compute her position by the equations (5.4), (xa, ya) denotes the the

device a’s position on a two dimension plane. AB and AC denotes the distances between

Alice and Bob, Alice and Carson. This example explains how the triangulation calculation
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model helps one user to locate his/her position. In our design, because the range of Bluetooth

detection is 10 meters, the upper bound of each slide in a triangle is 10 meters.

Mapping(RSSIAB) = |AB| =
q

(xa � xb)
2
+ (ya � yb)

2

Mapping(RSSIAC) = |AC| =
q
(xa � xc)

2
+ (ya � yc)

2

(5.4)

Since the dead reckoning is not enough to provide satisfactory location information,

another case is proposed in Figure 5.4. There are three users (Alice, Bob, and Carson)

carrying smartphones. The vertices on triangle ABC refer to the real positions of the three

users. We assume the three users evaluate their initial locations by the dead reckoning apps,

which are not accurate. The estimated positions are A’, B’, and C’. The distances between A

and A’, B and B’, and C and C’ are two meters. By using the triangular calculation, Alice

obtains RSSI values from Bob and Carson, and by the RSSI-distance mapping relation, Alice

evaluates the estimated distance from Bob and Carson.

Then, by the two computed distances (AB’ and AC’) and the distances between B’ and

C’ (B’C’), we can compute the position A". A is closer to A” rather than A’. We can also

compute the position B” and C”. Thus, the new formed triangle A”B”C” is able to reduce the

distance errors caused by dead reckoning.

We apply the triangle calculation to a dynamic scenario. The preliminary observation is:

user Alice carries the mobile device and enters an empty room; Bob and Carson are already

in the room. The three people walk freely. In the beginning, we assume they do not have any
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initial error of distance. Then, we record the Alice’s distance error, which is caused by dead

reckoning in the next 14 seconds.

As illustrated in Figure 5.6 and Figure 5.7, since there are inaccurate values obtained

from accelerometer, the distance errors due to dead reckoning increase rapidly. However,

the localization errors of the triangle approach stay at a low level because the triangle

calculation errors are caused by the differences between estimated mapping distances and the

real distances.

The above analysis is from the perspective of Alice. We turn focus to all three devices

in the triangle. We also execute the experiment as above. The only change is that we set

each user to an initial deviation from their real starting position (the deviation is 2 meters).

The initial deviations of their locations are caused by the dead reckoning application on the
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smartphone. Then, we use the triangle calculation to compute the users’ locations. As Figure

5.8, after running the triangle computation for 600 seconds, the distance errors of A, B and

C are all reduced effectively. To validate this conclusion, we repeat the same experiment

3 times. Then, we simulate the experiments 47 times. As the Figure 5.9 depicts, the data

samples on the two dimensional plane refer to the average values of distance errors of the

50 experiments (or simulations) at different time points. The shadow areas refer to the

confidence interval for each data point. In this paper, confidence intervals are typically stated

at the 95 percentage confidence level. Although it is a preliminary observation, by adopting

triangle computation, with the time increasing, errors of distance can be reduced within 1

meter, which is reasonable and acceptable for many indoor positioning applications.

5.3.3.2 Triangulation Computation Refinement

Although we introduce triangulation model to localize users of smartphones, in practice,

the original triangulation model is not perfect: 1) the interferences that occur on the link

between each pair of devices yield incorrect RSSI values, and 2) the pre-trained RSSI-Distance

Mapping relations still include minor errors. Therefore, we propose a directive and practical

mechanism to boost the original triangulation approach.

In trigonometry, the triangle inequality states the sum of the lengths of any two sides

must be greater than the length of the remaining side. For our triangulation computation

model, the sides that are obtained by the RSSI-distance relation should satisfy triangle the

inequality theorem. If the three sides computed by the RSSI-distance mapping do not comply

with triangle inequality theorem, we assume these sides are mis-calculated. Then, we dispose

the incorrect sides and adopt the sides that satisfy the triangle inequality theorem in the

previous time slot to replace them. Algorithm 7 shows this mechanism in detail.
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Algorithm 7 Triangle Inequality Detection
Input:

RSSIAB , RSSIAB , RSSIAB in each time period
Output:

Estimated position of each mobile device
1: for i=1;i < num of periods; i++ do
2: |AB|=Mapping(RSSIAB);
3: |AC|=Mapping(RSSIAC);
4: |BC|=Mapping(RSSIBC);
5: if (|AB|+|AC| > |BC|) and (|AB|+|BC| > |AC|) and (|AC|+|BC| > |AB|) then
6: // Once triangle inequality is satisfied,
7: // CRISP will conduct triangulation computation.
8: Start Triangulation Model;
9: else

10: // Use the correct sides in previous time slot instead.
11: (|AB|, |BC|, |AC|)n = (|AB|, |BC|, |AC|)n�1
12: end if
13: end for

5.3.3.3 Extension from Triangle to Polygon

Based on the above example that includes three users, Alice can obtain her position by

triangle computation. In a real scenario, there might be more than three devices in a room

or in a hallway. As the above example, if David enters the room, we can form a quadrilateral.

User devices can be treated as the vertices of a quadrilateral. Then, three are three triangles

in the quadrilateral including the node Alice, namely, triangles ABC, ABD, ACD as shown

in Figure 5.5. The new location of Alice is defined as the mean value of estimated Alice’s

locations from the three triangles:

xa= (xa(abc) + xa(abd) + xa(acd))/3

ya=(ya(abc) + ya(abd) + ya(acd))/3

Where xa(abc), ya(abc) are the Alice’s (a’s) x and y values computed from triangle ABC.

If the room contains more than 4 devices, all the devices can be abstracted as the vertices of

a polygon. For each of the devices, we can use the triangles that are in the polygon to help

localize itself. Then, by computing the mean value of the position obtained from different

triangles, the user of a device can compute its position. If one user encounters more mobile
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devices and forms more complex polygons, the localization results may be more accurate.

5.3.4 Combine Different Types of Signals: Bluetooth, Zigbee, WiFi

5.3.4.1 The Features of Three Types of Signals

Most smartphones and tablets support applications of Bluetooth and WiFi. Bluetooth RSSI

is not only sensitive to interference but also sensitive to the distance between two detective

devices. Bluetooth RSSI values often vary from maximum to minimum within its 10 meters’

range. Shorter distance reflects stronger signal strength. WiFi RSSI values are sensitive to

interference such as the human body or wall between the sender and receiver, but for most

wireless routers that provide WiFi for mobile devices, the RSSI values do not vary much by

changing the distance from 1 to 10 meters.

A Bluetooth adapter operates using a procedure of scanning and inquiring. It often costs

5-15 seconds for current mobile devices. Therefore, the sampling frequency of Bluetooth

RSSI is limited. Sometimes, if mobile devices move rapidly, the user might lose the chance

to record the Bluetooth RSSI values from them. To remove this defect, we introduce the

RSSI received from the ZigBee Protocol. The feature of RSSI using ZigBee is similar to

Bluetooth RSSI, but ZigBee does not require a long time to scan and connect to other devices.

Also, Zigbee [5] is able to set the RSSI sampling frequency by the programmer, with 1HZ or

0.5HZ as common RSSI sampling frequencies. Although most current smartphones are not

integrated with ZigBee, we consider adding ZigBee to have more RSSI samples to improve

the localization accuracy, and consider that future generations of smartphones may have

similar capabilities.

5.3.4.2 WiFi and Direct-WiFi Filter

RSSI is known to perform poorly in indoor environments. Some variations of RSSI values

may cause errors in RSSI-distance mapping. For example, if a moving object is between
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the two Zigbee sensors (or Bluetooth adapters), the received value of RSSI will decrease.

Then, if we use a RSSI-distance mapping in training datasets, the corresponding distance

will increase.

Therefore, we need to filter this interference (noise). As mentioned in the previous section,

although WiFi is not sensitive to the distance, WiFi is sensitive to the interference. By this

feature of WiFi, we design a filter to reduce the effect of noise caused by interference.

Since a user’s movement cannot change abruptly, if the received WiFi RSSI varies each 10

seconds more than 5dBm, we assume such obvious change of RSSI is caused by interference.

We define the 10 second time period as a "Noise Period (NP)". We use the average RSSI

value in the closest previous period that is not a NP to replace the RSSI values in the NP.

As shown in Figure 5.10, when the WiFi signal encounters interferences at two NPs (116-119

seconds, 166-169 seconds), the values of RSSI decrease sharply. After using the WiFi filter to

detect NPs, the noise samples of Bluetooth and ZigBee RSSI are corrected by the average

RSSI value in the closest previous time periods.

In most of indoor scenarios, people receive WiFi signals by wireless routers. However,

some indoor environments do not have such infrastructures. Wi-Fi Direct is a Wi-Fi standard

that is adopted on most of popular mobile devices, such as iPhone, iPad, and Android

smartphones. This technology enables devices to connect with each other without requiring

a wireless access point, such as a wireless router. Each smartphone/tablet can open the
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Algorithm 8 WiFi-Filter Algorithm
Input:

The RSSI samples collected from Bluetooth, Zigbee, WiFi adapters, threshold of WiFi filter
Output:

Filtered RSSI values of Bluetooth, Zigbee
1: for i=1;i < num of periods; i++ do
2: if variation of WiFi RSSI value > threshold then
3: // Find RSSI values of the closest previous period
4: call WiFi-Filter(i-1);
5: // Replace the abnormal RSSI values in the NP
6: for j=1; j < number of Bluetooth samples in i (nb); j++ do

7: BluetoothRSSI[i][j] =

Pnb
j=1BluetoothRSSI[i�1],[j]

nb
8: end for
9: for k=1; k < number of Zigbee samples in period i (nz); k++ do

10: ZigbeeRSSI[i][k] =

Pnz
k=1 ZigbeeRSSI[i�1][k]

nz
11: end for
12: else
13: Return BluetoothRSSI [i][nb];
14: Return ZigbeeRSSI [i][nz ];
15: end if
16: end for

Table 5.1 Using APs to improve the localization results of smartphones

Devices \User’s Deviation A B C
3 Smartphones (3S) 0.251±0.003 (m) 0.283±0.004 (m) 0.337±0.004 (m)
3 Smartphones (3S) + Wireless Router (WR) 0.240±0.003 (m) 0.266±0.003 (m) 0.315±0.003 (m)
3S + WR + Bluetooth Beacon + Zigbee 0.217±0.002 (m) 0.223±0.003 (m) 0.293±0.003 (m)

WiFi-direct option, which means each mobile device can detect others by WiFi and receive

the RSSI values from these devices. If the WiFi values obtained by Directed-WiFi changes

sharply, it is also seen to be a NP and be handled by the WiFi filter.

5.3.5 Leverage the Fixed Access Points

In our design, we have leveraged the cooperation between mobile devices to enhance the

localization accuracies. In reality, there often exists some Access Points (AP) in indoor

buildings, such as wireless routers, Bluetooth beacons, Zigbee senders, etc. Considering these

devices are usually deployed in a fixed position, once a mobile device can detect the device

information of AP, the mobile device can access AP’s position to enhance its own position
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Figure 5.11 Adopt fixed access points to improve the localization of smartphones.

accuracy via the triangulation approach. Different from the mobile devices whose positions

change continuously, the positions of APs are fixed and correct. Therefore, if the APs allow

to share their location information with other mobile device, the AP could be used to boost

smartphones’ localization results. Figure 5.11 illustrates the working model of fixed APs. To

verify our design, we did the following comparison: Based upon the previous observations,

we add two control groups to repeat the evaluation. One is adding a wireless router, which

support WiFi function and its position for mobile devices. The other is adding one wireless

routers, one Bluetooth beacon and a Zigbee sender. All of them can provide their fixed

positions and communication functions. After conducting the related simulations, as shown

in the Table 5.1, the group including more APs outperforms other groups.

5.3.6 Step Benefits

Steps are counted by the pedometer applications on smartphones, however, most pedometers

are highly inaccurate. One intuitive reason is that the pedometer integrated on the smartphone

relies on the accelerometer. The accelerometer values on smartphone do not equal to human

bodies’ accelerations, it is difficult to identify an acceleration signature in human walking

pattern without errors.

Different people have different lengths of steps. To enable CRISP to count steps, it is
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necessary to estimate the length of the step for each user. We employ a linear step-frequency

model as equation (5.5), which is described by Li [39] and Hilsenbeck [21]. The symbol

fk denotes the step frequency that can be counted manually in a short training period k,

its minimum time length is 20 seconds. The symbol dk is the length of the step. Then,

we develop a two dimension data set containing the average step length and average step

frequency of different people as illustrated in Figure 5.12. Seven groups of volunteers present

their own features. We fit the linear model by using the least square to set a and b. Thus, by

conducting a lightweight training phase, the user can get his/her own step length for counting

steps.

In our approach, users obtained the location information continuously in different periods.

Within a short time period i, we may assume people walk straight. Computing by equation

(5.6), it is simple to count steps a user have walked within a certain time period. Ns denotes

the number of steps. By adding the number of steps that have recorded in each time period,

the user can determine the number of steps they walked in total.

dk = a⇥ fk + b (5.5)

Ns =

p
(xi � xi�1)2 + (yi � yi�1)2

d

(5.6)
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5.3.7 Running CRISP in the Cloud

CRISP is a light weight application. Considering the limited computational capabilities and

power consumption on smartphones, we hope to deploy more tasks on a remote server rather

than smartphones. In our design, users upload their received RSSI and location messages

from other cooperating devices periodically. Thus, the prepared distance-RSSI maps stored

on the server transfer received RSSI values to distances continuously. We deploy the tasks 1)

forming polygons of devices, 2) decomposing polygons to triangles, 3) solving equations to

compute the location of a user’s device on the server instead of running it on a mobile device.

5.4 Implementation and Evaluation

5.4.1 Experimental Setup

We built a prototype of CRISP on Android mobile devices using the version KitKat. In the

experiments and simulations on each device, we combine Bluetooth, ZigBee and Direct-WiFi

Filter together to do the triangle calculation. Although current mobile devices, such as the

Samsung Galaxy and the Google Nexus smartphones do not integrate ZigBee on them, in our

experiment, we bound the TelosB ZigBee sensors [11] on these mobile devices and run the

application programs on TinyOS [38]. Since the ZigBee model is not supported by Android

OS, we record the ZigBee and Bluetooth data synchronously by sharing the timestamps. The

frequencies of ZigBee and direct WiFi samples are 1HZ and 0.25HZ. The sampling frequency

of Bluetooth RSSI is around 0.1 to 0.2 HZ. The format of the data sample is shown in Fig.

5.13. For each data sample, after receiving Bluetooth and ZigBee RSSI values translated

by the trained mapping relation, the estimated distance between each pair of devices is

determined.

Before our evaluation, we assume: 1) devices in our experiments (smartphones, tablets,

APs) allow their positions, identifier, and timestamps can be accessed by other devices; 2)
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Figure 5.13 The equipment structure and data sample format in our experiment.

the scenario in our experiment has known map; 3) for each mobile device, the initial position

of dead reckoning has been obtained by GPS or other methods.

The dead reckoning is implemented as follow: we set each slot period to be 1 second.

Then, we compute the movement direction and the movement distance in each segment. By

collecting the computed segments in each time period, we generate the user’s trace. The

users carry the devices and walk freely in rooms or hallways.

For our evaluation and discussion, we mainly seek to answer five questions:

• Does our approach improve the mobile devices’ localization accuracies in different

environments?

• Does our approach count walking steps for users effectively?

• How does the Zigbee model and WiFi filter assist the Bluetooth model?

• For one user, does encountering a greater number of users who also use CRISP improve

his/her own position accuracy?

• Can other assistant techniques (AS Filter, WiFi Filter, and Fixed AP) contribute to

the localization results?
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Figure 5.14 Case study in a complex building with multiple rooms and hallways.

5.4.2 Metric of Measurements

Two metrics are introduced in the evaluation:

1) Error of Accumulative Steps: the different number of steps counted between third-party

application and CRISP;

2) Error of Distance: the distance (in meters) between the ground truth and the estimated

position.

5.4.3 Scenario Measurements

5.4.3.1 Case Study in One Room

As shown in Fig. 5.15 and Fig. 5.16, we conduct the experiments for 45 minutes in a room of

the Engineering College at Michigan State University. There are three users who carry mobile

devices and walk freely. All use CRISP and interact with others frequently. As illustrated

in Figure 5.15(b), the X axis refers to the time of the experiment. The Y axis refers to the

error of distance of a user A. The blue line, red line, and green line refer to the distance

errors of dead reckoning, triangle approach and the approach combining both of them. As

shown in Figure 5.16, we conduct the similar experiment in a hallway. From the two types

of experiments, after cooperating with the triangle computation, the combination approach

performs best. The average deviation from dead reckoning is reduced to 0.5 meters.
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Figure 5.15 Experimental measurement in a room. Three users walk, stop, and sit to form a triangle to
enhance dead reckoning.

(a) Hallway environment
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(b) Hallway measurement for one
time
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Figure 5.16 Experimental measurement in a hallway. Three participants walk and stop to form a triangle to
improve dead reckoning.
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Figure 5.17 CRISP measurement in the complex indoor environment.
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Figure 5.18 Comparison of accumulative step errors for three applications.
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Figure 5.19 Distance error of the group without Average Speed Prediction (ASP).

We repeat our experiments 200 times by simulations. When simulating the dead-reckoning,

we obtain the acceleration values from the accelerometer on the smartphone periodically.

Then, we add random errors of acceleration on the x, y, z axes, the error range is from

�1m/s2 to 1m/s2. For the triangle computation, we add -10 to 10 percentage distance errors

for each side of the triangle, randomly. The time of each experiment group is reduced from

45 minutes to 1000 seconds. As Figure 5.15(c) and Figure 5.16(c) display, at a specific time

point, the data samples on the each line refer to the average values of distance errors obtained

in 50 times of simulations. The shadow of each line is the confidence interval of computed

values. The two figures indicate that after many simulations, the combination approach has

more accurate results than the dead reckoning and triangle calculation. It achieves the error

range that is within 1 meter.

5.4.3.2 Case Study in a Complex Building

We extend our experiment from one place to the building of Engineering College in Michigan

State University. This building includes multiple rooms and hallways. A user walks with the

mobile device and communicates with other devices. All devices are installed and running

CRISP. Figure 5.14 provides the overview of the two estimated traces in our floor plan. By

comparison in multiple rooms and hallways, the generated trace by CRISP is closer to the

ground truth than the trajectory made by dead reckoning. As depicted in Figure 5.17, the

dash lines refer to the time points when the user changes their room. For example, at the

50th second, a user leaves a room and enters the hallway. The localization results of the
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combination approach are more accurate than the other two approaches, especially for the

dead reckoning. The errors of localization using CRISP are still within 1 meter.

5.4.3.3 Counting Steps by CRISP

We also focus on step counting in this experiment. Fig. 5.18 illustrates the step counting and

two pedometers on the smartphones. The stems refer to the accumulative error of the number

of walking steps computed by the combination approach in CRISP. The remaining two lines

refer to the accumulative error of number of walking steps caused by two popular pedometer

applications (Noom Walk, ACCUPEDO) from Google Play [50, 48]. CRISP maintains less

errors than the other two pedometers in the whole procedure.

5.4.3.4 Average Speed Prediction Measurement

The above positioning results adopt the Average Speed Prediction (ASP). Fig. 5.19 compares

the localization errors of two groups. One uses the ASP, the other does not include AS

prediction. The group with ASP outperforms the other group at different time slots. Therefore,

Average Speed prediction boosts the proposed approach effectively.

5.5 Discussion

5.5.1 Compare different types of signals

CRISP integrates Bluetooth, ZigBee and WiFi filter to implement triangle calculation for

measuring users’ locations. To analyze the effectiveness of each technology, we conduct the

following evaluation: while maintaining the same experimental environment, as given in

Figure 5.20(a), first, we use Bluetooth RSSI without the ZigBee sensor and the WiFi filter to

collect RSSI. Second, by adding the ZigBee approach to the Bluetooth approach, we observe

the indoor localization results. Third, the green line on the figure denotes the experimental
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(b) Repeated comparisons of different types
of signals

Figure 5.20 Shows Bluetooth RSSI, Zigbee RSSI, and WiFi filter to improve the experiment results,
respectively.

results by combining all the three technologies. Then, we simulate our experiments 100 times.

The simulation is generated as in the single room evaluation section. The time period is

reduced from 45 minutes to 1000 seconds. Figure 5.20(b) presents the localization results by

the repeated simulations. As depicted in Figure 5.20, we believe that 1) adding more RSSI

samples from ZigBee model and 2) filtering the interferences in the Noise Period by the WiFi

filter are helpful for improving the indoor positioning results.

5.5.2 The number of mobile devices encountered influence the localization ac-
curacies

In this section, we discuss whether the number of mobile devices a user encounters can

influence the localization accuracy. First, we assume that Alice carries a smartphone and

walks freely in one room within 500 seconds. Then, other people help Alice to locate herself

by CRISP. When we start this experiment, we set two control groups: 1) the group includes

Bob and Carson, who will help Alice to apply triangle computation, and 2) the group contains

Bob, Carson, and David to do triangle computation after using “polygon decomposition.”

According to our observation in Figure 5.21(a), the “3+1” control group has less errors than

the “2+1” group. Then, we repeat our experiments 500 times of simulation, shown in Figure

5.21(b). We draw the same conclusion as what we had in the physical experiments.

To further support the above conclusion, a more complex experiment is conducted: a

user of CRISP walks in an indoor building. Three traces are generated: 1) a user does not
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Figure 5.21 Number of devices encountered to differentiate localization accuracies.

meet any other users (a user’s location is computed by dead reckoning), 2) a user always has

other two users assisting him to locate himself by the combination approach 3) a user always

has three to four users to help him to locate himself. The trace continues 1000 seconds and

we simulate such traces 100 times. In Figure 5.21(c), trace 1) only uses dead reckoning and

often has a serious deviation (around 3 meters) from the ground truth. The trace 3) uses a

combination approach and encounters more people to achieve the best performance.

Based on the above evaluations, if all users run CRISP on their mobile devices, the

localization accuracy of each user can be improved.

5.5.3 AP enhances the accuracy of triangulation model

To validate the function of fixed Access Points (AP), in this subsection, we did the comparison:

based upon the existing evaluation in the indoor building, we set three other control groups: 1)

deploy 3 APs (2 Bluetooth beacons, 1 WiFi router), 2) deploy 10 APs (7 Bluetooth beacons, 3

WiFi routers), and 3) deploy 15 APs (8 Bluetooth beacons, 4 WiFi routers, 3 Zigbee senders).

As shown in Figure 5.22, we can conclude that by using the accurate positions provided by

fixed AP, the deviations of CRIPS are further reduced. Besides, more AP can improve the

localization accuracies better via providing more correct positions samples.
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Figure 5.22 By employing more fixed AP, the localization accuracies of CRISP increase gradually.

Table 5.2 WiFi filter detection under different thresholds

Real Interference Detected Interference Misjudged
3dBm 8 times 8 times 23 times
5dBm 8 times 7 times 2 times
10dBm 8 times 2 times 0 times
�15dBm 8 times 0 times 0 times

5.5.4 Thresholds in CRISP

5.5.4.1 Thresholds of WiFi Filter

In our previous experiments and simulations, we set the threshold of WiFi filter at 5 dBm. In

fact, if we set P as the threshold for filtering, if the interference that causes the value of RSSI

change is less than P , the interference will be neglected. If we set the threshold of the WiFi

filter too low, the normal variation of RSSI values will be judged as the interference, and

hence, an optimal threshold of WiFi filter is a key factor. Based on the Samsung Galaxy S5

and Google Nexus 7 devices, we use our approach in a room in the Engineering Building and

conduct the experiment as described in the previous section. The only difference is that we

test different thresholds of the WiFi filter: 3dBm, 5dBm, 10dBm, 15dBm. After 5 minutes’

of experiments, the successful rate of WiFi filter detection is given in Table 5.2.

Real Interference refers to the number of times interference was generated in the experi-

ment; Detected Interference refers to the number of times interference was detected by the

WiFi filter; Misjudge Interference is the number of false positives of interference occured.

From the table, we observe when the value of the threshold equals 5, CRISP performs best.
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Figure 5.23 Comparison of Thresholds in Average Speed Prediction.

5.5.4.2 Thresholds of Average Speed Prediction

CRISP adopts Average Speed Prediction (ASP) to improve the original dead reckoning. The

default value of threshold �b is 0.5m/s. Because �b determines the error range of estimated

average speeds, if the �b is too large, ASP may allow some noises as useful data. On the

contrary, if we set the value of �b too small, some correct average speeds will be disposed.

We compare three groups of �b values, Figure 5.23 plots the default value of �b (0.5m/s)

outperforms other two values.

5.5.5 Complexity of our approach

First, we focus on the computational complexity for the mobile devices. To analyze the

complexity our approach, we focus on the worst and the best case of CRISP, respectively.

For the worst case, we assume all devices are in a reachable range of the Bluetooth adapter

(or ZigBee base station), namely, the connection should be created between each of the

mobile devices. If the system contains n devices, the complexity of the system is O(n2).

For the best case, a user only accesses other people in different ranges of Bluetooth adapter

(or ZigBee base station), the complexity of the system is O(n). Therefore, we confirm the

complexity of our approach is acceptable, we can apply it in large scenarios even if the number

of devices is not small. Additionally, although the tasks deployed on the server may be more

complex, it still can be processed easily because of the strong computation capabilities of
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the cloud server. Therefore, we believe CRISP is a low-complexity and light-weighted indoor

localization approach.

5.6 Conclusion

We present a RSSI based indoor localization system called CRISP. Different from traditional

indoor localization systems, a user walks in an indoor environment and opens the Bluetooth

scanning option on a smartphone. The smartphone interacts with other smartphones and

exchanges RSSI values. CRISP not only improves the devices’ localization accuracies, but

also provides the extra benefits - the number of walking steps for the user who holds a

smartphone.

In CRISP, we build relations between RSSI and distances for different mobile devices.

CRISP uses geometry computation to reduce the errors caused by dead reckoning. By our

experiments and evaluation in the Engineering Building of Michigan State University, we

show that if a walking user who carries a mobile device and uses CRISP in a building, and if

he/she encounters other people using CRISP, the localization results will be more accurate.

The range of error is within 1 meter. We combine the ZigBee RSSI values to the RSSI

obtained from Bluetooth to collect more samples, and use a filter that is based on WiFi. Both

of the two technologies improve the localization accuracy in our evaluation. With known

location information, CRISP can count a walker’s steps and reduce the common errors caused

by smartphone based pedometers.
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CHAPTER 6

EFFECTIVE INDOOR POSITIONING WITH ASSISTANCE FROM
ACOUSTIC SENSING ON SMARTPHONES

6.1 Introduction

By using crowd sourcing and opportunistic sensing approaches, indoor localization systems

do not rely on the pre-deployed scenarios. However, once the mobile devices turn on their

WiFi or Bluetooth adapters or other hardware to communicate, the non-reliable information

might be shared between devices by the building connections. If these information including

deviated location, the localization accuracy will be reduced. In addition, the time of scanning

and building connection is time consuming. Sometimes, when samples are collected by mobile

devices, the users of devices move to other locations. Therefore, this leads to our conjecture:

Can we provide a passive indoor localization system with real time and fault tolerance features

based on the daily uses of smartphones?

In this chapter we propose SilentWhistle [59], a light-weight indoor positioning approach

that leverages acoustic sensing and dead reckoning to obtain the users’ locations. SilentWhistle

improves its performance in terms of accuracy, pervasiveness, and deployment without any

hardware modifications of smartphones. We use the accelerometers on smart devices to

generate the motion traces of users initially. Considering the accumulative errors of motion

traces, our goal is to employ acoustic sensors on smartphones to enhance the positioning

accuracy. In fact, translating this idea-sketch into a prototype still faces a variety of challenges:

(1) even if acoustic sensors can detect the sounds in an indoor environment, how do we use

the acoustic information that humans cannot hear to locate the users’ positions accurately?

(2) how do we deploy the system just using smartphones without extra devices? (3) how does

the system filter incorrect location messages when they conduct Machine-to-Machine (M2M)
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Figure 6.1 The framework of SilentWhistle.

communications? (4) SilentWhistle needs to reduce the noise caused by Doppler effects,

background noise, and some exceptional samples from accelerometers. This paper addresses

these problems step by step and evaluates the system by real scenario studies. Our extensive

evaluation results indicate the accuracy range of SilentWhistle can achieve 0.88-1.24m.

The main contributions of SilentWhistle are as follows:

(1) SilentWhistle leverages the off-the-shelf acoustic sensing information on smartphones

to improve the localization results computed by dead reckoning.

(2) We identify an opportunity to avoid incorrect location information spreading among

M2M communications.

(3) By applying position context detection, the proposed system is light-weight and passive

for users.

6.2 Preliminaries

In this chapter, we generate user’s motion traces by dead reckoning. Then, we improve the

dead reckoning by analyzing the average speed of user’s motions as what we mentioned in

previous chapters.

Sound intensity is defined as the sound power per unit area. The sound intensity from a
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point source of sound will obey the inverse square law as formula (6.1). P refers to the source

power. 4⇡r2 is the sphere area. I is the sound intensity. Therefore, the sound intensity is

highly related to the distance between source of sound and the sound receiver.

I =

P

4⇡r2
(6.1)

The most common approach to sound intensity measurement is to use the decibel scale.

6.3 Design of SilentWhistle

6.3.1 Overview of SilentWhistle

As shown in Fig. 6.1, our system contains the following main parts:

(1) The sender smartphone generates the sound at approximately 20KHZ (people cannot

hear). The receiver smartphone can obtain the sound strength with corresponding sound

frequencies. We leverage FFT to transfer the time-domain signal to sequential-domain signal

and filter the noises by band-pass filter and matched filter.

(2) A smartphone can generate its own trace by dead reckoning. However, there still exists

some distance deviations. Based on the obtained sound strength and pre-trained relation, we

transfer the sound strength to distance and use triangulation to reduce the errors caused by

dead reckoning.

(3) Our approach proposes two types of frequencies assignment methods: 1) a centralized

model exchanges the frequencies by a cloud server. 2) a distributed model exchanges the

frequencies by device to device and use an exponential back off algorithm. By broadcasting

acoustic information, SilentWhistle has the property of fault tolerance by to avoid accepting

some incorrect location messages.

(4) In addition, we use the smartphone position context to distinguish the relative positions

of smartphones to further improve the localization accuracies. A coloring strategy extends
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Figure 6.2 Sender and Receiver of sound in SilentWhistle.

Silent Whistle to the large room.

6.3.2 Sound Generation and Detection

M2M communication is a common mechanism for crowd sensing. However, common commu-

nications methods are not satisfactory. WiFi and Bluetooth need a long time to broadcast

and build connections between discovered devices. When mobile devices broadcast their

information, the identifiers are exposed to other devices. Moreover, since the information

shared between devices are often not reliable, it may cause serious errors for the computational

results of the whole communication system. Therefore, a new communication channel on a

smartphone for crowd sensing is required.

Most modern smartphones are able to generate sound from 20HZ to 22KHZ. The sound

between 18KHZ and 22KHZ can not be heard by most adults. Therefore, the sound generators

in SilentWhistle produce the source of sounds with frequencies from 18KHZ to 22KHZ. Namely,

the users of SilentWhistle can leverage such sound to communicate and not suffer from the

hearable noises.

If one smartphone generates the sound with a certain frequency (18KHZ and 22KHZ),

another smartphone can detect such sound by its microphone. The Fast Fourier Transform

(FFT) resolves a time waveform into its sinusoidal components. The FFT takes a block of

time-domain data and returns the frequency spectrum of the data.
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6.3.3 Filter of Acoustic Information

Considering that we choose the frequency from 18KHZ to 22KHZ on a smartphone, we need

to avoid the following types noises: 1) background noises, 2) noises caused by Doppler effect,

and 3) other potential noises.

For reducing the background noises, we choose a band-pass filter. A band-pass filter [28]

passes frequencies within a certain range and rejects frequencies out of that range. In our

design, we filter the sound that are out of the range between 18KHZ and 22KHZ.

In addition, we further filter the background noises and other potential noises by a

matched filter. A matched filter [23] is obtained by correlating a known signal, or template,

with an unknown signal to detect the presence of the template in the unknown signal. In

SilentWhistle, we can detect the sound source from other devices in the range between 18KHZ

to 22KHZ. Once smartphone can detect the sound’s strength is greater than a threshold and

the frequency range is between 18KHZ to 22KHZ, we will set the detected frequency as the

"matched" value, and filter the values that are not matched.

6.3.4 Filter of Doppler effect

The Doppler effect (or Doppler shift) [12] is the change in frequency of a wave (or other

periodic event) for an observer moving relative to its source. Once a user holds a smartphone

and moves fast, it may cause the Doppler effect and change in frequency of a wave. Since our

approach is based on the frequency of sound, we need to avoid the influence of Doppler effect.

As shown in formula (6.2) and (6.3), f is observed frequency, fo is emitted frequency, vw

refers to the velocity of the wave in the medium. Vr is the velocity of the receiver relative

to the medium; positive if the receiver is moving towards the source. Vs is the velocity of

the source relative to the medium; positive if the source is moving away from the receiver.

In our design, when �v (�v=Vs - Vr) is greater than 3m/s, we will focus on the change in

frequency, which may cause the incorrect detection. Since the velocity of each user can be
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Coordinate Location:  
(X,Y) (X1 Gx+X2, Y1 Gy+Y2) 

Figure 6.3 The format of frequency message.

computed by obtained acceleration on smartphones, the value of �f also can be estimated

by formula (6.2) and (6.3). When user’s smartphone computes the detected frequencies, we

will consider the �f . We will adopt the frequency by deducting the change in frequency

caused by Doppler effect.

f = (1 +�v/c)⇥ fo (6.2)

�f =

�v

c
fo (6.3)

6.3.5 Leveraging Triangulation for Improving Localization

Since dead reckoning is not enough to provide satisfactory location information, we adopt

triangulation to further locate a user’s position by knowing other detected devices’ locations

and sound strength: each smartphone computes its own position by dead reckoning initially,

and then shares it with nearby smartphones by M2M communication. Furthermore, the signal

strengths of multiple radios are used on smartphones to estimate distances between the devices.

When individual smartphones may provide some positioning (possibly inaccurate) information,

opportunities of accuracy improvement occur when several smartphones cooperate and share

position information. Accuracy may improve as multiple iterations of information sharing

and computations are made.
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Figure 6.4 Relation between sound strength and distance.

6.3.6 Format of SilentWhistle Message

As shown in Fig. 6.3, the last four digits present the location of a mobile device. The three

leading digits are assigned frequencies by our system. Once an other user’s smartphone detects

the sender’s frequencies by FFT, the sender’s location information can also be obtained by

the receiver. This procedure is similar to encoding and decoding: for a certain indoor room,

we can transfer the map into a matrix. First, we cut the map into X1 ⇥ Y1 grids. The

number of grids on length side is X1, the number of grids on width is Y1. For each grid, we

further cut them into sub-grids. X2 refers the number of sub-grids that is on the length side

of a defined grid. Y2 refers the number of sub-grids that is on the width side of a defined

grid. When we adopt a decimal system, Gx and Gy refer to 10.

6.3.7 How the acoustic information improve localization accuracies

Initially, each smartphone can use dead reckoning to compute its own locations. Even if

there exist some deviations on the smartphone, by analyzing the last four digits of a received

acoustic message, the user can obtain the location of encountered devices. In the previous

section, we introduced how users improve localization accuracy by sharing the location

information and do triangulation computation. Since the strength of sound can be detected

by each device, we transfer the strength to distance by a hash map relation (distance - sound
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strength). We pre-trained these relations as shown in Fig. 6.4. In the experimental groups,

we record the samples including the distance and sound strength information. Then, we use

the average value in the normal distribution as the sound strength for a certain distance.

All of these relations are stored in hash maps. Based on the estimated distance from sound

strength, after running the triangulation approach many times, the errors of distance are

eliminated effectively. The further results are demonstrated in the evaluation section.

6.3.8 Frequency Assignment

6.3.8.1 Centralized Architecture

In this section, we introduce two architectures to assign frequency ranges for smartphones.

The central server of SilentWhistle stores two types of information. The first type is the real-

time location of each smartphone. The smartphone will update its own location information

and uploaded them to the central server continuously. The second type of information is the

sound frequencies for each smartphone. As shown in Fig. 6.5, the initial frequency queue is

stored on the cloud server. When a user enters a room, the last four digits can indicate the

user is close to a entrance of a room/hallway, the server will assign a frequency to him/her

immediately. The assigned sound frequency will be stored on the used queue. The remaining

unused frequencies are stored in the unused list. Once the user leaves the room or turns

off the acoustic sensing option, the assigned frequency will be released and go back to the

unused queue.

6.3.8.2 Distributed Architecture

In practice, some indoor buildings do not include remote servers to support smartphones’

location based services. We provide a mechanism to distribute localization tasks on the

remote servers to users’ smartphones. When a users enters a room, he/she can obtain initial

position from a fixed beacon rather than by a cloud server deployed at the entrance. Then,
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Figure 6.5 The Frequency assignment and releasing.

the users of a distributed model have two functions: 1) computing its location by dead

reckoning and 2) using triangulation to calibrate the localization errors. The users update

the frequencies periodically. In each area/room, different users choose their frequencies from

the previous frequencies tables that are stored in the smartphone rather than on the server.

Sometimes, a user needs to change his/her frequencies when he leaves or enters a room.

How to set the priority of items in the waiting table? We adopt an exponential back-off

method to achieve our goal. Exponential back-off is an algorithm that uses feedback to

multiplicatively decrease the rate of some process in order to gradually find an acceptable

rate. In our design, after k times of encountering, a random number of slot times between 0

and 2

k- 1 is chosen. For the first encountering, each sender will wait 0 or 1 slot times. After

the second encountering, the senders will wait anywhere from 0 to 3 slot times (inclusive).

After the third encountering, the senders will wait anywhere from 0 to 7 slot times (inclusive),

and so forth. As the number of retransmission attempts increases, the number of possibilities

for delay increases exponentially. At the same time, the waiting list will be updated (sorted)

based on the length of waiting time. Once a user hopes to change his frequency, he/she will

choose the item with shortest waiting time on the table.
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6.3.9 None Connection Model

Different from traditional M2M communication by Bluetooth or WiFi, SilentWhistle provides

a method to enhance the localization accuracy by acoustic communication. As shown in

Fig. 6.6, for tradition Bluetooth or WiFi communication, different devices have to build the

connection to share the location information and RSSI. Namely, for some scenarios, when

a smartphone of a normal user with obvious location deviation, once the device sends an

incorrect location message to another user, it is difficult to distinguish it from the side of

the other device when the location is in RSSI range. Since we use triangulation to localize

users, the group of users’ location accuracies will be reduced. In triangulation, users can

compute its own position by the other two devices. Since one user (Alice) can receive the

other two users’ positions and RSSI (transferred to distance), the positions and distances can

be abstracted as the centers and radiums of two circles. The coordinates of the two centers

are (x1, y1) and (x2, y2). The radiums are r1 and r2. We assume the intersection is (x, y).

Then, we assume x = r1cos⇥+ x1 and y = r1sin⇥+ y1. In order to simplify the expressions

of intersection, let a = 2r1(x1�x2), b = 2r1(y1� y2), c = r2
2� r1

2� (x1�x2)
2� (y1� y2)

2.

After solving the equations, we can obtain:

⇥ = ((q2 � 4pr)1/2 � q)/2p (6.4)

p = a2 + b2, q = �2ac, r = c2 � b2 (6.5)

Therefore, if the value of x1 and y1 include some deviations, the final result of (x,y) will

be changed.

Then, we need to compute the intersection as the estimated position of Alice. One user

sends the location information that includes some errors. Such errors will be computed when

we compute Alice’s position (intersection of two circles). Therefore, when Alice uses the

computation position by triangulation, it also includes certain errors.
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Figure 6.6 The comparison between different connection models.

In SilentWhistle, each user broadcasts its location information to other users. Once a

user broadcasts incorrect location information, the other two users will share the information.

Both of the users will check whether the received location message is in the radio range. Once

a user confirms the location message is out of range, he/she will report this situation to the

remote server. The remote server will forbid the suspicious device to broadcast its information.

In the distributed model, he/she will dispose the location information broadcasting by the

suspicious device and forward the ID of the suspicious device to the other users by the

acoustic information. Therefore, our approach can further enhance the localization accuracy

by using the connectionless communication model.

6.3.10 Adopt Coloring Strategy to Cover Large Room

For a certain room, the number of smartphones may exceed the maximal number of devices

that a channel list could contain. Considering the range of acoustic sensing is 5 meters, we

need to partition the larger room into some smaller areas. The size of the subarea is 5m⇥5m.

SilentWhistle chooses a greedy strategy of a coloring problem. First, we abstract each area

(5m⇥5m) as a vertex on a graph. The adjacent vertices are connected by an edge. Then,

we color the first vertex with the first color. In SilentWhistle, a color represents a group of
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Figure 6.7 Acceleration for different context of the smartphone.

frequencies. We do the following for the remaining vertices: consider the currently picked

vertex v and color it with the lowest numbered color that has not been used on any previously

colored vertices adjacent to it. If all previously used colors appear on vertices adjacent to v,

assign a new color to it. Based on the coloring strategies, we reuse some groups of frequencies

to cover a larger area.

6.3.11 Smart Phone Context Detection

Considering that acoustic sensing information is used to enhance localization accuracies, we

need to hold the smartphone in the hand or in an open area. In SilentWhistle, we propose

an approach to distinguish three common states 1) close to ear, 2) in the pocket/bag, and 3)

in the users’ hands.

We build a state machine to describe the states on the smartphone. In the state machine

as Fig. 6.9 and Table 6.1, four types of information are leveraged: 1) the RGB color of picture

captured from camera sensor; 2) the lumen from camera sensor; 3) the acceleration obtained

on a smartphone; 4) air pressure recorded by a barometer. As Fig. 6.7, the accelerations are

different when it is on different sides or places (ear, hand, and pocket).

When a users of SilentWhistle change the relative position of smartphone, namely, if the
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Figure 6.8 The position of smartphones.

Table 6.1 The state machine of smart phone context

Lumen Color (RGB) Acceleration Barometer
P-H + + Z+ N/A
H-E N/A N/A Z- +
E-H N/A N/A Z- -
H-P - - Z+ N/A

On Hand In Bag/Pocket 

Close to Ear Lux > Threshold 1 
Vrgb > Threshold 2  

Lux > Threshold 1 
Vrgb > Threshold 2  

Lux < Threshold 1 
Vrgb < Threshold 2  

Barometer Recording + 
Acc on Z aixs - 

Barometer Recording - 

Acc on Z aixs + 

Figure 6.9 The contexts transfermation.

states will be transferred, there are two types of conditions that should be satisfied: 1) the

new states’s RGB values and Lumen values should be greater than certain values. The values

of RGB and lumen will be discussed in the evaluation sections, 2) before the state transition,

the average change of acceleration on Z axis should be increased or decreased based on Fig.

6.7; and 3) the air pressure detected by barometers should be varied or decreased based on

Fig. 6.8.

After distinguishing the three states of smartphones, our system builds three separate

datasets for three different states. Since our system uses the distance and sound strength
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relation to compute locations, the data from dataset generated in the pocket/bag will not be

used for triangulation because of interferences. Additionally, considering the accelerations

are obvious different when smartphone are in user’s hand and pocket, the dataset of on the

hand will not be applied for dead reckoning.

6.3.12 Energy Saving Strategy

Considering the acoustic sensing on smartphones is energy consuming, when we select

centralized model, the acoustic sensing function is only turning on when a user of SilentWhistle

can detect two nearby users based on the location information computed by dead reckoning

and stored on the remote server. When the user cannot detect any nearby user, the acoustic

sensing function will turn off for energy saving.

6.4 Case Study and Evaluation

In this section, we attempt to answer two main questions:

• By applying SilentWhistle, what is the accuracy of indoor localization?

• How acoustic information, phone context detection, and coloring strategy help dead

reckoning based indoor localization?

6.4.1 Experimental Setting

We build a prototype of SilentWhistle on the Android platform (version 5.0) and evaluate its

performance on two types of smartphones (Samsung Galaxy S7 and Google Nexus 5). The

smartphones are equipped with standard sensors that include accelerometers. The user’s

motion trace is computed by 5HZ. Initially, we focus on the case study in a single room. The

size of the room is 20m ⇥ 6m. There are 4 users who walk freely in the room and turn on the
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Table 6.2 The detections of in/out positions of smartphones

Truth / Detected Pocket Hand Ear
Pocket 291 8 1
Hand 7 287 6
Ear 0 5 295

sound generators on the smartphone. We set 4 initial frequencies: 19000.00HZ, 19500.00HZ,

20000.00HZ, 20500.00HZ. All four frequencies are stored in the unused queue.

In this section, we introduce the following metrics to measure our system:

1) Euclidean distance: measure the distance between the ground truth and estimated

location;

2) pij value: as shown in formula (6.6), the parameter pij refers to the probability

of obtaining the user i’s location on the side of user j via Bluetooth, WiFi or acoustic

communications.

pij =
received samples including i’s location on j side

i’s broadcasting samples
(6.6)

6.4.2 Evaluation of Context Detection

Before we evaluate the localization performance, we focus on the Context Detection. Through

applying our proposed approach, we test 300 cases on three volunteers. The results are

shown in Table II. Based upon the detection results, we verify our proposed approach is able

to distinguish the relative positions of smartphones effectively. Less than 10 samples are

misanalyzed.

6.4.3 Evaluation of Noise Filters

In SilentWhistle, we adopt bandpass filters and matched filters. As shown in Fig. 6.10, both

of the two filters are able to improve the localization accuracies.
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Figure 6.10 The evaluation results of filtering methods.
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Figure 6.11 The case study in single room.

6.4.4 One room measurement by centralized model

In the measurements in a certain room, 3 users walked and stopped freely for 10 minutes.

Then, we repeated the case study 10 times. As shown in the Fig. 11, we conclude that 1)

the accuracies of our approach can be achieved within 0.93 meters and 2) the accuracies are

improved with the time increasing. Based on the initial step, we add four beacons that can

communicate acoustic information. We repeat the previous experiment. After 10 minutes

observation, Fig. 6.12 indicates the localization accuracy is further improved. Therefore,

in our approach, more beacons in the proposed system can provide more opportunities to

improve indoor localization accuracies.

6.4.5 Fault tolerance analysis in one room (centralized)

When we analyze the fault tolerance feature of the SilentWhistle, we specify that one user

will send incorrect location information to the other two users. The distance between ground
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Figure 6.12 The case study in single room with beacons.

truth and sending incorrect location is 1 meter. Based on sensing the location information by

Bluetooth or WiFi information, the average location accuracies of each users (user1, user2,

and user3) are estimated as Fig. 6.13(a). In Fig. 6.13(a), we set the value of P as 0.05, 0.1,

0.2. The errors are difficult to reduce because of the connections. Then, by keeping the same

experimental conditions, by using our approach (leveraging the acoustic information and turn

off Bluetooth and WiFi adapters), as shown in Fig. 6.13(b), the broadcasting model without

the connections outperforms. The sampling frequency of acoustic broadcasting is 10HZ.

Namely, by cooperating with different smartphones’ users, the incorrect location information

can be reduced effectively in SilentWhistle.

6.4.6 Fault tolerance analysis in one room (distributed)

The above analysis and evaluation are based on a centralized model. In our room observation,

we use the exponential back-off algorithm for arranging the used list of frequencies. The

length of each waiting slot is 10 seconds. When users enter the room, the initial position will

be provided by an audio generator that is near the door. The relations between distance and

sound strength are stored on each smartphone as hash tables. We keep the same experimental

conditions as in the centralized evaluation. As shown in Fig. 6.14, the localization results by

the distributed model are close to the centralized model by using SilentWhistle. Therefore,

the fault tolerance features in both centralized and distributed models are able to assist

triangulation localization.
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Figure 6.13 The case study by acoustic sensing channel.

Table 6.3 Location Preservation Results in a Large Single Room

Running Time 5min 10min 15min 20min
Centralized 1.21m 1.12m 1.02m 0.98m
Distributed 1.33m 1.23m 1.09m 1.01m

6.4.7 Large Single Room Simulation

Based on the single room measurement, we apply the coloring strategy in a large room (50m

⇥ 50m) that can be divided into 100 subareas (5m ⇥ 5m). The indoor map can be transferred

to a graph with 100 vertices. We assume that there are 150 people to walk and stop freely in

the map. Considering that our approach needs 100 different groups of frequencies, the length

of each group may be close to each other. We reuse some groups by coloring. Five users send

incorrect location messages continuously. The time length of the simulations are 20 minutes.

By adopting the distributed model mode, we observe the localization errors in Table 6.3.

We believe the 1) users in both the distributed model and the centralized models can localize

themselves successfully even if 5 users broadcast incorrect location information and 2) the

centralized model has better performance than the distributed model.

We compare the system by using a coloring strategy and without the coloring strategy.

As shown in Fig. 6.15 (a) and (b), we can draw the conclusion that the coloring strategy can

enhance the location accuracies by reuse of the frequencies in a large area.
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Figure 6.14 The comparison between distributed model and centralized model.
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Figure 6.15 The extended simulation for multi-room .

6.4.8 Multi-room Scenario Measurement

We extend our evaluation from a single room to a multi-room scenario. We conduct the

experiment as follows: as shown in Fig. 6.16, four users walk around the 2rd floor of

Engineering Building in Michigan State University. The scenario contains four rooms and

three related hallways. We deployed beacons at each entrance/exit on the floor plan. We keep

the same experimental conditions as single room case, one user played role of broadcasting the

location information within 1 meter deviation in the whole procedure. As the control group

illustrated in Fig. 6.17, by applying SilentWhistle for 30 minutes, we draw the conclusion: 1)

the average indoor localization accuracy of SilentWhistle users can achieve 0.88 meter; 2)

on the group using Bluetooth/WiFi connection approach, the distance deviations increase

gradually. The average obtained location results are not satisfactory.

116



(a) Room Measurement (b) Hallway Measurement

Figure 6.16 Measurement in a building.
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Figure 6.17 Localization results in the multi-room scenario.

Table 6.4 Localization results under different number of users

1 User 2 Users 3 Users
Ave. Localization Accuracy (5min) 1.23m 1.10m 0.92m
Ave. Localization Accuracy (20min) 1.03m 1.00m 0.89m

6.5 Deep Dive into SilentWhistle

In this section, we will discuss some important factors that influencing the performance of

the proposed system. To analyze these factors, we still use the multi-room scenario.

6.5.1 Number of users

For the real scenario, we change the number of users of SilentWhistle. Based on evaluation

on previous sections, we add two users and repeat the experiment. Then, we analyze the data

received from 1 users, 2 users, and 3 users separately (not including the user broadcasting

fault locations). From Table. 6.4, we believe the more normal users are able to enhance the

localization accuracies on the user’s side by cooperative confirmations among them.
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Table 6.5 Length of different time slot for exponential back-off

Length of Time Slot 1s 5s 10s 30s 1min 5min
Est. Localization Err. 1.01m 0.92m 0.90m 0.93m 0.98m 1.03m

6.5.2 Frequency of changing acoustic frequencies

In the evaluation section, the used and unused waiting queues store the acoustic frequencies

for all the smartphones. In the centralized model, when a user does not change his position

within 3 minutes, the system will re-assign a new frequency to him/her. In this section, we

observe the average localization results by using a different waiting time.

When we set the waiting time as 0.25, 0.5, 1, and 4 minutes, the average localization

results based on the experiment in section 6.4, after running SilentWhistle for 30 minutes

(p=0.2), the estimated average error of the system is: 0.89m, 0.91m, 0.93m, and 0.97m.

Therefore, the higher frequency of acoustic frequencies changing can reduce the accuracy the

attacker’s computation. In the distributed model, we use the exponential back-off algorithm

to update the waiting queue. In the previous evaluation, we set the time slot for back-off

exponential to 10 seconds. As shown in Table 6.5, we test six different values of time slots 1s,

5s, 10s, 30s, 1m, and 5m. When we choose 10s as the time length, we can achieve the best

results. Actually, if the time slot is too large, it cannot update the waiting queue in time.

Once the time slot is too small, the function of exponential back-off will be reduced.

6.5.3 Multiple Incorrect Senders

In our previous experiment, the whole system includes one attacker. For some situations,

there might be more than one attacker, which intentionally sends incorrect information.

Moreover, the attackers can collude and share the obtained location information from other

users. Therefore, we also observe the performance of SilentWhistle containing multiple users

sending incorrect location messages. Based on the evaluation for the multi-room study, we
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Figure 6.18 Results of different number of users sending fault locations.

add 1 or 2 more attackers in the system. All the attackers can collude. We run the evaluation

as the same conditions. As in Fig. 6.18, we conclude that even if more users broadcast

false locations that can reduce the estimated location accuracies, but the results are still

acceptable.

To further analyze the number of upper bound of abnormal users in our system, these

problems can be abstracted as a Byzantine General problem [35]. Based on the classical

solution: it can be shown that if n is the number of devices in total, and t is the number of

abnormal users in that n, then there are solutions to the problem only when n>3t and the

communication in the systems are reliable.

6.5.4 Device Diversity

Although our experiments are applied on Samsung Galaxy smartphones, all the smartphones

that can generate the 20KHZ frequency sounds can be suitable for SilentWhistle. By pre-

training the relation between sound strength and distance, the hash tables are stored in

cloud server/smartphone. Considering the differences for audio generator and microphones

for different types of smartphone, when we add a new brand of smartphone into our system,

the mapping relation should be pre-deployed.
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6.5.5 Difficult to Track

The communication model is based on acoustic sensing and hides the real physical ID of a user

(such as MAC address, IP address). Therefore, the traditional tracking approach cannot be

applied. Existing tracking solutions can detect the physical IDs of devices even if the IDs can

be changed at the software level for a certain period of time. They can still be detected since

the ID on the hardware cannot be modified. Moreover, when one smartphone broadcasts via

Bluetooth/WiFi by a connectionless model, even if some users can hear Bluetooth positions

without needing to expose their own identities, the smartphone that broadcasts information

has to expose its unique ID. For SilentWhistle, only the attacker can remember the user by

his/her features such as face, clothes. The users of SilentWhistle cannot be tracked by IP

and MAC addresses.

6.5.6 Overcome the long-time device discovering

SilentWhistle receives RSSI values without the long time scanning by WiFi and BLE adapters.

For the smartphones we used in our evaluations, the scanning time of BLE and WiFi beacons

are from 3 to 15 seconds. If the approach uses WiFi and BLE rather than acoustic sensing, the

walking users of smartphones may miss each other and did not discover the device. Namely,

triangulation cannot be performed by BLE and WiFi sometimes. Considering using acoustic

sensing, SilentWhistle does not need long time to scan and detect device.

6.6 Conclusion

This section proposed SilentWhistle, an accurate indoor localization system leveraging acoustic

information and preserving the privacies of users effectively. Each use of SilentWhistle

generates a sound that cannot be heard by people but can be detected by a smartphone. By

using the relation between distance and sound strength, SilentWhistle uses the triangulation

to improve indoor localization accuracies from initial dead reckoning. Considering protecting
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the location privacy of user’s devices, we exchange the sound frequencies of smartphone

periodically. Based on centralized model and distributed model, the senders of obvious

incorrect locations will be detected and disposed in our system.
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CHAPTER 7

MOBILE ROBOTS ASSISTED INDOOR LOCALIZATION

7.1 Introduction

In the previous chapters, we have introduced smartphone based indoor positioning approaches

[3, 32, 75, 85, 42, 39, 57]. By leveraging the cooperation among different smartphones, we

improve the indoor localization results computed by dead reckoning effectively. Some indoor

environments, such as convention centers, museums, and hospitals provide various location

services. Mobile robots may be able to supply certain services to users. These robots have the

abilities to establish their own positions and orientations within the frame of reference. By

using a camera or an infrared sensor, the robot can find its route in an indoor environment

and avoid dangerous situations by SLAM approaches. Besides, the robots can calibrate their

positions computed by SLAM to ensure their high localization accuracies [13, 73, 44].

Motivated by the increasing availabilities of smartphones and mobile robots, we present

AirLoc (Adopting mobile robots to assist indoor Localization of smartphones), a low-cost,

highly-accurate and large-scale indoor localization approach that integrates the off-the-shell

smartphones with the mobile robots. By installing a tablet, the proposed mobile app and a

known map on a mobile robot, the mobile robot can improve a smartphone’s localization

accuracy. The robot is inexpensive, and its movement can be calibrated to have accurate

position information. The robot leverages Bluetooth broadcast to send its correct location

to the users’ smartphones. AirLoc provides a path for a robot so that smartphones might

minimize the deviations between the ground truth and estimated positions by interaction

with the robot: the robot collects Bluetooth RSSI from smartphones in different rooms. We

classify different rooms into different crowd density levels by the RSSI values. Higher crowd

density rooms should be served more often. By utilizing different crowd density levels, we
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Figure 7.1 Overview of AirLoc

design the Edge-Based Algorithm (EBA) and Node-Based Algorithm (NBA) to generate a

robot’s moving route.

Since one robot takes a long time to travel all the rooms and the crowd density may

change fast, the collected crowd density information is inaccurate. To further strengthen

the performance and applicability of AirLoc, we extend the single robot approach to the

multi-robot model. AirLoc uses a cloud server to store the Bluetooth RSSI submitted by

multi-robots and update the crowd density levels continuously. When the mobile robots

compute their serving paths, the crowd density levels can be accessed by WiFi. AirLoc

organizes multi-robots by an unbalanced tree, which is dynamic and low complexity. In each

layer of the unbalanced tree, the robots are divided into two sub-groups. The sub-group

containing more robots serves the area with higher crowd density. In the base case of a

serving tree, each robot obtain its serving area by the Distance/Density First Algorithm

(DDFA) and serve it via EBA.

In our field study and large scale simulation, AirLoc improves the smartphones’ localization

results successfully with low cost and acceptable complexity. This approach can be potentially

applied in more indoor buildings to provide practical applications, such as in-store navigation,

location-based healthcare.

The main contributions of this paper include the following aspects:
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1. To the best of our knowledge, AirLoc is the first of it kind to i) proposed mobile robots

to interact with smartphones to help indoor localization; ii) design and evaluate a

system to organize multi-robots for improving the smartphones’ positioning information

in real indoor environments.

2. To apply AirLoc on large scale indoor environments, based on the crowd density

distribution, we design an algorithm to generate the optimized serving route for a

single robot. AirLoc exploits an unbalanced tree and Distance/Density First Algorithm

(DDFA) for low complexity and costs.

3. AirLoc updates the crowd density levels continuously to further increase the smartphones’

localization accuracies.

7.2 Preliminaries

7.2.1 Employ mobile robots to improve indoor localization

The accuracy is a main criterion for evaluating indoor localization approaches. Although

RFID readers are expensive, LANDMARC [51] (Location Identification based on Dynamic

Active RFID Calibration) approach uses extra fixed location reference tags to calibrate the

localization results computed by the tracking tag. LANDMARC improved the localization

accuracy successfully, but it has limitations: 1) users have to carry the RFID tags when

they move in indoor environments 2) fixed location reference tags are needed in indoor

environments where they provide Location Based Services.

Users of smartphones can obtain location services without any extra devices. They employ

sensors (accelerometer, gyroscope) on the smartphone to compute motion traces in certain

environments. However, for some sensors used for localization, such as UM6, UM6-LT [63],

small errors in the orientation estimation will cause serious deviations in the measured

acceleration, velocity and position. The accuracy of the UM6 and the UM6-LT Orientation
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Sensors are expected to be within about 2 degrees. Taking 2 degrees as an upper bound,

when UM6 or the UM6-LT are leveraged for velocity and position estimation, 10 seconds will

accumulate 3.4m/s of velocity error and 34.2m of positioning error.

Mobile robots have been used in some research or commercial areas and can interact

with smartphones via wireless communication. By sending correct location information to

smartphones, mobile robots boost the positioning accuracies of users’ smartphones. Namely,

the location information on smartphones are calibrated while users are communicating with

the mobile robots. Different from LANDMARC, mobile robots do not need setup an fixed

array of RFID tags, also, the users do not need carry tracking tag.

7.2.2 Preliminary Observation

7.2.2.1 Experimental Setup

To illustrate this perspective, we conduct preliminary evaluation in a small and empty

environment, the size of the environment is 4⇥4m2. We simulate a single smartphone’s

motion and its interaction with a robot. The smartphone moves randomly and the robot

moves on the diagonal line of the environment.

On the head of the robot, an Android tablet installs an application and a known map.

The robot gets accurate location information by the map and calibrates its own position.

For users of smartphones, a third-party application on the smartphone draws the user’s

trajectory by acceleration and direction. The acceleration and direction are obtained from the

accelerometers and magnetic sensors. For most motions of people who carry a smartphone,

their accelerations are between 0-20m/s2 [9]. We consider the initial acceleration ax (on x

axis) to be 0.04m/s2, the initial acceleration ay (on y axis) to be 0.10m/s2, and the observing

time period from 1s to 40s. In the beginning, the acceleration values obtained from the

accelerometer are incorrect. The margin of acceleration error on the x axis and the y axis is

50%. The trajectory generated on a smartphone deviates from the ground truth.

125



7.2.2.2 Communication between single robot and user

Common smartphones and tablets have Bluetooth adapters. As a low energy technology,

Bluetooth works within a short range. Received Signal Strength Indicator (RSSI) is a

measurement of the power present in a received radio signal. Different from Channel State

Information, RSSI values can be accessed on most modern mobile devices. RSSI is in units

of “dBm" (dB per milliwatt). The smaller magnitude negative numbers denote to the higher

signal strength. For the percentage of RSSI, the expression to convert is: rssiPercentage =

(currentRSSI/ RSSIMAX)⇥100. The RSSI value is influenced by the distance between the

sender and receiver of the radio frequency signal. Shorter distance represents stronger RSSI

[70].

The relationship between distance and Bluetooth RSSI values is used to calibrate the

deviations: the robot sends its accurate position to smartphones when they are close (distance

between them is less than 1.5 meters, the Bluetooth RSSI value obtained from smartphone is

no less than 80%). After we started our simulation, the robot sends the accurate location

message to the smartphone after 20 seconds, then, for the user’s smartphone, the “new”

received position from the robot replaces the “old” position. The sending position message

lessens the deviation of the computed position on the smartphone. Then, we repeat the

simulation 50 times. The results are shown in Figure 7.2. The blue line refers to the distance

from the computed position to the ground truth without any calibration. The red line is

the distance after calibration. The shadow areas denote the confidence interval for each

case. Less distance means more accurate localization. It indicates: 1) as time increases, the

deviation also increases; 2) the error range after position replacement is reduced.

Then, by employing the same experimental environment and devices, we record the

accumulative deviation distance (Euclidean Distance) from the ground truth for each second.

We control whether and when the robot sends the location information. Sending frequency is

defined as the number of the location messages sent to the smartphone per hour. As Figure
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Figure 7.3 Distance errors under different frequencies

7.3, we test the sending frequency from 0 to 100. The y axis indicates the smartphone’s

accumulative deviations after our simulation.

We draw the conclusion: 1) by sending accurate location messages to the smartphone,

the robot can reduce the smartphone’s localization error, and 2) if the smartphone receives

accurate location messages more frequently, the accumulative deviation decreases more.

Therefore, we need to design an approach that the robot may frequently send its accurate

location messages to the smartphone.

7.3 Single Robot Assisted Indoor Localization

7.3.1 Overview of Single Robot Model

Figure 7.4 shows an overview of the single robot assisted indoor localization. By installing

a tablet computer on the mobile robot, the robot contains the proposed application and a

known map. The moving robot in our approach has two parallel functions: 1) send location

messages to a smartphone, and 2) collect crowd density information in rooms. The robot
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Figure 7.4 Framework of single robot assisted indoor localization

employs Bluetooth broadcast to communicate with the smartphones.

Since the Bluetooth signal strength depends on the distances between the adapter and

the receiver, the stronger signal means a shorter distance. If the detected signal strength on a

robot is above a certain threshold, distances between the Bluetooth adapter (on a robot) and

receiver (on a smartphone) can be ignored. The robot can send its accurate position from an

installed map to a smartphone. The location from robot replaces the location calculated by

the smartphone. When the installed map and routes generated from the robot are accurate,

the localization accuracy on the smartphone will increase.

Next, we attempt to provide a serving route for the robot. The objective of design is

to minimize the deviations of customers’ smartphones. As analyzed in our preliminaries,

if the robot has more chances to send the accurate location messages to smartphones, the

deviations of smartphones can be reduced more often. Hence, the robot should distinguish

which rooms have more users.
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7.3.2 Crowd Density Estimation

Crowd density is introduced to measure the number of people in a certain area. In addition to

broadcasting position information to a smartphone, a robot can collect such data in a certain

room: 1) the number of discovered smartphones, 2) the mean value of Bluetooth RSSI, the

two types of data can reflect the crowd density for the room [82, 92]. AirLoc adopts such two

types of data as features for clustering. As shown in Figure 7.5, after collecting these data

in each room, k-means clustering algorithm [19] divides crowd densities in different rooms

into different ranks. Based upon crowd densities, we will assign corresponding serving time

periods for different rooms. In higher crowd density rooms, the robot will spend more time

to broadcast location messages. In lower density rooms, the robot will serve less time.

Table 7.1 Main notions in AirLoc

Terms Definition
N, n, P , Number of serving rounds, rooms, robots
i, j Current position (room), Next position (room)
V, V̄ Set of rooms, Set of visited rooms
G[V � V̄ ] Sequence of rooms will serve;
d
i,j

Time from moving room i to j
Dis(i, j) Euclidean distance from room i to j
S
j

Possible serving time for room j
T
k

(V̄ , j) Time cost for serving round k
Den(i) Crowd density level for room i
↵, � Two separate serving areas
I
↵

,I
�

Two initial position of ↵ and �
T1, T2 Thresholds for constraining merging samples
R Radius of increasing serving area
HDA,LDA High Density Area, Low Density Area
nHDA,nLDA Number of mobile devices in HDA, LDA
! Parameter for evaluating room’s crowd density
✓ Parameter for assign robots
nd

i

Number of scanned devices in room i
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Algorithm 9 Edge-Based Algorithm (EBA)
Input:

N, i, j, V ,V̄ , di,j , G[V � V̄ ];
Output:

Tk(V, j); G[V � V̄ ];
1: for each N > 0 do
2: robot starts serving for G[V � V̄ ];
3: traveling & scanning & sending message;
4: Vl lowest density rooms by k-means(V );
5: // delete nodes and joint edges with lowest density level;

G[V � V̄ ] G[V � V̄ ]-Vl;
6: // Recursive relation for computing time cost

Tk(V̄ , j) = min{Tk�1(V̄ � j, i) + di,j};
7: V̄ = i [ V̄ ,K = K � 1;
8: for � = num(G[V � V̄ ]); � > 0; � - - do
9: assigning the same serving time for v 2 G[V � V̄ ];

10: end for
11: N� 1;
12: end for

7.3.3 Generate Optimal Serving Routes

Before generating the serving paths for a mobile robot, we assume the robot moves between

different rooms at uniform speed so the time to travel between different rooms can be

calculated by distance (time cost on path is proportional to distance). The real map is

converted to an abstract graph: rooms can be abstracted as nodes; paths between different

rooms can be seen as edges. A robot’s optimal serving route is the route that a robot can

minimize the smartphones’ deviations from the ground truth in a certain time period. Because

the movement of crowd is difficult to predict, it is difficult for a robot to obtain the optimal

route. Nevertheless, we design an algorithm to generate serving routes with close serving

results as optimal routes.

7.3.3.1 Edge-Based Algorithm (EBA)

Edge-Based Algorithm aims to find an optimal route covering each room and reduce time

costs. It is derived from the TSP (Traveling Salesman Problem) [36, 53, 64]. TSP does not
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consider the time cost in each node. However, in AirLoc, the time length of serving in each

room is crucial. For EBA, each room will be assigned the same serving time in each serving

round. The rooms with higher crowd density are served more often than lower density rooms.

As Figure 7.6, Room 1 (R1 for short), R4 are high density rooms, R2 is medium density

room, R3 and R5 are low density rooms. We specify the robot to go around the whole map 3

times. High density rooms will be visited 3 times, medium density room will be visited 2

times, low density room will be visited just once. In the first serving round, all the rooms

will be visited. For the second serving round, R1, R2 and R4 will be served. R3, R5 and

their jointed edges will be deleted. For the third serving round, R2 and related edges will be

deleted. Only R1 and R4 will be served. The main task in each serving round is converted to

find a optimal tour in the remaining map. It is similar to TSP problem, which could also

be solved by dynamic programming in Algorithm 9. The total time complexity of EBA is

⇥(n32n).
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Algorithm 10 Node-Based Algorithm (NBA)
Input:

N ; i; j; V ; di,j ; Sj ;
Output:

Tk(V, j); Sequence of visited rooms (Generated Route);
1: for each N > 0 do
2: Find_Route_NBA();
3: Traveling & Scanning & Sending Message;
4: N = N � 1;
5: end for
6: Find_Route_NBA() :
7: Tk(V, j) = min{Tk�1(V � j, i) + di,j + Sj};
8: V = i [ V,K = K � 1;
9: Assigning longer serving time for high density rooms;

7.3.3.2 Node-Based Algorithm (NBA)

The main idea of Edge Based Algorithm (EBA) is that allocating more serving rounds for

the rooms with higher crowd density. Apart from EBA, we propose another algorithm: in

one serving round, mobile robots visit each room, but we assign longer serving time to the

the rooms with higher crowd density. Considering this strategy is based upon the crowd

density of each room, it is named Node Based Algorithm (NBA). The description of NBA is

in Algorithm 10. The time complexity of NBA is ⇥(n22n). The differences between EBA

and NBA will be discussed in evaluation section.

7.4 Multi-robot Assisted Indoor Localization

7.4.1 Single is not enough

Although the single robot approach is effective for some indoor environments, the problem is

more challenging if 1) robot assisted indoor localization approach can be applied in more

types of indoor environments, especially for the environments containing more rooms; 2)

achieves higher positioning accuracies for smartphones.

The complexity of the EBA is sensitive to the number of rooms. If we adopt some common
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tablets (such as Google Nexus 7, iPAD, the memory is within 4G), the single robot approach

can handle a map within 1-30 rooms. In order to extend the existing approach to a larger

indoor environment, a new approach that can process the map with more rooms should be

provided.

When a single robot employs crowd density to generate routes, how to guarantee the

accuracy of crowd density estimation is intractable, because 1) people do not always keep

stationary, the crowd density distribution changes at anytime, the samples collected in each

room need to be updated in time. Unfortunately, one robot cannot cover many rooms in a

short time; 2) the crowd density levels used in EBA reflect the crowd distribution of previous

periods rather than the current period.

7.4.2 Two Robots Working Model

Based on the motivation in previous section, we design a multi-robots approach to replace the

single robot approach. An important task is to organize the robots. To achieve this goal, we

design our system step by step. Namely, we introduce the design and analysis of two robots

working model first, then, we extend the two robots approach to the multi-robot model.

7.4.2.1 Brute-Force Algorithm

In this subsection, we provide a directive algorithm to organize two robots. An intuitive

approach is to find all the connected sub-graphs, each robot would travel on it by NBA/EBA

and get the time cost. The recursive relation of this approach is as follow:

T k(V, jA, jB) = min{T k(V � (jA, jB), iA, iB) + diA,jA
+ diB,jB

+ SjA + SjB}

SiA , SiB refer to the possible serving time for room i by robot A and B. diA,jA
, diB,jB

denote the time of robot A and B moving from room i to j. The system can choose the

serving routes covering two sub-graphs with least time costs as optional solution. Although

this brute-force approach could find the optimal routes, it has to test each of the potential
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solution, the complexity of this brute-force approach is O(n32n). If we extend this approach

to multi-robots, the complexity will be O(nk+1
2

n
). k refers to the number of robots, n refers

to the number of rooms. For most of tablets and smartphones, this approach cannot be

applied on the environments including 30 or more rooms. Therefore, an approach that can

replace the brute-force approach is required.

7.4.2.2 Graph Division Strategy

Before employing multi-robots to construct our system, we consider how two robots work

together first. AirLoc tries to partition the whole graph to two components. Each robot will

serve one of them by EBA. The strategy of graph partition should satisfy: 1) the robots

allocate more time to serve higher density rooms as possible, and 2) limit the time costs on

the edges.

We propose the partition strategy in Fig. 7.7(a)-(b). We abstract a two dimension plane.

The samples on the plane represent the rooms on the map. The number of each sample is

the crowd density level of the room. The density level 10 is the highest level and 0 is the

lowest level. The samples’ density levels are obtained by accessing the cloud server. The

cloud server computes the crowd density levels for each room by the k-means algorithm [19].

Two rooms (0 and 8) are chosen as the initial center of the serving area. By increasing the

radius R of the area, rooms that are close to the initial samples are merged into the two

serving areas by iteration. This merging procedure is based on the Euclidean distance. It is

named "Distance First Algorithm".

In an indoor building, some rooms close to each other might have different crowd densities.

For example, in Fig. 7.7(a), one room with density level 1 is merged into the high density

area by the Distance First Algorithm. To tackle the problem, in contrast to the Distance

First Algorithm, Fig. 7.7(b) depicts that samples are merged into the two areas by closest

density levels rather than distances, it is named "Density First Algorithm".
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Table 7.2 Memory consumption by Brute-force algorithm (OM - Out of Memory)

10 Rooms 20 Rooms 100 Rooms 500 Rooms
2 Robots 1 M 8 G OM OM
4 Robots 100 M OM OM OM
5 Robots OM OM OM OM

Table 7.3 Memory consumption by DDFA (OM - Out of Memory)

10 Rooms 20 Rooms 100 Rooms 500 Rooms
2 Robots 40 K 800 K 700 M OM
4 Robots 300 M OM OM OM
5 Robots OM OM OM OM

AirLoc takes advantage of the above two algorithms. We define the threshold T1 and T2

as the constraint to make a balance between "density first" and "distance first". T1 refers to

the difference between the crowd density level of initial room and the crowd density level

of the room being merged. T2 is the difference between the crowd density level of the room

merged in previous iteration and the crowd density level of the the room being merged. If

T1 and T2 are set as the larger numbers, it means even if the two samples’ density levels

have significant differences, they can be merged in one serving area when their positions

are close to each other. If T1 and T2 are set as the smaller numbers, when the two samples’

density levels are different, they have less chances of being merged. This strategy is named

"Distance/Density First Algorithm (DDFA)".

The complexity of DDFA is O(n2klogn), k refers to the number of robots, n is the number

of rooms. Whereas this algorithm is limited by the number of robots, it is not sensitive

to the number of rooms. As shown in Table 7.2 and Table 7.3, for most common tablets,

which have more than 1G memory, they can handle 100 rooms if they use DDFA. We can

conclude: 1) DDFA can be used on the map more than 100 rooms; 2) DDFA is difficult to be

implemented on the group containing more than 4 robots, thus, it is necessary to extend our

approach from 2 robots to n robots (n is greater than 2); 3) after obtaining their serving

areas by DDFA, the robots will adopt EBA to travel on the assigned serving area. Since each

serving area does not include many rooms, the memory bottleneck will not occur.
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Algorithm 11 Distance/Density First Algorithm
Input:

n-number of rooms on the map; R-radius of serving area;
Output:

two separate serving areas ↵ and �;
1: select two Initial Positions (I↵,I�) from n rooms;
2: while num(↵)+num(�) < n do
3: increase radius: R R+�R;
4: if ↵ or � satisfies constrains then
5: // merge room m into nearby serving area ↵ or �;

↵ ↵
S

m or �  �
S

m;
6: end if
7: n n� 1;
8: end while

Constrains:

1). keep connectivity (complexity O(nlogn))
2). |Den(I↵) - Den(m)| < T1, |Den(I�) - Den(m)| < T1
3). |Den(m+1) - Den(m)| < T2

7.4.2.3 Preemption

By applying DDFA, the two robots have obtained their serving areas respectively. The area

containing more higher density rooms is High Density Area (HDA), the other with lower

density rooms is named Low Density Area (LDA). Since the robot travels on LDA is not as

efficient as HDA, if the number of scanned smartphones in LDA is less than 10% of scanned

smartphones in HDA, the robot in LDA will go to HDA to serve. This mechanism can be seen

as the HDA preempting the serving period of LDA. The time of initial preemption period is

2

1
%. When the LDA robot moves back to LDA, if the number of scanned smartphones in

LDA is still less than 10% of scanned smartphones in HDA, the time of the second preemption

period next will increase to 2

2
%. Therefore, the time of nth preemption period is 2

n
%.

When the ratio is greater than 10%, the preemption will end and the exponent will decrease

to 1.
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Figure 7.7 Key technologies in multi-robot system

7.4.3 Extension to Multi-robot

In order to extend the existing approach to the multi-robot model, AirLoc assigns more than

2 robots to different serving areas. If we generate serving areas for multi-robots by DDFA

directly, the computational complexity might become an obstruction for common tablets.

Hence, we partition the robots to serving groups layer by layer as a tree. Before reaching the

bottom layer, for each layer, we focus on how to divide the robots into sub-working groups.

One group is separated into two sub-groups. Each sub-group has the same number of robots.

It can be seen as two robots and using the DDFA to generate two serving areas, with each
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Algorithm 12 Preemption Algorithm
1: Input: a pair of robots; nLDA, nHDA - number of smartphones in LDA, HDA; Output:

serving areas for the 2 robots;
2: // initializing length of preemption period, serving period number;

� 1,i 1;
3: for in each serving period i do
4: if

nLDA

nHDA
 10%

then
5: the robot moves to the HDA for serving;
6: serving for 2�% of serving period in HDA;
7: the robot moves back to LDA & � �+1;
8: call Preemption(i+1);
9: else

10: the robot travels and serves on LDA;
11: i i+1, � 1;
12: end if
13: end for

subgroup responsible for one of them. Then, each sub-group is divided again until it reaches

the base case (bottom) of the tree. This tree is a balanced tree.

Nevertheless, this approach has a shortcoming: even though one serving area has low

density distribution and the other’s density distribution is high, the number of robots serving

them is the same. It contradicts our goal to allocate more robots to serve high density areas.

AirLoc proposes an unbalanced tree model to address the problem. First, an alternative

method to measure the crowd density of serving area is introduced: as Fig. 7.7(d), by building

an x-y plane, the x-axis refers to the number of mobile devices and the y-axis refers to the

average RSSI value. We define the parameter ! to depict the crowd density for each room,

the value of ! equals to the product of number of mobile devices and the average RSSI value.

The shadow area on the plane represents the value of ! for a room. Lager size of the shadow

area means higher crowd density. As equation (7.1), i is the ith room, ndi indicates the

number of devices, m refers to the number of smartphones in room i, RSSIj is the signal

strength received from smartphone j. !i is the ! value of room i.
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Algorithm 13 Generating Unbalance Tree (GUT)
1: Input: P mobile robots, original graph; Output: unbalance serving tree;
2: if not reach the base case then
3: split the graph into two sub-graphs by DDFA;
4: find HDA, LDA by computing ! by equation (1);
5: allocate (P ⇥ ✓)/(✓ + 1) robots to HDA;
6: allocate P � (P ⇥ ✓)/(✓ + 1) robots to LDA;
7: for in each split sub-graph g do
8: call GUT(g);
9: end for

10: else
11: call Edge Based Algorithm;
12: end if

!i = (ndi ⇥
mX

j=0

RSSIj)/m, ✓ = (

HX

i=1

!i)/(
LX

j=1

!j) (7.1)

where H represents the number of rooms in higher crowd density area, L is the number of

rooms in the lower crowd density area. If ✓ is a large number, it means the higher crowd

density area needs more robots to serve. Based on ✓, when dividing robots into sub-groups,

we allocate the number of robots as follows: let P denote the number of robots, the higher

crowd density area will be assigned (P ⇥ ✓)/(✓ + 1) robots, the rest of robots will be sent to

the lower crowd density area. If (P ⇥ ✓)/(✓ + 1) is not an integer, it can be processed as the

ceiling of (P ⇥ ✓)/(✓ + 1). Therefore, if there exists different crowd density distributions in

the two serving areas, the serving tree will be formed as an unbalanced one.

7.4.4 Dynamic Return

We explained the mechanisms for sending robots to a serving area, but we did not mention

how the robots go back to the initial position. For a multi-robot system, the time costs

of returning might be large. Thus, the paths for returning are important. A practical and

concise method is designed for generating the returning paths: find a new tree root that is

relatively close to each leaf node. Namely, we find the node k, which has the smallest sum

of distances between k and each other room i, then, we arrange k as the “new” root. After
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Algorithm 14 Dynamic Return Algorithm
Input:

i;p;Dist(k, i);
Output:

The new initial position (new root of the serving tree);
1: if All the robots finish the assigned serving task then
2: for each room i & i is not greater than n & i=i+1 do

3: if i satisfies that the value of
pP

k=1
Dist(k, i) is minimum then

4: Return the value of
nP

i=1
Dist(k, i);

5: Set the room i as the new root of serving tree;
6: end if
7: end for
8: else
9: wait for robots finishing the serving assigned serving task

10: end if

finishing the tasks in one round, all the robots will move to the new root and restart the next

serving round.

7.5 Evaluation

In evaluation phase, we seek to answer four questions:

1. Whether AirLoc can increase smartphones’ localization accuracies?

2. How well is the updated crowd density levels of AirLoc?

3. How some features such as number of robots can influence the performance of system?

4. Whether proposed techniques such as unbalanced tree, dynamic return make contribu-

tion to AirLoc, how they enhance the performance of AirLoc?

7.5.1 Experimental Setup

As illustrated in Figures 7.8-7.9, we performed our evaluation on the first floor of Engineering

Building at Michigan State University, which is an indoor environment containing more than
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Figure 7.9 Data samples on the map

130 rooms. Rooms are abstracted as nodes, corridors or paths that are narrower than 3

meters are abstracted as edges. The corridors or paths whose width are greater than 3 meters

also processed as nodes.

In our indoor experiment, we consider the TurtleBot [16] as the initial mobile platform, it

is a common type of robot with multifunction and decent price. The height of the tablet (to

be installed on a robot) is 1 meter, which is similar to the height of user’s pocket. The speed of

is 0.3m/s. There are 0-6 volunteers in each room or hallway, each volunteer carries Samsung

Galaxy 4 smartphone or Google Nexus Tablet and turn on the Bluetooth. Volunteers in the

experimental environment walk freely.

By running proposed program on a tablet and smartphones, for each 10 seconds, the tablet
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scans other Bluetooth devices and collects the RSSI values and the number of discovered

devices periodically. Fig. 7.8 shows the scenario that we conduct the experiment. Based on

the experiment, for each smartphone, it receives the location messages from the robot via

Bluetooth communication. In Fig. 7.8(a) and Fig. 7.8(b), we assume a robot moves and

collects data in a room or hallway. GN refers to the RSSI obtained from the user’s Google

Nexus tablet; SG refers to the RSSI obtained from the user’s Samsung Galaxy smartphone.

On the completion of collecting data in one experiment, we extend our indoor experiment

results to a large scale simulation. By using the same floor plan, our simulation includes 16

mobile robots that carry Google Nexus 7 tablets to visit different places in the building. Each

robot travels and works by AirLoc. We assume 350 volunteers are distributed in each room

or hallway rather than the rooms where the single robot collected Bluetooth information.

After the assumed multi-robots collect samples of Bluetooth RSSI values in the first round,

we use MATLAB and WEKA [18] on the cloud server to analyze the samples. The WEKA

software supports k-means algorithm that can divide different rooms into different crowd

density levels. There are three parameters in the dataset built by collected samples: number

of devices, mean value of RSSI, and identifier (ID) of each room (only number of devices

and mean value of RSSI are used to cluster). As shown in Fig. 7.11(d), collected samples

are distributed on the two-dimensional surface. It is formed by two features: average value

of RSSI and the number of smartphones. After executing the k-means clustering algorithm,

each room is categorized to the corresponding crowd density level. T1 and T2, the parameters

in DDFA, are set as 2.

7.5.2 Metric of Evaluation

Besides Euclidean distance, to measure the localization accuracies of AirLoc, we introduce

other metrics:
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Figure 7.10 Experiment floor plan and single trace study

7.5.2.1 Number of Deviation Grids

One metric is E =

PN
i=1Di, let N denote the number of smartphones; Di refers to the

deviations grids for each smartphone; E refers to the remaining errors after carrying out the

proposed approaches; The size of each grid is 0.4m⇥0.4m.

7.5.2.2 Location Entropy

The other metric is Location Entropy. The expression of Location Entropy is: L(x) =

�
Pm

i=1 P (xi)log2(P (xi)). Higher value of the location entropy represents the localization

results of all the smartphones deviate more from the ground truth. m is the number of grids;

for each grid P (xi) represents the probability that the smartphone’s estimated position is

the ground truth. P (xi) equals to the ratio of (times of estimate successfully)/(estimated

times). In our simulation, we record the P (xi) of each grid every 5 seconds.
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Figure 7.11 Field study and simulation results

7.5.3 Evaluation of Crowd Density Updating

7.5.3.1 Reasons of Crowd Density Variations

In indoor environments, such as convention center, hospital, and hotel, the crowd density

distribution is always changing. For the single robot approach, the robot computes and

updates the crowd density levels after each serving round. As the reasons explained in the

previous section, it is difficult to guarantee the correctness of crowd density levels. Fig.

7.13(a) illustrates the reasons for crowd density variations.

7.5.3.2 Duty Cycles Analysis

For each serving period in multi-robot system, we define three serving slots as Fig. 7.12: 1)

T Slot (Tree generating Slot): the robots build the unbalanced tree until they are assigned to

the final serving areas; 2) S Slot (Serving Slot): when the tree reaches bottom (base case),

they will conduct EBA that are also relied on the latest crowd density; 3) R Slot (Return

Slot): after each period of serving, all the robot return to the “new” robot.

The multi-robot system can provide more accurate crowd density: 1) using global and
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Figure 7.12 Three serving slots: 1) T slot; 2) S slot; 3) R slot

concurrent Bluetooth information to replace the Bluetooth information collected serially by

the single robot, the computed crowd density levels will be closer to the ground truth; 2)

before each robot traveling on serving area, it can access the latest crowd density levels to

help them make correct decision by proposed algorithms.

Then, we compare the location entropies of AirLoc when it adopts static or updated crowd

density information. Fig. 7.13(b) plots the location entropy values on the y axis, that are the

average location entropy values when each round ends. Static crowd density refers to robots

that use the crowd density obtained at the end of first round to make a decision; OPOS (One

Period One Sample) represents using the crowd density levels obtained at the first splitting

group in each round when generating the serving tree. Namely, for one period, as T Slot, all

robots do not update the crowd density levels when they execute the proposed algorithm

until the next period. OPMS (One Period Multi-Sample) refers to the crowd density levels

obtained each 10 seconds when the system generates the serving tree, forming room clusters

and using EBA. By employing updated crowd density, AirLoc reduces the deviations and

increases the localization accuracies gradually. Then, we repeat this simulation 100 times,

145



shown in Fig. 7.13(e), we leverage the number of deviation grids to illustrate the advantages

of using the crowd density information that is updated continuously by multi-robots. It

proves that using concurrent crowd density information collected by multi-robots can reduce

the deviations effectively. The shadow areas in Fig. 7.13(e) represent the confidence intervals

of the simulation.

7.5.4 Evaluation of Reducing Deviation

Keeping the same conditions as the previous experiment, as Fig. 4.10, we study the case of

each user. Even if one user’s estimated trace deviates sometimes, after receiving the accurate

location messages from mobile robots, the user’s estimated trace is close to the actual one.

Next, we compare the 1) the robots using dynamic return versus static return, 2) Balanced

Tree and the Unbalanced Tree mechanisms. Fig. 7.13(c) shows that: 1) Unbalanced Tree

has better performance than Balanced Tree; 2) Dynamic Return has less deviations than

returning to a fixed root. Both Unbalanced Tree and Dynamic Return technologies can help

the smartphones’ localization.

Fig. 7.13(f) illustrates the two relationships: one is the relationship between localization

errors and average degree of nodes, the other is the relationship between deviations and

number of robots. The degree of a node represents the number of edges connected to the

node. Higher degree means more edges and better connectivity. For the single robot model,

it employs EBA to serve all the rooms. For multi-robot approach, it uses OPMS and EBA.

The location entropy is obtained after 10 serving rounds. We draw the conclude: 1) proposed

approaches work well, and 2) when the average degree increases, the remaining deviations

from the ground truth will decrease, because the better connectivity gives the robots more

opportunities to choose better optimized serving routes, 3) more robots in AirLoc further

enhance smartphones’ localization. In general, when we deploy no less than 8 robots and run

AirLoc over 8 rounds, the average localization error of each smartphone is not beyond 0.81m.
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Figure 7.13 Field study and simulation results

7.5.5 EBA and NBA

In design section, we introduced two algorithms (Edge Based Algorithm and Node Based

Algorithm) for single robot to select its serving routes. In reality, these two algorithms have

difference performances for different types of indoor maps. NBA outperforms EBA when

the indoor map has higher average degree of nodes. As shown in Figure 7.14, we simulate

the map with different average degrees. By assuming using 32 mobile robots and AirLoc

approach, we confirm that the EBA is suitable for the map with lower average degree and

NBA is suitable for the map with higher average degree.
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Figure 7.14 Comparison between EBA and NBA
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7.5.6 Performance Comparison

For AirLoc, Table 7.4 shows a comparison with the state-of-the-art indoor localization

solutions. AirLoc does not request smartphones’ users carrying extra devices. Different

from most of other approaches, AirLoc can be deployed in the large environment with low

cost. Besides, existing smartphone-based approaches are room levels or have serious error

accumulation, even if Bluetooth communication has its range limitation (10 meters) and the

people’s crowd distribution is dynamic, after conducting serving rounds iteratively, AirLoc

promotes these approaches to achieve better localization results.

Table 7.4 Comparison AirLoc with other indoor localization systems

Approach Signal Type Accuracy Device-
Based Scalability Pros Cons

AirLoc Bluetooth, WiFi within 1m Low High High scalability and accuracy,
No extra device, Low cost Need known map

Ultrasound
assistant Ultrasound 10cm to 1m High Limited High accuracy Need expensive devices

for each user

Finger
Printing

WiFi, cellular
and RF signal,
Bluetooth, FM

Room Level Low Medium Device-Free, Low cost Complex training,
Low accuracy

SLAM Laser, WiFi within 5m High Medium Accuracy is fine,
Self-calibrate position

Just serving the robot,
Need special sensors

Smartphone
Based WiFi Low Low Medium No extra device for

customers, Low cost
Error accumulation,
Low accuracy

7.6 Conclusion

Most of previous indoor localization approaches cannot avoid accumulative errors. AirLoc

boosts smartphones’ localization accuracies on large indoor environments. We build an

unbalanced tree to organize the multi-robot. From the root to bottom, the robots are divided

into sub-groups according to the distribution of people’s crowd density. At the bottom,

all the robots are assigned their working areas by DDFA and serve these areas by EBA.

Evaluation results indicate 1) AirLoc can be applied on the map containing more than 100

rooms; 2) localization errors of smartphones are reduced effectively via AirLoc. The average

deviation of each smartphone belows 0.9m; 3) the time complexity of introduced algorithms

are acceptable for common tablets.
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CHAPTER 8

SUMMARY AND PROPOSED FUTURE RESEARCH WORK

8.1 Summary

As mobile and smart devices have been increasingly popular in the last decade, location

services have become an important issue. In this dissertation, we introduce approaches to

provide location-based services in indoor environments where GPS cannot be used directly.

In general, we answer two questions: 1) how users of mobile devices obtain indoor maps and

2) how users of mobile devices obtain indoor location information.

For reconstructing the indoor floor plan, we propose iFrame, a dynamic and light-weight

approach that leverages mobile sensing capabilities for constructing indoor maps. iFrame

uses dead reckoning, Bluetooth and WiFi detections initially to describe the state of each

grid on the 2-dimensional map. iFrame fuses the sensing data from the three approaches to

generate the shadow map of indoor scenarios. Our experiments and simulations verify that

by merely carrying smartphones or other mobile devices, if users allow their mobile devices

to share information with other users’ devices, iFrame is able to reconstruct the dynamic

shadow map of indoor environments within 5 minutes.

Based on the known map installed on mobile devices, we propose four indoor localization

approaches. In the beginning, we attempt to improve the users’ indoor localization accuracies

without the requirements of cooperating with other mobile devices. We introduce iLoom,

an indoor positioning approach that leverages the users’ outdoor walking behaviors. By

adopting dead reckoning as basic method, we generate people’s motion traces. We propose

use an Acceleration Range Box to optimize the user’s received accelerations. To obtain the

ranges of Acceleration Range Box, we combine the data describing the outdoor motion by

accurate GPS and the data of the indoor movements via transfer boosting. Our case studies
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including 15 users and 3 indoor buildings indicate iLoom improve dead reckoning and achieve

accuracy to 0.35 meter. This approach does not need extra devices and data training for

certain environments.

Since iLoom is a data-driven approach and does not leverage the cooperation of different

mobile devices, we also propose three indoor localization methods based on the wireless

communications between multiple mobile devices.

First, we present CRISP - CoopeRating to Improve Smartphone Positioning, which uses

the accelerometers on smart devices to generate the motion traces of users initially. CRISP

leverages opportunities of the interaction of multiple smartphones to enhance accuracy. When

individual smartphones may provide some positioning (possibly inaccurate) information

via Bluetooth and WiFi communication, by applying triangular calibration, opportunities

of accuracy improvement occur when several smartphones cooperate and share position

information. Through extensive indoor experiment and simulation, CRISP is able to localize

users within 1 meter distance deviation. In addition, based upon existing location information,

CRISP is able to profile users’ steps without accumulative errors.

Second, we design and implement SilentWhistle, a light-weight indoor positioning approach

that leverages acoustic sensing and dead reckoning to compute the users’ locations. We assume

that dead reckoning has inaccuracies from received accelerations. Each use of SilentWhistle

generates a sound that cannot be heard by people but can be detected by a smartphone.

The sound frequencies are between 18KHZ and 22KHZ. By leveraging the relation between

distance and sound strength, SilentWhistle uses triangulation to improve indoor localization

accuracies from initial dead reckoning. By applying a centralized model and distributed

model, the users who send obvious incorrect locations will be detected and disposed. Our

extensive experimental results indicate the accuracy of SilentWhistle can achieve 0.88-1.24m.

Third, motivated by the increasing availabilities of mobile robots, we propose AirLoc, an

indoor localization approach that integrates the off-the-shell smartphones with the mobile

robots. The robot and tablet are inexpensive and including the tablet. By installing the
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known map on a tablet, the robot uses Bluetooth to send its correct location to the users’

smartphones. Based on crowd density of smartphone users, AirLoc provides the paths

for single and multi-robots so that smartphones can minimize the deviations between the

estimated positions by interaction with the robot and the ground truth.

Figure 8.1 Comparison among four proposed indoor localization approaches

As shown in Figure 8.1, we analyze introduced indoor localization by the following aspect:

1) all the proposed indoor localization approaches do not require users to carry extra mobile

devices except for smartphones and tablets, 2) AirLoc needs the environment to include

mobile robots, while the other approaches do not require extra infrastructure to support

the indoor positioning solution, 3) the average localization accuracy of iLoom (0.53m) is

better than the other three approaches because the results of iLoom depend on the size of

pre-training data. The average localization accuracies of all of the approaches could achieve

1m, 4) from the perspective of computational complexity, iLoom’s is more complex than

other methods because of the transfer learning procedure. Although AirLoc needs online

clustering, considering the number of limited data samples, the computation can be processed

with acceptable complexity.

Based upon the proposed indoor map construction solution and indoor localization

approaches, users of mobile devices can obtain indoor location based services with acceptable

hardware costs, computational complexities, and accuracies.
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8.2 Proposed Future Research Work

8.2.1 Indoor Localization Future Work

In the previous chapters, by using the inertial sensors on smartphone, we have introduced

three indoor localization approaches: iLoom, CRISP, SilentWhistle, and AirLoc. Nevertheless,

some sensors on smartphone have not been explored in our research, such as camera sensor.

8.2.1.1 Visible Light Communication

Considering smart LED bulbs are installed in some indoor environments (such as smart

home and smart office), some research adopts the visible lights that are sensed by the camera

on smartphones to locate people [90, 33]. However, most of the existing approaches need

complex image processing for the photos obtained by the camera. As represented in Fig.

8.1, we plan to use the partial information obtained from the camera sensor (such as the

color of the center in a photo) to reduce the computation burden and also achieve accurate

localization results.

8.2.1.2 Multi-radio Indoor Localization

In addition, we will use more types of radios to enhance the existing indoor localization

mechanisms. Mobile devices may support Channel State Information (CSI), Zigbee, and WiFi

backscatter in the future. Based on the features in these radios, we will obtain more channels

to analyze the signal strength, interferences, and Euclidean distances. These information

might enhance the localization accuracies in different perspectives. For example, CSI over

multi-subcarrier can travel along different fading or scattering paths on account of the multi-

path effects. This phenomenon is able to enhance the accuracies of traditional fingerprinting

indoor localization.
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Figure 8.2 Use camera sensor to detect the color of captured images.

8.2.1.3 Leverage Machine Learning to Enhance Indoor Localization

In iLoom, we have leveraged transfer learning mechanism to enhance indoor localization

accuracies by profiling the walking behaviors outdoors. In the future, we will further utilize

other machine learning algorithms (decision tree classification) to detect different postures

including sitting, standing, lying down, walking, and climbing stairs. In addition, we will use

spatio-temporal structural context learning to further analyze the generated motion trace.

For radio-based indoor localization, deep learning approach will be applied to process the

CSI data. In order to reduce the computational complexity, a greedy learning method will be

leveraged to train the weights layer-by-layer.

8.2.2 Indoor Location Based Services

8.2.2.1 3-dimensional Indoor Map Construction

In our existing indoor map reconstruction approach, iFrame, we have rebuilt the indoor map

based on the mobile sensing techniques. However, the generated map is a 2-dimensional

version. For applications such as smart guide in a museum or shopping mall, a 3-dimensional

version of indoor map is needed sometimes. We plan to deploy some radio beacons (such as

Bluetooth Low Energy Beacons) on the ceiling of the indoor environments. By analyzing

the communications between different beacons and mobile devices, we are able to extend
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Figure 8.3 Pokemon game cannot obtain indoor location because GPS does not work indoors.

the 2-dimensional map construction approach to a 3-dimensional method. In addition, we

will consider using Canny edge detector to build the edges of objects and combine with our

3-dimensional indoor map.

8.2.2.2 Entrance of Virtual Reality

In the virtual reality area, indoor positions has been the entrance of virtual services. For

example, one the of most popular video game in 2016, Pokemon Go [47] has provided lots of

location based services in outdoor environments via GPS. Unfortunately, as shown in Fig. 8.2,

these services cannot be available indoors because of various interferences. To provide location

capacities to the virtual reality services, we hope to leverage dead reckoning technique to

draw the motion trace in indoor environments. The latest GPS samples can be defined as

the anchor point of the trace. If there exist hand-off beacons in indoor environments (such

as Bluetooth printer and WiFi access points), these beacons can be used to calibrate the

deviation caused by dead reckoning.

8.2.2.3 Applications of Smart Building and IoT

Based on known indoor location, some valuable enterprise-level and commercial-level applica-

tions can be delivered, such as indoor navigation, indoor activity detection, and smart office

control. For example, a user of smartphone walked in a shopping mall, when she wants to

drink coffee, the indoor location-based application will navigate the user to Starbuck and
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send the corresponding coupon or advertisement once she is close to the coffee shop. In

some smart buildings equipped with Internet of Things, indoor locations information can be

leveraged pervasively. When an employee needs to meet her colleagues at the company site,

the indoor location-based application can reserve a nearby conference room and navigate her

to the conference site.
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