THIES\/.lb ’ LIBRAR Y Michigan State University This is to certify that the thesis entitled The Development and Evaluation of Accident Predictive Models presented by Thomas L. Maleck, P.E. has been accepted towards fulfillment of the requirements for Doctoral Civil Engineering degree in llue // -’;7’"éky 0-7639 THE DEVELOPMENT AND EVALUATION OF ACCIDENT PREDICTIVE MODELS by Thomas Lewis Maleck, P.E. A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Civil Engineering 1980 ABSTRACT THE DEVELOPMENT AND EVALUATION OF ACCIDENT PREDICTIVE MODELS By Thomas Lewis Maleck, P.E. The objective of the research is to develop a mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from change(s) in the independent variables (number Of lanes, lane width, shoulder width, horizontal curvature, speed limit, signalization, auxiliary lanes, volumes, etc.). The end product is a tool for estimating the expected number (by type) Of accidents for a given highway segment. The model will become an integral part Of the Michigan Dimensional Accident Surveillance (MIDAS-II) system, pres- ently being revised and expanded by the Michigan Department Of Transportation . The data is from 1974-1978 (five years), and consists Of 467,072 acci- dents, occurring on 8,033 miles of Michigan state trunkline. The data segments are separated in exclusive groups via a branching process, called Automatic Interaction Detection. Using stepwise multiple regression, linear and nonlinear, the unex- plained variance is reduced further. The predictive capabilities Of each model is tested against 1/3 Of the data, which was not used in building the models. The standard error of the estimate is calculated for each model . Thomas Lewis Maleck, P.E. The dependent variables are the frequency, density, and rate Of 18, types of accidents. The independent variables are: district, county, laneage, lane width, shoulder width, delta angle, degree Of curvature, land use, no passing zone, truck climbing lane, speed limit, signal code, type Of intersection, number Of intersection legs, number Of right-turn lanes, number of left-turn lanes, left-turn control, all-red interval, average daily traffic, and outlier code. The highest R2 Obtained was 0.690 for rear-end intersectional accidents. Automatic Interaction Detection accounted for 56 percent Of the explained variance. The separation of outlying segments increased the explanatory power of the models by 13 percent. Multiple linear regression analyses within the conditional constraints of the AID termi- nal cells increased R2 by an additional 24 percent. The application of transforming variables to nonlinear functions improved the fit by another 7 percent. For intersection related accidents, the independent variables having the greatest impact on reducing the total variance are: signalization, county, laneage, type of intersection, shoulder width, right-turn lanes, annual daily traffic, and lane widths. The posted speed limit does not have a consistent relationship (demon- strates nearly equal number Of positive and negative relationships). Models for nonintersectional accidents did not fit nor validate as well as models for intersectional accidents. ACKNOWLEDGEMENTS This research would not have been possible without the support of the Michigan Department Of Transportation. The department is a leader in addressing the needs of the public for a safe and efficient transpor- tation system and in elevating the practice and theory Of the profession. The assistance of Donald E. Orne, Dr. William C. Taylor, and Dr. Gail Blomquist was invaluable. Special consideration is warranted by the individuals who helped code the data, develop software, Check for errors, executed the statistical analyses, etc. There were too many involved during the past three years to mention all their names. I am indebted to the following for their exceptional support: Bradley Hagerty Lori Hasselbring Christine Hilton Sara Levin TABLE OF CONTENTS D ( List Of Tables List of Figures Introduction Problem Statement Anticipated Results Literature Review Methodology Data Elements Data Sources Data Segments Segment Outliers Automatic Interaction Detection Exposure Factors Sensitivity Of AID Regression Analyses Models Validation Conclusions and Comments Bibliography Appendices A. File Documentation B. C. D. E. F. Variable Structured Cells AID Trees Relationship Of Dependent Variables Candidate Models Model Validations ii LIST OF TABLES Table 1. 2. 3. 4. 5. 6. 7. 8. 9. Summary of Literature Review Distribution of Number Of Lanes Distribution Of Delta Angle Distribution Of Degree-Of-Curvature Types of Intersections Number of Intersectional Legs Distribution Of Laneage Intersectional Controls Distribution of Speed Limits 10. Roadside Development 11. Distribution of Accident Types 12. Distribution Of Segment Lengths 13. Percent Variance Explained with AID (All-Segments) 14. Percent Variance Explained with AID (Without-Outliers) 15. Percent Variance Explained with AID (Outliers-Only) 16. Initial Variance (All-Segments) 17. Initial Variance (Without-Outliers) 18. Initial Variance (Outliers-Only) 19. Reducibility Coefficients - Injury 20. Reducibility Coefficients - Right Angle 21. Reducibility Coefficients - Rear End 22. Reducilibity Coefficients - Fixed Object 23. Reducibility Coefficients - Parking 24. Reducibility Coefficients - Pedestrian 25. Summary Of Validations - Injury 26. Summary of Validations - Right Angle 27. Summary of Validations - Rear End 28. Summary Of Validations - Fixed Object 29. Summary of Validations - Parking 30. Summary Of Validations - Pedestrian 31. Summary Of Coefficients - Injury 32. Summary of Coefficients - Right Angle 33. Summary of Coefficients - Rear End 34. Summary Of Coefficients - Fixed Object 35. Summary of Coefficients - Parking 36. Summary of Coefficients - Pedestrian iii LIST OF FIGURES Table : h m o o p m a o q o o o c H H H H H H H H H H N ' O H N W D H U Q Q ' Q O C O District and County Numbers Control Section Map Official Traffic Accident Report MALI Printout Photolog Viewer Photolog Picture Photolog Overlay Right-Of-Way Map Traffic Control Order Traffic Signal Timing Permit Traffic Signal Layout Accident Histogram Accident Histogram Accident Histogram Accident Histogram RC AID Tree (RC = 0.01) AID Tree (RC = 0.03) AID Tree (RC = 0.05) AID Tree (RC = 0.07) AID Tree (RC = 0.10) iv Introduction National fatal and injury accident data released by the US. Department of Transportation(4’p1) indicates 49 thousand fatalities and 2.7 million personal injuries during the year 1977; Of which, 1950 fatalities and 166,000 personal injuries occurred in the state Of Michigan. Numerous private and governmental agencies support programs for minimizing the tragic impacts of highway transportation. In addition to its efforts to improve highway safety by constructing or reconstructing roads to safer geometric standards, the Michigan Depart- ment of Transportation annually seeks out, identifies, and recommends improvements at isolated locations experiencing severe accident or operational problems . Candidate locations for consideration as safety projects have been generated from several sources: 1. District traffic and safety engineer recommendations and public input. 2. Multidisciplinary surveillance team field observations. 3. Computer listings of segments having an accident rate or frequen- cy exceeding respective threshold values. 4. Statistical outliers generated by the Michigan Dimensional Accident Surveillance (MIDAS) model. Candidate locations are investigated manually. Collision diagrams are drawn, anticipated reduction in accidents are estimated from engineering judgment or by using data from before-and-after studies Of previous projects, and proposed countermeasure costs are estimated. Corrective roadway safety treatments are traditionally evaluated (if evaluated at all) by using before-and-after studies. Although before-and-after studies may adequately evaluate past pro— jects, little insight is available for selecting candidate locations, quanti- fying their potential for reduction in accidents, ranking and/or com- paring alternate countermeasures, and estimating the consequences of minimal geometric standards. Problem Statement Although the procedure used to identify candidate locations deemed sensitive to correction is important, of equal importance is under- standing the relationship Of the interaction of highway geometry, traffic volumes, Operational controls, and environment on highway accidents. The implementation Of any countermeasure will result in a change of state of one or more Of these factors, and thus will result in a change in the accident potential. A candidate location may have many deficiencies. Countermeasures may have a desirable impact upon one accident type and a simultaneous negative impact upon a different accident type. Not only is it difficult to evaluate alternatives for a candidate, it is also difficult to evaluate among numerous candidates. All known procedures for allocating safety monies have this failing. The objective of this research is to develop a mathematical model that will predict the incremental change in the dependent variables (accident types) resulting from change(s) in the independent variables (number of lanes, lane width, shoulder width, horizontal curvature, speed limit, signalization, auxiliary lanes, volumes, etc.). Anticipated Results The desired end product is a usable tool for estimating (predicting) the expected number (by type) of accidents for a given highway segment. To be successful the model must explain a significant amount of the variance between independent highway locations. The model will become an integral part of the Michigan Dimensional Accident Surveillance (MIDAS-II) system, presently being revised and expanded by the Michigan Department of Transportation. LITERATURE REVIEW The field of accident analysis and highway safety is the subject of extensive research and subsequent publishing. Accident prediction using mathematical modelling as a form of analysis is a relatively small portion of the available literature. As early as 1952, Mr. J. Carl McMonagle (25) studied a limited number of physical conditions to determine the relative importance of roadway features with respect to accident frequency. A 70-mile section of highway on US-14 and M-58 near Pontiac, Michigan was the study site. The route was divided into 1,000-foot segments, each designated by a numbered marker. The location of intersections, taverns, gas stations, stores, design features, advertising signs, and commercial establish- ments were inventoried. During the 3-year period from 1947 through 1949, there were 3,025 reported accidents on this study site. Two statistical tests were used to analyze the relationship between these accidents and highway features. The first consisted of tabulating a frequency distribution of accidents with respect to distance from each inventoried feature. The second consisted of calculating correlation coefficients of accidents versus inventoried roadside features. Accidents in sections not containing intersections were uniformily dis- tributed without apparent relationship to any of the inventoried road- side features. In sections with intersections, taverns and gas stations had the strongest relationship to accident frequency with partial corre- lation coefficients of 0.46 and 0.37 respectively. Of the features studied, advertising signs had the weakest relationship, with a partial correlation coefficient less than 0.01. In 1962 Frederick L. McGuire surveyed 2797 license applicants in Jackson, Mississippi in an attempt to relate accidents and driver char- acteristics. Two years later the applicants were interviewed and their subsequent driving experience obtained. The information included exposure data, driving habits, violations, and type of accidents (reported and not reported). Using stepwise linear regression analyses to establish the connection between accidents and driver characteristics the highest R obtained was 0.38, for the 29 variables tested. The most important factor was edu- cation, followed by the other variables as indicated below<25’ p102): M Variable Education 1 2 3 4 5 6 12 16 R 0.23 Mother's Education 0.28 Percent Day Driving 0.31 Calculated Mileage 0.33 Race Valid License Age Sex 0.34 0.35 0.37 0.38 18 20 23 29 Type Car Occupation Income 0 .38 0 . 38 0.38 How Learned to Drive 0.38 In 1965, J. L. Recht (29) completed an exhaustive study Of nine depend- ent variables (accident types) with respect tO 218 independent variables. The analytic methodology consisted mostly Of multiple regres- sion analyses Of accident data from the year 1960. Using fatal accident rates as a basis, some significant items found in this study were: population density, population over 65, average temperature, average precipitation, vehicle registration, rural road mileage, and urban population. There were 110 regression equations presented. R values were high, 0.8 to 0.9. However the relationship between accidents and specific geometric features was not examined in this study. In 1966, Roy Jorgensen and ASsociates and Westat Research Analysts, Inc.(31) evaluated criteria used in safety improvements on the highway. A tabulation Of the average reductions found and the proposed basis for forecasting accident reductions are contained in appendices D and E Of the study report. The tables contain numerical values for estimating the average percent reduction in accidents. The tables were developed from data collected during visits to various states and cities. The tables are extensive and are organized by type Of location, type Of improvement, urban/rural, and two lanes/more than two lanes. Percent reductions are given for number Of total accidents and for number Of fatal and injury accidents. Standard error rates in this study vary from 30 percent to over 150 percent. Olin K. Dartuz) and Lawrence Mann Of Louisiana State University investigated the relationship of rural highway geometry to accident rates. The study was published in 1970 and consisted Of data from approximately 1000 miles of rural highways. Accidents were recorded to the nearest 0.1 Of a mile. The 246 sample sections Of highway varied in length from 1 to 17 miles. There were over 6000 accidents reported during the 5-year period. The 10 independent variables were: 1. Percentage of trucks 2. Traffic volume ratio 3 Lane width 4. Shoulder width 5 6 Pavement cross slope Horizontal alignment 7. Vertical alignment 8. Percentage of continuous Obstructions 9. Marginal Obstructions per mile 10. Traffic access points These ten variables, their squares, and first order interactions were used in regression analyses to construct mathematical models. The dependent variables were the rate of total accidents, wet accidents, dry accidents, day accidents, night accidents, injury accidents, and fatal accidents. The maximum R2 value was 0.46 for the total number of accidents per 100 million vehicle miles in a model including all 10 variables . A 1974 study by James C. Snyder(34) , at the University Of Michigan Highway Safety Research 'Institute, culminated in the development of an accident predictive model based on environmental factors. The depend- ent variables were accident frequency and accident rate. Independent variables included the physical characteristics Of the road, adjacent land use, and the physical and social structure of the region. Oakland County, Michigan, was selected as the study site. The sample con- sisted of 135 road segments, each two miles long. The accident data consisted Of 13,498 reported accidents from 1968 to 1970. Bivariate relationships were examined via correlation matrices. Auto- matic Interaction Detection (AID) was used to explore the structure Of the data and possible interactions between variables. The independent variables used in the analyses included number Of intersections, percentage of developed frontage, percentage of com- mercial frontage, percentage of residential frontage, number Of land use changes, vehicle density, employment density, population density, value of homes, etc. Of the five statistical models summarized in the report, the resultant regression R2's varied from 0.69 to 0.89. The sample sizes varied from a low Of nine to a high of 88. Also in 1974, Kenneth R. Agent and Robert C. Deen(5) determined statewide averages and critical rates for various types Of rural high- way. Accident data from 1970 through 1972 (three years) in the commonwealth of Kentucky formed the basis for developing tables and formulae fOr determining critical accident rates and severity indices. Of greatest interest are the tables relating the types of traffic control to the percentages of accident types and to a severity index. There is no evidence of statistical testing of the data. John C. Laughland, et al. compiled an extensive list of methods for evaluating highway safety improvements. The 1975 report is compre- hensive. Guides for selecting improvements and forecasting accident reduction are limited to three procedures in table format from three sources, Jorgensen and Westat, Mississippi State Highway Department, and the California Division of Highways.(21’ P139) Mathematical models relating accidents to highway geometry were not available. In 1975, Messrs. N. A. David and J. R. Normanus) attempted to relate accidents to geometric and traffic features at intersections. The study consisted of 558 intersections in the San Francisco Bay area with a 3-year (1972-1974) accident sample. There were a total of 4,372 reported accidents. The results of the study indicate that intersections having less sight distance result in a higher accident rate; intersections having street signs with white letters on dark background have a higher rate than intersections having signs with dark letters on white; intersections with auxiliary lanes have a high accident rate and intersections with bus stops and/or along a bus route have a high accident rate. No mathe- matical modelling is presented. In 1976, The National Swedish Road and Traffic Research Institute<8> ‘ developed a mathematical model for the prediction Of road accidents. The study segments constitute 5,500 km Of rural highway and 7,000 accidents. The model considers the influence Of road alignment, width of pavement, speed limit, traffic flow, and geographical region on the number of accidents. The model is only valid for accidents between intersections and was generated by means Of a weighted regression analysis . A distant covariance between accident rate and road alignment was noted. The accident rate declined with increasing pavement width up to a width of 10 meters. With widths increasing above 10 meters, the accident rate stabilized or increased slightly. Differences in accident rates among different geographical regions was evident. In 1976, the Maryland Department of Transportation“) investigated the relation Of the posted speed limit in conjunction with roadway geometry and ADT to accidents. The Objective Of the study was to develop a methodology for determining the consequences Of a change in posted speed limit on the incidence of accidents. The common unit Of analysis was a road segment. A road segment was defined as a length of road whose posted speed, ADT, and road geom— etry were constant. The study sample consisted Of 189 road segments (lengths not known). The accident data was for the years 1970 through 1974. Only ten months Of data were available for 1974. The 10 road segment variables were number Of lanes, horizontal curves, grades, ADT, segment length, shoulder width, median width, number of intersections, and posted speed limit. The original intent of the study was to use the actual speed as a dependent variable, but this was not feasible . Regression analyses were used to determine the relationship between accident rate and the independent variables. The largest correlation coefficient (R2) was 0.20 for nonintersection related accidents. The highest R2 for the interstate roads was 0.14. In 1976, Messrs. Carter L. Franklin and Samuel G. Carothersus) undertook a study of accidents and deaths on interstate, U.S., and state highways. Their Objective was to discover differences existing between the interstate and noninterstate systems with respect to speeds, involvement rates, and fatal rates. In their model, the esti- mated number Of accidents is a function of two constants (a mean in— volvement rate and the number of vehicle miles) and two variables (a speed involvement rate and the fraction of vehicles traveling in the speed class). The accident data was for the years 1970 through 1974. Errors between the estimated number of accidents and the actual number of accidents varied from 1 percent to 28 percent. In 1977, the Florida Department Of Transportation and Florida State Universitymz) developed an accident prediction equation for train- vehicle collisions. The objective of the project was to determine the relative influence of selected physical features upon the' number Of train-vehicle collisions in the state of Florida. 11 Of the 6,000 public grade crossings in the state, 1,140 crossings on state roads were used as the study base with accident histories from the years 1968 through 1971. The independent variables in the model were vehicular traffic volumes, number Of trains, vehicle speed, train speed, number of lanes and presence. Of warning devices. Stepwise linear regression analyses were used in building the model with the aid of dummy variables and logarithmic transformations of independentvari- ables. The resulting model had a multiple correlation (R) Of 0.43 (R2 = 0.18). Of the 1,140 crossings, 622 had fewer than five trains. per day and only 92 had 15 or more trains per day. Only 10 crossings had more than 30,000 vehicles per day. Using geometric and accident data from the state highway agencies of Maryland, New York, and Washington, Roy Jorgensen and Associates (30) attempted to establish relationships between design elements and accidents. The 1978 project was large and comprehensive. Of primal importance was the project Objective to quantify the effect Of specific design elements on highway safety. Key geometric character- istics and combination of design characteristics were investigated with respect to accident frequency and severity. Over 50 design features were identified. The total data was in excess of 12,000 miles. Analyt- ical lengths varied according to cross section and state. Analytical segments varied from 0.09 to 0.42 miles. 12 Thirty-six regression models were produced for each state by using accident rate as the dependent variable. An additional 36 models were generated by using accident frequency as the dependent variable. R2 values were usually less than 0.08. The data was stratified by four levels Of ADT, three levels Of horizon- tal curvature, and three levels of shoulder type. A total Of 15 rela- tionships were found significant at the 95 percent level, Of which 13 indicate total accidents decreasing as either pavement width or shoulder width increased. The other two findings indicated the reverse relation- ship Of increasing total number of accidents with an increase in widths. The author concludes, (30’ p13) "These findings indicate that straight lines do not effectively explain how accident rates vary across the quantitative variables Of shoulder and pavement widths or across ADT levels. " Messrs. Shalom A. Hakkert and David Mahalelus) Of the Transportation Research Institute, Haifa, Israel conducted a study on intersection injury accidents. The 1978 study was based on accidents and traffic volume data at 242 urban intersections. Forty-four percent of the intersections were signalized. The accident data was from the years 1971 and 1972. The intersections averaged approximately four injury accidents per year. A simple linear model was developed for estimating accidents. The model had one independent variable, an index of traffic flow. The index was defined as the sum of the products of the flows at each conflict point. A correlation coefficient (R) of about 0.8 was obtained. (The exact value of R was not presented.) 13 In 1979, a study by C. P. Brinkman and K. Perchonok focused on ran-Off-road accidents. Approximately 8,000 single vehicle accidents were collected in Wyoming, South Dakota, Maine, Tennessee, Georgia, and California for the years 1975 and 1976. The data for undivided highways showed 44 percent Of the accidents occurred on horizontal curves. It was assumed by the authors that "as curves undoubtedly represent less than 44 percent Of the roads in the study, the accident rate was higher on curves than on tangent sections."(7’ p8) Some Of the other findings related to highway geom- etry are abbreviated below: 1. " . . . the accident rates for downgrades is 63 percent higher than for upgrades."(7’ p9) 2. " . . . left curves on downgrades were overrepresented as accident sites . "(7, p9) 3. Shoulder width did not have a significant effect on injury rate. The authors noted some findings which appeared contrary to expecta- tions; such as, lower injury rates for snow-covered roads, sharper curves, small borders, and small pole Offsets. They recommended that "every attempt should be made to discern those roadway factors which are Of true importance to highway safety, tO understand the mechanisms by which they achieve their effects, and only then to implement remedial activity."(7’ p14) 14 Seven years of fatal accident frequency and rate data for highways in Maryland affected by the 55 mph speed limit was analyzed by Harry S. Dawson, Jr.(14) in 1979. There were four years of before data and three years Of after data. Fifteen variables, divided into five groups were analyzed through multivariate step regression analytic techniques. As a result of the regression analyses, a group of four variables was found to statistically explain 67 percent Of the total variance in the number and rate Of fatal accidents. The following summarizes the findings on these four variables: 1. The continuation of the normal historical decline in fatal accident rates accounted for 22 to 26 percent of the total variance. 2. The lowering of the posted speed limited accounted for 21 to 24 percent Of the total variance. 3. The substantial increase in the level Of police enforcement ac- counted for 14 to 17 percent Of the total variance. 4. Changes in the level of total traffic volume accounted for 8 to 10 percent Of the total variance in the accident frequency and rate data. The aforementioned studies represent 30 years Of work by the profes- sion attempting to elevate the understanding of the highway-accident phenomenon. Efforts relating driver characteristics to accidents had 15 poor results. Although high correlations were found between accidents and environmental characteristics, the major contributing factor was population density and was not an appropriate tOOl for alternative analyses. Differing analytic methodologies are apparent. The studies had the universal problems Of small data sets and/or nonhomogeneous data (from more than one state). The results are not always consistent among the various studies with some being contrary to expectations. In spite of these studies, we know little about the interaction of road- way geometry and accidents. The studies do not address the full range Of geometric features nor utilize a large uniform data set. Table 1 is a summary Of the literature review. Methodology The central theme of the methodology is to analyze the entire at-grade (nonfreeway) trunkline system with accidents being a measure of per- formance. This is a subtle but important difference from previous procedures for analyzing accident data. The biggest difference is the inclusion into the analyses of road segments not having any accidents. The methodology consists Of the following steps: 1. Code and automate geometric and land use data from the depart- ment’s photolog. 16 Table 1 Summary of Literature Review Y T I E N E G O M O H E L P M A S 4 * D ' I 0 : Yes N O I T C A R E T N I Y R T E M O E G C I F F A R T T N E M N O R I V N E N O I T C A R E T N I Y R T E M O E G z 0 Z O N O NO T N E M N O R I V N E N O I T C A R E T N I C I F F A R T H N O I T A L E R R O C Low NO Low ) S T N E D I C C A ( E L P M A S E Z I S : O N 0 o 1 STUDY AUTHOR McMonagle McGuire Recht Yes NO No High Jorgensen NO Yes NO No Low Dart 6000 Yes Yes No NO Med Snyder 13498 Yes NO NO Yes High Agent Yes Yes No No Laughland NO Yes No NO David 4372 Yes Yes No NO Swedish TRI 7000 Yes Yes NO No Maryland DOT Yes Yes No Low Franklin 700 NO Yes NO No Florida DOT Yes NO NO Low Jorgensen NO Yes No No Low Hakkert 1800 Yes No No Med Brinkman 8000 No Yes No No Dawson Yes NO NO Yes Med I - u a w Environment - Accidents Speed Limit Train Crossings Only Traffic Flow at Conflict Points 17 Automate traffic Operational data from paper files. Code and automate data on horizontal alignment simultaneously from maps and photolog . Develop means for merging files and minimizing errors resulting from the use of differing indexing procedures. Divide the accident data into intersection related and noninter- section related accidents. Divide the road network into logical segments and assign environ- mental factors, traffic volumes, and accident characteristics to each segment. Stratify the data with respect to the basic variables Of laneage, speed limit, and signalization. Determine a mean and variance for each dependent variable (accident type) for each stratum. Identify segments that are outliers. 10. Divide the total available data into two groups through a random selection process. The larger file is 2/3 of the total data and is used for generating the candidate models. The smaller file is 1/3 of the total data and is used for model testing and validation. 18 11. Create a subset Of data segments without outliers and a subset of only outlying data segments. 12. Analyze the segments with respect to frequency, density, and rate . 13. Separate the data segments into exclusive groups via a branching process, called Automatic Interaction Detection. At this stage several models shall have been generated for each dependent variable . 14. Six dependent variables out of the total of 18 are selected for further analyses. The variables are to be used as examples for testing the methodology. 15. All values of each independent variable contained in the A.I.D. terminal cells are analyzed and the mean, maximum, minimum, and standard deviation of the dependent variable calculated. Nominally scaled variables, such as county number and type-of—intersection code are sorted in ascending order of the mean of the dependent variable. The value of the independent variable is changed com- mensurate to its sorted rank. The rankings may not be consistent for all terminal cells. Thus the original values of the nominally scaled variables are not lost but altered for each terminal cell. A computer file is created for retaining conversion values. The resulting tables are used for a visual inspection for possible sensi- tivity of the dependent variable to the independent variable and for a linear or nonlinear relationship. 19 16. Using stepwise multiple regression, linear and nonlinear, the variance in the terminal cells created in Step 5 is reduced further. At this stage two additional models are generated for each depend- ent variable. 17. The predictive capabilities Of each model is tested against the 1/3 data file which was not used in building the model. The standard error of the estimate (SEE) is calculated for each model. Throughout the Collection process, the data was inspected for errors. In all of the file merges and subsequent analytic exercises, the software was programmed to check for logical errors. The data was manually inspected through random sampling. Software was also used for inspec- tion of allowable maximum and minimum values. The independent variables are not all inclusive, but represent the limits of available and relevant information. The data elements and the infor- mation gathering processes are described in the text. Redundant models are built for each independent variable (type of accident). The intent of the data processing and statistical analyses is to minimize the unexplained variance resulting from the difference between the predicted and the Observed number Of accidents. Since the sample size does not change, the function é/(x. -7); shall be used as a measure of variance, henceforth referred to as the total sum of squares (T88). 20 Data Elements The at-grade trunkline system for the state Of Michigan comprised the base system of the modelling. Freeways are not included because Of an inability to adequately locate accidents with respect to the geometric elements Of the interchanges. The distribution Of basic characteristics Of the at-grade system is defined in Table 2. The variables used in the model are from four general areas; geometric features, operational controls, environmental conditions, and vehicle crash characteristics. The geometric data elements are laneage (Table 2), delta-angle (Table 3), degree Of horizontal curvature (Table 4), type of intersection (Table 5), number of intersectional legs (Table 6), number Of right- and left-turn lanes, lane widths, shoulder widths, and truck climbing lanes (Table 7). The operational control variables are no-passing zones, signal control, left-turn phases, turn prohibitions, all-red intervals (Table 8), and posted speed limit (Table 9). Environmental conditions are county, district, annual daily traffic (ADT), and roadside develOpment. Roadside development is a subjec- tive measurement of the intensity Of the land use abutting the roadway. The three classifications are urban, strip-fringe, and rural. Urban is described as central business district, residential, industrial, and other intense land use. Strip-fringe is similarly described as fast-food res- taurants, service stations, and other moderately intense land use, 21 e g a r e v A t n e m g e S 2 e l b a T s e n a L f o r e b m u N f o n o i t u b i r t s i D s n o i t c e s r e t n I f o r e b m u N h t g n e L f o r e b m u N e v i t a l e R f o r e b m u N e l i M r e P s n o i t c e s r e t n I ) s e l i M ( s t n e m g e S y c n e u q e r F s e l i M e d o C e g a e n a L 0 0 . 2 8 6 0 3 1 9 2 . 0 2 8 8 2 2 4 . 1 8 5 9 . 6 3 5 6 1 y a w - 2 e n a I - 2 9 9 . 5 1 8 3 4 1 . 0 9 3 4 8 . 0 5 6 . 3 6 y a w - 2 e n a 1 - 3 5 3 . 7 4 8 1 3 9 1 . 0 3 4 2 2 4 . 5 3 2 . 3 3 4 y a w - 2 e n a l 4 5 9 . 6 9 5 2 1 5 2 . 0 1 2 7 3 . 2 4 0 . 1 8 1 y a w - 2 e n a l - 5 7 5 . 2 1 0 3 5 5 2 . 0 1 7 1 . 5 . 0 7 1 . 2 4 1 1 d e d i v i d e n a I - 6 1 1 . 5 1 9 9 7 6 3 . 0 6 4 1 7 . 0 8 8 . 2 5 2 1 d e d i v i d e n a l - 8 9 2 . 3 1 8 0 4 9 3 . 0 8 7 4 . 0 0 7 . 0 3 3 1 r e h t O 3 7 . 2 1 5 9 1 2 8 2 . 0 3 1 2 8 2 0 . 0 0 1 0 7 . 2 3 0 8 l a t o T 1 6 . 9 8 3 . 3 1 4 3 . 1 1 8 . 0 1 6 9 . 3 1 . 3 7 3 7 5 4 9 8 1 8 7 5 8 6 1 3 9 8 6 9 . 0 6 4 1 8 . 1 7 8 . 0 4 1 y a w - l e n a 1 - 2 8 1 . 0 2 9 2 7 . 0 8 4 . 3 5 y a w - l e n a l - 3 4 8 . 1 5 9 2 . 2 7 5 . 4 7 1 y a w - l e n a 1 - 4 1 3 . 0 9 0 9 5 . 3 6 1 . 5 8 2 0 1 d e d i v i d e n a I - 4 1 2 . 0 7 4 . 0 8 1 3 7 0 . 0 5 8 . 3 y a w - 2 e n a l - 6 4 . 0 5 1 . 4 3 y a w - 2 e n a 1 - 7 22 Table 3 Distribution of Delta Angle Delta Angle Cumulative Frequency Delta Cumulative Frequency Frequency (‘2) Angle Frequency (7.) 21-25 813 26-30 669 31-35 592 36-40 435 41-45 467 46-50 290 51-55 234 56-60 61-65 66-70 71-75 76-80 81-85 155 130 103 59 45 32 86-90 285 91-95 46 .> 95 87 9o 92 93 95 96 97 93 98 98 99 99 99 100 100 100 18891 418 347 298 319 280 296 275 195 256 246 222 209 216 239 195 201 179 198 I80 203 67 68 70 71 72 73 74 75 76 76 77 78 79 80 80 81 82 83 83 84 85 23 10 ll 12 13 14 15 16 17 18 19 20 Distribution of Degree-of-Curvature Table 4 Degree of Frequency Degree of Cumulative Cumulative Frequency Curvature Frequency (%) Curvature Frequency (%) 0 1 10 11 12 13 14 15 16 17 18 19 20 21 22 22373 1343 1501 736 435 523 179 271 47 65 133 78 54 36 50 27 20 12 24 30 33 14 12 79 84 89 92 94 95 96 97 97 97 98 98 98 98 99 99 99 99 99 99 99 99 99 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 45 19 6 12 16 16 99 99 99 99 99 99 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 >.45 100 100 24 Table 5 Types of Intersections Type of Relative Cumulative Frequency Frequency Intersection Code Frequency (%) (%) Unknown 4 0.0 0.0 Cross 6639 30.2 30.2 Tee 1150 52.4 82.7 Offset 703 3.2 85.9 Wye 1866 8.5 94.4 Other 632 2.9 Freeway Ramp 191 0.9 98.1 Directional Crossover 416 1.9 100.0 25 Table 6 Number of Intersectional Legs Number of Legs Relative Cumulative Frequency Frequency Frequency (%) (%) 3 4 5 6 13576 61.8 61.8 8108 36.9 98.7 69 0.4 99 1 37 0.2 99.3 Other 161 0.7 100.0 Total 21951 100.0 26 Table 7 Distribution of Laneage Width Frequency Frequency (Feet) (Miles) (%) Relative 10 11 12 1447 18.0 2599 32.4 3986 49.6 Curb 1154 0-4 4-8 272 2395 8-10 3952 10-12 260 14.4 3.4 29.8 49.2 3.2 Lane Widths Shoulder Widths Passing Zone 6138 , 76.4 No Passing Zone 1894 23.6 27 Table 8 Intersectional Controls Type of Control Signal Control Relative Frequency Frequency (%) No Signal 19820 Flasher Signal 435 1696 90.3 2.0 7.7 Turn Allowed 21696 98.8 All Turns Prohibitions No Turn On Red No 255 1.2 All Red Interval 21886 99.7 All Red Interval 65 0.3 Left Turn Controls No Control 21848 99.5 Left Turn Phase Left Turn Prohibited 47 56 0.2 0.3 28 Table 9 Distribution of Speed Limits Speed Limit Frequency Frequency Frequency (Miles) (%) (%) Relative Cumulative 25 30 35 40 45 50 55 49 181 0.6 0.6 2.2 2.8 384 4.8 7.6 221 2.8 10.4 464 5.8 16.2 232 2.9 19.1 6502 80.9 100.1 29 usually void Of sidewalks and/or pedestrians. Rural land use is com- prised Of other property not satisfying the above descriptions and usually lacking significant development. The distribution Of activity density is illustrated by Table 10. The dependent variables are accident frequencies, densities, and rates. The total sample size is 467,072 accidents for the years 1974 through 1978 (five years). The data elements for each accident include the year, month, day, and hour. Summary values for each roadway segment are provided for the number Of head-on, sideswipe/meeting, sideswipe/passing, right-angle, _left- turn, right-turn, rear-end, backing, parking, pedestrian, fixed-Object, bike, other, wet, icy, dark, fatal, injury, property damage only, and total accidents during the 5-year study period. The distributions Of accident data by type and severity are illustrated in Table 11. Data Sources The extent and precision Of the data is a function Of its source and the manpower required to automate the information. It is not assumed that the aforementioned variables are all inclusive. The variables represent basic elements. of the roadway attainable within the constraints Of time and manpower. 30 Table 10 Roadside Development Development Frequency Frequency Frequency Description (MileS) (7.) (2.) Relative Cumulative Rural 6195 77.1 77.1 Strip-Fringe 1417 17.6 94.7 Urban 421 5.3 100.0 Total 8033 100.0 31 Table 11 Distribution of Accident Types Accident Type Intersectional Iggersectional Frequency - Frequency Totals Total 294,410 172,662 467,072 Injury 86,936 50,789 137,725 Fatal 1,108 1,568 2,676 Property Damage 206,366 120,305 326,671 Head-0n 4,552 8,113 12,665 Sideswipe Meeting 9,309 5,453 14,762 Sideswipe Passing 1,134 1,556 2,690 Angle 68,836 5,846 74,682 Left Turn 37,671 4,971 42,642 Right Turn 8,339 1,143 9,482 Rear End 87,405 39,548 126,953 Backing Into 4,127 767 4,894 Parking 31,407 30,639 62,046 Other 14,153 44,804 58,957 Wet Icy Dark 73,186 35,855 109,041 39,592 30,012 69,504 85,063 71,031 156,094 Pedestrian 3,447 1,860 5,307 Fixed Object 21,184 26,866 48,050 Bicycle 2,846 1,096 3,942 32 There are 83 counties in Michigan. The Michigan Department Of Trans- portation has divided its statewide functions into nine districts. Figure 1 is a map Of Michigan illustrating the location Of each county and the nine departmental districts. The referencing procedure used for locating all features on the state trunklines is a network Of links bounded by county limits. Each link has a unique number and mileage point (distance in miles along the route from the point of origin Of the control section to the point in question). This indexing procedure is only applicable to the state trunkline and interstate freeways. Figure 2 is an example of a control section map. The first two digits Of the control section number identify the county. At the conception of the project, only accident and traffic volume data was available in an automated format. Information from the accident report has been maintained by the Michigan Department Of Transpor- tation for approximately 20 years. In 1969 action was taken to locate all accidents in the state (trunkline and local roads) with one uniform system. The process, called the Michigan Accident Location Index (MALI), was completed as of January 1979. The trunkline system was completed earlier in 1975. An intrinsic part of the project was the implementation Of a common accident report form. Figure 3 is an example of the form presently used by all state and local agencies in Michigan. 33 DISTRICT and COUNTY NUMBERS LAKE... .. E DISTRICT 3 63 : 2 2 o 3 1 3 5 ‘I 6 3 B 5 _7 10 28| nun-nu auvm' _ — A 51 83357 man Cl u nun-n- l 65 72 nun: tall 53 43 I 67 | cum maul new" 64 fi fi fi fi fi l i fi g fi $ $ $ 3 § 3 3 8 3 $ fi fi fi l fi l ! 3 # # 3 # # u 9 DISTRICT r v u r w v s p 9 3 3 9 9 3 8 3 § fl i fl fl fl fl f fl fl fl fl fl t fi fi . N I ~ . H . ¢ N . U H N N N H . N U “ . U d - O C C d U G I H . ' 0 ‘ d u . l ‘ U u d KALKAIKA.m N ............. KEWEENAW... . l 5 5 .. ETRO l u b ‘ l h h b l c b b O SCHOOLCRAFT. 2 SHIAWASEE.... S . 8T.CLAIR....METRO StmEPH-.." WASHTENAW. 7 6 7 I WAVNE........METRO WEXFORD...... 34 Figure 1 — N O I T C U R T S N O C R E D N U R 0 G N I T S I X E D N E G E L ® ® N O I T A C O L D E T C E J O R P R E F S N A R T D E S O P O R P N O I T A T S ' N G I E W A E R A T S E R '0 I) N A G I H C I M S Y A W H G I H E T A T S F O T N E M T R A P E D m n u m t m 0803MVH 3 Y T N U O C A K S A K L A K E E K U 35 Figure 2 EIGRTTVETT;TTTT 7 77’ “m“I.“ IQEITmJI N1 LEI}: Hyman-v CALVIN E...7«,,I.{..Ipi.,7 an Juntumme wmmm OFFICIAl TRAFFIC ACCIDENT REPORT I 0°“5I ”35 _ : chu «71 finierlfifi 7&7 flirtation- 07v?! Wu: 7 IARwIenKD'aIfMG D? v7 I75; c '3 3 1,1 7 717777 ,7,, 51*,"7'7‘75 7,1117 7 Home No Name r. I' 7 :M" ”i 71 Imvnum on M. N s E WI 7 7 “W” Y m- 1 1 1 TI'T RI. Ga m UN, LIGN‘I ROAD SURFACE I TOTAL I OHM I :5 WEATHER rum... - 3 .. LL Cleancloudv Em." I TI 0" Sum mes filmy III snowy,lcy I Limit-fl Ann: I LANES ‘ ' V‘ 1 ‘1 0mm. nor! 2."... ,1 I we“; ‘ I N I 3° .2: re. (1" Snow mDavaulb avn mm. .1110"... 7 I I I- II Iw-m-wm am I 7 7 “° '"I ma IHQU I “N . rm IN" VIN-II Random IC.|.non 0.sz 0mm. Llcnnu 2.1mm." ISIm Ioog — D . I L iLTT—a n-w' Nlmo F. . 1! I M I Chou Mmm 111711111 1 7,I LII! More“ CI!» Slut I AWI i ' ’Z‘ w— ‘ lam: I I ___. Dunn» ‘5 TIA-he No Type him 7 ’ r " ’ ’ ”WE... minim; ’ ” ' ” ’ T I Tmfisfisi, ’ .l '7 § L201?m. Cnunon I 'Ir 19770:.wau7:...I I la Verna-Dulce: In FUEI LII-.190 W" 5"“ " ‘ s. I 77777 77 77T7777IIY Niéaran .. ., i sac" lllon I . 'Y E t Vmon Obllvuu In H . Vomm Dnl‘bl. . « M Veerq FIu- I I I" ICMQ: KITTM‘HIHIQA "‘-" ""°' I I' “cur-hum ". 3 Dnmmum R.u.-m:uv NI"! I Fm Aw I 5.. I... IIIIvIIan‘ __ Adar! ,,,,7,7,77171,7,1, - - ----- 7777,11 IIT F 7,.II 77777777 7777777777777 7 77777777777 47I7 +Le—I I I ‘ II, 11 7“ —- Sun-non I I I I I on, an ,7177717 7777717171 .7 1 1 1,171,117.11, 11 I . I 111 I, IN I In I ,LN, I __7 ComCu. 7m occupants LoaI Use/Owner Phone lmuvann Ca Agency Adam“ Injured unwrv In by I I E. Rum“ INBDI HN I IN IHuInwvII Jam-cum“. Imam Cm...» “12va am I003 Stun I1 7417771111l111l111 111111 N11m91v1111 Fm M Lul m Cm 111I1I11l117I's I - I Ax; I Sum 2' -7 77 77777 77_77711 17 7 77777 77771 7I7471I; 2 You 5 v... In.“ No no. ITvmm Reg hams VIN Number 51mm“! mm I; I I ‘ I I I I ' icai 7 i 7 7 7 7 7 3 ’IO ‘1‘ Nu Culllmn "i N Duvet Ree-am I'll NI VlhIcle Dem Fuel L.sun.I ""“E'7 75""7'” I III“; C 'TMg II cum ”L E 0mm Cum-on IVI Til VIIIOO Obslmcl. IN! N. vmm Drnnhl- I Y N' v-mu F,. I I [ca-qr; UrILVIplIon 7 7 l ) I 7 I I J Rulvmnuby octupa s" m "'11qu ' ”’m‘ Ase Pm I 77777777777 1 1 1 1 1 1 , 1 1 , 7 , _ 7 :I 1 I I I lnIlfll 7 mm“ 1_,1 cum —_ Shanon 4 Tm-I «cullm‘l 7__7 7 7 7 117 1 1 1 7 7 7 1,1 _L 4% Com Cu Lo’uI Lia/0.57.;in," lvuuumcu CO I mm“ Adam. In.....d I. rn toby I (I? “MAI“. ACCIDENT UESCHIV“"“I :lDIaInI I 1 . . . J ,' ‘ ' . L. . ’ North 7 1 1 777777 1 11 1 1 1 1 1 7 1 ,7I g _ 0 177 7 7 7 17 1 1 , 1 1 1 1, 1 I 3 Truth: 7 7 D 5‘ 3 n Roam 7 7 7 7 7 7 7 7 7 7 7177' Ace—Yn- 777777777777777777—I77 . . - - 1 :1 m- E Q : ”on ' ' 7 77# 7 11777177177777 Tm 7 7 7 7 7 7 7 1 7 7 7 7 7 7 D“ . 7' . 711,1 ””””l”’fl 7 7 7 7 7 77 77 7 7 #7 ~—(7 7,1,, 77——4 . 7777 77777 777777 7777. V 7 7 1 77 1 1 7 7 1 7 1 1 1 Includn ,7 7 1 7 17 7 7 7 71 Dnurbr II‘ unuml (nMnmI'u m1 (Urum‘valuzfl aids. m I Damon Pvmwlly Own TM" whim 50"" ' av Cumin/ed Luv! 0! I970, u amended mm a 1mm Omnon 77 7 7 7 7 ,7 7 , 1 , 7,7 OWN" ,11 11, 7 Anmn- FI- I I . . ‘ \ ............................ 1 ~, I. mu n 7150 mm. mm. unmq, Mat-n ml: «uvum I uIIpuIIHurI Rum! A M Inna-won Ll OpenLlCIm-n 0mm“ Dmc" Dave unnerved All Tulh: Yum [0| by PM u. 7 7 ~ I 7 7 77 TI 1 7 ,7 5mm 25. 622 MALI Figure 3 36 MALI uses the street intersection as a base, and an automated alpha- betic street name searching technique for locating accidents on a state- wide network. The accident is located by knowing the name of the road and the distance to and name of the nearest intersecting street. Figure 4 is an example of a MALI intersection listing. The majority of the geometric data was derived from the department's photolog. The photolog is a sequential 35mm color photograph taken every one-hundredth of a mile (52.8 feet). Implementation of the photolog was initiated by the department in 1972. All of the state trunklines and interstate system, including interchange ramps and crossroads, rest areas, and scenic turnouts have been photographed in both directions of travel. The film is viewed from a Vanguard Model M-35CS 35mm motion analyzer projector and control box. Figure 5 illustrates one of a dozen viewers used for manual inspection and coding of geometric features. Figure 6 is a typical frame from a photolog film. A header on the film indicates the departmental district (1), the date the film was taken (July 2, 1978), the control section (01011), the direction of travel from the origin (positive) and the mileage from the origin (06.91). Figure 7 illustrates the use of an overlay grid which assists in the estimation of widths and lateral displacements. It is possible to regulate the speed of the projector and/or stop on specific frames as desired. 37 . 5 . 6 . R . P R P S A I L A P I T T P ! I T P I N T S I D R I O I W R P V H U O / T S T N I P V T S O P Z S L T C O C R E B M U N E M A N 1 9 7 4 7 6 2 I E T U O R ( “ D N E T C E S L T C 3 1 0 3 1 o ) 1 3 L 4 6 1 . 4 1 5 6 . 3 5 6 3 H N 3 0 2 5 8 1 1 T S T S A L C E H 3 L C E H 6 2 M E G R A S R A E K O 7 1 3 6 0 9 6 7 1 1 V H H 6 2 M 0 ‘ E G A P S U O I V E R P T N O C ' N 6 7 3 0 E G A P X E D N I N O I T A C O L T N E D I C C A N A G I H C I M T S I L N O I T C E S R E T N I 8 7 / 9 2 / 2 1 2 0 - 4 0 2 2 0 L T C T C E S T R A T S 9 9 9 S A I L A E N I L K C N U R T ' N O N 9 9 9 ) 1 3 ( V N 4 0 2 7 7 1 1 0 0 2 7 . 3 2 6 7 . 3 0 5 1 V N 0 1 3 5 8 1 1 2 0 0 0 0 3 0 2 2 V N 6 0 2 7 7 1 1 H N 7 0 2 7 7 1 1 0 5 2 V N 3 0 2 7 7 1 1 P I H S N W O T V R A T E M E C 0 5 7 V N 9 0 2 7 7 1 1 T S D N A L K C D R O I N 3 0 2 6 7 1 1 X X E V A T N I 1 5 1 O T . S I D T R A T S T C E S L T C E N I L K C N U R T ' N O N K C O C N A H N L O C N I L 3 K C O R 1 4 5 U P I H S N W O T R E D A E H 0 0 3 0 0 3 H N 7 0 1 7 7 1 1 H N 6 0 1 7 7 1 1 V N 9 0 1 7 7 1 1 0 1 3 H N 0 1 1 7 7 1 1 W N 1 0 2 7 7 1 1 0 0 3 H N 2 0 2 7 7 1 1 h h F k F p h L A Y O R E L S I S I O U Q O R I K C A R A M A T C I B A U E P A D I R O L F E G R A S R A E K E G A S R A E K v N n v m w h a m 0 — w w 9 9 9 9 9 9 1 1 3 ( T S 6 - 5 2 M D R I H T 1 3 1 0 3 7 7 1 1 V V H 6 2 M 4 4 . 1 0 3 E N E R E H O P E D 4 7 1 6 7 D N E T C E S L T C 7 2 4 . 4 1 3 0 2 5 8 1 1 E N I L K C N U R T - N O N S N I G E S B A I L A 7 NHVIDID v — w w w 1 3 1 o ) 1 3 ( 9 9 9 ) 1 3 ( ' " E G A P T X E N N O T N O C ' " 3 ‘ 0 9 9 9 0 2 1 2 2 2 38 Figure 4 1 \ ., » / / / K \ / A 4 \ / f ; r 2 m 3 “ 3 ‘ a n n ( A . . A g a \ 1 . . i A g 1 % Photolog Viewer 39 Figure 5 Photolog Picture Figure 6 40 —“‘fl e i [ 9 9 1 ‘ 9 1 1 M . : m n a e S s t o D ? " 8 Y \ ' ’ m m 1 . 3 ” N , - 1 A Photolog Overlay Figure 7 2.1 The photolog provides the backbone for referencing all other data used in the project. Although the photolog is an expeditious means of col— lecting data, there are limitations. The precision of indexing the data has a maximum error of i 52.8 feet. The film may be one to three years old. It is not feasible to measure vertical curves, grades, and horizontal curves. It is difficult to obtain information about cross- roads. No alternate means of overcoming the deficiencies were found with one exception. By using right-of-way maps, the degree of horizontal curvature and delta angle of deflection was obtained. Figure 8 is an example of a right-of-way map. The data from the right-of—way maps is indexed to survey stationing. The simultaneous use of the photolog and the right-of-way maps was necessary for establishing control section mileage points at the beginning and ending of each horizontal curve . The location and magnitude of posted speed limits were obtained from paper files of departmental traffic control orders (TCO). As with horizontal alignment, it was necessary to refer to the photolog in deter- mining a control section mileage point for the termini of each zone. Figure 9 is an example of a departmental traffic control order. Seg- ments of roadway not covered by a TCO were defaulted to a 55 mph speed limit. The location of traffic signals and the existence of special phasing and turn prohibition was obtained from paper files. Figure 10 is an example 42 i - p - r x g 4 g 7 x ‘ l " " L ’ " l 4 2 ¢ _ v S ! t I n y i fl ?“ L “ fi i 5 l 4 L n . , 2 - 4 4 4 a$ E . W S - E N 6 2 ‘ 3 f : — ‘ ; g r j i f E / P W T I S E N I E V N I I I I - N Y S T E S - E N 3 2 ‘ 3 / , 0 5 . 7 0 0 2 . I S I D . u n - s - n ' 0 5 ! | 4 - V ‘ n u z u u m - . - h Y . I - " k r i u q 0 l p \ \ \ u - u a s a n a - n r u r H l s u n u v m ‘ / n - y u g n u s 3 « . t fi “ n - t u n r - u m ” e z a r g ‘ v - r a e r " r a M “ 2 k w : n “ a ; a / / ' 3 - E I D 4 2 : I S — . 3 , 1 1 3 & 3 m m , - H Q V } K ‘ L r / u ; n ? 5 < ; a 0 . ” $ 3 1 7 \ - ’ " " : ' . " I " 1 ‘ \ ' / l l l ~ l ) a fl _ 4 f » 1 1 : 0 ) M / . - . \ \ Right-of—Way Map Figure 8 43 DISTIIIBL'TION’ White -.\lDSl'IT Pink - County Clerk copies for MDSP, MDSHT, Sheriff Local Officials School STATE OF MICHIGAN I512 19/741 File No. 33043 C10 33043 TRAFFIC CONTROL ORDER ORDER NO. SP 33-17—78 FFFF( T“ F II \'I E _...._._.__._.—__- _-_._and liken official traffic control signs conforming to the mandate of this order shall have been erected. In accordance with Act 300, P111949, as amended, we lime jointl) caused a traffic engineering investigation to be made of traffic conditions on State Trunk Linc Highway floaty 1'69 in the __git1 of East Lansng and Meridian Township .____nflnmiii in County and as a result of said insestigation do hereb) direct that: The maximum speed on state trunkline highway Temporary 1-69 shall be as follows: 35 mph from west city limit of East Lansing (Coolidge Street) to Harrison Road; 40 mph from Harrison Road to Kendale Street; 65 mph from Kendale Street to Haslett Road; 50 mph from Haslett Road to Marsh Road. The following Traffic Control Orderisl is are hereby rescinded SP 33—24-74 'Iliis Traffic Control Order shall be filed in the office of the Ingham Count) ClerL \llCIllCAN DEPARTMENT OF STATE lllCllllA IS AM) I'll \\SI’OIITI\TIO.\‘ MICHIGAN DILI’AII'I‘IIIIX l‘ OI" STATE POLICE N/A _i__ -“l- scum;iilsmlcl . far C ‘ “40477 ‘1 M/i 75?, —~- — utc ....é:%3: 7% pI’HI‘ - .—_—-- —. .- ._....--- MI]? W nh'nu]:1! “(III Traffic Control Order Figure 9 44 of a traffic signal timing permit and Figure 11 is an example of a signal layout. The widths of shoulders fluctuate such that it was infeasible to deter- mine precise widths. Therefore prevailing widths within the ranges of 0-4, 4-8, 8-10, and 10-12 feet were established. There were a few locations where lane widths varied and/or were non- standard, such as 912 feet. Lane widths were coded as 10 feet or less, 11 feet and 12 feet, whichever was more appropriate. The mileage values used by MALI are derived from maps and other horizontal measurements. Data derived from the photolog is based upon driven distances. Thus, a small error is introduced and the error accumulates as the distance from the origin increases. In resolving this discrepancy, the English name of each intersection was coded from the photolog and subsequently matched with the corresponding name from MALI. A simple linear transformation was used to provide each accident with a photolog-based mileage point. The input and output data files are described and documented in Appendix A. Data Segments Roadway segments are the units of the analyses. Initially roadway segments were a uniform 2/ 10 of a mile each. Although uniform lengths 45 STATE OF MICHIGAN DEPARTMENT OF STATE HIGHWAYS TRAFFIC SIGNAL TIMING PERMIT Tum CYCLE LENGTH DIAL 1 HOURS OF OPERATION DIAL KEY NUMBER/KEY SETTING 1N PERCENT 10 Fomisu (a... 7/70) 6:00am — 9:00am 2:00pm — 6:15pm Mon. - Sat. C1RCUIT$ Grandville NB “MR“ P04. Cm“ SI. Ped- Indlcuolm- Cross 51. Cole" 41081—01—004 M-IIS (Fulton) at Market: I. Grandvillc FLASHER SCKEDULE Grand Rapids “E” . N . ° 7'" CITY OF DAILY 1:] NONE [35] COUNTY AUTN. BY “DP LOCATION VILLAGE AM. mu . m~ 46 Figure 10 S Y A H H G I H E T A T S F O T N E M T R A P E D M I S I V I D Y T E F A S D I A C I F F A R T ! » 6 1 1 0 1 1 1 F ( E T A T S . . N O I T A L L A T S N I L A N G I S C I F F A R T . E V A E L L I W 0 ) . T S N O T L L F ( 5 4 ' 1 1 E L ' l P l E T S T I I ' I I I . X E T I G I L T I M S . E D I T . X E N I I T A T S S A G 0 5 0 5 F O F O . E V A T N A R G Y T I C 8 0 9 1 F O Y T I C X X 1 Z P O C 0 C T N E K F I Y T I C D E R F T E K T ‘ A I I T I S D I ° A R E T A T S ] N A R G Y T N U O C S D I P A R s T T A N R E T T O P P I H S N W O T C I L C Y C “ 2 5 : 8 5 R E E N T O N E S D I P A R U N A R G F O N O I T A L L A T S N I N O I T A P I C I T R A P N O I T P M U S N O C .01 .8 .UT 1 4.. H 1 N O T L U F ( T T G I L T E E R T S M P l f E T S . C D C . X E 5 4 ‘ I S ' 0 I S ' 0 _ _ _ f , a . X E Ill JI .Ofr.u Z l 4>7 T S E V I , T S A E , H T U O S C I T O R E T P T E — E R P N O C T T P O : E T O N 15 .SI 23 L B 2;;:; Affi. \‘k ———~—————+ 41 —————-—:R "TRIO—ONTO ”‘7 '2 :32 .\‘ d> ____;;:__ S:¥\ ‘Tlo 3ND E l f P T I G . ] E T S . X E L A T S I T E P l l ( I O C T T P I . X E I H M R T N I C N E T “ . X E T I O I T C E S R E T N I S I H T ( l ? i T m P N O I m T I R T H E L I T T T T I I O M L . X E M P m a " ' 5 . X E N I I T A T S S A G Figure 11 C D E T E L P M O 5 7 1 S T T A H Y D A E T S S T H G I L . T S F O . O N D E T C E P S N I E R U T A N G I S 4 0 0 - 1 0 - 1 8 0 1 4 0 6 = ' l ‘ A 7 7 - 4 1 - 2 1 . H T U D I P N A L E L A C S D E T A fl W A R D N A I C I N H C E T R O R E E I I C N E m m m simplified early statistical analyses, preliminary results were unsatis- factory. The principle difficulty was the length of horizontal curves. Too many of the curves lost their identity when split between two segments with the length of the tangents dominating the classification of both segments . Thus roadway segments were reestablished with variable lengths. A segment is created whenever there is a change in an independent variable. Table 12 shows the distribution of segment lengths. The mean segment length is 0.285 mile; the mode, 0.030 mile. Fifty percent of the segments are less than 0.14 mile. Intersections are treated as dimensionless points and do not affect the definition of a segment or its length. Intersections have the same geometric attributes as the encompassing segments with additional inter- sectional related attributes being added. A roadway segment may encompass from none to several intersections. Accidents coded as "intersectional related" are assigned to the nearest intersection. All other accidents are assigned to the appropriate road- way segments . Segment Outliers Of primal importance is the segregation of the data into families or cells containing homogeneous segments. The composition of each cell is a function of the selection process and the variables being discriminated. 48 Table 12 Distribution of Segment Lengths Length Frequency Length Frequency (Miles) Frequency (%) (Miles) Frequency (%) Accumlative Accumlative 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 1205 1311 1314 1256 1213 1277 1131 1063 984 973 917 828 834 748 648 609 548 511 446 466 365 375 355 340 314 4.3 8.9 13.6 18.0 22.3 26.9 30.9 34.6 38.1 41.6 44.8 47.8 50.7 53.4 55.7 57.8 59.7 61.5 63.1 64.8 66.1 67.4 68.7 69.9 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.20 1.40 1.60 1.80 2.00 2.25 2.50 2.75 3.00 1542 1269 905 655 509 403 341 255 226 209 171 130 130 121 117 260 182 142 109 83 85 69 46 42 76.4 80.9 84.1 86.5 88.3 89.7 90.9 91.8 92.6 93.4 94.0 94.4 94.9 95.3 95.7 96.7 97.3 97.8 98.2 98.5 98.8 99.0 99.2 99.3 71.0 > 3.00 186 100.0 49 Early in the project, cells were rigidly structured by discriminating on all of the discrete variables. The dependent variables were the number of injury accidents (five years) per segment for each type of accident. The resultant was a distribution of accident frequencies with the inde- pendent variables being held constant. Recognizable patterns (usually a Poisson distribution) were evident. Figure 12 is an accident histo- gram of such a cell. This cell described 2/10-mile segments of 2-lane two-way, 40 mph horizontal curves, no-passing zones, 12-foot lanes, curb and gutter, fringe strip roadside development with the dependent variable being rear-end accidents. Figure 13 is of the same peer group with the dependent variable being wet-surface accidents. Figures 14 and 15 are histograms of rear-end accidents and right-angle accidents respectively. However the peer groups are described as intersections, 2-lane two-way, tangents, passing zones, rural nonsignal- ized, no auxiliary turn lanes, 12-foot lanes with 8- to 10-foot shoulders . By analyzing each cell for the variance in the number of accidents per segment, outliers can be identified. An outlier is any segment whose dependent variable is of sufficient magnitude, when compared to its peers, that the probability of the event occurring by chance is remote. In the histograms illustrated by Figures 12-15, the outliers are desig- nated by an "O" as opposed to an "X" for the inliers. These outliers are five standard deviations or more from their cell means. In essence, it is unlikely that the outliers are a part of their 50 i fi fl fi fl t fi i i i t fi fi i t * fi fl fl t i l fi fi fi fi i fl i fl i t t t i t fi i i i * * . i i * i i i t i fi i fi fl fl i d t i fi i i t I t t t i t t fi 3 M A R G 0 T 8 1 H T N E D I C C A i fi i t i i t t fi i i i fl t fl fl t t i l fi t i t i i i i fl i I fi ‘ " t i . . . i . i i t fl l t t i i t fl t fl i t i i fl i t i ! i i i fl . t I * * a . G N I S B A p o N H T I H E V R U C H P M O « Y A H B / E N A L Z 9 I X K C O L B D I M T P I R T S - E G N I R F 3 3 I V B R U C H T I N S E N A L t f i l S T N E D I C C A D N E R A E R 3 1 : : z . N t t t i i t i i i i i i t ! . . . 0 i i t t t i i i t t i t i i t t i t i t t i t i t I . i t t t fl t t t 1 6 . 2 . e v A 0 7 . 0 1 I L C U 0 9 I N 6 5 a 3 2 l 3 2 1 0 9 8 7 6 5 4 3 3 1 0 9 8 7 6 5 4 3 2 1 0 9 8 1 6 5 9 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 1 6 5 0 3 2 1 * C C A S N O I T A C O L F O R E B M U N x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x a o 51 x x x x x x x x x x a w x x x x x x x x x x a z x x x x x x x x a s X X X X X X I S x x x x a b x x x x a a x x x x a R a w x a B x x a o T o l i l o o w a I o t b l * 5 1 * 2 1 a 3 1 Figure 12 a ¢ * a * t * * * t * u * a t t t a t t t t t g t t * . * t * t a a a t t a t g c t * t t t * * * * * a * * * * * a * * * * * * * * * * * * * * s M A R G o T a I H T N E o I c c A t t l a i fi t i t t t t t fl fi t t t t t t t i fl i fl i i i i i t a t i C t t t t t t i t t i i t t i i t fi fl t t t t i t i u fl i t t t t a t t * u . i G N I S S A P o N H T I N E V R U C A R A N « Y A H 2 / E N A L 2 9 I X K c o L B o t " P I R T S - E G N I R F 3 3 : v S T N E D I C C A E C A F R U S T E N 7 1 - z B R U C H T I N S E N A L t f e l 1 1 . N t t i t t t i t t fi g i t t u t t t i t t t t t i t i i t t i i t a t t t i g t fl t t u t t t i t ! n i 3 4 0 2 ' 5 V ‘ 2 2 . 0 1 . L C U 6 9 I N 6 5 a 3 2 1 3 2 1 0 9 8 7 6 5 4 3 2 1 6 9 8 7 6 5 0 3 2 1 0 9 8 7 6 5 4 3 3 1 0 9 8 7 6 5 4 3 2 1 0 9 6 7 6 5 4 3 2 1 0 9 § 7 6 5 4 3 Z I ‘ C C A S N O I T A C O L ? 0 R E B M U N x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x * 0 X X X X X X X X X X X X X X X X X X X X X * 1 52 x x x x x x x * 3 x x x x x * « x x x x u a X X X X X X X X * 5 x x x x * 7 X X * 6 x x x a a x * 9 x x * 0 1 * 1 1 * 2 1 * 3 1 0 * 4 1 0 * 6 1 * 5 1 Figure 13 i t i t t t t i t t i t fi t t t t i t t t i t t g t t t fi i t t t t i t i t t O i i i . t i t t t t t t i t t t t t t t t t t t t i t t fi t u O S H A P G 0 T 5 I H T N E 0 I C C A t * t * l t t t i t t t t t i t t A t t t i t a t t t t i t t f t i t i t t * t i i i t i i t i r t t A t t t i t t i i i i t * * * * * * * * a . i . E n a G N I S S A P “ T I W T N F G N A T Y A A P I E N A L Z 2 I X S R E D L U O H S T n a - a H T I W s E N A L T F B I 0 1 ! N N R U T 0 N / L A N G I S 0 N L A R U R 8 1 : v S T N E D I C C A D N F P A E R 3 n Z . . g g . . g * ¢ g ¢ . g t . g * * ¢ * t t t t i fi t t t t t i t t t t t fi * t * i i t i t i t fl i t t t 9 1 . 6 0 0 . 5 8 5 2 1 : G V A : L C U ! N 7 0 T I x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x . 0 8 0 { X X X X X X X X X X X X X X X X X X Y X X X X X X X X X X X X X X X I x x r x x x x x x x x x x x x X x x x x x x x x x x x x . ‘ b S a 3 a 1 3 2 1 0 9 5 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 1 6 9 0 3 2 1 0 9 8 7 6 5 4 3 2 1 n 9 8 7 6 5 4 3 2 1 a c c A S N O I T A C O L F O R E B M U N X X X X X X X X X X X X X X X X X X X X X X X X * 2 X X X X X X X X * 4 x x x x x x q 3 0 0 * 6 0 * 5 0 * 1 t a * 9 0 . 0 1 53 Figure 14 * i t t t i fi t t t t i t t i t c o g fi t t . . . A t w i a t t t a t t t t i fl t t t t t t i t t t A t t t t i t A i t u a i t t t t i t t * t i t * E n a G N I S S A P H T I W T N E G N A T v 1 w 2 / E N A L 2 2 I X S R E D L U O H S T F O I - a H T I W S E N A L T F 2 1 a N a N N R U T 0 N / L A N G I S 0 N L A R U R 8 1 I V S T N E D I C C A E L G N A T H G I R 2 ! Z t t t t t g t i t i t fl fl fi t t i t i t i t i t i t t t t t t i t t t t t i t t i i t t i t t t t t t i t 5 2 0 0 0 0 . 5 8 5 2 1 - G V A I L C U ! N b . 5 4 3 2 1 S N O I T A C O L F O R E B M U N 3 7 0 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x * 0 8 2 1 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x . I 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 5 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 ' C C A x x x x x x x x x x x x x x x x x x x x x x x x x x x x . 2 x x x x x x x x x x x x x x x x x . 3 54 x x X * 4 . 0 0 * 5 : 5 0 0 * 7 . 5 0 0 * 9 0 * 0 1 * 1 1 * 2 1 * 3 1 0 . 4 1 * 5 1 * 6 1 * 1 1 * 8 1 * 9 1 0 * 0 2 Figure 15 respective peer groups (less than a 1 percent chance of a random occurrence), but are likely a consequence of an unidentified variable. Unfortunately, with this procedure, too many of the cells had insuf— ' ficient sample sizes (often zero) for adequately defining cell distri- butions and cell outliers. An automated procedure for developing cells with adequate sample sizes was desired. The independent variables were ranked in descending order of importance. The creation of cells with sufficient sample size was attempted by not discriminating with respect to the minor variables. Many inconsistencies developed. The software requirements became difficult and an alternate procedure was developed. The ranking of the independent variables was altered slightly and new cells generated. Several iterations were made with subsequent visual inspections for sample size uniformity. The cell splits for intersections and roadway segments are provided in Appendix B. The independent variables and their rank order for roadway segments are laneage, posted speed limit, lane width, and shoulder width. The independent variables and their rank order for intersections are laneage, signalization, posted speed limit, and number of auxiliary left-turn lanes. Each cell was analyzed statistically and its mean, variance, and stan- dard deviation of the sample determined. Cell outliers were determined by establishing a threshold value for each accident type. For inter- sections the threshold is the mean number of accidents plus five stan- dard deviations. A default value of three accidents was also used to 55 resolve the problem of having a mean and/or standard deviation at or near zero. The same procedure was used for roadway segments with one addition, since the lengths are not uniform, an additional operation of factoring the accident frequency by the ratio of the (segment length)/ (average segment lengths) was conducted. If either of the inspections noted an accident value in excess of the threshold, the segment was identified as being an outlier. Of the total sample of 50164 segments, 2036 segments or 4.1 percent were classified as outliers. Automatic Interaction Detection The initial analysis of the data was by Automated Interaction Detection (AID). AID is a multivariate procedure for determining the value of the dependent variable as a combination of independent variables. The program makes dichotomous splits in the independent variables on the basis of least squares, emphasizing the reduction in variance. The objective is to classify observations in mutually exclusive groups such that the observations in a group are similar to one another, yet different from the observations in the other groups. No assumptions are made about linearity and the independent variables may exhibit interaction and/or be nominally scaled. The procedure starts with the total data group and calculates the total sum of the squares (TSS). The T88 is determined by the following 56 h. _ 2 operation Z(y‘- - y). Assuming that the data is split into two t=l parts between two values of a dependent variable, (i.e. , speed limit =35 and speed limit >40) the between sum of squares (B88) is calculated. The BSS is determined by calculating the sum of squares for prospec- tive subgroups J and K with sample sizes In and (n-m) respectively. ass: Z (Yi'Y) {5023-21) +51 (m-yxlj .. 2 - Z - 4" J3] Ks] The operation is repeated for every possible split between all values for each independent variable. If the prospective split exceeds threshold limits, the split giving the largest BSS/TSS is selected and two smaller subgroups are created from the parent group. The process continues until a significant reduction in the variance is no longer feasible. A cell cannot be split if its sample is less than 25 and/or its Sum of Squares is less than 1/10000 of the original data set. The BSS/TSS must also be greater than the reducibility coefficient (default value is 0.01 of the T88) before the group is split. Data groups not split are referred to as "terminal cells." The variance explained is the summation of the Sum of Squares (SS) of each terminal cell divided by the Total Sum of Squares (TSS). In 5:. 33; 2 R Z 6=I # T83 57 The total data set of 50164 segments was divided into two files by using a random generator and a threshold value of 0.667. The 2/3-file con- tains 33148 segments and the 1/3-file contains 17016 segments. The 2/3-file was recreated with an integer format (AID cannot process continuous functions). Two data subsets from each set were created by splitting outliers from the other segments. The three files are refer- enced as ALL-SEGMENTS, WITHOUT-OUTLIERS, and OUTLIERS-ONLY. AID runs were made for 18 accident types with respect to the fre- quency and rate of intersection accidents and to the frequency, den- sity, and rate of nonintersection accidents. With three data files being tested, 270 total runs were made. Summary values for the variance explained are provided in Tables 13, 14, and 15. The ability of AID to reduce the variance diminishes when the dependent variables are accident rates. For example, the percent- age of explained variance for total accidents is decreased from 42.8 to 28.5 when rates are used. Exposure Factors The accident data can be analyzed several ways by including exposure factors. Exposure factors are time, distance, and traffic flow. Thus intersection accidents are analyzed with respect to frequency (number per five years) and rate (number per million vehicles per year). Nonintersection accidents are analyzed with respect to frequency, 58 Table 13 All-Segments Percent Variance Explained with AID Accident Type Intersection Non-Intersection Freq. Rate Freq. Density Total 42.8 28.5 15.9 21.3 Injury 44.9 22.1 20.5 19.7 Fatal 4.0 0.0 1.2 0.0 Wet Icy 39.7 24.2 20.5 18.7 34.0 7.5 10.9 8.1 Dark 42.0 17.3 15.7 21.3 Right-Angle 38.4 25.3 24.9 30.0 Rear-End 42.2 28.2 25.2 22.5 Right-Turn 22.1 12.7 18.6 12.4 Left-Turn 32.5 14.5 25.4 14.5 Head-0n 7.8 5.5 4.4 2.1 Fixed-Object 12.9 6.5 8.2 6.1 Sideswipe/Meeting 29.1 21.3 18.2 18.2 Sideswipe/Passing 3.5 0.0 1.8 1.0 Backing 16.0 2.7 13.5 8.9 Parking 22.1 22.1 17.1 16.8 Pedestrian 18.5 6.6 16.9 12.3 Other 18.1 3.8 16.2 4.3 59 Table 14 Without-Outliers Percent Variances Explained with AID Accident Type Intersection Non-Intersection Freq. Rate Freq. Density Rate Total 50.5 35.7 22. 9 29 .0 7.5 Injury 50.7 25.4 23. 2 21 .8 Fatal 4.5 0.0 0. 0. Wet Icy Dark 47.2 27.0 25. 22. 40.5 12.7 14. 9. 49.5 20.9 16. 22. Right-Angle 43.9 27.2 20. 25. Rear-End 51.1 34.8 20. 28. Right-Turn 24.3 9.3 22. 14. Left-Turn 41.9 16.0 20. 15. Head-0n 10.7 3.5 4. Fixed-Object 16.9 5.8 12. Sideswipe/Meeting 33.8 21.5 20. Sideswipe/Passing 4.1 0.0 13. Backing 18.8 4.2 16. Parking 26.0 22.5 30. Pedestrian 19.0 6.7 19. Other 21.1 4.6 23. 60 Table 15 Outliers-Only Percent Variance Explained with AID Accident Type Intersection Non-Intersection Freq. Rate Freq. Density Rate Total 50.2 28.5 49 .9 40. O 26.0 Injury 46.3 25.4 42. 5 33. 3 30.8 Fatal 27.0 28.2 20. 17. 19.0 Wet Icy Dark 46.1 30.1 45. 49. 17.2 52.6 31.8 38. 44. 50.4 46.4 35.0 45. 41. 54.8 Right-Angle 41.2 31.2 38. 50. 40.5 Rear-End 57.6 42.5 59. 39. 28.6 Right-Turn 40.1 59.3 25. 33. 33.2 Left-Turn 41.0 34.7 41. 26. 25.8 Head-0n 24.9 37.0 36. 23. 13.9 Fixed-Object 38.6 28.9 33. 48. 29.8 Sideswipe/Meeting 53.9 48.9 57. 42. 23.0 Sideswipe/Passing 25.3 17.4 26. 18.8 Backing 65.4 29.2 29. 21 .3 32.9 Parking 59.7 57.5 51. 49.2 38.1 Pedestrian 60.7 44.7 25. 36.3 25.0 Other 38.0 38.7 46. 12.8 26.5 61 density (number per mile per five years), and rate (number per mile per vehicle per year). Before continuing in the model building, it was desirable to determine if exposure factors were reducing the initial variance. Tables 16 through 18 are unitless measures of the initial variances. These values were determined by the following calculation: V T55... Y It is apparent that rate did not reduce the total initial variances. The use of densities had mixed success. Thus, intersection frequencies shall be used in further analyses and because of the large variability in segment lengths, nonintersection densities shall be used. Only six accident types shall be completely analyzed as part of this dissertation. The remaining portion of the analyses shall be completed as a Michigan Department of Transportation project. The six accident types are injury, right-angle, rear-end, fixed-object, parking, and pedestrian. AID trees for the six accident types are provided in Appendix C . Sensitivity of AID The sensitivity of the AID runs with respect to the reducibility coef- fient was tested by varying the reducibility coefficient from the default value of 0.01 to a value of 0.10. Tables 19 through 24 summarize the results. The value of 0.05 was used for subsequent analysis. Al- though the variance explained decreased as the reducibility coefficient 62 Table 16 All-Segments Initial Variance Accident Type Intersection Non-Intersection Freq. Rate Freq. Density Rate Total 321 360 504 800 536 Injury 280 239 408 408 492 Fatal 607 1109 680 1115 1775 Wet Icy Dark 292 264 495 452 461 244 305 413 377 524 289 238 338 341 1017 Right-Angle 307 345 1673 1792 1458 Rear-End 344 281 563 568 446 Right-Turn 360 401 2437 2184 1748 Left-Turn 403 346 1243 1546 1717 Head-0n 351 472 474 558 728 Fixed-Object 232 352 377 346 557 Sideswipe/Meeting 362 456 1063 766 910 Sideswipe/Passing 599 1115 699 1075 1750 Backing 419 696 1494 1770 3274 Parking 281 335 640 499 488 Pedestrian 489 550 1706 1206 1529 Other 250 375 705 284 411 63 Table 17 Without-Outliers Initial Variance Accident Type Intersection Non-Intersection Freq. Rate Freq. Density Rate Total Injury Fatal Wet Icy Dark 328 372 955 683 513 276 235 625 327 505 612 1142 686 1184 1109 288 269 667 415 443 239 259 375 340 543 282 233 472 271 1020 Right-Angle 306 338 2384 1392 1453 Rear-End 334 291 954 513 457 Right-Turn 349 399 2140 1741 1809 Left-Turn 395 353 1514 978 1832 Head-On 339 472 393 558 762 Fixed-Object 212 297 305 306 549 Sideswipe/Meeting 354 471 1022 769 954 Sideswipe/Passing 614 1046 689 1097 1809 Backing 394 565 1554 1576 3497 Parking 271 330 669 440 490 Pedestrian 444 552 1433 1179 1554 Other 248 378 680 268 402 64 Table 18 Outliers-Only Initial Variance Accident Type Total Injury Intersection Non-Intersection Freq. Rate Freq. Density Rate 27.8 28.5 56. 5 82. 2 50. 27.9 26.9 39 .6 61 .5 55. Fatal 63.3 94.2 68. 102. 136. Wet Icy Dark 29.1 23.4 46. 54. 65. 22.8 51.8 42. 49. 54. 30.1 28.3 34. 54. 135. Right-Angle 29.4 40.5 146. 188. 153. Rear-End 37.9 22.6 50. 72. 48. Right-Turn 39.9 45.1 251. 243. 189. Left-Turn 45.6 34.0 110. 212. 142. Head-0n 34.0 48.6 51. 62. 71. Fixed-Object 29.7 60.8 46. 49. 81. Sidedwipe/Meeting 41.4 39.6 103. 86. 93. Sideswipe/Passing 51.2 130.9 69. 127. 120. Backing 49.5 105.3 139. 206. 172. Parking 32.2 39.7 59. 61. 57. Pedestrian 52.7 58.4 194. 152. 191. Other 25.8 44.2 70. 43. 74. 65 Effect of Reducibility Coefficient Table 19 on AID Cell Splitting Injury Accidents Intersection Reducibility Coefficient 0.01 0.03 0.05 0.07 Number of Terminal Cells 7 4 4 3 Variance Explained Number of Cells with 10‘< n SEZO Number of Cells with O <:n.§§10 46.3 41.9 41.9 35.7 3 0 l 0 1 0 1 0 Non-Intersection Reducibility Coefficient 0.01 0.03 0.05 0.07 0.10 Number of Terminal Cells 6 4 3 3 Variance Explained Number of Cells with 10‘<:n.§;20 Number of Cells with 04C n 4§10 35.5 33.3 31.2 31.2 22.8 0 l 0 1 0 2 0 l 66 Effect of Reducibility Coefficient Table 20 on AID Cell Splitting Right-Angle Accidents Intersection Reducibility Coefficient 0.01 0.03 0.05 0.07 0.10 Number of Terminal Cells 9 4 3 2 2 Variance Explained 41.2 29.0 25.3 19.2 19.2 Number of Cells with 10 I I In xi or In (xi+1) o < ! l l 1n (yi+1) The linear regression runs were repeated with the transformed variables. The first iteration used the first and second order of the 78 selected independent variables. The second iteration used the natural log transformation of the independent variable in conjunction with the second order transformation of the first iteration. The last iteration used a natural log transformation of the dependent variables in con- junction with the second order transformations of the independent variable of the first iteration. The iteration with the best fit was used for generating the nonlinear models. Models In all, 96 models have been developed. The nomenclature for identi- fying each model is: a. By the six accident types b. I: Intersection Frequency 11: Intersection Rate 111: Nonintersection Density IV: Nonintersection Rate c. A: Outliers are included B: Outliers are modelled separately d. 1: AID terminal cells 2: Linear regression of AID terminal cells 3: Nonlinear regression of AID terminal cells 79 The independent variables are identified as follows: X1 District X2 County X3 Laneage X4 Lane Width X5 Shoulder Width X6 Delta Angle X7 Degree of Curvature X8 Land Use X9 No Passing Zone X10 Truck Climbing Lane X11 Speed Limit X12 Signal Code X13 Type of Intersection X14 Number of Intersection Legs X15 Number of Right-Turn Lanes X16 Number of Left-Turn Lanes X17 Left-Turn Control X18 All Red Interval X23 Average Daily Traffic X30 Outlier Code The resulting models for the six accident types are provided in Appendix E. 80 Validation The last operation of this research is the evaluation of the predictive equations. The correlation of determination (R2) is the ratio of the explained variation to the total variation. The objective of the model building process is to reduce the unexplained variance as much as possible; thus driving R2 as close to 1.00 as possible. The correlation of determination is a measure of how well the accident predictive equa- tion "fits" the data. Although a large amount of the total variance may be explained by the various models, the remaining unexplained variance determines the size of the error function. The standard error of estimate (SEE) is a widely used procedure for assessing the absolute unexplained variance. The unbiased estimate of SEE is computed by using the following equation: " 2 SEE = /°=Ez (Y5 ‘ 9") ”-2 The SEE may be interpreted as an average error in predicting yi from the regression equation. All of the candidate models were tested against the observations in the 1/3 file (which were not used in gener- ating the models). Summary values of the correlation of determinations and the standard error of the estimates for each model (by accident type) are found in Tables 25 through 30. 81 Table 25 Summary of Validations Injury Accidents Sample Mean Standard Error R2 4.2071 7.535 0.444 4.1832 7.347 0.558 4.1866 8.794 0.630 4.2071 7.232 0.519 4.1918 7.185 0.648 4.1882 6.810 0.679 Model I-A-l I-A-2 I-A-3 I-B-l I-B-2 I-B-3 II-A-l 4.2071 8.562 0.221 II-B-l 4.2071 8.300 0.278 III-A-l 7.5584 17.927 0.211 III-A-Z 7.5584 17.171 0.321 III-A-3 7.5584 19.222 0.409 III-B-l 7.5584 17.156 0.259 III-B-2 7.5329 34.722 0.541 III-B-3 7.5329 38.703 0.577 IV-A-l 7.5584 17.804 0.000 IV-B-l 7.5584 18.774 0.026 82 Table 26 Summary of Validations Right-Angle Accidents Sample Mean Standard Error 2 R 3.3261 6.868 0.382 3.3104 6.563 0.477 3.3104 6.777 0.520 3.3261 6.562 0.438 3.2744 6.450 0.539 3.2973 6.495 0.586 Model I-A-l I-A-2 I-A-3 I-B-l I-B-2 I-B-3 II-A-l 3.3261 11.507 0.253 II-B-l 3.3261 8.856 0.280 III-A-l 0.7493 6.997 0.300 III-A-2 , 0.7495 6.801 0.332 III-A-3 0.7495 6.764 0.363 III-B-l 0.7493 7.097 0.449 III-B-2 0.7422 7.145 0.498 III-B-3 0.7422 153.816 0.563 IV-A-l 0.7493 7.132 0.086 IV-B-l 0.7493 7.260 0.126 83 Table 27 Summary of Validations Rear-End Accidents Sample Mean Standard Error 2 R 4.3008 16.903 0.481 4.2629 8.722 0.543 4.2696 9.074 0.609 4.3008 9.157 0.505 4.2798 8.971 0.640 4.2798 9.040 0.690 Model I-A-l I-A-2 I-A-3 I-B-l I-B-2 I-B-3 II-A-l 4.3008 9.928 0.282 II-B-l 4.3011 9.423 0.370 III-A-l 5.7801 20.710 0.225 III-A-Z 5.7801 19.517 0.298 III-A-3 5.7801 20.644 0.342 III-B-l 5.7801 19.975 0.336 III-B-2 5.7623 18.806 0.437 III-B-3 5.7623 134.312 0.521 IV-A-l 5.7801 20.112 0.039 IV-B-l 5.7801 20.349 0.085 84 Table 28 Summary of Validations Fixed-Object Accidents Sample Mean Standard Error R2 1.0184 2.084 0.128 1.0162 2.012 0.218 0.9325 1.934 0.239 1.0180 2.000 0.238 Model I-A-l I-A-2 I-A-3 I-B-l I-B-2 _ 1.0136 2.017 0.351 I-B-3 1.0136 1.945 0.372 II-A-l 1.0184 2.356 0.065 II-B-l 1.0184 2.621 0.148 III-A-l 4.6657 12.968 0.061 III-A-2 4.6657 12.839 0.101 III-A-3 4.6657 13.326 0.121 III-B-l 4.6657 12.809 0.241 III-B-2 4.5740 12.339 0.315 III-B-3 4.5740 12.550 0.321 IV-A-l 4.6657 15.537 0.088 IV-B-l 4.6657 18.959 0.061 85 Table 29 Summary of Validations Parking Accidents Sample Mean Standard Error 2 R 1.5079 3.014 0.219 1.4940 2.867 0.340 1.4940 2.914 0.381 1.5079 2.908 0.301 1.5334 2.795 0.434 1.4963 2.857 0.467 Model I-A-l I-A-2 I-A-3 I-B-l I-B-2 I-B-3 II-A-l 1.5079 3.156 0.221 II-B-l 1.5079 3.212 0.280 III-A-l 5.1907 18.887 0.168 III-A-2 5.1907 18.612 0.219 III-A-3 5.1907 19.198 0.268 III-B-l 5.1907 18.551 0.385 III-B-2 5.1780 18.431 0.424 III-B-3 5.1780 18.922 0.455 IV-A-l 5.1907 19.269 IV-B-l 5.1907 20.574 0.00 0.00 86 Table 30 Summary of Validations Pedestrian Accidents Sample Mean Standard Error 2 R 0.1629 0.558 0.185 0.1629 0.556 0.260 0.1629 0.557 0.271 0.1629 0.546 0.209 0.1617 0.544 0.297 0.1617 0.555 0.326 Model I-A-l I-A-2 I-A-3 I-B-l I-B-2 I-B-3 II-A-l 0.1629 0.588 0.066 II-B-l 0.1629 0.588 0.027 III-A-l 0.2872 2.507 0.123 III-A-2 0.2868 2.559 0.186 III-A-3 0.2868 2.582 0.204 III-B-l 0.2872 2.565 0.150 III-B-2 0.2874 2.538 0.178 III-B-3 0.2874 2.557 0.205 IV-A-l 0.2872 2.507 0.000 IV-B-l 0.2872 2.500 0.017 87 Injury Accidents : The highest R2 (0.679) was obtained by model I-B-3. Model l-B-3 was generated from the frequency of intersectional accidents with outliers being modelled separately and nonlinear regression analyses being applied to the AID terminal cells (hereafter referred to as conditions). This model also had the smallest standard error of 6.810 (for five years). Of the 12 model conditions, the standard error for each condi- tion was equal to or less than its respective mean for eight of the conditions. Please refer to the tables in Appendix F. The highest R2 (0.577) for nonintersectional accidents was obtained by model III-B-3, which was generated from the density of accidents (accidents/mile) with outliers being modelled separately and nonlinear regression analyses being applied to the AID terminal cells. However, the lowest standard error was obtained by model III-B-l. The latter model is structured the same as the former with the exception that a constant was used for each condition as a predictor in lieu of linear or nonlinear regression equations. Right-Angle Accidents: As with injury accidents, model I-B-3 obtained the highest R2 value, 0.586. However, model I-B-2 had the smallest standard error. The difference in standard error for all the intersection frequency models 88 varied very little (range of 6.450 to 6.868). Of the 11 model condi- tions, only four had standard errors less than or equal to their respec- tive means. All of the intersection frequency models had a lower standard error than the intersection rate models. Model III-B—3 had the highest R2 (0.563) for the nonintersectional accidents. However, this model also had the highest standard error. Nearly all of this deviation in error function from the other sister models is explained by one condition (with a sample size of only 17 and an explosive standard error). The standard error for the noninter- sectional rate models differed little from the nonintersectional density models . Rear-End Accidents : Model I-B-3 had the highest R2 (0.690) for rear-end intersectional accidents as well as the other accident types. With the exception of the first model for rear-end intersectional accidents (I-A-l), the standard error did not change appreciably (ranges from 8.722 to 9.9423). This includes the frequency and rate models. There are 14 conditions, of which only seven had a standard error equal to or less than their respective condition means. Model III-B-3 had the largest R2 (0.521) for nonintersectional rear-end accidents. It also had the largest standard error. However, the large deviation in standard error is explained by Condition H, one of the 11 conditions . 89 Fixed-Object Accidents: All of the models for fixed-object accidents had values of R2 much lower than the previous accident types, with model I-B-3 having the largest value at 0.372. The standard error for all of the models' nine condi- tions exceed the respective condition means. The models for noninter- sectional accidents had smaller values of R2 and larger error values. Parking Accidents: Although the models for intersectional and nonintersectional parking accidents had R2 values as high as 0.467 and 0.455 respectively, the standard errors range from 200 to 400 percent. Pedestrian Accidents : As expected, the models for pedestrian accidents had the smallest values of R2, with only one model having an R2 in excess of 0.3 (model I-B-3 at 0.326). Standard errors were very large and insensitive to the analytic processes used in generating the model. Conclusions and Comments The model building process was a sequential process of data segregation and statistical analyses. For every accident type analyzed, model I-B-3 had the highest value of R2. Automatic Interaction Detection (AID) accounted for an average 56 percent of the explained variance. The 90 separation of outlying segments increased the explanatory power of the models by an additional 13 percent. Multiple linear regression analyses within the conditional constraints of the AID terminal cells increased R2 by an additional 24 percent. The application of transforming variables to nonlinear functions improved the fit by another 7 percent. The highest R2 obtained was 0.690 and exceeded expectations. The resulting Rz's for intersection related accidents are much higher than nonintersection related accidents. However, the percentage of error is still very large. For intersection related accidents, the independent variables having the greatest impact on reducing the total variance are as follows: 1 . Signalization 2 . County 3 . Laneage 4. Type of Intersection 5. Shoulder Width 6. Right Turn Lanes 7. Annual Daily Traffic 8. Lane Widths The posted speed limit does not have a consistent relationship (demon- strates nearly equal number of positive and negative relationships). 91 Models for nonintersection related accidents did not have good corre- lation coefficients with laneage being the most important independent variable followed by county, posted speed limit, annual daily traffic, and activity density . It is doubtful that meaningful modelling of nonintersectional related accidents is feasible without improving the ability to more accurately locate accidents. Too many of the highway segments have insufficient lengths. The original intent for using a variable length segment in lieu of a uniform length of 0.2 mile is (besides dividing the system in homo- geneous segments) to create a longer analytic unit. However, this action reduced the segment length from 0.2 mile to an average of 0.13 mile . The procedure for predetermining outlying segments may warrant revision. A segment with a statistically significant number of rear-end accidents was considered an outlier when modelling not only rear-end accidents but all accident types (such as parking accidents). Although volumes were considered in the model building process, highway (segment) capacity was not. Further investigation into the use of the volume/capacity ratios as a predictive variable will be conducted. A large amount of the initial variance was explained by the models. It appears that environmental factors may have a large influence on accidents as determined by Snyder<34> , assuming that a county is an adequate surrogate measure of population density. 92 The absolute standard error is not that large, often about one accident per year. However the percentage error is very large. This may be explained by most segments having no accidents during the 5-year study period (often dividing the standard error by a small mean). The predominance of short segments limits the ability to accurately assign nonintersection accidents and may explain why the standard error for nonintersection accidents is higher than intersection accidents. Acci- dents are a discrete function and this may attribute to the error since the models predict fractional number of accidents. The anticipated use of the models is for predicting the expected change in accidents for each change in one or more independent variables. The relative error between predictions is unknown and may be consid- erably less than the absolute error (SEE). The relationships do not necessarily indicate cause and effect. Many suspected important variables are not included in the model because of a lack of accessibility. Tables 31 through 36 summarize the results of the regression coeffi- cients of the independent variables for the linear regressions without outliers . The project has been worthwhile and shall provide a basis for the Michigan Department of Transportation to initiate estimates of expected accident frequencies by type of accidents. One should not under- estimate the difficulties and work effect associated with analyzing data of such volume and variability. 93 Table 31 Summary of Coefficients Linear Models Injury Accidents Independent Positive Negative Positive Negative Variables Coeff. Coeff. Coeff. Coeff. Intersection Nonintersection No. of No. of No. of No. of 8 6 County Laneage Lane Width Shoulder Width Delta Angle Deg. of Curve Activity Density No Pass Zone Truck Lane Speed Limit Signal Code Type Intersection No. of Legs No. of Right Lane No. of Left Lane Left Turn Control All Red A.D.T. 1 1 1 1 2 8 3 3 3 1 1 5 2 1 6 Maximum Total 12 8 94 Table 32 Right-Angle Accidents Independent Positive Negative Positive Negative Variables Coeff. Coeff. Coeff. Coeff. Intersection Nonintersection No. of No. of No. of No. of County Laneage Lane Width Shoulder Width Delta Angle Deg. of Curve Activity Density No Pass Zone Truck Lane Speed Limit Signal Code Type Intersection No. of Legs No. of Right Lane No. of Left Lane Left Turn Control All Red A.D.T. 8 8 5 2 1 3 3 2 1 7 2 5 2 1 2 4 2 2 2 1 2 2 2 1 1 5 4 1 1 2 2 Maximum Total 11 10 95 Table 33 Rear-End Accidents Intersection Nonintersection No. of No. of No. of No. of Positive Negative Positive Negative Coeff. Coeff. Coeff. Coeff. 8 6 1 1 3 2 l 7 5 4 2 Independent Variables County Laneage Lane Width Shoulder Width Delta Angle Deg. of Curve Activity Density No Pass Zone Truck Lane Speed Limit Signal Code Type Intersection No. of Legs No. of Right Lane No. of Left Lane Left Turn Control All Red A.D.T. 10 10 Maximum Total 14 11 96 Table 34 Fixed-Objects Accidents Independent Positive Negative Positive Negative Variables Coeff. Coeff. Coeff. Coeff. Intersection Nonintersection No. of No. of No. of No. of County Laneage Lane Width Shoulder Width Delta Angle Deg. of Curve Activity Density No Pass Zone Truck Lane Speed Limit Signal Code Type Intersection No. of Legs No. of Right Lane No. of Left Lane Left Turn Control All Red A.D.T. 8 6 2 1 5 1 4 3 2 7 2 1 1 4 6 3 1 1 3 1 2 3 1 2 1 1 1 2 4 1 1 4 2 1 2 1 Maximum Total 9 8 97 Table 35 Parking Accidents Independent Positive Negative Positive Negative Variables Coeff. Coeff. Coeff. Coeff. Intersection Nonintersection No. of No. of No. of No. of County Laneage Lane Width Shoulder Width Delta Angle Deg. of Curve Activity Density No Pass Zone Truck Lane Speed Limit Signal Code Type Intersection No. of Legs No. of Right Lane No. of Left Lane Left Turn Control All Red A.D.T. 9 8 1 1 7 1 2 2 6 2 2 2 2 5 1 l 2 2 1 6 8 2 4 2 3 7 2 1 3 l 5 1 2 Maximum Total 10 13 98 Table 36 Pedestrian Accidents Intersection Nonintersection No. of No. of No. of No. of Positive Negative Positive Negative Coeff. Coeff. Coeff. Coeff. 8 3 3 2 1 2 2 l 1 1 Independent Variables County Laneage Lane Width Shoulder Width Delta Angle Deg. of Curve Activity Density No Pass Zone Truck Lane Speed Limit Signal Code Type Intersection No. of Legs No. of Right Lane No. of Left Lane Left Turn Control All Red A.D.T. Maximum Total 10 6 99 BIBLIOGRAPHY , "Development of the Relationship between the Posted Speed Limit and Accidents on Maryland Roads," Final Report AW-076- 154-046, Maryland Department of Transportation, April, 1976. , "Driveszriver Vehicle Interaction Effectiveness Model" Final Report DOT HS-801 525, U.S. Department of Transpor- tation, Washington, D.C., 1975. (BASIS)", Burroughs Corporation, Detroit, Michigan, 1975. , "Burroughs Advanced Statistical Inquiry System and Other Highway Systems/1977", Office of Highway Safety, Federal , "Fatal and Injury Accident Rates on Federal-Aid Highway Administration, U.S. Department of Transportation, February, 1980. Agent, Kenneth R., and Deen, Robert C., "Relationship Between Road- way Geometrics and Accidents," Research Report 406, Division of Research, Bureau of Highways, Department of Transportation, Common- wealth of Kentucky, 1974. Alonso, William, "The Quality of Data and the Choice and Design of Predictive Models," HRB Special Report 97. Brinkman, C. P., and Perchonok, K., "Hazardous Effects of Highway Features and Roadside Objects - Highways," Public Roads, Volume 43, No. 1, June, 1979, pp. 8-14. Brude, Ulf, and Nilsson, Goran, "PREDIKTIONSMODELL FOR TRAFIKOLYCKOR FOR KVALITETSBESTAMNING AV VAGARS SAKERHET," National Swedish Road and Traffic Research Institute, 1976. Campbell, B. J ., and Levine, Donald, "Accident Proneness and Driver License Programs," The University of North Carolina Highway Safety Research Center, Chapel Hill, North Carolina, 1974. 10. Cleveland, Donald E. , and Kitamura, Ryuichi, "Macrosc0pic Modeling of Two-Lane Rural Roadside Accidents," 57th Annual Meeting of the Trans- portation Research Board, Washington, D.C., 1978. 11. Cleveland, Donald E., and Kitamura, Ryuichi, "A Study of Accident Experience at Michigan Trunkline Intersection Control Beacon Instal- lations," Department of Civil Engineering, University of Michigan, 1977. 100 12. Dart, Olin K. Jr., and Mann, Lawrence Jr., "Relationship of Rural Highway Geometry to Accident Rates in Louisiana," Highway Research Record Number 312, Highway Research Board, National Academy of Sciences, 1970. 13. David, N. A., and Norman, J. R., "Motor Vehicle Accidents in Relation to Geometric and Traffic Features of Highway Intersections," Stanford Research Institute, Department of Transportation, Washington, D.C., Vol. 1, II 8: III, 1975. 14. Dawson, Harry S. Jr., "Analysis of Fatal Accident Trends on Maryland Highways, 1970-1976," Public Roads, September 1979, Volume 43. 15. Fenner, Mortimer P. "The Michigan Photolog System", Michigan Depart- ment of State Highways and Transportation, Report No. TSD-320-76, November, 1976. 16. Franklin, Carter L., and Carothers, Samuel G., "Accidents and Deaths on Interstate Roads Compared to U.S. and State Roads in Texas," pre- pared for the Texas Governor's Office of Traffic Safety, March, 1976. 17. Glennon, John C., and Sharp, Michael C., "Research Methods for Improving Roadside Safety Analysis," 1979 Annual Meeting of the Trans- portation Research Board, Washington, D.C. , 1978. 18. Hakkert, A. Shalom, and Mahalel, David, "Estimating the Number of Accidents at Intersections from a Knowledge of the Traffic Flows on the Approaches," Accident Analysis and Preview, Volume 10, Great Britain, 1978. 19. Hauer, E., "Some Research Needs in Safety Measures of Effectiveness," Department of Civil Engineering, University of Toronto, 1978. 20. Hough, Gerald L., "1977 Michigan Traffic Accident Facts", Michigan Department of State Police. 21. Laughland, John C., Haefner, Lonnie E., Hall, Jerome W., and Clough, Dean R., "Methods for Evaluating Highway Safety Improvements," National Cooperative Highway Research Program Report 162, Transpor- tation Research Board, National Research Council, Washington, D.C., 1975. 22. Lavette, Robert A., and Meeter, Duanne A., "Development and Appli- cation of a Railroad - Highway Accident Predictive Equation," 56th Annual Meeting of the Transportation Research Board, Washington, D.C., January, 1977. 101 23. Maleck, Thomas L. , "Michigan Dimensional Accident Surveillance (MIDAS) Model: Progress Report," Transportation Research Record 672, National Academy of Sciences, Washington, D.C., 1978. 24. McGuire, Frederick L., "The Understanding and Prediction of Accident- Producing Behavior," North Carolina Symposium on Highway Safety, Volume One, Chapel Hill, N.C., Fall, 1969. 25. McMonagle, J. Carl, "The Effect of Roadside Features on Traffic Accidents," Traffic Quarterly, Eno Foundation, 1952. 26. Moellering, Harold, "The Journey to Death: A Spatial Analysis of Fatal Traffic Crashes in Michigan," Michigan Geographic Publication No. 13, Department of Geography, University of Michigan, Ann Arbor, 1974. 27. Nie, Norman H. et al., "SPSS: Statistical Package for the Social Sciences," McGraw-Hill Book Company, New York, 1975. 28. Orne, Donald E. and Blackledge, Stanley, "Maintaining Acceptable Service and Safety Levels with Budget Constraints," 46th Annual Meeting - Institute of Transportation Engineers, Baltimore, Maryland, August, 1976. 29. Recht, J. L., "Multiple Regression Study of the Effect of Safety Activities on the Traffic Accident Problem," National Safety Council, Chicago, Illinois, December, 1965. 30. Roy Jorgensen and Associates, Inc., "Cost and Safety Effectiveness of Highway Design Elements," National Cooperative Highway Research Program Report 197, Transportation Research Board, National Research Council, 1978. 31. Roy Jorgensen and Associates, Inc., and Westat Research Analysts, Inc., "Evaluation of Criteria for Safety Improvements on the Highways," a report to the United States Department of Commerce, Bureau of Public Roads, Office of Highway Safety. 32. Skillman, T. S., "How to Reduce Road Accidents," Road Safety, David McKay Company, Inc., New York, 1966. 33. Smith, William L., "Probability Study of High-Accident Locations in Kansas City, Missouri," Traffic Engineering, Volume 40, April, 1970. 34. Snyder, James C., "Environmental Determinants of Traffic Accidents: An Alternate Model," Transportation Research Record 486, National Research Council, Washington, D.C., 1974. 102 35. Woods, Donald L., and Weaver, Graeme D., "Benefit-Cost Analysis of Advance Treatment for No Passing Zones," 58th Annual Meeting Trans- portation Research Board, Washington, D.C., 1979. 10-30-80 TLM(521-540)-6 Administrative Unit 103 APPENDIX A File Documentation PIDAS FEATURES FILE CATA FIELC DESCRIPTION TRAFFIC AND SAFETY CCTOBER 31' 1980 104 ITEV FORMAT CODES AAO DESCFIPTIOAS DATA REcoan' 1 or 13 RECCRD TYPES Ol 12 FLAC 1 PROCESSING REOUIRENENT CCLUFAS 1'2 SOURCE: PROGFAH ELEMENT 02 IS HIGHWAY CONTROL SECTIOA ICENTIFIES TFE GENERAL LOCATION OF ROADWAY SECFENT. COUATY AAO ROUTE SEGMENT. COLUPAS 3'? SOURCE: CONTFOL SECTION LOG 03 FS.2 BEGIA FILEACE BEGIAAING MILEAGE OF CONTROL SECTION (USUALLY ZERO) CCLUFAS 8‘12 SOURCE: PHOTCLOC 04 F5.2 END FILEAGE EACIAC MILEAGE CF CONTROL SECTICN CCLUFAS 13‘17 SCUHCE: PHOTCLOG 105 ITEM FORMAT CODES ARC DESCRIPTIONS DATA RECORD 2 OF 13 RECCRD TYPES OI IZ FLAG 2 PROCESSING RECUIREPEAT CCLUFAS 1’2 SCURCE: PROGRAM ELEMENT DZ 12 LANEAGE CODE DESCRIPTION CF LANEACE CHARACTERISTICS 01 2 LANE Z'HAT 02 03 04 3 LANE Z'WAT 4 LANE Z‘HAT 5 LANE Z'WAT 05 6 LANE Z'WAT 06 07 08 09 IC 11 12 13 7 LANE Z‘HAT 2 LANE I‘WAT 3 LANE I'HAT 4 LANE I'HAT 4 LANE DTVICED 6 LANE DIVICED 8 LANE DIVICED CTHER CCLUPRS 6‘7 SOURCES PHOTCLOC 03 FS.2 LANEAGE MILEPOINT MILEAGE POINT WFERE lANEAGE CODE (ITEM 2) BEGINS CELUPAS 8'12 SOURCE: PHOTCLOC 106 '17: I'- H u - ‘ I . \ ' ITEN FORMAT CODES AND DESCRIPTIONS DATA RECORD 3 OF 13 RECCRD TYPES D! 12 FLAG 3 PROCESSING RECUIRENENT CCLUNNS 1‘2 SCURCE: PRDGFAN ELEMENT 02 F5.2 BEGIN IILEAGE ALIGNNENT STARTING PCINT CF HORIZONTAL ALIGNPENT DESCRIPTION IN ITEPS DA THRU 10 CCLUPNS 3'? SOURCE: PHOTCLDG : RIGHT'OF'HAY NAPS 03 FSoZ END NILEAGE ALIGNNENT CDLUFNS 8‘12 SCURCE: PHDTCLDG 3 RIGHT'OF'HAY MAPS DA 11 TANGENT CODE 1 2 TANGENT SECTION CURVE SECTION CCLUPN 13 SOURCE: PHOTCLOG : RIGHT‘DE'HAY MAPS OS IS DELTA ANGLE TNC‘FART CODE INDICATING THE DEFLECTIDN ANGLE FOR THE CURVE SECTION CCLLFNS 15‘17 CEGREES CCLUPNS 18'19 PINUTES SCURCE: RIGHT‘OF'HAY NAPS 107 ITEN FORNAT CODES AND DESCRIPTIONS DATA RECORD 3 OF 13 RECCRD TYPES DG 11 DIRECTION CODE FCR CELTA ANGLE (ITEP OS) 1 2 RIGHT LEFT 07 IA DEGREE CF CURVATURE ThE ANGLE SUETENDED BY A 100 FEET CHCRD ALONG TFE ARC OF THE CURVE. CCLUPNS 21‘22 DEGREES CDLUPNS 23‘2A PINUTES SCURCE: RIGHT'OF'HAY MAPS 08 II TANGENT SECTION BEARING 1 2 NCRTH SCUTH CDLUAN 26 SOURCE: RIGHT‘DF‘HAY MAPS 09 IA BEARING ANGLE BEARING ANGLE OF TANGENT SECTION. CORRESPONDS TC EAST'NEST VARIANCE (ITEN 10) FREE DUE NCRTH OR SOUTH (ITEM 8) CCLUPNS 27’28 DEGREES CDLUPNS 29‘3C PINUTES SOURCE: RIGHT'OF'HAY MAPS 10 I1 TANGENT SECTION BEARING 3 h EAST NEST CCLUFN 31 SOURCE: RIGHT‘OF'HAY NAPS 108 ITEN FORMAT CODES AND DESCRIPTIONS DATA RECORD A OF 13 RECCRD TYPES 01 12 FLAG A PRCCESSING RECUIREPENT COLUMNS 1‘2 SCURCE: PROGRAM ELEMENT DZ FS.2 BEGIN MILEAGE ' NC PASSING STARTING MILEAGE OF A NO‘PASSING ZCNE. NILEAGES INCLUDE BCTF DIRECTIONS. CODING APPLIES TO Z‘LANEvZ'HAY ROADS. CCLUFNS 3'7 SCURCE: PHDTCLOG D3 FS.2 END MILEAGE ' NO PASSING CDLUPNS 8'12 SOURCE: PHOTCLDG 109 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECCRD TYPES 01 IZ FLAG S PROCESSING REQUIREMENT CCLUMNS 1‘2 SOURCE: PROGRAM ELEMENT DZ FS.Z MILEAGE OF INTERSECTION TRUNNLINE INTERSECTICN MILEPCINT COLUMNS 3'7 SCURCE: PHDTCLDG : MILEAGE CONTROL LOG 03 I1 SIGNAL CODE 1 2 3 NO SIGNAL FLASHER SIGNAL COLUMN 9 SOURCE: PHDTCLDG DA I2 INTERSECTION TYPE a o — m m m N m o s UNKNOHN CROSS TEE OFFSET (50 FT OR LESS) NYE CTHER FREENAY RAMP TURNAROLND COLUMNS 10'11 SOURCE: PHDTCLDG 05 IZ NUMBER OF LEGS OF INTERSECTION COLUMNS 12'13 SCURCE: PHDTCLDG 110 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECCRD TYPES DG 12 NUMBER OF AUXILLARY LANES ' RIGHT SIDE COLUMNS 1A'1S SCURCE: PHDTCLDG D? 12 NUMBER OF AUXILLARY LANES ' LEFT SIDE COLUMNS 16‘17 SCURCE: PHDTCLDG 08 I2 ND TURN ON RED 0 1 ALL LEGAL TURNS ALLOWED ND TURN ON RED COLUMNS 18‘19 SCURCE: REFLECTIVE DEVICES UNIT FILES 09 I2 LEFT TURN CODE 0 1 2 ND LEFT TURN CONTROL LEFT TURN FHASE ND LEFT TURN COLUMNS 20'21 SCURCE: REFLECTIVE DEVICES UNIT FILES 10 I2 ALL RED CLEARANCE PHASE 0 1 NC ALL RED CLEARANCE PHASE ALL RED CLEARANCE PHASE CCLUMNS 22'23 SOURCE: REFLECTIVE DEVICES UNIT FILES 111 ~ \ fi » I I . . . . H N “ M . Q T I I ‘ BIBLIOGRAPHY Speed Limit and Accidents on Maryland Roads," Final Report AW-076- , "Development of the Relationship between the Posted 154-046, Maryland Department of Transportation, April, 1976. Model" Final Report DOT HS-801 525, U.S. Department of Transpor- , "Driveszriver Vehicle Interaction Effectiveness tation, Washington, D.C., 1975. (BASIS)", Burroughs Corporation, Detroit, Michigan, 1975. , "Burroughs Advanced Statistical Inquiry System and Other Highway Systems/1977", Office of Highway Safety, Federal , "Fatal and Injury Accident Rates on Federal-Aid Highway Administration, U.S. Department of Transportation, February, 1980. Agent, Kenneth R., and Deen, Robert C., "Relationship Between Road- way Geometrics and Accidents," Research Report 406, Division of Research, Bureau of Highways, Department of Transportation, Common- wealth of Kentucky, 1974. Alonso, William, "The Quality of Data and the Choice and Design of Predictive Models," HRB Special Report 97. Brinkman, C. P., and Perchonok, K., "Hazardous Effects of Highway Features and Roadside Objects - Highways," Public Roads, Volume 43, No. 1, June, 1979, pp. 8-14. Brude, Ulf, and Nilsson, Goran, "PREDIKTIONSMODELL FOR TRAFIKOLYCKOR FOR KVALITETSBESTAMNING AV VAGARS SAKERHET," National Swedish Road and Traffic Research Institute, 1976. Campbell, B. J ., and Levine, Donald, "Accident Proneness and Driver License Programs," The University of North Carolina Highway Safety Research Center, Chapel Hill, North Carolina, 1974. 10. Cleveland, Donald E. , and Kitamura, Ryuichi, "Macroscopic Modeling of Two-Lane Rural Roadside Accidents," 57th Annual Meeting of the Trans- portation Research Board, Washington, D.C. , 1978. 11. Cleveland, Donald E., and Kitamura, Ryuichi, "A Study of Accident Experience at Michigan Trunkline Intersection Control Beacon Instal- lations," Department of Civil Engineering, University of Michigan, 1977. 100 12. Dart, Olin K. Jr., and Mann, Lawrence Jr., "Relationship of Rural Highway Geometry to Accident Rates in Louisiana," Highway Research Record Number 312, Highway Research Board, National Academy of Sciences, 1970. 13. David, N. A., and Norman, J. R., "Motor Vehicle Accidents in Relation to Geometric and Traffic Features of Highway Intersections," Stanford Research Institute, Department of Transportation, Washington, D.C., Vol. 1, II 8: III, 1975. 14. Dawson, Harry S. Jr., "Analysis of Fatal Accident Trends on Maryland Highways, 1970-1976," Public Roads, September 1979, Volume 43. 15. Fenner, Mortimer P. "The Michigan Photolog System", Michigan Depart- ment of State Highways and Transportation, Report No. TSD-320-76, November, 1976. 16. Franklin, Carter L., and Carothers, Samuel C., "Accidents and Deaths on Interstate Roads Compared to U.S. and State Roads in Texas," pre- pared for the Texas Governor's Office of Traffic Safety, March, 1976. 17. Glennon, John C., and Sharp, Michael C., "Research Methods for Improving Roadside Safety Analysis," 1979 Annual Meeting of the Trans- portation Research Board, Washington, D.C., 1978. 18. Hakkert, A. Shalom, and Mahalel, David, "Estimating the Number of Accidents at Intersections from a Knowledge of the Traffic Flows on the Approaches," Accident Analysis and Preview, Volume 10, Great Britain, 1978. 19. Hauer, E., "Some Research Needs in Safety Measures of Effectiveness," Department of Civil Engineering, University of Toronto, 1978. 20. Hough, Gerald L., "1977 Michigan Traffic Accident Facts", Michigan Department of State Police. 21. Laughland, John C., Haefner, Lonnie E., Hall, Jerome W., and Clough, Dean R., "Methods for Evaluating Highway Safety Improvements," National Cooperative Highway Research Program Report 162, Transpor- tation Research Board, National Research Council, Washington, D.C. , 1975. 22. Lavette, Robert A., and Meeter, Duanne A., "Development and Appli- cation of a Railroad - Highway Accident Predictive Equation," 56th Annual Meeting of the Transportation Research Board, Washington, D.C., January, 1977. 101 23. Maleck, Thomas L., "Michigan Dimensional Accident Surveillance (MIDAS) Model: Progress Report," Transportation Research Record 672, National Academy of Sciences, Washington, D.C., 1978. 24. McGuire, Frederick L., "The Understanding and Prediction of Accident- Producing Behavior," North Carolina Symposium on Highway Safety, Volume One, Chapel Hill, N.C., Fall, 1969. 25. McMonagle, J. Carl, "The Effect of Roadside Features on Traffic Accidents," Traffic Quarterly, Eno Foundation, 1952. 26. Moellering, Harold, "The Journey to Death: A Spatial Analysis of Fatal Traffic Crashes in Michigan," Michigan Geographic Publication No. 13, Department of Geography, University of Michigan, Ann Arbor, 1974. 27. Nie, Norman H. et al., "SPSS: Statistical Package for the Social Sciences," McGraw-Hill Book Company, New York, 1975. 28. Orne, Donald E. and Blackledge, Stanley, "Maintaining Acceptable Service and Safety Levels with Budget Constraints," 46th Annual Meeting - Institute of Transportation Engineers, Baltimore, Maryland, August, 1976. 29. Recht, J. L., "Multiple Regression Study of the Effect of Safety Activities on the Traffic Accident Problem," National Safety Council, Chicago, Illinois, December, 1965. 30. Roy Jorgensen and Associates, Inc., "Cost and Safety Effectiveness of Highway Design Elements," National Cooperative Highway Research Program Report 197, Transportation Research Board, National Research Council, 1978. 31. Roy Jorgensen and Associates, Inc., and Westat Research Analysts, Inc., "Evaluation of Criteria for Safety Improvements on the Highways," a report to the United States Department of Commerce, Bureau of Public Roads, Office of Highway Safety. 32. Skillman, T. S., "How to Reduce Road Accidents," Road Safety, David McKay Company, Inc., New York, 1966. 33. Smith, William L., "Probability Study of High-Accident Locations in Kansas City, Missouri," Traffic Engineering, Volume 40, April, 1970. 34. Snyder, James C., "Environmental Determinants of Traffic Accidents: An Alternate Model," Transportation Research Record 486, National Research Council, Washington, D.C., 1974. 102 35. Woods, Donald L., and Weaver, Graeme D., "Benefit-Cost Analysis of Advance Treatment for No Passing Zones," 58th Annual Meeting Trans- portation Research Board, Washington, D.C., 1979. 10-30-80 TLM(521-540)-6 Administrative Unit 103 APPENDIX A File Documentation 35. Woods, Donald L., and Weaver, Graeme D., "Benefit-Cost Analysis of Advance Treatment for No Passing Zones," 58th Annual Meeting Trans- portation Research Board, Washington, D.C., 1979. 10-30-80 TLM(521-540)-6 Administrative Unit 103 APPENDIX A File Documentation MIDAS FEATURES FILE CATA FIELC DESCRIPTION TRAFFIC AND SAFETY CCTOBER 31' 1980 104 ITEM FORMAT CODES AND DESCRIPTIONS DATA asconn' 1 or 13 acetan TYPES 01 12 FLAG 1 PROCESSING REQUIREMENT CCLUMNS 1'2 SOURCE: PROGRAM ELEMENT 02 IS NIGHNAT CONTROL SECTION IDENTIFIES TFE GENERAL LOCATION OF ROADWAY SEGMENT. COUNTY AND ROUTE SEGMENT. COLUMNS 3'? SOURCE: CONTROL SECTION LOG D3 F5.2 BEGIN MILEAGE BEGINNING MILEAGE OF CONTROL SECTION (USUALLY ZERO) COLUMNS 8'12 SOURCE: PHDTCLDG DA F5.2 END MILEAGE ENDING MILEAGE CF CONTROL SECTICN COLUMNS 13'17 SCURCE: PHDTCLDG 105 ITEM FORMAT CODES ANO DESCRIPTIONS DATA RECORD 2 OF 13 RECORD TYPES 01 I2 FLAG 2 PROCESSING RECUIREMENT COLUMNS 1‘2 SCURCE: PROGRAM ELEMENT DZ I2 LANEAGE CODE DESCRIPTION CF LANEAGE CHARACTERISTICS 01 2 LANE 2'NAY 02 3 LANE Z'HAT 03 A LANE Z’NAT DA 5 LANE Z'NAT 05 G LANE Z'NAT DG 7 LANE Z‘NAY 07 2 LANE I'NAT 08 09 1D 11 12 13 3 LANE I‘HAT A LANE 1'NAT A LANE DIVICED 6 LANE DIVICED 8 LANE OIVICED OTHER COLUMNS 6'? SCURCE: PHDTCLDG D3 FS.2 LANEAGE MILEPOINT MILEAGE POINT NPERE LANEAGE CODE (ITEM 2) BEGINS CELUPNS 8'12 SOURCE: PHDTCLDG 106 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 3 OF 13 RECORD TYPES DI 12 FLAG 3 PROCESSING REQUIREMENT COLUMNS 1'2 SCURCE: PROGRAM ELEMENT DZ F5.2 BEGIN MILEAGE ALIGNMENT STARTING POINT CF HORIZONTAL ALIGNMENT DESCRIPTION 1N ITEMS 0A THRU 10 COLUMNS 3'? SOURCE: PHDTCLDG : RIGHT'OF'NAY MAPS D3 FSoZ END MILEAGE ALIGNMENT COLUMNS 8‘12 SOURCE: PHDTCLDG : RIGHT-OF’NAY MAPS DA 11 TANGENT CODE 1 2 TANGENT SECTION CURVE SECTION COLUMN 13 SOURCE: PHDTCLDG : RIGHT‘DF‘NAY MAPS 05 IS DELTA ANGLE TNC‘FART CODE INDICATING THE DEFLEOTIDN ANGLE FOR THE CURVE SECTION COLUMNS 15'17 DEGREES COLUMNS 18'19 MINUTES SOURCE: RIGHT'OF'HAY MAPS 107 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 3 OF 13 RECORD TYPES DG 11 DIRECTION CODE FCR CELTA ANGLE (ITEM 05) 1 2 RIGHT LEFT 0? IA DEGREE CF CURVATURE THE ANGLE SUETENDEC BY A 100 FOCT CHORD ALONG TRE ARC OF THE CURVE. COLUMNS 21‘22 DEGREES COLUMNS 23'2A MINUTES SCURCE: RIGHT'OF'NAY MAPS DB 11 TANGENT SECTION BEARING 1 2 NORTH SOUTH COLUMN 26 SOURCE: RIGHT‘OF‘HAY MAPS 09 1A BEARING ANGLE BEARING ANGLE DF TANGENT SECTION. CORRESPONDS TC EAST'NEST VARIANCE (ITEM 10) FROM DUE NORTH OR SOUTH (ITEM 8) COLUMNS 27'28 DEGREES COLUMNS 29'3C MINUTES SOURCE: RIGHT‘OF’HAY MAPS 10 11 TANGENT SECTION BEARING 3 A EAST NEST COLUMN 31 SOURCE: RIGHT'DF‘NAY MAPS 108 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD A OF 13 RECORD TYPES 01 12 FLAG A PROCESSING REQUIREMENT COLUMNS 1'2 SCURCE: PROGRAM ELEMENT DZ F5.2 BEGIN MILEAGE ' NC PASSING STARTING MILEAGE OF A NO'PASSING ZONE. MILEAGES INCLUDE BOTF DIRECTIONS CODING APPLIES TO 2'LANE92'HAY ROADS. COLUMNS 3‘? SOURCE: PHDTCLDG D3 F5.2 END MILEAGE ' NO PASSING COLUMNS 8‘12 SOURCE: PHDTCLDG 109 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECORD TYPES D1 12 FLAG 5 PROCESSING REQUIREMENT COLUMNS 1'2 SOURCE: PROGRAM ELEMENT DZ F5.2 MILEAGE OF INTERSECTION TRUNMLINE INTERSECTION MILEPCINT COLUMNS 3’? SOURCE: PHDTCLDG : MILEAGE CONTROL LOG D3 11 SIGNAL CODE 1 2 3 NO SIGNAL FLASHER SIGNAL COLUMN 9 SOURCE: PHDTCLDG DA 12 INTERSECTION TYPE a M I V I T ' U ‘ G N D C O \ UNKNDHN CROSS TEE OFFSET (50 FT OR LESS) NYE CTHER FREEHAY RAMP TURNAROLND COLUMNS 10'11 SOURCE: PHDTCLDG DS 12 NUMBER OF LEGS OF INTERSECTION COLUMNS 12'13 SCURCE: PHDTCLDG 110 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECORD TYPES DG 12 NUMBER OF AUXILLARY LANES ' RIGHT SIDE COLUMNS 1A-15 SOURCE: PHDTCLDG D? 12 NUMBER OF AUXILLARY LANES ' LEFT SIDE COLUMNS 16‘17 SOURCE: PHDTCLDG 12 NO TURN ON RED 0 1 ALL LEGAL TURNS ALLOWED NO TURN ON RED COLUMNS 18'19 SCURCE: REFLECTIVE DEVICES UNIT FILES D9 12 LEFT TURN CODE D 1 2 NO LEFT TURN CONTROL LEFT TURN FHASE NO LEFT TURN COLUMNS 20'21 SOURCE: REFLECTIVE DEVICES UNIT FILES 10 12 ALL RED CLEARANCE PHASE O 1 NO ALL RED CLEARANCE PHASE ALL RED CLEARANCE PHASE COLUMNS 22'23 SOURCE: REFLECTIVE DEVICES UNIT FILES 111 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECORD TYPES 11 12 TRUNNLINE ' TRUNKLINE JUNCTION D 1 TRUNKLINE ‘ CROSSRDAD INTERSECTION TRUNKLINE ' TRUNKLINE JUNCTION COLUMNS 2A'25 SCURCE: REFLECTIVE DEVICES UNIT FILES 12 F5.2 MALI MILEPOINT OF INTERSECTION COLUMNS 26'3C SCURCE: MICHIGAN ACCIDENT LOCATION INDEX 13 A12 TRUNNLINE ENGLISH DESCRIPTION COLUMNS 31'A2 SOURCE FOR ALL ENGLISH ITERATIONS: MICHIGAN ACCIDENT LOCATION INDEX CONTROL SECTION ATLAS MILEAGE CONTROL LOGS PHDTCLDG OFFICIAL HIGFHAY MAP COUNTY MAPS 1A A18 CROSSRCAD ENGLISH DESCRIPTION COLUMNS A3‘6C 112 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECORD TYPES 15 A12 LOCAL GOVERNMENT ENGLISH DESCRIPTION CITY: TOHNSHIP CR VILLAGE NAME COLUMNS 61'72 16 A12 COUNTY ENGLISH DESCRIPTION COLUMNS 73‘86 NOTE: COLUMNS 85'96 ARE BLANK'FILLED FOR INTERSECTIONS NITH NO LEFT TURN CONTROL 1? 11 TRUNNLINE APPROACH LEG ' DIRECTION CODE t - t N u c - J fl U m N m n \ NORTH NORTHEAST EAST SOUTHEAST SOUTH SOUTHWEST NEST NORTHHEST UNNNDNN BG 11 TRUNMLINE APPROACH LEG ‘ LEFT TURN PROHIBITION 0 1 2 NO PROHIBITION PARTIAL PHOHIBITION FULL PROHIEITIDN G? 11 TRUNMLINE APPROACF LEG ‘ LEFT TURN PHASE n u m m a m m u m NO LEFT TURN PHASE EXCLUSIVE LEFT TURN LAG LEAD ' ' ' ' ' ' LAG NITHRU MOVEMENT LEAD NITHRU MOVEMENT LEFT TURN FHASE N/THRU MOVEMENT (3 PHASE) FULLY ACTUATED H/THRU MOVEMENT (B FHASEpETC.) NO LEFT TURN LEFT TURN N/THRL MOVEMENT 113 EH - u H ( ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 5 OF 13 RECORD TYPES I1 TRUNNLINE DEPARTURE LEG ' DIRECTION CODE (SEE CODING FOR COLUMN 85) B9 11 TRUNNLINE DEPARTURE LEG ' LEFT TURN PROHIBITION (SEE CODING FDR COLUMN 86) 11 TRUNNLINE DEPARTURE LEG ' LEFT TURN PHASE (SEE CODING FOR COLUMN 8?) 91 11 CROSSROAD APPROACH ' DIRECTION CODE (SEE CODING FOR COLUMN 85) 92 11 CROSSROAD APPROACH ' LEFT TURN PRCHIBITIDN (SEE CODING FOR COLUMN BE) 93 11 CROSSROAD APPROACH ' LEFT TURN PHASE (SEE CODING FOR COLUMN 8?) 9A 11 CROSSROAD DEPARTURE ' DIRECTION CODE (SEE CODING FOR COLUMN BS) 95 CROSSROAD DEPARTURE ‘ LEFT TURN PROHIBITION (SEE CODING FOR COLUMN 86) 96 CROSSROAD DEPARTURE ' LEFT TURN PHASE (SEE CODING FOR COLUMN B7) 114 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 6 OF 13 RECORD TYPES 01 12 FLAG G PROCESSING REQUIREMENT COLUMNS 1'2 SOURCE: PROGRAM ELEMENT ROADSIDE DEVELOPMENT CODE THREE'PART CODE DESIGNATING LAND LSAGE AND RESULTING TRAFFIC DENSITIES. CODE CONSISTS OF URBAN: RURAL: CR COMMERCIAL STRIP SEGMENTS. MILEPOINTS ARE BEGINNINGS AND ENDINGS OF LAND USE TYPES: DESCRIBING A UNICLE LAND USE SEGMENT. 02 FS.2 BEGIN MILEAGE (URBAN) COLUMNS 3‘7 SOURCE: PHDTCLDG D3 FS.2 END MILEAGE (URBAN) COLUMNS 8‘12 SCURCE: PHDTCLDG DA F5.2 BEGIN MILEAGE (STRIP COMMERCIAL) COLUMNS 13'17 SOURCE: PHDTCLDG DS F5.2 END MILEAGE (STRIP COMMERCIAL) COLUMNS 18-22 SOURCE: PHDTCLDG 06 F5.2 BEGIN MILEAGE (RURAL) COLUMNS 23‘27 SCURCE: PHDTCLDG D? FS.2 END MILEAGE (RORAL) COLUMNS 28’32 SCURCE: PHDTCLDG 115 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 7 OF 13 RECORD TYPES 01 12 FLAG 7 PROCESSING REQUIREMENT COLUMNS 1'2 SOURCE: PROGRAM ELEMENT DATA RECORD 7 IS RESERVED FOR LIMITED ACCESS CODING. PRESENTLY UNLSEC. 116 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 0 OF 13 RECORD TYPES D1 12 FLAG B PROCESSING REQUIREMENT COLUMNS 1'2 SOURCE: PROGRAM ELEMENT 02 F5o2 MILEFOTNT OF TNUNNLINE-TRUNKLTNE JUNCTION COLUMNS 3-7 SCURCE: PHOTCLOG : MALI : MILEAGE CONTROL LOGS D3 15 INTERSECTING CCNTFOL SECTION COLUMNS 8‘12 SOURCE: CONTROL SECTION ATLAS DA F5.2 BEGIN MILEAGE BEGINNING MILEPCINT ON INTERSECTING CONTROL SECTION HHERE ACCIDENT ACTIVITY IS INFLUENCED BY THE TRUNKLINE JUNCTION. ALL ACCIDENTS ARE CODEC TO CONTROL SECTION IN DATA RECORD 1. COLUMNS 13'17 SCURCE: PHDTCLDG 05 FS.2 END MILEAGE ENDING MILEPCINT ON INTERSECTING CONTROL SECTION NHERE ACCIDENT ACTIVITY IS INFLUENCED BY THE TRUNKLINE JUNCTION. COLUMNS 18'22 SOURCE: PHDTCLDG 117 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 9 OF 13 RECORD TYPES 01 12 FLAG 9 PROCESSING REQUIREMENT COLUMNS 1'2 SCURCE: PROGRAM ELEMENT DZ F5.2 BEGIN MILEPOINT BEGINNING MILEAGE OF LANE NIDTH (ITEM 03) COLUMNS 3'? SOURCE: PHDTCLDG D3 12 LANE MIDTH (NEAREST FOOT) COLUMNS 11-12 SOURCE: PHDTCLDG 118 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 10 OF 13 RECORD TYPES 01 12 FLAG ID PROCESSING REQUIREMENT COLUMNS 1‘2 SOURCE: PROGRAM ELEMENT DZ F5.2 BEGIN MILEPOINT BEGINNING MILEAGE OF SHOULDER NIDTH (ITEM 03) COLUMNS 3'? SOURCE: PHDTCLDG D3 12 SHOULDER MIDTH CODE 0 A G D 2 CURB D ' A FEET A ' 8 FEET B ‘10 FEET 10 ‘12 FEET COLUMNS 11-12 SOURCE: PHDTCLDG 119 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 11 OF 13 RECORD TYPES DI 12 FLAG 11 PROCESSING RECUIREMENT COLUMNS 1‘2 SCURCE: PROGRAM ELEMENT DZ F5.2 BEGIN MILEPOINT ' VERTICAL CURVE COLUMNS 3‘? SOURCE: PHDTCLDG D3 FS.2 END MILEPOINT ' VERTICAL CURVE COLUMNS 8‘12 SCURCE: PHDTCLDG 120 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 12 OF 13 RECORD TYPES 01 12 FLAG 12 PROCESSING REQUIREMENT COLUMNS 1'2 SCURCE: PROGRAM ELEMENT 02 FS.2 BEGIN MILEAGE ' TRUCK CLIMBING LANE COLUMNS 3'? SOURCE: PHDTCLDG D3 F5.2 END MILEAGE ' TRUCK CLIMBING LANE COLUMNS 8'12 SOURCE: PHDTCLDG 121 ITEM FORMAT CODES AND DESCRIPTIONS DATA RECORD 13 OF 13 RECORD TYPES 01 12 FLAG 13 PROCESSING REQUIREMENT COLUMNS 1'2 SOURCE: PROGRAM ELEMENT 02 11 DIRECTION CODE FDR CURB AND GUTTER H 1 \ T M : § . ” L M PLUS'NDNDIVIDED RIGHT SIDE MINUS'NCNDIVIDEC RIGHT SIDE PLUS'DIVIDED RIGHT SIDE MINUS'DIVICED RIGHT SIDE PLUS'DIVIDED LEFT SIDE MINUS'DIVIDED LEFT SIDE COLUMN A SCLRCE: PHDTCLDG D3 11 CURB CODE 1 2 3 A VALLEY MOUNTABLE BARRIER UNRECOGNIZABLE COLUMN 5 SOURCE: PHDTCLDG DA FS.2 BEGIN MILEAGE FOR CURB CODE COLUMNS 6'10 SOURCE: PHDTCLDG DS F5.2 END MILEAGE FOR CURB CODE COLUMNS 11'15 SCURCE: PHDTCLDG 122 MIDAS ACCIDENT FILE DATA FIELD DESCRIPTION TRAFFIC AND SAFETY OCTOBER 31: 1980 123 TAB FORMAT CODES AND DESCRIPTIONS 01 11 HIGHHAY DISTRICTS H N J U ' S I ' U ‘ O V D G O FIRST DISTRICT ' CRYSTAL FALLS SECOND DISTRICT ' NEHBERRY THIRD DISTRICT ' CADILLAC FOURTH DISTRICT ' ALPENA FIFTH DISTRICT ' GRAND RAPIDS SIXTH DISTRICT SAGTNAH SEVENTH DISTRICT ' KALAMAZOD EIGHTH DISTRICT JACKSON NINTH DISTRICT SOUTHFIELD (METRO) 02 15 HIGHMAY CONTROL SECTION THIS IS A FIVE (5) POSITION CODE: POS. 02'03 THE HIGHNAY DEPARTMENT COUNTY CODE SEE HIGHNAY COUNTY NAME TABLE POS. OA'06 THE UNIQUE TL SEGMENT NUMBER 999 = LOCAL ROAD OR NOT NNOHN 07 IT SEGMENT CODE EACH SEGMENT IS ASSIGNED A NUMBER (SEQUENTIAL BY CONTROL SECTION AND MILEPOINT: UNIQUE MITHIN EACH DISTRICT): LINKING IT TO CORRESPONDING DATA FROM OTHER MIDAS FILES. 1A 12 DATA FLAG Z'DIGIT CODE. THE FIRST DIGIT SPECIFIES ROADHAY AREA TYPE; THE SECOND SPECIFIES DATA RECORD TYPE ( 2 FOR ACCIDENT DATA ) 02 MIDBLOCK 12 INTERSECTION 22 TRUNKLINE'TRUNKLINE INTERSECTION 16 FS.Z MILEPOINT OF ACCIDENT (PHOTOLOG) 21 F5.2 MILEPOINT OF ACCIDENT (MALI) 26 11 HIGHMAY AREA TYPE 1 2 INTERCHANGE AREA (HITHIN RAMP LIMITS) INTERSECTION AREA (NORMALLY NITHIN 100 FT FROM THE INTERSECTION: BUT FARTHER IF THE ACCIDENT IS INTERSECTIDNAL) 3 MIDBLOCK AREA (NON'INTERSECTIONAL AND NDN'INTERCHANGE) A NON'TRAFFIC MOTOR VEHICLE ACCIDENT NOTE: INTERSECTION AREA ALSO INCLUDES CHANNELIZED INTERSECTIDNS 124 TAB FORMAT CODES AND DESCRIPTIONS 27 12 HIGHMAY AREA CODES (SEE HHY ACCIDENT MASTER) 29 11 DAY OF MEEN H N A L ’ I J L ‘ O N SUNDAY MONDAY TUESDAY HEDNESOAY THURSDAY FRIDAY SATURDAY 30 12 HOUR OF DCCURENCE 01 02 03 04 05 06 07 08 09 10 11 MIDNIGHT 1:00 AM 2:00 AM 3:00 AM A:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 12 11:00 AM 13 14 15 16 17 10 19 20 21 22 23 NOON 1:00 PM 2:00 PM 3:00 PM 4:00 PM 5:00 PM 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 2A 11:00 PM 25 NOT KNDHN 32 12 MONTH OF ACCIDENT VALUE 01 THRU 12 3A 12 DAY OF ACCIDENT VALUE 01 THRU 31 1:00 AM 2:00 AM 3:00 AM 5:00 AM 5:00 AM 6:00 AM 7:00 AM 8:00 AM 9:00 AM 10:00 AM 11:00 AM NOON 1:00 PM 2:00 PM 3:00 PM A:00 PM 5:00 PM 6:00 PM 1:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM MTDNITE TC TC TC TC TC TD TC TC TO TC TC TC TC TC TO TC TC TC TO TC It TO TC TC 125 TAB FORMAT CODES AND DESCRIPTIONS 36 12 YEAR OF ACCIDENT LAST THO (2) DIGITS 3B 11 HEATHER CONDITION i - l N A A O b I ' U CLEAR OR CLOUDY FOG RAINING SNOHING OTHER OR NOT KNONN 39 11 LIGHT CONDITION l - I N J U E T J \ DAYLIGHT DAMN DR DUSK DARKNESS ' STREET LIGHTS DARKNESS ' ND STREET LIGHTS NOT KNOHN AD 11 ROAD SURFACE CONDITION - t n r u b DRY NET SNDHY OR ICY OTHER OR NOT KNONN A1 11 ROAD DEFECT I - t N u ‘ J fl L ‘ O V m D V NONE DESTRUCTION (TREE: BARRICADE: ETC) LOOSE MATERIAL ON SURFACE (OIL:SAND:ETC) HOLES: RUTS: BUMPS LON OR SOFT SHOULDER DRIFTING SNCH FROSTY BRIDGE SLIPPERY NHEN MET OTHER OR NOT KNOHN A2 11 'A' INJURIES TOTAL NUMBER OF INCAPACITATING INJURIES A3 I1 'B' INJURIES TOTAL NUMBER OF NONINCAPACITATING INJURIES AA 11 'C' INJURIES ITOTAL NUMBER or POSSIBLE INJURIES 126 TAB FORMAT CODES AND DESCRIPTIONS A5 12 TRAFFIC CONTROL 01 02 03 0A 05 06 07 08 O9 NONE STOP SIGN STOP AND GO SIGNAL TRAFFIC REGULATOR (FLAGMAN: POLICEMAN) FLASHER (INCLUDES RAILROAD FLASHER) YIELD SIGN SCHOOL SPEED ZONE ' WITH LIGHT DR FLASHER NO PASSING ZONE OTHER WARNING SIGN (NO TURN: END FREEWAY: SHARP CORVE:ETC) 10 OTHER OR NOT KNOWN A7 12 SPECIAL TAG (SEE HWY ACCIDENT MASTER) A9 12 ACCIDENT TYPE (MSP) 01 MOTOR VEHICLE DVERTURNED NOTE: 02 THRU D9 INVOLVE COLLISION OF MOTOR VEHICLE WITH: 02 RAILROAD TRAIN 03 DA 05 06 07 08 09 ID PARKED MOTOR VECICLE ANOTHER MOTOR VEFICLE PEDESTRIAN FIXED OBJECT OTHER OBJECT ANIMAL PEDALCYCLE OTHER OR NOT KNOWN NOTE: A SERIES OF COLLISIONS: OVERTURNINGS: ETC. IS TYPED ACCORDING TO THE FIRST EVENT IN THE SERIES. 51 11 ACCIDENT TYPE (HIGHHAY) l - A N D U D T ' U ‘ O N D C O N O HEAD'ON SIDESWIPE ' MEETING SIDESWIPE ' PASSING ANGLE LEFT'TURN RIGHT'TURN REAR'END BACKED INTO PARKING OTHER 52 12 NUMBER OF VEHICLES NO. OF MOVING VEHICLES INVOLVED 127 TAB FORMAT CODES AND DESCRIPTIONS 5A IA DISTANCE FROM CROSSROAD DISTANCE FROM REFERENCE CROSSROAD IN FEET 58 A2 DIRECTION TO/FROM CROSSROAD REPORTED DIRECTION FROM REFERENCE CROSSROAD GD A20 INTERSECTING STREET NAME REPORTED INTERSECTING REFERENCE BD 12 NUMBER OF PERSONS UNINJURED ('D' INJURIES) VALUE OD THRU 99 (INTERNALLY GENERATED BY MALI) 82 12 VEHICLE 1 ' VEHICLE TYPE SUBSCRIPT (INTERNALLY GENERATED BY MALI) 01 02 PASSENGER CAR TRUCK 03 MOTORCYCLE: MOTOR SCOOTER: MOPED: ETC. DA 05 06 0? SCHOOL BUS COMMERCIAL BUS FARM EQUIPMENT CONSTRUCTION EQUIPMENT 08 AMBULANCE: POLICE EQUIPMENT: SNOWMOBILE: DUNE DUNE BUGGY: GO'KART: OTHER MOTOR VEHICLE OR NOT KNOWN O9 PEDESTRIAN OR PEDESTRIAN CDNVEYANCE 10 11 PEDALCYCLE OTHER ROAD VEHICLE EXCEPT PEDACYCLE 8A 12 MAKE ' VEHICLE 1 (SEE HWY ACCIDENT MASTER) 86 12 AGE ' DRIVER 1 ACTUAL AGE 98 99 98 YEARS OR OLDER NOT KNOWN 88 11 RESIDENCE ' DRIVER 1 1 2 3 P J T U IN COUNTRY IN STATE BORDERING STATE (CANADA: ILLINOIS: INDIANA: DRIVERLESS MOVING VEHICLE OTHER OR NOT KNOWN OHIO: WISCONSIN) 128 TAB FORMAT CODES AND DESCRIPTIONS SEX ' DRIVER 1 1 2 MALE FEMALE 9D 11 DEGREE OF INJURY ' DRIVER 1 H N M E - m FATAL INJURY INCAPACITATING INJURY NON'INCAFACITATING INJURY POSSIBLE INJURY NO INJURY 91 12 INTENT ‘ DRIVER 1 01 02 03 04 OS 06 07 08 O9 10 11 12 13 1A 15 16 17 18 GO STRAIGHT AHEAD OVERTAKING OR PASSING CHANGING LANES MAKE RIGHT TURN MAKE LEFT TURN MAKE 'U'TURN SLOWING CR STOPPING ON ROAD STARTING UP ON READ ENTERING PARKING (SIDE OF READ) LEAVING PARKING (SIDE OF READ) BACKING STOPPED CN ROAD PURSUING OR BEING PUPSUED BY POLICE AVOID OBJECT AVOID ANIMAL AVOID PECESTRIAN LOST LOAD FROM VEHICLE AVOID VEHICLE FROM THE SAME DR OPPOSITE DIRECTION 19 AVOID VEHICLE FROM AN ANGLE 20 OTHER OR NOT KNOWN 129 TAB FORMAT CODES AND DESCRIPTIONS 93 12 VIOLATION (HAZARDOUS ACTION) ‘ DRIVER 1 01 NO HAZARDOUS ACTION 02 SPEED TDC FAST (NO SKID MARKS: NO BRAKING ATTEMPT) SPEED TOO SLOW FAILED TO YIELD RIGHT‘OF'WAY: DISREGARDED 03 DA TRAFFIC CONTROL 05 WRONG WAY 06 DROVE LEFT OF CENTER: IMPROPER DVERTAKING OR LANE USAGE 07 08 O9 IMPROPER TURN: IMPROPER OR NO SIGNAL IMPROPER BACKING: UNSAFE START FOLLOWED TDC CLOSE: UNABLE TO STOP IN AN ASSUREC CLEAR DISTANCE (SKID MARKS) 10 OTHER OR NOT KNOWN 95 12 CONTRIBUTING CIRCUMSTANCE 01 DRIVING UNDER THE INFLUENCE OF ALCOHOL OR DRUGS RECKLESS OR CARELESS DRIVING ILL: FATIGUED: INATTENTION FAILED TO CCMPLY WITH LICENCE RESTRICTIONS OBSCURED VISION DEFECTIVE EQUIPMENT (IF CONTRIBUTING) 02 03 DA 05 06 07 LOST CONTROL DUE TO SHIFTING LOAD: WIND: OR VACCUUM 08 NONE 09 SKIDDING 10 OTHER OR NOT KNOWN 97 12 VISUAL OBSTRUCTIDN 1 2 3 NO OBSTRUCTIDN OBSTRUCTIDN WITHIN OR ON THE VEHICLE RELATED PHYSICAL OBSTRUCTIDN AT THE SCENE (PARKED OR MOVING VEHICLE: SHRUBBERY: TREES: BUILDINGS: SIGNS: CROPS: SNOWBANK: EMBANKNENT: HIGHWAY STRUCTURE: BRIDGE: GUARDRAIL: HILLCREST: ETC.) WEATHER CBSTRUCTION (HEAVY RAIN OR SNCW: FOG: SMOKE: ETC.) GLARE OBSTRUCTIDN (SUN: HEACLIGHTS: OTHER LIGHTS:ETC.) OTHER OR NOT KNOWN 130 TAB FORMAT CODES AND DESCRIPTIONS 99 11 DIRECTION OF TRAVEL (BEFORE COLLISION) H N M ‘ I T U ‘ O N D C D A NORTH NORTHEAST EAST SOUTHEAST SOUTH SOUTHWEST WEST NORTHWEST UNKNOWN 100 11 DRINKING OR USE OF DRUGS BY DRIVER 1 2 3 HAD HAD NOT NOT KNOWN 101 12 OBJECT HIT 01 02 NO OBJECT HIT GUARDRIAL: GUARDPDST 03 HIGHWAY SIGN 0A 05 06 STREET LIGHT: UTILITY POLE CULVERT DITCH: EPBANKMENT: STREAM O7 BRIDGE PIER DR AEUTMENT 08 09 10 11 12 13 14 15 15 16 17 18 19 BRIDGE RAIL OR DECK TREE HIGHWAY CR RAILROAD SIGNAL BUILDING MAILBOX FENCE TRAFFIC ISLAND OR CURB (TI'TA) SEPARATED TRAILER OR TOWED UNIT: JACKKNIFE TRAILER (75'ON) CONCRETE MEDIAN BARRIER OTHER ON TRAFFICWAY OBJECT OTHER OFF TRAFFICWAY OBJECT OVERHEAD FIXED OBJECT NOT KNOWN OR NON'MOTOR'VEHICLE UNIT (PEDESTRIAN: PEDALCYCLIST: ETC.) 131 TAB FORMAT CODES AND DESCRIPTIONS 103 11 SITUATION A - t N u b T U N O N REBOUND FROM GUARDRAIL WENT THRU GUARDRAIL WENT INTC MEDIAN WENT THRU MEDIAN HIT OBJECT AFTER INITIAL COLLISION RAN THRU 'T' INTERSECTION NONE OF THE ABOVE OR NON'MOTOR'VEHICLE UNIT (PEDESTRIAN: PEDALCYCLIST: ETC.) 8 HIT 8 RUN (FOR PI AND FATAL ACCIDENTS ONLY) 10A 12 VEHICLE TYPE 106 11 IMPACT CODE O H N J D & ) U ‘ O N G O A NO IMPACT OR ROLLOVER CENTER FRONT RIGHT FRONT RIGHT SIDE RIGHT REAR CENTER REAR LEFT REAR LEFT SIDE LEFT FRONT OTHER IMPACT 107 I1 VEHICLE CONDITION 0 - I N U b DISABLED VEHICLE PUNCTURE OR BLOWCUT CTHER DEFECTIVE EQUIPMENT (BRAKES: LIGHTS: STEERING) NO DEFECT NOT KNOWN DR NON-MOTOR-VEHICLE UNIT (PEDESTRIAN: PEDALCYCLIST: ETC.) 132 TAB FORMAT CODES AND DESCRIPTIONS 108 11 TRAILER u m u b m m N NONE UTILITY TRAILER SINGLE BOTTOM TRUCK COMBINATION DOUBLE BOTTOM TRUCK COMBINATION HOUSE TRAILER OTHER OR NOT KNOWN OR NON'MOTDR'VEHICLE UNIT TOWED VEHICLE (STARTING WITP 1976) 109‘135 VEHICLE NO. 2 DATA SEE VEHICLE NO.1 ITEMS (POSITIONS 82 THRU 108) 136‘162 VEHICLE NO. 3 DATA SEE VEHICLE NO.1 ITEMS (POSITIONS 82 THRU 108) 163 12 NUMBER OF PERSONS KILLED OO THRU AZ (INTERNALLY GENERATED BY MALI) 165 12 NUMBER OF PERSONS INJURED 00 THRU A2 (INTERNALLY GENERATED BY MALI) 167 16 ACCIDENT REPORT NUMBER (MSP) UNIQUE NUMBER ASSIGNED BY MICHIGAN DEPARTMENT STATE POLICE 173 11 TYPE OF TRUCK CARGO BEING TRANSPORTED ' VEHICLE 1 H N W ‘ J W ‘ O 0 0 ‘ COMMERCIAL ' NO CARGO COMMERCIAL 'FLAMMABLE OR EXPLOSIVE' NO CARGO COMMERCIAL 'FLAMMABLE DR EXPLOSIVE' WITH CARGO COMMERCIAL 'GENERAL FREIGHT‘ NON'BULK COMMERCIAL 'GENERAL FREIGHT“ EULK NON‘COMMERCIAL ' (PRIVATE USE: IE.: CAMPEPS: MOTORHOMES: MISCELLANEOUS ARTICLES AND EMPTY) UNKNOWN OR NOT STATED NOT A TRUCK 133 TAB FORMAT CODES AND DESCRIPTIONS 17‘ 11 TRUCK CARGO SPILLAGE ' VEHICLE 1 - p m u b TRUCK CARGO SPILLED TRUCK CARGO DID NOT SPILL SPILLAGE NOT KNOWN NOT A TRUCK 175 11 FUEL LEAKS AND FIRES ‘ VEHICLE 1 2 3 FUEL LEAKED FROM VEHICLE VEHICLE OR CARGO CAUGHT FIRE FUEL LEAKED FROM VEHICLE AND THERE WAS A FIRE A ND VEHICLE FUEL LEAK OR FIRE OCCURED 176 11 CARGO ‘ VEHICLE 2 ' SEE 173 DESCRIPTIONS 177 11 CARGO ' VEHICLE 2 ' SEE 17A DESCRIPTIONS 178 11 LEAK'FIRE ' VEHICLE 2 ' SEE 175 DESCRIPTIONS 179 11 CARGO ' VEHICLE 3 ' SEE 173 DESCRIPTIONS 180 11 CARGO ' VEHICLE 3 ' SEE 17A DESCRIPTIONS 181 11 LEAK'FIRE ‘ VEHICLE 3 ‘ SEE 175 DESCRIPTIONS 182 16 HOURLY TRAFFIC VOLUME (AT TIME OF ACCIDENT) 188 16 2A'HOUR VOLUME TOTAL (FOR DAY OF THE ACCIDENT) 19A 16 AVERAGE DAILY TRAFFIC COUNT 200 IN TRUNKLINE'TRUNKLINE JUNCTION ACCIDENTS ARE OODED TO ONE LEG (CONTROL SECTION). THE FOLLOWING DATA IS THE ORIGINAL MALI LOCATION FOR THE ACCIDENT 201 15 CONTROL SECTION 206 F5.2 MILEPOINT OF ACCIDENT (PHOTOLOG) 211 F5.2 MILEPOINT OF ACCIDENT (MALI) 134 MIDAS SEGMENT/SUM FILE DATA FIELD DESCRIPTION TRAFFIC AND SAFETY OCTOBER 29: 1980 135 TAB FORMAT CODES AND DESCRIPTIONS 01 I1 HIGHWAY DISTRICTS b - o N u b ‘ U ‘ G N G O FIRST DISTRICT ' CRYSTAL FALLS SECOND DISTRICT ' NEWBERRY THIRD DISTRICT ' CADILLAC FOURTH DISTRICT ‘ ALPENA FIFTH DISTRICT ‘ GRAND RAPIDS SIXTH DISTRICT ‘ SAGINAW SEVENTH DISTRICT ' KALAMAZOO EIGHTH DISTRICT ' JACKSON NINTH DISTRICT ‘ SOUTHFIELD (METRO) 02 15 HIGHWAY CONTROL SECTION 07 17 SEGMENT CODE EACH SEGMENT IS ASSIGNED A NUMBER (SEQUENTIAL BY CONTROL SECTION AND MILEPOINT: UNIQUE WITHIN EACH DISTRICT): LINKING IT TO CORRESPONDING DATA FROM OTHER MIDAS FILES. 1A 12 DATA FLAG Z‘DIGIT CODE. THE FIRST DIGIT SPECIFIES ROADWAY AREA TYPE; THE SECOND SPECIFIES DATA RECORD TYPE (0 FOR SEGMENT DATA) 00 MIDBLOCK 10 INTERSECTION 20 TRUNKLINE‘TRUNKLINE INTERSECTION 16 F5.2 BEGINNING MILEPOINT OF MIDBLOCK (PHOTOLOG) OR MILEPOINT OF INTERSECTION (PHOTOLOG) 21 F5.2 ENDING MILEPOINT OF MIDBLOCK (PHOTOLOG) OR MILEPOINT OF INTERSECTION (PHOTOLOG) 26 IZ LANEAGE CODE 01 02 2 LANE Z'WAY 3 LANE Z‘WAY 03 A LANE Z'WAY 0A 05 5 LANE Z’WAY 6 LANE Z'WAY 06 7 LANE 2-WAY 07 08 09 10 11 12 13 2 LANE I'WAY 3 LANE I'WAY A LANE 1-WAY A LANE DIVIDED 6 LANE DIVIDED 8 LANE DIVIDED OTHER 136 TAB FORMAT CODES AND DESCRIPTIONS 28 12 LANE WIDTH (MEASURED WIDTH IN FEET) 3D 12 SHOULDER NIDTH 00 DA 08 10 12 CURB D ‘ A FT A ‘ 8 FT 8 ‘ 10 FT 10 " 12 FT COLUMNS 32'A8 CONTAIN HORIZONTAL CURVE DATA 32 13 DELTA ANGLE ' DEGREES 35 12 DELTA ANGLE ' MINUTES 37 11 CURVE CODE 1 2 RIGHT CURVE LEFT CURVE 38 12 DEGREE OF CURVE ' DEGREES AD 12 DEGREE OF CURVE ' MINUTES A2 12 BEARING CODE 01 NORTH 02 03 SOUTH EAST DA WEST AA 12 BEARING ' DEGREES A6 12 BEARING ' MINUTES A8 11 BEARING CODE (SEE CODING FOR TAB A2) A9 12 ACTIVITY DENSITY 1 2 3 RURAL STRIP‘FRINGE URBAN 51 12 NO PASSING ZONE 0 1 PASSING ALLOWED NO PASSING ZONE 137 TAB FORMAT CODES AND DESCRIPTIONS 53 12 TRUCKLANES 0 1 NO TRUCKLANE TRUCKLANE 55 12 SPEED LIMIT (MILES PER HOUR) 57 11 DIRECTION ' TRUNKLINE APPROACH LEG 1 2 3 a 5 6 7 8 9 O NORTH NORTHEAST EAST SOUTHEAST SOUTH SOUTHWEST WEST NORTHWEST UNKNOWN BEGINNING OF CONTROL SECTION 58 11 DIRECTION ' TRUNKLINE DEPARTURE LEG 1‘9 (SEE CODING FOR TAB 57) O END OF CONTROL SECTION COLUMNS 59 ' 152 CONTAIN DATA FOR INTERSECTIONS 59 F5.2 BEGINNING MILEPOINT OF INFLUENCE AREA (PHOTOLOG) 6A F5.2 ENDING MILEPOINT OF INFLUENCE AREA (PHOTOLOG) 69 12 SIGNAL CODE 0 1 2 3 UNKNOWN NO SIGNAL FLASHER SIGNAL 71 12 INTERSECTION TYPE O H N I U ‘ O N O @ UNKNOWN CROSS TEE OFFSET (50 FT OR LESS) WYE OTHER FWY CENTERLINE WHERE RAMPS ARE PRESENT DIRECTIONAL CROSS'OVER 138 TAB FORMAT CODES AND DESCRIPTIONS 73 12 NUMBER OF LEGS OF INTERSECTION 75 12 NUMBER OF AUXILLARY LANES ' RIGHT SIDE 77 12 NUMBER OF AUXILLARY LANES ‘ LEFT SIDE 79 12 ND TURN ON RED 0 1 ALL TURNS ALLOWED NO TURN ON RED 81 12 LEFT TURN CODE 0 1 2 NO LEFT TURN CONTROL LEFT TURN PHASE NO LEFT TURN 83 12 ALL RED CLEARANCE PHASE 0 1 NO ALL RED CLEARANCE PHASE ALL RED CLEARANCE PHASE 85 12 TRUNKLINE ' TRUNKLINE JUNCTION D 1 TRUNKLINE ' CROSSROAD INTERSECTION TRUNKLINE ' TRUNKLINE JUNCTION COLUMNS 87 ‘ 98 ARE BLANK'FILLED FOR INTERSECTIONS WITH NO LEFT TURN CONTROL 87 11 TRUNKLINE APPROACH LEG ' DIRECTION CODE (SEE CODING FOR TAB 57) 88 11 TRUNKLINE APPROACH LEG ‘ LEFT TURN PROHIBITION O 1 2 NO PROHIBITION PARTIAL PHOHIBITIDN FULL PROHIBITION 89 11 TRUNKLINE APPROACH LEG ‘ LEFT TURN PHASE 0 1 2 3 A 5 6 7 8 NO LEFT TURN PHASE EXCLUSIVE LEFT TURN LAG " ' ' " ' ' " ' ' LEAD LAG WITHRU MOVEMENT LEAD WITHRU MOVEMENT LEFT TURN PHASE W/THPU MOVEMENT (3 PHASE) ACTUATED WITHRU MOVEMENT (8 PHASE:ETC.) NO LEFT TURN LEFT TURN WITHRU MOVEMENT 139 TAB FORMAT CODES AND DESCRIPTIONS 90 II TRUNKLINE DEPARTURE LEG - DIRECIION CODE (SEE CODING FOR TAB 57) 91 II TRUNKLINE DEPARIORE LEG - LEFT IURN PROHIOIIION (SEE CODING FUR TAB ea) 92 II TRUNKLINE DEPAHIORE LEG - LEFT TURN PHASE (SEE CODING FOR TAB a9) 93 II CROSSROAD APPROACH - DIRECIION CODE (SEE CODING FOR TAB 57) 9A II CROSSROAD APPROACH - LEFT TURN PROHIOIIION (SEE CODING FOR TAB ea) 95 11 CROSSROAD APPROACH - LEPI TURN PHASE (SEE CODING FDR TAB e9) 96 11 CROSSROAD DEPAPIORE - DIRECTION CODE (SEE CODING FOR TAB 57) 97 11 CROSSROAD DEPARTURE - IErI TURN PROHIOIIION (SEE CODING FOR TAB ea) 98 II CROSSROAD DEPARIOHE - LEFT TURN PHASE (SEE CODING FOR TAB 89) 99 A12 TRUNKLINE ENGLISH DESCRIPIIDN 111 AAZ CROSSROAD/TOHNSHIPICOUNTY ENGLISH DESCRIPTION 140 TAB FORMAT CODES AND DESCRIPTIONS COLUMNS 153'2A8 CONTAIN A SUMMARY OF ACCIDENT ACTIVITY (197A‘1978) AND VOLUME DATA FOR THE SEGMENT. COLUMNS 153 ' 205 MULTIPLE VEHICLE ACCIDENTS COLUMNS 23A ' 2A8 ONE VEHICLE ACCIDENTS 153 I3 NUMBER OF ACCIDENTS " HE AD‘ON 156 13 NUMBER OF ACCIDENTS SIDESNIPEIMEETING 159 13 NUMBER OF ACCIDENTS SIDESNIPEIPASSING 162 I3 NUMBER OF ACCIDENTS ANGLE 165 I3 NUMBER OF ACCIDENTS LEFT TURN 168 13 NUMBER OF ACCIDENTS RIGHT TURN 171 13 NUMBER OF ACCIDENTS REAR END 17A 13 NUMBER OF ACCIDENTS BACKED INTO 177 I3 NUMBER OF ACCIDENTS PARKING 180 I3 NUMBER OF ACCIDENTS OTHER 183 IA TOTAL NUMBER OF ACCIDENTS 187 I3 NUMBER OF ACCIDENTS ' NET 190 13 NUMBER OF ACCIDENTS ' ICY 193 13 NUMBER OF ACCIDENTS ' DARK 196 IA TOTAL NUMBER OF ACCIDENTS 200 13 TOTAL INJURY ACCIDENTS 203 13 TOTAL FATAL ACCIDENTS 141 TAB FORMAT CODES AND DESCRIPTIONS 206 I6 ROADWAY CAPACITY 212 16 AVERAGE DAILY TRAFFIC (COMPUTED FOR A SUNDAY IN JANUARY: 1976) 218 16 AVERAGE I‘HOUR TRAFFIC VOLUME (OF COMPUTED HOURLY VOLUMES OF ALL ACCIDENTS) 22A F5.2 BEGINNING MILEPOINT OF MIDBLOCK (MALI) MILEPOINT OERINTERSECTIDN (MALI) 229 F5.2 ENDING MILEPOINT OF MIDBLOCK (MALI) MILEPOINT OF INTERSECTION (MALI) DR 23A I3 NUMBER OF ACCIDENTS PEDESTRIAN 237 13 NUMBER OF ACCIDENTS FIXED OBJECT 2A0 I3 NUMBER OF ACCIDENTS BIKE 2A3 13 NUMBER OF ACCIDENTS PARKED VEHICLE 2A6 I3 NUMBER OF ACCIDENTS ' OTHER 2A9 13 CELL NUMBER FOR SEGMENT 252 11 OUTLIER CODE FOR SEGMENT 0 NOT SIGNIFICANT > D OUTLIER 142 APPENDIX B Variable Structured Cells CELLS FOR INTERSECTIONAL SEGMENTS 143 CELL 1 2 LANE 2‘WAY 13068 ND SIGNAL 12613 I I"' SPEED 25 226 I"' A AUX L I"‘ I AUX L I I I I"‘ SPEED 30 777 l"‘ I AUX L I"' A AUX L I"' I AUX L I I I I I"' SPEED 35 838 I"' # AUX L I"‘ A AUX L I"' A AUX L I I I I I"' SPEED A0 588 I"' t AUX L I"' l AUX L I"' I AUX L I I I I I"' SPEED A5 8A3 I"' I AUX L I"‘ l AUX L I"' A AUX L I I I I I"' SPEED 50 A86 I I I I"' l AUX L I"' I AUX L I"' A AUX L D 2 0 1 2 D 1 2 0 1 2 0 1 2 0 1 2 225 1 772 3 2 835 2 1 585 1 2 81A 18 11 A78 7 1 CELL CELL CELL CELL CELL CELL CELL CELL 1 2 2 3 3 A A 5 CELL 5 CELL '6 CELL 6 144 CELL 7 2 LANE 2'WAY 13068 NO SIGNAL 12613 I I"' SPEED 55 8855 I“' A AUX L I"' A AUX L I"‘ A AUX L 0 1 2 8796 50 9 CELL CELL 7 8 FLASHER I I I I 30A I"‘ SPEED 25 16 I I I I"‘ A AUX L I"' A AUX L I"' SPEED 30 26 I I I I"' A AUX L I“" A AUX L I"‘ SPEED 35 25 0 1 O 2 13 3 25 1 CELL CELL 8 9 I I I"‘ A AUX L 0 25 l“‘ SPEED 40 18 I I I I"‘ A AUX L I"' A AUX L O 2 17 1 I"‘ SPEED A5 21 CELL 9 CELL 10 I I I"‘ A AUX L 0 21 I"' SPEED 50 22 I I I I"' A AUX L I"' A AUX L I"' SPEED 55 176 I I I I"' A AUX L I"‘ A AUX L I“‘ A AUX L 0 1 0 1 2 21 1 167 5 A CELL 10 145 CELL 11 2 LANE 2'WAY 13068 SIGNAL 151 I I"' SPEED 25 18 I I I I"‘ A AUX L I"' A AUX L I"' SPEED 30 A5 CELL 11 CELL 12 I I I I I"' A AUX L I"' A AUX L I"' A AUX L I"' SPEED 35 13 I I I I I“‘ A AUX L I"' A AUX L I"' A AUX L I"' SPEED A0 9 I I I I"' A AUX L I"' A AUX L I"‘ SPEED A5 18 CELL 12 CELL 13 I I I I"' A AUX L I"' A AUX L I"' SPEED 50 12 I I I I I"' A AUX L I"' A AUX L I"' A AUX L I"' SPEED 55 36 I I I I"' A AUX L I"' A AUX L I"' A AUX L CELL 13 O 2 0 1 2 0 1 2 0 2 0 2 0 1 2 0 1 2 17 1 36 2 7 11 1 1 8 1 7 11 A 3 5 26 A 6 146 CELL 14 3 LANE 2'WAY 381 NO SIGNAL 3A0 I .--- SPEED 25 42 CELL 1A CELL 15 CELL 15 CELL 16 CELL 16 CELL 17 I I I I .--- SPEED 30 A6 I I I I '--- SPEED 35 66 I I I I '--- SPEED 40 21 I I I I '--- SPEED 45 66 CELL 17 CELL 18 I I I I 'c-. SPEED 50 15 I I I I '--- SPEED 55 8A I I I CELL 18 147 A AUX A AUX A AUX L L L A AUX A AUX A AUX L L L A AUX A AUX A AUX L L L A AUX A AUX A AUX A AUX A AUX A AUX A AUX A AUX A AUX A AUX A AUX A AUX L L L L L L L L L L L L 0 1 2 D I 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 32 A 6 39 3 A 44 13 9 16 3 2 42 19 5 13 1 1 72 9 3 CELL 19 3 LANE Z'HAY 381 FLASHER 9 I I"‘ SPEED 25 1 I I I"' A AUX L O I"' SPEED 35 A I I I I"‘ A AUX L I"' A AUX L I“‘ SPEED 55 A I"' A AUX L I"' A AUX L CELL 19 CELL 20 SIGNAL I I I 32 I"' SPEED 25 9 I I I I I"’ A AUX L I"‘ A AUX L I"‘ A AUX L I"‘ SPEED 30 5 I I I 1"- A AUX L I"' A AUX L I"‘ SPEED 35 6 I I I I"' A AUX L I"' A AUX L I"' SPEED A5 A I I I I"' A AUX L I"' A AUX L O 2 O 2 O 1 2 O 2 D 2 0 2 I-" SPEED 50 2 I I I"' A AUX L 2 I"' SPEED 55 6 I I I I"‘ A AUX L I"‘ A AUX L I"' A AUX L O 1 2 CELL 20 1 1 3 2 2 6 1 2 3 2 A 2 1 3 2 3 1 2 148 CELL 21 A LANE Z'HAY 3184 NO SIGNAL 2708 I I“‘ SPEED 25 123 I"’ A AUX L l"' A AUX L O 1 120 3 I I I I"' SPEED 30 537 I"' A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED 35 793 I"' A AUX L I"‘ A AUX L I"‘ A AUX L I I I I I"‘ SPEED 40 370 I"‘ A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED A5 351 I"' A AUX L I"' A AUX L I“' A AUX L I I I I I"' SPEED 50 102 I I I"' A AUX L I"' A AUX L 0 1 2 O 1 2 0 1 2 O 1 2 O 2 513 5 19 765 16 12 36A 3 3 321 17 13 101 1 CELL 21 CELL 22 CELL 22 CELL 23 CELL 23 CELL 2A CELL 2A CELL 25 CELL 25 CELL 26 CELL 26 149 CELL 27 A LANE 2'HAY 318A ND SIGNAL 2708 I I"' SPEED 55 A32 I"' A AUX L I"‘ A AUX L l"' A AUX L CELL 27 CELL 28 FLASHER I I I I 65 I"' SPEED 25 8 I l I I 1"“ A AUX L I"' A AUX L I"' A AUX L 0 1 2 0 1 2 A05 14 13 6 1 1 I"' SPEED 30 12 I I 1"- A AUX L 0 12 I‘-‘ SPEED 35 13 I I I I"' A AUX L I"‘ A AUX L I"’ SPEED 40 11 I I I I"' A AUX L I"' A AUX L O 1 O 1 12 1 10 1 I"‘ SPEED A5 7 I I I"' A AUX L O 7 I"‘ SPEED 55 1A I"' A AUX L I"' A AUX L D 1 13 1 CELL 28 CELL 29 SIGNAL I I I All I"' SPEED 25 AA I I I I"‘ A AUX L I"' A AUX L I"' A AUX L 0 1 2 A1 1 2 CELL 29 150 CELL 30 A LANE Z'NAY 318A SIGNAL All I I--- SPEED 30 132 I--- I aux L I--- I--- I aux L I aux L I I I I I--- SPEED 35 100 I--- I aux L I--- I aux L I--- I aux L I I I I I--- SPEED A0 30 I--- I--- I aux L I aux L I--- I aux L I I I I I--- SPEED AS AA I--- I aux L I--- I aux L I--- I aux L I I I I I--- SPEED so 13 I I I I I--- I aux L I--- I aux L I--- I aux L I--- SPEED 55 A8 I I I I--- I aux L I--- I aux L I--- I aux L o 1 2 o 1 2 o 1 2 o 1 2 o 1 2 o 1 2 102 s 25 76 10 IA 21 A 5 25 3 16 9 1 3 35 e 7 CELL 30 CELL 31 CELL 31 CELL 32 CELL 32 CELL 33 CELL 33 CELL 3A CELL 3a 151 CELL 35 5 LANE Z‘NAY 1259 ND SIGNAL 975 I I"‘ SPEED 25 30 CELL 35 CELL 36 CELL 36 CELL 37 CELL 37 CELL 38 CELL 38 CELL 39 CELL 39 CELL AD CELL A0 I"‘ A AUX L I"‘ A AUX L l"' A AUX L I I I I I"' SPEED 30 102 I"’ A AUX L I"' A AUX L I"‘ A AUX L I I I I I"‘ SPEED 35 199 I'-' A AUX L I"’ A AUX L I"' A AUX L I I I I I“' SPEED A0 166 I"' A AUX L I"' A AUX L I"' A AUX L I I I I I'-' SPEED A5 201 I"' A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED 50 90 I I I I"‘ A AUX L I"‘ A AUX L I"‘ A AUX L 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 O 1 2 15 7 8 16 50 36 A2 87 7O 78 58 30 8A 8A 33 11 55 24 152 CELL 41 5 LANE z-HAY 1 259 N0 SIGNAL 975 I ‘o.. SPEED 55 187 I"‘ A AUX L I"' A AUX L I"' A AUX L 0 1 2 71 69 A7 CELL 4! CELL 42 FLASHER I I I I 12 '1.-- SPEED 35 1 I I l"' A AUX L 1 '1.-- SPEED AS 2 I I I I"' A AUX L I"‘ A AUX L 0 2 '--- SPEED 50 1 I I I"‘ A AUX L 2 |--- SPEED 55 8 I"' A AUX L I"' A AUX L I"' A AUX L CELL A2 CELL A3 SIGNAL I I I I 272 'u.. SPEED 25 19 I"' A AUX L I"' A AUX L I"‘ A AUX L I I I I '--- SPEED 30 A8 I I I I"' A AUX L I“' A AUX L I"' A AUX L CELL A3 CELL AA CELL AA O 1 2 0 1 2 0 1 2 1 1 1 1 2 1 5 8 1 10 2 15 31 153 CELL A5 5 LANE Z'HAY 1259 SIGNAL 272 I I"‘ SPEED 35 52 I"' A AUX L I"' A AUX L l"‘ A AUX L I I I I I"‘ SPEED A0 A9 I"' A AUX L I"' A AUX L I"’ A AUX L I I I I I"' SPEED A5 A7 I"' A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED 50 27 I--- A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED 55 30 I I I I"' A AUX L I"' A AUX L I--- A AUX L 0 1 2 O 1 2 O 1 2 0 1 2 0 1 2 5 A A3 9 5 35 9 A 3A 1 5 21 1A 1 15 CELL A5 CELL A6 CELL A6 CELL A7 CELL A7 CELL A8 CELL A8 CELL A9 CELL A9 154 CELL 50 6 LANE Z’NAY 37 ND SIGNAL 23 I I--- SPEED 25 1 I I I--- I aux L o I--- SPEED 30 3 I I I I--- I aux L I--- I aux L I--- SPEED 35 16 I I I I I--- I aux L I--- I aux L I--- I aux L o 2 o I 2 I--- SPEED AS 1 I I I--- I aux L o I--- SPEED 55 2 I--- I aux L I--- I aux L o 2 CELL so CELL 51 SIGNAL I I I 1A I--- SPEED 25 5 I I I--- I aux L o I--- SPEED 35 3 I I I--- I aux L 2 I--- SPEED A0 I I I I--- I AUX L o I--- SPEED so 1 I I I--- I aux L o I--- SPEED 55 A I I--- I aux L 2 CELL 51 I 2 I 5 10 1 1 I I s 3 I I A 155 CELL 52 7 LANE Z‘NAY A57 ND SIGNAL 336 I I"' SPEED 30 53 CELL 52 CELL 53 CELL 53 CELL 5A I"' A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED 35 239 I"‘ A AUX L I"‘ A AUX L I"' A AUX L I I I I I"‘ SPEED 40 22 I I I I I"' A AUX L I"‘ A AUX L I"' A AUX L I"' SPEED A5 20 I I I I I"' A AUX L I"‘ A AUX L I"' A AUX L 0 1 2 O 1 2 0 1 2 O 1 2 2 32 19 7 160 72 2 10 10 3 16 1 I"' SPEED 55 2 I I"‘ A AUX L 0 2 CELL 5A 156 CELL 55 7 LANE Z'HAY A57 SIGNAL 121 I I"‘ SPEED 25 3 I I I I"' A AUX L I"' A AUX L I“‘ SPEED 30 25 CELL 55 CELL 56 CELL 56 CELL 57 I"‘ A AUX L I"‘ A AUX L I"' A AUX L I I I I I"' SPEED 35 68 I"' A AUX L I"‘ A AUX L l"' A AUX L I I I I I"' SPEED A0 8 I I I l"' A AUX L I‘-' A AUX L I"' SPEED A5 13 I I I I I"‘ A AUX L I"' A AUX L I“' A AUX L 1 2 0 1 2 0 1 2 0 2 O 1 2 I"' SPEED 50 1 I I I"‘ A AUX L 2 I"' SPEED 55 3 I I"' A AUX L 1 CELL 57 1 2 1 11 13 10 19 39 2 6 A 2 7 1 3 157 CELL sa 2 LaNE l-HAY 189 ND SIGNAL 163 I I"' SPEED 25 19 I I I I"‘ A AUX L I"' A AUX L I"' SPEED 30 5A I"' A AUX L I"‘ A AUX L I I I CELL 58 CELL 59 CELL 59 CELL 60 CELL 60 0 1 O 1 18 1 53 1 I"' SPEED 35 28 I I I"' A AUX L 0 28 I"‘ SPEED A0 15 l"' A AUX L O 15 I I I"‘ SPEED 55 A7 I I I"‘ A AUX L I"' A AUX L 0 1 A5 2 158 CELL 61 2 LANE I'NAY 189 FLASHER 1 I I"' SPEED 25 1 l"' A AUX L O 1 CELL 61 CELL 62 SIGNAL I I 25 I"' SPEED 25 1 I I I-“ A AUX L O 1 I"' SPEED 30 10 I I I"‘ A AUX L O 10 I"‘ SPEED 35 7 I I I I"' A AUX L I"' A AUX L 0 1 I"' SPEED 55 7 I I"' A AUX L 0 6 1 7 CELL 62 159 CELL 63 3 LANE l‘NAY 578 ND SIGNAL AA9 I I--- SPEED 25 12 I I I I I--- I aux L I--- I aux L I--- I aux L I--- SPEED 30 I39 CELL 63 CELL SI I I I I I--- I aux L I--- I aux L I--- I aux L I--- SPEED 35 195 I I I I--- I aux L I--- I aux L o 1 2 o 1 2 D l a 1 3 136 2 1 191 5 I--- SPEED A0 18 I I I--- I aux L o 18 I--- SPEED I5 8 o I D I I I 73 3 I--- I qu L I--- I aux L I I I I--- SPEED 55 76 I--- I aux L I--- I aux L I I I 2 I--- SPEED 55 2 I I--- I aux L o 2 CELL 6A CELL 65 CELL 65 CELL 66 FLASHER CELL 66 160 CELL 67 3 LANE 1‘NAY 578 SIGNAL 127 I I"‘ SPEED 25 10 I I I I I"' A AUX L I"' A AUX L I"' A AUX L I"' SPEED 30 A5 CELL 67 CELL 68 I I I I"' A AUX L I"' A AUX L I"' SPEED 35 A2 I I I I"' A AUX L I"' A AUX L I"' SPEED A0 3 I I I I"' A AUX L I"‘ A AUX L I"' SPEED 45 2 0 1 2 0 1 O 1 O 2 I"' A AUX L 0 I I 8 1 1 A1 A 39 3 2 1 2 CELL 68 CELL 69 CELL 69 I"‘ SPEED 55 25 I I I"' A AUX L I"' A AUX L 0 1 2A 1 161 CELL 70 A LANE 1‘HAY 168 ND SIGNAL 11A I '--- I I SPEED 25 3 AUX '--- SPEED 30 2A I I '--- SPEED 35 A5 I I '--- SPEED A0 2 3 I I AUX 24 AUX A5 AUX 23 '--- SPEED A5 1 I I AUX '--- SPEED 55 1 8 CELL 7O CELL 71 FLASHER I I 2 A AUX L 0 18 I--- SPEED 30 2 I A AUX L 0 2 CELL 71 CELL 72 162 CELL 72 A LANE I‘NAY 168 SIGNAL 52 N N O N O H O H SPEED 25 SPEED 15 SPEED 35 19 SPEED A0 SPEED 55 AUX AUX AUX AUX AUX AUX AUX AUX AUX CELL 72 163 CELL 73 A LANE DIV 893 ND SIGNAL 735 I I"' SPEED 30 61 CELL 73 CELL 74 CELL 7A CELL 75 CELL 75 CELL 76 CELL 76 CELL 77 CELL 77 CELL 78 CELL 78 I"‘ A AUX L I"' A AUX L I"' A AUX L I I I I I"‘ SPEED 35 A9 I"' A AUX L I"‘ A AUX L I"‘ A AUX L I I I I I"' SPEED 40 36 I"' A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED A5 122 I"' A AUX L I"' A AUX L I"‘ A AUX L I I I I I"' SPEED 50 57 I"' A AUX L I“' A AUX L I"' A AUX L I I I I I"' SPEED 55 410 I I I I--- A AUX L I"' A AUX L I"' A AUX L 0 1 2 0 1 2 0 1 2 O 1 2 O 1 2 0 1 2 AA 7 10 39 6 A 27 8 1 100 21 1 41 14 2 366 27 17 164 CELL 79 A LANE DIV 893 FLASHER SPEED 35 SPEED AD SPEED 45 SPEED 50 SPEED 55 28 AUX AUX AUX AUX AUX AUX - I - r - AUX r AUX O H O ‘ - I N CELL 79 165 CELL 80 4 LANE DIV 893 SIGNAL 121 CELL CELL 81 CELL 81 CELL 82 CELL 82 SPEED 30 18 SPEED 35 16 A A A A A A AUX AUX AUX AUX AUX AUX 40 11 SPEED I5 22 SPEED 50 14 SPEED 55 AD AUX AUX AUX AUX AUX AUX AUX AUX AUX AUX AUX AUX L L L L L L L L L L L L L L L L L L O 1 2 O 1 2 0 1 2 O 1 2 0 1 2 O 1 2 n I a I ~ “ H N 13 4 5 . . . y 17 18 166 CELL 83 6 LANE DIV 530 ND SIGNAL 438 I I--- SPEED 30 9 I I I"' A AUX L I"' A AUX L I"' SPEED 35 173 I“' A AUX L I'-' A AUX L I"’ A AUX L I I I I I"' SPEED 40 56 I"' A AUX L I"' A AUX L I"' A AUX L I I I I I"' SPEED 45 133 I"' A AUX L I"‘ A AUX L I I I I"' SPEED 50 25 I"' A AUX L I"‘ A AUX L I"‘ A AUX L I I I I I"' SPEED 55 42 I I I"' A AUX L I"’ A AUX L 0 1 O 1 2 0 1 2 0 1 O 1 2 O 1 8 1 147 18 8 44 3 9 92 41 17 7 1 38 A CELL 83 CELL 84 CELL 8A CELL 85 CELL 85 CELL 86 CELL 86 CELL 87 CELL 87 167 CELL 88 6 LANE DIV 530 FLASHER 1 I I"' SPEED 50 1 I"' A AUX L O 1 CELL 88 CELL 89 SIGNAL I I 91 I"‘ SPEED 30 7 I I I I"' A AUX L I"' A AUX L I"' SPEED 35 3D I I I I I"’ A AUX L I"' A AUX L I"' A AUX L I"‘ SPEED 40 16 CELL 89 CELL 90 I I I I I"' A AUX L I"‘ A AUX L I"‘ A AUX L I"' SPEED 45 20 I I I I"' A AUX L I"- A AUX L I"' SPEED 50 2 I I I I"' A AUX L I"‘ A AUX L I"' SPEED 55 16 I I I I"‘ A AUX L I"' A AUX L I"' A AUX L CELL 90 D 2 0 1 2 0 1 2 D 1 O 2 0 1 2 6 1 19 3 8 9 2 5 8 12 1 1 14 1 1 168 CELL 91 8 LANE DIV 799 ND SIGNAL 640 I I“‘ SPEED 30 1 I I I"' A AUX L O 1 I"' SPEED 35 52 I"' A AUX L I"' A AUX L I I I I"' SPEED 40 328 I"' A AUX L I"' A AUX L I I I I"' SPEED 45 198 I"‘ A AUX L I“' A AUX L I"‘ A AUX L I I I I I"' SPEED 50 41 I I I I I“' A AUX L I"' A AUX L I"‘ A AUX L I"' SPEED 55 20 I I I"‘ A AUX L I"' A AUX L O 1 O 1 O 1 2 0 1 2 0 1 48 4 210 118 165 32 1 32 7 2 18 2 CELL 91 CELL 92 CELL 92 CELL 93 CELL 93 CELL‘ 94 CELL 9A 169 CELL 95 8 LANE DIV 799 FLASHER 2 I I"' SPEED 45 1 I I I"' A AUX L O I"' SPEED 50 1 I--- A AUX L 0 CELL 95 CELL 96 SIGNAL I I 157 I"' SPEED 25 1 I I I"' A AUX L O I"‘ SPEED 30 3 I I I"' A AUX L O I"' SPEED 35 15 1 1 1 3 I I I"' A AUX L O 15 I"’ SPEED 40 71 CELL 96 CELL 97 I I I I I"‘ A AUX L I"' A AUX L I"' A AUX L I"' SPEED 45 44 I I I I I“' A AUX L I"‘ A AUX L I"' A AUX L I“’ SPEED 50 18 I I I I I"' A AUX L I“' A AUX L I"‘ A AUX L 0 1 2 0 1 2 O 1 2 I"‘ SPEED 55 5 I I"' A AUX L O CELL 97 20 41 10 33 9 2 11 3 A 5 170 CELL 98 OTHER 408 ND SIGNAL 286 I I"‘ SPEED 30 29 CELL 98 CELL 99 CELL 99 CELL 100 CELL 100 CELL 101 I"' A AUX L I"‘ A AUX L I“' A AUX L I I I I I"‘ SPEED 35 137 I"‘ A AUX L I"‘ A AUX L I"' A AUX L I I I I I"‘ SPEED 40 34 I"' A AUX L I“' A AUX L I I I I"' SPEED 45 81 I I I I I"' A AUX L I"' A AUX L I"' A AUX L 0 1 2 0 1 2 0 1 0 1 2 8 15 6 11 79 A7 30 A 57 23 1 I"' SPEED 55 5 I I"' A AUX L O 5 CELL 101 171 CELL 102 OTHER 408 SIGNAL 122 SPEED 25 14 I"' A AUX L I“' A AUX L I"' A AUX L SPEED 30 29 I"‘ A AUX L I"' A AUX L I"' A AUX L SPEED 35 44 I"' A AUX L I“' A AUX L I'-' A AUX L SPEED 40 11 I"‘ A AUX L I“" A AUX L SPEED 45 17 I"' A AUX L I"' A AUX L SPEED 55 7 I“' A AUX L I“' A AUX L 0 1 2 O 1 2 0 1 2 D 1 O 1 0 1 10 2 2 4 14 11 13 9 22 7 A 14 3 6 1 CELL 102 CELL 103 CELL 103 CELL 104 CELL 104 172 CELLS FOR NONINTERSECTIONAL SEGMENTS 173 2 LANE Z'HAY 22882 SPEED 25 187 I I"' LN HIDTH 10 38 I"' SH HICTH I"- SH HIDTH I"' SH HICTH C 4 8 I-“ SH HICTH 1C I"' SH NICTH 12 16 2 9 10 1 I I I I I I I"' LN HIDTP 11 20 I"‘ SH NIDIH I"' SH HIDTH 0 8 I"' SH NIDTH 10 16 1 3 I I I I I"‘ LN HIDTH 12 129 I I I I I I"‘ SH HIDTH I"' SH NICIH I"‘ SH NIDTH I"' SH NICTH I"' SH NICIH C 4 8 1C 12 100 10 10 5 4 CELL CELL CELL CELL 1 2 2 3 CELL 3 174 CELL 4 SPEED 30 701 I"' LN HIDTH 10 70 CELL CELL CELL CELL CELL CELL CELL CELL CELL CELL 4 5 5 6 6 7 7 8 8 9 CELL 9 CELL 10 CELL 10 CELL 11 CELL 11 I"‘ SH HICTH 0 21 I"' SH HICTH I"' SH NICTH 4 8 I"' SH HICTH 10 I"' SH HIDTH 12 8 33 7 1 I I I I I I I"’ LN HIDTH 11 142 I"' SH HIDTH 0 46 I"' SH HIDTH 8 37 I"' SH HICTH 10 59 I I I I I"' LN HIDTH 12 489 I I I I I I"' SH NICTH 0 398 I“' SH HICTH I"‘ SH HICTH 4 8 7 36 I"' SH NIDTH I"‘ SH NICIH 10 12 46 2 175 CELL 12 SPEED 35 932 I"' LN NIDTH 10 168 CELL 12 CELL 13 CELL 13 CELL II CELL 14 CELL 15 CELL 15 CELL 16 CELL 16 CELL I7 CELL I7 CELL 18 CELL 18 CELL I9 CELL l9 CELL 20 CELL 20 I--- SH HICTH D 23 I--- SH NIDTH I--- SH NICTH 4 a I--- SH NICIH I--- SH HIDTH 10 12 18 75 50 2 I I I I I I I--- LN NIDTP 11 320 I--- SH HIDTH o 42 I--- SH HIDTH I--- SH NICTH 4 a 9 115 I--- SH HIDTH I--- SH HICTH ID 12 143 11 I I I I I I I--- LN HIDTH 12 III I I I I I I--- SH HICIH o 237 I--- SH HIDTH I--- SH NICTH 4 a II 64 I--- SH HIDTH I--- SH NIDIH 10 12 121 8 176 CELL 21 SPEED 40 907 I I"' LN HIDTH 10 206 CELL 21 CELL 22 CELL 22 CELL 23 CELL 23 CELL 24 CELL 24 CELL 25 CELL 25 CELL 26 CELL 26 CELL 27 CELL 27 CELL 28 CELL 28 CELL 29 CELL 29 CELL 30 CELL 30 I"‘ SH NIDIH 0 7 I"‘ SH HICTH 4 36 I"' SH NIDTH 8 102 I"‘ SH HIDIH I"' SH HIDIH 10 12 52 9 I I I I I I I"' LN HIDTH 11 267 I"' SH NIDTH 0 37 I"' SH HIDTH I--- SH HICIH 4 8 4 94 I"' SH HICTH I"‘ SH NIDTH 10 12 122 10 I I I I I I I"‘ LN HIDIH 12 434 I I I I I I"' SH HIDTH 0 131 I"‘ SH NICTH I"' SH HICIH A 8 3 146 I“‘ SH HICIH I"' SH HICTH 10 12 153 1 177 CELL 31 SPEED 45 1453 I I"' LN HIDTH 10 318 CELL 31 CELL 32 CELL 32 CELL 33 CELL 33 CELL 34 ' CELL 3A CELL 35 CELL 35 CELL 36 CELL 36 CELL 37 CELL 37 CELL 38 CELL 38 CELL 39 CELL 39 CELL 40 CELL 40 CELL 41 CELL 41 I'-‘ SH HICTH C 12 I"' SH HICTH A 64 I"' SH NIDTH 8 134 I-'- SH NIDTH I"- SH NICTH 10 12 84 24 I I I I I I I"‘ LN NIDTH 11 566 I"' SH HICTH C 11 I"- SH HICTH 4 149 I"' SH NIDTH 8 200 I"‘ SH NICTH I"' SH HIDTH 10 12 204 2 I I I I I I I"' LN HIDTH 12 569 I I I I I I"' SH NICTH C 86 I-" SH HIDTH I"' SH NIDTH 4 8 8 172 I-'- SH HICTH I-" SH HICTH 10 12 273 30 CELL 42 SPEED 50 774 I I"' LN HIDTH 10 131 CELL 42 CELL 43 CELL I3 CELL II CELL II CELL I5 CELL I5 CELL 46 CELL 46 CELL I7 CELL 47 CELL 48 CELL 48 CELL 49 CELL 49 CELL 50 CELL 50 I--- SH HIDTH o 1 I--- SH HIDTH I--- SH HICTH I 8 I--- SH NIDTH I--- SH HIDTH 10 12 a 7o 48 4 I I I I I I I--- LN HIDTH 11 284 I--- SH HIDTH o 10 I—-- SH HIDTH 8 128 I--- SH NICIH I--- SH NICTH 10 12 137 9 I I I I I--- LN HIDTH 12 359 I I I I I--- SH NICTH o 37 I--- SH HIDTH I--- SH HIDTH 4 a I 213 I—-- SH HIDTH I--- SH NICIH 10 12 97 8 179 CELL 51 SPEED 55 17928 I I"' LN HIDTP 10 4882 CELL 51 CELL 52 CELL 52 CELL 53 CELL 53 CELL 54 CELL 54 CELL 55 CELL 55 CELL 56 CELL 56 CELL 57 CELL 57 CELL 58 CELL 58 CELL 59 CELL 59 CELL 60 CELL 60 I"‘ SH HIDTH 0 25 I"‘ SH NIDTH 4 1341 I"' SH HICTH 8 1617 I"' SH HIDTH 10 1739 I"' SH HICTH 12 160 I I I I I I I“' LN HIDTh 11 6204 I I I I I I“' SH HICTH C 56 I"' SH HICTH 4 132 I"' SH HIDTH 8 2245 I"- SH HICTH 10 3670 I"' SH NICTH 12 101 180 CELL 61 CELL 61 CELL 62 CELL 62 CELL 63 CELL 63 CELL 6A CELL 64 cEEE"E§" CELL 65 LN HIDTH 12 6842 SH NICTH 0 196 SH NIDTH 10 3955 SH HICTH 12 257 181 4 4 3 39 1 7 2 9 2 1 13 1 CELL 66 3 LANE 2'HAY 439 SPEED 25 51 I I"' LN WIDTH 10 4 I I I"‘ SH HICTH O I“' LN HIDTH 11 7 I I I I"‘ SH HIDTH I“' SH NICIH I"‘ LN HIDTH 12 40 I I I"‘ SH HICTH I"‘ SH NICTH CELL 66 CELL 67 SPEED 30 35 I I"' LN WIDTH 10 9 I I I I"' SH NIDTH I"' SH NICTH I"' LN NIDTH 11 12 0 A C 8 0 8 C 8 I I I I I"' SH HICTH I"' SH NIDTH I"‘ SH NIDTH 10 I"' LN NIDTH 12 14 CELL 67 I I I"' SH HICTH I"' SH HICTH C 8 . 182 CELL 68 SPEED 35 47 I LN HIDTH 10 LN HIDTH 11 15 LN HIDTH 12 23 LN HIDTH 10 LN HIDTH 11 LN HIDTH 12 12 SH NICTH SH NICTH SH HIDTH SH HICTH SH HICTH SH HIDTH SH HIDTH SH HICTH SH NICIH SH NIDTH SH HICTH SH NICTH SH HIDTH SH HICTH SH HIDTH D C N N SPEED 40 CELL 68 183 CELL 69 SPEED 45 54 LN HIDTH 10 8 '--- SH HICTH I--- SH HIDTH '--- SH NICTH 10 12 LN NIDTH 11 14 |--- SH NICTH I--- SH HICTH |--— SH HICIH LN HIDTH 12 32 '--- SH HICTH '--- SH HICTH .-.- SH NIDTH '--- SH NIDTH " " 4 0 w o w ‘ O N I ' U O \ SPEED 50 CELL 69 LN HIDTH 10 LN HIDTH 11 '--- 6 A SH NICIH I--- SH NICTH LN HIDIH 12 12 SH NICTH 0 SH NIDIH 184 CELL 70 SPEED 55 208 I I"' LN HIDTH 10 21 I"' SH HICTH I"' SH NICTH 0 8 3 2 I"' SH HICTH 10 16 I I I I I"' LN HIDTH 11 63 I"' SH NICTH I"' SH NIDTH I"- SH NICTH 0 4 8 I"' SH HIDTH 10 I I I I I I"‘ LN HIDTH 12 124 I I I I I I"' SH HICIH I'-- SH NICTH I"‘ SH NIDIH C 4 8 I"' SH HIDTH 10 I-'- SH HICTH 12 8 1 42 12 32 1 12 78 1 CELL 70 CELL 71 CELL 71 CELL 72 CELL 72 185 CELL 73 4 LANE 2-HAY 2243 SPEED 25 118 I I"- LN HIDTH 10 20 I"' SH HICTH 0 I"‘ SH HIDTH 12 19 1 I I I I"' LN HIDTH 11 38 I"' SH HICTH C 38 I I I"' LN HIDTH 12 60 I I--- SH NICTH 0 60 CELL 73 CELL 74 CELL 74 CELL 75 CELL 75 CELL 76 SPEED 30 317 I I"‘ LN HIDTH 10 43 I"' SH HIDIH I"' SH HIDTH I-" SH HICTH 0 10 12 I I I I I"' LN HIDTH 11 67 I"' SH HICTH I"‘ SH HICTH 0 8 I"' SH HIDTH 10 I"' SH HIDIH 12 I I I I I 39 1 3 62 1 1 3 I"' LN HIDTH 12 207 I I I"' SH HIDIH I"' SH HICTH 0 4 206 1 CELL 76 CELL 77 CELL 77 CELL 78 CELL 78 186 CELL 79 SPEED 35 495 I I"‘ LN HIDTH 10 77 I"‘ SH HIDTH I-" SH HICTH I"‘ SH NIDTH I"' SH NICTH 0 8 10 12 66 4 3 4 I I I I I I"' LN HIDTH 11 129 I--- SH NICIH I"' SH HIDTH I"' SH HIDTH I"' SH HICTH C 8 10 12 115 9 4 1 I I I I I I"‘ LN HIDTH 12 289 I I I I I I"' SH HIDIH I"- SH HIDTH I"' SH NIDIH I"' SH HICTH I--- SH HICTH C 4 8 10 12 271 6 8 2 2 CELL 79 CELL 80 CELL 80 CELL 81 CELL 81 CELL 82 SPEED 40 297 I I"' LN HIDTP 10 28 I"' SH NIDTH I"' SH HICTH I"' SH HICTH I I I I I"' LN HIDTH 11 112 0 4 8 0 A 8 25 1 2 85 1 18 8 CELL 82 CELL 83 CELL 83 I I I I I"‘ SH HICIH I-" SH HICTH I"‘ SH HICTH I"' SH NIDTH 10 187 CELL 84 I I-" LN HIDTH 12 157 I I I I I"“ SH NICTH I“‘ SH HIDTH I"' SH HICTH I--- SH HICTH 0 8 10 12 134 6 14 3 CELL 84 CELL 85 SPEED 45 389 I I"' LN HIDTP 10 78 I"' SH HIDTH I"‘ SH NIDTH I--- SH NICIH O A 8 I"' SH HIDTH 10 I I I I I I"‘ LN HIDTH 11 135 I"' SH NIDTH I"‘ SH HICTH I"' SH NICTH 0 4 8 I"' SH NIDTH 10 I I I I I 25 11 9 33 60 2 49 24 I"' LN HIDTH 12 176 I I I I I"' SH HIDTH I"' SH NIDTH I"' SH NICTH I"' SH HIDTH 0 8 10 12 140 17 15 4 CELL 85 CELL 86 CELL 86 CELL 87 CELL 87 188 CELL 88 SPEED 50 152 I I--- LN HIDTH 10 53 I"‘ SH NICTH I"‘ SH HIDTH 4 8 I-'- SH HICTH 10 I I I I I"‘ LN HIDTH 11 41 I"' SH NICTH I"' SH HICTH C 8 I"' SH NIDTH 10 I I I I 2 36 15 14 15 12 I"‘ LN HIDTH 12 58 I I I I"‘ SH NIDTH I"' SH HIDTH 0 8 I-" SH HICTH 10 28 28 2 CELL 88 CELL 89 CELL 89 CELL 90 CELL 90 189 CELL 91 SPEED 55 475 I I"‘ LN HIDTH 10 63 CELL 91 CELL 92 CELL 92 CELL 93 CELL 93 CELL 94 CELL 9A CELL 95 CELL 95 CELL 96 CELL 96 CELL 97 CELL 97 CELL 98 CELL 98 I-'- SH NICTH C 17 I"' SH NICTH 8 I"‘ SH HICTH 10 3 43 I I I I I"‘ LN HIDTH 11 142 I"' SH HICTH 0 43 I"' SH HIDTH 8 A3 I"- SH NICIH 10 56 I I I I I"‘ LN HIDTH 12 270 I I I I I"‘ SH HICTH C 120 I"- SH HICTH I"‘ SH NIDTH 4 8 I"' SH HICTH IC I"' SH HICTH 12 8 43 91 8 190 CELL 99 5 LANE Z'NAY 721 SPEED 25 24 I SPEED 30 42 LN WIDTH 10 LN WIDTH 11 LN WIDTH 12 17 LN WIDTH 10 6 LN WIDTF 11 8 SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH LN WIDTH 12 28 SH WIDTH C 28 CELL 99 CELL 100 SPEED 35 94 I LN WIDTH 10 LN WIDTH 11 15 LN WIDTH 12 70 SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH CELL 100 191 CELL 101 SPEED 40 96 I I"' LN WIDTH 10 6 I I I I I"' SH WIDTH 0 I"- SH WIDTH 10 I"- SH WIDTH 12 1 4 1 I"' LN WIDTH 11 20 I I I"' SH WIDTH 0 20 I“' LN WIDTH 12 70 I I I I"' SH WIDTH I"' SH WIDTH 0 8 I"' SH WIDTH 10 64 5 1 CELL 101 CELL 102 SPEED 45 159 I I"' LN WIDTH 10 5 I I I I I"’ SH WIDTH I"' SH WIDTH 0 8 I"' SH WIDTH 10 I'-' LN WIDTH 11 17 I I I I I"' SH WIDTH I"' SH WIDTH C 8 I"' SH WIDTH 10 1 1 3 11 4 2 I"' LN WIDTH 12 137 I I I I I"' SH WIDTH I"' SH WIDTH I--- SH WIDTH 0 4 8 I-" SH WIDTH 10 123 1 7 6 CELL 102 192 1 4 6 3 4 55 26 2 3 19 11 5 2 2 73 2 23 49 16 CELL 103 SPEED 50 101 I I--- LN WIDTH 10 1 I I |"' SH WIDTH 10 I"- LN WIDTF 11 17 I I I I I I"' SH WIDTH I"' SH WIDTH I'-' SH WIDTH I'-' SH WIDTH I"' LN WIDTH 12 83 0 8 10 12 0 8 I I I CELL 103 CELL 104 I“‘ SH WIDTH I"' SH WIDTH I"- SH WIDTH 10 SPEED 55 205 I I"' LN WIDTH 10 22 I I I I"' SH WIDTH 0 I"' SH WIDTH 10 I"‘ LN WIDTH 11 20 I I I I I I"' SH WIDTH I"' SH WIDTH C 8 I“' SH WIDTH 10 I"' SH WIDTH 12 I“' LN WIDTH 12 163 I I I I I CELL 104 I"' SH WIDTH I"' SH WIDTH I"' SH WIDTH C A 8 I"‘ SH WIDTH 10 I"' SH WIDTH 12 193 CELL 105 6 LANE Z’WAY 18 SPEED 25 3 I I-" LN WIDTH 10 3 SPEED 30 I I 2 I"' SH WIDTH I"‘ LN WIDTH 11 1 I I I"' SH WIDTH I"' LN WIDTH 12 1 SPEED 35 I I h I"' SH WIDTH l"' LN WIDTH 11 1 I I I"' SH WIDTH I"' LN WIDTH 12 3 SPEED 40 I I 2 I"‘ SH WIDTH I"‘ LN WIDTH 12 2 SPEED 45 I I 1 I"' SH WIDTH l"‘ LN WIDTH 12 1 SPEED 50 I I 1 I"' SH WIDTH I"' LN WIDTH 11 1 SPEED 55 I I 5 I"' SH WIDTH I"- LN WIDTH 10 1 I I I"' SH WIDTH I'-- LN WIDTH 12 A I I"’ SH WIDTH CELL 105 194 CELL 106 7 LANE 2-WAY 73 SPEED 25 WIDTH 12 1 '--- SH WIDTH LN WIDTH 10 4 '1.-- SH WIDTH '--- SH WIDTH LN WIDTH 11 LN WIDTH 12 '--- 3 1 SH WIDTH I--- SH WIDTH SPEED 30 SPEED 35 LN WIDTH 10 3 '—-- '--— SH WIDTH SH WIDTH . . . g LN WIDTH 11 30 '--- SH WIDTH 30 LN WIDTH 12 6 SH WIDTH CELL 106 195 CELL 106 SPEED 40 11 SPEED #5 SPEED 50 SPEED 55 CELL 106 LN WIDTH 10 LN WIDTH 11 LN WIDTH 12 SH WIDTH SH WIDTH SH WIDTH LN WIDTH 12 SH WIDTH LN WIDTH 12 SH WIDTH SH WIDTH O D ( LN WIDTH 10 LN WIDTH 12 SH WIDTH SH WIDTH 196 CELL 107 2 LANE I'WAY SPEED 25 SPEED 30 CELL 107 LN WIDTH 12 10 SH WIDTH 10 LN WIDTH 10 LN WIDTH 11 LN WIDTH 12 28 SH WIDTH SH WIDTH 12 SH WIDTH SH WIDTH 197 CELL 108 SPEED 35 21 I g--- I I I 15 SPEED #0 LN WIDTH 12 21 'o-- LN WIDTH 11 11 I I I '--- LN WIDTH 12 I I SPEED #5 LN WIDTH 12 CELL 108 SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH b H o - y a H 198 CELL 109 SPEED 50 1 I I 62 SPEED 55 LN WIDTH 12 SH WIDTH 12 '--- LN WIDTH 10 I I LN WIDTH 11 11 LN WIDTH 12 49 SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH I U N ‘ F N H 3A 10 CELL 109 199 CELL 110 3 LANE 1'WAY 292 SPEED 25 25 I I"' LN WIDTH 11 2 I I I"‘ SH WIDTH C 2 I"' LN WIDTH 12 23 I I I"' SH WIDTH I"' SH WIDTH C 8 22 1 SPEED 30 86 I--- LN WIDTH 10 I I I I--- LN WIDTH 11 I I I I--- I--- 7 5 SH WIDTH SH WIDTH I--- I--- SH WIDTH SH WIDTH o 1c o 12 6 1 1 a I--- LN WIDTH 12 74 CELL 110 CELL 111 I SPEED 35 I I 98 I--- SH WIDTH o 74 I--- LN WIDTH 1o 8 I I I-—- SH WIDTH I--- LN WIDTH 12 9D SPEED no I I a I--- SH WIDTH I--- LN WIDTH 11 2 I I I--- SH WIDTH I--- LN WIDTH 12 6 SPEED 45 I I 11 I--- LN WIDTH 11 I I I I--- LN WIDTH 12 I--- SH WIDTH I--- I--- 3 a SH WIDTH SH WIDTH o c o o c a CELL 111 I I I--- I--- SH WIDTH SH WIDTH o 1c 200 e 90 2 6 2 1 7 1 CELL 112 SPEED 55 64 I '--- I I LN WIDTH 10 3 LN WIDTH 11 LN WIDTH 12 57 SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH SH WIDTH CELL 112 201 CELL 113 4 LANE 1'WAY 95 SPEED 25 h I I"' LN WIDTH 12 h SPEED 30 I I 38 I"‘ SH WIDTH 0 b I"' LN WIDTH 10 8 I I I"' SH WIDTH C 8 I"' LN WIDTH 12 30 I I"' SH WIDTH 0 30 CELL 113 CELL 11h SPEED 35 22 I I"' LN WIDTH 10 1 I I I"' SH WIDTH 0 1 I"' LN WIDTH 12 21 SPEED 40 I I 17 I"‘ SH WIDTH 0 21 I"' LN WIDTH 10 3 I I I"' SH WIDTH 0 I"' LN WIDTH 11 2 I I I"' SH WIDTH 0 I"' LN WIDTH 12 12 3 2 SPEED 45 I I 2 I"' SH WIDTH O 12 I"' LN WIDTH 10 2 SPEED 55 I I 12 I"' SH WIDTH C 2 CELL 114 I"‘ LN WIDTH 12 12 I l"' SH WIDTH C 12 202 CELL 115 4 LANE DIV 909 SPEED 25 1 I I"' LN WIDTH 12 1 SPEED 30 I I 46 I"' SH WIDTH C 1 I"- LN WIDTH 10 1 I I I"- SH WIDTH 0 I"' LN WIDTH 11 9 I I I"' SH WIDTH O I"' LN WIDTH 12 36 I I I"' SH WIDTH D I--- SH WIDTH 1C CELL 115 CELL 116 SPEED 35 78 I I"' LN WIDTH IO 1 I I I"' SH WIDTH C I"‘ LN WIDTH 11 7 I I I I"‘ SH WIDTH I"' SH WIDTH I"' LN WIDTH 12 70 I--- SH WIDTH I"' SH WIDTH I I I I CELL 116 1 9 33 3 1 6 1 51 10 6 3 0 8 0 8 I"‘ SH WIDTH 10 I"' SH WIDTH 12 203 CELL 117 SPEED 40 55 I I"‘ LN WIDTH 10 l I I I"- SH WIDTH O 1 I"‘ LN WIDTH 11 14 I I I I I"' SH WIDTH I"‘ SH WIDTH D 8 I"' SH WIDTH 12 I"' LN WIDTH 12 #0 I I I I"' SH WIDTH I"' SH WIDTH 0 8 I"‘ SH WIDTH 10 CELL 117 CELL 118 SPEED #5 1A6 I I"‘ LN WIDTH 10 13 I I I I I--- SH WIDTH I"' SH WIDTH 4 8 I"‘ SH WIDTH 10 I"‘ LN WIDTH 11 32 I I I I I I“‘ SH WIDTH I"' SH WIDTH 0 8 I"- SH WIDTH 10 I"‘ SH WIDTH 12 I"‘ LN WIDTH 12 101 I I I I I"' SH WIDTH I"‘ SH WIDTH 0 8 I'-- SH WIDTH 10 I"' SH WIDTH 12 CELL 118 10 3 1 29 6 5 3 1 9 17 9 5 1 49 25 26 1 204 CELL 119 SPEED so 56 I I--- I I I I I I--- I I I I LN WIDTH 11 12 I--- I--- I--- I--- SH WIDTH SH WIDTH SH WIDTH SH WIDTH LN WIDTH 12 Ah I--- I--- I--- I--- SH WIDTH SH WIDTH SH WIDTH SH WIDTH o a 1o 12 o I a 1o 3 1 7 1 17 2 11 14 CELL 119 CELL 120 SPEED 55 527 I I--- LN WIDTH 1o 28 CELL 120 CELL 121 CELL 121 CELL 122 CELL 122 CELL 123 CELL 123 CELL 124 CELL 124 CELL 125 CELL 125 CELL 126 CELL 125 I I I I I--- I I I I I--- I--- I--- SH WIDTH SH WIDTH c a SH WIDTH 1c 1 2 25 LN WIDTH 11 82 I--- SH WIDTH o 19 I--- I--- I--- SH WIDTH SH WIDTH SH NICTN a 10 12 13 as 7 I I--- LN WIDTH 12 I17 I I I I I I--- SH WIDTH o «8 I--- I--- SH WIDTH SH WIDTH I a 1 105 . I--- SH WIDTH 10 183 I--- SH WIDTH 12 so 205 CELL 127 6 LANE DIV 171 SPEED 30 4 I I"' LN WIDTH 11 4 SPEED 35 I I 37 I"' SH WIDTH 0 4 I"' LN WIDTH 10 18 I I I"' SH WIDTH C 18 I"' LN WIDTH 11 6 I I I"' SH WIDTH 0 6 I"' LN WIDTH 12 13 I I"' SH WIDTH 0 13 CELL 127 CELL 128 SPEED 40 41 I I"‘ LN WIDTH 10 4 I I I I‘-' SH WIDTH I"' SH WIDTH 0 8 I"' LN WIDTH 11 9 I I I--- SH WIDTH 0 3 1 9 I"' LN WIDTH 12 28 I I‘-‘ SH WIDTH 0 28 CELL 128 CELL 129 SPEED 45 45 I I"' LN WIDTH 10 7 I I I I"' SH WIDTH I"' SH WIDTH O 4 I--- LN WIDTH 11 2 I I I"' SH WIDTH O I"' LN WIDTH 12 36 I I I I"' SH WIDTH I"' SH WIDTH O 8 I"' SH WIDTH 10 6 1 2 26 4 6 CELL 129 206 CELL 130 SPEED 50 21 LN WIDTH 10 SH WIDTH 10 LN WIDTH 12 20 SPEED 55 LN WIDTH 10 11 SH WIDTH SH WIDTH SH WIDTH SH WIDTH LN WIDTH 11 LN WIDTH 12 SH WIDTH SH WIDTH 0 # b N SH WIDTH SH WIDTH CELL 130 207 CELL 131 8 LANE DIV 146 SPEED 25 1 I I"' LN WIDTH 12 1 SPEED 30 I I 1 I-“ SH WIDTH 8 1 I"' LN WIDTH 10 1 SPEED 35 I I 7 I"' SH WIDTH 0 1 I"' LN WIDTH 10 3 I I I"- SH WIDTH C I"' LN WIDTH 11 1 I I |"- SH WIDTH D I"‘ LN WIDTH 12 3 I I'-- SH WIDTH C SPEED 40 25 I"' LN WIDTH 10 1 I I I"' SH WIDTH 0 I"' LN WIDTH 11 4 I I I"' SH WIDTH O 3 1 3 1 4 I"' LN WIDTH 12 20 I I"' SH WIDTH D 20 CELL 131 CELL 132 SPEED 45 68 I"' LN WIDTH 10 3 I I I"' SH WIDTH 0 3 I"‘ LN WIDTH 11 19 I I I"' SH WIDTH C 19 I"' LN WIDTH 12 46 I I I I"’ SH WIDTH I"' SH WIDTH C 8 I"‘ SH WIDTH IC 39 4 3 CELL 132 208 CELL 133 SPEED 50 34 SPEED 55 CELL 133 CELL 134 LN WIDTH 11 I4 I--- SH WIDTH C 14 LN WIDTH 12 20 I--- SH WIDTH D 20 LN WIDTH 10 LN WIDTH II LN WIDTH 12 I--- I"'" I 3 6 SH WIDTH 0 SH WIDTH O SH WIDTH SH WIDTH O 8 1 3 5 1 209 APPENDIX C AID Trees S N O I J Q H S I I H I L N I U H N I V I d X E I E D N V I H V A Z W ? I u n r N I G d “ 1 1 1 3 0 1 3 3 1 OHN S N O I L D H S I I H L N I 3 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 A H fl P N I = 3 d A l l N H U I J J U I O N E I H O H H I I U H N I V I d X H H J N V I H V A Z [ ' 0 9 HHN $ N O H J H S I I H L N I G H N I V I d X ] H J N V I H V A Z £ ‘ 9 V A H H P N I ‘ H d A l l N H U I J J V NHN S N O I I O E I S I I M N I U B N I U I d X 3 J J N V I H V A Z I ' Z Z A H n P N l = 3 d k l l N I O I J J V mHN I " ' 3 . I I I C q j l é a é l I I S N O I L O H S I I H I N I 3 2 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 A H H P N I = 3 d A l l N H U I J J U 5 1 1 V } ! U B N I V I d X ] I J N U I H V A Z 1 ' 9 3 «Hm m z e g m m g z : 2 0 2 a n a s . " a : E w e é : 5 2 : 8 2 2 : : 5 2 2 % ; N w e 215 N 0 1 M H S H H I N I ‘ N O N G E N I U T d X H 3 3 N V I H V A Z [ ' 1 2 A H fl P N I = 3 d k l l N H G I J J V oHN N O I I D H S H H I N I ‘ N O N U H N I U I d X H H J N V I H U A Z [ ' 2 2 A H n P N I = 3 d A l 1 N 3 U I J J V NAN Z e g m m e a n z o z $ 2 2 . 5 3 3 2 2 ; ; N N : 3 2 % “ m a : 5 5 5 % 218 m z o g m m m a z w z o z 8 2 3 : 6 8 2 3 $ , N 0 5 E 2 5 " a : E 2 8 , » g a g e E S m e g 219 n g b m m m a z w z e z 3 2 2 : 3 6 2 2 % ) N 2 E E O 2 . 8 % E g g " N E N E E ; 220 m z e E m m N E a n z e z : z o g a g e a ; " m a : N z w e a c : 5 2 : 8 2 2 : 6 5 2 3 : ; N 2 : 221 S N O I I O ’ I I S I I H I N I U B N I V I d X H E J N V I H V A Z 2 ' 8 8 H I O N V l H O I H = 3 d A l l N H U I J J U NNN S N O I L O ’ I I S I I H I N I S H H I ' I J J I O . L f l O H I I M 1 3 1 1 1 1 1 0 5 1 1 1 1 U H N I U I d X H H J N V I H V A Z 6 ' 8 1 B I O N V l H O I H = 3 d A l l N I fl I J J V mNN N Z G N S N N N E Z N : 7 5 2 3 : 1 3 N Q Z H S S E 8 2 3 : 3 5 2 2 ; ; N E N fl o z q : 5 ; “ a : N E E B N N 2 . : E n . z m . _ 3 2 " I D 224 S N O I M H S H H I N I U H N I V I d X H H J N V I H V A ° / . 8 ' 9 2 3 1 0 W l H O I H G d k l l N H U I J J V S H H I ' L L H O H J J M mNN 0 3 N I U 1 d X 3 I J N V I H V A Z Z ' Z Z 3 1 0 W 1 H 0 1 1 1 ‘ H d k l 1 N 3 1 1 1 3 3 V 8 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 . 1 1 1 1 S N O I J D E I S H H I N I eNN m z c g m m N E Z N m a m — g o a s . fl o z c E O E " N E 5 3 3 % . S z o 8 2 2 : 3 5 2 3 % N Z : 227 N 0 1 1 3 8 § 1 1 1 1 1 N F N O N U E I N I V I d X H H J N V I H V A Z 0 ' 0 8 3 1 0 W 1 H O I H = 3 d 1 1 l N H U I J fl V wNN N 0 1 1 0 8 8 1 1 1 1 1 N 1 ‘ N O N 3 1 0 W 1 H 0 1 1 1 = 3 d 1 1 I N E G I J J V 3 2 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 [ E N I V I d X H H J N V I H V A Z 6 ' 9 2 1 1 1 8 1 1 1 1 0 mNN N 0 1 1 C E S R E T N 1 = N O N E L G N A T H G I R : E P Y T T N E D I C C A D E N I A L P X E E C N A I R A V I 1 . 6 4 Y L N O S R E I L T U O Y T I S N E D 230 S N 0 1 1 0 1 1 9 1 1 1 1 1 N 1 ‘ N O N 3 1 1 1 1 1 1 1 1 1 0 H 1 1 1 1m [ 1 3 N 1 V 1 d X 3 3 1 0 W l H O I H H J N V I H V A 7 . 9 ' 8 231 = 3 d 1 1 1 N 3 0 1 3 3 V z m z o g m m z a z w z c m a n a g e E O E ; N E N E E B N : 3 3 $ 5 q u 5 3 m e 5 2 3 % N m ; “ a : 232 m z o E N m N E N / a n c z a g e — b e a : 3 2 ¢ E O E " a : N E E B N 5 2 o 8 2 2 : 6 5 2 5 , ; N 3 m 233 285.2525% S N 0 1 1 C 1 C 1 8 1 1 C 1 1 N 1 8 1 1 1 1 1 1 1 1 1 0 H 1 1 1 1 1 3 1 1 2 1 1 1 0 3 1 1 1 8 3 N 1 U 1 d X 3 J J N V I H V A Z 8 ' 1 7 O N E 8 0 3 8 = 3 d 1 1 1 N B U I J J U «mm 22::3:5m S N 0 1 1 0 8 8 8 8 1 N 1 U 3 N 1 8 1 8 X 3 3 3 N V I 8 V A Z 9 ' 8 2 8 N 3 8 8 3 8 = 3 8 1 1 1 N 3 8 1 3 3 8 mmm 8 1 1 0 1 1 0 8 8 8 8 1 1 8 1 1 N 0 8 1 1 1 1 1 1 1 1 1 0 1 3 N 1 1 1 1 0 1 1 1 1 1 0 3 N 1 8 1 8 X 3 3 0 N 8 1 8 U A Z 0 ' 8 8 0 N 3 8 8 3 8 1 3 8 1 1 1 N 3 0 1 3 0 8 mmm 8 N 0 1 1 0 1 1 8 1 1 8 1 N 1 0 3 N 1 8 1 8 X 3 3 3 N V I 8 W 1 Z 2 ' 8 2 0 N 3 8 8 3 1 8 D A N 1 N 3 0 1 3 3 8 nmm $3141 11811-180181 131111810 1mm 0 3 N I V 1 8 X 3 3 0 N V I 8 V A Z 8 ' 1 8 0 N 3 8 1 3 8 = 3 8 1 1 1 N 3 0 1 3 3 1 8 1 1 1 1 1 1 1 1 1 0 1 1 1 0 H 1 1 1 1 1 1 1 m 8 N 0 1 1 1 8 8 1 1 1 1 1 N 1 1113 111818 238 = — 0 1 1 1 : 0 1 8 8 1 8 8 2 8 8 8 1 : 0 3 N 1 8 1 8 X 3 3 3 N 8 I 8 8 A Z 2 ' 1 8 0 N 3 8 8 3 8 3 3 8 1 1 1 N 3 0 1 3 3 8 1 1 1 1 0 3 1 1 1 1 1 1 1 1 0 1 1 m 8 1 1 0 1 1 1 8 8 8 8 1 1 1 ] 239 N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N I 8 1 d X 3 3 0 N 8 1 8 8 A Z 9 ' 2 2 0 N 3 8 8 3 8 = 3 8 1 1 1 N 3 0 1 0 0 8 oqN N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N I 8 1 8 X 3 3 0 N 8 1 8 8 A Z 1 ' 8 2 0 N 3 8 8 3 8 = 3 8 1 1 1 N 3 0 1 3 0 8 9 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 8 N 1 1 1 1 HQN z e g m m m a z w z c z 8 3 3 % 5 2 2 ; ; N 3 % D E N E ; " a : 5 2 8 . » : 7 5 m a m — g o N 5 2 2 242 m z c E m m M — E z w z o z S E E S 6 2 2 ; ; N m a 2 2 w N E E m a : N 3 2 8 , “ m a m — g o E ; a : 243 m z c E m m N — E z w z c z B E S E 5 2 2 ; ; N m . m D E E N " a : 5 5 8 , 1 g a g e S o m e ; a s . 244 S N 0 1 1 C E S R E T N 1 = N O N D E N I A L P X E E C N A I R A V I 5 . 5 1 D N E R A E R : E P Y T T N E D I C C A Y L N O S R E l L T U O E T A R 245 20228am 1 3 3 1 8 0 0 3 X I 3 = 3 8 1 1 1 N 3 0 1 0 0 8 0 3 N 1 8 1 8 X 3 3 3 N 8 1 8 8 A Z 8 ' 2 1 1 1 1 2 1 1 1 1 1 1 0 I I I I A I 1 0 1 1 8 1 1 0 8 8 1 8 1 8 0 1 1 3 8 8 8 8 1 1 1 1 oqm m m m u m u “ 0 1 1 3 3 5 1 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 0 N 1 1 1 1 0 1 I 1 1 1 1 3 3 1 1 1 0 0 1 1 1 = 3 d 1 1 1 1 3 1 1 1 3 3 1 1 1 1 3 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 6 9 1 NQN 8 1 3 3 1 8 0 0 3 l e = 3 d 1 1 1 N 3 1 1 1 3 3 U 8 3 N 1 U 1 d X 3 3 3 N V 1 8 V / 1 Z 9 ' 8 1 8 1 1 0 1 1 3 8 8 1 1 8 1 1 1 1 1 1 1 1 0 9 1 1 1 1 1 1 1 1 0 1 3 N 1 1 1 1 0 8 1 1 1 1 mum 1 8 N O I T C E S R E T N T C E J B O D E X I F : E P Y T T N E D I C C A D E N I A L P X E E C N A I R A V Z 5 . 6 S R E I L T U O H T I W E T A R — > ) E L 311m 1] 3315]] 249 S N 0 1 1 1 1 1 § 1 1 1 1 1 N 1 3 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 - 1 1 1 1 1 1 1 1 1 1 0 1 1 1 3 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 8 ' 9 1 3 3 1 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 1 1 3 1 1 1 3 3 1 1 0mm m z e g m m z fi z g 5 2 o a m i g o a s . E 2 5 S E “ a : E D G E 3 2 2 : : 5 2 2 % N E N 251 1 3 3 1 8 0 N 0 1 1 D C 1 8 1 1 1 1 1 N 1 ‘ N O N ( 1 3 X 1 1 = 3 d 1 1 1 N 3 1 1 1 3 3 1 7 1 1 3 N 1 1 7 1 d X 3 E I C J N U I H V A 1 1 ' 9 252 ‘ 1 2 m m . - I t 1 N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N U H N I W d X ] H J N V I H V A 2 1 ' 1 1 3 3 1 8 0 ( E X I J = 3 d 1 1 1 N 3 1 1 1 3 3 U 8 1 1 1 1 1 1 1 1 1 0 1 1 1 0 H 1 1 1 1 1 1 . 1 1 8 N 1 1 1 1 mmN N 0 1 1 3 8 8 1 1 1 1 1 N I ‘ N O N 1 3 3 1 1 8 0 U E X I J = 3 d 1 1 1 N 3 1 1 1 3 3 1 1 U H N I V H X ] J J N V I H U A Z [ ' 9 8 «mm § N 0 1 1 0 1 1 § 1 1 1 1 1 N 1 N O N 1 3 3 1 8 0 0 3 1 1 1 : 1 1 1 1 1 1 1 3 0 1 0 0 1 1 1 1 3 1 1 1 0 1 1 1 3 3 3 1 1 0 1 1 1 0 1 1 8 8 5 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 m z o E m m M E z w z c z m a m — g o S e a ; a : E E O B x : 6 2 2 ; ; N : $ 2 2 . 7 3 " a : 5 5 5 % 256 8 N 0 1 1 3 1 1 8 1 1 1 1 1 N 1 “ N O N 8 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 3 3 1 8 0 1 1 3 1 l e = 3 d 1 1 1 N 3 1 1 1 3 3 1 } 1 ’ 1 N 0 [ 1 3 N 1 1 1 1 d X 3 H J N V I H V A Z 9 ' 1 1 1 2 ‘ 0 2 ‘ 9 1 ‘ 1 1 9 1 1 a w n a c u 257 8 N 0 1 1 D C 1 8 1 1 1 1 1 N I U H N I V 1 d X 1 H J N V I H V A Z 6 ' 1 2 O N I X H V d = 3 d 1 1 1 N 3 8 1 3 3 1 me 98,32:3: S N 0 1 1 0 8 8 1 1 8 1 N 1 0 N 1 1 8 0 d = 3 d 1 1 1 N 3 0 1 3 3 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 3 1 1 8 1 1 0 1 1 1 1 1 0 3 N 1 0 1 d X 3 H J N V I H U A Z 1 ' 0 8 mmN 0 3 N 1 0 1 d X 3 H J N V I H V A Z 6 ' 1 8 O N I X H V d = 3 d 1 1 1 N 3 0 1 3 3 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 N 1 1 1 1 0 1 0 1 1 1 8 N 0 1 1 9 1 1 8 1 1 8 1 N 1 com 0 3 N I V 1 d X 3 H J N V I H V A Z 6 ' 1 8 U N I X H V d = 3 d 1 1 1 N 3 0 1 3 3 0 1 1 1 1 0 9 1 1 1 1 1 1 1 0 0 1 0 1 1 8 0 0 1 1 1 1 1 8 N 0 1 1 0 1 1 8 1 1 8 1 N I com mmmc_;z_q 9 1 1 0 w .' L7 m I 00 $1.." 8 1 1 0 1 1 0 1 1 8 1 1 1 1 1 1 1 1 O N I X H V d 1 3 8 1 1 1 N 3 0 1 3 3 0 3 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 3 N I U 1 d X 3 E D N U I H V A 7 1 1 ' 2 2 .HmVN 1 W a l l ‘ Z 1 1 9 8 9 1 0 3 ' 1 9 ' mama:3: 8 N 0 1 1 0 8 8 1 1 8 1 N 1 O N I X H V d = 3 d 1 1 1 N 3 0 1 0 0 0 9 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 8 1 1 0 1 0 3 N 1 0 1 d X 3 J J N V I H V A Z 9 ' Z Z New 8 1 1 0 1 1 0 8 8 8 8 1 1 8 U N I X H V d = H d 1 1 1 N 3 0 1 3 3 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 0 8 1 1 1 1 1 0 3 N 1 0 1 d X 3 H J N V I H V A Z 1 ' 1 1 mow N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N 1 0 1 d X 3 H J N V I H V A Z 8 ' 8 1 O N I X H V d : 3 d 1 1 1 N 3 0 1 3 3 0 EN ' m - z z ‘ o t ‘ g m ‘ a - l s N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N 1 0 1 d X 3 H J N V I H V A Z 1 ' 2 2 U N I X H V d = 3 d 1 1 1 N 3 0 1 3 3 0 8 1 1 8 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 8 N 8 1 1 mom N 0 1 1 D 8 8 1 1 8 1 N 1 “ N O N 0 3 N 1 0 1 d X 3 H J N V I H V A Z 1 ' 0 1 0 N 1 8 8 0 d ‘ 3 d 1 1 1 N 3 0 1 3 3 0 cow z n g o m m é é n z c 8 2 2 : 3 5 2 2 % ; N 3 9 2 5 % ; m m : 5 5 3 % a g e 5 . 5 a s . 267 ; 2 1 1 3 7 2 1 1 5 1 5 4 1 ' 6 6 ' 5 6 ' 2 6 ' 1 5 ' 1 5 ' 3 1 ' 5 1 1 1 268 8 N 0 1 1 C E S R E T N 1 ~ N O N D E N I A L P X E E C N A I R A V 1 2 . 4 G N I K R A P : E P Y T T N E D I C C A S R E I L ‘ I U O T U O H T I W E T A R 8 N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N 1 0 1 d X 3 H J N U I H V A Z 2 ' 1 2 O N I X U V d = H d 1 1 1 N 3 0 1 3 3 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 8 1 1 ’ } ! ¢o~ 8 N 0 1 1 0 8 8 1 1 8 1 N I 0 3 N 1 0 1 d X 3 H J N V I H V A Z 9 ' 8 1 N 0 1 8 1 8 3 0 3 d = 3 d 1 1 1 N 3 0 1 3 3 0 CNN 0 3 N 1 0 1 d X 3 H J N V I H V A 1 0 ' 6 1 N 0 1 8 1 8 3 0 3 d = 3 d 1 1 1 N 3 0 1 3 3 0 3 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 8 N 0 1 1 1 1 8 8 1 1 8 1 N I HAN 0 3 N 1 0 1 d X 3 H J N V I H V A Z 1 ' 6 2 N 0 1 8 1 8 3 0 3 8 = 3 d 1 1 1 N 3 0 1 3 3 0 1 1 1 1 0 5 1 1 1 1 1 1 1 1 0 1 0 N 8 1 1 0 8 1 1 8 8 N 0 1 1 D 8 8 1 1 8 1 N I NNN 8 N 0 1 1 1 1 1 1 1 1 8 1 1 8 1 N 1 8 1 1 1 1 1 1 1 1 1 0 H 1 1 1 8 1 1 1 W [ E N I k fl d X J 3 3 1 1 1 1 1 1 0 1 2 9 ' 9 1 1 1 1 1 1 1 1 3 3 0 3 1 = 3 d 1 1 1 1 1 3 1 1 1 3 3 0 mum 8 1 8 0 1 1 3 1 1 8 1 1 1 1 1 1 8 1 8 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 ' 9 1 1 0 1 1 1 1 3 3 0 3 1 1 1 1 1 1 1 1 1 3 0 1 0 3 0 EN 8 N 0 1 1 0 8 8 1 1 8 1 N 1 0 3 N 1 0 1 d X 3 3 3 N 0 1 8 0 / 1 ‘ / 0 ' 8 2 N 0 1 8 1 8 3 0 3 d = 3 d 1 1 1 N 3 0 1 3 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 mum N 0 1 1 D 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N I V 1 d X 3 H J N V I H V A Z 8 ' 2 1 N 0 1 8 1 8 3 0 3 d = 3 d 1 1 1 N 3 0 1 3 1 1 0 mum N 0 1 1 0 8 8 1 1 8 1 N 1 ‘ N O N 0 3 N I U 1 d X 3 H J N V I H U A Z 0 ' 8 1 1 1 1 1 1 6 3 0 3 1 1 = 3 1 d 1 1 1 N 3 0 1 3 3 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 3 1 1 1 1 0 ANN z e g m m z m e é n z e z S z z a x m 5 2 3 ; ; N N a m 2 2 s z m e “ a : E m a — 8 , » 5 2 o $ a n E m z m a 278 W Z C N S N E E Z w Z Q Z 8 2 2 : 6 5 2 2 % ; N N ; Z S E B Q E “ a : 5 5 3 % 2 5 % a ; a : 279 m z c g m m m a z u é z 2 8 : 8 5 0 5 . ; 8 2 2 % ; N 3 . S z z d fi Z S E S E Q “ a : 2 3 : 3 E S — 5 : : 3 A n z m . — ~ m . - " 1 0 280 m z e g m m m fi z w z c z : 7 5 E g o m 3 Z S E B E Q . m a : : 3 a n $ 2 2 4 m e 5 2 2 ; ; N M E N 281 “ #3\\\\ A" .. é l m uvuwu: rim-.3: 25¢ per day per item RETURNING LIBRARY MATERIALS: “1 53w}!!! " Place in book return to remove charge from circulation records ' 0‘3I\\_ (’leV .~.o. ' > :3‘ "J“. .4“: APPENDIX D Relationship of Dependent Variable to Independent Variables INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 5 HITHOUT OUTLIERS SAMPLE SIZE 525 CATEGORY LABEL CODE N MEAN ST.DEV- MIN MAX DISTRICT NEHBERRY ALPENA CRYSTAL FALLS CADILLAC GRAND RAPIDS JACKSON KALAMAZOO SAGINAH METRO LANEAGE 2 A 1 3 S 8 7 6 9 26 53 56 k9 55 50 87 8-h2 S-h3 4.72 A-90 8-00 7-5? 8-h5 7.61 8-62 8-60 9-96 10-16 10.60 7-8k 133 11-76 11-91 28 12-00 10-01 4 LANE I'HAY 9 6 LANE DIVIOEO 11 1 1 6-00 0-00 5-00 0-00 2 LANE Z'NAY 3 LANE I'MAY 3 LANE Z‘HAY 4 LANE Z'HAY 5 LANE 2'HAY 2 LANE 1-HAY 1 8 2 3 5 7 A LANE DIVIOED 10 215 5-61 6-k4 29 15 9.88 7-2A 10-00 9-11 176 11.89 10.03 #3 5 40 12-58 10-89 13.20 16.84 15-38 11-03 LANE HIDTH SHOULDER HIOTH CURB 10 11 12 0 h 8 10 12 52 6.96 7.55 110 359 8-15 8-28 10-21 9-85 345 10-18 9-39 5 #8 8-20 8.32 8.83 10.69 115 7.89 8.89 12 7-67 7-78 0 0 0 0 0 0 0 0 0 h 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 22 16 28 30 Ab 36 37 62 34 4 5 £0 27 32 62 £0 36 4h 31 40 62 #8 11 62 AA 24 i c a é é / / 6 282 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO- 5 HITHOUT OUTLIERS SAMPLE SIZE 525 CATEGORY LABEL CODE N MEAN ST-OEV- MIN MAX ACTIVITY DENSITY RURAL URBAN FRINGE'STRIP PASS/NO PASS PASS NO PASS TRUCKLANES 1 3 2 0 1 104 137 7-39 8.09 8.07 7.95 284 10.85 10.22 452 73 9-85 6-90 9-66 7.01 0 0 0 0 0 44 34 62 62 32 NO TRUCKLANE 0 525 9.44 9-38 0 62 SPEED LIMIT DELTA ANGLE 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 85 90 95 100 70 8-36 6.76 110 8.57 7-58 94 33 37 17 10-64 10-47 10-88 11-04 14-68 12-27 11.76 16.10 164 8-09 8.32 401 9.68 9-12 24 15-67 16-12 9 9 9 6 8 15.67 10.86 9.22 7.60 8.89 6.29 9.33 6.74 4.13 3.04 10 7.70 7-73 3 9 4 3 2 1 2 1 2 1.67 2.08 4.00 6.02 6-00 6.68 3-67 2.52 2.00 1.41 5-00 0.00 4-00 4.24 3.00 0.00 3.00 0.00 16 5-75 8.20 5 1 7.00 4.64 1.00 0-00 283 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 2 1 1 5 1 3 3 0 2 1 29 34 48 40 40 62 44 48 62 30 20 21 19 11 26 4 18 16 6 3 5 7 3 3 27 13 1 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO- 5 HITHOUT OUTLIERS SAMPLE SIZE 525 CATEGORY LABEL CODE N MEAN ST-DEV. MIN MAX DEGREE OF CURVE 0 1 2 3 4 5 6 7 8 9 12 14 16 18 24 33 57 58 42 43 49 7 48 57 68 71 72 45 2 5 30 31 66 75 60 20 26 32 16 62 79 21 55 65 431 9.49 9.16 12.78 15.02 9.86 8.48 8.75 10.79 8.40 5.86 3.00 2.83 5.67 6.17 3.08 7-52 6.67 5-51 0.00 0.00 10-00 0.00 21-00 0.00 3.00 0.00 10-00 0.00 5.00 0.00 2.00 0.00 21.00 0-00 3.14 2.27 0.00 0-00 0.50 0.71 0-75 1.00 1-50 1.41 1.00 1.73 1.00 0-00 1.00 0.00 1.00 1.73 1.00 0.00 1.50 2.12 1.67 1.15 1.75 0.50 2-00 0.82 2.29 1.25 2-50 3.11 2.50 1.91 2-67 0.58 3.00 1.41 3.00 0.00 3-00 2-65 4.00 3.61 4-00 3-46 4.14 6.41 4.67 4.67 3.93 5.01 4.67 3.21 27 22 8 5 2 6 6 3 1 1 1 1 1 1 1 1 7 1 2 4 2 3 1 1 5 2 2 3 4 4 7 4 4 3 2 1 5 3 4 7 6 6 3 . 284 0 0 0 0 2 1 3 0 3 0 10 21 3 10 5 2 21 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 2 2 3 0 0 1 0 1 0 1 48 62 27 30 16 5 11 18 13 0 10 21 3 10 5 2 21 7 0 1 3 2 3 1 1 4 1 3 3 2 3 4 7 4 3 4 3 7 7 9 18 12 14 7 COUNTY KENEENAH LAKE MACKINAC BARAGA LUCE MISSAUKEE OSCODA PRESQUE ISLE ROSCDMMON LEELANAU ALGER ANTRIM HILLSDALE HOUGHTON ONTONAGON SCHOOLCRAFT MONTMORENCY CRANFORD GLADHIN HURON CHEBOYGAN NENAYGO TUSCOLA DELTA MENOMINEE OGEMAN INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 5 HITHOUT OUTLIERS SAMPLE SIZE 525 CATEGORY LABEL CODE N MEAN ST.DEV- MIN MAX COUNTY MONTCALM CHARLEVOIX ALPENA ALLEGAN ALCONA BENZIE EMMET CLARE IOSCO GRATIOT KALKASKA IONIA ARENAC GOGEBIC MASON BARRY LAPEER SANILAC EATON BRANCH HEXFORD OTSEGO CALHOUN CASS SHIAHASSEE BAY CHIPPEHA DICKINSON MECOSTA OSCEOLA MANISTEE LENAMEE ST. CLAIR MIDLAND OTTAHA MARQUETTE VAN BUREN GENESEE ST. JOSEPH GR. TRAVERSE 59 15 4 3 1 10 24 18 35 29 40 34 6 27 53 8 44 74 23 12 83 69 13 14 76 9 17 22 54 67 51 46 77 56 70 52 80 25 78 28 1 4 0 0 6 6 1 4 2 2 7 0 1 0 2 1 2 0 0 0 0 O 1 3 1 0 3 3 0 9 4 1 0 0 1 0 2 0 4 4 13 8 14 13 6 6 16 11 14 14 7 23 15 28 18 23 23 28 36 22 30 16 37 20 34 26 22 19 23 14 18 33 34 32 44 24 25 62 34 26 11 3 10 7 1 1 6 3 4 5.64 3.29 5.67 2.08 5-70 5-83 5.86 6.00 4.98 0.00 6.00 0.00 6.00 5.83 6.67 3.79 6.75 5-25 10 7-00 4.37 1 8 3 8 8 6 7 6 21 8 11 3 35 10 9 19 6 13 6 2 3 25 28 15 16 13 9 61 12 7.00 0.00 7.13 8.29 7.33 7.09 8.00 9-06 8-13 5.11 8.17 7.81 8.43 7.59 8.83 10.25 9.19 10.16 9-50 7-50 9-64 10-31 9-67 8.50 10.14 7.55 10.40 5.62 10-56 10.57 10.84 9.00 11.00 7.04 11-08 5.84 11.17 9.91 11.50 3.54 11.67 7.09 11.88 10.44 12.00 10.01 12.13 9-96 12-63 12.05 12.92 8.54 13-11 8.43 14-72 14-21 14-92 10-23 8 15.38 7.85 285 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 5 HITHOUT OUTLIERS SAMPLE SIZE 525 CATEGORY LABEL CODE N MEAN ST.OEV- MIN MAX SIGNAL CODE FLASHER STOP 8 GO LEFT TURN NO TURN CONTROL NO LEFT TURN LEFT TURN PHASE ALL RED PHASE NO ALLREO ALL RED PHASE INTERSECTION TYPE OFFSET NYE TEE OTHER CROSS NO. OF LEGS 2 3 0 2 1 0 1 5 6 2 7 1 3 4 5 >= 6 NO. RIGHT LANES 204 5.25 5.66 321 12.10 10.27 501 9.19 9-03 12 12 11.08 7.53 18-42 18-34 513 9.14 9.22 12 22.17 7.36 8 38 66 20 4.50 7.23 7.16 7.10 7.20 7.95 9-30 8.12 393 10.15 9.80 88 6.94 7.55 429 9.91 9-65 6 2 11.50 10.48 13.00 8.49 0 1 >= 2 419 9.35 9.46 47 59 9.43 9.37 10.12 8.94 NO. LEFT LANES 0 1 >= 2 410 8.57 8.92 38 77 8.84 7.47 14.36 11.10 0 0 0 1 1 0 12 0 0 0 1 0 0 0 2 7 0 0 0 0 0 0 32 62 48 26 62 62 35 22 30 40 31 62 40 62 31 19 62 40 35 62 26 44 286 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 5 HITHOUT OUTLIERS SAMPLE SIZE 525 CATEGORY LABEL COO E N MEAN ST.DEV. MIN MAX VOLUME O O O O O O O O O O O O O - r O O N O fi N H O ‘ O O ‘ U O ‘ U D ‘ U O A U O O t u b p § i h 12 28 23 48 34 19 28 23 32 40 32 62 44 34 22 30 37 26 34 18 29 40 26 36 18 22 31 40 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 32000 34000 N M N i r m H N b M M H M N H H H m b u m m m o o w o o m N V N H N O w m m o o - r b M H M N o m ‘ r N 1.13 1.55 2.38 3.08 4.95 6.06 4.61 5.46 6.24 8.68 8.69 8.81 6.21 5.19 7.85 7.45 7.47 7.21 11.62 7.94 11.88 9.55 14.40 8.88 12.53 14.87 15.53 12.43 13.29 9.92 10.38 6-26 12.76 9.96 16.21 10.67 12-64 8.29 20-33 12.10 14.20 3.90 14.20 10.62 40.00 22.00 0.00 4.83 3-67 3-51 5.00 0.00 17.80 13.72 9.50 12.02 5.00 7.23 20.17 7.73 40.00 0-00 0.00 0.00 287 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 9 HITHOUT OUTLIERS SAMPLE SIZE 159 CATEGORY LABEL CODE N MEAN ST.DEV- MIN MAX DISTRICT KALAMAZOO JACKSON METRO GRAND RAPIDS SAGINAN LANEAGE OTHER 3 LANE I'HAY 3 LANE Z'HAY 7 8 9 5 6 13 8 2 6 LANE DIVIDED 11 8 LANE DIVIOED 12 7 LANE Z'HAY 4 LANE l'HAY 6 9 4 LANE OIVIDED 10 2 LANE 2'HAY 5 LANE Z'NAY 4 LANE 2'HAY 6 LANE 2‘RAY LANE HIDTH SHOULDER HIDTH CURB 1 4 3 5 10 11 12 0 4 8 10 12 1 16 8-00 0.00 10.25 9.93 127 10.96 13.86 6 9 11.33 11.93 19.00 13.58 16 5.56 5.94 5 2 18 45 13 3 9 12 15 20 6.20 11.67 7.00 9.90 7-00 7-20 9.31 16.34 11.00 11.25 14.00 6.56 15.56 11.59 16.17 13.10 16.33 14.75 16.75 14.88 8 0 0 0 1 0 0 0 0 0 1 7 1 5 0 0 1 25.00 0.00 25 25 38 96 8.52 9.40 13.84 15.67 11.08 13.31 131 10.89 13.38 2 14 9 3 8.50 0.71 20-50 15.75 6.22 7.05 5.33 0.58 0 0 0 0 8 0 0 5 8 29 79 29 42 20 27 14 25 79 31 20 29 37 53 46 25 37 79 75 79 9 46 20 6 288 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 9 HITHOUT OUTLIERS SAMPLE SIZE 159 CATEGORY LABEL CODE N MEAN ST.DEV- MIN MAX ACTIVITY DENSITY URBAN RURAL FRINGE“STRIP PASS/NO PASS PASS NO PASS TRUCKLANES NO TRUCKLANE TRUCKLANE SPEED LIMIT DELTA ANGLE 3 1 2 0 1 0 1 25 30 35 40 45 50 55 0 5 10 20 30 35 50 65 90 105 8.65 12.41 11 43 12-55 12.72 17.60 14.11 157 11.45 13.47 2 2.50 3.54 158 11.41 13.43 1 0-00 0.00 3 18 30 45 31 16 16 2-33 4.04 11.22 11.26 10-37 7.70 9.22 10.75 16.23 21.77 13.13 13.41 9.69 9.10 145 10.79 13.09 2 5 1 2 1 1 1 1 0.00 0.00 10.00 14.58 25-00 0-00 31.50 20.51 36-00 0.00 28.00 0.00 29-00 0-00 7.00 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 17 36 28 29 7 79 34 53 79 5 79 0 7 31 27 46 79 36 31 79 0 35 25 46 36 28 29 7 289 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO- 9 HITHOUT OUTLIERS SAMPLE SIZE 159 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 0 1 2 3 4 5 6 8 61 11 82 33 58 81 38 41 63 50 73 147 10.65 13.06 4 2 1 1 2 1 1 2 1 11.25 16.52 26-50 13.44 5.00 0.00 29-00 0-00 35-50 14.85 28.00 0.00 7-00 0.00 7.50 10.61 8.00 0.00 79 8.04 11.53 7 2 5 2 4 34 14 9.86 10.53 10.00 5.66 10.20 11.03 12.00 16.97 13.25 13.60 15.44 16.84 16.57 14.37 9 19.00 13.58 0 0 17 5 29 25 28 7 0 8 0 0 6 0 0 0 0 0 1 79 35 36 5 29 46 28 7 15 8 75 25 14 29 24 29 79 53 42 COUNTY MUSKEGON BERRIEN NAYNE INGHAM MONROE HASHTENAN JACKSON KENT OAKLAND MACOMB SAGINAH 290 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 9 HITHOUT OUTLIERS SAMPLE SIZE 159 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX SIGNAL CODE FLASHER STOP 8 GO LEFT TURN NO TURN CONTROL NO LEFT TURN LEFT TURN PHASE ALL RED PHASE ND ALLRED ALL RED PHASE INTERSECTION TYPE DIR. X'OVER OTHER NYE TEE NO- OF LEGS NO. RIGHT LANES NO. LEFT LANES 2 3 0 2 1 0 1 9 7 6 2 3 4 5 0 1 0 1 >= 2 0 0 0 14 31 0 0 0 7 0 0 0 0 7 0 0 0 0 0 28 79 79 16 31 79 17 22 7 37 79 79 37 7 79 75 79 75 42 13 10.00 9.10 146 11.46 13.76 156 11.17 13.45 2 1 15.00 1.41 31.00 0.00 154 11.44 13.57 5 8.40 7.54 36 1 23 99 3.25 5.07 7.00 0.00 11.78 10.48 14.22 14.96 142 11.20 13.64 16 1 12.88 12.02 7.00 0.00 135 9.79 12.13 24 20.08 16.92 70 79 10 11.76 12.99 10.66 13.68 13.80 15.27 291 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 9 HITHOUT OUTLIERS SAMPLE SIZE 159 CATEGORY LABEL CODE N MEAN ST-DEV- MIN MAX VOLUME 2000 3000 5000 6000 7000 8000 9000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 38000 39000 40000 42000 43000 44000 46000 48000 49000 51000 52000 53000 54000 56000 57000 1 1 2 1 1 1 2 1 2 2 2 1 7 3 4 2 4 9 4 2 6 2 1 1 3 5 6 1 1 3 3 3 1 3 5 2 1 3 4 2 2 7 1 4 1 1 1 6.00 0.00 6.00 0.00 5.50 0.71 27-00 0-00 5.00 (-00 21.00 0.00 1-00 1.41 4.00 0.00 4.00 5.66 15.50 21.92 7.50 0.71 9.00 0.00 15.43 14.59 3.33 3.21 13.00 10.80 6 6 5 27 5 21 0 4 0 0 7 9 1 1 1 29.50 17.68 17 20-25 12-92 12.67 9.33 10.75 17.15 11.00 5.66 10.17 10.23 6-00 7.07 25.00 0.00 26.00 0.00 16.67 13.32 15.80 13.72 22.00 15.44 37-00 0-00 29.00 0.00 1.33 1.53 12-67 1.53 12-33 12-50 2.00 0.00 3-67 4-04 12.60 6.31 4.00 5.66 17.00 0-00 5.33 6.81 4.75 4.99 23-50 16.26 64.00 5.56 2.43 3.05 15.00 0.00 6.50 5.51 1.00 0.00 79-00 0.00 14.00 0.00 292 3 0 0 7 0 1 25 26 2 2 0 37 29 0 11 0 2 0 7 0 17 0 0 12 53 0 15 0 1 79 14 6 6 6 27 5 21 2 4 8 31 8 9 37 7 27 42 34 28 36 15 22 11 25 26 28 31 46 37 29 3 14 25 2 8 22 8 17 13 10 35 75 9 15 12 1 79 14 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 9 NITHOUT OUTLIERS SAMPLE SIZE 159 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 58000 59000 60000 61000 62000 63000 64000 65000 71000 80000 81000 84000 1 5 1 2 1 0 5 2 2 1 2 2 0.00 0.00 11.40 13-11 0.00 0.00 0.00 0.00 0-00 0-00 4.60 4.77 4.40 4.72 12.00 7.07 6.50 9.19 2.00 0.00 3.50 0.71 2.50 0.71 0 0 O 0 0 0 0 7 0 2 3 2 0 32 0 0 0 13 11 17 13 2 4 3 293 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 10 NITHOUT OUTLIERS SAMPLE SIZE 97 CATEGORY LABEL CODE N MEAN ST.DEV- MIN MAX DISTRICT METRO 9 97 34.99 23.17 0 114 LANEAGE 3 LANE 1‘NAY 4 LANE I'HAY OTHER 2 LANE 2‘HAY 4 LANE Z‘NAY 3 LANE 2'HAY 8 9 13 1 3 2 N V F W N N 16.50 10.61 21.43 13.46 22.50 14.82 23-67 13.32 32-29 15.12 36-50 33-23 4 LANE DIVIDED 10 36.58 19.75 8 LANE DIVIDED 12 37.43 25.39 5 LANE 2‘HAY 4 38.50 23.14 6 LANE DIVIDED 11 38.71 18.04 7 LANE 2‘NAY 6 43-67 36.20 LANE HIDTH SHOULDER HIOTH CURB 10 11 12 0 8 10 12 36 55 78 16 27.17 11.94 36.31 21.01 34.98 25.44 34.17 24.63 37.56 16.36 46.50 19.09 35-00 0-00 9 7 9 9 4 13 8 0 9 15 0 8 0 0 0 8 33 . 35 24 47 39 35 55 6O 78 94 88 65 114 40 88 114 114 78 60 35 294 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 10 HITHOUT OUTLIERS SAMPLE SIZE 97 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY RURAL URBAN FRINGE'STRIP PASS/NO PASS PASS TRUCKLANES 1 3 2 0 2 51 44 23.00 7.07 27.69 19.68 44.00 24.37 18 0 0 28 94 114 97 34.99 23.17 0 114 NO TRUCKLANE 0 97 34.99 23.17 0 114 SPEED LIMIT DELTA ANGLE 25 30 35 40 45 50 55 0 5 10 15 35 50 65 3 6 28 5 24 12 19 17.33 11.93 17.67 9.91 25.79 17.06 39.40 18.06 50.04 29.42 40.08 18.08 33.42 19.84 85 35.06 24.04 1 6 1 2 1 1 13.00 0.00 34-17 20-37 39.00 0.00 35.50 0.71 31.00 0.00 55-00 0.00 4 5 0 8 0 9 7 0 13 9 39 35 31 55 27 28 65 53 114 70 69 114 13 57 39 36 31 55 295 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 10 WITHOUT OUTLIERS SAMPLE SIZE 97 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 0 1 2 5 6 87 34-80 23-92 4 4 1 1 39.00 20.93 29.75 11.76 55.00 0.00 36.00 0.00 OAKLAND 32.42 18.21 38.09 27.92 0 18 13 55 36 0 0 114 57 40 55 36 88 114 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL N0. 10 NIIHDUI OUTLIERS SAMPLE SIZE 9? CATEGORY LABEL CDDE N MEAN ST.DEV. MIN MAX SIGNAL CDDE FLASHER STOP 1 CD LEFT TURN LEFT TURN PHASE ND LEFT TURN ND TURN CCNIRDL ALL RED PHASE ND ALLRED ALL RED PHASE INTERSECTION TYPE OTHER CRDSS OFFSET ND. 0F LEGS ND. RICNI LANES ND. LEFT LANES 2 3 1 2 0 0 1 7 1 s 4 0 1 0 1 >= 2 4 93 20.00 13.95 35.63 23.31 1 3 25.00 0.00 27.33 2c.21 93 35.34 23.41 96 1 2 94 35.27 23.12 8.00 0.00 21.00 4.24 34.45 21.96 0 0 25 9 0 0 0 18 0 1 114.00 0.00 110 40 114 25 49 114 110 a 24 111 114 97 30.99 23.17 0 114 67 30 47 11 39 32.13 23.17 40.03 22.73 29.36 19.42 10.55 20.32 40.21 21.7. 0 0 0 0 0 110 94 78 94 111 297 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 10 NITHOUT OUTLIERS SAMPLE SIZE 97 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 13 8 9 40 24 36 9 35 25 14 7 5 4 19 8 24 9 39 28 44 0 33 11 94 57 49 60 23 5 66 15 35 57 0 25 64 0 13 8 9 40 35 60 35 55 57 42 39 19 69 40 51 31 65 41 53 88 111 38 114 94 57 70 60 46 48 66 65 35 57 42 25 64 0 9000 10000 11000 12000 15000 16000 17000 18000 19000 20000 21000 23000 24000 25000 26000 27000 30000 31000 32000 34000 36000 37000 39000 40000 41000 43000 44000 48000 51000 52000 53000 54000 55000 56000 58000 59000 60000 1 1 1 1 2 2 2 4 4 3 7 2 5 4 6 3 3 2 2 2 3 2 9 1 1 2 1 2 4 1 6 1 1 3 1 1 1 13.00 0.00 8.00 0-00 9.00 0.00 40.00 0.00 29-50 7-78 48.00 16.97 22.00 18.38 44.25 8.69 34.00 15.38 27.67 14.01 17.71 12.66 12.00 9.90 31.80 25.27 29.75 11.30 25.33 14.29 26.33 4.04 41.00 28.84 40.00 1.41 40.50 17.68 66.00 31.11 54.67 55.52 35.50 3.54 43.56 33.23 94-00 0.00 57.00 0.00 59.50 14.85 60.00 0.00 34.50 16.26 27.50 23.73 66-00 0.00 36.33 18.52 35.00 0.00 57.00 0.00 18.33 21.50 25-00 0-00 64.00 0.00 0.00 0.00 298 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 11 HITHOUT OUTLIERS SAMPLE SIZE 452 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DISTRICT GRAND RAPIDS KALAMAZOO JACKSON SAGINAH METRO LANEAGE 3 LANE 2'HAY 2 LANE 2'HAY 6 LANE 2‘NAY OTHER 3 LANE I‘HAY 2 LANE I‘HAY 4 LANE I‘HAY 4 LANE 2‘NAY 5 7 8 6 9 2 1 5 13 8 7 9 3 4 LANE DIVIDED 10 6 LANE DIVIDED 11 5 LANE 2‘HAY 4 8 LANE DIVIDED 12 LANE WIDTH 71 36 16.00 13001 18.58 12.24 121 20.11 12.14 34 21.62 15.31 190 23.21 22.52 O 2 0 0 0 2 12.00 1.41 11 34 6 53 15.29 10.73 16.33 24.39 17.02 16.97 47 18.11 13.49 2 4 D 0 7 18.14 7.82 11 21 93 27 21 73 21 18.19 10.67 19.63 15.24 21.04 12.36 26.14 25032 28.23 22.65 31.38 24.06 57 57 68 66 110 13 45 66 76 57 32 34 103 53 76 110 86 103 98 110 110 24 45 103 34 3 0 4 D 1 0 0 D 0 0 16 6 2 1 SHOULDER HIOTH CURB 10 11 12 D 4 8 10 12 118 17.47 17.52 100 21.59 17.77 234 22.06 17.63 390 20.38 17.95 4 18.00 4.00 17 29 12 26.53 12.80 24.66 19.93 16.33 9.14 299 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 11 HITHOUT OUTLIERS SAMPLE SIZE 452 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY URBAN FRINGE-STRIP RURAL W N ‘ F 256 19.35 18.36 161 22.44 16.50 35 23.31 17.70 0 0 H PASS/NO PASS PASS NO PASS TRUCKLANES 445 20.80 17.79 17.86 11.51 98 110 103 110 41 NO TRUCKLANE 452 20.76 17.70 110 SPEED LIMIT DELTA ANGLE 25 30 35 40 45 50 55 10 15 20 25 30 35 40 50 60 90 17 7.71 9.89 127 16.08 10.45 136 21.30 17.13 39 45 13 75 25.33 22.56 33.87 22.80 42.77 27.76 16-60 13.29 . k p . p 20-66 17.95 G ‘ C ‘ O b N N ‘ J ‘ U N ‘ P F 23.13 14.88 24.67 13.25 31.83 22.12 24.00 9.90 14.50 20.51 14.00 15.56 19.50 9.54 12-20 12.77 14.00 8.49 43.00 0.00 4.00 0-00 O O O N ‘ P O O O ‘ O V T U I ‘ U O W N N D C H # — . b 44 48 84 98 110 103 76 110 54 48 68 38 29 25 30 34 20 43 300 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO- 11 NITHOUT OUTLIERS SAMPLE SIZE 452 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 423 20.74 17.84 33.00 11.31 25 0 1 2 3 4 5 6 7 8 9 12 13 18 58 41 47 61 19 81 11 58 39 37 38 73 33 82 COUNTY KENT LIVINGSTON MUSKEGON CLINTON HASHTENAN BERRIEN MONROE KALAMAZOO ISABELLA JACKSON SAGINAH INGHAM HAYNE 0 11 21 5 7 4 8 3 0 10 2 43 4 0 6 2 7 3 4 2 2 8 1 0 0 0 110 22 38 68 23 30 41 8 19 0 10 2 43 4 57 25 53 48 68 48 36 57 32 45 66 53 110 5 5 5 2 2 2 1 2 1 1 1 1 1 28 3 26 9 31 23 14 13 8 19 34 54 16-60 4.39 28.80 6.98 32.60 25.12 15.00 11.31 17.00 18.38 8-00 0.00 11.00 11.31 0.00 0.00 10-00 0.00 2.00 0-00 43.00 0.00 4-00 0.00 13.68 13.44 15-00 9.54 16.85 13.76 17.11 12.21 17.81 12.74 18-35 10-91 18.43 9.83 19.00 14.78 20-13 10.19 21.21 10.35 21.62 15.31 21.76 13.04 190 23.21 22.52 301 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL ND. 11 HITHDUT OUTLIERS SAHPLE SIZE 052 CATEGORY LABEL CODE N HEAN ST.DEV. HIN MAX SIGNAL CDDE FLASHER STOP 1 GD LEFT TURN LEFT TURN PHASE N0 TURN CONTROL ND LEFT TURN ALL RED PHASE ND ALLRED ALL RED PHASE INTERSECTION TYPE OTHER CRDSS OFFSET NO. OF LEGS 2 3 1 0 2 0 1 7 1 5 3 0 5 ND. RIGHT LANES ND. LEFT LANES >= 6 0 1 0 1 >= 2 3 0 6 0 3 0 5 1 0 1 2 0 11 13 0 2 0 0 0 30 110 48 110 66 103 110 61 I10 50 23 110 22 29 110 86 103 60 110 26 020 15.96 6.90 21.06 18.15 10 025 17 19.30 15.10 20.60 25.59 17.79 17.07 030 22 20.10 17.16 32.66 23.16 06 396 8 19.21 13.16 20.67 20.75 16.16 19.65 0 000 2 2 13.50 20.60 16.50 21.00 10.15 17.61 7.76 11.31 022 30 20.07 20.77 17.65 18.21 256 09 105 16.69 21.35 15.63 16.63 20.23 19.90 302 INJU RY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. HITHOUT OUTLIERS SAMPLE SIZE 452 CATEGORY LABEL COO E N MEAN ST.DEV. MIN MAX VOLUME 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000 38000 39000 40000 41000 42000 43000 44000 45000 46000 47000 49000 — r H p — v — v N — Y H H N H N o - n u r I - v — 1 I - t ‘ - t O — v b H O O ‘ O C O N O O M u m m b b p p p - A Q m o m w o o N N m m b ‘ d — Y M — I N m u m H N m H N m 24.00 0.00 N 21.25 17.21 4.58 19.80 16.88 16-10 7.94 15.17 8.38 11.80 9.64 10-25 10.19 15-14 10.88 7.38 3.11 21.22 31.75 14.80 6.10 15-15 10.06 10-22 6.99 20.61 15.29 24.64 18.08 17.14 8.94 27.36 16.03 19.71 13.80 16.73 13.73 14.81 13.85 25.88 10.26 . p 20.87 15.39 21.40 9.72 30.88 34.50 27.29 26.18 22.00 15.62 17.00 15.02 18-29 8.46 23.18 16.91 20.13 11.22 19.53 19.77 14.57 11.84 27.00 15.81 76-00 0.00 31-00 37.99 9.00 0.00 31.29 30.99 380‘0 26.30 36.33 43.15 16.73 9.87 68.00 0-00 53-00 15.56 10-20 3.03 1.00 0.00 29.00 9.90 24.88 11.95 303 V I — t H " 6 b N “ M N N ‘ U ‘ O C O ‘ J N ‘ W ‘ U O H O N ‘ - J W F O O I U N ‘ O H Q ‘ O ‘ F N O H D - t O A U ‘ C N O O W G W D ( N N — v N N 24 37 16 57 30 28 32 26 35 11 103 22 36 29 62 53 31 61 51 43 41 45 53 33 110 84 57 47 29 66 32 68 44 48 76 74 98 72 86 43 68 64 13 36 46 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL ND. 11 HITHOUT OUTLIERS SAMPLE SIZE 452 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 51000 52000 53000 58000 60000 61000 64000 68000 69000 71000 80000 108000 6 5 2 3 1 1 2 1 1 4 1 1 22-83 15.93 50.20 18.94 51.50 4.95 43.67 20.11 5.00 0.00 54-00 0-00 21-00 0-00 71.00 0.00 76.00 0.00 22.25 29.02 20.00 0.00 65-00 0.00 2 28 48 27 5 54 21 71 76 0 20 65 46 67 55 66 5 54 21 71 76 63 20 65 304 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 WITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DISTRICT ALPENA NEHBERRY CRYSTAL FALLS KALAMAZOO CADILLAC SAGINAH GRAND RAPIDS METRO JACKSON LANEAGE 2 LANE I'HAY 6 LANE Z‘NAY 4 LANE Z'HAY 3 LANE I'NAY 4 2 1 7 3 6 5 9 8 7 5 3 8 4 LANE DIVIDED 10 135 108 204 506 132 621 445 1.68 2.32 2.42 3-19 2.46 2.96 3.24 3.71 3.37 3-85 3.50 4.09 3.51 4.31 1715 4.73 5.91 555 4.77 4.99 109 2.95 3.20 14 3.36 3.00 1732 3.36 3.88 269 473 3-52 4.07 3.81 5.23 4 LANE 1‘NAY 9 68 3.94 4.43 8 LANE DIVIDED 12 7 LANE Z'HAY 5 LANE Z‘NAY OTHER 6 LANE DIVIDED LANE HIDTH SHOULDER NIDTH CURB 6 4 13 11 10 11 12 0 4 8 10 12 417 210 635 198 296 4.21 5.82 4.30 5-47 4.83 5.16 4.85 6.41 5-60 7.03 622 3.93 4.54 1033 3.82 4.55 2766 4.04 5.17 3593 4.07 4.96 28 4.00 4.26 327 388 3.63 5.20 3-53 4.85 85 3.16 3.58 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 16 19 20 29 26 57 31 15 10 27 21 31 26 44 57 31 42 44 27 36 57 57 14 31 44 16 305 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 HITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY RURAL FRINGE'STRIP URBAN PASS/NO PASS PASS NO PASS TRUCKLANES NO TRUCKLANE TRUCKLANE SPEED LIMIT DELTA ANGLE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 7 0 0 44 57 44 57 17 57 2 17 21 38 31 57 44 31 57 25 24 25 17 18 16 17 14 17 17 44 11 15 3 7 17 5 1 2 3 0 1 0 1 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 60 65 75 80 90 95 470 3.08 4.54 2139 3.92 4.78 1812 4.26 5.21 4338 4.00 4.97 83 2.43 3.13 4416 3.98 4.95 5 0.60 0.89 123 634 3-34 3-54 3.59 3.66 1228 4.10 4.66 699 716 214 807 3.78 4.59 4.98 6.43 5-22 7.62 3.12 4.01 3849 4-04 4.99 99 75 53 59 59 43 44 26 33 29 14 4 13 3 1 10 7 4.04 4.78 3.37 4.44 3-53 5.18 2.78 3-62 3.61 4.16 3.37 4.36 3.16 3.38 4.38 4.19 2.88 4.16 2.48 3.85 6.29 11.38 6-00 3.92 2.92 4.63 1.67 1.15 7-00 0.00 3.80 5-05 2.43 1.99 306 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 HITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 l6 18 19 21 22 23 25 26 29 31 36 38 40 41 58 80 66 57 7 75 62 79 16 36 49 2 27 20 3921 4-04 4.99 116 110 76 38 29 37 18 11 8 3 3 4 2 5 3.72 4.84 3-67 4-40 2.88 3.62 3.63 7.42 3.76 5.10 3.08 4.06 2.89 2.52 3-55 4.44 2-25 2.43 1.67 2.89 3-67 3-79 1.00 1.41 2.50 0.71 3-80 5.36 10 3.40 2.63 8.33 7.77 3.00 0-00 2.00 0.00 2.57 3.60 7.00 0.00 2-00 0-00 0.00 0.00 1.00 0.00 3-00 0.00 6.00 0.00 1.00 0.00 2-00 0-00 4.75 5.74 6.00 0.00 2.67 2.52 5.00 5.66 0.20 0.45 0.25 0.50 0.40 0.55 0.80 1.30 0.83 1-14 0.89 1.02 1.00 1.00 1.00 0-82 1.07 1.30 1.15 2.08 1.19 1.87 1.20 1.64 3 1 1 7 1 1 1 1 1 1 1 1 4 1 3 2 5 4 5 5 29 18 3 4 27 13 31 5 307 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 2 3 2 0 7 2 0 1 3 6 1 2 0 6 0 1 0 0 0 0 0 0 0 0 0 0 0 0 57 25 19 17 44 17 17 10 14 7 5 8 3 3 13 9 17 3 2 10 7 2 0 1 3 6 1 2 13 6 5 9 1 1 1 3 5 3 2 2 4 7 7 4 COUNTY ONTONAGON MISSAUKEE BARAGA SCHOOLCRAFT NENAYGO TUSCOLA CHEBDYGAN IRON MACKINAC ALGER GOGEBIC CRAMFORD INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO- 12 MITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX COUNTY ROSCOMMON ALPENA LUCE BENZIE BARRY ARENAC IOSCO CHARLEVOIX VAN BUREN GRATIOT OGEMAN HURON OSCEOLA MONTCALM SANILAC CASS GLADNIN DICKINSON MANISTEE HILLSDALE ST. CLAIR HOUGHTON CLARE MENOMINEE SHIAHASSEE MIDLAND BERRIEN ST. JOSEPH DELTA CALHOUN CLINTON KALAMAZOO BAY SAGINAN LIVINGSTON EMMET OTSEGO HASHTENAH GENESEE CHIPPEHA ISABELLA MUSKEGON KALKASKA MASON OTTAMA NEXFORD MONROE 72 4 48 10 8 6 35 15 80 29 65 32 67 59 74 14 26 22 51 30 77 31 18 55 76 56 11 78 21 13 19 39 9 73 47 24 69 81 25 17 37 61 40 53 70 83 58 76 1.29 2.06 3 3 2 14 13 21 16 33 42 11 12 10 40 12 8 5 51 17 11 91 34 23 31 56 32 1.33 1.53 1.33 1.53 1.50 2.12 1.57 1.50 1.62 1.33 1-62 2.13 1.63 1.41 1.64 1.78 1.64 2.23 1.73 1.10 1.75 2-22 1.80 1.40 1.83 2-14 1.83 1.95 2.00 1.77 2.00 1.22 2.06 2.30 2.18 2-07 2.27 2.76 2-49 2.92 2.53 2.14 2.65 2.23 2.71 3.08 2.73 3.22 3-03 4.77 133 3.13 3.77 74 41 3-18 3.57 3.27 3.55 111 3.28 3.69 43 82 97 3-56 3.53 3.60 4.06 3-71 4.90 177 3.73 3.84 17 3.82 3.45 7 8 3-86 4.49 3.88 2.95 94 3.88 4.21 170 3.91 4.05 19 21 64 1 17 92 19 59 3.95 4.22 3.95 3-09 3.97 5.11 4.00 0-00 4.00 5.24 4.00 4-75 4.11 2.71 4.15 4.62 308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 15 3 3 3 5 5 8 4 8 8 4 6 4 9 6 6 4 10 8 8 17 7 7 11 14 21 19 16 13 18 14 18 29 20 10 13 7 23 21 13 11 25 4 20 26 12 25 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 HITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX COUNTY BRANCH HAYNE MARQUETTE KENT LENANEE ALCONA ALLEGAN MECOSTA INGHAM JACKSON LAPEER IONIA EATON OAKLAND GR. TRAVERSE MACOMB 12 82 52 41 46 1 3 54 33 38 44 34 23 63 28 50 27 4.22 3.49 1081 4.23 5.78 43 95 30 1 24 9 4.23 4.15 4.58 4.83 4.60 4.52 5-00 0-00 5.04 4.99 5.11 5.67 228 5.17 5.48 59 29 10 57 5.19 4.93 5-24 5-54 5.50 5.80 5.67 5.22 319 5.69 5.99 23 6.48 5.81 224 6.65 6.64 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 13 44 16 19 18 5 19 17 31 18 22 14 28 36 19 57 309 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 HITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX SIGNAL CODE NO SIGNAL 1 4421 3.97 4.95 LEFT TURN NO TURN CONTROL NO LEFT TURN LEFT TURN PHASE 0 2 1 4418 3.97 4.94 1 2 9.00 0-00 13-00 14.14 0 0 9 3 57 57 9 23 ALL RED PHASE NO ALLRED 0 4421 3.97 4.95 0 57 INTERSECTION TYPE DIR. X'OVER TEE NYE CROSS OFFSET OTHER FREEHAY RAMP NO. OF LEGS 9 2 6 1 5 7 8 0 3 4 5 >= 6 NO. RIGHT LANES 239 2-30 4.40 2530 3.61 4.45 284 3-98 5.60 1027 4.72 5.09 185 4.98 4.84 86 70 5.79 6.48 6.77 10.35 60 7.27 11.08 3033 3.54 4.61 1304 4.80 7.31 13 11 5.06 8.13 3-27 2-45 0 1 >= 2 4324 3.95 4.91 79 18 4.51 6.29 5.83 6.42 NO. LEFT LANES 0 1 >= 2 3328 3.92 5.03 774 319 3-71 4.63 5.13 4.68 310 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 31 37 44 42 29 31 57 57 44 42 29 9 57 44 19 57 31 26 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 HITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000 38000 39000 40000 41000 42000 43000 44000 45000 46000 47000 4 22 99 80 136 161 145 192 132 166 151 149 125 158 164 169 154 114 88 82 91 91 61 80 68 66 45 41 71 93 72 47 30 76 35 28 24 13 60 67 22 67 33 27 17 11 4 0.00 0.00 0.68 1.32 1.66 3.19 1.23 1.81 1.95 2.36 1.89 2.69 1.94 2-65 2.26 3.25 2.59 3.23 3-33 4.04 2.68 3.01 3.27 4.85 3-34 3.69 3.82 3.83 3.86 3.59 3.89 4.18 4.94 4.55 4.93 4.36 4.80 4.84 3.76 3.67 3.89 4.78 4.67 4.47 4.36 4.38 4.41 4.82 7.96 6-01 3.64 3.48 4.78 5.60 3.93 4.76 5-27 6.03 3.86 4.05 5-85 5.53 4.89 4.45 4.63 4.84 3-95 4.26 5.60 5.63 7.18 10.72 4.92 5-20 5.15 5.83 5.22 6.21 6-12 5.82 5.18 7.73 4.88 6.11 7-00 5-68 6.93 6.51 6.94 6.68 6-82 6.74 17.75 14.93 311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 4 16 9 13 17 19 24 20 25 16 44 22 18 18 26 27 20 23 16 31 19 15 25 31 18 31 21 29 22 28 21 17 23 22 57 16 17 26 26 25 29 22 22 19 20 38 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 12 HITHOUT OUTLIERS SAMPLE SIZE 4421 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 48000 49000 50000 51000 52000 53000 54000 55000 56000 57000 58000 59000 60000 61000 62000 63000 64000 65000 67000 68000 69000 71000 80000 81000 84000 88000 96000 108000 32 61 3 70 5 74 14 36 24 5 16 14 16 10 9 48 26 8 12 1 2 28 33 8 3 7 18 7 6.66 5.96 2.69 4-70 9.67 9.02 3.97 4.78 2-80 5-22 6.38 6.28 5.07 9.64 7.17 7.60 6.46 4.24 6.00 5.52 7.19 5.83 2.93 4.86 9.13 11.47 5.10 11.30 7.00 5.32 3.67 4.27 5.35 8-63 4.75 4.80 6.58 12.18 5-00 0.00 3.50 4.95 9.29 12.10 2.33 3.16 2-50 2.33 7.33 7.51 4.57 5.29 2.94 3.40 4.14 3.02 0 0 1 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 19 29 19 21 12 29 36 31 17 14 17 19 36 37 17 24 42 16 42 5 7 44 15 7 15 12 14 8 312 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 HITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAx DISTRICT NEHBERRY CRYSTAL FALLS ALPENA CADILLAC SAGINAH GRAND RAPIDS KALAMAZOO JACKSON METRO LANEAGE 2 LANE 2-HAY 3 LANE 2-HAY LANE HIDTH SHOULDER HIDTH CURB 2 1 0 3 6 5 7 6 9 1 2 10 11 12 o 0 6 10 12 550 977 1002 1109 1232 612 1110 920 365 0.33 0.52 0.62 0.65 1.15 1.21 1.27 1.27 2.01 0.69 1.16 1.20 1.10 1.60 1.76 1.71 1.75 2.52 7923 216 0.93 2.15 1.53 2.55 1513 2669 3959 0.61 0.65 1.09 1.07 1.03 1.69 1060 203 2605 3911 256 1.57 0.53 0.89 0.84 1.20 1.96 0.95 1.56 1.00 1.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 13 11 6 13 12 12 13 10 10 13 11 12 10 10 5 13 13 9 313 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 HITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY RURAL FRINGE'STRIP URBAN PASS/NO PASS PASS NO PASS TRUCKLANES NO TRUCKLANE TRUCKLANE SPEED LIMIT DELTA ANGLE 1 2 3 0 1 0 1 25 30 35 40 45 50 55 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 5521 0.75 1.30 2139 1.35 1.94 481 1.59 2-02 5648 0.98 1.58 2493 0.91 1.56 8089 0-96 1.58 52 0.46 0.75 159 507 555 386 573 332 1.81 2.21 1.67 2.07 1.07 1.02 1.47 1.59 1.54 2.27 1.93 2.72 5629 0.74 1.23 6116 0.98 1.60 294 0.90 1.43 172 180 174 158 146 143 110 145 93 81 55 36 43 17 21 8 0-81 1.51 0.95 1.71 0.69 1.39 0.91 1.62 0.96 1.55 0.91 1.72 0.82 1.47 0.90 1.43 0.92 1.47 1.00 1.61 0.85 1.57 0.94 1.37 0.70 1.21 1.41 1.77 0.43 0.81 0.38 0-74 103 0.89 1.28 45 1 1.22 1.66 1.00 0.00 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 13 14 13 13 14 14 3 13 11 10 11 13 14 9 14 11 11 10 12 12 11 9 10 8 8 7 6 5 6 5 2 2 7 8 1 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 HITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 35 36 38 40 57 58 60 61 66 74 89 7 2 6213 0.99 1.60 640 511 268 105 75 85 13 40 12 27 9 22 5 9 4 7 3 4 0.73 1.36 0.90 1.59 0.89 1.42 1.00 1.45 0.71 1.21 0-94 1.87 2.92 3.12 1.40 2.06 1.00 1.35 0.41 0.97 0.78 1.09 0.86 1.08 1.20 1.10 1.22 1.30 0.25 0.50 2.00 2.16 1.00 1-73 1.25 0.50 16 1.06 1.18 9 6 3 3 1 1 1 4 5 4 2 2 2 1 8 2-00 2-55 0.33 0.52 1.67 1.15 0.67 0.58 0.00 0-00 0.00 0.00 0-00 0-00 0.75 0.96 1.40 0.89 1.00 0-82 1.50 2-12 3.00 1.41 0-50 0-71 0-00 0.00 0.88 1.64 16 1.00 1.75 1 1 1 1 1 1.00 0.00 2.00 0.00 1.00 0-00 0-00 0.00 4.00 0.00 67 96 0.19 0-53 0.20 0.45 COUNTY BARAGA ALGER CHIPPEHA 17 121 0.26 0-58 315 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 l 0 0 0 0 0 1 0 0 2 0 0 0 0 1 2 1 0 4 0 0 0 14 11 12 7 7 6 12 8 9 4 4 3 4 2 4 1 6 3 2 4 8 1 3 1 0 0 0 2 3 2 3 4 1 0 4 6 1 2 1 0 4 2 2 3 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 HITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX COUNTY ONTONAGON MACKINAC ROSCOMMON KENEENAN OSCODA LUCE GOGEBIC PRESQUE ISLE ALCONA MONTMORENCY SCHOOLCRAFT ANTRIM IRON MANISTEE DICKINSON LEELANAU LAKE CHARLEVOIX MENDMINEE OCEANA DELTA OSCEOLA HOUGHTON CHEBDYGAN OTSEGO EMMET HEXFORD BENZIE KALKASKA GLADMIN BARRY HURON CRANFORD HILLSDALE SANILAC OGEMAH MONTCALM IOSCO GR. TRAVERSE MECOSTA MISSAUKEE MASON ARENAC TUSCOLA MARQUETTE ALPENA LENANEE 66 49 72 42 68 48 27 71 1 60 75 5 36 51 22 45 43 15 55 64 21 67 31 16 69 24 83 10 40 26 8 32 20 30 74 65 59 35 28 54 57 53 6 79 52 4 46 150 0.26 0.58 94 93 43 73 51 79 0-28 0-65 0.31 0.71 0.33 0.68 0.33 0.62 0.33 0.68 0.34 0.70 117 0.35 0.75 71 54 105 127 129 115 0.38 0.68 0.39 0.66 0.40 0.83 0.45 0-86 0.46 1.01 0.47 0-81 54 0.48 1.11 134 0.49 1.00 71 83 0-49 0.97 0.51 0.95 102 0-51 0-96 13 83 0.54 0.66 0.54 0-87 ‘72 0.57 0.93 191 116 0.59 0.98 0.70 1-40 30 0.70 0.95 112 146 89 49 90 132 211 0-71 1.08 0.72 1.22 0.73 1.27 0.76 1.09 0.76 1.10 0.76 0.99 0.76 1.15 51 0.78 1.25 144 211 0.78 1.10 0.79 1.16 52 0-79 1.33 124 122 101 117 56 59 40 157 162 111 193 0.82 1.27 0-86 0.87 1.64 1.40 0.91 1.60 0.93 1.66 0.95 1.22 0.95 1-55 0.96 1.43 1.02 2-03 1.03 1.70 1.08 1.49 316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0 O 0 0 0 0 0 0 3 4 4 3 2 2 3 4 3 3 4 4 5 5 5 8 4 5 7 2 3 4 5 7 3 6 5 8 5 5 4 8 5 5 6 6 6 11 6 11 8 5 8 7 13 8 9 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 NITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX COUNTY CLARE ST. JOSEPH NEHAYGO EATON GRATIOT ALLEGAN ST. CLAIR IDNIA MIDLAND VAN BUREN LAPEER JACKSON KALAMAZOO KENT SHIANASSEE CALHOUN OTTAHA CASS INGHAM SAGINAH LIVINGSTON CLINTON BRANCH BERRIEN MONROE MUSKEGON GENESEE HASHTENAM BAY MACOMB ISABELLA OAKLAND NAYNE 18 78 62 23 29 3 77 34 56 80 44 38 39 41 76 13 70 14 33 73 47 19 12 11 58 61 25 81 9 50 37 63 82 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 10 8 8 6 6 10 8 7 7 8 8 6 7 8 12 7 9 11 8 9 7 9 9 7 12 13 13 12 11 12 14 11 47 1.09 1.53 166 110 137 1.14 58 1.16 1.10 1.58 1.11 1.63 1.54 1.45 116 236 128 1.16 1.38 1.17 1.18 1.56 1.62 38 1.18 1.47 101 1.20 1.59 90 1.24 1.68 135 1.26 1.66 76 1.30 1.57 108 1.32 1.58 80 1.34 1.57 143 1.38 1.94 51 1.43 1.77 168 1.48 2.02 73 1.48 2.25 144 1.51 1.66 80 30 59 1.51 2.08 1.53 2.01 1.56 1.90 149 1.57 1.94 91 45 1.59 1.73 1.78 2.64 115 1.88 2.40 71 56 48 28 64 37 2.15 2.52 2.45 2.69 2.79 3-09 2.93 3.15 3.52 2.97 3.70 3-38 317 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 HITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX SIGNAL CODE NO SIGNAL 1 8141 0.96 1.58 O 14 LEFT TURN NO TURN CONTROL 0 8141 0.96 1.58 0 14 ALL RED PHASE NO ALLREO 0 8141 0.96 1.58 O 14 INTERSECTION TYPE TEE NYE OFFSET CROSS OTHER FREEMAY RAMP DIR. X‘OVER NO. OF LEGS 2 6 5 1 7 8 9 0 3 4 5 4726 0.75 1.38 794 0.97 1.63 238 0.99 1.55 2125 1.35 1.81 215 1.46 1.86 42 1 2.31 2.20 3.00 0.00 32 2.16 2.32 5457 0.77 1.41 2632 1.32 1.80 11 2.36 2.16 >3 6 9 3022 306‘ NO. RIGHT LANES 0 1 7926 0.94 1.55 150 1.53 1.98 >= 2 65 2.05 202‘ NO. LEFT LANES 0 1 >= 2 8026 0.94 1.55 85 30 1.80 2.10 3.17 2.80 0 0 0 0 0 0 3 0 0 0 0 1 0 O 0 D 0 0 14 12 11 13 10 10 3 10 14 13 7 6 13 14 9 14 10 11 318 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 13 WITHOUT OUTLIERS SAMPLE SIZE 8141 CATEGORY LABEL CODE N MEAN ST-DEV- MIN MAX VOLUME 1000 746 0.29 0.74 2000 1526 0.39 0-78 3000 1549 0.62 1.05 4000 1081 0-85 1.24 5000 1020 1.11 1.53 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 530 421 401 219 155 124 84 35 48 30 44 32 16 20 18 7 6 8 5 1.25 1.62 1.46 1.53 1.70 1.88 1.85 2-37 2-09 2-09 2.44 2-26 2.45 2.85 1.71 1.93 2-75 2.76 2.90 3.16 3-25 2-91 3-84 3.40 4.56 3.12 3.20 3.49 2.61 1.69 3.57 2.99 3-50 4.04 3.63 4.10 3.20 2.39 26000 11 4.09 3-02 31000 145000 1 4 0.00 0.00 1.50 1.29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 8 7 8 8 9 10 10 11 14 12 11 12 6 13 12 10 13 11 11 7 8 11 10 7 10 0 3 319 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 14 HITHOUT OUTLIERS SAMPLE SIZE 67 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DISTRICT SAGINAH GRAND RAPIDS KALAMAZOO JACKSON METRO LANEAGE 4 LANE Z'NAY 6 LANE DIVIDED OTHER 8 LANE DIVIDED 5 LANE Z‘HAY 6 5 7 8 9 3 11 13 12 4 4 LANE DIVIDED 10 7 LANE Z'NAY 6 LANE NIDTH 10 11 12 2 17 2 3 34.00 12.73 43.12 24.57 48.00 22.63 50.67 24.54 43 56-65 33.92 1 5 4 19 30 5 3 1 10 56 29.00 0.00 34.40 24.37 42.00 49.56 50.21 28.61 54.43 27.57 62.20 40.08 72.67 51.69 0.00 0.00 41.30 42.33 54.86 27.76 25 9 32 36 0 29 15 0 1 9 27 13 0 1 9 43 101 64 79 126 29 73 99 107 117 126 104 0 117 126 SHOULDER HIOTH CURB 0 67 52.01 30.85 0 126 320 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 14 NITHOUT OUTLIERS SAMPLE SIZE 67 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY RURAL URBAN FRINGE'STRIP 1 3 2 2 38 27 28.50 2.12 50-39 30-56 56-04 32-00 27 0 9 30 117 126 PASS/NO PASS PASS 0 67 52-01 30-85 0 126 TRUCKLANES ND TRUCKLANE 0 67 52-01 30-85 0 126 SPEED LIMIT DELTA ANGLE 25 35 40 45 50 55 0 5 10 15 20 30 35 40 2 4 23 23 11 0.50 0.71 38.75 28.69 53-87 27.55 52.87 32.69 58.64 34.66 4 57.25 21.82 58 50.07 30.17 2 2 1 1 1 1 1 78-50 40-31 66.50 33.23 99.00 0.00 9-00 0-00 95-00 0.00 36.00 0.00 52-00 0-00 0 13 9 1 11 37 0 50 43 99 9 95 36 52 1 77 117 126 107 79 126 107 90 99 9 95 36 52 321 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 14 HITHOUT OUTLIERS SAMPLE SIZE 67 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 0 1 2 3 4 6 61 37 73 81 41 82 11 63 33 50 61 51.80 30.91 1 2 1 1 1 2 1 2 1 14 20 2 14 2 9 90.00 0.00 69.00 36.77 9.00 0.00 52.00 0.00 36.00 0.00 28.50 2.12 29.00 0.00 34.00 12.73 37.00 0.00 46-21 26.15 46.35 32.22 48-00 22-63 56.93 31.66 57.50 30.41 79.11 33.37 0 90 43 9 52 36 27 29 25 37 9 0 32 1 36 21 126 90 95 9 52 36 30 29 43 37 101 117 64 107 79 126 COUNTY MUSKEGON ISABELLA SAGINAN HASHTENAN KENT HAYNE BERRIEN OAKLAND INGHAM MACOMB 322 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 14 HITHOUT OUTLIERS SAMPLE SIZE 67 CATEGORY LABEL CODE N MEAN ST.DEV- MIN MAX SIGNAL CODE STOP 1 GO 67 52.01 30.85 126 LEFT TURN LEFT TURN PHASE NO TURN CONTROL NO LEFT TURN ALL RED PHASE NO ALLREO ALL RED PHASE ‘ F O N o . . INTERSECTION TYPE OTHER NYE CROSS NO. OF LEGS 45.75 33.86 51.79 31.36 59.60 26.73 52.03 31.68 51.75 13.79 6.50 9.19 50.00 0-00 53.47 30.46 52.61 30.70 13.00 0-00 79 126 98 126 64 13 50 126 126 13 NO. RIGHT LANES NO. LEFT LANES )7. 67 52.01 30.85 126 22 56.27 38.74 58.40 25.49 40 48.88 26.65 126 73 117 323 INJURY ‘ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 14 HITHOUT OUTLIERS SAMPLE SIZE 67 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 12000 14000 15000 16000 17000 19000 21000 22000 23000 28000 29000 30000 31000 33000 34000 35000 38000 39000 40000 42000 44000 46000 48000 49000 51000 53000 55000 56000 57000 59000 60000 63000 64000 71000 80000 81000 96000 2 2 1 2 1 1 1 2 1 2 3 3 2 4 2 1 1 1 4 2 2 2 1 1 2 3 3 2 1 2 1 2 1 1 2 2 1 21.50 14.85 34.00 12.73 52.00 0.00 32.50 4.95 11.00 0.00 64.00 0.00 21.00 0.00 49.00 21.21 40-00 0-00 76.50 19.09 19.00 16.52 56.67 43.75 74.00 33.94 54.25 17.91 57.00 62.23 37.00 0.00 50-00 0-00 36.00 0.00 77.50 27.23 60.00 14.14 63.50 88.39 70.50 0.71 58-00 0-00 11 25 52 29 11 64 21 34 40 63 0 9 50 37 13 37 50 36 56 50 1 70 58 101.00 0.00 101 52.50 45.96 56.33 42.85 73-67 18.23 5.00 5.66 99-00 0.00 73.50 47.38 19.00 0.00 52-00 22-63 15.00 0.00 76.00 0.00 59.50 10.61 31.50 4.95 37.00 0.00 20 21 54 1 99 40 19 36 15 76 52 28 37 32 43 52 36 11 64 21 64 40 90 30 95 98 79 101 37 50 36 117 70 126 71 58 101 85 104 90 9 99 107 19 68 15 76 67 35 37 324 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 15 HITHDUT OUTLIERS SAMPLE SIZE 25 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX 12.00 0.00 12 DISTRICT SAGINAH GRAND RAPIDS JACKSON KALAMAZOO METRO LANEAGE 2 LANE 2'HAY 4 LANE Z‘HAY 3 LANE Z'HAY 6 5 8 7 9 1 3 2 4 LANE DIVIDED 10 5 LANE Z‘HAY 4 LANE NIDTH SHOULDER HIOTH 10 11 12 8 10 6 6 5 9 5 17 22 6 75 6 6 5 9 5 12 29 28 29 75 52 17 22 53 75 75 28 53 75 34 1 4 5 5 12.75 10.87 14.20 8-96 15.20 9.18 10 32.00 21.35 13 16.23 13.28 1 1 9 1 3 8 17.00 0.00 22.00 0.00 22.78 14.59 75.00 0.00 32.67 37.07 16.50 8.28 14 21.43 15.87 11 14 28.18 21.99 15.71 9.94 325 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 15 HITHOUT OUTLIERS SAMPLE SIZE 25 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY FRINGE‘STRIP RURAL URBAN PASS/NO PASS PASS NO PASS TRUCKLANES 2 1 3 0 1 8 16 1 21 4 14.50 7.46 21.19 15.13 75-00 0.00 23.10 18.08 11.25 4.72 6 5 75 5 8 25 53 75 75 18 NO TRUCKLANE 0 25 21.20 17.17 5 75 SPEED LIMIT DELTA ANGLE 40 45 50 55 0 5 10 20 90 1 4 5 9.00 0.00 35.75 26.63 37.40 13.87 15 12.73 7.54 21 21.76 18.40 1 1 1 1 22-00 0-00 28.00 0.00 6.00 0.00 17.00 0.00 9 17 25 5 5 22 28 6 17 9 75 53 34 75 22 28 6 17 326 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 15 HITHOUT OUTLIERS SAMPLE SIZE 25 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE COUNTY KENT HASHTENAH JACKSON BERRIEN SAGINAN KALAMAZOO MONROE OAKLAND LIVINGSTON MUSKEGON MACOMB NAYNE 0 1 2 4 41 81 38 11 73 39 58 63 47 61 50 82 21 21.76 18.40 2 1 1 3 1 2 2 1 3 1 5 1 1 2 3 25.00 4.24 6.00 0.00 17-00 0-00 7.33 1.15 8.00 0.00 8.50 3.54 11.00 8.49 12.00 0.00 18.00 10.15 18.00 0.00 19.40 4.62 28.00 0.00 29-00 0-00 30.50 30.41 54.00 20.52 5 22 6 17 6 8 6 5 12 9 18 13 28 29 9 34 75 28 6 17 8 8 11 17 12 29 18 25 28 29 52 75 327 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 15 HITHOUT OUTLIERS SAMPLE SIZE 25 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX SIGNAL CODE FLASHER STOP 8 GO LEFT TURN 2 3 10 15 10.90 4.70 28.07 19.10 NO TURN CONTROL 0 25 21.20 17.17 ALL RED PHASE NO ALLREO INTERSECTION TYPE TEE OTHER CROSS NYE NO. OF LEGS 0 2 7 1 6 3 4 25 21.20 17.17 1 2 6.00 0.00 7.00 1.41 20 21.15 16.65 2 43.50 13.44 1 6.00 0.00 24 21.83 17.24 NO. RIGHT LANES >= 2 25 21.20 17.17 NO. LEFT LANES 0 1 >= 2 16 16.13 11.98 1 8 9.00 0.00 32.88 21.62 5 6 5 5 6 6 5 4 6 5 5 5 9 6 18 75 75 75 6 8 75 53 6 75 75 52 9 75 328 INJURY ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. HITHOUT OUTLIERS SAMPLE SIZE 25 CATEGORY LABEL COO E N MEAN ST.DEV- MIN MAX VOLUME 2000 4000 5000 6000 7000 8000 9000 10000 13000 14000 19000 20000 23000 27000 29000 30000 35000 36000 44000 H H J U N N H N H ‘ F M H I F N H ' F D - l ‘ - V H O - O 6.00 0.00 5.00 0-00 19-00 8.19 13-50 3.54 8.00 0.00 9.00 0.00 12-00 8.49 29.00 0.00 34.00 0.00 8-00 0-00 22.00 0.00 52.00 0.00 41.00 16.97 9.00 0.00 17.00 0.00 20-00 0-00 13.00 0-00 75.00 0.00 25.00 0-00 28 16 18 29 34 22 52 53 17 20 13 75 25 329 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 7 HITHOUT OUTLIERS SAMPLE SIZE 70 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DIS TRICT JACKSON GRAND RAPIDS M ETRO KALAMAZOO SAGINAH LAN $ m ~ J A U N ¢ ~ £ Q b N D EAGE LANE Z'HAY LANE Z‘HAY LANE I'NAY LANE 1'HAY LANE 2‘HAY LANE DIVIDED LANE Z'HAY LANE DIVIDED LANE DIVIDED LANE 2‘NAY THER LANE HIDTH SHOULDER HIDTH C URB 8 5 9 7 6 5 0 9 6 1 11 3 12 10 6 13 10 11 12 0 0 6 10 12 9 2 09 1 9 1 6 3 0 7 6 16 10 6 1 2 6 23 01 50 1 11 1 3 6.44 7.88 8.00 5.66 12-08 12.57 13.00 0.00 13.89 12.04 5.00 0.00 5.88 5.03 7.67 3.21 8.50 15-70 8.57 5.38 11.33 6.80 12.39 12.00 14.43 16.96 15.00 16.27 17.00 0.00 17.50 0.71 6-33 5-28 10.22 13.87 12.95 11.12 12.13 12.38 13.00 0-00 11.36 10.66 1.00 0-00 3.33 0.58 25 12 62 13 34 13 10 32 16 20 34 62 44 17 18 13 62 62 13 31 O b O w O fi U O b O u O O O O V N H O O O W O H M - t u t 330 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 7 NITHOUT OUTLIERS SAMPLE SIZE 70 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX ACTIVITY DENSITY RURAL FRINGE'STRIP URBAN PASS/NO PASS PASS ND PASS TRUCKLANES 1 2 3 0 1 7 33 30 7.43 6.08 11.52 11.20 12.40 13.42 69 11.59 11.85 1 4.00 0.00 16 44 62 62 4 ND TRUCKLANE 0 70 11.49 11.80 62 SPEED LIMIT DELTA ANGLE 25 30 35 40 45 50 55 0 5 10 20 30 35 2 5 15 11 13 14 10 3-00 1.41 14.00 13.84 9.40 7.99 13.91 13.81 18.23 17.21 7.79 8.33 8.80 6.78 60 11.48 11.83 3 3 1 2 1 8.67 14.15 11.67 16.86 5.00 0-00 19.50 13.44 10-00 0-00 2 0 0 0 0 0 0 0 0 0 5 10 10 4 32 22 44 62 31 18 62 25 31 5 29 10 331 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 7 NITHOUT OUTLIERS SAMPLE SIZE 70 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DEGREE OF CURVE 0 1 2 3 5 33 61 63 38 50 11 73 3 2 2 1 2 7 2 5 2 4 1 9 11.35 11.83 15.50 21.92 10.00 0.00 4-00 0.00 17.00 16.97 4.71 3.86 8.00 5.66 11.86 14-02 12.50 17.68 12.64 8.33 13.00 0.00 13.89 12.04 0 0 10 4 5 1 4 0 0 0 13 0 62 31 10 4 29 13 12 62 25 31 13 34 COUNTY INGHAM MUSKEGON OAKLAND JACKSON MACOMB BERRIEN SAGINAH 332 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 7 NITHDUT OUTLIERS SAMPLE SIZE 70 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX SIGNAL CODE FLASHER STOP 8 GO LEFT TURN LEFT TURN PHASE NO LEFT TURN NO TURN CONTROL ALL RED PHASE ND ALLREO ALL RED PHASE INTERSECTION TYPE DIR. X'OVER TEE NYE NO. OF LEGS NO. RIGHT LANES NO. LEFT LANES 2 3 1 2 0 0 1 9 2 6 3 4 0 1 0 1 9 11.67 13.53 61 11.46 11.64 1 2 9.00 0.00 11.50 2.12 67 11.52 12.05 69 11.45 11.88 1 14.00 0.00 7 48 15 58 12 51 18 5.86 11.36 12.04 12.58 12.33 9.01 11.14 12.19 13.17 9.96 10.20 11.49 14.39 12.33 39 24 10.51. 11.96 11.67 10.76 >= 2 7 16.29 14.73 3 0 9 10 0 0 14 0 0 0 0 0 0 0 0 0 0 44 62 9 13 62 62 14 31 62 32 62 32 62 44 62 44 34 333 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 7 NITHOUT OUTLIERS SAMPLE SIZE 70 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX VOLUME 3 32 4 7 2 4 4 13 9 0 0 14 4 0 10 2 0 5 17 2 29 0 13 2 1 9 0 10 1 9 13 8 0 1 62 21 0 3 32 4 7 2 4 16 13 9 3 22 34 25 18 10 12 44 5 17 29 29 0 13 2 15 31 0 10 1 31 13 8 20 1 62 21 7 5000 6000 7000 8000 9000 12000 13000 14000 16000 17000 18000 19000 20000 21000 22000 24000 25000 27000 28000 31000 32000 34000 36000 38000 39000 40000 42000 43000 46000 48000 49000 52000 53000 54000 56000 57000 59000 2 1 1 1 1 1 2 1 2 2 4 2 3 7 1 2 6 1 1 4 1 1 1 1 2 3 1 1 1 2 1 1 3 1 1 1 3 3.00 0.00 32-00 0-00 4.00 0.00 7.00 0.00 2-00 0-00 4.00 0.00 10.00 8.49 13.00 0.00 9.00 0.00 1.50 2.12 11.75 9.25 24.00 14.14 13.33 10.69 10.14 6.57 10.00 0.00 7.00 7.07 9.50 17.14 5-00 17.00 0.00 0.00 18.25 11.93 29-00 0-00 0.00 0.00 13.00 0.00 2-00 8.00 0-00 9.90 19.33 11.06 0.00 0.00 10.00 0.00 1.00 0.00 20.00 15.56 13.00 0.00 8.00 0.00 10-67 10-07 1.00 0.00 62-00 0.00 21.00 0.00 2.33 4.04 334 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL NO. 8 NITHOUT OUTLIERS SAMPLE SIZE 4625 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAX DISTRICT ALPENA NENBERRY CRYSTAL FALLS KALAMAZOO METRO SAGINAN CADILLAC GRAND RAPIDS JACKSON LANEAGE 3 LANE 2'NAY 7 LANE 2‘NAY 4 LANE 2'NAY 8 LANE DIVIDED OTHER 2 LANE 1'NAY 5 LANE Z'NAY 4 2 1 7 9 6 3 5 8 2 6 3 12 13 7 4 4 LANE DIVIDED 10 139 117 239 537 1.41 2-99 1.97 3.16 2.40 4-22 2.88 4.94 1738 3.09 5.34 639 140 499 577 3.13 5.59 3.26 3.36 4.71 5.58 3.50 5.13 218 210 1.87 3.13 2.30 5.17 1732 2.45 3.78 417 198 109 635 473 2.71 4.41 3.48 6.69 3.50 5.06 3.54 5.18 3.62 6.10 4 LANE 1'NAY 9 68 3.76 6.08 6 LANE DIVIDED 11 3 LANE 1‘NAY 8 296 269 4.31 7.36 4.64 7.71 LANE NIDTH SHOULDER NIDTH CURB 10 11 12 0 4 8 10 12 656 2.89 4.44 1096 2.45 4.13 2873 3.30 5.65 3726 3.14 5.13 29 5.48 8.72 351 428 2.01 3.98 2.84 6.06 91 3-02 4-35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 19 25 41 63 53 31 50 39 25 62 29 24 50 32 39 41 39 63 53 30 50 63 62 35 30 63 20 335 ANGLE ACCIDENT FREQUENCIES INTERSECTION RELATED CELL ND. 6 HITHOUT OUTLIERS SAMPLE SIZE 0625 CATEGORY LABEL CODE N MEAN ST.DEV. MIN MAx ACTIVITY DENSITY RURAL FRINGE-STRIP URBAN PASS/N0 PASS PASS ND PASS TRUCKLANES NO TRUCKLANE TRUCKLANE SPEED LIMIT DELTA ANGLE 1 2 3 0 1 0 1 25 30 35 00 05 50 55 0 5 10 15 20 25 30 35 00 05 50 55 60 65 70 75 80 90 95 522 2219 1884 2.26 3.05 3.25 0.99 5.20 5.13 0069 136 3.07 1.96 5.22 3.01 0601 20 3.06 0-38 5.16 0.77 3.91 3.00 3.10 2.37 3.03 3.31 2.62 3.06 3.33 2.72 3.00 2.02 2.57 3.93 1.63 2.62 0.03 1.66 5.93 2.29 0.36 0.00 0.00 0.00 2.62 2.71 5.37 4.80 0.90 3.61 6.39 7.06 0.96 5.10 6.36 0.91 6.50 3.29 3.95 6.09 3.62 3.30 6.63 3.25 15.90 3.25 6.71 0.00 2.65 10.20 3.95 2.56 107 663 1259 710 763 220 659 0013 100 76 55 61 63 00 07 29 36 35 15 7 13 2 3 2 11 7 336 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 63 62 53 63 15 63 3 30 09 50 25 62 63 53 62 48 20 31 17 16 26 20 11 32 12 63 7 21 0 6 7 13 7 APPENDIX E Candidate Models MODEL I‘A’l INJURY CONDITION A X2 119199339379389399 419479509589619659 73981982 Y = 9.52 X12 29 3 CONDITION 8 Y = (0.70 CONDITION C Y = 1.19 X3 3‘13 X12 1 X3 X12 CONDITION 0 X2 11919933937‘399419 Y = 11.59 CONDITION E Y = 36.24 47950958961963973 X12 X13 X15 81982 29 3 29 49 69 9 O9 1 X2 50963 X12 X13 X15 29 3 19 59 7 09 1 CONDITION F X2 11919933937‘399419 Y = 30.37 47958961973981982 X3 4911912 X12 X13 X15 29 3 19 59 7 O9 1 CONDITION G X2 11919933937’399419 Y = 180118 47958961973981982 X3 1' 39 5'10913 X12 X13 X15 29 3 19 59 7 09 1 337 MODEL I'A'I INJURY CONDITION H 3 X2 1 1 11919933937‘399419 479509589619639739 Y = 51.46 X5 X12 X15 l l 1 1 V 81982 0 29 3 2 CONDITION I 8 X2 1 1 11919933937’399419 Y = 21.42 479509589619639739 X5 X12 X15 1 1 1 1 V 81982 49 8910912 29 3 2 338 MODEL I‘A'Z INJURY CONDITION A 3 X2 2 119199339379389399 419479509589619659 73981982 X12 = 29 3 Y = “19.9157 *0.1449*X2 +0.98354X3 910.14350X18 +1-3698*X13 +0-1891‘X23 +0-07185*X11 +2-2339*X17 ‘0-031354X6 90.69290X15 +1-59600X12 40.15169X5 CONDITION 8 : X3 3'13 X12 1 Y = ‘5.3682 90.07086*X2 01.16249X13 *0-06117fX23 '0-43104X14 ”0.54054X8 '0.079160X5 *4-3801‘X17 +1.125tX15 “0.27399X16 CONDITION C 3 X3 X12 19 2 1 Y = '1-0568 *0-02020'X2 +0.094790X23 +0.2304'X13 +0.31049X8 00.7559*X15 00.46379X16 00.009501*X7 CONDITION 0 3 X2 = 11919933937‘399419 47950958961963973 81982 X12 = 29 3 X13 3 29 49 69 9 X15 = 09 1 Y = '74.2194 94.0915'X13 42.21919X8 *6.6745*X15 +1-1161OX3 96.54034X12 *1.61720X4 O6-2273'X14 *0.1186*X23 CONDITION E 8 X2 = 50963 X12 = 29 3 X13 3 19 59 7 X15 = 09 1 Y = '132-676 *2-5512‘X3 010-3943'X8 *25-6967‘X13 +0-5935*X11 ‘42.9144*X18 916.83809X12 339 MCDEL I'A'Z INJURY CONDITION F 3 X2 = 11919933937'399419 47958961973981982 X3 = 4911912 X12 = 29 3 X13 = 19 59 7 X15 = 09 1 Y = 0.8761 91.3204*X2 *25-0881‘X18 90.37274X23 95.14494X16 CONDITION G 3 X2 = 11919933937‘399419 47958961973981982 X3 = 1' 39 5‘10913 X12 3 29 3 X13 = 19 59 7 X15 = 09 1 Y = '61.5779 92.64510X8 40.29560X23 +0.25104X11 O9.8433*X12 +2.0864*X4 +0-8086'X5 ‘0-3296'X6 +0.4494*X7 40.4911*X2 90.4866*X3 CONDITION H 8 X2 = 11919933937'399419 479509589619639739 81982 X5 = 0 X12 3 29 3 X15 )= 2 Y = '24.2269 {5.81579XZ ‘15.5384*X4 +7.6147*X3 '47.06460X14 ‘18.5512*X7 +1.8812'X6 CONDITION I 3 X2 = 11919933937‘399419 479509589619639739 81982 X5 = 49 8910912 X12 3 29 3 X15 >= 2 Y = 52.4396 *3-04I8OX2 +11-9063*X8 '6-31150X4 340 MCDEL I'A'3 INJURY CONDITION A 8 X2 2 119199339379389399 419479509589619659 73981982 X12 3 29 3 LNCYOI) = 2-2810 40.029334X2 +0-06526*X3 40-1583‘X13 40.93234X18 ’0-0043240X6 '0-0001776*(X2**2) +0-1307OX23 ‘0-003790‘IX23**2) +0-09988tX5 *0-1947*(X8**2) '0-7472*X8 +0-096689X15 +0-12134X17 ’0-008154*(X5**2) 40.1905*(X14**2) '1.4419*X14 CONDITION 8 X3 3'13 X12 1 LN(Y+1) = ‘0.9510 40.11140X2 *0-7082'X13 *0-029389X23 '0-0002428*(X23**2) ’0-08008*(X13.02) ‘0-43654X14 ‘0.1504*(X8**2) 90.57694X8 *0-06211*(X14**21 '0.1224*X3 *0-1860tX15 +0-008396*(X3**2) 00.6064CX17 '0-3623*(X11**2) +0-005236‘X7 CONDITION C 8 X3 = 19 2 X12 = 1 LNIY+11 = 0.07237 +0.000053994(X2**2) +0-068404X23 ‘0-0004530'IX23*‘2) +0-06349*X13 90.22420X15 40.01156OIX8OO2) 00.01029OX7 +0-03040*(X14**2) '0-004754fX5 ‘0-1350‘X14 ‘D.0001280*(X7**2) *0-000009835*(X6**2) CONDITION 0 X2 = 11919933937'39941. 47950958961963973 81982 X12 3 29 3 X13 = 29 49 69 9 X15 3 09 1 LNIY+1) = ‘2-5975 *0-4101‘X13 +0-3099*X3 +0-6002‘X15 +0-08911¢(X14t*2) ‘0.01820*(X3**2) *0-04387*(X8O*2) ‘0-005236*(X5**2) +0-008262*(X4**2) *0-1291tX7 341 MODEL I‘A'3 INJURY CONDITION E 3 X2 = 50963 X12 = 29 3 X13 3 19 59 7 X15 3 09 1 Y = '81.4376 92.47164X3 *2.1312’(X8**2) +8-1725*(X13**2) '42.5753*X18 90.57200X11 03.4868*(X12402) CONDITION F 3 X2 = 11919933937‘399419 47958961973981982 X3 = 4911912 X12 3 29 3 X13 = 19 59 7 X15 = 09 1 Y = '156.6474 *0-05658*(X2"2) 019-2263'X18 95.7010*X16 *1.0166*X23 '0-008012*(X23**2) *6.5666*X11 '0.071960(X11442) 41.274501X13442) CONDITION G 3 X2 = 11919933937'399419 47958961973981982 X3 = 1‘ 39 5-10913 X12 3 29 3 X13 = 19 59 7 X15 = 09 1 Y = '978.5364 *0.005596¢(X23**2) 93.03844X8 +7.5311*(LN(X11)) 028-3126*(LN(X12)) +0-0734701X3442) “18.9404OILN(X2)) +8-1368‘ILNIX5+1)) 4476.36*(LN(X4)) '1.8618*(X4**2) '0-2446tX6 '0-007312*(X7**2) ‘0.45804(X20*2) 010-4575‘X2 '0-1111*(X5'*2) 342 MCDEL I'A'3 INJURY CONDITION H 3 X2 = 11919933937'399419 479509589619639739 81982 X5 = 0 X12 = 29 3 X15 >= 2 LN(Y+1) = ‘16-0166 +0.79609X4 '0-004647*(X11**2) 00.4316*X11 00.009187*(X2**2) CONDITION I 8 X2 = 11919933937'399419 479509589619639739 81982 X5 = 49 8910912 X12 = 29 3 X15 )= 2 Y = '1026.493 *0.1236*(X2**2) 917.4715*(X8**21 '84.8638¢(LN(X8)) '0.4295*(X11*.2) +41.7260*X11 ‘1.8291*(LN(X6§1)) ‘0-001473'IX23**2) 04-57719X4 95.4378*(X13442) ‘24.28079X13 ‘5-1115*(LN(X3)) 343 MODEL 1‘8‘1 INJURY CONDITION A X2 11919933937'399419 Y = 9.44 479509589619639 73981982 X12 29 3 X30 D CONDITION 8 X2 11919933937’399419 Y = 1103‘ 479509589619639 X12 X13 X15 X30 73981982 29 3 29 49 69 9 09 1 0 CONDITION 0 X2 50963 Y = 34.99 X12 X13 X15 X30 29 3 19 59 7 09 1 CONDITION 0 X2 11919933937'399419 Y = 20.76 CONDITION E Y = 3.97 CONDITION F Y = 0.96 47958961973981982 29 3 19 59 7 O9 1 X12 X13 X15 X30 X3 X12 X30 X3 X12 X30 344 MODEL 1'8'1 INJURY CONDITION 6 8 X2 = 11919933937'399419 479509589619639739 Y = 52001 81982 X5 = O X12 = 29 3 X15 >3 2 X30 = 0 CONDITION H 3 X2 = 11919933937'399419 Y = 21.20 X5 = 49 8910912 479509589619639739 81982 X12 3 29 3 X15 >= 2 X30 = 0 CONDITION I 8 X3 = 19 29 79 8913 X30 > 0 Y = 8.43 CONDITION J 3 X3 3 39 49 69 9'12 Y = 60.50 X12 = 29 3 X30 > 0 CONDITION K 8 X2 = 39941950958976982 Y = 32.86 X30 > 0 X3 = 39 49 69 9'12 X12 = 1 ' CONDITION L 3 X2 = 39 99119139179199 Y = 16.40 77‘79981 23925928931‘339379 38951‘539569639709 X3 = 39 49 69 9‘12 X12 3 1 x30 > 0 345 MODEL 1'8'2 INJURY CONDIYION A 8 X2 1 11919933937'399419 679509589619639 73981982 X12 = 29 3 X30 = 0 Y = ‘21.?788 00.1‘k3‘X2 *0-9793‘X3 +10-36k6*X18 01.§&86*X13 02.376b*X17 00.1775*X23 *0.0?738iX11 *2-0‘12'X12 00.18889X5 '0.02810*X6 CONDITION 8 3 X2 = 11919933937‘399‘19 679509589619639 73981982 X12 = 29 3 X13 = 29 Q9 69 9 X15 = 09 1 X30 = 0 Y = ‘83.0326 *h.090£*X13 *2.15330X8 *7.36270X15 *2.1682*X4 47.53010X12 40.9904*X3 +6.3686*X1k 00.1109OX23 CONDITION C 3 X2 = 50963 X12 3 29 3 X13 3 19 59 7 X15 = 09 1 X30 = 0 Y = ’207.539 *12.0106*X8 +38.1508*X13 *0.05h32*X23 'k8.0939¢X18 *0.5359*X11 01.6580*X3 +19.lb7fi*XlZ *9.0528*X15 §l£.l985'X17 CONDITION 0 8 X2 = 11919933937’399‘19 67958961973981982 X12 3 29 3 X13 3 19 59 7 X15 = 09 1 X30 = 0 Y = '35.3fi99 +0.2837*X23 *0.9197*X3 +3.933§*X8 +9.68870X18 *2.k113OX16 +0.2?63*X11 +0.6710‘X2 +1.8686*Xk 346 NCDEL I'D'Z INJURY CONDITION E 8 X3 = 3‘13 X12 = l X30 = 0 Y = ‘5.3?07 *0.06061*X2 *0.7695*X13 40.03785*X23 +£.7562*X17 ‘0.k9993X8 ‘0.053&T*X5 *0.813b¢X15 'O.2679*Xl6 00.05690*X3 '0.01&93*X11 CONDITION F 8 X3 = 19 2 X12 = I X30 = 0 Y = ‘0-7259 *O-OISI9OXZ +0-06359'X23 +0.1799*X13 +0.1779OX8 00.5‘90*X15 *0.5013*X3 ‘0.007721‘X11 40.00271k0X6 CONDITION G 3 X2 = 11919933937‘399519 679509589619639739 81982 X5 = 0 X12 = 29 3 X15 )3 2 X30 3 0 Y = '23.2b31 *5.5728*X2 015.Z9§2*Xb +7.8112*X3 ’18.9178*X7 +1.89120X6 ‘b3.h617*X1£ 347 MODEL I'D'Z INJURY CONDITION H 3 X2 = 11919933937'399419 4795C9589619639739 81982 X5 = 49 8910912 X12 = 29 3 x15 >= 2 X30 = 0 v = 92.3236 +2.5513-x2 413.79osnxa -s.r99ocxa -o.aal9ax11 CONDITION I : x3 = 1. 2. 7. 8.13 x30 > 0 Y = ’8.5871 00.1374tXZ 46.19749X12 *1.6768*X3 *0.4957fiX13 00.089ZEOX23 ‘1.6539*X16 CONDITION J 3 X3 = 39 49 69 9'12 X12 = 29 3 X30 > O Y = '288.I912 *2.1495520X23 *24.24503*X4 CONDITION K 3 X2 = 39941950958976982 X3 = 39 49 69 9‘12 X12 3 1 X30 > 0 Y = ‘2.944479 *5.589465¢X13 40.31614690X23 CONDITION L 3 X2 3 39 99119139179199 23925928931'339379 38951‘539569639709 77-75981 X3 = 39 49 69 9‘12 X12 = 1 X30 > 0 Y = ‘8.438392 *0-856059‘X2 +0-2524515‘X11 '19.99274*X9 348 NODEL I'8'3 INJURY CONDITION A 8 X2 L ‘ 11919933937‘399419 479509589619639 73981982 X12 29 3 X30 O '27.1494 ‘0.01501*X2 *O.9294*X3 *10.60€1*X18 00.1997*(X13**2) *0.6304*(X17**2) *O.9237*X23 00.7903iX11 '0.0Z409*(X23**2) ‘0.008378¢(X11**2) *0.COI9ICt(X2**Z) '0.1179*X6 00.001134*(X6"2) *0.1579*X5 CONDITION 8 8 X2 11919933937’399419 6795O9589619639 X12 X13 X15 X30 73981982 29 3 29 49 69 9 09 1 0 LNIYOI) = '4.9604 OO.4384*X13 *O-33270X3 *O-5961*X15 +0.19810X4 +0.08714*(X14**2) '0.02093*(X3'*Z) *D.1051*(X12**2) '1.8820*X10 30.1851tX8 CONDITION C 8 X2 50963 X12 X13 X15 X30 29 3 19 59 7 O9 1 0 Y = “151.498? +2.0537*(X8**Z) *10.7906*(X13**2) +1.0262tX23 ‘49.?7791X18 07.9411*X15 +13.6936*X17 ‘0.01434*(X23*‘2) *0-5825‘X11 +5.5848*X2 03.3853*(X12**Z) +1.4000'X3 CONDITION 0 3 X2 11919933937‘399419 47958961973981982 X12 X13 X15 X30 29 3 19 59 7 09 1 0 “205.6941 00.223TOX23 30.0574Z*(X3**2) *3.1580*X8 +10.3178OX18 *1.9690*X16 02.6654'X11 00.6322*X2 '0.02879*(X11**Z) *1.34042*X4 {54.7192*Xl4 '5.4401*(X14*02) 349 NODEL I‘O‘3 INJURY CONDITION E 3 X3 = 3'13 X12 = l X30 = 0 LN(Y+1) = ‘0.9769 00.01098.X2 +0.6689*X13 '0-07790‘CX13**2) *0-02626*X23 '0.0002230*(X23**2) '0.1293*(X8**2) +0.4BSSOX8 '0-00004529*(XIIO02) *0-6406‘X17 ‘0.3686*X14 '0.0560*(X14**2) *0-1333*X15 '0.IOOTOX3 +0.0070?6*(X3**2) CONDITION F 3 X3 = 19 2 X12 = I X30 = 0 LN(Y+1) = ‘0.7639 +0.00002202*(X2**2) *0.07982*X13 +0.058950X23 '0.6003842*(X23**2) +0.1886OX15 +C.01087*(X8*¢2) +0-00001992‘IX6t‘Z) ‘OoOO4S9S‘XS +O-OOZIS9OX2 CONDITION G 3 X2 = 11919933937‘399419 479509589619639739 81982 X5 = 0 X12 3 29 3 X15 >= 2 X30 = 0 LNIY‘I) = '16.l938 +0.8973fiX4 +0.14550X2 00.3444OXII ‘0-003464*(XII**2) ‘0.09590*(X8**2) 00.1313tx3 CONDITION H 3 X2 = 11919933937‘399419 479509589619639739 81982 X5 = 49 8910912 X12 = 29 3 X15 >3 2 X30 = 0 Y = -605.711 *0.I498*(X2**2) ‘15.0406*(X8**2) ‘41.5379*X8 '0.2828*(X11**Z) *ZT.1367*X11 350 NODEL 1‘8'3 INJURY CONDITION I 8 X3 19 29 79 8913 X30 > 0 '29.?049 *0.00I396*(X2.*2) ‘41.1819*X12 +1.7328*X3 ‘9.3232*(X12**2) 00.1357*(X13**2) 00.3247tX23 ‘1.99900X16 ‘0.003323*(X23*¢2) “0.20410(X8t*2) ‘O.7635*X14 CONDITION J 8 X3 N 39 49 69 9‘12 X12 X30 N V 29 3 0 LN(Y*1) = 4.4330 *0.03T?5*X23 *O.4146*X13 'D.9198*X14 CONDITION K 8 X2 X3 X12 I I I I I I X30 V 39941950958976982 39 49 69 9'12 1 D Y = ‘180.0661 OO.8409*(X13**2) *0.I977*X23 *O.7424*(X2**Z) '2.824Z*(X8**2) '0.1240*(XII**2) +9.9653*X11 CONDITION L 8 X2 39 99119139179199 23925928931‘339379 38951‘539569639709 77-79981 39 49 69 9‘12 1 0 X3 X12 X30 “ I I V LN(Y*I) = ‘2.3851 +0.1607‘X2 +0.1728‘X11 ‘1.2790‘X9 '0.001858*(X11**2) ‘0.003701*(X2**2) *0.0084610X7 *0.18640XS ‘O.016300(X5**2) “0.1032*X14 351 NODEL II‘A'1 INJURY CONDITION A Y = 0.223 X12 1 X13 1969798 CONDITION 8 X12 1 X13 2939599 Y = 0.116 CONDITION C X2 1914919937'399479 Y = 0062‘ X3 1‘497'10 X12 293 589669679739749 78980 CONDITION D X2 } % 1914919937‘399479 Y = 0.318 X3 5969899911'13 X12 293 ‘ 589669679739749 78980 CONDITION E X2 1914919937'399479 Y = 0.886 589669679739749 X11 X12 78980 25’45 293 CONDITION F X2 1914919937’399479 589669679739749 Y = 1.703 X11 X12 78980 50-55 293 X17 D CONDITION G X2 1914919937'399479 Y = 8.004 589669679739749 X11 X12 X17 78980 50-55 293 2 352 NDOEL II‘D'I INJURY CONDITION A Y = 0.198 X12 1 X13 1969798 X30 0 CONDITION 8 X12 1 X13 2939599 X30 0 Y = 0.103 CONDITION C X2 = 193989119149199 Y = 0.841 37'399469479589609 66967973978980 X11 25-45 X12 293 X30 0 CONDITION D X2 . 8 ‘ 193989119149199 37'399469479589609 66967973974978980 Y = 0.597 X3 1'497‘10 X12 293 X30 0 CONDITION E X2 L 1 193989119149199 Y = 0.309 X3 5969899911'13 37'399469479589609 66967973974978980 X12 293 X30 0 353 NOBEL II‘D'I INJURY CONDITION F X2 193989119149199 37'399469479589609 66967973974978980 Y = 5.448 CONDITION 6 Y = 3.442 X11 50955 X12 293 X17 192 X30 0 X2 39974 X11 50955 X12 293 X17 X30 CONDITION H X2 39 89119149199379 Y = 1.217 389469479589609669 67973978980 X11 X12 X17 X30 50955 293 0 0 CONDITION I X2 169229349529549 62974980 X30 0 Y = 2.211 CONDITION J X2 169229349529549 Y = 0.604 62974980 X30 0 354 MODEL III'A'I INJURY CONDITION A 8 X2 f 50963982 X3 = 3‘69 9-11913 Y = 14.76 CONDITION 8 8 X2 # 50963981 X3 = 1929798912 Y = 4.39 CONDITION C 8 X2 = 50963982 Y = 59.28 CONDITION 0 8 Y = 32.89 CONDITION E 8 Y = 1910 31 X3 = 596 X4 = 10912 X2 = 63 X3 = 596 X4 = 11 X2 = 82 X3 = 596 X4 = 11 CONDITION F 8 X2 = 50963982 X3 = 4910-13 Y = 47.07 CONDITION 0 3 X2 = 50963982 X3 = 1'39899 Y = 24.77 355 MDOEL III'A‘Z INJURY CONDITION A 3 X2 i 50963982 X3 = 3’699'11913 Y = -3002090 ‘0066‘9‘X23 *O.2426*X2 +1.4604tX3 31.6168.X4 41.55030X8 *3.1908*X9 CONDITION 8 3 X2 i 50963981 X3 = 1929798912 Y = '0.2589 *0.47770X23 *0.05096*X2 +1.13830X8 '1.4397*X3 00.5778*X9 02.1429iX10 *0.06240'X5 CONDITION C 3 X2 = 50963982 Y 3 234.6234 ’15.6762*X4 CONDITION D 8 Y = 32.89 CONDITION E 8 Y = 191.31 X3 = 596 X4 = 10912 X2 3 63 X3 = 596 X4 = 11 X2 3 82 X3 = 596 X4 = 11 CONDITION F 3 X2 = 50963982 X3 = 4910‘13 Y = 16.3794 40.4886OX23 *8.2965*X2 ‘0.41110X6 '1.0589*X5 CONDITION 6 3 X2 = 50963982 X3 = 1'39899 Y = '0.2043 00.8146iX23 +4.47030X8 356 MODEL III'A‘3 INJURY CONDITION A 3 X2 3 50963982 X3 3 3'699'11913 LNIY+1) 3 ‘4.3274 50.08862*X23 40.01509*X2 '0.01438*X7 ‘0.001382*(XZ3O02) *0.1963*X3 *0.02083‘X5 “0.01667*(X3**2) ‘0-00003786*(X6‘*2) +0.1679OX11 ”0.0019430(Xll**2) +0.004967*(X4**2) CONDITION 3 3 X2 3 50963981 X3 3 1929798912 LNCY+1) = '1.S986 *0.009889*XZ ‘0-09343‘X23 “0.0005813*(X23**2) '0.05562*(X3**2) *0-001539*(X5¢*Z) *0-035910X4 *0.05454‘X11 *0.01235*(X8**2) ‘0-0005340*(X11**2) '0.00005223*(X2*02) *0.2588*X10 “0.6001276*(X7**2) *0.00001756*(X6*‘2) CONDIIION C 3 X2 3 50963982 X3 3 596 X4 3 10912 Y = ‘2300.93 -325.23*(LN(X4)) '133.6866*(LN(X6+I)) +6.0396*X6 '5.1420*X5 '39.85980(LK(XZ3)) 01249.03‘(LN(X11)) ‘32.1333*X11 CONDITION D 3 Y = 32.89 X2 = 63 X3 = 596 X4 = 11 357 NOBEL III'A‘S INJURY CONDITION E 3 X2 3 82 X3 3 596 X4 3 11 LN(Y+1) ‘86.4611 '0.4011*X6 +0.02448*(X6**2) *0.379SOX11 +9.6776tX8 +5.4336¢X23 '5.5588*(X3*‘2) ‘0.09034*(X23**2) CONDITION F 3 X2 X3 50063982 4910-13 “1.1304 +0.0719SOX23 ‘0.0005910¢(X23*.2) +0.2946tX2 '0.0002667I(X6**2) “0.5373OCX8002) ‘2.16130X8 CONDITION G : X2 X3 50963982 1‘39899 LN(Y+1) '4.1833 *0.09509IX23 '0.001522*(X23¢02) +0.2291‘XS +0.5433*(X2**2) +0.7138*(X8**2) “2.9372fiX8 '0.005697*(X11**Z) *O.4639*X11 ‘1.7617*X2 ‘0.02268.(X5**2) 358 NOBEL III'B'I INJURY CONDITION A 3 X2 3 50963982 X3 3 1929798 X30 3 D Y 3 3.77 CONDITION 8 3 X2 3 50963982 X3 3 596912913 X30 3 D Y = 58079 CONDITION~ C 3 X2 3 50963982 X3 3 1'498‘11 X30 3 D Y 3 26.48 CONDITION D 3 X2 3 49109199209239259 289339369419449459 479513549589619659 Y 3 19.08 77981983 X3 3 3’ 69 9'13 X30 3 D CONDITION E 3 X2 3 13396399113189219 Y 3 9.20 49955‘579599629669 22924926927929-329 34935937’409469489 67969970972’769 78-80 X3 3 3' 69 9‘13 X30 3 O 359 NOOEL III‘B'I INJURY X3 x30 CONDITION F 3 Y = 618.05 CONDIIION G 8 x3 3‘599'13 X30 0 Y = 77.87 CONDIIION H : x3 1929798 x30 V 0 1 = 21.51 360 MODEL III'B'Z INJURY CONDITION A 3 X2 3 50963982 X3 3 1929798 X30 3 D Y = ‘0.7775 +0.3523*X23 *0-040540X2 +0.7961*X8 “0.7698tX37‘0.59210X9 *2.1977*X10 +0.05582*X5 90.1473'X4 '0.01923*X11 CONDITION 8 3 X2 3 50963982 X3 3 596912913 X30 3 D Y 3 81.2769 413.12403X2 31.24713X11 'D.7612‘X6 CONDITION C 3 X2 3 50963982 X3 3 1'498’11 X30 3 O Y = 6.6872 *O.4572*X23 *6.ZIZZ*X8 *2-2249'X3 *3.3144*X2 ’2.1093*X4 CONDITION D 3 X2 3 49109199209239259 289339369419449459 47951’549589619659 77981983 X3 3 3' 69 9‘13 X30 3 D Y = ‘44.?354 *0.75690XZ3 *2.4901*X3 +0.43Z4CX2 +2.8972*X4 *6.0907*X9 CONDITION E 3 X2 1'396‘9911'189219 22924926927929‘329 34935937'409469489 49955'579599629669 67969970972'769 78‘80 X3 3‘ 69 9'13 X30 0 Y = ’8.3571 00.4483*XZ3 *O.1864*XZ +1.1865‘X3 'O.1165*X7 *1.753Z*X8 *0.17¢0*X5 361 NOOEL III'O'Z INJURY CONDITION F : x3 x30 6 I I 0V Y = '29087.6k¢h187.89tX2 +1343.8*XA *228.0CZ*X23 CONDITION G : X3 x30 3'599'13 I I OV Y = '58.8902 *3-2089txz +ZS.AA6GOXO +0.9392*X6 CONDITION H 3 X3 3 1929798 x30 > D Y = 16.0026 +0.4317OX2 ‘0.58910X11 *2.4560¢X7 +3.4981fiX8 *0.3345*X23 +0.6670*X5 '0.1439*X6 362 NOOEL III‘B'3 INJURY CONDITION A 3 X2 3 50963982 X3 3 1929798 X30 3 D LN(Y*1) = '1.6287 ‘0-01013‘XZ *0-07091‘X23 '0.0004478*(X23**2) '0.002540*X5 '0.02984*(X3t.2) 00.0496SOX4 +0.2966OX10 ‘0.00005512*(X2**2) ‘0.0001200*(X7**2) *0.09452i(X8*¢2) *0.06567*X11 ‘0-0006973*(X11**2) *0-00001648*(X6**2) '0.3458*X8 *0.001942*(X5**Z) CONDITION 8 3 X2 3 50963982 X3 3 596912913 X30 3 D LNIYOI) 3 2.0900 *D.3491*X2 ‘0.D3454*X6 00.01413*X23 '0.0005395*(X110021 '0.1050*(X8*‘21 *0-1380'X4 “0.09083*(XS**2) *0.8612*XS CONDITION C 8 X2 3 50963982 X3 3 1'498'11 X30 3 0 LN(Y*1) 3 '5.0392 00.06598iX23 ‘0.S792*(X8**2) '0.0005976*(X23*‘Z) *0.4904*X3 32.31563X8 '0.04244*(X3**2) *0.06627*(X2**2) “0.0048960(X11**Z) 00.41019X11 ‘0.0001686*(X6**Z) '0.1307*X4 CONDITION D 3 X2 3 49109199209239259 289339369419449459 47951'549589619659 77981983 X3 3 3‘ 69 9'13 X30 3 D Y 3 '390.859 00.80139X23 +6.4491*(LN(X3)) i0-06073*(X2**2) 00.1935*(X4fifi2) '0.8046 *(X3**2) 012.90340(LN(X7§1)) '8.8533*(LN(X6§1)) 01.9152*X6 '2-0663‘X7 ‘0.9484¢X2 +5.1577tX9 '0.00576*(X6**2) “0.4793*(XE**2) *10.0446*X3 +105.703¢(LN(X11)) “0.02982’(X11**2) 363 NOBEL III‘B‘3 INJURY CONDITION E 8 X2 1‘396‘9911'189219 22924926927929'329 34935937‘409469489 49955‘579599629669 679699709723769 78’80 X3 X30 3' 69 9'13 0 . Y 3 '99.2748 00.01641*(X230.2) ‘0.1911*X2 32.61523(LN(X3)) ‘0.6697*X7 *0.4679*(X8**2) *0.873Z*(LN(XS‘1)) *3.5433*(LN(X7*11) 00.005854ttX7032) '0.6958*(LN(X6+1)) +8.3010*(LN(X4)) 023.55193(LN(X14§1)1‘0.006685*(X110¢Z) CONDITION F 8 X3 3 6 X30 > 0 Y 3 '29087.6404187.89OX2 +1343.E*X4 0228.0023X23 CONDITION 6 : X3 3 3'599‘13 X30 > 0 LN(Y+1) 3 '1.1221 *0.04548*X2 *1.9572*X8 *0.02243*X6 *0.0099270(X4*¢2) '0.3342*(X8**Z) CONDITION H 3 X3 3 1929798 X30 > D LN(Y+1) 3 ‘0.7583 00.0001213*(X2**21 00.054670X23 '0.0003361*(X23**2) 30.0062723X7 00.94333X8 ‘0.20700X9 00.003786*(XS**2) *0.06422*X4 ‘0.1985*(X8**2) ‘0.1413*(X33*2) 00.0075883X2 *0.5473*X3 00.001452*(X7**2) '0.024553X5 ’0.0002563*(X6**2) 00.019670X6 364 NODEL IY'A'I INJURY CONDITION A 3 Y 3 78.867 365 NOOEL IY‘O'I INJURY CONDITION A 3 Y = 720783 X30 3 0 CONDITION 8 3 X2 3 5924942965972 Y 3 192.91 X30 > 0 CONDITION C 3 X2 3 5924942965972 Y 3 561.91 X6 <3 ‘01 X30 > 0 CONDITION D 3 X2 3 5924942965972 Y 3 2779.18 xs > 3.1 X30 > 0 366 NOBEL I'A‘I RIGHT ANGLE X3 % 19 29 5 X12 X3 X12 CONDITION A 3.68 CONDITION 8 0.83 CONDITION C X2 11919933937'399479 Y : 11.50 50956961963973 X12 29 3 X13 29 69 9 CONDITION 0 X2 f 119199339373399479 8.78 50956961963973 X3 1’6913 X12 29 3 CONDITION E X2 11919933937'399479 Y 3 43.31 50956961963973 X3 59 119 12 X12 29 3 X13 19 59 7 CONDITION F X2 11919933937‘399479 Y = 23030 50956961963973 X3 1‘49 6‘109 13 X12 X13 29 3 19 59 7 CONDITION 6 X2 I 11919933937'399479 6.24 CONDITION H Y 3 20.41 50956961963973 X3 497‘12 X12 X14 29 3 3 X2 X3 X12 X14 % " 1 1 V 119199339373399479 50956961963973 497‘12 29 3 l. 367 NOBEL I'A‘I RIGHT ANGLE X3 K ‘ 19 29 5 X12 X3 X12 19 29 5 CONDITION A Y : 3.68 CONDITION 8 0.83 CONDITION C X2 11919933937'399479 Y = 11.50 50956961963973 X12 29 3 X13 29 69 9 CONDITION 0 X2 3 119199339373399479 Y = 8.78 50956961963973 X3 1’6913 X12 29 3 CONDITION E X2 11919933937’399479 Y 3 43.31 50956961963973 X3 59 119 12 X12 X13 29 3 19 59 7 CONDITION F X2 11919933937'399479 Y 3 23960 X3 X12 X13 50956961963973 1‘49 6'109 13 29 3 19 59 7 CONDITION 6 X2 % 11919933937'399479 6.24 50956961963973 X3 497'12 X12 X14 29 3 3 CONDITION H X2 3 119199339373399479 Y 3 20.41 50956961963973 X3 O T X12 I X14 V 497‘12 29 3 l. 367 NOBEL I‘A’Z RIGHT ANGLE CONDITION A 3 X3 3 19 29 5 X12 3 1 Y 3 ‘8.4440 *0.06674*X2 *0-8721‘X13 *0.02952*X23 .001 189*X3 06.25053X17 -0002685*XII 31.4498'X15 *0o019763X6 ’0.3486*X16 ‘0.04663*X5 CONDITION 8 3 X3 19 29 5 X12 1 Y 3 '0.3878 00.014550X2 30.21913X13 +0.26163X8 01.022873X16 00.75063X15 '0-02035*X11 +0.038683X23 '0.021190X5 30.010390X7 30.1368*XI’O CONDITION C 3 X2 3 11919933937'399479 50956961963973 X12 3 29 3 X13 3 29 69 9 Y 3 '32.3462 ‘1.3976*X3 33.06223X4 CONDITION 0 3 X2 3 11919933937'399479 50956961963973 X3 3 1-6913 X12 3 29 3 Y 3 ‘51.5794 30.17293X2 +1.07590X13 *2.3055*X4 30.20363X2300.24950X5 30.69143X3 '0.10023X11 '0.04281*X6 02.3922*X14 90.9304*X8 +1.00149X15 CONDITION E 3 X2 3 11919933937'399479 50956961963973 X3 3 59 119 12 X12 3 29 3 X13 3 19 59 7 Y 3 '222.806 *16.3846*X4 01.7263*X11 010.3902*X16 368 NOBEL I'A-Z RIGHT ANGLE CONDITION F : X2 = 11919933937’399479 50956961963973 X3 3 1’49 63109 13 X12 = 29 3 X13 = 19 59 7 Y = '16.5626 +I.2556¢X3 +13.9046tX18 +0.8038*X2 +0.27840X11 +2.6008tX8 +4.9270tX13 '0.15729X6 +0.27730XT CONDITION G : X2 f 11'19933937'39947. 50956961963973 X3 = 497‘12 x12 = 29 3 X14 = 3 Y = '11.1661 312.32400X15 *2.3445*X13 +1.20283X2 ‘0.5579*X5 CONDITION H 2 x2 1 119199339373399479 50956961963973 X3 3 497‘12 X12 = 29 3 X14 > 4 Y 3 '15.7447 00.8777*X2 *15.7697*X18 01.6817tX3 32.7624OX16 32.61683X13 30.1445OX6 369 NOBEL I‘A‘S RIGHT ANGLE CONDITION A 3 X3 3 19 29 S X12 3 1 LNIYOI) 3 “1.8638 30.36183X13 40.0034733X2 ‘0.00007908*(X11**2) 40.020210X23 ’0.0001910*(X23**2) 'C.02977*(X13**Z) 30.0179ZOIX14302) *0.C0009302*(X2**2) +0-8056*X17 30.001253*(X4**2) *0.1946*X15 ‘0.05284*X16 30.0080364X7 '0.04337*X5 '0.1011*(X8**2) {0.41153X8 +0.003662*(X5**2) CONDITION 8 3 X3 19 29 5 X12 1 LN(Y*1) 3 30.6589 +0.1365‘X13 30.00004342‘IX2332) '0.04049*X11 00.2570*X15 30.03381fiX23 '0.0002464*(X23i*2) 3C.01821*(X80*2) 40.0003996*(X11**2) 30.153S*X16 '0.0233S*X5 30.008696OIX14332) 30.008101*(X13*¢2) +0.00051143X6 +0.001600*(XS**2) 00.018743X9 CONDITION C 3 X2 3 119199339373399479 50956961963973 X12 3 29 3 X13 3 29 69 9 LNIY‘I) 3 '7.2676 *4.44E3*X13 *0.1481*X3 +0.1953*X5 '0.93473(X13**2) 30.02507*(X4**2) +0.0008857*X6 +0.37713X15 “0.02410*(X5**2) CONDITION D 3 X2 3 11919933937‘399479 50956961963973 X3 3 1-6913 X12 3 29 3 Y 3 '504.9 *0-004084*(X2**2) 00.50473X13 0180.850*LN(X4) 30.008598*(X23**2) 31.07163X15 +1.07710(LN(X501)) 30.084310(X3*‘2) '0.6430*(X4*¢2) 084.763*(LN(X14*111 ‘0.6208*(LN(X6+1)) '0-4838*X23 *20.8498¢(LN(X111) '0.0052760(X11**2) ‘0.I632*X2 ‘14.2176*X14 O4.0811*(LN(X23)) 370 NOBEL I‘A'3 RIGHT ANGLE CONDITION E 3 X2 3 11915933937'399479 50956961963973 X3 3 59 119 12 X12 3 29 3 X13 3 19 59 7 Y 3 34602.32 014.6473OIX4332) *612.253*(LN(X11)) 313.64523X16 '0.1436*(X11**2) ‘3499.05*(LN(X4)) +27.197S*(LN(X3)) CONDITION F 3 X2 3 11919933937'399479 50956961963973 X3 3 1‘49 6'109 13 X12 3 29 3 X13 3 19 59 7 Y 3 '44.0204 45.1042*(LN(X3)) 3 13.2617OX18 30.05477OIX2332) 012.34563(LN(X11)T +0.6346*(X8**2) 01.6886*(X13**2) '1.5886*(LN(X6+1)) 90.004507OIX7O'2) CONDITION G 3 X2 3 11919933937'399479 50956961963973 X3 3 497-12 X12 3 29 3 X14 3 3 LN(Y+1) 3 '4.1012 30.42683X13 +0.19273X2 +0.6105*X15 31.3569OX3 '0.1732.(X3302) CONDITION H 3 X2 3 11919933937'399479 50956961963973 X3 3 497'12 X12 3 29 3 X14 >3 4 Y 3 +1923.83 31.19560X2 +14.6476IX18 +6.6397*(LN(X3)) 32.90063X16 00.002024O(X6332) *0.6804*(X13**2) +27.4892*(LN(XS*1)) ‘6.3800*X5 34.3363*(X4t*2) '1033.72*(LN(X4)) '0.001517*(X23¢*2) 371 NOOEL I‘O'I RIGHT ANGLE CONDITION A X2 11919933937'399479 Y = 110‘9 50956961963973 X12 29 3 X13 X30 29 69 9 D CONDITION 8 X3 2‘496'13 X12 X30 1 0 Y = 390’! CONDITION C Y 3 0.60 CONDITION D Y = 8052 CONDITION E Y 3 45.74 X3 X12 X30 X2 X3 X12 X30 X2 X3 X12 X13 X30 N I I I I . H ‘ N I I H N . I N N I I 19 5 1 0 11919933937'399479 50956961963973 1’6913 29 3 0 11919933937'399479 50956961963973 59 12 29 3 19 S9 7 0 CONDITION F X2 I I 119199339373399479 Y 3 23.69 50956961963973 X3 1'49 6‘109 13 X12 29 3 X13 19 59 7 X30 0 372 NOOEL I'G‘I RIGHT ANGLE CONDITION G X2 1 119199339373399479 Y 3 6.24 CONDITION H Y 3 19.84 CONDITION I Y 3 8.25 CONDITION J Y 3 22.00 CONDITION K Y 3 51.67 50956961963973 X3 497'12 X12 X14 X30 29 3 3 0 8 3 ' I I I I V I I I I I I V I I I I V X3 X12 X14 X30 X3 X30 X3 X12 X30 X3 X12 X30 11919933937’399479 50956961963973 497-12 29 3 29496'8910‘12 1 0 29496'8910'12 3 0 373 NOBEL 1'8'1 RIGHT ANGLE CONDITION G X2 k I ‘ 11919933937'399479 50956961963973 X3 497'12 Y 3 6.24 CONDITION H Y 3 19.84 CONDITION I Y = 8025 CONDITION J Y 3 22.00 CONDITION K Y = 51067 X12 X14 X30 X2 X3 X12 X14 X30 X3 X30 X3 X12 X30 X3 X12 X30 t 1 I I I I V I I I I I I V I I I I V 29 3 3 0 11919933937‘399479 50956961963973 497'12 29 3 29496'8910'12 1 D 29496‘8910'12 3 0 373 NOOEL I'I‘Z RIGHT ANGLE CONDITION A 3 X2 3 11919933937’399479 50956961963973 X12 3 29 3 X13 3 29 69 9 X30 3 0 Y 3 '37.7196 01.43683X3 33.4987*X4 CONDITION 8 3 X3 3 2‘496'13 X12 3 I X30 3 0 Y 3 '8.0482 30.057823X2 30.58023X13 +0.1461*X3 00.02322*X23 +6.63980X17 '0-03115‘X11 31.11123X15 '0.2553*X16 +0.03609tx7 CONDITION c : X3 = 1. 5 x12 = 1 X30 = 0 Y 3 +1.3084 60.1999*X13 ‘0.02384*X11 30.0094863X2 +0.54950X15 00.023573X23 +0.1187*X8 *0.4762*X16 '0.01624*X5 CONDITION D 3 X2 3 11919933937‘399479 50956961963973 X3 3 1‘6913 X12 3 29 3 X30 3 0 Y 3 '49.4209 00.1708*X2 31.0110*X13 +2.17640X4 *0.2048¢X23*0.1037*X11 *0.6720*X3 00.2603*X5 ‘0.04315*X6 +1.0289*X8 *2.2635*X14 374 NOBEL 1‘8'2 RIGHT ANGLE CONDITION E 3 X2 11919933937'399479 50956961963973 X3 59 12 X12 X13 29 3 19 59 7 X30 0 Y “425.4510 +41.8431*X4 CONDITION F 3 X2 11919933937'399479 50956961963973 X3 1'49 6-109 13 X12 29 3 X13 19 59 7 X30 0 Y ‘7.3747 01.21521X3 313.02023X18 32.34183X15 30.7839IX2 +0.2319'X11 +2.8526tX8 CONDITION G 3 X2 % 11919933937'399479 50956961963973 X3 497‘12 X12 X14 X30 29 3 3 0 Y '11.1661 312.3240*X15 02.3445*X13 +1.2028'X2 ‘0.5579*X5 CONDITION H 3 X2 11919933937'399479 50956961963973 X3 497'12 29 3 X12 X14 X30 Y 3 ‘14.3457 40.91303X2 31.81773X15 015.59709X18 01.4449tX3 01.9945*X16 30.14883X6 32.05923X13 375 NDOEL I‘B'Z RIGHT ANGLE CONDITION I 3 X3 3 19 39 99 13 X30 > 0 Y 3 ‘4.0150 00.16843X2 36.24113X12 +1.7106*X3 91.4453*X13 *0.08753*X23 '10.38970X17 +0.1516'X7 ‘0.D4303*X6 CONDITION J 3 X3 3 2949638910312 X12 3 1 X30 > 0 Y 3 '89.4054+1.5968*X2 45.1613OX13 +2.23633X3 01.29003X5 34.7402*X4 CONDITION K 3 X3 = 29b9e-8910-12 X12 = 3 X30>0 Y 3 '281.3295 *25.3527*X4 015.8074tX3 376 NOBEL I“8“3 RIGHT ANGLE CONDITION A 3 X2 3 119199339373399479 50956961963973 X12 3 29 3 X13 3 29 69 9 X30 3 0 LN(Y*1) 3 “7.4806 34.6126OX13 30.13990X3 “0.9769*(X13**2) +0-02612*(X4*32) 30.39050X15 “C.02575*(X5**2) 30.21163X5 CONDITION 8 3 X3 3 2“496“13 X12 3 1 X30 3 0 LN(Y*1) 3 “1.2205 30.32513X13 +0.0037933X2 00.0002698*(X11**2) 30.018690X23 “O.0001720*(X23*32)“0.02583*(X13332) *0.1000*X3 “0.007104*(X3**2) 30.82590X17 30.072550X14 +0.008990'X7 30.00008105*(X2**2) “0.048943X16 30.1615*X15 “0.03877‘X5 *0.003236*(X5932) “0.030910X11 “0.07220*(X8**2) OO.3061*X8 CONDITION C 3 X3 3 19 5 X12 3 1 X30 3 0 LN(Y+1) 3 31.4968 30.078273X13 “0.04246*X11 *0.00003470*(X2*IZ) +0.2129OX15 *0.02920*23 “0.0002078*(X23**2) 30.0004070*(X11**2) “0.6221tX3 +0.009462*(X8012) “0.02012*X5 +0.007689*(X14**2) 00.00005295*(X7332) 00.001312OIX53321 00.11010X16 377 NOBEL I‘O‘B RIGNT ANGLE CONDITION O 3 X2 3 11919933937'399k79 50956961963973 X3 3 1'6913 X12 3 29 3 X30 3 D Y 3 “610.06A O0.002050*(X2¢*2) 00.§617*X13 00.008062*(X23**Z) *235.l97‘(LN(X&)) +0.8959*(LN(X5*1)) *0-07766*(X3**2) 00.96799X15 ’0-03603*X6 *91.5£2‘(LN(X1£01)) *3-9188*(LN(X23)) *20.l$7*(LN(X11)) '0o005131.(X11**2) 'C.4408*X23 ‘0.8873*(XA002) 'IS.9A37*X1£ *1.3336*(LN(X8)) CONDITION E 3 X2 3 11919933937'399‘79 - 50956961963973 X3 3 59 12 X12 3 29 3 XI3 3 I9 59 7 X30 3 D Y 3 ‘362-3‘1 92.11523(XA**Z) *65-6500*X17 912.050*X15 CONDITION F 8 X2 3 11919933937'399479 50956961963973 X3 3 1'k9 6‘109 13 X12 3 29 3 X13 3 I9 59 7 X30 3 D Y 3 ‘6.?927 95.27fiZ.(LN(X3)) ‘12.58030X18 *2o6068‘X15 +0.0SZZ£*(X2**Z) 00.25353Xll *2.’630*X8 '1.Z928*(LN(X6+1)) CONDITION 5 3 X2 3 11919933937'399k79 50956961963973 X3 3 ‘97‘12 X12 3 29 3 XIA 3 3 X30 3 O LN(Y+1) 3 'k.3965 +Ooilib3X13 *0-2073‘X2 00.603AfiX15 01.0030-x3 90.0h289OX23 ‘O-IO9S*(X3**Z) '0o0065323*(X23**Z) 378 NOBEL I'B‘S RIGNI ANGLE CONDITION H 8 X2 3 II9I9933937‘399AT9 50956961963973 X3 3 £97-12 X12 3 29 3 X15 >= A X30 3 Y 3 '16.§ZTZ *0.9507*X2 +1.6310‘X15 017.0690X18 +5.b263*(LN(X3)) *OoOOZZOI*(X6**Z) +0.5259*(X13**2) *31.21800(LN(X5‘1)) '7.1180OX5 +1.6979*X16 CONDITION I 8 X3 3 I9 39 99 13 X30 > D Y 3 *0.8276 00.001979*(X2**2) +£0.01760(LN(XIZ)) +1.?387¢(X3**2) *0-1893*(X13**Z) “$.63650(X12.¢Z) 00.1626‘X23 'IS-5028‘(LN(X3)) 00-001559¢(X7**2) ‘0.0DIOSZ*(X6**Z) *1.‘860*(LN(X7+1)) *1.6520¢XIG CONDITION J 3 X3 3 29‘96’8910'12 X12 3 I X30 > O LNCYOI) 3 ‘7-0930 *0-1027‘XZ *0-2152*Xl3 '0.001512*(XZ**2) *0-0093170(X3**Z) *0.0091ASO(XA0.2) *0o0086fil*(X5**2) 00.3184-xa '0.003£62*(X11**2) OO-Z‘98*X16 +0.27930X11 ’C.027h2*X7 CONDITION K 3 X3 3 29‘96'8910'12 X12 3 3 X30 > D LN(Y*1) 3 '3.h2£811 *0.0&589593*(XA**Z) 00.0007235877¢(X11002) 379 NODEL II‘A‘1 RIGNT ANGLE CONDITION A Y 3 0.216h X12 X13 19798 CONDITION 3 X12 1 X13 293959699 Y 3 0.0759 CONDITION C X2 39 89139169199219 Y 3 0.6691 X12 293 389399679569589669 67973973978'80 CONDITION 0 X2 39 89169169199219 389399379569569669 67973973978380 Y 3 0.9171 X11 25“5 X12 293 CONDITION E X2 39 89169169199219 389399‘79569569669 67973973978380 Y 3 11.b81 CONDITION F X11 50955 X12 293 X1? 2 X2 3997‘ X11 50955 X12 293 Y 3 5.2‘5 X1? CONDITION 6 X2 39 89169169199219 389379569589669679 Y 3 1.552 X11 X12 X17 73978'80 50955 293 0 380 NOBEL II‘O‘1 RIGHT ANGLE CONDITION A 3 Y 3 0.1905 X12 3 1 X13 3 19798 X30 3 0 CONDITION 3 3 X12 3 1 X13 3 293959699 X30 3 0 Y 3 0.0631 CONDITION C 3 X2 3 398999119169179199 Y 3 0.8289 76978-80 21935937'399669‘79 529569689669679739 X11 3 25-55 X12 3 293 X30 3 0 CONDITION 0 3 X2 3 38939975 Y 3 5.1093 X11 3 50955 X12 3 293 X30 3 0 CONDITION E 3 X2 3 398999119169199219 Y 3 1.3079 379‘69679529569589 66967973978'80 X11 3 50955 X12 3 293 X17 3 0 X30 3 0 CONDITION F 3 X2 3 398999119169199219 Y 3 k.33k3 X11 3 50955 379‘69679529569589 66967973978’80 X12 3 293 X17 3 192 X30 3 0 381 NODEL II‘O‘I RIGNT ANGLE CONDITION 0 3 X2 3 398999119149179199 219359373399869479 529569589669679739 Y 3 2.9257 73978380 X3 3 T X12 3 293 X30 3 0 CONDITION H 3 X2 3 398999119169179199 I 219359373399‘69679 529569589669679739 Y 3 0.6158 73978-80 X3 3 7 X12 3 293 X30 3 0 CONDITION I 3 X2 3 16936952980 X30 > 0 Y 3 3.953 CONDITION J 3 X2 3 16936952980 ' X30 > 0 Y 3 0.563 382 CONDITION A V: 18.95 CONDITION 8 Y: 13.75 CONDITION C Y: 500.00 CONDITION D NODEL III‘A'I RIGHT ANGLE X3 6912913 X11 60355 X3 6912913 X6 > 23 X11 25‘35 X3 X6 6912913 10 X11 25-35 X3 X6 X6 6912913 12 0 Y: 11.6‘ X11 25-35 CONDITION E Y 3 0.106 CONDITION F Y 3 81.96 CONDITION G Y 3 13.64 CONDITION H 0.28 X2 X3 X6 X6 63 6912913 10911 0 X11 25'35 X2 X3 X6 82 6912913 0 X11 25-35 X2 X3 82 1‘597‘11 X2 X3 1‘81983 1‘597'11 383 NODEL III'A'Z RIGHT ANGLE CONDITION A 8 X3 6912913 X11 60355 Y: ‘73.1§3h 00.48763X23 03.2611*X2 'b.230£*X7 f3.2825*X5 *11.7361*X8 O8.0388*X3 CONDITION 8 8 X3 6912913 Y 3 '23.9130 *16.3678*X3 CONDITION C 8 Y 3 500-00 CONDITION D 8 X6 > 23 X11 25-35 X3 X6 6912913 10 X11 25-35 X3 X6 X6 6912913 12 0 Y 3 11.56 X11 25'35 CONDITION E 8 Y 3 0.68 CONDITION F 8 X2 X3 X6 X6 63 6912913 10911 0 X11 25'35 X2 X3 X6 82 6912913 0 Y 3 81.96 X11 25’35 CONDITION 6 8 X2 X3 82 1'597'11 Y 3 '28.6793 36.3983tX3 +7-59fi3‘X8 CONDITION H 8 X2 X3 1-81983 13597311 Y 3 ’0.2302 00.088680X23 *0.1689*X3 +0.01626*X5 '0.05692*Xh +0.0006075fiX11 384 NOOEL III'A'3 RIGHT ANGLE CONDITION A 8 X3 6912913 X11 60'55 Y 3 05985.921 *0.27097*X23 *0.6738*(X2**2) *15.9171*(LN(X5G1)) * 28.7651*(LN(X8)) 02.58710(X3832) ‘6.3857*(LN(X601)) §13.1066*(X6*32) -3190.29*(LN(X6)) X3 6912913 X6 > 23 X11 25-35 X3 X6 6912913 10 X11 25335 X3 X6 X6 6912913 12 0 X11 25‘35 X2 X3 X6 X6 63 6912913 10911 0 X11 25'35 X2 X3 X6 82 6912913 0 X11 25’35 CONDITION 8 8 Y 3 '23.9130§16.3678*X3 CONDITION C 3 Y = 500000 CONDITION D : Y 3 11.66 CONDITION E x Y 0.66 CONDITION F 8 Y 3 81.96 385 NOOEL III'A'3 RIGHT ANGLE CONDITION 6 8 X2 X3 82 13597311 LN(Y*1) 3 '6.2636 '0.3600*X3 *0.9719*X8 *0.06762*(X3082) ‘0.7716*X7 +0.1082*(X7**2) '0-006126*(X11**2) *0.3336*X11 '0.08537*X23 *0.0008551*(X23002) CONDITION H X2 X3 1-81983 1’597’11 LN(Y01) 3 “0.6586 *0.01396*X23 00.003263*(X3**2) ‘0.005016*X7 *0.000072060(X70*2) *0.02070*X11 '0.C002220*(X113*2) '0.00005076*(X23**2) ‘0.002665*(X8*fi2) ‘0-0003219'IX6**2) 386 NODEL III'8'1 RIGHT ANGLE CONDITION A X3 6912913 X11 25 X30 0 Y 3 80.66 CONDITION 8 Y 3 0.35 CONDITION C Y 3 20.95 CONDITION D Y 3 65.63 CONDITION E Y 3 8.26 CONDITION F v =f 0.22 X2 X3 X11 X30 23933938939961959961 6912913 30‘55 0 X2 X3 X5 50963982 6912913 0 X11 30355 X30 0 X2 X3 X5 X11 X30 50963982 6912913 8912 30'55 0 X2 X3 82 1'597'11 X30 0 X2 X3 1'81983 1'597‘11 X30 0 387 NODEL III‘O'I RIGHT ANGLE CONDITION 6 8 Y 3 261.23 X3 H ‘ O X30 > 0 CONDITION H X3 3 1‘59798 X30 > 0 Y 3 1.09 CONDITION I 8 X2 3 33950982 Y 3 76.76 X3 3 9'13 X30 > 0 CONDITION J X2 3 139199209219239389619 52961963970973976981 Y 3 6.76 X3 3 9‘13 X30 > 0 388 NODEL III‘B'Z RIGHT ANGLE CONDITION A 8 X3 6912913 X11 25 X30 0 Y 3 1161.37 '96.6286*X6 CONDITION 8 8 Y 3 6.5309 Ol.9908*X8 +0.68660X2 CONDITION C 8 Y 3 *10.6970 +0.26910X23 CONDITION D 8 Y 3 '325.000 ‘168.750*X2 +15.6250*X6 CONDITION E 8 X2 X3 23'33'38939961959961 6912913 X11 30355 X30 0 X2 X3 X5 50963982 6912913 0 X11 30‘55 X30 0 X2 X3 X5 50963982 6912913 8912 X11 30‘55 X30 0 X2 X3 X30 82 1‘597'11 Y 3 10.0373 02.8996'X3 '0.3915*X11 CONDITION F 8 X2 X3 1'81983 1'597‘11 X30 0 Y 3 +0.1953 +0-05733‘X23 00.1127tX3 +0.01833*X500.05968*X6 *0.0017860X2 ‘0.006583¢X7 389 NODEL III'B'Z RIGHT ANGLE CONDITION 6 8 X3 X30 Y 3 261.23 CONDITION H 8 X3 1'59798 X30 0 Y 3 '0.1030 00.5653CX3 80.035870X2 +0.6156*X8 '0.06639OX11 '0.1123¢X7 CDNDITIDN I 8 X2 X3 33950982 9‘13 X30 V 0 Y 3 30.6633 *15.0862*X3 CONDITION J 8 X2 139199209219239389619 52961963970973976981 X3 9'13 X30 0 Y 3 '6-3376 01.5297*X2 390 NODEL III‘8'3 RIGHT ANGLE CONDITION A 3 X3 3 6912913 1161.37 ’96.6286*X6 X30 3 0 X11 3 25 CONDITION B 3 X2 3 23933938939961959961 X3 3 6912913 X11 3 30355 X30 3 0 '2.3706 *2.3706*(X8.*2) '10.2596*(LN(X8)) CONDITION C 8 X2 3 50963982 X3 3 6912913 X5 3 0 10.6970 30.2691*X23 X11 3 30'55 X30 3 0 CONDITION D 3 _ X2 3 50963982 X3 3 6912913 X5 3 8912 X11 3 30‘55 X30 3 0 '325.000 8168.7503X2 315.62503X6 CONDITION E8 X2=82 X3 3 13597311 X30 3 0 '7.2015 ‘0.2228*X3 30.61219X8 30.09569*(X7*‘2)‘0.05825‘(X3.*2I '00006121*(X11**2) '0.2285*X6 '002676'X5 ’0o0003060‘IX6332) 30¢01983‘X6 30.5002*X11 ‘0-06081‘X23 80.02707*(X5**2) 391 NODEL III'8'3 RIGHT ANGLE CONDITION F 8 X2 3 1‘81983 X3 3 1'597'11 X30 3 0 LNIY‘I) 3 '0.2861 00.010663X23 *0-006866*(X3**2) *0.00001071*(X2**2) “0.00006358*(X23**2) ‘0.016800X3 '0.006315OX7 +0.002678*(X88*2) '0.0002982*(X6**2) 40.006806*X5 *0.00005536¢(X7002) ’0.0003528*(X5**2) ‘0.0005860*X2 '0-000003820*(X6**2) +0.01628*X11 '0.00016*(X11**2) CONDITION 6 3 Y = 261.23 X3 3 6 X30 3 0 CONDITION H 3 X3 3 1‘59798 X30 > 0 LNIY+11 3 ‘1.6066 *0.00022053(X2**2) +0.2829OX3 +0.02972*(X8*02) '0.01237*X2 ‘0.02705*X7 '0.02789*(X3002) *0.00006588'(X23**2) ‘0.0007727*(X11¢*2) 80.06663*X11 CONDITION I 8 X2 3 33950982 X3 3 9'13 X30 > 0 Y 3 '626.717 86.1631*(X3**2) '90.11658(LN(X23)) 0233.8690(LN(X6)) +117.711*X8 *6.5152*(X2**2) *1.7073*(X6**2) '72.2963*X6 9206.0008*(LN(X6*1)) CONDITION J 3 X2 3 139199209219239389619 52961963970973976981 X3 3 9'13 X30 > 0 LN(Y*1) 3 '0.8618 00.01058‘IX23‘2) 30.18363X23 *0.Z762*(X3**2) '0.06119*X11 '0.002662*(X6**2) *0-07019‘X6 *0.007512*(X7**21’0.006076*(X23**2) 392 NODEL IY'A'I RIGHT ANGLE CONDITION A 3 X2 Y = 1.66 CONDITION 8 3 Y = 132-‘6 CONDITION C 3 Y 3 169.56 CONDITION 0 3 Y 3 26.06 X2 X3 X2 X3 X11 X2 X3 X11 " 6 1 ‘ “ N L ‘ L I ' 393 NODEL IY'I'I RIGHT ANGLE CONDITION A 3 X2 3 596912913 Y 3 1.62 X6 < 91.5 X30 3 0 CONDITION 8 3 X2 3 596912913 Y 3 66.80 XO >= 9105 X30 3 0 CONDITION C 3 X3 3 596912913 Y 3 169.25 X11 3 25 X30 3 0 CONDITION 0 3 X3 3 596912913 Y 3 27.38 CONDITION E 8 Y 3 668.65 CONDITION F 3 Y 3 9.81 X11 3 30-55 X30 3 0 X3 3 6 X30 > 0 X3 3 6 X30 > 0 394 NODEL I'A '1 REAR END X3 L O ' X12 X3 X12 CONDITION A 6.79 CONDITION 8 Y: 0.75 CONDITION C X2 11917928933937'399 Y 3 16.90 619679509619639 X12 X13 X15 77981982 293 2969699 091 CONDITION D X2 11917928933937'399 Y 3 39.36 X3 6910911912 X12 293 X13 19597 619679509619639 77981982 CONDITION E X2 11917928933937‘399 Y = 22007 619679509619639 X3 X12 X13 . 6 1 " " 77981982 6910911912 293 19597 CONDITION F X2 . N ' 11917928933937'399 Y 3 65.06 61967950961963 77981982 X5 0 X12 293 X15 29396 395 NODEL I'A‘I REAR END CONDITION G X2 11917928933937‘399 Y 20.68 619679509619639 77981982 X5 X12 X15 8910 293 29396 CONDITION H X2 6 ‘ 11917928933937'39' Y 10.06 X12 29 3 619679509619639 77981982 396 NODEL I'A'Z REAR END CONDITION A 8 X3 # 19 2 X12 3 1 Y 3 “17.5887 00.3968OX3 +6.263*X12 +0.1356‘X2 $6.2631*X17 *5.8230*X18 *0.6061*X3 CONDITION 8 8 X3 19 2 X12 1 Y 3 '3.5321 80.09656*X2 O1.2686*X13 00.08866823 “0.7077OX16 ‘0.05226*X11 +0.3793*X6 ‘0.5170*X16 +0.08729OX7 '0.69928X8 '0.09826¢X5 CONDITION C 8 X2 3 11917928933937'399 619679509619639 77981982 X12 3 293 X13 3 2969699 X15 3 091 Y 3 00.01863 00.10860X23 *0.3623*X8 00.01222‘X2 *0-08620'X13 00.6172*X15 ‘0.015110X11 *0.2268OX16 '0.09001¢X16 CONDITION 0 8 X2 3 11917928933937’399 61967950961963! 77981982 X3 3 6910911912 X12 3 293 X13 3 19597 Y 3 '68.9306 81.5250tX2 06.7133OX13 +8.37883X12 01.1659OX3 40.19313X23 ‘1.0320¢X5 03.83660X8 *13.3526*X9 397 NODEL I'A'Z NEAR END CONDITION E 3 X2 3 11917928933937’399 619679509619639 77981982 X3 3 6910911912 X12 3 293 X13 3 19597 Y 3 ‘70.8123 00.57563X23 *28.1696*X12 01.68283X2 '18.6891*X8 06.3332*X13 CONDITION F 8 X2 3 11917928933937‘399 61967950961963 77981982 X5 3 0 X12 3 293 X15 3 29396 Y 3 ‘127.6237 *0.82130X2 *0.67260X23 06.61610X12 *2.3231‘X6 00.3681tX11 +16.6678tX9 O3.0711*X8 *0.6175*X7'0.2566*X6* 0.8086OX3 010.08723X18 811.5382*X16 +7.68011X13 CONDITION 6 3 X2 3 11917928933937‘399 619679509619639 77981982 X5 3 8910 X12 3 293 X15 3 29396 Y 3 '99.6610 86.8288tX2 *0.3966*X23 07.39328X3 '7.891*X16 835.9529*X13 CONDITION H 8 X2 3 11917928933937'399 619679509619639 77981982 X12 3 29 3 Y 3 ‘9.3619 *'6.7687*X2 398 NODEL I‘A'3 REAR END CONDITION A 8 X3 1 19 2 X12 3 1 LN(Y§1) 3 ‘0.5526 *0-09723*(X12'*2) 90.01362*X2 *0.03975*X3 *0.13768X23 ‘0-003766*(X23**2) ‘0-013678tX6 *0.5166*X18 30.05083*(X17**2) *0.01576*X5 +0.0001208*(X6*¢2) CONDITION 8 X3 19 2 X12 1 LN(Y*1) 3 30.2659 80.00015230(X2**2) *0.06516*X23 80.6293*X13 “0.01309iX5 ‘0.0003776*(X23**2) ‘0.07663*(X13**2) 80.71880X8 ‘0.09115*X16 '0.05983*X11 40.0006632'IX11682) +0.012800X7 ‘0.07197*X3 00-05680'X6 “0.1936*(X8**2) +0.006809*(X3**2) ”0.5787tX16 +0.09055*(X16002) CONDITION C 3 X2 3 11917928933937‘399 619679509619639 77981982 X12 3 293 X13 3 2969699 X15 3 091 LNIY01) 3 00.6561 *0.082880X23 ‘0.0005615*(X23‘*2) *0-02009‘X13 ‘0.021611X11 80.00002265‘IXZOOZ) +0.11016X15 +0.01686*(X8**2) *0-0002092*(X11*‘2) 00.02623*X9 '0.0003658*(X5¢*2) '0.0005235*X6 +0.01706*(X16O*2) '0808352*X16 399 NODEL I'A'3 REAR END CONDITION 0 8 X2 11917928933937-39' 619679509619639 77981982 X3 6910911912 X12 293 X13 19597 LN(Y+1) 3 '3.8963 +0.6636*X13 *0-07138*(X8**2) ‘0.01137*(X5**2) +0.08257*X2 +0.9923IX9 '0.03868*(X3**2) +0.1015*(X12**2) +0.01306fiX23 *0.07059¢(X16**2) *0.63880X3 CONDITION E X2 11917928933937'399 619679509619639 77981982 X3 9 6910911912 X12 X13 293 19597 LN(Y+1) 3 '3.5566 *0.1920*(X12**2) *0-05260‘X23 ‘0.0006116*(X23**2) ‘0.07176*(X8**2) +0.1800OX16 *0.06285*(X13**2) 01.01228X16 CONDITION F 8 X2 6 8 ' 11917928933937'399 61967950961963 77981982 X5 0 X12 X15 293 29396 Y 3 '292.632 40.06976OIX2032) *0-6806‘X23 +3.1978*X8 00.006606*(X11**21 016.0076‘X9 *0.06618‘(X7*.21 ‘2.3736*X7 07.5592*X3 83.6383tX6 '0.6307*(X3802) *12.6565*X18 887.65113X16 '8.1967*(X16**2) 31.7276OIX13O‘2) 400 NODEL I'A‘3 NEAR END CONDITION 6 8 X2 3 11917928933937‘399 619679509619639 77981982 X5 3 8910 X12 3 293 X15 3 29396 ‘15.2378 * 0.7127OX6 O 0.18680X3 +0.1630*(X13*‘2) 80.6950*X8 *0.31988X11 ‘ 0.003166OIX11**2) CONDITION H 8 X2 3 11917928933937'399 619679509619639 77981982 X12 3 29 3 “0.679700.1119*X2*0.7176*X13 00.6611*X12 '0.0006736*(X11032) 401 NODEL I'D-1 REAR END CONDITION A X2 11917928933937'399 619679509569619639 73977981982 Y 3 9.18 X12 293 X30 0 CONDITION 8 X2 33939950963 Y: 30.96 X12 293 X15 091 X30 0 CONDITION C X2 119179289379389619 Y: 16.00 X3 192969798913 679569619739779 81982 CONDITION 0 Y: 3.93 CONDITION E Y: 0.58 X12 293 X15 091 X30 0 X3 X12 X30 6 1 " " 192 091 X3 192 X12 091 X30 CONDITION F X2 119179289379389619 679509569619639739 Y 3 20.06 X5 X12 X15 X30 u N ' N N H 77981982 0 (8910) 293 29396 0 402 NODEL 1‘8‘1 REAR END CONDITION 6 X2 119179289379389619 Y 3 26.93 679569619739779 81982 3969599910911912 293 192959697 X3 X12 X13 X15 091 X30 0 CONDITION H X2 119179289379389619 Y 3 3.56 X3 3969599910911912 679569619739779 81982 CONDITION I Y 3 86.76 X12 293 X13 9 X15 091 X30 0 X2 X5 11933961950 0 X12 293 X15 29396 X30 0 CONDITION J X2 289379619639 Y 3 51.59 CONDITION K Y 3 5.80 73981982 X5 0 X12 293 X15 29396 X30 0 X3 X30 " V 192913 403 NODEL I'D '1 REAR END CONDITION L X2 3999119139179199209 Y 3 17.29 22923925928931-339 37951‘539569589709 76‘79981 X3 39696'12 X30 0 CONDITION M X2 N 389399619509639 Y 3 31.37 X3 X12 X30 N I I V 73982 39‘96‘12 1 0 CONDITION N X2 I I 389399619509639 Y 3 81.70 73962 X3 39696'12 X12 X30 V 3 0 404 NODEL I'D-2 NEON END CONDITION A 8 X2 1 11917928933937'399 619$795095‘9619639 73977981982 X12 3 293 X30 3 D Y 3 318.5289 +A.999*X12 *O.2877¢X23 *0.1307*X2 +3.5582*X17 *0.5651*X3 CONDITION 8 3 X2 3 33939950963 X12 3 293 X15 3 091 X30 3 D Y 3 3100.6fi5 *7.3309*X13 01.45250X3 019.9‘33‘X12 *O.5£3*X11 96.58880X15 *O.20643X23 *10.§787*X18 CONDITION C 3 X2 3 119179289379389‘19 6795‘9619739779 81982 X3 3 192969798913 X12 3 293 X15 3 D91 X30 3 0 Y 3 ‘83-7250 30.53513X23 *9.011*X1£ +4.5700‘Xfi CONDITION D 8 X3 3 192 X12 3 091 X30 3 D Y 3 32.5809 *0.07880*X2 *0.05913*X23 00.5963OX13 '0.0£016¢X11 ‘0.k0177‘X16 ‘0.2307¢X£ 40.5213'X8 30.08229OX5 00.0bb95*X7 CONDITION E 8 X3 3 I92 X12 3 091 X30 3 D I 3 -007“‘ 3000,3353N23 -000166‘*XII 90.0091263x2 *005785'X3 *0-2077‘X8 *0-0‘886*x13 *00238‘3X15 *0.06380*X9 30.03237QX‘ 405 NCDEL I'D-2 REAR END CONDITION F : xz 119179289379389‘19 5795095‘9619639739 X5 X12 X15 K ' N I I 77981982 0 (8910) 293 2939‘ X30 I I 0 Y = -10009‘8 3 4.48'nOX2 CONDITION 6 3 X2 119179289379389419 #79549619739779 81982 X3 3969599910911912 X12 293 X13 192959697 X15 091 X30 0 Y 3 “£8.9203 *0.5834*X23 *5.9284*X8 49.7916*X14 +3.63523X16 *0.21913*X11 *19.200*X9 CONDITION H 3 . X2 119179289379389419 Y 3 20.8018 '0.4150*X11 CONDITION I 8 6795‘9619739779 81982 X3 39‘9599910911912 X12 293 X13 9 X15 091 X30 0 X2 X5 X12 X15 X30 119339‘1950 0 293 2939‘ 0 Y 3 323.1645 92.60330X23 *32.6692*X17 024.5774*X3 '24.6673*X2 *79.1972*X18 406 NCDEL I'D'Z REAR END CONDITION J 3 X2 289379619639 73981982 X5 0 X12 293 X15 2939‘ X30 0 Y 3 '70.1901 07.83890X3 *1.67340X11 CONDITION K 3 X3 192913 X30 V 0 Y 3 06.2100 *0.09721*X2 3 5.2345*X12 00.25360X23 30.080250X11 ‘4.3616*X3 CONDITION L 3 X2 3 3999I19139179199209 22923925928931'339 379513539569589709 76379981 X3 39896-12 X30 > 0 Y 3 352.9673 30.70980X23 317.61620X12 00.37353X2 +2.9fi973X3 33.68763Xfi 332.01713X17 CONDIIION M 8 X2 3 389399‘19509639 73982 X3 3 39896312 X12 3 1 X30 > 0 Y 3 327.6767 00.62083X23 *5-3‘05‘X2 *5-‘992'X13 CONDITION N 3 X2 3 389399319509639 73982 X3 3 39396312 X12 3 3 X30 > 0 Y = -520009“‘ 3‘70‘9“.X‘ *19.5611*X2 407 NODEL 138-3 NEON END CONDITION A 8 X2 3 11917928933937'399 619‘79509549619639 73977981982 X12 3 293 X30 3 0 LNIY‘I) 3 30.5273 *00097933(X12332) *0o013333xz 3OQOGISh*X3 .001‘85*XZ3 ’0000‘2513(X23332) *0o5829‘X18 ”0.01256*X6 *0.0001082*(X6**2) *O.1105.X5 ‘0.0000987.(X11'*2) 30.0083963(X5‘32) CONDITION 8 8 X2 3 33939950963 X12 3 293 X15 3 091 X30 3 0 Y 3 '157.315 '71.6843*X13 30.07692*(X3**2) O 4.40820(X12302) *68.7763*(LN(X11)) + 5.57833X15 30.01352*(X11**2) ' 311.3571IX18 38.54280X23 3118.8140(LN(X13)) * 5.9516O(X13¢‘2) +1.73463X16 '46.432*(LN(X23)) 30.04008‘CX23**2) CONDIIION C 8 X2 3 119179289379389‘19 6795‘9619739779 81982 X3 3 192969798913 X12 3 293 X15 3 D91 X30 3 0 Y 3 -1620.20 *0.008922*(X23**2) 325.6161*(LN(XIQ¢1)) *805.5516*(LN(X$)) 33.2225*(X4O*2) +10-26413X12 ‘+3.6429*(LN(X501)) 30.7312*(X8**2) 90.05518¢(X2*¢2) ‘2.2584*X16 36.80260(LN(X13)) 408 NODEL I‘D-3 REID END CONDITION 0 8 X3 3 192 X12 3 D91 X30 3 0 LN(Y*1) 30.3429 00.00015180(X2*02) 40.040423X23 '0.0003431*(X23**2) *0.4633*X13 '0.0‘929*(X13**2) ‘0.5915*X8 30.089753X16 +0.05890X4 +0.00063‘2*(X11*‘2) 30.05025*X5 30.01061*X7 30.0844O*X3 +O.00718§*(X3OOZ) +0.003753*(X5*02) '0.05970*X11 '0.1609*(X8**2) CONDITION E 8 X3 3 192 X12 3 091 X30 3 D LNIY‘I) +0.3186 30.070853X23 '0-000457*(X23**2) '0.017213X11 00.002185*(X13OOZ) +0.00001942*(X2"2) +0.01139*(X8**2) +0.028650X9 00.068623X15 30.0003765*(X5**2) *0-0006079‘X6 +0.008887*(X14**2) 30.0001515*(X11**2) CONDITION F 8 X2 3 119179289379389819 679509549619639739 77981982 X5 3 D (8910) X12 3 293 X15 3 2939‘ X30 3 0 LN(Y+1) 32.8183 *0.08924¢X2 +0.71710X13 +1.0211tX12 409 NODEL I'D-3 NEON END CONDITION 5 8 X2 3 119179289379389‘19 ‘795‘9619739779 81982 X3 3 39‘9599910911912 X12 3 293 X13 3 192959697 X15 3 D91 X30 3 0 Y 3 ‘71.57‘8 313.1686*(LN(X23)) +11.7192*(lN(X8)) +16.9116OX9 *2.4288*X16 06.24063X16 +0.003173*(X11**2) *6.0289*(LN(X3)) *0.062‘5¢(X2**2) +6.8165*(LN(X13)) CONDITION H 8 X2 3 119179289379389‘19 ‘795‘9619739779 81982 X3 3 39‘9599910911912 X12 3 293 X13 3 9 X15 3 091 X30 3 0 LNCY‘I) 3 3.2628 ‘0o001250*(X11‘*2) CONDITION I 8 X2 3 119339‘1950 X5 3 D X12 3 293 X15 3 2939‘ X30 3 0 Y 3 3212.9509 *76.5‘53*(LN(X23)) 375.26‘90(LN(X17*1)) 957.8526*(LN(X3)) 322-1468*X2 370.97803X18 CONDITION J 8 X2 3 289379619639 73981982 X5 3 0 X12 3 293 X15 3 2939‘ X30 3 D LN(Y31) 3 '11.2198 +0.6068365fiX11 30.006391397*(X11**2) 00.13285*X3 410 NODEL 1-8-3 REAR END CONDITION K : X3 3 1 92913 X30 > D LN(Y*1) 3 '3.5506 * 0.03358*X2 3 0.091299X23 “0.0006859*(X23**2) 30.013423X11 ‘0.775‘*(X3**2) 32.471‘*X3 +0.1195tX15 '0.00027960(X2**2) ‘0.00005334*(X6**2) 33.0559*X12 “0.7‘88*(X12**2) CONDITION L 3 X2 3999119139179199209 22923925928931‘339 379513539569589709 76‘79981 X3 39‘96‘12 X30 > 0 Y 3 43.3163 *0.01‘83*(X23**2) +3.67‘0*(X12**2) 30.36723X2 06.0‘02*(X3002) 30.1‘913(X4.*2) +66.5985*(LN(X17+I)) ‘7‘.78173X3 * 101.8DZ*(LN(X3)) CONDITION N 3 X2 389399‘19509639 73982 X3 39‘96'12 X12 X30 V 1 0 Y 3 329-326‘ 30.6412*(X133*2) 30.7120*(X2*'2) '0.01050*(X23**2) 31.64279X23 CONDITION N 3 X2 389399‘19509639 73982 X3 39‘96'12 X12 X30 V 3 D LN(Y*1) 3 '1.080616 90.03917‘23*(X‘**2) 411 NODEL II'A‘1 REAR END CONDITION A 3 Y 3 0.1546 X3 X12 2‘497'10 CONDITION 8 3 X3 19596911313 Y = 0.0698 CONDITION C : Y = 2.1534 X12 1 X2 39 X12 293 CONDITION 0 3 X2 191191291‘9159179 Y 3 1.8522 209259279379389‘09 ‘19‘59‘795295‘9739 77978 X12 293 X1? 192 CONDITION E 3 X2 191191291‘9159179 209269279379389‘09 ‘19‘59‘795295‘9739 T = 008619 77978 X12 293 X17 0 CONDITION F 3 X2 39697999139169189 Y 3 0.5939 19923925928’30933' ‘69509519539589609 619639669679699709 72980981983 X12 293 CONDITION 6 3 X2 29‘95989109219229 Y 3 003367 2‘93193293‘9359‘2"‘9 ‘89‘9955‘579599629 6596897197‘9759769 79982 X12 293 412 NODEL II'8'1 REAR END CONDITION A X2 191191291‘9159179 20926927937"19‘59 ‘795295‘973977978 Y 3 0.8901 CONDITION 8 3 Y 3 0.1352 X3 X12 X30 X3 X12 X30 1“99‘11 293 0 23‘97'10 1 0 CONDITION C 3 X3 19596911'13 T = 000587 x12 x30 1 D CONDITION D : X2 39697999139189199 Y 3 0.5888 239259283309339‘69 509519539589609619 639669679699709729 80981983 X12 293 X30 0 CONDITION E : X2 29‘95989109169219 Y 3 0.3258 CONDITION F : Y 3 ‘0603‘ 2292493193293‘9359 ‘2“‘9‘89‘9955'579 5996296596897197‘9 75976979982 X12 293 X30 0 X1 x2 7 191191291‘9159179 20926927937"19‘59 ‘795295‘973977978 X3 59798 X12 293 X30 D 413 NODEL II‘D‘l REAR END CONDITION 6 3 X1 X2 69899 191191291‘9159179 20926927937"19‘59 Y 3 1.1‘11 ‘795295‘973977978 X3 59798 X12 293 X15 X30 0 0 CONDITION H 8 Y 3 59222 X1 X2 69899 191191291‘9159179 20926927937'519‘59 ‘795295‘973977978 X3 59798 X12 293 . X15 X30 1 0 X2 X3 X30 I I “ V 73 39‘97'12 0 CONDITION I 8 Y 3 2.718 CONDITION J 3 X2 9915'17920926928' 31'3‘952968969980 X3 19296913 Y 3 0.7‘6 X30 0 CONDITION K 3 X2 1939‘96'8910‘1‘9189 Y = 00326 21923'259279299309 339353‘19‘33‘79509 5195395‘956'639709 72379981'83 X3 19296913 X30 V 0 414 NODEL II‘D‘I REAR END ' CONDITION L 3 X2 229329389399‘19 Y 3 1.068 X30 0 52979 X3 39‘97'12 CONDITION N 3 X2 39 99119139179199 Y 3 0.543 209239289319339379 509519539569589639 70976'78981982 X3 39‘97'12 X30 V 0 415 NODEL III'A'l NEAR END CONDITION A 8 Y 3 27.08 X2 3 50963982 X3 3 13‘9899 CONDITION 8 8 X2 3 50982 X3 3 596910313 Y 3 83o‘8 CONDITION C 8 X2 3 63 X3 3 596910'13 Y = 30.00 CONDITION 0 8 X2 3 50963982 X3 3 19296 Y 3 2.01 CONDITION E 8 X2 3 ‘9109179199259289 30-339359373399‘19 ‘59‘695195295‘9619 Y 3 22.50 70977981983 X3 3 39‘9597'13 CONDITION F 8 X2 3 1-396399113169189 Y 3 8.18 55‘59962965'679699 20‘2‘92692792993‘9 369‘09“9‘7"99539 72‘76978‘80 X3 3 33597313 416 NODEL III'A'Z REAR END CONDITION A 8 X2 X3 50963982 1“9899 Y 3 312.8798 3 1.33003X23 3 3.38873X3 CONDITION 8 3 X2 X3 50982 596910313 Y 3 312.6052 3 11.07063X3 3 0.97183X23 CONDITION C 3 X2 X3 63 596910313 Y 3 338.955‘ 3 1.50103X23 3 12.65393X8 CONDITION 0 3 X2 3 50963982 X3 3 19296 Y 3 ‘0.1513 30.61013X23 30.74293X8 30.017973X2 30.05033X11 '0.068‘53X5 ‘0.036233X7 30.77303X3 CONDITION E : x2 , ‘9109179199259289 30'33935937‘399‘19 ‘59‘695195295‘9619 70977981983 x3 = 39‘9597‘13 v = '85.4403 31.39333x23 +2.5sszax3 35.46453X8 35.26323X4 CONDITION r : x2 = 1'396'9911'169189 20‘2‘92692792993‘9 369‘09“9‘7"99539 55‘59962965‘679699 72’76978’80 X3 3 3‘597'13 Y 3 “7.2978 30.70453X23 30.19793X2 30.98253X8 417 NODEL III’A'3 REAR END CONDITION A 3 X2 X3 50963982 1"9899 LN(Y31) 3 32.2508 30.15‘03X23 30.0019OCX23332) 30.72583(X8332) 32.92823X8 “0.0033‘73(X113*2) 30.26333X11 30.00875‘3X6 CONDITION 8 3 X2 X3 50982 596910-13 LN(Y31) 3 35.1165 30-029‘9'X23 308026823X6 30.016193(X3332) ‘0.01580*(X‘3*2) ' 0.22583(X2332) CONDITION C 3 X2 3 63 X3 3 596910-13 Y 3 '1088.909 30.50693(X23332) '5‘.29103X23 3669.5463(LN(X23)) 32.6073*(X8**2) '1‘.3322*(LN(X631)) 31.12‘23X6 CONDITION 0 8 X2 3 50963982 X3 3 19296 Y 3 '1.0327 30.12093X23 '0.0007C2251*(X23332) 30.01973X7 30.000020633IX2332) 30.00025993(X7**2) 30.19933X8 '0.0‘0593(X8332) 30.036693X11 30.00039813(X11332) 418 NODEL III‘A‘3 NEAR END CONDITION E 8 X2 3 ‘9109179199259289 30‘33935937‘399‘19 ‘59‘695195295‘9619 70977981983 X3 3 39‘9597'13 Y 3 3145.67‘2 31.35923X23 32834983X3 31.52‘6*(X8**2) 30.2538*(X‘**2) ‘0¢05902*(X11*32) 3‘.87303X11 CONDITION F 8 X2 3 1-396399113169189 20‘2‘926927'2993‘9 369‘09“9‘7"99539 55’59962965'679699 72376978380 X3 3 3'597'13 LN(Y31) 3 30.2560 30.11863X23 30.016053X2 30.000096693(X6**2) '0.002028*(X23332) 419 NODEL III‘D'I REAR END X2 X3 X30 4 1 ' “ I I 50963982 19296 0 X2 X3 50963982 596911912913 X30 0 X2 X3 50963982 13498310 X30 0 CONDITION A Y 3 1.65 CONDITION 8 Y 3 64.17 CONDITION C Y 3 26.22 CONDITION 0 X2 1‘39 639911-199 Y 3 7.44 21'2‘9269279299 343379409449 ‘63‘9951 X3 3'597‘13 X30 0 CONDITION E X2 49109209259289 303339389399‘19459 52'5‘961970 Y 3 8.44 X3 3‘597'13 X11 55 X30 0 CONDITION F X2 3 49109209259289 Y 3 20.64 30‘339389399‘19459 52’5‘961970 X3 397310912 X11 X30 25350 0 420 NODEL III‘D‘I REAR END CONDITION 6 Y 3 79.70 X2 X3 39941970981 495911913 X11 25350 X30 0 CONDITION H X2 49259309339389529 Y = 26099 CONDITION I Y 3 248.91 CONDITION J 3 Y 3 76.10 CONDITION K 3 Y 3 12.68 53961977983 X3 495911913 X11 25350 X30 0 X3 59699911 X30 0 X3 394910912913 X30 V 0 X3 1929798 X30 0 421 NODEL III‘B‘Z REAR END CONDITION A 3 X2 3 50963982 X3 19296 X30 0 Y 3 '1.4709 30.5358*X23 30.62103X8 '0- 075413X5 30.010123X2 '0.03451*X11 31.25563X3 30.025833X7 CDNDITIDN B 8 X2 = 50963982 X3 3 596911912913 X30 3 0 Y 3 331.1394 30.88563X23 311.78343X3 312.0933‘X2 CONDITION C 8 X2 3 50963982 X3 3 1‘498'10 X30 3 0 Y 3 320.8637 31.26333X23 35.3310‘X8 31.68593X3 CONDITION 0 8 X2 3 1'39 6'9911‘199 21'2‘9269279299 343379409449 46349951 X3 3'597‘13 X30 0 Y 3 '7.7089 30.65073X23 30.15893X2 32.01933X8 30.035263X6 CONDITION E 3 X2 49109209259289 30-339389399419459 52354961970 X3 3‘597’13 X11 X30 55 0 Y 3 312.5231 31.68433X2 30.61963X23 30.42733X5 422 NODEL III'D'Z REAR END CONDITION F 8 X2 3 49109209259289 30‘339389399419459 52354961970 X3 3 397'10912 X11 3 25350 X30 3 0 Y = -303701 30.74093X23 31.12603X2 CONDITION 6 8 X2 3 39941970981 X3 3 495911913 X11 3 25-50 X30 3 0 Y 3 3157-0767 35804053X23 344.95473X8 CONDITION H 8 X2 3 49259309339389529 53961977983 X3 3 495911913 X11 3 25-50 X30 3 0 Y 3 '52.D665 32.0982‘X23 314.11990X3 CONDITION 1 8 X3 3 59699911 X30 > 0 Y 3 379.1846 3 107.8660X3 CONDITION J 8 X3 3 394910912913 X30 > 0 Y 3 325.1605 33.16193X2 31.7713‘X23 ’2.7922*X5 CONDITION K 8 X3 3 1929798 X30 > 0 Y 3 '27.2842 30.28163X2 ‘0.6257¢X11 30.56133X23 30.10713X6 423 NODEL III'D'Z REAR END CONDITION F 8 X2 3 49109209259289 30-339389399419459 52354961970 X3 3 397310912 X11 3 25350 X30 3 0 Y 3 '4.3707 30.74093X23 31.12603X2 CONDITION 6 8 X2 3 39941970981 X3 3 495911913 X11 3 25-50 X30 3 0 Y 3 ‘157-0767 35904053X23 344.95‘73X8 CONDITION H 8 X2 3 ‘9259309339389529 53961977983 X3 3 495911913 X11 3 25350 X30 3 0 Y 3 352.0665 32.09823X23 314.11990X3 CONDITION I 8 X3 3 59695911 X30 > 0 Y 3 379.1846 3 107.866‘X3 CONDITION J 8 X3 3 394910912913 X30 > 0 Y 3 '25.1605 33.1619*X2 31.7713‘X23 '297922‘X5 CONDITION K 8 X3 3 1929798 X30 > 0 Y 3 '27.2842 30.2816‘X2 ‘0.62573X11 30.56133X23 30.10713X6 423 NODEL III'B'3 REAR END CONDITION A 8 X2 3 50963982 X3 3 19296 X30 3 0 LN(Y31) 3 30.07943 30.10473X23 '0.0005980*(X23**2) “0.016760X7 30-000017933IX2332) 30.04738*X8 30.0002144*(X7**2) CONDITION 8 8 X2 3 50963982 X3 3 596911912913 X30 3 0 Y 3 3276.240 30.01357*(X23.*2) 326.4629‘CLNIX31) 32.6304‘IX2332) '113o894*(LN(X4)1 CONDITION C 8 X2 3 50963982 X3 3 1'498‘10 X30 3 0 LNCY31) 3 '3.8951 30.1537*X23 '0.001863*(X23332) 30.50453CX8332) '1.9194*X8 '0.002475*(X11**2) 30.20153X11 30.14873X2 30.54583X3 30.054963(X3**21 CONDITION D 8 X2 3 1‘39 6399113199 21‘2‘9269279299 343379409449 46‘49951 X3 3 3'597'13 X30 3 0 LN(Y31) 3 30.4675 30.114053X23 308014813X2 30.0001104*(X6**2) “0.001973*(X23*32) 3080494331X8332) 30801059*(X5**21 '0.08868*X5 424 NODEL III'8‘3 REAR END CONDITION E 3 X2 49109209259289 30'339389399419459 52354961970 X3 3‘597‘13 X11 55 X30 0 = -47.3738 30.8431*(X2**2) 90.021528(xzsc«2) 320.06883X2 ‘71.67123(LN(X3)) '3.6249*(X3**2) 352.2335*X3 '2.79083(LN(X531)) 3 50.82403(LN(X2)) CONDITION F 3 X2 49109209259289 30-339389399419459 52354961970 X3 397310912 X11 25350 X30 0 3 ‘46.6324 30.76953X23 30.05532'TX2332) 30-2308*(X4332) 37.9573X3 ‘0.8728*(X3**2) CONDITION 6 3 X2 X3 X11 X30 39941970981 495911913 25‘50 0 LN(Y31) 3 '16.4783 30.0071123(X23332) ‘2.00043X9 30.088883(X3**2) 34.35753X8 '0.8523*(X8**2) 30.12283(X4332) “0.31583X23 30.14413(X5*‘2) 31.11403X5 425 NODEL III-8'3 “CIR END CONDITION H 8 X2 = ‘9259309339389529 53961977983 X3 = £959II9I3 XII = 25-50 X30 3 0 LNIY+I) = “0.8838 *Do1758*X2 *OoI333‘CX3**2) *0-0009‘29*(X23**2) CONDITION I 3 X3 = 59699911 X30 > 0 LN(Y+1) = 42.8520 *0.5£28*X2 +0.07399*(X3**2) CONDITION . G 0 9 X3 = 398910912913 X30 > 0 LN(Y+1) = ’3.2607 +0-059k6‘X2 +0.09236*XZ3 '0.00SD39*(X5**Z) '0.00IOS9*(XZ3.*2) +0.0125h*(Xfi**2) ‘0.01189*(X7**Z) '0«002002*(X11**2) 00.1585*X11 *0.2088OX7 CONDITION K 3 X3 3 1929798 X30 > D LN(Y*1) = *0.52£6 00.01609OX2 *0.11k3*X23 '0-0007060*(X23*‘2) ’0-005‘18*(X7**2) ‘0.0002561*(X11*‘2) *0.003S97*(XS**2) 426 NODEL IV'I‘I REIR END CONDITION A 8 X3 = I T = 22.25 CONDITION 8 3 X2 = 29209289309329389 Y = 121.35 85988982983 X3 1 1 CONDITION C 8 X2 i 29209289309329389 Y = 53089 85986982983 X3 f I 427 CONDITION A 8 Y 19.71 CONDITION B 8 Y 188.89 CONDITION C : V 52.77 CONDITION D : Y 710.61 CONDITION E 8 NODEL IV'O'l REAR END X3 X30 X2 X3 X30 X2 " 8 1 “ L I ‘ X3 # X30 1 D I D 2920930932985 2920930932985 X3 596 X30 X2 X3 19968972 g 596 Y 521.58 X30 0 CONDITION F 8 Y 100.89 X2 X3 X30 fi ' u N ‘ V 19968972 596 0 428 NODEL I'A'I FIXED OBJECT CONDITION A X2 39 9911'189189199 23925933937‘399819 889869879509589589 Y = 0.86 619639709739779789 81982 X12 1 CONDITION 8 X2 39 9911‘189189199 Y = 3.83 23925933937’399819 889869879509569589 619639709739779789 81982 X12 X13 I 8 CONDITION C X2 39 9911'189189199 Y = 1.10 23925933937‘399819 889869879509589589 519639709739779789 81982 X12 X13 N L ‘ 1 8 CONDITION D X2 19119139189179199 Y = 3.71 X12 293 38939950'529589559 83973978 CONDITION E X2 19119139189179199 38939950'529589559 63973978 Y = 1.78 X12 293 429 NODEL I‘A'Z FIXED OBJECT CONDITION A 3 X2 1 39 9911'189189199 23925933937‘399819 889869879509589589 619639709739779789 81982 X12 3 1 Y = +0.02313 *0.06111¢X23+0.1097tX13 *0-01138‘X7 00.008528*XZ *0.089900X9 00.089189X3 '0-009685‘X5 +0.18979X16 ‘0-05958*X18 CONDITION 8 8 X2 = 39 9911‘189189199 23925933937'399819 889869879509569589 819839709739779789 81982 X12 = 1 X13 = 8 Y = ‘25.8001 *Oo3168iX3 +0.1982‘X2 +1.2962'X8 00.09992‘X23 *0.1852*X11 CONDITION C 8 X2 = 39 9911‘189189199 23925933937‘399819 889869879509589589 819639709739779789 81982 X12 = 1 X13 i 8 Y 3 ‘0.8928 80.083088X3 ‘Ool9390X13 +0.021100X2 90.0383SOX7 40.0069139X23 '0.02891*X5 *0.3558*X15 00.006976tX6 'O.8027*X16 *0.09506*X18 430 NODEL I'A'Z FIXED OBJECT CONDITION D 8 X2 19119139189179199 38939950‘529589559 83973978 X12 293 Y = ‘10.?518 *0.1855*X3 00.7008fiX13 +0.1577OX2 00.78850X8 CONDITION E X2 19119139189179199 38939950‘529589559 63973978 X12 293 Y = -208559 *0.02982*X2 *0-1056'X3 +0.8188tX13 00.88113X17 00.01892*X23 *0.198OOX8 OO-O3188‘X5 431 NODEL I‘A'3 FIXED OBJECT CONDITION A 8 X2 # 39 9911'189189199 23925933937'399819 889869879509589589 519639709739779789 81982 X12 = 1 LN(Y+1) = *0.03824 *0.02872*X23 *0.02638*(X13fi*21 *0-00003942'IX2*‘2) ‘0.001658*(X5*‘2) +0.002968tX7 ‘0.003970*(X3**2) +0.03656‘X9 +0.063550X16 00.045643X15 *0-00001112‘CX6**2) *0-01023*(X14**2) '0.10470X13 0C.01133OX5 CONDITION 8 8 X2 = 39 9911'189189199 23925933937'399819 889889879509589589 619639709739779789 81982 X12 = 1 X13 = 8 LN(Y+1) = ’3.1681 +0.05808.X3 +0-08688*X2 +0.3208tX8 00.02278*X11 *0-6385'CX80*2) ‘0o048360X23 ‘2.5896*X8 ‘0.0008986*(X23**2) ‘0.02708.X5 CONDITION C 8 X2 = 39 9911'189189199 23925933937'399819 889889879509589589 619839709739779789 81982 X12 = 1 X13 X 8 LN(Y+1) = '0.8078 +0.08496*X3 +0.28225tX13 +0.0002057*(X2¢*2) 00.033920X7 +0.116970X15 ‘0-03168OX5 ‘0.0004203*(X7**2) 00-01188fiX23 ‘0.0001101¢(X23*O2) '0.DZ398*(X13092) ’0-04825‘X16 ’0-002036*(X3**Z) ‘0.002856*(X5i*2) 00.08685*X9 432 NODEL I'A'3 FIXED OBJECT CONDITION D 8 X2 19119139189179199 38939950'529589559 83973978 X12 293 Y = ‘5.8289 80.0128701X3**2) +0.01021*(X2**2)§2-3503*(LNCX13)) *0803398.(X8t¢2) CONDITION E 8 X2 1 19119139189179199 38939950'529589559 83973978 X12 293 Y = '2.9Z3600.02843*X2 80.007355*(X3**2) +2.8517.(LN(X13)) *0.03898*X23 *0.8069*(LN(XS+1)) {1.2237*(LN(X1701)) '0.01384*(X5¢*2) *0-1076*(LN(X6*1)) ’0-8329*X13 ‘0~1336*X16 '0-0002175*(X23**2) 433 NODEL I'B'I FIXED OBJECT CONDITION A Y = 1.17 X3 X12 X30 8 ‘ “ I I 19296913 293 D CONDITION B X2 19119139189179199 38939950‘529589559 83973978 Y = 3.61 X12 X30 1 O CONDITION C X2 f 19119139189179199 38939950‘52958955' 83973978 Y = 1.74 X12 X30 1 D CONDITION D X2 39899911‘189199239 Y = 0.71 259299309339389 37‘399819889889879 509529589589589819 839709739779789809 81982 X3 19298913 X12 293 X30 D CONDITION E X2 8 0 ' 39899911'189199239 T = 0030 259299309339389 37-399819889869879 509529589569589819 839709739779789809 81982 X3 19295913 X12 293 X30 D 434 NODEl I'B'I FIXED OBJECT CONDITION F X2 193989799‘11913‘179 Y = 5.86 19920922'28928'389 80981983'879529539 58958'83988‘709729 73975‘77979‘82 X13 89899 X30 0 CONDITION 6 X2 193989799'11913'179 Y = 2.53 19920922‘26928'389 80981983'879529539 58958'83988‘709729 73975'77979’82 X13 1929597 X30 0 CONDITION H X2 89 89129189219279 Y = 10.50 399509519589579789 78983 X3 39898‘10 X30 0 CONDITION I X2 89 89129189219279 399509519589579789 78983 Y = 8.81 X3 19295911912 X30 0 435 NODEL I'B‘Z FIXED OBJECT CONDITION A 3 X3 1 19298913 X12 = 293 X30 3 0 Y = 80.8508 *Oo29630X13 40.019ICtX2 +0.005658OX23 '0802786OX5 +0.08398tX3 '0.1053*X8 00.005717*X6 00.2860*X15 CONDITION 8 3 X2 = 19119139189179199 38939950'529589559 83973978 X12 = X30 = 1 0 Y = ‘9o8028 *0.1889*X3 *0o8351‘X13 *0.1355*X2 90.7208*X8 CONDITION C 3 X2 2 19119139189179199 38939950'529589559 83973978 X12 = 1 X30 = 0 Y = '2.9057 *0.02875*X2 *0.09938*X3 00.8008*X13 80.88679X17 00.016799XZ3 +0.3789tX5 *0.2087*X8 CONDITION D 8 X2 3 39899911'189199239 259299309339389 37'399819889889879 509529589589589819 639709739779789809 X3 X12 X30 81982 19298913 293 0 Y = '0.3921 *0.1155*X13 *0.011980X2 ‘0.005783‘X11 80.003886*X6 *0.06609*X8 00.28830X15 *0.006956*X23 +0.086520X8 *0.01203*X7 '0.1059*X16 ‘0-01200*X5 00.06566iX9 436 NODEL I‘B'Z FIXED OBJECT CONDITION E 8 X2 1 39899911'189199239 259299309339349 37'399819889889879 509529549569589619 839709739779789809 81982 X3 19296913 X12 293 X30 0 Y = +0.1889 +0.03769tX23 *0.08265*X13 *0.08872¢X9 *0.0038630X2 00.82739X16 +0.001991OX6 ’0.07798*X18 '0.005711*XS CONDITION F 8 X2 = 193989799'11913‘179 19920922‘28928'389 80981983'879529539 58958‘83988'709729 73975'77979‘82 X13 t 89899 X30 > 0 Y = '8.1568 *1.3315*X3 *0.2735*X2 '0.1023*X23 CONDITION 6 8 X2 193989799'11913’179 19920922‘28928‘389 80981983'879529539 58958'83988‘709729 73975'77979'82 X13 1929597 X30 > 0 Y = -300035 +0.07372*X2 *0.2890*X3 *Oo8288iX8 90.031539X6 'OoD5388'X5 '0-8822‘X18 *0-5827‘X12 437 NODEL I‘B'Z FIXED OBJECT CONDITION H : v = -11.8311'+2.a765-x13 +4.15139x3 60.1862*X6 CONDITION I 8 xz 89 89129189219279 399509519589579789 x3 x30 78983 39898'10 O x2 x3 89 89129189219279 399509519589579789 78983 19298911912 x30 V 0 Y = '2.5701 *0.6372*X2 01.8218*X9 +2.9608OX12 80.9216OX13 +1.6809‘X8 ‘0.1622*X11 00.08031OX6 438 NODEL I'B'3 FIXED OBJECT CONDITION A 8 X3 i 19298913 X12 = 293 X30 = 0 Y = '0.9603 80.2801*(X13*02) 80.00013280X2 *0.8892*(LN(X23)) 03.9828*(LN(X13)) '2.7254*X13 OO-3032‘KLN(X3)) '0.1132*(LN(X5*1)1 '0.01219IX23 +0-08573*(LN(X6*1)) 80.15830X18 f0.0001766*(X2**2) '0.003119*(X8**2) *0.1997*(X170¢21 CONDITION 8 8 X2 = 19119139189179199 38939950‘529589559 83973978 X12 8 X30 = 1 0 Y = '6.1895 00.1628tX3 80.008686*(X2**2) 00.5368OX13 00.03608¢(X8002) 80.8316fiX15 “0.0017878(X23**2) 90.09388OXZ3 '0.303Z*X16 CONDITION C 8 X2 # 19119139189179199 38939950‘529589559 83973978 X12 = 1 X30 = 0 LN(Y+1) = “0.6568 00.0096180X2 +0.002330*(X30O21 +0.5569OX13 +0-05116*X15 80.06786fiX8 00.01238*X23 '0-06081¢(X13**21 ‘0.1103*X18 *0.09693*X17 ‘0.11250X12 '0.00008109¢(X23002) *0.1098OX5 '08009987*(X50‘2) 439 NODEL I'B‘3 FIXED OBJECT CONDITION 0 8 X2 39899911‘189199239 259299309339389 37'399819889889879 509529589569589619 839709739779789809 81982 X3 19298913 X12 293 X30 D 06.3378 +0.08889*(X13**Z) 00.0003220*(XZ**2) 00.2381*(LN(X23)) +0.23Z8O(LN(X7§1)) 01.8565‘CLN(X8)) ‘0.01991*X5 00.2168*X15 '0.1583tX16 ‘0.00005570¢(X23*¢2) '0.6886.X8 '2.0396*(LN(X11)) 00.08261*X11 00.01887*(X18**2) '081862iX13 CONDITION E 8 X2 2 39899911'189199239 259299309339389 37’399819889889879 509529589589589819 839709739779789809 81982 X3 19298913 X12 X30 293 0 LNIY‘I) = ‘0.0007928 00.086810X23 '0-01927‘X13 00.001866*X2 80.00001753*(X6**2) +0.21788X16 '0.0022900(XZ3**2) §0808Z90*X9 '0-001781.(X5**Z) 00.018880XS 80.01027*(X13**21 CONDITION F 8 X2 193969799'11913'179 19920922‘28928'389 80981983'879529539 58958'83988'709729 73975‘77979'82 X13 89899 X30 > 0 ‘5.58S6 00.1185*(X3.*2) *0-2553'X2 ’0.06651*X23 '3.3938*X16 80.07916tX11 00.1183OX6 '0.001239*(X6*02) 440 NODEL 1'8‘3 FIXED OBJECT CONDITION 6 8 x2 193989799'11913'179 19920922‘28928‘389 80981983‘87952'53' 58958‘83988‘709729 73975'77979'82 X13 1929597 X30 ) 0 Y = ‘3.8883 80.06857fiXZ +1.6569*(LN(X601)) '2.6118*(LN(X3)) '0.7298*(LN(X8)) *Oo0005870*(X23**2) ‘0-1909OX6 +12.1822*(LN(X12)) '1.6352*(X12**2) '0.32998X16 ‘0.0083820(X5**2) ‘0.1197*(X3**2102-2863*X3 +0.2826*(X8**2) *0.001232*(X6**2) +0.517S*(LN(X7§1)) CONOIIION H : xz 89 89129189219279 399509519589579789 78983 X3 39898-10 X30 0 LN(Y+1) = 0.6909881 00.3761118tX13 CONDITION I X2 89 89 12918 9219279 399509519589579789 78983 X3 19298911912 X30 > 0 LN(Y+1) *1.5958 *0.6168*X9 00.09739OX2 *1.10318(X12*I2) +0.7832tX13 ‘3-8889‘X12 ‘0.06588*(X13**2) ‘0.2206*X8 -080002352*(X11**2) 441 NODEL II'A‘I FIXED OBJECT CONDITION A 8 X2 = 19398910'189179189 Y = 0.1078 21923926930'329389 38’39982985‘879529 589559589809889899 73978977’80 X7 <3 18.5 CONDITION 8 8 X2 f 19398910’189179189 X 3 000505 589559589809889899 21923928930‘329389 38’39982985‘879529 CONDITION C 8 Y = 1.8533 CONDITION O 8 X = 180288 73978977'80 X7 <3 1605 X2 = 8938982 X7 > 16.5 X2 1 8938962 X7 > 16.5 442 NODEL II'B‘I FIXED OBJECT CONDITION A 8 X2 1939698910'189179 Y = 0.0883 21923928930‘329389 38'39982985'879529 559589809829889899 71973977978980 X30 0 CONDITION 8 8 X2 1939898910'189179 Y = 0.0973 CONDITION C 8 Y = 1.2878 21923928930‘329389 38'39982985‘879529 559589609629669699 71973977978980 X7 < 12.5 X30 0 X2 X7 X30 N V N 34 12.5 0 CONDITION 0 8 X2 3989109119139189179 Y = 0.71 21923928930'329389 38939985“879529609 829889899739779 78980 X7 12.5 X30 0 443 NODEL II‘B'I FIXED OBJECT CONDITION E X2 89309529589579 Y = 1.995 82978 X30 ) 0 CONDITION F X2 2 89309529549579 Y = 00210 82978 X30 > 0 444 NODEL III‘A‘I FIXED OBJECT CONDITION A X2 = 398999119129189229 Y = 5.88 589819839889709739 28928931937'399819 88986987950952'589 77978981982 X3 19297 CONDITION B X2 = 19295'89109139159 Y 3 2°55 18'21923925'27929' 30932'389809829839 85988989951955‘579 59960962965‘699719 72978‘78979980983 X3 19297 , CONDITION C 8 X2 = 89179219389859519 52958985970975982 X3 = 3'898'13 Y = 17.88 CONDITION 0 8 X2 1‘398'18918‘20922’359 37'81988988’509539 55'59981'839669679699 Y = 7.57 72‘78978‘81983 X3 3'898‘13 445 NODEL III‘A'Z FIXED OBJECT CONDITION A 8 X2 = 398999119129189229 28928931937'399819 88988987950952‘589 589819839889709739 77978981982 X3 = 19297 Y = *3.0698 00.2898tX23 *0.08618*XZ 01.30980X9 00.06659OX7 *0.8286*X8 +0.01786*X6 '0.08907*X11 80.09251tX5 CONDITION 8 8 X2 = 19295’89109139159 18'21923925'279299 30932-369809829839 85988989951955'579 59980982985‘899719 72978'78979980983 Y = ‘0.2089 00.8185*X23 *0.8510*X9 90.03066fiX2 *0.01172‘X6 82.0318*X10 +0.26128X8 CONDITION C 8 X2 = 89179219389859519 52958965970975982 X3 3 3’898‘13 Y = '19.71 +2.1661*X7 81.8688*X3 00.98188X2 *0.58680X11 ’0.9186‘X5 CONDITION 0 8 X2 = 1‘398'18918‘20922'35' 37'81988988'509539 55'59981'839889879899 72‘78978‘81983 X3 = 3’898'13 Y = ‘3.2036 80.12890X2 01.2582*X8 *0.5398*X3 80.08810*X23 446 NODEL III'A'3 FIXED OBJECT CONDITION A 8 X2 398999119129189229 28928931937‘399819 88946987950952‘58' 589819839889709739 77978981982 X3 19297 LN(Y+1) '0.8560 00.06102*X23 '0.0003567*(X23*'2) +0.023660X5 *0.1330*X9 *0.001995*X6 00.005811*X2 “0.0005817*(X7**2) *0.02380*X7 80.08824*X11 ‘0.0008889*(X11**21 CONDITION B 8 X2 = 19295‘89109139159 18'21923925'279299 30932‘389809829839 85988989951955'579 59980982985’899719 72978'78979980983 LN(Y+1) '0.8282 *0-1935‘X23 ‘00003808*(X5**2) ‘0.011158(X23**21 9080088088X2 *0-008100‘X11 +0-0025388‘X8 +0.06813*X9 *OOZO80*X10 '0.00009791*(X7..2) 9‘0o0888258‘X5 CONDITION C 8 X2 3 89179219389859519 52958985970975982 X3 = 3’898'13 LN(Y+1) ‘0.8823 *0-2621'X2 +0.09S8IOX7 +0.02207*X11 '0.01612*(X2**2) 00.2752tX3 '0-03131tX5 '0.01668*(X3**2) CONDITION D 8 X2 1'398‘18918'20922'359 37‘81988988'509539 55‘59961'839689679699 72'78978'81983 X3 = 3'698‘13 LNIY§11 '1.3702 +0.01232*X2 *0-06372’X11 *0-005083*(X3**2) 80.001908*(X5**2) *0.03135*X23 *0.1209*X8 '0.01097OX7 '0.0008312*(X23*‘2) ‘0-0007082'TX110OZ) 447 NODEL III‘B'I FIXED OBJECT CONDITION A Y = 8.80 39899911‘189219229 289259289309319359 37'399819889889879 50952‘589619639689 73978“78981982 X3 3 1929798 X30 = 0 CONDITION B X2 1 39899911‘189219229 Y = 2.17 289259289309319359 37‘399819889889879 50952‘589619839689 73978'78981982 X3 = 1929798 X30 = 0 CONDITION C X2 29 89179219289389 859519529589819839 85970975977982 Y = 12.93 X3 3‘899'13 X30 0 CONDITION 0 X2 s N ‘ 29 89179219289389 Y = 6.37 X3 3'899'13 859519529589819839 85970975977982 CONDITION E Y = 15.78 CONDITION F Y = 300.00 X30 0 ) ‘ 1 ' 0'19 X30 > X6 <= 51 X7 >= 20 X30 > 0 448 NODEL III‘B‘I FIXED OBJECT CONDITION 6 8 X2 21958 Y = 280.91 X6 >= 59 X7 >= 20 X30 0 CONDITION H 8 X2 89 8910'189199209 Y = 35.92 289289289319339389 399819829889889889 50951958'809839879 88970973975‘799 81982 X6 >= 59 X7 >= 20 X30 0 449 NODEL III‘B'Z FIXED OBJECT CONDITION A 8 X2 = 39899911‘189219229 289259289309319359 37‘399819889889879 50952-589819839889 73978'78981982 X3 = 1929798 X30 = 0 Y = *1.3227 90.18100X23 01.2010OX9 +0-08738‘X2 '0-03872‘X11 ‘0.018880X8 90.22520X8 CONDITION 8 8 X2 i 39899911‘189219229 289259289309319359 37‘399819889889879 50952-589619639689 73978‘78981982 X3 = 1929798 X30 = 0 Y = 01.1670 80.2182*X23 *0.03515*X2 00.5386tX9 80.012888X6 *1.9619*X10 '0.02688*X11 *0.08785*X5 ‘0.1770*X8 CONDITION C 8 X2 = 29 89179219289389 859519529589819839 85970975977982 ' X3 = 3'899'13 X30 3 0 Y = -1005181 £1.099Z*X3 00.1818*X8 ‘0.7899*X2 00.18380X11 ‘0.8083*X5 00.07989‘X23 82900130X8 CONDITION D 8 X2 2 29 89179219289389 859519529589819839 85970975977982 X3 = 3‘899‘13 X30 = 0 Y 3 ‘5.02178 80.1883‘X2 81.17259X3 90.057059X11 +0.05888tX23 450 NODEL III‘B'Z FIXED OBJECT CONDITION E 8 X7 = 0'19 X30 > 0 Y = '21.3097 *0.3813*X2 *3.8787.X3 87.58898X9 ‘0.2880*X23 CONDITION r 8 Y 3 300000 X6 <= 51 X7 >3 20 X30 > 0 CONDITION G 8 X2 = 21958 X8 >= 59 X7 >3 20 X30 > 0 Y = 280.91 CONDITION H 8 X2 3 89 8910'189199209 289289289319339389 399819829889889889 50951958'809839879 88970973975'799 81982 X8 >3 59 X7 = 20 X30 > 0 Y = -803218 *1.8938*X2 +2.97928X7 ‘11.1123*X9 '0.2888.X8 451 NODEL III‘B‘3 FIXED OBJECT CONDITION A 8 X2 = 39899911‘189219229 28925928930931'35' 37‘399819889889879 50952'589819839889 73978‘78981982 X3 1929798 X30 0 Y = '18.8358 *1.3766*(LN(X23)) 00.0008858*(X23**Z) 01.1869tX9 *0.8718*(LN(X2)) '0.009251*(X11*02) 80.2686*(LN(X6+1)) '0-008032*(X5**2) 00o7935‘X11 CONDITION 8 8 X2 1 39899911‘189219229 289259289309319359 37‘399819889889879 50952'589819839889 73978'78981982 X3 = 1929798 X30 3 O LNIY+1) = ’0.2801 00.006989OX2 80.082860X5 +0-09562'X23 ‘0.001934*(X23**2) *0.008592*X11¢0.2865*X10 80.0028760X6 '0.0001018*(X7**2) ‘0-00286Z*(X5‘*2) CONDITION C 3 X2 = 29 89179219289389 859519529589819839 85970975977982 X3 = 3‘899‘13 X30 3 0 LNIY+11 = “2.3361 *0.08287¢X2 *C.03778*X3 +0.1081fiX11 '0.001088*(X11*.2) *0.1315*X8 00.019970X6'00.03876*X23 00.87318X9 ‘0.0003522*(X23**2) “0.0002173*(X6*¢2) CONDITION 0 8 X2 2 29 89179219289389 859519529589819839 65970975977982 X3 = 3'899'13 X30 3 0 LN(Y+I) = ‘0.1815 *0-014290X2 *0.001875*(X5**2) *0-02898*X23 ‘0.01380*X7 80.1113OX3 40.02693*(X8**2) '0.0008568*(X23‘*2) 452 NODEL III'B‘3 FIXED OBJECT CONDITION E 8 X7 = 0'19 X30 > 0 Y = '70.8888 80.00808381X29021 80.2893‘CX3992) +7.7809‘X9 ‘0.8105*X23 ‘0.08327.(X11'*2) 83.81118X11 CONDITION F 8 Y 3 300.00 X8 <3 51 X7 >= 20 X30 > 0 CONDITION 6 8 X2 = 21958 X6 >= 59 X7 >3 20 X30 > 0 Y = 280.91 CONDITION H 8 X2 = 89 8910'189199209 289289289319339389 399819829889889889 50951958‘809839879 88970973975‘799 81982 X8 >3 59 X7 >= 20 X30 > 0 Y = ‘38.5177 80.01516*(X2*OZ) +3.1277*X7 *20-2261*(LN(X2)) '12.9387*X9 '0.003817*(X6**2) 453 NODEL IV'A'I FIXED OBJECT CONDITION A 8 X2 1 Zfivkz Y = 61.91 CONDITION 8 8 Y = 165.36 X2 = 2"‘2 X6 < 28.0 CONDITION C 8 X2 3 2"‘2 Y = 3110‘? CONDITION D 8 Y = 300‘.45 CONDITION E 8 Y = 3§.20 XG )3 2800 X9 = I X2 = 2"‘2 XS )3 2800 X7 = X9 = 0 O X2 3 2‘942 XE >3 2800 X7 # X9 = O O 454 NODEL IV'B‘I FIXED OBJECT L ‘ I I l l A " X2 X30 X2 X6 X30 X2 X6 X30 26952 2‘9h2 99.8 26962 99.8 CONDITION A 8 Y 56.66 CONDITION 8 : Y 200.57 CONDITION C : Y 4028.97 CONDITION 0 : X2 f I959I9IS9ZO9ZI9Z‘9 T 166.3? 2‘9319369‘29559 67972 X30 > 0 CONDITION E : X2 1959791592092192‘9 Y 565.87 2‘9319369‘29559 67972 X6 A 3‘01 X30 > O CONDITION F 8 X2 1959791592092192‘9 T 3085.05 2‘93I9369‘29559 67972 X6 > 6.1 X30 > O 455 NODEL I‘A‘l PIBKINO CONDITION A 8 X5 598910912 Y = 00,05 CONDITION 8 8 X2 17923928931939'h19 5895O9529539689 69977 Y = 3.7k X5 X12 D I CONDITION C 8 X2 . N ' 17923928931939'6I9 ‘89509529539689 69977 Y = 1.96 X5 X12 D I CONDITION D 8 X2 II9IZ9I‘9I59I79189 209309369389399‘19 ‘79509539599699779 T = 8077 78983 X5 O X12 293 CONDITION E 8 X2 . 8 ‘ 119129169159179189 209309369389399419 679509539599699779 T = B050 78983 X5 O X12 293 456 NODEL I'I'Z PXRXINB CONDITION A 8 X5 = 598910912 Y = ‘0.7658 *1.0673*XIZ 'O-OSS62‘XII +0.01818tX23 *O.1037*X3 +0.005218OX2 +0.25580XO +0.061199X13 +1.2930‘XI7 ' 0.06595*XS O Oo2700'X16 CONDITION 8 8 X2 = 17923928931939'h19 ‘895C9529539689 6997? X5 = 0 X12 = I v = 913.1260 *0.£1660X3 40.5863-x13 +0.05357‘X23 -IOSBOC‘X‘ ‘001‘N1'X2 -o.6256-x16 80.72728xa +0.1casax7 CONDITION C 8 X2 2 17923928931939'fil9 589509529539689 6997? X5 = 0 X12 = I Y = ‘O.6§99 00.031610X2 *0.1386¢X3 *O.ZOOI*X13 ‘0.033?‘*Xll +0.3105tXB ‘0.00T366¢X6 '0.13990X16 CONDITION D 8 X2 3 119129169159179189 209309369389399619 679509539599699779 78983 X5 = 0 X12 3 293 T = -3‘01678 *008281’X3 01.6953*X15 ‘0.I‘76*XII 82.1217*X‘ *2.QE9SCXO §§.5717.XIT *0o25670X2 ‘O.I9I9*X6 ‘0-28955*X7 *0o0630‘*X23 457 NODEL I'A‘Z COOKING CONDITION E 8 X2 i 119129149159179189 209309349389399419 479509539599699779 78983 X5 = 0 X12 3 293 Y = ‘8-6748 *O.8274*XI3 *0-3086‘X3 *0-08503‘X2 00.03377iX23 *I.IB3SOX14 '0.05098*X11 +0.4663‘X16 458 NODEL I'A‘S PARKING CONDITION A 8 X5 = 098910912 LN(Y*I) = +1.1281 *0-01793*X23 '0-02350*XII +0.27OI.X12 '0.0C01223*(X23**2) +003499‘X8 +0.00001913*(X2**2) *0.03263*(X3**2) ' 0.2757*X3 *0.112‘*X16 *O.0077950(X13*02) ‘0007031.(XO..2) -0005952‘X13 *0.02116*(le**2) -001016.XI‘ 'D.ODD§93D*(X‘*.2I 90.028090X15 ‘0005023’X5 00.002710.(X5**2) ‘0.0003OI3*X6 * 0.0001581*(XII**2) CONDITION 8 8 X2 = 17923928931939-619 489509529539689 6997? X5 = 0 X12 3 I LN(Y+I) = +5.7782 *0-06915‘X3 40.041279X23 *0.06900*X13 ‘O.2036*X11 *0.002370*(XII¢*2) ‘0-0004II6*(X23**2) ‘0.1415*X4 '0-09555*Xl6 +0.0005839IIX70*2) '0.006084*X6 CONDITION C 8 X2 # 17923928931939-419 489509529539689 6997? X5 = O X12 = l LNIYOI) = 00.6650 *0.00?600*X2 *O.2689*X13 *0.001357*(X3**2) '0.07523*X11 +0.055400X8 '0.02076*(X130*2) +O-OOO?BS9*(XII*‘Z) 80.01648*X23 ‘0.0001837*(X23**2) ‘0.01110*X6 *0.000ISZ§*(X6**2) 00.026560X4 459 NODEL I'A‘S PARKING CONDITION 0 8 X2 119129149159179189 209309349389399419 ‘79509539599699779 78983 X5 0 X12 293 Y = +80.8324 *O.5940*X3 +1.84090X15 '54.1755*(LN(X11)) §18.84l9¢(LN(X4)) +0.6?88*(X8002) *ll.1069t(LN(X17*I)) +2.3283*(LN(X23)) 91.2402*Xll *0.08511*(X13fi*2) 00.005590*(X7**2) ‘0.002469*(X6002) +0.012422‘tX2fi02) CONDITION E 8 X2 1 119129149159179189 209309349389399419 ‘79509539599699779 78983 X5 = 0 X12 3 293 LN(Y+1) = ‘O.6127 *0.02013‘(X13'*2) *0.05384*X3 *0.01671*X2 ‘0.0001651*(X11**2) 00.00509T*X23 *0.02938*(X14**2) *0.0TTQS*X16 460 NODEL I'B'l PARKING CONDITION A 3 X2 179319409489509 Y = 3.94 53969 X5 X12 X30 0 I 0 CONDITION 8 3 X2 6 1 179319409489509 Y = 108? 53969 X5 X12 X30 0 I D CONDITION C : X2 119129169159179189 Y = 8.76 78963 3093‘9389419679509 519539599699779 X5 0 X12 293 X30 0 CONDITION D : X2 . N ' 119129169159179189 Y = 4.39 78983 309349389419479509 519539599699779 CONDITION E x Y = 2.49 X5 X12 X30 “ . I I I 0 293 0 X5 X12 X30 6989IO9IZ 293 0 CONDITION F 8 X5 698910912 Y = 0.29 X12 X30 I 0 461 NODEL I'B'l PARKING CONDITION G 8 Y = 3.27 CONDITION H 8 Y = 41.33 X3 1929697910 X30 0 X2 X3 X30 N I I V 22931 3969899911'13 0 CONDITION I 8 X2 11913920923928932 Y = 11.00 X15 396989991I'I3 X30 0 389399509529739 77-79982 CONDITION J 8 X2 99179199259339379 619519539569589639 70976981 X3 3969899911'13 X30 0 462 NODEL I'D-2 PARKING CONDITION A 8 X2 3 179319609689509 53965 X5 = 0 X12 = I X30 3 D Y = +6.0543 *O.4073*X3 80.5824*X13 +1.7347‘X8 +0.5932*X2 *0.04928*X23 'O.8531*X16 *0.05003*X6 *0-05427*Xll “1.6715*X4 CONDITION 8 8 X2 i 179319409489509 53969 X5 = 0 X12 = 1 X30 3 O Y = *O.2731 00.02624*X2 +0.1235'X3 '0.04863*X11 *O.1868*X13 00.0080960X23 'O.0086350X6 +0.1496.X8 00.3038*X9 CONDITION C 3 X2 = 119129169159179189 3093‘9389619679509 519539599699779 78983 X5 = 0 X12 3 293 X30 3 0 Y = ‘33.9731 90.8864tX3 02.14368X4 '0.IS90*X11 01.203IiX15 *1.9669*X8 +4.5562*X17 '0.07663*X6 00.2669fiX2 *0.07360*X23 CONDITION D 8 X2 1 119129169159179189 3093‘9389619679509 519539599699779 78983 X5 = 0 X12 3 293 X30 = 0 Y = '8.4234 *O.7445*X13 80.0853ltX2 *O.2754*X3 *0.03186¢X23 +1.III4*X14 *O.45308X16 ’0.03584*X11 463 NODEL I'B'Z PANXING CONDITION E 8 X5 = 698910912 X12 3 293 X30 = 0 Y = 05.2968 ‘O.1344*X11 *0.06093*X2 'O.4851*X5 *1.2338*X8 ‘0.089540X23 *1.4989¢X17 '0.01750*X6 0O.9568*X12 40.2453'X3 CONDITION F 8 X5 = 698910912 X12 = 1 X30 3 0 Y = 80.8619 80.01999*X23 ‘0-0210‘X11 80.1083*X3 *0.1692*X8 90.002913‘X2 80.1691*XI6 +0.1032‘X15 *000383°*XIIO -0002618*X‘ '0.003§31*X7 CONDITION 6 8 X3 = 1929697910 X30 > 0 Y = 02.08192 'O.1213*X11 00.096OOOX2 +1.2938*X8 OO.3585*X13 '0.045810X23 CONDITION H 8 X2 = 22931 X3 = 3969899911'13 X30 > 0 Y 3 61033 CONDITION I 8 X2 = 11913920923928932 389399509529739 77'79982 X15 = 39‘9899911'13 X30 > 0 Y = ’17o500 *5o81250X12 01.51360X13 +1.0630‘X3 03.6058*X8 00.5062*X2 CONDITION J 8 X2 = 99179199259339379 619519539569589639 70976981 X3 = 3969899911'13 X30 > 0 Y = '4.5779 ‘0.4272*X2 *O.8537*X13 +0.46739X3 464 NODEl I'B'3 PARKING CONDITION A 8 X2 = 179319609489509 53969 X5 = 0 X12 = 1 X30 = O Y = *26.3871 '0.09722*(X3**2) *0.06653*(X13**2) 0O.6526*(X8**21 ’0005936*(X6.*21 90.3049*(X2**2) *O.2760*X23 ‘0.003229*(X23**2) +0.0007355*(X6**2) *1.3658*X3 *0.0I642‘(X11**2) ‘1.2‘11.X11 '0.7529*X16 '2-0708*X2 CONDITION 8 8 X2 2 179319609589509 53969 X5 = 0 X12 = 1 X30 3 0 LN(Y*1) = #1.3418 +0.006673*X2 '0.0B376*X11 *0.001841*(X3**2) 80.2243tX13 *0.0I737*X23 '0.0001874*(X23**2) *0.000BSI6*(X11**Z) '0.02161*(X13**2) *OoO3969t(X168321 ‘0.009116*X6 +0.0001161*(X6**2) ’0.03704*X16 +0.036BO‘X8 'O.1106*X14 CONDITION C : x2 = 11.12.18.1s.17.1e. 3093‘9389619679509 519539599699779 78983 X5 = 0 X12 3 293 X30 = 0 Y = 0106.807 *O-O4546*(X3**2) +3.1940*(LN(X23)) “46.9583*(LN(X11)) 0O.1154*(X13t*2) +1.0681OX11 +0.01423*(X2*‘21 +0.9663*(X17**2) '1.7972*(LN(X701)) +0.07433*(X4¢*21 465 NODEL I'B‘3 PARKING CONDITION D 8 X2 1 119129169159179189 309369389619679509 519539599699779 78983 X5 = O X12 = 293 X30 = 0 LN(Y*1) = '0.6620 *0-01879OCX13802) +0-01706‘X2 80.05136fiX3 '0-00013250(X11*82) *C.006432*X23 *0-02973*(X16**2) *0-07677‘X16 *0.09178*X8 CONDITION E 8 X5 = 698910912 X12 3 293 X30 = 0 LN(Y+1) = '0.05603 '0.00008740*(X2**2) ’0.000206O*(X110*2) +0.3632tX8 '0.0004458*(X23**2) *0-008015*(X3**2) +0.03867*(X12802) '0.003132*(X5i02) ‘0.02248*X2 ‘0.003772*X6 +0.06796*(X17**2) CONDITION F 8 X5 = 698910912 X12 = 1 X30 = 0 Y = 83.8662 80.05868tX23 ‘0.00002073*(X11**2) +0.1596*(X3002) ‘0.0003392*(XZ3**2) ‘2.0377*X3 00.2636*(LN(X8)) 00.2879tX16 00.00002792*(X2¢02) 02.6762*(LN(X3)) '0.06973.(X16**2) '0.0886060(LN(X23)) 80.09617tX15 '0.7120*(LN(X11)) '0-2127*(LN(X4)) '0.02611*(LN(X7+1)) ‘0.1541*(X13**2) 01.71898X13 '2.0651¢(LN(X13)) ‘2.3768*(LN(X14§1)) + 1.0794tX16 466 NODEL I‘B'3 PARKING CONDITION G 8 X3 = 1929697910 X30 > 0 LN(Y+1) = '1.4611 80.84370X8 +0-02092'X2 '0.01383*X11 80.01202*(X13**2) '0.1300*(X8**21 ‘0-2005'X16 +0.09766tX4 '0.0001655*(X23**2) CONDITION H 8 X2 = 22931 X3 3‘ 3969899911'13 X30 ) 0 Y = 61033 CONDITION I 8 X2 = 11913920923928932 389399509529739 77‘79982 X15 3 3969899911'13 X30 > 0 Y = '12.3660 +4.0213fiX12 +1.6866‘XI3 +0.1365*(X3**2) 80.01101*(X7**2) *3.7694¢X8 80.03179*(X2*‘2) '0.5376*X7 CONDITION J 8 X2 = 99179199259339379 619519539569589639 70976981 X3 = 3969899911‘13 X30 > 0 Y = ‘0.2104 *0.0613BOX2 ‘O.O33291X6 *0.0769OX3 *0-0003238*(X6**2) ‘0.04687*(X5**2) *0.6161¢X5 80.53100X8 467 NODEL II‘A'I PARKING X11 X12 35'55 X2 66968 X11 25‘30 CONDITION A 8 Y = 0.0682 CONDITION 8 8 Y = 6.3186 CONDITION C 8 X2 3969799‘119159219 Y 3 0.1116 259269339369629469 56’569589599629639 679709739769799819 82 X11 25'30 CONDITION D 8 X2 2'598912‘16916'209 Y = 0.1837 22923927’329369359 37'39961963965’539 579619659699719769 75977978980983 X11 25-30 X13 I CONDITION E 8 X2 179209279309619639 Y = 0.7675 65968957 X11 25’30 X13 1 468 NODEL II'A'I PARKING CONDITION X2 29598912'169169189 199229239289299319 32936935937‘399669 6795O'539619659699 719769759779789809 83 X11 25‘30 X13 1 CONDITION X2 192960968 X11 X12 35‘55 293 CONDITION X2 69 79119169179219 259279289359389399 619639659679539579 609669679729739779 78979980 X11 X12 35-55 293 CONDITION X2 3'598‘109129139159 16919920922'269269 29‘369379629669669 48'529559569589599 61-639659699709719 76‘76980982983 X11 35'55 X12 293 469 NODEL II'B‘I PARKING CONDITION A 8 Y = 0.0621 CONDITION 8 8 Y = 6.6738 35-55 X11 X12 X30 X2 66 X11 X30 25‘30 CONDITION C 8 X2 39697910911915920'229 Y = 0.1096 639679709739769799 25926928933936961‘669 67950956‘569589599629 81982 X30 0 CONDITION 0 8 X2 29598912‘16916'199 Y = 0.6585 23927929'329369359 37‘399659669689699 51‘539579619659699 719769759779789809 83 X11 25-30 X12 293 X30 0 CONDITION E 8 X2 29598912‘16916'199 Y = 0.2228 23927929'329369359 37-399659669689699 51-539579619659699 719769759779789809 X11 X12 X30 83 25‘30 1 0 CONDITION F 8 X2 192960968 Y = 1.6986 X11 35-55 X12 293 X30 0 470 NODEL II'B‘I PARKING CONDITION G 8 X2 69 79119179199219 Y = 0.2677 609669679729739 259279289359389399 619639659679539579 77-81 X11 35-55 X12 293 X30 0 CONDITION H 8 X2 3'598'10912'169209 Y = 0.0921 56‘56958959961'639 65969'71976‘769829 22’26926929'369379 62966966968‘529 83 X11 35'55 X12 293 X30 0 CONDITION I 8 X2 19169229279639 Y = 2.167 65968972 X30 0 CONDITION J 8 X2 39697'159179199219 Y = 0.185 52'59961'639709739 76976'78981‘83 X30 0 23‘25928’36933'399 619669669679509 CONDITION K 8 X2 6918920926931932' Y = 0.5569 609519609699 75979980 X6 8906 X30 0 CONDITION L 8 X2 69189209269319329 Y = 2.923 609519609699 75979980 X6 89.6 X30 0 471 NODEL III'A‘I PARKING X2 X3 X2 X3 X3 X8 X3 X8 19935937939981‘83 696 19935937939981'83 399911'13 1929798910 293 1929798910 1 CONDITION A 8 Y = 68.68 CONDITION 8 8 Y = 25.15 CONDITION C 8 Y = 7.87 CONDITION 0 8 Y = 1.36 CONDITION E 8 X2 19 39119129169179 Y = 18.99 20923‘259289309339 369369389619669669 50‘569589619639669 69972976976977 X3 3’699911'13 CONDITION F 8 X2 29696‘109139159169 189219229269279299 31932960965967'699 55'579599629659679 70973975978‘80 X3 3‘699911‘13 472 NODEL III‘A'Z PARKING CONDITION A 8 X2 3 19935937939981'83 X3 3 696 Y = 8326.731 ‘6.59626X5 “21.74606X6 CONDITION 8 8 X2 3 19935937939981'83 X3 3 399911'13 Y = +56.6012 '1.1596*X11 +6.6060*X2 CONDITION C 8 X3 X8 1929798910 293 Y = 90.7180 00.1289iX2 *0-2857‘X23 82.96796X8 '0.09321*X11 '0.03565*X6 '1.2972*X9 CONDITION 0 8 X3 X8 1929798910 1 Y = 07.1732 *0-2528'X23 ‘0.1353*X11 80.015789X2 CONDITION E 8 X2 3 19 39119129169179 20923‘259289309339 369369389619669669 50‘569589619639669 69972976976977 X3 3 3'699911'13 Y = '21.2631 80.62816X23 '0.6226*X11 00.35310X2 06.0151*X6 '0.1652*X6 CONDITION F 8 X2 3 29696‘109139159169 189219229269279299 31932960965967‘699 55-579599629659679 70973975978'80 X3 3 3‘699911‘13 Y = 83.6200 80.33338X2 ‘0.1509*X11 80.3875OX23 ‘12.1382*X10 '0-1379'X7 ‘O.2266*X5 473 NODEL III'A'3 PARKING CONDITION A 8 X2 X3 19935937939981'83 696 LNIY‘I) = 80.3160 '0.1803*X5 00.3626OX2 *0.03212*X11 CONDITION 8 8 X2 X3 19935937939981'83 399911‘13 LNIY‘I) = 82.0759 ‘0.0006156*(X11*2) '0.O23673X6 30.011763X23 900006297.(X5“2) 9‘ 0033093X8 CONDITION C 8 X3 X8 1929798910 293 Y = 86.3366 *0.001356'(X2*¢2) 40.6168fiX23 +0.8906*(X8**2) '0.001950*(X23**2) 'O.092110X11 “0.03587'X6 '1.10110X9 CONDITION 0 8 X3 = 1929798910 X8 = 1 LNCY‘I) = 80.2710 80.087120X23 ‘0.03283OX9 '0-00009733*(X11¢'2) 80.0006608*(X5**Z) 474 NODEL III‘A'3 PARKING CONDITION E 8 X2 19 39119129169179 209233259289309339 369369389419669669 50-569589619639669 69972976976977 X3 3 3'699911‘13 LNIYOI) = '1.1872 00.020586X23 '0.01822*X6 ‘0.001659*(X11**2) 80.008125*(X6**2) +0.01185‘X2 'O.63058X9 +0.1011*X11 CONDITION F X2 3 29696’109139159169 189219229269279299 31932960965967'699 55'579599629659679 70973975978‘80 X3 3 3'699911'13 LNIY’I) = '0.9995 +0.033270X2 ‘C.02673*X5 ‘0.07160*X7 80.026969X23 '1.61658X10 *0.0009973*(X7*62) '0.001018*(X11**2) O 0907369OX11 475 NODEL III'B'I PARKING X3 X8 19297310 293 X30 0 X3 X8 X30 19297-IO 1 0 CONDITION A 8 Y = 6007 CONDITION 8 8 Y = 1.15 CONDITION C 8 X2 39169209369379619 Y = 8.05 50952956981982 X3 19297-10 X11 55 X30 0 CONDITION D 8 X2 39169209369379619 Y = 26.10 50052956981982 X3 3911912 X11 25'50 X30 0 CONDITION E 8 X2 1911912923'259289 Y = 15.63 659669699729769 30933'35939966966 679519539589619639 76‘79983 X3 3'6911'13 X30 0 CONDITION F 8 X2 29696‘10913915’199 Y = 6.61 55'579599629679 219229269279299319 329389609659689699 CONDITION G 8 Y = 22.60 70973975980 X3 3‘699911‘13 X30 0 X2 X3 50952 69596913 X11 25-50 X30 0 476 NODEL III'B'1 PARKING CONDITION H 8 X2 3 37961981982 Y 3 68.03 X3 3 69596913 X7 3 1'10 X11 3 25350 X30 3 0 CONDITION I 8 X2 3 37961981982 Y 3 151.61 X3 3 69596913 X7 >320 X11 3 25’50 X30 3 0 CONDITION J 8 X2 3 19972 X3 3 33699913 X30 > O Y = 650000 CONDITION K 8 X2 3 99119129179239259 Y 3 211.11 55958959961963973' 28930933335937'399 619669669679509519 77981'83 X3 3 699 x30>o CONDITION L 8 X2 3 99119129179239259 Y 3 62.38 559589599619639739 28930933335937'399 619669669679509519 77981‘83 X3 3 335913 X30 > 0 CONDITION N 8 X3 3 1929798910312 Y 3 35.67 X8 3 293 X30 > 0 CONDITION N 8 X3 3 1929798910312 Y 3 6.66 X8 3 1 X30 ) 0 477 NODEL III-8‘2 PARKING CONDITION A 8 X3 X8 19297-10 293 X30 0 Y = 83.5883 80.092069X2 80.13650X23 ‘0.09562*X11 +1.6988*X8 ‘0.03066*X6 ‘0.08C76*X5 CONDITION 8 8 X3 X8 X30 19297‘10 1 0 Y = 85.5790 80.18856X23 ‘0.1238*X11 80.01517*X2 80.093978X6 CONDITION C 8 X2 39169209369379619 50952956981982 X3 19297310 X11 55 X30 0 Y = '105.3965 O9.7628*X3 00.93698X23 86.0528*X6 CONDITION D 8 X2 39169209369379619 50952956981982 X3 X11 X30 3911912 25350 0 Y = '1.7610 43.5211*X2 +5.8206OX8 '18.87180X9 '1.1777*X7 CONDITION E 8 X2 1911912923'259289 30933335939966966 679519539589619639 659669699729769 76-79983 X3 336911-13 X30 0 Y = ‘20.2661 80.32060X23 81.90660X3 86.26260X8 '0.1670*X6 ‘0.1873*X11 01.9527tX6 478 NODEL III'B'Z PARKING CONDITION F 8 X2 29696'10913915'199 219229269279299319 329389609659689699 55‘579599629679 70973975980 X3 3‘699911'13 X30 0 Y 3 66.7273 80.3930*X23 80.22596X2 -001596.XII '0.1816*X7 CONDITION G 8 X2 X3 50952 69596913 X11 25'50 X30 0 Y: +19.2687 82.0288*X23 '63.7998*X3 CONDITION H 8 X2 X3 X7 37961981982 69596913 1'10 X11 25'50 X30 0 Y = +1.2193 010.21968X3 811.98678X2 ‘3.1008*X5 CONDITION I 8 Y = 151.61 CONDITION J 8 Y 3 650000 X2 X3 X7 X11 X30 N N V I I N 37961981982 69596913 0 N ‘ 25-50 0 X2 X3 19972 33699913 X30 V 0 479 NODEL III'B'Z PARKING CONDITION K 8 X2 99119129179239259 28930933335937‘399 619669669679509519 559589599619639739 77981383 x3 699 x30 0 Y = 8162.5255 +7.6238*X6 CONDIIION L 8 x2 99119129179239259 8 = '8.6860 88.58218x2 CONDIIION N 8 28930933335937‘399 619669669679509519 559569599619639739 77981'83 x3 335913 x30 V 0 x3 X8 1929798910312 293 x30 V 0 Y = '69.2095 81.0673DX2 “0.61968X11 +6.3666IX6 CONDITION N 8 X3 X8 X30 V 1929798910312 1 0 Y = 033.8263 00.2576CX2 '0.7161¢X11 480 NODEL III-8'3 PARKING CONDITION A 8 X3 = 19297-10 X8 = 293 X30 3 0 Y = +63.886 90.0009281*(X2002) 01.33698(LN(X23)) '20.6276*(LN(X11)) '0.3635*(LN(X6+1)) +1.6035‘X8 80.61668X11 +0.8583*(X3*¢2) ‘5.6737*X3 80.09073*X23 '0.8812*X9 '0.09885*X5 CONDITION 8 8 X3 = 19297‘10 X8 = 1 X30 3 0 LN(Y81) = 80.2855 80.072298X23 '0.001982*(X23**2) 60.00003306IIX2602) ’0.00010180(X11*02) * 0.00075698(X5**2) ‘0.02705*X9 CONDITION C 8 X2 3 39169209369379619 50952956981982 X3 3 19297'10 X11 3 55 X30 3 0 Y = 869.3366 *12.8602*(X3¢*2) 88.67718X23 80.3671*(X6**2) -127.330*X3 *152.8008*(LN(X3)) CONDITION D 8 X2 3 39169209369379619 50952956981982 X3 3 3911912 X11 3 25‘50 X30 3 0 Y = +12.32295 00.30636(X20I2) ‘7.5917*(LN(X7+1)) 81.3173*(X8**2) ‘17.1182*X9 481 NODEL III‘B'3 PARKING CONDITION E 8 X2 3 19119129233259289 30933335939966966 679519539589619639 659669699729769 76-79983 X3 3 336911313 X30 3 0 LN(Y81) = '2.5667 00.025858X23 ‘O.Ol6360X6 +0.29168X8 00.65160X3 ‘1.7691*X10 ‘0.001361*(X11**2) '0.3863*X9 ‘0-03710*(X3**2) 80.002585*(X2**2) '0.07113*X2 8’O.1015‘*X11 *0.005626¢(X68021 CONDITION F X2 29696'10913915'199 219229269279299319 329389609659689699 55‘579599629679 70973975980 X3 33699911313 X30 0 LN(Y*1) = 00.2391 00.028890X2 ‘0.06286*X5 '0.02692*X7 8C.02656*X23 CONDITION G 8 X2 3 50952 X3 3 69596913 X11 3 25350 X30 3 0 Y 3 053.7116 62.21593X23 320.3332*(X3**2) ’0.02603*(X11**2) CONDITION H 8 X2 3 37961981982 X3 3 69596913 X7 3 1‘10 X11 3 25’50 X30 3 O LN(Y+1) = +2.326366 +0.3069232*X3 482 NODEL '111-8-3 PARKING X2 X3 X7 X11 X30 N N V I I I I 37961981982 69596913 =20 25‘50 0 X2 X3 19972 3'699913 X30 V 0 CONDITION I 8 Y = 151061 CONDITION J 8 Y = 650000 CONDITION K 8 X2 9911912917 9239259 28930933'35937‘399 619669669679509519 559589599619639739 77981383 X3 699 X30 V 0 LNIY‘I) 3 *6.857707 60.038578106X6 CONDITION L 8 X2 9911912917 9239259 28930933’35937’399 619669669679509519 559589599619639739 77981‘83 X3 3'5913 X30 0 LN(Y+1) = 82.7125 *0.062125*X2 '0.01038*(X5**Z) 483 NODEL 'III-a-s PARKING X2 X3 X7 X11 X30 X2 X3 X30 V " N N N V 37961981982 69596913 320 25-50 0 19972 3'699913 0 CONDITION I 8 Y: 151.61 CONDITION J 8 Y = 650000 CONDITION K 8 X2 I I 99119129179239259 28930933335937-399 619669669679509519 559589599619639739 77981383 X3 699 X30 0 LN(Y*1) = 86.857707 80.0385781OIX6 CONDITION L 8 X2 9911912917 9239259 28930933'35937'399 619669669679509519 559589599619639739 77981383 X3 335913 X30 0 LN(Y+1) = +2.7125 *0.062125*X2 ‘0.01038*(X5**2) 483 NODEL III‘B‘3 PARKING CONDITION H 8 X3 3 1929798910312 X8 3 293 X30 > 0 Y = 867.6381 80.01666*(X2**2) '26-0583’(LN(X11)) 88.2093*(X3**2) '107.57778X3 8166.766*(LN(X3)) +57.0006*(LN(X6)) 816.6973*(LN(X8)) *5.1726*(LA(X7+1)) CONDITION N 8 X3 = 1929798910'12 X8 = 1 X30 > 0 Y = '56.5658 80.006195*(X2002) ‘0.05013*(X11*¢2) +6.1065'X11 81.8712‘(LN(X23)) ‘O.27916X2 ‘16.0105*(LN(X5+11) 8 1.7071tX5 484 NODEL IV'A'I PARKING CONDITION A 8 X8 3 1 Y 3 21.73 CONDITION 8 8 X2 3 193'59109179199279 Y 3 118.80 62965966972976978 X8 = 293 30'329369379629 65‘679699519569559 CONDITION C 8 X2 3 193'59109179199279 Y 3 56.73 62965966972976978 X8 = 293 303329369379629 65'679699519569559 485 NODEL IY'B'I PARKING X8 X30 CONDITION A 8 Y = 19.86 CONDITION 8 8 X2 196959169179279319 329369629659699519 569629659669699729 Y = 113.66 76978979 X8 293 X30 0 CONDITION C 8 X2 . 8 8 ' 196959169179279319 329369629659699519 569629659669699729 Y = 68.78 76978979 X8 293 X30 0 CONDITION 0 8 X2 19697989109179279 Y = 113.79 X30 0 319369659679519559 65972976 CONDITION E 8 X2 19697989109179279 319369659679519559 65972976 Y = 218.67 X8 193 X30 V 0 CONDITION F 8 Y = 1576.22 X2 X8 X30 I I “ V 1910919967965972 2 0 CONDITION G 8 X2 79 89179319369519 Y = 628.12 55976 X8 X30 2 O 486 NODEL I'A‘I PEDESTRIAN CONDITION A Y = 0.31 X3 198910 X12 293 CONDITION 8 X3 3'9911‘13 X12 1 Y = 0026 CONDITION C Y 3 0.06 CONDITION D Y = 0.60 CONDITION E X3 192910 X12 1 X3 X8 2'799911'13 2 X12 293 X2 X3 X8 22966967962969978 2'799911‘13 193 Y 3 6.11 X12 293 CONDITION F Y 3 1.30 CONDITION G Y = 0.59 X2 X3 X8 X12 X13 X2 X3 X8 X12 X13 3 ' l l I I N N . N ‘ N N I I T I 22966967962969978 2‘799911'13 193 293 196 22966967962969978 2'799911'13 193 293 295969799 487 NODEL I‘A’Z FEDESTRIAN CONDITION A 8 X3 198910 X12 293 Y = '0.05069 00.01018*X2 ‘C.01388*X11 +0.18658X16 80.07989tX13 '0.08206 *XIS CONDITION 8 8 X3 3‘9911‘13 X12 1 Y = 00.2057 80.005066IX2 08.061660X13 +0.05667*X8 '0.006861*X11 '0.039658X6 00.001266OX23 CONDITION C 8 X3 X12 192910 Y = 80.07792 ‘0.002369*X11 80.002579OX23 00.00073698X2 00.007180*X13 +0.01632*X8 ‘0.002017*X5 “0.019690X15 'O.0080260X9 CONDITION 0 8 X3 X8 2‘799911'13 2 X12 293 Y = '1.6017 +0.028706X2 80.1615tX13 80.26218X17 80.061978X3 488 NODEL I‘A’Z PEDESTRIAN CONDITION E 8 Y = +1.8611 80.7500*X2 CONDITION F 8 Y = 00.9386 80.066780X2 ‘0.03257*X11 80.08689*X3 CONDITION G 8 Y = '1.2095 00.1126OX3 +0.15808x13 90.071578x2 X2 X3 X8 22966967962969978 2'799911'13 193 X12 293 X2 X3 X8 X12 X13 X2 X3 X8 X12 X13 . N ‘ N N I I I I 6 1 ' " N N N 22966967962969978 23799911313 193 293 196 22966967962969978 2'799911'13 193 293 295969799 489 NCDEL I'A'3 PEOESTRIAN CONDITION A 8 X3 X12 198910 293 LN(Y+1) = +0.3275 00.00007283*(X2**2) '0.006980*X11 80.07502*X16 *0-006626*(X133*2) ‘0.03978*X15 +0.07597*(X8**2) '0.2669*X8 'O.00006028*(X23882) CONDITION 8 8 X3 339911313 X12 1 Y 3 81.6312 80.0060370X2 90.11216X13 80.011980(X8**21 'O.082213X11 +0.0009223*(X11**2) 80.007586tX23 'O.000060328(X23**2) 'C.001670¢(X6862) ‘0-006580*(X13**21 CONDITION C 8 X3 192910 X12 1 LN(Y*1) = +0.3565 '0-01089‘X11 *0-000005578*(X2fi*2) 80.0032510X23 80.0006553OIX13882) 60.002909*(X88*2) +0.0001092*(X11**2) '0-012718X15 “0.0010788X5 '0-00001661*(X23**2) '0.005807*X9 '0.1378*X3 +0903509*(X3*‘2) CONDITION D 8 X3 3 2‘799911‘13 X8 3 2 X12 3 293 LN(Y+1) = 41.2265 00.015219X2 +0.07633*X13 +0.06056*(X17l*2) '0.08691*X11 80.001017*(X11**2) 490 CONDITION E 8 Y = 81.8611 80.75008X2 CONDITION F 8 NODEL I'A‘3 PEDESTRIAN X2 X3 X8 X12 X2 X3 X8 X12 X13 LN(Y+1) = +0.6862 80.019830X2 ’0.01323*X11 80.025258X3 CONDITION G 8 X2 X3 X8 X12 X13 LN(Y+1) = “0.6066 *0.06730*X3 +0.079O7OX13 80.061398X2 22966967962969978 23799911313 193 293 22966967962969978 23799911313 193 293 196 22966967962969978 23799911313 193 293 295969799 . N ‘ N N I I I I . N ' I I I I I I N 491 NODEL I‘B'I PEDESTRIAN CONDITION A 8 X3 3 198910 Y 3 0.30 X12 3 293 X30 3 0 CONDITION 8 8 X3 3 2'799911‘13 Y 3 0.61 X11 3 60355 X12 3 293 X30 3 0 CONDITION C 8 X3 3 3'9911‘13 Y = 0021 X12 3 1 X30 3 0 CONDITION 0 8 X3 3 192910 Y 3 0.03 X12 3 1 X30 3 0 CONDITION E 8 X2 3 6922935939966952' Y 3 1.66 X3 3 2'799911'13 629639699709789809 82983 X11 3 25-35 X12 3 293 X30 3 0 CONDITION F 8 X2 3 69229359399669529 Y 3 0.79 X3 3 2'799911‘13 629639699709789809 82983 X11 3 25-35 X12 3 293 X30 3 0 492 NODEL I‘B‘I PEDESTRIAN CONDITION X3 19297910 X30 0 CONDITION X3 X5 X30 N I I V 396969899911'13 12 0 CONDITION X2 99209229239259319 33938939950'529619 81982 X3 X5 396969899911‘13 09698910 X30 V 0 CONDITION X2 119139179199289329 379619539569589709 73976379 X3 X5 396969899911'13 09698910 X30 V 0 493 NODEL I'O‘Z FEDESIRIIN CONDITION A 8 X3 = 198910 X12 = 293 X30 = 0 Y = ‘0.££22*0o009809*XZ '0.01030*Xll *0.1079*X16 *0.07‘k8*X13 '0.0095£*X15 *0.1759*X12 '0.09b61*X3 CONDITION 8 8 X3 = 2'799911'13 XII = ‘0‘55 X12 = 293 X30 = O Y = '2-‘186 00.03307tXZ 00.1931*X13 +0-ZS9TOXO 00.3§1§*X17 +0.0567hiX3 CONDITION C 8 X3 = 3'9911‘13 X12 = l X30 = D Y = +0.1308 *0o00fi395‘X2 *0-06182'X13 '0.0D£153*X11 +0.0k612ixa '0.0Z960*XA *0.0258h*X16 '0-001631‘X6 00.09093*X15 CONDITION D 8 X3 = 192910 X12 = I X30 = 0 Y = *0.06321 '0.0025120X11 *0.0007166*X2 *0.002232*X23 *0.009093*X13 +O.OI£ZIOX8 ‘0-1712‘X15 CONDITION E 3 X2 = fi9229359399§69529 629639699709789809 82983 X3 = 2'799911'13 XII = 25’35 X12 3 293 X30 = 0 Y = -7.9696 00.1200*x3 40.4735*x13 90.18820X2 91.21280X8 *0.0300fi*X23 -O.260Atx16 *0.29SS*Xk 494 NODEL I'B'Z PEDESIRIIN CONDITION F 8 X2 i #9229359399‘69529 629639699709789809 82983 X3 = 2'795911'13 X11 = 25‘35 X12 = 293 X30 = 0 Y = '0-3263 *0-02089'X2 '0-039970X11 +0.1181iX13 *0.07513*X5 *0-09270‘X3 *0-2265'X8 ‘0-02677'X15 CONDITION 6 8 X3 X30 19297910 " 0V Y = *O.16£3 '0.008£51*X11 90.0006358*X2 “0.01779iX5 *081830fiX12 00.005778*X23 CONDITION H 8 X3 = 39‘969899911‘13 Y = *ko67 X5 = 12 X30 > 0 CONDITION I 8 X2 = 9920'22'23'25'31' 33938939950'529619 81982 X3 = 39‘959899911'13 X5 = 09‘98910 X30 > 0 Y = -200057 00.31890X13 *0.6856OX8 CONDITION J 8 X2 = 119139179199289329 379§19539569589709 73976‘79 X3 = 395969899911'13 X5 = 09‘98910 X30 > 0 Y = ‘082268 *080393TOX2 495 NCDEL I'O'3 FEDESTRIIN CONDITION A 8 X3 = 198910 X12 = 293 X30 = 0 LN(Y*1) = +0.3h71 *0-0001258*(X2*02) -080052k3*X11 60.003511*(X13i*2) 00.08537t(XB*82) '0.3103*X8 'O-OkfléfiiXIS '0-00007574*(X23**2) “0.0050158XZ 80.01‘138(X12**2) *0-00033‘7*(X7**2) ‘0-016£2*X7 *0.05219*X16 CONDITION 8 8 X3 = 2'799911'13 X11 = 50-55 X12 = 293 X30 = 0 LN(Y*I) = ‘1.3366 *0-000‘910*(X2**21 *0.1309*Xl‘*0.1655*X17 *0801029*(X30*2) 80.092078X8 -0009701.X3 *0.2979*X13 '0.03537*(X13**2) CONDITION C 8 X3 = 3‘9911‘13 X12 8 1 X30 = 0 LN(Y+1) = 00.7200 80.002157*XZ 00.03389*X13 -08039720X11 80.00088800(X110*2) +0-005276*(X8**2) +0-015§6*X16 ‘0.0010050X6 ‘0-000‘8090(X8002) *0-002835*XZ3 '0-000028£7*(X23*‘2) CONDITION D 8 X3 = 192910 X12 = 1 X30 = 0 LN(Y*1) = *0.2033 '0.009351*X11 *0.0000059680(XZ**2) 00.0018k80X23 00.0057090X13 +O-OOOOE9OE*(X11**Z) *0.0IO‘2*X8 ’0.011£7*X15 496 NODEL 1‘8‘3 PEDESIRIAN CONDITION E : xz 89229359399869529 629639699709789809 82983 x3 x11 2'795911'13 25-35 x12 293 X30 0 Y = -12.9I9T 90.75880(LN(X3)) 90.8688tx13 +0.01308t(x2tt2) +0.3rortcxa-a2) -o.onogaa(x5--2) +0.69h9t(LN(X23)) -c.2536«x16 03.1657*(LN(Xh)) CGNDIIION F : X2 K “9229359399889529 629639699709789809 82983 x3 2'799911'13 x11 25-35 x12 293 x30 0 LN(Y+1) = ‘085329 00.036369X2 '0.0003796¢(X11¢*2) +0-06205*Xl3 *0-0h020‘X3 +0.003556*(X5**2) '0.000&7&O*(X2**Z) +0.02k§8*(X8*02) CONDITION 6 8 X3 19297910 X30 > 0 82.1920 *080002703¢(X2802) '0.08968¢X11 ‘0.01267*X5 +0.0fi678*(X12**2) '08013358X2 80.0003016*(X230*2) +0.0009327OCX11**2) 497 NODEL 1'8'3 FEDESIRIAN CONDITION H 8 = +h.67 X3 X5 39‘959899911'13 12 X30 V 0 CONDITION I 8 X2 99209229239259319 33938939950'529819 81982 39‘969899911'13 09498910 0 X3 X5 X30 I I I I V +7.8557 ‘0.053560(Xl3002) +0.08879*(X8**2) *0-0‘830*(X3**2) 80.5837OX12 00.005012*(X2**2) ‘1.3722*X15 80.7115*X13 01.6h12*X17 ‘0.3127*X3 ‘0.2678*X16 ‘Oo6575tX11 00.007587¢(X11802) 80.01701823 CONDITION J 8 X2 119139179199289329 379819539569589709 73978-79 39‘969899911'13 09598910 0 X3 X5 X30 I I I I V ‘081163 80.002335*(X2**2) 498 NODEL II‘A'I FEDESTRIIN CONDITION A 8 X12 Y = 0.0049 CONDITION 8 8 Y = 0.0153 X11 35‘55 X12 293 CONDITION C 8 X2 129149179209229399 Y = 0.1030 819529599639699709 71974978980983 X11 25‘30 X12 293 CONDITION D 8 X2 . I I ' 129149179209229399 Y = 0.0337 419529599639699709 71974978980983 X11 25’30 X12 293 499 NODEL II'O'I FEDESTRIAN X12 X30 X11 35'55 X12 293 X30 CONDITION A Y = 0.0046 CONDITION 8 Y = 0.0153 CONDITION C X2 = 129149179229399 Y = 0.1029 CONDITION 0 Y = 0.0338 419529599639699709 71974978980983 25'30 293 0 129149179229399 419529599839699709 71974978980983 25‘30 293 0 X11 X12 X30 X2 X11 X12 X30 I I I I I I . I I ' I I I I I I CONDITION E X2 I I 17922927972975 X30 0 Y = 0.1210 CONDITION F Y = 0.0090 X2 X11 X30 . I I ‘ I I v 17922927972975 35‘55 0 500 NODEL II'O-l PEDESTNIIN CONDITION G 8 X2 = 209239389399519 Y = 0.0752 58963973979981 X11 = 25’30 X30 > 0 CONDITION H 8 X2 = 39 49119139149169 Y = 0.0127 76977978980982 25928930'339379419 439479509529569689 X11 = 25’30 X30 > 0 X30 > 0 501 NODEL III'A'1 PEDESTNIAN CONDITION A 8 Y = 0.19 X2 = 1'81983 X3 = 1‘597'13 CONDITION 8 8 X3 = 6 ‘ X4 = 10912 Y = 3.26 CONDITION C 8 Y = 21.57 CONDITION D 8 Y = 7.88 X3 3 6 X4 = 11 X6 = 0'10 X3 = 6 X4 = 11 X6 >= 23 CONDITION E 8 X2 = 82 X3 3 1'597'13 X11 = 25-35 Y = 5.40 CONDITION F 8 X2 = 82 X3 = 1‘597‘13 X11 = 40‘55 Y = 1.36 502 NODEL III'A'Z PEDESTRIAN CONDITION A : X2 X3 1‘81983 1‘597‘13 Y :- +0.1576 IO.1235*X8 00.003504OX2 +0.007719OX23 '0.006587*X11 ‘0.0022430X6 80.019948X3 '0.05091 0X9 CONDITION 8 8 X3 X4 10912 Y : '19.0160 *7.7838*X2 *6. 6990*X8 CONDITION C : Y = -255.0528 037.77278X6 +6.2634*X23 847.0017iX8 CONDITION 0 8 Y = ’10.8333 +10.8333*X2 CONDITION E 8 Y = -102858 01.1558*X3 CONDITION F 8 Y = ‘0.6083 80.34770X3 X3 X4 X6 11 0'10 X3 X4 X6 V I X2 X3 82 1'597‘13 X11 25‘35 X2 X3 82 1'597‘13 X11 40-55 503 NODEL III'A‘3 PEDESTRIAN CONDITION A 8 X2 X3 1‘81983 1’597'13 Y = +0.1168 40-004706'X23 *0.02319*(X8**2) 90.003002*(X3**2) *0-0006449'X2 '0.0006953*X6 ‘0.00003441*(X23**2) 'O-Ol66ltx9 '0.01908*X3 “0.0012708X11 'C.057138X8 CONDITION 8 8 Y = 8104.4818 *8.5980*(X2*'2) '41.9263*(LN(X2)) '0.3724.X11 ‘38.3597*(LN(X4)) “0.7819OX5 CONDITION C 8 Y = ‘255.0528 037.7727GX6 86.2634*X23 047.0017*X8 CONDITION 0 8 Y = '10.8333 810.8333tX2 X3 = 6 X4 = 11 X6 = 0‘10 X3 = 6 X4 = 11 X6 >= 23 CONDITION E 8 X2 = 82 X3 = 1'597'13 X11 = 25‘35 Y = '1.2858 +1.1558*X3 CONDITION F 8 X2 = 82 X3 = 1'597'13 X11 = 40'55 Y = 8359.4711 00.05221*(X3**2) 02.4833tX11 ‘0.40360(LN(X6+1)I '2.3727*(LN(X23)) '122.331*(LN(X11)) 82.2723*(LN(X8)) 504 CONDITION A Y = 0.18 CONDITION 8 Y = 2.68 CONDITION C Y = 28.77 CONDITION 0 Y = 8.28 CONDITION E Y = 34.45 CONDITION F Y = 0.78 NODEL III'B'l FEDESTRIAN X3 1‘497'12 X30 0 X3 X4 596913 10912 X30 0 X3 X4 X11 X30 596913 11 25 X3 X4 596913 11 X11 30-55 X30 0 X3 X30 V X3 1‘597'13 X30 V 0 505 NODEL III'B'Z FEDESTRIAN CONDITION A 8 X3 1'497'12 x30 0 Y = 90.2056 +0.010098x23 +0.1044tX8 +0.0034248x2 '0.0078278x11 -o.oozsss«xe 40.024360x3 CONDITION 3 8 X3 X4 x30 596913 10912 Y = -1.4495 +0.9966txz ‘0.08118¢X23 CONDITION c 8 Y = 28.77 CONDITION 0 8 ' T = 8.28 CONDITION E : Y = 34.45 ,x3 x4 x11 596913 11 25 X30 0 596913 11 30-55 0 X3 x4 x11 x30 x3 x30 CONDITION F 8 X3 1'597‘13 x30 V 0 Y = '3.1279 *0.4164*X3 80.02282*X2 80.5040*X8 00.1743*X7 '0.021318X6 506 NODEL III'B'3 PEDESTRIAN CONDITION A 8 X3 1‘497'12 X30 0 LN(Y*1) = 80.1820 *0-002117OX23 '0-01841*X3 *0.02409*(X8**2) 40.000009158*(X2**2) 80.00353OOIX30O2) '0.0006753*X6 ‘0.002097*X11 ‘0-01400*X9 '0-06798‘X8 CONDITION 8 8 X3 = 596913 X4 = 10912 X30 3 0 Y = '0.8434 80.09843*(X2**2) ‘0.001111*(X23**2) CONDITION C 8 X3 = 596913 Y = 28.77 X4 = 11 X11 = 25 X30 = 0 CONDITION D 8 X3 = 596913 Y = 8.28 CONDITION E 8 Y = 34.45 X4 = 11 X11 = 30‘55 X30 3 0 X3 = 6 X30 > 0 CONDITION F 8 X3 = 1'597'13 X30 > 0 LN(Y§1) = '0.2324 80.007573*(X3**2) '0.002403*X6 80.00005594OIX2082) 00.03528*(X8**2) 507 NODEL IV‘A‘I FEDESTNIAN CONDITION A : Y = 2002 508 NODEL IV'B'I FEDESTRIAN CONDITION A 8 X30 Y = 1.91 CONDITION 8 8 Y = 161.78 CONDITION C 8 Y 3' 3028 X2 X30 X2 X30 509 APPENDIX F Model Validations VALIDATION INJURY ACCIDENTS MODEL I-A-* Sample Samp1a_lfs *Model Standard Error Condition .1533. __S_i_zs__ ' 1 2 3 286 9.867 11.22 9.19 10.19 2251 4.803 6.65 6.19 6.47 4213 1.210 2.34 2.09 2.11 105 15.733 16.70 15.89 46.57 64 76 31.938 26.40 24.27 24.16 35.145 33.28 32.13 30.58 184 17.609 16.53 15.11 14.67 23 15 57.565 34.97 54.66 36.75 35.133 24.35 21.88 20.19 510 VALIDATION INJURY ACCIDENTS MODEL I-B-* Sample Sample *Model Standard Error Condition .35E33. .3353L. 1 2 A B 283 101 64 257 9.795 11.24 9.22 9.24 14.465 14.96 14.49 15.56 31.938 25.86 25.86 25.25 21.914 22.40 19.26 19.13 2154 4.047 5.06 4.78 4.97 4057 0.941 1.54 1.39 1.40 23 15 57.565 35.40 56.01 40.32 35.133 24.46 22.68 18.21 168 9.649 8.30 6.80 6.85 8 31 46 67.625 37.16 52.94 34.05 22.935 13.64 19.40 26.25 22.674 15.18 14.73 14.77 511 VALIDATION INJURY ACCIDENTS MODEL II-A—l Condition Size Sample Sample Mean Standard Error Model 1 A B C D E F C 2506 3.014 3958 2.111 4.78 4.23 433 229 75 27 2 16.589 17.47 24.537 26.63 16.067 16.53 15.593 16.71 39.500 199.19 512 VALIDATION INJURY ACCIDENTS MODEL II-B-l Condition Size Mean Sample Sample Standard Error Model 1 A 2344 3867 101 395 222 27 13 .311 .840 3.58 3.44 12. 901 15.34 16. 820 17.25 23. 964 26.30 39 .500 124.53 29. 000 56.62 11. 407 11.11 .462 26.97 253 15. 696 15.93 513 VALIDATION INJURY ACCIDENTS MODEL III-A-* Sample Sample *Model Standard Error Condition Size Mean 1 2 A 1111 15.500 29.55 28.22 30. 23 7605 4.474 11.33 10.86 11 .41 16 50.036 42.27 44.83 102. 15 0.00 0.00 0 .00 147.790 134.87 134.53 176 .55 222 199 51.554 55.87 53.61 61 .47 24.363 29.01 26.48 30 .58 514 VALIDATION INJURY ACCIDENTS MODEL III-B-* Condition Sample _§i§e_ Sample _Mgan_ Standard Error *Model 2 3 A B C D E F G H 7280 3.639 7.93 7.64 8.70 83 304 382 688 4 71 62.122 59.76 56.06 68.19 27.273 33.72 31.46 34.74 18.718 31.14 30.14 26.91 9.920 16.70 16.30 16.41 197.552 250.85 86.482 69.47 78.39 80.89 340 23.811 34.85 34.08 89.57 515 VALIDATION INJURY ACCIDENTS MODEL IV-A-l Condition Size Sample Sample Mean Standard Error Model 1 A 9159 7.558 17.80 516 VALIDATION INJURY ACCIDENTS MODEL IV-B-1 Sample Sample Model Standard Error Condition Size Mean 1 8737 6.171 14.18 408 37.036 44.48 10 4 5.412 52.89 37.081 399.10 517 VALIDATION RIGHT ANGLE ACCIDENTS MODEL I-A-* Condition Size Sample Sample Mean Standard Error *Model 2 3 A 2242 4222 42 340 22 180 31 134 3.711 .70 6.44 6.70 0.880 .33 2.14 2.19 14.976 16. 71 15.97 16.40 8.859 11 .40 10.35 10.18 23.864 29. 22 25.86 36.79 21.617 17 .87 17.20 16.89 6.774 .41 9.78 9.93 26.679 24. 02 24.47 24.36 518 VALIDATION RIGHT ANGLE ACCIDENTS MODEL I-B-* Condition Sample _§izg_ Sample _Mggn_ Standard Error *Model 1 2 A B C D E F G H I J K 39 14.769 17.14 16.31 16.71 2259 2.958 4.99 4.80 4.96 3952 0.603 1.43 1.32 1.34 338 16 183 31 129 200 48 5 8.852 11.42 10.41 10.10 27.750 29.42 32.07 27.31 20.962 17.42 16.87 16.56 6.774 9.41 9.78 9.21 25.628 23.51 24.16 24.09 9.990 11.31 10.23 10.51 20.583 14.96 19.23 18.02 32.000 24.66 40.38 48.07 519 VALIDATION RIGHT ANGLE ACCIDENTS MODEL II-A-l Condition Sample _§i§g_ Sample _M339_ Standard Error Model 1 A B C D E F G 1917 2.959 13.25 4547 1.399 4.00 643 84 2 6 31 15.669 20.65 15.036 17.96 54.000 283.72 22.167 114.06 13.968 15.81 520 VALIDATION RIGHT ANGLE ACCIDENTS MODEL II-B-l Condition _§i§§_ Sample Sample _Mgan_ Standard Error Model 1 A B C D E F G H I J 1783 2.255 4.32 4428 1.139 3.04 131 13.366 15.83 11 41 1 7 26.545 95.14 11.707 12.07 11.000 10.54 22.571 91.60 562 15.733 19.89 6 2.667 37.55 260 13.200 15.78 521 VALIDATION RIGHT ANGLE ACCIDENTS MODEL III-A-* Condition Sample _§izg_ Sample _Mgan_ Standard Error *Model 1 3 2 A B C D E F G H 73 25.618 49.02 47.39 46.24 8 0 4 0 12 105 62.188 111.38 109.08 109.08 0.000 0.00 0.00 0.00 8.971 14.30 14.30 14.30 0.000 0.00 0.00 0.00 50.662 53.96 53.96 53.96 10.695 22.10 22.17 22.14 8954 0.305 3.02 2.93 3.00 522 VALIDATION RIGHT ANGLE ACCIDENTS MODEL III-B-* Condition Sample jig. Sample Mean Standard Error *Model 41.463 39. 20 135 .62 135 .62 0.000 .35 2. 13 .72 79 25.910 40. 77 41 .03 14. 03 0.000 00. 00 0. 00 .00 87 8.513 20 .45 19. 98 20. 33 8560 0.234 .33 2. 27 .31 131.843 166 .53 166 .53 166. 387 21.015 10. 30 .96 10. 20 10 21 50.123 88. 73 91 .04 125. 21 9.077 17 .46 16. 70 523 VALIDATION RIGHT ANGLE ACCIDENTS MODEL IV-A-l Condition Size Mean Sample Sample Standard Error Model 1 A B C D 8991 0.362 3.60 12 3 51.728 95.82 27.458 27.16 153 18.994 39.33 524 VALIDATION RIGHT ANGLE ACCIDENTS MODEL IV-B-l Condition Sample _§izg_ Sample .Megn_ Standard Error Model 1 A B C D E F 8629 0.313 3.14 16 2 90 4 0.149 5.13 41.186 13.63 22.744 39.48 131.843 175.80 418 3.595 17.83 525 VALIDATION REAR END ACCIDENTS MODEL I-A-* Condition Sample _§i§g_ Sample _M332_ Standard Error *Model 1 2 3 A B C D E F G H 308 11.630 15.77 12.36 13.21 2251 4.797 8.96 7.49 7.77 4213 0.779 14.30 2.07 2.07 1 108 19.546 30.88 22.13 22.71 117 191 23 19 41.462 43.61 36.03 38.92 21.236 49.11 19.26 18.51 75.783 73.16 59.13 57.69 35.316 44.23 32.60 38.56 526 VALIDATION REAR END ACCIDENTS MODEL I-B-* Condition Sample _§i§g_ Sample _M332_ Standard Error *Model 1 3 2 A B C D E F G H I J K L M N 270 10.585 13.64 10.88 12.91 131 141 2154 4057 20 153 13 9 16 30.588 23.84 33.24 24.34 17.227 21.58 18.58 18.50 3.998 6.17 6.28 7.76 0.583 1.47 1.31 1.30 33.650 38.59 30.99 36.68 27.562 32.21 29.06 28.07 4.692 7.88 8.49 8.61 72.222 39.72 42.11 43.52 70.375 57.05 54.87 57.29 161 6.845 11.12 9.73 10.47 49 47 9 18.082 17.21 13.26 13.25 27.064 19.43 22.43 23.76 93.222 43.91 38.05 51.91 527 VALIDATION REAR END ACCIDENTS MODEL II-A-l Condition Size Sample Sample Mean Standard Error Model 1 A 1825 4.462 7.24 4639 1.280 3.23 22 40.273 59.79 148 330 265 20.000 0.64 14.993 13.82 23.218 22.42 23.498 33.41 528 VALIDATION REAR END ACCIDENTS MODEL II-B-l Condition Sample _§i§g_ Sample ‘Mgan;, Standard Error Model 1 A B C D E F G H I J K L M 142 16.021 15.24 1742 3.665 5.45 4469 1.027 2.42 324 262 4 18 1 1 16 147 11 91 23.151 22.50 21.859 31.34 18.500 52.26 23.167 20.59 20.000 34.59 30.000 48.72 4.625 7.76 7.279 9.61 45.364 30.03 26.659 26.43 529 VALIDATION REAR END ACCIDENTS MODEL III-A-* Condition Sample _§izg_ Sample _Mggn_ Standard Error *Model 2 3 A B C D E F 250 145 48 23.770 35.80 31.17 35.08 71.125 90.10 86.58 93.17 40.527 41.29 35.51 55.76 7487 2.098 8.19 7.64 8.24 535 694 24.966 55.10 52.38 52.05 8.177 17.91 16.72 18.21 530 VALIDATION REAR END ACCIDENTS MODEL III-B-* Condition Sample _§izg_ Sample _Mgan_ Standard Error *Model 1 2 3 A B C D E F G H I J K 7172 1.640 6.43 6.06 6.36 116 271 719 117 266 26 50 10 70 64.064 68.78 66.30 66.07 23.858 35.96 30.48 34.30 7.644 16.96 16.10 17.34 7.221 10.98 11.60 13.27 19.635 30.82 30.75 30.78 85.132 153.84 137.48 199.57 25.543 29.29 30.96 113.933 160.37 195.17 152.44 92,333 111.11 101.25 109.41 342 13.401 24.49 22.48 24.10 531 VALIDATION REAR END ACCIDENTS MODEL IV-A-l Condition Sample Size Sample Mean Standard Error Model 1 A B C 7452 2.152 7.87 256 45.463 69.50 1451 17.412 37.19 532 VALIDATION REAR END ACCIDENTS MODEL IV-B-l Condition Sample _S_iz-_s_ Sample Mean Standard Error Model 1 A 7128 1.680 6.02 34 3.402 18.33 1575 18.170 36.20 91.340 272.67 24.816 118.91 415 28.406 51.56 533 VALIDATION FIXED OBJECT ACCIDENTS MODEL I-A-* Condition Sample _J§Egg_ Sample .3335L. Standard Error *Model 1 2 3 A B C D E 3183 0.470 1.02 0.96 0.97 46 6.457 10.79 9.66 9.65 3235 1.111 1.76 1.78 1.74 235 531 3.715 6.03 5.88 5.89 2.075 2.81 2.73 0.00 534 VALIDATION FIXED OBJECT ACCIDENTS MODEL I-B-* Condition Size Sample Sample Mean Standard Error *Model 1 2 A 1962 1.208 1.74 1.69 1.67 228 525 3.035 3.48 3.34 3.35 2.006 2.66 3.03 2.67 1930 0.675 1.07 1.05 1.04 2319 0.324 0.72 0.71 0.72 44 177 15 29 10.045 14.00 14.16 13.74 2.944 4.06 4.16 4.26 6.867 7.15 9.85 8.01 4.310 5.15 6.25 6.00 535 VALIDATION FIXED OBJECT ACCIDENTS MODEL II-A-l Condition Size Mean Sample Sample Standard Error Model 1 A B C D 3258 0.886 1.72 3908 1.114 2.73 8 56 1.250 6.53 2.018 4.13 536 VALIDATION FIXED OBJECT ACCIDENTS MODEL II-B-l Condition Sample _§izg_ Sample _Mgan_ Standard Error Model 1 A B C D E F 3914 0.960 2.06 2991 0.782 1.667 3 56 14 1.47 1.47 1.214 4.27 2.857 24.18 252 4.583 8.29 537 VALIDATION FIXED OBJECT ACCIDENTS MODEL III-A-* Condition Sample _§izg_ Sample _Mgan_ Standard Error *Model 1 2 3 A B C D 2923 5.168 14.55 14.36 14.82 4721 2.721 8.08 7.96 8.23 281 13.918 23.75 24.29 24.77 1234 8.807 19.19 18.91 19.99 538 VALIDATION FIXED OBJECT ACCIDENTS MODEL III-B-* Condition Sample _§izg_ Sample _Mgan_ Standard Error *Model 1 2 3 A B C D E F G H 3223 ”3.974 9.04 8.99 8.95 4166 2.297 6.57 6.57 6.72 402 946 364 3 0 55 11.709 17.23 17.66 18.40 6.930 15.27 15.24 15.93 16.362 31.62 30.47 30.57 89.286 213.50 213.50 213.50 0.00 0.00 0.00 0.00 52.127 63.09 59.49 60.81 539 VALIDATION FIXED OBJECT ACCIDENTS MODEL IV-A-l Condition Sample _§i£g_ Sample .33331. Standard Error Model 1 A B C D E 8706 4.742 14.50 395 45 7 6 2.822 13.44 3.599 17.34 16.667 205.80 9.491 7.25 540 VALIDATION FIXED OBJECT ACCIDENTS MODEL IV-B-l Condition Sample _§izg_ Sample _Mgan_ Standard Error Model 1 A B C D E F 8294 3.914 11.39 443 0 2.655 13.85 0.000 0.00 387 21.608 43.94 25 10 15.834 41.55 33.266 366.09 541 VALIDATION PARKING ACCIDENTS MODEL I-A-* Sample Sample *Model Standard Error Condition _§i£g_ .3338L. 1 2 3 A B C D E 4203 0.474 1.63 1.42 1.46 386 3.254 4.75 4.72 4.34 2061 2.085 3.13 3.03 3.12 129 451 7.023 7.81 7.69 7.32 5.432 6.29 6.02 6.43 542 VALIDATION PARKING ACCIDENTS MODEL I-B-* Condition Sample ii}; Sample .1631 Standard Error *Model 1 2 A B 149 3.342 3.87 4.16 4.53 2177 1.906 2.75 2.62 2.68 113 457 183 6.673 7.64 7.20 7.05 5.333 5.73 5.44 5.91 2.475 4.50 3.84 3.83 3885 0.304 1.01 0.93 0.92 175 3.640 4.90 4.60 4.79 0 53 38 0.000 0.00 0.00 0.00 9.962 11.93 11.75 11.55 6.974 6.13 6.48 8.16 543 VALIDATION PARKING ACCIDENTS MODEL II-A-l Condition Sample _§i§g_ Sample _Mgan_ Standard Error Model 1 A B C D E F G H I 5670 0.844 2.03 6 505 264 22 204 7 167 385 3.667 7.32 3.224 4.24 2.773 3.98 4.045 8.45 5.113 6.73 2.000 11.84 4.024 4.982 5.67 6.81 544 VALIDATION PARKING ACCIDENTS MODEL II-B-l Condition Sample _§i§g_ Sample _Mgan_ Model 1 ~ Standard Error A B C D E F C H I J K L 5454 0.708 1.64 5 521 62 374 7 165 376 8 241 17 0 3.800 4.03 3.203 4.19 7.645 10.91 2.671 3.99 2.000 11.84 4.000 5.52 4.721 6.12 2.625 20.78 5.365 7.37 6.824 6.55 0.000 0.00 545 VALIDATION PARKING ACCIDENTS MODEL III-A-* Condition Sample _§i§g_ Sample _Mgan_ Standard Error *Model 1 2 A B C D E F 41 169 48.018 52.85 55.71 51 .26 24.202 41.67 40.77 43. 1938 8.602 20.31 19.74 14. 72 6082 1.411 5.85 5.68 5 .86 551 378 23.519 55.97 55.51 58. 05 8.656 18.19 17.46 18. 92 546 VALIDATION PARKING ACCIDENTS MODEL III-B-* Condition Size Sample Sample Mean Standard Error 7'~‘Mode1 A B 1835 6.986 16.86 16 .38 16. 18 5850 1.159 4.62 4. 52 .63 28 114 490 342 25 47 47 137 232 11.349 16.16 15 .56 16. 79 23.209 35.10 37 .90 37. 42 16.762 32.04 31 .31 33. 59 8.648 18.53 17 .85 19 .37 25.338 31.30 30. 63 35. 42 53.274 63.38 67. 14 72. 49 17.565 135.57 135. 63 135 .63 0.000 .00 .00 81.146 144.23 166. 08 150. 65 87.146 145.57 142. 30 147. 39 30.545 39.98 44. 01 44. 52 7.758 17.86 18. 01 17 .85 547 VALIDATION PARKING ACCIDENTS MODEL IV-A-l Condition Size Mean Sample Sample Standard Error Model 1 A B C 6237 1.518 5.91 808 10.001 23.48 2114 14.189 35.98 548 VALIDATION PARKING ACCIDENTS MODEL IV-B-l Condition Sample Sample .5222. Standard Error Model 1 A B 6000 1.264 4.80 650 9.150 20.19 2087 11.236 25.13 373 31 26.2484 62.03 16.550 20.11 21.815 411.62 14 25.557 46.44 549 VALIDATION PEDESTRIAN ACCIDENTS MODEL I-A-* Condition Sample __S_i§e_ Sample 31522. Standard Error *Model 1 2 3 A 259 0.293 0.82 0.83 0.82 2013 0.246 0.68 0.67 0.67 4451 0.035 0.21 0.21 0.21 205 6 208 88 0.576 0.93 0.96 0.94 1.000 3.27 4.29 4.29 1.298 1.69 1.70 1.75 0.648 1.05 1.09 1.10 550 VALIDATION PEDESTRIAN ACCIDENTS MODEL I-B-* Sample $1921. Standard Error *Model 1 2 3 0.252 0.62 0.63 0.61 0.584 1.12 1.13 1.16 Condition Sample £353. 254 231 1928 0.206 0.55 0.54 0.54 4283 0.028 0.18 0.19 0.18 121 147 173 0 67 26 1.322 1.71 1.82 1.83 0.973 1.30 1.26 1.31 0.237 0.59 0.55 0.56 0.000 0.00 0.00 0.00 1.284 1.95 1.99 2.20 1.115 2.16 2.43 2.42 551 VALIDATION PEDESTRIAN ACCIDENTS MODEL II-A-l Condition Size Mean Sample Sample Standard Error Model 1 6464 0.101 559 28 179 0.581 1.036 0.966 0.42 1.15 2.96 1.43 552 VALIDATION PEDESTRIAN ACCIDENTS MODEL II-B-l Condition Size Sample Sample Mean A 6211 0.084 Standard Error Model 1 0.35 1.15 1.29 1.39 1.02 1.99 548 27 178 0.569 0.921 0.333 0.963 2.90 224 0.442 1.000 1.607 2.96 11 28 553 VALIDATION PEDESTRIAN ACCIDENTS MODEL III-A-* Condition Sample _§i§g_ Sample _M332_ Standard Error *Model 1 2 3 A B C D E F 8982 0.237 2.33 2.31 2.33 15 2 4 36 120 3.166 5.43 5.82 7.21 15.659 16.22 42.43 42.43 5.000 9.13 10.44 10.44 3.841 8.23 8.38 8.38 2.203 6.46 6.37 6.42 554 VALIDATION PEDESTRIAN ACCIDENTS MODEL III-B-* Condition Sample _§i§g_ Sample _Mgag_ Standard Error *Model 1 3 2 A B C D E F 8693 0.223 2.03 2.01 2.03 37 2.862 7.88 7.87 7.94 0 7 4 0.000 0.00 0.00 0.00 6.083 11.01 11.01 11.01 9.497 25.95 25.95 25.95 418 1.215 6.68 6.61 6.66 555 VALIDATION PEDESTRIAN ACCIDENTS MODEL IV-A-l Sample Sample Model Standard Error Condition Size Mean 1 A 9159 0.287 2.51 556 VALIDATION PEDESTRIAN ACCIDENTS MODEL IV—B-l Condition Size Mean Sample Sample A B C 8737 0.239 1 421 0.00 1.296 Standard Error Model 1 2.10 6.55 6.64 557 HICHIGQN STATE UNIV. LIBRARIES IIHIIIWWllllHlWHlW!IIWINIWIHHINIIINIHII 31293103884700