‘7'...”9. I11111111111||11111111111111111111111111111111111111 3 1293 104392 it c 34 h-fi LIBRARY Eidi-‘m $228: Knit”; F135 3" L , This is to certify that the thesis entitled ENDEMIC ECOLOGY OF THE CEREAL LEAF BEETLE (Oulema 'melangms (L.)) presented by Emmett Philip Lampert has been accepted towards fulfillment of the requirements for Entomolog)r degreein Ph.D. QMaw Major professop DateW 0-7 639 OVERDU FINES: 25¢ per day per in: 1lflfl--\\\\* mamas ugmv menus: . ‘ 1;, ",9,‘ ' Place in book return to move : m‘ufl .- charge from circulation "cords MIX.Cl84..- n— 193 ENDEMIC ECOLOGY OF THE CEREAL LEAF BEETLE (OULEMA MELANOPUS (L.)) by Emmett Philip Lampert A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Entomology 1980 ABSTRACT ENDEMIC ECOLOGY or THE CEREAL LEAF BEETLE (00mm MELANOPUS (L.)) BY Emmett P. Lampert This research is the culmination of a four year investigation into the ecology of the cereal leaf beetle at the Kellogg Biological Station located in Ross Township, Kalamazoo County, Michigan. Further, it is part of an ongoing program.to study the population dynamics of an exotic pest as it acclimates to a new environment and adjusts to the release of its exotic parasitoids. Specific components of the CLB ecosystem examined are: the distribution and abundance of the CLB on the Kellogg Biological Station and surrounding area, the within and between-gen- eration population dynamics and survival, and the interactions between CLB larval defoliation and the grain and straw yield of cats. The density of CLB larvae was found to be higher in the Kellogg Biological Station than in the surrounding area. The ecological and sampling implications of this are discussed using the data collected from the yearly sweepnet survey. Key-factor analyses are performed to identify the significant mortality sources in within-generation survival. Egg survival from Anaphes flavipgs parasitism was found to be a key-factor and highly correlated with the synchrony of CLB oviposition and a general parasit- ism curve. Larval survival from parasitism by Tetrastichus julis and , } 3 1 ’ " . ( ~ / / 6 Emmett P . Lampert Diapgrsis tempgralis were also identified as key-factors and were found to be inversely density dependent. High soil temperatures were also significant pupal mortality factors. NOne of the within-generation key-factors were found to be significant in between-generation dynamics. The spatial pattern of the CLB larvae and different sampling schemes were investigated by computer interrogation of field collected larval coordinates. The larvae were found to be slightly more aggregated than would be expected in a totally randomly dispersed population and a discussion of the implications of aggregation on density estimation is presented. Density estimates based on distance measurements from a source, either a random point or individual, were examined and recom- mended for CLB larvae at densities below 1 per unit area. Analyses of the insect-oats interactions revealed a nonélinear relationship between total CLB larval production and percent defoli- ation on both the flag leaf and the total plant. The cat plants show very elastic growth responses and were found to tolerate considerable defoliation without significant yield loss. The dynamics of defoliation are discussed with reference to moisture stress, intensity of stress, timing of stress and duration of stress. The CLB larvae are thought to stress the cat plant both through foliage removal and disruption of water balance. ACKNOWLEDGEMENTS I would like to take this opportunity to thank Dr. Dean L. Haynes who has served as my Major Professor throughout my program. Dean has been a constant source of encouragement, ideas and philosophies which I will always appreciate and try to extend to others. I would also like to thank Dr. James E. Bath, Chairman, for providing an atmosphere condu- sive to individualism and student expression. To my other Committee Members, Drs. Stuart Gage, Gene Safir, Lal Tummala and Stanley Wellso, I extend my thanks for guidance in their areas of expertise and review of this thesis. To my fellow associates and graduate students, Messrs. Ray Carruthers, Ken Dimoff, Tom Ellis, Duane Jokinen, Bill Ravlin, Howard Russell, and Drs. Winston Fulton, Alan Sawyer and Kasumbogo Untung, I extend my thanks for sharing their philosophies, research interests and friendship. I would also like to thank an excellent group of student employees, Margaret Gray, Claudia Klepsteen, Jan Marlatt, John Marlatt, Kathy Wiest and Ken Wiest, for their diligence in collection of the field data. To Debra, my wife, I'd like to extend a special thank you for her constant faith and moral support throughout my program. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . LIST OF TABLES. . . . . . . . . . . . . . . . LIST OF FIGURES . . . . . . . . . . . . . . . INTRODUCTION. . . . . . . . . LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . DISTRIBUTION AND ABUNDANCE. . POPULATION DYNAMICS . . . . . . . INSECT INTERACTIONS WITH HOST . . . . . . . . . . . . . . . . METHODS AND MATERIALS . . . . . . . . . . . . STUDY ORmISM . C O C C C O O O O O O O O SWDY AREA 0 O O O O O O O O O O O O O O O COLLECTION AND ANALYSES OF DATA . KBS weather Information . . . . . . . . . . . Regional Distribution ahd Abundance . KBS between-field sweepnet survey Sweepnet catch conversion to absolute density Population Dynamics . . . . . . . . . . . KBS within-field population sampling. Calculating total seasonal incidence and production. . . . . . CLB interactions with parasitoids . Calculating seasonal parasitism . Low Density Population Analyses . . . Low density population sampling . Analyses of larval coordinates. . Host-Herbivore Interactions . . . CLB interactions with cats. . . . . . . . . . . . . . . . . . . . RESULTS AND DISCUSSIONS . . . . . . . . . . . . . iii Page ii vi xiii » m m l3 l3 l4 17 17 17 17 19 20 21 23 24 26 27 27 29 41 41 49 REGIONAL DISTRIBUTION AND ABUNDANCE . . . . . . . Regional and KBS CLB distribution and Abundance LOW DENSITY POPULATION DYNAMICS . Population Sample Results . . Within-Generation Survival. . Between-Generation Survival . . . . . . . . . . . . . . . . . . . . . . . . . LOW DENSITY POPULATION ANALYSES . . . . . . . Spatial Pattern Analyses of CLB Larvae. . Quadrat counts. . . . . Distance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comparison of quadrat counts and distance measurements. . . . . Density Estimation of CLB Larvae. . Quadrat counts. . . . . Distance measurements . . . . . . . . o . . . o . . . . . . . . . . . . . . . Comparison of quadrat counts and distance measurements.......... Components of Variance. . . . . . . . . . . . CLB LARVAL INTERACTIONS WITH OATS . . . . . . Defoliation and Total Larval Production . Oat Grain Yie1d . Oat Straw Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONCLUSIONS . . LITERATURE CITED. . . . . . . . . . . . . . . . . . . APPENDICES. . . Page 49 49 65 67 75 101 108 110 110 116 124 129 129 150 158 167 172 173 183 196 198 201 208 Appendix A. Kellogg Biological Station field Maps and Field Acreages. . . . . . . . . . 208 Appendix B. Kellogg Biological Station Weather Information J . . . . . . . . . . . . 211 Appendix C. Listing of Computer programs Used for Coordinate Analyses . . . . . . . . . 219 Appendix D. Kellogg Biological Station Sweepnet Survey Data . . . . . . . . . . . . . 227 Appendix E. Kellogg Biological Station Population Sampling Data . . . . . . Appendix F. CLBEggparasitism Data . Appendix G. CLB larval coordinates. . . . . . . . . . . . . . . . . . . . 371 400 403 iv Appendix H. Individual Observations on Adult and Larval CLB Movement and Behavior . . . . . . . Appendix I. 1976 and 1978 Parasitoid Cage Results . Appendix J. 1978 Defoliation Plot Data. . . . . . . . . . . . . . . . 449 473 485 Page LIST OF TABLES Table Page 1. CLB adult and larval densities/ft2 (929 cm2) for the 1976 and 1979 regional sweepnet survey . . . 2. CLB adult and larval densities/ft2 (929 cm2) from KBS oat fields on sample dates closest to regional survey . . . . . . . . . . . . . . . . . Regression equations for predicting leaf area . . . 55 57 Mean number of live leaves and percent defoliation per oat plant in fields surrounding the Kellogg Biological Station. Row 1 a mean and row 2 - variance . . . . . . . . . . . . . . . . . . . . . . S9 Mean number of live leaves and percent defoliation per oat plant in fields on the Kellogg Biological Station. Row 1 - mean and row 2 - variance. . . . . Total larval production for 1976 . . . . . . . . . . TOtal larval production for 1977 . . . . . . . . . . Total larval production for 1978 . . . . . . . . . Total larval production for 1979 . . . . . . . . . . 61 63 63 64 64 Total egg and larval production and adult total incidence per 60 cm of row (1.167 sq. ft.) from the Gull Lake population sampling fields . . . . . . 68 11. Summary of the contents of the soil samples taken at Gull Lake from 1976 to 1979. Sample unit I 18” by 36” by 4". Row 1 - mean no. cells/(sample and row 2 . vuimce . O O O O O C O O O O O O O O O O O O O O 12. CLB stage-specific survival from 1976 to 1979 population sample fields . . . . . . . . . . . . . . 13. Egg, "small larvae“ and "large larvae" survival as calculated by combining larval instars . . . . . . . 69 70 72 14. Proportion of total incidence of CLB eggs and larvae parasitized from 1976 to 1979 at the Kellogg Biological Station . . . . . . . . . . . . . . . . . 76 vi Table Page 15. Summary of contents of CLB pupal cells recovered from.soil samples taken randomly in parasitoid cages. Sample unit equals 18" x 36" x 4". Row 1 = mean and row 2 - variance . . . . . . . . . . . . . . . . . . 93 16. Kellogg Biological Station CLB larval production . . 109 17. Correlation coefficients of variance,/mean and Morisita's Index with density for a variety of quadrat dimensions and sample sizes. . . . . . . . . . . . . . 115 18. Adult CLB behavior from different Gull Lake habitats for 1976 . . . . . . . . . . . . . . . . . . . . . . . 118 19. Mean interval between hops and mean hop distance for CLB adults in different habitats in 1976 . . . . . . . 119 20. Larval CLB behavior in winter wheat (6/22/76) and oats (6/23/76 and 6/25/76) as observed at Gull Lake. . 123 21. Correlation coefficients of B' and Clark and Evans R with density for a variety of sample sizes (n=39). . 125 22. Summary of spatial pattern analyses using quadrats and distance measurements. . . . . . . . . . . . . . 126 23. Summary of 20 linear row feet samples from oat field 9-13 taken on June 15, 1976. . . . . . . . . . . . . . 130 24. Regression coefficients and coefficients of determin- ation for the relationships between row length esti- mates of plot density (x) and true plot density (Y). number of plots - 41 . . . . . . . . . . . . . . . . 133 25. Percent distribution of Optimum sample unit lengths for a given sample size. Relative net precision used as optimization criteria. . . . . . . . . . . . . 140 26. Regression coefficients and coefficients of determi- nation for the relationships between quadrat esti- mates of plot density (x) and true plot density (y). Number of plots - 41 . . . . . . . . . . . . . . . . . 142 27. Percent distribution for optimumnquadrat dimensions for a given sample size. Relative net precision used as the optimization criteria . . . . . . . . . . . . . 147 28. Regression coefficients and coefficients of determi- nation for the relationship between distance measure- ment estimates of density (x) and true plot density (y). Number of plots - 39 . . . . . . . . . . . . . . 153 vii Table Page 29. Regression coefficients and coefficients of determi- nation for the relationships between log (den/’mu) (y) and log 10 (NORP /’NN2) (x). Number of plots 2 44. 154 30. Within (5:) and between (5:) field variance components for a subset of the 1977 and 1978 larval coordinate data (3 samples per field, 3 fields per date). . . . . . 171 31. .Mean head dry weight from the oat fields on the Kellogg Biological Station in 1978 . . . . . . . . . . . . . 174 32. Yield information from the 1978 parasitoid cages . 175 33. Summary of percent defoliation and total larval pro- duction for the KBS oat fields planted in 1978 . . . . 181 34. Split-split plot anova results for weight per kernel . . 185 35. Split-split plot anova results for no. spiklets per head . . . . . . . . . . . . . . . . . . . . . . . . 186 36. Split-split plot anova results for dry weight per head . 187 37. Summary of larval production and oats grain yield components from the 1978 parasitoid cage study and host field. 9-8. Row 1 a mean, row 2 - standard error of the mean and row 3 - sample size. . . . . . . . 194 38. Significance levels for t-tests comparing means of several components of oats yield from the 1978 parasite cage study. . . . . . . . . . . . . . . . . . . 195 39. Summary of cats plant height at harvest and t-test values for 1978 parasitoid cage study. n - 24 . . . 197 Acreage of fields within the Kellogg Biological Station research area. . . . . . . . . . . . . . . . . . 209 81. 1976 Gull Lake Biostation temperature information. 211 82. Degree day accumulation at the Gull Lake Biostation for 1976 . . . . . . . . . . . . . . . . . . . . . . . . 212 B3. 1977 Gull Lake Biostation temperature information. . . . 213 84. Degree day accumulation at the Gull Lake Biostation for 1977 O O O O I O I O O O O O O O O I O O O O O O O O 214 BS. 1978 Gull Lake Biostation temperature information. . . . 215 viii Table 86. Degree day accumulation at the Gull Lake Biostation for 1978 O O O O O O O O O I O I O O O O O O O O O O O B7. BB. 1979 Gull Lake Biostation weather information. . . . . Degree day accumulation at the Gull Lake Biostation for 1979 . . . . . . . . . . . . . . . . . . . . . Page 216 217 218 227 234 01. Total 1976 seasonal production- Sweepnet survey . 02. Summary of 1976 Gull Lake CLB sweep survey . . D3. Parasitism of CLB larvae. 1976. . . . . . . . . . . . . 267 D4. 05. Total 1977 seasonal production. Sweepnet survey . . . 272 Summary of 1977 Gull Lake CLB sweep survey . . . . . . 278 D6. Parasitism of CLB larvae from 1977 Gull Lake sweepnet survey. . . . . . . . . . . . . . . . . . 301 D7. Mean number of parasite eggs and larvae recovered from dissections of the 1977 Gull Lake CLB sweepnet survey. Row 1 I mean, row 2 I variance, row 3 I no. larvae parasitized . . . . . . . . . . . . . . D8. Total 1978 seasonal production. Sweepnet survey . . . . . 308 321 09. Summary of 1978 Gull Lake CLB sweep survey . . . . . 326 D10. Parasitism of CLB larvae from 1978 Gull Lake CLB sweepnet survey. . . . . . . . . . . . . . . . . . . . 349 011. Mean number of parasite eggs and larvae recovered from dissections of the 1978 Gull Lake CLB sweepnet survey. Row 1 I mean, row 2 I variance, row 3 I no. larvae parasitized . . . . . . . . . . . . . . . . 352 012. Total 1979 seasonal production from farm sweepnet smey O I O O I O O O O O O O O I O O O O O O O O O 0 357 013. Summary of 1979 Gull Lake CLB sweep survey . . . . . . 358 014. Parasitism of CLB larvae from 1979 Gull Lake CLB sweepnet survey. . . . . . . . . . . . . . . . . . . . 363 015. Mean number of parasite eggs and larvae recovered from dissections of the 1979 Gull Lake CLB sweepnet survey. Row 1 I mean, row 2 I variance, row 3 I no. larvae parasitized . . . . . . . . . . . . . . . . 366 ix Table Page El. Summary of 1976 Gull Lake population samples. Row 1 I mean, row 2 I standard error 8f the mean. Sample unit equals 60 cm of row (DD>9 C).. . . . . . . . 371 E2. Summary of 1976 stem height and density taken in population sample fields. Sample unit equals 60 cm of oats row. (DD>S.5°C). . . . . . . . . . . . . . . 373 E3. Summary of 1977 Gull Lake population samples. Row 1 I mean, row 2 I standard error of the mean. Sample unit equals 60 cm of row (DD>9°C) . . . . . . . . 376 E4. Parasitism of CLB larvae from 1977 Gull Lake population samples . . . . . . . . . . . . . . . . . . . 379 E5. Mean number of parasite eggs and larvae recovered from dissections of the 1977 Gull Lake population samples. Row 1 I mean, row 2 I variance, row 3 I no. larvae parasitized . . . . . . . . . . . . . . . . . 380 E6. Summary of 1977 stem height and density taken in population sample fields. Sample unit equals 60 cm of oats row. (DD>S.5°C). . . . . . . . . . . . . . . 381 E7. Summary of 1978 Gull Lake population samples. Row 1 I mean, row 2 I standard error of the mean. Sample unit equals 60 cm of row (DD>9°C). . . . . . . . 383 E8. Parasitism of CLB larvae from 1978 Gull Lake population samples . . . . . . . . . . . . . . . . . . . 386 E9. Mean number of parasite eggs and larvae recovered from dissections of the 1978 Gull Lake population samples. Row 1 I mean, row 2 I variance, row 3 I no. larvae parasitized . . . . . . . . . . . . . . . . . 388 E10. Summary of 1978 stem height and density taken in population sample fields. Sample unit equals 60 cm of cats row. (DD>5.5°C). . . . . . . . . . . . . . . 391 E11. Summary of 1979 Gull Lake population samples. Row 1 I mean, row 2 I standard error of the mean. Sample unit equals 60 cm of row (DD>9°C) . . . . . . . . 394 312. Parasitism of CLB larvae from 1979 Gull Lake population samples . . . . . . . . . . . . . . . . . . . 396 813. Mean number of parasite eggs and larvae recovered from dissections of the 1979 Gull Lake population samples. Row 1 I mean, row 2 I variance, row 3 I no. larvae parasitized . . . . . . . . . . . . . . . . . 397 Table Page E14. Summary of 1979 stem height and density taken in population sample fields. Sample unit equals 60 cm of cats row. (DD>5.5°C) . . . . . . . . . . . . . 399 F1. Summary of CLB egg parasitism by A, flavipes at the Kellogg Biological Station from 1976 to 1979 . 400 31. Amount of time spent in various behaviors by CLB adults in 1976 (time in minutes and seconds) . . . . 449 H2. Listing of 1976 adult CLB movement observations at Gull me O O O O O O O O O O O O O O O O O O O I 0 458 H3. Amount of time spent in various behaviors by CLB larvae in 1976. (min a sec) . . . . . . . . . . . . . 471 11. Summary of 1976 Gull Lake cage population samples. Row 1 I mean, row 2 I standard error of the mean. Sample unit equals 60 cm of row. (DD>9°C) . . . . . . 473 12. Parasitism of CLB larvae from 1976 Gull Lake cage study. 474 I3. Mean number of parasite eggs and larvae recovered from dissections of the 1976 Gull Lake CLB cage study. Row 1 Imean, row 2 I variance, row 3 I no. larvae parasitized. . . . . . . . . . . . . . . . . . . . . . 475 I4. Summary of 1976 stem height and density taken from cage population samples. Sample unit equals 60 cm of cats row. (DD>5.S°C) . . . . . . . . . . . . . . 476 IS. Summary of contents of CLB pupal cells recovered from soil samples taken under emergence traps in parasite cages. Sample unit equals 18" x 36" x 4". Row 1 I mean and row 2 I variance. . . . . . . . . . . . . . . 477 16. Summary of 1978 Gull Lake cage population samples. Row 1 I mean, row 2 I standard error of the mean. Sample unit equals 60 cm of row. (DD>9°C) . . . . . . 478 I7. Parasitism of CLB larvae from 1978 Gull Lake parasitism cages . . . . . . . . . . . . . . . . . . . 479 I8. Mean number of parasite eggs and larvae recovered. from 1978 parasitism cage CLB larvae. Row 1 I mean, row 2 I var., row 3 I no. parasitized. . . . . . . . . 480 I9. Summary of 1978 stem height and density taken in cage population samples. sample unit equals 60 cm of cats row. Sample size equals 15, DD>5.S°C. . . . . . . . . 481 xi Table Page I10. Summary of contents of CLB pupal cells recovered from soil samples taken under emergence traps in parasite cages. Sample unit equals 18" x 36" x 4". Row 1 I mean and row 2 I variance . . . . . . . . 482 I11. Mean number of live leaves and percent defoliation per oats plant in parasite cages on the Kellogg Biological Station. Row 1 I mean and row 2 I variance 483 J1. Defoliation plot plant parameters. Row 1 I mean, row 2 I variance. Sample I 30 cm of row. nIlO. . . . 484 J2. Defoliation plot stem densities. Sample I 30 cm of row. n I 10. . . . . . . . . . . . . . . . . . . . 493 J3. Defoliation plot stem and head densities. Sample unit equals 31 cm of row. Sample size equals 10. Samples collected July 17, 1978. . . . . . . . . . . . 496 J4. Plant information from 1978 defoliation plots. Area in sq mm. Ht prior to start of defoliation. . . . . . 497 J5. Subset of 1978 defoliation data used in the analyses of variance. . . . . . . . . . . . . . . . . . . . .,. 526 xii LIST OF FIGURES Page Location of the Kellogg Biological Station in Ross Township, Kalamazoo County, Michigan . . . . . . 15 Crop planting schedule in the 3 research areas of the Kellogg Biological Station from 1976 to 1979. . . . . 16 Artificial coordinates for a uniform spatial pattern of organisms. Organisms 1 unit apart in a square lattice O O O O O O I O O O O O O O O O I O O O O O 0 34 Artificial coordinates for a random spatial pattern of organisms. Coordinates obtained from a random number table. . . . . . . . . . . . . . . . . . . . . 35 Artificial coordinates for the level 1 aggregated spatial pattern of organisms. (After Waters 1969) . . 36 Artificial coordinates for the level 2 aggregated spatial pattern of organisms. (After Waters 1959) . . 37 Artificial coordinates for the level 3 aggregated spatial pattern of organisms. (After waters 1959) . . 38 Plot layout for the 1978 defoliation plots. Numbers in parentheses indicate plot code. Irrometers were located in plots ll, 14 and 17. . . . . . . . . . . . 42 Distribution of small grain fields surrounding the Kellogg Biological Station in 1976. . . . . . . . . . 50 10. Distribution of small grain fields surrounding the Kellogg Biological Station in 1978. . . . . . . . . . 51 11. Distribution of small grain fields surrounding the Kellogg Biological Station in 1979. . . . . . . . . . 52 12. Log10 of the total larval production per 2 row feet (60 cm) in cats and winter wheat from the section 9 population sampling area from 1967 to 1979. . . . . . 66 13. Relationship between degree days>9°c and the proportion of CLB eggs parasitized by Anaphes flavipes at the section 9 research area oat fields from 1976 to 1979. 73 xiii Figure Page 14. Graphical key-factor analyses of the individual components of the 6 factor within-generation survival model. A I eggs, B I first instars, C I second instars, D I third instars, E I fourth instars and P I pupae . . . . . . . . . . . . . . . . . . . . . . . 78 15. Graphical key-factor analyses of the individual components of the 4 factor within-generation survival model. A I egg-2, B I small instars, C I large instars and D I pupae . . . . . . . . . . . . . . . . . 79 16. Relationship between the proportion of CLB eggs in cats parasitized by Anaphes flavipes and egg survival for the 6 factor (A) and the 4 factor (B) within- generation survival models. . . . . . . . . . . . . . . 83 17. Relationship between degree days 9>C°and cumulative CLB oviposition and proportion of eggs parasitized by Anaphes flavipes . . . . . . . . . . . . . . . . . . 85 18. Relationship between CLB density as measured by total egg production / 60 cm and egg survival from unknown mortality sources . . . . . . . . . . . . . . . 87 19. Relationship between CLB density as measured by total egg production / 60 cm and larval survival from unknown mortality sources. . . . . . . . . . . . . 89 20. Graphical key-factor analyses of parasitism by g. julis (A) and Q, tempgralis (B) with total within- generation survival . . . . . . . . . . . . . . . . . . . 91 21. Relationship between larval production / 60 cm and parasitism by 3, julis (A) and Q, temporalis (B) in the section 9 oat fields and parasitoid cages. . . . 94 22. Relationship between total larval production and parasitism by g, julis (A) and Q, tempgralis (B) in the section 9 research area from 1970 to 1979. . . . 96 23. Graphical key-factor analyses of pupal survival from g. julis (A) and Q. tgmralis (B) with total pupal survival. . . . . . . . . . . . . . . . . . . . . 98 24. Relationship between CLB density as measured by total egg production / 60 cm and pupal survival from unknown sources. . . . . . . . . . . . . . . . . . 100 25. Key-factor analyses between number of organisms in generation t times survival from all mortality sources for eggs (A), larvae (B) and pupae (C) with the number of organisms in generation t+l . . . . . . . . . 102 xiv Figure Page 26. Relationship between proportion of CLB eggs parasitized by Anaphes flavipes in year t and the proportion of CLB larvae parasitized by Tetrastichus julis in year t+l . . . . . . . . . . . . . . . . . . 104 27. Phase plot of log of the total CLB larval pro- duction in cats from the section 9 research area. . . 106 28. Phase plot of log of the total CLB larval pro- duction in winter wheat from the section 9 research area. . . . . . . . . . . . . . . . . . . . . . . . 107 29. Plots of the CLB larval coordinates collected from field 5-58 plot 1 in 1977. A I June 7, B I June 14 C I June 17 and D I June 21 . . . . . . . . . . . . . 111 30. Plots of the CLB larval coordinates collected from field 8-13 in 1977. A I May 31, B I June 7, C I June 10, D I June 14 and E I June 17. . . . . . . . . 112 31. Plots of the CLB larval coordinates collected from field 9-15 in 1977. A I June 7, B I June 10, C I June 14, D I June 17 and E I June 21. . . . . . . . . 113 32. Relationship between standard error of the mean as a proportion of the mean and the number of row feet examined in a sample as the row length increases. . . 132 33. Relationship between density estimates obtained from 2 row feet (60 cm) samples and the true mean. The dashed line represents the correction factor for 2 row feet. . . . . . . . . . . . . . . . . . . . . 135 34. Effect of the number of row feet examined in a sample and sample size on the coefficient of determination . 136 35. Relationship between total length of row examined by a sampling scheme and the coefficient of determination. 138 36. Effect of quadrat dimensions and sample size on the coefficient of determination. . . . . . . . . . . . . 144 37. Relationship between the total square feet examined by a sampling scheme and the coefficient of determ- mtion O O O O O O O O O O I O O O O 0 O O O O O O 0 145 38. Probability regions in a field as a result of row sampling (A) and quadrat sampling (B) . . . . . . . . . 149 Figure Page 39. Probability of obtaining an unbiased sample from a field based on the ratio of sample induced border area to unbiased sample area. . . . . . . . . . . . . . 150 40. Relationship between mean NORP2 / mean NN2 (B') , an index of dispersion, and estimated density/(true density, an index of bias in density estimates due to the spatial pattern of the organism . . . . . . . . . . 155 41. Effect of sample size on the stability of mean NORP2 / mean NN (B ) e e e e e e e e e e e e o e e e e e e 0 2 . 42. Relationship between logl (mean NORle’mean NNZ) and log (estimated density,ptrue density) used to correct density estimates based on the organism's spatial pattern . . . . . . . O . O . . O . . . O O O . . O O . 156 157 43. Comparison of the coefficients of variation obtained from quadrat and distance measurement sampling schemes . . . . . . . . . . . . . . . . . . . . . . . . 162 44. Hypothetical relative efficiencies of equal numbers of quadrat samples and distance measurements used to estimate organism density. . . . . . . . . . . . . 163 45. Comparison of hypothetical and actual relative efficiencies for equal sample sizes of quadrat and distance measurement sampling schemes . . . . . . . 165 46. Limitation of use of distance measurements for denSity estimtion . O . . . . . . . O . . . . . . O O 0 168 47. Relationship between leaf width and leaf vein spacing . 177 48. Relationship between leaf vein spacing and vein position (number) across the leaf . . . . . . . . . . . 178 49. Relationship between leaf vein spacing and vein position (distance) from the leaf base. . . . . . . . . 179 50. Relationship between total larval production / 60 cm and percent flag leaf defoliation (A) and the total plant (B) . . . . . . . . . . . . . . . . . . . . 182 51. Relative effects on plant yield caused by a single application of water stress at different growth stages in a hypothetical plant. (After Hanson and Nelsen 1980) O O O O . O O O O O I O I O O O O I 0 O O O O O I 189 Figure Page 52. Growth rates of oat plants during a time interval versus plant height at the end of the growth interval. Plot 1 I no irrigation, plot 5 I medium irrigation and plot 9 I high irrigation . . . . . . . . 191 53. Relationship between plant height and the mean number of live leaves and tillers per plant. A I no irrigation, B I medium irrigation and C I high irrigation. . . . . . . . . . . . . . . . . . . . . . . 192 Field maps for the 4 sections in the Kellogg Biological Station. . . . . . . . . . . . . . . . . . . 208 xvii INTRODUCTION The cereal leaf beetle, Oulema melanopus (L.),(hereafter referred to as CLB) is a small grain pest that was accidentally introduced into the 0.5. from Europe. Since its first discovery in southwestern Michigan in 1962 (Michigan State University 1970), the CLB has spread throughout Michigan and most of the northeastern U.S. The potential of the CLB to reduce cat and wheat yield (Gallun et a1. 1967, Merritt and Apple 1969, Wilson et a1. 1969, Webster et a1. 1972) coupled with the threat of CLB invasion into the midwestern U.S. grain belt spurred research interests into many facets of the CLB agroecosystem. Among the early research programs on the CLB was the establishment in 1967 of a study into CLB population dynamics (Haynes 1973). This study was initiated on the Kellogg Biological Station located in Ross Township of Kalamazoo County, Michigan. Specifically, the northwestern corner of section 9 within the station has been identified as the site for long-term population dynamics research. COOperation between CLB researchers and KBS personnel has provided for tracts of land where the cropping, harvesting and management procedures are under the super- vision of the CLB researchers. Since the CLB is an introduced pest that is quite host-specific to Graminae (Shade and Wilson 1967, Wellso 1973), it provides a rela- tively ”clean" ecosystem for a population dynamics study. As the biological control program grew and exotic egg and larval parasitoids were established, the population dynamics programs continued and the mortality caused by each parasitoid was monitored. Population levels of the CLB and parasitism rates of the exotic parasitoids have been monitored in this program by a number of researchers (Helgesen 1969, Gage 1972, 1974, Sawyer 1976). During this period of time, 1967 to 1975, large changes in population density were observed in both oats and winter wheat and by 1975 the population densities in both crops were very low. It is at this point in time that my research into the population dynamics of the CLB at low densities began. To maintain continuity with the previously collected density information, thirty 60 cm lengths of grain row were sampled from each field on each sample date. This data was then used to examine the within-generation population dynamics of the CLB and assess mortality to the various factors. This represents a major thrust of the research presented in this thesis. Since the densities were so low, a second thrust to my research, low density population techniques, developed. Concurrent to the population sampling in the section 9 area for historical purposes, other sampling schemes were being investigated to provide greater reliability of low level population density estimates. Towards this end, the x and Y coordinates of larvae were collected and entered onto computer files. These coordinates captured the spatial and density features of the larvae at the time of their collection. Through the use of computer simulations, these data sets will be interrogated to provide insight into the relationships between an organism's spatial pattern, density and the choice of the most efficient sampling scheme. Finally, the low density of the CLB allowed development of plant level examination of the effects of insect defoliation on oat yield. At low CLB densities relatively little natural defoliation occurs; therefore, by placing CLB larvae on individual oat plants the amount of plant defoliation can be controlled and allowed to develop at a natural rate. The final section of this thesis discusses effects of defoliation on oat grain and straw yield and how nutrients, moisture and planting date interact with defoliation to modify these effects. In conclusion, this thesis can be divided into two research efforts. The first deals with studying the within-generation population dynamics of the CLB at low density levels via the historical sampling scheme, identifying key factors of within-generation survival, and finally, comparing them to the within—generation population dynamics observed at much higher densities. The second effort deals with studying low density populations and developing accurate methods of estimating organism density. Also included in this low density section will be the examination of the interactions between defoliation by CLB larvae, moisture level, nitrogen level and planting data and their effects on oat grain and straw yield. LITERATURE REVIEW DISTRIBUTION AND ABUNDANCE When investigating the ecology of an organism, it is important to study its distribution and abundance to gain insight into the organism's biological interactions and mechanisms (Pielou 1977, Southwood 1978). The distribution and abundance of an organism has many levels of resolution. One can consider the distribution on the host, within and between hosts in a field, within and between host fields in a region, etc. In reference to the CLB, Helgesen and Haynes (1972) referred to these levels of resolution as aggregation. Care must be taken, however, with the term "aggregation," since in statistical terms it implies a negative bionomial distribution of sample counts (Bliss and Fisher 1953, Waters; 1959, Pielou 1959, 1977, Patil and Stiteler 1974, Logan 1977, 1980, Myers 1978, Southwood 1978) which may not always be true. As the density of the CLB decreases, the variance associated with quadrat counts generally increases (Helgesen and Haynes 1972, Ruesink and Haynes 1973, Logan 1977, 1980). When the classification of an organism's spatial pattern-~location of the organism within its habitat-- is based on the statistical distribution of quadrat counts (Bliss and Fisher 1953, Robinson 1954, Thompson 1956, Morisita 1959, Waters 1959, Taylor 1961, Green 1966, Lefkovitch 1966, Elliott 1977, Pielou 1977, Logan 1977, 1980, Myers 1978, Carruthers 1979) large biases in classi- fication can result since means and variances are generally functions of the quadrats dimensions (Greg-Smith 1957, Pielou 1957, 1959, 1977, Mountford 1961, Patil and Stiteler 1974, Elliott 1977). An alternate approach to classification of an organism's spatial pattern which eliminates the problem of dependence of the mean and variance to quadrat dimensions is to use distance measurements. These distance measurements fall into two categories: 1) distance measurements from a random individual to its nearest neighbor (Clark and Evans 1954, Thompson 1956, Blackith l958),and 2) distance measurements from a random point to its nearest neigthr (Moore 1954, Pielou 1959, Batcheler 1971). Since these distances reflect different levels of spatial pattern, i.e., individual-to-individual distances generally measure within clump distances whereas point-to-individual distances measure within plus between clump distances (Pielou 1977), the most suitable method of classifying an organism's spatial pattern is a combination of both distance measurements (Moore 1954, Batcheler 1971, Pielou 1977). For those interested in a more detailed and theoretical review, see Pielou 1977. The abundance of an organism is of primary concern in any ecological and population dynamics study. Generally speaking, this can be accomp- lished with a fixed quadrat, sweepnet or any one of many absolute density estimators (Ruesink and Haynes 1973, Southwood 1978). However, at low densities these methods result in extremely large variances and little reliance can be placed on the information (Helgesen and Haynes 1972). In fact at CLB densities below 5 eggs per ftz, Helgesen and Haynes (1972) observed standard errors in excess of 100% of the mean. An alternate method of density estimation can be found in distance measurements from a source, either a random individual or a random point, to its nearest neighbor (Moore 1954, Blackith 1958, Batcheler 1971). This is possible since the distance to the nearest neighbor can be envisioned as the radius of a circle which contains exactly one organism. At densities below one organism per sample unit, Moore (1954) has shown that for an equal number of samples a lower standard error results from density estimates made via distance measurements rather than fixed quadrats. An essential assumption in estimating density via distance measurements is that the individuals exhibit a random spatial pattern. This severely limits its widespread applicability. In measuring distances from random trees and random points to their nearest neighbors, Batcheler (1971) observed a relationship between spatial pattern and the bias in density estimates due to non- randomness. This relationship can be utilized as a correction factor to the density estimates obtained from distance measurements in non- randomly spaced populations, therefore, greatly increasing the general application of density estimation via distance measurements. POPULATION DYNAMICS Since the first discovery of the CLB in Michigan in 1962 (Michigan State university 1970) much research effort has gone into the under- standing of the CLB ecosystem (Haynes 1973). As a result, many journal articles and theses have been written dealing with various aspects of the CLB and its ecosystem. Sawyer (1978) provides an excellent review of many of these articles and theses. The purpose of this thesis, however, was to examine the population dynamics of the CLB at low densities and to compare and contrast them with the dynamics at high densities. Investigations on the population dynamics of the CLB have been carried out by several authors (Shade et al. 1970, Helgesen and. Haynes 1972, Gutierrez et a1. 1974) but in these works the densities of the CLB were high and the complement of introduced parasitoids were not well established. Since the work by Helgesen and Haynes (1972) was performed in Michigan at the Kellogg Biological Station, it provided the most logical source for comparison. Parasitism of the CLB has been investigated by many authors (see Gage 1974 for a complete review). Only a few of the more pertinent works will be discussed here. The biology and ecology of the egg parasitoid Anaphes flavipes have been investigated in the laboratory by Anderson (1968) and Anderson and Paschke (1968). Primary parasitoid considerations in these works include: developmental rates, mating frequency, host specificity, evaluation of biotypes, fecundity, longevity, dispersal and the effects of ovicides of parasitoid survival. In both of these works, the impact of A, flavipes on the within-generation survival of the CLB and the effects of synchrony between CLB oviposition and A, flavipes emergence were omitted due to the laboratory nature of the experiments. Helgesen and Haynes (1972) speculated that A, flavipes would have little effect on the within-generation survival of the CLB based on the density-dependent survival exhibited by first and fourth larval instars at high density. Dysart et a1. (1973) briefly described the biology of the larval parasitoids of the CLB and outlined the colonization efforts in the united States, while Leibee and Horn (1979) described the effects of tillage on survivorship of the CLB and its larval parasitoids. The most comprehensive work on the biology and ecology of Tetrastichus 131i3, one of the primary CLB larval parasitoids, and its interactions with the CLB was carried out by Gage (1974). In this work the develop- mental rates, emergence, survival, fecundity and diapause rates of T, 121i§_were investigated both in the laboratory and the field. Gage (1974) and Gage and Haynes (1975) also proposed management of T, luli§_ to optimize CLB larval parasitism on a regional level. CLB INTERACTIONS WITH OATS The leaves of oats are the primary source of photosynthetic activity responsible for its growth and yield. Leaf area index (L I area of leaf laminae per unit of land surface, Watson 1956) provides a convenient and universal index of photosynthetic area. Heath and Gregory (1938) note that "...leaf growth is the main determinant of differences in dry weight yield...." Watson (1956) found a high degree of correlation between variation in crop yields and L. By integrating L over time, Watson (1958) developed the leaf-area duration index which he found closely related to dry matter yield in wheat, barley, potatoes and sugar beets. The growth rate of plants typically increases with increasing L until an optimum rate is reached (Loomis and Williams 1963, Williams et a1. 1965). Then, depending on the shape and display of the foliage, the growth rate will become asymptotic or start to decline. Watson (1956) points out when L values for cereal crops are plotted against time they tend towards positive kurtosis with only a short period of high L values. He further noted that through alteration of planting dates a better synchronization of peak photosynthetic capabilities resulted which increased yield. Loomis and Williams (1963) consider the major limiting factors to total seasonal yields to be leaf area, the manner of leaf display and the C02 supply. Watson (1956) summarized what he considers to be the four essential conditions, relative to leaf area, for high plant yield. They are: a high leaf area index at the time of head emergence; slow senescense of leaves once heads have emerged; a long interval between head emergence and the crop maturation; and the interval between head emergence and harvest must occur when photosynthetic conditions are optimal. Therefore, when considering the effects of insect defoliation on oats yield, one must include not only the amount of leaf tissue defoliated but also the timing and duration of defolia- tion. Defoliation has a two-fold impact on yield: first, it affects the amount of photosynthetic area and second, it ruptures the cell membrane which leads to water loss and water stress. Because plants have extremely elastic growth responses, it is difficult to predict the isolated effects of defoliation. Foliage removal can be beneficial when it has a "pruning effect." Banks and Macaulay (1967) found small infestations of Aphis fabae on field beans increased yield possibly due 10 to decreased apical growth. Turnip roots have also been found to increase when leaves were defoliated by larvae of the moth Plutella xylostella (Taylor and Bardner 1968). In this case the larvae feed on the new growth which prevented the dropping of older and larger leaves. Kincade et al. (1971) found that simulated damage to soybean pods reduced yield but increased seed weight. More common in the literature, however, are examples where foliage removal reduced yield (corn: Usua 1968; cotton: Adkisson et a1. 1964, Kincade et a1. 1970, Gutierrez et a1. 1975, Hanny et al. 1977; lima beans: Eckinrode and Ditman 1963; oats: WOmack and Thurman 1962, Wilson et a1. 1969, Merritt and Apple 1969; rice: Bowling 1963; soybeans: Begum and Eden 1965; wheat: Ortman and Painter 1960, Gallun et al. 1967, Webster et a1. 1972, Pickford and Mukerji 1974, Holmes l977--to name but a few field crops). The source of cats defoliation to be used in these experiments will be the CLB. The CLB was selected because much information is available on its growth and development. wellso (1973) has calculated the foliage consumption by each instar on oats, barley and two varieties of winter wheat, while Gage (1972) has developed a method for weighting the consumption by each instar and has calculated the rate of consump- tion throughout the season. Gage (1972) and Jackman (1976) provide extensive reviews of the interactions of the CLB with oats and wheat. They present many important relationships between time and plant biomass accumulations, leaf area, and distributions of CLB larval feeding. Those interested in greater detail are referred to those works. 11 The effects of moisture stress are more subtle and difficult to evaluate because of their close relationship to plant growth. Moisture stress reduces plant turgor which provides the driving force for cell enlargement. Hanson and Nelsen (1980) have summarized the works of several authors on the relative effects on yield of moisture stress applied at various stages of plant phenology. They noted the existence of "decision points" where the plants exhibited sensitivity to water stress. It has been shown that plants are more susceptible to moisture stress when the plant is undergoing rapid cell division--i.e., germina- tion, tillering and anthesis (Campbell 1974, Hanson and Nelsen 1980). However, water stress may not always reduce yield. Passioura (1976) has demonstrated that when wheat plants are grown under limited water conditions, substantial increases in grain yield could be obtained when the plants were forced to save water until after anthesis. Viewed in this light, CLB defoliation could increase grain yield since the most severe CLB defoliation generally occurs prior to anthesis. Early CLB defoliation could cause the cat plant to conserve water which would result in greater stored soil water availability after anthesis. Significant correlations have been demon- strated between grain yield and available stored water after anthesis (Passiora 1972). Therefore, it appears as though the timing of stress, either by lack of moisture or through defoliation, is a very important factor when examining the dynamics of plant yield and defoliation. Gutierrez et a1. (1975) investigated the effects of defoliation of cotton at different plant stages. They found early defoliation reduced yield more than defoliation closer to harvest. Pickford and 12 Murkerji (1974) found that under higher densities of migratory grass- hoppers, early defoliation reduced wheat yield significantly more than late season defoliation. Begum and Eden (1965) found defoliation of soybeans reduced yield more significantly when beans were less mature . 13 METHODS AND MATERIALS STUDY ORGANISM The CLB was selected as the study organism for this research for the following reasons: 1) due to the research activity of other investigators, the biology, ecology and behavior of the CLB at high densities is well documented; therefore, this work contributed to the understanding of low density population dynamics in a long-term ecological study; 2) currently the CLB is at relatively low densities throughout most of its North American range; 3) all life stages prior to prepupal occur on foliage and are quite sedentary, which makes them observ- able with a minimal amount of disruption to their surroundings; 4) since the CLB is an introduced pest, most of its biological control pressure can be attributed to its four introduced exotic parasitoids; 5) larvae of the CLB are relatively host specific, feeding on plants in the family Gramineae; and 6) larval feeding behavior has been investigated and the amount of foliage consumed by each instar calculated. The above mentioned reasons make the CLB an excellent organism for studying low level population dynamics, the interactions between the 14 CLB and its parasitoids, and the effects of insect defoliation on the growth and yield of cats. STUDY AREA This research was conducted on sections 4, 5, 8 and 9 of Ross Township, Kalamazoo County, Michigan (Fig. 1). Of the 1620 acres of cultivated land in this area, 980 are managed by Michigan State univer- sity, which makes up the W. K. Kellogg Biological Station (hereafter referred to as KBS). This area was selected because: it is university- owned property, which allows access and flexibility in experimentation; it is prepared and maintained under typical commercial conditions; CLB population data and weather information are available since 1967; and the area currently supports a low level CLB population. Cooperation between personnel at KBS and the CLB researchers has provided for tracts of land in sections 5, 8 and 9 in which the cropping practices can be controlled by the CLB researchers. These practices include: field planting schedule, planting dates, soil preparation and pesticide use. The field planting schedule for these three areas was, smarizedfrom 1970 to 1973 by Gage (1974) , for 1974 and 1975 by Sawyer (1976) and from.l969 to 1979 in this work (Fig. 2). The field numbering system for this area as described by Casagrande (1975) will be used throughout this report. For the location and acreage of specific fields, see Appendix A. 15 " - - - - 5 1 - “ » ; 1 4 $mckosv CORNERS BARRY COUNTY KALAMAZOO COUNTY Figure 1. Location of the Kellogg Biological Station in Ross Township, Kalamazoo County, Michigan. 16 1976 mm hm GTS GT 5mm ”MIA OATS WINTER WEAT “TS an «rmmu wImER III-EAT WINTER WT ”(ATM UT 51m: WINTER if” «T m NINTH HEAT GT8 WINTER HEAT comm WINTER HEAT OAT SW 0T5 w m n q — c a m m m n « — c a m Figure 2. Crop planting schedule in the 3 research areas of the Kellogg Biological Station from 1976 to 1979. a w w u e n t s m m s n a e m m v m m S C B U 3 ’ “ V ‘ O N o o o u E C S K U 16 18 17 COLLECTION AND ANALYSES OF DATA KBS Weather Information Using the maximum and minimum temperature information from the Kellogg Biological Station weather station, degree day accumulations were calculated using the sinusoidal method (Baskerville and Emin 1969). The daily maximum and minimum temperatures and degree day accumulations from 1976 to 1979 are summarized in Appendix B. Since the temperature infermation was collected in degrees Fahrenheit, the degree day calcu- lations were made on this data, then transformed to Centigrade. Fahrenheit degree days are converted to Centigrade by simply multiplying by 5/9 (.5556). Regional Distribution and Abundance KBS between-field sweepnet survey. To determine the abundance of CLBs in the Gull Lake area and to examine possible CLB reservoirs, a survey of the grain fields west of the KBS was conducted on June 22, 1976; June 18 and 19, 1978; and June 28, 1979. No survey was conducted during 1977. Fields to the west were selected since it is generally hypothesized that CLBs move with the prevailing winds (Haynes personal communication, Sawyer unpublished data) that are southwesterly. The survey was conducted by driving down all public roads in the area until a small grain field was located. All small grain fields were drawn on a map to approximate scale and the cat fields surveyed. In 1976 and 1979 the cat fields were surveyed with a sweepnet using the following procedure: the sweeper entered the field approximately five paces before initiating sweeping. Once there, the sweeper would proceed 18 downfield until half of the predetermined number of sweeps were taken. The sweeper would then move to another portion of the field and complete the sweeps. A single sweep consists of a 5 ft (1.5 m) pass through the grain canopy with a 15 in (38 cm) diameter polyurethane bag-lined sweep- net. Upon completion of the sweeps, the contents were washed down the bag and preserved with FAA (50 parts H20, 47 parts 95% ETOH, 2 parts formaldehyde and 1 part glacial acetic acid). A field identification and date tag was then placed in the bag. The bags were then fastened, removed from the sweepnet and returned to the laboratory where the CLB adults and larvae were removed and counted. From each field survey, a random sample of 50 larvae, all if less than 50 were collected, was drawn for instar determination (Hoxie and Wellso 1974, Fulton 1975) and dissection for parasitoids (Montgomery and DeWitt 1975). Due to the advanced CLB development in 1978, a defoliation survey, rather than a sweepnet survey, was conducted. To estimate defoliation, a random sample of 50 stems was collected from each field. The stems were obtained by tossing a 2 ft (60 cm) pointed stake and selecting the stem closest to the stake point. From each stem, the length and width of each leaf was measured, a visual estimate of percent defoliation was made, and the number of leaves was recorded. Leaf measurements were made with a metal ruler divided into 64th inches (0.397 mm). To estimate stem and head densities, the 2 ft (60 cm) stake was thrown, placed along an oat row, and all stems and heads along the stake counted. This process was repeated 10 times per oat field. To obtain an estimate of the seasonal production of CLBs within the four square mile study area, a weekly sweepnet survey of all field 19 types was conducted from 1976 to 1978 and in all small grain fields in 1979. Field types included in the 1976 to 1978 survey were: alfalfa, idle (unused for two consecutive years), oats, pasture, rye, small grain stubble and winter wheat. Sweeps were occasionally taken along fence rows and rOadsides to determine densities of beetles in non- field habitats. Fields within the KBS were swept using two methods. Prior to larval appearance in the field, the sweepnet survey was oriented towards adults; whereas, after larvae appeared, the sweepnet survey was oriented towards larvae. When sweeping for adults, no polyurethane liners were used in the sweepnets. The sweeper would enter the field five paces before initiating sweeping and then proceed downfield until one-fourth of the predetermined number of sweeps had been taken. When one-fourth of the sweeps were completed, the sweeper would stop and examine the sweepnet's contents for CLB adults. After the contents had been examined and the number of adults recorded, the contents were released and the process repeated until all sweeps had been made. When the first larvae appeared in the field, polyurethane liners were placed in the sweepnets and the sweeping procedure was changed to that previously described in the regional sweepnet survey. From this time on, only small grain fields were swept. This change took place on June 7, 1976; May 17, 1977; May 31, 1978; and May 24, 1979. Sweepnet catch conversion to absolute density. Catch per sweep in all sweepnet surveys was converted to absolute density using the models developed by Ruesink and Haynes (1973). Adult catch per sweep (CA) was converted to number of adults per square foot (.093m2) (DA) using the following equation: 20 DA - CA (0.20 + 10 ) k [1] where: w l l '.06 + .02H ' .017 (T + 105) + .66 10910 (W + l) H I crop height in inches T I temperature in °F s I solar radiation intenSity in cal cm min , and . . . . -2 . - W wind speed in MPH. Larval densities (DL) per square foot (.093m2) were calculated from larvae per sweep (CL) using the following equation: DL - 1.02 CL [2] Population Dynamics KBS within-field population sampling. These samples were a continu- ation of the long-term population dynamics study, which requires a within- field estimate of density. Therefore, to maintain continuity, the historical sampling scheme was employed. Depending on the life stage of the CLB, two methods were used to estimate within-field densities: l) for adults, eggs and larvae, 2 ft (60 cm) of grain row were examined; 2) for pupae (which pupate in the soil), 3 ft by 1.5 ft by 4 in (.9 m by .45 m by 10 cm) soil samples were collected. The 2 ft samples will be referred to as population samples and the pupae samples will be referred to as soil samples. A simple population sample was taken by counting all CLB life stages on the foliage and ground in a randomly selected 2 ft (60 cm) portion of grain row. This random portion of grain row was located by tossing a 2 ft (60 cm) pointed wooden garden stake and moving it 2 lengths down 21 the row nearest the stake point (Helgesen 1964, Gage 1972, 1974, Sawyer 1976). From each sample portion of row, the average plant height and number of stems were also recorded. In the section 9 research area, the area identified for long-term CLB population research, oat and wheat fields were sampled from 1976 to 1979. The fields sampled in this area (9-11 wheat and 9-13 oats, 1976; 9-11 oats and 9-12 wheat, 1977; 9-12 oats and 9-13 wheat, 1978; and 9-11 wheat and 9-13 oats, 1979) were divided into 10 subplots of 45 ft by 100 ft (13.7 m by 30.5 m). Twice per week three samples were collected from each subplot. Wheat fields were sampled from May 3 to June 14, 1976; April 26 to June 30, 1977; April 27 to June 28, 1978; and May 2 to July 6, 1979. Samples in oats were taken from May 3 to July 1, 1976; May 16 to June 30, 1977; May 11 to July 3, 1978; and from May 13 to July 16, 1979. Population samples were also taken from additional oat fields from 1977 to 1979. In 1977 and 1978, these fields were divided into nine subplots (3 rows of 3). From three of these subplots (l per row) five samples were taken twice per week (the other six plots were used for collection of larval coordinates). In 1979 the fields were divided into ten subplots and twice per week two samples were examined per subplot. These fields were sampled during the same time intervals as the section 9 fields. These additional fields were: 5-58, 8-13 and 9-15 in 1977; 5-60, 8-10 and 9-10 in 1978; and 5-54 and 8-11 in 1979. To determine CLB egg and larval parasitism rates, specimens were collected for rearing and dissections. On June 18, 1976; from June 9 to June 30, 1977; and on every sampling date in 1978 and 1979, the first 22 50 CLB eggs encountered while sampling oats and wheat in the section 9 area were clipped and returned to the laboratory and reared for A, flavipes. Eggs were transferred from the leaf segment to the lid of a 2 in (5 cm) petri dish with a curved probe. A filter paper moistened with .02% Captan solution was placed in the bottom of the petri dish to maintain relative. humidity and inhibit fungal growth. The eggs were stored at room temperature and examined a minimum of once a week for development of CLB larvae or A, flavipes adults. From 1977 to 1979, the first 50 larvae encountered while sampling oats and wheat were collected on each sampling period. The larvae were returned to the laboratory and preserved in FAA for later instar determination (Hoxie and Wellso 1974, Fulton 1975) and dissection for larval parasitoids (Montgomery and DeWitt 1975). Due to the extremely low larval densities in 1976, no larvae were collected. Soil samples were taken to estimate pupal density and survival. A varying number, dependent upon available resources and CLB larval densities, of soil samples were taken from 1976 to 1979 in both cat and wheat fields. A soil sample was taken using the screen-flotation technique (Gage 1974). The foliage was clipped to ground level and discarded. The grain roots were pulled and placed in a labelled poly- urethane bag. The soil was dug to a depth of 4 in (10 cm) and placed in 1/8 in (.3 cm) screen containers. A field and date tag was placed in the container and the bag containing roots was placed atop the soil. The screen containers were returned to the laboratory where the soil was washed through the screen containers. After the soil had been thoroughly washed from the screen containers, the remains were washed through a 23 series of screens to remove roots and stones. The roots were then manually examined for attached pupal cases, while the bottom screen's contents were placed in a water bath. Since the pupal cells were lighter than water, they floated to the surface and were collected. All pupal cells were dissected for content analysis. For a more detailed description, see Gage (1974). Calculating total seasonal incidence and production. To compare densities between fields and to estimate survival from one life stage to another, it is necessary to determine the total seasonal productidn of a life stage per unit area. In organisms where there is no overlap in life stages, this is quite straightforward, simply' census the popu- lation when all individuals are in the life stage of concern. Unfortun- ately, with the CLB there is considerable overlap of the life stages. This makes it necessary to frequently census the population to estimate the number of individuals of a life stage produced per unit of habitat. When life stages overlap, total seasonal production can be calculated in the following manner (Southwood 1966, 1978, Helgesen and Haynes 1969, Kiritani and Nakasuji 1967, Manly 1976). Let Dij correspond to the density of the ith life stage on the jth sample date and DDj to the accumulated degree days on the jt sample date, then for n samples h taken during a season the total seasonal incidence for life stage i (T11) can be calculated by: _ n-l 0 . + D 11 i,j+i Hi 2 1: 3'1 2 1 [on j +1 _ 0021]] [31 Total incidence provides an estimate of the total time (stage degree days) a life stage is present in a habitat. By dividing total seasonal 24 incidence by the developmental time of the life stage (in degree days), which corrects for redundant observations, the total production (TPi) of life stage i per unit of habitat can be calculated. Survival from life stage i to life stage i + l was then calculated by (Kiritani and Nakasuji 1967, Helgesen 1969): S- ‘ 7.3" ‘41 CLB interaction with parasitoids. To examine the relationship between low density CLBs and the larval parasitoids, four 6-milliacre (2431 m2) screen cages were constructed. Since the cages were in close proximity within a given year, it was assumed that all larvae in the cages were exposed to the same parasitoid density. This allowed for examination of the parasitoid's response to various host densities. On May 27, 1976, and on May 22, 1978, adult CLBs collected from Galien, Michigan, were released into the cages according to the following densities: Cage # # CLBS # CLBS per 1976 1978 Released 929 cm2 2 3 4 s 1 2 3 4 250 500 1000 2000 .958 1.913 3.826 7.652 CLB adults were collected from Galien due to the low density of adults at Gull Lake and their earlier availability. 25 After two weeks of oviposition had been allowed, the screen cages were removed and population samples were initiated on a weekly basis. Four 60 cm linear row population counts were taken from each milliacre section of a cage. On June 17, 21 and 24, 1976, and on all sampling dates in 1978, the first 50 larvae encountered in the populations samples were collected for instar determination (Hoxie and Wellso 1974, Fulton 1975) and dissection for parasitoids (Montgomery and DeWitt 1975). One square meter emergence traps (Gage 1974) were used in the cage areas to recover adult parasitoids and CLBs. On June 26, 1976, six emergence traps were placed in the cage plots, one trap for each milli— acre. On July 3, 1978, three emergence traps were placed in the cage plots, one trap for two milliacres. These traps were monitored daily for parasitoids and CLB emergence until July 20 in 1976 and July 26 in 1978 at which time the traps were removed. After the traps were removed, random soil samples were collected to determine pupal density (see previous section for description). Nine and six soil samples were taken per cage area in 1976 and 1978, respec- tively. Soil samples were also taken from under the emergence traps for examination of emergence trap effects. Pupae were extracted from the samples using the screen-flotation technique described earlier. Pupal cells were then dissected for parasitoids where their type and number were recorded. To determine the existing level of pupae in the fields in which the cages were constructed (9-9 in 1976 and 9-8 in 1978), soil samples were collected from these fields and processed in the same manner . 26 Calculation of seasonal parasitism. Due to the overlap in larval stages of the CLB, the multivoltine life histories of some of the larval parasitoids (Tetrastichus julis and Lemophagus curtus) and the dynamics of parasitism throughout the season, total life stage parasitism could only be calculated by integrating information collected over the entire season. The proportion of life stage i parasitized by parasitoid k (PParik) was calculated by: (0 ijPPijk) + (Dij+lPPij+lk) (DD zijk Pparik ’ 2 T11 j+l - DD.) 3 [51 where: i I life stage, j I sample date (1 to n), k I parasitoid, Dij I density of life stage on sample date j, PPijk I proportion of life stage i parasitized by para- sitoid k on sample date j, DD. I accumulated degree days on sample date j, and TIi I total incidence of life stage i as defined in Equation 3. This method of calculation of seasonal parasitism integrates all the dynamic characteristics of parasitism and represents the proportion of the total life stage produced per unit of habitat that were parasitized by a particular parasitoid. 27 Low Density Population Analyses Low density population sampling, When densities of an organism are relatively low (less than one organism per sample unit), problems associated with sampling efficiency and sample reliability become very important. At the same time, low densities provide a unique opportunity for experiments with individual organisms that are impossible at high densities. Advantage was taken of the low densities to examine changes in movement by larvae and adults throughout the season in various habitats; to trace larval feeding scars to determine larval movement; to study spatio-temporal changes in the population via distance measure- ments; and to compare different sampling schemes for estimating low level densities. To more fully understand changes in behavior of the CLB, individual CLBs were observed. These observations could only be made when popula- tion levels were low, since individuals are too easily lost at high densities. Spring adults, summer adults and larvae were observed throughout the 1976 season. Spring and summer adults were timed with a stopwatch and the amount of time spent in the following behaviors was recorded: feeding, mating, ovipositing, resting, moving about on the plant, flying and preening. This information was collected from idle fields, small grain stubble, winter wheat and cats. The sequence of events and the time between events were also recorded to allow calcula- tion of average Imu> distance and time interval between hops. Larval information collected included the amount of time spent resting, eating, moving about on the plant and a visual approximation of instar. Larval observations were made only in winter wheat and oats. Larvae were 28 observed for up to one hour and adults for up to 15 minutes. Due to the amount of adult activity, adults were frequently lost before the observation interval had elapsed. Since larval densities were very low in 1976 and larvae were generally found as isolated individuals, it was possible to estimate total larval movement by tracing larval feeding scars. On June 28, 1976, observations on the feeding scars of 48 larvae were made in cat fields in the section 8 and 9 area of KBS. An observer would search a field until larval feeding was observed. Once feeding was found, a small sketch of the area was drawn with visual estimates of defoliation on all damaged leaves. The distance between defoliated plants was recorded. Since later instars consume more foliage than early instars (wellso 1973), it was possible to trace larval movement from leaf to leaf and plant to plant based on the relative amounts and age of defoliation. To study the spatial patterns of the CLB and to compare various sampling schemes, the field x and Y larval coordinates were obtained. Due to the mobility exhibited by adults during the individual observa- tion, analyses of their coordinates would be meaningless, therefore, no adult coordinates were collected. Larval coordinates were collected using the following procedure: the collector would go to a random location in a field and mark off an It axis perpendicular to the grain rows. Each row, the Y axis, was examined for larvae and a stake was placed near the base of the plant on which a larvae was observed. After the row was examined, the distance down the row to a stake was measured and recorded. This provided the ordinate of the larvae and 29 the abscissa was obtained by multiplying the row spacing (7 in or 17.8 cm) times the row number from the plot origin. This procedure was repeated until all rows along the X axis had been examined. In 1977, three 10 ft by 10 ft (3.1 m by 3.1 m) plots were examined for larvae twice per week from oat fields 5-58, 8-13 and 9-15. Due to higher densities in 1978, the plot size was reduced to 6 ft by 6 ft (1.8 m by 1.8 m). These plots were located in cat fields 5-60, 8-10 and 9-10 and were also examined for larvae approximately twice per week. Analyses of larval coordinates. On each sampling date the larval coordinates captured the spatial configuration and density of the sampled field. After the x and Y coordinates were collected they were entered onto permanent files on the MSU mainframe computer. Sampling programs were then written to interroqate the data and calculate various statistics of dispersion to obtain density estimates. Four different sampling schemes were evaluated: counting organisms in randomly selected quadrats (QUAD sampling), counting the number of organisms in a predetermined linear section of grain row (ROW sampling), calculating the distance to the nearest neighbor of a randomly selected individual NN sampling), and calculating the distance to the nearest organism of a randomly selected point (NORP sampling). Indices of dispersion calcu- lated include: variance/mean ratio (I I sz/i), Morisita's index (I5) (Morisita 1959), the ratio of the mean squared nearest neighbor to a random point to the mean squared nearest neighbor to a random individual (3’ - fiEfiEz/fifi2, after Batcheler 1971), and Clark and Evans R (Clark and Evans 1954). An essential assumption when sampling from the coordinates is that the plot is representative of the entire field and that the field 30 is composed of a large number of the plots. Then with each subsequent sample, the plot is repeated and the sample taken. Since the coordinate plots were relatively large and the CLB larval presence relatively homogeneous throughout the field, this assumption could be made. In the QUAD sampling routine (Appendix C), the dimensions of the quadrat and the sample number are initialized. The length and width of the quadrats were limited to half the length and width of the plots, since anything larger would have altered the probability of being sampled from random to certainty for the central portion of the plots. The center of the quadrat was determined by two random numbers generated from the RANF computer routine. Since these coordinates placed the center of the quadrat, constraints were placed on the range of the random numbers. Ranges for the random numbers were calculated by: x range I 0 + .5 (quadrat width) to plot width - .5 (quadrat width) Y range I 0 + .5 (quadrat length) to plot length - .5 (quadrat length). For example, if the plot was 10 ft by 10 ft and the quadrat was 2 ft by 2 ft, then the random number could range from 1 to 9 for both coordinates. If the quadrat was 1 ft by 3 ft, then the range of the x coordinate was .5 to 9.5 and the Y coordinate 1.5 to 8.5. Counts of all organisms within the quadrat were then made and the sum of X and the sum of x2 calculated. These two values were then used to calculate mean, vari- ance and I6. In the ROW sampling routine (Appendix C), advantage was taken of the spatial uniformity of the planting of small grains and the orientation 31 of CLB larvae to the cat plants within rows. As in the previous sampling routines, the sample number and the length of row to be examined were initialized. Since the distance between rows is fixed by the grain drill at planting (7 in or 17.8 cm), an area for each sample can be obtained to allow calculation of density per unit area. The section of row to be examined was determined by randomly selecting a row and a random distance (Y coordinate) down the row. Any row within the plot could be selected as the random row, whereas the Y coordinate was limited to the range described in the QUAD sampling routine. Once again count sums and count sums of squares were calculated to estimate sample means and variances. In the NN sampling routine (Appendix C) the sample size (measure- ments) was the only initialized variable. This number was limited to the number of organisms in the plot. Since no quadrat dimensions are required, there were no restrictions on the area of the plot that could be sampled. When using the NN sampling routine, a random individual must be selected from which to measure its nearest neighbor's distance. This individual was selected from the total number of individuals using the RANF computer routine. The x and Y coordinates for this individual were then retrieved. From this pair of coordinates (xran , Y ), d rand the euclidean distance (ri) to all other individualkscoordinates (xi’ Yi) was calculated by: = - 2 _ 2 ri {(xr and xi) + (Yrand Yi) [6] The minimumri value (rmin) provided the nearest neighbor distance for that random individual. - The sum of l/rmin and l/(rmin) 2 was then 32 calculated from each sample. Density estimates and indices of dispersion were calculated for the plot. There are only two differences in the NN and NORP sampling routines. In NORP sampling the nearest neighbor distance was measured from a random point rather than a random individual and no constraints were placed on the number of samples per plot. A random point (xrand' Yrand) within the length and width of the plot was selected with two calls of the RANF computer routine. Aside from these differences, the algorithm and the calculated values were identical. Aside from the larval coordinates collected in the field, coordi- nates of known distributions and various levels of aggregation were generated. The following coordinate sets were generated: 1. Uniform: A uniform set of 100 coordinate pairs between (0,0) and 10,10) with all coordinate pairs (individuals) one unit apart (Fig. 3). 2. Random: A random set of 50 coordinate pairs between (0,0) and (10,10) was obtained through selection from a random number table (Snedecor and Cochran 1967). The first 100 numbers in the table less than 1000 (10.00) were used to represent the x and Y coordinates, respectively (Fig. 4). 3. Aggregation: Three levels of aggregation of 100 coordinate pairs between (0,0) and (10,10) were created after those of Waters (1959). Level I corresponds to a hypothetical aggregated 33 distribution of ten groups with ten individuals in each group (Fig. 5). Level 2 corresponds to a hypothetical aggregated distribution where five groups of 20 individuals make up the entire population (Fig. 6). In Level 3, all individuals are aggregated into one tightly packed group (Fig. 7). These levels represent weak, moderate and strong contagion, respec- tively. When using distance measurements to the nearest neighbor, one is actually finding the minimum radius of the circular area of an individual. This provides a measure of area per individual. The inverse of this converts the area to a standard unit and produce a density estimate for that unit. This estimate of density (d) can be mathematically expressed by: d = [7] where: n I the number of distances measured, and 5min I the minimum distance from either a random individual or a random point to its nearest neighbor. Depending upon which value was used for rmin' NN or NORP, an estimate of population density could be obtained from the distance measurements. 34 53-. .1 ad “a- I ‘r- 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ) T E E F ( E T H N I D R O O C Y N.. I I I I I I I I ' I ‘ I I l ' l r l I I I I I I I I I I °o 2 4 ‘ 6 a 10 X COORDINHTE (FEET) Figure 3. Artificial coordinates for a uniform spatial pattern of organisms. Organisms 1 unit apart in a square lattice. 35 c:_. q-e .‘1 .- O . .1 I I I .. . " . I I A a (D d I . I I I C 1r-‘ I «1 . . ... I I I I I I I I . I d ' wk1 II. T '1 I ' I T 1 I I I I . c“ c, I I I I 0 2 4 6 8 10 X COORDINRTE (FEET) Figure 4. Artificial coordinates for a random spatial pattern of organisms. Coordinates obtained from a random number table. 1 ) T E E F ( E T R N I D R O O C Y 36 m m m m m m m m m m In m 0 m m a: m m m m m m m mm tn I! (3 El E1 E) (D E) E1 Inga m m 13 m m m I!) m m E) m m m 0 m m m I!) mm m on (Um m I! m (I) B m m m m m In m In ) T E E F ( E T R N I D R O O C Y O .1 m v .4 " Nd . 0 ' l ' n ' 0 2 4 ' I 6 ' l 8 r 1 10 X CDORDINHTE (FEET) Figure 5. Artificial coordinates for the level 1 aggregated spatial pattern of organisms. (After waters 1959) 37 m mm mm m m use mm ) T E E F ( E T R N I D R O O C Y 8 l 6 1 4 . 2 0 m m m 3 I 4 I 6 I 8 X COORDINHTE (FEET) 1 a l a G E) El 3 l 3 3 3 1 5 '—l 1 O Figure 6. Artificial coordinates for the level 2 aggregated spatial pattern of organisms. (After Waters 1959) 38 o m e p r w m u u p m z u o m o o u > d q d d 1 a X COORDINHTE (FEET) Figure 7. Artificial coordinates for the level 3 aggregated spatial pattern of organisms. (After Waters 1959) 39 The indices of dispersion calculated in this study were selected not only because they are commonly used and accepted by biologists (i.e., Elliott 1977, Myers 1978, Taylor 1961) but also because they represent indices calculated by two different methods, i.e., quadrat counts and distance measurements. Since the number of organisms counted in a quadrat is a function of the quadrat's dimensions and the number of quadrats taken, the effects of changing the dimensions and number of samples on I (variance/mean ratio) and I6 (Morisita's index 1959) were examined. I was calculated as the quotient of the mean and variance by: n — 2 (x.-x)2 2 i=1 5 I . i(n-l) ' T?’ [8] and was judged significantly deviant from random (toward contagion) when: 2 g - X a,n-l I(n l) [9] exceeded the critical value of x2 (Elliott 1977). I6 (Morisita 1959) was calculated by: n n 2 - I6 I n n 2 n ' [10] (2x.) - Z x i=1l i=1 i and was judged significantly deviant from random (towards contagion) when: 2 n n x d,n-1 ‘ Id (.2 xi ' 1’ + n ' .2 xi [111 iIl iIl exceeds the critical value of x2 (Elliott 1977). 40 Since no quadrats are used in the indices based on distance measurements, the effects of changing sample size (n) on Clark and Evans R statistic (Clark and Evans 1954) and a modification of B (Batcheler 1971) were examined. Clark and Evans R was calculated by: R . Elm/:2 [12] where: rA = the mean distance of the nearest neighbor to a randomly selected individual, and E5 3 the expected distance of the nearest neighbor to a randomly selected individual in a random population and is equal to l/(2¢7?3, and p = population density. R is judged significantly deviant from random at the .05 and .01 level when: F-r exceeds 1.96 and 2.58, respectively (Clark and Evans 1954), where: o E; = the standard error of.;' in a random popula- E tion (calculated by .26136/VNp), and N = number of distances measured. The second index based on distance measurements was a modification of Batcheler's B index (Batcheler 1971): , _ NORP m a [14] 41 where: NORP = the mean squared nearest neighbor distance to a random point, and NN 8 the mean squared nearest neighbor distance to a random individual. since these variables are distributed as X2 variates, this ratio is F testable and was judged significantly deviant from random (toward contagion) when 8’ exceeds the critical value of F with 2nN and ORP ZnNN degrees of freedom (Moore 1954). Host-Herbivore Interactions CLB interactions with oats. Since leaves are generally regarded as the primary source of photosynthetic activity responsible for growth and yield in plants (Heath and Gregory 1938, Watson 1956, 1958), the effects of CLB larval defoliation on the growth and yield of oats were examined. Two methods (one on a plant level and one on a field level) were used in 1978 to examine this relationship. To examine this relationship at the plant level, the effects of moisture, nutrients, planting date, and their interactions with defoli- ation were considered. Nine ranges 18 ft by 10 ft (5.5 m'by 3.1 m) were constructed in field 8-12 on April 25, 1978 (Fig. 8). The field had just been sown with ”Mariner” oats at a rate of 3 bu/A (2.6 hl/ha) and fertilized with 200 1b/A (224 kg/ha) of 8-32-16 Agri-Blend® fertilizer. Ranges were constructed with a 16 ft (4.9 m) intra-row and a 35 ft (10.7 m) inter-row spacing to prevent contamination of treatments. Each range was subdivided into three 5 ft by 10 ft (1.5 m by 3.1 m) plots to be 42 FIELD 8-l2 I f O UREA MED. IRRIGATION II2 UREA NO IRRIGATION 56 UREA HIGH IRRIGATION A2 A) A3 A3 A2 ()0) (9) (27) I26) It?) AI Is) AI IT) A3 (25) A2 (IS) 56 UREA NO IRRIGATION 35'(J03hn) O HIGH UREA IRRIG. II2 UREA MED. IRRIGATION A3 A2 A|‘$—-|6°—9'Al I6'—->LA2 AI A3 I24) (I5) III) (43)“) (5) (4-9'") ()3) I4) I22) A2 IN) 35'(|O.7m) II2 UREA 56 UREA O UREA HIGH IRRIGATION MED. IRRIG. NO IRRIGATION AI A3 A2 A2 AI A3 IO'I3.Im) A3 A2 AI . T I3) I20) (l9) I2I) IIO) II2) III) I2) II) elk— K—fl I5“ 5' (.5m) (LSm) Figure 8. Plot layout for the 1978 defoliation plots. Numbers in parentheses indicate plot code. Irrometers were located in plots ll, 14 and 17. 43 planted on different planting dates. A 1.5 ft (.5 m) walkway was left between each plot. A consecutive planting was sown only after the previous one had emerged. Prior to planting, each plot was tilled and all plant life removed. The second and third plantings took place on May 5 and 10, 1978. A nutrient difference was established by broadcasting the 9 ranges with varying amounts of Gro-Green® urea 45 after the oat plants had emerged. Application rates were 0, 50, and 100 lb/A (0, 56.03 and 112.05 kg/ha). Three levels of moisture (natural precipitation, low and high irrigation) were maintained in the 9 ranges. The natural moisture level plots received only natural precipitation whereas the two irrigated moisture levels received additional moisture through irrigation once and twice per week. A range was irrigated with a lawn sprinkler host at a known flow rate for 30 minutes. :In this fashion, the 3 plots within a given range, which represented different planting dates, all received equal moisture treatments. Once the oat plants had emerged in each plot, measurements were made on the height of the plants, the number of live and dead leaves, the number of tillers per plant and the number of plants per 1 linear row ft (30 cm). The row counts were replicated 10 times in each plot. Once the plants reached the desired range of heights, 30 random plants were selected from each plot. The plant heights, the number of live and dead leaves, and the number of tillers were counted and recorded. The plant was then labeled witha metal-rimmed tag to allow monitoring throughout the season. 44 The amount and rate of defoliation was controlled by placing CLB larvae on the individual plants at the appropriate time. Wellso (1973) has calculated the amount of foliage consumed by each of the four larval CLB instars, while Gage (1972) developed a technique of weighting the consumption by each instar (first instar feeding equivalents (FIFE)). By regressing the cumulative % FIFE against physioloqical time (degree days), an equation was obtained which predicted the percent foliage removed under normal larval feeding conditions at any given number of degree days. The selected plants were monitored and larvae were placed on the plants to maintain the desired levels of defoliation (0, 10, 25, 50, 75 and 125 FIFE or approximately 0, 5, 10, 15, 20, 30 and 50%). Larvae were transferred to the plants by clipping the section of leaf bearing a CLB larvae and placing this leaf segment in the leaf whorl of the plot plant. As this leaf segment dessicated, the larvae moved to the plot plant leaf to feed. Due to the variability in individual larval feeding it became necessary to obtain more precise estimates of larval feeding. On July 3, 1978, 75 leaves were collected from all types of oat plants and from all parts of the plant to insure as wide a range of leaves as possible. On July 5, 1978, the length and width (at widest portion of the leaf) of each leaf was measured and the area calculated with a Lambdaca leaf area meter. Least squares linear regression was then used to obtain an equation to predict leaf area based on the leaf‘s dimensions. 45 Shade and Wilson (1967) and Wellso (1973) have shown that leaf vein spacing was an important factor in determining the width of larval feeding scars. To determine trends in leaf vein spacing, several leaves were selected and the vein spacing measured with an ocular micro- meter in a Wildg§ dissecting microscope. Vein spacings were measured both across the width of a leaf and at approximately 1 cm intervals down the length of the leaf. To estimate the amount of CLB larval feeding, the width and length of each feeding scar were measured. Scar lengths were measured with a small metal ruler divided into 64th inch (.397 mm) intervals. Scar measurements were made on all plants in the plots from June 24 to July 7, 1978. After the oats had matured and were field dry, they were harvested and returned to the laboratory in individual paper bags. These bags were then oven dried at 100°C for 24 hours. The heads were weighed at room temperature and the number of spiklets counted. A subsample from each plot was then hand thrashed so that the kernels could be counted and reweighed. Least squares linear regression was then used to quantify the relationship between kernel weight, head weight and number of spiklets per head. To examine the relationship between CLB larval feeding and yield at a field level, yield and plant density information was collected from all the oat fields on the KBS in 1978. Information on the density of CLB larvae had been collected from the KBS sweepnet survey described earlier. 46 On July 17 and 18, 1978, 50 random plants were selected for estimation of defoliation. As previously described in the KBS regional damage survey, a 2 ft (60 cm) pointed wooden garden stake was thrown. The plant closest to the stake point was thus selected and the length and width of each leaf was measured and a visual estimate of defolia- tion made. Estimates of stem and head density on all the KBS oat fields were made on July 17 and 18, 1978. From each field, 10 random samples of 2 row ft (60 cm) were examined and all heads and stems within the 2 row feet were counted and recorded. Estimates of head weight were obtained by clipping 10 random heads at the base of the inflorescence from each field and placing them in paper bags. The bags were then oven dried at 100°C for 24 hours and the individual heads weighed. Fields 5-60, 8-10 and 9-10 were harvested on July 27, 1978. Fields 5-53, 5—55, 5-63, 8-12, 8-14, 9-6, 9-8, 9-15 and 9-18 were harvested on July 31, 1978. After each field was harvested, the grain from the field yield was estimated by measuring the volume of the harvested grain. A subsample was also collected to measure grain weight. In this way, estimates of density of CLB larvae, oat plant defoliation, oat plant stem and head densities, and head weight were Obtained over a range of field conditions. Since the leaves of an oat plant are of unequal sizes, an unbiased estimate of total percent defoliation could only be made once the total area and defoliated area for each leaf were calculated. Using the methods described earlier for measuring leaf area and defoliated area, the percent defoliation for a single oat plant (PDEF) was calculated by: 47 f n W z DAREA. i=1 1 PDEF -- n 100 [151 ): Tm: Ii= J where: i = number of leaves on the plant, DAREAi - defoliated area on leaf i, and TAREAi 8 total area of leaf 1. On leaves where CLB larval feeding scars were too numerous to measure, a visual estimate of percent defoliation was made (VEDEF) . For those leaves, DAREA was calculated by: i DAREAi = TAREA VEDEFi 1 [16] Using these two techniques, the percent defoliation of all plants within the defoliation plots was calculated and the average percent defoliation in the oat fields on and around KBS was determined. To examine the significance of various factors (moisture, planting date and percent defoliation) on oat yield, an analysis of variance was performed. A standard analysis of variance for a split-split plot design with factors arranged in a randomized block was used on a subset of the collected data (Steel and Torrie 1960). For this analysis the plots were blocked by fertilizer. A split-split plot design was used for the following reasons: 1. a randomized block would have required a much larger sample size for the same power and resources were a limiting factor; and 48 2. whole plot (moisture) and subplot (planting date) effects were well known (i.e., Hsiao and Acevedo 1974, Wiggans 1956, Wiggans and Frey 1957) and sub-subplot (defoliation) effects and interactions between factors were the objective of the experiment. Since percent defoliation per plant (sub-subplots) could not be predicted prior to the season's end, a subset of the entire data set was used for this analysis to insure balanced data. From each subplot 7 plants were selected to represent 7 levels of percent defoliation (0, 5, 10, 15, 20, 30 and 50). Plants were selected by only looking at the level of defoliation, no attention was paid to head weight when selecting the plants. 49 RESULTS AND DISCUSSION The CLB data collected during this research plus that of Helgesen (1969), Gage (1972, 1974) and Sawyer (1967) provide a l3-year data base for population analyses. This data base has been considered the data source from which subsets were selected for hypothesis testing. Specifically, within and between-field population dynamics were examined, methods for analyzing and sampling low density populations were developed and the interaction between the CLB and oats were studied. The results obtained in this research contribute to the under- standing of the ecology of the CLB at low densities and add continuity to the long term ecological study of the CLB at the KBS. REGIONAL DISTRIBUTION AND ABUNDANCE Region and KBS CLB Distribution and Abundance The distribution of small grain fields surrounding the KBS and the oat fields surveyed in 1976, 1978 and 1979 for CLBs are presented in Figures 9, 10 and 11, respectively. No survey was conducted in 1977. Examination of these figures indicates a rather uniform distribution of small grain fields to the west of the KBS. During these three surveys a decrease in the number of small grain fields was observed (75, 44 and 41, respectively). This reduction was primarily due to the increase in corn acreage in the area. To compare the abundance of CLBs on the KBS fields and the regional fields, a measure of density would have to be obtained. Using Equations 1 and 2, CLB adult and larval densities were calculated for the 1976 SO 1976 an": anutn Du: .Ium , 1 I". E} HICKORY CORNERS .4, mm: I IIILIEICM. l r SIHIOI o £25m IIcIIuIII Figure 9. Distribution of small grain fields surrounding the Kellogg Biological Station in 1976. 51 E on: E2! )IIIEII I91) [3"! sum I) ”m ,, 4) INCH" COIIEIS I43 IEIIoc: manual“ l sum! Q w 3% 3!- $2 I ‘ 3 % : I % II. III: In) Distribution of small grain fields surrounding the Kellogg Biological Station in 1978. Figure 10. 52 gens £3)»qu 1979 "” [I [Jars 7 In". In IICIIIY COIIEIS 4 E , '48 £35? I? a» I- RE 6 )6 0 E21 I” IELIocc IIIIocIcII Jfluqu2!______l IICHLAID Figure 11. Distribution of small grain fields surrounding the Kellogg Biological Station in 1979. 53 and 1979 regional sweepnet survey (Table l) and for all the KBS fields (Appendix D). From the 1976 and 1979 KBS sweepnet survey data, density estimates for the oat fields on the sample date closest to the regional sweepnet survey were selected (Table 2). Due to the small number of oat fields (6) planted on the KBS in 1979, density estimates from all oat fields (sweepnet survey as well as population sample fields) were included in the abundance comparisons. Since the population sample fields were not sampled on the same date as the 1979 regional sweepnet survey (June 28, 1979), density estimates for that date were obtained by interpolating between the adjacent sample dates. Due to the low density of adults found in both years, abundance compari- sons were only made on larvae. In 1976 no significant difference was observed between the larval densities in the oat fields on the KBS and those in the surrounding area (t10’13 = .936, p > .05). In 1979, however, the CLB larval density was significantly higher in the KBS oat fields (t5,5 = 3.775, p < .025). This observation supports Sawyer's (1978) hypothesis that as the ratio of habitable crops varies in a region, the relative densities in the crops will also change. In 1976 and 1979, 17.33% and 17.07%, respectively, of all small grain fields in the region were oats. During this same period of time the acreage of oats (which essentially represent the only habitable crop) on the KBS declined from 46 acres i1) 1976 to 12.9 acres in 1979. If one assumes the regional density of CLBs is rising at the same rate as on the KBS (a full discussion will be presented later) then proportionally higher 54 Table l. CLB adult and larval densities/ft2 (929 cm2) for the 1976 and 1979 regional sweepnet survey. Date DD>9 C 'Field Adult Larval Mean 0 Weighted Density Density Instar 6/22/76 597 6/28/79 583 l 2 3 4 5 6 7 8 9 .010 .031 3.83 0.000 .061 3.50 inaccessible .005 .046 3.67 .002 .087 3.53 .021 .107 3.81 inaccessible .029 .479 3.94 ,.013 .178 3.71 10 inaccessible 11 12 13 1 2 3 4 5 6 7 .038 .071 3.64 .015 .041 4.00 .016 .219 3.84 0.000 .010 4.00 0.000 0.000 0.000 0.000 -- -- 0.000 .051 3.80 .007 .031 3.88 .030 3.182 3.80 .018 2.193 3.76 55 Table 2. CLB adult and larval densities/ft2 (929 cm2) from KBS oat fields on sample dates closest to regional sweepnet survey. Date DD>9°C Field 0a 0L WMI 6/21/76 588 5-08 .006 .439 3.90 5-09 0.000 .005 4.00 5-51 0.000 0.000 -- 5-54 .009 .005 4.00 5-59 .007 .031 3.83 5-61 .004 .061 3.91 8-07 .027 .204 3.83 8-09 .056 .607 3.74 8-11 .014 .077 3.93 8-53 .104 .814 3.49 8-57 .013 .459 3.64 9-09 .050 .015 3.33 9-15 .012 .061 3.75 6/28/79 583 5-51 .017 3.937 3.92 8-09 .080 6.202 3.84. 9-091 .017 8.027 3.64 9-092 .003 .224 2.95 6/21/79 519 5-543 0.000 8.150 3.21 7/03/79 633 0.000 .150 2.00 3.660“ 6/21/79 519 8-113 .050 6.900 3.21 7/03/79 633 0.000 .800 3.38 3.480“ 6/25/79 550 9-133 .070 3.230 3.37 7/02/79 623 0.000 .200 3.50 1.860“ 1Untreated portion of field 9-09. ZSeVinR treated portion of field 9-09. 3Population count fields. “Interpolated estimate of density for 583 DD>9%L 56 densities should be observed in the KBS oat fields than in the regional oat field, which is what was observed. An alternate hypothesis would be that different ages of the population had been sampled in the two areas. To test this hypothesis, Fulton's (1975) index of population maturity (weighed mean instar--WMI) was calculated for all surveyed fields as follows: WMI s n 2: n iNi/ ): Ni i=1 i=1 where: n 8 number of larval instars, and N 8 number of instar i in sample. [17] No significant differences (t10,12 8 .396, p > .05 and t3'5 8 .577, p > .05) were observed between the mean WMIs from the oat fields in the regional survey (2 . 3.779 r .0427 ($2), n - 12 and 3.848 r .0091 (52), n 8 5) and the KBS survey (x 8 3.747 1 .0275 (52), n 8 10 and E 8 3.800 t .0208 (52), n = 3) in either 1976 or 1979, respectively. Therefore, this hypothesis would appear to be false and the differences in density between the two areas in 1979 were actual differences. Before the damage indices for 1978 could be compared, a method for estimating leaf area had to be deVeloped. To obtain the best estimate of leaf area based on the leaf's dimensions (width at widest portion and length), a series of least square linear regression were performed on the leaf area data. The relationships examined and the regression results are summarized in Table 3. All coefficients of determination were highly significant (p < .001) so any relationship may be used depending upon the amount of resolution required and the Table 3. Regre531on equations for predicting leaf area. . . . . A 57 Regression Equation R2 Source 2 - 307.403 + 0.0272 (12) .854*** Gage (1972) y s —263.967 + 8.298 (1) .882*** Lampert Y - -827.4l6 + 6.356 (1) + 95.914 (w) .971*** Lampert Y - 0.484 + 0.710 (1*w) .982*** Lampert A . All measurements in mm, n 8 75. 58 resources available for measurements. Since a high degree of resolu- tion was desired for these measurements, the following regression equation was selected: Y 8 .484 + .710 (l*w) [18] where: Y 8 leaf area (mmz): l 8 leaf length (mm), and w 8 leaf width (mm) at widest portion. Once this method for estimating leaf area was obtained, percent defoliation per plant was calculated using Equations 15 and 16. The mean percent flag leaf defoliation and total plant defoliation for each field are presented in Table 4 for the regional survey oat fields and in Table 5 for the KBS fields. Significant differences (t8,18 8 3.460, p < .05 and t8,18 8 2.479, p < .05) were observed between both the mean percent flag leaf defoliation (x 8 13.024 2 591.839 (82), n 8 19 and E . 51.762 2 1157.113 (32), n = 9) and total plant defoliation I; = 11.583 2 502.624 (32), n a 19 and i - 35.723 r 750.865 (32), n - 9) from the regional survey oat fields and those on the KBS. These survey results indicated the highest CLB densities (either in number per ft2 or in percent defoliation) are located in the KBS area with the highest fields fields outside KBS being to the immediate north and northwest. No explanation can be Offered for this apparent trend since no additional indepth data were collected on the local uniqueness of the fields in the regional survey that may affect CLB distribution and abundance (Sawyer 1978). 59 Table 4. Mean number of live leaves and percent defoliation per oat plant in fields surrounding the Kellogg Biological Station. Row 1 8 mean and Row 2 8 variance. Field Date N Leaves Leaves Defoliation Defoliation Total Live Total Flag Leaf 1 7-18-78 50 3.50 3.46 7.34 7.70 .46 .42 4.829 234.91 2 7—19-78 50 3.50 3.50 5.68 13.80 .30 .30 2.169 765.88 3 7-18-78 50 3.12‘ 3.08 .64 .69 .08 .004 .10 .50 4 7-18-78 50 3.64 3.58 3.98 8.10 .40 .33 1.277 437.64 5 7-19-78 50 4.00 4.00 81.42 92.00 .33 .33 22.931 225.51 6 7-19-78 49 3.86 3.86 63.81 65.31 .33 .33 44.950 796.26 7 7-19-78 51 3.45 3.45 16.47 16.41 .65 .65 7.434 462.85 8 7-19-78 49 3.27 3.24 11.97 9.00 .32 .31 4.879 277.96 9 7-19-78 50 3.58 3.58 18.94 21.00 .37 .37 11.155 745.92 10 7-19-78 50 3.44 3.42 1.14 3.40 .54 .58 .251 51.47 11 7-19-78 50 3.20 3.20 2.11 4.54 .78 .78 1.211 113.23 12 7-19-78 51 3.39 3.39 .36 .36 .61 .130 1.27 35.84 13 7-19-78 50 1.14 1.12 3.44 2.04 .20 .19 3.228 101.96 14 7-19-78 50 3.32 3.32 .26 .26 .53 .043 .06 .10 Table 4. Continued 6O Field Date N Leaves Leaves Defoliation Defoliation Total Live Total Flag Leaf 15 7-19—78 49 2.14 2.12 .25 .23 16 7-14-78 48 1.90 1.90 .14 .14 .87 .222 .73 .189 .65 4.86 .31 4.69 1?. 7-24-78 50 2.48 2.48 .69 1.18 .30 .30 .163 23.74 18 7-24-78 49 2.80 2.80 .21 .21 19 7-24-78 50 2.16 2.16 .26 .26 .08 .001 .18 .008 .37 1.24 .22 .71 61 Table 5. Mean number of live leaves and percent defoliation per oat plant in fields on the KellOgg Biological Station. Row 1 8 mean and Row 2 8 variance. Field Date N Leaves Leaves Defoliation Defoliation Total Live Total Flag Leaf 553 7-18-78 50 4.44 4.20 73.21 93.20 .29 .24 12.351 199.76 555 7-18-78 50 4.08 3.70 38.14 66.84 .97 .74 216.235 1157.65 563 7-18-78 50 4.54 4.16 77.71 98.40 .87 .50 29.082 42.29 812 7-17-78 50 4.70 3.82 48.51 65.38 .38 .35 3.159 1080.73 814 7-18-78 50 4.66 3.70 43.13 68.20 .27 .30 14.947 1128.33 906 7-17-78 50 4.92 4.02 12.32 26.80 .20 .43 .9.930 1116.08 908 7-17-78 50 3.98 3.14 10.25 24.04 .14 .90 6.569 1110.37 915 7-18-78 50 4.70 3.56 8.00 6.60 .42 .46 1.553 160.65 918 7-18-78 50 4.52 3.64 10.24 16.40 .30 .28 5.362 736.78 62 Within the KBS an increase in corn acreage has been responsible for a strong decline in the planting of small grains. This has been especially evident in sections 4 and 9. In these two sections (4 and 9) small grain acreage has decreased from 209.8 A in 1976 to none in 1979 and from 76.0 A in 1976 to 9.2 A in 1979, respectively. Since small grains are the major habitat for the CLB this reduction should affect its distribution and abundance. To estimate larval distribution and abundance within KBS, the total number of CLB larvae produced in the area was calculated. For the small grain fields included in the 1976 to 1979 sweepnet surveys, Equations 2 and 3 were used to calculate total larval seasonal production per ft2 (929 cmz). Tetal seasonal production (TSP) for each of the four sections surveyed was calculated by: TSP 8 43560 2 (TP.A ) [l9] n . . 181 1 l where: TPi 8 total larval production per ft2 for field i, Ai 8 acreage of field i, and n 8 number of small grain fields in the section. The seasonal larval production from the small grain fields included in the 1976 to 1979 sweepnet surveys is presented in Table 6 to 9, respectively. In all instances, highest densities per acre were observed in oats followed by wheat and rye. CLB production was generally highest in section 5 followed by sections 8 and 9. An exception to this rule was noted in 1977 when section 9 produced the greatest number of larvae followed by sections 5 and 8. Table 6. Seasonal larval production for 1976. 63 Crop 4 5 8 9 Section Oats Sectional Per Acre _ 0.00 2,196,755.31 304,177.35 35,340.04 0.00 72,981.90 33,797.48 5,121.74 Acres 0.00 30.10 9.00 6.90 Wheat Sectional 685,907.40 177,703.15 182,773.09 58,210.79 Per Acre 8,146.17 2,332.06 4,163.40 1,769.32 Acres 84.20 76.20 43.90 32.90 Rye Sectional 36,358.67 1,620.24 43.24 238.37 Per Acre Acres 289.48 125.60 71.06 22.80 1.81 23.90 6.58 36.20 .Table 7. Seasonal larval production for 1977. Crop 4 5 8 9 Section Oats Sectional Per Acre 0.00 10,418,113.03 743,251.98 1,615,038.60 0.00 196,197.99 48,578.56 351,095.35 Acres 0.00 53.10 15.30 4.60 Wheat Sectional 770,821.04 1,686,495.35 695,736.76 730,513.03 Per Acre 10,980.36 32,185.03 26,453.87 35,985.86 Acres 70.20 52.40 26.30 20.30 Rye Sectional 38,643.63 112,526.80 16,251.15 6,176.49 Per Acre 381.10 2,163.98 574.25 179.03 Acres 101.40 52.00 28.30 34.50 Table 8. Seasonal larval production for 1978. 64 Cro P 4 5 8 9 Section Cats Sectional 0.00 12,578,249.67 2,335,277.39 3,290,372.10 Per Acre 0.00 1,677,099.96 707,659.81 357,649.14 Acres 0.00 7.50 3.30 9.20 Wheat Sectional 3,420,102.75 1,679,471.60 766,263.74 60,105.49 Per Acre 66,409.76 22,452.83 30,528.44 10,363.02 Acres 51.50 74.80 25.10 5.80 Rye Sectional 0.00 49,692.80 Per Acre Acres 0.00 0.00 3,269.26 15.20 0.00 0.00 0.00 0.00 0.00 0.00 Table 9. Seasonal larval production for 1979. Cro P 4 s 8 9 Section Oats Sectional 0.00 1,645,414.61 547,919.94 692,480.44 Per Acre 0.00 329,082.92 166,036.34 150,539.23 Acres 0.00 5.00 3.30 4.60 Wheat Sectional 0.00 1,068,186.49 30,552.03 16,546.38 Per Acre 0.00 28,484.97 5,360.01 3,597.04 Acres 0.00 37.50 5.70 4.60 Rye Sectional Per Acre Acres 0.00 0.00 0.00 0.00 0.00 4.60 0.00 0.00 0.00 0.00 0.00 0.00 65 Using density information from the section nine population sampling fields from 1967 to 1975 (Helgesen 1969, Gage 1972, 1974, Sawyer 1976), and from this work (Appendix E), the total larval production per 2 linear row ft (60 cm) can be calculated (Sawyer 1978) (Figure 12). During these 13 years of samples, there have been drastic changes in density. The total larval production in wheat has ranged from a high of 142.00 in 1969 to a low of .02 larvae per ft2 (60 cm row) in 1974 (a 7100-fold change) and in oats from a high of 170.66 in 1969 to a low of .18 in 1975 (a 9SO-fo1d change). From 1967 to 1969 the within-generation population dynamics of the CLB was investigated at the KBS (Helgesen 1969). This work investigated the population dynamics of the CLB at epidemic densities and prior to the establishment of the 4 exotic parasitoids. The dynamics of a population in this epidemic phase and absence of parasitoids is quite different from those in a non—epidemic phase and after the establishment of para- sitoids. Therefore, investigating the population dynamics of the CLB at low densities will contribute significantly to the understanding of the ecology of the CLB, also it represents the continued monitoring of the evolution of a pest and its parasitoids in a new environment. LOW DENSITY POPULATION DYNAMICS Before discussing the population dynamics of the CLB, it is necessary to present the data and discuss the summaries which will be used throughout this section to calculate stage-specific survivals. 66 In ’ 9 2 \ T R E I I I I I 1 o ) S B K ( H E R R H C R H E S E R E K H L L L U G r \ I I I I I r I I I I I I . (N3 09 / 38A881101007 9 7 8 7 7 7 8 7 5 7 4 7 3 7 2 7 1 7 0 7 9 8 8 8 7 8 R R E Y o t 7 6 9 1 m o r f a e r a g n i l p m a s n o i t a l u p o p 9 n o i t c e s e h t m o r f t a e h w r e n i w d n a s t a o n i ) m c 0 6 ( t e e f w o r 2 / n o i t c u d o r p l a v r a l l a t o t e h t f o 0 g o L . 2 1 e r u g i F . 9 7 9 1 67 Population Sample Results From the mean density estimates for the various CLB life stages obtained in the 2 linear row feet (60 cm) population samples (Appendix E), the total seasonal incidence was calculated using the trapezoidal method (Equation 3). Total seasonal production was then calculated for eggs, the four larval instars and for total larvae by dividing total incidence of a stage by its developmental time. Total seasonal production from the population sampling fields from 1976 to 1979 are presented in Table 10. These values represent an estimate of the total number of individuals in the various life stages of the CLB that were produced on 2 linear row feet (60 cm) of host crop. In order to calculate larval survival (Equation 4), it is necessary to have pupal density estimates. These were obtained by counting the number of pupal cells within the 3 x 1.5 x .3 ft (.9 m x .45 m x 10 cm) soil samples collected from the population sampling fields. The mean number of CLB pupal cells per sample unit (4.5 sq ft--.42 sq m) and the results of their dissections are presented in Table 11. The pupal cell dissections in Table 11 will be discussed in greater detail later. Since the soil sample described above represented a 4.5 ft2 pupal densities were converted to 1.167 ft2 (equal area as population samples) befOre calculating larval survival. Using the density information presented in Tables 10 and 11, the stage-specific survival (Helgesen and Haynes 1972) was calculated for the population sampling fields (Table 12) . Due to the errors associated with visual estimation of the larval instar (Fulton 1975) and estimating population densities (Helgesen 1969), several instances of stage-specific 68 Table 10. Tetal egg and larval production and adult total incidence Per 60 cm of row (1.167 ftz) from the Gull Lake population sampling fields. Total Production Incidence . A Total Year Field Crop Eggs L1 L2 L3 L4 LT Adults 1976 9-11 wheat 0.45 0.72 0.08 0.10 0.00 0.23 3.85 9-13 oats 7.04 2.07 0.34 0.65 0.04 0.76 16.26 1977 5-58 oats 15.79 1.18 2.09 0.79 0.56 1.11 42.23 8-13 oats 20.08 1.12 2.18 1.15 0.41 1.16 36.98 9-11 oats 43.20 2.12 1.85 1.19 0.64 1.42 62.22 9-12 wheat 9.98 4.18 2.85 2.66 1.14 2.65 18.71 9-15 oats 13.68 1.39 0.40 0.32 0.28 0.58 13.90 1978 5-60 oats 99.21 109.28 60.91 34.28 10.83 52.22. 259.70 8-10 oats 54.12 52.15 30.45 21.05 7.95 27.19 93.17 9-10 oats 18.04 10.58 8.61 4.90 1.05 6.05 22.18 9-12 oats 22.32 19.70 11.19 5.92 2.03 9.42 42.24 9-13 wheat 4.55 4.78 3.04 1.45 0.88 2.47 5.61 1979 5-54 oats 83.82 27.37 26.87 18.74 14.96 21.61 123.65 8-11 oats 115.65 10.48 8.43 10.38 10.94 10.13 142.18 9-11 wheat 20.53 5.44 2.23 1.80 1.11 2.61 5.10 9-13 oats 104.02 6.55 6.40 7.10 6.33 6.61 122.29 —— ADevelopmental times used for the calculation of total production were: eggs 8 87, L1 8 34, L2 8 30, L3 8 35, L4 8 38 and LT 8 137 DD 9 C (Guppy and Harcourt 1978). 69 L A T O T e r u s n U e a d i n o - u e n h c I s u t r u c . E s i s r g g a i D . - 1 8 1 8 B L C e t a D d e l p m a S d i u l F d e g r e m E n o o c o C n o o c o C d e g r e n E a d e g r e n E g n i s u g g a i D d a e D t l u d A t y e A _ L e m fl _ _ e & e e 8 i g n i s u a p a i D d o g r e n E d a e D d a e D d a e D . e c n a i r a v 8 2 w o r d n a e l p m a s / s l l e c . o n n a e m 8 1 w o R . " 4 y b " 6 3 y b ” 8 1 8 t i n u e l p m a S . 9 7 9 1 o t 6 7 9 1 m o r f e k a L l l u G t a n e k a t s e l p m a s l i o s f o s t n e t n o c f o y r a m m u S . 1 1 e l b a T 9 8 . 3 3 . 1 4 6 . 5 7 . 3 9 . 5 8 8 7 . 7 8 5 1 3 5 . 1 2 5 5 . 0 7 1 0 2 . 4 1 4 7 . 8 3 5 3 . 1 2 7 8 . 4 1 1 5 4 . 6 9 8 . 0 1 5 8 . 2 4 2 . 4 5 8 . 8 0 4 . 1 2 3 0 . 3 0 . 4 0 . 4 0 . 3 1 . 2 1 . 0 2 . 1 3 . 0 2 . 1 3 . 5 1 . 3 1 . 5 0 . 5 0 . 5 0 . 5 0 . 0 0 . 0 0 0 . 0 3 0 . 0 1 . 9 0 . 0 2 . 7 2 . 5 0 . 5 0 . 4 0 . 4 0 . 0 0 . 0 0 0 . 0 7 4 . 0 4 . 0 0 . 0 0 0 . 0 0 4 . 5 1 0 4 . 3 3 5 0 . 6 9 7 . 2 1 0 9 . 5 4 . 1 5 0 . 1 3 7 . 1 0 5 . 7 4 . 0 0 . 0 0 0 . 0 1 1 . 0 1 . 6 0 . 5 0 . 0 1 . 9 0 . 7 1 . 1 2 . 4 0 . 4 0 . 7 1 . 5 1 . 7 0 . 7 0 . 4 1 . 2 1 . 7 1 . 1 2 . 7 4 . 3 5 . 1 1 . 0 1 . 3 3 . 1 4 . 1 1 . 0 1 . 1 1 . 0 1 . 0 3 . 2 2 . 0 7 . 3 6 . 5 4 . 7 1 . 3 2 . 7 3 . 5 5 . 1 1 . 0 1 . 3 0 . 3 0 . 3 3 . 8 3 . 7 6 . 1 8 . 2 5 9 . 1 3 . 1 1 2 . 7 1 . 9 1 . 1 3 . 4 1 . 2 1 . 0 2 . 3 2 . 0 7 . ‘ 8 ' 1 1 . 0 1 . 0 0 . 6 2 9 2 . 1 2 1 0 5 . 5 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 4 2 6 7 / 2 1 / 7 3 0 . 3 0 . 7 0 . 6 0 . 0 0 . 0 0 0 . 0 5 3 . 4 2 . 5 1 . 3 1 . 0 3 . 3 4 . 5 0 . 5 0 . 7 2 7 7 / 8 1 / 7 6 3 7 7 / 0 2 / 7 0 3 7 7 / 8 0 / 7 1 1 - 9 0 3 7 7 / 5 0 / 7 2 1 - 9 7 2 7 7 / 2 1 / 7 5 1 - 9 5 1 8 7 / 1 1 / 7 0 6 - 5 5 1 8 7 / 0 1 / 7 0 0 . 0 5 1 8 7 / 2 1 / 7 0 0 . 0 5 1 . 4 2 . 5 0 . 5 0 . 5 1 . 3 1 . 5 7 . 4 1 . 1 0 2 8 7 / 3 1 / 7 0 2 8 7 / 7 0 / 7 3 1 8 9 0 2 9 7 / 7 1 / 7 0 2 9 7 / 9 0 / 7 1 1 - 9 70 Table 1J2. CLB stage-specific survival from 1976 to 1979 population sampling fields. Stage Survival Year Field Crop Eggs L1 L2 L3 L4 LT Pupae 1976 9-11 wheat 1.61 .11 1.15 0.00 - - - 9-13 Oats .29 .17 1.88 .06 6.75 .038 .20 1977 5-58 Oats .07 1.76 .38 .70 .41 .015 .21 8-13 Oats .06 1.94 .53 .35 .40 .008 .22 9-11 Oats .05 .87 .64 .54 .38 .006 .22 9-12 Wheat .42 .68 .93 .43 .68 .078 .23 9-15 Oats .10 .29 .79 .87 .55 .011 .19 1978 5-60 Oats 1.10 .56 .56 .32 2.04 .223 .37 8-10 Oats .96 .58 .69 .38 .70 .103 .47 9-10 Oats .59 .81 .57 .21 3.51 .204 .31 9-12 Oats .88 .57 .53 ~34 2.69 .245 .33 9-13 Wheat 1.05 .64 .48 .61 1.90 .368 .46 1979 5-54 Oats .33 .98 .70 .80 - ‘ 8-11 Oats .09 .80 1.23 1.06 - - - - - 9-11 Wheat .26 .41 .81 .62 .67 .036 .18 9-13 Cats .06 .98 1.11 .89 .36 .022 .24 71 survival greater than one resulted (Table 12). An attempt was made to reduce the effect of errors in instar determination by combining first and second instar into a "small larvae" category and third and fourth instars into a "large larvae" category. These categories were then used as estimates of stage density for estimation of stage- specific survival (Table 13). Classification of larvae into these categories totally eliminated egg survivals greater than one and reduced larval survivals greater than one from 12 to 6. The magnitude of the survivals greater than one was also reduced from an average of 2.25 to 1.22, thus providing considerable improvement. When calculating the proportion of a life stage of the CLB para- sitized (PPar in Equation 5) ,- it is essential to know the percent parasitism for the life stage at each sample period (PP). The results of the CLB egg rearing for determination of percent parasitism by g. flavipes from 1976 to 1979 are summarized in Appendix F.. In both 1976 and 1977, collections were initiated too late and high levels of parasitism already existed. In 1978 and again in 1979, collections were initiated early enough to collect the entire pattern of egg parasitism. Plotting the proportion of eggs parasitized against the accumulated degree days > 9°C at the KBS weather station, revealed a symmetric sigmoid relationship (Figure 13). To quantify this relationship, the proportion of eggs parasitized was linearly transformed using probits (Finney 1971), and least squares linear regression performed between the probit-transformed proportions (Y) and accumulated DD > 9°C (X). This resulted in the following significant relationship: 72 Table 13. Egg, "small larvae” and "large larvae" survival as calculated by combining larval instars. Year Field Crop Eggs Small Larvae Large Larvae Stage-Survival 1976 9-11 Wheat .93 .24 9—13 Oats .18 .52 1977 5-58 Oats .10 .49 8-13 Oats .08 .71 9-11 Oats . os . 60 ’ 9-12 Wheat .36 .75 9-15 Oats .07 .35 -- .81 .34 .22 . 27 .42 .51 1978 5-60 Oats .87 .40 1.01 9-10 Oats .54 .51 1.27 9-12 Oats .70 .38 1.42 9-13 Wheat .87 .37 1.45 1979 5-54 Oats .32 .69 8-11 Oats .08 1.09 -- -- 9-13 Oats .06 1.10 .34 73 6 7 8 1 7 7 9 1 8 7 9 1 9 7 8 1 u u u u EI¥00 S G G E 0'1 i 9'0 1 3'0 ‘ 9 03211198886 NOIlaodDHd 0 0 8 0 5 7 0 0 6 0 5 5 0 5 4 0 5 3 0 0 2 0 0 1 ° a ’ - C ' 9 > S Y H D E E R G E D s d l e i f t a o a e r a 9 n o i t c e s e h t t a s e p i v a l f s e h p a n A y b d e z i t i s a r a p s g g e B L C f o n o i t r o p o r p e h t d n a C 9 > s y a d e e r g e d n e e w t e b p i h s n o i t a l e R . 3 1 e r u g i F . 9 7 9 1 o t 6 7 9 1 m o r f 74 y = .1779 (X) - 2.445 r2 = .823 [20] Ho‘ (8 = 0) T29 = 11.2, p < .001 It has been shown (Finney 1971) that the mean value of the X vari- able from a regression of probit Y on X, can be calculated by setting probit Y equal to 5.0 and solving for X. Further, the standard devia- tion of the variable is equal to the inverse of the slope of the regression line. Applying this information to Equation 20, we find that 50% of the CLB eggs are expected to be parasitized by A, flavipes at 418.5 DD > 9°C with a standard deviation of 56.21 DD. Substituting these values for u and a, respectively, in the proba- bility density function for the normal distribution, Equation 21 (Snedecor and Cochran 1967, Sokal and Rohlf 1969), the additiOnal proportion of egg parasitized by A, flavipes for a given accumulated DD total (X) can be calculated by: P(X) 3 1 e-(x-uVZcz 072fl [21] Since the cumulative probability generating function for the normal distribution does not exist, Equation 21 must be solved through numerical integration to obtain the cumulative proportion of CLB eggs parasitized by A, flavipes on a specific degree day total (Fig. 13). The proportion of CLB eggs in oats parasitized by 5, flavipes for 1976 and 1977 will be calculated as described above, since incomplete egg parasitism information was collected during these years. Also in fields 5-60, 8-10 and 9-10 in 1978, the above mentioned methods will be employed. 75 The proportion of the CLB larvae parasitized by the larval parasitoids, T, iglig, Q, temporalis and g, curtus, were obtained directly via dissection of the larvae collected while taking the 2 row feet population samples (Appendix E). Due to the wide variation in larval parasitism within and between years, no generalized equation for estimating the proportion of larvae parasitized was developed. Using either the general egg parasitism curve or egg and larval dissection information, the percent of the total seasonal incidence of CLB eggs and larvae was calculated and summarized in Table 14. These values integrate the effects of parasitism throughout the season and represent the total seasonal impact of a particular mortality factor (parasitoid). Within-Generation Survival Within-generation survival, 8 , was defined as survival from ovi- WG position through summer adult emergence. Two models for within- generation survival were analyzed. The first model was that implemented by Helgesen and Haynes (1972): s * * * t *- ch SE SL1 S1:.2 SL3- SL4 Sp [22] where: S - egg survival - no. instar 1/no. eggs, S a lst instar survival 8 no. instar 2/no. instar l, - 2nd instar survival 8 no. instar 3/no. instar 2, - 3rd instar survival = no. instar 4/no. instar 3, a 4th instar survival = no. pupae/no. instar 4, and a pupal survival - no. emerged adults/no. pupae. 9 7 9 1 o t 6 7 9 1 m o r f d e z i t i s a r a p e a v r a l d n a s g g e B L C f o e c n e d i c n i l a t o t f o n o i t r o p o r P . 4 1 e l b a T . n o i t a t S l a c i g o l o i B g g o l l e K e h t t a d e z i t i s a r a P n o i t r o P e a v r a L 8 9 9 E l a t o T s i l u j . T s e p i v a l f . A s u t r u c ' E . s i l a r o p m e t . D p d l e i F r a e Y o r C 76 - - 0 5 2 . 3 8 1 . 0 7 0 . 3 0 0 . 0 7 2 . 3 9 0 . 0 4 1 . 4 5 2 . 1 6 1 . 6 8 0 . 8 2 5 . 9 3 4 . 7 5 4 . 0 1 3 . 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 4 0 0 . 0 0 0 . 0 0 0 0 . 0 3 1 0 . 4 1 0 . 4 0 0 . 7 0 0 . 3 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 3 0 . 5 5 0 . 9 0 2 . 4 9 0 . 5 0 0 . 2 8 0 . 7 3 0 . 4 2 2 . 0 3 0 . 0 5 2 . 3 8 1 . 0 7 0 . 3 0 0 . 0 7 2 . 9 5 0 . 5 9 0 . 3 6 0 . 4 6 0 . 6 6 0 . 7 0 4 . 4 9 2 . 1 8 2 . 0 0 5 . . * 8 2 8 . s t a O s t a O s t a O t a e h W * 6 0 8 . s t a O 7 7 9 1 * 5 1 1 . * 8 2 1 . * 2 3 1 . 9 7 1 . 3 1 0 . 1 9 4 . 0 3 5 . 6 7 2 . 2 4 7 O s t a O 0 1 - 8 s t a O 0 1 - 9 s t a O 2 1 - 9 t a e h W 3 1 - 9 s t a O 0 6 - 5 8 7 9 1 t a e h W 1 1 - 9 s t a O 1 1 - 8 s t a O 3 1 - 9 s t a O 4 5 - 5 9 7 9 1 - - - * 4 5 6 . s t a O 3 1 - 9 6 7 9 1 . e v r u c m s i t i s a r a p l a r e n e g g n i s u d e t a m i t s e e t a d e l p m a s a n o d e z i t i s a r a p s g g e f o n o i t r o p o r P * 77 The second model was developed to eliminate errors caused by visual estimation of instars and was described by: = * t * ch 532 SSL sLL Sp [23] where: S = egg survival = no. small larvae/no. eggs, E2 SSL 8 small larval survival 8 no. instar 3/no. small larvae, SLL 8 large larval survival = no. pupae/no. large larvae, and Sp = pupal survival as described above. To aid in the examination and analysis of these models, both were transformed from multiplicative models to additive models by taking the natural logarithms of both sides: ln(SWG) = ln(sE) + ln(SLl) + 1n(sL2) + ln(SL3) + ln(SL4) + ln(Sp) [24] and: ln(sWG ) = 1n(SE2) + 1n(SSL) + ln(SLL) + ln(sp) [25] As pointed out by Sawyer (1978), a partial solution to analyzing these models is recognizing them as analogues of varley and Gradwell's (1970) key-factor relationship. Once this relationship is recognized, graphs of total within-generation survival and each survival component against total production can be made. Although this analysis is sub- jective and lacks statistical rigor, its intuitive appeal justifies its application. In Figures 14 and 15, this graphical key-factor analysis is repre- sented for the within~generation survival models described by Equations 24 and 25, respectively. Examination of the six component within-generation 78 ‘1 ’ (I! 600 .‘ ,\\ o //1 J ,f\ (I) L! ’tr”.\"’ \/ -. ".‘ ._ 2 2 I" \ / z 1 ‘\ is" g 2 \ / \ tom. \ 1 ’,o . f 1" 4 .1 tom. 4.4 . 4 2'5 .3 7. .3 .3. 9.. ‘3'“: .swa‘a'm'cu ‘1 \ (‘1 L2 .. -—O 1 1 , s.) L3 ‘ '— ‘. -4 .~ “" 7‘ I‘~ ’ I ‘0 l ‘0 . '3 8 "3"“ * I I . .,.. ‘ and form. 47‘1 '7.*.3'.3f.a'.5 fi'a‘a a'a'a'a. an... 1 (I) (f) “ \ fir\ L‘ ’a". “I and x‘ f . 3 - 1 j tornL 1 L 9 V 1 V W S ( N L - 3 - 5 - J A \ . . J — _ — —. : a c g — L \ \ _ \ ‘ \ D \ L l ? ; : : ; / / / / / / f < - ‘ 6 6 - " l A 1 v v v 'o r to ' ’ on ' I. ' ' to ' no ’ no 0 fifiv 4 3 ‘ 3 YOYRL 500 PRODUCTION (I 80 CH) TOTRL EGG PRODUCTION (/ 60 CH1 Figure 14. Graphical key-factor analyses of the individual components Of the 6 factor within-generation survival model. A - eggs, 8 = first instars, C - second instars, D a third instars, E - fourth instars and F a pupa . v .5 ' .h :h 79 (a) .. (a) SHRLL LRRVRE , _. «fr”°"’""\‘/ tornL 1 L 8 V 1 V R U 8 1 N L 8 l + 7‘ a“ 4 db “o 7: c6 :6 o5 :3 '7 ' ' ' ' ' 4 :Eo '1 4 ‘,r\ mno: navne L L A. I) x I ‘ \ ’. ’ I' _, .. " —— rant '7" an . d 1 2. , .1 g 4 I ‘o \ O "1 + 7‘ 4 0'5-1 { u-J ‘.’ PUPAE .. -— - ._ __ I .\ ~ / -.\ “J d "0 . term 4 Id . 4 r f ' ' fi ‘i I v '7 v T T V - t T ' v ' I I I v I 1 v 1 0 I. 48 N U 1” 120 O 20 40 80 00 100 120 tornL zoo rnooucrxou (I so cut tornL soc PRODUCIION (/ so cm) Figure 15. Graphical key-factor analyses of the individual components Of the 4 factor within-generation survival model. A = egg-2, B a small instars, C = large instars and D 8 pupae. 80 survival model (Fig. 14) reveals a high degree of curve similarity between total within-generation survivial and egg survival, 4th instar survival and pupal survival. Of these three survival components, egg survival appears to be the single most important key-factor (Fig. 14A). First and 3rd instar survivial (Fig. l4B,D) appear to have an inverse relationship with total survival. While analyzing the within-generation dynamics of the CLB at high densities, Helgesen and Haynes (1972) observed 4th instar mortality to be density dependent. Since 4th instar survival appeared to be an important factor in within- generation survival (Fig. 14E) and lst and 3rd instar survival would lessen 4th instar survival, this relationship is understandable. Looking at the four component within-generation survival model (Fig. 15), again egg survival appears to be the key-factor followed by large larval and pupal survival. Once again, an inverse relationship exists between small larval survival and total within-generation survival (Fig. 158). As previously noted, this analysis is subjective and no statistical significance can be placed on the relationships. Correlation analyses provided this statistical significance. Pearson's bivariate correla- tion (SPSS--Nie et al. 1975) was performed between total within-generation survival and the model components from Equation 24 and 25. For the six component within-generation survival model (Equation 24), simple correla- tion coefficients of .956, -.238, -.116, -.363, .661 and .849 were obtained between within-generation survival and egg, lst instar, 2nd instar, 3rd instar, 4th instar and pupal survival, respectively (signifi- cance levels of .001, .507, .750, .303, .037 and .002). Correlation 81 analyses of the four component within-generation survival model (Equation 25), resulted in simple correlation coefficients of .969, -.382, .800 and .849 for egg, small larvae, large larvae and pupal survival, respectively (significance levels of .001, .276, .005, and .002). Therefore, at low densities, it appears as though egg survival operates as the key-factor affecting total within-generation survival followed by pupal and 4th instar (or large larvae, depending upon the model) survival. This is in agreement with Sawyer (1978) who identified egg and pupal survival as probable key-factors in the within-generation survival of the CLB. However, these findings are contradictory to those reported by Helgesen and Haynes (1972). Examining the within-generation dynamics of the CLB at epidemic levels, they reported egg, 2nd and 3rd instar and pupal survival as constants. The primary contributions to within- generation survival being made through the density dependent mortality factors operating within lst and 4th instars. At the time of their analysis, however, the egg parasitoids, A, flavipes, had not yet been released or established in the study area. This additional complexity calls for re-examination of mortality factors. Since egg survival was shown to be the key factor in within- generation survival, egg mortality factors must be examined. Survivorship in eggs is a function of many factors, i.e., parasitoids, predators, fertility, temperature and other biotic and abiotic factors. Since only parasitism by A, flavipes was monitored, the survival model for eggs (SB) can be described by: 82 S = S * S [26] where: SAF = survival from A, flavipes, which is equal to 1.0-proportion of eggs parasitized by A, flavipes, and Sus 8 survival from unknown sources. To examine the relationship between egg survival and the proportion of eggs parasitized by A, flavipes (Fig. 16), least squares linear regression was performed. The egg survival component from both the 6 (Fig. 16A) and 4 (Fig. 168) component within-generation survival models were analyzed. The following highly significant relationships were obtained: Y a .9965 - 1.233(X) :2 = .871 1 [27] HO: (8 = 0) tlo = -8.21, p < .0001 and: Y = .8402 - 1.031(X) r2 . .890 [28] 80: (B . 0) :10 = -8.99, p < .0001 for the 6 and 4 component models, respectively. Of particular interest are the intercepts of these relationships, since they represent the propagation of eggs surviving in the absence of A, flavipes parasitism. These intercepts (.9965 and .8402) agree fairly closely with the egg survival of .90 reported by Helgesen and Haynes (1972). The 4-component model (Fig. 168), which partially eliminated the errors of visual 83 (A) Y:09965-10233(X)0 R2=.871 SEGG 0 0 L R V I V R U S G G E N --( O O o. 4 1 T ‘\ I T l V 7 I V 0.0 0 2 0.4 0 6 0.8 1.0 D 47 “3 o‘ El E! (3) v=.a402-1.031(x1. R2:.890 SEGG-Z L R V I V R U S G G E °?0.. 1‘ a T t I , . 1 . ' O. D0.0 012 0.4 0.6 0.8 1.0 PROPORTION OF EGGS PRRRSITIZED Figure 16. Relationship between the proportion of CLB eggs in oats parasitized by Anaphes flavipes and egg survival for the 6 factor (A) and the 4 factor (8) within- generation survival models. 84 estimation of instar, provided the most realistic relationship since the 6-component model (Fig. 16A) probably overestimates egg survival (several instances of survival > 1.0). Therefore, egg survival as calculated from the 4-component within-generation survival model (S ) will be discussed. egg-2 From the least squares linear regression analysis of Segg-Z and proportion of eggs parasitized by A, flavipes (Fig. 168), approximately 89% of the variation in egg survival can be explained by variation in A, flavipes parasitism. As discussed in an earlier section, the proportion of the total eggs parasitized by A, flavipes for a given degree day accumulation was very constant for all years collected (Fig. 13). Thus, it would appear as though synchrony of CLB oviposition with this standard egg parasitism curve (Fig. 13) would be an important factor in determining the proportion of total eggs parasitized by A, flavipes (Equation 5). Plotting the cumulative oviposition in the section 9 oat fields over degree days > 9°C along with the standard egg parasitism curve for A, flavipes (Fig. 17), indicates fairly good synchrony between CLB ovi- position and egg parasitism for 1976, 1977 and 1979. However, in 1978 the CLB oviposition was far ahead of A, flavipes parasitism. In fact, over 60% of the CLB eggs had been oviposited before 10% were parasitized, in contrast to only 10 to 35% for 1976, 1977 and 1979. Clearly, synchrony between CLB oviposition and A, flavipes parasitism is a very important factor affecting the total proportion of CLB eggs parasitized, which singly accounts for 89% of the variation in egg survival. It was also noted in the correlation analyses that egg survival was uncorrelated 85 7 7 8 1 8 7 8 1 8 7 8 1 6 7 8 S 1 G G E u u u u & \ X l / l r E " ’ f EIXIOIX I ! I “K \ ‘\~ \ \ \\ \a / ‘fla \ \ , I \ \ 3.x I T 7 I I I I I ” 0'1 1 8'0 - 8'0 l 1 7’0 1 3'0 : c " 5 c NDIlHOdOHd 3A11810N03 0 0 8 0 0 8 0 0 7 0 0 6 0 0 5 0 0 4 ( 0 0 3 0 0 2 0 0 1 0 C ° 9 > S Y R D E E R G E D n o i t i s o p i v o B L C e v i t a l u m u c e h t d n a : c 9 > s y a d e e r g e d n e e w t e b p i h s n o i t a l e R . 7 1 e r u g i F a ‘ ' . s e p i v a l f s e h p a n A y b d e z i t i s a r a p s g g e f o n o i t r o p o r p d n a 86 with egg density (r12 = .089, p = .78 for the 6-component survival model; r12 8 .099, p = .76 for the 4-component survival model), adding further evidence to the importance of synchrony. In order to examine the-survival from unknown sources (sus), Equation 26 was rewritten and solved for Sus 8us 3 SE/SAF where: 29 [ ] SE = egg survival as calculated in the 4-component within-generation survival model. Sus was then calculated for all the cat fields in Table 13. To deter- mine if survival from these unknown sources was density dependent, least squares linear regression was performed between Sus and total egg production (Fig. 18). Neither the relationship (r - -.082, p > .05) nor its slope (HO: (8 a 0) t 8 -.26, p - .80) were statistically signifi- cant, thus implying that survival from the unknown sources was density independent. In summary, the mortality factors, or survival, operating within the egg stage of the CLB were shown to be density independent. The unknown mortality factors, i.e., predation, infertility, catastrophic weather, etc., appear density independent while parasitism by A, flavipes is dependent upon synchrony between CLB oviposition and the standard parasitism curve. Since CLB larval parasitoids have been released and established at the KBS, total larval survival (8LT) can be expressed by: 5LT ' STJ SDT SLC 3us * * * [30] 87 ! I 7 8 0 0 . : 8 8 . ) X ( 8 5 0 0 0 . - 1 6 6 5 . = Y ‘ l E 1 f _ _ 3 0 2 1 0 0 1 0 8 0 6 0 4 0 2 0 M C 0 6 / N O I T C U D O R P G G E L H T O T n o i t c u d o r p g g e l a t o t y b d e r u s a e m s a y t i s n e d B L C n e e w t e b p i h s n o i t a l e R . 8 1 e r u g i F . s e c r u o s y t i l a t r o m n w o n k n u m o r f l a v i v r u s g g e d n a m c 0 6 / j r r T — T I r . r r r r I (8338009 NMONMNO) WUAIAHDS 003 . 0 O 88 where: ) U ) U ) ‘ 0 ) U I- larval survival from I, julis (1.0-PParTJ), 1 1 larval survival from 2. temporalis (1.0-PParDs), l l larval survival from L, curtus (1.0-PParLC), and 1 1 larval survival from unknown sources. During this analysis, total larval survival (SLT from Table 12) was calculated as the absolute density of pupae/total production of eggs (Helgesen and Haynes 1972). Examination of Table 14 reveals a, curtus had a relatively insigni- ficant role in parasitism of CLB larvae throughout this study. There- fore, S was incorporated into Sus along with predation, diseases LC and other biotic and abiotic mortality factors. Further, the impact of T, julis and D, temporalis is not mainifested until after the CLB larvae have pupated and thus may not affect larval survival prior to pupation. However, this larval survival model does allow analysis of sus for density dependence. Rewriting Equation 30, after incorporating sLC into sus' and solving for S : us a I * SUS SLT/‘STJ SDT) _ [31] the relationship between density and Sus can be examined (Fig. 19). Least squares linear regression was performed to quantify this relation- ship and test for significance. Neither the relationship (r I .131, p > .05) nor the slope (HO: (8 - 0) t I .349, p - .74) were statistically significant, indicating larval survival from unknown sources--i.e., predators, E, curtus, catastrophic weather, etc.--was density independent and about equal to .10. 89 ' " " ” ” ’ " ~ - — — . . . 8 , , _ _ _ fl _ fl fl fl — fl fl fl 1 E 7 1 0 . = 2 R o 1 X 1 9 4 0 0 0 - + 4 3 0 - : Y I ‘ I ‘ I 1 1 08'0 SZ'O 03'0 91‘0 01'0 SO'O 000’ (3338009 NHONMNfl) TUAIAUOS 'IHAHB'I 0 2 1 0 8 1 8 8 * 8 6 . 8 4 T 8 2 M C 0 6 / N O I T C U D O R P 0 0 8 L R T O T f T r . s e c r u o s y t i l a t r o m n w o n k n u m o r f l a v i v r u s l a v r a l d n a m c 0 6 / n o i t c u d o r p g g e l a t o t y b d e r u s a e m s a y t i s n e d B L C n e e w t e b p i h s n o i t a l e R . 9 1 e r u g i F 90 As mentioned earlier, the mortality caused by T, julis and D, temporalis is not mainifested until pupation, therefore, it is necessary to examine the relationship between parasitism by these parasitoids and total within-generation survival (Sw ). G Graphing SWG and the ln of total parasitism by these parasitoids over total egg production provides a graphical key-factor analysis of these mortality factors. Total parasitism by T, luli§_(Fig. 20A) appears to have an inverse correlation with SWG; whereas no such relationship appears with Q, temporalis (Fig. 208). Correlation analysis between ln SWG and 1n STJ (total 2, 121i§_parasitism) indicated a significant negative relationship (r a -.67, p = .05), thus implicating g, lglig as a significant factor affecting within-generation survival. To investigate the relationship between parasitism and CLB larval density, estimates of total seasonal larval production and percent parasitism by the parasitoids are required. Total seasonal larval production is necessary since it represents the total number of larvae that were available for parasitoid attack. It is also necessary to have a range of larval densities in close proximity. This allows making the assumption that all CLB larvae were exposed to the same density of parasitoids, thus leaving only CLB larval density to affect parasitism rates. The data necessary for this analysis was available from the 1978 section 9 population sample oat fields (9—10 and 9-12) and the parasitoid cage study (field 9-8 and the 4 density cages). Using either weekly sweepnet catches (field 9-8) or 2 row feet (60 cm) counts (field 9-10, 9-12 and cages 250, 500, 1000 and 2000), total seasonal larval incidence and total seasonal larval production 91 4 1 (p—I I ‘T r I I I I I 0 20 40 60 80 100 120 71 . \ (I) N-J 4 1 N H T I R R G O L L R R U T R N H H T I R R G O L L H R U T R N ‘T I I I I I 0 20 40 80 80 100 TOTRL EGG PRODUCTION / 60 CM Figure 20. Graphical key-factor analyses of parasitism by '_I‘_. julis (A) and 2. temporalis (B) with total within- generation survival. ‘l 120 92 were calculated. This provided total seasonal larval production estimates of 13.41, 18.04, 22.32, 12.72, 27.01, 54.08 and 100.32, respectively. Estimates of the number of CLB larvae parasitized were obtained from soil samples taken in these fields. The results of the soil samples taken in fields 9-10 and 9-12 were previously presented in Table 11, while those taken in the parasite cages and their host field 9-8 are summarized in Table 15. The percent parasitism by g, iglig. (no. emerged plus diapausing T, lulig/total seasonal production) and by 2, temporalis were calculated and graphed over total seasonal larval production (Figs. 21A,B respectively). Least squares regression was performed and the following relationship obtained: Y - 29.05 - 4.821 (In X) r2 . .414 . [32] H0: (8 = 0) t7 = -l.88, p = .119 and: ln(Y) = 3.789 - .5309 (1n X) r2 = .881 [33] “0’ (8 = 0) t7 . -6.071, p = .0017 for T, igli§_and D, temporalis, respectively. Although the T, 22112. relationship was not statistically significant, the analysis did provide strong evidence that the percent parasitism by both of these parasitoids was inversely density dependent. Examination of the historical CLB oats data from the section 9 research plots provides further support for this relationship. From these long-term research plots, data was available on the total seasonal d i o t i s a r a p n i y l m o d n a r n e k a t s e l p m a s l i o s m o r f d e r e v o c e r s l l e c l a p u p B L C f o s t n e t n o c f o y r a m m u S . 5 1 e l b a T . " 4 x " 6 3 x " 8 1 s l a u q e t i n u e l p m a S . s e g a c . e c n a i r a v - 2 w o r d n a n a e m - 1 w o R L A T O T s u t r u c . L S L L E C D E G R E M E G N I S U A P A I D s i l a r o p m e t . Q D E G R E M s E i l u j . T D E G R E M E G N I S U A P A I D B L C E T A D S E G A C 93 0 0 . 7 2 0 0 . 4 3 0 0 . 1 4 0 8 . 0 8 3 8 . 5 6 7 3 . 5 1 4 0 5 . 9 8 0 3 . 8 2 0 1 7 1 . 7 1 . 3 3 . 7 6 . 0 0 . 0 0 0 . 0 5 4 . 5 1 7 3 . 6 5 0 1 . 9 0 . 5 7 . 5 7 5 . 9 1 8 7 / 1 2 / 7 0 5 2 8 7 / 1 2 / 7 0 0 5 8 7 / 1 2 / 7 0 0 0 1 8 7 / 1 2 / 7 0 0 0 2 0 2 8 7 / 4 1 / 7 8 - 9 L O R T N O C 94 m m (A) o— m 5 I—1 *- o— “ N 03 C: m CE 0. p— I: . U Y=29-08-4.821(LN X). 2 R =-414 m (u Dd U '1 m a: Lu L o d F’ I ' H ’ I ' I r I 0 20 40 60 80 100 (I) LN(Y1=3.789-.5309(LN X1. R‘=.881 0 1 26 .6 ' sf: 0 ' a6 100 H S I T I S R R R P T N E C R E P TOTRL LRRVRL PRODUCTION / SOCN Figure 21. Relationship between total larval production / 60 cm and parasitism by g. julis (A) and 2. tempgralis (B) in the section 9 cat fields and parasitoid cages. 95 larval production and corresponding percent parasitism from 1967 to 1979.1 Least squares linear regression was again performed and the following relationship obtained: ln(Y) = 3.988 - .0193 (X) r2 = .734 [341 a - (8 = 0) 511 = -4.982, p = .0008 ln(Y) = 2.405 - .0486 (X) r2 = .909 [351 HO: (8 = 0) = -8.931, p < .0001 for T, julis (Fig. 22A) and D, temporalis (Fig. 228), respectively. Although it is impossible to assume parasitoid density was constant throughout this period, some insight into the mechanisms of parasitism can be obtained. From these analyses, evidence was obtained which indicates that parasitism by both T, igli§_and D, temporalis was inversely density dependent. This relationship was observed within a season through controlled field conditions and between seasons through monitoring natural conditions. 1Sawyer (1978) in Table l summarized the 1967 to 1977 section 9 research plot information. The 1978 and 1979 information was available through this study. (A) M S I T I S R R R P T N E C R E P o I I I I I 0 25 50 75 100 125 150 175 (I) o— v . I: (D 7—' D-I —- ('7 (D C: a: CI: 0. .— Z UJ t) CI: . o— N J ( LLJ 0.4 0. -- D0 o 0 m m I . I ' I ' I r I HI 0 20 40 60 80 100 120 CLB LRRVRL TOTRL PRODUCTION Figure 22. Relationship between total larval production / 60 cm and parasitism by g. julis (A) and 2, temperalis (B) in the section 9 research area from 1970 to 1979. 97 CLB pupal survival can be expressed by: sp - sTJ * sDT * sus [36] where: Sp = pupal survival = no. emerged CLB adults/no. CLB pupae, STJ 8 pupal survival from T, 12112! S - pupal survival from 2, temporalis, and S 8 pupal survival from unknown mortality sources. Estimates of total pupal cells, emerged adults, and parasitized cells for this analysis were obtained via soil samples (Table 11). Transforming each of the survival components of the pupal survival model (Equation 36) by taking their natural logarithm, transforms that multiplicative model to an additive model. Graphing 1n Sp and the ln of STJ and SDT over total egg production provides a graphical'key-factor analysis of these two mortality factors (Fig. 23). Pupal parasitism by 2, igli§_(Fig. 23) was shown to be positively correlated with pupal survival (r10 = .906, p < .01), while pupal para- sitism.by 2, temporalis (Fig. 238) was shown to be inversely correlated with pupal survival (r10 = -.651, p < .05). The relationship between survival from T, 12115 and pupal survival was expected, whereas the inverse relationship between survival from 2, temporalis and pupal survival was unexpected and unexplainable. Apparently, conditions which favor CLB pupal survival also favor larval parasitism by D, temporalis. Of these two parasitoids, parasitism by T, julis explained more of the variation of pupal survival than did parasitism by 2, temporalis (.82 and .42, respectively). It therefore appears as though 3, julis para- sitism is a key-factor in pupal survival. 98 TOTRL PUPRL SURVIVRL TOTRL PUPRL SURVIVRL r T T Y Y ‘ H H T I R R G O L L H R U T R N H H T I R R G O L L R R U T R N 20 40 SD 80 (DD 120 TOTRL 500 PRODUCTION / 60 cm Figure 23. Graphical key-factor analyses of pupal survival from 11;. julis (A) and 2. temporalis (B) with total pupal survival. 99 Rewriting Equation 36 and solving for sus’ it was possible to test sus for density dependence. Plotting Sus in pupae against total egg production (Fig. 24) revealed no statistical significance in their relationship (HO: (8 - 0) tlo - 1.56, p = .16), thus indicating the mortality factors represented by Sus were density independent. A partial list of the mortality factors incorporated into sus includes: parasitism by E, curtus, predation and soil temperature. As noted in Tables 11 and 14, E, curtus accounts for relatively little mortality. Further, at these low densities, little predation would be expected. Therefore, soil temperature remains as a likely candidate contributing to sus' To test this hypothesis, the accumulated DD > 9°C during July (433, 468, 391 and 401) and Sus (.585, .515, .729 and .710) were calculated for the section 9 population sampling fields from 1976 to 1979. Least squares linear regression was used to obtain the following significant relationship: Y 8 1.8675 - .0029 (X) r2 . .978 .01 < p < .05 where: [371 Y = pupal survival from unknown sources, and X - DD > 9°C accumulated during July. These results confirm the hypothesis that high daily temperatures during CLB pupation (as indicated by accumulated DD > 9°C during July) have significant adverse affects on CLB pupal survival. Gage (1974) has also noted that high temperatures during pupation (in this case 100 4 3 2 . = 2 R . ) X ( 2 1 0 0 - + 8 3 8 5 . = I T r M C 0 6 / N O I T C U D O R P G G E L R T O T . s e c r u o s y t i l a t r o m n w o n k n u m o r f l a v i v r u s l a p u p d n a m c 0 6 / n o i t c u d o r p g g e l a t o t y b d e r u s a e m s a y t i s n e d B L C n e e w t e b p i h s n o i t a l e R . 4 2 e r u g i F — I I r I . r I 0 2 1 fi r I 0 0 1 r r 0 8 — T 0 6 D 4 0 2 0 ’ c (3338009 NMDNMND) WUAIAHDS WHdnd S‘D , . 101 indicated by accumulated DD > 29°C (85°F) in June) increased both CLB and T, jglig mortality. In summary, parasitism by T, jgli§_and DD accumulations during July account for a significant portion of CLB pupal survival. But as mentioned earlier, parasitism by T, jglig in the pupal stage is simply the manifestation of what occurred during the larval stage. Therefore, DD accumulations, which represent high soil temperatures, appear to be the major factor contributing to pupal survival within the pupal stage. Between-Generation Survival The previous analyses implicated egg parasitism by A, flavipes, larval parasitism by T, julis and Q. temporalis and DD accumulation.in July as key factors in within-generation survival. These factors will now be examined to determine their effects on between-year population dynamics. Using the approach of Morris (1959). these mortality factors were examined. In his analysis, the number of individuals surviving a specific mortality factor in generation t was plotted against the number of individuals of the same life stage in generation t+1. Following this reasoning, the number of eggs surviving in generation t (n(t) * (l-mortality by A, flavipes)) was plotted against the number of eggs in generation t+1 (Fig. 25A), the number of larvae surviving in generation t (n(t) * (1 - mortality by T, jglis) and n(t) * (l - mortality by D, temporalis)) was plotted against the number of larvae produced in generation t+1 (Fig. 258); and the number of pupae surviving in generation t (n(t) * (l - pupal mortality from unknown Figure 25. Key—factor analyses between number of organisms in generation t times survival from all mortality sources for eggs (A), larvae (B) and pupae (C) with the number of organisms in generation t+1. 102 '9 8 ~ D a)» o- £003 In) I!) w d Q—I ”iO * 4 o—U N d O I I ' I . I ' o 20 40 80 . 80 I ' 1 100 120 O In} Q— m d o— 9' 1 o— m ‘I O_ N «II ) 1 + T ( N LRRVRE (B) E] = SURVIVRL FROH T. JUL18 l = SURVIVRL FRO" D. TEHPORHLIB _ on 0- v-i ‘ a El ' r l V l l I I I I 1 o 0 10 20 30 40 so 60 D 2— - m ad a D‘- (D O-I * PUPHE (C) c:—!! N I fl (n Y T I I I I I l l “ ‘14? ° O 8 8 10 12 14 16 N(T)IIIS(T) 103 sources)) was plotted against the number of pupae in generation t+1 (Fig. 25C). From this analysis it is apparent that none of these within-generation key factors are affecting density in the following year. This is unexpected, but it is not without precedent. While examining various parameters upon the generation index (n(t+l)/n(t)), Sawyer (1978) found the ASF factor to be the key factor in between-generation population dynamics. The ASF factor included adult survival and fecundity and represented the survival of adults from summer emergence to spring emergence. This implies that at low densities, the CLB dynamics that takes place within a field in one year has little relationship with CLB density in that field the next year. There are, however, important interactions taking place between years among A, flavipgs and T, 13Ai_, A, flavipes has many generations per year and a high reproductive rate whereas 2, 12Ai§_has only two generations per year and a moderate reproductive rate. It is, therefore, reasonable to assume that parasitism in one year by A, flavipes will interfere with T, juiig parasitism the following year, since the current year's T, jgiig density was produced the previous year. Using the A, flavipes egg parasitism and T, jgli§_larval parasitism from Table 14, plus the 1971 to 1973 parasite information (Gage 1974), it is possible to test this hypothesis. Plotting the proportion of eggs parasitized by A, flavipes in year t against the proportion of larvae parasitized by I, jg$i§_in year t+1 (Fig. 26), resulted in the following significant relationship: 104 9 7 6 . = 2 R 0 7 x ( 6 8 0 4 0 " 4 2 0 4 0 = Y I! T7 7‘0 I 8'0 r I I T . re re 0 ‘0 1+1 8831 NI SIWnP '1 18 DBZIIISHHUd BUAHU'I JD NOI180c108cl 0 - 1 3 - 0 6 - 0 4 - 0 2 - 0 0 - 0 Y B D E Z I T I S R R R P S G G E F O N O I T R O P O R P T R R E Y N I S E P I V H L F . 8 T I 1 I l . T 1 y b d e z i t i s a r a p e a v r a l B L C f o n o i t r o p o r p e h t d n a t r a e y n i s e p i v a l f s e h p a n A y b d e z i t i s a r a p s g g e B L C f o n o i t r o p o r p n e e w t e b p i h s n o i t a l e R . 6 2 e r u g i F . 1 + t r a e y n i s i l u j s u h c i t s a r t e T 105 Y = .4024 - .4086 (x) r2 = .679 [38] HO: (8 = O) tq = -3.852, p = .006 therefore confirming the hypothesis that egg parasitism by A, flavipes has a significant impact on the efficiency of T, ju£i§_as a larval parasitoid (Haynes, personal communication). In summary, these analyses show, in agreement with Sawyer (1978), that the major factors affecting the population trends of the CLB must occur after emergence of summer adult CLBs and prior to oviposition the following year. It is important to pursue this area of research to fully understand and accurately predict the density trends of the CLB. The importance of this research becomes especially evident when viewing the pOpulation trends of the CLB in the section 9 research area. Construction of phase plots (loglo density in generation t versus loglo density in generation t+1) for the CLB larval trends in oats (Fig. 27) and in wheat (Fig. 28) from the section 9 research plots provide insight into these trends (see Gage (1974) for a similar analysis). In both oats and wheat, the population rapidly increased only to be followed by several years of decrease. After a low in 1974 (wheat) and 1975 (cats), the population began to rise toward damaging levels in oats. In wheat, however, the population density has remained stable in the section 9 population sampling fields since 1977 (Fig. 28). Total seasonal larval production for the section 9 population sampling fields was calculated using Equation 19 and the fields density estimates. These total larval production estimates were incorporated with those from the KBS sweepnet survey (Tables 6 to 9) to calculate 106 1887 TO 1878 BULL LHKE ORTS PHRSE PLOT (LOGIOJ J L; 1887-1888 . I l 1 l l J'F7 F T I I T T '7 . ] 1 + T ( N O I T H R E N E G N I Y T I S N E D 4 0 2 0 . 2 8 0 1 2 0 1 8 0 0 4 0 0 0 0 0 ‘ 0 0 “ 8 0 0 “ -008 “004 000 004 0.8 102 106 200 204 DENSITY IN GENERHTION (T) Figure 27. Phase plot of log of the total CLB larval production in oats from the section 9 research area. 107 ) l + T ( N O I T R R E N E G . N I Y T I S N E D 1887 TO 1878 GULL LRKE HHERT PHRSE PLOT (L08101 0 . 2 d :3- I i 2.0 -I.0 010 1:0 210 3.0 DENSITY IN GENERHTION (T) Figure 28. Phase plot log 0 of the total CLB larval production in winter wheat from the section 9 research area. 108 the total KBS larval production from 1976 to 1979 (Tablelfn. Examination of this table reveals that even though the total larval production in the section 9 population sampling wheat fields has remained about the same from 1977 to 1979, dramatic changes have taken place in the total KBS larval production in wheat. This table is intended to show the importance of expending some portion of research resources into monitoring the region where a pest is found beyond a few specific fields. In this example, had only the section 9 population sampling fields been monitored, an incomplete and inaccurate picture of the total regional CLB larval production would have been obtained. To properly manage the trajectory of these populations, it is necessary to determine which factors, biotic or abiotic, control the direction of the phase plot. Further, additional research effort must be expended at this research site to monitor the populations to deter- mine if the CLB populations are cyclic, the duration of the cycles if they exist, and the existence of a possible density equilibria. LOW DENSITY POPULATION ANALYSES It is important in an ecological or quantitative study of an organism to study its spatial pattern since it is this pattern which affects the distribution of quadrat counts in a sampling scheme and the reliability of the resulting density estimates. However; before proceeding it is important to make clear the distinction between pattern and distribution and the convention suggested by Pielou (1977) has been adopted. Throughout this text, pattern will refer to the placement of organisms within their environment; whereas, distribution 109 Table 16. Kellogg Biological Station CLB larvae production. Crop Sweepnet Population Total Survey Samples 1976 Oats Wheat Rye 2,536,273 359,903 2,896,176 1,104,594 22,780 1,127,374 38,261 38,261 Total 3,679,128 382,683 4,061,811 1911 Oats Wheat Rye 12,776,404 385,846 13,162,250 3,883,566 256,551 4,140,117 173,598 173,598 Total 16,833,568 642,397 17,475,965 1978 Oats Wheat Rye 18,203,899 9,432,736 27,636,635 5,925,944 247,654 6,173,598 49,693 49,693 Total 24,179,536 9,680,390 33,859,926 1979 Oats 2,885,815 3,869,326 6,755,141 Wheats 1,115,285 268,183 1,383,468 Rye - - - Total 4,001,100 4,137,509 8,138,609 110 will refer to a statistical or mathematical function describing the probability of a given event, i.e., probability of obtaining a certain count from a quadrat sample. Whenever larval coordinates were collected, they preserved the spatial pattern of the CLB larvae within the area examined on the sample date. This information was then interrogated in a variety of ways to: l) examine the spatial pattern of the larvae, 2) compare various sampling schemes for estimating larval density, and 3) estimate the components of variance associated with different levels of sampling in a nested design. Spatial Pattern Analyses of CLB Larvae Quadrat counts. Dimensions of the quadrats used in these analyses were limited to a range that could be implemented in the field. Quadrat dimensions of .5 x 2, l x l, 2 x .5, 2 x 2, 3 x 3 and 4 x 4 ft (.15 x .61, .30 x .30, .61 x .15, .61 x .61, .91 x .91 and 1.22 x 1.22 m) were considered reasonable candidates. It may be noted that the first 3 quadrats all produced the same area (1 ft2 or .09 m2). This allowed examination of effects due to quadrat orientation with the oat rows. Quadrat analyses were performed on all plots within all fields (Appendix G); however, due to the length of the results a single randomly selected plot from each field will be presented as an example. These example plots are plot 1 in field 5-58 (Fig. 29), plot 1 in field 8-13 (Fig. 30) and plot 2 in field 9-15 (Fig. 31). For each quadrat dimension and sample size, Pearson's bivariate correlation analyses were performed between the quadrat's true density and the calculated value of I and I from the samples. Plots from 6 111 (D ' . I 0 - ' " . "- ' ' ' " 0 I . . . ' I . a ' I . . - I . . 3] I A s . uI- u. U a) 3 . ¢:-‘ i E c: é: Uv‘ J g ‘ g 2'! I . . - . ' . . . n ' 0 I I cl . Q 9 I ' U ' a I . . . I I I . I I ' ' I I I C a a - C I . a U a a a . C Ju‘ > I A. a U I . ' L . C - A I q 4 . a a I L Y_ I . I . j . . I Y . I ' I I N o WI _ f 4‘ C II 8 O 2 4 8 8 (O 3‘ . . (U ' I I 2 3" u. ' I a: uI .- a C. E c: z: c: 8.: .4 c 4 g . I a I a - >» E )- Jud . O! ‘ 4 .d I I I d O ' 4 I I v‘ 4 C l . ' I I d * fl ' r v I U I v 1 N o °b Y 2r 1 at, - 0' - 0' T 10 O 2 4 8 8 10 X LRRVRL COORDINRTES (FEET) X LRRVRL COORDINRTES (FEET) Figure 29. Plots of the CLB larval coordinates collected from field 5-58 plot 1 in 1977. A 8 June 7, B - June 14, C = June 17 and D - June 21. Figure 30. Plots of CLB larval coordinates collected from field 8-13 plot 1 in 1977. A = May 31, B = June 7, C = June 10, D = June 14 and E = mmell 112 I I I I .v X LRRVRL COORDINRTES (FEET) I I I I I " (i) ) T E E F ( S E T R N T O R O O C L R V R R L Y ) T E E F ( S E T H N I D R O O C L R V R R L Y ) T E E F ( S E T R N I D R O O C L R V R R L Y L A 1 A A l X LRRVRL COORDINRTES (FEET) Figure 31. Plots of the CLB larval coordinates collected from field 9-15 plot 2 in 1977. A = June 7, B = June 10, C = June 14, D = June 17 and E = June 21. I I ( 0 0 2 0 113 (I) (C) (II) X LRRVRL COORDTNRTES (FEET) (E) l I v ' A l I 4 L A L O 2 X LRRVRL COORDTNRTES (FEET) ) T E E F ( S E T R N T O R O O C L R V R R L Y ) T E E F ( S E T R N I D R O O C L R V R R L Y ) T E E F ( $ E T R N 1 0 R 0 O C L R V R R L Y 114 which these indices could not be calculated (estimated mean equal to zero for I and (2x)2 equal to Xx for 15) were eliminated from the calculations. The results of this analysis are summarized in Table 17. Looking at the correlation coefficients in Table 17, one can see that for a given quadrat dimension and sample size I was generally more highly correlated to density than 16' It can also be noted that as the sample size increases I generally becomes more highly correlated with density than I 6' The increasing correlation between I and density was expected because I --§§ and i was an estimate of density. Therefore, as the precision of § increases, either through increasing the quadrat dimen- sions or sample size, the correlation must also increase. Considering the relationship across all quadrat dimensions, we see from Table 17 that I was highly significantly correlated with density (p < .001) whereas, Id was not (p > .674). This is in partial agreement with Hyers (1978) who found both I and IS to be significantly correlated with density. However, her analyses were performed only on computer generated data, only one quadrat dimension and sample size were used, and her study involved a range in density much higher than those observed here (25 to 300 versus .01 to < 1.50). To some extent, these factors may account for the difference in 16's correlation with density. However, these findings do agree with those of Elliott (1977), who found I6 to be independent of density but a function of sample size. In every instance analyzed (all plots, all sample sizes and all quadrat dimensions), I and I arrived at the same judgement concerning 6 115 Table 17. Correlation coefficients of variance/mean and Morisita's Index with density for a variety of quadrat dimensions and sample sizes. Quadrat variance/Mean Morisita's Index Dimensions 10 20 30 50 10 20 30 50 .5 x 2 l x 1 2 x .5 2 x 2 3 x 3 4 x 4 All Quadrats Combined r n a r n a r n a r n a r n a r n a r n a .191 .562 .604 .537 .123 .632 .562 .601 14 17 18 19 11 16 17 17 .512 .019 .008 .018 .719 .009 .019 .011 .318 .568 .583 .619 .132 .516 -.048 .456 13 15 18 17 13 15 18 16 .287 .027 .011 .008 .667 .054 .851 .076 .588 .544 .558 .561 .310 -.012 .404 .429 17 18 18 18 13 17 17 17 .013 .020 .016 .015 ’ .302 .964 .108 .085 .688 .717 .684 .695 .492 .482 .626 .620 18 18 18 18 18 19 18 18 .002 .001 .002 .001 .038 .037 .004 .006 .792 .800 .799 .793 .502 .580 .560 .609 18 18 18 18 l8 l9 19 19 .001 .001 .001 .001 .034 .009 .013 .006 .885 .890 .894 .890 .446 .530 .622 .465 18 18 18 18 l9 l9 19 19 .001 .001 .001 .001 .056 .020 .004 .045 .576 .485 .573 .431 -.025 -.016 -.038 -.003 113 120 126 125 107 119 125 124 .001 .001 .001 .001 .801 .864 .674 .975 116 significant departure from a random spatial pattern of organisms. Even though I was significantly correlated with density the fact that both indices made the same judgement on spatial pattern, the overall ease of calculation of I, and the availability of the statistics necessary for the calculation in most biological studies; I was thought to be more applicable and will be discussed throughout the rest of this text. The main problems encountered when using quadrat samples to examine spatial pattern of organisms are twofold. First, the indices are to some extent always affected by the dimensions of the quadrat and, second, we are In: longer examining the spatial pattern of the organism but the distribution of quadrat counts. This second problem results from being one step removed from the orgamisms, i.e., quadrat counts are examined while organism distribution within a quadrat are neglected. These problems can be overcome through the use of indices based on distance measurements from an origin (random point or random individual) to its nearest neighbor. Distance measurements. When using distance measurements, either from a random point to its nearest organism or from a random organism to its nearest neighbor, for analyzing an organism's spatial pattern or estimating its density, it is important that the organism be relatively sedentary (Blackith 1958, Elliott 1977, Pielou 1977). If the organism is highly mobile, little reliance can be placed on conclu- sions of spatial pattern or estimates of density. Behavior and movement of the CLB adults and larvae were examined for conformity to this assumption. 117 Examination of the behavioral pattern of the CLB adult in the sequentially available habitats (Table 18; Appendix H) indicates some spatial and temporal trends; however, due to the small number of beetles observed and lack of information on some behavioral aspects a qualitative rather than a quantitative discussion will follow. As the season progressed and more habitats became available to the adults, a general decrease in the percent of time moving about the plants and flying from plant to plant was observed in each consecutive habitat. As these behaviors decreased an increase was observed in resting (no observable behavior), feeding and mating. Closer examination of adult movement (Table 19; Appendix H) indicates the time interval between plant to plant hops generally increases through the sequence of habitats while at the same time the average distance per hop decreases, Incor- porating this infOrmation with the CLB adult biology, a general pattern unfolds. As the adults emerge from their overwintering sites and inhabit early emerging native grasses, the beetles were quite restless. They spend about 80% of their time moving about p1ants,moving between plants and preening. The interval between plant to plant hope was quite small (1.92 minutes) and the average rmm> was 11.13 in (28.26 cm). Thus the beetles were quickly diffusing through the overwintering habitat. Beetles found in small grain stubble were also quite restless, with about 70 to 75% of their time being spent in active behaviors. The greatest difference in overwintering habitats and small grain stubble was the time interval between plant to plant hops (5.08 versus 1.92 minutes). The average distance per hop was quite high (10.22 in (25.96 cm) which indicates beetles were still quickly diffusing through the small 118 2 7 . 9 8 3 . 0 8 0 9 . 0 2 6 6 . 0 1 . 8 0 3 . 1 6 9 . 8 6 4 1 . 9 3 5 1 . 9 1 4 9 . 1 9 3 0 . 8 4 NMLDH VNNN 3 5 . 0 1 1 3 . 1 6 3 . 5 2 1 2 . 1 2 5 . 2 4 2 7 1 1 2 . 6 5 9 . 1 4 1 8 6 . 0 9 1 5 7 . 1 9 1 9 9 . 8 3 6 . 3 8 5 8 8 . 8 1 6 9 0 . 1 6 4 1 9 1 1 3 2 3 4 4 7 . 7 1 7 0 . 5 1 7 6 . 3 1 5 3 . 5 1 8 2 . 8 7 6 . 6 5 3 . 8 1 1 3 . 3 7 . 7 4 . 9 5 3 2 . 0 4 1 5 . 1 5 3 1 . 7 2 5 4 . 4 3 7 . 3 6 2 8 . 1 3 1 1 . 1 9 6 . 4 3 4 1 . 9 3 8 4 . 0 1 . 6 2 3 8 . 6 3 8 3 . 5 4 5 . 1 7 8 0 . 3 2 0 0 . 0 5 0 0 . 0 5 8 1 . 6 2 . 8 3 . 6 0 . 3 1 . 1 2 . 9 2 . 0 2 . 3 3 . 9 1 . 0 3 . 6 2 . 4 4 . 4 3 5 8 . 4 5 1 5 . 5 3 3 4 . 9 5 6 2 . 5 2 5 4 . 0 2 4 6 . 3 9 9 . 5 7 8 8 . 2 1 3 0 . 4 3 8 6 . 3 1 2 9 . 9 2 8 7 . 4 1 4 5 . 5 3 1 0 . 0 1 5 3 . 4 3 3 9 . 5 3 5 0 . 8 4 7 7 . 2 1 6 6 . 0 6 5 5 . 4 1 5 7 . 8 6 2 4 . 5 1 8 4 . 5 6 ' 3 2 . 3 3 5 4 . 8 2 4 7 . 8 8 7 . 1 1 4 / 5 1 1 / 5 9 1 / 5 4 / 5 1 1 / 5 4 1 / 5 9 1 / 6 s e s s a r G e l b b u t S 0 3 / 4 t a e h W r e t n i W 4 / 6 8 / 6 3 2 / 6 4 / 6 8 / 6 9 / 6 4 1 / 6 s t a O 0 1 . 8 1 5 1 / 7 9 4 . 0 5 . 5 6 1 / 7 7 1 / 7 3 3 . 2 1 / 7 s t l u d A r e m m u S t n e p S e m i T f o t n e c r e P l a t o T s e t u n i M t a t i b a H . 6 7 9 1 r o f s t a t i b a h e k a L l l u G t n e r e f f i d m o r f r o i v a h e b B L C t l u d A . 8 1 e l b a T g n i v o M g n i t s e R N e v r e s b O d g n i t i s o p i v O g n i t a M g n i d e e F g n i n e e r P g n i y l F e t a D 119 S X n S x d e v r e s b O p o H r e p s e h c n I - s p o H n e e w t e B s e t u n i M f o . o N s e l t e e B e t a D t a t i b a H n i s t l u d a B L C r o f e c n a t s i d p o h n a e m d n a s p o h n e e w t e b l a v r e t n i n a e M . 9 1 e l b a T . 6 7 9 1 n i s t a t i b a h t n e r e f f i d 0 0 0 . 8 4 8 8 7 . 2 5 7 3 . 2 2 HVH 0 2 1 3 0 5 2 . 8 7 3 . 1 1 3 9 . 4 3 8 . 2 0 8 0 . 7 1 HVI—(Ov-l 4 / 5 5 / 5 7 / 5 1 1 / 5 9 1 / 5 g n i r e t n i w r e v O 8 2 1 . 1 1 7 5 9 1 9 . 1 6 1 l l a r e v O 0 0 0 . 2 1 6 4 9 . 3 0 4 5 . 3 0 0 0 . 0 1 0 1 4 6 2 . 0 1 2 6 6 . 6 N 3 3 3 . 3 8 7 . 1 NNMv-I 4 / 5 1 1 / 5 4 1 / 5 9 1 / 5 e l b b u t S 2 2 2 . 0 1 8 5 6 . 8 6 7 0 . 5 0 1 l l a r e v O 5 0 6 . 5 0 0 6 . 5 2 9 1 . 5 4 2 5 . 1 1 3 6 7 . 9 4 5 2 . 5 2 9 1 . 3 9 5 3 . 6 9 6 5 . 3 6 0 6 . 2 2 5 1 0 . 4 2 4 / 6 8 / 6 3 2 / 6 0 3 / 4 t a e h W r e t n i W 8 1 4 5 1 . 5 6 0 3 . 5 7 2 7 1 7 . 9 7 1 9 . 5 0 1 l l a r e v O 6 1 7 1 5 2 0 2 3 9 7 . 4 3 0 7 . 4 7 6 7 . 9 1 7 4 . 8 2 1 6 . 7 0 0 6 . 7 6 3 2 . 4 1 4 8 . 2 1 3 5 2 3 3 3 3 1 5 8 . 6 ' 3 5 7 . 5 4 7 8 . 4 6 8 0 . 4 3 1 0 . 6 7 5 7 . 4 8 9 0 . 5 4 0 3 . 5 6 1 0 1 4 1 8 1 4 / 6 8 / 6 9 / 6 4 1 / 6 s t a O 120 2 2 6 6 5 . 7 1 0 0 5 . 3 1 0 0 1 8 5 2 . 8 6 2 7 . 1 1 l l a r e v O S X n S x d e v r e s b O g o H r e p s e h c n I s p o H n e e w t e B s e t u n i M f o . o N s e l t e e B e t a D t a t i b a H 3 7 4 . 7 7 5 2 . 6 2 2 1 7 5 7 . 5 1 2 0 . 5 1 2 2 . 0 2 2 9 6 . 2 1 1 7 0 . 7 0 0 0 . 3 1 3 8 0 . 6 1 3 3 3 . 7 1 0 0 0 . 2 5 0 4 7 4 8 1 6 4 . 1 8 4 9 . 1 8 4 1 . 0 1 2 8 3 . 1 1 8 5 3 . 4 8 7 8 . 3 1 1 6 4 . 8 8 6 6 . 5 8 5 4 0 3 5 4 l l a r e v O ) . t n o c ( s t a O 2 1 / 7 5 1 / 7 6 1 / 7 7 1 / 7 s t l u d A r e m m u S ) . t n o c ( . 9 1 e l b a T 121 grain stubble. As beetles were found in winter wheat, changes in behaviors were observed. Beetles were frequently found feeding and a sharp reduction in the average hop distance was observed (from 10.22 in (25.96 cm) to 5.19 in (13.19 cm)). Therefore, beetles were diffusing through wheat slower than in either native grasses or small grain stubble, which means beetles were spending more time in wheat then either of the other habitats. With their appearance in oats, beetles were observed mating and ovipositing. These behaviors were undoubtedly occurring in other habitats but were not observed in the 1976 observations. A reduction in the percent of time spent moving about the plants and the average time interval between hops (5.02 versus 5.92 minutes) was observed in oats when compared to wheat, while the average hop distance increased, 6.28 in (15.95 cm) versus 5.31 in (13.49 cm). In oats, beetles were more actively moving from plant to plant than in wheat. For females this is probably a result of the increase in ovipositional activity. Eggs were generally oviposited singly after which the female left to feed and oviposit elsewhere. Summer adults (adults produced by the current generation) were observed to spend a large percentage of their time resting on their host (generally oats) or feeding (Table 18). This behavior would seem appropriate for preoverwintering adults since they would be saving or building up their fat reserves for overwintering metabolism. Summer adult beetles exhibited the longest time interval between hops (11.73 minutes) and also the longest hop distance, 13.50 in (34.29 cm) (Table 19). Therefore, summer adults diffused through their habitat quite fast even though they were moving a small percent of the time. 122 Due to the brevity of the between hop time interval, 1.92 to 11.73 minutes, and the length of the average tum» 5.31 in (13.49 cm) to 13.5 in (34.29 cm), adult CLBs were considered too mobile for spatial analyses and density estimation using distance measurements. Examination of the percent of time larvae spent in various behaviors in oats and winter wheat (Table 20; Appendix H) indicated most larval behavior was relatively sedentary, i.e., feeding or resting (no observable behavior). Through tracing larval feeding scars in oats, it was found that larvae fed on an average of 3.083 t 1.397 (32), n = 48, plants during their lifetime. Due to the close proximity of leaves in the grain canopy, larvae were able to transfer from plant to plant by crawling from the leaves of one plant to the touching leaves of a second plant. Further examination of the feeding scars revealed total larval movement averaged only 7.479 in (19.00 cm) 4.- 24.372 (52) , n - 48. Since larval movement was so small, their spatial pattern or density in an area would change very little during the time required to collect their coordinatesand they were considered prime candidates for analyses using distance measurements. Using the programs described earlier, the 1977 larval coordinate data was interrogated and indices of dispersion calculated based on distance measurements (Clark and Evans R (1954) and B’). Pearson's bio variate correlation (SPss--Nie et a1. 1975) was used to calculate correlation coefficients between population density and the value of the index of dispersion from that population. Instances where R and 8’ could not be calculated (total number of organisms in the plot equals 1) 123 7 1 . 9 9 1 5 6 . 4 8 6 4 9 . 5 5 6 3 1 . 2 5 1 0 0 . 0 3 4 3 . 7 5 1 3 1 2 1 4 6 . 2 2 9 2 . 4 4 8 5 . 5 2 9 4 . 2 1 1 5 . 3 4 0 0 . 4 4 5 0 . 7 3 3 5 . 3 5 1 4 . 9 s t a O s t a O s t a O 4 5 . 5 4 4 . 4 2 2 0 . 9 6 1 s t a O 8 2 . 4 1 . 4 3 . 9 6 8 3 . 6 1 t a e h W r e t n i W 0 0 . 0 0 1 t a e h W r e t n i W 6 2 . 1 1 8 . 8 4 3 t a e h W r e t n i W 9 1 . 5 6 5 5 . 5 2 d e v r e s b O e v r e s b O d s e t u n i M e a v r a L l a t o T f o . o N n e p S e m i T f o g n i t l o M g n i v o M t F g n i d e e g n i t s e R t n e c r e P r a t s n I t a t i b a H d n a 6 7 / 3 2 / 6 ( s t a o d n a ) 6 7 / 2 2 / 6 ( t a e h w r e t n i w n i r o i v a h e b B L C l a v r a L . 0 2 e l b a T . e k a L l l u G t a d e v r e s b o s a ) 6 7 / 5 2 / 6 124 were omitted from the analysis. Three different sample sizes (30, 50, and 75) were selected to allow comparison of their effect. The results of this analysis (Table 21) indicated no significant correlations between population density and either index (all a's > .05). It also appears as though sample size had little effect upon this correlation. Since both indices showed independence from population density and sample number, which are desireable traits for an index of dispersion (Green 1966, Lefkovitch 1966, Elliott 1977), both will be included in the following discussion. Comparison of quadrat counts and distance measurements. A summary of the spatial pattern analyses using quadrats, I, and distance measure- ments, 8’ and R (Clark and Evans 1954), is presented in Table 22. Among these three indices, little agreement exists in determination of spatial pattern. This is not entirely unexpected in light of what these indices are measuring. 1 As pointed out earlier, the primary difference between indices based on quadrat counts and distance measurements is the level of resolution. Pielou (1977) defines two terms which describe this difference in resolution: intensity and grain. Intensity describes the degree to which the density of a population varies from place to place within a habitat (inter-clump) while grain describes the area in which the centers of population are distributed (intra-clump). A fine—grained population has the population in closely spaced clumps whereas in a coarse-grained population the centers of population encompass a large area. When examining a population's distribution through indices based on either quadrat samples or distance measurements between individuals, 125 Table 21. Correlation coefficients of B' and Clark and Evans R with density for a variety of sample sizes (n = 39). 3' R 30 50 75 30 50 75 Density r .168 —.052 .046 -.272 -.097 -.120 a .306 .751 .782 .094 .555 .466 1J26 H N 5 5 0 U H O H N H O H 0 H H H H H U H H H H O H 'J N l-o U H 2 R . a ' I 5 7 = n 0 5 = n 0 3 = n 5 7 - n 0 5 = n 0 3 - n 4 x 4 3 x 3 2 x 2 1 x 1 ’ 2 x S . 2 8 4 1 - 6 3 1 5 1 7 1 - 6 1 2 - 6 0 6 7 0 - 6 1 - 8 5 — 5 d l e i F e t a D e t a n i d r o o C e c r u o S 2 6 1 3 - 5 1 - 3 1 - 8 5 4 0 9 3 3 3 1 7 0 - 6 0 1 - 6 4 1 - 6 7 1 - 6 1 1 0 1 - 6 2 1 4 1 - 6 2 1 7 1 - 6 1 2 - 6 8 2 7 0 - 6 2 - 5 1 - 9 s , s , ~ r c u c , s , ~ , a c s , s , ~ , 3 c 0 0 1 0 5 0 0 1 0 0 1 0 0 1 d e t a r e n e G m r o f i n u m o d n a r n o i g a t n o c k a e w n o i g a t n o c e t a r e d o m n o i g a t n o c g n o r t s , 0 3 - s e l p m a s f o r e b m u n 5 , 0 2 - s e l p m a s f o r e b m u n ” , 0 1 - s e l p m a s f o r e b m u n 3 , ) 4 5 9 1 ( s n a v E d n a k r a l C 2 , n a e m / e c n a i r a v 0 5 - s e l p m a s f o r e b m u n 6 s t a r d a u q g n i s u e c n a t s i d d n a s t n e m e r u s a e m . s e s y l a n a n r e t t a p l a i t a p s f o y r a n l n u S . 2 2 e l b a T 127 we are measuring the intensity of the population, i.e., Morisita's Index (15), variance/mean (I) or Clark and Evans R. Whereas, when indices are based on the measurement of distance from random points and from random individuals to their nearest individuals (neighbors), a measure of both intensity and grain is obtained, i.e., 8’. Once again referring to Table 22, the differences in the spatial analysis can now be examined. Clark and Evans R tends to classify a pattern as uniform in cases where neither I nor 8’ did so._ This is exemplified in Table 22 with the randomly generated X,Y coordinates. In this case both I and B’ classified the pattern as random (except one instance in quadrat 2 x .5) while R classified it as uniform. Also, in the weakly contagious generated x,r coordinates, R classified it as random, whereas both I and B’ classified it as contagious. Since no general trends in these indices appear in these analyses, they must be discussed in reference to intensity, grain and resolution. Pielou (1977) points out that intensity and grain are independent and that grain can only be examined through quadrats by sampling with many sizes of quadrats. In respect to intensity, significant departure from randomness, as declared by I, would indicate that for the quadrat dimensions selected the density of the population has a large range. At the same time a significant R, rowards contagion, would indicate the individuals within the quadrat size are aggregated. Significance toward uniformity would indicate more uniformity of individuals within the quadrat than through randomness. 128 Since no method for separation of intensity and grain exists, a significant departure from randomness with 8’ implies significance of intensity or grain or both. Sample size has less effect on B’ or I (for any quadrat) than on R. In the coordinates tested, R classified the spatial pattern differ- ently 7 times whereas 8’ only 3 times, and I from 3 to 5 times. In conclusion the spatial pattern of the CLB larvae is slightly more aggregated then total randomness. Looking at I in Table 22, note that the size of the primary-level of aggregation increases towards the middle of the season, then decreases to randomness as the season progresses. When selecting an index of dispersion, its ease of understanding and calculation are very important to its acceptance. R requires knowledge of the true mean population density, p. This severely limits its applicability so as to make it useless in the field.) I's main advantages are its ease of understanding and calculation, the parameters for its calculation are readily available in most biological studies and its high correlation with level of clumping (Myers 1978). Its main disadvantages include its highly significant correlation with population density and the level of resolution, counts versus individuals. The main disadvantage of 8’ lies in its measuring of both intensity and grain. Its advantages include independence of population density and sample number and its sensitivity to aggregation. More importantly (as will be shown in the following section), it provides a correction factor for estimating density of low level aggregated populations. 129 Density Estimation of CLB Larvae Quadrat counts. In an effort to find an optimum quadrat size for estimating CLB densities, Helgesen and Haynes (1972) compared ft2 (929 cm2) with yd2 (.84 m2). They found that in order to maintain a relatively low standard error of the mean (Si within 10% of the mean), 17.5 ft2 would have to be examined using the ft2 quadrat compared to 49.5 ft2 with the yd2 quadrat. They considered this an excessive difference in effort and recommended the use of the ft2 quadrat.2 Further, they noted that large standard errors resulted at low densities (below 10 insects/ftz) and suggested cautious use of the information. Referring to Figure 12, one can see that larval production has generally been quite low (less than 10, loglo - 1) on the KBS. Since this was true some alternative sampling methods were considered. One alternative method was to increase the length of row in a quadrat. On June 15, 1976, 28 randomly selected row sections 20 ft long were examined for eggs and larvae in field 9-13 (oats). The number of eggs and larvae in each ft length of the sample were recorded separately. This allowed calculation of the mean and variance for samples of different row lengths (Table 23). Estimates of larval density/2 row ft (60 cm) for these samples ranges from .206 to .357 with a mean of .253. This is definitely a low density population and Helgesen and Haynes (1972) concern for precision should be examined. 2Since small grains are planted with a grain drill in rows of equal spacing, a ft2 quadrat was obtained by examining a 2 ft (60 cm) linear section of row. Dependin upon row spacing (6 or 7 in-- 15.2 or 17.8 cm) a 1.0 or 1.17 ft quadrat was examined, respectively. 130 Table 23. Summary of 20 linear row feet samples from oat field 9-13 taken on June 15, 1976. n=28. Egg Parameters Larval Parameters No. Feet No. Sampled Eggs Found _ x 2 s No. Larvae Found _ x 2 3 1 2 3 4 5 6 7 8 9 24 .857 .942 47 1.679 2.745 3 8 .107 .099 .286 .508 66 2.357 5.720 13 .464 .851 86 3.071 10.291 20 .714 .952 110 3.929 15.921 21 .750 1.083 120 4.286 17.397 24 .857 1.386 135 4.821 24.078 28 1.000 1.481 158 5.643 27.794 32 1.143 1.821 170 6.071 31.476 34 1.214 2.026 10 182 6.500 37.074 36 1.286 ~2.360 11 12 13 14 15 16 17 18 19 20 197 7.036 45.295 36 1.286 2.360 210 7.500 51.889 39 1.393 2.470 228 8.143 62.942 40 1.429 2.772 242 8.643 69.868 42 1.500 3.148 259 9.250 84.194 44 1.571 3.069 286 10.214 96.767 47 1.679 3.337 308 11.000 120.370 49 1.750 3.602 316 11.286 127.989 55 1.964 3.591 330 11.786 134.767 62 2.214 4.249 352 12.571 157.661 65 2.321 4.597 131 Calculating the ratio of Si/i for the different lengths of row (Fig. 32), one can see that Si/i starts out very high for short row lengths. As the length of row examined increases to 4 ft, the ratio quickly drops to about .25 (standard error within 25% of the mean). However, increasing the length of row examined from 4 to 20 ft, changed Si/x by only 8.3% (.258 to .175). This represents a significant increase in effort for an insignificant increase in precision. There- fore, at these densities and for this number of samples (28), a sample of 4 row ft would have been optimal. However, due to the magnitude of Si/x, the information must still be treated cautiously. Using the varying row ft sampling simulation described earlier the 1977 coordinate data was interrogated to examine relationships between the estimated means and the true means and to examine the sampling efficiencies of various lengths of row and sample sizes. The lengths of row selected for this analyses were 1, 2, 3,34 and 5 row ft (.31, .61, .92, 1.33 and 1.53 m) and the sample sizes were 10, 30 and 50. Since the number of individuals within the sampling area of each plot was known, least squares linear regression (SPSS--Nie et a1. 1975) could be used to examine the relationships between the density estimate from the row ft samples and the known sample area density. The sample area density was calculated as the number of individuals per ft2 (.09 m2). The results of the regression analysis are presented in Table 24. From these simulations, highly significant relationships were observed between estimated density and true density. In all cases simulated, the slopes of the regression (b) and the coefficients of 132 FIELD 9-13 (OHTS) JUNE 15. 1976 N = 28 r U I r l 1— T I I I r I Y r l T V r T j °o s 10 15 20 NUMBER OF RON FT EXHHINED Figure 32. Relationship between standard error of the mean as a proportion of the mean and the number of row feet examined in a sample as the row length increases. O “3c3-. . 2 CI: to. “J st z (5* \e 05 4 . O o 0= ‘'2 E 0“ C3 . E . o 2: é o” k- 03 . c: . c.’ 133 Table 24. Regression coefficients and coefficients of determination for the relationships between row length estimates of plot density (x) and true plot density (y). Number of plots 3 41. Row Length Of Samples Y-Intercept lepeA r B Number 2 Sampled Per Plot (a) (b) 1 l 1 2 2 2 3 3 3 4 4 4 5 5 5 10 30 50 10 30 50 10 30 50 10 30 50 10 30 50 .0704 1.273 .494 .0610 1.511 .858 .0460 1.441 .882 .0717 .637 .735 .0291 .819 .838 .0231 .860 .948 .0193 .546 .737 .0272 ‘ .548 .896 .0154 .586 .947 .0565 .330 .883 .0220 .407 .936 .0276 .389 .935 .0463 .318 .802 .0038 .361 .873 .0194 .345 .936 A All slopes significantly different from zero at p - .01. B All coefficients of determination significant at p = .01. 134 determination (r2) were significantly different from zero (p < .01). For each length of row, a conversion factor (CF) was required to convert sample means to ftz. The appropriate conversion factor for a given length of row was calculated by: 144 CF 8 L*S where: (39] L = length of row sampled in inches, and S = row spacing in inches. It was observed that the slope of the regression for a given length of row was generally less than CF. Using the 2 ft length of row as an example (Fig. 33) which has a conversion factor of .8517, we find the slope to be significantly different from the conversion factor for a sample number of 10 (tul = 3.599, p < .05), but not for sample number of 30 or 50 (tul a .655, p > .05 and tul = .098, p > .05; respectively). Historically, the CLB has been sampled using 30 two row ft counts (Helgesen 1969, Gage 1972, 1974, Sawyer 1976). Since from the simulations no significant deviation was observed between the slope of the regression and the conversion factor (Fig. 338), two row ft samples when converted to ft2 provided an unbiased method of estimating density. In almost all cases, an increase in either length of row sampled, sample number or both was accompanied by an increase in r2 (Figure 34). Of particular interest was the small increase in r2 as sample size was increased from 30 to 50, especially when viewed in light of the large increase in length of row sampled. If we calculate the total length of row sampled in a particular sampling scheme (row length per sample times sample number) and plot this against the corresponding 135 9- ” 1 2 ROW FEET N:10 m a o4 O J s 904 R3:.735 Y: .0729 .837(X ) . s _1 J 2 ROW FEET ° 0 :54 N330 ° 0 94 O J Y: .0299.8(9(X I . I R1: .838 Y T I S N E D E U R T r ’T* *’ ”’T’ * r’ V 1 0 oo o 25 0 50 0.75 1 oo 1.25 1.50 9 “ 1 2 ROW FEET N : 50 94 O ( s ,0 " O J O '4 I. o O v=.0zao.060(x). T v T V a':.940 ’r ‘T r 1 0.00 0125 OTSO 0:75 (:00 (.25 (.50 asrxnnreo DENSITY-ROW FEET- Figure 33. Relationship between density estimates obtained from 2 row feet (60 cm) samples and the true mean. The dashed line represents correction factor for 2 row feet. 136 0 . 1 - L i 9 . 0 q 8 - 0 - L N 30 6 . 0 0 4 . T T T I N O I T R N I M R E T E D F 0 T N E I C I F F E O C l 2 3 4 5 RON FEET PER SRHPLE Figure 34. Effect of the number of row feet examined in a sample and sample size on the coefficient of determination. 137 coefficient of determination (Figure 35), we see that beyond a total of about 50 row ft sampled relatively small gains are made in r2. Therefore, any sampling scheme which produces a total row length sampled greater than 50 row ft produces estimates of density which explain over 80% of the variation in true density. To quantify the sampling efficiencies of the various row lengths and sample numbers, the relative net precision, RNP (Cochran 1963), was calculated for all sampling schemes. The relative net precision for a given row length was calculated by: M2 RNP ‘5 E2- [40] where: M = the relative size of the sample unit or the number of row feet per sample, C = the relative cost of taking a single sample, and $2 8 the variance of the population for the sample unit size. For a given length of row examined, M2/C can be considered a constant, F, and Equation 40 can be rewritten as: RNP - F/52 [41] where: 1 1 ' I 60L2/ (Ts + Tm) . L - the length of row in a sample unit, Ts - the time required to examine a sample, and Tm s the time required to move from sample site to sample site. 138 m m m m ——m (B 2: CD :: c: I: 0-4 I: w @191 “J o p. DJ CD u_ CD 1 '— co z:-~ “J C3 H L) H r r T r T ' ' l . ' L T u. “J o L) at ,5 O 60 100 150 200 260 TOTRL ROW FEET SHHPLED Figure 35. Relationship between the total length of row examined by a sampling scheme and the coefficient of determination. 139 While collecting the 1979 population sampling data, the time required to count a sample, Ts, and the intersample time, Tm, were recorded. In oats a significant positive relationship (p < .01) was found between the time required to search a sample and the density of stems in the sample (Den). Since the density of stems changes throughout the season, the maximum oats stem density was used in the following r e1 atl 'on ship to es imat t ' e TsMAX : T5 = -.7041 + .1525(Den) [42] In 1979 the maximum oats stem density observed as 52.53 which resulted ina maximum search time of 7.31 minutes per sample (2 row ft). It was assumed that the density of stems was linearly related to the length of row and further that 3.7 minutes were required to search a single row ft. Using this as a standard time, the amount of time required to search different lengths of row was calculated. The amount of time required to move to a new sample, Tm, was found to be approximately .5 minutes. For each plot of the 1977 coordinates, in which 52 > 0.0, relative net precision criteria were used to determine the optimum length of row per sample for each sample number. The percent of plots in which a given row length was determined optimum for each of the sample numbers was then calculated and summarized in Table 25. As the sample number increased, the optimum sample length decreased. This is a function of variance. In all the plots used in this analysis, the true density was quite low (< 1.0 per ftz). At these low densities, when sample number is low, rather large row lengths must be sampled to produce a relatively low variance. As the sample number increases, even short row lengths will produce relatively low variances. 140 Table 25. Percent distribution of optimum sample unit lengths for a given sample size. Relative net precision used as the Optimization criteria. SamPle Number Row Feet Per Sample Size of Plots 1 2 3 4 5 10 19 10.53 26.32 26.32 15.79 21.05 30 30 26.67 16.67 30.00 16.67 10.00 50 37 29.73 27.03 16.22 . 8.11 18.92 141 To summarize the row length sampling for estimating density, the historical sampling scheme for the CLB appears to have been an excellent choice. First, the conversion factor for converting row length counts to ft2 counts was not significantly different from the slope of the regression between these two parameters--therefore, no bias was introduced into the density estimates. Secondly 30 two row ft samples produce a total row samples > 50.0 row ft. This was a stable range of coefficients of determination (see Fig. 35). And lastly, relative net precision analyses (Table 25) indicated row lengths of l to 3 ft were optimal for most of the plots analyzed. An alternate sampling unit to row lengths was fixed quadrats. Using the previously described program for quadrat sampling, the 1977 larval coordinate data was interrogated using various quadrat dimension and sample sizes. The quadrat dimension selected for these analyses were .5 x 2, l x l, 2 x .5, 2 x 2, 3 x 3 and 4 x 4 ft (.15 x .61, .30 x .30, .61 x .15, .61 x .61, .91 x .91 and 1.22 x 1.22 m). These dimensions were selected since they were of appropriate size to be applicable to field conditions. Sample numbers of 10, 30 and 50 were selected for the same reasons. To examine the relationships between the quadrat's density estimates and the true plot densities, least squares linear regression (SPSS--Nie et a1. 1975) was performed. The results of this analysis are summarized in Table 26. Once again, in all cases the slopes of the regressions and the coefficients of determination were significantly different from zero (p < .05 and p < .01, respectively. 142 Table 26. Regression coefficients and coefficients of determination for the relationships between quadrat estimates of plot density (x) and true plot density (y). Number of plots = 41. Quadrat Sample Y-Intercept SlopeA rzB Width Length Size (a) (b) .5 2 l 1 2 .5 2 2 3 3 4 4 10 30 50 10 30 50 10 30 50 10 30 50 10 30 50 10 30 50 .1135 .5190 .386 .0363 .7964 .7753 .0062 .9476 .9122 .0661 .5866 .7598 .0276 .8719 .8282 .0011 1.0321 .9193 .0947 .7035 .6376 .0170 .7828 .7778 .0370 .8091 .8911 -.0020 .2615 .8488 -.0236 .2857 .9498 -.0294 .2779 .9609 -.0227 .1190 .9617 -.O341 .1240 .9444 -.0321 .1235 .9779 -.0199 .0620 .9093 -.0169 .0600 .9277 -.0201 .0609 .9404 AAll slopes significantly different than zero at p = .05. BAll coefficients of dertermination significant at p = .01. 143 An examination of the one ft2 quadrats (.5 x 2, l x 1 and 2 x .5 ft), reveals the slopes, which convert estimated density to ft2 density, were generally significantly different from 1.0 (.5 x 2 and l x 1 with n 8 50 were the exceptions). This, in conjunction with the Y-intercepts, implies a bias in the sample estimates and extrapola- tion of the estimates to larger areas must be done with care. This bias tended to decrease as the quadrat dimension and/or sample size increased. The coefficients of determination generally increased with both increased quadrat dimension and sample size (Fig. 36). As sample size increases, a general trend in stability of r2 results. In sample sizes other than 10, the orientation of the quadrat (.5 x 2, l x 1 or I 2 x .5) had little effect on its relationship with the true mean. Once again, plotting the total number of ft2 sampled by a various sample scheme and the corresponding coefficient of determination, a minimum total number of ft2 must be sampled to stabilize r2 (Fig. 37) . In this instance the minimum area sampled should be about 75 ftz, which is more than the requirement for row ft (50 row ft or 58.33 ftz). Relative net precision was also used to examine the optimum sample quadrat dimension for the 1977 coordinate data. The time required to examine a quadrat, Ts, was calculated as a function of the row ft included in a quadrat. Since the row spacing was 7 in (17.8 cm), the average length of row per quadrat, RQ, calculated by: W * L a0 = ——35P [431 where: 144 N O I T H N I H R E T E D F O T N E I C I F F E O C 0 3 - T 1 I T l .5X2 1X1 2X.5 2X2 3X3 4X4 DURDRRT DIMENSIONS Figure 36. Effect of quadrat dimensions and sample size on the coefficient of determination. 145 0 0 8 0 0 7 0 0 6 0 0 5 0 0 4 0 0 3 0 0 2 0 0 1 T r T r I T r T I T . T r T r T r D E L P H R S T E E F ’ E R R U D S L H T O T a I! I! q 1 l I T El I"*“F O D'T 6'0 8'0 L'O 9‘0 9‘0 I‘D 8‘0 NOIlUNIWUBIED JD lNBIDIJJBDO g n i l p m a s a y b d e n i m a x e t e e f e r a u q s l a t o t e h t n e e w t e b p i h s n o i t a l e R . 7 3 e r u g i F . n o i t a n i m r e t e d f o t n e i c i f f e o c e h t d n a e m e h c s 146 W quadrat width (in), L q quadrat length (in), and SP 8 row spacing (7 in or 17.8 cm). Ts was then calculated as a product of R9 and the time required to search one ft of row (3.65 min). Using Equations 40 and 41, RNP was calculated for all plots and an optimum quadrat size for each sample number determined, only cases where S2 > 0.0 were included. A summary of the optimum quadrat sizes for the 3 sample numbers is presented in Table 27. From these simulations, a one ft2 quadrat was always the optimum quadrat. As sample size increased, a slight tendency for the optimum quadrat orientation to change from parallel to a row (.5 x 2) to across or perpendicular to a row (1 x 1 or 2 x .5) took place. A sampling dilemma arises from the quadrat sampling simulations. Reviewing Table 26 and Figure 37, note that greater predictability and stronger relationships between estimated density and true density accompany an increase in sample size and quadrat dimension; however, based on RNP, the smaller quadrats are desirable (Table 27). In fact, the total number of ft2 sampled by the RNP optimal sampling schemes was less than 50 which was less than that required for a stable coefficient of determination (Fig. 37). In summary, no agreement was found in the optimum sampling determinations that were present in the row ft sampling schemes. Therefore, row ft appear to provide a better sampling unit for the CLB larvae at these densities than do fixed quadrats. Aside from the relative advantages or disadvantages of either of these two sampling schemes, an intrinsic bias occurs with both. 147 Table 27. Percent distribution of optimum quadrat dimensions for a given sample size. Relative net precision used as the optimization criteria. Sample Number Quadrat Dimensions Size of Plots .5 x 2 1 x 1 2 x .5 2 x 2 3 x 3 4 x 4 10 17 41.18 20.59 26.47 11.76 0.00 0.00 30 50 35 38 31.43 44.29 7.14 17.14 0.00 0.00 23.68 42.11 28.95 5.26 0.00 0.00 148 If we consider the probability of obtaining an unbiased sample, different probability regions exist dependent upon either row lengths or quadrat dimension (Figs. 38A and 388, respectively). Since the row length sampling bias is most straightforward, it will be discussed first. Note that Figure 38A is comprised of two probability regions, region Al and A2. Within region Al, the probability of an individual being included in a sample is equal for all individuals. Therefore, the probability of an individual in region A1 being included in an unbiased sample, P(Al), is 1.0. If, however, an individual is located in region A2, the probability of being included in an unbiased sample is a function of the individual's distance between the field border and one-half the length of the row sampled, L/2. Since the location of a sample in a random sampling scheme is a uniformly distributed random variable, this probability is linear from P - 0.0 at the field border to P I 1.0 at a distance L/2 from the field border. Therefore, for an individual located in region A2 the probability of being included in an unbiased sample P(AZ), is .5. The probability of a totally unbiased (P(UBS)) sample can be expressed as: P(UBS) - P(Al)(Al/TA) + P(A2)(2A2/TA) [44] where: TA 8 total field area and is equal to Al + 2A2. The probability of an unbiased sample is a function of the length of the row sampled in relation to the entire field length and can be expressed as a ratio of 2A2/Al. This probability has been calculated for ratios of 2A2 to Al from 0.02 to 1.50 (Fig. 39). 149 J— AZ J: (A) AT T AZL V2 ‘3 (8) A2,, A1 (aw/2+ Figure 38. Probability regions in a field as a result of row sampling (A) and quadrat sampling (3). 150 T E E F N O R : D E H S H D S T H R O R U D : D I L O S I r I 1 I I I - 1 T T H E R R E L P H R S / R E R H R E D R O B 5 2 . 1 0 0 . 1 5 7 . 0 0 5 . 0 5 2 . 0 0 0 . 0 6'0 8'0 L'D (BlUHIISE OBSUIQND) 8086 . a e r a e l p m a s d e s a i b n u o t a e r a r e d r o b d e c u d n i e l p m a s f o o i t a r e h t n o d e s a b d l e i f a m o r f e l p m a s d e s a i b n u n a g n i n i a t b o f o y t i l i b a b o r P . 9 3 e r u g i F 151 The bias is essentially the same in a quadrat sampling scheme (Fig. 388), except a border area of quadrat width, AZW, must be included. The addition of this border area creates a new probability region, A3. Within region A2w the probability of an individual being included in an unbiased sample is equal to that of region AZL, P(Azw) = .5. Therefore, for an individual in region A3 the probability of being included in an unbiased sample is the product of the probability for region A2L and A2w, P(A3) - .25. For samples taken using quadrat samples, the probability of a totally unbiased sample can be calculated by: where: P(UBS) = P(Al)(Al/TA) + P(A2)2(A2 + A2w/TA) + L [45] P(A3) (4A3/TA) TA = total field area and is calculated by A1 + 2A2L + 2A2 + 4A3. w Once again, P(UBS) is a function of the ratio of’ the border area (BA = 2A2 + 2A2w + 4A3) to the sample area (SA = A1). P(UBS) for l quadrat samples had been calculated for a range of BA/SA (Fig. 39). From these calculations, note that the border area can add a significant bias to a sampling scheme and care should be taken to consider it. In application to the actual field level, this bias will essentially be non-existent. For example, a typical field sampled at Gull Lake is approximately 1200 ft long and 90 ft wide. Using Equation 44, we find P(UBS) for a field of these dimensions to be .99917, which is very close to unbiased. This phenomenon is true to all random sampling with replacement, and care must be taken to 152 consider this bias especially if a large portion of the field is sampled. Distance measurement. Using Equation 7 and the sum of the squared nearest organism distances to a random point, density estimates were calculated for all plots of the 1977 data which contained more than one organism. Plots with only one individual were omitted from the analysis because the distance between individuals could not be calculated. A least squares linear regression (SPSS--Nie et a1. 1975) was performed to examine the relationship between the estimates of density using distance measurements and the true plot densities, and are summarized in Table 28. For all sample sizes simulated, both the slopes of the regression and the coefficients of determination were significant at p < .01. As the sample size increased from 10 to 30, a very large increase in the coefficient of determination resulted; however, beyond 30 little change occurred. Considering Equation 7, we see the only measured variable in estimating density was the mean distance to the closest individual. A primary assumption in estimating density from distance measurements, is that the individuals have a random spatial pattern; since biases result from both uniform or aggregated spatial pattern (Batcheler 1971). As previously mentioned, the CLB larval spatial pattern was slightly more aggregated than random which would result in a slight bias. When measuring the distance to the nearest neighbor of a randomly selected individual (NORP) in an aggregated population, this distance is biased because the nearest neighbor is probably in the same aggregate 153 Table 28. Regression coefficients and coefficients of determination for the relationship between distance measurement estimates of density (x) and true plot density (y). Number of plots a 39. Sample Number Y-Intercept (a) A Slope (b) r28 10 30 50 75 .0987 .650 .579 -.0032 1.301 .908 .0221 1.118 .963 .0177 1.123 .911 AAll slopes significantly different from zero‘at p < .01. BAll coefficients of determination significant at p < .01. 154 as the selected individual (Pielou 1959). This results in underesti- mating the true distance between individuals. Conversely, measuring the distance from a randomly selected point to its nearest individual (NN) overestimates the average distance between individuals. If, however, we collect both measurements, a correction factor non-randomness can be obtained (Batcheler 1971). Using the 1977 larval coordinate data plus the five generated coordinate data sets, this correction factor was examined. From all coordinate sets, the mean of the squared nearest neighbor distances to both random individuals (NR?) and random points (REEF?) were calculated. The ratio of NORFE to NNz-(B’) provides a measure of the biases in the measurements whereas the ratio of the estimated plot density to the true plot density provide a measure of the bias in the density estimate. Using a sample number of 50 as an example, these two measurements of bias were plotted (Fig. 40). As 8’ increases, the level of aggregation increases and a corresponding underestimation of density results. As 8’ approaches 0, a uniform spatial pattern, a corresponding over- estimate of density results. Using a simulation to sample the spatial pattern in which all organisms were one unit apart (in the corners of a square lattice) it was found that as the sample number increased, 8’ had a lower limit of approximately .168 (Fig. 41). Therefore, theoretically 8’ had a range of .168 in a uniformly spaced population to infinity in a population where all individuals were located at a single point. After transforming these measurements to the common logarithm, least squares linear regression was used to quantify this relationship (Fig. 42). The results of this analysis for the four sample numbers simulated are 155 NO. SAMPLES = 50 0 . 2 J 6 . 1 0 . 1 5 . 0 U N / Y T I S N E D D E T H M I T S E O is V r r I r 0 50 100 100 200 2&0 MEHN(NORP2) / MERNINN’) Figure 40. Relationship between mean NORPZI’NN 2 (B'). an index of dispersion, and estimated density/’true density, an index of bias in density estimates due to spatial pattern of organism. 156 0 0 0 5 0 0 0 1 0 0 5 0 5 2 0 0 1 0 6 0 3 0 2 l I l I f l I I L I L I J I 1 _ j O I 1 L‘ 1 5 DZ'D BT'O 81'0 LT'D ST’D ST'D ( — (zNN) NUEN /(zc)80N) NUEN R E B M U N E L P N R S 2 . ) ' 8 ( N N n a e m / , 2 P R O N n a e m f o y t i l i b a t s e h t n o e z i s e l p m a s f o t c e f f E . 1 4 e r u g i F 157 FIELD DRTR UNIFORH RHNDOH nmmamnm c w m B z u u u u u U T‘l I T I T V T l T'l ) U N / Y T I S N E D D E T R N I T S E ( 0 1 G O L 5 0 1 “ -100 “0.5 000 0.5 100 105 200 205 LOG10 (HERN(NORP2)/(HERN(NN2)) Fume4z Relationship between logl (mean NORP21’mean NNZ) and log1 (estimated density,Ptrue density) used to correct densgty estimates based on the organism's spatial pattern. 158 presented in Table 29. Comparison of the slopes of these regression equations for the four sample numbers (Sokal and Rohlf 1969), indicated no significant differences between the slopes (F3'163 = .044, p > .75). Since no significant differences existed between the slopes for the four sample sizes, a single pooled regression was calculated as: loglo(d/mu) 3 -.1280 - .5394 10910 (B’) [46] where: d = the density estimate obtained from Equation 7 using the mean squared nearest neighbor distances from random points (NORPZ): mu 8 true population density, and B’ - mean (NORP2)/mean (NNZ). Since d and B’ in Equation 46 are known, it is possible to solve Equation 46 for mu. Rewriting Equation 46 and solving for mu we have: mu = d _7447 * 3’-.5394 [47] Therefore, using mean (NORP2)/mean (NNZ) as a correction factor, B’, an estimate of density from nearest neighbor measurements, d, can be corrected for a continuous range of organism spatial patterns. A necessary condition for use of Equation 47 is that for each random point selected a nearest neighbor was found. If this condition was not met, then this relationship must be re-established for the percentage of empty samples observed (see Batcheler 1971). Comparison of quadrat counts and distance measurements. In the previous two sections the major advantages and disadvantages of estimating density using fixed quadrats and nearest neighbor distances were 159 Table 29. Regression coefficients and coefficients of determination for the relationship between log10 (den/mu) (Y) and 10910 (NORPz/NNZ) (X). Number of plots 8 44. Number of Y-Intercept SlopeB r28 Measurements (a) (b) 10 30 -.1266 -.5246 .848 -.l342 -.5486 .909 50 . -.1248 -.5490 .913 75 -.1262 -.5415 .918 Overall —.1280 -.5394 AAll slopes significantly different from zero at p = .01. BAll coefficients of determination significant at p = .01. 160 discussed. These two techniques will now be compared and their appli- cations discussed. When using nearest neighbor measurements to estimate density, it may be considered a dynamic circular quadrat, that is, its size, radius, varies until exactly one organism is contained within the quadrat. Unless a predetermined maximum search radius is used, this procedure never results in non-zero sample counts. As a result, less information about the population variance results. In fact, Moore (1954) has shown the standard error of a density estimate from distance measurements (SE(N)) to be the following function of organism density and sample size: SE(N) = din - l) n n - 2 where: [48] d = density estimate from Equation 7, and n - sample size (number of distances measured). Using both the 1977 (low density) and 1978 (high density) larval coordinates, and the computer sampling programs previously described, density estimates were made and variance calculated for 1 ft2 quadrat samples and distance measurements both with a sample size of 30. A 1 ft2 quadrat was used since it was shown to be the most optimal quadrat size for most plots (Table 26). Quadrats were used here rather than row length samples because the following discussion is designed to have application beyond the CLB larval coordinates and the unique features of a host crop sown in rows. For each coordinate set, the coefficient of variation was calculated for the two sampling schemes and plotted against the estimated plot 161 density (Fig. 43). From Figure 43 note that the coefficient of variations for the distance measurement sampling scheme was essentially a constant, this was fully expected based on the previous discussion and Equation 48. Further, as the density increased, the coefficient of variation for the quadrat sampling scheme decreased drastically. Of particular interest was the intersection of these two lines for it identifies a threshold density for the decision of which sampling scheme to employ. Below this threshold density (approximately 1.2 organisms/unit area) the coefficients of variation for the quadrat sampling scheme was quite high and information should be treated cautiously. This was not the case with distance measurements and therefore distance sampling should be used below densities of 1.2 organisms/unit area. If one assumes quadrat counts follow a Poisson distribution (random spatial pattern of organisms) it is possible to look at the theoretical relationships between the two sampling schemes. In a Poisson distribution the variance is, by definition, equal to the mean, 82 I i. Further, if m quadrats are counted, then the standard error of the mean for quadrat counts (SE(Q))-can be calculated by: 33(0) = /%— = /% . [49] By combining Equations 48 and 49, the relative efficiency of distance to quadrat sampling, RE, can be expressed: 8 saw) _ in RE 33(0) /n - 2 [50] Equation 50 was simulated over a range of densities from 0 to 15 with m = n = 50 (Fig. 44). Once again we see that beyond a density of about 162 0 3 : R E B M U N E L P M H S 1 X 1 : E Z I S T R R D H U D E C N R T S I D OUT 08 08 NDIlUIUUA JD lNEIOIJJBDO ' l ' I ' T T R R D R U D l ' ' I I ' I l 4 I 2 1 0 1 8 8 4 2 Y T I S N E D D E T H M I T S E e c n a t s i d d n a t a r d a u q m o r f d e n i a t b o n o i t a i r a v f o s t n e i c i f f e o c f o n o s i r a p m o C . 3 4 e r u g i F . s e m e h c s g n i l p m a s t n e m e r u s a e m 163 D Y T I S N E (DIS/[N13 AQNBIUBJJB BAIiUWBH 0 5 = R E B M U N E L P H R S N z H I ” e c n a t s i d d n a s e l p m a s t a r d a u q f o s r e b m u n l a u q e f o s e i c n e i c i f f e e v i t a l e r l a c i t e h t o p y H . 4 4 e r u g i F . y t i s n e d m s i n a g r o e t a m i t s e o t d e s u s t n e m e r u s a e m 164 one organism per unit area, RE increases beyond one. This implies that SE(N) is greater than SE(Q) and that more precise information can be obtained from the quadrat sampling scheme. To test this theoretical relationship, the 1977 data was sampled with the previously described sampling programs and the relative efficiencies calculated for distance measurements and a quadrat dimen- sion of 1 ftz. In this simulation n s m and was set at 25. In Fig. 45 these calculated RE's are compared with the theoretical expectations. At these low densities (< 1.0), we see the field data follows the theoretical expectation. The information provided in Figures 43 and 45 suggest the use of distance measurements for estimating densities of organisms when the true density was less than approximately one per unit area. Since no information was collected concerning the amount of time required to sample an area using distance measurements, no relative net precision analysis was performed which could alter this decision threshold. However, in situations where conditions permit sampling using distance measurements, considerable gains in the precision of estimates of density can be realized at low densities (< l organism per unit area). These conditions include: relatively sedentary individuals in the population. measurable distance between individuals and between random points and their nearest neighbors (the last two conditions possibly limit the applicability of distance sampling for soil organisms, stored grain pests, stalk and wood borers and possibly in aquatic systems). Before concluding this section, it is necessary to point out a significant limitation in using distance measurements to estimate density. 165 GULL LHKE. 1977 N = M = 25 ) D I E S / J N I E S Y C N E I C I F F E E V I T R L E R I V I ' I I I 0.0 0.2 0.4 0.6 0-8 1-0 DENSITY Figure 45. Comparison of hypothetical and actual relative efficiencies for equal sample sizes of quadrat and distance measurement sampling schemes. 166 This limitation occurs in obtaining the mean. NORP2 distance from a population where the individuals are at high densities and are located in rows. In this situation the distance to the nearest neighbor to a random point will be essentially reduced to the perpendicular distance from the random point to the row. Since there will be a neighbor in either direction, the maximum distance a random point could occur from an individual would be one-half the row spacing, SP/2. The expected mean of a uniformly distributed squared variable (n(i2)) is (Lindgren 1962): E(§2) 3 _ 3 §___A__ (B - A) where: A = the minimum value of the variable, and B - the maximum value of the variable. Applying Equation 51 to distance sampling from rows we have: — 2 2.213.. E(NORP ) 12 [51] [52] where: NORP2 = mean squared distance to the nearest neighbor of a random point, and SP - row spacing (in). Therefore, from the CLB larval coordinates taken from 7 in (17.8 cm) rows, an average maximum density estimate is 11.22 CLB larvae per ft2 (.09 m2). Using the 1977 and 1978 CLB larval coordinates, 30 samples per plot were taken to estimate true plot density with distance measurements and 1 ft2 quadrats. The estimated density from these two sampling schemes 167 were then plotted against the true plot density (Fig. 46)., A linear relationship exists between quadrat density estimates throughout the entire density range, whereas with distance measurements high true plot densities were not estimated properly as predicted by Equation 52. In conclusion, density estimates based on distance measurements from random points to their nearest neighbor provide a very precise sampling scheme for organisms with a density of less than one organism per unit area. However, as described earlier, distance sampling cannot be applied to all organisms: stored grain pests, stalk and wood borers, to names few examples. Also, possible limitations may exist in esti- mating high densities under certain conditions, but as pointed out earlier, at densities beyond about one organism per unit area quadrat sampling provides more precise sample estimates and should generally be used. Components of variance When estimating the regional density of an organism, two components of variance must be considered. These two components of variance are between field variance, abz, and within field variance, owz. Using a one-way analysis of variance these two components can be estimated by: c 2 a s 2 = M5 W W W [53] and: where: 2 2 b - w 168 8 7 9 1 D N R 7 7 9 1 . E K H L L L U G 0 3 : S T H R D H U D . 0 N : S E C N R T S I D . 0 N E C N B T S I D AlISNSD 3081 V l I I I V . I 1 j V r V I ' . n o i t a m i t s e y t i s n e d r o f s t n e m e r u s a e m e c n a t s i d f o e s u f o n o i t a t i m i L . 6 4 e r u g i F Y T I S N E D D E T R H I T S E 2 1 0 1 O B 4 2 0 169 MSw = mean squares within treatments (fields) from the oneway ANOVA table, Msb - mean squares between treatments (fields) from the ANOVA table, and n = the number of samples per treatment (number of random quadrats per field). From the 1977 and 1978 larval coordinate data, subsets were selected from which all fields and all plots had been sampled on a given date. For 1977 this subset included: fields 5-58, 8-13 and 9-15; plots 1, 2 and 3; and sample dates June 6, l4 and 17. Due to the higher densities in 1978 only one sample period was represented by all 3 plots within all fields (May 30 and 31, from fields 5-60, 8-10 and 9-10). Using these data as input,.a computer program was developed to count the number of organisms within quarter plots and within quarter—quarter plots. Since the coordinate plots were the only true level of randomisation, a single quarter plot count and quarter-quarter plot count were randomly selected as input into the one-way analysis of variance.3 Total plot counts, random quarter plot counts and random quarter-quarter plot counts were then used as input for the one-way analysis of variance (SPSS--Nie et al. 1975) to allow estimation of sz and sw2 using different quadrat sizes (total plots - 10 x 10 ft in 1977 and 6 x 6 ft in 1978; quarter plots = 5 x 5 ft in 1977 and 3 x 3 ft in 1978: quarter-quarter plots - 2.5 x 2.5 ft in 1977 and 1.5 x 1.5 ft in 1978). 3The random quarter plot and quarter-quarter plot counts were selected from the random number table in Snedecor and Cochran (1967). 170 From the results of the one-way analyses of variance, sz and SW2 were calculated fer the data sets previously described (Table 30). In the 1977 data, sb2 was less than Sw2 for almost all cases and even negative for 6 of the 9 cases (Table 30). Negative variance cannot exist and therefore are artifacts of using Equation 54 to calculate sz. By way of explanation, negative variance components arise through analysis of variance estimation techniques when counts between treatments (fields) are more highly correlated than counts within treatments (samples) (Jessen 1978). When this results, the negative component of variance can be taken as evidence of zero variance for the component in question (Searle 1971). In the 1978 data the inverse situation 5 2 > Sw2 existed. This is b the most common situation and it allows the design of sampling schemes which optimize allocation of sampling resources (Ruesink and Haynes 1973, Carruthers 1979). Ruesink and Haynes (1973) note that below densities of one organism per sample (ftz) their analysis predicts S 2 to be less than Sw2 and b that as the density becomes much less than 1, s 2 approaches zero. In b Table 30 the mean plot density per ft2 for the 1977 data is much less than one organism per ftz, whereas in 1978 the mean plot density was 4.44 (well above 1.0). These data substantiate their hypothesis. Ruesink and Haynes (1973) further recommend that when densities are high it is optimal to take only one sample per field and to sample as many fields within a region as possible to obtain the least estimate of regional density. This was also true for the 1978 data (Table 30). Highly significant E's resulted from the one-way analysis of variance . ) e t a d r e p s d l e i f 3 , d l e i f r e p s e l p m a s 3 ( a t a d e t a n i d r o o c l a v r a l 8 7 9 1 d n a 7 7 9 1 e h t f o t e s b u s a r o f s t n e n o p m o c e c n a i r a v d l e i f ) z s ( n e e w t e b d n a ) z w S ( n i h t i W . 0 3 e l b a T t a r d a u Q n a e M t o l P n a e M e z i S y t i s n e D ) t e e f ( ) z t f ( e t a D 171 2 6 9 . 8 8 9 . 3 0 8 . 5 8 3 . 6 3 5 . 3 9 7 . 6 5 1 . 3 6 5 . 4 3 0 . 2 1 0 . 8 2 2 . 8 7 7 . 6 3 1 1 1 . 2 1 - 8 7 7 . 6 3 3 3 . 6 0 3 6 . 1 - 1 1 1 . 2 6 5 5 . 0 7 3 2 5 7 . 8 1 1 - 7 6 6 . 6 2 X 0 1 7 6 2 . 7 7 / 7 0 / 6 1 4 2 . 2 2 2 . 3 5 1 8 . - 3 9 6 . 2 2 2 . 2 3 4 9 2 . 3 - 3 3 3 . 8 1 1 1 . 1 4 2 1 . 1 2 2 2 . 7 8 4 4 7 0 . 0 2 6 5 5 . 9 2 0 1 6 9 2 . 7 7 / 4 1 / 6 0 0 5 . 6 2 2 2 . 7 0 4 . 2 9 6 . 3 3 3 . 4 4 4 4 . - 6 5 5 . 7 6 6 . 2 7 6 5 . 2 2 2 2 . 8 1 9 1 5 . 9 1 1 1 . 1 1 0 1 1 1 1 . 7 7 / 7 1 / 6 4 0 0 . 7 2 0 . 9 1 0 . 7 2 2 2 . 1 1 9 1 5 . 2 2 1 1 1 . 7 5 9 4 . 5 1 6 5 5 . 8 3 2 2 9 5 . 2 5 1 1 3 3 3 . 0 4 1 0 0 . < 4 0 1 . 6 0 2 6 5 5 . 3 0 3 8 1 5 . 3 5 7 0 2 2 2 2 . 0 6 1 3‘ somm . 1 1 5 4 . 4 7 7 / 1 3 - 0 3 / 5 . 5 1 — 9 d l e i f r o f s t n u o c o r e z l l A * 172 indicating significant differences between treatments (fields). With the 1977 data, only one significant F resulted (this F may be elimin- ated from consideration since all 2.5 ft2 counts from field 9-15 resulted in zeroes), thus indicating no significant differences between treatments (fields). In conclusion, this analysis has shown that at densities of CLB larvae below one per ftz, most of the variance associated with regional estimation of densities lies within fields rather than between fields. It suggests that for a given point in time, more reliable regional estimates of low density populations (< l per sample unit) will result from intensively sampling a few fields; whereas at high densities (> 10 per sample unit), field differences are signficant and single samples should be taken from as many fields as possible within the region (Ruesink and Haynes 1973). CLB LARVAL INTERACTIONS WITH OATS In the following section, the interactions between CLB larval feeding and oats growth and yield will be examined. Since oat straw is often as valuable as the grain (Webster 1977), yield in oats can be broken down into two categories, namely, grain and straw. Grain yield will be defined as the weight of kernels per unit of ground (Jackman 1976). Grain yield (Gy) can be further broken down into its components as follows: Gy - Wk * Kh * Hst * Stp * Pua [55] where: 173 Wk weight per kernel, Kh kernels per head, Hst - heads per stem, Stp - stems per plant, and Pua - plants per unit area of ground. Pua is determined by the grower at the time of sowing when the seeding rate is determined. All the remaining components of the grain yield model can potentially be affected by CLB larval feeding and, therefore, will be examined. Oat straw yield was not measured directly, but the terminal heights of the plants were recorded. It is reasonable to assume that straw weight is highly correlated with stem height: therefore, height information will be used as an indicator of the effects of CLB larval feeding on the yield of oat straw. Data sources for analyses in this section were obtained from a variety of sources. Total larval production estimates came from the oat fields included in the 1978 sweepnet survey (Appendix D) and from the 2 row-ft (60 cm) counts taken in fields S-60,8-10, 9-10 and 9-12 (Appendix E) and the 4 parasite cages (Appendix I). Defoliation infor- mation came from the KBS damage survey (Table 5), from the parasitoid cages (Appendix I), and from the defoliation plots (Appendix J). Yield component information came from the KBS oats yield survey (Table 31), the parasitoid cages (Table 32) and from the defoliation plots (Appendix J). Defoliation and Total Larval Production To calculate the amount of leaf area consumed without damaging the oat plant, it was necessary to examine CLB feeding habits. Examination 174 Table 31. Mean head dry weights from the cat fields on the Kellogg Biological Station in 1978. Field n Mean Variance 5~53 5-55 5-60 5-63 8-10 8-12 8-14 9- 6 9- 8 9-10 9-12 9-15 9‘18 10 10 30 10 89 10 10 10 10 30 101 10 10 1.465 1.389 1.239 1.028 1.199 1.219 1.535 1.665 1.625 1.429 1.436 1.656 2.015 .132 .103 .072 .298 .169 .144 .153 .132 .180 .135 .163 .073 .132 175 Table 32. Yield information from the 1978 parasitoid cages. Harvest Head Kernel Number Number Cage Date Dry wt Dry wt Spiklets Kernels (g) (g) 250 7/26/78 1.522 2.122 1.117 1.571 1.190 1.319 1.884 1.566 1.325 .976 1.416 1.237 1.954 1.471 1.835 1.293 500 7/26/78 2.360 1.888 1.590 NA NA NA 1.898 1.712 .817 .726 1.912 2.034 1.352 1.897 1.518 1.723 1.835 1.160 1.693 1.338 33 37 22 35 34 30 32 28 42 40 28 33 17 29 32 31 33 30 1000 7/26/78 1.523 1.324 ‘33 2000 7/26/78 2.092 2.349 1.671 1.713 1.164 1.744 1.859 1.009 1.880 2.129 1.505 1.536 1.038 1.599 1.652 .870 1.333 1.154 1.029 1.113 .878 1.024 1.207 1.400 1.303 .856 .920 .798 .904 .997 1.241 1.135 1.572 1.399 1.313 1.146 .738 .630 37 39 30 31 22 33 34 21 28 26 31 20 22 31 31 30 32 30 17 66 85 54 85 63 53 81 48 79 72 55 65 29 63 70 58 67 53 60 71 84 56 54 37 62 69 36 47 39 52 40 43 52 50 46 57 54 28 176 of the vein spacing and scar width information collected on June 20, 1978, revealed a highly significant relationship between vein spacing, x, scar width, Y: Y = .0166 + .8234 (X) r2 = .762 [56] no: (8 a 0) t57 = 13.26, p << .001 This agrees with Shade and Wilson (1967) and Wellso (1973) who found CLB larval feeding highly oriented to between vein areas. Therefore, by knowing the vein spacing, the scar width could be estimated. Examining the relationship between leaf width, x, and vein spacing, Y, (Fig. 47) resulted in the following relationship: Y = .1699 + .0138 (X) t2 = .268 - [57] no: (8 = 0) t53 a 4.323, p < .0001 Although this relationship was statistically significant, the coefficient of determination was so low, .268, that little advantage in predicting vein spacing was obtained over a sample average vein spacing. Examination of vein spacing across a leaf (Fig. 48) or down the length of a leaf (Fig. 49) reveals no significant trends in either case. Since no significant increases in predictability of vein spacing were obtained by knowing the leaf's width or the vein's position on a leaf, a vein spacing of .281 mm 1 .0084 (SE), n - 57, was considered to be the average for "Mariner" oats grown at Gull Lake during 1978. Since vein spacing affects CLB larval feeding scar widths and vein spacing was considered to be a varietal constant, an average CLB 177 ) N M ( G N I C R P S N I E V 5 4 . 0 0 4 . 0 5 3 . 0 0 3 . 0 5 2 . 0 0 2 . 0 s l o p N ”I I r* ’1 I I I I ' 4 8 8 10 12 LERF HIDTH (NH) Figure 47. Relationship between leaf width and leaf vein spacing. 178 I r I I I 1 8‘0 (NN) DNIDUdS NIBA d C I 0'0 5 3 0 3 5 2 0 2 . 5 1 0 1 5 F R E L S S D R C R R E B M U N N I E V . f a e l e h t s s o r c a ) r e b m u n ( n o i t i s o p n i e v d n a g n i c a p s n i e v f a e l n e e w t e b p i h s n o i t a l e R . 8 4 e r u g i F 179 0 2 5 1 D I 5 Y E S R B F H E L M O R F n o Si'D DV‘D 98'0 DE'D SZ'D 112-0° (NN) DNIDHdS NIBA e h t m o r f ) e c n a t s i d ( n o i t i s o p n i e v d n a g n i c a p s n i e v f a e l n e e w t e b p i h s n o i t a l e R . 9 4 e r u g i F . e s a b f a e l 180 larval feeding scar width of .25 mm resulted. Total larval defoliated area could now be calculated by simply measuring the length of the feeding scars and multiplying this by .25 mm. To examine the relationship between percent defoliation and total larval production, the information collected from the 1978 oats sweep- net survey and the parasitoid cage study was used (Table 33). Plotting the percent defoliation on the flag leaf (Fig. 50A) and on the total plant (Fig. 508) with total larval production/60 cm of oat row revealed significant non-linear relationships. These findings are in contrast to those of Wilson et al. (1969) who observed a linear relation- ship between larvae per stem and percent of total leaf area consumed. It is impossible to directly compare these results, since they calculated average density rather than total production and reduced their population via malathion sprays rather than monitoring or augmenting natural popula- tions. The significance of these findings lies in the fact that beyond a certain larval density, the foliage consumed remains relatively constant. Thus implying density dependence in consumption and at higher densities where feeding competition exists, each individual consumes less foliage than at lower densities. Further, since feeding is non-linear, the relationships between defoliation and the components of oat yield are more meaningful than are relationships between density and the components of yield. The reasoning behind this is that the cat plant responds to the amount of defoliation rather than the number of individuals on its surface. 181 Table 33. Summary of percent defoliation and total larval production for the KBS oat fields planted in 1978. Field Total Larval Percent Defoliation Production / 60 cm Flag Leaf Total Plant 5-53 5-55 5-63 8-12 8-14 9- 6 9- 8 9-15 9-18 CAGE 250 500 29.06 57.93 47.76 23.10 14.55 5.06 15.64 8.40 9.22 12.72 27.01 1000 54.08 93.20 73.21 66.84 38.14 98.40 77.71 65.38 48.51 68.20 43.13 26.80 12.32 24.04 10.25 6.60 8.00 16.40 10.24 68.83 ' 55.51 69.00 80.33 58.07 74.44 2000 100.32 88.33 87.05 N D I T R I L D F E D T N E C R E P N D I T R I L D F E D T N E C R E P 182 (A) Y=86.90-436.9(1/X). R':.580 (a) '371022-40207IIIXI0 R‘=.571 r r r ’T I f I 20 40 60 80 100 TDTRL LRRVRL PRODUCTION / SUCH 50. Relationship between total larval production / 60 cm and percent flag leaf defoliatiOn (A) and total plant defoliation (B). 183 The author realizes that these results represent a single degree of oat-CLB synchrony and that only generalizations based on this particular synchrony are valid. I feel, however, that the concept is valid and will simply shift with other synchronies. Oat Grain Yield In order to facilitate collection of information on the number of kernels per head and kernel dry weight, two relationships were developed. After the defoliation plots had been harvested and the heads oven dried for 24 hours at 100°C, the heads dry weights were measured and the number of spiklets per head counted. From this information, five random heads plus the heads with the maximum and minimum dry weight were then selected from each of the 27 defoliation plots. This resulted in the selection of 168 heads. These heads were then hand thrashed between two boards, the number of kernels were counted, redried and weighed. Least squares linear regression was performed on this data to obtain the following significant relationship: Y 8 -3.693 + 2.082 (X) r2 a .881 [58] HO: (8 a 0) t168 = 35.00, p <<< .001 where: and: Y = number of kernels per head, and x - number of spiklets per head: 4 I I -.0034 + .9119 (x) r2 a .994 [59] HO: (8 s 0) t108 a 164.7, p <<<< .001 184 where: Y = kernel dry weight (g), and x I head dry weight (g). These relationships were used to calculate the number of kernels per head and kernel dry weight for all the plants in the defoliation plots. Using the subset of defoliation data from the defoliation plots (see Methods and Materials), a split-split plot analysis of variance was performed to examine the effects of moisture, planting data and defoliationcnxweight per kernel, spiklets per head and weight per head. The results of these analyses of variance are presented in Tables 34 to 36. Looking at weight per kernel (Table 34), significant differences were caused by the interactions of moisture level and planting date, by the interactions of planting date and defoliation level and finally, by the interactions of moisture level, planting.date and defoliation level. Of particular interest from this analysis are the significant interactions between planting date and defoliation level and the inter- action between moisture level, planting date and defoliation level. This suggests that the timing of defoliation was more significant in , reducing weight per kernel than was the amount of defoliation. Examination of the results of the analysis of variance for the number of spiklets per plant (Table 35), reveals significance due to planting date; the interaction of planting date and moisture level; and finally the interaction of moisture level, planting date and defoliation level. These results imply that planting date was a more significant factor in determining the number of spiklets per head than was defoliation. 185 Table.34. Split-split plot anova results for weight per kernel. Source DF SS MS F Block A (fertilizer) Error (A) B (planting date) AB 2 2 4 2 4 .1706E-03 .8529E-04 .4152E-04 .2076E-04 .1463E+00 NS .5677E-03 .l419E-03 .3444E-04 .1722E-04 .2616E+01 NS .14llE-03 .3528E-04 .5359E+01 * Error (8) 12 .7899E-04 .6583E-05 C (defoliation) 6 .2240E-04 .3733E-05 .1917E+00 NS AC BC 12 .2112E-03 .l760E-04 .9038E+00 NS 12 .4543E-03 .3786E-04 .1944E+01 * ABC 24 .134SE-02 .5606E-04‘ .2878E+01 *** Error (C) 108 .2103E-02 .l948E-04 * Significant at .01 significance level * * Significant at .05 significance level ** * Significant at .001 significance level 186 Table 35. Split-Split plot anova results for no spiklets per head. Source DF SS MS F Block A (fertilizer) 2 2 .2191E+03 .1096E+03 .1115E+04 .5577E+03 .2617E+01 NS Error (A) 4 .8524E+03 .2131E+03 B(planting date) 2 .8134E+03 .4067E+03 .6123E+02 *** AB 4 .1374E+03 .3434E+02 .5170E+01 * Error (B) 12 .7970E+02 .6642E+01 C (defoliation) 6 .3359E+03 .5598E+02 .1965E+01 NS AC BC 12 .4727E+03 .3939E+02 .1383E+01 NS 12 .1869E+03 .1557E+02 .5467E+00 NS ABC 24 .1193E+04 .4971E+02- .1745E+01 * Error (C) 108 .3076E+04 .2849E+02 * Significant at .01 significance level ** Significant at .05 significance level *** Significant at .001 significance level 187 Table 36. Split-split plot anova results for dry weight per head. Source DF SS MS F Block A (moisture) Error (A) B (planting date) AB 2 2 4 2 4 .8326E+00 .4163E+00 .3473E+01 .1737E+01 .1323E+01 NS .5253E+01 .1313E+01 .3216E+01 .1608E+01 .5076E+02 *** .2903E+00 .7258E-01 .2291E+01 NS Error (8) 12 .3802E+00 .3168E-01 C (defoliation) 6 .1477E+01 .2462E+00 .2178E+01 * AC BC 12 .1370E+01 .ll4lE+00 .1010E+01 NS 12 .1227E+01 .1022E+00 .9042E+00 NS ABC 24 .5132E+01 .2138E+00, .1891E+01 * Error (C) 108 .1221E+02 .1131E+00 * Significant at .01 significance level ** Significant at .05 significance level *** Significant at .001 significance level The number of spiklets per head appears to be a varietal characteristic 188 and, as such, was affected more by abiotic factors--i.e., moisture and planting date--than by biotic factors--i.e., insect defoliation. The analysis of variance of weight per head (Table 36) revealed significant differences due to planting date, defoliation level and the interactions of moisture level, planting date and defoliation level. In this instance, the amount of defoliation as well as the timing of defoliation and the water regime affect yield. This agrees with Hanson and Nelsen (1980) who graphically depicted the relative effects on a hypothetical plant's yield due to water stress at various points in its development (Fig. 51). They showed that critical times exist in a plant's development such that stress during these times caused significant irreversible yield reductions. Although their figure represents a single application of water stress, it is reasonable to assume that initiation of other stresses at these time would have similar effects. In all the defoliation plots, initiation of CLB larval feeding occurred during late stages of emergence and early stages of tillering, but always prior to flowering. A partial explanation of this sensitivity to water stress can be given by realizing that water pressure provides the force for a plant's growth and elongation. Clearly, water stress during times when the plant is diverting energies to these important growth processes would reduce the energy available for them. Since CLB larval feeding ruptures cell membranes,which providesa direct flow of water to the atmosphere, it is reasonable to assume that CLB larval feeding causes water stress as well as reduces phtosynthetic area. 189 1 at dr- 0'! 01311 NIUHD 3A118138 S S E R T S E R U T S I O M F O N O I T H I T I N I T R E G R T S H T W O R G 7 6 5 4 3 2 1 ) 0 8 9 1 n e s l e N d n a n o s n a H r e t f A ( . t n a l p l a c i t e h t o p y h a n i s e g a t s h t w o r g t n e r e f f i d t a s s e r t s r e t a w f o n o i t a c i l p p a e l g n i s a y b d e s u a c d l e i y t n a l p n o s t c e f f e e v i t a l e R . 1 5 e r u g i F 190 To determine the location of these sensitive points in an oat plant, the growth rate during an interval of time was plotted against the height at the end of the growth period. An example of 3 of the plots, which represent 3 moisture levels, are shown in Figure 52. We see from this figure that several periods of reduced growth occur. This indicates a reduction in growth either due to stress or allocation of energies to other plant processes. No information on stress was collected but adequate moisture was available and no signifi- cant insect defoliation was taking place during these time intervals. Plotting the mean number of live leaves and tillers per plant during this period (Fig. 53), note then an addition of either a leaf or a tiller corresponding to each drop in growth rate. It is interesting that both plot 5 (medium irrigation) and plot 9 (high irrigation) showed greater reductions in growth rate at tillering than did plot 1 (no irrigation). Thus possibly indicating that an unstressed plant may divert more energy into biomass production via tillering than a stressed plant--i.e., one with no additional moisture--is willing to invest. In summary, the synchrony between defoliation and plant growth appears to be as important as the level of defoliation. Further, defolia- tion occurring when the plant is producing either new leaves or tillers is probably more significant than defoliation at other times, since the water balance would be disrupted, which provides the force for rapid cell growth and elongation. Using the grain yield information from the 1978 parasitoid cages, further insight into the interactions between CLB larval feeding and grain yield can be obtained. The total seasonal larval production in the four cages and for field 9-8 as well as head weight, kernel weight 191 0 0 . 1 0 8 . 0 l 0 6 . 0 l 0 4 . 0 1 1 0 2 . 0 0 0 0 . 7 ' o s l l 10 l 15 I 20 I 25 ' ‘1 30 ) F ° 2 4 > D D / M M ( E T H R H T W O R G HT RT END OF GROWTH PERIOD (CH) Figure 52. Growth rates of oat plants during a time interval versus plant height at the end of the growth interval. Plot 1 = no irrigation, plot 5 = medium irrigation and plot 9 = high irrigation. 192 (A) '1 4'25'780 0 LB No NRI J x Lnttmmms nurse ”4 Ni 1 O r dr/j//,l—___l_______‘r:////////‘//a o 5 10 15 20 25 30 9‘ 4-25—78. 0 LB N. man .. Q , x LutLumu I mum (I) "' J K U 4 In N t g I Z d" a: g I O T o 5 10 _ M. I 15 I 20 I 25 I 30 *7 4-25—78. 0 L8 N. HIGH (e) 4 X unmm I nuns ”d Nd “4 fl I I I o 0 5 10 15 20 25 30 HT RT END OF GROHTM PERIOD (CM) Figure 53. Relationship between plant height and the mean number of live leaves and tillers per plant. A a no irrigation, B 8 medium irrigation and C a high irrigation. 193 per head, number of spiklets per head, and number of kernels per head is presented in Table 37. Since no true replicates existed for the cages, a multiple range test could not legitimately be performed. Therefore, all means were compared via t-tests (SPSS--Nie et a1. 1975). The results of these t-tests are summarized in Table 38. Only the yield components from the cat plants grown in cage 2000 exhibited any significant differences. Since no significant differences in spiklets per head occurred in any comparisons, which provides additional evidence in support of the hypothesis that the number of spiklets per head is a varietal characteristic. Also note in Table 37 that a slight increase in head and kernel weights were associated with moderate increases in total larval produc- tion (parasitoid cages 250 to 1000). A partial explanation to these results lies in water balance. Passioura (1972, 1976) has shown that when wheat plants are grown with limited moisture, significant increases in yield results when the plants were forced to conserve water until after anthesis. Accepting the hypothesis that CLB larval defoliation causes moisture stress, which would cause a plant to conserve water, it is possible to see how moderate increases in defoliation could increase grain yield. However, if the stress is too severe, as in cage 2000, then only negative effects would result. The previous analyses have shown that CLB larval feeding reduces oat grain yield by reducing the weight per kernel and the number of kernels per head. Since no reduction in spiklets per head resulted, a reduction due to larval feeding must also occur in kernels per spiklet. It has also shown that cats can sustain quite a heavy degree of defoliation 194 Table 37. Summary of larval production and oats grain yield components from the 1978 parasitoid cage study and host field, 9-8. Row 1 = mean, row 2 = standard error of the mean and row 3 = sample size. Site Larval Weight Weight of of Tbtal Head Kernel Number Number Production. (9) (g) Spiklets Kernels CAGE 250 12.72 1.546 1.429 31.375 66.875 .122 .110 1.668 5.323 8 8 8 8 500 27.01 1.727 1.455 31.500 61.100 .135 .152 2.156 4.365 10 7 10 10 1000 54.08 1.646 1.469 30.800 _ 57.600 .129 .121 1.849 4.773 10 10 10 10 2000 100.32 1.158 .998 27.000 46.100 .080 .074 1.719 2.771 10 10 10 10 FIELD 9-8 15.64 1.625 - -- -- .134 10 195 Table 38. Significance levels for t-tests comparing means of several components of oats yield from the 1978 parasite cage study. Cage Yield Component Cage Field 500 1000 2000 9-8 250 head wt. .346 .588 .014 .674 kernel wt. .891 .818 .004 no. spiklets .965 .825 .091 no. kernels .409 .213 .002 - - - 500 head wt. .670 .002 .600 kernel wt. .945 .010 no. spiklets .808 .120 no. kernels .595 .010 - - - 1000 head wt. .005 .913 kernel wt. no. spiklets no. kernels 2000 head wt. kernel wt. no. spiklets no. kernels .004 .150 .052 - - - .008 - 196 before resulting in significant reduction in grain yield. This was exemplified in Table 38 where only the cats in cage 2000 showed significant reductions due to defoliation, i.e., 88.33% on the flag leaf and 87.03% on the plants overall. Oat Straw Yield To examine the effect of CLB larval feeding on oat straw yield as indicated by plant height at harvest, the cat height information from the parasitoid cages was compared. Comparisons of mean oat plant height at harvest from the 4 cages were made Infixuy t-tests (SPSS-- Nie et a1. 1975). The results of these tests and the mean height are summarized in Table 39. The height of the oat plants grown in cage 2000 was significant less than that in all other cages. Also the mean height of the cat plants in cage 250 was significantly less than in either cage 500 or 1000 which indicates a stimulation of growth. This was quite unexpected. However, other authors (Banks and Macauley 1967, Taylor and Bardner 1968, Kincade et a1. 1971, Passioura 1972, 1976) have shown that small to moderate levels of insect defoliation have increased crop yield. In conclusion, this analysis has shown that intense CLB larval feeding definitely reduces oat height and therefore reduces straw yield. It has further shown that a moderate amount of CLB larval feeding may stimulate growth and result in greater yields of straw. This analysis was based, however, on only one variety of cats, "Mariner," and only one degree of CLB-oat synchrony. Further research into this area is necessary before conclusive evidence will be available on the impact of CLB larval feeding on oat straw yield. 197 Table 39. Summary of cats plant height at harvest and t-test values for 1978 parasitoid cage study. n = 24. Cage 500 1000 2000 Cage 250 '§ 87.738 -4.50*** -3.24** 2.88** SE 1.243 500 '2 93.983 - .41 5.43*** 38 1.348 1000 ‘§ 93.042 - 4.75*** 58 1.878 2000 '2 76.721 - 58 2.878 ** Significant at a a .01 ** * Significant at a = .001 198 CONCLUSIONS This research has investigated three basic areas of the ecology of the cereal leaf beetle at low densities. These three areas include the distribution and abundance of the CLB, within and between-generation population dynamics and the effects of CLB larval feeding on oat grain and straw yield. It was found that the highest CLB densities in the region existed either in the section 5 area, northwest corner, or the Kellogg Biological Station or in the privately owned area immediately to its north. Further total production of larvae in the section 9 research area, the site of the long-term population studies, was significantly related to the total CLB production for the Gull Lake research area. Therefore, by monitoring the population trends in this area, the regional trends can also be monitored. I Examining the larval trends at these research plots since 1976 revealed that the population density has been increasing in both oats and wheat. In fact, the densities in wheat are greater than in 1967 while those in cats are only slightly less. This indicates that the Gull Lake population of CLB has gone through an entire cycle in the last 13 years. Continued monitoring is necessary to see if densities will reach the same epidemic levels as in 1969 or if the cycle is dampening through time. The key factors in within-generation survival or the CLB were found to be egg survival from A, flavipes, larval survival from T, 22225. and 2, temporalis, and pupal survival from extreme temperature during pupation-~i.e., degree day accumulation during July > 9°C. 199 Egg survival from A, flavipes was found to be density independent but highly dependent upon synchrony between oviposition and a standard egg parasitism curve. Larval survival from T, julis and 2, temporalis was found to be inversely density-dependent. This relationship was observed both within and between seasons. As was expected, pupal survival from extreme weather was found to be density-independent. None of these within-generation key factors were found significant in between—generation survival. As mentioned by Sawyer (1978), the key to predicting the densities of CLBs in an area lies in a thorough under- standing of the factors which affect survival and distribution of CLB adults after summer emergence and before spring oviposition. Currently this seems to be the only area of research lacking in understanding the dynamics of CLB populations. I strongly suggest this as a future research priority, since it appears to be so instrumental in determination of field densities. An understanding of these between-generation factors would truly allow managing the trajectory of the population in a pest manage- ment mode. From field populations of CLB larvae, the X and Y coordinates were collected and analyzed to examine larval spatial patterns and compare efficiencies of various sampling schemes. CLB adults were found to be too mobile for meaningful interpretation of their x and Y coordinates, so their locations were not collected. Using both quadrat counts and distance measurements between the nearest neighbors of random individuals and random points, the spatial pattern of larvae was found to be slightly more aggregated than random. However, significant differences from random were rarely declared. 200 Analyses of these coordinates indicated that at densities below one organism per sample unit, greater accuracy, lower standard errors of the mean, resulted from density estimates based on distance measure- ments rather than on quadrant counts. However, as the density approached one per sample unit, the advantage rapidly decreased such that beyond one individual per unit area, the quadrat sampling scheme provided greater precision. Two row feet counts were found to be more satisfactory than quadrat counts. At lower densities, between 1 and 5 individuals per unit area, a dilemma arose with fixed quadrats. That is, as the density decreases, a larger quadrat is required to get good reliability between estimated density and true density. At the same time, relative net precision is favoring smaller quadrat sizes. This dilemma did not arise with row samples and lengths from 1 to 3 feet proved optima1.- Two row feet have historically been counted in the section 9 research area. Finally, a non-linear relationship was found between total seasonal larval production and defoliation which indicates care must be taken when considering the effects of an insect defoliator on its host plant. Heavy feeding by the CLB larvae was found to significantly reduce head weight, kernel weight, the number of kernels per head and height of the plant at harvest. No significant reduction was observed, however, in spiklets per plant. This indicates that only certain components of yield--i.e., weight per kernel and number of kernels per spiklet--are affected by defoliation; whereas others--i.e., number of tillers per plant and the number of spiklets per plant--are varietal characteristics and are more affected by the environment. LITERATURE CITED 201 LITERATURE CITED Adkisson, P. L., C. F. Bailey and R. L. Hanna. 1964. Effect of the bollworm, Heliothis zea, on yield and quality of cotton. J. Econ. Entomol. 57:448-450. Anderson, R. C. 1968. The biology and ecology of Anaphes flavipes (Foerster) (Hymenoptera:Mymaridae), an exotic egg parasite of the cereal leaf beetle (Coleoptera:Chrysomelidae). Ph.D Thesis, Purdue University. 148 pp. Anderson, R. C. and J. D. Paschke. 1968. The biology and ecology of Anaphes flavipes (Hymenoptera:Mymaridae), and exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Amer. 61:1-5. Banks, C. J. and E. D. M. Macauley. 1967. Effects of Aphis fabes Scop. and of its attendant ants and insect predators on yield of field beans (Vicia faba L). Ann. Appl. Biol. 60: 445-453. Baskerville, G. L. and P. Emin. 1969. Rapid estimation of heat accumu- lation from maximum and minimum temperatures. Ecol. 50:514-517. Batcheler, C. L. 1971. Estimation of density from a sample of joint point and nearest-neighbor distances. Ecol.52:703-709.. Begum, A. and W. C. Eden. 1965. Influence of defoliation on yield and quality of soybeans. J. Econ. Entomol. 58:591-592. Blackith, R. E. 1958. Nearest-neighbour distance measurements for the estimate of animal populations. Ecol. 39:147-150. Bliss, C. I. and R. A. Fisher. 1953. Fitting the negative binomial distribution to biological data and note on the efficient fitting of the negative binomial. Biometrics 9:176-200. Bowling, C. C. 1963. Cage tests to evaluate stink bug damage to rice. J. Econ. Entomol. 56:197-200. Campbell, G. S. 1974. How a wheat plant uses water. Proc. Eastern Washington Fertilizer and Pesticide Conference. Pullman, WA. Carruthers, R. I. 1979. Population sampling and spatial distribution of the immature life stages of the onion maggot, Hylema antiqua (Meigen). M.S. Thesis, Michigan State University. 197 pp. Casagrande, R. A. 1975. Behavior and survival of the adult cereal leaf beetle, Oulema melanopus (L.). Ph.D Thesis, Michigan State Univer- sity. 174 pp. Clark, P. J. and F. C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecol. 35:445-453. 202 Cochran, W. G. 1963. Sampling Techniques. John Wiley & Sons, NY. 413 pp. Dysart, R. J., H. L. Maltby and M. H. Brunson. 1973. Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga 18:133-167. Eckinrode, C. J. and L. P. Ditman. 1963. An evaluation of potato leaf- hopper damage to lima beans. J. Econ. Entomol. 56:551-553. Elliott, J. M. 1977. Some Methods for the Statistical Analysis of Samples of Benthic Invertebrates. 2nd Edition. Freshwater Biologi- cal Association Scientific Publication N. 25. 160 pp. Finney, D. J. 1971. Probit Analysis. Cambridge university Press. 333 PP- Fulton, W. C. 1975. Monitoring cereal leaf beetle larval populations. M.S. Thesis, Michigan State University. 108 pp. Gage, S. H. 1972. The cereal leaf beetle, Oulema melanopus (L.), and its interaction with two primary hosts: winter wheat and spring oats. M.S. Thesis, Michigan State university. 105 pp. Gage, S. H. 1974. Ecological investigations on the cereal leaf beetle, Oulema melanopus (L.) and the principal larval parasite, Tetrastichus julis (Walker). Ph.D. Thesis, Michigan State University. 172 pp. Gage, S. H. and D. L. Haynes. 1975. Emergence under natural and manipu- lated conditions of Tetrastichus julis, an introduced larval parasite of the cereal leaf beetle, with reference to regional population management. Environ. Entomol. 4:425-434. Gallun, R. L., R. T. Everly and W. T. Yamazaki. 1967. Field and milling quality of Monon wheat damaged by feeding of cereal leaf beetle. J. Econ. Entomol. 60:356-359. Green, R. H. 1966. Measurement of non-randomness in spatial distributions. Res. Popul. Ecol. 8:1-7. Greig-Smith, P. 1957. Quantitative Plant Ecology. Academic Press Inc. New York. 198 pp. Guppy, J. C. and D. G. Harcourt. 1978. Effects of temperature on develop- ment of the immature stages of the cereal leaf beetle, Oulema melanopus (Coleoptera:Chrysomelidae). Can. Entomol. 110:257-263. Gutierrez, A. P., L. A. Falcon, W. Loew, P. A. Leipzig and R. vandenBosch. 1975. An analysis of cotton production in California: A model for Acala cotton and the effects of defoliation on its yield. Environ. Entomol. 4:125-136. 203 Gutierrez, A. P., W. H. Denton, R. Shade, H. Maltby, T. Burger and G. Moorhead. 1974. The within-field dynamics of the cereal leaf beetle (Oulema melanopus (L.)) in wheat and oats. J. Anim. Ecol. 43:627-640. Hanny, B. W., T. C. Cleveland and W. P. Meredity, Jr. 1977. Effects of tarnished plant bug (Lygus lineolaris) infestation on presquaring cotton (Gossypium hirstum). Environ. Entomol. 6:460-462. Hanson, A. D. and C. E. Nelsen. 1980. Water: Adaptations of crops to drought-prone environments. £2_P. S. Carlson, Ed. The Biology of Crop Productivity, Academic Press, NY. 471 pp. Haynes, D. L. 1973. Population management of the cereal leaf beetle. Insects: Studies in Population Management: Ecolog. Soc. Australia, Memoirs 1, Canberra. Heath, D. V. S. and F. G. Gregory. 1938. The constancy of the mean assimilation rate and its ecological importance. Ann. Botany (ns)2: 811-818. Helgesen, R. G. 1969. The within-generation population dynamics of the cereal leaf beetle, Oulema melanopus (Coleoptera:Chrysomelidae) a model for age specific mortality. Can. Entomol. 104:797-814. Holmes, N. D. 1977. The effect of the wheat stem sawfly, Cephus cinctus (Hymenoptera: Cephidae), on the yield and quality of wheat. Can. Entomol. 109: 1591- 1598. Hoxie, R. P. and S. G. Wellso. 1974. Cereal leaf beetle instars and sex, defined by larval head capsule widths. Ann. Entomol. Soc. Amer. 67:183-186. Hsiao, T. C. and E. Acevedo. 1974. Plant responses to water deficits, water-use efficiency, and drought resistance. Agric. Meteorol. 14:59-84. Jackman, J. A. 1976. A quantitative description of oat growth with cereal leaf beetle populations. Ph.D Thesis, Michigan State Univer- sity. 172 pp. Jessen, R. J. 1978. Statistical Survey Techniques. John Wiley 5 Sons, NY. 520 pp. Kincade, R. T., M. L. Laster and E. E. Hartwig. 1971. Simulated pod injury to soybeans. J. Econ. Entomol. 64:984-985. Kincade, R. T., M. L. Laster and J. R. Brazzel. 1970. Effect on cotton yield on various levels of simulated Heliothis damage to squares and bolls. J. Econ. Entomol. 63:613-615. 204 Kiritani, K. and F. Nakasuji. 1967. Estimation of the stage-specific survival rate in the insect population with overlapping stages. Res. Popul. Ecol. 9:143-152. Lefkovitch, L. P. 1966. An index of spatial distribution. Res. Popul. Ecol. 8:89-92. Leibee, G. L. and D. J. Horn, 1979. Influence of tillage on survivor- ships of cereal leaf beetle and its larval parasites, Tetrastichus julis and Lemophagous curtus. Environ. Entomol. 8:485-486. Lindgren, B. W. 1962. Statistical Theory. MacMillian Co., NY. 427 pp. Logan, P. A. 1977. Development of improved density estimators for larvae of the cereal leaf beetle Oulema melanopus (L). Ph.D Thesis, Michigan State university. 112 pp. Logan, P. A. 1980. Spatial distribution of cereal leaf beetle (Oulema melanopus (L)) eggs and larvae and treatment of count data. Environ. Entomol. 9:186-189. Loomis, R. S. and W. A. Williams. 1963. Maximum crop productivity: An Estimate. Crop Sci. 3:67-72. Manly, B. F. J. 1976. Extensions to Kiritani and Nakasuji's method for analyzing insect stage-frequency data. Res. Popul. Ecol. 17:191-199. Merritt, D. L. and J. W. Apple. 1969. Yield reduction of oats caused by the cereal leaf beetle. J. Econ. Entomol. 62:298-301. Michigan State University. 1970. Cereal leaf beetle research 1962-1969. Res. Rept. 113, Farm Sci. Michigan State university. Agr. Exp. Stn., East Lansing. 20 pp. Montgomery, V. E. and P. R. DeWitt. 1975. Morphological differences among immature stages of three genera of exotic larval parasitoids attacking the cereal leaf beetle in the United States. Ann. Entomol. Soc. Amer. 68:574-578. Moore, P. G. 1954. Spacing in plant populations. Ecol. 35:222-227. Morisita, M. 1959. Measuring the dispersion of individuals and analysis of the distributional patterns. Mem. Fac. Sci. Kyushu U. Series E (8101.) 2:215-235. Morris, R. F. 1959. Single-factor analysis in population dynamics. Ecol. 40:580-588. Mountford, M. D. 1961. On E. C. Pielou's index of non-randomness. J. Ecol. 49:271-275. 205 Myers, J. H. 1978. Selecting a measure of dispersion. Environ. Entomol. 7:619-621. Nie, N. H., C. H. Hull, J. C. Jenkins, K. Steinbrenner and D. H. Bent. 1975. Statistical Package for Social Sciences. 2nd Edition. Ortman, E. E. and R. H. Painter. 1960. Quantitative measurements of damage by the greenbug, Toxoptera graminum. to four wheat varieties. J. Econ. Entomol. 53:798-802. Passioura, J. B. 1972. The effect of root geometry on the yield of wheat growing on stored water. Aust. J. Agric. Res. 23:745-752. Passioura, J. B. 1976. Physiology of grain yield on wheat growing on stored water. Aust. J. Plant Physiol. 3:559-565. Patil, G. P. and W. M. Stiteler. 1974. Concepts of aggregation and their quantification: A critical review with some new results and applications. Res. Popul. Ecol. 15:238-254. Pickford, R. and M. K. Mukerji. 1974. Assessment of loss in yield of wheat caused by the migrating grasshopper, Melanoplus sanguinipes (OrthopterazAcrididae). Can. Entomol. 106:1219-1226. Pielou, E. C. 1957. The effect of quadrat size on the estimation of the parameters of Neyman's and Thomas' distributions. J. Ecol. 45:31-47. Pielou, E. C. 1959. The use of point-to-plant distances in the study of the pattern of plant populations. J. Ecol. 47:607-613. Pielou, E. C. 1977. Mathematical Ecology. John Wiley 5 Sons, NY. 385 pp. Robinson, P. 1954. The distribution of plant populations. Ann. Bot. 18:35-45. Ruesink, W. G. and D. L. Haynes. 1973. Sweepnet sampling for the cereal leaf beetle, Oulema melanopus. Environ. Entomol. 2:161-172. Sawyer, A. J. 1976. The effect on the cereal leaf beetle of planting cats with a companion crop. M.S. Thesis, Michigan State university. 143 pp. Sawyer, A. J. 1978. A model for the distribution and abundance of the cereal leaf beetle in a regional crop system. Ph.D Thesis, Michigan State University. 279 pp. Searle, S. R. 1971. Linear Models. John Wiley & Sons, NY. 532 pp. Shade, R. E., H. L. Hansen and M. C. Wilson. 1970. A partial life table of the cereal leaf beetle, Oulema melanopus, in Northern Indiana. Ann. Entomol. Soc. Amer. 63:52-59. 206 Shade, R. E. and M. C. Wilson. 1967. Leaf-vein spacing as a factor affecting larval feeding behavior of the cereal leaf beetle, Oulema melanopus, (Coleoptera:Chrysomelidae). Ann. Entomol. Soc. Amer. 60:493-496. Snedecor, G. W. and W. G. Cochran. 1967. Statistical Methods. The Iowa State University Press. Ames, IA. 593 pp. Steel, R. G. D. and J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill, NY. 481 pp. Sokal, R. R. and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Co. 776 pp. Southwood, T. R. E. 1966. Ecological Methods with Particular Reference to the Studyyof Insect Population. Metheun and Co., London. 391 pp. Southwood, T. R. E. 1978. Ecological Methods with Particular Reference to the Study of Insect Populations. 2nd Edition. Chapman and Hall, London. 524 pp. Taylor, L. R. 1961. Aggregation, variance and the mean. Nature 189: 732-735. Taylor, W. E. and R. Bardner. 1968. Effects of feeding by larvae of Phaedon cochleariae (F.) and Plutella maculipennis (Curt.) on the yield of radish and turnip plants. Ann. Appl. Biol. 62:249-254. Thompson, H. R. 1956. Distribution of distance to nth neighbour in a population of randomly distributed individuals. Ecol. 37:391-394. Usua, E. J. 1968. Effect of varying population of Busseola fusca larvae on the growth and yield of maize. J. Econ. Entomol. 61:375-376. Varley, G. C. and G. R. Gradwell. 1970. Recent advances in insect population dynamics. Ann. Rev. Entomol. 15:1-24. Waters, W. E. 1959. A quantitative measure of aggregation in insects. J. Econ. Entomol. 52:1180-1184. Watson, D. J. 1956. Leaf growth in relation to crop yield. In, The Growth of Leaves. Batterworth Scientific Publ. 178-191. Watson, D. J. 1958. The dependence of net assimilation rate on leaf area index. Ann. Botany (ns) 22:37-55. webster, J. A. 1977. The cereal leaf beetle in North America: Breeding for resistance in small grains. Ann. NY Acad. of Sci. 287:230-237. Webster, J. A., D. H. Smith, Jr. and C. Lee. 1972. Reduction in yield of spring wheat caused by cereal leaf beetles. J. Econ. Entomol. 65:832-835. 207 Wellso, S. G. 1973. Cereal leaf beetle: Larval feeding, orientation, development and survival on four small-grain cultivars in the laboratory. Ann. Entomol. Soc. Amer. 66:1201-1208. Wiggans, S. C. 1956. The effect of seasonal temperatures on maturity of oats planted at different dates. Agron. J. 48:21-25. Wiggans, S. C. and K. J. Frey. 1957. Tillering studies in cats. III. Effect of rate of planting and test weight. Agron. J. 49:549-551. Williams, W. A., R. S. Loomis and C. R. Lepley. 1965. Vegetative growth of corn as affected by population density. II. Components of growth, net assimilation rate and leaf-area index. Crop. Sci. 5: 215-219. Wilson, M. C., R. E. Treece, R. E. Shade, K. M. Day and R. K. Stivers. 1969. Impact of cereal leaf beetle larvae on yield of oats. J. Econ. Entomol. 62:699-702. WOmack, D. and R. L. Thurman. 1962. Effect of leaf removal on the grain yield of wheat and oats. Crop Sci. 2:423-426. OVERDUE FINES: 25¢ per day per item ,1({‘hk* RETURNING LIBRARY mgams: \ g.“IW Piece in book return to remove 'NV” charge from circulation records APPENDICES APPENDIX A KELLOGG BIOLOGICAL STATION FIELD MAPS AND FIELD ACREAGES 208 SECTION 5 SECTION 4 sacnou 9 _ 1 $ 1’ W SECTION B Figure Al . Field maps for the 4 sections in the Kellogg Biological Station. \ W n fi x w e 209 TABLE.A1. ACREHGE OF FIELDS WITHIN THE KELLOGG BIOLOGIC STATION RESEARCH AREA. SECTION 4 SECTION 5 SECTION 9 SECTION 9 FIELD ACREAGE FIELD ACREAGE FIELD ACREAGE FIELD ACREAGE 1 . 7 . 1 . 4 . R . fi . 7 . n . 0 . n u 1 . 3 4 : . R . 7 . R . Q . 1 . 1 . 1 1 1 . 1 . 1 . 1 . 1 . 20 21 22 23 . 3 24 . 7 . 6a ] . 27 9 . 0 . 0 . 9 . 1 . 4 . R . G . 7 . 8 7 . 9 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 3B N H M W M H 1 . 1 . 1 . 1 . ) . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 9 . 1 . Q . 9 . G . 7 . G . fi . 9 . 7 . 4 . R . 9 . 1 . R . 7 . R V O J n u n u n V R J n v 1 . 1 . 9 . R . 1 . R . 4 . 4 . 4 . G U Q . Q . Q . R . n v n V A . A . A . 3 5 2 8 3 3 5 2 6 7 8 8 6 8 1 7 0 0 5 1 3 5 3 0 . 5 9 6 7 0 4 1 6 4 2 2 2 2 6 5 2 2 2 7 . 3 1 1 3 n l u n l . 1 1 1 1 1 0 o o o o o o o o o o o o 1 . 7 . 1 . 4 . R . R . 7 . Q V O J n u 1 . 9 . 1 . 4 . R . 6 7 . 9 0 . n u 1 1 7 . 1 . 4 R . £ . 7 . R . Q . n v 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 1 . 1 : 1 . 9 . : 1 . 1 . 1 . 1 . 1 . 1 . 1 . A . 4 . 1 2 3 4 5 6 7 8 9 0 1 9 . 3 4 5 6 7 99 9 0 1 . 2 3 1 1 . 1 1 1 . 1 1 . 1 1 .1 . 1 . 7 . 2 2 7 24 . . . 7 2 2 7 5 6 7 8 29 . 1 ) 3 0 1 . 32 5 3 3 3 4 3 . 3 3 6 5 7 3 1 9 3 0 4 1 4 . . . 0 1 5 5 5 7 . 1 1 1 1 1 1 1 1 7 8 4 . 3 1 6 2 2 2 2 8 2 3 3 3 1 3 7 . 3 2 2 1 1 . 1 . 4 1 . 6 4 4 4 4 6 7 6 7 7 7 6 6 3 5 7 5 6 4 4 4 1 9 1 0 7 4 3 8 1 7 1 1 3 0 9 9 6 8 8 7 1 9 . 3 4 5 6 7 8 9 0 1 . 9 . 3 4 5 r 0 7 8 9 0 2 1 . 1 . 1 . . . L . L . L 1 . 1 . . 1 . 1 . 9 . 22 . 32 24 25 26 . 9 . 7 28 . 2 1 3 1 ) 1 3 1 3 1 ) 3 3 1 1 . 3 3 4 4 9 0 1 . 1 2 3 4 . 5 6 7 8 9 0 1 . . 6 3 3 1 3 1 3 7 . ? 2 7 . 2 7 . 2 2 9 7 . 7 . 7 . 2 7 . 9 . 2 7 2 9 . 2 1 7 . 7 . 2 2 2 3 2 3 7 . 3 3 4 4 4 4 7 . 1 . 1 1 . 1 3 3 3 3 3 3 3 3 5 3 3 3 3 9 : 3 3 3 3 3 3 7 8 2 5 5 5 7 . 5 2 5 2 8 0 1 2 3 O 210 TABLE.A1. CONTINUED. SECTION 4 SECTION 5 SECTION 3 SECTION 9 FIELD ACREAGE FIELD ACR GE FIELD ACREAGE FIELD ACREACE 42 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 4 4 4 3 3 3 3 3 3 3 3 4 3 u 6 4 2 5 2 2 2 1 6 1 6 1 1 1 1 0 1 0 0 9 2 6 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 C . 5 7 . 3 4 5 6 7 8 9 0 1 . 2 3 4 5 6 7 8 9 0 1 . 62 . 3 6 6 2 4 4 6 4 7 4 2 9 . 2 2 7 . 2 2 2 2 2 2 2 2 7 . 4 9 3 3 1 5 7 . 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 . 4 4 4 5 5 5 5 5 5 5 5 5 5 6 5 6 5 6 6 6 6 5 6 7 7 7 7 7 7 7 7 7 7 8 8 2 3 4 5 6 7 Q , 9 0 1 7 . 3 4 . 5 5 . 7 8 9 0 1 . 2 3 4 5 5 7 8 9 0 1 . 2 3 4 5 6 7 8 9 0 1 . 3 82 Q . 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 4 1 26 : 5 4 . 6 5 6 7 7 7 7 7 7 7 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 3 9 0 1 7 . 3 4 . 5 6 4 1 4 3 3 2 7 . 1 1 L 3 7 6 0 7 3 7 5 9 4 3 5 2 5 5 1 0 7 7 0 6 5 4 0 1 2 4 4 7 . 0 0 5 2 7 7 5 3 2 5 6 8 3 2 7 9 9 4 9 0 0 0 5 0 0 7 . 5 5 9 0 8 5 3 1 3 1 ) 2 2 7 . 2 1 8 9 . 0 2 2 1 3 1 4 3 4 4 4 1 5 1 1 2 2 2 1 . . n U o 4 u 5 6 0 2 4 u 7 . a / . 1 L l 1 . 8 0 0 6 6 2 2 5 3 0 0 9 5 5 2 9 a 4 7 1 . 7 3 6 5 2 7 7 6 5 2 8 0 6 0 5 0 9 1 3 7 . 1 9 7 5 O O APPENDIX B KELLOGG BIOLOGICAL STATION WEATHER INFORMATION 211 8 5 2 4 4 5 4 6 7 4 4 4 5 5 7 5 7 5 5 4 4 5 1 5 5 5 9 5 7 5 6 5 8 5 3 5 9 4 6 5 3 4 5 3 9 4 3 3 2 4 8 4 5 4 5 4 3 4 5 8 4 7 3 8 9 7 9 7 0 8 7 8 0 9 7 8 8 6 0 8 1 8 2 8 3 8 0 8 9 6 8 7 7 7 1 8 8 7 5 6 9 5 1 6 5 6 7 6 5 6 5 6 6 6 5 7 0 5 7 4 9 4 3 5 4 6 5 6 8 4 8 4 8 5 4 5 6 6 9 6 6 6 2 6 1 5 6 4 7 4 0 5 6 5 8 5 7 5 1 6 1 6 8 5 2 6 1 6 7 6 4 6 7 4 3 4 4 5 8 7 4 7 8 7 9 7 O 8 8 7 4 7 1 8 2 8 4 8 4 8 5 8 4 8 3 8 6 7 8 7 2 9 6 8 8 8 8 8 8 8 0 8 O 9 9 8 2 8 5 8 O 9 9 8 0 8 5 7 5 8 6 5 3 5 2 5 4 5 6 5 9 5 2 6 8 5 9 5 2 7 8 7 6 5 5 4 9 5 6 6 4 6 6 5 6 5 O 6 0 7 5 6 1 6 0 7 4 6 7 5 5 6 7 6 8 5 8 6 0 6 2 6 5 7 9 7 9 7 5 8 6 8 6 8 6 8 5 8 5 8 0 9 2 9 0 9 1 8 4 9 2 9 8 8 9 7 5 8 7 8 7 8 5 8 4 8 5 8 7 8 6 8 7 8 6 8 6 8 9 7 3 8 3 8 6 5 4 4 6 4 1 5 6 5 3 5 2 5 8 5 9 5 9 5 6 6 2 6 7 6 0 7 0 7 1 6 9 4 8 5 7 5 0 5 6 5 2 6 5 5 1 6 2 6 7 5 3 6 8 6 1 6 8 5 5 7 5 7 7 7 1 8 2 8 3 8 6 8 6 8 8 8 7 8 5 8 0 9 O 9 9 8 5 8 2 8 8 7 3 8 9 7 0 8 0 8 1 8 1 8 9 7 7 7 4 8 4 8 5 8 0 8 0 7 6 4 8 3 3 3 4 3 7 3 8 3 8 2 9 2 6 4 6 4 5 4 2 3 9 3 6 5 O 6 8 5 0 5 5 3 2 3 7 4 6 4 7 3 8 3 8 3 1 4 2 4 7 4 3 5 7 5 8 5 9 S 3 6 0 6 4 5 0 6 4 7 1 7 4 5 8 5 9 6 0 7 0 7 4 6 5 7 5 7 8 6 4 7 3 7 0 6 5 6 3 7 5 3 2 3 0 3 2 3 8 2 5 3 2 3 5 2 4 2 1 3 2 3 0 2 7 2 5 4 6 5 6 5 8 5 6 5 8 5 0 5 4 7 a 6 4 8 6 7 6 5 6 5 6 1 7 6 7 5 7 O 7 7 7 5 7 6 4 7 3 4 4 2 3 3 2 7 2 9 2 0 3 5 3 6 4 8 5 9 6 7 6 7 5 1 6 9 5 7 5 6 5 0 6 O 6 2 5 3 6 3 7 4 7 8 7 9 7 7 7 6 7 3 6 0 7 5 6 5 6 0 6 0 5 0 4 6 4 8 5 0 6 3 6 8 2 0 3 3 3 1 3 8 2 0 2 3 2 6 1 3 2 8 3 9 1 8 2 4 2 1 2 4 2 4 2 2 1 4 2 2 4 9 4 4 2 6 1 5 2 7 3 9 3 1 4 2 3 7 2 7 3 3 4 4 3 8 4 4 3 4 4 2 4 4 6 6 3 7 3 7 3 5 4 6 4 4 4 6 5 0 5 0 4 O 4 6 3 1 3 7 5 6 6 3 6 6 5 2 4 4 5 5 6 5 6 0 4 1 7 8 5 5 5 8 6 0 5 thhm:¢¢wlfifl OGWMO‘HNOOMWNOO‘O\I\I\Q 1-1 - - MMNMHNNMMMNMN MMMNNM 9 2 8 1 9 1 9 2 5 2 3 2 4 2 7 3 7 3 0 5 7 4 6 4 5 4 2 4 0 6 4 5 5 4 0 5 8 3 0 5 5 4 4 3 5 3 6 5 0 6 7 4 3 6 3 5 3 5 6 2 7 2 2 1 3 1 0 2 1 9 1 0 3 4 6 1 1 2 6 2 8 1 1 1 1 2 4 3 8 3 6 3 3 2 0 2 1 3 4 3 1 2 5 1 0 2 3 3 9 2 3 3 3 3 6 2 4 3 0 1 - 2 2 2 1 - 0 2 9 3 2 1 1 5 1 5 3 1 0 2 4 2 6 1 0 2 2 9 1 4 2 3 4 3 9 2 5 2 2 2 7 2 0 3 2 3 0 3 0 3 4 3 8 2 9 2 HNMQ‘IAVOMQO‘Q 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 0 3 1 3 n i M x a M . 1 9 1 M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M y a D z l u J e n u J x a M t s u g u A r e b m e t g e S J fi l i r g A h c r a M z r a u r b e F z g a u n a . n o i t a m r o f n i e r u t a r e p m e t n o i t a t a o i B e k a L 1 1 u G 6 7 9 1 . l B e l b a T 212 Table 32. Degree day accumulation at the Gull Lake Biostation for 1976. Anril May June July Day >42°r >48°r >420F >48°F >420F >480? >42°F >48°F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 181 187 197 207 212 220 226 231 235 242 249 251 258 275 298 323 349 373 398 412 428 442 452 462 464 464 465 470 476 485 84 87 94 100 102 106 109 111 113 116 120 121 125 136 153 172 192 210 229 237 247 255 261 266 266 266 266 269 272 277 497 505 509 516 530 543 547 552 568 584 600 608 623 647 669 693 713 720 729 747 765 776 787 797 808 822 842 864 886 912 937 284 288 289 293 303 312 313 316 326 336 346 351 362 380 396 414 428 432 438 450 462 469 476 482 489 499 513 529 545 565 584 961 979 999 1023 1050 1076 1103 1133 1165 1196 1230 1264 1300 1338 1374 1404 1426 1454 1480 1503 1529 1559 1585 1613 1641 1669 1701 1735 1763 1785 602 .614 628 646 667 687 708 732 758 783 811 839 869 901 931 955 971 _ 993 1013 1030 1050 1074 1094 1116 1138 1160 1186 1214 1236 1252 1809 1833 1857 1885 1914 1944 1976 2006 2036 2075 2118 2149 2170 2204 2241 1270 1288 1306 1328 1351 1375 1401 1425 1449 1482 1519 1544 1559 1587 1618 2275 ' 1646 2301 2329 2361 2397 2430 2460 2496 2530 2560 2594 2628 2658 2690 2720 1666 1688 1714 1744 1771 1795 1825 1853 1877 1905 1933 1957 1983 2007 2750 2031 9 6 5 8 6 6 0 8 7 6 7 7 5 5 1 8 2 4 2 7 6 2 5 5 1 1 1 3 3 1 7 2 0 1 2 2 5 6 9 7 5 5 1 8 4 5 0 8 7 4 5 6 2 4 0 7 9 3 6 6 1 1 O 4 1 1 3 2 2 1 2 2 7 5 6 7 1 6 5 8 7 5 1 9 0 4 2 7 4 4 0 7 2 3 6 6 8 2 O 4 7 1 0 3 1 1 3 2 7 5 2 8 5 6 9 8 2 7 O 9 8 4 9 8 7 4 O 7 6 3 2 5 2 3 4 4 1 2 8 2 9 1 1 3 8 6 3 8 5 6 7 8 1 7 0 9 1 6 5 8 7 5 7 7 9 2 9 4 0 3 7 3 0 4 2 3 - 8 2 4 5 1 8 9 6 6 7 3 7 1 9 4 5 0 7 6 5 8 7 1 2 7 3 9 2 5 3 8 - 9 1 6 4 2 7 5 9 7 8 6 0 8 2 7 1 9 9 3 5 6 4 4 5 7 4 2 5 5 8 2 3 4 4 - 3 2 9 - 2 2 9 5 8 7 7 6 7 7 5 6 7 8 5 4 4 6 6 3 8 6 0 2 2 5 7 2 6 5 2 1 2 5 8 1 2 6 8 7 2 6 8 7 2 6 5 8 9 3 8 6 1 3 0 6 2 2 4 5 0 4 9 5 3 1 0 4 1 - 2 1 213 6 5 9 7 4 6 2 8 7 5 5 8 1 4 2 7 1 3 6 6 9 3 5 7 8 3 3 6 9 1 3 4 9 4 3 7 1 6 0 8 1 6 2 8 3 5 8 6 4 3 2 7 4 3 6 7 5 4 0 7 2 3 4 4 2 5 3 7 4 5 6 7 8 6 7 8 7 5 5 6 5 4 5 7 0 5 7 7 2 5 5 6 7 2 2 4 4 5 8 4 1 5 1 4 1 4 5 7 6 5 5 0 8 O 6 8 8 8 4 0 7 6 5 2 8 2 5 5 7 7 3 0 6 8 2 7 3 8 - 1 1 5 4 O 7 1 6 0 8 7 5 9 8 0 5 9 7 3 5 O 8 5 4 7 6 9 3 5 4 5 2 1 3 0 1 8 2 0 5 1 7 1 5 9 7 5 7 5 9 1 5 9 7 0 5 4 8 7 4 4 7 1 4 7 6 0 1 6 2 6 0 2 2 5 4 7 0 6 0 8 9 6 3 9 7 5 7 8 4 5 7 8 5 4 9 7 8 2 0 6 8 - 0 2 9 - 0 1 9 5 5 7 6 5 5 7 8 6 0 9 6 6 7 8 O 6 6 8 3 5 0 8 3 2 8 4 1 - 8 2 6 - 0 1 5 6 6 7 8 4 4 7 9 6 4 8 6 6 6 8 O 6 4 8 6 5 3 8 9 2 1 4 2 2 6 3 1 - 5 1 4 6 6 7 6 4 3 7 5 7 3 9 9 5 8 7 O 6 0 9 6 5 0 8 5 2 3 4 0 1 4 3 3 5 4 6 9 4 3 7 5 7 3 9 9 5 5 7 0 6 O 9 8 5 8 7 7 2 0 4 6 1 8 2 3 O 8 2 4 2 1 5 3 6 5 5 9 6 1 7 3 9 8 4 8 7 3 6 1 9 ‘ 8 5 5 7 8 2 3 4 0 6 2 1 1 O 3 5 5 O 7 4 5 5 7 7 5 5 8 0 5 1 8 2 6 0 9 0 5 3 6 5 2 2 4 0 2 8 4 4 5 9 6 O 6 5 7 8 5 7 8 5 5 3 8 3 6 6 8 5 4 8 5 7 2 0 4 3 3 3 5 7 4 5 2 3 2 O 6 4 7 4 8 2 7 0 6 2 8 3 6 5 8 8 6 7 8 7 3 0 6 7 1 9 3 2 3 1 5 1 2 9 2 7 5 5 7 6 4 5 7 9 6 0 8 5 6 4 8 0 6 1 9 4 3 7 4 1 2 9 4 1 2 6 3 4 2 0 3 8 5 0 7 4 5 3 8 0 5 9 7 3 5 5 8 6 5 1 9 2 3 0 6 8 2 8 5 5 1 2 3 1 1 6 2 1 5 9 6 9 6 6 8 7 4 1 8 9 5 7 8 0 5 6 8 8 3 3 7 8 3 2 6 4 2 0 3 3 - 1 2 4 5 8 6 0 7 7 8 7 5 3 8 9 5 5 8 3 6 1 9 8 3 2 7 2 5 2 6 9 1 1 3 2 - 6 1 4 4 7 6 4 6 9 7 3 6 3 8 0 6 5 8 5 5 9 8 1 3 3 6 0 4 6 6 4 5 5 6 5 5 0 8 1 6 4 8 9 S 6 7 5 5 3 8 6 3 8 6 3 4 6 6 4 6 6 8 0 7 6 8 5 5 7 8 6 3 9 5 8 - 3 1 - 2 1 3 0 2 HNMQ’U‘ONwO‘O 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 0 3 1 3 n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M y a D y l u J e n u J x a M t s u g u A r e b m e t g e S J l i r g é h c r a M z r a u r b e F z r a u n a . n o i t a m r o f n i e r u t a r e p m e t n o i t a t a o i B e k a L l l u G 7 7 9 1 . 3 B e l b a T 214 Table B4. Degree day accumulation at the Gull Lake Biostation for 1977. April, May June July Day >42°F >48°P >42°F >48°F >420F >48°F >42°F >48°F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 154 165 174 178 180 180 184 186 189 204 219 241 263 277 295 315 339 367 393 419 443 457 467 475 476 483 497 511 519 530 84 91 97 98 98 98 99 100 101 112 123 139 155 163 176 190 208 230 250 270 288 296 300 304 304 308 318 327 332 339 545 559 574 590 615 640 658 669 676 685 698 '716 743 767 792 820 851 881 914 947. 982 1016 1048 1084 1118 1150 1176 1206 1236 1263 349 358 368 379 398 417 429 436 439 445 454 466 487 505 524 546 571 595 622 649 678 706 732 762 790 816 836 860 884 905 1318 1332 1346 1372 1403 1423 1433 1445 1457 1472 1490 1509 1526 1548 1571 1601 1635 1669 1695 1720 1741 1765 1792 1824 y 1856 1883 1914 1944 1974 2000 948 956 966 986 1011 1025 1031 1038 1046 1056 1068 1081 1092 1108 1125 1149 1177 - 1205 1225 1244 1259 1277 1298 1324 1350 1371 1396 1420 1444 1464 2030 2055 2082 2121 2159 2199 2239 2273 2305 2334 2364 2400 2432 2463 1488 1507 1528 1561 1593 1627 1661 1689 1715 1738 1762 1792 1818 1843 2506 . 1880 2545 2582 2616 2658 2700 2740 2769 2799 2828 2860 2882 2904 2932 2963 2993 1913 1944 1972 2008 2044 2078 2101 2125 2148 2174 2190 2206 2228 2253 2277 1292 928 3029 2307 215 6 6 3 9 0 6 7 7 6 5 3 8 4 4 4 7 5 4 6 6 0 3 6 4 8 - 9 3 3 8 2 3 6 1 9 8 5 4 8 5 5 4 7 2 5 0 8 5 4 5 6 6 3 6 6 9 6 4 0 1 - 2 3 8 6 9 8 9 5 9 7 7 4 2 7 7 5 3 8 0 5 5 6 6 3 2 6 0 3 2 4 2 - 3 3 9 5 3 8 0 6 4 8 9 4 8 7 7 6 9 7 4 5 2 7 8 2 2 6 2 3 5 4 3 5 2 6 0 6 0 9 4 6 9 7 9 3 4 7 3 5 4 7 7 3 8 5 3 2 4 4 9 3 6 3 0 3 7 7 8 1 5 2 0 2 0 2 2 2 6 1 5 2 4 6 3 9 0 6 6 8 3 6 4 8 8 4 8 7 0 5 6 6 5 3 4 5 1 1 0 3 4 1 - 7 2 4 2 9 3 0 6 6 7 2 6 0 9 6 5 2 8 9 3 5 6 0 5 2 6 1 3 0 5 3 3 0 4 5 - 9 2 4 1 5 2 4 5 6 7 0 7 1 9 2 6 5 8 5 5 6 7 ’ 1 5 5 5 6 2 0 5 6 2 5 3 2 1 7 2 8 - 4 2 6 5 8 7 6 6 0 9 0 5 4 8 2 5 6 7 1 5 6 6 5 2 4 5 5 2 6 3 3 1 5 2 4 2 2 3 6 7 7 0 6 5 8 2 5 4 8 9 6 1 8 4 4 2 7 7 2 8 5 9 1 5 3 2 1 2 7 - 9 1 9 5 8 7 7 6 6 8 1 6 5 8 4 6 0 8 9 4 8 7 0 4 5 5 9 4 3 4 - 9 2 1 7 2 2 6 5 8 7 6 6 8 2 7 6 8 4 5 9 7 2 5 4 8 0 4 5 5 8 2 4 4 6 1 - 4 2 2 1 6 2 0 7 5 8 0 5 0 8 9 6 2 9 5 5 3 8 9 5 8 7 6 3 5 5 5 1 5 4 1 8 2 7 1 3 2 4 5 4 8 1 5 0 8 9 6 0 9 8 5 3 8 0 4 4 6 . 3 3 5 5 3 3 2 4 6 - 9 2 4 4 7 6 6 5 5 8 1 7 8 8 9 4 5 7 1 4 3 7 6 2 0 6 1 3 4 4 1 1 - 8 2 2 4 0 7 2 6 9 8 0 6 8 8 9 4 9 7 3 5 3 7 8 3 8 5 5 2 7 4 4 - 7 2 8 4 4 7 6 6 8 8 7 5 0 8 7 5 3 8 1 5 9 7 0 4 4 6 1 1 6 4 0 2 1 3 9 8 1 1 7 2 2 2 8 2 1 3 5 4 6 6 5 6 7 8 4 6 0 8 5 6 3 8 1 5 3 8 5 3 3 6 1 2 1 3 3 2 0 4 5 2 0 3 2 4 0 7 3 6 1 8 0 7 8 8 4 6 8 7 6 5 8 8 2 3 7 6 2 3 4 3 0 1 4 3 0 2 8 2 2 5 1 7 5 6 2 8 7 6 1 8 . 8 6 2 8 8 5 9 8 0 3 5 6 0 3 8 3 0 1 8 2 7 1 3 2 6 3 3 6 9 6 9 7 8 4 9 7 1 6 5 8 9 5 1 9 4 3 9 6 1 3 8 4 7 1 1 3 5 1 8 2 5 4 9 6 3 6 9 7 4 6 9 7 1 6 3 8 5 6 7 8 8 3 0 7 8 2 5 4 2 4 8 6 8 5 9 7 4 5 3 7 0 6 5 8 9 6 5 8 3 3 7 6 1 2 0 4 5 5 9 7 4 5 6 7 7 5 3 8 2 3 0 7 2 1 8 2 0 1 6 1 3 5 2 7 4 0 8 1 5 8 7 4 5 0 8 4 4 6 7 9 3 2 6 8 3 4 6 3 - 5 2 1 1 - 3 2 2 5 2 8 2 6 0 8 9 5 3 8 0 6 5 8 5 2 5 5 8 2 2 6 5 2 3 9 5 4 8 8 5 4 8 1 6 8 6 7 5 4 8 8 2 0 6 6 2 2 6 7 - 8 2 9 8 1 2 7 2 3 2 9 2 1 - 7 2 9 6 1 8 4 6 9 7 9 5 5 7 4 4 4 7 0 3 3 6 0 3 3 6 4 1 9 2 7 - 3 2 3 1 4 2 6 5 8 8 5 4 9 7 8 5 0 8 8 4 6 7 9 3 4 5 8 2 6 5 9 5 7 8 5 5 8 7 3 6 5 8 3 5 2 8 7 3 2 6 0 4 6 5 1 6 9 8 2 6 1 8 7 6 6 8 4 6 3 8 8 3 2 6 3 3 2 6 4 7 1 4 2 3 3 2 3 5 - 9 1 8 1 5 3 0 1 - 9 1 2 3 9 3 0 1 6 2 0 1 5 3 8 3 HNMQIDSONQO‘CHNMQWONQO‘CHNMQV‘ONQO‘OH HHHHHHHHHHNNNNNNNNNNMM y l u J e n u J y a M r e b m e t p e S t s u g u A J y r a u n a y r a u r b e F l i r p A h c r a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M n a M y a D . n o i t a m r o f n i e r u t a r e p m e t n o i t a t s o i B e k a L l l u G 8 7 9 1 . S B e l b a T 216 Table 36. Degree day accumulation at the Gull Lake Biostation for 1978. April May June July Day >42°2 >48°F >42°F >48°r >42°F >48°F >42°F >48°F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 42 31 39 49 53 59 67 71 72 82 91 98 104 107 109 112 117 123 129 134 138 164 151 161 170 180 188 200 212 222 ' 12 15 20 26 28 30 35 36 36 42 47 51 54 54 55 56 58 60 63 65 66 69 73 79 84 90 95 103 111 118 226 232 240 249 254 262 271 287 301 314 329 350 372 386 397 413 429 451 477 503 513 528 549 572 597 627 659 692 726 761 789 119 122 127 132 134 138 143 153 161 169 178 193 209 217 222 232 243 258 278 299 305 315 330 347 366 390 416 443 471 500 522 819 848 865 883 903 928_ 960 981 998 1022 1050 1081 1096 1106 1130 1152 1185 1215 1239 1266 1295 1315 1337 1365 1397 1426 1459 1490 1520 1550 546 569 580 593 607 626 652 667 679 697 719 744 754 760 778 794 821 ~ 845 863 884 907 921 937 959 985 1008 1035 1060 1084 1108 1579 1602 1627 1652 1679 1711 1745 1777 1804 1827 1844 1866 1895 1922 1131 1148 1167 1186 1207 1233 1261 1287 1308 1325 1337 1352 1376 1397 1954 _ 1422 1979 2005 2036 2073 2111 2149 2186 2218 2245 2275 2312 2344 2365 2395 2416 2439 1441 1461 1486 1517 1550 1581 1618 1639 1859 1683 1714 1740 1756 1779 1795- 1812 217 6 6 9 6 1 6 1 6 7 5 4 6 2 5 9 3 4 4 9 5 7 5 6 5 7 6 1 5 7 4 7 4 0 5 6 5 6 3 0 4 6 5 3 4 8 3 3 4 9 4 6 4 1 5 7 4 5 5 5 5 4 8 1 8 3 8 3 8 4 8 5 8 0 8 6 6 0 7 9 7 9 7 3 8 3 8 5 7 7 6 6 7 8 7 8 7 4 7 4 7 4 7 8 6 0 7 4 7 6 7 0 8 0 8 0 8 3 8 1 8 3 6 7 6 1 6 4 6 5 6 2 6 6 6 7 6 0 6 9 6 5 4 7 4 8 5 3 5 5 4 2 4 6 5 6 5 6 5 4 6 7 5 8 5 7 6 5 6 5 5 5 5 9 5 7 6 4 6 1 6 1 6 0 8 9 7 2 8 5 8 9 7 2 8 9 8 8 8 2 8 3 8 0 8 4 7 0 7 9 6 1 7 3 7 3 7 3 7 8 7 4 7 0 8 0 8 0 8 0 8 5 7 5 7 4 7 4 7 3 7 5 8 4 8 6 5 7 5 2 5 3 5 4 4 8 4 0 5 6 5 9 6 9 5 5 6 5 6 7 6 9 6 8 6 o 6 8 5 0 5 0 5 2 5 6 5 6 5 3 6 5 6 2 7 9 5 9 5 8 6 0 6 3 6 1 7 8 6 8 7 0 8 0 8 6 7 7 7 0 8 2 8 1 8 3 8 4 8 8 8 9 8 4 8 8 8 6 8 4 8 9 7 2 8 3 8 5 8 9 8 9 8 7 8 1 8 9 7 8 8 8 8 9 8 6 8 6 8 9 5 5 4 0 5 0 5 7 5 9 5 6 6 6 6 9 6 8 5 0 5 7 4 9 4 6 5 2 6 4 6 2 6 5 5 1 5 4 6 2 6 9 5 4 4 6 4 3 4 8 4 O 6 6 5 3 6 3 5 0 7 6 7 1 8 3 8 2 8 1 8 2 8 4 8 2 8 1 8 2 7 1 7 7 7 2 8 5 8 5 8 4 8 2 7 1 8 1 8 2 8 2 8 3 7 1 7 4 7 9 7 3 8 0 8 2 8 5 7 8 2 3 4 0 5 6 3 4 2 9 4 4 5 0 6 9 5 4 6 9 5 3 4 5 3 7 4 5 4 6 3 5 4 7 5 8 5 3 4 9 3 8 3 0 5 4 4 3 4 4 4 0 4 7 4 9 3 7 4 0 5 6 5 0 7 0 7 6 5 7 5 9 6 8 7 2 8 3 8 3 8 0 8 1 6 3 6 5 6 4 6 7 6 0 7 0 8 8 7 5 7 7 3 5 3 7 2 2 3 2 3 3 1 6 1 8 2 7 2 2 2 2 3 7 3 6 4 5 3 9 3 8 3 1 3 3 3 2 3 4 3 5 7 . 0 5 3 6 9 6 1 6 5 6 2 6 5 6 2 6 8 7 6 7 2 7 2 4 8 3 2 5 1 5 4 4 3 3 6 3 8 2 8 3 9 3 2 4 9 4 0 5 8 4 4 4 9 3 7 3 4 4 9 4 8 4 5 7 4 7 4 5 0 5 4 5 8 5 1 6 5 6 0 7 0 7 9 6 3 7 2 7 4 6 5 6 6 5 4 5 2 5 6 4 2 3 0 3 1 3 5 3 0 3 8 2 0 3 2 3 8 2 4 1 8 6 5 2 0 1 6 1 4 1 7 2 2 4 2 4 8 3 2 3 1 3 8 4 9 3 2 2 9 1 2 1 4 2 1 4 7 4 5 3 2 4 6 3 9 4 0 5 7 3 9 3 3 4 6 4 4 4 5 3 9 1 8 3 0 5 0 5 4 4 4 4 5 5 8 6 0 6 4 5 3 5 2 7 1 7 6 5 0 4 8 2 8 3 5 4 3 5 0 6 8 5 5 8 o 1 0 1 4 5 - 6 1 3 - 3 - 2 - 0 1 5 1 - 1 3 5 2 4 2 3 2 6 1 3 2 6 2 1 2 4 1 7 1 5 1 8 1 0 1 - 2 2 7 0 1 3 - 6 - 5 1 - 1 2 0 2 9 1 8 1 5 1 1 1 - 0 2 . 5 3 2 5 2 0 3 0 2 5 1 4 3 1 1 5 1 3 3 6 3 9 3 2 4 7 3 0 3 5 3 5 4 4 4 2 7 3 5 8 2 5 - 5 - 8 2 2 - 3 7 1 1 1 6 1 - 1 1 - 2 - 9 - 4 - 0 7 1 4 2 2 2 3 1 3 2 0 2 0 2 7 2 8 2 5 2 4 2 4 1 2 3 1 2 6 3 1 4 1 4 1 0 2 8 1 8 1 8 1 6 1 1 2 4 2 5 2 4 1 3 2 0 3 1 2 0 2 3 3 3 3 0 3 3 3 3 3 1 3 2 3 4 3 5 3 3 3 1 3 8 2 HNMGMOI‘QGO 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 0 3 1 3 n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M n i M x a M y a D y l u J e n u J y a M r e b m e t p e S t s p g u A J y g a u r b e F y r a u n a l i r p A h c r a M . n o i t a m r o f n i e r u t a r e p m e t n o i t a t s o i B e k a L l l u G 9 7 9 1 . 7 B e l b a T 218 Table B8. Degree day accumulation at the Gull Lake Biostation for 1979. April May June Ju1y Day >42°F >48°F >42°F >48°F >420F >48°F >420F >48°F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 104 104 106 108 110 110 110 110 110 112 113 128 146 150 154 158 164 171 180 192 50 50 50 51 51 51 51 51 51 51 51 61 73 75 75 77 80 84 89 97 304 164 821 521 1582 1104 318 174 840 534 1607 1123 336 186 863 551 1631 1141 342 188 888 570 1656 1160 346 190 915 591 1674 1172 363 201 943 613 1694 1187 387 219 975 639 1717 1204 416 242 1008 666 1744 1225 445 265 1042 694 1777 1252 477 291 1069 715 1806 1275 504 312 1088 728 1839 1301 514 317 1105 740 1873 1330 523 322 1126 755 1909 1360 537 330 1153 776 1944 1388 549 337 1185 801 1980 ' 1418 560 344 1217 828 2011 1443 575 354 1248 853 . 2040 1466 602 375 1270 868 2062 1483 628 395 1294 886 2086 1501 645 407 1324 911 2112 1520 210 109 660 418 1354 935 2140 1543 223 118 669 423 1383 957 2171 1567 237 128 687 434 1399 968 2205 1595 257 142 697 440 1416 979 2239 1623 273 151 709 447 1432 990 2273 1652 285 158 720 453 1454 1006 2300 1673 290 160 731 459 1483 1029 2332 1698 295 162 744 466 1509 1049 2368 1728 298 163 760 478 1540 1074 2400 1755 -30 299 163 780 492 1562 1090 2433 1781 31 799 505 2469 1812 APPENDIX C LISTINGS OF COMPUTER PROGRAMS US- FOR COORDINATE ANALYSES 219 PROGRAM QUAD(INPUT,OUTPUT,TAPE1,TAPE2,TAPE3) C*** C***THIS PROGRAM WAS WRITTEN BY EMMETT LAMPERT TO C***CALCULATE THE MEAN, VARIANCE, VAR/MEAN, MORISITA'S C***INDEX FOR A SERIES OF X,Y COORDINATES. C*** DIMENSION X(150),Y(150),NSAM(4),DX1(3),DY1(3),SIG(4) REAL IDELTA,MU DATA NSAM/10,20,30,50/,DXl/.5,1.,2./,DYl/2.,1.,.5/, +SIG/16.919,30.144,42.559,66.336/ REWIND l REWIND 2 REWIND 3 ct** C***READ DATA HEADER--N=NUMBER OF COORDINATE PAIRS ct** 1 READ(1,100) ISEC,IFLD,IPLOT,IDATE,N IF(EOF(1)) 200,201 201 CONTINUE Cttt C***OUTPUT HEADER ON OUTPUT TAPE--TAPE2 cttt Cttt WRITE(2,900)ISEC,IFLD,IPLOT,IDATE,N C***INPUT N PAIRS OF LARVAL COORDINATES INTO ARRAYS Cttt DO 11 I-1,N ll READ(1,101) X(I),Y(I) C*** _ C***THIS LOOP CONTROLS THE DIMENSIONS OF THE QUADRATS C***BY LOOKING UP DX AND DY FROM DXl AND DYl C*** DO 20 I=1,3 xx-ox1(I)/2. YY=DY1(I)/2. SAMPLE=DX1(I)*DY1(I) XRANGE=10.00000l-DX1(I) YRANGE=10.00000l-DY1(I) AREA=XRANGE*YRANGE ORG‘O. Cate C***THIS LOOP COUNTS THE NUMBER OF ORGANISM THAT ARE C***WITHIN THE PLOTS MAX DIMENSION MINUS ONE HALF OF C*‘*THE QUADRAT DIMENSIONS FOR THE SAME SIDE Catt 6 47 DO 47 I181,N IF(X(I1).GE.XX.AND.X(I1).LE.(10.-XX)) GO TO 6 GO TO 47 IF(Y(I1).GE.YY.AND.Y(Il).LE.(10.-YY)) ORG=ORG+1. CONTINUE MU=ORG/AREA 220 C*** C***THIS LOOP LOOKS UP THE APPROPRIATE SAMPLE NUMBER C***FROM THE ARRAY NSAM. IT ALSO SELECTS THE SAMPLE C***LOCATION AND COUNTS THE NUMBER OF ORGANISMS IN QUAORAT C*** D0 30 J-1,4 RsFLOAT D D ( . N O R ? O . H C 0 6 S L A U O E T I N U E L P M A S . N A S " E H T F O R O R R E D R A D N A T S = 2 W O R , " A 8 0 8 1 W O R . S E L P M A S N O I T A L U P O P E K A L L L H G 6 7 9 1 F O - Y R A M M U S . l E 8 . 1 1 - M ' I I372 7 2 . 0 1 . 0 0 . 0 0 0 . 0 3 0 . 3 0 . 0 1 . 6 0 . 3 1 . 6 0 . 0 1 . 6 0 . 3 1 . 6 0 . 7 0 . 5 0 . S T L U D A T L 4 L 3 0 ' 2 L 1 L 8 6 6 8 N D D D L E I F S T L U D A T L 4 L 3 L 2 L 1 L 5 6 6 8 N D D D L E I F . ¢ - - — - - - - - - - - - - - - - - - - - - - - - - - - u - - - - - - - - - - - - - — - - — — - — — - - I 7 0 . 5 0 . 7 0 . 5 0 . 0 0 . 0 0 0 . 0 5 0 . 5 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 2 . 0 0 . 0 0 0 . 0 7 0 . 3 3 . 2 ' 0 3 3 6 5 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 1 0 3 7 6 2 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 5 1 . 0 0 . 0 0 0 . 0 0 0 . 0 7 6 . 0 3 2 3 6 3 1 9 7 0 . 5 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 0 0 . 0 0 0 . 0 0 6 . 0 0 0 . 0 3 5 . 0 3 7 6 2 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 3 0 . 7 3 . 2 1 . 0 0 . 0 0 2 . 0 0 . 0 9 0 . 0 3 4 7 6 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 3 . 1 7 6 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 5 . 7 6 2 3 1 9 . D E U N I T N O C . 1 3 E L B A T . D E U N I T N O C . l B E L B A T 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 1 3 9 2 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 7 . 6 1 . 3 6 . 6 1 . 3 3 . 9 0 . 3 2 . 2 1 . 0 0 . 0 0 0 . 0 3 0 . 3 0 . 3 0 . 3 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 6 0 . 7 1 . 6 0 . 7 0 . 5 0 . 7 0 . 5 0 . 3 0 . 3 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 0 0 . 0 0 0 . 0 3 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 2 . 7 9 . 3 2 . 7 5 . 6 1 . 7 4 . 6 1 . 3 ‘ . 4 1 . 3 5 . 5 1 . 3 2 . 3 9 . 1 4 2 . 7 0 . 1 4 2 3 3 1 9 4 2 3 3 1 9 3 1 9 4 2 3 3 1 9 4 2 3 3 1 9 8 5 3 3 1 9 3 9 3 7 0 . 2 2 . 0 6 . 1 0 5 4 3 0 . 3 0 . 2 3 . 0 1 . 2 1 5 5 3 1 9 PLEASE NOTE: Page 373 is missing in numbering only. Text follows. Filmed as received. UNIVERSITY MICROFILMS INTERNATIONAL 1374 3 5 . 1 0 1 . 0 3 0 4 . 9 7 . 8 1 0 3 5 2 4 1 2 5 3 1 9 9 5 . _ 3 6 . 7 3 1 8 . 7 5 . 6 5 0 3 5 2 4 1 2 5 1 1 9 5 8 . 7 2 . 9 1 1 4 . 2 6 . 8 1 0 3 5 2 4 1 2 5 3 1 9 2 0 . 2 7 6 . 6 3 1 8 . 7 5 . 6 5 0 3 5 2 4 1 2 5 1 1 9 5 8 . 7 2 . 9 1 7 4 . 4 5 . 4 1 0 3 6 9 3 7 1 5 3 1 9 9 5 . 7 7 . 1 2 1 8 . 7 5 . 6 5 0 3 5 2 4 1 2 5 1 1 9 6 1 . 1 0 5 . 0 3 4 5 . 1 0 2 . 7 9 0 3 3 4 7 4 1 6 1 1 9 9 0 . 1 3 8 . 1 3 8 6 . 2 0 . 2 3 0 3 2 8 2 3 0 5 1 1 9 0 0 . 1 3 4 . 0 2 0 0 . 0 6 . 7 0 3 2 8 2 3 0 5 3 1 9 3 8 . 7 1 . 6 3 7 7 . 3 3 . 6 3 0 3 4 2 3 0 1 5 1 1 9 0 4 . 1 3 9 . 6 2 9 2 . 2 2 . 8 0 3 3 3 3 1 1 5 3 1 9 7 5 . 7 6 . 1 2 3 4 . 3 1 . 5 5 0 3 6 9 3 7 1 5 1 1 9 2 5 . 1 0 2 . 0 3 7 4 . 4 5 . 4 1 0 3 6 9 3 7 1 5 3 1 9 9 5 . 3 6 . 7 3 3 4 . 3 1 . 5 5 0 3 6 9 3 7 1 5 1 1 9 Y T I S N E D M E T S T H G I E H M E T S . Y T I S N E D M E T S T H G I E H M E T S E S N A E M E S N A E M E S M A E M E S N A E M - - - - - - — - - - - - - - — - - — - N n o E T A D D L E I F - - — - - - - - - - — - - - - - — N D D E T A D D L E I F . D E U N I T N O C . 2 E E L B A T ) C 5 . 5 ) 0 0 1 . “ 0 8 S T A O P O . H C 0 6 S L A U O E T I N U E L P M A S . S D L E I F E L P M A S N O I T A L U P O P N I N E K A T Y T I S N E D D N A T H G I E " M E T S 6 7 9 1 P D Y R A M M U S . 2 8 E L B A T 6 1 . 1 0 6 . 2 2 6 4 . 5 4 . 8 1 0 3 5 2 4 1 2 5 3 1 9 8 5 . 3 9 . 1 2 1 9 . 9 4 . 2 6 0 3 8 4 4 5 2 5 1 1 9 6 5 . 1 3 1 . 0 3 7 4 . 4 3 . 1 2 0 3 2 4 4 4 2 5 3 1 9 6 8 . 7 4 . 6 3 2 7 . 6 6 . 2 6 0 3 8 4 4 5 2 5 1 1 9 5 8 . 7 2 . 9 1 5 4 . 6 2 . 1 2 0 3 2 4 4 4 2 5 3 1 9 3 0 . 2 3 5 . 6 3 1 7 . 9 0 . 3 6 0 3 8 4 4 5 2 5 1 1 9 6 1 . 1 0 6 . 2 2 5 4 . 6 2 . 1 2 0 3 2 4 4 4 2 5 3 1 9 0 9 . 2 0 5 . 9 3 4 7 . 5 7 . 2 6 0 3 8 4 4 5 2 5 1 1 9 2 2 . 1 7 9 . 1 2 5 4 . 6 2 . 1 2 0 3 2 4 4 4 2 5 3 1 9 9 8 . 2 3 7 . 0 5 0 0 . 4 3 1 . 7 7 0 3 0 8 4 8 2 5 1 1 9 6 1 . 1 7 5 . 2 3 7 5 . 4 0 . 9 2 0 3 0 8 4 8 2 5 3 1 9 0 0 . 0 0 0 . 0 4 3 . 1 3 9 . 4 7 0 3 3 3 5 1 0 6 1 1 9 0 0 . 0 0 0 . 0 3 6 . 0 1 . 2 3 0 3 8 1 5 1 3 5 3 1 9 _ 0 0 . 0 0 0 . 0 7 3 . 1 0 1 . 5 7 0 3 3 3 5 1 0 6 1 1 9 0 0 . 0 0 0 . 0 3 6 . 0 1 . 2 3 0 3 8 1 5 1 3 5 3 1 9 0 0 . 0 0 0 . 0 7 3 . 1 0 1 . 5 7 0 3 3 3 5 1 0 6 1 1 9 0 0 . 0 0 0 . 0 3 6 . 0 1 . 2 3 0 3 8 1 5 1 3 5 3 1 9 0 0 . 0 0 0 . 0 7 3 . 1 0 1 . 5 7 0 3 3 3 5 1 0 6 1 1 9 7 4 . 7 4 . 3 6 . 0 1 . 2 3 0 3 8 1 5 1 3 5 3 1 9 8 9 . 1 7 6 . 9 2 7 3 . 1 0 1 . 5 7 0 3 3 3 5 1 0 6 1 1 9 8 2 . 1 0 0 . 0 2 7 1 . 1 6 6 . 0 3 0 3 8 1 5 1 3 5 3 1 9 7 1 . 2 3 4 . 0 5 5 4 . 1 4 2 . 3 8 0 3 8 6 5 4 0 6 1 1 9 1 9 . 1 0 7 . 0 3 5 9 . 7 9 . 0 4 0 3 8 6 5 4 0 6 3 1 9 9 7 . 2 3 4 . 4 4 5 5 . 1 9 6 . 1 9 0 3 2 1 6 7 0 6 1 1 9 2 2 . 1 7 2 . 4 2 0 8 . 4 6 . 5 4 0 3 2 1 6 7 0 6 3 1 9 6 2 . 2 7 1 . 1 4 4 4 . 1 3 9 . 0 9 0 3 3 8 6 1 1 6 1 1 9 375 Y T I S N E D M E T S T H G I E H N E T S E S N A E N E S N A D D E T A D D L E I F . D E U N I T N O C . 2 E E L B A T 9 0 . 1 0 7 . 1 2 0 9 . 6 9 . 0 5 0 3 3 8 6 1 1 6 3 1 9 6 8 . 0 9 . 2 2 5 9 . 8 5 0 3 7 0 8 8 1 6 3 1 9 ‘ 9 ' 7 3 . 1 2 1 0 . 4 6 0 3 9 4 8 1 2 6 3 1 9 7 5 . 8 1 7 9 . 1 8 0 3 8 2 6 0 7 . 8 1 0 9 . 2 7 0 3 1 1 9 5 2 6 3 1 9 376 0 2 . 9 0 . 3 6 . 6 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 0 0 . 0 0 0 . 0 3 0 . 7 2 . 1 0 0 . 0 8 2 . 0 0 . 0 5 2 . 0 7 . 1 6 2 . 0 4 . 1 0 2 . 9 0 . 7 1 . 0 1 . 7 2 . 1 7 0 . 5 2 . 5 0 . 3 8 . 9 1 . 3 4 . 9 0 . 3 2 . 2 1 . 3 1 . 6 0 . 3 3 . 0 1 . 0 1 . 6 0 . 7 1 . 8 0 . 3 0 . 3 0 . 3 0 . 3 0 . 7 2 . 8 0 . 7 5 . 5 1 . 7 7 . 6 1 . 0 2 . 7 0 . 7 1 . 7 0 . 7 2 . 1 1 . 0 7 . 3 1 . 0 2 . 9 0 . 0 3 . 2 1 . 7 1 . 7 0 . 3 1 . 5 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 3 0 . 3 0 . 3 0 . 0 2 . 9 0 . 0 6 . 4 1 . 7 9 . 1 2 . 3 5 . 8 1 . 6 5 . 3 9 . 4 4 5 . 3 3 . 4 4 5 . 7 4 . 3 5 2 . 0 5 . 1 7 3 . 0 3 . 0 1 . 0 1 . 7 0 . 7 0 . 3 1 . 6 0 . 0 0 . 0 0 0 . 0 3 1 . 5 0 . 3 1 . 8 0 . 3 0 . 3 0 . 7 0 . 7 0 . 3 0 . 3 0 . 5 4 3 6 0 4 3 5 4 2 1 9 2 0 5 2 1 9 1 3 5 2 1 9 0 2 . 9 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 6 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 9 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 6 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 3 8 9 1 0 1 . 6 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 6 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 8 . 2 0 3 1 7 1 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 6 . 3 ' 0 3 3 0 3 1 1 9 T L 4 L 2 L 1 L S G G E D D D L E I F S T L U D A T L 4 L 3 L 2 L 1 L S G G E D D D L E I F . D E U N I T N O C . ] 3 E L B A T . ) C 9 > D D ( . N O R E D H C 0 6 S L A U O E T I N U E L P M A S . N A E N E H T F O R O R R E D R A D N A T S ' 2 N O R , N A E H ' I N O R . S E L P M A S N O I T A L U P O P E K A L L L U G 7 7 9 1 ? O Y R A N N U S . 3 E E L B A T 0 0 . 0 0 3 1 9 5 2 1 9 3 0 . 3 0 . 0 0 . 0 0 3 6 0 6 2 1 9 3 2 . 9 0 . 7 3 . 2 1 . 3 0 . 3 0 . 3 1 . 8 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 3 0 . 3 2 . 9 0 . 5 7 7 1 1 9 0 0 . 0 0 0 . 0 3 0 . 3 0 . 0 1 . 5 0 . 0 0 . 0 9 0 . 0 0 . 0 3 1 . 3 1 8 1 1 9 9 6 5 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 8 . 1 2 7 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 2 . 7 0 . 5 0 . 0 1 . 7 0 . 7 2 . 2 1 . 7 0 . 5 0 . 7 0 . 5 0 . 0 0 . 0 0 0 . 0 3 0 . 3 0 . 3 1 . 8 0 . 0 1 . 6 0 . 0 0 . 0 0 0 . 0 0 1 . 6 0 . 0 6 . 0 2 . 7 7 . 9 1 . 3 2 . 7 0 . 1 3 2 . 7 3 . 1 7 1 . 7 0 . 0 2 . 7 0 . 0 2 . 1 1 . 3 2 . 4 1 . 3 0 . 3 0 . 3 0 . 7 2 . 1 1 . 0 2 . 9 0 . 0 0 . 0 0 0 . 0 3 0 . 3 0 . 3 0 . 3 0 . 7 0 . 7 0 . 3 0 . 3 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 2 . 2 1 . 0 4 . 4 1 . 0 2 . 7 0 . 3 1 . 6 0 . 0 0 . 0 0 0 . 0 7 0 . 5 0 . 0 1 . 6 0 . 7 2 . 8 0 . 3 1 . 6 0 . 0 5 . 5 1 . 0 0 . 0 0 0 . 0 3 0 . 3 0 . 0 1 . 7 0 . 0 1 . 6 0 . 0 5 . 7 1 . 0 2 . 7 0 . 7 2 . 8 0 . 7 3 . 3 1 . 3 0 . 3 0 . 3 1 . 6 0 . 7 7 . 0 8 . 6 0 3 5 4 3 1 1 9 9 8 . 7 5 . 2 1 6 0 4 1 1 9 4 1 . 1 7 7 . 0 1 0 3 3 5 4 1 1 9 8 0 . 1 7 3 . 0 1 0 3 2 0 5 1 1 9 3 5 . 1 3 2 . 8 1 0 3 1 3 5 1 1 9 8 1 . 1 0 9 . 0 1 0 3 9 6 5 1 1 9 5 6 . 0 0 . 7 0 3 1 8 5 1 1 9 0 0 . 0 3 5 . 0 0 . 0 0 0 . 5 0 3 6 0 6 1 1 9 0 0 . 0 6 0 . 0 0 . 0 0 1 . . 7 0 . 5 0 . 2 7 . 0 7 . 7 0 3 8 3 6 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 3 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 7 . 2 0 3 1 9 6 1 1 9 377 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 7 . 3 5 1 0 6 3 3 1 8 3 3 . 6 1 . 3 7 . 7 2 . 0 6 . 0 6 . 4 2 . 3 3 . 6 1 . 7 2 . 2 1 . 0 4 . 9 1 . 7 2 . 5 1 . 7 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 4 . 4 3 . 7 0 . 9 0 . 7 0 . 3 1 . 3 1 . 3 1 . 9 0 . 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 2 . 5 1 . 3 3 . 6 1 . 7 2 . 1 2 . 3 3 . 3 1 . 7 0 . 7 0 . 3 1 . 9 0 . 0 2 . 4 1 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 7 2 . 5 1 . 7 4 . 9 1 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 8 . 0 4 . 4 5 1 5 3 5 9 5 . 0 0 . 4 5 1 2 7 5 9 0 . 1 7 8 . 4 5 1 6 9 5 5 1 5 1 5 5 1 3 5 6 5 1 9 9 5 6 9 . 7 2 . 6 5 1 8 6 . 0 2 . 5 5 1 3 1 8 8 5 . 7 8 . 3 5 1 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 5 3 7 3 1 8 0 0 . 0 0 0 . 0 7 0 . 7 0 . 3 1 . 9 0 . 0 2 . 1 1 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 0 . 7 0 . 3 3 . 3 1 . 0 8 . 0 3 . 0 6 . 9 1 . 7 6 . 9 1 . 7 4 . 2 2 . 7 2 . 2 1 . 3 3 . 6 1 . 3 5 . 7 1 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 8 . 1 5 3 7 8 5 5 0 0 . 0 0 0 . 0 4 5 . 0 0 . 0 0 0 . 0 3 3 . 2 5 1 9 9 6 8 5 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 2 . 1 1 . 3 1 . 9 0 . 3 1 . 9 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 3 1 . 9 0 . 0 0 . 0 0 0 . 0 0 2 . 4 1 . 3 1 . 9 0 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 0 2 . 1 1 . 7 0 . 7 0 . 0 2 . 1 1 . 0 4 . 9 1 . 0 2 . 1 1 . 3 3 . 3 1 . 7 0 . 7 0 . 3 1 . 9 0 . 3 1 . 9 0 . 0 2 . 1 1 . 7 0 . 7 0 . 3 1 . 9 0 . 0 4 . 9 1 . 9 5 . 3 5 . 2 5 1 0 6 3 8 5 5 7 0 . 2 5 1 8 5 5 3 3 . 0 4 . 7 8 . 2 4 6 4 8 5 5 0 0 . 0 1 0 . 1 0 0 . 0 7 2 . 5 5 1 5 8 5 5 7 0 . 7 0 . 0 2 . 4 1 . 7 0 . 1 3 5 . 6 5 1 6 3 5 8 5 5 4 5 . 3 3 . 5 5 1 2 7 5 8 5 5 0 0 . 0 1 7 . 0 0 . 0 0 8 . 2 5 1 6 8 5 8 5 5 3 1 . 3 1 . 9 8 . 7 2 . 3 5 1 5 1 6 8 5 5 0 0 . 0 5 4 . 0 0 . 0 7 8 . 1 5 1 3 5 6 8 5 5 3 3 . 1 2 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 2 . 9 0 . 0 1 . 6 0 . 7 0 . 5 0 . 3 0 . 3 0 . 3 0 . 3 0 . 7 0 . 7 0 . 0 3 8 3 6 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 : 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 5 1 9 5 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 1 9 6 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 6 5 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 6 2 . 0 0 . 0 0 0 . 0 0 2 . 2 5 1 7 1 3 3 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 1 5 1 7 1 3 8 5 5 . D E U N I T N O C . 3 8 E L B A T . D E U N I T N O C . 3 8 E L B A T - - - — — - — — - — - - — - — — T L 4 L 3 L 2 L 1 L 8 6 6 E D D D L E I F 378 0 0 . 0 0 0 . 0 3 1 . 3 1 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 2 . 5 1 . 7 0 . 7 0 . 3 1 . 3 1 . 3 3 . 6 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 2 . 5 1 . 2 4 . 7 0 . 2 0 6 3 5 1 9 4 5 . 0 0 . 4 3 2 4 5 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 0 0 . 0 8 6 . 0 0 . 0 0 2 . 2 4 6 4 5 1 9 . — — - — — - - - - — — - - - - - d a — — - - - - — — - - - — o — — - — — o - - - — — - - — - - — — - - — — - v - - — - o — - - - - — — — - - — — — — — — — — - — - ‘ - — — - - c - - — - - — . - - - - — — ¢ - — - - — - - - - - — - - - . - - — — - - - _ - - o — - — — - — - - - - - — — — - - S T L U D A T L 4 L 3 L 2 L 1 L S G G E N D D D L E I F S T L U D A T L 4 L 3 L 2 L 1 L S G G E D D D L E I F . D E U N I T N O C . 3 E E L B A T . D E U N I T N O C . 3 8 E L B A T 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 2 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 5 . 5 1 8 8 7 5 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 4 . 5 1 8 8 7 3 1 9 7 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 5 2 . o n C O 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 . 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 0 6 . 5 1 5 2 9 5 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 6 2 8 3 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 2 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 6 . 7 1 3 5 1 9 0 0 . 0 7 4 . 0 0 . 0 7 1 . 0 2 . 1 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 2 . 4 1 . 7 0 . 7 0 . 3 3 . 3 1 . 3 1 . 9 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 0 . 7 0 . 3 1 . 3 1 . 7 2 . 5 1 . 3 1 . 9 0 . 7 0 . 7 0 . 0 4 . 4 5 1 5 5 1 9 2 5 . 7 6 . 4 0 0 . 1 6 3 5 5 1 9 2 8 . 3 5 . 3 2 7 5 5 1 9 7 6 . 7 4 . 3 5 1 6 8 5 5 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 2 . 3 5 1 5 1 6 5 1 9 7 0 . 7 0 . 7 0 . 7 0 . 3 1 . 9 0 . 0 0 . 0 0 0 . 0 3 1 . 9 0 . 7 0 . 7 0 . 0 6 . 4 2 . 3 5 6 5 1 9 0 6 . 7 2 . 2 9 9 6 5 1 9 0 0 . 0 0 0 . 0 0 0 . 0 2 1 . 0 0 . 0 0 0 . 0 0 0 . 0 7 2 . 5 1 5 3 7 5 1 9 379 TABLE 34. PARASITISN 0F CLB LARVAE FROM 1977 GULL LAKE POPULATION SAMPLES. FIELD DATE CROP NMI T JULIS D CARINIFER L CURTUS ALL PERCENT DARASITISM 911 609 OATS 1.83 33.33 0.00 0.00 33.33 911 613 OATS 3.50 50.00 0.00 0.00 50.00 911 616 OATS 3.00 40.00 0.00 0.00 40.00 911 620 OATS 4.00 100.00 0.00 0.00 100.00 911 627 OATS 1.00 0.00 0.00 0.00 0.00 911 630 OATS 3.50 75.00 0.00 0.00 75.00 912 609 WHEAT 3.67 0.00 0.00 0.00 0.00 912 613 WHEAT 3.00 25.00 0.00 0.00 25.00 912 616 NHEAT 3.29 0.00 0.00 0.00 0.00 380 TABLE ES. MEAN NUMBER OF PARASITE EGGS AND LARVAE RECOVERED FROM DISSECTIONS OF THE 1977 GULL LAKE POPULATION SAMPLES. ROW 1=MEAN, ROW ZIVARIANCE. ROW 3'NO. LARVAE PARASITIZED. FIELD DATE CROP WMI EGGS LARVAE EGGS LARVAE EGGS LARVAE T JULIS D CARINIFER L CURTUS 911 609 OATS 1.83 4.00 2.00 0.00 0.00 0.00 0.00 1 1 0 0 O 0 911 613 OATS 3.50 2.00 2.50 0.00 0.00 0.00 0.00 0 00 .50 0 00 0.00 0 00 0.00 1 2 0 0 O 0 911 616 OATS 3.00 2.00 2.50 0.00 0.00 0.00 0.00 911 620 OATS 4.00 0.00 2.00 0.00 0.00 0.00 0.00 911 627 OATS 1.00 0.00 0.00 0.00 0.00 . 0.00 0.00 911 630 OATS 3.50 0.00 3.33 0.00 0.00 0.00 0.00 912 609 WHEAT 3.67 0.00 0.00 0.00 0.00 .0.00 0.00 912 613 WHEAT 3.00 3.00 0.00 0.00 0.00 0.00 0.00 912 616 WHEAT 3.29 0.00 0.00 0.00 0.00 0.00 0.00 381. o c ’ t v 9 8 ' 0 9 ° 1 9 0 1 0 1 L : 0 5 2 1 6 1 2 ° 2 1 1 ° 9 1 L 1 ° S Z ’ L Z 0 1 1 0 L 0 1 S 1 1 6 L B ' S E 9 8 ° 1 9 ° 9 9 o : 0 6 L 9 0 9 2 1 6 8 0 ° 2 0 8 ° 1 1 2 5 ° 1 1 ° 8 2 0 1 0 1 L 2 0 9 1 1 6 L 0 ’ 9 1 1 5 ' 8 1 ° 9 9 o : 6 0 8 6 0 9 ( 1 5 6 S ° 1 L 0 ° 1 1 9 5 ° 8 2 ° 1 1 0 1 0 6 L 9 0 9 1 1 6 A L I S N B O H 3 1 8 1 0 9 1 8 8 H 3 1 8 A L I S N B O N 3 1 8 1 0 9 1 8 8 N I L E . . . - - - — - — - . . . — . . - - - — - — - — - . . - - - — - . . - - . . - - - - _ _ — - - - — — — - — — - . S S N V S H ' T . é ' m ' . ' . E L T W Q Q ' T T R Q . . . - - - - - - - N 0 0 3 1 5 0 0 1 3 1 a - - - - - - - - - - - - - - - - - - - M c a a E v o 0 1 3 1 3 1 1 ° 1 1 0 ° 1 5 L L ° L 2 ° 1 S 0 1 L 0 5 6 1 9 2 1 6 1 6 ° 0 6 ° 2 2 8 1 ° L L ° 6 0 1 5 9 1 9 1 5 1 1 6 S I ' Z L B ‘ O S 1 6 ° 1 L ° 2 9 0 1 a s s ( a s 2 1 6 0 9 ° 1 0 8 ° 0 1 1 1 ° 1 1 ° 1 1 0 1 L 0 9 6 1 5 1 1 6 S B ' I L 1 ' 1 1 1 1 ° 1 5 5 ' 1 9 0 1 9 1 9 9 z s 2 1 6 1 S ° 1 0 6 ' L 1 8 1 ° L 9 ° 0 2 0 1 2 8 9 1 2 9 1 1 6 S Z ’ Z L L ' 8 1 0 6 ° 6 1 ° 2 9 o : 1 0 L 0 : 5 a t e L 0 ° 2 L 2 ° S 1 L 1 “ 1 8 ° 1 2 0 1 8 1 9 9 2 5 1 1 6 ° a a n H u N 0 3 ° 9 3 2 m m . ' 1 3 5 ' 5 ( 0 0 1 ° M 0 8 3 0 N D 0 9 5 1 8 0 0 8 L I N O B T J N V S ' 5 0 1 8 1 3 B T J N V S N 0 1 1 V 1 0 8 0 d N I N B N V L A L I S N B O 0 N 1 1 8 9 1 3 8 N B L S L L 6 1 J O A U V N N O S ' 9 3 3 1 8 V 1 6 2 ° 1 { S ' I Z 0 0 ° 0 9 ° L S I 2 L 1 L I S a s s 9 2 ' 2 1 9 ° 9 1 1 6 ° S L ° 2 9 0 1 5 5 6 0 2 9 1 1 6 2 2 ° 2 O B ‘ Z E L 1 ° 1 5 ° 1 1 9 1 s z s o a s a s s 5 9 ° 1 0 L ° L 1 § 1 ° 1 1 1 ° L 9 0 1 5 6 6 1 2 9 1 1 6 1 0 ° 2 L 0 ' 9 1 5 9 ' 1 1 ° 6 1 S I 2 0 9 w a s a s s 0 2 ° 1 L 9 ° 0 1 1 6 ° 1 6 ° 0 L 0 1 1 9 0 1 L 2 9 1 1 6 9 1 ° 2 L B ‘ I E 2 8 ° 6 6 ° 6 1 9 1 1 9 9 L 2 9 a s s 1 9 ° 1 L 0 ° L 1 9 2 ° 2 9 2 ° S L 0 1 1 1 1 1 0 1 9 1 1 6 1 2 ° 2 0 9 ° z £ 9 6 ° 1 L ° 1 2 s 1 L I L 1 1 $ a s s 6 9 ° S 0 2 ° 1 L 1 9 ° 1 8 ° 5 2 0 1 8 9 2 9 2 1 2 1 6 6 9 ° 1 o s ‘ t z L 9 ° 1 1 ° L 2 5 1 L D L £ 0 9 a s s 1 8 ° 1 0 8 ° 1 9 1 L ° 5 6 ° 8 2 0 1 0 1 1 2 0 5 2 1 6 S l ° 2 L Z ' 8 1 1 0 ° 1 6 L ° 8 2 9 1 9 6 L L 0 9 a s s 9 1 ° 2 1 2 ° 1 1 L 6 ° 1 1 ° 8 2 0 1 1 1 1 5 0 5 2 1 6 L S ° 2 L 2 ' 1 1 9 2 ° 1 1 8 ° 1 1 s t L I B 0 1 9 a s s 0 1 ° 1 L L ° 1 L 6 5 ° L 2 ° 8 1 0 1 S L 1 6 0 9 2 1 6 O S ° 2 L 1 ' I E 8 8 ° 1 L 1 ' 0 1 S I 0 9 9 v 1 9 a s s 1 8 ' 1 0 0 ° 1 L 1 6 ° 6 2 ° 6 1 0 1 L 6 1 2 1 9 0 1 ° 2 L 0 ' 0 1 1 9 ° 1 L S ° L 1 5 1 8 0 6 L 1 9 a s s 9 0 ° 1 L 1 ° 1 9 0 1 ° 1 1 1 ° 8 1 0 1 S S 1 9 1 5 0 1 ' s : L 0 ° 1 2 8 ° 8 9 0 : L 1 8 1 1 9 2 1 6 [ 9 ° 1 1 0 ° 5 1 1 L ° 2 9 ' 8 1 0 1 6 0 8 6 0 9 1 1 6 1 0 ' L 1 6 0 ° 1 1 8 ° 8 9 0 1 6 8 8 9 1 9 2 1 5 2 2 ° 1 1 5 ° 1 1 0 6 ° L 6 ° S 1 0 1 L 1 8 1 1 9 1 1 6 L 9 ‘ Z 1 6 0 ° 2 2 6 ° 1 L o : 9 9 6 o z 9 2 1 6 1 1 ° 2 L S ° 1 1 2 0 ° 1 9 6 ° 1 5 0 1 6 8 8 9 1 9 1 1 6 3£L2 . — - . - - - - . - _ ¢ - ‘ - — - c ‘ — - - - - ~ — - - - - - - - — - ‘ - _ - - - ‘ - — - - - - - - . - . - — - “ - ‘ - - ‘ - ‘ - - - - - - ‘ — - - — — - - - - - - - - - - — - - - - - - - - E S N A E N E S N A E N E S M A E M E S H A E « Y T I S N E D M E T S T H G I E H N E T S Y T I S N E D M E T S T H G I E H M E T S - - - _ - - - - - - - - - - - - - — - - — - - N 0 0 E T A D D L E I F - - - - - - — - — - - - - — - - - N D D E T A D D L E I r o - — — - ¢ - - — — — - — — - — ‘ - - ‘ — — — - — - _ — - — ¢ — - - — - - - - . - . - - - - — - — - - . - - - - - — - - ‘ - ‘ - - - - - - - - - - - - - “ - ‘ - — - ‘ - - - - - - - - ‘ - . . D E U N I T N O C . G E E L B A T . D E U N I T N O C . 6 : E L B A T 2 2 . 3 3 9 . 1 4 2 9 . 5 3 . 1 2 5 1 2 0 6 4 2 5 5 1 9 9 2 . 2 7 0 . 9 2 0 7 . 1 5 8 . 3 5 5 1 7 6 9 1 2 6 8 5 5 8 5 . 2 0 2 . 5 3 8 4 . 9 8 . 3 2 5 1 3 5 6 7 2 5 5 1 9 8 5 . 1 0 4 . 0 3 8 5 . 1 7 9 . 0 6 5 1 3 1 0 1 4 2 6 8 5 5 9 6 . 3 7 8 . 6 3 4 9 . 7 2 . 7 2 5 1 7 1 7 1 3 5 5 1 9 2 9 . 1 0 0 . 9 2 7 0 . 2 9 1 . 5 6 5 1 0 8 0 1 8 2 6 8 5 5 3 0 . 2 7 2 . 2 4 0 8 . 3 6 . 9 2 5 1 7 4 7 3 0 6 5 1 9 5 9 . 1 3 3 . 0 3 7 8 . 1 2 9 . 8 6 5 1 7 2 1 1 1 0 7 8 5 5 4 4 . 2 3 5 . 7 3 5 1 . 1 5 6 . 0 3 5 1 6 9 7 7 0 6 5 1 9 4 3 . 1 0 2 . 6 2 7 1 . 7 7 . 7 5 1 2 7 4 7 1 5 3 1 8 0 1 . 3 3 1 . 9 3 5 9 . 5 4 . 8 3 5 1 7 1 8 0 1 6 5 1 9 9 6 . 1 7 0 . 3 3 1 4 . 0 2 . 4 1 5 1 6 2 5 0 2 5 3 1 8 0 1 . 4 0 8 . 8 3 1 2 . 1 0 2 . 4 4 5 1 0 6 8 4 1 6 5 1 9 8 6 . 1 0 0 . 5 3 5 7 . 3 8 . 9 1 5 1 2 0 6 4 2 5 3 1 8 0 2 . 3 0 6 . 9 3 4 6 . 1 9 8 . 6 5 5 1 8 0 9 7 1 6 5 1 9 9 7 . 2 7 2 . 6 2 7 5 . 3 8 . 0 2 5 1 3 5 5 7 2 5 3 1 8 9 1 . 2 3 9 . 6 4 9 4 . 1 1 3 . 2 6 5 1 7 6 9 1 2 6 5 1 9 5 4 . 1 3 5 . 7 2 0 4 . 1 5 5 . 4 2 5 1 7 1 7 1 3 5 3 1 8 1 1 . 1 7 0 . 9 2 1 8 . 1 7 6 . 3 6 5 1 3 1 0 1 4 2 5 5 1 9 0 6 . 1 0 2 . 9 2 3 5 . 4 0 . 3 2 5 1 7 4 7 3 0 6 3 1 8 0 7 . 2 7 2 . 7 3 9 8 . 1 7 3 . 6 6 5 1 0 8 0 1 8 2 6 5 1 9 1 8 . 1 7 4 . 3 3 4 0 . 1 1 7 . 3 2 5 1 6 9 7 7 0 6 3 1 8 - - - - - - - - - - — - a - — — - - - - - - — - — - — - - - - - - - _ - — - - — - 3 8 . 2 3 5 . 7 3 8 9 . 1 1 4 . 8 6 5 1 7 2 1 1 1 0 7 5 1 9 6 6 . 1 0 8 . 8 2 7 1 . 1 5 4 . 8 2 5 1 7 1 8 0 1 6 3 1 8 5 9 . 1 0 5 . 0 3 3 1 . 1 7 7 . 7 3 5 1 0 6 8 4 1 6 3 1 8 4 9 . 1 3 3 . 9 2 5 0 . 1 2 7 . 5 4 5 1 8 0 9 7 1 6 3 1 8 9 6 . 2 7 6 . 9 2 2 1 . 2 3 3 . 2 5 5 1 7 6 9 1 2 6 3 1 8 6 7 . 1 7 8 . 7 2 3 8 . 1 1 2 . 5 5 5 1 3 1 0 1 4 2 6 3 1 8 6 6 . 3 7 4 . 0 3 2 9 . 1 6 9 . 9 5 5 1 0 8 0 1 8 2 6 3 1 8 3 0 . 2 0 0 . 8 2 9 7 . 1 5 1 . 2 6 5 1 7 2 1 1 1 0 7 3 1 8 1 7 . 2 3 7 . 0 3 5 4 . 7 6 . 9 5 1 2 7 4 7 1 5 5 1 9 2 7 . 2 0 6 . 4 3 1 3 . 9 8 . 5 1 5 1 6 2 5 0 2 5 5 1 9 3113 7 0 . 7 0 . 3 1 . 3 1 . 3 5 . 1 3 . 0 6 . 4 2 . 3 1 . 3 1 . 7 0 . 7 0 . 3 1 . 9 0 . 3 1 . 9 0 . 7 0 . 7 0 . S T L U D A T L 4 L 3 L 2 L 1 L 8 0 0 8 N 0 0 D L E I F S T L U D A T L 4 L 3 L 2 L 1 L 8 0 0 8 N 0 0 D L E I F 7 0 . 7 0 . 7 6 . 1 2 . 3 1 . 3 1 . 7 2 . 2 1 . 7 2 . 2 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 5 1 6 0 6 5 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 S T 7 0 1 0 6 5 2 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 7 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 0 7 6 0 6 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 6 . 1 5 1 8 2 1 0 6 5 3 1 . 9 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 5 1 7 0 1 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 4 . 1 5 1 8 2 1 0 1 8 3 3 . 1 2 . 3 3 . 6 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 9 . 5 5 1 4 5 1 0 6 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 4 . 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 1 5 1 3 8 1 0 6 5 . D E U N I T N O C . 7 E E L B A T . 1 C 9 > D D ( . 8 0 8 F O M C 0 6 S L A U Q E T I N U E L P M A S . N A E M E H T F O 8 0 8 8 8 D N A D N A T S E Z N O I , N A E M = 1 N O I . S E L P M A S N O I T A L U P O P E E A L L L U 0 0 7 9 1 F O T I A M M U S . . 7 8 E L B A T 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 8 7 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 4 . 3 5 1 4 5 1 0 1 8 9 5 . 0 8 . 1 3 1 . 9 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 9 0 . 1 5 . 4 0 8 . 1 3 5 1 6 1 2 0 6 5 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 3 3 . 9 8 . 0 0 . 0 0 0 . 0 0 0 . 0 9 8 . 4 6 . 4 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 7 5 1 3 8 1 0 1 8 3 3 . 1 0 0 . 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 8 7 0 . 4 5 5 1 7 7 2 0 6 5 3 1 . 3 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 1 1 . . 4 2 . 2 3 3 . 6 1 5 1 6 1 2 0 1 8 3 9 . 5 0 0 . 0 0 0 . 0 8 0 . 1 0 0 . 0 0 0 . 0 3 1 . 3 1 . 7 0 1 2 9 . 3 0 8 . 5 7 0 . 2 3 5 1 7 7 2 0 1 8 7 4 . 0 1 0 0 . 0 1 6 . 1 0 0 . 0 7 0 . 7 0 . 4 3 . 8 3 . 1 2 3 . 4 0 4 . 1 0 0 . 9 0 4 . 7 1 5 1 6 1 3 0 1 8 7 6 . 5 2 . 3 1 . 9 0 . 0 4 . 4 2 . 3 7 . 4 1 0 0 . 0 4 3 . 1 0 0 . 0 7 2 . 1 2 . 5 2 . 1 3 . 1 8 8 . 6 3 3 . 1 3 1 . 3 1 3 3 . 2 3 5 1 6 1 3 0 6 5 1 8 . 2 9 0 . 6 4 . 0 2 . 1 5 3 . 2 6 5 . 6 3 3 . 6 2 3 1 . 0 8 . 2 3 1 . 6 7 2 . 7 1 0 6 . 6 3 5 1 7 4 3 0 6 5 1 5 . 2 8 2 . 2 4 . 1 9 . 8 1 . 2 5 1 . 3 7 0 . 5 2 3 9 . 0 6 . 4 0 4 . 7 3 1 . 2 1 0 4 . 8 1 5 1 7 7 3 0 6 5 1 4 . 1 7 0 . 3 4 . 4 5 . 6 3 . 1 0 4 . 3 0 0 . 0 7 1 . 3 5 7 . 5 3 . 1 4 9 . 8 0 . 2 7 6 . 2 7 8 . 6 1 7 0 . 3 3 . 1 0 4 . 3 7 0 . 2 1 0 8 . 6 1 5 1 7 4 3 0 1 8 0 0 . 0 0 2 . 7 2 7 8 . 2 0 0 . 6 3 3 . 7 0 0 . 1 1 0 0 . 0 1 5 1 8 1 4 0 6 5 0 0 . 0 1 3 . 3 9 6 . 7 8 . 8 0 . 1 6 1 . 1 2 5 . 0 0 . 0 7 0 . 8 1 7 6 . 2 0 2 . 4 3 7 . 6 7 4 . 4 0 4 . 2 5 1 1 9 4 0 1 8 1 2 . 1 3 2 . 3 5 . 3 4 . 1 9 . 4 8 . 1 3 1 . 3 1 3 7 . 7 2 . 3 7 4 . 3 7 6 . 5 7 6 . 7 5 1 7 7 3 0 1 8 6 9 . 1 2 7 . 6 8 . 6 9 . a a . : 5 . 0 6 . 4 1 0 0 . 2 3 5 . 1 7 2 . 4 0 6 . 3 3 3 . 4 5 1 8 1 4 v 0 1 8 3 9 . 2 4 5 . 0 8 . 0 7 . 4 9 . 1 3 2 . 1 0 4 . 5 1 3 5 . 1 0 0 . 3 7 6 . 3 0 2 . 7 7 6 . 7 5 1 1 4 4 0 1 8 7 0 . 7 0 . 0 0 . 0 0 0 . 0 3 1 . 9 0 . 3 1 . 9 0 . 6 0 . 4 2 9 . 0 7 . 7 1 . 1 4 7 . 2 5 4 . 2 0 0 . 6 2 0 2 . 3 3 1 . 4 7 0 . 4 0 8 . 3 1 0 8 . 8 5 1 1 4 4 0 6 5 ! 6 . 3 2 6 . 4 8 . 3 5 . 1 9 1 . 1 1 3 . 1 1 6 . 2 3 1 1 . 2 7 2 . 6 1 2 . 0 1 1 6 . 3 1 3 3 . 5 5 1 : 9 1 0 6 S 3 2 . 4 0 3 . 2 2 . 1 0 3 . 1 2 4 . 2 2 3 . 0 4 . 7 2 0 8 . 0 2 . 5 3 3 . 0 1 7 0 . 1 1 0 0 . 1 5 1 0 2 5 0 6 5 0 2 . 1 4 2 . 8 6 . 2 3 . 5 2 . 7 0 . 0 2 . 5 0 6 . 3 5 . 2 0 4 . 1 7 6 . 7 0 . 5 1 5 7 5 0 6 5 384 0 0 . 0 3 . 0 0 0 . 0 3 1 . 2 0 0 0 0 8 4 . 0 0 . 0 3 9 . 1 0 0 . 0 6 2 . 0 0 . 0 7 4 . 1 3 1 . 9 0 . 3 1 . 3 1 . 0 0 . 0 0 0 . 0 7 2 . 5 1 . 0 0 . 0 0 0 . 0 0 6 . ‘ 2 0 4 3 . 0 0 . 1 3 3 . 6 1 . 3 1 . 3 1 . 3 7 . 1 2 . 0 8 ' 2 2 . 7 6 . 5 2 . 3 1 . 9 0 . 7 6 . 3 2 . 4 3 . 7 4 . 1 5 1 1 4 4 0 1 9 0 0 . 0 7 4 . 1 5 1 1 9 4 0 1 9 0 0 . 0 0 4 . 3 3 . 9 1 . 0 4 . 6 1 . 5 1 0 2 5 0 1 9 0 0 . 0 7 0 . 0 0 . 0 7 0 . 5 1 5 7 5 0 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 6 0 1 9 0 0 . 0 0 0 . 0 3 0 . 0 1 . 7 0 . 3 3 . 3 1 . 7 1 . 2 1 . 0 1 . 6 0 . 8 6 . 0 9 . 8 1 . 0 6 . 0 1 . 3 3 . 3 3 2 . 6 0 3 2 1 9 0 1 . 2 4 . 3 6 . 3 3 . 6 2 1 9 9 0 . 0 9 . 0 2 . 0 7 6 0 1 9 8 9 2 1 9 3 2 1 2 1 9 3 4 1 2 1 9 3 7 . 3 4 . 8 0 3 3 4 . 0 1 . 3 0 3 5 7 1 0 5 . 0 3 . 6 0 3 3 0 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 4 . 7 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 7 2 . 1 2 . 7 0 . 7 0 . 7 0 . 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 9 . 3 3 . 0 2 . 1 1 . 8 5 . 3 4 . 7 4 . 2 0 8 . 1 2 5 . 3 ‘ . ‘ 0 4 . 9 1 . 3 5 . 4 3 . 0 2 . . ‘ 0 7 6 . 1 5 1 0 2 5 0 1 8 8 1 . 3 ' 3 . 9 1 . 5 1 5 7 5 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 5 1 6 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 7 6 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 5 1 7 0 1 0 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 5 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 5 1 8 2 1 0 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 5 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 3 4 5 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 8 1 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 7 5 1 3 8 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 0 . 1 0 . 1 5 . 1 0 4 . 8 5 1 6 1 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 7 0 . 7 0 . 7 2 . 2 1 . 2 5 . 7 6 . 1 2 4 . 7 8 . 7 8 . 1 7 8 . 5 7 7 2 0 1 9 3 3 . 9 5 . 3 9 . 1 0 2 . 3 6 1 3 0 1 9 6 5 . 9 4 . 1 0 0 2 3 7 . 3 7 4 3 0 1 9 8 3 . 8 3 . 1 6 . 3 1 . 1 0 2 . 1 3 9 . 2 7 7 3 0 1 9 7 0 . 7 0 . 7 2 . 2 1 . 0 4 . 9 1 . 7 2 . 2 1 . 0 8 . 6 2 . 3 3 . 8 3 . 2 4 . 3 7 . 7 6 . 1 3 9 . 1 0 6 . 1 3 9 . 2 0 1 9 S T L U D A T L 4 L 3 L _ 2 L 1 L 8 0 0 8 N D D D L E I F S T L U D A T L 4 L 3 L 2 L 1 L 8 0 0 E D L E I F . D E U N I T N O C . 7 E E L B A T . D E U N I T N O C . 1 ' E L B A T 3 2 . 9 0 . 2 3 . 0 6 . ‘ 3 4 . 0 9 . 2 0 5 . 1 385 7 2 . 5 0 . 7 1 . 1 3 . 7 5 . 1 0 4 . 4 1 . 7 2 . 8 0 . 3 0 . 3 0 . 0 1 . 7 0 . 0 4 . 0 1 . 0 2 . 9 0 . 3 1 . 6 0 . 3 0 . 3 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 1 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 2 0 6 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 4 . 0 3 5 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 4 . 1 0 3 1 3 . 3 4 . 1 0 3 8 9 1 2 . 1 1 . 3 1 . 2 3 4 1 3 1 9 0 0 . 0 0 0 . 0 0 1 . 7 0 . 0 3 1 1 5 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 4 . 0 3 3 7 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 3 1 . 0 1 . 0 8 . 3 2 . 7 7 . 5 1 . 7 4 . 3 1 . 7 0 . 5 0 . 3 0 . 3 0 . 0 0 . 0 0 0 . 0 6 5 ‘ 3 8 . 2 0 3 5 7 1 3 1 9 0 6 . 2 O 3 3 0 2 3 1 9 4 3 . 0 7 . 6 1 . 0 5 . 3 1 . 3 3 . 2 1 . 7 0 . 5 0 . 0 3 1 6 2 3 1 9 O 3 3 0 3 3 1 9 0 3 3 1 9 0 3 3 1 9 7 0 . 5 0 . 7 0 . 5 0 . 0 1 . 6 0 . 9 6 . o ‘ . 3 2 0 1 4 . 4 3 . 6 6 . 7 2 . 6 0 3 . 3 0 . 1 3 8 . 1 0 3 0 3 3 8 . 6 0 3 0 7 3 2 1 9 7 4 . 0 0 . 6 8 5 . 1 2 . 5 9 3 . 7 0 . 4 5 3 . 7 0 . 3 7 0 . 5 0 . 3 0 . 3 0 . 7 2 . 1 1 . 0 5 . 9 1 . 0 2 . 7 0 . 7 4 . 3 1 . 3 0 0 3 0 . 0 0 . 0 0 0 . 0 4 2 . 5 2 . 0 3 . 6 6 . 7 0 . 1 3 9 0 1 3 1 0 2 3 8 . 6 0 3 3 1 4 2 1 9 9 2 . 1 3 . 0 3 . 8 4 . 0 1 . 1 3 8 . 1 3 8 . 1 3 7 - 3 0 3 2 1 9 4 2 . 0 6 . 1 3 4 . 2 1 . 3 0 . 3 0 . 3 0 . 3 0 . 6 2 . . 2 . 2 2 . 0 5 . 1 7 7 . 3 0 . 1 0 3 2 1 9 7 5 . 3 1 . 7 2 . 1 2 . 0 6 . 1 7 6 . 0 3 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 2 0 6 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 O 3 8 4 6 2 1 9 0 3 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 2 5 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 3 6 6 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 S T L U D A T L 4 L 3 L 2 L 1 L S G G E D D D L E I F S T L U D A T L 4 L 3 L 2 L 1 L S 0 O E D D D L E I F . D E U N I T N O C . 7 E E L B A T . D E U N I T N O C . 7 [ E L B A T 3865 7 5 . 8 2 0 0 . 0 4 1 . 7 1 8 . 3 2 8 3 . 3 2 4 6 3 . 1 1 0 0 . 0 6 3 . 1 1 0 0 . 0 8 1 . 3 4 4 0 0 . 0 1 0 0 . 0 0 0 . 0 1 0 0 . 0 6 6 . 3 0 5 0 0 . 2 2 0 0 . 0 0 0 . 4 0 0 . 8 1 0 8 . 1 0 5 0 0 . 8 0 0 . 0 0 0 . 0 0 0 . 8 0 7 . 1 0 5 0 0 . 6 1 0 0 . 0 0 0 . 2 0 0 . 4 1 0 8 . 1 0 5 0 0 . 6 0 0 . 0 0 0 . 6 0 0 . 0 2 4 . 3 0 5 6 2 . 9 5 0 0 . 0 0 0 . 0 6 2 . 9 5 0 0 . 4 7 2 0 0 . 0 4 0 0 . 0 0 0 . 0 0 0 . 0 4 2 9 . 1 0 5 5 7 . 3 4 0 0 . 0 8 0 . 2 7 6 . 1 4 2 0 . 2 8 4 0 0 . 8 3 0 0 . 0 0 0 . 0 0 0 . 8 3 2 8 . 1 0 5 0 0 . 2 3 9 0 . 0 0 0 . 2 0 0 . 0 3 8 9 . 2 0 5 1 NMR M1“ 1 2 P 2 3 1 6 0 6 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 5 . 3 1 3 5 0 6 5 9 2 . 1 1 5 0 . 2 1 7 . 5 7 5 . 0 0 2 . 2 5 3 5 1 0 0 5 0 6 2 1 9 1 3 5 0 6 5 9 5 . 7 2 0 0 . 0 9 0 . 0 2 0 9 . 6 6 8 . 2 9 2 3 1 0 0 0 0 6 2 1 9 1 3 5 0 6 5 9 2 . 1 1 0 0 . 1 0 2 . 0 1 1 0 . 2 1 0 . 2 9 1 s r a o 2 1 6 2 1 9 6 0 6 0 6 5 0 5 . 5 1 ‘ 0 0 . 0 5 5 . 5 1 0 0 . 0 1 5 . 3 5 1 5 7 1 0 5 1 6 2 1 9 6 0 6 0 6 5 0 0 . 0 1 0 0 . 0 0 0 . 0 0 0 . 2 0 5 . 3 0 5 9 7 0 0 9 1 0 2 1 9 3 1 6 0 6 5 0 3 . 9 0 0 . 0 0 0 . 0 0 3 . 9 1 1 . 3 2 3 3 1 1 0 2 2 0 2 1 9 0 2 6 0 6 5 0 0 . 0 5 0 0 . 0 0 0 . 0 0 0 . 0 5 0 0 . 1 2 3 1 1 0 9 2 0 2 1 9 7 2 6 0 6 5 9 3 . 7 1 5 3 . 1 0 0 . 0 1 0 . 3 1 1 7 . 2 3 2 1 1 0 0 0 1 0 0 3 1 9 0 3 5 0 1 8 0 3 . 9 0 0 . 0 0 0 . 0 0 3 . 9 1 2 . 3 3 1 1 1 0 0 0 5 0 0 3 1 9 0 3 5 0 1 8 7 5 . 0 0 0 . 0 5 0 . 2 1 7 . 5 1 5 . 3 5 3 1 1 0 0 0 8 0 6 3 1 9 0 3 5 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 7 . 3 3 1 1 1 0 0 0 2 1 0 3 1 9 1 1 . 9 1 0 7 . 2 0 7 . 2 7 0 . 6 1 2 1 . 1 5 3 s r a o 1 0 0 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 5 . 3 0 3 3 1 6 0 1 8 0 0 . 4 0 0 . 0 0 0 . 0 0 0 . 4 8 9 . 3 0 5 0 2 6 0 1 8 7 6 . 6 6 7 6 . 6 1 3 3 . 8 7 6 . 1 4 7 6 . 3 2 1 0 0 . 8 2 0 0 . 0 0 0 . 0 0 0 . 8 2 0 7 . 1 0 5 0 0 . 2 4 0 0 . 0 0 0 . 0 0 0 . 2 4 4 6 . 1 0 5 5 4 . 0 2 0 0 . 0 8 1 . 8 1 7 2 . 2 4 3 . 2 4 4 1 2 4 1 7 2 6 0 1 8 0 3 5 0 1 9 0 3 5 0 1 9 6 0 6 0 1 9 6 7 . 1 1 0 0 . 0 0 0 . 0 6 7 . 1 1 6 0 . 3 4 3 6 0 6 0 1 8 L 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 3 0 0 . 0 0 0 . 0 1 0 0 . 0 2 4 6 . 3 0 5 6 0 6 0 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 3 9 1 l 1 0 0 0 0 5 1 0 3 1 9 7 0 0 0 0 9 1 0 3 1 9 T A E H W 2 2 6 3 1 9 0 3 1 7 1 3 0 0 1 0 T N E C R E P M S I T I S A R A P T N E C R E P - - — - - - - - - - - - - - - — - - 1 0 0 0 P E R 5 7 1 0 D L E I F L L A S U T R U C L R E F I M I R A C D S I L U J T I M " N P O R C E T A D D L E I F L L A c L c 0 J T - — - — - - - . . E K A L L L U G 8 7 9 1 M O R F E A V R A L D L O F O M S I T I S A R A P . B E E L B A T . S N O I T C E L L O C R O B H G I E N T S E R A E N E N A L L L U G 8 7 9 1 M O R F E A V R A L E L C F O M S I T I S A R A P . . 8 E E L B A T - - - - . . - - — — - - . . . L - — - - - - — - — — — . S E L P M A S N O I T A L U P O P 387 L L A c L c 0 ! . 7 M S I T I S A R A P T N E C R E P - - - - - — - - - - — - - - - 1 0 0 0 P E R E T A 0 D L E I F . D E U N I T N O C . 8 E E L B A T 0 0 . 4 2 0 0 . 0 0 0 . 0 1 0 0 . 0 2 8 0 . 3 0 5 7 7 . 0 3 0 0 . 0 3 2 . 9 1 8 3 . 5 1 6 9 . 2 6 2 0 0 . 4 1 0 0 . 2 0 0 . 0 1 0 0 . 2 2 2 . 3 0 5 0 0 . 4 2 0 0 . 0 0 0 . 4 2 0 0 . 0 4 8 . 3 0 5 0 0 . 2 2 0 0 . 0 0 0 . 2 2 0 0 . 0 6 8 . 3 0 5 3 1 . 5 0 0 . 0 3 1 . 5 0 0 . 0 8 2 . 3 9 3 3 3 . 8 5 6 5 . 5 6 5 . 5 2 2 . 7 4 3 8 . 3 6 3 2 3 4 1 4 2 3 6 0 6 0 1 9 6 0 6 0 1 9 9 0 6 0 1 9 3 1 6 0 1 9 6 1 6 0 1 9 0 2 6 0 1 9 7 2 6 0 1 9 388 0 0 O O 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 5 0 0 1 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 6 . 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 1 7 . 4 0 0 O O 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 CO COO 00” 8o 0 0 . 0 0 0 . 1 0 0 . 1 0 0 . O 0 0 . 3 0 2 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 O 9 0 . 1 3 0 0 O 0 7 9 9 . 0 9 0 . 0 0 0 . 0 0 0 . 0 9 2 . 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 9 . 2 DON flflb O 0 0 O 3 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 6 . 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 6 2 . 2 O O O'- Q.- GO OD CC 9'8 CO GO NO NO O I 0 (V‘— N 4 6 . 3 3 6 0 6 0 1 8 7 5 . 3 2 3 1 6 0 1 8 8 9 . 3 3 0 2 6 0 1 8 7 6 . 3 1 7 2 6 0 1 8 0 7 . 1 2 0 3 5 0 1 9 4 6 . 1 4 0 3 5 0 1 9 0 0 0 1 4 1 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 4 8 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 9 2 . 2 0 0 . 2 8 9 . 2 ' 1 6 0 6 0 1 8 0 0 0 0 3 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 6 . 2 0 0 . 1 6 0 . 3 2 6 0 6 0 1 8 0 0 7 1 1 O 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 1 0 0 . 2 0 0 . 0 4 3 . 2 1 6 0 6 0 1 9 0 0 5 0 8 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 4 1 . 3 0 5 . 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 5 . 2 0 5 . 1 8 0 . 3 2 6 0 6 0 1 9 O 0 5 O 3 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 7 6 . 1 0 0 . 2 6 9 . 2 3 6 0 6 0 1 9 0 0 . 0 0 0 0 . 0 ' 0 0 . 0 0 0 0 . 0 0 0 . 0 0 O 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 0 . 0 COO O GO O 8° 38 o ooo ooo ooo ooo ooo o O GO GO GO GO 66 0 COO OCC OO GO GO 0° GO GO OO GO CO CO 90 CO 2 0 6 3 0 0 . 0 0 0 . 0 0 3 . 2 3 3 . 0 0 . 1 0 0 . 0 0 5 . 3 3 3 . 2 0 8 . 1 1 1 3 5 0 6 5 0 O 1 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 2 0 0 . 2 0 7 . 1 2 1 3 5 0 6 5 0 0 . 0 0 0 . 0 0 0 . 2 0 0 . 3 0 0 . 1 0 0 . 0 0 0 . 2 0 0 . 4 0 8 . 1 3 1 3 5 0 6 5 3 . O 0 0 . 0 0 0 0 0 . 0 2 4 . 3 4 6 0 6 0 6 5 1 O 3 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 3 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 4 0 0 0 6 3 9 5 0 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 O 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 O O O O O 0 0 0 4 1 0 0 . 0 0 0 . 0 4 6 . 0 0 . 0 0 0 . 0 1 2 . 2 0 O 0 0 . 0 C O O O 0‘ 0 1 0 0 . 0 0 0 . 0 0 9 . 1 0 0 . 0 0 0 . 1 1 1 . 4 88" O :06 GOO 0°C 09' OO GO mo 00 GO ,; 1.05" 83'- 0 Nil- N 10 N 8 3 . 3 3 6 0 6 0 6 5 8 1 . 3 3 3 1 6 0 6 5 6 6 . 3 1 0 2 3 0 6 5 0 0 . 4 2 7 2 6 0 6 5 2 9 . 1 1 0 3 5 0 1 8 2 0 . 2 2 0 3 5 0 1 8 0 p 0‘ M — 0 0 . 0 0 0 . 0 1 6 . 5 9 5 . 1 0 0 4 5 1 0 0 . 0 0 0 . 0 2 9 . 4 8 . 1 0 0 . 0 0 0 . 0 5 7 . 3 3 5 . 3 2 8 . 1 3 0 3 5 0 1 8 E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E S U T R U C L R E E I N I R A C D S I L U J T S U T R U C L R E F I N I R A C D S I L U J T I M N P E R E T A D D L E I F I N U 9 E 8 E T 4 O 9 L 2 - ' 1 ' c . D E U N I T N O C . 9 3 E L B A T . D E Z I T I S A R A P . 0 N = 3 N O R , . R A V = 2 N O R , N A E M = 1 N O R . S N O I T C E L L O C R O B H G I E N T S E R A E N 8 7 9 1 M O R F D E R E V O C E R E A V R A L D N A S G G E E T I S A I A P F O R E B M U N N A E M . 9 8 E L B A T 3891 88° 88° 88° 35° OO OO OO OC‘ 88° 88° c§é OO 88° 88° 33° 35° 88° OO OO OO OC CO 88- 88” 88° 88“ 88° 53° 88° 88° 88° —-o —-o OO —-c OO OO OO OO 0 ~é 88° 81° O OC‘ CO 88° 88" 88 —-6 88° —-o 88° 88° .8 ~é 88' 88° 33° —-o CO OO 88° c§o 88° 88‘ OO —'5 88° —-o 88° 88° a. 66 88° 88° 88° 88° 88° 88° 88° 88° :3: cSo 00 CO CO 0 OO OO OO 8. 88° 88° 88” OO NO —-o 11‘6" (‘0‘ 0 0 d 88" —-o 3 . 2 4 4 . 3 S T A O 2 2 5 2 1 9 88° 88° 88° 88° 0 OO 8. 0 c:é c-é 4 7 . 2 T A E M 1 0 6 3 1 9 . 1 2 . 3 T A E H W 5 0 6 3 . 1 9 1 5 . 3 T A E H W 9 0 6 3 1 9 as" 88” $3" 88° ”C 88° 88° 8. a. 0 . A 5 2 . 2 S T A O 5 0 6 2 1 9 0 1 5 0 1 O 3 . 3 3 3 . 3 2 4 . 1 S T A O . 1 0 6 2 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 1 0 0 . 0 0 0 . 1 0 0 . 0 2 2 . 3 4 9 0 5 0 1 9 88° 88° 88° 88‘ 88 8. OO I O (“O 6 8 . 2 S T A O 8 0 6 2 1 9 0 0 2 1 O 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 4 8 . 3 1 3 1 6 0 1 9 4 9 - . . 2 5 1 1 0 2 . 1 6 2 1 9 0 0 1 1 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 . 0 0 0 . 0 6 8 . 3 4 6 1 6 0 1 9 1 5 . 3 3 1 0 0 s 1 0 2 1 9 0 0 2 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 . 0 0 0 . 0 8 2 . 3 2 0 2 6 0 1 9 0 5 . 3 3 1 0 0 9 1 5 2 1 9 1 1 2 0 3 1 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 7 . 5 2 . 0 0 . 1 0 0 . 1 0 0 . 1 0 0 . 0 6 1 . 1 5 7 . 1 3 0 . 3 3 7 2 6 0 1 9 E A V R A L S I W E A V R A L 5 m E A V R A L 5 m ! 4 P 1 9 0 0 0 E T A D ) U E I F E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E S U T R ‘ C L R E F I N I R A C D S I L U J T S U T R U C L N E F I N I R A C D S I L U J T . S E L P N ' A S N E I T A L U P O P B L C E R A [ L L U G 8 7 9 1 E H T ' 1 ( B O I T I H S S I D . D E Z I T I S A R A P E A V R A L . 0 0 : 3 W , E C I A I R A M N K , N A E M ' I N O R 1 0 1 7 9 D E R E V O J X F R E A V R A L ) " A m E T I S A R A P P ( m m N A E M . 9 E E L B A T . D E U N I T N O C . 9 3 E L B A T wmo B L T R I C L m I N I R A C 0 S I L M . T E R V R M S E W S R M 8 3 7 H s a w m ! 4 " W C E T A D D L E I F mm... mm... mmo mmo 00 00 00 00 mmo mm... o m.m.o mm... 00 00 00 00 mm... mm... .8... mm... 00 00 00 00 mmo mm... mm... mmo 00 00 00 00 ...... mm... mm. 00 .00 mm... 00 mm... 00 mm... mmn 00 mm... 7 7 . 3 T A E H 2 1 6 3 1 9 7 ' 6 . 3 T A E H W 5 1 5 H 9 ) ! 1 . 4 T A E M 9 1 6 3 1 9 ) “ . 3 T A E H W . 2 2 6 n a . D E M I ' I ' N ( C 9 8 . E L B A T 391 9 5 . 2 3 3 . 7 2 2 5 . 1 6 6 . 0 3 8 0 6 3 1 6 0 1 8 5 7 . 2 3 9 . 2 4 5 8 . 5 0 . 5 2 2 2 4 0 3 5 0 6 5 0 0 . 3 3 1 . 3 3 5 3 . 1 9 3 . 4 3 0 4 6 6 1 6 0 1 8 9 3 . 1 3 1 . 0 3 2 8 . 5 9 . 7 2 1 7 4 2 0 6 0 6 5 ! T I S I B D M E T S T H G I E H M E T S T T I S I I D M E T S T fl G I I H H I T S B S 8 4 8 H ! 3 ! 4 8 H 8 3 l l i H 8 8 l l I “ - - — - - - - - - - - - - - - - - - - - - - - D D ! T A D D L E I F - - - - - - - - - C . - - - - - - — - - - - . n o ' 1 ‘ ” D L ‘ I ' 4 6 . 2 7 2 . 6 3 5 9 . 6 1 . 1 2 8 4 3 6 2 5 0 1 8 1 3 . 2 0 2 . 0 3 0 3 . 4 4 . 7 4 9 1 2 1 5 0 6 5 1 8 . 2 7 4 . 7 3 6 5 . 1 7 2 . 7 2 2 2 4 0 3 5 0 1 8 7 8 . 1 7 4 . 2 3 8 2 . 8 6 . 9 9 2 2 6 1 5 0 6 5 2 5 . 1 0 2 . 0 3 8 0 . 1 5 7 . 6 2 1 7 4 2 0 6 0 1 8 9 6 . 1 0 4 . 1 3 4 4 . 9 6 . 0 1 5 6 2 9 1 5 0 6 5 6 7 . 1 7 2 . 9 2 5 3 . 1 0 6 . 8 2 5 1 5 6 0 6 0 1 8 3 0 . 2 7 6 . 9 2 0 5 . 2 2 . 5 1 5 0 3 3 2 5 0 6 5 6 7 . 2 0 6 . 1 3 8 3 . 1 2 4 . 6 2 4 5 5 9 0 6 0 1 8 8 4 . 3 0 0 . 7 3 2 8 . 3 3 . 1 2 8 4 3 6 2 5 0 6 5 . D E U N I T N O C . O I E E L B A T . C 5 . 5 > D D . 5 1 S L I U Q E E Z I S E L P M A S . U O I S T A O 8 0 . H C 0 6 S L I U Q E T I I U I L P H A S . S D L E I F I L P H A S I O I T A L U P O P I I I I K I T Y T I S N E D D I A T H G I R B “ 8 7 3 8 7 9 1 F O I R I H H U S L H B E L B I T 2 8 . 4 3 3 . 2 3 6 5 . 1 3 9 . 8 4 3 0 7 0 2 6 0 1 8 9 2 . 1 3 5 . 7 2 0 1 . 1 5 6 . 9 2 5 1 5 6 0 6 0 6 5 7 4 . 1 3 9 . 3 2 5 1 . 2 8 7 . 9 4 2 4 7 3 2 6 0 1 8 5 0 . 4 3 7 . 5 3 8 7 . 1 9 6 . 2 3 4 5 5 9 0 6 0 6 5 6 9 . 1 3 1 . 4 2 7 5 . 2 5 7 . 7 5 0 1 8 7 2 6 0 1 8 2 2 . 2 3 1 . 7 2 3 4 . 1 6 2 . 7 3 8 0 6 3 1 6 0 6 5 7 2 . 2 3 7 . 6 2 8 8 . 1 3 3 . 3 6 1 6 8 0 3 6 0 1 8 6 9 . 2 3 1 . 8 2 2 8 . 1 1 6 . 8 3 0 4 6 6 1 6 0 6 5 5 6 . 1 3 7 . 3 2 0 5 . 2 5 2 . 8 6 2 3 9 5 0 7 0 1 8 8 0 . 2 7 8 . 6 2 2 8 . 2 9 8 . 5 5 3 0 7 0 2 6 0 6 5 5 8 . 4 0 6 . 4 3 0 3 . 8 7 . 7 4 9 1 2 1 5 0 1 9 3 7 . 2 3 7 . 5 2 6 8 . 1 1 1 . 9 5 2 4 7 3 2 6 0 6 5 4 3 . 1 0 8 . 4 2 1 4 . 4 3 . 9 9 2 2 6 1 5 0 1 9 8 4 . 1 7 8 . 9 1 1 3 . 2 6 3 . 4 6 0 1 8 7 2 6 0 6 5 7 1 . 3 3 5 . 2 3 0 3 . 3 5 . 2 1 5 6 2 9 1 5 0 1 9 4 3 . 2 0 8 . 5 2 6 5 . 3 5 9 . 0 7 1 6 8 0 3 6 0 6 5 4 1 . 3 0 2 . 3 3 3 3 . 7 0 . 6 1 5 0 3 3 2 5 0 1 9 9 2 . 2 3 7 . 6 2 3 9 . 2 9 1 . 5 7 2 3 9 5 0 7 0 6 5 1 5 . 2 0 0 . 0 3 1 6 . 1 3 . 0 2 8 4 3 6 2 5 0 1 9 5 2 . 2 3 7 . 4 2 4 3 . 4 6 . 8 4 9 1 2 1 5 0 1 8 9 3 . 4 3 7 . 6 3 5 1 . 1 3 7 . 4 2 2 2 4 0 3 5 0 1 9 9 6 . 2 3 7 . 9 2 5 3 . 1 8 . 8 9 2 2 6 1 5 0 1 8 3 8 . 2 0 4 . 6 4 2 7 . 1 1 4 . 0 3 1 7 4 2 0 6 0 1 9 0 0 . 3 7 2 . 5 3 5 6 . 9 6 . 2 1 5 6 2 9 1 5 0 1 8 4 4 . 2 7 0 . 3 3 8 3 . 1 6 9 . 8 2 5 1 5 6 0 6 0 1 9 4 2 . 2 0 4 . 5 3 0 9 . 3 7 . 5 1 5 0 3 3 2 5 0 1 8 0 8 . 1 3 8 . 2 4 9 7 . 9 9 . 5 3 5 4 5 8 0 6 2 1 9 6 9 . 1 0 3 . 6 4 9 5 . 2 4 . 3 4 0 0 6 2 1 6 2 1 9 3 9 . 7 7 . 3 2 5 5 . 1 4 3 . 9 3 7 2 6 5 1 6 2 1 9 9 0 . 1 7 4 . 5 2 3 9 . 2 1 . 9 5 8 8 6 9 1 6 2 1 9 9 4 . 1 0 0 . 0 3 8 8 . 7 5 . 2 6 0 3 7 2 2 6 2 1 9 7 2 . 2 0 0 . 9 2 0 5 . 1 1 9 . 8 7 4 4 8 9 2 6 2 1 9 8 5 . 1 0 3 . 3 3 2 1 . 1 9 4 . 9 8 3 0 9 3 0 7 2 1 9 6 3 . 3 3 0 . 0 7 0 3 . 0 5 . 9 4 0 1 7 2 4 3 1 9 0 4 . 3 3 9 . 2 6 9 4 . 0 4 . 5 1 5 2 1 1 0 5 3 1 9 4 6 . 4 3 7 . 6 7 9 4 . 2 9 . 6 1 8 3 1 4 0 5 3 1 9 0 7 . 4 3 1 . 9 8 2 5 . 3 8 . 0 2 9 5 1 8 0 5 3 1 9 0 0 . 8 3 1 . 7 9 1 6 . 1 7 . 2 2 2 8 1 1 1 5 3 1 9 392 4 5 . 2 7 1 . 5 4 1 5 . 0 0 . 7 2 3 0 4 9 2 5 2 1 9 2 9 . 1 3 1 . 7 2 1 5 . 2 1 2 . 6 6 0 1 8 7 2 6 0 1 9 4 8 . 2 7 1 . 8 4 4 7 . 4 8 . 1 3 5 5 4 1 0 6 2 1 9 2 3 . 2 7 0 . 8 2 2 4 . 2 6 5 . 7 7 1 6 8 0 3 6 0 1 9 9 5 . 1 3 3 . 4 4 0 7 . 9 1 . 2 3 1 0 5 5 0 6 2 1 9 7 7 . 1 0 8 . 6 2 6 5 . 1 0 1 . 0 8 2 3 9 5 0 7 0 1 9 . S D L E I F E L P M A S N O I T A L U P O P N I N E K A T . N O E P O M C 0 6 S L A U Q E T I N U E L P M A S . C 5 . 5 > D D , 0 3 S L A U Q E E Z I S E L P M A S Y T I S N E D D N A T H G I E H M E T S 8 7 9 1 F O Y R A M M U S 1 “ [ E L B A T . D E U N I T N O C . 0 1 8 E L B A T Y T I S N E D M E T S T H G I E H M E T S Y T I S N E D M E T S T H G I E H M E T S E S N A E M E S N A E M E S N A E M E S N A E M - - - - _ - - - - - - - - - - - - - - - — - - — — - D D E T A D D L E I F n c n o c u n n o n - - - - - — - - - - - - - - D D : “ 0 D L E I F 1 5 . 1 0 3 . 5 2 9 2 . 3 5 . 7 2 8 1 1 1 5 2 1 9 4 0 . 3 1 4 . 0 3 5 8 . 3 8 . 0 3 4 5 5 9 0 6 0 1 9 7 9 . 7 9 . 5 2 9 1 . 8 6 . 9 0 2 2 5 1 5 2 1 9 6 9 . 2 3 3 . 7 3 8 5 . 1 1 3 . 0 4 8 0 6 3 1 6 0 1 9 5 2 . 1 0 2 . 0 3 5 1 . 1 1 . 0 1 0 5 2 8 1 5 2 1 9 7 2 . 2 0 2 . 5 2 8 7 . 1 0 1 . 9 3 0 4 6 6 1 6 0 1 9 4 1 . 1 3 5 . 1 3 6 3 . 4 0 . 4 1 3 9 2 2 2 5 2 1 9 5 0 . 1 7 0 . 3 2 9 1 . 2 3 0 . 4 5 3 0 7 0 2 6 0 1 9 1 3 . 1 7 8 . 1 3 4 4 . 8 0 . 1 2 1 3 3 5 2 5 2 1 9 4 2 . 2 0 4 . 7 2 8 4 . 1 6 3 . 4 6 2 4 7 3 2 6 0 1 9 393 E S E S Y T I S N E D M E T S T H G I E H M E T S E T A D D L E I F . D E D N I T I O C . 0 1 8 E L B A T 3 8 . 3 3 9 . 1 8 7 5 . 1 2 . 9 2 0 2 2 5 1 5 3 1 9 6 3 . 1 0 0 . 3 8 3 4 . 9 4 . 5 3 0 5 2 8 1 5 3 1 9 9 2 . 5 0 8 . 4 9 7 7 . 6 0 . 6 4 3 9 2 2 2 5 3 1 9 0 0 . 5 7 6 . 1 9 2 6 . 4 4 . 4 5 1 3 3 5 2 5 3 1 9 5 2 . 1 1 3 9 . 1 7 8 8 . 4 6 . 0 6 3 0 4 9 2 5 3 1 9 6 8 . 3 7 4 . 7 6 3 1 . 1 2 3 . 3 7 5 5 4 1 0 6 3 1 9 0 8 . 2 0 2 . 3 5 6 1 . 1 0 2 . 6 7 1 0 5 5 0 6 3 1 9 0 0 . 2 7 9 . 7 4 3 9 . 3 9 . 9 7 5 4 5 8 0 6 3 1 9 2 8 . 1 1 1 6 . 1 5 2 . 1 0 6 . 1 7 4 . 9 3 6 4 . 1 0 7 . 6 8 0 0 6 2 1 6 3 1 9 0 3 - 3 3 6 3 . 1 5 0 . 8 8 7 2 6 5 1 6 3 1 9 7 9 . 1 3 7 0 . 1 7 1 . 0 9 8 8 6 9 1 6 3 1 9 0 3 . 9 2 6 6 . 1 8 7 . 1 9 0 3 7 2 2 6 3 1 9 7 3 . 1 3 4 . 6 2 7 8 . 1 0 0 . 0 9 4 4 8 9 2 6 3 1 9 394 0 0 ' 0 9 1 ° o u ' o o o ' o o o ' o 5 1 ' L L ' 0 0 ’ 0 O L ' Z Z l ' l L O ' I 6 9 ' L 0 “ 2 2 ‘ £ 0 0 ' 0 £ S ' 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 E S ’ L L ' L 0 £ t h e 1 1 6 0 0 ' 0 S I ’ B S £ ' £ S Z ' £ S u ‘ l 0 1 ' S h ' l t 0 8 6 1 5 n s s 0 0 ' 0 1 9 ' o o ‘ o L l “ o o ' o 0 9 ' 9 0 ' £ 0 0 ' 0 l l ‘ 0 0 ' 0 0 0 ' 0 l l ' 0 0 ‘ 0 u l ' t 0 0 ' 0 £ £ ' 1 0 0 ’ 0 L l ' 0 0 ‘ 0 L l ' l L l ’ l l 9 0 9 2 1 1 6 0 0 ' 0 S l ' 0 0 ' 0 0 0 ' 0 S l ' 0 0 ' 0 0 £ ' S 0 8 £ £ 9 u s e S l ' 1 1 ' L O ' 5 0 ' 0 0 ' 0 0 0 ' 0 t o ‘ £ 0 ' 0 0 ‘ 0 0 0 ‘ 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 Z L ‘ 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 S S ' £ o z 9 £ L 1 1 8 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 8 1 6 1 8 9 9 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 8 0 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 L t ' 0 £ 9 6 1 1 6 £ 0 ' £ 0 ' L 0 ’ L O ’ 0 0 ‘ 0 0 0 ' 0 0 0 ° 0 L O ' s t ‘ 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 L O ' { L ' S 0 E [ 6 1 1 1 6 0 0 ‘ 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 £ 0 ' £ 0 ‘ 8 £ ' £ L ‘ l 0 £ £ 8 1 1 1 6 . S E ' L l ' 8 9 ' 0 2 ' 9 2 ' 2 1 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 9 1 ' 8 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 8 ' 2 1 0 8 S L Z a s s 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 S 6 ' £ 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 S Z ' £ 2 0 8 £ L e h a s 0 9 ‘ ? L £ ‘ h h ‘ 6 6 ' 8 £ ' l O L ’ Z S S ' 9 l 0 9 ' 1 O h ‘ Z O l ‘ S S h ' L S B ' Z Z 0 2 1 1 6 8 9 9 0 0 ' 0 L B ' 0 0 ‘ 0 L 0 ' 0 0 ' 0 l £ ° 0 0 ‘ 0 L 0 ' 0 0 ' 0 6 2 ' 0 0 ' 0 £ 0 ' z £ 0 ' £ 0 ' £ 9 ° 0 1 ' 0 0 ' 0 L O ' 0 0 ' 0 L O ' £ 2 ‘ 8 0 ' £ h ' £ l ' £ 0 ' £ 0 ' 0 9 ' 9 1 ' L 1 ' 9 0 ' £ 0 ' £ 0 ' L 2 ' 9 1 ' £ 9 “ 9 1 ' 0 2 ' L 0 ' 2 2 ' S S ' £ S ' { 1 ' 2 S l S S E 1 1 6 S E ' L l ' 9 0 ' S O ' 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 5 0 ' L 2 ‘ 0 0 ‘ 0 0 0 ’ 0 0 0 ' 0 9 0 ° 5 9 ' 0 8 5 5 L 8 9 9 2 1 ' 9 E “ 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 L S ' L £ ° l 0 £ l £ u 1 1 6 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 8 1 6 1 1 1 0 £ 0 ‘ £ 0 “ 0 5 ' L l ' 0 £ 2 6 8 1 1 6 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 $ 6 ‘ £ 0 2 S £ e 1 1 8 0 0 ' 0 0 0 ' 0 0 0 ' 0 7 0 0 ' 0 0 0 ' 0 0 0 ' 0 2 9 ' 0 0 ‘ 0 0 0 ' 0 8 0 ' 0 0 ' 0 0 0 ' 0 L l ' 0 £ 9 5 9 1 1 6 S S “ { 2 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 £ 9 ' l 0 0 ‘ 0 0 0 ’ 0 0 0 ' 0 0 0 ° 0 0 0 ‘ 0 9 0 ' 1 1 0 8 £ L a 1 1 8 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 ‘ L £ ' h h ' 0 0 ' 0 0 0 ' 0 £ 1 “ 0 8 ' 1 9 ' 8 0 0 ‘ 0 0 0 ‘ 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 £ 6 5 9 1 1 6 S 6 “ s u ' z 0 0 ' 0 0 0 ' 0 0 9 ' S B ' I 0 0 ‘ 8 £ 0 2 0 L £ 1 1 8 5 1 1 0 0 1 1 1 « 1 £ 1 2 1 1 1 8 9 0 3 N 0 0 0 1 3 1 3 8 1 1 0 0 1 1 1 8 1 £ 1 e 1 1 1 $ 9 9 3 I 0 0 0 1 3 1 3 ‘ u a n u l l l o o ' 1 1 3 3 1 8 1 1 ' ( 0 6 ( 0 0 ) ' 8 0 8 8 0 ' h a 0 9 8 1 ' 0 0 3 1 1 8 a 3 1 8 5 ' s ' N Y S N 3 H 1 3 0 8 0 8 8 3 G N U G N V I S ‘ Z 8 0 8 ‘ N V B N ‘ I M 0 8 ' S 3 1 d h 4 8 N O I I V W D J O J 3 N 4 1 1 1 0 9 6 L 6 l J O A H Y k h fl S ' 1 1 ! 3 1 B V I 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 9 0 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 9 0 ' 0 2 1 6 1 £ 1 6 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 S E ' 0 0 ' 0 0 0 ' 0 0 0 ’ 0 0 0 ‘ 0 0 0 ' 0 E L ’ Z 0 E S E 2 £ 1 6 S I ' 5 1 ‘ 5 0 ' 5 0 ' 9 8 ' 0 2 ' 8 2 ' 6 2 ' 9 6 ’ Q S ' £ 0 6 ° u 9 6 ' O L ' O Z ' l S S ' Z S 6 ' h i 0 8 l l h 1 1 8 3 1 ' ? 9 0 ' 1 0 6 ' 6 8 ' l l ' 8 0 ' £ 0 6 ' 9 0 0 ' £ S S ' Z S O ' I 0 £ ' S b ' h d 0 8 6 1 9 1 1 8 £ l ' 8 0 ' £ £ ' 9 l ° 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 U O ’ U U L ' 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ‘ 0 0 0 ° 0 L 9 ' S 0 £ 0 8 2 £ 1 6 0 0 ‘ 0 0 9 ' 0 0 ' 0 1 2 ' 9 8 ' L l ' 9 2 ' 2 1 ' 5 0 ' S O ' 9 0 ' C S ' l 5 0 ' O h ' l l 0 8 £ £ 9 1 1 8 395 0 0 ' 0 0 2 ' 0 0 ' 0 6 0 ' 0 0 ' 0 0 1 ' 0 0 ' 0 9 0 ' 0 0 ' 0 6 0 ' 0 0 ' 0 6 0 ' { 1 ' 9 0 ' 6 0 ' { 0 ' 6 0 ' 1 0 ' 6 0 ' { 0 ' 1 0 ' 6 0 ' 0 2 ' L 0 ' 1 0 ' 1 0 ' 1 0 ' 1 0 ' { 9 ' 6 1 ' 2 1 ' ? L L ' 8 1 U 1 0 L 1 1 1 6 9 5 ' L 6 ' 1 O h ' Z 1 2 ' 9 1 0 2 6 1 6 £ 1 6 L S ' 9 1 ' 0 1 ' 9 0 ' 6 0 ' ? O S ' B Z 0 1 8 9 0 £ 1 6 8 4 ' 8 L S ' B Z 0 1 0 9 5 1 1 6 0 0 ' 0 S Z ' é 0 0 ' 0 0 0 ' 6 2 0 1 1 3 9 1 1 6 0 0 ' 0 0 1 ' 1 0 0 ' 0 O G ' L 0 1 $ 6 9 1 1 6 0 0 ' 0 0 0 ' 0 0 0 ' 0 1 1 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 6 ' 0 1 1 0 8 1 1 6 { 5 ' 8 1 ' L Z ' 0 1 ' L 9 ' 8 2 ' L 0 ' 5 0 ' 4 9 ' 2 6 ' 1 1 ' 1 2 ' ! 0 9 ' 1 E E ' 1 L 6 ' 9 2 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 6 9 ' 1 9 ' 1 0 8 ' 0 1 ' 0 1 ' E l ' { 6 ' 2 1 ' { L ' 9 1 ' 9 8 ' 8 1 ' 6 1 ' 2 1 ' { 8 ' 9 L S ' 1 E O ' Z L 9 ' 1 ' 5 1 1 0 0 4 1 1 6 1 E 1 2 1 1 1 S 0 0 3 N 0 0 0 1 3 1 3 . - - - ‘ - - - - - - - - - - - — - - - - - - - - - - - - — - - - - - - - - - - - - - - - - — - - - . ' 0 3 fl N I I H 0 3 1 1 8 3 1 8 4 1 0 0 . 0 5 0 0 . 0 0 0 . 4 0 0 . 8 4 2 1 . 2 0 5 S T A O 3 1 6 3 1 9 1 7 . 5 8 0 0 . 0 0 0 . 0 1 7 . 5 8 0 0 . 1 0 0 . 0 3 0 0 . 0 0 0 . 4 0 0 . 6 2 6 1 . 3 0 5 S T A O 8 1 6 3 1 9 0 0 . 0 6 0 0 . 0 0 0 . 0 - 0 0 . 0 6 0 2 . 3 M S I T I S A R A P T N E C R E P M S I T I S A R A P T N E C R E P L L A S U T R U C L R E F I N I R A C D S I L U J T I M H N P O R C E T A D D L E I F L L A S U T R U C L R E F I N I N A C D S I L U J T I M N N P O R C E T A D D L E I F . D E U N I T N O C . 2 1 3 E L B A T . S E L P M A S N O I T A L U P O P E K A L L L U G 9 7 9 1 M O R F E A V N A L B L C " ' 1 0 M S I T I S A R A P . 2 1 E E L B A T 0 0 . 5 2 0 0 . 0 3 3 . 8 7 6 . 6 1 5 7 . 1 2 1 S T A O 9 0 6 3 1 9 0 0 . 6 7 0 0 . 0 0 0 . 2 1 0 0 . 2 7 6 1 . 3 5 2 3 1 1 0 1 1 6 9 5 5 9 6 . 7 5 0 0 . 0 4 5 . 1 1 5 1 . 6 4 5 8 . 2 6 2 S T A O 1 1 6 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 7 . 3 ' 5 2 s r a o 1 2 6 9 5 5 7 5 1 2 3 1 1 0 2 0 7 9 5 5 3 7 1 0 2 0 7 1 5 5 3 7 1 0 3 0 7 9 5 5 S T A O 5 0 7 9 5 5 3965 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 0 0 . 5 7 0 0 . 0 0 0 . 0 0 0 . 5 7 0 5 . 3 0 0 . 0 0 1 3 3 . 3 3 0 0 . 0 7 6 . 6 6 0 0 . 3 0 0 . 0 0 1 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 0 . 3 1 4 3 1 S T A O 8 2 6 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 S T A O 2 0 7 3 1 9 0 0 . 0 0 1 0 0 . 0 0 0 . 0 0 0 . 0 0 1 0 5 . 3 S T A O 9 0 7 3 1 9 0 0 . 6 5 0 0 . 0 0 0 . 1 0 0 . 6 5 6 9 . 1 5 2 3 7 1 0 8 0 6 1 1 8 S T A O 6 1 7 3 1 9 7 5 . 9 6 0 0 . 0 9 0 . 6 2 8 1 . 3 1 9 3 . 3 3 2 3 7 1 0 1 1 6 1 1 8 0 0 . 4 5 0 0 . 0 0 0 . 8 0 0 . 6 4 1 2 . 2 0 5 S T A O 2 1 6 1 1 8 0 0 . 0 3 0 0 . 0 0 0 . 2 0 0 . 8 2 0 8 . 2 0 5 s t u c 1 2 6 1 1 8 0 7 . 0 9 5 6 . 4 3 3 . 2 0 7 . 0 9 9 7 . 3 3 9 s r a o 2 0 7 1 1 8 0 0 . 0 0 1 1 1 . 7 0 0 . 0 0 0 . 0 0 1 4 6 . 3 1 1 s r a o 3 0 7 1 1 8 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 1 T A E H N 6 1 5 1 1 9 9 6 . 7 0 0 . 0 0 0 . 0 9 6 . 7 0 0 . 1 3 1 1 1 8 8 9 3 2 5 1 1 9 0 5 . 7 3 0 0 . 0 0 5 . 2 1 0 5 . 7 3 3 1 . 2 0 0 . 5 7 0 0 . 0 0 0 . 5 2 0 0 . 0 5 5 2 . 1 8 4 T A E H N 1 3 5 1 1 9 T A E H N 9 0 6 1 1 9 0 0 . 2 7 0 0 . 0 0 0 . 6 1 0 0 . 8 5 2 6 . 3 0 5 T A E H W 1 1 6 1 1 9 1 8 . 5 5 3 3 . 2 3 5 . 9 3 8 5 . 5 2 7 6 . 2 3 4 T A E H H 4 1 6 1 1 9 7 1 . 9 2 0 0 . 0 7 6 . 6 1 0 5 . 2 1 2 4 . 3 4 2 T A E H H 9 1 6 1 1 9 6 1 . 3 6 0 0 . 0 6 2 . 5 9 8 . 7 5 4 7 . 1 9 1 S T A O 8 0 6 3 1 9 S U T R U C L R E F I N I R A C 0 S I L U J T . - - . . . - - — . - - - - . - . - - . . - — . - . . . - . - - - - . - . . . . - - . - . - - - - - - - - - - — — o - . . . - - - - - E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E I M H P O R C E T A D D L E I F 1 0 0 0 4 1 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 1 . 4 0 0 . 1 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 3 0 0 - 2 4 6 - 3 S T A O 3 0 7 1 1 8 ‘ i ' f T S U T R U C L R E F I N I R A C D S I L U J T . - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E I M H P O R C E T A D D L E I ’ 0 0 2 1 7 1 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 6 . 1 0 5 . 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 1 5 6 . 2 0 5 . 2 6 1 . 3 S T A O 1 1 6 4 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 T A E H W 6 1 5 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 7 . 3 S T A O 1 2 6 4 5 5 0 0 0 0 0 1 0 0 0 0 6 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 2 . 0 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 8 0 0 . 1 T A E H H 3 2 5 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 7 6 . 4 0 0 . 0 0 0 . 4 S T A O 2 0 7 4 5 5 397 0 0 1 O 1 2 0 0 0 0 3 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 4 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 4 0 5 . 2 3 1 . 2 T A E H W 1 3 5 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 3 0 0 . 0 0 2 . 3 S T A O 2 0 7 4 5 5 0 0 0 1 0 2 0 0 0 0 0 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 3 5 2 . 1 T A E H W 9 0 6 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 2 S T A O 3 0 7 4 5 5 . D E U N I T N O C l l E E L B A T . D E Z I T I S A R A P E A V R A L . 0 N : 3 N O R , E C N A I R A V = 2 N O R , N A E M = 1 N O R . S E L P M A S N O I T A L U P O P E K A L L L U G 9 7 9 1 E H T F O S N O I T C E S S I D M O R F D E R E V O C E R E A V R A L D N A S G G E E T I S A N A P F O R E B M U N N A E M L E [ E L B A T 0 0 8 0 6 2 3 0 0 O 0 2 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 3 3 3 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 4 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 1 3 . 3 3 3 . 3 2 6 . 3 T A E H W 1 1 6 1 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 6 0 0 . 2 0 5 . 3 S T A O 5 0 7 4 5 5 0 0 0 . 0 0 0 . 0 1 0 0 . 1 0 0 . 0 7 1 6 0 . 6 0 . 1 0 0 0 . 0 0 0 . 0 1 0 0 . 2 0 0 . 0 0 1 9 1 . 2 0 6 . 2 7 6 . 2 1 1 5 0 9 1 1 6 1 1 9 0 0 0 . 0 0 0 . 0 o 0 0 . 0 0 0 . 0 1 0 0 . 1 0 0 . 0 0 0 0 . 0 0 0 . 0 8 5 7 . 2 1 2 . 2 6 7 9 . 1 3 8 . 3 6 9 . 1 3 7 1 0 8 0 6 1 1 8 0 0 4 0 3 0 0 0 6 0 9 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 4 4 . 4 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 2 0 0 . 0 2 4 . 3 T A E H W 9 1 6 1 1 9 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 8 7 . 4 0 0 . 2 9 3 . 3 S T A O 1 1 6 1 1 8 0 0 0 1 4 8 0 0 4 0 4 1 0 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 0 7 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 2 9 . 1 3 4 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 5 . 1 3 1 . 2 4 7 . 1 S T A O 8 0 6 3 1 9 0 0 - 0 0 0 . 0 0 0 . 1 0 0 . 0 3 9 . 2 0 9 . 2 4 2 . 2 S T A O 2 1 6 1 1 8 0 D 1 0 O 2 0 O 0 1 O 1 4 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 5 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 4 5 . 7 6 . 2 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 0 0 5 . 1 5 7 . 1 S T A O 9 0 6 3 1 9 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 1 . 2 0 0 . 4 0 8 . 2 S T A O 1 2 6 1 1 8 0 0 3 0 8 S 0 2 0 1 7 3 7 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 5 . 1 0 8 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 5 7 . 3 1 1 2 . 1 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 8 8 . 2 0 1 . 2 5 8 . 2 S T A O 1 1 6 3 1 9 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 1 3 0 . 5 9 2 . 3 9 7 . 3 S T A O 2 0 7 1 1 8 398 S U T R U C L R E F I N I R A C D S I L U J T E A V R A L S G G E E A V R A L S G G E E A V R A L S G G E I N U P O R C E T A D D L E I F . D E U N I T N O C . 3 1 8 E L B A T 0 0 2 0 2 1 3 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 8 1 . 5 0 6 . 3 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 0 0 5 . 3 4 5 . 3 2 1 . 2 S T A O 3 1 6 3 1 9 0 O 1 1 1 1 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 9 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 1 0 0 . 1 1 9 . 1 0 0 . 2 6 1 . 3 S T A O 8 1 6 3 1 9 O O O O 0 O 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 S T A O 8 2 6 3 1 9 0 0 0 0 3 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 7 2 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 0 0 . 1 0 5 . 3 S T A O 2 0 7 3 1 9 1 O O ' O 2 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 8 1 0 0 . 0 0 0 . 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 0 . 0 0 0 . 3 S T A O 9 0 7 3 1 9 O O 0 O 1 O 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 4 0 0 . 0 0 0 . 3 S T A O 6 1 7 3 1 9 399 1 6 ° 8 0 1 ° 1 4 1 9 ° 1 1 6 ° 0 1 1 0 1 9 1 L 6 1 9 1 1 6 9 9 ° 1 9 1 ° 6 1 6 1 ' 1 4 ° 1 1 0 8 1 1 4 0 1 9 4 9 9 4 4 ° 8 1 L ° L 1 8 0 ° 8 9 9 ° 6 0 1 0 1 L 0 9 9 8 9 1 1 6 9 8 ° 9 0 8 ° 1 9 9 8 ' 6 6 ° 0 1 0 8 1 1 9 8 1 9 4 9 9 9 L ° 8 0 0 ° 1 4 B 1 ° 1 0 8 ° 9 0 1 0 1 1 4 6 9 0 L 1 1 6 4 9 ‘ 1 0 9 ° 0 4 9 1 ° 1 0 4 ° 1 4 0 8 8 9 L 1 8 9 4 9 9 8 4 ° 1 0 6 ° 0 1 1 1 ° 9 L ° 4 0 8 1 1 1 9 1 9 1 1 6 6 4 ° 1 9 0 ° 9 1 1 9 ° 1 8 9 ° 8 L 0 8 9 0 6 1 0 L 4 9 9 9 0 ° 1 1 0 ° 9 1 1 8 ° L 8 ° 6 0 1 1 L 1 8 8 9 1 1 6 L 1 ° 1 9 0 ' 1 1 9 9 ' 1 9 0 ' 1 6 0 8 0 9 0 1 1 1 L 4 9 9 L 1 ° 1 0 8 ° 9 1 9 4 ° 4 8 ° 1 1 0 1 1 4 4 1 1 9 1 1 6 8 L ° 1 0 1 ° 4 1 1 1 ° 6 0 ° 4 O 8 1 1 1 9 1 9 1 1 0 6 0 ° 4 L 9 ' 0 9 9 1 ° 1 9 8 ° 9 6 9 1 9 L 9 6 0 9 1 1 6 8 L ° 1 0 8 ° 9 1 L 1 ° 8 0 ° 9 O 8 1 1 1 9 1 9 4 9 9 8 8 ° 1 0 8 ° L 4 4 9 ° 1 1 4 ° 0 1 1 0 1 0 4 9 4 1 9 1 1 6 4 6 ° 1 9 8 ° 0 8 1 9 ° 1 1 ° 6 0 8 1 L 1 8 8 9 4 9 9 4 0 ° 1 0 1 ° 8 4 4 9 ° 4 6 ° 8 8 0 1 0 9 9 8 0 9 1 1 6 1 4 ° 1 0 9 ° 9 1 1 8 ° 9 6 ' ? 0 8 1 L 1 8 8 9 1 1 8 b 9 ° 1 0 1 ° 9 4 9 1 ° 1 6 1 ° 8 8 0 1 9 8 9 1 1 9 1 1 6 4 L ° 1 9 8 ° 0 8 L 1 ° 4 9 ° 1 1 0 8 1 1 4 0 1 9 1 1 8 1 4 ° 1 1 9 ° 8 9 6 L ° L 4 ° 0 4 0 1 9 0 L 8 1 9 E 1 6 9 0 ° 1 0 9 ° 9 4 8 1 ° 1 L L ° 4 8 0 8 0 9 9 8 0 9 1 1 0 9 1 ° 1 L 9 ° L 4 9 6 ° L L ° 8 4 0 1 9 6 L 9 8 9 1 1 6 L L ° 8 9 9 ° 4 4 8 1 ' 1 9 9 ° 9 1 0 8 1 1 9 8 1 9 1 1 8 L 1 ' 8 0 6 ° 1 4 9 0 ° 1 9 9 ° L 9 0 1 8 6 8 8 0 L 1 1 6 9 4 ° 1 ~ 9 L ° 1 4 8 1 ° 1 9 4 ° 4 4 0 8 8 9 L 1 8 9 1 1 0 6 6 ° 8 1 8 ° 9 4 8 0 ' 1 6 0 ° 0 6 0 1 L 8 6 6 0 L 1 1 6 4 8 ° 8 0 4 ° 0 1 1 0 ' ? 8 6 ' 6 9 0 8 9 0 6 1 0 L 1 1 8 6 8 ° 1 L 1 ’ 8 1 9 9 ° 1 9 4 ° L 6 0 1 L 1 1 1 9 1 L 1 1 6 9 9 ° 8 0 0 ° 8 1 8 9 ° 4 0 8 ° 0 6 0 8 0 4 0 1 8 1 L 1 1 8 A l l $ N 3 0 4 3 1 8 1 H 0 1 3 H 4 3 1 8 A l l S N 3 0 4 3 1 8 I H O I B H 4 3 1 8 3 8 N 4 3 4 3 S N 4 3 4 3 8 N 4 3 4 3 S N 4 3 h N 0 0 3 1 4 0 0 1 3 1 3 N 0 0 3 1 4 0 0 1 3 1 3 ' 0 3 I I N 1 1 N O D “ I I I 3 1 0 4 . 1 ( 3 9 ° 9 ( 0 0 ) ° H O B $ 1 4 0 3 0 ° 4 3 0 9 8 1 4 0 0 3 l I N fl 3 1 d h 4 $ ' 5 0 1 3 1 3 3 1 d k 4 $ N O I L V T O d O d N I N 3 4 4 1 A L I S N B O 0 N 4 I H O I S H 4 3 1 $ 6 L 6 1 J O A N 4 H L O S ' 4 1 ! 3 1 0 4 1 9 0 ° 9 1 1 ° 8 L 6 9 ' 9 4 ° 9 1 0 1 9 L 1 8 0 9 1 1 6 8 1 ° L L 1 ° 9 8 9 8 ° 1 8 1 ° 9 8 0 1 L 4 8 6 0 9 1 1 6 1 4 ° 9 L 0 ° L L 9 8 ° 1 1 0 ° 4 1 0 1 1 1 1 9 1 9 1 1 6 6 1 ° 9 1 4 ° 8 8 9 9 ° 1 1 0 ° 9 9 0 1 1 8 1 1 8 9 1 1 6 1 4 ° 8 1 0 0 ° 4 9 4 8 ° 1 8 9 ° 9 9 9 1 4 4 1 1 9 1 1 6 APPENDIX F CLB EGG PARASITISM DATA 400 Table F1. Summary of CLB egg parasitism by 5, flaviEes at the Kellogg Biological Station from 1976 to 1979. # Eggs . o # Eggs # CLB 5, flaviges Percemt Year Field Date - DD>9 C Collected Hatched Parasxtized Paras;tism 1976 5-61 6-11 451 6-18 552 8-9 6-11 451 6-18 552 9-13 6-18 552 1977 9-11 6-9 581 6-16 638 6-20 691 50 39 51 50 31 69 46 42 6-23 718 26 6-26 762 6-30 813 1978 9-12 5-18 143 L 5-22 175 5-25 203 5-29 262 6-1 303 6-5 337 6-8 371 6-12 413 6-15 432 6-19 479 7 4 24 46 51 63 52 41 20 43 43 27 6-22 512 8 9 3 3 4 2 O O O 0 O O 12 31 34 51 36 23 14 26 2 2 0 32 32 33 38 20 69 46 42 78.05 88.89 91.67 90.48 90.91 100.00 100.00 100.00 26 100.00 7 3 O 0 O O 4 9 2 9 23 26 100.00 100.00 0.00 0.00 0.00 0.00 10.00 21.43 12.50 25.71 92.00 92.86 7 100.00 Table Fl (continued). 401 # Eggs # CLB é, flaviEes Percent # Eggs Year Field Date DD>9°C Collected Hatched Parasitized Parasitism 1978 9-13 5-18 143 ' 5-22 175 51 44 39 32 5-25 203 54 41 5-29 262 21 12 6-1 303 6-5 337 3 7 l 4 1979 5-54 5-22 235 25 20 5-30 273 28 24 O O 2 0 O O O 3 0.00 0.00 4.65 0.00 0.00 0.00 0.00 11.11 6-12 411 25 10 11 52.38 6-21 519 7-5 651 7-13 756 25 25 8 8-11 5-22 235 25 l O O - 5-30 273 25 19 6—8 370 22 20 23 95.83 25 100.00 8 - 3 1 100.00 - 13.64 4.76 6-12 411 25 12 11 47.83 6-21 519 7-3 634 ‘7-12 739 25 25 25 3 0 O 22 88.00 25 100.00 25 100.00 9-11 5-9 147 27 18 ’ 5-16 191 28 19 5-31 281 23 14 6-9 386 13 2 2 1 6 6 10.00 5.00 30.00 75.00 Table Fl (continued). 402 # Eggs # CLB é, flaviges Percent # Eggs Year Field. Date DD>9°C Collected Hatched Parasitized Parasitism 1979 9-11 6-14 431 14 6-19 492 6-26 559 7-16 802 9-13 5-31 281 6-8 370 6-13 419 6-18 482 7-2 624 7-9 696 4 2 4 24 24 25 25 25 25 6 1 - 0 20 17 7 5 0 O 5 - - 3 0 2 16 19 25 45.45 - - 75.00 0.00 10.53 69.57 79.17 100.00 25 100. 00 APPENDIX G CLB LARVAL COORDINATES 403 LAPVAL COORDINATES FOP FIELD 5-59 PLOT 1 COLLECTED CA 6/22/76. NUMBEP OF COORDINATE PAIPS EQUALS 22. X Y X Y x Y X Y 7.00 3.33 0.00 4.92 1.17 7.4? 1.75 3.17 2.33 7.92 6.42 2.33 6.42 2.5? 6.42 6.83 7.00 .17 7.00 3.00 7.58 7.42 8.17 7.25 8.75 4.25 8.75 11.08 4.33 28.58 29.75 811 ..I.) 9 an 6.30 8.33 10.50 4.75 10.50 0.33 29.75 7.5? 29.75 7.50 LARVAL COORDINATES FOR FIELD 5-59 PLOT 2 COLLECTED CN 6/22/76. NUMBER OF COORDINATE PAIRS EQUALS 23. y Y X Y X Y X Y '.00 5.17 0.00 6.00 1.17 8.17 1.75 4.83 2.92 9.‘0 2.92 9.75 4.67 7.92 4.67 17.58 5.25 11.50 6.42 q ~‘ .0 0.00 2.33 3.50 5.25 9.33 9.33 7.17 9.92 9.58 11.50 .58 8.58 2.33 3.83 4.98 3.25 S .25 10.58 9.33 7.? LAPVAL COORDINATES FOR FIELD 5-59 PLOT 3 COLLECTED C4 6/22/76. NUMQER OF COORDINATE PAIRS EGUALS 23. x Y X Y X Y X Y 5.00 7.50 .58 6.53 .58 8.08 .58 8.25 1.17 7.25 1.75 9.17 1.75 9.33 2.33 0.9 3.50 10.25 4.58 7.42 4.67 4.75 5.25 4.75 7.30 7.00 7.58 4.58 7.58 6.5? 8.17 3.42 8.17 4.33 8.75 3.83 9 .33 2.42 9.92 8.83 9.92 9.58 10.50 0.00 12.25 2.4? 404 LARVAL CGCPDINATES FOR FIELD 5‘59 PLOT 4 COLLECTED CK 6/22/76. NUMEER CF COORDINATE PAIRS EQUALS 22. ,Y Y X Y X Y X Y C.OO 3.83 .58 2.17 3.50 4.83 5.25 2.25 7.90 2.50 7.30 2.58 8.17 3.33 8.75 .75 11.67 4.93 11.67 8.50 12.83 7.00 14.58 6.00 1.17 5.83 7.00 9.33 11.67 O M W J O ‘ O O O O O fi l M l f Q 0 4 1 1 3 3 ) . C ) " 1 2.92 6.42 7.5? 9.92 12.25 w o m 4 - w 4 ~ 2 ‘ b n - 5 . b n t v r u - m a m LARVAL CCORDINATES FOR FIELD 5-59 9101 5 COLLECTED CN 6/22/76. NUMPER OF COORDINATE PAIRS EQUALS 24. X Y X Y X ‘ Y X Y (.00 2.92 4.67 5.25 8.75 1C.50 4.33 11.?8 4.00 15.70 2.83 9.42 1.17 3.50 4.67 5.83 9.33 11.08 5.12 8.33 11.42 2.33 2.00 3.42 1.75 3.50 5.25 9.92 11.08 2.42 13.17 3.67 2.67 1.33 1.75 12.00 3.59 11.17 5.25 11.00 5.83 2.75 10.50 9.00 8.00 11.67 6.5“ LARVAL COORDINATES FOR FIELD 5’51 PLOT 1 COLLECTED C4 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 23. Y Y X Y X Y X Y $.00 5.42 .58 3.00 1.75 2.17 1.75 4.00 2.92 13.?0 3.50 5.67 4.08 2.25 4.08 5.83 7.:0 6.42 4.42 1.17 2.92 3.50 4.9 7.00 4.58 1.17 10.75 6.83 6.83 2.92 11.00 4.08 1.25 11.00 4.67 8.59 8.17 8.33 9.33 5.70 13.42 6.00 13.42 8.42 405 LARVAL COORDINATES FOP FIELD 5'51 PLOT 2 COLLECTED CK 6/18/76. NUMRER OF COORDINATE PAIRS EQUALS 23. X Y X Y X Y X Y (.00 13.00 .58 15.25 1.17 0.03 1.17 2.33 4.67 3.30 4.42 4.17 1.17 14.17 1.75 13.F8 2.33 3.17 2.92 3.58 4.08 4.17 4.67 4.08 5.25 3.92 7.C0 0.00 8.75 12.25 9.33 11.25 9.33 13.00 9.92 14.33 15.50 14.75 10.50 15.00 12.83 11.83 8.75 12.75 10.50 11.37 LARVAL COORDINATES FOR FIELD 5-51 PLOT 3 COLLECTED CW 6,18,76. NUMBER OF COORDINATE PAIRS EOUALS 19. X Y X Y X Y X Y C.00 1.67 .58 4.58 .58 4.67 2.33 3.56 2.33 4.08 2.92 1.33 1.75 2.92 7.00 5.83 7.58 5.50 8.17 4.25 16.33 16.33 13.67 16.33 12.50 16.92 9 .5.) 16.92 1.00 1.42 8.33 13.17 17.50 10.42 18.08 8.58 18.08 10.50 LARVAL CDORDINATES FOR FIELD 5'51 PLOT 4 COLLECTED [W 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 24. X Y X Y X Y X Y C.00 0.00 2.33 15.00 2.92 16.75 4.67 1.42 6.42 7.17 14.00 15.00 1.17 2.92 2.92 4.37 7.10 14.58 2.00 4.50 1.75 3.58 2.33 3.00 2.92 6.00 2.92 14.33 18.42 2.92 20.00 3.5? 23.25 2 4 -.14 5.25 5.67 5.83 S .00 3.25 13.42 9.17 14.90 13.58 11.00 14.58 12.58 16.33 17.30 LARVAL CDORDINATES FOP FIELD 5.51 PLOT 5 COLLECTED CN 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 24. Y Y X Y X Y X Y 2.00 5.00 1.17 6.75 5.25 5.3 5.83 0.00 7.00 20.50 11.08 18.58 0.00 1.17 5.25 5.83 3.17 11.08 6.42 8.58 8.58 8.67 7.42 1.17 3.75 1.17 4.50 2.33 5.00 3.50 8.33 5.25 11.38 5.25 17.46 5.83 19.25 ’."1 ... 17.46 8.75 7.5? 9.92 16.57 20.00 11.67 20.17 13.42 15.50 405 LARVAL COORDINATES FOP FIELD 5-51 PLOT 2 COLLECTED Ck 6/18/76. NUNRER OF COORDINATE PAIRS EQUALS 23. x Y X Y X Y X Y C.00 1.17 2.92 5.25 9.33 10.50 13.00 14.17 3.58 3.92 11.25 14.75 .58 15.25 1.1? 0.03 1.75 13.08 2.33 3.17 4.08 4.17 4.67 4.18 7.C0 0.00 8.75 12.25 1.17 2.33 4.67 3.30 4.42 4.17 8.75 12.75 9.33 13.00 9.92 14.33 10.50 11.57 10.50 15.00 12.83 11.83 LARVAL COORDINATES FOR FIELD 5-51 PLOT 3 COLLECTED CV 6118/76. NUMBER OF COORDINATE PAIRS EQUALS 19. X Y X Y X Y X Y C.00 1.67 .58 4.58 .58 4.67 1.75 0.00 2.33 3.56 2.33 4.08 2.92 1.33 2.92 1.42 7.00 5.83 7.58 5.50 8.17 4.25 16.33 8.33 16.33 13.67 16.33 12.50 16.92 9.00 13.17 17.50 10.42 18.08 18.08 10.50 LARVAL COORDINATES FOR FIELD 5'51 PLOT 4 COLLECTED CN 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 2". X Y X Y X Y X Y C.00 0.00 1.17 2.00 1.75 3.58 2.33 15.00 2.92 4.50 2.92 6.00 2.92 16.75 2.92 18.42 2.92 4.67 1.42 4.67 N 3.34 5.25 5.67 2.33 3.00 2.92 14.33 3.52 23.25 5.33 5.00 6.42 7.17 7.‘° 3.25 13.42 9.17 14.no 13.58 14.00 15.00 14.58 11.00 14.58 12.58 16.33 17.00 LARVAL COORDINATES FOR FIELD 5'51 PLOT 5 COLLECTED CN 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 24. Y Y X Y X Y X Y 3.00 1.17 5.25 5.83 7.00 11.08 5.00 0.00 6.42 1.17 3.75 1.17 4.00 6.75 5.33 1.17 8.58 2.33 5.00 3.50 8.33 5.25 fi .58 5.25 11.38 5.25 17.46 0.00 5.83 8.67 5.83 19.25 .00 17.46 20.50 8.17 7.42 8.75 7.50 9.92 16.57 18.58 11.08 20.00 11.67 20.17 13.42 15.50 406 LARVAL COORDINATES FOR FIELD 5'54 PLOT 1 COLLECTED (N 6/18/76. NUMPER 0F COORDINATE PAIRS EQUALS 10- X Y X Y X Y X Y C.00 0.00 .58 8.33 .58 8.4? 1.75 3.42 2.33 .42 2.92 1.25 2.92 6.17 3.50 .75 3.50 6.71 4.3 4.58 4.08 4.67 4.08 4.75 5.25 7.50 5.83 1.17 5.83 8.17 7.58 6.58 8.17 .17 9.33 1.3 9.33 2.19 LARVAL COORDINATES FDR FIELD 5-54 PLOT 2 COLLECTED CK 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 14. X Y X Y X Y X Y C .00 7.25 .58 2.33 .58 2.67 .58 4.38 1.17 0.00 2.33 2.30 1.17 3.42 1.75 4.33 2.92 14.58 3.50 3.25 1.75 7.00 3.5? 8.00 5.25 5.58 7.00 6.33 LARVAL CCORDINATES FOR FIELD 5'54 PLOT 3 COLLECTED CN 6/18/76. NUMBER OF COORDINATE PAIRS EQUALS 19. X Y X Y X Y X Y {.03 30:0 .58 2.17 1.17 1.“? 1.17 1.17 1.17 1.25 2.33 3.00 3.50 1.00 3.50 1.33 3.50 6.50 3.50 7.42 4.08 1.75 4.08 2.50 4.08 5.33 5.25 .92 5.25 1.67 8.17 1.00 8.75 0.30 8.75 1.50 9.92 2.25 LARVAL COORDINATES FOR FIELD 5-54 PLOT 4 COLLECTED CN 6/18/76. NUMPER OF COORDINATE PAIRS EQUALS 22. X Y X Y X Y Y Y {.00 9.33 ‘1.17 2.29 ‘1.17 2.38 1.17 5.33 1.17 9.58 1.17 15.25 1.75 3.58 1.75 6.50 1.75 7.75 2.33 4.53 2.33 6.00 2.33 9.“0 3.50 9.25 4.08 1.00 4.08 2.75 4.08 12.25 5.25 13.00 5.83 10.54 6.42 .75 8.17 1.21 8.75 0.00 8.75 .42 407 LARVAL COORDINATES FOR FIELD 5-54 PLOT 5 COLLECTED CA 6/18/76. NUMPER OF COORDINATE PAIRS EQUALS 19. X Y X V X Y X V C.00 8.42 1.17 5.67 2.33 9.33 2.92 4.58 5.25 4.33 5.25 5.33 8.75 5.75 9.33 4.0 12.25 0.3 12.25 2.50 1.17 3.52 6.42 9.92 12.83 8.75 1.75 5.00 4.33 8.42 5.25 4.25 8.17 3.17 6.5C 11.67 6.58 .75 LARVAL COORDINATES FOR FIELD 5-61 PLOT 1 COLLECTED ON 6/22/76. NUMBER OF COORDINATE PAIRS EQUALS 11. x Y X Y X Y X Y 9.33 2.42 .58 13.83 1.75 .17 1.75 1.30 2.92 3.67 ‘.67 3.92 4.67 4.83 .58 12.83 0.00 15.75 .67 LARVAL CCORDINATES FOR FIELD 5-61 PLOT 2 COLLECTED CK 6122/76. NUMBER OF COORDINATE PAIRS EQUALS 73. x Y X Y X Y X Y 7.00 1.33 0.30 1.33 .58 3.33 1.75 2.00 4.08 2.83 5.25 1.92 5.25 1'10 J.» 6.42 3.42 7.00 6.33 7.58 5.75 8.75 6.0C 9.92 3.92 9.92 4.83 9.92 6.00 9.92 25.00 10.50 5.00 11.08 25.67 11.38 25.67 11.08 26.67 11.08 27.42 11.08 27.42 11.38 28.00 11.67 24.30 11.67 24.0 11.67 25.75 11.67 28.42 11.67 30.00 12.25 24.67 12.25 25.33 12.83 9.42 12.83 24.92 13.42 9.33 13.42 10.00 13.42 11.00 14.58 10.00 15.17 8.67 15.17 9.92 16.92 .25 16.92 2.92 17.53 3.30 17.50 4.00 17.50 5.00 17.53 5.58 17.50 6.42 17.50 6.75 17.50 8.00 17.50 8.00 17.50 11.5? 18.38 .58 2.83 4.30 18.08 8.25 18.08 9.42 18.08 9.00 18.67 18.67 4.25 18.67 5.25 18.67 6.50 18.67 9.00 18.67 10.33 1°.25 3.33 19.25 3.58 19.25 S .120 19.25 13.75 19.25 11.30 19.83 3.30 19.83 10.67 19.83 11.30 23.42 4.42 21.00 5.00 21.00 9.00 21.58 5.17 22.17 6.“0 408 LARVAL COORDINATES FOR FIELD 5'6-1 PLOT 3 COLLECTED C-‘f 6/22/76. NUMBER OF COORDINATE PAIRS EQUALS 14. X Y X Y X Y X Y C.00 7.0 .58 4.83 1.17 2.5’.‘ 1.17 6.08 1.75 2.42 2.33 0.00 2.92 2.33 2.92 3.17 2.92 5.50 3.50 4.00 4.08 3.25 11.67 .17 11.67 2.00 11.67 2.58 ...—... LARVAL COOPDI~ATE$ FDR FIELD 5-58 PLOT 1 COLLECTED_ Cu 3/ 717?. NUMBER OF COORDINATE PAIRS EDUALs 60. X Y X Y X Y X Y C.00 9.67 0.00 4.75 0.00 5.58 .58 9.33 .58 9.33 .58 9.17 .58 9.17 1.17 0.00 1.17 1.42 1.17 1.58 1.17 4.33 1.75 13.00 1.75 .33 1.75 7.83 1.75 5.25 2.33 1.25 2.33 8.50 2.33 4.00 2.33 4.17 2.92 8.42 2.92 3.33 2.92 8.58 3.50 9.67 .50 8.17 4.08 .67 4.08 9.00 4.08 1.83 4.08 4.58 4.67 8.50 4.67 2.67 4.67 8.42 5.25 0.00 5.25 7.00 5.25 5.75 5.83 9.25 5.83 1.17 5.83 2.67 5.83 4.08 6.42 9.75 6.42 1.00 4.42 .67 6.42 7.15 7.50 1.92 7.0: 4.75 7.00 6.75 7.00 5.33 7.58 6.08 7.58 9.83 7.58 2.58 8.17 8.58 8.17 3.33 8.17 6.2‘0 8.75 3.00 8.75 ’.‘-.00 8.75 9.17 8.75 4. 0 8.75 5.33 9.33 .75 9.33 8.17 9.33 7.17 LARVAL COORDINATES FOR FIELD 5'58 PLOT 2 COLLECTED CN 6/ 7/77. NUMBER OF COORDINATE PAIRS EQUALS 14. X Y X Y X Y X Y 1.17 1.42 1.17 8.25 2.33 8.58 2.92 5.33 3.50 .50 3.50 8.75 3.50 5.58 5.25 9.33 5 .83 7.42 6.42 3 .92 7.00 .67 7.00 2.92 9.17 9.17 8.75 4.00 LARVAL COORDINATES FOR FIELD 5'58 PLOT 3 COLLECTED C" 6/ 7/77. NUMBER OF COORDINATE PAIRS EQUALS 5. X Y X Y X Y X Y 2.33 3.42 2.92 2.08 3.50 6.33 4.08 3.25 8.17 1‘00!) 409 LARVAL COORDINATES FOR FIELD 5-58 PLOT 1 COLLECTED CN 6114/77. NUHPER OF COORDINATE PAIRS EQUALS 82. X Y X Y X Y x v ”..00 6.08 0.00 4.92 5.00 3.25 0.00 4.42 .58 .25 .58 4.00 1.17 9.75 1.17 10.30 1.75 9.58 1.75 2.58 1.75 5.?0 1.75 4.92 1.75 4.33 2.33 .08 2.33 6.75 2.33 2.67 2.33 6.17 2.92 8.42 2.92 8.17 2.92 2.25 3.50 1.00 3.50 8.42 3.56 8.00 3.50 6'62 3.58 5.92 10.00 4.C8 9.92 4.08 2.08 4.C8 6.67 4.08 6.33 4.08 5.83 4.08 4.83 6.08 5.0 4.08 3.25 4.67 8.5? 4.67 7.75 5.25 10.00 5.25 3.17 5.25 3.17 5.25 3.33 5.25 5.33 5.25 4.58 5.25 3.83 5.83 1.53 5.83 1.5‘.‘ 6.42 5.17 7.00 10.00 7.00 10.00 7.00 8.83 7.30 8.08 7.58 8.83 8.17 .83 8.17 8.92 8.17 7.17 8.17 1.17 8.17 6.42 8.17 3.83 8.17 2.33 8.75 9.67 8.75 8.80 8.75 4.28 8.75 4.83 8.75 6.33 8.75 5.58 9.33 2.67 9.33 3.17 9.33 3.5? 9.33 9.33 9.33 9.17 9.33 8.75 9.33 8.88 9.33 1.42 9.33 6.92 9.33 1.53 9.33 4.33 9.33 2.25 9.33 3.75 9.92 1.92 9.92 2.25 9.92 5.00 9.92 8.33 9.92 8.67 LARVAL COORDINATES FOR FIELD 5-58 PLOT 2 COLLECTED Ck 6/14/77. NUMBER OF COORDINATE PAIRS EQUALS 17. X Y X Y X Y X Y C.OO 9.“8 0.30 8.50 1.17 .33 1.75 1.67 1.75 6.42 4.67 4.67 4.67 3.00 4.67 3.67 5.25 3.67 5.25 3.67 6.42 5.92 7.58 7.42 8.75 3.17 8.75 3.17 8.75 3.25 9.92 .5? 9.92 3.33 LARVAL CCORDINATES FOR FIELD 5-58 PLOT 3 COLLECTED CN 6/14/77. NUMEER OF COORDINATE PAIRS EQUALS 16. X Y X Y X Y X Y .58 6.70 1.17 .33 1.17 5.83 2.33 9.30 2.33 7.17 2.92 9.83 4.67 .83 4.67 2.78 7.70 6.08 7.00 4.00 7.00 8.33 7.5? 17'QDO 8.17 4.67 8.75 8.58 9.33 6.?8 9.33 3.58 410 LARVAL CCORDINATES FOR FIELD 5'58 PLOT 1 COLLECTED Ck 6I17/77. NUW‘ER OF COORDINATE PAIRS EQUALS 13. X Y X Y X Y X Y .58 1."8 1.17 9.83 1.17 9.25 1.17 8.5; 4.67 9.75 5.25 7.08 5.83 7.67 5.83 6.75 7.5.0 8.50 8.17 1.58 8.75 7.90 8.75 (‘.’-O 9.33 9.17 LARVAL CCORDINATES FOR FIELD 5'58 PLOT 2 COLLECTED CN 6/17/77. NUMBER OF COORDINATE PAIRS EQUALS 9. X Y X Y X Y X Y 2.33 5.92 4.67 6.00 5.25 6.5?- 5.83 5.75 5.83 5.75 6.42 6.83 9.92 9.98 9.92 6.83 9.92 1.33 LARVAL COURDINATES FOR FIELD 5'58 PLOT 3 COLLECTED rx 6/17/77. NUMPER 0F COORDINATE PAIRS EDUALs 4. x v x v x v x v 5.00 9.50 0.35 9.08 1.75 7.7‘4‘ 3.5" 4.83 LARVAL COORDINATES FOR FIELD 5'58 PLOT 1 COLLECTED CN 6/21/77. NUMBER OF COORDINATE PAIRS EQUALS 15. X Y X Y X Y X Y .58 6.70 .58 6.00 .58 4.25 2.33 5.08 2.92 .92 3.5“ 6.17 3.50 2.56- 4.67 3.83 5.25 7.67 7.")0 4.25 8.75 18.00 8.75 5.58 8.75 5.5? 9.33 2.42 9.92 7.42 411 LARVAL COORDINATES FOR FIELD 5‘58 PLOT 2 COLLECTED CN 6/21/77. ”UMBER OF COORDINATE PAIRS EQUALS 5. x Y X Y X Y X Y 5.83 4.08 7.58 5.67 LARVAL COORDINATES FOR FIELD 5'58 PLOT 3 COLLECTED CN 6/21/77. NUMBER OF COORDINATE PAIRS EQUALS 3. X Y X Y X Y X Y 5.83 4.50 6.42 10.00 7.58 6.08 LARVAL COORDINATES FOR FIELD 8-13 PLOT 1 COLLECTED CN 5/31/77. NUMBER OF COORDINATE PAIRS EQUALS 62. X Y X Y X Y X Y (.00 .67 0.00 2.67 0.00 5.17 9.30 7.17 .58 1.70 .58 1.67’ .58 3.67 .58 '5.83 .58 9.50 1.17 1.92 1.17 5.67 1.17 7.50 1.17 9.70 1.17 9.42 1.75 .42 1.75 1.67 1.75 2.“8 1.75 4.50 1.75 4.67 1.75 5.67 2.33 2.92 .«2‘8 .58 2.33 9.53 2.92 .17 2.92 .33 2.92 5.33 2.92 5.67 2.92 8.00 2.92 8.83 2.92 9.33 2.92 9.67 3.58 9.83 4.08 3.50 4.08 8.00 4.08 8.42 4.38 9.00 4.08 9.33 4.67 3.42 5.25 8.80 6.42 7.75 6.42 7.58 .33 .33 7.90 3.50 7.00 8.67 7.58 .“8 7.58 2.08 7.58 5.75 7.58 7.00 8.17 3.42 8.17 5.83 8.17 7.83 8.75 .17 8 .75 .25 8.75 2 .67 8 .75 4 .67 8 .75 6.42 8.75 9.10 9.33 8.50 9.92 .33 9.92 1.5'.‘ 1C.50 .42 10.50 8.33 LARVAL COORDINATES FOR FIELD 8'13 PLOT 2 COLLECTED CN 5/31/77. NUMBER OF COORDINATE PAIRS EQUALS 9. X Y X Y X Y X Y 2.33 6.17 2.02 .53 2.92 1.17 2.92 6.17 3.5" 6.50 3.50 7.92 3.5? 8.50 3.5? 9.53 4.67 5.58 5.25 5.67 5.83 4.?0 5.83 8.75 5.83 9.33 6.42 2.17 6.42 2.33 6.42 6.80 6.42 8.92 7.58 8.00 8.75 .83 9.33 13.00 412 LARVAL COORDINATES FOR FIELD 8'13 PLOT 1 COLLECTED CA 6/ 7/77. NUMBER OF COORDINATE PAIRS EGUALS 45. X Y Y X Y X Y X' C.CD 8.08 0.00 3.25 .58 0.00 .58 1.92 .58 7.5? .58 7.42 .58 7.17 1.17 9.33 1.75 7.‘O 2.33 4.5? 2.92 9.83 2.92 2.17 2.92 2.17 3.57 1.08 3.50 .42 3.59 2.75 .38 8.75 4.38 1.67 4.08 3.25 4.38 3.75 [0.38 6.25 4.67 3.25 4.67 6.33 4.67 6.83 5.25 6.83 5.83 9.00 5.83 4.33 5.83 6.17 5.83 9.42 5.83 8.33 5.83 2.33 5.83 3.5% 6.42 9.75 6.42 2.17 6.42 9.33 6.42 2.50 7.30 8.42 7.00 1.17 7.00 9.58 7.58 .17 7.58 8.30 7.58 6.42 7.58 4.75' 8.17 3.25 8.17 7.25 LARVAL COORDINATES FOR FIELD 8'13 PLOT 2 COLLECTED CN 6/ 7/77. NUMBER OF COORDINATE PAIRS EGUALS 17. x Y X Y X Y X Y C.OO 2.00 2.92 9.00 5.25 10.00 7 .30 5.17 7.53 5.33 7.00 0.00 6.42 2.33 9.58 .92 4.67 9.92 4.67 4.25 6.42 7.70 7.?0 7.33 .98 7.58 1.67 7.58 7.33 LARVAL COORDINATES FOR FIELD 8-13 PLOT 3 COLLECTED CN 6/ 7/77. NUMBER OF COORDINATE PAIRS EQUALS 25. X Y X Y X Y X Y C.OC 2.30 2.33 5.42 3.50 9.92 5.25 7.33 5.83 7.30 0.00 2.92 4.67 5.25 6.42 8.17 2.25 8.17 8.75 6.38 7.25 3.58 1.17 3.25 3.67 6.67 0.00 4.25 2.92 .83 5.25 9.00 5.25 5.67 6.42 3.67 8.75 9.17 6.58 1.08 .42 1.33 5.58 5.25 413 LARVAL COORDINATES FOR FIELD 8-13 PLOT 1 COLLECTED ON 6/10/77. NUMBER OF COORDINATE PAIRS EQUALS 90. x Y X Y X Y X Y 6.00 3.42 0.00 8.75 0.00 7.17 0.00 9.1? .58 .17 .58 3.3 .58 2.67 1.17 8.75 1.17 1.75 1.17 1.75 4.78 2.33 3.42 2.33 8.25 2.92 8.67 1.75 1.75 2.33 2.33 2.92 2.92 2.92 2.92 2.92 6.25 3.53 3.50 8.53 4.08 4.38 8.25 4.08 4.08 3.33 4.08 4.67 4.25 6.42 10.00 7.00 9.08 7.00 7.73 7.58 8.’8 7.58 6.83 6.42 7.00 7.00 7.58 7.58 9.17 5.?6 8.17 8.75 9.67 8.75 2.17 9.92 1.75 8.75 8.75 9.92 7.33 3.90 5.33 3.83 1.33 7.51 4.50 9.75 9.83 8.00 4.33 2.59 9.08 4.42 8.17 .17 6.83 7.92 5.08 2.17 1.17 3.75 1.75 7.67 1.75 5.75 2.33 2.33 2.67 2.92 2.92 3.50 4.08 4.08 4.08 5.83 6.42 7.00 7.00 7.58 7.58 8.17 8.75 9.33 .83 6.75 8.83 8.50 1.67 5.25 1.83 5.75 9.00 6.17 7.83 4.75 7.58 7.17 7.08 .58 1.67 1.75 2.33 2.33 2.92 2.92 2.92 3.50 4.08 6.08 4.67 6.42 6.42 7.00 7.50 7.58 8. 7 8.17 8.75 9.33 8.83 3.75 3.50 2.67 8.75 9.50 2.75 5.33 8.08 8.42 2.92 9.33 6.83 6.30 8.25 5.42 6.92 1.67 8.17 .17 2.C0 LARVAL COORDINATES FOR FIELD 8-13 PLOT 2 COLLECTED CN 6110/77. NUMBER OF COORDINATE PAIRS EQUALS 15. x v x v x v x Y 5.00 8.17 .58 7.00 2.33 9.75 2.33 3.75 2.33 2.33 2.33 4.92 6.08 9.75 4.67 7.08 5.83 7.17 5.83 5.92 7.00 4.58 7.00 3.67 7.00 7.00 8.75 9.08 8.75 .58 LARVAL CCCRDINATES FDR FIELD 8-13 PLOT 3 COLLECTED ON 6/10/77. NUMEER 0F COORDINATE PAIRS EQUALS 21. x v x v x v x v 6000 7.25 1.1? 1.67 1.17 S..O 1.75 9.:‘8 2.33 3.57 2.92 .83 2.92 4.67 3.50 7.17 3.59 6.08 3.5? 2.42 3.5: 3.08 4.6? 1.'0 5.25 13.00 5.25 1.67 5.83 9.83 6.42 9.30 ,7.00 8.17 6.92 3.25 7.58 4.59 8.17 9.75 8.17 3.78 414 LARVAL COORDINATES FOR FIELD tn 6/14/77. 8-13 PLOT 1 COLLECTED NUMBER OF COORDINATE PAIRS EQUALS 13. X Y X Y X Y X Y 3.00 9.42 .58 9.17 .58 6.3 2.33 7.92 2.33 2.33 2.92 4."8 2.92 5.08 4.68 .42 4.08 7.75 5.83 7.58 5.8 9.00 7.00 5.25 7.58 9.25 8.75 7.92 8.75 7.17 9.92 3.5" 0.00 1.17 2.33 3.50 4.08 6.42 7.58 8.75 6.67 7.92 2.83 9.17 .58 9.50 2.33 9.50 2.92 9.17 4.?8 8.58 2.00 4.67 8.92 10.00 6.42 7.17 2.42 6.75 8.17 8.25 8.75 6.75 LARVAL COORDINATES FOR FIELD 8-13 PLOT 2 COLLECTED CN 6114/77. NUMBER OF COORDINATE PAIRS EQUALS 34. X Y X Y X Y X Y C.CD .59 .58 1.59 .58 .83 1.17 1.53 1.17 2.83 1.75 8.83 1.75 2.75 1.75 .6.83 1.75 3.33 2.33 4.33 3.83 2.33 1.90 2.92 3.08 3.5C .83 3.59 4.42 3.50 4.17 3.5? 4.17 3.50 2.50 4.38 1.83 4.67 16.05 4.67 9.7 4.67 7.25 ‘S.25 1.25 5.25 3.92 5.25 5.33 5.83 2.67 5.83 6.83 5.83 4.50 6.42 7.25 6.42 2.67 7.?0 4.75 7.58 8.83 7.58 2.42 LARVAL COORDINATES FOR FIELD 8-13 PLOT 3 COLLECTED CN 6/14/77. NUMBER OF COORDINATE PAIRS EGUALS 42. X Y X Y X Y X Y 3.00 7.50 .58 3.30 1.75 1.25 2.33 3.50 2.33 6.67 2.92 9.42 5.25 1.17 5.25 6.85 6.42 2.00 8.17 3.58 0.30 1.17 1.75 2.33 2.92 3.50 5.25 5.25 7710 .-- 8.17 6.75 3.3 7.33 1.50 1.17 3.00 2.17 5.83 3.58 9.92 0.00 1.17 .58 8.33 1.17 6.33 1.75 2.17 1.75 7.33 1.75 4.17 2.33 7.17 2.33 6.58 2.92 8.00 2.02 2.17 4.67 .83 4.67 1.83 5.25 5.25 7.42 6.42 .92 6.42 1.28 7.58 5.25 7.58 9.92 8.17 6.5? 8.75 1.92 8.75 6.93 8.75 9.83 415 LARVAL COORDINATES FOR FIELD 8'13 PLOT 1 COLLECTED CN 6/17/77. NUMRER OF COORDINATE PAIRS EQUALS 13. X Y X Y X Y X Y .58 4.83 .58 1.17 2.92 4.17 4.67 9.42 5.25 1.17 5.25 9.53 5.25 3.25 5.25 4.67 5.83 1.“8 7.58 10.00 8.17 8.00 8.17 7.30 9.92 3.42 LAPVAL COORDINATES FOR FIELD 8'13 PLOT 2 COLLECTED CK 6/17/77. NUMBER OF COORDINATE PAIRS EGUALS 13. X Y X Y X Y X Y 1.1? 4.83 1.17 4.C8 1.17 4.20 2.92 9.83 7.58 5.17 8.17 10.0D 8.17 2.17 9.92 1.5? 9.92 8.17 LARVAL COORDINATES FOR FIELD 8-13 PLOT 3 COLLECTED CN 6/17/77. NUMOER OF COORDINATE PAIRS EQUALS 21. X Y X Y X Y X Y (.00 2.17 .30 0.00 0.00 1.42 9.00 9.42 .58 0.00 .58 1.33 .58 4.5” 2.33 ~ s’od 2.33 2.83 2.92 5.17 3.50 6.25 4.67 3.98 5.83 .58 7.58 fl 0'4 7.58 7.83 8.17 3.58 8.17 4.17 8.17 6.08 9.33 5.33 9.92 1.67 9.92 9.25 LARVAL CCORDINATES FOR FIELD 9-15 PLOT 1 COLLECTED CK 6/ 717?. NUMBER OF COORDINATE PAIRS EQUALS 28. X Y X Y X Y X Y .58 3.530 .58 4.17 1.17 10.00 1.75 8.33 2.33 .25 3.50 1.08 4.08 4.33 4.67 1.92 4.67 6.““ 4.67 8.58 5.25 5.25 5.83 2.33 5.83 8.90 6.42 7.42 7.58 3.42 7.58 3.58 7.58 7.83 8.17 10.00 8.75 9.08 9.33 5.33 9.92 5.92 9.92 2.50 10.50 8.00 1C.50 8.92 16.50 9.67 10.50 2.50 11.67 9.50 11.67 8.92 416 LARVAL COOPDINATES FOR FIELD 9-15 PLOT 2 COLLECTED Ch 6/ 7/77. NUMBER OF COORDINATE PAIRS EQUALS 28. ‘1 Y X Y X Y X Y (.00 1.58 0.00 3.17 .58 1.75 2.67 2.33 4.53 3.59 4.67 8.67 4.67 4.3 5.25 2.83 5.25 3.25 5.83 6.17 6.42 8.17 0.03 8.17 5.30 17 4.67 5.25 7.03 8.17 a 9.33 8.42 9.92 6.40 9.92 b O T U U Q ' N V I . . m a u fl n ‘ j c a A « n ~ o m J . ' D ' V “ .58 6.17 4.98 5.25 5.83 7.00 8.75 9.92 6.25 1.33 8.25 3.75 5.92 6.6? LARVAL COORDINATES FOR FIELD 9'15 PLOT 3 COLLECTED CN 6/ 7/77. NUMEER OF COORDINATE PAIRS EQUALS 18. X Y X Y X Y X Y 2.30 o 1.75 A 4.68 5.83 8.17 ) " 4 I I L M V 9 ' ) . 1 3 ' 1 0 O O D I D ' D ' V 0.00 2.59 1.17 6.70 2.92 7.42 3.50 4.98 5.58 4.67 1.75 1.75 4.98 5.25 6.42 4.83 7.00 4.58 8.17 9.33 1.58 LARVAL COORDINATES FOR FIELD 9‘15 PLOT 1 COLLECTED CN 6/10/77. NUMBER OF COORDINATE PAIRS EQUALS 29. x Y X Y X Y X Y 2.00 7.58 0.00 8.53 .58 .58 8.92 1.17 9.17 1.75 8.42 2.33 3.50 5.25 S .83 7.00 9.33 2.92 4.83 3.50 1.5C 4.08 9 an Ia- 4.50 6.42 6.83 A .67 9.38 5.25 9.67 6.42 9.08 8.17 6.17 8.75 4.90 .58 2.33 3.50 4.67 5.83 7.30 9.33 e d 0 o o o I “ V I n o ‘ U J U N I U V " . ' 1 ) ( ) . u n - w o e m 0 2 ’ 1 1 : 417 LARVAL COORDINATES FOR FIELD 9-15 PLOT 2 COLLECTED CN 6110/?7. NUMBER OF COORDINATE PAIRS EQUALS 11. X Y X Y X Y X Y 2.33 .83 2.33 5.83 3.50 4.75 4.67 8.83 6"? 10.60 7.00 .17 8.17 7.83 8.17 7.25 8.75 1.75 8.75 2.58 8.75 2.75 LARVAL COORDINATES FOR FIELD 9'15 PLOT 3 COLLECTED CK 6/10/77. NUMBER OF COORDINATE PAIRS EQUALS 7. X Y X Y X Y X Y .58 2.17 1.17 9.33 1.1? 7.33 1.75 0.33 5.83 3.5” 8.17 7.17 8.17 4.5“ LARVAL COORDINATES FOR FIELD 9-15 PLOT 1 COLLECTED Ck 6114/77. NUMBER OF COORDINATE PAIRS EQUALS 17. X Y X Y X Y X Y 1.17 7.33 1.17 7.33 1.17 3.75 1.17 5.5 ‘ 3.50 6.67 4.08 .92 4.08 6.50 4.67 2.3 0 5.25 .58 5.25 1.25 5.83 9.33 6.42 1 7 5 6.42 2.92 6.42 5.67 8.75 9.17 8.75 9 2 9.92 6.58 LARVAL COORDINATES FOR FIELD 9'15 PLOT Z COLLECTED CK 6/14/77. NUMBER OF COORDINATE PAIRS EQUALS 12. X Y X Y X Y X Y '.00 3.50 .58 .67 1.17 4.5“ 1.75 4.58 4.08 4.08 4.67 4.00 4.67 3.25 6.42 4.83 5325 1.81 70-43 8.00 9.92 10.?0 11.:‘8 (0.5 1‘ 418 LARVAL COCRDINATES FOR FIELD 9-15 PLOT 2 COLLECTED ON 6/14/77. NU"”3ER OF COOPDINATE PAIPS ERL‘ALS 13. X Y X Y X Y X Y {.00 0.75 .58 7.83 2.33 0.3? 2.33 8.00 2.33 8.7"? 2.33 7.9? 3.5'3 4.08 4.67 6.30 5.25 1.‘O 5.83 4.00 5.83 4.-.‘0 6.42 2.30 7 .30 3 .33 LARVAL COORDINATES FOP FIELD 9-15 PLOT 1 COLLECTED ON 6/17/77. NUMBER OF COODDINATE PAIRS EQUALS 5. X Y X Y X Y X Y .58 9.67 2.92 2.50 4.67 .75 5.83 7.83 5.83 5.67 LARVAL COORDINATES FOR FIELD 9'15 PLOT 2 COLLECTED CK 6117/77. NUMBER OF COORDINATE PAIRS EQUALS 12. X Y X Y X Y X Y (500 10.90 0.00 2.92 .58 8.83 .58 2.92 .58 5.42 1.75 2.67 2.33 3.67 3.5? 5.75 5.25 0.00 5.25 4.75 7_r-(: 8.75 8.17 7.58 LARVAL COCRDINATES FOR FIELD 9'15 PLOT 3 COLLECTED CK 6/17/77. NUMBER OF COORDINATE PAIRS EGUALS 10. X Y X Y X. Y X Y .58 5.67 1.75 5.00 2.33 8.5“ 2.33 7.00 3.56 4.25 5.25 .75 5.25 .S‘ 5.83 1.42 7.58 .33 7.58 6.5? 419 LARVAL COOPOINATES FOR FIELD 9-15 PLOT 1 COLLECTED CH 6/21/77. NUHPER OF COORDINATE PAIRS EQUALS 1. X Y X Y X Y X Y 9.33 2.75 LARVAL COORDINATES FOR FIELD 9'15 PLOT 2 COLLECTED CK 6/21/77. NUMPER OF COORDINATE PAIRS EQUALS 1. X Y X Y X Y X Y 4.6? 4.‘C LARVAL CCOPDINATES FOR FIELD 9'15 PLOT 3 COLLECTED CN 6/21/77. NUMBER OF COORDINATE PAIRS EQUALS - 3. X Y X Y X Y X Y 2.92 7.17 9.92 8.92 1?.56 7.92 420 m WIMTES Fm FIELD 5-60 PLOT l (ILLECTED 04 5/31/78. PLOT DIEM-3106 8 6 BY 6 FEET. X Y MINATES 0.00 .17 .42 .50 .50 1.33 1.67 1.67 2.67 2.67 2.% 5.67 3.% 3.08 5.33 3.00 5.00 5.00 2.92 4.67 4.50 3.% 3.% 3.50 4.% 4.% 3.92 3.50 5.58 2.50 4.% .58 .50 .% .17 1.50 .33 1.42 l.% 1.50 2.00 2.00 2.50 2.50 2.50 2.75 2.67 2.25 6.00 6.00 2.67 3.08 3.00 5.33 3.25 4.% 2.% 4.% 4.50 4.17 3.33 3.08 1.17 .% .25 .92 .92 .92 .92 1.25 .50 2.67 2.% 2.08 1.50 1.33 2.33 2.75 6.50 6.00 3.00 2.92 3.17 5.92 3.5) 5.92 3.% 5.17 5.17 4.00 4.33 4.% 5.00 2.17 1.75 0.00 .17 .67 .75 .75 1.00 .% .% 1.42 1.42 1.67 1.50 2.25 2.25 2.17 6.00 6.00 2.67 2.% 5.% 3.17 5.67 3.% 5.50 5.17 5.17 3.% 5.00 3.92 4.00 4.% 4.67 4.17 4.58 4.% 3.92 4.67 5.50 5.50 3.92 2.67 .% 2.33 1.25 0.N 0.00 .25 .17 1.33 150 1.25 1.25 1.58 1.67 2.% 2.17 1.42 1.42 2.42 2.50 3.17 5.92 3.42 5.92 2.50 5.75 3.25 3.25 5.17 467 3.25 4.75 3.33 4.67 3.% 4.25 3.92 6.00 6.00 2.92 .08 .67 .92 1.17 1.67 2.% 2.17 2.17 2.42 2.25 6.00 1.75 2.75 4.42 4.42 4.42 4.67 5.% 4.% 4.% 5.17 5.17 5.17 5.50 4.50 1.67 3.50 .33 .50 .50 1.00 .67 1.92 2.00 2.33 2.33 2.50 2.% 1.75 2.67 3.% 3.% 6.00 6.00 4.00 4.00 5.00 4.42 4.42 5.% 5.% 5.50 4.08 0.00 2.% .33 .42 3.% 2.17 1.92 2.42 5.% 2.58 5.50 5.50 5.33 5.38 4.67 4.00 4.00 4.50 4.50 3.17 3.% 3.92 1.75 4.66 .33 04X) .17 .42 1.42 .% 1.00 1.67 6.00 2.% 3.00 2.92 2.% 2.% 3.17 3.17 3.17 4.00 5.50 3.92' 6.00 6.00 6.00 4.00 4.% 4.58 3.33 5.25 2.00 2.00 5.67 1.83 4.17 2.% 20m 5.83 .67 .67 2.50 2.67 3.33 4.50 5.83 2.50 — u w - g u L 8 8 8 8 1. 8 8 4 8 3. .92 6.00 2.00 2.17 6.00 3.25 3.25 5.00 5.17 .67 4.67 LARVAL COORDINATES FOR FIELD 5-60 PLOT 1 COLLECTED ON 6/ 6/78. PLOT DIHENSIONS 8 6 8V 6 FEET. X Y COORDINATES 0.00 6.00 6.00 6.00 0.00 5.67 5.50 5.33 5.33 .33 .33 5.00 5.00 5.00 5.00 5.00 4.83 4.50 1.08 1.92 1.08 5.33 5.17 1.17 5.92 1.25 5.83 5.92 1.42 1.42 1.42 1.42 1.42 1.42 1.67 5.17 4.83 1.67 4.33 4.33 4.33 4.17 1.75 1.75 4.17 4.17 4.17 1.83 4.17 1.83 3.92 .83 3.83 1.83 3.83 3.67 3.83 3.83 2.08 2.08 2.08 2.08 4.33 4.33 4.33 2.17 2.17 3.50 3.50 3.17 3.83 3.83 2.67 2.25 2.25 2.25 2.25 3.00 3.00 2.67 2.50 2.50 2.50 2.50 4.33 2.50 3.67 4.00 2.33 2.67 2.67 3.33 3.33 .75 6.00 3.50 4.50 3.42 5.50 .58 .17 .17 1.50 6.00 .08 5.67 5.67 5.00 5.00 .42 4.50 4.50 .67 3.17 3.00 4.83 4.50 3.00 6.00 5.50 4:50 1.17 6.00 6.00 6.00 5.% 5.33 4.83 4.67 4.33 4.33 .58 1.17 3.00 3.50 1.42 3.33 2.50 2.83 2.83 2.50 1.58 3.00 1.75 1.83 4.33 1.92 4.83 5.00 2.00 2.50 5.67 5.33 4.00 2.33 1.17 4.67 4.33 5.17 5.33 5.33 5.50 1.08 5.50 5.50 1.08 1.08 5.33 5.33 5.17 5.50 6.00 1.67 1.58 1.75 4.83 4.83 2.08 1.50 2.25 2.25 3.00 1.83 10% 2.83 2.83 2.58 2.58 2.33 2.33 2.50 2.67 2.92 3.17 2.58 2.67 1.75 5.50 2.00 3.08 2.17 5.50 3.08 2.58 4.17 2.83 5.17 4.50 1.75 0.00 5.67 2.50 0.00 0.00 2.67 5.92 5.17 2.83 5.17 5.33 2.08 5.17 2.25 4.33 1.33 7 3.58 3.67 1.33 5.17 3 3 1 3 2.08 5.33 5.33 5.00 .75 2.50 5.00 1.33 1.33 4.50 4.50 4.17 2.50 4.17 3.67 2.83 2.08 4.33 3.33 1.75 4&22 1.75 5.17 4.00 2.00 2.42 2.42 2.50 ” 0 C N s é 5.67 . . . h N . 2.25 2.% 0.00 0.00 0.00 .67 .92 .92 1.25 .67 .83 2.33 2.33 6.00 5.83 2.17 3.83 3.50 5.33 2.58 4.50 3.25 4.50 2.17 5.33 5.33 3.33 3.33 2.50 2.92 0.00 5.33 .25 .50 .50 5.17 3.67 3.33 .50 1.33 2.33 2.33 2.50 1.67 1.75 2.00 2.00 2.83 3.00 4.00 5.00 2.33 6.00 6.00 5.83 5.92 4.00 .92 2.42 2.17 4.00 3.50 5.83 .67 .92 2.42 1.83 3.83 5.83 5.33 4.83 3.83 1.08 2.25 .50 4.% a s a h a a a a a — u h - t N a w ‘ N a s a h h é h é s _ - r : h o t u a n c - u - n a 8 3 8 S 8 8 : 8 . r v w r r y w ‘ 9 . “ i 8 8 8 . . . . N . . ” E . 8 8 3.92 2.33 2.17 2.17 4.33 4.50 3.17 3.50 5.00 5.00 3.50 3.17 .92 1.00 1.00 2.50 3.50 2.67 2.67 1.58 5.67 3.42 2.58 5.00 2.58 2.33 5.67 5.17 3.33 1.17 1.92 2.67 3.00 5.50 .25 4.17 .92 1.00 4.67 4.00 .50 4.00 2.83 2.50 2.00 5.00 5.17 .67 3.17 2.17 1.50 3.83 3.33 1.33 1.33 5.00 4.83 .67 4.17 .58 3.67 3.33 2.33 2.50 2.17 2.17 2.17 2.25 3.67 6.00 1.17 .67 4.66 5.67 5.83 2.75 .83 5.83 2.67 3.17 .17 5.25 3.25 1.08 1.25 2.50 .17 .75 4.33 5.17 1.50 2.00 .67 5.17 3.33 1.00 1.00 4.67 1.08 1.08 3.67 3.67 3.67 2.25 2.17 3.17 2.17 2.17 3.17 1.42 2.00 4.33 5.17 5.50 1.42 2.75 2.08 5.67 5.67 3.50 5.83 .17 5.17 3.33 .75 4.33 4.33 4.25 .58 2.58 4.50 4.50 2.42 2.42 5.50 2.50 .67 .67 5.83 4.00 2.17 3.50 1.08 2.17 1.67 1.92 1.92 1.58 2.25 5.58 2.00 423 5.93 .09 .99 .09 .75 .09 .75 .25 .25 2.17 .50 .50 .50 .93 1.17 1.17 1.17 1.25 1.25 1.25 1.25 1.42 1.42 1.59 1.75 2.00 2.00 2.00 2.00 2.17 2.09 2.09 2.33 2.33 2.33 2.42 2.42 2.59 2.93 2.99 2.93 2.93 4.00 9.00 5.17 5.97 9.00 5.09 5.09 5.00 5.50 5.00 5.00 5.00 5.00 5.17 2.17 2.17 LARVAL 000901740795 Fan FIELD 5—90 PLOT 100mm 0“ 9727/79. PLOT 0199191079 . 9 9v 9 FEET. x vmxmss 0.00 3.50 3.50 5.50 1.17 1.17 .59 5.17 4.00 4.00 1.00 4.25 .92 2.17 3.17 4.00 3.09 1.17 2.09 3.25 1.17 4.00 4.00 5.17 .93 3.50 4.90 4.93 4.99 4.93 1.42 1.97 2.75 1.33 1.97 1.75 9.00 3.25 .92 3.00 1.17 2.09 2.00 5.17 2.92 5.99 4.17 3.97 3.97 9.00 5.25 5.17 2.93 9.93 3.75 3.25 2.50 4.97 4.97 4.59 4.33 3.97 3.50 5.09 3.97 5.25 3.93 5.09 4.50 1.33 5.00 1.50 4.50 1.93 3.97 2.00 3.75 4.09 5.97 4.09 9.00 .97 5.99 5.50 3.09 9.00 4.00 4.50 4.59 2.50 .97 3.97 3.93 4.99 3.92 5.17 .50 .50 5.00 3.00 4.92 .92 3.33 2.09 2.00 3.09 5.25 5.50 2.00 3.09 .09 4.39 3.75 3.97 2.50 5.97 2.50 3.97 3.97 3.33 3.50 2.50 5.17 2.42 2.09 1.97 2.00 LARVPL WINES Fm FIELD 5-60 PLOT 2 (ILLECTED 04 5I31/78. PLOT 0118451048 8 6 BY 6 FEET. X Y WIMTES 424 0.00 .17 .33 2.50 3.67 1.33 1.50 2.00 2.00 2.17 2.33 2.50 2.67 4.00 3.83 3.92 3.67 4.83 4.83 5.00 4.00 2.83 1.17 a w | 0 ? N 9 8 8 8 $ 8 3 8 9 ~ 8 8 .58 1.00 2.17 2.83 2.67 2.67 4Im 403 4.33 3.83 3.17 .67 4.17 5.83 1.17 OIW .33 .17 .17 2.17 2.17. 2.50 2.00 6.00 3.67 4.17 6.00 ' 1.75 0.00 1.17 1.17 2.00 6.00 4.83 2.17 4.83 2.33 1.00 1.00 1.08 1.08 3.50 3.33 3.00 3.50 5.67 5.58 4.00 5.25 1.67 1.67 1.17 1.33 1.50 3.17 3.17 3.83 4.50 5.17 2.83 5.67 5.17 2.17 1.17 1.50 1.50 3.33 ‘.m 5.83 5.67 5.00 4.83 5.00 6.00 2.17 2.67 3.50 4.33 4.17 4.17 3.00 2.67 2.00 2.92 .58 .50 2.33 2.33 2.50 2.67 2.67 1.33 3.67 5.00 3.67 4flm 4.00 3.67 6.00 5.83 5.08 5.42 3.50 .83 .50 .75 .33 .17 1.33 1.50 1.67 2.17 2.17 2.17 2.33 2.33 2.50 3.50 3.67 4.83 4.17 4.50 4.50 4.92 ‘.m .67 .67 .83 1.00 1.00 3.00 2.83 2.33 3.00 5.58 5.50 2.17 5.17 4.58 4.92 4.66 0.00 .17 .83 1.17 1.33 1.67 1.67 1.00 1.67 2.17 2.33 2.33 2.33 2.67 3.08 3.67 3.67 3.33 3.42 4.17 5.00 5.00 4.67 4.50 5.00 4.67 5.58 5.33 4.50 4.17 5.17 5.58 2.50 2.00 5.25 .17 .17 .33 .33 2.00 2.00 1.67 2.50 2.67 3Im 3.00 3.00 3.83 3.83 3.75 3.67 4.00 4.17 4.17 6.00 4.83 5.67 5.58 5.08 4.00 3.00 5.83 .17 1.17 1.50 1.50 1.50 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.17 2.67 3.17 3.50 3.33 4.17 4.33 4.33 4.33 4.33 4.50 5.00 3.33 3.33 5.42 4.83 5.58 5.58 1.33 3. 17 4.33 425 LAWN. C(IROIMTES Fm FIELD 5-60 PLOT 3 (ILLECTEO (N 5131/78. PLOT 0118431045 = 6 BY 6 FEET. X Y MIMTES 00m Cm Om Om 0% Im Om 1.17 2.17 2.” 2.17 2.67 3.00 3.50 5.% 3.00 5.50 5.17 5.% 2.67 4.67 4.67 4.% 4.00 4.00 4.% 3.67 3.50 5.33 1.00 100 1.00 2.00 0.00 2.00 .58 .17 .17 1.00 100 1.17 2.50 2.00 2.50 5.50 4.17 4.67 3.17 450 2.17 2.% 1.17 .17 1.00 1.00 .67 1.17 1.33 1.17 1.17 1 2.50 2.17 2.17 1.67 5.33 4.% 4.% 2.50 2. 2.50 2.00 4.67 5.50 5.50 5.00 4.17 1.75 .17 .33 0.00 0.00 .67 .67 1.17 1.50 1.50 1.50 2.00 2.00 2.17 2.67 2.17 3.00 3.50 4.33 5.50 4.50 4.% 4.67 4.% 5.67 6.00 6.00 1.00 33 .33 2.67 2.33 .33 .67 ." 1.17 1.33 1.50 .% 1.67 1.67 1.83 1.00 0.00 1.17 1.00 1.67 3.00 2.% 2.67 2.33 2.00 3.33 5.33 5.50 3.50 3.67 3.67 4.00 3.50 4.42 3.33 2.92 0.00 1.00 1.00 1.50 1.33 1.50 1.67 2.00 2.00 2.00 2.00 2.50 3.00 2.% 3.00 3.50 3.00 4.00 4.00 4.00 5.92 5.17 4.33 4.33 4.50 4.% 3.17 4.50 5.50 5.33 3.50 .17 .50 .50 .50 150 .50 2.17 2.17 1.50 3.33 4.00 4.17 4.00 4.25 5.00 00 4.08 .33 .67 1.00 100 3.33 6.00 2.67 5.33 4.50 4.58 .67 50 00 7 6.00 6.00 2.17 3.00 3.00 4.00 4.57 4.66 .50 .50 .50 .67 .83 1.67 2.00 2.00 2.00 3.00 3.% 3.00 2.67 5.% 5.50 3.08 5.33 3.00 3.17 5.00 3.33 5.00 5.00 4.00 4.00 4.67 4.17 5.25 .% .50 .17 .50 .67 1.00 1.33 1.33 1.33 1.67 1.67 2.00 2.17 2.33 2.33 2.33 3.00 4.00 4.17 4.00 426 5.00 3.00 2.67 .67 5.83 .67 .50 It7 I‘m 10m 1017 .50 1.67 2.00 2.00 2.17 2.33 2.33 3.17 3.33 3.17 4.00 4.00 ‘.m 6.00 6.00 5.92 5.00 5.00 5.00 5.17 5.17 5.33 5.67 2.83 LARVAL COORDINAJES FOR FIELD 5-60 PLOT 3 COLLECTED ON 6113/78. PLOT DIMENSIONS 8 6 BY 6 FEET. X Y CDORDINATES 0.00 5.67 .08 6.00 6.00 5.50 5.00 5.50 6.00 6.00 5.67 5.83 5.83 5.50 5.50 5.83 5.83 5.83 .17 .25 5.67 .08 .08 .08 0.00 .08 .08 5.50 .33 .33 .33 6.00 4.67 4.67 .33 4.67 4.33 4.33 4.33 4.33 .50 .67 5.67 .67 .75 .83 5.17 5.17 .67 .50 1.00 1.00 1.00 1.25 6.00 6.00 6.00 5.83 5.67 5.67 5.67 1.17 5.50 5.50 1.08 1.08. 1.08 5.00 4.83 4.83 4.83 4.67 1.67 1.67 1.67 5.00 5.50 1.42 1.42 1.42 1.42 1.42 5.83 5.00 5.00 5.00 2.17 5.00 5.00 5.00 1.17 1.17 1.00 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 1.67 1.67 1.67 1.67 4.33 4.00 4.00 1.50 4.00 4.00 4.00 4.00 44.00 1.17 3.92 3.92 3.92 2.50 3.92 3.92 3.92 3.92 3.92 3.29 3.92 4.00 4.00 2.50 2.50 2.50 4.67 2.50 3.83 3.83 3.83 2.00 2.00 3.67 3.67 3.17 2.00 3.17 2.67 3.50 2.67 2.33 2.33 2.33 2.33 2.33 3.50 3.50 3.50 3.83 3.83 3.83 2.50 2.92 3.00 2.50 2.50 3.17 3.17 3.17 3.17 2.50 4.33 5.00 .67 6.00 6.00 6.00 6.00 6.00 6.00 5.67 1.00 3.83 3.00 1.67 5.67 6.00 .17 .17 .17 .08 .08 6.00 6.00 6.00 6.00 6.00 .50 6.00 6.00 .50 .50 .50 6.00 5.67 5.67 5.67 .50 6.00 6.00 6.00 6.00 .17 .17 5.50 .17 5.33 5.33 5.33 5.00 5.00 5.00 5.00 .42 5.00 5.00 5.00 .42 .42 4.92 4.92 4.92 4.92 4.92 4.92 .67 .83 .83 .83 5.00 5.00 5.00 5.00 5.17 5.17 4.92 4.92 4.92 4.92 4.92 4.92 .42 1.00 1.00 1.25 4.33 4.33 4.33 .67 4.17 4.17 4.17 4.17 1.50 1.33 1.33 4.00 4.00 4.00 4.17 4.17 4.17 4.33 4.33 3.83 3.83 3.67 3.67 3.67 .42 3.83 3.83 4.00 4.00 4.00 4.33 4.33 4.33 1.50 3.00 3.00 3.00 3.17 3.17 3.17 3.17 1.50 3.00 3.00 2.17 3.00 3.00 3.00 1.50 1.50 1.50 1.50 4427 3.00 3.00 3.00 2.83 1.00 3.17 2.08 2.83 2.83 2.83 3.00 3.00 3.00 2.00 1.50 2.25 2.25 1.42 1.75 1.75 1.50 3.25 3.25 .25 4.00 4.00 4.00 4.00 4.67 4.67 .67 5.67 5.00 4.00 4.00 3.00 1.67 w w w r w w N o 3 8 8 3 8 8 8 3 2.17 .58 .$ ) 9 9 ‘ - i O ( . . . . . . I : 3 8 9 8 9 8 3 1.17 6.00 6.00 6.00 6.00 6.00 5.83 5.83 5.67 .08 5.67 5.50 5.50 5.33 .75 5.33 2.17 2.17 5.33 5.33 5.33 2.17 5.08 5.08 5.00 5.00 5.00 4.83 4.83 .50 .50 5.17 .42 5.00 4.50 4.50 4.17 4.00 4.00 .25 4.00 4.00 3.92 3.83 1.25 1.25 1.25 3.67 3.67 1.67 1.58 3.50 3.33 3.33 1.67 1.50 3.00 2.83 3.00 .33 .33 2.50 2.50 2.50 2.17 2.17 2.17 .08 2.00 2.00 .17 .67 1.50 .67 .67 .67 .67 1.00 2.17 2.17 .50 3.00 3.00 .75 1.00 4.m 3.67 .67 3.75 .75 .75 6.00 .08 5.17 .92 1.33 2.25 3.83 3.83 1.33 1.75 .08 6.00 .08 .08 5.50 5.33 5.33 .17 .17 .17 5.50 5.50 5.50 5.50 .17 5.67 5.33 5.33 5.33 5.17 5.17 5.00 5.00 .67 .67 .67 .67 .67 4.67 3.67 4.58 4.58 4.58 .83 .83 4.50 .83 .83 .67 1.17 1.17 1.25 4.08 1.17 1.17 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 1.33 1.50 1.17 1.58 3.92 3.92 3.92 3.92 3.92 4.00 5.67 5.67 3.67 2.00 2.00 1.58 5.58 5.67 5.67 2.08 5.33 5.33 2.08 2.17 2.17 2.17 2.17 2.17 2.17 2.50 2.33 2.17 2.00 2.00 .67 .67 .83 2.33 .97 .67 4.97 4.67 4.50 4.09 1.30 4.00 2.00 1.97 3.00 2.17 2.97 4.50 4.08 1.33 4.00 2.00 2.00 3.00 2.17 2.67 1.33 4.00 1.25 4.17 4.67 5.17 1.25 .93 5.50 2.08 2.33 .58 .17 6.00 6.00 .42 5.92 5.92 5.92 5.92 2.25 2.25 2.25 2.25 5.50 5.50 2.25 2.25 2.25 5.50 5.50 2.17 5.50 5.50 5.50 2.17 2.00 2.00 5.50 5.50 2.00 5.42 1.50 1.50 5.50 5.50 .83 .83 5.42 5.42 .67 5.33 5.33 .67 .67 .67 5.17 5.17 5.08 5.08 5.08 5.08 5.08 5.08 .50 5.00 4.67 4.67 .83 4.83 4.83 4.83 .92 4.00 4.00 4.00 4.00 4.00 4.00 1.00 1.00 .50 4.00 .33 4.00 4.00 3.92 3.92 428 3.83 3.83 3.67 1.17 3.50 3.17 3.17 3.00 3.00 3.00 3.00 2.67 2.50 2.50 5.83 4.67 5.50 .17 .67 .67 5.17 .50 5.08 2.92 4.83 .92 5.00 5.50 4.58 4.08 4.08 1.00 4.00 4.00 3.75 .67 3.67 1.33 1.33 1.50 3.17 1.67 3.33 3.00 2.00 2.92 2.92 2.92 2.92 2.08 2.42 2.42 2.75 1.92 1.50 2.00 3.00 3.50 5.33 5.33 5.33 .08 .17 5.33 5.17 .50 .50 .50 4.67 .50 4.58 4.42 1.17 3.83 1.33 1.33 3.83 3.75 3.75 3.75 1.17 5.00 5.00 3.08 1.17 3.08 3.00 1.33 3.00 3.00 1.25 n o - . . . I 2.42 2.42 1.50 1.50 1.50 .17 2.00 2.00 2.00 2.17 2.17 1.67 3.00 3.00 4.67 4.67 6.00 6.00 1.75 1.33 4.17 2.50 3.00 1.67 6.00 5.92 5.92 5.67 5.67 .17 .08 .25 .17 5.08 5.17 .17 5.33 5.42 .08 4.50 .50 4.17 3.92 2.83 2.83 2.67 2.42 2.00 .83 5.00 5.00 5.00 5.00 .08 4.67 4.67 4.75 4.75 4.58 .17 .17 .17 4.42 4.42 .50 4.25 4.25 4.25 4.17 4.17 4.17 4.17 4.00 4.00 3.67 3.67 3.50 3.50 3.50 3.75 .92 3.00 3.00 3.00 .83 2.83 2.83 2.83 1.00 1.00 2.75 2.75 1.17 1.17 2.50 2.50 2.50 2.50 2.00 2.33 2.33 2.33 2.33 1.17 1.92 1.50 1.00 1.00 1.50 1.50 1.50 1.50 1.50 4.83 4.50 .67 3.92 1.33 1.50 1.92 2.67 2.50 4.83 .08 .33 .50 1.17 3.83 5.17 1.00 2.50 2.00 2.00 1.17 1.75 5.58 5.17 5.17 4.83 4.50 4.33 .92 3.92 3.50 3.00 2.83 2.67 2.42 2.17 .83 4J29 4.66 6.00 5.92 5.92 5.67 5.75 .08 5.50 5.50 .17 .25 .25 5.00 5.00 5.00 5.00 4.83 4.83 4.83 4.83 .42 .42 4.42 4.33 . 4.17 .42 .42 3.83 3.50 .50 .50 3.17 3.17 .67 3.00 3.00 3.00 3.00 3.00 2.83 2.83 1.00 2.33 2.33 2.50 1.08 1.08 2.67 2.67 2.67 2.67 2.33 2.33 1.17 2.50 2.50 2.50 2.50 1.33 2.00 2.00 1.67 1.67 1.33 2.83 3.17 3.33 3.33 4.50 5.00 2.17 o c o n . : : h - r - r Slfi 5.33 5.33 5.33 5.33 5.25 .08 5.58 1.08 .08 .17 .33 5.00 4. 3 3 8 3 2 8 3 8 8 8 8 8 3.17 3.17 3.00 3.00 1.00 1.00 2.67 2.67 2.50 2.33 2.00 2.00 3.00 3.17 .08 5.50 4.83 4.67 4.67 4.58 4.58 4.58 4.08 4.50 4.50 4.50 .50 .50 4.50 .58 4.33 4.33 4.17 4.17 4.17 .67 4.00 .75 .75 4.08 4.33 .83 .83 4.00 4.00 1.08 4.33 4.83 3.92 3.92 4.17 1.17 1.17 .83 1.25 1.33 1.50 1.50 1.50 3.67 3.67 3.17 1.33 3.17 3.17 3.83 3.83 1.50 1.50 1.50 1.50 1.83 1.83 3.67 2.83 1.50 2.83 1.67 1.67 4.50 4.50 4.50 4.50 4.33 4.33 4.33 4.33 1.67 1.67 4.42 4.00 4.00 1.67 4.00 4.00 3.00 3.83 5.83 6.00 5.33 5.33 5.33 6.00 5.00 5.00 5.33 5.33 5.33 5.33 3.67 3.67 3.67 4.67 4.67 4.00 4.00 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.33 2.83 3.67 3.67 3.67 3.67 3.67 3.67 2.33 2.33 2.33 2.33 2.33 1.67 1.75 1.50 1.33 1.33 1.33 1.33 4.50 4.50 0.00 0.00 0.00 .75 .75 .75 .58 .25 .25 .50 .17 .50 .50 2.42 3.67 5.67 5.33 LARVRL COORDINATES FDR FIELD 5-60 PLOT 3 COLLEETED OI 6l20/78. PLOT DIHENSIONS 8 6 8V 6 FEET. Y CDURDINATES 0.00 6.00 5.83 5.83 5.50 .50 5.50 5.42 5.33 .17 .17 5.25 5.17 .33 4.67 .42 5.17 4.67 4.17 .75 4.17 4.17 4.00 4.00 .50 4.17 4.17 .67 .58 4.00 4.00 3.67 3.50 3.50 3.33 1.08 1.08 .75 3.!7 3.17 3.25 3.5 3.17 1.17 3.33 3.33 4.00 4.00 4.00 1.17 4.42 5.42 5.25 .17 4.33 2.00 4.50 1.17 1.67 4.08 1.33 4.00 4130 4.67 4.83 4.50 4.42 4.08 2.83 2.92 3.33 8 ' ‘ . . N o 1.17 .58 5.67 5.00 .33 5.58 5.67 5.67 5.75 5.75 .17 5.50 6.00 6.00 .17 .17 .17 6.00 .25 5.67 .50 5.33 4.83 .33 4.33 4.83 1.08 4.50 4.50 1.08 4.25 4.25 4.25 2.33 1.50 4.50 .92 .92 4.42 1.33 4.08 5.00 1.67 5.00 3.92 3.92 2.08 4.83 3.58 2.25 3.67 3.67 3.67 3.67 1.50 1.50 3.67 3.50 4.00 2.50 2.50 3.33 3.42 2.08 3.25 2.33 3.42 3.42 3.00 2.50 2.50 2.50 2.83 1.67 1.67 3.67 2.67 2.92 2.25 3.25 2.5 2.83 5.67 5.08 1.67 1.67 5.92 1.67 1.67 1.25 4.58 2.33 4.92 g s s s w w s s s a s 1.17 3.08 3.50 6.00 6.00 6.00 6.00 .50 5.92 5.83 5.83 .50 1.17 1.17 1.17 1.17 5.33 1.67 1.67 5.25 5.25 5.00 5.00 1.17 1.08 4.50 4.50 4.50 1.17 4.42 1.33 4.00 2.33 2.50 3.83 2.50 2.33 3.67 3.67 2.58 2.67 3.25 3.25 2.92 2.83 1.75 .75 .17 .33 .42 .33 .33 .42 .42 .50 .92 .92 1.17 P I .67 .67 .92 .92 1.00 1.00 1.33 1.33 1.50 1.67 1.42 1.42 1.67 1.67 1.67 1.75 2.33 1.25 1.50 1.50 2.08 2.33 2.33 2.42 2.58 2.58 2.83 2.83 2.83 2.83 2.83 3.08 3.08 3.08 3.17 3.33 3.50 3.50 3.83 3.67 3.67 3.67 3.75 4.00 4.25 4.25 4.33 4.67 4.67 4.58 4.67 4.67 4.67 4.83 5.17 5.17 5.17 4.83 4.83 4.83 5.33 5.33 5.50 5.50 5.50 5.50 5.50 5.33 5.33 5.92 2.33 6.00 6.00 6.00 5.92 5.92 5.92 5.67 5.50 5.33 5.33 5.25 5.17 5.11 4.67 4.50 4.50 4.50 4.50 4.67 4.67 4.50 4.’ 4.25 4.17 4.17 3.67 3.67 3.50 3.50 3.50 3.33 2.67 2.67 2.50 2.58 2.83 1.92 1.50 1.17 .83 .67 .67 4.67 4.67 4.50 .50 .50 .33 .25 .33 .17 .08 4.38 4.33 .33 4.42 4.42 1.17 1.17 1.50 4.25 4.00 3.00 3.00 3.17 3.17 3.00 4.00 4.00 4.33 2.” 6.00 5.67 5.58 .08 5.42 5.42 .17 5.33 5.17 .17 .50 5.42 5.17 .50 .67 .67 .75 4.67 4.67 4.92 5.90 .75 .75 4.42 4.58 1.00 4.50 4.50 1.08 1.00 4.83 4.83 1.17 1.17 4.42 4.42 4.33 1.33 4.17 3.83 1.50 1.50 3.83 3.83 1.58 3.92 1.75 3.50 3.50 1.83 2.00 3.33 3.33 3.17 1.83 3.25 1.83 3.17 3.17 3.00 2.92 2.33 2.50 2.50 2.50 2.83 2.92 2.92 2.42 2.3 8 3.33 4231 2.17 2.17 2.75 3.67 2.50 4.50 3.50 .50 5.83 5.83 ” 9 ( 0 o .83 .67 5.58 5.25 5.25 5.00 4.67 4.67 4.67 2.00 4.42 4.42 4.00 2.50 2.50 3.75 2.67 2.67 3.17 2.50 3.00 3.83 I U ‘ U ‘ F P N U ) a ( o s a 8 8 8 : 8 8 8 8 5.75 5.25 5.33 5.00 5.00 2.33 4.50 4.17 4.17 3.83 2.67 3.58 3.50 2.67 3.08 . u u c n a n a ° 9 o t o c o c 8 8 3 8 8 3 8 8 ” $ . — ’ . n s I - 0 . . . 8 2 3 8 8 8 3 2 1.00 5.17 1.67 4.50 4.00 2.50 3.50 3.00 .58 .50 5.17 5.17 5.00 1.33 1.42 4.08 6.00 6.00 .50 .50 5.83 5.75 .33 5.25 5.33 5.33 5.25 5.25 5.25 5.25 .58 5.17 5.17 5.17 .92 5.08 5.08 .42 .92 5.08 5.08 5.08 5.08 5.08 .67 5.08 5.08 4.83 1.17 4.75 4.58 4.50 4.50 4.50 5.17 .67 1.00 5.00 5.08 1.08 4.50 1.42 4.33 4.33 1.58 4.17 4.17 4.17 4.17 4.17 1.67 2.00 4.00 4.00 2.08 4.00 4.00 4.33 2.17 2.17 4.17 2.25 3.92 3.92 3.75 3.75 3.75 3.50 3.67 3.50 3.42 3.50 3.50 2.33 2.50 2.50 3.42 2.50 2.33 2.33 3.33 3.33 2.67 2.67 3.33 2.67 3.25 2.50 2.50 2.92 2.83 3.17 3.17 4.66 6.00 6.00 6.00 5.67 5.58 5.58 5.50 5.50 5.50 5.42 5.33 5.17 5.17 5.17 5.17 5.00 5.00 4.92 4.92 5.00 4.83 4.83 4.83 3.67 4.58 4.50 4.25 4.25 4.00 4.00 4.00 3.92 3.67 3.67 3.67 3.58 4.00 3.50 3.33 3.33 3.17 2.00 3.17 3.17 2.83 2.75 2.75 2.75 2.67 2.67 2.00 2.00 2.00 2.00 1.92 1.92 2.00 2.00 1.83 1.50 1.33 1.33 1.33 1.17 1.00 3.00 .83 .83 1.33 1.33 .67 2.17 2.17 2.17 .17 .17 .42 .58 .58 .08 .17 .17 1.67 2.50 2.33 4.75 5.25 6.00 6.00 5.33 5.33 5.33 5.17 5.17 5.00 5.83 5.83 5.83 4.75 5.00 4.50 4.33 4.33 4.17 4.00 4.17 4.17 3.92 3.92 4.00 3.50 3.50 3.33 3.33 3.67 3.00 3.00 2.67 3.00 2.33 2.33 2.33 2.33 2.33 2.00 1.67 1.67 1.33 1.33 1.17 1.25 1.25 .67 .83 .83 3.67 3.67 4.00 4.25 4:83 5.83 4.25 6.00 6.00 6.00 5.67 5.67 5.67 5.67 5.67 5.67 5.67 5.58 5.58 5.58 5.58 5.42 5.33 5.42 5.42 5.42 5.17 5.17 5.08 5.08 5.42 5.00 5.00 5.00 5.92 5.92 4.83 4.25 4.25 4.25 4.25 4.25 4.58 4.58 4.67 4.67 432 4.75 4.50 4.50 4.42 4.42 4.25 4.17 4.17 4.3 4.42 4.00 4.17 3.3 3.50 3.50 3.58 3.58 3.58 3.58 3.42 3.25 3.17 3.17 3.17 3.00 3.00 2.3 2.67 2.58 2.50 2.3 0.00 0.00 .25 .08 .17 .33 2.3 2.3 .3 .3 2.50 .3 .3 2.67 2.67 .3 .42 .42 3.00 3I§ Cm Cw Cm 30m Om Or ‘017 ‘.17 0% 2.42 2.08 .75 2.25 .3 .3 2.3 .75 .3 1.3 1.00 1.50 1.50 1.17 1.17 1.50 1.17 1.50 1.50 1.67 1.00 1.3 1.3 1.33 1.3 1.08 1.08 1.50 1.50 1.17 1.17 1.25 1.3 1.3 1.25 1.17 1.50 1.3 .3 4.00 4.00 5.17 3.3 3.50 5.50 4.00 LMVN. CCDROIMTES Fm FIELD 8'10 PLOT 1 MCTED 01 5130/78. PLOTOIPENSICNS868Y6FEET. X YWIMTES 0.00 2.3 .50 2.08 4.3 2.3 .3 6.3 3.3 2.3 .50 2.3 3.17 6.00 2.58 .58 2.75 1.00 4.00 6.00 4.3 .32 2.50 2.3 1.17 .3 2.3 2.00 1.3 2.00 3.00 1.58 1.3 2.00 1.75 2.3 1.92 3.3 3.3 2.3 4.67 4.50 5.00 5.3 1.00 1.00 2.08 1.17 2.25 3.67 2.92 2.00 6.00 4.17 2.00 3.50 4.3 .42 .3 .50 2.3 3.00 2.3 6.00 4.3 .3 4.00 .3 .3 .3 .50 2.3 2.00 2.3 2.3 2.75 4.66 .17 .3 5.17 4.3 1.17 2.42 5.25 4.3 6.00 1.92 3.00 1.3 6.00 6.00 2.42 5.25 1.92 5.3 4.00 4.00 2.17 3.00 1.92 2.75 2.3 LNWN. WINES Fm FIELD 8-10 PLOT 1 CELLECTED C“ 6/ 6/78. PLOT OIIENSICNS 3 6 8V 6 FEET. 433 X Y CMDINATES 0.00 5.67 5.67 300 3.00 .50 .50 .50 5.17 5.17 5.00 5.00 1.00 1.00 1.00 5.25 3.92 4.17 4.17 4.00 4.00 1.42 1.42 1.58 3.92 3.92 3.67 3.33 2.92 3.00 3.00 3.00 3.00 200 2.00 2.50 .92 .58 .3 .3 .3 4.50 5.67 .58 5.3 5.3 .50 5.00 1.3 4.17 4.17 1.25 1.25 4.00 3.3 1.50 3.67 3.67 3.67 3.3 1.67 3.3 3.3 3.17 3.17 3.67 2.00 2.67 2.67 2.3 3.17 3.3 2.50 3.67 .3 2.83 2.3 5.00 5.67 5.3 2.00 .75 1.17 4.00 4.00 4.50 4.50 4.67 .58 500 0.00 0.00 5.50 3.92 .58 3.3 3.3 3.50 2.3 2.50 2.50 2.3 2.17 ." 2.00 2.17 13 2.67 2.67 2.3 1.50 1.50 4.17 6.00 6.00 1.75 .17 2.3 2.3 .50 2.3 2.3 5.3 5.3 2.67 2.67 2.67 2.50 .58 .58 5.17 4.50 5.67 2.00 .75 5.00 .3 5.33 4.00 4.00 3.3 2.50 1.3 2.17 2.50 2.50 1.3 1.3 4.50 1.3 1.3 5.17 5.17 1.75 2.3 6.00 6.00 3.00 3.00 3.00 2.50 .3 .3 5.3 5.3 5.3 5.3 .92 2.00 2.00 4.17 4.17 .92 2.50 4.3 2.3 .58 .58 .3 .25 1.00 1.00 1.00 4.67 1.50 2.00 2.17 2.17 5.50 2.3 1.3 2.92 4.67 2.3 2.3 2.3 2.3 4.50 4.3 0.00 2.00 2.17 2.17 4.17 4.3 .3 .3 2.3 2.3 3.67 4.83 2.08 2.17 .67 4.50 3.3 3.3 3.3 4.00 4.00 .75 .75 .75 .75 3.3 3.3 4.00 4.00 4.00 4.00 .75 3.17 3.67 2.50 3.50 5.75 1.42 1.42 1.42 4.50 2.00 2.00 2.00 1.58 5.00 1.00 .50 3.50 3.00 3.50 3.50 3.3 3.17 3.17 .25 3.67 3.67 3.00 3.00 3.00 .25 2.3 2.00 .17 .17 .17 .17 2.00 .58 4.33 4.3 .58 1.00 4.67 .58 4.3 5.00 .75 .75 4.00 5.00 3.67 .42 4.50 4.67 1.00 1.00 4.50 5.00 3.00 1.17 1.42 1.50 1.17 4.08 3.00 6.00 4.00 5.3 5.67 2.67 2.67 2.50 2.3 4.67 .50 4.3 4.3 4.3 .42 2.00 1.3 3.67 2.67 .58 2.00 2.00 2.00 2.3 2.67 2.17 2.17 1.00 1.17 .92 1.17 6.00 1.50 1.50 1.50 4.66 3.3 3.3 3 4.50 3.00 3.00 4.67 4.67 4.67 3.00 3.00 .58 5.00 2.3 2.17 5.00 5.17 3.3 3.3 5.50 434 .33 4.00 40m 4.67 3.17 1.17 1.50 4.00 5.33 2.00 1.17 5.25 5.67 5.67 3.00 5.33 5.50 2.17 2.83 4.33 4.33 4.33 .53 2.00 2.33 .67 5.83 2.00 2.00 3.33 3.50 3.67 8 8 ' 3 6.00 5.33 4.83 1.00 2.33 2.00 4.50 8 : 5 3 5.67 2.67 4.67 1.00 1.08 0.00 4.17 1.33 2.50 .67 5.00 5.17 4.00 4.00 1.33 4.00 5.42 .67 2.50 2.50 3.00 3.17 5.17 6.00 6.00 4.33 4.33 6.00 5.00 4.92 5.83 5.50 4.50 4.50 4.50 4.00 2.17 2.83 .17 .67 2.00 2.20 2.50 4.17 4.33 4.00 5.33 LARVAL COORDINRTES FOR FIELD 8-10 PLOT 2 COLLECTED 0" 5/30/78. PLOT DIHENSIONS 8 6 BY 6 FEET. X Y COORDINATES 0.00 .33 4.25 1.42 5.17 .17 4.08 .67 3.00 .42 .67 2.67 1.50 .25 2.42 3.00 3.00 2.00 2.00 2.25 4.67 2.42 .50 4.83 2.17 1.17 4.00 5.33 3.00 6.00 .83 3.58 3.00 3.00 2.67 1.58 3.00 3.92 3.00 3.67 3.67 1.75 1.75 1.67 1.75 3.00 3.50 1.92 2.25 2.% 4.83 5.00 .83 2.67 6.00 6.00 1.08 3.50 2.42 2067 3.00 1.33 1.33 2.92 .33 2.83 .42 5.83 3.17 .50 1.67 ‘.w 1.83 10% 4.33 3.67 3.17 1.67 3.50 5.50 4.08 3.58 6.00 .83 1.17 2.83 1.42 2.17 2.50 4.% 5.00 4.50 .25 4.08 6.00 3.92 1.33 3.08 1.33 4135 4.66 5.33 .25 6.00 4.00 .42 2.67 llw 5.25 4.42 4.58 6.00 .42 3.33 3.75 3.92 5.% 4.25 3.67 3.67 1.17 1.33 3.33 2.50 2.50 2.50 .83 LARNRL COORDINQTES FOR FIELD 8'10 PLOT 2 COLLECTED ON bl 6/78. PLOT DIHENSIONS 8 6 BY 6 FEET. X Y COORDINATES 0.00 2.50 5.67 5.75 5.58 5.50 2.00 2.00 .33 .67 4.50 5.00 5.08 4.83 4.92 .42 .42 .42 5.00 5.08 .75 .75 .75 5.08 .83 .83 .83 5.08 5.08 4.50 4.50 4.50 1.00 1.00 4.33 4.33 4.33 4.33 4.33 1.58 1.75 4.17 4.17 2.08 3.83 2.33 3.83 2.42 3.92 3.67 3.75 2.42 3.67 2.33 3.58 2.58 3.42 2.67 2.67 3.67 3.67 2.67 3.58 2.83 3.50 3.50 2.83 2.00 2.00 2.00 3.67 3.58 3.83 .58 3.00 5.67 5.92 3.50 5.67 2.50 .42 3.42 2.00 4.08 2.33 4.17 2.67 2.67 2.67 4.25 .67 3.00 2.75 3.17 3.50 3.50 3.50 .‘5 5.00 3.17 5.00 2.17 2.75 .75 4.67 4.67 4.67 .83 3.00 3.00 3.00 3.00 4.67 4.67 4.67 3.25 .92 .92 .92 4.17 3.83 3.83 3.83 3.83 .92 3.50 4.83 2.00 2.00 4.50 1.00 4.67 1.33 1.33 1.33 1.33 2.00 4.83 1.33 1.33 1.33 1.33 3.00 1.50 1.17 1.17 3.00 3.17 3.17 3.08 4.50 0.00 5.25 5.25 3.50 3.50 3.50 3.50 .92 .92 .92 4.00 4.00 4.00 4.00 4.00 4.00 .25 5.00 4.83 2.33 2.33 2.33 2.33 1.08 4.50 4.33 1.92 1.92 1.92 4.50 2.00 1.08 5.33 1.83 1.33 3.% 4.00 4.92 4.00 1.08 1.08 1.50 1.83 .92 .92 1.75 5.83 3.00 3.00 2.83 2.83 2.83 5.67 .58 2.67 5.67 3.50 3.50 3.50 3.50 .17 4.83 4.58 .33 4.50 4.00 4.50 1.00 4.50 4.50 5.25 5.50 4.83 6.00 5.00 4.42 4.42 4.67 .25 4.17 2.% 2.67 5.92 5.67 3.00 0.00 5.75 2.67 0.00 2.33 5.83 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 4.83 4.83 4.83 2.50 4.75 1.00 5.00 5.00 4.67 1.17 5.08 3.67 5.67 1.42 1.33 5.58 3.00 5.17 1L36 3.50 4.% 3.50 5.92 3.50 4.67 2.92 3.50 3.50 3.50 3.50 3.50 1.50 3.33 2.00 4.50 3.17 5.50 2.67 2.67 2.67 5.6] .25 5.17 4.67 4.67 4.67 4.00 4.00 1.50 6.00 4.00 4.50 2.75 2.42 2.67 2.83 3.% 3.00 3.00 3.00 .25 .25 .33 ‘.m 5.00 5.17 4.17 3.00 2.33 2.33 3.67 .67 4.00 4.00 4.00 1.92 3.83 4.00 4.00 2.25 4.83 5.08 5.83 6.00 6.00 1.33 4.42 5.42 2.33 2.83 2.83 4.08 5.67 3.00 3.00 3.00 3.00 5.92 5.67 ° 2 3 2 I U H - t r u H N - J H # 0 I N I g a g s g 8 8 8 8 8 8 ° 9 3 2 5.42 4.00 4.17 4.33 4.50 5.08 2.08 4.83 4.67 4.33 4.58 3.67 4.00 4.00 4.00 4.17 4.66 4.00 4.00 4.00 2.00 2.17 2.17 4.33 4.83 6.00 3.00 2.33 5.00 5.00 1.00 .75 1.75 5.25 1.08 .50 .50 4.00 2.00 1.75 .83 5.08 4.00 5.00 5.00 5.83 0.00 2.50 2.50 3.25 3.25 3.25 3.25 2.83 6.00 3.83 2.83 .67 5.50 4.00 4.67 1.67 .67 .67 .50 4.00 4.00 4.00 5.75 4.00 4.33 5.42 1.58 1.67 4.25 LARVflL COORDINATES FOR FIELD 8-10 PLOT 2 COLLECTED ON 6113/78. PLOT DIHENSIONS 8 6 BY 6 FEET. X Y COORDINATES 0.00 6.00 6.00 6.00 5.92 5.67 5.67 5.50 5.50 5.50 5.50 5.33 5.25 5.33 5.17 5.33 5.33 5.67 5.67 4.67 4.67 4.67 5.17 5.17 5.17 5.00 4.67 4.67 4.67 4.33 4.50 4.67 4.67 4.42 4.42 4.00 4.00 4.17 4.17 3.83 3.83 4.17 4.17 4.17 4.33 4.60 3.67 3.50 3.50 3.67 3.67 3.67 3.33 3.33 3.17 3.00 3.00 3.00 3.00 3.00 2.67 2.67 2.67 3.33 2.50 2.33 2.50 2.33 2.50 2.67 1.67 1.50 1.33 1.50 1.17 1.17 1.00 1.00 .17 .17 .17 4137 .17 .25 .67 .75 0% 1.50 2.33 S.A7 5.67 6.00 5.50 5.33 5.33 .58 6.00 6.00 5.67 5.50 5.67 5.50 5.50 5.33 5.33 5.17 5.17 5.17 4.67 4.67 4.83 4.83 4.83 4.33 4.33 4.58 3.67 3.17 3.17 3.17 3.00 3.00 2.67 2.67 2.83 2.67 1.67 1.67 1.67 1.17 1.17 .17 .67 .83 .83 1.00 1.00 3.00 3.00 3.67 1.17 6.00 6.00 6.00 5.83 5.83 5.67 5.67 5.50 5.42 5.50 5.50 5.17 5.17 5.17 5.50 5.17 5.17 5.08 5.00 5.17 5.17 4.83 4.25 4.25 .50 .50 .33 4.17 4.25 .17 4.50 .08 .08 4.00 3.67 3.83 .50 4.08 4.08 3.75 .50 3.75 3.33 .75 3.17 3.83 3.83 .83 .83 3.17 3.17 3.17 3.00 3.00 .83 2.83 2.83 2.67 2.50 4.50 2.67 2.67 2.33 1.17 2.50 1.00 2.33 2.83 2.33 3.83 1.67 I.75 I.83 1.50 1.33 1.50 2.83 3.00 3.00 4.00 4.42 4.33 2.00 2.17 5.00 2.17 2.17 3.17 3.50 2.67 2.83 5.50 5.50 5.17 4.25 3.83 3.33 3.17 2.83 2.50 2.00 3.00 2.00 1.75 5.67 .17 5.33 5.00 4.83 .50 4.17 4.17 4.00 1.08 3.92 3.75 3.17 3.17 1.25 3.67 3.67 3.67 .75 .67 2.33 4.67 4.67 .92 2.50 5.67 4.33 4.17 1.00 3.25 3.25 3.25 3.67 4.00 4.08 2.50 3.17 4.67 1.25 3.50 .92 4.67 4.!7 3.67 .17 4.50 .75 3.92 3.50 3.67 4.67 .67 1.42 4.00 3.67 3.67 2.92 5.67 5.67 5.67 .25 .42 5.67 .58 5.17 5.08 5.08 .08 5.00 .17 .17 4.50 .42 4.17 4.17 4.50 3.67 3.67 4.50 1.00 4.00 4.00 3.67 3.67 1.33 4.50 1.00 4.08 4.00 3.67 3.67 1.33 3.58 1.50 3.67 1.50 1.83 3.00 3.00 3.00 3.17 3.17 1.75 3.67 3.17 2.00 2.00 2.00 2.00 2.50 2.50 2.50 2.50 2.83 2.!7 2.00 1.42 2.33 1.75 2.50 3.75 .92 4.33 4.33 4.42 4.83 5.17 5.17 4.67 2.50 4.75 6.00 6.00 6.00 5.00 3.50 4.50 4.50 4.50 4.50 5.67 5.67 6.00 .25 .67 .75 5.00 5.00 5.00 5.II 4.50 4.50 .92 4.67 4.50 4.33 .83 4.50 1.00 1.00 4.00 4.00 4.00 1.50 3.00 3.67 3.67 3.67 438 3.83 3.33 3.17 3.17 2.33 1.08 2.00 1.75 2.17 4.00 1.58 4.33 4.08 1.50 2.00 2.00 4.08 6.00 5.83 5.50 5.50 5.17 5.00 5.17 .58 4.83 4.67 4.67 4.00 4.00 .92 4.17 1.75 3.00 3.00 3.00 3.00 3.00 3.33 1.58 2.50 2.50 2.50 2.17 4.66 6.00 6.00 6.00 6.00 6.00 .08 5.83 5.50 5.67 5.83 5.67 5.17 5.33 .08 5.00 .25 5.67 4.67 4.67 4.00 4.00 4.00 4.00 3.67 3.83 3.67 3.67 3.67 3.67 ! 0 0 . v - r i a N . . . ‘ 3 ° 9 8 8 8 8 8 8 8 8 8 8 3 3.83 1.33 3.92 1.42 1.42 4.00 1.42 1.67 1.67 1.67 1.75 3.83 3.00 2.67 2.50 2.50 2.17 2.17 .17 2.33 2.17 3.00 3.17 3.50 4.00 4.00 .92 .92 5.25 6.00 5.67 5.75 5.17 5.17 In 4.67 5.00 .92 5.00 5.00 5.17 4.67 4.67 4.67 I.I? 4.58 4.58 4.42 2.00 4.33 4.25 4.17 4.17 4.17 1.75 .25 5.00 4.33 3.83 1.67 3.00 3.00 4.00 1.67 5.50 .67 4.00 3.50 3.00 2.83 2.33 4.83 4.83 4.33 1.75 2.33 4.50 5.33 2.67 5.17 2.00 3.25 3.00 2.08 2.83 2.83 2.17 1.17 2.83 2.83 2.83 3.50 2.17 2.17 5.83 5.33 5.17 5.33 .17 4.83 4.75 3.83 3.67 2.33 1.33 2.08 5.17 4.83 0% .67 4.50 4.50 .‘5 4.50 .83 4.58 4.00 3.67 3.50 3.50 1.08 2.83 2.17 2.33 2.17 2.17 .92 .92 2.00 .92 2.25 1.08 3.50 1.42 1.67 4.33 1.75 2.33 .42 1.17 9 9 . . r r . 9 ~ 8 8 3 3 8 8 3 8 8 .42 4.83 3.83 1.08 1.50 2.00 1.00 3.17 » t u m a g — m u m 8 8 8 8 8 8 8 3 8 LARVAL COORDINATES FOR FIELD 8-10 PLOT 3 COLLECTED ON 5/30/78. PLOT DIMENSIONS 8 6 BY 6 FEET. X Y COORDINATES 439 0.00 4.00 .3 .67 3.3 1.3 1.25 3.3 1.17 1.42 4.17 4.3 1.3 .58 4.42 .3 6.00 6.00 4.67 .3 1.3 4.92 1.3 2.25 3.17 3.3 2.42 2.3 3.00 1.3 3.3 1.17 .25 .3 6.00 4.17 .42 .3 3.00 1.58 2.83 2.3 1.17 3.3 1.3 3.67 5.3 3.50 3.50 1.75 5.50 5.3 5.3 4.00 4.67 .50 .50 .50 5.3 .67 In I'm 3.% ‘.fl 2“7 30$ 1.92 2.3 4.67 5.50 5.50 4.50 4.17 2.17 3.3 3.92 4.17 4.3 2.92 .3 4.3 6.00 1.3 4.00 1.3 4.92 1.3 3.00 3.92 2.75 3.50 5.00 4.3 .3 5.3 2.3 2.3 2.75 2.50 2.17 4.% 50m llm l.“ 4.% Ca 10% 1.5 2.% Im 4.66 .3 4.3 5.50 .17 4.3 2.17 2.42 5.25 .3 5.67 5.3 5.3 .50 4.67 1.17 1.3 5.83 .50 4.3 .67 4.42 2.42 2.3 4.67 3.3 LNWPL MINES F3 FIED 8'10 PLOT 3 CELECTED CN 6/ 6/78. PLOT DIlfllSIwS=68Y6FEEL X YCIIRDIMTES 0.00 6.00 5.83 5.3 .3 .3 5.50 5.50 5.50 5.50 2.50 5.17 5.17 .42 1.00 4.3 4.67 4.50 1.17 1.50 4.17 1.75 I.75 1.75 4.50 1.3 1.3 1.3 3.50 3.3 3.17 1.3 3.17 2.3 1.92 2.17 2.3 3.00 3.50 3.50 2.42 ‘.m 3.42 2.% .3 4.3 4.3 .42 4.3 4.00 4.00 .42 4.58 3.67 3.67 .42 3.50 2.3 .' 3.00 3.00 3.00 .75 2.3 2.3 2.3 2.3 1.3 1.3 2.67 2.67 2.67 2.67 1.17 1.17 1.17 2.3 2.3 1.50 2.3 2.3 2.00 3.67 4.00 4.17 5.17 2.3 2.3 2.3 6.00 6.00 6.00 6.00 2.42 2.50 5.67 3.83 4.67 4.67 3.3 3.50 3.50 4.50 4.50 .3 .3 4.67 4.3 4.3 4.83 4.3 .92 1.00 3.67 3.67 3.67 1.00 3.50 1.3 2.50 1.50 2.17 2.00 2.00 2.00 44&) 2.% 2.50 5.00 1.50 .75 .50 2.08 1.17 6.00 6.00 5.67 5.50 5.50 5.17 5.17 5.00 .17 5.17 .42 4.67 4.50 4.50 4.33 4.00 3.67 2.67 2.33 2.33 3.50 10% 3.83 3.50 3.50 2.00 2.00 2.75 2.67 1.83 3.33 4.00 4.33 .75 .50 4.67 3.00 4.33 1.83 1.83 5.17 5.17 2.83 5.67 1.25 1.42 3.17 3.33 3.67 1.75 2.33 3.00 1.00 1.00 3.00 3.00 4.00 4.00 4.00 4.00 4.00 .42 5.00 4.08 .25 3.00 .17 3.00 3.00 5.33 2.67 5.67 2.00 5.11 1.50 1.67 2.58 1.67 5.75 5.75 5.75 5.33 5.33 1.67 3.17 4.33 .75 4.33 .67 .50 3.92 1.17 6.00 .75 2.33 3.00 3.00 3.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 1.00 3.33 1.42 2.17 5.50 5.50 2.17 2.17 2.17 2.17 2.17 .67 .83 4.83 2.17 2.67 .92 4.33 4.33 2.00 4.42 1.33 .58 3.42 1.58 3.50 1.25 1.50 1.58 2.50 3.00 2.67 2.17 5.00 2.58 4.33 4.25 3.92 4.25 2.92 2.25 2.” 5.67 3.00 2.33 6.00 6.00 3.00 3.83 3.83 3.83 5.50 5.50 0.00 0.00 3.00 4.67 4.67 4.67 4.00 4.67 .42 1.17 3.83 1.17 5.00 5.33 3.00 2.17 3.50 3.50 6.00 3.33 5.67 .67 .67 3.00 3.00 3.00 5.92 5.92 .67 2.67 2.67 2.67 2.67 5.50 3.50 .25 3.33 3.33 4.67 1.42 4.50 4.50 4.50 4.50 1.42 2.00 2.00 2.00 2.00 1.33 4.00 .83 4.67 4.17 4.17 2.17 1.00 1.67 6.00 3.17 2.67 2.00 4.08 6.00 6.00 2.33 2.33 2.33 2.33 .33 6.00 2.50 5.67 .50 5.50 2.00 .17 4.00 4.00 0.00 4.67 0.00 1.00 1.00 3.67 1.83 1.83 4.08 5.50 .33 .58 .58 4.83 2.00 2.33 1.42 1.42 4.33 4.66 5.67 4.00 6.00 3.33 3.33 5.17 3.50 .25 2.33 2.33 2.33 5.83 5.83 3.50 3.50 4.50 O” 4.58 .50 1.08 1.08 3.00 3.00 2.00 2.00 2.83 2.83 4.17 1.00 1.00 4.00 3.92 4.17 3.00 3.00 5.67 5.67 3.50 3.25 5.42 5.33 5.17 5.50 5.50 5.50 5.50 5.17 5.17 .33 .33 .33 4.00 4.00 4.00 4.00 4.50 4.33 .33 4.17 4.17 4.25 4.25 4.33 4.33 .42 .67 4.50 4.50 1.33 1.33 1.33 .92 3.00 1.33 3.50 1.33 1.33 4.67 2.00 3.00 4.00 1.75 3. 67 2.33 1.83 2.83 2.83 6.00 5.83 2.83 2.83 4.67 30m 1.00 4.67 4.67 5.00 5.00 50w 434]. 4.00 4.00 4.00 5.17 3.17 3.17 3.17 3.17 5.67 5.67 5.67 3.17 6.00 3.50 5.92 .17 5.92 5.33 4.00 4.17 4.17 .50 3.92 2.50 2.33 3.25 5.00 5.00 2.67 1.00 1.00 3.17 LARVHL COORDINATES FOR FIELD 8-10 PLOT 3 COLLECTED ON 8/20/78. PLOT DIMENSIONS 8 6 BY 6 FEET. X Y COORDINATES 0.00 5.83 0.00 4.67 4.67 1.58 2.83 5.58 4.42 3.00 5.75 .25 .17 .17 3.67 1.17 3.50 2.50 2.33 2.83 4.50 5.00 1.67 .58 5.50 5.17 .67 1.00 1.50 3.92 3.67 3.50 .33 3.83 3.17 2.83 1.17 6.00 .67 5.50 4.67 .25 4.50 4.33 4.50 .83 4.50 1.17 4.67 4.50 3.00 3.00 3.00 1.67 1.33 2.50 2.33 .25 3.00 1.67 4.33 2.17 2.67 4.67 1.75 5.67 5.67 5.50 5.17 5.17 5.17 5.58 3.50 3.33 3.67 3.17 3.00 3.67 2.00 2.83 1.17 1.17 2.67 3.00 5.33 2.33 5.83 .58 5.50 .83 .83 .67 ‘.w 4.33 4.00 1.17 3.25 3.33 2.17 2.83 2.92 6.00 .33 5.67 .25 .25 .58 6.00 ‘05 4.83 5.17 4.33 4.00 4.00 4.33 1.33 1.67 3.92 3.33 3.33 3.33 2.83 2.25 3.00 2.33 3.50 .33 5.00 5.00 5.92 1.50 3.17 1.67 3.58 4.08 6.00 5.67 5.67 .67 5.17 2.25 2.25 4.33 3.50 3.50 4.08 4.08 3.17 ‘0“ 5.50 .42 5.33 5.33 .67 I'm 4.67 4.33 4.00 3.67 3.67 2.33 2.58 5.25 6.00 .92 4.83 4.33 4.83 .08 .33 4.33 4.33 4.33 4.33 4.50 3.00 2.50 2.50 2.50 .33 5.67 .67 4.83 3.17 1.67 4L42 2.00 1.17 3.3 1.67 .42 LARVAL CWDIMTES FOR FIELD 8-10 PLOT 4 CELLECTED 3 6/27178. PLOT DIPENSIONS =-' 6 BY 6 FEET. X YCMDIMTES 0.00 5.67 1.3 1.17 4.3 2.3 3.3 3.3 3.50 5.3 .67 5.3 4.3 5.17 5.3 .3 1.00 LAWN. MINES FOR FIELD 9-10 PLOT 1 (ILLECTED (I4 5l30/78. PLOT DIIGTSIMS=6DY6FEEL X YUIRDIMTES 0.00 3.3 5.3 .3 .17 3.3 3.3 2.67 1.17 .3 2.42 5.42 1.67 5.3 3.3 1.75 4.17 3.42 4.67 4.3 5.3 3.3 5.50 3.17 2.3 .3 1.00 3.67 2.92 .58 2.92 3.50 .3 4.3 1.00 4.3 3.00 .3 4.3 3.50 2.3 4.50 4.67 4.92 4.66 4.67 4.50 4.17 4.3 2.42 4.17 1.83 1.50 5.25 1.3 3.17 .58 .50 3.92 3.67 1.67 6.00 2.42 2.42 3.17 443 LAWN. CIIIRDINQTES F3 FIELD 9-10 PLOT 1 (ILLECTED ON 6/ 6/78. PLOT 811913133 = 6 BY 6 FEET. X Y CmflDINATES 0.00 4.00 1.17 2.17 2.17 2.17 6.00 2.67 5.3 2.50 5.75 5.50 5.50 5.50 5.50 3.17 3.17 4.3 4.00 3.67 4.17 4.3 1.17 1.17 1.17 5.17 1.17 1.92 1.00 1.00 .58 .3 1.3 1.3 1.3 1.75 1.75 1.3 2.00 2.00 2.3 2.3 2.3 2.00 2.3 2.58 2.67 3.00 3.25 5.3 3.17 5.00 5.00 4.75 3.50 4.50 4.50 3.67 3.67 4.3 3.17 2.3 1.50 1.50 1.17 .25 .42 .42 1.17 6.00 2.57 2.58 4.67 4.67 4.67 4.67 1.33 1.75 5.00 4.17 2.00 2.00 3.3 4.00 4.00 .50 2.3 1.42 4.17 5.17 5.17 1.3 1.17 4.17 4.00 2.42 5.17 5.3 2.17 2.3 6.00 3.17 5.3 1.3 4.00 2.92 4.17 4.17 1.3 5.50 5.50 3.00 5.3 3.25 4.3 3.50 4.00 4.3 .67 .3 5.50 5.50 6.00 5.3 2.3 2.3 2.42 5.00 4.00 2.3 2.3 3.50 3.67 3.67 3.75 2.3 3.92 3.67 3.50 4.00 1.67 1.3 ‘.m ‘.m ‘0” .17 60m 60m 1.67 I'm 1.” 50m ‘.m 1.50 5.17 5.50 5.50 5.00 4.67 2.42 13 .42 2.00 2.42 2.92 2.92 5.00 3.50 4.66 5.17 5.17 4.67 .75 4.00 4.00 2.67 .67 .3 5.3 5.50 1.3 4.00 5.50 5.50 1.50 4.3 4.83 4.3 2.00 2.17 2.17 2.3 2.50 3.17 3.3 2.67 6.00 2.50 3.67 5.00 4.00 3.3 1.3 5.3 5.17 5.17 5.17 1.75 5.50 5.67 .25 5.3 .67 2.3 3.42 3.00 3.50 LAWN. CURDIMTES F3 FIELD 9-10 PLOT 1 CELLECTED 3 6113/78. PLOT DIIENSIINS = 6 BY 6 FEET. 444 X YCWRDIMTES 0.00 1.00 .58 5.50 5.3 5.3 4.00 3.17 .50 1.17 1.17 1.17 .3 1.3 5.00 1.75 5.67 1.00 4.3 3.17 3.00 2.3 3.50 .3 5.00 4.17 2.92 3.3 4.50 6.00 5.3 4.17 2.50 4.50 3.50 3.00 5.00 4.00 3.17 3.50 .3 4.17 4.3 1.3 1.3 2.17 2.00 1.3 2.3 3.50 2.3 4.66 1.00 1.00 3.50 2.00 1.92 .67 5.3 6.00 5.17 4.50 4.3 4.67 4.67 4.00 3.17 3.17 3.3 2.17 3.17 5.3 .3 5.17 4.50 1.17 2.3 2.67 4.3 LPRVPL WIMTES F3 FIELD 9-10 PLOT 2 NOTED 3 5130/78. PLOT DIENSICNSII6DY6FEET. X YWIMTES 0.00 5.00 4.00 .3 1.3 1.3 4.00 3.3 2.67 3.67 2.67 3.00 1.17 0.00 4.3 1.3 4.67 4.50 2.00 2.67 5.00 1.75 4.50 4.17 4.3 1.3 2.3 0.00 5.00 .50 3.17 2.92 1.17 4.3 4.3 2.3 5.17 3.50 4.17 .67 1.3 2.42 4415 -‘ "8 4.17 6.00 3.17 3.3 2.3 3.00 4.66 .42 4.50 1.58 2.25 1.3 6.00 6.00 5.25 1.3 1.3 3.3 5.00 1.67 5.00 LPRWI. CMDINATES F3 FIELD 9-10 PLOT 2 COLLECTED ON 6/ 6/78. PLOT DIIENSIONS 8 6 BY 6 FEET. X YCIIRDIMTES 00m 50m 60m 033 .5 .5 .17 .w .‘2 .‘2 Im 1.67 1.3 1.75 1.50 2.3 2.3 6.00 6.00 2.42 2.00 1.75 3.00 2.3 3.3 3.75 2.17 .58 1.17 .3 1.3 1.3 1.3 .3 2.3 3.25 3.3 3.25 2.3 1.3 5.67 5.67 2.42 2.3 4.3 5.3 2.3 5.67 3.00 4.67 2.92 3.17 3.17 3.17 2.42 3.3 4.3 2.3 3.92 3.92 3.42 1.17 .3 4.00 1.67 2.00 3.00 3.50 3.00 3.00 4.00 2.50 2.75 6.00 .50 4.00 4.00 6.00 2.50 1.75 6.00 6.00 6.3 6.00 5.3 5.3 1.00 1.3 5.00 1.67 2.3 5.00 2.3 2.3 2.50 4.00 4.17 4.3 3.17 2.33 6.00 6.00 6.00 5.00 2.3 4.17 4.00 2.3 3.3 5.50 6.00 4.00 2.92 1.3 1.3 4.3 4.67 4.3 3.3 3.3 1.50 .75 6. 1.3 1.3 5.00 4.67 2.42 2.3 6.00 5.3 3.50 3.00 3.3 3.00 5.00 5.3 5.50 .17 2.00 1.3 5.3 5.3 5.3 5.67 5.3 2.58 2.75 2.3 2.3 5.00 2.3 5.50 2.92 5.3 5.3 3.3 3.3 5.3 1.67 5.92 5.00 2.00 2.00 4.00 3.50 4.3 1.3 5.50 .67 3.3 6.00 1.3 5.00 1.3 2.50 3.67 2.3 2.42 2.50 6.00 2.00 6.00 5.00 3.50 1.3 4.66 2.17 4.50 4.50 4.50 4.50 1.3 4.92 4.00 .3 5.00 .17 .3 2.3 4.67 4.67 4.67 6.00 2.17 5.92 6.00 446 3.67 5.00 3.17 2.67 5.00 2.83 2.25 2.17 4.17 1.25 5.25 4.50 1.33 4.00 4.00 4.33 4.33 4.33 1.92 1.83 4.33 4.33 4.39 4.33 2.42 5.67 6.00 4.83 2.25 4.17 4.50 4.57 4.83 4.00 4.00 4.00 3.92 3.08 4.67 4.83 1.50 5.33 .33 .67 .92 2.17 2.50 2.83 2.33 1.17 1.17 .33 5.00 3.17 3.92 3.59 3.58 3.53 2.25 3.08 4.00 LARVAL mmms rm FIELD 9-10 PLOT 2 mm on 6/20178. nor mamas . 6 av 6 FEET. x vooamxmzs 0.00 5.17 5.17 5.00 4.00 4.00 4.50 4.17 3.33 3.33 2.67 3.00 3.00 2.33 .17 .92 1.50 2.33 3.00 3.00 .59 3.17 5.17 5.33 4.17 4.50 3.00 3.33 3.57 4.17 2.50 2.75 1.67 1.58 .50 2.50 2.83 1.17 5.33 5.17 5.17 4.50 4.00 4.00 3.17 2.00 2.00 2.00 .so .50 .08 1.33 1.67 2.33 5.50 6.00 5.67 1.75 5.33 .25 5.50 6.00 .75 6.00 4.67 1.33 1.33 2.17 2.17 1.50 2.00 1.50 1.17 3.00 2.33 2.33 .53 5.67 6.00 2.00 5.17 3.17 2.67 2.67 4.93 4.03 3.92 3.92 3.00 2.33 2.92 5.17 .83 3.08 3.67 3.50 5.57 5.33 5.33 1.42 1.42 5.17 4.25 4.93 4.83 4.33 4.33 2.50 5.00 3.17 4.08 5.50 1.17 1.33 5.00 4.93 1.33 1.33 4.93 1.67 1.33 1.33 4.66 6.00 .92 1.33 4.83 1.58 2.00 3.09 4.17 4.17 4.17 2.50 2.00 2.33 3.17 4.57 5.25 5.50 .33 .33 .57 2.93 5.33 4.50 4.33 .75 4.00 2.08 3.50 2.93 2.83 447 LARVPL 803DIMTES F3 FIELD 9-10 PLOT 3 COLLECTED 3 5/30/78. PLOT DIPENSI3S ‘6 6 BY 6 FEET. X Y CURDIMTES 0.00 4.00 .3 4.00 4.67 1.17 .3 1.50 6.00 2.3 1.75 1.92 4.00 5.3 2.3 5.17 2.3 3.3 3.92 1.33 4.00 2.92 3.17 3.50 5.00 2.67 4.3 6.00 4.17 5.00 4.66 6.00 2.00 3.3 5.25 4.00 .3 5.3 4.3 m WIMTES F3 FIELD 9-10 PLOT 3 COLLECTED 3 6/ 6/78. PLOT 811945138 8 6 BY 6 FEET. X Y WIMTES 0.00 0.00 .75 5.17 2.50 5.00 5.00 4.3 3.3 4.17 3.50 3.17 .3 5.17 .3 .3 4.3 2.3 1.17 5.17 5.50 5.50 .92 1.3 4.3 3.50 2.67 1.75 .' 4.3 3.3 2.67 3.00 2.3 5.67 5.3 2.3 1.92 4.50 2.17 2.17 2.50 2.50 2.92 2.92 3.50 1.3 2.00 448 3.50 .50 2.92 4.3 3.00 4.3 5.67 1.00 5.17 4.50 2.83 4.66 .17 5.3 1.3 4.17 2.3 3.3 .17 5.3 1.42 5.17 1.42 4.50 2.92 .92 4.50 2.3 5.3 3.50 .3 .75 2.3 2.00 2.3 LAWN. WIMTES F3 FIELD 9-10 PLOT 3 CELLECTED 3 6/27/78. PLOT DIETSIOTS 8 6 BY 6 FEET. X Y MINES 0.00 2.3 1.17 5.50 2.92 1.3 APPENDIX H INDIVIDUAL OBSERVATIONS ON ADULT AND LARVAL CLB MOVEMENT AND BEHAVIOR 449 0 4 : 4 1 3 1 : 4 4 : 3 1 4 0 : 2 0 : 9 0 : 8 6 0 : 2 1 4 1 4 0 : 7 0 3 : 4 3 2 : 0 5 : 1 1 1 : 0 5 : 6 7 7 - 8 4 / 5 1 1 / 5 2 5 : 0 2 9 1 : 3 1 0 5 - 5 0 2 : 0 2 : 8 4 8 2 : 5 1 1 5 : 8 4 : 1 6 1 : 2 0 3 : 7 3 - 5 4 / 5 0 3 - 8 1 1 / 5 6 6 - 8 4 1 / 5 Pifiiflifi'm Wih'm ate 1 1 1 2 1 3 1 4 1 5 1 6 1 s e s s a r G e v i t a N l a t o T n e e r P y l F e v o M t s e R . p i v O H t a t i b a e t a D # e l t e e B t o l P e t a M d e e F 6 7 9 1 n i s t l u d a B L C y b s r o i v a h e b s u o i r a v n i t n e p s e m i t f o t n u o m A . l H e l b a T . ) s d n o c e s d n a s e t u n i m n i e m i t ( 450 r e l i a r T r e t n i W t a e h W — _ _ — — _ ~ — — — — — — — — _ — — _ — - — — _ — _ — — — — _ — _ — — _ — — — — _ — — — — _ — _ _ 6 5 : 8 4 : 2 8 4 : 2 2 0 : 3 5 : 2 0 : 2 1 0 0 : 2 4 5 : 1 6 0 : 3 1 8 6 - 8 4 3 - 8 3 5 - 5 \ohmmo 1 1 1 e l b b u t S ) . t n o c ( n i a r G 3 5 : 3 1 4 1 : 4 2 6 4 : 3 4 : 3 1 6 2 : 5 2 0 : 8 0 0 : 0 4 5 3 : 1 2 : 2 5 5 4 : 9 5 3 : 9 3 4 3 : 3 1 5 1 : 8 3 : 4 l a t o T 0 0 : 5 1 0 0 : 6 2 0 0 : 1 2 0 : 7 0 : 2 2 2 : 3 1 1 4 : 4 9 1 : 2 4 5 : 0 2 0 3 : 5 1 : 1 8 2 : 9 1 5 2 : 6 0 3 : 7 0 0 : 5 1 2 0 : 5 4 1 : 1 4 1 : 1 1 “WONG 3 ) d ' t n o c ( . 1 H e l b a T l F e v o M t s e R y . p i v O e t a M d e e F # e l t e e B t a t i b a H PLEASE NOTE: Page 45] is missing in numbering only. Text follows. Filmed as received. UNIVERSITY MICROFILMS INTERNATIONAL 452 0 0 : 5 1 0 0 : 5 1 0 0 : 5 1 6 3 : 9 1 6 3 : 9 1 0 0 : 5 1 0 0 : 5 1 0 0 : 5 1 6 4 : 5 9 3 : 6 0 0 : 0 3 0 0 : 0 3 9 1 : 5 2 1 2 : 4 7 2 : 3 0 5 : 1 0 5 : 2 5 3 : 5 5 4 : 5 8 5 : 1 5 2 : 2 1 9 0 : 3 0 0 : 5 4 1 : 5 9 - 5 9 / 6 «income 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 2 3 ) . t n o c ( s t a O n e e r P . p i v O e t a M d e e F t o l P e t a D # e l t e e B t a t i b a H ) d ' t n o c ( . l B e l b a T 453 0 3 : 8 8 2 : 7 8 3 : 2 5 3 : 7 7 4 : 1 1 0 0 : 4 9 2 : 3 5 : 2 1 6 1 : 3 1 6 1 : 5 8 4 : 1 0 0 : 7 1 0 0 : 7 1 7 2 : 4 1 0 5 : 6 1 0 0 : 5 1 7 2 : 5 1 0 0 : 5 1 2 1 : 4 1 0 0 : 5 1 0 1 : 5 1 0 0 : 5 1 0 0 : 0 1 0 2 : 4 1 9 4 : 5 1 6 1 : 1 9 2 : 7 6 4 : 6 8 1 : 3 0 5 : 9 0 0 : 0 1 8 4 : 8 8 2 : 4 0 0 : 5 1 0 3 : 6 0 : 9 0 3 : 9 2 0 : 1 1 0 0 : 0 1 8 0 : 2 8 2 : 1 3 5 - 8 4 1 / 6 8 5 9 5 O 6 1 6 2 6 3 6 4 6 HNMQ‘ID \DI‘QO‘O 1 1 1 2 1 3 1 4 1 5 1 ) . t n o c ( s t a O r e m m u S ( ) s t l u d A s t a O l a t o T y l F e v o M t s e R d e e F t o l P e t a D # e l t e e B t a t i b a H ) d ' t n o c ( - 1 H e l b a T 454 0 1 : 5 1 0 0 : 5 1 0 0 : 5 1 0 0 : 5 1 0 1 : 0 1 9 3 : 2 1 0 0 : 5 1 3 0 : 5 4 4 : 2 1 4 4 : 2 1 0 0 : 0 1 1 3 : 2 1 3 5 : 4 2 : 3 1 2 0 : 4 1 7 2 : 7 1 0 0 : 5 1 0 0 : 5 1 0 0 : 5 1 0 0 : 5 1 2 4 : 7 2 4 : 7 0 1 : 1 2 8 1 : 4 3 1 : 5 0 : 8 / 6 3 3 4 3 5 3 6 3 7 3 8 3 9 3 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 r e m m u S ( ) s t l u d A ) . t n o c ( s t a O ) d ' t n o c ( . 1 5 e l b a T a t o T l # e l t e e B t a t i b a H d e e F t o l P e t a D 455 0 0 : 0 1 0 0 : 0 1 4 1 : 2 1 0 0 : 5 1 0 1 : 9 2 4 5 : 8 5 0 : 1 1 1 3 : 9 1 0 1 : 4 1 0 0 : 5 1 0 4 : 5 1 0 0 : 5 1 0 0 : 0 2 8 1 : 0 2 0 1 : 2 1 8 3 : 2 2 6 0 : 5 2 2 2 : 3 1 0 0 : 5 1 0 0 : 5 1 0 0 : 7 8 1 : 2 4 3 : 7 5 0 3 : 4 5 4 : 8 1 : 0 3 0 1 : 5 0 3 : 3 0 0 : 5 3 4 : 8 0 0 : 0 1 8 4 : 3 0 0 : 5 1 0 3 : 5 1 2 0 : 8 5 5 : 1 1 2 5 : 3 1 0 0 : 5 1 3 5 : 1 1 8 4 : 4 1 0 0 : 0 2 9 0 : 0 2 0 1 : 2 1 6 3 : 6 5 4 : 2 2 9 3 : 0 1 5 2 : 9 0 0 : 2 1 3 5 : 5 5 4 : 1 0 0 : 2 0 4 : 1 1 2 1 : 1 3 6 1 / 7 5 1 / 7 6 1 / 7 6 1 7 1 8 1 9 1 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 3 0 4 r e m m u S ( ) s t l u d A ) . t n o c ( s t a O ) d ' t n o c ( . l H e l b a T t s e R e v o M a t o T l e t a M d e e F e t a D # e l t e e B t a t i b a H 456 7 0 : 8 0 1 : 1 2 0 3 0 : 4 1 0 3 : 2 0 : 1 0 : 7 0 0 : 5 1 - - 9 2 : 7 2 2 1 : 1 0 0 : 5 1 0 4 : 3 1 0 0 : 5 1 - - - 0 1 : 5 1 0 1 : 0 0 : 5 1 - 2 0 : 2 0 : - - - - - - 2 0 : 0 4 : 5 1 : 0 1 : 5 3 : 6 6 2 : 1 1 5 4 : 4 1 9 4 : 6 0 0 : 9 5 3 : 4 0 2 : 0 2 : 3 1 - 0 0 : 5 1 - - 0 0 : 5 1 0 0 : 5 1 0 0 : 1 0 0 : 4 1 6 3 : 1 4 0 : 8 4 : - 4 4 : 0 0 : 5 1 0 3 : - 0 0 : 1 0 3 : 3 1 0 1 : 2 0 4 : 5 2 : 9 1 0 0 : 2 - - 0 3 : 1 - 4 0 : 1 2 : 7 1 8 1 : 8 2 4 3 : 7 1 6 5 : 2 3 : 7 6 5 : 1 6 4 : 7 1 4 3 : 9 0 0 : 5 1 5 0 : 8 1 - - 0 0 : 7 1 4 1 : 2 7 5 : 6 1 - - - - - - - - 2 1 : 8 5 1 : 8 7 4 : 1 6 3 : 5 6 3 : 5 0 1 : 9 3 4 : 3 6 1 : 9 - - - - - - - - - - - - - - - - - - - - - 5 2 : 1 7 5 - 8 - - 9 - 8 5 1 / 7 - - 0 4 : 2 1 " " " " " " " - - - - - - - - - - - - - - - - - - - - - - - - - - - " " " " " " " " " " " " " " " " " " 3 5 - 8 6 1 / 7 - 7 5 - 8 5 1 / 7 - 8 5 : 3 5 5 : 6 2 3 : 8 - " " " “ " " 6 1 / 7 5 1 / 7 9 3 : 3 4 1 0 : 5 3 0 : 0 1 : 7 9 2 : 8 2 5 4 : 0 0 : 5 1 - - - 0 0 : 5 1 - 0 0 : 6 1 4 5 : 0 1 - - 2 5 : 6 0 2 : 1 - - - 8 3 : 4 - 8 1 : 6 3 : 0 1 - 4 5 : 3 1 - - - - - - - - 5 1 : 2 6 0 : 2 - 4 5 : " " " " " " " " - 3 5 - 8 6 1 / 7 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 0 6 1 6 2 6 3 6 4 6 5 6 r e m m u S ( ) s t l u d A ) . t n o c ( a t a D ) d ' t n o c ( . 1 5 e l b a T t s e R e v o M y l F n e e r P a t o T l # e l t e e B t a t i b a H . p i v O e t a M d e e F t o l P e t a D 457 0 0 : 2 1 4 1 : 5 1 8 5 : 1 5 : 0 8 5 5 : 5 3 6 3 : 5 1 5 3 : 4 2 6 3 : 1 2 1 1 : 5 1 4 1 : 1 6 1 : 2 8 4 : 3 8 1 : 6 1 2 4 : 1 5 0 : 3 1 2 3 : 2 2 : 1 2 8 5 : 8 2 : 4 0 0 : 2 1 3 3 : 3 6 5 5 : 4 2 2 3 : 1 1 2 1 : 6 6 3 : 5 1 6 5 : 7 0 1 : 1 6 1 / 7 5 1 / 7 2 1 / 7 5 1 / 7 2 1 / 7 5 1 / 7 2 1 / 7 6 6 7 6 8 6 9 6 0 7 1 7 2 7 3 7 4 7 5 7 6 7 7 7 8 7 9 7 0 8 r e m m u S ( ) s t l u d A ) . t n o c ( s t a O ) d ' t n o c ( . l H e l b a T . p i v O e t a M e v o M t s e R a t o T n e e r P l e t a D # e l t e e B t a t i b a H 458 0 . 9 - 0 . 9 - 0 . 9 - 9 . 1 2 1 0 . 9 - 0 . 9 - 2 . 5 1 0 . 1 6 5 . 0 3 2 . 0 1 1 . 5 7 . 5 4 5 . 0 3 2 . 5 1 0 . 1 6 4 . 1 9 5 . 0 3 2 . 5 1 2 . 5 1 0 . 9 - 2 . 0 1 2 . 5 1 0 . 9 - 0 . 9 - 2 . 7 5 4 MNMNQFOOQMPNNOMNmNNC—MLDMFN :rtsmmq— MON:- 3 P O 2' F- F'NmszOOOOCOQwO‘OC‘C‘OOPNNm: v—t—F-r-v—F-v— 1 . 4 2 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 1 . 2 1 1 . 2 1 1 . 2 1 1 . 2 1 1 . 2 1 1 . 2 1 1 . 2 1 1 . 2 1 POOOOOOOOOOO Noococococoooooaoaoaoco P 33333 W N W N W N W N W N W N W N W S W S W S W S W S W S W S W S W S W S 0 0 5 0 5 O 1 O 5 0 2 O 2 O 2 0 2 O 2 0 2 O 2 0 2 0 2 0 2 O 2 0 2 0 2 O 2 0 2 0 2 O 2 0 2 0 2 0 2 8 . 2 1 0 0 : 1 1 \OOMMMMMMMMMGO‘GO‘OOO C O O C C C . mmcoaoaocoooaocococooococooooo O PFPPPPPPPPP PP 0 . 0 ... 1 0 3 : 9 5 1 : 0 1 0 0 : 0 1 0 3 : 0 1 7 1 : 1 1 0 3 : 1 1 0 3 : 1 1 0 3 : 1 1 0 3 : 1 1 0 3 : 1 1 0 3 : 1 1 5 1 : 1 1 5 1 : 1 1 0 4 : 9 0 4 : 9 0 4 : 9 0 4 : 9 0 5 : 9 0 5 : 9 0 0 : 0 1 5 4 : 0 1 5 4 : 0 1 0 3 : 0 1 0 5 : 0 1 4 0 5 5 0 5 5 0 5 5 0 5 5 0 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 1 1 5 P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C 6 4 6 4 8 3 8 3 6 4 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 E P Y T T A T I B A H S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N . E K A L L L U G T A S N O I T A V R E S B O T N E M E V O M B L C T L U D A 6 7 9 1 F O G N I T S I L . 2 H E L B A T 459 or-mmmmmmoommhmfimoommmmmmo O‘LDNNONNNO‘NONNONNO‘ONNNNNNO‘ P P PMP FNL‘O‘NwPMMF-b-NMO3PFKOONO‘C‘NNM m P ... LO N O F N!— LO \O \O \O &O\O\O\O\O\O\O\O\O\OO\O\O\O\O\O\O\O\O\O\O P P P ... P PPv—PPPPq—PPv—FPv—v—PPPPP COOOOOOCOOOOOOOOOOOOOOOOO «DOCOOOOOOOOOOOOOOOOOOOOOO W S A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N COOOOOOOOOOOOOOOOOOOOOOOO 2 O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\D&O\O\O ommmmmmmmmmmmmmmmmmmmmmmm P1—FI-F-v-r-v-q—Pv-q—Pr-v—u-v-q—q-PPPF-Pv- 0 O O 0 2 : 0 1 1 1 5 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D . D E U N I T N O C . Z H E L B A T T H M C 1 6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 E P Y T T A T I B A H S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C E P Y T T A T I B A H . D E U N I T N O C . 2 H E L B A T 460 OLDNOQML‘OO O‘NU‘NMONO‘ P N'— mwov—PO‘NMMMQNO‘NNPOQNOGQMQM P F'N \O :c—I—Lnu—t—F-mm P M‘- m=r PN cocoooowmm:mmmxooowoocxos-v-Nm Pv- OOOOOOONNPPOOOOOOOOOPPP OOOOOOONNOOPPPPPFPPwQ MMPP :- . O O 1 . 4 PN 2 0::- 1 . 0 2 A N A N A N A N A N A N A N W S W S W N W N W N W N W N W N W N W N W N W N W S W W N W S W S W S OOOOOOOOOOOOOO mm OQQOOQQQQMMPq-u—PPP mmmmmmmmmoocoq—q— 1—1—1-1— C . 1 . 1 NNNN 2 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 3 0 3 : 1 0 3 : 1 0 3 : 2 8 3 : 2 5 5 : 3 5 5 : 3 5 5 : 3 5 5 : 4 5 5 : 4 5 5 : 4 5 5 : 3 1 . 1 2 5 4 : 4 6 . 5 1 0 3 : 4 3 . 8 1 8 . 2 1 2 . 7 1 8 . 2 1 8 . 2 1 0 0 : 2 5 4 : 2 2 4 : 1 2 4 : 1 5 4 : 1 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 9 1 5 4 0 5 4 0 5 1 1 5 1 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 4 1 5 1 1 5 9 1 5 0 3 4 0 3 4 0 3 4 1 5 S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N S E S S A R G E V I T A N E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G E L B B U T S N I A R G T A E H W T A E H W T A E H W 461 0 ' 6 - 0 ' 6 - 2 ' 9 1 1 ' 9 2 ' 0 1 8 ' 0 2 8 ' 0 2 2 ' 0 1 9 ' 2 1 ' 9 8 0 ' 6 - 9 ' 2 2 ' 0 1 9 ' 2 2 ' 9 1 9 ' 1 1 ' 9 8 ' 8 2 ' 9 1 1 ' 9 8 1 ' 9 0 ' 6 - 0 ' 6 - 0 ' 6 - 0 ' 6 - 1 ' 2 ' 1 ' 1 ' 1 ' 8 1 1 ' 1 1 ' 2 1 ' 8 2 2 ' 6 ' 9 ' 8 ' 8 8 ' 2 6 ' 1 ' 8 ' 6 ' 2 ' 2 ' 8 9 ' 1 1 ' 1 0 ' 8 9 ' 1 1 8 ' 0 ' 0 8 8 0 8 1 8 1 8 1 8 1 8 1 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 8 8 1 8 ' 6 1 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ° 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 1 ° 8 2 1 ° 8 2 1 ' 8 2 1 ' 8 2 1 ' 8 2 M M M M M M M M M M M 8 8 3 2 ' 1 1 1 ' 9 2 1 ' 9 2 1 ' 9 2 1 ' 9 2 1 ' 9 2 1 ' 9 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ° 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 8 ' 6 2 1 ' 9 2 1 ' 9 2 6 ' 8 2 0 8 : 1 9 1 : 2 0 8 : 2 0 8 : 2 0 8 : 2 0 8 : 2 0 8 : 2 0 1 : 2 0 1 : 2 0 1 : 2 0 1 : 2 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 8 : 1 9 1 : 8 9 1 : 8 0 0 : 1 0 8 8 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 0 9 8 2 9 8 2 9 8 0 9 d O H d O H 0 8 1 M 1 8 3 3 8 3 3 8 3 8 1 8 8 3 8 8 0 8 8 3 8 8 0 1 1 3 3 8 1 0 8 3 8 0 3 3 1 0 3 3 3 8 8 1 9 1 0 3 8 1 1 3 1 1 3 3 8 0 3 3 3 8 0 8 1 M 1 8 8 3 8 3 1 3 8 1 1 3 1 8 0 ' ( I E I O N I L N O D Z H 3 1 8 V 1 1 8 8 3 0 2 8 8 8 8 8 8 8 8 8 8 8 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 8 1 1 8 1 1 8 8 3 3 1 1 l V l I G V H L V H H M 1 V 3 H M l V E H M l V H H M L V E H M l V H H M l V H H M 1 V 3 H M 1 V 3 H M 1 V 3 H M l V H H M 1 V 3 H M l V B H M 1 V 3 H M l V H H M 1 V H H M 1 V 3 H M 1 V 3 H M L V H H M 1 V 3 H M L V E H M l V H H M 1 8 3 8 M 1 8 3 8 8 S L V O P O H P O H D N I W T N E C R E P E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H T A T I B A H M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E M C E P Y T . D E U N I T N O C . 2 H E L B A T 462 0 . 9 - 0 . 9 - 0 . 9 - 5 . 2 2 . 0 1 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 0 . 9 ~ I PmONNNMNb-MMNLDO <7an . I O O C O . O O C . NO‘LnLnOOOth-v—LOOO‘ Iv—v—F-Nq—z’ u—m cocoooooooowmooF-Ns—oxmmmmoo:mm O 0 C C C O O O O I O O O O O 0 NwmxoPanLnanan N PF P v-Pv—e-u— 0 P 4 1 5 1 6 1 7 1 7 1 9 1 0 2 1 2 2 2 3 2 4 2 5 2 5 2 5 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 . 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 [3.1111131 hJLIJLI.) LIJLIJLIJ (Dc/)0) (00)”) (Dr/JV) OOOOOOOOOOOOOOOOOOOOOOOOO 9 0 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 0 0 : 1 5 1 : 1 0 3 : 1 0 3 : 1 0 3 : 1 5 3 : 1 5 3 : 1 0 4 : 1 0 4 : 1 5 4 : 1 0 5 : 1 5 5 : 1 5 1 : 1 5 5 : 1 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3 S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O 463 5 . 3 6 0 . 9 - 0 . 9 - 1 . 5 5 . 2 0 . 9 - 7 . 5 4 8 . 0 5 6 . 7 5 . 2 0 . 9 - 3 . 0 2 0 . 9 - 0 . 1 6 6 . 7 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 2 . 0 1 2 . 0 1 1 . 5 2 . 0 1 0 . 9 - 0 . 9 - LOOMONOMOLOMLDNMOO‘OOONLOPFNSN v—LnLan—v- r- 1‘ NO‘ mmmow m:— F'N q—v—v- N .... 6 2 7 2 8 2 9 2 9 2 2 3 2 3 2 3 2 3 2 3 3 3 3 3 3 3 4 3 1 1 3 1 1 3 5 3 6 3 7 3 8 3 8 3 0 1 1 0 1 1 0 1 1 1 1 1 1 . 4 2 1 . 4 2 ' 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 6 1 1 . 6 1 1 . 6 1 1 . 4 2 1 . 4 2 1 . 4 2 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 1 . 4 2 E S E S E S E S E S W N W N W N W N W N W N W N W N W N W N W N W N W N W S W S W S W S W S W S W S 00000 0 1 O 1 O 1 0 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 0 3 0 3 0 3 0 3 O 3 0 3 0 3 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 0 0 : 2 0 0 : 2 0 0 : 2 0 1 : 2 0 1 : 2 0 0 : 3 0 0 : 3 0 0 : 3 0 0 : 3 0 0 : 3 0 0 : 3 0 0 : 3 4 0 6 4 0 6 4 0 6 4 0 6 4 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 5 1 : 3 5 1 : 3 5 1 : 3 5 3 : 3 5 3 : 1 4 : 3 0 3 : 3 0 3 : 3 0 2 : 3 0 2 : 3 0 2 : 3 7 0 : 3 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 0 0 : 3 8 0 6 . P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C 8 3 8 3 8 3 8 3 8 3 1 5 1 5 1 5 1 5 1 5 6 4 6 4 6 4 1 5 1 5 1 5 6 4 6 4 1 5 6 4 6 4 1 5 1 5 1 5 6 4 E P Y T T A T I B A H S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O . D E U N I T N O C . Z H E L B A T 464 NOQMNNNMLDNNNLOOFCDLDF'ONLDOONU‘ O 0 ebboommwmoomommmmoooxomoo‘mo N NIP—Pr- u—r—c—m I: M P PM \OQCDFPQNOPOFLOCDOOGDQMOLnLnNOMO I—m PI—N V—LnC‘mP v—q— Ln ,— 0 L“ N P 3 4 3 1 1 3 1 1 3 1 1 3 4 1 1 1 1 PNMMMMSLGLDLDOFN 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 W S W S W S W S W 33333333333333333333 S 0 3 O 3 0 3 0 3 O 3 O 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4 O 4 0 4 O 4 O 4 O 4 O 4 O 4 0 4 4 . 9 2 0 0 : 3 4 . 9 2 0 0 : 3 4 . 9 2 0 0 : 3 4 . 9 2 0 0 : 3 4 . 9 2 0 0 : 3 4 . 9 2 5 1 : 4 4 . 9 2 5 1 : 4 4 . 9 2 5 1 : 4 4 . 9 2 6 3 : 4 4 . 9 2 6 3 : 4 4 . 9 2 6 3 : 4 4 . 9 2 0 3 : 4 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 5 5 : 3 0 5 : 3 0 3 : 3 0 3 : 3 0 3 : 3 4 . 9 2 0 3 : 3 4 . 9 2 5 1 : 3 4 . 9 2 4 . 9 2 4 . 9 2 3 1 : 3 3 1 : 3 3 1 : 3 4 . 9 2 5 5 : 2 4 . 9 2 0 5 : 2 4 . 9 2 0 5 : 2 8 0 6 8 0 6 8 0 6 8 0 6 8 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C 6 4 6 4 6 4 6 4 6 4 E P Y T T A T I B A H S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O . D E U N I T N O C . 2 H E L B A T P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C E P Y T T A T I B A H . D E U N I T N O C . 2 H E L B A T 465 NPPSOOLnfi'LnNNOOF'f-LhNNLOOONLOMN mmmmoxoxoe-Nmmoxoxmmm anbcxmmv- P N 1mm PP 1 :r I!- 0 0 NONOOCMU‘OMNOOJOMmNLflLfiFV-OC‘: 0 O O O O 0 O O O O 0 m mmv-b-b-m mm.- brunuoc~ ww- o m v-v- PP 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 3333333333333333333333333 mmmrnmcnmmcncncnm 0 1 1 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 0 5 : 2 0 5 : 2 0 5 : 2 0 5 : 2 5 3 : 2 5 1 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 0 : 2 0 4 : 4 0 4 : 4 0 4 : 3 0 4 : 3 0 4 : 3 0 4 : 3 0 4 : 3 0 4 : 3 0 4 : 3 0 0 : 3 5 0 : 3 5 0 : 3 5 0 : 3 5 0 : 3 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 9 0 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O P O H P O H D N I W T N E C R E P E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H T A T I B A H M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E M C E P Y T . D E U N I T N O C . 2 H E L B A T 466 LDOOOPOOO NO‘O‘GU‘O‘O‘O" I NNI‘O‘OCOOO‘FOMOMLDLOONOMONOOm O C C O C . . O O C O . 3' :rmmmm [‘um wfi" b-mzr q—mm FPPP ‘— P 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 1 . 4 2 FOOOOOCOOOOOOOOOOO wwdDmemwawmwF-PPP :r N W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S W S E S E S E S E S 0 2 O 2 O 2 O 2 0 2 O 2 O 2 O 2 0 2 O 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 O 2 0 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 7 . 6 2 5 0 : 3 5 0 : 3 5 0 : 3 5 0 : 3 0 2 : 3 0 2 : 3 5 2 : 3 5 2 : 3 0 3 : 2 0 3 : 2 0 3 : 2 0 3 : 2 0 3 : 2 0 0 : 3 5 1 : 3 0 3 : 3 0 0 : 4 0 0 : 4 0 0 : 4 0 0 : 4 0 0 : 4 0 3 : 4 0 3 : 4 5 2 : 4 0 3 : 4 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 4 1 6 2 1 7 2 1 7 2 1 7 2 1 7 S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T A O S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C E P Y T T A T I B A H . D E U N I T N O C . 2 H E L B A T 467 PPOOO‘ONON P :f P NooomoowmooomomomFummCOQ 0 o o o o o o o P1130: PM zranNv-Pa'b-Pm :NPNU‘ Pm NP!— z' 1'" 0 8 9 1 0 2 1 2 1 2 1 2 1 2 2 2 3 2 1 1 3 5 3 6 3 7 3 7 3 8 3 9 3 9 3 9 3 9 3 0 1 1 1 1 1 1 1 1 2 1 1 3 4 1 1 1 1 \OOOOOOOPOOOOOOOP c—oococoaoaoooxoooaooooowaocoo 1 . 6 F 1 :- E S W S W S W S W S W S W S W N W S W S W S W S W S 0 O 3 O 6 O 4 O 4 O 4 O 4 O 7 O 4 O 6 0 6 0 6 O 6 O 6 0 1 O 7 O 7 O 7 O 7 O 7 0 1 0 1 O 6 O 7 0 7 7 . 6 2 0 4 : 4 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 5 3 : 3 5 2 : 3 0 1 : 4 0 1 : 4 0 1 : 4 0 1 : 4 8 1 : 2 0 4 : 3 1 1 : 3 1 1 : 3 4 . 9 2 0 2 : 3 4 . 9 2 5 2 : 3 4 . 9 2 5 2 : 3 2 . 2 3 4 . 9 2 5 2 : 2 5 1 : 2 1 4 . 9 2 5 2 : 2 4 . 9 2 5 2 : 2 4 . 9 2 5 2 : 2 4 . 9 2 0 3 : 2 2 . 2 3 2 . 2 3 4 . 9 2 4 . 9 2 4 . 9 2 5 4 : 1 1 5 4 : 1 1 1 1 : 3 5 1 : 2 5 2 : 2 2 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 9 8 S T L U D A R E M M U S 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S 468 0 . 9 - 1 . 5 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - mmocoooomoox©t~moococooozcoomco O O O O O O 0 I O O I I I I O I Nab-mmmoov-oz'ooommcnu—anzwommmm P v-v-v-v-P mmmv-v-Pt— 1 1 1 1 5 1 1 5 1 1 6 5 7 5 8 5 0 6 7 6 8 6 9 6 q—NMSLDONGDO‘ 1 . 6 1 1 . 6 1 0 0 0 1 OOOOOOOCOOOOOOOOOOOOQO . 6 1 wwwmwwwmwmwmwwpppppppp O O C O W N W N W N W S W S W S W S W S W N W S W S W S W S W S W N W N W N W N 4 . 9 2 5 2 : 2 4 . 9 2 5 4 : 2 4 . 9 2 5 4 : 2 7 . 6 2 5 3 : 4 4 . 9 2 1 2 : 4 7 . 6 2 6 3 : 4 7 . 6 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 4 . 9 2 2 . 2 3 2 . 2 3 4 . 9 2 1 . 1 2 1 . 1 2 9 . 3 2 9 . 3 2 9 . 3 2 7 . 6 2 9 . 3 2 7 . 6 2 1 5 : 3 5 1 : 4 0 1 : 3 0 5 : 3 2 1 : 3 9 2 : 3 0 0 : 4 5 5 : 3 8 4 : 1 1 0 5 : 1 1 5 4 : 1 1 0 3 : 8 0 3 : 8 1 4 : 9 1 4 : 9 0 4 : 8 0 4 : 8 6 3 : 0 1 0 2 : 1 1 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 5 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D . D E U N I T N O C . 2 H E L B A T T H M C 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 9 8 4 1 1 E P Y T T A T I B A H S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S 469 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - ONOOOOOONOOOOOONOOOOOCQ:N mmmommoommmmmoommmmmmm O‘N v-F-v-v-v—v—r-v-v—Pv—I—v-NNF-c—s—q-v-v-P P . . 0 1 1 1 2 1 3 1 1 1 1 5 1 6 1 7 1 8 1 1 1 2 5 2 6 2 7 2 8 2 9 2 o 3 6 4 7 1 1 8 1 1 9 1 1 0 5 1 5 2 5 3 5 4 5 \O\O\O\O\O\O\O\O\O\O\DOO\O\OO\OO\O\OC\O\O\O\O O O O O O C O O O O O O O O O O O O O O C C W N W N W N W N W N W N W N W N W N W N W N W N W N W N W W N W N W N W N W N W N W N W N W N W N OOOOOOOOO 9 . 3 2 9 . 3 2 4 . 9 2 7 . 6 2 7 . 6 2 4 . 9 2 4 . 9 2 7 . 6 2 9 . 3 2 9 . 3 2 1 . 1 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 9 . 3 2 1 . 1 2 9 . 3 2 6 5 : 0 1 5 4 : 1 1 5 2 : 1 1 5 2 : 1 1 5 4 : 1 1 5 4 : 1 1 0 2 : 1 1 5 0 : 1 1 4 2 : 1 1 1 4 : 9 9 5 : 9 4 2 : 1 1 4 2 : 1 1 8 4 : 1 1 0 3 : 1 1 9 3 : 9 6 1 : 0 1 3 . 8 1 3 5 : 8 1 . 1 2 mmmm CDQCDCD 1 1 1 1 1 1 : 9 4 3 : 8 0 5 : 8 0 3 : 8 0 3 : 8 P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D 9 . 3 2 7 5 : 9 6 1 7 6 1 : 0 1 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6 1 7 . D E U N I T N O C . 2 H E L B A T T H M C 7 9 9 8 9 8 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 1 9 1 9 1 9 6 7 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 E P Y T T A T I B A H S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S P O H P O H D N I W T N E C R E P M C N I M R E B M U N H P K N O I T C E R I D R E V O C C T D E E C N A T S I D E M I T E L T E E B D E E P S D N I W Y K S P M E T E M I T E T A D T H M C E P Y T T A T I B A H . D E U N I T N O C . 2 H E L B A T 470 0 . 9 - 0 . 9 - 0 . 9 - 7 . 5 4 3 . 0 2 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 0 . 9 - 2 . 0 1 3 . 0 2 7 . 5 4 3 . 0 2 0 . 9 - 7 . 5 4 0 . 9 - 9 . 1 2 1 OOOQMFOOOONOOLONSLGOMMN NNLONLDO‘LDMONO LOO \Ov-LnO‘F-P N 5 5 9 5 1 6 2 6 2 6 2 6 3 6 4 6 5 6 6 6 3 7 1 8 2 8 1 3 1 3 1 3 1 3 2 3 3 3 3 3 3 3 COCOO‘O‘O‘OOOOOCPP o o 0' ' ' 8 ° ° PPQ .PmPv-ngo O 1 . 6 F!— 1 1 . 6 1 1 . 6 1 1 . 6 1 1 . 6 1 1 . 6 1 W N W N W N A N A N A N A N W N W W N W N W N 1 O 5 7 9 - 9 - 9 - 9 - 5 1 6 O 2 O 3 O 4 5 5 O 4 O 4 O 4 O 4 O 4 O 7 O 7 0 7 4 1 1 S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S S T L U D A R E M M U S t o n d i d r o t h g i l f n i t s o l s a w e l t e e b e h t r e h t i e s e t a c i d n i n m u l o c e c n a t s i d e h t n i 9 - A . d o i r e p n o i t a v r e s b o e h t g n i r u d e v o m 7 1 : 2 7 1 7 S T L U D A R E M M U S 9 . 3 2 9 . 3 2 1 . 1 2 9 . 3 2 9 . 3 2 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 2 . 2 3 7 4 : 0 1 0 1 : 1 1 5 1 : 9 5 2 : 1 1 8 4 : 1 1 0 3 : 2 0 3 : 2 0 3 : 2 0 3 : 2 2 5 : 2 7 1 : 2 7 1 : 2 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 3 . 8 1 2 5 : 8 9 . 3 2 4 2 : 9 9 . 3 2 0 5 : 8 9 . 3 2 8 5 : 9 6 1 7 6 1 7 6 1 7 471 0 0 : 3 3 0 0 : 6 2 0 0 : 0 3 5 0 : 0 3 0 0 : 0 3 0 0 : 0 3 5 3 : 3 1 0 5 : 5 1 1 4 : 7 2 1 1 : 9 0 : 4 0 0 : 2 4 6 0 : 6 6 7 4 : 2 4 9 4 : 5 6 0 4 : 8 9 8 4 : 6 1 0 3 : 1 0 0 : 4 2 3 2 : 6 0 : 7 6 4 : 1 2 4 : 0 2 9 4 : 8 1 2 0 : 2 1 0 3 : 3 0 3 : 1 1 0 0 : 6 1 0 1 : 9 1 0 0 : 0 3 0 0 : 0 3 0 0 : 1 1 5 2 : 7 2 0 5 : 2 1 0 5 : 5 1 1 4 : 8 MNv-INN NNMN 2 2 / 6 5 6 6 6 7 6 8 6 9 6 O 7 1 7 2 7 3 7 9 7 0 8 9 8 O 9 1 9 2 9 3 9 4 9 5 9 6 9 t a e h W ) c e s & n i m ( . 6 7 9 1 n i e a v r a l B L C y b s r o i v a h e b s u o i r a v n i t n e p s e m i t f o t n u o m A . 3 i l e l b a T t s e R r a t s n I e v o M t l o M a t o T l t o l P e t a D d e e F # e a v r a L t a t i b a H 472 6 0 : 0 6 0 0 : 0 6 0 0 : 0 6 0 0 : 5 7 0 3 : 7 4 0 0 : 0 3 0 0 : 0 6 3 5 : 9 5 0 0 : 9 5 2 5 : 7 6 7 4 : 3 4 9 4 : 5 6 0 0 : 8 3 0 0 : 0 6 0 0 : 0 6 0 0 : 0 6 0 0 : 0 6 4 4 : 4 4 2 2 : 2 1 : 8 2 2 2 : 1 1 8 4 : 9 5 5 4 : 8 2 2 : 3 3 8 5 : 9 5 0 0 : 0 5 4 5 : 2 2 0 4 : 5 1 0 3 : 0 1 0 1 : 5 2 0 0 : 7 1 7 5 : 6 4 HMMNQ‘ HMQ’NM NMNHM MN 1 1 - 8 5 2 / 6 7 9 8 9 9 9 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 1 0 1 1 1 1 1 2 1 1 3 1 1 4 1 1 ) . t n o c ( s t a O ) d ' t n o c ( . 3 H e l b a T t s e R a t o T e v o M l r a t s n I t o l P e t a D # e a v r a L t a t i b a H APPENDIX I 1976 AND 1978 PARASITOID CAGE RESULTS 473 0 0 ' 0 8 0 ' 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 8 0 ' 0 0 ’ 0 8 0 ‘ 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 8 0 ' 5 2 ' 9 1 ' 0 0 ‘ 0 8 0 ’ 0 0 ' 0 9 0 ‘ 0 0 ' 0 0 0 ‘ 0 8 2 ' 0 0 ‘ 0 1 1 ' 0 0 ' 0 1 1 ‘ 0 0 ‘ 0 0 0 ' 0 1 5 ' E 2 8 1 9 0 0 0 2 8 2 8 1 9 0 0 0 1 9 2 ' 1 9 0 ' 1 0 0 ' 0 L E ' 9 2 ' 0 0 ' 0 O O ' O S E ' l 0 0 ' 0 0 0 ' 0 0 8 ' 0 0 ' 0 8 0 ' 9 0 ' 6 0 ' 1 2 ' 2 0 0 ' 0 0 6 ' O O ' O B R ' E O O ' O L 9 ' 0 0 ' 0 0 9 ' 0 0 0 ' 0 0 ' i l ' 6 0 ' { 1 ' L 0 ' 0 0 ' 0 0 5 ' 9 0 ' 1 8 ' 1 2 ' 9 1 ' 0 0 ' 0 0 0 ' 0 2 8 ' h 8 0 ' 6 2 ' 2 8 9 ' ! 0 9 ' 0 0 ‘ 0 8 2 0 2 9 0 0 0 2 0 0 ’ 0 0 0 ° 0 0 0 ’ 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 8 0 L 9 0 9 2 0 0 ’ 0 0 0 ‘ 0 0 ' 0 0 0 ' 0 9 0 ‘ 0 0 ' 0 8 0 ' 8 0 ° 0 0 ' 0 0 0 ' 0 8 0 ‘ 8 0 ‘ 8 0 ' 8 0 ' 8 2 8 L 9 0 5 2 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ’ 0 0 0 ' 0 0 0 ' 0 8 0 ’ 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 1 1 ' 8 2 8 1 9 0 0 9 O O ' O O O ' O 1 1 ' 9 0 ' 6 1 ' 6 0 ' 6 2 ' 0 0 ' 9 2 ' 9 2 ' 6 2 ' 1 1 ' 2 4 ' 9 1 ' 0 2 ' 6 2 ' 1 6 0 ' 0 0 ' 9 0 ' 9 0 ' O O ' O 0 0 ' 0 0 0 ' 0 O O ' O O O ' O O O ' O O O ' O O O ' O 0 0 ' 0 6 6 ' 2 6 1 ' 9 4 ' 6 6 ' L h ' l b i ' i O O ' O 2 6 ' L 1 0 9 ' { 9 ' 1 6 2 ' L 0 9 ' 8 0 8 ' 6 2 8 2 6 1 9 0 0 0 2 O O ' O 0 0 ' 0 9 2 ' 9 1 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 9 2 ' 0 0 ' 0 9 2 ' 1 E l ' 1 0 ' O O ' O 1 L ° 0 0 ' 0 0 1 ' 0 0 ' 0 0 0 ' 0 0 0 ' 0 1 2 ' O O ' O 6 0 ' 1 9 1 ' 9 1 ' 6 1 ' 1 1 ' 9 2 ' 6 0 ' 0 9 ' 9 1 ' 4 9 ' 6 1 ' L i ' 2 1 ' { 9 ' 8 1 ' { 1 ' L 0 ' 0 2 ' 0 1 ' O O ' O 9 2 ' 0 0 ' 0 8 2 ' 8 0 2 9 0 9 2 9 2 ' 9 1 ' 0 0 ' 1 1 0 ' 0 0 ' 8 0 ' 6 L ' 8 2 ' 9 0 ' 9 2 ' 0 2 0 2 9 0 9 2 8 2 0 0 5 0 0 0 0 0 ' 0 0 0 ' 0 9 2 0 2 9 0 0 0 1 0 0 ' 6 0 ' 8 0 ' 9 0 ' 2 2 ' 6 1 ' 6 2 ' 1 1 ' 9 2 ' 9 1 ' 9 2 ' 2 1 ' 9 4 ' 9 1 ' 1 1 ' 8 1 ' E l ' L 0 ' 8 0 ' 9 0 ' 9 2 ' 1 1 ' 9 2 ' l l ' 2 9 ' 0 9 ' 9 2 ' 8 0 ' 1 9 2 ' 9 2 ' 8 0 ' 0 0 ' 9 2 ' 2 1 ' L 9 ' L 1 ' 2 6 ' 1 2 ' 0 9 ' 0 9 ' { 0 ' { 2 ' " 9 ' 2 9 2 ' 9 h 9 1 0 0 9 2 8 9 ' Z h ' E N 2 1 2 8 0 9 2 l t ' l E E ' L 8 2 9 6 8 0 0 9 0 1 ' 2 9 4 ' 2 2 N o 0 1 8 0 0 0 1 6 L ' 9 9 0 2 S E N 0 0 0 2 { 9 ' 2 9 ' L S ' S 8 6 L 9 0 9 2 0 8 ' L l ' 2 8 2 0 1 9 0 9 2 E E ' O L ' 1 0 ' 9 L ' l 8 9 ' 1 E E ' Z 0 2 0 2 9 0 0 9 0 2 ' 9 6 ' ! 0 0 ' 1 9 ' 6 2 ' 2 i i ' h 0 2 6 1 9 0 0 0 1 8 1 1 0 0 V 1 1 8 1 £ 1 2 1 1 1 8 0 0 3 N 0 0 3 9 9 0 $ 1 1 0 0 V 1 1 0 1 £ 1 2 1 1 1 8 0 0 3 N 0 0 3 0 4 3 ' 0 3 0 N 1 1 N 0 3 ' T I 3 1 0 V 1 ' ( 0 6 ( 0 0 ) ' H 0 0 3 0 ' h D O 9 8 1 ' 0 0 3 l l N fl 3 1 d K V S ' N V 3 N 3 H 1 3 0 0 0 8 0 3 O U V O N V 1 8 3 2 H O N ' N V 3 H = 1 H 0 8 ' S B W d N V S N O I l V W fl d O d B O Y D 3 2 4 1 1 1 0 0 9 L 6 1 3 0 A U V W h fl S ' I l 3 1 0 V 1 474 TABLE 12. PARASITISM OF CLB LARVAE FROM 1976 GULL LAKE CAGE STUDY. H O O O ‘ 0 I . . . N O > v i - ) U § § U W N U W U U U N W H O N N U D O O O O O O O O O O O O O O O O O O O O U O O O O O O O O N M O O 475 TABLEIJ. MEAN NUMBER OF PARASITE EGGS AND LARVAE RECOVERED FROM DISSECTIONS OF THE 1976 GULL LAKE CLB CAGE STUDY. R08 l-HEAN, ROW 2-VARIANCE, R014 3-NO. LARVAE PARASITIZED. CAGE DATE CROP ‘HHI EGGS LARVAE EGGS LARVAE EGGS LARVAE 250 617 OATS 3.12 0.00 2.83 0.00 0.00 0.00 0.00 0.00 1.24 0.00 0.00 0.00 0.00 O 12 0 0 0 0 250 621 OATS 3.60 0 0 0 0 0 0 0 3 2 0 0 0 0 “ 250 626 WHS3JS 3.50 3.47 0.00 0.00 0.00 0.00 1.00 1.14 0.00 0.00 0.00 0.00 12 17 O 0 O O 500 617 OATS 2.98 500 621 OATS 3.71 5 5 3 3 3 3 3 4 1 0 3 2 0 9 4 0 0 0 0 0 0 0 0 0 0 0 $00 624 OATS 3.86 1000 617 OATS 3.07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 . . 0 0 0 w o o 0 0 0 1000 621 OATS 3.80 4.09 3.27 0.00 0.00 0.00 0.00 1.29 .69 0.00 0.00 0.00 0.00 11 22 O O 0 0 1000 626 OATS 3.76 3.17 3.19 0.00 .57 .30 0.00 6 16 O n ? & 2000 617 OATS 2.56 00O2 “sm126 771 3 2 9 5 2 5 3 3 6 1 4 1 3 7 9 0 0 0 0 0 0 0 0 0 0 0 2000 624 OATS 3.52 3.80 3.77 0. .70 .82 0 5 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4476 TABLE 11. SUMMARY OF 1976 STEM HEIGHT AND DENSITY TAKEN FROM CAGE POPULATION SAMPLES. SAMPLE UNIT EQUALS 60 CH. OF OATS Row. (00> 5.5 C) STEM HEIGHT STEM DENSITY 260 50976 697 29 31 21 37 52.70 2.87 609 61176 669 99 26.96 69 95.03 2 78 1000 61076 669 29 28.67 .75 39.98 3.12 2000 61076 669 29 26.96 1.06 38.89 2.79 250 61776 792 a 22.75 .77 36.51 5.32 250 61776 792 21 22.75 .36 16.57 3.05 500 61776 792 21 23.17 .29 39.90 2.91. 1000 61776 792 21 25.01 .73 31.61 2.53 2000 61776 792 21 22.75 .16 12.65 2.17 250 62176 896 a 26.25 .37 32.07 1.07 250 62176 896 21 27.13 .39 37.78 ’ 3.36 500 62176 896 21 26.92 .21 27.09 1.16 1000 62976 896 25 29.80 1.06 30.68 2.26 2000 62976 396 29 29.71 .33 31.75 2.95 250 62876 963 8 31.25 .62 99.95 6.92 250 62876 963 29 32.29 .82 39.82 2.70 600 62876 963 29 31.08 .70 36.98 3.13 1000 62876 963 29 28.88 1.36 30.27 2.86 2000 62876 963 23 29.22 .69 28.38 2.91 s p a r t e c n e g r e m e r e d n u n e k a t s e l p m a s l i o s m o r f d e r e v o c e r s l l e c l a p u p B L C f o s t n e t n o c f o y r a m m u S . 5 I e l b a T . " 4 x " 6 3 x " 8 1 s l a u q e t i n u e l p m a S . s e g a c e t i s a r a p n i . e c n a i r a v a 2 w o r d n a n a e m - 1 w o R L A T O T g u g r u c - L - ' E D E G R E M g fl g j - I 477 . 3 5 0 0 . 4 5 4 . 5 2 9 . 5 0 9 . 5 2 2 9 . 9 3 6 . 2 3 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 8 0 . 8 0 . 8 0 . 8 0 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 8 0 . 8 0 . 0 0 . 0 0 0 . 0 8 0 . 8 0 . 7 1 . 5 1 . 0 0 . 0 0 0 . 0 5 2 . 0 2 . 2 4 . 7 2 . 7 1 . 5 1 . 0 5 . 4 6 . 3 3 . 4 2 . 3 8 . 1 4 2 . 3 0 0 . 2 6 3 . 2 2 4 . 2 0 9 . 5 8 0 . 5 5 4 . 8 2 9 . 1 8 . 7 6 . 1 8 8 . 1 8 5 . 2 5 4 . 6 8 5 . 3 7 2 . 8 2 1 6 7 / 0 2 / 7 0 5 2 2 1 6 7 / 0 2 / 7 0 0 5 2 1 6 7 / 0 2 / 7 0 0 0 1 2 1 6 7 / 0 2 / 7 0 0 0 2 L O R T N O C S L L E C D E G R E M E G N I S U A P A I D s i l a r m m e t . D D E G R E M E G N I S U A P A I D B L C N E T A D E G A C 5 2 . 6 4 . 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 1 . 0 2 . 0 0 . 0 0 0 . 0 8 0 . 8 0 . 4 0 . 4 0 . 4 2 6 7 / 8 / 7 9 - 9 S T L U D A T L 9 L 3 L 2 L 1 L S G G E D D E G A C S T L U D A T L 9 L 3 L 2 L 1 L S G G E D D E G A C . D E U N I T N O C . 6 1 E L B A T ) C 9 ) 0 0 , 5 1 : N ( . W O R F 0 . M C 0 6 S L A U Q E T I N U E L P M A S . N A E M E H T F O R O R R E D R A D N A T S = 2 M O R , N A E M = 1 M O R . S E L P M A S N O I T A L U P O P E K A L L L U G 8 7 9 1 F O Y R A M M U S . 6 1 E L B A T 0 0 . 0 8 3 . 1 9 1 . 1 5 . 2 6 . 6 7 . 8 2 . 0 0 . 0 2 7 . 8 1 . 7 2 . 5 3 . 1 9 . 5 2 . 1 0 0 . 0 3 6 . 1 2 5 7 . 0 0 . 9 1 2 . 6 7 6 . 0 1 1 2 . 1 9 7 9 0 0 5 0 0 . 0 8 0 . 5 9 5 . 9 0 . 1 2 9 . 1 8 0 . 2 9 2 . 7 2 6 3 0 5 2 9 0 . 9 0 . 9 5 . 9 9 2 . 3 7 . 6 3 . 1 9 9 . 2 8 3 . 2 9 8 3 . 1 0 5 . 7 2 9 . 3 1 8 5 . 9 1 8 8 . 6 2 . 9 7 9 0 0 0 1 0 0 . 0 6 9 . 5 7 8 . 2 5 . 1 0 6 . 1 0 3 . 5 9 1 . 0 0 . 0 3 1 . 7 6 8 3 . 7 8 3 . 7 1 1 2 . 7 1 7 1 . 5 2 6 9 . 9 7 9 0 0 0 2 0 0 . 0 7 6 . 8 0 0 . 0 0 3 . 1 6 9 . 9 1 . 5 3 . 5 6 . 2 9 . 1 7 . 1 7 1 . 9 3 3 . 2 8 3 . 2 1 . 1 1 5 0 5 2 0 0 . 0 5 9 . 1 7 1 . 7 6 . 9 6 . 2 2 . 1 8 1 . 0 0 . 0 3 8 . 9 1 6 9 . 0 0 . 6 7 6 . 5 1 7 . 7 3 3 . 1 1 5 0 0 5 0 0 . 0 8 0 . 9 7 9 . 8 5 . 1 1 9 . 2 8 3 . 1 2 5 . 0 0 . 0 7 1 . 7 9 3 6 . 1 9 5 . 2 1 9 2 . 9 1 1 7 . 3 1 9 5 . 1 1 1 5 0 0 0 1 7 1 . 7 1 . 5 3 . 5 3 8 . 3 9 . 1 7 2 . 3 7 2 . 1 0 0 . 0 6 9 . 3 6 9 2 . 3 9 7 . 7 1 3 8 . 5 2 9 0 . 7 1 0 0 . 0 1 1 5 0 0 0 2 3 1 . 7 0 . 7 1 . 2 1 . 3 3 . 2 1 . 8 0 . 6 0 . 9 0 . 9 0 . 9 0 . 9 0 . 9 2 . 9 3 0 . 1 7 6 . 9 2 . 8 3 . 1 9 . 8 5 . 3 1 . 2 2 9 . 1 6 9 . 1 5 2 . 5 8 8 . 6 1 2 6 3 0 0 5 2 9 . 9 1 0 5 . 0 3 . 2 2 2 . 6 9 . 9 2 . 7 9 . 9 5 . 1 9 6 . 2 5 7 . 3 1 7 . 9 8 0 . 0 2 2 6 3 0 0 0 1 2 9 . 3 1 3 . 9 6 . 1 3 . 2 3 0 . 2 8 9 . 8 8 8 . 0 9 8 0 . 1 7 1 . 3 9 0 . 2 1 8 5 . 9 2 9 7 . 9 6 2 6 3 0 0 0 2 1 3 . 3 2 3 . 5 3 . 3 9 . 9 7 . 2 2 1 . 6 8 8 . 1 9 3 8 . 5 2 . 2 9 7 . 6 0 0 . 2 3 1 2 . 9 6 0 7 3 0 0 0 2 8 0 . 5 1 2 . 5 7 . 0 1 . 2 9 . 8 2 . 5 9 . 5 3 . 3 5 . 3 1 . 2 3 8 . 1 8 0 . 2 3 1 9 0 5 2 9 9 . 9 1 . 7 3 . 6 5 . 1 8 . 7 9 . 7 1 . 3 1 9 5 . 0 5 . 1 6 9 . 3 7 1 . 7 6 9 . 2 3 1 9 0 0 5 0 0 . 0 1 2 . 0 0 . 0 0 0 . 0 0 1 . 0 0 . 0 0 0 . 0 8 2 . 0 0 . 0 0 0 . 1 0 0 . 0 7 9 . 0 0 . 0 3 1 . 2 0 0 . 0 2 3 . 0 0 . 0 0 0 . 2 8 3 . 1 2 . 9 5 . 7 2 . 6 1 . 7 1 . 8 0 . 6 0 . 3 3 . 6 1 . 8 8 . 9 2 . 1 2 . 1 0 . 1 8 0 . 6 0 . 5 2 . 9 0 . 7 6 . 7 1 . 3 3 . 2 1 . 9 0 . 9 0 . 9 0 . 9 0 . 9 0 . 9 0 . 7 1 . 8 0 . 0 0 . 0 0 0 . 0 1 6 . 1 7 1 . 8 2 . 9 6 . 2 2 . 1 5 5 . 0 0 . 0 2 0 6 0 5 2 0 0 . 0 9 2 . 9 1 9 5 . 0 5 . 1 0 5 . 9 5 7 . 7 3 8 . 3 3 1 9 0 0 0 1 0 0 . 0 0 0 . 0 2 0 6 0 0 5 0 0 . 0 0 0 . 0 2 0 6 0 0 0 1 0 0 . 0 0 0 . 0 2 0 6 0 0 0 2 3 1 . 9 0 . 8 0 . 8 0 . 8 0 . 6 0 . 9 0 . 1 0 . 9 0 . 9 0 . 0 2 . 5 6 9 . 5 8 . 1 9 9 . 2 1 9 . 2 8 7 . 3 3 . 6 5 8 0 . 2 5 2 . 8 6 9 . 9 2 9 5 . 1 2 5 7 . 2 3 1 9 0 0 0 2 0 0 . 9 3 1 . 0 1 . 1 7 0 . 1 7 . 0 2 . 2 9 . 3 8 . 3 9 . 8 5 . 2 8 5 . 5 8 0 . 3 2 3 9 0 5 2 2 8 . 1 3 3 . 7 3 . 0 5 . 1 8 . 1 1 7 . 1 0 . 8 1 1 7 . 3 6 . 1 3 3 . 1 8 3 . 1 1 8 0 . 1 2 3 1 0 0 5 3 9 . 5 1 3 . 9 6 . 6 5 . 1 0 8 . 1 6 3 . 1 5 2 . 2 9 1 7 . 5 7 . 3 5 2 . 0 1 9 5 . 7 2 0 0 . 7 2 3 9 0 0 0 1 8 3 . 8 7 9 . 9 5 . 1 7 7 . 3 8 2 . 6 7 7 . 9 5 . 5 8 3 3 . 3 8 8 . 0 1 0 0 . 1 3 3 3 . 0 9 1 2 . 3 2 3 9 0 0 0 2 0 0 . 0 8 1 . 1 1 1 . 3 9 . 9 9 . 7 5 . 0 0 . 0 8 0 . 1 1 9 2 . 0 5 . 2 6 9 . 2 3 3 . 5 2 9 . 7 1 . 9 7 9 0 5 2 479 TABLE I7. PARASITISM OF CLB LARVAE FROM 1978 GULL LAKE PARASITISH CAGES. " _ ‘ ‘ " CAGE DATE CROP N HMI --- 95118617719151;qu """ ——— T J D C L C ALL 250 612 OATS 50 3.02 0.00 6.00 0.00 6.00 500 612 OATS 97 2.89 9.26 2.13 2.13 8.51 1000 612 OATS 98 2.85 0.00 8.33 2.08 10.92 2000 612 OATS 92 3.17 0.00 9.76 0.00 9.76 250 .615 OATS 97 3.09 2.13 9.26 0.00 6.38 500 615 OATS 50 3.22 0.00 10.00 0.00 10.00 1000 615 OATS 50 3.10 2.00 10.00 0.00 10.00 2000 615 OATS 50 3.90 10.00 0.00 0.00 10.00 250 619 OATS 50 3.66 9.00 10.00 0.00 19.00 500 619 OATS 50 3.89 2.00 12.00 2.00 16.00 1000 619 OATS 50 3.68 9.00 16.00 2.00 22.00 2000 619 OATS 50 3.76 2.00 12.00 0.00 19.00 250 622 OATS 50 3.62 12.00 2.00 2.00 16.00 500 622 OATS 99 3.65 2.09 10.20 0.00 12.29 1000 622 OATS 50 3.79 6.00 32.00 2.00 90.00 2000 622 OATS 50 3.68 9.00 6.00 6.00 16.00 250 629 OATS 5 3.80 80.00 20.00 0.00 80.00 6’10 629 OATS 18 3.89 83.33 16.67 0.00 88.89 1000 629 OATS 26 9.00 89.62 39.62 3.85 89.62 2000 620 19TS 11 3.91 81.82 9.09 0.00 81.82 480 O 1 9 1 2 0 E 0 0 ' 0 0 0 ' 0 0 0 ’ 0 0 0 ' 0 0 0 ' 0 0 0 ’ 0 0 0 2 0 0 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 ' 0 0 ' 0 0 0 ° 1 0 0 ’ 1 0 0 ' 1 0 0 ' 0 0 0 ' 1 h L ' E $ 1 9 0 2 2 9 0 0 0 1 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ° 0 0 0 ' 0 0 0 ' 0 L l ' E S 1 V 0 2 1 9 0 0 0 2 0 0 9 0 1 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 E 0 0 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 0 0 0 ' 2 0 0 ' 0 9 1 ' 6 S 1 9 0 6 1 9 0 0 0 2 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 2 0 ' £ S 1 V 0 2 1 9 0 9 2 0 1 1 0 0 9 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 2 2 ' 1 0 1 0 2 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 2 0 0 ‘ 0 0 0 ' 0 0 0 ' 1 0 0 ' 1 0 0 ' 0 0 0 ' 0 1 9 ' 1 2 9 ° E S 1 V O 2 2 9 0 9 2 0 0 ' 1 0 0 ' 0 0 0 ’ 1 0 0 ° 0 0 0 ' 2 0 0 ' 0 6 8 ' 2 S l V O 2 1 9 0 0 9 0 0 S 0 0 1 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 1 0 h 0 0 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ° 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 0 0 0 ' 0 0 0 ' 2 5 9 ' 1 S 1 V 0 2 2 9 0 0 9 0 0 ' 1 0 0 ' 0 0 0 ' 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 5 9 ' 2 S L V O 2 1 9 0 0 0 1 0 1 E 0 0 2 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 2 0 1 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 1 0 0 ' 0 0 0 ' 0 0 0 ° 2 9 9 ' 6 S l V O 2 2 9 0 0 0 2 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 0 0 0 ' 9 0 0 ' 0 6 0 ' E $ 1 9 0 9 1 9 0 9 2 0 0 1 0 6 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 { 8 ' 8 0 0 ' 0 0 0 S 0 0 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 0 L 9 ' E 0 0 ' 9 0 8 ° C S l V O 6 2 9 0 9 2 0 0 ' 0 0 0 ' 0 0 0 ° 1 0 0 ° 0 0 0 ' 0 0 0 ' 0 2 2 ' 1 $ 1 9 0 5 1 9 0 0 5 0 0 Z 1 £ 1 E 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 L Z ' S E E ' 0 0 h 2 0 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ‘ 0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 1 h S ' £ { 6 ' 1 6 9 ' 6 S l V O 6 2 9 0 0 5 0 0 ' 0 0 0 ° 0 0 0 ° 1 0 0 ’ 1 0 0 ' 0 0 0 ° 1 0 1 ' 1 5 1 1 0 5 1 9 0 0 0 1 0 1 6 5 £ 1 2 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 O E ' 1 2 ' 9 6 0 ' E 0 0 0 0 E 2 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ° 1 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 1 0 9 ' 1 h S ' E O O ' E 0 0 ' 0 S l V O 6 2 9 0 0 0 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 2 0 0 ° 1 O h ' i S l V O 9 1 9 0 0 0 2 0 0 1 0 L 9 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 9 6 ' 1 0 0 ' 9 9 0 0 S 0 1 1 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ’ 0 0 0 ' 1 0 0 ' 0 t h ' 2 0 0 ' 9 l b ' t S l V O 6 2 9 0 0 0 2 0 0 ' 0 0 0 ' 0 0 0 ° 1 0 0 ' 0 0 0 ° 1 0 0 ' 2 9 9 ' i S l V U 6 1 9 0 8 2 8 0 1 0 0 3 1 U H S I N I H V D 0 8 1 1 0 f 1 5 0 1 8 0 0 1 U B J I N I U V O 0 8 1 1 0 f 1 S V A U V W $ 9 9 3 3 V A U V 1 $ 9 9 3 3 V A I V 1 $ 9 9 3 3 V A H V 1 $ 9 0 3 3 ' A I V 1 8 9 9 3 E V A U V W 9 0 9 3 “ ' - " " " " " “ " " " ‘ " " " " " ' I N H 6 0 0 3 3 1 V 0 B D V D - " - " - " ’ - - " - " " " - " " " " " ' I H H J O B S 3 1 V 0 B L V D ' 0 3 0 N 1 1 N 0 3 ' 8 1 3 1 8 V 1 ' 0 3 2 1 1 1 9 ' 0 ' 6 ' O N = E H 0 ! " l V A 3 2 H 0 8 ‘ I 9 3 N = 1 H 0 8 0 3 8 3 A 0 3 3 8 E V A H V W G N U 5 9 0 3 3 1 1 8 9 0 9 6 J O I 3 0 H fl l I V E R ' 8 1 3 1 0 9 1 ’ S V A U V W 0 1 5 3 9 9 0 H S I L I S V U V J 9 1 6 1 N O U J 1 0 9 0 1 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ° 0 0 0 ' 0 0 0 ' 0 0 0 ° 1 0 0 ° 0 0 0 ' 1 0 0 ' 0 0 0 ' 1 0 0 ' 0 h B ' E S L V O 6 1 9 0 0 9 0 1 B 0 2 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 0 0 0 ' 1 0 0 ' 1 0 0 ' 0 0 0 ' 1 0 0 ' 0 8 9 ° E $ 1 V O 6 1 9 0 0 0 1 481 E S N A E M E S N A E M E S N A E M E S N A E M Y T I S N E D M E T S T H G I E H M E T S Y T I S N E D M E T S T H G I E H M E T S - - - - - - - - - - - - - - — - - - — - - - — - - D D E T A D E G A C — - - - - - — - - - - - - - - - - ' - ' D D E T A D E G A C . D E U N I T N O C . 9 I E L B A T . C 5 . 5 > D D , 5 1 S L A U Q E E Z I S E L P M A S . B O N S T A O P O . M C 0 6 S L A U Q E T I N U E L P M A S . S D L E I F E L P M A S N O I T A L U P O P N I N E K A T Y T I S N E D D N A T H G I E H M E T S 8 7 9 1 F O Y R A M M U S . 9 1 E L B A T 3 3 . 2 1 2 . 2 3 5 7 . 1 6 6 . 9 6 - 0 3 7 2 2 6 0 0 0 2 2 6 . 1 5 7 . 9 2 0 0 . 1 9 7 . 5 5 3 3 5 7 0 6 0 5 2 1 1 . 3 8 3 . 9 2 9 2 . 1 9 7 . 5 8 9 9 8 9 2 6 0 5 2 2 2 . 1 5 7 . 5 2 7 8 . 3 2 . 3 5 3 3 5 7 0 6 0 0 5 1 9 . 1 7 6 . 7 2 5 3 . 1 8 9 . 3 9 9 9 8 9 2 6 0 0 5 7 2 . 1 9 5 . 7 2 3 3 . 1 0 2 . 9 5 3 3 5 7 0 6 0 0 0 1 3 1 . 2 3 6 . 7 2 8 0 . 1 9 0 . 3 9 9 9 8 9 2 6 0 0 0 1 9 7 . 1 2 9 . 1 3 0 0 . 1 1 9 . 0 5 3 3 5 7 0 6 0 0 0 2 0 9 . 1 1 7 . 9 2 3 3 . 2 ? 7 . 5 7 9 9 9 0 2 6 0 0 0 2 7 3 . 2 7 1 . 8 2 9 8 . 1 2 6 . 7 9 5 9 5 8 0 6 0 0 0 2 9 7 . 1 2 9 . 7 2 5 7 . 2 7 . 1 6 0 0 6 2 1 6 0 5 2 9 5 . 1 7 1 . 7 2 8 6 . 7 9 . 8 5 0 0 6 2 1 6 0 0 5 6 3 . 1 0 5 . 0 2 1 9 . 2 8 . 1 6 0 0 6 2 1 6 0 0 0 1 0 3 . 1 6 9 . 2 2 7 1 . 2 8 7 . 3 5 0 0 6 2 1 6 0 0 0 2 1 5 . 2 1 2 . 6 3 7 1 . 1 2 7 . 5 6 7 2 6 5 1 6 0 5 2 3 0 . 3 9 7 . 0 3 1 0 . 1 7 9 . 9 6 7 2 6 5 1 6 0 0 5 3 6 . 1 7 1 . 0 3 0 2 . 1 1 5 . 3 6 7 2 6 5 1 6 0 0 0 1 3 0 . 2 6 9 . 3 2 ' 2 2 . 2 5 2 . 7 7 8 8 6 9 1 6 0 5 2 1 9 . 2 8 3 . 9 2 1 2 . 1 9 9 . 5 5 7 2 6 5 1 6 0 0 0 2 7 2 . 1 3 1 . 1 2 5 9 . 1 8 3 . 2 7 8 8 6 9 1 6 0 0 5 7 2 . 2 6 9 . 9 2 3 6 . 1 ? 0 . 3 7 3 8 6 9 1 6 0 0 0 1 8 3 . 1 8 8 . 7 1 8 7 . 1 5 8 . 0 6 8 8 6 0 1 6 0 0 0 9 7 6 . 1 9 7 . 7 2 0 6 . 1 1 5 . 6 7 0 3 7 2 2 6 0 5 2 0 3 . 1 7 6 . 3 2 7 7 . 1 7 1 . 1 8 0 3 7 2 2 6 0 0 5 6 9 . 2 7 1 . 3 3 3 9 . 2 3 3 . 8 7 0 3 7 2 2 6 0 0 0 1 ) t I ) N I ( 7 6 . 2 3 3 3 . 9 6 3 3 . 0 3 3 3 . 4 2 7 6 . 9 5 3 3 . 6 4 4 7 6 . 1 1 1 3 3 . 2 7 0 1 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 3 3 . 3 3 . 0 0 . 0 0 0 . 0 0 0 . 6 0 0 . 4 0 0 . 4 0 0 . 3 1 0 0 . 9 0 0 . 6 1 3 3 . 9 1 3 3 . 0 2 3 3 . 7 6 . 6 7 6 . 0 1 3 3 . 0 3 7 6 . 6 3 3 . 2 1 3 3 . 4 1 3 3 . 0 3 7 6 . 5 1 3 3 . 3 3 3 3 . 2 7 6 . 1 1 7 6 . 1 2 3 3 . 1 4 3 3 . 4 4 3 3 . 8 5 1 8 7 / 6 2 / 7 0 5 2 8 7 / 6 2 / 7 0 0 5 8 7 / 6 2 / 7 0 0 0 1 8 7 / 6 2 / 7 0 0 0 2 — : _ _ v L A T O T s u t r u c . L s i l u j . T D E G R E M E S L L E C D E G R E M E G N I S U A P A I D s i l a r o p m e t , 2 D E G R E M E G N I S U A P A I D B L C E T A D E G A C 5 4 . 5 1 7 3 . 6 5 0 1 . 9 0 . 0 0 . 0 0 0 . 0 5 7 . 5 7 5 . 9 1 0 2 8 7 / 4 2 / 7 8 - 9 L O R T N O C s p a r t e c n e g r e m e r e d n u n e k a t s e l p m a s l i o s m o r f d e r e v o c e r s l l e c l a p u p B L C f o s t n e t n o c f o y r a m m u S . 0 1 I e l b a T . " 4 x " 6 3 x " 8 1 s l a u q e t i n u e l p m a S . s e g a c e t i s a r a p n i . e c n a i r a v a 2 w o r d n a n a e m = 1 w o R 483 TABLE 111 MEAN NUMBER OF LIVE LEAVES AND PERCENT DEFOLIATION PER OATS PLANT IN PARASITE CAGES ON THE KELLOGG BIOLOGICAL STATION. ROW 1: MEAN AND ROW 2: VARIANCE. CAGE DATE N LEAVES LEAVES DEFOLIATION DEFOLIATION TOTAL LIVE TOTAL FLAG LEAF 250 71778 30 1.00 3.50 55.51 68.83 .55 .33 07.030 1171.87 500 71778 30 0.00 1000 71778 30 .21 0.17 .21 3.80 .23 3.70 .09 58.07 171.887 7u.uu 3u.277 69.00 859.31 80.33 705.06 2000 71778 30 3.87 3.53 87.05 * 88.33 .26 .90 19.958 676.99 APPENDIX J 1978 DEFOLIATION PLOT DATA 484 TABLE J1. DEFOLIATION PLOT PLANT PARAMETERS. ROW 1 = MEAN, ROW 2 = VARIANCE. SAMPLE : 30 CM. OF ROW. N = 10. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 51078 7 5.79 2.89 1.10 0.00 .10 0.00 .10 .10 51078 51078 51078 51078 51078 51078 51078 51078 51578 51578 51578 51578 51578 51578 1 9 5 6 2 8 9 3 1 9 5 6 2 7 5.78 1.00 .37 0.00 0.00 0.00 0.00 0.00 5.53 1.00 0.00 0.00 .91 0.00 0.00 0.00 9.87 .37 1.00 0.00 0.00 0.00 0.00 0.00 9.05 1.00 0.00 0.00 .57 0.00 0.00 0.00 9.86 1.00 1.92 0.00 5.96 1.13 1.00 0.00 5.68 1.00 .96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.91 1.00 0.00 0.00 1.38 0.00 0.00 0.00 8.98 9.90 7.33 1.27 6.29 5.36 7.08 2.30 1.90 .10 1.90 .10 1.60 .27 1.70 .23 .10 .10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.59 1.90 0.00 0.00 3.08 .10 0.00 0.00 7.75 7.68 1.80 0.00 0.00 .18 0.00 0.00 485 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 51578 51578 8 9 7.16 1.60 0.00 0.00 1.30 .27 0.00 0.00 8.33 2.00 0.00 0.00 1.21 0.00 0.00 0.00 51578 3. 8.32 2.10 0.00 0.00 .50 .10 0.00 0.00 51578 10 3.59 1.00 0.00 0.00 .80 0.00 0.00 0.00 51578 18 3.53 1.92 1.00 0.00 0.00 0.00 0.00 0.00 51578 19 3.21 1.00 0.00 0.00 1.57 0.00 0.00 0.00 51578 15 3.36 1.00 0.00 0.00 .53 0.00 0.00 0.00 51578 11 3.38 1.00 0.00 0.00 .55 0.00 0.00 0.00 51578 16 51578 17 51578 13 51578 12 51878 51878 51878 1 9 5 9.93 5.27 6.19 9.30 3.73 1.62 3.25 1.21 1.50 .28 0.00 0.00 0.00 0.00 1.20 0.00 0.00 .18 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.61 1.60 0.00 0.00, 3.10 .27 0.00 0.00 9.89 2.90 0.00 0.00 2.88 .99 0.00 0.00 8.69 1.70 0.00 0.00 3.19 .68 0.00 0.00 486 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 51878 51878 51878 51878 51878 51878 6 2 7 8 9 3 7.69 1.70 0.00 0.00 3.65 .23 0.00 0.00 9.09 2.90 0.00 0.00 2.99 .27 0.00 0.00 8.69 2.10 0.00 0.00 3.80 .10 0.00 0.00 7.81 1.80 0.00 0.00 3.09 .89 0.00 0.00 8.89 2.20 0.00 0.00 3.16 .90 0.00 0.00 8.76 2.20 0.00 0.00 2.99 .90 0.00 0.00 51878 10 6.39 1.20 0.00 0.00 .96 .18 0.00 0.00 51878 18 7.07 1.20 0.00 0.00 1.38 .18 0.00 0.00 51878 19 51878 15 5.82 1.22 6.98 2.62 1.20 .18 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 51878 11 6.95 1.90 0.00. 0.00 .90 .27 0.00 0.00 51878 16 7.75 1.90 0.00 0.00 3.69 .27 0.00 0.00 51878 17 6.37 1.00 0.00 0.00 .23 0.00 0.00 0.00 51878 13 6.27 1.20 0.00 0.00 2.73 .18 0.00 0.00 51878 12 6.90 1.10 .98 .10 0.00 0.00 0.00 0.00 487 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 52278 52278 52278 52278 52278 52278 52278 52278 52278 3 2 1 9 5 6 9 8 7 12.21 3.10 0.00 1.96 .99 0.00 12.61 2.80 0.00 10.82 .62 0.00 12.91 2.80 0.00 7.18 .90 0.00 12.66 2.80 0.00 6.60 .62 0.00 11.60 2.50 0.00 6.32 .28 0.00 13.02 2.80 0.00 9.55 .90 0.00 19.96 3.10 0.00 8.00 .99 0.00 12.51 2.70 0.00 17.99 .90 0.00 16.26 3.90 0.00 12.70 .93 0.00 .90 .27 .90 .99 .50 .28 .70 .68 .10 .10 .30 .23 .10 .10 .20 .18 .90 .99 52278 12 7.95 2.90 1.10 .71 0.00 0.00 0.00 0.00 52278 11 8.27 2.20 0.00 0.00 5.59 .18 0.00 0.00 52278 10 7.78 1.90 0.00 0.00 2.33 .10 0.00 0.00 52278 13 8.50 .91 2.00 0.00 0.00 0.00 0.00 0.00 52278 19 7.32 1.90 0.00 0.00 1.51 .10 0.00 0.00 52278 15 8.09 2.10 0.00 0.00 3.01 .10 0.00 0.00 488 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUWBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 52278 18 8.20 2.30 0.00 0.00 1.77 .23 0.00 0.00 52278 17 10.79 2.60 0.00 0.00 6.65 .27 0.00 0.00 52278 16 9.26 2.10 0.00 0.00 1.28 .10 0.00 0.00 52278 21 52278 20 5.91 1.83 5.61 9.07 1.10 .10 1.50 .28 52278 19 5.81 1.10 .77 .10 0.00 0.00 0.00 0.00 .10 .10 0.00 0.00 0.00 0.00 0.00 0.00 52278 22 7.97 1.60 0.00 0.00 5.55 .27 0.00 0.00 52278 23 6.85 1.90 .61 .10 .10 .10 0.00 0.00 52278 29 6.61 1.60 0.00 0.00 .77 .27 0.00 0.00 52278 27 5.50 1.10 0.00 0.00 2.56 .10 0.00 0.00 52278 26 52278 25 5.69 2.09 9.91 1.78 1.20 0.00 0.00 .18 0.00 0.00 1.20 .18 0.00 0.00 0.00 0.00 52578 52578 52578 1 9 5 18.99 2.90 0.00 11.75 .32 0.00 21.09 3.80 13.28 1.07 0.00 0.00 18.73 3.50 0.00 16.67 1.17 0.00 .90 .27 .60 .27 .30 .23 489 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 52578 52578 52578 52578 52578 52578 6 2 7 3 8 0 52578 13 52578 19 52578 15 52578 18 52578 17 52578 16 52578 12 52578 11 52578 10 16.60 9.86 21.16 32.67 25.72 37.96 17.12 91.67 16.08 20.70 23.65 12.85 10.00 0.70 8.06 5.23 9.95 5.00 11.30 1.69 15.20 0.72 10.37 2.01 10.89 2.u9 17.09 19.65 11.00 7.66 3.20 .62 3.00 .71 3.80 1.07 3.10 .77 3.60 3.38 3.80 .00 3.10 1.u3 2.20 .90 2.80 .00 3.00 .22 3.00 .uu 3.00 0.00 2.80 .18 3.00 .89 2.80 .18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .50 .28 .20 .18 .20 .18 .20 .18 .30 .23 .60 .u9 .10 .10 0.00 0.00 0.00 0.00 0.00 0.00 .20 .18 .20 .18 .10 .10 0.00 0.00 0.00 0.00 490 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 52578 20 52578 23 52578 22 52578 27 52578 26 52579 25 52578 21 52578 20 52578 19 52978 52978 52978 52978 52978 52973 7 8 9 6 5 0 7.10 .86 7.08 .79 10.05 13.65 7.00 1.26 6.07 3.92 8.36 0.00 - 7.10 1.36 8.27 7.51 7.66 8.12 28.31 13.35 20.82 11.36 27.30 20.26 20.57 15.17 21.55 11.50 W 2 .86 N N .56 2.10 .32 2.20 .18 2.30 .23 2.00 0.00 1.90 .10 1.90 .10 2.00 0.00 2.10 .10 1.90 .10 0.10 .50 3.60 .09 3.60 .93 0.10 .50 3.50 2.50 3.60 .71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .70 .06 .00 .09 1.00 .89 .80 .62 .70 .60 1.00 .80 491 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD NUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 26.66 10.10 26.50 8.10 3.20 .18 3.50 .28 22.28 3.60 13-10 .99 16.23 17.22 16.70 10.02 11.76 6.00 52978 52978 52978 1 2 3 52978 10 52978 13 - 52978 10 52978 15 13.20 52978 18 7.20 10.62 12.05 52978 17 19.25 52978 16 52978 12 52978 11 52978 20 52978 19 52978 23 5.57 22.03 18.10 17.31 11.55 19.95 8.69 11.15 10.93 9.72 2.78 10.07 5.80 0.00 0.00 0.00 0.00 0.00 (3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 .27 .20 .18 .60 .09 .00 .27 .50 .28 0.00 0.00 .20 .18 .00 .27 .00 .27 .30 .23 .30 .23 .70 .23 0.00 0.00 0.00 0.00 0.00 0.00 3.30. .23 3.70 .06 3.10 .32 3.00 .09 3.70 .23 3.50 .72 3.00 .09 3.90 .77 3.60 .09 2.60 .27 2.80 .18 2.90 .10 492 TABLE J1. CONTINUED. SAMPLING PLOT STEM LIVE DEAD MUMBER DATE CODE HEIGHT LEAVES LEAVES TILLERS 52978 29 11.72 3.00 0.00 0.00 2.10 .22 0.00 0.00 52978 27 8.62 9.88 2.70 .23 0.00 0.00 52978 26 9.50 2.80 3.08 .62 52978 25 9.09 2.70 11.95 .23 .10 .10 0.00 0.00 0.00 0.00 0.00 0.00 .10 .10 52978 22 12.19 3.10 0.00 0.00 10.18 .10 0.00 0.00 52978 21 9.32 2.62 2.80 0.00 .18 0.00 0.00 0.00 493 0 3 . 9 5 2 0 6 . 8 9 0 5 . 0 3 0 0 . 0 3 0 5 . 7 6 0 0 . 1 3 0 7 . 0 1 1 0 8 . 3 9 0 7 . 7 1 0 8 . 0 3 0 2 . 1 2 0 2 . 9 2 0 8 . 0 5 0 9 . 5 3 0 7 . 0 7 0 2 . 2 3 0 8 . 9 5 0 6 . 9 2 0 3 . 2 7 0 9 . 0 3 0 2 . 6 1 1 0 8 . 0 5 0 5 . 0 5 0 0 . 9 9 0 3 . 6 9 2 0 9 . 3 9 0 2 . 7 5 0 0 . 6 3 0 8 . 2 9 0 0 . 1 9 0 3 . 9 7 1 0 6 . 8 3 0 5 . 9 3 2 0 0 . 9 9 0 7 . 3 2 0 0 . 3 1 0 0 . 0 2 1 0 0 . 8 3 0 8 . 3 9 0 0 . 5 2 2 FO‘mONNQSMOw-fi'm 1 PPPP POE-MN 3 Pv-v-v-r- 8 7 5 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 8 1 5 8 7 2 2 5 0 2 . 6 0 1 0 8 . 3 2 0 5 . 6 2 0 0 . 5 2 0 7 . 5 5 0 8 . 5 2 0 2 . 6 2 0 2 . 0 1 0 5 . 9 5 0 0 . 7 1 0 7 . 5 3 0 8 . 9 2 0 3 . 8 3 0 9 . 9 1 0 3 . 9 9 0 9 . 3 2 0 8 . 8 9 0 6 . 8 1 0 8 . 6 6 0 9 . 7 3 0 5 . 8 3 0 0 . 1 3 0 7 . 0 3 0 2 . 6 9 0 3 . 8 2 0 6 . 5 2 0 2 . 5 3 0 8 . 7 6 1 0 6 . 9 3 0 8 . 7 2 0 7 . 9 2 0 8 . 9 2 0 8 . 0 0 1 0 9 . 5 2 0 3 . 9 9 0 6 . 5 2 0 0 . 5 9 0 0 . 7 3 0 5 . 3 9 0 0 . 9 9 0 7 . 9 9 2 0 2 . 5 3 0 7 . 1 3 0 2 . 5 3 0 7 . 0 0 1 0 8 . 3 5 0 2 . 5 6 1 0 2 . 3 9 0 7 . 2 6 1 0 2 . 3 9 0 3 . 7 8 0 6 . 8 3 b-v—omxomcozrm—oxmcmh-ooa-moco: 5 v—v-F- 1 1 1 6 1 7 1 3 1 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 0 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 8 7 5 1 5 . 0 1 = N . W O R F O . M C 0 3 . 0 1 = N . W O R F O . M C 0 3 : E L P M A S . S E I T I S N E D = E L P M A S . S E I T I S N E D M E T S T O L P N O I T A I L O F E D . 2 J E L B A T M E T S T O L P N O I T A I L O F E D . 2 J E L B A T Y T I S N E D M E T S Y T I S N E D M E T S E C N A I R A V N A E M E D O C E T A D E C N A I R A V N A E M E D O C E T A D - _ _ - - _ _ - - - - - - - T O L P G N I L P M A S — - - — — - - - - T O L P G N I L P M A S 494 TABLE J2. CONTINUED. SAMPLING PLOT .............. DATE CODE MEAN VARIANCE STEM DENSITY 52278 52278 52278 52278 52278 52278 52278 52278 52578 52578 52578 52578 52578 52578 52578 52578 52578 52578 52578 52578 52578 52578 2 1 0 5 6 9 8 7 12 1 9 5 6 2 7 3 8 9 13 19 15 18 17 39 00 055 50 32 00 50 00 22 20 0 70 59 00 120 30 30 20 13 70 30 8O 91 70 33 00 36.50 01:00 32:00 39 9O 97 30 32 80 69 20 50 80 119 70 29 6O 2O 80 91 80 205 20 95 80 351 70 25 20 15 70 9O 90 169 30 39 20 270 70 39 00 69 00 97 20 92 20 33 80 111 70 93 00 106 50 51 60 79 3O 495 TABLE J2. CONTINUED. SAMPLING PLOT .............. DATE CODE MEAN VARIANCE 52578 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 52978 19 36:00 100:00 7 8 9 6 5 9 1 2 3 10 13 19 15 18 17 16 12 11 20 19 23 29 27 26 25 22 21 90.80 153.70 39.20 28.20 38.80 117.20 91.80 69.70 52.90 101.30 36.60 99.30 38.20 97.20 95.90 177.80 91.60 96.80 99.60 52.80 91.90 16.30 38.20 82.20 39.20 150.70 99.60 99.30 93.60 160.30 96.20 97.70 99.20 193.70 93.00 207.50 33.90 82.30 27.90 29.30 96 90 18.80 90.80 107.70 29.80 26.20 18.80 22.70 29.90 60.80 93 80 155.70 26:90 05.80 496 TABLE J3. DEFOLIATION PLOT STEM AND HEAD DENSITIES. SAMPLE UNIT EQUALS 31 CM. OF ROW. SAMPLE SIZE EQUALS 10. SAMPLES COLLECTED JULY 17, 1978. PLANTING MOISTURE KG UREA PLOT --------------------- DATE LEVEL PER HA. CODE MEAN VAR MEAN VAR STEM HEAD APR 25 NATURAL 0.00 APR 25 MEDIUM 56.03 APR 25 HIGH 112.05 APR 25 MEDIUM 112.05 APR 25 HIGH 0.00 APR 25 NATURAL 56.03 APR 25 HIGH 56.03 APR 25 NATURAL 112.05 APR 25 MEDIUM MAY 5 NATURAL 0.00 0.00 MAY 5 MEDIUM 56.03 MAY 5 HIGH 112.05 MAY 5 MEDIUM 112.05 MAY 5 HIGH 0.00 MAY 5 NATURAL 56.03 MAY 5 HIGH 56.03 MAY 5 NATURAL 112.05 MAY 5 MEDIUM MAY 10 NATURAL 0.00 0.00 MAY 10 MEDIUM 56.03 MAY 10 HIGH 112.05 MAY 10 MEDIUM 112.05 MAY 10 HIGH 0.00 MAY 10 NATURAL 56.03 MAY 10 HIGH 56.03 MAY 10 NATURAL 112.05 MAY 10 MEDIUM 0.00 1 2 3 9 5 6 7 8 9 10 11 12 13 19 15 16 17 18 19 20 21 22 23 29 25 26 27 18.0 38.00 17 7 39.96 18.0 77.78 17 9 75.88 37.9 86.10 37 8 83.96 16.3 11.57 15 8 19.07 29.3 26.96 29 2 26.18 33.0 31.56 31 1 21.93 13.5 19.17 12 8 22.89 16.7 21.39 15 9 19.88 20.1 29.88 19 2 39.89 20.9 99.32 20 9 92.27 21.8 39.18 21 5 36.72 35.6 39.60 35 9 90.99 18.6 30.09 18.0 37.11 19.9 39.77 19.8 35.51 39.3 91.79 36 5 29.28 17.6 25.82 16 8 32.90 36.0 102.99 39 8 93.96 29.9 15.38 28 1 13.21 19.9 31.82 19 9 31.82 18.7 59.23 18 5 56.50 30.7 93.57 30 6 93.38 16.6 37.16 16 2 90.18 26.0 19.99 25 8 15.73 91.0 90.99 37 8 92.18 13.5 39.28 12 9 38.10 13.2 22.89 12 3 26.90 23.3 39.23 22 6 35.82 497 2 2 - 5 5 8 2 . 1 1 7 2 0 0 . 0 0 8 . 7 4 7 1 5 2 . 2 2 7 4 1 9 . 1 4 5 6 . 4 5 0 1 8 1 . 7 2 7 4 6 7 . 5 1 8 6 . 2 1 6 9 2 . 4 8 5 6 9 5 - 2 1 5 - 8 5 5 0 9 . 8 2 7 5 5 2 . 1 2 5 9 . 5 4 5 1 8 . 5 6 1 5 7 2 . 1 1 2 7 . 5 5 2 6 9 . 8 5 5 4 5 4 . 0 2 5 5 - 5 2 4 1 . 6 2 9 9 . 2 5 1 - 5 5 1 0 . 9 2 4 6 0 0 . 0 7 9 . 9 6 5 6 5 7 . 2 2 2 5 . 0 1 7 5 9 5 - 5 5 2 . 8 2 5 5 0 0 . 1 4 2 . 0 9 6 2 9 . 7 4 6 5 9 7 . 9 5 1 E 8 1 8 . 9 2 0 8888883308 PM Q8 88 9888858 FNNN ER M 1 I—Nq—v— Pc—q— 5 7 . 0 6 2 5 9 . 5 4 9 4 2 8 . 0 4 1 7 J ® M 2 2 . 0 2 1 5 4 . 6 7 9 5 1 8 . 1 8 “ 6 $ 9 1 . 5 2 4 9 5 . 9 7 2 6 1 5 . 8 2 1 6 9 . 2 5 8 1 1 2 2 . 2 0 4 8 2 . 7 7 7 4 1 9 . 0 6 5 m 5 m 1 1 89888: . 8 9 0 0 0 2 0 7 1 . 88$$858058 8 6 % 2 V & 4 9 " 2 Q 0 5 9 F 6 M 4 1 . 6 9 8 1 0 . 6 2 5 5 5 . 1 0 5 5 1 . 5 7 5 7 7 . 1 1 9 5 . 8 5 5 5 2 . 9 1 4 5 6 . 5 9 2 1 5 6 . 5 9 2 1 2 5 . 8 8 0 1 5 6 . 4 0 5 9 5 . 8 5 5 0 6 . 4 7 5 1 7 . 0 4 4 0 0 . 0 9 5 . 5 8 5 9 0 0 . 2 6 0 - 9 9 7 9 5 . 6 2 4 8 9 . 1 0 7 2 1 2 . 2 8 4 1 6 0 . 7 1 5 2 . 7 2 8 5 9 . 9 4 2 4 0 . 1 0 1 1 0 5 . 5 4 0 1 . 2 6 2 1 5 0 . 9 0 1 1 6 0 . 8 2 6 1 4 5 . 8 2 8 5 . 1 2 5 1 9 9 . 5 4 8 . 4 7 5 1 1 5 . 1 4 5 0 . 1 9 5 5 5 . 6 1 4 5 2 . 9 1 4 5 0 . 7 2 7 5 7 . 8 1 8 7 7 . 5 0 7 8 9 . 0 2 8 6 0 . 5 1 4 5 5 . 2 1 6 4 5 1 . 5 2 7 5 . 5 5 3 1 0 4 . 5 4 2 7 . 5 5 2 1 1 5 . 6 4 5 5 0 . 5 9 6 6 9 . 5 6 2 0 5 . 5 4 0 5 0 5 - 2 4 2 6 . 2 0 0 1 1 5 . 8 5 5 5 . 7 7 8 9 9 . 5 9 5 . 8 5 5 0 0 . 0 5 2 1 4 2 . 2 9 5 7 6 9 . 8 1 4 5 . 9 8 9 1 4 6 . 7 4 6 1 1 . 9 1 6 1 8 5 . 4 4 5 9 6 . 0 4 6 4 9 - 4 7 7 5 9 . 9 1 4 5 8 5 . 9 5 2 . 1 5 0 1 6 6 . 7 5 5 7 5 - 7 7 9 5 5 - 6 0 2 7 8 - 5 1 5 0 2 . 5 4 2 5 - 7 5 7 2 5 1 . 5 2 6 5 . 6 5 7 0 8 . 8 6 . 8 4 2 1 6 2 . 9 1 0 1 . 8 2 4 2 7 . 7 5 0 5 4 4 . 1 5 1 2 4 . 4 1 5 1 1 5 . 8 5 0 8 . 2 8 1 1 5 5 . 8 5 2 9 4 . 0 4 5 8 0 . 2 5 7 8 7 . 0 4 6 5 4 . 7 0 0 5 5 5 . 5 9 5 8 5 - 5 8 9 9 9 . 5 6 1 0 1 . 5 5 6 4 6 7 . 9 1 7 2 - 5 1 9 1 9 5 - 5 5 5 . 5 8 7 1 4 8 . 2 4 1 9 2 . 2 5 9 9 2 . 2 8 6 4 1 . 0 2 1 8 2 . 0 4 2 8 8 . 4 5 7 1 2 5 . 6 6 5 5 7 5 - 5 6 5 2 0 . 7 8 1 6 8 7 . 4 5 8 8 . 1 5 2 6 . 1 2 1 1 4 2 . 5 2 7 9 5 . 9 8 5 0 2 . 8 7 2 1 4 1 . 8 2 2 6 . 2 0 0 1 5 7 . 5 8 2 6 6 . 2 5 4 2 9 . 2 7 4 4 5 5 9 - . 2 5 0 4 1 5 OFPONPNO‘NNfi'mmmmb-mVLOOP C‘Rd’filmmmq— 'Méfidé (\l “MNMNM “MM “NNNNh l.‘ N 5 . .1 2 «\ 5 4 . 5 5 2 . 1 5 7 - 5 5 0 . 5 5 85828888898888885888888858 O O O I O O O O O O O O o o o . C q— F F .— 09885888588888588888588888 O C O O O O O O O O O o C 1"!— v-u- v—v—i—r— P :- P P M m m % a w m M m 5 B % B a B u m m n % W 8 E m & W 5 2 4 5 1 1 0 5 2 5 4 2 5 1 5 2 O 5 9 1 8 1 9 2 8 1 5 5 7 5 2 2 6 2 7 1 7 5 8 1 0 2 5 1 5 5 7 1 2 5 0 2 m¢m¢m¢¢¢mm¢¢¢m¢¢¢mm¢mmn¢mm .—Nh<’U\:—NK\¢mv—NM¢U\v—NMVm—thw— OOOOOOOOOOmmmmmRRRSRpg uxuxux t~t~cu q—q—q—q-I-NNNNN 2 5 2 1 . N O I T A I L O F E D - I . “ - - . - . I . “ F O N I O T T H Q S . M M A E R A T R A T S S T O L P R O I R P . N O I T A I L O F E D N O I T A M R O F N I T N A L P M O R F 8 7 9 1 . 4 J E L B A ” N A L P L A T O T T F A E L 3 E G A M A D A E R A E G A M A D A E R A A E R A F A E L E G A M N D 2 1 A E G A M A D F A E L A E R T H N R E K D A E H 0 N 0 N 0 N T W T W N R E K K I P S F A E I T N A L P T O L P 3 2 1 T H 0 8 N I O T F O . M M A E R A F A E L F A E L T N A L P R O I R P T R A T S L A T O T N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R O F N I . S T O L P T N A L P E L B A T M O R F 8 7 9 1 F A E . 4 J T H N R E K D A E H O N O N O N A E R A A E R A A E R A G A M A D E G A M A D E G A M A D E G A M A D E T N A L P N R E K K I P S F A E L A E R A T O L P T W ‘ T W 9 8 . 6 3 2 1 1 . 7 7 3 5 5 2 . 0 2 1 6 . 6 8 . 6 8 7 5 2 . 0 9 8 2 9 3 - 4 2 7 . 2 5 0 1 4 5 . 4 2 1 8 . 8 0 4 1 4 5 . 2 4 9 7 1 6 . 9 2 4 3 4 . 8 1 7 1 5 9 . 1 2 8 3 - 9 9 5 4 9 - 4 7 3 5 8 7 . 0 1 6 1 . 9 2 7 1 6 7 . 5 1 2 8 . 0 5 6 4 2 . 5 7 6 4 7 7 . 3 1 5 9 . 8 2 6 1 2 4 . 3 3 5 0 . 9 3 6 1 6 . 2 0 3 4 9 1 - 5 2 4 . 8 7 3 1 1 6 . 0 4 2 498 m 0 0 $ O 1 O 4 4 0 0 . 0 2 4 - 6 7 3 1 7 - 7 6 9 3 8 2 . 8 4 1 . 1 0 4 8 8 . 8 6 9 5 8 7 . 6 3 5 . 1 4 2 2 0 1 . 9 2 1 4 6 7 . 6 1 7 0 . 5 1 8 6 9 . 7 3 9 3 2 4 . 0 2 2 0 2 . 9 9 1 5 1 4 . 5 5 2 2 2 . 0 8 5 6 5 2 - 9 4 0 1 6 9 . 0 5 8 5 7 5 . 5 0 4 7 4 . 2 6 8 4 2 1 . 2 6 1 1 7 3 . 3 4 0 6 3 7 . 1 3 8 2 . 5 7 6 6 4 2 . 1 5 7 0 4 . 6 2 4 0 1 9 9 . 4 9 7 4 . 8 1 2 4 0 5 - 1 3 1 5 2 - 5 8 5 5 2 8 . 8 7 4 0 . 4 0 7 7 2 0 . 9 6 4 9 1 . 9 8 7 6 8 1 . 5 9 5 0 0 . 6 8 4 4 6 6 . 3 6 9 6 . 5 2 1 6 8 4 . 4 9 3 1 2 . 6 3 0 6 9 5 . 2 5 5 1 2 1 . 8 9 5 6 8888888889 ER 8888 5 'dddogomm¢ E5 N KO.— Fm 0 N NN V 363E8g553893 83888 OJUNOJ ,_ N 38 88 a3?— .-\0 uxu: q-I—Q—u—q—I—I—NNv-i—s—N 1 2 . 5 3 6 1 8888888888388 01c5u§ 1‘0 888 tau—V“ '- njo§u5 u\cu 01 8 7 8 . 5 1 5 9 0 . 8 4 1 7 . 9 1 5 2 2 5 . 3 3 6 4 - 9 5 8 7 1 - 3 3 9 1 7 1 - 5 1 8 2 . 9 1 1 2 2 5 . 3 3 3 4 . 8 1 7 1 6 1 . 1 6 6 1 4 7 . 8 2 2 4 . 8 7 3 1 6 3 . 6 0 4 6 1 . 1 6 6 1 5 9 . 8 2 6 8 . 6 8 9 1 9 6 . 4 4 5 9 4 . 7 4 9 1 6 1 . 9 1 2 5 . 4 0 8 1 5 1 . 2 2 8 3 . 3 3 0 2 5 5 . 2 2 5 1 1 8 . 9 2 0 2 3 2 . 0 3 6 1 . 1 6 6 1 5 3 . 0 3 0 9 . 5 0 6 1 7 5 . 4 5 3 2 8 . 1 4 5 8 9 - 7 5 8 4 1 - 3 1 9 4 1 . 9 0 7 5 3 . 5 4 9 9 4 . 8 O\aiu> w—v—N 4 6 2 . 3 8 1 2 1 5 . 2 2 0 1 3 7 . 0 6 4 1 1 1 . 3 2 9 1 5 9 . 0 2 1 8 . 4 3 2 1 6 9 . 2 3 8 1 6 5 . 7 8 6 6 4 - 9 5 8 9 4 - 7 4 9 1 7 5 - 3 1 8 7 - 5 4 1 1 0 0 . 4 5 6 1 2 5 . 5 3 5 2 . 9 2 9 7 9 - 8 0 3 2 5 6 - 4 0 7 1 4 - 4 7 1 1 5 2 . 1 5 0 1 5 0 . 5 1 2 9 5 . 8 5 3 5 2 . 1 6 8 5 - 1 3 5 . 5 2 5 4 . 3 9 3 2 7 7 - 4 1 2 7 . 6 1 9 5 . 8 3 1 4 . 1 0 8 0 . 1 3 5 . 1 3 9 6 . 6 7 6 . ESSESSSR m9888 MON N I“ P 6 7 . 1 6 2 2 6 . 4 3 9 4 2 . 5 5 5 0 1 . 2 3 4 1 5 2 . 7 6 1 1 6 1 . 2 1 7 0 1 . 8 2 2 1 m a % 4 0 . 5 6 9 7 7 . 5 8 . 8 3 . 1 2 5 . 1 7 6 . 2 9 . 4 7 . 1 0 . 1 3 9 . 2 0 . 1 8 5 . 4 6 . 7 7 - 6 2 . 1 9 3 . 1 8 4 6 . 3 3 7 . 2 3 1 . 2 3 0 . 6 3 0 - 9 3 0 . 6 5 5 . 5 2 8 - 3 3 6 mmwNMLfiONKOMOP . 4 3 ungéa3t~65 u~ MMQWd'fi'MMMMd’ 1 8888888888888888 O O O . O O O v-q—v- 1— 1 5 2 5 7 2 7 3 9 2 1 2 3 3 5 3 7 2 5 3 0 1 0 5 6 5 0 4 9 2 5 3 0 6 0 M 5 4 6 3 2 2 4 3 3 1 2 6 5 5 2 7 1 7 2 5 1 0 2 6 1 2 1 8 1 9 1 5 1 9 7 1 6 2 9 2 1 2 6 1 9 1 1 3 1 2 3 2 9 2 3 1 2 2 8 1 2 1 9 2 0¢¢m¢oep>¢>me immmm¢mmmmomomm CW Md’hd’tfiNMhMfi'fi'd‘fi'ng 88888z88888888888888 v-v-q—Q-v-Nv-Nc— PFFPPPPP . 8888588888888888888 n—q—v-Nq-Nc-Nq— PPPFNFPP ,— V" 1.0 1- 8888889858 . FMkO 888 8P 088 hd’ . . 6 1 2 7 7 . 0 2 7 5 4 . 4 7 6 8 . 7 5 6 9 . 3 6 5 0 . 8 3 4 6 . 5 8 7 5 . 9 2 9 2 . 0 8 5 5 . 1 2 0 5 . 5 5 . 4 4 . 1 5 4 5 . 5 2 5 6 . 2 7 . 2 7 . 2 5 0 1 0 . 4 2 6 8 . 5 9 . 7 2 . 3 4 6 1 7 . 2 2 4 7 . 1 8 . 3 0 . 7 2 7 4 . 8 2 0 5 . 5 5 . 3 3 7 3 8 8 . 9 5 0 1 5 . 9 2 8 1 . 1 0 5 . 1 6 4 9 1 1 3 7 3 0 4 9 6 0 4 2 6 3 3 9 8 2 6 9 6 4 5 5 1 0 5 0 6 2 6 2 4 0 6 2 4 0 5 2 5 9 2 0 5 8 1 0 2 4 2 1 1 7 1 0 2 1 2 5 3 1 2 2 3 8 1 5 4 2 3 5 3 8 2 9 6 2 1 3 2 3 2 2 1 3 2 2 6 2 7 2 6 1 6 2 mmm¢mm¢¢mmm¢¢mmmm¢m¢¢¢¢¢¢¢ 3 5 7 5 5 7 1 5 2 1 2 5 2 1 3 L0 L0 01 5 2 1 wNMfi'mNhfi'Lfi—NM¢U\PNK‘.¢U\F OOOOOOOOOLthLthLnOOOOO LG q—r-q—e-NNNNNLDLDLOLDLOI‘ mmmmmm¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢ 501 3 1 . 7 5 2 1 4 3 - 3 1 7 8 4 6 . 2 1 5 8 2 . 5 5 0 8 5 3 . 0 1 1 7 3 . 4 3 3 4 0 3 - 7 7 7 1 8 . 8 9 5 8 9 7 . 4 9 2 1 6 2 . 0 0 7 5 8 0 . 5 5 8 2 . 1 4 7 6 8 6 . 6 3 5 8 3 . 5 0 1 8 0 0 . 4 4 0 7 . 5 4 3 1 - 9 0 5 6 7 2 . 8 1 3 4 6 9 . 5 0 1 7 5 - 2 4 4 5 0 0 . 0 0 0 . 4 2 4 3 3 5 . 8 3 7 8 5 . 0 2 9 5 8 4 . 7 5 8 0 8 - 9 3 1 4 0 1 . 1 4 8 9 2 . 6 5 0 6 6 6 . 0 6 6 8 . 8 1 7 5 . 8 3 2 5 2 7 . 6 7 4 4 4 4 - 7 1 3 5 2 - 9 0 3 5 8 9 . 3 1 7 1 2 - 9 3 5 5 9 6 - 0 5 3 5 . 3 0 0 7 0 7 - 9 8 2 1 2 . 0 6 6 5 8 1 . 4 3 5 1 8 8 . 4 8 1 5 % 5 w % 2 W 0 5 . 5 0 8 4 8 5 - 8 5 9 3 4 7 . 2 3 7 1 4 1 . 8 2 5 9 . 4 2 4 1 3 7 - 9 2 4 6 4 . 9 5 8 1 0 . 2 6 0 2 5 0 . 4 2 9 5 . 7 9 9 1 5 9 . 2 0 2 1 8 6 . 3 0 5 1 4 8 . 4 7 3 1 9 8 . 9 4 4 8 - 4 7 3 1 5 3 - 2 2 0 7 . 1 5 2 2 8 3 . 0 1 1 9 . 7 4 1 2 2 9 . 6 6 7 0 2 . 8 7 2 1 5 5 . 2 5 6 1 3 7 - 3 4 3 8 7 . 5 4 1 1 1 3 . 1 4 1 7 . 2 7 3 2 2 . 0 9 8 1 6 5 . 7 1 5 5 . 4 4 2 2 9 3 . 3 8 8 . 9 5 0 1 0 9 . 3 0 6 1 0 5 . 6 4 9 5 . 1 6 8 1 9 9 . 6 8 4 9 9 - 3 7 9 7 3 . 9 8 4 1 7 1 . 5 1 0 0 . 4 5 6 1 0 0 . 0 5 5 - 1 0 5 1 3 . 0 6 2 1 0 0 . 0 1 2 . 6 4 3 1 2 5 . 4 3 0 5 . 0 8 6 1 3 . 0 6 2 1 9 5 . 4 1 5 . 0 6 2 1 8 8 . 1 5 6 7 . 1 0 6 6 5 . 5 7 7 0 0 . 0 6 5 . 3 7 7 0 0 . 0 6 8 . 3 4 2 4 0 . 5 0 2 1 6 7 . 9 1 2 7 . 6 1 9 3 0 . 4 9 6 1 5 . 6 1 8 9 1 . 2 0 8 2 3 . 1 8 4 9 1 . 2 0 8 8 1 . 2 7 1 3 2 . 5 1 2 4 1 . 3 1 9 5 0 - 3 3 5 1 6 . 2 5 8 8 1 . 7 4 9 . 2 5 1 1 6 1 . 8 1 0 0 . 8 1 5 1 5 9 . 1 2 8 0 - 2 5 7 9 3 - 4 1 6 . 0 3 7 0 0 . 0 4 0 . 3 0 2 1 4 9 . 5 2 2 7 . 6 1 9 2 1 . 5 3 1 5 . 0 6 2 1 9 2 . 6 5 4 8 9 . 1 0 7 2 5 . 7 4 2 5 1 . 7 1 1 1 9 1 . 5 2 5 . 8 8 0 1 9 7 . 2 9 1 . 2 0 8 6 1 . 9 1 5 4 . 1 5 4 5 6 . 5 2 2 2 8 . 8 5 5 6 4 . 7 2 9 1 8 . 6 8 2 7 8 . 7 4 4 6 7 . 9 2 3 M . 7 3 5 7 0 - 4 4 3 8 9 . 7 3 8 0 0 . 6 9 2 1 4 . 4 7 1 1 4 6 . 9 9 4 9 1 . 6 6 6 1 6 . 0 3 7 4 5 . 5 2 2 6 . 2 0 0 1 0 8 . 0 7 3 9 5 - 4 9 4 1 4 . 8 0 2 1 3 7 . 3 4 3 8 7 . 5 4 1 1 0 9 . 5 9 3 6 7 . 5 6 4 5 4 . 0 4 2 2 6 3 . 5 0 9 2 0 0 . 0 8 4 . 0 5 . 8 1 7 1 7 0 . 1 9 2 2 5 1 . 2 2 5 9 2 . 4 1 6 8 9 . 4 5 7 1 . 6 8 2 0 6 . 4 5 6 8 7 1 . 1 1 7 0 . 1 9 2 2 4 5 . 6 2 6 6 . 4 3 6 2 6 4 . 7 1 9 7 . 7 1 4 1 6 2 . 1 1 5 7 6 0 . 3 8 8 1 0 3 . 9 2 2 0 6 . 8 5 4 2 7 . 4 3 3 8 . 2 0 1 1 NMNLDIDd'NKONLhOOv-OOIAOOOLOLOLOI‘L‘MO NNwo’fi O O O O O O O O O mxo—mmmt~01~ >¢O¢m 888858888858 88888855 O O Pv- . (— 0 0 O C 0 I Pv-Q— P 8888888888 '3P o o 0 O O O O 1—1— '- PFP 885858 F 8 O O . . 0 "FF PF" 1 M a m % m w 2 1 $ 5 2 W m m n a m w w m u n m 5 5 7 a W 2 2 1 8 2 2 3 7 1 0 3 6 1 4 2 2 1 3 3 7 2 0 2 1 1 6 2 O 1 2 2 1 1 4 2 6 2 7 1 2 2 2 2 6 2 9 1 0 2 2 2 0 2 N¢m¢m¢¢m¢mm¢mmmmw UNKDLDLBKOLDLGLDQ'P 2 5 4 5 1 2 3 4 mv—NMQ’mw—NMVmPNMme-N 5 7 5 7 5 7 5 7 5 2 1 5 2 1 5 2 1 5 2 1 aoooooooooommmmmoo q—q—q-q—v-NNNNNLDLO ¢¢¢¢¢d’fl'fi‘d'mmmmmmmmmmmmmmmmm N I T H O T F O Q S . M M A E R A R O I R P T R A T S N O I T A I L O F E D . N O I T A I L O F E D N O I T A M R O F N I . 4 J - E L B A T . S T O L P T N A L P M O R F 8 7 9 1 N A L P L A T O T T F A E L 3 F A E L 2 1 A E G A M A D F A E L A E R T H N R E K D A E H 0 N 0 N A E R A A E R A A E R A G A M A D E G A M A D E G A M A D E T N A L P T O L P T W T W m K I P S F A E L 2 1 . 6 4 1 5 9 - 2 3 6 7 6 8 . 7 1 6 2 . 0 1 6 5 4 0 . 2 6 3 6 5 . 7 4 8 4 7 3 . 9 5 1 4 . 8 4 1 3 4 9 - 7 2 9 9 - 5 5 9 . 2 2 5 0 . 0 2 6 3 - 9 1 2 1 9 4 - 8 3 8 5 7 6 . 1 5 1 502 5 8 . 6 7 2 4 - 3 5 0 4 5 2 . 8 7 5 9 4 . 9 7 8 2 6 3 - 7 6 4 0 5 - 5 6 4 4 , 2 7 - 6 5 2 1 1 . 1 1 3 4 0 4 . 9 6 1 1 7 4 . 8 2 5 5 3 4 - 0 2 8 6 4 . 9 1 5 6 8 1 . 9 6 7 . 6 1 9 5 . 5 2 1 0 0 . 0 9 3 - 6 7 3 . 4 1 1 3 . 0 6 2 1 8 1 - 9 2 2 4 0 . 3 0 2 1 0 8 . 6 7 6 5 5 - 1 0 5 4 7 . 6 2 1 3 . 0 6 2 1 3 5 . 9 2 1 5 . 6 1 8 9 3 . 6 9 0 . 6 5 9 2 5 . 3 3 9 5 - 7 9 3 1 3 1 - 5 7 4 6 9 3 . 2 0 1 . 2 5 4 1 9 5 . 0 0 8 3 9 - 9 0 0 1 9 0 - 7 6 7 3 7 0 . 7 5 7 7 - 5 4 9 6 6 5 . 8 1 6 9 . 9 1 4 5 . 6 7 1 2 3 1 . 1 3 4 8 . 4 7 3 1 6 3 . 9 5 8 4 7 - 4 7 2 1 8 4 - 0 2 9 4 2 9 . 5 5 0 3 - 0 9 0 1 2 1 . 7 2 8 6 7 . 8 8 3 4 5 . 8 1 2 4 5 1 . 1 2 8 2 . 0 5 3 2 1 4 . 5 7 0 1 6 9 . 6 2 5 2 3 0 . 6 6 1 4 2 . 1 7 9 2 9 1 . 6 5 1 1 0 3 - 9 3 7 4 1 7 . 0 7 1 5 0 - 2 8 6 4 0 1 . 8 9 9 1 4 9 . 3 1 4 5 6 8 . 6 1 7 2 . 1 4 5 2 8 9 - 4 7 0 1 1 5 - 1 4 9 4 1 83588888 mmnmnxorno 7 . 7 7 'd' 1— 3 8 . 2 0 1 1 7 7 . 1 0 6 9 1 . 2 0 8 2 3 . 9 6 6 4 5 - 4 0 9 1 6 4 . 4 6 8 0 . 1 1 2 6 . 2 0 0 1 5 1 . 4 2 5 5 - 9 6 5 5 3 . 8 5 7 4 1 . 7 7 7 6 7 . 5 6 4 0 4 0 8 9 6 7 8 - 7 1 6 1 5 - 2 5 9 9 0 - 2 5 7 4 1 . 6 2 8888288888888 0880 motgoogmga N Ln P N 4 4 - 5 1 5 ) g o 3 0 6 1 5 5 - 1 0 5 7 9 - 9 2 4 1 7 - 4 7 4 1 6 . 2 3 8 0 6 . 8 5 4 1 7 . 4 4 6 % 0 5 . 2 5 2 6 . 2 0 0 1 6 2 . 6 3 2 6 6 . 1 5 5 0 6 . 2 2 3 2 2 . 4 6 2 1 8 . 4 5 5 6 8 . 7 0 1 9 5 . 8 5 3 9 3 . 8 5 3 1 6 . 6 2 5 0 7 - 4 0 3 2 9 - 2 7 4 0 7 - 4 3 1 5 4 - 1 5 4 0 2 8 - 8 5 5 5 0 . 7 7 2 0 7 . 6 1 5 2 7 4 . 0 6 3 1 . 5 0 4 7 7 . 2 1 7 9 . 9 2 4 9 9 . 5 0 6 . 2 2 3 2 5 . 6 8 2 1 3 . 4 2 0 5 6 8 . 7 1 5 0 . 7 2 7 7 5 . 3 1 2 8 - 8 5 5 3 6 . 5 9 1 8 1 . 8 5 2 LhONd'CDOOLfiOOMQDOLhmfi'fi'CDFMOv-LnLhOd' g¢xommmmmvxomomoxooz~¢mp LDKONVKO NNNNNNNMNNNMNNNNNPNQNNNNN 3 4 . 2 5 . 4 7 . 9 8 . 6 6 . 8 6 5 6 : 9 6 . 8 1 . 1 4 7 . 4 8 - 6 5 . 7 4 . 7 7 - 0 5 - 8 3 - 4 6 . 7 8 - 6 2 . 2 3 . 4 3 - 5 3 . 2 4 . 7 5 - 7 3 - 2 3 . 3588898882838839F8 . 9 2 5 3 . 8 5 - 7 5 - 6 4 - 1 4 . 5 5 . 7 1 1 2 o 4 4 4 7 2 7 2 9 2 9 2 0 5 7 3 9 2 5 2 6 5 9 2 9 2 1 2 9 2 7 5 9 1 1 2 0 1 2 1 1 2 5 2 5 1 5 1 6 1 6 1 6 2 0 2 6 1 3 1 9 2 6 1 6 1 2 1 6 1 0 2 tnxo#mm¢¢mm¢mmm\ommmmm¢mmmm¢m Mfi'mq—NMfi‘mv—de'mv-NMfi'mv—NMd'Lfiv-NKN 08 OLGLOLRLOLOLO mmmm OOOOOOOOOOLthLn Ln thb-PNFNNNNN v-Q—v—v-c—NNN v-Q—q—v—v- mmmmmmmmmmmmmmmmmmmmwmo\oxoxo 3 2 F O O T T H A E R A . M M Q S N I F A E L F A E L T N A L P R O I R P T R A T S L A T O T N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R C F N I - S T O L P T N A L P E I B A T 1 F A E 8 7 9 1 N C R F - 4 J T H ’ N R E K D A E H O N ‘ O N 0 N A E R A A E R A A E R A G A M A D E G A M A D E G A M A D E G A M A D E N R E K K I P S F A E I T N A L P T O L P A E R A T W T W 503 9 5 . 4 5 2 . 3 5 6 2 1 6 . 6 3 3 1 0 . 9 3 2 3 0 7 . 2 1 2 4 2 . 1 7 9 2 9 8 . 0 0 5 9 8 - 3 9 9 4 ) 8 . 0 6 2 1 9 9 . 2 5 5 5 1 9 . 1 4 9 8 - 2 8 4 2 6 9 - 7 2 4 7 8 - 1 3 0 3 0 0 - 0 9 9 - 5 9 4 3 2 7 . 4 3 1 0 . 9 4 0 3 1 7 . 7 7 9 1 7 6 . 7 6 0 5 5 3 . 0 2 1 6 1 . 0 7 2 2 7 6 . 7 5 2 6 1 . 8 1 6 3 8 2 . 2 5 1 5 . 4 9 9 2 0 2 . 7 7 6 1 6 0 - 5 9 9 3 9 1 . 4 7 1 1 3 0 . 0 6 2 3 6 3 - 3 2 8 0 3 - 9 2 0 4 2 4 . 6 0 8 5 8 . 6 3 0 2 2 8 . 0 6 2 1 2 0 - 5 2 6 8 6 4 . 4 3 2 0 7 . 1 2 9 7 3 7 . 6 9 5 5 4 - 1 0 9 6 5 1 . 1 1 1 6 6 . 0 9 6 6 8 2 . 5 5 7 0 . 1 9 0 8 9 6 - 7 5 5 2 0 - 9 3 8 4 6 4 - 8 5 5 3 2 - 6 3 3 8 2 8 - 5 3 6 2 - 5 5 1 7 888888888888888888888288 g oc~°c5 Fwd-bmo-émov-d-mo L6.— boogmmg v-Q—N 0] ramp Pv-KQ Ln m a m 1 W 2 & 9 FR 03 M 7 3 . 0 6 6 8 0 . 0 5 6 B C - 8 4 5 7 6 . 9 8 7 1 6 . 5 $ % - 3 3 6 4 5 - 9 9 4 0 5 . 3 6 6 1 4 . 2 $ 4 2 . 3 2 6 w m v 6 7 . 1 0 6 2 7 - 6 1 9 2 7 - 4 1 8 7 6 . 9 8 7 8 9 . 6 1 6 3 8 . 2 0 1 1 7 0 . 9 1 0 2 8 8 (D N m 8 1— 1— 888888 P P . mm 'OL~ 8888888 888FR8§§588 088 Ln °§ L; 088 &m q—Mq— *8 #fimé q—q—MN 88 N8 <' % 9 % B ( . 0 5 6 5 4 . 9 8 6 6 6 - 7 8 6 5 8 - 5 1 7 5 4 - 8 3 6 1 7 - 5 2 4 1 5 - 2 5 9 5 3 - 2 9 7 5 9 - 4 4 7 5 4 . 9 1 5 9 2 . 0 8 5 6 5 . 5 7 7 8 5 - 7 1 3 1 C‘ 8 8 Ln Ln [’0 88888288888888888228: oooogmooo \0 . 1.‘ v- N 8 1 - 8 5 2 2 5 - m 2 8 8 1 0 6 . 2 2 3 1 8 . % 2 9 3 - 7 7 4 1 8 . 7 6 1 1 4 . 2 9 1 6 . 8 2 6 8 5 4 . 1 5 4 g u m m a m 0 6 . 6 8 1 2 9 0 2 7 4 9 2 . 6 7 2 9 7 - 1 0 4 3 2 . 8 9 1 2 % . 0 1 3 1 5 2 3 - 8 9 4 1 1 8 . 0 1 7 LDNOQBGKOONLGONLOLGPV'ONOONKOI‘ mmm¢mm¢m$¢mmmmvmmb emwmmwmmmm—vammmm; CD M 8 9 - 5 0 5 1 7 1 . 8 4 2 5 2 . 7 2 8 7 . 2 3 9 3 . 2 4 0 - 7 6 0 1 1 . 8 3 4 5 - 4 7 0 2 0 1 . 2 0 3 1 4 - 8 0 2 1 6 . 4 3 3 3 . . 6 5 . 5 4 . 6 4 . 1 5 . 7 4 . 2 5 . 3 5 - 8 5 - 3 5 . 6 2 . 6 5 . 9 2 . 8 7 . 6 8 . 3 4 - 8 4 - . % . 5 9 . 2 0 . 1 5 6 . 6 5 . 5 2 . 4 6 . 2 7 . 2 6 . 6 2 . 1 7 . 7 6 . 4 7 . 6 4 . 1 5 . 882888 3 4 1 5 9 2 1 1 1 1 7 7 . 1 7 3 1 % 1 1 7 - 1 5 2 2 9 7 - 2 9 6 8 5 - 5 8 3 1 5 - 5 5 8 4 - 4 4 - 0 5 5 1 ) I ( - 0 7 2 . 1 8 8 7 . 1 3 2 1 . 3 2 1 1 7 1 7 1 3 2 9 1 3 3 1 2 5 1 4 4 0 4 7 3 5 2 5 3 7 2 O 1 1 3 7 2 1 2 4 4 5 6 8 4 5 3 6 4 W M 0 4 w 0 1 0 1 3 1 1 1 8 1 2 1 9 5 2 1 2 0 2 4 1 8 1 5 1 7 7 1 5 1 2 1 3 2 5 3 5 2 9 1 4 2 0 2 3 2 1 2 6 2 mmmkoxo¢m¢mm¢mmmmm¢m¢¢mm¢mmm V’Lf‘q—NMVmPNMV'mv-NMQ'md-Nnfi’mq—Mfi'm mmmmm mbbbhbmmmmm q-I-v-q—u— 80 mmmmmm mmm 19000000000 \OKDWKOkOKOKOKOKOKDKDKOQKOKOKDw[‘PL‘FI‘I‘I‘I‘F T H N R E K D A E H 0 N 0 N 0 N E G A M A D A E R A E G A M A D A E R A E G A M A D A E R A E G A M A D A E R A T W T W N R E K K I P S F A E L T N A L P T O L P ‘ fl I A E R A F O T R A T S T N A L P L A T O T 3 F A E L 2 F A E L O T R O I R P - M M 0 3 N I N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R C F N I . 4 J E L B A T . S T O L P 8 7 9 1 ! O R F T N A L P 1 F A E 504 4 6 . 7 1 1 2 3 . 0 4 9 9 & . 2 4 1 1 7 6 . 3 5 5 5 9 9 . 7 4 7 5 . 2 1 0 2 . 8 0 7 9 6 . 8 4 5 1 . 8 8 5 6 7 . 6 8 7 4 5 . 0 5 5 7 9 . 5 6 3 6 1 3 m m W & 9 5 0 1 . 5 7 9 9 2 7 . 3 5 2 6 1 6 . 4 8 4 7 9 4 . 2 8 3 6 3 5 . 1 1 4 4 1 . 9 2 8 4 9 0 . 0 5 2 6 O . 6 9 0 7 5 2 . 6 6 w a m 6 0 1 . 3 9 0 1 6 2 . 3 9 9 5 4 1 . 2 6 1 1 9 . ) 8 4 6 9 9 . 2 8 2 7 9 9 1 4 ) X ( . O 2 6 . 9 7 8 1 7 2 . . 2 4 7 6 5 9 0 6 0 4 . 6 4 2 5 3 6 . 8 8 5 3 5 8 . 1 2 0 1 1 6 . 8 1 6 4 3 7 . 4 7 0 5 . 6 4 7 9 0 . 9 3 1 8 5 - 2 7 5 1 6 7 . 3 0 0 4 1 4 . 5 2 5 4 1 3 . 4 3 7 6 2 3 . 8 4 9 3 9 2 . 7 0 5 5 7 . 1 9 3 3 7 3 - 3 1 9 7 . 2 1 5 9 8 . 2 5 7 7 m 3 % 3 888R$898898$§38 Cm @0600] 0 OF C a mP¢8mg¢ oeamo 5 1 . 0 9 5 2 5 9 . 1 2 3 1 . 4 8 3 2 4 3 . 8 2 5 4 . 6 0 9 0 2 . 0 1 2 1 1 2 . 6 4 1 B ( . 2 6 4 1 5 6 . 3 8 2 4 1 . 9 0 7 7 1 . 5 3 9 1 1 4 . 5 8 0 6 . 8 1 2 2 5 4 . 1 5 0 1 1 9 . 1 0 4 1 2 7 . 1 & 1 9 8 . 2 9 5 . 0 1 8 1 % 1 ) 0 . 0 6 0 2 5 7 . 1 2 9 3 . 3 7 5 2 3 2 . 2 1 1 4 7 . 0 6 4 1 6 9 . 6 1 1 1 . 8 6 5 1 6 7 . 7 1 5 6 - 0 9 0 2 8 4 - 5 5 2 5 2 . 6 2 8 1 0 0 . 0 9 6 . 0 6 8 1 2 6 . 4 3 3 0 . 7 0 6 1 1 3 . 2 1 5 2 2 . 4 5 7 1 3 5 . 9 2 9 3 . 4 8 0 2 8 5 . 0 1 5 1 . 7 1 1 1 5 1 . 4 2 7 0 . 9 1 0 2 5 3 . 0 4 1 688668633 \5 3 539593 88 ¢mmmomm PF. PF oo'x 9 <13 fi’ 1— 88 ¢ 8 6 . 3 0 5 1 ) 0 . 0 4 9 . 4 8 0 1 % . 7 4 0 . 3 0 2 1 9 5 . 5 1 7 . 9 1 3 2 8 1 . 1 6 4 4 9 8 5 . 9 8 5 1 7 2 . 2 1 9 7 . 9 8 6 1 4 9 . 2 3 1 0 3 . 6 8 8 5 1 . 3 5 2 1 6 7 . 8 1 7 5 . 1 8 1 1 5 5 . 1 2 9 3 . 4 9 4 9 9 . 5 4 2 1 6 0 . 1 6 7 Z . 5 7 5 1 6 1 . 9 1 0 5 ) 3 6 4 0 . 3 0 2 1 2 1 . 5 3 0 2 . 8 7 2 1 2 1 . 5 3 1 6 . 0 3 7 0 2 8 6 . 4 0 m 0 7 . 9 6 6 4 9 . 5 8 5 7 6 6 . 9 1 7 1 . 9 6 0 2 2 9 . 5 1 6 5 1 . 7 9 2 5 2 . 2 9 2 5 4 7 . 6 2 5 1 . 3 5 2 1 4 6 . 5 5 2 4 3 . 3 8 6 4 0 . 4 7 6 3 7 7 . 2 1 5 1 . 4 3 1 1 2 6 . 3 3 4 2 1 . 9 7 8 8 6 . 6 7 0 3 6 5 . 9 1 3 1 . 6 6 1 1 3 6 . 1 3 6 4 6 . 6 5 8 7 1 . 8 6 5 4 2 3 . 7 3 0 4 . 2 0 9 5 6 . 3 8 2 7 2 . 4 4 8 9 4 . 0 1 3 5 1 3 . 7 2 1 7 T ' . 1 1 2 1 8 5 . 5 2 2 0 5 . 8 8 3 7 3 . 3 4 9 3 8 1 . 3 6 2 2 7 . 2 5 0 1 6 6 . 9 0 1 0 6 . 1 0 3 0 4 . 3 0 2 3 6 9 . 5 1 2 6 . 4 3 9 8 2 . 4 6 2 . 9 8 6 1 9 3 . 2 0 2 . 4 7 0 1 7 . 8 2 g N é 616-t; MN 8 Q—q— NFFQ—Q—I—P 68366883 @CSL‘ N °$ m$m 8 c500 ... u-I-fi'fi' m y'x F 1.0 8 Ch 8 1- m 9 b P M N 1 8 . 6 5 4 0 . 3 2 7 5 . 1 7 5 2 . 0 2 8 tn '- M N 1.0 m KO n 0 LG Ln (I) N 0 883 3 R 958648666 0 1 . 0 6 1 SEEEEEEREEE «“410 8 P F 8 gé Q. C . 5% 66 ON N.— 998885888393 O 8&8003889882 Nc-rfid' N .9 8 E": $ d” N 0‘ 0&0 N 9 N M 8 6 Ch 5 1 . 7 1 1 1 1- N \O <. rm 1- 5 9 5 P 6 1 . 1 6 6 1 9 0 . 3 3 3 9 1 . 6 6 6 <- p 8 N R 16 KO KN d. v- ”*7? C0 M 3 N M Ln 5 a E 8 E NLhOu-POFOWML‘ . C 0 O O 7'3 m Nmmmmmmm mmmmNmNth ' Ln '- M 9 b. n Q R 0 . 6 2 [.0 W {‘1' Ln m M 889696656tgseggauagsagsaza O . . O . . C I O . . O C O O P F FPP ..I F @8F8888888858888888899898R C O O C o o O O O O C O O v- FF Pv-v:q— <— 5 6 1 3 1 3 5 3 6 4 0 4 9 2 0 4 7 2 5 3 7 3 8 4 0 5 9 6 3 3 7 3 7 6 7 3 1 7 5 3 3 3 5 2 0 4 2 4 4 4 2 1 3 3 7 1 7 9 1 1 4 2 1 2 6 1 1 2 5 9 1 1 0 2 5 2 6 2 5 3 8 1 0 2 4 3 0 2 6 3 9 8 1 1 4 1 1 2 2 2 3 2 8 M‘d'd'mmmmd’fi'MMd’Mfl'mmd'fi‘fi’md’fi’mmfi'fi' 5 O 1 1 5 2 2 5 2 3 4 5 5 2 5 2 5 2 1 0 5 2 0 5 4 0 5 5 0 5 1 5 7 2 3 4 5 7 5 7 5 7 5 5 7 1 5 2 1 2 5 2 1 5 5 2 1 000000 mmmmmmmmmmmmmmmmmmmm 0 O 6 5 4 1 2 5 . 9 8 3 2 8 0 . 5 6 6 6 0 0 . 2 6 5 . 9 2 3 3 9 2 . 3 4 3 6 . 9 8 1 2 2 0 . 5 9 3 7 2 . 4 1 0 4 507 5. E? 8 0 4 . 4 8 5 2 9 . 7 7 5 2 9 0 . 3 8 1 . 0 2 5 3 3 7 . 1 7 2 5 5 - 5 3 1 4 1 2 . 5 0 2 1 3 4 . 2 1 4 2 6 2 . 2 7 5 1 9 9 . 0 3 3 5 8888388588828888 oiai M 5 898 .-uxgé a>u§u% g§c> CUM \O ._ L0 N <— d. O M 2 9 . 9 5 6 6 1 . 2 0 1 1 7 6 . 1 9 8 2 3 . 9 3 8 5 0 . 6 4 7 2 6 . 7 8 0 1 0 4 . 8 9 6 0 6 . 5 7 4 0 8 . 9 0 8 5 3 . 5 4 9 4 4 . 5 5 7 2 6 . 4 3 9 7 8 . 5 1 5 4 4 . 6 7 0 1 1 5 . 1 3 4 3 8 . 0 7 9 1 3 1 . 4 7 5 3 . 1 4 7 5 9 . 3 0 6 7 3 . 4 1 5 4 8 1 . 3 6 2 2 7 . 2 5 0 1 4 5 . 8 7 0 1 2 0 . 5 9 4 4 9 5 . 0 6 1 2 6 . 0 7 0 1 9 5 . 4 0 2 2 8 0 . 2 5 7 4 3 6 . 0 0 7 9 7 . 5 7 8 6 6 . 7 1 5 1 0 4 . 7 9 7 2 6 5 . 6 4 2 8 8 . 1 2 8 2 0 . 9 3 3 7 1 . 2 8 9 2 3 7 . 1 5 2 0 1 . 9 3 8 9 5 . 5 5 5 1 . 3 8 7 1 6 0 . 9 1 2 7 . 5 9 6 9 2 . 8 5 7 4 9 . 5 0 1 2 0 5 . 3 7 1 1 5 . 7 6 8 88882838858$88889888R8 *gga § «\u§a5c5v- OJu>N\ .6 O\C>03CS 7 «JCS mm 8 $8 sic: 8 i—KO ux M .— 1— 5 4 . 9 8 6 8 7 . 7 7 0 1 4 9 . 2 5 1 1 6 7 . 2 0 7 7 7 . 5 0 8 3 9 . 3 3 0 1 2 8 . 1 4 5 5 5 . 1 0 5 7 6 . 2 4 9 883888888RR . 6 1 3 6 6 . 2 3 3 6 . 4 2 0 1 8 . 7 0 5 6 . 2 2 . 7 1 4 4 . 9 7 1 5 . 9 1 . 0 9 1 . 5 1 6 9 . 7 2 . 6 7 9 1 . 8 6 7 9 . 5 2 . 0 0 9 3 . 1 9 2 1 . 2 2 0 6 . 1 4 4 0 . 1 2 . 7 6 3 0 5 . 2 1 6 3 . 5 2 0 9 1 . 8 5 1 0 . 2 2 . 2 4 7 8 . 1 1 2 3 . 7 1 4 4 7 3 . 7 0 5 1 . 4 2 8 3 . 8 6 0 1 5 3 . 1 5 4 9 1 . 4 6 5 7 8 . 0 0 6 9 0 . 3 9 6 . 5 8 2 2 . 4 2 3 . 0 2 4 1 . 8 2 8 4 2 . 0 7 2 9 . 8 3 4 2 . 6 2 8 8 . 1 2 8 5 5 . 2 2 3 9 3 . 8 5 3 3 . 1 2 7 4 . 8 7 8 1 8 . 2 6 3 3 1 . 3 0 4 2 . 3 2 5 4 . 8 0 8 2 8 . 6 3 3 2 0 . 1 2 4 5 . 8 1 5 7 . 4 5 9 4 0 . 1 4 1 2 1 . 0 7 4 6 . 3 2 4 0 . 1 0 1 1 7 3 . 8 5 4 6 1 . 1 1 6 6 5 . 3 7 7 8 0 . 0 6 1 4 4 . 3 1 2 2 5 . 2 5 8 6 7 . 5 9 2 6 7 . 5 9 2 8 0 . 2 5 7 0 1 . 2 4 2 0 . 1 2 4 1 6 . 0 3 7 ) X ( . 0 & . 6 5 3 0 . 4 2 1 . 3 2 2 . 0 2 7 . 3 2 5 . 2 2 7 7 . 5 0 8 5 7 . 0 2 6 6 . 2 3 4 3 . 4 2 5888988888ER$$EEE8SE$$$P88 P 1— O O O O 8R983$8 O P . 0 4 1 3 0 1 7 3 8 4 1 2 1 2 1 7 1 . 1 7 3 88$888$88988F8$8€8 O O C P C P 6 5 1 3 2 7 1 ‘ 5 1 9 9 1 9 1 7 2 5 1 7 3 2 4 1 3 3 2 9 1 7 1 7 2 1 3 2 4 1 1 1 1 5 1 9 0 2 2 2 7 1 3 1 1 1 0 1 5 1 7 1 2 2 1 2 7 1 7 0 2 5 2 2 1 2 1 0 2 9 5 3 1 0 1 \o¢¢¢mm¢m¢¢mmmm¢mmmmmU\U\U\U\U\ 8mmmt~t~t~t~t~ O 5 3 . 2 9 0 1 3 1 . 5 9 1 5 1 3 . 1 7 6 3 6 . 2 4 3 1 5 4 . 2 1 4 4 8 . 4 7 3 1 8 5 . 8 9 9 . 3 7 9 5 . 7 2 0 2 . 8 8 5 6 . 6 4 7 6 2 3 . 7 3 7 0 . 1 2 1 2 7 3 . 4 1 0 5 . 9 1 2 2 5 3 . 4 2 9 1 . 2 0 8 5 . 6 3 4 1 . 3 1 9 0 2 . 1 1 5 . 2 5 9 9 7 . 7 1 4 1 3 2 . 3 3 8 4 5 . 1 4 0 1 3 2 1 O T T H N I F O Q S . M M A E R A F A E L F A E L T N A L P R O I R P T R A T S L A T O T N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R O F N I . S T O L P T N A L P E L B A T M O R F 8 7 9 1 F A E . 4 J T H N R E K D A E H O N O N O N E G A M A D A E R A E G A M A D A E R A E G A M A D A E R A E G A M A D A E R A T W ‘ T W " N R E K K I P S F A E L T N A L P T O L P 508 N A L P L A T O T T F A E L 3 A E R A F A E L E G A M A D 2 1 A E G A M A D F A E L A E R T H N R E K D A E H O N O N O N N I T H O T F O Q S . M M A E R A R O I R P T R A T S N O I T A I L O F E D . N O I T A I L O F E D N O I T A M R O F N I . 4 J ‘ E L B A T . S T O L P T N A L P M C R F 8 7 9 1 \0 L0 7 3 . 4 1 6 3 . 6 1 7 3 . 0 0 1 1 0 . 2 6 0 2 3 6 . 2 4 3 1 3 1 1 . 3 4 5 % 2 3 1 8 1 . 8 9 6 8 . 5 4 9 5 2 . 7 6 8 2 . 1 6 3 0 7 . 5 4 9 9 . 9 6 7 8 2 . 9 9 3 7 7 . 2 1 7 8 - 7 2 3 7 1 . 8 4 3 7 3 . 8 6 4 2 5 - 7 3 7 3 . 2 7 2 7 7 - 4 7 3 6 7 . 4 5 3 6 1 . 1 6 6 1 2 9 - 3 3 6 6 . 7 1 G A M A D A E R A 7 0 . 9 1 0 2 2 4 . 7 3 3 E G A M A D A E R A 0 1 . 7 2 2 2 0 5 - 1 9 4 2 5 2 . 7 1 5 5 8 6 . 3 0 5 1 5 0 . 8 7 5 9 6 . 5 7 7 1 4 7 . 6 2 3 4 . 8 1 7 1 7 3 . 3 5 3 1 2 2 - 9 7 4 4 0 . 1 0 9 6 5 3 . 7 5 7 1 8 8 . 3 6 1 1 2 3 . 5 8 4 1 3 9 . 4 6 2 1 2 1 . 6 0 9 6 5 . 6 0 1 5 7 4 . 2 2 4 1 9 9 . 1 6 0 1 5 5 . 1 5 8 4 7 0 . 0 6 6 4 9 5 . 1 9 6 1 6 1 . 6 1 1 0 . 8 5 4 2 1 3 . 3 6 3 5 0 9 . 3 0 6 1 6 7 . 9 1 3 5 . 7 1 7 1 5 4 . 2 1 4 0 8 . 4 4 5 5 6 1 . 3 2 4 1 9 9 3 3 . 6 7 0 2 2 3 . 7 7 9 1 4 . 8 0 2 1 2 2 . 0 2 3 6 9 . 2 3 8 1 3 9 . 1 3 6 5 . 7 2 3 5 4 8 - 4 7 3 1 7 9 - 2 1 2 3 - 0 3 4 1 3 7 - 9 2 4 6 7 . 7 2 3 2 2 9 3 0 - 0 7 4 2 5 6 - 7 8 3 1 2 1 . 2 1 1 2 4 4 . 2 6 9 8 5 . 2 7 5 1 4 7 . 0 0 3 4 6 - 4 5 9 1 9 0 . 1 2 4 7 2 . 5 4 7 1 % 5 3 0 9 . 3 0 6 1 5 9 . 0 2 7 3 . 9 8 4 1 5 7 . 0 2 3 5 - 4 3 7 1 4 3 - 5 2 9 4 . 7 4 9 1 2 3 . 5 3 2 3 . 4 0 8 1 5 5 . 3 2 5 7 . 5 4 0 1 6 6 . 4 7 7 8 5 7 . 6 6 7 1 2 4 . 5 4 4 9 2 . 5 5 2 2 5 4 . 3 2 5 4 . 5 5 0 1 6 8 . 2 9 1 5 2 4 . 8 7 3 1 3 1 . 2 3 0 1 . 6 6 4 1 2 7 . 9 3 1 8 5 - 0 7 0 2 3 9 - 0 8 7 3 1 1 . 7 8 6 1 6 8 . 6 1 9 6 . 1 4 7 1 2 6 . 6 3 3 6 . 8 7 4 1 2 3 . 6 3 8 6 . 1 3 2 1 5 5 . 0 2 2 6 . 2 0 0 1 6 7 . 9 1 1 3 . 6 9 3 1 8 5 . 5 0 8 1 2 . 7 9 3 1 0 0 5 6 . 3 6 6 4 9 7 . 2 8 2 5 9 4 . 0 4 1 6 0 8 . 9 9 4 5 9 6 . 4 8 4 4 0 4 . 9 6 2 5 9 3 . 5 5 6 6 0 1 . 8 9 2 4 8 2 . 5 7 7 6 8 7 . 6 4 6 7 0 4 - 9 9 1 7 9 2 . 8 2 8 4 8 9 . 4 5 7 8 3 9 2 8 6 3 2 ? 6 2 7 6 6 9 3 1 2 3 3 2 1 3 6 2 8 6 2 539488888888» fi&&§ood>> N E 00eeeeeaaaasaaaagpaaaaaooo $88988§888858838888§ 88883883 8888 $88 81885385888888 M'- 8 E: N §§§§ v-c—v—v—v—Nv-v—q—q—v-q—q—Nq-u— 8 6 4 8 - 4 7 3 1 Q 88888888888588852888 8886 «<0 ‘— b- '0‘ 08m d. 85055888§85§ 1 4 5 . 5 2 1 2 5 7 . 1 2 5 1 . 3 5 2 1 2 8 . 4 2 2 5 5 . 5 3 6 1 7 5 . 1 1 3 7 9 - 4 4 8 . 4 7 3 1 2 6 . 7 8 0 1 8 6 . 1 2 5 7 5 . 5 4 0 1 3 6 . 2 4 3 1 0 1 . 2 3 4 1 7 5 . 1 8 1 1 2 7 . 8 4 8 0 2 . 4 7 0 1 0 4 . 9 4 7 3 0 - 9 5 6 5 2 . 1 5 0 1 1 4 . 8 0 2 1 4 9 . 2 5 1 1 8 7 . 7 7 0 1 8 0 - 7 9 4 1 3 . 8 2 3 1 1 5 . 2 5 9 2 3 . 4 0 8 1 4 8 . 4 7 3 1 3 6 . 6 4 5 1 3 0 . 5 9 7 0 4 . 9 4 7 9 1 . 8 6 7 3 9 . 8 7 7 hmwommmwmmNFOL‘mmfi-mbbhoammo “\UDCUCDSRGDE;N\CUv-v-P~U\C\OJoggomoo «— 3 2 . 0 3 1 3 2 . 0 7 4 9 3 . 8 5 3 8 1 . 4 9 3 9 4 . 0 4 3 2 0 . 1 2 4 9 2 . 6 7 3 3 1 . 5 0 4 0 7 . 4 0 3 9 8 - 5 1 3 9 4 . 6 0 3 1 1 . 5 0 7 3 1 . 1 0 3 7 9 . 3 9 2 6 7 . 2 8 4 4 4 . 5 1 3 9 4 . 0 7 1 6 7 . 0 8 3 8 0 . 3 6 4 % 5 8 7 9 - 3 9 2 5 7 . 3 4 2 q—v—KDLDNkoMNLthMCDL‘V'GDMMMMQOthmM O mmgmbmwomméémmmm¢bm>mémmpm NN “PC—PNr—Pv—q-r—q-q—v-v—Q-q—v-v—v-v—v-a—v- 4 1 . 1 5 2 . 1 8 4 6 6 . 3 7 . 7 2 3 1 . 1 4 2 . 1 0 5 1 2 . 1 3 3 . 1 0 5 2 7 . 9 7 . 9 6 . 6 7 . 5 3 . 9 3 . 7 4 . 2 5 . 3 1 . 5 6 . 5 1 . 2 7 . 5 1 . 7 1 . 8 4 . 3 5 - 2 4 . 6 4 . 6 2 . 9 2 . 7 2 . 0 3 . % . 1 £ 6 4 . 1 5 . 1 4 . 5 4 . 6 4 . 1 5 . 2 3 . 5 3 . 9 0 . 0 1 . 0 2 . 2 2 . 6 2 . 9 2 . 0 4 . 4 4 . 1 2 . 3 2 . 5 2 . 8 2 . 3 2 1 2 2 1 1 2 2 1 3 3 ‘ O 1 3 2 5 2 9 1 1 2 0 5 9 1 1 2 9 2 5 2 8 5 1 9 1 9 1 7 1 5 1 5 2 5 1 6 2 6 2 3 1 2 1 8 2 1 8 8 1 7 3 1 4 1 1 1 2 1 % 1 1 2 1 6 1 4 1 6 9 1 1 1 1 9 0 1 mm¢mmm¢¢mwm¢mmmmm¢mm¢omxomm 2 5 2 1 3 5 2 1 4 5 2 1 5 5 2 1 q—NMQ'Lni-NMV’an—de'mq—Nnfi'mr-N OOOOOOOOOOLGLOLGLDLROBOOOLGLO q—q—q—q—q—NNNNNLO LDLDLOPL‘ 4 1 4 1 4 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 T H N R E K D A E H 0 N 0 N 0 N A E R A A E R A A E R A G A M A D E G A M A D E G A M A D E G A M A D E T N A L P - N R E K K I P S F A E L A E R A T O L P T W T W 2 1 O T T H . M M 0 8 N I 3 F O A E R A F A E L F A E L T N A L P R O I R P T R A T S L A T O T N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R O F N I . S T O L P T N A L P E L B A T ! O R F 8 7 9 1 F A E . 4 J 5 7 . 3 2 7 8 . 8 0 6 2 2 0 - 4 4 3 9 3 - 8 7 7 2 6 7 . 3 0 8 8 0 . 5 8 2 3 3 1 . 0 4 7 2 4 - 4 1 3 3 7 5 - 8 0 5 8 3 . 6 6 0 2 9 1 . 6 6 2 1 1 . 8 9 7 2 513 2 7 . 6 7 0 1 1 1 . 4 2 3 2 2 6 . 0 6 3 1 6 2 . 2 2 9 2 6 6 . 3 6 1 5 . 2 8 7 1 . 7 8 4 6 8 2 . 3 7 6 6 5 0 - 7 2 4 8 4 . 0 9 5 6 2 5 . 3 3 4 2 0 . 3 8 0 8 7 3 . 4 4 6 1 6 7 . 2 7 0 7 7 0 . & 1 1 6 6 . 7 1 0 8 0 8 . 4 4 0 6 . 6 3 6 6 1 7 . 7 5 2 2 9 . 0 7 7 5 4 7 - 7 2 2 3 - 5 1 5 6 7 1 . 2 1 0 4 . 2 1 0 7 0 9 . 2 4 6 2 . 5 5 7 5 9 8 - 8 4 2 2 . 3 6 5 6 9 9 - 3 5 9 . 0 4 8 7 5 4 - 3 2 7 0 . 8 5 0 4 . 9 8 5 9 - 3 7 3 6 0 2 . 5 7 5 7 6 8 . 5 0 5 7 2 4 . 2 6 9 6 2 . 9 0 5 4 88988939 88888895 0 2 . 7 1 7 2 3 . 1 8 4 6 7 5 . 4 1 7 n m w 4 m 3 0 . 7 2 7 m 9 u 9 2 w 5 % 5 % % 5 % w 3 8 6 7 . 9 1 4 1 . 7 7 7 6 4 . 7 2 9 6 6 - 3 8 4 0 4 . 8 9 6 0 5 . 2 1 6 5 4 . 9 1 5 9 3 . 8 5 3 9 3 . 8 5 3 2 8 . 8 5 5 6 1 . 5 0 2 5 7 . 3 9 1 6 5 . 5 6 2 5 1 . 4 5 2 6 9 . 4 7 1 “ . 7 3 5 9 2 . 0 1 3 3 6 . 6 2 3 5 6 . 7 0 1 2 0 0 . 0 4 9 . 2 5 1 1 9 2 . 5 5 2 2 7 1 . 4 1 2 7 . 6 1 9 8 3 . 2 1 8 1 2 1 . 4 3 6 4 0 9 5 8 9 2 . 0 1 5 2 0 0 . 0 5 0 . 5 7 4 1 . 3 4 2 8 3 . 3 3 0 2 3 6 . 6 4 5 1 1 2 . 9 2 3 1 2 6 . 2 0 0 1 9 6 - 7 0 7 1 0 3 . 8 8 9 0 1 . 2 3 4 1 2 3 . 4 0 8 1 2 2 . 0 2 7 1 1 8 3 . 3 3 0 2 2 1 . 1 8 1 1 9 0 . 7 3 8 9 2 . 1 3 6 6 0 . 7 4 7 1 ommmmmmmopnmmmmmwmmbmommm¢ 0 O O O O mbmnmmrmmmwmnommbmmnmommmm P—vaw——¢m¢¢¢¢mn¢m¢¢¢ fi'q—u—v— 0 5 5 4 8 6 5 5 9 5 9 2 3 3 . w . 5 5 . 5 7 . 1 6 . 5 6 . 2 3 . 6 3 . R 6 4 1 m fi 1 8 1 5 . 1 6 2 . 1 8838888888888 Pv—q—q— 88888828888888888 O O O I O O O O I O O O q—u—Q—q— 1 a m M 5 w w 5 u 5 m y % u 3 2 8 7 B 5 a B M a 4 9 7 a 2 3 o 4 2 1 3 1 7 1 1 1 4 1 O 9 1 4 1 2 2 8 1 6 1 7 2 9 2 2 2 0 2 8 1 9 1 8 1 8 1 3 2 2 2 5 2 O 2 3 1 6 1 1 2 ux¢'mmmém LfiNMMNMM 8"“885887.— 1—1-1— 88888888882882888828884888 8 MONOEOO <§M503 <3<5 .0.] . O 8 c>oi 'oK ' @pw d’ c>u§ 01 08 <5<5c> 8 FM?- N “\KOLOQ- '1'-N 1‘“ 6 7 . 5 6 4 7 8 - 5 1 5 6 4 . 9 5 8 5 2 . 1 3 0 1 9 2 . 6 1 7 7 5 . 7 7 9 9 2 . 6 4 5 6 4 - 7 2 9 2 7 - 3 3 9 % 4 % 1 5 5 . 1 0 5 4 3 . 5 0 6 3 7 . 0 3 7 1 8 4 . 0 1 7 0 1 . 5 1 4 1 1 6 . 8 2 6 3 0 . 5 9 7 5 5 . 9 6 5 6 8 . 9 0 2 1 7 . 4 4 6 5 4 . 7 5 7 3 8 . 3 8 9 4 4 . 9 7 1 9 1 . 2 0 8 6 4 . 9 5 8 7 9 - 9 2 4 mammmmwhbmofimoomMNmmhmmh O O O . 888888888SESB5538888889888 P FPFF P O O O O O O 82288888828888888888888828 O C I . . F P 7 2 6 W 1 4 2 9 2 7 2 1 M 3 1 2 7 2 6 4 3 5 2 2 m¢mom°mmm¢fiommowpomoo q—N O F '3 (D 1- b 8 7 . 5 1 4 5? 8 SSE§§858$88888 §§§§§§E§§§§§§§ 8 5 7 9 3 4 - 7 8 2 8 5 3 . 4 2 7 1 - 9 6 0 1 5 . 5 7 1 0 7 . 7 1 0 8 6 1 . 8 1 7 1 . 3 3 9 5 4 . 0 1 1 7 2 . 7 6 3 6 6 5 . 6 1 7 3 . 7 5 5 38588888888959898858 mean» Pq-P \Dw'd' NkOF- 3% hméo m cfimxo Pv- oméoif' 8 In '3' . 7 . 0 7 5 6 3 0 4 8 2 8 to 8 6 0 . 5 2 5 2 8 7 . 2 9 R 3 g 1 g ox $5 .5 Q30!“ :0 0 E NNMPfiNFN—NNPFNN v-N m 1‘.— MMM §%§§§§ Q 888E9888888 888888888888888858: mmmomémo>&m 0 M ‘— OE.“ 5 5 . 8 4 4 2 % 3 4 6 7 . ) 8 4 2 0 . 9 2 0 7 . 3 1 0 2 4 4 . 1 7 4 7 . 0 6 4 1 5 . 9 2 2 0 . 0 3 1 2 9 6 . 8 4 4 0 . 3 0 2 1 0 . 9 2 ) & . 5 2 8 1 1 4 . 4 8 8 7 . 5 4 1 1 0 . 6 2 % . % 1 2 7 3 . 3 1 3 0 . 5 9 7 7 . 3 2 1 3 . 9 6 9 2 1 1 . 2 4 4 0 . 3 0 2 1 8 . 2 2 9 5 . 1 6 8 1 6 1 . 7 1 8 4 . 7 4 9 1 8 . 7 1 ' . 3 0 . . 8 O 6 5 8 8 . 7 8 7 1 . 5 1 2 4 . 2 6 3 1 8 . 6 1 4 0 . 2 2 4 1 . 7 1 2 9 . 1 5 3 2 0 . 9 1 . 0 8 6 . 8 7 1 3 5 . 3 1 . 8 0 7 6 6 . 2 6 3 2 8 . 0 2 9 8 . 4 3 8 2 8 . 2 1 7 8 . 2 0 7 3 2 . 4 9 0 2 0 . 2 1 6 . 9 1 ) & . 5 & 1 6 . 8 1 6 8 . % 1 2 6 . 9 1 5 7 . 8 6 8 1 0 . 5 1 3 6 . 6 4 5 1 6 . 6 1 4 6 . 3 6 6 3 2 . 0 2 5 8 . 8 1 9 1 0 . 7 1 5 1 . 7 1 1 1 6 . 0 2 % . 8 4 6 2 0 3 . 4 4 4 2 0 . 5 1 4 . 0 2 6 8 . % 1 2 1 . 5 1 m 9 323500338022860288356 L0 L0 L0 L0 m N v-q— o F . P 322582022222820820202 .-.-° FF q— '- . . o o . 1 6 . 1 6 . 1 3 . 6 5 . 3 4 . M 4 4 7 3 O 4 5 1 2 5 5 2 9 1 8 4 7 3 0 4 (s. N 4 5 4 5 1 2 0 5 1 2 5 9 1 2 1 6 4 1 2 5 2 O 4 7 3 9 1 3 2 3 2 m 1 2 9 7 2 4 1 1 1 5 2 0 2 1 2 5 1 8 2 8 2 2 1 6 2 2 1 9 1 1 1 8 M 2 1 4 1 1 2 O 2 1 1 <~mm¢ mmNfiQfior PNi— ¢ O §“9“N8258:E Nu-NN M Q (n g 3 P R N 0 9 . 3 8 % . 2 3 8 1 9 2 . 5 5 2 2 3 8 . 2 0 1 1 fi8§88$§558§8§$ . §§§§E§§§§§ (05¢ Pd” \6 L~L~ FEM-— q-v-q—N RSRER§88888$888§§ER§§2 L6 PFNONgémOON¢O . 9 N mm¢Nmmmm¢mm> NNNNNc—PNNQ—Nq—c— NNc—v-I- O 7 3 . 1 4 . 0 2 . 2 2 . 3 6 . 9 6 . 7 7 . 5 8 . 1 8 . 9 8 . 3 3 2 4 5 3 3 0 . 1 3 1 . 1 8 4 6 7 . 4 8 . 1 3 1 4 . 1 5 5 . 1 2 5 paaaagaegsa o . v 88888585888888888 o o C . C F F . . 1 5 1 2 1 7 2 4 4 M 7 3 2 1 6 4 O 1 2 4 7 2 5 3 6 4 7 2 7 3 5 1 M 3 3 3 3 6 4 8 1 2 2 9 1 5 2 7 1 7 2 9 8 5 1 3 2 3 2 0 2 8 4 2 7 2 2 5 1 9 1 4 2 5 1 0 2 9 3 2 8 1 8 1 4 2 Md’mfi'fi’md'mVd’fi'U‘MLfiMfi'fi'fi'mfl'V’md’mmfi' an-NMQ'U‘Nmfi'mPNMd’mw—NMQ'mv—NMV’LQP mooooooooommmmmgggaagggggfl N v— v-v-d—d—NNNNN 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 3 N I P H O T F O Q S . M M A E R A F A E L F A E L T N A L P R O I R P T R A T S L A T O T N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R C F N I . S T O L P T N A L P E I B A T ! O R F 8 7 9 1 F A E . 4 J 1 T H N R E K D A E H 0 N 0 N O N A E R A A E R A A E R A G A M A D E G A M A D E G A M A D E G A M A D E T N A L P N R E K A E R A F A E L K I P S T O L P T W T W 0 5 . 2 4 5 6 . 7 4 1 6 8 8 . 9 2 3 2 2 . 7 2 3 4 3 0 . 0 0 7 1 7 . 6 6 2 5 5 7 . 4 3 2 1 8 1 . 0 8 8 4 1 5 . 9 3 1 7 . 2 6 9 2 1 1 . 8 3 3 6 . 3 4 5 3 521 9 5 . 5 0 5 . 5 8 5 3 2 7 . 3 5 3 7 6 . 4 2 3 3 9 5 . 5 8 5 . 9 2 9 . 1 0 3 2 4 2 . 1 6 0 2 8 8 . 0 9 3 7 . 4 8 4 4 2 5 . 4 3 8 2 . 2 3 9 2 8 9 . 6 6 4 3 4 . 4 4 8 4 2 9 . 4 3 8 6 . 4 7 1 2 6 9 . 5 1 3 1 - 3 8 3 2 8 4 . 1 8 1 0 0 . 5 7 3 3 7 3 . 8 5 0 9 . 9 9 3 2 9 3 . 3 0 3 . 7 9 6 3 3 8 . 0 3 0 2 . 6 6 7 2 1 8 . 9 4 5 5 7 . 0 0 8 2 8 3 . 7 6 8 . 0 8 6 2 2 4 . 4 7 2 7 2 . 9 8 8 3 7 4 . 7 5 1 7 . 0 0 2 2 8 0 . 9 7 2 . 7 0 6 2 3 2 . 8 2 2 4 8 . 6 6 9 1 2 2 . 5 2 1 9 3 . 2 8 9 2 95255883885558855899858882 N\t~ 988 N 0'5 mowmdNoomé .... .... N N ; ¢ F ¢ 9 CD 5 2 8 . 6 2 6 2 9 . 9 5 6 3 1 . 3 7 5 S 5 M 6 4 - 9 5 8 8 9 . 8 1 7 1 7 . 4 4 6 6 6 . 7 8 6 5 2 . 1 3 0 1 2 9 . 8 3 4 89888885838888888 odeFoPN m Ln M10 N 7 8 . 7 1 6 8 1~ . 6 N w 9 éi 4 3 . 7 3 5 4 8 . 4 7 3 1 3 3 - 0 9 8 4 1 . 9 0 7 9 2 . 6 1 7 7 6 . 9 8 7 2 0 . 3 2 6 4 1 . 7 7 7 9 5 . 3 4 5 . 1 4 0 1 7 4 - 5 5 4 6 7 . 4 1 2 9 8 - 6 3 5 8 0 . 2 5 7 5 6 . 6 6 7 7 . 5 0 8 bmfiNN £888 58 v-q—q—Q— 5599:98888958952985585982: N N'— ... 1— F 1 3 . 0 6 2 1 5 2 . 1 6 8 1 4 . 4 7 1 1 4 0 . 3 0 2 1 8 0 . 2 1 4 2 7 . 3 3 9 3 0 . 1 9 5 9 3 - 8 5 3 0 5 . 0 1 5 2 8 . 3 7 4 4 2 . 7 2 8 4 3 . 7 3 5 6 1 . 2 6 6 2 9 - 9 1 3 8 1 . 4 9 3 0 5 . 2 1 6 7 9 . 9 2 4 2 8 . 8 2 7 2 0 . 1 4 6 1 6 . 0 3 7 6 6 . 1 2 7 1 7 . 4 4 6 4 7 . 7 4 5 mOV’v-V'PQOV'OO <- m 0 NNNNw—I—I—Q—v—v—v— 2 C ON ... S N “2 m . 2 M 46 v- b m b. O 9 Ln Ln N \O N 1— <— f— 3955259559999 o r- 5 2 . 0‘ <- 5 8 8 . 1 3 . sasgggpamwagsaxa o v- 1 2 2 . S 5 1 5 2 . 8 2 . 9 2 . 2 3 . 1 5 . 7 1 . 6 5 . 9 1 . 3 2 . 1 2 6 0 . 2 1 3 4 . 7 4 . 1 7 . 4 7 4 7 9 . 2 8 5 Q <- Ls O N 8 2 . 5 5 . 1 3 . 1 6 . 2 4 1 2 7 3 o 4 7 1 1 3 9 2 9 2 o 1 2 1 5 3 1 3 4 5 1 9 1 1 2 2 1 7 3 5 1 2 1 2 1 1 2 a 9 1 O 1 5 2 2 2 2 1 0 2 1 2 0 1 7 1 6 1 5 1 7 8 9 1 7 1 4 9 1 1 2 1 8 o 2 9 8 8 6 2 1 1 1 7 4 1 m¢¢¢¢¢mm¢¢m¢mm¢m¢¢¢¢¢m¢¢¢¢ 2 3 4 5 5 2 1 5 2 1 5 2 1 5 2 1 FNMV’LfiPNMd’md—NMVmc—Nnd‘mq—N oooooooooommmmmooooomm 3 2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 T H N R E K D A E H O N O N O N E G A M A D A E R A E G A M A D A E R A E G A M A D A E R A E G A M A D A E R A T W T W N R E K K I P S F A E L T N A L P T O L P T H F O T N A L P N I A E R A O T R O I R P 2 F A E L 3 F A E L . M M Q S T R A T S L A T O T N O I T A I L O F E D . L N O I T A I L O F E D N O I T A M R O F N I . S T O L P . 4 J E L B A T T N A L P 8 7 9 1 M O R F 1 F A E 522 5 8 . 1 4 5 9 3 . 9 7 3 1 5 6 . 5 9 3 4 8 . 2 5 5 3 1 9 - 1 3 3 1 3 7 . 2 5 0 2 6 7 . 6 0 2 2 9 . 9 2 6 1 5 3 . 5 5 1 6 8 . 7 9 6 2 1 2 . 0 0 7 5 4 . 8 5 0 3 9 0 . 8 3 1 4 6 . 4 3 3 4 8 9 . 4 8 4 9 3 . 6 3 5 2 1 3 . 1 4 0 0 . 4 4 2 2 . 3 3 5 4 7 . 1 4 3 6 6 8 . 5 7 4 9 4 5 . 5 7 0 6 9 9 - 3 9 1 . 3 9 2 6 4 8 . 5 1 1 7 0 . 0 2 5 3 7 9 . 9 5 5 9 . 7 4 2 8 2 4 . 3 5 2 6 4 . 0 4 8 7 9 6 . 2 8 1 1 4 . 3 8 7 5 7 1 . 3 1 8 5 . 6 1 3 7 5 3 - 4 6 4 1 3 . 2 8 5 5 2 9 . 8 1 2 6 3 . 7 9 4 7 6 1 . 7 1 8 9 . 3 3 6 5 4 5 . 3 8 5 8 9 . 4 8 6 5 5 3 . 0 2 8 5 . 9 8 4 4 1 7 . 6 4 2 8 3 . 1 8 2 6 7 0 . 5 1 1 4 4 . 4 6 3 6 9 2 - 3 6 5 4 3 - 9 9 3 7 4 7 . 2 2 2 9 3 . 4 5 1 5 88%889888988899888 uSuK «\ NoodN$Nzéo O wNNN¢¢ <1’ N\ P NP N 6 7 . 5 6 4 1 0 . 6 2 3 7 7 . 6 5 8 9 0 . 3 3 2 . 0 7 4 8 3 . 6 6 4 3 1 - 3 7 5 5 9 - 3 2 8 0 . 2 1 4 3 7 . 1 3 6 4 . 9 5 8 0 0 . 0 4 4 . 0 9 9 1 3 5 . 0 3 4 3 7 3 5 5 1 1 9 3 8888888938 2 229 2m$$ a3t1001ng «\uaa)o§O\a)ow N RE E5" ,$8828S§ER8E85$8$F888958588 2525935255“a§§§§§ 284"?” 88R5688 MMNv—va- NMNNNNMNNPNNNNNNNN 0 0 . 0 825588852822955222222 0303<2 q— 9°§~22 aemgeegmagea N N P v- 8 0 . 2 1 4 9 3 . 8 5 3 9 2 . 0 8 5 6 6 . B £ 4 2 9 . 8 0 6 1 7 . 4 4 6 1 1 . 5 0 7 6 7 . 5 6 4 7 3 . 3 9 6 1 0 2 . 3 2 1 3 2 3 . 8 6 6 1 1 0 . 2 6 0 2 6 2 . 9 3 4 1 9 2 . 5 5 2 2 1 8 . 0 5 2 2 9 5 . 1 9 6 1 2 6 . 1 8 8 2 0 0 . 5 3 5 1 1 8 . 9 2 0 2 7 2 . 9 7 7 1 8 8 . 7 2 1 1 2 4 . 0 1 3 1 1 9 . 5 4 0 2 1 6 . 6 5 4 2 9 9 . 0 9 9 4 . 1 1 0 . 4 1 3 . 2 1 1 . 3 1 0 . 2 1 0 . 6 1 5 . 8 1 4 . 2 1 0 . 6 2 0 . 9 2 4 . 5 1 6 . 2 2 9 . 4 3 8 . 9 2 5 . 1 3 2 . 1 3 4 . 0 2 . 9 2 2 . 6 2 0 . 7 2 5 . 0 3 5 . 9 2 0 . 3 2 2 . 9 2 0 . 7 2 8 . 4 3 EQSR$RSRRB8E§E58$888 . O C O C 0 . . . C . C O O O . PF ’ PP F PP «- 6 1 . 5 6 . 3 1 . 5 3 - 2 5 - 858258828895888288283 O O O O O O O O . O O O O C O O C Pv- «— PPP F PP I— O 1 5 2 5 1 5 1 5 2 3 2 3 3 2 1 2 4 4 5 9 2 5 2 8 4 5 1 2 5 2 4 3 3 2 4 0 4 7 2 4 4 2 5 5 2 5 3 1 2 2 4 WLh'd'NN‘d'fi'LnLhMMMMNVMMMMd’BfiMMVMMm 3 4 5 1 2 3 4 5 7 5 7 5 7 5 2 1 5 2 1 5 2 1 5 2 1 [.0 Nfi’mq—Ntfifi'mc—Mfi’mv-NMd’mq— Ln OOOOOOOOIDLGLGLOORBRBEQ N F v-v—v—r-u—NNNNU" 4 2 4 2 4 2 4 2 4 2 4 2 4 4 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 T H N I O T F O Q S . M M A E R A R O I R P T R A T S N O I T A I L O F E D . N O I T A I L O F E D N O I T A M R C F N I . S T O L P E L B A T T N A L P ! O R F 8 7 9 1 . 4 J N A L P L A T O T T F A E L 3 A E R A F A E L E G A M A D 2 1 A E G A M A D F A E L A E R A E R A A E R A G A M A D E G A M A D E T N A L P ' N R E K F A E L K I P S T O L P T W ‘ T W T H N R E K D A E H ‘ 0 N P H N I O T F O Q S . M M A E R A R O I R P T R A T S N O I T A I L O F E D . N O I T A I L O F E D N O I T A M R C F N I . S T O L P T N A L P E L B A T M C R F 8 7 9 1 . 4 J N A L P G A M A D L A T O T T D E G A M A F A E L 3 A E G A M N D A E R 2 F A E L 1 F A E L A E R A A E R A A E R A E G A M A D E T N A L P N R E K F A E L K I P S T O L P T W ' T W T H N R E K D A E H ' 0 N 0 N 0 N 523 4 6 . 2 7 w 5 1 4 4 - 2 8 9 8 6 5 . 6 8 6 7 8 0 . 6 2 5 9 3 . 0 2 1 5 3 8 . 3 8 3 0 3 - 1 2 9 4 9 0 - 3 8 3 . 3 9 6 2 7 6 . 7 5 0 1 . 9 6 8 3 6 3 . 2 3 7 9 3 . 6 9 8 3 9 7 ~ 4 1 2 . 8 7 2 2 8 3 . 0 5 5 3 9 . 8 2 0 5 9 0 - 3 8 3 . 3 9 6 2 7 3 - 3 3 8 9 8 . 1 1 3 3 8 1 . 2 7 7 3 5 . 4 7 2 3 5 9 . 1 2 1 0 . 5 7 9 2 3 5 ~ 0 3 5 6 . 3 4 3 3 0 9 . 5 4 8 8 . 8 2 4 3 1 5 ~ 0 7 3 5 1 8 . 8 4 6 3 7 6 . 0 3 4 3 1 8 . 9 2 0 3 6 2 . 4 6 4 4 6 9 ~ 6 4 8 3 9 0 . 9 7 4 2 5 4 . 6 9 2 3 5 0 . 5 0 5 4 2 2 - 5 9 3 4 3 5 . 7 7 5 4 8888888888$8888888888888R8 N oaéddédg' 1— . .F ? M1— 5 8 0 8 1 9 1 9 3 ' 6 4 7 . 5 1 7 1 7 1 . 1 1 1 2 . 9 2 3 1 3 7 . 6 7 7 3 . 0 1 7 1 6 5 - 3 7 7 4 0 - 1 3 9 1 0 . 2 4 8 8 0 . 8 4 5 6 3 . 7 4 0 1 6 5 - 3 7 7 1 8 . 8 2 8 2 8 . 8 5 5 6 5 . 7 0 8 5 6 - 3 5 7 9 1 . 8 6 7 2 3 - 2 3 5 1 7 5 ~ 7 7 9 4 1 . 9 0 7 8 0 . 2 5 7 8 8 - 3 2 9 1 1 . 6 8 5 3 9 . 5 6 9 4 5 - 1 4 0 1 8 7 . 1 1 1 1 8858898838888888953 8 .édé C O . <-P_N\ KN v-q- gmss saaotmaa 01¢ . 3 «3 82 1 5 3 . 5 4 9 5 3 . 2 2 9 3 . 5 5 2 1 5 4 . 1 1 1 O t1c5t~ 8&8888B3888858888888885888 A .425 8 g 88§88888988E85388888888888 mmmfimvhm 0" 2 88 v-r-ua \o.—\6Ln<¢ 5888 5% 88 v-C-w-v—v- PM“?- .-b— d‘KOv—q— PFC—1— 8 8 t“ 1.0 N P O O c3u233g§5§c>w\c>&§ ¢Fémodmomw N8 c>c5uR P (— v-c- M P P-v— \O 5 1 0 . 4 1 2 1 6 . 0 2 3 9 . 2 0 . 1 4 0 . 1 0 1 1 2 . 3 2 2 6 . 8 6 . 8 6 . 1 3 2 1 3 . 6 1 1 6 . 7 6 . 6 0 . 1 n fi 9 0 . 8 8 9 2 0 . 8 2 7 6 . 9 6 - 3 4 8 1 5 . 6 2 4 8 - 0 4 3 1 0 . 8 2 5 4 . 9 1 5 0 4 . 8 9 6 2 6 . 2 0 0 1 0 . 5 1 3 . 3 1 7 . 6 1 5 8 ~ 0 6 . 0 3 ~ 1 3 ~ 1 8 . $ 3 w 5 . 1 1 3 4 . 1 1 . 6 6 3 1 3 . 7 1 7 6 . 5 4 . 9 1 5 0 9 . 9 8 6 3 8 . 6 6 9 7 0 . 5 3 8 6 5 . 7 7 9 1 5 ~ 4 8 8 8 . 5 1 2 . 4 1 6 . 7 1 3 . 1 1 0 . 4 1 0 . 7 1 7 5 . 5 4 0 1 1 . 3 2 8 5 ~ 9 5 ~ 3 4 . 4 5 ~ 1 6 . 4 5 ~ 8 2 . 3 6 . 5 1 6 5 . 2 1 7 6 . % T M 1 3 . 1 1 6 6 . 5 3 . 1 4 7 9 0 . 3 0 8 0 4 ~ 2 0 9 4 2 . 5 5 5 5 5 . 1 0 5 0 . 7 1 0 . 7 1 1 . 7 1 4 . 1 1 6 . 1 2 4 4 ~ 5 5 ~ 1 7 ~ 8 5 ~ M §8B§8Q§8$88583§p$68$ . 2 5 ~ 9 9 7 2 0 . 6 2 2 1 . 1 3 2 . 1 2 4 3 2 7 3 3 2 3 2 1 2 7 2 1 2 5 3 7 2 3 2 5 2 7 2 3 2 1 2 8 4 5 2 5 2 3 2 5 2 7 2 3 2 5 3 0 4 9 2 5 3 2 a m w w m w m m m B M m a 1 2 2 5 M M w M w n m 2 1 M m