THE UPPER DEVONIAN AND LOWER MISSISSIPPIAN SEDIMENTS OF THE MICHIGAN BASIN AND BAY COUNTY, MICHIGAN

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY David V. LeMone 1964

This is to certify that the

thesis entitled

The Upper Devonian and Lower Mississipian Sediments of the Michigan Basin and Bay County, Michgan

presented by

David V. LeMone

has been accepted towards fulfillment of the requirements for

Ph.D. degree in <u>Geology</u>

CE Praete Major professor

1

.

Date February 26, 1964

O-169

ABSTRACT

THE UPPER DEVONIAN AND LOWER MISSISSIPPIAN SEDIMENTS OF THE MICHIGAN BASIN AND BAY COUNTY, MICHIGAN

by David V. LeMone

Body of Abstract

The Upper Devonian and Lower Mississippian rocks of the Michigan Basin were investigated. Detailed isopach and structure contour maps and radioactive log cross sections were prepared from oil and gas well data. All three were successfully employed in developing the sedimentary and tectonic history of the Michigan Basin during this interval of time. The gamma ray-neutron logs were particularly useful for basinal correlation of the black shale interval (designated the B interval in this paper), which includes those rocks from the base of the Antrim Shale to the top of the Sunbury Shale. The gamma ray logs clearly indicated the stratigraphic relationships between the eastern and western facies of the black shale interval within the Michigan Basin.

The Lower Antrim is continuous throughout the entire basin. The Upper Antrim is found only locally west of a major north-south trending barrier and/or isopach thin axis, herein referred to as the B axis. On the eastern side of the Basin the Upper Antrim shale increases to a maximum on the edge of the B axis. The Berea-Bedford sequence decreases in thickness from east to west toward the B axis on the eastern side of the basin. Berea and Bedford equivalents are observed in the west-central and northwestern portions of the Basin. The Berea dolomite is tentatively correlated with the Berea sandstone. The Ellsworth Shale of the western side of the basin is the facies equivalent of the Bedford-Upper Antrim of the eastern side of the Basin. Detailed isopach studies in Bay County indicate an east-west channel system for the Berea-Bedford sedimentation in that area. The Coldwater Shale isopach study clearly illustrates the disappearance of the South Michigan Shelf. The Marshall sandstone study indicates a third major tectonic change occurring within the Basin.

1964

Department of Geology

DOCTOR OF PHILOSOPHY

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

A THESIS

By David V. LeMone

BASIN AND BAY COUNTY, MICHIGAN

MISSISSIPPIAN SEDIMENTS OF THE MICHIGAN

THE UPPER DEVONIAN AND LOWER

ACKNOWLEDGMENTS

627303 7/2/64

> The writer wishes to acknowledge the early encouragement and guidance given to him by Dr. W. J. Hinze, Dr. H. B. Stonehouse, Dr. M. M. Miller, Dr. W. Kelly, Dr. J. Zinn, and Dr. B. T. Sandefur of the Department of Geology, as well as Dr. G. W. Gillett and Dr. G. W. Prescott, of the Department of Botany and Plant Pathology.

The Michigan Geological Survey has been particularly helpful to the writer, singularly, Mr. Garland Ells and, collectively, Mr. R. Ives, Mr. S. Alguire, Mr. W. Mantek, and Mrs. B. Champion.

The writer, likewise, acknowledges the mental stimulation and probing criticism generated by the numerous discussions held with his fellow graduate students, especially Mr. William Steinkraus, Mr. Gholam Sorrwar, Dr. Nurul Islam, Mr. Donald Merritt, and Dr. David Cummings.

For their consideration, direction, and the example they set, the writer cites the four geologists most influential in his professional development: Dr. Jane E. Smith, Dr. C. E. Prouty, Dr. James H. Fisher, Department of Geology; and Dr. Curt Teichert, U. S. Geological Survey, Denver.

Acknowledgment of my gratitude to my wife for her patience, sympathy, and understanding is too deep to record here.

ii

TABLE OF CONTENTS

	Pa	~~
I.	Introduction	ge 1
II.	Methods of Investigation	4
IIJ.	Structural Units	6
IV.	Stratigraphy	3
	1. Pre-Traverse Stratigraphy	3066859248725
٧.	Geologic History	9
VI.	Summary and Conclusions	4
	Bibliography	8

I. Isopach maps (State of Michigan) Plate 1. Traverse Group (including formation) Plate 2. "B" Interval Plate 3. Coldwater Shale Plate 4. Marshall Sandstone II. Structure Contour maps (Bay County) Plate 5. Dundee Limestone Plate 6. Traverse Formation Plate 7. Antrim Shale Plate 8. Sunbury Plate 9. Coldwater Shale III. Isopach maps (Bay County) Plate 10. Traverse Group Plate 11. Antrim Shale Plate 12. Berea-Bedford Plate 13. Sunbury Shale Plate 14. "B" Interval Plate 15. Coldwater Shale Plate 16. Marshall Formation IV. Gamma Ray cross sections (Michigan) Plate 17. $A-A_1^1$, $B-B_1^1$ Plate 18. $C-C_1^1$, $D-D_1^1$ Plate 19. $E-E_1^1$, $F-F_1^1$ Plate 20. $G-G^1$ V. Regional Distribution of Upper Devonian - Lower Mississippian Black Shales and related rocks Plate 21 VI. Tectonic Map of Michigan and surrounding areas Plate 22 Isopach thin axis of the "B" Interval VII. Plate 23

APPENDICES

I.	Pag Bay County Well Data	e
II.	Michigan Well Data	

I. INTRODUCTION

The Southern Peninsula of Michigan is the geographic center of the Michigan Basin. The Basin is frequently referred to as the type example for an autogeosyncline as classified by Marshall Kay (1951). It may be described as an independently sinking intracratonic basin that develops a nearly circular outline. It is bounded on the south by the Kankakee and Findlay arches, which are apparently the bifurcating northern extensions of the north-south trending Cincinnati Arch. The east side of the Basin is established by the Algonquin Axis (the northern extension of the Findlay Arch). A Precambrian complex, referred to as the Laurentian Highlands, forms the north and northeastern boundaries. The Wisconsin Arch or Highlands border the western margin of the Basin (Plate 22).

The Michigan Basin is popularly described as being a stack of saucers slightly warped on the edges. With the realization of the limitations of this apt description, we may consider the Basin as a unit. It is composed largely of Paleozcic rocks which reach a maximum thickness in excess of 14,000 feet. Surface exposures in the Basin consist almost entirely of Pleistccene glacial deposits; however, the Paleozoic rocks do crop out in local weathered areas and at a small number of excellent quarry exposures. In view of the exposure limitations, the data utilized are almost exclusively subsurface.

The major purpose for the study of the Upper Devonian-Lower Mississippian rocks is the correlation of the eastern and western facies of the "B" or black shale intervals. Correlation of the individual units of the "B" Interval are accomplished by utilizing gamma ray-neutron well logs.

In Bay County detailed isopach and structure contour studies were developed to evaluate the utilization of a series of formation tops for possible structure contour intervals.

The black shale problem study of the environmental interpretations is a literature synthesis and review made to determine the most reasonable paleoecological conditions for the black shale units of the Michigan Basin on a local and regional framework.

The detailed isopach maps of the Southern Peninsula were undertaken to study the changing configuration of the Basin, as well as the tectonic features peripheral to the Basin.

A number of prior studies have been made within the sequence. The best of the earlier regional structural contour studies of the state include Cohee (1944a, 1944b, 1945a, 1947b, and 1951) and Monnett (1948).

Lithofacies maps have been made from the studies of the sequence by Hoover (1960), McGregor (1954), Sloss, Dapples, and Krumbein (1960), O'Hara (1954), Hale (1941), and Cohee (1944a, 1944b, 1945a, 1947b, and 1951), and other contributors.

Fisher (1953) attempted to correlate the black shale interval across the Basin using electrical logs. His conclusion, supported by later work, was that the unit did not develop a sufficient character to be used. The Traverse Group has been correlated, apparently with success, by Jodry (1957) and Ross (1957). No prior study of the utilization of gamma ray logs for correlation of the black shale interval in the Michigan Basin has been published.

A number of very excellent regional summary papers have been made on the paleoecology of black shales; especially Hoover (1960), Ruedemann (1934), Twenhofel (1939), Vine (1962), and Fisher (1953).

The thesis is divided primarily into four basic parts:

I. An isopachous study of the Southern Peninsula Upper Devonian-Lower Mississippian sediments. The formations considered are subdivided into four basic units:

- A. The Traverse Group, including the "Transition Zone."
- B. The "B" Interval. This includes all units between the Coldwater Shale and the Traverse Formation.
 - 1. Antrim Shale.
 - 2. Berea Sandstone (east side of the Basin).
 - 3. Bedford Shale (east side of the Basin).
 - 4. Ellsworth Shale (west side of the Basin).
 - 5. Sunbury Shale, which is observed in all parts of the Basin, except in local areas in the far western portion where it has not been recorded. (In these areas the basal Coldwater redrock is used as a marker unit.)

C. Coldwater Shale

D. The Marshall Sandstone.

II. Detailed isopachous and structure contour studies of the Upper Devonian-Lower Mississippian sequence in Bay County.

III. An environmental interpretation of Black Shale Interval; and a cursory re-examination of the black shale problem on a regional basis for origin, distribution, and time-stratigraphic analysis.

IV. A gamma ray-neutron log study of the Michigan Basin to determine the significance and the relationships of correlations between the Berea-Bedford-Antrim of the eastern side of the Basin and the Antrim-Ellsworth of the western side of the Basin.

II. METHODS OF INVESTIGATION

The regional study of the Upper Devonian-Lower Mississippian rocks of the Michigan Basin utilized 792 wells located on a township grid throughout the Southern Peninsula (Appendix II). Four isopach maps were from these data (Plates 1-4). Individual units are considered for sedimentary processes, environment of deposition, and tectonic history. Data sources for the information were derived from survey records, radioactive and electric logs, stucco logs, and published logs. The published logs are distributed by the Michigan Geological Survey; they are the written descriptions by state geologists for individual wells. The data sources are from driller logs, samples run by the survey, samples run by individual companies, radioactive log interpretation, and electric log interpretation. Published logs are commonly a combination of two or more of the aforementioned sources.

The Bay County detailed study utilized 208 wells (Appendix I, Plates 5 - 16). Wells are plotted on a grid of one well per section in wildcat areas and one well per quarter section within the fields. One phase of this study is directed at an examination of the reliability of structure contour mapping on the shallower post-Dundee horizons (Plates 5 - 9). Seven detailed isopach studies have been made to determine possible significant variations in the individual units (Plates 10 - 16).

A series of gamma ray log studies (7 cross sections) were made across the Basin for correlation purposes, as well as for delimiting the various facies of the "B" unit (pre-Sunbury-post-Traverse, Plates 17 - 20).

The regional black shale study is directed toward correlations in time

and facies, as well as paleoecological considerations that might be applied logically to the Michigan Basin (Plate 21).

:

III. STRUCTURAL FEATURES OF THE MICHIGAN BASIN

The Michigan Basin is bounded by a series of major tectonic features: the Findlay Arch to the south and southeast; the Algonquin Axis to the east; the Laurentian Highlands, which includes northern Ontario and the Precambrian areas in the Lake Superior region; the Wisconsin Highlands or Arch to the southwest (Plate 22).

The Kankakee and Findlay arches represent a bifurcation of the north-south trending Cincinnati Arch. The Findlay Arch extends from a locality approximately 50 miles north of the Kentucky-Indiana-Ohio three-state point northeast through Findlay, Ohio. It is then extended through Lake Erie to southwest Ontario where it ends in the structurally low area known as the Chatham Sag in Kent County, Ontario. Green (1957a) indicated that, based on the Trenton structure, there is a 600-foot drop between western Ontario on the arch and Wayne County on the flank. The Findlay Arch was originally named the Lima Axis (Orton, 1888); however, Phinney (1891) and Ekblaw (1938) indicated that through popular usage and geographic position Findlay should be adopted as the accepted designation for the structural feature. Cohee (1945a) indicated that the Findlay Arch was elevated several times during the Paleozoic. One of the most profound of the uplifts occurs during Lower Ordovician.

The broad area between the Kankakee and Findlay arches is a relatively high area throughout the Lower Paleozoic; this feature has been called the Indiana-Ohio Platform by Green (1957a). Its northern extension is called the South Michigan Shelf (Garland Ells, personal communication, 1961).

From South-central Michigan east to the Findlay Arch there are three smaller regional structural features that have further influenced

Paleozoic sedimentation from west to east: the Clinton Sag (Southcentral Michigan); the Lucas-Monroe Monocline (extending from Lucas County, Ohio, to Monroe County, Michigan); and the Howell Anticline (extending northwest-southeast through Livingston, Washtenaw and Wayne County, Michigan).

The Clinton Sag is best indicated by the Silurian isopachs of the South Michigan Shelf.

The Lucas-Monroe Monocline is the northward extension of the Bowling Green Fault, which has been observed in wells in the vicinity of Cygnet, Bowling Green, and Findlay, Ohio. Orton (1888) referred to the structure as the Findlay break; he recorded abrupt structural "drops" of 150 to 175 feet in horizontal distanced of 1000 to 1200 feet. The Lucas-Monroe Monocline was observed by Lindberg(1948) in his study at Deerfield, Michigan.

The Howell is the largest anticline in the Michigan Basin. The anticline is highly asymmetrical and faulted on the western side and might better be referred to as a faulted monoclinal flexure. Newcombe (1933) was first to record the actual faulting when he noted some 88 feet of missing section on the western flank of the anticline. Monnett (1948) in his Coldwater structural contour map indicates 1770 feet of folding and/or displacement near the center of Livingston County.

The Chatham Sag of Kent County, Ontario, was recognized by Pirtle in 1932 as being a saddle connecting the Michigan Basin with the Appalachian Basin. Kay named the Chatham Sag in 1942. Lockett (1947) called the feature the Ontario Sag and indicated that is probably an extension of the south trending Parkersburg-Lorian synclinal trend. Allings

(et. al., 1961) indicated that it represents an interconnecting seaway between the Michigan Basin and the Ohio Basin.

The northeastward extension of the Findlay Arch across the Chatham Sag is called the Algonquin Axis. North of this axis the exposed Precambrian is referred to as the Laurentian or North Ontario Highlands area. The term, "Laurentian", is generally used to indicate the whole of the northern portion of the Michigan Basin. In other words, a positive Precambrian area that stretched from northern Ontario to western Lake Superior where it connects with the Wisconsin Arch, which has a southern pre-Pennsylvanian extension called the La Salle Uplift or Arch.

The writer does not believe that a vast unbroken Laurentian Highlands region existed across Southern Canada. Paleontological and lithologic evidence (Martison, 1952) in fact, quite clearly show that there must have been a north-south connection between the Michigan Basin and the James Bay Lowland region of southernmost Hudson Bay in the Ordovician, Silurian, Devonian, and possibly lowermost Kinderhook time. The writer calls this north-south Early Paleozoic marine connection simply the "Ontario Seaway". The divided Laurentian Highlands area during this time may be referred to as the eastern and western shores. Pre-Mississippian correlations have been postulated, also, between the James Bay Lowland area and the Manitoba region.

The Ontario Seaway probably was broken during the Mississippian time, and possibly as late as Bayport time. Monnett (1948) indicated that uplift in the Laurentian area supplied conglomerates to the Upper Coldwater and Lower Marshall.

The Wisconsin Arch forms the western boundary of the Michigan Basin.

Pirtle (1932) described the arch as a broad fold with an axis trending N 20° W that extends from central Wisconsin southeastward into Illinois. presumably coalescing with the Laurentian Highlands region in the North. Levorson (1960) called the feature the Illinois-Wisconsin Arch. He has determined from studies in northern Illinois that the last major uplift in this area was post-Upper Chester-pre-Upper Pennsylvanian in age. This movement could be correlated into the Basin and assumed to synorogenic with the post-Bayport basinal movements. This, also, indicates an area of potential source material for the Pennsylvanian sediments of the Michigan Basin. The latter stage of the movement could indicate the time of withdrawal of the Pennsylvanian seas from Michigan. Levorson (1960) called the northwestern-southeastern major Canadian-north central United States feature the La Salle Arch. The southern end of the La Salle Arch is called the Illinois-Wisconsin Arch. This is unfortunate because of the confusion surrounding the term La Salle. Lockett (1947) indicated it as being the western bifurcation of the Wisconsin Arch and continued it to where it died out in the Illinois Basın. Ekblaw (1938) bifurcated the La Salle and the Kankakee at Oregon, Illinois. The eastern bifurcation is referred to as the Kankakee. Green (1957a) presented evidence to drop the term "La Salle" as a valid term in that the anticline is in reality the Oglesby Fault, which forms the western side of the Ottawa Horst. Weller (1957) in a discussion of Green's (1957a) paper questioned the validity of his "unconventional" interpretation of the field evidence. Green (1957b) in his reply to the discussion restated his interpretation of his evidence and indicated that he was not surprised that these new concepts proved to be disturbing for the "time-honored orthodox precepts". Green (1957a) further stated that the northern Wisconsin Arch region has

a different geologic history than the southern region; in this he referred not only to the La Salle Arch, but also the Kankakee Arch. Monnett indicated that gentle uplift in the Wisconsin Arch area influenced sedimentation in Coldwater time, as well as supplying the feldspar observed in the southwestern part of the state. Cohee (1948a) stated that the Wisconsin Arch was apparently elevated at different times in the Upper Cambrian and the Lower Ordovician. Ekblaw (1938) was of the opinion that most of the major movement on the arch occurred in Precambrian time.

The Kankakee Arch is the western bifurcation of the Cincinnati Arch. Pirtle (1932) described the Kankakee as a relatively small uplift that trends N 45° W in northeastern Illinois and northwestern Indiana. which connects the Wisconsin and Cincinnati arches which he theorized had a closely related tectonic history. He believed, also, that it is the cause of the north-northeastern structural trends in the southwestern part of the state. Ekblaw (1938) indicated that the first major movement on the Kankakee Arch was after Shakopee time, but before St. Peter time. Lockett (1947) visualized the Kankakee Arch as being an eastern spur of the Wisconsin Arch. He also recognized a western bifurcation off the Cincinnati Arch that he called the Wabash Spur. The two spurs are separated by the Logansport Sag. Green (1957a) suggested that the term "Kankakee Arch" be abandoned. He noted only one arch, which he called the Francisville, which is approximately 45 miles long, was mildly active in the Devonian, located in northeastern Illinois and having an east-west trend. He postulated a broad, slightly tilted, relatively unwarped platform. The platform, named the Indiana-Ohio Platform

covers approximately 10,000 square miles, with a maximum separation of 150 miles between the Michigan and Illinois Basins. He also pointed out the fact that no erosional unconformities are needed to explain why units are thin over the shelf. The area is the probable loci of the Silurian reefs.

The Logansport Sag is a structurally low area that has connected the Michigan Basin and the Illinois Basin at various times throughout the Paleozoic. This feature was first recognized by Orton. Lockett (1947) viewed it as the low point between the two basins through which some interfingering of fossils and sediments occurred. Green (1957a) noted that there is a Logansport fault that is some 60 to 70 miles in length, has a maximum displacement of 200 feet, and trends NE-SW.

Within the Basin itself, structure is complicated by several periods of folding. The structures may be considered to occupy two broad provinces. The first is the south-western area, where anticlinal structures are aligned N-S, NE-SW, as well as NW-SE. These trends are reflected on regional gravity maps (personal communication, Hinze, 1961). Faulting is known to accompany the two major flexures in the Basin (Howell Anticline and Lucas-Monroe Monocline). Pirtle (1932) also noted. He was of the opinion that the Kankakee and Wisconsin Arch areas formed a buttress to movements within the Basin.

Anticlinal folds, especially those in the northeast, are asymmetrical with their steep flanks toward the Basin center. The axial plane of many of the folds appear nearly vertical. Pre-Salina disharmonic folding, should it exist, does not seem to validate with the available information. It should be pointed out, however, that the information available on Pre-Salina structure in the central and northern parts of the Michigan Basin is extremely sketchy.

The origin of structures within the Basin may be summarized into five basic theories:

1. Differential compaction around Precambrian highs

2. Basinal settling

3. Compressional forces

4. Gliding tectonics

5. Salt dome bulging

Accurate structure contour maps are available for the Basin from the Dundee top up to the "Clare" dolomite of the Michigan. Units commonly chosen include the Dundee, Traverse top, Sunbury-Coldwater redrock, the "Clare" or "Brown" dolomite of the Michigan Formation, and the "Triple Gyp" of the Michigan Formation. Accurate structure maps below the Dundee top are available in the southern half of Southern Michigan. A series of restricted Pennsylvanian core hole studies have been conducted by some petroleum companies in the central portion of the Basin.

The Michigan Basin was probably initiated as an autogeosynclinal structure during post-Shakopee-pre-Black River time (Cohee, 1948a). Movements continued throughout the rest of the Paleozoic in the Basin. Major periods of movement include post-Shakopee-pre-Black River, the post-Bois Blanc-pre-Sylvania, the post-Bayport-pre-Pennsylvanian, the post-Pennsylvanian-pre-red beds, and the post-red beds movements. Numerous other smaller unconformities such as the post-Bass Island-pre-Salina, post-Rogers City-pre-Traverse and the post-Michigan-pre-Bayport have been observed. In most cases they appear to be local in their distribution.

IV. STRATIGRAPHY

1. Pre-Traverse Rocks

The pre-Traverse Paleozoic strata of Southern Michigan overlies a complex of granites, schists, quartzites, and marbles of Precambrian age. The Cambrian rocks of the Michigan Basin are divided into six formations, which are (oldest to youngest): Jacobsville Sandstone, Mount Simon Sandstone, Eau Clair Sandstone, Dresbach Sandstone, Franconia Sandstone, and the Trempealeau Formation.

The Jacobsville Sandstone is primarily composed of mottled, arkosic sandstones with some conglomerates near the base interbedded with a few red shales. Thwaites (1943), Cohee (1948a), and Cohee and Landes (1958) have done extensive work on the age and distribution of the formation.

The Mount Simon Sandstone is a white, sub-angular to rounded, medium to coarse sandstone. It ranges from a maximum thickness of 2500 feet in northeastern Illinois to locally absent by convergence and/or truncation in parts of southwestern Ontario.

The Eau Clair Sandstone has been divided into three members by Baltrusaites, et. al. (1948). Cohee (1948a) described the lithofacies and isopach relationships of the sandstone within the Basin.

The Dresbach Sandstone is a fine to medium sandstone that contains thin beds of dolomite and argillaceous dolomite, locally. It has an average thickness of 100 feet in the Basin; the fact that it is absent in the northern Indiana indicates activity on the Kankakee Arch during post-Dresbach-pre-Trempealeau time.

The Franconia Sandstone is a glauconitic, dolomitic, fine to medium grained sandstone. Where observed in Southern Michigan, the Franconia Sandstone is commonly 10-20 feet thick (Cohee, 1948a). The Trempealeau Formation is a buff to light brown dolomite. It is locally sandy. The basal portion of the formation is commonly glauconitic. The Trempealeau has been divided into three units, which are (in ascending order): the St. Lawrence member, the Lodi member, and the Jordan member (Raasch and Edwards, 1935). The St. Lawrence member is a grey, sandy, very glauconitic dolomite. The Lodi member is a white, slightly quartz sandy dolomite. Cohee (1948a) reported that it is locally pink in southeastern Michigan. The Jordan member is a 5 to 30-foot, well-rounded, frosted, and pitted sandstone.

The Lower Ordovician rocks of southern Michigan consist of the Prarie du Chien Group which has been divided into three formation, which are (in ascending order): the Oneota Dolomite, a buff to brown, very cherty, locally oolitic dolomite; the New Richmond Sandstone; and the Shakopee Dolomite, a buff locally argillaceous or quartz sandy dolomite. The Shakopee Dolomite is locally absent in parts of southwestern Michigan and in much of the area along the Kankakee Arch in northern Illinois and northwestern Indiana. Cohee (1948a) interpreted the missing Shakopee as the result of pre-St. Peter movements along the Kankakee Arch rather than non-deposition.

The Middle Ordovician of the Michigan Basin is represented by sediments of Chazy, Black River, and Trenton ages. The Chazyan sediments are represented by the St. Peter Sandstone, an irregularly occurring, well-rounded, quartz sandstone that reaches a maximum reported thickness of 150 feet within the Basin (Baltrusaites, et. al., 1948).

The 10-100 feet, locally absent, pyritic, brown and green, quartz sandy Glenwood Shale forms the base of the Black River Group. It has been lithologically correlated to the Pamelia age sections in Illinois and

Wisconsin. The Black River and Trenton Groups are readily distinguishable in southeastern Michigan and southwestern Ontario, where the basal Trenton develops an argillaceous character. The Black River-Trenton sequence changes facies from a limestone in the east (Ontario and central Michigan) to a dolomite in the west (Wisconsin).

The Chatham Sag (Kent County, Ontario) is indicated by regional thickening of the sequence in that direction. The Black River and Trenton Groups thin over the Kankakee Arch, the northern Findlay Arch, and the Algonquin Axis. Isopach studies by Cohee (1948a and 1948b) clearly indicate the configuration of the Michigan Basin. The thickest sequence of the Black River-Trenton has been reported in southeastern Michigan.

The Upper Ordovician rocks of Southern Michigan have been subdivided into three formations, which are (in ascending order): the Utica Shale, a dark grey to black shale; the Lorraine Shale, grey with thin beds of limestone and dolomite; and the Queenston Shale, similar to the underlying Lorraine Shale, except that it contains red shale which increases eastward across the Basin to Ontario.

The Upper Ordovician thins onto the Algonquin Axis; minor amounts are noted on the Kankakee Arch and the Findlay Arch, especially in Wood County, Ohio, and Wayne and Monroe counties, Michigan.

The Lower Silurian rocks of southern Michigan occur in the Cataract Group, which is subdivided into two formations (in ascending order): the Manitoulin Dolomite, a buff to light brown, locally cherty dolomite with some interbedded shale; and the Cabot Head Shale, a green to greyish green shale with some interbedded red shale.

Local reefing in the Cataract Group adds to the difficulty of

correlation (Baltrusaites, et. al., 1948). The Findlay-Algonquin Axis acts as an east-west facies barrier in the Lower Silurian with clastics derived from the Taconic orogeny being largely restricted to the area east of the axis.

During the earlier Silurian, positive elements surrounding the southern part of the Michigan Basin acted as faunal barriers. The Kankakee Arch, the Findlay-Algonquin Arch, and the Cincinnati Arch form the barriers. This configuration develops three distinct faunas, which are: the warm to cool water homotaxial Clinton fauna to the east and northeast; the depauperate, cold water Brassfield fauna to the south and west; and the warm water, Michigan Basin Mayville fauna to the north.

The Middle Silurian rocks of the Michigan Basin are generally subdivided into four formations (in ascending order): the Burnt Bluff Dolomite, a light grey to brown calcareous dolomite that is divided into two members--the Engadine Dolomite, a very massive, blue, hard, crystalline dolomite; and the Guelph Dolomite, a fossiliferous, crystalline dolomite. Bryozoan, tetracoralian, and tabulate coral reefs of Niagaran age probably completely surround the Michigan Basin and give an indication of the equitable climate that existed during that time.

The Upper Silurian rocks of the Michigan Basin have been subdivided into a lower, Salina sequence, and an upper, Bass Island. These Cayugan units were separated by Landes (1945a) into a sequence (in ascending order) lettered <u>A</u> through <u>H</u>. Evans (1950), Ells (1958), and Allings and Briggs (1961) have been the major contributors for this portion of the section.

The clearest interpretation of the paleogeography of the area during the Upper Silurian has been made by Alling and Briggs (1961). Lithofacies maps indicate a high area north of Lake Superior. The northern seaway

probably connected through the James Bay Lowland area in northern Ontario, where correlatable sequences (Richmond of Cincinnatian, Alexanderian, Lockport of Niagaran, and Cayugan) exist (Martison, 1952). The Silurian and Devonian rocks are separated by a widespread unconformity within the Michigan Basin. The Mackinac Breccia is interpreted as having developed when overlying formations collapsed into Salina sequence caves. The breccia is well exposed in the northern part of southern Michigan.

The Lower Devonian rocks of Michigan are subdivided into three formations and one group (in ascending order): the Garden Island Formation, a fossiliferous, buff dolomite and dolomitic sandstone; the Bois Blanc Formation, a cherty, fossiliferous, light colored carbonate; the Sylvania Sandstone, a nearly pure sandstone interbedded with limestone and dolomite; and the Detroit River Group, which has been subdivided into four formations. The Sylvania has been interpreted to be a time-transgressive unit similar to the Bolsa-Bliss sequence in the southwestern United States (Sabins, 1957).

The four formations of the Detroit River Group are (in ascending order): the Flat Rock Dolomite, a hard porous, dark grey, calcareous dolomite; the Anderdon Limestone, a very fossiliferous calcarenite; the Amherstberg Dolomite, a dolomitic calcarenite; and the Lucas Dolomite, originally defined as a drab, fossiliferous, dolomitic limestone, and is now delimited as essentially an evaporitic unit (Personal communication, Ells, 1963). Martison (1952) has correlated the Michigan Basin sequence into the James Bay Lowland area of Hudson Bay.

The pre-Traverse Middle Devonian in the Michigan Basin is subdivided into two formations which are (in ascending order): the Dundee Limestone and the Rogers City Limestone. Structure contour maps of the Michigan Basin are commonly drawn on the Dundee-Rogers City top. The Dundee Limestone is commonly described as a buff to brown-grey, fine to coarsely crystalline limestone. In the central portion of the Basin, it is a mixture of limestone and dolomite, and in the far central western region and the southwestern region it is predominantly dolomitic. The Dundee and Rogers City are particularly difficult to separate in the western portion of the Basin (Cohee and Underwood, 1945). Chert is reported in the basal part of the Dundee on the eastern side of the Basin. Spheroidal black spores are abundant in the Norfolk Formation (Dundee equivalent) in southwestern Ontario. In western Michigan abundant black and light brown spores have been reported. The base of the formation in the subsurface, according to Cohee and Underwood (1945), is placed at the top of the first anhydrite or anhydrite and dolomite portion of the Detroit River Group.

The greatest thickness of the Dundee is over 400 feet in the Tuscola-Huron County area. It thins rapidly to the south and west. The Milwaukee Dolomite is apparently overlapped by a probable Traverse equivalent to the upper member of the Abitibi River Formation in the James Bay Lowland area (Martison, 1952); if so, this indicates once again a marine connection to the north. The Dundee is overlapped in the southwestern part of the state.

The Rogers City Limestone underlies most of the northern two-thirds of the southern part of Michigan. It is predominantly calcareous in the eastern part of the state. On the western side of the state it is both calcareous and dolomitic and locally entirely dolomitic. In the subsurface in the central portion of the Basin, it is distinguishable

from the underlying Dundee in that it is dark brown to black and has a definite resinous luster (Cohee and Underwood, 1945). Toward the margins of the Basin, it is generally lighter in color. Abundant black and light brown spores have been reported in the Rogers City of northeast Michigan.

Addison reported (Cohee and Underwood, 1945) that as of 1944, approximately 84 per cent of Michigan's total oil production (223 million barrels) had been derived from the Dundee-Rogers City sequence. The porous pay zones may be anywhere from the top to 150 feet below the top of the Dundee-Rogers City. Porosity was developed by primary and secondary dolomitization, as well as solutional cavities in the limestone. The problems and the control of dolomitization have been the subject of many of the studies within the Basin to date.

The unconformity that occurs at the base of the Traverse Formation has been the subject of some controversy. Abundant evidence exists confirming the presence of such an unconformity; however, the major question concerns its regional extent. The previously mentioned Traverse overlaps to the southwest and west, as well as the numerous basal Traverse Group (Bell Shale) disconformable relationships that have been reported. Newcombe (1930) observed that variations in the thickness of the Bell Shale exist on the limbs and crests of structures, as well as on points of equal elevation on the structure. Ehlers and Radabaugh (1937) observed at the Rogers City cement quarry, a disconformable contact between the Rogers City limestone and the overlying Bell shales. Warthin and Cooper (1943) noted the same relationship in Presque Isle County.

2. Traverse Group

The Traverse Formation was designated by Winchell (1871), who described the sequence as a series of thick-bedded, magnesium, buffish, granular limestones overlying the Corniferous Group and underlying the Huron Group in southern Michigan. He stated that, in general, they conformed to the Hamilton Group of New York, a correlation that is still considered valid. He originally referred to the group as the Little Traverse, undoubtedly for the exposures in the vicinity of that bay in Emmet County (Wilmarth, 1938). A. C. Lane (1893) further delimited the group when he indicated that the Traverse Group (100 to 600 feet) was overlain by the St. Clair (Antrim) and underlain by Dundee Limestone (Wilmarth, 1938).

The Traverse Group is recognizable throughout southern Michigan. Much of the exposure shown on the Southern Michigan geologic map (Martin, 1936) is subcrop. Outcrops of the sequence are restricted to the northern counties of southern Michigan. Around the Basin the Traverse equivalents also crop out in eastern Wisconsin (Raasch, 1935), northwestern Ohio, (Ehlers, 1952), southwestern Ontario, and northwestern Ontario (Martison, 1952).

The Traverse Group is essentially a sequence of argillaceous limestone intermixed with a subordinate shale sequence.

Formational terminology used for the Traverse Group within the Basin is for the most part an outgrowth of studies conducted in three separate regions in northern counties of southern Michigan. These units are by areas: (1) the Thunder Bay region (east) (Warthin and Cooper, 1935) in ascending order--Bell Shale, Rockport Quarry Limestone, Ferron Point Shale, Genshaw Formation, Newton Creek Limestone, Alpena Limestone, Four Mile Dam Formation, Norway Point Formation, Thunder Bay Limestone, and the Squaw Bay Limestone; (2) the Afton-Onaway region (central) (Kelly and Smith, 1947) in ascending order--Bell Shale, Rockport Quarry Limestone, Ferron Point Shale, Genshaw Formation, Koehler Limestone, Gravel Point Formation, and the Beebe School Formation; (3) the Little Traverse area (west) (Pohl, 1930) in ascending order--lower part covered, Gravel Point Formation, Charlevoix Limestone, Petoskey Formation. Cohee (1944a), on the basis of the work of Hake and Maebius (1938), Riggs (1938), and Landes (1944), divides the Traverse into four basic units in southwestern Michigan. The basal unit (1) is divided into three separate subunits.

The paleontology of the Traverse Group is well known. There exist many excellent papers on the micropaleontology and invertebrate paleontology of the unit. Stumm (et. al. 1951, 1953, 1956, 1958) has summarized much of the invertebrate paleontology of the group. A number of excellent systematic papers in micropaleontology, especially ostracods, have been done on the group, particularly in graduate theses at the University of Michigan under the guidance of R. C. Kesling and at Michigan State University under the guidance of Jane E. Smith.

Warthin and Cooper (1943) have, on the basis of invertebrate fossils, tentatively correlated the Alpena with the lower Gravel Point and the Fotter Farm and Thunder Bay formations with the Petosky Formation.

Cohee (1947b), in utilizing the formational terminology of the Traverse Group, has made some basinal correlations. An examination of these units indicates a relatively simple correlation in a north-south direction. The east-west correlation, however, indicates a facies change with the Traverse becoming a purer limestone in the western portion of the state. Thinning of the Traverse Group onto the South Michigan Shelf poses a further correlation problem in the south, particularly in the central and western areas. Garland Ells (personal communication, 1961) also noted that this problem exists throughout the Basin. The Michigan Geological Survey Division, as a rule, refers to this sequence either as the Traverse Group or the Traverse Limestone and Traverse Formation.

Jodry (1957), on the basis of two electrical log cross-sections, noted that correlation of the formational units was possible over the Michigan Basin. His studies led him to postulate the existence of a barrier and a western lagoon. Jodry's cross sectional evidence was corroborated, in part, by his interpretation of regional gravity data. There is an apparent very rapid east-west change in facies across this Barrier. Jodry reports accumulations of evaporites (gypsum), especially in the Genshaw equivalent, across the postulated Barrier. ' Cohee (1947b)'reported the presence of gypsum also in the Ferron Point, Newton Creek, Potter Farm formations, in addition to the Genshaw. Jodry (1957) also indicated that nearly all of the Michigan Traverse Group reef production is found in association with the West Michigan Barrier.

The Bell Shale, the basal formation of the Traverse Group, forms a sharp easily distinguishable boundary between the Detroit River-Dundee and the Traverse Group. This particular lithologic break is very well developed on gamma ray-neutron logs. The Bell Shale underlies all of central and northern Southern Michigan (Cohee, 1947b). In southern Michigan, the rocks above and below the contact are carbonates. Differentiation utilizing electric or radioactive logs in this sequence is difficult, but possible.

The lower contact of the Traverse Group is probably conformable over much of the Michigan Basin. Ehlers and Radabaugh (1937), however, noted pockets of Bell Shale in apparent disconformable contact with the underlying pre-Traverse in the Rogers City cement quarry. Landes (1944), Newcombe (1930), and Addison (1940) all noted in field studies in Midland, Muskegon, and Gladwin counties, respectively, the thinning of the Bell Shale over anticlinal flexures. Warthin and Cooper (1943) reported an unconformity at the base of the Bell Shale in Presque Isle County.

The Traverse transition zone, referred to as the Traverse Formation by drillers, is a grey to black shale, interbedded with limestone at the top of the Traverse. It has been included with the Antrim Shale by Cohee (1947b) and Hake and Maebius (1938). Bishop (1940) is also of the opinion that the stringers of black shale occurring in the "transition zone" are more closely related to the Antrim than the Traverse. McGregor (1954) has included all the rocks above the Squaw Bay Limestone of the Traverse Group with the Antrim.

Fisher (1953), in his analysis of the black shale problem, examined the Traverse transition zone. His conclusion was that the limestone in the grey shaly sequence is similar to the underlying formations and, therefore, should be properly included with the Traverse Group. The Traverse transition zone is well-illustrated on the regional gamma ray cross sections (Plates 17-20). Prior to 1961, however, gamma ray logs were not available in sufficient quantities to be useful for regional correlation within the Basin with relation to this portion of the section. The zone is delimited in cross sections $A-A^1$ and $B-B^1$ (Plate 17). The base of the Antrim, while forming gradational contact with the underlying transition zone, may be placed with relative case on a gamma ray log.

The writer, on the basis of the radioactive log evidence, places the lower contact of the Antrim Shale at the top of the transition zone.

Jodry's (1957) idea concerning the existence of the West Michigan Barrier seems to be validated in part on the basis of the Traverse isopach map (Plate 1). The spur extending north from the South Michigan Shelf in Ionia and Eaton counties is very significant. The writer believes that is may be controlled, at least in part, by reefing that occurred in the Silurian in this region followed by differential compaction in the Devonian. A spur approximating the position of the West Michigan Barrier is noted to the north of the inferred reefal development. The Traverse Group (Plate 1) in the south thins onto the Ohio-Indiana Platform; this area is referred to as the South Michigan Shelf. The Traverse Group reflects local thickening of the sequence in the area of the Battle Creek Trough in Calhoun and Branch counties, as well as the Chatham Sag in McComb County. Also, there is a suggestion of the Howell Anticline and the Clinton Sag in southeastern Michigan. The thickest sequence of the Traverse Group is observed in Arenac County where it exceeds 850 feet. There is a strong suggestion of an interconnection to the north through the Ontario Seaway, in the fact that no appreciable thinning of the Traverse Group takes place to the north. A correlatable unit (the Williams Limestone) on a paleontological and lithological basis has been observed in the James Bay Lowland area of Hudson Bay (Martison, 1952).

The Traverse Group isopach map in Bay County reflects apparent minor thinning over the Kawkawlin and Mt. Forest fields (Plate 10).

Structure contour studies are available on both the Dundee and Traverse tops throughout the Michigan Basin (Cohee and Underwood, 1945;

Cohee, 1947b). In Bay County studies, the structure contour maps of the Dundee and Traverse Group tops closely reflect the major structures within the county (Plates 5 and 6).

3. "B" Interval

a. Introduction

The "B" Interval is a coined term for the Upper Devonian and Lower Mississippian rocks of the black shale interval. The black shale interval was named for the dominant black shale lithosome of the unit. The formations that are included within this group represent a complex and interdependent facies sequence that is bounded by fairly synchronous, correlatable upper and lower contacts. It includes those rocks of the Michigan Basin that lie between the top of the Traverse Group and the base of the Coldwater Shale. The "B" interval corresponds with the "A" unit of McGregor (1954), except that he used the Squaw Bay Limestone **as** the top of the Traverse Group. The two units, therefore, differ in that the transition zone of the writer is included with the Traverse. The "B" unit includes the following formations; the Antrim Shale, Berea Sandstone, Bedford Shale, Sunbury Formation, and the Ellsworth Shale. These five formations include the problematical Upper Devonian-Lower Mississippian black shale sequence which will be examined.

Six major stratigraphic problems occur with relation to the "B" interval:

- (1) The Ellsworth Shale-Coldwater Shale contact in western Michigan. The lithology of both units is grey shale.
- (2) The Bedford Shale-Berea Sandstone contact in eastern Michigan. The contact in many instances is a gradational one.
- (3) Nature of the relationship of the western Michigan Ellsworth to the Antrim, Berea, Bedford sequence of eastern Michigan.
- (4) The Antrim Shale-Ellsworth Shale contact in western Michigan. The contact locally is a gradational one.
- (5) The Traverse transition zone that occurs at the base of the "B" interval (Discussed under the Traverse Group).
- (6) The "masked zone". A continuous sequence of black shales extending from the Sunbury Shale to the Traverse Group in a linear zone from Otsego County to Ionia County through north-central Michigan.

The gamma ray cross sections (Plates 17-20) and the regional isopach map (Plate 2) are particularly useful in obtaining a partial solution to these problems.

b. Antrim Shale

The Antrim Shale was originally called the St. Clair Shale (Lane, 1893); however, as A. C. Lane noted in 1901, the name was pre-occupied. He replaced it with Antrim, which was named for the county in which the shales were exposed. Lane further delimited the unit in 1902 when he described it as a bituminous shale that underlies the Berea grit and overlies the Traverse (Wilmarth, 1938). The formation was originally described as being Upper Devonian in age. Newcombe (1933), however, stated that Mississippian fossils are contained in the upper part of the unit.

The Antrim Shale is a fissile to dense carbonaceous shale sequence. The color of the unit is commonly jet black, but it may be interbedded with shales that are dark grey to dark brown in color. The black color of the Antrim is primarily due to the presence of organic material. It is observed throughout the Michigan Basin.

Dark borwn calcareous concretions ranging from two to five feet in diameter are frequently encountered in the basal portion of the Antrim in eastern Michigan. These concretions weather differentially from the enclosing Antrim Black Shale. Frequently the concretions are removed either by disintegration or mechanical means and will leave large rounded pits that are referred to as "kettles" in Ontario. Daly (1900) ran chemical analyses on the "kettles" and found that they contain, in addition to calcium carbonate, approximately twelve per cent of impurities, including magnesium carbonate, iron oxide, four per cent of insoluble residues (HCl) and over three per cent hydrocarbons and water. The minerals reported are anthraconite, marcasite, pyrite, calcite, colomite, and quartz. Hocver (1960) discussed in detail the occurrence. chemical analysis, and origin of the concretions in the Devonian-Mississippian Ohio Shale sequence.

Equivalent units to the Antrim Shale occur in all directions from the Michigan Basin (Plate 21) which are: the Long Rapids Formation, occurring to the north in the James Bay Lowland region of Hudson Bay; the Kettle Point Shale in southwestern Ontario; the Ohio Shale in Ohio and Pennsylvania; the New Albany Shale in Indiana and Illinois; and the Kenwood Shale, occurring to the west at the city of Milwaukee. All of these formations are lithologically similar to the Antrim Shale.

The upper contact of the Antrim can usually be readily distinguished with the utilization of gamma ray logs. Separation of the upper contact may be problematical, however, on a lithologic basis throughout the Basin.

In eastern Michigan the contact between the Antrim Shale and the Bedford Shale can usually be made without difficulty.

In central Michigan there is a problem that exists in the so-called "masked zone". The "masked zone" is an apparently uniform sequence of black shales extending stratigraphically from the Traverse Group to the Coldwater Shale. The "masked zone" is observed in the subsurface from Ionia County in the south to Otsego and Montmorency counties in the north. This lithologically undifferentiated zone of black shales occurs, also, in parts of Crawford, Roscommon, Missaukee, Clare, Osceola, Mecosta, Isabella, Montcalm, Gratiot, and Clinton counties (Cohee, et. al., 1950). Log studies (Plates 17-21), however, indicate that a differentiation of formational units can be made across this zone.

In western Michigan the contact between the Antrim and the overlying Ellsworth is difficult to establish on the basis of sample examination.

The contact between the two may be locally interfingering and vertically gradational. The contact, however, can be made readily when utilizing gamma ray-neutron logs.

The Antrim has been subdivided into two units (upper and lower) by the writer. The lower unit is very distinct and can be correlated throughout the entire Michigan Basin on the basis of its gamma ray log characteristics (Plate 17-21). In all areas, except west-central and southwestern Michigan, the unit is typified by two highly radioactive shale units with a lesser radioactive unit in between them. In westcentral and southwestern Michigan the top and base units of the Lower Antrim are distinguishable, but correlation of the middle low radioactive shale unit is not possible.

The upper contact of Upper Antrim Shale is very sharp on gamma ray logs in eastern Michigan. It is gradational but definable, when present, with the Ellsworth Shale in western Michigan. In the central part of the Basin throughout the "masked zone" area the contact between Upper Antrim and Bedford Shale or the undifferentiated Berea-Bedford can be made on gamma ray logs. The character of the gamma ray logs seems to indicate a higher relative radioactive content for the "masked zone", possibly likewise indicating a higher organic content (Swanson, 1961).

Correlation studies of the Lower Antrim seem to indicate an excellent continuous subsurface mapping unit throughout the entire Basin. The Upper Antrim, conversely, is very difficult to use as a unit. Correlation studies clearly indicate that it is intertounguing west of the "masked zone" with the Ellsworth and is being replaced in the upper part of the unit by the Ellsworth type of shale. Tarbell (1941) indicated the general lithologic relationship between the Antrim Shale and the Ellsworth Shale in western Michigan in a series of cross sections accompanying her

article on the problem.

Cohee's regional isopach map of the Antrim (Cohee, et. al., 1951) does not give an accurate picture of the Antrim Shale over the Basin. The fact that the Antrim Shale can be differentiated on the gamma ray logs makes all of the prior thickness values in the "masked zone" inaccurate or at least questionable. A similar situation exists in the western portion of the state.

The "B" interval isopach map (Plate 2) clearly indicates a major north-south spur extending from the South Michigan Shelf along the problematic "masked zone" area. It seems clearly apparent that this isopach thin was a controlling factor in the sedimentary variations of the "B" interval. The "B" interval isopach thin axis, or more simply the "B" axis as it is referred to in this study, is the probable result of either non-deposition of sediments or the development of a barrier of some type.

This study considers the "B" axis to be a barrier. This conclusion is based on the writer's interpretation of environmental conditions, as well as facies relationships based on gamma ray correlations. The alternate solution of non-deposition of sediments must also be considered. Non-deposition could result in an isopach thin as a function of such factors as distance from source, selective current action within the Basin, and differential basinal settling.

The "B" axis most likely acted as a facies and probably a faunal barrier during the sedimentation interval between post-Lower Antrim Shale and pre-Sunbury Shale. This barrier would effectively separate the Basin into two distinct areas of accumulation, the western Ellsworth area and the eastern Upper Antrim-Bedford-Berea area. The "B" axis position

trends in the same direction as Hale's postulated barrier (1941). There is, however, a considerable divergence between the two axes, 14 miles apart in the south and 42 miles apart in the north (Plate 23). In addition to the "B" axis, sedimentation was also controlled by thinning onto the South Michigan Shelf.

As previously stated, the Lower Antrim is the most critical to the analysis. Its thickness shows little variation throughout the entire Basin. The three members of the Lower Antrim are traceable in all portions of the Basin, except the west-central and southweste: regions where the unit is typified by a single highly radioactive unit with thin interbeds of less radioactive shales. It may, therefore, be pointed out that the barrier may have been partly effective with relation to the Lower Antrim south of Wexford County (Cross section $E-E^1$, Plate 19). The area would essentially include all of the state south and west of southwestern Osceola County.

The Upper Antrim, east to west, increases in thickness onto the "B" axis in the case of all of the east-west cross sections (B-B¹, Plate 17; C-C¹, Plate 18; E-E¹, Plate 19; and G-G¹, Plate 20). In all instances the Upper Antrim seems to be thickening at the expense of the overlying Berea-Bedford sequence. At the "B" axis the Upper Antrim changes facies into the Ellsworth Shale type. A number of problematic correlations occur along this zone. The increased organic content would seem to color the shales black and cause the "masked zone" development to occur. An excellent example of this problem is observed in the Kert and Ionia wells in cross section F-F¹ (Plate 19). In the case of the Ionia County well what is labeled as Ellsworth should be the Berea-Bedford equivalent. The Kent County well clearly exhibits the

character of the Ellsworth, replacing the "Ellsworth" and Upper Antrim of the Ionia well. Cross section $D-D^1$ (Plate 18) distinctly reflects the fact that the Upper Antrim thins onto the South Michigan Shelf. Some carbonaceous zones of the Upper Antrim are recorded west of the Barrier; however, they are thin, local, and are observed directly above the Lower Antrim.

In Bay County (note Bay County well in cross section $G-G^1$) the Antrim is a relatively easily distinguished unit, so that it may be used as a local structure contour base within the county (Plate 17). The isopach map of the Antrim in Bay County shows minor variations in thickness (note contour interval equals 20 feet) over the major structures of the county (Plate 11).

The paleontology of the black shale sequence is interesting as well as critical for a paleoecological analysis. Fish remains (<u>Paleoniscid</u>, et. al., personal communication, R. E. Matthews) are recovered throughout the Antrim interval in the Michigan Basin. Invertebrate fossils, especially the brachiopod <u>Lingula</u>, have also been recorded throughout the sequence in Bay County. Fossil wood, generally referred to as <u>Callixylon newberri</u> (Dawson) is frequently recovered from the interval. A systematic study of the fossil wood would probably indicate several species rather than one. The species seems to be used as a catch-all for all fragments of fossil wood in the sequence. Morse (1938) in a doctorial thesis at the University of Michigan systematically studied the abundant Antrim conodonts. The conclusion derived at that time indicated that the Antrim was probably mostly Upper Devonian in age. This group of microfossils needs systematic revision for the Michigan Basin black shale problem.

Systematic palynological examination of the entire "B" interval will eventually provide an accurate correlation of the formations across the state. Winslow (1962), in her classic Ohio Shale paper, indicated lucidly the validity of this type of analysis. It is possible not only to use the spores found in the sequence for correlation, but also to use them as time indicators. Winslow's Ohio Shale work yielded 24 genera, four of which were new. In addition to this, she described 31 new species.

The writer, working with core samples from Bay County, was able to make some preliminary studies with relation to these spore types. He has tentatively recognized the genera <u>Tasmanites</u>, <u>Canthospora</u>, <u>Calamaspora</u>, as well as the Foerstian remains. The Antrim Shale was particularly refractory to chemical techniques in the samples with which the writer worked. The term <u>Sporangites huronensis</u>, which is so commonly referred to in the Antrim and Ellsworth shales, has been abandoned as ambiguous by Winslow (1962). She indicated in her study of the genera a close affinity to <u>Tasmanites</u> under which she classifies it now. It is the writer's opinion that the species <u>Sporangites huronensis</u>, so commonly referred to ty workers in the Michigan Basin, is simply an all inclusive waste basket term for all megaspores.

Foerstian remains, which are concentrated in the lower part of the Ohio Shale, are important, also, from an ecological view, as they indicate a pelagic or sargassoic plant community. The writer also recovered an algae thallus from the Bay County core, which he tentatively identifies as the Upper Devonian species <u>Drydenia foliata</u> (Fry and Banks, 1955).

c. Bedford Shale

The Bedford Shale was named by Newberry in 1870 for the exposure near that town in Cuyahoga County, Ohio. The term is used in the eastern portion of the Michigan Basin, Ohio, Pennsylvania, and Kentucky (Wilmarth, 1938).

The Bedford Shale is a grey, silty to sandy shale. It is generally restricted to the eastern side of the Basin. The shale becomes more sandy towards the top of the unit, thereby making the contact between it and the overlying Berea Sandstone locally extremely difficult to define. The radioactive character of the upper contact of the Bedford can be distinguished locally in gamma ray logs. The shale is often combined with the Berea Sandstone and referred to simply as the Berea-Bedford sequence.

The Bedford Shale is not subdivided into units whether on the basis of sample examination or on the basis of well log interpretation (radioactive or electric). Landes (1944) in his study of the Porter Field stated that the Bedford locally thins over hte Porter Anticline, indicating that there may be a structural relationship. The writer could not find any additional substantiating evidence for this effect either in his studies or in the literature.

In the examination of gamma ray log cross sections, several interesting features evolve. In section A-A¹ (Plate 17) the Bedford is traceable southwestward from Iosco County to Midland County. In Midland County the low radioactivity character that separates the Berea from the Bedford phases out and becomes indistinct. The Berea-Bedford zone, however, is identifiable as far southwestward as Barry County, at which point it phases out into the Ellsworth Shale. In section B-B¹ (Plate 17) across the southern end of the state the Berea Sandstone and the Bedford Shale are separable only in the Lenawee County well. The Berea-Bedford, however, can be correlated as far as Branch County. Between the Branch County well and the St. Joseph County well all recognizable characteristics of the Berea-Bedford sequence disappear.

In section C-C¹ (Plate 18), which extends from Ottawa to Sanilac County, east-west across the Michigan Basin, the Bedford Shale is traceable as a separate unit as far as Shiawassee County. From Shiawassee County to Kent County the Berea-Bedford is carried as a single unit. Between the Kent County well and the Allegan County well all traces of the character of the Berea-Bedford unit disappear. In section D-D¹ (Plate 18), which is a north-south section in the southeastern quadrant of the state of Michigan, the character of the Bedford Shale is distinct enough to allow a correlation in the unit throughout its entire extent. There is a slight thinning of the shale onto the South Michigan Shelf.

In section E-E¹ (Plate 19), which is the northern most east-west section, the Bedford as a unit is tentatively correlated across the Michigan Basin. There is a loss of some of the lower portion of the unit to the underlying Ellsworth facies. One of the more interesting things to note in the section is the fact that the Bedford equivalent is actually more radioactive than the underlying Ellsworth; exactly the reverse is true in the case of cross section C-C¹. The F-F¹ cross section (Plate 19) is one of the most interesting of the entire sequence; it extends north-south from south of the Indiana line to Wexford County. It extends for the greater part of its traverse just

along the western side of the "B" axis. The terminological confusion that occurs along the barrier is well illustrated in this section. In the wells in both Calhoun and Ionia counties the designation of the Ellsworth Shale for the lower radicactive Berea-Bedford equivalent may be noted. North from the Ionia County well, it is possible to see a rather interesting terminology change once more; the Ellsworth-Upper Antrim now becomes totally the Ellsworth in only seven miles distance. Extending far to the north (40 miles) from this log a well-developed Berea-Bedford equivalent occurs. Once again the Berea-Bedford is more radioactive than the underlying Ellsworth sequence. A Bedford unit appears to be identifiable in Mecosta and Osceola counties, also. The Berea equivalent is also present again in Wexford County. The Bedford thins to the north and west, west of the barrier.

The Bedford Shale in cross section $G-G^1$ (Plate 20), the central Michigan east-west cross section extending from Muskegon County to Sanilac County, is very thick near the eastern border of the Michigan Basin; it thins gradually to the east to a minimum at the "B" axis. The underlying Upper Antrim, as previously stated correspondingly increases in its thickness. West of the axis the Bedford Shale is extended as far as Mecosta County and is tentatively carried as far west as Newago County. The Bedford, again in this unit, is more radioactive than the underlying Ellsworth Shale facies.

The "B" axis, once more, functions as a facies barrier in the south separating the Ellsworth facies from the Bedford Shale and Berea-Bedford. To the north, however, an intermixing with Bedford Shale and the Berea-Bedford equivalent west of the axis is evident. These eastern units interfinger with the uppermost portion of the Ellsworth Shale. They

thin to the west and the north from the axis, most likely in a direct function of their distance from their source area in eastern Ontario.

d. Berea Sandstone

The Berea Sandstone was named by Newberry in 1870 for exposures near the town of Berea in Cuyahoga County, Ohio. It occurs in eastern Michigan, Ohio, Pennsylvania, Kentucky, and West Virginia (Wilmarth, 1938).

The Berea Sandstone is essentially a fine-grained quartz sandstone. Cohee and Underwood (1945), Landes (1944), Sawtelle(1958), and Cohee (1951) all have subdivided the Berea into three units, which are (after Cohee, 1951):

- (3) Upper unit similar to lower unit except shaly and less pyritic.
- (2) Middle unit friable, fine-grained sandstone composed of angular quartz grains. Thin beds of shale and tightly cemented sandstone are interbedded with friable sandstone in places.
- Lower unit sandstone, light grey, fine-grained, dolomitic, silty and shaly, cemented with silica and dolomite, micaceous and pyritic.

The lithologically identifiable Berea-Bedford sequence is not recognized west of the "B" axis. West of the axis, however, at approximately the same stratigraphic position, a sandy to silty dolomite to dolomitic limestone occurs in the section. Commercial gas has been produced from this so-called "Berea Dolomite" in western Michigan. The radioactive logs indicate that the Berea Dolomite is related to the Berea Sandstone of the eastern side of the Michigan Basin. The Berea Sandstone is reported to the south in Indiana and northeast Ohio. It is, however, most likely not continuous with the typical Ohio Berea Sandstone across the Findlay Arch (Pepper, et. al., 1954). The northern limit of the Berea is the subcrop area in northern Southern Michigan. No equivalents to the Berea-Bedford or younger Paleozoic formation are observed in the James Bay Lowland area in northern Ontario (Martison, 1952). The upper contact of the Berea is easily distinguished by either sample examination or radioactive logs. The Berea equivalent in westcentral and northwestern Michigan, when present, can be easily distinguished because of its low radioactivity character.

The correlation of the Berea Sandstone sequence in the Michigan Basin is subject to the same problems as encountered with the Bedford Shale. In many locations toward the "B" axis, and often west of the "B" axis, the unit is recognized as the Berea-Bedford; the two units cannot, on the basis of radioactive character, be separated.

In the four east-west sections (from south to north, $\sqrt{B}-B^{1}$ (Plate 17), C-C¹ (Plate 19) and G-G¹ (Plate 20)7, the farthest west the Berea may be recognizable is (south to north) Lenawee, Shiawassee, Mecosta, and Wexford counties. The "B" axis was probably an effective barrier, therefore, as far north as Midland County. Recognizable Berea sediments apparently spilled over the barrier in both Mecosta and Wexford counties. The Berea is not recognized in the Osceola County wells. The Berea is notably thinner at its western limits in the Mecosta and Wexford wells.

The Berea-Bedford sequence, however, extends much farther west than the Berea limit. The only wells found on the cross sections that exhibit no Berea-Bedford character are found in the extreme southwestern part of the state, specifically in the wells in Cass, St. Joseph, western Branch, Kalamazoo, Allegan, Ottawa, and Muskegon counties. East of these counties a recognizable Berea-Bedford can be observed in all cases.

Isopach studies were made on the Berea-Bedford interval in Bay County (Plate 12). This isopach study provides the most interesting map of the entire Bay County series. The unit, contoured on an interval of ten feet, indicates a probable channel development in the sequence. These interpreted channels are similar to those developed in the Berea delta of the Ohio Bay (Pepper, et. al., 1954). If these channels are sandy, they could represent a significant gas-oil reservoir in Bay County. The Berea Sandstone has produced gas directly to the north in Arenac County (Cohee, 1951). The trend of the channels in Bay County is in a definite east-west direction. This would indicate that a delta was forming north of Cincinnatia (Cincinnati-Findlay-Algonquin arch positive area). This delta would probably have the same general mountain source areas as the one supplying sediments into Pepper's postulated Ontario River system. The similarity of the isopach studies between the channels developed in Bay County and those on the Berea delta in Ohio (Pepper, et.al., 1954) is striking.

e. Sunbury Shale

The type locality for the Sunbury Shale is near the town of Sunbury in Delaware County, Ohio. It was originally named by Hicks in 1878 (Wilmarth, 1938).

The Sunbury Shale is distinct, black, highly radioactive shale, that is easily distinguished on the basis of both its high radioactivity and distinct black color. It has been reported (Baltrusaites, 1948) to lack the abundance of spore cases found in the underlying, lithologically similar Antrim Shale.

The Sunbury ranges in thickness from being absent in southwestern Michigan to an average of between 30 and 40 feet in Eastern Michigan. The thickest sections of Sunbury are found in the "Thumb" area (Huron, Tuscola, and Sanilac counties) where it ranges in thickness up to a maximum of about 150 feet (note Sanilac wells, section C-C¹, Plate 18). In Western Michigan it thins to about 10 to 15 feet, except toward southwestern Michigan, where it is present only in restricted lenses. The Sunbury forms a sharp, distinct upper contact wherever it is found in the Michigan Basin. The Sunbury is not only thin over most of the Michigan Basin but also it is probably synchronous across the Basin.

A study of the isopach character of the formation was made in Bay County (Plate 13). When utilizing a five foot contour interval in this formation, it has an apparent highly lenticular development.

The major importance of the Sunbury, as a recognizable thin unit, is, of course, in the utilization of the unit for structure contour maps. In most areas where the Sunbury shale is missing, a distinct mappable unit some 30 feet or less stratigraphically above it is used; it is called the Coldwater redrock. Monnett (1948) and Cohee (1951) have both developed excellent structure contour maps of the Michigan Basin on the bases of these two units. In Bay County a structure contour map utilizing the Sunbury Shale was constructed. It agrees very closely with the Dundee, which is commonly used as the standard subsurface reference plane.

f. Elleworth Shale

Newcombe (1932) first described the Ellsworth Shale from a well in Muskegon County. He delimited it as the 509 feet of blue shale and limey sandstone that underlies the Coldwater Shale and overlies the Antrim Shale. Newcombe later (1933) described an alternate type section exposed south of the town of Ellsworth in Antrim County, Michigan. The section at this location is typified by greenish-grey, sandy shale. The type section is exposed in a cement quarry as a ledge only 30 to 40 feet thick (Tarbell, 1941). This sequence, as the Antrim Shale, is very pyritiferous locally. Frequently, in drilling, balls of marcasite are recovered from the Ellsworth. Ells (personal communication, 1963) states that the balls look like minute osage oranges. The sandy dolomite to colitic limestone that is observed in the upper part of the Ellsworth is called the "Berea dolomite". This unit is discussed under the Berea. The Ellsworth Shale is restricted to the central and western portions of the Michigan Basin (Wilmarth, 1938).

The Ellsworth Shale is typically a greyish-green to greenish-grey argillaceous shale with interbedded limestone and dolomite lenses. Tarbell (1941) reported minor interbedded red shales, but she does not designate locality or specific stratigraphic occurrence in the Ellsworth. Cohee (1951) reported that the section is siltier in southwestern Michigan.

The relationship of the Ellsworth Shale to the overlying Berea-Bedford is a gradational one which makes the contact extremely difficult to pick when utilizing lithologic samples. The differentiation, however, is possible in many cases when utilizing radioactive logs, as previously discussed under the Berea and Bedford. The Ellsworth Shale, when overlain by the Sunbury, develops a very sharp color, and radioactive break. Where the Ellsworth is overlain by the Coldwater, the contact is imperceptible, both on the basis of radioactive character and lithology; however, within thirty feet or less of the contact, the Coldwater redrock is observed, which makes an easily distinguishable lithologic and radioactive break in the sequence.

The Ellsworth Shale is naturally a less radioactive sequence in comparison to the Antrim and the Sunbury shales. It is, likewise, commonly more radioactive in western Michigan than Bedford equivalents, except areas in west-central and northwestern Michigan where the shale has such a low radioactive value that the Bedford equivalents are more radioactive than the Ellsworth.

The Ellsworth is restricted in its entirety to the west side of the "B" axis in the Michigan Basin. It is an apparent time and facies equivalent of the Upper Antrim and Bedford-Berea sequence. The equivalency of the units is a direct function of how far north the Ellsworth is examined. In the examination of cross section $B-B^1$ (Plate 17) it can immediately be seen that the Ellsworth is equivalent to the entire Upper Antrim and Berea-Bedford sequence. In cross section $C-C^1$ (Plate 18) it can be seen that the Ellsworth is the equivalent of the Upper Antrim and the lower part of the Berea-Bedford sequence. Farther west from this point in Allegan County the entire sequence phases out into typical Ellsworth Shale. Section $G-G^1$ (Plate 20) illustrates the continuity of the Berea-Bedford sequence over the "B" axis. The Berea Sandstone can be traced as far west as Mecosta County in this section. Between the Mecosta County well and the Newaygo County well the Berea either pinches out due to non-deposition, because of

distance from the shoreline, or changes facies into the typical Ellsworth Shale sequence, illustrated by the Muskegon well. The cross section $E-E^{1}$ (Plate 19) shows that the lower portion of the Bedford and the upper portion of the Upper Antrim phase out to the west into typical Ellsworth Shale. The thinning of the Berea is most likely a simple function of distance from source. Section $A-A^1$ (Plate 17) indicates the same relationships as illustrated with the previously discussed east-west sections. In the north-south relationship between the Berea-Bedford sequence and the Ellsworth Shale, the Berea-Bedford section increases in thickness from the South Michigan Shelf to Osceola County where the unit reaches its maximum thickness. From Osceola County north to Wexford County the Berea-Bedford sequence thins once more. Slight variations in this sequence can best be explained in the east-west relations. As a fairly reliable rule, it may be said that in wells west of the "B" axis the Berea-Bedford, when present, thickens eastward toward the "B" barrier. The sequences to the south of Wexford County can be said to be dependent on distance from the Berea-Bedford sediment source area and/or in the topography of the submerged "B" barrier.

The Ellsworth Shale contains spores; however, they are far less prolific than those observed in the Bedford and the Upper Antrim sequences. Palynological examination of this sequence utilizing the types established by Winslow (1962) should establish the Devonian-Mississippian boundary.

Isopach studies indicate that the greenish-grey Ellsworth Shale sequence thickens to the north and west. Cohee (1951), also, indicated in his cross section a definite increase in siltiness to the west. The

maximum thicknesses of the Ellsworth range from approximately 600 to 900 feet in the northwestern portion of Michigan. The South Michigan Shelf, also, influences the unit in that it thins onto that paleogeographic feature. The source of these sediments would appear to be to the west and northwest. This would not be difficult to develop were it not for the Kenwood Shale of the Milwaukee area (Edwards and Raasch, 1922). This is the black shale unit above the Hamilton Milwaukee Formation. The writer tentatively correlates this unit with the Michigan Basin Lower Antrim sequence. If this correlation is valid, then an interpretation of a regional uplift in the Wisconsin Highlands pouring sediments to the east all along its flank after the Kenwood Shale deposition is reasonable. The Kenwood Shale remains as a probable beveled erosional remnant of the movement. Movements taking place at this time (perhaps synorgenically with the Acadian Revolution) also would be logical in the timing of the uplift of the submerged "B" axis, which could act as an eastward facies barrier to Ellsworth sedimentation.

g. Environmental Interpretation

The "B" interval may be said to contain in general three distinct lithosomes, which are: the black shale lithosome, which includes the complex facies relationships of the Antrim and the Sunbury shales throughout the Basin; the eastern clastic lithosome, which includes the deltaic deposits of the Berea and Bedford; and the western shale lithosome, which includes the Ellsworth Shale.

The black shales of the Upper Devonian-Lower Mississippian sequence in the Michigan Basin are composed of the Antrim, the Sunbury and the undifferentiated black shales of the north-central part of the Basin (see inset, Plate 2).

To work with the black shale lithosome, the black shale problem itself must be introduced. The problem consists of three basic areas, which are: the depositional environment, the time-stratigraphic relationships, and the origin of black shales.

Black shale may be simply defined as a dark-colored, fine-grained, clastic sedimentary rock that contains enough organic material, iron sulfide, and/or manganese oxide to color the rock dark grey or black. The majority of black shales owe their color to finely disseminated organic matter. It has been calculated by Swanson (1961) that at least two per cent carbon must be present to reach a true black color, according to the National Research Committee Color Chart. Invertebrate faunas in black shales are typified by their scarcity and dwarfed morphology.

Black shale often is identified by special names such as sapropelite, gyttja, etc. It is, likewise, often identified with compositional, genetic, and paleontologic variation. Examples of this practice would be such terms as uraniferous shales, oil shale, marine shale, graptolitic shale, etc. Genetic usage with reference to black shale is a common problem; formations are often classified into such catagories as marine, non-marine, deep water, and shallow water.

Black shales, because of their petroleum and uranium content, have t been analyzed extensively during the last few years (Conant and Swanson, 1961), (Vine, 1962), (Swanson, 1960), (Landis, 1962), (Glover, 1959), (Hoover, 1960), (Smith, et. al, 1959), etc. The chemical composition of black shales is, of course, dependent on the unit's sedimentary history. Organic black shales, however, are invariably formed under acid and reducing conditions in sea water. It is possible, therefore, to make some generalizations concerning the elements present under these conditions. Mason (1952) points out that in addition to the organic carbon and iron sulfide present, enrichment in the following minor elements were noted: V, U, As, Sb, Mo, Cu, N, Cd. Ag. Au, and metals of the platinum group. Vanadium has been commercially produced from the shales. The uranium potentialities of the black shales have been studied intensively over the last ten years by the U.S. Geological Survey. Carolyn Fix (1958) offered an excellent summary of previous research papers in the field of uraniferous black shales.

The amount of radioactive material present in the Antrim is a critical factor, as it directly influences the gamma ray logs, which are being used for correlation purposes in this paper. The Antrim has been reported to carry 0.01 per cent $U_{3}O_8$ equivalent by Westergard (Faul, 1954) and Bain (1950). Swanson (1960) ran uranium analyses of 38 selected cuttings of the Pure Oil 553 (T32 N, R4W) Charlevoix County and the Andy Bonardi (Sec. 34, T8N, RISE) St. Clair County. In the Pure Oil 553 well mranium percentage varies from .0007 to .0036 and in the Bonardi 1, from .0006 to .0035. His samples were also tested for

oil recovery and they varied from a trace to 16.9 gallons per ton. In the two widely separated wells (over 200 miles) there is a positive correlation between oil and uranium content.

The organic content of the Antrim is about ten per cent in portions. Sutides by Beers (1945) indicated graphically that a positive relationship exists in the Antrim between carbon content and uranium content. An increase in one results in an increase in the other. Beers' (1945) studies, modified by Swanson (1960), also show that the same relationship exists in the Sunbury and Traverse "Transition zone". Beers and Goodman (1944) also noted a 50 per cent increase in the radiation of smaller than 200 mesh material as opposed to coarser fractions.

Whitehead (Faul, 1954) analysed six Antrim samples and determined that the mean percentage of potassium was 2.77 per cent with a variability of 0.1 per cent. A positive relationship again exists with these elements. Whitehead points out that there is also a very close positive relationship existing between phosporous and uranium from studies of a Miocene nodular clay. No values are available on phosphorousuranium content of Antrim shales. Beers (1944) also noted this in his studies.

Uranium-bearing black shales, such as the Antrim, have many features in common, which are, according to Nininger (1954):

- (1) Black and rich in organic matter and iron sulfide.
- (2) They contain only minor limestones.
- (3) They all contain petroleum.
- (4) They are all relatively thin formations that were deposited slowly over a long period of time.
- (5) Most are from geologically older formations.
- (6) The uranium is syngenetic in origin.

Swanson (1960) lists fourteen quantitative controlling factors for the uranium distribution in black shales. Ten are considered to be speculative, four demonstrative.

Petrographically, black shales generally consist of very fine silt, quartz, clay, micas, feldspars, pyrite and marcasite, phosphates, and organic matter.

The insoluble organic matter (Kerogen) observed in the black shales may be either sapropelic (marine) or humic (terrestial). Breger and Brown (1962) in a recent article in Science have determined a method that may be utilized to determine the amount of each of the constituents present. The hydrogen percentage of sapropelic material is very much higher (10-12 per cent) than that of humic origin (5.5 per cent). This, of course, is an excellent index, also, of potential oil recovery in any given shale. It has no effect on uranium content of the black shales which apparently relates to the carbon content. Therefore, utilizing this method it might be possible to delimit the origin of many of the black shales of the Upper Devonian-Lower Mississippian sequence in the United States. The writer suspects that it would prove the Sunbury to be a humic accumulation rather than the sapropelic algal type as the Antrim. This suposition is based in part on the development of the very thick Sunbury sequence on the eastern side of the Basin. The Sunbury Shale could represent reworked terrestial organic debris distributed from a source area in the same region as the Berea-Bedford delta.

The paleontology of the black shale sequence has been the subject of a number of detailed studies. Studies of invertebrate paleontology include a minimum of some 23 major papers by some 20 authors. In the vertebrates much of the study has been done with fish, particularly during the early nineteen hundreds. The eleven major researchers in this area

have presented some 53 individual papers on the vertebrate fauna. Micropaleontological research has been done for the most part on conodonts. There are about 22 authors of major works in this area of study.

Extensive work has been done with well-preserved paleobotanical specimens of the black shale sequence; a selected list of writers in this field reaches a total of over thirty men. Some nine papers by six authors have been published also on the palynology of the sequence. The great bulk of the researchers in black shale paleontology, in all disciplines, are included in Hoover's bibliography (1960).

The dating of the black shale sequence is problematic within the Michigan Basin. The Devonian-Mississippian boundary occurs within the Antrim Shale. As far as the writer can determine only two reasonable alternatives are practical paleontologically. The first is using conodonts; unfortunately, the zones are not sufficiently continuous laterally within the Antrim; and conodonts are rare within the Ellsworth. The best solution to the dating problem is working with palynology. Spores have been observed by the writer in both the Antrim Shale and the Ellsworth Shale, which form the critical time units. Caution, however, should be exercised in correlation, as deposition of the spores is dependent on such factors as distance from shore, prevailing wind and water current direction, latitudinal and topographic plant zonation, etc., for terrestrial forms. Current distribution represents the major problem with regard to the marine algal forms.

The theories of black shale origin may be classified into some seven broad caragories, which are listed below with some of their proponents.

(1) Shallow water origin - Ruedemann (1935), Hard (1931), Grabau (1919), Fisher (1953)

(2)	Deep water origin -	Clarke (1915), Shaler (1877), Rich (1948, 1951)
(3)	Restricted basins -	Schuchert (1915), Strom (1936), Adams, et. al. (1951)
(4)	Algal origin -	Schuchert (1910, 1915), Ruedemann (1935), Fisher (1953), Orton (1882)
(5)	Organic soil erosion -	Grabau (1906)
(6)	Bitumens and Seeps -	Gutschick (1947), Keyes (1938)
(7)	Others -	Grabau (1919) estuary; Raymond (1942) chitinous skeletal material.

The source of the organic material in the Antrim Shale is a combination of some land plants, spores, the majority of which are probably algal in origin, and very finely comminuted material, probably a combination of marine and non-marine material with the marine being predominant. The discovery of an algal thallus, the frequent observation of Foerstian remains, and the predominance of <u>Tasmanites</u>, a probable algal spore, seems to indicate the possibility of an extensive algal mat forming.

If one makes the presumption that a floating algal mass existed during the development of the black shales, it would probably have belonged most likely to the Phaeophyta. Within the Phaeophyta, one is restricted to the utilization of Sargassum, as the other members of the group require a cool climate and a rocky bottom to attach their holdfasts, which generally in extant forms reach only a maximum length of some 60 feet. The Phaeophyta are not particularly salinity selective so that the form would not require the narrow parameters of such forms as are found in the Rhodophyta.

A sargassoid planktonic algae seems to offer the most likely ecologic and stratigraphic solution for the Upper Devonian-Lower Mississippian seas. This sargassoid mass could be moved in response to local current, wind, and temperature variations.

The intermixture of frequent carbonate zones observed in the core sample examined would seem to indicate as abrupt a chemical as lithological change. This could be accomplished with relative ease with respect to a floating or attached algal mass. If the algae were swept away, Eh and pH values would change. The conditions observed in stagnant waters, such as would result from the development of a widespread algal mass dampening current and wave action, indicate that though the upper surface may have a pH of 8 and an Eh of ± 0.1 the conditions on the bottom are a pH ± 7 and an Eh of ± 0.3 (Krumbein and Garrels, 1952). This helps explain the condition of having a nearly normal marine sequence followed by a black shale sequence.

The grey intertounguing shales in the black shale sequence can result as a simple function of the quantity or organic matter present in the sediment, which could mean a lesser quantity due to either decrease in source of organic material or increase in current action to change the oxidation-reduction potential and the pH of the sea water to less favorable values for preservation.

The writer's theory for the development of black shale lithosome within the Michigan Basin is that the sea in which the lower Antrim was deposited was shallow (less than 100 feet deep) and covered with a mat of sargassoid algae. This algal mat reduced circulation and produced the reducing conditions (negative Eh) necessary for black shale development. A more acidic environment (pH7-7.8) may have existed from time to time through the development of hydrogen sulfide derived from decaying organic debris. After the Lower Antrim had been deposited the sargassoid algae was rapidly displaced toward the "B" axis, as the Wisconsin Highland area began to supply the Ellsworth type of facies.

Ecological conditions for the growth of the algae could have been effected by dissolved salts from the Highlands, current changes, temperature changes, salinity changes, etc. A similar situation developed in the Berea-Bedford southwest Ontario delta, except that in this case there seems to be not rapid displacement of algal material as was in the case of the Western Ellsworth Basin. Gradually the sediments displaced the algal masses till they were virtually limited to favorable ecologic niches in along the "B" axis (masked zone). The black shale sequence then closed with the development of a sheet of probable humic carbonaceous material swept in from the eastern side of the Michigan Basin, the Sunbury.

The Upper Devonian-Lower Mississippian black shale lithosome is found over most of North America. The regional correlations of the black shale are summarized in the map illustrating the Upper Devonian-Lower Mississippian shale sequence (Plate 21). Regional references are included in the bibliography. The black shales as a lithologic unit may be correlated from Montana or Arizona in the west to New York state in the east.

The Berea-Bedford sequence of clastics develop a deltaic pattern similar to the one developed in northern Ohio (Pepper, et. al., 1954). The sediments deposited in the Basin are derived from a source area in eastern Ontario. The Bedford Shale is a grey, silty to sandy shale that overlies the Antrim Shale with a gradational contact. The grey color is a function of organic content. The Berea Sandstone develops an eastwest channel sand in isopach studies of that unit in Bay County. The channels may either be the result of channel filling of stream eroded valleys in the Bedford Shale (Pepper, et. al., 1954) or a distributarian

channel system such as illustrated by Fisk (1954).

The western Ellsworth Shale lithosome consists of a grey to green, sandy shale. The shale is restricted to the western side of the "B" axis. The source of the clastics derived are from the Wisconsin Highlands region. The upper part of the section reflects the influence of the Berea from the eastern side of the Basin to as far west in the north as Wexford County.

The abrupt change that frequently occurs in the interbedded Antrim-Ellsworth sequence ("Elltrim" of Hale, 1941) indicates a marked lessening in organic content. The green color is developed as a result of the ferrous iron present in the shale; and it is an excellent indicator of a reducing environment condition during deposition.

4. Coldwater Shale

The Coldwater Shale was named by Lane in 1893 for exposures on the Coldwater River in Branch and Hillsdale counties. The Coldwater Shale was described by Lane as underlying the Marshall Sandstone and overlying the Richmondville or Berea Sandstone. The Sunbury was originally included with the Coldwater Shale in the Michigan Basin; however, Cooper, in 1909, designated the unit as a separate formation (Wilmarth, 1938). In 1932 the U. S. Geological Survey restricted the Coldwater and split out the Sunbury Shale as a distinct subsurface formation in the Michigan Basin.

The Coldwater is a blue-grey to greenish-grey shale sequence that develops local thin lenses of limestone, sandstone, and dolomite. It ranges in thickness from a maximum of 1295 feet in Iosco County to less than 550 feet in western Michigan (Plate 3).

The Coldwater has been divided into a western and an eastern facies by Monnett (1948). The boundary between the two facies is west of the "B" axis. The eastern facies is typified by silts, fine sands, and shales. The central area between the two facies, according to Monnett (1948), is essentially a continuous sequence of grey shales a thousand feet or more in thickness. The western facies is characterized by calcareous shales with interbedded minor dolomite. The source area for the Coldwater shales was to the east. The western Wisconsin Highlands were supplying neglible amounts of sediments to Michigan's Coldwater basin.

The upper contact between the Coldwater Shale and the Marshall Sandstone in eastern Michigan is extremely difficult to separate. Both units are coarse-grained sandstones and red siltstone and sandstone (Cohee, 1951) which lithologically are virtually identical locally.

In western Michigan the sequence is fine-grained and the transition into the Marshall Sandstone, while gradational, is easier to pick.

The Coldwater carries four recognizable units:

- (1) Coldwater redrock.
- (2) Coldwater "lime" or speckled dolomite.
- (3) Weir sand.
- (4) Richmondville sand.

The redrock is the only Coldwater unit that can be correlated any appreciable distance throughout the state. Monnett (1948) shows that it is absent in the north-central portion of the Basin. The redrock is a red shale, limestone, and/or dolomite unit that ranges in recognizable thickness from six inches to forty feet thick. It occurs near the base of the Coldwater Shale. The redrock has also been divided by Monnett (1948) into an eastern shaly facies and a western calcareous and dolomitic facies. Hale (1941) described the unit as being fossiliferous, especially in the south (crinoid, ostracods, tetracorals, etc.).

The redrock has been tentatively correlated paleontologically with the Rockford Limestone which overlies the New Albany Shale in northern Illinois and Indiana (Cohee, 1951).

The Coldwater "lime" or speckled dolomite is a calcareous marker zone in western Michigan. It has been reported to be from a few inches to thirty to forty feet in thickness (Baltrusaites, et. al., 1948). The Coldwater dolomite may be divided into four facies (Monnett, 1948):

- (1) "Speckled" grey dolomitic matrix with embedded grains of light brown dolomite.
- (2) "Speckled" dolomitic matrix with pepperings of glauconite.
- (3) Crystalline dolomite with pepperings of glaucontie.
- (4) Crystalline dolomite with no glauconite.

Hale (1941) observed that on the western outer rim of the Basin the dolomite is much thicker, possibly indicating the presence of a "speckled dolomite" sea to the west in the Lake Michigan area during Coldwater time. She also observed that the crystalline dolomite facies is more common to the north and the east in the western Coldwater facies.

The Weir sand is reworked broken sand which occurs locally in Ogemaw County. It has been described by Newman (1936) in Ogemaw County and the West Branch oil field as being a "stray" sand forty feet in thickness that occurs approximately 250 feet below the top of the eroded subcrop of the West Branch anticlinal structure.

The Richmondville was named for an exposure that occurs at the town of Richmondville in Sanilac County, in western Michigan. It was named by Lane (1893) and described as underlying the Coldwater Shale and overlying the St. Clair Shale (Antrim). Gordon in 1900, however, pointed out that the Richmondville was actually within the Coldwater Shale and some 100 to 200 feet below the top. Therefore, the original Richmondville, as designated by Lane, could not be correlatable with the Berea Sandstone of Ohio (Wilmarth, 1938). The unit was later regarded as a 50 to 80 foot thick "stray" sand occurring in the top of the Coldwater in Sanilac County. It cannot be traced for any great distance in the subsurface as it interfingers with other shales and sand units and has a highly lenticular-like characteristic (Cohee, 1951). Ells (personal communication, 1963) indicated that the survey has not used the unit in years.

No single unit within the Coldwater, with the exception of the redrock, can be used regionally for correlation purposes. Locally in western Michigan the Coldwater "lime" and various other carbonate stringers are used for correlation, but they are, as would be expected, extremely limited in their areal extent.

A. K. Miller (1953, 1955) working with cephalopods of the Coldwater Shale and Marshall Sandstone established the fact that the upper Coldwater Shale contained cephalopods of Kinderhook and Osage age. Miller described the cephalopods (orthoconic nautiloids and ammonoids) as having a very close relationship to the published faunas in Tien Shan, Kazakhstan, Belgium, Western Algeria, and New South Wales.

The most striking characteristic concerning the development of the Coldwater Shale is the thick accumulation of shales in the central portion of the state, just west of the "B" axis (Plate 2). The accumulation is most likely the resultant of either subsidence in this portion of the Basin or proximity to the source area. The very thick sequence developed in northern Iosco County would seem to indicate a more northerly source than that of the preceding eastward Berea-Bedford development. It, likewise, indicates either renewed or sustained uplift to the north and east of the Michigan Basin at this time. Lithologic cross sections (Monnett, 1948 and Cohee, 1951) clearly indicate the necessity of a sediment source area to the north and/or east. The thinner accumulations of mud and carbonate deposited in the western facies might suggest a simple nearshore-offshore facies relationship. This would seem to indicate that the Wisconsin Highlands area was supplying little or no sediments at this time.

The detailed studies of the tcp of the Coldwater Shale show a pronounced difference in the structure contours over the fields in Bay County (Plate 9), thereby making it a less reliable structural indicator than the underlying Sunbury Shale top. Errors developed in this sequence are probably, at least in part, due to inability to pick the Coldwater-Marshall contact in the Bay County area.

The detailed isopach map of Bay County (Plate 15) shows a definite thinning of the Coldwater interval over the anticlinal flexure in the county.

5. Marshall Sandstone

The Marshall Sandstone was originally described by Winchell in 1861. It was later delimited by Lane to include those rocks above the Coldwater Shale and below the Michigan Formation (Wilmarth, 1938). The upper unit of this sequence was originally referred to as the Napoleon Sandstone; it was described by Taylor in 1839 (Wilmarth, 1938). It has now, through usage, come to be referred to as the Upper Marshall, despite the fact that the name antedates that of the Marshall by some 22 years.

Monnett (1948) in his classic study of the Marshall, stated that he sees no suitable basis for the division of the Marshall into two members. The Napoleon Sandstone is distinguishable from the Lower Marshall only in eastern Michigan. This is because there exists both a western and an eastern source for the Marshall sediments (Monnett, 1948; Cohee, 1951; Stearns, 1933; and McGregor, 1954).

In addition to the problem of the questionable contact between the Marshall Sandstone and the underlying Coldwater Shale in eastern Michigan, a problem exists with the upper contact. Over much of the Basin, especially in the central portion, there is a gradational contact that exists between the Marshall and the Michigan Formation. The so-called Michigan stray is on top of the Marshall Sandstone in central Michigan. Hard (1938), Hake (1938), Addison (1940), Monnett (1948), and Wolcott (1948) all indicate that the Michigan stray is equivalent to the Upper Marshall in central and western Michigan. The Marshall-Coldwater contact in western Michigan is relatively sharp due to the sudden increase in grain size that occurs at the base of the Marshall. The lower contact is apparently conformable throughout the state.
The lithology of the lower Marshall is characterized essentially by sandstones, commonly red in color. The sandstone typically cemented with varying amounts of dolomite is very shaly and dolomitic near the base in western Michigan (Baltrusaites et. al., 1948). In the eastern portion of the Basin the unit is much more sandy and, of course, extremely difficult to distinguish from the underlying Coldwater. The Upper Marshall is typically a coarse-grained, white to grey sandstone interbedded with shales and silts toward the top of the section.

In addition to the utilization of the terms, Upper Marshall, Napoleon, Lower Marshall, and Michigan stray for the sequence, the Hardwood Point, Port Austin, Pointe Aux Barques, Huron City, Light House and the "peanut" conglomerate also have been used (Martin, 1936). These terms have since been abandoned.

Stearns (1933) did an exhaustive petrographic study on the Marshall Sandstone of the Michigan Basin. On the basis of the mineral suites that she recovered from selected wells, she was able to determine the provenance of the minerals. She clearly established that two sedimentary provinces exist with relation to sediments within the Basin, an eastern and a western one. The Wisconsin Highlands supplied vast quantities of sand to the southern and western areas of the Michigan Basin. The source of sand for the eastern side of the Basin comes from the Laurentian area. Stearns' (1933) studies are further reinforced by studies by O'Hara (1954), Monnett (1948), and Kropschot (1953).

A. K. Miller (1955), in a study of the Mississippian fauna of the Basin, indicated a probable Osage age for the Marshall Sandstone. All of the known fossils of the Marshall, at the time of his 1955 paper, came from a single 4.5 foot section. He pointed out that every cephalopod species listed from the unit may be recovered from a single

six inch bed of extremely fossiliferous limonitic sandstone at the type section. Cohee (1951) was of the opinion that the Marshall is of early Meramec age.

The Marshall bed does not reflect the basinal shape as does the underlying Coldwater (Plate 4). The unit reflects a series of northwestern-southeastern trending thick and thin sand developments. It is generally assumed (Monnett, 1948) (O'Hara, 1954) that the wave action distributed the vast amounts of sand over all submarine irregularities; thus, perhaps at least in part, causing some of the isopach variation recorded.

The Bay County Marshall Sandstone study shows an apparent thinning in the section over the major structures of Bay County (Plate 16).

6. Post-Marshall Paleozoic Sediments

Mississippian

The post-Marshall Mississippian in the Michigan Basin is subdivided into two formations, a lower Michigan Formation and an upper Bayport Limestone.

The Michigan Formation consists of anhydrite, grey to dark grey and greenish shales, limestone, dolomite, and thin lenses of sandstone. It was named by Winchell (1861). It is exposed in Kent, Huron, and Iosco counties. Hard (1938) described a "brown dolomite" in the lower part of the Michigan subsurface, which was delimited by Hake (Swanson, 1955). On electrical logs it is usually referred to as the "brown lime" or "brown dolomite". The "brown dolomite" is approximately 100 to 150 feet above the Michigan stray (Swanson, 1955). Swanson (1955) suggested the name Clare in his thesis for the dolomite, because of its excellent development in Clare County, Michigan. Swanson (1955) subdivided the Clare into five provinces. Four of the Swanson's provinces represent marginal areas of decreasing lithologic and electrical character of the Clare. The fifth or central area province wherein the Clare is apparently consistent includes all of Osceola, Clare, Mecosta, Isabella, Montcalm, Gratiot, Ionia, and Clinton counties, as well as the western halves of Gladwin, Midland and Saginaw counties. Swanson (1955) also subdivided the Clare into three basic lithologies, which are: a central, north central, and western uniform, fine to coarsely crystalline, buff to orange, sucrosic dolomite; and a southern coarsely crystalline, sucrosic, buff dolomite. The Clare, as interpreted by electrical logs, thins to the north and northwest in the Basin; it pinches out to the south, and changes to a limestone facies to the east at the western border of Arenac and Bay counties, and in the center of Saginaw

County. Authigenic pyrite is a fairly common insoluble residue in the Clare. The average thickness of the Clare has been estimated to be between 13 and 16 feet (Swanson, 1955).

Above the Clare there is a 30 to 40 foot thick gypsum zone that may be traced over much of the central portion of the Michigan Basin. This unit is referred to as the "Triple Gyp". The "Triple Gyp" was named by Wolcott in a paper delivered to the Michigan Geological Society in 1948 (Cohee, 1951). The three individual gypsum zones are separated by thin shales. The Clare dolomite and the "Triple Gyp" are easily recognized through the media of electric logs.

Landes (1944) subdivided the Michigan into lower and upper units. His subdivision was based on the lithologic differentiation that occurs in the Porter Field, Midland County, above and below the base of the Clare dolomite equivalent. He further subdivided each unit into two lithologic zones. Addison (1940) followed approximately the same subdivision in Buckeye Field, Gladwin County, except that he places his subdivision at the top of the Clare rather than the base. Baltrusaites, et. al. (1948) placed his subdivision of upper and lower units similarly to Addison. The lower part of the Michigan is typically dolomite, limestone, shale, sandstone, and a subordinant amount of gypsum. The upper unit is characterized by grey to pink gypsum, locally comprising forty per cent of the section.

Cohee (1951) reported that there is evidence of the upper part of the Michigan being eroded before the deposition of the Bayport, as evinced by part of the Michigan being stripped off some anticlinal folds in the vicinity of Saginaw Bay. Landes (1944) and Addison (1940) corroborated this in that they recognized an erosional unconformity in the Porter Field in Midland County and the Buckeye Field, Gladwin

County. The lower contact of the Michigan is gradational into underlying Marshall.

The age of the Michigan is in question. Newcombe(1933) considered it to be late Osage and early Meramec in age, which is similar to the age assigned by Weller (1948). Cohee (1951), however, was of the opinion that it sould be limited to the Lower Meramec.

The Mississippian Bayport Formation consists of a sequence of basal, grey, friable sandstones that are overlain by limestones. The Bayport is bounded by upper (Cohee, 1951) and lower (Landes, 1944) unconformities. Ehlers and Humphrey (1944) described the Bayport (Point Au Gres) as being equivalent to the St. Louis Limestone and possibly the lower part of the St. Genevieve (Upper Meramec). The correlation indicates that there was probably a direct connection to the south and the Upper Mississippi Valley area during Bayport time.

Pre-Pennsylvanian movement of the sediments in the Michigan Basin was probably initiated in Chester time and continued until the end of the Morrow. The principal structural trends (NW-SE) were formed at this time. In arenac, Bay and Tuscola counties, Cohee (1951) reported that the upper part of the Coldwater, the Marshall, the Michigan and the Bayport are eroded away from the top of some anticlinal folds.

The Pennsylvanian rocks of the Michigan Basin are divided into three units, which are (in ascending order): the Parma Sandstone, a non-fossiliferous, medium to coarse-grained, friable, white sandstone; the Saginaw Group, which has been divided into seven cyclothems (Kelly, 1936) at Grand Ledge in Eaton County; and the Grand River Group, which is classically subdivided into three units. These formations of the Grand River Group are (in ascending order): the lower Woodville Sandstone; the crossbedded, coarse grained Eaton Sandstone; and the overlying deep red

to purple, crossbedded, slightly argillaceous Ionia Sandstone. Cohee (1951) recorded a maximum of 765 feet in Midland County in his study of the Pennsylvanian.

The Saginaw Group flora indicates a Kanawha age. Cohee (1951) believed that younger floras of Allegheny age may be present. The Verne Limestone (Kelly, 1936), the only one observed in the Saginaw, has a scarce, diagnostic fauna that has been correlated with the uppermost Kanawha Seville Limestone in western Illinois (Wanless, 1944). The Pennsylvanian rocks, as the overlying so-called "Permo-Carboniferous red beds", are both delimited by upper and lower contact unconformities.

The "red beds" overlying the Pennsylvanian are observed in the northwestern part of the state. The apparently nonfossiliferous "red beds" are overlain by Pleistocene glacial deposits. The "red beds" have been considered to be Pennsylvanian by Kelly (1936), Permo-Carboniferous by Newcombe (1933), and Martin (1936), and possibly as recent as Cretaceous. The Lower Cretaceous Mattigami Formation (Martison, 1952) bears a remarkable lithologic resemblance to the "red beds". The writer is of the opinion that the "red beds" age problem could be directly and conclusively solved by a palynological examination of the specimens from the interval.

IV. GEOLOGIC HISTORY

The geologic history of the Upper Devonian and Lower Mississippian sediments of the Michigan Basin is illustrated by a series of changing tectonic features primarily peripheral to the Basin. The four subdivisions used by the writer for the basic stratigraphy of the sequence were useful in illustrating these changes (Traverse Group, "B" interval, Coldwater, Marshall).

The isopach studies of the Michigan during Traverse time point out a series of very interesting features. First is the fact that there exists an eastern "normal facies" and a western evaporitic facies. The basins of deposition are developed in response to a north-south barrier, which has been named the West Michigan Barrier. South and east of this spur a northwest-southeast spur exists that is possibly the result of differential compaction of Devonian sediments over the Silurian reefs. The Traverse Group thickens to Northern Michigan and probably during Traverse time was connected to the north through the Ontario Seaway to the James Bay Lowland of Hudson Bay. A correlatable unit (the Williams Limestone) is observed at this area (Martison, 1952). The Traverse Group sediments on the South Michigan Shelf reflect the influence of the Battle Creek Trough in Calhoun and Branch counties, as well as the Chatham Sag. The Howell Anticline and the Clinton Sag in the southeastern Michigan are likewise reflected in the shelf area. The lower contact of the Traverse Group very likely represents a situation of continuous sedimentation in the Michigan Basin. Minor disconformities that have been reported at this contact may be, in actuality, submarine in their development. The Traverse Group is a section of more or less continuous deposition of argillaceous shales and limestones.

At the top of the Traverse Group there exists a thin zone which is referred to as the transition zone. This zone represents the gradual change that occurs from typical Traverse carbonates to typical Antrim shales. Gamma ray-neutron stratigraphy in the Michigan Basin lucidly shows that the basal portion of the "B" interval throughout the Basin (Lower Antrim) was a time of widespread organic accumulation. The concentration of the organic accumulation is through the development of planktonic sargassoid plant communities. This would fit the widespread black shale that is observed throughout the entire North American continent during this time. Abundant evidence as to the nature of the plant types present may be seen in the Foerstian remains and algal thalli that have been uncovered from the interval. Lower Antrim apparently represents a period of widespread stabilization in the Michigan Basin in that the unit seems to be continuous in its development throughout the entire Basin area. Following the deposition of the basal unit of the Antrim shale (the Lower Antrim), structural activity took place, synorogenically with the Acadian orogeny, in the Wisconsin Highlands region. This movement probably occurred simultaneously with the development of an arch or barrier in the Michigan Basin, which is illustrated on the "B" interval isopach map (Plate 2). The South Michigan Shelf continued to influence sedimentation as it did in the Traverse; the units in the "B" interval thin to the south. After the probable movement on the "B" axis the Ellsworth Shale was deposited and largely confined to the western portion of the Michigan Basin. In the eastern portion of the Michigan Basin to the "B" axis or barrier, ecological conditions developed that led to the formation of the Lower Antrim black shales. At this time the Berea delta developed in Ontario from an eastern source area (Laurentia). This is illustrated by the Berea-

Bedford isopach map (Plate 12). The Berea-Bedford represents a sequence of shales and sands that spread over and gradually replaced the sequence of black shales in the Eastern Michigan Basin. This is observed in the gamma ray cross sections of the Michigan Basin, where there is an apparent increase in the thickness of the Upper Antrim towards the "B" axis or barrier. The Berea-Bedford is apparently later than the Ellsworth Shale.

The Berea Sandstone is found in northwestern Michigan, central Michigan and throughout eastern Michigan. This low radioactive unit is correlated with the commercial gas unit in western Michigan that is referred to as the Berea dolomite.

The masked zone problem that exists along the "B" barrier can be resolved by realizing that this was probably an ecological niche for the sargassoid plants during the accumulation of the upper portion of the "B" interval. The uppermost Ellsworth-lower Coldwater contact problem is solved by the utilization of the Sunbury Shale and Coldwater redrock as correlatable tops. The Sunbury Shale may indicate a brief return to the conditions that existed prior to the development of the Berea and Ellsworth shales dependent on whether the organic material is humic or sapropelic. The deposition of the Sunbury Shale is noted throughout the entire Basin, with the exception of southwestern Michigan; apparently the "B" axis shallows upon the South Michigan Shelf and prevents the spread of organic material into this area. Sediments which are pouring out of the east from the southwest Ontario region, likewise, cannot be intermixed with the Ellsworth in this particular region because of the increasing elevation of the "B" axis or barrier to the south onto the South Michigan Shelf.

The Coldwater Shale is the thickest directly east of the "B" axis.

Two distinct facies are developed at this time-- an eastern sandy and silty facies near the source area and a western calcareous facies at a farther distance from the eastern source region. Only one unit in the entire Coldwater sequence can be used as a regional correlation point. This is the Coldwater redrock, which exists some thirty feet above the base of the Coldwater Shale. The thickest Coldwater Shale section exists in Iosco County, northeastern Michigan. There is a probable shift in sedimentation during Coldwater time. It no longer seems to be coming from directly east as it had in the Berea-Bedford sequence. Provenance is either a combination of sources or a single source coming northeast from the Laurentian area.

The Marshall Sandstone is an extremely thin unit ranging from approximately 100 to 350 feet in thickness. Its sandy character indicates a further change within the Michigan Basin. As with the Coldwater, the South Michigan Shelf as such no longer seems to exist. The Marshall Sandstone in eastern Michigan has its source area to the east in the Laurentian region. Later in the development of the Marshall, uplift takes place in the Wisconsin Highlands with a resultant flood of sediments coming into the Basin from the western margin. It is observed that two facies once again, an eastern and western facies, exist in the Basin. The facies are differentiated on the basis of their sedimentary petrography. The western and southern facies had its source area in the Wisconsin Highland region. The eastern facies had Laurentia as its source area. The Upper Marshall, which is only recognized in eastern facies, represents a change in sedimentation pattern that occurs in the Laurentian area. The sedimentation in the southern and western facies continues without interruption. The upper contact of the Marshall with relation to the

Michigan stray sand indicates that it is a portion of the Upper Marshall and is correlatable to the upper portion of the Marshall in the southern and western facies.

V. SUMMARY AND CONCLUSIONS

The regional study of the Upper Devonian-Lower Mississippian rocks of the Michigan Basin utilizing detailed iospach maps were successful. The maps help solve basinal and tectonic features that existed throughout the Upper Devonian-Lower Mississippian history of the Michigan Basin. They indicate the possibility that a likely synorogenic Acadian or Upper Devonian uplift occurred in the Wisconsin Arch region and may have been attended by the development of a barrier ("B" axis) in the Michigan Basin (Plate 2). The South Michigan Shelf is clearly indicated in the Traverse Group and the "B" interval (Plates 1, 2). The Coldwater map (Plate 3) indicates the dissolution of this particular feature, occurring in the Late Kinderhook time. The Marshall Sandstone indicates (Plate 4) a shallow sheet sand development probably related to the end of the active development of the autogeosyncline. Evidence for the Ontario Seaway is observed in the Traverse Group map (Plate 1) and less obviously in the "B" interval isopach (Plate 2).

The Bay County sequence of isopach maps were useful in that they revealed a channel system extending east-west from southwestern Ontario. It, likewise, establishes an eastern source area direction for the Berea-Bedford clastics. The Bay County structure contour maps on all intervals, except the Coldwater Shale, proved to be reliable. The gamma ray radioactive log cross sections (Plate 17 - 20) illustrate lucidly the lithologic correlations of the Michigan Basin during the deposition of "B" interval.

The Ellsworth Shale-Coldwater Shale contact in western Michigan can be locally problematical when rotary and cable tool samples fail to indicate either the presence of the Coldwater redrock or the Sunbury Shale.

However, when using gamma ray logs, the highly radioactive Sunbury Shale is discernible when as thin as five feet in thickness. The Coldwater redrock is apparently identifiable in thicknesses of less than ten feet. The two units invariably occur stratigraphically within thirty feet of each other.

The gamma ray Sunbury Shale-Coldwater redrock can be utilized as a structure contour interval throughout the entire Michigan Basin. As this contact forms the most reliable datum in the Paleozoic sequence above the Dundee, it is critical, not only to petroleum exploration, but also to field production development.

There are five favorable factors that should be considered with respect to this unit:

- The Sunbury Shale-Coldwater redrock is younger than nearly all of the major producing zones in the Michigan Basin.
- (2) In any given area, either the Sunbury Shale or the Coldwater redrock is present (more often than not, both are).
- (3) The units are nearly synchronous throughout the Basin.
- (4) The radioactive gamma ray log can be run through the casing in any given well.
- (5) With sufficient control, any structure within the Basin may be accurately delimited provided the structure is reflected in the Devonian-Mississippian "B" interval.

The Berea-Bedford contact in eastern Michigan is often gradational and very difficult to pick when using lithologic sample examination techniques. The Berea-Bedford contact may be picked with realtive ease by gamma ray logs, except in the area south of the Mecosta-Isabella County area along and west of the "B" barrier. The contact cannot be picked on the South Michigan Shelf, west of Lenawee County. West of the barrier in northern Mecosta County and Wexfore County the Berea may be separated.

The nature of the east-west relationship between the Antrim-Bedford-Berea and the Antrim-Ellsworth can be solved with gamma ray logs. The Antrim is divided into two units, a lower and an upper. The lower is observed over the entire Basin; the upper is largely restricted to the area east of the "B" barrier. The Ellsworth Shale is equivalent to the Upper Antrim-Bedford-Berea sequence in the southwest Michigan, to the Upper Antrim-Lower Berea-Bedford equivalent in west-central Michigan; and is older than the Berea, but equivalent to the Lower Bedford-Upper Antrim in northwestern Michigan. The source area for the Ellsworth was north and west from the Wisconsin Highlands. The Antrim Shale-Ellsworth Shale contact in western Michigan is difficult to delimit lithologically because of the gradational and interfingering characteristics of the two formations. Gamma ray studies, however, indicate that such a separation is possible and correlative. The Antrim unit represented west of the "B" axis and below the Ellgworth Shale is the Lower Antrim, except in a few places where thin sequences characterizing the Upper Antrim are found locally above.

The Traverse transition zone, which is discussed in the section on the Traverse, is clearly reflected by a gradual change in rock type from the typical Traverse limestone to the typical Lower Antrim black shale, based on the gamma ray-neutron logs.

In the "masked zone", which occurs in central Michigan, along the "B" axis, the entire "B" interval appears to be black shales from lithologic examination. The is attributed to a higher organic content caused by accumulation or preservation that is occurring along the "B" axis. It is in probable response to more desirable ecological conditions that would be found along the axis rather than in either the eastern or western areas of sedimentation.

The regional distribution of the Upper Devonian-Lower Mississippian black shales and their related rocks (Plate 21) is useful in illustrating some of the problems of the black shales and represents an added refinement to Conant and Swanson's (1961) earlier work. Utilizing Sloss et. al. (1960) data inferred isopach clastic sources were established for the Upper Devonian-Lower Mississippian black shale throughout the continental United States.

BIBLIOGRAPHY

- Adams, J. E., et. al., 1951, Starved Pennsylvanian Midland Basin: Am. Assoc. Petrol. Geol. Bull., v. 35, p. 2600-2607.
- Addison, Carl C., 1940, Buckeye oil field, Gladwin County, Michigan: Am. Assoc. Petrol. Geol. Bull., v. 24, p. 1950-1982.
- Allings, Harold L. and Briggs, Louis I., 1961, Stratigraphy of Upper Silurian Cayugan Evaporites: Am. Assoc. Petrol. Geol. Bull., v. 45, p. 515-547.
- Baillie, Andrew D. 1953, Devonian System of the Williston basin area: Manitoba Dyst mines and natural resource, Mines branch: Publ. 52-5, 405 pp.
- Bain, G. W., 1950, Geology of Fissionable materials: Econ. Geol., v. 45, p. 273-323.
- Baltrusaites, E. J., Clark, C. K., Cohee, G. V., Grant, R. P., Kelly, W.
 A., Landes, K. K., Lindberg, G. D., and Newcombe, R. B., 1948, A
 Summary of the Stratigraphy of the Southern Peninsula of Michigan:
 Am. Assoc. Petrol. Geol. Comm. on Geol. Names and Correlations.
- Bates, Thomas G., and Strahl, Erwin O., 1957, Minerology, Petrography and Radioactivity of the Chattanooga Shale: Geol. Soc. Am. Bull., v. 63, 10.10.
- Baunatyne, Barry B., 1960, Potash deposits, rock salt, and brines in Manitoba: Manitoba Dyst. Mines and natural resources: Mines Branch publ. 59-1 30 pp.
- Beers, R. F., and Goodman, Clark, 1944, Distribution of radioactivity in ancient sediments: Geol. Soc. America Bull., v. 55, p. 1229-1254.
- Beers, R. F., 1945, Radioactivity and organic content of some Paleozoic shales: Am. Assoc. Petrol. Geol. Bull., v. 29, p. 1-22.
- Bishop, Margaret Stearns, 1940, Isopachous studies of Ellsworth to Traverse limestone Sections of southwestern Michigan: Am. Assoc. Petrol Geol. Bull., v. 24, p. 2150-2162.
- Breger, Irving A., and Brown, Andrew, 1962, Kerogen in the Chattanooga Shale: Science, vol. 137, p. 221-224.
- Campbell, Guy, 1946, New Albany Shale: Geol. Soc. Am. Bull., v. 57, p. 829-908.
- Clarke, J. M., 1915, Conceptions regarding the American Devonic: New York State Mus. Bull. 177, p. 115-133.
- Cohee, G. V., 1944a, Thickness and Character of the Traverse Group and Dundee Formation in Southwestern Michigan: U. S. Geol. Survey, Oil and Gas Inv., P. C. 4.

Cohee, G. V., 1944b, Geology and Oil and Gas Possibilities of South-Central Michigan: U. S. Geol. Survey, P. M. 11.

, 1945a, Sections and Maps of Lower Ordovician and Cambrian rocks in the Michigan Basin, Michigan and Adjoining area: U. S. Geol. Survey, Oil and Gas Inv., P. C. 9.

_____, 1945b, Geology and Oil and Gas Possibilities of Trenton and Black River limestone of the Michigan Basin and Adjacent areas: U. S. Geol. Survey, Gas and Oil Inv., P. C. 11

_____, 1947a, Cambrian and Ordovician rocks in recent wells in southeastern Michigan: Am. Assoc. Petrol. Geol. Bull., v. 31, p. 293-307.

_____, 1947b, Lithology and Thickness of the Traverse Group in the Michigan Basin: U. S. Geol. Survey, Oil and Gas Inv., P. C. 28.

_____, 1948a, Cambrian and Ordovician rocks in the Michigan Basin and Adjoining areas: Am. Assoc. Petrol. Geol. Bull., v. 32, p. 1417-1448.

_____, 1948b, Thickness and Lithology of the Upper Ordovician and Lower and Middle Silurian Rocks in the Michigan Basin: U. S. Geol. Survey, Oil and Gas Inv., P. C. 33.

_____, et. al., 1944, Map and Sections of the Berea sandstone in Eastern Michigan: U. S. Geol. Survey, P. M. 17.

_____, and Landes, Kenneth K., 1958, <u>Oil in the Michigan Basin;</u> Habitat of Oil Synopsium: Am. Assoc. Petrol. Geol. Bull., p. 473-493.

_____, Macha, Carol, and Holk, Margery, 1951, Thickness and Lithology of Upper Devonian and Carboniferous Ricks in Michigan: U. S. Geol. Survey, Oil and Gas Inv., P. M. 38.

_____, and Underwood, L. B., 1945, Lithology and Thickness of the Dundee and Rogers City limestone in the Michigan Basin: U. S. Geol. Survey, Oil and Gas Inv., P. M. 38.

Conant, Louis C., and Swanson, Vernon E., 1961, Chattanooga Shales and Related Rocks of Central Tennessee and Nearby Areas: U. S. Geol. Survey, Prof. paper 357, 91 pp.

Cooper, G. A. et. al., 1942, Correlations of the Devonian Sedimentary formations of North America: Geol. Soc. Amer. Bull., v. 53, p. 1729-1793

Cooper, W. F., 1909, Michigan Miner, v. 11, No. 6, p. 13.

Daly, P. A., 1900, The Calcareous Concretions of Kettle Point, Lambton County, Ontario: Jour. Geology, v. 8, p. 135-150.

- Edwards, I. and Raasch, G. O., 1922, Notes on the Occurrence of Upper Devonian Strata in Wisconsin: 1921 Yearbook of the Public Museum of the City of Milwaukee, p. 88-93.
- Ehlers, G. M. et. al., 1952, Stratigraphy and Structure of the Devonian Rocks in southeastern Michigan and northwestern Ohio: Mich. Geol Soc. Guidebook, 40 pp.

_____, and Humphrey, W. E., 1944, Revision of E. A. Strong's Species from Mississippian Point Au Gres limestone from Grand Rapids, Michigan: Contr. Mich. Mus. Paleo., v. 6, p. 113-130.

_____, and Radabaugh, R. E., 1937, The Rogers City limestone, a New Middle Devonian formation in Michigan: Mich. Acad. Sci. Papers, v. 23, p. 443.

_____, and Smith, Jane E. and Shelden, Francis D., 1959, Surface Stratigraphy of the Mackinac Straits Region: Mich. Basin Geol. Soc. Guidebook, p. 13-18.

- Ekblaw, George E., 1938, Kankakee Arch in Illinois: Ill. State Geol. Survey, Circular no. 40, 6 pp.
- Ellison, S. P., Jr., 1950, Subsurface Woodford Black Shale, West Texas and Southeastern New Mexico: Texas Bur. of Econ. Geol., Rept. Inv. 7, p. 1-20.
- Ells, Garland D., 1958, Notes on the Devonian-Silurian in the Subsurface of Southwest Michigan: Mich. Geol. Survey, Progress report 18.
- Faul, H., 1954, Nuclear Geology: John Wiley and Sons, Inc., 414 pp.
- Fry, Wayne L., and Banks, Harlan L., 1955, Three new genera of algae from the Upper Devonian of New York: Jour. Paleo., v. 29, p. 37-44.
- Fisher, James Harold, 1953, Paleoecology of the Chattanooga-Kinderhook Shale: Ph. D. Thesis, Univ. Illinois, 119 pp.
- Fix, Carolyn E., 1958, Selected Annotated Bibliography of the Geology and Occurrence of Uranium-bearing marine black Shales in the United States: U. S. Geol. Survey Bull., 1059-F, p. 263-325.
- Glover, Lyn, 1959, Stratigraphy and Uranium Content of the Chattanooga Shale in Northeastern Alabama, Northwestern Georgia, and Eastern Tennessee: U. S. Geol. Survey Bull., 1087-E, p. 133-168.
- Gordon, Charles H., 1900, Geological Report on Sanilac County, Michigan: Mich. Geol. Survey, v. 7, 34 pp.
- Grabau, A. W., 1906, Type of Sedimentary Overlap: Geol. Soc. Am. Bull., v. 17, p. 567-636.

_____, 1919, Significance of the Sherburne sandstone in Upper Devonic stratigraphy: Geol. Soc. Am. Bull., v. 30, p. 465-468. Green, Dorsie A., 1957a, Trneton Structure in Ohio, Indiana, and Northern Illinois: Am. Assoc. Petrol. Geol. Bull., v. 41, p. 627-642.

, 1957b, A Reply to the J. Marvin Wellers' discussion of the Writer's Trenton structure in Ohio, Indiana, and Illinois: Am. Assoc. Petrol. Geol. Bull., v. 41, p. 2135-2136.

- Gutschick, R. C., 1947, Origin of some bitumen in the Devonian-Mississippian black shales and the Eocene Green River shale: Geol. Soc. Am. Bull., v. 58, p. 1185.
- Hake, B. F., 1938, Geologic Occurrence of Oil and Gas in Michigan: Am. Assoc. Petrol. Geol. v. 22, p. 393-415.

_____, and Maebius, J. B., 1938, Lithology of the Traverse Group of Central Michigan: Mich. Acad. Sci. Papers, v. 23, p. 447-461.

- Hale, Lucille, 1941, Study of Sediments and Stratigraphy of the Lower Mississippian in Western Michigan: Am. Assoc. Petrol. Geol. Bull., v. 25, p. 713-723.
- Hard, E. W., 1931, Black Shale Deposition in Central New York: Am. Assoc. Petrol. Geol. Bull., v. 15, p. 165-181.

______, 1938, Mississippian Gas Fields of the Central Michigan Area: Am. Assoc. Petrol. Geol. Bull., v. 22, p. 129-174.

Haun, J. D., and LeRoy, L. W., 1958, Subsurface Geology in Petroleum Exploration; Symposium: Colo. Sch. Mines, Johnston Publ. Co., Boulder, Colo. 887 pp.

Hicks, L. E., 1878, Am. Jour. Sci., 3d, v. 16, p. 216-220.

Holland, F. D., Jr., 1952, Stratigraphic Details of the Lower Mississippian Rocks of Northeastern Utah and Southwestern Montana: Am. Assoc. Petrol. Geol. Bull, v. 36, p. 1697-1734.

Hoover, Karl V., 1960, Devonian-Mississippian Black Shale Sequence in Ohio: Ohio Geol. Survey, Inf. Circ. 27, 154 pp.

- Jodry, R. L., 1957, Reflection of Possible Deep structures by Traverse Group facies changes in Western Michigan: Am. Assoc. Petrol. Geol. Bull., v. 35, p. 713-23.
- Kay, G. M. 1942, Development of Northern Alleghany Syndinorium and Adjoining regions: Geol. Survey Assoc., v. 53, pt. 2.
- Kay, Marshall, 1951, North American Geosynclines: Geol. Soc. Am. Mem. 48.
- Kelly, W. A., 1936, Pennsylvania System in Michigan: Mich. Geol. Survey Publ. 40, Geol. Series 34, p. 149-226.

- Kelly, W. A., and Smith, G. W., 1947, Stratigraphy and Structure of Traverse Group in Afton-Onaway area, Michigan: Am. Assoc. Petrol. Geol. Bull., v. 31, no. 3, p. 447-469.
- Keyes, C. R., 1938, Age of Chattanooga black shales: Pan-Am. Geol. v. 70, p. 364-366.
- Kropachot, Robert E., 1953, A Quantitative Sedimentary Analysis of the Mississippian Deposits in the Michigan Basin: M. S. Thesis, Mich. State Univ., 57 pp.
- Krumbein, W. C., and Garrels, R. M., 1952, Origin and Classification of chemical sediments in terms of PH and oxidation-reduction potentials: Journ. Geol., vol. 60, p. 1-33.
- Landes, Kenneth K., 1944, Porter Oil field, Midland County, Michigan: Am. Assoc. Petrol. Geol. Bull., v. 28, p. 173-196.

_____, 1945a, The Salina and Bass Island Rocks of the Michigan Basin, U. S. Geol. Survey, Oil and Gas Inv. P. M. 40.

_____, 1945b, Geology and Oil possibilities of Sylvania and Bois Blanc formations of Michigan: U. S. Geol. Survey, P.M. 28.

Landis, E. R., 1962, Uranium and other Trace Elements in Devonian and Mississippian Black shales in the Central Midcontinent Area: U. S. Geol. Survey. Bull., 1107-E, p. 289-334.

Lane, A. C., 1893, Michigan Geol. Survey Rept. 1891 and 1892, p.66.

_____, 1895, The Geology of Lower Michigan: Mich. Geol. Survey, c. 5, pt. 2.

_____, 1901, Michigan Miner, vol. 3, no. 1, p. 9.

_____, 1902, Mich. Geol. Survey, v. 8.

- LeMone, Daivd V., 1958, The Devonian Rocks of Cochise, Santa Cruz, and Pima counties, Arizona, and Hidalgo County, New Mexico, M. S. Thesis, Univ. Arizona, 132 pp.
- Levorsen, A. I., 1933, Studies in Paleogeology: Am. Assoc. Petrol. Geol. Bull., v. 17, p. 1107-1132.

____, 1960, Paleogeologic Maps: W. A. Freeman and Co., 174 pp.

- Lindberg, George D., 1948, Deerfield Oil Field, Monroe County, Michigan: Struc. Typical American oil fields, v. 3, Am. Assoc. Petrol Geol. Bull., p. 305-318.
- Lockett, J. R., 1947, Development of the Structures in Basin areas of northeastern United States: Am. Assoc. Petrol. Geol. Bull., v. 31, p. 429-446.

Martin, Helen M., 1936, The Centennial Geological map of the Southern Peninsula of Michigan: Mich. Feol. Survey Div., publ. 39, Geol. Survey 33.

_____, and Straight, Merril T., 1956, An Index of Michigan Geology 1823-1955: Mich. Geol. Survey, Publ. 50, 461 pp.

- Martison, N. W., 1952, Petroleum Possibilities of the James Bay Lowland Area: Ontario Dept. Mines, ann. rept., v. 61, p. 1-58.
- Mason, Brian, 1952, <u>Principles of Geochemistry</u>: John Wiley and Sons, 276 pp.
- McCammon, Helen, 1960, Fauna of the Manitoba Group in Manitoba: Manitoba Dept. Mines and natural resources, Mines Branch, Publ. 59-6, 109 pp.
- McFarian, Arthur C., 1939, Cincinnati Arch and features of its development Am. Assoc. Petrl. Geol. Bull., v. 23, p. 1847-52.
- McGregor, Duncan J., 1954, Stratigraphic Analysis of Upper Devonian and Mississippian Rocks in Michigan Basin: Am. Assoc. Petrol. Geol. Bull., v. 38, p. 2324-2356.
- Melhorn, Wilton N., 1958, Stratigraphic Analysis of Silurian Rocks in Michigan Basin: Am. Assoc. Petrol. Geol. Bull., v. 42, 816-838.
- Miller, A. K., and Garner H. F., 1953, Lower Mississippian Cephalopods of Michigan; Part II, Coiled Nautiloids: Contr. Mich. Univ. Mus. Paleo., v. 11, p. 111-151.

______, 1955, Lower Mississippian Cephalopods of Michigan; Part III, Ammonoids and Summary: contr. Mich. Univ. Mus. Paleo., v. 12 p. 113-173.

- Monnett, V. Brown, 1948, Mississippian Marshall formation of Michigans Am. Assoc. Petrol. Geol., v. 32, p. 629-688.
- Morse, M. L., 1938, Conodonts from the Norwood and Antrim shales of Michigan: Mich. Univ. Ph. D. disset.
- Newberry, J. S., 1870, Ohio Geol. Surv. Rept. Prog. 1869, p. 21-29.
- Newcombe, R. J. B., 1930, Middle Devonian unconformity in Michigan: Geol. Soc. Am. Bull., v. 41, no. 4, p. 725-737.

_____, 1932, Geology of Muskegon field, Michigan: Am. Assoc Petrol. Geol. Bull., v. 16, 153-168.

- _____, 1933, Oil and Gas fields of Michigan: Mich. Geol. Survey Div., Publ. 38, Geol. Series 32.
- _____, 1935, Natural Gas fields of Michigan: Am. Assoc. Petrol. Geol. Bull., Geology of Natural Gas, p. 787-812.
- Newman, E. A., 1936, Geology of Ogemaw County and West Branch oil field: Mich. Geol. Surv. Prog., Rept. 2.

- Nininger, R. D., 1954, <u>Minerals for Atomic Energy</u>: D. Van Nostrand Co., Inc., 367 pp.
- O'Hara, Norbert Wilhelm, 1954, A statistical and Mechanical Analysis of the Marshall sandstone in western Michigan to Determine the environmental pattern of the deposited M. S. Thesis, Mich. State Univ. 142 pp.
- Orton, Edward, 1882, A source of the bituminous matter in the Devonian and subcarboniferous black shales of Ohio: Am. Jcur. Sci. (3), v. 24, p. 171-175.

p. 1-310. <u>Economic Geology</u>: Rept. Geol. Survey Ohio, v. 6

- Pepper, James F., DeWitt, Wallace, Jr., Demorest, David F., 1954, Geology of the Bedford Shale and Berea Sandstone in the Appalachian Basin: U. S. Geol. Survey, Prof. paper 259, 111 pp.
- Petri, E., 1956, The Bakken Formation in Manitoba, B. Sc. Thesis, Univ. Manitoba.
- Phinney, A. J., 1891, The Natural Gas Field of Indiana: U. S. Geol. Surv., 11th Ann. Rept., p. 647.
- Pirtle, G. W., 1932, Michigan Structural Basin and its Relationship to surrounding areas: Am. Assoc. Petrol. Geol. Bull., v. 16, p. 145-152.
- Pohl, Erwin R., 1930, The Middle Devonian Traverse Group of rocks in Michigan, a Summary of Existing Knowledge: Proc. U. S. Natl. Mus. v. 76, art. 14, p. 1-34.
- Raymond, P. E., 1942, The pigment in black and red sediments: Am. Jour. Sci., v. 240, p. 658-669.
- Rich, J. L., 1948, Probable deep-water origin of the Marcellus-Ohio-New Albany-Chattanooga Black shales (abs). Geol. Soc. Amer. Bull., v. 59, no. 9, p. 1346-1347.
- ______, 1951, Probable Fondo origin of the Marcellus-Ohio-New Albany-Chattanooga Bituminous shales: Am. Assoc. Petrol. Geol. Bull., v. 35, no. 9, p. 2017-2040.
- Riggs, C. H., 1938, Geology of Allegan County: Mich. Geol. Survey Prog. Rept. 4, 29 pp.
- Ross, Roy M. 1957, A Quantitative Analysis of the Middle Devonian Traverse Group in the Michigan Basin: M. S. Thesis, Mich. State Univ.

Ruedemann, R., 1934, Geol. Soc. Am. Mem. 2. 141 pp.

Sabins, Floyd F., Jr., 1957, Stratigraphic Relations in Chericahua and Dos Cabezas Mountains, Arizonas Am. Assoc. Petrol. Geol., v. 41, p. 466-510.

- Sawtelle, E. Rossiter, Jr., 1958, The Origin of the Berea sandstone in the Michigan Basin, M. S. Thesis, Mich State Univ.
 - Schuchert, C., 1910, Biologic Principles of Paleogeography: Pop. Sci. Ma., no 76, p. 591-600.

, 1915, The conditions of black shale deposition as illustrated by Kupferschiefer and Lias of Germany: Am. Philos. Soc. Print. no. 54, p. 259-269.

_____, 1955, <u>Atlas of Paleogeographic maps</u>: John Wiley and Sons, Inc., New York, 177 pp.

- Shaler, N. S., 1877, Notes on the investigations of the Kentucky Geological Survey during the years 1873, 1874, and 1875.
- Sloss, L. L., Dapples, E. C., Krumbein, W. C., 1960, Lithofacies Maps on Atlas of the United States and Southern Canada: John Wiley and Sons, inc. 108 pp.
- Smith, H. N., Smith J. W., and Kommes, W. C., 1959, Petrographic Examination and Chemical Analyses for several Foreign Oil Shales: U. S. Bur. Mines Rept. Inv. 5504, 34 pp.
- Stainbrook, Merrill A., 1935, Stratigraphy of the Devonian System of the upper Mississippi Valley: Ninth Ann. Field Conference, Kansas Geol. Soc. p. 248-260.
- Stearns, Margaret D., 1933, The Petrology of the Marshall formation of Michigan: Journ. Sed. Petrol., v. 3, pp. 99-112.
- Stockdale, Paris B., 1939, Lower Mississippian Rocks of the Eastcentral interior: Geol. Soc. Am. Spec. Papers 22.
- Strom, K. M. 1936, Land-locked waters: Det norske videnskapp-Akademi i Oslo, Nat. Naturv. Klasse, v. 1, no 7. p. 1-85.
- Strumm, Erwin C., 1951, Check list of fossil invertebrates Described from the Middle Devonian Traverse Group of Michigan: Contr. Mich. Univ. Mus. Paleo., v. 9, p. 1-44.

_____, 1953, Trilobites of the Devonian Traverse group of Michigan: contr. Mich. State Mus. Paleo. v. 10, p. 101-157.

_____, Kellum, Lewis B., and Wright, Jean Davies, 1956, The Devonian Strata of the London-Sarnia area, Southwestern Ontario: Mich. Geol. Soc. Guidebook, 21 pp.

, and Wright, Jean D., 1958, Check list of Fossil invertebrates described from the Middle Devonian Rocks of the Thedford-Arkona Region of Southwestern Ontario: Contr. Mich. Univ. Mus. Paleo., v. 14, p. 81-132.

Sutton, Robert G., 1957, Lithofacies map of Upper Devonian in Eastern United States: Am. Assoc. Petrol. Geol. Bull., v. 41, p. 750-755.

- Swann, David H., et. al., 1951, Eastern Interior Basin, Possible Future Petroleum Privinces of North America: Am. Assoc. Petrol. Geol. Bull., v. 35, p. 406-498.
- Swanson, Roy Ivar, 1955, The Extent of the Clare Dolomite, a Marker Horizon of Michigan: M. S. Thesis, Mich. State Univ., 81 pp.
- Swanson, Vernon E., 1960, Oil Yield and Uranium Content of Black shale: U. S. Geol. Survey Prof. Paper 356A, 44 pp.

_____, 1961, Geology and Geochemistry of Uranium in Marine Black Shales: A Review: U. S. Geol. Survey Prof. paper 3560, p. 67-112.

- Tarbell, E., 1941, Antrim-Ellsworth-Coldwater Shale formations in Michigan: Am. Assoc. Petrol. Geol. Bull., v. 25, p. 724-733.
- Taylor, W. H., 1839, Mich. Geol. Surv. Rept. State Geol. in improvement of State Salt Springs, Mich. Leg. H. R. Doc. 2.
- Thwaites, F. T., 1943, Stratigraphic Work in Northern Michigan: Mich. Acad. Sci., v. 28, p. 501.
- Twenhofel, W. H., 1915, Notes on Black Shale in the Making: Am. Jour. Sci., ser. 4, v. 40, p. 272-280.

_____, 1939, Environment of Origin of Black Shales: Am. Assoc. Petrol. Geol. Bull., v. 23, p. 1178-1198.

- Vine, James D., 1962, Geology of Uranium in Coaly Carbonaceous Rocks: U. S. Geol. Survey Prof. paper 356-D, p. 113-170.
- Wanless, Harold R., 1948, Correlation chart of Pennsylvanian strata exhibited at Geol. Soc. America Ann. meeting, New York, N. Y. as referenced in Cohee et. al., 1951.
- Warren, P. S., 1937, Age of the Exshaw Shale in the Canadian Rockies: Am. Jour. Sci., ser. 5, v. 33, p. 454-457.
- Warthin, A. S., and Cooper, G. A., 1935, Hamilton Correlations in Ontario and Michigan: Geol. Soc. Am. Proc. (1934), p. 362-363.

_____, 1943, Traverse rocks of Thunder Bay Region Michigan: Am. Assoc. Petrol. Geol. Bull., v. 27, p. 571-595.

Weller, J. M., and Sutton, A. H., 1940, Mississippian Border of Eastern Interior Basin: Am. Assoc Petrol. Geol. Bull., v. 24, p. 765-858.

_____, et. al., 1948, Mississippian formations of North America: Geol. Soc. Am. Bull., v. 59, p. 91-188.

_____, and Workman, L. E., 1948, Structural Development of Eastern Interior Basin (abst): Am. Assoc. Petrol. Geol. Bull., v. 32, p. 302.

- Weller, J. M., 1957, Discussion of Dorsie Green's Trenton Structure in Ohio, Indiana and Northern Illinois: Am. Assoc. Petrol.Geol. Bull., v. 41, p. 2132-2135.
- Wild, Robert C., 1958, Sedimentary Analysis of Middle Devonian Sylvania sandstone in the Michigan Basin: M. S. Thesis, Mich. State Univ.
- Wilmarth, Grace M., 1937, Lexicon of Geologic Names of the United States: U. S. Geol. Survey Bull. 896, pt. 1 and pt. 2.

Winchell, A., 1861, Mich. Geol. Surv. 1st Bien Rept. Prog., pp. 80, 139.

_____, 1871, Mich. Geol. Surv. Rept. Prog., p. 26-33.

- Winslow, M. R., 1962, Plant Spores and other Microfossils from Upper Devonian and Lower Mississippian Rocks of Ohio: U. S. Geol. Survey Prof. paper 364, 93 pp.
- Wolcott, Richard H., 1948, Consulting Geologist, paper read before the Mich. Geol. Soc. in Cohee, et. al. 1951.

APPENDIX I

TRAVERSE	640 648		686 673	688	658 658 638	695	687 699	725 680	686 688	686 681 681	
TOTAL 'B'	529 545		525 546	541	527 540	565	562 553	550	547	551 538	
ANTRIM	333 350		345	354 375	310 333 354	334	347	345	335	346	250
BEREA- BEDFORD	174 150		160	152 155	1 67 168	208	177 195	165 182	198	180 185	
SUNBURY	22 45	35	8 %	はない	50 <u>58</u>	3	38 25	33	25	おおお	ŧ
COLDWATER	980	1085	366	1039 1069	1005 1070	179	905	1025	994 1000	1080 980	202
MARSHALL	187	182	225	190	202 210 225		165		150 174	81 186	TOF
DUNDEE	-2649 -2616		-2877 -2890	-2922	-2011 -2809 -2939	- 2166	-2146	-2121	-2139 2182	-2217	ハンシン
TRAVERSE	-2009 -1968		-2191 -2191	-2314	-2151 -2151 -2301	1741-	-1459 -1449	-1423	-1453 -1494	-1531	
ANTRIM	-1676 -1618		-1846	-1880 -1939	-1947 -1818 -1947	-1137		-1085 -1096	-1159	-1185 -1495	(171-
SUNBURY	-1480 -1423	- 1493	-1624 -1624	-1704	- 1623 - 1759	- 906	- 897 -896	-883 -891	-906 -948	-980 -1287	
COLDWATER	-443	-443	-671	-704 -704	-712 -689 -689	+65	\$	+134	12 12 12 12 12 12 12 12 12 12 12 12 12 1		171
ELEVATION	607.4 632.3	5 88 .6	629 637	656 661.1	647.3 661.3 661.3	599 . 1	588°0 589 . 4	592 . 1 599	583°3 596°3	600°2 599°5	
WELL NUMBER	л 2	ŝ	96	- 60 00 0	242	13	3°	126	18	នជន	Ş
LOCATION	TI3N R4E NE/NE/SW-4 C/S½/SW-7	T13N R6E NW/NW/NE-3	T14N R3E SE/SE/SE-9 NE/NE/NF-17	SW/SE/NE-18 NW/SE/SW-19	NE/NE/NW-20 S½/SE/SW-27 NW/NE/NW-31	T_NE/NE/NE_I	CN ^{\$} /SW/NE-1 CN ^{\$} /SW/SE-1	CN J /SE/SE-2 S J /SE/SE-2	CSA/SW/SE-2 CSA/NE/SE-3	CS ¹ /NW/NW-3 CE ¹ /NE/SW-10	TT-MI /MI /ZN
PERMIT NUMBER	20114 10275	8746	10868 19861	3237	17943 4423 10853	15318	20876 9658	13501	20263 9986	20701 5831	ナノノトト

TRAVERSE	695 697	695 693	690 687 689	708 686 683	680 683 683	685 691 684	610 610	649 666 674 675	685 688
TOTAL'B'	535 520	541 554	555 541 554	543	550 555 544 553	546	553	544 543 536	519
ANTRIM	334 327	333 341	341 341	324	332 331-7-7-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	334	344- 339	330 346 331	310
BEREA- BEDFORD	186 185	182 185	194 179 179	192 195 184	190 190 196	192	161 8/.T	186 177 175	175 203
SUNBURY	15 19	Я%8	25 29	\$ \$ <u>8</u> 3	3 52 53 S	8000	3.22	% & <u>%</u>	6 30
COLDWATER	980 1001	1040 1097	1037 1036	980 980 990	997 1012 1072	1017 1017	1027 1057	1044 1006	966
MARSHALL	255 144	154 90	165 142	130 181 185	120	132	94 135	41	
DUNCEE	-2193 -2126	-2269 -2197 -2189	-2183 -2138 -2138	-2180 -2138	-2175 -2175 -2178	-2204 -2201 -2074	- 238- -2293	-2064 -2078 -2080 -2080	-2067
TRAVERSE	14412- 1498-112-	-1584 -1496 -1496	-1498 -1498 -1494	-1472	-1495 -1495 -1495	-1519 -1510 -1390	-1/13 -1613	-1415 -1412 -1396 -1385	-1382 -1389
ANTRIM	-1164 -1120	-1224 -1163 -1155	-1511-		-1158 -1158 -1164	-1175 -1089	-1374 -1274	-1085 -1066 -1068	-1052 -1079
SUNBURY	- 963 - 916	-1039 -955 -942	-938 -957 -940	-931 -903 -903	-938 -945 -951 -951	-975 -964 -873	-1163 -1060	-871 -869 -860	-847 -864
COLDWATER	+17 +85	+31 +85 +155	624	444 744 763	54 121 121 128	16+	Ŷ	4173 173	671+
ELEVATION	591°9 594°4	591.0 587.0 585.1	589°3 584°4 585°1	594.1 597.4 593.2	592.4 592.4 596.3 587.6	591.4 588.8 585.7	587°5 596°5	585°7 584°6 585°1 587 ₀ 1	586°0 586°2
WELL NUMBER	25	58 57 9 5	3885	2222	8686	9443	54	42 77 77 77 77 77 77 77 77 77 77 77 77 77	54 64 0
LOCATION	cn } /nw/se-12 s <u>}</u> /nw/nu/-12	T14N R5E E½/NE/SW-10 CN½/SE/SE-4 CS%/SW/NW-4	SZ/NW/SE-5 CNA/SW/NW-5 CSZ/NE/NE-6	NE/NW/NW-6 CS ^{\$} /SE/SW-6 N/SE/NW-7	CN2/NW/SW-7 S4/SW/SE-8 N4/NW/SW-8 N4/NW/NE-9	CNA/SW/NW-9 SA/NW/NW-9 CNE/NE/SE-12	T-MN/NN/WN T-MN/NN/MN T-MN/NN/LL	NE/SW/SE-7 SE/NE/NW-7 S≜/NW/SW-7 SW/SW/NW-8	SW/NE/SW-8 SW/SW/SW-9
PERMIT NUMBER	10121 15468	BD125 20368 19460	15801 19777 19622	16994 10967 16062	14773 18205 17695 11703	16876 19514 11482	7086	11454 12281 10859 11132	20690 13366

TRAVERSE	682	721	676	699	689	683	739 713 710		748	721	692	
TOTAL 'B'	500	495	525	542	527	504	555 560 537			540	542	
ANTRIM	345	355	324	340	566	362	367 369 327		357	337 337	335	
BEREA- BEDFORD	130	}	181	178	185	108	166 161 183	139	151	521	186	
SUNBURY	52		8%	288	222	45	285	22 57	533	8848	いれ	
COLDWATER	1075	1072	4116	1033	929	1068	981 979 1038	1024	1030 1026 996	1040		
MARSHALL	133	}		55	193	155	209	116 176	181 169	145		
DUNDEE	-2177 -2086	-2090	-2070	-2130	-2101	-2123	-2656 -2440 -2348		-2299	-2293 -2294 -2205	-2210	
TRAVERSE	-1405	-1369	-1386	1941-	-1412	07771-	-1917 1727 -1637		-1551	-1582 -1573 -1500	-1518	
ANTRIM	-1060	-1080	-1062	1211-	-113	-1078	-1550 -1358 -1310	-1303	%ET-	-1243	-1183	
SUNBURY	-905	+128-	-861	616-	-885	-963	-1362 -1167 -1167	-1663	-1230 -917	-1038 -1023 -960	-976	
COLDWATER	7174	ŧ	479	777	1	+122	-381 -188 -62	-116	-200	4		
ELEVATION	585°1 583°9	586.4	588.0	588.6	586.8	582 582	653.9 630.2 624.6	631°5 656°7	619.8 621.3 615.7	597.44 602.3 594.5	599°4	
WELL NUMBER	ont。) 51	27	52	55	65	61	63 64	65 66	63 69	2222	4	
LOCATION	T14N R6E (c SW/NE/SE-15 SW/NE/NW-15	NE/SW/SW-15 SW/NE/NE-16	SCW/SE/NW-16 SW/NW/NF-17	NE/SW/SE-17 NE/NE/NE/-18	NE/NW/NE-21	NE/ NE/ NE-22	T15N R3E NE/NW/SW-6 SE/SE/NE-10 CS ² /SE/NW-13	SE/SE/NE-24 SW/SE/NW-31 T15N R4E	NW/SE/NW-5 SE/NW/NW-8 SW/SW/NE-20	CSA/SW/NW-21 CSA/SW/SW-22 CSA/SW/SW-22 CSA/SW/SE-26	CSA/NE/SW-27	
PERMIT NUMBER	15628	15312	20198	10711	12070	4276	17074 18140 10728	12364 19445	13690 19093 8403	19949 19625 10563	19025	

TRAVERSE	700 700 692 719 687	707 694 688 708 709 700 712	732	767 735 758 727 724 724
TOTAL 'B'	544	5240 5240 513 525 525 525 525 525 525 525 525 525 52	525	5745 5745 5745 578 578
ANTRIM	343 335 338 338 339 339	25022222255 2502222255 250222255 250225 25005 25005 25005 25005 25005 25005 20	325	122 174 347 384 321
BEREA- BEDFORD	179 180 206 174	183 184 184 186 190 190 190 190	173	122 174 164 161 161 161
SUNBURY	8 8 H H 8	55896668732 55586668332	27	34 228 222 258 258 258 258 258 258 258 258
COLDWATER	989 976 1012	1008 988 1023 1003 1003 1003 1003 1003 1003	1020	1041 1003 1032 1032 1033
MARSHALL	158 170 137	114 90 82 134 102		184 205 205 216 216 216 216
DUNDEE	-224 -2227 -2206 -2254 -2224	-2197 -2209 -2165 -2117 -2169 -2169 -2169 -2169 -2200	-2193	-2670 -2328 -2328 -2692 -2650 -2625 -2625
TRAVERSE	-1524 -1527 -1514 -1514 -1532	-1429 -1429 -1429 -1464 -1464 -1469 -1491 -1496	-1461	-1903 -1893 -1654 -1799 -1943 -1923 -1923
ANTRIM	-1181 -1192 -1176 -1230 -1230	-1147 -1134 -1134 -1134 -1134 -1111 -1151 -1151	-1136	-1508 -1515 -1515 -1452 -1452 -1415 -1514
SUNBURY	-980 -980 -972 -1003 -1001	-937 -937 -903 -902 -929 -929 -979	-936	-1358 -1358 -1316 -1345 -1345 -1345 -1345
COLDWATER		+106 +106 +106 +106 +106 +106 +106 +106	+84	-317 -313 -313 +16 -337 -337 -325 -286
ELEVATION	606.1 607.7 603.8 603.8 608.1	602.5 602.5 604.7 599.0 595.1 595.1 595.1	588•5	671.6 671.6 667.2 661.2 663.4 656.8 650.8
WELL NUMBER	nt.) 75 77 78 78 79 79	8830654 88300 88300 8830 8830 8830 8830 8830 8	8	382885823
LOCATION	TI5N RLE (co. SASW/NE-28 SASW/NE-28 SASW/NW-28 CNA/SE/SW-28 CSASSW-28 CSASSW-28 CSASSW-28 CSASSW-29 SE/NE/SE-29	CSZ / NE/NE-32 S2 / NE/NE-33 CN2 / NE/NE-33 N2 / NE/SE-34 S2 / SW/SE-34 CS2 / SW/SE-34 CS2 / SW/SE-34 CS2 / NW/SE-35 NW/SE-35 SE/SE/NW-35 SE/SE/NW-35	T15N R5E SW/SW/SE-31	T16N R3E NW/SE/NE-6 CS ¹ /SW/SW-9 NW/NE/NE-12 NE/SW/SW-14 SE/NW/NW-17 NE/SW/NW-19 NE/NE/NE-20 NW/NW/SW-20 NE/NE/SE-21
PERMIT NUMBER	16193 16282 15290 13486 16423	10500 13742 13742 13742 13742 13742 13742 1536(15389 15389 15389 15319	19019	4876 10417 10417 12407 112407 13174 13174 13174 13174 13174 1320

TRAVERSE	788	732	756 749	764	792	782	750	793	738 740 758	776
TOTAL 'E'	555	565 567	551	551	545	221	543	555	552 556 580	538
ANTRIM	306 348	363 363	369 362	329			349 949 797	350	342 344 364	328
BEREA BEDFORD	177 188	121	181 159	190	152 152 152	180	122	500 500	177 178 170	180
SUNBURY	27	8 8	30	32	52 52	2 7 7 7 7 7	র র	52 53	£33	30
COLDWATER	1013 1079	1036 1020	1064	3005	2 101		1027	1078	1065 1047	1905
MARSHALL	215	0/1 911	540	OTT		3.65			155 183	OII
DUNDEE	-2568 -2565 -2565	-2573	-2724 -2532	-2201	-2221	-2227	-2263	-2353	-2447 -2504 -2586	-2224
TRAVERSE	-1816 -1777 -1820	-1857 -1863 -1809	-1968 -1783	-1437	-14.16	-1445	-1548	-1490	-1662 -1764 -1827	84416-
ANTRIM	2241- 1741- 0941-	-1473 -1473 -1473	-1599 -1421) 1108	-1086 -1099 -117	-1135	9711-	-1260	-1367 -1420 -1463	-1120
SUNBURY	-1261 -1267 -1265	-1275	-1418 -1232	-886	-871 -947 -892	-924	-952 -1003	-1058 -918	-1157 -1208 -1247	-910
COLDWATER	-254	-255 -276 -144	-284 -168	+209	\$25 77 8 77 8 77 8 7 7 8	184 1	+33	6	-92 -161	+180
ELEVATION	648.7 643.2 643.8	657.0 649.1	640.9 641.7	588.5	598.9 592.8 607.7	605.2 608.1	605.3 611.8	600.0 586.6	607.6 606.0 656.6	585
WELL NUMBER	ont.) 100 101 102		107	108			년 1 1 1 1 1 1		119	207
LOCATION	T16N R3E (c NW/NE/NE-22 NW/NW/SE-23 NW/NW/SE-23	SE/NW/SE-20 SE/NE/SW-30 NW/NE/SE-31	SW/SE/NW=33 SE/SE/SE-35	TI6N R4E SE/SW/SE-1	CINV/SE-I NE/SE/SE-2 NW/SE/NW-2	SW/NE/NE-3 NF/SF/SF-3	NW/NW/NE-4	SE/SE/SW-10 SW/NW/SW-12	SE/SW/SW-15 NE/SW/NW-22 SW/NW/NW-30	T16N R5E NW/NW/SW-7
PERMIT NUMBER	11932 12795 16140	13337 16549 12633	3247	12399	12823 12923 16555	17769	15949 15949	21853 11138	22290 21663 144,34	4613

TRAVERSE	755 774 787 787 787 787 787 781 781 781 781	738 793 799 779 803 803 803 803 803 803	776 786 812 813 853
TOTAL 'B'	545 559 539 539 539 539 539 539	537 545 545 545	554 518 518 543 543 532 532 532 532
ANTRIM	372 333 333 333 333 333 333 333 333 333	350 351 351 351 351 351 352 352 352 352 352 352 352 352 352 352	360 347 357 357 357 325 325
BEREA- BEDFORD	155 155 155 155 155 155 155 155 155 155	152 156 169 147 147	173 191 191 191 191
SUNBURY	25,328,288,28	334635588333	38333355
COLDWATER	1089 1030 1012 1012 1013 1013 1085 1138	1010 0C9 1024 1015 994 1012	1025 1105 1061 1019 1026 1025
MARSHALL	53 110 107 188 162 170 82 82	165 14,1 110 150 196	173 155 152 152 188 178 131
DUNDEE	-3278 -3278 -2266 -2356 -2269 -2269 -2282 -2282 -2482	-2149 -2198 -2159 -2170 -2272 -2278 -2278 -2278	-2279 -2280 -2236 -2246 -2277
TRAVERSE	-1423 -1423 -1477 -1582 -1484 -1484 -1725	-1411 -1405 -1360 -1405 -1424 -1473 -1473 -1473	-1503 -1486 -1486 -1473 -1424 -1424
ANTRIM	-1061 -1192 -1192 -1162 -1353 -1353	-1061 -1055 -1055 -1060 -1104 -1104 -1105	-1143 -1138 -11147 -1116 -1087 -1112
SUNBURY	-878 -923 -942 -942 -947 -962 -962 -1166	-874 -874 -870 -845 -919 -928 -928 -928 -928	-949 -968 -960 -950 -930 -887 -887 -887
COLDWATER	+ 22 + 52 + 22 + 22 + 22 + 22 + 22 + 22	+136 +123 +1145 +1265 +1	+76 +1-1 +1-1 +141 +188 +188
ELEVATION	652 651 651 651 653 653 653 653 653 653 653 653 652 652 652 652	636.3 636.3 637.0 637.8 631.2 639.8 639.8 639.8	636.1 616.7 615.0 623.0 596.1 587.8 588.0
WELL NUMBER	121 125 125 125 125 125 125 125 125 125	1138 1138 1138 1138 1138 1138 1138 1138	12111111111111111111111111111111111111
LOCATION	T17N R3E SE/SE/NE-1 SW/NE/SE-2 NE/NE/SE-2 NE/NE/SE-11 SW/NW/NW-12 SW/SE/SW-12 NE/SW/SE-13 NE/SW/SE-13 NE/SW/SE-13 NE/SW/SE-24 SE/SE/SE-27	TI (N RUE SE/SE/NE-6 NE/NE/NW-6 SW/NW/NE-12 NW/NE/NW-13 SE/SE/NE-12 SW/SW/NW-13 SW/SW/NW-17 SW/SW/NW-18 NE/NE/SW-18 NE/NW/NW-20	NE/NW/SW-19 SE/SE/SE-20 SW/SW/SW-20 SW/SW/SW-21 CNE/SE-23 SE/SW/SE-24 CE ² /NW/NE-25
PERMIT NUMBER	14431 20330 4510 14330 13421 18756 13421 18756 13421	13766 21882 3690 17303 12455 2107 2107 13437 13437 13437 13437	16332 16656 15309 16658 16658 20134 17476 18030

.

TRAVERSE	783 785 780 820	784 799 775 775 775 775 775 775 752 752 752 752	808 787 788 788 777
TOTAL 'B'	539 545 545 548 548 548	525 542 542 542 543 542 543 543 543 543 543 543 543 543 543 543	530 533 539 530
ANTRIM	339 331 359 359 359 359 359	349 352 352 352 352 352 352 352 352 352 352	328 355 355
BEREA-	177 177 181 167 1560	154 164 168 175 177 177	204 204 151 145
SUNBURY	<i>%%%</i> 3%%%3	1598895838	
COLDWATER	1050 1050 1037 1030 1030 1030 1030	1102 1036 1112 1015 1065 1065	948 1019 1013 1015 1015
MARSHALL	80 155 105 103	91 174 155 85	131 140 175 183
DUNDEE	-2226 -2201 -2203 -2283	-2278 -2280 -2280 -2276 -2276 -2251 -2251 -2233 -2233	=2198 -2193 -2193 -2119
TRAVERSE			-1390 -1406 -1324 -1324 -1325
ANTRIM	-1109 -1116 -1112 -1125 -1133 -1104	-1145 -1153 -1153 -1119 -1114 -1128 -1128 -1128	1062 1086 942 976 970
SUNBURY	-904 -918 -918 -936 -936 -922	-950 -933 -933 -931 -931 -932 -932 -932 -921 -921	-857 -862 -761 -761 -761 -701
COLDWATER	+1146 +132 +124 +94 +124	+192 +145 +121 +121 +121	+91. +261. +264. +264. +264.
ELEVATION	585.5 592.4 600.3 613.8 613.8 613.1	618.3 632.1 632.1 616.2 602.0 602.0 595.5 595.2 390.3	588.1 587.6 699.0 693.7 695.1 701.0
WELL NUMBER	ont.) 148 150 151 152 153 153	155 152 152 152 152 152 152 152 152 152	165 165 168 168 170
LOCATION	T17N R4E (c SW/SW/NE-25 SE/SW/SW-25 SE/SE/SE-26 SE/SW/SW-27 NW/NW-28 SW/NW/NE-20 NE/NE/SE-29	SW/SE/NW-29 SW/NW/NW-30 NE/NW/NW-30 NE/NW/NW-32 SW/SW/NE-33 SE/SE/SW-34 NW/SW/SE-35 SE/NE/NN-36 SE/NE/NW-36 SW/NW/NW-36	T.) 7N R5E W4/ 7W-30 NW/NE/SW-31 T18N R3E NE/NW/NE-1 NW/SE/SW-1 NW/SE/SW-2 SE/SW/SE-2 SW/SE/SW-2
PERMIT NUMBER	18040 22960 2749 2749 16657 16397	15476 14859 15453 15453 13838 13688 13765 13738 13738	17958 17716 20757 18412 15134 15430

TRAVERSE	786 781	802 791	790 800 781	800	806 792 784	804 793 784	800 800 773	776 808	809
TOTAL 'B'	545 546 546	533 542 540	549 555 599	560	536 539 545	548	550 575 565	570	520
ANTRIM	375 371 371	353 36 5	367 385 100	367 378	361 366 376	343 381 380	380 390 383	391 391	346
BEREA- BEDFORD	138 156 156	150 155		168	145 158 142	180 148 150	145 157 149	155	150
SUNBURY	66664	888	222	9 % % N	5123	30 52	382	2233	え
COLDWATER	1046 1045 997 1003	1040	1043 1013 981	945 984 1070	985 982 984	1015 1019 990	975 972	1027 986 1040	1026
MARSHALL	135 91 162	155 105	021 977	154 182 50	48 160	150 81	85	143 182	
DUNDEE	-2231 -2197	-2119 -2155	-2181 -2285 -2265	-2200 -2226 -2200	-2224 -2188 -2191	-2261 -2221 -2258	-2268 -2293 -2263	-2338	-2204
TRAVERSE	-1445 -1416 -1329 -1329	-1317 -1327 -1364	-1401 -1485 -1485	0071-	-1418 -1396 -1397	1271- 1271-	-1478 -1493	-1562	-1395
ANTRIM	-1070 -1045 -958 -980	-964 -963 -999	-1034 1100 1084	-1035	-1057 -1030 -1021	-1081 -1047 -1094	-1098 -1103 -1107	-1170	-1049
SUNBURY	-900 -783 -783	-784 -785 -824	-852 -930 -885	-840 -865 -867	-882 -857 -852	-876 -899 -914	-928 -918 -925	-9948 -948	-875
COLDWATER	+146 +189 +214 +203	+221 +216	191 195 195	+119 +119	+125 +132	+139 +76	+72 +57	56 56 56 56 56	+151
ELEVATION	770.4 730.8 687.4 700.1	680.5 681.6 681.1	701.2 769.9 736.0	695.2 689.2 683.1	662.9 650.1 679.1	693.8 701.1 706.1	727.5	710.2 685.4 676.2	650.8
WELL NUMBER	ont.) 172 173 173 174 174	176 177 178	179 180	182 183	185 186 187	188 190	191 192	194 195	197
LOCATION	T17N R5E (c NW/NW/SE-8 SW/SE/NE-9 NE/NE/NE-11 NE/NW/NW-11	NE/NE/NW-12 SE/NW/NW-12 NW/SW/SW-12	NW/NE/NW-15 SW/SE/NE-19 SW/NW/SF-20	NE/SE/NE-22 SW/SW/SE-22 NE/NW/NE-23	SW/SW/SE-24 SW/SE/SW-25 SW/NW/NW-26	NE/NE/NW-27 SW/NE/NE-28 SE/SW/SW-28	CN <u>\$</u> /NE/NE-29 SE/NE/SE-29 NE/NW/NW-29	SW/SW/NE-32 SE/SW/SW-32 CN [§] /NE/SW-34	SE/NW/SW-26
PERMIT NUMBER	13695 4734 16135 15832	16578 16579 15960	19224 17224 22746	15133 18335 12957	18084 16404 18578	91111 12743 4770	7362 16474 20615	11954 13892 6461	12830

TRAVERSE		690 705	649	797 805		776	720	
TOTAL 'B'		581 559	567	564 557		538	551	
ANTRIM		371	341	322		328	308	
BEREA- BEDFORD		190 163	188	217		180	216	
SUNBURY	ନ୍ଦ	13 S	SO 38	36 18	30	30	27	
COLDWATER	980	9 <i>1</i> 6 066	959 1022	141 941	1122	1095	1024	
MARSHALL	225	200 145	245 216	209	88	OTT	183	
DUNDEE		- 2426 - 2953	-2384	-2272 -2246		-2224	-2372	
TRAVERSE	-2093	-1 736 - 2248	-1623	באוב- 1475		8442-	-1646	
ANTRIM	-1779	-1365 -1871	-1282	-1086 0111		- 1120	- 1338	
SUNBURY	-1441	- 1155 -1689	- 1066	-911 -875	-7711-	-910	- 1095	
COLDWATER	-493	-165 -713	0	08+ 66+		+180	-71	
ELEVATION	592	625 651•6	618	739.7 710	608	585	588.7	
WELL NUMBER	198 199	\$01 \$0	203	204 205	206	207	208	209
LOCATION	TLLN R5E NW/NW/SW-22 NE/SW-22	TL5N R3E SW/SW/SW-10 NW/NW/SW-31	T16N R4E SW/SW/SW-9 NE/NE/NE-19	T18N R3E NE/NW/NE-20 SW/SW/NE-21	T15N R4E SE/SW/NW-10	T16N R5E NW/NW/SW-7	TI5N R4E NE/SE/SW-14	TL3N R5E
PERMIT NUMBER		5288 18649	1016 2058	19285 1126	2054	4613	2210	

APPENDIX II
PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL "B"	TRAVERSE
	ALCONA									
2951 11519 NONE NONE	NE-10 T26N R7E SW-34 T26N R8E 12 T26N R9E 22 T27N R9E	1 2 3 4		426+ 155+	30 37	155 181 179		359 364	544 582	698 696 710
	ALLEGAN									
6234 6440 9128 15327 15814 10759	SW-24 TIN RIIW NW-26 TIN RI2W SE-10 TIN RI3W SE-36 TIN RI4W SE-29 TIN RI5W SE-11 TIN R16W SE-29 T2N BIIW	5 6 7 8 9 10	80	926			359 415 421 435 468 492	163 130 151 150 110 107 142	522 545 572 585 578 599 635	346 230 294 310 240 253 232
21684 9660 14790 21243	NE-25 T2N R12W NW-12 T2N R13W NE-31 T2N R14W SW-9 T2N R15W SE-2 T2N R16W	12 13 14 15	30	723 678 371 451			473 418 419 473 517	132 215 122 98	550 634 595 615	302 230 288
20415 22728 21103 21039 20570 21811	SE-2 T2N RIGW SW-17 T3N R11W NW-4 T3N R12W SW-22 T3N R12W SE-2 T3N R13W SE-9 T3N R15W	17 18 19 20 21		848 670 682			400 475 463 525 516	140 167 123 128 105 145	567 598 591 630 661	311 365 295 359
18984 20706 21645 21589 21559 21655 16586	NW-1 T3N R16W SW-32 T4N R11W SW-19 T4N R12W NW-17 T4N R13W NW-9 T4N R14W SW-28 T4N R15W SW-35 T4N R16W	22 23 24 25 26 27 28		843 772 750 758			565 449 503 541 447 555 569	136 126 120 111 180 109 125	701 575 623 652 627 664 694	376 358 366 394 233 274
	ALPENA									
11671 576 11	NE-9 T29N R5E NE-25 T30N R6E SW-30 T31N R8E SE-20 T31N R8E	29 30 31 32								740 772 627 695
	ANTRIM	~~						n / -		
16645	NE-25 T29N R5W SE-19 T29N R6W	33 34			110		486 390	165 171	671	769

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	ANTRIM (cont)								
16325 18385 10019 10232 10605 17180 22639	NW-16 T29N R7W SW-25 T30N R5W SE-3 T30N R6W NE-17 T31N R5W NW-9 T31N R7W SW-14 T31N R8W SE-19 T32N R8W	35 36 37 38 39 40 41			22		505	172 160 165 147 130 129 98	699	779 783 840 780 781 762
21661 22590 20213 21465 21232 14637 21166 19323 20314 13827 10835	ARENAC NW-14 T18N R4E SE-6 T18N R5E SW-26 T19N R3E NW-29 T19N R4E SW-32 T19N R5E SW-12 T19N R6E NW-28 T20N R3E SE-20 T20N R4E NE-17 T20N R5E SE-29 T20N R6E NE-16 T20N R7E	42 44 45 47 49 51 52	165 105 71 152 122 127 185 181 170 113 120	1040 1020 1099 1054 1100 1055 1039 1057 1125 1207 1275	25 35 30 29 47 25 35 28 28 50	157 145 150 155 165 220 135 164 172 208 185		348 360 364 357 354 376 350 346 375 367	530 546 527 551 601 621 549 546 611 602	805 818 873 820 785 819 808 823 793 785
9884 21342 12890 14782 6612 6231 20732 20875 21987 5806 18526 12780 17268 15586 15541 6308	BARRY SE-19 T1N R7W SW-8 T1N R8W NE-6 T1N R9W SW-21 T1N R10W NW-17 T2N R7W SE-22 T2N R8W NW-34 T2N R9W NE-33 T2N R10W NE-22 T3N R7W SW-19 T3N R8W SW-14 T3N R9W SW-14 T3N R9W SW-6 T3N R10W NW-29 T4N R7W NW-6 T4N R8W SE-9 T4N R9W NW-3 T4N R10W	534555789012345678 5012345678	140 263 185 230 138 310 237 263 222 271	1013 902 993 909 980 1055 949 1040 920 915 1004 960 915 852	5 10 5 7 5		227 225 248 400 230 260 353 237 195 273 372 12 292 285 328	118 141 150 133 150 148 125 126 87 189 129 120 335 125 160 166	345 371 398 533 360 351 390 3351 384 492 492 492 415 495	315 317 312 339 340 333 349 227 348 240 364
10275	BAY SW-7 Tl3N R4E	69	187	6 980	45	150		350	545	648

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA-	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	BAY (cont.)									
8746 3237 15572 18205 15312 10728 19949 19019 12476 22290 4613 18894 18104 17958 13965	NE-3 T13N R6E NE-18 T14N R3E NW-11 T14N R4E SE-8 T14N R5E SW-15 T14N R6E NW-13 T15N R3E NW-21 T15N R4E SE-31 T15N R5E SW-15 T16N R3E SW-15 T16N R4E SW-7 T16N R5E SE-13 T17N R3E NW-17 T17N R4E NW-30 T17N R5E SE-8 T18N R3E	70 71 72 73 74 75 76 77 78 79 80 81 82 83 84	182 190 182 175 154 145 196 155 110 162 150 135	1085 1039 980 1012 925 1038 1040 1020 1020 1020 1065 1095 1024 1015 948 1046	35 24 23 115 27 30 27 28 33 20 22 40 26 32	152 188 190 25 183 175 173 177 180 152 140 179 138		354 327 355 327 329 325 342 328 358 365 328 375	530 538 550 537 545 578 578 538 532 538 533 533 535 535	688 681 680 720 710 711 732 727 738 776 772 803 808 786
	BENZ IE									
19279 15921	SE-13 T25N R13W NE-29 T25N R14W	85 86			8		605	163 237	768	
	BERRIEN									
11916 7815 19453 10140 11780	NE-2 T3S R17W NE-34 T3S R17W NW-22 T3S R18W NW-24 T4S R17W SW-20 T4S R18W	87 88 89 90 91					408 385 345 387	119 190 104 150 99	527 575 495 486	145 131
7046 19137	NW-35 T4S R19W NW-12 T5S R17W	92 93					408	120 64	472	185 146
19259 6452 14041 19529	NW-2 T5S R17W NW-12 T5S R18W SE-33 T6S R17W SE-4 T6S R19W	94 95 96 97					401	86 80 145	487	160
13879 15253	NW-2 T7S R17W NW-32 T7S R18W	98 99							75	145
6364 942	NE-8 T8S R20W SE-10 T8S R21W	100 101						53		108
	BRANCH									
21862 19538	NW-5 T5S R5W NE-4 T5S R6W	102 103			9 17	24 45	60	201 195	234 257	230 216

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTERIM	TOTAL, "B"	TRAVERSE
	BRANCH (cont.)									
21694 8206 19967 21519 21378 18528 20685 22071 1030	NW-20 T5S R7W NE-34 T5S R8W SW-1 T6S R5W SW-29 T6S R8W SE-29 T7S R6W SE-10 T7S R7W NE-15 T7S R8W NE-15 T8S R5W NE-11 T8S R8W	104 105 106 107 108 109 110 111 112			7 37 13 7 12 12 7 18	20 12 29	60 33 20	204 215 220 198 219 215 188	271 285 225 247 222 231 242 235	213 193 165 174 189 215 152
21895 22526 19831 4768 22527 22880 21757 19824 22610 12329 20241 22400 21647 7618 7749	SW-32 TIS R4W SE-22 TIS R5W SE-8 TIS R6W NE-10 TIS R7W SE-18 T2S R4W NE-12 T2S R5W SE-13 T2S R6W SW-23 T2S R7W SW-11 T3S R4W SE-34 T3S R7W SW-22 T3S R8W NW-1 T4S R5W NW-17 T4S R6W NE-3 T4S R7W SE-17 T4S R8W	113 114 115 116 117 118 119 120 121 122 123 124 125 126 127	282	1018 984 1016 1057 1011 1014 879 1045 1001	12 13 14 10 10 17 9 13 8 10 5 9	10 23 7 23 20 35 43 53	73 47 256 288 126 28 47 204	237 232 215 273 205 232 219 150 261 211 227 235 95	259 268 309 320 238 262 256 288 271 285 302 262 290 287 308	262 263 269 269 320 239 249 242 226
18573 8893 7794 10199 18554 18806 19002 17414 837	SW-5 T5S R13W SE-19 T5S R14W SW-17 T5S R15W SW-14 T5S R16W SE-15 T6S R13W SW-23 T6S R15W SW-4 T6S R16W NW-32 T7S R13W SW-36 T7S R14W SE-3 T7S R16W	128 129 130 131 132 133 134 135 136 137					376 247 351 387 334 374 388 328 318	101 220 109 90 98 87 87 76 77	477 467 460 477 432 461 475 404 170	207 269
22047	SE-3 T8S R14W	138					268	78	346	164

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BENFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	CASS (cont.)									
12135 579	SW-15 T8S R15W SW-2 T8S R16W	139 140					225	124 132	357	
	CHARLESVOIX									
19194 18747	N–24 T32N R5W NE–14 T32N R6W	141 142						125 256		750 759
	CHEBOYGAN									
163 19422	SE-12 T33N R3W NW-7 T34N R2W	143 144								632 640
	CLARE									
20940 19494 17271 10687 19257 17087 20618 10169 19266 7306	SE-12 T17N R3W NW-31 T17N R4W SE-12 T17N R5W NW-7 T17N R16N NW-22 T18N R3W NE-29 T18N R4W NE-1 T18N R5W SE-14 T18N R6W SE-6 T19N R3W SE-11 T19N R4W	145 146 147 148 149 150 151 152 153	240 197 205 170 233 195 200 226 256 171	955 926 908 840 937 949 909 867 898 967	38 28 33 45 43	34 14 20	15	500 542 585 650 530 568 564 638 572 552	572 584 585 650 583 568 624 638 572 624	723 655 699 632 708 705 674 658 741 730
16863 9676 21884 20116 11444 17484	NE-1 T19N R5W SE-1 T19N R6W SW-36 T20N R3W SW-35 T20N R4W NW-7 T20N R5W NE-12 T20N R6W	155 156 157 158 159 160	206 191 174 200 163 165	975 860 1002 925 848 857	28 20	15 50	425	545 685 525 517 683 235	545 685 568 587 683 660	729 626 768 741 676 692
	CLINTON									
19451 8274 13619 10484 19367 5042 11278 19696	SW-32 T5N R1W SW-18 T5N R2W NW-14 T5N R3W NW-29 T6N R1W SW-17 T6N R2W SE-2 T6N R2W SE-19 T6N R3W SW-3 T7N R1W NE-1 T7N R2W	161 162 163 164 165 166 167 168 169	250 207 196 208 170 102 210 265 221	1075 1050 1066 1038 1095 1050 1075 1015 1046	25 30 17 12 50 20 20	69 50 64 86 35 50 36 69		299 306 313 187 397 311 335 359 320	393 386 394 285 382 311 405 415 406	318 353 339 463 383 435 342 415

FERMIT NUMBER	Location	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTIRIM	TOTAL 'B'	TRAVERSE
	CLINTON (cont.	.)								
14767 9033 2341 10335 13586 11082	SW-22 T7N R3W SE-21 T7N R4W NE-4 T8N R1W SE-3 T8N R2V SE-9 T8N R3W SE-4 T8N R4W	170 171 172 173 174 175	181 200 270 227 165 136	1075 1062 1000 1145 1060 1091	21 8 25 15 17 15	38 18 60 55 39 13		329 347 325 332 362 400	388 373 410 402 418 428	399 420 468 450 433 416
	CRAWFORD									
11807 4278 17829	SE-30 T25N R1W SW-33 T25N R3W NE-21 T25N R4W SE-16 T26N R2W	176 177 178	118 122 105	1036 965	10 25			627 613	637 638	752 748 717
17234 21027 18631	NE-36 T26N R3W SE-26 T27N R1W SW-16 T28N R3W	180 181 182	70	875 1063	40			625 527 635	625 567 635	767 715 738
	EATON									
18459 21769 429	NW-14 TIN R4W SW-18 TIN R5W NW-8 T2N R6W NW-8 T2N R3W	183 184 185 186	305 226 305	1034 960 976 1038	23 20	35 30		205 258 263 330	228 258 318 360	317 300 387
22672 1806 564 1090	SW-18 T2N R5W SE-5 T3N R4W SW-28 T3N R5W NE-17 T4N R5W	187 188 189 190 191	292 292 291 280 220	1040 1003 1048 983 1096	10 24 10 15	25 25 15 44		247 238 216 223	282 287 241 282	233 375
	EMMET									
4376 790	SE-15 T35N R4W SW16 T37N R5W	192 193								
	GENESEE									
2828 7275 7665 2114 12380 760	SW-3 T5N R5E NW-13 T6N R5E NW-11 T6N R7E NW-33 T7N R6E SE-6 T8N R5E 8 T8N R7E	194 195 196 197 198 199	125 113 185	975 1015 960	16 33 20 41 26 25	194 209 225 185 219 232		198 202 182 235 213 210	408 444 437 461 458 467	406 406 395 409 445

PERMIT	LOCAT ION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA-	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	GENESEE (cont.)									
0913 9669 9090	NW-29 T9N R5E NE-11 T9N R7E SW-5 T9N R8E	200 201 202	132 170	1011 1065 943	20 42 41	210 237 226	220	230 499 215	460 482	486 489
	GLADWIN									
0774 2655 7197 8551 2547 690 2081 0902 8771 5352 6894 4627 6158 7279 1631 0298	NE-2 T17N R1E NW-18 T17N R2E SW-32 T17N R1W SW-36 T17N R2W SE-16 T18N R1E SE-22 T18N R2E NE-6 T18N R1W NE-10 T18N R2W SW-12 T19N R1E SW-29 T19N R1E SW-29 T19N R2E NE-12 T19N R1W NE-34 T19N R2W NW-16 T20N R1E NE-31 T20N R2E SW-26 T20N R1W SE-31 T20N R2W	203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218	157 154 219 197 156 198 229 208 162 178 155 197 205 173 147 161	1032 1043 998 990 1062 1026 1036 1015 1025 1028 1040 1020 1030 983 1039 995	24 29 28 20 25 20 30 30 30 30 30 32 5 20 30 30 32 5 30 30 32 5	134 134 69 52 97 126 64 48 110 104 75 48 70 26 59 30		443 447 487 487 487 487 487 484 438 438 475 470 452 470 459	601 595 588 573 578 577 578 577 566 570 568 570 568 584	742 743 713 710 742 778 729 734 765 774 765 774 761 769 729
3512	GRAND TRAVERSE NE-26 T25N R9W	219	97							
	SW-9 T25N RLOW SE-11 T25N RL2W NE-23 T26N RLLW NE-25 T26N RL2W	220 221 222 223			25		593 480	262 215 142	880 695	763 826 752 679
	GRATIOT									
2110 7787 1991 1296 0525 0812 8482 1788	SE-31 T9N R1W SE-36 T9N R2W SE-13 T9N R3W SE-18 T9N R4W SE-32 T10N R1W SW-8 T10N R2W SW-6 T10N R3W NW-14 T10N R4W	224 225 226 227 228 229 230 231	297 259 230 139 235 277 233	968 1024 1025 1102 1062 1017 996 1065	32 18 15 18 20 36 24 26	73 65 50 17 68 25 35 16		340 345 373 325 361 372 410	445 423 410 408 413 422 431 452	448 550 475 447 460 498 499 469

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA" BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	GRATIOT (cont.)									
9864 4453 8497 9929 3210 2576 10107 10193	SE-10 T11N R1W SE-18 T11N R2W SE-6 T11N R3W NE-35 T11N R4W SE-13 T12N R1W SW-1 T12N R1W SE-10 T12N R2W SE-31 T12N R3W SE-31 T12N R3W	232 233 234 235 236 237 238 239 240	260 280 261 240 210 181 200 257 247	1045 998 994 1058 1035 1021 1021 1040 1012	30 13 28 35 9 28 22 35	75 90 30 16 60 100 80 23 29		375 356 409 384 417 365 390 402 396	480 459 467 486 493 470 447 460	461 539 518 447 587 548 517 555
	HILLSDALE									
21516 21224 21918 22011 21109 22732 21737 21745 21782 21869 21571 22863 22147 22021 22216 21773	NW-20 T5S R1W SE-25 T5S R2W SE-23 T5S R3W SE-7 T5S R4W NW-18 T6S R1W SE-8 T6S R2W SE-21 T6S R3W SE-21 T6S R3W SE-1 T6S R4W NW-8 T7S R1W NE-25 T7S R2W SE-3 T7S R3W NE-32 T7S R3W NE-32 T7S R4W SE-5 T8S R1W SW-23 T8S R3W NW-1 T8S R4W NE-5 T9S R4W	241 242 243 245 245 245 247 249 251 252 253 255 256		970 1102 1009 1019 962	5 14 10 15 16 10 7 18 13 7 7 40 5 10 15	58 51 40 15 36 35 26 13 29 16 15 35 45		168 125 137 206 196 197 196 193 189 176 192 195 148 174 190 156	231 190 187 236 248 242 229 218 215 217 223 224 200 216	216 183 244 204 174 185 204 176 148 167 203 163 184 174
20764 16222 21290 1166	NE-34 T15N R9E NW-27 T15N R10E SW-29 T15N R11E NW-32 T15N R12E NE-31 T15N R16E	257 258 259 260 261	92	1102 1067	57 62 69 70	258 263 289 309 307		254 252 249 250 222	569 577 607 629	716 722 702 684 605
842 12907 3679 4240 5519 10876	SE-36 T16N R9E NE-2 T16N R10E NW-27 T16N R11E SE-30 T16N R12E NW-27 T16N R13E NW-27 T16N R13E	262 263 264 265 266 266		1120 1225 1135	63 66 67 87 91 120	250 291 257 335 285		302 255 234 250 252	618 613 578 676 657	748 718 764 686

LOCATION	MAP	MARSHALL	COLDWATER	SUNBURY	BEREA BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
HURON (cont.)									
SE-28 T17N R10E NE-20 T17N R14E SW-22 T17N R15E SW-12 T18N R12E NW-27 T18N R13E NW-28 T18N R14E SE-31 T19N R13E	268 269 270 271 272 273 274	167	1148	80 101 131 104 112 128 111	225 305 301 303 318 204 298		305 244 261 263 234 275	610 650 693 670 664 684	763 636 706 695
INGHAM									
NW-15 TIN RIE SW-1 TIN RIE NW-23 T2N RIW SE-14 T3N TIE NW-2 T4N RIE NW-21 T4N R2E SW-22 T4N RIW	275 276 277 278 279 280 281	206 188 276 242 260 255	1067 1035 1010 1030 930 1051	13 11 32 10 20 10 26	122 106 55 98 112 127 85		258 245 260 282 267 246 257	393 326 347 390 399 383 368	283 265 358 280 306
IONIA									
NE-4 T5N R6W Se-29 T5N R8W SE-5 T6N R5W SW-11 T6N R6W NE-12 T6N R7W NW-6 T6N R8W NW-21 T7N R5W	282 283 284 285 286 287 288	288 190 217 238 252 200 216	1027 1008 992 1098 1095 1010 1083	75	26 53 7	8 282	347 153 338 338 325 409 372	355 435 439 338 325 462 380	445 357 405 420 384 418 409
SE-3 T7N R6W SE-6 T7N R7W SE-8 T7N R8W SE-22 T8N R5W NE-24 T8N R6W SE-14 T8N R7W SW-26 T8N R8W	289 290 291 292 293 294 295	202 140 219 182 209 195 163	1098 1036 990 1079 1043 1028 1001	21 26 18	·	12 32	385 387 499 393 393 358 394	385 420 499 393 393 358 444	449 409 371 422 429 412 400
IOSCO									
SE-4 T21N R5E SE-21 T21N R5E NW-16 T21N R6E SW-3 T22N R5E SE-23 T22N R6E NE-1 T22N R8E	296 297 298 299 300 301	177 175 247 145 213	973 1295 1222 1285 1270 962	34 35 18 35 34 64	151 225 155 179 204		392 370 395 384 331	577 613 587 597 599	783 774 757 750 756
	HURON (cont.) SE-28 T17N R10E NE-20 T17N R14E SW-22 T17N R15E SW-12 T18N R12E NW-27 T18N R13E NW-28 T18N R14E SE-31 T19N R13E NW-28 T18N R14E SE-31 T19N R13E NW-23 T2N R1W SE-14 T3N T1E NW-2 T4N R1E NW-21 T4N R2E SW-22 T4N R1W IONIA NE-4 T5N R6W Se-29 T5N R8W SE-5 T6N R5W SW-11 T6N R6W NE-12 T6N R7W NW-6 T6N R8W NW-21 T7N R5W SE-3 T7N R6W SE-3 T7N R6W SE-3 T7N R8W SE-22 T8N R5W NE-24 T8N R7W SE-24 T8N R6W SE-14 T8N R7W SE-24 T8N R6W SE-14 T8N R7W SE-24 T8N R6W SE-21 T21N R5E SE-21 T21N R5E SE-21 T21N R5E SE-23 T22N R6E NW-16 T21N R6E SW-3 T22N R5E	Image: Second state of the second s	Margin Margin Margin HURON (cont.) SE-28 T17N R10E 268 167 SE-20 T17N R14E 269 167 SW-22 T17N R15E 270 274 NW-27 T18N R13E 272 274 NW-27 T18N R13E 272 274 NW-28 T18N R14E 275 206 SW-12 T1N R1E 276 188 NW-28 T18N R14E 277 276 SE-31 T19N R13E 277 276 SW-12 T4N R1E 278 242 NW-23 T2N R1W 280 255 NW-21 T4N R2E 280 255 NW-22 T4N R1E 279 260 SW-22 T4N R1W 281 255 IONIA 281 255 NW-21 T7N R5W 282 288 SE-27 T5N R6W 282 288 SE-5 T6N R5W 283 190 SE-5 T6N R5W 284 217 SW-11 T6N R6W 285 238 SE-5 T6N R5W 284 217<	E E E E E E HURON (cont.) SE-28 T17N RIOE 268 167 1148 NE-20 T17N RIAE 269 167 1148 NW-22 T18N R12E 270 270 148 NW-27 T18N R13E 272 148 103 NW-28 T18N R12E 273 274 148 NW-25 T1N R1E 275 206 1067 SW-1 T1N R1E 276 188 1035 NW-23 T2N R1W 277 276 1010 SE-14 T3N T1E 278 242 1030 NW-21 T4N R2E 280 255 1051 IONIA 281 255 1051 IONIA 281 190 1008 SE-5 T6N R5W 284 217 92 SW-11 T6N R6W 285 238 109 SE-5 T6N R5W 284 217 92 SW-22 T4N R1W 286 252 1095 NW-6 T6N R8W 287 2	Definition Definition Definition Definition Definition Definition HURON (cont.) SE-28 T17N R10E 268 167 1148 80 NE-20 T17N R14E 269 101 131 101 SW-22 T17N R15E 270 131 101 SW-22 T17N R15E 270 131 104 NW-27 T18N R12E 271 104 104 NW-27 T18N R12E 271 112 104 NW-27 T18N R12E 271 128 1035 11 NW-27 T18N R12E 276 188 1035 11 NW-23 T2N R1W 277 276 1010 32 SE-14 T3N T1E 278 242 1030 10 NW-21 T4N R1E 279 260 930 20 NW-21 T4N R1E 279 260 930 20 SW-22 T4N R1W 281 255 1051 26 SW-22 T4N R1W 283 190 10008 10 <t< td=""><td>No. No. Solution Solutit Solution Soluti</td><td>No. No. No.<td>LO UPE MA OO SI PER PER</td><td>LO LO LA LO SE LE <thle< th=""> LE LE LE<!--</td--></thle<></td></td></t<>	No. No. Solution Solutit Solution Soluti	No. No. <td>LO UPE MA OO SI PER PER</td> <td>LO LO LA LO SE LE <thle< th=""> LE LE LE<!--</td--></thle<></td>	LO UPE MA OO SI PER PER	LO LO LA LO SE LE LE <thle< th=""> LE LE LE<!--</td--></thle<>

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	IOSCO (cont.)									
10732 10632 17142	NW-29 T2N R5E SW-33 T23N R9E SW-10 T24N R9E	302 303 304	160	1295	31 50 43	144 220 210		390 325 265	565 595 518	785 745 780
13595 16440 19058 13414 16395 17165 1073 11864 21151 19590 15796 17561 22152 20801 19050 11184	NE-20 T13N R3W NE-22 T13N R4W SW-32 T13N R5W SW-28 T13N R6W SE-1 T14N R3W NW-20 T14N R4W SW-7 T14N R5W NW-13 T14N R6W SW-2 T15N R3W NE-11 T15N R4W NE-9 T15N R5W SW-8 T15N R6W SW-13 T16N R3W NW-26 T16N R4W NE-30 T16N R5W SW-29 T16N R6W	305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	165 275 259 228 185 256 235 263 165 216 149 291 159 180 155 180	1009 993 968 995 1011 989 948 913 985 932 930 839 1030 913 896 873	21 27 31 27 22 30 13 28 7 36 35 43 27 36 30	45 25 16 20 47 25 10 4 27 15 13 20 21 5 30	345	445 408 430 471 433 430 519 535 480 535 489 488 500 200	511 460 477 518 502 485 529 552 522 507 552 557 580 552 536 551 605	434 582 543 523 611 584 578 673 647 604 682 630 615 596
	JACKSON									
21992 7149 22719 9881 21633 21898 18265 21736 22107 21982 22017 22568 22288 22288 222416	SE-26 TIS RIE SE-26 TIS RIW SW-14 TIS R3W NE-8 T2S RIW SE-8 T2S R3W NE-26 T3S RIE SE-7 T3S R2E NE-35 T3S R2W NW-14 T3S R3W SE-7 T4S R1E NE-19 T4S R2E SW-33 T4S RIW NE-8 T4S R2W SW-28 T4S R3W	321 322 323 324 325 326 327 328 329 330 331 332 333 334	26 8 270 310 310	967 1051 1010 1000 1040 1112 937 9357 975 680 1015 929 990 970	20 20 15 9 29 10 10 20 10 11 10	100 105 30 70 30 105 81 58 50 50 110 67 48 33		257 254 226 249 263 203 245 203 212 238 183 200 205 206	377 359 276 339 308 317 355 271 272 308 303 278 263 253	230 202 259 207 211 205 225 197 222 182 202 214

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	KALAMAZOO									
20572 7313 20323 7180 16838 13483 6876 21182 RD92 18817 11857 6026 18664	14 TIS R9W SE-27 TIS RIOW SW-13 TIS RIIW SE-15 TIS R12W SW-21 T2S R9W NW-8 T2S RIOW SW-31 T2S R12W SW-8 T3S R9W SW-29 T5S RIOW NW-13 T3S R11W SW-25 T3S R12W SE-17 T4S RIOW SW-8 T4S R11W NE-36 T4S R12W	335 336 337 338 340 341 342 343 344 345 346 347 348		1025	6	11	301 332 400 310 342 405 225 325 325 329 375 325 325 325 325 325 325	366 135 123 125 98 90 110 165 93 113 105 91 135 65	377 436 455 525 408 432 515 396 418 442 480 416 480 418	290 260 230 170
	KALKASKA									
17276 18664 16339 14659 10762 15121 17982 20133 16632 20466 17890	SW-12 T25N R5W SE-16 T25N R6W SW-26 T25N R7W SE-27 T25N R8W NW-8 T26N R5W SE-17 T26N R5W NE-27 T27N R5W NW-10 T27N R6W SW-2 T27N R7W SW-6 T28N R7W NE-36 T28N R8W	349 350 351 353 354 355 356 257 358 359	150 145 121	1055 903 9985	85 55 129 152 60 65 58 22		461 577 554 351 341 425 520 495 508	209 132 237 219 309 186 241 149 178 210	755 709 846 699 679 726 734 731 740	720 749 770 784 774 754 772 806 788 755
	KENT									
21388 20933 4984 20818	SE-26 T5N R9W NW-21 T5N R10W NE-17 T5N R11W SW-14 T5N R12W NW-12 T6N R9W	360 361 362 363 364	280 337 305	9311 839 701 879 890	3 12		282 380 429	146 118 568 211 472	428 501 580 640	355 358 360 372
9786 6462 7511 7905	NW-23 T6N R10W NW-27 T6N R11W SW-14 T6N R12W SE-30 T7N R9W	365 366 367 368	247 263 252 225	877 791 825 860	23		323 418 380	174 143 220	497 584 600	396 359 275
3601 6823 9166	SW-25 T7N R10W NE-3 T7N R11W SE-30 T7N R12W	369 370 371	230 263	882 797 708	8		353 395 502	192 184 128	553 579 630	430 397 376 405

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA-	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	KENT (cont.)									
11422 13276 12370 19076 20103 16270 18027 19837 20487 10826 18496	SW-22 T8N R9W SW-32 T8N R10W SW-2 T8N R11W NE-4 T8N R12W SE-27 T9N R10W NE-35 T9N R11W SE-32 T9N R12W SE-1 T10N R9W SW-12 T10N R10W NE-30 T10N R11W SE-10 T10N R12W	372 373 374 375 376 377 378 3 79 380 381 382	175 320 289 251 185 235 277 232 137 206 190	897 805 804 740 858 821 693 915 993 821 714	3 57		300 470 477 374 478 527 275 546	199 90 392 181 205 100 151 497 487 267 137	499 560 592 658 578 678 497 487 599 683	422 399 424 404 410 444 392 459 400 435 440
	LAKE									
12767 13941 9829 18881 17893 14776 10798 1105 16032 11423 21412 22683 20234 9899 15419	NE-20 T17N R11W NW-22 T17N R12W SE-30 T17N R13W NE-36 T18N R11W NE-20 T18N R12W NW-24 T18N R13W SE-24 T18N R13W SE-24 T18N R14W NW-22 T19N R11W NE-23 T19N R12W NW-11 T19N R13W NE-19 T19N R14W NE-24 T20N R11W SW-30 T20N R12W SE-34 T20N R13W SW-12 T20N R14W	383 384 385 386 387 388 390 391 392 393 394 395 396 397	199 218 247 240 262 238 133 152 280 180	568 599 553 638 579 655 600 550 536 610 635 562 536	12 14 39 15 19 25 23 30 20 30 30 30		496 556 585 584 470 530 595 588 620 590 604 586	275 205 218 185 218 255 821 317 285 254 215 268 268 266 267 228	783 775 813 785 821 872 903 872 855 888 900 830	603 595 600 633 604 648 610 630 638 644 625 661 645 652
3413 12933 18530 2127 11286 10117 2689 10936 14827	LAPEER SW-29 T6N R9E NW-25 T6N R11E NW-4 T7N R9E NW-26 T7N R10E NE-8 T8N R9E NW-5 T8N R10E SE-17 T8N R11E SW-28 T9N R9E NW-8 T9N R10E	398 399 400 401 403 404 405 406 407	219 175 190 237 193 178	888 997 970 1035 953 975 990 1017	34 53 40 42 43 60 53	211 229 236 270 240 239 246 260		181 205 200 200 206 161 159 205	426 487 478 510 488 460 458 523	390 337 446 348 449 485 500 493

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	LAKE (cont.)									
17457 12969 20761 10466	NE-20 T9N RLOE SW-33 T9N RL2E NE-30 TLON RLOE SE-27 TLON RL2E	408 409 410 411	89 150 220	1106 922 1075	49 69 55 93	206 285 269		218 208 216	473 562 540	467 413 491
	LEELANAU									
1037 5505 10103	SW-6 T28N R11W NW-34 T28N R14W NE-5 T29N R12W	412 413 414								795
	LENAWEE									
22010 18835 18914 22886 19161 21637 130 9800 2077 983 21916 16693 1167 8049	NE-18 T5S R1E SE-5 T5S R2E SE-1 T5S R3E SW-14 T5S R4E NW-16 T5S R5E NE-22 T6S R3E SE-5 T6S R5E NE-7 T7S R1E SW-6 T7S R3E NE-2 T7S R5E NW-27 T8S R1E NW-18 T8S R4E NE-13 T8S R5E N-12 T9S R1E	415 416 417 418 419 420 421 422 423 424 425 426 427 428			10 12 8 12 9 20 15 9	79 93 112 123 98 50 85 72 72		204 204 180 149 140 186 151 218 190 197 170	293 309 300 284 293 288 290 276 275	190 174 156 168 170 148 155 134 130 130 102 107 100 71
	LIVINGSTON									
16690 958 15875 19793	SW-28 TIN R3F SW-32 TIN R4E NE-6 TIN R6E SE-2 TIN R6E	429 430 431 432		856	12 12 25	154 178 185		181 155 175 151	347 345 383	288 145 300 326
10038 9568 11818 12737	SW-9 T2N R3E SE-7 T2N R4E NW-25 T2N R5E NE-32 T2N R6E	433 434 435 436	207 285	975 950	15 25 12	148 160 205 210		231 205 181 168	394 390 398	253 285 333 286
19063 20858 9782 9426	NE-36 T3N R3E SW-35 T3N R4E NW-35 T3N R5E NE-14 T3N R6E	437 438 439 440	264	996	22 20 10 38	146 165 182 165		197 182 200 170	365 367 392 373	315 342 349 350

.

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	LIVINGSTON (cont	;.)								
22642 16625 17	NE-28 T4N R3E SW-31 T4N R4E NE-15 T4N R5E	441 442 443			15 15 24	140 180		202 214	357 409	343 331
	MACOMB									
4793 8813 596 19898 22752 22720 22482 22937 23023 22545	SE-14 TIN R12E NW-27 T2N R13E SE-5 T2N R13E NW-36 T3N R13E NW-5 T3N R14E SE-1 T4N R13E SW-32 T4N R14E NW-32 T5N R12E SW-13 T5N R13E SW-18 T5N R14E	444 445 446 447 448 449 450 451 452 453			4 79 79 59 81 82	258 261 245 277 261 272		165 220 174 170 179 110 161 175	436 510 503 446 503 529	232 271 247 307 250 265 252 334 289 282
	MANISTEE									
10205 21950 21605 18697	NW-34 T21N R14W NW-21 T21N R16W SW-13 T21N R17W SE-14 T22N R14W	454 455 456 457					610 580	242 236 232 235	852 815	563 658 656 671
914 6344 7666 15424 18212 16064 18213	NW-34 122N RI6W NW-23 T23N RI4W NW-31 T23N RI5W NE-22 T23N RI6W SW-22 T24N RI6W SE-24 T24N RI4W SE-34 T24N RI5W	458 459 460 461 462 463 464					550	150 250 189 138 801 220 182	800 801	797 717 770 732 697 765 736
16757	NW-27 T24N R16W	465								731
19816 22455 21816 18665 19934 22300	NE-9 T17N R15W SW-20 T17N R16W SW-16 T17N R16W NE-2 T17N R18W SE-17 T18N R16W NW-23 T18N R17W SE-2 T18N R17W	466 467 468 469 470 471		565	22 6		620 568 568 707 582	180 194 185 136 221 869	800 762 775 843 809 869	610 618 601 585 615 599

.

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA-	ELLSWORTH	ANTRIM	TOTAL "B"	TRAVERSE
	MASON (cont.)									
8159 4614 18002 19065 9511 15245 18274 16499	SE-13 T19N R15W SW-36 T19N R16W SW-20 T19N R17W SW-11 T19N R18W SW-22 T20N R15W SW-3 T20N R16W NE-2 T20N R16W SW-26 T20N R18W	473 474 475 476 477 478 479 480		541 530			585 605 597 418	242 288 136 126 244 206 156 158	827 893 841 624	655 654 654 641 687 661
	MECOSTA									
11332 19955 10173 21938 18272 18177 14672 17912 9841 17892 19965 20833 16329 17151 17013 22295	SW-4 T13N R7W SW-32 T13N R8W SW-16 T13N R9W SE-27 T13N R1OW NW-7 T14N R7W SE-17 T14N R8W SW-12 T14N R9W NE-19 T14N R1OW SE-21 T15N R7W NW-11 T15N R8W NW-29 T15N R9W NW-29 T15N R9W NW-10 T15N R1OW NW-3 T16N R7W SE-15 T16N R8W NW-19 T16N R9W NE-14 T16N R1OW	481 482 483 484 485 486 487 488 489 490 491 492 493 495 496	259 135 153 175 304 255 261 145 140 244 280 270 265 290 236	921 952 865 813 839 841 803 820 902 809 759 727 840 781 681 695	25 28 40 30 130 72 97 77	16	360 308 367 405 239 304 275 353	515 516 594 215 577 273 265 160 509 622 266 279 649 640 298 265	515 541 638 615 577 581 632 595 622 635 622 635 649 640 670 695	579 543 484 503 561 556 548 572 606 572 606 575 603 575 603 582 569
	MIDLAND									
18916 11711 22028 1901 17788 14035 16696 20819 19502 22249 22042 21257	SW-13 T13N R1E NE-24 T13N R2E SW-10 T13N R1W T13N R2W SE-36 T14N R1E NW-18 T14N R2E SW-20 T14N R1W NW-7 T14N R2W SW-21 T15N R1E NW-35 T15N R1E NE-13 T15N R1W NE-28 T15N R2W	497 498 499 500 501 502 503 504 505 506 507 508	181 185 199 223 180 252 174 205 149 186 180 158	1001 1000 998 1045 1030 982 1029 975 1040 1027 1025 1005	29 56 20 22 11 17 35 18 43 35 6	116 150 126 105 134 85 98 70 131 129 107 55		397 360 388 380 383 412 409 405 421 369 406 459	542 566 634 485 539 508 524 510 541 541 548 520	596 618 577 572 629 611 632 638 694 684 697 645

FERMIT	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	MIDLAND (Cor	nt.)								
11046 21846 21977 16428	NE-36 T16N R1E SW-1 T16N R2E NW-23 T16N R1W SW-34 T16N R2W	509 510 511 512	161 158 163 200	1053 1081 1015 983	19 34 25 24	133 134 130 62		1,17 410 447 438	569 578 602 524	737 768 708 677
	MISSAUKEE									
9934 12836 22190 20465 17299 9249 9534 16020 17806 11675 10849 16965 16122 18124	NE-8 T21N R6W SW-1 T21N R6W NW-21 T21N R7W SW-31 T21N R8W SE-22 T22N R6W NW-31 T22N R7W NE-8 T22N R8W SE-10 T23N R7W SE-10 T23N R6W NE-19 T23N R7W SE-14 T23N R8W SW-20 T24N R5W SE-7 T24N R6W NW-15 T24N R7W	513 514 515 516 517 518 519 521 522 521 522 523 524 525 526	153 210 142 173 172 159 140 113 92 129 142 136	879 799 716 957 793 778 953 903 811 790 968 384 845	81 20 40 23 22 15 17		298 442 570 394 557 474 478 463 615 473 553	388 251 237 227 830 227 193 217 380 222 205 199 794	686 774 827 661 830 807 667 417 858 837 695 752 794	706 712 696 695 697 681 699 755 747 668 688 722 734 711
	MONROE									
21823 21285 20082 20996 19655 20104 20495	SW-33 T9N R5W SW-14 T9N R6W NW-22 T9N R7W NW-3 T10N R5W SW-33 T10N R6W SE-29 T10N R7W SE-14 T10N R8W	527 528 529 530 531 532 533	232 232 178 170 128 261	1061 1008 1010 1055 1054 911 940	12 23 13	8		375 396 398 422 446 471 471	395 419 398 435 446 471 471	441 435 446 485 465 466 495
21178 17873 20390 21484 20713 21211 20804 17650 21091	NE-11 T11N R5W NE-35 T11N R6W NE-29 T11N R6W NE-29 T11N R7W SW-21 T11N R8W NW-8 T11N R9W NW-7 T12N R5W NW-26 T12N R6W SW-35 T12N R7W NE-8 T12N R8W	535 536 537 538 539 540 541 542	226 67 165 193 201 263 204 147 143	1011 1032 992 905 840 985 1027 993 925	26 20 20 20 32	10 6 12		474 397 426 444 478 550 407 445 509 539	474 433 425 464 504 570 451 455 509 539	475 513 483 477 506 475 550 5510 499 525

PERMIT NUMBER	LOCATION	MAP NOMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	MONTCALM (cont.))								
21331 20739	NE-32 T12N R9W NE-39 T12N R10W	543 544	160 177	847 810	23 25	45		510 585	578 610	495 490
	MONTMORENCY									
1241 18565	NW-15 T30N R3E SE-30 T30N R4E SW-27 T31N R2E	545 546 547								694 589 708
	MUSKEGON									
18173 14422 13464 17379 17141 18553 22603 132 17554 12616 15838 18227 15789 19332 18666 20084	SW-27 T9N R14W NW-4 T9N R15W SW-33 T9N R16W SW-19 T10N R13W NE-16 T10N R13W NE-9 T10N R15W NE-9 T10N R16W NE-16 T10N R16W SW-15 T11N R16W SW-15 T11N R16W SW-30 T11N R17W SE-13 T11N R18W NW-19 T12N R15W NW-15 T12N R16W NW-20 T12N R17W NE-12 T12N R18W	548 555 555 555 555 555 555 555 555 555	254 260 269	640 602 447 650 622 628 570 599 602 545 531 670 596 650 540			580 578 597 545 643 610 482 560 482 560 478 579 455 577 455 577 455 577 455 577	126 143 123 145 182 73 138 222 172 234 135 154 263 149 195 225	706 721 720 715 727 716 748 704 732 712 725 733 718 726 564 795	401 432 409 422 433 430 462 436 426 473 440 460 409
19519 13168 21730 15629	NEWAYGO SE-7 TIIN RIIW SW-25 TIIN RI2W SE-16 TIIN RI3W NW-36 TIIN RI4W	564 565 566 567	152 216 201 267	738 755 692 659			474 554 528 551	208 230 180 186	682 784 708 737	460 448 468
15373 19853 19784 21959 20617 20182 20587 19687	NW-29 T12N R11W NE-2 T12N R12W SW-11 T12N R13W NW-9 T12N R14W SW-33 T13N R14W NE-28 T13N R12W NW-4 T13N R13W SW-9 T13N R14W	568 569 570 571 572 573 574 575	152 154 159 133 140 181 135 214	762 715 650 620 753 736 655 619	34 6 10 4		542 481 535 533 522	656 169 218 726 679 192 220 250	656 711 733 733 679 737 757 757 772	465 488 488 490 494 488 509 421

PERMIT NUMBER	LOCAT ION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	NEWAYGO (cont.)								
21400 16565	SW-1 T14N R11W SE-26 T14N R12W	576 577	155 718	747	20		465	203 733	688 733	537
13457 20716 21087	NE-18 TI4N RI3W NE-1 TI4N RI4W SE-36 TI5N RI1W	578 579 580	156 174 153	584 616	33		542 584	180 175	755 759	524 532 532
10649 21767 16880	SW-3 T15N R12W SE-36 T15N R14W NE-34 T16N R11W	581 582 583	141 147 250	706 619 691	31 17		490 439	306 733 275	796 764 731	523 518 678
13813 15977 15649	NW-6 T16N R12W SE-23 T16N R13W SW-18 T16N R14W	584 585 586	145 245 150	611 588	32		467	196 265 777	764 777	563 569 549
	OAKLAND									
20274 19218 B.D.64 21298	SW-35 TIN R7E SW-31 TIN R8E NE-27 TIN R11E NE-35 T2N R7E	587 588 589 590		(= (250		140 140	390	263 273 248 310
22665 13072 12454	NE-9 T4N R7E SW-22 T4N R8E SE-16 T4N R9E	591 592 593		656	21 33 18	233 156		179 150 270	385 416 444	364 345 328
21706 22848	SE-29 T4N RILE SW-36 T5N RILE	594 595		458	58 50	259 277		141 130	458 457	283 313
	OCEANA									
20418 2123 18548 15537 20759	NW-2 T13N R15W NW-23 T13N R16W NW-12 T13N R17W NW-15 T13N R18W SW-34 T14N R15W	596 597 598 599 600	131 215	630 601 569			528 587 555	764 252 154 165 775	764 780 741 720 775	504 481 502 493
20385 18031 21127 17242	SW-28 T14N R16W NW-13 T14N R17W SE-19 T14N R18W NE-13 T14N R19W	601 602 603 604	~	555	5		505 548 562 580	221 197 178 130	731 745 740 710	476 530 521 534
20473 19805 20199 19213	SE-8 T15N R15W NW-36 T15N R16W NE-36 T15N R17W NW-35 T15N R18W	605 606 607 608	129 145	585 598 553	6 21		588 626	169 709 699 130	757 715 720 756	553 579 579 535
22651 21911 21818 20941	NW-20 TION RISW SE-9 TION RIGW NE-34 TION RIGW SE-36 TION RISW	609 610 611 612		557			568 607 531	219 172 771 223	787 779 771 754	505 489 572 574

PERMIT NUMBER	LOCAT ION	MAP	MARSHALL	COLDWATER	SUNBURY	BEREA-	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	OGEMAW									
19580 19683 20010 4814 21943 19762 18346 17127 21798 3825 20948 21799 20296 8616	SE-15 T21N R1E SE-1 T21N R2E NW-5 T21N R3E SW-31 T21N R4E SE-10 T22N R1E NE-18 T22N R2E NW-2 T22N R3E SW-22 T22N R4E NE-3 T23N R2E NW-29 T23N R3E SE-16 T24N R1E NW-34 T24N R3E NW-33 T24N R4E	613 614 615 616 617 618 619 620 621 622 623 624 625 626		1119 1067 1125 1040	31 14 21 25 20 26 19 26 30 83 18 24	83 135 126 154 70 79 131 157 99 100 86 86		455 420 398 376 500 456 414 398 435 435 445 445 440	569 555 538 595 575 571 575 574 565 549 544 550	799 785 776 780 799 755 770 774 765 789 768 725 729 781
	OSCEOLA									
21000 21653 16343 21017 15727 21835 21019 16590 5479 16379 10159 19381 16317 18698 17793 22078	NE-10 T17N R7W SE-22 T17N R8W NE-8 T17N R9W NW-8 T17N R10W NE-8 T18N R7W NE-30 T18N R8W NE-33 T18N R9W SE-35 T18N R10W SW-26 T19N R7W SE-15 T19N R7W SE-15 T19N R8W NE-1 T19N R9W SE-17 T19N R10W SE-5 T20N R7W NE-18 T20N R8W NW-21 T20N R9W SE-19 T20N R10W	627 628 629 630 631 632 633 634 635 636 637 638 639 640 642	200 160 286 165 153 88 241 160 153 162 ¥76 184	8155 760 667 700 937 762 810 530 861 768 727 615 784 759 775 640	75 52 15 25 11 23		375 495 355 503 414 594	644 690 274 680 668 645 623 277 350 756 318 812 807 384 805 250	644 690 724 680 668 697 638 772 705 756 821 827 807 798 805 844	649 606 563 622 602 624 603 651 617 628 646 653 646 653 673
	OSCODA									
20834 19728 13130	SW-16 T25N R2E NE-29 T25N R3E NW-30 T26N R3E	643 64 4 645		1272	30 25 33	65 95 75		435 455 467	530 575 575	765 774 749

•

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD		ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	OTSEGO										
17787 16902 18254 18467 9847 17036	SW-13 T29N R1W NE-15 T29N R2W NW-9 T29N R4W NW-10 T30N R1W SW-22 T30N R3W SE-31 T32N R3W	647 648 649 650 651 652						371 407 378 413	175 159 181 161 162 157	546 566 539 575	742 750 766 789 761
	OTTAWA										
21288 20949 21724 13224 22153 20414 21020 8139 9880 22085 20492 19911 11103 18148 19833 18589 22639	SW-35 T5N R13W NE-11 T5N R14W SE-34 T5N R15W SW-12 T5N R16W NE-12 T6N R13W NE-32 T6N R14W NW-31 T6N R15W NW-31 T6N R15W SW-4 T7N R14W SE-3 T7N R16W SW-3 T7N R16W SW-3 T7N R16W SW-3 T8N R13W SE-11 T8N R14W SE-26 T8N R15W SW-1 T8N R16W SW-6 T9N R13W PRESQUE ISLE SW-20 T34N R5E	653 654 655 656 657 658 659 660 661 662 663 664 665 666 668 669	254 272	728 708 705 613 690 653 614 585 640 745 608 577 636		7		525 487 562 555 537 622 537 625 537 625 537 625 5499 574 602 550 550	122 187 140 555 125 138 142 150 226 147 721 164 225 112 159 160	647 674 702 720 680 675 764 715 725 723 728 738 637 714 712 710	361 346 353 245 309 367 447 410 325 387 402 392
	ROSCOMMON										
14589 20918 20747 18973 19135 20509 18121	SW-5 T21N R1W SE-35 T21N R2W NE-30 R21N R3W NE-14 T21N R4W NE-26 T22N R2W NE-16 T22N R3W SE-8 T22N R4W NW-18 T23N R4W	670 671 672 673 674 675 676 677	172 255 139 188 238 140 122 128	1032 1020 1027 941 1001 987 956	2 3 4 2 3	30 10 : 29 39	18	326 546	212 533 608 547 642 584	568 604 562 608 586 642 584	784 750 752 771 767 744 771 756
20248 19271 20419	NE-22 T24N R1W SW-15 T24N R2W NW-28 T24N R4W	678 679 680	132	956	2	22 .7	30		495 557 638	547 574 638	769 750 737

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWOR TH	ANTRIM	TOTAL 'B'	TRAVERSE
	SAGINAW									
20288 9858 10355 11700 20953 20957. 21699 15547 19694 21320 16570 21322 15395 11503 11347 22270 18772 11597	NE-15 T9N RIE SE-2 T9N R3E NE-11 T9N R4E NW-3 T10N R2E SE-21 T10N R3E NE-13 T10N R5E SE-25 T10N R6E NW-1 T11N R1E NE-8 T11N R1E SE-29 T11N R3E SE-1 T11N R5E NE-15 T12N R1E SW-11 T12N R3E SE-7 T12N R3E NE-35 T12N R5E NE-5 T12N R6E NW-6 T13N R3E NE-20 T13N R4E	681 682 683 684 685 686 687 688 689 690 691 692 693 695 695 696 697	180 203 177 189 219 212 173 171 195 209 203 332 242 167 215 198 148	975 980 981 1010 993 966 952 1018 1027 972 999 1035 892 1018 1031 1070 1050 996	15 20 16 29 14 23 9 23 25 25 18 10 15 25 30 20 20 32	91 160 205 109 142 217 261 71 130 107 203 115 152 159 195 199 162 179		350 290 255 336 309 243 219 339 283 374 352 338 290 280 357 328	456 470 476 465 480 479 465 471 507 514 509 539 539	489 500 519 537 504 551 523 564 551 523 569 574 601 574 611 646 559
	SANILAC									
11492 18725 11405 18305 18725 10921 10386 9275	NE-9 T9N R15E SE-30 T9N R16E SE-15 T10N R16E NW-35 T10N R16E NE-5 T11N R15E NW-2 T12N R13E SE-14 T13N R12E NW-14 T14N R12E	699 700 701 702 703 704 705 706	125	780 982	124 131 45 100 87 63	240 226 253 200 264 294		188 196 231 219 228 177 244 266	552 588 526 577 595 623	428 409 450 417 519 636 637 667
	SHIAWASSEE									
22379 3129 8968 18935 14349 9396 21138	NE-5 T5N R2E SE-31 T5N R3E NE-4 T5N R4E SW-14 T6N R3E SW-3 T7N R2E NW-4 T8N R1E NE-12 T8N R4E	707 708 709 710 711 712 713	162 220 203	1120 963 1015 994	35 22 16 19 12 25 20	160 162 185 189 142 79 208		173 233 220 227 285 272 228	368 417 421 435 439 376 456	497 349 394 409 410 505 465

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	ST. CLAIR									
22764 22643 22661 22579 21575 22162 22002 21556 22409 21369 14072 13352 22410 13702 22615 18561	SW-1 T3N R15E SE-10 T3N R16E SE-22 T4N R15E NE-8 T4N R16E NW-19 T4N R17E SW-12 T5N R15E SE-11 T5N R16E SE-18 T5N R17E SE-33 T6N R13E SW-17 T6N R15E SE-21 T6N R16E SW-16 T6N R17E NW-18 T7N R13E SE-15 T7N R15E NW-1 T7N R16E SW-20 T7N R17E	714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729		653	17 77 80 69 159	293 149 280 252 279 196 227		193 200 186 190 213 195 159 197 164 186 188 140 191 182 221	488 325 521 438 550 447 607	219 222 237 260 230 274 305 306 314 308 299 355 343 350 388
10793 17051	NE-27 T8N R16E SW-8 T8N R17E	730 731		·		·		224		400 383
	ST. JOSEPH									
18405 17184 21155 14283	SW-2 T5S R9W NW-3 T5S R12W NE-27 T6S R11W SE-16 T6S R12W	732 733 734 735			4 5		365 310 310	342 93 88 110	346 458 403 420	207
	TUSCOLA									
21261 20577 20209 17409 64 2315 3082 4484 12808 18718 17438 21141 20682 18882	SE-30 TION R7E SE-5 TION R9E SE-5 TION R9E SE-35 TIIN R8E NE-33 TIIN R11E SW-8 T12N R8E SW-9 T12N R10E NW-8 T12N R10E SE-4 T13N R9E NE-1 T13N R10E SE-10 T13N R11E NW-25 T14N R7E NW-28 T14N R8E NW-10 T14N R9E	736 737 738 739 740 741 742 743 744 745 746 747 748 749	 115 273 199 85 130 228 229 120 143 	1060 1074 903 1044 1040 1155 870 1030 1167 1019 1019 1147	25 46 47 56 51 50 8 48 60 54 48 62	224 215 253 247 273 275 288 255 278 230 311 213 266 235		226 211 216 228 231 243 255 245 245 247 276 239 275 278 288	475 471 515 519 560 563 579 560 576 608 532 592 585	508 501 522 537 515 611 590 623 646 649 630 666 665 714

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL.	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWORTH	ANTRIM	TOTAL 'B'	TRAVERSE
	TUSCOLA (cont.)									
20178 18910 20159	SE-17 T14N R10E SW-31 T14N R11E SW-29 T15N R8E	750 751 752	204	1150 1049	50 57 43	280 282 198		235 235 308	565 574 549	670 646 717
	VAN BUREN									
20214 21194 12543 21900 14912 21901 19686 16579 17298 19383 6792 12025 18616 20843 18559 19130 18854 21597	NW-29 TIS RI3W SE-8 TIS RI4W NE-18 TIS RI5W NW-28 TIS RI5W NW-28 TIS RI6W NE-23 TIS RI7W NW-36 T2S RI3W NW-10 T2S RI4W SE-20 T2S RI5W NE-29 T2S RI6W NE-35 T2S R17W SE-13 T3S R13W SE-28 T3S R16W NE-3 T3S R16W NE-3 T4S R15W SE-32 T4S R15W SE-7 T4S R16W	753 754 755 756 757 758 759 760 762 763 764 765 766 765 766 768 769 770					456 432 458 453 443 417 430 390 386 380 438 380 438 382 409 410 335	92 154 98 550 505 98 106 95 100 111 125 137 82 113 88 95 160	548 556 550 571 523 530 511 517 520 501 517 520 595 497 545	269 244 240 259 210 202 237 207 174
	WASHTENAW									
21477 19371 13626 19678 19751 19891 19202 11341 18701 21903 18948 20571	SE-6 T1S R3E NW-33 T1S R5E NW-1 T1S R6E NE-2 T1S R7E SW-14 T2S R3E SW-33 T2S R4E NW-28 T2S R5E NW-12 T2S R7E NE-1 T3S R3E SE-6 T3S R4E SE-26 T4S R3E NF+28 T4S R4E	771 772 773 774 775 776 777 778 779 780 781 782			11 15 5 5 17 15 24 12 9 15	143 175 137 145 160 227 141 150 124 117		200 174 130 190 173 149 131 179 168 175 177	354 364 322 323 326 372 344 330 308 309	247 234 258 253 223 211 225 226 222 156 180
22292	SE-28 T4S R6E	784			TO	وبمد		144	271	174

PERMIT NUMBER	LOCATION	MAP NUMBER	MARSHALL	COLDWATER	SUNBURY	BEREA- BEDFORD	ELLSWOREH	ANTRIM	TOTAL 'B'	TRAVERSE
	WAYNE									
19634	SW-6 T2S R8E	785								290
	WEXFORD									
21872 20742	SE-7 T21N R9W NE-13 T21N R10W	786 787	173 173	686 678	17		626 610	253 24 8	879 875	689 703
16018	NE-28 T21N R11W	788 789	265	655	15		585	235	835	660
11008 17109	SE-1 T22N R9W SW-13 T22N R9W	790 791	235	668	50 Ú		560 593	230 110	840 703	697
10661 14307	SW-24 T22N RIOW NE-16 T23N R9W	792 793	150 205	680 682	56		541 612	257 260	854 873	688 719
10303 13335	SE-11 T23N R11W SW-21 T24N R9W	794 795	262 111	517 754	22 39		581 558	225 259	828 856	696

ROOM USE CHLY

-

. . . .

.

.

.

.

·

