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ABSTRACT

QUANTUM INFORMATION THEORY OF MEASUREMENT

By

Jennifer Ranae Glick

Quantum measurement lies at the heart of quantum information processing and is one

of the criteria for quantum computation. Despite its central role, there remains a need

for a robust quantum information-theoretical description of measurement. In this work,

I will quantify how information is processed in a quantum measurement by framing it in

quantum information-theoretic terms. I will consider a diverse set of measurement scenarios,

including weak and strong measurements, and parallel and consecutive measurements. In

each case, I will perform a comprehensive analysis of the role of entanglement and entropy

in the measurement process and track the �ow of information through all subsystems. In

particular, I will discuss how weak and strong measurements are fundamentally of the same

nature and show that weak values can be computed exactly for certain measurements with an

arbitrary interaction strength. In the context of the Bell-state quantum eraser, I will derive

a trade-o� between the coherence and �which-path� information of an entangled pair of

photons and show that a quantum information-theoretic approach yields additional insights

into the origins of complementarity. I will consider two types of quantum measurements:

those that are made within a closed system where every part of the measurement device,

the ancilla, remains under control (what I will call unampli�ed measurements), and those

performed within an open system where some degrees of freedom are traced over (ampli�ed

measurements). For sequences of measurements of the same quantum system, I will show

that information about the quantum state is encoded in the measurement chain and that

some of this information is �lost� when the measurements are ampli�ed�the ancillae become



equivalent to a quantum Markov chain. Finally, using the coherent structure of unampli�ed

measurements, I will outline a protocol for generating remote entanglement, an essential

resource for quantum teleportation and quantum cryptographic tasks.
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Chapter 1

Introduction

1.1 Introduction and Historical Overview

John Archibald Wheeler famously suggested that information is fundamental to the physical

world with his 1990 �it from bit� doctrine [1]. In our �participatory universe�, we understand

the physical world by interacting with it, and we obtain information about its state through

measurement. When the systems we probe are quantum in nature, so too is the information

they contain. The study of quantum information has grown during the last several decades

into an extensive and versatile �eld known generally as quantum information science. It

now encompasses diverse areas including quantum communication and cryptography, quan-

tum error correction, and quantum computation. Its far-reaching technological implications

become more evident each year, while its most profound impacts are yet to be felt. The re-

markable progress in this �eld has promised dramatic impacts to computing and, therefore,

to the global economy. For instance, the development of large-scale quantum processors will

allow for the e�cient simulation of complex systems in quantum chemistry, the design of new

materials and medicine, and has created the need for future quantum-proof cybersecurity

systems.

An appreciation for quantum information is perhaps best formed by �rst recalling its

classical counterpart. Formulated by Claude Shannon in his set of 1948 papers [2, 3], classi-
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cal information theory quanti�es information in terms of zeros and ones, bits, and describes

its transmission over communication channels. Quantum information theory (QIT), on the

other hand, uni�es the quantum behavior of physical systems with information theory, a

prime example being entanglement. While much of quantum information processing relies

on consuming this non-classical phenomenon as a physical resource (e.g., in quantum tele-

portation), entanglement can be understood and quanti�ed entirely with the tools provided

by quantum information theory. Instead of the bit, the basic unit of information is now the

quantum bit, or �qubit�, and its state can be a superposition of the classical bit values. As a

result, an n-qubit system can store all 2n possible bit values, instead of just one at a time.

This �parallelism� is what would allow a quantum device with roughly 50 logical qubits to

execute certain tasks that no existing classical supercomputer could perform in a realistic

period of time [4,5]. In fact, a 300-qubit device would have a state space of dimension larger

than the number of atoms in the universe.

Quantum information theory began to develop rapidly in the 1990s. Two complementary

quantum protocols foundational to quantum communication were discovered at this time:

superdense coding [6] in 1992, in which two bits of classical information can be communi-

cation using one qubit, followed by teleportation [7] in 1993, where one qubit is transferred

by communicating two classical bits. Quantum error-correcting codes, which are a neces-

sary component of fault-tolerant quantum devices, were developed by Calderbank, Shor,

and Steane starting in 1995. Their work was followed quickly by important papers from

several other groups (see, e.g., Refs. [8�14]). These codes showed that it is possible to have

reliable communication over noisy quantum channels and e�ective quantum computation

in the presence of decoherence. Today, research groups around the world are continually

rede�ning the state of the art in quantum information processing. There are now several
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viable technologies for building quantum devices (see, e.g., [15] for a short review), including

trapped ions, quantum dots, superconducting qubits, and exotic topological qubits, along

with successful demonstrations of entangling multiple qubits and implementations of single-

and two-qubit logic gates.

Quantum measurement is ubiquitous to quantum information processing. As part of the

DiVincenzo criteria [16], it is one of the key requirements for building a quantum computer.

For instance, after an algorithm is run on a quantum device, a measurement is performed

and the result of the computation is read out. In fault-tolerant devices employing error

correction, syndrome measurements are performed to correct errors acquired by qubits during

the computations. And, the standard quantum teleportation protocol relies on quantum

measurement to transfer a quantum state to a remote receiver. Part of the challenge in

realizing large-scale quantum processors is improving the measurement process to reduce

unwanted coupling to the device. Such interactions interfere with the ability to manipulate

and coherently control the device's qubits. From this perspective, it is essential to have a

robust quantum information-theoretical understanding of how information and entanglement

are processed in quantum measurement.

Over the last several decades many models of quantum measurement have been pro-

posed. Some of the most well-known include the standard Copenhagen model, Everett's

relative state formalism [17], the two-state vector formalism [18], Gri�ths' consistent histo-

ries [19], and Zurek's environment-induced decoherence model [20, 21]. To varying degrees,

some of these models have been put forward, in part, to address the so-called measurement

problem. In order to be compatible with empirical observations, it is traditionally stated

that a measurement of a quantum system probabilistically collapses its state to an eigen-

state of the measurement operator corresponding to the measured observable. This collapse
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is irreversible and not represented by unitary dynamics, and so stands in contradiction to

the unitary evolution prescribed by the Schrödinger equation. Those seeking solutions to the

measurement problem aim to reconcile this apparent and irreversible collapse with unitary

dynamics.

The formulation of quantum measurement I present in this work is similar to Everett's

relative state formalism inasmuch as a strong emphasis is placed on the interaction of a

quantum system with a measuring device that is treated quantum mechanically, and their

subsequent unitary evolution, as �rst formulated by John von Neumann [22]. However,

I greatly expand upon these ideas and model quantum measurement in the framework of

quantum information theory, with a focus on understanding the �ow of information and

entanglement throughout the quantum subsystems. A solution is not provided to the mea-

surement problem as I argue that there is no problem and that accounting for a collapse

mechanism is not necessary for a complete description of the measurement process. In other

words, there is nothing inherently mysterious or inconsistent about the measurement process

and the probabilistic nature of measurement outcomes is simply a consequence of the fact

that we can only access part of a large entangled system. Lastly, I prefer to avoid excursions

into interpretations and metaphysics, and instead to direct all e�orts towards developing

sound and concrete mathematical formalisms with relevant experimental applications and

whose predictions can be realized and tested in the lab.

This view of quantum measurement is at the heart of the well-established weak mea-

surement formalism [23] where a small coupling is induced between a quantum system and

measurement device. Indeed, in the �rst experimental realization of weak measurements

Ritchie, Story, and Hulet wrote that [24] �a measurement is performed by the interaction

of a system with a device which provides some information about the population of the
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eigenstates of an observable of the system.� In essence, quantum measurement is nothing

more than a unitary interaction between a quantum system and a measuring apparatus that

yields information about the state of the quantum system.

With this perspective in mind, the main focus of this work has been to frame quantum

measurement in quantum information-theoretic terms and argue that quantum measure-

ments should be treated on the same footing as other unitary quantum operations. In short,

I aim to quantify how information is processed in quantum measurement. Considering diverse

measurement scenarios such as weak and strong measurements, and parallel and consecutive

measurements, I perform a comprehensive analysis of the role of entanglement and entropy

in the measurement process and track the �ow of information through all subsystems. Along

the way, I will show how weak and strong measurements are of the same nature, derive a new

complementarity relation for the Bell-state quantum eraser, and harness the coherence of the

measurement process to develop quantum protocols for generating remote entanglement.

There are four areas of focus in this dissertation: (1) weak and strong quantum mea-

surements, (2) parallel measurements made on entangled quantum systems, (3) consecutive

measurements of a single quantum system, and (4) quantum disentangling protocols. Chap-

ters 2�4 contain the necessary background for the subsequent results presented in Chs. 5�8.

Chapter 2 will begin with a review of the physics of entangled quantum systems, while the

main concepts of classical and quantum information theory will be presented in Ch. 3. Here,

some of the useful tools for modeling the information content and entanglement of quantum

systems will be outlined. The standard description of quantum measurement is reviewed

in Ch. 4 along with examples of how the theoretical models for controlling and measuring

qubits are realized in typical experimental settings.

With this foundation, I will introduce the �rst area of focus in Ch. 5. I will provide
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the model of quantum measurement that emphasizes the unitary entanglement between a

quantum system and a quantum measuring device, often referred to as an ancilla, which is at

the core of this work. I will show how such a model is fully compatible with the weak mea-

surements formalism and that measurements of any interaction strength should be treated

on the same footing. Finally, I will analyze in detail strong quantum measurements from the

perspective of quantum information and elucidate the role entanglement and information

play in the measurement process.

The second area of focus will be parallel quantum measurements in Ch. 6. Using the

Bell-state quantum eraser, I will derive a new complementarity relation for a photon trav-

eling through a double-slit apparatus. Speci�cally, I will compute the trade-o� between

the information about the photon's path obtained by measurement and the coherence of its

density matrix. This demonstrates that an information-theoretic approach yields additional

insights into the origins of complementarity.

An analysis of consecutive measurements of a single quantum system in Ch. 7 forms

the third topic. I will describe how sequences of measurements that remain unampli�ed

are coherent and that, due to the unique structure of the resulting ancilla density matrix,

the joint entropy of the ancilla chain is determined only by the boundary. I will show

that amplifying a measurement changes the amount of information gained about a quantum

system and that ampli�ed measurements are equivalent to a quantum Markov chain.

The �nal topic will be quantum protocols in Ch. 8. The coherence and entanglement

properties of the measurement chains derived in Ch. 7 will be employed to develop quantum

protocols based on disentangling operations. I will use such operations to outline a new

protocol for generating remote entanglement, a key component of quantum communication

protocols including teleportation and quantum key distribution.

6



Chapter 2

Preliminaries

Before delving into quantum information theory and quantum measurement, I will give a

short review of the mathematical description of quantum systems. I will start with qubits,

which are simple two-level quantum systems. I will discuss how the state of any qubit can

be illustrated by a point on or within the Bloch sphere, with unitary transformations simply

e�ecting a rotation of the qubit's state vector. The density matrix, which will be discussed

next, describes both pure (zero entropy) and mixed quantum states (non-zero entropy) and

is a useful tool for modeling multi-qudit (d-dimensional) systems. I will outline the types of

correlations and entanglement that occur in these composite systems, which are key to the

measurement process (see Chs. 4�7). In later chapters, I will show how these correlations can

be more deeply understood using quantum information theory (see Ch. 3) and entropy Venn

diagrams. I will then outline common unitary quantum operations on single- and two-qubit

systems. Finally, I will discuss the teleportation protocol and superdense coding. These

ideas form the foundation of many quantum communication protocols and will be useful for

understanding the disentangling operations of Ch. 8.
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2.1 Qubits

The state of a two-level system (a qubit) can be written generally as

|ψ〉 = α |0〉+ β |1〉, (2.1)

with complex amplitudes that satisfy |α|2 + |β|2. The states |0〉 and |1〉 form the compu-

tational basis for the qubit's vector space. There are many physical realizations of a qubit,

for example, the spin of an electron or the polarization of a photon. I will describe later in

Ch. 4.2 some typical experimental implementations of qubits and how they are manipulated

and measured.

A qubit can be represented geometrically by considering Eq. (2.1) to be a point on the

surface of a sphere [25], called the Bloch sphere. The north pole (+ẑ) of the Bloch sphere,

shown in Fig. 2.1, represents the state |0〉, while the south pole (−ẑ) represents |1〉. Each

pair of points on opposite sides of the sphere corresponds to orthogonal state vectors. For

example, the ±x̂ axes are written (|0〉 ± |1〉)/
√

2, while the ±ŷ axes are (|0〉 ± i|1〉)/
√

2. As

we will see in the next section, points on the surface of the sphere represent pure quantum

states, while interior points are mixed states. In this picture, the general representation of a

qubit's state is given by

|ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉. (2.2)

This state is characterized by two real numbers θ and φ, where 0 ≤ θ ≤ π is the polar angle

and 0 ≤ φ ≤ 2π is the azimuthal angle, and an unobservable overall phase has been dropped.

For example, the symmetric state |ψ〉 = (|0〉+ |1〉)/
√

2 is obtained with θ = π/2 and φ = 0,

which is equivalent to the x̂ axis of the Bloch sphere.
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Figure 2.1: The Bloch sphere. The state |ψ〉 of a qubit can be represented as a unit-length
vector in the sphere with coe�cients given by the angles θ and φ. Image by Gosser.ca,
distributed under a CC BY-SA 3.0 license.

Applying unitary operations to (2.2) transforms the state of a qubit. An arbitrary rota-

tion by an angle α about the n̂ axis is implemented with the operator

Rn̂(α) = e−iα n̂·~σ/2 = cos(α/2)1− i (n̂ · ~σ) sin(α/2), (2.3)

where ~n = nx x̂ + ny ŷ + nz ẑ is a unit vector with normalization n̂2 = n2
x + n2

y + n2
z = 1,

and ~σ = σx x̂ + σy ŷ + σz ẑ is a vector of Pauli matrices. The unit matrix is denoted 1. In

the standard basis, {|0〉, |1〉}, these matrices are written

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.4)

and satisfy the following relations,

(~σ · n̂)2 = 1, (2.5)
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Y ZX

Figure 2.2: The three Pauli gates. The lines indicate the incoming and outgoing state of the
qubit. The not gate X �ips the state of the qubit, Z changes the phase, while Y performs
both a bit and phase �ip.

and

(~σ · n̂) (~σ · m̂) = (n̂ · m̂)1 + i (n̂× m̂) · ~σ. (2.6)

An arbitrary operation on a qubit is constructed from a rotation and a phase provided by γ:

U = eiγ Rn̂(α). (2.7)

Three basic transformations of a qubit are implemented with the Pauli gates, σx, σy, and

σz (sometimes the notation X, Y , and Z is used) shown in Fig. 2.2. In the standard basis

the bit-�ip, or quantum not gate, is the Pauli matrix σx and reverses the state of a qubit.

Up to an overall phase, σx is equivalent to a rotation by π around the x̂ axis,

σx|0〉 = |1〉 , σx|1〉 = |0〉. (2.8)

The phase-�ip gate is the Pauli matrix σz and changes the phase using a rotation by π

around the ẑ axis,

σz|0〉 = |0〉 , σz|1〉 = −|1〉. (2.9)

A bit and phase �ip together is implemented with the Pauli matrix σy via a rotation by π
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Figure 2.3: The Hadamard gate performs a rotation by an angle π around the axis (x̂+ẑ)/
√

2.

around the ŷ axis,

σy|0〉 = i|1〉 , σy|1〉 = −i|0〉. (2.10)

Another important single-qubit transformation is the Hadamard gate, H, shown in

Fig. 2.3. It is equivalent, up to an overall phase, to a rotation about the axis (x̂+ ẑ)/
√

2 by

an angle α = π,

H =
σx + σz√

2
. (2.11)

For instance, this operator maps the state |0〉 into (|0〉 + |1〉)/
√

2 and the state |1〉 into

(|0〉 − |1〉)/
√

2. In terms of the Bloch sphere, the Hadamard gate is also equivalent to two

rotations: �rst a rotation by π/2 around the ŷ axis followed by a rotation by π around the

x̂ axis.

For n qubits initialized in their ground states, the Hadamard gate produces a superposi-

tion of basis states with equal weight,

H ⊗ . . .⊗H |0 . . . 0〉 =
1

2n/2

2n−1∑
x=0

|x〉, (2.12)

where |x〉 is the set of n-qubit states, |0 . . . 00〉, |0 . . . 01〉, |0 . . . 10〉, |0 . . . 11〉, etc. The tensor

product, denoted by ⊗, of two operators A (with dimension dA) and B (with dimension dB)

acts in an extended vector space A ⊗ B of dimension dA× dB . Therefore, each Hadamard
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gate on the left side of (2.12) acts on their respective qubit in the joint state |0 . . . 0〉.

The expression (2.12) is known as the Hadamard transform and is a key element of many

quantum algorithms, such as the period-�nding subroutine in Shor's algorithm [26, 27] or

Grover's search algorithm [28,29].

2.2 The Density Matrix

The general state of a two-level system, which was written previously in Eq. (2.1), can be

generalized to d-dimensional systems, called qudits,

|ψ〉 =
d−1∑
i=0

αi |i〉. (2.13)

The complex amplitudes satisfy
∑
i |αi|2 = 1 and the states |i〉 form an orthonormal basis.

For example, systems with d = 3 are called qutrits.

The quantum state (2.13) is referred to as a pure state since it has zero entropy. A pure

state can be written down as a linear superposition of kets. In contrast, suppose a quantum

system is one of many (not necessarily orthogonal) pure states, |ψi〉, with some probability

pi. Such a system is described with a density matrix and is written as a mixture,

ρ =
∑
i

pi |ψi〉〈ψi|. (2.14)

In this case, the quantum system is in a mixed state with non-zero entropy. Later, in Ch. 3.4

we will see how to compute the entropy of general mixed states.

The expression (2.14) for the density matrix is not unique. That is, there may exist

di�erent sets {pi, |ψi〉} and {p′i, |ψ
′
i〉} that give rise to the same density matrix. Further-

more, the number of terms in the sum (2.14) is not necessarily the same for these di�erent
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decompositions. For example, for a qubit consider the orthogonal states |ψ0〉 = |0〉 and

|ψ1〉 = |1〉 with weights p0 and p1. One could equivalently write the density matrix with the

non-orthogonal states |ψ0〉 =
√
p0 |0〉 +

√
p1 |1〉 and |ψ1〉 =

√
p0 |0〉 −

√
p1 |1〉 with weights

1/2, 1/2.

The density matrix, ρ, is a Hermitian operator with unit trace (meaning its diagonal

elements sum to one) and eigenvalues that are both real and non-negative (ρ is a �positive

operator�). The trace of a matrix is de�ned as

Tr(ρ) =
∑
n

〈n|ρ|n〉

=
∑
in

pi 〈ψi|n〉〈n|ψi〉 =
∑
i

pi = 1,

(2.15)

where |n〉 is a complete set of orthonormal states of ρ.

In a chosen basis, the diagonal elements of the density matrix correspond to the proba-

bility to observe the quantum system in a given state. For example, expressing (2.14) in the

computational basis, |j〉,

ρ =
∑
ijj′

pi cij c
∗
ij′ |j〉〈j

′|, (2.16)

shows that the state |j〉 would be observed with probability
∑
i pi |cij |2. The o�-diagonal

elements of ρ, which are equal to
∑
i pi cij c

∗
ij′ , characterize how coherent, or how pure, the

state is.

The purity of a quantum state is calculated from the trace of the square of the density

matrix, Tr(ρ2), and is equal to one when ρ is a pure state, and is otherwise less than one.

For example, a completely mixed state of dimension d has the density matrix ρ = 1
d 1 with

purity equal to 1/d. If ρ = |ψ〉〈ψ|, then ρ2 = ρ and the purity is equal to one. But, if ρ is
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mixed the purity is

Tr(ρ2) =
∑
ii′

pi pi′ |〈ψi|ψi′〉|
2, (2.17)

which reduces to Tr(ρ2) =
∑
i p

2
i if |ψi〉 are orthonormal.

The state of a general (meaning, not necessarily pure) qubit can be expanded in terms

of the identity and Pauli matrices as

ρ =
1

2

(
1 + ~a · σ̂

)
=

1

2

(
1 + ax σx + ay σy + az σz

)
, (2.18)

since these matrices form a basis for all two-dimensional Hermitian matrices. Here, ~a is

known as the Bloch vector and indicates the point within the sphere corresponding to the

mixed state ρ [25]. The eigenvalues of (2.18) are (1± ‖~a‖)/2, where the norm of the Bloch

vector satis�es ‖~a‖ ≤ 1. For pure states, ‖~a‖ = 1 so that Tr(ρ2) = 1, implying that pure

states are restricted to the surface of the Bloch sphere, while mixed states lie in the interior.

The density matrix formulation is a powerful tool in quantum information theory. It is

used for describing general quantum systems and operations, and, in particular, for under-

standing subsystems that are part of a larger entangled pure state. In later chapters, the

density matrix will be used, among other things, to characterize the coherence and entan-

glement in quantum measurement.

2.3 Composite Systems and Entanglement

Our discussion of single-qubit (or qudit) states in Sec. 2.1 can be extended to describe

composite, or multi-qudit states. For instance, we can write a general pure state of two

14



qudits, A and B, as

|AB〉 =
d−1∑
i,j=0

cij |i〉 ⊗ |j〉, (2.19)

where |cij |2 = 1 and ⊗ indicates the tensor product (which we will often drop for notational

convenience). If A and B are each d-dimensional systems, then their joint state, |AB〉, is

d× d�dimensional. The simplest example of a composite system occurs when A and B are

uncorrelated. In this case, the coe�cients in the wave function factor, cij = ai bj , yielding a

product of two pure states,

|AB〉 =
∑
i

ai |i〉 ⊗
∑
j

bj |j〉 = |ψA〉 ⊗ |ψB〉. (2.20)

For general, non-factorizable coe�cients cij the two systems are said to be entangled. By

performing a partial trace over just the states of B in (2.19), we �nd that A is a mixed state,

ρ(A) = TrB
(
|AB〉〈AB|

)
=
∑
ii′j

cij c
∗
i′j |i〉〈i

′|. (2.21)

Although the joint state |AB〉 is pure and fully known, the entanglement of the state yields

subsystems that are mixed and uncertain.

A special case of the state (2.19) is known as a Bell state (or EPR pair after the famous

1935 paper by Einstein, Podolsky, and Rosen [30]),

|Φ+〉 =
|00〉+ |11〉√

2
, (2.22)

and plays an essential role in quantum computing and many quantum protocols including

quantum teleportation and superdense coding. The state (2.22) is entangled as it cannot be

written as a tensor product of two pure states. Furthermore, the entanglement is maximum
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since each qubit is in a maximally mixed state,

ρ(A) = TrB
(
|Φ+〉〈Φ+|

)
=

1

2
1 =

1

2

(
1 0

0 1

)
. (2.23)

The Bell state (2.22) can be trivially extended to n qubits where it is referred to as a GHZ

state, named for Greenberger, Horne and Zeilinger [31]. An important instance is n = 3,

|GHZ〉 =
|000〉+ |111〉√

2
, (2.24)

and is used in many quantum communication protocols. For example, in quantum cryptog-

raphy the original proposal for quantum secret sharing [32] used a GHZ state to distribute

quantum information across multiple parts such that two of them are required to reconstruct

the original state. The GHZ state is also important in that it represents one of two distinct

classes of tripartite entanglement [33], the other being the W state,

|W 〉 =
|001〉+ |010〉+ |100〉√

3
. (2.25)

The states (2.24) and (2.25) are inequivalent since they cannot be transformed into each

other via local operations.

Along with three other similar maximally entangled states, the state (2.22) forms a

complete basis for any two-qubit state that is known as the Bell basis:

|Φ±〉 =
|00〉 ± |11〉√

2
,

|Ψ±〉 =
|01〉 ± |10〉√

2
.

(2.26)

It is easy to show that the reduced density matrix of all four states is 1
2 1, revealing that
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they are indeed maximally entangled. Another notation that we will sometimes use for the

Bell states is |β00〉 = |Φ+〉, |β10〉 = |Φ−〉, |β01〉 = |Ψ+〉, and |β11〉 = |Ψ+〉.

The Bell states (2.26) can be transformed into one another by operations on just one of

the qubits (that is, via local operations). For example, application of the phase-�ip operator

to the second qubit transforms 1 ⊗ σz |β00〉 = |β10〉. In general, the Bell states can be

written as

|βzx〉 =
(
1⊗XxZz

)
|β00〉, (2.27)

where Xx and Zz are powers of the Pauli matrices. In other words, local operations cannot

break the entanglement of the pair. For instance, writing each single-qubit state in the diag-

onal basis |±〉 = (|0〉 ± |1〉)/
√

2 yields equivalently entangled states. Later, when discussing

the von Neumann entropy and the Schmidt decomposition in Ch. 3, it will be clear that the

Schmidt coe�cients, and therefore the entanglement, are basis independent in a bipartite

pure state.

Experimentally, the set of two-qubit states (2.26) can be generated in di�erent ways.

One way this can be achieved is with spontaneous parametric down-conversion [34]. In

this method, a laser is focused on a beta-barium borate (BBO) crystal, a nonlinear optical

material, such that one incident photon is converted into two photons that are emitted

with correlated polarizations. Alternatively, Eq. (2.26) can be produced using a sequence

of Hadamard and controlled-not gates, discussed in more detail below, on two initially

uncorrelated qubits.

Perhaps the most common two-qubit unitary transformation is the controlled-not gate,

Ucnot. This simple gate, shown in Fig. 2.4, can be used to entangle (or disentangle) qubits

17



Figure 2.4: The controlled-not gate �ips the state of the target qubit (open circle) only if
the control qubit (�lled circle) is in the state |1〉.

by performing a conditional bit-�ip. With the �rst qubit as the control, this gate will �ip

the state of the second qubit, the target, if and only if the �rst qubit is in the state |1〉, and

otherwise will do nothing. The operator can be written in the following way,

Ucnot = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx, (2.28)

so that its action on states in the computational basis is

Ucnot : |00〉 7→ |00〉

|01〉 7→ |01〉

|10〉 7→ |11〉

|11〉 7→ |10〉.

(2.29)

The set of single-qubit operations and the controlled-not gate is known as a universal set.

Any quantum gate can be decomposed into these gates so that, together, they are su�cient

to perform any quantum computation [35].

Using one Hadamard and one controlled-not gate, we can easily construct an EPR pair,

the Bell state (2.22). Suppose two qubits are each initialized in the state |0〉. Applying the
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sequence of gates Ucnot (H ⊗ 1), where the control is on the �rst system, yields

Ucnot (H ⊗ 1) |0〉 ⊗ |0〉 = Ucnot
|0〉+ |1〉√

2
⊗ |0〉 =

|00〉+ |11〉√
2

. (2.30)

The controlled-not gate can be generalized to a controlled-U gate,

C(U) = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ U, (2.31)

where the bit-�ip operation, σx, is replaced by an arbitrary unitary operation, U . It is easy

to check that the controlled-U gate, as with any other quantum gate, is unitary. This general

operation will be useful when discussing quantum disentangling operations in Ch. 8.

In addition to the pure state in Eq. (2.19), we can also consider mixed states for two

qudits. Two systems, A and B, are separable if their joint state can be written as combination

of product states,

ρ(AB) =
∑
i

pi ρ
A
i ⊗ ρ

B
j , (2.32)

where pi are non-negative probabilities and
∑
i pi = 1. The reduced density matrices for

each of the subsystems, ρAi and ρBi , could be pure or mixed. Such states exhibit classical

correlations between the subsystems. Of course, if there is only one non-zero pi then the

separable state (2.32) reduces to an uncorrelated state, ρ(AB) = ρ(A) ⊗ ρ(B). If the joint

state ρ(AB) cannot be written in the separable form (2.32), then it is said to be entangled.

19



2.4 The No-Cloning Theorem

A striking feature of quantum systems is that it is impossible to perfectly copy, or clone, an

arbitrary quantum state. This was proved in 1982 by Wootters and Zurek [36] as well as by

Dieks who showed that this property precludes the possibility of superluminal communication

via EPR pairs [37].

To demonstrate the essence of the no-cloning theorem, suppose that there exists a unitary

transformation, U , that can indeed clone an arbitrary state. Then, for two such orthogonal

states |ψ〉 and |φ〉, the transformations U(|ψ〉|0〉) = |ψ〉|ψ〉 and U(|φ〉|0〉) = |φ〉|φ〉 are

possible. Since U must be a linear operator, its application to an arbitrary superposition,

|η〉 = α |ψ〉+ β |φ〉, results in

U
(
|η〉|0〉

)
= α |ψ〉|ψ〉+ β |φ〉|φ〉, (2.33)

where |α|2 + |β|2 = 1. However, if U is a cloning operation, then it must be true that

U
(
|η〉|0〉

)
= |η〉|η〉 = α2 |ψ〉|ψ〉+ β2 |φ〉|φ〉+ αβ |ψ〉|φ〉+ αβ |φ〉|ψ〉. (2.34)

Clearly, Eqs. (2.33) and (2.34) are not the same. The presence of the cross terms in (2.34)

implies that this cloning operation is impossible.

The no-cloning theorem is usually discussed for pure quantum states but was generalized

in 1996 by Barnum et al. to include mixed states via the no-broadcast theorem [38]. Al-

though it is impossible to perfectly clone an arbitrary quantum state, approximate cloning

is permitted. Indeed, the highest achievable �delity for qubit cloning has been calculated to

be 5/6 [39,40].

The no-cloning theorem has many interesting consequences in addition to the impossibil-
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ity of superluminal communication mentioned above. For instance, classical error correction,

which relies on the redundant encoding of bits in a repetition code, cannot be employed in

quantum algorithms (see, e.g., [41]). The theorem is also responsible for the distinct na-

ture of quantum measurements as compared to classical measurements. As we will see in

later chapters, the inability to perfectly clone arbitrary quantum states suggests that our

measurement devices do not and cannot re�ect the true underlying state of the quantum

system.

2.5 Quantum Teleportation and Superdense Coding

Two fundamental and complementary protocols in quantum information processing are quan-

tum teleportation and superdense coding. These protocols rely heavily on the use of the

maximally entangled Bell states. In this section, I will outline both protocols as the main

ideas will be helpful for understanding the quantum disentangling operations in Ch. 8.

Quantum teleportation, discovered in 1993 by Bennett et al. [7], is a method for trans-

ferring a qubit to a receiver using two bits of classical information. Following the original

proposal a few years later, teleportation was implemented using the polarization states of

photons in 1997 and 1998 [42�44]. Also in 1998, the �rst �complete� teleportation (where the

�nal corrections are applied to Bob's qubit) was achieved across inter-atomic distances in the

nuclear spins of trichloroethylene using nuclear magnetic resonance (NMR) [45]. In 2004,

teleportation across micrometer distances was realized using trapped ions [46, 47]. More

recently, teleportation of the state of superconducting transmon qubits over 6 millimeters

was performed in 2013 [48] and of the spin states of nitrogen vacancy centers in diamond

over 3 meters in 2014 [49]. As of July 4, 2017 the world record for long-distance quantum
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Bell z,x ∈ {0,1}
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β| 〉zx
z

x
β| 〉zx

Figure 2.5: Shorthand notation for the Bell measurement circuit is shown on the left together
with the complete circuit on the right. A Bell state |βzx〉 is converted into the two classical
bits z and x (drawn with double solid lines) after a controlled-not, Hadamard, and two
single-qubit measurements in the standard basis.

teleportation with photons is nearly 1400 kilometers, the distance between an observatory

in Tibet and a satellite in low Earth orbit [50] (see also [51] for the team's demonstration of

�rst distributing the entanglement over such length scales).

In the quantum teleportation protocol, two parties (usually referred to as Alice and Bob)

initially share a maximally entangled state of two qubits A and B, say, |Φ+〉AB = |β00〉AB .

The sender, Alice, wishes to transfer an arbitrary quantum state |ψ〉Q = α|0〉 + β|1〉 to a

receiver, Bob. To do so, Alice �rst performs a Bell measurement (see Fig. 2.5 for a circuit

diagram of a Bell measurement) on her half of the entangled pair (qubit A) and the unknown

qubit Q in the state |ψ〉Q. She sends the result of the measurement, two classical bits, to

Bob, who then performs the necessary corrections to his half of the Bell state (qubit B).

Afterwards, his qubit B will be in the state |ψ〉. Interestingly, as we will see, neither Alice

nor Bob need to know the actual state |ψ〉 that they are sending.

Before going through each step of the protocol in detail, we �rst make an observation.

Quantum teleportation can be summarized by the following simple relation for the initial

state of all three qubits Q, A, and B before the protocol is implemented,

|ψ〉Q ⊗ |β00〉AB =
1

2

∑
z,x∈{0,1}

|βzx〉QA ⊗XxZz |ψ〉B . (2.35)
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Here, |βzx〉 are the four Bell states, and X and Z are Pauli operators (see Sec. 2.3). From

this expression, we can see that the state |ψ〉 of Q will be transferred to B, up to a unitary

correction. To be clear, only the state of Q is transferred to Bob's qubit, not the physical

particle Q. Finally, at the end of the protocol, the state (2.35) evolves to

1

4

∑
z,x∈{0,1}

|βzx〉QA〈βzx| ⊗ |ψ〉B〈ψ| =
1

2
1Q ⊗

1

2
1A ⊗ |ψ〉B〈ψ|, (2.36)

where qubits Q and A are completely mixed and the state of the Bob's qubit B is |ψ〉, which

is disentangled from the rest of the system.

We can understand the protocol better by considering each step in more detail. The

initial state (2.35) of the three qubits is the product state

|φ0〉 = |ψ〉Q ⊗ |β00〉AB =
(
α|0〉Q + β|1〉Q

)
⊗ 1√

2

(
|00〉AB + |11〉AB

)
, (2.37)

where Q labels the arbitrary state to be teleported from Alice to Bob, and A and B label

Alice's and Bob's qubits, respectively. The labels will be dropped from now on since the

ordering of states is always maintained.

In the �rst step, Alice performs a Bell measurement by applying a cnot gate to Q and

A, with the control on Q, followed by a Hadamard gate on Q. This transforms Eq. (2.37) to

|ψ1〉 =
1

2

[
|00〉

(
α|0〉+β|1〉

)
+ |01〉

(
α|1〉+β|0〉

)
+ |10〉

(
α|0〉−β|1〉

)
+ |11〉

(
α|1〉−β|0〉

)]
. (2.38)

Expression (2.38) already suggests that the conditional state of B is nearly equivalent to the

desired state |ψ〉.

In the second step, Alice measures the qubits Q and A in the computational basis. For

example, if she observes the outcome �00� then, according to (2.38), the corresponding state
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z xZ ψ| 〉

ψ| 〉
z,x ∈ {0,1}

β| 〉00

Figure 2.6: The quantum teleportation circuit. The dashed line separates the systems under
Alice's (upper) and Bob's (lower) control. Alice transfers the state |ψ〉 to Bob by performing
a Bell measurement and sending the two resulting classical bits of information z and x
(denoted by the double solid lines) to Bob. Conditionally on these two bits, Bob performs a
correction ZzXx to his qubit to obtain the state |ψ〉.

of B is evidently α|0〉B + β|1〉B , which is the original state |ψ〉.

For each of the four possible outcomes in Alice's measurement, Bob's qubit will be in

one of four states. Each of these states is related to |ψ〉 by a simple single-qubit operation.

That is, Eq. (2.38) can be rewritten as

|ψ1〉 =
1

2

[
|00〉 |ψ〉+ |01〉σx|ψ〉+ |10〉σz|ψ〉+ |11〉 (−iσy)|ψ〉

]
. (2.39)

In this form, it is clear which operation Bob must perform on his qubit to recover |ψ〉. For

example, suppose Alice found the outcome �01�. In this case, upon receiving Alice's two-bit

message Bob corrects his qubit σx|ψ〉 with the bit-�ip gate σx, to obtain |ψ〉. Similarly,

for the other measurement outcome �10�, Bob applies the phase-�ip gate σz, while for �11�

he applies iσy. Thus, with two bits of classical communication, a sender can successfully

transfer an arbitrary qubit to a distant receiver. See Fig. 2.6 for the complete teleportation

circuit.

A modi�ed version of quantum teleportation has also been proposed by Brassard, Braun-

stein and Cleve [52,53] and is implemented without performing a Bell measurement. In this
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case, a sequence of controlled-not and Hadamard gates replaces the Bell measurement,

which is no longer performed on the �rst two qubits, Q and A. Nevertheless, the state |ψ〉

is still transferred to Bob.

The second fundamental quantum protocol is superdense coding, which was published in

1992 by Bennett and Wiesner [6] one year before the teleportation protocol. In superdense

coding, two bits of classical information can be communicated using a single qubit. It

provides a way to transmit classical information over a quantum channel, and is, in a sense,

the inverse of the teleportation scheme. Superdense coding was �rst experimentally realized

in 1996 in an optical setting by Mattle et al. [54]. In February 2017, the highest bit rate

to date of 1.67 bits per qubit (the maximum, of course, being 2) was achieved using linear

optics over a �ber optic link [55].

In superdense coding, Alice and Bob each have one half of an entangled pair of qubits,

for instance, the Bell state |Φ+〉 = |β00〉 in (2.22). Depending on the value of the two bits

that Alice wishes to communicate to Bob, she encodes her message by performing one of four

operations on her qubit, A. She then sends A to Bob, who decodes the message. Superdense

coding is based on a simple identity for the Bell state before the protocol is implemented,

(H ⊗ 1) Ucnot (ZzXx ⊗ 1) |β00〉 = |z〉|x〉. (2.40)

That is, a set of unitary operations on the initially entangled qubits yields a product state.

To see how this works, suppose that Alice wants to send the bit string �00�. In this case,

she performs the unitary operation, 1, and sends qubit A to Bob. The decoding scheme that

Bob follows is always the same regardless of which message Alice sends, and is the inverse of

the entangling scheme described in (2.30) for creating Bell states. Namely, Bob applies the
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β| 〉00
z,x

Figure 2.7: The superdense coding circuit. The dashed line separates the systems under
Alice's (upper) and Bob's (lower) control. The two bits z, x (indicated by the double solid
line) are transferred to Bob when Alice sends her encoded qubit.

controlled-not operation (2.28), where the control is on qubit A, followed by the Hadamard

gate (2.11) on A. For this example, decoding yields the state

(H ⊗ 1)Ucnot

[
(1⊗ 1) |β00〉

]
= |00〉. (2.41)

If Bob measures his qubits in the computational basis, he will �nd with certainty the out-

comes �00�, which is precisely the message that Alice intended to send. Or, suppose that

Alice wants to send the message �10�. In this case, she encodes the message by applying

X = σx to her qubit. The four possible messages that Alice can send to Bob are summarized

in Table 2.1 and the circuit is shown in Fig. 2.7.

The set of unitary operations that Alice performs on her qubit A can be achieved using

two additional qubits, a and a′, which are initially in one of the four basis states |00〉, |01〉,

|10〉, and |11〉, corresponding to the message that Alice wishes to send. This way, Alice

does not have to directly implement the controlled operations on her qubit A and instead

can send in two qubits prepared in the state |ij〉, corresponding to the message ij, to Bob.

In this case, the circuit diagram in Fig. 2.7 is modi�ed to include qubits a and a′ and a

controlled-not gate between A and a followed by a controlled-Z gate between A and a′.
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Table 2.1: Encoding and decoding schemes in the superdense coding protocol.

Alice's encoding (ZzXx) State after encoding (|βzx〉) State after decoding (z, x)

1 |Φ+〉 = |β00〉 |00〉

X |Ψ+〉 = |β01〉 |01〉

Z |Φ−〉 = |β10〉 |10〉

ZX = iY |Ψ−〉 = |β11〉 |11〉

If an eavesdropper, Eve, intercepts qubit A when it is in transit to Bob, she cannot

ascertain the message. This is because the marginal state of A is mixed,

ρ(A) = TrB

(
ZzXx ⊗ 1 |β00〉〈β00|XxZz ⊗ 1

)
= TrB

(
|βzx〉〈βzx|

)
=

1

2
1, (2.42)

and doesn't reveal anything about the value of z and x. It is the entanglement between the

qubits that allows two bits of information to be sent instead of just one.

2.6 Summary

In this chapter, I outlined the mathematical description of quantum systems, with particular

focus on the two-level system known as the qubit. I reviewed the density matrix formalism

and the properties of general quantum states. I discussed pure and mixed states, as well

as the types of correlations, classical and quantum, between multiple quantum systems. I

then showed how the no-cloning theorem places severe restrictions on the ability to copy

quantum states and, as we will see in Ch. 5, is responsible for the non-classical nature

of quantum measurements. Finally, I reviewed the quantum teleportation and superdense

coding protocols, which will be useful for the protocols presented in Ch. 8.
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Chapter 3

Quantum Information Theory

3.1 Introduction

The departure of quantum states from their classical counterparts can be more deeply un-

derstood using quantum information theory (QIT). The tools provided by QIT allow us

to characterize the structure of quantum states and, in particular, the amount of informa-

tion that can be obtained about a quantum system, or how entanglement and entropy are

distributed in composite systems. QIT can also be used to place constraints on quantum

systems. For example, Holevo's theorem places an upper limit to the amount of information

that can be extracted about the state of a quantum system via measurement, while the en-

tropic relationship between several quantum systems is bounded by the strong subadditivity

of quantum entropy. In this chapter, I �rst review the basic ideas of information theory

according to Shannon in order to set the stage for quantum information theory. Then I will

summarize several useful quantum information-theoretic concepts including the Schmidt de-

composition and Holevo's theorem.

3.2 Classical Information Theory

The foundations of information theory were originally laid by Claude Shannon in 1948 when

he published the set of transformational papers [2,3]. His theory provided a way to quantify
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information and to understand the communication of information over a (noisy) channel.

A measure of information in a random variable is related to the variable's entropy, which

quanti�es the uncertainty of the value of the variable. Equivalently, the entropy reveals how

much information one gains upon learning the value of the variable. The entropy that is

shared between two random variables (the mutual entropy) is a measure of the amount of

information that one variable has about the other. Shannon's noisy channel coding theorem

established a maximum rate for the information that can be reliably transmitted through a

channel with a particular noise level in terms of a channel capacity, which is a function of

this mutual entropy.

In this section, I will review the main ideas in classical information theory, and provide

the mathematical de�nitions of entropy and information. By constructing joint and mutual

entropies, it will become clear how information is distributed among many correlated subsys-

tems. This will facilitate the transition to the next section on quantum information theory,

which is able to describe the properties of complex quantum entangled systems.

3.2.1 Shannon Entropy

The entropy of a random variable is a function of the set of probabilities corresponding to

the values that the variable can take. The Shannon entropy [2, 56] of a system A is de�ned

as

H(A) = −
d−1∑
i=0

pi log pi, (3.1)

where the probability of the ith state is pi and the dimension of the system A is d. When

the logarithm is taken to base 2, the entropy is in units of bits. States that occur with
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zero probability (pi = 0 for some i) do not contribute to the entropy according to the limit

limx→0 x log x = 0. Equation (3.1) quanti�es what is required to store information about

the variable A so that one is able to reconstruct it later [25]. For example, if A takes on one

of four states with equal probability, then two bits of information are required to specify its

state.

The marginal entropy in Eq. (3.1) is extended to a joint entropy for two (or more) systems

A and B via their joint probability distribution pij ,

H(AB) = −
∑
ij

pij log pij , (3.2)

which is a measure of the uncertainty in both systems. The marginal and joint probability

distributions give rise to a conditional probability, pi|j = pij/pj , which is used to construct

the conditional entropy

H(A|B) = −
∑
ij

pij log pi|j . (3.3)

This characterizes the average reduction in entropy of A, given the state of system B.

On the other hand, the mutual probability distribution pi:j = pi pj/pij yields the mutual

entropy

H(A : B) = −
∑
ij

pij log pi:j , (3.4)

or the information shared between systems A and B. In terms of marginal and joint entropies,
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the conditional and mutual entropies are de�ned as [56]

H(A|B) = H(AB)−H(B), (3.5)

H(A : B) = H(A) +H(B)−H(AB), (3.6)

or,

H(A) = H(A|B) +H(A : B). (3.7)

In the next section, we will see how Shannon entropies are bounded according to the possible

correlations that exist between subsystems.

3.2.2 Inequalities for Shannon Entropy

The Shannon entropy of two systems obeys two inequalities, the �rst of which is known as

subadditivity. Suppose that two systems, A and B, are uncorrelated (independent). In this

case, their joint probability distribution factors into a product of two marginal probabilities,

pij = pi pj , and the joint entropy reduces to a sum of marginal entropies, H(AB) = H(A) +

H(B). In general, when A and B are correlated, the joint entropy is reduced by the mutual

entropy as in (3.6). Speci�cally,

H(AB) ≤ H(A) +H(B). (3.8)

In other words, H(AB) is subadditive and some of the information in the joint system AB

can be found in the correlations between subsystems A and B. From (3.8), one �nds that the

mutual Shannon entropy (3.6) is non-negative, H(A : B) ≥ 0. The proof of statement (3.8)

can be shown with the inequality, log2 x ≤ (x − 1)/ ln 2, for all positive x [25]. Note that
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this comes from using lnx = (log2 x) (ln 2) and the fact that lnx ≤ x − 1. Using this in

expression (3.4), one arrives at (3.8).

The second inequality for the entropy of two systems establishes a lower bound to the

joint Shannon entropy. That is, the entropy of a composite system cannot be less than the

entropy of any of its parts,

H(AB) ≥ H(A), H(B). (3.9)

It follows that the conditional entropy (3.5) is always non-negative, H(A|B) ≥ 0. This can

also be shown by considering the expression (3.3) for the conditional entropy in terms of its

probability distributions. As the conditional probability is bounded by 0 ≤ pi|j ≤ 1, the

expression − log pi|j must be non-negative. Therefore (3.3) is also non-negative.

3.3 Quantum Information Theory

In Shannon's theory of information, the basic unit of information is the bit, which can take

one of two values. In quantum information theory, information can be contained in the states

of quantum systems, and so the basic unit becomes the qubit. As we saw in Ch. 2.1, the

state of a qubit can correspond to any point on the surface of the Bloch sphere and so can

be in a linear superposition of the classical bit values. In Ch. 2.3, we studied the types of

correlations that arise in multi-qudit systems and know from Ch. 2.5 that some of the most

important applications of quantum information science rely on entanglement as a resource.

Entanglement is a property that is unique to quantum systems and cannot be accounted

for in the classical Shannon theory. More generally, since quantum systems can exist in

superpositions, it is necessary to use density matrices in place of probability distributions for
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a useful de�nition of quantum entropy, as the density matrix encodes the phase information

of the quantum system. Classical entropies are functions only of probability distributions,

which correspond to the diagonal elements of a density matrix. Therefore, it is important to

have a theory of quantum information that can correctly describe the behavior of quantum

systems. In the next sections, I review the de�nition of entropy as proposed by von Neumann,

and show how superposition and entanglement manifest themselves in information theory.

3.3.1 von Neumann Entropy

The entropy of a quantum state, �rst proposed by von Neumann in 1927 [22,57] (remarkably,

twenty-one years before Shannon's classical entropy), is de�ned as a trace over the density

matrix ρ of a system A,

S(A) = −Tr
[
ρ(A) log ρ(A)

]
. (3.10)

Note that we will use the symbol S for the von Neumann entropy and H for the Shannon

entropy. Diagonalizing the density matrix, this expression can be written as a summation of

the eigenvalues, λi, of ρ(A),

S(A) = −
∑
i

λi log λi. (3.11)

If the state of system A corresponds to a completely mixed state, its density matrix is

proportional to the unit matrix, ρ(A) = 1
2 1, with eigenvalues 1/2, 1/2. The entropy of A is

then S(A) = −1
2 log 1

2 −
1
2 log 1

2 = 1 bit (since the logarithm is base 2) and coincides with

the Shannon entropy. On the other hand, if A is a pure state, then its entropy vanishes,

S(A) = 0, since its density matrix has a single nonzero eigenvalue equal to 1.
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A similar expression can be written for the joint entropy of a density matrix ρ(AB) of

two systems A and B. The conditional probability (3.3) from Shannon's theory is extended

to quantum systems with a conditional �amplitude matrix� ρ(A|B) so that the conditional

von Neumann entropy is

S(A|B) = −Tr
[
ρ(AB) log ρ(A|B)

]
. (3.12)

The conditional amplitude matrix is not a density matrix since Tr[ρ(A|B)] 6= 1, similarly to∑
ij pi|j 6= 1 for classical probabilities. Nonetheless, it is a positive semi-de�nite Hermitian

matrix with non-negative and real eigenvalues. Cerf and Adami de�ned in [58] the conditional

amplitude matrix as

ρ(A|B) = exp
(

log ρ(AB)− log
[
1A⊗ρ(B)

])
= lim
n→∞

(
ρ(AB)1/n [

1A ⊗ ρ(B)
]−1/n

)n
, (3.13)

where the eigenvalues of this operator are related to the separability of the underlying bi-

partite state ρ(AB) [59, 60]. There have been other de�nitions proposed in addition to the

one described here (see, e.g., Ref. [61]).

With the de�nition (3.13), the conditional entropy (3.12) is equivalently

S(A|B) = S(AB)− S(B), (3.14)

in direct analogy with (3.5). In the classical limit the matrix (3.13) is diagonal, with elements

pi|j , and the conditional entropy (3.12) coincides with the classical result (3.3). However, it

is possible for the eigenvalues of ρ(A|B) to exceed unity. This leads to a negative conditional

von Neumann entropy, something that is impossible in classical physics. That is, under

certain conditions S(AB) < S(B), which occurs when A and B are entangled [58, 59]. For
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the Bell state |AB〉 = 1√
2
(|00〉 + |11〉), the joint entropy is zero, S(AB) = 0, while the

marginal entropies are S(A) = S(B) = 1, so that the conditional entropies are negative,

S(A|B) = S(B|A) = −1. This negativity of conditional entropies is associated with a

violation of entropic Bell inequalities [62] and has an operational meaning in the context of

partial quantum information and quantum state merging protocols [63].

Similarly to the conditional entropy (3.12), the mutual von Neumann entropy,

S(A : B) = −Tr
[
ρ(AB) log ρ(A : B)

]
, (3.15)

can be de�ned with a mutual amplitude matrix [58],

ρ(A :B)= exp
(

log
[
ρ(A)⊗ ρ(B)

]
− log ρ(AB)

)
= lim
n→∞

([
ρ(A)⊗ ρ(B)

]1/n
ρ(AB)−1/n

)n
.

(3.16)

This yields the quantum version of (3.6),

S(A : B) = S(A) + S(B)− S(AB) = S(A)− S(A|B). (3.17)

The mutual entropy is a fundamental quantity used in the description of the capacity of

quantum channels and for quantum error-correcting codes [64].

3.3.2 Inequalities for von Neumann Entropy

The von Neumann entropy of two systems A and B satis�es the subadditivity condition,

S(AB) ≤ S(A) + S(B), (3.18)
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in direct analogy with the classical result (3.8). However, in contrast to (3.9), the joint von

Neumann entropy has the lower bound

S(AB) ≥ |S(A)− S(B)|, (3.19)

which is known as the triangle inequality or the Araki-Lieb inequality [65]. For example,

if A and B are in an entangled pure state, then S(AB) = 0 and S(A) = S(B) ≥ 0. This

implies that the joint state of the system is fully known, but it cannot be determined from

the subsystems alone since they are entropic.

Both of these inequalities can be extended to an inequality for three systems, A, B and

C. This property is known as strong subadditivity [66,67],

S(ABC) + S(B) ≤ S(AB) + S(BC), (3.20)

and there is a corresponding version for Shannon entropy. This expression can be recast in

two equivalent forms. First, in terms of conditional entropies,

S(C|B)− S(C|BA) ≥ 0, (3.21)

and second in terms of a conditional mutual entropy,

S(A : C|B) ≥ 0. (3.22)

When discussing consecutive measurements in Chapter 7, we will see that this quantity

vanishes for a particular set of systems A, B, and C, and is called a quantum Markov

chain [68�70].
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A B

S(A|B) S(A :B) S(B|A)

Figure 3.1: Entropy Venn diagram for two systems A and B.

3.3.3 Entropy Venn Diagrams

A useful tool for visualizing how entropy is distributed between correlated systems is the

entropy Venn diagram [59]. A general diagram for two systems, A and B, is shown in

Fig. 3.1. In general, the regions that overlap are mutual entropies, S(A : B), while the

non-overlapping regions are conditional entropies, S(A|B) and S(B|A). The entropy of

the entire system is found by adding together all entries in the diagram. In this case,

S(A|B) + S(A : B) + S(B|A) = S(AB). The marginal entropy of one system is the sum

of all entropies in its circle. For instance, the entropy of A is obtained by adding together

S(A|B) and S(A : B), which yields S(A). To visualize the mathematical operation of tracing

over a system in a density matrix, simply ignore the entries that are only in its circle. For

example, tracing over B implies that one is left with S(A|B) and S(A : B), which is just

S(A), the entropy of A.

If the state ρ(AB) underlying the diagrams in Fig. 3.1 is a pure state, then the joint

entropy necessarily vanishes, S(AB) = 0. From the Schmidt decomposition (discussed later

in Sec. 3.4.1), it follows that S(A) = S(B), and hence

S(A|B) = −S(A), (3.23)

S(A : B) = 2S(A). (3.24)
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. (a)

1 0 1

(b)

0 1 0

(c)

−1 2 −1

Figure 3.2: Examples of entropy Venn diagrams for two systems. (a) Both systems are
independent (uncorrelated); (b) perfectly correlated; and (c) quantum entangled.

There are three important cases that capture the types of correlations that can exist

between two systems, A and B (recall the correlations in the context of density matrices that

were discussed in Ch. 2.3). We show the entropy Venn diagram for each case in Fig. 3.2. First,

the two systems can be completely uncorrelated, ρ(AB) = ρ(A)⊗ρ(B). In this case, the total

entropy is the sum of the marginal entropies so that S(A|B) = S(A), S(B|A) = S(B), and

S(A : B) = 0. Second, they can be correlated such that their conditional entropies vanish.

That is, the state of one system determines the state of the other system. For example, one

possible correlated state is ρ(AB) = 1
2(|00〉〈00|+ |11〉〈11|). Here, S(A|B) = S(B|A) = 0 and

S(A : B) = 1. These two situations can occur in both classical and quantum systems. The

third case occurs when A and B are quantum entangled and is characterized by a negative

conditional entropy. One example of an entangled state is |AB〉 = 1√
2
(|00〉+ |11〉), the Bell

state. Here, S(A|B) = S(B|A) = −1 and S(A : B) = 2.

Quantum entanglement constitutes a major departure from the possible correlations in

the Shannon theory. Using (3.9) and (3.19) one can show [71] that the mutual entropy

S(A : B) is bounded from above by S(A : B) ≤ 2 min[S(A), S(B)], which can be twice

the classical upper bound H(A : B) ≤ min[H(A), H(B)]. This feature is exploited in

superdense coding protocols [6]. Quantum entanglement is ubiquitous in quantum computing

and communication protocols, one of the most famous being quantum teleportation.
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A

B

C

S(A|BC)

S(A :B|C)

S(B|AC)

S(A :C|B)

S(A :B :C)

S(B :C|A)

S(C|AB)

Figure 3.3: Entropy Venn diagram for three systems A, B, and C. The entropy shared by
all three systems is the ternary mutual entropy S(A : B : C) and vanishes if ρ(ABC) is a
pure state.

The entropy relationships that have been discussed thus far can be easily extended to

characterize multipartite systems. Frequently, one is interested in the entropy relationships

(see Fig. 3.3) between three systems A, B, and C [59,60,72]. For example, the entropy of A

conditional on the joint system BC is

S(A|BC) = S(ABC)− S(BC). (3.25)

The conditional mutual entropy is de�ned as the mutual entropy between A and B, given

the system C:

S(A : B|C) = S(A|C)− S(A|BC)

= S(AC) + S(BC)− S(C)− S(ABC).

(3.26)

39



The entropy shared by all three systems is the ternary mutual entropy and is de�ned as

S(A : B : C) = S(A : B)− S(A : B|C)

= S(A) + S(B) + S(C)− S(AB)− S(AC)− S(BC) + S(ABC).

(3.27)

If the state ρ(ABC) underlying the system ABC is a pure state, then the ternary mutual

entropy always vanishes, S(A : B : C) = 0. That is, using the Schmidt decomposition (see

Sec. 3.4.1) a bipartite �cut� of the joint system ABC can be made such that S(A) = S(BC),

S(B) = S(AC), and S(C) = S(AB). In this case, the entries of the Venn diagram 3.3 are

S(A |BC) = −S(A), (3.28)

S(A : B |C) = S(B) + S(A)− S(C), (3.29)

S(A : B : C) = 0. (3.30)

As an illustrative example of the tripartite Venn diagram, consider the following entangled

state of three qubits (also known as a GHZ state [31]),

|ABC〉 =
1√
2

(
|000〉+ |111〉

)
. (3.31)

Since the state is evidently pure and entangled, the ternary mutual entropy vanishes and the

conditional entropies are negative. However, tracing over any part of the state reveals that

each resulting subsystem is a mixed state with an entropy of 1 bit. See Fig. 3.4 (a). This is

an example of the principle known as the monogamy of entanglement [73]. That is, if two

systems A and B are maximally entangled (e.g., in a Bell state), they cannot be correlated

with a third system, C. Partitioning (3.31) into any two subsystems, say, AB and C, reveals

that the two halves are maximally entangled. However, tracing over A, B or C yields a
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B

C

(a)

−1

1

−1

1

0
1

−1

A

B

C

(b)

0

1

0

1

−1
1

0

Figure 3.4: Entropy Venn diagram for (a) the GHZ state (3.31) and for (b) xor encryption.

mixed state for the remaining system, which cannot be a maximally entangled state.

A second example of tripartite Venn diagrams demonstrates a simple type of encryption.

Suppose there is a joint system that satis�es the following: S(ABC) = S(AB) = S(AC) =

S(BC) = 2 bits and S(A) = S(B) = S(C) = 1 bit. In this case, the Venn diagram is as

shown in Fig. 3.4(b). If the joint state of any two systems is speci�ed, then the state of the

third is fully known. That is, S(A|BC) = 0. Furthermore, tracing over any subsystem leaves

the other two with no information, S(A : B) = 1 − 1 = 0. However, conditioning on the

state of the third system yields full information, S(A : B|C) = 1. For example, consider a

message in plain text (A) and an encryption key (B) that produces an encrypted cipher text

(C) according to the xor gate. Without the key, one cannot gain any information about

the plain text from the cipher text since S(A : C) = 0. With the key, S(A : C|B) = 1, and

one can extract the original message.

For a general n-partite system, the entropy relationships can be written down in the form

of �chain rules� for quantum entropies. Namely, the joint entropy of n systems is

S(A1 . . . An) = S(A1) + S(A2|A1) + S(A3|A1A2) + . . . , (3.32)
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while

S(A1 . . . An : An+1) = S(A1 : An+1)+S(A2 : An+1|A1)+S(A3 : An+1|A1A2)+. . . , (3.33)

quanti�es the mutual entropy between the n systems and an additional system An+1. Re-

markably, we will see in Ch. 6 that the complementarity relation in the famous Bell-state

quantum eraser is due to the chain rule (3.33) for n+ 1 = 3 systems.

3.4 Tools in Quantum Information

In this section, some of the most prevalent tools and techniques used in quantum information

theory will be discussed. I will start with the Schmidt decomposition, which is a way of

characterizing the degree of entanglement in bipartite entangled quantum systems. This is

closely related to the idea of puri�cation, where a mixed quantum state can be viewed as

a pure state in an enlarged Hilbert space. I will also describe how to compute the entropy

of mixed quantum states, and in particular derive the joint entropy theorem. Finally, I will

derive Holevo's theorem, which establishes an upper bound to the amount of information

one can obtain about a quantum system through measurement.

3.4.1 The Schmidt Decomposition and Puri�cation

The Schmidt decomposition is a very useful method for describing bipartite quantum systems

and leads to the idea of Schmidt numbers, which are important for characterizing the degree

of entanglement between systems. If a composite system, AB, is represented by a pure state,
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|ψ〉, then there exist orthonormal states |iA〉 for A and |iB〉 for B such that,

|ψ〉 =
∑
i

λi |iA〉 |iB〉. (3.34)

Here, λi are real, non-negative numbers (one can always absorb any phases into the de�ni-

tions of the states |i〉) called Schmidt coe�cients that satisfy
∑
i λ

2
i = 1.

To show this [25], suppose A and B have Hilbert spaces of the same dimension and that

|j〉 and |k〉 are orthogonal bases for A and B, respectively. Then, in general the full wave

function can be expressed in terms of these bases as

|ψ〉 =
∑
jk

ajk |j〉 |k〉, (3.35)

where ajk are the complex elements of a matrix a. The singular value decomposition states

that this matrix can be expressed as a product of three matrices a = uσ v. The diagonal

matrix σ has non-negative elements and u, v are unitary matrices. Writing this matrix

product in index form,

|ψ〉 =
∑
ii′jk

uji σii′ vi′k |j〉 |k〉 =
∑
ijk

uji σii vik |j〉 |k〉. (3.36)

The second equality follows since σ is a diagonal matrix.

Next, rede�ne the states |j〉 and |k〉 as |iA〉 =
∑
j uji |j〉 and |iB〉 =

∑
k vik |k〉. These

new states are still orthonormal since 〈i′A|iA〉 =
∑
j uji u

∗
ji′ = δii′ and 〈i

′
B |iB〉 =

∑
k vik v

∗
i′k =

δii′ . Finally, de�ning λi = σii yields the Schmidt decomposition,

|ψ〉 =
∑
i

λi |iA〉 |iB〉. (3.37)

It follows directly from this decomposition, that the eigenvalues of the density matrices
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for A and B are identical since

ρA =
∑
i

λ2
i |iA〉〈iA|,

ρB =
∑
i

λ2
i |iB〉〈iB |.

(3.38)

Therefore, the two subsystems have the same entropy,

S(A) = S(B) = H[λ2]. (3.39)

Note that |iA〉 and |iB〉 are called Schmidt bases for A and B, and that the Schmidt number

corresponds to the number of non-zero values λi. In particular, a state |ψ〉 is a product

state of A and B if and only if it has a Schmidt number of one. Therefore, the Schmidt

number is a measure of the entanglement between A and B. A maximally entangled state

(of dimension d) has Schmidt coe�cients λi = 1/d.

The Schmidt decomposition (3.34) is not unique since one can always perform unitary

transformations on the two systems individually. That is, if |ψ〉 =
∑
i λi |iA〉 |iB〉 is a Schmidt

decomposition for A and B, then so too is U ⊗ V |ψ〉 =
∑
i λi
(
U |iA〉

) (
V |iB〉

)
. This implies

that the entanglement of a bipartite pure state is invariant under unitary transformations.

Interestingly, a Schmidt decomposition does not exist in general for a tripartite sys-

tem [74,75]. A tripartite pure state |ABC〉 =
∑
i λi |iA〉 |iB〉 |iC〉 has a Schmidt decomposi-

tion if the �bi-Schmidt basis� 〈iA|ABC〉 (and similarly for 〈iB |ABC〉 and〈iC |ABC〉) has a

Schmidt number of one [74].

Using the Schmidt decomposition one can use a technique known as puri�cation. Suppose

one has a quantum state ρ(A) for some system A. By introducing a second �reference� system

R, one �nds that the total state of A and R can be written as a pure state |AR〉. This
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procedure is called puri�cation [25] and is commonly used in quantum information theory.

To show that this can indeed be done, �rst write A in its eigenbasis as ρ(A) =
∑
i pi |iA〉〈iA|.

Then, with the reference system, which is de�ned to have the same state space as A and an

orthonormal basis |iR〉, one can write the state of A and R together as

|AR〉 =
∑
i

√
pi |iA〉 |iR〉. (3.40)

Tracing out R recovers the state ρ(A) so that |AR〉 is indeed a puri�cation of ρ(A).

3.4.2 Joint Entropy Theorem

Very often in quantum information theory one encounters density matrices that are block-

diagonal in structure, sometimes called classical-quantum states. These states will be used

frequently in the following chapters when discussing parallel and consecutive measurements.

The joint entropy theorem [25], which I will show a simple proof of, provides a way to

compute the entropy of such states.

Suppose one has a density matrix of the form

ρ =
∑
i

pi |i〉〈i| ⊗ ρi. (3.41)

Here, pi are probabilities, |i〉 are orthogonal states for system A, and ρi is any set of density

matrices for system B. This is called a classical-quantum state because A is diagonal in

the basis |i〉 (i.e., classical), while B is a general (pure or mixed) quantum state ρi (see,

e.g., [76]).
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The states ρi of B can be diagonalized such that their spectral decomposition is

ρi =
∑
j

λi,j |ei,j〉〈ei,j |, (3.42)

where λi,j are eigenvalues that sum to one for each i:
∑
j λi,j = 1. The orthogonality of the

eigenstates guarantees that

〈ei,j′|ei,j〉 = δjj′ . (3.43)

However, in general,

〈ei′,j |ei,j〉 6= δii′ , (3.44)

unless ρi have orthogonal support.

Using this decomposition, the state (3.41) becomes

ρ =
∑
ij

pi λi,j |i ei,j〉〈i ei,j |. (3.45)

The joint states |i ei,j〉 are orthogonal because 〈i′|i〉 = δii′ ,

〈i′ ei′,j |i ei,j〉 = δii′ . (3.46)

It follows that the entropy of (3.41) is

S(ρ) = −
∑
ij

pi λi,j log pi λi,j . (3.47)
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Expanding the logarithm and performing the partial sums, this simpli�es to

S(ρ) = H[p] +
∑
i

pi S(ρi), (3.48)

where H[p] is the Shannon entropy of the probability distribution pi and

S(ρi) = −
∑
j

λi,j log λi,j . (3.49)

Although the basis states of ρi are not orthogonal to those of ρi′ , the block-diagonal structure

of ρ yields an exact result for S(ρ).

3.4.3 Entropy of Mixed States

Recall from Ch. 2.2 that a mixed quantum state is written as a summation of states ρi that

each occur with some probability pi. That is, the density matrix for a system A is

ρ(A) =
∑
i

pi ρi. (3.50)

In general, the ρi may not be orthogonal so that the entropy of ρ(A) falls somewhere between

a lower and upper bound.

A lower bound is established on S(A) by using the concavity of entropy. Consider an

additional system, B, with an orthonormal basis |i〉 such that the joint state of A and B is

ρ(AB) =
∑
i

pi ρi ⊗ |i〉B〈i|. (3.51)

One can easily check that tracing this state over B recovers the state of A written above.

From the joint entropy theorem in the previous Sec. 3.4.2, the entropy of this block-diagonal
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state is

S(AB) = H[p] +
∑
i

pi S(ρi). (3.52)

The subadditivity of entropy (see Sec. 3.3.2) states that this quantity is less than or equal

to the sum of the entropies of its subsystems. That is,

S(AB) ≤ S(A) + S(B). (3.53)

The entropy of system B is simply S(B) = H[p], as can be seen by tracing ρ(AB) over

A. Together with Eqs. (3.52) and (3.53), this yields the lower bound on the entropy of the

mixed state ρ(A),

S(A) ≥ S(AB)− S(B)

≥
∑
i

pi S(ρi),
(3.54)

with equality if and only if the ρi are identical.

If the states ρi in Eq. (3.50) are orthogonal then the entropy of A can be computed

exactly. The spectral decomposition of the states ρi yields

ρi =
∑
j

λi,j |ei,j〉〈ei,j |, (3.55)

where λi,j are the eigenvalues of ρi and sum to one for a given i:
∑
j λi,j = 1. The

orthogonality of the eigenstates guarantees that

〈ei,j′|ei,j〉 = δjj′ . (3.56)

Since the ρi were required to be orthogonal, they have support on orthogonal subspaces so
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that every basis state in Hilbert space Hi is orthogonal to every other basis state in Hilbert

space Hi′ :

〈ei′,j |ei,j〉 = δii′ . (3.57)

Inserting the spectral decomposition (3.55) into (3.50),

ρ(A) =
∑
ij

pi λi,j |ei,j〉〈ei,j |, (3.58)

it is clear that pi λi,j are the eigenvalues and |ei,j〉 are the eigenvectors of ρ(A). The entropy

of ρ(A) is then simply

S(A) = −
∑
ij

pi λi,j log pi λi,j . (3.59)

Expanding the logarithm and performing the partial sums, this simpli�es to

S(A) = H[p] +
∑
i

pi S(ρi) (3.60)

where H[p] is the Shannon entropy of the probability distribution pi and

S(ρi) = −
∑
j

λi,j log λi,j . (3.61)

Note that if the states ρi did not have support on orthogonal subspaces, the following

inequality would hold

S(A) < H[p] +
∑
i

piS(ρi). (3.62)
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Therefore, a general state (3.50) satis�es the two inequalities,

∑
i

piS(ρi) ≤ S(A) ≤ H[p] +
∑
i

piS(ρi). (3.63)

For instance, if the states ρi in Eq. (3.50) are all pure, then the entropy of the system A is

bounded by 0 ≤ S(A) ≤ H[p]. If, in addition, the states are orthogonal, then S(A) = H[p].

3.4.4 Holevo's Theorem

Holevo's theorem establishes an upper bound to the amount of accessible information that

can be extracted about a quantum state through measurement [25]. To derive the limit, �rst

suppose that there is a preparer P that has a classical random variable X with probabilities

px. In addition, the preparer has access to a set of density matrices, ρx, of a quantum

system, Q. The total state is described by the classical-quantum density matrix,

ρ(PQ) =
∑
x

px |x〉〈x| ⊗ ρx. (3.64)

Tracing over P , the state of Q is given by the mixed density matrix,

ρ(Q) =
∑
x

px ρx = ρ. (3.65)

Using the results of the joint entropy theorem in Sec. 3.4.2, the mutual entropy between the

preparer P and the quantum preparation Q is

S(P : Q) = S(ρ)−
∑
x

px S(ρx) = χ, (3.66)

where χ is usually called the Holevo information.

A measurer, M , can attempt to determine the state x of the quantum system through a
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measurement of Q. The measurement is implemented with the unitary entangling operation

U =
∑
x Px ⊗ Ux between Q and M , where Px = |x〉〈x| are projectors on the state of Q

and the unitary matrices Ux move the ancilla from the initial state |0〉 to the �nal state

|x〉 = Ux|0〉. This operator will be discussed in greater detail later in Ch. 4. If the measurer

starts in the initial state |0〉, then after the measurement the full state becomes (using primes

to clearly distinguish the post-measurement systems)

ρ(P ′Q′M ′) =
∑
xyz

px |x〉〈x| ⊗ Py ρx P †z ⊗ |y〉〈z|. (3.67)

Tracing out the quantum system Q, the density matrix of the preparer and the measurer is

ρ(P ′M ′) =
∑
xy

px Tr
(
Py ρx

)
|x〉〈x| ⊗ |y〉〈y|. (3.68)

where Tr(Py ρx P
†
z ) = Tr(Py ρx) δyz. The entropy of this state is just the Shannon entropy

of the probability distribution qxy = px Tr
(
Py ρx

)
,

S(P ′M ′) = H(P ′M ′) = H [q] = −
∑
xy

[
px Tr

(
Py ρx

)]
log
[
px Tr

(
Py ρx

)]
. (3.69)

The mutual entropy between the classical preparer P and the measurer M after the

measurement S(P ′ : M ′) is now shown to be bounded from above by the mutual entropy of

P and Q before the measurement S(P : Q). For the remainder of the proof, I will follow

the derivation laid out by Cerf and Adami in Ref. [77]. The measurement (3.67) does not

change the entanglement between P and QM so that

S(P ′ : Q′M ′) = S(P : QM) = S(P : Q). (3.70)
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The second equality follows from the fact that before the measurement M is uncorrelated

with P and Q. According to the chain rule, S(P ′ : Q′M ′) = S(P ′ : M ′) + S(P ′ : Q′|M ′),

which, together with the previous expression, leads to

S(P ′ : M ′) = S(P : Q)− S(P ′ : Q′|M ′). (3.71)

By the strong subadditivity of quantum entropy [66,67] in Eq. (3.20), the conditional mutual

entropy is always non-negative S(P ′ : Q′|M ′) ≥ 0, and it follows that

S(P ′ : M ′) ≤ S(P : Q) = χ. (3.72)

The quantity χ is the maximum amount of information that the measurer can extract about

the state of the quantum system.

For example, suppose the states ρx in (3.64) are pure. The Holevo information (3.66) in

this case is simply χ = S(ρ). This quantity is bounded between zero and H[p] according to

Sec. 3.4.3. In particular, if the states ρx are pure and orthogonal, then the Holevo information

is the Shannon entropy of the probability distribution px, χ = H[p]. The Holevo information

is further reduced from S(ρ) if the states ρx are mixed.

3.5 Summary

In this chapter, I reviewed the Shannon theory of information in order to set the stage for

quantum information theory. I showed how quantum superposition and entanglement lead to

striking di�erences between the quantum and classical theory of information, which can be

illustrated using entropy Venn diagrams. These diagrams will prove useful in the following

chapters on quantum measurement. I discussed in Sec. 3.4 some of the important tools that
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are commonly used to describe quantum systems. For example, I showed how the Schmidt

decomposition can be used to characterize entanglement as well as methods for computing

entropies of entangled systems.
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Chapter 4

Introduction to Quantum Measurement

4.1 Basics of Quantum Measurement Theory

As we have seen from the no-cloning theorem, classical intuitions fail us when carried over

to the measurement of quantum systems. That these systems can be in superpositions or

entangled necessarily makes measuring them a non-trivial task. Classically, we can always,

at least in principle, perfectly �copy� the state of an object onto a measuring device and

succeed in getting the same result every time. The no-cloning theorem of Sec. 2.4 generally

removes this feature in quantum systems. In fact, the measuring device becomes entangled

with the quantum system and, as a result, the measurement outcomes are probabilistic.

The measurement postulate of quantum mechanics states that for a measurement of a

quantum system, Q, there exists a set of measurement operators, {Mm}, that act on the

Hilbert space of Q, yielding an outcome m with some probability,

pm = 〈ψ|M†mMm|ψ〉, (4.1)

where |ψ〉 is the state of Q before the measurement [25]. For an outcome m, the state of Q

after the measurement becomes

|ψ〉 7→ Mm |ψ〉√
〈ψ|M†mMm|ψ〉

. (4.2)
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The probabilities, pm, sum to one, which implies the completeness relation for the measure-

ment operators,

∑
m

M
†
mMm = 1. (4.3)

Within quantum measurement theory, there are two important cases known as Positive

Operator-Valued Measure (POVM) measurements and Projection-Valued Measure (PVM)

measurements. The latter, which are also known as projective or von Neumann measure-

ments, were discussed in detail by von Neumann [22]. In this work, I will focus primarily

on projective measurements (both weak and strong measurements, which will be discussed

later), although it is useful to have an understanding of the features of both types of mea-

surement scenarios.

Measurements in quantum mechanics can be generally described using two mathematical

tools known as a Positive Operator-Valued Measure (POVM) and a Projection-Valued Mea-

sure (PVM). The latter are used to implement projective, or von Neumann measurements.

Although projective measurements are seen as a special case of POVM measurements, by

Naimark's theorem (sometimes also called Neumark's theorem), a POVM can always be

realized by a projective measurement on an extended Hilbert space [78]. That is, the combi-

nation of unitary interactions between the quantum system and an ancillary system, followed

by a projective measurement is equivalent to a POVM measurement. In this section, I pro-

vide an outline of POVM and PVM measurements, as well as a description of measurement

when accounting for an ancillary system.

Recall that a measurement corresponds to a set of measurement operators, Mm. In a
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POVM measurement, one de�nes the operators

Em = M
†
mMm, (4.4)

and calls them the elements of the POVM. The elements of a POVM do not necessarily

commute with each other, but are Hermitian (Em = E
†
m) and positive (〈ψ|Em|ψ〉 ≥ 0)

operators that satisfy the completeness relation (4.3). The set of all elements, {Em}, is called

the POVM. The apparatus that one uses to measure the quantum system is represented by

the POVM and the elements, Em, are chosen to correspond to each possible measurement

outcome such that they yield the measurement probabilities

pm = 〈ψ|Em|ψ〉. (4.5)

If the quantum system is described by a density matrix, ρ, then the probabilities are given

instead by the trace,

pm = Tr
(
Em ρ

)
, (4.6)

and the post-measurement state is

ρ 7→ ρm =
Mm ρM

†
m

Tr
(
M
†
mMm ρ

) . (4.7)

For projective measurements, one imposes the requirement that the measurement oper-

ators, Mm, are orthogonal projectors, Pm = |m〉〈m|, so that

P
†
m Pm′ = δmm′ Pm. (4.8)
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That is, the POVM elements are the same as the measurement operators, Em=P
†
mPm=Pm.

In this case, it is straightforward to show that repeated projective measurements yield the

same measurement outcome: if we measure a system and �nd the result m, then subsequent

measurements will also yield m, assuming that no decoherence has taken place between

consecutive measurements. This is not true for POVM measurements since the measurement

operators, Mm, are not necessarily all orthogonal. According to the spectral decomposition,

a Hermitian operator Â corresponding to some observable can be diagonalized and written

in the form

Â =
∑
m

λm Pm, (4.9)

with eigenvalues λm and projectors Pm. Since the operators Pm are orthogonal, the number

of operators in the decomposition (4.9) is equal to the dimension of A's Hilbert space. In

contrast, a POVM can have an unlimited number of elements.

According to Naimark's theorem [78], the measurement process can be described as a

unitary interaction between a quantum system, Q, and an ancillary system, M , sometimes

called the meter. The coupling induced by the measurement is due to the interaction Hamil-

tonian,

H = g Â⊗ M̂. (4.10)

The parameter g controls the strength of the coupling between Q and M , and the operator

corresponding to the observable being measured is Â. The operator M̂ acts on the pointer

variable of the meter and moves it from its initial state depending on the state of the

quantum system. Here, it is assumed that either the measurement occurs on a short enough
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time scale so that the free evolution of Q can be neglected, or that the observable commutes

with the free Hamiltonian of Q. Note that since Â and M̂ act in di�erent Hilbert spaces, they

commute. If the measurement has a duration of t, the Hamiltonian generates a translation

in time via the unitary operator

U = e−itH/~. (4.11)

In a more realistic scenario, the coupling parameter in the measurement Hamiltonian (4.10)

is time dependent. If g(t) is nonzero in the interval [0, T ] and normalized according to∫ T
0 g(t)dt = g0, then we replace expression (4.11) by

U = T e−i
∫ T
o H(t)dt/~, (4.12)

where T indicates the time-ordering operator (which can be ignored if H commutes with

itself at di�erent times). In protective quantum measurements [79�81], for example, the

interaction is taken to be very slow and weak so that the free evolution of the quantum

system and meter can no longer be neglected. In such a measurement, the interaction is

adiabatic if g(t) is su�ciently smooth and thus the quantum system remains in its initial

eigenstate throughout the measurement. In this work, we assume the interaction is fast (the

impulse approximation) and use (4.11) for the time evolution.

If the operator Â in the Hamiltonian of Eq. (4.10) is written in its spectral decomposition

with eigenvalues an and d eigenvectors |an〉,

Â =
∑
n

an Pn =
∑
n

an |an〉〈an|, (4.13)
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then the unitary operator (4.11) can also be expressed as

U =
∑
n

Pn ⊗ Un =
∑
n

Pn ⊗ e−i g t an M̂/~, (4.14)

where Un = exp(−i g t an M̂/~) are unitary operators on the pointer variable. In this form,

it is clear that if the quantum system is in the state |an〉, the pointer is shifted by an amount

controlled by the eigenvalue an. That is, writing the initial quantum system in the eigenbasis

of the observable as |Qi〉 =
∑
m αm |am〉 with complex amplitudes αm, the measurement

unitary (4.14) entangles Q and M according to

U |Qi〉|Mi〉 =
∑
m

αm |am〉 ⊗ e−i g t am M̂/~ |Mi〉 =
∑
m

αm |am〉 ⊗ |am〉M . (4.15)

Here, |Mi〉 is the initial state of the meter, and |am〉M = exp(−i g t am M̂/~) |Mi〉 are its d

�nal states.

The �nal state of the quantum system can be computed from the total wave func-

tion (4.15). Tracing over the states of the meter, the density matrix of the quantum system

is

ρQ = TrM

(
U |Qi〉〈Qi| ⊗ |Mi〉〈Mi|U†

)
, (4.16)

which has been left general since the �nal pointer states may not be orthogonal. In contrast,

the states |am〉 of the quantum system are orthogonal, so that the density matrix of the

meter is

ρM =
∑
m

|αm|2 |am〉M 〈am|. (4.17)

One of the most well-known examples of quantum measurement is the Stern-Gerlach
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experiment [82]. Here, the spin component of a spin-1/2 particle is measured by sending

it through a Stern-Gerlach apparatus. The interaction with a inhomogeneous magnetic

�eld couples the spin of the atom with its spatial degree of freedom (the meter) resulting

in two de�ected beams with di�erent spin. If these beams are then observed, one has

obtained information about the state of Q. For example, a measurement of the spin along

ẑ corresponds to the Hamiltonian H = −g σ̂z ⊗ ẑ. The eigenvalues of the observable are ±1

so that the �nal state of the quantum system and pointer is

U |Qi〉|Mi〉 = α0 |+ 1〉 ⊗ |+ 1〉M + α1 | − 1〉 ⊗ | − 1〉M

= α0 |+ 1〉 ⊗ e−i g tẑ/~ |Mi〉+ α1 | − 1〉 ⊗ e+i g tẑ/~ |Mi〉.
(4.18)

Thus, the pointer is shifted up or down according to exp(±i g t ẑ/~).

4.2 Qubits and Quantum Measurements in Experimental

Settings

There are many di�erent physical realizations of qubit systems, ranging from photons [83�

85] and the spin states of trapped ions [86�88] or quantum dots [89], to arti�cial atoms

fabricated from superconducting circuits. These latter qubits are fabricated with Josephson

junctions [90] and are designed to operate optimally under di�erent conditions (see Refs. [91,

92] for a review). The three basic types of superconducting qubits are the charge qubit [93�96]

(logical qubit states correspond to the number of excess Cooper pairs on a superconducting

island), also known as the Cooper pair box, the phase qubit [97�99] (logical states are

associated with the phase across the junction), and the �ux qubit [100, 101] (logical states

correspond to supercurrent �owing clockwise or anticlockwise around a loop). In this section,
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the theoretical description of quantum systems and measurements discussed thus far will be

connected to typical experimental settings. In particular, I will summarize single-qubit

operations and measurements in optical systems where the qubit states are constructed from

the degrees of freedom of a photon.

4.2.1 Photonic Qubits

Linear optical quantum computing (LOQC), which uses photons as the basic unit of infor-

mation, is one promising pathway to universal quantum computation [83, 84, 102, 103]. In

the dual-rail representation [25], the qubit is a single photon in one of two optical modes.

These modes can be the spatial, polarization, or time degrees of freedom of the photon. The

state |n〉a ⊗ |n′〉b is one where there are n (n′) photons in mode a (b). The logical states of

the qubit are written in terms of the occupation numbers of the two modes as

|0〉L = |1〉 ⊗ |0〉,

|1〉L = |0〉 ⊗ |1〉.
(4.19)

An alternative encoding is the single-rail representation [104], where one considers only one

optical mode but with two distinct Fock states. For example, the logical states could be

|0〉L = |0〉 and |1〉L = |1〉, which are the vacuum and single-photon states. The discussion

here will be in the context of the dual-rail representation.

Single-qubit operations on the logical states are performed with standard optical ele-

ments. Furthermore, arbitrary single-photon unitary gates can be formed from a combina-

tion of beam splitters and phase shifters [25, 105]. Measurements of photonic qubits can be

made in a destructive manner using photodetectors to convert incident photons into a cur-

rent, or, the in the case of weak measurements, with optical elements like wave plates [106]
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and birefringent crystals [24]. First, a description of photonic qubits encoded with spatial

states is given, followed by a discussion of polarization states.

The logical states of a spatial qubit can be written in terms of the occupation numbers

for the two ports of a beam splitter, for example. That is, |0〉L = |10〉 and |1〉L = |01〉

could be used to indicate a single photon entering the �rst or the second port, respectively.

Operations on these logical states can be performed with beam splitters and phase shifters.

A beam splitter is an optical element containing a partially re�ective surface with some

degree of re�ection and transmission. For a 50-50 (symmetric) beam splitter, the re�ection

and transmission coe�cients are both 1/2. The unitary matrix for a general beam splitter

is [83, 84]

UBS =

(
cos θ −ei∆ sin θ

e−i∆ sin θ cos θ

)
, (4.20)

where the transmission and re�ection is controlled by θ and ∆ accounts for possible phase

shifts due to the material used in the beam splitter. For instance, a beam splitter with no

phase shift is

UBS(∆ = 0) = Rŷ(2θ), (4.21)

which is a rotation by 2θ around the ŷ axis (recall Eq. (2.3) for a general rotation in the

Bloch sphere representation). If the beam splitter is symmetric, it acts on the logical states

to produce

USBS |0〉L =
|0〉L + |1〉L√

2
,

USBS |1〉L =
|0〉L − |1〉L√

2
.

(4.22)
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On the other hand, a beam splitter with phase shift ∆ = π/2 is a rotation around the x̂ axis,

UBS(∆ = π/2) = Rx̂(2θ). (4.23)

Another basic optical element is the phase shifter with the corresponding gate [103]

UP =

(
1 0

0 eiφ

)
. (4.24)

This shifts just the mode |1〉L by eiφ. Up to an overall phase, this gate is equivalent to a

rotation by φ about the ẑ axis,

UP = eiφ/2Rẑ(φ). (4.25)

It can be shown [25] that an arbitrary single-qubit operation can be decomposed into ro-

tations about ẑ and about ŷ. Thus, beam splitters and phase gates can implement any

single-qubit gate. Furthermore, they can be combined to construct other types of gates,

for example, the Hadamard gate (2.11). First, note that the symmetric beam splitter with

∆ = −π/2,

USBS(∆ = −π/2) =
1√
2

(
1 i

i 1

)
= Rx̂(−π/2), (4.26)

is equivalent to a
√
not gate (which has the property that

√
not

√
not = not) up to an

overall phase [102, 103, 107]. By placing phase shifters at the input and output ports of the

beam splitter, this turns into the Hadamard gate:

H = UP (−π/2) USBS(∆ = −π/2) UP (−π/2). (4.27)

63



Similarly, a single π phase gate at the input produces the Hadamard gate,

H = USBS(∆ = 0) UP (π). (4.28)

In order to construct two-qubit gates (which are used to entangle qubits) two photons must

be made to interact. In principle, this can be done using nonlinear media via the optical

Kerr e�ect [108]. In this way, gates that are necessary for universal quantum computation

can be realized (e.g., the controlled-phase and controlled-not gates) [102]. However, the

nonlinearities required of a material must be very large to induce a π phase shift (according

to O'Brien [85], no such material yet exists) and so the proposal for LOQC without nonlinear

media [83,109] may be more promising [110].

In contrast to the spatial qubit, the logical states of a polarization qubit are, for example,

the horizontal and vertical linear polarization of the photon, |0〉L = |H〉 and |1〉L = |V 〉. A

general state of a polarization qubit is written in terms of these logical states as (dropping

the subscript L)

|ψ〉 = α|0〉+ β|1〉. (4.29)

For a photon propagating along the ẑ direction, one can de�ne |0〉 = |H〉 as the (linear)

horizontal polarization along the x̂ direction and |1〉 = |V 〉 as the (linear) vertical polarization

along ŷ. A general linearly polarized photon is then a superposition of these states

|ψ〉 = a |H〉+ b |V 〉, (4.30)

where a and b are real.

In the Bloch sphere representation, linearly polarized photons are described by vectors
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in the xz plane: |H〉 and |V 〉 are the eigenstates of σz, while the eigenstates of σx are the

diagonal and anti-diagonal polarization states,

|D〉 =
|H〉+ |V 〉√

2
,

|A〉 =
|H〉 − |V 〉√

2
.

(4.31)

On the other hand, circularly polarized photons are written in terms of the left- and right-

circular polarization states

|L〉 =
|H〉+ i |V 〉√

2
,

|R〉 =
|H〉 − i |V 〉√

2
,

(4.32)

which are the eigenstates of σy.

The polarization states of a photon are manipulated using standard optical elements like

wave plates. Wave plates are made from birefringent material and are used to rotate the

polarization of single photons (see Ch. 6 for wave plates in the context of the quantum eraser

experiment) by imparting a polarization-dependent phase shift to the incident photon. The

wave plate has di�erent refractive indices along the orthogonal principle axes. They can be

constructed such that the extraordinary axis coincides with the fast axis, while the ordinary

axis is the slow axis. Photons travel faster along the fast axis than the slow axis since

the index of refraction is smaller in that direction and so pick up di�erent phases. Two

types of wave plates, the half-wave (HWP) and the quarter-wave plate (QWP), are the most

commonly used.

To describe the e�ect of the wave plate, we can use the Jones matrix, which performs a

rotation of the photon's polarization. For a general wave plate (WP) oriented with its fast

axis at an angle β to the coordinate system of the incident photon (say, |H〉, |V 〉), the Jones
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matrix is [111,112]

U =

(
cos(α2 ) + i sin(α2 ) cos(2β) i sin(α2 ) sin(2β)

i sin(α2 ) sin(2β) cos(α2 )− i sin(α2 ) cos(2β)

)
, (4.33)

If the wave plate is oriented such that β = 0, then this reduces to

U =

(
eiα/2 0

0 e−iα/2

)
, (4.34)

where the relative phase shift has α = π/2 for a QWP and α = π for a HWP. Thus, the

QWP introduces a complex relative phase and can convert linear to circular polarization and

vice versa. On the other hand, the HWP adds a real relative phase (dropping the overall

phase of i) and performs rotations of linear polarization or changes the handedness of circular

polarization.

The Jones matrix for a HWP oriented at arbitrary angle β is (dropping the overall phase)

UHWP =

(
cos(2β) sin(2β)

sin(2β) − cos(2β).

)
. (4.35)

Right away, we see that choosing β = π/8 yields the Hadamard gate. On the other hand,

the Jones matrix for a QWP with β = π/4 to the |H〉 direction is

UQWP =
1√
2

(
1 i

i 1

)
= Rx̂(−π/2), (4.36)

which is a rotation by −π/2 around the x̂ axis. This QWP transforms the linearly polarized

states |H〉 and |V 〉 into circularly polarized states,

UQWP |H〉 =
|H〉+ i|V 〉√

2
= |L〉,

UQWP |V 〉 =
|V 〉+ i|H〉√

2
= i|R〉.
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Note that choosing β = 0 leaves the polarization linear (H, V ), while 0 < β < π/4 yields

elliptical polarization.

To transform between the spatial and polarization encodings of an optical qubit, we

can use a polarizing beam splitter (PBS). This device, which is similar to a standard beam

splitter, splits the path of the photon depending on its polarization. For example, if the PBS

is oriented in the |H〉, |V 〉 basis then photons that are horizontally polarized are transmitted,

while vertically polarized are re�ected. The PBS can be oriented to distinguish between any

two orthogonal polarization states, |H〉 and |V 〉, or |D〉 and |A〉, or |L〉 and |R〉. In this way,

we can measure the polarization of a photon in any basis. The PBS is also equivalent to

the controlled-not gate, so that the state of the location qubit is �ipped if the polarization

qubit is in the �1� state [103].

A standard method for measuring photonic qubits is with a photodetector, which yields

information about the number of photons in a given mode incident on the device. There are

two types of detectors: photon-number detectors, which can detect the number of incident

photons, and bucket detectors, which cannot discriminate between di�erent photon numbers

and can only detect the presence or absence of photons [113]. For a photon-number detector,

the detection probability using Fock states was �rst derived in [114]. Given an input state ρi,

the conditional probability to detect n photons is p(n|i) = Tr(|n〉〈n| ρi) = 〈n|ρi|n〉, where

|n〉〈n| is a projector formed from the number states. However, for bucket detectors, we

use the POVM description with elements Pno click = |0〉〈0| and Pclick =
∑∞
n=1 |n〉〈n|. The

probability to record a click given input state ρi is p(click|i) =
∑∞
n=1〈n|ρi|n〉 [113,115].

To account for possible ine�ciencies in a photodetector, we can introduce a model for

an ine�cient number-resolving device. Such a device can be characterized (neglecting dark

counts, which occur when the detector responds even when there is no incident photon [113])
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by pD(t), the probability to detect t photons [114,115],

pD(t) =
∞∑
i=t

(
i

t

)
ηt(1− η)i−tpS(i), (4.37)

where η is the e�ciency of the detector, and pS(i) is the probability the photon source

produced i photons. The binomial coe�cient accounts for the number of ways t atoms in

the photodetector can be excited by incident photons, from i atoms. For a general source,

the probability to detect a single photon t = 1 is

pD(1) =
∞∑
i=1

i η (1− η)i−1 pS(i). (4.38)

For instance, if the source produces only one photon, the probability to detect one photon

is pD(1) = η, and zero photons is pD(0) = 1− η. The conditional probability of detecting t

photons given that i photons were actually present is

pD(t|i) =

(
i

t

)
ηt(1− η)i−t. (4.39)

Unlike the destructive nature of photodetectors, it is possible to alternatively measure

photonic qubits using optical devices. This is commonly encountered in the context of weak

measurements. Such measurements do not disturb the quantum system as much as standard

strong measurements since they involve small couplings between the quantum system and

the ancilla. A few speci�c experiments using weak measurements are discussed here, while

the details of the theoretical model are provided later in Ch. 5.

The �rst experimental implementation of weak measurements was performed by Ritchie,

Story, and Hulet in 1991 using a birefringent crystal to measure the polarization of a pho-
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ton [24]. Depending on the incident photon's polarization, the crystal separated the beam

into two components with orthogonal polarizations. If the distance between the component

beams is small (smaller than the waist of the Gaussian beam), then a weak measurement

was performed. Here, the position of the photon was used as the pointer variable and was

coupled to the polarization. The measurement Hamiltonian [116] can be written as

Ĥ = g Ẑ ⊗ p̂, (4.40)

where Ẑ = |H〉〈H| − |V 〉〈V | is the Pauli matrix in the |H〉, |V 〉 basis, and p̂ is the momen-

tum operator for the pointer. The interaction, with coupling strength parameterized by g,

shifts the position x of the pointer �up� or �down� according to the eigenvalues (±1) of the

observable. In this way, a (weak) measurement of the polarization is made.

In another experiment by Lundeen et al., a weak measurement of the transverse position

of a photon was performed by coupling it to its polarization (the pointer variable) using a

half-wave plate [106]. If the rotation induced by the plate is small then the measurement is

weak. Here, the measurement Hamiltonian can be written as [106,117]

H = θ π̂x ⊗ σ̂y, (4.41)

where π̂x = |x〉〈x| is a projector formed from the position states. The Pauli matrix σ̂y acts on

the pointer variable and rotates it according to the angle θ. Polarization measurements have

been made in other ways. For example, Hosten and Kwiat used the Spin Hall E�ect of Light

(SHEL) and a variable angle prism to measure di�erent spin projections of a photon [118].
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4.3 Summary

In this �nal introductory chapter, I gave an overview of the theory of quantum measurement,

including the basic formalism of projective and POVM measurements. I ended by connecting

the theory to physical realizations of qubits in an optical setting and how they are controlled

and measured in typical experiments. I showed how the description of measurement that

includes the entangling interaction between a quantum system and a meter is realized in weak

measurements via the coupling of a photon's polarization to its spatial states (the meter)

or vice versa. The next chapter will explore in more detail these types of measurements,

where the focus will be on coupling strengths that are weak and strong, as well as on how

information is processed in a quantum measurement.
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Chapter 5

Weak and Strong Quantum

Measurements

5.1 Introduction

In addition to the description of measurement outlined in the previous chapter, quantum

measurements can also be weak or strong. Weak measurements are usually named for the

weak coupling induced between the quantum system and the measuring device. As a re-

sult, the measurement reveals little information about the quantum system on average. In

contrast, strong measurements (e.g., projective measurements) yield more information but

greatly disturb the system.

When weak measurements and their associated weak values were �rst introduced by

Aharonov, Albert, and Vaidman in 1988 [23], they were greeted with a degree of skepticism

and doubts as to their practical importance. That one can obtain large expectation values

outside the range of the measured observable's eigenvalues was viewed by some as merely an

interesting theoretical puzzle. Nearly 30 years later, weak measurements are now understood

to be a useful measurement technique with a wide range of applicability (see Ref. [116] for

a review). They can be used, for example, to amplify small signals [24, 118], to directly

measure quantum states [106, 119, 120], or to continuously monitor a quantum system with
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a sequence of many weak measurements, yielding a so-called quantum trajectory [121,122].

We should keep in mind that there are di�erent de�nitions of weak measurements in the

literature (see, e.g., [123] for an introduction). In one de�nition, a POVM is constructed

such that one measurement outcome is very likely compared to all of the others. In this way,

the measurement almost always leaves the system in nearly the same state, thus yielding

little information. There is a small probability that one of the unlikely outcomes will occur

and, in this case, the measurement will greatly change the state of the system and reveal

much more information.

In another de�nition, which will be the one used in the rest of this chapter, weak mea-

surements are those where all possible outcomes lead to small changes in the system and only

a little information is ever obtained. In this case, the measurement operators M̂m [recall

Eq. (4.2)] are equal to the identity matrix plus a small correction.

A concept that is closely associated with weak measurements is the weak value. It arises

when a system that is prepared in a certain state (it is preselected) undergoes �rst a weak and

then a strong measurement, with those measurement outcomes postselected. For a quantum

system prepared in an initial state |Qi〉 and postselected in a �nal state |Qf 〉, the weak value

for the observable Â is de�ned as [23]

〈A〉W =
〈Qf |Â|Qi〉
〈Qf |Qi〉

. (5.1)

To understand the origin of this quantity [116], consider a quantum system that is pre-

pared in the state |Qi〉. A strong (projective) measurement yields the standard probability

to detect an outcome corresponding to a �nal state |Qf 〉,

p = |〈Qf |Qi〉|2. (5.2)
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If, before this strong measurement, a weak measurement is made, then the probability (5.2)

is changed to

p′ = |〈Qf |Ûε|Qi〉|2, (5.3)

where the unitary operator Ûε = exp(−iεÂ) is associated with the observable Â of the weak

measurement.

Since the interaction is weak, ε� 1, the operator can be approximated using its Taylor

expansion, Ûε = 1− iεÂ+ . . ., and Eq. (5.3) becomes (to �rst order in ε)

p′ = |〈Qf |Qi〉|2 + 2ε Im 〈Qi|Qf 〉〈Qf |Â|Qi〉. (5.4)

Renormalizing this quantity (for p 6= 0), yields

p′

p
= 1 + 2ε Im 〈A〉W , (5.5)

where 〈A〉W is the weak value in (5.1). Thus, a weak measurement of the preselected state

alters the original measurement outcome probability, p = |〈Qf |Qi〉|2. The result (5.5) is

linear in the weak value and is valid in the weak interaction regime. Higher order terms can

be dropped when p′/p − 1 is su�ciently small and when the linear correction ε Im 〈A〉W is

su�ciently larger than the contribution from all higher order terms [116,124].

If the preselected and postselected states are the same, then (5.1) reduces to 〈Qi|Â|Qi〉,

which is the usual expectation value. However, if the postselected state is chosen to be nearly

orthogonal to the preselected state then the weak value can be very large, greater than the

largest eigenvalue of the operator Â, since we divide by 〈Qf |Qi〉 � 1. If the postselected

state is exactly orthogonal to the preselected state, then the divergence of the weak value
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is countered by the vanishing probability of a successful postselection (that is, p in (5.2) is

zero). Furthermore, the weak value can be complex since the numerator and denominator

of the expression (5.1) are in general complex.

The meaning of the weak value becomes more clear if we consider the in�uence of the

measurement on the pointer variable of the meter that is coupled to the quantum system.

In the original weak measurement formalism [23], the meter is described by a Gaussian wave

function for its position x, centered at x = 0 with some width σ. When the quantum system

and meter become entangled in the measurement, both the position and momentum of the

pointer variable are modi�ed. The shift in the position, ∆x, is related to the real part of the

weak value, while the change in momentum corresponds to the imaginary part [125�127].

The measurement is considered weak when the width of the pointer's distribution is much

larger than the subsequent shift in position, σ � ∆x. As a result, there is uncertainty in the

measurement outcomes. However, if the measurement is repeated on an ensemble of such

systems, the average shift of the pointer (the weak value) can be accurately determined [126].

From another perspective, the weak value has been shown to be related to the amplitudes of

the quantum wave function [106]. In this sense, the complex amplitudes of a quantum state

can be directly read o� of the weak value result.

Since weak values can be large and complex, there have been many interesting theoretical

predictions [23] and paradoxical results in experimental settings. Some examples include the

quantum three-box paradox, which was �rst described by [128,129] and later experimentally

con�rmed in [130], and Hardy's paradox [131]. Large weak values can be used to amplify

signals that would otherwise be very small [23, 24, 118, 132, 133] and the weak measurement

formalism was shown to be related to Vaidman's two-state formalism [125, 128]. The Lun-

deen group used weak measurements to directly measure the quantum wave function of a

74



photon [106] instead of the conventional yet indirect technique of quantum state tomog-

raphy [134]. Although the initial implementations of weak measurements were in optical

experiments, more recently, weak measurements have been made of solid state qubits (quan-

tum dots) [135, 136] as well as superconducting (transmon) qubits [137, 138]. See Ref. [116]

for an introduction to weak values and their experimental signi�cance.

5.2 Extended Model of Weak and Strong Measurements

In the standard description of weak measurements and weak values, the interaction between

the quantum system and ancilla is assumed to be weak. In this way, the expansion of the

measurement interaction can be approximated by the unit operation plus a small correction

that weakly couples the quantum system and ancilla. It was shown, however, that in some

cases weak values can be computed exactly for interactions that are not weak (see, e.g.,

Ref. [139]) and that even strong measurements can directly probe the wave function in a

unitary manner [117].

Here, I outline a general description of quantum measurement that accounts for interac-

tions of arbitrary strength, and di�erent choices of measured observables. I argue that weak

and strong measurements should be treated on the same footing as it allows us to understand

measurements in a more general sense. In particular, I derive new results for the shift in

the expectation values of a set of noncommuting observables for the pointer variable, which

yields the real and imaginary components of the weak value. I show that for two-dimensional

pointers (qubits), the imaginary part of the weak value is proportional to the expectation

value of an observable along an axis perpendicular to the plane of initialization, while the real

part depends on the expectation values in the plane. The results hold for any postselection
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of the quantum system as well as for arbitrary initializations of the pointer. I focus on qubit

pointers, but the generalization to higher dimensional qudits is straightforward.

Although I discuss measurements in the following sections in the context of spin-1/2

systems, the formalism is general and can be used for any e�ective two-level system. In

particular, I �rst consider the case of spin measurements using a qubit pointer, and later

consider position measurements. Such measurements have been implemented experimentally

in many di�erent settings. Recently, for example, weak measurements of a transmon qubit

have been made using another transmon as the ancilla [137]. For position measurements,

recall the discussion of Ref. [106] in Ch. 4.2.1, in which a weak measurement of a photon's

position is made by coupling its polarization (the pointer) to its position using a wave plate.

5.2.1 Spin Measurements with a Qubit Pointer

5.2.1.1 The Measurement Process

As we have seen many times already, to measure an observable of a quantum system, we

couple the system to an ancillary system (the pointer variable of a meter) according to the

unitary von Neumann interaction. The time-evolution operator for the measurement Hamil-

tonian, H, is given by U = exp(−iHt/~), where t indicates the length of the measurement

interaction.

The interaction Hamiltonian, H, for a qubit quantum system Q and pointer M corre-

sponding to a measurement of the spin along an arbitrary axis, n̂, is

H = θ (~s · n̂)⊗ (~s · m̂), (5.6)

with interaction strength given by θ. The observable we will measure is ~s · n̂ = sxnx+syny+
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sznz where sj = σj/2 is the spin operator. The operator acting on the pointer, (~σ · m̂)/2,

will lead to a rotation of its initial state about the axis m̂ by an angle θ/2. To see this, we

write the unitary operator U = e−iHt/~ (setting t = 1 and ~ = 1) using the series expansion

for the exponential,

U =
∞∑
k=0

1

k!

(
−i θ (~σ · n̂)⊗ (~σ · m̂)

4

)k
. (5.7)

From the property of Pauli matrices, (~σ · n̂)2 = 1, we can evaluate the series exactly to �nd

U = cos(θ/4)1⊗ 1− i sin(θ/4) (~σ · n̂)⊗ (~σ · m̂). (5.8)

When the interaction strength vanishes, θ = 0, the operator (5.8) reduces to 1⊗ 1, so that

no entanglement is created between Q and M . To �rst order in θ, the interaction for a weak

measurement is

UW = 1⊗ 1− i (θ/4) (~σ · n̂)⊗ (~σ · m̂). (5.9)

The interaction (5.8) can be rewritten in a slightly more useful form. First, note that the

Pauli matrices can be expressed in terms of projection operators along the axis n̂ as

P
(n)
0 =

1

2

(
1 + ~σ · n̂

)
= |0n〉〈0n|,

P
(n)
1 =

1

2

(
1− ~σ · n̂

)
= |1n〉〈1n|,

(5.10)

where |0n〉 and |1n〉 are the eigenstates of ~σ · n̂. Equation (5.8) can then be expressed in

terms of projections on the quantum system as

U = P
(n)
0 ⊗Rm̂(θ/2) + P

(n)
1 ⊗Rm̂(−θ/2), (5.11)
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where the operators acting on the pointer are simply rotation operators around the axis m̂

by an angle θ/2,

Rm̂(±θ/2) = cos(θ/4)1∓ i sin(θ/4) (~σ · m̂). (5.12)

In this form, it is clear that the measurement rotates the pointer by an angle ±θ/2 depending

on the state of Q.

In a strong measurement, the �nal pointer states are orthogonal so that they can be

reliably distinguished and the quantum state is strongly disturbed from its initial state. To

ensure this orthogonality requirement, the pointer variable must be initialized in a state

|Mi〉 that is an eigenstate of an operator ~σ · m̂′ with a basis that is orthogonal to the

pointer's rotation axis m̂: m̂ · m̂′ = 0. In other words, the pointer is initialized in the plane

perpendicular to its rotation axis. For instance, for a pointer that is prepared in the state

|Mi〉 = |0z〉 with respect to the ẑ axis, the rotation must be around an axis in the xy plane.

In general, the overlap between the two �nal pointer states is

〈Mi|Rm̂(−θ/2)Rm̂(θ/2)|Mi〉 = cos(θ/2) + i sin(θ/2) 〈Mi|~σ · m̂|Mi〉, (5.13)

which does not necessarily vanish when θ = π. Writing the initial pointer state in the

eigenbasis |0m〉, |1m〉 of the operator ~σ ·m̂ as |Mi〉 = a|0m〉+b|1m〉 with complex amplitudes

a and b, the matrix element in (5.13) evaluates to 〈Mi|~σ · m̂|Mi〉 = 2|a|2 − 1. Thus, the

�nal pointer states are orthogonal at θ = π only if |a| = 1/
√

2 since at this angle (5.13) is

〈Mi|Rm̂(−π/2)Rm̂(π/2)|Mi〉 = i(2|a|2 − 1).

To see how strongly the quantum system is disturbed by the measurement, we compute

its density matrix after the coupling to the pointer. The initial state of the quantum system,
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written in the eigenbasis of the measured observable, is

|Qi〉 = α|0n〉+ β|1n〉. (5.14)

Applying (5.11) to the initial system |Qi〉|Mi〉 and tracing out the pointer variable yields

the �nal density matrix for Q,

ρ′Q = cos2(θ/4) |Qi〉〈Qi|+ sin2(θ/4) (~σ · n̂)|Qi〉〈Qi|(~σ · n̂). (5.15)

Here, we used the fact that Tr[|Mi〉〈Mi|~σ · m̂] = 0. Writing this in the eigenbasis |0n〉, |1n〉

of the operator ~σ · n̂ yields

ρ′Q =

(
|α|2 α∗β cos(θ/2)

αβ∗ cos(θ/2) |β|2

)
. (5.16)

From this expression, it is clear that a strong measurement corresponds to a state ρ′Q that

is maximally disturbed from its initial state (it is entirely diagonal) and the �nal pointer

states are orthogonal. In a weak measurement, ρ′Q is nearly unchanged from its initial pure

state, ρ′Q ≈ |Qi〉〈Qi|, while the �nal pointer states of the meter are almost parallel according

to (5.13) and cannot be perfectly distinguished. Therefore, there is a trade-o� between the

amount of information the meter has about Q and the resulting loss of coherence to the

quantum state.

For example, suppose the pointer is initialized in the state |Mi〉 = |0z〉 and the rotation

axis is m̂ = ŷ. Writing Q in the eigenbasis of the observable ~σ · n̂ as in (5.14), the e�ect

of (5.11) when the interaction is strong is

U |Qi〉 |0z〉 = α |0n〉 |0x〉+ β |1n〉 |1x〉, (5.17)
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Figure 5.1: Left: The eigenvalues λ± (solid) and diagonal elements p0, p1 (dashed) of ρM , the
pointer density matrix. For a strong measurement, θ = π, the eigenvalues exactly correspond
to the square of the amplitudes |α|2 and |β|2 of the initial quantum state |Qi〉. Right: The
shared entropy between Q and M . The pointer has the most information about the state of
Q at θ = π where the mutual entropy is maximum.

where |0x〉 and |1x〉 are the eigenstates of σx. For a general angle θ we �nd instead

U |Qi〉 |0z〉 = α |0n〉
(

cos(θ/4) |0z〉+ sin(θ/4) |1z〉
)

+ β |1n〉
(

cos(θ/4) |0z〉 − sin(θ/4) |1z〉
)
.

(5.18)

Tracing out the quantum system, the diagonal elements and eigenvalues of the pointer density

matrix ρM are

p0 = cos2(θ/4) , p1 = sin2(θ/4), (5.19)

and

λ± =
1

2

(
1±

√
1− 4|α|2 |β|2 sin2(θ/2)

)
, (5.20)

which are shown in Fig. 5.1. At θ = π, the eigenvalues reduce to |α|2, |β|2, which are the
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squares of the amplitudes in the initial quantum state (5.14). When θ � 1, the eigenvalues

are approximately |α|2|β|2 sin2(θ/2) and 1−|α|2|β|2 sin2(θ/2). Also in Fig. 5.1 is the shared

entropy betweenQ andM , S(Q : M) = S(Q)+S(M)−S(QM) = 2S(M), which is maximum

at θ = π and goes to zero as θ → 0, demonstrating that weak measurements extract less

information about the quantum state.

5.2.1.2 Weak Values

In the original weak measurement formalism [23], the quantum system is projected onto a

�nal state (postselected) after the sequence of preparation and weak measurement. In this

way, the weak value can be determined. If the initial wave function of Q is not known, then

the weak value can be used to compute the coe�cients in |Qi〉 [106]. In this section we

compute the weak value for a general initialization of the pointer and arbitrary interaction

strength.

Supposing Q is prepared (preselected) in the initial state |Qi〉 and the pointer is initialized

in the state |Mi〉, after the measurement interaction (5.8) the joint state is

U |Qi〉|Mi〉 = cos(θ/4) |Qi〉|Mi〉 − i sin(θ/4) (~σ · n̂)|Qi〉 (~σ · m̂)|Mi〉. (5.21)

If the quantum state is postselected to be in the state |Qf 〉, then the �nal (conditional) state

of the meter is

〈Qf |U |Qi〉 |Mi〉 = cos(θ/4) 〈Qf |Qi〉 |Mi〉 − i sin(θ/4) 〈Qf |~σ · n̂|Qi〉 (~σ · m̂)|Mi〉. (5.22)

Renormalizing this expression yields the �nal state |Mf 〉 of the meter,

|Mf 〉 = |Mi〉 − i tan(θ/4)
〈Qf |~σ · n̂|Qi〉
〈Qf |Qi〉

(~σ · m̂)|Mi〉. (5.23)
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The weak value of the observable Â = ~σ/2 · n̂ is de�ned as the matrix element

〈A〉W =
〈Qf |Â|Qi〉
〈Qf |Qi〉

=
1

2

〈Qf |~σ · n̂|Qi〉
〈Qf |Qi〉

. (5.24)

Choosing |Qf 〉 nearly orthogonal to |Qi〉 can lead to weak values that are much larger than

the largest eigenvalue of Â.

To determine the weak value, the shift in expectation values for a set of complementary

observables are computed in the �nal state of the meter (5.23). Together, these yield the

real and imaginary parts of the weak value. By straightforward calculation, the expectation

value of the observable ~σ · m̂′ in the �nal state (5.23) is

〈~σ · m̂′〉f =
(

1− 4 tan2(θ/4) |〈A〉W |2
)
〈~σ · m̂′〉i

− 4 tan(θ/4) Re
[
〈A〉W

]
〈(m̂× m̂′) · ~σ〉i

+ 4 tan(θ/4) Im
[
〈A〉W

]
(m̂ · m̂′),

(5.25)

where 〈Ô〉f ≡ 〈Mf |Ô|Mf 〉 and 〈Ô〉i ≡ 〈Mi|Ô|Mi〉 are the �nal and initial expectation values

of the operator Ô in the pointer states. The �rst two terms in (5.25) are contributions from

the expectation value in the plane of initialization, while the last term shifts the pointer out

of the plane. Setting m̂′ = x̂, ŷ, ẑ, for example, in the above formula will yield a set of three

equations that can be solved for the weak value.

The choice of the rotation axis m̂ is arbitrary and simply sets the reference frame for

the pointer. For example, if we choose m̂ = ŷ, then the pointer must be initialized in the

xz plane. In this case, we consider the set of expectation values for m̂′ = x̂, ŷ, ẑ. The �rst

two terms of (5.25) contribute to 〈σx〉f and 〈σz〉f via 〈σx〉i and 〈σz〉i, while the third term

shifts the pointer out of plane by producing a nonzero 〈σy〉f . Speci�cally, the expectation
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values from (5.25) for σx, σy, and σz are:

〈σz〉f =
(

1− 4 tan2(θ/4) |〈A〉W |2
)
〈σz〉i − 4 tan(θ/4) Re

[
〈A〉W

]
〈σx〉i, (5.26)

〈σx〉f =
(

1− 4 tan2(θ/4) |〈A〉W |2
)
〈σx〉i + 4 tan(θ/4) Re

[
〈A〉W

]
〈σz〉i, (5.27)

and

〈σy〉f = 4 tan(θ/4) Im
[
〈A〉W

]
. (5.28)

Here, we used the orthogonality condition for the �nal pointer states, which requires that

〈σy〉i = 0 since |Mi〉 must be in the xz plane. Thus, 〈σy〉f is proportional to just the

imaginary part of the weak value.

We can rewrite the expectation values (5.26), (5.27), and (5.28) in terms of the proba-

bilities P to observe polarization measurement outcomes. If

P(m′)
0 = |〈0m′|Mf 〉|2 = 〈Mf |P

(m′)
0 |Mf 〉, (5.29)

P(m′)
1 = |〈1m′|Mf 〉|2 = 〈Mf |P

(m′)
1 |Mf 〉, (5.30)

are the probabilities to observe the outcomes |0m′〉 and |1m′〉 in a measurement of polariza-

tion along the m̂′ axis, then

〈~σ · m̂′〉f = P(m′)
0 − P(m′)

1 . (5.31)

With the pointer's initialization left arbitrary in the xz plane (the rotation axis m̂ is still ŷ),

the real and imaginary components of the weak value can be written in terms of measurement
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probabilities using (5.26), (5.27), and (5.28) as

Re[〈A〉W ] =
〈σz〉i 〈σx〉f − 〈σx〉i 〈σz〉f

4 tan(θ/4)

=
〈σz〉i

(
P(x)

0 − P(x)
1

)
− 〈σx〉i

(
P(z)

0 − P(z)
1

)
4 tan(θ/4)

,

(5.32)

and

Im[〈A〉W ] =
〈σy〉f

4 tan(θ/4)
=
P(y)

0 − P(y)
1

4 tan(θ/4)
. (5.33)

To arrive at these results, we used the fact that

〈σz〉2i + 〈σx〉2i = 1, (5.34)

since the pointer is initialized in the x̂ẑ plane. That is, |Mi〉 = sinα|0z〉 + cosα|1z〉 yields

〈σz〉i = − cos(2α) and 〈σx〉i = sin(2α). Therefore, the real part of the weak value has contri-

butions from both x and z polarization measurement probabilities, while the imaginary part

depends only on the y measurement probabilities. In addition, in this form, the weak value

is directly obtained from the statistics in the measurement (counts from a photodetector, for

example).

As a speci�c example, let's choose the pointer to be initialized in the state |Mi〉 = |0z〉

with respect to the z axis. In this case, 〈σx〉i = 0 and 〈σz〉i = 1. Then, Eqs. (5.26), (5.27),

and (5.28) evaluate to

〈σz〉f = 1− 4 tan2(θ/4) |〈A〉W |2, (5.35)

〈σx〉f = 4 tan(θ/4) Re
[
〈A〉W

]
, (5.36)

〈σy〉f = 4 tan(θ/4) Im
[
〈A〉W

]
. (5.37)
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We see that the expectation value of σx is proportional to the real part of the weak value,

while the expectation value of σy is proportional to the imaginary part,

〈A〉W =
〈σx〉f + i〈σy〉f

4 tan(θ/4)

=

(
P(x)

0 − P(x)
1

)
+ i
(
P(y)

0 − P(y)
1

)
4 tan(θ/4)

.

(5.38)

Therefore, the probabilities P from the experiment can be used to obtain the weak value.

5.2.1.3 Computing the Wave Function

Here we review how weak measurements can be used to directly compute the quantum

wave function rather than employing standard state tomography techniques. This was �rst

performed experimentally for pure states by Lundeen et al. in Ref. [106] and quickly was

followed by a generalization to mixed states [119].

If the probabilities P from the previous sections are determined in an experiment, then (5.38)

can be used to compute the weak value. For a general initialization of the pointer, the weak

value is instead given by Eqs. (5.32) and (5.33), from which the coe�cients in the wave

function |Qi〉 can be directly determined. From (5.24),

〈A〉W =
〈Qf |P

(n)
0 |Qi〉

〈Qf |Qi〉
− 1

2
=
〈Qf |0n〉〈0n|Qi〉
〈Qf |Qi〉

− 1

2
. (5.39)

Since |Qf 〉 can be selected in the experiment, the terms 〈Qf |0n〉 and 〈Qf |1n〉 are known.

The initial quantum system, written in the eigenbasis of the observable, is

|Qi〉 = α|0n〉+ β|1n〉. (5.40)
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Thus, the coe�cient α is computed from

〈A〉W = α
〈Qf |0n〉
〈Qf |Qi〉

− 1

2
. (5.41)

Alternatively, with the second coe�cient β,

〈A〉W =
1

2
− β

〈Qf |1n〉
〈Qf |Qi〉

. (5.42)

The overlap 〈Qf |Qi〉 can be determined by normalizing the wave function,

|Qi〉 =
1

2
〈Qf |Qi〉

(
1 + 2〈A〉W
〈Qf |0n〉

|0n〉+
1− 2〈A〉W
〈Qf |1n〉

|1n〉

)
. (5.43)

From this expression, it is clear that the complex amplitudes of the quantum wave function

can be directly seen from the measurement outcomes via (5.38).

5.2.1.4 Weak Measurements without Postselection

We can also consider the situation where the quantum state is not postselected after the weak

measurement. In this case, we compute the standard expectation value of an observable in

the initial quantum state from the pointer. The density matrix for the pointer is found by

tracing out Q from the �nal joint state (5.21),

ρM = cos2(θ/4) |Mi〉〈Mi|+ sin2(θ/4)~σ · m̂|Mi〉〈Mi|~σ · m̂

+
i

2
sin(θ/2) 〈~σ · n̂〉Q

[
|Mi〉〈Mi|~σ · m̂− ~σ · m̂|Mi〉〈Mi|

]
,

(5.44)

where

〈~σ · n̂〉Q = TrQ

[
~σ · n̂ |Qi〉〈Qi|

]
(5.45)
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is the expectation value of ~σ · n̂ in the initial quantum state. Similarly to the previous

sections, we compute the expectation value of ~σ · m̂′ in the �nal state of M . In contrast to

Eq. (5.25), we now �nd

〈~σ · m̂′〉f = TrM

[
(~σ · m̂′) ρM

]
= cos(θ/2) 〈~σ · m̂′〉i + sin(θ/2) 〈~σ · n̂〉Q 〈m̂′ × m̂ · ~σ〉i,

(5.46)

which does not have a term proportional to m̂′ · m̂. That is, there are no imaginary contri-

butions to the expectation value (as expected) and 〈σy〉f = 0. In addition,

〈σx〉f = cos(θ/2) 〈σx〉i + sin(θ/2) 〈~σ · n̂〉Q 〈σz〉i, (5.47)

〈σz〉f = cos(θ/2) 〈σz〉i − sin(θ/2) 〈~σ · n̂〉Q 〈σx〉i. (5.48)

When the interaction is weak, these expectation values are, to �rst order in θ, equivalent

to those in Eqs. (5.26) and (5.27) obtained by postselecting Q:

〈σx〉f ∼ 〈σx〉i + θ 〈~s · n̂〉Q 〈σz〉i, (5.49)

〈σz〉f ∼ 〈σz〉i − θ 〈~s · n̂〉Q 〈σx〉i. (5.50)

When |Qf 〉 = |Qi〉, the weak value is equal to the expectation value 〈~s · n̂〉Q, which has no

imaginary contributions since ~s · n̂ is Hermitian.

5.2.2 Position Measurements with a Qubit Pointer

We now derive the weak value for measurements of an observable that takes the form of

a projector. For instance, we could measure the position with |x〉〈x|, or momentum with

|p〉〈p|. Here, we suppose that we are measuring the position x of a quantum system using
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a qubit pointer. Since the dimension of the ancillary system is two, this scheme yields

only information about whether the quantum system is at location x or is not. A higher-

dimensional ancilla is needed to distinguish between more than two spatial states.

The interaction Hamiltonian for a position measurement is written as

H = θ π̂n ⊗ (~s · m̂), (5.51)

where π̂n = |xn〉〈xn| is a projector composed of one of n position eigenstates. The series

expansion for the time-evolution operator, U , can be exactly evaluated to

U = 1⊗ 1 + π̂n ⊗
(
Rm̂(θ)− 1

)
. (5.52)

Since the projectors add to unity,
∑
n π̂n = 1, this can be rewritten as

U =
∑
n′ 6=n

π̂n′ ⊗ 1 + π̂n ⊗Rm̂(θ), (5.53)

where it is clear that the pointer is only rotated by an angle θ about the m axis when the

quantum system is found at location xn. When θ = 0, the interaction reduces to the identity.

When θ = π, the �nal pointer states 1|Mi〉 and Rm̂(π)|Mi〉 are orthogonal, as long as the

pointer variable is initialized in the plane perpendicular to its rotation axis, m̂.

We now proceed as before. With the quantum system preselected in the state |Qi〉 and

the pointer initialized as |Mi〉, the measurement interaction (5.52) leads to

U |Qi〉|Mi〉= |Qi〉|Mi〉+ π̂n|Qi〉
(

cos(θ/2)− 1
)
|Mi〉

− π̂n|Qi〉 i sin(θ/2)~σ · m̂|Mi〉
(5.54)
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De�ning the weak value,

〈A〉W =
〈Qf |π̂n|Qi〉
〈Qf |Qi〉

, (5.55)

the �nal pointer state after postselecting the quantum system in the state 〈Qf | and renor-

malizing is

|Mf 〉 =
[
1− 2〈A〉W sin2(θ/4)

]
|Mi〉 − i〈A〉W sin(θ/2)~σ · m̂ |Mi〉 (5.56)

The expectation value of the operator ~σ · m̂′ in the �nal pointer state (5.56) is

〈~σ · m̂′〉f =
(

1− Re[〈A〉W ] εθ − |〈A〉W |2 εθ cos(θ/2)
)
〈~σ · m̂′〉i

− sin(θ/2)
(

2 Re[〈A〉W ]− |〈A〉W |2 εθ
)
〈(m̂× m̂′) · ~σ〉i

+ sin(θ/2)
(

2 Im[〈A〉W ]
)

(m̂ · m̂′),

(5.57)

where we de�ned

εθ = 4 sin2(θ/4). (5.58)

If we set the rotation axis of the pointer variable to be m̂ = ŷ, then it is initialized in

the xz plane. The three equations obtained from (5.57) for m̂′ = x̂, ŷ, ẑ yield the real and

imaginary parts of the weak value. The imaginary part is

Im[〈A〉W ] =
〈σy〉f

2 sin(θ/2)
=
P(y)

0 − P(y)
1

2 sin(θ/2)
, (5.59)
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while real part is

Re[〈A〉W ] =
1

2

(
1− gz(θ) 〈σz〉f − gx(θ) 〈σz〉f

)
=

1

2

(
1− gz(θ)

(
Pz0 − P

z
1

)
− gx(θ)

(
Px0 − P

x
1

))
.

(5.60)

The θ dependence of Re[〈A〉W ] is contained in the functions

gz(θ) = 〈σz〉i + cot(θ/2) 〈σx〉i, (5.61)

gx(θ) = 〈σx〉i − cot(θ/2) 〈σz〉i. (5.62)

Here, we used the fact that

〈σz〉2i + 〈σx〉2i = 1, (5.63)

since the pointer variable is initialized in the xz plane.

For a strong measurement, θ = π, these functions reduce to gz(θ) = 〈σz〉i and gx(θ) =

〈σx〉i. For a weak measurement, gz(θ) ∼ 2
θ 〈σx〉i and gx(θ) ∼ −2

θ 〈σz〉i. It is interesting to

note that Eqs. (5.32) and (5.33) are identical to (5.60) and (5.59) when θ is small. In other

words, the weak value is the same for spin measurements and position measurements when

the interaction is weak.

If we initialize the pointer variable along ẑ such that 〈σz〉i = 1 and 〈σx〉i = 0, the more

general results derived in this section reduce to those of Vallone et al. in Ref. [117], and of

Lundeen et al. in Ref. [106] for small θ. In [117], it was shown that strong measurements, as

opposed to the weak approximation made in [106], yield a more accurate result in a direct
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measurement of the wave function. Our result, Eq. (5.57) with m̂′ = x̂, ŷ, ẑ, yields

〈σz〉f = 1− Re[〈A〉W ] εθ − |〈A〉W |2 εθ cos(θ/2), (5.64)

〈σx〉f = sin(θ/2)
(

2 Re[〈A〉W ]− |〈A〉W |2 εθ
)
, (5.65)

〈σy〉f = sin(θ/2)
(

2 Im[〈A〉W ]
)
. (5.66)

Solving the �rst two equations yields the real part of the weak value

Re[〈A〉W ] =
P(x)

0 − P(x)
1 + tan(θ/2)

(
1− P(z)

0 + P(z)
1

)
2 tan(θ/2)

=
P(x)

0 − P(x)
1 + 2 tan(θ/4)P(z)

1

2 sin(θ/2)
.

(5.67)

In the second equality we eliminated P(z)
0 by using

〈σz〉f = 〈Mf |Mf 〉 − 2P(z)
1 = 1− εθRe[〈A〉W ] + εθ|〈A〉W |2 − 2P(z)

1 . (5.68)

This normalization of the state |Mf 〉 is valid only for the initialization along ẑ. For small θ

the weak value is

〈A〉W =
1

θ

(
P(x)

0 − P(x)
1

)
+
i

θ

(
P(y)

0 − P(y)
1

)
, (5.69)

while for θ = π,

〈A〉W =
1

2

(
1− P(z)

0 + P(z)
1

)
+
i

2

(
P(y)

0 − P(y)
1

)
=

1

2

(
P(x)

0 − P(x)
1 + 2P(z)

1

)
+
i

2

(
P(y)

0 − P(y)
1

)
.

(5.70)

Therefore, the results derived here, Eqs. (5.59) and (5.60), are more general and account for

arbitrary pointer initializations and interaction strengths.
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5.2.3 Relationship Between Measurement Interactions

In this section we will see how di�erent measurement interactions for two-level systems can

be related through global rotations of the quantum system and/or pointer. If the observable

Â is a two-dimensional projector P̂ , then the corresponding measurement operator with

Â = P̂ is related to the measurement operator with Â = ~σ · n̂. Speci�cally, writing the

projector as P̂ = 1
2(1+ ~σ · n̂) for the Hamiltonian H = θ P̂ ⊗ ~σ · m̂, yields the measurement

operator

U =
(
1⊗Rm̂(θ/2)

)
e−iθ/4~σ·n̂⊗~σ·m̂. (5.71)

Thus, the operators with Â = P̂ and Â = ~σ · n̂ are related by an overall rotation of the

pointer.

Similarly, if both the measured observable and pointer variable are written as two-

dimensional projectors, then H = θP̂ ⊗ Q̂. Writing the projectors as P̂ = 1
2(1 + ~σ · n̂)

and Q̂ = 1
2(1 + ~σ · m̂),

U = e−iθ/4
(
Rn̂(θ/2)⊗Rm̂(θ/2)

)
e−iθ/4~σ·n̂⊗~σ·m̂. (5.72)

In this case, the operators with Â = P̂ , M̂ = Q̂ and Â = ~σ · n̂, M̂ = ~σ · m̂ are related by an

overall rotation of the quantum system and the pointer.
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5.3 Quantum Information Theory of Strong Quantum

Measurements

In the rest of this chapter, I will focus on projective (strong) measurements. I will expand

upon the ideas introduced previously and will analyze how information is processed in a

strong measurement from the perspective of quantum information theory. Using entropy

Venn diagrams, I will track the distribution of entanglement and entropy in the measure-

ment of a single quantum system and in parallel measurements made on an entangled sys-

tem [59, 140, 141]. I will also distinguish between measurements made on prepared (pure)

and unprepared (completely mixed) quantum states.

5.3.1 The Measurement Process

Suppose a given quantum system is in the initial state

|Q〉 =
d−1∑
x1=0

α
(1)
x1
|x̃1〉, (5.73)

where α(1)
x1

are complex amplitudes. Here, Q is expressed in terms of the d orthonormal

basis states |x̃1〉 associated with the observable that we will measure. The von Neumann

measurement is implemented with a unitary operator that entangles the quantum system Q

with an ancillary system (the pointer) A1,

UQA1
=

d−1∑
x1=0

Px1⊗ Ux1 , (5.74)

where Px1 = |x̃1〉〈x̃1| are projectors on the state of Q. As we've seen many times already, the

operators Ux1 transform the initial state |Mi〉A1
of the ancilla to the �nal state Ux1|Mi〉A1

=
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|x1〉A1
. Since we are considering strong measurements, the states of the ancilla, |x1〉A1

, are

orthogonal. From now on, we drop the subscripts A1 on the �nal states of the ancilla. The

unitary interaction (5.74) between the quantum system and the ancilla leads to the entangled

state [59]

|QA1〉 = UQA1
|Q〉 |Mi〉A1

=
∑
x1

α
(1)
x1
|x̃1〉 |x1〉. (5.75)

The coe�cients α(1)
x1

re�ect the degree of entanglement between Q and A1: the number of

non-zero coe�cients is the Schmidt number [25] of the Schmidt decomposition.

The measurement process thus described contains the essence of the no-cloning theo-

rem [36], which states that it is impossible to perfectly copy a quantum state unless it is

in an eigenstate of the measurement operator (see Sec. 2.4). In other words, if the an-

cilla A1 had faithfully copied Q, then the �nal state would be the separable wave function

|QA1〉 =
∑
x1
α

(1)
x1
|x̃1〉 ⊗

∑
x1
α

(1)
x1
|x1〉 instead of Eq. (5.75). Therefore, in general, the

entanglement produced in quantum measurement prohibits the measurement device from

making a perfect copy of the quantum system. This is very di�erent from classical measure-

ments, where the measurement device can, in principle, always perfectly re�ect the state of

the system.

Information about the measurement outcomes is obtained from the state of the ancilla.

Tracing over (5.75), the marginal density matrix of A1 (and similarly for Q) is

ρ(A1) = TrQ (|QA1〉〈QA1|) =
∑
x1

|α(1)
x1
|2 |x1〉〈x1|. (5.76)

From the symmetry of the state (5.75), the marginal von Neumann entropy of A1 is the

same as Q, which, in turn, is equal to the Shannon entropy of the probability distribution
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q
(1)
x1

= |α(1)
x1
|2:

S(Q) = S(A1) = H[q(1)] = −
∑
x1

q
(1)
x1

logd q
(1)
x1
. (5.77)

Recall that we denote the Shannon entropy of a d-dimensional probability distribution pxi

by H[p] = −
∑d−1
xi=0 pxi logd pxi . The von Neumann entropy of a density matrix ρ(X) is

de�ned as S(X) = S(ρ(X)) = −Tr [ρ(X) logd ρ(X)], which on account of the logarithm to

the base d, gives entropies the units �dits�.

The ancilla and quantum system are not classically correlated in (5.75) (as is required for

decoherence models, e.g., [142]), but in fact are entangled. This entanglement is characterized

by a negative conditional entropy [59, 143], S(A1|Q) = S(QA1) − S(Q) = −S(A1), where

the joint entropy vanishes since (5.75) is pure. We illustrate the entanglement between A1

and Q with an entropy Venn diagram [59] in Fig. 5.2(a). The mutual entropy at the center

of the diagram, S(Q : A1) = S(Q) + S(A1) − S(QA1), re�ects the entropy that is shared

between both systems and is twice as large as the classical upper bound [59,71,143].

5.3.2 Unprepared Quantum States

In the previous section, we considered measurements of a quantum system that is prepared

in a pure state (5.73) with coe�cients α(1)
x1

. Suppose instead that we are given a quantum

system about which we have no information, that is, where no previous measurement results

could inform us of the state of Q. In this case, we write the quantum system's initial state

as a maximum entropy mixed state

ρ(Q) =
1

d

d−1∑
x0=0

|x̃0〉〈x̃0| , (5.78)
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with coe�cients that now correspond to a uniform probability distribution. We call this an

unprepared quantum system. We can �purify� ρ(Q) by de�ning a higher-dimensional pure

state where Q is entangled with a reference system R [25],

|QR〉 =
1√
d

d−1∑
x0=0

|x̃0〉|x0〉 , (5.79)

such that ρ(Q) is recovered by tracing (5.79) over R. In this way, we can see explicitly

how the total system evolves unitarily as a pure state. Here and earlier, the states of Q are

written with a tilde, |x̃0〉, to distinguish them from the states of R, which are denoted by

|x0〉. In this section, we assume that Q is an unprepared (or �unknown�) state with maximum

entropy so that it is maximally entangled with R, as in (5.79). With such an assumption,

we do not bias any subsequent measurements [144].

To measure Q with an ancilla A1, we express the quantum system in the eigenbasis |x̃1〉

of the observable that ancilla A1 will measure using the unitary matrix U (1)
x0x1

= 〈x̃1|x̃0〉.

The orthonormal basis states of the ancilla, |x1〉, with x1 = 0, . . . , d− 1, automatically serve

as the �interpretation basis� [145]. We then entangle [59] Q with A1, which, as before, is in

the initial state |Mi〉A1
, using the unitary entangling operation UQA1

in Eq. (5.74),

|QRA1〉 = 1R ⊗ UQA1
|QR〉 |Mi〉A1

=
1√
d

∑
x0x1

U
(1)
x0x1

|x̃1〉 |x0〉 |x1〉,
(5.80)

where 1R is the identity operation on R. We always write the states on the right hand side

in the same order as they appear in the ket on the left hand side. We express the reference

in a new basis by de�ning |x1〉R =
∑
x0
U

(1)ᵀ
x1x0

|x0〉R with the transpose of U (1), so that the
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Q A1

(a)

−S1 2S1 −S1

Q A1

(b)

0 1 0

Figure 5.2: Entropy Venn diagrams [59] for the quantum system and ancilla. (a) For pre-
pared quantum states, Q and A1 are entangled according to Eq. (5.75). (b) For unprepared
quantum states, Q and A1 are correlated according to Eq. (5.82) when the reference R has
been traced out. In this �gure, we use the notation S1 = S(A1) for the marginal entropy of
ancilla A1.

joint system QRA1 appears as

|QRA1〉 =
1√
d

∑
x1

|x̃1〉|x1〉|x1〉 . (5.81)

Note that (5.81) is a tripartite Schmidt decomposition of the joint density matrix ρ(QRA1) =

|QRA1〉〈QRA1|, which is possible here because the entanglement operator UQA1
ensures the

bi-Schmidt basis R〈x1|QRA1〉 has Schmidt number one [74].

Tracing out the reference system from the full density matrix ρ(QRA1), we note that the

ancilla is perfectly correlated with the quantum system,

ρ(QA1) =
1

d

∑
x1

|x̃1 x1〉〈x̃1 x1|, (5.82)

in contrast to Eq. (5.75) where A1 and Q are entangled. Such correlations are indicated by

a vanishing conditional entropy [59], S(A1|Q) = S(QA1) − S(Q) = 0. Tracing over (5.82),

we �nd that each system has maximum entropy S(Q)=S(A1)=1. In Fig. 5.2, we compare

the entropy Venn diagrams that are constructed from the states (5.75) and (5.82).
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Q

A
(1)
1

A
(2)
1

A
(n)
1

...

Figure 5.3: Composition of the quantum ancilla. Dashed lines indicate entanglement between
the quantum system, Q, and each of the n qudits, A(1)

1 , . . . , A
(n)
1 , in the ancilla A1. Time

proceeds from left to right.

We note in passing that R can be thought of as representing all previous measurements of

the quantum system that have occurred before A1. We contrast measurements of unprepared

quantum states (5.79) as described in this section, with measurements of prepared quantum

states (see Sec. 5.3.1), which are initially pure states (5.73) de�ned without a reference

system R.

5.3.3 Composition of the Quantum Ancilla

The ancilla A1 may, in practice, be composed of many qudits A(1)
1 . . . A

(n)
1 that all participate

in the measurement ofQ according to the sequence of entangling operations U
QA

(n)
1

. . . U
QA

(1)
1

between Q and A(i)
1 (see Fig. 5.3). In this case, Eq. (5.75), for example, is extended to

|QA1〉 =
∑
x1

α
(1)
x1
|x̃1〉 |x1〉

A
(1)
1

. . . |x1〉
A

(n)
1

. (5.83)

Tracing out the quantum system from Eq. (5.83), the joint state of the entire ancilla is

ρ(A1) = ρ(A
(1)
1 . . . A

(n)
1 ) =

∑
x1
|α(1)
x1
|2|x1 . . . x1〉〈x1 . . . x1|. That is, each component of A1

is perfectly correlated with every other component, so that A1 is internally self-consistent

(�all parts of A1 tell the same story�). However, while A1 appears classical, and could
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conceivably consist of a macroscopic number of components, it is potentially fragile, in the

sense that its entanglement with other devices may become hidden when any part A(i)
1 of

A1 is lost (traced over). In the following chapters, we will distinguish �ampli�able� from

non-ampli�able devices. That is, a state is ampli�able if tracing over any of its components

does not modify the correlations between its subsystems.

To do this, we will consider in our discussion of Markovian quantum measurements in

Ch. 7, an additional step to the measurement process by introducing a macroscopic detector

D1 that is used to measure the quantum ancilla A1. In other words, D1 observes the quantum

observer A1. This second system, which is also composed of many qudits, ampli�es the

measurement with A1, by recording the outcome on a macroscopic device. While A1 may

be fragile depending on the situation, D1 is robust: any part of D1 could be traced over

without altering its correlations with other macroscopic measurement devices. While such a

procedure (a quantum system observed by a quantum ancilla, which is observed by a classical

device) may appear arbitrary, it represents a convenient way of splitting up the second

stage of von Neumann's measurement [22] to better keep track of the fate of entanglement.

This gives rise to two classes of quantum measurement: those performed within a closed

system where every part of the measurement device remains under control (unampli�ed

measurements), and those performed within an open system, where some degrees of freedom

are traced over (ampli�ed measurements). In fact, a similar construction is used in the

weak measurement formalism discussed earlier in this chapter (a quantum system is weakly

coupled to a pointer variable, followed by a strong measurement of the pointer) as well as in

other measurement settings (e.g., superconducting qubits can be measured by �rst coupling

to another superconducting qubit, the ancilla, whose state is later measured and read out).

In Ch. 7, I will formally de�ne the concept of a quantum Markov chain that is used
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AQ1

Q2

1

A2

Figure 5.4: Illustration of parallel quantum measurements. Two di�erent measurement
devices, A1 and A2, are used to separately measure the components, Q1 and Q2, of an
entangled quantum system.

in this work, in the context of consecutive measurements of a quantum system. I also

further develop the formalism to describe unampli�ed measurements with quantum ancillae,

Ai, which I will show are non-Markovian, and ampli�ed measurements with macroscopic

detectors, Di, which are Markovian.

5.3.4 Parallel Quantum Measurements

In the previous section, we saw how to perform a single measurement of a quantum system.

We can extend this description by considering measurements made in parallel on compos-

ite systems (see Fig. 5.4). A common realization of this idea is the set of (in)compatible

measurements made on Bell states to test for violations of Bell inequalities [146, 147]. I

will describe these measurements in some detail below since the results will be helpful for

understanding the calculations in Ch. 6 on the Bell-state quantum eraser.

Consider the Bell state for two qubits Q1 and Q2, written in the eigenbasis |0〉 and |1〉

of the operator σz,

|Q1Q2〉 =
1√
2

∑
i

|ii〉 =
1√
2

(
|00〉+ |11〉

)
. (5.84)

To perform a parallel measurement of this composite system, consider a measurement of Q1
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using device A1 and of Q2 using A2. Here, the �rst measurement is of the spin component

along the n̂1 direction where n̂1 · ẑ = cos θ1, while the other measurement is of the spin

component along the n̂2 direction where n̂2 · ẑ = cos θ2. Since these measurements are made

on separate components of the entangled system, the time ordering has no e�ect on the

subsequent calculations.

Entangling the ancillae with the quantum system, the state (5.84) becomes

|Q1Q2A1A2〉 =
1√
2

∑
ijk

Uij Vik |jk jk〉. (5.85)

If we restrict the qubit states to the xz plane of the Bloch sphere, then we can write the

transformation between the basis of σz and ~σ · n̂1 as the rotation matrix U ,

U =

(
cos(θ1) −sin(θ1)

sin(θ1) cos(θ1)

)
, (5.86)

and similarly for ~σ · n̂2. Tracing over the composite quantum system, the density matrix of

the ancillae is

ρ(A1A2) =
1

2

∑
ii′jk

UijU
∗
i′j VikV

∗
i′k |jk〉〈jk| =

1

2

∑
jk

∣∣∣∑
i

Uij Vik

∣∣∣2 |jk〉〈jk|. (5.87)

The probability to observe outcome j in device A1 together with outcome k in device A2 is

the coherent distribution,

pjk =
1

2

∣∣∣∑
i

Uij Vik

∣∣∣2, (5.88)

while the marginal probabilities of A1 and A2 are perfectly random (both equal to 1/2).

Thus, the conditional probability to observe outcome j with A1, given that outcome k was
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obtained with A2 (and vice versa), is

pj|k = pk|j =
∣∣∣∑
i

Uij Vik

∣∣∣2. (5.89)

The e�ects of the entanglement between systems Q1 and Q2 can be understood through

the correlation between measurement outcomes. First, consider compatible measurements

in which both measurements are of σz so that θ1 = θ2 = 0. In this case, the full wave

function (5.85) becomes a four-particle GHZ state [recall Eq. (2.24)],

A1[σz], A2[σz] : |Q1Q2A1A2〉 =
1√
2

∑
i

|iiii〉 =
1√
2

(
|0000〉+ |1111〉

)
. (5.90)

The measurement outcomes are described by the joint probability

pjk =
1

2
δjk, (5.91)

which yields the conditional probabilities,

pj|k = pk|j = δjk. (5.92)

We see that the measurement outcomes are perfectly correlated, so that whichever of the

two states we observe, we know that the corresponding outcome for the other system must

be the same.

This perfect correlation of measurement outcomes does not imply faster-than-light sig-

naling. Indeed, the choice of basis and the measurement outcome for A1 would have to

be sent along a causal classical communication channel to A2, where both results can be

compared [37,148]. It is straightforward to show that for any set of parallel measurements of

the same observable, the outcomes will be perfectly correlated. That is, due to the Schmidt
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decomposition, the degree of entanglement is invariant under a change of basis so that the

measurement outcomes will always be correlated in the same way.

For the second example, we consider incompatible measurements where we measure σz

using A1 and σx using A2. Such measurements are incompatible in the sense that the

observables do not commute, [σi, σj ] = 2iεijk σk. In this case, the wave function (5.85) is

A1[σz], A2[σx] : |Q1Q2A1A2〉 =
1√
2

∑
ik

U ′ik |ikik〉 =
1

2

(
|0000〉− |0101〉+ |1010〉+ |1111〉

)
.

(5.93)

The measurement outcomes are now described by the joint distribution

pjk =
1

4
, (5.94)

and conditional probabilities

pj|k = pk|j =
1

2
. (5.95)

In other words, the outcomes are completely uncorrelated and random. If the state j is

observed with A1, then this has no correlation to the state k observed with A2.

Using entropy Venn diagrams, we can examine how the entanglement is distributed for

di�erent sets of measurements. The diagrams for three di�erent measurements are shown

in Fig. 5.5. In all three scenarios, the center of the diagram, the ternary mutual entropy,

vanishes because the underlying state (5.85) is pure. The negative conditional entropies are

indicative of the entanglement between the subsystems. As we already saw, tracing over Q1

and Q2 always leaves the ancilla correlated. Interestingly, when making incompatible mea-

surements, the ancillae are uncorrelated with each other, but are even more strongly entan-

gled with the quantum systems as compared to the case of compatible measurements [59,72].
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(b)

A1[σx] A2[σx]

Q1Q2
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(c)

A1[σz] A2[σz]

0 1 0

(d) Perfect correlation

A1[σz] A2[σx]

1 0 1

(e) No correlation

A1[σx] A2[σx]

0 1 0

(f) Perfect correlation

Figure 5.5: Entropy diagrams for three di�erent parallel measurements of a Bell state. When
incompatible spins (middle) are measured, the ancillae are uncorrelated. The ancillae are
fully correlated for compatible measurements (left and right).

5.4 Conclusions

As part of Chs. 2-4, I introduced the main ideas underlying quantum correlations, quantum

information theory, and quantum measurement. Here, in this chapter, I described the basic

model of measurement that is used in this work. Starting with an expanded model of weak

measurements, I showed how the formalism can equally well describe measurements of arbi-

trary interaction strengths and derived generalized results for the weak values corresponding

to spin and position measurements. I discussed strong measurements from the perspective of

quantum information theory, using entropy Venn diagrams to track how information is pro-

cessed in a measurement. I focused on measurements of a single quantum state and parallel

measurements of an entangled system. I will expand upon this foundation in the following

chapters in the context of parallel and consecutive measurements. In the �nal chapter, these

results will be used to construct a protocol for generating remote entanglement.
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Chapter 6

Parallel Quantum Measurements

6.1 Introduction

Parallel measurements of a composite quantum system appear in many measurement schemes

such as, for example, in Bell inequality violations [146, 147] and the quantum eraser [149].

In this chapter, I will apply the parallel measurement formalism to the Bell-state quantum

eraser experiment, where one part of an entangled pair of photons is sent through a double-

slit apparatus. I will show that a full quantum information-theoretic analysis can be used to

derive the complementarity relation that is fundamental to this system. That is, I will con-

struct the trade-o� between the information extracted about the photon's path through the

slits (conventionally termed the �which-path� information) and the coherence of its density

matrix.

Quantum systems can display particle- or wave-like properties, depending on the type of

measurement that is performed on them. The Bell-state quantum eraser is an experiment

that brings the duality to the forefront, as a single measurement can retroactively be made

to measure particle-like or wave-like properties (or anything in between). Here we develop a

unitary information-theoretic description of this quantum measurement situations that sheds

light on the trade-o� between the quantum and classical features of the measurement. In

particular, we show that both the coherence of the quantum state and the classical infor-
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mation obtained from it can be described using quantum-information-theoretic tools only,

and that those two measures satisfy an equality on account of the chain rule for entropies.

The coherence information and the which-path information have simple interpretations in

terms of state preparation and state determination, and suggest ways to account for the

relationship between the classical and the quantum world.

Wave-particle duality is an iconic feature of quantum mechanics, one not shared by

classical systems in which an object cannot simultaneously have a wave and particle nature.

Unraveling the mysteries behind wave-particle duality has occupied the better part of the

last century, while signi�cant advances in our understanding have come both from clever

experimental approaches as well as theoretical developments. Pivotal experiments were

the quantum optical implementations of Wheeler's [150] delayed-choice experiment (see,

e.g., [151], as well as [152, 153], which were based on the theoretical proposal in [154]),

which are equivalent in principle to delayed-choice quantum eraser experiments [34, 155].

For a thorough review of delayed-choice experiments, see [156] and references therein. The

theoretical advances have framed the discussion of the wave-particle duality in terms of a

quantum-information-theoretic trade-o� between the coherence of the quantum system and

the information that one may attempt to obtain about the particle path in the interferometer

or double-slit experiment (the �which-path� information) [157�161].

The delayed-choice experiments highlight an important feature of this new understanding

of wave-particle duality: while as per Bohr's complementarity principle [162] it is the nature

of the experiment that determines whether we shall observe wave- or particle-like behavior,

it is clear that the nature of the experiment can be changed after it has already taken place.

In other words, the same experiment can retroactively be made to measure wave or particle

properties, or anything in between [152, 153, 163]. Such a state of a�airs is often greeted
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with skepticism, as the experiments seem (to some) to imply that the delayed choice of the

measurement changes the quantum state retroactively, thus violating causality (see, e.g., the

discussion in [163]). The natural interpretation of these results is that a quantum system

has both particle-like and wave-like properties at the same time, and that the results of

measurements can reveal one or a mixture of those characteristics. Due to the classical

nature of the measuring devices, however, they do not�in fact, cannot�re�ect the true

nature of the quantum state. In the following, we will make these arguments in a strictly

information-theoretic setting.

We develop the framework of (possibly delayed) complementary measurements (which-

path or which-phase) in terms of a quantum information-theoretic description of the Bell-

state quantum eraser, but the formalism is general and applies equally to any situation where

measurements are made in parallel on two (and in an obvious extension to several) entangled

quantum systems, such as the Garisto-Hardy entanglement eraser [164].

We �rst describe the ordinary double-slit experiment performed on one half of a Bell

state, then the polarization-tagged version where which-path information can be extracted,

followed by the quantum erasure procedure. In the next section we describe these steps in

terms of classical and quantum information theory that results in an information-theoretic

equality that mirrors (and is completely analogous to) the trade-o� between distinguishability

and visibility of Greenberger and Yasin [157] as well as Englert [158]. The equality involves

the coherence of the quantum system and the information obtained about its path just

as Bagan et al. have recently shown [161], but we do not assume a speci�c form for the

measure of coherence as it emerges naturally from the information-theoretic analysis. The

�conservation law� between coherence and information appears simply as a consequence of

the chain rule for entropies. We o�er conclusions in which we suggest what information is
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actually encoded in the measurement devices, given that it cannot re�ect information about

the quantum state.

6.2 The Bell-State Quantum Eraser

The Bell-state quantum eraser experiment [165], as illustrated in Fig. 6.1, proceeds as follows.

An entangled pair of photons, A and B, is prepared by spontaneous parametric down-

conversion (SPDC) [34] in the Bell state,

|Ψ〉AB =
|h〉|v〉+ |v〉|h〉√

2
, (6.1)

where the �rst and second states refer to photons A and B, respectively, and |h〉, |v〉 are

the horizontal and vertical linear polarization states. Note that an obvious extension of the

present construction is to allow for arbitrary entangled photon pairs, such as for example

the q-Bell states [71] in which a parameter q interpolates between product states (q = 0 or

1) and fully entangled states (q = 1/2). We mention brie�y the consequence of q 6= 1/2 at

the end of Sec. 6.4.

Photon B, called the �idler�, travels along the upper path where a polarizing beam splitter

(PBS) with its optical axis oriented at an angle θ to the |h〉, |v〉 basis allows for polarization

measurements in speci�c bases. Meanwhile, photon A, called the �signal�, travels along the

lower path towards a double-slit apparatus. Photon A will pass through the double slit

to subsequently be detected by a CCD camera (denoted DX) from which it is possible to

construct an interference pattern. The pattern is erased by placing two quarter-wave plates

(QWPs) in front of each slit. This tags the path of photon A and provides path information.

See Fig. 6.1 for a schematic of the experiment.
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Figure 6.1: Schematic [165] of the double-slit Bell-state quantum eraser experiment. Af-
ter production of the Bell state (6.1) by type-II spontaneous parametric down-conversion
(SPDC) in the BBO (β-barium borate) crystal, photon B travels along the upper branch to
a polarizing beam splitter (PBS), with optical axis oriented at angle θ relative to the |h〉, |v〉
basis. Its polarization is subsequently measured in the rotated basis by the photodetectors
D

(0)
B , D

(1)
B . Photon A travels down to the quarter-wave plates (QWPs) and double slit, and

then to a CCD camera, denoted DX , which plays the role of an interference screen.

6.2.1 Splitting the Photon Path

The full wave function describing the entangled pair of photons A and B is

|Ψ〉AB =
|h〉P |v〉B + |v〉P |h〉B√

2
⊗ |ψ〉Q, (6.2)

where the Hilbert space HA = HP ⊗ HQ of photon A is composed of polarization P and

spatial Q degrees of freedom. The polarizations of photons A and B, entangled in a Bell

state, are decoupled from the spatial state |ψ〉 of photon A. We drop the spatial states of

photon B as they remain decoupled throughout. Sending photon A through the double slit

transforms only the spatial states of A so that Eq. (6.2) evolves to

|Ψ〉AB =
|h〉P |v〉B + |v〉P |h〉B√

2
⊗
|ψ1〉Q + |ψ2〉Q√

2
. (6.3)
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The states |ψj〉 denote the path of photon A corresponding to slit j. Note that the extension

of this framework to allow for N -path devices is straightforward. The spatial degree of

freedom of A, denoted by Q, is still independent from its polarization.

Tracing over the polarization states of photons A and B, the density matrix describing

the spatial modes of photon A is the pure state

ρQ=
1

2

(
|ψ1〉Q〈ψ1|+ |ψ2〉Q〈ψ2|+ |ψ1〉Q〈ψ2|+ |ψ2〉Q〈ψ1|

)
. (6.4)

The expectation value in the position basis |x〉 of the screen DX yields the probability to

observe photon A at the spatial location x

〈x|ρQ|x〉 = p(x) =
1

2

∣∣ψ1(x) + ψ2(x)
∣∣2, (6.5)

where we de�ne the coe�cients ψj(x) = 〈x|ψj〉. This probability distribution is a coherent

superposition and the usual double-slit interference fringes will be observed on the screen.

In the appendix we show how the characteristic fringes can be derived from a von Neumann

measurement of Q by the detector DX .

6.2.2 Tagging the Photon Path

To extend this discussion to a quantum eraser experiment, a tagging operation is performed

on the two branches of the double-slit apparatus in order to provide information about the

path of photon A. In practice, this is implemented by placing a quarter-wave plate (QWP)

in front of each slit. Recall from Eq. (4.33) in Ch 4.2.1 that the Jones matrix for a general

wave plate oriented at an angle β (the fast axis) to our coordinate system (in this case, |h〉

and |v〉) is [111,112]
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U =

(
cos(α2 ) + i sin(α2 ) cos(2β) i sin(α2 ) sin(2β)

i sin(α2 ) sin(2β) cos(α2 )− i sin(α2 ) cos(2β)

)
, (6.6)

where α = π/2 for a QWP. More speci�cally, the QWP in front of slit 1 (slit 2) has its fast

axis at β = 45◦ (β = −45◦), which leads to

U
(±)
QWP =

1√
2

(
1 ±i
±i 1

)
, (6.7)

where U (+)
QWP = U

(1)
QWP and U (−)

QWP = U
(2)
QWP are the matrices associated with slit 1 and 2,

respectively. These transform linearly polarized states |h〉 and |v〉 into circularly polarized

states according to

U
(1)
QWP |h〉 =

|h〉+ i|v〉√
2

= |L〉,

U
(1)
QWP |v〉 =

|v〉+ i|h〉√
2

= i|R〉,

U
(2)
QWP |h〉 =

|h〉 − i|v〉√
2

= |R〉,

U
(2)
QWP |v〉 =

|v〉 − i|h〉√
2

= −i|L〉,

where |R〉 (|L〉) denotes right-handed (left-handed) circular polarization.

When photon A passes through the QWPs and the double slit, its polarization becomes

entangled with its spatial degree of freedom so that the wave function (6.2) evolves to

|Ψ̃〉AB =
1√
2

(
|L〉P |v〉B + i |R〉P |h〉B√

2
⊗ |ψ1〉Q +

|R〉P |v〉B − i |L〉P |h〉B√
2

⊗ |ψ2〉Q

)
, (6.8)

where the tilde indicates that the tagging operation has been performed. Grouping together
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Figure 6.2: Entropy Venn diagrams showing the e�ect of the tagging operation. (a) Before
tagging, the polarization of photons A (denoted by P ) and B are entangled in a Bell state. (b)
After tagging, the spatial degree of freedom of photon A (denoted by Q) becomes entangled
with the polarizations of A and B according to Eq. (6.9).

the polarization states of photon B, we can equivalently express this state as

|Ψ̃〉AB =
1√
2

(
|ψ1〉Q|L〉P + |ψ2〉Q|R〉P√

2
⊗ |v〉B + i

|ψ1〉Q|R〉P − |ψ2〉Q|L〉P√
2

⊗ |h〉B

)
. (6.9)

The entanglement between the two degrees of freedom of photon A causes the spatial modes

Q to become completely mixed

ρQ =
1

2

(
|ψ1〉Q〈ψ1|+ |ψ2〉Q〈ψ2|

)
, (6.10)

so that interference is no longer observed on the screen. In Fig. 6.2 we show the entropy

Venn diagrams [59] before (a) and after (b) the tagging operation with the QWPs. In these

diagrams, the sum of all the entries in a circle add up to the entropy of the subsystem,

and the entropy shared between subsystems is indicated in the overlap between circles.

Conditional entropies appear in unshared areas of the circle, and can be negative in quantum

mechanics [58] (they must be positive if they are classical Shannon entropies). Entropies
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shared between three systems (the center of the diagrams in Fig. 6.2) can be negative both

in classical and quantum physics [59]. All of the von Neumann entropies S(ρ) = −Trρ log ρ

can be calculated in a straightforward manner from the density matrix ρQPB = |Ψ̃〉AB〈Ψ̃|

and the marginalized density matrices ρQ = TrPB(ρQPB), ρB = TrQP (ρQPB), etc.

Before tagging [see Eq. (6.2)], Q is completely decoupled from the polarization P of

photon A and of photon B, which together are entangled in a Bell state. After tagging [see

Eq. (6.9)], all three variables Q, P , and B are in a tripartite entangled state. Note that

the ternary mutual entropy S(Q : P : B) vanishes in both diagrams since the underlying

density matrix is a pure state [59]. The expression for the ternary shared entropy in terms

of subsystem entropies can be read o� the Venn diagram in general as S(Q : P : B) =

S(Q) +S(P ) +S(B)−S(QB)−S(QP )−S(PB) +S(QPB), and similarly for any pairwise

shared entropies.

6.2.3 Erasing the Photon Path

As is by now well-known [166], it is still possible to extract an interference pattern from the

screen data, even when the system Q has been tagged, if we have additional information

about the state of photon B. Suppose we perform a polarization measurement of B in a

basis that is described by an angle θ relative to the |h〉, |v〉 basis. For a general change of

basis, the polarization states of B are written as

|v〉B = U00|0〉B + U01|1〉B , (6.11)

|h〉B = U10|0〉B + U11|1〉B . (6.12)
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For simplicity, we use the following parametrization for the matrix elements Uij of the

rotation operator that transforms |h〉, |v〉 to the new basis spanned by |0〉, |1〉 in terms of the

single angle θ:

U =

(
cos θ − sin θ

sin θ cos θ

)
. (6.13)

Rewriting the states of B in the basis |0〉, |1〉 and entangling B with a polarization detector

DB transforms Eq. (6.9) to [59]

|Ψ̃〉ABDB=
1

2

∑
mk

im |ψkm〉Q ⊗ |m〉P ⊗ |kk〉BDB , (6.14)

where k = 0, 1 labels the polarization of B and DB while m = 0 (�L�), 1 (�R�) denotes the

polarization of A, and where we de�ned the spatial states |ψkm〉Q of photon A

|ψkL〉Q = U0k|ψ1〉Q − iU1k|ψ2〉Q, (6.15)

|ψkR〉Q = U1k|ψ1〉Q − iU0k|ψ2〉Q. (6.16)

These states describe the spatial state of photon A (the system Q) when it has a circular

polarization m and is correlated with photon B that has polarization k. Only the states for

a given polarization m are orthonormal

〈ψk
′
m|ψkm〉 = δkk′ , (6.17)

〈ψk
′
L |ψ

k
R〉 = U∗

0k′ U1k + U0k U
∗
1k′ . (6.18)

Of course, the state ρQ derived from (6.14) is still completely mixed as in (6.10) so that

no interference can be observed on the screen. However, as long as the erasure angle θ

is nonzero it is now possible to extract an interference pattern given the outcome of the
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polarization measurement of photon B (even if that measurement occurs much later than

the measurement of photon A).

From the wave function (6.14), we can compute the joint density matrix for photon

A ≡ QP (spatial Q and polarization P ) and detector DB . Tracing over B yields

ρADB
=

1

2

∑
k

ρkA ⊗ |k〉DB〈k|, (6.19)

where the (orthonormal) states of photon A, conditional on the state k of detector DB , are

ρkA = |φk〉〈φk| and |φk〉 = 1√
2

∑
m im |ψkm〉Q⊗|m〉P . The e�ect of the erasure is contained in

the behavior of these states as the measurement angle θ is varied. For a measurement in the

original basis (θ = 0), detector DB prepares photon A in one of the fully entangled states:

|φ0〉 ∝ |ψ1〉Q|L〉P + |ψ2〉Q|R〉P and |φ1〉 ∝ |ψ1〉Q|R〉P − |ψ2〉Q|L〉P. From these expressions

we can infer, with a polarization measurement of photon A, its path. For instance, outcome

k = 0, m = L is associated with the spatial state |ψ1〉 for slit 1. Therefore, polarization

measurements of photon B at θ = 0 yield full path information and no interference fringes.

On the other hand, for a measurement in the diagonal basis at θ = π/4, detector DB

prepares photon A in one of the completely decoupled states: |φ0〉 ∝ (|ψ1〉Q − i|ψ2〉Q) ⊗

(|L〉P + i|R〉P ) and |φ1〉 ∝ (|ψ1〉Q + i|ψ2〉Q) ⊗ (−|L〉P + i|R〉P ). Now, a polarization mea-

surement of A cannot reveal path information, and the coherently summed spatial modes

lead to interference fringes. In the appendix, we compute these interference patterns and

show their dependence on the erasure angle θ. Regardless of the temporal order of the two

polarization measurements, the measurement of B can be seen as state preparation, while

the measurement of A is state determination, that is, extraction of which-path information.
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6.3 Information Theory

6.3.1 State Preparation

We illustrate the quantum erasure mechanism by building on the entropy Venn diagrams in

Fig. 6.2 and constructing the entropic relationships between the random variables Q, P , and

DB from the joint and marginal entropies associated with Eq. (6.19). In the basis |φk〉⊗ |k〉

it is clear that the entropy of (6.19) is S(QPDB) = 1, while the marginal entropies are all

S(Q) = S(P ) = S(DB) = 1. Tracing over detector DB , the total entropy of A ≡ QP is also

S(QP ) = 1. The pairwise entropy S(PDB) is equal to S(QB) by the Schmidt decomposition

of (6.14), which in turn is equal to S(QDB) by the symmetry between the B and DB states.

The remaining pairwise entropy is computed from the density matrix

ρQDB
=

1

2

∑
k

ρkQ ⊗ |k〉DB〈k|, (6.20)

where the state of Q conditional on the outcome k of detector DB is

ρkQ =
1

2

∑
m

|ψkm〉Q〈ψkm|

=
1

2

(
|ψ1〉Q〈ψ1|+ |ψ2〉Q〈ψ2|+ i (−1)k sin 2θ

[
|ψ1〉Q〈ψ2| − |ψ2〉Q〈ψ1|

])
.

(6.21)

From this expression, we see that for a given outcome k, the spatial degree of freedom of

photon A is generally no longer mixed [as in Eq. (6.10)] and has a coherence that is controlled

by the sine of the measurement angle. In turn, it is possible to extract interference fringes

from the screen. With the Bloch vector ~a=−(−1)k sin(2θ) ŷ, Eq. (6.21) can be expressed as

ρkQ = 1
2(1− (−1)k sin(2θ)σy), where ŷ is a unit vector, 1 is the identity matrix of dimension

two, and σy is a Pauli matrix. This density matrix varies from a fully mixed state |~a| = 0 at
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Figure 6.3: Entropy Venn diagrams for (a) state preparation with detector DB [see
Eq. (6.14)], and (b) state determination with detector DA [see Eq. (6.23)]. Here, S is
the entropy of Eq. (6.21).

θ = 0 to a pure state |~a| = 1 at θ = π/4.

To compute the entropy of the block-diagonal matrix in Eq. (6.20), we �rst �nd the

entropy of ρkQ. The eigenvalues of ρ
k
Q are λ± = 1

2(1±|~a|) = 1
2 [1±sin(2θ)] and are independent

of the index k, leading to equal entropies S(ρ0
Q) = S(ρ1

Q). Therefore, the entropy of (6.20),

which is also equal to the entropy S(PDB), is [25]

S(QDB) = 1 +
1

2

∑
k

S(ρkQ) = 1 + S, (6.22)

where S = −λ+ log λ+ − λ− log λ− is the entropy of (6.21), and varies from S = 1 at θ = 0

to S = 0 at θ = π/4.

The relationship between the variables Q, P , and DB is summarized by the entropy

Venn diagram in Fig. 6.3(a). As a result of tagging the path of photon A, the spatial and

polarization modes of A are entangled, given the state of DB , for S > 0 (θ < π/4). The

amount of entanglement S varies with the erasure angle θ and speci�es the degree to which

the polarization P can reveal information about the spatial mode Q. The non-zero ternary
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mutual entropy S(Q :P :DB) = 1 − 2S indicates that the mutual entropy of Q and P can

be shared by detector DB [71].

6.3.2 State Determination

In order to reveal information about the path of photon A, its polarization is measured after

it passes the double-slit apparatus using a detector DA in the circular |L〉, |R〉 basis. After

the measurement with DA, the wave function (6.14) evolves to

|Ψ′〉ADABDB =
1

2

∑
mk

im|ψkm〉Q ⊗ |mm〉PDA ⊗ |kk〉BDB . (6.23)

The entropic relations between the variables Q, DA, and DB are computed from their joint

density matrix, which is found by tracing out the polarization states of photons A and B

from (6.23),

ρQDADB
=

1

4

∑
mk

|ψkm〉Q〈ψkm| ⊗ |m〉DA〈m| ⊗ |k〉DB 〈k|. (6.24)

For a set of outcomes k and m, the corresponding spatial state of photon A is |ψkm〉Q. It is

straightforward to show that the entropy of Eq. (6.24) is S(QDADB) = 2, while the marginal

entropies are S(Q) = S(DA) = S(DB) = 1.

Tracing over the spatial states Q in Eq. (6.24), we �nd that the two polarization detectors

are uncorrelated

ρDADB
=

1

2
1DA

⊗ 1

2
1DB

, (6.25)
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with a joint entropy S(DADB) = 2 and

S(DA : DB) = 0. (6.26)

Thus, the measurement with DA reveals no information about the state of DB . This is

not surprising as the QWPs act as a �controlled-not� gate on the polarization. Indeed,

conditioning on the spatial states of photon A yields

S(DA : DB |Q) = S ≥ 0. (6.27)

In a sense, therefore, the states of Q encrypt the relationship between the state preparation

with DB and its readout with DA.

Tracing out the states of the polarization detector DA in Eq. (6.24), the joint density

matrix ρQDB is unchanged from Eq. (6.20), since the measurement with DA does not a�ect

the correlations between Q and DB .

Tracing over the states of DB in Eq. (6.24), the joint density matrix for Q and DA in

turn is

ρQDA
=

1

2

∑
m

ρmQ ⊗ |m〉DA〈m| =
1

2
1Q ⊗

1

2
1DA

, (6.28)

where the density matrix of Q, conditional on the polarization outcome m of detector DA,

is

ρmQ =
1

2

∑
k

|ψkm〉Q〈ψkm| =
1

2

(
|ψ1〉Q〈ψ1|+ |ψ2〉Q〈ψ2|

)
, (6.29)

which is independent of the polarization index m, and is equivalent to the full density matrix

ρQ. That is, ρmQ = ρQ = 1
21Q is a completely mixed state. Finally, the joint entropy of Q
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and DA is S(QDA) = 2. The entropic relationships between the variables Q, DA and DB

are summarized by the Venn diagram in Fig. 6.3(b).

6.3.3 Information-Theoretic Origins of Coherence and Path Infor-

mation

From the marginal and joint entropies computed in the previous section, we can construct

information-theoretic relationships between the variables Q, DA, and DB .

6.3.3.1 Coherence

The information shared between the preparation with detector DB and the quantum system

Q (the spatial state of photon A) is given by the mutual entropy

S(Q : DB) = 1− S ≤ 1 , (6.30)

with S de�ned in Eq. (6.22). We can understand how this entropy depends on the erasure

angle θ by considering two cases. First, from the joint density matrix ρQDB in Eq. (6.20), a

measurement of photon B at an angle θ = 0 decouples Q from detector DB

θ = 0 : ρQDB
=

1

2
1Q ⊗

1

2
1DB

, (6.31)

and the conditional state ρkQ in Eq. (6.21) becomes a statistical mixture, i.e., interference

cannot be observed on the screen. In this case, S(Q : DB) = 0 and there is no information

shared between the two variables. However, increasing the erasure angle to θ = π/4 leads to
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perfect correlation

θ =
π

4
: ρQDB

=
1

2

(
|f〉Q〈f | ⊗ |0〉DB 〈0|+ |a〉Q〈a| ⊗ |1〉DB 〈1|

)
, (6.32)

where |f〉Q = 1√
2
(|ψ1〉Q − i|ψ2〉Q) corresponds to a fringe pattern and |a〉Q = 1√

2
(|ψ1〉Q +

i|ψ2〉Q) corresponds to an anti-fringe (phased-shifted) pattern. Now, ρ0
Q = |f〉Q〈f | and

ρ1
Q = |a〉Q〈a| are coherent superpositions, i.e., it is possible to extract interference on the

screen. At this angle, S(Q : DB) = 1. Therefore, the mutual entropy S(Q : DB) is related

to the coherence of the conditional states ρkQ, and in turn, to the visibility of interference

fringes as we will see below.

6.3.3.2 Path Information

From the joint density matrix ρQDA computed in Eq. (6.28), the polarization measurement

with detector DA reveals nothing about the spatial degree of freedom of A since the joint

state is completely decoupled. It follows that the mutual information vanishes

S(Q : DA) = 0. (6.33)

In other words, if we do not know the outcome of the polarization measurement of photon

B, an attempt to measure the polarization of A after it traverses the double slit and QWPs

will not reveal anything about the spatial state of A. On the other hand, if we do know the

state of DB , then the conditional mutual information is

S(Q : DA|DB) = S ≥ 0, (6.34)

and varies with the erasure angle θ.
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To understand the behavior of this quantity as a function of θ, consider the state of Q

and DA, conditional on the outcome k of DB . According to Eq. (6.24), this state is ρkQDA
=

1
2

∑
m |ψkm〉Q〈ψkm| ⊗ |m〉DA〈m|. For an outcome k = 0 of a polarization measurement of

photon B at angle θ = 0,

θ = 0 : ρ0
QDA

=
1

2

[
|ψ1〉Q〈ψ1| ⊗ |L〉DA〈L|+ |ψ2〉Q〈ψ2| ⊗ |R〉DA〈R|

]
. (6.35)

At this angle, the conditional mutual information is maximal, S(Q : DA|DB) = 1, and it

is clear that the state of the polarization detector DA is associated with one of the states

|ψj〉Q, so that the measurement can reveal information about the path of photon A. For

instance, an outcome L corresponds to the state |ψ1〉Q. As the erasure angle θ increases

from zero to π/4, the information we have about the spatial state of A is reduced to zero,

since the density matrix becomes decoupled:

θ =
π

4
: ρ0

QDA
= |f〉Q〈f | ⊗

1

2
1DA

. (6.36)

At this angle, S(Q : DA|DB) = 0. Therefore, the tagging operation with the QWPs only

reveals information about the path of A as long as we have additional information about the

state of photon B from its polarization measurement with detector DB . Thus, Eq. (6.34) is

the correct expression for which-path information. Note further that

S(Q : DADB) = 1 , (6.37)

which implies that�given the outcomes of both polarization detectors DA and DB�it is

possible to predict with certainty the outcome of a direct measurement of the path of photon

A.
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6.4 Discussion

The quantities considered in the previous section can be used to generalize the usual concepts

of coherence and path information, allowing us to construct a more fundamental relation-

ship that is derived from information-theoretic principles and a unitary model of quantum

measurement [59].

Recapitulating the results from the previous section, we know that whether we extract

fringes or antifringes from the screen is controlled by the state of DB . The visibility of the

fringes is, in turn, related to the coherence of the conditional state ρkQ of Q in Eq. (6.21)

and the mutual information S(Q : DB). As we have already seen, at angle θ = 0 (θ = π/4)

the two variables Q and DB are completely uncorrelated (correlated), the conditional state

ρkQ is a statistical mixture (coherent superposition), and we observe no interference (full

interference).

On the other hand, information about the path of photon A is determined by the cor-

relation between its polarization (via the state of detector DA) and its spatial states. This

correlation is computed from the conditional mutual information S(Q :DA|DB), and must

be conditioned on the state of DB since Q and DA are otherwise uncorrelated. When

θ = 0 (θ = π/4), the variables Q and DA are completely correlated (uncorrelated) given

DB , so that DA can (cannot) reveal path information, and we extract no interference (full

interference) from the screen.

These two information-theoretic quantities, namely, the coherence S(Q :DB) of system

Q and its path information S(Q :DA|DB), are fundamentally linked through the chain rule

for entropies

S(Q :DB) + S(Q :DA|DB) = S(Q :DADB) = 1, (6.38)
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Figure 6.4: Top: Relationship between coherence and path information in (6.38) for the
Bell-state quantum eraser as a function of the erasure angle θ. Shown are the information-
theoretic quantities for the path information S(Q : DA|DB) = S (solid) and coherence
S(Q :DB) = 1 − S (dashed). Bottom: The square of the distinguishability D (solid) and
fringe visibility V (dashed), de�ned in the text, as a function of the erasure angle θ. When
θ = 0 (θ = π/4) there is full (no) path information and no (full) coherence.

and their sum is conserved throughout the erasure process. This information-theoretic formu-

lation of complementarity generalizes earlier attempts [160,161,167] by explicitly referencing

the measurement devices. We note that the absence of correlations between detectors DA

and DB , S(DA : DB) = 0, is crucial to enforce complementarity.

We show in the top of Fig. 6.4 the coherence and information in Eq. (6.38) as a function

of the erasure angle θ. From the eigenvalues λ±, we can derive an alternative form for the

entropy, S, appearing in the complementarity relation (6.38). First, we rewrite the argument

of the sine function as 2λ± = 1 ± sin(2[θ + π/4 − π/4]). Using the sum-di�erence formula,

this can be expressed as 2λ± = 1∓ cos(2θ + π/2). Finally, by the double-angle formula, we

�nd 2λ± = 1 ∓ (1 − 2 sin2(θ + π/4). Therefore, the entropy is S = H[sin2(θ + π/4)]. We

can compare these expressions to two other measures that are commonly used to discuss the
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wave-particle duality, namely the distinguishability, D, and the visibility, V [157, 158]. In

general, D2 + V 2 ≤ 1, but becomes an equality when the detectors are prepared in pure

states. In the particular case we are discussing, D2 = cos2(2θ), while the fringe visibility

is V 2 = sin2(2θ). They are shown in the bottom part of Fig. 6.4 and exhibit a remarkably

similar behavior when compared to the information-theoretic complementarity principle.

From Eq. (6.38), we can derive additional information-theoretic relations with conditional

and mutual entropies. With the de�nition of conditional mutual information [59], S(Q :

DA|DB) = S(Q|DB) − S(Q|DADB) = S(Q|DB), Eq. (6.38) becomes a relation between a

mutual entropy and conditional entropy:

S(Q :DB) + S(Q|DB) = 1. (6.39)

Furthermore, S(Q :DA)− S(Q :DA|DB) = S(Q :DA :DB) ≤ 0, so that Eq. (6.38) becomes

0 ≤ S(Q :DA) + S(Q :DB) ≤ 1, (6.40)

where the lower bound comes from the non-negativity of mutual entropies. This can be

rewritten in terms of conditional entropies as

1 ≤ S(Q|DA) + S(Q|DB) ≤ 2, (6.41)

where we used S(Q) = 1.

Bagan et al. recently constructed an entropic complementarity relation between coher-

ence and path information in an interferometer [161] using an entropic measure for coherence.

For path states with equal probability, orthogonal detector states, and orthogonal measure-
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ments, their relation can be written as an equality very similar to ours

Crel ent(ρ) +H(M : D) = 1, (6.42)

where Crel ent(ρ) = 1−S(ρ) is a measure of the coherence of the particle's state ρ in the inter-

ferometer, and H(M : D) = S(ρ) is the path information, which is the mutual entropy of the

path detector states D and the resultsM of probing them with a measurement. The connec-

tion to our result (6.38) is immediately obvious, as S(ρ) in Eq. (6.42) is indeed equivalent to

our S, the entropy of the conditional state ρkQ of photon A in Eq. (6.21). However, our mea-

sures of coherence and path information emerge naturally from a full information-theoretic

analysis and yield more insight into the origins of their complementarity, in particular how

the entropy of system Q is distributed among the detectors DA and DB (as summarized by

Fig. 6.3).

We end this discussion by noting that if we prepare photons A and B in an imperfectly

entangled state, e.g., the q-Bell state [71]
√
q |h〉|v〉+

√
1− q |v〉|h〉, the coherence and path

information we derived are modi�ed from their original forms. For an erasure angle θ = π/4,

we can write down a simple replacement for Eqs. (6.30) and (6.34) that appear in the

complementarity relation of Eq. (6.38). That is,

θ =
π

4
: S(Q : DB) = 1− S(q), (6.43)

S(Q : DA|DB) = S(q), (6.44)

where S(q) replaces S, the entropy of the state (6.21). The quantity S(q) is de�ned by

the eigenvalues λ± = 1/2 ±
√
q(1− q). The parameter q controls the initial entanglement

between photons A and B and allows us to extract nonzero path information, at the cost of
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reduced coherence, even when θ = π/4. Setting q = 1/2 recovers the original result of zero

path information and full coherence, S(q = 1/2) = S = 0, at this erasure angle.

6.5 Interference Patterns

Here we derive the spatial intensity distribution for photon A that is incident on a screen

DX by modeling the interaction as a von Neumann measurement of the spatial location of

photon A. Expanding the spatial states of A in terms of the position basis yields

|ψj〉Q =
n∑
x=1

ψj(x) |x〉Q, (6.45)

where j = 0, 1 labels each slit. The states |x〉 can be discretized into n distinct locations

according to

|x = 1〉 = |100 · · · 0〉,

|x = 2〉 = |010 · · · 0〉,

...

|x = n〉 = |0 · · · 001〉,

which denote the location x at which a photon is detected by DX . Inserting this basis into

the expression (6.14) and performing the measurement of Q with DX (which starts in the

initial state |x = 0〉 = |0 · · · 0〉), we come to

|Ψ′〉ADXBDB =
1

2

∑
xmk

imψkm(x)|xx〉QDX ⊗ |m〉P ⊗ |kk〉BDB , (6.46)

where we de�ne the coe�cients ψkm(x) = 〈x|ψkm〉Q.
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Tracing over A and B in Eq. (6.46), we arrive at the (classical) joint density matrix for

detector DB and the screen

ρDXDB
=

1

4

∑
xmk

|ψkm(x)|2 |x〉DX 〈x| ⊗ |k〉DB 〈k|

=
1

2

∑
k

ρkDX
⊗ |k〉DB 〈k|,

(6.47)

where

ρkDX
=
∑
x

pk(x) |x〉DX 〈x|, (6.48)

are the conditional states of the screen DX with corresponding conditional probability dis-

tribution

pk(x) =
1

2

∑
m

|ψkm(x)|2. (6.49)

Tracing out detector DB from (6.47) yields the full density matrix for DX

ρDX
=

1

2

∑
k

ρkDX
=
∑
x

p(x) |x〉DX 〈x|, (6.50)

where the total probability distribution of the screen is

p(x) =
1

2

∑
k

pk(x). (6.51)

It is straightforward to show that the total probability distribution p(x) for the screen

is completely incoherent due to the cancellation of the cross terms of the two conditional

probabilities. That is,

p(x) =
1

2

(
|ψ1(x)|2 + |ψ2(x)|2

)
. (6.52)
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This distribution describes two overlapping intensity peaks on the screen corresponding to

the pattern obtained from each slit individually. From the data as a whole (i.e., when we do

not know the outcome of detector DB) no interference is observed on the screen.

However, suppose we do know the outcome of the polarization measurement of photon

B. For an outcome k, the conditional state of the screen DX is given by Eq. (6.48). To

discern the type of interference pattern the probability distribution (6.49) of this density

matrix describes, we rewrite the conditional probability in terms of the original coe�cients

ψj(x) = 〈x|ψj〉Q, which leads to

pk(x) =
1

2

[
|ψ1(x)|2 + |ψ2(x)|2 + i (−1)k sin 2θ

(
ψ1(x)ψ2(x)∗ − ψ1(x)∗ ψ2(x)

)]
. (6.53)

where we used U1k U
∗
0k + U∗1k U0k = (−1)k sin 2θ. In general, this expression will describe

interference fringes with a visibility that is controlled by the magnitude of the coe�cient

sin 2θ in front of the cross terms. Let us consider two speci�c cases of the erasure angle θ.

First, θ = 0 corresponds to a measurement of photon B in the linear |h〉, |v〉 basis. In

this case, expression (6.53) reduces to an incoherent sum

θ = 0 : pk(x) =
1

2

(
|ψ1(x)|2 + |ψ2(x)|2

)
, (6.54)

and describes two overlapping intensity peaks on the screen with no interference. In turn, we

have full information about the path of photon A. Second, θ = π/4 describes a measurement

of photon B in the diagonal |±〉 = 1√
2
(|h〉±|v〉) basis. In this case, expression (6.53) becomes

a perfectly coherent sum

θ =
π

4
: pk(x) =

1

2

∣∣∣ψ1(x)− i (−1)kψ2(x)
∣∣∣2 . (6.55)
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Figure 6.5: Geometry of the double-slit apparatus. The slit width is a, the distance from
the origin to the center of slit j is xj , and the distance between slits is d = |x2 − x1|. The
distance from the slits to the screen is L, while the angle from the center of slit j to point x
on the screen is given by tanφj = (x− xj)/L.

That is, the e�ect of tagging has been erased since the standard double-slit di�raction pattern

can be observed. In general, given an outcome k for detector DB , the corresponding state

of the screen is ρ kDX
with probability distribution pk(x). This leads to fringes with a level

of visibility that is determined by the erasure angle θ. The distribution for k = 0 is phase

shifted relative to k = 1, so that depending on the state of DB , one observes either fringes

or antifringes. Therefore, measuring photon B in a basis characterized by the angle θ allows

one to tune the visibility of the interference fringes from the standard two-slit di�raction to

single-slit di�raction [153].

To explicitly compute the interference patterns, we write the coe�cients of the jth slit

for a photon of wavelength λ as [168]

ψj(x) =
sinα

α
e
−2i α xj/a , (6.56)

where α = πa sinφj/λ. The geometry of the double-slit apparatus (see Fig. 6.5) is described

by the slit width a, the distance xj to the center of the jth slit, the angle φj = tan−1((x−

xj)/L) from the center of slit j to the position x on the screen, and the distance L from the

130



-0.2 -0.1 0 0.1 0.2

0

1/2

1

x

0

1/2

1

0

1/2

1

Figure 6.6: Intensity distributions in the quantum eraser. The conditional distributions
pk(x) are plotted as a function of the position on the screen, x, in meters, and normalized so
that the maximum is at 1. The solid gray (black dotted) oscillations describe the interference
pattern p0(x) (p1(x)) of photon A conditional on outcome k = 0 (k = 1) of detector DB .
The solid black line is the total distribution p(x) and is the single-slit di�raction result.
Parameters for this speci�c case are a = 10µm, d = 20µm, L = 1 m, and λ = 702 nm. Top
to bottom: probability distributions for three erasure angles θ = 0, θ = π/16, θ = π/4.

slits to the screen. For a single slit at the origin, the intensity corresponding to detection of

a photon at position x on the screen is

|ψj(x)|2 =

∣∣∣∣sinαα
∣∣∣∣2 , (6.57)

which is the standard result for single-slit Fraunhofer di�raction. For two slits separated by

131



a distance d = |x2 − x1|, the coe�cients for each slit are coherently added. In the far-�eld

limit L � d, we can use the approximation φj = φ = tan−1(x/L). Using the coe�cients

ψj(x) in the expression (6.53) for pk(x), leads to the interference patterns for the intensity

shown in Fig. 6.6. The two patterns p0(x) and p1(x) are shifted relative to each other on

the screen, and the envelope of each pattern is a single-slit di�raction pattern. We show the

distributions for three erasure angles: θ = 0, π/16, π/4. For a measurement in the linear

|h〉, |v〉 basis (θ = 0), there is no interference on the screen, since there is full information

about the path of photon A. As the erasure angle increases to π/4 (a measurement in the

diagonal |±〉 basis), the oscillations increase to the level of the usual interference pattern

for two-slit di�raction. The solid black line is the total distribution p(x), which is the full

data observed in the experiment, and shows no interference. Only by knowing the outcome

k of detector DB can one extract the associated conditional distribution pk(x) from the full

distribution p(x).

6.6 Conclusions

We prefer to tread lightly when using our results to discuss aspects of quantum theory

that have been discussed in a controversial manner since the discussions between Bohr and

Einstein concerning these matters [169]. Nevertheless, we believe some statements can be

made unequivocally. For example, it is now clear (and has been pointed out repeatedly

before us), that a quantum system not only carries both particle and wave attributes, but

that these quantities are manifested in measurement devices in a �uid manner. In particular,

the dynamics of the Bell-state quantum eraser, which allows us to give measurements di�erent

�meanings� depending on what state preparation we may choose after the state determination
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has taken place, cannot possibly be consistent with a picture of quantum measurement in

which the quantum state is irreversibly projected so as to be consistent with the state of

the measurement device. The actuality of not only information erasure, but the production

of alternative outcomes via the retroactive manipulation of state preparation, con�rms the

picture that the wave function after measurement continues to carry amplitudes that are not

consistent with the state of the measurement device.

That the quantum state can be inconsistent with the state of the measurement device

should not come as a surprise to practitioners of quantum information science. After all,

the idea of the classical measurement, in which the state of the system to be measured

is copied onto the state of the measurement device, cannot carry over to quantum me-

chanics on account of the no-cloning theorem [36, 37]. Indeed, the central idea of classical

measurement�in which the variation of the system is fully correlated with the variation in

the device�is impossible for pure quantum states that carry no entropy whatsoever.

Of course, mixed quantum states (pure joint states with a reference state traced out)

can carry entropy, and this entropy can be shared with classical measurement devices. This

appears to be the case in the construction described here, as the entropy of the system Q is

exactly one bit (in the ideal case whose extension was discussed in Sec. 6.4). If the classical

device (here the device DA) cannot carry information about the state of Q, what information

does it re�ect? In our view, a classical device's state must be consistent with the state of

other classical measurement devices, so as to ensure a causally consistent world. Here,

the information S(Q : DA|DB) predicts the outcome of a measurement of the which-path

information that would be obtained if a device was placed squarely in the path of the beam.

Of course, such a device would record a random outcome (the photon would be found in

state ψ1 half the time), and DA would perfectly predict this random outcome. Still, neither
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of these states predict the state of Q, which after all is neither here nor there. We are thus

forced to admit that our classical devices do not (and cannot) reveal to us the quantum reality

underlying our classical world [170]. However, experimental (and theoretical) ingenuity has

allowed us to be aware of our classical device's deceptions, and shown us the path to perhaps

design even more clever schemes to lift the veil from the underlying quantum reality.
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Chapter 7

Consecutive Quantum Measurements

7.1 Introduction

Consecutive measurements performed on the same quantum system can reveal fundamental

insights into quantum theory's causal structure, and probe di�erent aspects of the quantum

measurement problem. According to the Copenhagen interpretation, measurements a�ect

the quantum system in such a way that the quantum superposition collapses after the mea-

surement, erasing any knowledge of the prior state. We show here that counter to this view,

unampli�ed measurements (measurements where all variables comprising a pointer are con-

trollable) have coherent ancilla density matrices that encode the memory of the entire set

of quantum measurements, and that the quantum chain of a set of consecutive unampli�ed

measurements is non-Markovian. In contrast, sequences of ampli�ed measurements (mea-

surements where at least one pointer variable has been lost) are equivalent to a quantum

Markov chain. An analysis of arbitrary non-Markovian quantum chains of measurements re-

veals that all of the information necessary to reconstruct the chain is encoded on its boundary

(the state preparation and the �nal measurement), reminiscent of the holographic principle.

The physics of consecutive (sequential) measurements on the same quantum system has

enjoyed increased attention as of late, as it probes the causal structure of quantum mechan-

ics [171]. It is of interest to researchers concerned about the apparent lack of time-reversal
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invariance of Born's rule [172,173], as well as to those developing a consistent formulation of

covariant quantum mechanics [174, 175], which does not allow for a time variable to de�ne

the order of (possibly non-commuting) projections [176].

Consecutive measurements can be seen to challenge our understanding of quantum theory

in an altogether di�erent manner, however. According to standard theory, a measurement

causes the state of a quantum system to �collapse�, repreparing it as an eigenstate of the

measured operator so that after multiple consecutive measurements on the quantum system

any information about the initial preparation is erased. However, recent investigations of

sequential measurements on a single quantum system with the purpose of optimal state

discrimination have already hinted that quantum information survives the collapse [177,178],

and that information about a chain of sequential measurements can be retrieved from the

�nal quantum state [179].

Here we investigate the circumstances that make chains of quantummeasurements �Marko-

vian� (meaning that each consecutive measurement �wipes the slate clean� so that retrodic-

tion of quantum states [179] is impossible) and under what conditions the quantum trajectory

remains coherent so that the memory of previous measurements is preserved.

In particular, we study the relative state of measurement devices (both quantum and clas-

sical) in terms of quantum information theory, to ascertain how much information about the

quantum state appears in the measurement devices, and how this information is distributed.

We �nd that a crucial distinction refers to the �ampli�ability� of a quantum measurement,

that is, whether a result is encoded in the states of a closed or an open system, and con-

clude that a unitary relative-state description makes predictions that are di�erent from a

formalism that assumes quantum state reduction.

While the suggestion that the relative state description of quantum measurement [17]
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(see also [59, 140, 141, 145, 180]) and the Copenhagen interpretation are at odds and may

lead to measurable di�erences has been made before [145, 180], here we frame the problem

of consecutive measurements in the language of quantum information theory, which allows

us to make these di�erences manifest.

We begin with the unitary description of quantum measurement [59, 140, 141] discussed

previously in Chs. 4 and 5, and apply it in Sec. 7.2 to a sequence of quantum measurements

where the pointer�meaning a set of quantum ancilla states�remains under full control of the

experimenter. In such a closed system, the pointer can in principle decohere if it is composed

of more than one qubit, but this decoherence can be reversed in general. We prove in

Theorems 1 and 2 properties of the entropy of a chain of consecutive measurements that imply

that the entropy of such chains resides in the last (or �rst and last) measurements. We then

show that for coherence to be preserved in such chains, measurements cannot be arbitrarily

ampli�ed�in contrast to the macroscopic measurement devices that are necessarily open

systems.

In Sec. 7.3, we analyze sequences of ampli�able�that is, macroscopic�measurements

and prove in Theorem 3 that ampli�ed measurement sequences are Markovian. Corollary 3.1

asserts an information-theoretic statement of the general idea that two macroscopic measure-

ments anywhere on a Markov chain must be uncorrelated given the state of all the measure-

ment devices that separate them in the chain. This corollary epitomizes the essence of the

Copenhagen idea of quantum state reduction in terms of the conditional independence of

measurement devices that are not immediately in each other's past or future. It is consistent

with the notion that the measurements collapsed the state of the wave function, erasing any

conditional information that a detector could have had about prior measurements. How-

ever, no irreversible reduction occurs and all coe�cients in the underlying pure-state wave

137



Q

A1

A2

A3

Figure 7.1: Illustration of consecutive measurements of a quantum system, Q, using devices
A1, A2, and A3 (numbers indicate the time ordering of the measurement sequence). We will
see how the ancillae A1, A2, and A3 become entangled with the quantum system during the
measurement process and compute how information is distributed throughout the subsys-
tems. This scheme can be extended to a sequence of n consecutive measurements, which will
be considered in the later sections.

function continue to evolve unitarily.

Section 7.4 uni�es the two previous sections by proving three statements (Theorems 4, 5,

and 6) that relate information-theoretic quantities pertaining to unampli�ed measurements

to the corresponding expressions for ampli�ed measurements. We show that, in general,

ampli�cation leads to a loss of information.

After a brief application of the collected concepts and results to standards such as quan-

tum state preparation and the quantum Zeno e�ect in Sec. 7.5, we close with conclusions.

7.2 Non-Markovian Quantum Measurements

In Ch. 5 we introduced the concept of non-Markovian measurements as those sequences

of measurements that are not ampli�ed by macroscopic devices, which we called D. In

preparation for Theorem 3 in Sec. 7.3.4 that establishes this correspondence, we �rst consider

consecutive measurements (see Fig. 7.1) with quantum ancillae of prepared and unprepared
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quantum states (recall Ch. 5.3 for these de�nitions), and demonstrate the non-Markovian

character of the chain of ancillae. Throughout, we assume that the measurements are made

on a short enough time scale so that the free evolution of the quantum system during the

sequence of measurements can be neglected. In the following, we will use entropy Venn

diagrams to study the correlations between subsystems and the distribution of entropies

during consecutive measurements.

7.2.1 Consecutive Measurements Prepared Quantum States

Building on the discussion from Ch. 5 where we described a single measurement of a quan-

tum system, we now introduce a second ancilla A2 that measures Q. This measurement

corresponds to a new observable with an eigenbasis |x̃2〉 that is rotated with respect to the

basis of the �rst observable, |x̃1〉, via the unitary transformation U (2)
x1x2

= 〈x̃2|x̃1〉. Unitarity

requires that

∑
x2

U
(2)
x1x2

U
(2)∗
x′1x2

= δx1x
′
1
,

∑
x1

U
(2)
x1x2

U
(2)∗
x1x
′
2

= δx2x
′
2
.

(7.1)

After entangling Q and A2 with an operator analogous to (5.74), the wave function (5.75)

evolves to

|QA1A2〉 =
∑
x1x2

α
(1)
x1

U
(2)
x1x2

|x̃2 x1x2〉, (7.2)

where the orthogonal basis of the second ancilla, A2, is formed from the states |x2〉.
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Tracing out Q, the quantum ancillae are correlated according to the joint density matrix,

ρ(A1A2) =
∑

x1x
′
1x2

α
(1)
x1
α

(1)∗
x′1

U
(2)
x1x2

U
(2)∗
x′1x2

|x1x2〉〈x′1x2|, (7.3)

while A1 and A2 together are entangled with the quantum system. The marginal ancilla

density matrices, obtained from (7.3), are

ρ(Ai) =
∑
xi

q
(i)
xi
|xi〉〈xi| , i = 1, 2 (7.4)

where q(1)
x1

= |α(1)
x1
|2 is the probability distribution of ancilla A1, while the probability dis-

tribution of A2 is the incoherent sum (a sum of squares), q(2)
x2

=
∑
x1
|α(1)
x1
|2 |U (2)

x1x2
|2. We

can compare this expression to the coherent probability distribution (a square of sums),∣∣∑
x1
α

(1)
x1

U
(2)
x1x2

∣∣2 for A2 had the �rst measurement with A1 never occurred. The marginal

entropy of bothA1 andA2 is the Shannon entropy S(Ai) = H[q(i)] of the probability distribu-

tion q(i)
xi
. Recall from Chs. 3.2 and 5.3 that we denote the Shannon entropy of a d-dimensional

probability distribution pxi by H[p] = −
∑d−1
xi=0 pxi logd pxi , while the von Neumann entropy

of a density matrix ρ(X) is de�ned as S(X) = S(ρ(X)) = −Tr [ρ(X) logd ρ(X)]. Taking the

logarithm to the base d gives entropies the units �dits�.

A third measurement of Q with an ancilla A3 yields

|QA1A2A3〉 =
∑

x1x2x3

α
(1)
x1

U
(2)
x1x2

U
(3)
x2x3

|x̃3 x1x2x3〉, (7.5)

where U (3)
x2x3

= 〈x̃3|x̃2〉 describes the relative transformation between the bases of the third

and second observables, and |x3〉 are the basis states of ancilla A3. The quantum system is

entangled with all three ancillae in (7.5), as illustrated by the negative conditional entropies
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Q A1A2A3

−S3 2S3 −S3

Figure 7.2: Entropy Venn diagram for the state (7.5). The presence of negative conditional
entropies reveals that the quantum system, Q, is entangled with all three ancillae, A1, A2,
and A3. In this �gure, we use the notation S3 = S(A3), which is the marginal entropy of
the last ancilla A3 in the measurement sequence. To generalize this diagram from three to n
consecutive measurements of a prepared quantum system, S3 is replaced by Sn, the entropy
of the last ancilla, An, in the chain.

in Fig. 7.2. The degree of entanglement is controlled by the marginal entropy S(A3) = H[q(3)]

of ancilla A3, for the probability distribution q(3)
x3

=
∑
x1x2

|α(1)
x1
|2 |U (2)

x1x2
|2 |U (3)

x2x3
|2. This

procedure can be repeated for an arbitrary number of consecutive measurements and can be

used to succinctly describe the quantum Zeno and anti-Zeno e�ects (see Sec. 7.5.1). In the

following sections we will quantify how information is distributed in states like (7.5), and

how that distribution changes when the measurements are ampli�ed.

7.2.2 Consecutive Measurements of Unprepared Quantum States

Sequential measurements of an unprepared quantum system yield entropy distributions be-

tween the quantum system and ancillae that are di�erent from those created by measure-

ments of prepared quantum systems (see Sec. 7.2.1). In this section, we consider a sequence

of measurements of an unprepared quantum system that is initially entangled with a refer-

ence system as in (5.79). Adding to the calculations in Sec. 5.3.2, we measure Q again in

a rotated basis U (2)
x1x2

= 〈x̃2|x̃1〉, by entangling it with an ancilla A2. Then, with |x2〉 the
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basis states of ancilla A2, the wave function (5.81) becomes

|QRA1A2〉 =
1√
d

∑
x1x2

U
(2)
x1x2

|x̃2 x1x1x2〉 . (7.6)

It is straightforward to show that the marginal ancilla density matrices are maximally mixed,

ρ(A1)=ρ(A2)=1/d1, where 1 is the identity matrix of dimension d. It follows that A1 and

A2 have maximum entropy S(A1) = S(A2) = 1. Recall that all logarithms are taken to the

base d, giving entropies units of dits. If d = 2, the units are bits. The joint state of A1 and

A2 is diagonal in the ancilla product basis,

ρ(A1A2) =
1

d

∑
x1

|x1〉〈x1| ⊗
∑
x2

|U (2)
x1x2
|2|x2〉〈x2| , (7.7)

in contrast to Eq. (7.3). Still, the quantum ancillae A1 and A2 are correlated. Equations (7.3)

and (7.7) immediately imply that if the quantum system is measured repeatedly in the same

basis (U (2)
x1x2

= δx1x2) by independent devices, all of those devices will be perfectly correlated

and will re�ect the same outcome [59,140].

Let us entangle a third ancilla, A3, with the quantum system and perform a measurement

of an observable with eigenbasis rotated via U (3)
x2x3

= 〈x̃3|x̃2〉. We �nd that (7.6) evolves to

|QRA1A2A3〉 =
1√
d

∑
x1x2x3

U
(2)
x1x2

U
(3)
x2x3

|x̃3 x1x1x2x3〉. (7.8)

The entropic relationships between the variables Q, R, and A1A2A3 are shown in Fig. 7.3.

The zero ternary mutual entropy, S(Q : R : A1A2A3) = 0, indicates that the entropy

S(A1A3) = S13 that is shared by R and A1A2A3 is not shared with the quantum system.

Tracing out the reference state, we �nd that the quantum system is entangled with all three

ancillae. However, this entanglement is now shared with the reference system, which yields
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R

Q

A1A2A3

(a)

−1

2−
S13

−1

S13

0
S13

−S13

Q

A1A2A3

(b)

1−S13

S13

0

Figure 7.3: Entropy Venn diagrams for the pure state (7.8), where S13 = S(A1A3) is the
joint entropy of Eq. (7.11). (a) The entropy S13 that is shared by the reference state, R, and
the chain of ancillae, A1A2A3, is not shared with the quantum system, Q, since the ternary
mutual entropy vanishes: S(Q : R : A1A2A3) = 0. (b) Tracing out the reference leaves
Q entangled with all ancillae. To generalize these diagrams from three to n consecutive
measurements of an unprepared quantum system, S13 is replaced by S1n, the joint entropy
of the �rst and last ancillae, A1 and An, in the chain.

a Venn diagram that is di�erent from Fig. 7.2.

Consecutive measurements provide a unique opportunity to extract information about

the state of the quantum system from the correlations created between the ancillae, as we do

not directly observe either the quantum system or the reference. Tracing out Q and R from

the full density matrix associated with Eq. (7.8) yields the joint state of the three ancillae,

ρ(A1A2A3)=
1

d

∑
x1

|x1〉〈x1| ⊗
∑
x2x
′
2

U
(2)
x1x2

U
(2)∗
x1x
′
2
|x2〉〈x′2| ⊗

∑
x3

U
(3)
x2x3

U
(3)∗
x′2x3

|x3〉〈x3|. (7.9)

Unlike the pairwise state ρ(A1A2) in Eq. (7.7), the state of all three ancillae is not an

incoherent mixture. Performing a third measurement has, in a sense, revived the coherence

of the A2 subsystem.

An apparent collapse has taken place after the second consecutive measurement in Eq. (7.7)
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as the corresponding density matrix has no o�-diagonal terms. However, the third measure-

ment seemingly undoes this projection, as can be seen from the appearance of o�-diagonal

terms in Eq. (7.9). This �reversal� is di�erent from protocols that can �un-collapse� weak

measurements [181,182], because it is clear that the wave function (7.8) underlying the den-

sity matrix (7.9) remains a pure state. The presence of the cross terms in Eq. (7.9) has

fundamental consequences for our understanding of the measurement process, and may open

up avenues for developing new quantum protocols. In particular, the cross terms in Eq. (7.9)

enable the implementation of disentangling protocols [183] (see Ch. 8).

As mentioned in Sec. 5.3.3, the ancilla Ai may be composed of a large number of qudits.

To account for a possibly macroscopic ancilla, we suppose that n qudits A(1)
i · · ·A

(n)
i , which

comprise the ith ancilla Ai, measure the quantum system. In this case, the joint density

matrix (7.9) is extended to

ρ(A1A2A3) =
1

d

∑
x1

|x1 . . . x1〉〈x1 . . . x1| ⊗
∑
x2x
′
2

U
(2)
x1x2

U
(2)∗
x1x
′
2
|x2 . . . x2〉〈x′2 . . . x

′
2|

⊗
∑
x3

U
(3)
x2x3

U
(3)∗
x′2x3

|x3 . . . x3〉〈x3 . . . x3|.

(7.10)

In principle, accounting for macroscopic ancillae does not destroy the coherence of the joint

state (7.10), which is concentrated in the A2 subsystem. The coherence is protected as long

as no qudits in the intermediate ancilla A2 are `lost', implying a trace over their states, which

removes all o�-diagonal terms. In practical implementations, it may be e�ectively impossible

to prevent decoherence when the number of qudits is su�ciently large. On the other hand,

the pairwise density matrices ρ(A1A2), ρ(A2A3), and ρ(A1A3) are una�ected by a loss of

qudits as they are already diagonal. In addition, it can be easily shown that the coherence

in Eqs. (7.9) and (7.10) is fully destroyed if just the A2 measurement is ampli�ed by a device
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D2 (as we will see in Sec. 7.3.3). That is, ampli�cation of the �rst and last ancillae has no

e�ect on the coherence of (7.9) and (7.10).

From the joint ancilla density matrix (7.9), we now derive several properties of the chain

of quantum ancillae and summarize them using an entropy Venn diagram between A1, A2,

and A3. First, we construct all three pairwise ancilla density matrices and compute their

entropies. Tracing out A3 from the joint density matrix (7.9) recovers ρ(A1A2) in Eq. (7.7),

as it should because the interaction betweenQ and A3 does not in�uence the past interactions

of Q with A1 and A2. Tracing over A2 in Eq. (7.9) gives

ρ(A1A3) =
1

d

∑
x1

|x1〉〈x1| ⊗
∑
x2x3

|U (2)
x2x3
|2 |U (3)

x2x3
|2 |x3〉〈x3|, (7.11)

while tracing over A1 yields

ρ(A2A3) =
1

d

∑
x2

|x2〉〈x2| ⊗
∑
x3

|U (3)
x2x3
|2 |x3〉〈x3| . (7.12)

All three pairwise density matrices are diagonal in the ancilla product basis (see Theorem 2

in Sec. 7.2.3 for a general proof). We take �diagonal in the ancilla product basis� to be

synonymous with �classical�. From Eqs. (7.7), (7.11), and (7.12), we can calculate the entropy

of each pair of ancillae and of the joint state of all three ancillae from Eq. (7.9). The pairwise

entropies are

S(A1A2) = 1− 1

d

∑
x1x2

|U (2)
x1x2
|2 logd |U

(2)
x1x2
|2, (7.13)

S(A2A3) = 1− 1

d

∑
x2x3

|U (3)
x2x3
|2 logd |U

(3)
x2x3
|2, (7.14)

S(A1A3) = 1− 1

d

∑
x1x3

|β(13)
x1x3
|2 logd |β

(13)
x1x3
|2. (7.15)
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A1

A2

A3

S13−S23

S23−1

0

S12+S23

−S13−1

3−S12

−S23

S12−1

S13−S12

Figure 7.4: Entropy relationships for three quantum ancillae that measured an unprepared
quantum system. The vanishing conditional entropy, S(A2|A1A3) = 0, is a consequence
of the property that the entropy of the entire ancilla chain is equal to the entropy of the
borders, S(A1A2A3) = S(A1A3). This will be discussed more in Sec. 7.2.3. In this �gure,
S(AiAj) = Sij denotes the pairwise entropy of any two ancillae Ai and Aj .

where |β(13)
x1x3
|2 =

∑
x2
|U (2)
x1x2
|2|U (3)

x2x3
|2. Furthermore, it is straightforward to show that

S(A1A2A3), the entropy of ρ(A1A2A3) in Eq. (7.9), is equal to S(A1A3). This equality

holds for any set of three consecutive measurements in an arbitrarily-long measurement

chain as we will later prove in Theorem 2 of Sec. 7.2.3. With these joint entropies, we

construct the entropy Venn diagram for the three ancillae that consecutively measured an

unprepared quantum system, as shown in Fig. 7.4.

We apply the formalism presented thus far to the speci�c case of qubits (Hilbert space

dimension d = 2). The eigenbasis of the second observable that is measured using ancilla

A2 is rotated relative to the basis of the �rst observable by an angle θ2. Similarly, the

eigenbasis of the third observable measured using A3 is at an angle θ3 relative to the second

observable. If we consider observables with eigenbases in the xz plane of the Bloch sphere,

we can implement the basis transformations with the rotation matrix,
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A1 A3

A2

0
−1

0

0

1 1

1

Figure 7.5: Diagram for three qubit ancillae that measured an unprepared quantum system.
The eigenbasis of the second observable is at an angle θ2 = π/4 relative to the basis of the
�rst observable and likewise for the third observable.

U (i) =

(
cos(θi) − sin(θi)

sin(θi) cos(θi)

)
. (7.16)

For measurements at θ2 =θ3 =π/4, for example, we have |U (2)
x1x2
|2 = |U (3)

x2x3
|2 =1/2, and we

expect each ancilla to be maximally entropic: S(A1) = S(A2) = S(A3) = 1 bit. The joint

entropy of each pair of ancillae is two bits, as can be read o� of Eqs. (7.13-7.15). Because

of the non-diagonal nature of ρ(A1A2A3) in Eq. (7.9), the joint density matrix of the three

ancillae (using σz, the third Pauli matrix, and 1, the 2× 2 identity matrix),

ρ(A1A2A3) =
1

8


1 −σz 0 0

−σz 1 0 0

0 0 1 σz
0 0 σz 1

 , (7.17)

has entropy S(A1A2A3) = 2 bits, as can be checked by �nding the eigenvalues of (7.17).

Figure 7.5 summarizes the entropic relationships for unampli�ed consecutive qubit measure-

ments at θ2 = θ3 = π/4.

It is instructive to note that the Venn diagram in Fig. 7.5 is the same as the one obtained

for a one-time binary cryptographic pad where two classical binary variables (the source

and the key) are combined to a third (the message) via a controlled-not operation [184]
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(the density matrices underlying the Venn diagrams are very di�erent, however). The Venn

diagram implies that the state of any one of the three quantum ancillae can be predicted

from knowing the joint state of the two others. However, the prediction of A3, for example,

cannot be achieved using expectation values from A2's and A1's states separately, as the

diagonal of Eqs. (7.9) and (7.17) corresponds to a uniform probability distribution. Thus,

quantum coherence can be seen to encrypt classical information about past states.

7.2.3 Coherence of the Chain of Unampli�ed Measurements

So far we have seen that the joint ancilla density matrices describing unampli�ed measure-

ments generally contain a non-vanishing degree of coherence. This suggests that coherence is

not lost in the measurement sequence, but is actually contained in speci�c ancilla subsystems.

In this section, we extend our unitary description of consecutive unampli�ed measurements

of a quantum system to an arbitrarily-long chain of ancillae, and derive several properties of

the measurement chain.

Many of the joint ancilla density matrices that we have encountered in describing con-

secutive quantum measurements are so-called �classical-quantum states� (recall Ch. 3.4.2, or

see Ref. [76]). Such states have a block-diagonal structure of the form ρ =
∑
i pi ρi ⊗ |i〉〈i|,

where the density matrix ρi appears with probability pi. In addition, the ancilla states that

we derive here have the property that the density matrices ρi are always pure quantum

superpositions (we de�ned the purity of a quantum state in Ch. 2.2, which is 1 for a pure

state and 1/d for a completely mixed state of dimension d).

For measurements of a prepared quantum system, classical-quantum states occur in

the joint density matrices of two or more consecutive ancillae. For instance, recall the

state ρ(A1A2) from Eq. (7.3) that resulted from two measurements of a prepared quantum
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system. We can diagonalize this state with the set of non-orthogonal states α(2)
x2
|ψx2〉 =∑

x1
α

(1)
x1

U
(2)
x1x2

|x1〉 for subsystem A1, so that (7.3) appears as

ρ(A1A2) =
∑
x2

q
(2)
x2
|ψx2〉〈ψx2| ⊗ |x2〉〈x2|, (7.18)

where the normalization is equal to the probability distribution for the second ancilla A2,

q
(2)
x2

= |α(2)
x2
|2 =

∑
x1

|α(1)
x1
|2 |U (2)

x1x2
|2. (7.19)

On the other hand, classical-quantum states occur for measurements of unprepared quan-

tum systems when there are at least three consecutive measurements, as the �rst measure-

ment in that sequence can be viewed as the state preparation. For example, Eq. (7.9) can

be diagonalized with the set of non-orthogonal states β(13)
x1x3

|φx1x3〉 =
∑
x2
U

(2)
x1x2

U
(3)
x2x3

|x2〉

for the A2 subsystem, so that

ρ(A1A2A3)=
1

d

∑
x1x3

p
(13)
x1x3

|x1x3〉〈x1x3| ⊗ |φx1x3〉〈φx1x3 |, (7.20)

where the normalization is

p
(13)
x1x3

= |β(13)
x1x3
|2 =

∑
x2

|U (2)
x1x2
|2 |U (3)

x2x3
|2. (7.21)

Evidently, from (7.18) and (7.20), each density matrix ρi in the general state ρ =∑
i pi ρi ⊗ |i〉〈i| corresponds to a pure state in our ancilla density matrices. This leads

to an interesting observation that the entropy of a chain of ancillae is contained in either

just the last device or in both the �rst and last devices together. In the �rst example above

for ρ(A1A2), it is straightforward to show using Eq. (7.18) that S(A1A2) = S(A2). That is,

the entropy of the sequence A1A2 is found at the end of the chain, A2. From the de�nition
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of conditional entropy [58], it follows that the entropy of A1 vanishes (it is in the pure state

|ψx2〉), given the state of A2:

S(A1|A2) = S(A1A2)− S(A2) = 0. (7.22)

In the second example above for ρ(A1A2A3), we �nd from Eq. (7.20) that S(A1A3) =

S(A1A2A3). In other words, the entropy of the chain resides in the boundary, A1 and A3.

It follows that, given the joint state of A1 and A3, A2's state has zero entropy (see the gray

region in Fig. 7.4) and is fully determined (it is in the pure state |φx1x3〉):

S(A2|A1A3) = S(A1A2A3)− S(A1A3) = 0 . (7.23)

In the following Theorems 1 and 2, we extend these results to an arbitrarily-long chain of

quantum ancillae. These �ndings are important as they show that unampli�ed measurement

chains retain a �nite amount of coherence. Speci�cally, for measurements on unprepared

quantum states, the coherence is contained in all ancillae up to the last, while for unprepared

quantum states it is contained in all ancillae except for the boundary.

To begin, we de�ne (ancilla) random variables Ai that take on states xi with probabilities

q
(i)
xi
. Each ancilla has d orthogonal states and the set of outcomes for the ith ancilla is labeled

by the index xi, where xi = 0, . . . , d− 1.

Theorem 1. The density matrix describing j + 1 ancillae that consecutively measured a

prepared quantum system is a classical-quantum state such that its joint entropy is contained

only in the last device in the measurement chain. That is,

S(A1 . . . Aj+1) = S(Aj+1). (7.24)
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Proof. Generalizing the result (7.5), the wave function |Ψ〉 = |QA1 . . . Aj+1〉 for j + 1 con-

secutive measurements of a prepared quantum state is

|Ψ〉 =
∑

x1...xj+1

α
(1)
x1

U
(2)
x1x2

. . . U
(j+1)
xjxj+1

|x̃j+1 x1x2 . . . xjxj+1〉. (7.25)

The �rst ket |x̃j+1〉 in the joint state on the right hand side of (7.25) describes the quantum

system, which is written in the eigenbasis of the last measured observable. Each Ai measures

an observable with an eigenbasis that is rotated relative to the basis of the previous observable

such that U (i)
xi−1,xi

= 〈x̃i|x̃i−1〉. The unitarity of U (i) requires that

∑
xi−1

U
(i)
xi−1xi

U
(i)∗
xi−1x

′
i

= δxix
′
i
,

∑
xi

U
(i)
xi−1xi

U
(i)∗
x′i−1xi

= δxi−1x
′
i−1

.

(7.26)

Recasting expression (7.25) in terms of the following set of non-orthogonal states,

α
(j+1)
xj+1

|ψxj+1〉 =
∑

x1···xj
α

(1)
x1

U
(2)
x1x2

· · · U (j+1)
xjxj+1

|x1 · · ·xj〉, (7.27)

yields

|Ψ〉 =
∑
xj+1

α
(j+1)
xj+1

|x̃j+1 ψxj+1 xj+1〉. (7.28)

This is not a true tripartite Schmidt decomposition [74] as the states |ψxj+1〉 are not or-

thogonal: the partial inner product 〈ψxj+1|Ψ〉 does not give a state with a Schmidt number

of one. Although the states |ψxj+1〉 are not orthogonal, they are normalized according to

q
(j+1)
xj+1

= |α(j+1)
xj+1

|2 =
∑

x1···xj
|α(1)
x1
|2 |U (2)

x1x2
|2 · · · |U (j+1)

xjxj+1
|2, (7.29)
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which is the probability distribution of ancilla Aj+1.

Tracing out the quantum system from the density matrix |Ψ〉〈Ψ| formed from (7.28), the

state of all j + 1 ancillae can be written as

ρ(A1 . . . Aj+1) =
∑
xj+1

q
(j+1)
xj+1

|ψxj+1〉〈ψxj+1| ⊗ |xj+1〉〈xj+1|. (7.30)

This state is non-diagonal in the ancilla product basis |x1 · · ·xj+1〉, but is diagonalized

by (7.27). The density matrix (7.30) is a classical-quantum state where the �rst j ancillae

are in the pure state |ψxj+1〉. In the following, we will compute the entropy of the joint

state (7.30) and show that it is equal to the entropy of the last ancilla, Aj+1.

The appearance of classical-quantum states in the sequence of measurements leads to

the interesting (and perhaps surprising) observation that the joint entropy of all ancillae in

Eq. (7.30) resides only in the last device in the measurement chain. Since the joint state

|ψxj+1〉 ⊗ |xj+1〉 is orthonormal, it is easy to see that the entropy of (7.30) is equal to the

Shannon entropy of the probability distribution q(j+1)
xj+1

. This is equivalent to the entropy of

the last ancilla, so that

S(A1 . . . Aj+1) = S(Aj+1). (7.31)

Note that this implies that there is an upper bound to the joint entropy: max[S(A1 . . . Aj+1)] =

max[Sj+1] = 1.

From this property, it immediately follows that the entropy of the �rst j ancillae, condi-
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Aj+1 A1 · · ·Aj

Sj+1

−Sj

Sj 0

Figure 7.6: Diagram for the unampli�ed measurement sequence with ancillae A1, A2, . . . ,
Aj , Aj+1. According to (7.30), the joint entropy of the �rst j ancillae vanishes when given
Aj+1, since the entropy resides only at the end of the chain. In this �gure, we use the
notation Sk = S(Ak) for the marginal entropy of the kth ancilla.

tional on the state of the last ancilla, vanishes,

S(A1 . . . Aj |Aj+1) = S(A1 . . . Aj+1)− S(Aj+1) = 0. (7.32)

Therefore, if the state of the end of the measurement chain is known, then all preceding

ancillae exist in a pure quantum superposition: The state of A1 . . . Aj is fully determined

(a zero entropy state), given Aj+1. This implies that the entropy of all ancillae in an

arbitrarily-long sequence of measurements resides only at the end of the chain. The entropy

Venn diagram for these two subsystems is shown in Fig. 7.6.

Theorem 2. For j + 1 consecutive measurements of an unprepared quantum system, where

the reference is traced out, the density matrix for three or more consecutive ancillae is a

classical-quantum state such that its joint entropy is contained only in the �rst and last

device of the measurement chain. That is,

S(Ai−1Ai . . . AjAj+1) = S(Ai−1Aj+1). (7.33)

Proof. Generalizing the result (7.8), the wave function |Ψ′〉 = |QRA1 . . . Aj+1〉 of j + 1
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ancillae that consecutively measured an unprepared quantum state is

|Ψ′〉 =
1√
d

∑
x1...xj+1

U
(2)
x1x2

. . . U
(j+1)
xjxj+1

|x̃j+1 x1 x1x2 . . . xj+1〉. (7.34)

Of the full set of consecutive measurements, consider the subset Ai−1, Ai, . . . , Aj , Aj+1,

where 1 < i < j. Tracing out Q, the reference, and all other ancilla states from the full

density matrix |Ψ′〉〈Ψ′|, and using the unitarity of each U (i) as stated in Eq. (7.26), the

density matrix for this subset can be written as

ρ(Ai−1 . . . Aj+1) =
1

d

∑
xi−1
xj+1

p
(i−1,j+1)
xi−1xj+1

|xi−1〉〈xi−1| ⊗ |φxi−1xj+1〉〈φxi−1xj+1| ⊗ |xj+1〉〈xj+1|.

(7.35)

In the following, we will compute the entropy of this state and show that it is equal to the

entropy of ρ(Ai−1Aj+1).

The density matrix (7.35) is a classical-quantum state with the intermediate ancillae

Ai, . . . , Aj in the pure state |φxi−1xj+1〉. In the ancilla product basis |xi−1xi . . . xjxj+1〉, this

matrix is block-diagonal due to the non-diagonality of the subsystem Ai, . . . , Aj . However,

it is diagonalized by the non-orthogonal states

β
(i−1,j+1)
xi−1xj+1

|φxi−1xj+1〉 =
∑
xi···xj

U
(i)
xi−1xi

. . . U
(j+1)
xjxj+1

|xi . . . xj〉, (7.36)

which are normalized according to

p
(i−1,j+1)
xi−1xj+1

= |β(i−1,j+1)
xi−1xj+1

|2 =
∑
xi···xj

|U (i)
xi−1xi

|2 . . . |U (j+1)
xjxj+1

|2. (7.37)
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These normalization coe�cients obey the sum rule

∑
xi−1

p
(i−1,j+1)
xi−1xj+1

=
∑
xj+1

p
(i−1,j+1)
xi−1xj+1

= 1 . (7.38)

The density matrix for any two ancillae is already diagonal in the ancilla product basis

(it is classical). For example, the joint state of Ai−1 and Aj+1 is

ρ(Ai−1Aj+1) =
1

d

∑
xi−1
xj+1

p
(i−1,j+1)
xi−1xj+1

|xi−1xj+1〉〈xi−1xj+1|, (7.39)

so that its entropy reduces to the Shannon entropy H[p(i−1,j+1)/d] of the distribution

p
(i−1,j+1)
xi−1xj+1

/d. However, the density matrix for three or more consecutive ancillae corresponds

to a classical-quantum state (7.35). This state has non-zero coherence that is contained in

the subsystem of the intermediate ancillae, which are in the (non-orthogonal) pure state

|φxi−1xj+1〉. Since the joint state |xi−1〉 ⊗ |φxi−1xj+1〉 ⊗ |xj+1〉 is still orthonormal, it

is straightforward to show that the entropy of (7.35) is equal to the (Shannon) entropy

of (7.39), despite the fact that the underlying state (7.35) is non-classical:

S(Ai−1Ai . . . AjAj+1) = S(Ai−1Aj+1). (7.40)

It follows directly that the entropy of the intermediate ancillae Ai, . . . , Aj vanishes when
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Ai−1Aj+1 Ai · · ·Aj

Si−1,j+1

−Sij

Sij 0

Figure 7.7: Diagram for an unampli�ed measurement sequence with ancillae Ai−1, Ai, . . . ,
Aj , Aj+1. According to (7.35), the entropy of all intermediate ancillae, Ai, . . . , Aj , vanishes
when given Ai−1 and Aj+1, since the entropy resides at the boundary of the chain. In this
�gure, we use the notation Sk` = S(AkA`) for the pairwise entropy of any two ancillae Ak
and A`.

given the joint state of the ancillae Ai−1 and Aj+1,

S(Ai . . . Aj |Ai−1Aj+1) = S(Ai−1Ai . . . AjAj+1)

− S(Ai−1Aj+1)

= 0.

(7.41)

Evidently, if the state of the boundary of the chain is known, then the intermediate ancillae

exist in a pure quantum superposition. The joint state of Ai, . . . , Aj is fully determined

(a zero-entropy state), given the joint state of Ai−1 that measured Q in the past, together

with Aj+1 that measured Q in the future. Thus, for measurements on unprepared quantum

systems, the entropy of an arbitrarily-long ancilla chain is found only in its boundary. The

entropy Venn diagram for the boundary and the bulk of the measurement chain is shown in

Fig. 7.7.

That the entropy of a chain of measurements is determined entirely by the entropy of the

chain's boundary may seem remarkable, but is reminiscent of the holographic principle [185�

187]. Indeed, it is conceivable that an extension of the one-dimensional quantum chains we
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discussed here to tensor networks [188] could make this correspondence more precise [189].

We contrast this result with the previous Theorem 1 for measurements on prepared quantum

systems, where the entropy resided only at the end of the chain since the preparation was

already known.

7.3 Markovian Quantum Measurements

The non-Markovian measurements we have been discussing up to this point are potentially

fragile: while the pointers can consist of many subsystems (even a macroscopic number),

the entanglement they potentially display with other quantum systems will be lost even if

only a single qudit escapes our control (and therefore, mathematically speaking, must be

traced over). In this section we discuss a second step within von Neumann's second stage

of quantum measurement, where we observe the fragile quantum ancilla using a secondary

observer. While this quantum �observer of the observer� also potentially consists of many

di�erent subsystems, it is robust in the sense that tracing over any of the degrees of freedom

making up the pointer variable does not modify the relative state of the pointer and the

quantum system or other devices.

7.3.1 Amplifying Quantum Measurements

To amplify a measurement, we observe the �rst quantum observer (denoted by A1) by

measuring A1 with a device D1. This additional interaction with the �rst ancilla in (5.75)

leads to the tripartite entangled state

|QA1D1〉 = 1Q ⊗ UA1D1
|QA1〉 |Mi〉D1

=
∑
x1

α
(1)
x1
|x̃1x1x1〉, (7.42)
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A1

Q

D1

(a)

−S1

S1

−S1

S1

0
S1

−S1

A1 D1

(b)

0 S1 0

Figure 7.8: E�ects of ampli�cation for (a) the tripartite entangled state (7.42). (b) Tracing
over the quantum system, A1 and D1 are perfectly correlated as in Eq. (7.43). The S(A1 :
D1) = S1 bits of information gained in the measurement are not shared with the quantum
system since the mutual ternary entropy vanishes, S(Q : A1 : D1) = 0. The quantity
S1 = H[q(1)] is the marginal entropy of each of the three subsystems, Q, A1 and D1.

where |Mi〉D1
is the initial state of the device D1 and |x1〉 are its �nal orthogonal states.

Tracing over the quantum system, we �nd that D1 is perfectly correlated with the quantum

ancilla A1 according to the density matrix

ρ(A1D1) =
∑
x1

q
(1)
x1
|x1x1〉〈x1x1|, (7.43)

where q(1)
x1

= |α(1)
x1
|2. That is, they consistently re�ect the same measurement outcomes.

Together, A1 and D1 are still entangled with the quantum system. In Fig. 7.8 we show the

entropy Venn diagrams for the entangled state (7.42) and the correlated state (7.43). Since

the underlying state (7.42) is pure, the ternary mutual entropy vanishes, S(Q : A1 : D1) = 0.

In other words, the correlations that are created between the devices (the S(A1 : D1) dits of

information that are gained in the measurement) are not shared with the quantum system.

The macroscopic device D1 is composed of many qudits D(1)
1 , . . . , D

(n)
1 that all measure
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Q

A1

D
(1)
1

D
(2)
1

D
(n)
1

...

Figure 7.9: Observing the quantum observer A1 with a device D1. Dashed lines indicate the
entanglement created by the measurement between the ancilla A1 and each of the n qudits
D

(1)
1 , . . . , D

(n)
1 that comprise D1. Time proceeds from left to right.

the quantum ancillaA1 according to the sequence of entangling operations U
A1D

(n)
1

. . . U
A1D

(1)
1

(see Fig. 7.9). That is, Eq. (7.42) can be expanded to

|QA1D1〉 =
∑
x1

α
(1)
x1
|x̃1〉 |x1〉 |x1〉

D
(1)
1

. . . |x1〉
D

(n)
1

. (7.44)

The measurement outcome is read out from the state of the joint system

ρ(D
(1)
1 . . . D

(n)
1 ) =

∑
x1

q
(1)
x1
|x1 . . . x1〉〈x1 . . . x1|, (7.45)

where it is clear that the device D1 is self-consistent and all of its components re�ect the

same measurement outcome. This state is robust in the sense that it is not necessary to

�keep track� of all qudits in D1 to observe correlations. Thus, tracing over any of the states

in the expression above returns an equivalently self-consistent state.

In the following two sections, we amplify a chain of consecutive measurements of a pre-

pared and an unprepared quantum system. Unlike our previous results for unampli�ed mea-

surements, we will �nd that the joint state of devices D1, D2, . . . , is now always classical

(diagonal in the ancilla product basis), leading to entropy distributions that are signi�cantly
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di�erent from those of the unampli�ed ancillae.

7.3.2 Amplifying Consecutive Measurements of Prepared Quantum

States

We begin by �rst considering the ampli�cation of consecutive measurements of a prepared

quantum state. Introducing a second pair of devices A2 and D2, Eq. (7.42) evolves to

|QA1D1A2D2〉 =
∑
x1x2

α
(1)
x1

U
(2)
x1x2

|x̃2 x1x1 x2x2〉. (7.46)

Again, we �nd D2 to be perfectly correlated with the quantum ancilla A2. The joint state

of D1 and D2 is the classical density matrix

ρ(D1D2) =
∑
x1x2

|α(1)
x1
|2 |U (2)

x1x2
|2 |x1x2〉〈x1x2|. (7.47)

This state is diagonal in the ancilla product basis, unlike the state (7.3) before ampli�cation.

Thus, the e�ect of amplifying the ancillae is a removal of all o�-diagonal elements in the

joint density matrices.

From (7.47), we see that for repeated measurements in the same basis (U (2)
x1x2

= δx1x2)

the results are fully correlated. The joint density matrix (7.47) reduces to ρ(D1D2) =∑
x1
|α(1)
x1
|2 |x1x1〉〈x1x1| so that the entropy ofD2 givenD1 vanishes, S(D2|D1) = S(D1D2)−

S(D1) = 0. The conditional probability to record the outcome x2, given that the �rst mea-

surement yielded x1, is simply p(x2|x1) = δx1x2 . In other words, both devices agree on the

outcome, as expected. It appears as if the quantum system had indeed �collapsed� into an

eigenstate of the �rst observable since the second device D2 correctly con�rms the measure-

ment outcome. This result is consistent with the Copenhagen view of the quantum state
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during the measurement sequence as |Q〉 → |x̃1〉 → |x̃1〉. However, we see that no collapse

assumption is needed for a consistent description of the measurement outcomes and their

correlations, and in fact, all amplitudes of the quantum system are preserved. That is, (7.46)

continues to evolve as a pure state.

In addition, the probability distribution for the second measurement with the pair A2D2

is consistent with a collapse postulate as it is given by the incoherent sum (a sum of

squares), q(2)
x2

=
∑
x1
|α(1)
x1
|2 |U (2)

x1x2
|2, instead of the coherent expression (a square of sums),∣∣∑

x1
α

(1)
x1

U
(2)
x1x2

∣∣2, which is the result if the �rst measurement with A1D1 had never oc-

curred.

7.3.3 Amplifying Consecutive Measurements of Unprepared Quan-

tum States

In this section, we study consecutive measurements of an unprepared quantum state, which

will yield an entropy Venn diagram that di�ers signi�cantly from Fig. 7.4 for the quan-

tum ancillae. To begin, we follow the procedure introduced in Sec. 7.3.1, and amplify the

state (7.8) of three consecutive measurements of an unprepared quantum state.

First, we show that amplifying the qubits on the boundary of the chain of measurements

does not alter the coherence of the joint state (7.9). Introducing devices D1 and D3 that

amplify the quantum ancillae A1 and A3, respectively, the state (7.8) evolves to

|QRA1D1A2A3D3〉 =
1√
d

∑
x1x2x3

U
(2)
x1x2

U
(3)
x2x3

|x̃3 x1x1x1 x2 x3x3〉. (7.48)

As before, each pair of systems AiDi are perfectly correlated and re�ect the same outcome

from their measurement of Q. Tracing over the density matrix formed from this wave func-
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D1

D2

D3

S12−1

S13−
S12

S12+S23−S13−1

0

2−S13

S13−
S23

S23−1

Figure 7.10: A sequence of devices D1, D2, and D3 that observe (amplify) the quantum
ancillae A1, A2, and A3, according to (7.49). Only ampli�cation of the intermediate ancilla
A2 is su�cient to destroy the coherence in the original state (7.9). The zero conditional
mutual entropy, S(D1 : D3|D2) = 0, indicates that the last device D3 has no information
about the �rst, from the perspective of the second. This property will be connected to
quantum Markov chains in Sec. 7.3.4. Note that all the pairwise entropies are unchanged by
ampli�cation, S(AiAj) = S(DiDj) = Sij .

tion, we �nd that the new state of A1A2A3 is unchanged from Eq. (7.9).

In contrast, amplifying the intermediate ancilla destroys all of the coherence in the original

state (7.9). That is, measuring A2 with D2 leads to a fully incoherent density matrix for

A1A2A3 that is now equivalent to the joint state

ρ(D1D2D3) =
1

d

∑
x1x2x3

|U (2)
x1x2
|2|U (3)

x2x3
|2|x1x2x3〉〈x1x2x3|. (7.49)

We can contrast this state to the result we obtained for unampli�ed measurements in

Eq. (7.9) using entropy Venn diagrams. Compare the diagram in Fig. 7.10 for the state

ρ(D1D2D3) [Eq. (7.49)] to the diagram in Fig. 7.4 for the unampli�ed state ρ(A1A2A3)

[Eq. (7.9)]. Clearly, ampli�cation of just the intermediate ancilla A2 (or, equivalently, all

three quantum ancillae) has destroyed the coherence of the original state ρ(A1A2A3), which

was encoded in the A2 subsystem. Note that pairwise entropies are the same for both
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D1 D3

D2

1
0

1

1

0 0

0

Figure 7.11: Ampli�cation with D1, D2, and D3 in (7.50) of three qubit ancillae that
measured an unprepared quantum system. The second measurement of Q is of an observable
with eigenbasis rotated by θ2 = π/4 relative to the eigenbasis of the �rst observable. And,
the third observable is at θ3 = π/4 relative to the second. In this case, all three devices
are uncorrelated. Ampli�cation of A2 with D2 alone is su�cient to destroy the coherence
in (7.17).

ampli�ed and unampli�ed measurements of unprepared quantum systems, e.g., S(AiAj) =

S(DiDj). We proved previously in Theorem 2 of Sec. 7.2.3 that pairwise density matri-

ces (7.39) are always diagonal, so that amplifying those ancillae does not modify their joint

density matrix.

We apply these results to the case of qubit measurements (d = 2), which we implemented

with the rotation matrix in Eq. (7.16). For three consecutive measurements with θ2 = θ3 =

π/4, the joint density matrix of D1D2D3, which we show for comparison to the unampli�ed

state (7.17), is diagonal:

ρ(D1D2D3) =
1

8


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (7.50)

As with the unampli�ed state (7.17), the pairwise entropies here are also 2 bits. However,

the tripartite entropy has increased to S(D1D2D3) = 3 bits from the 2 bits we found for

S(A1A2A3). Compare the resulting entropy Venn diagram in Fig. 7.11 to the diagram in

Fig. 7.5 obtained for unampli�ed qubit measurements.
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The di�erence between the unampli�ed density matrix ρ(A1A2A3) in Eq. (7.9) and the

ampli�ed state ρ(D1D2D3) in Eq. (7.49) can be ascertained by revealing the o�-diagonal

terms via quantum state tomography (see, e.g., [190]), by measuring just a single mo-

ment [191] of the density matrix, such as Tr[ρ(A1A2A3)2], or else by direct measurement of

the wave function [106].

The results in the two preceding sections are compatible with the usual formalism for

orthogonal measurements [192, 193], where the conditional probability p(x2|x1) to observe

outcome x2, given that the previous measurement yielded outcome x1, is given by

p(x2|x1) = |U (2)
x1x2
|2 . (7.51)

Indeed, our �ndings thus far are fully consistent with a picture in which a measurement �col-

lapses� the quantum state (or alternatively, where a measurement recalibrates an observer's

�catalogue of expectations� [194�196]).

To see this, we write the joint density matrix ρ(D1D2), found by tracing (7.49) over D3,

in the collapse picture. For a device D1 that records outcome x1 with probability 1/d, and

a device D2 corresponding to a measurement of Q at an angle determined by the rotation

matrix U (2), the resulting density matrix is

ρ̃ (D1D2) =
1

d

∑
x1

|x1〉〈x1| ⊗ ρ
x1
D2

, (7.52)

where the state ρx1
D2

of D2 is de�ned using the projection operators Px1 = |x1〉〈x1| on the

state of D1,

ρ
x1
D2

=
TrD1

[
Px1 ρ(D1D2)P

†
x1

]
TrD1D2

[
Px1 ρ(D1D2)P

†
x1

] =
∑
x2

|U (2)
x1x2
|2 |x2〉〈x2|. (7.53)
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In other words, the state ρ(D1D2) that was obtained in a unitary formalism is equivalent

to the collapse version ρ̃ (D1D2). However, despite these consistencies with the collapse

picture, we emphasize that the actual measurements induce no irreversible collapse and that

all coe�cients in the underlying pure-state wave function (7.48) are preserved and evolve

unitarily throughout the measurement process.

7.3.4 Quantum Markov Chains

One of the key di�erences between the entropy Venn diagrams in Figs. 7.4 and 7.10 is the

vanishing conditional mutual entropy [59] for ampli�ed measurements, S(D1 : D3|D2) = 0.

Before ampli�cation, the equivalent quantity for the quantum ancillae is in general non-

zero, S(A1 : A3|A2) ≥ 0. Evidently, the intermediate measurement with D2 has, from

the perspective of D2 (meaning, given the state of D2) erased all correlations between the

�rst device D1 and the last device D3 in the measurement sequence. The vanishing of the

conditional mutual entropy is precisely the condition that is ful�lled by quantum Markov

chains as we will outline below.

Using the results for unprepared quantum states (this holds equally for prepared quantum

states), we demonstrate that the chain of devices, D1, D2, D3, which ampli�ed consecutive

measurements of a quantum system, is Markovian as de�ned in [69] (see also [68] and refer-

ences therein). We prove later in this section in Theorem 3 that this result can be extended

to any number of consecutive measurements, not just three. To show that S(D1 :D3|D2) is

indeed zero, we compute the joint entropy S(D1D2D3) of all three devices. From Eq. (7.49),

we �nd

S(D1D2D3) = 1− 1

d

∑
x1x2

|U (2)
x1x2
|2 logd |U

(2)
x1x2
|2 − 1

d

∑
x2x3

|U (3)
x2x3
|2 logd |U

(3)
x2x3
|2, (7.54)
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or, S(D1D2D3) = S(D1) + S(D2|D1) + S(D3|D2). However, using the chain rule for en-

tropies [59], the tripartite entropy can also be written generally in the form S(D1D2D3) =

S(D1) + S(D2|D1) + S(D3|D2D1). From these two expression, we see immediately that

S(D3|D2D1) = S(D3|D2). (7.55)

Thus, the entropy ofD3 is not reduced by conditioning on more than the state of the previous

device D2. This is the Markov property for entropies [68,69].

The Markov property further implies that D1 and D3 are independent from the per-

spective of D2, since the conditional mutual entropy [59] vanishes (see the gray region in

Fig. 7.10),

S(D1 :D3|D2) = S(D3|D2)− S(D3|D2D1) = 0 . (7.56)

This result is consistent with the notion that the measurement with D2 collapsed the state of

the wave function, erasing any (conditional) information that D3 could have had about the

prior measurement with D1. The conditional mutual entropy does not vanish for unampli�ed

measurements, S(A1 : A3|A2) ≥ 0, re�ecting the fundamentally non-Markovian nature of

the chain of quantum ancillae. In other words, as long as the measurement chain remains

unampli�ed (for example, the A2 subsystem in (7.9)), the intermediate measurement does

not erase the correlations between A1 and A3 (compare the gray region in Fig. 7.10 to the

same region in Fig. 7.4).

We now provide a formal proof of the statement that the chain of devices that ampli�ed

the quantum ancillae is equivalent to a quantum Markov chain.

Theorem 3. A set of consecutive quantum measurements is non-Markovian until it is am-
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pli�ed. Speci�cally, the sequence of devices Di, . . . , Dj, with i < j, that measure (amplify)

the quantum ancillae Ai, . . . , Aj (which themselves measured a quantum system Q) forms a

quantum Markov chain:

S(Dj |Dj−1 . . . Di) = S(Dj |Dj−1). (7.57)

Proof. We �rst show that the Markov property of probabilities implies the Markov property

for entropies (see, e.g., Refs. [68,69]). If consecutive measurements on a quantum system can

be modeled as a Markov process, the probability to observe outcome xj in the jth device,

conditional on previous measurement outcomes, depends only on the last outcome xj−1,

p(xj |xj−1 . . . xi) = p(xj |xj−1). (7.58)

Inserting Eq. (7.58) into the expression for the conditional entropy [58] gives

S(Dj |Dj−1 . . . Di) = −
∑
xi...xj

p(xi . . . xj) logd p(xj |xj−1 . . . xi)

= −
∑
xi...xj

p(xi . . . xj) logd p(xj |xj−1) .

(7.59)

A partial summation over the joint probability distribution gives

p(xj−1xj) =
∑

xi···xj−2

p(xi . . . xj), (7.60)

so that the entropic condition satis�ed by a quantum Markov chain is

S(Dj |Dj−1 . . . Di) = −
∑

xj−1xj

p(xj−1xj) logd p(xj |xj−1)

= S(Dj |Dj−1), .

(7.61)
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We now show that the chain of ampli�ed measurements satis�es the entropic Markov

property (7.61). For n consecutive measurements, the state |Ψ〉 = |QA1 . . . An〉 of Q and all

ancillae is given by

|Ψ〉 =
∑

x1···xn
α

(i)
xi
U

(2)
x1x2

. . . U
(n)
xn−1xn

|x̃n x1 . . . xn〉. (7.62)

After amplifying this state, we �nd that the density matrix for the joint set of sequential

devices, Di, . . . , Dj , with i < j, is diagonal, as expected,

ρ(Di . . . Dj) =
∑
xi

q
(i)
xi
|xi〉〈xi| ⊗

∑
xi+1

|U (i+1)
xixi+1

|2 |xi+1〉〈xi+1| ⊗ · · · ⊗
∑
xj

|U (j)
xj−1xj

|2 |xj〉〈xj |.

(7.63)

The probability distribution q(i)
xi

of the ith device can be obtained from (7.29). The entropy

of (7.63) is

S(Di . . . Dj)=−
∑

xi...xj−1

[
q

(i)
xi
|U (i+1)
xixi+1

|2. . . |U (j−1)
xj−2xj−1

|2
]
logd

[
q

(i)
xi
|U (i+1)
xixi+1

|2. . . |U (j−1)
xj−2xj−1

|2
]

−
∑

xj−1xj

q
(j−1)
xj−1

|U (j)
xj−1xj

|2 logd |U
(j)
xj−1xj

|2,

(7.64)

where q(j−1)
xj−1

is the probability distribution of Dj−1. The �rst term in Eq. (7.64) is just

the joint entropy S(Di . . . Dj−1), so that the entropy of the jth device, conditional on the

previous devices, is

S(Dj |Dj−1 . . . Di) = S(Di . . . Dj)− S(Di . . . Dj−1)

= −
∑

xj−1xj

q
(j−1)
xj−1

|U (j)
xj−1xj

|2 logd |U
(j)
xj−1xj

|2.
(7.65)

All that remains is to show that (7.65) is equal to S(Dj |Dj−1). A simple calculation
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using the density matrix for two ampli�ed consecutive measurements with Dj−1 and Dj ,

ρ(Dj−1Dj) =
∑

xj−1xj

q
(j−1)
xj−1

|U (j)
xj−1xj

|2 |xj−1xj〉〈xj−1xj |, (7.66)

yields the joint entropy,

S(Dj−1Dj) =−
∑
xj−1

q
(j−1)
xj−1

logd q
(j−1)
xj−1

−
∑

xj−1xj

q
(j−1)
xj−1

|U (j)
xj−1xj

|2 logd |U
(j)
xj−1xj

|2. (7.67)

The �rst term in this expression is the entropy of Dj−1 (all marginal density matrices and

entropies are the same for ampli�ed and unampli�ed ancillae; this is proved formally later

in Lemma 2 of Sec. 7.4.1),

S(Dj−1) = H[q(j−1)] = −
∑
xj−1

q
(j−1)
xj−1

logd q
(j−1)
xj−1

. (7.68)

The conditional entropy S(Dj |Dj−1) is thus

S(Dj |Dj−1) = S(Dj−1Dj)− S(Dj−1)

= −
∑

xj−1xj

q
(j−1)
xj−1

|U (j)
xj−1xj

|2 logd |U
(j)
xj−1xj

|2,
(7.69)

which is the same as (7.65).

We emphasize that the result that ampli�ed measurements are Markovian holds for mea-

surements of unprepared as well as prepared quantum states.

Corollary 3.1. The Markovian nature of ampli�ed measurements implies that the devices Di

and Dj share no entropy (are independent) from the perspective of the intermediate devices,
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Di+1, . . . , Dj−1, since the conditional mutual entropy vanishes:

S(Di : Dj |Di+1 . . . Dj−1) = 0. (7.70)

Proof. The conditional mutual entropy is de�ned [59] as a di�erence between two conditional

entropies,

S(Di : Dj |Di+1 . . . Dj−1) = S(Dj |Dj−1 . . . Di+1)− S(Dj |Dj−1 . . . Di). (7.71)

From Theorem 3, the two quantities on the right hand side of this expression are both equal

to S(Dj |Dj−1). Therefore the conditional mutual entropy vanishes [69].

For three devices, the Markov property is

S(Di−1 : Di+1|Di) = S(Di+1|Di)− S(Di+1|DiDi−1) = 0. (7.72)

We see that, from the strong subadditivity (SSA) of quantum entropy [66,67],

S(Di+1|DiDi−1) ≤ S(Di+1|Di), (7.73)

ampli�ed measurements satisfy SSA with equality.

The previous theorem established that the sequence of ampli�ed measurements is a

quantum Markov chain. Now, we will demonstrate that unampli�ed measurements are

non-Markovian. In the following calculation, we use the state (7.34) for measurements of

unprepared quantum states for simplicity. We will �nd that the Markov property (7.61) is

violated in this case, so that in general unampli�ed measurements are non-Markovian.

First, consider the joint density matrix for the sequence of quantum ancillae Ai, . . . , Aj
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(with i < j), similarly to (7.34). As in Eq. (7.35), we �nd

ρ(Ai . . . Aj) =
1

d

∑
xixj

p
(ij)
xixj
|xi〉〈xi| ⊗ |φxixj 〉〈φxixj | ⊗ |xj〉〈xj |, (7.74)

where the coe�cients p(ij)
xixj

= |β(ij)
xixj
|2 and the normalized, but non-orthogonal states |φxixj 〉

were de�ned in Eq. (7.36). The joint states |xi φxixj xj〉 are orthonormal, so the entropy of

Eq. (7.74) is simply

S(Ai . . . Aj) = 1− 1

d

∑
xixj

p
(ij)
xixj

logd p
(ij)
xixj

. (7.75)

The coe�cients p(ij)
xixj

can be equivalently expressed in terms of U (j) as

p
(ij)
xixj

= |β(ij)
xixj
|2 =

∑
xj−1

p
(i,j−1)
xixj−1

|U (j)
xj−1xj

|2. (7.76)

Next, we use the log-sum inequality [56] to rewrite the joint entropy (7.75) as an inequal-

ity. The log-sum inequality states that for non-negative numbers a1, . . . , ad and b1, . . . , bd,

d∑
xi=1

axi log
axi
bxi
≥

 d∑
xi=1

axi

 log

∑d
xi=1 axi∑d
xi=1 bxi

, (7.77)

with equality if and only if axi/bxi = const. Inserting (7.76) into (7.75) and using the

log-sum inequality with bxj−1 = 1 and axj−1 = p
(i,j−1)
xixj−1

|U (j)
xj−1xj

|2, we �nd that the joint

entropy is bounded from below by

S(Ai . . . Aj) ≥−
1

d

∑
xixj−1

p
(i,j−1)
xixj−1

logd p
(i,j−1)
xixj−1

− 1

d

∑
xj−1xj

|U (j)
xj−1xj

|2 logd |U
(j)
xj−1xj

|2.
(7.78)
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The �rst term on the right hand side of Eq. (7.78) is simply S(Ai . . . Aj−1) − 1, while the

second term is S(Aj−1Aj)− 1. Given that S(Aj−1) = 1, it is straightforward to show that

Eq. (7.78) can be rewritten as a di�erence between two conditional entropies,

S(Aj |Aj−1)− S(Aj |Aj−1 . . . Ai) ≤ 1, (7.79)

with equality only when p(i,j−1)
xixj−1

|U (j)
xj−1xj

|2 is a constant. This occurs when |U (j)
xj−1xj

|2 =

1/d and |U (`)
x`−1x`

|2 = 1/d for one or more of the ` = i+1, . . . , j−1 matrices. This shows that

conditioning on more than just the state of the last ancilla Aj−1 will reduce the conditional

entropy of ancilla Aj (by at most 1). Since Eq. (7.79) is not equal to zero in general, we

conclude that the sequence of unampli�ed measurements is non-Markovian.

In the next section, we will compute the information a measuring device has about the

quantum system or other devices in a sequence of measurements. In particular, we will

show that amplifying measurements (which yields a quantum Markov chain) reduces the

information that can be obtained about other systems, as compared to measurements that

remain unampli�ed.

7.4 E�ects of Amplifying Quantum Measurements

In the previous Secs. 7.2 and 7.3, we focused on consecutive measurements of a quantum

system and discussed the concepts of non-Markovian (unampli�ed) and Markovian (ampli�-

able) sequences, respectively. It is reasonable to ask whether there are entropic relationships

between those two kinds of measurements. Introducing a second step to von Neumann's

second stage serves precisely to establish such relationships. In this section, we establish

the following three properties: Markovian devices carry less information about the quantum

172



system than non-Markovian devices; the shared entropy between consecutive non-Markovian

devices is larger than the respective quantity for ampli�ed measurements; the last Markovian

device in a quantum chain is inherently more random than its non-Markovian counterpart,

given the combined state of all previous devices.

7.4.1 Information About the Quantum System

We �rst calculate how much information about the quantum system, Q, is encoded in the

last device in a chain of consecutive measurements of Q. To do this, we prove two Lemmas

that state that the marginal entropy of the quantum system is always equal to the entropy

of the last ancilla in the chain of measurements, and that the marginal entropy of a quantum

ancilla is una�ected by ampli�cation.

Lemma 1. The entropy of the quantum system, Q, is equal to the entropy of the last ancilla,

An, in the chain of measurements:

S(Q) = S(An). (7.80)

Proof. Consider a series of consecutive measurements on a quantum system, Q, with n

ancillae. In general, following the measurements, the joint state of the quantum system and

all ancillae |Ψ〉 = |QA1 . . . An〉 is given by the pure state [see also Eq. (7.25)]

|Ψ〉 =
∑

x1...xn

α
(1)
x1

U
(2)
x1x2

. . . U
(n)
xn−1xn

|x̃n x1 . . . xn〉. (7.81)

The density matrix for the quantum system is found by tracing out all ancilla states from
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the full density matrix associated with (7.81),

ρ(Q) = TrA1...An
(|Ψ〉〈Ψ|) =

∑
xn

q
(n)
xn |x̃n〉〈x̃n|, (7.82)

where q(n)
xn is the probability distribution for the last ancilla An that can be obtained generally

from Eq. (7.29). Clearly, (7.82) is equivalent to the density matrix for the last ancilla, and

so the corresponding entropies are the same: S(Q) = S(An) = H[q(n)]. An alternative

proof is to note that a Schmidt decomposition of the pure state |Ψ〉〈Ψ| implies that S(Q) =

S(A1 . . . An). And, by Theorem 6 (see Sec. 7.4.2), S(An) = S(A1 . . . An), so that S(Q) =

S(An).

Lemma 2. The entropy of a quantum ancilla, Ai, is unchanged if it is measured by an

amplifying device, Di, so that for all i in the chain of measurements:

S(Ai) = S(Di). (7.83)

Proof. Amplifying the ith ancilla Ai in (7.81) with Di yields the joint density matrix for Ai

and Di,

ρ(AiDi) =
∑
xi

q
(i)
xi
|xixi〉〈xixi|, (7.84)

where q(i)
xi

is the probability distribution for Ai, as de�ned in (7.29). The two subsystems

are perfectly correlated so that the density matrix and marginal entropy of Ai is equivalent

to Di: S(Di) = S(Ai) = H[q(i)].

In the remaining sections, we will use the shortened notation S(Ai) = S(Di) = Si for

the marginal entropies. Using Lemmas 1 and 2, we are now ready to prove the �rst theorem
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regarding information about the quantum system.

Theorem 4. The information that the last device in a series of measurements has about the

quantum system is reduced when the measurements are ampli�ed. That is,

S(Q : Dn) ≤ S(Q : An), (7.85)

for n consecutive measurements of a prepared quantum state, Q.

Proof. We start with the state (7.81) for an unampli�ed chain of consecutive measurements

of a prepared quantum state, Q, with n ancillae. Tracing out all previous ancilla states

from (7.81), the joint density matrix for the quantum system and the last ancilla is

ρ(QAn) =
∑

xn−1xnx
′
n

q
(n−1)
xn−1

U
(n)
xn−1xn

U
(n) ∗
xn−1x

′
n
|x̃n xn〉〈x̃′n x′n|, (7.86)

where q(n−1)
xn−1

is An−1's probability distribution.

If we amplify the measurement chain (or, equivalently, just the last measurement) the

state (7.86) becomes diagonal. That is,

ρ(QDn) =
∑

xn−1xn

q
(n−1)
xn−1

|U (n)
xn−1xn

|2 |x̃n xn〉〈x̃n xn|. (7.87)

Note that the ampli�cation is equivalent to a completely dephasing channel [197�199] (see

also [25]) since we can write

ρ(QDn) =
∑
xn

Pxn ρ(QAn)Pxn , (7.88)

where Pxn = |xn〉〈xn| are projectors on the state of An. In other words, ρ(QDn) is formed

from the diagonal elements of ρ(QAn). The dephasing channel is also called the phase-

175



damping channel and serves as a quantum mechanical noise model where phase information

about a quantum state is lost. For example, if the initial quantum state of a system A is

|ψ〉 = α|0〉A + β|1〉A, with density matrix ρA, then the output of the dephasing channel

is ρ′A = (1 − p) ρA + p (P0 ρA P0 + P1 ρA P1). That is, with probability (1 − p) nothing

happens to the quantum state, and with probability p/2 one of the projectors Pi = |i〉A〈i|

is applied. The channel is equivalent to the phase-�ip channel since it can be written as

ρ′A = (1 − p/2) ρA + p/2Z ρA Z, where the Pauli matrix Z performs a phase �ip. In the

basis |0〉A, |1〉A, the depolarizing channel yields

ρ′A =

(
|α|2 (1− p)αβ∗

(1− p)α∗β |β|2

)
, (7.89)

so that for a completely dephasing channel, p = 1, the o�-diagonal elements vanish and the

state of A becomes completely incoherent.

To show that the ampli�ed mutual entropy is reduced as in Eq. (7.85), it is su�cient

to show that the joint entropy is increased. The mutual entropy for two subsystems is

de�ned [59] as S(Q : An) = S(Q) +S(An)−S(QAn) and similarly for S(Q : Dn). Since, by

Lemma 2, the marginal entropies are unchanged by the ampli�cation, S(An) = S(Dn), we

have

S(Q : Dn) = S(Q : An) + S(QAn)− S(QDn). (7.90)

Therefore, we just need to show that S(QDn) ≥ S(QAn), which is easiest by considering

the relative entropy of coherence [200, 201]. This quantity, Crel.ent.(ρ) = S(ρdiag) − S(ρ),

is the di�erence between the entropies of a density matrix ρ and a matrix ρdiag that is

formed from the diagonal elements of ρ. It is derived by minimizing the relative entropy

176



S(ρ ‖ δ) = Tr(ρ log ρ − ρ log δ) (see, e.g., [202, 203]) over the set of incoherent matrices δ.

By Klein's inequality [204], the relative entropy is non-negative so that S(ρdiag) ≥ S(ρ),

with equality if and only if ρ is an incoherent matrix. In our case, ρ and ρdiag are given by

ρ(Q : An) and ρ(Q : Dn), respectively. Therefore, it follows that S(QDn) ≥ S(QAn) and

S(Q : Dn) ≤ S(Q : An), (7.91)

with equality if and only if ρ(QAn) is already diagonal in the ancilla product basis.

To directly compute the mutual entropies in Theorem 4, we �rst diagonalize the density

matrix (7.86) with the orthonormal states |Φxn−1〉 =
∑
xn U

(n)
xn−1xn

|x̃n xn〉, so that

ρ(QAn) =
∑
xn−1

q
(n−1)
xn−1

|Φxn−1〉〈Φxn−1|. (7.92)

The joint entropy of this state is simply the marginal entropy of An−1. That is, S(QAn) =

S(An−1) = Sn−1, which can also be derived using the Schmidt decomposition and the results

of Theorem 6 (see Sec. 7.4.2). Thus, using Lemma 1, the information that the last ancilla

has about the quantum system is

S(Q : An) = 2Sn − Sn−1. (7.93)

If we now amplify the measurement chain (or, equivalently, just the last measurement)

the information that Dn has about Q will be reduced from (7.93). From Eq. (7.87), the joint

density matrix of Q and Dn can also be written as

ρ(QDn) =
∑
xn

q
(n)
xn |x̃n xn〉〈x̃n xn|, (7.94)
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Figure 7.12: E�ects of ampli�cation on (a) the quantum system and the unampli�ed ancilla
according to Eq. (7.86), and on (b) the quantum system and the amplifying device according
to Eq. (7.94). The information that the last device has about the quantum system is reduced
when the measurement is ampli�ed. That is, S(Q : Dn) ≤ S(Q : An).

which leads to S(QDn) = S(Dn) = Sn. Therefore, amplifying the measurement reduces the

quantity (7.93) to

S(Q : Dn) = Sn, (7.95)

where we used Lemmas 1 and 2 to write S(Q) = S(An) = S(Dn) = Sn. This quantity

depends explicitly on only the last measurement, unlike (7.93), which depends on the last

two. The amount of information that the last device has about the quantum system before

ampli�cation, (7.93), and after, (7.95), is related by

S(Q : Dn) = S(Q : An) + Sn−1 − Sn . (7.96)

Thus, the marginal entropies in a chain of consecutive measurements never decrease, Sn ≥

Sn−1, since S(Q : Dn) ≤ S(Q : An). The entropy Venn diagrams for the devices An and

Dn and the quantum system are shown in Fig. 7.12.

We can illustrate this loss of information about the quantum system by considering

consecutive qubit measurements. Suppose that the eigenbasis of observable (n− 1) is at an
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angle θn−1 = 0 relative to observable (n− 2), and that observable n is at an angle θn = π/4

relative to observable (n − 1). In this case, the marginal entropies are Sn−1 = Sn−2 =

H[q(n−2)] and Sn = 1 bit. The last device, Dn, has one bit of information about the quantum

system, which is less than that of the unampli�ed ancilla: S(Q : An) = 2 −H[q(n−2)] ≥ 1.

Interestingly, how much we know about the state of Q prior to ampli�cation is controlled by

the entropy of an ancilla, An−2, located two steps down the measurement chain.

7.4.2 Information About Past Measurements

We now calculate how much information is encoded in a measurement device about the state

of the measurement device that just preceded it in the quantum chain. In particular, we will

show that the shared entropy S(An : An−1) between the last two devices in the measurement

chain is reduced by the ampli�cation process so that S(Dn : Dn−1) ≤ S(An : An−1). These

calculations have obvious relevance for the problem of quantum retrodiction [179], but we

do not here derive optimal protocols to achieve this.

Theorem 5. The information that the last device has about the previous device is reduced

when that measurement is ampli�ed. That is,

S(Dn : Dn−1) ≤ S(An : An−1) . (7.97)

Proof. From the wave function (7.81), the density matrix for the last two ancillae in the

measurement chain is

ρ(An−1An) =
∑

xn−2xn−1
x′n−1xn

q
(n−2)
xn−2

U
(n−1)
xn−2xn−1

U
(n−1)∗
xn−2x

′
n−1

U
(n)
xn−1xn

U
(n)∗
x′n−1xn

|xn−1xn〉〈x′n−1xn|.

(7.98)
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Ampli�cation removes the o�-diagonals of ρ(An−1An) so that

ρ(Dn−1Dn) =
∑
xn−1

Pxn−1 ρ(An−1An)Pxn−1 , (7.99)

where Pxn−1 = |xn−1〉〈xn−1| are projectors on the state of An−1. Note that, from (7.98), it

is su�cient to amplify just the second-to-last measurement with An−1. Since the marginal

entropies are unchanged by the ampli�cation (Lemma 2), the amount of information before

ampli�cation, S(An : An−1), and after, S(Dn : Dn−1), is related by

S(Dn :Dn−1)=S(An :An−1) + S(An−1An)− S(Dn−1Dn). (7.100)

In a similar fashion to the calculations in Theorem 4, it is evident from (7.99) that the joint

entropy is increased, S(Dn−1Dn) ≥ S(An−1An). It follows that the information that the

last device has about the device that preceded it in the measurement sequence is reduced:

S(Dn : Dn−1) ≤ S(An : An−1), (7.101)

with equality if and only if ρ(An−1An) is already diagonal in the ancilla product basis.

Using the case of qubits, we can show how ampli�cation reduces the amount of informa-

tion about past measurements. In this example, suppose that the last two measurements

in the chain are each made at the relative angle π/4. As expected, the ampli�ed density

matrix (7.99) becomes uncorrelated, ρ(Dn−1Dn) = 1
2 1Dn−1

⊗ 1
2 1Dn , where 1 is the 2× 2

identity matrix, and the shared entropy vanishes S(Dn : Dn−1) = 0. In other words, the

last device has no information about the one preceding it. In contrast, prior to ampli�cation

the density matrix (7.98) is coherent with joint entropy S(An−1An) = 1 +Sn−2. Therefore,

the corresponding shared entropy is nonzero, S(An : An−1) = 1 − Sn−2 = 1 − H[q(n−2)],
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revealing that information about the previous measurement survives the sequential π/4 mea-

surements (as long as An−1 is not ampli�ed).

The calculations described above can be extended to include the information that the

last device has about all previous devices in the measurement chain. We claim in Theorem 6

that the ampli�cation process reduces this information by a speci�c minimum (calculable)

amount. To prove this statement, we make use of Theorem 1, where we showed that the

joint entropy of all quantum ancillae that measured a prepared quantum system is simply

equal to the entropy of last ancilla in the unampli�ed chain.

Theorem 6. For n consecutive measurements of a quantum system, the information that

the last device has about all previous measurements is reduced by ampli�cation by at least an

amount Σn:

S(Dn : Dn−1 . . . D1) ≤ S(An : An−1 . . . A1)− Σn , (7.102)

where Σn = S(An−1|An) ≥ 0 is a non-negative conditional entropy that quanti�es the un-

certainty about the prior measurement given the last.

Proof. We begin by recognizing that the ampli�ed mutual entropy S(Dn : Dn−1 . . . D1)

for the full measurement chain is equal to S(Dn : Dn−1) by the Markov property (see

Theorem 3). Then, by Theorem 5, we can place an upper bound on the ampli�ed information

S(Dn : Dn−1 . . . D1) = S(Dn : Dn−1) ≤ S(An : An−1), (7.103)

where S(An : An−1) is the mutual entropy before amplifying the measurement. Next, we

will relate S(An : An−1) to S(An : An−1 . . . A1). From Theorem 1, the latter quantity can
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be written simply as

S(An : An−1 . . . A1) = Sn−1, (7.104)

so that with the de�nition of S(An : An−1), we come to

S(An : An−1 . . . A1) = S(An : An−1) + Σn, (7.105)

where Σn = S(An−1|An) represents the information gained by conditioning on all previous

measurements. Inserting (7.105) into the inequality (7.103), we come to

S(Dn : Dn−1 . . . D1) ≤ S(An : An−1 . . . A1)− Σn. (7.106)

The information is reduced as long as Σn ≥ 0. To show this, we recall the joint density

matrix (7.98) for An−1 and An. This state can be written as a classical-quantum state

ρ(An−1An) =
∑
xn

q
(n)
xn ρxn ⊗ |xn〉〈xn|, (7.107)

where

q
(n)
xn ρxn=

∑
xn−2

q
(n−2)
xn−2

p
(n−2,n)
xn−2xn

|φxn−2xn〉〈φxn−2xn |, (7.108)

and the non-orthogonal states |φxn−2xn〉 were previously de�ned in Eq. (7.36). In this

block-diagonal form, the entropy is

S(An−1An) = Sn +
∑
xn

q
(n)
xn S(ρxn), (7.109)
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so that the quantity of interest, Σn, can be written as

Σn = S(An−1|An) =
∑
xn

q
(n)
xn S(ρxn) ≥ 0. (7.110)

This quantity is clearly non-negative since both q(n)
xn ≥ 0 and S(ρxn) ≥ 0 ∀ xn. Therefore,

with Σn ≥ 0, we �nd that the information is indeed reduced by the ampli�cation process,

and by at least an amount equal to Σn.

Continuing with our qubit example that followed Theorem 5, if the last two measurements

were each made at the relative angle π/4, the ancilla An has 1 bit of information about the

joint state of all previous ancillae. That is, S(An : An−1 . . . A1) = 1 bit, while the amplifying

device Dn has no information at all, S(Dn : Dn−1 . . . D1) = 0.

Corollary 6.1. Amplifying the measurement chain increases the entropy of the last device,

when conditioned on all previous devices, by at least an amount Σn:

S(Dn|Dn−1 . . . D1) ≥ S(An|An−1 . . . A1) + Σn. (7.111)

Proof. By de�nition, the mutual entropy and conditional entropy are related by

S(Dn : Dn−1 . . . D1) = Sn − S(Dn|Dn−1 . . . D1), (7.112)

which, from Theorem 6, is bounded from above by S(An : An−1 . . . A1) − Σn = Sn −

S(An|An−1 . . . A1)− Σn. Therefore,

S(Dn|Dn−1 . . . D1) ≥ S(An|An−1 . . . A1) + Σn, (7.113)

and the uncertainty in the last measurement is increased by at least an amount Σn.
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Figure 7.13: Diagram (a) before ampli�cation with n ancillae that consecutively measured
a quantum system Q, and (b) after ampli�cation. The information S(Q : An) is reduced
to S(Q : Dn), and S(An :An−1 . . . A1) to S(Dn : Dn−1 . . . D1). The zero ternary mutual
entropy in (a) indicates that the underlying state of QA1 . . . An is pure.

This section quanti�ed a number of unsurprising, but nevertheless important results:

amplifying measurements reduces information, and increases uncertainty about quantum

states. The key quantity that characterizes the di�erence between unampli�ed and ampli�ed

chains is Σn, which quanti�es how much we do not know about the state preparation, An−1,

given the state determination, An. Depending on the relative state between An−1 and An,

we may know nothing (Σn = 1), or everything (Σn = 0). We summarize the results presented

in this section with the entropy Venn diagrams in Fig. 7.13.

7.5 Applications of Consecutive QuantumMeasurements

The formalism developed in this chapter can be directly applied to several interesting situa-

tions. Here, we focus speci�cally on the quantum Zeno e�ect and quantum state preparation.

184



7.5.1 Quantum Zeno and Anti-Zeno E�ects

In the quantum Zeno e�ect [192,205,206], a quantum system that is observed repeatedly and

su�ciently rapidly using projective measurements will be protected against state transitions

from its initial state. If a series of n measurements are made in a time T (so that the

measurements are spaced in time by T/n), then the probability the state will survive goes

to one as n → ∞. In this section, we derive results for the quantum Zeno and anti-Zeno

e�ects in the context of unitary consecutive measurements. Instead of the standard approach

where a time-varying quantum state is controlled by quantum measurements of the same

observable, we study a static quantum state consecutively measured by quantum detectors

where the measured observable changes in time. At the end of the calculation, we show that

these two perspectives are equivalent.

We start with a two-level quantum system in the state

|Q〉 =
√
p |0〉+

√
1− p |1〉, (7.114)

with arbitrary p, which is written in the eigenbasis of the �rst observable to be measured

with the device D1. It is then subsequently measured by D2 . . . Dn+1, with each observable's

eigenbasis at an angle π/(4n) relative to the previous one, completing a full π/4 rotation

after n observations. The density matrix for the preparation with D1 (equivalently for Q) is

ρ(D1) = p|0〉〈0|+(1−p)|1〉〈1|, which has an entropy S(D1) = −p log2 p− (1−p) log2(1−p).

The density matrix for the second device is

ρ(D2) =
∑
j

(
p |U0j |2 + (1− p) |U1j |2

)
|j〉〈j| , (7.115)

where the transformation between the two observables' eigenbases can be written
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Figure 7.14: Entropies for two consecutive measurements D2 and D3, after the preparation
with D1, of the quantum state (7.114). The variable p characterizes the initial state of Q.
The eigenbasis of each observable is at an angle of π/8 relative to the previous one (n = 2).

U =

(
cos( π4n) − sin( π4n)

sin( π4n) cos( π4n)

)
. (7.116)

The entropy of the second device is S(D2) = −q(2) log2 q
(2) − (1− q(2)) log2(1− q(2)) with

q(2) = 1/2 + (p− 1/2) cos
( π

2n

)
, (7.117)

the probability to observe the state |0〉 for the second measurement. Figure 7.14 shows the

entropies S(D1), S(D2), and S(D3) for measurements using D2 and D3 after the preparation

with device D1.

In general, following the preparation, the probability q(n+1) to observe the state |0〉 after

all n measurements is

q(n+1) =
1

2
+

(
p− 1

2

)
cosn

( π
2n

)
→ p as n→∞ . (7.118)

We see that the measurement probabilities after the sequence of measurements are the same

as those of the initial quantum system and the density matrix of the last device is equal to

that of the preparation with D1. For polarization measurements, for example, this results in
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perfect transmission of an initially polarized beam even though the n polarization rotators

would eventually rotate the polarization to an orthogonal state [207].

In the usual description of the quantum Zeno e�ect, the quantum state evolves unitarily in

time between a sequence of measurements made in the same basis. Suppose that after the �rst

measurement using D1, the quantum state is rotated through an angle −π/(4n) (using, e.g.,

polarization rotators in an optics setting to rotate a photon's polarization [208]) according

to (7.116). Applying such a transformation to the quantum state, U(−π/4n)⊗1 |QD1〉, and

then measuring a second time using D2 in the same basis as the �rst measurement yields

a density matrix for D2 (and Q) with probabilities identical to (7.117). Therefore, both

descriptions are equivalent since the relative angles between the states are the same in each

case.

The anti-Zeno e�ect is often described as the complete destruction of a quantum state

due to incoherent consecutive measurements [209�211]. In the present language, this corre-

sponds to the randomization of a given (prepared) quantum state after consecutive measure-

ments at random angles with respect to the initial state. We begin again with the prepared

state (7.114), but now observe it consecutively using measurement devices Dk and relative

angles θk drawn from a uniform distribution on the interval [0, π/4]. The probability to

observe the state |0〉 after all n measurements with random angles is now

q(n+1) =
1

2
+

(
p− 1

2

)
Πnk=1 cos(2θk) . (7.119)

In order to obtain the most likely state probability we calculate the expectation value,

E
[
Πnk=1 cos(2θk)

]
= Πnk=1E [cos(2θk)] =

(
2

π

)n
, (7.120)
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so that E
[
q(n+1)

]
→ 1/2 as n→∞. Thus, any quantum state is randomized via consecutive

quantum measurements in random bases. A similar result was derived for the dephasing of

photon polarization in Ref. [207].

7.5.2 Preparing Quantum States

For our �nal application, we discuss how to prepare quantum states by considering consecu-

tive measurements on unprepared quantum states. Suppose a quantum system is prepared

in the known state

ρ(Q) =
d−1∑
x=0

px |x̃〉〈x̃| , (7.121)

which we already wrote in the eigenbasis of the �rst observable to be measured after the

preparation. We can always prepare a state like (7.121) by measuring an unprepared quan-

tum state (5.79), with the pair A1D1 in a given, but arbitrary basis. Then, a second

measurement with A2D2 of an observable at a relative angle θ2 gives rise to the state

|QRA1D1A2D2〉 =
1√
d

∑
x1x2

U
(2)
x1x2

|x̃2 x1 x1x1 x2x2〉. (7.122)

From this we can compute the operator [59] describing the state of the quantum system,

conditional on the state of the �rst device, D1,

ρ(Q|D1) = ρ(QD1)
(
ρ(D1)−1 ⊗ 1Q

)
=
∑
x1

ρ
x1
Q ⊗ |x1〉〈x1| ,

(7.123)

where ρ(D1)−1 is the inverse of the density matrix. The density matrix ρx1
Q is the prepared

state (7.121) of the quantum system, given that the outcome x1 was observed in the �rst
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measurement,

ρ
x1
Q =

TrD1

[
Px1ρ(QD1)P

†
x1

]
TrQD1

[
Px1ρ(QD1)P

†
x1

] =
∑
x2

|U (2)
x1x2
|2 |x̃2〉〈x̃2|. (7.124)

Here, Px1 = |x1〉〈x1| are projectors on the state of D1. If we choose for the quantum state

preparation the outcome x1 = 0, for example, then px2 = |U (2)
0x2
|2 provides the probability

distribution for the quantum system, and we arrive at the desired prepared state (7.121)

from (7.124).

The puri�cation of (7.121) in terms of the orthogonal states of ancilla A2 is

|QA2〉 =
∑
x2

√
px2 |x̃2〉|x2〉, (7.125)

which is an entangled state with the marginal entropies S(Q)=S(A2)=H[p]. If we rename

A2 to A1, then expression (7.125) is equivalent to (5.75). Equipped with this state prepara-

tion, we can now make the usual consecutive (ampli�ed or unampli�ed) measurements of Q

with A2D2, A3D3, etc.

7.6 Conclusions

Conventional wisdom in quantum mechanics dictates that the measurement process �col-

lapses� the state of a quantum system so that the probability that a particular detector �res

depends only on the state preparation and the measurement chosen. This assertion can be

tested by considering sequences of measurements of the same quantum system. If a �memory�

of the �rst measurement (the state preparation) persists beyond the second measurement,

then a reduction of the wave packet can be ruled out. We discussed two classes of quantum
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measurement: those performed within a closed system where every part of a measurement

device is under control (unampli�ed measurements), and those performed within an open

system, where part of the pointer variable is ignored (ampli�ed measurements). We found

that sequences of quantum measurements in closed systems are non-Markovian (retaining

the memory of past measurements) while sequences of open-system measurements obey the

Markov property. In the latter case, the probability distribution of future measurement re-

sults only depends on the state preparation and the measurement chosen. It is clear from

our construction that the Markovian measurements are a special case of the non-Markovian

ones, and that the loss of memory is not a fundamental property of quantum measurements,

but is merely a consequence of the loss of quantum information when tracing over degrees

of freedom that participated in the measurement. We quanti�ed this loss by calculating

the amount of information lost when observing coherent quantum ancillae using incoherent

devices.

We have found that the entropy of coherent chains of measurements is entirely determined

by the entropy at the boundary of the chain, namely the entropy of the state preparation

(the �rst measurement in the chain) and the last measurement. (If the chain is started on

a known state, then the entropy of the chain is contained in the last measurement only).

This property is a direct consequence of the unitarity of quantum measurements, and signi-

�es that any quantum measurement outcome is constrained by its immediate past and its

immediate future. It has not escaped our attention that this property of quantum chains is

reminiscent of the holographic principle, which posits that the description of a system can be

encoded entirely on its boundary alone. Because the holographic principle is often thought

to have its origin in an information-theoretic description of space-time [212], it is perhaps

not surprising that an information-theoretic analysis of chains of measurements would yield
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precisely such an outcome. In particular, it is perhaps not too hard to imagine that the

past-future relationship that consecutive quantum measurements entail create precisely the

partial order required for the �causal sets� program for quantum gravity [213]. Of course, to

recover space-time from sets of measurements we would need to consider not just sequential

measurements on the same system, but multiple parallel chains that are entangled with each

other, creating a network rather than a chain (we have already shown in Ch. 6 that the

unitary formalism deployed here can be extended to parallel measurements when discussing

the Bell-state quantum eraser [141]). In that respect, the network of quantum measure-

ments is more akin to van Raamsdonk's [214] tensor networks, created using entangling and

disentangling operations (see also [215]). Incidentally, the present formalism implies the ex-

istence of a disentangling operation for consecutive quantum measurements that can serve

as a primitive for generating remote quantum entanglement [183] (see Ch. 8).

Using a quantum-information-theoretic approach, we have argued that a collapse picture

makes predictions that di�er from those of the unitary (relative state) approach if multiple

consecutive non-Markovian measurements are considered. Should future experiments cor-

roborate the manifestly unitary formulation we have outlined, such results would further

support the notion of the reality of the quantum state [216] and that the wave function is

not merely a bookkeeping device that summarizes an observer's knowledge about the sys-

tem [195, 196]. We hope that moving discussions about the nature of quantum reality from

philosophy into the empirical realm will ultimately lead to a more complete (and satisfying)

understanding of quantum physics.
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Chapter 8

Quantum Disentangling Operations

8.1 Introduction

One of the fundamental results of the consecutive measurement scheme discussed in Ch. 7

is that the chain of quantum ancillae is coherent as long as it remains unampli�ed. That

is, the joint density matrices for the unampli�ed quantum ancillae are non-diagonal in the

ancilla product basis and, speci�cally, are classical-quantum states. In this chapter, I seek to

exploit this fact and construct a general disentangling protocol in which a chain of ancillae

can be partially disentangled using a set of unitary operations. I show that disentangling

operations are in fact quite common and appear in many quantum protocols, including

quantum teleportation. I �rst start by outlining a general method for disentangling ancilla

chains using local operations and consider two di�erent cases that depend on whether the

quantum system was initially prepared in a pure state or started in a maximum entropy

mixed state. Finally, I use the general construction to establish a protocol for generating

remote entanglement.

8.2 One-Bit Disentangling Scheme

The �rst disentangling scheme considered here requires operations that are conditional on

the state of a single qubit. We know from Ch. 7.2.3 that if j + 1 consecutive measurements
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are made on a prepared quantum system, then the joint entropy of the resulting ancilla chain

is determined only by the last ancilla in the sequence. This is a consequence of the speci�c

coherent structure of the ancilla density matrices. We will �rst review the relevant results

of consecutive quantum measurements before introducing a protocol to disentangle the �rst

j ancillae from the rest of the system. In particular, we can understand the essence of the

protocol by studying a sequence of just two measurements.

We saw previously in Ch. 7.2.1 that for two measurements of a prepared quantum system,

Q, using ancillae A and B, the combined wave function is

|QAB〉 =
∑
ij

αi Uij |j ij〉. (8.1)

Ignoring the readout stage with the devices A′ and B′, the density matrix for the quantum

ancillae is

ρAB =
∑
ii′j

αi α
∗
i′ Uij U

∗
i′j |i〉〈i

′| ⊗ |j〉〈j|. (8.2)

This state has a particular structure that will make it possible to disentangle ancilla A

from the rest of the system (Q and B). To see this, we recall from Ch. 7.2.3 that we can

diagonalize the matrix (8.2) using the set of non-orthogonal states,

α′j |ψj〉 =
∑
i

αi Uij |i〉, (8.3)

with normalization equal to the probability distribution for ancilla B,

|α′j |
2 = qj =

∑
i

|αi|2 |Uij |2. (8.4)

193



Thus, Eq. (8.2) can also be written in the classical-quantum form,

ρAB =
∑
j

qj ρj ⊗ |j〉〈j| , (8.5)

where ρj = |ψj〉〈ψj | are the (conditional) pure states of A.

As a result of the classical-quantum structure of the state (8.5), the entropy of the

sequence of ancillae (in this case, AB) is contained in just the last ancilla, B. That is,

SAB = SB , so that the entropy of A, conditional on B, vanishes,

S(A|B) = SAB − SB = 0. (8.6)

This zero conditional entropy suggests the possibility of transforming the joint state of A

and B in such a way that A becomes disentangled from the rest of the system. In particular,

the vanishing conditional entropy suggests that there exists a unitary operation, V , on ρAB

that leads to

V ρAB V
† = ρ′AB = ρ′A ⊗ ρ

′
B , (8.7)

where

ρ′A = |ψ〉〈ψ|. (8.8)

As a result, ancilla A is forced into the pure state |ψ〉, and is in a product state with B. In

fact, A has been disentangled from both B and Q.

The operator that performs the transformation (8.7) is a controlled unitary of the form

V =
∑
j

V (j) ⊗ Pj , (8.9)
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where Pj = |j〉B〈j| are projectors on B and V (j) are d unitary operators on ancilla A that

depend on the state j of B.

If we choose the set of operators V (j) such that they describe a transformation between

each of the conditional states |ψj〉 to a new state |ψ〉,

|ψj〉 = V (j)† |ψ〉, (8.10)

then (8.5) is rewritten as

ρAB =
∑
j

qj V
(j)† |ψ〉〈ψ|V (j) ⊗ |j〉〈j|. (8.11)

Clearly, applying (8.9) transforms this state to

V ρABV
† = ρ′AB = |ψ〉〈ψ| ⊗

∑
j

qj |j〉〈j|, (8.12)

where A is fully disentangled from B [and also from Q via the symmetry between Q and B

in the wave function (8.1)] and is in the pure state |ψ〉.

It is straightforward to generalize this scheme to an arbitrarily-long sequence of measure-

ments. It turns out that the �rst n − 1 ancillae can be disentangled from the nth ancilla

and Q. In general, this requires a set of operations analogous to (8.10) but for the joint

state of n − 1 ancillae, which may be rather di�cult to implement in practice. The en-

tropy Venn diagram for the disentangling scheme is shown in Fig. 8.1 for a general chain

A1, A2, . . . , Aj , Aj+1. Notice how the conditional entropy of the �rst n − 1 ancillae always

vanishes.

To see how this disentangling procedure might work, we consider the case of qubit mea-

surements of two observables with eigenbases at the relative angle θ = π/4. The non-
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Aj+1 A1 · · ·Aj

(a)

Sj+1

−Sj

Sj 0

Aj+1 A1 · · ·Aj

(b)

Sj+1 0 0

Figure 8.1: Correlations of an arbitrarily-long chain of ancillae A1, A2, . . . , Aj , Aj+1 (a)
before and (b) after disentangling. The two zeros in (b) indicate that the state of A1, . . . ,
Aj is pure and disentangled from Aj+1.

orthogonal states |ψj〉 of ancilla A are written

α′0 |ψ0〉 =
1√
2

(
α0|0〉+ α1|1〉

)
,

α′1 |ψ1〉 = − 1√
2

(
α0|0〉 − α1|1〉

)
.

(8.13)

Suppose we choose the disentangled state of A to be |ψ〉 = α0|0〉 + α1|1〉. Then, the set of

conditional operators, V (j), on qubit A is

V (0)† = 1,

V (1)† = −Z,
(8.14)

where Z is the Pauli matrix. The full operator V is then simply a controlled-phase gate,

where the control is on the state of B. In terms of these operators, the joint state of AB is

ρAB = q0 |ψ〉〈ψ| ⊗ |0〉〈0|+ q1 Z|ψ〉〈ψ|Z ⊗ |1〉〈1|, (8.15)

so that applying V to this state yields (8.12).

If qubits A and B are spatially separated, then one could implement this operation in
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Figure 8.2: Circuit for disentangling the joint state ρAB → ρ′AB = |ψ〉〈ψ|⊗ρ′B . The encoding
scheme consists of a series of two measurements of Q with ancillary qudits A and B. The
(conditional) operator shown acting on A is one of the set of d operators V (j).

practice using local operations and classical communication (LOCC). Suppose Alice and

Bob have qubits A and B, respectively. To perform the controlled unitary (8.9), Bob could

measure (amplify) his qubit B with B′ and send the result of the measurement (one bit) to

Alice. Based on the value of the bit that Bob sends, Alice would perform one of the two

operations V (j) on her qubit. Afterwards, Alice has disentangled A from B (and Q). In this

case, the degrees of freedom of system B′ should be accounted for, and the �nal state of QB

will no longer be pure, but mixed. See Fig. 8.2 for the corresponding circuit diagram. The

�encode� operation refers to the sequence of two measurements with ancillary qubits A and

B, while the double solid line indicates the single bit of information that Bob communicates

to Alice about the state of qubit B.

To consider more general disentangling scenarios, we must keep in mind that a universal-

not gate does not exist [217�220]. That is, it is not possible to construct a unitary gate

that �ips any input state to its orthogonal version. For example, σx will correctly �ip the

computational states |0〉, |1〉, but does not �ip |0〉 ± |1〉 to |0〉 ∓ |1〉 (instead, σz would).

Flipping a qubit to an orthogonal state is equivalent to an inversion of the Bloch sphere.

Such an inversion preserves angles and corresponds, via Wigner's theorem [221], either to a

unitary or antiunitary operation. Proper rotations (determinant equal to 1) are implemented
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with unitary operations, while orthogonal transformations with determinant −1 correspond

to antiunitary operations. Therefore, since it is not possible to construct a unitary operation

that �ips the state of an arbitrary qubit, there is no universal-not gate.

However, if we restrict our states to the equatorial plane (θ = π/2) or the xz plane (φ = 0)

of the Bloch sphere, then it is possible to unitarily �ip the state of an arbitrary qubit. We

can show this by considering two states |ψi〉 = ai|0〉 + bi|1〉, with i = 1, 2. A unitary

transformation U to an orthogonal state, U |ψi〉 = b∗i |0〉 − a
∗
i |1〉 = |ψ⊥i 〉, must correspond to

〈ψ|U†U |φ〉 = 〈ψ|φ〉 so that either θ = π/2 or φ = 0. For general angles, the transformation

(U → A) is antiunitary, A|ψi〉 = b∗i |0〉 − a
∗
i |1〉 = |ψ⊥i 〉, and has 〈ψ|A†A|φ〉 = 〈ψ|φ〉∗. In the

following protocols, we restrict the qubit states to the xz plane so that if the conditional

states |ψj〉 are transformed to an orthogonal state, we can still construct unitary operations

to �ip them. Of course, if we are not transforming the states |ψj〉 into orthogonal states,

then we can always �nd a unitary operation.

In a general qubit scenario, we can implement the disentangling operation by �rst trans-

forming the conditional state |ψ1〉 into |ψ0〉. If we assume real coe�cients (so that we are in

the xz plane), the two non-orthogonal states of qubit A are

|ψ0〉 = a′|0〉+ b′|1〉,

|ψ1〉 = −c′|0〉+ d′|1〉,
(8.16)

where a′ = a/
√
a2 + b2 (and similarly for the other three coe�cients) and where a = α0 cos θ,

b = α1 sin θ, c = α0 sin θ and d = α1 cos θ.

We can rotate these states into any other state in the xz plane of the Bloch sphere with

a rotation about the y-axis by an angle α. The state |ψ1〉 is transformed into |ψ0〉 by the
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rotation

Ry(α) = cos(α/2)1− i sin(α/2)Y, (8.17)

at an angle

α = 2 cos−1 (b′d′ − a′c′) . (8.18)

In terms of this rotation operator, the state of AB is

ρAB = q0 |ψ0〉〈ψ0| ⊗ |0〉〈0|+ q1R
†
y(α)|ψ0〉〈ψ0|Ry(α)⊗ |1〉〈1|. (8.19)

The operator that disentangles qubit A is

V = 1⊗ |0〉〈0|+Ry(α)⊗ |1〉〈1|, (8.20)

and transforms ρAB into

V ρABV
† = |ψ0〉〈ψ0| ⊗

∑
j

qj |j〉〈j|, (8.21)

where it is clear that A is pure [the �rst state in (8.16)] and in a product state with B.

8.3 Two-Bit Disentangling Scheme

In the previous section we saw that the joint ancilla states resulting from measurements of

prepared quantum states required only operations conditional on the state of the last ancilla

in the chain to disentangle A from the rest of the system. In this section, we extend this

procedure to the states resulting from measurements of unprepared quantum states. We will
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see that, in this case, the disentangling operations are now conditional on the states of the

last and �rst ancillae. In particular, we will study three consecutive measurements and �nd

that if the ancillae are spatially separated, this feature corresponds to the communication of

two bits of information to place ancilla B in a product state with A and C.

Recall from Ch. 7.2.2 that the joint ancilla state for the three ancilla that measured an

unprepared quantum system is non-diagonal in the ancilla product basis. It can, however,

be written in a diagonal and classical-quantum form,

ρABC =
1

d

∑
ik

|εik|2 |i〉〈i| ⊗ ρik ⊗ |k〉〈k| , (8.22)

where ρik = |φik〉〈φik| are the (conditional) pure states of B. This set of non-orthogonal

states is de�ned as

εik |φik〉 =
∑
j

Uij U
′
jk |j〉 , (8.23)

which are normalized according to

|εik|2 =
∑
j

|Uij |2 |U ′jk|
2 . (8.24)

We know from Ch. 7.2.3 that states such as (8.22) have the property that any intermediate

ancillae (in this case, just B) do not contribute to the total entropy. That is, the joint

entropy of (8.22) is SABC = SAC , so that the entropy of the ancilla chain resides only in

the boundaries. It follows that the conditional entropy of the intermediate ancilla vanishes,

S(B|AC) = SABC − SAC = 0. (8.25)

In other words, the state of the intermediate ancilla, B, is fully known (has zero entropy)
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when given the joint states of the �rst and last ancillae, A and C.

The presence of a vanishing conditional entropy suggests that there exists a unitary

operation, V , that disentangles the joint state (8.22), transforming B into an unconditionally

pure state, |φ〉. That is,

V ρABC V † = ρ′ABC = ρ′AC ⊗ ρ
′
B , (8.26)

where

ρ′B = |φ〉〈φ| . (8.27)

Now the intermediate ancilla, B, is in the pure state |φ〉 and is in product with the rest

of the system, AC (and also Q due to the symmetry between Q and C in the underlying

wave function). After disentangling, the conditional entropy S′(B|AC) still vanishes since

S′B = 0, so that S′ABC = S′AC .

The full unitary operator V is of the form

V =
∑
ik

Pik ⊗ V (ik), (8.28)

where V (ik) is a set of d2 unitary operations on B, and Pik = |i〉A〈i|⊗ |k〉C〈k| are projectors

on A and C. If we choose the set of operators, V (ik), such that they transform each of the

states |φik〉 of ancilla B into a new state |φ〉,

|φik〉 = V (ik)† |φ〉, (8.29)
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A1Aj+1 A2 · · ·Aj

(a)

S1,j+1

−S2,j

S2,j 0

A1Aj+1 A2 · · ·Aj

(b)

S1,j+1 0 0

Figure 8.3: Correlations of an arbitrarily-long chain of ancillae A1, A2, . . . , Aj , Aj+1 (a)
before and (b) after disentangling. The two zeros in (b) indicate that the state of A2, . . . ,
Aj is pure and disentangled from A1 and Aj+1.

then (8.22) is rewritten as

ρABC =
1

d

∑
ik

|εik|2 |i〉〈i| ⊗ V (ik)†|φ〉〈φ|V (ik) ⊗ |k〉〈k|. (8.30)

Clearly, applying the full operator (8.28) to this state disentangles ancilla B from AC,

V ρABCV
†= ρ′ABC =

(
1

d

∑
ik

|εik|2 |i〉〈i| ⊗ |k〉〈k|

)
⊗ |φ〉〈φ|. (8.31)

Similarly to the one-bit scheme, this scheme can be generalized to any number of mea-

surements. The entropy Venn diagram for the two-bit version is shown in Fig. 8.3 for a

general chain A1, A2, . . . , Aj , Aj+1.

We now apply this disentangling scheme to the case of qubit measurements. The ability

to force ancilla B into a pure state that is in a product state with the rest of the system

suggests a simple protocol. Namely, a single-qubit state |φ〉 can be extracted from the joint

state of ABC by a sequence of unitary gates and measurements as shown in Fig. 8.4. In such

a protocol, we assume that we have access to an unprepared quantum state. Three parties

202



ψ|〉V

Q
R

B

C

A
ϕ|〉(ik)

E
n
co
d
e

Figure 8.4: Circuit for disentangling the ancilla state ρABC → ρ′ABC = ρ′AC ⊗ |φ〉〈φ|. The
encoding scheme consists of three consecutive measurements of Q with ancillary qudits A,
B, and C. The (conditional) operator shown acting on B is one of the set of d2 operators,
V (ik). The initial entanglement between Q and the purifying reference R is indicated by the
dashed line.

(Alice, Bob and Charlie) that each possess a qubit, measure an observable of Q, creating the

entangled state ρABC in (8.22). Alice and Charlie each amplify their qubit with a second

qubit A′ and C ′, respectively, and then send the results of their measurements (two classical

bits i and k) to Bob. Based on the values of the two bits, Bob can perform one of the

four unitary transformations, V (ik), on his qubit B. Following these operations, Bob has

produced the pure state |φ〉 that is in a product state with the rest of the system.

Suppose that the measurements of Q with ancillae B and C were of observables with

relative angles θ = θ′ = π/4. In this case, the four possible states, |φik〉, of ancilla B are

|φ00〉 =
1√
2

(
|0〉 − |1〉

)
,

|φ01〉 = − 1√
2

(
|0〉+ |1〉

)
,

|φ10〉 =
1√
2

(
|0〉+ |1〉

)
,

|φ11〉 = − 1√
2

(
|0〉 − |1〉

)
.

(8.32)

If we choose the disentangled state of ancilla B to be |φ〉 = |0〉, the corresponding conditional
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operators are rotations about the ŷ axis by an angle ±π/2,

V (00)† =
1√
2

(
1 + iY

)
= Rŷ(−π/2),

V (01)† = − 1√
2

(
1− iY

)
= −Rŷ(π/2),

V (10)† =
1√
2

(
1− iY

)
= Rŷ(π/2),

V (11)† = − 1√
2

(
1 + iY

)
= −Rŷ(−π/2).

(8.33)

With these transformations, the state (8.22) is written as

ρABC =
1

4

∑
ik

|i〉〈i| ⊗ V (ik)† |0〉〈0|V (ik) ⊗ |k〉〈k|. (8.34)

Applying the full operator (8.28) to the state (8.34) disentangles ancilla B from the rest of

the system,

V ρABCV
† =

1

2
1A ⊗ |0〉〈0| ⊗

1

2
1C , (8.35)

where 1/21 are maximally mixed states.

Note that one could also select the disentangled state to be |φ〉 = 1√
2
(|0〉+ |1〉), instead

of |φ〉 = |0〉 in the example above. Then, the corresponding set of conditional operators (for

measurements at the relative angles θ = θ′ = π/4) can be written as

V (00)† = Z,

V (01)† = −X,

V (10)† = 1,

V (11)† = −ZX = −iY,

(8.36)

instead of (8.33).
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In a more general qubit scenario, suppose we implement the disentangling operation by

�rst transforming |φ01〉, |φ10〉 and |φ11〉 into |φ00〉. If we assume real coe�cients so that we

are in the xz plane of the Bloch sphere, the four non-orthogonal states of qubit B are

|φ00〉 = a′|0〉 − b′|1〉,

|φ11〉 = −b′|0〉+ a′|1〉,

|φ01〉 = −c′|0〉 − d′|1〉,

|φ10〉 = d′|0〉+ c′|1〉.

(8.37)

Here, we de�ned a′ = a/
√
a2 + b2 (and similarly for the other three coe�cients) and where

a = cos θ cos θ′, b = sin θ sin θ′, c = cos θ sin θ′ and d = sin θ cos θ′. First, we note that two

of the states can be written in terms of the other two as

|φ11〉 = X|φ00〉,

|φ01〉 = −X|φ10〉,
(8.38)

so that we only have to �nd a rotation for |φ10〉 into |φ00〉. Using the results from the one-bit

disentangling scheme, we write the transformation as a rotation about the y-axis by an angle

α = 2 cos−1 (a′d′ − b′c′) . (8.39)

Thus, with this set of transformations, qubit B ends in the state |φ00〉.

8.4 Examples of Disentangling Operations

It turns out that many quantum protocols utilize a disentangling scheme similar to what

was described previously. Here, we discuss two well-known examples, the Garisto-Hardy
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disentanglement eraser and the teleportation protocol.

8.4.1 Quantum Disentanglement Erasers

The disentanglement eraser was formulated by Garisto and Hardy in 1999 [164] as a way

to recover entanglement in a quantum system that was destroyed through additional cor-

relations with another system. In the disentanglement eraser, we start with the entangled

state

|AB〉 =
1√
2

(
|00〉+ |11〉

)
. (8.40)

Additional correlations are introduced by tagging the components of this state with a tagger

qubit T using a controlled-not gate (A or B can be the control qubit):

UCNOT |AB〉 |0〉T = |ABT 〉 =
1√
2

(
|000〉+ |111〉

)
. (8.41)

The initial entanglement of AB has been destroyed since it has become completely mixed,

ρAB = 1
2(|00〉〈00|+ |11〉〈11|).

The entanglement can be restored by measuring the tagger T with another ancilla T ′ in

some basis. If one chooses the basis |±〉T ′ = (|0〉T ′±|1〉T ′)/
√

2 then the joint state becomes

U |ABT 〉 |+〉T ′ = |ABTT ′〉

=
1√
2

[
|00〉AB + |11〉AB√

2
|+ +〉TT ′ +

|00〉AB − |11〉AB√
2

| − −〉TT ′
]
.

(8.42)

If one registers the outcome |+〉T ′ , then the entangled state |00〉AB+|11〉AB is fully recovered.
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T
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| 〉AB

Figure 8.5: Garisto-Hardy disentanglement eraser. After tagging with system T the entan-
glement of AB (indicated by the dashed line) is lost. Measuring T with T ′ in a rotated basis
and applying a conditional unitary to AB restores the original entangled state |AB〉.

However, for the outcome |−〉T ′ , a phase shift restores the entanglement:

|ABTT ′〉= 1√
2

[[
|00〉AB + |11〉AB√

2

]
|++〉TT ′ +

[
1A ⊗ σz

|00〉AB + |11〉AB√
2

]
|−−〉TT ′

]
. (8.43)

Conditional on the outcome of the T ′ measurement, one applies the appropriate unitary to

AB to obtain

V |ABTT ′〉 =

[
|00〉AB + |11〉AB√

2

] [ |+ +〉TT ′ + | − −〉TT ′√
2

]
. (8.44)

Thus, A and B are restored to their initial entangled state. The conditional unitary that

implements the disentangling operations can be written as

V = 1T ⊗
(
1A ⊗ 1B ⊗ |+〉T ′〈+|+ 1A ⊗ σz ⊗ |−〉T ′〈−|

)
. (8.45)

A quantum circuit diagram for the disentanglement eraser is shown in Fig. 8.5.
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8.4.2 Quantum Teleportation

The standard teleportation protocol was presented previously in Ch. 2. Recall from (2.35)

that the initial state of the unknown qubit and the shared entangled pair is

|ψ〉 ⊗ |β00〉 =
1

2

∑
zx

|βzx〉 ⊗ V (zx)† |ψ〉, (8.46)

where V (zx)† = XxZz. In this form, it is clear that the conditional unitary operator that

disentangles Bob's qubit is

V =
∑
zx

Pzx ⊗ V (zx), (8.47)

where Pzx = |βzx〉〈βzx| are projectors in the Bell basis. After applying (8.47) to (8.46),

Bob's qubit is disentangled and is in the state |ψ〉.

8.5 Undoing Quantum Measurements

A natural question that we might ask is what the state of the quantum system is after the

disentangling process. Speci�cally, whether it is equivalent to the situation where certain

measurements were never performed so that the disentangling operation is equivalent to

undoing a measurement. For example, recall the simple case of two measurements on a

prepared quantum system. After disentangling ancilla A, the wave function is

V |QAB〉 =
∑
j

α′j |bj j〉 ⊗ |ψ〉, (8.48)
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where the amplitudes satisfy

|α′j |
2 =

∑
i

|αi|2 |Uij |2. (8.49)

If the measurement with A had never occurred, and instead we only measured Q using

B, the resulting wave function would have been

|QB〉 =
∑
j

α̃′j |bj j〉, (8.50)

with amplitudes that satisfy

|α̃′j |
2 =

∣∣∣∑
i

αi Uij

∣∣∣2. (8.51)

The di�erence between (8.49) and (8.51) is that the amplitudes in the disentangled state are

an incoherent sum of terms, re�ecting the fact that a measurement of Q had been performed

before B. Thus, the disentangling operation is not equivalent to undoing past measurements.

This means that if the measurement with A represented an �error� in a quantum algorithm,

then disentangling A does not reset the state of QB to the pre-error state, and cannot be

used as an error-correcting protocol.

8.6 Extracting Entanglement

The schemes in the previous sections can be extended to disentangle multi-qudit entangled

states. Here, we consider three measurements of a prepared quantum system, from which

an entangled state of AB can be extracted. Recall from Ch. 7.2.1 that the ancilla density
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matrix after such a set of measurements is

ρABC =
∑
k

q′′k |ψk〉〈ψk| ⊗ |k〉〈k|, (8.52)

where

α′′k |ψk〉 =
∑
ij

αi Uij U
′
jk |ij〉, (8.53)

and

|α′′k|
2 = q′′k =

∑
ij

|αi|2 |Uij |2 |U ′jk|
2. (8.54)

For instance, for θ = π/4, the two conditional states of AB in Eq. (8.52) are

|ψ0〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉,

|ψ1〉 = b|00〉 − a|01〉 − d|10〉+ c|11〉,
(8.55)

where a = α0 cos θ′, b = −α0 sin θ′, c = α1 cos θ′ and d = α1 sin θ′. It is straightforward to

show that applying −Z ⊗ iY to the second state yields the �rst state:

(−Z ⊗ iY ) |ψ1〉 = |ψ0〉. (8.56)

Thus, the operator

V =
∑
k

Zk ⊗ (−iY )k ⊗ |k〉〈k|

= 1⊗ 1⊗ |0〉〈0| − Z ⊗ iY ⊗ |1〉〈1|,

(8.57)
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Figure 8.6: Entanglement entropy SE of the disentangled state |ψ0〉 of A and B in (8.55).
Three curves plotted as a function of the second measurement angle θ′ (with θ = π/4)
for di�erent amplitudes α0 of the initial quantum state. Maximum entanglement occurs at
α0 = 1/

√
2 and θ′ = π/4.

leaves the state ρABC disentangled,

V ρABCV
† = |ψ0〉〈ψ0| ⊗

1

2
1C . (8.58)

In this way, a two-qubit entangled state is extracted from the ancilla chain. The entanglement

of |ψ0〉 in (8.55) is characterized by the entanglement entropy SE , computed from the entropy

of the reduced density matrix for A or B. This is shown in Fig. 8.6 as a function of the

measurement angle θ′. Evidently, increasing θ′ produces a state that is more entangled. In

particular, a maximally entangled state is produced when α0 = 1/
√

2 and θ′ = π/4.

8.7 Generating Remote Entanglement

Shared entanglement between spatially separated systems is an essential resource for quan-

tum information processing including long-distance quantum cryptography and teleporta-

211



tion. Here, I describe a protocol for generating a maximally entangled state between remote

locations that requires only local operations and does not rely on communication between

the separated parties.

Much of quantum information processing relies on entanglement as a resource. For exam-

ple, entanglement that is shared between distant parties is necessary to implement Ekert's

quantum key distribution protocol for secure communication [222], to transfer quantum

states using teleportation [7], or to establish large-scale quantum networks. Remote entan-

glement generation has been realized in many systems such as with optical photons [223�225],

the nitrogen vacancy centers of solid state qubits [226], and superconducting qubits [227�229].

I describe a method for deterministically generating remote entanglement between two

qubits using local operations on pairs of separated qubits. I consider two versions�one with

and one without classical communication�and show how the degree of entanglement created

can be tuned by the choice of encoding parameters.

8.7.1 Encoding Scheme

To generate remote entanglement, four ancillary qubits A, B, C, and D are �rst encoded via

a sequence of unampli�ed measurements [70] of a quantum system Q. Such measurements

are equivalent to the unitary entangling operations implemented in weak measurements [23,

24,106,116,118,119] (see Ch. 5), but the interaction considered here is strong (see, e.g., [117,

139]). Following the encoding, local operations are performed on the qubit pairs AB and

CD, which are spatially separated from each other, such that a shared entangled state of

BC is produced. The entanglement of this state is will depend on the details of the four

measurements.

The density matrix of the qubit quantum system, Q, is taken to be proportional to the
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identity matrix, ρQ = 1
2 1, so that it is a maximum entropy state. The four consecutive

entangling operations between the quantum system and the ancillary qubits lead to the

total wave function [59,70],

|QRABCD〉 =
1√
2

∑
ijk`

Uij U
′
jk U

′′
k` |`i ijk`〉, (8.59)

where the initial mixed state of Q has been puri�ed with a reference R and each system is

of dimension two. The measured observables are characterized by the matrix elements of U ,

U ′, and U ′′. That is, the eigenbasis of the �rst observable is rotated relative to the eigenbasis

of the second via |i〉 =
∑
j Uij |j〉, and similarly for the third and fourth observables with

U ′ and U ′′. Since the measurements are strong, the �nal states of the ancillary qubits,

|i〉A, |j〉B , |k〉C , and |`〉D, are orthogonal. If we consider only measurements of observables

corresponding to the xz plane of the Bloch sphere, such a transformation can be implemented

with a rotation by an angle θ according to

U =

(
cos θ − sin θ

sin θ cos θ

)
, (8.60)

and similarly for U ′ and U ′′ with angles θ′ and θ′′, respectively.

The encoding operation starts by �rst entangling qubits A and B with Q, with a relative

angle of θ between the �rst two observables, and sending them to Alice. Qubits C and D are

subsequently entangled with Q, with a relative angle θ′′ between the last two observables,

and are sent to Bob. As we will see, the intermediate angle θ′ can be left arbitrary in the

protocol so that it is not necessary for Alice or Bob to know the measurement bases the

other chose.

The coherence of the chain of ancillary qubits will be used to create the remote entan-
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glement. Their joint state can be written in terms of a new basis for B and C such that

tracing (8.59) over Q and R it appears as

ρABCD =
1

2

∑
i`

pi` |i〉〈i| ⊗ |φi`〉〈φi`| ⊗ |`〉〈`|. (8.61)

The four non-orthogonal states of BC,

εi` |φi`〉 =
∑
jk

Uij U
′
jk U

′′
k` |jk〉, (8.62)

are normalized according to

pi` = |εi`|2 =
∑
jk

|Uij |2 |U ′jk|
2 |U ′′k`|

2. (8.63)

Consistent with the choice of encoding parameters (θ, θ′, and θ′′) Alice and Bob construct

a set of conditional unitary operations to perform locally on their pairs of qubits (AB and

CD) to generate remote entanglement. At the end they share an entangled state of B and

C that is in a product state with the rest of the system.

As local unitary operations alone cannot change the entanglement of a state (recall from

Ch. 3.4.1 that local operations do not change the Schmidt coe�cients in the Schmidt de-

composition of a bipartite pure state and, therefore, do not change the entanglement [25]),

remote entanglement can only be generated in this protocol by local operations on B and C

when the entanglement entropies of each state |φi`〉 in (8.62) are the same.

We consider two versions of the protocol. The �rst, which is more general, occurs when

Alice chooses the relative angle θ = π/4 (Bob could, equivalently, have picked θ′′ = π/4).

We will see that, in this case, classical communication is required between Alice and Bob

concerning the states of their qubits A and D (but not the states of B and C). Furthermore,
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the �nal degree of entanglement between B and C will depend only on Bob's measurement

angle θ′′. The second version is a special case of the previous scheme where both the �rst

and third angles are θ = θ′′ = π/4. Here, communication about the states of A and D

will no longer be required and a maximally entangled state will be produced with only local

operations on the two pairs of qubits.

8.7.2 Protocol with Communication

The �rst scenario requires Alice's measurement angle to be θ = π/4, which necessitates

classical information to be communicated between Alice and Bob. Using local operations on

B and C in addition to classical communication about the states of A and D, they generate

a new state of BC that is entangled according to Bob's measurement angle θ′′.

To encode the ancillary qubits, Alice selects the relative angle θ = π/4 while Bob's angle

θ′′ is left arbitrary. When θ = π/4, the density matrix (8.61) can be written as

ρABCD =
1

4

∑
i`

|i〉〈i| ⊗ V (i`)†|φ00〉〈φ00|V (i`) ⊗ |`〉〈`|, (8.64)

where the coe�cients pi` = 1/2, and

V (i`)† = Zi+`X` ⊗X` (8.65)

is a conditional unitary operator on qubits B and C. Here, Z and X are Pauli operators

and (i+ `) is modulo two.

The conditional joint states (8.62) of qubits BC are functions of the angles θ′ and θ′′.

The key observation is that each of them can be written in terms of local operations on the
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state |φ00〉 as

|φi`〉 = V (i`)†|φ00〉 = Zi+`X` ⊗X` |φ00〉. (8.66)

The i = ` = 0 state can be written as

|φ00〉 = − sin θ′ |β̃01〉+ cos θ′ |β̃10〉, (8.67)

where the states

|β̃00〉 = sin θ′′|00〉+ cos θ′′|11〉,

|β̃01〉 = sin θ′′|01〉+ cos θ′′|10〉,

|β̃10〉 = cos θ′′|00〉 − sin θ′′|11〉,

|β̃11〉 = cos θ′′|01〉 − sin θ′′|10〉,

(8.68)

form the generalized Bell basis.

The entanglement entropy [25] SE , which is a standard measure of the entanglement of

a bipartite pure state, is the same for each state (8.66) since local operations do not change

the amount of entanglement. The entanglement entropy is computed from the von Neumann

entropy of one of the subsystems ρ(i`)
B = TrC(|φi`〉〈φi`|), and turns out to be independent of

the angle θ′,

SE = S
(
ρ

(i`)
B

)
= − cos2θ′′ log cos2θ′′− sin2θ′′ log sin2θ′′.

(8.69)

Evidently, the conditional states (8.66) are in a product state (uncorrelated) when θ′′ = 0

and are fully entangled when θ′′ = π/4 (this second case is the one considered in the next
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Figure 8.7: Entanglement entropy SE of the conditional states (8.66) of qubits B and C
for θ = π/4. In this case, SE is independent of the intermediate angle θ′. The states are
maximally entangled at θ′′ = π/4.

section). Thus, Bob can control how entangled the shared state of BC is by choosing a

particular measurement angle θ′′ (see Fig. 8.7).

The operation that disentangles the qubits B and C from A and D takes the form

V =
∑
i`

|i〉〈i| ⊗ V (i`) ⊗ |`〉〈`|, (8.70)

where the unitary operators V (i`) were de�ned in (8.65). This does not completely factor

into two separate operations on the pairs of qubits AB and CD. In other words, classical

communication is necessary between Alice and Bob in order to implement the disentangling

operation. From (8.65), it is clear that Alice must know the state ` of Bob's qubit D before

performing her controlled unitary on A and B, while Bob does not need to know the state i of

Alice's qubit A. Despite the communication requirement, the conditional operations (8.65)

are independent of the angles θ′ and θ′′ so that Alice and Bob do not need to know each

other's measurement bases.
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Figure 8.8: Entropy Venn diagrams for the ancillary qubits before (a,c,e) and after (b,d,f)
disentangling with (8.65). The �rst angle is θ = π/4, while θ′ and θ′′ are left arbitrary. The
entropy SBD (SBC) [SCD] depends on θ′ and θ′′ (θ′) [θ′′] and the entanglement entropy SE
is de�ned in (8.69).

After applying (8.70) to the state (8.64),

V ρABCDV
† =

1

2
1⊗ |φ00〉〈φ00| ⊗

1

2
1, (8.71)

qubits B and C are successfully disentangled from the rest of the system, leaving qubits A
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and D in maximally mixed states.

The entropy relationships between qubits A, B, C, and D are illustrated using entropy

Venn diagrams [59] in Fig. 8.8 before and after the disentangling operation (8.70). Note that

the shared entropy S(A : D) is always zero, and that Alice and Bob will share a maximally

entangled state when Bob chooses the angle θ′′ = π/4 so that SE = 1.

8.7.3 Discussion

8.7.3.1 Conditions for Entanglement Generation

In the most general scenario, for local operations to successfully disentangle the joint state

of qubits B and C from the rest of the system, it is necessary for the entanglement entropy

of (8.62) to be a constant for all i, `. In other words, disentanglement is only possible if the

Schmidt coe�cients in the Schmidt decomposition of each state (8.62) are the same. This,

however, does not guarantee that the resulting state of BC will be entangled. For instance,

at θ = 0 or θ′′ = 0, the entanglement entropies are indeed the same, but vanish, so that the

resulting state of BC is completely uncorrelated and no shared entanglement is created.

When nonzero entanglement between qubits B and C is successfully generated, the shared

entropy of A and D vanishes, S(A : D) = 0. In all other situations, S(A : D) > 0. Given the

correlated structure of the coe�cients 1
2 pi` [see (8.63)] in the density matrix ρAD, a vanishing

mutual entropy can only occur if at least one of the three angles is π/4 so that 1
2 pi` = 1/4.

In turn, this corresponds precisely to a constant and nonzero entanglement entropy. Thus,

the necessary and su�cient condition for the entanglement generation scheme described here

is simply

S(A : D) = 0. (8.72)
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Figure 8.9: The trace distance, T , averaged over all intermediate measurement angles θ′, as
a function of θ′′. Here, θ = π/4.

8.7.3.2 Reliability

We can characterize how coherent the joint state of all four ancillary qubits is before the

disentangling operation (8.70) is applied. The closer the state is to its classical counterpart,

the more robust it is to decoherence during the phase of the protocol when the qubit pairs

are sent to Alice and Bob. We quantify how close ρABCD is to the classical (completely

decoherent) version, σABCD, which has only diagonal elements, by computing the trace

distance between (8.61) and the decoherent state

σABCD =
1

d

∑
ijk`

|Uij |2 |U ′jk|
2 |U ′′k`|

2 |ijk`〉〈ijk`|. (8.73)

The trace distance between two states ρ and σ is de�ned as [25] T = 1
2Tr(|ρ − σ|) =

1
2Tr(

√
(ρ− σ)2), which is bounded between 0 and 1. The trace distance, averaged over all

intermediate angles θ′, is shown in Fig. 8.9 for θ = π/4. This distance measure increases

(the state becomes more coherent) as Bob's angle θ′′ increases, and the resulting state of

BC becomes more entangled.
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8.7.4 Protocol without Communication

In the �rst protocol, the ancillary qubits were encoded using θ = π/4, while θ′ and θ′′ were left

arbitrary. Here, I consider at a special case where both the �rst and third relative angles are

set at θ = θ′′ = π/4. We will see that this removes entirely the communication requirement

between Alice and Bob because the disentangling operation completely factorizes.

For this set of angles, the density matrix (8.64) can be written with

Ṽ (i`)† = Zi ⊗ (−Z)`, (8.74)

which are conditional unitary operators on B and C. There are two important features

of (8.74): the operators on B and C are completely factorized, and they do not depend on

the intermediate angle θ′. That is, the operator Zi, with only the index i, acts on B, and

(−Z)`, with only the index `, acts on C. Thus, communication between Alice and Bob is no

longer required to generate remote entanglement since they do not have to know the state

of the other's qubit.

The four conditional states of BC can be obtained by applying (8.74) to the i = ` = 0

state,

|φ00〉 = − sin θ′ |β01〉+ cos θ′ |β10〉, (8.75)

where the standard Bell basis can be written as

|βzx〉 = (1⊗XxZz) |β00〉, (8.76)

with |β00〉 = |Φ+〉 the usual Bell state. It is clear from (8.74) that if Alice and Bob each
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Figure 8.10: Circuit schematic for generating shared entanglement. Alice holds qubits A and
B, while Bob holds qubits C and D. The state of qubits ABCD after the encoding scheme
is found from (8.59). In this �gure, the entangled state |φ〉 that is generated corresponds to
|φ00〉 in (8.75).

perform a controlled unitary on their set of qubits of the form,

Ṽ = ṼAB ⊗ ṼCD

=

[∑
i

|i〉〈i| ⊗ Zi
]
⊗

[∑
`

(−Z)` ⊗ |`〉〈`|

]
,

(8.77)

the resulting state will be (8.71), where |φ00〉 is now given by (8.75). Note that according

to (8.77), Alice and Bob each perform a controlled-phase gate on their pairs of qubits.

Thus, by using only local operations on their pairs of qubits, Alice and Bob disentangle

the joint state of BC from the rest of the system. I emphasize that this does not require any

classical communication between Alice and Bob, and afterwards they share one half each of

the entangled state (8.75). This state (8.75) is maximally entangled regardless of the angle

θ′ (its entanglement entropy is equal to one). Since the conditional unitary operators (8.77)

on B and C are independent of the angle θ′, the disentangling can occur when Alice and

Bob do not know θ′. In other words, they do not need to know each other's measurement

bases.

Figure 8.10 shows a simple schematic of the complete entanglement generation process

without communication. The operation denoted �encode� is the sequence of measurements
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Figure 8.11: The trace distance, T , as a function of the intermediate angle θ′. Here, both
Alice's and Bob's relative measurement angle is θ = θ′′ = π/4.

that produces the state (8.59). In the �gure, the �nal state |φ〉 corresponds to (8.75). The

trace distance is plotted as a function of the intermediate angle, θ′, in Fig. 8.11. The

entanglement between subsystems A, BC, and D is shown in Fig. 8.12 before and after the

disentangling operation (8.77).

8.8 Conclusions

Consecutive measurements on a single quantum have a wide range of applications, from

extracting joint weak values in weak measurements [230] and modeling the quantum Zeno

e�ect [192, 206, 209�211] to probing the nature of quantum measurement [177�179]. Here,

I showed that the consecutive measurement construction can be used to generate remote

entanglement. The protocol uses a simple encoding scheme and requires only local operations

on the resulting entangled qubits. In the general case, the degree of entanglement can be

tuned by the choice of encoding parameters (the set of measured observables), while the

second version always produces a maximally entangled state.
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disentangling operation (8.77). The intermediate angle θ′ is left arbitrary.
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Chapter 9

Conclusions

9.1 Summary of Results and Future Work

The primary focus of this dissertation was the formulation of a unitary model of quantum

measurement that is treated on the same footing as quantum operations and cast in the

framework of quantum information theory. In this manner, I was able to quantify how infor-

mation is processed in quantum measurements. I began with the early model of measurement

that was �rst introduced in 1932 by von Neumann where a quantum measuring device is

entangled with a quantum system. From there, I built on the ideas of Adami and Cerf who,

starting in the '90s, described measurement in the context of quantum information theory

and introduced the useful quantum entropy Venn diagrams. In this framework, they showed

the striking departures of quantum entropy from its classical counterpart, in particular, the

emergence of negative conditional quantum entropy from entangled systems, which stands

in stark contrast to the non-negativity constraints of classical conditional entropy.

In this work, I expanded upon these ideas and quanti�ed how entanglement and entropy

are distributed and evolve in diverse measurement scenarios. I considered parallel and con-

secutive measurements as well as measurements with variable interaction strengths. Along

the way, I discussed how strong measurements are not fundamentally di�erent from weak

measurements (Ch. 5), derived a new quantum information-theoretic complementarity rela-
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tion for the quantum eraser (Ch. 6), explored the Markovianity of sequences of measurements

(Ch. 7), and developed protocols based on disentangling operations (Ch. 8).

The main results of this dissertation are organized into four sections. First, in Ch. 5 I

described a generalization of weak and strong measurements. Then, in Ch. 6 I described

parallel measurements that are made on an a composite quantum system, while in Ch. 7

I analyzed consecutive measurements made on the same quantum system. Finally, I used

the �ndings of Ch. 7 to construct measurement-based quantum protocols, which were the

subject of Ch. 8.

In Ch. 5, I argued that within our model of measurement, weak and strong measurements

should be treated on the same footing. Furthermore, I showed that certain measurement

interactions do not have to be approximated by a weak coupling and can be computed exactly.

I focused on the case of spin and position measurements with a qubit pointer and derived

the real and imaginary components of the weak value. I only considered qubit systems, but

the formalism could readily be extended to include higher-dimensional quantum systems and

pointers.

In Ch. 6, I described parallel measurements of an entangled quantum system in the

context of the Bell-state quantum eraser experiment. The results of the quantum eraser

in all of its various forms have been well established for quite some time so my aim was

not to make new experimental predictions, but instead to analyze the (possibly delayed)

manipulation of the interference patterns in the eraser mechanism in the light of quantum

information theory. I showed how the experiment can be broken down into distinct stages

that can be understood using entropy Venn diagrams, which elucidate not only the �ow of

entropy and entanglement between subsystems, but also how these quantities are ultimately

connected to the structure of the photon's interference pattern. To tie all the results together,
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I derived a complementarity relation between the coherence and �which-path� information

of the photon traveling through the eraser apparatus, which is fundamentally a consequence

of the chain rule for entropies. Unlike many previous e�orts in this area, our approach

did not require de�nitions for coherence and path information to be speci�ed beforehand.

In this way, an information-theoretic approach o�ers additional insights into the origins of

complementarity.

In Ch. 7, I turned from parallel measurements to an arbitrarily-long sequence of consecu-

tive measurements of a single quantum system. I utilized the notion of unprepared quantum

states, which in my view are more basic than prepared states. Such states can be thought of

as arising from a (possibly in�nite) sequence of measurements that randomize the quantum

system, leaving it in a maximum entropy state, quite similarly to the quantum anti-Zeno

e�ect. I studied the di�erences that arise from measuring prepared and unprepared quantum

states in terms of the structure of the resulting density matrices and entropy Venn diagrams.

I described two types of quantum measurements (unampli�ed and ampli�ed) and quanti�ed

how information is �lost� if the measurements are ampli�ed. I distinguished measurements

that remain coherent from those that are ampli�ed, and proved that ampli�ed measurement

sequences are equivalent to quantum Markov chains. In contrast, I showed that the state

of unampli�ed ancillae remains coherent regardless of the size of the measurement chain.

The unique structure of these joint ancilla states leads to the interesting property that their

entropy is encoded in the boundary of the measurement chain. Using the tools of quantum

information theory, I quanti�ed the amount of information a measurement device has about

the quantum system and about previous devices in the measurement chain, and showed that

this information is always reduced by ampli�cation.

A natural next step may be to extend and generalize the results in this work to tensor
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networks. I already alluded to a possible connection to the holographic principle from the

fact that the entropy of measurement chains are described by the boundary only. The

simple one-dimensional description presented here could be extended to multidimensional

measurement networks where the entropy of the entire network may be found on the surface

of the volume. In this case, we might ask what sequences of measurements would satisfy this

holographic property and what would be the structures of the underlying density matrices.

Another possible avenue of future investigation is to study in more detail quantumMarkov

chains and the structure of states that satisfy the Markov property. I showed that ampli�ed

measurement chains are always Markovian, but we could investigate how non-Markovian are

unampli�ed chains. That is, how the structure of unampli�ed chains compares to a quantum

Markov chain.

Finally, in Ch. 8 I harnessed the coherent structure of the joint ancilla density matrices

to construct disentangling schemes. I �rst considered general one- and two-bit disentangling

protocols in order to demonstrate the basic construction. Then, I outlined a protocol for

generating remote entanglement, which is a necessary component of quantum information

processing. I discussed a method for encoding a set of ancillary qubits via consecutive mea-

surements and applying conditional operators to extract an entangled state shared between

two spatially separated locations. Future work in this area could include investigating meth-

ods for certifying the entanglement generation. That is, whether Alice and Bob can verify

that the entangled state is indeed produced. This is important for quantum key distribu-

tion, where we need to determine whether a third party (Eve) has tampered with any of the

qubits. We could also probe further the structure of the ancilla chains and the conditions

under which disentangling operations are allowed.
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