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ABSTRACT

GAIN-SCHEDULED CONTROL BASED ON ONLINE ESTIMATED
SENSOR AGING

By

Aqeel Madhag

This work proposes that sensor performance degradation and sensor sudden failure due to its

aging can be characterized by the sensor measurement noise covariance variation (shift), while

recent literature considers sensor fault and/or failure as an augmented state. That is, in this work

gradual sensor performance degradation due to its aging can be characterized by gradual-variation

of the time-varying sensor measurement noise covariance. In addition, sensor abrupt or intermittent

fault or failure can be characterized by an intermittent or abrupt change of the time-varying sensor

noise covariance. Furthermore, this work proposes fault detection algorithms to online monito-

ring sensor performance and online detecting and identifying sensor performance degradation and

sudden (abrupt or intermittent) failure due to sensor aging. The proposed algorithms have two key

features: online estimating the slowly-varying sensor measurement noise covariance and detecting

the sudden (fast) change of the sensor measurement noise covariance. The first proposed algorithm

shows the capability of estimating the slowly-varying sensor measurement noise covariance for

multiple-input and multiple-output systems with time-varying sensor measurement noise covari-

ance. Furthermore, the proposed estimation algorithm shows a reasonable rate of convergence,

better estimation accuracy and less computation load in contrast to published literature. Moreover,

the second proposed algorithm, which is a memory-based technique calculating the Euclidean dis-

tance of estimated covariance matrices between two sliding estimation windows, is used to detect

the abrupt (or intermittent) change of sensor noise covariance matrix. The proposed algorithm ori-



ginally is designed for discrete linear time-varying (DLTV) systems and applied to discrete linear

parameter-varying (DLPV) systems. The proposed algorithm shows the capability of detecting

the abrupt (or intermittent) change of sensor measurement noise covariance for multiple-input and

multiple-output discrete linear parameter-varying systems with time-varying sensor measurement

noise covariance, where the scheduling parameters lie within a compact set. Furthermore, the

proposed estimation algorithm shows a reasonable rate of convergence, better estimation accuracy

and less computation load in contrast to published literature. The other major contribution of this

work is the characterization of the control synthesis conditions using parametrized linear matrix

inequalities (PLMI) for a multi-objective gain-scheduled noisy output-feedback controller that mi-

nimizes the output cost onH2 performance with satisfactory system stability,H∞ performance and

control input covariance constraints (H2 constraints on the control inputs) in the presence of sensor

aging. The closed-loop system stability and performance, in terms of mixedH2/H∞ performances,

relative improvement, numerical complexity, computation time, and initial conditions response are

studied. The synthesized controller guarantees not only the stability but also the closed-loop mixed

H2/H∞ performances and it is feasible for real-time applications. To generate the output system

performance, the output covariance constraints (OCC) control synthesis conditions are developed

using parametrized linear matrix inequalities (PLMI) for a gain-scheduled noisy output-feedback

controller that minimizes the cost on control input (control effort) with satisfactory system output

covariance constraints in the presence of sensor aging. The closed-loop system performance in

terms of control effort as a function of the output covariance and the sensor noise covariance is

studied. The synthesized controller guarantees the closed-loop OCC performance and it is feasible

for real-time applications. The synthesized control utilizes sensor aging information to minimize

its effect on the system and improves the closed-loop system performance as possible subject to

given constraints and sensor performance degradation due to aging.
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Ū1, Ū2, Ū3
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Ū1, Ū2, Ū3
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ṽk innovation vector

ϕ forgetting factor

ε scalar constant

εk sum of square error

N estimation window size

m sliding estimation window size

Ii, j indicator function (signal)

RI relative improvement

η H∞ performance upper bound

χ H2 performance upper bound

xiv



KEY TO ABBREVIATIONS

FTC This is a Fault Tolerant Control

LPV This is a Linear Parameter Varying

LTV This is a Linear Time-Varying

LTI This is a Linear Time-Invariant

DLTV This is a Discrete Linear Time-Varying

DLPV This is a Discrete Linear Parameter Varying

SOF This is a Static Output-Feedback

DOF This is a Dynamic Output-Feedback

FGS This is a Full Gain-Scheduled

PGS This is a Partial Gain-Scheduled

KF This is a Kalman Filter

AKF This is a Adaptive Kalman Filter

MIMO This is a Multiple-Input Multiple-Output

LMI This is a Linear Matrix Inequality

PLMI This is a Parametrized LMI

ICC This is a Input Covariance Constraint

GSNOF This is a Gain-Scheduled Noisy static Output Feedback

xv



Chapter 1

Introduction

As technological systems become more complex, the requirement for dependable and repeatable

system performance is very important for modern control systems heavily relying on sensor sig-

nals for feedback control. This is particularly important for safety-critical applications, where a

successful mission of protecting human life, property, and/or environment becomes a paramount

goal. To minimize the possibility of unexpected failures, control systems need to have increased

reliability. One way to improve the system reliability is to enhance its ability of fault detection.

There are many system failure sources, and the most common and significant one is sensor failure.

To be specific, sensor performance degradation and/or fault due to sensor aging. Indeed, in control

systems, the sensor (or set of sensors) plays (play) the rule of an interpreter between physical plant

from one side and the online world and controller from another side; see Fig 1.1 for more details.

That is, sensor fault or failure affects the system output performance directly and could lead to

catastrophic consequences. Therefore, a faulty sensor may cause system performance degradation,

system shut down, and/or fatal accident. On the other hand, designing a controller not consider

sensor aging information may cause system performance degradation, system shut down, and/or

fatal accident. Motivated by this problem, the main contributions of this work are as follow:

• Thiswork assumes that sensor performance shift (i.e., sensor performance gradual-degradation

and/or fault due to sensor aging) can be characterized by its measurement noise covariance

shift. That is, the gradual-degradation of sensor performance due to its aging is charac-
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Figure 1.1: General control system.

terized by the slowly-varying sensor measurement noise covariance, and the sensor abrupt

(or intermittent) failures are characterized by an abrupt (or intermittent) change of sensor

measurement noise covariance.

• An algorithm is proposed to detect gradual sensor performance degradation due to sensor

aging that is characterized by slowly-varying sensor measurement noise covariance. In addi-

tion, another algorithm is proposed to detect and identify the sudden (abrupt or intermittent)

sensor failure, assuming that the sensor performance sudden shift can be characterized by

the noise covariance sudden (abrupt or intermittent) variation of the sensor measurement.

• Synthesis multi-objective gain-scheduled noisy output-feedback (GSNOF) controller com-

pensates for the gradually-degraded sensor performance due to sensor aging andmaintains the

desired performance. To be specific, a multi-objective gain-scheduled noisy output-feedback

controller (GSNOF), utilizing sensor aging information, such that system stability and de-

sired performances are guaranteed with optimal output covariance performance subject to

constraints on the control input covariance matrix (ICC) andH∞ performance is synthesized.

In addition, another controller is synthesized. That is, synthesis of a gain-scheduled controller
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minimizes the control effort subject to performance constraint on output covariance matrix

(OCC) in the presence of gradual sensor performance degradation due to sensor aging.

Figure 1.2 shows the itemized main contributions of this work, where the sensor performance

degradation information due to sensor aging utilized by the gain-scheduled control to maintain the

desired performance (if possible) and satisfy the given constraints, while designing control using

conventional methods may lead to system degradation performance or shutdown. Therefore, the

proposed sensor fault detection algorithms and the synthesized control give a decision-making

technique to keep accept sensor measurements or discard them. The following sub-sections briefly
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present the motivation and the main contributions of each chapter of this work starting with

Chapter 3 since Chapter 2 does not present any theoretical contributions but it is used to present

notations, terminologies, and definitions that are used throughout this dissertation..

1.1 Chapter 3 Summary

Chapter 3 presents the proposed algorithm for detecting gradual sensor performance degradation

due to sensor aging, assuming that sensor performance shift characterized by its measurement

noise covariance shift. In contrast to recent literature, model the sensor fault due to aging as

stationary augmented state, this work assumes that the sensor performance gradual-shift (i.e., sensor

performance gradual-degradation due to sensor aging) can be characterized by the slowly-varying

sensor measurement noise covariance, comparing with the most of the noise statistics identification

literature for the case with time-invariant sensor noise covariance only. To match with the goal

of online monitoring the sensor performance degradation due to sensor aging, an algorithm is

developed (in this chapter) to detect sensor performance degradation due to sensor aging, that

is, online estimating slowly-varying sensor measurement noise covariance. To be specific, the

proposed algorithm utilizes the covariance-matching technique, along with the adaptive Kalman

filter, based on the information about the quality of the weighted innovation sequence to estimate the

slowly-varying sensor measurement noise covariance. The covariance-matching of the weighted

innovation sequence improves the prediction accuracy and reduces the computational load, making

it suitable for real-time applications. The low computation load and online applicability are the

primary objectives of the proposed algorithm to online monitor sensor performance and detect the

gradual sensor performance degradation due to sensor aging.
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1.2 Chapter 4 Summary

This chapter presents an algorithm that used to detect and identify the sudden (abrupt or intermittent)

change in sensor performance. In contrast to others, this work assumes that the sensor performance

sudden-shift can be characterized by its measurement noise covariance sudden-variation. The

proposed algorithm, which is a memory-based technique calculating the Euclidean distance of

estimated covariance matrices between two sliding estimation windows, is used to detect the

abrupt (or intermittent) change of sensor noise covariance matrix. The memory-based technique

is adopted due to its simplicity and online applicability. The iterative manner, without making any

assumption on data statistical distribution before and after the sensor performance change, of the

proposed algorithm leads to a significant reduction of the computational load, reduced sensitivity to

initial conditions and improved estimation accuracy, making it suitable for online applications. An

algorithm is proposed to detect and identify the abrupt (or intermittent) sensor failure for discrete

linear time-varying (DLTV) systems with application to discrete linear parameter-varying (DLPV)

systems as a special case.

1.3 Chapter 5 Summary

This chapter presents the designed multi-objective gain-scheduled controller, with guaranteed

stability, that utilizes sensor aging information to minimize the output covariance cost (H2 norm)

function subject to the multiple input covariance constraints (ICC) andH∞ performance constraint

in the presence of gradual sensor performance degradation due to sensor aging. When closed-loop

controllers are designed using the conventional methods, these actuator constraints are usually

not taken into account. Consequently, it is possible to design a controller that commands more

control power than its capability. On the other hand, with the ICC control design, the actuator
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constraints are considered during the controller synthesis process. The synthesized multi-objective

gain-scheduled noisy output-feedback (GSNOF) controller compensates for the gradually-degraded

sensor performance due to sensor aging andmaintains the desired performance given set of available

control input constraints.

1.4 Chapter 6 Summary

This chapter presents the design a gain-scheduled controller, with guaranteed stability, that utilizes

the sensor aging information to minimize the control effort subject to performance constraint on

output covariance matrix (OCC) in the presence of gradual sensor performance degradation due

to sensor aging. The OCC control problem is to minimize the control input covariance subject to

the output covariance constraint(s). Without considering the output covariance matrix (OCC), it

is possible to design a controller that utilizes minimum control effort to achieve the unsatisfactory

output performance. On the other hand, with the OCC control design, the constraints on the

regulated output are considered during the controller synthesis process. Therefore, the controller

with theminimumcontrol effort is obtained for a given set of constraints on the regulated output. The

designed controller satisfies the required performance where the sensor performance degradation

information is considered.

In summery, an overview of the main parts of this work are presented. Next chapter introduces

the main notations and mathematical preliminaries were used in this work.
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Chapter 2

Preliminaries

The aim of this chapter is to briefly introduce necessary notations and definitions associated

with the modeling approach that is used in this dissertation. This chapter does not present any

theoretical contributions but it is used to present notations, terminologies, and definitions that are

used throughout this dissertation. Most of the terminologies used in this chapter can be found in

[Rodrigues et al., 2018, White et al., 2013c, De Caigny et al., 2010].

2.1 Notation

Notations used in this dissertation are fairly standard. The real, positive real, discrete and positive

discrete numbers are denoted by R, R+, Z and Z+, respectively. The symbol | | · | | denotes the

Euclidean norm unless it is stated otherwise. The symbol E [·] denotes the exception operator. The

symbol "7→" denotes the mapping from one domain to another, while the symbol "→" denotes the

implying logic. "co" denotes the column of a matrix. The capital bold latter J, for example, denotes

a matrix. The relation J< 0 (J ≤ 0) means that the matrix J is negative (negative semi-) definite.

trace(A) denotes the trace of the matrix A, which represents the sum of diagonal elements of the

matrix A. The zero matrix of size n × p is referred to as 0n×p. These subscripts will be omitted

when the size of the corresponding matrix can be inferred from the context.
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2.2 Definitions and Terminologies

Before going forward some definitions and terminologies need to be expressed.

Definition 1 The expectation of a random variable [Shynk, 2012] is one measure of the location

and center of its probability density function (pdf). It is the “expected value” in the sense that with

repeated trials, the expectation would be observed on average, which is also called the mean. Let R

be a random variable with a finite number of finite outcomes r1, · · · , rn occurring with probabilities

p1, · · · , pn, respectively. The expectation of R is defined as

µR = E(R) =
n∑

i=1
ri pi (2.1)

Since all probabilities add up to 1, the expected value is the weighted average, with pi’s being the

weights. If all outcomes are equiprobable, then the weighted average turns into the simple average.

This is intuitive: the expected value of a random variable is the average of all values it can take;

thus the expected value is what one expects to happen on average.

Definition 2 Variance of a random variable [Shynk, 2012] is a measure of spread for a distribution

of a random variable that determines the degree to which the values of a random variable differ

from the expected value. The variance of random variable R is

σ2
R = E

[ (
R − µR

)2] (2.2)

where µR is the mean of the random variable R. Note that, The standard deviation σR of random

variable R is the positive square root of the variance σ2
R
.
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Definition 3 The covariance can be viewed as an extension of the variance of one random variable.

The covariance of random variables R and Y is

Cov
(
RY

)
= E

[ (
R − µR

) (
Y − µY

) ]
(2.3)

Note that, when random variables R and Y are uncorrelated Cov
(
RY

)
= 0.

Definition 4 Unit-simplex [Nesterov, 2013]: a unit simplex is defined as follows

Λr = {ζ ∈ R
r :

r∑
i=1

ζi = 1, ζi ≥ 0, i = 1, · · · , r}, (2.4)

where the variable ζi varies in the unit-simplex Λr that have r vertices.

Definition 5 Multi-simplex [Nesterov, 2013]: a multi-simplex ΛM is defined as the Cartesian

product of finite number of n simplex such as

ΛM1 × ΛM2 × · · · × ΛMn =

n∏
j=1
ΛMi

∆
= ΛM, (2.5)

The dimension of the ΛM is defined as the index M = (M1, M2, · · · , Mn) and for simplicity of

notation, RM denotes for the space RM1+M2+···+Mn .

Remark 6 Any variable ζ in the multi-simplex ΛM can be decomposed in to (ζ1, ζ2, · · · , ζn), in se-

quel, each ζi is part of the unit-simplex domainΛMi , that can be decomposed into (ζi1, ζi2, · · · , ζiMi ),

∀i = 1, · · · , n
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2.3 LPV Modeling Approaches

This section illustrates the general modeling approaches for the linear parameter varying (LPV)

systems. That is, polytopic and affine parameterizations.

Definition 7 Affine parameter-dependent : A matrix X(θ(k)) is considered as an affine parameter-

dependent, if it can be represented such as

X(θ(k)) = X0 +

nx∑
i=1

θi(k) Xi, (2.6)

whereX0 ∈ R
n×n andXi ∈ R

n×n are constant matrices; and θi(k) is the ith element of the scheduling

parameters vector θ(k) ∈ Rnx at time instant k.

Definition 8 Polytopic parameter-dependent : A matrix X(θ(k)) is considered as a polytopic

parameter-dependent, if it can be represented such as

X(α(k)) =
nq∑
i=1

αi(k) Xi, (2.7)

where Xi ∈ R
n×n are constant matrices; and αi(k) is the ith element of the scheduling parameters

vector α(k) ∈ Rnq at time instant k.
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Chapter 3

Online Sensor Aging Detection using a

Modified Adaptive Filter

3.1 Introduction

Due to the increasing complexity of modern engineering systems, reliability has become an incre-

asingly important matter. This is particularly important for safety-critical applications, where a

successful mission of protecting human life, property, and/or environment becomes a paramount

goal. To minimize the possibility of unexpected failures, control systems need to have increased

reliability. One way to improve the system reliability is to enhance its ability to fault detection

[Ram and Davim, 2018]. There are many system failure sources; the most common and significant

one is the sensor failure. To be specific, sensor performance degradation due to sensor aging.

Sensor failure affects the system output performance directly and could lead to catastrophic conse-

quences [Cai and Wu, 2010]. Indeed, a faulty sensor may cause system performance degradation,

system shut down, and/or fatal accident; see Refs. [Zhang et al., 2017] and [Edwards et al., 2010]

for faulty sensors in aircraft systems.

The recent fault detection literature focus on the effect of sensor fault to the system per-

formance in many application fields, such as aircraft engines [Lu and Wu, 2009], altitude sen-

sor fault of air-jet pitch and attach angle control system [Nguyen et al., 2017], wireless sen-
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sor networks [Alvergue et al., 2016], unmanned vehicles [Hajiyev et al., 2015], actuator faults

[Tao et al., 2017], underwater vehicles [Liu et al., 2018], automobile engine mass air flow sensor

[Tan et al., 2018], drones and satellite communication applications [Edwards et al., 2010], medi-

cal applications [Abdallah et al., 2018], wind power generation [Bagherieh and Nagamune, 2014],

[Abdelmalek et al., 2018], Bayesian belief network [Mehranbod et al., 2005], small autonomous

helicopters [Heredia et al., 2008], nuclear power plant applications [Mandal et al., 2017], security

of cyber-physical systems [Cardenas et al., 2008], modern hybrid electric vehicles [Foo et al., 2013],

and data management in time-series application [Sharma et al., 2010].

Different methods were used to model, detect, and identify sensor faults. The commonly used

approaches in recent literature model the sensor fault as an additive or multiplicative term in the

measurement equation, augment the fault terms with system states, and use filter (or observer) (e.g.,

generalized or unknown input observer, Kalman or H∞ filter) to estimated the augmented states, a

combination of system states and fault terms. Also, the sensor fault is modeled as an additive or

multiplicative term and compared with the residual signal for a given threshold to detect the faulty

sensor. The virtual sensor technique was used to mask the faulty sensor measurement(s) and keep

the system within its nominal performance [Rotondo et al., 2014].

In contrast to recent literature, model the sensor fault due to aging as stationary augmented

state, this work assumes that the sensor performance shift (i.e., sensor performance gradual-

degradation and/or fault due to sensor aging) can be characterized by its measurement noise

covariance variation, comparing with the most of the noise statistics identification literature for the

case with time-invariant sensor noise covariance only. That is, the gradual-degradation of sensor

performance due to sensor aging is characterized by the slowly-varying sensor measurement noise

covariance. To match with the goal of online monitoring the sensor performance degradation

due to sensor aging, an algorithm is developed to detect sensor performance degradation due to
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sensor aging that is characterized by the slowly-varying sensor noise covariance matrix, that is,

online estimating slowly-varying sensor measurement noise covariance. Indeed, filtering theory

can be used to monitor the sensor performance and detect its performance degradation. The

resulting filter to deal with this matter is known as an adaptive filter that adjusts its parameters

according to the gap between the predicted estimates and the current measurements, for example,

adaptive Kalman filter that has been investigated by many kinds of literature. To be specific,

adaptive Kalman filter estimates the states with a noisy measurement. For example, in a networked

control system, where the communication channels between the sensors and the remote estimator

are vulnerable to false data injection attacks, as presented in Ref. [Hu et al., 2018]. An optimal

model-free control policy for tracking problem of non-affine nonlinear multi-input-multi-output

(MIMO) systems was proposed in Ref. [Safaei and Mahyuddin, 2017], where all the states in the

system are measured using a set of sensors, with white noise. In addition, adaptive Kalman

filtering algorithm is designed for the road environment to track radar targets and improve the

accuracy of target tracking, where the radar has more noise interference due to the changeable road

environment and complex background [Zhai et al., 2018]. However, the unknown noise statistics

can be estimated online from the observed data. For example, a proposed reference recursive

recipe for estimating initial filter state, process noise covariance and the unknown parameters

is demonstrated in Ref. [Ananthasayanam, 2018]. In Ref. [Zheng et al., 2018] a robust adaptive

Unscented Kalman filter (RAUKF) to improve the accuracy and robustness of state estimation with

uncertain noise covariance. Note that, the last two references deal with the case of time-invariant

noise covariance. Considering that the gradual sensor performance degradation due to sensor aging

can be characterized by the slowly-varying sensor noise covariance. This inspires this work to

investigate the estimation of the time-varying sensor noise covariance, or equivalently, covariance

matrices related to the state and measurement models. Consequently, the proposed algorithm
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invests adaptive filtering theory with the covariance-matching technique for such goal. The basic

idea behind using the covariance-matching technique [Meng et al., 2016] is to make the innovation

sequences consistent with their theoretical covariance. The covariance-matching method has been

shown to be one of the most promising techniques for practical applications due to its simplicity

and online applicability [Meng et al., 2016]. For example, Ref. [Zhang et al., 2018] proposes an

adaptive filter for joint polarization tracking and channel equalization using cascaded covariance-

matching. Ref. [Chen et al., 2017] proposes a target tracking algorithm using time difference of

arrival and frequency difference of arrival measurements for a mobile target in a distributed sensor

network, where the prior noise covariances are uncertain. A sensitivity-based adaptive square-root

unscented Kalman filter (SRUKF) with the recursive prediction-error method was used to estimate

system states, parameters, and covariances online is presented in Ref. [Riva et al., 2018].

In this chapter the primary goal is to monitor sensor performance and detect sensor fault,

that is, gradual sensor performance degradation due to the sensor aging characterized by senor

slowly-varying measurement noise covariance using the proposed algorithm.

In contrast to fault detection literature, this work characterizes the gradual sensor performance

degradation by slowly-varying sensor noise covariance. In addition, up-to authors knowledge,

most of the noise statistics identification literature considering the case with time-invariant sensor

noise covariance only, and this work extends to the case with time-varying sensor noise covariance

due to sensor aging. That is, the gradual sensor performance degradation due to sensor aging

(i.e., sensor fault due to sensor aging) is characterized by the slowly-varying sensor measurement

noise covariance. Note that, there may be more sophisticated methods to estimate the sensor

noise statistics, such as Bayesian analysis, which need more time consumption and computation

complexity (i.e., more computation load) and in consequence, they are not convenient for online

application. Moreover, the proposed algorithm is suitable for online applications due to its iterative
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manner, in contrast to most popular filtering recursive manner algorithms, is less sensitive to initial

conditions (i.e., less sensitive to initial state and its initial estimation error covariance matrix). In

other words, the proposed algorithm could be used as an online sensor health-monitoring, and

fault detection technique, which helps to avoid system performance degradation, system shut down,

and/or fatal accident; for more details see [Madhag and Zhu, 2017] or [Madhag and Zhu, b].

As a contribution of this chapter, an algorithm is proposed to monitor and detect gradual sensor

performance degradation due to sensor aging that is characterized by slowly-varying sensor noise

covariance. Additionally, this chapter proposes the incorporation of the innovation vector sequence

quality information with the weighted measurements, used by the proposed filter, for estimating

the slowly-varying sensor noise covariance. Moreover, the proposed algorithm is suitable for

online applications due to its iterative manner; use of weighted information about the innovation

vector sequence quality with reduced computational load and the exponentially weighted estimation

window improves the estimation accuracy. Consequently, the proposed algorithm could also be used

as an online fault identification technique, to decide when the sensor fails and its measurements are

useless. That is particularly important for safety-critical applications, where a successful mission

of protecting human life, property, and/or environment becomes a paramount goal.

The next Sub-section provides a general overview of the system model and describes the

proposed approach for estimating sensor noise covariance using adaptive Kalman filter based on a

weighted innovation vector and whiteness test along with covariance-matching. In Sub-section 3.4

a simulation example is used to express the capability of the proposed approach and the bounds of

the estimation window. Conclusions are drawn in Sub-section 3.5.
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Figure 3.1: Stochastic closed-loop system, where x, y and u are the state, the measurement and the input
vectors, respectively; ˜̂x and ˜̂y are the estimated state and the estimated measurement vectors, respectively;
ṽ is the innovation vector ; ω and ν are the process and measurement sensor noises, respectively; The
superscripts tilde and head denote the sub-optimal and the associated estimated value, respectively. The
dotted-line represents the controller part that is known.

3.2 System Model

To describe the proposed algorithm clearly, the dynamic systemmodel considered and the associated

assumptions are reviewed first. The target discrete-time stochastic closed-loop system is shown in

Fig. 3.1, where the dotted-line represents the controller part that is assumed known at this chapter.
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The plant model is described in the following state-space representation



x(k + 1) = A(k) x(k) + Bu(k) u(k) + Bω(k) ω(k) ,

z(k) = Cz(k) x(k) + Dz(k) u(k),

y(k) = Cy(k) x(k) + ν(k) ,

(3.1)

where subscript k is the sample time index; x(k) ∈ Rn is the state vector; z(k) ∈ Rq is the

controlled output vector; y(k) ∈ Rp is the measured output vector; u(k) ∈ Rm is the input vector;

A(k) ∈ Rn×n is the system matrix; Bu(k) ∈ Rn×m is the input matrix; Cz(k) ∈ Rq×n; Dz(k) ∈ Rq×m

and Cy(k) ∈ Rp×n are the measurement matrices; and Bω(k) is a diagonal matrix with proper

dimension. Indeed, there are two interesting interpretation of the terms ω(k) and ν(k) in system

(3.1). Deterministic interpretation: the exogenous input vectorsω(k) and ν(k) are assumed to be an

unknown disturbance that belongs to a boundedL2 set. Stochastic interpretation: they are assumed

to be uncorrelated Gaussian white noises with their means and covariances are defined by


E [ω(k)] = 0, E

[
ω(k)ω( j)T

]
=Wk δ(tk − t j)

E [ν(k)] = 0, E
[
ν(k)ν( j)T

]
= Vk δ(tk − t j),

E
[
ω(k)ν( j)T

]
= 0, E

[
x(k)ν( j)T

]
= 0, ∀ k, j ∈ R,

(3.2)

where E [·] denotes the expectation operator; δ is a Kronecker Delta function (i.e., δ(0) = 1 and

δ(k) = 0 ∀ k , 0 otherwise); and Wk and Vk are time-varying process and measurement noise

covariance matrices, respectively. This work considers only the stochastic interpretation since our

goal to detect the sensor performance degradation or fault. Note that the Kronecker Delta function

is used for discrete-time systems and for continuous-time case a Dirac Delta Function should be

used.
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The process used to simulate and model the sensor performance degradation due to aging is carried

out under the following assumptions. The initial state vector x(0) in system (3.1) is assumed to have

a normal distribution with zero mean (E [x(0)] = 0) and covariance matrix P0 = E(x(0)xT (0)) > 0.

The pairs
(
A(k),Cy(k)

)
and (A(k),B(k)) are assumed to be uniformly observable and controllable,

respectively. The process noise covariance matrix, Wk , is assumed to be positive semi-definite

and known at each time instant. The measurement noise covariance, Vk , is assumed to be positive

definite to be estimated. In the numerical calculations, the negative eigenvalues of estimated sensor

noise covariance matrix are replaced by small positive values. Moreover, all sensors measurement

noises of all channels are assumed to be independent (i.e., measurement noise for each channel is

independent on these for the rest of measurements), that is, Vk is a diagonal matrix.

Remark 9 Kalman filter is very sensitive to the positive definiteness of measurement noise covari-

ance matrix, and non-definiteness could affect estimation convergence and lead to divergence. In

the numerical calculations, the negative eigenvalues of the estimatedmeasurement noise covariance

matrix are replaced by small positive values.

Remark 10 There are three time scales for system (3.1). Time scale 1, S1, is represented by the

sensor noise covariance that has the slowest rate of variations; Time scale 2, S2, is represented by

the time-varying coefficients of system matrices, A(k),Bu(k),Cz(k),Cy(k), and Bω(k), that have

a slowly time-varying coefficients with much faster rate of variations than that of sensor noise

covariance; finally, Time scale 3, S3, is represented by the system dynamics, that has the fastest

rate of variations and is much fast than the other two time scales in the system.

Remark 11 The sensor noise covariance variation is used to simulate practical engineering pro-

blems. For example, the sensor noise covariance varying linearly, exponentially, or linearly with
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sinusoid fluctuation represents an aging sensor that has measurement noise (or error) increases

linearly, exponentially, or linearly with sinusoid fluctuation.

The aforementioned assumptions and remarks are required to be satisfied to proceed with the

sensor performance degradation estimation (i.e., sensor noise covariance estimation). The system

controllability and observability assumptions are essential to sensor noise covariance estimation.

If the system has unstable, undetectable, or/and unstabilizable modes, the sensor noise covariance

estimation will deviate far away from the actual one. The assumptions to the process and measure-

ment noise covariances are necessary for estimating sensor noise covariance online. The proposed

algorithm through this chapter requires the three time scales to have an ascending order of rate of

variations with large separations (at least one order difference). That is, sensor noise covariance

has the slowest rate of variations, system matrix coefficients have a slow rate of variations, and

system dynamics has the fastest rate of variations among three.

3.3 Adaptive Sub-Optimal Filter with Covariance Matching

Technique

In this chapter the primary goal is to online monitor sensor performance degradation, and detect

sensor failure, that is, online estimating the slowly-varying sensor measurement noise covariance

due to the sensor aging. To achieve such goal, we invest the modified adaptive Kalman filter with

covariance-matching technique for a system with measurement noise covariance varying slowly.

The gradual-degradation of sensor performance due to sensor aging is characterized by its slowly-

varying measurement noise covariance. In particular, it usually cannot obtain the exact statistical

properties of the sensor noise because it is impossible to isolate the noise from the measurement
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signals accurately [Kay, 2013]. Also, in most cases, the mechanism of the noise is not completely

understandable [Kay, 2013]. References [Simon, 2006], [Grewal and Andrews, 2001] show that

using the noise covariance different from the actual one in the Kalman filter affects the accuracy of

the state estimation since the Kalman filter is not optimal anymore, and Kalman filter (3.3) under

such conditions is a sub-optimal one; see Refs. [Grewal and Andrews, 2001] and [Simon, 2006]

for more details. The adaptive scheme with Kalman filter is used to reduce or bound errors by

modifying or adapting the Kalman filter to the actual measurements. That is, the adaptive Kalman

filter adjusts its estimation gains based on the gap between the predicted estimates and the current

measurements. The adaptive Kalman filter [Grewal and Andrews, 2001], [Simon, 2006] is given

below


˜̂x(k |k − 1) = A(k)˜̂x(k − 1|k − 1) + Bu(k) u(k),˜̂Pk |k−1 = ACL(k) ˜̂Pk−1|k−1 AT

CL(k) + Bω(k)Wk−1 BT
ω(k) ,

ṽk = y(k) − Cy(k)˜̂x(k |k − 1),

K̃k =
˜̂Pk |k−1 CT

y (k)
[
Cy(k) ˜̂Pk |k−1 CT

y (k) + V̂n,k

]−1
,

˜̂x(k |k) = ˜̂x(k |k − 1) + K̃k ṽk,˜̂Pk |k =
(
I − K̃k Cy(k)

)˜̂Pk |k−1
(
I − K̃kCy(k)

)T
+ K̃kV̂n,kK̃

T
k ,

(3.3)

where ˜̂x and ˜̂P are the estimated state and its estimation error covariance, respectively, using the

sub-optimal Kalman filter, or in other words, Kalman filter with estimated noise covariance; ACL(k)

is the closed-loop state matrix; ṽk is the innovation vector; K̃k is the sub-optimal Kalman gain;

and V̂n,k is the estimated noise covariance matrix. The superscripts tilde and head denote the

sub-optimal and the associated estimated value, respectively and other matrices are defined below
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n, 1 n,N

Vn,1 Vn,N

N

V̂n,1 V̂n,N

Ṽn,1 = Vn,1 − V̂n,1

Ṽn,N = Vn,N − V̂n,N

V̂n,k V̂n,k+1

Figure 3.2: Estimation window specifications. The subscripts n and k denote the estimation window
number and time within the estimation window, respectively. The length of the estimation window is
denoted by N . The estimated noise covariance matrix at estimation window n and sample time k is
denoted by V̂n,k . The first and last time instants of the estimation window are denoted by ”n, 1” and ”n, N”,
respectively. The associated estimated noise covariances are denoted by V̂n,1 and V̂n,N , respectively, while
any two consecutive values within the window are denoted by V̂n,k and V̂n,k+1, respectively. Vn,1 and Vn,N

denote the actual noise covariances at first and last time instant of the estimation window.

system (3.1). To match with the goal of online monitoring sensor performance and detecting

the gradual sensor performance degradation due to sensor aging (i.e., sensor fault due to sensor

aging) characterized by the slowly-varying sensor noise covariance matrix, it is assumed that the

system (3.1) is stable. In addition, equation (3.3) could be different from traditional ones since

the Joseph formula is used to update the state estimation error covariance matrix (i.e., last line of

group equations(3.3)), that is, it ensures fast convergence and upper bounded estimation error, see

Ref. [Simon, 2006] for more details.

In this work notations that express the estimation window number and time indices are used. There

is a fixed length time interval called estimation window sliding over the infinite time horizon.

The length of the estimation window is denoted by N . Both subscripts n and k denote the

estimation window number and sample time indices, respectively. The current estimation window

is represented by n , the previous estimation window by n−1, and the next by n+1 . The estimated

noise covariance matrix at estimation window n and sample time k is denoted by V̂n,k . The
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first and last time instants of the current estimation window are denoted by ”n, 1” and ”n, N”,

respectively. The associated estimated noise covariance matrices are denoted by V̂n,1 and V̂n,N ,

respectively, while any two consecutive estimated noise covariance matrices within the window are

denoted by V̂n,k and V̂n,k+1, respectively, the actual noise covariances use the same notation but

without superscript head; see Fig. 3.2 for more details.

Adaptive Kalman Filtering (AKF) with covariance-matching technique considered in this work

to online estimate the unknown sensor noise covariance matrix. Note that covariance-matching

technique is highlighted in many publications such as [Meng et al., 2016] and others. The basic

idea behind the covariance-matching technique is to make the innovation vector sequence (defined

in equation (3.3)) consistent with their theoretical covariance matrix. Remember that the goal

in this chapter is to online detect gradual sensor performance degradation due to sensor aging

by estimating the slowly-varying sensor noise covariance from the set of measurements based on

the proposed algorithm based on the information about the quality of the weighted innovation

vector sequence. It is well known that the innovation vector sequence is a reliable indicator

for the filtering performance [Chui and Chen, 2008], [Simon, 2006]. Note that the innovation

vector is described as the difference between the actual measurements and its predicted values

[Grewal and Andrews, 2001], [Simon, 2006] and it is given by

ṽk = y(k) − Cy(k)˜̂x(k |k − 1),

where ˜̂x(k |k − 1) is the estimated state vector at time k based on measurements at time k − 1 using

filter (3.3); y(k) is the measurement vector at time k; Cy(k) is the measurements matrix; ṽk is the

innovation vector, and the superscripts tilde and head denote the sub-optimal and estimated value,

respectively.
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Remark 12 The innovation vector is said to be white if it is uncorrelated with zero mean.

Two criteria are used to test whiteness of the innovation vector and they are bias and whiteness tests

[Kay, 2013], [Bar-Shalom and Kirubarajan, 2004]. The sample mean for the collection of innova-

tion vectors (or the innovation vector estimate)[Kay, 2013], [Bar-Shalom and Kirubarajan, 2004] is

given by

¯̃vN =
1
N

N∑
k=1

ṽk . (3.4)

where N is the number of time samples. The estimated auto-covariance matrix of the innovation

vector [Kay, 2013], [Bar-Shalom and Kirubarajan, 2004] is given by

Cov(τ) =
1
N

N−τ∑
k=1
(ṽk+τ − ¯̃vN )(ṽk − ¯̃vN )

T . (3.5)

Note that use the divisor N instead of N − τ ensures that the auto-covariance matrix is nonnegative

definite [Brockwell and Davis, 2016]. The bias test is used to check statistically whether the

sample mean of the collection of the innovation vectors is zero or not. The whiteness test is to

check statistically whether the estimated auto-covariance matrix of the innovation vector is within

the confidence interval or not. The 95% confidence interval estimate of the auto-covariance matrix

[Kay, 2013] is given by

`(τ) =

[
Cov(τ) −

1.96 × Cov(0)
√

N
, Cov(τ) +

1.96 × Cov(0)
√

N

]
. (3.6)

Note that the auto-covariance matrix, Cov(τ), with zero lag (τ = 0) is the covariance matrix denoted

by Pv (i.e., Cov(0) = Pv).

Remark 13 The innovation vector sequence, used to estimate the sensor measurement noise cova-

riance, has to pass both bias and whiteness tests.
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Initialize ˜̂x0,
˜̂
P0, V̂0, N , k = 1

Collect yk,uk

Calculate ṽk and store it

k = k + 1

is k ≤ N

Check ṽk for Bias and Whitness using (3.4), (3.5) and (3.6)

is ṽk white Discard it

No

Yes

Run covariance Matching Technique =⇒ V̂n,N

n = n + 1

Yes

No

n = 1

i.,e.

is ṽk zero or not?

is Cov(τ) in (3.5) within interval `(τ) in (3.6)?

Figure 3.3: Flowchart of the slowly-varying sensor noise covariance estimation algorithm. n is the estimation
window index; N is the estimation window size; ˜̂x(0) and ˜̂P0 = E(̃x̂(0)̃x̂(0)T ) are the initial estimated state
and its estimation error covariance; k is the sample time index within the estimation window; u(k), y(k) and
ṽk are input, measurement and innovation, respectively; V̂o is the initial noise covariance estimate; V̂n,N is
the estimated sensor noise covariance matrix by the end of estimation window "n".
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The proposed algorithm uses the information about whiteness and the weighted innovations vectors

(which will be explained later) for the adaptive estimation of the sensor noise covariance. Fig. 3.3

shows the proposed algorithm, where n is the estimation window index; N is the estimation window

size; ˜̂x0 and ˜̂P0 are the initial estimated state and its estimation error covariance; k is the sample

time index within the estimation window; u(k), y(k), and ṽ are input, measurement, and innovation,

respectively; V̂o is the initial noise covariance matrix estimate; and V̂n,N is the estimated sensor

noise covariance matrix by the end of estimation window "n". A particularly attractive feature of

combining the adaptive Kalman filter with the quality of the innovation vector information is that

the filter is acting like a detection algorithm identifying not only changes in the system properties

but also covariance in the disturbance statistics. Note that ṽk is the innovation vector while ν(k) is

the sensor measurement noise. Consider system (3.1) and filter (3.3), the exact value of the sensor

measurement noise, ν(k), is unknown, an intuitive approximation of ν(k) is the innovation vector

[Grewal and Andrews, 2001], [Simon, 2006], that is given by

ṽk = y(k) − Cy(k) ˜̂x(k), (3.7)

where˜̂x(k) is˜̂x(k |k − 1) defined in (3.3). Substitute y(k) = Cy(k) x(k)+ν(k) in Eqn. (3.7), multiply

by its transpose and take expectation with considering set of Eqns. (3.2) (i.e., the sate estimation

error and measurement noise are uncorrelated), the calculated covariance matrix of the innovation

estimate is given in by

E
[
ṽk ṽT

k

]
= E

[
Cy(k) (x(k) − ˜̂x(k |k − 1)) (x(k) − ˜̂x(k |k − 1))T CT

y (k)
]
+ E

[
ν(k)ν(k)T

]
,

= Cy(k)˜̂Pk |k−1CT
y (k) + Vk

(3.8)

The samplemean of the collection of the innovation vectors (or innovation vector estimate)[Kay, 2013],
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[Bar-Shalom and Kirubarajan, 2004] is given by

¯̃vN =
1
N

N∑
k=1

ṽk, (3.9)

where N is the number of time samples. The estimated covariance matrix of the innovation vector

estimate is given in by

Pv =
1

N − 1

N∑
k=1
(ṽk − ¯̃vN )(ṽk − ¯̃vN )

T .

Note that the divisor is N − 1 instead of N to ensure unbiased estimate of the covariance matrix

Pv [Kay, 2013]. Then, the estimate of the sensor measurement noise covariance at estimation

window n with sample time k = N is given by difference between the estimated and the calculated

covariance matrix of the innovation vector estimate as follows

˜̂Vn,N =
1

N − 1

N∑
k=1

[
(ṽk − ¯̃vN )(ṽk − ¯̃vN )

T −

(
N − 1

N

)
Cy(k)˜̂Pk |k−1CT

y (k)
]
, (3.10)

where ṽk is the innovation vector; ¯̃vN innovation vector estimate, and ˜̂Pk |k−1 state estimation error

covariance. Equation (3.10) is used to online estimate the sensor measurement noise covariance.

Indeed, to obtain a feasible estimation based on the available measurements (minimal available

information) for reducing estimation error and computational load, the last estimation is then

combined with a weighted innovation vector. The weight coefficient ϕ is used as a "forgetting

factor" for the past innovation vector data, and it is adaptively adjusted to improve the estimation

accuracy as shown later. The weighted innovation vector estimate in equation (3.9) can be rewritten

as follows

v̄N =
1
N

[
N∑

k=1
ϕN−k ṽk

]
, (3.11)
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where N is number of time samples; ϕ ∈ (ε, 1] is the forgetting factor for the innovation vector data

in the past and 0 < ε < 1; v̄N is the innovation vector estimate defined in equation (3.9) but with

the forgetting factor. Then, equation (3.10) can be written as

V̂n,N =
1

N − 1

N∑
k=1

[
(ϕN−k ṽk − v̄N )(ϕ

N−k ṽ − v̄N )
T −

(
N − 1

N

)
Cy(k)˜̂Pk |k−1CT

y (k)

]
, (3.12)

where V̂n,N is the estimate of the sensor measurement noise covariance defined in equation (3.10)

but with the forgetting factor.

In the proposed algorithm, the filter performance varies as the forgetting factor ϕ changes. That is,

the value of the forgetting factor ϕ is important to the whole filtering process. Note that, the role

of the forgetting factor ϕ at each estimation window is to put more weight on recent innovation

data and less to older ones within that estimation window. Then, it is different from traditional

forgetting factor or exponential weighting techniques that consider the weight over entire time

horizon. The value of the forgetting factor ϕ is chosen to ensure the convergence of the steady-state

mean square error. Usually ϕ is a number less than 1. Specifically, it is commonly selected to be

0.95 ≤ ϕ ≤ 0.99 [Raol and Gopal, 2012],[Chu, 2015]. Consider the innovation vector given by

equation (3.7) representing the output estimation error based on the predicted one, and square sum

over the estimation window, as follows

εk =
1
N

( N∑
k=1

ϕN−k (ṽk)
2
)
,

=
1
N

(
ϕN−1 (ṽ1)

2 + ϕN−2 (ṽ2)
2 + · · · + ϕ (ṽN−1)

2 + (ṽN )
2
)
,

where εk is the sum of mean-square-error. It is clear that as the forgetting factor should be

less than 1 to have a monotonically decreasing sum of mean-square-error. If ϕ is small, the
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estimation tracking is strong [Kadlec et al., 2011]. On the other hand, the effect of early error and

innovation are forgotten and since Kalman filter depends on innovation data to update the estimate,

the current update step ignores new information. Consequently, the resulting estimate deviates

from the actual value, leading to diverged filter estimation error. Indeed, when the filter starts

at each estimation window, the estimation quality is low and it takes more iteration (information)

to improve the estimation. As a result, the estimation should be weighting less at the beginning

and more currently. In other words, when ϕ is close to one, the Kalman filter converges to a

steady-state error in a slow manner, yielding a small error, and when is close to zero, the algorithm

converges to a steady-state error with a relatively fast manner, yielding a large error. To overcome

this shortcoming, it is usually required that 0.95 ≤ ϕ ≤ 0.99. In this work, we consider forgetting

factor values as follows [Kaufman et al., 2012], [Narendra, 2012]

ϕ =
N − 1

N
,

where, N is the estimation window size. Note that, by considering the forgetting factor for the

innovation data vector, the estimation window is exponentially weighted, providing improved

estimation accuracy. Now, we are in the position to state the Lemma of the proposed algorithm.

Lemma 14 Consider system (3.1) and filter (3.3) with aforementioned assumptions and follow the

algorithm defined in Fig. 3.3, the estimation of the sensor measurement noise covariance is given

by equation (3.12).

The last Lemma states the proposed estimation algorithm for the slowly time-varying sensor noise

covariance using the adaptive Kalman filter based on the covariance-matching technique. Next, a

simulation example is used to validate the proposed approach for monitoring sensor performance

and estimating gradual sensor performance degradation due to sensor aging, that is, estimating the
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slowly-varying sensor noise covariance matrix due to sensor aging, of a given system.

3.4 Simulation Results and Discussion

The objective of conducting simulation study using a numerical example in this sub-section is to

demonstrate the ability of the proposed algorithm for a system model whose measurement sensor

performance degraded gradually due to the sensor aging (i.e., measurements are polluted with

slowly-varying sensor noise covariance). That is, the slowly-varying sensor noise covariance in-

creases linearly, exponentially, or linearly with sinusoid fluctuation. The sensor noise covariance

variations are chosen to simulate certain practical engineering problems. For example, the linear,

exponential increment, or linear increment with sinusoid fluctuation of sensor noise covariance

represents an aging sensor with its measurement noise increase linearly, exponentially, or linearly

with sinusoid fluctuation. In the simulation study, the controllability and observability of the con-

sidered system have been checked at each time step, and all simulation results are created using

MATLABR2015 with a computer equipped with an Intel Core i7 Processor and 16 GB RAM. Note

that, in order to eliminate the redundancy in simulation results, only channel 1 of the multiple-input

and multiple-output system presented, and channel 2 behaves similarly to channel 1.

Example: Consider the discretized version of system model matrices for the multi-input and
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multi-output (MIMO) linear time-varying (LTV) system is given by [Zhang, 2002]



A =


e−2(tk+1−tk ) −1

2+%
(
e−(4+%)tk+1−4tk + e−2tk+1−(2−%)tk

)
0 e−4(tk+1−tk )


,

Bu =


1
2 − e−2(tk+1−tk ) b12

0 1
4 − e−4(tk+1−tk )


,Cz =


1 0

0 1


,Cy =


1 0

0 0.5


.

(3.13)

where b12 =
−1

8+4%
(
e−%tk+1 − e−(4+%)tk+1+4tk

)
− 1

4−%2

(
e−%tk+1 − e−2tk+1−(2−%)tk

)
; Bω(k) is a diagonal

matrix with proper dimension; % = 0.01; tk is the time step (discrete); and the sampling time is 0.1

second. Call back that the goal is to estimate the slowly-varying sensor noise covariance for system

(3.13).

30



0 2 4 6 8 10 12

Time (h) ×10
4

-1.5

-1

-0.5

0

0.5
x

1

actual estimated

0 2 4 6 8 10 12

Time (h) ×10
4

-1.5

-1

-0.5

0

0.5

x
2

actual estimated

Figure 3.4: Actual and estimated states of system (3.13) with 400 samples as an estimation window length,
0.9975 forgetting factor value and linearly increased sensor noise covariance with increment rate 9 ∗ 10−4.
The x-axis is linear in time and y-axis is linear in state magnitude. The solid and dotted lines represent the
actual and estimated state, respectively.

Fig. 3.4 shows the actual and estimated states of system (3.13) considering sensor noise covari-

ance has linear increment with rate 9 ∗ 10−4; estimation window size is 400 samples and forgetting

factor ϕ is 0.9975. It is clear that the designed filter states converge to actual ones in a reasonable

time. Note that the selection of estimation window size N = 400 will be explained later in this

section.

Fig. 3.5 and Fig. 3.6 consider system (3.13) with N = 400 as an estimation window size and

show the the actual and estimated sensor noise covariances with linear and exponential increment,

respectively, for channel 1 of system (3.13).
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Figure 3.5: Actual and estimated sensor noise covariances for channel 1 of system (3.13) with 400 samples
as an estimation window length, 0.9975 forgetting factor value and linearly increased sensor noise covariance
with increment rate 9 ∗ 10−4. The x-axis is linear in time and y-axis is logarithmic in noise covariance. The
solid and dotted lines represent the actual and estimated noise covariance, respectively.

Fig. 3.7 shows the actual and estimated sensor noise covariances with linearly increased covari-

ance perturbed by a sinusoid signal for channel 1 of system (3.13). Solid and dotted-lines represent

the actual and estimated sensor noise covariances, respectively. The estimated sensor noise cova-

riances show a reasonable tracking performance for the actual ones with linear, exponential, and

linear with sinusoid fluctuation cases. Indeed, for the exponential increment case, the estimated

covariance matrix show good tracking performance when the slope is close to that of linear case

and it deviates when the slope increases. Similarly, for the the linearly increased noise covariance

with the sinusoid fluctuation, the estimated value tracks the actual one with small estimation errors.

In other words, the proposed algorithm works well under a slow rate of variations for this class of

noise covariances.

Fig. 3.8 and Fig. 3.9 show the simulation results of the linearly increased noise covariance with

N = 50 and N = 800 samples as an estimation window lengths, respectively.
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Figure 3.6: Actual and estimated sensor noise covariances for channel 1 of system (3.13) with 400 samples
as an estimation window length, 0.9975 forgetting factor value and exponentially increased sensor noise
covariance with increment rate 9 ∗ 10−4. The x-axis is linear in time and y-axis is logarithmic in noise
covariance. The solid and dotted lines represent the actual and estimated noise covariance, respectively.

It is clear that when the estimation window length is set within certain bounds, the proposed

algorithm shows a reasonable convergence. On the other hand, when the estimation window length

is set outside that region, the proposed algorithm diverges (see Fig. 3.8 and Fig. 3.9). Also, the

small the window length, the quick the divergence. Note that the proposed algorithm assumes that

the noise covariance is fixed over the estimation window. With a short estimation window length,

the estimation error at the end of estimation window will be relatively large since the estimation

may not have enough time to converge, which could lead to a diverged estimation; on the other

hand, with a long estimation window length, the noise covariance estimation error at the end of

estimation window can be significantly reduced since there is enough time for the Kalman filter

to converge, however, the assumption of constant measurement noise covariance is no long true,

which could lead to large estimation error (diverged estimation). As a summary, the estimation

window should be selected adequately (not too short and not too long).
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Figure 3.7: Actual and estimated sensor noise covariances for channel 1 of system (3.13) with 400 samples
as an estimation window length, 0.9975 forgetting factor value and linearly increased sensor covariance
perturbed by the sinusoid signal with increment rate 9 ∗ 10−4. The x-axis is linear in time and y-axis
is logarithmic in noise covariance. The solid and dotted lines represent the actual and estimated noise
covariance, respectively.

Different estimation window lengths were tested through the simulations. Fig. 3.10 shows

different estimation window lengths and corresponding noise covariance estimation errors for

channel 1 of system (3.13) with a linearly increased noise covariance rate of 9∗10−4. The case with

estimation window length of 400 samples shows the smallest noise covariance estimation error,

and Table 3.1 list the estimation window size (time window length) and corresponding sensor noise

covariance estimation error for channel 1 of system (3.13) with the noise covariance rate of 9∗10−4,

where the noise covariance estimation error is calculated at the last time epoch of simulation run.

Therefore, the estimation window length N is set to 400 and the upper and lower bounds are set to

200 and 500, respectively. It is advised to note that the upper and lower bounds of the estimation

window are found under the assumption of slowly-varying sensor noise covariance.
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Figure 3.8: Actual and estimated sensor noise covariances for channel 1 of system (3.13) with 50 samples
as an estimation window length, 0.98 forgetting factor value and linearly increased sensor noise covariance
with increment rate 9 ∗ 10−4. The x-axis is linear in time and y-axis is logarithmic in noise covariance. The
solid and dotted lines represent the actual and estimated noise covariance, respectively.

In contrast, when the noise covariance increase slowly and suddenly it increases very fast

(changes abruptly), the proposed algorithm fails to estimate the noise covariance and the estimated

noise covariance diverge. That is, the fast increment of noise covariance requires the upper bound of

the estimation window size to be reduced correspondingly and that could lead to overlap with lower

bounds, resulting in failed (diverged) estimation of the noise covariance for the proposed algorithm.

Fig. 3.11 shows the forgetting factor value verses the noise covariance matrix estimation error for

channel 1 of system (3.13) and noise covariance increases linearly with variation rate is 9 ∗ 10−4

and estimation window size 400 samples. It is clear that forgetting value around ϕ = 0.9975

associated with lowest noise covariance matrix estimation error considering system (3.13) and

noise covariance increases linearly with variation rate is 9 ∗ 10−4 and estimation window size 400

samples. This matches with analytical equation, mentioned in forgetting factor value selection part

last section.
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Figure 3.9: Actual and estimated sensor noise covariances for channel 1 of system (3.13) with 800 samples as
an estimation window length, 0.99875 forgetting factor value and linearly increased sensor noise covariance
with increment rate 9 ∗ 10−4. The x-axis is linear in time and y-axis is linear in noise covariance. The solid
and dotted lines represent the actual and estimated noise covariance, respectively.

As a summary, the proposed algorithm shows its capability of detecting sensor performance

degradation due to sensor aging by estimating the slowly-varying sensor noise covariance matrix

under different covariance variation functions when the estimation window length is properly

selected.

The proposed sensor performance of degradation detection, is compared with that presented in

Refs. [Roman et al., 2003], and [Enescu et al., 2002] usingKalman filter with a recursive estimation

techniques to estimate the noise covariance. Fig. 3.12 shows the actual and estimated sensor noise

covariance matrix for channel 1 with 400 samples estimation window length, 0.9975 forgetting

factor value and linearly increased sensor covariance with increment rate 9 ∗ 10−4. The upper sub-

figure represents the results of the proposed algorithm in this work and lower sub-figure represents

the results of the algorithm used in Refs. [Roman et al., 2003], and [Enescu et al., 2002]. It is clear

that the proposed algorithm in this work converges to the actual noise covariance while algorithm
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Table 3.1: Estimation window size (time window length) and corresponding sensor noise covariance
estimation error considering channel 1 of the system defined in (3.13) and noise covariance increases linearly
with variation rate is 9 ∗ 10−4. The noise covariance estimation error is calculated at the last time epoch of
simulation run.

Estimation Window Size (N) Noise Covariance Estimation Error (%)

50 50%
400 2%
800 17%

used in Refs. [Roman et al., 2003], and [Enescu et al., 2002] fails to converge. Moreover, the

proposed filter is less sensitive to the initial value of the state and its estimation error covariance due

to the iterative manner of the proposed algorithm, while algorithm in Refs. [Roman et al., 2003],

and [Enescu et al., 2002] is much sensitive to initial conditions due to the recursive manner of

their algorithm. That is, the proposed algorithm consider weighted innovation information at each

estimationwindowwhile the other algorithm use recursive onewithout weighting. The computation

performance of the proposed algorithm can be indicated by the time consumed by CPU for one

iteration of noise covariance estimation and it is found to be 0.0087569 sec while 0.1304 sec for

Refs. [Roman et al., 2003], and [Enescu et al., 2002] algorithm. The computer is equipped with

an Intel i7 2.6 GHz processor with a sampling time of 0.1 sec. Again, the sample estimation

window length is 400 samples, forgetting factor value is 0.9975 with linearly increased sensor

covariance with increment rate 9 ∗ 10−4. In addition, the computation performance of the proposed

algorithm (i.e., the time consumed by CPU for one iteration of noise covariance estimation) is

almost stationary in the proposed algorithm while it is exponentially for the one proposed by

Refs. [Roman et al., 2003], and [Enescu et al., 2002] due to the recursive nature of their algorithm.
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Figure 3.10: The noise covariance estimation error vs. estimation window length considering channel 1 of
the system (3.13) and noise covariance increases linearly with variation rate is 9 ∗ 10−4. The x-axis is linear
in estimation window size and y-axis is linear in noise covariance estimation error.

3.5 Summary

The control systems used in industry and other fields should be safe, reliable, and stable. Degra-

dation of sensor performance due to the sensor aging can be a crucial factor affects these system

performances, reliability, and even stability. Adapting the control system to sensor performance

variations helps to avoid any catastrophic consequences. This motivates monitoring sensor per-

formance and detecting the gradual sensor performance degradation due to sensor aging. New

algorithm is proposed to detect gradual sensor performance degradation due to sensor aging that is

characterized by slowly-varying sensor noise covariance. In contrast to fault detection literature, the

gradual sensor performance degradation is characterized by slowly-varying sensor noise covariance.

In addition, most of the noise statistic identification literature consider the case with time-invariant

sensor noise covariance only; while this work extends to the case with time-varying sensor noise
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Figure 3.11: Noise covariance matrix estimation error and the forgetting factor value for channel 1 of
system (3.13) and noise covariance increases linearly with variation rate is 9 ∗ 10−4 and estimation window
size 400 sample. The x-axis is linear in forgetting factor values. The y-axis is linear scale and represents the
noise covariance estimation error.

covariance due to the sensor aging. That is, the gradual-degradation of sensor performance due

to the sensor aging is characterized by the slowly-varying sensor measurement noise covariance.

Additionally, this work incorporates the innovation vector sequence quality information with the

weighted measurements, for estimating the slowly-varying sensor noise covariance. The proposed

algorithm invests adaptive filtering theory with the covariance-matching technique and the infor-

mation about the quality of the weighted innovation vector sequence for the estimation process.

Moreover, the proposed algorithm is suitable for online applications due to the low computation load

and iterative manner; and is less sensitive to initial conditions (i.e., less sensitive to initial state and

its initial estimation error covariance matrix). Also, use of weighted information of the innovation

vector sequence reduces computational load, and the exponentially weighted estimation window

improves the estimation accuracy and makes it feasible for online applications. Consequently,

the proposed algorithm could also be used as an online fault identification technique. Therefore,
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Figure 3.12: Actual and estimated sensor noise covariance matrix for channel 1 of system (3.13) with 400
sample estimation window length, 0.9975 forgetting factor value and linearly increased sensor covariance
with increment rate 9 ∗ 10−4. The x-axis is linear in time and y-axis is logarithmic in noise covariance. The
solid and dotted lines represent the actual and estimated noise covariance, respectively. The upper sub-figure
represents the result of the proposed algorithm and lower sub-figure represents the result of the algorithm
used in Refs. [Roman et al., 2003, Enescu et al., 2002].

the proposed algorithm could be used as an online sensor health-monitoring and fault detection

technique which is particularly important for safety-critical applications. The convergence of the

proposed algorithm is demonstrated through a simulation study and shows a reasonable rate of

convergence, improved estimation accuracy and reduced computation load. As a summary, the

proposed algorithm can estimate the slowly-varying unknown sensor noise covariance, assuming

that the estimation window is properly chosen. Next chapter demonstrate the algorithm to detect

and identify the abrupt or intermittent sensor failure.
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Chapter 4

Online Sensor Performance Monitoring and

Fault Detection for Discrete Linear

Parameter Varying Systems

4.1 Introduction

Whatever the application realm of interest may be, a sensor failure remains an unwelcome event

causing an undesirable perturbation in the normal operation of a system, with multifarious adverse

effects such as loss efficiency, productivity, reliability and profitability for several industries. As

mentioned earlier, to minimize the possibility of unexpected failures, control systems need to

enhance its ability of fault detection. Sensor fault could be caused by gradual-degradation of sensor

performance (which is the focus of Chapter 3) or abrupt (intermittent) performance change (which

is the focus point of this chapter), and it impacts system performance, stability, and reliability.

The recent abrupt fault detection literature focus on the effect of sensor fault to the system

performance in many application fields, such as combustion engine [Isermann, 2005], nonli-

near systems [Zhang et al., 2002], sewer system [Ingimundarson et al., 2009], induction machines

[CusidOCusido et al., 2008], wind turbines [Wei et al., 2010], satellite network [Wu and Saif, 2007],

vehicle steering system [Arogeti et al., 2012], aircraft control [Samara et al., 2008], unmanned
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vehicles [Abbaspour et al., 2017], building services systems [Wang and Xiao, 2004], fluid power

systems [Niksefat and Sepehri, 2002], vehicle steering system [Arogeti et al., 2012], telecommu-

nication system [Troitzsch et al., 2016], grid system [Xia et al., 2017], sensor abrupt fault using

wavelet technique [Zhang and Yan, 2001], immune system [Laurentys et al., 2010], and vehicle

active suspension system [Chamseddine and Noura, 2008]. Different methods were used to model,

detect, and identify sensor faults. The commonly used approaches model the sensor fault as an

additive or multiplicative term in the measurement equation, augment the fault terms with states,

and use filter (or observer) to estimated the augmented states, a combination of system states and

fault terms. Also, the sensor fault is modeled as an additive or multiplicative term and compared

with the residual signal for a given threshold to detect the faulty sensor. The virtual sensor techni-

que was used to mask the faulty sensor measurement(s) and keep the system within its nominal

performance [Rotondo et al., 2014].

In contrast to others, this work assumes that the sensor performance shift can be characterized by

its measurement noise covariance variation. That is, the gradual-degradation of sensor performance

due to sensor aging is characterized by the slowly-varying sensor measurement noise covariance,

and the sensor abrupt (or intermittent) failures are characterized by an abrupt (or intermittent)

change of sensor measurement noise covariance. As a result, a sensor performance monitoring

system is required to detect the slowly and/or abruptly varying sensor performance.

In Chapter 3 (see Ref. [Madhag and Zhu, b]), an algorithm was developed to detect the gradual

sensor performance degradation, that is estimating the slowly-varying sensor noise covariance. An

adaptive Kalman filter with the covariance-matching technique is exploited for online estimating

slowly-varying sensor measurement noise covariance. In Chapter 3, it has been shown that the

proposed algorithm can only handle the slowly-varying covariance case, and it cannot deal with

fast-varying or sudden change in noise covariance. To match with the goal of online monitoring the
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sensor performance and detect the sudden change in performance a sensor abrupt (or intermittent)

failure detection method is proposed in this Chapter. The proposed abrupt change detection method

is based on the calculated change of estimated sensor measurement noise covariance, assuming that

the failure can be characterized by the change of the estimated sensormeasurement noise covariance.

To be more specific, the change is quantified by the distance between the sensor measurement noise

covariances over the two estimation windows before and after the change occurs. Computing the

distance between two covariances can be realized by computing the distance between the sample

windows [Brockwell and Davis, 2016]. Since each sample is a vector in a multi-dimensional

Euclidean space, a natural distance measure between a pair of vectors is their Euclidean distance

[Bernstein, 2005]. This Chapter proposes a technique for detecting abrupt (or intermittent) change

based on the Euclidean distance of estimated covariances between two sliding estimation windows.

In this Chapter the primary goal is to detect and identify the abrupt (or intermittent) change of

sensormeasurement noise covariance using amemory-based change detectionmethod. On the other

hand, in Chapter 3 the primary gaol was to detect the gradual sensor performance degradation, that

is estimating the slowly-varying sensor measurement noise covariance using a modified adaptive

Kalman filter with the covariance-matching technique.

In contrast to the published literature (e.g.,[Madhag and Zhu, b]), this Chapter focus on abrupt

sensor failure for discrete linear time-varying (DLTV) systems with application to discrete linear

parameter-varying (LPV) systems as a special case. The proposed algorithm is suitable for online

applications due to its iterative manner without making any assumption on data statistical distri-

bution before and after the sensor performance change and with low computational load; for more

details see [Madhag and Zhu, c]. Consequently, the proposed algorithm could be used as an online

sensor performance monitoring scheme.

The main contributions of this Chapter is the sensor failure is characterized by an abrupt or
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intermittent change of sensor measurement noise covariance. The proposed algorithm is able to

monitor sensor performance, detect sensor fault, and identify the sensor failure in real-time. In

addition, the proposed sensor performance monitoring algorithm can be applied to discrete LPV

systems as a special case of DLTV systems. Moreover, the sensor performance degradation due to

sensor aging is modeled as a slow change of sensor measurement noise covariance.

This Chapter is organized as follows. Sub-section 4.2 provides an overview of the systemmodel

and related assumptions. Sub-section 4.3 describes the proposed approach for gradual-degradation

of sensor performance detection and presents a memory-based technique for detecting sensor abrupt

(or intermittent) failure. A discrete LPV system model is presented in sub-section 4.5 as a special

case of the DLTV system. Sub-section 4.6 shows a simulation example used to demonstrate the

capability of the proposed approach. Conclusions are summarized in Sub-section 4.7.

4.2 System Model

To describe the proposed algorithm clearly, the considered dynamic systemmodel and the associated

assumptions are reviewed first. The target discrete-time stochastic closed-loop system is shown in

Fig. 4.1, where the controller (i.e., dotted line) is assumed to be known in this Chapter. The plant

model is described in the following state-space representation



x(k + 1) = A(k) x(k) + Bu(k) u(k) + Bω(k) ω(k) ,

z(k) = Cz(k) x(k) + Dz(k) u(k),

y(k) = Cy(k) x(k) + ν(k) ,

(4.1)
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Sensor Performance Degradation Detection Algorithm

Covariance Matching

Figure 4.1: Closed-loop system. The subscript k is the sample time index; x(k), y(k) and u(k) are the state,
measurement and input vectors, respectively; ˜̂x(k) and ˜̂y(k) are the estimated state and measurement vectors,
respectively, via sub-optimal filter; ṽk is the innovation process ; ω(k) and ν(k) are the process and sensor
measurement noises, respectively. The dotted-line represents the known controller.

where subscript k is the sample time index; x(k) ∈ Rn is the state vector; z(k) ∈ Rq is the controlled

output vector; y(k) ∈ Rp is themeasured output vector; u(k) ∈ Rm is the input vector; A(k) ∈ Rn×n is

the systemmatrix;Bu(k) ∈ Rn×m is the inputmatrix;Cz(k) ∈ Rq×n;Dz(k) ∈ Rq×m andCy(k) ∈ Rp×n

are the measurement matrices; Bω(k) is a diagonal matrix with proper dimension; ω(k) and ν(k)

are the process and sensor measurement noises, respectively. The process and measurement noises

are uncorrelated Gaussian white ones with their means and covariances defined by

E [ω(k)] = 0, E
[
ω(k)ω( j)T

]
=Wk δ(tk − t j) ∀ k, j ∈ R, (4.2)
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n, 1 n,N

Vn,1 Vn,N

N

V̂n,1 V̂n,N

Ṽn,1 = Vn,1 − V̂n,1

Ṽn,N = Vn,N − V̂n,N

V̂n,k V̂n,k+1

Figure 4.2: Estimation window specifications. The subscripts n and k denote the estimation window
number and time within the estimation window, respectively. The length of the estimation window is
denoted by N . The estimated noise covariance matrix at estimation window n and sample time k is
denoted by V̂n,k . The first and last time instants of the estimation window are denoted by ”n, 1” and ”n, N”,
respectively. The associated estimated noise covariances are denoted by V̂n,1 and V̂n,N , respectively, while
any two consecutive values within the window are denoted by V̂n,k and V̂n,k+1, respectively. Vn,1 and Vn,N

denote the actual noise covariances at first and last time instant of the estimation window.

E [ν(k)] = 0, E
[
ν(k)ν( j)T

]
= Vk δ(tk − t j) ∀ k, j ∈ R, (4.3)

E
[
ω(k)ν( j)T

]
= 0, ∀ k, j ∈ R, (4.4)

where E [·] denotes the expectation operator; δ is a Kronecker Delta function (i.e., δ(0) = 1 and

δ(k) = 0;∀ k , 0); and Wk and Vk are time-varying process and measurement noise covariance

matrices, respectively. The initial state vector x(0) is assumed to have a normal distribution with

zero mean (E [x(0)] = 0) and covariance (P0 = E(x(0)xT (0)) > 0). The system is assumed to be

uniformity observable ans controllable. The process noise covariance matrix, Wk , is assumed to

be positive semi-definite and known at each time instant. The measurement noise covariance, Vk ,

is assumed to be positive definite. In the numerical calculations, the negative eigenvalues of matrix

Vk are replaced by small positive values. Moreover, all sensors measurement noises of all channels

are assumed to be independent (i.e., measurement noise for each channel is independent on these

for the rest of measurements), that is, Vk is a diagonal matrix.
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4.3 Detecting Gradual Sensor Performance Degradation

The primary goal of this Chapter detecting sudden (fast) change of the sensor performance, which

is characterized by the abrupt (or intermittent) change of sensor measurement noise covariance.

Call back that the goal in Chapter 3 is to online monitor sensor performance degradation, and detect

sensor failure, that is, online estimating the slowly-varying sensor measurement noise covariance

due to the sensor aging. To achieve such goal, we invest the modified adaptive Kalman filter with

covariance-matching technique and a memory-based change detection method for a system with

measurement noise covariance varying slowly and/or abruptly.

The gradual-degradation of sensor performance due to sensor aging is characterized by its slowly-

varying measurement noise covariance. An algorithm was developed by Chapter 3; also see

Ref. [Madhag and Zhu, b], to online estimate the unknown slowly-varying sensor measurement

noise covariance from the set of measurements based on the quality of the weighted innovation

vector sequence, where an adaptive Kalman filter [Simon, 2006] with the covariance-matching

technique is adopted. Note that the innovation vector is defined as the difference between the actual

measurement and its predicted value [Madhag and Zhu, b], [Simon, 2006] and given by

ṽk = y(k) − Cy(k)˜̂x(k |k − 1), (4.5)

where ˜̂x(k |k − 1) is the estimated state vector at time k based on measurement at time k − 1 using

adaptive Kalman filter [Madhag and Zhu, b]; y(k) is the measured vector at time k; Cy(k) is the

measurement matrix at time k; ṽk is the innovation vector; and the superscripts tilde and head

denote the sub-optimal and estimated values, respectively. Indeed, to obtain a feasible estimation

based on the available measurement (minimal available information) and to reduce estimation error

and computational load, the last estimation is then combined with a weighted innovation vector.
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The weighting coefficient ϕ is used as a "forgetting factor", and it is adaptively adjusted to improve

the estimation accuracy by put more weight for the recent innovation data and less weight for the old

one, which improve the trade-off between estimation bias and variance; see Chapter 3 for details.

The weighted innovation vector estimate can be rewritten as follows

v̄N =
1
N

[
N∑

k=1
ϕN−k ṽk

]
, (4.6)

where N is the number of time samples; ϕ ∈ (ε, 1] (0 < ε < 1) is the forgetting factor for the

innovation data vector in the past; v̄N is the innovation vector estimate with the forgetting factor.

Then, the estimate of the sensor measurement noise covariance at estimation window n with sample

time k = N ( i.e., at the end of current estimation window ) can be written as

V̂n,N =
1

N − 1

N∑
k=1

[
(ϕN−k ṽk − v̄N )(ϕ

N−k ṽk − v̄N )
T −

(
N − 1

N

)
Cy(k)˜̂Pk |k−1CT

y (k)

]
, (4.7)

where ṽk is the innovation vector; v̄N is innovation vector estimate; ˜̂Pk |k−1 is state estimation

error covariance; V̂n,N is the estimated noise covariance matrix at the end of estimation window

n with forgetting factor ϕ. The noise covariance estimation window specifications are shown in

Fig 4.2. Note that, by considering the forgetting factor for the innovation data vector, the estimation

window is exponentially weighted providing improved estimation accuracy; see Chapter 3 for more

details. In addition, it is advised to see Chapter 3 or [Madhag and Zhu, b] for details of obtaining

equation (4.7). It has been shown in Chapter 3 that the proposed algorithm is able to handle the

slowly-varying covariance only and is not suitable for the case with fast-varying or sudden change

of noise covariance. The next sub-section addresses the detection technique of sensor measurement

noise covariance with abrupt or intermittent change.
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χi χj

Time

χi+1 χj+1 χi+2 χj+2

di,j di+1,j+1 di+2,j+2

Figure 4.3: A snapshot of two sliding estimation windows. The symbol V̂1,k represents the sensor estimated
noise covariance at estimation window number 1 and time instant k with 1 ≤ k ≤ N; the symbol V̂∞,k
represents the sensor estimated noise covariance at estimation window number∞ and time instant k, where
in simulation study the number of noise covariance estimation windows is set to very large number; the
length of the estimation window is denoted by N; and χi and χj are two consecutive sliding estimation
windows of size m.

4.4 Abrupt or Intermittent Sensor Fault Detection

Our focus at this sub-section is to online detect the sudden change in sensor measurement noise

covariance from a set of measurements. Hence, a proposed memory-based technique for detecting

the sudden change of sensor measurement noise covariance is proposed. The proposed change

detection technique calculates the change of the estimated sensor measurement noise covariance,

assuming that the sensor failure is characterized by abruptly (or intermittently) changing of the es-

timated sensor measurement noise covariance. To be more specific, the change is quantified by the

distance between the sensor measurement noise covariance matrices over the two estimation win-

dows before and after the change. Computing the distance between two covariance matrices can be

realized by computing the distance between the samples themselves [Brockwell and Davis, 2016].

Since each sample is a matrix in a multi-dimensional Euclidean space, a natural distance between

the pair of matrices is their Euclidean distance [Brockwell and Davis, 2016]. The proposed change

detection technique of sensor measurement noise covariance calculates the distance between two

sliding windows of the estimated sensor measurement noise covariance matrices over two sequen-
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tial estimation windows. That is, the two sliding estimation windows with index i and size m of the

estimated noise covariances are given by


χi =

[
V̂n,k, · · · , V̂n,k+m

]
, χ j =

[
V̂n,k+m+1, · · · , V̂n,k+2m

]
,

χi+1 =
[
V̂n,k+2m+1, · · · , V̂n,k+3m

]
, χ j+1 =

[
V̂n,k+3m+1, · · · , V̂n,k+4m

]
,

(4.8)

and Euclidean distance between the two sliding estimation windows is given by

di, j = ‖χi − χ j ‖, (4.9)

where ‖ · ‖ denotes the Euclidean norm; V̂n,a is the estimated noise covariance at estimation window

n and time instant a ∈ [i, j]; and subscript m is the sliding estimation window size; see Figs. 4.3

and 4.4 for details. Note that, Fig. 4.3 shows the two sliding estimation windows, that used by the

proposed memory-based technique for sensor failure detection, over the time horizon where the

noise covariance estimation windows consecutively processed while Fig. 4.2 shows one windows

specifications used to estimate the noise covariance. The proposed memory-based technique for

sensor failure detection calculates di, j for the pair of sliding estimation windows over the two

sequential estimation windows, compares it with the one obtained in the previous step, and decides

if the sensor fault occurred using an indicator function (signal) as follows

Ii, j =


0 if di, j ≤ di−m, j−m + Υi−m, j−m

1 otherwise

(4.10)

where Ii, j is the indicator signal; di, j is the Euclidean covariance distance between two sliding esti-

mation windows; di−m, j−m is the Euclidean covariance distance between two sliding estimation win-
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dows at the previous step; and Υi−m, j−m is a threshold specified by the confidence interval distance

between the current and previous sliding estimationwindows; see Ref. [Brockwell and Davis, 2016]

for more details. Once the indicator signal Ii, j is set to 1, the stored previous and current ones are

compared to identify the fault based on whether the change of difference is intermittent, saturated

or abrupt with reduced computational cost. Therefore, the proposed change detection technique can

be used to online identify the sensor failure type. The proposed algorithm for abrupt or intermittent

sensor fault detection is shown in Fig.4.4.

To this point, the proposed technique combining the online estimating technique of the slowly-

varying [Madhag and Zhu, b] sensor measurement noise covariance due to the sensor aging and

detecting method of the abrupt change of sensor measurement noise covariance is introduced.

Lemma 15 Considering system (4.1) and adaptive Kalman filter in Chapter 3 with aforementioned

assumptions, the estimation of the slowly-varying sensor measurement noise covariance is given

by equation (4.7) and an indicator of abrupt noise covariance change is given by (4.10).

The above Lemma states the proposed algorithm for estimating the slow degradation of sensor

performance and detecting abrupt sensor failure. The next step is to apply the proposed algorithm,

developed for LTV systems, to the LPV systems, a special case of LTV systems.

4.5 Modeling LPV System as LTV or LTI System

The algorithm proposed for sensor performance monitoring and failure detection is developed for

LTV systems. This sub-section presents the procedure to model an LPV system in the environment

of an LTV system so that the proposed algorithm can be applied. Recently, LPV systems have

received considerable attention in control community. Such models have been used effectively

in aircraft, robotics, and process control problems [Mohammadpour and Scherer, 2012]. An LPV
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Figure 4.4: Flow chart for abrupt sensor fault detection algorithm. V̂n,k represents the sensor estimated
noise covariance at estimation window number n and time instant k with 1 ≤ k ≤ N; and the length of the
estimation window is denoted by N; χi(i) and χj( j) are the i − th and j − th element of the two consecutive
sliding estimation windows (i.e., χi and χj) of size m; di, j denotes the Euclidean distance; and Ii, j is the
indicator function (signal).

system is a linear system with parameter-dependent system matrices as functions of a measurable

time-varying parameter vector belonging to a compact set. Hence, the LPV system is a linear system
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dependent on one or more time-varying and measurable parameters in real-time and unknown

during control design. The LPV plant model could be described using the following state-space

representation



x(k + 1) = A(θ(k)) x(k) + Bu(θ(k)) u(k) + Bω(k) ω(k) ,

z(k) = Cz(θ(k)) x(k) + Dz(θ(k)) u(k),

y(k) = Cy(θ(k)) x(k) + ν(k) ,

(4.11)

where A(θ(k)); Bu(θ(k)); Cz(θ(k)); and Cy(θ(k)) are appropriately dimensioned parameter-

dependent matrices; Bω(k) is diagonal matrix with proper dimension; and all assumptions of

the process and measurements noises listed in Chapter 3 remains unchanged. Note that matrix

Bω(k) can be parameter-dependent if the noise statistics are fully known. The time-varying sche-

duling parameters in equation (4.11), θ(k) are assumed to lie in a known hyper-rectangle Ωnθ , the

scheduling parameters vector is given by

θ(k) =
[
θ1(k), θ2(k), · · · , θnθ (k)

]T
, (4.12)

where nθ is the number of scheduling parameters. The state-feedback control law is given by

u(k) = K(θ̃(k)) x(k) (4.13)

where K(θ̃(k)) is the parameter-dependent state-feedback control law gain and the scheduling

parameters available for the controller (4.13) are either be inexactly measured or estimated. The
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measured (or estimated) time-varying scheduling parameters vector, θ̃(k), is given by

θ̃(k) =
[
θ̃1(k), θ̃2(k), · · · , θ̃nθ (k)

]T
. (4.14)

with

θ̃i(k) = θi(k) + ϑi(k), ∀ i = 1, · · · , nθ, ∀ k ∈ Z+, (4.15)

where ϑi(k) represents the measurement (or estimation in case of virtual sensor) error in the ith

scheduling variable and θi(k) is its true value. The measured scheduling parameters and associated

uncertainties are assumed to be independent and time-varying parameters with the following known

bounds,

θ̃ ≤ θ̃i(k) ≤ θ̃, ϑ ≤ ϑi(k) ≤ ϑ, ∀ i = 1, · · · , nθ, ∀ k ∈ Z+, (4.16)

where θ̃ and θ̃ ; ϑ and ϑ are the known lower and upper bounds of the measured scheduling

parameters and their measurement (or estimation) error, respectively. Note that, the values of the

measured scheduling parameters are known, while the actual scheduling parameters and associated

uncertainties are unknown for covariance estimation and change detection algorithm. Moreover,

the measured scheduling parameters are assumed to have their variation rates in the same order of

the system dynamics. Indeed, the parameter-dependent matrices for system (4.11) are depending

on actual scheduling parameter vector θ(k) since it represents the physical system parameters. On

the other hand, those physical parameters can only be measured with noise or estimated to be

used in the controller (i.e., unknown during control design), and as a result, controller depends on

measured or estimated scheduling parameter vector θ̃(k). To elevate the calculation for modeling

LPV systems in the environment of LTV systems so that the proposed algorithm can be applied
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for monitoring the sensor performance degradation and failure, the parameter-dependent matrices

for system (4.11) are assumed to be dependent on the measured scheduling parameter vector θ̃(k).

Note that this assumption may introduce additional conservativeness to the control design but it

makes the calculation simple. System (4.11) with dependence on measured scheduling parameters

vector is given by



x(k + 1) = A(θ̃(k)) x(k) + Bu(θ̃(k)) u(k) + Bω(k) ω(k) ,

z(k) = Cz(θ̃(k)) x(k) + Dz(θ̃(k)) u(k),

y(k) = Cy(θ̃(k)) x(k) + ν(k) ,

(4.17)

where the matrices and parameters have the same definition as these in equation (4.11). The

LPV system (4.17) is assumed to have an affine parameter dependence, for instance, the system

parameter-dependent matrix can be expressed below

A(θ̃k) = A0 +

nθ∑
i=1

θ̃i(k)Ai, (4.18)

where A0, Ai ∈ R
n×n are constant matrices; and θ̃i(k) is the ith element of the scheduling parameter

vector in equation (5.3) for i = 1, · · · , nθ . The other parameter-dependent system matrices in

equation (4.17) have the same structure as equation (4.18). Since LPV systems belong to a subset

of linear time-varying (LTV) systems, it is reasonable to consider LPV systems as a special case

of the LTV systems. Follow the technique used in [Lopes dos Santos et al., 2011], the LPV system

representation is modeled as an LTV system, for instance, the parameter-dependent system matrix
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in equation (4.17) can also be written in the form

A(θ̃k) x(k) =

(
A0 +

nθ∑
i=1

θ̃i(k)Ai

)
x(k)

= A0 x(k) + Ap
[
θ̃k ⊗ x(k)

]
,

=
_
Ap x(k)p

(4.19)

where "⊗" is the Kronecker product operator;
_
Ap=

[
A0 Ap

]
; Ap =

[
A1 A2 · · ·Anθ

]
; x(k)p =[

x(k) θ̃k ⊗ x(k)
]T ; u(k)p =

[
u(k) θ̃k ⊗ u(k)

]T ; and θ̃k is the scheduling parameter vector defined

in equation (5.3). In the same manner, applying the procedure used in equation (4.19) to other

parameter-dependent matrices in equation (4.17)
(
i.e.,

_
B

p

u,
_
D

p

z,
_
C

p

z,
_
C

p

y

)
; with

_
Bω=

[
Bω(k) 0

]
, and

ωp(k) =
[
ω(k) 0

]T , and νp(k) =
[
ν(k) 0

]T , then, the LPV system (4.17) becomes



x(k + 1) =
_
Ap x(k)p+

_
B

p

u u(k)p+
_
Bω ωp(k),

z(k) =
_
C

p

z x(k)p + +
_
D

p

z u(k)p,

y(k) =
_
C

p

y x(k)p + νp(k) ,

(4.20)

where all parameters are defined earlier. As a result, the LPV system (4.17) is modeled as an

LTV system (4.20). Consequently, the proposed algorithm for sensor performance monitoring and

failure detection can be applied. Next, a simulation investigation example is used to validate the

proposed approach for estimating the slowly-varying sensor measurement noise covariance and

detecting the abrupt change of sensor measurement noise covariance.
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4.6 Simulation Results and Discussion

The objective of conducting simulation study using a numerical example in this sub-section is to

demonstrate the ability of the proposed algorithm for online monitoring the sensor performance

deterioration and detecting abrupt sensor failure for LPV systems with system parameters measu-

rements polluted by measurement noise. The variation of sensor measurement noise covariance is

chosen to simulate practical engineering problems. For example, the slowly-varying sensor noise

covariance could represent an aging sensor with its measurement noise (i.e., measurement error)

increases slowly. The abrupt change of sensor measurement noise covariance could represent a

faulty sensor with its measurement noise change abruptly or intermittently. In the simulation study,

the observability and controllability of the considered system have been checked at each time step,

and all simulation results are created using MATLAB R2015 with a computer equipped with an

Intel Core i7 Processor and 16 GB RAM.

Example: The system considered is a multi-input and multi-output (MIMO) LPV system with

uncertain scheduling parameters defined in equation (4.15) bounded as in equation (4.16). The

system is in the form defined in equation (4.17) where



A(θ̃k) = A0 + θ̃1(k) A1;

A0 =


−1 3

0 −4


; A1 =


−2 5

0 −3


; Bu0 =


1 1

0 1


; Cz0 =


1 0

0 1


; Cy0 =


1 0

0 0.56


;

(4.21)

Bω(k) is a diagonal matrix with proper dimensions; other matrices are zeros matrices with proper

dimension; and scheduling parameter and its uncertainty bounds are −0.5 ≤ θ̃1(k) ≤ 0.5 and

−0.1 ≤ ϑ1(k) ≤ 0.1, respectively. In addition, the sensor used in simulation study is assumed
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Figure 4.5: Scheduling parameter used in (4.21) with (a) 0% (b) 10% uncertainty. The x-axis is linear in
time and y-axis is linear for magnitude of (a) true scheduling parameter θ (b) measured scheduling parameter
θ̃.
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Figure 4.6: Noise covariance estimation window size and the corresponding noise covariance estimation
error of system (4.21), where the noise covariance increases linearly with variation rate of 9 ∗ 10−4 and
scheduling parameter has 1% or 10% uncertainty. The noise covariance estimation error is calculated at the
last time epoch of simulation run.

to have a noise covariance variation rate of 9 ∗ 10−4 with linear or exponential increment and the

sampling time is 0.1 second. The scheduling parameters used in equation (4.21) with 0% and 10%

uncertainty (i.e., measurement error) are shown in Fig.4.5a and Fig. 4.5b, respectively, where the x-

axis is linear in time and y-axis is linear for magnitude. Henceforth, through the simulation, the time

required for the estimated noise covariance to converge to the actual one is referred as convergence

time and the sensor noise covariance estimation error calculated at the last epoch of simulation run

is referred as noise covariance estimation error. Simulation results in Fig. 4.6 present the noise

covariance estimationwindow size and the corresponding noise covariance estimation errors, where

channel 1 has scheduling parameter with 1% or 10% uncertainty and noise covariance increases

linearly at a rate of 9∗10−4. The casewith estimationwindow size of 500 samples shows the smallest

noise covariance estimation error. Therefore, the estimation window size is set to 500, and the lower

and upper bounds are set to 400 and 600, respectively. Consequently, the forgetting factor is to 0.998,
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Figure 4.7: Channel 1 and channel 2 noise covariance estimation convergence time, where scheduling
parameter has 0%, 1%, 5% or 10% uncertainty and the noise covariance has variation rate of 9 ∗ 10−4 with
(a) linear (b) exponential increment.

see Chapter 3 for more details. The noise covariance estimation convergence time for channels 1

and 2 is presented in Fig. 4.7, where scheduling parameter has 0%, 1%, 5% or 10% uncertainty and
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Figure 4.8: Channel 1 and channel 2 noise covariance estimation error, where scheduling parameter has
0%, 1%, 5% or 10% uncertainty and the noise covariance has variation rate of 9 ∗ 10−4 with (a) linear (b)
exponential increment.

the sensor noise covariance has linear or exponential increment. The noise covariance estimation
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error for channels 1 and 2 is presented in Fig. 4.8, where scheduling parameter has 0%, 1%,

5% or 10% uncertainty and the sensor noise covariance has linear or exponential increment. The

results summarized in Figs. 4.7 and 4.8 show that for both system (4.21) channels as the scheduling

parameter uncertainty increases, the noise covariance estimation convergence time and estimation

error increase but with a reasonable tracking performance. The simulation results in Figs. 4.9a and

4.9b present the actual and estimated sensor noise covariances for both channels of LPV system

(4.21) with linearly increased sensor noise covariance and scheduling parameters have 0% and

10% uncertainties, respectively. Figs. 4.10a and 4.10b show the previous simulation scenarios

with exponentially increased sensor noise covariance. For Figs. 4.9a to 4.10b , the upper and

lower sub-figures represent channels 1 and 2 of system (4.21), respectively. The x-axis is linear

in time, and y-axis is logarithmic and represents the noise covariance. The solid and dotted

lines represent the actual and estimated noise covariance, respectively. Through the simulation

results (see Figs. 4.9a to 4.10b) the estimated sensor noise covariances show a reasonable tracking

performance to the actual ones under slowly-varying noise covariance scenario. Indeed, when

the scheduling parameter uncertainty increases, the noise covariance estimation algorithm needs

more time to converge and the noise covariance estimation error increases. In other words, the

proposed algorithm for estimating the gradual sensor performance degradation due to sensor aging

converges fast under a small scheduling parameter uncertainty. The computation performance for

the proposed algorithm can be indicated by the time consumed by CPU for one iteration of noise

covariance estimation and it is found 0.009375 sec for the mentioned computer with a sampling

time of 0.1 sec, which shows the ability for the proposed algorithm to estimate the gradual sensor

performance degradation online.

On the other hand, if the sensor noise covariance abruptly (or intermittently) changes, the proposed

memory-based technique for detecting the abrupt (or intermittent) noise covariance change can be
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Figure 4.9: Actual and estimated sensor noise covariances matrices for the system (4.21) with linearly
increased sensor noise covariance and with scheduling parameter uncertainty, where the estimation window
size is set to 500. The upper and lower figures represent channels 1 and 2, respectively, where The x-axis is
linear in time, and y-axis is logarithmic for noise covariance. The solid and dotted lines represent the actual
and estimated noise covariance, respectively, where scheduling parameter has (a) 0% (b) 10% uncertainty.
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Figure 4.10: Actual and estimated sensor noise covariances matrices for the system (4.21) with exponentially
increased sensor noise covariance and with scheduling parameter uncertainty, where the estimation window
size is set to 500. The upper and lower figures represent channels 1 and 2, respectively. The x-axis is linear
in time, and y-axis is logarithmic for noise covariance. The solid and dotted lines represent the actual and
estimated noise covariance, respectively, where scheduling parameter has (a) 0% (b) 10% uncertainty.
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Figure 4.11: Channel 1 and channel 2 sensor measurement noise covariance with abrupt increment change
at different times, where (a) actual noise covariance (b) noise signal (c) innovation (d) indicator signal. The
x-axis is linear in time.

applied. We consider different scenarios to simulate the worst cases where both sensor channels

fail, as follow,

Scenario 1: both output sensor channels fail at a different time. Channel 1 output sensor fails before

channel 2, see Fig. 4.11, where the sensor noise covariance increases slowly and then suddenly with

a large increment (i.e., an abrupt increment of sensor noise covariance); and channel 1 sensor after

change variation rate is less than that of the channel 2.

Scenario 2: both output sensor channels fail at different time with channel 1 sensor fails before

that of channel 2, where the sensor noise covariance increase slowly and suddenly jump to a large

value; and channel 1 sensor noise covariance is larger than that of channel 2, see Fig. 4.12.

Scenario 3: both output sensor channels fail at different time, where channel 1 sensor fails after

channel 2; the sensor noise covariance has an intermittent jump for certain duration and channel 2
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Figure 4.12: Channel 1 and channel 2 sensor measurement noise covariance with abrupt jump change at
different times, where (a) actual noise covariance (b) noise signal (c) innovation (d) indicator signal. The
x-axis is linear in time.

sensor noise covariance jump less than that of channel 1, see Fig. 4.13.

Scenario 4: both output sensor channels fail at different time, that is, channel 1 sensor fails after

channel 2. Fig. 6.3 presents the scenario where channel 1 sensor noise covariance increases slowly,

and suddenly increases with large variation rate and channel 2 sensor noise covariance has an

intermittent jump, which is less than the maximum value of channel 1 sensor noise covariance, for

certain duration.

Scenario 5: both output sensor channels fail at different time, channel 1 sensor fails before

channel 2, where channel 1 sensor noise covariance has an intermittent jump for certain duration

and channel 2 sensor noise covariance increases slowly, and then suddenly jumps to a large value

which is less than channel 2 sensor noise covariance maximum jump. Fig. 4.15 shows this scenario.
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Figure 4.13: Channel 1 and channel 2 sensor measurement noise covariance with intermittent jump change
for some duration at different times, where (a) actual noise covariance (b) noise signal (c) innovation (d)
indicator signal. The x-axis is linear in time.

Scenario 6: both sensor channels fail simultaneously, see Fig. 4.16, where channel 2 sensor noise

covariance has an intermittent jump for certain duration while channel 1 increase slowly, and then

suddenly jump to a large value which is less than channel 2 sensor noise covariance maximum

jump.

For Figs. 4.11 to 4.16; the sub-figure (a) is the actual noise covariance; the sub-figure (b) is

the noise signal; (c) is the innovation signal; (d) is the sensor fault indicator signal, where the

x-axis is linear in time and y-axis is linear and represents the value correspond to each sub-

figure. Simulation results in Figs. 4.11 to 4.16 show the capability of the proposed change

detection algorithm to detect and identify different abrupt or intermittent sensor fault scenarios

with a fairly fast response. As a summary, the proposed algorithm shows its capability of online
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Figure 4.14: Channel 1 and channel 2 sensor measurement noise covariance with channel 1 sensor noise
covariance has abrupt increment jump change and channel 2 one has intermittent jump change for some
duration at different time, where (a) actual noise covariance (b) noise signal (c) innovation (d) indicator
signal. The x-axis is linear in time.

monitoring the sensor performance deterioration and detecting sensor failure. That is, it estimates

the slow-varying sensor noise covariance under different covariance variation functions and different

scheduling parameter uncertainties, and detects the noise covariance under different abrupt or

intermittent change scenarios when the estimation window length is properly selected. In other

words, the proposed algorithm is able to provide information of sensor performance regarding its

noise covariance and to detect sensor fault.
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Figure 4.15: Channel 1 and channel 2 sensor measurement noise covariance with channel 1 sensor noise
covariance has abrupt jump change and channel 2 one has intermittent jump change for some duration at
different time, where (a) actual noise covariance (b) noise signal (c) innovation (d) indicator signal. The
x-axis is linear in time.

4.7 Summary

Adapting the control system to sensor performance variation helps to maintain closed-loop system

performance under varying sensor performance and to avoid system catastrophic failure, perfor-

mance degradation, system shut down, or fatal accident. Our work focuses on online monitoring

the sensor performance deterioration and detecting sensor failure, assuming that the sensor perfor-

mance shift can be characterized by the noise covariance variation of the sensor measurement. An

algorithm is proposed for estimating the slowly-varying sensor measurement noise covariance due

to the sensor aging and detecting the abrupt or intermittent change of sensor measurement noise

covariance. The proposed algorithm is developed for LTV systems and applied to LPV systems as a

special case. The iterative nature of the proposed algorithm significantly reduces the computational
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Figure 4.16: Channel 1 and channel 2 sensor measurement noise covariance with channel 1 sensor noise
covariance has abrupt jump change and channel 2 one has intermittent jump change for some duration at the
same time, where (a) actual noise covariance (b) noise signal (c) innovation (d) indicator signal. The x-axis
is linear in time.

load and make it feasible for real-time applications. Simulation investigation demonstrates that the

proposed algorithm converges when the estimation window is properly chosen.
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Chapter 5

Guarantee Performance ICC-LPV Control

with Sensor Aging

5.1 Introduction

Many physical systems are subject to possible component malfunctions, which may cause sig-

nificant system performance degradation and even instability. The requirement for dependable

and repeatable system performance is essential for safety-critical applications, where a successful

mission of protecting human life, property, and/or environment becomes a paramount goal. To

minimize the possibility of unexpected system failures, control systems need to take account for

system reliability; see [Ram and Davim, 2018]. To improve the system reliability, sensor perfor-

mance degradation information needs to be considered by the controller at each moment. To be

specific, sensor failure affects the system output performance directly and could lead to catastrophic

consequences [Cai and Wu, 2010].

Indeed, in practical applications, all physical control systems have to operate under certain ac-

tuator constraints since these actuators have a finite amount of available power. When closed-loop

controllers are designed using the conventional methods, these actuator constraints are usually not

taken into account. Consequently, it is possible to design a controller that commands more control

power than its capability. As a result, some or all control inputs could saturate and overall system
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performance degrades. On the other hand, the input covariance constraints (ICC) control problem is

an optimal control problem, where the outputH2 performance is minimized subject to multiple con-

straints on the control inputs covariances (H2 performances). Then, with the ICC control design, the

actuator constraints are considered during the controller synthesis process. Therefore, the controller

with the best possible performance is obtained with respect to a given set of available actuator con-

straints. The ICC control problem is an optimal control problemwas proposed by [Zhu et al., 1995]

for Hubble telescope. Then, it was presented inmany literature for different applications such asmo-

del predictive control [Kocijan et al., 2004], broadcast channel systems [Weingarten et al., 2006],

wiretap channel systems [Fakoorian and Swindlehurst, 2013], multi-cell distributed antenna sy-

stem [Feng et al., 2013], economic optimization [Van Hessem et al., 2001], full-duplex Gaussian

relay channel [Khina et al., 2012], linear time-invariant system [White et al., 2013c], electronic

throttle [Zhang et al., 2015], radio communication [Devroye et al., 2006], and cellular network

[Huh et al., 2011] applications.

With this intention, the primary goal of this chapter is to design amulti-objective gain-scheduled

controller, with guaranteed stability, that minimizes the output covariance cost (H2 norm) function

subject to the multiple input covariance constraints (ICC) and H∞ performance constraint in the

presence of gradual sensor performance degradation due to sensor aging.

The main contributions of this chapter is a method using parametrized linear matrix inequalities

(PLMI) to synthesize a multi-objective gain-scheduled noisy output-feedback controller (GSNOF),

considering the sensor aging information, such that system stability and desired performances are

guaranteed with optimal output covariance performance subject to constraints on the control input

covariance matrix and H∞ performance. Additionally, the sensor measurement noise covariance

is used to model the sensor performance deterioration (fault). Gain-scheduling parameters with a

combination of the time-varying parameters and the estimated sensormeasurement noise covariance
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are called fully gain-scheduled control; gain-scheduled by the estimated sensor measurement noise

covariance is called partial gain-scheduled control; and the robust controller is not gain-scheduled.

Those three groups of controllers are validated and compared through simulation studies for a

discrete-time linear parameter varying (LPV) systemwith gradually performance degraded sensors.

The synthesized controller not only guarantees the closed-loop system stability but also minimizes

system performance output H2 norm subject to constraints on the control input covariance matrix

andH∞ performance. The designed controller is also feasible for real-time applications; for more

details see [Madhag and Zhu, 2018] or [Madhag and Zhu, a].

This chapter is organized as follows. Sub-section 5.2 provides an overview of the proposed

problem, related mathematical preliminaries, and the discrete-time polytopic LPV system. Sub-

section 5.3 presents the synthesize of the parametrized LMI (PLMI) conditions for the proposed

mixed ICC and H∞ control problem. Sub-section 5.4 provides the simulation study results.

Conclusions are drawn in Sub-section 5.5.
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5.2 Problem Definition

5.2.1 System Model

Consider a general discrete-time linear parameter varying (LPV) system model described in the

following state-space representation

x(k + 1) = A(θ(k))x(k) + Bu(θ(k))u(k) + B∞ω(θ(k))ω∞(k) + B2ω(θ(k))ω2(k),

z∞(k) = C∞z(θ(k))x(k) + D∞u(θ(k))u(k) + D∞ω(θ(k))ω∞(k),

z2(k) = C2z(θ(k))x(k) + D2u(θ(k))u(k),

y(k) = Cy x(k) + ν̃(k)

(5.1)

where k ∈ Z+ is the sample time index; x(k) ∈ Rn is the state vector; z2(k) ∈ Rp2 is the system

performance output vector; z∞(k) ∈ Rp∞is the controlled output vector related to modeling error;

y(k) ∈ Rq is the measured output vector; u(k) ∈ Rm is the control input vector; A(θ(k)) ∈ Rn×n;

Bu(θ(k)) ∈ Rn×m; B∞ω(θ(k)) ∈ Rn×r∞ω ; B2ω(θ(k)) ∈ Rn×r2ω ; C2z(θ(k)) ∈ Rp2×n; C∞z(θ(k)) ∈

Rp∞×n; Cy ∈ R
q×n; D∞u(θ(k)) ∈ Rp∞×m; D∞ω(θ(k)) ∈ Rp∞×r∞ω ; D2u(θ(k)) ∈ Rp2×m; and the

scheduling parameters vector θ(k) is defined in Eqn. (5.3). The parameter-dependent matrices

for system (5.1) are assumed to be affine with respect to the time-varying scheduling parameters

vector. The initial state vector x(0) in system (5.1) is assumed to have a normal distribution with

zero mean (E [x(0)] = 0) and covariance (P0 = E(x(0)xT (0)) > 0). System (5.1) is assumed to

be observable and controllable. Note that, the observability and controllability assumptions are

used mainly due to the fact that the observability and controllability for LPV systems are not well

defined in the LPV control literature. The terms ω∞(k) ∈ Rr∞ω , ω2(k) ∈ Rr2ω and ν̃(k) ∈ Rrν̃ in

system (5.1) denote the disturbance (noise) inputs due to modeling error, process and measurement
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noises respectively. In addition, they are assumed to be uncorrelated Gaussian white ones with

their means and covariances defined by



E [ω2(k)] = 0, E
[
ω2(k)ωT

2 ( j)
]
=Wk2 δ(tk − t j) ∀ k, j ∈ R,

E [ω∞(k)] = 0, E
[
ω∞(k)ωT

∞( j)
]
=Wk∞ δ(tk − t j) ∀ k, j ∈ R,

E [ν̃(k)] = 0, E
[
ν̃(k)ν̃T ( j)

]
= I δ(tk − t j) ∀ k, j ∈ R,

E
[
ω2(k)ν̃T ( j)

]
= E

[
ω∞(k)ν̃T ( j)

]
= E

[
ω2(k)xT ( j)

]
= E

[
ν̃(k)xT ( j)

]
= 0,

(5.2)

where δ is a Kronecker Delta function
(
i.e., δ(0) = 1 and δ(k) = 0;∀ k , 0

)
. Note that ν̃(k) =

V
−1
2

k ν(k), E [ν(k)] = 0, E
[
ν(k)νT

j

]
= Vk δ(tk − t j), ∀ k, j ∈ Z+. The disturbance and process noise

covariance matrices, Wk∞ and Wk2 , are assumed to be positive semi-definite and known at each

time instant, where the later could be assumed as an identity matrix with no conservativeness.

Moreover, all sensor measurement noises are assumed to be independent (i.e., measurement noise

for each channel is independent of the rest of them), that is, Vk = diag
(
σ1(k), · · · , σq(k)

)
, where

Vk is the measurement noise covariance matrix; andσi(k) is the sensor measurement noise variance

of the ith channel. The scheduling parameters vector is defined as

θ(k) =
[
θ1(k), · · · , θq(k), θq+1(k), · · · , θnθ (k)

]T
, (5.3)

where parameters θ1(k), · · · , θq(k) are due to sensors measurements noises covariance variation;

θq+1(k), · · · , θnθ (k) are due to system parameter variations; and q is the number of measured

output sensors. In addition, the parameters θ(k) =
[
θ1(k), · · · , θnθ (k)

]T are assumed to lie in a

known hyper-rectangle Ωnθ ; the vertices set of Ωnθ is ver(Ωnθ ) = {η1, · · · , ηnθ | ηi ∈ {θi, θi}}.

The scheduling parameters are assumed to be independent and time-varying parameters with the
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following known bounds

θi ≤ θi(k) ≤ θi , ∀ i = 1, · · · , nθ ∀ k ∈ Z+, (5.4)

where θi and θi are the lower and upper bounds of the ith scheduling parameter, respectively. In

addition, ∀ k ≥ 0, the rate of variation of each scheduling parameter is given by

∆θi (k) = θi(k + 1) − θi(k), ∀ i = 1, · · · , nθ, (5.5)

and the ith bound of the scheduling parameter variation rate is

∆θi
≤ ∆θi (k) ≤ ∆θi, ∀ i = 1, · · · , nθ, ∀ k ∈ Z+, (5.6)

where ∆θi and ∆θi are the lower and upper bounds of the rate of variation of the ith scheduling

parameter, respectively. Without loss of generality, bounds in Eqns. (5.4) and (5.6) are assumed to

be symmetric.

The goal of this work is to design a multi-objective noisy static output-feedback gain-scheduling

controller that exponentially stabilizes the closed-loop system and minimizes the performance

output covariance subject to constraints on the control input covariance matrix and the worst

case norm from input disturbances (noises) to the controlled output vector related to modeling

error. To cope with the above goal, gain-scheduled methods provided by most of the relevant

literature were derived for discrete-time polytopic time-varying parameter-dependent systems;

see [De Caigny et al., 2010], [Lacerda et al., 2016] and [White et al., 2013c]. Therefore, in the

next sub-section, the state-space representation of the considered system will be transformed into

polytopic fashion so that the controller can be synthesized using existing methods. Note that, some
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of the notations and steps presented in the next section are borrowed from [De Caigny et al., 2010].

5.2.2 Polytopic Parameter Representation

The objective of this subsection is to present briefly the change of variable used to construct a new

convex parameter space (i.e., polytopic state-space representation of the affine one). It is advised to

see [Lacerda et al., 2016] and therein references for more details. The affine parameter-dependent

LPV system can be represented in convex fashion by the change of variable to utilize the benefit of

polytopic representation; see Fig. 5.1. Considering the scheduling parameters and its variations in

Eqn. (5.5), the scheduling parameters can bemapped (i.e., θi 7→ αi) as follows [Lacerda et al., 2016]



αi1(k) =
θi(k) + θi

2 θi

∵ αi1(k) + αi2(k) = 1 =⇒ αi2(k) =
θi − θi(k)

2 θi
,

∴ α(k) =
[
α1(k), · · · , αnθ (k)

]T
, αi(k) =

(
αi1(k), αi2(k)

)
, ∀i = 1, · · · , nθ,

(5.7)

where αi(k) is the ith component of the parameters vector α(k) =
[
α1(k), · · · , αnθ (k)

]T in the

polytopic space. Note that, since all scheduling parameters are assumed to be bounded from

above and below (see Eqn. (5.4)), the resulting space for αi(k) have two vertices, that is, αi(k) =

(αi1(k), αi2(k)) ∈ Λ2, ∀i = 1, · · · , nθ . Therefore, using this change of variables (i.e., Eqn. (5.7)),

the affine parameter-dependent system as well as the gain-scheduling controller can be expressed

in terms of scheduling parameters vector α(k) =
[
α1(k), · · · , αnθ (k)

]T
∈ Λ2nθ belong to a convex

domain (i.e., polytopic space Λ2nθ ). Considering the variation rate in Eqn. (5.5) and apply it to the
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Affine Space

Multi-simplex Spaceθ(k)

α(k)

change of variables

Figure 5.1: Affine space parameter to multi-simplex space mapping.

change of variable in Eqn. (5.7) yields

∆αi1(k) = αi1(k + 1) − αi1(k),

=
θi(k + 1) + θi

2 θi
−
θi(k) + θi

2 θi
=
∆θi (k)

2 θi

(5.8)

Considering αi(k) = (αi1(k), αi2(k)) ∈ Λ2, it is clear that

αi1(k) + αi2(k) = 1, =⇒ ∆αi2(k) = −∆αi1(k). (5.9)

where αi(k) = (αi1(k), αi2(k)) ∈ Λ2, ∀i = 1, · · · , nθ , is the ith component of the polytopic space

parameters vector α(k) =
[
α1(k), · · · , αnθ (k)

]T
∈ Λ2nθ . Then, the parameters variation rates

vector is ∆α(k) =
[
∆α1(k), · · · ,∆αnθ (k)

]T
∈ Λ2nθ, where ∆αi (k) =

(
∆αi1(k),∆αi2(k)

)
∈ Λ2, ∀i =

1, · · · , nθ . Generally, each scheduling parameter αi j(k) (i = 1, · · · , nθ, j ∈ [1, 2]) belongs to Λ2, it

yields
nθ∑
i=1
∆αi j = 0, ∀ j ∈ [1, 2]. (5.10)
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Figure 5.2: (αi j,∆αi j)-space, where the area can ∆αi j can assume values as function of αi j is the one with
blue boundaries, and for more details; see [Lacerda et al., 2016] and [Oliveira and Peres, 2009].

Consider Eqns. (5.6) and (5.10), the parameter vectors αi j (i = 1, · · · , nθ, j ∈ [1, 2]) have variation

rates bounds as

���∆αi j ��� ≤ ai j, ai j ∈ {0, 1}, ∀ j ∈ [1, 2], ∀i = 1, · · · , nθ . (5.11)

Eqn. (5.11) represents the case where the scheduling parameters variate within a bounded rate of

variation.

In addition, in the discrete-time case, the rate of variation depends on the associated value

of the parameter, which is the main difference from the continuous-time case, and assuming

parameter rate independent could be very conservative; see Fig. 5.2, and for more details; see

[Lacerda et al., 2016], [De Caigny et al., 2010] and [Oliveira and Peres, 2009].
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The uncertainty domain, where the vector
[
αT (k),∆T

α(k)
]T
∈ Λ4nθ takes values, can be modeled by

the compact set below [De Caigny et al., 2010]

Ψa =

{
ψ ∈ R4nθ : ψ ∈ co { µ1, · · · , µM }, µ j =


f j

h j

 , f j ∈ R2nθ, h j ∈ R2nθ,

2nθ∑
i=1

f j
i = 1, f j

i ≥ 0, i = 1, · · · , nθ,
2nθ∑
i=1

h j
i = 0, j = 1, · · · , M

}
,

(5.12)

as a convex combination of vectors µ j for j = 1, · · · , M , where vectors f j
i and h j

i are given a priori;

and M is the numbers of vectors µ j , which is given by [De Caigny et al., 2010], [White et al., 2013c]

M = N2 + (N − 1)2 + (N − 1), (5.13)

where N is the number of the vertices of the polytopic system (i.e., number of the scheduling

parameters). For more details about Eqn. (5.13) see [De Caigny et al., 2010], [White et al., 2013c]

and therein references.

This definition of the set Ψa ensures that α(k) satisfies Eqn. (5.10) for all k ≥ 0. In addition,

considering the uncertainty set Ψa in (5.12), each αi(k) = (αi1(k), αi2(k)) ∈ Λ2 and ∆αi (k) =

(∆αi1(k),∆αi2(k)) ∈ Λ2 are given by

αi(k) =
M∑

j=1
f j
i` α̃ j(k), ∆αi (k) =

M∑
j=1

h j
i` α̃ j(k), i = 1, · · · , nθ, ` = {1, 2}, (5.14)

where M (which is given byEqn. (5.13)) is the numbers of vectors µ j (which is given byEqn. (5.12));

f j
i =

[
f j
i1

T
f j
i2

T
]T

; h j
i =

[
h j

i1
T

h j
i2

T
]T

; and α̃ j(k) is the j th component of the scheduling parameter

vector α̃(k) =
[
α̃1(k), · · · , α̃M(k)

]T in the uncertainty set Ψa, that is defined in Eqn. (5.12). For

details about Eqn. (5.14), it is advised to see [De Caigny et al., 2010] and therein references. Note
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that, the representation in Eqn. (5.14) is useful to deal with parameter-dependent matrices depen-

dent on step-ahead scheduling parameters, that is α(k + 1), as shown later.

Next, system and controller parameter-dependent matrices with the new representation are pre-

sented. Let X(θ(k)) represents any parameter-dependent matrix with an affine parametrization as

follows

X(θ(k)) = X0 +

nθ∑
i=1

θi(k)Xi, (5.15)

where X0 ∈ R
n×n and Xi ∈ R

n×n are constant matrices; and θi(k) is the ith component of the

scheduling parameter vector in Eqn. (5.3) at time instant k. Consider the change of variable in

Eqn. (5.7), variation rate in Eqn. (5.8), and the bounds in Eqn. (5.11), then Eqn. (5.15) can be

re-written as follows

X(α(k)) =
nθ∑
i=1

2 θi αi1(k)Xi +

nθ∑
i=1

(
X0 − θiXi

)
. (5.16)

Applying homogenization procedure that developed in [Oliveira and Peres, 2009] results

X(α(k)) =
nθ∑
i=1

(
αi1(k)Xi1 + αi2(k)Xi2

)
, (5.17)

where Xi1 = X0 + θiXi and Xi2 = X0 − θiXi. Note that the homogenization steps to get

(5.17) are not presented due to the space limitations; see [Oliveira and Peres, 2009] for more

detail. In addition, X(θ(k)) represents any parameter-dependent matrix with affine parametrization

while X(α(k)) represents any parameter-dependent matrix with polytopic parameter-dependent.

Then, the parameter-dependent matrix is represented with a polytopic space parameters vector

α(k) ∈ Λ2nθ (i.e., convex domain). Next, the synthesis conditions for the proposed control problem

are presented.
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5.3 Control Synthesize LMIs

This section provides the synthesis parametrized LMI (PLMI) conditions for the proposed mixed

ICC/H∞ control problem. To make the problem tractable, the upper bound ofH2 performances are

minimized instead, subject to constraints on theH∞ performance and the control input covariance

matrix. Consider system (5.1) after change of variables using Eqn. (5.7), and the resulting polytopic

discrete-time LPV system is given by



x(k + 1) = A(α(k))x(k) + Bu(α(k))u(k) + B∞ω(α(k))ω∞(k) + B2ω(α(k))ω2(k),

z∞(k) = C∞z(α(k))x(k) + D∞u(α(k))u(k) + D∞ω(α(k))ω∞(k),

z2(k) = C2z(α(k))x(k) + D2u(α(k))u(k),

y(k) = Cy x(k) + ν̃(k),

(5.18)

where the parameter-dependent matrices have polytopic parametrization dependent on polytopic

parameter α(k) ∈ Λ2nθ . Note that, when the open-loop system (5.18) is combined with a multi-

objective gain-scheduled noisy static output-feedback (GSNOF) controller, the closed-loop system

has a non-zero direct feed-forward term D2cl(α(k)). To have finite H2 performance for z2(·), the

direct feed-forward term needs to be zero; see [Skogestad and Postlethwaite, 2007] for more details.

To satisfy this requirement, in this work a sensor filter is used for the measured output y(·) and the

control law (5.20) uses the filtered output ỹ(·). Note that this technique is not conservative since

practically each sensor signal needs to be filtered. Specifically, to remove redundancy, the details

of the procedure steps will be explained through the simulation example. Together with, define the

augmented states x̃(·) =
[
xT (·) ỹT

(·)
]T , where xT (·) = [x1(·) · · · xn(·)]

T ∈ Rn is the states vector;

ỹT
(·) =

[̃
y1(·) · · · ỹq(·)

]T
∈ Rq is the filtered measured output vector. Consequently, system (5.18)
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is re-written as



x̃(k + 1) = Ã(α(k)) x̃(k) + B̃u(α(k)) u(k) + B̃2ω(α(k)) ω̃2p(k) + B̃∞ω(α(k)) ω̃∞p(k),

z̃∞(k) = C̃∞z(α(k))x(k) + D̃∞u(α(k))u(k) + D̃∞ω(α(k))ω̃∞p(k),

z̃2(k) = C̃2z(α(k)) x̃(k) + D̃2u(α(k)) u(k),

ỹ(k) = C̃y x̃(k),

(5.19)

where the parameter-dependent matrices have polytopic parametrization dependent on polytopic

parameters vector α(k) ∈ Λ2nθ ; x̃(·) =
[
xT (·) ỹT

(·)
]T ; ω̃2p(k) =

[
ωT

2 (k) ν̃
T (k)

]T
; ω̃∞p(k) =[

ωT
∞(k) ν̃

T (k)
]T
; C̃2z(·) =

[
C2z(·) 0

]
; C̃∞z(·) =

[
C∞z(·) 0

]
; D̃∞ω(·) =

[
D∞ω(·) 0

]
; D̃2u(·) = D2u(·);

D̃∞u(·) = D∞u(·); C̃y =
[
03 Cy

]
; and Ã(α(k)), B̃u(α(k)), B̃2ω(α(k)), B̃∞ω(α(k))matrices structure

will be explained in details in section 6.4 (to eliminate the redundancy) and other matrices are

defined in Eqn. (5.18).

The multi-objective gain-scheduled noisy static output-feedback controller (GSNOF) is given by

u(k) = K(α(k)) ỹ(k), (5.20)

which can be further partitioned as follows

u(k) =
[
u1(k), u2(k), · · · , um(k)

]T
, (5.21)

where K(α(k)) is the gain-scheduled control gain. When the open-loop system (5.19) is combined

with a multi-objective gain-scheduled noisy static output-feedback (GSNOF) controller (5.20), the
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resulting closed-loop system can be written as follows

CL :



x̃(k + 1) = Acl(α(k)) x̃(k) + B2cl(α(k)) ω̃2p(k) + B∞cl(α(k)) ω̃∞p(k),

z̃∞(k) = C∞cl(α(k)) x̃(k) + D∞cl(α(k)) ω̃∞p(k),

z̃2(k) = C2cl(α(k)) x̃(k),

(5.22)

where, 

Acl(α(k)) = Ã(α(k)) + B̃u(α(k))K(α(k)) C̃y,

B2cl(α(k)) = B̃2ω(α(k)),

B∞cl(α(k)) = B̃∞ω(α(k)),

C∞cl(α(k)) = C̃∞z(α(k)) + D̃∞u(α(k))K(α(k)) C̃y,

C2cl(α(k)) = C̃2z(α(k)) + D̃2u(α(k))K(α(k)) C̃y,

D∞cl(α(k)) = D̃∞ω(α(k)).

(5.23)

Next, the desired H2 and H∞ performances are defined and control input covariance constraints

are presented.

Definition 16 Suppose that system (5.22) is exponentially stable, and let S̃z∞,ω̃∞p
be its transfer

function matrix from ω̃∞p to z̃∞. The H∞ performance (for given α(k)) for the LPV system (5.22)

is given by

| |S̃z∞,ω̃∞p
(α(k))| |∞ = sup

| |ω̃∞p(k)| |2,0

| |̃z∞(k)| |2
|ω̃∞p(k)| |2

, (5.24)

where, ω̃∞p(k) ∈ `
r∞ω+r2ω+rν̃
2 ; and z̃∞(k) ∈ ` p

2 . Then, H∞ performance (for given α(k)) is upper

bounded by

sup
α(k)∈Λ2nθ

| |S̃z∞,ω̃∞p
(α(k))| |∞ ≤ inf

P∞(α(k)),G(α(k)),η
η (5.25)

where η is a positive scalar number; and P∞(α(k)),G(α(k)) are designed matrices will be shown
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later in Lemma 21. Note that, the upper bound of theH∞ performance (5.25) is sometimes called

the upper bound of the worst cast norm from ω̃∞p(k) to z̃∞(k).

Definition 17 Considering system (5.19) and suppose that system (5.22) is exponentially stable.

The definition of theH2 performance for the LPV system (5.22) is given by

| |S̃z2,ω̃2p (α(k))| |
2
2 = lim

T→∞
sup

α(k)∈Λ2nθ

E

{
1
T

T∑
k=0

z̃T
2 (k )̃z2(k)

}
, (5.26)

where Λ2nθ denotes the polytopic space, where the scheduling parameters belong to; E denotes

the expectation operator; and the positive integer T denotes the time horizon. See Appendix B for

more details.

Definition 18 Considering system (5.19), the constraints on the control input u(k) = [u1(k), · · · , um(k)]T

in Eqn. (5.20) are bounded by

Cov(ur(k)) ≤ Ūr, r = 1, · · · ,m, (5.27)

where Ūr > 0 is a given upper bound on the control covariance Cov(ur(k)) for the r th control input

(i.e., ur(k)). See Appendix E for more details.

Definition 19 Considering system (5.22), the trace of the output covariance (i.e., control input

covariance constraints (ICC) cost function) is bounded by

ICC cost = trace
(
C2cl(α(k)) PG(α(k)) CT

2cl(α(k)
)
< trace

(
W(α(k))

)
, (5.28)

where W(α(k)) is an upper bound of the ICC cost to be defined later in Eqns. (5.30) and (5.31);
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and PG(α(k)) is the solution to the time-varying Lyapunov equation

PG(α(k + 1)) =Acl(α(k))PG(α(k))AT
cl(α(k)) + B2cl(α(k)) BT

2cl(α(k)), PG(0) = 0. (5.29)

See Appendix .6 for more details. Note that, covariance matrices are E
[
ν̃(k)ν̃T ( j)

]
= I and

E
[
ω2(k)ωT

2 ( j)
]
= Wk2 , where the later cold be assumed with identity without conservativeness.

Therefore, the last term of Eqn. (5.29) shows as B2cl(α(k)) BT
2cl(α(k)). Next, the multi-objective

control subject to constraints on the H∞ performance and the control input covariance matrix is

defined.

Problem 20 Synthesize a multi-objective gain-scheduled noisy static output-feedback control-

ler (5.20) for LPV system (5.19) that minimizes the output covariance performance upper bound

(5.28) subject to the multiple constraints on the control inputs covariances (5.27) and the H∞

performance (5.25) utilizing the estimated sensor noise covariance as a part of the gain-scheduling

parameters.

In other words, the goal of this work is to design a multi-objective noisy static output-feedback gain-

scheduling controller that exponentially stabilizes the closed-loop system (5.22) and minimizes the

upper bound of the performance output covariance (i.e., the trace of the performance output upper

bound (5.28)) subject to constraints on the control inputs covariances (H2 constraints on control

inputs) and the H∞ performance. For more details about Input Covariance Constraints (ICC)

control problem; see [Zhu et al., 1995], [White et al., 2013b] and therein references. Based on the

bounded real lemma, an upper bound for the H2 and H∞ performances can be computed using

extend LMI characterization; see [De Caigny et al., 2012] for more details. The upper bounds of

theH2 andH∞ performances of the closed-loop system (5.22) are given by the following lemma.
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Lemma 21 Consider the closed-loop system (5.22), and the gain-scheduled controller (5.20).

The trace of the H2 output performance (output covariance), subject to constraints on the H∞

performance and the control input covariance matrix, is upper bounded by trace(W(α)) if there

exists a symmetric positive definite matrix P2(α(k)) = PT
2 (α(k)) and matrices G(α(k)) and W(α(k))

such that the following matrix inequalities hold, for all α(k) ∈ Λ2nθ ,


P2(α(k + 1)) ∗ ∗

GT (α(k))AT
cl(α(k)) G(α(k)) +GT (α(k)) − P2(α(k)) ∗

BT
cl(α(k)) 0 I


> 0, (5.30)


W(α(k)) ∗

GT (α(k))CT
2cl(α(k)) G(α(k)) +GT (α(k)) − P2(α(k))

 > 0. (5.31)


Ūr ΓrK(α(k))C̃y

∗ P2(α(k))

 > 0, ∀ r = 1, · · · ,m, (5.32)

where Γr is a given input channel section matrix for the control input r . In addition, the

H∞ performance output is bounded by η, if there is exist a symmetric positive definite matrix

P∞(α(k)) = PT
∞(α(k)) and the same above G(α) matrix, such that the following matrix inequality

holds, for all α(k) ∈ Λ2nθ



P∞(α(k + 1)) ∗ ∗ ∗

GT (α(k))AT
cl(α(k)) G(α(k)) +GT (α(k)) − P∞(α(k)) ∗ ∗

BT
cl(α(k)) 0 ηI ∗

0 C∞cl(α(k))G(α(k)) D∞cl(α(k)) ηI


> 0. (5.33)

Proof 22 See Appendix C.
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There are some observations about the previous parametrized LMI (PLMI) set need to bementioned.

The previous PLMIs need to be solved for each α(k) in the polytopic space Λ2nθ , leading to an

infinite set of LMIs (i.e., not tractable optimization problem). In addition, the parameter-dependent

Lyapunov matrix depends on the current and the future value of the scheduling parameter vector

(i.e., α(k) and α(k +1), respectively), the resulting controller not only depends on the current value

of the scheduling parameter but also its future value α(k + 1). Since in most applications, this

value is not available in real-time, the gain-scheduled controller obtained by solving (if the solution

exists) the previous PLMIs cannot be implemented in practice. Moreover, the substitution of the

closed-loop matrices generates a solution from the closed-loop matrices and the Slack variable

G(·) which is very hard to handle. To elevate those issues, next Lemma states the LMIs conditions

for solving Problem (20) such that the above issues are avoided. Indeed, to obtain a finite set of

LMI conditions, the following parameter-dependent structure is imposed on the Lyapunov matrix

P(α(k)) such that

P(α(k)) =
nα∑
i=1

αi(k)Pi, α(k) ∈ Λ2nθ (5.34)

Considering the uncertainty set Ψa in (5.12), each αi(k) and ∆αi (k) are given by

αi(k) =
M∑

i=1
f j
i α̃ j(k) and ∆αi (k) =

M∑
i=1

h j
i α̃ j(k), (5.35)

such that

P̄(α̃(k)) =
M∑

j=1
α̃ j(k)P̄ j . (5.36)

where P̄ j =
∑nθ

i=1

(
f j
i1 + f j

i2

)
Pi and α̃ j(k) is the j th component of the scheduling parameter vector

α̃(k) =
[
α̃1(k), · · · , α̃M(k)

]T
∈ ΛM in the uncertainty set Ψa, defined in Eqn. (5.12). Using the
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same structure for α(k) in (5.35), the system matrices in (5.23) are also converted to the new

representation in terms α̃(k) ∈ ΛM as in (5.36). In addition, by considering Eqn. (5.35) with

α(k + 1) = ∆α(k) + α(k),

P̃(α̃(k)) =
M∑

j=1
α̃ j(k)P̃ j, (5.37)

where P̃ j =
∑nθ

i=1

( (
f j
i1 + h j

i1
)
+

(
f j
i2 + h j

i2
) )

Pi. Using parameterizations above, the next Lemma

presents the finite-dimensional LMIs used to solve Problem 28.

Lemma 23 Given input covariance constraints Ūr (r = 1, · · · ,m) and a specifiedH∞ performance

upper bound η, considering system (5.19) and assuming that vectors f j and h j in Eqn. (5.14) are

given. If there exist, ∀ i = 1, · · · , nθ , symmetric positive-definite matrices P∞,i ∈ Rn×n, P2,i ∈ R
n×n,

and matrices Gi ∈ R
n×n, Zi ∈ R

m×n, Wi ∈ R
p2×p2 such that,

for j = 1, · · · , M ,



P̃∞, j ∗ ∗ ∗

ḠT
i ĀT

j + Z̄T
i B̄T

u j Ḡi + ḠT
i − P̄∞, j ∗ ∗

B̄T
∞ω, j 0 ηI ∗

0 C̄∞z, jḠi + D̄∞u, jZ̄i D̄∞ω, j ηI


> 0, (5.38)

(5.39)
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
P̃2, j ∗ ∗

ḠT
i ĀT

j + Z̄T
i B̄T

u j Ḡi + ḠT
i − P̄2, j ∗

B̄T
2ω, j 0 I


> 0, (5.40)

(5.41)


∑nθ

i=1

(
f j
i1 + f j

i2

)
Wi ∗

ḠT
i C̄T

2z, j + ZT
i D̄T

2u, j Ḡi + ḠT
i − P̄2, j

 > 0, (5.42)

(5.43)


Ūr ΓrZ̄iC̄y

∗ Ḡi + ḠT
i − P̄2, j

 > 0, ∀r = 1, · · · ,m, (5.44)

and for j = 1, · · · , M − 1, and ` = j + 1, · · · , M,



Θ1∞ ∗ ∗ ∗

Θ2∞ Θ3∞ ∗ ∗

B̄T
∞ω, j + B̄T

∞ω,`
0 2ηI ∗

0 Θ4∞ D̄∞ω, j + D̄∞ω,` 2ηI


> 0, (5.45)

(5.46)
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
Θ1 ∗ ∗

Θ2 Θ3 ∗

B̄T
2ω, j + B̄T

2ω,` 0 2I


> 0, (5.47)

(5.48)


∑nθ

i=1

(
f j
i1 + f j

i2

)
Wi +

∑nθ
i=1

(
f `i1 + f `i2

)
Wi ∗

ḠT
i C̄T

2z, j + Z̄T
i D̄T

2u, j + ḠT
i C̄T

2z,` + Z̄T
i D̄T

2u,` Θ3

 > 0, (5.49)

(5.50)


Ūr ΓrZ̄iC̃y

∗ Θ3,

 > 0, f or r = 1, · · · ,m, (5.51)

Then, the parameter-dependent noisy static output-feedback gain, is given by

K(α(k)) = Ẑ(α(k)) Ĝ(α(k))−1,

Ẑ(α(k)) =
nθ∑
i=1

αi(k)Zi, Ĝ(α(k)) =
nθ∑
i=1

αi(k)Gi,

(5.52)

that exponentially stabilizes system (5.22) with guaranteed H2 performance (output covariance)

upper bound χ , which is given by

χ2 = min
P∞,i,P2,i,Wi,Gi,Zi

max
i

trace
(
Wi

)
, (5.53)

subject to both theH∞ performance upper bound η (H∞ performance constrain) and the following
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control input constraints,

Cov(u(k)) ≤ Ūr ∀r = 1, · · · ,m, (5.54)

where Ūr is a given upper bound on the control covariance matrix Cov(u(k)) for the r th control

input; Γr is a given input channel selection matrix for control input r;

P̄∞, j =
nθ∑
i=1

(
f j
i1 + f j

i2

)
P∞,i, P̃∞, j =

nθ∑
i=1

( (
f j
i1 + h j

i1
)
+

(
f j
i2 + h j

i2
) )

P∞,i,

P̄2, j =

nθ∑
i=1

(
f j
i1 + f j

i2

)
P2,i, P̃2, j =

nθ∑
i=1

( (
f j
i1 + h j

i1
)
+

(
f j
i2 + h j

i2
) )

P2,i,

Ḡi =

nθ∑
i=1

(
f j
i1 + f j

i2

)
Gi, Z̄i =

nθ∑
i=1

(
f j
i1 + f j

i2

)
Zi,

Θ1∞ =

nθ∑
i=1

( (
f j
i1 + h j

i1
)
+

(
f j
i2 + h j

i2
) )

P∞,i +
nθ∑
i=1

( (
f `i1 + h`i1

)
+

(
f `i2 + h`i2

) )
P∞,i,

Θ2∞ = ḠT
i ĀT

` + ḠT
i ĀT

j + Z̄T
i B̄T

u` + Z̄T
i B̄T

u j,

Θ3∞ = 2Ḡi + 2ḠT
i −

nθ∑
i=1

(
f j
i1 + f j

i2

)
P∞,i −

nθ∑
i=1

(
f `i1 + f `i2

)
P∞,i,

Θ4∞ = C̄∞z, jḠi + D̄∞u, jZ̄i + C̄∞z,`Ḡi + D̄∞u,`Z̄i,

Θ1 =

nθ∑
i=1

( (
f j
i1 + h j

i1
)
+

(
f j
i2 + h j

i2
) )

P2,i +

nθ∑
i=1

( (
f `i1 + h`i1

)
+

(
f `i2 + h`i2

) )
P2,i,

Θ2 = ḠT
i ĀT

` + ḠT
i ĀT

j + Z̄T
i B̄T

u` + Z̄T
i B̄T

u j,

Θ3 = 2Ḡi + 2ḠT
i −

nθ∑
i=1

(
f j
i1 + f j

i2

)
P2,i −

nθ∑
i=1

(
f `i1 + f `i2

)
P2,i,
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Proof 24 See Appendix. D.

Next remark considers the case of robust controller.

Remark 25 The robust noisy static output-feedback controller guaranteeing the upper bound of

H2 performance (output covariance), subject to constraints on theH∞ performance and the control

input covariance matrix, can be found by forcing matrices Ẑ(α(k)) and Ĝ(α(k)) to be parameter-

independent.

5.4 Simulation Results and Discussion

The numerical example presented in this section is to demonstrate the advantage of considering

sensor performance degradation due to sensor aging during the control design, where the control

input and H∞ performance are subjected to given constraints. That is, the goal is to synthesize

a multi-objective gain-scheduled noisy output-feedback (GSNOF) controller that minimizes the

upper bound of the outputH2 performance (performance output covariance) subject to constraints

on the control input covariance matrix and the H∞ performance upper bound, where the sensor

performance degradation due to aging is also used by controller as a gain-scheduling parameter to

guarantee target system stability and achieve the desired performances if possible. The synthesized

controllers are controller gain-scheduled by a combination of the time-varying parameters and

the estimated time-varying sensor measurement noise covariance, and in this work, it is called a

fully gain-scheduled; controller gain-scheduled by the estimated time-varying sensor measurement

noise covariance is called a partially gain-scheduled; and robust controller is not gain-scheduled.

Lemma 23 is used with semi-definite programming (SDP) solver interfaced by the available parser

to solve this problem.
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The relative improvement (RI) is used as a measure to compare the performances of the

gain-scheduled and robust controllers, and it is given by

RI =
H R −HGS

H R × 100% (5.55)

where HGS and H R are the H2 performance upper bounds for the designed gain-scheduled and

robust controllers, respectively.

The numerical complexity [Boyd and Vandenberghe, 2004, Nesterov, 2013] of an optimization

problem based on LMIs set is given by

complexity = log(LV3) (5.56)

whereL is the number of raws in the LMIs set andV is the number of scalar variables in the LMI set.

Note that, simulation results are created using MATLAB R2015 and semi-definite programming

(SDP) solver SeDuMi [Sturm, 1999] interfaced by the parser YALMIP [Lofberg, 2004] with a

computer equipped with an Intel Core i7 2.6 GHz Processor and 16 GB RAM. The considered

example represents a state-of-art for the gain-scheduling control used in many published literature;

see for example, [White et al., 2016] and therein references.

Example: consider a discrete-time multiple-input multiple-output (MIMO) LPV system (5.1)
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with the following state-space matrices



A(θ(k)) =



−2 + θ1(k) + θ2(k) 0 −1

1 −0.5 0

0 1 −0.5


,Bu(θ(k)) =



1 + θ1(k) + θ2(k) 0 0

0 1 0

0 0 1


,

B∞ω = B2ω =



1 0 0

0 1 0

0 0 1


,Cy =



1 0 0

0 1 0

0 0 1


,D2u =



1 0 0

0 1 0

0 0 1


, C2z = I3,

(5.57)

where the time-varying parameters are assumed to have the following parameters variation bounds

θ1(k) ∈ [−0.1, 0.1], θ2(k) ∈
[
10−7, 0.4

]
. Note that, system (5.57) was originally used in

[De Oliveira et al., 1999] and later used in [Apkarian et al., 2000] and [White et al., 2016], and it

considered herewith a slight revision to fit our design problem. The discrete-timeLPV system (5.57)

is converted to a discrete-time polytopic by solving matrices A(·) and B(·) at the vertices of the

parameter space polytope of the parameters follow the procedure shown in [White et al., 2013c].

As mentioned earlier, to match with the strictly proper requirements for finiteH2 norm (i.e., feasible

H2 control) in this work, a filter is used for the measured output y(·) and the control law (5.20) uses

the filtered output ỹ(·), where the z-transform of the filtered measured output is given by

Ỹ (z) = G(z) Y (z), (5.58)

where Y (z) is the z-transform of the measured output vector y(·); Ỹ (z) is the z-transform of the

filtered measured output vector ỹ(·); and G(z) = diag (Gi(z)) is the filter transfer function matrix.
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The filter transfer function of the ith output channel is given by

Gi(z) =
1 − e−aT

1 − e−aT z−1 , ∀i = 1, · · · , q, (5.59)

where a is the pole of the filter in the continuous-time domain and q denotes the number of

measured output vector components. To explain the filtering procedure, for instance, consider the

first component of the measured output vector (i.e., y1(·) = Cy1 x(·) + ν̃1(·)), where Cy1 is the first

raw of the matrix Cy, then

Ỹ1(z) =
( 1 − e−aT

1 − e−aT z−1

)
Y1(z), (5.60)

where Y1(z) is the z-transform of the y1(·). Substitute for Y1(z), manipulate and taking z-transform

inverse, it leads

ỹ1(k + 1) = (1 − e−aT )Cy1 x(k + 1) + e−aT ỹ1(k) + (1 − e−aT ) ν̃1(k). (5.61)

where ỹ1(·) is the first component of the vector ỹ(·); ν̃1(k) is the first component of the measurement

noise vector ν̃(k) =
[
ν̃1(k), · · · , ν̃q(k)

]T ; and other arguments are defined before. Generally,

∀i = 1, · · · , q

ỹi(k + 1) = (1 − e−aT )Cyi x(k + 1) + e−aT ỹi(k) + (1 − e−aT ) ν̃(k),

= (1 − e−aT )Cyi A(·)x(k) + (1 − e−aT )Cyi Bu(·)u(k)

+ (1 − e−aT )Cyi B∞ω(·)ω∞(k) + (1 − e−aT )Cyi B2ω(·)ω2(k)

+ e−aT ỹi(k) + (1 − e−aT ) ν̃(k + 1),

(5.62)
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where ỹi(·) is the ith component of the vector ỹ(·); and Cyi is the ith raw of the matrix Cy. Together

with, define the augmented states x̃(·) =
[
xT (·) ỹT

(·)
]T , as follow

x̃(k + 1) =


xT (k + 1)

ỹT
(k + 1)


=



A(·) 0 0 · · · 0

(1 − e−aT )Cy1A(·) e−aT 0 · · · 0

(1 − e−aT )Cy2A(·) 0 e−aT ...

...
...

. . . 0

(1 − e−aT )CyqA(·) 0 · · · 0 e−aT

︸                                                       ︷︷                                                       ︸
Ã(·)


xT (k)

ỹT
(k)

︸  ︷︷  ︸
x̃(k)

+



B∞ω(·) B2ω(·) 0

(1 − e−aT )Cy1B∞ω(·) (1 − e−aT )Cy1B2ω(·)

...
... (1 − e−aT)

(1 − e−aT )CyqB∞ω(·) (1 − e−aT )CyqB2ω(·)

︸                                                                        ︷︷                                                                        ︸
B̃ω(·)


ωT
∞(k)

ωT
2 (k)

ν̃T (k),

︸    ︷︷    ︸
ω̃p(·)

+



Bu(·)

(1 − e−aT )Cy1 Bu(·)

...

(1 − e−aT )Cyq Bu(·)

︸                      ︷︷                      ︸
B̃u(·)

u(k)

(5.63)

where xT (·) = [x1(·) · · · xn(·)]
T ∈ Rn is the states vector; ỹT

(·) =
[̃
y1(·) · · · ỹq(·)

]T
∈ Rq is the

filtered measured output vector; 1 − e−aT = diag(1 − e−aT ) ∈ Rq; 0 =
[
0 · · · 0

]T
∈ Rq; and Cyi

(i = 1, · · · , q) is the ith raw of the matrix Cy.
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Figure 5.3: Poles location of open-loop system (5.57) considering design 1 for a wide range of the scheduling
parameters (i.e., θ1 ∈ {−0.1, 0.1} and θ2 ∈ {10−7, 0.4}), where each pole locations are represented by
different color and symbol.

For the current example (i.e., system (5.57)), Cy which has three raws, i.e., q = 3; xT (·) =

[x1(·) x2(·) x3(·)]
T ∈ R3 is the states vector; ỹT

(·) =
[̃
y1(·) ỹ2(·) ỹ3(·)

]T
∈ R3 is the filtered measured

output vector; D̃2u(·) = D2u(·); and the filter parameters are set as a = 0.8546 and T = 0.04336.

In addition, the scheduling parameters ranges are set as θ1 ∈ {−0.1, 0.1} and θ2 ∈ {10−7, 0.4};

theH∞ performance upper bound (η) is set to 20; and the input covariance constraints are set as

• Design 1 : Cov(ur(k)) ≤ Ūr, ∀r = 1, 2, 3,

• Design 2 : Cov(ur(k)) ≤ Ū, ∀r = 1, 2, 3,

where Ūr is the r th upper bound on the control covariance Cov(ur(k)) for the r th control input.

That is, design 1 considers that each input channel has different upper bound on the control input

covariance while design 2 considers that all control input channels have the same upper bound of

the control input covariance.

Fig. 5.3 shows the locations of the open-loop system poles over a wide range of the scheduling

parameters, where different color and symbol represents each pole locations. It is clear that the
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Table 5.1: Location of closed-loop system considering design 1 and
[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T

for a wide range of the scheduling parameters.

θ1 ∈ {−0.1, 0.1}, θ1 ∈ {−0.1, 0.1}, θ1 ∈ {−0.1, 0.1}, θ1 ∈ {−0.1, 0.1},
θ2 ∈ {10−7, 10−4} θ2 ∈ {10−7, 10−2} θ2 ∈ {10−7, 0.2} θ2 ∈ {10−7, 0.4}

pole1 0.4316 + 0.0000i 0.3946 + 0.0000i −0.4870 + 0.0000i −0.6808 + 0.0000i
pole2 0.0536 + 0.1330i 0.0499 + 0.1218i −0.0872 + 0.1559i −0.0988 + 0.2584i
pole3 0.0536 − 0.1330i 0.0499 − 0.1218i −0.0872 − 0.1559i −0.0988 − 0.2584i
pole4 −0.1880 + 0.0000i −0.1700 + 0.0000i 0.1700 + 0.0000i 0.2934 + 0.0035i
pole5 −0.1974 + 0.0121i −0.1778 + 0.0100i 0.1617 + 0.0106i 0.2934 − 0.0035i
pole6 −0.1974 − 0.0121i −0.1778 − 0.0100i 0.1617 − 0.0106i 0.2917 + 0.0000i

open-loop system has unstable poles over the range of the scheduling parameters.

For the stability analysis, the fully gain-scheduled controller is considered, where other con-

trollers have similar behavior. Table. 5.1 shows the locations of the closed-loop system poles for

different values of the scheduling parameters. It is clear that the closed-loop system poles are all

located within a unit circle. Note that, the poles locations does not indicate system stability.

For the performance analysis, Fig. 5.4 shows the H2 performance output upper bound as

a function of the sensor noise covariance for fully and partially gain-scheduled controllers and

robust controller. The solid line with star and dotted line with diamond relate to the fully and

partially, respectively, gain-scheduled controllers, and dotted line with circle relates to the robust

controller. The x-axis is logarithmic in sensor noise covariance, and the y-axis is logarithmic

for desired performance. Fig. 5.5 shows the relative improvement defined in Eqn. (5.55) for

the designed fully (solid line with circle) and partially (dotted lines with cross) gain-scheduled

controllers, where the x-axis is logarithmic in noise covariance, and y-axis is linear for relative

improvement (%). Those figures have interesting interpretations: as the sensor gets aged (i.e.,

sensor noise covariance increase), the output performance to satisfy the given constraints gets

worse. Besides, for a given sensor aging information (i.e., sensor measurement noise covariance),
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Figure 5.4: H2 performance upper bound as a function of the sensor noise covariance for the designed con-
trollers using Lemma. 23, considering system (5.57) and design 1with

[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T .

The solid line with star marks and dotted line with diamond marks relate to the fully and partial, respectively,
gain-scheduled controllers, and dotted line with circle marks relates to robust controller. The x-axis is
logarithmic in sensor noise covariance and y-axis is logarithmic for desired performance.

the output performance upper bound can be found under the control energy limit (i.e., control

input covariance constraint) effect. Moreover, the synthesized fully gain-scheduled controller

compensates the effect of sensor performance with slow-degradation due to sensor aging (i.e.,

slowly-varying sensor noise covariance) and maintains the desired performance. On the other

hand, the partially gain-scheduled controller attempts to compensate the effect of sensor aging for

a while and then it starts to deviate from the desired performance. That is, closed-loop system

H2 performance considering a partially gain-scheduled controller lies between fully gain-scheduled

and robust controllers ones. Indeed, the designed fully gain-scheduled controller has the best

performance over the partially gain-scheduled and robust controllers, and partially gain-scheduled

has a worse performance than fully gain-scheduled but better performance than the robust one since

the partially gain-scheduled control scheduled only by the sensor noise covariance and the robust

controller is designed for a fixed gain. Finally, the closed-loop system performance with fully
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Figure 5.5: H2 performance relative improvement (Eqn. (5.55)) as a function of the sensor noise covariance
for the designed fully (solid line with circle marks) and partially (dotted line with cross marks) gain-
scheduled controllers over the robust controller using Lemma. 23, considering system (5.57) and design 1
with

[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T . The x-axis is logarithmic in noise covariance and y-axis is linear

for relative improvement(%).

or partially gain-scheduled controls approaches the robust one with fairly large noise covariance.

For the numerical complexity analysis, Table 5.2 presents the numerical complexity regarding the

number of raws and number of scalar variables in the LMIs set using Lemma 23. Table 5.2 shows

that fully gain-scheduled controller has the highest numerical complexity; partially gain-scheduled

has mediated complexity; while the robust controller has the lowest one. Indeed, the fully gain-

scheduled controller needs to solve much raws and scalar variables in the LMI set while robust

controller solves for the minimum ones.

For the initial condition response analysis. Figs. 5.6a-5.7b show the time response for one state,

to eliminate redundancy and get obviousness, considering fully gain-scheduled control; and design 1

with
[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T , where the sensor measurement noise covariance is set

10−4, 10−2, 0.2 and 0.4, respectively. Figs. 5.8a-5.9b show the time response, considering fully gain-

scheduled control; and design 2 with Ū = 0.01, where the sensor measurement noise covariance
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Figure 5.6: Closed-loop system initial condition response (left) and closed-loop system poles (right) for
noise covariance (a) 10−4 (b) 10−2, where design 1 with

[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T is considered.

x-axis is linear in time. y-axis is linear in system state magnitude.

is set 10−4, 10−2, 0.2 and 0.4, respectively. Those figures have interesting interpretations: as the

sensor noise covariance increases, the time response gets slower. That is, the designed controller

needs more time to compensate for the sensor noise effect. In addition, using a relaxed and the same

input covariance constraint overall channels (i.e., design 2), the time response gets faster. That
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Figure 5.7: Closed-loop system initial condition response (left) and closed-loop system poles (right) for
noise covariance (a) 0.2 (b) 0.4, where design 1 with

[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T is considered.

x-axis is linear in time. y-axis is linear in system state magnitude.
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Figure 5.8: Closed-loop system initial condition response (left) and closed-loop system poles (right) for
noise covariance (a) 10−4 (b) 10−2, where design 2 with

[
Ū1, Ū2, Ū3

]T
= [0.01, 0.01, 0.01]T is considered.

x-axis is linear in time. y-axis is linear in system state magnitude.

is, the controller has a relatively high gain, then the system time response gets faster. Moreover,

for tight input covariance constraints (at least over one channel), the designed controller leads to

relatively slower response. That is, controller gain is tight and it leads to more time for response to

settle down. Next, a summarization of the current work is presented.
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Figure 5.9: Closed-loop system initial condition response (left) and closed-loop system poles (right) for
noise covariance (a) 0.2 (b) 0.4, where design 2 with

[
Ū1, Ū2, Ū3

]T
= [0.01, 0.01, 0.01]T is considered.

x-axis is linear in time. y-axis is linear in system state magnitude.
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Table 5.2: Numerical complexity comparison between robust, partially and fully gain-scheduled control
synthesized using Lemma. 23 and design 1 with

[
Ū1, Ū2, Ū3

]T
= [0.005, 0.01, 0.015]T , where the sensor

noise covariance is set to 0.2.

GSLemma23 ( f ull) GSLemma23 (partial) RobustLemma23
L 2, 228, 127 287, 430 10, 695
V 1, 442, 559 745, 370 33, 323

log(LV3) 57.16 53.13 40.51

5.5 Summary

Control system performance is heavily dependent on the sensor signals used for feedback cont-

rol. A faulty sensor may lead to degraded system performance, an unstable system and/or even

a fatal accident. In this paper, a multi-objective gain-scheduled control for linear parameter va-

rying systems, subject to sensor performance degradation due to sensor aging, is presented, where

the controller is subject to constraints on the control input variances and constraint on the H∞

performance output. The time-varying sensor measurement noise covariance is used to characte-

rize the sensor performance degradation due to sensor aging. Using the estimated sensor noise

covariance, a multi-objective gain-scheduled noisy output-feedback controller is designed using

the LPV technique. Additionally, there kinds of controllers are designed and they are controller

scheduled by a combination of the time-varying parameters and the time-varying noise covari-

ance (called fully gain-scheduled), controller scheduled by the sensor noise covariance (called

partially gain-scheduled), and not scheduled (called robust controller). The synthesis of multi-

objective gain-scheduled control is formulated as mixed ICC/H∞ control problem that minimizes

the performance output upper bound subject to H2 constraints on control input variances and H∞

performance output. This problem can be solved efficiently using LMI optimization techniques.

The proposed controller utilizes the sensor fault information (in terms of sensor noise covariance)
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to minimize its effect on the system and improves the closed-loop system performance. Also, the

synthesized multi-objective gain-scheduled noisy output-feedback (GSNOF) controller compensa-

tes for the gradually-degraded sensor performance due to sensor aging and maintains the desired

performance. The simulation results show that the synthesized fully gain-scheduled controller

performs better than the partially gain-scheduled and robust one in terms of the performance with

gradually-degraded sensor performance. In addition, the gain-scheduled controllers performance

approach the robust one when the sensor noise covariance increases significantly.
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Chapter 6

Guaranteed Performance Optimal Control

for LPV Systems with Aging Sensors

6.1 Introduction

This chapter presents the design of a gain-scheduled controller that minimizes the control effort

subject to performance constraint on output covariance matrix (OCC) in the presence of gradual

sensor performance degradation due to sensor aging. TheOCC control problemwas first considered

in [Zhu et al., 1993], then [Zhu et al., 1995] and [Zhu et al., 1997]. Then, it was presented in

many literature for different applications such as linear time-invariant system [White et al., 2012],

hydraulic engine cam phasing actuator [White et al., 2013a], and electric variable valve timing

system [Ren and Zhu, 2011]. The OCC control problem is an optimal control problem, where the

control effort is minimized subject to a constraint on output covariance matrix. The OCC problem

has two interesting interpretations: stochastic and deterministic interpretations and the stochastic

interpretation is used with this work. The stochastic interpretation is obtained by first assuming

that the exogenous inputs are uncorrelated zero-mean white noises with known intensity (given or

estimated). With this interpretation, the OCC problem is to minimize the control input covariance

subject to the output covariance constraint(s). Indeed, in practical applications, it is often required

for the designed controller tominimize the control effort subject to output performance constraint(s).
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When closed-loop controllers are designed using the conventional methods, these constraints are

usually not taken into account. On the other hand, with the OCC control design, the constraints

on the regulated output are considered during the controller synthesis process. Therefore, the

controller with the minimum control effort is obtained for a given set of constraints on the regulated

output.

The main contributions of this chapter is a method using linear matrix inequalities (LMIs) to

synthesize a gain-scheduled noisy output-feedback controller (GSNOF), utilizing the sensor aging

information, such that the control effort is minimized subject to constraints on the regulated output

covariance performance. Additionally, the sensor measurement noise covariance is used to model

the sensor performance deterioration (fault). The gain-scheduled controller is scheduled by a com-

bination of the time-varying parameters and the estimated sensor measurement noise covariance.

The controller is validated in a simulation study for a discrete-time linear parameter varying (LPV)

systemwith gradually performance degraded sensors; formore details see [Madhag and Zhu, 2019].

This chapter is organized as follows. Sub-section 6.2 provides an overview of the propo-

sed problem, related mathematical preliminaries, and the discrete-time polytopic LPV system.

Sub-section 6.3 synthesizing the LMI conditions for the proposed OCC control problem. Sub-

section 6.4 provides the simulation validation results. Conclusions and future work are drawn in

Sub-section 6.5.
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6.2 Problem Definition

6.2.1 System Model

Consider a general polytopic discrete-time linear parameter varying (LPV) system described in the

following state-space representation

x(k + 1) = A(α(k))x(k) + Bu(α(k))u(k) + B2ω(α(k))ω2(k),

z2(k) = C2z(α(k))x(k) + D2u(α(k))u(k),

y(k) = Cy x(k) + ν̃(k)

(6.1)

where k ∈ Z+ is the sample time index; x(k) ∈ Rn is the state vector; z2(k) ∈ Rp2 is the system

performance output vector; y(k) ∈ Rq is the measured output vector; u(k) ∈ Rm is the control input

vector; A(α(k)) ∈ Rn×n; Bu(α(k)) ∈ Rn×m; B2ω(α(k)) ∈ Rn×r2ω ; C2z(α(k)) ∈ Rp2×n; Cy ∈ R
q×n;

D2u(α(k)) ∈ Rp2×m; and the scheduling parameters vector α(k) is defined in Eqn. (6.3). The

parameter-dependent matrices for system (6.1) are assumed to be polytopic with respect to the

time-varying scheduling parameters vector. The initial state vector x(0) in system (6.1) is assumed

to have a normal distribution with zero mean (E [x(0)] = 0, where E [·] denotes the expectation

operator) and covariance (P0 = E(x(0)xT (0)) > 0). System (6.1) is assumed to be observable and

controllable. Note that, the observability and controllability assumptions are used mainly due to

the fact that the observability and controllability for LPV systems are not well defined in the LPV

control literatures. The terms ω2(k) ∈ Rr2ω and ν̃(k) ∈ Rrν̃ in system (6.1) denote the process and

measurement noises respectively. In addition, they are assumed to be uncorrelated Gaussian white
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ones with their means and covariances are defined by



E [ω2(k)] = 0, E [ν̃(k)] = 0,

E
[
ν̃(k)ν̃T ( j)

]
= I δ(tk − t j) ∀ k, j ∈ R,

E
[
ω2(k)ωT

2 ( j)
]
=Wk2 δ(tk − t j) ∀ k, j ∈ R,

E
[
ω2(k)ν̃T ( j)

]
= E

[
ω2(k)xT ( j)

]
= E

[
ν̃(k)xT ( j)

]
= 0,

(6.2)

where δ is a Kronecker Delta function
(
i.e., δ(0) = 1 and δ(k) = 0;∀ k , 0

)
. Note that ν̃(k) =

V
−1
2

k ν(k), E [ν(k)] = 0, E
[
ν(k)νT

j

]
= Vk δ(tk − t j), ∀ k, j ∈ Z+. The process noise covariance

matrix, Wk2 is assumed to be positive semi-definite and known at each time instant and it can be

assumed an indemnity matrix without conservativeness. Moreover, all sensor measurement noises

are assumed to be independent (i.e., measurement noise for each channel is independent of the

rest of them), that is, Vk = diag
(
σ1(k), · · · , σq(k)

)
, where Vk is the sensor measurement noise

covariance matrix and σi(k) is the sensor measurement noise variance of the ith channel. Define a

scheduling parameters vector as

α(k) =
[
α1(k), · · · , αq(k), αq+1(k), · · · , αnα(k)

]T
, (6.3)

whereα1(k), · · · , αq(k) are due to sensorsmeasurements noises covariance variation; αq+1(k), · · · , αnα(k)

are due to system parameter variations and q is the number of measured output sensors. In addition,

the parameters α(k) =
[
α1(k), · · · , αnα(k)

]T are assumed to lie in a known polytopic space Λnα ;

the vertices set of Λnα is ver(Λnα) = {η1, · · · , ηnα | ηi ∈ {αi, αi}}. Note that, the polytopic space,

Λnα , could be defined as Λ2nθ if the polytopic system is considered as transformed version of the

affine one following the change of variables in Eqn. (5.7). The scheduling parameters are assumed
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to be independent and time-varying parameters with the following known bounds

αi ≤ αi(k) ≤ αi , ∀ i = 1, · · · , nα ∀ k ∈ Z+, (6.4)

where αi and αi are the lower and upper bounds of the ith scheduling parameter, respectively. In

addition, ∀ k ≥ 0, the rate of variation of the scheduling parameters is given by

∆αi (k) = αi(k + 1) − αi(k), ∀ i = 1, · · · , nα, (6.5)

and the bounds of the scheduling parameters variation rate are

∆αi
≤ ∆αi (k) ≤ ∆αi, ∀ i = 1, · · · , nα, ∀ k ∈ Z+, (6.6)

where ∆αi and ∆αi are the lower and upper bounds of the rate of variation of the ith scheduling

parameter, respectively. Without loss of generality, bounds in Eqn. (6.4) and Eqn. (6.6) are assumed

to be symmetric. That is, variation rates bounds as
���∆αi ��� ≤ ai, ai ∈ {0, 1}, ∀i = 1, · · · , nα, which

represents the case where the scheduling parameters variate within a bounded rate of variation.

Generally, each scheduling parameter αi(k) (i = 1, · · · , nα) belongs to Λnα , it yields

nα∑
i=1
∆αi = 0, (6.7)

where polytopic space parameters vector α(k) =
[
α1(k), · · · , αnα(k)

]T
∈ Λnα and the parameters

variation rates vector is ∆α(k) =
[
∆α1(k), · · · ,∆αnα (k)

]T
∈ Λnα . In addition, in the discrete-

time case, the rate of variation depends on the associated value of the parameter, which is the

main difference from the continuous-time case, and assuming parameter rate independent could
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be very conservative, and for more details; see [Lacerda et al., 2016], [De Caigny et al., 2010] and

[Oliveira and Peres, 2009]. The uncertainty domain, where the vector
[
αT (k),∆T

α(k)
]T
∈ Λnα takes

values, can be modeled by the compact set below [De Caigny et al., 2010]

Ψa =

{
ψ ∈ R2nα : ψ ∈ co { µ1, · · · , µM }, µ j =


f j

h j

 ,
f j ∈ Rnα, h j ∈ Rnα,

nα∑
i=1

f j
i = 1, f j

i , ≥ 0,

nα∑
i=1

h j
i = 0, ∀ j = 1, · · · , M, ∀i = 1, · · · , nα

}
,

(6.8)

as a convex combination of vectors µ j for j = 1, · · · , M , where vectors f j
i and h j

i are given a priori;

and M is the numbers of vectors µ j , which is given by [De Caigny et al., 2010], [White et al., 2013c]

M = N2 + (N − 1)2 + (N − 1), (6.9)

where N is the number of the vertices of the polytopic system (i.e., number of the scheduling

parameters). For more details about Eqn. (6.9) see [De Caigny et al., 2010], [White et al., 2013c]

and therein references.

This definition of the set Ψa ensures that α(k) and Eqn. (6.7) hold for all k ≥ 0. In the next section,

the controller synthesizes using is presented.

6.3 Controller Synthesis LMIs

The goal of this work is to design a noisy static output-feedback gain-scheduling controller that

exponentially stabilizes the closed-loop system and minimizes the control input covariance subject
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to constraint on the regulated output covariance. This section provides the synthesis LMI conditions

for the proposed OCC control problem. To make the problem tractable, the upper bound of H2

control effort are minimized instead subject to constraint on the output covariance. Note that

the closed-loop system has a non-zero direct feed-forward term D2cl(α(k)). To have finite H2

performance for z2(·), it needs to be zero; see [Skogestad and Postlethwaite, 2007] for more details.

To satisfy this requirement, in this work a dynamic sensor signal filter is used for the measured

output y(·) and the control law uses the filtered output ỹ(·). Note that this technique is not

conservative since practically each sensor signal needs to be filtered in practical applications.

Specifically, to remove redundancy, the details of the procedure steps will be explained through

the simulation example. Together with, define the augmented states x̃(·) =
[
xT (·) ỹT (·)

]T , where

xT (·) = [x1(·) · · · xn(·)]
T ∈ Rn is the states vector; ỹT (·) =

[
ỹ1(·) · · · ỹq(·)

]T
∈ Rq is the filtered

measured output vector. Consequently, system (6.1) is re-written as



x̃(k + 1) = Ã(α(k)) x̃(k) + B̃u(α(k)) u(k) + B̃ω(α(k)) ω̃p(k),

z̃2(k) = C̃2z(α(k)) x̃(k) + D̃2u(α(k)) u(k),

ỹ(k) = C̃y x̃(k),

(6.10)

where the parameter-dependent matrices have polytopic parametrization dependent on polytopic

parameterα(k) ∈ Λnα ; C̃2z(·) =
[
C2z(·) 0

]
; D̃2u(·) = D2u(·); C̃y =

[
03 Cy

]
; x̃(·) =

[
xT (·) ỹT (·)

]T ;

ω̃p(·) =
[
ωT

2 (·) ν̃T (·)
]T ; other matrices defined in Eqn. (6.1) and Ã(α(k)), B̃u(α(k)), B̃ω(α(k))

matrices structure will explained in details at the simulation section. The gain-scheduled noisy

static output-feedback controller (GSNOF), is given by

u(k) = K(α(k)) ỹ(k), (6.11)
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where K(α(k)) is the gain-scheduled control gain. When the open-loop system (6.10) is combined

with a gain-scheduled noisy static output-feedback (GSNOF) controller (6.11), the resulting closed-

loop system can be written as follows

CL :


x̃(k + 1) = Acl(α(k)) x̃(k) + Bcl(α(k)) ω̃p(k),

z̃2(k) = C2cl(α(k)) x̃(k),
(6.12)

where, 

Acl(α(k)) = Ã(α(k)) + B̃u(α(k))K(α(k)) C̃y,

Bcl(α(k)) = B̃ω(α(k)),

C2cl(α(k)) = C̃2z(α(k)) + D̃2u(α(k))K(α(k)) C̃y,

ω̃p(k) =
[
ωT

2 (k) ν̃T (k)
]T
.

(6.13)

Next, definitions of systemcontrol input covariance constraints andOCCcost function are presented.

Definition 26 Considering system (6.12), the constraints on the output covariance in Eqn. (6.12)

(i.e., regulated output covariance constraint) are bounded by

Cov(̃z2(k)) = C2cl(α(k)) PG(α(k)) CT
2cl(α(k) ≤ Z̄, (6.14)

where Z̄ is a given upper bound on the output covariance matrix Cov(z(k)) and PG(α(k)) is the

solution to the time-varying Lyapunov equation

PG(α(k + 1)) =Acl(α(k))PG(α(k))AT
cl(α(k)) + Bcl(α(k)) BT

cl(α(k)) . (6.15)

Definition 27 Considering system (6.12), the input covariance constraint cost function (i.e., control
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energy covariance)UOCC is given by

UOCC = trace
(
K(α(k)) C̃y PG(α(k)) C̃T

y KT (α(k)
)
, (6.16)

Note that, the proof of Eqns.(6.14)-(6.16) can be obtained using operator theory by following the

steps provided in [Zhu and Skelton, 1995].

Next, the gain-scheduled control subject to constraint on the output covariance (OCC) problem

is defined.

Problem 28 Synthesize a gain-scheduled noisy static output-feedback controller (6.11) for LPV

system (6.10) that minimizes the control effort (6.16) subject to the constraint on the output

covariance matrix (6.14) and utilize the estimated sensor noise covariance as part of the gain-

scheduling parameters.

Formore details about output covariance constraints (OCC) control problem; see [Zhu et al., 1995],

[Zhu and Skelton, 1995] and therein references. Problem 28 can be solved by performing a convex

optimization over a set of linear matrix inequalities (LMIs). The LMIs list here are an extension

of the work presented in [De Caigny et al., 2010]. To obtain a finite set of LMI conditions, the

following parameter-dependent structure is imposed on the Lyapunov matrix P(α(k)) such that

P(α(k)) =
nα∑
i=1

αi(k)Pi, α(k) ∈ Λnα (6.17)

Considering the uncertainty set Ψa in (6.8), each αi(k) and ∆αi (k) are given by

αi(k) =
M∑

i=1
f j
i α̃ j(k) and ∆αi (k) =

M∑
i=1

h j
i α̃ j(k), (6.18)
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such that

P̄(α̃(k)) =
M∑

j=1
α̃ j(k)P̄ j . (6.19)

where P̄ j =
∑nα

i=1 f j
i Pi and α̃ j(k) is the j th component of the scheduling parameter vector α̃(k) =[

α̃1(k), · · · , α̃M(k)
]T
∈ ΛM in the uncertainty set Ψa, that is defined in Eqn. (6.8). Using the same

structure forα(k) in (6.18), the systemmatrices in (6.13) are also converted to the new representation

in terms α̃(k) ∈ ΛM as in (6.19). In addition, considering Eqn. (6.18) with α(k +1) = ∆α(k)+α(k)

leads to

P̃(α̃(k)) =
M∑

j=1
α̃ j(k)P̃ j, (6.20)

where P̃ j =
∑nα

i=1

(
f j
i + h j

i

)
Pi. Using these parameterizations, next Lemma presents the finite-

dimensional LMIs that can be used to solve Problem 28.

Lemma 29 Given output covariance constraint upper bound Z̄ , considering system (6.10) and

assuming that vectors f j and h j are given. If there exist, ∀ i = 1, · · · , nα, symmetric positive-

definite matrices P2,i ∈ R
n×n, Wi ∈ R

p2×p2 and matrices Gi ∈ R
n×n, Xi ∈ R

p2×n, such that,

for j = 1, · · · , M ,


P̃2, j ∗ ∗

ḠT
i ĀT

j + X̄T
i B̄T

u j Ḡi + ḠT
i − P̄2, j ∗

B̄T
2ω, j 0 I


> 0, (6.21)


W̄ j ∗

ḠT
i C̄T

2z, j + X̄T
i D̄T

2u, j Ḡi + ḠT
i − P̄2, j

 > 0, (6.22)
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and for j = 1, · · · , M − 1, and ` = j + 1, · · · , M,


Θ1 ∗ ∗

ḠT
i ĀT

`
+ ḠT

i ĀT
j + X̄T

i B̄T
u` + X̄T

i B̄T
u j Θ2 ∗

B̄T
2ω, j + B̄T

2ω,` 0 2I


> 0, (6.23)


W̄ j + W̄` ∗

ḠT
i C̄T

2z, j + ḠT
i C̄T

2z,` + X̄T
i D̄T

2u, j + X̄T
i D̄T

2u,` Θ2

 > 0, (6.24)

and

Z̄ − C̄2z,i P2,i C̄T
2z,i ≥ 0, ∀i = 1, · · · , nα (6.25)

where,

P̄2, j =

nθ∑
i=1

f j
i P2,i, W̄ j =

nθ∑
i=1

f j
i Wi, P̃2, j =

nθ∑
i=1

(
f j
i + h j

i

)
P2,i,

Ḡ j =

nθ∑
i=1

f j
i Gi, X̄ j =

nθ∑
i=1

f j
i Xi, W̄` =

nθ∑
i=1

f `i Wi

Θ1 =

nθ∑
i=1

(
f j
i + h j

i

)
P2,i +

nθ∑
i=1

(
f `i + h`i

)
P2,i,

Θ2 = 2Ḡi + 2ḠT
i −

nθ∑
i=1

f j
i P2,i −

nθ∑
i=1

f `i P2,i,

Then, the parameter-dependent noisy static output-feedback gain is given by

K(α(k)) = X̂(α(k)) Ĝ(α(k))−1,

X̂(α(k)) =
nα∑
i=1

αi(k)Xi, Ĝ(α(k)) =
nα∑
i=1

αi(k)Gi,

(6.26)

that exponentially stabilizes the system (6.12) and satisfies output constraint (6.14) with minimal
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control energy given by

UOCC = trace
(
K(α(k))C̃yPG(α(k))C̃T

yKT (α(k)
)

≤ min
P2,i,Wi,Gi,Zi

max
i

trace
(
Wi

)
= Ū,

(6.27)

Proof 30 Due to space limitation, the proof of Lemma 29 is omitted; see [White et al., 2016] for

details of a similar proof.

6.4 Simulation Results and Discussion

The numerical example presented in this section is to demonstrate the advantage of considering

sensor performance degradation due to aging during the control design, where the regulated output

is subject to the given constraint. The synthesized controller is gain-scheduled by a combination

of the system time-varying parameters and the estimated time-varying sensor measurement noise

covariance. Note that, the control effort is minimized subject to constraint on the regulated

output covariance, in the presence of gradual sensor performance degradation due to sensor aging.

Therefore, the sensor aging effect on the system performances is also addressed.

Example: consider a discrete-timemultiple-input multiple-output (MIMO) LPV system, originally

used in [De Oliveira et al., 1999] and later used in [White et al., 2016] and [Apkarian et al., 2000],

119



with the following state-space matrices



A(α(k)) =



−2 + α1(k) + α2(k) 0 −1

1 −0.5 0

0 1 −0.5


,Bu(θ(k)) =



1 + α1(k) + α2(k) 0 0

0 1 0

0 0 1


,

B2ω =



1 0 0

0 1 0

0 0 1


,Cy =



1 0 0

0 1 0

0 0 1


,D2u =



1 0 0

0 1 0

0 0 1


, C2z = I3,

(6.28)

where the time-varying parameters are assumed to have the following parameter variation bounds

α1(k) ∈ [−0.5, 0.5], α2(k) ∈
[
10−7, 1

]
. The discrete-time LPV system (6.28) is converted to the

discrete-time polytopic one by solvingmatricesA(α(k)) andB(α(k)) at the vertices of the parameter

space polytope of α1 and α2, following the procedure in [White et al., 2013c]. Asmentioned earlier,

to match with the strictly proper requirements for finite H2 norm (i.e., feasible H2 control) in this

work, a filter is used for the measured output y(·) and the control law (6.11) uses the filtered output

ỹ(·), where the z-transform of the filtered measured output is given by

Ỹ (z) = G(z) Y (z), (6.29)

where Y (z) is the z-transform of the measured output y(·); Ỹ (z) is the z-transform of the filtered

measured output ỹ(·); G(z) = diag(Gi(z)) is the transfer function matrix of the filter and each
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transfer function is given by

Gi(z) =
1 − e−aT

1 − e−aT Z−1 , ∀i = 1, · · · , q, (6.30)

where a is the pole of the filter; T is the sampling period; and q denotes the number of measured

output vector components. For the current example, the filter parameters is set as a = 4.65 and

T = 0.004. Generally, ∀i = 1, · · · , q,

ỹi(k + 1) = (1 − e−aT )Cyi x(k + 1) + e−aT ỹi(k) + (1 − e−aT ) ν̃(k),

= (1 − e−aT )Cyi A(·)x(k) + (1 − e−aT )Cyi Bu(·)u(k)

+ (1 − e−aT )Cyi B2ω(·)ω2(k) + e−aT ỹi(k) + (1 − e−aT ) ν̃(k + 1),

(6.31)

where ỹi(·) is the ith component of the vector ỹ(·); and Cyi is the ith raw of the matrix Cy which

has three raws, i.e., i ∈ {1, 2, 3}. Together with, define the augmented states x̃(·) =
[
xT (·) ỹT

(·)
]T ,
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it yields

x̃(k + 1) =



A(·) 0 0 0

(1 − e−aT )Cy1A(·) e−aT 0 0

(1 − e−aT )Cy2A(·) 0 e−aT 0

(1 − e−aT )Cy3A(·) 0 0 e−aT

︸                                                ︷︷                                                ︸
Ã(·)


xT (k)

ỹT
(k)

︸  ︷︷  ︸
x̃(k)

+



Bu(·)

(1 − e−aT )Cy1 Bu(·)

(1 − e−aT )Cy2 Bu(·)

(1 − e−aT )Cy3 Bu(·)

︸                      ︷︷                      ︸
B̃2ω(·)

u(k)

+



B2ω(·) 0

(1 − e−aT )Cy1B2ω(·)

(1 − e−aT )Cy2 Bu(·) (1 − e−aT)

(1 − e−aT )Cy3B2ω(·)

︸                                        ︷︷                                        ︸
B̃ω(·)


ωT

2 (k)

ν̃T (k),

︸   ︷︷   ︸
ω̃p(·)

z̃2(k) =
[
C2z(·) 0

]
x̃(k) + D̃2u(α(k)) u(k),

ỹ(k) =
[
03 Cy

]
x̃(k),

(6.32)

where xT (·) = [x1(·)x2(·)x3(·)]
T ∈ R3 is the states vector; ỹT

(·) =
[̃
y1(·)̃y2(·)̃y3(·)

]T
∈ R3 is the

filtered measured output vector; 1 − e−aT = diag(1 − e−aT ) ∈ R3; 0 =
[
0 0 0

]T
∈ R3; and Cyi

(i = 1, 2, 3) is the ith raw of the matrix Cy.

In the simulation, the output covariance constraint is set to Cov(z(k)) ≤ Z̄ = Z × I3, where

Z is a scalar and Z̄ denotes a (3 × 3) upper bound matrix of output covariance corresponding to

the all performance outputs grouped together. The results in Lemma 29 are used with SDP solver

SeDuMi [Sturm, 1999] interfaced by the parser YALMIP [Lofberg, 2004] to solve this problem.
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Figure 6.1: Control effort Ū as a function of the output covariance constraints Z̄ with different sensor noise
covariances for the designed controllers using Lemma. 29 and considering system (5.57). Each line and
marks denote the relation between Ū and Z̄ at specific noise covariance, for instance, the dotted line with
cross marks associated with 10−5 noise covariance and dotted line with cross marks associated with 0.9 one.
The x-axis is linear in output covariance constraint and y-axis is linear for control effort.

Fig. 6.1 shows the upper bound control effort Ū as a function of the upper bound output covariance

constraint Z̄ = Z × I3 with different sensor noise covariances for the designed controllers using

Lemma 29 and considering system (6.28). Each line and marks denote the relation between Ū

and Z̄ at a specific noise covariance, for instance, the dotted-line with cross marks associated with

10−5 noise covariance and dotted-line with cross marks associated with 0.9 one. The x-axis is

linear in output covariance constraint and the y-axis is linear for control effort. This figure has an

interesting interpretation: for a given output performance (output covariance), the control energy

level (i.e., actuator limit) in terms of OCC cost can be found under sensor aging effect. In other

words, for a given actuator limit and under sensor aging effect, the optimal output performance

(output covariance) can be found. In addition, as the output covariance constraint is relatively

tight, the required control energy is increased. Moreover, as the sensor gets aged (i.e., sensor noise

covariance increase), the required control energy to satisfy the output performance is increased.
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Figure 6.2: The achieved output covariance compared to the designed one, where the sensor noise covariance
is set as V̂ = 10−5 and designed output covariance (Z̄ = Z × I3) is set as Z = 0.1.

Fig. 6.2 shows the achieved output covariance Cov(z(k)) in (6.14) compared to the design bound

Z̄ . It shows that the designed controller is feasible and the achieved covariance bound is relatively

tight with the designed bound in all dimensions. Fig. 6.3 shows the achieved output covariance

compared to the designed one for different sensor noise covariance. This figure has an interesting

interpretation: as the sensor noise covariance increases (i.e., sensor get aged), achieved output

performance approaches the designed one (Fig. 6.3a, 6.3b) and exceeds it (Fig. 6.3c). Then, as the

sensor gets aged the designed output covariance needs to be relaxed (Fig. 6.3d) or the sensor needs

to be replaced to achieve the required performance.
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Figure 6.3: Achieved output covariance compared to the designed one (Z̄ = Z × I3), for different estimated
sensor noise covariances V̂, where (a) V̂ = 10−5, Z = 0.3, (b) V̂ = 10−2, Z = 0.3, (c) V̂ = 0.1, Z = 0.3,
(d) V̂ = 0.1, Z = 0.301.
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6.5 Summary

The output covariance constraints (OCC) control problem is an optimal control problem that mini-

mizes the control effort subject to performance constraint on the output covariance. Considering

that a faulty sensor may lead to degraded system performance, system instability, or even a fatal

accident. This work presents the characterization of the OCC control synthesis conditions using

linear matrix inequalities (LMI) for a gain-scheduled noisy output-feedback controller that mi-

nimizes the cost on control effort with satisfactory system output covariance (OCC control) in

the presence of sensor aging. The main motivation is to show the advantage of utilizing sensor

performance degradation information in gain-scheduled control. Note that for this work, the gain-

scheduled controller is a function of both system time-varying parameters and the estimated sensor

measurement noise covariance (varying as sensors age). The proposed controller is validated in a

simulation study for a discrete-time linear parameter varying (LPV) system with gradually perfor-

mance degraded sensors. Simulation results show that the designed controller satisfy the required

performance when the sensor performance degradation information is considered. In addition, as

the sensor gets further aged the output covariance constraint needs to be relaxed to have a feasible

solution. Moreover, if the output performance constraint cannot be relaxed, aging sensor(s) need

to be replaced to achieve the desired output covariance performance.
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Chapter 7

Conclusions and Future Research

The control systems used in industry and other fields should be safe, reliable, and stable. De-

gradation of sensor performance due to the sensor aging can be a crucial factor affecting these

system performances, reliability, and even stability. Indeed, control system performance is heavily

dependent on the sensor signals used for feedback control. That is, sensor performance degra-

dation or fault affects the system output performance directly and could lead to degraded system

performance, an unstable system and/or even a fatal accident. Then, adapting the control system

to sensor performance variations helps to avoid any catastrophic consequences. This problem

motivates this work for monitoring sensor performance and detecting the gradual and/or sudden

sensor performance degradation due to sensor aging. In addition, the designed gain-scheduled

control for linear parameter varying systems utilizes the sensor performance degradation due to its

aging to compensates for sensor aging and maintains the desired performance, where the control is

subjected to given constraints. This chapter summarizes concluding remarks and suggestions for

future research directions.

7.1 Conclusions

In the following, the main points conclude of this work:

• In contrast to recent fault detection literature, in this work, the sensor performance shift (i.e.,
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sensor performance gradual-degradation and/or sudden fault due to its aging) can be charac-

terized by sensor measurement noise covariance shift. That is, the gradual-degradation of

sensor performance due to sensor aging is characterized by the slowly-varying sensor mea-

surement noise covariance, and the sensor abrupt (or intermittent) failures are characterized

by an abrupt (or intermittent) change of sensor measurement noise covariance.

To be specific, in contrast to recent literature, model the sensor fault due to aging as sta-

tionary augmented state, this work assumes that the sensor performance shift (i.e., sensor

performance gradual-degradation and/or fault due to sensor aging) can be characterized

by its measurement noise covariance shift, comparing with the most of the noise statistics

identification literature for the case with time-invariant sensor noise covariance only.

• A new algorithm is proposed to detect gradual sensor performance degradation due to sensor

aging that is characterized by slowly-varying sensor measurement noise covariance.

To be specific, this work incorporates the innovation vector sequence quality information

with the weighted measurements, for estimating the slowly-varying sensor measurement

noise covariance. That is, the proposed algorithm invests adaptive filtering theory with the

covariance-matching technique and the information about the quality of the weighted innova-

tion vector sequence for the estimation process. Moreover, the use of weighted information

of the innovation vector sequence reduces computational load, and the exponentially weig-

hted estimation window improves the estimation accuracy and makes it feasible for online

applications. Then, the proposed algorithm is suitable for online applications due to the

low computation load and iterative manner; and is less sensitive to initial conditions (i.e.,

less sensitive to initial state and its initial estimation error covariance matrix). The propo-

sed algorithm to detect gradual sensor performance degradation due to sensor aging shows
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a reasonable rate of convergence, improved estimation accuracy, and reduced computation

load.

• An algorithm is proposed to detect and identify the sudden (abrupt or intermittent) sensor

failure, assuming that the sensor performance sudden shift can be characterized by the sudden

noise covariance variation of the sensor measurement.

To be specific, a memory-based technique for detecting the sudden change of sensor measu-

rement noise covariance is proposed. The proposed change detection technique calculates

the change of the estimated sensor measurement noise covariance, assuming that the sensor

failure is characterized by abruptly (or intermittently) changing of the estimated sensor me-

asurement noise covariance. That is, the change is quantified by the distance between the

sensor measurement noise covariance matrices over the two estimation windows before and

after the change. The proposed algorithm to detect and identify the abrupt or intermittent sen-

sor failure is developed for LTV systems and applied to LPV systems as a special case. That

is, it estimates the slow-varying sensor noise covariance under different covariance variation

functions and different scheduling parameter uncertainties, and detects the noise covariance

under different abrupt or intermittent change scenarios when the estimation window length

is properly selected. The iterative nature of the proposed algorithm significantly reduces the

computational load and make it feasible for real-time applications.

• A multi-objective gain-scheduled control for linear parameter varying systems utilizes the

sensor performance degradation due to sensor aging, where the controller is subjected to

constraints on the control input variances and constraint on the H∞ performance output, is

designed using the LPV technique.

To be specific, the synthesis of multi-objective gain-scheduled control is formulated as mixed
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ICC/H∞ control problem that minimizes the performance output upper bound subject to

H2 constraints on control input variances and H∞ performance output. Considering this

control, three kinds of controllers are designed and they are: controller scheduled by a

combination of the time-varying parameters and the time-varying noise covariance (called

fully gain-scheduled), controller scheduled by the sensor noise covariance (called partially

gain-scheduled), and not scheduled (called robust controller). This control synthesis problem

can be solved efficiently using LMI optimization techniques, where the proposed controller

utilizes the sensor fault information (in terms of sensor noise covariance) to minimize its

effect on the system and improves the closed-loop system performance. The synthesized

multi-objective gain-scheduled noisy output-feedback (GSNOF) controller compensates for

the gradually-degraded sensor performance due to sensor aging andmaintains the desired per-

formance. The simulation results show that the synthesized fully gain-scheduled controller

performs better than the partially gain-scheduled and robust one in terms of the performance

with gradually-degraded sensor performance. In addition, the gain-scheduled controllers’

performance approaches the robust one when the sensor noise covariance increases signifi-

cantly.

• A multi-objective gain-scheduled noisy output-feedback controller for linear parameter va-

rying systems to minimize the control effort is designed using the LPV technique, where

the controller utilizes the sensor performance degradation due to its aging and subjects to

performance constraint on the output covariance.

To be specific, the output covariance constraints (OCC) control problem, which is an op-

timal control problem that minimizes the control effort subject to performance constraint

on the output covariance, is considered. The characterization of the OCC control synthesis
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conditions is presented using linear matrix inequalities (LMI) for a gain-scheduled noisy

output-feedback controller that minimizes the cost on control effort with satisfactory system

output covariance (OCC control) in the presence of sensor aging. The advantage of utilizing

sensor performance degradation information in synthesis the gain-scheduled OCC control is

demonstrated, where the gain-scheduled controller is a function of both system time-varying

parameters and the estimated sensor measurement noise covariance. The proposed controller

for the OCC control problem is validated in a simulation study for a discrete-time linear para-

meter varying (DLPV) system with gradually performance degraded sensors. The designed

controller shows ability to satisfy the required performance when the sensor performance

degradation information is considered. In addition, as the sensor gets further aged, the output

covariance constraint needs to be relaxed to have a feasible solution. Moreover, if the output

performance constraint cannot be relaxed, the aging sensor(s) need to be replaced to achieve

the desired output covariance performance.

Therefore, algorithms for sensor performance degradation or sensor fault detection and identifi-

cation due to sensor aging are presented. A gain-scheduled controls for linear parameter varying

systems utilizes the sensor performance degradation due to sensor aging are synthesized, where

the controller is subjected to multiple constraints. In addition, the importance of considering se-

nor aging information on system stability and performance is demonstrated, where the proposed

controller is subject to multiple constraints. Moreover, with the proposed algorithms and designed

controllers and considering the desired performance or the available control effort, a decision of

accepting or discarding aging sensor measurements can be made.
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7.2 Recommendations for Future Research

This section presents recommended directions for future research.

• Implement the proposed algorithms for sensor gradual performance degradation and sensor

performance sudden (abrupt or intermittent) change, where sensor performance shift is

characterized by sensor measurement noise shift.

• Implement the gain-scheduled controls for linear parameter varying systems utilizes the

sensor performance degradation due to sensor aging, where the controller is subjected to

multiple constraints (i.e., ICC or OCC control problem).
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Appendix A

Weighted Innovation Vector Estimate

Consider the estimation window with size N , the innovation vector over the estimation window is

ṽ = [ṽ1, ṽ2, · · · , ṽN−1, ṽN ], where ṽ1 is the first (oldest) innovation data collect within the estimation

window and ṽN is the last (recent) one. To obtain a feasible estimation based on the available

measurements (minimal available information) for reducing estimation error and computational

load, the innovation vector need to be weighted such that more weight assigned to more recent

innovation data and less weight to more old ones. The weight coefficient ϕ < 1 is used as a

"forgetting factor" for the past innovation vector data. In this work, the weight is assigned over the

estimation window rather than the whole horizon, such that assigned highest weight to ṽN (more

recent innovation data collected) and less weight to ṽ1 (oldest innovation data). that is

v =
[
ϕN−1 ṽ1, ϕ

N−2 ṽ2, · · · , ϕ
1 ṽN−1, ṽN

]
=

[
ϕN−1 ṽ1, ϕ

N−2 ṽ2, · · · , ϕ
N−(N−1) ṽN−1, ϕ

N−(N) ṽN

]
=

[
ϕN−k ṽk

]
, ∀k = 1, · · · , N .

Then, the innovation vector estimate is given by

v̄N =
1
N

[
N∑

k=1
ϕN−k ṽk

]
,

and that shows Eqn. (3.11).
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Appendix B

H2 Performance

Considering system (5.19) and suppose that system (5.22) is exponentially stable. The definition

of the infinite horizonH2 performance for the LPV system (5.22) is given by

| |S̃z2,ω̃2p (α(k))| |
2
2 = lim

T→∞
sup

α(k)∈Λ2nθ

E

{
1
T

T∑
k=0

z̃T
2 (k )̃z2(k)

}
,

= lim
T→∞

sup
α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ (

C2cl(α(k))PG(α(k))C2cl(α(k))T
) ]}

,

where Λ2nθ denotes the polytopic space, where the scheduling parameters belong to; E denotes the

expectation operator; the positive integer T denotes the time horizon; and PG(α(k)) is the solution

of the discrete-time Lyapunov equation (5.29), which is restated below for convenient.

PG(α(k + 1)) =Acl(α(k))PG(α(k))AT
cl(α(k)) + B2cl(α(k)) BT

2cl(α(k)), PG(0) = 0.

Below are the steps followed to reach result presented above. Note that, the logical structure of the

derivation below are borrowed from Ref [De Caigny et al., 2010] with slight adjustment to match

this work direction. First, the finite horizon is considered, and the extension to infinite horizon will

be straight forward. Let the finite horizon is k ∈ {0,T } and recall that the ω̃2p(k) is white noise
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with unity covariance matrix, then, the output z̃2 in system (5.22) can be calculated as

z̃2 = C2cl(α(k))

(
k−2∑
j=0

( k−1∏
i= j+1

Acl(α(i))
)
B2cl(α( j)) ω̃2p( j) + B2cl(α(k − 1)) ω̃2p(k − 1)

)
,

=

k∑
j=0
A(k, j)ω̃2p( j),

where A(k, j) = C2cl(α(k))
(∏k−1

i= j+1 Acl(α(i))B2cl(α( j))
)
, with

∏k−1
i=k Acl(α(i)) = I if j , k, and

0 otherwise. Considering the mathematical identity

z̃T
2 (k) z̃2(k) = trace

[̃
z2(k) z̃T

2 (k)
]
,

it yields

| |S̃z2,ω̃2p (α(k))| |
2
2 = sup

α(k)∈Λ2nθ

E

{
1
T

T∑
k=0

(
trace

[̃
z2(k) z̃T

2 (k)
] )}

,

= sup
α(k)∈Λ2nθ

E

{
1
T

T∑
k=0

trace
[( k∑

j=0
A(k, j)ω̃2p( j)

) ( k∑̀
=0
A(k, `)ω̃2p(`)

)T ]}
,

= sup
α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[( k∑

j=0

k∑̀
=0
A(k, j)E

(
ω̃2p( j)ω̃2p(`)

T
)
A(k, `)T

)]}
,

= sup
α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ k∑

j=0
A(k, j)A(k, j)T

]}
,

= sup
α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ k−1∑

j=0
C2cl(α(k))

( k−1∏
i= j+1

Acl(α(i))
)
B2cl(α( j))

× B2cl(α( j))T
( k−1∏

i= j+1
Acl(α(i))

)T
C2cl(α(k))T

]}
,

= sup
α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ (

C2cl(α(k))PG(α(k))C2cl(α(k))T
) ]}
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where

PG(α(k)) =
k−1∑
j=0

( k−1∏
i= j+1

Acl(α(i))
)
B2cl(α( j))B2cl(α( j))T

( k−1∏
i= j+1

Acl(α(i))
)T
,with PG(0) = 0,

then

PG(α(k + 1)) =
k∑

j=0

( k∏
i= j+1

Acl(α(i))
)
B2cl(α( j))B2cl(α( j))T

( k∏
i= j+1

Acl(α(i))
)T
,

= Acl(α(k))
k−1∑
j=0

( k−1∏
i= j+1

Acl(α(i))
)
B2cl(α( j))B2cl(α( j))T

( k−1∏
i= j+1

Acl(α(i))
)T

Acl(α(k))T

+ B2cl(α(k))B2cl(α(k))T,

= Acl(α(k))PG(α(k))Acl(α(k))T + B2cl(α(k))B2cl(α(k))T,

Then, the finite horizonH2 performance is given by

| |S̃z2,ω̃2p (α(k))| |
2
2 = sup

α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ (

C2cl(α(k))PG(α(k))C2cl(α(k))T
) ]}

where PG(α(k)) satisfy

PG(α(k + 1)) = Acl(α(k))PG(α(k))Acl(α(k)) + B2cl(α(k))B2cl(α(k))T,PG(0) = 0,

Then the infinite horizon of the H2 performance is proved. Since the infinite horizon is obtained

by let T → ∞ of the finite horizon is k ∈ {0,T } Therefore, the infinite horizon H2 performance

is is given by

| |S̃z2,ω̃2p (α(k))| |
2
2 = lim

T→∞
sup

α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ (

C2cl(α(k))PG(α(k))C2cl(α(k))T
) ]}

(?)
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where PG(α(k)) defined above.
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Appendix C

Proof of Lemma 21

Assume that Acl(α(k)) in Eqn. (5.22) is stable for all α(k) ∈ Λ2nθ . Then, there is a symmetric

positive-definite matrix, PG(α(k)) = PG
T (α(k)) > 0, satisfies

PG(α(k + 1)) =Acl(α(k))PG(α(k))AT
cl(α(k)) + B2cl(α(k)) BT

2cl(α(k)),

Considering the parameter-dependent Lyapunov matrix function is V(α(k)) = xT
k P2(α(k)) xk ,

substituting it in discrete-time Lyapunov equation above, it yields

−P2(α(k + 1))+Acl(α(k))P2(α(k))AT
cl(α(k)) + B2cl(α(k)) BT

2cl(α(k)) < 0.

Applying the Schur complement to above inequality, it leads


P2(α(k + 1)) − AT

cl(α(k))P2(α(k))AT
cl(α(k)) ∗

BT
2cl(α(k)) I

 > 0,
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and to ensure that last LMI is satisfied under assumption Acl(·) is stable, it is required that

P2(·) = PT
2 (·) > 0. Last inequality could be re-written as


P2(α(k + 1)) Acl(α(k))P2(α(k)) B2cl(α(k))

P2(α(k))AT
cl(α(k)) P2(α(k)) 0

BT
2cl(α(k)) 0 I


> 0,

Considering the change of variable K(α(k)) = Z(α(k)) G(α(k))−1, and multiply above inequality

from left by daig
( [

I G(α(k))−1P(α(k)) I
] )

and daig
( [

I G(α(k))−1P(α(k)) I
]T )

from right, it

yields the LMI (5.30). Additionally, since

P2(α(k + 1)) − Acl(α(k))P2(α(k))AT
cl(α(k)) − B2cl(α(k)) BT

2cl(α(k)) > 0,

there exist matrix M(·) =MT (·) such that

P2(α(k + 1)) = Acl(α(k))P2(α(k))AT
cl(α(k)) + B2cl(α(k)) BT

2cl(α(k)) +M(α(k)).

Therefore, the symmetric positive-definite Lyapunov matrix satisfy

P2(α(k)) = PT
2 (α(k)) > PG(α(k)) = PG

T (α(k)) > 0.

Consequently,

C2cl(θ(k))P2(α(k))CT
2cl(α(k) > C2cl(α(k))PG(α(k))CT

2cl(α(k), (??)
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taking trace of both sides and callback Eqn. (?), yields

| |S̃z2,ω̃2p (α(k))| |
2
2 ≤ lim

T→∞
sup

α(k)∈Λ2nθ

{
1
T

T∑
k=0

trace
[ (

C2cl(α(k))P2(α(k))C2cl(α(k))T
) ]}

.

Multiply LMI (5.31) by [I C2cl] from left and by [I C2cl]
T from right, it yields

C2cl(α(k))P2(α(k))CT
2cl(α(k) −W(α(k)) < 0,

C2cl(α(k))P2(α(k))CT
2cl(α(k) < W(α(k))

then taking trace of both sides, it yields

trace
(
C2cl(α(k))P2(α(k))CT

2cl(α(k)
)
< trace

(
W(α(k))

)
.

Taking summation over finite horizon of both sides, yields

1
T

T∑
k=0

trace
(
C2cl(α(k))P2(α(k))CT

2cl(α(k)
)
<

1
T

T∑
k=0

trace
(
W(α(k))

)
.

Since,
1
T

T∑
k=0

trace
(
W(α(k))

)
≤ sup

α(k)∈Λ2nθ

trace
(
W(α(k))

)
.

which implies that

inf
P∞(α(k)),P2(α(k)),G(α(k)),W(α(k))

lim
T→∞

1
T

T∑
k=0

trace
(
W(α(k))

)
≤ inf

P∞(α(k)),P(α(k)),G(α(k)),W(α(k))
sup

α(k)∈Λ2nθ

trace
(
W(α(k))

)
.
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Consequently,

sup
α(k)∈Λ2nθ

lim
T→∞

1
T

T∑
k=0

trace
(
C2cl(α(k))P2(α(k))CT

2cl(α(k)
)

< inf
P(α(k)),G(α(k)),W(α(k))

sup
α(k)∈Λ2nθ

trace
(
W(α(k))

)
.

Then, minimize trace
(
W(α(k))

)
leads to minimize the upper bound of the ICC cost.

Follow the samemanner of proofing theLMI (5.31), multiplyEqn. (5.32) from left by
[
I ΓrK(α(k))C̃y

]
and from right by

[
I ΓrK(α(k))C̃y

]T
it yields

ΓrK(α(k))C̃yP2(α(k))C̃T
yK(α(k))T ΓT

r < Ūr, ∀r = 1, · · · ,m,

As a result, the r th control input covariance is upper bounded by Ūr .

The proof of LMI (5.33) is the following: recall Lemma 3. of Ref. [de Souza et al., 2006],

which states the follows, considering system (5.22) and let η be a given scalar. If there exists a

bounded matrix R(α(k)) satisfying, ∀α(k) ∈ Λ2nθ , the following inequality



P∞(α(k + 1)) ∗ ∗ ∗

RT (α(k))AT
cl(α(k)) R(α(k)) ∗ ∗

BT
∞cl(α(k)) 0 ηI ∗

0 C∞cl(α(k))G(α(k)) D∞cl(α(k)) ηI


> 0, (???)

then the system (5.22) is exponentially stable and | |CL||∞ ≤ η, where CL is the transfer function

fo the closed-loop system. If the same scalar η and matrix R(α(k)) satisfying last matrix inequality,
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it satisfies LMI (5.33) (necessary condition). Now, multiply LMI (5.33) from right by


I −Acl 0 0

0 0 I 0

0 −C∞cl 0 I


and from left by above matrix transpose, it implies the following


Θ1 ∗ ∗

BT
∞cl(α(k)) ηI ∗

−C∞cl(α(k))P∞(α(k))AT (α(k)) D∞cl(α(k)) Θ2


> 0.

where

Θ1 = P∞(α(k + 1)) − Acl(α(k))P∞(α(k))AT
cl(α(k)) and

Θ2 = ηI − C∞cl(α(k))P∞(α(k))CT
∞cl(α(k)). Finally, by Schur’s complement, it follows that the

latter inequality is equivalent to Eqn. (???) (sufficient condition). Therefore, theH∞ performance

is guaranteed and bounded by η when LMI (5.33) is satisfied.
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Appendix D

Proof of Lemma 23

For any α̃(k) belongs to the multi-simplex ΛM , multiply (5.41) by α̃2
j and sum for j = 1, · · · , M .

Similarly, multiply (5.48) by α̃ j α̃` and sum for j = 1, · · · , M − 1 and ` = j + 1, · · · , M , and

then add the two expressions, and then consider the change of variables in Eqn. (5.14) and the

parameterizations (5.34) to (5.37), that yields to Eqn. (5.30). The rest of the proof similar to proof

of Lemma (21). With satisfying conditions of Lemma (21) for all α(k) ∈ Λ2nθ with k ≥ 0, it

follows that

sup
α∈Λ2nθ

trace (W(α(k))) = max
i

trace (Wi) ,

therefore,

inf
P∞(α),P2(α),G(α),Z(α),W(α)

sup
α∈Λ2nθ

trace (W(α(k))) ≤ min
P∞,i,P2,i,Gi,Zi,Wi

max
i

trace (Wi)

Then, LMI (5.41) is satisfied. The same procedure applied to LMIs (5.43) to (5.51). Therefore,

conditions of Lemma (23) are satisfied, and this end the proof.
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Appendix E

Control Input Covariance

Consider the multi-objective gain-scheduled noisy static output-feedback controller (GSNOF) is

given by

u(k) = K(α(k)) ỹ(k),

which can be further partitioned using Γr , which is a given input channel section matrix for the

control input r , as follows

u(k) =
[
u1(k), u2(k), · · · , um(k)

]T
,

where ur(k) = Γru(k), ∀r = 1, · · · ,m; and K(α(k)) is the gain-scheduled control gain. The

covariance of the r th control input is given by

Cov(ur(k)) = E
(
ur(k)ur(k)T

)
, r = 1, · · · ,m,

= E
[ (

ΓrK(α(k)) ỹ(k)
) (

ΓrK(α(k)) ỹ(k)
)T ]

,

= E
[ (

ΓrK(α(k)) C̃y x̃(k)
) (

ΓrK(α(k)) C̃y x̃(k)
)T ]

,

= E
[ (

ΓrK(α(k)) C̃y x̃(k)
) (̃
x(k)T C̃T

y K(α(k))T ΓT
r
) ]
,

= ΓrK(α(k)) C̃y PG(α(k)) C̃T
y K(α(k))T ΓT

r ,

wherePG(α(k)) is the solution of the time-varying Lyapunov equation in (5.29). Note thatPG(α(k))

is the state covariance according to definition 4.4.1 in Ref. [Skelton et al., 1998] (with considering

there the case of LTV system), for more details about the derivation of PG(α(k)); see Ch.4 in
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[Skelton et al., 1998].
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Appendix F

Control Output Covariance

Consider system (5.22), theH2 output covariance is given by

Cov(̃z2(k)) = E
[̃
z2(k )̃z2(k)T

]
,

= E
[ (

C2cl(α(k)) x̃(k)
) (

C2cl(α(k)) x̃(k)
)T ]

,

= E
[ (

C2cl(α(k)) x̃(k)
) (̃
x(k)T C2cl(α(k))T

) ]
,

= C2cl(α(k))PG(α(k))C2cl(α(k))T,

where PG(α(k)) is the solution of the time-varying Lyapunov equation in (5.29).
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