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ABSTRACT

ROBUST MULTI-TASK LEARNING ALGORITHMS FOR PREDICTIVE MODELING OF
SPATIAL AND TEMPORAL DATA

By

Xi Liu

Recent years have witnessed the significant growth of spatial and temporal data generated from

various disciplines, including geophysical sciences, neuroscience, economics, criminology, and

epidemiology. Such data have been extensively used to train spatial and temporal models that can

make predictions either at multiple locations simultaneously or along multiple forecasting horizons

(lead times). However, training an accurate prediction model in these domains can be challenging

especiallywhen there are significant noise andmissing values or limited training examples available.

The goal of this thesis is to develop novel multi-task learning frameworks that can exploit the spatial

and/or temporal dependencies of the data to ensure robust predictions in spite of the data quality

and scarcity problems.

The first framework developed in this dissertation is designed for multi-task classification of

time series data. Specifically, the prediction task here is to continuously classify activities of a

human subject based on the multi-modal sensor data collected in a smart home environment. As

the classes exhibit strong spatial and temporal dependencies, this makes it an ideal setting for

applying a multi-task learning approach. Nevertheless, since the type of sensors deployed often

vary from one room (location) to another, this introduces a structured missing value problem, in

which blocks of sensor data could be missing when a subject moves from one room to another. To

address this challenge, a probabilistic multi-task classification framework is developed to jointly

model the activity recognition tasks from all the rooms, taking into account the block-missing value

problem. The framework also learns the transitional dependencies between classes to improve its

overall prediction accuracy.

The second framework is developed for the multi-location time series forecasting problem.

Although multi-task learning has been successfully applied to many time series forecasting appli-



cations such as climate prediction, conventional approaches aim to minimize only the point-wise

residual error of their predictions instead of considering how well their models fit the overall dis-

tribution of the response variable. As a result, their predicted distribution may not fully capture

the true distribution of the data. In this thesis, a novel distribution-preserving multi-task learning

framework is proposed for the multi-location time series forecasting problem. The framework

uses a non-parametric density estimation approach to fit the distribution of the response variable

and employs an L2-distance function to minimize the divergence between the predicted and true

distributions.

The third framework proposed in this dissertation is for the multi-step-ahead (long-range) time

series prediction problem with application to ensemble forecasting of sea surface temperature.

Specifically, our goal is to effectively combine the forecasts generated by various numerical models

at different lead times to obtain more precise predictions. Towards this end, a multi-task deep

learning framework based on a hierarchical LSTM architecture is proposed to jointly model the

ensemble forecasts of different models, taking into account the temporal dependencies between

forecasts at different lead times. Experiments performed on 29-year sea surface temperature

data from North American Multi-Model Ensemble (NAMME) demonstrate that the proposed

architecture significantly outperforms standard LSTM and other MTL approaches.
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CHAPTER 1

INTRODUCTION

Advances in data mining and machine learning have led to the development of sophisticated models

for solving complex prediction tasks in various application domains, from healthcare to autonomous

driving. A common strategy for solving such complex learning tasks is to decompose the overall

prediction problem into smaller sub-tasks that can be solved in a more efficient and tractable

manner. For example, in autonomous driving, the sub-tasks include identifying obstacles in front

of the vehicle, tracking movement of other vehicles in its surrounding, recognizing street signs,

and detecting lane departures. Training a global model that can be applied to all the sub-tasks will

likely lead to inferior model performance due to the inherent differences among the sub-tasks. A

more effective strategy would be to train a separate prediction (“local") model that can discern the

relationship between the predictor and response variables for each sub-task.

Formally, letX = {X1,X2, · · · ,XT } be the set of predictor variables for each of theT prediction

sub-tasks, where Xi ∈ R
ni×d , and Y = {y1, y2, · · · , yT } be the corresponding set of response vari-

ables, where yi ∈ R
ni . For such multi-task prediction problem, our goal is to learn a distinct model,

ft : Rd → R, that maps the predictor variables of each sub-task t to their corresponding response

value. The model for each sub-task ft(wt) is assumed to be characterized by its model parameter

wt , which can be estimated during training by optimizing the following objective function:

{w∗1,w
∗
2, · · · ,w

∗
T } = arg min

{wt }

T∑
t
Lt

[
yt, ft(Xt ;wt)

]
, (1.1)

where Lt(·) is the loss function for sub-task t and {w∗1,w
∗
2, · · · ,w

∗
T } are the learned parameters.

Each sub-task can be solved separately as the loss functions are independent of each other. This

approach is also known as single-task learning (STL). In principle, STL would work well if there

are sufficient amount of training data (Xt, yt) available for each sub-task. However, since acquiring

labeled data can be expensive, the performance of STL can still be poor as its induced models are

highly susceptible to overfitting when there are limited training data.

1



To overcome the limitation of STL, multi-task learning (MTL) approaches (MTL) have been

proposed [20, 148, 147]. The model parameters for MTL are generally solved by optimizing the

following joint objective function:

{w∗1,w
∗
2, · · · ,w

∗
T } = arg min

{wt }

T∑
t
Lt

[
yt, ft(Xt ;wt)

]
+Ω(w1, ...wt, ...wT ) (1.2)

where Ω(w1, ...wt, ...wT ) is a regularization term that controls the dependencies among the param-

eters. The regularization enables MTL to leverage domain-specific knowledge from other related

sub-tasks to prevent each model from overfitting its training data, thereby improving its general-

ization performance [20]. The success of MTL has been well-documented in many application

domains including computer vision [47, 41], natural language processing [80, 114], and medical

informatics [101, 15].

In this thesis, I will focus on the development of MTL approaches for spatial and temporal data.

Specifically, several challenging problems from various application domains are investigated and

novel frameworks are proposed to overcome these challenges. I will first present an overview of

spatial and temporal data as well as its applications in the next two sections before summarizing

the contributions of this thesis.

1.1 Spatial and Temporal Data

Spatial and temporal data are observations that contain measurements of geographic location

and time information [10, 102]. Such data are pervasive acrossmany application domains, including

climate and environmental sciences [57, 85, 56, 62, 125, 96, 133, 77], neuroscience [34, 109, 131,

43, 29, 31], health sciences [83, 89, 106], social sciences [23, 51], transportation studies [71, 88],

and criminology [129, 110]. One important characteristic of the data is their non-i.i.d (independent

and identically distributed) property. The non-independence property arises due to the inherent

autocorrelation of their measurements along the space and/or time dimensions. In particular, the

presence of strong spatial auto-correlation implies that observations at nearby locations should

be similar to each other [66] while temporal autocorrelation refers to the non-random association

between a pair of observationsmeasured at nearby times. For example, Fig. 1.1 shows the variability

2
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(b) Feb 1970
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(c) Mar 1970
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(d) Apr 1970
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(e) May 1970
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(f) Jun 1970
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(g) Jul 1970
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(h) Aug 1970
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(i) Sep 1970
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(j) Oct 1970
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(k) Nov 1970
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(l) Dec 1970

Figure 1.1: Monthly maximum temperature observed at weather stations around the world in 1970.
The data was obtained from the Global Historical Climatology Network (GHCN) [85].

ofmonthlymaximum temperature ofweather stations around theworld for a one year period in 1970.

Due to its high spatial and temporal autocorrelation, the monthly maximum temperature appears

to change smoothly along its spatial and temporal dimensions, as illustrated in the figure. From a

predictive modeling perspective, failure to account for the spatial and/or temporal autocorrelation

of the response variable may lead to suboptimal local models as the predicted values may not

exhibit the desired autocorrelation properties when the observations are treated independently

during training. As evidenced by many previous studies, incorporating such autocorrelation into

the learning framework would indeed improve model performance [39, 139, 136].
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Though the non-independence property of the data suggests homogeneity of the models, its

non-identically distributed property suggests there should be still notable differences in the models

due to the spatial heterogeneity of the data. An example illustrating the opposing forces of spatial

autocorrelation and spatial heterogeneity is shown in Fig. 1.1. Though the maximum temperature

at two nearby locations are similar, there are still significant differences between the observations in

the northern and southern hemispheres on a given month. From a predictive modeling perspective,

the non-identically distributed property suggests that a one-size-fits-all approach using a global

model to fit all the training observations is not a viable strategy as the model fails to account for

the spatial differences of the observations. Instead, the modeling approach should incorporate

local features that can help explain the variability observed in the data, both along the spatial and

temporal dimensions.

The non-i.i.d. property thus provides a strongmotivation for usingMTL for predictingmodeling

of spatial and temporal data. Instead of building a single (global) model, MTL addresses the non-

identically distributed (heterogeneity) problem by training a separate model for each sub-task

(which could be a location or a forecast lead time). MTL also alleviates the limitation of STL in

terms of handling non-independent observations by allowing the models to incorporate the spatial

and/or temporal autocorrelations as regularization terms in its formulation as given in Eq. (1.2).

1.2 Applications of Multi-task Learning to Spatial and Temporal Data

In this section, I will briefly describe several spatial and temporal prediction problems in which

MTL can be used along with their respective applications. These applications would serve as case

studies for evaluating the MTL frameworks developed in this dissertation.

1.2.1 Multi-modal Time Series Classification at Multiple Locations

The first MTL problem investigated in this thesis involves classification of multi-modal time series

at multiple locations. An example application of such problem is identifying the daily activities of

a human subject from the multi-modal sensor data collected in a smart home environment [122,
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(a) Living Room (b) Hallway

Figure 1.2: A snapshot of the trajectories and activities of a human subject from the benchmark
Sphere challenge dataset [122] (figure is best viewed in color).

76, 72, 73]. We use a benchmark user activity data from [122] for this study. Fig. 1.2 shows an

example of the trajectories recorded by a tri-axial accelerometer worn by a human subject who

moved around the kitchen and hallway areas of a smart home. Each colored dot represents a

specific activity (walking, standing, sitting, lying down, etc.) performed by the human subject. In

addition to the accelerometer sensor, RGB-D cameras and environment sensors were also installed

in some of the rooms in the smart home. While the trajectory data is available everywhere from

the accelerometer worn by the subject, video data from RGB-D cameras are only available in a few

of the rooms (e.g., in kitchen and living room but not in bedroom nor bathroom). This introduces

blocks of missing values in the video data as the subject moves from one room with RGB-D camera

to another room without such camera. The modeling approach must therefore be able to account

for such varying types of features available in different rooms. In addition, since the layout for each

room is different, some activities are more likely to be performed in certain rooms than others. For

example, the activities “ascending" or “descending" stairs are more likely to occur in in the hallway

than in the kitchen or bedroom. Due to such spatial constraints, it makes more sense to develop a

local model for activity recognition in each room instead of fitting a global model for all the rooms.

However, due to the noisy nature of the data and the limited training samples available in some

rooms, the local models are susceptible to model overfitting problem. Multi-task learning thus

5



provides a promising approach to address such multi-location time series classification problem.

1.2.2 Multi-location Time Series Forecasting

Another common prediction problem involving spatial and temporal data is multi-location time

series forecasting, where each location is affiliated with a time series whose future values are

to be predicted. Example applications of such problem include climate, disease incidence, and

crime rate prediction. For example, in climate prediction, our objective is to predict future climate

conditions at various locations based on the historical climate observations at each location as well

as other auxiliary information such as local topology, vegetation, or simulated outputs from global

and regional climate models. Fig. 1.1 shows an example of the monthly maximum temperature

measurements in in the year 1970 for more than 70,000 weather stations. The data was obtained

from the Global Historical Climatology Network (GHCN) database [85]. As previously noted, the

climate data exhibit strong spatial and temporal autocorrelation, which makes it natural to apply

MTL approaches to exploit such dependencies and train the prediction models at multiple locations

jointly.

1.2.3 Multi-step-ahead Time Series Prediction

The third MTL problem investigated in this thesis is multi-step-ahead (i.e., long-range) time

series prediction. Unlike the previous problem, which focuses only on the prediction for the next

immediate future time step, the goal here is to predict the values for multiple future time steps. Each

future time step is called a lead time, while the maximum lead time is known as the forecasting

horizon. The multi-step-ahead time series prediction problem will be investigated in the context

of its application to ensemble forecasting of sea surface temperature (SST), which is an important

task due to the strong influence of ocean temperature on global climate conditions. While it is

possible to apply single-step time series forecasting methods to a multi-step forecasting setting,

such an approach typically requires using the predicted value of one time step to infer the value for
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the next time step. This would lead to an error propagation problem, in which the error can quickly

become unacceptably high even at short-range forecasting horizons.

To overcome this problem, ensemble forecasting uses a set of forecasts generated from computer-

generated (physical) models to project the possible future scenarios [62]. As the computer models

were developed based on the physical laws of the underlying domain, their outputs are likely

to be more consistent with the true observations even for long-range forecasting horizons. For

example, Fig. 1.3 shows the multi-step ahead monthly SST forecasts generated by a set of ensemble

members obtained from the North American Multi-Model Ensemble (NMME) [62]. Each blue

curve represents the 8-month forecasts generated by an ensemble member while the red curve

represents the true SST values for the 8-month forecasting horizon. In the NMME dataset, a

new set of multi-step ahead forecasts are generated by the ensemble members every month. For

example, Fig. 1.3(a), shows the 8-month ahead monthly average SST forecasts generated by 80

ensemble members on Jun 1st, 2010 for the months of June 2010 until February 2011. The next

set of multi-step ahead ensemble member forecasts were generated on July 1st, 2010 and are

shown in Fig. 1.3(b). As the red line is encapsulated within the envelope of blue curves, the plot

suggests that the ensemble members are capable of capturing the range of forecast uncertainties

of SST even at 8-month forecasting horizon. Nevertheless, the ensemble member forecasts still

need to be aggregated to obtain a point prediction for each lead time. This can be achieved by

applying regression techniques to learn the mapping from ensemble member forecasts into point-

wise prediction. However, since the skills of the ensemble members may vary from one lead time

to another, it may not be wise to train only a single regression model for aggregating the ensemble

member forecasts at all lead times. Instead of training a separate model for each lead time, MTL

provides a promising approach for this problem by exploiting the temporal autocorrelation of the

SST values at different lead times.
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(a) Jun 1 2010 (b) Jul 1 2010 (c) Aug 1 2010

(d) Sep 1 2010 (e) Oct 1 2010 (f) Nov 1 2010

Figure 1.3: Sea Surface Temperature(SST) ensemble members vs. actual SST observations. From
North American Multi-Model Ensemble (NMME) [62].

1.3 Research Challenges

This section presents the research challenges associated with the problems and applications

described in Section 1.2.

• MTL for Multi-modal Time Series Classification at Multiple Locations There are sev-

eral challenges that must be addressed when applying MTL to the multi-modal time series

classification problem described in Section 1.2.1. First, the MTL approach must account

for the temporal dependencies between the classes. For the human activity recognition ap-

plication, some transitions between activities are more or less likely to occur than others.

For example, a subject often "bends" before "jumping" and rarely "sits" immediately after

"jumping". Incorporating such temporal dependencies into the modeling framework may

potentially enhance the prediction results. Although such dependence relationship can be

acquired from domain knowledge, they may not be complete nor exact enough to help recog-

nize the activities of individual human subjects. Instead of using a pre-defined relationship,

it is better to extract the temporal relationships between the classes directly from the data. In

addition to the temporal dependencies, the classes may have spatial relationships as well. For
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example, Fig. 1.2 shows that the classes "ascend" and "descend" stairs are more prevalent in

the hallway than in the living room. It would be advantageous to have a modeling framework

that can account for such spatial dependencies in the data. Finally, as previously noted, due

to the varying sensor data available in different rooms, addressing the block missing value

problem is another challenge that should be addressed by the modeling framework.

• MTL for Multi-location Time-series Forecasting

As mentioned in Section 1.2.2, the multi-location time series forecasting problem requires

building prediction models for different locations in the data. Previous research [136, 139]

has mostly focused on applying MTL to jointly train the models for different locations in

order to maximize their overall prediction accuracies. However, in many applications such

as climate modeling, preserving the true distribution of the data is just as important as

maximizing model accuracy [5] as the predicted distribution can provide useful information

for planning, risk assessment, and other decision making purposes. For example, knowing

the future distribution of temperature and precipitation can help climate scientists to better

anticipate the severity and frequency of adverse weather events for climate impact assessment

studies. In agricultural production, the predicted distribution can be used to derive statistics

such as average length of future growing season or persistence of wet and dry spells, which

are important metrics for farmers and agricultural researchers. However, achieving both high

accuracy and preserving the distribution fit at each location is a challenge that has not been

addressed by existing MTL frameworks.

• MTL for Multi-step-ahead Time Series Prediction

The multi-step-ahead time series prediction problem described in Section 1.2.3 requires

building a prediction model for each forecast lead time. However, the prediction error

tends to grow as the lead time increases as illustrated by the SST ensemble forecasting

task shown in Fig. 1.3. The plots show that the variance of the ensemble member forecasts

generally increases with longer lead times. MTL can help alleviate this problem by leveraging
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information from the shorter lead time tasks to regularize the predicted values for the longer

lead time tasks. However, the challenge here is how to determine the relationship between the

shorter and longer lead time tasks. Previous works such as [135] assume there is a predefined

graph structure in terms of the task relationship between different lead times. In fact,

many of the previous MTL frameworks [148] are based on some pre-defined assumption

about the task relationships, e.g., using model correlation matrix [136], graph Laplacian

structure [135, 40], low-rank [24, 139, 134], or model sparsity structure [8]. While these

assumptions are mostly designed for general learning problems, its effectiveness for the

multi-step ahead time prediction problem remains unclear. In particular, the task relationship

could be nonlinear, and thus, needs to be inferred from the data. Learning the appropriate

task relationship for multi-step-ahead time series prediction is a challenge to be addressed in

this dissertation.

1.4 Thesis Contributions

• Chapter 3: Multi-task Learning on Multi-modal Sensor Data for Time Series Classifi-

cation

To address the first challenge described in Section 1.3, Chapter 3 presents a probabilisticmulti-

task learning framework for multi-modal time series classification. The framework learns the

pair-wise temporal dependencies between the classes and incorporates such dependencies

into its formulation to enhance the activity recognition performance of each classifier. It

employs a softmax classifier, in which the model parameters for each class are learned

jointly at multiple locations. Furthermore, to address the varying feature types at different

locations, the framework decomposes its feature set into two parts–a common feature set

(for all locations) and a location-specific feature set. While the parameter values for the

common feature set are learned jointly across all locations, the location-specific ones are

learned independently for each location. This strategy enables the proposed MTL framework

to address the block-missing value problem.
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• Chapter 4: Distribution Preserving Multi-Task Regression for Multi-location Time

Series Forecasting

To address the challenge described in the previous section for multi-location time series

forecasting, Chapter 4 presents a novel distribution preserving MTL framework for spatio-

temporal data. The proposed framework is unique in that it integrates both distribution and

point-wise data fitting in a unified learning formulation. A non-parametric kernel density

estimation approach is employed to fit the marginal distribution of response variable along

with an L2-distance measure used to estimate the divergence between the predicted and true

distributions. Parameter sharing between models trained at different locations is enforced

through their low-rank structure along with a graph laplacian regularizer based on Haversine

distance between locations. The effectiveness of the proposed approach is then demonstrated

through extensive experiments using a 45-year precipitation dataset for more than 1500

weather stations in the United States.

• Chapter 5: Multi-task Hierarchical LSTM Structure for Multi-step-ahead Time Series

Prediction

To address the third challenge described in the previous section, Chapter 5 presents a multi-

task deep learning architecture for the multi-step-ahead ensemble forecasting problem. The

architecture considers the prediction for each lead time as a separate learning task and employs

a novel two-layer hierarchical LSTM structure to learn a nonlinear relationship between the

tasks. The first LSTM layer of the hierarchy learns a latent representation for each lead time

task, taking into account their temporal dependencies. This enables the proposed framework

to leverage information from shorter-term lead time tasks to improve the prediction for

longer-term tasks. The second layer of the hierarchy learns a feature representation for the

generation times of the forecasts. Specifically, given a specific lead time, it assumes that

the hidden representations of the forecast generation times are related in a sequential way

using an LSTM. This allows the architecture to capture the temporal autocorrelation between
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forecasts generated at different times. The entire architecture is trained in an end-to-end

fashion and evaluated on an ensemble of monthly sea surface temperature data for a large

study region in the Pacific ocean.

1.5 Other Research Contributions

In addition to my research contributions to the development of MTL frameworks for spatial and

temporal data in this thesis, I have also developed amulti-label learning framework that incorporates

taxonomy-type relations for categorizing mobile apps. With the proliferation of smart devices and

apps markets, there is a pressing need to develop automated techniques for apps categorization.

While existing app markets such as Google Play and Apple Store do provide their own list of app

categories, there are several issues with the existing market categorizations.

1. Limited granularity. With the explosive growth of mobile apps has resulted in huge amount

of apps per category, rendering the task of searching in a category to be laborious and

time consuming. The granularity of current mobile app categorization is also too coarse to

effectively distinguish between apps assigned to the same category.

2. Lack of objectivity. The mobile apps in online app stores are typically classified manually

based on the subjective judgment and may not agree with the actual use of the apps.

3. Limited expressiveness. As pointed out in [70], the hard, exclusive labeling results in a large

number of multi-category apps missing from their appropriate categories. For example, the

Instagram app [2] is found only in the social networking category but not in the photography

category, even though it has functionalities related to both categories.

To overcome these limitations, I propose a novel approach in in [74] to automatically label apps

with a richer and more flexible categorization. In order to label apps with a finer-grained ontology

than the original categories the app market provides, a detailed categorization is leveraged from an

application domain that closely resembles that of mobile apps (e.g., Google Ad Preference ontol-
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Figure 1.4: A snippet of a custom input categorization

ogy [1]). Unlike the flat structure of the original market categorization, the target categorization

structure is hierarchical illustrated in Fig. 1.4.

The proposed framework uses a semi-supervised Non-negative Matrix Factorization (NMF)

approach to classify the apps. The framework takes into account various factors, such as the class

labels associated with sampled training set apps, feature vectors of unlabeled apps, as well as the

side information encoding affinity relationship between input categories. All of this information

are integrated into a unified learning framework that automatically generates (i) the predicted labels

for previously uncategorized apps, (ii) the important features characterizing different classes, and

(iii) a modified inter-class similarity matrix that better fits to specific characteristics of mobile apps.

The proposed semi-supervised NMF framework is designed to minimize the following objective

function:

min
Yu,L,B

| |Yl − XlW| |2F + | |Yu − XuW| |2F + β | |L| |
2
F

+ γ | |B − P| |2F (1.3)

s.t. W = LB, B ≥ 0,L ≥ 0,Yu ≥ 0

where the subscripts l and u denote the labeled and unlabeled data sets; nl and nu denote the

number of labeled and unlabeled examples, respectively. Yl ∈ <
nl×k
+ and Yu ∈ <

nu×k
+ are the

class indicator matrices, where k is the number of classes. Xl ∈ <
nl×d
+ and Xu ∈ <

nu×d
+ are the
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feature matrices associated with the labeled and unlabeled data, respectively. To help guide the app

categorization with custom ground truth categories, the NMF framework can be modified to utilize

side information about the classes in the input categories. Specifically, the side information can

be represented as a k × k class similarity matrix P. Each entry Pi j denotes the similarity between

classes i and j, which is obtained by checking their sibling relationship (i.e, whether i and j share

a common parent in Google Ad Tree). Formally,

Pi j =


p = 1

# of levels if i and j are siblings,

0 otherwise.
(1.4)

The performance of the proposed framework was evaluation on 1, 065 apps from Google Play.

Each app is characterized by a tfidf feature vector of length 7,745. The classification performance

for each class is measured by Area Under Curve (AUC) of Receiver Operating Characteristic

(ROC) [119]. Using right y-axis of Figure 1.5, a histogram of 49 Google-ad categories that

represents the number of apps in each category (in black) is plotted. Using left y-axis of Figure 1.5,

two curves that represent AUCs of proposed approach for each class (in red), and AUC of logistic

regression (in blue) are plotted. For large classes with more than 50 apps, both the proposed

approach and logistic regression yield similarly good AUC performances. However, for smaller

classes with less than 50 apps, the semi-supervised NMF clearly outperforms logistic regression.

1.6 Related Publications

Some chapters in this dissertation are based partially on the following publications: Chapter 3

is based on three papers entitled "STARS: Soft Multi-Task Learning for Activity Recognition

from Multi-Modal Sensor Data" [76], "Human daily activity recognition for healthcare using

wearable and visual sensing data" [72], and "Location-based Hierarchical Approach for Activity

Recognition with Multi-modal Sensor Data" [73]. Chapter 4 is from "Distribution Preserving

Multi-Task Regression for Spatio-Temporal Data" [75], which appeared in the Proceedings of the

2018 IEEE International Conference on Data Mining. Chapter 5 is based on the materials from

a paper that is currently under review for the 2019 ACM SIGKDD International Conference on
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Figure 1.5: AUC comparison for classes with different number of apps.

Knowledge Discovery and Data Mining. My other publications include "Macro-scale mobile

app market analysis using customized hierarchical categorization" [74], "MUSCAT: Multi-Scale

Spatio-Temporal LearningwithApplication toClimateModeling" [134], and "WISDOM:Weighted

incremental spatio-temporal multi-task learning via tensor decomposition" [139].

1.7 Thesis Outline

The rest of this thesis is organized as the following. Chapter 2 presents the background and

previous literature related to my thesis topic. Chapter 3 describes my research on multi-modal

time series classification for human activity recognition while Chapter 4 introduces the distribution

preserving regression framework for multi-location climate forecasting. Chapter 5 presents the

MTL framework for multi-step-ahead ensemble forecasting of sea surface temperature. Finally,

conclusions and future research directions are discussed in Chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Spatial and Temporal Data Mining

Spatial and temporal data refers to observations containing variables that vary over space and

time [10, 102]. Due to the non-i.i.d property of spatial and temporal data, novel spatial and temporal

data mining techniques have been developed to discover interesting patterns and models from such

data [107], which include:

• Spatio-temporal outliers [116, 108], which correspond to observations whose non-spatial-

temporal features are significantly different from the rest of the data set. An example

application of this approach is to predict extreme climate events from precipitation data [132].

• Spatio-temporal couplings [42, 90], which correspond to multiple events that occur in close

spatial or temporal proximity; For example, studying the spatio-temporal coupling of traffics

helps better planning on the road.

• Spatio-temporal partitioning or clustering [63, 104], which correspond to groups of observa-

tions that are similar to each other along the space or temporal dimensions. Spatio-temporal

hotspots is a special topic of clustering, where high intensity of instances is observed to

happen in a certain region or time period;

• Spatio-temporal change footprints [150], which correspond to changes in the data distribution

or underlying model over space or time; For example, in industrial process, the change of

statistical index of sensors may indicate system fault; the raise of reported infections may

indicate the epidemic outbreak.

• Spatial and temporal prediction, which corresponds to the task of inferring the response

values either at previously unknown locations or for future time steps. Example applications
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include predicting crime rate or future climate condition at a given location.

This thesis will mainly focus on the spatial and temporal prediction problems. Conventional

predictive modeling techniques (e.g. logistic regression, ridge regression, decision tree and so on)

usually assumes the data to follow i.i.d property, which are not suitable for spatial and temporal

data. Therefore, new techniques are developed to build connections between consecutive locations

or time steps. Some examples are summarized as the following categories:

• Incorporating temporal dependencies and predicting on time. Techniques like autoregressive

integrated moving average (ARIMA) [81] are specifically designed for time series forecasts;

besides, some approaches designed for sequential data are also demonstrated to be efficient

on predicting on time series, such as conditional random field [60] and recurrent neural

network [100].

• Incorporating spatial dependencies and predicting on space. Techniques like spatial autore-

gressive regression (SAR) [58] and kriging [91] are developed to predict for unknowns over

space;

In sum, on the one hand, due to the non-independence property, it is unwise to build an

independent local model for each spatial/temporal unit, as what Tobler’s first law of geography

says: “Everything is related to everything else, but near things are more related than distant

things” [121]; on the other hand, due to the non-identical property, it is unreasonable to build

a single global model and expect it to fit for all spatial/temporal units. Since the local model

ignores the generalization while global model lacks uniqueness, it is suggested to develop new

approaches that can incorporate data dependencies over space/time and at the same time keeps

distinct spatial/temporal attributes.

2.2 Multi-task Learning

Multi-task learning (MTL) is a machine learning technique which jointly deals with multiple

related modeling tasks by incorporating the correlations/dependencies among tasks [20, 148]. This
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approach is useful as many complex prediction problems can be decomposed into multiple learning

tasks. Building a single global model for all tasks may not be effective because the global model

is too general to fit each task well. In contrast, building a local model independently for each task

would require having a sufficiently large training set for each task to avoidmodel overfitting problem.

Multi-task learning addresses this problem by leveraging domain-specific information to enable the

pooling of information across different tasks in order to improve its model generalization [105].

MTL is employed under two scenarios: 1). predictive modeling for multiple homogeneous

objects; 2). learning with heterogeneous auxiliary tasks. [105, 69]. The latter one appears in

many studies in computer vision [35, 146, 38] and natural language processing [27, 84, 11], where

heterogeneous tasks are processed. For example, in [146], the facial landmark detection is enhanced

with the help of correlated auxiliary tasks such as gender classification, head pose classification,

age estimation, facial expression recognition. In [27], a weight-sharing structure is built to jointly

learn several language processing predictions. In this thesis, I mainly focus on the former case, and

a few existing MTL structures are reviewed in the following.

2.2.1 MTL Based on Encoding Graph Structures

In many applications, the pair-wise relations between N tasks can be pre-defined with N × N

similarity matrix. Different assumptions are made to quantify the relatedness between tasks. For

example, in multi-location geospatial predictions, it is reasonable to assume that locations that are

geographically closer or demographically similar share more similarities in models than those far

away from each other [99].

One of the popular way to embed the tasks similarities into an objective function is to use graph

Laplacian regularizer. Graph Laplacian is commonly used in spectral clustering [127] to optimize

graph partitioning. The spectral property of a graph is examined with the eigenvectors of Laplacian

matrix, with the property that Laplacian matrix is positive semidefinite [119]. This property also

makes Laplacian matrix a good way for smoothness. For example, in [94], the graph regularizer is

used for image denoising by assuming the pixel patches are smooth with respect to a pre-defined
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graph.

The semidefinite property of Laplacian matrix is borrowed by MTL approaches to build con-

nections between model parameters from different learning tasks. Treating the model of each task

as a single node in the graph, and embedding the pair-wise similarities A ∈ <N×N as weighted

edges, the graph Laplacianminimizes the weighted Euclidean distance of linear coefficientswi from

different models [148], in order to make a pair of individual learning tasks with higher proximity

to have closer coefficients, and vice versa.

min
W

L(W) + λTr[WT LW]

= L(W) + λ
2

N∑
i, j

Ai, j | |wi − w j | |
2
2

s.t. L = D − A,

W = [w1,w2, ...wN ]

Laplacian matrix can be generated with both graph structure matrix and similarity matrix.

In [148, 68], the Laplacian matrix is generated directly from the topology of graph. In [40], a

structure matrix is defined to make each model approaching the mean model. In [149, 135], each

time point in the time series is treated as a task, and models of neighboring tasks are built to be

smooth. In [136], each location is treated as a task, and the inverse of a modified variogram is used

to measure similarities between tasks.

2.2.2 MTL with Low Dimensional Subspace

Another assumption made for relations among tasks is that individual models share a low dimen-

sional subspace. Related works can be categorized in two ways. The first way uses traces norm

as regularizer to minimize the common rank of linear coefficients [55, 9] from different learning

tasks. Many variations of this approach emerges based on its basic formulation [24, 25].

min
W

L(W) + λ | |W| |∗

s.t. W = [w1,w2, ...wN ]
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The second way employs matrix factorization. It assumes that linear models wi, i = 1, 2, ...N

from different learning tasks share a set of base models, and each individual model is a linear

combination of these base models [138, 136] as the following.

min
W

L(W) + λ1Ω1(U) + λ2Ω2(V)

s.t. W = [w1,w2, ...wN ]

V = [v1, v2, ...vN ]

W = UT V or wi = UT vi

where wi ∈ <
d×1 is the linear parameter vector for individual task i. U ∈ <d×k represents the k

shared base models, and vi ∈ <
k×1 describes the coefficients for linear combination of the base

models. Since d > k, the matrix decomposition of W makes models from different learning tasks

to share a common low rank space.

2.2.3 MTL with Incomplete Multi-source Data

A special case of MTL comes when the predictors of different tasks come from both common

sources and different sources. A typical example is multi-modal sensor data [122, 145] when

different sensors are not available all the time, leading to block-missing problem. It is unwise to

discard the incomplete data instances or interpolating missing values. In [145], data is partitioned

into multiple groups according to the data source available for each data instance. An individual

model is built for each group of data. And it assumes that the model parameters corresponding to

a certain source are learned jointly and have common sparsity with L2,1 norm.

2.2.4 MTL in Deep Learning

Two most popular multi-task learning strategies in neural networks are hard parameter sharing and

soft parameter sharing of hidden layers [105]. For hard parameter sharing case, the parameters of a

number of layers are shared by different learning tasks, while the rest layers are task-specific [21].

An illustration is shown in Fig 2.1. For example, in the speech recognition problem in [53],
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Figure 2.1: Hard parameter sharing or layer transfer in multi-task DNN.

Figure 2.2: Soft parameter sharing or conservative training in multi-task DNN.

the recognition with each language is treated as a learning task, and DNN-typed frameworks are

developed. It assumes that learning tasks from different languages share common hidden layers

and only distinguish with each other on the softmax layer. It has been discussed in many previous

literatures how shared parameters help DNN to avoid overfitting. It is a case-to-case decision to

choose which layers should be shared. For example, in speech recognition, the last few layers are

usually shared because it is believed that the last few layers are not dependent on the speakers.

However, in image recognition, the first few layers are shared because they are capable to capture

the most basic and commonly seen patterns like lines and curves [4]. Comparatively, the soft

parameter sharing or conservative training illustrated in Fig 2.2. It is inspired by regularizer skills

from traditional MTL approaches, and constrains the parameters learned from different tasks to be

related [37, 143].
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2.2.5 MTL for Multi-label Learning

Multi-label learning is a popular topic in the data mining field. Instead of labeling each data

instance with only one category, multi-label learning gives multiple categories. Each labeling task

results in an individual binary classifier to determine whether a data instance has this label or not.

One straight forward solution is to learn for each labeling task independently. However, in many

cases, there are insufficient training data for each label due to the expensive and time-consuming

manual labeling process. And label-independent learning in this case will most likely result in

serious overfitting problem [79]. Therefore, it is beneficial to extend the applications of MTL to

multi-label learning. Instead of treating each labeling task as an independent binary classification

problem and ignoring the interdependencies between labels, individual labeling problems are taken

as related learning tasks [33]. Multi-label learning is considered to have many common parts with

MTL, since it is a type of structured output prediction [32] which shares the hypothesis space

among models [113]. The idea of MTL has been employed to solve multi-lable learning in many

applications, like multi-label image classification [79, 54] and face attributes recognition [41].

There are various types of relations among labels. For example, in multi-label activity recog-

nition, different activities are sequentially dependent. It is essential to quantify these relations

by learning from data and help the recognition performance [76]. Another very commonly seen

dependence label structure is taxonomy, like Google Ad ontology [1]. Doing single-task learning

in this case definitely ignores the taxonomy structure and fails when the label distribution is very

imbalanced. To do MTL for multi-label learning with pre-defined label taxonomy, the represen-

tation of the taxonomy needs to be formulated and incorporated into the model. However, this

approach fails when the pre-defined taxonomy is not perfectly designed to serve to the data. For

example, in the mobile apps categorization problem in [74], while the existing flat-structured app

market categorization is limited by its lack of granularity and expressiveness, other finer-grained

hierarchical categorization chosen from resembling domains still cannot guarantee to cover all

concepts and aspects of mobile apps. To address the challenges, in [74], a customized hierarchical

multi-task learning framework is built for multi-label categorization. The framework takes the
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mobile apps categorization as an example. It leverages a fine-grained taxonomy as a guide, labels

the mobile apps with finer categories, and at the same time induces a customized taxonomy.

2.3 Summary

In this chapter, the non-i.i.d property of spatial temporal data is discussed, and the motivation

of employing multi-task learning on spatial and temporal data mining is presented. Then, several

state-of-art MTL approaches are surveyed.

However, these existing approaches are still not enough to address all challenges on spatial

and temporal data as mentioned in Section 1.3. In this thesis, I am going to investigate into

some challenging problems specifically in the domain of spatial and temporal data, and develop

frameworks for each targeting problem.
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CHAPTER 3

SOFT MULTI-TASK CLASSIFICATION FOR ACTIVITY RECOGNITION FROM
MULTI-MODAL SENSOR DATA

Rapid advances in the development of inexpensive, low-power, wireless sensing technology have

enabled the deployment of sensors ubiquitously in a smart home environment to support various

applications, frompersonal safety and security towater conservation and energymanagement. Real-

time data generated from the myriad of sensors in the smart home provide a unique opportunity for

monitoring daily living activities, alerting the residents or the authorities if any unusual activities

are detected. The ability to accurately recognize human activities from the multi-modal sensor data

is essential to support such applications.

However, classifying human activities from smart home sensor data is not a trivial task for

several reasons. First, the sensor data are often noisy, and thus, require substantial preprocessing to

extract discriminative features for the classification task. Second, the data are heterogeneous and

may vary depending on the type of sensors deployed for monitoring the user activities. For example,

wearable sensors such as accelerometers would generate data continuously at all times unlike other

sensors such as motion detectors and surveillance cameras, which may only be available in certain

rooms. For example, Fig.3.1 shows the percentage of time in which data from two sensors—

accelerometer and surveillance camera—are available for each human activity in the smart home

dataset investigated in this study. The results suggest that the accelerometer data is available at

all times for most of the classes (human activities) whereas the surveillance camera data has a

more imbalanced and irregular distribution as they are affected by the user’s location as well as the

rooms where the cameras are deployed. Thus, one of the key challenges is to develop a modeling

approach that can handle the multi-modal sensor data, whose availability varies from one location

to another depending on the sensor placement. Furthermore, the modeling approach must consider

the imbalanced class distribution in different rooms since some activities could be restricted to

certain locations only (e.g., one will more likely lie down in a bedroom or living room than in a
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(a) Accelerometer. (b) RGB-D camera.

Figure 3.1: Percentage of time data from an accelerometer and RGB-D camera are available for
each human activity. The list of activities are shown in Table 3.1.

kitchen).

The activities performed by each user can be represented by a sequence of actions, where the

transition from one action to another proceeds in a continuous fashion. Since the data are collected

and annotated at discrete time periods, some activities could be interleaved together in the same

time period (e.g., walking and turning at the same time or going from a standing posture to a

bending and eventually kneeling position). For example, Fig 3.2 shows a 30-second segment of

user activity from the labeled data used in this study. Since there could be more than one activity

performed in each second, each class label (human activity) is associated with a confidence score,

represented by its gray scale color. One of the goals of this study is to develop a modeling approach

that can leverage the soft labels to determine the probability an activity is performed at a given

time period. The temporal dependency between activities is another factor that must be taken into

consideration. For example, the lie-to-sit transition activity typically occurs between the lie

and sit postures. However, we do not expect the sequences to contain transitions from lie to

jump activities. How to effectively quantify these temporal dependencies and incorporate into the

modeling framework is another challenge that needs to be addressed. Although such constraints

can be pre-defined from domain knowledge, they may vary depending on the dataset used. Instead

of encoding them as hard constraints, my goal is to infer the temporal dependencies automatically
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Figure 3.2: A segment of ground truth activities.

from the data.

To address these challenges, this thesis presents a soft classification approach for activity

recognition in a smart home environment. The approach employs a softmax classifier to predict

user activities in a sequence based on the multi-modal sensor data available. Training a global

softmax classifier is not effective since some features (e.g., surveillance camera data) are only

available in certain rooms. Imputing their missing values may introduce errors into the model

while discarding the data with incomplete features may lead to suboptimal models. Conversely,

training a local model for each room is also not the answer due to the limited training data available

for some rooms and the large number of classes involved. To overcome this limitation, the proposed

approach allows the local models for all the rooms to be jointly trained, and takes into account the

relationship between the local models and the varying types of features available. Specifically, the

framework enables the model for predicting, say, the walk activity in one room, to be related to

the same activity in another room even if their features are not identical. This is accomplished by

decomposing the weight matrix associated with the prediction of each class into a set of low rank

latent factors, where the decomposition is performed only on the common features for all rooms.

Using a real-world multi-modal sensor dataset [122] as the case study, I showed that the proposed

framework is more effective than other sequential and non-sequential classification algorithms,

including multinomial logistic regression and conditional random fields.
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Table 3.1: List of human activity classes from the Sphere challenge data [122].

ascend bent stand sit-to-stand
descend kneel stand-to-bend stand-to-kneel
jump lie kneel-to-stand stand-to-sit
loadwalk sit lie-to-sit bend-to-stand
walk squat sit-to-lie turn

3.1 Preliminaries

Consider a multi-modal sensor dataset, D = {D1,D2, · · · ,DR}, where each Dr = (Xr,Yr )

is the training set for room r . Furthermore, each Xr = RNr×dr corresponds to the data matrix

derived for room r , where Nr is the number of training examples available and dr is the number of

features. For notational convenience, we denote Xi: as the i-th row of matrix X and X: j as its j-th

column. The sensor data considered in this study [122] include 3-d acceleration features generated

by a portable triaxial accelerometer worn by the subject, RGB-D camera data, and location data

from passive infrared (PIR) and strength of acceleration signals (RSSI) recorded by access points

location in different rooms. The raw sensor data are preprocessed to extract various features (e.g.,

kurtosis, frequency, and entropy of accelerometer time series and bounding box information about

subjects from RGB-D camera data) associated with the human activities measured at every 1

second interval. I apply the feature extraction and preprocessing methods as described in one of

my previous publication in [72].

Let Yr ∈ [0, 1]Nr×K be the class membership matrix for all Nr observations in room r , where

Yr
ik ∈ [0, 1] denotes the confidence score for the i-th training instance in room r belonging to

the k-th class. There are altogether 20 classes in this dataset, which are divided into 3 groups:

(1) Active motion (a), which include activities such as ascending or descending stairs, jumping,

and walking, (2) Stationary postures (p), which include bending, sitting down, and standing, and

(3) Transition movements (t), which include stand-to-bend, lie-to-sit, sit-to-lie, and stand-to-kneel.

The complete list of classes is shown in Table 3.1.
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3.1.1 Sensory Data Used for Human Activity Recognition

I investigated the feasibility of using data generated from the following four sources of sensoring

measurements. All of these sensors are cheap and widely embedded sensors in current smart phone,

fitness band or motion sensing input devices, such as Xbox 360 and Asus Xtion Pro.

• Acceleration: A portable triaxial accelerometer on the wrist of a subject to record the

real-time acceleration in all three spatial dimensions (X-Y-Z) in real time.

• Bounding box from an RGB-D camera: which combine RGB color information with per-

pixel depth information. It is easy to capture and extract the moving subject with a bounding

box from the raw image frames with various libraries and SDKs, such as OpenCV [92],

OpenNI [93], point cloud library (PCL) [98] and Microsoft Kinect SDK [86].

• PIR and RSSI: Localization sensors which estimates the subject’s locations in real time, in

either a passive way, or an active way. While the passive sensors tell the appearance of a

subject by detecting light, radiation from the human bodies (e.g.passive infrared sensor), the

active sensors measures the location of a subject by sending out signals (e.g.Received Signal

Strength Indication).

In this chapter, I will illustrate my preprocessing and proposed method mainly by taking the

example of the data provided in “SPHEREChallenge: Activity Recognition withMultimodal Sensor

Data” [122] for indoor human activity recognition (denoted as “Sphere data” in the rest of the text).

3.1.2 Feature Extraction

We target to predict human activities within each second. Thus, I firstly divide the entire time

series into 1-second-length segments. Based on each time segment, I extract useful features to

discriminate activities.

• Features from Acceleration
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– Kurtosis [12]: Describes the tailedness of a segment of time-series acceleration data.

– ApproximateEntropy [97]: Describes the unpredictability of fluctuations over a segment

of time-series acceleration data.

– Top-10 Frequency by FFT [14]: Distribution of the resultant time-series energy in

frequency domain.

– FFT distribution kurtosis: Describes tailedness of the resultant energy distribution in

frequency domain.

– Average Jerk [130]: Average rate of change of acceleration on each axis.

– Average Absolute Value: Average absolute acceleration on each axis

– Average Value [14]: Average acceleration on each axis.

– Median: Meidian acceleration on each axis.

– Standard Deviation [14]: Standard deviation of acceleration on each axis.

– Maximum Value: Maximum acceleration on each axis.

– Minimum Value: Minimum acceleration on each axis.

– Maximum Absolute Value: Maximum absolute acceleration on each axis.

All the above features are selected because of their capability to distinguish between human

activities. For example, during exploring the Sphere data, it can be found that class “a_jump”

gets much higher maximum acceleration than any other activities (Fig 3.3). For another

instance, while most of the activities don’t repeat periodically, there are still some activities

which show obvious repetitive patterns(e.g. “a_ascend”, “a_walk”). With Fast Fourier

Transform(FFT), it can be observed that their distributions of energy in frequency domain

(e.g. Fig 3.4a and Fig 3.4b) are apparently different from those who do not have periodic

patterns (e.g. Fig 3.4c and Fig 3.4d). Most of these repetitive activities get relatively higher

energy in low-frequency bands, while others get comparable energy in all frequency bands.
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Figure 3.3: Distribution of the maximum acceleration for each activity class.(The line in the middle
of each box is the sample median; The tops and bottoms of each “box” are the 25th and 75th
percentiles of the samples, respectively; The whiskers are lines extending above and below each
box; Observations beyond the whisker length are marked as outliers)

• Features from RGB-D Camera The RGB-D cameras get not only RGB images but also the

depth information of pixels. Usually, the OpenNI [93] was employed to extract both 2D and

3D bounding boxes of a human subject from raw RGB-D image frames [122]. As shown in

Fig 3.5, the coordinates of the centers reflect the detailed location of a human subject, and

can be further used to compute displacements and speeds. The coordinates of the corners of

bounding boxes can be used to compute the shape of a subject. It is quite straightforward

to associate these features with human activities. For example, when the coordinate of the

bounding box center moves fast, subjects are more likely to perform motions rather than

staying in stationary postures; the shape of a subject is apparently different when the subject
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(a) Sample Illustration of Activity Class “a_ascend”
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(b) Sample Illustration of Activity Class “a_walk”
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(c) Sample Illustration of Activity Class “p_stand”
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(d) Sample Illustration of Activity Class “p_bend”

Figure 3.4: Time Domain and Frequency Domain of Activities in acceleration data from [122]. For each
subplot: time domain on the left; frequency domain on the right.

Table 3.2: 2D/3D camera features summary.

feature category 2D/3D feature varaible features

movement 2D center coordinate mean, std, gradient
3D center coordinate mean, std, gradient

shape

2D
length mean, std
width mean, std
area mean, std

3D

length mean, std
width mean, std
height mean, std
volume mean, std

is standing compared against when he or she is sitting, etc. Based on the above observations,

both 2D and 3D movement and shape features have been extracted. The detailed camera

features are provided in Table 3.2.
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Figure 3.5: The given coordinates of an example bounding box of the RGB-D camera data
from [122]. 2D bounding box on the left, 3D bounding box on the right. (tl: top left; br:
bottom right; flt: front left top; brb: back right bottom.)

• Location Feature Extraction The data gathered by RSSI and PIR sensors is ued for location

information. Considering the distinguished layout and decoration of each room in a smart

house, the patterns of a same activity in different rooms varies. The detection of the specific

room that the subject is located reveals the distinguished patterns in a certain room and

brings benefits to improve the classification performance. For instance, a subject is not able

to “p_lie on the stairs; what’s more, the detailed coordinates given by RSSI introduce prior

knowledge of a possible activity. For example, the subject is more likely to “p_lie” rather than

“a_jump. The average signal values of RSSI and PIR are computed as location information,

while additionally, the standard deviation of RSSI within each second is also computed as an

indicator of motion speed. These information will be used in predicting room occupancy for

my hierarchical approach.

3.1.3 Annotation Confidence Level

Human activities usually consist of a series of continuous actions, where the transition between

one activity to the next is conducted in a graduate manner. Fig 3.2 illustrates an example of a

30-second human activity segment from the labeled Sphere data, where the degree of grey scale

indicates the confidence score of labeling, or multi-class probability. For instance, in Figure 3.2,

“a_walk" starts from 2s to 8s. Among all these 7 seconds, only the 5th second has “a_walk” with
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confidence 1, and during all the rest five seconds, activity “a_walk” and “p_stand” coexist with

different confidence scores (as shown in Table 3.3). This means that the subject conducted a series

of standing and walking actions with a gradual and smooth transition between activities. Similar

observation for activity of “t_turn" exists from 12s to 15s.

Table 3.3: Illustration of activities distribution.

second 2 3 4 5 6 7 8 9
a_walk 0 0.5 0.7 1 0.8 0.7 0.3 0
p_stand 1 0.5 0.3 0 0.2 0.3 0.7 1

3.1.4 Temporal Transitional Dependency

Since there exists significant temporal dependency on the transition among daily activities, it

is usually helpful to learn this inherent pattern for activity recognition, especially for transition

activities. For example, t_lie_sit usually happens in a period between p_lie and p_sit; t_bend

usually follows p_bent. Some counter examples include that a_jump never happens with p_lie, and

a_ascend never happens with p_squat, etc.

3.2 Methodology

3.2.1 Multi-Class Learning with Softmax Regression

Softmax regression can be used to compute the posterior probability that the i-th instance in room

r belongs to class k as follows [16]:

P(Yr
i = k |Xr

i:) =
exp(Xr

i:W
r
k:)∑K

s=1 exp(Xr
i:W

r
s:)
≡ Pr

ik, (3.1)

where Wr ∈ <K×dr is the model parameter matrix for room r . The parameters can be estimated

by minimizing the following cross entropy loss function:

Wr = arg min
Wr

Nr∑
i

K∑
k
−Yr

ik log Pr
ik (3.2)
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Intuitively, the model produces probabilistic classification results by equation (3.1), and the loss

function (3.2) measures the discrepancy between the estimated posterior probability and annotated

confidence score of each class for the training examples. The loss function is well-suited for

handling soft labels in the human activity recognition problem shown in Fig.3.2, in which multiple

activities may occur in the same time period.

3.2.2 Proposed Method: STARS

Although the softmax regression approach can be applied to the smart home data, it has several

limitations. First, it does not account for the temporal dependencies among activities in the

sequence data. Second, it is designed for learning models independently for each room. Since the

amount of training examples available in each room may vary, this may lead to suboptimal local

models. Furthermore, the features available to classify the human activities can be different from

one room to another. It would be useful to develop a multi-task learning approach that can jointly

train the models for all the rooms, taking into account the relationships among the prediction tasks

and variable features of the rooms. To overcome these limitations, I propose the following soft

multi-task learning framework called STARS, which is designed to optimize the following objective

function:

min
Θ

L1 +L2 +L3 (3.3)

s.t. L1 =
R∑
r

Nr∑
i

K∑
k
−Yr

ik log Pr
ik

L2 =
R∑
r
β | |Pr −GrPr | |2F

L3 =
K∑
k
(λU | |Uk,:,: | |F + λV | |Vk,:,: | |F)

+

R∑
r
(λW | |Wdi f ,r | |F + λF1 | |F

1
r:: | |F + λF2 | |F

2
r:: | |F)
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where,

Wr
k: = [W

com
rk: ,W

di f ,r
k: ]1×dr , W

com
rk: = Ukr:Vk:: (3.4)

Pr
ik =

exp(Xr
i:W

r
k:

T + Zr
i−1:F

1
rk:

T
+ Zr

i+1:F
2

rk:
T
)∑K

s exp(Xr
i:W

r
s:

T + Zi−1:F
1

rs:
T
+ Zr

i+1:F
2

rs:
T
)

(3.5)

Zr
i: = Xr

i:W
rT (3.6)

Gr =



1 0 0 ... 0 0

1 0 0 ... 0 0

0 1 0 ... 0 0

... ...

0 0 0 ... 1 0

Nr×Nr

where Θ = {U,V,Wr, F 1, F 2} corresponds to the set of model parameters for all the rooms

r = 1, 2, · · · , R. The framework assumes a linear model for each room r , parameterized by the

matrix Wr = [Wcom,r,Wdi f ,r ], where Wcom,r is represented by the r-th slice of tensorWcom,

and denotes the weight matrix associated with the common features for all the rooms. And Wdi f ,r

denotes the weight matrix associated with the unique features of the room. For example, the

common features may include those derived from accelerometer sensors worn by the users whereas

the unique features may correspond to those derived from surveillance cameras located only in

certain rooms.

Note that the objective function consists of three parts: (1) L1, which is the cross entropy loss

function associated with the classification error, (2) L2, which captures the temporal persistence

of the classes (to be explained below), and (3) model complexity control L3. The posterior

probability Pr
ik in the proposed formulation depends not only on the features Xr

i: at time i, but

also on the temporal features Zi−1: and Zi+1: at time i − 1 and i + 1, respectively. We consider

Zr
i−1: = Xr

i−1:W
rT and Zr

i+1 = Xr
i+1:W

rT as temporal features because they are related to the

predicted probabilities in the previous and next timesteps. Thismodel also encapsulates information

about the class transitions by using the transition tensors F 1 and F 2. Specifically, F 1
r:: encodes

the relationship between the activity at previous timestep i − 1 to the activity at current timestep
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Figure 3.6: The illustration of multi-task learning in STARS

i in room r . Conversely, F 2
r:: encodes the relationship between the activity at the next timestep

i + 1 and the activity at current timestep i in room r . These transition tensors are estimated while

optimizing the loss function of STARS framework. The second term of the objective function, L2,

is a regularization term to ensure the temporal persistence of the classes. As illustrated in Fig.3.2,

most activities tend to last for more than several seconds. This suggests a trivial approach to predict

user activity in the next timestep is by using the predicted activity for the current timestep. The

temporal persistence of an activity between two adjecent time steps is reflected by the soft constraint

| |Pr
i: − Pr

i−1: | |
2
F , where Pr

i−1: = (G
rPr )i:. Finally, the third term in the objective function, L3, is

used to control the model complexity to avoid overfitting.

One unique feature of the proposed STARS framework is that it uses a multi-task learning

approach to train the models for all rooms simultaneously. Furthermore, instead of treating

classification task for different rooms as independent learning problems, it assumes the tasks are

related via the common features shared by all the rooms. Fig. 3.6 illustrates how the multi-task

works with matrix decomposition. Specifically, although the weight matrix Wcom,r for all the

rooms can be different, they share a pair of common low-rank factors, U and V. In Fig. 3.6,

we use the notationWcom to represent a 3-dimensional tensor, where the r-th slice of the tensor

corresponds to the weight matrix Wcom,r for room r .
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3.2.3 Optimization

The accelerated gradient descent method can be applied to learn the model parameters. A pseudo-

code of the algorithm for both training phase and prediction phase is shown Algorithm 1. The

training phase is for inferring the model parameters, and the testing phase is for predicting the next

activity in the sequence.

Algorithm 1: STARS Framework
TRAINING PHASE
Input: training set {Xr,Yr } and set of regularizers {β, λU, λV, λW, λF1, λF2}.
Output: Θ(t) = {U(t),V(t),Wdi f f ,r(t), F 1(t), F 2(t)}
Set t = 0 and initialize Θ(0) = {U(0),V(0),Wdi f f ,r(0), F 1(0), F 2(0)}.
repeat

t = t + 1
∀r, q :Uqr: ←Uqr: − α(t)(

∂L1
∂Uqr: +

∂L2
∂Uqr: + λUUqr:)

∀q :Vq:: ←Vq:: − α(t)(
∂L1
∂Vq:: +

∂L2
∂Vq:: + λVVq::)

∀r, q : Wdi f ,r
q: ←Wdi f ,r

q: − α(t)(
∂L1

∂Wdi f ,r
q:

+
∂L2

∂Wdi f ,r
q:

+ λW Wdi f ,r
q: )

∀r, q : F 1
rq: ← F

1
rq: − α

(t)(
∂L1
∂F 1

rq:
+

∂L2
∂F 1

rq:
+ λF1F

1
rq:)

∀r, q : F 2
rq: ← F

2
rq: − α

(t)(
∂L1
∂F 2

rq:
+

∂L2
∂F 2

rq:
+ λF2F

2
rq:)

until convergence

PREDICTION PHASE
Input: test example, Xr

i:, its adjacent predictors, Xr
i−1: and Xr

i+1:, and estimated model parame-
ters, Θ = {U,V,Wdi f ,r, F 1, F 2}, r = 1, 2, ..., R
Output: predicted probability
P(y = k |Xr

i:,X
r
i−1:,X

r
i+1:,Θ) = Pr

ik , k = 1,2,...K, with Formula (3.5) and (3.6)

Since there are multiple model parameters, Θ = {U,V,Wdi f ,r, F 1, F 2}, the parameters are

each updated in an alternating fashion. A backtracking line search strategy is also implemented

to adaptively choose the step size of the gradient descent [17] and ensure faster convergence. In

the remainder of this section, I show the gradient computation of L1 and L2 with respect to each

model parameter.

• Gradient Computation forU.
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Taking the partial derivative of L1 w.r.t. Uqr:, where k = 1, 2, ...,K , and q = 1, 2, ...,K ,

yields the following:

∂L1
∂Uqr:

=

Nr∑
i
(Pr

iq − Yr
iq)X

com
ri: V

T
q::

+

Nr∑
i

K∑
k
(Pr

ik − Yr
ik )(F

1
rkqX

com
r(i−1):V

T
q:: + F

2
rkqX

com
r(i+1):V

T
q::) (3.7)

where Xcom
ri: V

T
q:: denote the latent representation of the common features Xcom

ri: for room r .

The preceding equation suggests that the update formula forUqr: depends on two terms. The

first term on the right hand side of Equation (3.7),
∑Nr

i (P
r
iq − Yr

iq)X
com
ri: V

T
q::, measures the

difference between the predicted and true class in terms of the latent, common feature vectors.

The second term,
∑Nr

i
∑K

k (P
r
ik − Yr

ik )(F
1

rkqX
com
r(i−1):V

T
q:: + F

2
rkqX

com
r(i+1):V

T
q::) measures the

difference in terms of the latent feature vectors for adjacent time periods, taking into account

the temporal dependencies between activities, F 1
r:: and F 2

r::.

Furthermore, the gradient of L2 w.r.t. Uqr: is given by

∂L2
∂Uqr:

=

N∑
i

K∑
k

2β(Pr
ik − (G

rPr )ik ) × (
∂Pr

ik
∂Uqr:

−

Nr∑
j

Gr
i j

∂Pr
jk

∂Uqr:
)

where,

∂Pr
ik

∂Uqr:
= Pr

ik

(
(1{q = k} − Pr

iq)X
com
ri: V

T
q:: + (F

1
rkqX

com
r(i−1):V

T
q:: + F

2
rkqX

com
r(i+1):V

T
q::)

−

K∑
s
(F 1

rsqX
com
r(i−1):V

T
q:: + F

2
rsqX

com
r(i+1):V

T
q::)Pr

is

)
• Gradients Computation forV. Similarly, the gradients w.r.t. V are:

∂L1
∂Vq::

=

R∑
r

Nr∑
i
(Pr

iq − Yr
iq)Uqr:X

com
ri:

+

R∑
r

Nr∑
i

K∑
k
(Pr

ik − Yr
ik )(F

1
rkqUqr:X

com
r(i−1): + F

2
rkqUqr:X

com
r(i+1):)

∂L2
∂Vq::

=

R∑
r

Nr∑
i

K∑
k

2β(Pr
ik − (G

rPr )ik ) × (
∂Pr

ik
∂Vq::

−

Nr∑
j

Gr
i j

∂Pr
jk

∂Vq::
)
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• Gradients Computation for Wdi f ,r .

∂L1

∂Wdi f ,r
q:

=

Nr∑
i
(Pr

iq − Yr
iq)X

di f ,r
i: +

Nr∑
i

K∑
k
(Pr

ik − Yr
ik )(F

1
rkqXdi f ,r

i−1: + F
2

rkqXdi f ,r
i+1: )

∂L2

∂Wdi f ,r
q:

=

Nr∑
i

K∑
k

2β(Pr
ik − (G

rPr )ik ) × (
∂Pr

ik

∂Wdi f ,r
q:

−

Nr∑
j

Gr
i j

∂Pr
jk

∂Wdi f ,r
q:
)

• Gradients Computation for F 1 (or F 2).

∂L1
∂F 1

rq:
=

Nr∑
i
(Pr

iq − Yr
iq)Z

r
i−1:

∂L2
∂F 1

rq:
= 2β

Nr∑
i

K∑
k
(Pr

ik − (G
rPr )ik ) × (

∂Pr
ik

∂F 1
rq:
−

Nr∑
j

Gr
i j

∂Pr
jk

∂F 1
rq:
)

The gradients ∂L1
∂F 2

rq:
and ∂L2

∂F 2
rq:

can be obtained in a similar way.

3.3 Experimental Evaluation

I performed the experiments on a real-world data set from the SPHERE Challenge competi-

tion [122]. The dataset contains classes of human activities recorded in a house with 9 rooms.

The raw data contains 10 sequences, where each sequence corresponds to a series of activities

performed by a subject for a time period lasting between 1, 392 to 1, 825 seconds. With the sensor

observations at each second as a data instance, I ended up with a total of 16, 124 instances. Each

instance was labeled by a team of 12 annotators [122], whose results are aggregated to obtain a

confidence score for each class label. For evaluation purposes, I apply 5-fold cross-validation and

report the mean and standard deviation of their prediction accuracies.

Following the approach described in [122], I employ the weighted Brier score to evaluate the

classification performance. The metric is defined as follows:

BS =
1
N

N∑
i=1

K∑
k=1

lk (Yik − Pik )
2 (3.8)
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where Yik is the confidence score for the i-th instance and k-th class, computed based on the labels

provided by a team of annotators, whereas Pik is the predicted posterior class. The weight for each

class, lk , is defined in [3], which is negatively correlated with the class size.

3.3.1 Baseline Algorithms

I compare the performance of my proposed framework, STARS, against the following baseline

algorithms:

• SR: Softmax regression, which trains a local softmax regression model for each room with

Equation (3.1) and (3.2). Unlike my proposed framework, it is a single-task learning model

and does not incorporate temporal dependencies.

• KNN: A k-nearest neighbor classifier, which is another baseline used in [3] for the SPHERE

competition data. I sum up the weights associated with each neighboring instance Yik for the

test instance i and normalize the weighted sum to obtain the predicted posterior probabilities.

• CRF: Conditional Random Field [118], which is a widely used model for sequence classifi-

cation problems [45, 65] and has been applied to activity recognition problems [123, 59].

3.3.2 Experimental Results

The results comparing the weighted brier score of the proposed framework STARS, against the

baseline methods (SR, KNN and CRF) are shown in Table 3.4. I reported the weighted Brier

score for all rooms (denoted as Overall) as well as for individual rooms. The results suggest that

the overall performance of STARS is significantly better than the baseline methods. In terms of

performances for individual rooms, STARS achieves the best (i.e., lowest score) in 7 out of the

9 rooms. The performance of STARS is slightly worse than SR for bedroom2 and hallway due

to the lack of transitional activities, making it harder to learn the temporal dependency accurately

based on their limited training data.
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Table 3.4: Weighted brier scores for various competing algorithms.

Room SR KNN CRF STARS
bathroom 0.1334±0.0149 0.1315±0.0103 0.1479±0.0152 0.1269±0.0173
bedroom1 0.0853±0.0129 0.1026±0.0085 0.0935±0.0118 0.0920±0.0156
bedroom2 0.2817±0.0148 0.2862±0.0178 0.2886±0.0223 0.2675±0.0172
hallway 0.1926±0.0953 0.2323±0.0675 0.2115±0.0816 0.1953±0.0849
kitchen 0.0842±0.0122 0.0915±0.0099 0.0917±0.0133 0.0820±0.0106
living room 0.1594±0.0181 0.1774±0.0171 0.1710±0.0201 0.1468±0.0142
stairs 0.3827±0.0705 0.4366±0.0552 0.3834±0.0288 0.3373±0.0505
study room 0.0441±0.0407 0.0649±0.0240 0.0506±0.0556 0.0381±0.0365
toilet 0.1440±0.0380 0.1368±0.0304 0.1442±0.0358 0.1360±0.0417
Overall 0.1700±0.0095 0.1815±0.0089 0.1794±0.0121 0.1598± 0.0087
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Figure 3.7: The estimated transition matrices F 1
r:: (left) and F 2

r:: (right) for living room. The
ordering of the classes on the horizontal and vertical axes are the same.

In addition to its lower brier score, another advantage of STARS framework is that themodel can

be used to learn the transition between activities via F 1 and F 2 as by-product. Fig. 3.7a and 3.7b

depict a heat map of the two tensor slices F 1
r:: and F 2

r:: for the living room. The results shown in

these figures are mostly consistent with our common sense knowledge. For example, Fig.3.7a shows

that the bent posture is mostly followed by the activity bend-to-standwhereas stand-to-bend

often leads to the bent posture. Similarly, Fig.3.7b shows that the stand-to-kneel activity would

lead to the kneel posture in the next time step, while lie-to-sit begins with lie posture and

ends with the sit posture.
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3.4 Related Work

Numerous approaches have been developed for human activity recognition. Classic approaches

include decision tree [19], support vector machine [128], logistic regression, and Bayesian net-

works [36]. For example, a comparison between logistic regression and non-linear SVM on human

activity recognition is given in [72]. These approaches do not consider the temporal/sequential

dependencies between activities. In contrast, methods such as Hidden Markov Model (HMM) and

Conditional Random Fields (CRF) are more well-suited for handling sequential data [45, 142],

and thus, have been widely utilized for activity recognition tasks [67, 123]. However, these

approaches are primarily designed for single-task learning, unlike the multi-task approach pro-

posed in this study. The success of multi-task learning for activity recognition has been well-

documented [117, 140, 141, 7, 22]. In [117], a structured multi-task classification method was

proposed, where each task corresponds to the classification of a specific person. [140] presented a

multi-task clustering framework for analyzing daily living activities from visual data collected by

wearable cameras. In addition, [141] focused on multi-task feature selection whereas [7] focused

on online matrix regularization. Unlike other existing works, my proposed framework considers

the classification in different rooms as separate tasks, with possibly different types of features.

3.5 Summary

In this thesis, I present a soft multi-task learning technique for human activity recognition

from multi-modal sensor data in a smart home. The proposed technique incorporates the temporal

dependencies between classes in a multi-task learning setting. Experimental results using a pub-

lic human activity recognition dataset showed that the proposed technique outperforms baseline

methods including K-Nearest Neighbor, Conditional Random Field, and single-task learning with

multinomial softmax regression. The framework not only improves the classification performance,

it also reveals the typical type of transitions between activities.
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CHAPTER 4

DISTRIBUTION PRESERVING MULTI-TASK REGRESSION FOR
SPATIO-TEMPORAL DATA

Regression methods play an important role in many spatio-temporal applications as they can be

used to solve a wide variety of prediction problems such as projecting future changes in the climate

system, predicting the crime rate in urban cities, or forecasting traffic volume on highways. Although

accuracy is an important requirement, building models that can replicate the future distribution of

data is just as important since the predicted distribution can be used for planning, risk assessment,

and other decision making purposes. For example, in climate modeling, knowing the changes in

future distribution of climate variables such as temperature and precipitation can help scientists to

better estimate the severity and frequency of adverse weather events in the future. In agricultural

production, the predicted distribution can be used to derive statistics such as average length of

future growing season or persistence of wet and dry spells, which are important metrics for farmers

and agricultural researchers.

However, previous studies have shown that the distribution of predicted values generated by

traditional regression methods are not always consistent with the true distribution of the data even

when the prediction errors are relatively low [5, 6]. While distribution-preserving methods such as

quantile mapping [120] have been developed to overcome this limitation, their prediction errors can

still be high [5]. For example, Figure 4.1(a) shows a comparison between the predicted values of a

non-distribution preserving model (Model 1) against a distribution-preserving model (Model 2) on

a set of 10 values. Although the first model has a much lower root mean square error (RMSE) it does

not fit well the tails of the predicted distribution, as shown in Figure 4.1, compared to the second

model, which fits the distribution almost perfectly but has a considerably higher RMSE. This has

led to the growing interest in developing techniques that can minimize both prediction error and

the divergence between the true and predicted distributions [5, 6]. However, current techniques

are mostly designed for single task learning problems, i.e., to build a regression model for a single

43



Figure 4.1: Comparison between the predictions of non-distribution preserving (Model 1) and
distribution preserving (Model 2)methods in terms of their rootmean squared errors and cumulative
distribution functions.

location. For multi-location prediction, these models are trained independently, and thus, often fail

to capture the inherent autocorrelations of the spatio-temporal data. In addition, their accuracy and

distribution fit are likely to be suboptimal for locations with limited training data. Therefore, multi-

task learning algorithms should be developed for multi-location problems (e.g. [134, 139, 136]).

To account for spatial autocorrelation and the imbalanced distribution of training data, there have

been several recent studies focusing on the development ofmulti-task learning (MTL)methods [148]

[147] for spatio-temporal data [137] [136]. MTL learns a localmodel for each location, but leverages

data from other locations to improve its model performance. It accomplishes this by assuming that

the local models share some common structure, which can be exploited to enhance their predictive

performance. Unfortunately, existing MTL approaches are mostly focused on minimizing the

residual error, paying scant attention to how realistic is the overall predicted distribution.

This chapter presents a novel distribution-preserving multi-task learning framework for spatio-

temporal data. Our framework assumes that the local models share a common low-rank representa-

tion, similar to the assumption used in [136]. It also employs a graph Laplacian regularizer based on

the Haversine spatial distance to preserve the spatial autocorrelation in the data. A non-parametric

kernel density estimation approach with L2-distance is used to determine the divergence between
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the predicted and true distributions of the data. Both the distribution fitting and multi-task learning

are integrated into a unified objective function, which is optimized using a mini-batch accelerated

gradient descent algorithm. Experimental results using a real-world climate dataset from the Global

Historical Climatology Network (GHCN) showed that our proposed framework outperformed the

non-distribution preserving approaches in more than 78% of the weather stations considered in this

study, with an average reduction in distribution error between 7.5% − 17.8%. Our approach also

outperforms a distribution-preserving single-task regression method called contour regression [5]

in at least 78% of the weather stations.

4.1 Preliminaries

Our framework is designed not only to learn accurate local regression models, but also to

generate predictions that are consistent with the true distribution of the data. This requires an

approach for estimating the density function of the response variable and a divergence measure to

compute the difference between two distributions. We review these approaches in this section.

4.1.1 Density Estimation

There are various density estimation methods that have been proposed in the literature. In general,

these methods can be divided into two categories:

• Parametric Methods, which assume that the density function follows certain parametric

distribution, such as Gaussian, Gamma, exponential and so on. The sampled data points are

used to estimate parameters of the distribution. As the number of parameters tends to be

small, parametric methods has an advantage in that they do not require a large number of

points to fit the density function. Unfortunately, many real-world datasets may not follow

the standard distributions as they often comprise of complex mixtures of distributions, which

leads to imprecise estimation of their true distribution.

• Non-parametric Methods, which avoid making a priori assumption about the shape of the
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distributions. Two popular methods are the K-nearest neighbor (KNN) approach and kernel

density estimation. The KNN approach uses only the k nearest neighbors to estimate the

density function whereas the kernel density estimation (KDE) approach uses a mixture of

Gaussian distributions centered at all the data points with a smoothing kernel width parameter,

h.

Due to the generality of the approach for fitting unknown distribution, we employ the KDE approach

to approximate the density function. Given N data points sampled from an unknown distribution

of a variable Y , y = {yi |, i = 1, 2, ..., N}, the density function of Y is estimated as follows:

Py(Y = y) =
1
N

N∑
i

G(y |yi, h
2) (4.1)

4.1.2 Divergence Measures

A divergence measure can be used to estimate the difference between two density functions. This

section reviews some of the divergence measures used in this chapter. Although there are other

measures available, evaluating them is beyond the scope of this chapter and is a subject for future

research.

4.1.2.1 RMS-CDF

RMS-CDF is a measure defined in [5] to compare two empirical cumulative distribution functions.

Let y and ŷ denote vectors of length N sampled from two distributions. The RMS-CDF measure

between the pair of distributions is computed as follows:

RMS-CDF =

√√√
1
N

N∑
i
(y(i) − ŷ(i))

2 (4.2)

where y(i) represents the i-th largest value in y and ŷ(i) is the i-th largest value in ŷ. The measure

is obtained by sorting the values in y and ŷ and computing the average sum of squared difference

between their sorted values.
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4.1.2.2 L2 Distance

Given a pair of random variables,Y and Ŷ , along with their respective probability density functions,

PY and PŶ , their L2-Distance can be calculated as follows [115]:

L2(PY, PŶ ) =

∫
(PY (y) − PŶ (y))

2dy

Unlike RMS-CDF, L2-Distance measures the divergence of two distribution based on probability

density functions instead of their cumulative distribution functions.

4.2 Proposed Framework

This section introduces our proposed framework for distribution-preserving multi-task regres-

sion. The framework uses kernel density estimation (KDE) to estimate the probability density

function. KDE provides a flexible approach for modeling the density function of unknown dis-

tributions unlike other parametric approaches. We also employ an L2-Distance to measure the

difference between two density functions.

4.2.1 Divergence Measurement

In this chapter, we use kernel density estimation (KDE) to estimate the probability density function

and the L2-Distance to measure the divergence between two density functions. Given N data

points sampled from an unknown distribution of a variable Y , y = {yi |, i = 1, 2, ..., N}, the density

function of Y is estimated as follows:

Py(Y = y) =
1
N

N∑
i

G(y |yi, h
2) (4.3)

where, G(y |µ, σ) represents Gaussian kernel with mean µ and standard deviation σ, and h is the

Parzan window width.

We now derive our approach for computing the divergence between two estimated probability

distributions, using the Gaussian kernel density estimator with L2-Distance. Let Y be a random

variable. Consider two N-dimensional vectors y = [y1, y2, ...yN ]
T and ŷ = [ŷ1, ŷ2, ... ŷN ]

T , where
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Table 4.1: Summary of notations used in the chapter.

Notation Definition
S number of stations(tasks)
Ns number of observations in task s
d number of features
k number of latent factors, k < d
Xs ∈ <Ns×d predictor matrix for station s
ys or
ŷs ∈ <Ns×1

observed or estimated
response samples at station s

Py(Y ) or
Pŷ(Y )

density function of Y estimated
by observed(or estimated) samples

W ∈ <d×S model parameter
U ∈ <d×k latent factors
V ∈ <k×S linear coefficients for latent factors
h, ĥ Parzen window widths for y and ŷ
G(y |µ, σ) Gaussian distribution
Q ∈ <S×S pairwise Haversine distances
A ∈ <S×S adjacency matrix, where Ai j =

1
exp(Qi j/γ)

D ∈ <S×S a diagonal matrix, Dii =
∑

j Ai j

the yi’s and ŷ j’s are randomly drawn from the sample space of Y . The density functions for Y

estimated using Gaussian KDE from the two sample vectors, Py(Y ) and Pŷ(Y ), can be written as:

Py(Y = y) =
1
N

N∑
i

G(y |yi, h
2)

Pŷ(Y = y) =
1
N

N∑
i

G(y | ŷi, ĥ
2)

The following theorem presents the closed-form formula for computing the L2-Distance between

two estimated density functions.

Theorem 1 L2-Distance between Py(Y ) and Pŷ(Y ) is:

L2(Py, Pŷ) =
∫
(Py(y) − Pŷ(y))

2dy

=
1

N2

N∑
i, j

[
G(yi |y j, 2h2) + G(ŷi | ŷ j, 2ĥ2) − 2G(yi | ŷ j, h

2 + ĥ2)

]
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Proof: We begin by expressing the L2-Distance in terms of their KDE functions:

L2(Py, Pŷ) =
∫
(Py(y) − Pŷ(y))

2dy

=

∫ (
1
N

N∑
i

G(y |yi, h
2) −

1
N

N∑
i

G(y | ŷi, ĥ
2)

)2
dy

Expanding the square yields the following expression:

L2(Py, Pŷ) =
1

N2

N∑
i, j

∫
G(y |yi, h

2)G(y |y j, h
2)dy

+
1

N2

N∑
i, j

∫
G(y | ŷi, ĥ

2)G(y | ŷ j, ĥ
2)dy

−
2

N2

N∑
i, j

∫
G(y |yi, h

2)G(y | ŷ j, ĥ
2)dy (4.4)

Based on the fact that the product of two Gaussian distributions, G(y |µ1, σ
2
1 ) and G(y |µ2, σ

2
2 ), can

be written as follows [18]:

G(y |µ1, σ
2
1 )G(y |µ2, σ

2
2 ) = G(µ1 |µ2, σ

2
1 + σ

2
2 ) × G(y |µ12, σ12),

where µ12 =
µ1σ

2
2+µ2σ

2
1

σ2
2+σ

2
1

, σ12 =

√
σ2

1σ
2
2

σ2
1+σ

2
2
.

Since
∫

G(y |µ, σ) = 1, the integral for the product of two Gaussians can be written as:∫
G(y |µ1, σ

2
1 )G(y |µ2, σ

2
2 )dy = G(µ1 |µ2, σ

2
1 + σ

2
2 )

Replacing this into Equation (4.4) leads to the following;

1
N2

N∑
i, j

(
G(yi |y j, 2h2) + G(ŷi | ŷ j, 2ĥ2) − 2G(yi | ŷ j, h

2 + ĥ2)

)
,

which completes the proof. �

4.2.2 DPMTL: Distribution-Preserving MTL Framework

Let D = {X,Y} be a spatial-temporal dataset, where X = {Xs |s = 1, 2, ..., S}, Y = {ys |, s =
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1, 2, ...S}, and S is the number of locations. Each Xs ∈ R
Ns×d is a d-dimensional multivariate time

series of predictor variables at location s, and each ys ∈ R
Ns is the time series for observations

at location s. Furthermore, Ns is the number of training examples available at location s. The

motivation for our spatial-temporal distribution preserving approach is to learn a set of local linear

models, fs(x; ws) that minimizes the prediction error while fitting the marginal distribution of Y .

Learning the local models amounts to estimating the weight matrix W = [w1 w2 · · ·wS] for all

the stations. Due to the inherent relationships between the prediction tasks at multiple locations,

our proposed framework assumes that W ∈ Rd×S is not a full rank matrix and can be decomposed

into a product of two low-rank matrices, U ∈ Rd×k and V ∈ Rk×S, where k < d. These low-rank

matrices can be derived as follows:

min
U,V

L1 + αL2 + λL3,

s.t. W = UV, ŷs = Xsws (4.5)

where

L1 =
S∑
s
| |ys − ŷs)| |

2
2

L2 = tr[W(D − A)WT )]

L3 =
S∑
s

{
1

N2
s

Ns∑
i, j

(
G(ysi |ys j, 2h2

s )

+ G(ŷsi | ŷs j, 2ĥ2
s ) − 2G(ysi | ŷs j, h

2
s + ĥ2

s )

)}
(4.6)

Our objective function consists of three loss functions: (1) L1, which measures the residual errors

on the training data between ground truth samples in ys and estimated samples in ŷs, (2) L2, which

is a regularizer to ensure that the model parameters for two neighboring locations should be close to

each other, and (3) L3, which measures the divergence between the true and predicted distributions

for Y .

For L2, an S × S similarity matrix A is calculated by applying an RBF kernel on the Haversine

distance [126], Qi j , between two locations i and j, i.e., Ai j = exp[−Qi j/γ]. W ∈ Rd×S is the
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model parameter matrix, where each column corresponds to the weights of the regression model

for a given station. The second loss function ensures that spatial autocorrelation is preserved by our

framework (following Tobler’s First Law of Geography [87]). It accomplishes this by using a graph

Laplacian regularizer, where D is a diagonal matrix whose diagonal elements are Dii =
∑

j Ai j .

The first loss function L1 is designed to minimize prediction error by learning the conditional

probability function Pys (Y |X). In contrast, the third loss function, L3, is designed to accurately

fit the marginal distribution Pys (Y ) by minimizing the L2-Distance between the true and estimated

density functions for all stations using Equation (4.6). The hyperparameter λ is used to control the

trade-off between minimizing the two loss functions. Note that the local models ws are assumed

to share a common latent matrix U. Such an assumption is useful especially for learning models

at locations with limited training data. Specifically, the model parameters for each station s are

assumed to be formed using a linear combination of the dictionary (latent factors) in U, with vs(the

s-th column of V) specifying the coefficients of the linear combination.

4.2.3 Optimization

We employ a mini-batch accelerated gradient descent approach to solve the optimization problem

given in Equation (4.5). This requires us to derive the gradient of each term, L1, L2 and L3, with

respect to the model parameters.

For L1, the partial derivatives are given by:

∂L1
∂U =

S∑
s

2XT
s XsUvsvT

s − 2XT
s ysvT

s (4.7)

∂L1
∂vs

= 2UT XT
s XsUvs − 2UT XT

s ys (4.8)

For L2, the partial derivatives are given by:

∂L2
∂U = 2UV(D − A)VT (4.9)

∂L2
∂V = 2UT UV(D − A) (4.10)
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For L3, we first show the partial derivative of L2-Distance with respect to ŷsm. The L2-

Distance of each station, given in Equation (4.6), is composed of three Gaussian kernels. Since

G(ysi |ys j, 2h2) is a constant with respect of ŷsm, its partial derivative is:.

Ns∑
i, j

∂G(ysi |ys j, 2h2)

∂ ŷsm
= 0

The derivative for the sum of pairwise Gaussian kernel of ŷs is given as follows:
Ns∑
i, j

∂G(ŷsi | ŷs j, 2ĥ2)

∂ ŷm

=
−1
2ĥ2 G(ŷsi | ŷs j, 2ĥ2) ×

[
1{i = m} − 1{ j = m}

]
(ŷsi − ŷs j)

=

Ns∑
j

−1
2ĥ2 G(ŷsm | ŷs j, 2ĥ2)(ŷsm − ŷs j) −

Ns∑
i

−1
2ĥ2 G(ŷsi | ŷsm, 2ĥ2)(ŷsi − ŷsm)

=
−1
ĥ2

Ns∑
i

G(ŷsm | ŷsi, 2ĥ2)(ŷsm − ŷsi)

The derivative for the cross-term Gaussian kernels is
Ns∑
i, j

∂G(ŷsi |ys j, h2 + ĥ2)

∂ ŷsm

=

Ns∑
i, j

−1
h2 + ĥ2 G(ŷsi |ys j, h

2 + ĥ2) × 1{i = m}(ŷsi − ys j)

=
−1

h2 + ĥ2

Ns∑
i

G(ŷsm |ysi, h
2 + ĥ2)(ŷsm − ysi)

Putting together all three derivatives, the partial derivative of L3 w.r.t. ŷsm is given by

∂L3
∂ ŷsm

=
1

Ns2

[
2

h2 + ĥ2

Ns∑
i

G(ŷsm |ysi, h
2 + ĥ2)(ŷsm − ysi)

−
1
ĥ2

Ns∑
i

G(ŷsm | ŷsi, 2ĥ2)(ŷsm − ŷsi)

]
Furthermore, denoting xsm ∈ <

d×1 (the m-th row of Xs), the partial derivative of ŷsm with respect

to U and V are:

∂ ŷsm
∂U = xT

smvT
s ∈ R

d×k,
∂ ŷsm
∂vs

= UT xT
sm ∈ R

k×1
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By applying chain rule, we obtain:

∂L3
∂U =

S∑
s

Ns∑
m

∂L3
∂ ŷsm

×
∂ ŷsm
∂U (4.11)

∂L3
∂vs

=

Ns∑
m

∂L3
∂ ŷsm

×
∂ ŷsm
∂vs

(4.12)

4.2.4 Algorithm

Equation (4.11) requires us to compute both G(ŷsm |ysi, h2 + ĥ2) and G(ŷsm | ŷsi, 2ĥ2), which takes

O(Ns). Furthermore, computing the partial derivative of L3 w.r.t all ysm, s = 1, 2, ..., S,m =

1, 2, ..., Ns requires O(SN2). To speed up the computation, we employ a mini-batch Gradient

Descent (MGD) approach at each iteration, where instead of using all Ns points from each station,

we use only a subset of size l < Ns. This reduces significantly the amount of computations needed

from O(SN2) to O(Sl2).

For each gradient descent update step at iteration t, let the mini-batch data matrix beX(t)s ∈ R
l×d

and the mini-batch response vector be y(t)s ∈ R
l×1. For each station s, we compute the following

vector ps ∈ R
l×1 as the derivative of 1

2L3 on ŷs.

ps =
1
l2
(
Gs ◦ Es

h2 + ĥ2 −
Hs ◦ Fs

2ĥ2 ) · 1 (4.13)

s.t Gs ∈ <l×l : Gs
i j = G(ŷ(t)si |y

(t)
s j , h

2 + ĥ2)

Hs ∈ <l×l : Hs
i j = G(ŷ(t)si | ŷ

(t)
s j , 2ĥ2)

Es ∈ <l×l : Es
i j = ŷ

(t)
si − y

(t)
s j

Fs ∈ <l×l : Fs
i j = ŷ

(t)
si − ŷ

(t)
s j

i, j = 1, 2, ..., l

Thus, the gradient w.r.t U can be obtained by combining Equations (4.7), ((4.9), and (4.11) as
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follows:

∂L

∂U = 2αUV(D − A)VT + 2
S∑
s

X(t)Ts X(t)s UvsvT
s

−2
S∑
s

X(t)Ts (y(t)s − λps)vT
s (4.14)

Similarly, the gradient w.r.t V is obtained by combining Equations (4.8), (4.10), and ((4.12) to

obtain:

∂L

∂V = 2αUT UV(D − A) + [∆a1,∆a2, ...,∆aS] (4.15)

where, ∆as = 2UT X(t)Ts X(t)s Uvs − 2UT X(t)Ts (y(t)s − λps). Observe that ps can be viewed as an

adjustment weighted by λ on ys when calculating the gradients. In other words, the gradient of the

distribution-preserving term L3 adjusts the role of y in calculating the gradients. Finally, the Mini-

Batch Gradient Descent(MGD) is implemented using the Accelerated Gradient Descent (AGD)

approach in order to speed up the search for local optimum [28]. A summary of the algorithm is

given in Algorithm 3.

4.3 Experimental Evaluation

We have conducted extensive experiments to evaluate the performance of our proposed frame-

work. The dataset and baseline methods used in our experiments along with the results obtained

are described in this section.

4.3.1 Data and Preprocessing

We evaluated the proposed approach on monthly precipitation data from the Global Historical

Climatology Network (GHCN) data [85]. The dataset spans a 540-month time period, from

January 1970 to December 2014. For brevity, we consider only data from weather stations in the

United States (located between 24.74◦N to 49.35◦N and 66.95◦W and 124.97◦W). We also omit

any station that has more than 50% missing values in its time series. The resulting dataset contains

precipitation data from 1,510 weather stations.
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Algorithm 2: DPMTL: Distribution Preserving Multi-task Learning
TRAINING PHASE
Input: Training data X = {Xs}, Y = {ys}, A, hs,ĥs, τu, τv , s = 1, 2...S.
Output: U, V = [v1, v2, ...vS].
repeat

t = t + 1;
for s = 1,2,...,S
randomly choose l sample data, X(t)s and y(t)s ;
ŷ(t)s = X(t)s Uvs;
compute ps with equation (4.13);

end for
U = U − τuLU by equation (4.14);
V = V − τv LV by equation (4.15);

until converges

PREDICTION PHASE
Input: Testing data X∗ = {X∗s}, U, V.
Output: Predictions Y∗ = {ŷ∗s}.
for s = 1,2,...,S

ŷ∗s = X∗sUvs;
end for

We selected 13 predictor variables from the NCEP Reanalysis [56] gridded dataset with the help

of our domain expert. A brief introduction of these predictors is shown in Tab. 4.2. The mapping

between the GHCN station and its NCEP Reanalysis grid is established by finding the closest grid

cell to each GHCN station. Variables of each station is deseasonalized by subtracting the seasonal

mean of that station and dividing by the corresponding seasonal standard deviation.

4.3.2 Experimental Setup

We compared the proposed framework, DPMTL, against the following baseline algorithms:

• Global model: The data from all stations are combined and used to train a global, lasso

regression model.

• Local model: A local model is trained for each station using only data from the given station.
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Table 4.2: Predictor variables from NCEP reanalysis.

Variable Description
cprat convective precipitation rate at surface
dlwrf longwave radiation flux at surface
dswrf solar radiation flux at surface
lftx surface lifted index
omega omega at sigma level 0.995
pr_wtr precipitable water content
prate precipitation rate
rhum relative humidity at sigma level 0.995
slp Sea level pressure
thick850 thickness for 850-500mb
thick1000 thickness for 1000-500mb
tmax maximum temperature at 2 m

• GSpartan [136]: A MTL framework for spatio-temporal data. This framework is equivalent

to setting the hyperparameter λ in DPMTL to 0 and adding L1 regularizers to the model

parameters U and V.

• Contour Regression: A distribution-preserving method for time series prediction [5]. Un-

like DPMTL, contour regression is designed to improve distribution fit by minimizing the

discrepancy between the empirical cumulative density function of the predicted and ground

truth values, whereas DPMTL applies L2-distance on probability density functions esti-

mated using KDE. Furthermore, contour regression is a single-task learning method, unlike

the multi-task learning method used in DPMTL.

The evaluation metrics used in this study are defined below, where ŷs corresponds to the

predicted values for station s and ys corresponds to their true values.

• RMSE: a measure of prediction error obtained by taking the square root of the average

sum-of-squared errors in the predictions.

RMSE =
1
S

S∑
s

√√√
1

Ns

Ns∑
i
(ysi − ŷsi)2
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• RMS-CDF: a metric defined in [5] to evaluate the fit between two cumulative distribution

functions created from a finite sample of observations. The metric is equivalent to applying

RMSE on the ordered values of the data.

RMS-CDF=
1
S

S∑
s

√√√
1

Ns

Ns∑
i
(ys(i) − ŷs(i))

2

• L2-Distance: another metric for measuring the divergence between two density functions,

computed according to the formula given in Theorem 1.

L2-Distance

=
1
S

S∑
s

1
N2

s

Ns∑
i, j

(
G(yi |y j, 2h2) + G(ŷi | ŷ j, 2ĥ2) − 2G(yi | ŷ j, h

2 + ĥ2)

)
We apply 9-fold cross validation on the 45-year data (from 1970-2014) to evaluate the perfor-

mance of various algorithms. Each fold corresponds to 5 years or 60 months worth of data. In each

of the 9 rounds, 8 of the folds are selected to be the training set while the remaining fold is used as

test set. Since the dataset has been standardized by their corresponding month, we set the Parzen

window width hs and ĥs to be half of its variance, i.e., 0.5. The spatial autocorrelation matrix

A = exp(−Q/γ) is computed using the Haversine distance Q, with γ = 100. The number of latent

factors k is set to 10 while the mini-batch size l is chosen to be 64. For gradient descent, the step

sizes τu and τv are initialized to 10−8 and 10−7 and gradually decreased with increasing number of

iterations.

The hyperparameters α and λ are tuned via nested cross-validation on the training data. Since

we want to minimize both residual and distribution errors, their trade-off must be considered during

hyperparameter tunning. Let RMSSUM= (1 − β)RMSE + β RMS-CDF, where β is a parameter

that controls the tradeoff between minimizing RMSE and RMS-CDF. The hyperparameters for all

competing algorithms are chosen in such a way to minimize the RMSSUM on the validation set.

To ensure fair comparison, we report the performance of all the algorithms for each β chosen in

the range between [0,1]. For example, if β = 0, the chosen hyperparameters will be biased toward

minimizing RMSE.
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Figure 4.2: Performance comparison between DPMTL and baseline approaches in terms of RMSE
and RMS-CDF when varying the tradeoff parameter β between 0 and 1.
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Figure 4.3: Percentage of stations in which DPMTL outperforms the baseline methods (for β = 0).
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4.3.3 Experimental Results

Figure 4.2 summarizes the average performance of the various algorithms after 9-fold nested cross

validation. For each algorithm, their RMSE and RMS-CDF metrics are computed as β is varied

from 0, 0.25, 0.5, 0.75 to 1. The results suggest that Global (lasso) and GSpartan are not sensitive to

the tradeoff parameter β, which is obvious since they are both non-distribution preserving methods.

For Local (lasso) models, varying β reduces RMS-CDF slightly, though the change is more

erratic as the tuned hyperparameters are highly sensitive to the training set size. For distribution

preserving methods such as contour regression and DPMTL, Figure 4.2 suggests that there is a

trade-off between minimizing prediction error and distribution error. Increasing β monotonically

reduces RMSE-CDF at the expense of increasing RMSE. When the hyperparameters are tuned to

minimize RMS-CDF (β = 1), DPMTL has the lowest RMS-CDF with only a slight increase in

RMSE compared to the non-distribution preserving methods. Specifically, the increase in RMSE

is only between 0.75% − 1.48% compared to the significant reduction in RMS-CDF between

7.5% − 17.75%. DPMTL also outperforms contour regression, a distribution-preserving single-

task learning method. In fact, the curve for DPMTL is lower than that for contour regression, which

justifies our rationale for developing a distribution-preserving MTL framework. Furthermore, the

improvement in RMS-CDF for DPMTL is more pronounced for larger values of β. For example,

when β = 0.5, DPMTL achieves a reduction in RMS-CDF bymore than 21.9% compared to global,

local, and GSpartan, with an increase in RMSE by at most 5.72%.

We also analyze the performance of the algorithms on a station by station basis. Figure 4.3

shows the percentage of stations in which DPMTL outperforms each baseline method according

to the given metrics. The results show that DPMTL outperforms both Global and Local models in

more than 91% of the stations. It also outperforms GSpartan and Contour in more than 78% of the

stations (in terms of RMS-CDF) and in more than 80% of the stations (in terms of L2-Distance).

Figure 4.4 compares the RMSE values of GSpartan and DPTML for all stations in the dataset.

While the overall RMSE for DPMTL is slightly worse than GSpartan, the maps shown in Figure

4.4 are quite similar to each other. The poor performance of DPMTL tends to occur at locations
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(a) RMSE results for GSpartan.
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(b) RMSE results for DPMTL.

Figure 4.4: Comparison between the RMSE of GSpartan and DPMTL for β = 0 (figure best viewed
in color).
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(a) RMS-CDF error for GSpartan.
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(b) RMS-CDF error for DPMTL.

Figure 4.5: Comparison between the RMS-CDF of GSpartan and DPMTL for β = 0 (figure best
viewed in color).

where GSpartan also has high RMSE. However, in terms of their RMS-CDF, the maps shown in

Figure 4.5 suggest that the distribution fit of DPMTL improves significantly for the majority of

the stations. GSpartan performs poorly with high prediction and distribution errors especially in

the southeastern part of the United States, where there are more variability in their precipitation

time series. Although the RMSE is also high for DPMTL in this region, its RMS-CDF improves

significantly. The maps also show that the distribution error is generally lower for both methods

along the Pacific and Atlantic coastal areas.

Finally, we also examine characteristics of the predicted distribution generated by different

algorithms. Figure 4.6 shows the precipitation histograms obtained using DPMTL, contour regres-

sion, and GSpartan for a station located at [38.25◦N , 82.99◦W]. The results suggest that DPMTL
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Figure 4.6: Histogram comparison of precipitation distribution for a weather station located at
[38.25◦N , 82.99◦W].

has the best fit to the ground truth distribution compared to contour regression and GSpartan. In

particular, DPMTL was able to capture the skewness and heavy tail distribution. DPMTL also fits

the distribution of below average precipitation values more effectively than the other two methods.

Although the plot was shown only for one station, the good fit obtained by DPTML was found in

many other stations in our dataset.

4.4 Related Work

Multi-task learning (MTL) is amachine learning technique for solvingmultiple relatedmodeling

tasks jointly by exploiting and sharing the common information among tasks [148]. MTL improves

generalization performance by leveraging domain-specific information to enable the pooling of

information across different tasks, which is particularly useful when there are insufficient training

instances available to solve each prediction task separately. It also provides a natural way to handle

multi-location prediction problems [147] [137] [136]. For example, in [136], the prediction at each

location can be considered a single task, which is related to the prediction tasks at other nearby

locations. However, existing MTL methods focus primarily on minimizing point-wise prediction
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errors, ignoring how well the predicted distribution fits the true distribution of the data. Alternative

approaches such as quantile mapping [82] have been developed to correct the bias between the true

and predicted distribution. However, such techniques tend to have poor prediction accuracy [5].

While hybrid approaches such as contour regression has been developed [5], they are mostly

designed for single-task learning.

4.5 Summary

This chapter presents a distribution preserving multi-task regression framework for spatio-

temporal data. Our framework employs a Parzen window based kernel density estimation (KDE)

approach to compute the probability density function and L2-distance to measure the difference

between two distributions. We evaluated our method on a real-world climate dataset, containing

more than 1500 stations in the United States, and showed that the proposed framework outperforms

four other competing baselines in at least 78% of the stations.
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CHAPTER 5

MULTI-TASK HIERARCHICAL LSTM FRAMEWORK FORMULTI-STEP-AHEAD
TIME SERIES FORECASTING

This chapter investigates the challenge of solving multi-step-ahead time series forecasting using a

multi-task learning approach. There are two key differences between the framework proposed in

this chapter and the one developed in the previous chapter. First, instead of making single-step

prediction, the framework proposed here is designed to generate forecasts at multiple consecutive

future time steps. Second, the proposed framework is nonlinear, using a hierarchical long short-

term memory (LSTM) architecture to capture the temporal dependencies of the data. As proof of

concept, the proposed framework will be applied to the problem of forecasting monthly sea surface

temperature using a suite of ensemble member forecasts from dynamical (physical) models as its

predictor variables.

The remainder of this chapter is organized as follows. The motivation and challenges of

predicting sea surface temperature are described in Section 5.1, followed by a review of related

literature in Section 5.2. The formal problem statement and background on LSTM architecture are

given in Section 5.3. The proposed hierarchical LSTM structure is then described in Section 5.4.

Section 5.5 presents the experimental results followed by conclusions in Section 5.6.

5.1 Ensemble Forecasting of Sea Surface Temperature

With more than two-third of the Earth covered by ocean, accurate prediction of sea surface

temperature (SST) is crucial due to its significant influence on the climate patterns around the

world. For example, the El Niño phenomenon, which is related to the abnormally high sea surface

temperature values in the equatorial Pacific Ocean, has been shown to cause unusual droughts

and extreme rainfall across many regions [49]. In addition, SST is a key parameter for weather

prediction and atmospheric model simulations and contributes to the development of tropical

cyclones such as hurricanes [30]. Thus, its accurate prediction is essential and remains an active
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research area [52, 78, 48].

Various dynamic forecasting systems, such as NCEP coupled forecast system model (CFSv2)

and the Canadian Seasonal to Interannual Prediction System (CanCM3), have been developed over

the years to predict SST and other climate variables. These models would simulate the physical

processes that govern the fundamental dynamics of the Earth system. However, predicting the future

states of a such a highly nonlinear dynamic system is very challenging, even with these state-of-

the-art models. In particular, the predictions made by these models will likely never be perfect due

to the uncertainties associated with the models themselves, their initial conditions, and the chaotic

nature of the ocean and climate system. While the errors in predictions may be acceptable at for

short-term predictions, these errors can compound and accumulate as predictions are made for more

distant times. To better represent the effect of initial condition uncertainties, ensemble prediction

with perturbed initial conditions has been adopted in operational forecasting [26]. To represent

the uncertainties associated with models such as model physics, parameterization schemes and

resolution, multi-model ensemble (also called superensemble) approach was introduced for SST

predictions. Instead of a single forecast run from a single model, ensemble forecast from a group

of models, each producing an ensemble of forecast from different initial conditions, are used to

better estimate forecast uncertainties. The multi-model ensemble approach has been demonstrated

to provide more reliable forecast than any single model.

The North American Multi-Model Ensemble (NMME) [62] is an example of a multi-model

ensemble for climate prediction, including monthly SST. Fig. 1.3 shows an example of the monthly

SST predictions from NMME for the time period between June 2010 and November 2010. The

time at which the forecasts were generated is known as forecast generation timewhereas the number

of months ahead the forecast was made is called the forecast horizon or lead time. For example, the

forecasts shown in Fig. 1.3 are for lead times up to 8 months. Each month, every physical model is

run multiple times with slightly perturbed initial conditions to create several different instances of

each model. Each subplot of Figure 1.3 contains the entire ensemble of all models and all of their

instances (i.e. the superensemble) generated within a single month.
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However, in many cases it is preferable to have a single point estimate of the expected SST

rather than a superensemble of disparate SST predictions. With multi-model ensemble prediction,

a common way to derive a deterministic forecast from the superensemble is to take the average or

median [103], while other methods have been developed to weigh the models differently based on

their performance [135]. These previous approaches suffer from two main deficiencies. First, they

are unable to capture complicated non-linear relationships between different ensemble members.

Second, they may not fully capture the temporal autocorrelation present in the time series. The

latter problem is illustrated in Fig. 5.1. Each row in the diagram corresponds to a set of predictions

generated at a given forecast generation time while each column represents the set of forecasts

generated for a given lead time. The figure shows there are two types of temporal dependencies

that should be modeled in multi-step-ahead time series prediction:

1. Temporal autocorrelation between different lead time forecasts for the same forecast gener-

ation time. This is denoted as lead time level autocorrelation (i.e., autocorrelation between

elements in each row) in Fig. 5.1.

2. Temporal autocorrelation of all forecasts for a given lead time. This is denoted as generation

time level autocorrelation (i.e., autocorrelation between elements in each column) in Fig. 5.1.

Incorporating both types of autocorrelation into the learning framework would be useful to ensure

robustness of the models and temporal consistencies of their predictions especially for noisy data.

To address these challenges, this chapter presents a novel hierarchical LSTM framework for

aggregating the multi-model ensemble forecasts of SST. The proposed architecture consists of three

main components. The first component is a lead time encoder LSTM for extracting a high-level

representation of the predictions made at each lead time. The second component is the generation

time encoder which is an LSTM that extracts a high-level representation of the physical model

predictions for a particular lead time and generation time window. The third component is a fully

connected network to convert the output of the generation time encoder to a final prediction.
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Figure 5.1: A two-level autocorrelation structure in multi-lead time forecasting of the SST data
shown in Fig. 1.3.

5.2 Related Work

To address the multi-step-ahead time series forecasting problem, a novel MTL framework using

hierarchical LSTM is proposed in this chapter. This section reviews previous research on multi-task

learning in deep neural networks (DNN) and hierarchical LSTM.

5.2.1 Multi-task Learning in DNN

Deep learning has recently exploded in popularity thanks to its ability to effectively model com-

plicated non-linear relationships. It has been succesfully applied to images [64], video [112], and

natural language processing [124] among other important tasks. The conventional deep learning

approaches to multi-task learning can be categorized into two types: hard parameter sharing and

soft parameter sharing of hidden layers [105]. In terms of hard parameter sharing, multiple neural

networks are built, and they are constrained to share the parameters at a certain number of layers

while learning parameters on their own for the rest layers [21]. In [53], the cross-language layer
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is shared by the model of all languages, and differentiates only at the output layer. In terms of

soft parameter sharing, regularizer skills are employed to constrain the correlations between model

parameters from different tasks [37, 143].

5.2.2 Hierarchical LSTM

Long short-term memory (LSTM) network is one of the most popular deep learning architecture

for modeling sequential data such as time series, where the data points exhibit strong temporal

autocorrelation, and document data, where the appearance of a word depends highly on its context.

Hierarchical LSTM [144, 44, 100] is a variant of LSTM that has been developed in recent years to

capture the myriad types of relationships and processing of sequential data.

For example, in document modeling, a hierarchical LSTM architecture was proposed in [144]

to represent the multi-level structure of a document. Specifically, a document contains words

that are sequentially connected to form a sentence, which in turn, is connected to other sentences

to form a paragraph. In [144], the first level of the LSTM hierarchy encodes the word level

dependencies, while the second level encodes the sentence level dependencies. The document-

sentence-word hierarchy of the data is analogous to the two-level temporal correlation shown in

Fig 5.1. A hierarchical LSTM framework was also developed in [44] for the multi-modal data

fusion problems, where each modality may refer to sensors, video, audio, etc. The first LSTM layer

of the hierarchy learns the modality-specific temporal dynamics whereas the second layer combines

the representation of each modality to generate an embedding for each time step. However, none

of these hierarchical LSTM architectures [144, 44] are designed for multi-task learning, and thus,

cannot be easily adapted to the multi-step-ahead time series prediction problem.

In [100], a hierarchical LSTMwith attentionmechanismwas developed for time series prediction

with multiple input (driving) time series. The proposed architecture builds upon previous research

on attentionmechanism [13] to improve performance of RNN. Specifically, the attentionmechanism

acts as a selection/filtering mechanism to the input data. The first layer of their architecture uses an

input attention mechanism to extract the relevant input variables for the analysis while the second

67



layer uses an LSTM with temporal attention mechanism to learn a hidden representation for each

time step and selects the relevant hidden states for subsequent time series prediction task. The

outputs of the second layer are then fed into another LSTM for modeling the response time series.

Unfortunately, the original architecture was not designed for multi-task learning problems. It has to

be modified to make predictions at multiple future time steps, without using the ground truth values

of the shorter-term forecasts to make longer-term forecasts. A modified version of this architecture

is therefore used as one of the baseline methods in the experiment section.

5.3 Preliminaries

This section formalizes the multi-step time series forecasting problem and introduces the basic

formulation of LSTM model.

5.3.1 Problem Statement

Let x<t,l> ∈ R
M be an input vector of predictor variables generated at time t for the forecast at lead

time l, where t ∈ [1,T] and l ∈ [1, L]. Furthermore, let yt+l ∈ R be the corresponding ground truth

value of the target variable at time t + l. The multi-step-ahead time series forecasting is formally

defined as follows.

Definition 1 (Multi-Step-Ahead Time Series Forecasting) Given a training set,D = {Xt, yt}
T
t=1,

where Xt ∈ R
L×M and yt ∈ R

L , multi-step-ahead time series forecasting seeks to learn a target

function fl : RM → R that maps each input vector x<t,l> ∈ R
M to its corresponding output yt+l .

Let o<t,l> ≡ fl(x<t,l>) denote the output of the target function for lead time l when applied to

the predictor variables generated at time t. The effectiveness of the target function output can be

measured by comparing it against the ground truth value yt+l .

In the context of ensemble forecasting of SST, the predictor variables correspond to forecasts

generated by a set of M physical models. Specifically, at each generation time t, a physical model m

is run to generate forecasts up to L future time steps (lead times). Each physical model is run by dm
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times, with a varying initial and boundary conditions. The output of each dm run is also known as

an ensemble member forecast and dm is the number of ensemble members associated with model

m. The forecasts of these dm ensemble members are often averaged together into a single point

prediction for model m. The resulting averaged forecasts of the M models are then used as input to

the proposed framework.

5.3.2 Long Short-Term Memory (LSTM) Network

Our model is based upon the popular Long Short-Term Memory network (LSTM), a type of

Recurrent Neural Network (RNN) [50, 46] that has proven to be effective in dealing with sequential

data, especially time series data with long-term dependencies. At each time step, i, the hidden state

of the LSTM, hi, depends on the hidden state from the previous time step, hi−1, as well as the input

in the current time step, xi. We compactly represent this relationship using the following equation:

ht = LSTM(xt, ht−1) (5.1)

LSTM maintains the long-term history of a time series with a cell state ct . The information that

flows into and out of the cell state are regulated with several gates. First, the input xt at current

time t and the previous hidden state ht−1 are used to change the cell memory as follows:

c̄t = tanh(Wcxt + Ucht−1 + bc)

The amount of change to the current cell state is controlled by an input gate it while the amount for

the cell to maintain its previous state information is regulated by a forget gate ft :

ct = it ◦ ct−1 + ft ◦ c̄t,

where the input and forget gates also depend on xt and ht−1.

it = σ(Wixt + Uiht−1 + bi)

ft = σ(W f xt + U f ht−1 + b f )
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The cell state provides the information needed to compute the output ht , whose value is regulated

by an output gate.

ht = ot ◦ tanh(ct)

ot = σ(Woxt + Uoht−1 + bo)

In the above equations, σ(·) denotes a sigmoid activation function, tanh(·) denotes a hyperbolic

tangent function, and ◦ denotes the Hadamard product operation.

5.4 Proposed MSH-LSTM Architecture

This section presents an overview of the proposed multi-step-ahead hierarchical LSTM (MSH-

LSTM) framework for time series forecasting. The objective of MSH-LSTM is to jointly train a set

of inter-dependent LSTMmodels that capture both the temporal dependencies between lead times as

well as those between consecutive generation times, as illustrated in Fig. 5.1. A schematic diagram

of the proposed MSH-LSTM architecture is shown in Fig.5.2. The architecture is composed of

three layers—a lead time encoder layer, a generation time encoder layer, and an output layer. Details

of each layer are discussed next.

5.4.1 Lead Time Encoder Layer

This layer enforces the temporal dependencies between different lead time forecasts for the same

forecast generation time. Specifically, let vt = {x<t,1>x<t,2> · · · x<t,L>} be a sequence of length L

corresponding to the ensemble forecasts generated at time t for each lead time l ∈ [1, L], where each

element of the sequence is an M-dimensional vector, i.e., x<t,l> ∈ R
M . The lead time encoder layer

takes this sequence as input and produces a sequence of hidden states {h<t,1>h<t,2> · · · h<t,L>}

of the same length using an LSTM network, LSTMlead , where each h<t,l> ∈ R
d . The outputs of

LSTMlead can be viewed as feature representation for each forecast lead time l, embedded with

the temporal dependencies between them. More formally, the relationship between the input and
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Figure 5.2: Proposed hierarchical LSTM architecture for multi-step-ahead time series forecasting.
Blocks with different shades of colors (in the generation time and output layers) are trained inde-
pendently and have different parameters while those with the same color (lead time encoder layer)
are trained jointly and have identical parameters.

output of the lead time encoder can be expressed as follows:

h<t,l> = LSTMlead(h<t,l−1>, x<t,l>) (5.2)

The structure for LSTMlead is depicted by the orange boxes at the first (left-most) layer of Fig. 5.2.

Each box is assumed to process a sequence of length L from different generation times, i.e.,

vt−K+1, vt−K+2, · · · , vt . Although they are depicted as separate boxes, note that the parameters of

LSTMlead are shared across the boxes, i.e., the parameter values are identical when processing

every sequence in the time window K .
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5.4.2 Generation Time Encoder Layer

The second layer of MSH-LSTM, which corresponds to the generation time encoder, models

the temporal dependencies between forecasts generated at different times in a given time win-

dow, K , for each lead time l. To illustrate this, let t be the current time step and wl =

{h<t−K+1,l>h<t−K+2,l> · · · h<t,l>} be a sequence of length K , whose elements correspond to the

outputs of the hidden states generated for the same lead time l by the previous layer of MSH-LSTM.

In the case when t < K , zero padding is used to ensure every sequence wl is of the same length, K ,

at all times.

The generation time encoder will take the sequence for a specific lead time l (i.e., wl) as input

and produces another sequence of hidden states s<t−K+1,l>s<t−K+2,l> · · · s<t,l> as output using an

LSTMnetwork LSTMgen
l , where each s<t,l> ∈ R

p and l ∈ [l, L]. More specifically, the relationship

between the inputs and outputs of the generation time encoder for lead time l can be expressed as

follows:

s<t,l> = LSTMgen
l (s<t−1,l>, h<t,l>) (5.3)

The outputs of LSTMgen
l can be viewed as a representation embedding by taking into account the

temporal dependencies between different forecast generation times (within the time window K) for

a given lead time l. Furthermore, note that s<t,l> incorporates information about both the lead time

level autocorrelation and generation time level autocorrelation shown in Fig. 5.1. In details, while

s<t,l> explicitly learns the temporal dependencies between different forecast generation times using

Eq. (5.3), and the temporal dependencies between the lead times are implicitly captured through

the hidden states h<t,l> as its input.

Unlike the lead time encoder layer, the parameters of the generation time encoders are not

shared, because the temporal relationships vary for different lead times. Such varying parameter

values are illustrated by the different shades of blue boxes in Fig. 5.2, where each box is assumed

to process a sequence of length K for different lead times, i.e., w1,w2, · · · ,wL .
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5.4.3 Output Layer

Finally, the output layer of MSH-LSTM will take each hidden state s<t,l> as input and uses a fully

connected network to generate its prediction for lead time l at generation time t:

o<t,l> = gl(s<t,l>) (5.4)

The fully connected networks are depicted by the green boxes in Fig. 5.2. As we assume that the

models may vary across different lead times, the parameters are not shared across different lead

times, and an independent gl is learned for each lead time. This is depicted by the varying shades

of green boxes in the diagram.

5.4.4 Parameter Estimation

LetΘ be the set of parameters associated with the proposedMSH-LSTM framework to be estimated

from data. MSH-LSTM is a multi-task learning framework as the model parameters for all lead

times are (1) tied via the hierarchical LSTM structure and (2) jointly estimated by optimizing the

following least-square loss function:

Θ
∗ = arg min

Θ

T∑
t

L∑
l
(o<t,l> − yt+l)

2 (5.5)

The network parameters in Θ are initialized randomly and then trained in an end-to-end fashion

using Adam [61]. To avoid overfitting, a dropout strategy is employed during the training process,

which improves the robustness of the network. The stopping criteria for training the network

depends on its performance on a separate validation set. Since the error on validation set generally

has a decreasing trend as the training epochs iterate, the training process is terminated when

the validation error converges. A pseudocode summarizing the training procedure is shown in

Algorithm 3. Hyperparameters of the framework such as the number of nodes at each layer, learning

rate, batch size, and dropout rate are also tuned based on the performance of the framework on

validation set. The entire architecture was implemented in PyTorch [95].
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Algorithm 3: Training process for MSH-LSTM: Multi-task Hierarchical LSTM

Input: Training set D = {Xt, yt}
T
t−1, K , and dropout rate p;

Output: Parameter set Θ∗ for LSTMlead , LSTMgen
l , and gl (where l ∈ [1, L]);

i = 0;
Initialize Θ randomly as Θ(0);
repeat

for batch = 1,2,...
i = i + 1;
Randomly drop out neural network units with rate p;
Update Θ(i) with back propagation;
Recover the network units that were dropped out;

end for
Compute error on validation set by replacing Θ(i) into Equations (5.2), (5.3), (5.4), (5.5);

until validation error converges
Θ∗ = Θ(i)

5.5 Experimental Results

5.5.1 Data Set

The performance of the proposed MSH-LSTM framework is evaluated using an ensemble of

monthly sea surface temperature forecasts from the North American Multi-Model Ensemble

(NMME) project [62]. Monthly SST observations are collected for a 10-year period from Jan-

uary 1982 to December 2010 for a total of 384 months. The forecast lead times are set to a

maximum of 9 months, starting from the end of the current month1 to the end of 8 months ahead,

for a total of L = 9 prediction tasks. The data was obtained from 58 grid cells located in the

tropical Pacific area. Forecasts from M = 7 physical models, which are listed in Table 5.1, are

used as predictor variables. As has been mentioned before, although each physical model generates

multiple ensemble member forecasts (from varying initial conditions), the average forecast value

of the members was used to represent the predictions of each physical model. The window size K

for creating sequences of different forecast generation times is set to 6.

The effectiveness of the proposed framework was evaluated on 6 different training-validation-

1As the forecasts are generated at the beginning of the month, forecasting the current month
means predicting the average sea surface temperature over the course of the month that is currently
in progress.
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Table 5.1: Physical models from NMME used for monthly sea surface temperature prediction

Index Model name # ensemble members
1 CMC1-CanCM3 10
2 CMC2-CanCM4 10
3 COLA-RSMAS-CCSM3 6
4 COLA-RSMAS-CCSM4 10
5 GFDL-CM2p1 10
6 NCEP-CFSv2 10
7 NCAR-CESM1 24

Table 5.2: Partitioning of SST data into multiple training, validation, and test splits.

Data Set Training Period Validation Period Testing Period
SST1 Jan 1982 - Apr 2006 Jan 2007 - Aug 2008 May 2009 - Dec 2010

SST2 Jan 1982 - Aug 2004,
Jan 2010 - Dec 2010 May 2005 - Dec 2006 Sep 2007 - Apr 2009

SST3 Jan 1982 - Dec 2002,
May 2008 - Dec 2010 Sep 2003 - Apr 2005 Jan 2006 - Aug 2007

SST4 Jan 1982 - Apr 2001,
Sep, 2006 - Dec 2010 Jan 2002 - Aug 2003 May 2004 - Dec 2005

SST5 Jan 1982 - Aug 1999,
Jan 2005 - Dec 2010 May 2000 - Dec 2001 Sep 2002 - Apr 2004

SST6 Jan 1982 - Dec 1997,
May 2003 - Dec 2010 Sep 1998 - Apr 2000 Jan 2001 - Aug 2002

testing splits, as shown in Table 5.2. To avoid overlap due to the multi-step-ahead predictions, a gap

of 9 months is introduced between the training-validation and validation-testing sets. Each split

has 20 generation time steps for validation and another 20 generation time steps for testing. Since

the data is collected over 58 grid cells, there are altogether 20 (generation time steps) × 58 (grid

cells) × 9 (lead times) test instances to be predicted in each split. Furthermore, the sequences in

the training, validation, and testing sets are centered by subtracting their monthly values with the

corresponding monthly means computed from the training set.

5.5.2 Baseline Algorithms

The proposed MSH-LSTM framework was compared against the following baselines:

• EnS: This is a simple approach that uses the ensemble mean to form a point estimate for the

ensemble of model forecasts [26].
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• Ridge: In this approach, an independent ridge regression model is trained for each lead

time task. The input of the model is a 7-dimensional vector, corresponding to the averaged

ensemble member forecasts for each of the 7 physical models.

• FFN: This approach trains an independent feed-forward neural network with two hidden

layers and an output layer for each lead time. Hyperparameters to be tuned on validation set

include the number of nodes in each layer, dropout rate, learning rate and batch size. The

input of the model is similar to that for ridge regression.

• LSTM: An independent LSTM model is trained for each lead time task. The input to the

LSTM is slightly different from that for ridge regression and feed-forward neural network

as it requires a sequence of length 6 (K = 6), where each element of the sequence is a

7-dimensional vector.

• GFFN: This global approach trains a single feed-forward neural network to predict all 9 lead

time tasks. The input is similar to that for ridge regression and feed-forward neural network.

• GLSTM: This is similar to the previous global approach except it uses LSTM instead of

a feed-forward network. The input of the model is similar to that for independent LSTM

models.

• ARIMA: This corresponds to the autoregressive integrated moving average model, which

is typically used for time series prediction [81]. For each lead time task, an independent

ARIMA model is trained. Its input corresponds to historical SST values up to 6 previous

time steps, i.e., it does not use model forecasts from NMME.

• DARNN: This is a state-of-the-art hierarchical LSTM network for time series prediction

with exogenous variables [100]. It is based on a dual stage attention-based recurrent neural

network model. Although it is a hierarchical LSTM, its multi-level structure is designed to

capture relationships between its input features (i.e., physical model forecasts) and forecast

generation times, but not the dependencies between different lead times, unlike the proposed
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MSH-LSTM framework. Since the network is not designed for multi-step-ahead prediction,

an independent DARNN model is trained for each lead time task. The input to the model is

a sequence of length 6, similar to that for LSTM and MSH-LSTM.

• MTL-LSTM: A 3-layer LSTM network based on the multi-task learning approach described

in [105, 21]. The bottom layer is a feed forward layer shared by all lead time tasks. The

middle layer is a standard LSTMwhile the top (output) layer is a feed forward neural network.

While the model parameters at the bottom layer are shared, both the middle and top layers

are built independently for each lead time task. Its input corresponds to the ensemble model

forecasts for all 9 lead times with a time window of 6 forecast generation times. In other

words, the input is a length-6 sequence of 7 × 9-dimensional matrices.

5.5.3 Evaluation Metric

The prediction error for each method is computed using the root mean square error (RMSE) metric.

The metric can be computed independently for each lead time prediction task as well as for all the

tasks:

Error for a given lead time, l: RMSEl =

√√√
1
T

T∑
t
(yt+l − o<t,l>)

2

Overall error for all lead times: RMSE =

√√√
1
T

T∑
t

L∑
l
(yt+l − o<t,l>)

2

where o<t,l> denotes the predicted value for lead time l at the forecast generation time t.

5.5.4 Experimental Settings

For each method, its hyperparameters are tuned using the validation set. The hyperparameter for

ridge regression corresponds to the ridge regularizer. For DNN-type approaches including FFN,

LSTM, GFFN, GLSTM, DARNN, MTL-LSTM and the proposed MSH-LSTM, the number of

nodes in each hidden layer is a hyperparameter that needs to be tuned. For all the methods, the

77



number of nodes is varied from 10 to 50. Other hyperparameters include batch size, initial learning

rate and dropout rate are also tuned independently for each dataset based on its performance on the

corresponding validation set. Furthermore, as the loss function for DNN is non-convex, different

initialization of the model parameters may yield different solutions. Consequently, we test each

hyperparameter setting for the FFN, LSTM, GFFN, GLSTM, MTL-LSTM and MSH-LSTM with

15 different initializations of the weights. RMSE values are reported based on their average over

these 15 runs.

5.5.5 Results and Discussion

A summary of the RMSE values, averaged across the 6 data splits, is shown in Table 5.3. In terms

of their overall RMSE, simple baseline methods such as ensemble mean and ARIMA have the

worst performance among all the methods. This shows the importance of combining the ensemble

member forecasts in a weighted fashion to obtain better predictions instead of using only the mean

forecasts or historical time series alone for making long-term predictions. The next worst performer

is ridge regression, which suggests the importance of using non-linear approaches to aggregate the

ensemble predictions. Furthermore, global models such as GFFN and GLSTM also have worse

RMSE compared to their independent local model counterparts (FFN and LSTM). This suggests

there is significant difference in the skills of the individual physical models for making predictions at

different lead times, which explains the inferior performance of the one-size-fits-all global models.

Among all the competing methods, MSH-LSTM achieves the lowest overall RMSE, which

demonstrates the effectiveness of the proposed framework for the multi-step-ahead ensemble fore-

casting problem. In particular, it outperforms both MTL-LSTM, which is based on a conventional

approach to multi-task deep learning [105] and DARNN, which is the state-of-art DNN-typed

hierarchical approach for time series prediction with exogenous variables [100]. The proposed

MSH-LSTM framework also outperforms both MTL-LSTM and DARNN for the majority of the

lead times except for lead times 0 and 8. The effectiveness of MSH-LSTM can be explained as

it is the only framework that considers lead-time level autocorrelation, whereas other frameworks
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such as MTL-LSTM and DARNN only account for generation-time level autocorrelation and the

relationship between predictors. The result also suggests that the hierarchical LSTM architecture

of MSH-LSTM is more suitable for the problem than the hard parameter sharing strategy employed

by MTL-LSTM.

In terms of lead-time RMSE, MSH-LSTM has the lowest RMSE for lead times 1 to 5 and has

among the top-3 lowest RMSE for lead times 6, 7, and 8. Both MSH-LSTM and MTL-LSTM

appear to perform slightly worse than conventional LSTM for lead time 0. One possible explanation

is that, since both MSH-LSTM and MTL-LSTM are multi-task learning approaches, the long-term

forecasts performance may be improved at the expense of a slight degradation in their accuracy for

forecasting lead time 0. In addition, MSH-LSTM is outperformed by FFN for lead times 6 to 8,

though by relatively small margin.

Another interesting observation is that the independent LSTM models generally do a much

better job at short-term forecasting but perform worse at long-term forecasting (4 months or more)

compared to independent FFN models. In both approaches, the models are trained independently

for each lead time task. As the longer-term predictors have higher variance in the ensemble

forecasts, this suggests that LSTM may not be as effective dealing with higher variance in the

predictors compared to FFN. This limitation of LSTM also seems to affect the performance of

MTL-LSTM and MSH-LSTM. Nevertheless, it appears that MSH-LSTM is able to compensate

for such limitation by regularizing its predictions to ensure the generation-time and lead-time level

autocorrelations are modeled. Overall, its RMSE performance is comparable to FFN for longer

lead time forecasts (4 months or more).

The previous analysis compares the performance of different methods in terms of their overall

and lead-time specific RMSE. The reported RMSE values are averaged over all 58 grid cells in the

data. To determine how well each method performs on the grid cells, Table 5.4 summarizes the

percentage of grid cells in which the method specified in the given row has lower RMSE than the

method specified by the column. The results show that MSH-LSTM outperforms all the baseline

methods in more than 70% of the grid cells. Furthermore, although the RMSE difference shown
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Table 5.3: Comparison of RMSE values among the competing methods for all 9 forecast lead times

Lead EnS Ridge GFFN GLSTM FFN LSTM MTL-
LSTM ARIMA DARNN MSH-

LSTM
0 0.2652 0.2811 0.2830 0.2787 0.2129 0.1996 0.2090 0.2592 0.2610 0.2173
1 0.4322 0.3940 0.3652 0.3560 0.3435 0.3230 0.3313 0.3706 0.3475 0.3057
2 0.5307 0.4437 0.4058 0.3974 0.4015 0.3827 0.3890 0.4414 0.4053 0.3621
3 0.5933 0.4697 0.4313 0.4286 0.4286 0.4176 0.4302 0.4901 0.4399 0.4032
4 0.6402 0.4900 0.4574 0.4633 0.4548 0.4648 0.4735 0.5279 0.4747 0.4426
5 0.6757 0.5058 0.4794 0.4965 0.4775 0.5029 0.5050 0.5529 0.5132 0.4744
6 0.7039 0.5205 0.4969 0.5185 0.4916 0.5264 0.5260 0.5701 0.5155 0.5019
7 0.7268 0.5302 0.5151 0.5344 0.5097 0.5367 0.5326 0.5827 0.5333 0.5192
8 0.7458 0.5407 0.5400 0.5546 0.5298 0.5519 0.5445 0.5923 0.5245 0.5355
overall 1.8268 1.4114 1.3443 1.3673 1.3136 1.3432 1.3514 1.4964 1.3641 1.2898

Table 5.4: A win-loss table comparing the performance of the competing methods across all 58
grid cells. Each (i, j)-th entry in the table represents the fraction of grid cells in which method i
has lower RMSE than method j.

EnS Ridge GFFN GLSTM FFN LSTM MTL-
LSTM ARIMA DARNN MSH-

LSTM
EnS 0 0.2586 0.1379 0.1724 0.1552 0.1897 0.1897 0.3621 0.2414 0.1552
Ridge 0.7414 0 0.1724 0.2241 0.1897 0.2586 0.2069 0.6207 0.2931 0.1034
GFFN 0.8621 0.8276 0 0.5862 0.4310 0.5345 0.5517 0.8793 0.6379 0.2586
GLSTM 0.8276 0.7759 0.4138 0 0.4138 0.4138 0.5172 0.8621 0.5517 0.2241
FFN 0.8448 0.8103 0.5690 0.5862 0 0.6207 0.6379 0.8448 0.7241 0.2414
LSTM 0.8103 0.7414 0.4655 0.5862 0.3793 0 0.5172 0.8793 0.6207 0.2931
MTL-LSTM 0.8103 0.7931 0.4483 0.4828 0.3621 0.4828 0 0 0.6724 0.2241
ARIMA 0.6379 0.3793 0.1207 0.1379 0.1552 0.1207 0.1379 0 0.1724 0.0345
DARNN 0.7586 0.7069 0.3621 0.4483 0.2759 0.3793 0.3276 0.8276 0 0.0690
MSH-LSTM 0.8448 0.8966 0.7414 0.7759 0.7586 0.7069 0.7759 0.9655 0.9310 0

in Table 5.3 for MSH-LSTM and FFN is not that large, MSH-LSTM actually outperforms FFN for

more than 75% of the grid cells. MSH-LSTM also outperformed MTL-LSTM (by more than 77%)

and DARNN (by more than 93%), which demonstrates the effectiveness of proposed MSH-LSTM

framework for the multi-step-ahead ensemble SST forecasting problem.

To illustrate the performance improvement achieved by MSH-LSTM in different grid cells,

Fig. 5.3 shows a map of the RMSE values for ensemble mean and MSH-LSTM, where lighter

(yellow) color indicates higher RMSE values and darker (blue) color indicates lower RMSE. The

maps were plotted for different lead times. Figs. 5.3(a) and 5.3(b) correspond to the the overall

RMSE for all 9 lead times. Figs. 5.3(c) and 5.3(d) correspond to short-term forecasts (from 0 to

2 months), 5.3(e) and 5.3(f) are for mid-term forecasts (between 3 to 5 months lead time), and

80



0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
RMSE

(a) EnS

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
RMSE

(b) MSH-LSTM

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
RMSE

(c) Short-term EnS

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
RMSE

(d) Short-term MSH-LSTM

0.3 0.4 0.5 0.6 0.7 0.8
RMSE

(e) Mid-term EnS

0.3 0.4 0.5 0.6 0.7 0.8
RMSE

(f) Mid-term MSH-LSTM

0.3 0.4 0.5 0.6 0.7 0.8 0.9
RMSE

(g) Long-term EnS

0.3 0.4 0.5 0.6 0.7 0.8 0.9
RMSE

(h) Long-term MSH-LSTM

Figure 5.3: Performance on each grid cell by EnS and MSH-LSTM.

5.3(g) and 5.3(h) for long-term forecasts (more than 6 months). The maps show that MSH-LSTM

outperforms the ensemble median in the majority of the grid cells, especially for mid-term and

long-term predictions.

Fig 5.4 shows the amount that the temporal autocorrelation of the ground truth time series is

81



preserved by each approach. The temporal autocorrelation for any given time series at a lag k,

ACF(k), is obtained by shifting its sequence of values by k time steps (lags) and computing the

correlation between the shifted sequence and the unshifted one. If there are p such shifts, this

produces an autocorrelation vector of length p, i.e., [ACF(1), ACF(2), · · · , ACF(p)], which is then

compared against the autocorrelation vector of the ground truth time series. The degree to which

temporal autocorrelation is preserved can be determined by taking the Euclidean distance between

the two vectors.

Fig. 5.1 depicts two types of temporal autocorrelations that must be preserved by multi-step-

ahead time series forecasting methods—lead-time level and generation-time level autocorrelation.

For generation-time level autocorrelation, the results shown in Fig. 5.4a suggest that LSTM and its

variants, including the proposedMSH-LSTM approach, closely model the temporal autocorrelation

structure of the ground truth SST time series as the Euclidean distances calculated for LSTM-based

approaches are relatively smaller compared to non-LSTM methods such as FFN and GFNN. This

is not surprising as the LSTM-based methods are designed to capture the temporal dependencies

of the forecasts generated for different time steps, while the non-LSTM methods are not designed

for modeling temporal dependencies of the data.

For lead-time level autocorrelation, at first glance, the results shown in Fig. 5.4b appear to

suggest that both MSH-LSTM and DARNN do not capture the lead-time level autocorrelation as

effectively as other baseline methods. To further illustrate this, Fig. 5.5 shows the correlogram plots

for each forecastingmethod as well as for the ground truth SST time series. Notice that the lead-time

level autocorrelation for MSH-LSTM and DARNN are much higher than other approaches and the

ground truth, as the number of lags increases. Despite over-estimating the lead-time level temporal

autocorrelation, the RMSE results shown in Table 5.3 suggest that MSH-LSTM was able to exploit

the higher autocorrelation at longer lags and in this way improve its long-term forecasts. Similarly,

the results in Table 5.3 also show that DARNN reaches the best RMSE at lead time 8, which

is consistent with it having the highest temporal autocorrelation at lag 8. However, the RMSE

of DARNN is worse than MSH-LSTM and other baselines at other lead times even though its
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Figure 5.4: Comparison between the temporal autocorrelation of the proposed MSH-LSTM frame-
work and other baseline methods.

autocorrelation is still high. This suggests that MSH-LSTM was able to leverage its high lead-time

autocorrelation to improve its prediction accuracy more effectively than DARNN.

Finally, we evaluate the importance of each physical model for different lead time tasks. The

models of both ridge regression andMSH-LSTMare analyzed. For ridge regression, the importance

of each model can be evaluated by examining the magnitude of coefficients. For MSH-LSTM, the

gradient of the loss w.r.t each physical model forecast is computed [111], and the distribution of

the gradient magnitudes is investigated. In Figure 5.6, the gradients for the 7 physical models are
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Figure 5.5: Correlogram plots for lead-time level autocorrelation ofMSH-LSTMand othermethods
(including the ground truth SST time series).

illustrated by box plots while the magnitude of the ridge regression coefficients is illustrated with

the red curve. For both ridge regression and the MSH-LSTM the most important physical model

tends to be model 2 (CMC2-CanCM4). Model 4 also has a relatively large importance for both

MSH-LSTM on shorter-term forecasting models.

5.6 Summary

In this chapter, a novel multi-task neural network architecture is proposed to address the

multi-step-ahead time series forecasting problem. The proposed framework considers each lead

time forecast as a separate learning task and employs a hierarchical LSTM structure to capture

both lead-time and generation-time level autocorrelation of the data. The effectiveness of the

proposed architecture is evaluated on a 29-year monthly sea surface temperature data from the

North American Multi-Model Ensemble (NMME) project. The results showed that the proposed

method outperformed existing hierarchical and non-hierarchical neural network, MTL, and other

conventional time series prediction methods.
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(b) Lead Time 1

1 2 3 4 5 6 7
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

M
SH

-L
ST

M
 G

ra
ds

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ri
dg

e 
W

ei
gh

ts

(c) Lead Time 2
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(f) Lead Time 5
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(g) Lead Time 6
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(h) Lead Time 7
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Figure 5.6: Gradient distribution of each model for different lead time tasks. The x-axis represents
the indices of physical models that are listed in Table. 5.1. The box plots are gradients distribution
of each model for MSH-LSTM. The red curve are the computed ridge regression coefficients.
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CHAPTER 6

CONCLUSIONS & FUTUREWORK

6.1 Summary of Thesis Contributions

With the growing complexity and prevalence of spatial and temporal data from various disci-

plines, it has become an important but more challenging research topic to learn accurate predictive

models from such data. For some complex prediction tasks, learning a single model to all obser-

vations is often undesirable as such a model may not capture the intricate details and variabilities

across different samples.

In this thesis, I present several innovative frameworks of multi-task learning techniques on some

real-world applications on spatial and temporal data, including activity recognition in multi-modal

sensor data to large-scale climate and sea surface temperature predictions. I investigate into their

related problems, examine the fundamental challenges, and propose novel MTL frameworks for

solution. The contributions of this thesis are summarized as below.

In Chapter 3, a probabilistic MTL framework was designed for multi-modal time series classi-

fication problem at multiple locations. The framework was motivated by the need to address both

temporal and spatial dependencies of the classes as well as the block missing value problem, which

arises due to the varying types of features (modalities) available at different locations. As proof

of concept, the proposed framework was applied to the activity recognition problem, where the

task is to identify user activities (e.g., walking, sitting, jumping, or lying down) in multiple rooms

using multi-modal sensor data from accelerometer, video cameras, and environmental sensors. Ex-

perimental results showed that the proposed framework outperformed baseline methods including

K-nearest neighbor, Conditional Random Field, and single-task learning with multinomial softmax

regression. In addition to improving classification performance, the framework also produces a

data-driven transition matrix between the activities as byproduct.

In Chapter 4, a novel MTL framework was proposed to address the challenges of time series
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forecasting at multiple locations simultaneously. Unlike conventional MTL approaches, the pro-

posed framework was designed to preserve the marginal distribution of the response variable in

addition to point-wise accuracy. Specifically, it employs a Parzen window based kernel density

estimation (KDE) approach to compute the probability density function and an L2-distance mea-

sure to determine the discrepancy between the true and predicted distributions. When using on a

real-world climate dataset as case study, experimental results showed that the proposed framework

outperformed existing non-distribution preserving methods in more than 78% of the weather sta-

tions considered in this study. It also outperformed another baseline distribution preserving method

(with single-task learning) in more than 78% of the weather stations.

Finally, a multi-task hierarchical LSTM architecture was designed in Chapter 5 to deal with

the challenges proposed in multi-step-ahead time series prediction. The proposed architecture was

designed to improve forecasting of sea surface temperature at longer lead times. The proposed

architecture considers each lead time as a separate learning task and employs a two-level hierar-

chical LSTM structure to capture both the lead-time and forecast generation time dependencies

of the data. Experimental results using 29 years of monthly sea surface temperature data from

the North American Multi-Model Ensemble (NMME) project demonstrated the efficacy of the

proposed method compared to 9 other baseline methods, including ridge regression, MTL, and

other conventional neural network approaches.

6.2 Future Research Directions

This dissertation has demonstrated the efficacy of using MTL to improve performance of

predictive modeling in spatial and temporal data. The success of MTL in the application domains

investigated in this study lay forth to several potential future research directions to pursue.

First, the proposed multi-modal time series classification approach is limited to a linear model

using softmax regression. Extending the approach to nonlinear models via deep neural networks

will be an interesting research direction. However, there are several key questions that must be

answered in order to facilitate the development of such an approach. Among them include: “How to
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incorporate the spatial and temporal dependencies of the classes?", “How to deal with the varying

feature types available for different locations?", and “How to relate the modeling for different rooms

without increasing the number of model parameters significantly?" One possibility is to extend the

hierarchical LSTM approach described in Chapter 5 to incorporate the classifier properties of

the probabilistic MTL framework introduced in Chapter 3. From the application perspective, the

current activity recognition framework assumes there is only a single subject to be monitored.

Extending such an approach to multiple subject setting is another potentially interesting research

direction. Demographical information can be used to build relationships between subjects, and it

will provide more customized model for each subject.

Second, for themulti-location time series forecasting problem, the distribution-preservingmulti-

task regression framework proposed in Chapter 4 also considers only a linear model. Extending

the distribution preserving approach to deep networks is another potentially interesting research

direction. The non-identical distributed property exists in both spatial and temporal dimensions.

In Chapter 4, the distribution preserving mechanism only keeps the temporal distribution contour

at each location, without accounting for the spatial distribution at each fixed time. For example, the

spatial distribution of precipitation certainly varies from spring to winter. An extension of this work

by taking account of the distribution property on spatial dimension will improve the interpretability

and performance of predictions. The approach can potentially be enhanced to a 3D-distribution

setting, e.g., by defining a Parzen window and L2-distance over both space and time, to ensure the

spatial distribution of the response variable is also preserved by the prediction model.

Finally, this thesis mainly discusses the predictive modeling under an offline setting. Never-

theless, in practice, data keeps growing rapidly on both spatial and temporal dimension. When

observations are collected from a new location or a new time step, re-training the entire model in

a batch way would be very expensive. What is more, cold start problem should also be considered

for previously unseen locations. As a result, the framework should consider the data increment

without requiring re-training from scratch. Incremental learning mechanism should be potentially

incorporated to the existing model for a runtime execution.
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