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ABSTRACT

THREE ESSAYS ON DEMAND ESTIMATION

By

Hee Kwon Kyung

Chapter 1: The Role of Reputation/Feedback Contents in NYC Airbnb Market: Evidence
from Hedonic Price Regressions

Economists have found that reducing information asymmetry is crucial for online marketplaces to

overcome market failure due to adverse selection. Reputation/feedback systems and multi-media

web contents from sellers are known to be popular disclosure devices for this purpose. This

paper employs hedonic price regressions to provide empirical evidence that the recent success

of a sharing economy platform, Airbnb, also relies on such publicly available information on

product quality. Machine learning selectors were employed to reduce high-dimensionality in the

attribute space. To process consumer review texts and sellers’ advertisement texts, word/phrase

extraction and sentiment analysis were introduced. I propose a GMM estimation to produce more

accurate implicit price estimates, that was designed to control for time-varying unobservables.

’Superhost’ designation by the platform and consumer reviews showed greater impacts than seller

side advertisement texts.

Chapter 2: Demand Estimation for NYC Airbnb Market: Value of Reputation/Feedback
Contents and Voluntary Disclosures

The success of online marketplaces has often been attributed to reputation/feedback systems,

in that they reduce adverse selection due to information asymmetry by disclosing enforced or

verifiable ex-post information on product quality. This paper tries to quantify the value of such

information content in NYC Airbnb market with a newly constructed dataset containing the actual

708,308 vacation rental reservations from Airbnb tourists. A three level nested logit model was

employed to capture consumers’ choice set formation behaviors during web search on the platform



using Google Maps API. High-dimensional attribute space due to extreme product heterogeneity

necessitates variable selection using machine learning methods based on sparsity assumption.

Though model selection procedures by LASSO and exact inference for post selection parameter

estimates were proposed, structural modeling and endogeneity control turn out to be essential

for successful identification. Text processing techniques were introduced to extract variables

from sellers’ advertisement texts and consumer reviews. The results confirm a key insight from

information economics: enforced quality certifications and ex-post verified consumer reviews

generate greater welfare impacts than non-verified seller side voluntary disclosures.

Chapter 3: Estimation for the Distribution of RandomCoefficients withHeterogeneous Agent
Types: Monte-Carlo Simulation

This paper is a simple Monte-Carlo extension for Fox, Kim, Ryan, and Bajari (2011), which gives a

direct estimator for the distribution of random coefficients in diverse settings including logit demand

models. The estimator is a simple inequality constrained least squares, and this study examines its

behaviors given there are hundreds of consumer types, which could be an interesting case for various

marketplaces. High-dimensional metrics are then introduced to reduce the dimensionality of design

matrices the rank of which is the number of consumer types. The approximation performances to

the cumulative distribution of random coefficients of such post lasso estimators are compared to

those of baseline estimator.



ACKNOWLEDGEMENTS

I am deeply grateful for the guidance frommy chair Professor Kyoo Il Kim and committee members,

Professor Joseph A. Herriges, Distinguished Professor Peter Schmidt, and Professor Seunghyun

Kim. Despite of my countless shortcomings, they have endowed me with their precious time and

seasoned wisdom. Up to this date, I am not sure if I deserve such an honor. I also thank all the

faculty members and staffs of the Economics Department at Michigan State University.

Born and raised in a perimeter of civilization at least in terms of knowledge, I enjoyed not

only the PhD program but also my exposures to American culture, “the shower of enlightenment”

I would say. The years spent here will remain as one of the best times I have ever had in my life.

Lastly, I thank my parents, sister, brother-in-law, and the little nephew for their love and trust.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 THEROLEOFREPUTATION/FEEDBACKCONTENTS INNYCAIRBNB
MARKET: EVIDENCE FROM HEDONIC PRICE REGRESSIONS . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Airbnb and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Trade among Anonymous Sellers and Buyers . . . . . . . . . . . . . . . . 5
1.2.1.1 NYC Airbnb Market . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1.2 Reputation/Feedback Repository . . . . . . . . . . . . . . . . . . 6
1.2.1.3 Basic Contract Enforceability and Voluntary Disclosure from

Sellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.2 Text Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Model and Identifying Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 High-Dimensional Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1.1 Sparsity and Variable Selection . . . . . . . . . . . . . . . . . . 14
1.3.1.2 Preliminary Analysis: OLS post Lasso and Post Selection Inference 15
1.3.1.3 Cautions with Endogeneity . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Time-Varying Correlated Unobservables . . . . . . . . . . . . . . . . . . . 22
1.3.2.1 Possible Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2.2 Markov Process and Consumer Rationality . . . . . . . . . . . . 22
1.3.2.3 Previous Empirical Research on Airbnb . . . . . . . . . . . . . . 24

1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.1 Fixed Effects vs. GMM Based on Consumer Rationality . . . . . . . . . . 25
1.4.2 Over Price Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 2 DEMAND ESTIMATION FOR NYC AIRBNB MARKET: VALUE OF
REPUTATION/FEEDBACKCONTENTSANDVOLUNTARYDISCLO-
SURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.1 P2P Online Marketplaces and Asymmetric Information . . . . . . . . . . . 33
2.1.2 Estimation Challenges with Airbnb Platform Data . . . . . . . . . . . . . . 36
2.1.3 Literature Review and My Contribution . . . . . . . . . . . . . . . . . . . 39

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.1 NYC Accommodation Market . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1.1 Market Definition and Size . . . . . . . . . . . . . . . . . . . . . 42
2.2.1.2 Purchase Units and Market Share of a Product . . . . . . . . . . 43

2.2.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



2.2.2.1 Rating Score Inflation . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.2.2 Text Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3.1 Potential Guests’ Rental Searching Behavior . . . . . . . . . . . . . . . . . 49
2.3.2 Nested Multinomial Logit (NMNL) Model . . . . . . . . . . . . . . . . . . 51
2.3.3 High-Dimensional Attributes and Machine Learning . . . . . . . . . . . . 53

2.3.3.1 Lasso Selector and Oracle Property . . . . . . . . . . . . . . . . 53
2.3.3.2 Post Selection Inference . . . . . . . . . . . . . . . . . . . . . . 55
2.3.3.3 Cautions on Endogeneity and Post Selection Estimator . . . . . . 56

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.1 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.4.2 Elasticities and Welfare Measures . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

CHAPTER 3 ESTIMATION FOR THE DISTRIBUTION OF RANDOM COEFFI-
CIENTSWITHHETEROGENEOUSAGENTTYPES:MONTE-CARLO
SIMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.1 Multinomial Random Coefficients Logit Demand Model . . . . . . . . . . 70
3.2.2 High-Dimensional Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Monte-Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Parameter and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.2 Marginal Distributions of Coefficients . . . . . . . . . . . . . . . . . . . . 75

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
APPENDIX A MACHINE LEARNING AND POST SELECTION INFERENCE . 88
APPENDIX B OMITTED DETAILS FOR CHAPTER 1 . . . . . . . . . . . . . . . 94
APPENDIX C OMITTED DETAILS FOR CHAPTER 2 . . . . . . . . . . . . . . . 101

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

vi



LIST OF TABLES

Table 1.1: Definitions for Review Score Categories . . . . . . . . . . . . . . . . . . . . . . 9

Table 1.2: Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 1.3: Selected Words/Phrases from Airbnb Hosts’ Advertisement Texts . . . . . . . . 11

Table 1.4: Selected Words/Phrases from Airbnb Guests’ Review Texts . . . . . . . . . . . . 12

Table 1.5: Example Guest Reviews and Sentiment Labels . . . . . . . . . . . . . . . . . . 13

Table 1.6: Bag of Words Matrix for Example Guest Reviews . . . . . . . . . . . . . . . . . 13

Table 1.7: OLS post Lasso on the Pooled Sample (1) . . . . . . . . . . . . . . . . . . . . . 19

Table 1.8: OLS post Lasso on the Pooled Sample (2): Amenity Feature Selection . . . . . . 20

Table 1.9: Fixed Effects vs. GMM (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 1.10: Fixed Effects vs. GMM (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 1.11: GMM: Results for Reputation/Feedback Contents over Price Levels . . . . . . . 28

Table 1.12: GMM: Results for Amenity and Service Features . . . . . . . . . . . . . . . . . 29

Table 2.1: NYC Visitors and Potential Reservations for Travel Accommodations . . . . . . 43

Table 2.2: Actual Booking Data Summary for NYC Market for Hotels and Airbnb . . . . . 43

Table 2.3: Definitions for Review Score Categories . . . . . . . . . . . . . . . . . . . . . . 45

Table 2.4: Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 2.5: Selected Words/Phrases from Airbnb Hosts’ Advertisement Texts . . . . . . . . 47

Table 2.6: Example Guest Reviews and Sentiment Labels . . . . . . . . . . . . . . . . . . 48

Table 2.7: Bag of Words Matrix for Example Guest Reviews . . . . . . . . . . . . . . . . . 48

Table 2.8: Demand Parameter Estimates (1): Price, Nesting, and Information . . . . . . . . 60

Table 2.9: Demand Parameter Estimates (2): Amenity and Service Features . . . . . . . . . 61

vii



Table 2.10: WTP and Factor Elasticities for Information Variables . . . . . . . . . . . . . . 62

Table 2.11: Price Elasticities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 2.12: Compensating Variations over Counterfactual Scenarios . . . . . . . . . . . . . 64

Table 3.1: Monte-Carlo Results (1) (Number of Mixtures: 2) . . . . . . . . . . . . . . . . . 77

Table 3.2: Monte-Carlo Results (2) (Number of Mixtures: 4) . . . . . . . . . . . . . . . . . 78

Table 3.3: Monte-Carlo Results (3) (Number of Mixtures: 6) . . . . . . . . . . . . . . . . . 79

Table B.1: Confidence Intervals for OLS post Lasso . . . . . . . . . . . . . . . . . . . . . 95

Table B.2: GMM: Manhattan and Other Neighborhoods . . . . . . . . . . . . . . . . . . . 96

Table B.3: GMM: Manhattan and Other Neighborhoods (Continued from Table B.2) . . . . 97

Table B.4: Summary Statistics for Variables and Annual Variations . . . . . . . . . . . . . 98

Table B.5: Relevance Tests for Lagged Instruments . . . . . . . . . . . . . . . . . . . . . . 99

Table C.1: C.Is for OLS Logit, Classical vs. Post Selection Inference . . . . . . . . . . . . 102

Table C.2: C.Is for IV Logit, Classical vs. Post Selection Inference . . . . . . . . . . . . . . 103

Table C.3: C.Is for Two Level Nested Logit, Classical vs. Post Selection Inference . . . . . 104

Table C.4: First Stage Regression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table C.5: NYC Airbnb Service Neighborhoods . . . . . . . . . . . . . . . . . . . . . . . . 107

Table C.6: NYC Airbnb Service Neighborhoods (Continued from Table C.5) . . . . . . . . 108

viii



LIST OF FIGURES

Figure 2.1: Example Airbnb Listing, a ’Superhost’ Rental . . . . . . . . . . . . . . . . . . 34

Figure 2.2: Example Review Ratings, Texts, and Google Maps API . . . . . . . . . . . . . 35

Figure 2.3: Search Filters for NYC Airbnb Rentals . . . . . . . . . . . . . . . . . . . . . . 38

Figure 2.4: Neighborhood Designation Example: ’Midtown’ in Manhattan . . . . . . . . . 50

Figure 3.1: F̂(β1): Base vs. Post-cv Lasso (N=5,000, Mix 6, R = 16, ..., 49) . . . . . . . . . 80

Figure 3.2: F̂(β1): Base vs. Post-hdm Lasso (N=5,000, Mix 6, R = 16, ..., 49) . . . . . . . 81

Figure 3.3: F̂(β1): Base vs. Post-cv Lasso (N=5,000, Mix 6, R = 81, ..., 144) . . . . . . . . 82

Figure 3.4: F̂(β1): Base vs. Post-hdm Lasso (N=5,000, Mix 6, R = 81, ..., 144) . . . . . . . 83

Figure 3.5: F̂(β1): Post-cv vs. Post-hdm Lasso (N=5,000, Mix 6, R = 169) . . . . . . . . . 84

Figure 3.6: F̂(β1): Post-cv vs. Post-hdm Lasso (N=5,000, Mix 6, R = 529) . . . . . . . . . 85

Figure 3.7: True Joint Distributions of β1 and β2 (1) N=5,000, Mixture of Two Normals . . 86

Figure 3.8: True Joint Distributions of β1 and β2 (2) N=5,000, Mixture of Four Normals . . 86

Figure 3.9: True Joint Distributions of β1 and β2 (3) N=5,000, Mixture of Six Normals . . . 86

Figure C.1: Correlation Across Review Score Categories . . . . . . . . . . . . . . . . . . . 109

ix



CHAPTER 1

THE ROLE OF REPUTATION/FEEDBACK CONTENTS IN NYC AIRBNB MARKET:
EVIDENCE FROM HEDONIC PRICE REGRESSIONS

1.1 Introduction

The explosive growth of Airbnb and other sharing economy platforms in the last decade begs a

question; how could they build trust among total strangers over one-time transactions despite the

theoretically expected market failure due to information asymmetry? (Akerlof (1970)) The P2P

(Peer-to-Peer) platform accommodated more than 100 million parties of tourists and the market

value topped at $31 billion as of 2017. One common insight on the success of Airbnb over various

disciplines including tourism, marketing, and economics is that the reputation/feedback systems and

information contents such as texts and photographs of rental units and hosts reduced information

asymmetry, thus facilitating trust among market participants. (Guttentag (2015), Horton and

Zeckhauser (2016), Ert, Fleischer, Magen (2016), Fradkin, Grewal, and Holtz (2018), and Liang,

Schuckert, Law, and Chen (2017))

Indeed, it is one of the foundational ideas of classical information economics that a market

provider or seller could partially contract on product quality by disclosing ex-post verifiable or

enforced information such as warranties and insurances. (Grossman and Hart (1980), Grossman

(1981), and Milgrom (1981)) Besides, repeated transactions and disclosure of reputation/feedback

repository (history) to all potential buyers discipline sellers to act honestly in a future transaction

with a total stranger, which is a particularly enlightening lesson for sharing economies and online

retail outlets. (Kreps (1982, 1990), Tadelis (2016) and Milgrom, North, and Weingast (1990))

This paper argues that for NYC Airbnb market, disclosure of platform enforced and ex-post

verified information contents on product quality also neutralizes the initial information asymmetry

and prevents market failure. To test this hypothesis, I employ hedonic price regression and

present empirical evidence that the quality certification ’Superhost’ badge, host identity verification

measures, and consumer review ratings and texts are more influential to the transaction prices than
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non-verified seller side advertisement texts. (’Cheap Talk’)

The drive behind pursuing a question verified in various online marketplaces is twofold. First,

unlike already successful online P2P markets for material goods, Airbnb is an intermediary for

service products which involves a different type of risks over monetary losses. In fact, there

have been many unfortunate incidents for Airbnb customers: infringements of privacy by hidden

cameras, physical attacks by hosts, and loss of time and pleasure due to deceptive web listings. It is

worth investigating how Airbnb could be successful with such a risk of adverse selection. Second,

this paper offers several methodological tools to deal with a set of identification challenges modern

online platform data presents.

One distinctive feature of P2P online platform data is extreme product heterogeneity. It does not

refer to the fact that consumers now have access tomany products once bought and sold in traditional

offline shops, thanks to online retail giants like Amazon. The extreme product heterogeneity of

particular interest in this paper is uniqueness in each of the numerous products that have never been

on markets. For example, in Etsy.com buyers can shop custom made apparel, crafts, toys, and 3d

printer blueprints without any big brand names printed on. Taskers in Taskrabbit.com have no idea

what kind of problems they are going to solve until the customers specify them. Likewise, potential

Airbnb guests are staying in a house of someone they never met before.

The first identification challenge due to such extreme product heterogeneity is the high-

dimensional characteristic (attribute) space. The platforms need to define and differentiate each

product so that they can match and sell it to a consumer with specific preferences. Airbnb rental

units consist of various types of personal properties that have never been publicly offered as travel

accommodations, including cabins, castles, farm barns, boats, and tree houses. Customers have a

choice over a new set of amenity and service features such as baby beds, children’s dinnerware,

EV chargers, and video game consoles. As a result, Airbnb data attaches more than 150 binary

indicators to each rental unit for consumers to satisfy their heterogeneous preferences.

A high-dimensional dataset with numerous binary indicators poses two serious problems.

Some attributes are common and some are scarce, causing multicollinearity. There are irrelevant

2



attributes that do not affect consumers’ purchase decisions significantly either in an economic or

statistical sense. The hedonic price regression could thus suffer biases in implicit price estimates

or misspecifications. A variable selection procedure for efficiently reducing dimensionality is

necessary.

This paper proposes to adopt sparsity assumption and use variable (model) selection based on

machine learning methods for choosing a subset of attributes that explain the variation in trans-

action prices the best. In fact, economists have been resorting to machine learning techniques to

cope with high-dimensional data plagued by numerous collinear regressors, nuisance variables,

and instruments over various research areas: demand estimation, program/policy evaluation, treat-

ment effects, and general linear models. (Bajari, Nekipelov, Ryan, and Yang (2015), Belloni,

Chernozhukov, Fernandez-Val, and Hansen (2017), Chernozhukov, Chetverikov, Demirer, Duflo,

Hansen, Newey, and Robins (2018), Chernozhukov, Hansen, and Spindler (2015))

The second identification challenge from product heterogeneity is how to process product

information contained in unstructured formats. Airbnb hosts voluntarily disclose information on

product quality in texts and images. Through texts, a host extols the merits of a rental unit and

neighborhood: nearby tourist attractions, transportation logistics, restaurant recommendations,

and house rules guests should abide by. They characterize the identity of each unique product that

cannot be transmitted via numerical variables or search filters (binary indicators), letting sellers and

platforms better differentiate each good/service from another. Buyers can also voluntarily disclose

information by review texts. Reviews often reveal product information from the perspective of past

customers, giving more individuality to products. Airbnb lets only the actual guests write reviews

on the rental units they visited, so review texts are considered to be ex-post verified information.

Photographs of rental units and textual advertisements from sellers can be deemed as non-verified.

Such information contents in unstructured formats should be incorporated into hedonic price

regression model because they affect consumers’ valuation and choices. This paper proposes to

generate numerical variables from text data usingwidely accepted processing techniques: extracting

keywords/phrases and sentiment analysis on consumer reviews. To be more specific, the frequency

3



of appearance of certain words/phrases and the number of reviews that were classified as negative

by a supervised machine learning will be used as additional product attributes. Image processing is

beyond the scope of this paper, but represents another source of product information for consumers.

Tourism and hospitality researchers have been adopting textual analysis on guest reviews to

capture consumer sentiments. The two most dominant approaches are tokenization of a review

text into words/phrases and machine learning classification or prediction for emotional polarity

of a review.1 Economists also rely on textual analysis in hedonic price studies on various online

marketplaces such as eBay Motors and real estate. (Lewis (2011) and Nowak and Smith (2017))

The third and final identification issue is endogeneity due to unobserved/omitted variables,

which is a pervasive problem for hedonic price regressions. For Airbnb data, it is often hard

to explain why a consumer chose a specific rental property among thousands of others even

with high-dimensional attributes and unstructured format descriptions. There could be time-fixed

unobservables such as seasonality in travel accommodation demand/supply and neighborhood traits

like crime rates and education levels. Endogeneity can easily be dealt with fixed effects estimation

if there are only time-fixed unobservables.

However, heterogeneity in consumer tastes and diverse individual schedules/itineraries are also

candidates for unobservables that are time varying and correlated with observed attributes. This

paper finds a strong evidence for omitted variable bias in preliminary OLS hedonic regressions and

employs a fixed effects estimation to control for time-fixed unobservables. Then with an additional

identifying assumption for time-varying correlated unobservables, I employ a GMM estimation.

For all error structures and estimation methods, estimation results confirm our hypothesis that

enforced and ex-post verified reputation/feedback signals are more influential than non-verified

seller side information contents.

This paper adds value to the existing simple OLS hedonic price research for Airbnb by dealing

with the identification challenges listed above. Wang and Nicolau (2017), Chen and Xie (2017),

Teubner, Hawlitschek, and Dann (2017), Gibbs, Guttentag, Gretzel, Morton, and Goodwill (2018)

1See Alaei, Becken, and Stantic (2017) for a comprehensive review of methods and literature up to date.
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investigated 33 cities across U.S, Austin in Texas, 86 cities in Germany, and five metropolitan areas

of Canada, respectively. For hotel booking websites, Ye, Law, Gu (2009), Ye, Law, Gu, and Chen

(2011), Ogut and Tas (2012), and Xie, Zhang, and Zhang (2014) regress the number of room nights

sold on review ratings.

My research extends previous literature in economics and marketing/management on the role of

reputation/feedback mechanisms and voluntary disclosures in reducing information asymmetry to

NYC Airbnb case. Economists found that eBay’s ’Superseller’, seller rating scores, and text/photo

descriptions have causal relationships with transaction prices. (Resnick, Zeckhauser, Swanson,

and Lockwood (2006), Houser and Wooders (2006), Jin and Kato (2006), and Lewis (2011))

Marketing/management researchers investigated the role of online consumer reviews in business

outcomes in various markets for books, movies, music, retail, video games, and electronics.

(Chavalier and Mayzlin (2006), Liu (2006), Dellarocas, Zhang, and Awad (2007), Duan, Gu,

Whinston (2008), Chintagunta, Gopinath, and Venkataraman (2010), Dhar and Chang (2009),

Floyd et al. (2014), Cui, Lui, and Guo (2012), Ghose and Ipeirotis (2011))

The rest of this paper is organized as follows. Section 1.2 revisits Airbnb in terms of information

asymmetry, presents data and explains processing details. Section 1.3 introduces identifying as-

sumptions, preliminary OLS analyses, and estimation methods to control for unobserved variables.

Section 1.4 reports and discusses estimation results. Section 1.5 concludes.

1.2 Airbnb and Data

1.2.1 Trade among Anonymous Sellers and Buyers

1.2.1.1 NYC Airbnb Market

Since 2016, more than 60 million tourists visit NYC annually including 20% of international

arrivals. Average length of stays is about four days and the number of potential accommodation

reservations totals 15 million. Without any possession of commercial real estates, Airbnb received
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more than a million reservations in 2017.2 A survey on 4,000 people asking previous experiences

with and intentions to use Airbnb rental services found that as of November, 2015 the market share

of Airbnb is occupying 12% of leisure and business travelers. This share was expected to rise to

16-18% in 2016.3 Another report states that the room nights share amounts to 8% compared to

hotels as of August, 2015.4

Such successful entry and robust trading volumes seem quite surprising given that potential

Airbnb guests choose to stay at a total stranger’s housing unit relying solely on the information

showing on computer screens. The web page content of each rental property then can be considered

as the contract between buyers and sellers. Potential guests take most of the product information

on web listings at face value. This paper focuses on how the platform generates such consumer

trust and which information categories would look trustworthy and how much can be trusted in the

eyes of consumers.

1.2.1.2 Reputation/Feedback Repository

According to the disclosure model of Grossman and Hart (1980), Grossman (1981), and Milgrom

(1981), buyers should update their expectations for product quality based only on enforced or

verifiable ex-post information contents. For Airbnb case, the quality certification ’Superhost’

badge and actual guests’ review ratings and texts apply to the categories. Both could be called

as credible reputation/feedback repositories in that only actual guests can leave review ratings and

texts and Airbnb enforces strict service quality criteria based on past performances in designating

’Superhost’. A host must have accommodated more than ten parties of guests, maintained a 90%

response rate to booking requests or higher, received a five star review - review scores higher than

80 out of 100 - at least 80% of the time, and completed each of confirmed reservations without

canceling.

2The visitor poll is from NYC&Company. Average length of stays was calculated from the actual booking records
for hotels and Airbnb obtained from Expedia.com and Airdna, a data consulting branch firm of Airbnb, respectively.

3Who Will Airbnb Hurt More - Hotels or OTAs (Online Travel Agency)?, JP-Morgan’s Global Insight
4Airbnb and Impacts on the New York City Lodging Market and Economy, Hospitality Valuation Services
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The existence of these well-functioning public reputation/feedback repositories forces Airbnb

hosts to provide present and future guests with accommodation services as specified by the web

listings, even if the hosts will never meet them again. It is because positive feedback from customers

of the past would reward the hosts in the future businesses with anonymous tourists to come and

negative feedbacks would do the opposite. (Kreps (1982, 1990) and Tadelis (2016)) One clear

empirical implication of this powerful insight would be that ’Superhost’ badge, higher rating

scores, and textual variables with positive sentiments from Airbnb tourists will attract more future

guests and enable hosts to obtain price premiums.

1.2.1.3 Basic Contract Enforceability and Voluntary Disclosure from Sellers

A set of ground rules and coordination schemes for safe transactions are fundamental prerequisites

for offline/online marketplaces since at least medieval trade fairs in Europe. (Greif (2006) and

Milgrom, North, and Weingast (1990)) Reputation/feedback systems of Airbnb also rely on basic

contract enforceability and consumer protection measures, including government issued identifica-

tions for both sellers and buyers, payment holdings by escrow during the first 24 hours after check-in,

full/partial refunds, and dispute resolutions including providing alternative accommodations.

Togetherwith such trust-enhancing apparatus, the idea that sellers have incentives to differentiate

themselves from others now makes it possible for consumers to believe voluntary disclosure such

as rental unit descriptions in text and image formats, not whole-heartedly but certainly at some

level. For example, positive adjectives every hosts could say such as “nice”, “comfy”, and “best

in New York City” would not appeal that much to consumers, whereas texts explaining locational

merits like “5 min walk from Central Park” would appeal to consumers given that Google Maps

API on each listing webpage allows potential guests to check the validity of such statements almost

immediately.

Accommodation capacities such as the number of default guests, accompanying guests, bed-

rooms, bathrooms, and beds and binary filters indicating various amenitiy and service features are

presented in standardized visualized items on each listing webpages or, search filter menus. They
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are comparable to hotel booking portals making it natural to include as product attributes in the

hedonic price regression models.

1.2.2 Data

1.2.2.1 Summary Statistics

The data source is InsideAirbnb.com, a public repository of rental unit prices, attributes, and review

texts run by Airbnb. The panel dataset of this paper consists of two time periods. For each time

period, three cross sections of NYC Airbnb rental unit data were stacked together: June, August,

and December recorded each in 2016 and 2017, respectively. Summers and Decembers are the

peak time periods for both demand/supply for NYC vacation rental businesses. A year gap is

used to control for seasonality in fixed effects and GMM estimation with time-varying correlated

unobservables. OLS estimation is conducted on pooled samples stacking cross sections together.

Rental units with extreme prices at both 0.1% outer margins and units without any reviews were

truncated.

Table 1.2 reports summary statistics for the cross section recorded in December 2017. Prices are

pre-tax transaction rental prices whichmean listing prices per night plus cleaning fees. All variables

in Table 1.2 except for some review score categories (due to the rating inflation and collinear

relationships, as will be explained shortly) were in fact selected by a lasso variant (Belloni and

Chernozhukov (2013)) designed to achieve a successful asymptotic approximation to the objective

(prices) with only a subset of all 180 variables. It is to efficiently reduce high-dimensionality

in attribute space due to extreme product heterogeneity.5 There exist clear differences between

’Superhost’ units and others. The mean price is higher for ’Superhost’ units by about $10 to $12.

’Verification Accounts’ mean the number of contact methods a host maintains, for example phone,

email, facebook, google, and other social media accounts. The fact that a host has multiple accounts

5Section 1.3 explains the methodology for the lasso variable (model) selection, performance of post selection OLS
estimates, and exact inference for them. The lasso selection was conducted on the OLS dataset, containing all the cross
sections recorded at June, August, and December for both 2016 and 2017.
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implies that Airbnb has verified GPS coordinates for the location, government issued identification,

and photographs of the host on the listing webpage. ’Verification Accounts’ can thus be considered

as a proxy for the degree of contract enforceability a host represents.

For all review score categories, ’Superhost’ units have higher averages. However, review

scores are extremely skewed toward left. Review score inflation in Airbnb market in fact has

been extensively investigated by Zervas, Proserpio, and Byers (2015), Proserpio, Xu, and Zervas

(2016), and Fradkin, Grewal, and Holtz (2018). Compared to other vacation rental portals, rating

scores of Airbnb tend to be higher. For example, the average 5 star rating (’Overall Rating’) for

TripAdvisor.com vacation rentals is 3.8/5 and for Airbnb, 4.75/5. Reciprocity due to bilateral review

policy and sellers’ strategic manipulation were proposed to be the main causes for rating inflation.

The empirical implication is that price premiums due to a unit increase in each rating scores

would be small. Also, given that every rating scores are near perfection, it is important to catch

which categories would appeal to consumers the most. The lasso procedure chose ’Cleanliness’,

’Location’, and ’Value’.

Table 1.1: Definitions for Review Score Categories

Category Questions Asked in Reviewing Process

Rating Overall experience
Accuracy How accurately did the photos and description represent the actual space?
Cleanliness Did the cleanliness match your expectations of the space?
Check-in How smooth was the check-in process, within control of the host?

Communication How responsive and accessible was the host before and during your stay?
Location How appealing is the neighborhood (safety, convenience, desirability)?
Value How would you rate the value of the listing?

The number of negative reviews is about twofold for ’Superhost’ units, compared to normal

hosts’ units but the difference is due to the fact that, on average, ’Superhost’ units received two

times as many consumer reviews. Reviews on ’Superhost’ units also contain more positive phrases

expressing a strong satisfaction enough to write recommendations to future guests or intentions to

come back.6
6More details on text processing is provided in the next sub-subsection 1.2.2.2
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Table 1.2: Summary Statistics

(Cross Section: 201712) Mean S.D. Superhost Normalhost Min Max

Number of Obs 13,364 2,532 10,832
Price ($) 185.4537 119.439 195.2812 183.1565 34 1000

Quality Certification
Superhost Indicator 0.1895 1 0 0 1
Verification Accounts 4.5934 1.3273 4.8175 4.5410 1 9

Review Scores
Overall Rating 93.1792 7.2012 96.4680 92.4105 20 100

Accuracy 9.5657 0.7368 9.8776 9.4928
Check-in/out 9.2114 1.0106 9.7149 9.0937
Cleanliness 9.7456 0.6018 9.9645 9.6944 2 10

Communication 9.7722 0.5659 9.9664 9.7268
Location 9.4192 0.7637 9.5170 9.3963
Value 9.3294 0.7874 9.6584 9.2525

Review Text
Negative Reviews 4.9400 6.4968 9.1078 3.9658 0 76
Positive Phrases 3.4892 4.9246 6.5687 2.7693 0 48

Seller Text
Positive Adjectives 6.5965 4.6933 7.4214 6.4036 0 39
Location Phrases 10.0342 7.0098 11.3468 9.7274 0 62

Accommodation Capacites
Default Guests 2.9461 1.8063 3.0865 2.9133 1 16
Bedrooms 1.1675 0.6963 1.2014 1.1595 0 4.5
Bathrooms 1.1143 0.3626 1.1145 1.1142 0 9

Beds 1.6051 1.0757 1.6904 1.5852 1 16
Guests Included 1.6192 1.1364 1.7749 1.5828 1 14

Amenity and Services
Air Conditioning 0.8836 0.9356 0.8714

Buzzer Wireless Intercom 0.5186 0.4897 0.5254
Cable TV 0.3631 0.4313 0.3471

Free Parking 0.1076 0.1445 0.0990
Indoor Fire Place 0.0387 0.0474 0.0367

Lock on Bedroom Door 0.1408 0.1829 0.1310 0 1
Cats Allowed 0.0648 0.0746 0.0625

Internet 0.7710 0.7670 0.7720
Shampoo 0.6207 0.7753 0.5846

(Room Type)
Entire Home/Apt 0.5622 0.5391 0.5676
Shared Room 0.0137 0.0138 0.0137
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Seller texts include rental unit titles, sub-titles, descriptions on various aspects such as neigh-

borhoods, transportation, pros and cons, and etc. ’Superhost’ rentals in fact contain fewer ’Positive

Adjectives’ and ’Location Phrases’ than normal host units. The selected accommodation capacities

conform to the empirical studies on price determinants of hotels and Airbnb.7 Amenity and service

features were cross-selected by additional data-driven machine learning methods other than Belloni

and Chernozhukov (2013).

1.2.2.2 Text Processing

This paper employs n-gram word/phrase extraction (bag of words) and sentiment analysis (classifi-

cation) using a supervised machine learning method to process seller and buyer texts. N-gram bag

of words means extracting words/phrases purely according to the frequency of occurrences and use

them as regressors. As shown in tables, selected features are often reduced and categorized at a

researcher’s discretion.

Table 1.3: Selected Words/Phrases from Airbnb Hosts’ Advertisement Texts
Category Positive Adjectives Location Words

Unigram Amazing, Beautiful, Broadway, Manhattan, Soho
Cozy, Friendly, Spacious, ... Brooklyn, Chelsea, ...

Bigram Central Park, Columbia University,
Hell’s Kitchen, Brooklyn Bridge,
Times Square, Union Square,

Walking Distance, Rockefeller Center, ...
Trigram Empire State Building, The G train,

Major subway lines,
Grand Central Station,
The Hudson River, ...

Quadrigram Metropolitan Museum of Art
Museum of Natural History, ...

This paper extracts 36 words/phrases out of the 3,000 most frequently appearing ones among

more than 120,000 seller advertisement texts. The counts for each rental unit were summed over

the regarding two categories: ’Positive Adjectives’ and ’Location Words’ (Table 1.3). Similarly,

7See Wang and Nicolau (2017) for a comprehensive review up to date.

11



38 ’Positive Phrases’ expressing recommendations for future guests and intentions to revisit were

selected out of 7,000 most frequently appearing words/phrases among more than 850,000 Airbnb

guest review texts (Table 1.4).

Table 1.4: Selected Words/Phrases from Airbnb Guests’ Review Texts
Recommendations Intentions to Revisit

can highly recommend cant wait to come back
can recommend cant wait to go back

i definitely recommend this hope to be back soon
i really recommend this place hope to come back

i recommend hope to see you again
id recommend hope to stay here again
we recommend hope to stay there again
will recommend id definitely stay here again

would absolutely recommend ...
would definitely recommend would definitely come back
would highly recommend would definitely consider staying here again

would not hesitate to recommend would stay there again
would recommend wouldnt hesitate to stay here again

Supervised machine learning means fitting a function that maps an input to an output based on

an example input-output pair dataset. For sentiment classification of review texts it includes the

following procedures; a researcher conducts a pre-processing such as removing non-alphabetical

components, (arabic numbers, commas, punctuations, and etc) trimming white spaces, and con-

verting to lower case letters. A classification machine is then trained on sample reviews, with

emotional polarity as outputs and words/phrases as inputs. The choice on word/phrase regressors

could either rely on pre-established dictionaries (lexicons) or n-gram words/phrases from sample

reviews whichever yields the best in-sample prediction performances. The trained machine is then

scaled up on the whole review text corpus.

This paper trains a classification machine on a set of 1,000 sample reviews collected from

four major U.S cities other than NYC: Ashevill (NC), Austin (TX), Denver (CO), and Washington

D.C. Using 3,500 n-gram bag of words/phrases, multiple supervised machine learning models

were constructed and the highest in-sample prediction rate (87%) was achieved with classification

tree in ’Caret’ R package over Naive Bayes and Support Vector Machine. The classification was
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then applied to the whole 850,000 NYC Airbnb review texts. Table 1.5 and Table 1.6 provide a

conceptual example.

Table 1.5: Example Guest Reviews and Sentiment Labels

Reviews Raw Texts

Ex.1 This is a dirty frat house.
(Negative) No locks other than main building door.

Dirty toilets. No host present. Rotting food in the fridge.
Ex. 2 My room at the BPS Hostel was clean and cool.

(Nonnegative: The staff and fellow guests were friendly and helpful.
Neutral) The location is very convenient for local eateries, coffee shops, pubs and deli’s.

However, I do not feel it was good value for money at $72 per day.
There was no room service,

I shared a bathroom with upto 8 others and the breakfast was weak.
Ex. 3 Great location just outside of downtown Asheville.

(Nonnegative: I stayed here with three other people. Plenty of space.
Positive) Mike was very easy to work with, and made sure we had everything we needed.

Table 1.6: Bag of Words Matrix for Example Guest Reviews

Label breakfast clean cool dirty great helpful however plenty rot

Ex.1 0 0 0 2 0 0 0 0 1
Ex.2 ... 1 1 1 0 0 1 1 0 0 ...
Ex.3 0 0 0 0 1 0 0 1 0

N-gram bag of words and sentiment analysis by supervised machine learning have been the

dominant processing techniques in hospitality research on the impacts of consumer reviews on

prices and business performances, over many platforms such as Ctrip.com, TripAdvisor.com,

Booking.com, Expedia.com, Travel.yahoo.com, and Yelp.com. Also, supervised machine learning

showed better prediction results than lexicon based methods. Existing lexicons do not share many

of the words/phrases on a specific web portal of interest.8

Following the conventional approach of using counts of words/phrases and negative reviews

as covariates instead of proportionate variables with scaling purposes was done for two reasons.

First, review texts are time-cumulative and superimposed so it is unlikely for consumers to read all

8See Alei, Becken, and Stantic (2017) for a comprehensive review on sentiment analysis methods listed above and
performances over online hospitality research in the last decade.
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the reviews. If one uses the proportion of negative reviews (from total number of reviews) instead

of the counts, it suffers the risk of downward (upward) bias of the coefficient for rental units that

received a great (small) number of reviews already. Second, one can imagine the proportion of

’Positive Adjectives’ or ’LocationWords’ among total number of words sellers’ advertisement texts

include. But high ratio does not necessarily mean more value. Individual specific perceptions and

expectations on product quality induced from such texts could involve further considerations on

various unobserved factors.

1.3 Model and Identifying Assumption

1.3.1 High-Dimensional Metrics

1.3.1.1 Sparsity and Variable Selection

Following Rosen (1974), equation (1.1) presents the baseline hedonic regression model, which

expresses prices as a function of observed attributes and errors (unobserved variables).

log(pit) = α + βXit + εit (1.1)

pit is per night rental prices of unit i = 1 , ..., n at time period t, Xit ∈ Rp represents rental unit

attributes, and εit is the error term. The first identification challenge with NYC Airbnb data is

high-dimensional attribute space plagued by multicollinearity and irrelevant variables. This paper

hence adopts sparsity that is frequently assumed in high-dimensional metrics i.e., that there exist

s = o(n) � p attributes that asymptotically capture most of the impacts of all p regressors.

A practical implication of sparsity for general linear regression models with Gaussian or

heteroskedastic errors is that an econometrician first chooses a set of s variables that affects

prices the most by lasso and then conducts an OLS only with the s variables. Such OLS post

lasso, with theoretically suggested conditioning parameters for the first step lasso selector achieves

a successful asymptotic approximation to the ’true’ log(pit) objective function. (Belloni and
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Chernozhukov (2013), Chernozhukov, Hansen, and Spindler (2015), Belloni, Chernozhukov, and

Wang (2014))

More specifically, the typical risk minimization problem of balancing bias and variance for

hedonic price estimation with sparsity assumption can be stated as the following.

min c2s + σ
2 s

n
(1.2)

c2s = min
dim(β)≤s

E[(log(pit) − βXit)
2]

c2s +σ
2 s

n is the upper bound of the risk for the best log price estimator using only s � p covariates.

(the ’oracle risk’), which is achieved if the first stage lasso selector chose the correct s variables

which by sparsity assumption that captures the most of the impacts of all p regressors. Then the

resulting ’oracle rate’ of error convergence rate is given by
√

s/n.

One important appeal of OLS post lasso is that even if lasso selector gives only a subset of s

covariates, post selection OLS estimator still achieves the ’near oracle rate’ of
√

s ∗ log(p)/n. In

other words,
√

E[(log(pit) − βM̂ X M̂ )2] = Op(cs + σ
√

s ∗ log(p)/n), where X M̂ and βM̂ represent

the vector of attributes chosen by lasso (the observed selected model M̂) and the corresponding

post selection OLS coefficients.

1.3.1.2 Preliminary Analysis: OLS post Lasso and Post Selection Inference

To achieve the ’near oracle property’ of OLS post lasso, lasso procedures need to use theoretically

imposed conditioning parameters. Borrowing notations from Belloni and Chernozhukov (2013),

the lasso selector based on sparsity assumption chooses variables with non-zero coefficients in

solving the following penalized regression problem;

β̂ = argminβ∈Rp Q̂(β) +
λ

n
| |Ψ̂β| |1 (1.3)

Q̂(β) =
1

n

n∑
i=1
(log(pit) − βXit)

2

where | |β | |1 =
∑p

j=1 |β j | and Ψ̂ = diag(ψ̂1 , ..., ψ̂p). The theoretically suggested penalty loadings

Ψ̂ and penalty level λ for heteroskedastic errors are;
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ψ̂ j =

√
1

n

∑
n
(x2i j ε̂

2
i ) (1.4)

λ = 2c
√

nΦ−1(1 − γ/(2p))

whereΦ denotes the cumulative standard normal distribution and ε̂ is an empirical estimate of errors

(residuals). The suggested preset values for c and γ are 1.1 and 0.1. Ψ̂ and λ for homoskedastic

errors result in similar variable selection results.

If one proceeds to OLS with the selected (observed) model M̂ with variables of non-zero

coefficients from equation (1.3) however, then classical inferences (confidence intervals and p-

values) on β̂M̂ are no longer valid. It is because of the non-selected (omitted) variables, making the

post selection OLS only with the attributes in X M̂ biased. Though the asymptotic distribution of

lasso coefficients for our case of n � p is available, (Knight and Fu (2000)) an exact post selection

inference for OLS post lasso is the primary target of interest.

Such ’post selection inference’ after variable selection with machine learning is a relatively new

and still developing area. This paper follows Lee, L. Sun, Sun, and Taylor (2016) which provides an

exact distribution of post selection OLS estimates and hence, exact confidence intervals, p-values,

and tail areas. The idea is that given a response y ∼ N(µ, σ2In), themodel selection event {M̂ = M}

by lasso can be expressed as a form of polyhedron {Ay ≤ b}. Then {Ay ≤ b} once again can be

transformed into an interval with low and upper endpoints being functions ν−(z j) and ν+(z j) of

residuals z j of y in the direction of x j , {ν−(z) ≤ y ≤ ν+(z)}. Due to the independence between y

and z j , the distribution of an individual coefficient β̂M̂
j (a simple linear transformation of y) from

OLS conditional on the model selection results M̂ is a truncated normal.

One advantageous fact about Lee et al. (2016) is that a practitioner can produce exact confidence

intervals and p-values with a fixed penalty parameter λ′. To be more specific, the lasso formulation

for the exact post selection inference is the original lasso by Tibshirani (1996).

β̂ = argminβ∈Rp Q̂(β) + λ′| |β | |1 (1.5)

Therefore, with a range of values of λ′ that produces the same model M̂ including variables of
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non-zero coefficients from the penalized regression problem in equation (1.3), a practitioner can

produce exact inference for OLS post lasso, preserving the ’oracle’ property.

Table 1.7 and Table 1.8 (the first column) report the OLS post lasso estimation results on the

pooled sample stacking cross sections recorded at 2016 and 2017. The lasso selection procedure

for the ’oracle’ rate (equation (1.3)) considers all variables in the dataset, to preliminary check

this paper’s idea: platform enforced quality certifications and consumer review contents are more

influential to prices than sellers’ disclosures. The variables pertaining to the information contents

from the platform, buyers and sellers were indeed all selected.

The selected model is stable over a range of the penalty control parameter c, from 0.9 to 1.3 with

0.05 increments. Also, the data-driven lasso (equation (1.5)) selects the model with a range of λ′

values and the exact inferences for post OLS estimates were produced. The confidence intervals for

parameter estimates essentially reproduces those of OLS, but are slightly wider for most variables.

This is due to the re-normalization of density resulting from the truncation. The margins are small

given the large number of samples in the dataset.9

The first column of Table 1.7 reports OLS post lasso coefficients on information variables.

’Superhost’ badge has 5.25% price impacts and host verification accounts have 1.73%, both of

which are statistically significant at a 1% level. Among seven rating categories, ’Cleanliness’,

’Location’, and ’Value’ were selected. ’Location’ score has the greatest price impact of 13.68%.

The negative coefficients for ’Value’ scores come natural since they represent per dollar satisfaction.

The following estimation (Subsection 1.3.2) controlling for unobservables proceeds with these three

review scores.

Textual variables indeed turn out to show expected impacts on prices but the magnitudes are

much smaller than those of quality certifications and review scores. One thing to note is that the

magnitudes and statistical significance of coefficients are greater for review text variables than seller

text variables; ’Positive Adjectives’ from seller texts are insignificant, and ’Location Phrases’ show

9See Appendix A.3 and B.1 for a detailed explanation for the exact post selection inference and the resulting
confidence intervals and tail areas for p-values.
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significant but much smaller implicit price (0.12%) estimate compared to ’Negative Reviews’ and

’Positive Phrases’ from reviews (-0.73% and 0.70%). This differential impacts are maintained in

price elasticity measures (βk xk ) on average values of attributes xk ’s as expected.

The first column of Table 1.8 reports OLS post lasso coefficients for the chosen 11 amenity

and service features out of the total 150. For robustness to the selection procedures, the successive

four columns of Table 1.7 and Table 1.8 report OLS coefficients with model selection using other

ML methods: data-driven lasso, ridge regression, elastic net, and gradient boosting with n-folds

cross-validation and RMSE criterion for price approximation or prediction performances. The

difference between the first column (OLS post lasso) and the second (data-driven lasso) is about

the purpose of penalized regression problem. The former is for achieving ’oracle’ rate of post OLS

regression, and the latter is for minimizing the RMSE.

Data-driven lasso is as given in equation (1.5). Ridge regression (Hoerl and Kennard (1970))

uses the penalty with L2 norm, | |β | |2. Elastic net (Zou and Hastie (2005)) defines the penalty

with a linear combination of L1 and L2 norms. Gradient boosting (Friedman (2001)) is a variation

of regression tree methods which means recursive partitioning of data space for classification or

prediction purposes.10

Key information variables and accommodation capacities were selected by all fiveMLmethods.

Eight additional binary amenity and service features were cross selected by the four data-driven

ML methods. This paper proceeds to estimation methods for controlling unobservables with

variables in Table 1.7, and 11 unanimously selected amenity and service features in Table 1.8:

’Air Conditioning’, ’Buzzer Wireless Intercom’, ’Cable TV’, ’Free Parking on Street’, ’Indoor Fire

Place’, ’Lock on Bedroom Door’, ’Cats Allowed’, ’Internet’, ’Shampoo’, and room types of ’Entire

Home/Apt’ and ’Shared Room’. One reassuring fact is that whether the model includes binary

features selected by ML methods does not systematically alter the main hypothesis of this paper on

the superiority of enforced and ex-post verified information contents over non-verified seller side

disclosures.
10See Appendix A.1 and A.2 for detailed explanation on the methodologies.
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Table 1.7: OLS post Lasso on the Pooled Sample (1)

obj : log(pit ) OLS post LASSO Data Driven ML
obs: 75,236 LASSO RIDGE GBM ENET

Quality Certification
Superhost Indicator 0.0525a 0.0532a 0.0509a 0.0514a 0.0528a

(0.0041) (0.0041) (0.0041) (0.0041) (0.0041)
Verification Accounts 0.0173a 0.0176a 0.0171a 0.0171a 0.0176a

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013)

Review Scores
Cleanliness 0.0490a 0.0492a 0.0487a 0.0489a 0.0491a

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
Location 0.1368a 0.1372a 0.1372a 0.1370a 0.1373a

(0.0018) (0.0018) (0.0018) (0.0018) (0.0018)
Value -0.0919a -0.0919a -0.0919a -0.0921a -0.0920a

(0.0022) (0.0022) (0.0022) (0.0022) (0.0022)

Review Text
Negative Reviews -0.0073a -0.0072a -0.0074a -0.0073a -0.0072a

(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
Positive Phrases 0.0070a 0.0071a 0.0070a 0.0070a 0.0071a

(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

Seller Text
Positive Adjectives 0.0002 0.0002 0.0002

(0.0003) (0.0003) (0.0003)
Location Phrases 0.0012a 0.0012a 0.0012a

(0.0002) (0.0002) (0.0002)

Accommomdation Capacities
Default Guests 0.0563a 0.0565a 0.0555a 0.0555a 0.0565a

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)
Bedrooms 0.1037a 0.1035a 0.1035a 0.1037a 0.1031a

(0.0042) (0.0042) (0.0042) (0.0042) (0.0042)
Bathrooms 0.1105a 0.1106a 0.1104a 0.1104a 0.1104a

(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)
Beds -0.0192a -0.0196a -0.0199a -0.0198a -0.0197a

(0.0024) (0.0024) (0.0024) (0.0024) (0.0024)
Guests Included 0.0242a 0.0244a 0.0238a 0.0239a 0.0243a

(0.0016) (0.0016) (0.0016) (0.0016) (0.0016)

Constant 3.0792a 3.0824a 3.0874a 3.0878a 3.0836a

(0.0206) (0.0206) (0.0207) (0.0207) (0.0206)
a : 1% significant,b: 5%, c : 10%, standard errors in parentheses
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Table 1.8: OLS post Lasso on the Pooled Sample (2): Amenity Feature Selection

obj : log(pit ) OLS post LASSO Data Driven ML
obs: 75,236 LASSO RIDGE GBM ENET

Unanimous Choice
Air Conditioner 0.1263a 0.1271a 0.1262a 0.1263a 0.1270a

(0.0042) (0.0042) (0.0042) (0.0042) (0.0042)
Buzzer Wireless Intercom 0.0878a 0.0888a 0.0880a 0.0879a 0.0890a

(0.0027) (0.0027) (0.0027) (0.0027) (0.0027)
Cable TV 0.1000a 0.0995a 0.0988a 0.0992a 0.0992a

(0.0028) (0.0028) (0.0028) (0.0028) (0.0028)
Free Parking on Street -0.1209a -0.1206a -0.1227a -0.1224a -0.1210a

(0.0043) (0.0043) (0.0043) (0.0043) (0.0043)
Indoor Fire Place 0.1223a 0.1219a 0.1204a 0.1208a 0.1212a

(0.0068) (0.0068) (0.0068) (0.0068) (0.0068)
Lock on Bedroom Door -0.0677a -0.0677a -0.0704a -0.0704a -0.0684a

(0.0046) (0.0046) (0.0047) (0.0047) (0.0046)
Cats Allowed -0.0846a -0.0844a -0.0838a -0.0841a -0.0839a

(0.0053) (0.0053) (0.0053) (0.0053) (0.0053)
Internet 0.0259a 0.0267a 0.0248a 0.0251a 0.0266a

(0.0035) (0.0035) (0.0035) (0.0035) (0.0035)
Shampoo 0.0392a 0.0400a 0.0366a 0.0371a 0.0395a

(0.0028) (0.0028) (0.0029) (0.0029) (0.0028)
Room Type

Entire Home/Apt 0.5901a 0.5901a 0.5881a 0.5880a 0.5901a

(0.0034) (0.0034) (0.0034) (0.0034) (0.0034)
Shared Room -0.1640a -0.1655a -0.1637a -0.1638a -0.1653a

(0.0112) (0.0112) (0.0112) (0.0112) (0.0112)

Cross Selected
Fire Extinguisher 0.0025 0.0035 0.0052

(0.0031) (0.0031) (0.0029)
Other Pets Allowed -0.0500b -0.0498b -0.0479b

(0.0213) (0.0213) (0.0213)
Family/Kid Friendly 0.0107a 0.0110a

(0.0030) (0.0030)
Laptop Friendly Workspace 0.0056b 0.0062b

(0.0029) (0.0029)
Safety Card 0.0119a 0.0133a

(0.0042) (0.0042)
Smoke Detector -0.0178a -0.0099a

(0.0042) (0.0036)
Carbon Monoxide Detector 0.0123a

(0.0035)
Hot Tub 0.0044

(0.0060)

20



1.3.1.3 Cautions with Endogeneity

Hedonic price regressions often suffer from endogeneity due to omitted or unobserved variables.

Even though OLS post lasso produced seemingly appropriately signed parameter estimates, it is

susceptible to endogeneity. It is because both the lasso selector and post OLS use Gaussian or at

best, heteroskedastic errors implicitly assuming that there is no endogeneity due to unobservables.

Indeed, Ramsey test F-values for omitted variables in post selection OLS estimates are extremely

high for all specifications in Table 1.7 and 1.8.

High-dimensional econometricians in fact, have provided post selection IV regressions with

variable selection on both many controls and instruments with a small number of key endogenous

variables such as treatment/policy indicators or prices. (Chernozhukov, Hansen, and Spindler

(2015), Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018)) But they

need a distributional separability assumption between the ’key’ variables and lasso selection on

controls and instruments, which still usesGaussian errors. It is understandable in that unobservables

are not in the dataset, and MLmethods resort to the magnitudes of in-sample prediction errors such

as RMSE to choose the ’right’ subset of all covariates.

This paper hence proposes to use OLS post lasso only as a guide for efficient dimension

reduction in attribute space and employ econometric methodologies to control for endogeneity due

to unobservables: fixed effects and a GMM approach with a panel data. They do not pre-specify a

small set of endogenous variables but accepts the possibility that unobservables could be correlated

with any observed characteristics included in the model.

In fact, the same concerns on endogeneity arise with conventional alternatives including prin-

cipal component analysis (PCA), Akaike information criterion (AIC), or Bayesian information

criterion (BIC), plus being practically infeasible with hundreds of variables to consider. PCA

coefficients are linear combinations of covariates which makes it impossible to isolate and identify

coefficients for individual variables, and the stepwise nature of AIC and BIC dictates too high

calculation costs for estimation and comparison to incur given that there are at most 150 binary

indicators.
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1.3.2 Time-Varying Correlated Unobservables

1.3.2.1 Possible Sources

Unobservables correlated with observable attributes and prices could be classified into two cate-

gories; one is time-invariant and another is time-varying. Time-invariant unobservables include

seasonality and neighborhood specific attributes such as education levels, crime rates, and prox-

imity to famous tourist attractions. If there is no time-varying unobservables, biases in parameter

estimates could be controlled for with a fixed effects estimation.

log(pit) − log(pit−1) = β(Xit − Xit−1) + εit (1.6)

However, there are strong candidates for time-varying unobservables such as curb appeal,

direct/indirect advertising, and geographical dynamics. For example, if a consumer finds the curb

appeal of a rental unit perceived via web images quite attractive, then he/she could ignore some

shortcomings in certain observed attributes. Rental unit images containing curb appeal change

overtime in quantity, quality, and contents.

Also, if a potential guest were looking for information about travel accommodation choices

using social network services (SNS), chances are the search log and cookies would pop up Airbnb

advertisement on the screen. The schedule and coverage of such advertising campaigns vary over

time. Concerts, plays, and other events being held in specific areas of NYC could also affect

consumers’ rental unit choices. Anticipating a traffic jam, a tourist can sacrifice some personal

standards on other attributes for the sake of locational merits.

1.3.2.2 Markov Process and Consumer Rationality

Following the ideas of Bajari, Fruewirth, Kim and Timmins (2012), this paper imposes a Markov

(AR(1)) process on the errors to describe time-varying unobservables.

log(pit) = α + βXit + τit (1.7)

τit = ρτit−1 + ηit
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With a few algebraic manipulations, equation (1.7) implies

log(pit) = α + βXit + (ρτit−1 + ηit) (1.8)

= (1 − ρ)α + β(Xit − ρXit−1) + ρlog(pit−1) + ηit

The rationale behind such error structure is twofold; time-invariant and a certain portion of time-

varying unobservables could be controlled for with a relatively high value of the persistency

parameter ρ. Given that Airbnb rentals are originally individual real estate properties, a rather

stable time-series modelling is proposed to describe consumers’ expectation of implicit prices

for unobservables. Also, accommodation capacities like the number of bedrooms show enough

variations to identify our dynamic models, but are stable over time. Idiosyncratic shock ηit captures

unexpected changes in time-varying unobservables.

The third and final identifying assumption is consumer rationality (equation (1.9)) that time-

varying unobservables ηit do not affect Airbnb guests’ price expectations based on observable

characteristics. This orthogonality moment condition implies in other words, that consumers do

not make systematic errors in implicit pricing of attributes with the current information set It due

to unexpected changes in ηit .

E[log(pit) − ρlog(pit−1) − (1 − ρ)α − β(Xit − ρXit−1)|It] = 0 (1.9)

Since time-varying unobservables are correlated with observable attributes Xit , consumers’ current

information set It includes a set of instruments Zit−1 along with (log(pit−1), Xit, Xit−1). This paper

uses further lags of observables, Xit−2 as instruments. Appendix B.4 provides evidence for strong

relevance of each xit−2 to xit after controlling for log(pit−1) and xit−1. The estimation is easily

implemented with a standard GMM command in STATA.

Together with fixed-effects estimation, the GMM (Generalized Methods of Moments) approach

based on consumer rationality assumption regresses dynamic price adjustments on changes in

observed attributes. Given small annual variations in observed attributes and prices (Appendix

B.3), there could be a risk of relatively less precise estimates for the implicit prices from the dynamic
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models. This paper presents estimation results for both fixed-effects and GMM to investigate the

research question under various error structures.

1.3.2.3 Previous Empirical Research on Airbnb

Existing hedonic studies on price determinants of Airbnb rental units in tourism and hospitality

research employed simple OLS. (Wang and Nicolau (2017), Chen and Xie (2017), Teubner, Hawl-

itschek, and Dann (2017), Gibbs, Guttentag, Gretzel, Morton, and Goodwill (2018)) Controlling

for an obvious existence of unobservables seems necessary to identify implicit prices of attributes

more accurately. Also, they do not handle the issue of model selection in the presence of many

binary indicators for amenity and service features.

Others employed quasi-experimental identification strategies; Ert, Fleischer, and Magen (2016)

hired 900 Amazon Mechanical Turks to study the impacts of the ’Beauty Scores’ from host pho-

tographs. Edelman, Luca, and Svirsky (2017) created Airbnb guest accounts with names strongly

suggestive of African-American ethnicity, and found strong evidence for racial discriminations

in booking processes. However, quasi-experimental methods cannot identify multiple attributes

like regression models because of the narrow windows focused only on one target variable. Also,

artificial environments to generate data are susceptible to biases, not reflecting natural choices of

real customers. Finally, it is hard to find a common geographical or regulational break that would

affect entire NYC Airbnb market.

Table 1.9 and Table 1.10 report estimation results using fixed effects and GMM for time-

varying unobservables on the panel dataset. Columns (1) and (3) report estimation results with

amenity and service features selected by ML methods and (2) and (4) without. It is to check if

this paper’s hypothesis is robust to the variable selection procedures. Platform enforced quality

certifications including ’Superhost’ badge and ’Verification Accounts’ show strongly positive signs

for all methods and specifications. The coefficients and significance are higher for GMM than fixed

effects, comparing (1) and (3). ’Superhost’ units have 0.93 to 1.01% price premiums over normal

host units.
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1.4 Results

1.4.1 Fixed Effects vs. GMM Based on Consumer Rationality

Table 1.9: Fixed Effects vs. GMM (1)

obj : log(pit ) Fixed Effects GMM

obs: 37,618 (1) (2) (3) (4)
Quality Certification

Superhost 0.0099*** 0.0094*** 0.0101*** 0.0093***
(0.0020) (0.0020) (0.0020) (0.0021)

Verification Accounts 0.0022*** 0.0022*** 0.0033*** 0.0019**
(0.0007) (0.0007) (0.0008) (0.0008)

Review Scores
Cleanliness -0.0007 -0.0012 0.0007 0.0014

(0.0018) (0.0018) (0.0022) (0.0022)
Location 0.0050** 0.0052** 0.0087*** 0.0064**

(0.0021) (0.0021) (0.0026) (0.0026)
Value -0.0038* -0.0035* -0.0070*** -0.0046**

(0.0020) (0.0020) (0.0023) (0.0023)

Review Texts
Negative Reviews -0.0001 0 -0.0023*** -0.0027***

(0.0004) (0.0004) (0.0004) (0.0004)
Positive Phrases 0.0036*** 0.0035*** 0.0034*** 0.0036***

(0.0006) (0.0006) (0.0006) (0.0006)

Seller Texts
Positive Adjectives -0.0006 -0.0006 -0.0004 -0.0007

(0.0005) (0.0005) (0.0007) (0.0007)
Location Phrases 0.0021*** 0.0021*** 0.0013*** 0.0012***

(0.0003) (0.0003) (0.0004) (0.0004)

Constant 0.1720*** 0.1793***
(0.0079) (0.0074)

ρ 0.9654*** 0.9643***
(0.0017) (0.0015)

***: 1% significant, **: 5%, *: 10%, standard errors in parentheses
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Table 1.10: Fixed Effects vs. GMM (2)

obj : log(pit ) Fixed Effects GMM

obs: 37,618 (1) (2) (3) (4)
Accommodation Capacities†

Default Guests 0.0269*** 0.0365*** 0.0304*** 0.0409***
(0.0018) (0.0018) (0.0034) (0.0038)

Bathrooms 0.0151** 0.0139* 0.0260** 0.0236*
(0.0076) (0.0077) (0.0122) (0.0130)

Bedrooms 0.0420*** 0.0583*** 0.0356*** 0.0607***
(0.0042) (0.0041) (0.0079) (0.0088)

Beds 0.0125*** 0.0133*** 0.0136*** 0.0188***
(0.0026) (0.0026) (0.0040) (0.0045)

Included Guests 0.0167*** 0.0173*** 0.0153*** 0.0172***
(0.0018) (0.0018) (0.0029) (0.0030)

Amenity and Service
Air Conditioner 0.0005 -0.0054

(0.0048) (0.0071)
Buzzer Wireless Intercomm 0.0120*** 0.0111*

(0.0046) (0.0062)
Cable TV -0.0005 0.0064

(0.0042) (0.0051)
Free Parking on Street -0.0059 -0.0033

(0.0057) (0.0077)
Indoor Fire Place 0.0141 0.0295*

(0.0128) (0.0165)
Lock on Bedroom Door -0.0033 -0.0170***

(0.0047) (0.0060)
Cats Allowed -0.0330*** -0.0174

(0.0076) (0.0127)
Internet -0.0024 0.0007

(0.0043) (0.0051)
Shampoo -0.0029 0.0004

(0.0035) (0.0044)

Room Type
Entire Home/Apt 0.1499*** 0.1700***

(0.0060) (0.0114)
Shared Room -0.0478*** 0.0079

(0.0157) (0.0389)
†: One concern with fixed effects and GMM could be that within a year (from 2016 to 2017), there may not
be enough variations in accommodation capacities for identification. It turns out that unlike hotels, Airbnb
hosts make non-negligible changes to accommodation capacities. (see Appendix B.3)
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For review scores, the implicit price estimates and their statistical significance for ’Location’

and ’Value’ improve in GMM compared to fixed effects specifications: from 0.5% and -0.38%

impacts with fixed effects to 0.87% and -0.7% with GMM, respectively. ’Negative Reviews’ have

expected negative sign and are highly significant with GMM, but not with fixed effects estimation.

’Positive Phrases’ extracted from consumer review texts have positive impact on rental prices for

both methods. Leaving phrases like ’would definitely come back’ implies a strong satisfaction of

customers from the past, and hence it is expected that consumers would find them trustworthy.

However, the coefficients and statistical significance of sellers’ advertisement texts both are less

than consumer review text variables; non-verified ’Positive Adjectives’ are insignificant whereas

’Location Phrases’ are significant, which is likely because it is hard to lie about locational merits

given that potential guests can check the location with Google Maps API on web listings instantly.

The coefficients on variables for accommodation capacities show expected signs, with ’Default

Guests’, ’Bathrooms’, and ’Beds’ showing noticeable increments in coefficients with GMMmethod.

Also, the price premiums for room type ’Entire Home/Apt’ become greater and more significant

with GMM. Among amenity and service features, ’Indoor Fire Place’ and ’Lock on BedroomDoor’

become significant in GMM estimation, though ’Cats Allowed’ and the room type ’Shared Room’

become insignificant. ’Buzzer Wireless Intercomm’, ’Indoor Fire Place’, and ’Entire Home/Apt’

usually come with private house or apartment which make them as indicators of price premiums;

’Lock on BedroomDoor’ is often associated with rental units of shared spaces such as youth hostels,

thus a good indicator of cheap prices.

Appendix B.2 reports fixed effects and GMM estimation results over Manhattan and other

neighborhoods. More than 47% of NYC Airbnb rental units are concentrated in Manhattan area

with a higher average price by more than $50. In a less than 3 mile distance circle, central

Manhattan area contains most of the tourist attractions and famous places; if a rental unit belongs

to Manhattan could be an indicator for many unobservables that could be correlated with prices.

The results confirm the dominance of enforced and ex-post verified reputation/feedback contents

over non-verified seller side disclosures in both regions.
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1.4.2 Over Price Levels

Table 1.11: GMM: Results for Reputation/Feedback Contents over Price Levels

obj : log(pit ) Fixed Effects GMM

obs: 37,618 1Q 2/3Q 4Q 1Q 2/3Q 4Q
Quality Certification

Superhost 0.0187*** 0.0061** 0.0071** 0.0190*** 0.0080*** 0.0081**
(0.0047) (0.0028) (0.0036) (0.0045) (0.0030) (0.0033)

Host Verification 0.0061*** 0.0047*** -0.0061*** 0.0030** 0.0043*** -0.0004
(0.0016) (0.0010) (0.0013) (0.0014) (0.0011) (0.0015)

Review Scores
Cleanliness -0.0089** 0.0067** -0.0080** -0.0010 0.0089** -0.0044

(0.0039) (0.0025) (0.0034) (0.0047) (0.0031) (0.0034)
Location 0.0127*** 0.0038 -0.0029 0.0105** 0.0083** 0.0075*

(0.0042) (0.0029) (0.0044) (0.0050) (0.0034) (0.0045)
Value 0.0029 -0.0089*** -0.0030 0.0011 -0.0107*** -0.0031

(0.0045) (0.0028) (0.0036) (0.0050) (0.0033) (0.0037)

Review Texts
Negative Reviews 0.0007 -0.0006 -0.0030*** -0.0022*** -0.0030*** -0.0014*

(0.0009) (0.0006) (0.0009) (0.0008) (0.0006) (0.0008)
Positive Phrases 0.0073*** 0.0038*** 0.0032*** 0.0051*** 0.0028*** 0.0025***

(0.0014) (0.0008) (0.0010) (0.0012) (0.0008) (0.0009)

Seller Texts
Positive Adjectives 0.0002 -0.0013* -0.0023** 0.0009 -0.0014 -0.0011

(0.0010) (0.0007) (0.0010) (0.0011) (0.0010) (0.0014)
Location Phrases 0.0045*** 0.0021*** -0.0002 0.0025*** 0.0014*** -0.0001

(0.0007) (0.0004) (0.0006) (0.0008) (0.0005) (0.0006)

Constant 0.3237*** 0.3844*** 0.3472***
(0.0280) (0.0229) (0.0356)

ρ : rho 0.9234*** 0.9193*** 0.9338***
(0.0070) (0.0049) (0.0066)

1Q: rental units of lower 25% price range, 2/3Q: middle 50%, and 4Q: upper 25%
***: 1% significant, **: 5% ,*: 10%, standard errors in parentheses

28



Table 1.12: GMM: Results for Amenity and Service Features

obj : log(pit ) Fixed Effects GMM

obs: 37,618 1Q 2/3Q 4Q 1Q 2/3Q 4Q
Accommodation Capacities

Default Guests 0.0236*** 0.0271*** 0.0243*** 0.0319*** 0.0360*** 0.0236***
(0.0052) (0.0024) (0.0029) (0.0088) (0.0046) (0.0048)

Bathrooms -0.0020 0.0337*** 0.0188 -0.0070 0.0130 0.1240***
(0.0144) (0.0106) (0.0181) (0.0182) (0.0162) (0.0279)

Bedrooms 0.0239** 0.0516*** 0.0364*** 0.0136 0.0345*** 0.0466***
(0.0119) (0.0053) (0.0076) (0.0193) (0.0091) (0.0123)

Beds 0.0019 0.0186*** 0.0115*** -0.0006 0.0184*** 0.0029
(0.0079) (0.0035) (0.0039) (0.0113) (0.0062) (0.0050)

Included Guests 0.0299*** 0.0281*** 0.0062*** 0.0105 0.0314*** 0.0055*
(0.0059) (0.0029) (0.0024) (0.0103) (0.0047) (0.0032)

Amenity and Service
Air Conditioner -0.0074 0.0033 -0.0188 0.0136 -0.0009 -0.0183

(0.0089) (0.0064) (0.0134) (0.0124) (0.0093) (0.0156)
Buzzer Wireless Intercomm 0.0262*** 0.0212*** -0.0299*** 0.0248** 0.0169** -0.0126

(0.0098) (0.0063) (0.0086) (0.0127) (0.0079) (0.0096)
Cable TV -0.0152 -0.0020 0.0146** -0.0111 0.0062 0.0209***

(0.0097) (0.0058) (0.0074) (0.0113) (0.0073) (0.0075)
Free Parking on Street 0.0288** -0.0202*** -0.0159 0.0269* -0.0184* -0.0135

(0.0115) (0.0078) (0.0114) (0.0153) (0.0105) (0.0147)
Indoor Fire Place 0.1049*** -0.0217 0.0197 0.1123*** 0.0296 0.0196

(0.0324) (0.0201) (0.0181) (0.0434) (0.0289) (0.0178)
Lock on Bedroom Door 0.0139* -0.0201*** -0.0852*** 0.0018 -0.0301*** -0.0710***

(0.0077) (0.0067) (0.0168) (0.0090) (0.0078) (0.0260)
Cats Allowed -0.0273** -0.0410*** -0.0267 -0.0306** -0.0581*** 0.0097

(0.0129) (0.0112) (0.0186) (0.0149) (0.0191) (0.0298)
Internet 0.0134 -0.0078 -0.0116 0.0045 -0.0029 -0.0141

(0.0093) (0.0059) (0.0084) (0.0103) (0.0070) (0.0090)
Shampoo -0.0024 -0.0034 0.0025 0.0047 -0.0001 0.0015

(0.0081) (0.0048) (0.0061) (0.0100) (0.0061) (0.0066)

Room Type
Entire Home/Apt 0.2514*** 0.1225*** 0.1300*** 0.3284*** 0.2228*** 0.1182***

(0.0169) (0.0077) (0.0110) (0.0327) (0.0133) (0.0202)
Shared Room -0.1023*** 0.0601** -0.1076 -0.1137** 0.1239** 0.0367

(0.0251) (0.0258) (0.0349) (0.0552) (0.0490) (0.0596)
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Price level itself acts as a quality indicator for consumers and there is a risk of reverse causality in

hedonic price regressions with information variables on product quality as covariates. Also it is

worth investigating the differential effects of information disclosures over price ranges. Table 1.11

and Table 1.12 report estimation results on the three panel datasets over three price ranges: lower

25%, middle 50%, and upper 25% with average nightly prices of $75, $159, and $337 respectively.

Consumers turn out to value ’Superhost’ badge much more (2-3 folds) in rental units of lower

prices. It has price effects of 1.9% compared to 0.6-0.8% of rental units with higher price ranges.

The coefficients become greater and more significant with GMM estimation, namely controlling for

endogeneity due to time-varying correlated unobservables. Host ’Verification Accounts’ also show

strongly positive and significant coefficients for rental units at both lower 25% and middle 50%

price ranges. It might reflect the fact that consumers might demand more rigorous credibility and

professionalism standard for relatively cheap rental units. Since cheap rentals could lure low quality

sellers in the market segment inducing high risk of information asymmetry, credible measures of

product quality would be appreciated by potential guests much more.

For review scores, Airbnb guests for rental units of the middle 50% price range turn out to

care about all three categories of review scores: ’Cleanliness’, ’Location’, and ’Value’. Customers

of relatively cheap and expensive rental units only consider ’Location’ scores, with implicit price

estimates of 1.05% and 0.075%, respectively. It could be stated that locational merits are indeed

an important source of price premiums over all price levels. Comparing estimation methods,

’Cleanliness’ score had a strongly negative coefficient with fixed effects but become insignificant

with GMM for rental units of lower and upper 25% price ranges . Another sign change and

gain in significance occur for ’Location’ score in the top 25% rentals with GMM. There are

overall improvements in statistical significance and increments in coefficients over all review score

categories for the units of middle 50% price range.

Coefficients for ’Negative Reviews’ become highly significant and show expected negative signs

over all price levels with GMM. Coefficients for ’Positive Phrases’ from review texts are also highly

significant and the magnitude is particularly higher for cheap rentals, confirming the finding that
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consumers require ex-post verified trustworthiness more for cheap Airbnb units, similar to the

differential impacts of ’Superhost’. It also conforms to the finding in online commerce research

that prices of cheaper products are more sensitive to positive e-WOM. (electronic word of mouth,

Shin, Hanssesns, and Kim (2016))

’Positive Adjectives’ extracted from sellers’ advertisement texts are insignificant with GMM.

’Location Phrases’ are highly significant for rental units of lower 25% andmiddle 50% price ranges,

but the magnitudes are much smaller than those of quality certifications, review scores, and review

text variables.

Regarding accommodation capacities, rental guests who book low priced rentals seem to only

care about the number of ’Default Guests’; higher priced rental customers seem to consider the

number of bathrooms, bedrooms, beds, and included guests altogether. A likely explanation for this

could be that a tourist or tourists who visit a rental unit of an average price of $75 in NYC mostly

are finding a place to spend the night.

A few interesting sign changes occur for amenity and service features. ’Free Parking on Street’

adds a price premium for lower priced rentals, but is a minus factor for rentals of higher prices;

customers who are visiting rentals with prices coming close to three star hotels (more than $158)

usually anticipate a designated parking space or a private garage. ’Lock on Bedroom Door’ could

be welcomed by tourists who visit a cheap rental unit expecting the space being shared with other

guests but it is definitely a minus factor indicating low level of privacy for higher priced rentals.

Also, the room type ’Entire Home/Apt’ show differential impacts over price levels. The level

of privacy it presents is much more appreciated in cheaper rentals. The fact that ’Shared Room’

has negative price impacts for cheaper rentals and positive for middle 50% price range could reflect

the difference between the dominant property types each price level implies; rentals of $75 nightly

price in NYC usually mean a youth hostel or a smoking guy’s couch. However, rentals with prices

of more than $158 typically means private housing units where a customer shares the house with

the host or family. The so advertised ’home out of home’ experiences and interactions with locals

seem to come only above a certain price level.
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1.5 Conclusion

Sharing economy such as Airbnb could suffer more severe information asymmetry in that

products and services offered have never been tested as marketable, and involve further risks than

monetary losses. This paper shows that quality certifications and consumer reviews resolve adverse

selection as verified in other online marketplaces over various error structures and specifications.

Non-verified voluntary disclosures from sellers turn out to be less influential than enforced and

ex-post verifiable information on product quality. Machine learning methods, text processing tech-

niques, and flexible identifying assumptions were proposed to deal with identification challenges

modern that online platform data present.
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CHAPTER 2

DEMAND ESTIMATION FOR NYC AIRBNB MARKET: VALUE OF
REPUTATION/FEEDBACK CONTENTS AND VOLUNTARY DISCLOSURES

2.1 Introduction

2.1.1 P2P Online Marketplaces and Asymmetric Information

P2P (Peer-to-Peer) online marketplaces can be thought of as a matching platform between sellers of

underutilized idle assets and buyers who are willing to pay for temporary occupation of the assets.

For example, Uber or Lyft makes an ordinary car owner a taxi driver and Turo lets people lend and

borrow cars from each other. The same business model applies to leftover parking spaces (Parking

Panda), bikes, surfboards, ski equipments (Spinlister), and many others. Airbnb also falls into this

category, where home owners can be travel accommodation hosts and travelers can enjoy ’home

away from home’ experiences. Airbnb’s ’sharing economy’ platform recorded a market value of

$31 billion in 2017, and is being considered as a serious threat to the existing accommodation

businesses.

This paper empirically tests if the insight of classical information economics (i.e., disclosure

models) contributes to the remarkable success of Airbnb in NYC vacation rental market (Akerlof

(1970), Grossman and Hart (1980), Grossman (1981), and Milgrom (1981)). The insight from dis-

closure models, put simply, means that if the platform provides trustworthy (verifiable) information

on product quality, it can prevent market failure caused by adverse selection due to information

asymmetry. Conversely, providing non-trustworthy (non-verifiable) information on product quality

would not prevent the market failure due to the asymmetric information.

This paper tests how various information contents on Airbnb websites affect consumer choices

and quantifies how much value (in $) each content created for consumers. Specifically, it quantifies

the value of non-verified information provided by the sellers and verifiable information provided

by prior consumers. Figure 2.1 shows an example Airbnb listing, with product information stored
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Figure 2.1: Example Airbnb Listing, a ’Superhost’ Rental

in photographs and texts. Some of them are standard and formatting is provided by the platform,

such as the room type (’Entire Apt’), accommodation capacities (the number of guests, beds, and

bathrooms), ’Home Highlights’ and ’Superhost’ badge right next to the host’s photo. While Airbnb

provides standardized formatting, sellers have discretion in terms of the pictures, texts, and specific

information to be provided.

Figure 2.2 shows the review ratings and texts from the past travelers. Airbnb lets only the

actual guests who visited the rental unit leave reviews, and hence they are more trustworthy or

’ex-post verified’. Potential future guests can check the validity of sellers’ contents indirectly by

the reputation they accumulated over time, and it functions as a feedback mechanism for sellers to

enhance their product quality. In addition, the platform provides quality certifications (’Superhost’

badge and ’Home Highlights’) based on past buyer review ratings. Textual descriptions such

as ’Prime location’ or ’Quietest apartment’ provided by sellers can be deemed as non-verified

information on product quality or, ’Cheap Talk’.
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Figure 2.2: Example Review Ratings, Texts, and Google Maps API

This paper’s primary focus is to estimate the values of verifiable user information and the non-

verifiable seller information on product quality. It is from the key insight from Kreps (1982, 1990)

and Tadelis (2016) that a well functioning public repositories of reputation/feedback mechanisms

discipline sellers to act honestly even with a total stranger in every future transaction, which sustains

a market of trades among anonymous individuals like Airbnb. Using utility parameter estimates

from logit demand models, I find that the compensating variations for review ratings and seller

texts are about $38.54 and $3.65 million respectively, with a total of 708,308 reservations during

2016 and 2017 in NYC for a counterfactual scenario of complete absence. It shows that ex-post

verified information on product quality affects consumer choices more than non-verified seller side

voluntary disclosures.

There are three estimation challenges. They originate from extreme product heterogeneity that

is inevitable due to the business model of P2P platforms, gathering as many unique individual

assets as possible. First is ’too many products’ for consumers to choose from. If an econometrician

fails to consider consumers’ realistic choice set formation, demand parameters will suffer biases.

Second is high dimensional attribute space. A new set of 150 diverse amenity and service features
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such as ’video game consoles’ and ’EV chargers’ is now on search filters and product descriptions.

In the dataset, they are all binary indicators causing the risk of multicollinearity and irrelevant

variables. Third is product information stored in unstructured or non-numerical text format i.e.,

consumer reviews and sellers’ advertisement texts as can be seen in Figure 2.1 and 2.2. Given

that they affect consumer choices, appropriate data science techniques to transform such texts into

numerical variables are called for.

This paper contributes to the literature by addressing the estimation challenges listed above

using a set of tools recently developed in econometrics, i.e., machine learning (high dimensional

metrics) and text processing. They can be flexibly adjusted to most of general linear models used

in applied microeconomics research and possess a great potential for extracting policy insights or

business intelligence from massive size datasets (’Big Data’).

2.1.2 Estimation Challenges with Airbnb Platform Data

The first and primary concern of demand estimation with many products is to control for consumer

choice sets. There are on average 40,000 unique individual properties operating as Airbnb rentals

in NYC alone. If a researcher falsely assumes and models a consumer to choose a rental unit from

all of the tens of thousands products, utility parameter estimates will definitely suffer biases. The

dataset used in this paper is aggregate (market) level, which means it includes individual rental

units’ market shares but does not contain individual demographics that could directly identify a

consumer’s choice set formation processes.

Too many choice alternatives indeed have been one of the most challenging identification

problems in empirical industrial organization. (Berry, Linton, and Pakes (2004) and Berry and

Pakes (2007)) Marketing researchers also showed that consumers pay attention to only a small

subset of all products. (Draganska and Klapper (2011), and Kim, Albuquerque, and Bronnenberg

(2010)) If additional information on consumers’ choice set formation is available such as scanner

data in retail demand, discrete choice models and GMM estimation can be flexibly adjusted to

utilize such information (Kim and Kim (2017)).
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To describe a realistic choice set formation with utility models, this paper borrows the findings

from careful observations on Airbnb guests’ web search behaviors. As Fradkin (2017) notes,

Airbnb rental searchers heavily rely on Google Maps API on the search screen. Among searchers

who sent a reservation request, more than 64% of them changed the default map locations and

more than 50% used the zoom-in function to further reduce choice sets. Another key search filter

was ’Room Type’: Entire Home/Apt, Private, and Shared Room. Nearly 70% of potential guests

applied this filter to find a rental unit.

Hence this paper employs a three level nested multinomial logit (NMNL) model to reflect

consumers’ preferences for geographic locations in choice set formation during web search process.

The nesting structure is based on the mutually exclusive service neighborhood designations by

Airbnb. It first divides NYC into five precincts: Bronx, Brooklyn, Manhattan, Queens, and Staten

Island. Each precinct contains 32 to 53 neighborhoods, such as ’SoHo’ in Manhattan. The number

of rentals in a neighborhood varies from 2 to more than 5,500.

The first level nesting parameter for the big five regions (precincts) is intended to capture

the ’changing default map location’ behaviors, which occurs at a wider scale on the map. The

second level nesting parameter for neighborhoods is to capture the zoom-in/out behaviors; tourists

often have intentions to visit or preferences for famous neighborhoods such as ’Hell’s Kitchen’,

’Midtown’, or ’Financial Districts’. I then include the binary indicators for ’Entire Home/Apt’

and ’Shared Room’. Each counts for 51% and 2.79% of entire rental units in the sample. The

estimation results show highly significant and economically meaningful estimates for the nesting

parameters and ’Room Type’ filters, suggesting that the modeling choice was able to capture the

targeted aspects of consumer preferences.

The second identification challenge due to extreme product heterogeneity is high dimensional

attribute space. To differentiate each rental from another and match it to heterogeneous consumer

preferences, a new set of amenity and service features that traditional hotel chains cannot provide is

added to search filters, e.g., baby beds, children’s dinnerware, EV charger, and video game consoles.

Property types also show surprising variety, including cabins, castles, farm barns, camping cars,
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and tree houses. The dataset at our hands as a result attaches 150 binary indicators, giving a high

dimensional attribute space (Figure 2.3).

Such high dimensionality with many binary indicators poses two serious threats; some charac-

teristics are common and some are scarce, causing multicollinearity. There are irrelevant variables

that do not affect a consumer’s purchase decision significantly. The demand parameter estimates

could suffer biases or misspecifications.

An efficient way of dimension reduction is called for. This paper hence proposes to adopt

sparsity assumption and use variable (model) selection by a lasso variant (Belloni andChernozhukov

(2013)), choosing a subset of attributes that explains variations in sales (market shares) the best. The

demand model hence includes only the selected attributes, and exact inferences for the parameter

estimates adjusted to reflect additional uncertainty due to the model selection procedures were

proposed directly following Lee, L. Sun, Sun, and Taylor (2016).

Figure 2.3: Search Filters for NYC Airbnb Rentals

The third identification challenge is to incorporate textual data as shown in Figure 2.1 and

2.2 into the econometric models. The platform allows each Airbnb hosts to post text descriptions
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and photographs. Through advertisement texts, a host extols the merits of his/her rental unit

and neighborhood: nearby tourist attractions, transportation logistics, restaurant/shopping mall

recommendations, and house rules guests should abide by. They characterize the identity of

each unique product that cannot be transmitted via numerical variables or search filters (binary

indicators), letting sellers better differentiate from another.

This paper proposes to generate numerical variables from text data using processing techniques

that are widely accepted in online tourism/hospitality research: extracting keywords/phrases and

sentiment analysis on consumer reviews.1 In other words, the frequency of appearance of certain

words/phrases and the number of reviews that were classified as negative by a supervised machine

learning will be used as additional product attributes. Image processing is beyond the scope of this

paper, but represents another source of product information for consumers. Economists also used

text analysis in studying online marketplaces such as eBay Motors and real estate (Lewis (2011)

and Nowak and Smith (2017)).

2.1.3 Literature Review and My Contribution

This paper will be the first to employ standard logit demand models to quantify the value of

information contents in NYC Airbnb market, with a newly constructed dataset of the actual NYC

Airbnb tourists’ rental unit choices between 2016 and 2017. It proposes a new set of empirical

toolsets for the pervasive estimation challenges for P2P online platform data: too many choice

alternatives, high dimensional attribute space, and unstructured texts. Nested logit models for

consumer choice sets, dimension reduction using machine learning, and text processing for 130,000

seller texts and 850,000 review texts differentiate this paper from the previous empirical research for

Airbnb market using hedonic price regressions (Wang and Nicolau (2017), Chen and Xie (2017),

Teubner, Hawlitscheck, and Dann (2017), and Gibbs, Guttentag, Gretzel, Morton, and Goodwill

(2018)) and quasi-experimental approaches. (Ert, Fleischer, and Margen (2016) and Edelman,

Luca, and Svirsky (2017))

1See Alaei, Becken, and Stantic (2017) for a comprehensive review of methods and literature up to date.
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My methodological contributions also extend to previous literature in economics and market-

ing/management on the role of reputation/feedback systems and voluntary disclosures in reducing

information asymmetry. Economists found that eBay’s ’Superseller’, seller rating scores, and

text/photo descriptions have causal relationships with transaction prices (Resnick, Zeckhauser,

Swanson, and Lockwood (2006), Houser and Wooders (2006), Jin and Kato (2006), and Lewis

(2011)). Marketing/management researchers investigated the role of online reviews in business

outcomes in various markets for books, movies, music, retail, and etc (Chavalier and Mayzlin

(2006), Liu (2006), Dellarocas, Zhang, and Awad (2007), Duan, Gu, Whinston (2008), Chinta-

gunta, Gopinath, and Venkataraman (2010), Dhar and Chang (2009), Floyd et al. (2014), Cui, Lui,

and Guo (2012), Ghose and Ipeirotis (2011)).

This paper follows closely Lewis and Zervas (2016), wherein the authors study the welfare

impacts of consumer review ratings for U.S. hotel industry. The authors estimated a series of

logit demand models using a proprietary 10 year monthly panel data from Smith Travel Research

containing 5,944 hotels inArizona, California, Nevada, Oregon, andWashington (45%of all hotels).

They augmented the dataset with a panel of consumer reviews from three online travel review

platforms: TripAdvisor, Expedia, and Hotels.com each of which containing 807,140, 1,410,488,

and 1,544,883 review ratings. The welfare implications (compensating variations) of the ratings

in a counterfactual scenario of complete absence of review ratings vary over how counterfactual

prices were calculated. The aggregate consumer surplus falls about $123 million without price

adjustments, $107 million with the conventional nash equilibrium prices, and $546 million in the

case of reduced form price changes.

The methodological contributions of this paper compared to Lewis and Zervas (2016) are clear.

First, I focus on a regional market (NYC) and reflect the actual consumers’ choice set formation

principles into the modeling approach. Though they included market-year-monthly fixed effects

in the utility specifications, the fact that their dataset covers a wide range of locational segments

make the analysis focused more on the hotel market as a whole, and less on correctly describing

consumers’ decision making processes leaving concerns of bias.
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Secondly, I employ machine learning and high dimensional econometrics to handle high di-

mensional attribute space. Though machine learning could provide an efficient way of dimension

reduction, econometric modeling and identification techniques for endogeneity control turn out to

be essential for successful identification. Plus, I show that product information stored in text format

is worth being incorporated into empirical analyses.

A couple of clear shortcomings of this paper compared to Lewis and Zervas (2016) and key

demand literature in industrial organization (BLP (1995), Nevo (2001), and Petrin (2002)) include

first, that I do not estimate supply side moments. One excuse for this would be that each of

Airbnb vacation rentals is a unique individual housing unit, which makes it hard to justify a simple

Nash equilibrium marginal costs modeling. Another shortcoming is not to incorporate random

coefficients into the nested logit models, mainly due to the extremely small market shares of a

single rental property and the resulting numerical instability sensitive to pre-set initial values for

the iterative BLP estimation routine.

Instead, I used hedonic price adjustments in producing counterfactual prices following Haus-

mann and Leonard (2002). The resulting compensating variations for information contents from

the demand estimates support this paper’s hypothesis that the platform’s quality certifications and

consumer reviews (ex-post verified) show greater welfare impacts than non-verified seller side

advertisement texts.

The rest of this paper is organized as follows. Section 2.2 introduces NYC accommodation

market, the dataset, and processing details. Section 2.3 discusses actual NYC Airbnb guests’

web searching behaviors in more detail, presents the demand model, and estimation methods.

Section 2.4 reports the demand parameter estimates, price elasticities, and welfare measures for

key reputation/feedback and disclosure devices. Section 2.5 concludes.
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2.2 Data

2.2.1 NYC Accommodation Market

2.2.1.1 Market Definition and Size

This paper defines the market size of NYC accommodation market as the total potential number of

accommodation reservations. Table 2.1 lists the annual number of visitors to NYC and since 2016,

more than 60 million tourists came to NYC with about 20% of international arrivals.2 Assuming

each of them reserves an accommodation facility, the total potential annual number of reservations

can be obtained by dividing the number of annual NYC visitors by the average length of stays.

Based on the actual booking records obtained from both Expedia.com and Airbnb rentals (Table

2.2), I roughly assume that the average length of stays is four days.3

The rationale behind such a comprehensive market definition comes from the fact that Airbnb is

indeed taking market shares in various accommodation segments, not just competing with hotels.

A survey on 4,000 potential Airbnb tourists found that4: (1) As of November, 2015 the market share

of Airbnb.com is occupying 12% of leisure and business travelers and projected to reach 16-18% in

2016; (2) 42% of Airbnb demand is coming at the expense of hotels. Moreover, it is also replacing

other non-traditional accommodations such as bed and breakfast inns, vacation rentals and stays

with friends and family. The last segment makes up around 60% of overnight accommodations,

and is thus larger than hotels. Another report by an accommodation market research company says

that the room nights share of Airbnb amounts to 8% compared only to hotels as of August, 2015.5

Defining the market size with the maximum purchasing capacity is a fairly conventional ap-

proach taken by key demand literature in empirical industrial organization; Berry, Levinsohn, and

2The visitor poll is from NYC & Company.
3Expedia.com launched a prediction contest in 2016. The task was to predict top five hotel recommendations

based on the distributed data. The locations of hotels were anonymized but a participant decoded the regional codes
by the distances between users and destination hotels. The contest operator confirmed the leak. The sales records for
NYC Airbnb rentals were purchased from Airdna.

4Who Will Airbnb Hurt More - Hotels or OTAs (Online Travel Agency)? - JP Morgan Global Insight
5Airbnb and Impacts on the New York City Lodging Market and Economy - Hospitality Valuation Services
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Pakes (1995) defined the total annual market size for automobile as the number of households in

each year. Nevo (2001) used the total potential number of servings in a city per quarter as the

quarterly market size for ready to eat cereals.

Table 2.1: NYC Visitors and Potential Reservations for Travel Accommodations
Year Total Domestic International Potential Reservations Record
2015 58,500,000 46,200,000 12,300,000 14,625,000

(Jan - Jun) 23,400,000 18,480,000 4,920,000 5,850,000
Actual(Jul - Dec) 35,100,000 27,720,000 7,380,000 8,775,000

2016 60,300,000 47,600,000 12,650,000 15,075,000
(Jan - Jun) 24,120,000 19,040,000 5,060,000 6,030,000
(Jul - Dec) 36,180,000 28,560,000 7,590,000 9,045,000

2017 61,800,000 48,700,000 13,100,000 15,450,000 Projected

Table 2.2: Actual Booking Data Summary for NYC Market for Hotels and Airbnb

Source Expedia.com Airbnb.com
Sample Random Sample All Sales
Coverage All Segments All Segments

Average Length 3 4.984
S.D. of Length 2.106 5.017
Reservations 96,262 1,987,362
Sale Periods 201301 - 201412 201408 - 201704
Length of Stay Frequency % Cum. % Frequency % Cum. %

1 26,199 27.22 27.22 270,076 13.59 13.59
2 21,255 22.08 49.30 363,177 18.27 31.86
3 18,386 19.10 68.40 331,128 16.66 48.53
4 12,751 13.25 81.64 260,940 13.13 61.66
5 7,212 7.49 89.13 179,106 9.01 70.67
6 3,988 4.14 93.28 126,477 6.36 77.03
. . . ... ... ... ... ... ...
28 11 0.01 100 6,025 0.30 98.56

2.2.1.2 Purchase Units and Market Share of a Product

Following recreational demand literature, this paper takes the number of short-term vacation rental

reservations (in other words, the number of trips a recreation site received from visitors) as the

number of sales an Airbnb rental unit recorded. By ’short-term’, I mean reservations with lengths

of stays up to four days, keeping in line with the market definition. Using the number of reservations
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instead of nights sold will reduce the risk of inflating the market shares of cheap rentals operating

many rooms or hostel type Airbnb listings and long-term extended stays for specific purposes. The

unit price is defined to be the rental price per night plus cleaning fees, which is the actual transaction

price consumers pay.

Frequency of leisure and business travels a person takes in a year is also an important factor

for both decision modeling and how many cross sections (time periods) the demand model should

include. Without individual level choice data, I rely on a previous market research. According

to AARP (American Association of Retired Persons) 2016 and 2017 travel research, Americans

across all generations take on average 3.5 domestic leisure trips. I assume a person on average

consider visiting NYC Airbnb rentals three times a year.

2.2.2 Summary Statistics

2.2.2.1 Rating Score Inflation

Table 2.4 presents the summary statistics from the dataset used for demand models. Prices and

rental unit attributes are from InsideAirbnb.com, a public repository of Airbnb data. Sales records

were purchased from Airdna, a data consulting branch firm of Airbnb. The dataset consists of four

cross sections: April, 2016, August, 2016, December, 2016, and April, 2017. Rental units without

any reviews or sales records were dropped from the analysis. Also, rental units with nightly prices

greater than $5,000 were excluded.

One important issue with the data is review rating score inflation. There are seven categories of

review ratings for Airbnb rentals, and Table 2.3 presents the questions Airbnb asks for consumers

during the rating process. As can be seen in Table 2.4, rating scores over all categories are near

perfection. Rating inflation seems exacerbated in Airbnb particularly compared to other vacation

rental portals. Zervas, Proserpio, and Byers (2015) compares review scores of two rental platforms:

Airbnb andTripAdvisor. Not only are the average ratings higher forAirbnb listings thanTripAdvisor

(4.7/5 stars versus 3.8/5 stars), but it is also the case for cross-listed rentals. (0.1/5 stars differences
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in mean) The authors conjecture that this phenomenon is from reciprocity or fears of retaliation

due to the bilateral review policy and strategic manipulation by sellers.

Also, there seems to exist strong collinear relationships among review score categories (see

Appendix C.4). To avoid multicollinearity, I use an average of the six rating score categories (2 -

10 scale, ’Ratings Average’) rather than overall rating (20 - 100 scale), which was more severely

inflated. Due to the time-cumulative nature of review scores, there is a risk of sellers’ strategic

manipulations; rating scores of a rental unit with a small number of extremely positive reviews

cannot be trusted. Hence I drop rental unit observations that both have a ’Ratings Average’ greater

than 9.99999 and a total number of reservations received during the time periods of our empirical

analysis (201604 - 201704) less than 5.

’Superhost’ designation implies a rigorous quality certification that cumulates past reputa-

tion/feedback performances. A host must have accommodated more than ten parties of guests,

maintained a 90% response rate to booking requests or higher, received a five star review, i.e.,

review scores higher than 80 out of 100 - at least 80% of the time, and completed each confirmed

reservations without canceling. ’Verification Accounts’ means the number of contact methods a

host maintains including emails, phones, and social media network accounts. It implies that hosts

with multiple ’Verification Accounts’ have gone through the government issued ID check and up-

loaded self-introduction with photographs. They represent that the basic contract enforceability by

Airbnb is active, which is the key prerequisite for reputation/feedback systems to work. (Milgrom,

North, and Weingast (1990))

Table 2.3: Definitions for Review Score Categories

Category Questions Asked in Reviewing Process

Overall Rating Overall experience
Accuracy How accurately did the photos and description represent the actual space?
Cleanliness Did the cleanliness match your expectations of the space?
Check-in/out How smooth was the check-in process, within control of the host?

Communication How responsive and accessible was the host before and during your stay?
Location How appealing is the neighborhood (safety, convenience, desirability)?
Value How would you rate the value of the listing?
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Table 2.4: Summary Statistics

All Sample Superhost Normal Host
obs: 62,673 Mean S.D. Mean Mean Min Max

Price per Night ($) 171.8356 118.7063 187.3653 169.8143 30 4770
Nights Sold 27.4482 24.0788 36.6391 26.2519 1 168
Reservations 11.2973 10.2259 14.7591 10.8468 1 88

Quality Certifications
Superhost Indicator 0.1152 1 0 0 1
Verification Accounts 4.3243 0.9975 4.4341 4.3100 1 12

Review Rating
Overall Rating 92.0813 7.4158 96.8795 91.4568 20 100

Accuracy 9.4650 0.7756 9.8828 9.4107 2 10
Cleanliness 9.1121 1.0109 9.7431 9.0300 2 10
Check-in/out 9.6555 0.6690 9.9498 9.6172 2 10

Communication 9.7074 0.6290 9.9701 9.6732 2 10
Location 9.3123 0.8182 9.5590 9.2802 2 10
Value 9.2172 0.7966 9.6784 9.1571 2 10

Review Texts
Number of Reviews 26.8576 33.2056 41.4124 24.9632 1 380
Negative Reviews 3.5813 4.9652 5.9722 3.2701 0 67

Seller Texts
Positive Adjectives 2.8890 1.6858 3.2350 2.8440 0 10
Location Words 3.5993 2.3112 4.0855 3.5360 0 15

Accommodation Capacities
Default Guests 2.7090 1.2622 2.7544 2.7031 1 6
Bathrooms 1.0826 0.3159 1.0786 1.0831 0 5

Additional Guests 1.4769 0.8881 1.5799 1.4635 0 14
Instant Bookable 0.1793 0.3836 0.1607 0.1817 0 1

Amenity and Service
24 Hour Check-in 0.2921 0.4547 0.3935 0.2789 0 1

Hangers 0.5286 0.4992 0.6730 0.5098 0 1
Heating 0.9570 0.2028 0.9805 0.9540 0 1
Shampoo 0.6499 0.4770 0.7929 0.6313 0 1

(Room Type)
Entire Home/Apt 0.5099 0.4999 0.5169 0.5089 0 1
Shared Room 0.0279 0.1648 0.0197 0.0290 0 1

* Variables were selected by a lasso variant (Belloni and Chernozhukov (2013)) designed for a successful
asymptotic approximation to the objective ln(s jt/sot) with only a subset of all 180 variables. Subsection
2.3.3 for high dimensional metrics introduces the selection principles and inference for the post selection
parameter estimates.
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Seller texts include rental unit titles, sub-titles, descriptions of various aspects of the rentals,

such as neighborhoods, transportation, pros and cons, and etc. The selected accommodation

capacities conform to the empirical studies on price determinants of hotels and Airbnb.6 Amenity

and service features in Table 2.4 were in fact, cross-selected by other popular machine learning

methods other than Belloni and Chernozhukov (2013)’s lasso.7

2.2.2.2 Text Processing

This paper employs n-gram word/phrase extraction (bag of words) and sentiment analysis (clas-

sification) using a supervised machine learning to process seller and buyer texts. N-gram bag of

words means extracting words/phrases purely according to the frequency of occurrences and use

them as regressors. Selected features are often reduced and categorized at a researcher’s discretion.

For seller texts, 36 words/phrases including up to four words (’Quadrigram’) out of the 3,000 most

frequently appearing ones were selected among 120,000 advertisement texts. The counts for each

rental were summed over the regarding two categories: ’Positive Adjectives’ and ’LocationWords’.

Table 2.5: Selected Words/Phrases from Airbnb Hosts’ Advertisement Texts
Category Positive Adjectives Location Words

Unigram Amazing, Beautiful, Broadway, Manhattan, SoHo
Cozy, Friendly, Spacious, ... Brooklyn, Chelsea, ...

Bigram Central Park, Columbia University,
Hell’s Kitchen, Brooklyn Bridge, ...

Trigram Empire State Building, The G train,
Major subway lines, ...

Quadrigram Metropolitan Museum of Art
Museum of Natural History, ...

Supervisedmachine learningmeans fitting a function thatmaps an input to an output based on an

example input-output pair dataset. Sentiment classification for review texts includes the following

steps. A researcher conducts a pre-processing such as removing non-alphabetical components,

e.g., arabic numbers, commas, and etc, trimming white spaces, and converting to lower case letters.

6See Wang and Nicolau (2017) for a comprehensive review up to date.
7For Belloni and Chernozhukov (2013), see Subsection 2.3.3 and for machine learning, Appendix A.1 and A.2.
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A classification machine is then trained on sample reviews, with emotional polarity as outputs

and words/phrases as inputs. The choice on words/phrases could either rely on pre-established

dictionaries (lexicons) or n-gram words/phrases from sample reviews whichever yields the best

in-sample prediction rates. The trained machine is then scaled up on the whole review corpus.

This paper trains a classification machine on a set of 1,000 sample reviews collected from

four major U.S. cities other than NYC: Ashevill (NC), Austin (TX), Denver (CO), and Washington

D.C. Using 3,500 n-gram bag of words/phrases, multiple supervised machine learning models

were constructed and the highest in-sample prediction rate (87%) was achieved with classification

tree in ’Caret’ R package over Naive Bayes and Support Vector Machine. The classification was

then applied to the whole 850,000 NYC Airbnb review texts. Table 2.6 and Table 2.7 provide

conceptual examples. One caution with n-gram dictionaries is that they could contain indicators

for expressions of no particular meaning (e.g., were not, was indeed) or opposite meaning (’dirty’

for positive reviews) for pure prediction performances.

Table 2.6: Example Guest Reviews and Sentiment Labels

Reviews Raw Texts

Ex.1 This is a dirty frat house.
(Negative) No locks other than main building door.

Dirty toilets. No host present. Rotting food in the fridge.
Ex. 2 My room at the BPS Hostel was clean and cool.

(Nonnegative: The staff and fellow guests were friendly and helpful.
Neutral) The location is very convenient for local eateries, coffee shops, pubs and deli’s.

However, I do not feel it was good value for money at $72 per day.
There was no room service,

I shared a bathroom with upto 8 others and the breakfast was weak.
Ex. 3 Great location just outside of downtown Asheville.

(Nonnegative: I stayed here with three other people. Plenty of space.
Positive) Mike was very easy to work with, and made sure we had everything we needed.

Table 2.7: Bag of Words Matrix for Example Guest Reviews

Label breakfast clean cool dirty great helpful however plenty rot
Ex.1 0 0 0 2 0 0 0 0 1
Ex.2 ... 1 1 1 0 0 1 1 0 0 ...
Ex.3 0 0 0 0 1 0 0 1 0
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2.3 Model

2.3.1 Potential Guests’ Rental Searching Behavior

The dataset used in this paper does not include any individual demographics. The market share

of an individual product is extremely small, because for each time periods, there are about 12,000

- 15,000 rental units in operation even after multiple truncation processes. Given such product

heterogeneity, it is elusive to find a homogeneous product groups among which the demand analysis

could find a targeted insight on substitution patterns, like automobile markets (BLP (1995) and

Petrin (2002)) and retail applications (Nevo (2001)).

However, setting up a utility function with a proper description of consumers’ choice set

formation could suffice to answer the research questionwith aggregate level data: evaluatingwelfare

implications of information contents from realized purchase decisions. I propose to employ a three

level nesting structure based on Airbnb’s hierarchial service neighborhood designations and, use

’Room Type’ filters as another set of observed attributes, which were found to be the most popular

tools for reducing choice sets during web search processes of actual NYC Airbnb guests.

This idea is from Fradkin (2017), who investigates the impacts of search and matching perfor-

mance of Airbnb platform designs with a detailed consumer web search log data for a major U.S.

city between September 2013 and September 2014.8 A consumer’s search is fairly limited in that

he/she only sees about 4 to 5% out of over a thousand rental units popping up after the initial search

command. During initial search steps, a consumer typically sets the number of guests, which is

included in the utility model.

Though limited, a consumer puts a significant amount of effort and time, checking out 88 rental

units during 58 minutes on average. Among web searchers who sent a reservation request, more

than 64% of them changed the default map location and 50% used the zoom-in/out function to

further reduce the choice sets. Figure 2.4 contains an actual Google Maps API example from NYC

8The name of the city was anonymized but he says it is the first city Airbnb made a success, which is highly likely
to be NYC. The platform is known to be taking off in NYC after the first significant capital investment from Sequoia
capital and changing the company’s name from Air Bed & Breakfast to Airbnb.
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rental unit search on Airbnb.com. It seems that consumers first choose a relatively greater region

on the default scale map, and then zoom-in to further narrow down on a neighborhood, wherein

he/she picks a rental unit (a three step choice).

Figure 2.4: Neighborhood Designation Example: ’Midtown’ in Manhattan

Airbnb divides NYC area into five big regions: Bronx, Brooklyn, Manhattan, Queens, and

Staten Island. Each region is again divided into neighborhoods. For example, ’Midtown’ or

’Harlem’ in Manhattan. Each region contains from 32 to 53 neighborhoods, and the number of

listings contained in a neighborhood varies from 2 to more than 5,500. Neighborhood designations

are mutually exclusive for all samples and observations, which suggests a hierarchial three level

nesting structure (for a comprehensive list, see Appendix C.3).

The first level nesting is based on the five big region indicators, and it is for capturing ’changing

default map location’ behaviors. The second level nesting is based on the neighborhood dummies,

and it is for capturing zoom-in/out behaviors of consumer search. For the third or rental unit level,

I included indicators for ’Entire Home/Apt’ and ’Shared Room’ as attributes based on the finding

that 70% of web searchers applied the ’Room Type’ filter.
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2.3.2 Nested Multinomial Logit (NMNL) Model

Berry (1994) provides a transformation to estimate a (two level) nested logit model with aggregate

level data. Three level nesting structure is an extension by Verboven (1996) and has been adopted

in various applications on markets for drugs, automobiles, and agricultural products (Bjornerstedt

and Verboven (2016), Brenkers and Verboven (2010), and Ciliberto, Moschini, and Perry (2017)).

I estimate four models. A simple OLS, IV, and two and three level nested logit models. This

is done to show stepwise improvements in utility parameter estimates over the model changes to

resolve identification issues of price endogeneity and choice set formation. The nesting structures

are expected to provide a more accurate modeling for consumers’ choice set formation, reducing

possible sources of biases due to unobserved variables or decision making principles. The utility

function for a Berry (1994) style IV logit model consists of a mean utility term δ jt and an

idiosyncratic Type I extreme value error εi jt ;

ui jt = δ jt + εi jt (2.1)

= x jt β − αp jt + ξ jt + εi jt

where x jt is the attributes vector, p jt is the per night rental price, and ξ jt captures the unobservables

of rental unit j at time period t. Nested logit models impose additional structures on εi jt for each

consumer i;

ui jt = x jt β − αp jt + ξ jt + (ζigt + (1 − σ)εi jt) (2.2)

ui jt = x jt β − αp jt + ξ jt + (ζigt + (1 − σ2)εihgt + (1 − σ1)εi jt) (2.3)

where equation (2.2) and (2.3) represent the utility functions for two and three level nested logit

models, respectively. ζigt captures the impact of nesting ’groups’ or in our case the big five regions:

Bronx, Brookyln, Manhattan, Queens, and Staten Island (g = 1, ..., G).

The nesting parameter 0 ≤ σ < 1 (for three level nested logit, σ2) captures how strong the

substitution within each group is. For example, if an estimate of σ(σ2) is positive and significant,

then a tourist is likely to choose rental units in the same region like Bronx, but not in a different
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region, like Brooklyn. On top of the big regions, the three level nested logit model captures a

stronger correlated preferences for units in a neighborhood (h = 1, ..., Hg) of a group g with

parameter σ1. The total number of products J is then
∑G
g=1

∑Hg
h=1 1( j∈h).

ζigt is common to all products in group g for consumer i and follows a distribution that depends

on σ for two level, or σ1 and σ2 for three level nested logit model. Cardell (1997) shows that

then ζigt follows a distribution with (ζigt + (1 − σ)εi jt) or (ζigt + (1 − σ2)εihgt + (1 − σ1)εi jt) also

following extreme value distribution. As the values of nesting parameters approach to zero, i.e.,

σ(σ1, σ2) → 0, the within group correlation goes to zero and hence the model becomes a simple

logit model with a Type I extreme value error. As σ(σ1, σ2) → 1, the within group correlation

goes to one.

sOLS(IV)
jt =

exp(δ jt)∑J
k=0 exp(δkt)

(2.4)

sN L2
jt =

exp[δ jt/(1 − σ)]∑
k∈g exp[δkt/(1 − σ)]

∗

(∑
k∈g exp[δk/(1 − σ)]

)1−σ
1 +

∑G
g=1

(∑
k∈g exp[δk/(1 − σ)]

)1−σ (2.5)

sN L3
jt =

exp[δ jt/(1 − σ1)]

exp[Ihg/(1 − σ1)]
∗

exp[Ihg/(1 − σ2)]

exp[Ig/(1 − σ2)]
∗

exp(Ig)
exp(I)

(2.6)

sOLS(IV)
jt , sN L2

jt , and sN L3
jt are the resulting stepwise choice probabilities or market shares of a

rental unit j for a simple logit, two level nested logit, and three level nested logit models. The

inclusive values Ihg, Ig, and I for three level nested logit models are defined by:

Ihg = (1 − σ1) ∗ ln

Jhg∑
k=1

exp[δkt/(1 − σ1)] (2.7)

Ig = (1 − σ2) ∗ ln
Hg∑
h=1

exp[Ihg/(1 − σ2)]

I = ln ©­«1 +
G∑
g=1

exp(Ig)
ª®¬

McFadden (1978) gives the condition for nesting parameters to be consistent with the utility

theory: 0 ≤ σ2 ≤ σ1 < 1 which comes natural in that the correlation of preferences is stronger
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for rental property choices on a neighborhood level (σ1) than neighborhood choices out of a big

locational segment (σ2). The inverted aggregate level estimating equations based on (2.4), (2.5),

and (2.6) were provided by Berry (1994) and Verboven (1996):

ln(s jt/sot) = x jt β − αp jt + ξ jt (2.8)

ln(s jt/s0t) = x jt β − αp jt + σln(s j |gt) + ξ jt (2.9)

ln(s jt/s0t) = x jt β − αp jt + σ1ln(s j |hgt) + σ2ln(sh|gt) + ξ jt (2.10)

where s0t is the outside market share at time period t, s j |gt is the market share of rental unit j in

region g = 1, ..., 5, s j |hgt is j’s share in neighborhood h in region g, and finally, sh|gt is the share

of all units in neighborhood h in region g.

The idea of aggregate level estimating equations (2.8), (2.9), and (2.10) for identifying utility

parameters is similar to regressing ASC (Alternative Specific Constants) on observable attributes

in recreational demand literature (Murdock (2006)). Also, though nested logit models partially

alleviate the pervasive IIA problem, with individual level data a practitioner can estimate more

comprehensive substitution patterns across recreation sites with mixed logit models and consider

nested logit as a special case (Herriges and Phaneuf (2002)).

2.3.3 High-Dimensional Attributes and Machine Learning

2.3.3.1 Lasso Selector and Oracle Property

Candidates for attributes in x jt include information contents, accommodation capacities, and 150

binary indicators for amenity and service features. Such a high dimensional characteristic space

with many binary indicators originating from extreme product heterogeneity poses a threat of

multicollinearity and irrelevant variables. This paper hence assumes sparsity, which is frequently

introduced in high dimensional metrics. Sparsity assumption is that given a p-dimensional vector

[x jt, p jt] ∈ Rp, there exist s = o(n) � p variables that asymptotically capture most of the impacts

of all p regressors onto the objective ln(s jt/sot).
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A practical implication of sparsity for general linear regression models with Gaussian or

heteroskedastic errors (ε ∼ N(0, σ)) is that an econometrician first chooses a set of s variables

(the observed model M̂) that affects ln(s jt/sot) the most by lasso and then do OLS only with the

selected variables. Such OLS post lasso, with theoretically suggested conditioning parameters for

the first step lasso selector achieves a ’successful’ asymptotic approximation to the ’true’ ln(s jt/s0t)

objective function (Belloni andChernozhukov (2013), Chernozhukov, Hansen, and Spindler (2015),

Belloni, Chernozhukov, and Wang (2014)).

Specifically, the risk minimization problem of balancing bias and variance for demand estima-

tion with sparsity can be stated as the following (Belloni and Chernozhukov (2013)).

min c2s + σ
2 s

n
(2.11)

c2s = min
dim(β,α)≤s

E[(ln(s jt/s0t) − x jt β + αp jt)
2]

c2s + σ
2 s

n is the upper bound of the risk for the best market share estimator using only s � p

covariates. This ’oracle risk’ is achieved if the first stage lasso chose the correct s variables which

by sparsity assumption captures the most of the impacts of all p regressors. Then the resulting

’oracle rate’ of error convergence rate is given by
√

s/n.

One important appeal of OLS post lasso is that even if lasso selector gives only a subset of

s covariates, post selection OLS estimator still achieves the ’near oracle rate’ of
√

s ∗ log(p)/n.

In other words,
√

E[(log(s jt/s0t) − xM̂
jt β

M̂ + αp jt)2] = Op(cs + σ
√

s ∗ log(p)/n), where xM̂ and

βM̂ represent the vector of attributes chosen by lasso (the observed selected model M̂) and the

corresponding post selection OLS coefficients.

A lasso selection to get M̂ (including price p jt) means choosing variables of non-zero coeffi-

cients in solving the following penalized regression problem. Letting β′ = [β, α],

β̂′ = argminβ′∈Rp Q̂(β′) +
λ

n
| |Ψ̂ β′| |1 (2.12)

Q̂(β′) =
1

n

∑
n
(ln(s jt/sot) − x jt β + αp jt)

2
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where | |β′| |1 =
∑p−1

l=1 |βl | + |α | and Ψ̂ = diag(ψ̂1 , ..., ψ̂p). The penalty loadings Ψ̂ and penalty

level λ for post OLS oracle rate in the heteroskedastic case are;

ψ̂k =

√
1

n

∑
n
(x2ik ε̂

2
i ) (2.13)

λ = 2c
√

nΦ−1(1 − γ/(2p))

whereΦ denotes the cumulative standard normal distribution and ε̂ is an empirical estimate of errors

(residuals). The suggested preset values for c and γ is 1.1 and 0.1. Ψ̂ and λ for homoskedastic

errors result in similar variable selection results.

The attributes in the summary statistics (Table 2.4) were in fact chosen by this process using

R package hdm. The observed model M̂ is stable over a range of c from 0.9 and 1.3 with

0.05 increments. To check the validity of selection results, four other data-driven machine learning

models were estimated: lasso, ridge, elastic net, and gradient boosting. They focus on the prediction

accuracy (reducing RMSE) rather than ’oracle rate’. Again, all attributes in Table 2.4 were

unanimously chosen by all and hence included in x jt .9

2.3.3.2 Post Selection Inference

However, if one proceeds to OLS with the selected (observed) model M̂ by lasso, there are two

possible pitfalls. First is that classical inferences (confidence intervals and p-values) on β̂M̂ are no

longer valid. It is because of the non-selected (omitted) variables, making the post selection OLS

only with the attributes in X M̂ biased. Though the asymptotic distribution of lasso coefficients for

our case of n � p is available (Fu and Knight (2000)), an exact post selection inference for OLS

post lasso is the primary target of interest.

Such ’post selection inference’ after variable selection with machine learning is a relatively new

and still developing area. This paper follows Lee, L. Sun, Sun, and Taylor (2016) which provides

an exact distribution of post selection OLS estimates and hence, exact confidence intervals (C.Is),

p-values, and tail areas. The idea is that given a response y ∼ N(µ, σ2In), the model selection

9See Appendix A.1 and A.2 for details on the methodologies for data-driven machine learning.
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event {M̂ = M} by lasso can be expressed as a form of polyhedron {Ay ≤ b} which once again

can be transformed into an interval with low and upper endpoints being functions of residuals z j

of y in the direction of x j , {ν−(z) ≤ y ≤ ν+(z)}. Due to the independence between y and z j , the

distribution of an individual coefficient β̂M̂
j (a linear transformation of y) from OLS conditional on

the lasso selection is a truncated normal.

One advantageous fact about Lee et al. (2016) is that a practitioner can produce exact C.Is and

p-values with a fixed penalty parameter λ′. Specifically, the lasso formulation for the exact post

selection inference is the original data-driven lasso by Tibshirani (1996).

β̂ = argminβ∈Rp Q̂(β) + λ′| |β | |1 (2.14)

Therefore, with a range of values of λ′ that produces the same model M̂ including variables of

non-zero coefficients from the penalized regression problem in equation (2.12), a practitioner can

produce exact inference for OLS post lasso, still achieving cs asymptotically.

2.3.3.3 Cautions on Endogeneity and Post Selection Estimator

The second concern with OLS post lasso is endogeneity. In fact, endogeneity lurks under both lasso

selection and the subsequent demand estimation with the chosen model. Lasso selector (equation

(2.12) and (2.14)) uses Gaussian or at best, heteroskedastic errors implicitly assuming there is no

endogeneity due to omitted/unobserved variables. The post selection estimating equations (2.8),

(2.9), and (2.10) under OLS structure, could suffer endogeneity in prices and group shares for

nesting structures (s j |gt, s j |hgt, and sh|gt).

High dimensional econometricians have provided post selection IV regressions after a variable

selection on both many controls and instruments with a small number of key endogenous variables

such as treatment/policy indicators or prices (Chernozhukov, Hansen, and Spindler (2015) and

Chernozhukov et al. (2018)). But still, to the best of my knowledge, a variable selection approach

under the presence of unobserved variables coupled with post selection estimation and inference

has not been established well. It is understandable in that unobservables are not in the dataset,
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and we resort to the magnitudes of in-sample prediction errors such as RMSE to choose the ’right’

subset of all covariates.

The same concern arises with the conventional alternatives such as principal component analy-

sis (PCA), Akaike information criterion (AIC), or Bayesian information criterion (BIC), in addition

being practically infeasible with hundreds of variables to consider. PCA coefficients are linear

combinations of covariates which makes it impossible to isolate and identify coefficients for indi-

vidual variables, and the stepwise nature of AIC and BIC dictates too high calculation costs for

estimation and comparison to incur given 150 binary indicators.

This paper does not attempt to provide an analytic methodology for the first step model selection

by lasso under the presence of unobservables, but shows that the variable selection results vary

when the dataset include variables of possible sources of endogeneity. Specifically, lasso selection

was conducted on four different datasets for each estimation methods: simple OLS logit, IV logit

(with instrumented price p̂ jt , equation (2.15)), two level, and three level nested logit models (also

with p̂ jt , equation (2.16) and (2.17)).

ln(s jt/sot) = x jt β − αp̂ jt + ξ jt (2.15)

ln(s jt/s0t) = x jt β − αp̂ jt + σ ˆln(s j |gt) + ξ jt (2.16)

ln(s jt/s0t) = x jt β − αp̂ jt + σ1 ˆln(s j |hgt) + σ2
ˆln(sh|gt) + ξ jt (2.17)

For OLS logit, the dataset for lasso selection contains all attributes except variables for nesting

structures. For IV logit, p jt was replaced with the instrumented price p̂ jt . ˆln(s j |gt) was added

for two level nested logit, and ˆln(s j |hgt) and ˆln(sh|gt) for three level nested logit. Group shares

were instrumented due to endogeneity concerns proposed by Berry (1994). The selected model

M̂ differs over datasets, gauging a suspicion on the instability of variable selection results due to

unobserved variables. ’Location Words’ was not selected in OLS logit case, and for three level

nested logit case, a few key parameters including σ2 for the precinct level correlated preferences

were not chosen.10
10Hence for three level nested logit, I proceed with x jt ’s selected in IV and two level nested logit case.
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Actual estimation with equation (2.15), (2.16), and (2.17) relies on the moment condition

E[ξ jt |z jt], using the separable unobservables term ξ jt and z jt including the selected observables

x jt and instruments, following Berry (1994) and BLP (1995). It is a simple two step least squares

with the first stage regressions to produce p̂ jt and group shares. For instruments, I used variables

related to supply decisions: lagged base per night rental price (without ’Cleaning Fee’, recorded

one year before), starting date of an Airbnb host’s rental business, long term availabilities (30, 60,

90, and 365 days), and cancellation policy.11

Table 2.8 and 2.9 report the post selection estimation results. Exact C.Is and tail areas reflecting

additional uncertainty due to lasso were produced using Lee et al. (2016).12

2.4 Results

2.4.1 Parameter Estimates

The main interest of this paper lies on evaluating the value of information contents produced

by the platform, consumers, and sellers. Also, the own and cross price elasticities of the new

accommodation products could provide an insight on consumers’ substitution patterns. For such

purposes, it is important to check if the econometric (structural) modeling approach controls

endogeneity properly. Together with instrumenting prices and group shares for the key parameters

in calculating compensating variations and elasticities, the nesting structures were introduced to

target consumers’ realistic choice set formation which was expected to reduce biases in utility

parameter estimates.

Strong evidence of endogeneity with the simple OLS logit model can be found in the coefficients

of ’Room Type’ indicators for ’Entire Home/Apt’ and ’Shared Room’ (Table 2.9). More than 50%

of the total NYC Airbnb rentals are ’Entire Home/Apt’ and they occupy more than 48% share

of total reservations and enjoy a significant amount of price premium. Hence a highly negative

11See Appendix C.2 for a detailed discussion on instruments and first stage regressions.
12See Appendix A.3 and C.1 for the methodology and comparison between OLS inference and Lee et al. (2016)
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coefficient for ’Entire Home/Apt’ indicator gauges a suspicion of endogeneity due to unobservables

or misspecification in consumers’ decision making principles. Also, a positive and significant

coefficient for ’Shared Room’ looks strange given that it represents the lowest grade ’Room Type’

occupying only 2.8% of total listings in the dataset.

For IV logit model, even after instrumenting prices parameter estimates seem to be inflated

in overall scale compared to both OLS and nested logit models. This is not specific to the set of

instruments reported in the Appendix C.2 (first stage regressions), but fairly stable over various

sets of instruments tried. It seems to indicate that there are unobserved variables that significantly

affect consumer choices.

The nesting parameters show relatively high coefficients and statistical significance; the Z-

scores for σ, σ1, and σ2 are 99.67, 83.15, and 4.33, respectively. It would be safe to say that the

imposed nesting structures were able to capture consumers’ preference for location, as observed

in web search log data. The condition 0 ≤ σ2 ≤ σ1 < 1 is satisfied, showing that the results are

consistent with the random utility theory (McFadden (1978)).

The nesting parameters capturing either precinct or neighborhood preferences alleviate the IIA

problem of the simple logit as will be shown in Subsection 2.4.2. The cross price elasticities using

σ, σ1, and σ2 for nested logit models show that a consumer’s substitution across rental units is

confined within his/her geographical choice set in mind. To get a more comprehensive picture on

substitution patterns, mixed logit models with individual level choice data or BLP type random

coefficients could be useful for future research.

Interpretation of individual coefficients are quite straightforward with the standard formulas for

either (maximum) willingness to pay (WTP) or attribute elasticities. WTP for a unit increase in

attribute k is βk/α or, the coefficient of a factor divided by the price coefficient. For example, the

willingness to pay for one point increase in ’Ratings Average’ in the three level nested logit case is
0.0810
0.0039 = $20.7692. Attribute elasticities can be obtained by βk x j k (1 − s jt). Given that the market

share of a single rental unit j is extremely small, one could approximately use βk x j k . If a rental

unit j has a ’Ratings Average’ of 9, then the demand elasticity with respect to ’Ratings Average’
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is about 0.0810 ∗ 9 = 0.7290. Table 2.10 presents WTP and demand elasticities (average) with

respect to each attributes listed in Table 2.8, namely the information variables of main interest.

Table 2.8: Demand Parameter Estimates (1): Price, Nesting, and Information

Obs: 62,673 OLS Logit IV Logit 2 Level NL 3 Level NL††

Objective ln(s jt/s0t )

Price -0.0008*** -0.0156*** -0.0059*** -0.0039***
(0.0000) (0.0002) (0.0002) (0.0003)

Nesting Parameters
σ(σ1) 0.7505*** 0.8125***

(0.0075) (0.0098)
σ2 0.2293***

(0.0529)

Quality Certifications
Superhost Indicator 0.2133*** 0.3378*** 0.0649*** 0.0873***

(0.0119) (0.0115) (0.0110) (0.0112)
Verification Accounts 0.0479*** 0.0842*** 0.0663*** 0.0535***

(0.0036) (0.0035) (0.0033) (0.0035)

Consumer Review
Ratings Average 0.1938*** 0.3992*** 0.1220*** 0.0810***

(0.0067) (0.0069) (0.0070) (0.0081)
Number of Reviews 0.0171*** 0.0161*** 0.0045*** 0.0036***

(0.0003) (0.0003) (0.0003) (0.0003)
Negative Reviews -0.0381*** -0.0386*** -0.0118*** -0.0091***

(0.0018) (0.0017) (0.0016) (0.0016)

Seller Texts
Positive Adjectives -0.0125*** -0.0591*** -0.0353*** -0.0206***

(0.0022) (0.0023) (0.0022) (0.0026)
Location Words† 0.0100*** 0.0168*** 0.0064***

(0.0016) (0.0015) (0.0018)
***: 1% significant, **: 5%, *: 10%, standard errors in parentheses
†: ’Location Words’ was not selected by lasso procedure on the dataset for OLS, of all attributes and pjt except for
group shares for nesting structures
†† : ’Location Words’ and ln(sh|gt ) for σ2 were not selected by lasso on the dataset for three level nested logit, of all

observable attributes, p̂ jt , ˆln(s j |hgt ), and ˆln(sh|gt ). Hence I estimated three level nested logit model with variables
selected by lasso in IV and two level nested logit case.
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Table 2.9: Demand Parameter Estimates (2): Amenity and Service Features

Obs: 62,673 OLS Logit IV Logit 2 Level NL 3 Level NL
Objective ln(s jt/s0t )

Accommodation Capacities
Default Guests 0.0971*** 0.3768*** 0.1026*** 0.0781***

(0.0039) (0.0052) (0.0055) (0.0060)
Bathrooms 0.0604*** 0.7227*** 0.3114*** 0.1886***

(0.0118) (0.0141) (0.0137) (0.0184)
Additional Guests 0.0041 0.1725*** 0.0706*** 0.0454***

(0.0048) (0.0051) (0.0048) (0.0055)
Instant Bookable 0.4807*** 0.3327*** 0.0123 0.0398***

(0.0096) (0.0094) (0.0093) (0.0097)

Amenity and Service
24 Hour Check-In 0.1318*** 0.1768*** 0.0566*** 0.0291***

(0.0090) (0.0086) (0.0081) (0.0086)
Hangers 0.1437*** 0.1415*** 0.0346*** 0.0278***

(0.0084) (0.0080) (0.0075) (0.0075)
Heating 0.0689*** 0.2053*** 0.1046*** 0.0725***

(0.0181) (0.0174) (0.0162) (0.0165)
Shampoo 0.1424*** 0.2292*** 0.0752*** 0.0413***

(0.0081) (0.0078) (0.0074) (0.0082)
(Room Type)

Entire Home/Apt -0.0837*** 1.4138*** 0.7256*** 0.4182***
(0.0235) (0.0212) (0.0209) (0.0373)

Shared Room 0.2015*** -0.1068*** -0.0761*** -0.0413**
(0.0223) (0.0217) (0.0201) (0.0204)

Constant -13.4340*** -15.5229*** -5.4277*** -5.9737***
(0.0694) (0.0688) (0.1198) (0.1317)

But WTP and attribute elasticities do not take into consideration the supply side responses

due to the unit changes in attributes. For instance, if ’Ratings Average’ decreases by one unit,

not only does a consumer’s WTP decreases, but also a seller’s price premium does due to the

reduction in reputation scores. Also, a practitioner should use nesting parameters σ, σ1, and σ2 in

calculating consumer surpluses (utility before and after a unit change in attributes) and the resulting

compensating variations to get more realistic welfare measures for variables of interest.
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Table 2.10: WTP and Factor Elasticities for Information Variables
2 Level NL 3 Level NL

WTP ($) Elasticity WTP Elasticity

Quality Certifications
Superhost Indicator 10.9470 0.0075 22.5587 0.0101
Verification Accounts 11.1819 0.2866 13.8191 0.2312

Consumer Review
Ratings Average 20.5807 1.1479 20.9310 0.7621

Number of Reviews 0.7633 0.1215 0.9209 0.0957
Negative Reviews -1.9845 -0.0421 -2.3552 -0.0327

Seller Texts
Positive Adjectives -5.9596 -0.1020 -5.3379 -0.0600
Location Words† 2.8321 0.0604 1.6474 0.0229

Willingness to pay (WTP) was calculated using the formula βk/α. Factor elasticities (βk x jk (1 − s jt )) are the mean
values of all observations. The small magnitude of demand elasticity with respect to ’Superhost’ indicator is due to
the fact that only about 11% of total rental units were designated as ’Superhost’.

Overall, the nesting structures reduce the magnitudes of coefficients and imply a realistic

impacts of each for consumers’ purchase decision making processes. Amenity and service features

chosen by multiple ML methods seem to show significant impacts on purchase decisions both in

statistical and economic senses. However, demand parameters cannot, by themselves tell much

about substitution patterns and welfare implications ($ metric). To investigate this paper’s research

question of evaluating and comparing information contents on product quality, appropriate formulas

should be applied.

2.4.2 Elasticities and Welfare Measures

The own price elasticities for the simple IV logit is α(1 − s jt)p jt , and the formulas for nested logit

models are presented in equations (2.18).

∂q jt

∂p jt
∗

p jt

q jt

N L2
= α(s jt −

1

1 − σ
+

σ

1 − σ
s j |gt)p jt (2.18)

∂q jt

∂p jt
∗

p jt

q jt

N L3
= α(s jt −

1

1 − σ1
+ (

1

1 − σ1
−

1

1 − σ2
)s j |hgt +

σ2
1 − σ2

s j |gt)p jt
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It turns out that the demand for Airbnb rentals in NYC is quite elastic (3.5365 to 4.0817), which

is not a surprise given the product heterogeneity and severe competition in a densely populated

urban area. Cross price elasticities involve multiple cases due to the nesting structures. First

possibility is that product j and k are in the same big region (for two level nested logit) or in the

same neighborhood (for three level nested logit). The formulas for this case (Case 1 in Table 2.11)

are as follows.

∂q jt

∂pkt
∗

pkt
q jt

N L2
= α(s jt +

σ

1 − σ
s j |gt)p jt (2.19)

∂q jt

∂pkt
∗

pkt
q jt

N L3
= α(s jt + (

1

1 − σ1
−

1

1 − σ2
)s j |hgt +

σ2
1 − σ2

s j |gt)p jt

The cross price elasticities between substitutes j and k are negligible for products in the same big

region for two level nested logit model. It is because of the fact that the two big regions ’Brooklyn’

and ’Manhattan’ occupies nearly 40% and 50% of total rental units in the data respectively, making

the precinct effect σ
1−σ s j |gt or

σ2
1−σ2

s j |gt minuscule. It is hard to expect that cross price elasticities

would be as large as that of Coke and Pepsi given there are about 25,000 to 30,000 alternatives.

Other neighborhoods also contain many alternatives. ’Queens’, ’Bronx’, and ’Staten Island’ contain

5,480, 980, and 378 rental units inside, respectively.

Table 2.11: Price Elasticities
2 Level NL 3 Level NL

Own Price Elasticities
Mean 4.0817 3.5365
S.D. 2.8200 2.4439

Cross Price Elasticities Case 1 Case 1 Case 2
Mean 0.0007 0.0286 0.0001
S.D. 0.0020 0.1618 0.0001
Min 0.0000 0.0000 0.0000
Max 0.0763 6.3240 0.0050

On the other hand, cross price elasticities for three level nested logit models show more

reasonable values and greater variations though the mean is still small (0.0268). The cross price

elasticities range from almost zero to 6.3240, reflecting the fact that there are neighborhoods
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such as ’Midtown’ in Manhattan with more than 4,000 substitutes and pretty small ones with

only a few competitors. The ’Room Type’ filters, travel dates and host availabilities, number of

rooms and guests, and maximum price filters still leave at least couple of hundred alternatives to

consider in a popular neighborhood. To identify more refined choice set formation of consumers,

an econometrician may need an individual level data.

The second possibility is that product j and k are in different neighborhoods but in the same

big region (for three level nested logit only). The formula for this case (Case 2 in Table 2.11) is the

same as equation (2.19) (Case 1 for two level nesting) with σ replaced with σ2.

The estimates seem to suggest that a substitution between products in different neighborhoods

is not a realistic option for NYC Airbnb tourists. Such small cross price elasticities is because of

still a large number of alternatives in a precinct that contains the neighborhoods rental unit j and k

reside, similar to the two level nested logit case.

The last possibility is when product j and k are in different big regions. Then the cross

elasticities reduce to the simple logit case αs jt p jt , which are close to zero meaning a negligible

substitution among rental units far away from the locational preference of a consumer.

Table 2.12: Compensating Variations over Counterfactual Scenarios

2 Level NL 3 Level NL
Average Total (million)

Categories / Scenarios −1 without −1 without −1 without

Quality Certifications
Superhost Indicator -0.5868 -1.7270 -1.2232
Verification Accounts -7.0991 -25.9670 -9.5921 -40.6014 -6.7941 -28.7583

Consumer Reviews
Ratings Average -5.7275 -51.9953 -6.1465 -54.4118 -4.3536 -38.5403
Negative Reviews 1.2637 3.5131 1.6230 3.6848 1.1496 2.6100

Seller Texts
Positive Adjectives 2.2300 6.3000 1.8513 5.1584 1.3113 3.6537
Location Words -1.7784 -6.3085 -0.8378 -3.0022 -0.5934 -2.1265
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The welfare measure is compensating variation which takes the following general form.

CVi =
1

α
(CSa f ter

i − CSbe f ore
i ) (2.20)

where α is the price coefficient or the marginal utility of income. CSa f ter
i and CSbe f ore

i represent

consumer surplus after and before the counterfactual experiments, respectively. The expressions

for consumer surplus for nested logit models are

CSN L2
i = log[1 +

G∑
g=1

(
∑
k∈g

exp[δ jt/(1 − σ)])
1−σ] (2.21)

CSN L3
i = log[1 +

G∑
g=1

exp(Ig)]

where the inclusive values for three level nested logit models are presented below for the purpose

of easier stepwise understanding and actual computations.

Ihg = (1 − σ1) ∗ log

Jhg∑
k=1

exp[δkt/(1 − σ1)] (2.22)

Ig = (1 − σ2) ∗ log
Hg∑
h=1

exp[Ihg/(1 − σ2)]

There are clear limitations in the counterfactual experiments of this paper. Due to the difficulty in

supply side modeling, I cannot produce a complete description of market equilibrium before and

after the counterfactual scenarios including changes in prices, quantities, and product offerings. I

leave this task to future research with more data on the heterogeneous Airbnb rental unit owners.

Instead, I generate counterfactual prices by anOLS hedonic regression results, followingHausmann

and Leonard (2002). The price responses for a unit change in ’Superhost Indicator’, ’Verification

Accounts’, ’Ratings Average’, ’Negative Reviews’, ’Positive Adjectives’, and ’Location Words’ are

$8.3759, $2.4799, $13.8010, -$0.4440, -$3.1582, and $0.6599, respectively.

Table 2.12 reports compensating variations from two counterfactual scenarios. First is a unit

reduction (−1) in each information variables. Second is comparing situations with and without one

of the information contents. The latter approach is for controlling the different measurement scales

of each information variables, and following Lewis and Zervas (2016)’s study on the impacts of
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reviews in hotel markets. The induced changes in price using the estimates from the hedonic price

regressions are reflected in calculating CSa f ter
i together.

The ’dollar metric’ from counterfactual experiments confirms the hypothesis of this paper that

trustworthy information on product quality is important in sustaining a market with a high degree

of information asymmetry. Enforced quality certifications and verifiable ex-post review contents

turn out to be more influential than non-verified seller side ’Cheap Talk’. Specifically, the host

identity verification measures (’Verification Accounts’) show a greater dollar impact on purchase

decisions in either case of unit reduction or complete absence ($9.5921/$40.6014). The lower

value for ’Superhost’ ($1.7270) is originating from the fact that only about 11% of rental units get

affected by the counterfactual scenario.

CV for consumer review ratings also show greater impacts on consumer choices than those

of seller side textual voluntary disclosures. Compensating variations for ’Ratings Average’

are $6.1465/$54.4118, both higher than those of ’Positive Adjectives’($1.8513/$5.1584) and

’Location Words’ ($0.8378/$3.0022) from advertisement texts. CVs for ’Negative Reviews’

($1.6230/$3.6848) from review texts do not show particularly more dominant impacts.

Given that therewere 708,308 reservations in the sample during the time periods of our empirical

analysis, the aggregate dollar values of consumer welfare from each information contents would be

quite huge. For the case of a unit reduction, the welfare impacts are $1.2232, $6.7941, $4.3536,

and $1.1496 million for ’Superhost’, ’Verification Accounts, ’Ratings Average’, and ’Negative

Reviews’, respectively. On the seller side, $1.3113 and $0.5934 million are for ’Positive Adjectives’

and ’LocationWords’. In the case of total absence, they are $1.2232, $28.7583, $38.5403, $2.6100,

$3.6537, and $2.1265 million in the same order.13

One caution for the interpretation of positive CV signs for ’Negative Reviews’ and ’Positive

Adjectives’ is that they represent the increase in consumers’ demand for rentals with a unit lower

’Negative Reviews’ and ’Positive Adjectives’. In fact, ’Positive Adjectives’ seems to be a strong

13Lewis and Zervas (2016) estimated the welfare impacts of online review ratings for hotel markets over five
U.S. states over 10 years of time periods as about $546 million with hedonic price regression adjustments for the
counterfactual case of total absence.
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indicator for cheap and low quality Airbnb rental units, showing negative signs on coefficients both

for demand and hedonic models. On the other hand, ’Location Words’ such as ’5 min walk to

Central Park’ and ’A Walking Distance from Grand Central’ are usually verifiable instantly on the

Google Maps API on each Airbnb listing webpages, which is more credible and hence attracts more

consumers.

2.5 Conclusion

This paper investigates how the sharing economy platformAirbnb could overcome adverse selection

due to information asymmetry. The risk of adverse selection for P2P markets is expected to be

higher than online retail outlets for material goods because the accommodation service transactions

among anonymous non-professional individuals imply a higher degree of information asymmetry

and more than just monetary losses. To test the insight from information economics that enforced

and ex-post verifiable information on product quality is more influential for a consumer’s decision

making process, demand models were estimated.

Predominant identification challenges due to high dimensionality in attribute space were partly

resolved using the variable selection by a lasso variant and exact post selection inferences. How-

ever, the model selection was unstable once endogeneity is involved and the results show that an

appropriate econometric (structural) modeling approach designed to capture actual consumers’ de-

cision making principles is essential to produce more accurate utility parameters. Unstructured text

information on product quality was incorporated in the model and showed nonnegligible impacts.

The results confirm our hypothesis, with quality certifications and consumer review ratings

showing greater impacts on rental choices than non-verified seller side voluntary disclosures via

textual advertisements.
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CHAPTER 3

ESTIMATION FOR THE DISTRIBUTION OF RANDOM COEFFICIENTS WITH
HETEROGENEOUS AGENT TYPES: MONTE-CARLO SIMULATION

3.1 Introduction

Since Berry, Levinsohn, and Pakes (1995), Nevo (2001), and Petrin (2002), random coefficients

logit models to capture heterogeneous consumer preferences have been one of the most popular

frameworks for demand research. But the estimation routine is highly nonlinear, computationally

burdensome, and in some cases the convergence is not guaranteed. Even if individual choice data

is available, (simulated) maximum likelihood estimation for random coefficients usually incurs too

much calculation costs, which is not an attractive option to applied researchers working with more

than millions of transaction records.

Fox, Kim, Ryan, and Bajari (2011, henceforth FKRB) proposes an alternative, that is nonpara-

metric, computationally simple, easy to program, and easy to combine auxiliary methods due to its

least squares format. To give a concrete idea, consider a simple logit choice probability given the

binary outcome yi j , attributes vector xi j , and the random coefficients βi, where i and j are indicies

for individual consumers and products, respectively.

Pr(yi j = j |x) =
w exp(x

′

i j βi)

1 +
∑J

j′=1 exp(x′i j′βi)
dF(βi) (3.1)

Assuming there are r = 1, ... , R types of consumers, i.e., R fixed preference parameters β1, ... , βR,

the choice probability of choosing product j can be expressed as an weighted average with the

probability tuple θ = (θ1, ... , θR).

Pr(yi j = 1|x) =
R∑

r=1
θr

exp(x
′

i j β
r )

1 +
∑J

j′=1 exp(x′i j′β
r )

(3.2)

Then the parameters enter the estimating moments linearly, and the main interest is to estimate

the tuple θ. From the estimated tuples θ̂, a practitioner can also estimate the empirical joint and
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marginal distributions of random coefficients β. The inequality constraints for θ is also simple,

required as a natural condition for a probability vector:
∑R

r=1 θ
r = 1 and θr ≥ 0 for all r .

FKRB (2011) demonstrates that estimation for θ and F(β) using the reparametrization specified

as in equation (3.2) is consistent. The estimator can be applicable to a wide range of nonlinear

models, but this paper focuses on the multinomial logit demand case. For more rigorous theoretical

discussion, see Fox, Kim, Ryan, and Bajari (2012) and Fox, Kim and Yang (2016). FKRB(2011) is

closely related to latent class models in discrete choice literature (Green (1976) and Train (2003)).

One possible weaknesses of FKRB (2011) is that, as demonstrated in their Monte-Carlo simu-

lation results, the approximating performances of F̂(β) can deteriorate as the number of consumer

types R grows. Also, there is a possibility that there are some ’nuisance’ consumer types that

can cause poor estimation results for F̂(β). It is a similar environment where there are too many

irrelevant regressors in linear regressions. One can expect that appropriate dimensionality re-

duction techniques can improve the approximation performances, along with significant gains in

computation speed.

To examine such a possibility, this paper tries to reduce the dimensionality in consumer hetero-

geneity by introducing high-dimensional metrics (Belloni and Chernozhukov (2013)). The baseline

estimator based on equation (3.2) can be expressed as a linear regression with a design matrix of

size N J ∗ R, where N is the number of observations (consumer choices) and J is the number of

choice alternatives. I apply the lasso variant first to reduce R, and with R∗(≤ R), construct a

new design matrix of size N J ∗ R∗ and compare the performance metrics to measure the distances

between the true CDF F0(β) and F̂(β). I also try the original lasso formulation by Tibshirani (1996)

with 10 folds cross validation.

The lasso variant developed by Belloni and Chernozhukov (2013) guarantees the asymptotic

approximation performances of post-lasso least squares estimators. It is one of the first high-

dimensional metrics or machine learning application that started to be accepted in economics,

with application areas including demand estimation, treatment/policy impacts, and general linear

models (Belloni, Chernozhukov, and Wang (2014), Chernozhukov, Hansen, and Spindler (2015),
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and Chernozhukov et al. (2018)). In statistics, post-selection estimators and inference using

popular machine learning methods other than lasso such as ridge regression, elastic net, and tree

based models (boosting) have been actively investigated.

In Monte-Carlo experiments (Section 3.4), post-lasso estimators show better approximation

performances compared to the baseline estimator. It is stable once the number of consumer

types R exceeds 36. The estimated CDFs of β produced by post-lasso estimators also track the

(simulated) ’true’ distributions better, and this can be attributed to the variable selection process

’killing’ nuisance variables so that F̂(β) does not take extreme values. Hence the combination of the

baseline inequality constrained least squares and high-dimensional metrics can be a good alternative

to estimate random coefficients logit demand models with ’Big Data’ in various marketplaces.

The rest of this paper is organized as follows: Section 3.2 briefly introduces the multinomial

random coefficients logit model, the baseline estimator from FKRB (2011), and the lasso variant

by Belloni and Chernozhukov (2013). Section 3.3 outlines the Monte-Carlo designs to compare

baseline estimator and post-lasso estimator. Section 3.4 reports estimation results and figures for

the marginal empirical distributions of β1 to compare the approximation performances obtained

using baseline and post-lasso estimators.

3.2 Model

3.2.1 Multinomial Random Coefficients Logit Demand Model

This section lays out the multinomial random coefficients logit demand model, which is one of the

key motivations for FKRB (2011).

ui j = x′i j β
r + εi j (3.3)

g j(xi, β
r ) =

exp(x′i j β
r )

1 +
∑J

j′=1 exp(x′i j′β
r )

(3.4)

Pr(yi j = 1|xi) =
R∑

r=1
θrg j(xi, β

r ) (3.5)
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where εi j is Type I extreme value error, and xi j is the K observed characteristics for each pair of

agents i = 1, ... , N and products j = 1, ... , J. θ = (θ1, ... , θR) represents the probability or share

of consumer types r = 1, ... , R in the population. The primary interest is to estimate the tuple θ,

and hence the distribution of random coefficients (CDFs) of β.

The actual estimation is simple OLS, with i = 1, ... , N observations on (xi, yi) and the following

moment condition.

E[yi j − Pr(yi j = 1|xi)|xi] = 0 (3.6)

Letting the R × 1 vector zi j = (zi j1, ... , zi jR)
′ with individual elements zi jr = g j(xi, β

r ), if one

fixes or simulates the observation pairs (xi, yi), zi jr is a fixed regressor. Equation (3.6) gives a

consistent OLS estimator for θ.

θ̂ = argmin
θ

1

N J

N∑
i=1

J∑
j=1
(yi j − z′i jθ)

2 (3.7)

DefiningY as the N J×1 vector stacking yi j’s and Z as the N J×R matrix stacking zi j , the estimator

is θ̂ = (Z′Z)−1Z′Y . Solving equation (3.7) can be easily done as a constrained minimization using

linlsq inMatlab. The two constraints for θ naturally required as a probability vector are
∑R

r=1 θ
r = 1

and θr ≥ 0 for all r = 1, ... , R.

Once θ is estimated, one can construct the estimated CDFs for the random coefficients.

F̂N (β) =
R∑

r=1
θ̂r1[βr ≤ β] (3.8)

where 1[βr ≤ β] = 1 when βr ≤ β.

3.2.2 High-Dimensional Metrics

As an extension of FKRB (2011), the main interest is to examine the performance of the baseline

estimator when there are too many consumer types r = 1, ..., R to consider. In other words, this

paper shows the approximating performance of the estimator F̂(β) to F(β)when the dimensionality

of grid of points R is reduced by two lasso variants, namely the original plain lasso and Belloni and
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Chernozhukov (2013)’s lasso with sparsity assumption (henceforth cv and hdm lasso, respectively),

to the OLS minimization problem as specified in equation (3.7).

argmin
θ

1

N J

N∑
i=1

J∑
j=1
(yi j − z′i jθ)

2 + λ | |θ | |1 (3.9)

argmin
θ

1

N J

N∑
i=1

J∑
j=1
(yi j − z′i jθ)

2 +
λ∗

N J
| |Ψ̂θ′| |1 (3.10)

Minimization problem (3.9) is the formulation for cv lasso with the shrinkage parameter λ and

the absolute value norm | | · | |1. Minimization (3.10) is for hdm lasso with sparsity assumption,

and the data driven penalty loadings Ψ̂ and λ∗ defined to guarantee the asymptotic approximation

performance of post-selection OLS estimators.

ψ̂r =

√√√√
1

N J

N∑
i=1

J∑
j=1
(z2i jr ε̂

2
i j) (3.11)

λ∗ = 2c
√

N JΦ−1(1 − γ/(2R)) (3.12)

where ε̂i j is the residuals, Φ is the CDFs for standard normal distribution, and c and γ are

conditioning parameters preset at 1.1 and 0.1 for heteroskedastic error structure.

Hence, given the agent type probabilities θ = (θ1, ... , θR), a researcher first reduces the dimen-

sionality of θ, for example, θ∗ = (θ1∗, ... , θR∗) with R∗ ≤ R. In the Monte-Carlo experiment, this

paper picks a fixed grid of points for θ of dimension R using Halton draws, and then use lasso

variants to select a grid of points for θ∗ with a smaller dimensionality R∗. Corresponding xi j ’s and

the coefficients βr ’s are generated from fixed distributions. With this reduced dimensionality of

the new tuple θ∗, the baseline least squares (equation (3.7)) is estimated to construct the estimated

CDFs for β.

This dimension reduction is in fact conducted on the regressor vector Z with rank R, with

individual elements zi jr , or the individual choice probabilities g j(xi, β
r ). The selected choice

probabilities g j(xi, β
r ) form a new rank-reduced regressor vector Z∗ ∈ RN J×R∗ .
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3.3 Monte-Carlo

3.3.1 Parameter and Settings

For the Monte-Carlo experiment, this paper tries six combinations. For each N = 2, 000 and 5, 000

observation pair set, three gaussian mixtures distributions for generating β = (β1, β2) were used.

There are J = 10 choice alternatives, K = 2 observed attributes, and R = t2, t = 3, 4, ... , 22 (9, 16,

... , 484) consumer types. The two dimensional grid of points for θ with dimensionality R are drawn

from [−10, 10] × [−10, 10] using Halton draws. For estimated CDFs, the S = 10, 201 (101 × 101)

grid of points on which both the actual (simulated) and estimated CDFs will be evaluated are

uniformly drawn from also [−10, 10]× [−10, 10]. The number of Monte-Carlo repetition M is 100.

Two kinds of approximating performance metric were used, RMISE (Root Mean Integrated

Squared Error) and IAE (Integrated Absolute Error).

RMISE =

√√√
1

M

M∑
m=1
[
1

S

S∑
s=1
(F̂m(βs) − F0(βs))2] (3.13)

I AE =
1

S

S∑
s=1
|F̂m(βs) − F0(βs)| (3.14)

βs represents the two dimensional (K = 2) coefficients for observed attributes xi j’s at one of the

grid points s = 1, ... , S. F̂m is the estimated CDFs at the m-th repetition and F0 is the ’true’ CDFs

for random coefficients β generated using N = 10, 000.

Each xi j ∈ R2 is drawn from N(0, 1.52), and the true F0(β) are drawn from three different

mixtures normal distributions with Σ1 =


0.2 −0.1

−0.1 0.4

 and Σ2 =

0.3 0.1

0.1 0.3

 . In other words, there
are three designs for each N , namely gaussian mixtures distributions of two, four, and six normal

distributions (Equation (3.15), (3.16), and (3.17)).
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0.4 ∗ N([3,−1], Σ1) + 0.6 ∗ N([−1, 1], Σ2) (3.15)

0.2 ∗ N([3, 0], Σ1) + 0.4 ∗ N([0, 3], Σ1)

+ 0.3 ∗ N([1, −1], Σ2) + 0.1 ∗ N([−1, 1], Σ2) (3.16)

0.1 ∗ N([3, 0], Σ1) + 0.2 ∗ N([0, 3], Σ1) + 0.2 ∗ N([1, −1], Σ1)

+ 0.1 ∗ N([−1, 1], Σ2) + 0.3 ∗ N([2, 1], Σ2) + 0.1 ∗ N([1, 2], Σ2) (3.17)

For lasso methods, the selection results (R∗) could differ over the random draws of x’s and β’s.

Also, to compare the approximating performances between the baseline OLS and post-selection

OLS, I fixed a grid of points R, and conducted lasso selection over 10 different random draws for

x’s and β’s producing 10 different reduced grid of points of dimensionality R∗. For example, if a

Halton draws of two dimensional grid of points R = 256 is at hand, hdm lasso selection method

was applied 10 times to each set of x’s and β’s to produce 10 reduced grid of points R∗ with the

dimensionality varying from 20 to 22 for the design of N = 5, 000 with the number of mixtures at

six (Table 3.3).

The post-cv lasso uses 10 folds cross validation, and g j(xi, β
r )’s were selected using the λ

values achieving the minimum RMSE (Root Mean Squared Error) from the penalized regressions.

The post-hdm lasso was applied with the default setting as specified by the R package ’hdm’ for

the heteroskedastic error case.

3.4 Results and Discussion

3.4.1 Performance Metrics

Table 3.1, 3.2, and 3.3 report the Monte-Carlo simulation results. Each table contains the perfor-

mance metrics (RMISE and IAE) for the baseline and post-lasso estimators using 10 folds cross

validation and Belloni and Chernozhukov (2013), for each combination of N (2,000 and 5,000),

mixtures distributions (two, four, and six) and R from 16 to 484. For each R, the reduced dimen-

sionalities R∗ produced by both post-cv and post-hdm lasso are reported, along with the number of
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positive weights estimated. RMISE and IAE results for post-cv and post-hdm lasso estimators are

average values computed over the 10 different reduced grid points.

The results shows the following: (1) For both the baseline and post-lasso inequality constrained

OLS, RMISE and IAE decrease in N and R but only until R reaches a certain level (144 or 169). (2)

Even R is relatively high, the number of non-zero basis functions (non-zero θr ’s) stays low, about

up to 11 for the most complex case (N = 5, 000 and R = 484 with mixtures of six normals). (3)

RMISE and IAE are lower than the baseline for R values above certain level (≥ 49) with the reduced

grid R∗ using either post-cv or post-hdm lasso. (5) It is hard to compare post-cv and post-hdm

lasso in terms of RMISE and IAE across all the combinations of N, R, and distribution mixtures.

(6) Post-hdm lasso selects fewer variables than post-cv lasso with 10 folds cross validation. The

mean and maximum number of dimensionality in the post-selection grid R∗ are higher for post-cv

lasso. So are the number of positive weights (θr ’s).

3.4.2 Marginal Distributions of Coefficients

Figure 3.1 through Figure 3.6 depict F0(β1) and F̂(β1), namely the (simulated) true marginal

distribution of β1 and the estimated marginal distributions using the baseline, post-cv lasso, and

post-hdm lasso estimators from the Monte-Carlo designs of N = 5,000 over various R’s. The

marginal distributions were calculated from the estimated joint CDFs F̂(β1, β2).

Figure 3.1 and Figure 3.2 compare F̂(β1)’s produced by the baseline and post-lasso estimators

with relatively low levels of R ranging from 16 to 49. For R values of 16 and 25, there seems

to be no clear visual confirmation that the approximation performances of post-lasso estimators

are better than the baseline. As R exceeds 36, post-lasso estimators start to show better fits, with

post-cv lasso performing better at tail areas than post-hdm lasso.

Figure 3.3 and Figure 3.4 depict the analogous comparisons with an increase in R values of

81 to 144. The fit for F̂(β) of post-lasso estimators improves more clearly and stays consistent,

as demonstrated by the RMISE and IAE values in Table 3.3. Post-cv lasso hits the best fit at

R = 121, and over R values of 81 and 144, post-cv lasso tracks the (simulated) true F0(β1) better
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than post-hdm lasso though the differences are small.

Figure 3.5 and Figure 3.6 show F0(β1) and F̂(β1) for relatively high R values of 169 and 529.

Both post-cv and post-hdm lasso track the true CDFs of β1 very well, while post-cv lasso still

performs slightly better than post-hdm lasso. But the computation speed is much faster when using

post-hdm lasso, because the reduced dimensionality R∗ for cv lasso is much greater than hdm lasso.

Figure 3.7 shows the (simulated) true joint distribution of β1 and β2. One thing to note is that

by coincidence, the mixtures distributions become smoother as the number of mixtures increase.

Though the mixtures of two normals contain more inflection points, the fit of post-lasso estimators

are still excellent. The results in Figure 3.1 through 3.7 are similar for β2.

3.5 Conclusion

This paper explores the potential gains of high-dimensional metrics to the nonparametric least

squares estimator for the distribution of random coefficients in multinomial logit demand case,

developed by FKRB (2011). It is easy to program and highly flexible enough to be combined with

auxiliary techniques, such as lasso and other machine learning methods for dimension reduction.

Post-lasso regression results shows better approximating performances to the joint mixtures dis-

tributions and faster computation speed. Without resorting to the existing nonlinear estimation

methods, our post-lasso estimator successfully captures heterogeneity in consumer preferences.
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Table 3.1: Monte-Carlo Results (1) (Number of Mixtures: 2)

RMISE IAE dim(R*) # of Pos. Weights
base cv hdm base cv hdm cv hdm base cv hdm

R mean mean mean (min, max) mean
N = 2,000

16 0.0676 0.0688 0.0705 0.0283 0.0289 0.0289 7.9 (7, 9) 5.9 (5, 7) 6.36 6.12 5.35
25 0.0695 0.0714 0.0786 0.0290 0.0300 0.0328 11.5 (9, 15) 5.1 (4, 6) 6.67 6.42 4.94
36 0.0702 0.0681 0.0767 0.0302 0.0283 0.0329 19.2 (9, 25) 7.2 (5, 9) 7.51 6.48 5.13
49 0.0695 0.0666 0.0684 0.0297 0.0277 0.0278 19.0 (11, 29) 8.0 (7, 9) 7.43 6.95 5.14
64 0.0713 0.0669 0.0655 0.0306 0.0275 0.0269 23.5 (10, 49) 8.0 (7, 10) 8.29 6.56 5.57
81 0.0711 0.0673 0.0633 0.0306 0.0283 0.0260 24.1 (13, 36) 9.7 (6, 14) 8.36 7.38 5.57
100 0.0720 0.0674 0.0656 0.0311 0.0288 0.0273 18.5 (9, 33) 8.9 (6, 12) 8.00 7.54 6.01
121 0.0722 0.0653 0.0641 0.0312 0.0272 0.0264 23.9 (12, 63) 9.3 (8, 11) 8.21 6.90 5.65
144 0.0745 0.0692 0.0649 0.0322 0.0283 0.0265 19.6 (14, 36) 9.6 (7, 12) 8.84 6.89 5.80
169 0.0755 0.0658 0.0655 0.0329 0.0273 0.0269 22.3 (13, 42) 10.1 (8, 14) 8.29 7.19 5.74
196 0.0755 0.0697 0.0670 0.0331 0.0293 0.0273 18.3 (14, 22) 10.1 (7, 12) 8.35 7.37 5.57
225 0.0771 0.0672 0.0672 0.0337 0.0278 0.0275 29.7 (18, 66) 11.9 (10, 15) 8.35 7.10 5.58
256 0.0780 0.0706 0.0668 0.0341 0.0297 0.0274 30.7 (16, 74) 10.4 (7, 13) 8.74 7.94 6.29
289 0.0778 0.0698 0.0664 0.0339 0.0292 0.0271 34.8 (18, 78) 11.9 (7, 15) 9.09 7.14 5.38
324 0.0791 0.0683 0.0663 0.0343 0.0287 0.0268 27.0 (24, 30) 11.5 (8, 14) 8.42 7.54 5.30
361 0.0788 0.0706 0.0677 0.0341 0.0293 0.0277 30.1 (18, 43) 11.9 (10, 15) 8.48 7.52 5.64
400 0.0797 0.0677 0.0666 0.0348 0.0282 0.0273 26.9 (19, 34) 13.3 (10, 17) 8.84 7.16 5.49
441 0.0799 0.0688 0.0670 0.0349 0.0290 0.0275 32.5 (22, 52) 12.9 (10, 16) 8.70 7.32 5.61
484 0.0801 0.0696 0.0660 0.0350 0.0292 0.0269 27.9 (15, 37) 13.1 (9, 21) 8.64 7.55 5.40

N = 5,000
16 0.0693 0.0347 0.0299 0.0288 0.0379 0.0398 11.2 (8, 13) 5.2 (5, 6) 6.24 7.36 5.00
25 0.0695 0.0609 0.0607 0.0284 0.0254 0.0248 23.4 (22, 24) 7.6 (6, 9) 6.72 9.44 7.03
36 0.0652 0.0602 0.0603 0.0271 0.0259 0.0251 25.8 (22, 33) 8.8 (8, 11) 7.40 10.59 7.63
49 0.0641 0.0508 0.0520 0.0262 0.0198 0.0200 27.4 (14, 35) 10.0 (9, 11) 7.62 10.80 8.32
64 0.0759 0.0493 0.0507 0.0320 0.0191 0.0193 32.2 (26, 36) 11.6 (10, 13) 8.17 11.59 8.93
81 0.0668 0.0392 0.0371 0.0284 0.0155 0.0145 26.0 (18, 32) 11.6 (9, 16) 8.61 12.61 9.06
100 0.0671 0.0366 0.0401 0.0284 0.0151 0.0156 30.6 (15, 71) 10.2 (9, 13) 8.74 12.33 8.22
121 0.0675 0.0325 0.0352 0.0284 0.0132 0.0140 25.4 (20, 43) 12.0 (9, 14) 8.72 11.96 8.17
144 0.0688 0.0330 0.0358 0.0290 0.0129 0.0140 20.8 (20, 21) 11.0 (11, 11) 8.94 12.23 7.51
169 0.0695 0.0324 0.0321 0.0294 0.0133 0.0121 27.6 (23, 32) 11.4 (11, 13) 9.05 12.11 9.10
196 0.0699 0.0340 0.0345 0.0295 0.0139 0.0128 25.0 (22, 36) 12.2 (12, 13) 9.25 12.93 9.10
225 0.0697 0.0353 0.0373 0.0291 0.0142 0.0159 36.2 (27, 40) 13.0 (13, 13) 9.06 14.89 7.61
256 0.0713 0.0326 0.0330 0.0296 0.0140 0.0128 37.6 (20, 47) 15.2 (14, 17) 9.13 14.90 10.26
289 0.0715 0.0314 0.0283 0.0297 0.0121 0.0106 26.4 (19, 36) 14.2 (12, 17) 9.06 12.60 10.21
324 0.0714 0.0326 0.0331 0.0297 0.0131 0.0127 31.6 (25, 42) 16.2 (12, 18) 9.10 13.60 9.18
361 0.0714 0.0321 0.0326 0.0297 0.0142 0.0125 35.8 (28, 42) 16.2 (14, 18) 9.24 13.82 9.56
400 0.0717 0.0292 0.0355 0.0298 0.0117 0.0137 24.2 (20, 31) 17.0 (14, 21) 9.17 11.96 9.63
441 0.0733 0.0309 0.0348 0.0307 0.0124 0.0130 49.8 (31, 104) 16.6 (14, 21) 9.54 14.54 9.40
484 0.0716 0.0332 0.0368 0.0298 0.0137 0.0142 46.6 (37, 65) 18.8 (16, 21) 9.10 15.34 10.56
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Table 3.2: Monte-Carlo Results (2) (Number of Mixtures: 4)

RMISE IAE dim(R*) # of Pos. Weights
base cv hdm base cv hdm cv hdm base cv hdm

R mean mean mean (min, max) mean
N = 2,000

16 0.0634 0.0627 0.0593 0.0268 0.0264 0.0245 11.8 (10, 16) 7.6 (7, 8) 6.61 6.28 5.52
25 0.0664 0.0682 0.0731 0.0279 0.0293 0.0311 14.0 (10, 19) 8.8 (7, 10) 7.17 6.59 5.13
36 0.0713 0.0655 0.0753 0.0309 0.0276 0.0328 16.6 (11, 30) 10.0 (8, 12) 8.01 6.87 5.53
49 0.0704 0.0640 0.0662 0.0303 0.0269 0.0268 18.8 (13, 29) 9.8 (7, 14) 8.18 7.01 5.19
64 0.0708 0.0642 0.0651 0.0308 0.0267 0.0270 17.4 (12, 30) 11.2 (9, 14) 8.54 6.84 5.85
81 0.0695 0.0631 0.0608 0.0303 0.0270 0.0252 23.8 (15, 38) 12.2 (11, 13) 8.61 7.66 5.85
100 0.0706 0.0660 0.0657 0.0308 0.0294 0.0277 30.2 (14, 74) 12.6 (10, 15) 8.75 7.59 6.07
121 0.0712 0.0619 0.0617 0.0311 0.0261 0.0255 21.0 (15, 32) 13.8 (11, 17) 8.68 7.29 6.03
144 0.0733 0.0646 0.0617 0.0321 0.0269 0.0252 23.6 (21, 29) 13.2 (10, 17) 8.96 7.35 6.26
169 0.0740 0.0618 0.0624 0.0325 0.0261 0.0257 23.4 (20, 27) 12.8 (10, 18) 8.66 7.32 5.87
196 0.0730 0.0662 0.0642 0.0322 0.0283 0.0263 23.0 (18, 30) 12.8 (9, 16) 8.97 7.58 5.78
225 0.0756 0.0620 0.0636 0.0331 0.0262 0.0265 28.6 (26, 34) 14.4 (12, 16) 8.97 7.45 5.94
256 0.0761 0.0678 0.0630 0.0334 0.0293 0.0260 31.8 (27, 40) 16.0 (13, 19) 9.11 7.96 6.30
289 0.0765 0.0648 0.0623 0.0336 0.0273 0.0255 31.6 (23, 43) 13.4 (7, 17) 9.21 7.46 5.70
324 0.0770 0.0647 0.0638 0.0338 0.0277 0.0257 34.2 (21, 65) 13.4 (10, 16) 9.29 7.78 5.54
361 0.0764 0.0660 0.0628 0.0332 0.0277 0.0254 29.6 (23, 36) 16.2 (11, 19) 8.82 7.62 5.73
400 0.0781 0.0644 0.0615 0.0345 0.0271 0.0254 38.0 (32, 45) 16.4 (10, 20) 8.90 7.58 5.92
441 0.0783 0.0641 0.0631 0.0345 0.0273 0.0261 41.4 (22, 76) 15.0 (11, 19) 8.94 7.75 5.84
484 0.0786 0.0648 0.0617 0.0347 0.0277 0.0252 39.2 (27, 48) 15.6 (12, 19) 9.00 7.64 5.49

N = 5,000
16 0.0575 0.0549 0.0569 0.0242 0.0248 0.0259 14.4 (12, 16) 8.0 (7, 9) 7.00 8.98 7.55
25 0.0610 0.0514 0.0550 0.0254 0.0228 0.0255 16.6 (15, 22) 12.0 (11, 13) 7.52 10.70 9.46
36 0.0605 0.0516 0.0617 0.0260 0.0228 0.0282 20.0 (13, 27) 11.4 (10, 13) 8.52 11.01 8.30
49 0.0580 0.0406 0.0460 0.0248 0.0168 0.0210 21.8 (15, 34) 13.2 (12, 14) 8.83 12.50 9.93
64 0.0618 0.0392 0.0447 0.0266 0.0165 0.0191 22.2 (17, 31) 15.0 (13, 17) 9.40 14.29 9.98
81 0.0610 0.0323 0.0401 0.0262 0.0144 0.0172 22.2 (18, 26) 15.2 (14, 16) 9.48 15.16 10.92
100 0.0621 0.0355 0.0439 0.0271 0.0162 0.0194 27.0 (22, 34) 14.0 (12, 16) 9.69 16.19 10.44
121 0.0622 0.0341 0.0416 0.0271 0.0149 0.0181 25.6 (23, 31) 17.2 (15, 19) 9.56 16.07 11.16
144 0.0643 0.0356 0.0414 0.0280 0.0158 0.0182 36.4 (27, 62) 16.4 (15, 18) 9.87 17.50 11.42
169 0.0650 0.0404 0.0424 0.0283 0.0173 0.0179 29.8 (24, 42) 16.6 (14, 19) 9.74 16.04 11.39
196 0.0679 0.0368 0.0379 0.0295 0.0159 0.0159 33.4 (29, 43) 16.2 (14, 18) 9.98 16.38 11.48
225 0.0672 0.0345 0.0405 0.0292 0.0147 0.0175 34.4 (29, 43) 17.2 (13, 25) 10.10 16.75 10.86
256 0.0682 0.0365 0.0407 0.0295 0.0158 0.0178 41.0 (25, 74) 20.4 (14, 29) 9.83 17.32 11.65
289 0.0685 0.0340 0.0409 0.0295 0.0150 0.0177 39.4 (34, 47) 20.2 (16, 25) 9.97 17.56 10.52
324 0.0683 0.0354 0.0423 0.0294 0.0155 0.0187 50.8 (29, 77) 17.6 (17, 18) 9.90 17.69 10.24
361 0.0685 0.0347 0.0423 0.0295 0.0152 0.0188 45.0 (14, 80) 23.0 (17, 30) 10.14 17.86 10.91
400 0.0689 0.0361 0.0432 0.0298 0.0159 0.0191 45.6 (35, 79) 19.2 (14, 22) 10.05 17.85 10.74
441 0.0683 0.0352 0.0418 0.0295 0.0148 0.0183 43.8 (37, 61) 19.6 (14, 26) 10.07 16.41 10.09
484 0.0700 0.0373 0.0433 0.0303 0.0163 0.0197 74.8 (39, 111) 20.8 (17, 24) 10.22 17.61 10.56
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Table 3.3: Monte-Carlo Results (3) (Number of Mixtures: 6)

RMISE IAE dim(R*) # of Pos. Weights
base cv hdm base cv hdm cv hdm base cv hdm

R mean mean mean (min, max) mean
N = 2,000

16 0.0651 0.0684 0.0746 0.0267 0.0288 0.0299 11.0 (9, 13) 7.4 (7, 8) 6.21 5.6 4.16
25 0.0657 0.0675 0.0763 0.0269 0.0281 0.0305 12.8 (9, 16) 8.0 (6, 10) 6.58 6.12 4.33
36 0.0620 0.0640 0.0705 0.0262 0.0264 0.0290 15.0 (11, 17) 9.8 (8, 11) 7.57 6.71 5.45
49 0.0616 0.0627 0.0637 0.0258 0.0261 0.0254 19.6 (13, 37) 12.2 (10, 14) 7.92 7.01 5.88
64 0.0646 0.0632 0.0593 0.0270 0.0259 0.0235 18.0 (16, 20) 12.0 (8, 14) 7.88 7.06 5.96
81 0.0655 0.0651 0.0594 0.0275 0.0270 0.0237 27.8 (20, 41) 13.0 (11, 15) 7.99 7.68 6.10
100 0.0662 0.0622 0.0590 0.0279 0.0258 0.0236 27.2 (23, 31) 12.8 (11, 14) 8.01 7.37 6.12
121 0.0660 0.0624 0.0601 0.0278 0.0259 0.0240 27.6 (19, 47) 12.8 (10, 15) 8.10 7.16 5.63
144 0.0683 0.0670 0.0616 0.0287 0.0273 0.0246 28.8 (19, 45) 13.4 (12, 16) 8.2 7.18 5.86
169 0.0694 0.0635 0.0621 0.0297 0.0261 0.0248 32.2 (21, 48) 15.2 (11, 19) 8.59 7.43 5.97
196 0.0705 0.0665 0.0632 0.0303 0.0278 0.0250 35.0 (28, 49) 14.0 (12, 15) 8.66 7.62 5.90
225 0.0709 0.0659 0.0641 0.0305 0.0270 0.0252 28.8 (23, 41) 16.6 (11, 23) 8.65 7.25 6.08
256 0.0721 0.0666 0.0639 0.0310 0.0275 0.0252 35.2 (28, 46) 18.4 (16, 22) 8.74 7.46 6.32
289 0.0713 0.0680 0.0639 0.0304 0.0285 0.0252 38.2 (22, 58) 15.0 (11, 19) 8.77 7.66 5.89
324 0.0732 0.0652 0.0622 0.0311 0.0271 0.0247 33.0 (25, 45) 17.2 (16, 19) 8.44 7.55 6.03
361 0.0734 0.0683 0.0659 0.0313 0.0283 0.0266 39.2 (30, 55) 17.6 (13, 21) 8.60 7.47 6.07
400 0.0734 0.0644 0.0651 0.0313 0.0268 0.0259 34.6 (28, 41) 16.0 (10, 20) 8.54 7.31 5.78
441 0.0736 0.0668 0.0642 0.0314 0.0278 0.0255 41.8 (25, 82) 18.0 (13, 22) 8.62 7.71 6.04
484 0.0735 0.0676 0.0638 0.0314 0.0281 0.0254 36.6 (31, 39) 18.6 (12, 22) 8.86 7.46 5.93

N = 5,000
16 0.0647 0.0568 0.0687 0.0261 0.0238 0.0295 13.0 (11, 16) 7.4 (7, 8) 6.14 9.27 6.72
25 0.0644 0.0569 0.0684 0.0258 0.0241 0.0298 18.2 (12, 22) 9.2 (9, 10) 6.51 10.51 7.66
36 0.0561 0.0387 0.0424 0.0232 0.0176 0.0205 26.2 (26, 27) 12.8 (12, 13) 8.66 12.47 10.09
49 0.0568 0.0330 0.0354 0.0234 0.0141 0.0152 24.8 (18, 33) 13.2 (12, 16) 8.66 13.44 10.48
64 0.0581 0.0371 0.0341 0.0242 0.0159 0.0148 30.0 (17, 39) 17.6 (14, 19) 9.14 16.01 12.67
81 0.0600 0.0297 0.0329 0.0253 0.0122 0.0141 25.2 (18, 29) 14.8 (10, 19) 9.13 15.86 10.39
100 0.0607 0.0306 0.0357 0.0252 0.0129 0.0160 29.8 (23, 34) 14.6 (14, 15) 9.45 17.07 10.25
121 0.0602 0.0286 0.0344 0.0250 0.0117 0.0141 28.8 (23, 34) 15.4 (15, 17) 9.49 16.18 9.95
144 0.0621 0.0347 0.0335 0.0259 0.0150 0.0137 37.0 (27, 52) 16.6 (15, 20) 9.61 18.10 11.56
169 0.0626 0.0287 0.0333 0.0262 0.0117 0.0138 32.4 (26, 37) 17.0 (15, 18) 9.60 17.01 11.47
196 0.0655 0.0309 0.0345 0.0278 0.0132 0.0151 32.8 (31, 34) 17.4 (16, 21) 9.47 16.70 11.50
225 0.0646 0.0338 0.0383 0.0271 0.0148 0.0160 63.8 (35, 95) 17.8 (16, 19) 9.69 20.65 10.26
256 0.0669 0.0319 0.0386 0.0284 0.0137 0.0163 38.8 (35, 45) 20.8 (20, 22) 9.74 17.60 11.45
289 0.0665 0.0346 0.0377 0.0279 0.0148 0.0163 39.4 (37, 47) 20.2 (18, 25) 9.82 16.64 11.50
324 0.0681 0.0348 0.0373 0.0287 0.0146 0.0156 40.8 (33, 62) 20.8 (17, 24) 9.58 17.32 11.9
361 0.0681 0.0330 0.0381 0.0287 0.0141 0.0154 46.2 (42, 52) 25.8 (21, 28) 9.58 16.64 11.57
400 0.0686 0.0338 0.0378 0.0287 0.0142 0.0162 33.8 (31, 40) 20.2 (17, 21) 9.94 15.52 11.37
441 0.0684 0.0333 0.0344 0.0289 0.0140 0.0148 57.8 (41, 97) 20.8 (19, 24) 9.64 17.91 12.17
484 0.0686 0.0346 0.0364 0.0290 0.0148 0.0147 86.4 (42, 160) 23.8 (20, 26) 9.72 19.10 11.37
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Figure 3.1: F̂(β1): Base vs. Post-cv Lasso (N=5,000, Mix 6, R = 16, ..., 49)
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Figure 3.2: F̂(β1): Base vs. Post-hdm Lasso (N=5,000, Mix 6, R = 16, ..., 49)
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Figure 3.3: F̂(β1): Base vs. Post-cv Lasso (N=5,000, Mix 6, R = 81, ..., 144)
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Figure 3.4: F̂(β1): Base vs. Post-hdm Lasso (N=5,000, Mix 6, R = 81, ..., 144)
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Figure 3.5: F̂(β1): Post-cv vs. Post-hdm Lasso (N=5,000, Mix 6, R = 169)
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Figure 3.6: F̂(β1): Post-cv vs. Post-hdm Lasso (N=5,000, Mix 6, R = 529)
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Figure 3.7: True Joint Distributions of β1 and β2 (1) N=5,000, Mixture of Two Normals

Figure 3.8: True Joint Distributions of β1 and β2 (2) N=5,000, Mixture of Four Normals

Figure 3.9: True Joint Distributions of β1 and β2 (3) N=5,000, Mixture of Six Normals
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APPENDIX A

MACHINE LEARNING AND POST SELECTION INFERENCE

A.1 Penalized Regression: Lasso, Ridge, and Elastic Net

Shrinkage methods or regularized regressions set an additional constraint on magnitudes pa-

rameter estimates can take. If there is a situation where regression coefficients can ’explode’ due to

multicollinearity one could employ one of shrinkage methods. Also, if there are irrelevant variables

it could filter out such variables by increasing the shrinkage parameter.

A basic LASSO (Least Absolute Shrinkage and Selection Operator, Tibshirani(1996)) formu-

lation could be stated as the following, where PRSS(βl1) represents penalized residual sum of

squares, where the shrinkage penalty on coefficient values (β) is given by L1 metric;

minβPRSS(βl1) =
n∑

i=1
(yi − x′i β)

2 + λ

p∑
j=1
|β j | (A.1)

= (Y − Xβ)′(Y − Xβ) + λ | |β| |1

Ridge regression (Hoerl and Kennard (1970)) is a similar minimization but with L2 metric;

minβPRSS(βl2) =
n∑

i=1
(yi − x′i β)

2 + λ

p∑
j=1

β2j (A.2)

= (Y − Xβ)′(Y − Xβ) + λ | |β| |2

∂PRSS(βl2)

∂β
= −2X′(Y − Xβ) + 2λβ (A.3)

β̂Ridge = (X
′X + λIp)

−1X′Y

λ is the tuning parameter that determines the degree of shrinkage for both LASSO and ridge

regression problems. As λ approaches zero, the estimation gets closer to OLS (Ordinary Least

Squares), and as λ approaches to infinity the model becomes an intercept only specification.

Compared to ridge regression, LASSO tends to eliminate too many coefficients and ridge tends to

leave too many variables.
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Elastic net (Zou and Hastie (2005)) is a convex combination of LASSO and ridge that tries to

harmonize the two methods;

minβPRSS(βElasticNet) = (Y − Xβ)′(Y − Xβ) + λ1 | |β| |1 + λ2 | |β | |2 (A.4)

Letting α =
λ2

λ1+λ2
and t as an arbitrary positive real number, the solution to the elastic net

regression is the following.

β̂ElasticNet = argminβ(Y − Xβ)′(Y − Xβ) (A.5)

s.t. (1 − α)| |β| |1 + α | |β| |2 ≤ t (A.6)

glmnet package in R implements LASSO, ridge regression, and elastic net with n-folds cross

validation and RMSE (Root Mean Squared Error) criterion.

A.2 Gradient Boosting: Regression Tree Based Prediction

Given a response variableY and predictors X = (x1, x2,..., xp) the decision tree picks a variable,

pinpoints a splitting value on the selected variable and splits the predictor space X recursively. Each

node contains a subset of observations for predictors and the response variable. Average value of

the response in each final nodes is a tree model’s prediction on Y . Splitting process stops when

a loss function reaches a preset threshold. To improve prediction accuracy, a pruning process is

commonly applied after fitting the tree model, F(X).

Loss function choice for categorical response with J classes is Gini impurity measure IG(p),

where p j is the probability of predicting class j correctly and 1− p j is the probability of predicting

class j with a wrong class at each node. In the categorical case, the decision tree is called

classification tree I used for the review sentiment classification.

IG(p) =
J∑

j=1
p j(1 − p j) = 1 −

J∑
j=1

p2j (A.7)
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If the response is a continuous numeric variable, now it is a regression tree. One common choice

of loss function for a regression tree is RMSE (Root Mean Square Error).

RMSE(Y, F(X)) =

√√√
1

n

n∑
i
(yi − F(xi))2 (A.8)

At each node, the split variable and value are determined to minimize the resulting RMSE.

However, regression tree has its own weaknesses. Though a high level of prediction accuracy

could be achieved, the resulting tree structure could be too complicated (’Bushy’). Then inter-

pretation of the fitted model becomes nearly impossible and the model yields poor out of sample

prediction performances. Also, if there is one variable that has a particularly strong correlation

with the response, the splitting process is concentrated on the variable leading to biased estimates.

To deal with the weaknesses of plain regression tree, practitioners use model averaging tech-

niques. First averaging method is ’Bagging’ (Breiman (1996)). Bagging fits many trees on

bootstrapped subsets of training data, and predicts outcome by majority vote from the estimated

tree models. Second is ’Random Forests’, a refined bagging approach (Breiman (2001)). Random

forests method uses the same bootstrapped samples, but for each tree, a random sample of m(< p)

predictors is drawn and only those m features are used in the fitting processes. It tries to improve

on bagging by de-correlating each trees.

This paper uses the third averaging technique, namely ’Gradient Boosting’ (Friedman (2001)).

Basic formulation can be stated as;

Ŷ = F(X) +
L∑

l=1
ρhl(X) (A.9)

F(X) can be an initial fitted tree with predictors X . hl(X) is called a ’Weak Learner’, another

tree trained on the residuals from F(X) +
∑l−1

l=1 hl(X). Specifically, for the initial model F(X), the

residuals is Y − F(X). Then h1(X) sets the residuals as a new response variable and trains another

tree. The shrinkage parameter ρ is set low enough so that there would not be an overfitting problem.

The reason why this approach is called as gradient boosting is from the fact that it uses residuals.

Specifically, if we set an RMSE loss function, our optimization problem will be
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minF(xi)J =
n∑

i=1
(yi − F(xi))

2 (A.10)

Treating F(xi) as parameters, the derivative is,

∂J
∂F(xi)

=
∂
∑

i(yi − F(xi))
2

∂F(xi)
=
∂(yi − F(xi))

2

∂F(xi)
= 2(F(xi) − yi) (A.11)

Gradient descent optimizationminimizes a function bymoving the function in the opposite direction

of the gradient, in this case − ∂J
∂F(xi)

= yi − F(xi).

A practitioner can implement gradient boosting fitting procedure using the gbm package in R,

also using n-folds cross validation and RMSE criterion function.

A.3 Exact Inference for OLS Estimates after Lasso Selection

The post selection inference approach used in this paper is directly from Lee, L. Sun, Sun, and

Taylor (2016), implemented by R package ’selectiveInference’. Exact inference for regression models

after statistical/machine learning is an actively developing area and interested readers could benefit

a lot from the recent literature written by the pioneers of machine learning in statistics (Lockhart,

Taylor, J. Tibshirani, and Tibshirani (2014), J. Tibshirani, Taylor, Lockhart, and Tibshirani (2016),

and Taylor and Tibshirani (2017)).

This appendix introduces a brief outline and compare two confidence intervals (C.Is) obtained

from the classical OLS method and post selection inference of Lee et al. (2016). For a typical OLS

regression, the objective y follows a multivariate normal distribution.

y ∼ N(µ, σ2In) (A.12)

where µ is the mean vector modeled as a linear combination of p predictors x1, ..., xp ∈ Rn and σ

is the standard error. The primary goal is to get an exact distribution of coefficients obtained from

OLS conducted only with the selected variables by LASSO or model M .

βM = argminbM E | |y − XM bM | |2 = X+M µ = (XT
M XM )

−1XT
M µ (A.13)
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The LASSO selection event in fact implies one get the variables with non-zero coefficients and

corresponding signs. The event of selecting the observedmodel M̂ and signs ŝ i.e., {M̂ = M, ŝ = s}

can be described by a polyhedron in the form of {Ay ≤ b}.

{M̂ = M, ŝ = s} = {A(M, s)y ≤ b(M, s)} (A.14)

A(M, s) =
©­­«

A0(M, s)

A1(M, s)

ª®®¬ =
©­­«

A0(M, s)

−diag(s)(XT
M XM )

−1XT
M

ª®®¬
b(M, s) =

©­­«
b0(M, s)

b1(M, s)

ª®®¬ =
©­­«

b0(M, s)

−λdiag(s)(XT
M XM )

−1s

ª®®¬
A0(M, s) =

1

λ

©­­«
XT
−M (I − PM )

−XT
−M (I − PM )

ª®®¬
b0(M, s) =

©­­«
1 − XT

−M (X
T
M )
+s

1 + XT
−M (X

T
M )
+s

ª®®¬
where the subscript −M represents variables of zero-coefficients in the LASSO selector, λ is the

penalty parameter, PM is the projection matrix toward the vector space of the selected variables,

and diag(s) is a diagonal matrix with the elements of s.

The next step is to get an exact distribution of individual coefficients βM
j , conditional on the

model selection event {Ay ≤ b}. First the authors establish the conditional distribution of a generic

linear transformation of the objective y: ηT y |{Ay ≤ b}. With the choice of η = (X+M )
T e j , one gets

the conditional distribution of βM
j = eT

j X+M µ = ηT µ. The selection event {Ay ≤ b} can once again

be transformed into an interval of residuals from projecting y onto the direction of η.

{Ay ≤ b} = {ν−(z) ≤ ηT y ≤ ν+(z), ν0(z) ≥ 0} (A.15)

ν−(z) = max
j:(Ac) j<0

b j − (Az) j
(Ac) j

ν+(z) = min
j:(Ac) j>0

b j − (Az) j
(Ac) j

ν0(z) = min
j:(Acj )=0

b j − (Az) j
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where A and b are as defined in the previous page, z = (In −Pη)y is the residual with the projection

matrix Pn onto the direction of η, and c = η(ηTη)−1. Notice that z being residual, is independent

of ηT y and hence the LASSO selection event does not incur any complication to produce the

conditional distribution but just imposes upper and lower limits on ηT y.

Hence, the distribution of ηT y conditional on the model selection is a truncated normal.

[ηT y |Ay ≤ b, z = z0] ∼ T N(ηT µ, σ2 | |η | |2, ν−(z0), ν
+(z0)) (A.16)

where z0 is a realization of residual, and equation (A.16) is true for any z0 because of the in-

dependence. The cumulative density F
[ν−s (z), ν

+
s (z)]

ηT µ, ηTη
is monotone decreasing in ηT µ or in our

specific interst, in βM
j which gives the confidence interval [L, U] with L and U are defined as

F
[ν−s (z), ν

+
s (z)]

L, σ2 | |η | |
(βM

j ) = 1 − α
2 and F

[ν−s (z), ν
+
s (z)]

U, σ2 | |η | |
(βM

j ) =
α
2 to achieve a significance level α. Thus,

P[βM
j ∈ [L, U]|M̂ = M, ŝ = s] = 1 − α (A.17)
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APPENDIX B

OMITTED DETAILS FOR CHAPTER 1

B.1 Exact Inference for Post Lasso Estimates

Table B.1 reports the C.Is obtained by both OLS and OLS post LASSO. For almost all variables,

the C.Is from truncated normal essentially reproduce those of OLS but they are slightly wider

reflecting the changes in density due to truncation. There are two exceptions to this.

First is when the signal of a variable is weak. Then parameter estimates could be near to one

of the truncation endpoints, giving much wider intervals than OLS. It is the case of seller text

variables, and the ratio [L,U]
postL ASSO

[L,U]OLS 17.87 and 4.57 for ’Positive Adjectives’ and ’Location

Words’, while the average for others (except for ’Entire Home/Apt’) is 1.09.

Second is when the signal is ’too strong’. For ’Entire Home/Apt’, the Z-score is 173. Then the

lower end of truncation is very high and almost every value above it satisfies the significance level.

The R package in this case produces the output ’inf’.
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Table B.1: Confidence Intervals for OLS post Lasso

5% C.Is OLS Exact Truncated Normal
obs: 75,236 C.Is C.Is Tail Areas

L U L U L U

Quality Certification
Superhost 0.044510 0.060512 0.044440 0.060600 0.024014 0.023888

Verification Accounts 0.014836 0.019844 0.014821 0.020556 0.024218 0.024826

Review Scores
Cleanliness 0.045786 0.052211 0.045766 0.053591 0.024051 0.024403
Location 0.133259 0.140423 0.133232 0.140430 0.024261 0.024782
Value -0.096141 -0.087599 -0.096158 -0.087576 0.024626 0.024383

Review Texts
Negative Reviews -0.008115 -0.006459 -0.008118 -0.006454 0.024613 0.024319
Positive Phrases 0.005995 0.008099 0.005986 0.008527 0.023892 0.024603

Seller Texts
Positive Adjectives -0.000550 0.000587 -0.020134 0.000175 0.024976 0.024988
Location Phrases 0.000841 0.001604 0.000927 0.004413 0.024842 0.024967

Accommodation Capacities
Default Guests 0.053228 0.059414 0.053214 0.059429 0.024489 0.024443
Bathrooms 0.095556 0.111882 0.095064 0.111892 0.024449 0.024862
Bedrooms 0.104912 0.116032 0.104866 0.116618 0.024066 0.024889

Beds -0.023948 -0.014518 -0.024029 -0.014506 0.024033 0.024716
Included Guests 0.021074 0.027366 0.021046 0.027368 0.024016 0.024923

Amenity and Service
Air Conditioner 0.118190 0.134485 0.118118 0.134490 0.024008 0.024931

Buzzer Wireless Intercomm 0.082411 0.093107 0.082432 0.096908 0.024692 0.024774
Cable TV 0.094420 0.105542 0.090869 0.105517 0.024627 0.024924

Free Parking on Street -0.129221 -0.112493 -0.129269 -0.111331 0.024326 0.024521
Indoor Fire Place 0.109043 0.135648 0.108097 0.135658 0.024230 0.024907

Lock on Bedroom Door -0.076620 -0.058717 -0.076746 -0.058666 0.024509 0.024355
Cats Allowed -0.094924 -0.074257 -0.094945 -0.072997 0.024770 0.024382

Internet 0.018999 0.032768 0.018958 0.036304 0.023992 0.024511
Shampoo 0.033656 0.044654 0.033637 0.045603 0.024591 0.024570

(Room Type)
Entire Home/Apt 0.583494 0.596795 0.339306 inf 0 0
Shared Room -0.185973 -0.142035 -0.186067 -0.141924 0.024510 0.024422
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B.2 Manhattan vs. Other Neighborhoods

Table B.2: GMM: Manhattan and Other Neighborhoods

obj : log(pit ) Manhattan Other Neighborhoods
Fixed Effects GMM Fixed Effects GMM

Quality Certification
Superhost 0.0116*** 0.0124*** 0.0086*** 0.0084***

(0.0030) (0.0030) (0.0027) (0.0027)
Verification Accounts 0.0005 -0.0002 0.0034*** 0.0061***

(0.0010) (0.0011) (0.0010) (0.0011)

Review Scores
Cleanliness -0.0025 -0.0003 0.0007 0.0022

(0.0025) (0.0030) (0.0026) (0.0030)
Location 0.0059* 0.0061 0.0044* 0.0087***

(0.0034) (0.0042) (0.0027) (0.0031)
Value -0.0013 -0.0059* -0.0061** -0.0065**

(0.0028) (0.0033) (0.0028) (0.0031)

Review Texts
Negative Reviews -0.0007 -0.0025*** 0.0006 -0.0022***

(0.0006) (0.0006) (0.0006) (0.0006)
Positive Phrases 0.0045*** 0.0042*** 0.0029*** 0.0031***

(0.0009) (0.0009) (0.0008) (0.0007)

Seller Texts
Positive Adjectives -0.0019*** -0.0014 0.0005 0.0002

(0.0007) (0.0011) (0.0007) (0.0009)
Location Phrases 0.0023*** 0.0017*** 0.0020*** 0.0010*

(0.0004) (0.0006) (0.0004) (0.0005)

Constant 0.1875*** 0.1616***
(0.0118) (0.0115)

ρ : rho 0.9631*** 0.9667***
(0.0024) (0.0025)

Number of Obs 17,687 19,931
***: 1% significant, **: 5% ,*: 10%, standard errors in parentheses
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Table B.3: GMM: Manhattan and Other Neighborhoods (Continued from Table B.2)

obj : log(pit ) Manhattan Other Neighborhoods
Fixed Effects GMM Fixed Effects GMM

Accommodation Capacities
Default Guests 0.0275*** 0.0254*** 0.0268*** 0.0329***

(0.0026) (0.0048) (0.0024) (0.0043)
Bathrooms 0.0401*** 0.0602*** 0.0051 0.0135

(0.0136) (0.0189) (0.0094) (0.0148)
Bedrooms 0.0383*** 0.0279*** 0.0460*** 0.0471***

(0.0063) (0.0106) (0.0056) (0.0105)
Beds 0.0245*** 0.0260*** 0.0051 0.0099**

(0.0039) (0.0062) (0.0034) (0.0049)
Included Guests 0.0163*** 0.0152*** 0.0150*** 0.0149***

(0.0029) (0.0046) (0.0024) (0.0036)

Amenity and Service
Air Conditioner 0.0060 -0.0043 -0.0025 -0.0095

(0.0081) (0.0116) (0.0061) (0.0086)
Buzzer Wireless Intercomm 0.0104* 0.0121 0.0145** 0.0118

(0.0062) (0.0077) (0.0067) (0.0093)
Cable TV 0.0011 0.0090 -0.0025 0.0068

(0.0061) (0.0071) (0.0058) (0.0071)
Free Parking 0.0014 -0.0020 -0.0088 -0.0067

(0.0108) (0.0138) (0.0067) (0.0089)
Indoor Fire Place -0.0464** -0.0234 0.0745*** 0.0749***

(0.0183) (0.0216) (0.0180) (0.0217)
Lock on Bedroom Door 0.0119 -0.0047 -0.0124** -0.0229***

(0.0075) (0.0101) (0.0060) (0.0073)
Cats Allowed -0.0496*** -0.0397* -0.0233** -0.0115

(0.0138) (0.0218) (0.0092) (0.0148)
Internet -0.0011 -0.0043 -0.0038 0.0027

(0.0066) (0.0082) (0.0057) (0.0063)
Shampoo 0.0019 0.0077 -0.0072 -0.0031

(0.0051) (0.0066) (0.0047) (0.0057)

Room Type
Entire Home/Apt 0.1151*** 0.1305*** 0.1828*** 0.1991***

(0.0085) (0.0152) (0.0085) (0.0164)
Shared Room -0.0929*** -0.0571 -0.0060 0.0549

(0.0215) (0.0476) (0.0228) (0.0602)
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B.3 Annual Variations in Attributes

Table B.4: Summary Statistics for Variables and Annual Variations

obs: 37,618 201712 201612 Difference (201712-201612)
Mean Mean Mean S.D. Min Max

Price ($) 184.6176 181.8856 2.7319 31.0575 -550 700
Quality Certification
Superhost Indicator 0.1761 0.1003 0.0758 0.3842 -1 1
Verification Accounts 4.4649 4.2075 0.2574 1.0407 -3 8

Review Scores
Cleanliness 9.2026 9.1913 0.0113 0.4523 -4 6
Location 9.3968 9.3492 0.0476 0.3782 -4 7
Value 9.3077 9.2816 0.0262 0.4186 -4 7

Review Text
Negative Reviews 4.8731 3.4239 1.4492 2.1540 -24 19
Positive Phrases 3.5182 2.5320 0.9862 1.6366 -38 14

Seller Text
Positive Adjectives 6.6013 6.3382 0.2631 1.5587 -24 20
Location Phrases 10.6401 9.6204 1.0196 2.6019 -29 47

Accommodation Capacites
Default Guests 2.9284 2.9287 -0.0002 0.5111 -14 14
Bedrooms 1.1092 1.1092 0.0001 0.1007 -2.5 3
Bathrooms 1.1567 1.1476 0.0091 0.2060 -6 4

Beds 1.5891 1.5709 0.0182 0.3436 -10 11
Guests Included 1.6164 1.5702 0.0462 0.4377 -11 13

Amenity and Service
Air Conditioning 0.8842 0.8692 0.0150 0.1589 -1 1

Buzzer Wireless Intercom 0.5495 0.5480 0.0015 0.1753 -1 1
Cable TV 0.3688 0.3672 0.0016 0.1824 -1 1

Free Parking 0.1103 0.1128 -0.0026 0.1350 -1 1
Indoor Fire Place 0.0396 0.0400 -0.0004 0.0597 -1 1

Lock on Bedroom Door 0.1161 0.0945 0.0215 0.1633 -1 1
Cats Allowed 0.0675 0.0684 -0.0009 0.1004 -1 1

Internet 0.8133 0.8193 -0.0060 0.1860 -1 1
Shampoo 0.6231 0.5992 0.0238 0.2213 -1 1

(Room Type)
Entire Home/Apt 0.5582 0.5579 0.0003 0.1369 -1 1
Shared Room 0.0141 0.0145 -0.0004 0.0497 -1 1
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B.4 Evidence for Relevance of Lagged Instruments

Table B.5: Relevance Tests for Lagged Instruments

obs: 37,618 R Squared Wald F (24, 37,618)

Quality Certification
Superhost Indicator 0.2623 13.81
Verification Accounts 0.2737 9.83

Review Scores
Cleanliness 0.8487 19.55
Location 0.8180 22.28
Value 0.8023 23.29

Review Text
Negative Reviews 0.9404 44.99
Positive Phrases 0.9363 13.49

Seller Text
Positive Adjectives 0.9083 10.71
Location Phrases 0.8877 28.15

GMM method in Chapter 1 assumes that all of the attributes in Xit could be endogenous with

the error ηit . Further lagged observations for attributes Xit−2 are proposed as instruments. Xit−2

contains rental unit attributes recorded three to four months earlier than those in Xit−1 recorded in

2016. For example, for a rental i appearing in June, 2017 and 2016, xikt−2 is the k-th attribute

recorded in Febrary, 2016. Though GMM implementation does not require an explicit first stage

regression, it is important that Xit−2 satisfies the relevance condition.

Table B.5 provides evidence of relevance for each attribute xikt ∈ Xit , from a joint significance

test for hypothesis (B.2)with Zit = (xi1t−2, ..., xikt−2, ..., xiKt−2) and the corresponding coefficients

vector Γ = (γ1, ... , γK ). The regressor vector X−k
it includes attributes xikt’s except for xikt , and

Xikt−1 includes xikt−1’s for all k.

xikt = c + ΓZit + θplog(pit−1) + Θ1X−k
it + Θ2Xit−1 (B.1)

H0 : γ1 = γ2 = · · · = γ25 = 0 (B.2)
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The degrees of freedom for F-statistic is 25(=K) and 37,618, and the corresponding p-values

for each variable are less than 0.0001. Table B.5 shows the relevance conditions for information

variables, and the results are similar for amenity and service features.
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APPENDIX C

OMITTED DETAILS FOR CHAPTER 2

C.1 Exact Inference for Post Lasso Estimates

Table C.1, C.2, and C.3 report the C.Is produced by classical OLS and exact post selection

inference for OLS, IV and two level nested logit models, respectively. As a reminder, the first step

LASSO selection was conducted separately on datasets for each estimation methods to see if the

model selection varies due to endogeneity. For OLS logit, the LASSO selector chose variables

from the dataset of all attributes and price, p jt . For IV logit p jt was replaced with the instrumented

price p̂ jt . For two level nested logit, ˆln(s j |gt) was included also with p̂ jt . The LASSO selector,

for three level nested logit with ˆln(s j |hgt) and ˆln(sh|gt) omitted a few key variables, including σ2

for the regional level correlated preferences. It shows the selection results are susceptible and vary

over endogeneity controls or econometric modeling choices.

C.Is from the exact inference reflecting the re-normalization of density due to truncation or,

additional uncertainty due to LASSO selection are slightly wider than C.Is from OLS inference,

but they essentially reproduce them for most of the variables, except for two cases.

The first case is when the signal of a variable is ’weak’, or the correlation between the objective

and covariate is small. Then either the variable is not chosen, or the parameter estimate could

be near to one of the truncation endpoints, giving much wider intervals than OLS. For example,

’Location Words’ was not selected by LASSO for OLS logit case. But it was selected in all the

other cases, confirming the suspicion of instability of selection results due to endogeneity. ’Shared

Room’ showed slightly weak signals in both OLS and IV logit datasets, with [L,U]
E xact

[L,U]OLS = 1.3535

and 1.1557 where the averages for others were about 1.0050.

’Instant Bookable’ turn out to be insignificant or a weak signal in the two level nested logit case,

with ˆln(s j |gt) and p̂ jt .
[L,U]E xact

[L,U]OLS for ’Instant Bookable’ is 1.8376 where the average for others is

also about 1.0050.
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The second case is when the signal is ’too strong’, which is the case for the two level nesting

parameter σ with a Z-score of 99.67. Then the lower endpoint of truncation is set too high

(0.73), and any value above it satisfies the significance level α = 0.05. In this case, R package

selectiveInference produces ’inf’ for the upper bound of the C.Is.

Table C.1: C.Is for OLS Logit, Classical vs. Post Selection Inference

Obs: 62,673 OLS Exact Post LASSO Tail Areas
5% C.Is L U L U L U

Price -0.000852 -0.000697 -0.000853 -0.000697 0.024498 0.024434
Quality Certifications

Superhost Indicator 0.190012 0.236667 0.189803 0.236677 0.023989 0.024951
Verification Accounts 0.040741 0.055015 0.040685 0.055027 0.024116 0.024819

Consumer Review
Ratings Average 0.180669 0.206865 0.180619 0.206938 0.024568 0.024364

Number of Reviews 0.016606 0.017638 0.016606 0.017643 0.024950 0.023989
Negative Reviews -0.041592 -0.034697 -0.041624 -0.034695 0.023977 0.024963

Seller Texts
Positive Adjectives -0.016798 -0.008212 -0.016828 -0.008202 0.024202 0.024739
Location Phrases (Not chosen by the first step LASSO selector)

Accommodation Capacities
Default Guests 0.089439 0.104727 0.089414 0.107401 0.024505 0.024389
Bathrooms 0.037290 0.083423 0.037103 0.083452 0.024192 0.024852

Additional Guests -0.005437 0.013559 -0.023288 0.013201 0.024951 0.024513
Instant Bookable 0.461827 0.499565 0.461756 0.499671 0.024571 0.024361

Amenity and Service
24 Hour Check-In 0.114049 0.149457 0.114005 0.149579 0.024715 0.024218

Hangers 0.127225 0.160103 0.127082 0.160115 0.024023 0.024915
Heating 0.033329 0.104381 0.030885 0.104490 0.024740 0.024649
Shampoo 0.126503 0.158248 0.126501 0.158395 0.024984 0.023957

(Room Type)
Entire Home/Apt -0.102712 -0.064644 -0.102753 -0.064505 0.024756 0.024179
Shared Room 0.157776 0.245300 0.157417 0.245352 0.024074 0.024863

102



Table C.2: C.Is for IV Logit, Classical vs. Post Selection Inference

Obs: 62,673 2SLS Exact Post Selection Tail Areas
5% C.Is L U L U L U

Price (Instrumented) -0.015932 -0.015179 -0.015936 -0.015175 0.023905 0.023868
Quality Certifications

Superhost Indicator 0.315313 0.360276 0.315160 0.360333 0.024226 0.024708
Verification Accounts 0.077299 0.091051 0.077279 0.091096 0.024674 0.024259

Consumer Review
Ratings Average 0.385672 0.412724 0.385632 0.412811 0.024660 0.024273

Number of Reviews 0.015625 0.016612 0.015622 0.016613 0.024174 0.024760
Negative Reviews -0.041871 -0.035289 -0.041886 -0.035274 0.024456 0.024476

Seller Texts
Positive Adjectives -0.063586 -0.054530 -0.063620 -0.054521 0.024171 0.024764
Location Phrases 0.006822 0.013240 0.006799 0.013247 0.024193 0.024744

Accommodation Capacities
Default Guests 0.366664 0.386868 0.366592 0.386891 0.024193 0.024741
Bathrooms 0.695131 0.750209 0.694847 0.750469 0.023839 0.023933

Additional Guests 0.162532 0.182525 0.162514 0.182601 0.024797 0.024139
Instant Bookable 0.314323 0.351105 0.314310 0.351265 0.024917 0.024021

Amenity and Service
24 Hour Check-In 0.159904 0.193794 0.159750 0.193799 0.023976 0.024965

Hangers 0.125852 0.157232 0.125703 0.157394 0.023932 0.023840
Heating 0.171242 0.239436 0.170930 0.239444 0.023969 0.024972
Shampoo 0.213911 0.244531 0.213832 0.244595 0.024407 0.024525

(Room Type)
Entire Home/Apt 1.372216 1.455404 1.372104 1.455681 0.024689 0.024244
Shared Room -0.149253 -0.064283 -0.149284 -0.034280 0.024190 0.024747
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Table C.3: C.Is for Two Level Nested Logit, Classical vs. Post Selection Inference

Obs: 62,673 2SLS Exact Post Selection Tail Areas
5% C.Is L U L U L U

Price (Instrumented) -0.006324 -0.005529 -0.006327 -0.005527 0.024296 0.024636
Nesting Parameters

σ(σ1) 0.735739 0.765255 0.735592 inf 0.023852 0

Quality Certifications
Superhost Indicator 0.043312 0.086441 0.043220 0.086551 0.024708 0.024418
Verification Accounts 0.059870 0.072666 0.059849 0.072705 0.024623 0.024309

Consumer Review
Ratings Average 0.108272 0.135667 0.108169 0.135693 0.024167 0.024784

Number of Reviews 0.004012 0.005035 0.004010 0.005038 0.024532 0.024399
Negative Reviews -0.014863 -0.008658 -0.014875 -0.008641 0.024561 0.024370

Seller Texts
Positive Adjectives -0.039552 -0.031086 -0.039595 -0.031045 0.023859 0.023913
Location Phrases 0.013800 0.019769 0.013779 0.019776 0.024211 0.024723

Accommodation Capacities
Default Guests 0.091769 0.113417 0.091673 0.113422 0.023998 0.024941
Bathrooms 0.284585 0.338250 0.284530 0.338447 0.024765 0.024170

Additional Guests 0.061140 0.080142 0.061081 0.080172 0.024298 0.024635
Instant Bookable -0.005903 0.030520 -0.036878 0.030052 0.024883 0.023929

Amenity and Service
24 Hour Check-In 0.040703 0.072543 0.040690 0.072679 0.024902 0.024036

Hangers 0.019869 0.049325 0.019704 0.049452 0.023948 0.024029
Heating 0.072892 0.136373 0.072865 0.136643 0.024932 0.024039
Shampoo 0.060668 0.089754 0.060639 0.089861 0.024771 0.024164

(Room Type)
Entire Home/Apt 0.684688 0.766577 0.684392 0.766664 0.024180 0.024754
Shared Room -0.115604 -0.036653 -0.115694 -0.024454 0.024643 0.024571
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C.2 First Stage Regression for Prices and Group Shares

Table C.4: First Stage Regression Results

Obs: 62,673 / Obj: p jt ln(s j |gt) ln(s j |hgt) ln(sh|gt)

Lagged Base Price 0.016891*** 0.000001 -0.000007 0.000008
(pjt−1 − CleaningFeejt−1) (0.000805) (0.000009) (0.000014) (0.000013)

Business Starting Date -0.004411*** 0.000053*** 0.000041*** 0.000013*
(0.000445) (0.000005) (0.000007) (0.000007)

Dates Last Scraped -0.011947*** -0.000615*** -0.000632*** 0.000018
(0.002884) (0.000032) (0.000048) (0.000046)

Availabilities
30 Days 0.657721*** 0.002714*** 0.004588*** -0.001874

(0.085911) (0.000947) (0.001439) (0.001380)
60 Days 0.015415 -0.006876*** -0.007233*** 0.000357

(0.087163) (0.000961) (0.001460) (0.001400)
90 Days 0.083191* 0.006025*** 0.004392*** 0.001632**

(0.046007) (0.000507) (0.000771) (0.000739)
365 Days 0.024166*** 0.000299*** -0.000059 0.000358***

(0.003571) (0.000039) (0.000060) (0.000057)
Reviews per Month -8.706140*** 0.401024*** 0.400606*** 0.000418

(0.332901) (0.003670) (0.005575) (0.005347)
Cancellation Policy

Moderate -8.146719*** 0.043266*** 0.035425*** 0.007842
(0.801306) (0.008833) (0.013420) (0.012870)

R Squared 0.43 0.36 0.18 0.01
Wald F Statistic: F(9, 62673) 279.57 1672.05 680.71 21.99
**: 5% significant, ***: 1%, and standard errors in parentheses

To instrument price p jt and group shares, variables reflecting supply side decisions were chosen

as the first stage regressors. Table C.4 reports the coefficients from the first stage regressions (only

for instruments). To test the relevance condition of IVs, I report the F statistics for the following

hypothesis for each objective variable. For price, it would be

p jt = constant + z jtγp + x jtθp + ε jt (C.1)

H0 : γp1 = γp2 = · · · = γp9 = 0

’Lagged Base Price’ means per night rental price minus ’Cleaning Fee’ recorded one year before

for all rental units in the dataset. One important fact is that it indirectly reflects hosts’ decisions
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to impose or remove the ’Cleaning Fee’. Also, there is a big difference in the means (p jt −

(p jt−1 − CleaningFee jt−1) = −$159.1783) with a standard deviation of $455.2833 implying

heavy adjustments in prices and ’Cleaning Fee’ imposing decisions. Such big changes reflect the

tendency of new Airbnb hosts setting high prices at the start of business and constantly decreasing

prices as they face low demand due to heavy competition.

’Business Starting Date’ is the date a host started Airbnb hosting, and ’Dates Last Scraped’ is

the date InsideAirbnb.com last recorded the data on the host. Both are in the format of cumulative

days from a starting point. For example, if a host started hosting on Jan 4, 2016, then ’Business

Starting Date’ is the cumulative days since Jan 1, 1900.

’Availability’ variables represent how many consecutive days a host or a rental unit can provide.

For example, the variable ’60 Days’ ranges from 0 to 60. If it is 40, then a potential guest can

make a reservation request with a maximum length of 40 days. Deciding such lengths of maximum

nights is mostly in the hands of rental hosts, unlike hotels.

’Moderate’ cancellation policy contains a host’s policy on refunds, reservation modifications

or cancellation. There are six more categories including ’Flexible’, ’Strict’, and ’Long Term’.

’Reviews per Month’ is not the cumulative number of reviews divided by months of operation up

to date, but it is the average number of reviews received in a month when data scraping occurred.

It was included to indirectly capture an exogenous variation in supply decisions, given that Airbnb

hosts can set their business days as flexibly as imaginable.

One reason for not using BLP instruments (the isolation measure
∑

j,r x j k ) or, product charac-

teristic IVs is that when the market is large or ’thick’ meaning there are too many close substitutes,

the identifying power of them could be in doubt. In this case, cost shifters or supply side instruments

could provide a better identifying power (Armstrong (2016)).
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C.3 NYC Service Neighborhoods

Table C.5: NYC Airbnb Service Neighborhoods

Bronx Brooklyn Manhattan Queens Staten Island

Allerton Bath Beach Battery Park City Arverne Arden Heights
Baychester Bay Ridge Chelsea Astoria Arrochar
Belmont Bedford-Stuyvesant Chinatown Bay Terrace Bay Terrace
Bronxdale Bensonhurst Civic Center Bayside Bull’s Head
Castle Hill Bergen Beach East Harlem Bayswater Castleton Corners
City Island Boerum Hill East Village Belle Harbor Charleston

Claremont Village Borough Park Financial District Bellerose Chelsea
Clason Point Brighton Beach Flatiron District Breezy Point Clifton
Concourse Brooklyn Heights Gramercy Briarwood Concord

Concourse Village Brownsville Greenwich Village Cambria Heights Dongan Hills
Co-op City Bushwick Harlem College Point Eltingville

Country Club Canarsie Hell’s Kitchen Corona Emerson Hill
East Morrisania Carroll Gardens Inwood Ditmars Steinway Fort Wadsworth
Eastchester Clinton Hill Kips Bay Douglaston Graniteville
Edenwald Cobble Hill Little Italy East Elmhurst Great Kills
Fieldston Columbia St Lower East Side Edgemere Grymes Hill
Fordham Coney Island Marble Hill Elmhurst Howland Hook
Highbridge Crown Heights Midtown Far Rockaway Huguenot
Hunts Point Cypress Hills Morningside Heights Flushing Lighthouse Hill
Kingsbridge Downtown Brooklyn Murray Hill Forest Hills Mariners Harbor
Longwood DUMBO NoHo Fresh Meadows Midland Beach
Melrose Dyker Heights Nolita Glen Oaks New Brighton

Morris Heights East Flatbush Roosevelt Island Glendale New Dorp
Morris Park East New York SoHo Hollis New Dorp Beach
Morrisania Flatbush Stuyvesant Town Hollis Hills New Springville
Mott Haven Flatlands Theater District Holliswood Oakwood
Mount Eden Fort Greene Tribeca Howard Beach Port Richmond
Mount Hope Fort Hamilton Two Bridges Jackson Heights Prince’s Bay

North Riverdale Gerritsen Beach Upper East Side Jamaica Randall Manor
Norwood Gowanus Upper West Side Jamaica Estates Richmondtown
Olinville Gravesend Washington Heights Jamaica Hills Rosebank

Parkchester Greenpoint West Village Kew Gardens Rossville
Pelham Bay Kensington Kew Gardens Hills Shore Acres

Pelham Gardens Manhattan Beach Laurelton Silver Lake
Port Morris Midwood Little Neck South Beach
Riverdale Mill Basin Long Island City St. George

Schuylerville Navy Yard Maspeth Stapleton
Soundview Park Slope Middle Village Todt Hill

Spuyten Duyvil Prospect Heights Neponsit Tompkinsville
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Table C.6: NYC Airbnb Service Neighborhoods (Continued from Table C.5)

Bronx Brooklyn Manhattan Queens Staten Island

Throgs Neck Prospect-Lefferts Gardens Ozone Park Tottenville
Tremont Red Hook Queens Village West Brighton
Unionport Sea Gate Rego Park Westerleigh

University Heights Sheepshead Bay Richmond Hill Willowbrook
Van Nest South Slope Ridgewood Woodrow
Wakefield Sunset Park Rockaway Beach
West Farms Vinegar Hill Rosedale

Westchester Square Williamsburg South Ozone Park
Williamsbridge Windsor Terrace Springfield Gardens
Woodlawn St. Albans

Sunnyside
Whitestone
Woodhaven
Woodside

Subtotals
49 48 32 53 44

108



C.4 Evidence for Review Rating Inflation

Figure C.1: Correlation Across Review Score Categories
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