USINGCHEMO-THERMO-MECHANICALLYCOUPLEDCRYSTALPLASTICITYSIMULATIONS TOINVESTIGATETHEPROCESSOFWHISKERFORMATIONIN ¯ ¡ SNTHINFILMS By AritraChakraborty ADISSERTATION Submittedto MichiganStateUniversity inpartialfumentoftherequirements forthedegreeof ChemicalEngineeringŒDoctorofPhilosophy 2019 ABSTRACT USINGCHEMO-THERMO-MECHANICALLYCOUPLEDCRYSTALPLASTICITYSIMULATIONS TOINVESTIGATETHEPROCESSOFWHISKERFORMATIONIN ¯ ¡ SNTHINFILMS By AritraChakraborty ¯ -Sn(Sn)whiskersgrowingfromtincoatingsinelectronicdeviceshavebeenaseriousconcern toitsreliabilityastheynucleateinunpredictablelocations,cangrowtoalengthofseveralmil- limeters,andhence,areabletoshort-circuitdifferentpartsofanelectronicassembly.Itwas foundthatalloyingSnwithlead(Pb)mitigatedwhiskerformation.However,withthedriveto- wardslead-freeelectronicsfromearly2000,duetothehazardousnatureofPb,reliabilityprob- lemsduetotinwhiskersresurfaced,thereby,rekindlinganinteresttounderstandtheirgov- erningmechanismsinordertoproposecientmitigationstrategies.Withsuchadrive,sig- niantresearchhasbeenpublishedhighlightingdifferentwhiskercharacteristics(morphol- ogy,propensity,andkinetics).However,todate,thereisnotheorythatcouldexplain theformationofthesetousstructures,withsometimesevencontradictingobservations betweendifferentresearchgroups.Despitesomecontradictions,itiswidelyacceptedthattin whiskersarearesultofstress-drivendiffusioninthewithdiffusionoccurringprimarily throughthegrainboundarynetwork.Stressesinthesecanoriginatefromvarioussources, suchas,upondeposition,indentation,thermalexpansionmismatch,andbyformationofvolu- minousCu 6 Sn 5 intermetalliccompoundsattheinterfacebetweenacoppersubstrateandthe Amongthesesources,thermalstraininghasbeenusedtodeliberatelycontrolthestresses indepositedonaSilicon(Si)substrate(havingalowerthermalexpansioncoecientthan ¯ -Sn)toanalyzetheeffectofappliedstressonwhiskerpropensity. Inthepresentworksuchexperimentalconditionsofthermallystraining ¯ -Snismim- ickedusingsimulaitons,andtheresultingmechanicsandkineticsareinvestigatedusingfully coupledchemo-thermo-mechanicalsimulationsinacrystalplasticitycontinuummechanical framework.Thegoaloftheistoidentifycrystallographicandgeometricfactorsthatmodu- latethestress-driventransportofatomsalongthegrainboundarynetwork.Inthatregard, athermo-mechanicalstudyisdonethathighlightsthedominatinginenceofglobal urecomparedtograingeometryandgrain-sizedistribution.Itisalsoestablishedthat whiskernucleationisindeedalocalphenomenonasnolong-rangestressgradientsarefound. Moreinvolvedchemo-thermo-mechanicalsimulationsareperformedtounderstandthekine- maticsandkineticsofatomredistributioninthesethermallystrainedfortwoloadingcon- ditions.Basedonthesesimulationsitisinferredthatplasticrelaxationplaysadominantrole instressevolutioncomparedtodiffusionkinetics.Thedominantroleoflm-textureondeter- miningwhiskernucleationsites(lowcompressivelocationsinthebiaxiallystrainedm)can beattributedtothehighanisotropyofthebody-centeredtetragonal ¯ -Sncrystalstructurethat involvesanelasticanisotropy,athermalanisotropy,andaverycomplexplasticanisotropy.The complexplasticanisotropyarisesduetotheavailabilityofmultipleslipfamilieswithasmall numberofslipsystemsperfamily.PlasticityreadilyhappensinSnevenatroomtemperature, whichcorrespondstoabout0.6 T m ,and,therefore,requirestheestablishmentofanaccurate constitutivedescription. Inthatregard,thesecondhalfofthisworkfocusesonestablishingthereliabilityof InverseIndentationAnalysis( IIA )asameanstoidentifysuchconstitutiveplasticparameters fordifferentcrystalstructures.Inthismethod,theerrorinexperimentalandsimulatedinden- tationresponse(bothinloadŒdisplacement and surfacetopography)isminimizedtoobtain theconstitutivematerialparameters.Thereliabilityofthis IIA methodisestablishedfor face-centeredcubic(fcc)materials,whereitisfoundthatanycrystalorientationisadequately sensitivefortheoptimizationtoidentifytheparameters.Suchisnotthecaseforlesssymmetric hexagonalmaterials,wherethecacyofthe IIA methodreliesheavilyontheselectedcrystal orientation,anditisproposedtoselectcrystalorientationsthataresensitivetoallslipfamilies consideredintheconstitutivedescription.Furthereffortswillapplytheproposed IIA method to ¯ -Sn. ACKNOWLEDGEMENTS Iexpressmydeepestgratitudetomyadvisor,Dr.PhilipEisenlohr,forhisimmensepatience, support,andcontinuousencouragementtostriveforexcellenceduringmygraduateresearch. IthasbeenarealpleasuretoworkandlearnfromDr.Eisenlohr.Hisabilitytoexplaincom- plicatedthingsthroughsimpleexamples;investigatingascientiproblemsystematically;and alwayshavinganopenmindtonewideas,arethingsIwillalwayslookuptofortherestofmy life.Withhisconstantguidanceandsupport(bothprofessionalandpersonal),Iwasableto contributemypartintheofcrystalplasticitymulti-physicsmodeling,aftercomingfroma backgroundinchemicalengineering. IwouldliketothankDr.ThomasBieler,whosewillingnesstohelpmeandanswermynu- merousquestionswithenthusiasm,issomethingIcherishedthoroughlyduringmygraduate study.Myapproachtoresearch,andtheassociatedtechnicalchallenges,havebeensig cantlyedbytheseveraldiscussionswhichIhadwithDr.Bieler.Iwouldalsoliketo thankDr.KalyanmoyDeb,forhisinsightsregardingfundamentalsofoptimizationalgorithms. Hiscourseonoptimizationforengineeringapplicationsintroducesavastarrayofdifferental- gorithmsaswellastheirphysicalandmathematicalbasis,thathelpedmeformulatingmyown optimizationmodule.Ialsowanttothankmyothercommitteemember,Dr.DonaldMorelli,for providingseveralinterestingperspectivesregardingmyresearch.Iextendmysincerethanksto Dr.MartinCrimp,Dr.CarlBoehlert,andalloftheirstudents(theentiremetalsresearchgroup), aswellasthemembersoftheComputationalMaterialsMechanicsresearchgroup,forthestim- ulatingdiscussionsandthevaluablesuggestionsthathelpedmeshapemygraduateresearch work.IalsothankDr.GregSwain,intheDepartmentofChemistry,forallowingmetoperform electro-depositionexperimentsinhislab,andhisstudentKirtiBhardwajforherimmensehelp withtheexperiments. AmassivethankstoDr.PraveenKumarfromIndianInstituteofScience,Bangalore,India, andDr.PiyushJagtap,nowinBrownUniversity,forintroducingmetotheworldoftinwhiskers. iv IthasbeenapleasuretogettoknowPiyush,whohasbeenagreatfriend,andalsofamiliarized mewiththeexperimentalintricaciesrelatedtowhiskers.MysincerethankstoDr.Pratheek ShanthrajandDr.MartinDiehlinMax-Planck-InstitutfürEisenforschung,Düsseldorf,Ger- many,fortheirconstanthelpandguidanceindevelopingthemulti-physicssolverinDAMASK andmakingitopensource.Theyhavebeenimmenselypatientandalwayswillingtohelpme withanyqueriesIhad.IalsothankDr.LikChuanLeeandDr.SeungikBaekfromtheDe- partmentofMechanicalEngineering,foralwaysbeingthereforanyqueriesonmechanicsand numericalmethods.Itisgreattohaveinteractedandlearnedfromthem. Mygraduatestudywouldnothavebeensosmoothwithouttheconstantsupportofallof myfriendsinMichiganStateUniversitywhohavebecomemyfamilyhere,especiallyŠSapDa, Preetam,Sabya,Kanchan,Kirti,Sayli,Tarang,Yashesh,Oishi,Chetan,Indraroop,Chen,Tridip Da,Tias,Atri,Natalia,David,Alex,Eric,Joe,Mariana,Jialin,HongKang(andsurelymanymore). Lastbutnottheleast,Iamgratefulformyparents,friends,andfamilymembersinIndiafor alwayslovingandsupportingme,andencouragingmetochasemyambition. PartsofthisresearchworkwasfundedbyNSFgrantDMR-1411102.Foranyerrorsorinad- equaciesthatmayremaininthiswork,ofcourse,theresponsibilityisentirelymyown. TABLEOFCONTENTS LISTOFTABLES ............................................ ix LISTOFFIGURES ........................................... x CHAPTER1GENERALINTRODUCTION ........................... 1 1.1Motivation ..........................................1 1.2Overview ...........................................5 CHAPTER2LITERATUREREVIEW ............................... 12 2.1Background ..........................................12 2.2Materialpropertiesandanisotropyoftin ........................12 2.3Currentunderstandingoftinwhiskerformation ....................15 2.3.1Whiskergeometryandcrystallography .....................15 2.3.2Tinmplatingandresultingmicrostructure .................18 2.3.3Causesofwhiskers .................................20 2.3.4Whiskermitigationstrategies ...........................22 2.3.5Growthmodesofwhiskers ............................23 2.3.6Modelsofwhiskerformation ...........................26 2.4Modelingframework ....................................33 2.4.1Continuummechanics ...............................34 2.4.2CrystalPlasticityMulti-physicsframework ...................38 2.4.2.1Numericalschemes ...........................41 2.5Summary ...........................................46 CHAPTER3THERMOMECHANICALCRYSTALPLASTICITYMODELINGOFTHER- MALLYSTRAINED ¯ ¡ SNFILMS ......................... 49 3.1Background ..........................................49 3.2Simulationdetails ......................................50 3.2.1Geometrydiscretization,texture,andboundaryconditions ......50 3.2.2Continuummechanicalframework .......................51 3.2.3Constitutivedescription ..............................53 3.3Simulationresults ......................................54 3.3.1Spatialvariabilityofgrainboundaryhydrostaticstress ............55 3.3.2Effectoftexture ................................56 3.3.3Effectofgrainsizedistribution ..........................59 3.3.4Effectofobliquesurfacegrains ..........................60 3.3.5Effectof ¯ -Sncrystalanisotropy .........................62 3.3.6Establishmentoflocalcrystallographiceffect .................62 3.4Discussion ..........................................67 CHAPTER4FULLYCOUPLEDCHEMO-THERMO-MECHANICALMODELINGOF THERMALLYSTRAINED ¯ ¡ SNFILMS ..................... 71 vi 4.1Introduction .........................................71 4.2Modeldevelopment .....................................72 4.2.1Constitutiveequations ...............................73 4.2.2Residualformulation ................................77 4.3Simulationdetails ......................................78 4.3.1Simulationgeometryandboundaryconditions ................78 4.4ResultsandDiscussion ...................................80 4.4.1Kinematicconsequence ..............................81 4.4.2Comparisonofdifferentstresses .........................83 4.4.3Kineticsofthetransport ..............................86 4.5Summary ...........................................88 CHAPTER5INVERSEINDENTATIONANALYSISANDITSAPPLICATIONINFACE- CENTEREDCUBICMATERIALS ......................... 91 5.1Motivation ..........................................91 5.2Background ..........................................92 5.3Introduction .........................................93 5.4Simulationset-up ......................................97 5.4.1Finiteelementdiscretization ...........................97 5.4.2Phenomenologicalmaterialpointmodel ....................97 5.5Globalsensitivityanalysis .................................99 5.6OptimizationMethodology .................................100 5.6.1Universaloptimizationmodule .........................100 5.6.2NelderŒMeadsimplexoptimizationalgorithm .................100 5.6.3Objectivefunctionforoptimization .......................104 5.6.4Determinationofmostsensitiveconstitutiveparameters ..........105 5.7Results .............................................108 5.7.1Iuenceofiteelementmeshsize ......................108 5.7.2Iuenceofobjectivefunction ..........................108 5.7.3Reproducibilityofparameteridenticationfordifferentobjectivefunctions 109 5.7.4Robustnessofparameteridenticationfordifferentindentationorien- tations ........................................113 5.7.5Dual-orientationobjectivefunction .......................115 5.7.6Iuenceofthereferencepoint .........................115 5.7.7Predictionofslipsystemactivity .........................117 5.8Discussion ..........................................119 5.9Summary ...........................................121 CHAPTER6RELIABILITYOFINVERSEINDENTATIONANALYSESINHEXAGONAL MATERIALS ..................................... 122 6.1Background ..........................................122 6.2Introduction .........................................123 6.3CRSSvaluesfromsurfacetopographyandinstrumentedindentation ........125 6.4Virtualexperiments .....................................126 6.4.1Constitutivematerialmodel ...........................127 6.4.2Virtualindentation .................................128 6.5Hybridoptimizationalgorithm ..............................129 6.6Reliabilityofinverseindentationanalysis ........................132 6.6.1SelectingorientationsforperformingtheInverseIndentationAnalysis ..132 6.6.2Results ........................................134 6.7Discussion ..........................................139 6.8Summary ...........................................141 CHAPTER7CONCLUSIONSANDFUTUREWORK ...................... 143 7.1Conclusions ..........................................143 7.2Futurework ..........................................145 BIBLIOGRAPHY ............................................ 148 viii LISTOFTABLES Table2.1:Slipfamiliesin ¯ -Sncrystalstructure[ Leeetal. , 2015 ]. ...............14 Table3.1:Materialpropertiesfordilatationalair,body-centeredtetragonal ¯ -Sn,and isotropicsubstrate. ....................................70 Table4.1:Materialpropertiesfordilatationalair,body-centeredtetragonal ¯ -Sn,and isotropicsubstrate. ....................................90 Table5.1:Resultsofglobalsensitivityanalysisforthefouradjustableparametersus- ingeachofthethreeobjectivefunctions ² LD , ² topo ,and ² combo andtwoval- ues( n Æ 25and n Æ 5)forthestressexponentinthekineticsequationde- scribedinSection 5.4.2 .Tabulatedvaluesrepresent ¹ ¤ asdescribed,with largernumbersindicatingahigherrelativeeoftherespectivepa- rameter.CrystalorientationsarelabeledinaccordancewithFig. 5.4 . ......107 Table5.2:Iuenceoftargetpointinparameterspaceontheoptimizedparameterval- uesusing ² combo astheobjectivefunctionand ² tol =0.005.Thereferenceval- uesforeachoftheparametersareshowninparenthesesandtherespective boundschosenfortheoptimizationareshowninbrackets. ............116 Table6.1:Resultsofthe IIA analysisperformedforsixdifferentcrystalorientationsla- belledinFig. 6.4 fortwodifferentreference input CRSS. ..............138 ix LISTOFFIGURES Figure1.1:ImageshowingdevicefailureduetoshortcircuitbyformationofSn whiskersjoiningtwopinsinanintegratedcircuitchipinaprintedcircuit board. NASAwhiskerweb-site ............................2 Figure1.2:Otherdevicefailuresduetowhiskerformation-left:potentiometerinbrake peddleinCorolla2003;right:cardguidesusedinspaceshuttlestohold printedcircuitboards(2008). NASAwhiskerweb-site ...............3 Figure1.3:NumberofreportedcasesofmedicaldevicefailureduetoSnwhiskerfor- mationfrom2006-2016.[ Alagarsamyetal. , 2018 ] .................4 Figure2.1:Deformationresistanceofbulktin(opensymbols,[ Mohamedetal. , 1973 , Mathewetal. , 2005 , WeertmanandBreen , 1956 , McCabeandFine , 2002 , Adevaetal. , 1995 ])andthin(dots,[ Boettingeretal. , 2005 , Chason etal. , 2014 ])undervariousloadingconditionsandhomologoustempera- tures(shadesofred). ..................................13 Figure2.2:Examplesoftinwhiskers,hillocks,andsmallerprotrusions.Topleftimage byPeterBush(SUNYBuffalo)[ BoguslavskyandBush , 2003 ],bottomleftim- agefromNASAmetalwhiskerphotogallery,centerimagesbyPiyushJagtap andPraveenKumar(IIScBangalore,unpublished),crosssectionscutbyfo- cussedionbeamandcorrespondingsketchesonrightby[ Chasonetal. , 2013 ]. 16 Figure2.3:fiObliquegrainflwithshallowgrainboundariesatthebaseofatypical whisker[ Saroboletal. , 2013 ]. .............................16 Figure2.4:Nucleationandgrowthofawhisker14h(a),14.3h(b),14.6h(c),17h(d), 21h(e)afterdeposition(ontoCusubstrate)[ Jadhavetal. , 2010a ]. ........24 Figure2.5:Growthofahillockwithextensiverotationimaged6h(a),8h(b),12h(c), 18h(d),50h(e)afterdeposition[ Jadhavetal. , 2010a ]. ..............24 Figure2.6:Sequenceofcomplexhillockgrowthwithvaryingcross-sectionandpartial bending6h(a),12h(b),18h(c),32h(d),44h(e),56h(f),76h(g),138h (h)afterdeposition.Insetsshowschematicofshapeevolutionhighlighting rotationoftheoriginalsurface.Arrowspointtograinboundaryfeaturesin (d)thatarevisibleasridgesonsideofthehillockin(h).From[ Jadhavetal. , 2010a ]. ..........................................25 Figure2.7:Conceptualunderstandingofwhiskerandhillockformationmechanisms [ Jadhavetal. , 2010a ]. ..................................27 x Figure2.8:Kinematicsofacontinuumbodyundergoingdeformation[ Diehl , 2016 ]. ...35 Figure2.9:Illustrationoftheintermediateconationsresultingfromthemulti- plicativedecompositionofthedeformationgradient[ Rotersetal. , 2019 ]. Selectingthecrystalorientationasinitialvalueof F p (t Æ 0) Æ O 0 guarantees thatthelatticecoordinatesystemintheplasticgurationalwayscoin- cideswiththelabcoordinatesystem[ Maetal. , 2006 ]. ..............39 Figure2.10:Solutionstrategyforthevariouskinematicquantities,[ Rotersetal. , 2019 ]. ..41 Figure3.1:Discretizedgeometryofatinbetweenarigidisotropicsubstrate(or- ange,partlyshowingvoxelsizeinthecornerofleftimage)andsoftdi- latationalfiairfl(faintblue).Boundaryregionbetweencolumnartingrains (shadesofyellow)ishighlighted(green)andconstitutesthe(sub)volumeof themforwhichhydrostaticstressgradientsareassumedtodriveatom diffusion.Selectedgrainsofthecolumnarshownatleftaretrans- formedintoanobliquesurfacegrain(grayvolumeinthemiddleandright views). ChakrabortyandEisenlohr [ 2018 ] ......................50 Figure3.2:Forcedtemperaturechangeoftinmsonrigidsubstrate(black)andre- sultingcompressivevonMisesstressinthesimulatedfordifferent textures(coloredlines)comparedtomeasuredstressevolutiononaSi substrate(circlesfrom Peietal. , 2017 ).Pointofmaximumloadisreached after20min(atendofheating)andservesasreferenceforallsubsequently reportedstressvalues. ChakrabortyandEisenlohr [ 2018 ] ............55 Figure3.3:Spatialvariabilityofgrainboundary(top)andbulkgrain(bottom)hydro- staticstress p formaximumload(reachedafter20min,seeFig. 3.2 )illus- tratedatthreedifferentdepthsthroughthe(surfacetosubstratefrom lefttoright).Substrateisnotshownwhilepartofthecolumnargrainstruc- tureofthetinisillustratedandcoloredaccordingtothecrystallo- graphicdirectionthatisparalleltothesurfacenormal(closeto h 100]inthis example,seecolorcodeinstandardstereographictriangle). Chakraborty andEisenlohr [ 2018 ] ..................................56 Figure3.4:Distributionsofgrainboundaryhydrostaticstressatthreedifferentdepths withintinofeithergreen,blue,orredtexture( h 100], h 110],and h 001],fromlefttoright).Light,medium,anddarklineshadescorrespond tothelayerdepthsshowninFig. 3.3 left,center,andright,i.e.,atthe surface,middle,andsubstrateinterface.Inversepoleuremapsof normalandonein-planedirectionillustratethethreedifferenttexturesas- signedtootherwiseidenticalgrainstructure. ChakrabortyandEisenlohr [ 2018 ] ...........................................57 xi Figure3.5:Comparisonofgrainboundaryhydrostaticstressdistributionsbetween withanisotropicandisotropicthermalexpansion(solidanddashed) havingeither h 100], h 110],or h 001]texture(green,blue,andredfrom lefttoright).Hydrostaticstressmapsatthesubstrateinterfacerevealno qualitativechangeinthehighdegreeofspatialvariability(leftandright halves,bottomrow). ChakrabortyandEisenlohr [ 2018 ] ..............58 Figure3.6:Variationofgrainareadistribution(left)forthreedifferentstructures (labelledfiafl,fibfl,andficfl)andtheirassociateddistributionsofhydrostatic stressonthegrainboundarynetwork(middle)formshaving h 100] texture(seeinversepoleecoloringofpartlyshowngrainstructure). Spatialmaps(rightfia"tofic")showthelayerdirectlyatopthe(invisible) substrateandillustratetherapidoscillationof p consistentlyobservedfor eachofthethreestructures. ChakrabortyandEisenlohr [ 2018 ] .........59 Figure3.7:Distributionofchangeinhydrostaticstress p acrossthegrainboundary networkduetotransformationofone(fiafltoficfl)ormultiple(fidfl)colum- nargrainsintoobliqueones.Thesegeometricalalterationsaffectonlya smallfractionofthegrainboundarynetwork,asdemonstratedbythenar- rowoveralldistributions(left).Spatialmapsconmthelocalizedinence ofobliquegrainsontherelative(top)andabsolute(bottom)changein p for thelayerclosesttothesubstrate(termedfibottomflinFig. 3.3 )withthe transformed(formerlycolumnar)grainshowninorange. Chakrabortyand Eisenlohr [ 2018 ] .....................................61 Figure3.8:Distributionofhydrostaticstress p acrossthegrainboundarynetwork(and atmaximumload)forthreedifferentglobaltextures,toprow: h 100]; middlerow: h 110];andbottomrow: h 001].Ineachoftheplots,lighter curveslabelled`I'correspondstothe p distributionforasimulationhaving bothmechanicalandthermalanisotropywhichactasareferencedistri- bution.Thisreferencedistributioniscomparedtothe p distributionsob- taineduponmaking ¯ -Snthermallyisotropicbutmechanicallyanisotropic (darkercurves,labelled`II',inleftcolumn);thermallyanisotropicbutelas- ticallyisotropic(darkercurves,labelled`III',inmiddlecolumn);andboth thermallyandelasticallyisotropic(darkercurves,labelled`IV',inrightcol- umn),i.e.,keepingonlyplasticanisotropy. .....................63 Figure3.9:Toprowshowsthereferencetexture(right:outofplane;left:in-plane) andgrainmorphologyforthe h 100]lmusedearlier.Inthesubsequent imagesthetextureandgrainmorphologyofthepartinsidetheblackcircle remainsunchangedwhileoutsidethegrainsarealongwithashuf- ofthetexture.Toptobottomshowsagradualdecreaseintheareaof unchangedpart(radiusoftheblackcircle)fromabout5grainsizes(second row)to ¼ oneadjacentgrainfromthereference(central)grain. .........64 xii Figure3.10:Distancedistributionoftheunchangedpart,approximatedistancesbe- tweenunchangedvoxelsandthecentralvoxeloftheblackcirclesinFig. 3.9 withfia",fib",fic",andfid"representingrows2to5. ................65 Figure3.11:Differencesinhydrostaticstressesalongthegrainboundarynetworkfor thedifferentradiiofunchangedtextureandgrainmorphology(rows2to 5inFig. 3.9 )withthatofthereferencecase(row1inFig. 3.9 )atthelm- substrateinterface(left)andsurface(right).Thisisa2-Dhistogram plotwheretheshadeofgrayrepresentsthevaluemeaningdarkerblackcir- clescorrespondtozerochangeinthestressvalues(y-axis),andthelocation ofthecirclesindicatethedistancefromthecentralgrain'svoxel.Theblack line,ineachcase,indicatestheapproximatedistancebetweenthechanged andunchangedpartinthefromthecentralgrain(radiusoftheblack circleinFig. 3.9 ) .....................................66 Figure4.1:Arepresentativevoxelwithamaterialpointshowingthexdirection (alongx-axis)andgrainboundarynormaldirection, n ,alongy-axis.The grainboundaryxperunitlinecrosssectionalongz-direction,foran atomicdistanceisgivenby( 1/3 J GB ).Subsequently,therateofmono- layeradditionisrepresentedby m whichcorrespondstothedivergenceof thisthroughanotheratomicdistanceof 1/3 . .................77 Figure4.2:Discretizedgeometryofatinbetweenarigidisotropicsubstrate(or- ange,showingvoxelsize)andsoftdilatationalfiairfl(faintgray).Boundaries (lightblue)betweenthecolumnargrains(green)havedifferentchemical (diffusion)propertiesbutsharethermalandmechanicalpropertieswith thebulk.Partofthegeometryalsorevealstheglobal h 100]lmtexture. ...............................................79 Figure4.3:AveragevonMisesstressevolutioninthelmforthecoupledchemo- thermo-mechanicalmodel(blue)tothatofthecaseofwithoutanydiffu- sionalw(red),foratemperaturechangeof20K(left)and40K(right)in 10and20minrespectively(shownbytheblackcurve),followedbyarelax- ationofabout60min.Thedasheddarkgraylinerepresentsthepointof maximumload/straininthesystem,whichisusedasareferencelocation forfurthercomparisoninthestudy. .........................81 Figure4.4:Kinematicconsequenceofatomredistributionisshownbycomparingdis- tributionofdeterminantoftheeigenstraindeformationgradients F i along thegrainboundarynetwork,atmaximumloadforthecoupledchemo- thermo-mechanicalmodel(blue)tothecaseofwithoutanydiffusionalw (red),foratemperaturechangeof20K(left)and40K(right). ..........82 xiii Figure4.5:Spatialvariationofthepressure(toprow)andtheconcentrationchangein numberofatoms(bottomrow),pergrainboundaryarea,forthetwoload- ingconditionsof20K(leftcolumn)and40K(rightcolumn)atthemaxi- mumloadandatthelmŒsubstrateinterface.Asexpected,locationsoflow compression(fired"regions)inthepressureplots(toprow)correspondto locationsofatomgains(fired"regions)intheconcentrationplots(bottom row). ............................................83 Figure4.6:Normal(alongnormaldirection)andshear(intheboundaryplane) tractioncomponents(right)derivedateachpointofthegrainbound- arybasedonthelocalboundaryplanenormal(middle)ofanexemplary (oblique)grainisolatedfromtheentire(left,onlygrainboundarynet- workshown). .......................................84 Figure4.7:Probabilitydistributionplotsforpressure(left),ashearcomponentofthe traction(middle),andthetractioncomponentactingalongthemnor- maldirection(right,foronlytheobliquegrainboundary)alongthegrain boundarynetwork,allcomputedatmaximumstraincondition.Thesolid anddashedlinescorrespondtothedistributionofthesevaluesatthe surfaceandbstrateinterfacerespectively. .................85 Figure4.8:Arealconcentration(pergrainboundarysurfaceinm 2 )distributionwithin thegrainboundarynetworkattherateinterface(dashedcurves) andatthesurface(solidcurves)foraloadof20K(left)and40K(right) atthemaximumstraincondition. ..........................86 Figure4.9:Averageconcentrationevolutionoftheexemplaryobliquegrainboundary (highlightedinFig. 4.6 )forthetwodifferentthermalloadingconditionsof 20Kand40K. ......................................87 Figure5.1:Finiteelementmodelincludingindenterandsinglecrystallinesubstrate. Indentationissimulatedbyprescribingdownwardfollowedbyupwardmo- tionoftherigidindentersurfaceatconstantvelocity.Nodaldisplacements ofsubstratearefullyrestrictedonthebottomandsidefaces. ...........96 Figure5.2:Iterativeoptimizationsetuptoidentifyadjustableparametersofacrystal plasticityconstitutivelaw.Basedonaselectedstrategy,theoptimizerad- juststheparameters,whicharethenfedasinputintotheCPFEsimulation usingthematerialpointmodelDAMASK.Objectivefunctionvalueisob- tainedastheloadŒdisplacement( ² LD )and/orsurfacetopography( ² topo ) deviationfromagivenreference. ...........................101 xiv Figure5.3:Two-dimensionalillustrationofthesequenceofoperationsperformedby theNMsimplexalgorithmasimplementedhere.Bluetrianglemarksthe initialsimplex,redtriangletheonethatresultsfromthespoperation mentionedontheconnectingarrow.Verticesarelabelledbynotationsas describedinthetext.Thestrategytonavigateawayfromaninfeasiblever- texisdisplayedbythegraysimplexinthebottomleft. ..............103 Figure5.4:Crystallographicorientationsoftheindentationaxisconsideredinthe presentstudy. .......................................105 Figure5.5:Iuenceofmeshsizeonthestabilityoftheimplementedinverseanalysis. Thehorizontallinein( a )denotesthetolerancecriterion;verticallinesin ( b )showtheparameterboundsfortheoptimization. ...............109 Figure5.6:ComparisonofloadŒdisplacementandsurfacetopographydeviations(ab- solutevaluesbetween0to Å 10nm)fromreferenceresponsewithparam- etersoptimizedtowithin ² tol Æ 0.005oftherespectiveobjectivefunction (fromlefttoright, ² LD , ² topo ,and ² combo Æ ( ² LD Å ² topo )/2)foranexemplary indentationalongdirectionfif"inFig. 5.4 .ThereferenceloadŒdisplacement curveisshownbyblack. ................................110 Figure5.7:Optimizedparameterset( ¿ 0 , ¿ sat ,and h 0 )usingdifferentobjectivefunc- tions( ² LD , ² topo ,and ² combo ,lefttoright)andtolerancevalues ² tol (topto bottom)resultingfromverandominitialsimplicesforonecrystal- lographicindentationdirection.Thehorizontalgraylinemarksthetarget value( Æ 1),verticallinesspantheboundsofeachparameter.Theverti- calbartotherightofeachurerepresentsthestandarddeviationofthe overallparameterset. ..................................111 Figure5.8:Toprowcorrespondstotheevolutionofobjectivefunctionvalue(forthe bestpointinthesimplex)withnumberoffunctionevaluations(cost)for differentobjectivefunctions(lefttoright: ² LD , ² topo , ² combo )thatdidnot reach ² tol Æ 0.005(horizontalgrayline).Therelativedeviationbetweenre- sultingparametersetsandtargetvaluesisshowninthebottomrow.Termi- nationbeforethemaximumallowablenumberoffunctionevaluations(45) resultedduetothedegeneracyofthesimplexatalocalminimum. .......112 Figure5.9:Bottomrowrepresentsparameterestimationstabilityfordifferentin- dentationorientationsanddifferentessfunctions(lefttoright: ² LD , ² topo , ² combo and ² dual ).Toprowgivescorrespondingobjectivefunc- tionvaluevs.cost,withtolerance ² tol Æ 0.005indicatedbythegrayhorizon- talline.Theanalysiswasperformedfor4differentcrystalorientationsfor ² LD and ² topo ,7differentcrystalorientationsfor ² combo ,and6differentori- entationpairsfor ² dual .Greenandbluecurvesin c indicate ² LD and ² topo comprisingtheblack(exemplary) ² combo evolution. ...............114 xv Figure5.10:Relationbetweenaccuracyofslipsystemresponseandqualityofconsti- tutiveparameteridention.Sevensetsofoptimizedparameters(top), eachfung ² combo · 0.005,sortedbydecreasingaccuracy,andresulting forthesevencrystalorientationsshowninFig. 5.4 .Deviationinaccumu- latedshearbetweensimulationsusingthetarget( ° ref )andtheidenti parameters( ° opt )contrastedtotheaccumulatedshearvaluesobservedin thereferencevaluesimulation(bottom,excludingany ° ref Ç 10 ¡ 4 ). ......118 Figure6.1:Schematicrepresentationoftheinverseindentationanalysis. ..........125 Figure6.2:GeometrygeneratedinMarc-Mentattoperformtheindentationsimula- tions. ...........................................129 Figure6.3:Illustrationofthestochasticparticleswarmoptimizationalgorithmbeing usedinthisstudyfor IIA . ................................130 Figure6.4:Differentcrystalorientationsusedtoperformthesensitivityanalysisin hexagonalcp-Ti. .....................................133 Figure6.5:Sensitivityofdifferentcrystalorientationstodeformationondifferentslip familiesasrepresentedbytheradiusofthecircles. ................135 Figure6.6:ResultingCRSSvaluesforallthesixsinglecrystalindentationsforthetwo differentreferenceCRSS. ................................140 Figure7.1:Proposedstructureforidentifyingwhatconditionsinthetinmmi- crostructurecauseagraintoformawhisker. ....................145 xvi CHAPTER1 GENERALINTRODUCTION 1.1Motivation Whiskersaregenerallyreferredtoasousstructuresthatshowahighaspectratioin theirlength(height)comparedtotheircross-sectionarea(width).Thegrowthoftheselamen- tarymetalstructuresonmetalswasobservedin1945fromCd-electroplatedcondenser thatledtotheshort-circuitfailureoftheelectronicequipment[ Cobb , 1946 ].Threeyearslater thegrowthof(tin)SntsfromSncoatedconnectorswasalsoidentwhichcauseda short-circuitfailureoftelephonetransmissionlinesoftheBellTelephoneCorporation[ Comp- tonetal. , 1951 ].Othermetalwithlowmeltingpoints,suchasZn,Ag,andCu,werealso foundtoexhibitsimilarwhiskeringbehaviors[ Colemanetal. , 1957 , Brenner , 1957 ],howeverSn whiskershavebeenthemostextensivelyresearchedamongthembecauseoftheirsignt useinelectronicdevices. Sncoatingsarefrequentlyappliedonelectroniccomponentsduetotheirfavorableprop- ertiessuchasexcellentsolderability,ductility,electricalconductivity,andcorrosionresistance [ LeeandLee , 1998 ].Thus,thefunctionaldegradationofelectronicdevices,andsometimes theircompletefailureduetotheformationofSnwhiskersisamajorreliabilityconcern.It wasdiscoveredempiricallyin1960sthatadditionoflead(Pb)topureSnpreventedwhisker formation[ Arnold , 1966 ],whichledtothesuccessfulemploymentofwhisker-resistantsolu- tionsforsolderingandcoatingproblemsinelectronicdevices.SincePballoyingmitigatedthe long-standingproblemofwhiskerformationinelectronicdevices,itreducedtheattentionto understandthemechanismscausingsuchwhiskersandtheirgrowthkinetics.However,after thelegislativedirectivetobanPbfromelectronicgoodsduetoitshazardousnature[ Parliament andoftheEuropeanUnion , 2003 ]astrongmovetowardsPb-freeelectronicsresulted,causing arenewedinterestinthis70yearoldproblemofwhiskerformationthatledtoapoolofex- 1 Figure1.1:ImageshowingdevicefailureduetoshortcircuitbyformationofSnwhiskersjoining twopinsinanintegratedcircuitchipinaprintedcircuitboard. NASAwhiskerweb-site perimentalandtheoreticalinvestigationsoverthepastcoupleofdecades.Suchanexponential drivetowardsunderstandingcriticalfactorsgoverningtheformationofSnwhiskersfromelec- troplatedcoatingswasfurthermotivatedbythefactthatpureSnorSn-basedalloyshavebeen consideredasthemostsuitablecandidatestoreplaceeffectivelyandeconomicallyPbSnalloys [ Chenetal. , 2007 , AbtewandSelvaduray , 2000 ]. EventhoughtheelectronicindustrywasoneofthemostaffectedduetoformationofSn whiskerscausingshort-circuitbybridgingtwocomponentsoftheelectronicassembly,shown schematicallyinFig. 1.1 ,othersectorsthathavesufferedduetowhiskersincludeautomobiles, spaceshuttles,nuclearpowerplants,andmedicaldevices.Figure 1.2 showsawhiskerjoining twocomponentsofapotentiometer(left)presentinthebrakepeddleinaToyotaCamry,mak- 2 Figure1.2:Otherdevicefailuresduetowhiskerformation-left:potentiometerinbrakepeddle inCorolla2003;right:cardguidesusedinspaceshuttlestoholdprintedcircuitboards(2008). NASAwhiskerweb-site ingthemrecallalltheir2003models,and(right)thetwocomponentsofcardguidesusedto holdprintedcircuitboardsinspaceshuttlesthatareconnectedbywhisker. Huangetal. [ 2018 ] highlightstheriskofSnwhiskergrowthinnuclearpowerplantsandtheneedformanagements atalllevelstocometogetherintakingstepsinconductingriskassessmentandqualityassur- ancestudies. Amorerecentarticle[ Alagarsamyetal. , 2018 ]focusesontheimportanceofwhiskermitiga- tionstrategiesforproducingreliabledevicesandthehighstakesassociatedwithfailureofsuch devices.FromFig. 1.3 itappearsthatevenin2016therehavebeenconsiderableamountofde- vicefailurecasesthatareattributedtoformationoftinwhiskers,therebyfurthermotivatingthe 3 Figure1.3:NumberofreportedcasesofmedicaldevicefailureduetoSnwhiskerformation from2006-2016.[ Alagarsamyetal. , 2018 ] needtoproperlyunderstandthefactorscausingsuchtaryprotrusions.Furthercasesof failuresduetowhiskerformationiswelldocumentedin NASAwhiskerweb-site . Therefore,withtherekindleddrivetounderstandmechanismscausingwhiskerformation, multitudeofexperimentalobservationsandafewnumericalstudiesoverthepastcoupleof decadeshavebeenperformedinordertoidentifytheirrootcausesandproposeientand reliablemitigationstrategies.However,eventodaytherelacksacomprehensiveunderstanding ofthisphenomena[ Zhangetal. , 2015b ]thatlimitstheconpredictionof(i)theappar- entrandomwhiskerlocations,(ii)theirobservedspatialdensities,(iii)theirwidearrayofmor- phologies,andlastbutnotleast(iv)theirvariableincubationperiodswhichpreventsformula- tionofaconsistentwhiskergrowthmodel.Inthenextsectionabriefoverviewofthecurrent 4 understandingislaidoutfollowedbytheobjectivesofthepresentwork. 1.2Overview Tinwhiskersarebelievedtobefiperfect"singlecrystals[ Fisheretal. , 1954 , LeBretandNor- ton , 2003 ]emanatingfromsinglegrainsonly[ Choietal. , 2003 , GalyonandPalmer , 2005 , Boet- tingeretal. , 2005 , Zhaoetal. , 2006 , Tuetal. , 2007 , Nakadairaetal. , 2008 , Wangetal. , 2014 , Steinetal. , 2015b ],withdiametersapproximately1-2 & m(comparabletothegrainsize)and withatomsbeingaddedfromthebottom[ KoonceandArnold , 1953 ].Theirtypicalgrowth rateshavebeenreportedtobearound1Ås ¡ 1 [ Ellisetal. , 1958 , GlazunovaandKudryavtsev , 1963 , FurutaandHamamura , 1969 ]whichmightvaryinpresenceofexternallyappliedstresses [ Fisheretal. , 1954 ].Startingfromtheirinitialobservationtherehavebeenmultipletheoriesthat areproposedtodescribetheprocessofwhiskerformation,suchasdislocation-basedmecha- nisms[ Eshelby , 1953 , Frank , 1953 , Lindborg , 1976 , LeeandLee , 1998 ],whiskerbeingaresult ofdynamicrecrystallizationandabnormalgraingrowth[ BoguslavskyandBush , 2003 , Vianco andRejent , 2009 , Etienneetal. , 2012 , Viancoetal. , 2015 ],andwhiskersprovingtobeastress- relaxationmeansfortheandgrowingfromgrainshavinginclinedgrainboundaries[ Tuand Li , 2005 , Smetana , 2007 , Galyon , 2011 , Chasonetal. , 2013 , HeandIvey , 2015 ].Amongtheafore- mentionedtheories,thestressrelaxationtheoryisthemostdiscussedandrelevantonedueto theimmenseexperimentalsupport[ Zhangetal. , 2015b ],andhencewouldbethefocusofthis work.Evenwiththisgeneralagreementofstressbeingthecauseofwhiskerformation,there existsseveraldiscrepanciesinliteratureintermsofitsnature(compressive,tensile,orboth), theextentofthegradient,effectofplasticdeformation,roleofsurfaceoxidelayer,andmost importantlytheeffectofcrystalstructureandorientation.Inthisworkwetrytoaddresssome oftheopenquestionsandaimtohighlighttheimpactof ¯ -Sncrystalanisotropyingoverning theoverallprocess. Stressin ¯ -Snlmscanarisefromanumberofcausessuchasindentation[ Yangand Li , 2008 ],bending[ Crandalletal. , 2011 ],thermalexpansionmismatchbetweentheand 5 itssubstrate[ Peietal. , 2017 ],or,themostcommonlyobserved,byformationofvoluminous Cu 6 Sn 5 intermetalliccompoundsattheinterfacebetweenaCusubstrateandtheSn[ Cha- sonetal. , 2013 ].Especiallyforthelattertwostressorigins,agradientofdecreasinghydrostatic stressformsbetweenthemŒsubstrateinterfaceandthelmsurface[ Hektoretal. , 2018 ].Mea- surementsofstressevolution(quantiedfromn-substratecurvaturemeasurements) indicatesthatplasticrelaxationplaysanimportantroleandnotablymodulatesthewhisker propensity[ Chasonetal. , 2008 ].Sinceamongthesestressinthestressesinduced bythermalexpansionmismatchcanbecarefullycontrolledanditseffectcanbequantied throughexperiments,soourfocusinthisworkistoanalyzethestresseldsandthesubse- quentstress-drivendiffusiongeneratedbythermallystrainingthesystem.Moreover,itisour hypothesisthatinadditiontomacroscopicgradientsinducedbytheexternalloadingcondi- tions,thepolycrystallinenatureandtheinherentanisotropyof ¯ -Sncanbeexpectedtofurther modulatethehydrostaticstress(anditsgradients)withintheInconsequence,aspatially varyingchemicalpotentialofSnatomswouldresult,whichthenactsasthedrivingforcefor atomicredistribution. Themassredistributionislikelytobeoccurringsolelyviagrainboundariessinceatthetyp- icaloperatingtemperaturestheself-diffusivityofSnisordersofmagnitudeslowerinthebulk thanonagrainboundary(GB)[ Jagtapetal. , 2017 ]causingustofocusourattentiontostresses generatedalongthegrainboundarynetworkoftheBasedontheoverallunderstanding andcurrentknowledge,thekeyfactscanbesummarizedas: Ł Whiskerformationisastressreliefmechanismthatoccursinwithpredominantly columnargrainstructurebyatomattachmentatsubsurfaceboundariesofobliquesur- facegrainsthatdonotextendthroughthecompletelmthickness.Whethersuchoblique grainsoccurnaturallyduringthedepositionprocess,orwhethertheyaretriggeredby stress,inserviceconditions,isnotyetestablished. Ł Theassociatedatomxisdrivenbyapositivegradientofhydrostaticstressthatlow- 6 ersthechemicalpotentialofatomsonthewhiskergrainboundariesrelativetoother grainboundaries.Typically,stressgradientsdevelopbetweenthebaseandsurfaceof aSninresponsetoanumberofpossiblecauses,forinstance,thegrowthofinter- metalliccompounds(typicallyCu 6 Sn 5 forCusubstrates),thermalexpansionmismatch ofthesubstrate,orlocalindentation.Nevertheless,whiskerformationisalsotriggeredby macroscopicallyhomogeneouscompressionortension[ Crandalletal. , 2011 ]. Ł Sincebulkself-diffusivityofSnisroughlytenordersofmagnitudeslowerthangrain boundary(GB)diffusionattypicaloperatingtemperatures,theatomisexclusively supportedontheGBnetworkandthetransportismodulatedbythegrainboundaryhy- drostaticstress. Ł Incubationperiodsoflargelyvaryingdurationareobserved,dependingonthemechan- icalloadeitheralreadypresentand/ordevelopingwithinthem.Typically,thewhisker nucleationrate,aswellastheindividualwhiskerelongationrate,decreaseovertime,par- ticularlyfordecreasingstress. Ł Thestressevolution(quanfromm-on-substratecurvaturemeasurements) indicatesthatplasticrelaxationplaysanimportantroleandcouldnotablymodulatethe whiskerpropensity. Fromtheincidenceofthedrivetodevelopeffectivewhiskermitigationstrategiesfromearly 2000,therehasbeenawiderangeofexperimentalobservations,however,therehasbeenlim- itedprogressindevelopingaccurateandpracticalmodelscapableofcapturingthiscomplex multi-physicssystem.Someofthemodelingeffortsarehighlightednext,whileamoredetailed reviewonrelevantliteratureispresentedinChapter 2 . Amajorshortcomingoftheexistingmodelsofwhiskergrowth(transportofatomstowards aparticularfiwhiskergrain")isthefactthattheygenerallytendtosidestepthequestionofthe nucleationeventandpostulateaconstant,non-zerolevelofstressbeingmaintainedatthe whiskerrootgrainboundariesoncethenucleationhashappened[ TuandLi , 2005 , Sarobol 7 etal. , 2013 , Peietal. , 2017 ].Aroundthislocationofstress,aradiallysymmetricstress gradientemergeswhenbalancingtheunderlyingsourceofcompressivelmstress,plasticre- laxation,anddiffusivemassredistribution.Subsequentadhoctingofanobservedmstress evolutionwaspossiblewiththestresslevelatthewhiskerrootbeingcomparabletothew stressofSnatambienttemperatures.Suchaantresistanceagainstatominxatthe whiskerrootwasqualitativelyrationalizedbasedonafrictionalcomponentexertedbythegrain boundariesagainstout-of-planewhiskergrainmotion[ Saroboletal. , 2013 ],aresistancethat increaseswithdecreasingobliqueness(inclinationfromthesurfacenormal).Nevertheless,it remainselusivewhyplasticrelaxationofthewhiskergrainwouldnotcontinuouslydecrease itscompressivestress.Furthermore,allcurrentmodels[ TuandLi , 2005 , Buchoveckyetal. , 2009a , Saroboletal. , 2013 , Peietal. , 2017 ]effectivelysimplifythegeometryintoonedimen- sion,partlyconsiderplasticrelaxationmechanismstovariousdegreesofsophistication,and prescribeastressconditionof the whiskergrain,whichcanthenbettedtoreproduce observedwhiskergrowthrates.Yet,noneofthosemodelscanberegardedastruly predictive , sincemanyopenandcriticalaspectsofwhiskerformationarenotexplicitlyaddressedbythem. Firstandforemost,theseventstriggeringparticulargrainstogrowawhiskerareignored andcannotbededucedfromthesimulationresults,posingthequestionabouttherarityofsuch aneventasobservedfromthewhiskerdensitymeasurements.Secondly,thelong-rangestress gradient(extendingabout50 & m,[ Peietal. , 2017 ])thatispredictedtodeveloparoundawhisker grainisculttomeasureandhasyettobeconmedexperimentally,whilesomecontrary observationshavebeenreportedaboutthedominantinnceofverticalstressgradients[ So- biechetal. , 2008 ].Moreover,geometricallymodelsdisregardtheeffectofelasticand plasticanisotropyofSn,andhence,cannotaccountforthemeasuredinoftheglobal textureonwhiskerpropensity.Sincewhiskernucleationisultimatelya localphenomenon [ Buchovecky , 2010 , Sobiechetal. , 2011 ],specicsofthewhiskergrainneighborhoodinterms ofgeometryandcrystalorientationsareverylikelystrongdecisivefactors. Therefore,animportantgoaloftheproposedresearchistoenhancepastmodelingand 8 simulationeffortsbyemployingthree-dimensional,full-eld,andchemomechanicallycou- pledcrystalplasticitysimulationsofstressedtinforwhichactualwhiskernucleationsites areknown.Themajorquestiontobeaddressedwiththissimulationframeworkiswhetheran oblique(surface)grainisnotonlyanecessarybutalsoa sucient conditiontotriggerwhisker formation,i.e.,would any obliquegraininanotherwisecolumnarexperienceconditions thatleadtoperpetualaccretionofatomstothisgrain?Inthisstudy,aresidualstressevolu- tionstudyisperformedforthermallystressedtoanalyzethespatialvariationofsuchstress .Theideaistoseewhethersucientatomscanbetransportedtowhiskergrainrootpro- ducingshearthatishighenoughtobreakthenativeoxidelayerandpushoutthewhisker.From theinitialthermo-mechanicalmodel,theroleofmicrostructureandmaterialanisotropyisalso analyzedtoidentifythecriticalfactor(s)thatsigntlyinencetheatomredistribution. Following,thethermo-mechanicalmodel,afullycoupledchemo-thermo-mechanicalmodel isdevelopedtostudythekinematicconsequenceofsuchatomredistribution,intermsofthe grainboundary(GB)hydrostaticstress,thenormaltraction,andthesheartraction.Moreover, fromsuchspatiallyresolvedfull-simulationsofatomredistributionunderthermomechan- icaldrivingforces,theroleoftheGBnetworkinmodulatingtheatomuxanditsnettransport capacitycanberelatedtotheapparentlyshallowstressgradientthatisofteninferredfromex- perimentalobservations. Additionally,the ¯ -Snplasticityisyettobefullyestablishedinliteratureduetothecomplex tetragonalcrystalstructure.Inthatregard,anecientmethodologyusinginverseanalysisis developedtoidentifycriticalplasticityparameters(suchastheinitialowstress,alsoreferredas criticalresolvedshearstress(CRSS))foreachoftheslipfamiliesinlow-symmetrymaterialsby minimizingtheerrorbetweentheexperimentalandsimulatedsinglecrystalnanoindentation data.Developmentofthisinverseanalysisframework,alongwithitsperformancefordifferent crystalstructureswillalsobehighlightedinthiswork,usingvirtualexperimentaldata. Overallthethesischapterscanbesummarizedas: Ł Chapter 2 containsaliteraturereviewaboutthecurrentunderstandingaboutthewhisker 9 growthmechanisms,existingmodelsandtheirdrawbacks,effectofprocessparameters, andexistenceofcontradictingobservations,therebyfurthermotivatingtheneedoffull- threedimensionalanalysisforsuchproblems. Ł Chapter 3 providesthebackgroundandformulationoffuldthermomechanicalsim- ulationsinacrystalplasticityframeworkalongwithsignicantresultsabouttheeffects ofglobaltexture,graingeometry,grainsizedistribution,andcrystalanisotropyon grainboundaryhydrostaticstresswhichmodulatestheatomtransportinthe Ł Chapter 4 providesdetailsaboutthedevelopmentofthefullycoupledmulti-physics chemo-thermo-mechanicalmodel.Thepreliminaryresultsobtainedfromthecoupled simulationsarediscussedfortwodifferentboundaryconditionsintermsoftheirkinet- ics,averageess,andtheshearcontributions. Ł Chapter 5 highlightstheInverseIndentationAnalysis( IIA )frameworkthatisdeveloped toidentifycriticalplasticityconstitutiveparameters,alongwiththemeanstoperforma highsensitiveparameterselection,anditsperformanceforhighsymmetricface-centered cubicmaterials. Ł Chapter 6 discussesthestrategytousethe IIA frameworkforlowsymmetryhexagonal materials,highlightstheimportanceofcrystalorientationselectionformaterialshaving multipleslipfamilies,andthereliabilityofthe IIA methodforhexagonalmaterials. Ł Chapter 7 providesanoverviewaboutthekeyunderstandinggainedthroughthiswork alongwithsuggestionsaboutthepossiblepathforwardindevelopingecientcrystallog- raphybasedwhiskermitigationstrategies. Apartfromthedevelopmentsinthecurrentoftinwhiskerresearch,withthedevel- opmentofsuchmulti-physicsmodelstostudystress-drivendiffusionwouldopenmanynew doorstoanalyzetransportmechanismsofcondensedmatterincomplex(non-hydrostatic)me- chanicalstresselds,atopicoflong-lastinginterest[ LarchéandCahn , 1973 , Ostrovskyand 10 Bokstein , 2001 , Chakrabortyetal. , 2008 , Brenner , 1956 ].Moreover,understandinghowstresses etheformationofmetallicwirestructureswouldhelpincientlydesigningfunc- tionalnanostructures(suchasnanowires)andnanocomponentassemblies,especially,asthese haveuniqueelectrical,mechanical,optical,andmagneticproperties.Hence,byunderstand- ingmechanismscausingSnwhiskers,suchaknowledgecouldthenbecientlytransferredto fabricateothermetallicnanowiresbysuitablycontrollingthestressescausingthem[ Cuietal. , 2009 , ErdemAlaca , 2009 , Wangetal. , 2008 , Karimetal. , 2006 , Sakaetal. , 2007 , Shimetal. , 2009 , LuandSaka , 2009 ]. 11 CHAPTER2 LITERATUREREVIEW 2.1Background Thischapterexploresrelevantliteratureusedforthecurrentwork,andhasbeendivided intothreesections.Inthesection,theanisotropyof ¯ -Sncrystalstructureisdiscussed alongwithacomparisonbetweenitscreepbehaviorasabulkmaterialtothatofausing existingdatafromliterature.Subsequently,adetailedreviewisdoneontherelevantaspectsof tinwhiskermechanismsalongwithdifferentfactorsmodulatingthekineticsoftheformation ofsuchlamentousstructuresfromms.Finally,areviewabouttheitestraincontinuum mechanicalframeworkthatisusedtoperformthecrystalplasticitymulti-physicssimulations isdiscussedalongwithsomeofthecriticalnumericalchallenges. 2.2Materialpropertiesandanisotropyoftin Tinmeltsat T m Æ 505K(232 ± C),thus,ambienttemperaturecorrespondstoahomologous temperature T / T m Æ 0.6.Thelow-temperatureallotrope ® ŒSn(graytin)isnon-metallicwitha diamondcubiclatticestructure,andisthermodynamicallystableonlybelow13 ± C. ¯ -Sn(white tin)hasabody-centeredtetragonal(bct)crystalstructurewith c / a Æ 0.545,andisgenerally stabletowellbelowroomtemperaturesincethe ¯ to ® transformationiskineticallyhindered. (Inthistextfi ¯ -Snfl,fiSnfl,andfitinflareusedsynonymouslyfor ¯ -Sn.) Thebctstructureof ¯ -Sncauseshighanisotropywithregardtotheelasticmodulus,thermal expansioncient,andplasticbehavior,thusrenderingitsbehaviorhighlysensitivetocrys- talorientation.Forexample,theYoung'smodulusandthermalexpansioncocientof ¯ -Snin h 001 i istwiceasthatin h 100 i direction[ Leeetal. , 2015 ].Plasticdeformationoftinunderambi- entandelevatedtemperaturesisgenerallycomparabletoothermetallicmaterials,i.e.,follows atypicalpower-lawrelationbetween(stationary)deformationrateandapplied(unidirectional) 12 Figure2.1:Deformationresistanceofbulktin(opensymbols,[ Mohamedetal. , 1973 , Mathew etal. , 2005 , WeertmanandBreen , 1956 , McCabeandFine , 2002 , Adevaetal. , 1995 ])andthin (dots,[ Boettingeretal. , 2005 , Chasonetal. , 2014 ])undervariousloadingconditionsand homologoustemperatures(shadesofred). 13 stress(Fig. 2.1 ).However,areviewdoneonplasticdeformationof ¯ -Snby YangandLi [ 2007 ]re- vealstheincompleteunderstandingofitsslipactivity.Thisisduetothedifferencesinselecting governingfactorsforplasticdeformation,suchasresistancetoforestdislocation[ Fujiwaraand Hirokawa , 1987 ]or`effectiveyieldstrength'[ SidhuandChawla , 2008 ].Theorientationdepen- denceofactiveslipsystemswasalsoinvestigatedbyanalyzingidealsheardeformationof ¯ -Sn singlecrystalusinginciplesdensityfunctionaltheory(DFT)[ Kinoshitaetal. , 2012 ]fora perfectcrystal,whichsuggestedthatthemostactiveslipsystemsareon{110}planes.Onthe otherhand,indentationstudiesby Fujiwara [ 1997 ]on ¯ -Snrevealedtheslipactivityof{100} and{110}planestobethemostlikely.Thoughtherehasbeensomeconsensusontheavailable slipsystems(seeTable 2.1 ),theirrelativeactivityhasyettobequantiedbyanyconstitutive model[ Bieleretal. , 2011 ]. Table2.1:Slipfamiliesin ¯ -Sncrystalstructure[ Leeetal. , 2015 ]. ModeSlipfamilyMultiplicity 1{100) h 001]2 2{110) h 001]2 3{100) h 010]2 4{110) h 1 ¯ 11]4 5{110) h 1 ¯ 10]2 6{100) h 011]4 7{001) h 010]2 8{001) h 110]2 9{011) h 0 ¯ 11]4 10{011) h 100]4 11{011) h 1 ¯ 11]8 12{211) h 0 ¯ 11]8 13{211) h ¯ 111]8 Theself-diffusivityoftinexhibitsalargedisparitybetweenbulkandgrainboundary,with thelatterdiffusionientbeingordersofmagnitudehigher[ MeakinandKlokholm , 1960 , CostonandNachtrieb , 1964 , HuangandHuntington , 1974 , LangeandBergner , 1962 ].Con- sequently,masstransportfortypicalin-servicetemperaturesisexclusivelysupportedbythe grainboundarynetwork.Moreover,tinformsatenaciousoxidethateffectivelysuppressessur- 14 facediffusionevenunderrelativelysmallpartialpressuresofoxygen,andwhosepresencehave beenreportedtouencewhiskergrowthintermsofmaintainingcompressivestressesinthe by Tuetal. [ 2007 ]. 2.3Currentunderstandingoftinwhiskerformation Inthissectionrelevantbackgroundregardingwhiskermorphologyandproposedgrowth mechanismsisdiscussed.Someoftheprominentmodelstodescribetheprocessofwhisker formationishighlightedalongwiththeirunderlyinglimitations,therebyrequiringfurthereffort inadvancedcomputationaleffortstopredictwhiskernucleationandmotivatingthepresent work.Despitethelargebodyofresearchbeendedicatedtodeterminingthemechanismsof whiskerformation[ Galyon , 2005 ]foroversevendecades,thewholeprocessisstillnotwell understoodandanacceptedwhiskermitigationtechniqueinplaceofPbadditionisyettobe determined.Althoughitisbynowgenerallyacceptedthatstressisthedrivingforceforwhisker growth[ Galyon , 2005 , Chasonetal. , 2008 , Jadhavetal. , 2010b , Tuetal. , 2007 , Sobiechetal. , 2008 , LeeandLee , 1998 , Smetana , 2007 , ViancoandRejent , 2009 ],thisknowledgealonedoes notexplainthesubsequentstepsleadingtotheiractualformation. 2.3.1Whiskergeometryandcrystallography Figure 2.2 highlightsexemplarywhiskermorphologiesoutofthevastgeometriesandmi- crostructuresreportedintheexpansivebodyofwhiskerinvestigationsoversevendecades(see [ Galyon , 2005 ]foranoverview).Whiskerdiameteriscomparabletothegrainsizeofthem fromwhichitgrowsandremainsconsistentduringgrowthwithsometimessharpbends[ Bu- chovecky , 2010 ].Time-seriesevolutionofgrowingwhiskersconmedthattheatomattach- menthappensatthebaseofthewhiskerandnotatthetoporside,alongwiththefactthat theyoriginatefromasinglegrain[ Jadhavetal. , 2010a , Susanetal. , 2013 ].Focusedionbeam (FIB)sectionsthroughthebaseofwhiskersrevealthatthesewhiskerstypicallyoriginatefrom anon-columnarsub-surfacegrainthatdoesnotextendthroughthemthickness[ Boettinger 15 Figure2.2:Examplesoftinwhiskers,hillocks,andsmallerprotrusions.TopleftimagebyPe- terBush(SUNYBuffalo)[ BoguslavskyandBush , 2003 ],bottomleftimagefromNASAmetal whiskerphotogallery,centerimagesbyPiyushJagtapandPraveenKumar(IIScBangalore,un- published),crosssectionscutbyfocussedionbeamandcorrespondingsketchesonrightby [ Chasonetal. , 2013 ]. Figure2.3:fiObliquegrainflwithshallowgrainboundariesatthebaseofatypicalwhisker [ Saroboletal. , 2013 ]. etal. , 2005 , Smetana , 2007 , Jagtapetal. , 2017 ],andisfrequentlytermedanfiobliquegrainflor fichevrongrainfl(Fig. 2.3 )inliterature(andhenceforthinthistext). Whiskerscancontainmultiplecrystalorientations FortierandKovacevic [ 2012 ](asin Fig. 2.2 thirdcolumn),butwhiskersmostlyconsistofsinglecrystals[ Galyon , 2005 , Susan etal. , 2013 , Tuetal. , 2007 , Osenbachetal. , 2005 , LeBretandNorton , 2003 ]thatareoftentimes straightwithoccasionalabruptchanges(kinks)ormoregradualchangesingrowthdirection (seeFig. 2.2 andsecondcolumn).Extensivetimelapseobservationsweremadetocapture theeffectofthesekinksonthekineticsofwhiskergrowthby Susanetal. [ 2013 ].Inthesame 16 study,twotypesofkinkswereobservedduringthegrowthofawhisker.Inonecase,referred inthetextastypeA,sharpkinksappearedatthebaseofthewhiskerwiththemorphologyand orientationremainingunchangedfortheremainderofthegrowthperiod;whileincaseoftype Bkinks,orientationandmorphologicalchangeswereobservedduringthewhiskergrowthpro- cess.Moreover,thetypeAkinksdidnotuencethegrowthrateofthewhisker,whilewithtype Bkinks,asigntdecreaseorcompletestoppageofwhiskergrowthwasobserved.Sucha caseofintermittentgrowthhavealsobeenreportedinotherstudies[ LeBretandNorton , 2003 , JiangandXian , 2006 ].Thisobservedmorphologicalandkineticschange(increaseanddecrease inwhiskerdiameterasshowninFig. 2.2 secondcolumn)duringtheprocessofwhiskergrowth wasattributedtothedynamicanderraticbehaviorofthegrainboundariesoftheunderlying whiskergrain.Apartfromtheselongandmostlystraightwhiskers,asecondprotrudedmor- phologyisobservedthathasamuchloweraspectratios(Fig. 2.2 lastcolumn)andistermed fihillock".Hillocksarecharacterizedbytheirmuchwiderbasethanthetypicalgrainsizeofthe andinvolvesigntgrainboundarymigration[ Chaudhari , 1974 , Boettingeretal. , 2005 , Osenbachetal. , 2007 ].Oftentimesawhiskerhavebeenobservedwithsuchawiderbaseatthe bottom[ LinandLin , 2008 ],indicatingthatthegrowthmode(whiskerorhillock)canvaryover time. WithcarefulelectronbackscatterdiffractionmeasurementsofTypeAkinkedwhiskersitwas observedthatthesewhiskersaresinglecrystals,inthatthecrystallatticeorientationremains unchangedacrossthekinkswiththekinkanglerepresentingtheanglebetweenthetwogrowth directions[ Susanetal. , 2013 ]. Ithasbeenobservedexperimentallyby Steinetal. [ 2015b ]thattheactivegrowthdirectionof whiskerscorrespondstolowindexdirections, h 001 i , h 101 i ,and h 111 i withoccasionalpresence oflowindex h 201 i and h 102 i directions.Suchafavorabilityofgrowthdirectionstobelow-index directionswerealsoobservedbyothers[ Buchovecky , 2010 ].However,whetherthereexistsany correlationbetweentheunderlyingwhiskergraintothegrowthdirection(mechanism)isstill underactivedebate[ Susanetal. , 2013 , Chasonetal. , 2013 ].Suchalackofanyapparentunique- 17 nessforaplausiblewhiskergrainwasalsoobservedthroughrecentfull-multiphysicssim- ulations[ ChakrabortyandEisenlohr , 2018 ]aswellasdiffractionstudies[ Jagtapetal. , 2017 , Pei etal. , 2016 ].Reportedwhiskerdensitiesrangefrom1000cm ¡ 2 to10000cm ¡ 2 afteronetotwo monthsofaging[ Tu , 1973 , LeeandLee , 1998 ]witharandomdistributionacrossthemsur- face,withtwowhiskersoccasionallyeruptingmuchcloserthanthemeanspacing,thusempha- sizingtheimportanceoflocalneighborhoodofthewhisker.Itisalsoimportanttonoticethat whiskerdensitydependsontheplating(processing)conditionstodeposittheselms,however thereexistscoupleofordersofmagnitudedifferencebetweenthenumberofwhiskernucle- ationspots(whereagrain"pops"outbutdoesnotgrowlong)tothatofthenumberoflong whiskers[ Susanetal. , 2013 ]. 2.3.2Tinmplatingandresultingmicrostructure Themostcommonroutetosynthesizelmsisviaelectrochemicalplating,wherethesubstrate actsastheanodewithaSnbasedelectrolyte,andpureSnactingasanode.Basedontheelec- trodepositionconditionstheresultingpropertiesvarygreatly,whichinturnaffectsthe whiskerpropensity.Thedepositionconditionsgenerallyincludedepositiontime,bathtem- perature,electrolytecomposition,andcurrentdensitywhichsubsequentlythenaffectsm globalpropertiessuchasthickness,grainstructure,andcoatingcompositionaswellaslocal propertiessuchascrystallineorientationdistributionlmtexture).Variousstudieshavebeen performedtocorrelatesucheffects,likeforexampleaccordingto[ JagtapandKumar , 2015 ], changingtheelectrodepositionbathtemperaturefrom30 ± Cto60 ± C(atcurrentdensity of30mAcm ¡ 2 )alteredthelmgrainstructurefromcolumnartomostlyequiaxedandthusre- sultedinareductionofwhiskerpropensityby4ordersofmagnitude.Theeffectofelectrolyte compositionontheresultingtexture(crystallographicdirectionalongthenormal) alongwiththesubsequentwhiskerpropensityhavealsobeenstudied[ LalandMoyer , 2005 , Saroboletal. , 2010 , Sobiechetal. , 2011 ]. Sobiechetal. [ 2011 ]concludedthatcolumnarSnde- positedoncopper(Cu)substrateexhibited{321}bertexture,whileelectrolytecomposition 18 ofSn90Pb10(wt.%)onCuexhibited{110}mtexture. LalandMoyer [ 2005 ]cmedthat with h 220 i werelesswhiskerpronecomparedto h 321 i texture,whichdepended ontheamountoforganicadditivesintheelectrolyte.Basedontheeffectofminoralloyingof CuandPb, Saroboletal. [ 2010 ]generatedadefect-phasediagramtoidentifythosecombina- tionsofcompositionsthatshowedtheleastwhiskerpropensity.Filmtexture(crystallographic directionalongthelmnormal)alsodependedonthesubstratecompositionasstudiedby [ Jagtapetal. , 2018 ]whoreportedadominanttextureof{100}whenitwasdepositedon Cusubstrateorbrass(Cu-35wt%),ascomparedtoa{110}texturewhenthesubstratehad anickel(Ni)underlayer.Awidearrayofliteratureexiststhatcomparedifferentlmproper- tiesonwhiskergrowth(andpropensity)suchasmthickness[ Pinoletal. , 2011 , Jadhavetal. , 2010b , Chasonetal. , 2011 , Chengetal. , 2011 , Jadhavetal. , 2012a , LuandHsieh , 2007 ],grain size[ Jadhavetal. , 2010b , Chasonetal. , 2011 , Jadhavetal. , 2011 , Peietal. , 2012 ],platingcondi- tions[ Pinoletal. , 2011 , Yenetal. , 2011 , Sobiechetal. , 2010 , Vicenzoetal. , 2010 ],microstructure [ Jadhavetal. , 2011 , Boettingeretal. , 2005 , Yuetal. , 2010 , Mathewetal. , 2009 , Okamotoetal. , 2009 ]andcomposition[ Jadhavetal. , 2011 , Boettingeretal. , 2005 , Kaoetal. , 2006 , Moonetal. , 2010 ].However,adirectcomparisontoisolatethegoverningfactorsisultfromsuchstud- iesduetothehugevariabilityintheprocessingconditions.Forexample, Jagtapetal. [ 2018 ] reportedahigherwhiskerpropensityforlmsdepositedonbrass(Cu-35wt%)substratethat had{100}textureascomparedtothosedepositedonpureCuusingstannoussulfateasthe electrolyte,whiledepositedby[ Steinetal. , 2015b ]onanominallysimilarsubstrateand having{001}textureshowedlesserwhiskerpropensityascomparedtothoseonpureCu usingmethanesulfonicacidwithorganicadditivesastheelectrolyte.Thiscomparisonbrings forwardtheexistingcontradictionintinwhiskerliterature,alongwiththesignicantuence oflmtexture,aswellastheneedforasystematicstudyforaccuratelyidentifyingthegoverning mechanismsforwhiskergrowth. 19 2.3.3Causesofwhiskers Toaccuratelyidentifytheunderlyingmechanismsleadingtowhiskerformationishighlycom- plicatedasitinvolvesamultitudeofconcurrentprocesses,suchasinterdiffusion,phasetrans- formation,stressgenerationandrelaxation.Itisageneralconsensusinthetinwhiskerresearch communitythatstressisrequiredtogeneratesuchprotrusions.Inmostobservationswhiskers areobservedundercompressivestressesinthem,howevertherehavebeenreportsofwhisker undertensilestressesaswell[ Crandalletal. , 2011 ]whilesomeobservationshaveemphasized moreontheimportanceofthestressgradientratherthanthesignofthestressitself[ Sobiech etal. , 2008 ].Moreover,eventhoughwhiskersarearesultofstressesinthetheyarenot theonlystressrelaxationmechanism,andothermechanismssuchasplasticity(creep)dictate theamountofstressineachlayer[ ChasonandJadhav , 2016 ].Thiswasdemonstratedby [ Fisheretal. , 1954 ]inthe1950s,whoshowedthatwhiskergrowthratesscalewithexternally applied(compressive)stress.Apartfromexternalloadingimpositionssuchasindentationor bending[ YangandLi , 2008 , Crandalletal. , 2011 ],compressivestresscanalsoarisefrom,for instance,residualstressduringthedepositionprocess,thermalexpansionmismatchofm andsubstrate,electromigration,ordisplacivephasetransformationssuchasthoseresulting fromcorrosionortheformationofvoluminousintermetallics(Cu 6 Sn 5 )inconnectionwithCu substrates[ LeeandLee , 1998 ].Sndepositedonsilicon(Si)substratesdevelopcompres- sivebiaxialstressesuponheatingduetothethermalexpansionmismatchbetweenthelmand thesubstrate[ Peietal. , 2016 ].Itwasalsoobservedthatincreasedcompressivestressesdueto electromigrationcansigntlyincreasethegrowthrateofSnwhiskersfrombyupto 8Ås ¡ 1 [ Liuetal. , 2004 ].Thesuggestedmechanismisthatthedirectionelectronwinduces Snmigrationfromcathodetotheanodesidetherebyleadingtothebuild-upofcompressive stressesandthusformationofSnwhiskersontheanodeside.Amongtheaforementioned causesofstressgeneration,themostcommonlyobservedisduetotheformationofCu 6 Sn 5 resultingfrominterstitialdiffusionofCufromthesubstrateintotheandmostlyattheSn grainboundaries. Sobiechetal. [ 2011 ]observedadirectcorrelationbetweentheamountof 20 Cu 6 Sn 5 formationtothewhiskernucleationpropensity,andproposedthataregular(homoge- nous)Cu 6 Sn 5 morphologyreduceswhiskernucleationpropensity,while Chasonetal. [ 2013 ] foundnosuchcorrelation.Asmentionedearlier,thesestressesprimarilyrelaxedbyplasticity andthediffusivetransportofSnatomsfromaregionofhighcompression(lowtension)toa regionlowcompression(hightension)viathegrainboundaries. TheSnfeaturesthatareobservedtohaveaprominenteffectonwhiskerpropensity areitsthicknessandthegraincharacteristics(size,structure,andorientation)[ WalshandLow , 2016 , Ashworthetal. , 2015 ].Increasingthethicknessincreasesthewhiskerincubationpe- riodtherebyreducingthewhiskerpropensity,sinceathickerlayerismoreeffectiveinrelaxing theimposedstressesascomparedtoathiner[ IllésandHorváth , 2013 ]. Chasonetal. [ 2013 ] establishedthatthemaximumcompressivestressinthe(causedbycontinuousprecipita- tionofCu 6 Sn 5 atthesubstrateinterface)decreaseswithincreasingthicknessbyetching thesameelectrodepositedtinonaCusubstrate,thusindicatingthatthickerareplas- ticallysofterandcanrelaxmoreiently.Withthelowerlevelofnetcompressivestressinthe thewhiskerdensityandrateofwhiskerformationalsodecreased.Othermeasurements ofstressrelaxationkineticsontwosimilardepositedonSisubstrateandhavingdifferent thicknessalsormedthatthickerrelaxstressesmoreeasilyascomparedtothinerlms [ ShinandChason , 2009b ].Inthisstudy,itwasalsofoundthattheplasticdeformationkinetics oftinmswereconsistent(intermsofactivationenergyandstressexponent)with ¯ -Snbulk behaviorandthatthepresenceofnativesurfaceoxidelayerontopimpedesplasticrelaxation. Eventhough[ LeeandLee , 1998 ]foundnosystematiceffectofgrainstructureonwhisker- ring,recentstudieshaveclearlydemonstratedthatwithequiaxedgrainmorphologyis moreientinstressrelaxationascomparedtothosewithcolumnarstructurewhichshow higherwhiskerpropensity[ Sauteretal. , 2010 , Jadhavetal. , 2012b , Sobiechetal. , 2011 ]. Theeffectofgrainorientationmtexture)havealsobeenattributedasoneofthedecisive factorsforwhiskerorhillockpropensitywithsometexturesbeingmorewhiskerproponentthan others[ Jagtapetal. , 2017 , 2018 , Saroboletal. , 2010 ].However,thereisnoconclusivestudythat 21 clearlydemonstratestheeffectoflmtexture. Theroleofthenativetinoxidelayeronwhiskerpropensityisalsonotfullyunderstood.The presenceofnativesurfaceSn-oxidelayerisconceivedbymanyauthorsasanimportantpa- rameterforwhiskerformation[ Tuetal. , 2007 , Kumaretal. , 2008 , LeeandLee , 1998 , TuandLi , 2005 , Chasonetal. , 2008 , Buchoveckyetal. , 2009a , b , Boettingeretal. , 2005 ].Experimental[ Ku- maretal. , 2008 , Chasonetal. , 2008 ]andtheoretical[ Buchoveckyetal. , 2009a , b ]investigations indicatethatwithoutthepresenceofa(passivating)oxidelayerthecompressivestressgener- atedbyCu 6 Sn 5 formationcouldrelaxuniformlyviaCoblecreep[ Coble , 1963 ]alongtheentire layersurface,i.e.Snatomscoulddiffusefromthecolumnargrainboundariestothefreesurface ofSn[ ShinandChason , 2009a ].However, Moonetal. [ 2005 ]concludedthatthesurfaceoxide canonlyhaveaminimaleffectonwhiskergrowthbycomparing(underultrahighvacuum)the Ar + sputter-cleanedpartofanelectrodepositedSn-1.5wt%Culmtothepartstillcontaining thenativeoxidelm.Thisnotionwasalsosupportedbyarecentinvestigationthatobserved whiskerformationonacompressedAui.e.foramaterialwithoutanysurfaceoxide[ Cran- dalletal. , 2012 ].Nevertheless,systematicremovalofthesurfaceoxidefromafractionofthe surfaceinpatchescomprisingmany ¯ -Sngrainsresultedinwhiskerformationexclusively fromthoseclearedareas[ Suetal. , 2011 ].However,verylocaloxideremovalontopofonlya fewgrainsdidnottriggerwhiskerformationfromanyoneofthoseuncoveredgrains,whilea whiskeroriginatedfromaclose-bygrainthatwasstillcoveredbysurfaceoxide[ Jadhavetal. , 2010a ]. 2.3.4Whiskermitigationstrategies WiththemovetowardsPbfreeelectronicsafteritwasaccidentallydiscoveredtoinhibit whiskers[ Arnold , 1966 ],therehavebeensomewhiskermitigationstrategies,butunfortunately noneofthemareaseffectiveasPballoyingwasknowntobe.Thesestrategiestominimize,pre- vent,orinhibitwhiskergrowthinclude(i)alloyingtinwitheitherbismuth(Bi)[ Sandnesetal. , 2007 , Baatedetal. , 2011a , Jadhavetal. , 2012b ]orAg[ Baatedetal. , 2011a ]whichproducesa 22 moreequiaxedgrainstructurethatismoreientinplasticallyrelaxingthegenerated stressesthancolumnarstructureswould,andtherebyreducingthedrivingforceforwhisker formation;(ii)annealing,orfipost-baketreatment",toreducetheresidualstress[ Dittesetal. , 2003 ]andpromoteformingamoremorphologicallyhomogeneouslayerofintermetalliccom- pounds[ Sobiechetal. , 2008 ]ascomparedtotheirgenerallyobservedirregularity;and(iii)us- ingofanickel(Ni)underlayertopreventtheformationofSn-Cuintermetallic[ Dittesetal. , 2003 , Baatedetal. , 2011b ].Thealloyingstrategieshavesomeassociatedchallenges,suchas reductionoffatiguelifeuponaddingBi,whileanundesireddendriticgrowthisoftenassoci- atedwithAgaddition.Theapplicationofconformal(polymericormetallic)coatingsisalso effectiveinreducingthewhiskernucleationdensityandtheirgrowth,butnotnecessarilyelim- inatedevicefailureduetothem,assometimeswhiskershavebeenreportedtopiercethrough thecoatings[ HuntandWickham , 2010 , Mahanetal. , 2014 , Doudricketal. , 2015 ].Thus,these solutionsappeartobemoretemporalandthereforetohaveaconclusivemitigationstrategy, amorecomprehensiveunderstandingaboutwhiskernucleationandgrowthisrequired.Itis ourbelievethatperformingfullhightysimulationswouldhelpindesigningcrys- tallographicbasedmitigationstrategieswhichwouldbemuchmoreeffectivethantheabove mentionedphenomenologicalsolutions. 2.3.5Growthmodesofwhiskers Criticallyexaminationofthegrowthmorphologiesofwhiskers/hillockcanprovidesignt insightsintothemechanismcontrollingtheirgrowth,sincetheirshapeandorientationis closelyrelatedtothewayinwhichatomsareaccreditedintothem.Togetaholdofthecomplete picture,onemustconsiderhowthestressinthegetgenerated,followedbythemech- anismbywhichthisstressgovernsthematerialredistributioninthebytransportingSn atomstothewhiskeringgrain,andnallyhowthistransportedmaterialgetsincorporatedinto thewhisker.Inthissectionthesomeoftheexperimentalobservationsofwhiskersfromthe immensestudiesperformedbyDr.EricChason'sresearchgroupatBrownUniversityiscon- 23 Figure2.4:Nucleationandgrowthofawhisker14h(a),14.3h(b),14.6h(c),17h(d),21h(e) afterdeposition(ontoCusubstrate)[ Jadhavetal. , 2010a ]. Figure2.5:Growthofahillockwithextensiverotationimaged6h(a),8h(b),12h(c),18h(d), 50h(e)afterdeposition[ Jadhavetal. , 2010a ]. sideredinanattempttohighlighttherelationbetweenwhiskergrowthmechanismandtheir subsequentmorphology. Thetimeseriesevolutionofwhiskernucleationandgrowthasobservedby Jadhavetal. [ 2010a ]isshowninFig. 2.4 .Byexaminingthesequencefrom(a)to(c),itisapparentthatthere existsarapidchangeinthesurfacemorphologyaroundthelocationfromwherethewhisker willgrowbylifting(breakingthrough)theoxidelayeronthesurface.Thedetailsaboutthe breakageoftheoxidelayeris,however,notclearfromtheimages.Withtheemergingwhiskers thereexistsnoothersurfacecontaminationorotherdefectseitheronthewhiskergrainorany othergrainsurroundingit.Thusthemicrostructureandgrainmorphologyofthewhiskergrain anditsneighborhoodremainsprettymuchunchangedbothduringwhiskernucleationaswell asduringitsgrowth.Moreover,oncetheoxide-layerwascracked(whiskernucleationstage), thewhiskerswereobservedtogrowinanearlyconstantdirectionandhadashortphaseoffast initialgrowththatquicklydecaystoanearlyuniformrate.Whileinotherexperimentswhiskers wereobservedtogrowintermittentlywithpausesduringtheirgrowthorhadsharpbendsor kinks[ Galyon , 2005 , Ellisetal. , 1958 , Tuetal. , 2007 , Sobiechetal. , 2008 ].Suchvariabilityin 24 Figure2.6:Sequenceofcomplexhillockgrowthwithvaryingcross-sectionandpartialbending 6h(a),12h(b),18h(c),32h(d),44h(e),56h(f),76h(g),138h(h)afterdeposition.Insets showschematicofshapeevolutionhighlightingrotationoftheoriginalsurface.Arrowspoint tograinboundaryfeaturesin(d)thatarevisibleasridgesonsideofthehillockin(h).From [ Jadhavetal. , 2010a ]. whiskergrowthmechanismsandtheirsubsequentmorphologieswereattributedtothediffer- entenvironmentalconditionsby Jadhavetal. [ 2010a ].Forexample,thedifferenceduetothe samplesbeingkeptinairormeasuredinanscanningelectronmicroscope(SEM)instrument withapoorer( È 4 £ 10 ¡ 4 Pa)qualitybasevacuum,andthussuggestingthatthepresenceof oxygen,watervapor,orothergasesmayplayaroleinthenon-uniformgrowthofwhiskers. Figure 2.5 showsa(short)whiskerwhereonesidelookstoremainattachedtothesurface.It appearsthatthegrowthofthiswhiskerprogressesina180°curvedfashionuntilthewhiskertip hitsthesurfaceofaneighboringgrain.Therotationseemstohappenduetoonesidegrowing outwardatamuchfasterratecomparedtotheoppositeside.Sincethereappearstobenomor- phologicalchangesofmaterialabovethesurface,materialextrusionoccursclearlybyaddition ofSnatomsatthebaseofthewhisker. Theprimarydifferencebetweenthegrowthmechanismsleadingtowhiskerorhillockfor- mationisthefactthatwithhillocksthereisbelievedtobelateralgraingrowthattributedby 25 thehighdegreeofgrainboundarymobility,whileincaseofwhiskersthereexistslimitedlateral grainboundarymovementwhichcompelsthewhiskertosimplygrowupward.Thehillock growthsequence,asdepictedinFig. 2.6 ,alsoappearstostartatasinglegrainsimilartoa whiskerinitiation.Thetopsurfaceofthishillockhoweverrotates(similartoFig. 2.5 )asitgrows untilitisorientedapproximatelyperpendiculartothesurface.Duringthisgrowthofthe hillockwhereitpushesupward,itsbasestartstowidensimultaneously(Fig. 2.6 dŒh),indicative oftheextensivelateralgraingrowthbythehillockgrainassuggestedearlier.Asthehillockcon- sumesadjacentgrains,thehorizontalgraingrowthisroughlyconstrainedbythegrainbound- ariesonthesurfacewhichreducesthekineticsoftheprocesswithfurthergrowthofthehillock grain.Thisinterfacebetweenthegrowinghillockgrainandtheneighboringunchanged(sta- tionary)grainsdeterminethehorizontalhillockboundary.Thesequenceofthisgrowthoften proceedsinastep-wisemanner,withanincrementinhorizontalgrain-growthfollowedbyan incrementintheverticalgrowth,therebyleadingtostriationmarks(horizontalsteps)onthe sidesurfacesofthehillock.Thesestriationscanbecomprehendedtocorrespondtothesizeof thebaseofthehillockwhenitwaspushedoutofthesurfacewhichcanbeutilizedtorecreate thehistoryofthehillockmorphology. 2.3.6Modelsofwhiskerformation Jadhavetal. [ 2010a ]proposedaconceptuallong-rangetransportmodelforwhiskergrowth,as illustratedinFig. 2.7 ,basedontheobservedgrowthmorphologiesandthesmallchangesin grainvolumesintheimmediatevicinityofthewhiskersandhillocks.Suchanotionoflong- rangetransporti.e.,accretionofatomstothewhiskergrainfromalargeareahasalsobeen experimentallyobservedby Reinboldetal. [ 2009 ].Foralmthatisundercompressivestress, thechemicalpotentialdifferencebetweentheinclinedandtheverticalgrainboundarieswould supportthemasstransportofatomstowardstheseoblique(inclined)surfacegrains.Suchan effectofgraingeometryinmaintainingthechemicalpotentialwasalsoproposedby Smetana [ 2007 ]whoalsosuggestedafollowinggrainboundaryslidingmotiontoejectthewhiskerup- 26 Figure2.7:Conceptualunderstandingofwhiskerandhillockformationmechanisms[ Jadhav etal. , 2010a ]. ward.Subsequently,verticalgrowth(topleft)resultswhenthemassx(asindicatedbythick arrowsinFig. 2.7 )intothewhiskergrainoccursevenlyinallthegrainboundariesofthewhisker grainandinaspeciwaywhichresultsinaconsistentandparticularcrystaldirection(asin- dicatedbythinarrows).Thereasonforsuchacoordinatedaccretionofatomsisyettobeun- coveredinliteratureasitappearstoencompassahighdegreeofcomplexity.Verticalwhisker growthfromcolumnargrainswouldthenrequireastrongmechanicalbiastomaintainastress gradientandhenceasubsequentchemicaltothewhiskergrainboundaries.Suchame- chanicalbiasforthewhiskergrainisoftenattributedtoplasticity,i.e.,thewhiskergrainun- dergoesahighdegreeofplasticdeformationwhichalsoreducesitsstrainenergydensity[ Sun etal. , 2011 ].Thedislocationslipcausingthisplasticitywouldalsohelpinredistributingvolume toabovethesurface,however,therationalizationofthestrictcrystallographicgrowthasaresult ofconservativedislocationglideisdiculttocomprehend.Curvedwhiskermorphologies(top rightinFig. 2.7 )hasbeenrationalizedbyasizableimbalanceofmassinbetweensomegrain boundaryfacesofthewhiskergrainascomparedtotherest,andthesubsequentlackoffast enoughredistributionoftheaccreditedmassacrossallthegrainboundarysurfaces.Hence,the surface(s)receivingthemostuxgrowsthemost,therebygeneratingthecurvedmorphology. However,suchacurvedwhiskergeometryhasbeenrationalizedbasedonadifferentfrictional 27 resistanceargumentby Saroboletal. [ 2013 ].Asmentionedearlierandshownagaininbottom rowinFig. 2.7 ,thegrowthofhillocksisconceptuallysimilartothatofthewhiskerwiththe distinctivefeaturethatthegrainboundaries(ofthehillockgrain)are(intermittently)moving concurrentlyduringtheverticalgrowthofthe(hillock)grain. Someresearchershave,however,laidmoreemphasisonthestressgradientandnotonthe natureofthestressitselfŒmeaningtheyhaveproposedwhiskergrowtheveninatensilestress state,buthavingasuitablestressgradientsthatallowforcoordinatedtransportofatomstothe fiwhiskergrain".Inthisregard, Sobiechetal. [ 2011 ]emphasizedontheimportanceofboth in-planeandthroughthicknessstressgradientaswell.Accordingtohim,formationofCu 6 Sn 5 alongtheSngrainboundariesattheCu/Sninterfacesinducesin-planecompressivestressin theSnlayer,particularlyinthedepthrangeoftheSncoatingwhereCu 6 Sn 5 formationpro- ceeds.Following,closetothesurfaceoftheSnlayerresultsinin-planetensilestresscondition thatismostpronouncedatthosesurfacelocationswhereformationofCu 6 Sn 5 ismostdistinc- tive,asobservedunderneaththewhisker.Asaconsequence,bothnegativeout-of-planeresid- ualstress-depthgradients,inthedirectionofincreasingdepth,andnegativein-planeresidual stressgradientsinthedirectionofwhiskernucleationsitetowardswhiskersurroundingsoccur. ThisthenprovidesthedrivingforcesforthetransportofSnatomstothewhiskernucleation site. Inthefollowing,someoftheprominenttheoriesregardingmechanismsofwhiskergrowth andtheirshortcomingsarebrihighlighted. Thersttheoriesonwhiskergrowthwasbasedonatomicmovementthroughdislocations, wherein Peach [ 1952 ]proposedthatwhiskersgrowasameanstoreducethedislocationenergy broughtaboutbyscrewdislocationspresentinthecenterofthewhiskergrain. Eshelby [ 1953 ], Frank [ 1953 ]alsotriedtoexplaintheextrudedwhiskergrowthbytransferofatomsfromthe baseofthewhiskerbroughtaboutbyadislocationfromeitheraFrank-Readsourceatthebot- tomorduetothestress-gradientcausedbysurfaceoxidationrespectively.Otherdislocation basedtheoriesofwhiskergrowthsuchasatwo-stagediffusion-dislocationbasedmodelpro- 28 posedby Lindborg [ 1976 ],whereadislocationloopexpandsbyclimbtilltheforceisbalanced followingadislocationglidetoprotrudeaswhiskers. LeeandLee [ 1998 ]alsoproposedgrowth ofwhiskersfromaprismaticloopundertheactionofaPeach-Koehlerforceduetothestress thatispresentintheduetotheformationofintermetalliccompounds(IMCs)atthe substrate-interface.However,suchdislocationbasedtheorieshaveseldombeenaccepted inthewhiskerresearchcommunitybasedonthefactsthatwhiskerswereobservedtogrowfrom thebaseandnotfromthetip KoonceandArnold [ 1953 ];thelackofdislocationsbeingobserved inthewhiskergrain;andthefactthatforsuchtheoriestoholdtruethewhiskergrowthaxis shouldalwaysbeparalleltoBurgersvector(slipdirectionorficlose-packeddirection")whichis notobservedinthetransmissionelectronmicroscopy(TEM)studies LeBretandNorton [ 2003 ]. Sincetinisathighhomologoustemperatureunderambientconditions,itreadilydeforms plasticallywhenloadedandrecrystallizesaround30 ± C.Thesefactsmotivatedwhiskerforma- tiontheoriesbasedonrecrystallization.Earlyproponentsofthefirecrystallizationtheoryfor whiskergrowth"include[ Ellisetal. , 1958 , GlazunovaandKudryavtsev , 1963 , FurutaandHama- mura , 1969 ]whoproposedthatwhiskersgrewasameanstolowerthestrainenergyinthe Ellisetal. [ 1958 ]evenfamouslystatedthatfiwhiskergrowthisbutaspecialcaseofrecrystal- lizationandgrowthinvolvingmasstransportfl.Since ¯ -Snhasalowmeltingpointthatletsit exhibithightemperatureplasticityevenatroomtemperature,thegrainsundergoinglargede- formation(andhencewithhigherstrainenergy)servedtobethenucleationsiteswhichthen ledtowhiskergrowthbyrecrystallization. Kakeshitaetal. [ 1982 ]alsosupportedthenotion thatrecrystallizationisanecessarystepforwhiskerformationbasedonhisexperimentalstud- iesbetweentwotypesofms:onehavinglargewell-polygonizedgrainmorphologywhilethe otherhavingsmall,non-polygonizedgrainstructure.Heattributedthescenariotobea situationinwhichrecrystallizationhadalreadyhappenedtherebyrequiringnofurtherneed togrowwhiskers,whilethelatterbeingthecasewhichdidnotundergorecrystallizationand henceloweredtheenergybywhiskergrowth.Basedonthistheorysmall,sub-micron,grains recrystallizedtoformgrainswithasizeofabout1 & mto2 & m,whichthenbecomeprobable 29 whiskergrains.Following, BoguslavskyandBush [ 2003 ]proposedthespontaneouswhisker formationasanfiabnormalgraingrowth"mechanismwherenewatomsareaddedtothelattice ofthewhiskergrainbytheprocessofrecrystallizationasameanstominimizethestrainen- ergy(storedasdislocations)inthewhiskergrain.Suchanotionisalsoguidedbythefactthat therecrystallizationtemperatureoftinisaround30 ± Candthusenablingroomtemperature recrystallization.Itwasalsoproposedthatthewhiskernucleationsiteswerethoseareasthat underwentsevereplasticdeformationaswellasonesthatarehighlymisorientedwithrespect toitsneighborsfiwhichgivestheneededgrowthmobility"forthenewgrainstogrow[ Vianco andRejent , 2009 , Viancoetal. , 2015 ].Eventhoughtheabovefirecrystallizationbasedtheories" ofwhiskergrowthwerequiteprevalent,therehavebeencertaindirectcontradictionssuchas thefactthatthepropensityofwhiskergrowthislargerinlargecrystallizedgrainsascompared tosmall-graindeposits,[ BoguslavskyandBush , 2003 ]whichisindirectcontradictionwiththe dingsof FurutaandHamamura [ 1969 ].Moreover,basedontheexperimentalobservations by Jadhavetal. [ 2010a ], Peietal. [ 2012 ], Jagtapetal. [ 2017 ]thewhiskergrainwasfoundto existfromthebeginningandnotformedlaterasaresultofrecrystallization.Furthermore, throughouttheliteratureithasbeenvaguelyproposedthatthereexistssomelong-rangedif- fusionofSnatomsintothewhiskergrainandthecrystalorientationofthewhiskergrainandits neighborhoodplaysasigniantroleinthegrowthofthewhiskers.However,withthe ¹ -X-Ray diffraction( ¹ -XRD)studiesby Peietal. [ 2016 ]itwasobservedthattherelacksanypeculiarity inthestressandstraindsatthevicinityofthewhiskergrain.Suchalackofuniquenesswas alsoobservedinthefractionofhigh-anglegrainboundariesbetweenthewhiskergrainandits neighbors.Moreover,thisunderlyingassumptionthatrecrystallizationbyitselfisalong-range masstransportmechanismisinherentlyculttocomprehendasatomswouldonlyundergo slightdisplacements(oflessthaninteratomicdistances)whensweptbythereorientationfront thattransfersthemfromtheirinitiallyoccupiedcrystallatticetothenewone. Theoriginandmagnitudeofmasstransferbylong-rangediffusionwasformulatedby Tu [ 1994 ].Inhismodel,hethegrowthkineticsasaradiallysymmetricdiffusion 30 problemwherethetinatomiscollectedfromthemeasuredaverageareaperwhisker.The stressgradientsupportingthisuxvariedfromtheaverage(compressive)stressatafar awaypointeldoftransport)toazerostressconditionatthecentrallylocatedwhiskergrain. Thezero-stressboundaryconditionforthewhiskergrainwasrationalizedbythepresenceofa fiweakoxidefllayerontopinthat,oncethesurfaceoxideontophasbeenfracturedbytheverti- calexpansionofthewhiskergrainitcouldeasilyaccommodateanynewatomsbeingaddedinto thewhiskergrainboundary,asopposedtoanintactoxidelayerthatwouldprovideamechan- icalconstraint.Themajorshortcomingofthismodelbeing,inordertotheexperimentally observedwhiskergrowthrates,therequiredcompressivestressesintheneedstobemuch highercomparedtothoseobtainedtypicallyinexperiments.Thismodelwaslaterimprovedby Hutchinsonetal. [ 2004 ],wherethecollectioncrosssectionwasincreasedfromamonoatomic layertothefullheight.Morerecently,[ Saroboletal. , 2013 ]redtheassumptionofzero stressboundaryconditionatthewhiskerroot(proposedbyTu)byconsideringadditionalfric- tionalresistancetoatomaccretionontotheboundariesofanobliquewhiskergrain.Inthis tion,accretionofatomsisrestrictedtohappenatthefractionofthewhiskergrain boundaryareathatareconsideredashorizontalfacetswhileaslidingfrictionstressispostu- latedtoactontheverticalpartsofthegrainboundary.Thisfrictionalforceopposestheout- wardmotionofthewhiskerwhosemagnitudedependsontheinclinationofthewhiskergrain boundaries.Thisledtotherationalizationoftheexperimentallyobservedpreferenceforshal- lowwhiskergrains.Furthermore,bymakingtheslidingresistancedependontheslidingveloc- ity,theirproposednon-steadystategrowthmodelcouldpredictsimilarfistickŒslip"growththat isobservedexperimentally[ Eshelby , 1953 , Chasonetal. , 2008 ].Inthismodel,theeffectofgrain geometryandsize,stress,andoxidelayerthicknesswashighlighted,howevertheoriginof afavorablestressgradientwasnotsp Themostadvancedimprovementoftheradiallysymmetriclong-rangetransportdiffusion modelcenteredonapredeterminedwhiskergrainhasbeenreportedby Peietal. [ 2017 ]build- ingonformerworksfromthesamegroupatBrownUniversity[ Buchoveckyetal. , 2009b , Bu- 31 chovecky , 2010 ].Inthisnascentformulation,theconditionsdictatingthestressevolutionin theandthesubsequentdiffusiontothewhiskerbaseemergeasanaturaloutcomefrom thebalancebetweenthestraingeneration,throughCu 6 Sn 5 formationorviathermalexpan- sionmismatch,andthesubsequentstressrelaxation,viarate-dependentplasticityanddiffusive masstransportleadingtowhiskers,inthechemomechanicallycoupledsystem.Diffusivetrans- portisexplicitlytriggeredbyreducingthecompressivestressboundaryconditionatthecentral whiskergraintoapredeterminedvaluewithrespecttoitssurroundings.Thisvalueismostoften attributedtotheyieldstressofSnandtheunderlyingreasoningbeingthiswhiskergrainhasun- dergonemoreplasticitycomparedtoitsneighbors.Inthesesimulations,astresspredevel- opsaroundthewhiskergrainsuchthattheamountofmassdiffusingintothewhiskergrainand thesubsequentwhiskergrowthvelocityisdeterminedbytheappliedstrainrateratherthanthe actualwhiskerspacing.Modelvalidationisdonebycomparingtotheexperimentallyobtained stressprandwhiskergrowthrates,therebyleadingthemtoconcludethatthelocalmi- crostructureisoflessimportance,asthesimpleisotropicmodelwithoutanyhardeningcould capturetheimportantphysicalprocessesdeterminingthewhiskeringandtherate-dependent plasticity.However,suchaninformationofthelocalmicrostructuremightbecrucialiniso- latinggrainsthataremoreprobabletowhiskerformation,andhenceaddressingthecritical questionofwhiskernucleation.Thetwoideaswhichexistregardingagrainformingwhiskers areeitheranoblique(inclined)grainboundarywhichareeitherpreexistingorlaterformedvia lateralgraingrowth[ Chasonetal. , 2014 ]orweakgrainsthatundergoantamountofplas- ticdeformation.Noneofthetwonotionsisconclusiveascontradictingobservationshavebeen reported,anditisourbelievethatthesequestionscouldbeansweredviathree-dimensional fullchemo-thremo-mechanicalsimulationsinacrystalplasticityframeworkwhichtakes intoaccounttheeffectofcrystalanisotropy. 32 2.4Modelingframework Crystalplasticity(CP)materialsolverscanaccommodatetheeffectofcrystalanisotropy andneighborhoodtextureindeterminingtheoverallresponseofthesystemunderapplied boundaryconditions.Inthesamecontext,fifud"simulationscorrespondtothefactthat thesimulationgeometryincorporatesspatialgraininformationobtainedfromexperiments.In thisworktheCPsimulationsareperformedusingtheopensourcefiDüsseldorfAdvancedMa- terialSimulationToolkitfl(DAMASK)[ Eisenlohretal. , 2014 ]developedinMax-Planck-Instiut fürEisenforschungGmbH(MPIE)[ Roters , 2011 , Rotersetal. , 2012 , 2019 ].Variousconstitutive modelsandhomogenizationschemesforcrystalplasticitysimulationsatdifferentlengthscales areavailableintheDAMASKsoftware,whichalsoprovidesaexibleinterfacewithcommercial iteelement(FE)packagessuchasABAQUSandMSC.Marc.Apartfromitbeingthematerial pointsolver(tosolveconstitutiveeldequations),DAMASKalsohasitsownintegratedbound- aryvaluesolverthatusesspectralmethodsthatreducescomputationtimesigantlycom- paredtoite-elementbasedsolvers[ Eisenlohretal. , 2013 , Shanthrajetal. , 2015 , Diehl , 2016 ]. Thecrystalplasticity(CP)modelisbasedonacontinuummechanicalestrainframework thatdescribesthemechanicalbehaviorofthebodyunderconsideration,andalsoneedsthe fimicrostructure"orgraininformation.Materialresponseisthenobtainedbysolvingforglobal equilibriumconditionsalongwithinter-graincompatibility(achievedthroughtheprescribed homogenizationscheme)thatalsoensuresthefuofthelocalcompatibilityandequi- libriumconditionateachdiscretizationpoint,anapproachmuchdifferentfromtheearlyplas- ticitymodelsthatenforceduniformstrain Taylor [ 1938 ]orresolvedshearstress Sachs [ 1929 ] distributionwithineachgrain. Inthissection,abriefbackgroundaboutcontinuummechanicsisprovidedtointro- ducethedifferentcontinuummechanicalexpressionsandtheirrelevance.Subsequently,a briefoverviewisgivenabouttheconceptsofgeneralcrystalplasticitytheoryaswellasthenu- mericalmethodsusedtosolvetherespectivedequations.However,theconstitutivemodels usedtorunthesimulationsarenotdescribedinthissectionandwillbeexplainedseparatelyin 33 subsequentchapterswherethesimulationresultsarediscussed. 2.4.1Continuummechanics Intheofcontinuummechanicsthemechanicalbehaviorofabodyismodeledasahypo- theticalcontinuousmassratherthandiscreteparticles.Basedonthisassumption,anyobject wouldthencompletelythespaceitoccupies.Thishastheadvantagethatthedeformation behaviorofthematerialcouldbedescribedusingcontinuousmathematicalfunctions,while thedisadvantagebeingdiscontinuitiesinthebody,suchascracks,areneglected.Tohavea consistentsolutionforaprobleminacontinuummechanicalframework,thefollowingsetsof equationshastobesupplied: Ł deformationcompatibility Ł mechanicalequilibriumorbalanceofforces Ł constitutivedescription Incontinuummechanicsthekinematicsofdeformationisdescribedthroughvariousstages inthedeformationhistoryofthebodyorconations.Eventhoughthebodyoccupiesdif- ferentgurations,therestillexistscontinuityduringthedeformationsuchas: Ł Thematerialpointsformingaclosedcurveatanyinstantwillalwaysformaclosedcurve atanysubsequenttime. Ł Thematerialpointsformingaclosedsurfaceatanyinstantwillalwaysformaclosedsur- faceatanysubsequenttimeandthematterwithintheclosedsurfacewillalwaysremain within. Inthissense,thereference(undeformedortime-independent)conationoccupyinga region B 0 inspace(withitenumberofmaterialpoints)undercertain(time-dependent) loadingwouldattainthecurrent(deformedortime-dependent)curationoccupyingare- gion B t inspace.Thelocationofthematerialpointsing B 0 isgivenby x 2 B 0 ,andthatin 34 Figure2.8:Kinematicsofacontinuumbodyundergoingdeformation[ Diehl , 2016 ]. B t isgivenby y 2 B t ,asillustratedinFig. 2.8 .Eachconationcanhaveitsownbasisvec- tors,howeverusingageneralorthonormalCartesiancoordinatesystemforbothconurations avoidsthecomplexityofrepresentingvectorswithdifferentbasisfordifferentconations. Ingeneralthereexiststwowaystodescribethemotionofabody,i.e.,eitherasLagrangian(ma- terial)descriptionorEulerian(spatial)description.IntheLagrangiandescriptionthereference conationisalsotheundeformedconurationandthepositionandphysicalproperties oftheparticlesaredescribedintermsofthereferenceconurationcoordinatesandtime.It canbethoughtasifanobserverstandingintheframeofreferenceof B 0 observedhowthe bodychangesovertimetoreach B t .Since,thechoiceofreferenceurationisarbitraryin general,theresultsobtainedinLagrangiandescriptionareindependentofthechoiceofinitial timeandreferencecuration.WhileEulerianorspatialdescriptionfocusesonthecurrent conationandisakintoobservingwhathappenstoapointinspace.Inthiswork,like 35 inmostcasesofsolidmechanics,themotionisdescribedusingtheLagrangiandescription, whereadeformationmap  ( x ): x 2 B 0 ! y 2 B t isusedtomappoints x inthereferencecon- urationtopoints y inthecurrentconuration.Thedisplacement u ofamaterialpointata deformationstate t )isthengivenby: u ( x ) Æ Â ( x ) ¡ x (2.1) Alinesegmentd x inaninitesimalneighborhoodofamaterialpoint x inthereference conationisthenpushedforwardintothecurrentcurationby: y Å d y Æ y Å @ y @ x ¢ d x Å O (d x 2 ).(2.2) Neglectingtermsofhigherorder,d y canbeexpressedas: d y Æ @ y @ x ¢ d x Æ Grad  | {z } Æ : F ( x ) ¢ d x , (2.3) where F ( x )isthesecondordertensorcalledthedeformationgradient. F ( x )mapsthenites- imallinesegmentd x inthereferencegurationtod y inthecurrentconation Roters etal. [ 2019 ].AsillustratedinFig. 2.8 thedeformationgradienttensor F (theargument x orthe spatialdependenceisassumedimplicitly)isa2-pointtensor,meaningithasonebasisinthe referenceurationandtheotheroneinthecurrentconuration.Since F isamapping functionitsinverse, F ¡ 1 ,existsaswellwhichmapselementsfromcurrentconurationback tothereferenceconation.Thecommonlyobservedtermsfipushforward"andfipullback" onaquantityreferstotheoperationby F or F ¡ 1 onthatquantitytoeithermapintocurrentcon- uration(fromreferenceconuration)orbackintoreferencecuration(fromcurrent conation)respectively. Thematerialvelocitydisdenedas: d v Æ d u ( x ) d t Æ u , Æ Â , (2.4) 36 where u ( x )isthematerialdisplacementwhichvarieswithtime(deformation).Sincethe referenceconurationisassumedtobetime-independent,i.e.,d x /d t Æ 0,therelation u Æ Â holds.Thevelocitygradient L isthenthespatialgradientofthevelocity @ v / @ y andcan alsobeexpressedas: L Æ FF ¡ 1 (2.5) Thedeformationgradient,ingeneral,isassociatedwitharotationandastretch,andsince itisinvertibleitcanalsobedecomposeduniquelybyafipolardecomposition": F Æ VR Æ RU , (2.6) where R istherotationtensorand U and V representstherightandleftstretchtensorsrespec- tively.Dependingontheurationsvariousstrainandstressmeasuresexist,forexample ifwewanttoexpressthestraincompletelyinreferenceconurationthenitisexpressedas G REEN ŒL AGRANGE straintensoredas( F T F ¡ I )/2;whileastrainmeasurecompletelyin currentconationistheE ULER ŒA LMANSI straintensoras( I ¡ F ¡ T F ¡ 1 )/2.Thus,the pushforwardforG REEN ŒL AGRANGE straintensoristheE ULER ŒA LMANSI straintensor. Similartotheabovementionedstrainmeasures,thestressmeasuresofthebodyundergo- ingdeformationcanbeexpressedindifferentconations.TheC AUCHY stresstensor ¾ is expressedcompletelyinthecurrent(ordeformed)gurationsinceitisastheforce expressedinthecurrentgurationactingonanitesimalareaalsointhecurrentg- urationandhenceisasymmetrictensor.Similarly,thesecondP IOLA ŒK IRCHHOFF stress-tensor isasymmetrictensorrepresentedcompletelyinthereference(stress-free)conation.In staticequilibriumwithoutanybodyforcestheequilibriumcondition: ¾ ij , j Æ 0,(2.7) whichisconvenientlywrittenintheitestraintheoryas, 0 Æ Div P Ær¢ P (2.8) 37 where P representsthenon-symmetricP IOLA ŒK IRCHHOFF stresstensor. Withthisbriefcontinuummechanicaloverview,thecrystalplasticityframeworkwherethe simulationsareperformedinthisworkisexplainednext. 2.4.2CrystalPlasticityMulti-physicsframework Crystalplasticity(CP)modelsarewell-establishedlawsthattakeintoaccounttheaffectof materialanisotropyinresponsetoanexternalloadandhenceisapowerfultoolincompu- tationalmaterialssciencetoinvestigatestructureŒpropertyrelationships.TheCPmodeling techniquehasbeensuccessfullyimplementedtostudyawiderangeofmicromechanicalphe- nomenarangingfromevolutionofslipresistanceandstrainhardeninginsinglecrystalstome- chanicalresponseinapolycrystallineaggregate[ Rotersetal. , 2010b , 2019 ].Eventhoughthe formulationofthismodelingframeworkoriginatedtoinvestigatetheplasticdeformationof amaterialbycrystallographicslipondiscreteslipsystems,withincreasingvariabilityinthe environmentalconditionsofapplicationsleadingtodrasticmicrostructuralchangesinthesys- tem(suchasphasetransformation,cracknucleation,hightemperaturedeformation),thisCP frameworkhasrecentlybeenextendedtoincludethecomplexcouplingofotherconstitutive equations(damage,reaction-diffusion,thermal,electromigration)toformulateamore unandgeneralmulti-physicstoolinordertohaveabetterrepresentationofthephysical systemandhencehigheraccuracyinprediction[ Shanthrajetal. , 2016 , 2019 ].Inthiswork,the opensourcecrystal-plasticitymultiphysicsframeworkDAMASKwasmoditoincludethe stress-drivendiffusionkineticsinordertosimulatethemasstransportintin.Integration ofthenewconstitutivelawalongwiththesubsequentnumericalstrategyintotheexistingmod- elingframeworkisrelativelystraightforwardduetothemodularstructureofDAMASK[ Roters etal. , 2019 ],andsomeofitsrelevantfeatureswillbediscussedinthesubsequentparagraphsin thecontextofsolvingcoupleddequationsinthisframework. InDAMASK,theconstitutiveequationsareprescribedinthesinglecrystallevelwhichare thenhomogenizedbyappropriatehomogenizationschemestogettheoverallsystemresponse. 38 Figure2.9:Illustrationoftheintermediateconurationsresultingfromthemultiplicativede- compositionofthedeformationgradient[ Rotersetal. , 2019 ].Selectingthecrystalorientation asinitialvalueof F p (t Æ 0) Æ O 0 guaranteesthatthelatticecoordinatesystemintheplasticcon- urationalwayscoincideswiththelabcoordinatesystem[ Maetal. , 2006 ]. Inthisworkthefull-simulationsareperformedwhereeachgraininthepolycrystallineag- gregateisspatiallyresolvedintoalargenumberofmaterialpoints/voxelsandtheeldequa- tionsaresolvedateachofthesematerialpointshencenohomogenizationschemeisneeded. Moreover,asmentionedearlier,thecurrentworkincludestheeffectofstress-drivenmasstrans- porthenceastrongcouplednumericalframeworkisrequiredtointimatelyincludethekine- maticconsequencesofsuchtransportŒbothataconstitutive(governingtransportequation) andatthecontinuum(subsequentkinematicsduetotransport)levels. Inthiscontext,thenumericalframeworkinDAMASKisbasedontheedeformation theorywherethedeformationgradient, F ,governingthemotionofthebodyismultiplicatively decomposedintoalatticepreservingplasticdeformationgradient, F p ,followedbythein- termediatelatticedistortingorfieigenstrain"deformationgradient, F i ,andllytheelastic 39 deformationgradient, F e asillustratedinFig. 2.9 . F Æ F e F i F p (2.9) Theplasticdeformationgradient F p mapstheundeformed(initial)conationintoavol- umeconservingplasticallydeformedguration,while F i mapsthesubsequentvolumenon- conservingeigenstrainconationthataccommodatesstress-freestrains(fieigenstrains") suchasthermalstrainsorchemicalstrains.Thedeformedconationmapping(that involvesbothrotationandstretch)isobtainedbytheelasticdeformationgradient, F e .More- over,toavoidunnecessaryrotationsofthecontinuumquantitiesduetothedifferenceinrefer- enceframesoftheindividualgrainsandtheglobal(lab)frame,thedeformationmap( F p ) isinitializedwiththeorientationmatrixcorrespondingtotheinitialcrystalorientation O 0 ,i.e. F p ( t Æ 0) Æ F e T (t Æ 0) Æ O 0 suchthattheplasticcurationofeachcrystalcorrespondstoa commoncubeorientation[ Maetal. , 2006 ].Followingthis,thecurrentorientationmatrix( O ) canthenbecalculatedfrom F e throughthepolardecomposition[ Rotersetal. , 2019 ]. ThesecondP IOLA ŒK IRCHHOFF stresstensor S dependsontheG REEN ŒL AGRANGE strainten- soras: S Æ C ¢ E e ,(2.10) where C isthestiffnesstensor.Thestress S ,alongwiththemicrostructuralstate(givenbythe correspondingconstitutiveequation(s)),drivestheplasticvelocitygradient L p aswellasthe eigenstrainvelocitygradient L i (summationofboththethermalandchemicalvelocitygradi- ents).Thevelocitygradientsaregivenby: L Æ FF ¡ 1 (2.11) ThisinterdependencyamongthevariouskinematicquantitiesisillustratedinFig. 2.10 whichalsoshowstheself-consistentnumericalstrategy.Inthat,theplasticvelocitygradi- ent( L p )issolvedbyapredictor-correctorschemeunderanassumed state andtheeigenstrain (intermediate)velocitygradient L i .Withaobtained L p andthepreviously state ,thefol- lowingeigenstrainvelocitygradient(s)aresolvedsequentially(dependingontheproblemthere 40 Figure2.10:Solutionstrategyforthevariouskinematicquantities,[ Rotersetal. , 2019 ]. mightbemultiplesourcesof L i ).Finally,acheckisperformedtoseewhethertheobtainedve- locitygradientsisconsistentwiththeassumed state ornot[ Shanthrajetal. , 2019 , Rotersetal. , 2019 ].Ifthedifferencebetweentheassumedandthepredicted state isbelowtheprescribed tolerance,thesolutionisconsideredtobeconvergedotherwisethenextiterationstarts.The numericalstrategiestosolvethedifferentialequationsaswellasthesubsequentintegrationis mentionedbriinthesubsequentsection. 2.4.2.1Numericalschemes Thesolutionoftheboundaryvalueproblem,i.e.,staticequilibriumisobtainednumerically usingoneofthemanyexistingtechniques.Themostcommonmethodsofsolvingsuchstatic 41 equilibriumproblemsiseithervianiteelementmethod(FEM,)[ Courant , 1943 , Zienkiewicz , 1967 , Bathe , 2014 , Zienkiewiczetal. , 2013 ]orthroughspectralmethodsusingfastF OURIER transform(FFT)introducedby[ MoulinecandSuquet , 1994 ]andlaterby[ Leben- sohn , 2001 , Kaßbohmetal. , 2006 , Spahnetal. , 2014 , Eisenlohretal. , 2013 , Willot , 2015 , DeGeus etal. , 2017 ].ThecriticaldifferencebetweenFEMandFFTmethodbeing,inFEMthesolution oftheequationisapproximatedbylocalshapefunctions(lower-orderpolynomials)that arenon-zeroinaitedomain(fielement")andarethensummedovertogetthetotalapprox- imate(weakform)solution.WhilethespectralFFTmethodsapproximatethewholedomain byonelargesetofbasisfunctions[ Shanthrajetal. , 2019 ].Whenthesegloballynon-zeroansatz functions(exceptattheirroots)aretrigonometricthemethodusesthefastF OURIER transform tosolveforthem,andhencereferredasFFT.TheFEMmethodhasbeenthemostpopularin solvingmicromechanicalequationsduetothepossibilityofinvestigatingsystemshaving complexgeometries,whilethespectralFFTbasedmethodsinherentlyinvestigatesaperiodic system. Asmentionedearlier,theopensourcemulti-eldmaterialpointsolver,DAMASK,usedin thisstudyhasitsinherentspectralFFTboundaryvaluesolverbutcouldalsobeusedinconjunc- tionwithcommerciallyavailableFEMsolversasausermaterialsubroutinesuchasMSC-Marc andABAQUS.InChapter 5 ,theuseofthematerialsolverDAMASKalongwithcommercialFEM solverMSC-Marcisdiscussedwithrespecttonanoindentationsimulations,whilethecoupled thinmicromechanicalsimulationsinChapters 3 and 4 areperformedusingtheFFTbased spectralsolverofDAMASK. Thekeythingforanymaterialsolveristoprovideameasureofstress( S , P ,or ¾ depend- ingonthesolver)foraninputmeasureofdeformationgradient, F .Thefollowingoutlinesthe stepsundertakenbythematerialsolverinDAMASKtoevaluateaconsistentvalueofstressfor agivenvalueof F ateachmaterialpoint.Asmentionedearlier,thepartitioningoftheglobal F receivedfromtheboundaryvaluesolverinto F ateachmaterialpointandthesubse- quenthomogenizationofthestressateachmaterialpointintoaglobalstressishandled 42 bythefipartitioningandhomogenization"moduleinDAMASKbasedontheprovidedscheme, andisexcludedinthissection(see[ Rotersetal. , 2019 ]forfurtherdetails).Thus,ateachtime stepandwithaknown F ateachmaterialpointthefollowingsystemofequationsissolvedina self-consistentway: F Æ F e F i F p (2.12a) F Æ LF ,forboththeinelasticdeformationgradients,(2.12b) L Æ X n f n ( S ,...),forboththeinelasticvelocitygradients,(2.12c) wherethesecondP IOLA ŒK IRCHHOFF stress,whichistheworkconjugateoftheG REEN Œ L AGRANGE straintensor,isobtainedfromtheelasticconstitutiveequation, S Æ f ( E e ,... ) .These equationsaresolvedinanimplicitmannerwiththevelocitygradientintegralsbeingapproxi- matedas(withamaterialstate)foratimeinterval ¢ t : F p ( t ) ¡ F p ( t 0 ) ¢ t Æ L p ( t ) F p ( t )and(2.13a) F i ( t ) ¡ F i ( t 0 ) ¢ t Æ L i ( t ) F i ( t ),(2.13b) whichresultsintheinelasticdeformationgradientsattheendofthetimeincrementbeing F p ( t ) Æ ¡ I ¡ ¢ t L p ( t ) ¢ ¡ 1 F p ( t 0 )and(2.14a) F i ( t ) Æ ( I ¡ ¢ t L i ( t ) ) ¡ 1 F i ( t 0 ),(2.14b) fromwhich F e canbecalculatedusingEq.( 2.12a ).Theunknownsfortheabovesystemofcou- plednon-linearalgebraicequations, F e , F i ,and F p ,whosesolutionwouldthenprovideastress statesatisfyingthemultiplicativedecompositionaswellasfungtheconstitutivelawsfor therespectivevelocitygradients,representedhereasgenericfunctionsEq.( 2.12c ). Since,thedifferentelds(givenbyeither L i forthermalandchemicalstressesor L p for mechanicalstresses)arecompletelycoupled,theirsolutionisobtainedusingatwo-level 43 predictorŒcorrectorscheme(asshowninFig. 2.10 )bymyminimizingthefollowingresiduals: R p ¡ f L p , e L i ¢ Æ f L p ¡ L p ¡ M p ¡ f L p , e L i ¢¢ and(2.15a) R i ¡ f L p , e L i ¢ Æ e L i ¡ L i ¡ M i ¡ f L p , e L i ¢¢ ,(2.15b) with f L p and e L i denotingthepredictedvaluesof L p and L i .TheseresidualsEqs.( 2.15a ) and( 2.15b )arethenminimizedusingaN EWTON ŒR APHSON schemewithavariable steplengthuntilaconsistentsolutionisobtained,withinastaggerediterativeloop[ Shanthraj etal. , 2019 , Rotersetal. , 2019 ].ThesolutionalgorithmisoutlinedinAlgorithm 1 .Convergence oftheN EWTON ŒR APHSON schemeisachievedwhentheresidualdropsbelowagiventolerance ² p Æ max ¡ ² a , ² r ¯ ¯ ¯ ¯ L p ¯ ¯ ¯ ¯ 2 , ² r ¯ ¯ ¯ ¯ f L p ¯ ¯ ¯ ¯ 2 ¢ (2.16a) ² i Æ max ¡ ² a , ² r jj L i jj 2 , ² r ¯ ¯ ¯ ¯ e L i ¯ ¯ ¯ ¯ 2 ¢ (2.16b) wherethevaluesofabsoluteandrelativeerrors( ² a and ² r )areprescribed. Theadvantageofformulatingtheproblemasaresidualminimizationistheuseofopen sourcesolverssuchasPETSc(PortableExtensibleToolkitforScienComputation),devel- opedby[ Balayetal. , 2013 ]andPETScteaminArgonneNationalLab,tothesolution. PETSchasvariousnumericalalgorithmstosolveasystemoflinearornon-linearequationsin themostientwayandisafundamentalpackagefortheusageofDAMASK.Thespatialgra- dientsofthemechanicalquantitiesarecalculatedusingtheforward-backwarditedif- ferencevariantintroducedby Willot [ 2015 ], Schneideretal. [ 2015 ]thatreducesthefrequently observeductuationsintheresults(alsoknownasthefiGibbsphenomenonfl).Thegradientand divergencecalculationsforthechemicalquantitiesareperformedinrealspace.Themi- crostructuralstateintegrationisdoneusinganimplicitxedpointiterativescheme[ Kalidindi etal. , 1992 ].Forthespectralsolverusedinthiswork,thestaticequilibrium(i.e.theboundary valueproblem)equationissolvedusingthedirectvariationalformulationoriginallyintroduced by Eisenlohretal. [ 2013 ]andlaterby Shanthrajetal. [ 2015 ]usingthefibasicflscheme whichisacollocationbasedapproachatthegridpoints[ Eisenlohretal. , 2013 ]. 44 Algorithm1: Self-consistentintegrationofkinematicquantitiesataxedinternalmate- rialstate[ Rotersetal. , 2019 ]. Data: [ F ] t n ,[ F p ] t n ¡ 1 ,[ F i ] t n ¡ 1 Result: [ F p ] t n ,[ F i ] t n ,[ F e ] t n ,[ S ] t n 1 Initialisation: [ f L p ] 0 t n Æ [ L p ] t n ¡ 1 , [ e L i ] 0 t n Æ [ L i ] t n ¡ 1 , j =1 2 L i loop: 3 while k R i k 2 ¸ ² i do 4 [ F i ] t n Æ ³ I ¡4 t [ e L i ] j ¡ 1 t n ´ ¡ 1 [ F i ] t n ¡ 1 5 k =1 6 L p loop: 7 while k R p k 2 ¸ ² p do 8 [ F p ] t n Æ ³ I ¡4 t [ f L p ] k ¡ 1 t n ´ ¡ 1 [ F p ] t n ¡ 1 9 [ F e ] t n Æ [ F ] t n [ F p ¡ 1 ] t n [ F i ¡ 1 ] t n 10 [ S ] t n Æ f ³ [ F e ] t n ,[ F i ] t n ´ 11 R p Æ [ f L p ] k ¡ 1 t n ¡ L p ³ [ S ] t n ,[ F i ] t n ´ 12 [ f L p ] k t n Æ [ f L p ] k ¡ 1 t n ¡ ® p ³ @ f L p R p ´ ¡ 1 R p 13 k = k +1 14 end 15 R i Æ [ e L i ] j ¡ 1 t n ¡ L i ³ [ S ] t n ,[ F i ] t n ´ 16 [ e L i ] j t n Æ [ e L i ] j ¡ 1 t n ¡ ® i ³ @ e L i R i ´ ¡ 1 R i 17 j = j +1 18 end 45 Apartfromtheabove(relativelydetailed)overviewofthecomputationalframework,the individualconstitutivelawswillbediscussedasapartofsimulationdetailsineachchapter, alongwithafewlinesaboutthecontinuummechanicalitestrainframeworktoallowfora coherentreading. 2.5Summary Thecouplednumericalframeworkdescribedinthischapterprovidesaconvenienttoolto investigatethekinematicsassociatedwiththestressassistedtransportofSnatomsalongthe grainboundarynetworkintinmsalongwiththeassociatedeffectofthestressontheirkinet- ics.Moreover,since ¯ -Snhasaveryhighhomologoustemperatureevenatroomtemperature, theaddedcouplingofthemechanical(plasticandelastic)effectsontheoverallkinematicsof thesystemcannotbeneglected.Thefullcalculationsperformedinthisworktakeintoac- countboththelong-rangeandtheshort-rangegraininteractionstherebyincludingtheeffects ofgrainneighborhoodsindeterminingtheoverallstrthatinturndictatethetrans- port,[ Liuetal. , 2010 ].Thehighmaterialanisotropyof ¯ -Snthatcansigtlyaffectthe overallsystemresponseoftheunderloadwasincorporatedeasilyinthiscrystalplasticity framework.Themostcriticaladvantageofthecurrentframeworkistheabilitytodirectlyincor- porateexperimentallyobserveddata(grainsizedistribution,andcrystalorientation)intothe simulationssoastohaveadirectcomparisonbetweentheexperimentalandsimulatedresults, therebyensuringthetyofthesimulatedresults. InChapter 3 ,fuldthermo-mechanicalsimulationsoftinareperformedbymim- ickingtheexperimentsof Peietal. [ 2016 ].Theconstitutiveequationsusedforthedifferent alongwiththesimulatedgeometryaredescribed.Criticaloutcomesfromsuchsimula- tionshelpedinproposingahypothesisforthewhiskernucleationprocess(anditssubsequent growth)thatisnotincontradictionwiththeexistingstress-controlledwhiskerformationtheo- riesinliterature,alongwithhighlightingtheeffectsofglobaltexture,localgraingeometry, andgrainsizedistribution. 46 Following,thethermo-mechanicalmodelwasimprovedtoaddthestress-driventransport equationalongwithitskinematicconsequenceinChapter 4 .Thedetailsoftheconstitutive equationsalongwiththenumericalsolutionstrategythatwasdevelopedtosolvethex equationswithcomponentshavinghighpropertycontrastisalsoexplained.Thegoalofthe simulationsdiscussedinthischapteristohighlightthecontributionofwhiskerformationon theoverallstress-relaxationofthesystem.Moreover,thekinematicconsequenceofsuchmass redistributionisalsoaddressed. Asmentionedpreviously, ¯ -Snhasaveryhighplasticanisotropywith13slipfamiliesthat areavailabletoaccommodatetheplasticshapechange.Moreover,sinceitshowshightemper- atureplasticityevenatroomtemperature(300K ¼ 0.6 T m )theplasticcontributiontooverallde- formationbecomescrucialthusrequiringanaccuratedescriptionofitsplasticity.Eventhough thecoupledchemo-thermo-mechanicalsimulationsareperformedusingavailabledatafor ¯ - Snplasticity[ Leeetal. , 2015 ],whicharetheinitialowstressvalues(alsoreferredtoascriti- calresolvedshearstresses(CRSS)ofthedifferentslipfamilies),thesevaluesareyettobees- tablisheditively.Thus,inordertoestimatereliablevaluesoftheseinitialwstresses, amodiedInverseIndentationAnalysis( IIA )methodologyisproposed,originallydeveloped by Zambaldietal. [ 2012 ],wheretheplasticityparametersareidentiedbycomparingexper- imentalandsimulatedsinglecrystalnanoindentations.InChapter 5 ,thedetailsofthemod- methodologyareprovidedalongwithitsreproducibilityandrobustnessforsymmetric face-centeredcubicmaterials(withsingleslipfamily)usingvirtualexperimentalreferences. Following,thereliabilityofthismethodologyisstudiedforlowersymmetrichexagonalcom- merciallypuretitanium(assumingthreeslipfamilies),alsousingvirtualexperimentalrefer- ences,inChapter 6 .Havingestablishedthereliability,thenextstepwouldbetoimplement suchamethodologyforevenmoreanisotropic ¯ -Sn(having13slipfamilies)andtocompare theidentiparameterswiththoseexistinginliterature.Thiswouldfacilitateinperforming higtycoupledmulti-materialsimulationswithanaccuratematerialdescription. Apartfromthegeneralprogresstowardsdevelopingthisrobustmultimaterialsimula- 47 tionsystemwithhighphasecontrastbetweencomponents(suchasthedifferenceindiffusivity ofSnatomsinthebulkandthegrainboundaries),thegoalofthisworkistoanalyzethecritical processofwhiskernucleationanditsgoverningfactors.Onceweareabletodeterminewhich grains(orwhatarethedictatingconditions)couldleadtowhiskers,bettercrystallographicmit- igationstrategiescouldbeproposed(suchasglobalorlocallmtexturecontrol)andtherelia- bilityissuesduetowhiskerscouldbeavoided. 48 CHAPTER3 THERMOMECHANICALCRYSTALPLASTICITYMODELINGOFTHERMALLYSTRAINED ¯ ¡ SnFILMS 3.1Background Inthischapter,three-dimensionalfuldthermo-mechanicallycoupledcrystalplasticity simulationsofthermallystrained ¯ -Snthinareshownusingthenumericalframeworkdis- cussedinthepreviouschapterinSection 2.4 .Theobjectiveofthisworkistobetterunderstand theconditionsgoverningthegenerallyrarenucleationofwhiskersfromtheselmsthrough thesimulatedresultsaftervalidatingthemwithexperimentalresults.Criticalaspectsofthis studyincludedeterminationofcrystallographicandgeometricfactorsthatsigntlyaffect thehydrostaticstressalongthegrainboundarynetworkoftheandhencewoulde thesubsequentstress-drivenmasstransportalongtheseboundariespriortotheonsetofany whiskerformation.Inthiswork,theisapproximatedasaperiodicstructurewithapprox- imatelyhundredcolumnargrainsonanrigidisotropicsubstratemimickingtheexperimental conditionsof[ Peietal. , 2017 ],whereacompressivebiaxialstressisimposedintheupon heatingthebstratesystem,duetodifferencesintheircientofthermalexpansion. Adilatationallayerakintoairwithnegligiblestiffnessandstrengthcomparedtotheisalso addedonthetopoftheThisdilatationallayeravoidstheneedofhavingperiodicbound- aries, MaitiandEisenlohr [ 2018 ],aswellas,couldlaterbeadjustedtomimicthemechanical effectofanysurfaceoxidelayer.Criticalobservationsfromthesesimulationsincludethespa- tialvariabilityofthehydrostaticstressesalongthegrainboundarynetworkwhichalsovaries basedontheglobaltexture;stress-gradientsnotexceedingoneortwograinsizes;and negligibleeffectofgraingeometryorgrainsizedistributionascomparedtotexture(local crystallographicneighborhood),rmingthenotionthatwhiskerformationisindeedalocal phenomenaasreportedinliterature Buchovecky [ 2010 ], Sobiechetal. [ 2011 ].Fromthesesim- 49 Figure3.1:Discretizedgeometryofatinlmbetweenarigidisotropicsubstrate(orange,partly showingvoxelsizeinthecornerofleftimage)andsoftdilatationalfiairfl(faintblue).Boundary regionbetweencolumnartingrains(shadesofyellow)ishighlighted(green)andconstitutes the(sub)volumeoftheforwhichhydrostaticstressgradientsareassumedtodriveatom diffusion.Selectedgrainsofthecolumnarshownatleftaretransformedintoanoblique surfacegrain(grayvolumeinthemiddleandrightviews). ChakrabortyandEisenlohr [ 2018 ] ulationsitisalsoinferredthat ¯ -Snhavingatextureandwiththeiraxisparallel to h 001]islesswhiskerpronecomparedtothehavingtheireraxisparallelto h 100].In thefollowing,Section 3.2 ,thedetailsaboutthesimulationgeometry,boundaryconditions,and inputtextureinformationisdiscussedfollowedbyabriefaccountofthecontinuummechan- icalframeworkandconstitutivedequations.AfterhighlightingtheresultsinSection 3.3 a hypothesisaboutaplausiblewhiskerformationmechanismislaidinSection 3.4 alongwitha summaryoftheresultsfromthestudy.Partsoftheworkinthischapterisalreadypublishedin ChakrabortyandEisenlohr [ 2018 ]. 3.2Simulationdetails Inthissectionthedetailsaboutthecoupledthermo-mechanicalsimulationsmimicking oneoftheexperimentalconditionsin Peietal. [ 2017 ]isoutlined. 3.2.1Geometrydiscretization,texture,andboundaryconditions Thesimulatedgeometryconsistsofa1 & mthinofbody-centeredtetragonal(bct) ¯ -Snwith 103columnargrainsabovea1.4 & mrigidisotropicsubstrate,whichhasasmallercientof thermalexpansion,anda0.8 & mlayerofdilatationalmaterialmimickingfreesurfacecondition. Theentiregeometryisdiscretizedbyaregulargridof128 £ 148 £ 32 Æ 606208voxels,eachof 50 volume0.1 £ 0.1 £ 0.1 & m 3 asillustratedinFig. 4.2 (left).Toanalyzetheeffectofobliqueshaped surfacegrains,insomesimulationsone(orfew)columnargrain(s)aremadeoblique(inclined grainboundaries)asinFig. 4.2 (right). PoissonŒVoronoitessellationofthetinvolume(using103seedpoints)resultsinarela- tivelynarrowgrainsizedistribution.Toarriveatwiderdistributions,graingrowthissimulated throughcurvature-driven(andin-planeonly)motionofthegrainboundaries Eisenlohretal. [ 2017 ]. Crystallographicorientationsofeachgrainareselectedsuchthataparticularcrystallo- graphicdirectionispredominantlyalignedwiththenormaldirection,resultinginaber textureforthelm.Thethreetexturesconsideredinthisworkare h 100], h 110],and h 001] (crystallographicnotationsadoptedfrom Leeetal. [ 2015 ]),whicharereferredtoasfigreenfl, fibluefl,andfiredflinaccordancewiththestandardinversepoleecolormapping. Allthreelayers(substrate,andair)areinitiallystress-free,heatedby40Kin20min,and thenkeptatconstanttemperaturetoobservestressrelaxationforanother160min(blackcurve inFig. 3.2 ),whichissimilartotheexperimentalconditionsof Peietal. [ 2017 ] Theresultingthermo-mechanicallycoupledsystemwassolvedunderperiodicdisplace- mentboundaryconditionsusingthefibasicflschemeofthespectralsolver Shanthrajetal. [ 2015 ], Eisenlohretal. [ 2013 ]thatispartoftheopen-sourceDüsseldorfAdvancedMaterialSim- ulationKit(DAMASK). 3.2.2Continuummechanicalframework Thecontinuummechanicalframeworkonwhichthethermo-mechanicalsimulationsareper- formedisbasedontheestraindeformationtheoryasdescribedindetailintheprevious chapterSection 2.4.1 .Averybriefhighlightisalsomentionedinhereforthesakeofeasein readingthroughthesubsequentsectionsdescribingtheconstitutiveequations. Thedeformationgradientelddescribesthetranslationofmaterialpointsoriginallylocated at x intheundeformedconationtoanewlocation y inthecurrent(ordeformed)cu- 51 rationbythedeformationgradienttensorgivenas: F Æ @ x @ y .(3.1) Inthepresentcontext,suchadeformationisbroughtaboutbycontributionofdifferent processessuchthatthetotaldeformationgradientcanbedecomposed Meggyes [ 2001 ]as F Æ F e F th F p (3.2) intoalattice-preservinginelasticdeformationgradient F p ,alattice-distortinginelasticdefor- mationgradient F th ,andanelasticdeformationgradient F e . F p mapstheundeformedcon- urationtothefiplasticflguration. F th accountsforthethermalexpansionandmapsthe plastictothefiintermediateeigenstrainflcuration.Lastly,thisintermediateeigenstrain conationismappedtothenalfideformedflconationby F e . Itisimportanttonotethatforthesimulationsshowninthischaptertheintermediateeigen- strainconationisaccountedforsolelybythethermalstrain,whileinthenextchapter, Chapter 4 ,thiseigenstrainwillalsoaccountforthekinematicsduetoatomtransportviaan additivedecomposition. Thetimeevolutionofbothinelasticdeformationgradients F p and F th isgivenintermsof theirrespectivevelocitygradients L p and L th followingthewrules F p Æ L p ( M p ,...) F p (3.3) F th Æ L th ( M th ,...) F th .(3.4) Bothvelocitygradientsaredrivenbytheirrespectivework-conjugateMandelstresses M p Æ ( F e F th ) T F e F th S ¼ S (3.5) M th Æ (det F th ¡ 1 ) F th SF th T ,(3.6) where S Æ C :( F e T F e ¡ I )/2(usingHooke'slaw)isthesecondPiolaŒKirchhoffstress, C thefourth- orderstiffnesstensor,and I thesecond-orderidentitytensor.Inaddition,thevelocitygradients alsodependonthematerialstateandassociatedconstitutiveparameters. 52 Staticequilibriumforthiscoupledsystemofequationsisfoundbyastaggerediteration schemethatsolves F p under F th andmaterialstate,thenfor F th atstillmaterialstate, andeventuallyforconsistentmaterialstatewithineachtimeincrementasdescribedpreviously inSection 2.4.2.1 andcanalsobefoundin Shanthrajetal. [ 2019 ]. 3.2.3Constitutivedescription Theemployedcrystalplasticityframeworknaturallyallowstoincorporatetheanisotropyin elasticity,plasticity,andthermalexpansion.Thermalexpansionduetoachangeintemper- ature T givesrisetotheeigenstrainvelocitygradient L th Æ T ® ii 1 Å ® ii ( T ¡ T 0 ) i Æ 1,2,3,(3.7) whichisusedinthedescriptionofbody-centeredtetragonal(bct) ¯ -Snandtheisotropicsub- strate.Thematrixof(anisotropic)thermalexpansioncientsisdenotedby ® andtheinitial temperatureby T 0 . Theplasticvelocitygradientisadditivelycomposedfromsliprates L p Æ X ® ° ® s ® n ® ,(3.8) wheretheunitvectors s ® and n ® indicatetheslipdirectionandslipplanenormalforeachslip system(indexedby ® )ofthedifferentslipfamiliesin ¯ -Sn.Theresolvedshearstress ¿ ® Æ M p ¢ ¡ s ® n ® ¢ (3.9) isthedrivingforceforslipatrates ° ® Æ ° 0 ¯ ¯ ¯ ¯ ¿ ® g ® ¯ ¯ ¯ ¯ n sgn ¡ ¿ ® ¢ ,(3.10) withmaterialparameters ° 0 and n .Thedislocationdefectstructureisparameterizedphe- nomenologically Peirceetal. [ 1982 ],i.e.,sliponeachsystem ® facesaresistance g ® thatevolves duetosliponallsystems(indexedby ¯ )as g ® Æ X ¯ h 0 ¯ ¯ ¯ ¯ ¯ 1 ¡ g ¯ g 1 ¯ ¯ ¯ ¯ ¯ a sgn à 1 ¡ g ¯ g 1 ! ¯ ¯ ¯ ° ¯ ¯ ¯ ¯ ,(3.11) 53 withinitialhardeningslope h 0 ,hardeningexponent a ,andsaturationslipresistance g 1 Hutchinson [ 1976 ].Thisphenomenologicalcrystalplasticitymodelisusedtodescribetheme- chanicalbehaviorofthetinThesubstrate,inexperiment,istypicallyanorderofmagni- tudethickerthanthelmandisthereforeassumedisotropicallyelasticwithstiffnessselected largeenoughsothatonitsfurtherincreasethesystemresponsedidnotchange.Thelayerof softdilatationalmaterialontopoftheensuresafreesurfaceconditionandusestheconsti- tutivedescriptionproposedby MaitiandEisenlohr [ 2018 ].Thecomponentsoftheanisotropic thermalexpansion,elasticstiffnesstensor,andconstitutiveparametersfor ¯ -Sncrystalplastic- ityareadoptedfrom Leeetal. [ 2015 ]andarelistedinTable 3.1 alongwithcorrespondingvalues forthesubstrateanddilatationalfiairfl. 3.3Simulationresults Theselectedconstitutiveparametersresultinthestressrelaxationbehaviorshownin Fig. 3.2 whenthermallystrainingthebstrateassembly(illustratedinFig. 4.2 ).The solidcoloredlinesrthreedifferentcrystallographictextures,characterizedbythecrys- tallographicdirection(either h 100], h 110],or h 001])thathasthehighestprobabilityofbeing normaltothelmsurface.Thesimulatedstressresponsesofatinforallthethreetextures andwithagrainstructureseemtogenerallyagreecloselywiththeexperimentallymea- suredrelaxationbehavior Peietal. [ 2017 ]forwhichtheactualmtexturewasnotreported. Thedashedverticallineat20mininFig. 3.2 indicatesthetimeofmaximumlmstressandis selectedastheinstancefordataanalysis.SincethediffusionofSnatomsislocalizedonthe grainboundarynetworkanddrivenbyagradientinhydrostaticstress,thequantityofinterest isthegrainboundaryhydrostaticstressofmagnitude p ,locallyobtainedbyaveragingpairsof voxelsseparatedbyagrainboundary. 54 Figure3.2:Forcedtemperaturechangeoftinonrigidsubstrate(black)andresultingcom- pressivevonMisesstressinthesimulatedfordifferentlmtextures(coloredlines) comparedtomeasuredstressevolutiononaSisubstrate(circlesfrom Peietal. , 2017 ).Pointof maximumloadisreachedafter20min(atendofheating)andservesasreferenceforallsubse- quentlyreportedstressvalues. ChakrabortyandEisenlohr [ 2018 ] 3.3.1Spatialvariabilityofgrainboundaryhydrostaticstress Thespatialvariabilityofthegrainboundaryhydrostaticstressdevelopinginthetinminre- sponsetothethermomechanicalloadingisshowninFig. 3.3 .Themagnitudeofcompressive stressrangesfromabout0MPato40MPa(closetothesubstrateandatmaximumload,see Fig. 3.2 )andexhibitssubstantialheterogeneitythatrstheheterogeneityofgrainmor- phologyandlatticeorientationinthisgrainpatch.Inthecaseof h 100]asdominantcrystallo- graphicdirectionalignedwiththenormal,i.e.thefigreenfltextureinFig. 3.3 ,thevariability ofcompressivehydrostaticgrainboundarystressmarkedlydecreasesfromtheate interfacetoamorehomogenousrangeof20MPato30MPaatthelmsurface(righttoleft inFig. 3.3 ),duetothereducedmechanicalconstrainttowardsthelmsurface.Additionally, 55 Figure3.3:Spatialvariabilityofgrainboundary(top)andbulkgrain(bottom)hydrostaticstress p formaximumload(reachedafter20min,seeFig. 3.2 )illustratedatthreedifferentdepths throughthe(surfacetosubstratefromlefttoright).Substrateisnotshownwhilepartof thecolumnargrainstructureofthetinisillustratedandcoloredaccordingtothecrystallo- graphicdirectionthatisparalleltothesurfacenormal(closeto h 100]inthisexample,seecolor codeinstandardstereographictriangle). ChakrabortyandEisenlohr [ 2018 ] withinthelimitedspatialextentofthepolycrystallinestructurediscretizedinthisinvestiga- tion,thereisnoindicationofcorrelatedlong-rangestressgradients(spanningmultiplegrains), whichisconsistentwithreportedexperimentalobservations Peietal. [ 2016 ]. 3.3.2Effectoftexture ¯ -Snexhibitsstronganisotropy,therefore,crystallographictextureislikelyaantin enceinthedevelopmentofstressmagnitudeanditsheterogeneity.Thedistributionsof hydrostaticpressure p asfunctionoftexture(green,blue,andred)anddepthwithinthe areplottedinFig. 3.4 atthesamethreedepthsasshowninFig. 3.3 .Similartothecase ofagreenbertexturethatisspatiallymappedinFig. 3.3 ,bothothertextures(blueand red)showadecreaseintherangeof p fromtherateinterfacetothesurface(dark tolightcolorshadesinFig. 3.4 ).Theoverallwidthofthehydrostaticstressdistributionsisno- 56 Figure3.4:Distributionsofgrainboundaryhydrostaticstressatthreedifferentdepthswithintin ofeithergreen,blue,orredbertexture( h 100], h 110],and h 001],fromlefttoright).Light, medium,anddarklineshadescorrespondtothelayerdepthsshowninFig. 3.3 left,center,and right,i.e.,atthesurface,middle,andsubstrateinterface.Inversepoleuremapsofm normalandonein-planedirectionillustratethethreedifferenttexturesassignedtootherwise identicalgrainstructure. ChakrabortyandEisenlohr [ 2018 ] tablywideratalldepthsinthethathaveeithergreenorbluetextureincomparison tothewitharedbertexture.Thisstarkcontrastbetweengreen/bluecomparedtothered texturemaybeconnectedtothefactthatonlytheredbertexturehasatransverselyisotropic thermalexpansion. Toanalyzetherelativeinencesofthermalandmechanicalanisotropy,theactualther- malexpansionanisotropyof ¯ -Snischangedfrom40 £ 10 ¡ 6 K ¡ 1 Æ ® [001] 6Æ ® [010] Æ ® [100] Æ 20 £ 10 ¡ 6 K ¡ 1 toanisotropiccasewith ® [001] Æ ® [010] Æ ® [100] Æ 20 £ 10 ¡ 6 K ¡ 1 .The p distribu- tionsresultingforthesetwocasesinofgrainstructureandwiththethreedifferent 57 Figure3.5:Comparisonofgrainboundaryhydrostaticstressdistributionsbetweenwith anisotropicandisotropicthermalexpansion(solidanddashed)havingeither h 100], h 110],or h 001]bertexture(green,blue,andredfromlefttoright).Hydrostaticstressmapsatthesub- strateinterfacerevealnoqualitativechangeinthehighdegreeofspatialvariability(leftand righthalves,bottomrow). ChakrabortyandEisenlohr [ 2018 ] textures h 100], h 110],and h 001]areshowninFig. 3.5 .Thereisalmostnochangeinthe stressdistributionfortheredtexture(Fig. 3.5 right),whichremainsverynarrow.Incon- trast,thestressdistributionsforboththegreenandbluetexturesreduceappreciablyinwidth andslightlyshifttolowercompressivestressvalues.Thelattereffectbeingcausedbythere- ducedeffectivemagnitudeofthermalexpansionwhenlowering ® [001] from40to20 £ 10 ¡ 6 K ¡ 1 . Theobservedhighdegreeofspatialvariabilityin p doesnotqualitativelychangeforanyofthe threetexturesevenafterchangingtoisotropicthermalexpansion(Fig. 3.5 bottom).Conse- quently,thestillappreciabledifferenceinthespreadofhydrostaticstressonthegrainbound- arynetworkforthegreen/bluebertexturecomparedtotheredonehastobeattributedtothe mechanical(elasticandplastic)anisotropyof ¯ -Sn. 58 Figure3.6:Variationofgrainareadistribution(left)forthreedifferentstructures(labelled fiafl,fibfl,andficfl)andtheirassociateddistributionsofhydrostaticstressonthegrainboundary network(middle)forhaving h 100]texture(seeinversepolegurecoloringofpartly showngrainstructure).Spatialmaps(rightfia"tofic")showthelmlayerdirectlyatopthe (invisible)substrateandillustratetherapidoscillationof p consistentlyobservedforeachof thethreestructures. ChakrabortyandEisenlohr [ 2018 ] 3.3.3Effectofgrainsizedistribution Afurtherpotentialeonthe p distributionisthegrainsizedistribution.Toanalyze itsrole,threedifferentgrainstructuresarecompared:thegrainstructurementioned before(herelabelledfiafl),aversionofitafterbeingsubjectedtoarticialgraingrowthandre- sultinginawiderdistribution(labelledfibfl),andanexperimentallymeasuredpatch(la- belledficfl) Jagtapetal. [ 2017 ],allhavingaboutahundredgrains.Allthreegrainstructuresare againsubjectedtothethermalboundaryconditionsshowninFig. 3.2 (blackcurve).Despite thesignicantvariationintheirgrainsizedistribution(Fig. 3.6 left),the p distributionresulting foreachmstructureremainsessentiallyidentical(Fig. 3.6 right).WhilenotshowninFig. 3.6 , theobservedinvariancein p despitesigniantchangesingrainsizedistributionissimilarly obtainedformswith h 110]and h 001](blueandred)textures.Apparently,theuence ofgrainmorphologyonthegrainboundaryhydrostaticstressdistributionisminutecompared tothatofthetexture. 59 3.3.4Effectofobliquesurfacegrains Focusedionbeampreparedcross-sectionalviewsoftinwhiskersrevealthattheygrowfrom obliquegrains,i.e.,grainsthatfeatureinclinedgrainboundaries.Suchashapeisgeometrically necessarywhenwhiskergrowthsisbeingfacilitatedbyaccretionofatomsattheseboundaries. However,itisnotclearwhetherthepresenceofsuchagraingeometryinitselfentailsalocally relativelylowcompressivestressstatefavorableforinitialatomadditiontotherootofa po- tential whiskergrain.Togaugehowstronglythesheerpresenceofobliquegrainsaltersthe p distributionintheand,inparticular,alongthegrainboundarynetwork,one(orseveral) randomlyselectedgrain(s)inthecolumnar(subscriptficolfl)arechangedtoanobliquege- ometry.Theresultingchange p ¡ p col intheoverallaswellasthespatialdistributionofgrain boundaryhydrostaticstressisanalyzedfortheexemplarycaseof h 100](green)lmtex- ture. Figure 3.7 (left)presentsthedistributionofchangesinhydrostaticstressontheentiregrain boundarynetworkforthreecaseswithanisolatedtransformationofonegrain(fiafltoficfl)and oneadditionalcasewithmultipleobliquegrains(fidfl).Theobservedchangeforthemajorityof affectedlocationsislimitedtoabout5MPa(correspondingtoarelativechangeofabout10%). Thischangeisstronglylocalizedtotheimmediatevicinityoftheaffectedgrain(s),asexempli- bythespatialmapsofthechangein p col inthelayerclosesttothesubstrate(Fig. 3.7 bottom).Thelimitedrangeofinence,whichextendsonlytotheboundariesofthedirectly neighboringgrains,isevenmoreapparentinthemapsofrelativestresschanges(Fig. 3.7 top). 60 Figure3.7:Distributionofchangeinhydrostaticstress p acrossthegrainboundarynetworkduetotransformationofone(fiafltoficfl) ormultiple(fidfl)columnargrainsintoobliqueones.Thesegeometricalalterationsaffectonlyasmallfractionofthegrainboundary network,asdemonstratedbythenarrowoveralldistributions(left).Spatialmapsmthelocalizeduenceofobliquegrains ontherelative(top)andabsolute(bottom)changein p forthelayerclosesttothesubstrate(termedfibottomflinFig. 3.3 )with thetransformed(formerlycolumnar)grainshowninorange. ChakrabortyandEisenlohr [ 2018 ] 61 3.3.5Effectof ¯ -Sncrystalanisotropy ¯ -Sncrystalishighlyanisotropicduetoitsbody-centeredtetragonalcrystalstructure.The anisotropyisexhibitedbothinmechanical(elasticandplastic)aswellasthermalanisotropy, andhencewouldhaveasignicantimpactonthestressevolutioninthelm.Theeffectofcrys- talanisotropyisinvestigatedbycomparingsimulatedgrainboundary p distributionsobtained uponmakingthe ¯ -Sncrystalisotropicinitsthermalbehavioronly(leftcolumninFig. 3.8 ), elasticbehavioronly(middlecolumninFig. 3.8 ),andbothelasticandthermalbehavior(right columninFig. 3.8 ),andcomparingeachofthemwiththereferencecasewherethecrystalis havingbothmechanicalandthermalanisotropies(seeFig. 3.8 ).ItappearsfromFig. 3.8 (com- paringleftandmiddlecolumns)thatboththethermalandelasticanisotropyof ¯ -Snishaving equallystrongeonthe p distributionalongthegrainboundarynetwork.Moreover,by comparingthedarkercurves(labelled`IV')intherightcolumninFig. 3.8 ,whereonlytheplastic anisotropyof ¯ -Snisinncingthe p distribution,thedominantroleof ¯ -Snplasticitycanbe inferred,andthiseffectappearstobedifferentfordifferenttextures. Thisstudyhighlightstheinadequaciesofsimplisticisotropicmodelsbeingpreviouslyused todescribethematerialbehaviorof ¯ -Sn,aswellasmotivatesustoidentifystrategiestoestab- lishaccurateplasticparametersof ¯ -Sn. 3.3.6Establishmentoflocalcrystallographiceffect Inthissectionthefilocalizedeffect"oftextureingoverninghydrostaticstressalongthegrain boundarynetworkisstudiedbyconsideringanexemplarytextured h 100],asshownintop rowinFig. 3.9 .Theaimofthisinvestigationistoverifywhetherasubpartofentiregeometry couldbestudiedtogetanideaaboutthedifferentstresses(shearandnormal)generatedalong thegrainboundarystatisticallybychanginggrainmorphologyandorientationneighborhood butkeepingtheglobaltexturesame.Hence,itismorelogicaltoperformsuchanalysisfora referencegraininthelmandthenvaryingit'sneighborhoodafteracertaingrainsizeseach timeandanalyzethechangesintheresultinghydrostaticstressdistributionalongthegrain 62 Figure3.8:Distributionofhydrostaticstress p acrossthegrainboundarynetwork(andatmax- imumload)forthreedifferentgloballmtextures,toprow: h 100];middlerow: h 110];and bottomrow: h 001].Ineachoftheplots,lightercurveslabelled`I'correspondstothe p distri- butionforasimulationhavingbothmechanicalandthermalanisotropywhichactasarefer- encedistribution.Thisreferencedistributioniscomparedtothe p distributionsobtainedupon making ¯ -Snthermallyisotropicbutmechanicallyanisotropic(darkercurves,labelled`II',in leftcolumn);thermallyanisotropicbutelasticallyisotropic(darkercurves,labelled`III',inmid- dlecolumn);andboththermallyandelasticallyisotropic(darkercurves,labelled`IV',inright column),i.e.,keepingonlyplasticanisotropy. 63 Figure3.9:Toprowshowsthereferencetexture(right:outofplane;left:in-plane)andgrain morphologyforthe h 100]lmusedearlier.Inthesubsequentimagesthetextureandgrain morphologyofthepartinsidetheblackcircleremainsunchangedwhileoutsidethegrainsare shuedalongwithagofthetexture.Toptobottomshowsagradualdecreaseinthe areaofunchangedpart(radiusoftheblackcircle)fromabout5grainsizes(secondrow)to ¼ oneadjacentgrainfromthereference(central)grain. 64 Figure3.10:Distancedistributionoftheunchangedpart,approximatedistancesbetweenun- changedvoxelsandthecentralvoxeloftheblackcirclesinFig. 3.9 withfia",fib",fic",andfid" representingrows2to5. boundarynetworkforsuchachange.Rows2-5inFig. 3.9 illustratesthisexample,wherethe unchangedareawithrespectthecentralreferencegrain(centralgrainintheblackcircle)is graduallydecreased,seeFig. 3.9 forthedistancedistributionoftheunchangedpart. Subsequently,thedifferencebetweenthehydrostaticstressesalongthegrainboundarynet- workascomparedatmaximumloadforthedifferentcases(rows2to5inFig. 3.9 )tothatofthe reference(row1inFig. 3.9 )isshowninFig. 3.11 forthesubstrateinterface(left)andatthe surface(right). AsevidentfromFig. 3.11 presenceofdifferenceinstressesfromthereferencecasecorrelates wellwiththedemarcationbetweenthechangedandtheunchangedpart(blackverticalline inFig. 3.11 ).Thus,ifthegrainofinterestisthecentralgrainintheblackcirclesinFig. 3.9 thenitsstressalongthegrainboundarynetworkleadingtoitdependsontheextremelylocal crystallographicneighborhood,andhenceasubpartoftheentiregeometry(leadingtooneor twograindiameters)couldbeusedtostudytheinenceofcrystallographicneighborhoodon thestresses. 65 Figure3.11:Differencesinhydrostaticstressesalongthegrainboundarynetworkforthediffer- entradiiofunchangedtextureandgrainmorphology(rows2to5inFig. 3.9 )withthatofthe referencecase(row1inFig. 3.9 )atthem-substrateinterface(left)andlmsurface(right). Thisisa2-Dhistogramplotwheretheshadeofgrayrepresentsthevaluemeaningdarkerblack circlescorrespondtozerochangeinthestressvalues(y-axis),andthelocationofthecircles indicatethedistancefromthecentralgrain'svoxel.Theblackline,ineachcase,indicatesthe approximatedistancebetweenthechangedandunchangedpartinthelmfromthecentral grain(radiusoftheblackcircleinFig. 3.9 ) 66 3.4Discussion Hydrostaticstressaltersthechemicalpotentialofatomsand,thus,aspatialvariationin p willcauseadrivingforceforatommigrationfromareasofhighpressuretothoseoflowpres- sure,resultinginanoppositexofvacancies.Potentiallocationsforwhiskerformationare thenassociatedwithareasoflowhydrostaticstressandwouldattractatomsfromareasexpe- riencingmorecompressivestress.Anoverallwiderrangeof p isintensifyingthisimbalance ofchemicalpotential,whichmightbeattributedtoahigherpropensityforwhiskerformation (everythingelseremainingunchanged).Underthispremise,atinwith h 001](red)er textureshouldexhibitalesserdegreeofwhiskerformationthanlmshavingeither h 110]or h 100](blueorgreen)texture,sincethesimulationresultsinthisstudyrevealtheformer texturetoresultinamuchnarrower p distributioncomparedtothelattertwo.Inenceof texturecouldthenbeonepossibleexplanationforthecontradictingobservationsreportedin literatureaboutthepropensityofwhiskerformationfortinmsonbrasssubstrates.Forin- stance,withnominallysimilarbrasssubstratecompositions, Steinetal. [ 2015a ]reportedlower whiskerpropensityfora h 001]while Jagtapetal. [ 2018 ]foundhigherpropensitybutona h 100]lm.Hence,amoredirectexperimentalvericationofthehypothesisthatthewidthof thehydrostaticstressdistributionintinlmsisofprimeimportancetounderstandingwhisker formationwouldrequirethermally-strainedtinlmsvaryingonlyintheirtexture. Thechangesinthedistributionof p resultingfromthearticialcaseofisotropicthermal expansionshowninFig. 3.5 indicatethatthe(unaltered)mechanicalanisotropyplaysatleast asimportantaroleasthethermalanisotropyincausinghydrostaticstressthatdevelopsinther- mallystressed ¯ -Sn.Hence,foraccuratepredictionsof ¯ -Snbehavioritisquintessen- tialtoincludethe ¯ -Sncrystalanisotropyinthemodelingframework. AccordingtothedingsreportedinFig. 3.6 andFig. 3.7 ,neitherthegrainsizedistribu- tionnorthereplacementofcolumnarbyobliquegraingeometrydrasticallyaltersthelocaland global p distribution.Thus,theobliqueshapeinitselfcanonlybea necessary conditionfor agraintogrowawhisker HeandIvey [ 2015 ], Galyon [ 2011 ], Smetana [ 2007 ]but cannotbea 67 sucientcondition sincethisshapedoesnotintrinsicallygeneratefavorablehydrostaticstress gradientsforinxofSnatomsthatwouldberequiredforwhiskergrowth. Basedonthestudyinvestigatingtheroleofcrystalanisotropy,Fig. 3.8 ,itappearsthatboth mechanicalandthermalanisotropiesareequallyuencingthe p distributionalongthegrain boundarynetwork,andhenceneedstobeaccountedfortohaveaccuratepredictions. Thepresentworkinvestigatedtheuenceofcrystallographictexture,grainsizedistribu- tion,andpresenceofobliquegrainsonthedevelopmentofhydrostaticstress p inthermally strainedcolumnartinonarigidsubstratewhileexcludinganyvacancydiffusion.The maingscanbesummarizedasfollows. Ł Tinlmswith h 001]textureshowacomparablysmallspreadinoverallhydrostaticstress. Incontrast,fortheothertwoinvestigatedtextures( h 100]and h 110])largeoverallstress variabilityisobserved.Hence, h 100]lmsareexpectedtobemorepronetowhisker growthcomparedto h 001]. Ł Forallthreeertextures,nosmoothlong-rangestressgradientsareobserved,as p spa- tiallyoscillatesoverdistancescomparabletothegrainsize,i.e., p isessentiallyuncorre- latedafteradistanceofonetotwograins. Ł Neithergrainsizedistributionnorthepresenceofobliquesurfacegrainsnotablyalters the p distribution. Ł ¯ -Sncrystalanisotropyhasasigntroleinthestressevolutionintheandhence simplisticisotropicmodelswouldbeinadequateinprovidinghighdelitysolutions. Ł Alocalsubstructurecouldbeusedtostudytheinenceofcrystallographicneighbor- hoodontheresultinggrainboundarystresses,andhencethesubsequentatomredistri- bution. Theresultsareconsistentwiththefollowinghypothesizedchainofeventsleadingtowhisker formation:Thewhiskernucleationsitewillbealocationthatexhibitslowcompressivestress 68 relativetoitsimmediategrainneighborhood.Theoccurrenceofsuchneighborhoodsisex- pectedtobepredominantlydeterminedbythecrystallographicorientationdistributionofthe Duetothelocallyhighchemicalpotentialofvacancies,atomswillmigratetothislocation alongthegrainboundarynetwork.Providedthatthegraininquestionisanobliquesurface grain,theuxofatoms(i)increasestheshearforcesalongitssurfacegrainboundarytraces and(ii)decreasestheimbalanceofchemicalpotential,whichreducesfurtherinx.Ifthepres- surethatbuildsupduetotheinwingatomsexceedstheresistingforceofanoxidelayeror othersurfacecoating before theequilibrationofchemicalpotentialshutsdownfurtheratom acircumferentialcrackinthesurfacecoverdevelops.Surfacecrackingremovestheformer kinematicconstraintontheinclinedgrainboundariessuchthatthechemicalpotentialofva- canciesattheboundariesofthisgrainbecomeshigherthananyoftheremaininggrainsinthe excludingotherfiwhiskeringflgrainsinsimilarlyrelaxedconditions.Thewhiskercanthen growfromthisgrainbydrainingatomsfromanowprogressivelyenlargingareaofin. Suchgrowthcancontinueaslongasthehydrostaticstressinthecollectionvolumeexceedsthe energyrequiredtocreatefreshwhiskersurface(basedonabalanceofsurfaceandlatticestrain energy[ Choietal. , 2003 ],ahydrostaticstressofabout1MPaissucienttosupportawhisker of2 & mdiameter). 69 Table3.1:Materialpropertiesfordilatationalair,body-centeredtetragonal ¯ -Sn,andisotropic substrate. ValueUnit Air C 11 10.0GPa C 12 0.0GPa g 0 : g 1 0.333:0.667MPa h 0 1.0MPa a 2 M 3 n 20 ° 0 10 ¡ 3 s ¡ 1 ¯ -Sn C 11 72.3GPa C 12 59.4GPa C 13 35.8GPa C 33 88.4GPa C 44 22.0GPa C 66 24.0GPa g 0 : g 1 {100) h 001]8.5:11.0MPa g 0 : g 1 {110) h 001]4.3:9.0MPa g 0 : g 1 {100) h 010]10.4:11.0MPa g 0 : g 1 {110) h 1 ¯ 11]4.5:9.0MPa g 0 : g 1 {110) h 1 ¯ 10]5.6:10.0MPa g 0 : g 1 {100) h 011]5.1:10.0MPa g 0 : g 1 {001) h 010]7.4:10.0MPa g 0 : g 1 {001) h 110]15.0:10.0MPa g 0 : g 1 {011) h 0 ¯ 11]6.6:9.0MPa g 0 : g 1 {211) h 0 ¯ 11]12.0:13.0MPa h 0 20MPa a 2.0 n 6 ° 0 2.6 £ 10 ¡ 8 s ¡ 1 ® h 100] 20 £ 10 ¡ 6 K ¡ 1 ® h 001] 40 £ 10 ¡ 6 K ¡ 1 Substrate C 11 270.0GPa C 12 90.0GPa ® h 100 i 1 £ 10 ¡ 6 K ¡ 1 70 CHAPTER4 FULLYCOUPLEDCHEMO-THERMO-MECHANICALMODELINGOFTHERMALLY STRAINED ¯ ¡ SnFILMS 4.1Introduction Inthischapter,fullycoupledchemo-thermo-mechanicalsimulationsoftinareper- formedtoanalyzethestress-drivendiffusionkineticsintheseprecedingwhiskernucle- ationandgrowth,aswellastounderstandtheextentoftheirkinematicconsequence.Inthis regard,thetransportismostlikelytooccursolelyalongthegrainboundarynetworksincethe grainboundarydiffusivityofSnisordersofmagnitudehigherthantheSnbulkdiffusivity[ Jag- tapetal. , 2017 ].Likeinthepreviouschaptershowingthermo-mechanicalsimulations,Chap- ter 3 ,inthischapteraswell,thecoupledsimulationsmimictheexperimentalconditionsof Pei etal. [ 2017 ]whereatindepositedonarigidsiliconsubstrateisunderbiaxialcompressive stresswhenthesystemisheated(withaheatrate),duetothedifferencesinthethermal expansionientofthelmandthesubstrate.Thechoiceofmimickingsuchasimula- tionisbecauseofthelargedegreeofcontrolontheappliedstressonthesystem,ascompared toothersourcesofstresssuchasformationofCu 6 Sn 5 intermetalliccompounds,indentation [ YangandLi , 2008 ],orbending[ Crandalletal. , 2011 ]. ThesimulationsareperformedusingtheopensourcesimulationsoftwareDAMASK whereintheeffectofcrystalanisotropy(elastic,plastic,andthermal)couldeasilybeincorpo- ratedtoaccountforthelmtextureeffects.Withsuccessfulfuldthree-dimensionalfully coupledsimulations,performedherein,severalcomplexprocessescausingaparticulargrain tonucleateawhisker(andsubsequentlygrow)canbede-convolutedandinvestigatedsequen- tiallytodeterminethemostcriticalfactorsandhenceallowustoproposereliablemitigation strategiestoavoidwhiskers.ThenumericalframeworkandthevariousaspectsofDAMASK, suchasformulationofresidualsforequations,calculationofspatialgradientsusinga 71 forward-backwardscheme,andsolutionoftheboundaryvalueproblemusingtheinherent spectralbasedFFTsolver,havealreadybeenoutlinedinrelativedetailinSection 2.4 andcan beobtainedinfurtherdetailin[ Rotersetal. , 2019 , Eisenlohretal. , 2014 ].However,forthe currentfullycoupledsimulationstheresidualformulationforthethermalandstress-driven transportequationshavebeenrevisitedfromtheiroriginalformulation[ Shanthrajetal. , 2019 , Svendsenetal. , 2017 ]tobetteraccountforthestarkphasecontrastinthediffusivityofthe transportedspeciesbetweenthegrainboundariesandthegrainbulk. Thechapterisstructuredasfollows:inSection 4.2 ,rsttheconstitutiveequationsforthe coupledchemo-thermo-mechanicalmodelisoutlinedinSection 4.2.1 ,followedbythenumeri- calmethodtoformulatetheresidualforthethermalandchemicaldequationsSection 4.2.2 . SubsequentlyinSection 4.3 thedetailsofsimulationgeometryandmeanstoextractrelevant informationisprovidedwhichisfollowedbytheresultsanddiscussionSection 4.4 . 4.2Modeldevelopment ThecontinuummechanicalsolutionframeworkofDAMASKisformulatedbasedonthe ite-strainframeworkinvolvingamultiplicativedecompositionofthetotaldeformationgra- dient F Æ F e F in F p (4.1) intoalattice-preservingplasticdeformationgradient F p thatmapstotheplasticcuration, alattice-distortinginelasticdeformationgradient F in mappingfurthertotheeigenstraincon- uration,andanelasticdeformationgradient F e thatmapstheeigenstrainconationto thenaldeformedguration.AsexplainedinChapter 2 ,theintermediateeigenstrain(or stress-freestrain)curationsaccountforboththethermalstrainduetodifferenceinthe thermalexpansionientsaswellasthekinematicsmodulatedbythetransportofatoms. Thetimeevolutionoftheplasticandintermediatedeformationgradients F p and F in isgivenin 72 termsoftheirrespectivevelocitygradients L p and L in followingthewrules F p Æ L p ( M p ,...) F p (4.2) F in Æ L in ( M in ,...) F in .(4.3) Bothvelocitygradientsaredrivenbytherespectivework-conjugateMandelstresses M p Æ ( F e F in ) T F e F in S ¼ F in T F in S (4.4) M in Æ (det F in ¡ 1 ) F in SF in T ,(4.5) where S Æ C :( F e T F e ¡ I )/2isthesecondPiolaŒKirchhoffstresswithfourth-orderstiffnessten- sor C andsecond-orderidentitytensor I ,andfurtherdependonthematerialstateandasso- ciatedconstitutiveparameters.Theintermediateplasticvelocitygradient L in isadditivelyde- composedintoitsconstituents,whichinthisstudyarethethermalvelocitygradient L th and chemicalvelocitygradient L ch L in Æ L th Å L ch (4.6) andhavetheirindividualconstitutiveequationsmentionedinthenextsection. Theinterdependencyofthevelocitygradientsmakesthesystemfullycoupledandissolved basedonthestaggeredsolutionstrategyoutlinedinSection 2.4 andexplainedindetailin[ Shan- thrajetal. , 2019 ].Theboundaryvalueproblemissolvedusingthefibasic"schemeofthespec- tralbasedFFTformulationalsooutlinedinSection 2.4 . 4.2.1Constitutiveequations SimilartothepreviousChapter 3 ,theemployedcrystalplasticityframeworkincorporatesthe anisotropyinelasticity,plasticity,andthermalexpansionaswellasdifferentbulkandgrain boundarydiffusivity.Thegoverningequationsdictatingthekinematicsaregivenbytheircor- respondingvelocitygradients.Theplasticvelocitygradientisadditivelycomposedfromslip rates L p Æ X ® ° ® s ® n ® ,(4.7) 73 withtheunitvectors s ® and n ® indicatingtheslipdirectionandslipplanenormalforeachslip system(indexedby ® )ofthedifferentslipfamiliesin ¯ -Sn.Theresolvedshearstress ¿ ® Æ M p ¢ ¡ s ® n ® ¢ (4.8) drivestheslipatrates ° ® Æ ° 0 ¯ ¯ ¯ ¯ ¿ ® g ® ¯ ¯ ¯ ¯ n sgn ¡ ¿ ® ¢ ,(4.9) withmaterialparameters ° 0 and n .Thephenomenologicalplasticitylawof[ Peirceetal. , 1982 ] isusedinthisstudytodescribethemechanicalbehaviorofthewheredislocationslipon eachslipsystemisafunctionofacriticalresistance g ® ,whichevolvesduringslipas g ® Æ X ¯ h 0 ¯ ¯ ¯ ¯ ¯ 1 ¡ g ¯ g 1 ¯ ¯ ¯ ¯ ¯ a sgn à 1 ¡ g ¯ g 1 ! ¯ ¯ ¯ ° ¯ ¯ ¯ ¯ ,(4.10) withinitialhardeningslope h 0 ,hardeningexponent a ,andsaturationslipresistance g 1 [ Hutchinson , 1976 ]. Thethermalvelocitygradient(accountingforthethermalstraininthesystem) L th Æ T ® ii 1 Å ® ii ( T ¡ T 0 ) i Æ 1,2,3,(4.11) isconstitutivelyrelatedtothethermalexpansionandthechangeintemperature T forboththe body-centeredtetragonal(bct) ¯ -Snandtherigidisotropicsubstrate, ® beingthecoecient matrixofthermalexpansion,and T 0 indicatestheinitialtemperature.Theconstitutiveequa- tionresponsibleforthetemperaturechangeisgivenby: ½ Cp @ T @ t Æ¡r¢ f T Å q ,(4.12) where q representstherateatwhichthebstratesystemisheated. f T istheheatuxand ½ and Cp representingthedensityandspeciheatofthesystem. Transportofanyspeciesisdeterminedbythedifferencesintheir,whichdependson theirchemicalpotential.Ingeneral,thechemicalpotentialhasaconcentrationtermandan energyterm,chapter2in PorterandEasterling [ 1992 ].However,inthecurrentformulation 74 wherethediffusivewisconsideredonlyalongthegrainboundaries,theconcentrationterm intheequationisneglectedmakingthethechemicalpotentialasolefunctionofthegrain boundarynormalstress. Thusthexequationforsuchasystemthatisrelativelydilute(suchthatthethermody- namicfactorrelatingthediffusivityandthemobilitycanbeneglected)isthengivenas: J Æ¡ DC kT r ¹ (4.13) with D beingthediffusivityofthespecies(incurrentstudyitsvaluecorrespondstotingrain boundarydiffusivity), C representstheconcentrationofthediffusingspecies, r isthespatial gradientoperator,and k and T representstheBoltzmannconstantandtemperature.Thechem- icalpotential ¹ isafunctionofatomicvolume andgrainboundarynormalstress[ Buchovecky etal. , 2009b ],andisgivenas ¹ Æ¡ ¾ n ,(4.14) ¾ n Æ ¾ ¢ ( n n )(4.15) where n representsthegrainboundarynormal.Withsinglediffusingspeciestherighthand side C inEq.( 4.13 )isinverseoftheatomicvolume, C Æ 1/ [ Tuetal. , 2007 ].Theatom duetothein-planegradientinchemicalpotential,relevantforthepresentstudyconcerning grain-boundarydiffusion,isthengivenby J Æ¡ DC kT ( I ¡ n n ) r ¹ (4.16) Æ¡ D kT ( I ¡ n n ) r ¾ :( n n )(4.17) wherethediffusionalongthegrainboundarynormaldirectioniseliminatedbythemodied diffusivityexpression, D ( I ¡ n n ) .However,inthepresentstudythegrainboundary,normal isnotyetincorporatedinthemodelleadingtotheapproximationoftheaboveEq.( 4.17 )by J Æ¡ D kT ( I ¡ n n ) r ¾ :( n n )(4.18) ¼¡ D kT r ¾ h (4.19) 75 with ¾ h Æ 1 3 Tr M in (4.20) Sincetheuxislimitedtothethickness ± GB ofthegrainboundary,thexperlinearcross- sectiongrainboundary(i.e.,forawidthof ± GB andperlengthalongtheotherareadirection) followsas J GB Æ¡ D GB ± GB kT r ¾ h (4.21) Thespatialgradientinthegrainboundary J GB entailsarateofchange N Ær¢ J GB (4.22) ofatomsonthegrainboundaryarea,whichtranslatesintoarateofmonolayeraccumulation (orloss)givenby: m Æ 1/3 r¢ ³ 1/3 J GB ´ ,(4.23) where ¡ 1/3 J GB ¢ correspondstotheforanatomiclength,anditsdivergenceforanatomic distance 1/3 givesthemonolayeratomaddition.Theabovetransportofatomsduetothe accumulationEq.( 4.23 )isschematicallyshownforagrainboundaryvoxelinthesimulation geometryinFig. 4.1 ,wherethevector J GB representsthegrainboundaryforagrain boundaryofwidth ± GB perunitlengthalongtheotherareadirection(correspondingtoz- directioninFig. 4.1 ). Finally,thekinematicconsequence(chemicalstrain)permonolayerisexpressedas L ch Æ ² m 1/3 d ( n n ) | {z } ¼ I (4.24) where ² isthestrainientwhichisnegative(reducingstrainuponaddition)forvacancy transportandpositive(increasingstrainuponaddition)foratomtransport. Thisfullycoupledsystemofpartialdifferentialequationsissolvednumericallyusingastag- geredsolutionscheme,whiletheindividualconstitutiveequationsaresolvedbyformulatinga residual,andminimizingitusingtheopensourcelibraryPETSctogettherequisitesolution. 76 Figure4.1:Arepresentativevoxelwithamaterialpointshowingthedirection(alongx-axis) andgrainboundarynormaldirection, n ,alongy-axis.Thegrainboundaryuxperunitline crosssectionalongz-direction,foranatomicdistanceisgivenby( 1/3 J GB ).Subsequently, therateofmonolayeradditionisrepresentedby m whichcorrespondstothedivergenceofthis throughanotheratomicdistanceof 1/3 . 4.2.2Residualformulation Thesolutionofthetransportequationforstress-drivenmasstransferasshownbyequations Eqs.( 4.21 )and( 4.22 )thatgivesthenumberofatomsaccumulatedperunitheightofthem perunittimeissolvedbyformulatingasaresidualminimizationproblem.Theadvantageof formulatingsucharesidualistheabilitytouseoneoftheseveralin-builtnumericalmethods intheopensourcepackagePETSctosolvethisresidualinthemostientway.Thecritical aspectofsolvingtheequationasad(andnotaconstantoutofthedivergencetermin Eq.( 4.23 ))isduetothepresenceofthestrongcontrastinthediffusivityoftheSnatomsinthe bulkcomparedtothegrainboundaries.Itisnotedthatthegrainboundariesinthecurrent simulationarerepresentedby ¼ 2voxelsfromeachofthegrainsnexttotheboundary(similar 77 tothegeometryusedinChapter 3 ).Thus,fortheinterfacebetweentwograins,theboundary comprisesofatotalof ¼ 4voxels,2fromeachgrainwiththeorientationoftheirparentgrain. Toproperlyaccountforthiscontrastinbulkandgrainboundarydiffusivitiesforeachma- terialpointtheiscalculatedusingtheminimumdiffusivitybetweenitselfanditsneighbor. Thisisjusinthesensethatifanatomistryingtodiffusefromthebulktotheboundary itwouldnotbeabletodiffuseduetotheverylowbulkdiffusivity,whileifanatomistryingto diffusefromtheboundarytothebulkitwillalsoberestrictedsinceitcannotdisplaceanatom inthebulk(againduetolowbulkdiffusivity).Thesituationissimilartoaseriesofchemical reactionswheretheratecontrollingstepistheslowestreaction. 4.3Simulationdetails 4.3.1Simulationgeometryandboundaryconditions Areducedmicrostructurewith ¼ 30grainsfromtheoriginalmicrostructureconsistingof ¼ 100 grains(whichwasusedforthethermo-mechanicalanalysisinChapter 3 )isusedasatestcaseto analyzethekinematicconsequenceofthefullycoupledchemo-thermo-mechanicalprocesses. Moreover,oneofthe30grainsinthemicrostructureismadefioblique"(inclinedgrainbound- aries)andisconsideredasthereferencegrainforperforminganygraincomparisonstudy.The reducedgeometryisrepresentativeofthecrystallographiceffectsforthisreferencegrain,since theneighborhoodeffectsarehighlylocalized(asestablishedinSection 3.3.6 ). Thereducedlayeredgeometryconsistsofa3.0 & mthinwith30grainsofbody-centered tetragonal(bct) ¯ -Sn(generatedusingPoisson-Voronoitessellationwith30seedpoints)be- tweena1.2 & mthickelasticrigidisotropicsubstrateatthebottomanda0.6 & msoftdilatational materialontopasshowninFig. 4.2 .Thislayerofsoftdilatationalmaterialontopofthem ensuresafreesurfacecondition,thusmimickingfiair",andusestheconstitutivedescription proposedby MaitiandEisenlohr [ 2018 ].Thesubstratethicknessismuchlowerthanthatob- servedinrealitytoreducethecomputationcost,however,itsstiffnessissignicantlyincreased (around32timeshigherYoung'smoduluscomparedtoreal ¯ -Sn)tomakeitrigid.Thisvaluefor 78 Figure4.2:Discretizedgeometryofatinbetweenarigidisotropicsubstrate(orange,show- ingvoxelsize)andsoftdilatationalfiairfl(faintgray).Boundaries(lightblue)betweenthecolum- nargrains(green)havedifferentchemical(diffusion)propertiesbutsharethermalandme- chanicalpropertieswiththebulk.Partofthegeometryalsorevealstheglobal h 100]lmtexture. thesubstratestiffnessishighenoughtoensureitsrigidityinthatfurtherincreasingthevalue didnotaffectthesimulationresults.Theentiregeometryisdiscretizedbyaregulargridof 48 £ 96 £ 96 Æ 442368voxels,eachofvolume0.1 £ 0.1 £ 0.1 & m 3 ,alsoshowninFig. 4.2 .Thegrain orientationsareselectedtorepresentatexturewiththeaxis(thenormaldirec- tion)beingalignedwithaparticularcrystaldirection,whichinthiscaseischosenas h 100],as shownpartlyinFig. 4.2 .Biaxialcompressivestressesgeneratedintheuponheatingdueto thedifferentthermalexpansionof ¯ -Snandthesubstrate(thehavinganorderofmagni- tudehigherexpansioncientthanthesubstrate).Theresultingstressesrelaxbyplasticity andchemicaltransport(stress-drivendiffusion).Diffusionalowoccursonlythroughthegrain boundaries(highlightedinshadeofblueinFig. 4.2 )duetomuchhigher(tenordersofmagni- tude)grainboundarydiffusivitycomparedtograinbulkdiffusivity[ Jagtapetal. , 2017 ].The presentstudysolvesthiscoupledchemical-thermo-mechanicalprobleminacrystalplastic- ityframework,therebyincorporatingtheeffectofcrystalorientationonthemicro-mechanical response. 79 Inthiswork,theinitiallystress-freelayeredgeometry(substrate,andair)isheatedto twodifferentconditionsŒi)20K;andii)40Kin10and20minrespectively,withasubsequent relaxationofabout60min.Sincediffusionoftinatomsisconsideredinthisstudy,thew isallowedonlyinthetin(sllyalongthegrainboundaries).Thechemicalxat thelmsurfaceisrestrictedbyspecifyingazerodiffusivityvalueforthedilatationalairlayer, thusmimickingthepresenceofapassivatingoxidelayerthatpreventsvacanciestodiffuseinto thelmfromthesurface.Theseboundaryconditionsgiverisetoacoupledchemical-thermo- mechanicalsystemofpartialdifferentialequations,describedinSection 4.2.1 whicharethen solvedusingthefibasicflschemeofthespectralsolver[ Shanthrajetal. , 2015 , Eisenlohretal. , 2013 ]thatispartoftheopen-sourceDüsseldorfAdvancedMaterialSimulationKit(DAMASK) [ Rotersetal. , 2019 ]. The ¯ -Snconstitutiveparametersareobtainedfrom[ Leeetal. , 2015 ]listedinTable 4.1 along withtheconstitutiveparametersusedforthesubstrateandair.Thethermo-mechanicalmodel usingtheseconstitutiveparametershavealreadybeenvalidatedusingexperimentaldatainthe previouschapterSection 3.3 . 4.4ResultsandDiscussion Todeterminethemacroscopicconsequenceofthestress-drivendiffusionkinematics, Fig. 4.3 comparestheaveragevonMisesstressevolutionofthelmforafullycoupledsimu- lation(bluecurves)tothatofasolelythermo-mechanicalsimulation(redcurves)forthetwo loadingconditionsofa20Kchangeoftemperaturein10min(blackcurveinleftgure)and thatofa40Kchangeoftemperaturein20min(blackcurveinrighte)followedbyarelax- ationofabout60minforboth.Basedontheresults,thereappearstobenegligibleeof thediffusionalkinematicsontheaveragestressevolutionoftheHowever,itiscriticalto pointoutthatconsideringsuchakinematicconsequencelowers(byasmallamount)theaver- agestressinthemasthebluecurvesareclosertozerostresscomparedtotheredcurvesin Fig. 4.3 ,whichisexpectedfromsuchaprocess.Also,theaboveobservationismoreprominent 80 Figure4.3:AveragevonMisesstressevolutioninthelmforthecoupledchemo-thermo- mechanicalmodel(blue)tothatofthecaseofwithoutanydiffusionalw(red),foratem- peraturechangeof20K(left)and40K(right)in10and20minrespectively(shownbytheblack curve),followedbyarelaxationofabout60min.Thedasheddarkgraylinerepresentsthepoint ofmaximumload/straininthesystem,whichisusedasareferencelocationforfurthercom- parisoninthestudy. inthelaterstagesofloadingandthesucceedingrelaxationstages. Inthenextsection,thekinematiceffectofthestress-drivendiffusionisanalyzedforthe grainboundarynetworkthatservesasthesoleconduitforthetransportofSnatoms. 4.4.1Kinematicconsequence Inthissection,theaimistoanalyzetheeffectofthekinematicconsequenceoftheatomre- distributioninthe(alongthegrainboundarynetwork)bycomparingtheresultsobtained fiwithdiffusional"wtothatofthecasewherethefinodiffusional"wisconsidered(purely thermo-mechanicalsimulations). Thekinematiceffectofthediffusionalwisintegratedinthemodelthroughtheeigen- strainvelocitygradient L i ,asmentionedinSection 4.2.1 ,alongwiththethermalstrain(refer toSection 2.4 forfurtherdetails).Figure 4.4 showsthiseffectbycomparingthedeterminant oftheeigenstraindeformationgradients(representingtherelativevolumetricchange)along thegrainboundarynetworkforthetwotemperatureboundaryconditions(left:20K,andright: 81 Figure4.4:Kinematicconsequenceofatomredistributionisshownbycomparingdistribution ofdeterminantoftheeigenstraindeformationgradients F i alongthegrainboundarynetwork, atmaximumloadforthecoupledchemo-thermo-mechanicalmodel(blue)tothecaseofwith- outanydiffusionalow(red),foratemperaturechangeof20K(left)and40K(right). 40K).Theredistributionofmassincreasesthevolumeatlocationswhereatomsgetaddedand decreasesinareasofatomdepletion,ascanbeseenbythesolidbluecurve.Theredcurve correspondstotheappliedthermalstrainwhichisuniformacrossthem. Thepressurealongthegrainboundarynetworkmodulatestheatomredistributionandis shownatthemaximumstrainconditionfortheateinterface(wherethestressesare maximum)underthetwoloadingconditionsintheleftandrightcolumnsinFig. 4.5 respec- tively.Theveracityoftheequationsandtheoverallmodelisconmedbythefactthatthe transportofatomsoccursfromregionsofhighcompression(fiblue")toregionsoflowercom- pression(fired")asseenbycomparingpressureandconcentrationplotsinFig. 4.5 .Moreover, thehighdegreeofspatialvariationinpressuredistributionalongthegrainboundarynetwork isriveofthegloballmtextureof h 100],similartothepressurevariationsshowninSec- tion 3.3 ,whichalsosupportsthefactthatthereducedgeometry(with30grains)isrepresenta- tiveoftheoverallgeometry(with100grains)whenthetextureisthesame. 82 20Kchange40Kchange pressure 0MPa -30MPa concentration change 1 12 atoms ¡ 1 12 atoms Figure4.5:Spatialvariationofthepressure(toprow)andtheconcentrationchangeinnum- berofatoms(bottomrow),pergrainboundaryarea,forthetwoloadingconditionsof20K(left column)and40K(rightcolumn)atthemaximumloadandatthelmŒsubstrateinterface.As expected,locationsoflowcompression(fired"regions)inthepressureplots(toprow)corre- spondtolocationsofatomgains(fired"regions)intheconcentrationplots(bottomrow). 4.4.2Comparisonofdifferentstresses Whiskersareverylikelytogrowbyadditionofatomsatthebaseofthewhiskergrain(oblique surfacegrains)andthenbybreakingthetinoxidelayerontop(thatformsinstantaneously). Similartotheworkof ChakrabortyandEisenlohr [ 2019 ],thedifferenttractions(shearand normal)actingalongthegrainboundariesareanalyzedtogetanideaabouttheapproximate ranges,withanotionthattheymighthaveamechanisticaffect.Anexemplaryvisualization withanobliquegrainboundaryisshowninFig. 4.6 ,wheremostofthenormalsareidentied properlywiththeexceptionofafewscatterednormals.Thissmallscatterisunlikelytoaffect 83 Figure4.6:Normal(alonglmnormaldirection)andshear(intheboundaryplane)traction components(right)derivedateachpointofthegrainboundarybasedonthelocalboundary planenormal(middle)ofanexemplary(oblique)grainisolatedfromtheentire(left,only grainboundarynetworkshown). theoveralldistributionofthevalues. Togaugetheeffectofthekinematicsofatomredistributiononthesetractionvalues,dis- tributionplotsofthepressurevariation,normaltractions(i.e.,tractiononthegrainboundary planeactingalongnormaldirection)andasheartraction(i.e.,tractionactingintheplane oftheboundary)areshownforthetwoloadingconditions(of20K,toprow,and40K,bottom row)attherateinterface(solidline)andattheface(dashedline)inFig. 4.7 . Foralltheconditions,themagnitudeofthevalueatthelmŒsurfaceismuchsmallerthanthat atthelmŒsubstrateinterfaceduetothefreesurfacecondition.Also,forbothloadingcondi- tionsinvestigatedhere,thekinematicconsequenceofthediffusionalwreducedthepressure distribution(bluecurvesbeingnarrowerthanredcurvesinleftcolumninFig. 4.7 ),whilenegli- gibleeffectofsuchkinematicscouldbeseenforthetractionvalues.Thismightindicatethatjust byadditionofatomsalongthegrainboundarynetworkdoesnotkinematicallyalterthestresses ientlytobreaktheoxidelayerontop.However,suchacasemightalsobestothe presentlyconsideredmicrostructure,amorereliableestimationcanbemadebyperforminga statisticalestimationofthevariationofthesestressesunderdifferentinitialmicrostructures. 84 Figure4.7:Probabilitydistributionplotsforpressure(left),ashearcomponentofthetraction(middle),andthetractioncomponent actingalongthenormaldirection(right,foronlytheobliquegrainboundary)alongthegrainboundarynetwork,allcomputed atmaximumstraincondition.Thesolidanddashedlinescorrespondtothedistributionofthesevaluesatthefaceand ateinterfacerespectively. 85 Figure4.8:Arealconcentration(pergrainboundarysurfaceinm 2 )distributionwithinthegrain boundarynetworkattherateinterface(dashedcurves)andatthemsurface(solid curves)foraloadof20K(left)and40K(right)atthemaximumstraincondition. Itwouldalsobeinterestingtoseefromamechanisticpointofview,howthetractionsacting alongthegrainboundarynormalaffecttheextrusionofmaterialoutfromthefacilitated bytheobliquegeometryofthegrain.Anothercriticaldrawbackofthecurrentlyconsidered transportmodelisthepossibilityofuxalongthegrainboundarynormaldirectionwhichis unlikelytohappeninthecaseofthegrainboundarydiffusion. Thearealconcentration(pergrainboundarysurfaceinm 2 )variationatthebstrate interface(dashedlines)andatthelmsurface(solidlines)forthetwoloadingconditions(left: 20Kandright:40K)isshowninFig. 4.9 .Qualitatively,theconcentrationvariationlookssimilar betweenthelmŒsubstrateinterfaceandtheface,whichisriveofthestronger dominanceofthein-planegradientascomparedtotheverticalpotentialgradient. 4.4.3Kineticsofthetransport Toanalyzethekineticsofthediffusionprocess,theevolutionofconcentrationofanexemplary obliquegrainboundaryovertimeisshowninFig. 4.9 forthetwoloadingconditionsconsid- eredinthisstudy,witheachmonolayercorrespondingtoathicknesschangeof0.3nm.For themicrostructure(grainmorphologyandtexture)consideredinthecurrentstudy,thereisa 86 Figure4.9:Averageconcentrationevolutionoftheexemplaryobliquegrainboundary(high- lightedinFig. 4.6 )forthetwodifferentthermalloadingconditionsof20Kand40K. netlossofatomsfromtheobliquegrainindicatingthatitactsasasourceofatomsduetothe stresspredevelopingintheforthe(randomly)chosengrainarrangement.Thiswould alsoindicatethattheconsideredobliquegrainwouldmostlikelynotbeawhiskernucleation site.Therateoflossofatoms(slopeofthecurvesinFig. 4.9 )ismorepronouncedduringload- ingandreducesmarkedlyduringtherelaxationstages.Sucharesultcanbeattributedtothe dominanteffectofplasticrelaxationascomparedtostressrelaxationbyatomredistribution, sincethekinematicconsequencesduetoatomredistributionappearedtobeinsigntfor thepresentcase.Itisalsocriticaltonotethatthegrainboundarydiffusivityconsideredinthe currentsimulationsisthreeordersofmagnitudeslowerthanthoseusedin[ Buchoveckyetal. , 2009b ],thatusesactuallymeasuredvaluesofdiffusivity,duetonumericalconvergence.Hence, thekineticsresultsshowninthisstudyisanunderestimationoftheactualphenomenon.How- ever,theconclusionsdrawn(insignicanteofthediffusionalwontheshearforces andthemaveragestressevolutionascomparedtoplasticity)wouldremainunchangedsince thekinematicconsequenceofatomredistributionisverysmall,asalsoreportedby Buchovecky 87 [ 2010 ]whereachangeincoupleofordersofmagnitudeindiffusivitydidnotchangethestress results. 4.5Summary Ageneralizedfullycoupledchemo-thermo-mechanicalmodelinthecrystalplasticity frameworkisoutlinedinthischaptertostudythestress-drivendiffusionintinthinms.By comparingtheaveragelmstressevolutionwithandwithoutthediffusionalkinematics,itis concludedthattheatomredistributionhadlimitedinenceoverthestresswhichcor- respondstothebulkstressesmeasuredexperimentallyviacurvaturemeasurements.Suchan observationiscontradictorytothereportedresultof Buchoveckyetal. [ 2009a ],wherethere- laxedstressis10MPahigherinthefortheelasto-plasticsimulationascomparedtothatof includinggrainboundarydiffusioninthesimulation.Similarresultswerealsoreportedin Pei etal. [ 2017 ]wherethestrainduetowhiskerrelaxationwasabout30%ofthetotalstrain.Inour casethekinematicconsequenceappearstobemuchlowerthanthat.Aplausiblereasonfor suchanoutcomemightbethelowervalueofdiffusivityusedinthisstudycomparedtothose usedinthemodelof Buchoveckyetal. [ 2009a ], Peietal. [ 2017 ]wheretheyhaveusedexperimen- tallymeasureddiffusivityvalues.Anotherreasonforthedifferencemightbethedifferencesin thedescriptionof ¯ -Snplasticitybetweenthepresentstudyusingaphenomenologicalpower lawmodel,versusthatofanisotropicvonMisesdescriptionusedin Buchoveckyetal. [ 2009a ], Peietal. [ 2017 ].Thisfurthermotivatestheneedfortheaccuratedescriptionof ¯ -Snplastic- ity,whichisyettobeestablishedinliterature,andamethodologytoaccuratelypredictsuch plasticityparameterswouldbetakenupinthefollowingcoupleofchapters(Chapters 5 and 6 ). Thekinematiceffectofatomredistributiononthehydrostaticstressandthedifferenttrac- tioncomponents(shearandnormal)inthegrainboundarynetworkarealsostudied,anditis concludedthatthekinematicsdueatomredistributionconsiderablyaffectedthegrainbound- aryhydrostaticstressascomparedtothedifferenttractioncomponents,Fig. 4.7 .Thismightbe astandaloneresultforthestudiedmicrostructure.Furtherinsightcanbegainedviaastatistical 88 analysisofthesetractionvaluesforvariousmicrostructures(i.e.,crystalneighborhoodand/or texture).Also,forthecurrentlysimulation,theobliquegrainboundaryappearstocontinu- ouslyloseatomswhichwouldmakeitanatomsourceandpreventittonucleateawhisker.This suggeststhat,contrarytotheobservationoftheobliquegrainseenhere,therecouldbeasitua- tionwheretheobliquegrainboundarywouldgainatomsandnucleateawhisker.However,the locationofsuchgrainswouldstillbegovernedbythelocalcrystallographicneighborhood. Thepreliminaryconclusionsmadefromthepresentstudyneedtobefurtherestablishedby moredetailedanalysis.Asmentioned,themodelproposedhereindoesnoteliminatexalong thegrainboundarynormaldirection,andhenceasuitableationtothecurrentformu- lationwouldbetoincorporategrainboundarynormaltocalculatethestressactingalongthe grainboundarynormaldirectionanduseonlythatquantityasameasureofchemicalpotential insteadofthehydrostaticstressconsideredpresently.Also,thekineticsreportedinthisworkis anunderestimation,asthegrainboundarydiffusivityvalueusedinhereisaroundthreeorders ofmagnitudeslowerthanreality.Havingthecapabilityofparallelcomputationwouldenableto userealisticdiffusivityvalues,astheyrequireasmallertimestepthanthatusedforthepresent simulations.Performingarigorousstatisticalstudyusingaccuratemodeldescriptionandwith differentgrainmicrostructuresandtexturedistributions(i.e.,initialconditions)wouldprovide ameasureoftherangeofthevariousstressquantities(shearandnormaltractions)andhence increaseourinsightonwhethertheyareientinbreakingthetinoxidelayerontop.More- over,suchastatisticalstudywouldalsoprovideadistributionofcaseswheretheobliquegrain actsasanatomsink(therebybeingapotentialwhiskernucleus),comparedtoitbeinganatom source.Suchadistributionofgrainsactingatomsinks,canthenbecomparedtoexperimentally observedwhiskerdensityvalues. 89 Table4.1:Materialpropertiesfordilatationalair,body-centeredtetragonal ¯ -Sn,andisotropic substrate. ValueUnit Air C 11 10.0GPa C 12 0.0GPa g 0 : g 1 0.333:0.667MPa h 0 1.0MPa a 2 M 3 n 20 ° 0 10 ¡ 3 s ¡ 1 ¯ -Sn C 11 72.3GPa C 12 59.4GPa C 13 35.8GPa C 33 88.4GPa C 44 22.0GPa C 66 24.0GPa g 0 : g 1 {100) h 001]8.5:11.0MPa g 0 : g 1 {110) h 001]4.3:9.0MPa g 0 : g 1 {100) h 010]10.4:11.0MPa g 0 : g 1 {110) h 1 ¯ 11]4.5:9.0MPa g 0 : g 1 {110) h 1 ¯ 10]5.6:10.0MPa g 0 : g 1 {100) h 011]5.1:10.0MPa g 0 : g 1 {001) h 010]7.4:10.0MPa g 0 : g 1 {001) h 110]15.0:10.0MPa g 0 : g 1 {011) h 0 ¯ 11]6.6:9.0MPa g 0 : g 1 {211) h 0 ¯ 11]12.0:13.0MPa h 0 20MPa a 2.0 n 6 ° 0 2.6 £ 10 ¡ 8 s ¡ 1 ® h 100] 20 £ 10 ¡ 6 K ¡ 1 ® h 001] 40 £ 10 ¡ 6 K ¡ 1 D GB 1 £ 10 ¡ 16 m 2 s ¡ 1 D bulk 2 £ 10 ¡ 28 m 2 s ¡ 1 ± GB 0.5nm 2.7 £ 10 ¡ 29 m 3 ² 1.0 c 0 0numberofatoms Substrate C 11 1500.0GPa C 12 500.0GPa ® 1 £ 10 ¡ 6 K ¡ 1 90 CHAPTER5 INVERSEINDENTATIONANALYSISANDITSAPPLICATIONINFACE-CENTEREDCUBIC MATERIALS 5.1Motivation Theincompletematerialdescriptionof ¯ -Snarisesduetothelackofestablishedplasticity parameters,theinitialvalueof g (sometimesalsoreferredtoascriticalresolvedshearstress, CRSS),intheliterature,especiallywhenusingthephenomenologicalmaterialmodel.Thisis importantsinceplasticityof ¯ -Snisknowntoaffectthewhiskerformation[ Chasonetal. , 2008 ]. Plasticdeformationinthehighlyanisotropic ¯ -Sn,becauseofthebody-centeredtetragonal crystalstructure,canbeaccommodatedbythethirteenslipfamiliesthatareavailable.Even thoughthepresentsimulationsusereportedvaluesfortheseparameters,areliableparameter estimationstrategyforcrystalplasticityconstitutivemodelsislacking.Aninverseapproachis proposedinthisworktoidentifyconstitutiveparametersthatreliesonminimizingtheerrorbe- tweenthesimulatedandexperimentalsinglecrystalnanoindentationresponses.Themethod wasoriginallyproposedby Zambaldietal. [ 2012 ],however,astudyregardingitsecacyhas beenlacking.Inthischapter,themethodologyusingInverseIndentationAnalysis( IIA )isim- plementedforface-centeredcubic(fcc)materialstodetermineitseffectivenessinsuchahighly symmetricsystemwithonlyasingleslipfamilyandusingvirtualexperimentalreferencedata withaprioriknownparametervalues.Someionstotheoriginalmethodarealsopro- posedthatresultedinincreasedeffectivenessofthemethodology.Criticalaspectsforaneffec- tiveoptimization,suchassensitivityanalysisofeachparameters,dimensionalreduction,and effectofinitialguess,isalsodiscussed.Finally,afterestablishingthetyofthe IIA forfccmaterials,itsreliabilityistestedformoreasymmetrichexagonalmaterials(againwith virtualexperiments)havingmultipleslipfamiliesinChapter 6 .Havingestablishedthereliabil- ityoftheproposedmethodologyforcubicandhexagonalmaterials,thenextstepwouldbeto 91 implementitforevenlowersymmetrictetragonal ¯ -Sn,andestablishitsplasticbehavior. Thecontentsofthischapterisadaptedfromthealreadypublishedworkin Chakrabortyand Eisenlohr [ 2017 ]. 5.2Background Thefeasibilitytodeterminetheadjustableparametersofsinglecrystalplasticityconstitu- tivelawsbyaninverseapproachthatminimizesthedeviationbetweenthemeasuredandsim- ulatedindentationresponseofindividualgrains(ofapolycrystallinesample)isanalyzedin thischapterforthecaseofface-centeredcubic(fcc)crystalstructure.Optimizationusesthe NelderŒMead(NM)simplexalgorithm,thatwastocircumventregionsinparameter spacewheretheevaluationoftheobjectivefunctionfails.Aphenomenologicalpower-lawis usedastheconstitutivedescriptionforcrystalplasticity.Simulatedcasesofindentationwith prescribedconstitutiveparametervaluesserveasthevirtualreference,oftenreferredtointhe chapterasvirtualexperiments.Asensitivityanalysisstudyisalsodiscussedinordertogauge therelativeinofdifferentadjustableparametersontheoverallmaterialresponseunder indentation.Followingthesensitivityanalysis,thereliabilityofthemethodologyisassessed basedonit'sreproducibilityandrobustnesswithdifferentobjectivefunctionsinvolvingthe loadŒdisplacementresponseandresidualsurfacetopographyfordifferentindentationcrystal orientations.ItappearsthatusingbothinformationfromloadŒdisplacementandresidualsur- facetopographyprovidesamoreconvexobjectivefunctionsurfacefortheoptimizertoidentify thetargetvalues(globalminimum)withoutbeingsigntlyedbytheselectedcrys- talorientation. Thechapterisstructuredasfollows:afteraliteraturereviewaboutthedevelopmentofin- dentationasatechniquetoidentifymaterialparametersinSection 5.3 ,thesimulationdetails alongwiththeconstitutivematerialmodeldescriptionarepresentedinSection 5.4 followedby anexplanationaboutthestructureoftheinverseoptimizationstrategyinSection 5.6 .Critical resultsobtainedfromthecomprehensiveinvestigationarehighlightedinSection 5.7 followed 92 byadiscussioninSection 5.8 andtheconclusiveremarksinSection 5.9 . 5.3Introduction Thepredictionofthemechanicalresponseandinternalstructuralevolutionofcrystalline solidischallengingduetotheinherentanisotropyoftheelasticandplasticpropertiesofsingle crystals.Integrationofanisotropyintocrystalplasticity(CP)modelsofdeformationhasbeen quitesuccessful(see[ Rotersetal. , 2010b ]forarecentreview)andismostrelevantformetals thatexhibitstrongcrystallographictextureresultingfromprocessingorwhenoneormoredi- mensionsofanengineeringcomponentapproachtheinternalgrainsizeofthematerial.While thesophisticationoftheunderlyingconstitutivedescriptionofdeformationandstructureki- neticsvariesamongdifferentCPapproaches,forallofthemtheaccuracyofpredictionlargely dependsonthevaluesselectedfortheadjustableconstitutiveparameters. Correctidentionofconstitutiveparametervaluesisanongoingareaofsigniant researchinterestasitinvolvestheinverseproblemofmatchingsimulationoutcomestoex- perimentalreference.Onewaywouldbetouseexperimentalreferencefrompolycrystalline (macroscopic)deformationunderunidirectionaltensionorcompressioninconnectionwith eitheranisotropicplasticdescription[ MahnkenandStein , 1996 , KajbergandLindkvist , 2004 ] oraphenomenologicalcrystalplasticitymaterialmodel[ Herrera-Solazetal. , 2014 ].In[ Herrera- Solazetal. , 2014 ],singlecrystalmaterialparameterswereextractedusingagradient-based LevenbergŒMarquardtoptimizationalgorithmthatmatchedstressŒstrainresponsesofe elementsimulationsofrepresentativevolumeelementstocorrespondingexperiments.Are- producibilitystudyforthisapproachrevealedhighreproducibilityforsomeparametersas comparedtoothers[ Herrera-Solazetal. , 2015 ],indicatingeitherthepresenceofmultiplelo- calminimaintheobjectivefunctionsurfaceorlackofsensitivityforcertainparametersover others,andthus,callingforfurtherinvestigation.Analternativeandmoredirectwayistouse singlecrystal(microscopic)deformationsinceitexcludestheproblematicconvolutioncaused bymultiplegrainsdeformingandinteractinginparallelandappears,hence,tobeamore 93 promisingvenue.Instrumentednano-indentationexperimentshavebeenanecientwayto generatemicroscopicdeformationresponsefrommultipleorientationsintheformofloadŒ displacementcurvesandsurfacetopographyafterindentation. Indentationexperimentsasatooltoidentifymaterialparameters,wasrstproposedby HuberandTsakmakis [ 1999 ]and Huberetal. [ 2001 ]byusinganarialneuralnetwork(ANN) andonlyindentationloadŒdisplacementresponse.Finiteelement(FE)simulationswereper- formedbasedonanisotropicplasticityconstitutivemodelincludingisotropicandkinematic hardeningtogeneratesimulatedloadŒdisplacementcurves.Inputtothenetworkincludedthe simulated(reference)loadŒdisplacementcurveswhiletheoutputcorrespondedtotheparam- etervalues.MultipleFEsimulationswereperformedtotrainthenetwork.Theeffectivenessof thisFE-ANNmethodologywastestedbyimplementingittoidentifythematerialparametersfor differentmaterialsusingexperimentalloadŒdisplacementcurvesby Klötzeretal. [ 2006 ].Itwas observedthatthemethodologycouldonlycapturetheelasticresponsewithcertainty,while thereexistedahighscatteramongtheidentplasticparameters.AmodicationtotheFE- ANNmethodologywasproposedby Hajalietal. [ 2008 ]byconsideringonlytheloadingpartof theloadŒdisplacementresponseandusingdimensionlessmaterialparametersfortheiridenti- ation.However,sigtdeviationfromexperimentalresponsetothatobtainedfromFE- ANNparameterswereobtainedespeciallyintheplasticregime.Adifferentapproach,butstill usingonlytheindentationloadŒdisplacementresponse,wasadoptedby Nakamuraetal. [ 2000 ] whereinheincorporatedthesequentialstochasticKalmanlteralgorithm,usedmostlyinsig- nalprocessing,toestimateYoung'smodulusandPoisson'sratioforfunctionallygradedma- terials.Thestrategywasalsoextendedtoidentifyplasticparametersfortransverselyisotropic materials[ NakamuraandGu , 2007 , Yonezuetal. , 2009 ].Subsequently,withtheadventandease ofaccessinmeasuringsurfacetopographies,suchasbyatomicforcemicroscopyorwhitelight interferometry, Bolzonetal. [ 2004 ]proposedtoincludetheresidualimprintafterindentation forestimatingtheconstitutiveparameters.Theyassumedanisotropicelasto-plasticmaterial modelandobservedthatinclusionoftopographydeviationintheobjectivefunctiongenerally 94 improvedtheaccuracyofparameterestimationinthegradient-baseddeterministicoptimiza- tionalgorithmthatwasused. Bocciarellietal. [ 2005 ], BocciarelliandMaier [ 2007 ]extended thescopetoelastic-perfectlyplasticmaterialmodelswithorthotropicsymmetry(usingayield surfaceapproach[ Hill , 1948 ])fororthotropicmaterialsagainstbotharticialreferencedataand realexperimentaldata.Thegeneralshortcomingsassociatedwithgradient-basedoptimization andstrongsimplicationsintheconstitutivedescriptionintermsofthealoptimizationsolu- tiondependingontheinitialparameterswasrmed.Nevertheless,withaprioriknowledge ofviableplasticparameterrangessuchanapproachgavesatisfactoryresultsformulti-layered systems[ Moyetal. , 2011a ]andaluminumalloys[ Moyetal. , 2011b ].Toreducethecomputation costofevaluatingthegradientnumerically,severalstudiesfocussedonestimatinghigh-quality approximationsofthesolutiondfromalimitednumberofnumericalresultsusingproper orthogonaldecomposition(POD)withradialbasisfunctions[ BuljakandMaier , 2011 , Bolzon andTalassi , 2013 , Bocciarellietal. , 2014 , HamimandSingh , 2017 , ArizziandRizzi , 2014 ].Other ionstoreducecomputationtimeofcalculatingthegradientforgradient-basedopti- mizationalgorithmshavealsobeeninvestigatedusingapproachessuchasparametercoupling [ RauchsandBardon , 2011 ],solvingtheadjointproblem[ ConstantinescuandTardieu , 2001 ] andmakingdimensionlessequationsbasedonaprioriFEMsimulations[ Yonezuetal. , 2010 , Wangetal. , 2010 ]. Inallabovestudies,deformationbehaviorhasbeenapproximatedbysimpliedmaterial modelsthathardlyconsiderplasticanisotropyofthematerial. Sánchez-Martínetal. [ 2014 ] postulatedvaluesforcrystalplasticityconstitutiveparameters(ofaparticularMgalloy,MN11) bycomparinghardnessvaluesfromgrainindentationsimulationsusingsetsofparameters reportedforsimilarmaterialsintheliterature,andchoosingthatonegivingtheclosestto theindentationexperiments.Comparingresponsesbetweenexperimentandsimulationofax- isymmetricinstrumentednano-indentationintoindividualgrainsbyincorporationofacrystal plasticitymodelwasrstperformedby ZambaldiandRaabe [ 2010 ]onface-centeredtetragonal ° -TiAl.Theirstudyledtotheinversemethodologyofidentifyingcrystalplasticityparameters 95 Figure5.1:Finiteelementmodelincludingindenterandsinglecrystallinesubstrate.Inden- tationissimulatedbyprescribingdownwardfollowedbyupwardmotionoftherigidindenter surfaceatconstantvelocity.Nodaldisplacementsofsubstratearefullyrestrictedonthebottom andsidefaces. usinggradient-freeNelderŒMead(NM)simplexoptimizationbasedonmatchingthesimulated loadŒdisplacementandsurfacetopography[ Zambaldietal. , 2012 ]tomeasureddataforhexag- onalcommerciallypuretitanium(cp-Ti).However,theconstitutiveparametersobtainedfor cp-Tidifferedsigntlyfromotherreports(see[ Lietal. , 2013 ]forsummary). Inthischapterthecacyoftheinversemethodologysuggestedby Zambaldietal. [ 2012 ] isanalyzedonface-centeredcubic(fcc)crystalsystemsusingfipseudo-experimental"reference datatodeterminetherobustnessofsuchanapproachwithmaterialorientation. 96 5.4Simulationset-up 5.4.1Finiteelementdiscretization Similartothepreviouswork,[ Zambaldietal. , 2012 ],athree-dimensionaliteelement(FE) modelofconosphericalindentation(seeFig. 5.1 )isgeneratedusingtheopensourcetoolkit fiSTABiXfl[ MercierandZambaldi , 2014 ].Thesinglecrystallinecylindricalsubstrateofheight 4 & manddiameter8 & misdiscretizedby4596linearhexahedralelementsbasedonameshsen- sitivitystudy(Section 5.7.1 ).Nodaldisplacementsarexedonthebottomandoutersurfaces. Theindenterofradius1 & mandconeangleof90°isassumedrigidwithaCoulombfriction cientof0.3.Itsverticaldisplacementislinearlyvariedfromzeroto0.5 & mandbackin 10s,whicharediscretizedinto1334equalincrements.Allthesimulationsareperformedus- ingthecommercialiteelementsoftwareMarc2013.1(MSCSoftwareCorporation,Newport Beach,CA)oncomputeserversmaintainedbytheDivisionofEngineeringComputingServices atMichiganStateUniversity.Toreducethecomputationtime,thegeometryisalsodecom- posedintofourequaldomains(i.e.,sectorsof90°each)usingthein-builtfunctionalityinMarc 2013.1. 5.4.2Phenomenologicalmaterialpointmodel Tosolvethemechanicalboundaryvalueproblemposedbyconosphericalindentation,aphe- nomenologicalconstitutivemodel[ Peirceetal. , 1982 ]widelyusedincrystalplasticityandim- plementedaspartoftheopensourcesimulationtoolkitfiDüsseldorfAdvancedMaterialSimu- lationToolkitfl(DAMASK)[ Rotersetal. , 2012 ]isinterfacedtoMarc2013.1throughthematerial subroutinefihypela2fl.Abriefoverviewoftheconstitutivedescriptionismentionedbelow,fur- therdetailscanbefoundin Rotersetal. [ 2010a ].Thecurrentmodelisbasedonthemultiplica- tivedecompositionofthetotaldeformationgradient F intoplasticandelasticcomponentsfor 97 describingthekinematicsunderalargestrainframework[ Lee , 1969 ] F Æ F e F p (5.1) with F p beingtheplasticdeformationgradientand F e relatingtotheelasticstretchand rotation. Therelationbetweenplasticdeformationgradient F p andtheplasticvelocitygradient L p is givenbythewrule: F p Æ L p F p (5.2) Thedislocationdefectstructureisparameterizedphenomenologicallyintermsofslipresis- tanceoneachofthetwelve{111} h 110 i slipsystems.Theplasticvelocitygradientisadditively composedfromsliprates L p : Æ X ® ° ® s ® n ® (5.3) wheretheunitvectors s ® and n ® indicatetheslipdirectionandslipplanenormalforslipsys- tem ® Æ 1,...,12.Theresolvedshearstress ¿ ® Æ C ³ F e T F e ¡ I ´ /2: s ® n ® (5.4) isthedrivingforceforslipatrates ° ® Æ ° 0 ¯ ¯ ¯ ¯ ¿ ® ¿ ® crss ¯ ¯ ¯ ¯ n sgn ¡ ¿ ® ¢ ,(5.5) withmaterialparameters ° 0 (referenceshearrate)and n (stressexponent).Componentsofthe anisotropicelasticstiffnesstensor C wereselectedas C 11 Æ 107GPa, C 12 Æ 61GPa,and C 44 Æ 29GPa.Thecriticalresolvedshearstress ¿ ® crss evolvesinthecourseofslipas[ Hutchinson , 1976 ] ¿ ® crss Æ X ¯ q ®¯ h 0 ¯ ¯ ¯ ¯ ¯ 1 ¡ ¿ ¯ crss ¿ sat ¯ ¯ ¯ ¯ ¯ a sgn à 1 ¡ ¿ ¯ crss ¿ sat ! ¯ ¯ ¯ ° ¯ ¯ ¯ ¯ ,(5.6) 98 withadjustableparameters h 0 , a , ¿ sat ,and q ®¯ rectingthesixtypesofdislocationinterac- tionsobservedinfccsystems.Inadditiontothesaturationvalue ¿ sat ,theinitialvalueof ¿ crss , denotedas ¿ 0 ,isalsofreetoadjust. Intotal,theabovephenomenologicaldescriptioncomprises12adjustableparametersin thecaseoffcclatticestructure,thosebeing ° 0 , n , ¿ 0 , ¿ sat , a , h 0 ,andsixcientsfordis- locationinteractions,i.e.,self,coplanar,collinear,Hirthlock,LomerŒCottrelllock,andglissile junction.Sincethevaluesofthematerialparameters ° 0 and n mostlyuencenumericalsta- bilityandonlymarginallythematerialmicromechanics,theyarenotconsideredasadjustable parametersintheoptimization[ Zambaldietal. , 2012 ].Moreover,thesixinteractionparame- tersaregenerallyobtainedfromalowerscaledislocationdynamicssimulationandhenceare alsoconsideredtobeconstant. 5.5Globalsensitivityanalysis Theglobalsensitivityanalysisisperformedbasedonthefielementaryeffectsmethod"pro- posedby Morris [ 1991 ]toeconomicallycollectpartialderivativesinahigh-dimensionalunit domain.Partialderivatives @ f / @ x i arecalculatedbasedonpairsofpointsthatonlydifferby ¢ Æ 0.5 p /( p ¡ 1)alongthecoordinateaxis i .Thosepairsareselectedfromagridthathastwo pointsperparameterspacedimensionandwhichispopulatedby r timesstartingapathat theoriginandtakingone ¢ stepalongeachdimensioninrandomorder.Theabsolutevalues ofthemultiplepartialderivativesresultingalongeachdimensionareaveragedfollowingthe suggestionof Campolongoetal. [ 2007 ]. ¹ ¤ i : Æh ¯ ¯ @ f / @ x i ¯ ¯ i ,(5.7) wherelargervaluesof ¹ ¤ i indicatealargerofparameter i on f .Forthecurrentstudy, p Æ r Æ 4werechosen. 99 5.6OptimizationMethodology 5.6.1Universaloptimizationmodule Figure 5.2 illustratestheoptimizationstrategythatiterativelyadjuststheconstitutiveparame- ters,performscrystalplasticityeelementsimulation(s)ofsinglecrystalindentation,and comparestheresultingloadŒdisplacementdataand/orsurfacetopographytotheirreference untilthedeviationmeetsagiventolerance.Theoptimizerusedinthisstudyisimplemented asageneralPythonclassthatcanbeequippedwithdifferentstochasticanddeterministicop- timizationalgorithmssuchasParticleSwarmOptimization[ KennedyandEberhart , 1995 ]or NelderŒMeadsimplex[ NelderandMead , 1965 ].Itsuniversalityresultsfromthepossibilityto besubclassedwithanarbitraryevaluationoftness,whichinthepresentcasetriggerstheCPFE simulation(s),thepost-processingofitsresultstoextractloadŒdisplacementdataandsurface topography,andthecalculationofthecorrespondingdeviationsfromaknownreference(ob- jectivefunctionvalue). SincethesystemofconstitutiveequationsselectedinSection 5.4.2 hasfouradjustablepa- rameters ¿ 0 , ¿ sat , h 0 ,and a ,theassociatedoptimizationproblemisfour-dimensional.Hence, forsuchrelativelylow-dimensionalproblem,thedeterministicNelderŒMeadstrategyischosen asasuitableoptionforitssolution. 5.6.2NelderŒMeadsimplexoptimizationalgorithm TheNelderŒMead(NM)simplexalgorithm,originallyproposedin 1965 [ NelderandMead , 1965 ],hasbeenoneofthebestknownalgorithmstosolveawideclassofunconstrainedopti- mizationproblemsduetoitssimplicityandeaseofimplementation.ThestandardNMsimplex algorithmconstructsasimplexhaving N Å 1verticesanditerativelyrelocatestheworstvertex untilthesimplexhasmovedandshrunktoanoptimumlocationinthe N -dimensionalparam- eterspace.SincetheNMalgorithmdoesnotdependongradientinformation,itisverysuitable forthepresentclassofinverseproblems[ HamimandSingh , 2017 ].Asimple,yethighlyeffec- 100 Figure5.2:Iterativeoptimizationsetuptoidentifyadjustableparametersofacrystalplasticity constitutivelaw.Basedonaselectedstrategy,theoptimizeradjuststheparameters,whichare thenfedasinputintotheCPFEsimulationusingthematerialpointmodelDAMASK.Objective functionvalueisobtainedastheloadŒdisplacement( ² LD )and/orsurfacetopography( ² topo ) deviationfromagivenreference. tive,ionisproposedtothealgorithmtomoveitawayfromregionswherenoviable solutiontothenessfunctioncanbefound(whentheFEsimulationdoesnotconverge).A secondationistomapthedomainofparameterspacethatisassumedtocontainthe optimumsolutionontoaunitdomainsuchthatdistancesareindependentoftheparticular directioninparameterspace. Thealgorithmtondtheminimumofanobjectivefunction f reads: Ł Generate N Å 1randompoints p intheremappedparameterspaceasverticesoftheinitial simplex, N beingthenumberofconstitutiveparameters,i.e.,thedimensionofparameter space. Ł Evaluatetheobjectivefunction f foreachvertextodeterminethebest(subscriptfibfl), second-worst(subscriptfisfl),andworst(subscriptfiwfl)one. 101 Ł Excludetheworstvertex p w anddeterminethecentroid(subscriptfig")oftheremaining simplex p g Æh p i¡ p w / N .(5.8) Ł fiRtion"of p w aboutthecentroid p g toyield p r Æ p g Å ® ¡ p g ¡ p w ¢ .(5.9) Ł Propagatethesimplexdependingonthefollowingconditions: 1. If f r isgloballybest,checkafurtherfiexpandedflpoint p e Æ p g Å ° ¡ p r ¡ p g ¢ (5.10) andreplace p w withthebetterof p r and p e . 2. If f r isbetterthanthecurrentsecondworst,replace p w by p r . 3. Otherwisecontractthebetterof p w or p r towards p c Æ p g Å ¯ ¡ p w j r ¡ p g ¢ .(5.11) Replace p w by p c if f c improvesover f w ,otherwiseshrinkallverticesaccordingto p j Æ p b Å ± ¡ p j ¡ p b ¢ (5.12) Ł Anypointforwhichtheobjectivefunctioncannotbeevaluatedisrelocatedtofallsome- wherebetweenthecentroidoftheoverallsimplexandtherionoftheinfeasible pointwithrespecttothatcentroid p Æh p iÅ » ¡ h p i¡ p ¢ ,(5.13) with » auniformrandomnumberbetween0and1.Therandomnessavoidssituations whenthegeneratedpointturnsouttobeinfeasibleaswell.Previousworksonvisco- plasticparameteridenationusingNMsimplexalgorithm[ KajbergandWikman , 2007 , KajbergandLindkvist , 2004 , Zambaldietal. , 2012 ]didnotincludeastrategytoavertin- feasiblepointsinparameterspace. 102 Figure5.3:Two-dimensionalillustrationofthesequenceofoperationsperformedbytheNM simplexalgorithmasimplementedhere.Bluetrianglemarkstheinitialsimplex,redtrianglethe onethatresultsfromthespoperationmentionedontheconnectingarrow.Verticesare labelledbynotationsasdescribedinthetext.Thestrategytonavigateawayfromaninfeasible vertexisdisplayedbythegraysimplexinthebottomleft. Ł Moreover,eachpointisforcedtoremainwithintheunitdomain. Sincetheobjectivefunctionevaluationrequiresaiteelementsimulationandiscom- putationallyveryexpensive,theientsoffirection",fiexpansion",ficontraction",and fishrink",whicharetheadjustableparametersfortheNMsimplexalgorithm[ SingerandNelder , 2009 ],arechosentobe ® Æ 1, ° Æ 0.5, ¯ Æ 2,and ± Æ 0.5,respectively,asassignedinmostimple- mentationsofNMsimplexalgorithm.Figure 5.3 illustratesthedifferentoperationsoftheNM simplexalgorithmimplementedinthisstudyalongwiththestrategytogenerateanewpointof evaluationwhenaninfeasiblepointisencounteredduringtheoptimization. 103 5.6.3Objectivefunctionforoptimization Possibleinputfortheobjectivefunctionare ² LD and ² topo ,i.e.thedifferencesbetweenmea- suredandsimulatedindentationsintermsofloadŒdisplacementresponse F ( h )andsurface topography z ( x , y ),respectively.Thereisclearagreementthattheformerisessentialfora quantitativelycorrect,buttheofincludingthesurfacetopographydeviationisnot yetultimatelysettled[ Bolzonetal. , 2004 , RauchsandBardon , 2011 , Mengetal. , 2016 ].Toclar- ifythebof ² topo ,threedifferentalternativesfortheobjectivefunction(being ² LD , ² topo , andtheiraverage)aretestedwithregardtoreproducibilityandrobustness.Reproducibility correspondstotheconsistencyoftheidentconstitutiveparametersasafunctionofthe initialsimplexchoice,whilerobustnessmeanstheconsistencyofoptimizedparametervalues betweendifferentindentedcrystalorientations. Theerror ² LD isobtainedbyintegratingtheabsolutedifferenceoftheloadingpartofthe loadŒdisplacementcurvebetweenthereference(ref)andoptimizedsimulation(sim)overeach timestep, i ,andnormalizedbytheintegralofthereferenceloadŒdisplacementresponse. ¢ F i : Æ ¯ ¯ F sim, i ¡ F ref, i ¯ ¯ (5.14) ² LD : Æ P i ( ¢ F i Å 1 Å ¢ F i )( h i Å 1 ¡ h i ) P i ( F ref, i Å 1 Å F ref, i )( h i Å 1 ¡ h i ) (5.15) Asimilarstrategyisalsousedtocalculatetheerrorinsurfacetopography ² topo :Afterbothto- pographiesareadjustedsuchthattheelevationfarfromtheindentisatzeroandinterpolated ontoaregulargrid(256 £ 256),theabsolutedifferenceinelevationwasintegratedoverallgrid points j andnormalizedbytheintegralofthereferencetopographyheight.Whencomparing withrealexperimentswhereaccurateinformationoftipgeometryisulttoacquireand maynotmatchthesimulatedtip,asystematicerrorarisesbetweenexperimentalandCPFEto- pographyofthetipimpression.Hence,onlypositiveheights,correspondingtofipileup"around theindent,wereconsideredforcalculating ² topo . ² topo : Æ P j ¯ ¯ ¯ z j ,sim ¡ z j ,ref ¯ ¯ ¯ P j z j ,ref (5.16) Thecombined(average)functionvalueofbothapproachesistermed ² combo Æ ( ² LD Å ² topo )/2. 104 Figure5.4:Crystallographicorientationsoftheindentationaxisconsideredinthepresentstudy. 5.6.4Determinationofmostsensitiveconstitutiveparameters Theglobalsensitivityanalysis,followingthefielementaryeffectsmethodflintroducedby Mor- ris [ 1991 ]anddiscussedinSection 5.5 ,isusedtodeterminetherelativeeofthefour adjustableparameters, ¿ 0 , ¿ sat , h 0 and a ,ontheloadŒdisplacementandsurfacetopography responsefordifferentcrystalorientations.Theinnceofeachofthefourparametersare qualitativelyrankedbasedon ¹ ¤ ,whichisthemeanoftheirabsolutepartialderivatives @ f / @ x where x representsapointinthefourdimensionalparameterspace(see 5.6.4 forexplanation). Threedifferentcasesofdetermining ¹ ¤ wereconsideredwherein @ f betweentwopointswas calculatedbasedoneitherthedeviationinloadŒdisplacementresponse(similarto ² LD )orde- viationinthesurfacetopographyresponse(similarto ² topo )orastheaveragedeviationofboth loadŒdisplacementandsurfacetopographyresponse(similarto ² combo ). Forthepresentanalysistheboundsofthefourparametersareselectedtobe ¿ 0 2 [1,100]MPa, ¿ sat 2 [1,100]MPa, a 2 [2,5]and h 0 2 [5,550]MPa,basedonthealreadyestablished crystalplasticityconstitutiveparametersforfccaluminum[ KalidindiandSchoenfeld , 2000 ].As 105 mentionedearlier,thevalueofreferenceshearrate ° 0 andstrain-ratesensitivityparameter n areto10 ¡ 3 s ¡ 1 and25,respectively.Table 5.1 summarizesthe ¹ ¤ valuesofthefourpa- rametersinvestigatedforthethreedifferentcasesandforsevendifferentcrystalorientations labelledinFig. 5.4 .Itistobenotedthatforthecurrentstudytherewereafewsamplepoints wheretheCPFEsimulationsfailedtoconvergeandavalid ¹ ¤ forthatparametercouldnotbe obtained(indicatedbyfiŒflinTable 5.1 ). FromTable 5.1 itisclearthat ¿ 0 and ¿ sat arethemostialparametersforallthreeob- jectivefunctions,followedbythehardeningslope h 0 whilethehardeningexponent a turnsout tobetheleastsensitiveforallthevecrystalorientations.Thesensitivityanalysisisrepeated withadifferentvalueofthestressexponent( n Æ 5)fortwodifferentcrystalorientations(fia" andfib"inFig. 5.4 )andsimilarresultsof ¿ 0 and ¿ sat beingthemostinentialparametersfol- lowedby h 0 and a areobtained,asshowninthebottompartofTable 5.1 .Thisunderpinswhy somestudies(e.g.[ Herrera-Solazetal. , 2014 , Zambaldietal. , 2012 ])didonlychoose ¿ 0 and ¿ sat asdesignvariablesintheoptimization.Lowersensitivityofhardeningparametersakintothe presentstudyarealsoobservedby Alcalaetal. [ 2008 ]. Thus,theglobalsensitivityanalysishelpstoqualitativelyrankthemostinentialparame- tersinaconstitutivelawandisverycialforthecurrentcomputationallyexpensivestudy ofcrystalplasticityparameterestimation. 106 Table5.1:Resultsofglobalsensitivityanalysisforthefouradjustableparametersusingeachofthethreeobjectivefunctions ² LD , ² topo ,and ² combo andtwovalues( n Æ 25and n Æ 5)forthestressexponentinthekineticsequationdescribedinSection 5.4.2 . Tabulatedvaluesrepresent ¹ ¤ asdescribed,withlargernumbersindicatingahigherrelativeoftherespectiveparameter. CrystalorientationsarelabeledinaccordancewithFig. 5.4 . Orientation ² LD ² topo ² combo ¿ 0 ¿ sat h 0 a ¿ 0 ¿ sat h 0 a ¿ 0 ¿ sat h 0 a n Æ 25 a1.480.500.1180.0540.660.5890.0910.0621.070.540.1040.058 b1.340.490.3450.0970.770.6700.2850.1301.060.580.3150.113 c1.470.500.1410.0930.660.6450.1170.0911.070.570.1300.092 d1.500.520.1510.1030.630.6730.1050.0911.070.600.1280.097 e1.120.510.1500.0360.850.7500.1200.0151.000.630.1340.025 f1.42Œ0.1220.0700.55Œ0.0300.0501.00Œ0.0700.060 g1.42Œ0.1200.0700.56Œ0.0800.0701.00Œ0.1000.070 n Æ 5 a1.440.420.1110.050.740.5770.1190.0701.090.500.1150.06 b1.380.420.1100.050.750.6100.1250.0751.070.510.1170.06 107 5.7Results Thepseudo-experimentalreferenceindentationsareobtainedwithaparametersetchosen as ¿ 0 Æ 31MPa, ¿ sat Æ 63MPa, h 0 Æ 400MPa, ° 0 Æ 10 ¡ 3 s ¡ 1 , n Æ 25,and a Æ 2.25,basedonthose ofaluminum[ KalidindiandSchoenfeld , 2000 ].Thesixdislocationinteractionparametersare basedon[ Kubinetal. , 2008 ]withvaluesofself=1.4,coplanar=1.4,collinear=3.0,Hirthlock =1.0,glissilejunction=1.4,Lomerlock=1.4.Inresponsetotheperformedsensitivityanalysis, thethreemostialparametersareselectedasdesignvariablesfortheoptimizationwith associatedsearchdomainsof[20,40]MPafor ¿ 0 ,[40,70]MPafor ¿ sat ,and[300,450]MPafor h 0 . 5.7.1Ieofelementmeshsize Todeterminewhetherthemeshsizeintheparametervalueidenation,thesame optimizationisperformedwiththreedifferentdiscretizations(2532,4596,and6696hexahedral elementswithlinearshapefunctions).Theeofthemeshresolutionisstudiedforan exemplarycrystalorientation(fia"inFig. 5.4 )using ² combo astheobjectivefunction.EachNM optimizationwasstartedwithidenticalinitialsimplex,andanerrortolerance ² tol Æ 0.005was setastheterminationcriterion. Figure 5.5 demonstratesthenegligibleuenceofmeshsizeontheidenilityofthe optimizedparameters.Theessevolution(Fig. 5.5a )issimilarforallthreediscretizations andleadstostablenalparameters(Fig. 5.5b ).Basedonthesedings,ameshwith4596ite elementsisselectedforthesubsequentstudies. 5.7.2Iofobjectivefunction Figure 5.6 comparesforanexemplaryindentationdirection(fifflinFig. 5.4 )andforallthree selectedobjectivefunctions( ² LD , ² topo ,and ² combo fromlefttoright)theloadŒdisplacement andsurfacetopographydeviationsafterparameteroptimizationtowithin ² tol Æ 0.005.Itis observedthatwhenusingeither ² LD or ² topo astheobjectivefunctionforparameterestima- 108 (a)nessevolution (b)optimizedparameters Figure5.5:Iofmeshsizeonthestabilityoftheimplementedinverseanalysis.The horizontallinein( a )denotesthetolerancecriterion;verticallinesin( b )showtheparameter boundsfortheoptimization. tion,therespectiveerrorinthenon-includedresponse(surfacetopographyfor ² LD andloadŒ displacementincaseof ² topo )remainsrelativelylarge(graynumbersinFig. 5.6 ).Incontrast, theuseof ² combo minimizestheerrorinbothloadŒdisplacementandsurfacetopographyre- sponsessimultaneously. 5.7.3Reproducibilityofparameteridentiationfordifferentobjectivefunctions Toestablishthereproducibility,parameteroptimizationwiththeNMalgorithmisstartedfrom edifferent(random)initialsimplicesforeachobjectivefunctionwhilekeepingtheindented crystalorientation(fif"inFig. 5.4 )constant.Figure 5.7 showstherelativedeviationsoftheop- timizedparameterscollectedfromtheerunsandcomparesthemamongthethreeobjective functions( ² LD , ² topo ,and ² combo )witherrortolerancesof ² tol Æ 0.2,0.01,and0.005.Theav- eragestandarddeviationsfromthetargetsolutionforeachoftheninecasesshowninFig. 5.7 isrepresentedbyaverticalbaradjacenttothee.Clearly,withstrictertolerancethestan- darddeviationamongmultipleoptimizationrunsisreduced,asthelengthoftheverticalbar decreasesfromtoptobottomineachcolumnofFig. 5.7 .Itistobenotedthateventhough theaveragestandarddeviationsarecomparablefor ² LD and ² combo ,therelativescatterinthe 109 ² LD ² topo ² combo ² tol Æ 0.005 ² LD Æ 0.003 0.091 0.002 ² topo Æ 0.031 0.00460.007 0 10nm Figure5.6:ComparisonofloadŒdisplacementandsurfacetopographydeviations(absolute valuesbetween0to Å 10nm)fromreferenceresponsewithparametersoptimizedtowithin ² tol Æ 0.005oftherespectiveobjectivefunction(fromlefttoright, ² LD , ² topo ,and ² combo Æ ( ² LD Å ² topo )/2)foranexemplaryindentationalongdirectionfif"inFig. 5.4 .ThereferenceloadŒ displacementcurveisshownbyblack. optimizedvaluesfor ¿ 0 and ¿ sat isnegligiblewhen ² combo wasusedastheobjectivefunction ascomparedto ² LD .Theobjectivefunction ² topo (basedonlyonsurfacetopography)exhibited thepoorestreproducibility,whereascomparablereproducibilitieswereobtainedwith ² LD and ² combo .Thelargescatterin h 0 isexpectedsinceithastheleastuenceonthenessamong thethreedesignvariables(asobservedinTable 5.1 ),rendering h 0 relativelydiculttoidentify accurately.Itisinterestingtonote(andpresentlyunclear)that h 0 exhibitsacomparablyhigh degreeofreproducibilityforthetwootherobjectivefunctions, ² LD and ² topo . Itisnotedthatwiththemoststricttoleranceof0.005onlythreeoutofverunsgenerated 110 ² LD ² topo ² combo 0.2 0.01 ² tol Æ 0.005 Figure5.7:Optimizedparameterset( ¿ 0 , ¿ sat ,and h 0 )usingdifferentobjectivefunctions( ² LD , ² topo ,and ² combo ,lefttoright)andtolerancevalues ² tol (toptobottom)resultingfrome randominitialsimplicesforonecrystallographicindentationdirection.Thehorizontal graylinemarksthetargetvalue( Æ 1),verticallinesspantheboundsofeachparameter.The verticalbartotherightofeacherepresentsthestandarddeviationoftheoverallparameter set. 111 Figure5.8:Toprowcorrespondstotheevolutionofobjectivefunctionvalue(forthebestpoint inthesimplex)withnumberoffunctionevaluations(cost)fordifferentobjectivefunctions(left toright: ² LD , ² topo , ² combo )thatdidnotreach ² tol Æ 0.005(horizontalgrayline).Therelative deviationbetweenresultingparametersetsandtargetvaluesisshowninthebottomrow.Ter- minationbeforethemaximumallowablenumberoffunctionevaluations(45)resulteddueto thedegeneracyofthesimplexatalocalminimum. parametersthatmetthistolerance.Theoptimizedparametersetforthesenon-convergedruns alongwiththeevolutionoftheirness(i.e.theobjectivefunctionvalueforthebestpointin thesimplex)withnumberoffunctionevaluationsisshowninFig. 5.8 .Fromthenessplotsin Fig. 5.8 itisevidentthatineachofthesixcasesthesimplexgotstuckinalocalminimumwith negligibleimprovementoversubsequentgenerations.Despiteallsixidentiedparametersets beingcomparablyfaroffthetarget,itisinterestingtonotethattheobjectivefunctionvaluesfor ² combo remainnotablylargerthanthosefor ² LD and ² topo . 112 5.7.4Robustnessofparameteridentiationfordifferentindentationorientations Toestablishrobustness,parameteroptimizationusingeachofthethreeobjectivefunctionsis repeatedforsevendifferentcrystalorientations(seeFig. 5.4 )startingfromrandominitialsim- plices.Thetoleranceforminimizingeachobjectivefunction( ² LD , ² topo ,and ² combo )issetto ² tol Æ 0.005,consistentwiththebottomrowinFig. 5.7 ,andthenumberofobjectivefunction evaluationsiscappedat45toavoidoverlyhighcomputationalcostincurredbytheCPFEsim- ulations. Figure 5.9 showsthetrajectoryoftheobjectivefunction(toprow)andthealdeviations (bottomrow)betweentargetandoptimizedparametersetsuponeitherreachingthespecied tolerance(graylineat0.005)orexceedingtheallowednumberoffunctionevaluations.For ² LD asobjectivefunction(bluecurves,Fig. 5.9e ),allthreeoptimizedparametersexhibitsomescat- terofabout10%aroundtheirtargetvalues.When ² topo isusedasobjectivefunction(green curves,Fig. 5.9f ),thescatterin ¿ 0 and ¿ sat ismuchlargerthanobservedfor ² LD but h 0 isidenti- relativelyaccurately.Despitethisapparentlylargescatter,theratio ¿ sat / ¿ 0 afteroptimiza- tionisfoundtobefairlystableandveryclosetothecorrectone,i.e.therelativedeviationfrom theirtargetisvirtuallythesamefor ¿ 0 and ¿ sat .Finally,with ² combo asobjectivefunction(red curves,Fig. 5.9g ),thescatterof ¿ 0 and ¿ sat aroundthetargetisthesmallestamongallthree objectivefunctions.However,acomparablylargescatterof h 0 isobserved. AsevidentinFig. 5.9b ,thetolerance ² topo · 0.005wasnotmetwithinthelimitednumberof objectivefunctionevaluationsfortwooutofthefourselectedcrystalorientations,whichindi- catesaweakoverallgradientin ² topo towardstheglobalminimum.Incontrast,allseven(four) testedcrystalorientationsmetthistolerancewithin45iterationswhenusing ² combo ( ² LD ). Figure 5.9c illustratesforoneexemplarycase(blackline)outoftheseventestedindenta- tionorientations(redlines)thetypicallyobservedtrendofanopposingevolutioninthecom- ponents ² LD (blueline)and ² topo (greenline)thataverageto ² combo (blackline). 113 (a) (b) (c) (d) (e) ² LD (f) ² topo (g) ² combo (h) ² dual Figure5.9:Bottomrowrepresentsparameterestimationstabilityfordifferentindentationorientationsanddifferentessfunc- tions(lefttoright: ² LD , ² topo , ² combo and ² dual ).Toprowgivescorrespondingobjectivefunctionvaluevs.cost,withtolerance ² tol Æ 0.005indicatedbythegrayhorizontalline.Theanalysiswasperformedfor4differentcrystalorientationsfor ² LD and ² topo ,7 differentcrystalorientationsfor ² combo ,and6differentorientationpairsfor ² dual .Greenandbluecurvesin c indicate ² LD and ² topo comprisingtheblack(exemplary) ² combo evolution. 114 5.7.5Dual-orientationobjectivefunction Theconcurrentuseofmultipleorientationsintheobjectivefunctionmightimprovethepa- rameterestimationquality,asreported,forinstance,by Herrera-Solazetal. [ 2014 ].Inorderto testforthispossibility,anobjectivefunction ² dual Æ ( ² combo ( a ) Å ² combo ( b ))/2thataveragesthe individualessesobtainedfromtwoorientations a and b isevaluatedforsixdifferentorien- tationpairschosenfromthesevenindividualorientationsofFig. 5.4 .Randominitialsimplex verticesandthetighttolerancevalueof ² tol Æ 0.005areselectedasbeforeandamaximumof 45objectivefunctionevaluationswereallowed.Thesimultaneoususeoftwoorientationsin theobjectivefunction ² dual didnotnoticeablyimprovethequalityoftheoptimizedconstitu- tiveparametersoverthesingleorientationcase ² combo (compareFig. 5.9h toFig. 5.9g ).The twomostsensitiveparameters, ¿ 0 and ¿ sat ,couldagainbeidentiedtowithinafewpercentof theirrespectivetargetvalues,with h 0 againexhibitingnotablylargerdeviations.However,due tothedoubledeffortperobjectivefunctionevaluation,theoverallcomputationalcosttoreach asptolerance(0.005inthepresentcase)was,onaverage,abouttwiceaslargeasinthe singleorientationcase(compareFig. 5.9d toFig. 5.9c ). 5.7.6Iofthereferencepoint ThestabilityoftheNMsimplexoptimizationalgorithmisinvestigatedbyselectingthreedif- ferenttargetpoints(optima)inthreedifferentparameterbounds,aslistedinTable 5.2 .The optimizationisperformedforanexemplaryorientation(fia"inFig. 5.4 )using ² combo asthe objectivefunctionwith ² tol =0.005andstartingwitharandomsimplex. ThedifferenttestcasesshowninTable 5.2 notonlyhighlightstheindifferenceofthesimplex algorithmtoreferenceparametervaluesbutalsoindicatesthatevenifthereferenceparameters areclosetotheboundaryofthedomainchosenfortheoptimization,theusedNMsimplex algorithmwith ² combo astheobjectivefunctionisabletosuccessfullyidentifythem. 115 Table5.2:Inenceoftargetpointinparameterspaceontheoptimizedparametervaluesusing ² combo astheobjectivefunction and ² tol =0.005.Thereferencevaluesforeachoftheparametersareshowninparenthesesandtherespectiveboundschosenforthe optimizationareshowninbrackets. ¿ 0 /MPa ¿ sat /MPa h 0 /MPa ² combo optimized(reference);[bounds]optimized(reference);[bounds]optimized(reference);[bounds] 19.98(20);[10,40]63.40(63);[40,70]382.0(400);[300,450]0.0038 49.60(50);[20,60]62.30(63);[40,70]416.8(400);[300,450]0.0045 30.76(31);[20,40]62.50(63);[40,70]151.5(150);[60,300]0.0040 116 5.7.7Predictionofslipsystemactivity Todeterminehowaccuratelytheslipactivitycouldbecaptured,thedeviationofaccumulated shearbetweenthereferenceparametersimulation( ° ref )andthesimulationwithoptimizedpa- rameters( ° opt )iscollectedfromallFEintegrationpointswherebothaccumulatedshearvalues exceeded1 £ 10 ¡ 4 .Thisanalysisisperformedpereachofthetwelvefccslipsystemsforseven differentoptimizedparametersetsasshowninFig. 5.10 .Theleftcolumnpresentstheseseven constitutiveparametersets,whiletherightcolumncomparesthedistributionofthe(absolute) point-wisedeviationofaccumulatedsheartotheaccumulatedshearvaluesobservedintheref- erenceparametersimulation(excludingpointswhere ° ref Ç 10 ¡ 4 ).Graycurvescorrespondto dataonindividualslipsystems,whiletheblackandredcurvesrepresenttheoverallpopulation acrossallslipsystems. FromFig. 5.10 itcanbeinferredthattheclosertheoptimizedvaluesaretothetargetforall threeadjustableparametersthebetteristheslipactivitycaptured.Thechosenobjectivefunc- tionbasedonloadŒdisplacementandsurfacetopographyisratherinsensitivetothehardening slope h 0 ,i.e.thetoleranceismetforallsevenparametersets,but h 0 notablyinencesthe slipactivities.Thus,includingslipmechanicsinformationintheobjectivefunctionmayim- provetheidenticationof h 0 ,however,quantifyingindividualslipsystemactivityisextremely cultfromrealexperiments. 117 Figure5.10:Relationbetweenaccuracyofslipsystemresponseandqualityofconstitutiveparameteridentication.Sevensetsof optimizedparameters(top),eachfuing ² combo · 0.005,sortedbydecreasingaccuracy,andresultingforthesevencrystalorien- tationsshowninFig. 5.4 .Deviationinaccumulatedshearbetweensimulationsusingthetarget( ° ref )andtheidenparameters ( ° opt )contrastedtotheaccumulatedshearvaluesobservedinthereferencevaluesimulation(bottom,excludingany ° ref Ç 10 ¡ 4 ). 118 5.8Discussion Theanalysisofreproducibilityandrobustnessfordifferentobjectivefunctionsrevealsafew noteworthypointsthatareaddressedinthefollowing. Thecombinationofbothoriginalobjectivefunctions,i.e. ² LD Å ² topo Æ 2 ² combo ,appearsto increasetheoverallsteepnessoftheresultingnesshypersurface,particularlyinthevicinityof thecorrectparameterset(target).Inotherwords, ² combo increasesfasterwithfidistanceflfrom thetargetcomparedtoeither ² LD or ² topo .Thiscanbeinferredfrom(i)thegenerallycloser matchbetweentheoptimizedandtargetvaluesof ¿ 0 and ¿ sat observedfor ² combo (Fig. 5.7 right)comparedtoeither ² LD or ² topo (Fig. 5.7 leftandcenter),inparticularatthetightesttol- erance(bottomrow),and(ii)theconsistentlylargervaluesof ² combo comparedtoeither ² LD or ² topo for(non-converged)solutionsthatareallcomparablyfarfromthetarget(Fig. 5.8 ).The latterentailsthatobjectivefunctionvaluesof ² LD and ² topo inlocalminimaarecomparable tothosefoundclosetothetarget.Hence,theywouldllaxtolerancesdespitebeingsub- stantiallydifferentthanthetargetsolution.Correspondingly, ² combo appearstoexhibitamore consistentgradientclosetothetargetpoint.Moreover,theoverallsmoothnessoftheobjective functionisalsolikelyhigherfor ² combo asitbalancestheoftentimescomplementaryresponse oftheindividualobjectivefunctions ² LD and ² topo . Anotherwaytointerpretthesuperiorperformanceof ² combo canbebasedontheobserva- tionsmadeinFigs. 5.9e and 5.9f where,ontheonehand, ² topo leadtoproperidentiationof theratio ¿ sat / ¿ 0 ,and ² LD resultedinamoreconsistentidentiationof ¿ 0 .Hence,merging ² LD and ² topo canbeexpectedtocombineboththeseialattributes,asseemstobeindeed thecase. Inthecourseofexploringtheparameterspace,infeasiblepoints(wheretheobjectivefunc- tioncouldnotbeevaluated,i.e.,theindentationsimulationdidnotconverge)areoftentimes encountered.Nevertheless,thesearchneverterminatedduetotheseobstacles,sincethepro- posedstrategyforadjustingthesimplexturnedouttobesuccessfultocontinuethesearch. TheproposedinversemethodologywiththemodiNMsimplexoptimizationalgorithm 119 appearedtobeinsensitivetotherelativepositionofthetargetintheparameterspace.Thiswas demonstratedbyselectingdifferentvaluesfor ¿ 0 , ¿ sat ,and h 0 andperformingmultipleopti- mizationrunsthatallresultedinveryaccurateidenticationof ¿ 0 and ¿ sat ,while h 0 exhibited relativelylargerscatter. Thechoiceofusingasimulatedindentationbasedonthesameconstitutivelawasusedlater onfortheparameteridenticationmeansthat,inprinciple,evenaninltolerance ( ² tol ! 0)canbereached.Figure 5.9c showsexamplesofstableratesofconvergence.However, duetotheparticulartopographyoftheobjectivefunction ² combo ,i.e.amuchhighercurvature withrespectto ¿ 0 and ¿ sat comparedto h 0 (afeaturecomparabletothefiRosenbrockflfunction), itwasnotuncommonforthesimplextoshrinkinsizemuchquickerthanapproachingthe optimumlocation.Sucharelativelysmallsimplexthentookmanystepstomovetowardsthat optimum,hence,therateoffurtherconvergencewasnotablyreduced(notshowninFig. 5.9c ). Inthisstudy,areasonabletolerancevalueandnumberofobjectivefunctionevaluations areselectedowingtotheveryhighcomputationcost.Whencomparingthecurrentficomputa- tionalexperiment"withrealexperimentalresults,thetightesttoleranceachievedinthisstudy ( ² tol Æ 5 £ 10 ¡ 3 )couldbeextremelychallengingsincethechosenconstitutivedescriptionmight notbeabletocaptureallaspectsthatinthemeasuredloadŒdisplacementorsurface topographycharacteristics.Ontheotherhand,amorerealisticphysics-basedconstitutivede- scriptionmightenableaclosermatchbetweensimulationandexperimentalreference,and, thus,smallattainabletolerances. Concurrentlyevaluatingtheresponsesoftwocrystallographicindentationdirectionsdid notnotablyreducethescatterobservedintheresultingoptimizedparameters,inparticular withregardto h 0 .Thisisunderstandable,sincevirtuallyanysetof ¿ 0 , ¿ sat ,and h 0 ident withonegivenindentationdirectionwillalsofuthesameobjectivefunctiontolerancefor anotherindentationdirection(seeFig. 5.9g ).Hence,theinclusionofthissecondevaluation doesnotaddsucientlyindependentinformation,butplainlyincreasestheevaluationcost. Incaseofmaterialswithcrystalstructureshavingmultipleslipfamilies,suchashexagonalor 120 tetragonalsystems,multipleindentationdirectionsaremorelikelytoyieldindependentde- formationresponsessincetherelativeactivityamongthedifferentslipfamiliestypicallyvaries withindentationdirection,andhenceforthosesystemschoiceofcrystalorientation(s)would playamoresigntrolethanthepresentcaseoffccmaterials. 5.9Summary Basedonthecomprehensiveanalysisperformedinthisstudy,itcanbeconcludedthatin- verseindentationanalysisusingsinglecrystalnanoindentationisareliableavenuetowards successfulidentionofmaterialparametersinfccmaterials.Thesensitivitiesofthefour adjustableparametersofthephenomenologicalcrystalplasticityconstitutivelawused, ¿ 0 , ¿ sat , h 0 ,and a ,wereindifferenttobothcrystalorientationandthestressexponent n thatcharacter- izesthematerialwbehavior.Aglobalsensitivityanalysisqualitativelyrevealedtheuence ofthedifferentconstitutiveparameters,whichthenallowstoselectthemostinentialad- justableparametersandthushelpstoreducethedimensionalityoftheoptimizationproblem. IncorporatingbothloadŒdisplacementandsurfacetopographyinformationintoanobjective functionincreasedtheeffectivenessoftheNelderŒMead(NM)simplexalgorithmtoaccurately adjusttheconstitutiveparameters.ThemodiationtotheNMsimplexalgorithmproposedin thisstudyappearstobequiteeffectiveasitallowedthesimplextoovercomeinfeasibleregions intheparameterspace.Finally,theindentationresponsefromonecrystalorientationturned outtobeientinpredictingtheconstitutiveparameters ¿ 0 and ¿ sat withhighcone, while h 0 hadslightlylowerconce.Usingtheseconclusionsformoreanisotropiccrystal structuresthathavemultipleslipfamilies,suchashexagonalcommerciallyavailabletitanium, thereliabilityofthe IIA methodologywillbetakenupinthenextchapterChapter 6 . 121 CHAPTER6 RELIABILITYOFINVERSEINDENTATIONANALYSESINHEXAGONALMATERIALS 6.1Background AfterestablishingthereliabilityoftheInverseIndentationAnalysis( IIA )forface-centered cubic(fcc)materialswithsingleslipfamilyinChapter 5 ,inthischapterthismethodologyisex- tendedtolesssymmetrichexagonalmaterialswheremultipleslipfamiliescanco-activateand inturncanaffecttheecacyofthisparameterestimationmethod.Forsingleslipfccmaterials theselectionoforientationdidnothavemuchinenceontheoutputparameters,whilefor hexagonalmaterialswithdifferentslipfamilyiscoulddominate(ornot)foraparticulartexture. Hence,itisnotunusualtopresumethatthechoiceofthecrystalorientationtoperformthissin- glecrystalinverseidenationplaysanimportantrole.Moreover,forfccmaterials,sincethe objectivefunctionforoptimizationwasrelativelysmooth(convex)themodideterministic NelderŒMeadsimplexoptimizationalgorithmturnedouttobeient,whileduetothecom- plexityintheparameterspaceforhexagonalmaterials(becauseofexistenceofmultipleslip familieswithstarkcontrastintheslipactivities)ahybridstochastic-followed-by-deterministic optimizationalgorithmmightbebettersuitabletoeliminateinfeasiblelocationsintheparam- eterspace. InthischapterthisInverseIndentationAnalysisistestedforexemplaryhexagonalmaterial ofcommerciallyavailabletitanium(cp-Ti)byconsideringvirtualexperimentalresultsasrefer- ence.LikeforcubicfccmaterialsinChapter 5 ,suchvirtualexperimentsprovidecientmeans toexclusivelyinvestigatethereliabilityofthemethodology(sincetheresultsareknownapri- ori)whilewithrealexperimentsthereexistsadditionaleffects(relatedtoexperimentalerroror shortcomingoftheusedmodel)thatmightaffecttheresultanddecreasetheciencyofthe methodology.ThroughoutliteraturetherehavebeenmultipleCRSSvaluesofcp-Tiwhichhave beensometimescontradictory Lietal. [ 2013 ],thusmakingitaninterestingmaterialtostudy. 122 Thechapterstartswithabriefbackgroundaboutidentionofslipparametersinhexagonal materials,Section 6.2 ,followedbyadescriptionofthematerialmodelbeingusedtoperform thesinglecrystalindentationsimulations.Finally,theresultsofthereliabilitystudyisdiscussed inSection 6.6 .Itiscriticaltonotethattheiencyofthereliabilityofthe IIA methodologyis crucialinimplementinginevenlowersymmetricbody-centeredtetragonal ¯ -Snthathaseven highernumberofslipfamiliesaccommodatingadeformation(13availableslipfamilies). 6.2Introduction Crystallographicslipinhexagonalmetalsinvolvesanumberofgeometricallydistinctslip familiescharacterizedbytheirslipdirectionandslipplane,suchasbasal,prismatic,orpyra- midalamongwhichthebasalandtheprismslipfamiliesrequiremuchlowershearstressesto slipcomparedtopyramidalslipsystems[ Hutchinson , 1977 ].Duetotheparticularhexagonal latticesymmetry,manyofthosefamilieshaveonlyfewsymmetricallyequivalentslipsystems (familymembers).Furthermore,differentslipfamiliesgenerallybecomeactiveatdifferentre- solvedshearstresses.Theseintrinsiccharacteristicsrenderthemechanicalprocessing(rolling, stamping,extrusion)ofhexagonalmetalstechnologicallymuchmorechallengingthanforcu- bicmetalssuchasaluminumorsteels.Consequently,substantialefforthasandisbeende- votedtosimulatethecrystalplasticityofhexagonalmetals(andtheiralloys)withthegoalto understandandpredictthebulkmechanicalresponseaswellasitsgrain-scalemicromechan- ics[ MayeurandMcDowell , 2007 , Bieleretal. , 2009 , Zhangetal. , 2010 , Yangetal. , 2011 , Wang etal. , 2011 , ChengandGhosh , 2015 , Choietal. , 2012 , Hémeryetal. , 2017 , Zhangetal. , 2015a , Baudoinetal. , 2018 ].Thus,theabilitytoquantifytheintrinsicslipresistancesbecomescrucial innotonlytheaccuratepredictionofthesesinglephasematerialsbutalsotodeterminethe effectofalloyadditionontheirplasticity. Anumberofmethodshavebeensuggested,bothexperimentallyandviasimulation,to quantifytheso-calledcriticalresolvedshearstress(CRSS)atwhichthedifferenthexagonalslip familiesbecomeactive.Adetailedlistofsuchmethodscanbefoundin Lietal. [ 2013 ]thatalso 123 introducedanewmethodologytoidentifytheCRSSvaluesofhexagonalsystemsexperimen- tallybyrelatingthefrequencyofsurfacesliptraceobservationstotheirtheoreticalpropensity. ZambaldiandcoworkerspioneeredtheideaofiterativelyadjustingtheCRSSvaluesinacrystal plasticitysimulationofsinglecrystalindentationwithaconosphericaltipuntilthesimulated loadŒdisplacementresponseandremnantsurfacetopographymatchthecorrespondingexper- iment[ ZambaldiandRaabe , 2010 , Zambaldietal. , 2012 ]. Herrera-Solazetal. [ 2014 ]obtained singlecrystalmaterialparametersusingagradient-basedLevenbergŒMarquardtoptimization algorithmthatmatchedstressŒstrainresponsesofniteelementsimulationsofarepresentative volumeelementstocorrespondingexperimentswithmultipleloadingconditions.Theabove twomethodologiesfallundertheclassofinverseproblemswheretheproperidentionof theCRSSvaluesminimizestheerrorbetweenthesimulatedandexperimentalresponse.Ina morerecentstudy,theplasticityyieldparameters(CRSS),inhexagonalTi-7Al,alongwiththe correspondingevolutionoftheirplasticbehaviorwasinvestigatedbothatroomtemperature andhightemperatureusingfarhighenergyX-raydiffractionmethods(ffŒHEDM) Pagan etal. [ 2017 , 2018 ].Withsuchdiversetechniquesofparameteridenationthereexistsawide discrepancyinthesubsequentreportedvaluesofCRSSforthesamematerial,[ Lietal. , 2013 , Wangetal. , 2017 , Dastidaretal. , 2015 ],therebydecreasingthereliabilityofsuchpublishedval- ues.Inthischapterthe IIA methodology,thatuses singlecrystal responsetoidentifytheCRSS valuestherebyeliminatingtheauxiliaryeffectsassociatedwithgrainboundaries,precipitates, andcrystallographicneighborhood,isusedtostudyit'scacyforhexagonalmaterials.The originalmethodologyproposedby Zambaldietal. [ 2012 ]andlatermodiedandstudiedin detailin[ ChakrabortyandEisenlohr , 2017 ]whereitsreliabilitywasalsoestablishedforfaceŒ centeredcubicmaterialsChapter 5 .Asamodelhexagonalmaterial,commerciallypuretita- nium(cp-Ti)isanalyzedandthepossibilityofitstwinningisneglectedtofocusexclusivelyon itsslipbehavior.Moreover,sincecomparingactualexperimentalindentationresponsewith simulationincludesthelimitationsoftheunderlyingcrystalplasticitymodelŒthereliabilityof thismethodologyistestedagainstvirtualexperimentswheretheexpectedCRSSvaluesforthe 124 Figure6.1:Schematicrepresentationoftheinverseindentationanalysis. slipfamiliesareknownapriori. Thischapterstartswithadetaileddescriptionofthemethods,Section 6.3 followedbyintro- ducingtheconceptofvirtualexperimentsinSection 6.4 withthedescriptionoftheconstitutive crystalplasticitymodelinSection 6.4.1 .Thereliabilitystudyofthismethodincp-Tiisdetailed inSection 6.6 followedbydiscussionaboutsomeoftheconcernsregardingthemethodology. 6.3CRSSvaluesfromsurfacetopographyandinstrumentedindentation TheCRSSvaluesfordifferentslipfamiliesareinverselypredictedbycomparingtheexperi- mentalandcrystalplasticityiteelement(CPFE)simulatedsinglecrystalnanoindentation(s) responseswithaspheroconicalindenter.ThisInverseIndentationAnalysis( IIA )methodology (shownschematicallyinFig. 6.1 )isassociatedwithanobjectivefunction,wheretheCRSSvalues aretheadjustableparametersforoptimization,andanoptimizationalgorithmthatminimizes theobjectivefunctionwiththeoptimumpointbeingthepredictedsolutionfortheCRSSval- ueswiththismethodology.Generally,fromindentationteststwomajoroutputsareobtainedŒ theloadŒdisplacementresponseandthesubsequentsurfacetopography.Ithasbeenestab- 125 lishedinChapter 5 andin ChakrabortyandEisenlohr [ 2017 ],thatcombiningboththeloadŒ displacementresultswiththesurfacetopographyprovidedabetterchanceofaccuratelyiden- tifyingtheparametersfortheoptimizer.Hence,inthisstudyaswell,aweightedsummation oftheerrorintheloadŒdisplacement ² LD andsurfacetopography ² topo betweenthesimulated andthereferencedataisusedtotheobjectivefunction.Thechosenweightsbeing0.3 for ² LD and0.7for ² topo .Thechoiceofgivingmoreweightagetotheerrorinsurfacetopogra- phyisbasedontheassumptionthattheslipbehaviorisredmoresigntly(andnon- uniquely)inthesurfacepileŒuptopographyascomparedtotheloadŒdisplacement.Moreover, inthisworkahybridoptimizationalgorithmisusedtominimizetheobjectivefunctioncon- stitutingatastochasticparticleswarmoptimization(pso)followedbythedeterministic NelderŒMeadsimplex(NM)tominimizetheobjectivefunction.Theideabehindsuchase- lectionistoensureproperexplorationandexploitationoftheparameterspace,inthat,the stochasticalgorithmensuresahigherexplorationwhilethedeterministicalgorithmisabetter exploiter. 6.4Virtualexperiments Inthecontextofthispaper,virtualexperimentsrelatetotheprocedureofgeneratingex- perimentaldatawithsimulationswithaprioriknownparameters.Hereinweemploycrystal plasticitysimulations,thattakeintoaccountthetextureeofthematerial,tosimulate thematerialresponseaftersinglecrystalnanoindentation(s).Performingsuchavirtualexper- imentalanalysisisbenecialindeterminingthereliabilityofamethodologysincethesolution isknownaprioriwhichleadstoproperquantionoftheerrorbetweentheactualsolution andthepredictionbyexclusiveconsiderationofmethodologywithouttheinnceofother factors(suchasprecipitates,grainboundaries,inclusions,etc.).Thecrystalplasticitysimula- tionsareperformedusingthematerialsolverinDAMASKandusingthecommerciallyavailable iteelementboundaryvalueproblemsolverMSCMarcŒMentat.Thenumericsofthecrystal plasticityiteelementsimulationisthesameasthatdiscussedinthepreviouschapterChap- 126 ter 5 .Theconstitutivematerialdescriptionandthegeometryusedinthisstudyisdiscussed next. 6.4.1Constitutivematerialmodel Themodelframeworkisbasedontheitestraindeformationtheorywheretotaldeformation gradient, F , F Æ F e F p (6.1) ismultiplicativelydecomposedintoplasticandelasticcomponents( F e and F p ,[ Lee , 1969 ]). Therelationbetweenplasticdeformationgradient F p andtheplasticvelocitygradient L p is givenbythewrule: F p Æ L p F p (6.2) Theplasticvelocitygradient L p Æ X ® ° ® s ® n ® (6.3) isadditivelycomposedfromcrystallographicslipatrates ° ® .Theunitvectors s ® and n ® align withtheslipdirectionandslipplanenormalofeachslipsystem ® Æ 1,..., N ,with N indicating thenumberoftotalslipsystemsacrossallconsideredslipfamilies.Theresolvedshearstress ¿ ® Æ C ³ F e T F e ¡ I ´ /2: s ® n ® (6.4) isthedrivingforceforslip,where C denotesthe(fourth-order)tensorofelasticity. Crystallographicslipiscommonlymodeledbasedonthephenomenologicalconstitutive descriptionpioneeredby Peirceetal. [ 1982 ].Inthatmodel,whichisalsousedforthisstudy,the dislocationdefectstructureisparameterizedintermsofastress g ® thatresistssliponsystem ® .Thiscriticalresolvedshearstressevolvesinthecourseofslipas[ Hutchinson , 1976 ] g ® Æ X ¯ q ®¯ h 0 ¯ ¯ ¯ ¯ ¯ 1 ¡ g ¯ g 1 ¯ ¯ ¯ ¯ ¯ a sgn à 1 ¡ g ¯ g 1 ! ¯ ¯ ¯ ° ¯ ¯ ¯ ¯ ,(6.5) 127 withinitialhardeningslope h 0 Æ 200MPa,hardeningexponent a Æ 2.0,andsaturationslipre- sistance g 1 Æ 300,200,and300MPaforbasal,prism,andpyramidal h c Å a i slipfamiliesre- spectively,neglectingthesliponthepyramidal h a i planes(aswasalsodonein Zambaldietal. [ 2012 ]).Forthecurrentvirtualruns q ®¯ isselectedas1forbothselfhardening( ® Æ ¯ )andlatent hardening( ® 6Æ ¯ ).Crystallographicslipoccursatrates ° ® Æ ° 0 ¯ ¯ ¯ ¯ ¿ ® g ® ¯ ¯ ¯ ¯ n sgn ¡ ¿ ® ¢ ,(6.6) withreferenceshearrate ° 0 Æ 0.001s ¡ 1 andstressexponent n Æ 20.Thekinematicsofthemate- rialsolveroutlinedaboveareimplementedaspartoftheopensourcesimulationtoolkitfiDüs- seldorfAdvancedMaterialSimulationToolkitfl(DAMASK)[ Rotersetal. , 2012 ]whichiscou- pledwiththecommercialiteelementsolverMSCMarctosolvethesinglecrystalindentation boundaryvalueproblem. Forthisinverseanalysistheinitialvalueofthe g forthethreeslipfamilies,basal,prism,and pyramidal h c Å a i (whicharethemostobservedslipfamiliesincp-Ti),areconsideredasad- justableparametersforoptimizationwithathree-dimensionalparameterspace.Pyramidal h a i slipandtwinisneglectedtoreducethedimensionalityoftheproblem,whileotheradjustable parametersofthemodelsuchas g 1 ofeachfamily,initialhardeningslope h 0 ,exponents n , and a areallxedduetotheirlowersensitivitytotheobjectivefunctionasdemonstratedinthe previouschapterinSection 5.6.4 . 6.4.2Virtualindentation Thecrystalplasticityiteelement(CPFE)indentationsimulationsareperformedusingcom- mercialsoftwareMarc2013.1(MSCSoftwareCorporation,NewportBeach,CA)andusingthe materialmodelinDAMASKthatisinterfacedthroughthematerialsubroutinefihypela2flon computeserversmaintainedbytheDivisionofEngineeringComputingServicesatMichigan StateUniversity.Themodelgeometry,showninFig. 6.2 ,consistsof19980hexahedralelements and22693nodeswithdimensionsof8 & mx8 & mx4 & m.Furthermore,theregionclosetothein- 128 Figure6.2:GeometrygeneratedinMarc-Mentattoperformtheindentationsimulations. denterisdiscretizedsinceitexperiencesthemostdeformation.Thenodaldisplacements areonthebottomandoutersurfaces.Indentationisperformedtoadepthof0.3 & mwitha rigidspheroconicalindenteroftipradius1 & mwithaconeangleof90°andnocontactfriction isconsideredbetweentheindenterandthesubstrate.Theverticaldisplacementoftherigid indenterto0.3 & misdonein10secondsdiscretizedinto800equalincrements.Additionally, toreducethecomputationtime,thegeometryisdecomposedintofourequaldomains(i.e., sectorsof90°each)withinMarcandthensimulated. 6.5Hybridoptimizationalgorithm Asmentionedpreviouslytheinverseanalysisusesahybridoptimizationalgorithmthatis writteninPython.Thetwoalgorithmsbeingusedaretheinitialstochasticparticleswarmop- timization(pso)algorithmdescribedin[ EberhartandShi ]andaversionofthede- terministicNelderŒMead(NM)simplexalgorithmasusedin ChakrabortyandEisenlohr [ 2017 ] 129 Figure6.3:Illustrationofthestochasticparticleswarmoptimizationalgorithmbeingusedin thisstudyfor IIA . andinitiallyintroducedby NelderandMead [ 1965 ]. TheNMsimplexmethodhavealsobeenintroducedindetailinpreviouschapterChapter 5 , andthesameisusedinthisstudyaswell(samevalueofthealgorithmparameters).Thereason forchoosingthisdeterministicNMsimplexmethodistwofoldŒrstitiseasytoimplement, andsecondlyitisagradientfreemethodwhichishighlybsincecalculationofgradi- entsforsuchanon-linearFEproblemiscomputationallyextremelyexpensive.Thestochastic psoalgorithmusedinthisstudyusessetofalgorithmparametersassuggestedby Eberhartand Shi .Inthisalgorithmthetrajectoryofaparticleinthepopulationisgovernedbytwoattractors Œi)globalbestpositionoftheparticleinthepopulation;andii)particle'sownbestpositionas illustratedinFig. 6.3 .Thisallowsecientexplorationoftheparameterspacebeforeclosing towardsthe(global)optimumsolution.Forthe i th particleina D -dimensionalspacerepre- sentedas X i Æ ( x i 1 , x i 2 ,..., x iD )andwiththebestpreviousposition(positionwithit'sbest- ness)givenby P i Æ ( p i 1 , p i 2 ,..., p iD ),andwiththeglobalbestposition(positionoftheglobal 130 bestess)being P g ,thevelocityoftheparticle i , V i ,andtheirsubsequentposition X i , new arethengivenas: V i Æ w ¤ V i Å c 1 ¤ rand() ¤ ( P i ¡ X i ) Å c 2 ¤ rand() ¤ ( P g ¡ X i )(6.7) X i ,new Æ X i Å V i (6.8) (6.9) c 1and c 2areaccelerationandaresetto1.2inthisstudywith w beingtheinertiaweightthatwas setto0.3.therand()arefunctionsgeneratingrandomnumbersbetween(0,1).Themaximum velocityineachdirectionwasalsorestrictedto75%inthatdimension.Itisimportanttonote thatthechoiceoftheseparametervaluesarebasedonageneralthumbrule,sinceduetothe highcomputationcostofeachCPFEcalculationaparametersensitivitystudyisimpractical, andhenceavoided.Moreover,duetothishighcomputationcostthetotalnumberofparticlesin thepopulationisrestrictedto10(forthecurrentthreedimensionalproblem),whichislowand henceanexhaustiveexplorationisnotpossible,however,havingthesubsequentdeterministic rundidachieveresultsclosetotheglobalminimumaswillbeshownlater. Anothercriticalaspectofthisinverseproblemisthepresentofinfeasibleregionsinparam- eterspace,orcombinationsofparametervaluesforwhichtheCPFEsimulationfailstocon- verge.Forthepsoalgorithm,wheneversuchaninfeasiblepointisobtainedaveryhighpenalty of1 £ 10 10 isreturnedtherebycausingalargepenaltyinthatlocation.Thisispossiblesincethe stochasticpsodoesnotrelyontheexactvalueofthetnesstoproceed.Whileforthedetermin- isticNMsimplexalgorithmwheretheexactvalueofnessisneededtoproceed,thealgorithm avertsanyinfeasiblepointbyringitaboutthecenterofgravityofthecurrentsimplexas explainedinSection 5.6.2 andalsopublishedin ChakrabortyandEisenlohr [ 2017 ]. Thetolerancefordecidingtheoptimumissetto2 £ 10 ¡ 2 alongwithanadditionaltermi- nationcriterialofamaximumof100FEevaluationsforeachoftheoptimizationalgorithm. Thetoleranceof2 £ 10 ¡ 2 isdecidedsuchthatitisstrictenoughtocapturetherelativeactivity ofthedifferentslipfamiliestogiveauniquesolutionoftheoptimization(withrespecttothe 131 reference),whilelaxenoughtonotrequireveryhighFEruns(morethan100).Theinitialpop- ulationof10particlesforthepsoalgorithmisselectedrandomlyfromadomainof10MPato 400MPaforallthethreeslipfamilies,whiletheinitialsimplexforthedeterministicNMsim- plexalgorithmwithfourpoints(correspondingtotheverticesofthefourdimensionalsimplex inthecurrentproblem)isconstructedbyarandomselectionfromtheoptimizedal)pso population.RandomselectionforgeneratingtheNMsimplexissuitablesincetheoptimized psopopulationislessscatteredandmoreconcentratedinthefeasibleregionintheparame- terspace.Furthermore,similarto ChakrabortyandEisenlohr [ 2017 ],theparameterdomainis convertedtoaunitdomaintoexcludeinenceofindividualvaluesoftheparameters. 6.6Reliabilityofinverseindentationanalysis Theadvantageofusingvirtualexperimentstopredictthereliabilitiesofthedifferent methodologiesofpredictionofCRSSvaluesistheaprioriknowledgeoftheexpectationŠhence afaircomparisoncanbedonebetweenthepredictedCRSSandthetarget/expected/input CRSS.Thereliabilityofthe IIA methodologyisassessedbasedonsixdifferentsinglecrystal orientationsandfortwodifferentCRSSinputvalues. 6.6.1SelectingorientationsforperformingtheInverseIndentationAnalysis Akeyaspectforhexagonal(orotherlowsymmetrymaterials)isthepresenceofmultipleslip familiestoaccommodateadeformation,hence,any(randomly)selectedorientationmaynot besucientincapturingtheactivityfromalltheslipfamilies,therebymakingsomeofthe slipfamilieslesssensitivetodeformation.Thus,aneffectiveselectionofcrystalorientationto performthe IIA inhexgonalcp-Tiiscrucialtoenabletheoptimizertoaccuratelyidentifytheslip parametersforalltheslipfamilies.Previously,suchaconsequencewasavertedbyconsidering allorientationstogetherin[ Zambaldietal. , 2012 ],however,thisdependencewasnotexplicitly addressed. Inthisstudy,therelativesensitivitiesofdifferentslipfamilies(i.e.basal,prism,andpyrami- 132 Figure6.4:Differentcrystalorientationsusedtoperformthesensitivityanalysisinhexagonal cp-Ti. dal h c Å a i )fordifferentcrystalorientationsselectedfromthestandardstereographictriangle ofhexagonalcp-Ti,showninFig. 6.4 ,isqualitativelyanalyzedbycalculatingthechangeinthe combinedloadŒdisplacementandsurfacetopographyresponsesforachangeintheCRSSval- uesforthedifferentslipfamiliesforthedifferentcrystalorientations. Thissensitivityanalysisisperformedusingamethodofelementaryeffectsorig- inallyproposedby Morris [ 1991 ]andby[ ChakrabortyandEisenlohr , 2017 ].The methodisalsooutlinedinthepreviouschapterinSection 5.6.4 ,whereitwasusedtoidentify themostsensitiveadjustableparametersofthephenomenologicalpowerlawbeingusedtode- scribethematerialbehavior.Thismethodessentiallyprovidesaientwayofcalculatingthe derivativeoftheoutputfunction(loadŒdisplacementandtopographyresponse)withrespectto achangeininputparameter(CRSS)inahighdimensionalspace.Theciencyisinselecting relevantpointsintheparameterspace.Thesensitivityofacrystalorientationtodifferentslip families'CRSS(parameters)isthencalculatedbytakingthemeanofabsolutesensitivitiesfor thedifferentparametersforthecrystalorientation.Itisimportanttonotethatsuchamethod isaqualitativeestimationoftherelativesensitivitiesandprovidesaguidanceinmakinganef- 133 fectivechoiceofcrystalorientationstoperformthe IIA .Inthisstudythesensitivityanalysisis performedforalltheorientationsshowninFig. 6.4 forthebasal,prism,andpyramidal h c Å a i slipfamilieswithintheboundsof[50Œ500MPa]forallthethreefamilies.Theresultingsensi- tivitiesisshownqualitativelyinFig. 6.5 forthethreedifferentfamilies(blueŒbasal;redŒprism; andorangepyramidal h c Å a i ).Thelocationofthecirclescorrespondtothecrystalorientation forwhichtheanalysisisdone,whilethediameterofthecirclerepresentsthesensitivityofthe particularslipfamily.Thus,foracrystalorientationhavingahighersensitivityforthebasalslip family(meaningbasalslipsystemsaredominantindeterminingthedeformationresponsefor thatcrystalorientation)itwouldbehavingalargercirclecomparedtothoseoftheotherslip familiesatthesamelocation.Theimportanceofperformingsuchananalysisistheunderlying assumptionthatorientationforwhichaparticularslipfamilyishighlysensitive(dominantslip mode;largercircle),theoptimizationalgorithmwillhaveabetterchanceofaccuratelypredict- ingtheCRSSvalueofthatfamilywhentheparticularorientationisselectedforoptimization. Basedontheaboveassumption,ahypothesiscanbeproposedthatstatesthatthecrystalori- entationswherealltheslipfamiliesarehighlysensitivetoallthethreeslipfamiliesshouldbe selectedtoperformthe IIA foraccuratepredictionsoftheadjustableparameters(CRSS)with theleastcomputationtime. 6.6.2Results Totestthishypothesis,six(arbitrary)differentcrystalorientationsareselected,andthere- liabilityofthe IIA forpredictingCRSSvaluesforthethreedifferentslipfamiliesconsidered (i.e.basal h a i ,prism h a i ,andpyramidal h c Å a i )isevaluatedfortwodifferentsetsofin- putCRSSvalues.TheresultsthusobtainedarelistedinTable 6.1 .Asmentionedearlier, theInverseIndentationAnalysisinthisstudyusesahybridoptimizationalgorithmwith astochasticparticleswarmoptimization(pso)followedbythedeterministicNMsimplex method.InTable 6.1 thebestparameters(globalbest)obtainedaftertheinitialpsorunis shownincolumns6,7,8,whilethealpredictedparameters,CRSS,oftheoptimizerafter 134 (a)basal h a i (b)prism h a i (c)pyramidal h c Å a i Figure6.5:Sensitivityofdifferentcrystalorientationstodeformationondifferentslipfamilies asrepresentedbytheradiusofthecircles. 135 thesubsequentNMsimplexalgorithmisshownincolumns10,11,and12,foreachofthethree slipfamiliesofbasal,prism,andpyramidal h c Å a i respectivelylabelledasfibasal",fiprism"and fipyrCA"inTable 6.1 .Rows2,3,and4showsthesensitivityvaluesforthebasal,prism,and pyramidal h c Å a i slipfamiliesrespectivelybasedonthesensitivityanalysisdiscussedinthe previoussectionandillustratedinFig. 6.5 .InFig. 3.11 ,thecolumnshowsthesixsingle crystalorientationsforwhichthereliabilitystudywasdone,moreover,thetableisdividedinto twosectionsŒthetopsixrowsshowsthe IIA resultswithareferenceparameterof[80,110,180] MPacorrespondingtobasal,prism,andpyramidal h c Å a i slipfamiliesrespectively;whilefor thebottomsixrowstheoptimizationresultswithareferenceparameterof[120,60,180]MPa forthethreeslipfamilies.Thereasonforchoosingsuchreferencesisbasedonthefactthatin theformercasethetwomostactiveslipfamiliesincp-Ti,basalandprism,havetheirCRSSval- uesveryclosetoeachother(i.e.,80and110MPa)whileforthelattercasethesevaluesarefar apart(i.e.,120and60MPa).Hence,itcanbepresumedthatfortheformerreferenceCRSScase wherethebasalandprismslipfamilieshavecomparablevalues,thetaskofaccuratelyidenti- fyingthebasalandprismCRSSvaluesismorecultsincebothbasalandprismsystemscan leadtothenaldeformationresponseatsimilarglobalstressstate(duetotheircloseactivation values)ascomparedtothelatterreferenceCRSScase.Moreover,thetworeferenceCRSScon- ditionsalsorepresentstwoclassesofhexagonalmaterialsŒone(likecp-Ti, c / a ratiolessthan 1.6333)wheretheprismismoreactivethanbasal;andothers(likeTi525, c / a rationgreaterthan 1.6333)wherebasalismoreactivethanprismslip,therebyfurtherhighlightingtheacyof the IIA methodology. ItcanalsobenoticedfromTable 6.1 thatforbothCRSSreference,thealoptimizedpa- rametersareclosetotheexpectedreferenceformostofthesixorientationsexceptorientation fig".Also,inalmostallruns(forbothreferenceCRSSreferences)theoptimizationproceededto thesubsequentNMsimplexrunaftertheinitialpso,exceptforcrystalorientationfid"forCRSS reference[120,60,180]MPa,wherethetoleranceof2 £ 10 ¡ 2 isachievedinthepsostep.As canbeeseenfromtheresults,sucharelativelylaxtoleranceselectedforthecurrenthexagonal 136 materialstudy,ascomparedtothatsetinfccmaterials,isstrictenoughforthepredictedpa- rameterstobeuniqueandclosetotheglobalminimum(referenceCRSSvalueshighlightedin boldinTable 6.1 ).ForthereferenceinputCRSSof[80,110,180]MPacorrespondingtobasal, prism,andpyramidalslipfamilies,thetoleranceof2 £ 10 ¡ 2 isnotsatfororientationsfia", fic",andfiq"(apartfromfig").Amongthethree,fororientationsfia"andfic"theNMsimplex optimizationreachedthemaximumallowableFEcalculationsof100therebyleadingtotheter- minationoftheoptimization,whilefororientationfiq"thesimplexconvergedprematurelyto alocalminimum.ForthereferenceinputCRSSvaluesof[120,60,180]MPacorrespondingto basal,prism,andpyramidalslipfamilies,thetoleranceisnotachievedfororientationfic"(apart fromfig")becausethesimplexconvergedprematurelytoalocalminimum. 137 Table6.1:Resultsofthe IIA analysisperformedforsixdifferentcrystalorientationslabelledinFig. 6.4 fortwodifferentreference input CRSS. OrientationsensitivityPSOresultsNMresults basalprismpyrCAnessbasalprismpyrCAessbasalprismpyrCA 80 , 110 , 180 a0.430.440.8720.1909165.9768.47260.560.04783.06104.55179.22 c0.410.470.8640.1736168.0466.7238.70.03481.14118.1196.1 d0.490.2840.8650.255542.7172.7330.80.00781.9110.3179.3 g0.2470.0890.660.1533400.0132.6110.560.1533400.0132.6110.56 k0.460.480.850.153113.6793.15282.40.016480.0114.17187.63 q0.450.480.900.1161100.3100.4219.40.023381.31116.7192.1 120 , 60 , 180 a0.430.440.8720.09168.3132.91300.670.019129.757.1185.0 c0.410.470.8640.106144.544.8394.50.098154.738.6399.0 d0.490.2840.8650.004120.360.6181.1xxxx g0.2470.0890.660.1441370.068.2117.10.1441370.068.2117.1 k0.460.480.850.0325127.853.7200.20.019129.456.0187.0 q0.450.480.900.1932236.729.8269.10.012113.861.1173.6 138 6.7Discussion Theintermediateoptimumobtainedafterthestochasticpsoalgorithm(shownincolumns 6,7,8inTable 6.1 )showsthelimitationofthepsoalgorithminachievingthenesstolerance (of2 £ 10 ¡ 2 )formostorientations.However,forbothreferenceCRSSruns,theinverseanalysis isabletoapproachthetargetafterthedeterministicoptimizationalgorithmformostofthe crystalorientationsstudied(shownincolumns10,11,12inTable 6.1 ).Thisisnotunexpected, since,thepsoalgorithmisusedtoientlyexploretheparameterspaceinordertoidentifya feasibleregion.Moreover,thepopulationsizeisalsoquitesmall(i.e.,10particles)whichalso reducesthecacyofthepsoalgorithm. Inbothcases,theoptimizationsolutionissigantlydifferentfromthetargetforthecrys- talorientationlabelledfig"thatalsohastheleastsensitivityforallthreeslipfamiliesascom- paredtothesensitivitiesoftheslipfamiliesforalltheothereorientations,illustratedand labelledinFig. 6.6 . Asmentionedintheprevioussection,forsomeoftheorientationsinbothreferenceCRSS runs,thetolerancewasnotmet(apartfromorientationfig")inthenumberofFEruns. However,therelativeinenceofeachoftheslipfamiliesisqualitativelycapturedforallof theseorientationsthathadhighsensitivitiesforalltheslipfamiliescomparedtoorientation fig"(wheretheoptimizationfailed).Itisalsointerestingtonotethatfortheorientationswhere theobjectivefunctiontoleranceof2 £ 10 ¡ 2 ismet,theoptimizedvaluesarewithin7%errorof thetargetvalues,indicatingtheeffectivenessofthechosentolerance.Thus,theinitialhypoth- esisaboutselectingcrystalorientationswhere all thethreeslipfamiliesarehighlysensitive forperformingthisinverseanalysiswiththeproposedhybridoptimizationalgorithmappears tobeagoodoneinaccurateandreliableestimationofthoseCRSSvalues.Therefore,sucha methodologycannowbeusedinevenlowersymmetricbody-centeredtetragonalSntoiden- tifyitsplasticityparameters. 139 Figure6.6:ResultingCRSSvaluesforallthesixsinglecrystalindentationsforthetwodifferentreferenceCRSS. 140 6.8Summary AnimportantchallengeforidenationofCRSSvaluesforthedifferentslipfamiliesus- ingsinglecrystalorientationsistheselectionofthecrystalorientation(s).Mostoften,abunch oforientationsareselectedandusedtominimizetheerrorbetweenthesimulatedandrefer- enceresponses(loadŒdisplacementand/ortopography),however,forthemtheinitialguessfor theoptimizerand/ortheparameterboundsareselectedbasedonsomeaprioriknowledge, [ Zambaldietal. , 2012 ].Inthisstudyanattemptwasmadetodesignamethodologythatwould notrequireanyaprioriinformationabouttheCRSSvaluesandcouldreachthetargetsolution withaantlylargeparameterbounds,closetoablackboxoptimization.Toestablishthe reliabilityofsuchanapproach,virtualsimulationswereusedasexperimentalreference(with knownCRSSvalues)andtheinverseanalysiswasemployedtoseewhethertheinputCRSScan beobtainedafteralminimization. Thechallengeofselectingproperorientationistackledbyselectinganorientationwhose indentationresponseishighlysensitiveforalltheslipfamilies.Fromtheresultsoftheinverse indentationanalysisperformedinthisstudyforsixdifferentcrystalorientations,Table 6.1 ,it isobservedthatfortheorientationthatisleastsensitive(fig")forallthethreeslipfamilies,the optimizationalgorithmfailedtoconvergetoafeasibleregion(regionclosetothetarget)inthe parameterspace.Thisisexpectedsincelessersensitivityimplieslesserinenceoftheparam- etersontheselectedobjectivefunctionvalue.Fortheothereorientationswithrelatively highersensitivities,theoptimizedsolutionisveryclosetothetarget.However,itisimportant tonotethatwiththeselectedparametervaluesforthe IIA framework(sptolerance,op- timizationparameters,andmaximumallowablefunctionevaluations)thesimplexsometimes convergestoalocalminimaevenforhighsensitiveorientationsandthetoleranceisnotmet (fia",fic",fiq").However,evenforsuchcasestherelativeeofeachoftheslipfamilies (CRSSvalues)isqualitativelycapturedanditcanbepredictedthattheselocalminimaareina feasibleregionintheparameterspaceandisclosetotheglobalminimum(thetargetsolution). Also,itappearsthatinsteadofconsideringmultiplecrystalorientationsinparallelformini- 141 mization,usingafewhighsensitivesingleorientationsseparately,issucienttoconclusively predicttherelativeslipsystemresistanceofthedifferentslipfamiliesforhexagonalmaterials. Thus,havingestablishedthereliabilityoftheproposedInverseIndentationAnalysisforfcc andhexagonalmaterialsbasedonorientationselectionafterperformingasensitivityanalysis, thisproposedmethodologycannowbeusedtoidentifyplasticityparametersfor ¯ -Snandpro- videevenhigheritysimulationresults. 142 CHAPTER7 CONCLUSIONSANDFUTUREWORK 7.1Conclusions Inthisthesisamulti-physicsfullycoupledchemo-thermo-mechanicalmodelinacrystal plasticitycontinuummechanicalframeworkisestablishedtoinvestigatethestress-drivendif- fusionofSnatomsintinundergoingthermalstraining,inordertounderstandthegov- erningfactorsfortheprocessofwhiskernucleationandtheirsubsequentkinetics.Through theinitialthermo-mechanicalmodeloutlinedinChapter 3 ,thedominantroleoftexture onthegrainboundaryhydrostaticstressdistribution(thatsolelymodulatestheatomtrans- portintheisestablishedascomparedtograingeometryandgrainsizedistribution.Itis alsopredictedfromthethermo-mechanicalsimulationsthattherelacksanylongrangespatial gradientsinstressesthatwouldpromotelong-rangediffusiontherebyre-enforcingthenotion thatthewhiskernucleationprocessisindeedalocalphenomenon.Duetothelocalizednature ofthecurrentproblem,itispossibletoinvestigateareducedgeometryforthemoreinvolved chemo-thermo-mechanicalmodeldiscussedinChapter 4 .Withthepreliminaryresultsfrom thefullycoupledsimulations,itcanbeinferredthatthekinematicconsequenceofatomre- distributionhasanegligibleeffectonthestressrelaxationascomparedtotheplasticity. Moreover,suchakinematicconsequenceofatomsdiffusingfromaregionofhighcompression toaregionoflowcompressionalongthegrainboundarynetworkismostpronouncedinthehy- drostaticstressvaluesandhasminimaleffectontheshearandnormaltractioncomponentsfor thestudiedmicrostructure.However,addingthekinematicsduetotransportindeedreduces thestresses,ascomparedtothecasewherenodiffusionalkinematicsisconsidered.Finally,it isalsoestablishedthattheplasticanisotropyof ¯ -Snplaysanimportantroleinthemechanics, therebymakingtheuseofsimpleisotropicmodelscientandrequiringtheestablishment ofaccuratedescriptionofthecomplexplasticbehaviorobservedin ¯ -Sn. 143 Inthatregard,anInverseIndentationAnalysisbasedmethodologyisinvestigatedinChap- ter 5 toidentifysuchconstitutiveparametersforcrystalplasticitymaterialmodelsbyminimiz- ingtheerrorbetweenexperimentalandsimulatedsinglecrystalnanoindentationresponse.For suchaninversemethodologyitisestablishedthatusingcombinedloadŒdisplacementandsur- facetopographyerrorprovedtobeareliableobjectivefunctionforminimizationwithamod- NelderŒMeadsimplexoptimizationalgorithm.Thereliabilityofthismethodologyis establishedforface-centeredcubicmaterialswhereitisconcludedthattheinitialwstress couldbeaccuratelyidenwithnegligibleerror,followedbythesaturationstress,andthe hardeningslope,whichisalsoriveoftheirsensitivitiestotheobjectivefunction.More- over,forfccmaterialsselectinganyrandomcrystalorientationfortheinverseanalysisproved tobeeffectiveintheparameterestimation.Suchalityofselectinganyrandomorienta- tionsisnotpossibleforlowsymmetrycrystalsstructuressuchashexagonalorbody-centered tetragonal.Henceamoreintelligentchoiceoforientationselectionforlowsymmetrymateri- alsisproposedinChapter 6 ,whereasensitivityanalysisisperformedfordifferentregions intheorientationspaceforthedifferentslipfamilies,andthenthoseorientationsareselected wherealltheconsideredslipfamiliesaresensitivetotheindentationloadingcondition.The reliabilityofthisproposedsensitivitybasedInverseIndentationAnalysisisestablishedforex- emplaryhexagonalcommerciallypuretitaniumwithahybridoptimizationalgorithm.Using thehybridalgorithmallowedanexplorationoftheparameterspace,byusingstochastic particleswarmoptimization,aswellasanalexploitationofafeasibleregionbydeterminis- ticNelderŒMeadsimplexalgorithm.Havingestablishedthereliabilityofthissensitivitybased IIA forhexagonalmaterialswithtwodifferentreferenceparameters,thismethodcanthenbe employedtoestimatetheplasticparameters(initialwstressvalues)of ¯ -Sn. Additionally,fromatechnicalstandpoint,themulti-physicsmodeldevelopedinthiswork couldbeeasilytranslatedtostudyotherprocessesinvolvingstress-drivendiffusionwithad- ditionaltermsintheeldequationŒsuchasstress-corrosioncracking.Moreover,theinverse optimizationcodedevelopedinthisworkcouldbeusedasageneraltoolkitforanyoptimiza- 144 Figure7.1:Proposedstructureforidentifyingwhatconditionsinthetinmmicrostructure causeagraintoformawhisker. tionproblemduetoitsmodularstructure[ Maitietal. , 2018 ]. 7.2Futurework Theultimategoalofthisworkistoanswerthequestionofwhichgrainsinthetinmi- crostructurewouldnucleatewhiskerssothatwecanproposeaneffectivewayofwhiskermit- igationandpreventdevicefailureduetotheirformation.Figure 7.1 outlinestheoverallwork- wforidentionofsuchgrains,whereinputofthemicrostructureinformationforthe usingexperiments,eitherelectronbackscatterdiffraction(EBSD)dataforgrainstruc- tureorX-raydiffractiondataforoveralltexture,andfeedintothecontinuummechanicalcou- 145 pledchemo-thermo-mechanicalmodelinthecrystalplasticityframeworktosimulatetheki- neticsandstressvariation.Subsequently,aone-to-onecomparisonbetweenthegrainswhere whiskersareobservedtogrowexperimentallywiththeircorrespondingstress-stateandplas- ticaccommodationfromthefull-simulationswillhelpinnarrowingthecrystallographic governingfactorsmodulatingthewhiskernucleationprocess.Inanidealscenariothecompar- isonshouldbedoneagainstthecaseswherewhiskersgrowduetoCu 6 Sn 5 formation(Sn depositedoncopperorbrasssubstrate)sincetheyarethemostcommon.However,dueto thecomplexstateofstresses(andloadingcondition)itbecomesverytrickytodrawdent conclusionsbycomparingexperimentalobservationstosimulatedresultsfromCu 6 Sn 5 growth boundaryconditions.Incontrastthermalstrainingprovidesadirectcomparisonbetweenthe experimentandsimulation,andmorepracticalconclusionscanbedrawn. Acriticalstepforhavingsimulationdataconsistentwiththerealityistohaveanaccurate materialdescriptionofthesystem.Asigantfoundationtoachievethishasalreadybeen laidinthisthesis,alongwithsomeimmediatefuturework.Firstandforemost,animportant andnecessaryadvancementinthechemo-thermo-mechanicalmodelistheinclusionofgrain boundarynormalstressasthechemicalpotentialforstress-drivendiffusioninsteadofgrain boundaryhydrostaticstress(pressure).Secondly,theacrossthegrainboundarywidth (alongthegrainboundarynormal)isnotzeroleadingtoatomtransportinthenormaldirection, whichisnotthecaseinreality.Toavoidthis,onewaywouldbetosubtractthediffusivitycom- ponentalongthegrainboundarynormaldirection.Therefore,toachieveboththeabovecon- ditionsinsimulation,thegrainboundarynormalateachvoxelshouldbeincorporatedintothe model.Also,inthisworkthegrainboundaryshearforcesandkineticsareinvestigatedforasin- glemmicrostructure.Hence,togetabetterquantitativeunderstandingoftheseshearforces, astatisticalanalysisneedstobedonefordifferentmicrostructures(havingthesameglobal texturebutdifferentlocalneighborhoodfortheobliquegrainand/orwithdifferentglobaltex- ture,aswell)todeterminewhethertheseaverageshearforcesarecapableofbreakingthetin oxidelayer(ofagiventhickness)ontop.Thisanalysisisimportantsincewhiskersareoften 146 observedtogrowafterbreakingtheoxidelayerontop.Additionally,thematerialdescription wouldbeincompletewithoutanaccuratematerialmodelforSnplasticity.Inthisthesis,the proposedInverseIndentationAnalysisframeworkofplasticityparameterestimationisalready establishedforface-centeredcubicandhexagonalmaterials.Hence,theimmediatenextstep wouldbetoidentifysuchparameters(i.e.theinitialwstressorthecriticalresolvedshear stressforthedifferentslipfamilies)for ¯ -Sn.Asmentionedearlier,theidentionof ¯ -Sn plasticityparametersisimportantduetoitshighhomologoustemperatureatoperatingcondi- tionstherebyshowingsigantplasticityorhightemperaturecreepbehavior. Apartfromthesimulationworks,someexperimentalstudiescanalsobedonetoverifysome oftheconclusionsmadeinthisworkbasedonsimulateddataŒsuchastheroleoftheglobalm texture.Toachievethis,thindifferingonlyintextureshouldbesynthesizedandthensub- jectedtothermalstrainconditions,withouttheuenceofCu 6 Sn 5 tohaveafaircomparison. Subsequently,itcanalsobestudiedwhetherthelmtexturecanbemodulatedbycontrolling theprocessingconditionsinordertoobtainatexturethatismoreresistanttowhiskerforma- tion(e.g. h 001],asobservedinthisstudy).Anotheropenquestionwhichcanbeanswered throughcarefulexperimentationistherelationshipbetweentheobliquesurfacegrainstoover- allwhiskerdensity.Forachievingsuch,multiplefocus-ionbeamsectioningcouldbedoneon randomlyselectedareasintheandthencountingthenumberofgrainshavinginclined boundariesandcomparethemtotheexperimentallyobservedwhiskerdensityvalues. Thus,withsuccessfulcompletionoftheaboveproposedworkwewouldbeabletounder- standthecenturyoldproblemofwhiskernucleationfromthinandsubsequentlyprevent thembymodifyingprocessvariablesthatleadtomicrostructuresthatarelessproneforming whiskers. 147 BIBLIOGRAPHY 148 BIBLIOGRAPHY M.AbtewandG.Selvaduray.Lead-freeSoldersinMicroelectronics. MaterialsScienceandEngi- neering:R:Reports ,27(5-6):95Œ141,2000.ISSN0927796X.doi: 10.1016/S0927-796X(00)00010- 3 . P.Adeva,G.Caruana,O.A.Ruano,andM.Torralba.Microstructureandhightemperature mechanicalpropertiesoftin. MaterialsScienceandEngineeringA ,194(1):17Œ23,1995. doi: 10.1016/0921-5093(94)09654-6 . K.Alagarsamy,K.Mehdi,F.Aleksandra,andMichaelG.P.RaisingAwarenessforRisk ofTinWhiskersintheMedicalIndustry. JournalofBiomedicalEngineeringandRe- search ,2(101):1Œ10,2018.URL http://www.jscholaronline.org/articles/JBER/ Risk-of-Tin-Whiskers.pdf . J.Alcala,O.Casals,andJ.Ocenasek.Micromechanicsofpyramidalindentationinfccmetals: Singlecrystalplasticityeelementanalysis. JournaloftheMechanicsandPhysicsofSolids , 56(11):3277Œ3303,2008.ISSN0022-5096.doi: 10.1016/j.jmps.2008.07.004 . F.ArizziandE.Rizzi.Elastoplasticparameteridenationbysimulationofstaticanddy- namicindentationtests. ModellingandSimulationinMaterialsScienceandEngineering , 22(3):035017Œ,2014.ISSN0965-0393.doi: 10.1088/0965-0393/22/3/035017 . S.M.Arnold.Repressingthegrowthoftinwhiskers. Plating ,53:96,1966. M.A.Ashworth,G.D.Wilcox,R.L.Higginson,R.J.Heath,C.Liu,andR.J.Mortimer.Theeffectof electroplatingparametersandsubstratematerialontinwhiskerformation. Microelectronics Reliability ,55(1):180Œ191,jan2015.doi: 10.1016/j.microrel.2014.10.005 .URL https://doi. org/10.1016%2Fj.microrel.2014.10.005 . AlonghengBaated,KyokoHamasaki,SunSikKim,Keun-SooKim,andKatsuakiSuganuma. WhiskerGrowthBehaviorofSnandSnAlloyLead-FreeFinishes. JournalofElectronicMa- terials ,40(11):2278Œ2289,aug2011a.doi: 10.1007/s11664-011-1712-z .URL https://doi. org/10.1007%2Fs11664-011-1712-z . AlonghengBaated,Keun-SooKim,andKatsuakiSuganuma.Effectofintermetallicgrowthrate onspontaneouswhiskergrowthfromatincoatingoncopper. JournalofMaterialsScience: MaterialsinElectronics ,22(11):1685Œ1693,mar2011b.doi: 10.1007/s10854-011-0346-5 .URL https://doi.org/10.1007%2Fs10854-011-0346-5 . S.Balay,J.Brown,K.Buschelman,V.Eijkhout,W.D.Gropp,D.Kaushik,M.G.Knepley,L.C. McInnes,B.F.Smith,andH.Zhang. PETScusersmanual .ArgonneNationalLaboratory, 2013. K-JBathe. FiniteElementProcedures .K.J.Bathe,2014.ISBN978-0-9790049-5-7.URL http: //web.mit.edu/kjb/www/Books/FEP_2nd_Edition_4th_Printing.pdf . 149 P.Baudoin,T.Hama,S.Uchida,andH.Takuda.Crystalplasticityanalysisofthedeformationof agrade2CP-Tioligocrystal. JournalofPhysics:ConferenceSeries ,1063:012048Œ,2018.ISSN 1742-6588.doi: 10.1088/1742-6596/1063/1/012048 . T.R.Bieler,P.Eisenlohr,F.Roters,D.Kumar,D.E.Mason,M.A.Crimp,andD.Raabe. Theroleofheterogeneousdeformationondamagenucleationatgrainboundaries insinglephasemetals. InternationalJournalofPlasticity ,25(9):1655Œ1683,2009. doi: 10.1016/j.ijplas.2008.09.002 . T.R.Bieler,B.Zhou,L.Blair,A.Zamiri,P.Darbandi,F.Pourboghrat,T-KLee,andK-CLiu.The roleofelasticandplasticanisotropyofSnonmicrostructureanddamageevolutioninlead- freesolderjoints.In ReliabilityPhysicsSymposium(IRPS),2011IEEEInternational ,pages 5F.1.1Œ5F.1.9,2011.doi: 10.1109/IRPS.2011.5784538 . M.BocciarelliandG.Maier.Indentationandimprintmappingmethodforidentiationof residualstresses. ComputationalMaterialsScience ,39(2):381Œ392,2007.ISSN0927-0256. doi: 10.1016/j.commatsci.2006.07.001 . M.Bocciarelli,G.Bolzon,andG.Maier.Parameteridenioninanisotropicelastoplasticity byindentationandimprintmapping. MechanicsofMaterials ,37(8):855Œ868,2005.ISSN 0167-6636.doi: 10.1016/j.mechmat.2004.09.001 . M.Bocciarelli,V.Buljak,C.K.S.Moy,S.P.Ringer,andG.Ranzi.Aninverseanalysis approachbasedonaPODdirectmodelforthemechanicalcharacterizationofmetal- licmaterials. ComputationalMaterialsScience ,95:302Œ308,2014.ISSN0927-0256. doi: 10.1016/j.commatsci.2014.07.025 . W.J.Boettinger,C.E.Johnson,L.A.Bendersky,K-WMoon,M.E.Williams,andG.R.Stafford. WhiskerandHillockformationonSn,SnŒCuandSnŒPbelectrodeposits. ActaMaterialia ,53 (19):5033Œ5050,2005.doi: 10.1016/j.actamat.2005.07.016 . I.BoguslavskyandP.Bush.Recrystallizationprinciplesappliedtowhiskergrowthintin.In ProceedingsofAPEXConference,Anaheim,USA ,pagesS12Œ4Œ1ŒS12Œ4Œ10,2003. G.BolzonandM.Talassi.Aneffectiveinverseanalysistoolforparameteridentionof anisotropicmaterialmodels. InternationalJournalofMechanicalSciences ,77:130Œ144,2013. ISSN0020-7403.doi: 10.1016/j.ijmecsci.2013.09.009 . G.Bolzon,G.Maier,andM.Panico.Materialmodelcalibrationbyindentation,imprintmap- pingandinverseanalysis. InternationalJournalofSolidsandStructures ,41(11-12):2957Œ 2975,2004.ISSN0020-7683.doi: 10.1016/j.ijsolstr.2004.01.025 . S.S.Brenner.TensileStrengthofWhiskers. JournalofAppliedPhysics ,27(12):1484Œ1491,1956. ISSN0021-8979.doi: 10.1063/1.1722294 . S.S.Brenner.PlasticDeformationofCopperandSilverWhiskers. JournalofAppliedPhysics ,28 (9):1023Œ1026,1957.ISSN0021-8979.doi: 10.1063/1.1722900 . 150 E.Buchovecky,N.Jadhav,A.F.Bower,andE.Chason.FiniteElementModelingofStressEvolu- tioninSnFilmsduetoGrowthoftheCu6Sn5IntermetallicCompound. JournalofElectronic Materials ,38(12):2676Œ2684,2009a.doi: 10.1007/s11664-009-0911-3 . E.J.Buchovecky. NumericalSimulationofStressGenerationandWhiskerGrowthinSnFilms . PhDthesis,BrownUniversity,SchoolofEngineering,2010. E.J.Buchovecky,N.Du,andA.F.Bower.AmodelofSnwhiskergrowthbycoupledplasticw andgrainboundarydiffusion. AppliedPhysicsLetters ,94(19):191904Œ,2009b.ISSN0003- 6951.doi: 10.1063/1.3136865 . V.BuljakandG.Maier.ProperOrthogonalDecompositionandRadialBasisFunctionsinmate- rialcharacterizationbasedoninstrumentedindentation. EngineeringStructures ,33(2):492Œ 501,2011.ISSN0141-0296.doi: 10.1016/j.engstruct.2010.11.006 . F.Campolongo,J.Cariboni,andA.Saltelli.Aneffectivescreeningdesignforsensitivityanalysis oflargemodels. EnvironmentalModelling&Software ,22(10):1509Œ1518,2007.ISSN1364- 8152.doi: 10.1016/j.envsoft.2006.10.004 . A.ChakrabortyandP.Eisenlohr.Evaluationofaninversemethodologyforestimatingconstitu- tiveparametersinface-centeredcubicmaterialsfromsinglecrystalindentations. European JournalofMechanics/ASolids ,66C:114Œ124,2017.doi: 10.1016/j.euromechsol.2017.06.012 . A.ChakrabortyandP.Eisenlohr.Afull-crystalplasticitystudyonhowtextureandgrain structureestheevolutionofhydrostaticstressinthermallystrained ¯ -Snlms. Jour- nalofAppliedPhysics ,124:025302,2018.doi: 10.1063/1.5029933 . A.ChakrabortyandP.Eisenlohr.Chemo-thermo-mechanicallycoupledcrystalplasticitysimu- lationofstressevolutioninthermallystrained ¯ -Sn JournalofElectronicMaterials ,48 (1):85Œ91,2019.doi: 10.1007/s11664-018-6733-4 . J.Chakraborty,U.Welzel,andE.J.Mittemeijer.Interdiffusion,phaseformation,and stressdevelopmentinCuŒPdthin-diffusioncouples:Interfacethermodynamics andmechanisms. JournalofAppliedPhysics ,103(11):113512Œ,2008.ISSN0021-8979. doi: 10.1063/1.2938079 . E.ChasonandN.Jadhav. MitigatingTinWhiskerRisks:TheoryandPractice ,chapterMajor drivingforcesandgrowthmechanismsfortinwhiskers,pages21Œ42.JohnWiley&Sons,Inc., 2016. E.Chason,N.Jadhav,W.L.Chan,L.Reinbold,andK.S.Kumar.WhiskerformationinSnand PbŒSncoatings:Roleofintermetallicgrowth,stressevolution,andplasticdeformationpro- cesses. AppliedPhysicsLetters ,92(17):171901Œ,2008.ISSN0003-6951.doi: 10.1063/1.2912528 . E.Chason,N.Jadhav,andF.Pei.Effectoflayerpropertiesonstressevolution,intermetallic volume,anddensityduringtinwhiskerformation. Jom ,63(10):62Œ68,2011.ISSN1047-4838. doi: 10.1007/s11837-011-0178-z . 151 E.Chason,N.Jadhav,F.Pei,E.Buchovecky,andA.Bower.GrowthofwhiskersfromSnsur- faces:Drivingforcesandgrowthmechanisms. ProgressinSurfaceScience ,88(2):103Œ131, 2013.doi: 10.1016/j.progsurf.2013.02.002 . E.Chason,F.Pei,C.L.Briant,H.Kesari,andA.F.Bower.SiganceofNucleationKi- neticsinSnWhiskerFormation. JournalofElectronicMaterials ,43(12):4435Œ4441,2014. doi: 10.1007/s11664-014-3379-8 . P.Chaudhari.Hillockgrowthinthin JournalofAppliedPhysics ,45(10):4339Œ4346,1974. ISSN0021-8979.doi: 10.1063/1.1663054 . S-WChen,C-HWang,S-KLin,andC-NChiu.chapterPhasediagramsofPb-freesoldersand theirrelatedmaterialssystems,pages19Œ37.SpringerUS,Boston,MA,2007.ISBN978-0- 387-48431-0.doi: 10.1007/978-0-387-48433-4_2 . J.ChengandS.Ghosh.AcrystalplasticityFEmodelfordeformationwithtwinnu- cleationinmagnesiumalloys. InternationalJournalofPlasticity ,67:148Œ170,2015. doi: 10.1016/j.ijplas.2014.10.005 . J.Cheng,F.Yang,P.T.Vianco,B.Zhang,andJ.C.M.Li.OptimumThicknessofSnFilmfor WhiskerGrowth. JournalofElectronicMaterials ,40(10):2069Œ2075,2011.ISSN0361-5235. doi: 10.1007/s11664-011-1708-8 . W.J.Choi,T.Y.Lee,K.N.Tu,N.Tamura,R.S.Celestre,A.A.MacDowell,Y.Y.Bong,and L.Nguyen.TinwhiskersstudiedbysynchrotronradiationscanningX-raymicro-diffraction. ActaMaterialia ,51(20):6253Œ6261,2003.ISSN1359-6454.doi: 10.1016/S1359-6454(03)00448- 8 . Y.S.Choi,M.A.Groeber,T.J.Turner,D.M.Dimiduk,C.Woodward,M.D.Uchic,andT.A. Parthasarathy.Acrystal-plasticityFEMstudyoneffectsofsimpligrainrepresentation andmeshtypesonmesoscopicplasticityheterogeneities. MaterialsScienceandEngineering A ,553:37Œ44,2012.ISSN0921-5093.doi: 10.1016/j.msea.2012.05.089 . H.L.Cobb.Cadmiumwhiskers.33(28):28Œ30,1946. R.L.Coble. J.Appl.Phys. ,34:1679,1963. R.V.Coleman,B.Price,andN.Cabrera.SlipofZincandCadmiumWhiskers. JournalofApplied Physics ,28(11):1360Œ1361,1957.ISSN0021-8979.doi: 10.1063/1.1722654 . K.G.Compton,A.Mendizza,andS.M.Arnold.FilamentaryGrowthsOnMetalSurfaces Œ``Whiskers''. Corrosion ,7(10):327Œ334,1951.ISSN0010-9312.doi: 10.5006/0010-9312- 7.10.327 . A.ConstantinescuandN.Tardieu.Ontheidenticationofelastoviscoplasticconstitutivelaws fromindentationtests. InverseProblemsinEngineering ,9(1):19Œ44,2001.ISSN1068-2767. doi: 10.1080/174159701088027751 . C.CostonandN.H.Nachtrieb.Self-DiffusioninTinatHighPressure. TheJournalofPhysical Chemistry ,68(8):2219Œ2229,1964.ISSN0022-3654.doi: 10.1021/j100790a032 . 152 R.Courant.Variationalmethodsforthesolutionofproblemsofequilibriumandvibrations. BulletinoftheAmericanMathematicalSociety ,49(1):1Œ23,1943.doi: 10.1090/S0002-9904- 1943-07818-4 . E.R.Crandall,G.T.Flowers,R.Jackson,P.Lall,andM.J.Bozack.Growthof SnWhiskersunderNetCompressiveandTensileStressStates.pages1Œ5,2011. doi: 10.1109/HOLM.2011.6034820 . E.R.Crandall,G.T.Flowers,P.Lall,E.K.Snipes,andM.J.Bozack.TheInnceofSurface OxidesonWhiskering.In 2012IEEE58thHolmConferenceonElectricalContacts(Holm) . IEEE,sep2012.doi: 10.1109/holm.2012.6336581 .URL https://doi.org/10.1109%2Fholm. 2012.6336581 . Q.Cui,F.Gao,S.Mukherjee,andZ.Gu.JoiningandInterconnectFormationofNanowires andCarbonNanotubesforNanoelectronicsandNanosystems. Small ,5(11):1246Œ1257,2009. ISSN1613-6810.doi: 10.1002/smll.200801551 . I.Dastidar,A.L.Pilchak,T.R.Bieler,V.Khademi,M.A.Crimp,andC.J.Boehlert.TheTen- sileandTensile-CreepDeformationBehaviorofTi-8Al-1Mo-1V(wt.%). MaterialsScienceand EngineeringA ,636:289Œ300,2015.doi: 10.1016/j.msea.2015.03.059 . T.W.J.DeGeus,J.Vondrejc,J.Zeman,R.H.J.Peerlings,andM.G.D.Geers.Finitestrain FFT-basednon-linearsolversmadesimple. ComputerMethodsinAppliedMechanicsand Engineering ,2017.ISSN0045-7825.doi: 10.1016/j.cma.2016.12.032 . M.Diehl. High-resolutioncrystalplasticitysimulations .PhDthesis,RWTHAachen,Aachen, 2016. M.Dittes,P.Oberndorff,andL.Petit.TinWhiskerFormationŒResults,TestMethodsandCoun- termeasures.In Proc.53rdElectronicComponents&TechnologyConf. ,pages822Œ826.IEEE, 2003. K.Doudrick,J.Chinn,J.Williams,N.Chawla,andK.Rykaczewski.Rapidmethodfortesting cacyofnano-engineeredcoatingsformitigatingtinwhiskergrowth. MicroelectronicsRe- liability ,55(5):832Œ837,2015.ISSN0026-2714.doi: 10.1016/j.microrel.2015.02.014 . RusselEberhartandYuhuiShi.Particleswarmoptimization:developments,applicationsand resources.pages81Œ86.doi: 10.1109/CEC.2001.934374 . P.Eisenlohr,M.Diehl,R.A.Lebensohn,andF.Roters.Aspectralmethodsolutiontocrys- talelasto-viscoplasticityatestrains. InternationalJournalofPlasticity ,46:37Œ53,2013. doi: 10.1016/j.ijplas.2012.09.012 . P.Eisenlohr,F.Roters,M.Diehl,C.Kords,andP.Shanthraj.DAMASKWebpage.2014.URL http://damask.mpie.de . P.Eisenlohr,P.Shanthraj,B.R.VandeKieft,T.R.Bieler,W.Liu,andR.Xu.SubsurfaceGrainMor- phologyReconstructionbyDifferentialApertureX-rayMicroscopy. JOM ,69(6):1100Œ1105, 2017.doi: 10.1007/s11837-017-2357-z . 153 W.C.Ellis,D.Gibbons,andR.Treuting.Growthofmetalwhiskersfromthesolid. Growthand perfectionofcrystals ,1958. B.ErdemAlaca.Integrationofone-dimensionalnanostructureswithmicrosystems:an overview. InternationalMaterialsReviews ,54(5):245Œ282,2009.ISSN0950-6608. doi: 10.1179/174328009X411190 . J.D.Eshelby.ATentativeTheoryofMetallicWhiskerGrowth. PhysicalReview ,91(3):755Œ756, 1953.doi: 10.1103/PhysRev.91.755.2 . A.Etienne,E.Cadel,A.Lina,L.Cretinon,andP.Pareige.CrystallographicCharacteriza- tionofanElectroplatedZincCoatingPronetoWhiskers. IEEETransactionsonCompo- nents,PackagingandManufacturingTechnology ,2(11):1928Œ1932,2012.ISSN2156-3950. doi: 10.1109/TCPMT.2012.2203134 . R.M.Fisher,L.S.Darken,andK.G.Carroll.Acceleratedgrowthoftinwhiskers. ActaMetallur- gica ,2(3):368Œ369,371,1954.doi: 10.1016/0001-6160(54)90053-X . A.FortierandR.Kovacevic.InternalMicrostructureInvestigationofTinWhiskerGrowthUs- ingFIBTechnology. JournalofElectronicMaterials ,41(8):2029Œ2034,2012.ISSN0361-5235. doi: 10.1007/s11664-012-2065-y . F.C.Frank.XC.Ontinwhiskers. TheLondon,Edinburgh,andDublinPhilo- sophicalMagazineandJournalofScience ,44(355):854Œ860,1953.ISSN1941-5982. doi: 10.1080/14786440808520351 . M.Fujiwara.Deformationanisotropyof ¯ -Sncrystalsbymicroindenter. MaterialsScienceand EngineeringA ,234-236:991Œ995,1997.doi: 10.1016/S0921-5093(97)00348-1 . M.FujiwaraandT.Hirokawa.TheStrengthofMainObstaclestoDislocationMotioninWhite TinCrystals. JournaloftheJapanInstituteofMetals ,51(9):830Œ838,1987. N.FurutaandK.Hamamura.GrowthMechanismofProperTin-Whisker. JapaneseJournalof AppliedPhysics ,8(12):1404Œ1410,1969. G.Galyon.WhiskerFormationConceptsŒTheEndGame. IEEETransactionson Components,PackagingandManufacturingTechnology ,1(7):1098Œ1109,2011. doi: 10.1109/TCPMT.2010.2103319 . G.T.Galyon.Annotatedtinwhiskerbibliographyandanthology. IEEETransactionsonElectron- icsPackagingManufacturing ,28(1):94Œ122,2005.doi: 10.1109/TEPM.2005.847440 . G.T.GalyonandL.Palmer.Anintegratedtheoryofwhiskerformation:thephysicalmetallurgy ofwhiskerformationandtheroleofinternalstresses. IEEETransactionsonElectronicsPack- agingManufacturing ,28(1):17Œ30,2005.ISSN1521-334X.doi: 10.1109/TEPM.2005.847443 . V.K.GlazunovaandN.T.Kudryavtsev.Aninvestigationoftheconditionsofspontaneousgrowth ofliformcrystalsonelectrolyticcoatings. ZhurnalPrikladnoiKhimii ,36(3):543Œ550,1963. 154 R.Hajali,H.Kim,S.Koh,A.Saxena,andR.Tummala.Nonlinearconstitutivemodelsfrom nanoindentationtestsusingarticialneuralnetworks. InternationalJournalofPlasticity ,24 (3):371Œ396,2008.ISSN0749-6419.doi: 10.1016/j.ijplas.2007.02.001 . S.U.HamimandR.P.Singh.Taguchi-baseddesignofexperimentsintrainingPOD-RBFsurro- gatemodelforinversematerialmodellingusingnanoindentation. InverseProblemsinSci- enceandEngineering ,25(3):363Œ381,2017.doi: 10.1080/17415977.2016.1161036 . A.HeandD.G.Ivey.MicrostructuralstudyofSnmselectrodepositedonCusubstrates: SnwhiskersandCu 6 Sn 5 precipitates. JournalofMaterialsScience ,50(7):2944Œ2959,2015. doi: 10.1007/s10853-015-8859-6 . J.Hektor,J-BMarijon,M.Ristinmaa,S.A.Hall,H.Hallberg,S.Iyengar,J-SMicha, O.Robach,F.Grennerat,andO.Castelnau.Evidenceof3Dstraingradientsassoci- atedwithtinwhiskergrowth. ScriptaMaterialia ,144:1Œ4,2018.ISSN1359-6462. doi: 10.1016/j.scriptamat.2017.09.030 . S.Hémery,A.Nait-Ali,andP.Villechaise.Combinationofin-situSEMtensiletestandFFT-based crystalelasticitysimulationsofTi-6Al-4Vforanimproveddescriptionoftheonsetofplastic slip. MechanicsofMaterials ,109:1Œ10,2017.doi: 10.1016/j.mechmat.2017.03.013 . V.Herrera-Solaz,J.LLorca,E.Dogan,I.Karaman,andJ.Segurado.Aninverseop- timizationstrategytodeterminesinglecrystalmechanicalbehaviorfrompolycrystal tests:ApplicationtoAZ31Mgalloy. InternationalJournalofPlasticity ,57:1Œ15,2014. doi: 10.1016/j.ijplas.2014.02.001 . V.Herrera-Solaz,J.Segurado,andJ.LLorca.Ontherobustnessofaninverseoptimizationap- proachbasedontheLevenbergŒMarquardtmethodforthemechanicalbehaviorofpoly- crystals. EuropeanJournalofMechanicsŒA/Solids ,53:220Œ228,2015.ISSN0997-7538. doi: 10.1016/j.euromechsol.2015.05.005 . R.Hill.Atheoryoftheyieldingandplasticwofanisotropicmetals. Proceedingsofthe RoyalSocietyA:Mathematical,PhysicalandEngineeringSciences ,193(1033):281Œ297,1948. doi: 10.1098/rspa.1948.0045 . C-MHuang,D.Nunez,J.Coburn,andM.Pecht.Riskoftinwhiskersinthe nuclearindustry. MicroelectronicsReliability ,81:22Œ30,2018.ISSN0026-2714. doi: 10.1016/j.microrel.2017.12.019 . F.H.HuangandH.B.Huntington.DiffusionofSb¹² 4 ,Cd¹ 09 ,Sn¹¹³,andZn 65 intin. Physical ReviewB ,9(4):1479Œ1488,1974.doi: 10.1103/PhysRevB.9.1479 . N.HuberandC.Tsakmakis.Determinationofconstitutivepropertiesfromsphericalinden- tationdatausingneuralnetworks.Partii:plasticitywithnonlinearisotropicandkine- matichardening. JournaloftheMechanicsandPhysicsofSolids ,47(7):1589Œ1607,1999. doi: 10.1016/S0022-5096(98)00110-0 . 155 N.Huber,A.Konstantinidis,andC.Tsakmakis.DeterminationofPoisson'sRatiobySpherical IndentationUsingNeuralNetworksŠPartI:Theory. JournalofAppliedMechanics ,68(2): 218Œ,2001.ISSN0021-8936.doi: 10.1115/1.1354624 . C.HuntandM.Wickham.Mitigationoftinwhiskerswithpolymercoatings.pages78Œ87,2010. doi: 10.1109/ISAPM.2010.5441379 . J.W.Hutchinson.Boundsandself-consistentestimatesforcreepofpolycrystallinematerials. ProceedingsoftheRoyalSocietyA ,348:101Œ127,1976.doi: 10.1098/rspa.1976.0027 . J.W.Hutchinson.Creepandplasticityofhexagonalpolycrystalsasrelatedtosin- glecrystalslip. MetallurgicalTransactionsA ,8(9):1465Œ1469,1977.ISSN0360-2133. doi: 10.1007/BF02642860 . W.BevisHutchinson,JamesOliver,MargaretaNylén,andJoacimHagström.Whisker GrowthfromTinCoatings. MaterialsScienceForum ,467-470:465Œ470,oct2004. doi: 10.4028/www.scientic.net/msf.467-470.465 .URL https://doi.org/10.4028%2Fwww. scientific.net%2Fmsf.467-470.465 . BalázsIllésandBarbaraHorváth.Whiskeringbehaviourofimmersiontinsurfacecoating. Mi- croelectronicsReliability ,53(5):755Œ760,may2013.doi: 10.1016/j.microrel.2013.02.001 .URL https://doi.org/10.1016%2Fj.microrel.2013.02.001 . N.Jadhav,E.Buchovecky,E.Chason,andA.Bower.Real-timeSEM/FIBstudiesofwhisker growthandsurfaceation. JOM ,62(7):30Œ37,2010a.doi: 10.1007/s11837-010-0105- 8 . N.Jadhav,E.J.Buchovecky,L.Reinbold,S.Kumar,A.F.Bower,andE.Chason.Understand- ingtheCorrelationBetweenIntermetallicGrowth,StressEvolution,andSnWhiskerNu- cleation. IEEETransactionsonElectronicsPackagingManufacturing ,33(3):183Œ192,2010b. doi: 10.1109/TEPM.2010.2043847 . N.Jadhav,J.Wasserman,F.Pei,andE.Chason.StressRelaxationinSn-BasedFilms:Effectsof PbAlloying,GrainSize,andMicrostructure. JournalofElectronicMaterials ,41(3):588Œ595, 2012a.ISSN0361-5235.doi: 10.1007/s11664-011-1829-0 . NitinJadhav,JacobWasserman,FeiPei,andEricChason.StressRelaxationinSn-BasedFilms: EffectsofPbAlloying,GrainSize,andMicrostructure. JournalofElectronicMaterials ,41 (3):588Œ595,dec2011.doi: 10.1007/s11664-011-1829-0 .URL https://doi.org/10.1007% 2Fs11664-011-1829-0 . NitinJadhav,MaureenWilliams,FeiPei,GeryStafford,andEricChason.AlteringtheMe- chanicalPropertiesofSnFilmsbyAlloyingwithBi:MimickingtheEffectofPbtoSuppress Whiskers. JournalofElectronicMaterials ,42(2):312Œ318,oct2012b.doi: 10.1007/s11664-012- 2267-3 .URL https://doi.org/10.1007%2Fs11664-012-2267-3 . P.JagtapandP.Kumar.ManipulatingCrystallographicTextureofSnCoatingsbyOptimizationof ElectrodepositionProcessConditionstoSuppressGrowthofWhiskers. JournalofElectronic Materials ,44(4):1206Œ1219,2015.ISSN0361-5235.doi: 10.1007/s11664-014-3622-3 . 156 P.Jagtap,A.Chakraborty,P.Eisenlohr,andP.Kumar.IdenationofWhiskerGraininSnCoat- ingsbyAnalyzingCrystallographicMicro-TextureusingElectronBack-ScatterDiffraction. ActaMaterialia ,134:346Œ359,2017.doi: 10.1016/j.actamat.2017.05.063 . P.Jagtap,P.RameshNarayan,andP.Kumar.EffectofSubstrateCompositiononWhiskerGrowth inSnCoatings. JournalofElectronicMaterials ,2018.ISSN0361-5235.doi: 10.1007/s11664- 018-6275-9 . B.JiangandA-PXian.Discontinuousgrowthoftinwhiskers. PhilosophicalMagazineLetters , 86(8):521Œ527,2006.ISSN0950-0839.doi: 10.1080/09500830600908996 . J.KajbergandG.Lindkvist.Characterisationofmaterialssubjectedtolargestrainsbyinverse modellingbasedonin-planedisplacementelds. InternationalJournalofSolidsandStruc- tures ,41(13):3439Œ3459,2004.ISSN0020-7683.doi: 10.1016/j.ijsolstr.2004.02.021 . J.KajbergandB.Wikman.Viscoplasticparameterestimationbyhighstrain-rateexper- imentsandinversemodellingŒSpecklemeasurementsandhigh-speedphotography. InternationalJournalofSolidsandStructures ,44(1):145Œ164,2007.ISSN0020-7683. doi: 10.1016/j.ijsolstr.2006.04.018 . T.Kakeshita,K.Shimizu,R.Kawanaka,andT.Hasegawa.Grainsizeeffectofelectro- platedtincoatingsonwhiskergrowth. JournalofMaterialsScience ,17(9):2560Œ2566,1982. doi: 10.1007/BF00543888 . S.R.KalidindiandS.E.Schoenfeld.Onthepredictionofyieldsurfacesbythecrystalplasticity modelsforfccpolycrystals. MaterialsScienceandEngineeringA ,293(1-2):120Œ129,2000. ISSN0921-5093.doi: 10.1016/S0921-5093(00)01048-0 . S.R.Kalidindi,C.A.Bronkhorst,andL.Anand.Crystallographictextureevolutioninbulkde- formationprocessingoffccmetals. JournaloftheMechanicsandPhysicsofSolids ,40(3): 537Œ569,1992.doi: 10.1016/0022-5096(92)80003-9 . H.J.Kao,W.C.Wu,S.T.Tsai,andC.Y.Liu.EffectofCuadditivesonSnwhiskerformation ofSn(Cu)ishes. JournalofElectronicMaterials ,35(10):1885Œ1891,2006.ISSN0361-5235. doi: 10.1007/s11664-006-0172-3 . S.Karim,M.E.Toimil-Molares,F.Maurer,G.Miehe,W.Ensinger,J.Liu,T.W.Cornelius,and R.Neumann.Synthesisofgoldnanowireswithcontrolledcrystallographiccharacteristics. AppliedPhysicsA ,84(4):403Œ407,2006.ISSN0947-8396.doi: 10.1007/s00339-006-3645-6 . S.Kaßbohm,W.H.Müller,andR.Feßler.ImprovedapproximationsofFourierientsfor computingperiodicstructureswitharbitrarystiffnessdistribution. ComputationalMaterials Science ,37(1-2):90Œ93,2006.doi: 10.1016/j.commatsci.2005.12.010 . J.KennedyandR.Eberhart.Particleswarmoptimization.In ProceedingsofIEEEInternational ConferenceonNeuralNetworksIV ,pages1942Œ1948,1995.doi: 10.1109/ICNN.1995.488968 . Y.Kinoshita,H.Matsushima,andN.Ohno.Predictingactiveslipsystemsin ¯ -Snfromideal shearresistance. ModellingandSimulationinMaterialsScienceandEngineering ,20(3): 035003Œ,2012.doi: 10.1088/0965-0393/20/3/035003 . 157 D.Klötzer,C.Ullner,E.Tyulyukovskiy,andN.Huber.Identicationofviscoplasticma- terialparametersfromsphericalindentationdata:PartII.Experimentalvalidationof themethod. JournalofMaterialsResearch ,21(03):677Œ684,2006.ISSN0884-2914. doi: 10.1557/jmr.2006.0077 . S.E.KoonceandS.M.Arnold.GrowthofMetalWhiskers. JournalofAppliedPhysics ,24(3): 365Œ366,1953.ISSN0021-8979.doi: 10.1063/1.1721283 . L.Kubin,B.Devincre,andT.Hoc.Modelingdislocationstorageratesandmean freepathsinface-centeredcubiccrystals. ActaMaterialia ,56(20):6040Œ6049,2008. doi: 10.1016/j.actamat.2008.08.012 . K.S.Kumar,L.Reinbold,A.F.Bower,andE.Chason.PlasticdeformationprocessesinCu/Sn bimetallic JournalofMaterialsResearch ,23(11):2916Œ2934,2008.ISSN0884-2914. doi: 10.1557/JMR.2008.0351 . S.LalandT.D.Moyer.Roleofintrinsicstressesinthephenomenaoftinwhiskersinelectrical connectors. IEEETransactionsonElectronicsPackagingManufacturing ,28(1):63Œ74,2005. ISSN1521-334X.doi: 10.1109/TEPM.2005.846457 . W.LangeandD.Bergner.MessungderKorngrenzenselbstdiffusioninpolykristallinemZinn. physicastatussolidi(b) ,2(10):1410Œ1414,1962.doi: 10.1002/pssb.19620021020 . F.LarchéandJ.W.Cahn.Alineartheoryofthermochemicalequilibriumofsolidsunderstress. ActaMetallurgica ,21(8):1051Œ1063,1973.ISSN0001-6160.doi: 10.1016/0001-6160(73)90021- 7 . R.A.Lebensohn.N-sitemodelingofa3DviscoplasticpolycrystalusingfastFouriertransform. ActaMaterialia ,49(14):2723Œ2737,2001.doi: 10.1016/S1359-6454(01)00172-0 . J.B.LeBretandM.G.Norton.Electronmicroscopystudyoftinwhiskergrowth. International JournalofMaterialsResearch ,18(3):585Œ593,2003.doi: 10.1557/JMR.2003.0076 . E.H.Lee.Elastic-plasticdeformationatitestrains. J.Appl.Mech.ASME ,36(1):1Œ6,1969. T-KLee,T.R.Bieler,C-UKim,andH.Ma. FundamentalsofLead-FreeSolderInterconnectTech- nology .SpringerUS,Boston,MA,2015.ISBN978-1-4614-9265-8.doi: 10.1007/978-1-4614- 9266-5 . Z.B.LeeandN.Z.Lee.Spontaneousgrowthmechanismoftinwhiskers. ActaMaterialia ,46 (10):3701Œ3714,1998.doi: 10.1016/S1359-6454(98)00045-7 . H.Li,D.E.Mason,T.R.Bieler,C.J.Boehlert,andM.A.Crimp.Methodologyforestimating thecriticalresolvedshearstressratiosof ® -phaseTiusingEBSD-basedtraceanalysis. Acta Materialia ,61(20):7555Œ7567,2013.doi: 10.1016/j.actamat.2013.08.042 . C-KLinandT-HLin.Effectsofcontinuouslyappliedstressontinwhiskergrowth. Microelec- tronicsReliability ,48(10):1737Œ1740,2008.doi: 10.1016/j.microrel.2008.04.013 . 158 U.Lindborg.Amodelforthespontaneousgrowthofzinc,cadmiumandtinwhiskers. Acta Metallurgica ,24(2):181Œ186,1976.doi: 10.1016/0001-6160(76)90021-3 . B.Liu,D.Raabe,F.Roters,P.Eisenlohr,andR.A.Lebensohn.Comparisonofeelement andfastFouriertransformcrystalplasticitysolversfortextureprediction. Modellingand SimulationinMaterialsScienceandEngineering ,18(8):085005,2010.doi: 10.1088/0965- 0393/18/8/085005 . S.H.Liu,C.Chen,P.C.Liu,andT.Chou.Tinwhiskergrowthdrivenbyelectricalcurrents. JournalofAppliedPhysics ,95(12):7742Œ7747,2004.ISSN0021-8979.doi: 10.1063/1.1712019 . M-HLuandK-CHsieh.Sn-CuIntermetallicGrainMorphologyRelatedtoSnLayerThickness. JournalofElectronicMaterials ,36(11):1448Œ1454,2007.ISSN0361-5235.doi: 10.1007/s11664- 007-0270-x . Y.LuandM.Saka.FabricationofAlmicro-beltsbyutilizingelectromigration. MaterialsLetters , 63(26):2227Œ2229,2009.ISSN0167577X.doi: 10.1016/j.matlet.2009.07.031 . A.Ma,F.Roters,andD.Raabe.Adislocationdensitybasedconstitutivemodelforcrystalplastic- ityFEMincludinggeometricallynecessarydislocations. ActaMaterialia ,54:2169Œ2179,2006. doi: 10.1016/j.actamat.2006.01.005 . K.Mahan,Y.Sun,B.Han,S.Han,andM.Osterman.AdhesionandPunctureStrengthof PolyurethaneCoatingUsedtoMitigateTinWhiskerGrowth. JournalofElectronicPackag- ing ,136(3):031004Œ,2014.ISSN1043-7398.doi: 10.1115/1.4026922 . R.MahnkenandE.Stein.Parameteridenationforviscoplasticmodelsbasedonanalytical derivativesofaleast-squaresfunctionalandstabilityinvestigations. InternationalJournalof Plasticity ,12(4):451Œ479,1996.ISSN0749-6419.doi: 10.1016/S0749-6419(95)00016-X . T.MaitiandP.Eisenlohr.Fourier-basedspectralmethodsolutiontoe straincrystalplasticitywithfreesurfaces. ScriptaMaterialia ,145:37Œ40,2018. doi: 10.1016/j.scriptamat.2017.09.047 . T.Maiti,A.Chakraborty,P.Eisenlohr,D.Kang,andT.R.Bieler.ACrystalPlasticityStudyonIn- ofDislocationMeanFreePathonStageIIHardeninginNbSingleCrystals.In Proc. Int.Conf.RFSuperconductivity(SRF'17) ,number18inInternationalConferenceonRFSu- perconductivity,pages783Œ786,Geneva,Switzerland,2018.JACoW.doi: 10.18429/JACoW- SRF2017-THPB025 . M.D.Mathew,H.Yang,S.Movva,andK.L.Murty.Creepdeformationcharacteristicsoftinand tin-basedelectronicsolderalloys. MetallurgicalandMaterialsTransactionsA ,36(1):99Œ105, 2005.ISSN1073-5623.doi: 10.1007/s11661-005-0142-z . SonyMathew,MichaelOsterman,MichaelPecht,andFrankDunlevey.Evaluation ofpuretinplatedcopperalloysubstratesfortinwhiskers. CircuitWorld ,35(1): 3Œ8,feb2009.doi: 10.1108/03056120910928662 .URL https://doi.org/10.1108% 2F03056120910928662 . 159 J.R.MayeurandD.L.McDowell.Athree-dimensionalcrystalplasticitymodel forduplexTiŒ6AlŒ4V. InternationalJournalofPlasticity ,23(9):1457Œ1485,2007. doi: 10.1016/j.ijplas.2006.11.006 . R.J.McCabeandM.E.Fine.Creepoftin,Sb-solution-strengthenedtin,andSbSn-precipitate- strengthenedtin. MetallurgicalandMaterialsTransactionsA ,33(5):1531Œ1539,2002.ISSN 1073-5623.doi: 10.1007/s11661-002-0075-8 . J.D.MeakinandE.Klokholm.Self-diffusionintinsinglecrystals. TransactionsoftheAmerican InstituteofMining,MetallurgicalandPetroleumEngineers ,218:463Œ466,1960. ÁMeggyes.Multipledecompositioninedeformationtheory. ActaMechanica ,146(3-4): 169Œ182,2001.doi: 10.1007/BF01246731 . L.Meng,P.Breitkopf,andG.LeQuilliec.Identionofmaterialparametersusingindentation testŠstudyoftheintrinsicdimensionalityofP-hcurvesandresidualimprints. MATECWeb Conf. ,80:10012,2016.doi: 10.1051/matecconf/20168010012 . D.MercierandC.Zambaldi. Sliptransferanalysistoolbox(STABiX)CPFEsimulationpreprocess- ingGUIs ,2014.URL http://stabix.readthedocs.org/en/latest/preCPFE_gui.html . F.A.Mohamed,K.L.Murty,andJ.W.Morris.Harper-dorncreepinal,pb,andsn. Metallurgical Transactions ,4(4):935Œ940,1973.ISSN0360-2133.doi: 10.1007/BF02645593 . K-WMoon,C.E.Johnson,M.E.Williams,O.Kongstein,G.R.Stafford,C.A.Handwerker, andW.J.Boettinger.ObservedcorrelationofSnoxidetoSnwhiskergrowthinSn- CuelectrodepositforPb-freesolders. JournalofElectronicMaterials ,34(9):L31ŒL33,2005. doi: 10.1007/s11664-005-0274-3 . K.-W.Moon,S.-K.Kim,M.E.Williams,W.J.Boettinger,andG.R.Stafford.Effectofcurrent densityandelectrolyteconcentrationonhillockgrowthfrompurebrightSnelectrodeposits. JournalofAppliedElectrochemistry ,40(9):1671Œ1681,jul2010.doi: 10.1007/s10800-010-0163- 1 .URL https://doi.org/10.1007%2Fs10800-010-0163-1 . M.D.Morris.FactorialSamplingPlansforPreliminaryComputationalExperiments. Techno- metrics ,33(2):161Œ174,1991.ISSN0040-1706.doi: 10.1080/00401706.1991.10484804 . H.MoulinecandP.Suquet.Afastnumericalmethodforcomputingthelinearandnonlinear propertiesofcomposites. Comptesrendusdel'Académiedessciences.SérieII,Mécanique, physique,chimie,astronomie ,318:1417Œ1423,1994. C.K.S.Moy,M.Bocciarelli,S.P.Ringer,andG.Ranzi.Indentationandimprintmappingfor theidenationofmaterialpropertiesinmulti-layeredsystems. ComputationalMaterials Science ,50(5):1681Œ1691,2011a.ISSN0927-0256.doi: 10.1016/j.commatsci.2010.12.029 . C.K.S.Moy,M.Bocciarelli,S.P.Ringer,andG.Ranzi.Identionofthematerialproperties ofAl2024alloybymeansofinverseanalysisandindentationtests. MaterialsScienceand Engineering:A ,529:119Œ130,2011b.ISSN0921-5093.doi: 10.1016/j.msea.2011.09.005 . 160 Y.Nakadaira,S.Jeong,J.Shim,J.Seo,S.Min,T.Cho,S.Kang,andS.Oh.Growthoftin whiskersforlead-freeplatedleadframepackagesinhighhumidenvironmentsanddur- ingthermalcycling. MicroelectronicsReliability ,48(1):83Œ104,2008.ISSN0026-2714. doi: 10.1016/j.microrel.2007.01.091 . T.NakamuraandY.Gu.IdentionofelasticŒplasticanisotropicparametersusinginstru- mentedindentationandinverseanalysis. MechanicsofMaterials ,39(4):340Œ356,2007.ISSN 0167-6636.doi: 10.1016/j.mechmat.2006.06.004 . T.Nakamura,T.Wang,andS.Sampath.Determinationofpropertiesofgradedmaterialsbyin- verseanalysisandinstrumentedindentation. ActaMaterialia ,48(17):4293Œ4306,2000.ISSN 1359-6454.doi: 10.1016/S1359-6454(00)00217-2 . J.A.NelderandR.Mead.ASimplexMethodforFunctionMinimization. TheComputerJournal , 7(4):308Œ313,1965.doi: 10.1093/comjnl/7.4.308 . NaokiOkamoto,YukoFujii,HiroakiKurihara,andKazuoKondo.EffectsofMicrostructure ofDepositedSnFilmsandOrientationIndexofCuFoilsonSnWhiskerFormationUs- ingSubstitutionally-DepositedSnFilms. MATERIALSTRANSACTIONS ,50(11):2570Œ2577, 2009.doi: 10.2320/matertrans.m2009249 .URL https://doi.org/10.2320%2Fmatertrans. m2009249 . J.W.Osenbach,R.L.Shook,B.T.Vaccaro,B.D.Potteiger,A.N.Amin,K.N.Hooghan,P.Suratkar, andP.Ruengsinsub.Snwhiskers:material,design,processing,andpost-platerweffects anddevelopmentofanoverallphenomenologicaltheory. IEEETransactionsonElectronics PackagingManufacturing ,28(1):36Œ62,2005.doi: 10.1109/TEPM.2005.847438 . J.W.Osenbach,J.M.DeLucca,B.D.Potteiger,A.Amin,andF.A.Baiocchi.Sn-whiskers:truths andmyths. JournalofMaterialsScience:MaterialsinElectronics ,18(1-3):283Œ305,2007. doi: 10.1007/s10854-006-9030-6 . A.S.OstrovskyandB.S.Bokstein.Grainboundarydiffusioninthinmsunderstress AppliedSurfaceScience ,175-176:312Œ318,2001.ISSN0169-4332.doi: 10.1016/S0169- 4332(01)00164-7 . D.C.Pagan,P.A.Shade,N.R.Barton,J-SPark,P.Kenesei,D.B.Menasche,andJ.V.Bernier.Mod- elingslipsystemstrengthevolutioninTi-7Alinformedbyin-situgrainstressmeasurements. ActaMaterialia ,128:406Œ417,2017.ISSN1359-6454.doi: 10.1016/j.actamat.2017.02.042 . D.C.Pagan,J.V.Bernier,D.Dale,J.Y.P.Ko,T.J.Turner,B.Blank,andP.A.Shade.MeasuringTi- 7Alslipsystemstrengthsatelevatedtemperatureusinghigh-energyX-raydiffraction. Scripta Materialia ,142:96Œ100,2018.ISSN1359-6462.doi: 10.1016/j.scriptamat.2017.08.029 .URL http://linkinghub.elsevier.com/retrieve/pii/S1359646217304931 . EuropeanParliamentandCounciloftheEuropeanUnion.Directive2002/95/ECoftheEuro- peanParliamentandoftheCouncilof27January2003ontherestrictionoftheuseofcertain hazardoussubstancesinelectricalandelectronicequipment. alJournaloftheEuro- peanUnion ,L34:19Œ37,2003. 161 M.O.Peach.MechanismofGrowthofWhiskersonCadmium. JournalofAppliedPhysics ,23 (12):1401Œ1403,1952.ISSN0021-8979.doi: 10.1063/1.1702147 . F.Pei,N.Jadhav,E.Buchovecky,A.F.Bower,E.Chason,W.Liu,J.Z.Tischler,G.E.Ice,and R.Xu. In-situ synchrotronmicro-diffractionstudyofsurface,interface,grainstructure,and strain/stressevolutionduringSnwhisker/hillockformation. JournalofAppliedPhysics ,119 (10):105302Œ,2016.doi: 10.1063/1.4942920 . F.Pei,E.Buchovecky,A.Bower,andE.Chason.Stressevolutionandwhiskergrowthduring thermalcyclingofSnAcomparisonofanalyticalmodelingandexperiments. Acta Materialia ,129:462Œ473,2017.ISSN1359-6454.doi: 10.1016/j.actamat.2017.03.005 . FeiPei,NitinJadhav,andEricChason.CorrelatingwhiskergrowthandgrainstructureonSn- Cusamplesbyreal-timescanningelectronmicroscopyandbackscatteringdiffractionchar- acterization. AppliedPhysicsLetters ,100(22):221902,may2012.doi: 10.1063/1.4721661 .URL https://doi.org/10.1063%2F1.4721661 . D.Peirce,R.J.Asaro,andA.Needleman.Ananalysisofnonuniformandlocalizeddeforma- tioninductilesinglecrystals. ActaMetallurgica ,30(6):1087Œ1119,1982.doi: 10.1016/0001- 6160(82)90005-0 . L.A.Pinol,J.Melngailis,H.K.Charles,D.M.Lee,R.Deacon,G.Coles,andG.Clatterbaugh. IofTinDepositionMethodsonTinWhiskerFormation. IEEETransactionsonCom- ponents,PackagingandManufacturingTechnology ,1:2028Œ2032,2011. D.A.PorterandK.E.Easterling. PhaseTransformationsinMetalsandAlloys .Chapmanand Hall,London,UK,2ndedition,1992.ISBN978-0412450303. G.RauchsandJ.Bardon.Idenionofelasto-viscoplasticmaterialparametersby indentationtestingandcombinedniteelementmodellingandnumericaloptimiza- tion. FiniteElementsinAnalysisandDesign ,47(7):653Œ667,2011.ISSN0168874X. doi: 10.1016/j011.01.008 . L.Reinbold,N.Jadhav,E.Chason,andK.SharvanKumar.RelationofSnwhiskerformation tointermetallicgrowth:ResultsfromanovelSnŒCu``bimetalledgespecimen''. Journalof MaterialsResearch ,24(12):3583Œ3589,2009.ISSN0884-2914.doi: 10.1557/jmr.2009.0431 . F.Roters. AdvancedMaterialModelsfortheCrystalPlasticityFiniteElementMethodŒDevel- opmentofageneralCPFEMframework .PhDthesis,RWTHAachen,Aachen,2011.URL http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3874/ . F.Roters,P.Eisenlohr,T.R.Bieler,andD.Raabe. CrystalPlasticityFiniteElementMethodsin MaterialsScienceandEngineering .Wiley-VCH,Weinheim,2010a.ISBN978-3527324477. doi: 10.1002/9783527631483 . F.Roters,P.Eisenlohr,L.Hantcherli,D.D.Tjahjanto,T.R.Bieler,andD.Raabe.Overviewof constitutivelaws,kinematics,homogenization,andmultiscalemethodsincrystalplasticity iteelementmodeling:Theory,experiments,applications. ActaMaterialia ,58:1152Œ1211, 2010b.doi: 10.1016/j.actamat.2009.10.058 . 162 F.Roters,P.Eisenlohr,C.Kords,D.D.Tjahjanto,M.Diehl,andD.Raabe.DAMASK:TheDüs- seldorfAdvancedMaterialSimulationKitforstudyingcrystalplasticityusinganFEbased oraspectralnumericalsolver.InO.Cazacu,editor, ProcediaIUTAM:IUTAMSymposium onLinkingScalesinComputation:FromMicrostructuretoMacroscaleProperties ,volume3, pages3Œ10,Amsterdam,2012.Elsevier.doi: 10.1016/j.piutam.2012.03.001 . F.Roters,M.Diehl,P.Shanthraj,P.Eisenlohr,C.Reuber,S.L.Wong,T.Maiti,A.Ebrahimi, T.Hochrainer,H-OFabritius,S.Nikolov,M.Friak,N.Fujita,N.Grilli,K.G.F.Janssens,N.Jia, P.J.J.Kok,D.Ma,F.Meier,E.Werner,M.Stricker,D.Weygand,andD.Raabe.DAMASKŒ TheDüsseldorfAdvancedMaterialSimulationKitforModellingMulti-PhysicsCrystalPlas- ticity,Damage,andThermalPhenomenafromtheSingleCrystaluptotheComponentScale. ComputationalMaterialsScience ,158:420Œ478,2019.doi: 10.1016/j.commatsci.2018.04.030 . G.Sachs. MitteilungenderdeutschenMaterialprüfungsanstalten ,chapterZurAbleitungeiner Fließbedingung,pages94Œ97.Springer,Berlin,Heidelberg,1929.doi: 10.1007/978-3-642- 92045-5_12 . M.Saka,F.Yamaya,andH.Tohmyoh.Rapidandmassgrowthofstress-inducednanowhiskers onthesurfacesofevaporatedpolycrystallineCu ScriptaMaterialia ,56(12):1031Œ1034, 2007.ISSN1359-6462.doi: 10.1016/j.scriptamat.2007.02.036 . R.Sánchez-Martín,M.T.Pérez-Prado,J.Segurado,J.Bohlen,I.Gutiérrez-Urrutia,J.Llorca, andJ.M.Molina-Aldareguia.MeasuringthecriticalresolvedshearstressesinMgalloys byinstrumentednanoindentation. ActaMaterialia ,71:283Œ292,2014.ISSN1359-6454. doi: 10.1016/j.actamat.2014.03.014 . E.Sandnes,M.E.Williams,M.D.Vaudin,andG.R.Stafford.Equi-AxedGrainForma- tioninElectrodepositedSn-Bi. JournalofElectronicMaterials ,37(4):490Œ497,dec2007. doi: 10.1007/s11664-007-0369-0 .URL https://doi.org/10.1007%2Fs11664-007-0369-0 . P.Sarobol,A.E.Pedigo,P.Su,J.E.Blendell,andC.A.Handwerker.DefectMor- phologyandTextureinSn,SnŒCu,andSnŒCuŒPbElectroplatedFilms. IEEETrans- actionsonElectronicsPackagingManufacturing ,33(3):159Œ164,2010.ISSN1521-334X. doi: 10.1109/TEPM.2010.2046172 . P.Sarobol,J.E.Blendell,andC.A.Handwerker.Whiskerandhillockgrowthviacoupledlocal- izedCoblecreep,grainboundarysliding,andshearinducedgrainboundarymigration. Acta Materialia ,61(6):1991Œ2003,2013.ISSN1359-6454.doi: 10.1016/j.actamat.2012.12.019 . L.Sauter,A.Seekamp,Y.Shibata,Y.Kanameda,andH.Yamashita.Whiskermitigationmea- suresforSn-platedCufordifferentstresstests. MicroelectronicsReliability ,50(9-11):1631Œ 1635,sep2010.doi: 10.1016/j.microrel.2010.07.083 .URL https://doi.org/10.1016%2Fj. microrel.2010.07.083 . M.Schneider,F.Ospald,andM.Kabel.Computationalhomogenizationofelasticityonastag- geredgrid. InternationalJournalforNumericalMethodsinEngineering ,105(9):693Œ720, 2015.doi: 10.1002/nme.5008 . 163 P.Shanthraj,P.Eisenlohr,M.Diehl,andF.Roters.Numericallyrobustspectralmethodsforcrys- talplasticitysimulationsofheterogeneousmaterials. InternationalJournalofPlasticity ,66: 31Œ45,2015.doi: 10.1016/j.ijplas.2014.02.006 . P.Shanthraj,L.Sharma,B.Svendsen,F.Roters,andD.Raabe.Aphasemodelfordamagein elasto-viscoplasticmaterials. ComputerMethodsinAppliedMechanicsandEngineering ,312: 167Œ185,2016.doi: 10.1016/j.cma.2016.05.006 . P.Shanthraj,M.Diehl,P.Eisenlohr,F.Roters,andD.Raabe. HandbookofMechanicsofMa- terials ,chapterSpectralSolversforCrystalPlasticityandMulti-physicsSimulations,pages 1347Œ1372.Springer,Singapore,2019.ISBN978-981-10-6855-3.doi: 10.1007/978-981-10- 6855-3_80-3 . W.Shim,J.Ham,K-IlLee,W.Y.Jeung,M.Johnson,andW.Lee.On-FilmFormationofBi NanowireswithExtraordinaryElectronMobility. NanoLetters ,9(1):18Œ22,2009.ISSN1530- 6984.doi: 10.1021/nl8016829 . J.W.ShinandE.Chason.StressbehaviorofelectroplatedSnmsduringthermal cycling. JournalofMaterialsResearch ,24(04):1522Œ1528,2009a.ISSN0884-2914. doi: 10.1557/jmr.2009.0172 . JaeWookShinandEricChason.StressbehaviorofelectroplatedSnduringthermalcy- cling. JournalofMaterialsResearch ,24(04):1522Œ1528,apr2009b.doi: 10.1557/jmr.2009.0172 . URL https://doi.org/10.1557%2Fjmr.2009.0172 . R.S.SidhuandN.Chawla.ThermalFatigueBehaviorofSn-Rich(Pb-Free)Solders. Metallurgi- calandMaterialsTransactionsA ,39(4):799Œ810,2008.doi: 10.1007/s11661-008-9480-y . S.SingerandJ.Nelder.Nelder-Meadalgorithm. Scholarpedia ,4(7):2928Œ,2009. doi: 10.4249/scholarpedia.2928 . J.Smetana.TheoryofTinWhiskerGrowth:``TheEndGame''. IEEETransactionsonElectronics PackagingManufacturing ,30(1):11Œ22,2007.doi: 10.1109/TEPM.2006.890645 . M.Sobiech,U.Welzel,E.J.Mittemeijer,W.Hügel,andA.Seekamp.Drivingforcefor SnwhiskergrowthinthesystemCuŒSn. AppliedPhysicsLetters ,93(1):011906Œ,2008. doi: 10.1063/1.2953973 . M.Sobiech,C.Krüger,U.Welzel,J.Y.Wang,E.J.Mittemeijer,andW.Hügel.Evolution ofmicrostructureandstressofandassociatedwhiskergrowthonSnlayerssputter- depositedonCusubstrates. JournalofMaterialsResearch ,25(11):2166Œ2174,nov2010. doi: 10.1557/jmr.2010.0276 .URL https://doi.org/10.1557%2Fjmr.2010.0276 . M.Sobiech,J.Teufel,U.Welzel,E.J.Mittemeijer,andW.Hügel.StressRelaxationMechanismsof SnandSnPbCoatingsElectrodepositedonCu:AvoidanceofWhiskering. JournalofElectronic Materials ,40(11):2300Œ2313,2011.ISSN0361-5235.doi: 10.1007/s11664-011-1737-3 . 164 J.Spahn,H.Andrä,M.Kabel,andR.Müller.Amultiscaleapproachformodeling progressivedamageofcompositematerialsusingfastFouriertransforms. Computer MethodsinAppliedMechanicsandEngineering ,268:871Œ883,2014.ISSN0045-7825. doi: 10.1016/j.cma.2013.10.017 . J.Stein,C.A.C.Tineo,U.Welzel,W.Huegel,andE.J.Mittemeijer.MicrostructuralDevelopment andPossibleWhiskeringBehaviorofThinSnFilmsElectrodepositedonCu(Zn)Substrates. JournalofElectronicMaterials ,44(3):886Œ894,2015a.ISSN0361-5235.doi: 10.1007/s11664- 014-3571-x . J.Stein,U.Welzel,A.Leineweber,W.Huegel,andE.J.Mittemeijer.Thecrystallographic growthdirectionsofSnwhiskers. ActaMaterialia ,86:102Œ109,2015b.ISSN1359-6454. doi: 10.1016/j.actamat.2014.12.004 . C-HSu,H.Chen,H-YLee,andA.T.Wu.Controlledpositionsandkineticanalysisofspon- taneoustinwhiskergrowth. AppliedPhysicsLetters ,99(13):131906Œ,2011.ISSN0003-6951. doi: 10.1063/1.3643472 . Y.Sun,E.N.Hoffman,P-SLam,andX.Li.Evaluationoflocalstrainevolutionfrom metallicwhiskerformation. ScriptaMaterialia ,65(5):388Œ391,2011.ISSN1359-6462. doi: 10.1016/j.scriptamat.2011.05.007 . D.Susan,J.Michael,R.P.Grant,B.McKenzie,andW.G.Yelton.MorphologyandGrowthKinet- icsofStraightandKinkedTinWhiskers. MetallurgicalandMaterialsTransactionsA ,44(3): 1485Œ1496,2013.doi: 10.1007/s11661-012-1488-7 . B.Svendsen,P.Shanthraj,andD.Raabe.Finite-deformationphase-chemomechanicsfor multiphase,multicomponentsolids. JournaloftheMechanicsandPhysicsofSolids ,2017. ISSN0022-5096.doi: 10.1016/j.jmps.2017.10.005 . G.I.Taylor.Plasticstraininmetals. JournaloftheInstituteofMetals ,62:307Œ324,1938. K.N.Tu.InterdiffusionandreactioninbimetallicCu-Snthinms. ActaMetallurgica ,21(4): 347Œ354,1973.ISSN0001-6160.doi: 10.1016/0001-6160(73)90190-9 . K.N.Tu.IrreversibleprocessesofspontaneouswhiskergrowthinbimetallicCu-Snthinm reactions. PhysicalReviewB ,49(3):2030Œ2034,1994.doi: 10.1103/PhysRevB.49.2030 . K.N.TuandJ.C.M.Li.Spontaneouswhiskergrowthonlead-freesolderes. Materials ScienceandEngineeringA ,409(1-2):131Œ139,2005.doi: 10.1016/j.msea.2005.06.074 . K.N.Tu,C.Chen,andA.T.Wu.chapterStressanalysisofspontaneousSnwhiskergrowth,pages 269Œ281.SpringerUS,Boston,MA,2007.ISBN978-0-387-48431-0.doi: 10.1007/978-0-387- 48433-4_18 . P.T.ViancoandJ.A.Rejent.DynamicRecrystallization(DRX)astheMechanismforSn WhiskerDevelopment.PartI:AModel. JournalofElectronicMaterials ,38(9):1815Œ1825,2009. doi: 10.1007/s11664-009-0879-z . 165 P.T.Vianco,M.K.Neilsen,J.A.Rejent,andR.P.Grant.ValidationoftheDynamicRecrystal- lization(DRX)MechanismforWhiskerandHillockGrowthonSnThinFilms. JournalofElec- tronicMaterials ,44(10):4012Œ4034,2015.ISSN0361-5235.doi: 10.1007/s11664-015-3779-4 . A.Vicenzo,S.Bonelli,andP.L.Cavallotti.Pulseplatingofmatttin:effectonproperties. Trans- actionsoftheIMF ,88(5):248Œ255,sep2010.doi: 10.1179/002029610x12791981507802 .URL https://doi.org/10.1179%2F002029610x12791981507802 . F.C.WalshandC.T.J.Low.Areviewofdevelopmentsintheelectrodepositionoftin. Surfaceand CoatingsTechnology ,288:79Œ94,feb2016.doi: 10.1016/j.surfcoat.2015.12.081 .URL https: //doi.org/10.1016%2Fj.surfcoat.2015.12.081 . J.S.Wang,X.J.Zheng,H.Zheng,S.T.Song,andZ.Zhu.Identionofelas- ticparametersoftransverselyisotropicthinmsbycombiningnanoindentationand FEManalysis. ComputationalMaterialsScience ,49(2):378Œ385,2010.ISSN0927-0256. doi: 10.1016/j.commatsci.2010.05.025 . L.Wang,R.I.Barabash,Y.Yang,T.R.Bieler,M.A.Crimp,P.Eisenlohr,W.Liu,andG.E.Ice. ExperimentalCharacterizationandCrystalPlasticityModelingofHeterogeneousDeforma- tioninPolycrystalline ® -Ti. MetallurgicalandMaterialsTransactionsA ,42(3):626Œ635,2011. doi: 10.1007/s11661-010-0249-8 . L.Wang,Z.Zheng,H.Phukan,P.Kenesei,J-SPark,J.Lind,R.M.Suter,andT.R.Bieler.Di- rectmeasurementofcriticalresolvedshearstressofprismaticandbasalslipinpolycrys- tallineTiusinghighenergyX-raydiffractionmicroscopy. ActaMaterialia ,132:598Œ610,2017. doi: 10.1016/j.actamat.2017.05.015 . N.Wang,Y.Cai,andR.Q.Zhang.Growthofnanowires. MaterialsScienceandEngineering:R: Reports ,60(1-6):1Œ51,2008.ISSN0927796X.doi: 10.1016/j.mser.2008.01.001 . Y.Wang,J.E.Blendell,andC.A.Handwerker.Evolutionoftinwhiskersandsubsidinggrains inthermalcycling. JournalofMaterialsScience ,49(3):1099Œ1113,2014.ISSN0022-2461. doi: 10.1007/s10853-013-7788-5 . J.WeertmanandJ.E.Breen.CreepofTinSingleCrystals. JournalofAppliedPhysics ,27(10): 1189Œ1193,1956.ISSN0021-8979.doi: 10.1063/1.1722228 . F.Willot.Fourier-basedschemesforcomputingthemechanicalresponseofcompos- iteswithaccuratelocal ComptesRendusMécanique ,343(3):232Œ245,2015. doi: 10.1016/j.crme.2014.12.005 . F.YangandJ.C.M.Li. Lead-FreeElectronicSolders ,chapterDeformationbehavioroftin andsometinalloys,pages191Œ210.Springer,Boston,MA,2007.ISBN978-0-387-48431-0. doi: 10.1007/978-0-387-48433-4_12 . F.YangandY.Li.Indentation-inducedtinwhiskersonelectroplatedtincoatings. Journalof AppliedPhysics ,104(11):113512Œ,2008.doi: 10.1063/1.3033390 . 166 Y.Yang,L.Wang,T.Bieler,P.Eisenlohr,andM.Crimp.QuantitativeAtomicForceMicroscopy CharacterizationandCrystalPlasticityFiniteElementModelingofHeterogeneousDeforma- tioninCommercialPurityTitanium. MetallurgicalandMaterialsTransactionsA ,42(3):636Œ 644,2011.doi: 10.1007/s11661-010-0475-0 . Yee-WenYen,Chao-KangLi,Meng-YuTsou,andPei-ShengShao.SubstrateShapeEffecton theSnWhiskerGrowthintheElectroplatingMatteSnSystem. JapaneseJournalofApplied Physics ,50:01BJ07,jan2011.doi: 10.1143/jjap.50.01bj07 .URL https://doi.org/10.1143% 2Fjjap.50.01bj07 . A.Yonezu,Y.Kuwahara,K.Yoneda,H.Hirakata,andK.Minoshima.Estimationofthe anisotropicplasticpropertyusingsinglesphericalindentationŠAnFEMstudy. Computa- tionalMaterialsScience ,47(2):611Œ619,2009.doi: 10.1016/j.commatsci.2009.10.003 . A.Yonezu,K.Yoneda,H.Hirakata,M.Sakihara,andK.Minoshima.Asimplemethodtoevaluate anisotropicplasticpropertiesbasedondimensionlessfunctionofsinglesphericalindenta- tionŒApplicationtoSiCwhisker-reinforcedaluminumalloy. MaterialsScienceandEngineer- ing:A ,527(29-30):7646Œ7657,2010.ISSN0921-5093.doi: 10.1016/j.msea.2010.08.014 . C-FYu,C-MChan,andK-CHsieh.Theeffectoftingrainstructureonwhiskergrowth. Micro- electronicsReliability ,50(8):1146Œ1151,2010.doi: 10.1016/j.microrel.2010.04.019 . C.ZambaldiandD.Raabe.Plasticanisotropyof ° -TiAlrevealedbyaxisymmetricindentation. ActaMaterialia ,58(9):3516Œ3530,2010.doi: 10.1016/j.actamat.2010.02.025 . C.Zambaldi,Y.Yang,T.R.Bieler,andD.Raabe.Orientationinformednanoindentationof ® - titanium:Indentationpileupinhexagonalmetalsdeformingbyprismaticslip. Journalof MaterialsResearch ,27(1):356Œ367,2012.doi: 10.1557/jmr.2011.334 . C.Zhang,H.Li,P.Eisenlohr,W.J.Liu,C.J.Boehlert,M.A.Crimp,andT.R.Bieler.Effectofre- alistic3DmicrostructureincrystalplasticityiteelementanalysisofpolycrystallineTi-5Al- 2.5Sn. InternationalJournalofPlasticity ,69:21Œ35,2015a.doi: 10.1016/j.ijplas.2015.01.003 . M.Zhang,F.Bridier,P.Villechaise,J.Mendez,andD.L.McDowell.Simulationof slipbandevolutioninduplexTiŒ6AlŒ4V. ActaMaterialia ,58(3):1087Œ1096,2010. doi: 10.1016/j.actamat.2009.10.025 . P.Zhang,Y.Zhang,andZ.Sun.SpontaneousGrowthofMetalWhiskersonSurfaces ofSolids:AReview. JournalofMaterialsScience&Technology ,31(7):675Œ698,2015b. doi: 10.1016/j.jmst.2015.04.001 . J-HZhao,P.Su,M.Ding,S.Chopin,andP.S.Ho.Microstructure-BasedStressModelingofTin WhiskerGrowth. IEEETransactionsonElectronicsPackagingManufacturing ,29(4):265Œ273, 2006.ISSN1521-334X.doi: 10.1109/TEPM.2006.887393 . O.C.Zienkiewicz. TheFiniteElementMethodinStructuralandContinuumMechanics . McGraw-Hill,NewYork,1967. 167 O.C.Zienkiewicz,R.L.Taylor,andJ.Z.Zhu. TheFiniteElementMethod:ItsBasisandFun- damentals .Elsevier,7edition,2013.ISBN9781856176330.doi: 10.1016/B978-1-85617-633- 0.00019-8 . 168