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ABSTRACT 

MODELING RISK FOR INTRANASAL, INHALATION, AND CORNEAL EXPOSURES TO  

OPPORTUNISTIC PATHOGENS OF CONCERN IN DRINKING WATER  

By 

Kara Dean 

This study developed dose response models for determining the probability of eye, respiratory or 

central nervous system infections from previously conducted studies using Naegleria fowleri, 

Acanthamoeba spp. and Pseudomonas aeruginosa. These opportunistic pathogens have been 

identified in drinking water and premise plumbing systems, and a lack of dose response models 

for the appropriate exposure routes of concern has prevented researchers from quantifying the 

risk they pose to human health. Using the newly developed dose response model for P. 

aeruginosa, a reverse quantitative microbial risk assessment (QMRA) was completed to 

determine the threshold concentrations of P. aeruginosa associated with an annual risk of 10-4 

for corneal and inhalation exposures.  The results indicated that an average concentration of 1 

CFU/L in the bulk water could result in an annual risk greater than the guideline set by the 

Environmental Protection Agency. The threshold concentration responsible for a 10-4 risk of 

pneumonia from P. aeruginosa was 11 orders of magnitude greater than the threshold 

concentration for bacterial keratitis. Modeling all possible exposure routes of concern for 

opportunistic pathogens in drinking water is critical, as the exposure route dramatically affects 

the concentrations of concern. This reverse QMRA and future risk assessments that utilize the 

dose response models developed in this study can be used to inform decisions on drinking water 

treatment, monitoring protocols, and future plumbing design.  
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CHAPTER 1: INTRODUCTION 

It is a national priority to protect drinking water sources and ensure that safe drinking 

water is available to the public. In the United States, policies such as the Clean Water Act and 

Safe Drinking Water Act implemented by the Environmental Protection Agency (EPA) set 

quality standards, regulations, and guidelines to accomplish these goals. The National Primary 

Drinking Water Regulations are legally enforceable standards and treatment techniques for 

public water systems (Environmental Protection Agency, 2003). There are currently standards 

and techniques for 80 different disinfectants, disinfectant byproducts, inorganic chemicals, 

organic chemicals, and radionuclides. The number of microorganism or microorganism-related 

regulations is much smaller, with performance guidelines or treatment techniques existing only 

for Cryptosporidium spp., Giardia lamblia, Legionella spp., Heterotrophic Plate Counts (HPC), 

Total Coliforms, fecal coliforms and E. coli, enteric viruses, and turbidity (Environmental 

Protection Agency, 2003). Most of the microorganism-related regulations consist of required 

treatment techniques to reduce the level of the contaminant. The Safe Drinking Water Act also 

empowers the EPA to assess natural and man-made contaminants that may need to be regulated 

in the future through a three-step process: (1) the EPA evaluates contaminants that potentially 

threaten human health and prioritizes those to regulate; (2) a maximum contaminant level goal is 

determined; and, (3) a feasible standard for maximum contaminant levels is specified (Gerba, 

Nwachuku, & Riley, 2003; National Research Council, 1999). 

Drinking water treatment continues to advance but waterborne-disease outbreaks 

associated with drinking water still occur from both groundwater and surface water supplied 

systems. From 2013-2014, 42 drinking water-associated outbreaks were reported in the U.S. that 

resulted in 1,006 cases of illness, 124 hospitalizations, and 13 deaths. Legionella was the 
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etiologic agent responsible for 24 of the outbreaks, 130 of the cases of illness and all of the 

deaths. Cryptosporidium or Giardia were responsible for eight outbreaks and 289 cases of illness 

and chemicals/toxins were associated with four outbreaks and 499 cases of illness (Benedict et 

al., 2017). Although water quality is monitored at the drinking water treatment facilities, there 

are opportunities for degradation and contamination once the water is distributed. The biological 

stability of the treated drinking water is threatened by the presence of pathogens and bacteria, 

either pre-existing or introduced, and the presence of nutrients and growth inhibitors throughout 

the system (Prest, Hammes, van Loosdrecht, & Vrouwenvelder, 2016).  

Premise plumbing refers to the distribution of water beyond the property line and 

includes households, hospitals, and commercials buildings (Falkinham III, Hilborn, Arduino, 

Pruden, & Edwards, 2015). Premise plumbing systems facilitate the direct use of the water 

supply, and as such serve as the location where exposure to potentially contaminated water can 

occur. The way water quality changes once it is distributed to the premise is not thoroughly 

understood and there has been recent evidence that the number of waterborne opportunistic 

pathogens in premise plumbing are increasing (Joseph O. Falkinham, 2015). Pathogens such as 

Legionella pneumophila, Mycobacterium avium, Pseudomonas aeruginosa, Naegleria fowleri 

and Acanthamoeba spp. have been found in drinking water and drinking water associated 

biofilms (van der Wielen & van der Kooij, 2013; Wingender & Flemming, 2011b). These 

pathogens are microorganisms that naturally inhabit drinking water systems and can cause a 

variety of infections. Waterborne opportunistic pathogens, such as Legionella, have been 

identified as one of the leading causes of drinking water-associated waterborne disease outbreaks 

and understanding the degradation of water quality in pipe systems that lead to their occurrence 

and proliferation has been identified as a research priority (Benedict, 2017; Garner 2019).  
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In addition to the plumbing conditions influencing occurrence and growth, it is necessary 

to understand how exposures to these pathogens may occur through the use of premise plumbing 

and to quantify the risk they pose to human health. This can be achieved with quantitative 

microbial risk assessment (QMRA), a framework that is used to characterize the risk of 

waterborne pathogens (C. Haas, Rose, & Gerba, 2014). QMRAs consist of five main steps: 

hazard identification, dose response modeling, exposure assessment, risk characterization, and 

risk management. The QMRA framework integrates the knowledge of the pathogens of concern, 

the probability of adverse health outcomes associated with exposure doses, and the possible 

exposure routes and scenarios to characterize risk. Information provided by completed QMRAs 

can be used to inform risk management decisions for the design, treatment, and maintenance of 

water distribution systems. 

RESEARCH GAPS 

Previous risk assessments have been conducted of L. pneumophila and M. avium for 

premise plumbing exposures (Hamilton et al., 2018; Hamilton, Ahmed, Toze, & Haas, 2017; 

Schoen & Ashbolt, 2011). This has been facilitated by the existence of dose response models for 

the exposure routes of concern (Hamilton, Weir, et al., 2017; Schoen & Ashbolt, 2011). The risk 

posed by other opportunistic pathogens of note including N. fowleri, Acanthamoeba spp. and P. 

aeruginosa have not been evaluated partly because of a lack of published dose response models. 

Understanding the relationship between exposure dose and likelihood of occurrence of infection 

is a necessary step in conducting a QMRA. Although there are currently dose response models 

for the corneal route of exposure to P. aeruginosa, there is no model representative of an 

inhalation exposure (Tamrakar, 2013). Only an intravenous exposure has been modeled for N. 

fowleri, which does not represent the likely exposure route of concern (Y. Huang, 2013). 
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Dose response models for free-living amebae will help quantify the risk they pose 

individually, and facilitate future research into their relationships with other bacterial 

opportunistic pathogens. Although L. pneumophila, M. avium, and P. aeruginosa are three of the 

most commonly tracked opportunistic pathogens in premise plumbing, only L. pneumophila and 

M. avium have been assessed for possible in-home exposure scenarios (Falkinham III et al., 

2015; Hamilton, Ahmed, et al., 2017; Schoen & Ashbolt, 2011). With the production of an 

inhalation dose response model for P. aeruginosa, QMRAs need to be conducted to understand 

the different exposure routes of concern and which exposure scenarios warrant the most risk 

management.  

RESEARCH OBJECTIVES 

 In order to facilitate the production of future risk assessments, this study aims to develop 

dose response models for N. fowleri, Acanthamoeba spp., and P. aeruginosa. To further 

understand the importance of each exposure route for P. aeruginosa, a reverse QMRA will be 

conducted to determine the concentrations in the water responsible for an annual risk level of 10-

4 for both corneal and inhalation exposure scenarios.  

 The specific objectives of this study are to: i) develop an intranasal dose response model 

for N. fowleri; ii) develop corneal and intranasal dose response models for Acanthamoeba spp.; 

iii) develop an inhalation dose response model for P. aeruginosa; and iv) complete a reverse 

QMRA of P. aeruginosa to compare risk posed by different exposure routes. The objectives 

were addressed in the form of four separate manuscripts entitled “Development of a Dose 

Response Model for Naegleria fowleri”, “Dose Response Models for Acanthamoeba spp.”, “A 

Dose Response Model for the Inhalation Route of Exposure to P. aeruginosa”, and “Reverse 

QMRA for P. aeruginosa in Premise Plumbing to Inform Risk” that are Chapters 3, 4, 5, and 6, 
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respectively, in this thesis (Dean & Mitchell, 2019; Dean, Tamrakar, Huang, Rose, & Mitchell, 

2019; Dean, Weir, & Mitchell, 2019). The results of this work will facilitate future risk 

assessments for all three pathogens and provide threshold concentrations of P. aeruginosa in the 

bulk water to be used to develop risk management strategies for drinking water.  
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CHAPTER 2: LITERATURE REVIEW 

 A literature review was conducted to identify the opportunistic pathogens of concern for 

human health, the conditions that lead to their survival in premise plumbing systems, and 

previous work done to assess the risk posed to human health through exposure at the tap.  

OPPORTUNISTIC PATHOGENS OF CONCERN 

 Of the 42 waterborne disease outbreaks reported in the US between 2013 and 2015, 

Legionella spp. was the pathogen responsible 57% of the time (Benedict et al., 2017). Legionella 

spp. are gram-negative bacteria ubiquitous in water sources and have been identified in locations 

from source to tap throughout water distribution systems (Falkinham III et al., 2015; Lau & 

Ashbolt, 2009). The pathogen primarily affects the immunocompromised and causes Pontiac 

fever and Legionnaires’ disease (Falkinham III et al., 2015). Pontiac fever is a mild, flu-like 

illness and Legionnaire’s disease is a severe form of pneumonia. Legionella pneumophila 

serogroup 1 is primarily responsible for the majority of outbreaks (Lau & Ashbolt, 2009; 

Percival & Walker, 1999). Exposure to the pathogen occurs through the inhalation of 

contaminated (or bacterial laden) aerosols. Typical sources of aerosols include cooling towers, 

fountains, showers, and faucets (Lau & Ashbolt, 2009).  

 Mycobacterium avium complex (MAC) refers to a group of opportunistic pathogens that 

are the most common cause of clinically significant non-tuberculosis mycobacterium infections 

(Whiley, Keegan, Giglio, & Bentham, 2012). The prevalence of mycobacterial diseases, 

primarily caused by M. avium, is roughly 10 to 15 cases per 100,000 individuals in the U.S 

(Billinger et al., 2009; Falkinham III, 2013). The most common manifestation of non-

tuberculosis mycobacterium infections is pulmonary disease. For the immunocompromised,  

MAC is known to cause pulmonary infections, gastrointestinal tract infections and skin 
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infections depending on the pre-existing conditions (Donohue et al., 2015; Whiley et al., 2012). 

MAC have been identified in the potable water of multiple countries including the US and it has 

been demonstrated that the bacteria are capable of growing and persisting within the distribution 

system (J.O. Falkinham, Norton, & Mark, 2001; Whiley et al., 2012). In terms of exposure to 

potable water, the exposure routes of concern are the inhalation of contaminated aerosols from 

showers, humidifiers or hot tubs, or through the ingestion of contaminated water by patients with 

severe immunodeficiency (Falkinham Joseph, 2013; Hamilton, Weir, et al., 2017).  

 Pseudomonas aeruginosa is another opportunistic pathogen known to proliferate in 

drinking water distribution systems (Trautmann, Lepper, & Haller, 2005). P. aeruginosa is a 

gram-negative bacterium responsible for a range of infections. It has been known to cause 

community- and hospital-acquired pneumonia, and chronic lung infections in patients with cystic 

fibrosis (Driscoll, Brody, & Kollef, 2007b; Kerr & Snelling, 2009). The morbidity and mortality 

rates of P. aeruginosa infections are elevated for the immunocompromised (Streeter & Katouli, 

2016). In addition, the bacterium is also known to be one of the main etiologic agents of bacterial 

keratitis, a type of eye infection estimated to have an annual incidence of 20.9 and 4.1 cases per 

10,000 persons using extended wear and daily wear contact lenses, respectively (Driscoll et al., 

2007b; Kerr & Snelling, 2009; Poggio et al., 1989). These infections and routes of exposure 

make the pathogen’s presence in drinking water particularly concerning, as exposure could occur 

through application of water to the eye or from the inhalation of aerosols.  

 In addition to the bacterial opportunistic pathogens mentioned, the free-living amebae 

(FLA) Naegleria fowleri and Acanthamoeba spp. are also considered opportunistic pathogens of 

concern. These FLA are concerns in drinking water not only because of their ability to cause 

harmful infections themselves, but also because they are known to harbor and protect other 
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opportunistic pathogens (J. M. Thomas & Ashbolt, 2010). N. fowleri is a FLA known to inhabit 

warm, freshwater sources and is responsible for the highly fatal infection, Primary Amebic 

Meningoencephalitis (PAM) (S. Kilvington & White, 1985; Ma et al., 1990). To initiate 

infection, the amebae has to be forcefully inhaled through the nose to facilitate access to the 

brain. There have been over a hundred cases in the United States, usually associated with 

swimming in warm freshwater sources, but also from exposure to treated drinking water (CDC 

2008). For example, in Louisiana there was a fatal case of PAM from the use of contaminated 

tap water in a neti-pot (J. R. Cope et al., 2015). Acanthamoeba spp. is another type of FLA that 

has been detected in drinking water distribution systems. Acanthamoeba spp. are responsible for 

Acanthamoeba keratitis, an eye infection, and the rare CNS infection, Granulomatous Amebic 

Encephalitis (GAE) (Marciano-Cabral & Cabral, 2003). Acanthamoeba spp. has also been shown 

to associate and increase the survival ability of Legionella in drinking water (Bichai, Payment, & 

Barbeau, 2008; Lau & Ashbolt, 2009). 

CONDITIONS PROMOTING MICROBIAL GROWTH IN PREMISE PLUMBING SYSTEMS 

Temperature cycling, storage and stagnation, biofilm presence, and decaying disinfectant 

residuals are all conditions that are conducive for the proliferation of pathogens within the 

premise plumbing system (J. Falkinham, Pruden, & Edwards, 2015). Within the premise 

plumbing system, temperature setting has been a main factor driving changes in opportunistic 

pathogen abundance and microbial community composition (Bédard et al., 2015; Dai, Rhoads, 

Edwards, & Pruden, 2018). Water heaters provide an element of treatment by heating the water, 

however it is impossible to maintain that water heater set point throughout the system, and warm 

water temperatures (32-41°C) have been shown to stimulate microbial growth (Bédard et al., 

2015; Dai et al., 2018; Rhoads, Ji, Pruden, & Edwards, 2015). The World Health Organization 
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(WHO) recommends setting water heaters to 60°C to limit pathogen growth (World Health 

Organization, 2007). This recommendation is not often followed, however, because 60°C poses a 

scalding risk. The EPA thus suggests a setting of 49°C as a safer, more energy efficient choice 

(Brazeau & Edwards, 2013). Legionella spp. can not survive temperatures above 50°C but when 

L. pneumophila grows within free-living amebae, it has additional protection from temperatures 

and treatment (Lau & Ashbolt, 2009; Percival & Walker, 1999). P. aeruginosa can grow 

between 10 and 42°C, with an optimum growth temperature of 37°C (Bédard, Prévost, & Déziel, 

2016). These temperatures are below the EPA recommended water heater setting, however P. 

aeruginosa has also been known to interact with free-living amebae which can allow it to survive 

temperatures above 55°C (Bédard et al., 2016; S. Cervero-Aragó, Rodríguez-Martínez, Canals, 

Salvadó, & Araujo, 2013). Although temperature increases to 60°C and above have shown to 

decrease P. aeruginosa contamination, thermal disinfection has not been proven to be effective 

at eradication once the pathogen has already colonized the system (Bédard et al., 2016). Homes 

with high hot water temperatures have shown to have a lower number of M. avium (J. Falkinham 

et al., 2015). A study of free-living amebae under temperature treatment identified a difference in 

persistence between trophozoites and cysts. Treatment at 50°C reduced trophozoite viability by 

2-3 log10, but cysts by less than 1 log10. Treatments at 60°C and 70°C were much more effective 

and indicate that the common water heater settings may not be adequate to reduce FLA 

concentration (S. Cervero-Aragó et al., 2013).  

Biofilms are present on all the surfaces involved in water treatment, distribution and 

storage, and these surfaces are usually more highly colonized than the bulk water (Flemming, 

Wingender, & Szewzyk, 2011). Biofilm presence in premise plumbing systems provides 

nutrients and protection that allow for greater pathogen growth (WHO, 2007). The presence, 
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persistence, and multiplication of Legionella spp. in biofilms has been observed on a variety of 

piping materials and over a range of temperatures (Flemming et al., 2011). Previous studies have 

indicated that P. aeruginosa amplifies within the premise plumbing or the tap rather than within 

the main water distribution system, and presence of P. aeruginosa is strongly correlated to 

biofilm colonization of point-of-use devices such as faucets, drains, and showerheads (Bédard et 

al., 2016). Unlike Legionella spp., MAC species are not dependent on free-living amebae within 

the biofilm for replication (Flemming et al., 2011). M. avium, M. intracellulare, and M. 

abscessus have all been shown to readily adhere and form biofilms on stainless steel, glass, zinc-

galvanized steel, copper and polyvinyl chloride (Mullis & Falkinham, 2013). Considering 

amebae feed on bacteria, it is likely that a biofilm is the preferred habitat for free-living amebae 

as well. A study of dental unit water identified concentrations of amebae 300 times greater from 

the dental unit water than the tap water. The ratio of area to volume of the water lines was 6:1, 

providing a large surface for biofilm colonization (Barbeau & Buhler, 2001). The biofilm also 

aids in the pathogens’ persistence. N. fowleri has been shown to be able to survive chlorine 

concentrations 30 times (20 mg/L for 3 hours) than the recommended amount when established 

in attached biofilms (Miller et al., 2015). 

The concentrations of chlorine and other disinfectant residual types is an element of 

concern within premise plumbing systems. Although chemical treatments such as 

monochloramine, chlorine and chlorine dioxide have been shown to be effective at controlling 

the growth of pathogens like Legionella and Acanthamoeba, their effectiveness can be strain 

dependent and it is a concern that the necessary residual levels are not always maintained  

(Dupuy et al., 2011; Kim, Anderson, Mueller, Gaines, & Kendall, 2002).  This decay may be 

highly dependent on the piping materials used, as greater decay has been observed in copper 
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pipes than galvanized iron or polyvinyl chloride (PVC) (Zheng, He, & He, 2015). Piping 

material is another controversial factor affecting pathogen growth in plumbing systems as studies 

have had contradicting results. Although plastic piping such as PVC may maintain free chlorine 

residuals better than other metal piping types, some studies have shown it may be more prone to 

biofilm growth. In one study polymer piping had greater biofilm formation intensity than 

stainless steel and allowed for more Legionella spp. growth due to a greater leaching of nutrients 

and pre-existing hollows from the manufacturer (Rogers J., Dowsett A.B., Dennis P.J., Lee J.V., 

& Keevil C.W., 1994). Imperfections in the material as a location for biofilm formation and 

persistence was also demonstrated in a study of polyethylene water storage tanks (Van Der 

Merwe, Duvenage, & Korsten, 2013). M. avium amounts dramatically increased in water and 

biofilms on PEX, suggesting the material is more supportive of biofilm structures that allows 

pathogens to persist and grow (Bukh & Roslev, 2014; J.O. Falkinham et al., 2001; Lu et al., 

2014). Ultimately, although there are several factors affecting the growth and proliferation of 

opportunistic pathogens and free-living amebae, the main influencers within premise plumbing 

systems include temperature changes, stagnation, biofilm development, and decaying 

disinfectant residuals.   

QUANTITATIVE MICROBIAL RISK ASSESSMENT AND OPPORTUNISTIC 

PATHOGENS 

Premise plumbing systems are more prone to stagnant flow conditions and as such, 

biofilm development and chlorine residuals decay. As water use trends continue to decline, 

stagnation within the systems will grow. Before new treatment protocols or management 

practices can be designed, the concentrations of opportunistic pathogens in the water that pose a 

risk to human health need to be determined. Quantitative microbial risk assessment (QMRA) is a 
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framework used to characterize the risk of waterborne pathogens (C. Haas et al., 2014). The 

results of a QMRA can be used to inform risk management decisions for the design, treatment, 

and maintenance of water distribution systems. QMRAs consist of five main steps: hazard 

identification, dose response modeling, exposure assessment, risk characterization, and risk 

management.  

Previous QMRAs have been conducted for L. pneumophila and M. avium in terms of 

premise plumbing system exposure (Hamilton et al., 2018; Hamilton, Ahmed, et al., 2017; 

Schoen & Ashbolt, 2011). An in-premise model determined bacterial densities of L. 

pneumophila in the air, water, and biofilm that could result in an infection during a 15-minute 

showering event. The range of concentrations in the water was calculated to be from 3.5x106 to 

3.5x108 CFU/L (Schoen & Ashbolt, 2011). Health risks from exposure to Legionella were also 

evaluated for toilet flushing and it was determined that the median annual infection risks 

exceeded 10-4, however, this risk was highly dependent on the assumptions made about how 

Legionella was partitioned in aerosol (Hamilton et al., 2018).  

Another QMRA investigated the risks of using roof-harvested rainwater and assessed 

exposure scenarios such as car washing, toilet flushing and garden hose use for L. pneumophila, 

and drinking, accidental ingestion and inhalation for MAC. Risk was highest for the drinking 

exposure route and the risk of infection from inhalation was 6 orders of magnitude higher for L. 

pneumophila than for MAC (Hamilton, Ahmed, et al., 2017). Median annual risks for L. 

pneumophila exceeded 10-4 for the showering and garden hose exposures, and for all MAC 

exposure scenarios, the 95% confidence intervals were below the 10-4 benchmark. This study did 

not use a partitioning coefficient for the inhalation exposures to L. pneumophila and instead 

quantified the different volumes of specific aerosol sizes, further emphasizing the importance of 
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further elucidating the way the pathogen aerosolizes to accurately capture risk (Hamilton, 

Ahmed, et al., 2017).  
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CHAPTER 3: DOSE RESPONSE MODEL FOR NAEGLERIA FOWLERI 

INTRODUCTION 

Free-living amebae (FLA) are present in freshwater sources. Naegleria fowleri is a 

thermophilic FLA commonly found in warm freshwater bodies and can survive temperatures of 

up to 40-45 °C (S. Kilvington & White, 1985; Ma et al., 1990). N. fowleri is responsible for 

Primary Amebic Meningoencephalitis (PAM), a highly fatal infection. The infection is mostly 

acquired through forceful entry of water with the amebae into the nasal canal such that the 

amebae is able to migrate to the brain. This form of forceful inhalation into the nose could occur 

while swimming or diving in a body of water or bath, or perhaps with the use of a neti-pot 

(Bright & Gerba, 2017). Onset is rapid, with symptoms beginning with headache, fever, and 

nausea and quickly escalating to coma and seizures (Ma et al., 1990). PAM has a fatality rate of 

about 98%, affecting mostly children or young adults that have spent time swimming (Bartrand, 

Causey, & Clancy, 2014; CDC, 2011). In a study conducted by the CDC, 121 cases of PAM 

were reviewed from 1937-2007 and the majority of exposures occurred in warm, freshwater 

sources in the southern states of the U.S. (CDC, 2008).  

Although most incidences of PAM are seen in cases of swimming in warm waters, 

infections associated with potable water have also been reported (Blair, Sarkar, Bright, 

Marciano-Cabral, & Gerba, 2008; Ma et al., 1990). Some non-swimming cases reported were 

associated with contaminated premise plumbing systems or improper neti-pot usage (Bartrand et 

al., 2014). N. fowleri was present on both the third and fourth contaminant candidate lists (CCL) 

published by the Environmental Protection Agency because despite generally low outbreaks and 

occurrences, the health effects from infection are severe (Hoffman, Marshall, Gibson, & 

Rochelle, 2009; U.S. EPA, 2009; U.S. EPA, 2016). Concern over the colonization of Arizona 
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wells by N. fowleri prompted a study where PCR detected N. fowleri DNA in 11 of the 143 

tested wells (Blair et al., 2008). 

In an effort to conserve water and pursue Green building designs, low flow conditions are 

becoming more common in water distribution systems. This is of particular concern with N. 

fowleri because it gains resistance against different treatment strategies when associated with 

biofilms. In a study conducted by Miller et al. (2015), N. fowleri established in attached biofilms 

were able to survive chlorine concentrations 30 times greater than the recommended amount (20 

mg/L for 3 h and 10 mg/L for 48 h). The risk posed by N. fowleri to drinking water distribution 

systems may increase as the result of warmer temperatures from changing climate conditions and 

lower flows in plumbing systems. To better understand the risk posed by N. fowleri in these 

systems, Quantitative Microbial Risk Assessments (QMRA) are needed. QMRA is a widely used 

framework for risk characterization of waterborne pathogens in order to inform decisions about 

treatment, alternative design and selection (C. Haas et al., 2014).  

 A dose-response model to establish the mathematical relationship between exposure 

dose and risk for N. fowleri is needed for the forceful inhalation exposure route. This study aims 

to develop dose-response models from previously conducted studies on N. fowleri in the 

laboratory setting (D.T. John & Nussbaum, 1983; David T John & Hoppe, 2017). With these 

dose response models, QMRAs can be performed to further inform the future design and 

treatment of drinking water distribution systems.  
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MATERIALS AND METHODS 

Data  

John and Hoppe determined patterns of susceptibility for small wild mammals exposed to 

N. fowleri (David T John & Hoppe, 2017). N. fowleri was instilled intranasally into a single naris 

of oppossums, raccoons, squirrels, muskrats, rabbits, mice and rats using an Eppendorf pipet, and 

it was determined that mice were the most susceptible to infection. Male and female mice (10 in 

each group) were intranasally inoculated with the LEE strain of N. fowleri at doses ranging from 

1,000 to 1,000,000 amebae per mouse. Amebae were grown in Nelson’s medium and incubated 

at 37⁰C. Exponential growth phase amebae were harvested with centrifugation and inoculum was 

adjusted to desired cell concentrations. Experiment 1 in Table 3.1 shows dose response results 

from this study.  

John and Nussbaum (1983) studied the infection acquired by mice through swimming in 

amebae-contaminated water (D.T. John & Nussbaum, 1983). Groups of 10 CD1 mice were 

placed in a one liter volume of distilled water containing different doses of amebae of the LEE 

strain of N. fowleri per ml of distilled water. Mice can normally float and keep their heads above 

water. To simulate an actual swimming exposure, groups of mice were put in the same container 

to create a crowded environment to spur swimming activity. After a specific time of swimming 

exposure (2.5, 5, 10 and 20 minutes), the mice were removed from the water and dried. The 

cumulative percentage of dead animals was recorded up to 28 days after exposure (D.T. John & 

Nussbaum, 1983). The concentrations in the water for the 5, 10, and 20 minute studies were 

analyzed and are shown in Table 3.1 as Experiment 2, 3, and 4, respectively.  
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Table 3.1: Dose Response Experiment Data for N. fowleri 

Experiment Exposure Endpoint 

Dose (no. of 

organisms)* 

Responses 

Resource 

Positive  Negative  Total  

1 Intranasal Death 

1,000 7 3 10 

John and 

Hoppe 

(1990) 

10,000 8 2 10 

100,000 10 0 10 

1,000,000 10 0 10 

2 

Swimming 

for 5 min. 

Death 

100 0 10 10 

John and 

Nussbaum 

(1983) 

1,000 0 10 10 

10,000 1 9 10 

100,000 4 6 10 

1,000,000 7 3 10 

3 

Swimming 

for 10 min. 

Death 

100 0 10 10 

John and 

Nussbaum 

(1983) 

1,000 1 9 10 

10,000 4 6 10 

100,000 6 4 10 

4 

Swimming 

for 20 min. 

Death 

100 0 10 10 

John and 

Nussbaum 

(1983) 

1,000 1 9 10 

10,000 4 6 10 

100,000 7 3 10 

*For Experiments 2, 3, and 4, the model is first fit to the concentration with units of amebae/mL 

Analysis Methods 

The data were evaluated against specific quality criteria before modeling. This criterion 

consisted of ensuring that (1) three or more graded doses were administered in the experiments; 

(2) at least three animals were tested in each dosing group; and (3) the data had a statistically 

significant trend by the Cochran-Armitage test (C. N. Haas, Rose, & Gerba, 2014; Neuhäuser & 

Hothorn, 1999). The studies evaluated included an adequate description of the dose 
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administered, strain of the pathogen, host species, number of positive responses and number of 

negative responses. Previously developed computer code in the statistical programming 

language, “R” (www.r-project.org) (Weir, Mitchell, Flynn, & Pope, 2017) was used to fit the 

dose-response models using the method of maximum likelihood estimation (MLE) as described 

in Haas et al. (2014). Both the exponential dose-response model (Equation 1) and the 

approximate form of the beta-Poisson dose-response model (Equation 2) were fit to the data (C. 

Haas et al., 2014).  

The exponential dose-response model is given by Equation (1) where P(d) is the 

probability of response at dose, d , and the single parameter, k, is optimized during fitting and 

represents the probability that a single organism can survive to initiate  the observed response.  

𝑃(𝑑) = 1 − 𝑒−𝑘𝑑       (1) 

The approximate beta-Poisson model is given by Equation (2) where N50 is the median 

infective dose and α is a shape parameter (C. Haas et al., 2014; Teunis & Havelaar, 2000). In this 

study, the N50 is actually an LD50, the median lethal dose because the observed response in all 

data sets was death.  

           𝑃(𝑑) = 1 − [1 + (
𝑑

𝑁50
) ∗ (2

1
𝛼⁄ − 1)]−𝛼                                   (2) 

The “rule of thumb” from Xie et al. (2017) was used to validate the application of the 

approximate beta-Poisson. These researchers propose Pr( 0<r<1)| α̂, β̂ ) > 0.99 as a validity 

measure for the appropriate use of the approximate beta-Poisson with the constraint  β̂>(22 α̂ )0.50 

for 0.02 < α̂ < 2 (Xie et al., 2017). This methodology was used to validate the use of the 

approximate beta-Poisson for all four data sets in this study.   

http://www.r-project.org/
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To establish goodness of fit for the models, a comparison of the optimal value of the 

deviance to the critical χ2 value at degrees of freedom equal to the number of doses minus the 

number of fitted parameters at an alpha value of 0.05 was conducted as previously described by 

Haas et al. (2014). In order to compare the fit of the two models for each data set, an assessment 

of the statistical significance of improvement of fit was made by comparing the reduction in 

minimized deviance with the critical χ2 value at 1 degree of freedom between the two-parameter 

beta-Poisson model and the one-parameter exponential model. Confidence bands were estimated 

using a bootstrapping resampling technique.  

When multiple data sets were available for the same pathogen, a statistical pooling 

analysis was performed to ascertain whether the data set had the same underlying distributions. 

A likelihood ratio test was used to determine if data could be pooled. 

RESULTS 

N. fowleri injected to CD1 mice through nasal cavity  

The beta-Poisson was the best fit model for the CD1 mice exposed intranasally to N. 

fowleri in Experiment 1. The minimized deviance of the exponential model exceeded the χ2 

value at degree of freedom one while the beta-Poisson model was well within the critical χ2 

value. Moreover, differences in deviances provided statistical significance of improvement of the 

beta-Poisson over the exponential model. The statistics of the two model fits to the animal 

studies are summarized in Table 3.2 and the best-fit model is shown in Figure 3.1. Due to the 

lack of singular responses, confidence bands could not reliably be estimated for the model. 

Singular responses refer to the responses in the dosing study where all or none of the subjects 

showed a response. In Experiment 1, there were no doses where none of the subjects exhibited a 

response. 
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Figure 3.1 Plot of beta-Poisson model for CD1 mice exposed intranasally to N. fowleri 

N. fowleri inhaled by swimming mice 

The beta-Poisson model provided the best fit for the CD1 mice exposed to different 

concentrations of amebae in the water while swimming in Experiments 2, 3 and 4. The beta-

Poisson models for each experiment are shown below.  

Swimming for 5 minutes 

  The minimized deviance of the exponential model provided acceptable fit but difference 

in deviances (5.88) provided statistical significance of improvement of the beta-Poisson over the 

exponential model. The statistics of the two model fits to the animal study are summarized in 

Table 3.2 and the best-fit model with confidence bands is shown in Figure 3.2.  
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Figure 3.2 Plot of beta-Poisson model for CD1 mice exposed via swimming for 5 minutes with upper and lower 

95% and 99% confidence 

Swimming for 10 minutes 

The beta-Poisson model was the best fit for the CD1 mice that swam for 10 minutes. The 

minimized deviance of the exponential model (7.88) exceeded the χ2 value (7.81) at degree of 

freedom one and that of the beta-Poisson model was well within the critical value. Moreover, 

difference in deviances (7.55) provided statistical significance of improvement of the beta-

Poisson over the exponential model. The statistics of the two model fits for Experiment 3 are 

summarized in Table 3.2 and the best-fit model with confidence bands is shown in Figure 3.3.  
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Figure 3.3 Plot of beta-Poisson model for CD1 mice exposed via swimming for 10 minutes with upper and lower 

95% and 99% confidence 

Swimming for 20 minutes 

The minimized deviances of both the exponential as well as the beta-Poisson model 

provided acceptable fits. However, a difference in deviances (5.898) provided statistical 

significance of improvement of the beta-Poisson over the exponential model. The statistics of the 

two model fits are summarized in Table 3.2 and the best-fit model with confidence bands is 

shown in Figure 3.4.  
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Figure 3.4 Plot of beta-Poisson model for CD1 mice exposed via swimming for 20 minutes with upper and lower 

95% and 99% confidence 

Table 3.2: Statistics for N. fowleri Dose Response Models 

Experiment Model Deviance Δ DF χ2 
α,n-k χ2 

α,1 Best Fit Parameters LD50 

1 

Exponential 11.28 

9.64 

3 7.81 

3.84 

beta-

Poisson 

α=0.536 

N50=422.05 

422 

beta-Poisson 1.64 2 5.99 

2 

Exponential 6.13 

5.88 

4 9.49 

3.84 

beta-

Poisson 

α =0.352 

N50=198,602 

198,602 

beta-Poisson 0.25 3 7.81 

3 

Exponential 7.89 

7.55 

3 7.81 

3.84 

beta-

Poisson 

α =0.241 

N50=30,447 

30,447 

beta-Poisson 0.33 2 5.99 

4 

Exponential 6.13 

5.90 

3 7.81 

3.84 

beta-

Poisson 

α =0.350 

N50=19,805 

19,805 

beta-Poisson 0.23 2 5.99 

Pooling analysis  

Data of swimming episodes of CD1 mice for three different time periods (5 min, 10 min 

and 20 min) in different concentrations of amebae per mL could be pooled. The value of 

difference in deviances between the sum of the individual best fits and pooled best fit was 6.584, 

which was less than the χ2 0.05,4 value (9.487). The summary and statistics of the pooling analysis 
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are shown in Table 3.3 and Figure 3.5. The confidence of the bootstrapped parameters is shown 

in Figure 3.6. 

  

Figure 3.5 Plot of beta-Poisson model for pooled data of CD1 mice swimming for 5, 10 and 20 minutes with upper 

and lower 95% and 99% confidence 

 

Figure 3.6 Bootstrapped distribution of beta-Poisson parameter estimates for pooled data of CD1 mice swimming 

for 5, 10 and 20 minutes; the center marker (X) represents the maximum likelihood estimate 
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 Table 3.3: Pooling Statistics for N. fowleri 

Data Set 
Number 

of Doses 

Best Fit 

Model 

Minimized 

Deviance 
DF χ2 

α,n-k  χ2 
α,1  Parameters LD50 

Pooling 2, 3, and 4 

(Concentrations and 

Doses*) 

13 
beta-

Poisson 
7.40 11 19.68 0.77 

α=0.226 

N50=57,938 
57,983 

α*=0.226 

N50*=13,257 
13,257* 

Final recommended model 

 For the recommended dose response model for exposure to N. fowleri in a swimming 

event, the pooled concentrations were transformed into exposure doses. Previous studies with 

mice determined an average breathing rate of 261 breaths/minute and a tidal volume of 0.16 mL 

(Karrasch, Eder, Bolle, Tsuda, & Schulz, 2009). The method for experimental drowning of rats 

administers water intratracheally at a rate of 1 mL/minute until cardiac arrest occurs. In previous 

experiments, cardiac arrest occurred in under 3 minutes (Locali, Almeida, & Oliveira-Júnior, 

2006). The total lung capacity of rats is approximated to be 10 times greater than that of mice 

(Irvin & Bates, 2003). Applying this ratio to the rodent drowning procedure approximates the 

volume that could cause death in a mouse to be 0.30 mL. Since the mice in John and Nussbaum’s 

study survived the swimming event, it can be assumed that they did not inhale the 0.30 mL of 

water necessary for cardiac arrest to occur. Thus, it was assumed that each mouse only inhaled 

water or water aerosols for a maximum of 2 breaths during their swimming event. With the two 

breaths, average tidal volume, and a retention rate in the nasal region of 71.5%, the inhaled dose 

of amebae was calculated and the beta-Poisson model was the best fit with a deviance of 7.40 

(Raabe, Al-Bayati, Teague, & Rasolt, 1988). The statistics of the models are shown in Table 3.3 

and the model with confidence bands and the bootstrapped parameter distributions are shown in 

Figures 3.7 and 3.8, respectively.   
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Figure 3.7: Recommended beta Poisson dose response model for CD1 mice exposed to amebae in a swimming event with upper 

and lower 95 and 99% confidence 

 

Figure 3.8 Bootstrapped distribution of beta-Poisson parameter estimates for pooled data of CD1 mice swimming for 5, 10 and 

20 minutes; the center marker (X) represents the maximum likelihood estimate 

DISCUSSION 

The studies by both John and Hoppe (1990) and John and Nussbaum (1983) evaluated 

intranasal exposure to the LEE strain of N. fowleri in CD1 mice. John and Hoppe (1990) 

inoculated intranasally into a single naris of immobilized animals using Eppendorf pipettes, 

while John and Nussbaum (1983) placed the animals into one liter volumes of distilled water 

containing specified numbers of amebae to provide a tumultuous environment for swimming. 
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The best fit model for the CD1 mice exposed intranasally via pipette and CD1 mice swimming at 

different time periods is the beta-Poisson, indicative of a heterogeneous response.  

The beta-Poisson curve for the direct intranasal inoculation was steeper than the curves 

for the previously conducted dose-response study on intravenous exposure to N. fowleri (Huang, 

2013). This is indicative of a higher delivered dose reaching the receptive tissue, resulting in a 

higher probability of death.  The LD50 for the intranasal inoculation was the lowest of the four 

experiments assessed in this study with a value of 422 ameba. This exposure route being more 

lethal is logical considering N. fowleri infection is associated with contaminated water being 

forced into the nasal cavity, an action that does not always naturally occur when just swimming. 

In Experiments 2-4, multiple mice were crowded into a single container to create a violent 

swimming environment where inhalation of water through the nose could occur. The individual 

model of different time periods shows the longer the swimming period, the lower the LD50 and 

the higher the probability of death for each dose. However, as the data sets of all the swimming 

periods could be pooled, this indicates that all the swimming episode cases can be described by a 

single model and would be considered mechanistically similar.  

The pooled and final recommended model shown in Table 3.3 and Figure 3.7 had an 

LD50 of ameba. The previously completed dose-response model for N. fowleri was completed 

with an intravenous exposure. The best-fit model for the intravenous exposure was the 

exponential model with an LD50 of 2,030,000 (Huang, 2013). The model recommended in this 

study more accurately estimates the likelihood that N. fowleri ameba reaches the target receptor 

to initiate infection. 



28 

 

CONCLUSIONS 

The dose-response models developed in this analysis are the first step in quantifying the 

risk N. fowleri poses to the population when present in drinking water distribution systems 

because they more closely match the expected exposure route. Although there are infrequent 

outbreaks and occurrences, the deadly effects of infection make N. fowleri a drinking water 

regulation focus (Hoffman et al., 2009). Although N. fowleri can be controlled with chemical and 

physical implementations in the premise plumbing system, it is the faltering or evading of these 

systems that causes concern. N. fowleri found in an area of a treated drinking water system with 

no detectable total chlorine residuals and temperatures greater than 30 °C was linked to a fatal 

infection in the United States (J. Cope et al., 2015). The recommended dose response model 

developed in this study can be used to perform QMRAs to help risk managers protect human 

health and properly manage drinking water distribution systems to ensure safe drinking water.    
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CHAPTER 4: DOSE RESPONSE MODELS FOR ACANTHAMOEBA SPP. 

INTRODUCTION 

Free-living amoeba (FLA) naturally exist in drinking water distribution systems. Some 

FLA are pathogenic, and some serve as hosts for other, more harmful pathogens. The 

interactions between FLA and amoeba-resisting microorganisms like opportunistic pathogens, 

can possibly occur throughout all stages of the water distribution system (Hoffmann & Michel, 

2001; J. M. Thomas & Ashbolt, 2010). There have been recorded incidences of FLA interacting 

with opportunistic pathogens in premise plumbing such as Legionella, Mycobacterium, and 

Pseudomonas (J. M. Thomas & Ashbolt, 2010; V. Thomas, Blanc, Bille, & Greub, 2005). 

Opportunistic pathogens naturally inhabit the infrastructure and can pose a threat to certain 

populations, especially the immunocompromised. The target populations include the elderly and 

those with preexisting health conditions (J. Falkinham et al., 2015). When these pathogens 

become incorporated in FLA like Acanthamoeba, they become more capable of surviving 

barriers such as higher temperatures and disinfection. In addition to offering protection, the 

amebae have been shown to aid in multiplication, transportation and increasing virulence 

potential of the bacterial pathogens (Bichai et al., 2008). 

FLA have been detected in drinking water distribution systems around the world and a 

comprehensive measurement of the risk they pose to human health is a source of uncertainty (J. 

M. Thomas & Ashbolt, 2010). Acanthamoeba, a type of FLA, has been shown to increase the 

chance of survival for associated Legionella under the pressures of treatment (Sílvia Cervero-

Aragó, Rodríguez-Martínez, Puertas-Bennasar, & Araujo, 2015). Not only can FLA serve as 

hosts that provide additional protection to premise pathogens but some are threats to human 

health as individuals. Acanthamoeba spp. are commonly found in freshwater, recreational water, 
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tap water, and heating and cooling units. Acanthamoeba spp. can cause eye infections, skin 

lesions, or Granulomatous Amebic Encephalitis (GAE) (Marciano-Cabral & Cabral, 2003). 

Specifically, Acanthamoeba keratitis is most commonly associated with contact lens usage and is 

a sight-threatening corneal disease (Marciano-Cabral & Cabral, 2003). Unlike other 

Acanthamoeba infections, Acanthamoeba keratitis is not limited to immunocompromised hosts, 

and caused about 3000 infections in the year 2004 (F. L. Schuster & Visvesvara, 2004; J. M. 

Thomas & Ashbolt, 2010). The estimated annual incidence of Acanthamoeba keratitis in 

developed countries is roughly estimated to be between one and 33 per million contact lens users 

(Yoder et al., 2012). Exposure to these amebae can occur through household use of drinking 

water. A study done in Ohio found FLA in 79% of the 467 households studied. Acanthamoeba 

was specifically found in 51% of the homes’ water samples (Stockman, Wright, Visvesvara, 

Fields, & Beach, 2011).  

In order to develop adequate and effective water management plans, it is important to 

understand the human health risk associated with FLA like Acanthamoeba. A Quantitative 

Microbial Risk Assessment (QMRA) is a widely used framework for the risk characterization of 

waterborne pathogens in order to inform decisions about treatment and design alternatives for 

protection of public health (C. Haas et al., 2014). The use of QMRA necessitates a pathogen 

specific dose response model to describe the mathematical relationship between the probability 

of an infection as measured by replication, disease or an immunological response and a given 

exposure dosage of organisms through a specific exposure route. Addressing FLA and their 

impact on the virulence of other bacterial pathogens is a noted gap.  

Before developing QMRA models to inform risk management strategies, it is important 

to first address the dose response models for Acanthamoeba. This study aims to develop dose 
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response models from previously conducted studies on the infection of animals with 

Acanthamoeba Ac 118, Acanthamoeba castellanii, and the Acanthamoeba castellanii HN-3 

(Paul R. Badenoch, Johnson, Christy, & Coster, 1990; Cerva, 1967a, 1967b; Culbertson, 

Ensminger, & Overton, 1966). This work sets the stage for developing more accurate risk 

assessments for other premise plumbing pathogens and their interactions with FLA in future 

works.  

MATERIALS AND METHODS 

The previously conducted dose response studies evaluated corneal, intranasal, 

intrapulmonary, and intracardial exposure routes (Paul R. Badenoch et al., 1990; Cerva, 1967b; 

Culbertson et al., 1966). This analysis attempts to understand the risk associated with 

Acanthamoeba spp. presence in drinking water distribution systems, and as such only the 

intranasal and corneal data sets were modeled. 

Acanthamoeba keratitis 

Badenoch et al (1990) experimented with Acanthamoeba and Corynebacterium to study 

the effect of the pathogens in the corneas of female Porton rats. In this study, the authors 

inoculated the Acanthamoeba isolate Ac 118 (a group III isolate) and Corynebacterium xerosis 

into a short, peripheral incision of the cornea using a 10-µL microsyringe (Paul R. Badenoch et 

al., 1990). Amebae were grown in PYNFH medium and bacteria were grown in brain-heart 

infusion medium. Inocula were prepared with different combinations of Acanthamoeba Ac118 

concentrations between 0 and 104 amebae and C. xerosis concentrations between 0 and 106 

bacteria (P.R. Badenoch, Johnson, Christy, & Coster, 1991; Paul R. Badenoch et al., 1990). In 

previous experiments, there was no effect observed from graded doses of the group III isolate of 

Acanthamoeba or C. xerosis alone. Only injected together did suppurative keratitis occur (Paul 
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R. Badenoch et al., 1990). The endpoint of this study was infection. The data collected are shown 

in Table 4.1, as experiment numbers 1 and 2.  

Central Nervous System Infections 

Červa (1967) studied experimental animals (guinea pigs, mice, and rats) with the A1 

strain of Acanthamoeba (Hartmanella) castellanii and different routes of infection. The three 

exposures studied were intranasal, intracardial, and intracerebral with death measured as the 

endpoint of response. The cultures of the amebae were grown in a medium with Proteose 

Peptone Difco as the base ingredient for several years and re-isolation of the amebae from the 

organs of infected animals was performed (Cerva, 1967a, 1967b). Experiment 3 in Table 4.1 

represents the experiment in which white mice of the Czechoslovak H-strain weighing 13-15 

grams were inoculated intranasally by placing 0.02 mL of fluid over the nares of the ethyl-ether 

anesthetized mice (Cerva, 1967b).  

Culbertson et al. (1966) studied pathogenicity of the HN-3 strain of A. castellanii 

(Culbertson et al., 1966; Marciano-Cabral & Cabral, 2003). Cultures of amebae were grown in 

trypticase soy broth and diluted so that 0.03 mL of a concentrated suspension could be instilled 

intranasally into ether-anesthetized SPF mice by placing the fluid over the nares (Culbertson et 

al., 1966; Culbertson, Ensminger, & Overton, 1965; Culbertson, Holmes, & Overton, 1965).  The 

responses recorded were death, brain invasion, Acute Meningoencephalitis (AME) or 

Granulomatous Amebic Encephalitis (GAE). The studies with a death and brain invasion 

response are represented in Table 4.1 by Experiment 4 and 5, respectively. The AME study is 

Experiment 6 and the GE study is Experiment 7. 
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Table 4.1: Dose Response Experiment Data for Acanthamoeba spp. 

Experiment Pathogen Exposure Endpoint Dose*  
Responses 

Resource 
Positive  Negative  Total  

1 

Acanthamoeba Ac 

118 with 104 C. 

xerosis 

Cornea Infection 

10 0 8 8 

Badenoch 

et al. 

(1990) 

100 0 16 16 

1000 2 16 18 

10000 5 3 8 

2 

Acanthamoeba Ac 

118 with 106 C. 

xerosis 

Cornea Infection 

10 0 8 8 

Badenoch 

et al. 

(1990) 

100 0 16 16 

1000 7 17 24 

10000 10 0 10 

3 
Acanthamoeba 

castellanii 
Intranasal Death 

3 0 20 20 

Cerva 

(1967b) 

30 2 18 20 

300 1 19 20 

3000 7 13 20 

30000** 9** 11** 20** 

300000 16 4 20 

4 
Acanthamoeba 

castellanii HN-3 
Intranasal Death 

100 2 78 80 
Culbertso

n et al. 

(1966) 

500 4 76 80 

1000 10 70 80 

5 
Acanthamoeba 

castellanii HN-3 
Intranasal 

Brain 

Invasion 

100 7 73 80 
Culbertso

n et al. 

(1966) 

500 31 49 80 

1000 43 37 80 

6 
Acanthamoeba 

castellanii HN-3 
Intranasal AME 

100 2 78 80 
Culbertso

n et al. 

(1966) 
500 9 71 80 

1000 21 59 80 

7 
Acanthamoeba 

castellanii HN-3 
Intranasal GE 

100 3 77 80 
Culbertso

n et al. 

(1966) 

500 30 50 80 

1000 27 53 80 

*Units for dose are number of organisms; ** The study had a discrepancy in the reported number and 

percentage of deaths for this dose group. It was assumed that the total subject size was the same as for the 

other five dose groups in the experiment and that the reported percentage was in error. 

Analysis Methods  

Maximum likelihood estimation was used to fit dose response models to the data sets 

identified in the literature as described in Haas et al. (2014). The data sets were selected based on 

certain criteria: a minimum of three doses had to be administered in the study and dose groups 

needed to include at least three animals. The studies also needed to describe the species of the 
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host, the strain of the pathogen, the doses administered, and the number of positive and negative 

responses to each dose group.  

The exponential and the approximate form of the beta-Poisson were fit to the eight 

selected data sets using the statistical programming language, “R” (www.r-project.org) with 

previously developed computer code (Weir et al., 2017). Equation 1 is the exponential dose 

response model, where P(d) is the probability of response at dose d and k is the probability that a 

single organism can survive and initiate infection.  

                                                   (1) 

The approximate form of the beta-Poisson dose response model is given by Equation (2) 

where P(d) is the probability of response at dose d, N50 is the median infective dose and α is a 

slope parameter (C. Haas et al., 2014). In the cases where death is the response, the N50 is the 

equivalent of the LD50, the median lethal dose. The use of the approximate form of the beta-

Poisson model was confirmed using the methodology outlined in Xie et al. (2017). The results of 

this analysis are available in Table S1 of the Supplementary Materials. 

                                              (2) 

Goodness of fit was determined by comparing the deviance of a fit to the critical χ2 value 

at degrees of freedom equal to the number of doses minus the number of parameters and a 95% 

confidence. If both models were deemed a good fit to the data, the significance of improvement 

of fit between the two models was determined by comparing the difference in deviances with the 

http://www.r-project.org/
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critical χ2 value at 1 degree of freedom and a 95% confidence. Confidence intervals for the best-

fit model were estimated via bootstrapping.  

When multiple data sets were available for the same pathogen or route of exposure, a 

statistical pooling analysis was performed to ascertain whether the data set had the same 

underlying distributions. A likelihood ratio test was used to determine if data could be pooled. 

RESULTS 

Dose Response Model for Acanthamoeba keratitis 

For Experiment 1, the exponential was the best-fit dose response model for the exposure 

to the cornea of rats with 104 Corynebacterium and increasing dosages of Acanthamoeba Ac118 

strain. The minimized deviance of the exponential was 0.388, which was well within the χ2 value 

at 3 degrees of freedom (7.81). The best fit exponential model had an LD50 of 6,886 amebae. The 

statistics of the model are summarized in Table 4.2 and the best-fit model with confidence bands 

and the k parameter histogram are shown in Figures 4.1 and 4.2, respectively. 

 

Figure 4.1: Plot of exponential model fit to Experiment 1 with upper and lower 95% and 99% confidence 
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Figure 4.2: Uncertainty plot of exponential model for Experiment 1 

For Experiment 2, the exponential was also the best-fit dose response model for exposure 

to the cornea of rat with 106 Corynebacterium and dosages of Acanthamoeba Ac118 strain. The 

minimized deviance of the exponential was 1.776, lower than the χ2 value at 3 degrees of 

freedom (7.81). The best fit model had an LD50 of 1,907 amebae, indicating a higher virulence 

than Experiment 1. The statistics of the model are summarized in Table 4.2 and the best-fit 

model with confidence bands and the k parameter histogram are shown in Figures 4.3 and 4.4, 

respectively. 
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Figure 4.3: Plot of exponential model fit to Experiment 2 with upper and lower 95% and 99% confidence 

 

Figure 4.4: Uncertainty plot of exponential model for Experiment 2 

Pooling analysis 

Experiments 1 and 2 had different dosing groups of the same pathogens however a 

pooling attempt was unsuccessful. The difference between the sum of the individual best fits’ 

deviances and the pooled best fit was 7.355, which is in excess of the critical distribution with 1 

degree of freedom (3.84).  
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Dose-Response Model for Central Nervous System Infections 

Death as an endpoint of response 

The best-fit dose response model for mice exposed intranasally to A. castellanii in 

Experiment 3 was the approximate beta-Poisson. The minimized deviance of the approximate 

beta-Poisson was 6.83 and the χ2 value at 4 degrees of freedom is 9.49. The exponential model 

did not provide an acceptable fit. The statistics for both models are in Table 4.2 and the best-fit 
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model with confidence bands is shown in Figure 4.5. The α and N50 cloud is shown in Figure 4.6 

and represents the 90, 95, and 99% confidence of the parameters.   

 

Figure 4.5: Plot of beta-Poisson Model fit to Experiment 3 with upper and lower 95% and 99% confidence 

 

; Figure 4.6: Uncertainty plot of beta-Poisson Model for Experiment 3 

 For Experiment 4, the exponential model provided the best fit to the mice inoculated 

intranasally with A. castellanii HN-3 strain. The exponential had an LD50 of 5,276 amebae and 
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the statistics of the model are summarized in Table 4.2. The exponential model with confidence 

bands and the k parameter histogram are shown in Figures 4.7 and 4.8, respectively. 

 

Figure 4.7: Plot of exponential model fit to Experiment 4 with upper and lower 95% and 99% confidence 

 

Figure 4.8: Uncertainty plot of exponential model for Experiment 4 

Brain invasion as an endpoint of response  

The exponential model was the best-fit dose response model to the mice inoculated 

intranasally with the A. castellanii HN-3 strain in Experiment 5. The ID50 for the brain invasion 
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model is 811 amebae, much lower than the LD50 for Experiment 5. The statistics of the model 

fits are summarized in Table 4.2 and the best-fit model with confidence bands is shown in Figure 

4.9. The k parameter histogram is shown in Figure 4.10. 

 

Figure 4.9: Plot of exponential model fit to Experiment 5 with upper and lower 95% and 99% confidence 

 

Figure 4.10: Uncertainty plot of exponential model for Experiment 5 
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Acute Meningoencephalitis (AME) as an endpoint of response  

The exponential model provided best fit to the mice inoculated intranasally with A. 

castellanii HN-3 strain and the model’s ID50 was 2,483 ameba. The minimum deviance for the 

exponential model was 0.405 and the χ2 value at 2 degrees of freedom is 5.99. The statistics of 

the model fits are summarized in Table 4.2 and the best-fit model with confidence bands is 

shown in Figure 4.11. The k parameter histogram is shown in Figure 4.12. 

 

Figure 4.11: Plot of exponential model fit to Experiment 6 with upper and lower 95% and 99% confidence 
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4.12: Uncertainty plot of exponential model for Experiment 6 

GAE as an endpoint of response  

Neither model fit the data for the mice inoculated intranasally with A. castellanii HN-3 

strain and GE as the response. The minimum deviance for the exponential model was 10.0 and 

7.574 for the exponential and approximate beta-Poisson, respectively, which was larger than the 

χ2 values at their respective degrees of freedom. The data used for Experiment 7 is shown in 

Table 4.1. 

 

 

 

 

 

 

 

 



44 

 

Table 4.2: Statistics for Acanthamoeba spp. Dose Response Models 

Experimen

t 
Model 

Devianc

e 
Δ DF 

 
 

Best Fit 
Parameter

s 

LD50/N5

0 

1 

Exponential 0.388 
0.007

7 

3 7.81 

3.84 Exponential k=1.01E-04 6886 

beta-Poisson 0.381 2 5.99 

2 

Exponential 1.776 
0.000

2 

3 7.81 

3.84 Exponential k=3.63E-04 1907 

beta-Poisson 1.776 2 5.99 

3 

Exponential 55.6 

48.77 

5 11.1 

3.84 beta-Poisson 
α=1.61E-1 

N50=14538 
14538 

beta-Poisson 6.83 4 9.49 

4 

Exponential 0.969 

0.102 

2 5.99 

3.84 Exponential k=1.31E-04 5276 

beta-Poisson 0.864 1 3.84 

5 

Exponential 1.0275 
0.705

2 

2 5.99 

3.84 Exponential k=8.54E-04 811.4 

beta-Poisson 0.3223 1 3.84 

6 

Exponential 0.4049 
0.001

9 

2 5.99 

3.84 Exponential k=2.79E-04 2483 

beta-Poisson 0.4069 1 3.84 

 

Pooling analysis 

A pooling analysis was attempted for the experiments 4, 5, and 6 because they all 

employed the same pathogen, the A. castellanii HN-3 strain. A minimized deviance of 85.65 and 

84.60 for the exponential and approximate beta-Poisson models, respectively, was well above 

their respective χ2 values of 15.50 and 14.07. Thus, the data could not be pooled. 

Experiment 3 dealt with an intranasal inoculation of A. castellani with death as the 

endpoint response. The same exposure route and endpoint were measured for the A. castellanii 

HN-3 in experiment 4 and thus a pooling analysis was attempted. The exponential model did not 

show a good fit to the data, however the approximate beta-Poisson model did show a good fit. 
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The minimized deviance was 11.04 and the χ2 value is 14.07. The difference between the sum of 

the individual best fits’ deviances and the pooled best fit was 3.241, which is less than the critical 

value at 1 degree of freedom (3.84). The parameters from the pooled model are shown in Table 

4.3. Figure 4.13 is the beta-Poisson model with confidence bands, and Figure 4.14 shows the plot 

of the 90%, 95%, and 99% confidence values for the parameters.  

 

Figure 4.13: Plot of beta Poisson model fit to the pooled Experiments 3 and 4 with upper and lower 95% and 99% 

confidence 

 

Figure 4.14: Uncertainty plot of beta Poisson model for the pooled Experiments 3 and 4 
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Table 4.3: A. castellani Pooling Statistics 

Data Set 
Number of 

Doses 

Best fit 

Model 

Minimized 

Deviance 
D.O.F. χ2α,n-k χ2 p-value Parameters 

Pooling 3 

and 4 
9 

beta-

Poisson 
11.04 7 14.07 0.1367 

α=0.245014 

N50=19348 

 

DISCUSSION 

 Acanthamoeba keratitis was only observed when Acanthamoeba Ac 118 was inoculated 

into the cornea in combination with high doses of C. xerosis. As the amount of Corynebacterium 

increased from 104 to 106, the fit of the curve became steeper, indicating a greater level of 

virulence. This conclusion is echoed by the ID50 value. Badenoch et al. (1990) added the C. 

xerosis into the inoculum when neither organism alone could induce the production of an 

infiltrate (P.R. Badenoch et al., 1991). This suggested that the Corynebacterium somehow 

allowed Acanthamoeba to survive and initiate infection in the cornea (Paul R. Badenoch et al., 

1990). Seventeen other Acanthamoeba isolates were investigated with an inoculum of 106 

Corynebacterium and five of the isolates were able to induce suppurative keratitis (P.R. 

Badenoch et al., 1991). However other animal models of Acanthamoeba keratitis have not shown 

a dependence on a coinfection with a bacterial strain (Marciano-Cabral & Cabral, 2003). It is 

likely that this dependence is strain and host dependent. The Ac 118 strain of Acanthamoeba was 

isolated from a GAE infection (Paul R. Badenoch et al., 1990). It is possible that when 

introduced to the eye this isolate of Acanthamoeba requires a symbiotic relationship with another 

species that is part of the natural flora or that is pathogenic to the eye. Understanding potential 

relationships with bacteria that facilitate infections by different strains of Acanthamoeba is 

valuable because some bacteria such as Corynebacterium spp. are part of the normal flora for 

human and animals, and there are also other bacterial species present in drinking water that could 

interact with the amebae (Vela, Gracía, Fernández, Domínguez, & Fernández-Garayzábal, 2006). 
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It should be noted, however, that other dose response models need to be developed for species of 

Acanthamoeba known to independently cause keratitis to provide the most accurate estimations 

of the risk that Acanthamoeba poses to tap water users. 

 Cerva (1967b) and Culbertson et al. (1966) studied death in mice after intranasal 

exposures to the A1 strain and HN-3 strain of A. castellanii, respectively. The HN-3 strain had a 

much lower LD50 than the experiment conducted by Cerva (1967b), suggesting that the HN-3 

strain may have a higher virulence. Cerva (1967b) determined that the growth phase of the 

amebae had a large influence on virulence and it is possible that these separate experiments had 

inoculum with amebae in different growth stages, explaining the LD50 discrepancy. However, 

both of these experiments could be successfully pooled suggesting the strains are mechanistically 

similar, and the pooled model had the highest LD50 of all with a value of 19,348 amebae. By 

adjusting the growth phase of the amebae, Cerva (1967b) could vary the LD50 value from 300 to 

300,000 amebae in the inoculum. This pooled model likely encompasses that variation and as 

such has a higher LD50 than the individual models. The intranasal route of exposure is important 

to model for Acanthamoeba, as it is thought that the inhalation of amebae may be the portal of 

entry for GAE infections (Ma et al., 1990; Marciano-Cabral & Cabral, 2003). Naegleria fowleri, 

another FLA capable of causing a central nervous system infection that can lead to death, has an 

LD50 of 13,257 amebae for the intranasal route of exposure, which is approximately 6,000 

amebae lower than the LD50 reported in this study for Acanthamoeba. As it is rarer for 

Acanthamoeba to cause CNS infections, and N. fowleri is known to cause a highly fatal 

infection, Primary Amebic Meningoencephalitis, this discrepancy makes sense (Dean, Weir, et 

al., 2019). Of all the experiments modeled in this study, the intranasal route of exposure with 

brain invasion as an endpoint of response had the lowest ID50, with a value of 811 amebae. This 
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endpoint of response was the least severe of the four studied (brain invasion, AME, GAE, and 

death) and it is logical that it had the lowest median infectious dose.  

The corneal and intranasal exposure routes are addressed in this study because of the 

presence of the FLA in drinking water. However in a previous investigation of an Acanthamoeba 

keratitis outbreak in the USA, water exposures such as showering, bathing, or swimming were 

not statistically significant risk factors (Yoder et al., 2012). Another study done in the UK, where 

the prevalence of Acanthamoeba keratitis is higher, sampled taps from the homes of 27 people 

with confirmed cases of Acanthamoeba keratitis and FLA were identified in 24 of the 27 

households (Simon Kilvington et al., 2004; Shoff, Rogerson, Kessler, Schatz, & Seal, 2008). 

Acanthamoeba spp. specifically was identified in 30% of the homes (Simon Kilvington et al., 

2004). Acanthamoeba spp. was also detected in 6.7% of samples (n=90) from a drinking water 

distribution system in southwest Virginia. The positive samples had an average concentration of 

2.2 gene copies/mL +/- 2.4 gene copies (Wang, Edwards, Falkinham, & Pruden, 2012). Despite 

its presence on the first Contaminant Candidate List (CCL) published by the Environmental 

Protection Agency, it has not been on a CCL since, suggesting that it has not been prioritized 

(Gerba et al., 2003; US Environmental Protection Agency, 1998). In addition to being the 

etiologic agent for eye and CNS infections, Acanthamoeba spp. is also known to facilitate the 

proliferation of bacterial species such as Legionella spp. and the Mycobacterium avium complex, 

further making it a drinking water concern (Hamilton, Weir, et al., 2017; Lau & Ashbolt, 2009). 

The dose response models developed in this analysis will help facilitate QMRAs that will further 

elucidate the potential risk posed by Acanthamoeba spp.  
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CONCLUSIONS 

This work contributes to the growing focus on FLA, opportunistic pathogens and the 

human health risk they pose in environments like drinking water distribution systems. 

Acanthamoeba spp. are capable of causing eye and central nervous systems infections, and dose 

response models were developed in this study for multiple exposure routes and endpoints of 

response. Understanding the risk of a health endpoint per given exposure dose will allow for 

more effective control and maintenance of environments where exposure is possible. A person is 

at a different level of risk when they are ingesting, inhaling, or being dermally exposed to the 

possibly contaminated water. Developing dose response models for these scenarios is one of the 

first steps needed to help decision makers characterize and manage the risk. 
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CHAPTER 5: A DOSE RESPONSE MODEL FOR THE INHALATION ROUTE OF 

EXPOSURE TO P. AERUGINOSA 

INTRODUCTION 

 P. aeruginosa is a gram-negative bacterium associated with respiratory infections. It is a 

common cause of nosocomial, ventilator-associated, and community-acquired pneumonia, and 

immunocompromised hosts and patients with cystic fibrosis are at a higher risk of infection 

(Driscoll, Brody, & Kollef, 2007a; Sadikot, Blackwell, Christman, & Prince, 2005). Although 

less common, P. aeruginosa infection in healthy individuals has a reported mortality of 33% 

(Hatchette, Gupta, & Marrie, 2000; Sadikot et al., 2005).  A study analyzing patients admitted to 

the Respiratory Intensive Care Unit in the Hospital Clinic of Barcelona observed a similar 

mortality rate and determined that P. aeruginosa was the only etiologic agent significantly 

associated with mortality in patients with community-acquired pneumonia (Torres et al., 1991).  

P. aeruginosa can exist in a range of environments. In healthcare settings, water related 

sites like taps and showers and moist, humid environments like respiratory therapy equipment 

are the most likely to be colonized (Kerr & Snelling, 2009). P. aeruginosa develops biofilms that 

aid in its production of virulence factors and its persistence in its environment and biofilms in 

these water systems can become an ideal long-term habitat for this opportunistic pathogen 

(Sadikot et al., 2005; Wingender & Flemming, 2011a). Although it is known that P. aeruginosa 

colonizes premise plumbing systems and point-of-use devices like showerheads and faucets, the 

threat to the user is uncertain. It is possible that during a showering event the pathogen may be 

aerosolized and inhaled. In order to be able to understand the risk of pneumonia from P. 

aeruginosa in such an exposure scenario, it is first necessary to have an understanding of the 

dose response relationship.  
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 A dose response model for the inhalation route of exposure of P. aeruginosa has not 

previously been developed but would be valuable in facilitating future risk assessments and help 

determine if there is a need for remediation of premise plumbing. This study aims to fit dose 

response models to pre-existing data.  Such models could be used to provide a greater 

understanding of the threat posed by opportunistic pathogens like P. aeruginosa in premise 

plumbing systems is needed to protect human health.   

METHODS 

 A review of the literature was conducted to find a dose response study that simulated an 

inhalation exposure, had three or more dosing groups, and documented the positive and negative 

responses from each dose. A study conducted by Ojielo et al. (2003) evaluated the risk of 

pulmonary infection after bone marrow transplantation in mice. The researchers first evaluated 

the course of P. aeruginosa pneumonia in normal hosts by intratracheally inoculating groups of 

10 wild-type, specific pathogen-free B6D2F1/J mice with six varying doses of P. aeruginosa. P. 

aeruginosa PAO1 frozen stock was grown in 10 mL of tryptic soy broth at 37°C. The trachea 

was exposed in a sterile fashion and a 26-gauge needle was used to administer the inoculum 

intratracheally. The positive endpoint response was death (Ojielo et al., 2003). In addition to 

these trials, the researchers intratracheally inoculated a group of 7 wild-type mice with a dose of 

2 x 106 CFU to compare the survival rates to those of the bone marrow transplantation recipient 

mice. The dose of 2x106 CFU for the wild-type mice was included in this analysis because the 

exposure route, pathogen strain, host and endpoint were the same as for the previous six doses 

(Ojielo et al., 2003). The seven dosing groups and the respective responses are shown in Table 

5.1. 
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Table 5.1: Dose Response Data for P. aeruginosa from Ojielo et al. (2003)  

Dose (CFU) Positive Response Negative Response 

80,000 0 10 

400,000 0 10 

900,000 0 10 

2,000,000 2 5 

3,000,000 6 4 

4,500,000 10 0 

8,000,000 10 0 

 

 Using the statistical programming language, “R”, and a previously developed code that 

uses maximum likelihood estimation (MLE) methods as outlined in Haas et al. (2014) (Weir et 

al., 2017), the exponential and beta-Poisson models were fit to the dose response data. The 

exponential model (Equation 1) determines the probability of a response, P(d), based on the 

dose, d, and the parameter, k, which represents the likelihood that a single organism survives to 

initiate infection. 

𝑃(𝑑) = 1 − 𝑒−𝑘𝑑                                                             Eq. 1 

 The approximate form of the beta-Poisson model (Equation 2) determines the probability 

of response based on the α parameter, which dictates scale, and the median infective dose, N50. 

The endpoint of response for the dose response data being considered is death, and as such the 

N50 and LD50 are equivalent.  

𝑃(𝑑) = 1 − [1 + (
𝑑

𝑁50
) ∗ (2

1
𝛼⁄ − 1)]−𝛼                                   Eq. 2 

 Both the exponential and beta-Poisson models are “single-hit” models; they operate 

under the assumption that just a single organism, kmin equal to 1, is needed to initiate infection. 



53 

 

The cooperativity theory assumes that for some pathogens, a kmin greater than 1 may be necessary 

to initiate infection (C. Haas et al., 2014). This different assumption results in the multi-hit dose 

response model (Equation 3). The multi-hit dose response model is represented by the 

incomplete gamma function (C. Haas et al., 2014). As it follows the gamma probability 

distribution, the multi-hit model can be coded in R using the pgamma() function from the stats 

package. It is coded as pgamma(x, a), where x is the dose, d, multiplied by the probability that 

the pathogen survives to initiate infection, k. The kmin value is a. Note, when kmin is equal to one, 

the probabilities output by the multi-hit model are equivalent to that of the exponential model.  

𝑃(𝑑) = Γ(𝑘𝑚𝑖𝑛, 𝑑 ∗ 𝑘)                                                          Eq. 3 

 The multi-hit model was fit iteratively, with the kmin parameter fixed at values ranging 

from 1-187 and the k parameter determined using MLE methods as described above. Both 

parameters could not be solved for using MLE methods simultaneously because they are 

inherently correlated and the kmin value should be an integer, as it represents a number of 

pathogens. 

Goodness of fit was determined by comparing the optimized deviance of the model to the 

χ2 distribution with the degrees of freedom equal to the number of parameters of the model 

subtracted from the number of doses (C. Haas et al., 2014). The null hypothesis, that the model 

provides an acceptable fit, is rejected if the deviance value exceeds the critical χ2 value. The best 

fitting model was determined by comparing the difference in deviances between the models to 

the critical χ2 value at one degree of freedom. Confidence bands were determined by 

bootstrapping the data.  
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RESULTS 

 The exponential model fit the dose response data with a deviance of 16.88, which is 

greater than the χ2 value at 5 degrees of freedom (11.1). The beta-Poisson model had a deviance 

of 16.88 compared to the critical χ2 value of 9.49 for 4 degrees of freedom. The exponential 

model was a better fit than the beta-Poisson, however neither model was a statistically good fit. 

The fit statistics for both models are shown in Table 5.2.  

Table 5.2: Conventional Dose Response Model Fit Statistics for P. aeruginosa 

Model Deviance Δ DF 
    

Best Fit Parameters LD50 

Exponential 16.88 

0.001 

5 11.1 

3.84 Exponential k= 3.22E-07 2,150,065 beta-

Poisson 

16.88 4 9.49 

 The multi-hit dose response model fit the data with a deviance of 1.09, which is below 

the critical χ2 value of 11.1. The parameters for the best fitting model were a k value of 4.12E-06 

and a kmin of 11. The fit statistics are shown in Table 4.3. The multi-hit model is depicted in 

Figure 5.1 with 95 and 99% confidence bands. Figure 5.2 is a histogram of the k parameter 

estimates after bootstrapping. The model was fit for kmin values ranging from 1 to 187 to ensure 

the optimal fit statistics were identified. After a kmin of 187, the model was no longer able to find 

an optimum k value. Figure 5.3 illustrates the minimum deviance value for each iteration with 

the lowest deviance and respective kmin value identified in red.  

Table 5.3: Multi-hit Dose Response Model Fit Statistics for P. aeruginosa 

Model Deviance Δ DF 
    

Best Fit Parameters LD50 

Multi-hit 1.09 15.69 4 9.49 3.84 Multihit k= 4.12E-06 

kmin=11 

2,588,047 
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Figure 5.1: The multi-hit dose response models with 95 and 99% confidence bands 

 

Figure 5.2: Histogram of the k parameter estimates after bootstrapping 
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Figure 5.3: The kmin value and minimum deviance from each iteration of fitting the multi-hit model, illustrating the 

optimal solution at kmin =11 

DISCUSSION 

This study fit the multi-hit dose response equation to dose response data for P. 

aeruginosa after neither the exponential or beta-Poisson model provided a statistically significant 

fit. The multi-hit model has not been traditionally applied to microbial data but has been used in 

toxic chemical risk assessment (Janardan, 1986). The slope of the multi-hit model is greater than 

that of the exponential at the median infectious dose and most microbial experimental data show 

slopes equal to or less than the exponential model (C. Haas et al., 2014). One-hit models are 

based on the hypothesis of independent action; a hypothesis that states that pathogenic 

individuals behave independently of one another and each have an independent probability of 

causing infection or death (Cornforth, Matthews, Brown, & Raymond, 2015; Druett, 1952). The 

statement of independent action equates to a kmin value equal to 1. Single-hit models are not 

threshold models and assume low dose linearity. The multi-hit model assumes a kmin >1, does not 

have low dose linearity, and is a simple threshold model. Historically there has been stronger 

evidence for the biological plausibility of the one-hit model than for the multi-hit (C. Haas et al., 

2014).  
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However research into molecular mechanisms involved in infection have demonstrated 

that several cooperative behaviors within pathogens help facilitate the evasion of host defenses 

and initiate infection.  There is concern that single-hit theory models can not capture these 

behaviors and host-pathogen interactions, making the models overly conservative (Coleman et 

al., 2017). It was demonstrated that the independent action theory failed in Bacillus 

thuringiensis, an insect pathogen, because of the cooperative nature of the bacteria’s toxins. Cell 

cooperation is necessary for B. thuringiensis to facilitate host invasion and septicaemic 

proliferation (Cornforth et al., 2015). A study of Bacillus anthracis demonstrated that disruption 

of the pathogen’s quorum sensing inhibited growth and virulence gene expression in vitro, 

suggesting that a single spore would not result in growth, disease progression, or mortality 

(Coleman, Thran, Morse, Hugh-jones, & Massulik, 2008; Jones, Jani, Ren, Wood, & Blaser, 

2005). The need to analyze both threshold and non-threshold dose response models for B. 

anthracis was suggested in response to the restrictions overestimated low dose risks places on 

risk management solutions (Coleman et al., 2008). 

 These examples of failings of the independent action hypothesis adds credence to the 

application of a simple threshold model to the P. aeruginosa dose response data. Similar to the 

previously mentioned pathogens, there are cooperative action indicators in the pathology of P. 

aeruginosa. P. aeruginosa rarely infects the lungs of an immunocompetent host, despite its 

ubiquitous nature. Some of the bacterial factors involved in the pathogenesis of P. aeruginosa 

lung infections include pili and flagella, a Type III secretion system, and quorum sensing 

(Sadikot et al., 2005). Data suggests that P. aeruginosa needs to express several virulence factors 

to initiate a pulmonary infection and the outcome of the infection is dependent on the host 

response, which in the lung environment can be quite robust (Cohen & Prince, 2013; Tang et al., 
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1996). Quorum sensing promotes biofilm formation which enables the pathogen to evade host 

defenses and persist in the environment (Sadikot et al., 2005; Wu et al., 2004). Furthermore, 

quorum-sensing in P. aeruginosa regulates expression of extracellular virulence factors (Pearson, 

Feldman, & Iglewski, 2000; M. Schuster, Sexton, Diggle, & Greenberg, 2013). Targeting the 

quorum-sensing system of P. aeruginosa is being explored as an alternative to antibiotic 

treatment and a study analyzing the quorum-quenching effects of lactonases reduced P. 

aeruginosa pneumonia mortality in rats from 75% to 20% (Hraiech et al., 2014). 

 The reliance on cell-to-cell communication suggests that a single bacterium may not be 

enough to initiate infection. A greater understanding of cooperative behavior in microorganisms 

indicates that dose response modeling of microbes may not be limited to only the single-hit 

theory models traditionally used. This study fit a simple threshold model for an inhalation 

exposure to P. aeruginosa with an LD50 of 2,588,047 CFU. Neither of the single-hit dose 

response models provided significant fits to the data. The multi-hit model indicates survivability 

below a certain point, roughly 500,000 CFU, and then a rapid increase in mortality with dose. 

Compared to the exponential model, the multi-hit model estimates much lower probabilities of 

death at low doses. Although more conservative estimates have often been preferred, it has more 

recently been suggested that QMRA models often overestimate risk, likely due to overly 

conservative dose response models (Coleman et al., 2017; Snary et al., 2016).  

CONCLUSIONS 

The dose response model created in this study is the first dose response model for the 

inhalation route of exposure for P. aeruginosa. The multi-hit model provided a significant fit to 

the data and indicates that perhaps microbial dose response modeling should not be limited to 

single-hit theory models. A dose response model was needed for this route of exposure to 



59 

 

facilitate the completion of quantitative microbial risk assessments to address exposure scenarios 

of concern. Possible exposure scenarios may include inhaling aerosols in a showering event, 

through using a humidifier, or in pools and hot tubs. This model and future QMRA models will 

aid risk managers and decision makers about how best to treat water to protect against 

opportunistic pathogens, including P. aeruginosa.  
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CHAPTER 6: REVERSE QMRA OF P. AERUGINOSA IN PREMISE PLUMBING TO 

INFORM RISK 

 

INTRODUCTION 

 Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to 

the immunocompromised population. P. aeruginosa causes community-acquired and hospital-

acquired infections, including folliculitis, keratitis, bacteremia, soft tissue and wound infections, 

urinary tract infections and pneumonia (Driscoll et al., 2007a; Kerr & Snelling, 2009). It has 

been identified as the second most frequent cause of hospital-acquired, healthcare-associated, 

and ventilator-associated pneumonia (Driscoll et al., 2007a; Joseph O. Falkinham, 2015; Sadikot 

et al., 2005). For immunocompromised hosts, P. aeruginosa is considered the most important 

pathogen in patients with primary and acquired immunodeficiencies (Driscoll et al., 2007a). 

Patients with cystic fibrosis are especially susceptible, and P. aeruginosa is the leading cause of 

pneumonia, causing chronic lung infection and an increase in morbidity and mortality rates 

(Streeter & Katouli, 2016). The bacterium is also the leading cause of bacterial keratitis, 

affecting individuals after eye surgery, people with ocular disease and contact lens wearers 

(Streeter & Katouli, 2016).  

 The types of infections caused by P. aeruginosa are diverse and its ubiquitous nature 

makes its management a clear concern for hospitals and communities alike. Sources of known 

exposure include hot tubs, swimming pools, colonized medical equipment, and tap water. The 

bacterium thrives in moist environments and it commonly lives and grows in biofilms in 

plumbing systems (Trautmann et al., 2005). The biofilm allows the bacterium to be more 

resistant to disinfectants, antibiotics, and other antagonizing factors (Bédard et al., 2016; Moritz, 

Flemming, & Wingender, 2010). The presence of P. aeruginosa in tap water has been strongly 
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associated with the colonization of the faucets, drains, sinks, and showerheads (Bédard et al., 

2016; Trautmann et al., 2005). The colonization of these point-of-use fixtures facilitates 

exposure through several different routes. Aerosolization from the fixture-head allows for an 

inhalation exposure that could result in a respiratory infection. Direct application of 

contaminated water on the skin or eyes could result in dermal and ocular infections. 

 Quantitative microbial risk assessment (QMRA) is used to estimate the risk of infection 

from exposure to microorganisms in diverse environments (C. Haas et al., 2014). It is a widely 

accepted framework for water safety guidelines to support public health. QMRA is used to 

establish design criteria for treatment plants and to establish monitoring plans (National Research 

Council, 2006). Currently, P. aeruginosa is not on the EPA’s Contaminant Candidate Lists and it 

is not currently monitored or regulated (US Environmental Protection Agency, 1998, 2005, 2009, 

2016). However, it is important for water managers and building operators to know what 

concentrations of P. aeruginosa might warrant immediate action and management when detected 

in tap water. Though treatment guidelines for pathogens in water are generally based on the 

ingestion route of exposure, the concentration level of concern may likely vary based on the 

exposure pathway of concern. 

 This study aims to determine the threshold concentrations of P. aeruginosa in tap water 

that warrant risk management using a reverse QMRA framework for the two most relevant 

exposure routes under three different scenarios: a showering, face washing, and hand washing 

event. The conclusions drawn from these reverse QMRAs will determine threshold levels of P. 

aeruginosa that should be monitored for and controlled. Applying this type of modeling to 

engineered water systems can help identify pathogens of priority and help risk managers 

properly allocate funds for monitoring, sampling, and treatment procedures. 
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METHODS 

QMRA Framework 

A reverse QMRA takes an accepted risk threshold and calculates the quantity of 

pathogens in the water that would cause this level of risk across a specific exposure pathway. 

Such a modeling approach was previously described and published for a showering exposure 

scenario that predicted Legionella densities of concern in shower air, water, and in-premise 

plumbing biofilms associated with target deposited doses of Legionella in the alveolar region 

(Schoen & Ashbolt, 2011). This study utilizes the U.S. EPA’s maximum allowable risk for 

microbial contaminants in water of 1 infection per 10,000 persons per year (Macler & Regli, 

1993; O’Toole, Sinclair, Gibney, & Leder, 2015). The motivation for this risk assessment is to 

inform future monitoring and sampling protocols for managers of drinking water distribution 

networks. Thus, the risk threshold of 1 infection in 10,000 persons per year is transformed into 

an average daily risk to give water and building managers the information needed to protect the 

health of their consumers. To transform the average yearly risk, P(d)annual, into a daily risk, 

P(d)daily, Equation 1 was used with the assumption that the exposures occur each day of the year.  

𝑃(𝑑)𝑎𝑛𝑛𝑢𝑎𝑙 = 1 − (1 − 𝑃(𝑑)𝑑𝑎𝑖𝑙𝑦)365                                               Eq. 1 

For each exposure, a dose response model was used to calculate the exposure dose 

associated with the average daily risk of infection. A dose response model is a mathematical 

function that conveys the relationship between the microbial exposure or dose and the likelihood 

of occurrence of an adverse effect such as infection, illness, or death (C. Haas et al., 2014). Two 

of the most commonly fit dose response models are the exponential and beta-Poisson. Equation 1 

is the exponential model, where P(d) is the probability of response at dose d, and the single 

parameter k represents the probability that a single organism survives to initiate the observed 
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response. Equation 2 is the approximate form of the beta-Poisson dose response model. The two 

parameters are the N50, which represents the dose at which 50% of the exposed population 

succumbs to the adverse health effect (infection, illness or death), and the shape parameter α (C. 

Haas et al., 2014). The concentration in the bulk water that would result in this exposure dose 

was then determined through a detailed exposure assessment described below. 

𝑃(𝑑) = 1 − 𝑒−𝑘𝑑                                                                 Eq. 2 

𝑃(𝑑) = 1 − [1 + (
𝑑

𝑁50
) × (2

1
𝛼⁄ − 1)]−𝛼                                            Eq. 3 

Dose Response 

Inhalation Dose Response Model 

An inhalation dose response model with death as an endpoint response was recently 

developed, and the multi-hit dose response model (Equation 4) from that analysis was used in 

this study (Dean, 2019). The multi-hit dose response model has parameters: k equal to 4.12E-06; 

kmin equal to 11; and N50 equal to 2,588,047 CFU, where N50 corresponds to LD50 for the lethal 

endpoint. In order to use this dose response model to estimate the dose corresponding to the 

EPA’s standard of 1 infection in 10,000 persons, it was necessary to apply a morbidity rate, the 

probability of illness given infection, and a mortality rate, the probability of death given illness. 

The morbidity rate was assumed to be 100%. The mortality rate for community-acquired 

pneumonia due to P. aeruginosa was assumed to be the same for P. aeruginosa infection in 

previously healthy individuals that were exposed to heavily contaminated aerosols-a rate of 33% 

(Sadikot et al., 2005). Based on these assumptions, the risk of infection of 1 in 10,000 

corresponded to an estimated risk of 3.33 deaths per 100,000 persons annually via the inhalation 
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route of exposure. Due to the continuously varying nature of the multi-hit dose response 

function, shown in Equation 4, the exposure dose was calculated using integration techniques.  

𝑃(𝑑) = Γ(𝑘𝑚𝑖𝑛, 𝑑 ∗ 𝑘)                                                            Eq. 4 

Corneal Dose Response Model 

Previously published dose response models for the ocular route of exposure were 

available on the QMRA wiki (Tamrakar, 2013). The recommended dose response model was 

developed by fitting the dose response data from a study using P. aeruginosa contaminated 

contact lenses to inoculate the eyes of New Zealand rabbits in order to produce keratitis as the 

health endpoint. The best fitting model was a beta-Poisson with an α of 0.19 and an N50 of 

18,500 CFU.  This was the model selected and applied in this analysis because the exposure 

route was relevant to the pathways explored and the endpoint measured corresponds to infection 

as the response. The daily risk of infection, P(d), that was calculated from Equation 1 was 

directly substituted into Equation 5 to determine ED.  

𝐸𝐷 = [(1 − 𝑃(𝑑))
−1

 α ⁄ − 1]
𝑁50

2
1

 α ⁄ −1
                                                     Eq. 5 

Exposure Assessment 

To determine the concentrations in the water responsible for the calculated exposure 

doses, detailed exposure assessments were constructed for a showering, face washing, and hand 

washing event in a typical residence setting. The showering exposure models an average adult 

over the age of 21 that showers once a day for a year. The face washing exposure assesses the 

risk of the average adult washing their face with their eyes partially open, once a day for a year. 

Finally, the hand washing event specifically addresses the scenario when the average adult 

washes their hands and afterwards inserts or removes their contacts, two times a day for a year.  
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Showering Event 

 The inhalation exposure in a showering event was described by Equation 6. Exposure 

dose (𝐸𝐷) is a function of the concentration in the water (𝐶𝑤) in CFU/L multiplied by a 

partitioning coefficient (PC) in L/m3 to estimate the concentration of pathogens aerosolized. The 

quantity of pathogens in the lungs to initiate infection is determined by the inhalation rate (IR) in 

m3/minute, time of the showering event (T) in minutes, the fraction of aerosols of a respirable 

size (FRA), and the retention rate (RR) (i.e. the percent deposited in the alveolar region). To 

accommodate this QMRA in reverse, these variables are rearranged into Equation 7 in order to 

calculate Cw, the concentration in the bulk water responsible for a risk level of 1 infection in 

10,000 persons.  

𝐸𝐷 =  𝐶𝑤 × 𝑃𝐶 × 𝐼𝑅 × 𝑇 × 𝐹𝑅𝐴 × 𝑅𝑅               Eq. 6 

𝐶𝑤 =
𝐸𝐷

𝑃𝐶×𝐼𝑅×𝑇×𝐹𝑅𝐴×𝑅𝑅
                    Eq. 7 

Face Washing Event 

 The parameters needed to calculate the concentration in the water (Cw) in CFU/L for the 

face washing event include: the flow rate of the faucet (FR) in L/minute, the time for the face 

washing event (T) in minutes, the portion of water applied to the face (Pw), the surface area of the 

face (FSA) and ocular region (OSA) in cm2, and the portion of eye left exposed during the event 

(PE). Thus, the concentration in the water for the face washing event was calculated by 

transforming Equation 8 into Equation 9. 

𝐸𝐷 =  
𝐹𝑅×𝑇×𝑃𝑊

𝐹𝑆𝐴
× 𝑂𝑆𝐴 × 𝑃𝐸 × 𝐶𝑊                                              Eq. 8 

𝐶𝑊 =
𝐸𝐷× 𝐹𝑆𝐴

𝐹𝑅×𝑇×𝑃𝑊×𝑂𝑆𝐴×𝑃𝑂
                                                          Eq. 9 
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Hand Washing to Eye Touch Event 

 For the hand washing scenario, it was assumed that linear models developed to calculate 

the concentration of MS-2 transferred from liquid to skin were applicable to model the transfer 

of P. aeruginosa (Pitol, Bischel, Kohn, & Julian, 2017). Although P. aeruginosa is a gram-

negative bacterium and MS-2 is traditionally used as a surrogate for enteric viruses, a previous 

study of the transfer efficiency of bacteria and viruses from porous and non-porous surfaces saws 

no substantial difference in transfer efficiencies between gram-negative bacteria and phages, 

suggesting that this published model study is suitable for application in the study herein (Lopez 

et al., 2013). The linear models are shown in Equations 10 and 11 where 𝐶𝑊 is the concentration 

in the water in pathogens per milliliter, and m and b are the slope and intercept values calculated 

by Pitol et al. (2017). In the Pitol et al. study (2017) different slopes and intercepts were 

determined based on whether the virus was adsorbed or unadsorbed to the skin. This study 

assumed that if the hand washer dried their hands, the adsorbed pathogens would remain and be 

transferred to the eye, and if they did not dry, the unadsorbed pathogens would be transferred. In 

the drying scenarios, 𝐶𝐻 (CFU/cm2) was calculated with Equation 10. In the scenarios without 

drying, 𝐶𝐻 was calculated with Equation 11. 𝐶𝐻 was then multiplied by the surface area of a 

fingertip in cm2 (FT), the number of transfers per day (TF) and the transfer efficiency from 

fingertip to eye (𝑇𝐸), as shown in Equation 12.  

𝐶𝐻 = 10𝑏1𝐶𝑊
𝑚1

                                                               Eq. 10 

𝐶𝐻 = 10𝑏2𝐶𝑊
𝑚2

                                                               Eq. 11 

𝐸𝐷 =  𝐶𝐻 × 𝐹𝑇 × 𝑇𝐹 × 𝑇𝐸                                                       Eq. 12 

 For the reverse QMRA where the hand washer does dry their hands, Equations 10 and 12 

were rearranged to Equation 13. Equations 11 and 12 were rearranged to Equation 14 to 
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represent the scenario when the hand washer does not dry their hands. The exposure assessment 

also accounted for any reduction in the pathogen that occurred from using bland or antimicrobial 

soap (RD) in log CFU. The final concentration was multiplied by a factor of 1000 to convert 

from CFU/mL to CFU/L. 

𝐶𝑊 = 10[
(log(

𝐸𝐷
𝐹𝑇×𝑇𝐹×𝑇𝐸

)+(
𝑅𝐷
𝐹𝑇

))−𝑏1

𝑚1
] × 1000                                           Eq. 13 

𝐶𝑊 = 10[
[log(

𝐸𝐷
𝐹𝑇×𝑇𝐹×𝑇𝐸

)+(
𝑅𝐷
𝐹𝑇

)]−𝑏2

𝑚2
] × 1000                                           Eq. 14 

Computation 

To parameterize the inhalation exposure model a systematic literature review was 

conducted using the databases Web of Science, PubMed, and Google Scholar with keywords 

such as inhalation, P. aeruginosa, risk assessment, exposure dose, showering event, respiratory 

infection, tap water, opportunistic pathogen, respirable aerosols, and deposition. The same 

databases were used with the face washing and hand washing exposures but with keywords such 

as corneal exposure, P. aeruginosa, risk assessment, eye infection, keratitis, face washing event, 

time spent face washing, tap water, faucet flow rate, face surface area, ocular surface area, hand 

washing, transfer efficiency, contact lens, and washing efficiency. To the knowledge of these 

researchers, a risk assessment on a face washing event has not previously been completed for any 

pathogen. Thus, it was necessary to make several educated assumptions based on the data 

available.  

In addition to the peer-reviewed resources found in the literature, the Exposure Factors 

Handbook (2011), and the Residential End Use Study (2016) were also used to create 

distributions for some of the aforementioned parameters. Sampling results from a newly 

renovated, low energy and low water use, residential home were also used to validate the 
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parameter distributions, as water use has declined in the residential sector. The green building 

has automated flowmeters installed allowing for the water usage pattern to be examined based on 

volume of water used, fixture events, duration, and flow rates. The water usage patterns in this 

home were used to corroborate the parameters determined for flow and duration of usage events 

(i.e. showering, face washing, etc.) in this study (Salehi et al., 2018).  After parameters were 

determined, Oracle ® Crystal Ball was used to create distributions for the input parameters to 

account for variability and uncertainty. The dose response models and the parameters and 

distributions listed in Tables 6.2, 6.3, and 6.4 were used to forecast the concentrations of P. 

aeruginosa in the water resulting in the targeted risk thresholds for each scenario. Crystal Ball 

was run with a Monte Carlo sampling method, 10,000 trials and a seed of 999. A sensitivity 

analysis was completed for each scenario, with the Spearman rank correlation coefficient used to 

identify the input model parameters with the greatest contribution of variability and uncertainty 

in the calculated dependent variable - the final concentrations in the bulk water. 

RESULTS 

Exposure Dose 

For the showering exposure, the average daily exposure dose was determined to be 

302,750 CFU for an annual risk of infection equal to 1 infection in 10,000 persons. For the 

corneal exposure route for both the face washing and hand washing analyses, the average daily 

exposure dose was calculated to be 7.14E-04 CFU. Table 6.1 shows the annual risk of infection, 

daily risk of infection and exposure dose for all three scenarios.  
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Table 6.1: Exposure Doses Associated with an Annual Risk Level of 10-4 

Exposure Route 
Annual Risk of 

Infection 

Daily Risk of 

Infection 

Daily Risk of 

Death* 

Exposure Dose 

(CFU) 

Showering 1.00E-04 2.74E-07 9.04E-08 302,750 

Face Washing 1.00E-04 2.74E-07 n/a 7.14E-04 

Hand Washing 1.00E-04 2.74E-07 n/a 7.14E-04 

*Daily risk of death only calculated for inhalation route of exposure because only the inhalation dose response 

model had death as an endpoint of response 

Exposure Assessment  

Showering Event 

Chattopadhyay et al. (2017) conducted a study using a showering apparatus to determine 

the partitioning coefficients (PC) for Brevundimonas diminuta and P. aeruginosa for varying 

water temperatures. For this study, the PC chosen was from the trials conducted at 37°C because 

this most closely approximates the average warm shower water temperature. The study used tap 

water spiked with two different initial concentrations of pathogens in the water (109 and 1010 

CFU) resulting in two different partitioning coefficients. In the analysis herein, one value was set 

as a minimum and the other as a maximum in a uniform distribution. The same study also 

calculated the quantity of pathogens that were of a respirable size in these showering events 

(Chattopadhyay, Perkins, Shaw, & Nichols, 2017). This value ranged from 96.3 to 99.7% for the 

P. aeruginosa experiments, which was used to develop a uniform distribution to describe 

variability and uncertainty in FRA. 

The inhalation rate, IR, was represented with a triangular distribution using values from 

the Exposure Factors Handbook (2011). The likeliest value was the mean inhalation rate for 

adults over the age of 21 performing an activity with a light intensity and the maximum was the 

95th percentile value for this same group. The minimum value of 0.0042 m3/minute was the mean 

inhalation rate for adults with a sedentary/passive activity level, to account for the population 
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that shower without any increase in inhalation rate (US Environmental Protection Agency, 

2011). It should be noted that although based on adults, the average inhalation rate for a child 

also falls within this range. When considering shower duration, a uniform distribution was 

applied ranging from 7.8 minutes reported by the Residential End Use Study (2016) to 17 

minutes reported by the Exposure Factors Handbook (2011). Finally, for the quantity deposited 

in the alveolar region (RR), the minimum and maximum values reported in a study analyzing 

lung deposition fractions in the alveolar regions for particles sized 1, 3, and 5 µm were used as a 

uniform distribution and are shown in Table 6.1 (U.S. EPA 2004).  

Using the inhalation dose response model and the exposure equations and parameters 

shown in Table 6.2, a median concentration in the bulk water was estimated to be 6.07x1011 

CFU/L. The mean, median and 95% confidence interval are listed in Table 6.5. A histogram of 

the distribution of plausible log concentrations determined for this scenario is shown in Figure 

6.1.  

Table 6.2: Showering Exposure Parameters and Distributions 

Parameter Average Distribution Source 

Mortality Rate 0.33 Point Estimate 
Sadikot et al. 2005; Hatchette et al. 

2000 

Dose Response, 

k parameter 
4.12E-06 Point Estimate Dean et al., 2019 

Dose Response, 

kmin parameter 
11 Point Estimate Dean et al., 2019 

Partitioning 

Coeffeicient, PC 

(L/m^3) 

1.07E-05 
Uniform: Minimum=4.56E-06, 

Maximum=1.69E-06 
Chattopadhyay et al. 2017 

Inhalation Rate, 

IR (m^3/minute) 
0.013 

Triangular: Minimum=0.0042, 

Likeliest=0.013, 

Maximum=0.017 

Hines et al. 2014; U.S. EPA 2011 

Respirable 

Fraction of 

Aerosols, FRA 

0.98 
Uniform: Minimum=0.963, 

Maximum=0.997 
Chattopadhyay et al. 2017 

Deposition in 

Alveolar Region, 

RR 

0.37 
Uniform: Minimum=0.32, 

Maximum=0.42 
U.S. EPA 2004 

Shower Time, T 

(minutes) 
12.4 

Uniform: Minimum=7.8, 

Maximum=17 
U.S. EPA 2011 ; Hines et al. 2014 
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Figure 6.1: Natural log concentrations of P. aeruginosa in the bulk water resulting in a risk of infection from a showering 

exposure greater than the EPA mandated acceptable level generated from 10,000 iterations of the model  

Face Washing Event 

 Once the mean exposure dose was calculated to be 7.18E-04 CFU, the concentration of 

P. aeruginosa was calculated with Equation 9. The face washing event time was based off of a 

study assessing water end uses in the United Arab Emirates that reported an average face 

washing time of 0.87 minutes (Chowdhury, El-Shorbagy, Ghanma, & El-Ashkar, 2015). To 

account for the uncertainty associated with this value, a triangular distribution was used with 

0.87 minutes as the most likely value and an assumed minimum and maximum of 15 seconds 

and 1 minute, respectively. The faucet flow rate was also reported in the study as an average of 4 

liters/minute. A study of fixture use and water quality in a residential green building observed 

average faucet flow rates from 2.1 to 6.3 liters/minute (Salehi et al., 2018). This range was used 
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as a uniform distribution for faucet flow rates as it encompasses the 4 liters/minute reported in 

the United Arab Emirates water end use study, as well as the average flow rate of 0.9 gallons/ 

minute or about 3.4 liters/minute reported in a study of high-efficiency new homes (W.B. Deoreo 

et al., 2011; William B Deoreo, Mayer, Dziegielewski, & Kiefer, 2016).  

 With the faucet flow rate and the length of the face washing event, the total volume of 

water used was calculated. However, a large portion of the water used while face washing is 

wasted, and not directly applied to the face. This quantity of unused water was estimated based 

on a study of ablution and different faucet types. With a tap with mechanical knobs, 47% of the 

tap water was wasted during ablution from the tap (Zaied, 2017). The facial surface area was 

estimated to be between 300 and 450 cm2 (Yoon & Lee, 2016). Of that total surface area, the 

ocular region was assumed to be on average 1-3 cm2 (Sotoyama, Villanueva, Jonai, & Saito, 

1995). Finally, it was assumed that during a face washing event, a person’s eye was open 10%, 

leading to the introduction of water into the eye.  These values were considered typical. Any 

larger quantity of exposed eye (i.e. an eye wash event) would result in a greater risk of infection 

and a lower critical concentration of P. aeruginosa in the water causing that risk.  

It was determined that a risk of 1 infection in 10,000 persons corresponds to a median 

concentration of 0.93 CFU/L of P. aeruginosa in the tap water. The mean, median, and 95% 

confidence interval for the exposure dose and pathogen concentration are listed in Table 6.5. 

Figure 6.3 represents the histogram of log concentration values in the water that result 1 infection 

in 10,000 persons annually.   
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Table 6.3: Face Washing Exposure Parameters and Distributions 

Parameter Value Distribution Source 

Dose Response, α 0.19 Point Estimate 
 Tamrakar, 2013 

Dose Response, 

N50 18500 Point Estimate 
Tamrakar, 2013  

Face Wash 

Duration, T 

(minutes) 0.87 

Triangular: Minimum=0.25, 

Likeliest=0.87, Maximum= 1 

Chowdhury et al., 2015; 

Assumption 

Faucet Flow Rate 

(liters/minute), FR 4.2 Uniform: Minimum=2.1, Maximum=6.3 Salehi et al., 2018 

Portion of Water 

Applied to Face, 

PW 0.53 Point Estimate Zaied et al., 2017 

Face Surface Area 

(cm^2), FA 375 Uniform: Minimum=300, Maximum=450 Yoon & Lee, 2016 

Ocular Surface 

Area (cm^2), OA 2.0 Uniform: Minimum=1.0, Maximum=3.0 Sotoyama et al., 1995 

Exposed Portion of 

Eye, PE 0.125 Uniform: Minimum=0.0, Maximum=0.25 Assumption 

 

 

Figure 6.2: Natural log concentrations of P. aeruginosa in the bulk water resulting in a risk of infection from a face washing 

exposure greater than the EPA mandated acceptable level generated from 10,000 iterations of the model  
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Hand Washing to Eye Touch Event 

 The concentration on the hand after exposure to contaminated water was modeled using 

the results from a study on virus transfer at the liquid-skin interface. In this study, the unadsorbed 

fraction of viruses were the main driver of virus transfer. When the residual liquid was removed 

from the skin (i.e. proper hand drying occurred) only the adsorbed fraction remained. To model 

the effect of drying the hands before touching the eye, the adsorbed linear model was used to 

find concentration of pathogens on the hand (CH ) when the hands were dried (m1 and b1), and 

the unabsorbed model was used to find CH when they were not dried (m2 and b2). 

 This scenario also took into account the removal of the pathogen based on the use of 

soap. A study that analyzed the log reduction of E. coli when bland or antimicrobial soap was 

used in a hand washing event was evaluated to represent potential P. aeruginosa removal (Jensen 

et al., 2017). The range of CFU log reductions for both kinds of soap are shown in Table 3 with 

triangular distributions. Fingertip surface area (FT) and transfer efficiency from fingertip to eye 

(TE) were found from a study analyzing influenza infection risk from four exposure pathways, 

including contaminated hands touching facial membranes (Nicas & Jones, 2009).  Nica and 

Jones (2009) assumed that the transfer efficiency from fingertip to lips of 35% was the same for 

fingertip to eye (Nicas & Jones, 2009; Rusin, Maxwell, & Gerba, 2002). This study makes the 

same assumption. The number of transfers in a day was assumed to be two, as the act of hand 

washing and immediately touching the eye after is likely most common for contact lens wearers 

and it is expected the contacts are inserted and removed each day.  

Based on the assumptions and behaviors considered above, concentrations of concern in 

the water were calculated for six separate scenarios involving handwashing. These 

concentrations and scenarios are shown in Table 6.5. For the no soap and no drying scenario, a 
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median concentration of 137 CFU/L could result in a risk of infection of 1 in 10,000. If the 

handwasher used bland soap and dried afterwards, the median concentration in the water could 

be as high as 33,300 CFU/L before the risk threshold was met. As a highly conservative, health 

protective level of concern may be desirable in the absence of consumer behavior, the results 

from the no soap and no drying scenario were selected for comparison and reported in Table 6.6. 

Figure 6.3 represents the histogram of log concentration values for the no soap/no drying 

scenario. 

Table 6.4: Hand Washing Exposure Parameters and Distributions 

Parameter Value  Distribution Source 

Dose Response, α 0.19 Point Estimate Tamrakar, 2013 

Dose Response, N50 18500 Point Estimate Tamrakar, 2013 

Transfer Efficiency from 

Fingertip to Eye, TE (%) 
35 Point Estimate 

Nicas and Jones 2009; 

Rusin et al. 2002 

Fingertip Surface Area, FT 

(cm2) 
2 Point Estimate Nicas and Jones 2009 

Number of Transfers per 

Day, TF 
2 Point Estimate Assumption 

Bland Soap Log CFU 

Reduction, RD 
2.22 

Triangular: Minimum=1.91, 

50%=2.22, Maximum=2.54 
Jensen et al. 2017 

Antimicrobial Soap Log 

CFU Reduction, RD 
1.94 

Triangular: Minimum=1.83, 

50%=1.94, Maximum=2.10 
Jensen et al. 2018 

Adsorbed Fraction of 

Pathogen Slope, m1 
1.1 

Triangular: 2.5%=1.02, 50%=1.10, 

97.5%=1.17 
Pitol et al. 2017 

Adsorbed Fraction of 

Pathogen Intercept, b1 
-3.86 

Triangular: 2.5%=-4.38 50%=-

3.86, 97.5%=-3.33 
Pitol et al. 2017 

Unadsorbed Fraction of 

Pathogen Slope, m2 
1.05 

Triangular: 2.5%=0.99 50%=1.05, 

97.5%=1.11 
Pitol et al. 2017 

Unadsorbed Fraction of 

Pathogen Intercept, b2 
-2.33 

Triangular: 2.5%=-1.97, 50%=-

2.33, 97.5%=-1.13 
Pitol et al. 2017 
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Table 6.5: Hand Washing Exposure Scenarios and Final Concentrations 

Scenario Concentration in Water (CFU/L) 

Soap Type Drying 2.50% Mean Median  97.50% 

No No 4.43E+01 1.72E+02 1.37E+02 4.89E+02 

Bland No 4.95E+02 2.00E+03 1.58E+03 5.84E+03 

Antimicrobial No 3.85E+02 1.48E+03 1.17E+03 4.23E+03 

No Yes 1.08E+03 3.85E+03 3.23E+03 9.87E+03 

Bland Yes 1.07E+04 4.05E+04 3.33E+04  1.09E+05 

Antimicrobial Yes 8.32E+03 3.04E+04 2.52E+04 8.05E+04 

 

Figure 6.3: Natural log concentrations of P. aeruginosa in the bulk water that result in a risk of infection from a hand washing 

exposure (no soap or drying) greater than the EPA mandated acceptable level generated from 10,000 iterations of the model 
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Table 6.6: Summary Results of Exposure Assessments for all Three Scenarios 

Exposure Route 
Exposure Dose 

(CFU) 

Concentration in the Bulk Water (CFU/L) 

2.50% Mean Median 97.50% 

Showering-

Inhalation 
302,750 2.55E+11 7.13E+11 6.04E+11 1.81E+12 

Face Washing-

Corneal 
7.14E+04 3.73E-01 1.10E+00 0.92E+00 2.78E+00 

Hand Washing-

Corneal 
7.14E+04  4.46E+01 1.72E+02 1.37E+02 4.92E+02 

 

Sensitivity Analysis 

 A sensitivity analysis was completed for each exposure scenario to determine the 

uncertainty associated with each parameter in the reverse QMRA using the 10,000 Monte Carlo 

iterations. Spearman rank correlation coefficients were used to identify which parameters had the 

most influence on calculated threshold concentrations in the bulk water. The results of the 

sensitivity analysis for the showering exposure are shown in Figure 6.4. The partitioning 

coefficient had the highest Spearman rank correlation coefficient with a value of -0.71. The 

shower time and inhalation rate were also important predictive factors for risk, with correlation 

coefficients of -0.44 and -0.49.  

 
Figure 6.4: Sensitivity analysis of the showering exposure route 



78 

 

 For the face washing scenario, the sensitivity analysis identified the faucet flow rate as 

the most sensitive factor for estimating the pathogen concentration in the water using the reverse 

QMRA model, with a correlation coefficient of -0.59. The ocular surface area and face wash 

time were the next most influential parameters with values of -0.58 and -0.47. This is shown in 

Figure 6.5.  

 
Figure 6.5: Sensitivity analysis of the face washing exposure route 

 Finally, the hand washing exposure only had distributions applied to the parameters 

involved in calculating the quantity of water adsorbed and unadsorbed on the hands, and the log 

reductions from soap use. For all scenarios, the intercept value (b1 or b2) used to calculate the 

concentration of pathogens transferred from the water to the hand in Equations 10 and 11 had the 

greatest influence on the concentration in the water as shown in Figure 6.6. For the main scenario 

of concern, no soap used and hands undried, the unadsorbed intercept had a correlation 

coefficient of -1.00. The uncertainty in the threshold concentration in the model is completely 

dependent on the uncertainty associated with the quantity of pathogen in residual water on the 

hands as expected. As the quantity of pathogens transferred from the water to the hand increases, 
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the concentration in the water responsible for an annual risk of 1 infection in 10,000 persons 

decreases.  

 
Figure 6.6: Sensitivity analysis of the hand washing exposure route 

DISCUSSION 

 The results of this study indicate that for a showering exposure, a median concentration 

of 6.04x1011 CFU/L would result in 1 infection in 10,000 persons per year. However, for the face 

washing and hand washing exposures, median concentrations of 0.92 and 137 CFU/L, 

respectively, could result in 1 eye infection in 10,000 persons. The concentration level that needs 

to be monitored thus highly depends on the exposure route of concern. In a showering event, 

there are losses associated with each step across the exposure pathway (i.e. aerosolization, 

inhalation, deposition) and this allows for a much higher concentration in the water that may not 

result in significant risk. In addition, the dose response model for the inhalation route of 

exposure to P. aeruginosa, is a multi-hit model that estimates de minimis risks at lower 

concentrations and has a very high LD50 of 2,588,047 CFU (Dean, 2019). The face washing and 

hand washing exposures involve bacterium being directly applied to the eye, and this requires a 

much lower concentration in the water to result in the same level of risk. The beta-Poisson dose 
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response model for the corneal route of infection when compared to the multi-hit model 

estimates greater risk at lower concentrations and has an N50 of 18,500 CFU (Tamrakar, 2013). 

 This study provides threshold concentrations of concern for risk managers to use in 

sampling and monitoring protocols. Given that the pathogen proliferates in biofilms and 

sloughing events can lead to high concentrations of pathogens being suddenly present in the bulk 

water, biofilm growth should be controlled for. Neonatal units in Northern Ireland assessed the 

presence of P. aeruginosa in different tap assemblies and detected P. aeruginosa in 14% of the 

components, some that were colonized with up to 2.2x107 CFU. For the face washing and hand 

washing events, a much lower concentration in the water can result in 1 infection in 10,000 

persons. Such concentrations are more likely to occur based on published monitoring studies but 

may not be consistently prevalent. Groundwater surveys in Kansas, Oregon, Virginia, and 

Washington detected P. aeruginosa in 22 groundwater sources in densities ranging from 1 to 

2,300 organisms per 100 ml (Allen & Geldreich, 1975; Mena & Gerba, 2009). A study of tap 

water in Greece detected P. aeruginosa in 9% of samples at a mean concentration of 7 CFU/100 

mL(Mena & Gerba, 2009; Papapetropoulou, Iliopoulou, Rodopoulou, Detorakis, & Paniara, 

1994). Based on this analysis, it is important for water managers to ensure that <1 CFU/L of P. 

aeruginosa is present at the tap. Additional monitoring studies are needed within premise 

plumbing systems to build confidence in the maintenance of the biological stability of the 

drinking water post-treatment. Effective management of P. aeruginosa in drinking water requires 

a better understanding both the baseline concentrations in the bulk water and potential 

intermittent high concentrations associated with biofilm detachment.  

This was the first inhalation risk assessment for P. aeruginosa, which expands the 

understanding of the most significant exposure pathway and risks for immunocompromised 
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populations. Previous risks assessments for P. aeruginosa were limited by a lack of applicable 

dose-response data. As with all risk assessment, there are several limitations that should be 

addressed. The dose response model developed for the inhalation exposure was based on death 

as an endpoint of response, requiring mortality and morbidity rates to estimate the risk of 

infection (Dean, 2019). While death is the most stable endpoint for modeling dose response there 

is variability and uncertainty associated with the morbidity and mortality rates across the 

population. The showering event was analyzed based on a healthy individual’s response to the 

doses of P. aeruginosa in the water. For immunocompromised individuals, the population 

primarily affected by the pathogen, it is expected that a much lower concentration in the water 

would result in 1 infection in 10,000 persons per year.  Potential approaches to address this 

irreducible uncertainty could be to apply the 95th percentile of the parameter estimates to the 

dose response model and to use the recorded mortality or morbidity rates for the 

immunocompromised. However, these methods may not be applicable in this situation, as the 

dose response curve for the immunocompromised population exposed to P. aeruginosa via the 

inhalation route is expected to be shaped differently than the curve for the immunocompetent. 

Excluding the dose response parameters, the sensitivity analysis identified the main variables 

affecting the result of the exposure assessment for the showering scenario- the partitioning 

coefficient, the inhalation rate, and the time spent showering. The partitioning coefficient had the 

greatest influence and this was expected considering it is assumed to be highly variable with type 

of showerhead, flow rate, water quality, contaminant characteristics, etc. (Chattopadhyay et al., 

2017). It is therefore difficult to further refine the uncertainty in estimates of PC without specific 

future experimentation for different scenarios based on the influential factors described 

(Chattopadhyay et al., 2017). The inhalation rate and time spent showering are inherently 
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variable values across the population and additional information is unlikely to reduce model 

uncertainty associated with these values.  

 Several assumptions were made in the face washing risk assessment in the absence of 

previous existing work. The results of the assessment indicated that a person washing their face 

with a 10% exposed ocular surface area on average could have a risk of infection of 10-4 per year 

when the concentration in the water is as low as 0.92 CFU/L. This risk would logically increase 

if a greater portion of the eye was left open and decrease the more the eye was kept closed. This 

dependence is reflected in the sensitivity analysis as the ocular surface area is the parameter with 

the second greatest effect on the concentration in the water. The smaller the eye, the lower the 

exposed ocular surface area and the lower quantity of water entering the eye during the face 

washing event to initiate infection. The quantity of water wasted and not applied to the face 

during a face washing event was estimated in this analysis based on an ablution study, because 

ablution from taps is a repeated daily activity that includes washing the face. However ablution 

also includes washing other parts of the body and thus this was only estimated to be a similar 

representation of water loss in face washing. Other variables with a strong influence on the risk 

assessment were the time spent face washing and the faucet flow rate. These two parameters 

were used to calculate the expected portion of water the eye is exposed to and as such, if these 

variables decrease, so does the risk of infection. The faucet flow rate is variable across the 

population but based on fixture type. The time spent face washing is inherently variable across 

the population and though the estimate could be refined with additional studies, the contribution 

of uncertainty in the risk assessment is unlikely to change.  

 Finally, an exposure scenario where an individual that washed their hands and 

immediately touched their eye was assessed. Not only is this action common for contact lens 
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wearers but, an observational study of students performing office work saw the average 

individual touch their eyes about 2.5 times per hour (Nicas & Best, 2008; Nicas & Jones, 2009). 

This assessment found that if a person washed their hands without soap and allowed residual 

water to remain on their hands before touching their eye, a concentration of 137 CFU/L in the 

water could result in a risk of infection of 10-4. However, if the faucet user had washed with 

bland soap and dried their hands afterwards, a concentration of 33,300 CFU/L would be needed 

to have the same level of risk. A person not completely drying their hands is a plausible scenario 

as observed in a study of bacterial transfer after hand washing where the drying habits of male 

and females in washrooms were recorded. Male washroom users dried their hands for an average 

of 3.5 seconds with cloth towels and 17 seconds under hot air dryers compared to female users 

that spent on average 5.2 and 13.3 seconds with the cloth and air dryers, respectively. The study 

determined that 5 seconds with cloth towels would achieve only 85% dryness and 20 seconds 

using an air dryer would achieve only 70% dryness (C. Huang, Ma, & Stack, 2012; Patrick, 

Findon, & Miller, 1997). A sensitivity analysis identified the Log10 transformed slope and 

intercept parameters (m and b) from the linear regression models used to describe virus transfer 

from liquid to skin as having the greatest influence on risk of infection. Depending on the 

scenario, the linear model intercept had a correlation coefficient between -0.85 and -1.00. For the 

no soap and no drying scenario, the uncertainty in the concentration in the water was entirely 

dependent on the uncertainty of the intercept value. 

A limitation of this analysis is that the model used to calculate the transfer of P. 

aeruginosa from water to hand is based on the transfer of the bacteriophage MS-2. A study of 

bacteria and virus transfer from surfaces saw no substantial difference in transfer efficiencies 

between gram-negative bacteria and phages from surfaces (Lopez et al., 2013). Another study of 
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surface-to-hand and fingertip-to-mouth transfer efficiency determined similar fingertip-to-mouth 

transfer efficiencies for gram-negative bacteria and phages of 33.97% and 33.90%, respectively, 

suggesting similar behavior (Rusin et al., 2002). For most of the surface-to-hand experiments in 

the same study, the phage was transferred more efficiently than the gram-negative bacterium, 

suggesting that its use as a surrogate in this analysis may yield conservative results (Rusin et al., 

2002). Any future studies of bacterium transfer from water to skin should be incorporated into 

the model, as it has a strong influence on the model results. Additionally, the study used to model 

the transfer of P. aeruginosa from water to skin addressed the transfer that occurs in stagnant 

water (Pitol et al., 2017). Future studies of running water would better capture the transfer that 

occurs during a hand washing event. Finally, the log reductions from bland and antimicrobial 

soap removal was based on the removal of E. coli during a hand washing event. Like P. 

aeruginosa, E. coli is a rod-shaped, gram-negative bacterium and the nonpathogenic strain 

chosen by Jensen et al. (2018) was selected because it is a well-established surrogate for bacteria 

that may be transferred to the hands when handling raw foods. In the absence of data for the 

effects of soap use on P. aeruginosa reduction specifically, reductions based on E. coli were used 

as a surrogate in this analysis.  

 With further experiments and data collection the threshold concentrations proposed in 

this study can be further refined. The current results are based on the state of science in 

understanding the parameters impacting risks in these scenarios. The results provide critical 

information to individuals responsible for monitoring pathogen levels in drinking water, 

especially when a population known to be immunocompromised is in consideration for cases like 

nursing homes or hospitals.  
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CONCLUSION 

 The results of this study provide threshold concentrations of concern for P. aeruginosa in 

premise plumbing systems when considering showering, hand washing, and face washing 

exposure scenarios. P. aeruginosa is an opportunistic pathogen that can cause a variety of 

infections including pneumonia and bacterial keratitis. It is ubiquitous and known to thrive in the 

biofilms of premise plumbing systems, making monitoring protocols incredibly important for 

risk managers to appropriately protect human health. The lowest range of concentrations 

responsible for a risk of 1 infection in 10,000 persons was from the face washing scenario, with a 

95% confidence interval of 0.37-2.78 CFU/L. This range should serve as the threshold of P. 

aeruginosa of concern in premise plumbing systems to inform the remediation and monitoring 

protocols for risk managers. Faucets and fixtures that facilitate the direct application of water to 

the face and eyes should be of particular concern. These results demonstrate that reverse QMRAs 

can play an important role in prioritizing pathogen monitoring and treatment within man-made 

water infrastructure.  
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CHAPTER 7: CONCLUSIONS 

This thesis has developed dose response models for three opportunistic pathogens of 

concern. Unique to this work, is the development of dose response models for the exposure 

routes that most closely mimic possible exposures to N. fowleri, Acanthamoeba spp., and P. 

aeruginosa from drinking water use. The recommended dose response models in these analyses 

for the intranasal, inhalation, and corneal exposure routes are consistent with possible exposures 

from face washing, showering, bathing, and hand washing events.  

In addition to providing the needed dose response models for the exposure routes of 

concern, this analysis also completed a reverse QMRA for P. aeruginosa. The reverse QMRA 

addressed face washing, hand washing, and showering exposure events, and calculated threshold 

concentrations in the bulk water that could be responsible for an annual risk of infection of 10-4. 

The results indicated that if a very conservative estimate is required for monitoring, the risk of 

bacterial keratitis should be used as a threshold for P. aeruginosa in drinking water. However, it 

is important to address that all infections are not created equal. Although this assessment 

addresses the same risk threshold for eye infections and lung infections, it is possible that a lower 

allowable threshold would be preferred for pneumonia-related infections, as they have higher 

associated mortality rates and the long-term sequelae of infection may have more serious effects 

on day-to-day life.   

P. aeruginosa is not currently a prioritized drinking water pathogen and this work 

indicates that greater attention may need to be paid to the bacterial opportunistic pathogen. The 

results from the reverse QMRA indicate that a concentration of 1 CFU/L at the tap may pose a 

significant risk to human health. A possible management solution may be to implement 

regulations at the treatment facility that require minimal levels of P. aeruginosa be able to enter 
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the distribution system. The feasibility of monitoring P. aeruginosa levels to ensure that a <1 

CFU/L concentration is maintained is not high, however, because of the detection limits, time-

required, and expenses involved in possible sampling protocols. Other risk management 

strategies and techniques need to be investigated to limit the presence of P. aeruginosa in 

distribution systems and premise plumbing.     
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CHAPTER 8: FUTURE WORK 

Quantifying the risk posed by opportunistic pathogens for all possible exposure scenarios 

is a critical need. As demonstrated by the reverse QMRA for P. aeruginosa, the exposure route 

dramatically affects the concentrations of concern in the bulk water. The results of this analysis 

can be used by decision makers to influence management decisions for treatment protocols, 

monitoring plans, and premise plumbing design. Future work should address threshold 

concentrations of concern for the inhalation route of exposure to P. aeruginosa for the 

immunocompromised population. In particular, it is not believed that the dose response model 

developed in this study for the inhalation route of exposure to P. aeruginosa is currently 

applicable to the immunocompromised population. It is unlikely that the same threshold behavior 

would be observed if P. aeruginosa was introduced to a host without the same level of immune 

system defenses. Options for modifying the dose response model to account for this more 

vulnerable subset is a necessary next step.  

 This work should also be expanded upon to translate the bulk water threshold 

concentrations developed in this study into biofilm concentrations, as the pathogens discussed in 

this thesis are known to reside within the biofilm. Although some of the threshold concentrations 

calculated in this study may not be common in bulk water samples, it is possible that much 

greater concentrations are present within biofilms and sloughing events could result in drastic 

changes in the concentrations of pathogens in the bulk water in a short window of time. The 

causes of sloughing events are not always well understood, which poses a challenge for 

monitoring. Thus further research is needed to understand how to limit the presence of biofilms 

and pathogen growth, to prevent the possible occurrence of concentrations of pathogens that 

threaten human health. An element of this research should include the investigation of 
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opportunistic pathogen persistence in these biofilm and bulk water environments, as this will 

affect the development of effective risk management strategies. The threshold concentrations in 

this work and the future risk assessments that use the developed dose response models can be 

used to inform policy decisions and help ensure that safe drinking water is provided to the 

public.   
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