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ABSTRACT

FUNCTIONAL VARYING INDEX COEFFICIENT MODEL FOR DYNAMIC
GENE-ENVIRONMENT INTERACTIONS WITH LONGITUDINAL DATA

By
Jingyi Zhang

Rooted in genetics, human complex diseases are largely influenced by environmental factors. Ex-
isting literature has shown the power of integrative gene-environment interaction analysis by con-
sidering the joint effect of environmental mixtures on disease risk. Motivated by that, we propose a
functional varying index coefficient model for longitudinal measurements of a phenotypic trait and
multiple environmental variables, and assess how the genetic effects on a longitudinal disease trait
are nonlinearly modified by a mixture of environmental influences. We derive an estimation pro-
cedure for the nonparametric functional varying index coefficients under the quadratic inference
functions and penalized splines framework. Theoretical results such as estimation consistency and
asymptotic normality of the estimates are established. In addition, we propose a hypothesis testing
procedure to assess the significance of the nonparametric index coefficient function. We evaluate
the performance of our estimation and testing procedure through Monte Carlo simulation studies.
The proposed method is illustrated by applying to a real data set from a pain sensitivity study
in which SNP effects are nonlinearly modulated by the combination of dosage levels and other
environmental variables to affect blood pressure and heart rate of patients.

In order to deal with discrete measurements for risk of disease, we further extend our proposed
FVICM to a generalized varying index coefficient model (gFVICM) to binary longitudinal traits.
We apply penalized splines to approximate the nonparametric varying index coefficients and devel-
op an estimation procedure based on the quadratic inference functions. The asymptotic normality
established in the theoretical results enables us to develop a model selection criteria and construct
a test statistic based on the quadratic inference function. In hypothesis test, we investigate the

linearity of GXE interactions using the proposed testing procedure. The utility of the method is



further demonstrated through a pain sensitivity case study in which SNP effects are nonlinearly
modulated by the combination of environmental mixtures to affect high blood pressure.

Genetic pleiotropy refers to the situation in which a single gene influences multiple traits and so
it is considered as a major factor that underlies genetic correlation among traits. For some complex
diseases, there are multiple phenotypes that can used to diagnose or to quantify the risk of diseases
and usually they have shared genetic determinations. In multivariate longitudinal data, multiple
response variables are jointly measured over time from the same individual. It is appropriate
to take into account the correlation between multivariate longitudinal responses. Therefore, we
propose the joint partially linear varying coefficient models and the testing framework to jointly
test the association of genetic factors with bivariate phenotypic values adjusting for environmental
factors. We extended the quadratic inference functions to deal with the longitudinal correlations
and used penalized splines for the approximation of nonparametric coefficients. The proposed
method is illustrated by applying to a real data set from a pain sensitivity study, in which systolic
blood pressure (SBP) and diastolic blood pressure (DBP) were correlated longitudinal quantified

phenotypes of SNP effects.
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CHAPTER 1

INTRODUCTION

Gene-environment (G X E) interaction is defined as how genotypes influence phenotypes differently
under different environmental conditions (Falconer, 1952). An increasing number of studies have
confirmed the role of GxE interaction in many human diseases. One classic example is Phenylke-
tonuria (PKU). PKU is caused by a defect in the gene coding for a particular enzyme which is
needed to break down phenylalanine. Newborns found to have high levels of phenylalanine in
their blood can be put on a special, phenylalanine-free diet to avoid the severe effects of PKU
(Baker, 2004). This example confirms the role of gene-environment interaction by showing that a
change in environment can affect the phenotype of a particular trait.

In genetic epidemiology, G X E interactions are useful for understanding the risk of some com-
plex human diseases. Famous studies such as Parkinson disease (Ross and Smith (2007)) and type
2 diabetes (Zimmet, Alberti, and Shaw (2001)) both indicate the importance of GxE interaction in
complex human diseases. However, the underlying mechanism of G xE interaction is still poorly
understood due to the lack of powerful statistical methods. The traditional way to investigate GxE
interaction is based on a single environment exposure model. Parametric models such as additive
linear models, use the products of two variables to denote the interaction effects. However, this
product may not capture the true interaction effect of gene and environment, since it could not be
able to capture the possible nonlinear G xE interactions.

In order to assess possible nonlinear G X E interactions, some nonparametric and semiparamet-
ric models have been developed, such as varying coefficient models (VCM) proposed by Hastie
and Tibishirani (1993). In a VCM model, the coefficients of covariates are allowed to change with
some other variables through smooth functions, so nonlinear interactions can be assessed. A VCM
has the form .

Y=Y m(X)Z +e, (1.1)
=1

where Y is the response variable, (X,Z7)7 is a vector of predictors consisting of a scalar X and a



L-dimensional vector Z = (Z,, 25, ..., Z;)T

.my(-), 1 =1,...,L, are unknown nonparametric smooth
functions. In particular, dealing with GxE interaction problems, one can replace the predicts Z to
be genetic variants, for example, single nucleotide polymorphisms (SNPs).

Epidemiological evidences suggested that a disease risk can be modified by simultaneous ex-
posure to multiple environmental agents with effect larger than simple addition of individual factor
acting along. The specification of VCM in (1.1) may be limited in dealing with simultaneous
exposure to multiple environmental factors. It will result in difficulties in the estimation of the
coefficient function m;(X) when variable X = (X1, ...,X,)T in Model (1.1) is multidimensional.
To overcome such challenge, Ma and Song (2015) proposed the varying index coefficient model

(VICM) with a form

my(BIX)Z; + e, (1.2)

M=

Y =

I=1

where B; = (Bj1,.--, B p)T are the coefficients for covariate vector X with 3j; be the loading weight
for the k-th covariate of X, i.e. X} associated with Z;. The single index ﬁTX is actually a linear
combination of several environmental effects. The VICM model is able to pursue the interaction
between a set of environmental factors as a whole and genetic variables on the disease risk, if
the covariate Z is specified to be some genetic effect, such as a SNP variable. Liu et al. (2016)

extended the model to a partial linear varying multi-index coefficient model (PLVMICM):

L
Y =mo(Bd X)+afZ+ Y {m(B/ X)G,+ a] ZG} +¢, (1.3)
=1
where G;, 1 =1, . . ., L are genetic variables of interest, m;(-), I = 0,1,...,L are unknown index

functions, @,..., 0 and By, ..., B are parametric parameters. The main genetic effect for each
G| is captured by the function m;( [ilTX) when the function is approximated by some nonparamet-
ric techniques such as B-spline approximation. Model (1.3) is an extension of Model (1.2) by
considering partial linear covariates Z with application in capturing nonlinear G xE interaction-
s. However, the above mentioned medoels can not be used directly for longitudinal data because

of the assumption of independence among observations. Little work has been done to deal with



nonlinear G XE interaction in longitudinal studies. This motivates us to extend the varying index
coefficient model to longitudinal traits.

Longitudinal studies play an important role in epidemiology, biological and clinical research.
Longitudinal studies are used to characterize normal growth and aging, to assess the effect of risk
factors on human health, and to evaluate the effectiveness of treatments. Some researches, such as
Sitlani et al. (2015), Furlotte et al. (2015) and Xu et al. (2014) demonstrate the longitudinal design
is more powerful in detecting genetic associations than cross-sectional designs.

The traditional way to analyze longitudinal data is using the regression models (Belle et al.,
2004). However, standard regression methods assume that all observations are independent. The
assumption of independence would result in invalid inferences. One approach to deal with the
issue is using a complete model which specify the correlation structure among observations for
each subject. In linear mixed effect models, we can make specific assumptions for the covariance
structure in observations. Based on the parametric assumptions for the covariance components,
we can apply the maximum likelihood methods to estimate the regression parameters. Another
regression approach for inference with longitudinal data is known as generalized estimating equa-
tion (GEE) approach proposed by Liang and Zeger in 1986. The GEE method is very popular in
recent decades and has been widely used in longitudinal data analysis. However, the application
of the GEE method has several disadvantages. One of those disadvantages is that GEE may fail to
produce consistent estimators if the nuisance correlation parameters are not consistently estimated
(Crowder 1986, 1995). In addition, model selection and hypothesis testing can be complicated
since there is no objective function in the estimation procedure of the GEE approach.

The quadratic inference function (QIF) approach proposed by Qu et al. (2000) is one of the
improvements of the GEE method. The benefits of using QIF approach in longitudinal analysis
have been discussed in some researches, such as Qu et al. (2000), Qu and Li (2006) and Song et al.
(2009). The QIF method avoids estimating the nuisance correlation parameters by using a linear
combination of several basis matrices to approximate the inverse of correlation matrix. When the

working correlation structure is correctly specified, both the QIF and GEE are equally efficient.



However, when the working correlation structure is misspecified, the QIF is more efficient than the
GEE. In addition, the QIF has an asymptotic xz distribution, based on which we can implement
the model selection criteria like BIC, and construct testing statistic. These advantages of using QIF
in longitudinal analysis motivates us to extend the QIF method to the varying coefficient model in
detecting G xE interactions on risk of diseases.

We organise the rest of this dissertation in the following way: In Chapter 2, in order to capture
the dynamic nonlinear GXE interaction with the combined effect of environmental factors for
longitudinal data, we propose a functional varying index coefficient model (FVICM) for correlated
responses, i.e.,

T T
Yij = mo(BoXij) +mi(B1Xij)Gi+&ij, (1.4)

where Y;; is the response variable which measures the risk of certain disease on the ith subject at
the jth time point, where i=1,--- N, j=1,---,n;; X;; is a p-dimensional vector of environmental
variables, which can be either time-dependent or time invariant; G; denotes the genetic variable;
& is an error term with mean 0 and some correlation structure; mg(-) and mj(-) are unknown
functions; B and B are p-dimensional vectors of index loading coefficients. Compared with
Model (1.2) and (1.3), Model (1.4) assumes correlations among observations from the same sub-
ject, which can be applied to capture the longitudinal correlation among different time points for
a subject. We use penalized splines to approximate the nonparametric functions in the model and
then develop an estimation procedure based on QIF method. In addition, we are interested to see
whether the interaction function m(-) is significantly nonlinear or not. This is a natural concern
in our model since if a linear interaction function is sufficient, a varying coefficient model would
not be necessary. We develop the testing procedure by representing our model in a linear mixed
model form and then apply the pseudo-likelihood ratio test. On the other hand, discrete longitu-
dinal traits, for example, the binary traits are very common in clinical researches. To deal with

binary responses, in Chapter 3, we extend Model (1.4) to a generalized functional varying-index



coefficient model (gFVICM) with a form
T T
g{E(Y;j|Xij,Gij) } = mo(BoXij) +mi(B] Xij)Gij, (1.5)

where g(-) is the logit link function, mg(-) and m (-) are unknown nonparametric functions, B, and
B are p-dimensional vectors of index coefficients. The QIF method is modified to accommodate
binary response. To test the linearity of interaction function m (-), we develop a hypothesis testing
procedure which is built on the asymptotical property of the QIF objective function. In Chapter 4,
we consider G X E interactions when multiple longitudinal traits are measured to improve the power
of association test, especially to identify any pleiotropic effect (i.e., one gene can affect multiple
traits). For this purpose, we propose a multivariate partially linear varying coefficients model
and derive a testing framework to jointly test the association of genetic factors with multivariate

phenotypic values adjusting for environmental factors. The joint models are written as

Yiij = Yi(tij) = BordX (tij) } + Bud{X () }Gi + &) Z;j + &4, (1.6)

where ¥}; ; is the response variable which measures the /-th phenotype on the i-th subject at the j-th
time point, X (#;;) is a time-varying covariate, Z;; is a p-dimensional vector of covariates, which
can either depend or be independent of time, G; denotes the genetic variable within subject, & is

an error term and
€1;

g = ~N (0, Z)
€Li
with X be some covariance structure, By, (-) and By;(-) are unknown functions. The robustness of
QIF method in the variance of the estimators helps us to build the estimation and hypothesis testing
procedure. In Chapter 5, we conclude the thesis with a brief conclusion about the contributions of

this thesis and point out some future research directions. Proofs are provided in the Appendix.



CHAPTER 2

FUNCTIONAL VARYING INDEX COEFFICIENT MODEL FOR DYNAMIC
GENE-ENVIRONMENT INTERACTIONS

2.1 Introduction

It has been broadly recognized that gene-environment (GxE) interaction plays important role in
human complex diseases. A growing number of scientific researches have confirmed the role of
G xE interaction in many human diseases, such as Parkinson disease (Ross and Smith, 2007) and
type 2 diabetes (Zimmet et al., 2001). GXE interaction is defined as how genotypes influence
phenotypes differently under different environmental conditions (Falconer, 1952). It also refers
to the genetic sensitivity to environmental changes. Usually, GXE has been investigated based
on a single environment exposure model. Evidence from epidemiological studies has suggested
that disease risk can be modified by simultaneous exposure to multiple environmental factors. The
effect of simultaneous exposure is higher than the simple addition of the effects of factors acting
alone (Carpenter et al., 2002; Sexton and Hattis, 2007). This motivated us to assess the combined
effect of environmental mixtures, and how they, as a whole, interact with genes to affect disease
risk (Liu et al. 2016). In our previous model, we proposed a varying-index coefficient model to
capture the nonlinear interaction between a gene and environmental mixtures (Liu et al. 2016). The
method was extended for any univariate trait distribution in a generalized linear model framework
(Liu et al. 2017).

In biomedical studies, longitudinal traits are often observed, with repeated measures of the
same subject over time. The increased power of a longitudinal design to detect genetic associations
over cross-sectional designs has been evaluated (Sitlani et al. 2015; Furlotte et al. 2015; Xu et al.
2014). With longitudinal disease traits, one can study the dynamic gene effect over time. Coupling
with longitudinal measure of environmental exposures, one can study how genes respond to the

dynamic change of environmental factors to affect a disease trait. This motivates us to extend the



varying index coefficient model to longitudinal traits.

To explore time-dependent effects in longitudinal data analysis, some nonparametric and semi-
parametric models such as varying coefficient models have been proposed, for example, Hoover
et al. (1998), Wu, Chiang, and Hoover (1998), Fan and Zhang (2000), Martinussen and Scheike
(2001), Chiang, Rice, and Wu (2001), Huang, Wu, and Zhou (2002), Ma and Song (2015). Howev-
er, these methods do not fit to our purpose. In order to capture the dynamic nonlinear G xE interac-
tion with combined effect of environmental factors for longitudinal data, we propose a functional

varying index coefficient model (FVICM) for correlated response, i.e.,
T T
Yij =mo(BoXij) +mi(B1Xi;)Gi+ €5, 2.1)

where Y;; is the response variable which measures the risk of certain disease on the ith subject at
the jth time point, where i=1,---,N, j=1,--- ,n;; X;; is a p-dimensional vector of environmental
variables, which can be either time-dependent or time invariant; G; denotes the genetic variable;
g;j is an error term with mean 0 and some correlation structure; mg(-) and m () are unknown func-
tions; B and B are p-dimensional vectors of index loading coefficients. For model identifiability,
we have the constraints ||Bq|| = [|B ]| = | and the first elements of B and B are positive.

Qu et al. (2000) proposed the quadratic inference function (QIF) for longitudinal data analysis,
as an improvement of the generalized estimation equation (GEE) approach introduced by Liang
and Zeger (1986). The QIF approach avoids estimating the nuisance correlation parameters by
assuming that the inverse of the correlation matrix can be approximated by a linear combination
of several basis matrices. Qu et al. (2000) found that the QIF estimator could be generally more
efficient than the GEE estimator. Qu and Li (2006) applied the QIF method to the varying coeffi-
cient model for longitudinal data. Bai et al. (2009) developed an estimating procedure for single
index models with longitudinal data also based on QIF method. Motivated by that, in this paper,
we extend the QIF method to the FVICM model for dynamic G XE interactions.

Our goal in this work is to develop a set of statistical estimation and hypothesis testing proce-

dure for model (2.1). We first approximate the varying index coefficient function by the penalized



splines (Ruppert and Carroll, 2000) and then extend the QIF approach to our model in order to es-
timate the index loading coefficients and the penalized spline coefficients. Under certain regularity
conditions, we establish the consistency and asymptotic normality of the resulting estimators.

Another goal of this work is to test the linearity of the G XE interaction effect. This is of partic-
ular interest in our model setting since if the G xE interaction is linear, a simple linear regression
model should be fit, and fitting any higher order nonlinear functions would be unnecessary. With
a mixed effects model representation of the penalized spline approximations (Speed, 1991; Rup-
pert, Wand, and Carroll, 2003; Wand, 2003), we can transform the problem of testing an unknown
function into testing some fixed effects and a variance component in a linear mixed effects model
setup with multiple variance components, which will be evaluated in this study.

This chapter is organized as follows: in Section 2.2, we propose an estimation procedure under
the FVICM model, and further establish the consistency and asymptotic normality of the proposed
estimator in Section 2.3. In Section 2.4, we discuss some practical issues to implement the pro-
posed estimation procedures. In Section 2.5, a pseudo-likelihood ratio test procedure with a linear
mixed effects model representation is illustrated. We assess the finite sample performance of the
proposed procedure with Monte Carlo simulation in Section 2.6 and illustrate the proposed method
by an analysis of a pain sensitivity data set in Section 2.7, followed by discussions in Section 2.8.

Technical details are rendered in Appendix.

2.2 Quadratic inference function for FVICM with longitudinal data

For longitudinal data, suppose the response y; j, p-dimensional covariate vector x;;, and SNP vari-
able G; are observed from the ith observation at the jth time point. SNP variable {G;,i=1,...,N}

does not change over time. Assume the model satisfies

T T
E(yijlxij, Gi) = mo(Boxij) +m1 (B xij)Gi,



We can approximate the unknown coefficient functions mg(ug) and m| (1)) by a g-degree truncated

power spline basis, i.e.
mo(ug) = mo(uo, B) ~ B(uo)" %o,
my(uy) = my(uy, B) ~B(u) 1y,

where B = (ﬁg,ﬂ{)T B(u) = (1,u,u®,-- ,ul, (u—x )4, (u—xx)%)T is a g-degree truncated
power spline basis with K knots ki, -+ ,kg. ¥y and ¥, are (¢ + K + 1)-dimensional vectors of
spline coefficients. Let ¥ = (yg , 'le)T.

For longitudinal data, the conditional variance-covariance matrix of the response need to be
modelled. The method of generalized estimation equation (GEE) is often applied to estimate the

unknowns. The GEE is defined as,
y T 1
Y 1 V;i(yi—m) =0,
i=1

where V; is the covariance matrix of y;, y; = (yi1,---,Vin;)" » B; = E(y;) is the mean function and
f1; is the first derivative of y; with respect to the parameters. Based on the spline approximation,

the mean function can be written as

K (0) BT (Bxi1)vo+BT (B{x1)71G:i
Mi=pn;(6)= : = : ;
Bin (0) BY (B(Xin,) Yo+ BT (B1 xin,) 11 Gi

and the first derivative of l; is

T T T T
BY (Boxi)Yvoxh,  BL(Bixi)v1Gix, BT (Byxi) BT(B1xi1)G;

i, = : : : : )
B (B xin)Yoxl, BL(B1xin)¥1Gixh, BT (Bixin,) BT (B]x,)Gi
d \P03&in; 70 in; d 1 &in; 71 %in; 0 *in; 1 &in; )i

JoB — —1 —1
WhereBd(u):%:(oala2u7'”aquq 1,Q(M_Kl>i 7"'7q(u_KK)q+ )’e:(ﬁT7YT)T'

When V; is unknown, Liang and Zeger (1986) suggested that V; can be simplified as V; =

1/2

Ail / 2R( p)A;’” with A; being a diagonal matrix of marginal variances and R(p) being a common



working correlation matrix with a small number of nuisance parameters p. When p is consis-
tently estimated, the GEE estimators of the regression coefficients are consistent. When such
consistent estimators for the nuisance parameters do not exist, Qu et al. (2000) suggested that
the inverse of R(p) can be represented by a linear combination of a class of basis matrices such
as R*I(p) ~ aiM| + ayMj - + apMy,, where M| is the identity matrix and Mj,--- ,M,, are

symmetric matrices. The advantage of this method is that the estimation of nuisance parameters

ai,--- ,ay are not required. Following this idea, we define the estimation function as,
. —1/2 —1/2
N YN BlA; / M; A, (v - )
1 1
anv(0) = — (0) = — 2.2
gn (o) Nl_Zlgz( )= 22)

e T A A P (- )

Because the dimension of the estimation equation g is greater than the number of parameters, we
cannot obtain the estimators by simply setting each element in gy to be zero. Qu et al. (2000)
introduced the Quadratic Inference Function (QIF) based on the generalized method of moments

(Hansen, 1982). Thus, we can estimate the parameters by minimizing the QIF, which is defined as
On(8) = Ng{Cy ' an. (2.3)
where Cy = ]lefv: 1 gigl-T is a consistent estimator for var(g;). By minimizing the quadratic infer-
ence function, we can obtain the estimation of the parameters
0= argmeinQN(G).

To overcome the well known over-parameterization issue, Qu et al. (2000) further proposed the

penalized quadratic inference function
N~ 'on(8)+267D8, (2.4)
where D is a diagonal matrix with element 1 if the corresponding parameters are spline coefficients

associated with the knots and O otherwise, i.e., D = dlag(O(Zp—l—q—l—l)xl’1K><1’0(q—|—1)><1’1K><1)'

Then the estimator is given by

0= argrrgn(N—lgN(e) +167D0). (2.5)
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2.3 Asymptotic properties

In this section, we establish the asymptotic properties for the penalized quadratic inference function
estimators with fixed knots. Assume 0 is the parameter satisfying Ego(g,-) = 0. Theorem 1
provides the consistency of the resulting estimators. We show the asymptotic normality of the
estimators in Theorem 2. The theoretical results are similar to those provided in Qu and Li (2006).
The difference is that we have constraints for the index loading parameters in our model, i.e.
IBoll=lIB1]|=1, and By; > 0, By > 0. To handle the constraints, we do the reparameterization as
B =/1—1B; 113 with B; _; = (B2,.... Byp)" for I=1, 2 (Yu and Ruppert, 2002; Cui et al.,

2011; Ma and Song, 2015). Then the parameters space of B ;> [=1,2, becomes

{11181 113 Bias s Bip) T} 1By 1113 < 1]

r 2
0 -B; _ 1—|IB; _
J —i_ Bl, 1/ HBZ, 15
I,
p

| = _
95271

Let

be the Jacobian matrix of dimension p x (p —1). Denote B_; = (ﬁg’_l,ﬁ{_l)T, and 0% =

(B_1,7)T. From @ to 8*, we have Jacobian matrix J = diag(Jo,J1,Lg+k+1,1g+k+1)-

Theorem 1 Suppose the assumptions (Al)-(A6) in the Appendix are satisfied, and the smooth-
ing parameter Ay = o(1), then the estimator 6, which is obtained by minimizing the penalized

quadratic function in (2.4), exists and converges to 0 in probability.

Theorem 2 Suppose the assumptions (Al)-(A6) in the Appendix are satisfied, and the smoothing
parameter Ay = o(N -1/ 2), then the estimator O obtained by minimizing the penalized quadratic

function in (2.4) is asymptotically normally distributed, i.e.,

~

VN(O—80) L N0.J(GECy ' Go) ™),

where Gq and Cyy are given in the Appendix.
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2.4 Practical issues

In this section, we discuss some practical issues when we implement the proposed method.

2.4.1 Algorithm for estimation

A two-step iterative Newton-Raphson algorithm is applied when we estimate the index loading
parameters and the varying spline coefficients. The algorithm of the estimation procedure can be

summarized in the following steps.
Step 0 Choose initial values for B and ¥. Denote them by ﬂ(OZd) and ylold).

Step 1 Estimate 'y(”ew) by
7" = argmin(N"' Oy (v.8'")) + 27" Dy.
The Newton-Raphson algorithm is used for the minimization.

Step 2 Estimate B"") by
B ~ argmin Oy (B. 7).

Also use Newton-Raphson for minimization.

Step 3 Update ﬁgom) by BgOZd) = sign(ﬁl(ln ew))ﬁl(new) /| ﬁl(new) 2, I = 1,2. Update 'y("ld) by

setting y(0ld) = ylnew),

Step 4 Repeat Steps 1-3 until convergence.

2.4.2 Model selection

It is important to determine the order and number of knots in the spline approximation since too
many knots in the model might overfit the data. Under the assumption E(g) = 0 (g is the estimation
function in (2.2) for a single observation) and the number of estimating equations is larger than

the number of parameters, we have Q(a) — %rz, ;. In distribution (Hansen, 1982), where r is the

12



dimension of gn(0), k is the dimension of 6, 0 is the estimator by minimizing the QIF when
certain order and number of knots are chosen. This asymptotic property of the QIF provides a
goodness-of-fit test, which can be useful to determine the order and number of knots to be selected
in our model.

However, it is also possible that the goodness-of-fit tests fail to reject several different models
which may not be nested. Since Q(b\) is asymptotically chi-square distributed, we can use BIC
to penalize Q(@) for the difference of the numbers of estimating equations and parameters. In

particular, the BIC criterion for a model with r estimating equation and k parameters is defined as
Q(8) + (r—k)InN,

The model with minimum BIC would be considered better. If we choose 4 basis matrices in (2.2),
then r —k = hk —k = (h— 1)k. As we discussed in Section 2.4.3, we usually use 4=2 in our setting.
Thus, the BIC criterion is actually

0(8) +kInN,

where k is the number of parameters in the model.
In our simulation and real data application, we search the optimal order and the number of

knots over a set of combinations of g and K using BIC. Knots are evenly distributed in the range

of u(= BT X).

2.4.3 Choice of the basis for the inverse of the correlation matrix

Qu and Li (20006) offered several choices of basis matrixes. For exchangeable working correlation,
M| is identity matrix and M, has 0 on the diagonal and 1 off-diagonal. If the working correlation
is AR(1), we can set M, to have 1 on its two subdiagonals and O elsewhere. Prior information
on correlation can help us to determine the choice of appropriate basis matrices. The effect of
choosing different basis matrices is discussed in Qu and Li (2006) through simulation studies. Qu
and Lindsay (2003) also proposed an adaptive estimation method to approximate the correlation

empirically when there is no prior information available.
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2.4.4 Choice of the tuning parameter

Since the penalized spline is used to approximate the unknown functions, we need to determine
the tuning parameter A involved in the method. As Qu and Li (2006) suggested, we can extend
the generalized cross-validation (Ruppert, 2002) to the penalized QIF and define the generalized

cross-validation statistic as
N~'on
(1-N—1df)?
where df = tr[(Oy + 2NAD) ! O] is the effective degree of freedom, Qy is defined in (2.3) and

GCV(A) =

Qy is the second derivative of Qy. The desirable choice of tuning parameter A is
2= argrriinGCV(k).

In the implementation of GCV, the golden search method can be applied in order to reduce the

computational time.

2.5 Hypothesis test

2.5.1 Linear mixed model representation for FVICM model

In our proposed FVICM model (2.1), it is of interest to test the unspecified coefficient function.
In particular, we are interested in testing whether a linear function is good enough to describe the
G xE interaction. Given B, let ug = ﬁlTX, up = ﬂg X, with the truncated power spline basis, the

coefficient function can be modeled by

K
my(ur) = Y10+ vi1u1 + Viou +-+nguf + Y brg(ur — )%
=1

Our goal is to test the linearity of m| (u1), which is equivalent to test
Hy:yo==%¢g=0,b11=--=b1x=0.
T -
s 201 = ((uoij — k1), (woij — k) L) ", ¥o = (W0, Yog) T >
)T

T
bo = (bo1,---,bok)" » Wi;j = (1,uy;j, - 7M(1]ij)T,Zlij= ((ij—r)d, - (uj—xg)h) by =

(b1, bi) T 7 = (N0, ng) T
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T & . T
mo(uoij) = Wo; Yo + 2o o,
T & T
my(u1ij) = Wi Y1 +2;b1.
We further define Y; = (vi1,--+ ,¥in,)"» Woi = (Woit, -+ s Woin;)"» Wii = (W1i1Gi, -+, W1, Gi) T

Zo; = (2051, ,inni)T, Z,;,=(211Gj, - ,zliniGi)T, then a linear mixed model (LMM) represen-

tation (Wang and Chen, 2012) can be obtained as,
Yi =Woi¥o+ W71 +Zobo+Zy;by +1ia;+ €, i=1,---,n, (2.6)

b; ~ N(0, aﬁlIK), 1=0,1, & ~N(0,021),

where the random incept effects a; are assumed to be independent as N(0, 03) which model the
correlation in the response.

With the LMM representation, testing the linearity of the varying index coefficients is equiva-
lent to test some fixed effects and a variance component in model (2.6). To be specific, we want to
test

Ho:mz-.-:qu:()andcﬁl:o. 2.7)

2.5.2 LRT and pseudo-LRT in LMM

2.5.2.1 LRT for one variance component

Crainiceanu and Ruppert (2004) proposed the likelihood ratio test in linear mixed effect models

with one variance component. Consider a LMM with one variance component

b 0x b ofZ 0
Y=XB+Zb+e, E — , Cov = , (2.8)

where B is a p-dimensional vector of fixed effect coefficients, b is a K-dimensional vector of
random effects, Og is a K-dimensional vector of zeros, ¥ is a known K x K symmetric positive

definite matrix. Let A = Gg / Gg be the signal-to-noise ratio and then the covariance matrix of
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Y cab be written as Cov(Y) = 62V, where V, = I, + AZEZ”. Consider testing for the null

hypothesis
Ho: By =0, ,Bp=0, 0 =0 (2.9)

for p’ > 0.

The LRT statistic is defined as

LRT, 2{ supL(B. 1, o2) - supL(B, 2, ag)}.
A 0

If we substitute the parameters B and 682 with their profile estimators

-~

B(2)= X"V Ix)"IxTv ly,

_{Y-XB))"v, Y -XB(A)}

~2
og (1) \ )
for fixed A, we obtain the LRT statistic
LRT, = sup{nlog(Y"SoY) — nlog(Y'P] V; P, Y) —log|V, |}, (2.10)

A>0
where Py =1, — X(XTV/{1X)_] XTV;Ll, X( denotes the design matrix of fixed effects under the
null hypothesis, So = I, — Xo(X] Xo) 1X7.
Theorem 1 in Crainiceanu and Ruppert (2004) provides the distribution of LRT statistic (2.10).
Let ug be the eigenvalues of}'.',l/zZTPOZZI /2, &, be the eigenvalues of x1/27T751/2 5= l,---,K,
then

)
LRTnin<1+Zl—”s2> + sup fa(R), 2.11)

where us%lN(O,l) fors=1,--- K, WS%N(O,I) fors=1,--- ,n—p, and

K
fal2) :nmg{ug;g;}— ) lox(1+ 14,

with




The distribution in (2.11) only depends on the eigenvalues Ly and . Based on the spectral de-
composition, simulation from this distribution can be done very rapidly. Detailed algorithm for

this simulation can be found in Crainiceanu and Ruppert (2004).

2.5.2.2 Pseudo-LRT for multiple variance components

For a LMM with multiple variance components
Y=XB+Zb;+--+7Zby +E¢, (2.12)

ble(O,Gngl), I=1,---,L, &~N(0,621,),

where by, / = 1,---, L are random effects and L > 1. Suppose we are interested in testing

. 2
Ho.ﬁp+17p/:0,"',ﬁp:0, GbLZO

Greven et al. (2008) proposed to approximate the distribution of LRT for the model (2.12)
based on the pseudo-likelihood ratio test theory (Liang and Self, 1996) by using a pseudo-outcome.
In the framework of model (2.12), b;,i # L, are nuisance random parameters. We can define the

pseudo-outcome as
Y=Y-) Zb,
i#L
where Bi are the best linear unbiased predictors (BLUP) of nuisance random effects b;,i # L. The

the model (2.12) can be reduced to
Y=XB+Z;b,+¢. (2.13)

Then the method for testing one variance component introduced by Crainiceanu and Ruppert

(2004) can be applied to the model in (2.13).

17



2.5.3 Pseudo-LRT in FVICM model

For the model in (2.6), we can use the idea of Greven et al. (2008) and define the pseudo-outcome
§i :Yi_ZOiBO_Ui‘/l\ia = 1,"- ,n,

where B() and a; are BLUPs of by and q;, respectively. The reduced model using pseudo-outcome

for model (2.6) can be written as
Y =Wo¥o+ Wi +Ziby +€. i=1,n. (2.14)

For the new model (2.14) using pseudo-response, we can apply the method for the single variance
component model introduced in Section 2.10 to test hypothesis (2.7). Statistical significance can

be assessed through the resampling approach described in section 2.5.2.1.

2.6 Simulation study

2.6.1 Simulation

In this section, the finite sample performance of the proposed method is evaluated through Monte
Carlo simulation studies. We generate three covariates X1, X», X3. For each subject i, Xy;,X2;7,X3;;
are generated independently from uniform distribution U (0, 1). We set the minor allele frequen-
cy (MAF) as ps=(0.1, 0.3, 0.5) and assume Hardy-Weinberg equilibrium. We use AA, Aa and
aa to denote three different SNP genotypes, where allele A is the minor allele. These genotypes
are simulated from a multinomial distribution with frequencies pf‘, 2pa(1 —py) and (1 —py)?,
respectively. Variable G takes value in the set {0,1,2}, corresponding to genotypes {aa,Aa,AA}
respectively. The error term & = (g, - ’8i”i) are independently generated from the multivariate
normal distribution N(0,0.1R(p)). The true correlation structure R(p) is assumed to be exchange-
able with p=0.5 and 0.8.

We set mq(ug) = cos(mug) and my (u1) = sin[w(u; —A)/(B—A)] with A = /3/2 —1.645/+/12
and B=+/3/2+1.645/+/12. The true parameters are B, = (v/5,v4,v/4)/v/13and B; = (1,1,1)/+/3.
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To simplify the simulation and save computational time, we consider the balanced case, which
means each observation has the same number of time points. We draw 1000 data sets with sample
size N = 200,500 and time points n; = T = 10. Since the true correlation structure is exchange-
able, we set M to be the identity matrix and M to be O on the diagonal and 1 off-diagonal. The

order and number of knots of the splines are chosen by using the BIC method.

2.6.2 Performance of estimation

Table 2.1 summarizes the results based on 1000 replications. In this table, the average bias (Bias),
the standard deviation of the 1000 estimates (SD), the average of the estimated standard error (SE)
based on the theoretical results, and the estimated coverage probability (CP) at 95% confidence
level are reported. Note that the estimation of the loading parameter B, improves as MAF py
increases, while the estimation of By show a opposite direction. This is because we have limited
data information to estimate the marginal effects mq(-) when p4 increases. As the sample size

increases, the performance of the estimation improves by showing smaller bias, SD and SE.

Table 2.1 Simulation results for p4 = 0.1,0.3,0.5 with sample size N = 200,500 and correlation
p=0.5.

pAZO.l pAZO.3 pAZO.S
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP
200 fBpp 0.620 7.3E-04 0.008 0.008 95.6 1.7E-03 0.009 0.010 96.2 1.5E-03 0.011 0.011 95.0
Bop 0.555 -3.9E-04 0.008 0.009 932 -1.0E-03 0.010 0.010 92.5 -1.2E-03 0.012 0.011 92.4
Bp3 0.555 -6.2E-04 0.008 0.008 94.4 -1.2E-03 0.010 0.010 94.2 -8.5E-04 0.012 0.011 93.0
B 0577 -2.3E-05 0.018 0.020 91.0 -3.1E-04 0.011 0.011 93.7 -8.6E-04 0.009 0.009 94.7
Bip 0.577 -6.3E-04 0.018 0.020 91.3 -3.0E-04 0.011 0.011 94.3 -6.8E-05 0.009 0.009 93.8
B3 0577 -3.9E-04 0.018 0.020 91.0 2.8E-04 0.011 0.011 94.8 7.1E-04 0.009 0.009 93.1

500 By; 0.620 7.5E-04 0.005 0.005 95.5 1.7E-03 0.006 0.006 95.1 1.6E-03 0.007 0.007 95.8
Bop 0.555 -5.7E-04 0.005 0.005 94.4 -1.1E-03 0.006 0.006 94.6 -8.8E-04 0.007 0.007 95.2
Bp3 0.555 -3.4E-04 0.005 0.005 93.9 -8.7E-04 0.006 0.006 94.1 -1.1E-03 0.007 0.007 94.7
Bi1 0.577 6.4E-04 0.012 0.012 93.8 -1.7E-04 0.007 0.007 95.6 -7.3E-04 0.006 0.006 95.1
Bip 0.577 -6.0E-04 0.012 0.012 93.6 -1.5E-05 0.007 0.007 96.1 5.3E-04 0.006 0.006 94.7
Bi3 0.577 -4.1E-04 0.012 0.012 94.6 6.0E-05 0.007 0.007 95.0 1.1E-04 0.006 0.006 95.6

The plots for the estimations of mq(uq) and mj(u;) under different sample size and MAFs are

shown in Figure 2.1 and Figure 2.2. The estimated and true functions are denoted by the solid
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and dashed lines, respectively. The 95% confidence band is denoted by the dotted-dash line. The
estimated curves almost overlap with the corresponding true curves as shown in the plots. The
confidence bands are tight, especially under a large sample size. Note that the estimation for the
interaction effects mj(u;) improves as MAF py increases, while the estimation for the marginal

effects mg(ug) show a opposite direction, which coincides with the results for the parametric esti-

mation in Table 2.1.

N=200, pa=0.1 N=200, pa=0.3 N=200, po=0.5
0.5 051
3 00 0.0
=
£
-0.5 -0.5-
-1.0- RS -1.0
0.25 0.50 00‘75 1.00 1.25 025 0.50 00‘75 1.00 1.25 0.25 0.50 00‘75 1.00 1.25
0 0 0
N=500, pa=0.1 N=500, po=0.3
0.5 0.51
S 0.0 S 0.01
= =
£ £
-0.5 -0.51
-1.0- S -1.01 2 -1.01
025 050 0.75 1.00 1.25 025 050 0.75 1.00 1.25 025 050 0.75 1.00 1.25

Uo

Uo Uo

Figure 2.1 The estimation of function mq(-) under different MAFs when N=200, 500 and p=0.5.
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.
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N=200, pp=0.5

N=200, pa=0.3

N=200, p,=0.1

1.0-

ml(ul)

0.75 100 1.25
uy

-05- '/ v
0.25 0.50 00‘75 1.00 1.25 0.25 0.50 00‘75 1.00 1.25 0.25 0.50

1 1
N=500, pa=0.3 N=500, pa=0.5

N=500, pa=0.1
» 1.04 TR

my(uy)
my(uy)

my(uy)

1.00 1.25

025 050 0.75
Uy

1.25

050 075 1.00
Uy

025 050 0.75 1.00

Figure 2.2 The estimation of function m(-) under different MAFs when N=200, 500 and p=0.5.
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%

confidence band is denoted by the dotted-dash line.

The performance of the estimation for p = 0.8 is shown in Table 2.2, Figure 2.3 and Figure
2.4. It is seen that the SD and SE are smaller when p is larger compared to the results when
p = 0.5. The confidence bands are a little bit wider, especially for mgy when p,=0.5 and for m,

when ps=0.1 for larger p. In summary, the simulation results show that the estimation method

performs reasonably well under different simulation settings in finite samples.
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Table 2.2 Simulation results for p4 = 0.1,0.3,0.5 with sample size N = 200,500 and correlation
p=0.8

pAZO.l pA=0.3 pAZO.S
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP
200 fBpp 0.620 4.4E-04 0.005 0.005 95.8 5.5E-04 0.006 0.006 95.8 -5.0E-06 0.007 0.007 95.3
Byo 0.555 -2.2E-04 0.006 0.005 92.3 -3.2E-04 0.007 0.006 91.8 -2.8E-04 0.008 0.007 92.7
Bp3z 0.555 -3.6E-04 0.006 0.005 94.1 -4.0E-04 0.006 0.006 94.6 1.4E-04 0.007 0.007 93.7
Bi1 0577 -6.7E-05 0.014 0.012 90.3 -2.4E-04 0.007 0.007 94.3 -7.7E-04 0.006 0.006 92.7
Bip 0577 -24E-04 0.014 0.012 91.8 -1.3E-04 0.007 0.007 94.2 3.3E-05 0.006 0.006 93.4
B3 0577 -1.8E-04 0.014 0.012 89.9 2.4E-04 0.007 0.007 93.7 6.4E-04 0.006 0.006 93.5

500 fBpp 0.620 5.3E-04 0.004 0.003 94.0 5.8E-04 0.004 0.004 954 3.3E-04 0.004 0.005 95.6
Boo 0.555 -4.0E-04 0.003 0.003 93.8 -4.2E-04 0.004 0.004 94.8 -1.3E-04 0.005 0.004 95.0
Bp3 0.555 -2.3E-04 0.004 0.003 93.1 -2.8E-04 0.004 0.004 94.2 -2.9E-04 0.004 0.004 94.7
Bi1 0.577 2.5E-04 0.008 0.007 94.0 -1.5E-04 0.004 0.004 95.3 -6.8E-04 0.004 0.004 93.9
Bip 0.577 -2.9E-04 0.008 0.007 93.5 4.4E-05 0.004 0.004 95.7 4.5E-04 0.004 0.004 93.5
B3 0.577 -1.1E-04 0.007 0.007 95.4 6.1E-05 0.004 0.004 95.4 1.9E-04 0.004 0.004 95.2

N=200, pa=0.1 N=200, px=0.3 N=200, pa=0.5

0.25 0.50 00‘75 1.00 1.25 0.25 0.50 ou‘75 1.00 1.25 0.25 0.50 00‘75 1.00 1.25
0 0 0

N=500, pa=0.1 N=500, pa=0.3 1o N=500, pp=0.5

0.25 0.50 00‘75 1.00 1.25
o]

Figure 2.3 The estimation of function my(-) under different MAFs when N=200, 500 and p=0.8.
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.
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Figure 2.4 The estimation of function m(-) under different MAFs when N=200, 500 and p=0.8
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.

2.6.3 Performance of hypothesis tests

We evaluate the performance of the test for the nonparametric function under the null hypothesis
Hy:my(:) = m(l)(), where m(l)(ul) = 8y + Ojuj, Oy and &) are some constants, which corresponds
to a linear G XE interaction. If we fail to reject the null, then a linear model can be fit to further
assess the linear G XE interaction. Otherwise, we conclude nonlinear G XE interaction. Power is
evaluated under a sequence of alternative models with different values of 7, which is denoted by
Hf :m{(-)= m(l)() +t{my(-)— m(l)()} When 7 = 0, the corresponding power is the false positive

rate.

Figure 2.5 shows the size (when 7 = 0) and power (when 7 > 0) at significance level 0.05. We
obtain 1000 Monte Carlo simulations each with 5000 replications to access the null distribution of
test statistic under sample sizes N = 200, 500 with p = 0.5. The empirical Type I error under three

MAFs are very close to the nominal level 0.05 and the power increases dramatically when MAF
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increases from 0.1 to 0.3. Results for p = 0.8 is presented in Figure 2.6. Similarly, the empirical
Type I error is close to 0.05 and the power increases rapidly when MAF increases from 0.1 to 0.3.
Compared to the performance when p = 0.5 shown in Figure 2.5, the power increases a little bit
slower when p = 0.8. The results indicate that our method can reasonably control the false positive

rates and has appropriate power to detect the genetic variation.

N=200, p=0.5 N=500, p=0.5

1.0

0.00 0.05 0.10 0.15 0.20

Figure 2.5 The empirical size and power of testing the linearity of nonparametric function m; under
different MAFs when N=200, 500 and p=0.5.

N=500, p=0.8

1.0

0.00 0.05 0.10 0.15 0.20

Figure 2.6 The empirical size and power of testing the linearity of nonparametric function m; under
different MAFs when N=200, 500 and p=0.8.
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2.7 Real data application

We applied the proposed FVICM model to a real data set from a study examining the association of
the A118G SNP in OPRMI to experimental pain sensitivity (Jonson and Terra, 2002). A group of
163 men and women in ages from 32 to 86 years participated in the study. Systolic blood pressure
(SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured at 6 Dobutamine dosage
levels for each subject. Dobutamine is a medication that is used to treat congestive heart failure
by increasing heart rate and cardiac contractility. Dobutamine was injected into these subjects to
investigate their response in heart rate and blood pressure to this drug, at different dosage levels:
0 (baseline), 5, 10, 20, 30 and 40 mcg/min. In this study, dosage levels are treated as time and
measurements at different dosage levels are considered as longitudinal measures. In addition to
that, age and body mass index (BMI) were also recorded.

Total five SNPs in genes BetajAR and BetayAR were genotyped, namely, codonl6, codon27,
codon49, codon389, and codon492. We choose X;= dosage level as the "time-varying" variable,
and X, = age and X3= BMI as the "time-invariant" variable. Our goal is to evaluate how the SNPs
interact with age, BMI and dose level to affect SBP, DBP and HR. With the proposed FVICM
model, we can model the dynamic gene effect on drug response under different dosage levels.

In this analysis, we test whether any SNP is associated with the drug response based on the
hypothesis test Hy : my(u1) = 69 + 8ju; with p-value denoted by pj,, in Table 2.3 - 2.5. We also
reported the p-values for testing the significance of coefficients 11, B2 and B3, which are labeled
by p Bi1° PBin and p Bi3° based on the asymptotic normality of the estimates. We also compare our
proposed model to an additive varying-coefficient model (AVCM) E (Y |X, G) = B, (X1) + B X2 +
Bz X3 + 1B (X1) + B,X> + B5X3}G, where B, (-) and B (-) are unknown functions of X;. To
see the relative gain by integrative analysis, we calculate the MSEs of both models. The p-values
for testing Hy : B (-) = B}, = Bj3 = 0 for AVCM is also reported in the tables and denoted by

PAvcM-

Table 2.3 summarizes the performance of our method for response SBP. In the table, p;,, for all
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the 5 SNPs are smaller than the significance level 0.05, which implies the nonlinear function of the
SNPs on SBP in response to the dosage level, age and BMI as a whole. The MSEs in the last two
columns shows that FVICM fits the data better than AVCM, indicating the benefit of integrative
analysis. Besides, the testing results for AVCM do not show significance of the coefficients, which
further implies that the genetic effects of SNPs are nonlinearly modified by the mixture of these
three variables. Figure 2.7 shows the fitted nonlinear functions for each SNP, along with the 95%

confidence bands.

Table 2.3 List of SNPs with MAF, allele, p-values under different hypothesis testing and MSE for
SBP.

p-value MSE
SNPID MAF Alleles pml pﬁll pBlZ pB13 PAVvCM FVICM AVCM

codonl6 0.3990 A/G  <1.0E-04 0.0011 <I1.0E-04 0.0917 0.5308 0.0403 0.0421
codon27 0.4160 G/C  <1.0E-04 <1.0E-04 0.0027 0.1675 0.6748 0.0388 0.0415
codon49 0.1387 G/A  <1.0E-04 <1.0E-04 0.3614 0.8668 0.2910 0.0398 0.0410
codon389 0.3045 G/C  <1.0E-04 <1.0E-04 <1.0E-04 0.7552 0.3927 0.0397 0.0431
codon492 0.4250 T/C  <1.0E-04 0.4102 <1.0E-04 0.0182 0.2990 0.0392 0.0409

Table 2.4 presents similar results for response DBP. The values of Pmy shows that the test
results for all 5 SNPs are significant, indicating nonlinear interactions for all 5 SNPs, while no
significance is shown for AVCM model. MSEs further support our method by showing smaller
value for FVICM comparing with AVCM. The estimated interaction curves with 95% confidence

bands are shown in Figure 2.8.

Table 2.4 List of SNPs with MAF, allele, p-values under different hypothesis testing and MSE for
DBP.

p-value MSE
SNPID MAF Alleles Pmy PBy; PByy PBi;  PAVCM VICM AVCM

codonl6 0.3990 A/G  0.0066 <1.0E-04 0.2834  0.0007 0.3160 0.0366 0.0372
codon27 0.4160 G/C  0.0004 0.8431 <1.0E-04 <1.0E-04 0.0946 0.0360 0.0386
codon49 0.1387 G/A  0.0003 0.5750 <1.0E-04 0.0042 0.7986 0.0369 0.0395
codon389 0.3045 G/C  0.0001 <1.0E-04 0.9675 <1.0E-04 0.2615 0.0369 0.0377
codon492 0.4250 T/C  0.0001 0.7934 <1.0E-04 <1.0E-04 0.5837 0.0369 0.0389

In Table 2.5, the performance of our method for trait HR also leads to similar conclusion expect
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Figure 2.7 Plot of the estimate (solid curve) of the nonparametric function m(u;) for SNPs
codonl6, codon27, codon49, codon389 and codon492. The 95% confidence band is denoted by
the dashed line. Response is SBP.

for SNP codonl6, which shows significant test results for both models. For all the other SNPs,
FVICM outperforms AVCM in terms of MSE. Figure 2.9 displays the corresponding estimated
nonlinear interaction curves.

Table 2.5 List of SNPs with MAF, allele, p-values under different hypothesis testing and MSE for
HR.

p-value MSE
SNPID MAF Alleles Pmy Py PB, PBi3 PAVCM VICM AVCM

codonl6 0.3990 A/G  <1.0E-04 <1.0E-04 0.1158 0.0028 0.0328 0.0309 0.0308
codon27 0.4160 G/C  <1.0E-04 0.0007 0.6434 0.0001 0.9620 0.0320 0.0325
codon49 0.1387 G/A 0.0001  0.0147 0.0172 0.0133 0.8371 0.0298 0.0300
codon389 0.3045 G/C  <1.0E-04 <1.0E-04 0.0024 0.0021 0.8959 0.0311 0.0313
codon492 0.4250 T/C 0.0002 <I1.0E-04 0.0011 0.0582 0.3732 0.0315 0.0316
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Figure 2.8 Plot of the estimate (solid curve) of the nonparametric function m(u;) for SNPs
codonl6, codon27, codon49, codon389 and codon492. The 95% confidence band is denoted by
the dashed line. Response is DBP.

2.8 Discussion

In this paper, we propose a functional varying index coefficient modeling procedure to study gene
effects nonlinearly modified by a mixture of environmental variables in a longitudinal design.
We implement the quadratic inference function (QIF) method to estimate the index loading and
spline coefficients. Furthermore, we apply the pseudo likelihood ratio test in a linear mixed model
representation to test the linearity of the nonparametric coefficient function. Simulation study has
been conducted to illustrate the estimation and testing procedures and confirm the asymptotical
property. Real analysis shows that our model outperforms the additive varying coefficient model,
which considers the GXE effect for each single environmental factor separately.

Our FVICM model distinguishes the varying coefficient model for longitudinal data. In fact,

the varying coefficient model is a special case of our model when the dimension of the X variable
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Figure 2.9 Plot of the estimate (solid curve) of the nonparametric function m(u;) for SNPs
codonl6, codon27, codon49, codon389 and codon492. The 95% confidence band is denoted by
the dashed line. Response is HR.

reduces to one. FVICM is able to capture the effect of genes nonlinearly modified by the joint
effect of multiple environmental variables as a whole. In addition, it can reduce multiple testing
burden by treating multiple environmental variables as a single index variable.

We apply the model to a pain sensitivity study. Testing results indicate that all five SNPs have
significant nonlinear interaction effects with environmental factors, which makes practical sense
since these SNPs were genotyped from candidate genes. Our model was motivated by a practical
need in GXE study. However, the method can be applied to any longitudinal data in which the
purpose is to model nonlinear interaction effects. For example, we can consider gene expressions
in a pathway (denoted as X)) and model how they regulate downstream genes (G) to affect a disease
trait. Both the trait and gene expressions can be measured over time. Thus, one can understand the

dynamic effect of genes nonlinearly regulated by a pathway to affect a disease trait.

29



CHAPTER 3

GENERALIZED FUNCTIONAL VARYING INDEX COEFFICIENT MODEL FOR
DYNAMIC GENE-ENVIRONMENT INTERACTIONS

3.1 Introduction

Longitudinal data analysis is very common in epidemiological studies when the response variables
are measured over time on objectives. Many studies demonstrated the increased power of a lon-
gitudinal design in detecting genetic associations over cross-sectional designs (Sitlani et al. 2015;
Furlotte et al. 2015; Xu et al. 2014). On the other hand, there has been growing interest in the role
of GXE interaction in many human diseases, such as Parkinson disease (Ross and Smith, 2007)
and type 2 diabetes (Zimmet et al., 2001). In many studies, GXE has been traditionally investigat-
ed based on a single environment exposure model. However, evidence from an increasing number
of studies has shown that risk of disease can be modified by simultaneous exposure to multiple en-
vironmental factors, which might be higher than what would be expected from simple addition of
the single effects of environmental factors (Carpenter et al., 2002; Sexton and Hattis, 2007). Thus,
of particular interest and complexity are assessing the combined effect of environmental mixtures
and the mechanism in which they interact with genes to affect disease risk. Some researches have
been done to assess nonlinear interactions between environmental mixtures and genes by apply-
ing some nonparametric or semiparametric models, such as the varying index coefficients model
(VICM) proposed by Ma and Song (2015) and the partial linear multi-varying index coefficients
model (PLMVICM) by Liu et al. (2016) and the generalized PLMVICM by Liu et al. (2017).
However, these methods were developed for cross-sectional data and they can not be used for lon-
gitudinal data. This motivates us to extend the varying index coefficient model to longitudinal
traits.

In our previous work, we proposed a functional varying index coefficient model to capture the

nonlinear G XE interaction for continuous longitudinal traits. However, in practice, it is possible
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that the response measured over time is a discrete variable, for example, a binary measure of
a disease status. In human genetics, many disease traits are binary in nature, being affected vs
unaffected (or cases vs controls). In order to investigate the dynamic nonlinear G xE interaction
with environmental mixtures as a whole for a binary longitudinal trait, we propose the following

generalized functional varying index coefficient model (gFVICM):
T T
g{E(Y;j[Xij,Gij) } = mo(BoXij) +mi(B] Xij)Gij, (3.1)

where ¥;; (= 0 or 1) denotes the binary longitudinal response variable observed for the ith subject
at the jth time point; X;; is a p-dimensional vector of environmental variables, which can be either
time-variant or time-invariant variables; G; denotes the SNP variable which does not depend on
time; g(-) is a known link function; m(-) and m (-) are unknown nonparametric smooth functions
which depend on the data; and B and B are p-dimensional vectors of index loading parame-
ters. In this model, the function m ( BITX) captures the interaction effect between environmental
mixtures and the genetic variable (e.g., a single nucleotide polymorphism (SNP)) on the risk of
disease.

The aim of this paper is to develop a set of statistical estimation and hypothesis testing pro-
cedure for model (3.1). The Generalized Estimation Equation (GEE) method, proposed by Liang
and Zeger in 1986, has been widely used in longitudinal data analysis. However, there are several
disadvantages of GEE method due to some of its critical assumptions (Song et al., 2009). One
disadvantage is that the consistency of GEE estimators are based on the consistency of estimators
for the nuisance correlation parameter (Crowder, 1986, 1995). Another shortcoming of the GEE
method is that model selection and hypothesis testing are complicated. This is because the estima-
tion procedure of the GEE method does not involve an objective function. The quadratic inference
function (QIF) approach proposed by Qu et al. (2000) is one of the improvements of the GEE
method. The QIF avoids estimating the nuisance correlation parameters and has been confirmed
by Qu et al. (2000) to be generally more efficient than the GEE. In addition, since the QIF is

built upon an objective function which is asymptotically chi-square distributed, we can naturally
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implement the model selection criterion such as BIC to the QIF. The asymptotic property can also
allows us to conduct hypothesis tests. This motivates us to extend the QIF method to our model
for estimation and hypothesis testing.

In our proposed estimation procedure, we first use penalized splines (Ruppert and Carroll,
2000) to approximate the nonparametric smooth functions m(+), /=0, 1. Then we develop a profile
estimation procedure to estimate the index loading parameters and spline coefficients iteratively
based on the QIF approach. In order to avoid overfitting and reduce the number of parameters in
spline approximation, we use BIC method by adding a penalty to the objective function. Under
certain regularity conditions we establish the asymptotic normality of the resulting estimators. In
addition, we are interested in testing the linearity of GxE interaction, i.e. the linearity of function
mi(-). The QIF can be regarded as an inference function which has properties similar to the
likelihood ratio test. Based on that, we construct a testing procedure for linearity of nonparametric
interaction function, where the test statistic asymptotically follows a xz distribution.

The rest of this chapter is organized in the following way: In Section 3.2, we propose an esti-
mation procedure for model (3.1) and also provide the consistency and asymptotic normality of the
proposed estimator; In Section 3.3, we derive a testing procedure for the linearity of nonparametric
interaction function based on the goodness-of-fit test of QIF. The finite sample performance of the
proposed procedure are accessed by Monte Carlo simulations illustrated in Section 3.4; In Section
3.5, the application of the proposed methodology is shown through the analysis of a pain sensitivity
data with a binary response variable indicating whether a subject has hypertension or not (Yes=1,

No=0); Some discussions are given in Section 3.6; The proofs of are rendered in Appendix.

3.2 The model and estimation methods

3.2.1 The model

For a longitudinal disease trait, suppose the binary response y; ;, the p-dimensional covariate vector

x;j, and the SNP variable G; are observed for the ith observation at the jth time point, where
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i=1,...N, j=I1,...,n;. Assume that the observations from different subjects are independent, but
those within the same subject are correlated. We also assume the model satisfies the first moment

assumption:
_ T T
Wij(xij,Gi) = E(yijlxij,Gi) = g~ {mo (B xij) +my (B1 xi;)Gi},
where g~ ! (+) is a given inverse link function. If we use a logit link function for binary response,

then the model can be written as

T T
exp{mo(Boxi;) +m1(B1xij)Gi}

1ij(xij, Gi) = P(yij = 1]x;5,G;) = i T
1+exp{mo(Boxi;) +mi(B1xi;)Gi}

For model identifiability, we have the constraints ||By|| = ||B1]| = 1 and the first elements of B,

and B are positive.

3.2.2 Quadratic inference function for gFVICM

First, we approximate the unknown coefficient functions mg(ug) and mj(u;) by truncated power
spline basis as

my(uy) = my(u, B) ~B(u;) "y, for 1 =0,1, (3.2)

where B = (BS,BIT)T, B(u) = (1,u,u®, ..., u?, (u— Kl)ﬂ_, ey (U — KK)Z_)T is a g-degree truncated
power spline basis with K knots ki, ..., Kx; ¥y and ¥, are (¢+ K + 1)-dimensional vectors of spline
coefficients.

A marginal approach such as the GEE assumes that the marginal mean (;; is a function of the
covariates through a link function and the variance of y; ; is a function of the mean var(y;;) =V (1;).

The generalized estimation equation for longitudinal data is
Al T 1
Y 1V (yi—m) =0,
i=1

where y; = (1, ...,yl-nl.)T, M, = E(y;) is the mean function and f; = % is the first derivative of

M; with respect to parameters 6 = (BT, YT, with y = (yg , YIT)T. The covariance matrix V; can
1/2

be decomposed as V; = A; R(p)Al-l/ 2 with A, being a diagonal matrix of marginal variances and
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R(p) being a common working correlation matrix with a small number of nuisance parameters p.

Using the spline approximation in (3.2), the mean function can be written as

1i1(0) g (BT (B xi1)0+ BT (B1xi1)11Gi}
Bi=n(0)= 5 = 5 ’
Hin;(0) g (BT (B{xin)) Yo+ B (B xin,)11Gi}
and the first derivative of W; is
BB %y BTGB G, Y BTBIx) ()BT (B xi1)G;
fri= : :
(¢~ B BT xin ol (c71)'B </31 NGl BT (BT xin) (671 BT (BT xin )G

where By(u) = %t = (0,1,2u,.. quq—l,qw—mi‘,...,q<u—xz<>?;1>.

In the QIF method, the inverse of the working correlation matrix can be approximated by a

linear combination of several basis matrices, 1.€.
71 ~
R (p)NalMl—l—...—l—ath,

where M is the identity matrix and My, ..., M}, are known basis matrixes. For example, if the
working correlation is exchangeable, R~ a1M; +ar,M, with M, having 0 on the diagonal and
1 off-diagonal. If the working correlation is AR(1), then R™1 ~ aiMj +a5M and we can set
M3 to have 1 on its two subdiagonals and O elsewhere. The advantage of this method is that the
estimation of nuisance parameters ay, ..., ay are not required.
Following this idea, we can derive the estimation function

N N BlA; my A, v
= }V;gxe) =N : (3.3)

e al A A - )
We cannot obtain the estimators by simply setting each element in gy to be zero since the number

of equations is more than the number of unknown parameters. To deal with this issue, we can

estimate the parameters by minimizing the following quadratic inference function,
T ~—1 -
On(0) =NgNCy 8N,
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where Cy = 1%,25\]: | gl-giT is a consistent estimator for var(g;). By minimizing the quadratic infer-

ence function, we can obtain the estimation of the parameters as,
0= argngnQN(G).

In order to overcome the issue of over-parameterization, we can add a penalty term to QIF to

penalize the number of knots in the approximation. The penalized QIF is written as
N~ 'on(8)+207D6, (3.4)

where D is a diagonal matrix with 1 if the corresponding parameter is the spline coefficient associ-
ated with knots and 0 otherwise, that is, D = dlag(O(szqurl)>< 1 1k 1’0(q+1)>< T 1% ,). Then the
estimator is given by

0= argmgn{NleN(e) +16"D0O}. (3.5)

To determine the tuning parameter A, we can extend the generalized cross-validation (Ruppert,
2002; Qu and Li, 2006; Bai et al., 2009) to the penalized QIF. The generalized cross-validation
statistic is defined as

N 1g

with the effective degree of freedom df = tr{ (O +2NAD) "1 Oy }, where Qyy is the second deriva-
tive of Qn. The desirable choice of tuning parameter A is which minimize the GCV(A). In the
implementation of GCV, the desired value of A can be found using a grid search by predefining a

set of values for A .

3.2.3 Theoretical results

To establish the asymptotic properties for the estimators of the index loading parameters and the
penalized spline regression coefficients, we assume 6 is the parameter satisfying Eeo (gi) =0.
Theorem 3 provides the consistency of the resulting estimators. We show the \/N-consistency
and asymptotic normality of the estimators in Theorem 4. The theoretical results are similar to

Theorem 1 and 2 in Chapter 2.
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First, to handle the constraints || B||=[|8[|=1, and By1 >0, B11 >0, weset B = /1 —[|B; _; 13

with B; 1 = (B, ...,ﬁlp)T for /=1, 2. Then the parameters space of B;, /=1,2, becomes

/1= 1B1,—113 Brss Bip) "} 1By 1113 < 1.

Let
T
aB, —Bi_1/\/1-1B; 113
B I, |
be the Jacobian matrix of dimension p x (p —1). Denote B_; = (ﬂg,—l,ﬁi_ﬂT, and 0" =

(B_1,7)T. From @ to 8*, we have Jacobian matrix J = diag(Jo,J 1, Lg+k+1,1g+x+1)-

Theorem 3 Suppose the assumptions (Al)-(A6) in the Appendix are satisfied, and the smooth-
ing parameter Ay = o(1), then the estimator 0, which is obtained by minimizing the penalized

quadratic function in (3.4), exists and converges to 0 in probability.

Theorem 4 Suppose the assumptions (Al)-(A6) in the Appendix are satisfied, and the smoothing
parameter Ay = o(N -1/ 2), then the estimator 8 obtained by minimizing the penalized quadratic

function in (3.4) is asymptotically normally distributed, i.e.,

~

VN(O - 00) L N0,JGECy ' Go) 1T,

where the detailed calculation of Gy and C are given in the Appendix.

3.3 Model selection and hypothesis test

3.3.1 Model selection

Model selection is important in the spline approximation since too many parameters in the model
might result in the overfitting issue. According to the theocratical property of generalized method
of moments estimator (Hansen, 1982), under the assumption E(g;) = 0 and also the number of

estimating equations is larger than the number of parameters, we have Q(0) — sz, « In distribution,

36



where r is the dimension of gy (0), k is the dimension of 6 and 8 is the estimator by minimizing
the QIF when certain order and number of knots are chosen. This asymptotic property of the
QIF provides a goodness-of-fit test, which can be useful to determine the order and number of
knots to be selected in our model. However, it is also possible that the goodness-of-fit tests fail to
reject several different models which may not be nested. Since Q(a) is asymptotically chi-square
distributed, it is natural to extend the BIC to the QIF approach, by replacing twice the negative
log-likelihood function by the QIF objective function. In particular, the BIC criterion for a model

with r estimating equation and k parameters is given as,
0(8) + (r—k)InN,

The model with the minimum BIC would be considered the optimal one. If we choose & basis
matrices in (3.3), then r —k = hk —k = (h— 1)k.

In our simulation and real data application, we search the optimal order and number of knots
over a set of combinations of ¢ and K using the BIC criterion. Knots are evenly distributed in the

range of the single index ﬁTX.

3.3.2 Nonparametric goodness-of-fit test based on QIF

The QIF can also be regarded as an inference function since it has properties similar to the like-
lihood ratio test. Suppose that the d-dimensional parameter vector ¥ is partitioned into (y, ),
where W is the parameter of interest with dimension dy, and § is the nuisance parameter with

dimension dy = d — d;. If we are interested in testing

HOZW:WO;

the test statistic

~

0(vy, &) - 0(¥,0)
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follows an asymptotically chi-square distribution with d; degrees of freedom. The following the-
orem introduced by Qu et al. (2000) provided a way to conduct hypothesis testing in the QIF

framework.

Theorem 5 (Qu et al., 2000) Suppose that all required regularity conditions are satisfied and Y
has dimension dy. Under the null hypothesis, Q(yy), Z) - 0(y, Z) is asymptotically chi-square
distribution with dy degrees of freedom, where

~ ~

§ =argminQ(y,§), (¥,§)=argminQ(y,{). (3.6)

When there is no nuisance parameter, which is a special case of the condition in Theorem 5,
O(Y) — O(¥) has an asymptotical chi-square distribution with d degree of freedom under the null

hypothesis.

3.3.3 Test for linearity of interaction function in gFVICM

In our proposed gFVICM model (3.1), it is of interest to test the unspecified coefficient function.
In particular, we are interested in testing whether a linear function is good enough to describe the
G xE interaction. If the we fail to reject the linearity of the coefficient function, then a parametric
linear interaction function should be fitted to further assess if there exists linear G X E interaction;
otherwise, we conclude there exists nonlinear G xE interaction. Let uy = BlTX With the truncated

power spline basis, the coefficient function can be modeled by

K+q+1

my (u1) = Yo+ vur + vl +-+ngud+ Y vr(n — )%
k=g+1

Our goal is to test the linearity of m| (1), which is equivalent to test
Hy:Y2="=%kKtq+1=0.

Let 6 be the estimator of the full parameter 6 = ( ﬁT, ¥T)T under the null hypothesis with

~T 7 _ .
OZ(B 7YTa’}/107Y1170T)T: argmin QN(6)7
N2="=N K+q+1=0
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and the estimator of @ under the alternative as
0= argminQn(0).
Then the test statistic
Ty = On(0) — On(8),

asymptotically follows a chi-square distribution with K + g — 1 degrees of freedom, following

Theorem 5.

3.4 Simulation study

The finite sample performance of the proposed method was evaluated through Monte Carlo simu-
lation studies. We considered the following logistic regression model

exp{n(X;;,Gi,B)}
P(yij = 11Xij,Gi, B) = 1—|—eXp{T]()J(ij7Giaﬁ)}’

where
N(Xi},Gi. B) = mo(BEXij) +mi (B] Xi})Gi.

We simulated a three-dimensional environmental variables X = (X;,X»,X3). For the ith subject,
X1ij,X2ij,X3;; are independently generated from a uniform distribution U (0, ). We set the minor
allele frequency (MAF) as p4 = 0.1, 0.3, 0.5 and assumed Hardy-Weinberg equilibrium. We used
AA, Aa and aa to denote three different SNP genotypes. These genotypes were simulated from a
multinomial distribution with frequencies pf‘, 2pa(1—p4) and (1—py4)?, respectively. Variable G
was coded as {0,1,2}, corresponding to genotypes {aa,Aa,AA} respectively. To create correlated
responses, we implemented the R package ‘bindata’ developed by Leisch et al. (1998) under an
AR(1) correlation structure with correlation parameter p=0.5. When implementing the function
‘rmvbin’ to generate the correlated binary data, one should specify the marginal probabilities and
the correlation structure.

We set mq(ug) = cos(mug) and my (u1) = sin[w(u; —A)/(B—A)] with A = 1/3/2 —1.645/+/12
and B = v/3/2 4 1.645/1/12. The true parameters were By = (v/5,v/4,v/4)//13 and B, =
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(1,1,1)/+/3. We drew 500 data sets with sample size N = 200, 500 and time points n; = T = 10,20,
respectively. The basis matrix M, was set to have 1 on its two subdiagonals and 0 elsewhere. The

order and number of knots of the splines were selected through the BIC method.

3.4.1 Performance of estimation

Table 3.1 and Table 3.2 summarize the parameters estimation results under different sample sizes
and measurement times respectively. In these two tables, the average bias (Bias), the standard
deviation of the 500 estimates (SD), the average of the estimated standard error (SE) based on
the theoretical results, and the estimated coverage probability (CP) at 95% confidence level are
reported. It is shown from each table that, as the sample size increases, the performance of the
estimation improves by showing smaller bias, SD and SE. More repeated measurement for each
subject also results in improvement in estimations, which can be shown when we compare Table
3.1 and Table 3.2. For example, the CP for 3j; improves from 86.8% to 90% when the number
of measurement time increases from 10 to 20, under a sample size of 200. The estimation of the
loading parameter B improves as MAF p, increases, while the estimation of B, show a opposite
direction. This is because we have limited data information to estimate the marginal effects m(-)

when py4 increases.

Table 3.1 Simulation results under different MAFs p4 = 0.1,0.3,0.5 with sample size N =
200,500, T = 10 and correlation p=0.5.

PA =0.1 PA =03 PA =0.5
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP
200 Bpp 0.620  -0.008 0.058 0.057 93.6  -0.003 0.074 0.064 90.6  -0.007 0.084 0.068 86.8
Bpp 0.555  -0.002 0.066 0.056 90.0 -0.004 0.080 0.062 87.2  -0.008 0.093 0.065 84.5
Bp3 0.555 -4.1E-05 0.064 0.056 91.8  -0.008 0.074 0.062 88.8  -0.006 0.094 0.066 86.6
Byp 0577  -0.013 0.134 0.091 822 -0.003 0.092 0.072 87.2 0.007 0.088 0.063 84.9
Bip 0.577  -0.024 0.139 0.090 79.2 -0.10 0.096 0.071 85.2 -0.013 0.085 0.062 87.2
Bi3 0577  -0.013 0.140 0.091 82.4 -0.11  0.095 0.071 86.0 -0.014 0.088 0.062 85.4

500 fBpp 0.620  0.002 0.038 0.038 94.8  -0.002 0.043 0.043 954  -0.003 0.047 0.048 95.0
Byo 0.555 0.003 0.039 0.037 93.0 -0.002 0.043 0.042 93.4 -2.1E-04 0.052 0.046 92.4
Bpz 0.555 -0.003 0.038 0.037 93.8 -6.3E-04 0.045 0.042 93.0 -0.004 0.050 0.046 92.5
Bi1 0577  -0.007 0.078 0.065 89.6  -0.002 0.055 0.049 92.0  0.002 0.045 0.044 94.2
Bip 0577  -0.003 0.079 0.066 88.0  -0.001 0.052 0.049 92.8  -0.003 0.049 0.043 91.4
B3 0577 -0.005 0.075 0.066 90.6  -0.004 0.054 0.049 92.8  -0.005 0.047 0.043 92.0
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Table 3.2 Simulation results under different MAFs p4 = 0.1,0.3,0.5 with sample size N =
200,500, T = 20 and correlation p=0.5.

pa=0.1 pg =03 pa =05
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP
200 Bpp 0.620  -0.002 0.044 0.043 94.4 -0.002 0.053 0.049 942 -0.011 0.062 0.052 90.0
Bpp 0.555 -0.004 0.048 0.042 90.2 -0.003 0.056 0.048 90.2 -0.003 0.065 0.050 88.3
Bp3z 0.555 2.3E-04 0.048 0.042 91.2 -0.002 0.057 0.048 90.2  0.005 0.063 0.050 87.4
By 0577 -0.006 0.074 0.064 90.0 0.008 0.062 0.054 91.8  0.004 0.063 0.050 88.2
Bip 0577 -0.004 0.075 0.064 91.4 -0.009 0.063 0.053 89.8 -0.009 0.064 0.050 87.1
B3 0577 -0.005 0.072 0.064 91.8 -0.009 0.063 0.054 90.0 -0.006 0.064 0.050 86.8

500 Bpp 0.620 -0.002 0.028 0.028 97.2 -0.002 0.033 0.033 95.0 -0.004 0.037 0.036 93.2
Bpp 0.555 -3.2E04 0.028 0.027 94.8 0.001 0.033 0.032 94.0 7.9E-05 0.038 0.035 92.8
Bpz 0.555 3.5E04 0.029 0.027 932 -0.002 0.034 0.032 92.8 6.3E-04 0.037 0.035 94.2
Byp 0.577 -0.005 0.044 0.044 922 0.004 0.039 0.036 92.4  0.006 0.038 0.035 93.0
Bio 0.577  -0.002 0.045 0.045 91.0 -0.003 0.037 0.036 93.0 -0.004 0.036 0.035 94.2
B3 0577 0.003 0.042 0.042 96.4 -0.005 0.038 0.036 93.4 -0.005 0.035 0.035 93.6

The plots for the estimations of mq(ug) and m (u]) under different sample sizes and number of
replications are shown in Figure 3.1-3.4. The estimated and true functions are denoted by the sol-
id and dashed lines, respectively. The 95% confidence bands are denoted by the dotted-dash line.
The estimated curves almost overlap with the corresponding true curves as shown in the plots, in-
dicating the estimation accuracy of the method. Also the confidence bands are tight, especially for
large sample size and large number of measurement times. Note that the estimation for the inter-
action effects m| (1) improves as MAF p, increases, while the estimation for the marginal effects
mq(up) show a opposite direction, which coincides with the results for the parametric estimation

in Table 3.1 and Table 3.2.
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Figure 3.1 The estimation of function mg(-) when N=200, 500 and 7=10. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.
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Figure 3.2 The estimation of function mg(-) when N=200, 500 and 7=20. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.

43



N=200, T=10, p,=0.1

N=200, T=10, pa=0.3

N=200, T=10, pa=0.5

wn 2] wn
- 7 i - 7
o o o
- 7 i - 7
wn n wn
[Sh IS} [SE
= = =
S S o S
= 7 = o = T
E £ E
wn n wn
S =} S
[ 1 [l
< < =]
— — —
| 1 ]
n wn n
- “ -
! T T T T T ! T T T T T T ! T T T T T T
0.4 0.6 0.8 1.0 1.2 1.4 0.4 0.6 0.8 1.0 1.2 14 0.4 0.6 0.8 1.0 1.2 1.4
Uy L Uy
N=500, T=10, p,=0.1 N=500, T=10, p,=0.3 N=500, T=10, p,=0.5
| 0 w ]
] - ]
o | < ° |
- — —
wn wn wn
o [S) o 7
= = =
S o S S o
= o] = = o
E E €
wn wn wn
o =} oS
T T T
< < <
— — —
i | i
wn n Te}
71 7 71

0.4 0.6 0.8 1.0 12
Ug

14

04 0.6 0.8 1.0 12
Uy

1.4

0.4 0.6 0.8 1.0 12 1.4
Ug

Figure 3.3 The estimation of function mj(-) when N=200, 500 and 7=10. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.
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Figure 3.4 The estimation of function mj(-) when N=200, 500 and 7=20. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.

3.4.2 Performance of hypothesis tests

We evaluated the performance of the test for the nonparametric function under the null hypothesis
Hy:mi(-) = m(l)(), where m(l)(ul) = 9y + O1u1, 6 and J; are some constants, which corresponds
to a linear GXE interaction. Power is evaluated under a sequence of alternative models with
different values of 7, which is denoted by Hf : m¥(-) = m?(-) + t{m;(-) —m{(-)}. When 7 =
0, the corresponding power is the false positive rate.

Figure 3.5 shows the size (when 7 = 0) and power (when 7 > 0) at significance level 0.05
based on 500 Monte Carlo simulations for N=200, 500 under different measurement times 7=10
(left panel) and 7=20 (right panel). The empirical Type I error is large when N = 200, which

decreases dramatically when the sample size increases to N=500. The power increases when the
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sample size increases from 200 to 500. The results indicate that our method can reasonably control
the false positive rates and has appropriate power to detect the linearity function under a relatively
large sample size. Comparing the results for 7=10 and 7=20, we can see that the testing power

improves when the number of measurement time increases.

Power plot when N=200, 500, T=10 Power plot when N=200, 500, T=20
0.85-
0.70
£0.501
o
o
0.30
a2 sample_size Pt sample_size
S A - = 200 0.104 .--=* - = 200
0.101 — 500 — 500
00 01 02 . 03 04 05 00 01 02 . 03 04 05

Figure 3.5 The empirical size and power of testing the linearity of nonparametric function m| when
N=200, 500 and 7=10, 20.

To assess how the values of MAF affect the testing performance, we plot the power plot under
different MAFs p4=0.1, 0.3, 0.5 when N=500, T=10, which is shown in Figure 3.6. Note that the
power increases dramatically when MAF increases from 0.1 to 0.3. The values of power are very

close when p4=0.3 and 0.5.
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Figure 3.6 The empirical size and power of testing the linearity of nonparametric function m; under
different MAFs when N=500 and T=10.

3.5 Real data application

We applied the proposed gFVICM model to a data set from a study examining the association of
the A118G SNP of OPRM1 to experimental pain sensitivity. A sample of 163 healthy volunteers
were evolved in this study. For each volunteer, Systolic Blood Pressure (SBP) and Diastolic Blood
Pressure (DBP) were measured at 6 Dobutamine dosage levels: 0 (baseline), 5, 10, 20, 30 and
40mcg/min. Clinically, a person is said to be hypertensive if the individuals SBP is greater than
140mm Hg or DBP is greater than 90mm Hg (Choi et al. 2014). Thus, the response variable Y is
a binary variable indicating whether a person has hypertension or not, i.e. Y = 1 for hypertension
and Y = 0 for non-hypertension.

One longitudinal covariate X|= dosage, two time-invariant covariates X, = age and X3= BMI
are included as the environmental factors in the model. The genetic variables are five SNPs located
at codonl6, codon27, codon49, codon389, and codon492 in the gene. Our purpose is to evaluate
how the mixture of age, BMI and dosage modifies the SNP effect on the risk of hypertension. In

particular, we test the hypothesis Hy : my(u1) = 8 + 6ju; with p-value denoted by pj,, in Ta-
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ble 2.7. We also reported the p-values for testing the significance of three components of index
loading coefficients B; = (B11,B12,B13), which are labeled by PByy» PBys and PBy3’ based on
the asymptotic property of the estimations. We also compared our proposed model to a gener-
alized additive varying-coefficient model (SAVCM) E (Y |X,G) = n{B§,(X1) + B X2 + B3 X3 +
(B (X1) + BiyXa + Bi5X3) G}, where B (-) and By (-) are unknown functions of X;. To see the
relative gain by integrative analysis, we calculated the objective function Qp in both models. The
p-values for testing Hy : B () = B{, = B3 = 0 for gAVCM are also reported in the tables and
denoted by peavcm-

In Table 3.3, Pmy for all the 5 SNPs are smaller than the significance level 0.05, which means
the functions capturing the GxE interactions are nonlinear for all these 5 SNPs. The objective
function Qp in the last two columns shows that gFVICM fits the data better than gAVCM, in-
dicating the benefit of integrative analysis. Besides, the testing results for gAVCM do not show
significance of the coefficients for interactions. The results imply that the genetic effects of S-
NPs are modified by the mixture of environmental variables, rather than separately. Figure 3.7
exhibits the fitted nonlinear curves indicating G X E interactions for each SNP, along with the 95%
confidence bands.

Table 3.3 List of SNPs with MAF, allele, p-values under different hypothesis testing and values of
objective function Q.

p-value On
SNPID MAF Alleles pmy PBy, PBiy PByy PgAveM gFVICM gAVCM
codonl6 0.3990 A/G  <1.0E-04 <1.0E-04 0.0207 0.3475 0.2960 3.9240 11.2082
codon27 0.4160 G/C  <I1.0E-04 0.2329 <I1.0E-04 0.0014 0.6982 6.9502  9.3500
codon49 0.1387 G/A  <1.0E-04 <1.0E-04 <1.0E-04 0.6325 0.1777 6.6303 12.2648
codon389 0.3045 G/C  <1.0E-04 <1.0E-04 <I1.0E-04 0.3329 0.8436 3.3678 10.5593
codon492 0.4250 T/C  <1.0E-04 0.6731 <1.0E-04 0.0008 0.5001 6.0766  7.4877

Table 3.4 displays the estimated odds for different genotypes at different dosage levels. The
changes in the values of odds demonstrate the interaction between SNP and environmental mix-
tures at different dosage levels. For example, we noted that the odds for genotype AA in SNP

codonl6 does not change too much as the dosage level increases, which means that the genetic
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Figure 3.7 Plot of the estimate (solid curve) of the nonparametric function mj(u;) for SNPs
codonl6, codon27, codon49, codon389 and codon492. The 95% confidence bands are denoted

by the dashed lines.
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effect of this genotype remains the same when subjects are exposed to different environments at
different doses. While for the other two genotypes, there is an increase in the value of odds until
dosage level four, indicating increased blood pressure as dosage level increases from Omcg/min to

20mcg/min.

Table 3.4 Estimated odds for different genotypes at each dosage levels.

Dosage level
SNPID Genotyoe 1 2 3 4 5 6
codonl6 AA 092 092 0.92 0.92 0.92 0.93
GG 1.22 1.89 2.63 3.66 3.17 1.73
GA 1.35 1.66 1.94 2.28 2.14 1.63
codon27 GG 1.25 2.07 2.75 2.96 2.32 1.96
CC 1.06 1.75 2.34 2.58 2.06 1.73
CG 1.08 1.63 2.07 2.21 1.81 1.56
codon49 GG  4.19 3.56 3.05 2.28 1.76 1.38
AA 1.13 1.50 1.79 1.98 1.79 1.52
GA 1.12 2.17 3.41 4.66 3.88 2.80
codon389 GG 1.78 1.78 1.78 1.77 1.77 1.77
CC 1.41 1.87 2.21 2.35 2.09 191
CG 091 1.57 2.14 2.33 1.86 1.65
codon492 TT 1.11 1.99 2.69 2.77 2.20 2.33
CC 1.12 1.97 2.61 2.63 2.05 2.14
CT 1.03 1.67 2.12 2.12 1.70 1.78

3.6 Discussion

In this paper, we proposed a generalized varying index coefficient modeling procedure to assess
the interaction effect of multiple environmental factors as a whole with a genetic factor. The model
was motivated by empirical evidence and was developed under an longitudinal design with a binary
disease response. We developed a profile estimation procedure to estimate the index coefficients
and nonparametric interaction functions iteratively. The estimation was conducted under the QIF
framework. To estimate the nonparametric functions, we first approximated the function using
truncated power spline basis, then estimated the spline coefficients based on QIF. Furthermore, we
proposed a nonparametric hypothesis test to assess the linearity of the nonparametric interaction

function. Simulation study has been conducted to illustrate the estimation and testing procedures
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to evaluate the finite sample performance. The results indicate reasonable estimation performance
of the method under different sample sizes and measurement times.

Our method was proposed to evaluate the joint interaction effect between multiple environ-
mental variables as a whole with genetic variables. Compared to the generalized additive varying
coefficient model (2AVCM), which considers the G xE effect for each single environmental factor
separately, our model presents two advantages: 1) it is biologically more attractive if there are
synergistic effects between multiple exposures; and 2) it can potentially increase the testing power
for detecting interactions since it can reduce multiple testing burden by treating multiple exposures
as a single index variable. Although our method was motivated by a genetic association study, the
developed model and inference procedures can be applied to other disciplines with the purpose to
model the synergistic effect of multiple variables as a whole.

We applied our method to a real data set from a pain sensitivity study. Testing results indicate
that all of the five SNPs are nonlinear moderated, by the synergistic effect of the three variables
with dosage as a “time"-varying variable, to affect the risk of high blood pressure. These five
SNPs were genotyped from a candidate gene which has been shown to be related to blood pressure
changes (Johnson and Terra, 2002). Although the purpose of the data was not generated to evaluate
the genetic effect on “hypertension”, we simply applied the method to this data set to demonstrate
the utility of the method. The estimated odds of different genotypes for a particular SNP at different
dosage levels does give insights into the effect of the SNPs nonlinearly modulated by dosages. Of
particular interest is SNP condon49 in which individuals carrying genotype GG show a decreasing
risk of developing high blood pressure as the dosage level increases, indicating a protective effect
of this genotype. For the same SNP, individuals carrying genotype GA show a different pattern of
developing high blood pressure as the dosage level increases. Such a dynamic change of genetic
effect over different dosage levels cannot be revealed by a cross-sectional study, indicating the

relative merit of a longitudinal design.
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CHAPTER 4

DETECTING GENETIC ASSOCIATIONS WITH MULTIVARIATE PARTIALLY
LINEAR VARYING-COEFFICIENTS MODELS FOR MULTIPLE LONGITUDINAL
TRAITS

4.1 Introduction

Cross-sectional disease traits have been the primary focus in genetic association studies. Given the
improved power to identify disease genes with phenotypic data measured over time, longitudinal
designs are becoming popular in genetic association studies (Sitlani et al. 2015; Macgregor et al.
2005; Furlotte et al. 2012; Xu et al. 2014). Most statistical methods developed so far focus on a
single outcome of interest. When multiple outcomes are measured over time, for example, multiple
measures of heart function in a longitudinal study of cardiac function, methods focusing on just a
single outcome over time may not provide a complete picture of cardiac function.

In genetics, the phenomenon that a single gene or locus influences more than one trait is known
as pleiotropy (Wang et al., 2014; Gratten and Visscher, 2016). Genetic pleiotropy plays a crucial
role in many complex diseases. One of the most well-known examples is the phenylketonuria
(PKU) disease (Lobo, 2008). The conventional approach to identify genetic pleiotropic effects
on multiple traits is to test the association between a gene and each trait individually and then
determine whether the genetic effect is significantly associated with more than one trait. The
disadvantages of this approach, such as the inflation in the family-wise Type I error and incomplete
information in individual tests compared to a combined analysis for multiple traits, have been
discussed in some studies (e.g. Wang et al., 2014). Therefore, a joint genetic association test on
multiple traits is more desirable to control the family-wise Type I error and enhance the power of
tests.

In real life, timing is a very important factor in the development of a disease. Genetic effects
on a disease trait vary during the life span of an individual. The function of a gene depends largely

on when it turns on and off, which could show a temporal pattern. In order to capture the dynamic
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effect of a gene on a disease trait over time, it is natural to model the dynamic effect as a potential
nonlinear function over time. Considering multiple longitudinal traits, we proposed the following

partially linear varying coefficients model,
Yiij = Yy(tij) = Boi(tij) + Bui(ti;)Gi + @ Zj + €, (4.1

where Y};; is the response variable which measures the /-th phenotype on the i-th subject at the
J-th time point; Z;; is a p-dimensional vector of covariates, which can be either dependent or
independent of time; G; denotes the time-invariant genetic variable within subject; By, (+) and B;(-)
are unknown functions; and €;; is an error term which is assumed to following the following joint
distribution,

€1

E = ~N (0, 2)

€L
with X be some covariance structure. If we use a time-varying environmental factor X; ; instead of
lij in the model, i.e.

Yiij = Bor(Xij) + B1(Xij)Gi + & Z;j + &,

then the model can be used for jointly modeling dynamic G xE interactions for multiple longitudi-
nal traits.

Models for multivariate longitudinal traits are necessarily complex, because they must consider
different types of correlations for each independent subject: correlation between measurements for
the same trait at different time points, correlation between measurements at the same time point
on different traits, and correlation between measurements at different time points and on different
traits.

Qu and Li (2006) applied the method of quadratic inference functions (QIF) to the varying
coefficients models for longitudinal data. One important advantage is that the QIF method only
requires correct specification of the mean structure and does not require any likelihood or approxi-

mation of the likelihood in hypothesis testing. In addition, when the working correlation structure
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1s misspecified, the QIF is more efficient than the generalized estimation equation (GEE) approach.
Another advantage of QIF approach is that the inference function has an asymptotic form, which
provides a model selection criteria similar to AIC and BIC. It also allows us to test whether coeffi-
cients are significantly time-varying based on the asymptotic results.

The purpose of this paper is to develop a set of hypothesis testing procedure, including joint
testing for multiple traits and marginal testing for each individual trait, for model (4.1). We first use
penalized splines (Ruppert and Carroll, 2000) to approximate the nonparametric functions in the
model. Then we develop a 2-step testing procedure to first jointly test the genetic effect on multiple
traits and then separately test marginal genetic effect on each trait based on the QIF approach.
Estimation of the parametric coefficients and nonparametric spline coefficients are obtained under
the QIF framework.

This chapter is organized as follows: we state our proposed model in Section 4.2.1, and define
the objective function in a QIF method in Section 4.2.2. Estimation procedure and asymptotical
properties of estimators are provided in Section 4.2.3. A model selection criteria using BIC is
provided in Section 4.2.4. A theorem for goodness-of-fit test in QIF approach is established in
Section 4.2.5 and we propose a 2-step testing procedure based on that in Section 4.2.6. We assess
the finite sample performance of the proposed procedure with Monte Carlo simulation in Section
4.3 and illustrate the proposed methodology by the analysis of a pain sensitivity data set in Section

4.4. Conclusions and discussion are made in Section 4.5. Proofs are included in Appendix.

4.2 Joint models and statistical methods

4.2.1 Joint multivariate models

In multivariate longitudinal studies, suppose yj;; is the /-th continuous outcome collected on the

i-th observation at the time point lijs where /=1, ..., L i=1,...,N, j=1, ..., n;. The joint
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partially linear varying coefficient models are defined as

viij = iitij) = Bor(tij) + B11(tij) Gi + @ Z(1;) + €,

where G; is the SNP variable which is not depend on time and type of measurement, Z(; j) is the
p-dimensional covariate vector, which can be either time-dependent or time-independent. g;; is

an error term and
€1;

g = ~N (0, E)
€L
with X be some covariance structure. By (-) and By;(-) are unknown smooth nonparametric func-
tions. To illustrate the idea, in the following we demonstrate the methods assuming L=2. For the
situation where there are more than two traits (L > 2), the technique can be easily extended. For

the case when L=2, the joint models can be written as
yiij = 1iltij) = Bo1(tij) + Br1(ti;)Gi + &1 Z(1;5) + €1,

y2ij = 2i(tij) = Boa(tij) + B12(tij) Gi + @2 Z(t; ) + &,
where

2
£1; 0 oLy P120102X1,
€ = ~N ;

£); 0 P120102X0] 05%0)
4.2.2 Objective function based on QIF

To construct the objective function using the QIF approach, we first approximate the unknown

functions By, Bi1, Boz and B, by a g-degree truncated power spline basis, i.e.
By (1) ~ By (t)Tyy, fors=0,1and [ = 1,2, (4.2)

where By (1) = (1,112, ..., (1 — Ky ):1_” N KK, ):1_“ )T is a truncated power spline basis with
degree g, and K knots ki, ..., Kk Vs is a (g5 + Ky + 1)-dimensional vector of spline coeffi-

cients.
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In a GEE approach we solve
< T 1
Y V(v ) =0, (4.3)
i=1

where y; = (lel.,ygi)T, Y= (ylil,...,ylinl.)T; M, = E(y;) is the mean function and f; is the first
derivative of u; with respect to the parameters; V; is the covariance matrix of y; and can be de-

composed as V; = Ail / 2R(p)Al.1/ % with A; being a diagonal matrix of marginal variances and R(p)
being a correlation matrix with nuisance parameters p. QIF approach considers the inverse of the

correlation matrix R as a linear combination of several known basis matrices in a form
R! ~aMj+aMp+ ... +a,My, “4.4)

where M is the identity matrix and M, ..., M, are symmetric basis matrixes. For exchangeable
working correlation, My has 0 on the diagonal and 1 elsewhere. If the working correlation is
AR(1), we can set M to have 1 on its two subdiagonals and O elsewhere. Plugging the expression
of R™! (4.4) into the GEE stated in (4.3), we define the estimation function as

. —1/2 —1/2
Zﬁ\;l “iTAi / MlAi / (Yi - “i)

. 1 Y 1

an(0) =5 ) &i(0) =% : 4.5)
~

Z§i1ﬂiTAi_l/2MhAi_l/2(Yi—l—li)

Using the spline approximation, the mean function i; can be written as

H1i1(0) BY, (1) Y01 +BL, (1) 711Gi + @1 Z(t;)
1,(6) = pii(0) | | B, (8) | | BG; (tin)Yor + By (tin) Y11 Gi+ @1 Z(tin,)
1 - - - 9
K,;(6) H2i1(6) BY, (11) Y02 + B (111)¥12Gi + @2 Z (1)
| 100, (8) || Bio(ting) Yoo + Bl (tin) V12Gi + 002 Z(tin,)
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and the first derivative of U; is

Bl (t1) BT, (t1)G: Z(ty) 0 0 0
ﬂ Bgl(tini) B{](tini)Gi Z(tml-) 0 0 0
i= ,
0 0 0 Bl BLuNG Zt)
|0 0 0 Bly(tin) Bio(tin,)Gi Zltin;) |

_ (D AT T s & T

where 8 = (Y1, 711,21 Y00, Y12: %5 )" -
Setting each component in (4.5) to be zero will result in more equations than unknown param-
eters. Following the idea of generalized method of moments (Hansen, 1982), the QIF is defined

as
On(8) =NghCxlan, (4.6)

where Cy = 1%,):5\’: 1 g,-gl-T is a consistent estimator for var(g;). Minimizing the objective function

(4.6) provides the estimations of parameters.

4.2.3 Estimation

The estimation of the parameters can be obtained through minimizing the objective function, i.e.
0= argmeinQN(O).
To avoid over-fitting, we can define a penalized QIF in a form
N~ 'on(8)+2167D6, 4.7)

where D is a diagonal matrix with 1 if the corresponding parameter is the spline coefficient asso-

ciated with knots and 0 otherwise. Minimizing the penalized QIF provides

0= argrrgn(zv*lQN(e) +267D0). (4.8)
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To estimate the tuning parameter A, we can extend the generalized cross-validation (Ruppert, 2002;
Qu and L1, 2006; Bai et al., 2009) to the penalized QIF and define the generalized cross-validation

statistic as
Nloy

GCV(A) = 3T

with the effective degree of freedom
df = tr[(Qn +2NAD) 1 Op],

where Qy is the second derivative of Q. The optimized tuning parameter A is given as
A= argnainGCV(l).

To establish the asymptotic properties for the penalized quadratic inference function estimators
with fixed knots, we assume 0 is the parameter satisfying Eg 0 (gi) = 0. Similar theoretical results
are provided in Qu and Li (2006). Following their idea and extend those results to the estimators
in our model, we get the strong consistency of the resulting estimators in Theorem 6. The v/N-

consistency and asymptotic normality of the estimators are given in Theorem 7 .

Theorem 6 Suppose conditions (B1l)-(B6) in the Appendix hold and the smoothing parameter
An = o(1), then the estimator 6 which is obtained by minimizing the penalized quadratic function

in (4.7), exists and converges to 0y almost surely.

Theorem 7 Suppose conditions (Bl)-(B6) in the Appendix hold and the smoothing parameter
Ay = o(N —1/ 2), then the estimator 0 obtained by minimizing the penalized quadratic function

in (4.7) is asymptotically normally distributed with the limiting distribution,
VN(@—80) % N(0,(GhCy ' Go) ),

where the calculation of Gy and Cy can be found in Appendix.
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4.2.4 Model selection

In contrast to the complicated model selection in GEE method due to the lack of an objective func-
tion in its estimation procedure, it is natural to extend the BIC method to the QIF approach since
the QIF objective function and twice the negative log-likelihood function have similar asymptotic
properties. Under the assumption E(g) = 0 and the number of estimating equations is larger than
the number of parameters, we have Q(a) i> sz_ X (Hansen, 1982), where r is the dimension of
gn(0), k is the dimension of 0, 6 is the estimator by minimizing the QIF when certain order and
number of knots are chosen. Based on the asymptotic property of QIF, the BIC criterion for a

model with r estimating equations and k parameters is
0(0)+ (r—k)InN.

The model with minimum BIC would be considered optimal.

4.2.5 Nonparametric goodness-of-fit test

Compared to GEE, an advantage of QIF approach is that QIF provides a goodness-of-fit test with-
out estimations for second moment parameters. In Model (4.1), it is of interest to test whether the
spline approximations for the varying coefficient functions are appropriate.

Qu et al. (2000) constructed a test statistic based on QIF. Suppose that the d-dimension param-
eter vector ¥ is partitioned into (W, &), where y is the parameter of interest with dimension dj,

and £ is a nuisance parameter with dimension d, = d — d. If we are interested in testing

Hy:y =y,

the test statistic
0(wo,8)—0(¥,0)

follows an asymptotically chi-square distribution with d; degrees of freedom.
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Theorem 8 (Qu et al., 2000) Suppose that all required regularity conditions are satisfied and Y

has dimension dy. Under the null hypothesis, On (¥, Z) —On(W, &) is asymptotically chi-square

distribution with dy degrees of freedom, where

~ -~

§ = argminQn (¥, 8), (¥,8) =argminQn(y,{). (4.9)

4.2.6 Two-step hypothesis testing procedure

In Model (4.1), it is of interest to test whether the genetic effects on multiple traits are significant or
not. Based on Theorem 8, we develop a 2-step testing procedure for testing the significance of the
varying coefficient functions. In the first step, the joint test is performed to see whether a genetic
factor has significant effect on at least one longitudinal trait. If the testing result in the first step
is significant, we will further conduct the marginal tests in the second step to assess if the genetic
effect is significant on both traits or just one trait. So the first step is a joint test of significance

followed by a marginal test to assess individual significance.

4.2.6.1 Step 1: Joint test

First, we are interested in testing whether the genetic factor G has effect on at least one longitudinal

trait. The hypothesis is stated as

Hy: P11(-) = P12(-) =0 v.s. Hy : Bri(-) #0 or Bra(+) #0.

This can be handled through the truncated power spline approximation of the nonparametric func-
tions stated in (4.2). In particular, test this hypothesis is equivalent to test the following null

hypothesis
Ho: 911 =Y12=0.

According to Theorem 8, we can construct a test statistic

Ty = On(8) — On(8),
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where

0= argmin QN{YOI?Yllvala'}'ObI},lZvaZ ’ YI7YZ7G7Z}7
Y11=Y12=0

and

-~

0= argminQN{YO]3Y117a1770277127a2 | y17y27GvZ}'

The test statistic Ty has an asymptotical %2 distribution with degree of freedom equals the number

of constraints under Hy, according to Theorem 8.

4.2.6.2 Step 2: Marginal tests

From the joint test, if there exist a significant genetic effect on at least one longitudinal trait, then

we can further test the marginal effects:
Hy: By () =0vs. Hy: By(-) #0, 1=1,2.
Based on (4.2), this is equivalent to test the following two hypotheses
Hy:v11=0

and
Hy:vY1,=0

separately.

For testing Hy : Y11 = 0, we use test statistic

Tni = ON(Y01,0.01) — On(Yo1, Y11, @1),

where

(Y01,0,01) =argmiOnQN{y01,y11,a1 |¥1,G,Z},
Y11=

and

(Yo1, 711, 1) = argmin On{ ¥o1, Y11, @1 | ¥1,G, Z}.
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We can also construct another test statistic

Tno = ON (Y02, 0, @2) — On (Yo2- Y12, @2)

for testing Hy : ¥y, = 0, where

(Y02,0,00) = argmiOnQN{YOZa%ZvaZ |¥2,G,Z},
Y12=

and
(Yo2, 712, @) = argmin On { Y1, Y12, @2 | ¥2,G, Z}.

The asymptotical distribution of test statistics Tj;; and Tpp can be obtained from Theorem 8.

4.3 Simulation study

4.3.1 Simulation setup

In this section, the finite sample performance of the proposed method is evaluated through Monte

Carlo simulation studies. The two continuous variables are generated from the models
yi(tij) = Bo1(tij) + Bi1(t;))Gi + aqz(tif) + €14,

v2i(tij) = Boz(tij) + Br2(tij) Gi + xz(tij) + &),

where By (#;;) = 0.5cos(2nt;;), By = sin(w(t;; —0.2)), Boa(ti;) = sin(xt;j) — 0.5, Bra(ti;) =
cos(mtjj —0.8), o1 = 0.2 and ap = 0.3. We generate T time points t; = (;1,...,47) from a u-
niform distribution U(0,1). The predictor variable z(t;;) is also generated from U(0,1). We set
the minor allele frequency (MAF) as py = 0.5 and assume Hardy-Weinberg equilibrium. Three
different SNP genotypes AA, Aa and aa are simulated from a multinomial distribution with fre-
quencies pf‘, 2pa(1—pa) and (1 — py)?, respectively. Variable G takes value in the set {0,1,2},
corresponding to genotypes {aa,Aa,AA}. We assume €;;; and &;; are jointly normally distributed

with the correlation corr(€y;;,&;;) = 0.5. Then we generate the error terms from a multivariate
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normal distribution

€1; N 0 612211 0.50100X1>
&) 0 0.50100X1> 622222

We set the marginal variances 612 = 622 = 0.1. The true correlation structure of X1, X975, and Xo

are all exchangeable with p; = 0.5, pp = 0.5 and p;» = 0.2, respectively.

We draw 1000 data sets with sample size N = 200,500 and time points n; = T = 10, in order
to compare the performances of our proposed method under different sample sizes. We set M to
be the identity matrix and M5 to has 1 on subdiagonals and O elsewhere. The order and number of

knots of the splines are chosen by the BIC method.

4.3.2 Performance of estimation

Table 4.1 summarizes the parameter estimation for unknown coefficients. In this table, the aver-
age bias (Bias), the standard deviation of the 1000 estimates (SD), the average of the estimated
standard error (SE) based on the theoretical results, and the estimated coverage probability (CP)
at 95% confidence level are reported. In general, the biases for all parameter estimations are very
small, the coverage probabilities are very close to the confidence level 95%, which indicate good
performance of our proposed estimation procedure. As the sample size increases, the performance

of the estimation improves by showing smaller bias, SD and SE.

Table 4.1 Estimation results for parameters o and o, with sample size N = 200, 500.

N Parameter True Bias SD SE CP
200 o 0.2 0.0004 0.018 0.018 94.6
(0%} 0.3 0.0006 0.018 0.018 94.2

500 o] 0.2 -5.2E-05 0.012 0.012 95.2
o 0.3 -0.0003 0.012 0.012 94.8

The plots for the estimations of nonparametric functions fy; () and B (-) under different sam-
ple sizes are shown in Figure 4.1. The estimated and true functions are denoted by the solid and

dashed lines, respectively. The 95% confidence bands are denoted by the dotted-dash line. The
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estimated curves almost overlap with the corresponding true curves as shown in the plots, indicat-
ing good estimate of the function. Larger sample size leads to tighter confidence bands. Figure
4.2 displays the estimations for functions By, (-) and B;;(-), which are included in the model cor-
responding to response variable y,. The results are similar to those in Figure 4.1 and further

demonstrate the good performance of our estimation methods.

N=200 N=500
, 0.501

0.251

0.00+

Bou(t)
Box(t)

—-0.25+

—0.50+

1.01

0.5

Bu(t)
Q)

0.0

Figure 4.1 The estimation of nonparametric functions fy;(-) and B (-) when N=200, 500. The
estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence bands are denoted by the dotted-dash line.
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Bi2(t)
B2(t)

Figure 4.2 The estimation of nonparametric functions B> () and Bj»(:) when N=200, 500. The
estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence bands are denoted by the dotted-dash line.

4.3.3 Performance of hypothesis tests

4.3.3.1 Performance for joint test

We evaluate the performance of the joint test under the null hypothesis Hy : B11(-) = B12(-) = 0.
Power is evaluated under a sequence of alternative models with different values of 7, which is
denoted by Hf : B, (-) = ©B11 (") and B, (-) = TB12(-).

Figure 4.3 shows the empirical size (when 7 = 0) and power function (when 7 > 0) at signif-
icance level 0.05. We obtain 1000 Monte Carlo simulations to assess the null distribution of test

statistic under sample sizes N = 200, 500. The empirical Type I error under both sample sizes are
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close to the nominal level 0.05 and the power increases dramatically when 7 increases from 0 to
0.05. To see the effect of sample size, we compare the performances under N=200 and N=500.
As expected, the Type I error is closer to 0.05 and the power increase faster for larger sample size
when N=500. For a relatively small sample size N=200, the Type I error is a little inflated and the
power function increases slower compared to the case with N = 500. Overall, the results indicate

good performance of the proposed joint testing procedure.

Power plot of joint test

1.0
0.7
9]
0.5
0.3
2 sample_size
017 .- - = 200
— 500

0.00 0.01 0.b2T0.63 0.04 0.05

Figure 4.3 The power plot for the joint test under different sample sizes N=200, 500 when 7=10.

4.3.3.2 Performance for marginal tests

The performance of the marginal tests for the nonparametric functions corresponding to different
traits is evaluated through simulations. Two null hypotheses Hy : B11(-) =0 and Hy : B12(-) =0
were considered separately. For each test, power is evaluated under a sequence of alternative
models, denoted by Hj : Bf,(-) = tBy;(-), I = 1,2, correspondingly.

Figure 4.4 displays the power for both marginal tests under different sample sizes N=200 and
500.The empirical Type I error under both sample sizes are very close to the nominal level 0.05

and the power increases dramatically when 7 increases from 0 to 0.05. It is obvious that the power
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increases more rapidly with larger sample size, while the overall performances under N=500 and
N=200 are close, which indicates that our method performances well and does not require very

large sample size.

Power for testing significance of 1,

1.0+
0.7+
9]
0.5
(o
0.3
/s sample_size
0.11 /s’ -— 200
’ — 500

0.000 0.025 o.Qso 0.075 0.100

Power for testing significance of 31,

1.0
0.7+
9]
0.5
0.3
;0 sample_size
0.11 ’ - = 200
’ — 500

0.000 0.025 o.Qso 0.075 0.100

Figure 4.4 The power plots for the marginal test for N=200, 500 and T=10.

In summary, the simulation results indicate that our proposed estimation method works well.
The test results indicate that the asymptotic 2 distribution for the proposed joint and marginal test

works reasonably well under a finite sample size.
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4.4 Real data application

We applied the proposed multivariate partially linear varying coefficients model and the two-step
hypothesis testing procedure to a data set from a study examining the association of the A118G
SNP of OPRMI to experimental pain sensitivity. A sample of 163 healthy volunteers were evolved
in this study. For each subject, Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)
were measured at 6 dosage levels of Dobutamine to assess the genetic effect on drug response. The
6 dosage levels are: 0 (baseline), 5, 10, 20, 30 and 40mcg/min. We treat the dosage levels as time
in this analysis.

We consider the partially linear varying coefficient model with two longitudinal traits, with the
form

VPt = B3P (Xip) + By (X)) Gi+ PP Zi+ P
Yilj)BP _ Bé)BP(Xl_j> +ﬁf)BP(Xij)Gi+ OCDBPZI'—FSZ-?BP.

The two longitudinal traits are SBP and DBP. One time-invariant covariate Z = age are included
in the model. Five SNPs codonl6, codon27, codon49, codon389, codon492 are considered.

Table 4.2 displays the results of the joint and marginal testing for responses SBP and DBP,
respectively. We note that condon49 and condon389 show significant result with p-values smaller
than the significance level 0.05. Further marginal tests tell us that SNP condon49 has significant
association with SBP but not DBP, while SNP condon389 has significant association with DBP but
not SBP. The results indicate no pleiotropic effect of the two SNPs. In addition, we note that for
SNP condonl6, the joint test does not show significant result but the p-value of the marginal test
for SBP is smaller than the significance level. If we choose o = 0.1 significance level, then the

SNP shows a potential pleiotropic effect on the two traits.
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Table 4.2 List of SNPs with MAF, allele, p-values under the joint and marginal testing for SBP and
DBP.

p-values under different null hypotheses

SNPID MAF Alleles ﬁISB] = BIEBI =0 ﬁlsBl =0 ﬁIEB] =0 ﬁISBI is linear ﬁlEm is linear
codonl6 0.3990 A/G 0.0866 0.0428 0.0514 0.8311 0.3094
codon27 0.4160 G/C 0.3048 0.3819 0.1018 0.5938 0.1012
codon49 0.1387 G/A 0.0229 0.0410 0.8349 0.7846 0.4439
codon389 0.3045 G/C 0.0343 0.3550 0.0242 0.2150 0.2938
codon492 0.4250 T/C 0.3234 0.5779 0.6957 0.2611 0.7875

Table 4.3 shows the estimation results for the age effect a; and . The results show that age

does not have significant contribution to the two blood traits in this data set.

Table 4.3 List of SNPs with MAF, allele, estimation of coefficients, p-values of significance for
coefficients corresponding to SBP and DBP, respectively.

p-value
SNPID MAF Alleles oS8P aPBP  py:o5BP —0 Hy:aPBP =0
codonl6 03990 A/G  0.0109 -0.0435 0.8562 0.5005
codon27 04160 G/C  0.0235 -0.0365 0.7078 0.5902
codon49 0.1387 G/A  0.0356 -0.0336 0.5637 0.6079
codon389 0.3045 G/C  0.0103 -0.0644 0.8743 0.3409
codon492 0.4250 T/C  0.0213 -0.0494 0.7366 0.4679

Figure 4.5 illustrates the estimated shapes for nonparametric coefficient functions for different
SNPs for trait SBP. The 95% confidence bands cover the zero line for SNPs condon27, condon389
and condon492, which agrees with the testing results that these SNPs do not show significance. For
SNP condon49 which shows significance at & = 0.05 level, the estimated increasing effect function
as dosage increases suggests that this SNP positively responds to dosage increase to affect SBP.

Figure 4.6 illustrates the estimated shapes for nonparametric coefficient functions for different
SNPs for trait DBP. Again, we observe that the 95% confidence bands cover the zero line for SNPs
condon27, condon49 and condon429 which agrees with the testing results that these SNPs are
not significant. For SNP condon389, the estimated effect function shows a marginal significance,

indicating the role of this SNP to drug response on DBP.
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Figure 4.5 Plot of the estimate (solid curve) of the nonparametric function ﬁISBP (-) for SNPs
codonl6, codon27, codon49, codon389 and codon492. The 95% confidence bands are denoted

by the dashed line.
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Figure 4.6 Plot of the estimate (solid curve) of the nonparametric function ﬁlDBP (-) for SNPs
codonl6, codon27, codon49, codon389 and codon492. The 95% confidence bands are denoted by
the dashed line.

4.5 Discussion

Identification of genetic pleiotropy effects has been an important task in genetic association stud-

ies. If one gene is associated with multiple traits, special attention should be paid to such genes
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when designing drug target on those genes. In this paper, we propose a joint multivariate vary-
ing coefficient modeling procedure to accommodate correlated longitudinal traits and propose a
testing procedure to find the dynamic genetic association between SNPs and multiple traits. Both
simulation and real data analysis demonstrate the utility of the proposed method.

One difficulty in jointly modeling multiple longitudinal traits is to model the complex corre-
lation structure. For each subject, we should consider correlation between measurements for the
same trait at different time points, correlation between measurements at the same time point on
different traits, and correlation between measurements at different time points and on different
traits. We implement the QIF approach in estimation and testing procedures. There are several
advantages for QIF approach. First, the QIF approach only requires correct specification of the
mean structure and does not require any joint likelihood in hypothesis testing. Second, it avoids
estimating the nuisance correlation structure parameters by assuming that the inverse of working
correlation matrix can be approximated by a linear combination of several known basis matrices.
Third, when the working correlation structure is misspecified, the QIF is more efficient than the
GEE approach. Forth, the inference function of the QIF approach has an explicit asymptotic form,
which provides a model selection criteria and allows us to test whether coefficients are significant
or time varying based on the asymptotic results.

Our method was demonstrated with the L = 2 case. The proposed method can be extended
to multiple longitudinal traits with L > 2, although the computational cost might increase. In the
real application, we investigate association of SNPs in a candidate gene with two longitudinal
traits SBP and DBP. Although the data were not longitudinal in terms of time measurement, the
increasing dosage levels can be treated in a time scale. So we can apply the proposed method.
The results indicate a weakly pleiotropic effect for SNP condon16 to affect both SBP and DBP.
As the application shows, our method is not restricted to a longitudinal study. It also applies to
other studies where a certain trait can be measured in a linear scale. Therefore, our method is
directly applicable to neuro-genetics studies in which the purpose is to identify SNPs associated

with spatial distribution of neuroimages in brain.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The originalities and contributions of our work can be summarized in two respects. From the re-
spect of statistical methodology, we propose a functional varying index coefficient model (FVICM)
to capture the nonlinear G XE interactions under a longitudinal design. In the development of the
estimation procedure, penalized spline method is implemented to approximate the nonparametric
unctions in the model. A profile estimation procedure is proposed to estimate two sets of param-
eters: the index loading coefficients and spline coefficients. Then the quadratic inference function
approach for analysing longitudinal data is extended to estimate the index loading coefficients and
spline coefficients in the profile estimation method. To test the linearity of nonparametric GXE
interaction function, we apply the pseudo-likelihood ratio test using a linear mixed model rep-
resentation of our proposed model. Consistency and asymptotic normality of the estimators are
established.

To deal with binary longitudinal traits, it is a natural extension of the FVICM to a generalized
functional varying index coefficient model (gFVICM) for investigating nonlinear G X E interaction-
s. We modify the profile estimation procedure with QIF approach to the gFVICM and establish
theoretical results of the estimators. Then we proposed a testing procedure based on the asymptotic
xz distribution of the objective function in QIF approach. The testing procedure can be used to
assess the linearity of the interaction function.

For some complex diseases, there are multiple phenotypes that can be used to quantify the risk
of diseases and sometimes they have shared genetic determinations and this phenomenon is termed
genetic pleiotropy. A joint modeling for multiple longitudinal traits using varying index coefficient
model is proposed in our work to deal with correlated longitudinal traits in G XE interaction prob-

lems. One difficulty of the joint model is the specification of the complicated correlation structure.
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The important advantage of QIF approach is that a misspecified working correlation does not affec-
t the consistency of the regression parameter estimation, and the QIF provides a robust sandwich
estimator for the variance of the regression parameter estimator. When the working correlation
structure is misspecified, the QIF is more efficient than the GEE.

From the application perspective, the varying index coefficient modeling is a powerful tool
when we consider the joint effect of environmental mixtures and how they interact with genes to
affect disease risk. Our methods are well motivated by epidemiological studies with the hope to
identify any synergistic G xE interaction effects. Real data application shows that, compared to the
additive varying coefficient model, which consider the GXE for each single environmental factor
separately, our models outperform in detecting the significant interaction effect since it can reduce
multiple testing burden by treating the serval environmental variables as a single index variable.
Also, the assumption of a nonparametric interaction is flexible for possible nonlinear interactions
in practice. We also provide a framework to assess the simultaneous genetic effect on multiple

phenotypes with longitudinal data.

5.2 Future work

In the future, we plan to extend the functional varying index coefficient model to joint modeling
of binary and continuous longitudinal traits. This is practically important for some diseases. For
example, over-weighted people will have a higher chance to develop hypertension. Both obese and
hypertension might share some common genetic determinants. Jointly modeling the binary hyper-
tension and continuous body weight or BMI could shed novel insights into the genetic etiology of
the disease. The main difficulty of joint modeling for binary and continuous longitudinal traits is
the lack of a joint distribution. To overcome this difficulty, many researchers introduce a continu-
ous latent variable underlying the binary response and assuming a joint normal distribution for the
latent variable and the continuous variable. Catalano and Ryan (1992) suggested to decompose the

joint distribution into two components: a marginal distribution for the continuous response and a
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conditional distribution for the binary distribution given the continuous response. The first com-
ponent can be easily modeled. The conditional distribution for binary response can be modeled
using the underlying latent continuous variable through a probit link function. Kiiriim et al. (2016)
proposed the time-varying coefficient models for joint modeling binary and continuous longitudi-
nal responses based on the above idea. However, they only focus on the estimation part and did
not provide a testing method for the nonparametric functions in the model. Motivated by their
work, we can extend their method to varying index coefficient models for joint modeling binary
and continuous longitudinal traits and develop a testing method for joint testing of the significance

or linearity of the interaction functions. This will be investigated in our future work.
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Regularity conditions

To establish the asymptotic properties for the estimator of 8, we need the following regularity

conditions.
(A1) {n;} is a bounded sequence of integers.
(A2) The parameter space Q is compact and 6y; is an interior point of Q.

(A3) The parameter 0 is identified, that is, there is a unique 6 € Q such that the mean zero

model assumption E[g(0)] =

(A4) E[g(0)]is continuous in 6.

%

(A5) CN@ ) = NZz 1g,( )g,-(e )T converges almost surely to C, which is a constant and
invertible matrix.

— ~

g‘zﬁf (6 ) converges in probability to Gy

(A6) The first derivative of gy exists and is continuous.

ife" converges in probability to 6.
(B1) {n;} is a bounded sequence of integers.
(B2) The parameter space Qg is compact and @ is an interior point of Qg.

(B3) The parameter 0 is identified, that is, there is a unique 8¢ € Qg such that the first moment

assumption E[g;(0)] = 0 holds for i = 1,...,N, and E[g;(0)] is continuous.
(B4) E[g(0)] is continuous in 6.

(B5) c‘N(é) = ]l\, Zﬁ.\’: | g,-(@) gi(a)T converges almost surely to Cq, which is a constant and invert-
ible matrix.

(B6) The first derivative of gy exists and is continuous. %g—g’(é) converges in probability to G if

0 converges in probability to 0.
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Proof of Theorem 1:

If we can prove that 0" exist and converges to 6 ; almost surely, then we can prove the consistency
of 0 directly. 6 = argmin(N~'Qn(0%) +10*TDO*) exists because (2.4) has zero as a lower
bound and the global minimum exists. To prove the consistency, first, the estimator 8" is obtained
by minimizing N~ 'Qn(0*) + 10T DO*, then we have

]l\,QN(a*) +7LN5*TD§* <l

< 0N (67) +An05T DO} (1)

Since

1 _ — _

N OV (85) = &n(85)Cy ' (85)an(85) =o(1)
by the strong law of large number and (A5), and Ay = o(1),

x a.s.

1
NQN(OS) -i-lNOZSTDOO —=0.

Thus, we can obtain from (1) that

~% A~k

1 a* At A a.s.
NON(8) =2 (8)Cy' (8 )gn(8 ) =0, )

Since the parameter space €2 is compact, by Glvenko-Cantelli theorem,

sup |gn(0%) —E[g(6%)]| <= 0.

6*cQ

Hence, by (AS) and the continuous mapping theorem,

gl (8)Cy' (0 )an(8") —Elg(8))Cy 'E[5(87)]

a.s.
—= 0.

Combined with (2), we get
E[2(87)]"Cy Elg(87)] “>0. 3)

Then we will show that it is impossible that 8" remains outside of U , where U is any neighbor-
hood of the true parameter 08. Suppose there exist a neighborhood U such that 0" € U°. Since
E [g(e*)]Tcg E[¢(6")] is a continuous function and U€ is compact, there exists a point 8" cue
such that

~ X ~ X

E[s(6')]"C, 'El3(6)]
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achieve its minimum in U¢. By the identification of 8 in (A3), there is a unique 8) € Q satisfying
E[g(0¢)] =0, we have
Elg(6%)]"C ' E[2(67)] >0,

which contradicts (3). Then we can prove that 0 converges almost surely to 8*. Thus, 0 is a

consistent estimator of 0.

Proof of Theorem 2

The estimate of @ satisfies

100y

~x ~%

By Taylor expansion, we obtain

190y

1 0N

e (03)+2;LN1)63+< (6 )+2/1ND>(9 —89).

~% | ~%
where 0 is some value between @ and 03. Thus, we can have

a* x 1 aZQN a* —1/1 aQN * *

Since 8 converges to 6 in probability and 8" is between 8 and 0, by (A5) and (A6) we can

get

182QN L agNT ~% ok dgN ,~*
PEUNEY = 228 @6, @)22@ ) opl)

P 26lc 16y

When Ay = o(N~1/2),

1020y =+ -1 1 _ _ _
(7592 @) +2D)  =3(6iCy"Go) " +op(v"72).

Similarly, since

1OON  mee O8N v a1 min - s
S 5er(05) =355 (05)Cy' (05)2n(67)
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and Ay = o(N~1/2), we have

1 J0y

v 50+ (00) +2AvD8; = G{C; ' an(05) +o(N~12).

Therefore, (4) can be written as

VN(® - 8}) = —VN(GJ Cy ' Go) ' GJ €y an(85) +0,(1).

By Central Limit Theorem,
VN (85) % N(0,Cy).

Using (5) and (6), we obtain
VN —65) L N0, (G cy Gy ),

and directly,

-~

VN(O —00) L N(0,J(GE C; ' Go)~1IT).
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