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ABSTRACT

FUNCTIONAL VARYING INDEX COEFFICIENT MODEL FOR DYNAMIC
GENE-ENVIRONMENT INTERACTIONS WITH LONGITUDINAL DATA

By

Jingyi Zhang

Rooted in genetics, human complex diseases are largely influenced by environmental factors. Ex-

isting literature has shown the power of integrative gene-environment interaction analysis by con-

sidering the joint effect of environmental mixtures on disease risk. Motivated by that, we propose a

functional varying index coefficient model for longitudinal measurements of a phenotypic trait and

multiple environmental variables, and assess how the genetic effects on a longitudinal disease trait

are nonlinearly modified by a mixture of environmental influences. We derive an estimation pro-

cedure for the nonparametric functional varying index coefficients under the quadratic inference

functions and penalized splines framework. Theoretical results such as estimation consistency and

asymptotic normality of the estimates are established. In addition, we propose a hypothesis testing

procedure to assess the significance of the nonparametric index coefficient function. We evaluate

the performance of our estimation and testing procedure through Monte Carlo simulation studies.

The proposed method is illustrated by applying to a real data set from a pain sensitivity study

in which SNP effects are nonlinearly modulated by the combination of dosage levels and other

environmental variables to affect blood pressure and heart rate of patients.

In order to deal with discrete measurements for risk of disease, we further extend our proposed

FVICM to a generalized varying index coefficient model (gFVICM) to binary longitudinal traits.

We apply penalized splines to approximate the nonparametric varying index coefficients and devel-

op an estimation procedure based on the quadratic inference functions. The asymptotic normality

established in the theoretical results enables us to develop a model selection criteria and construct

a test statistic based on the quadratic inference function. In hypothesis test, we investigate the

linearity of G×E interactions using the proposed testing procedure. The utility of the method is



further demonstrated through a pain sensitivity case study in which SNP effects are nonlinearly

modulated by the combination of environmental mixtures to affect high blood pressure.

Genetic pleiotropy refers to the situation in which a single gene influences multiple traits and so

it is considered as a major factor that underlies genetic correlation among traits. For some complex

diseases, there are multiple phenotypes that can used to diagnose or to quantify the risk of diseases

and usually they have shared genetic determinations. In multivariate longitudinal data, multiple

response variables are jointly measured over time from the same individual. It is appropriate

to take into account the correlation between multivariate longitudinal responses. Therefore, we

propose the joint partially linear varying coefficient models and the testing framework to jointly

test the association of genetic factors with bivariate phenotypic values adjusting for environmental

factors. We extended the quadratic inference functions to deal with the longitudinal correlations

and used penalized splines for the approximation of nonparametric coefficients. The proposed

method is illustrated by applying to a real data set from a pain sensitivity study, in which systolic

blood pressure (SBP) and diastolic blood pressure (DBP) were correlated longitudinal quantified

phenotypes of SNP effects.
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CHAPTER 1

INTRODUCTION

Gene-environment (G×E) interaction is defined as how genotypes influence phenotypes differently

under different environmental conditions (Falconer, 1952). An increasing number of studies have

confirmed the role of G×E interaction in many human diseases. One classic example is Phenylke-

tonuria (PKU). PKU is caused by a defect in the gene coding for a particular enzyme which is

needed to break down phenylalanine. Newborns found to have high levels of phenylalanine in

their blood can be put on a special, phenylalanine-free diet to avoid the severe effects of PKU

(Baker, 2004). This example confirms the role of gene-environment interaction by showing that a

change in environment can affect the phenotype of a particular trait.

In genetic epidemiology, G×E interactions are useful for understanding the risk of some com-

plex human diseases. Famous studies such as Parkinson disease (Ross and Smith (2007)) and type

2 diabetes (Zimmet, Alberti, and Shaw (2001)) both indicate the importance of G×E interaction in

complex human diseases. However, the underlying mechanism of G×E interaction is still poorly

understood due to the lack of powerful statistical methods. The traditional way to investigate G×E

interaction is based on a single environment exposure model. Parametric models such as additive

linear models, use the products of two variables to denote the interaction effects. However, this

product may not capture the true interaction effect of gene and environment, since it could not be

able to capture the possible nonlinear G×E interactions.

In order to assess possible nonlinear G×E interactions, some nonparametric and semiparamet-

ric models have been developed, such as varying coefficient models (VCM) proposed by Hastie

and Tibishirani (1993). In a VCM model, the coefficients of covariates are allowed to change with

some other variables through smooth functions, so nonlinear interactions can be assessed. A VCM

has the form

Y =
L

∑
l=1

ml(X)Zl + ε, (1.1)

where Y is the response variable, (X ,ZT )T is a vector of predictors consisting of a scalar X and a
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L-dimensional vector Z = (Z1,Z2, ...,ZL)
T . ml(·), l = 1, ...,L, are unknown nonparametric smooth

functions. In particular, dealing with G×E interaction problems, one can replace the predicts Z to

be genetic variants, for example, single nucleotide polymorphisms (SNPs).

Epidemiological evidences suggested that a disease risk can be modified by simultaneous ex-

posure to multiple environmental agents with effect larger than simple addition of individual factor

acting along. The specification of VCM in (1.1) may be limited in dealing with simultaneous

exposure to multiple environmental factors. It will result in difficulties in the estimation of the

coefficient function ml(X) when variable X = (X1, ...,Xp)
T in Model (1.1) is multidimensional.

To overcome such challenge, Ma and Song (2015) proposed the varying index coefficient model

(VICM) with a form

Y =
L

∑
l=1

ml(β
T
l X)Zl + ε, (1.2)

where βββ l = (βl1, ...,βl p)
T are the coefficients for covariate vector X with βlk be the loading weight

for the k-th covariate of X, i.e. Xk associated with Zl . The single index βββ
T X is actually a linear

combination of several environmental effects. The VICM model is able to pursue the interaction

between a set of environmental factors as a whole and genetic variables on the disease risk, if

the covariate Z is specified to be some genetic effect, such as a SNP variable. Liu et al. (2016)

extended the model to a partial linear varying multi-index coefficient model (PLVMICM):

Y = m0(β
T
0 X)+ααα

T
0 Z+

L

∑
l=1
{ml(β

T
l X)Gl +ααα

T
l ZGl}+ ε, (1.3)

where Gl , l = 1, . . . , L are genetic variables of interest, ml(·), l = 0,1, ...,L are unknown index

functions, ααα0, ...,αααL and βββ 0, ...,βββ L are parametric parameters. The main genetic effect for each

Gl is captured by the function ml(β
T
l X) when the function is approximated by some nonparamet-

ric techniques such as B-spline approximation. Model (1.3) is an extension of Model (1.2) by

considering partial linear covariates Z with application in capturing nonlinear G×E interaction-

s. However, the above mentioned medoels can not be used directly for longitudinal data because

of the assumption of independence among observations. Little work has been done to deal with
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nonlinear G×E interaction in longitudinal studies. This motivates us to extend the varying index

coefficient model to longitudinal traits.

Longitudinal studies play an important role in epidemiology, biological and clinical research.

Longitudinal studies are used to characterize normal growth and aging, to assess the effect of risk

factors on human health, and to evaluate the effectiveness of treatments. Some researches, such as

Sitlani et al. (2015), Furlotte et al. (2015) and Xu et al. (2014) demonstrate the longitudinal design

is more powerful in detecting genetic associations than cross-sectional designs.

The traditional way to analyze longitudinal data is using the regression models (Belle et al.,

2004). However, standard regression methods assume that all observations are independent. The

assumption of independence would result in invalid inferences. One approach to deal with the

issue is using a complete model which specify the correlation structure among observations for

each subject. In linear mixed effect models, we can make specific assumptions for the covariance

structure in observations. Based on the parametric assumptions for the covariance components,

we can apply the maximum likelihood methods to estimate the regression parameters. Another

regression approach for inference with longitudinal data is known as generalized estimating equa-

tion (GEE) approach proposed by Liang and Zeger in 1986. The GEE method is very popular in

recent decades and has been widely used in longitudinal data analysis. However, the application

of the GEE method has several disadvantages. One of those disadvantages is that GEE may fail to

produce consistent estimators if the nuisance correlation parameters are not consistently estimated

(Crowder 1986, 1995). In addition, model selection and hypothesis testing can be complicated

since there is no objective function in the estimation procedure of the GEE approach.

The quadratic inference function (QIF) approach proposed by Qu et al. (2000) is one of the

improvements of the GEE method. The benefits of using QIF approach in longitudinal analysis

have been discussed in some researches, such as Qu et al. (2000), Qu and Li (2006) and Song et al.

(2009). The QIF method avoids estimating the nuisance correlation parameters by using a linear

combination of several basis matrices to approximate the inverse of correlation matrix. When the

working correlation structure is correctly specified, both the QIF and GEE are equally efficient.
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However, when the working correlation structure is misspecified, the QIF is more efficient than the

GEE. In addition, the QIF has an asymptotic χ2 distribution, based on which we can implement

the model selection criteria like BIC, and construct testing statistic. These advantages of using QIF

in longitudinal analysis motivates us to extend the QIF method to the varying coefficient model in

detecting G×E interactions on risk of diseases.

We organise the rest of this dissertation in the following way: In Chapter 2, in order to capture

the dynamic nonlinear G×E interaction with the combined effect of environmental factors for

longitudinal data, we propose a functional varying index coefficient model (FVICM) for correlated

responses, i.e.,

Yi j = m0(βββ
T
0 Xi j)+m1(βββ

T
1 Xi j)Gi + εi j, (1.4)

where Yi j is the response variable which measures the risk of certain disease on the ith subject at

the jth time point, where i= 1, · · · ,N, j = 1, · · · ,ni; Xi j is a p-dimensional vector of environmental

variables, which can be either time-dependent or time invariant; Gi denotes the genetic variable;

εi j is an error term with mean 0 and some correlation structure; m0(·) and m1(·) are unknown

functions; βββ 0 and βββ 1 are p-dimensional vectors of index loading coefficients. Compared with

Model (1.2) and (1.3), Model (1.4) assumes correlations among observations from the same sub-

ject, which can be applied to capture the longitudinal correlation among different time points for

a subject. We use penalized splines to approximate the nonparametric functions in the model and

then develop an estimation procedure based on QIF method. In addition, we are interested to see

whether the interaction function m1(·) is significantly nonlinear or not. This is a natural concern

in our model since if a linear interaction function is sufficient, a varying coefficient model would

not be necessary. We develop the testing procedure by representing our model in a linear mixed

model form and then apply the pseudo-likelihood ratio test. On the other hand, discrete longitu-

dinal traits, for example, the binary traits are very common in clinical researches. To deal with

binary responses, in Chapter 3, we extend Model (1.4) to a generalized functional varying-index
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coefficient model (gFVICM) with a form

g
{

E(Yi j|Xi j,Gi j)
}
= m0(βββ

T
0 Xi j)+m1(βββ

T
1 Xi j)Gi j, (1.5)

where g(·) is the logit link function, m0(·) and m1(·) are unknown nonparametric functions, βββ 0 and

βββ 1 are p-dimensional vectors of index coefficients. The QIF method is modified to accommodate

binary response. To test the linearity of interaction function m1(·), we develop a hypothesis testing

procedure which is built on the asymptotical property of the QIF objective function. In Chapter 4,

we consider G×E interactions when multiple longitudinal traits are measured to improve the power

of association test, especially to identify any pleiotropic effect (i.e., one gene can affect multiple

traits). For this purpose, we propose a multivariate partially linear varying coefficients model

and derive a testing framework to jointly test the association of genetic factors with multivariate

phenotypic values adjusting for environmental factors. The joint models are written as

Yli j = Yli(ti j) = β0l{X(ti j)}+β1l{X(ti j)}Gi +ααα lZi j + εli j, (1.6)

where Yli j is the response variable which measures the l-th phenotype on the i-th subject at the j-th

time point, X(ti j) is a time-varying covariate, Zi j is a p-dimensional vector of covariates, which

can either depend or be independent of time, Gi denotes the genetic variable within subject, εli j is

an error term and

εεε i =


εεε1i

...

εεεLi

∼ N
(
0,ΣΣΣ
)

with ΣΣΣ be some covariance structure, β0l(·) and β1l(·) are unknown functions. The robustness of

QIF method in the variance of the estimators helps us to build the estimation and hypothesis testing

procedure. In Chapter 5, we conclude the thesis with a brief conclusion about the contributions of

this thesis and point out some future research directions. Proofs are provided in the Appendix.
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CHAPTER 2

FUNCTIONAL VARYING INDEX COEFFICIENT MODEL FOR DYNAMIC
GENE-ENVIRONMENT INTERACTIONS

2.1 Introduction

It has been broadly recognized that gene-environment (G×E) interaction plays important role in

human complex diseases. A growing number of scientific researches have confirmed the role of

G×E interaction in many human diseases, such as Parkinson disease (Ross and Smith, 2007) and

type 2 diabetes (Zimmet et al., 2001). G×E interaction is defined as how genotypes influence

phenotypes differently under different environmental conditions (Falconer, 1952). It also refers

to the genetic sensitivity to environmental changes. Usually, G×E has been investigated based

on a single environment exposure model. Evidence from epidemiological studies has suggested

that disease risk can be modified by simultaneous exposure to multiple environmental factors. The

effect of simultaneous exposure is higher than the simple addition of the effects of factors acting

alone (Carpenter et al., 2002; Sexton and Hattis, 2007). This motivated us to assess the combined

effect of environmental mixtures, and how they, as a whole, interact with genes to affect disease

risk (Liu et al. 2016). In our previous model, we proposed a varying-index coefficient model to

capture the nonlinear interaction between a gene and environmental mixtures (Liu et al. 2016). The

method was extended for any univariate trait distribution in a generalized linear model framework

(Liu et al. 2017).

In biomedical studies, longitudinal traits are often observed, with repeated measures of the

same subject over time. The increased power of a longitudinal design to detect genetic associations

over cross-sectional designs has been evaluated (Sitlani et al. 2015; Furlotte et al. 2015; Xu et al.

2014). With longitudinal disease traits, one can study the dynamic gene effect over time. Coupling

with longitudinal measure of environmental exposures, one can study how genes respond to the

dynamic change of environmental factors to affect a disease trait. This motivates us to extend the
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varying index coefficient model to longitudinal traits.

To explore time-dependent effects in longitudinal data analysis, some nonparametric and semi-

parametric models such as varying coefficient models have been proposed, for example, Hoover

et al. (1998), Wu, Chiang, and Hoover (1998), Fan and Zhang (2000), Martinussen and Scheike

(2001), Chiang, Rice, and Wu (2001), Huang, Wu, and Zhou (2002), Ma and Song (2015). Howev-

er, these methods do not fit to our purpose. In order to capture the dynamic nonlinear G×E interac-

tion with combined effect of environmental factors for longitudinal data, we propose a functional

varying index coefficient model (FVICM) for correlated response, i.e.,

Yi j = m0(βββ
T
0 Xi j)+m1(βββ

T
1 Xi j)Gi + εi j, (2.1)

where Yi j is the response variable which measures the risk of certain disease on the ith subject at

the jth time point, where i= 1, · · · ,N, j = 1, · · · ,ni; Xi j is a p-dimensional vector of environmental

variables, which can be either time-dependent or time invariant; Gi denotes the genetic variable;

εi j is an error term with mean 0 and some correlation structure; m0(·) and m1(·) are unknown func-

tions; βββ 0 and βββ 1 are p-dimensional vectors of index loading coefficients. For model identifiability,

we have the constraints ‖βββ 0‖= ‖βββ 1‖= 1 and the first elements of βββ 0 and βββ 1 are positive.

Qu et al. (2000) proposed the quadratic inference function (QIF) for longitudinal data analysis,

as an improvement of the generalized estimation equation (GEE) approach introduced by Liang

and Zeger (1986). The QIF approach avoids estimating the nuisance correlation parameters by

assuming that the inverse of the correlation matrix can be approximated by a linear combination

of several basis matrices. Qu et al. (2000) found that the QIF estimator could be generally more

efficient than the GEE estimator. Qu and Li (2006) applied the QIF method to the varying coeffi-

cient model for longitudinal data. Bai et al. (2009) developed an estimating procedure for single

index models with longitudinal data also based on QIF method. Motivated by that, in this paper,

we extend the QIF method to the FVICM model for dynamic G×E interactions.

Our goal in this work is to develop a set of statistical estimation and hypothesis testing proce-

dure for model (2.1). We first approximate the varying index coefficient function by the penalized
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splines (Ruppert and Carroll, 2000) and then extend the QIF approach to our model in order to es-

timate the index loading coefficients and the penalized spline coefficients. Under certain regularity

conditions, we establish the consistency and asymptotic normality of the resulting estimators.

Another goal of this work is to test the linearity of the G×E interaction effect. This is of partic-

ular interest in our model setting since if the G×E interaction is linear, a simple linear regression

model should be fit, and fitting any higher order nonlinear functions would be unnecessary. With

a mixed effects model representation of the penalized spline approximations (Speed, 1991; Rup-

pert, Wand, and Carroll, 2003; Wand, 2003), we can transform the problem of testing an unknown

function into testing some fixed effects and a variance component in a linear mixed effects model

setup with multiple variance components, which will be evaluated in this study.

This chapter is organized as follows: in Section 2.2, we propose an estimation procedure under

the FVICM model, and further establish the consistency and asymptotic normality of the proposed

estimator in Section 2.3. In Section 2.4, we discuss some practical issues to implement the pro-

posed estimation procedures. In Section 2.5, a pseudo-likelihood ratio test procedure with a linear

mixed effects model representation is illustrated. We assess the finite sample performance of the

proposed procedure with Monte Carlo simulation in Section 2.6 and illustrate the proposed method

by an analysis of a pain sensitivity data set in Section 2.7, followed by discussions in Section 2.8.

Technical details are rendered in Appendix.

2.2 Quadratic inference function for FVICM with longitudinal data

For longitudinal data, suppose the response yi j, p-dimensional covariate vector xxxi j, and SNP vari-

able Gi are observed from the ith observation at the jth time point. SNP variable {Gi, i = 1, ...,N}

does not change over time. Assume the model satisfies

E(yi j|xxxi j,Gi) = m0(βββ
T
0 xxxi j)+m1(βββ

T
1 xxxi j)Gi,
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We can approximate the unknown coefficient functions m0(u0) and m1(u1) by a q-degree truncated

power spline basis, i.e.

m0(u0) = m0(u0,βββ )≈ B(u0)
T

γγγ0,

m1(u1) = m1(u1,βββ )≈ B(u1)
T

γγγ1,

where βββ =(βββ T
0 ,βββ

T
1 )

T , B(u)= (1,u,u2, · · · ,uq,(u−κ1)
q
+, · · · ,(u−κK)

q
+)

T is a q-degree truncated

power spline basis with K knots κ1, · · · ,κK . γγγ0 and γγγ1 are (q+K + 1)-dimensional vectors of

spline coefficients. Let γγγ = (γγγT
0 ,γγγ

T
1 )

T .

For longitudinal data, the conditional variance-covariance matrix of the response need to be

modelled. The method of generalized estimation equation (GEE) is often applied to estimate the

unknowns. The GEE is defined as,

N

∑
i=1

µ̇µµ
T
i V−1

i (yi−µµµ i) = 0,

where Vi is the covariance matrix of yi, yi = (yi1, ...,yini)
T , µµµ i = E(yi) is the mean function and

µ̇µµ i is the first derivative of µµµ i with respect to the parameters. Based on the spline approximation,

the mean function can be written as

µµµ i = µµµ i(θθθ) =


µµµ i1(θθθ)

...

µµµ ini
(θθθ)

=


BT (βββ T

0 xi1)γγγ0 +BT (βββ T
1 xi1)γγγ1Gi

...

BT (βββ T
0 xini)γγγ0 +BT (βββ T

1 xini)γγγ1Gi

 ,
and the first derivative of µµµ i is

µ̇µµ i =


BT

d (βββ
T
0 xi1)γγγ0xT

i1 BT
d (βββ

T
1 xi1)γγγ1GixT

i1 BT (βββ T
0 xi1) BT (βββ T

1 xi1)Gi
...

...
...

...

BT
d (βββ

T
0 xini)γγγ0xT

ini
BT

d (βββ
T
1 xini)γγγ1GixT

ini
BT (βββ T

0 xini) BT (βββ T
1 xini)Gi

 ,

where Bd(u) =
∂B(u)

∂u = (0,1,2u, · · · ,quq−1,q(u−κ1)
q−1
+ , · · · ,q(u−κK)

q−1
+ ), θθθ = (βββ T ,γγγT )T .

When Vi is unknown, Liang and Zeger (1986) suggested that Vi can be simplified as Vi =

A1/2
i R(ρ)A1/2

i with Ai being a diagonal matrix of marginal variances and R(ρ) being a common
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working correlation matrix with a small number of nuisance parameters ρ . When ρ is consis-

tently estimated, the GEE estimators of the regression coefficients are consistent. When such

consistent estimators for the nuisance parameters do not exist, Qu et al. (2000) suggested that

the inverse of R(ρ) can be represented by a linear combination of a class of basis matrices such

as R−1(ρ) ≈ a1M1 + a2M2 · · ·+ ahMh, where M1 is the identity matrix and M2, · · · ,Mh are

symmetric matrices. The advantage of this method is that the estimation of nuisance parameters

a1, · · · ,ah are not required. Following this idea, we define the estimation function as,

ḡN(θθθ) =
1
N

N

∑
i=1

gi(θθθ) =
1
N


∑

N
i=1 µ̇µµ

T
i A−1/2

i M1A−1/2
i (yi−µµµ i)

...

∑
N
i=1 µ̇µµ

T
i A−1/2

i MhA−1/2
i (yi−µµµ i)

 (2.2)

Because the dimension of the estimation equation ḡN is greater than the number of parameters, we

cannot obtain the estimators by simply setting each element in ḡN to be zero. Qu et al. (2000)

introduced the Quadratic Inference Function (QIF) based on the generalized method of moments

(Hansen, 1982). Thus, we can estimate the parameters by minimizing the QIF, which is defined as

QN(θθθ) = NḡT
NC̄−1

N ḡN , (2.3)

where C̄N = 1
N ∑

N
i=1 gigT

i is a consistent estimator for var(gi). By minimizing the quadratic infer-

ence function, we can obtain the estimation of the parameters

θ̂θθ = argmin
θθθ

QN(θθθ).

To overcome the well known over-parameterization issue, Qu et al. (2000) further proposed the

penalized quadratic inference function

N−1QN(θθθ)+λθθθ
T Dθθθ , (2.4)

where D is a diagonal matrix with element 1 if the corresponding parameters are spline coefficients

associated with the knots and 0 otherwise, i.e., D = diag(0T
(2p+q+1)×1,1

T
K×1,0

T
(q+1)×1,1

T
K×1).

Then the estimator is given by

θ̂θθ = argmin
θθθ

(N−1QN(θθθ)+λθθθ
T Dθθθ). (2.5)
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2.3 Asymptotic properties

In this section, we establish the asymptotic properties for the penalized quadratic inference function

estimators with fixed knots. Assume θθθ 0 is the parameter satisfying Eθθθ0
(gi) = 0. Theorem 1

provides the consistency of the resulting estimators. We show the asymptotic normality of the

estimators in Theorem 2. The theoretical results are similar to those provided in Qu and Li (2006).

The difference is that we have constraints for the index loading parameters in our model, i.e.

‖βββ 0‖=‖βββ 1‖=1, and β01 > 0, β11 > 0. To handle the constraints, we do the reparameterization as

βl1 =
√

1−‖βββ l,−1‖22 with βββ l,−1 = (βl2, ...,βl p)
T for l=1, 2 (Yu and Ruppert, 2002; Cui et al.,

2011; Ma and Song, 2015). Then the parameters space of βββ l , l=1,2, becomes

[{(
√

1−‖βββ l,−1‖22,βl2, ...,βl p)
T} : ‖βββ l,−1‖22 < 1].

Let

Jl =
∂βββ l

∂βββ
T
l,−1

=

 −βββ
T
l,−1/

√
1−‖βββ l,−1‖22

Ip−1


be the Jacobian matrix of dimension p× (p− 1). Denote βββ−1 = (βββ T

0,−1,βββ
T
1,−1)

T , and θθθ
∗ =

(βββ−1,γγγ)
T . From θθθ to θθθ

∗, we have Jacobian matrix J = diag(J0,J1,Iq+K+1,Iq+K+1).

Theorem 1 Suppose the assumptions (A1)-(A6) in the Appendix are satisfied, and the smooth-

ing parameter λN = o(1), then the estimator θ̂θθ , which is obtained by minimizing the penalized

quadratic function in (2.4), exists and converges to θθθ 0 in probability.

Theorem 2 Suppose the assumptions (A1)-(A6) in the Appendix are satisfied, and the smoothing

parameter λN = o(N−1/2), then the estimator θ̂θθ obtained by minimizing the penalized quadratic

function in (2.4) is asymptotically normally distributed, i.e.,

√
N(θ̂θθ −θθθ 0)

d−→ N(0,J(GT
0 C−1

0 G0)
−1JT ),

where G0 and C0 are given in the Appendix.
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2.4 Practical issues

In this section, we discuss some practical issues when we implement the proposed method.

2.4.1 Algorithm for estimation

A two-step iterative Newton-Raphson algorithm is applied when we estimate the index loading

parameters and the varying spline coefficients. The algorithm of the estimation procedure can be

summarized in the following steps.

Step 0 Choose initial values for βββ and γγγ . Denote them by βββ
(old) and γγγ(old).

Step 1 Estimate γγγ(new) by

γγγ
(new) = argmin

γγγ
(N−1QN(γγγ,βββ

(old))+λγγγ
T Dγγγ.

The Newton-Raphson algorithm is used for the minimization.

Step 2 Estimate βββ
(new) by

βββ
(new) = argmin

βββ

QN(βββ ,γγγ
(new)).

Also use Newton-Raphson for minimization.

Step 3 Update βββ
(old)
l by βββ

(old)
l = sign(β (new)

l1 )βββ
(new)
l /‖βββ (new)

l ‖2, l = 1,2. Update γγγ(old) by

setting γγγ(old) = γγγ(new).

Step 4 Repeat Steps 1-3 until convergence.

2.4.2 Model selection

It is important to determine the order and number of knots in the spline approximation since too

many knots in the model might overfit the data. Under the assumption E(g) = 0 (g is the estimation

function in (2.2) for a single observation) and the number of estimating equations is larger than

the number of parameters, we have Q(θ̂θθ)→ χ2
r−k in distribution (Hansen, 1982), where r is the
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dimension of ḡN(θθθ), k is the dimension of θθθ , θ̂θθ is the estimator by minimizing the QIF when

certain order and number of knots are chosen. This asymptotic property of the QIF provides a

goodness-of-fit test, which can be useful to determine the order and number of knots to be selected

in our model.

However, it is also possible that the goodness-of-fit tests fail to reject several different models

which may not be nested. Since Q(θ̂θθ) is asymptotically chi-square distributed, we can use BIC

to penalize Q(θ̂θθ) for the difference of the numbers of estimating equations and parameters. In

particular, the BIC criterion for a model with r estimating equation and k parameters is defined as

Q(θ̂θθ)+(r− k) lnN,

The model with minimum BIC would be considered better. If we choose h basis matrices in (2.2),

then r−k = hk−k = (h−1)k. As we discussed in Section 2.4.3, we usually use h=2 in our setting.

Thus, the BIC criterion is actually

Q(θ̂θθ)+ k lnN,

where k is the number of parameters in the model.

In our simulation and real data application, we search the optimal order and the number of

knots over a set of combinations of q and K using BIC. Knots are evenly distributed in the range

of u(= βββ
T X).

2.4.3 Choice of the basis for the inverse of the correlation matrix

Qu and Li (2006) offered several choices of basis matrixes. For exchangeable working correlation,

M1 is identity matrix and M2 has 0 on the diagonal and 1 off-diagonal. If the working correlation

is AR(1), we can set M2 to have 1 on its two subdiagonals and 0 elsewhere. Prior information

on correlation can help us to determine the choice of appropriate basis matrices. The effect of

choosing different basis matrices is discussed in Qu and Li (2006) through simulation studies. Qu

and Lindsay (2003) also proposed an adaptive estimation method to approximate the correlation

empirically when there is no prior information available.
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2.4.4 Choice of the tuning parameter

Since the penalized spline is used to approximate the unknown functions, we need to determine

the tuning parameter λ involved in the method. As Qu and Li (2006) suggested, we can extend

the generalized cross-validation (Ruppert, 2002) to the penalized QIF and define the generalized

cross-validation statistic as

GCV(λ ) =
N−1QN

(1−N−1df)2

where df = tr[(Q̈N +2NλD)−1Q̈N ] is the effective degree of freedom, QN is defined in (2.3) and

Q̈N is the second derivative of QN . The desirable choice of tuning parameter λ is

λ̂ = argmin
λ

GCV(λ ).

In the implementation of GCV, the golden search method can be applied in order to reduce the

computational time.

2.5 Hypothesis test

2.5.1 Linear mixed model representation for FVICM model

In our proposed FVICM model (2.1), it is of interest to test the unspecified coefficient function.

In particular, we are interested in testing whether a linear function is good enough to describe the

G×E interaction. Given βββ , let u0 = βββ
T
1 X, u1 = βββ

T
0 X, with the truncated power spline basis, the

coefficient function can be modeled by

m1(u1) = γ10 + γ11u1 + γ12u2
1 + · · ·+ γ1quq

1 +
K

∑
k=1

b1k(u1−κk)
q
+.

Our goal is to test the linearity of m1(u1), which is equivalent to test

H0 : γ12 = · · ·= γ1q = 0,b11 = · · ·= b1K = 0.

Let w0i j = (1,u0i j, · · · ,u
q
0i j)

T , z0i j =
(
(u0i j − κ1)

q
+, · · · ,(u0i j − κK)

q
+

)T , γ̃γγ0 = (γ00, · · · ,γ0q)
T ,

b0 =(b01, · · · ,b0K)
T , w1i j =(1,u1i j, · · · ,u

q
1i j)

T , z1i j =
(
(u1i j−κ11)

q
+, · · · ,(u1i j−κ1K)

q
+

)T ,b1 =

(b11, · · · ,b1K)
T , γ̃γγ1 = (γ10, · · · ,γ1q)

T ,
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m0(u0i j) = wT
0i j γ̃γγ0 + zT

0i jb0,

m1(u1i j) = wT
1i j γ̃γγ1 + zT

1i jb1.

We further define Yi = (yi1, · · · ,yini)
T , W0i = (w0i1, · · · ,w0ini)

T , W1i = (w1i1Gi, · · · ,w1iniGi)
T ,

Z0i = (z0i1, · · · ,z0ini)
T , Z1i = (z1i1Gi, · · · ,z1iniGi)

T , then a linear mixed model (LMM) represen-

tation (Wang and Chen, 2012) can be obtained as,

Yi = W0iγ̃γγ0 +W1iγ̃γγ1 +Z0ib0 +Z1ib1 +1iai + εεε i, i = 1, · · · ,n, (2.6)

bl ∼ N(0,σ2
bl

IK), l = 0,1, εεε i ∼ N(0,σ2
ε I),

where the random incept effects ai are assumed to be independent as N(0,σ2
a ) which model the

correlation in the response.

With the LMM representation, testing the linearity of the varying index coefficients is equiva-

lent to test some fixed effects and a variance component in model (2.6). To be specific, we want to

test

H0 : γ12 = · · ·= γ1q = 0 and σ
2
b1

= 0. (2.7)

2.5.2 LRT and pseudo-LRT in LMM

2.5.2.1 LRT for one variance component

Crainiceanu and Ruppert (2004) proposed the likelihood ratio test in linear mixed effect models

with one variance component. Consider a LMM with one variance component

Y = Xβββ +Zb+ εεε, E

 b

εεε

=

 0K

0n

 , Cov

 b

εεε

=

 σ2
b ΣΣΣ 0

0 σ2
ε In

 , (2.8)

where βββ is a p-dimensional vector of fixed effect coefficients, b is a K-dimensional vector of

random effects, 0K is a K-dimensional vector of zeros, ΣΣΣ is a known K×K symmetric positive

definite matrix. Let λ = σ2
b/σ2

ε be the signal-to-noise ratio and then the covariance matrix of
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Y cab be written as Cov(Y) = σ2
ε Vλ , where Vλ = In + λZΣΣΣZT . Consider testing for the null

hypothesis

H0 : βp+1−p′ = 0, · · · ,βp = 0, σ
2
b = 0 (2.9)

for p′ > 0.

The LRT statistic is defined as

LRTn ∝ 2
{

sup
HA

L(βββ ,λ ,σ2
ε )− sup

H0
L(βββ ,λ ,σ2

ε )
}
.

If we substitute the parameters βββ and σ2
ε with their profile estimators

β̂ββ (λ ) = (XT V−1
λ

X)−1XT V−1
λ

Y,

σ̂
2
ε (λ ) =

{Y−Xβ̂ββ (λ )}TV−1
λ
{Y−Xβ̂ββ (λ )}

n
,

for fixed λ , we obtain the LRT statistic

LRTn = sup
λ≥0
{n log(YT S0Y)−n log(YT PT

λ
V−1

λ
Pλ Y)− log |Vλ |}, (2.10)

where Pλ = In−X(XT V−1
λ

X)−1XT V−1
λ

, X0 denotes the design matrix of fixed effects under the

null hypothesis, S0 = In−X0(XT
0 X0)

−1XT
0 .

Theorem 1 in Crainiceanu and Ruppert (2004) provides the distribution of LRT statistic (2.10).

Let µs be the eigenvalues of ΣΣΣ
1/2ZT P0ZΣΣΣ

1/2, ξs be the eigenvalues of ΣΣΣ
1/2ZT ZΣΣΣ

1/2, s= 1, · · · ,K,

then

LRTn
d
= n

(
1+

∑
p′
1 u2

s

∑
n−p
1 w2

s

)
+ sup

λ≥0
fn(λ ), (2.11)

where us
iid∼ N(0,1) for s = 1, · · · ,K, ws

iid∼ N(0,1) for s = 1, · · · ,n− p, and

fn(λ ) = n log
{

1+
Nn(λ )

Dn(λ )

}
−

K

∑
s=1

log(1+λ µs),

with

Nn(λ ) =
K

∑
s=1

λ µs
1+λ µs

w2
s ,
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Dn(λ ) =
K

∑
s=1

w2
s

1+λ µs
+

n−p

∑
s=K+1

w2
s .

The distribution in (2.11) only depends on the eigenvalues µs and ξs. Based on the spectral de-

composition, simulation from this distribution can be done very rapidly. Detailed algorithm for

this simulation can be found in Crainiceanu and Ruppert (2004).

2.5.2.2 Pseudo-LRT for multiple variance components

For a LMM with multiple variance components

Y = Xβββ +Zb1 + · · ·+ZbL + εεε, (2.12)

bl ∼ N(0,σ2
bl

ΣΣΣl), l = 1, · · · ,L, εεε ∼ N(0,σ2
ε In),

where bl , l = 1, · · · ,L are random effects and L > 1. Suppose we are interested in testing

H0 : βp+1−p′ = 0, · · · ,βp = 0, σ
2
bL

= 0.

Greven et al. (2008) proposed to approximate the distribution of LRT for the model (2.12)

based on the pseudo-likelihood ratio test theory (Liang and Self, 1996) by using a pseudo-outcome.

In the framework of model (2.12), bi, i 6= L, are nuisance random parameters. We can define the

pseudo-outcome as

Ỹ = Y−∑
i 6=L

Zib̂i,

where b̂i are the best linear unbiased predictors (BLUP) of nuisance random effects bi, i 6= L. The

the model (2.12) can be reduced to

Ỹ = Xβββ +ZLbL + εεε. (2.13)

Then the method for testing one variance component introduced by Crainiceanu and Ruppert

(2004) can be applied to the model in (2.13).
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2.5.3 Pseudo-LRT in FVICM model

For the model in (2.6), we can use the idea of Greven et al. (2008) and define the pseudo-outcome

Ỹi = Yi−Z0ib̂0−Uiâi, i = 1, · · · ,n,

where b̂0 and âi are BLUPs of b0 and ai, respectively. The reduced model using pseudo-outcome

for model (2.6) can be written as

Ỹi = W0iγ̃γγ0 +W1iγ̃γγ1 +Z1ib1 + εεε i. i = 1, · · · ,n. (2.14)

For the new model (2.14) using pseudo-response, we can apply the method for the single variance

component model introduced in Section 2.10 to test hypothesis (2.7). Statistical significance can

be assessed through the resampling approach described in section 2.5.2.1.

2.6 Simulation study

2.6.1 Simulation

In this section, the finite sample performance of the proposed method is evaluated through Monte

Carlo simulation studies. We generate three covariates X1,X2,X3. For each subject i, X1i j,X2i j,X3i j

are generated independently from uniform distribution U(0,1). We set the minor allele frequen-

cy (MAF) as pA=(0.1, 0.3, 0.5) and assume Hardy-Weinberg equilibrium. We use AA, Aa and

aa to denote three different SNP genotypes, where allele A is the minor allele. These genotypes

are simulated from a multinomial distribution with frequencies p2
A, 2pA(1− pA) and (1− pA)

2,

respectively. Variable G takes value in the set {0,1,2}, corresponding to genotypes {aa,Aa,AA}

respectively. The error term εi = (εi1, · · · ,εini) are independently generated from the multivariate

normal distribution N(0,0.1R(ρ)). The true correlation structure R(ρ) is assumed to be exchange-

able with ρ=0.5 and 0.8.

We set m0(u0) = cos(πu0) and m1(u1) = sin[π(u1−A)/(B−A)] with A =
√

3/2−1.645/
√

12

and B=
√

3/2+1.645/
√

12. The true parameters are βββ 0 =(
√

5,
√

4,
√

4)/
√

13 and βββ 1 =(1,1,1)/
√

3.
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To simplify the simulation and save computational time, we consider the balanced case, which

means each observation has the same number of time points. We draw 1000 data sets with sample

size N = 200,500 and time points ni = T = 10. Since the true correlation structure is exchange-

able, we set M1 to be the identity matrix and M2 to be 0 on the diagonal and 1 off-diagonal. The

order and number of knots of the splines are chosen by using the BIC method.

2.6.2 Performance of estimation

Table 2.1 summarizes the results based on 1000 replications. In this table, the average bias (Bias),

the standard deviation of the 1000 estimates (SD), the average of the estimated standard error (SE)

based on the theoretical results, and the estimated coverage probability (CP) at 95% confidence

level are reported. Note that the estimation of the loading parameter βββ 1 improves as MAF pA

increases, while the estimation of βββ 0 show a opposite direction. This is because we have limited

data information to estimate the marginal effects m0(·) when pA increases. As the sample size

increases, the performance of the estimation improves by showing smaller bias, SD and SE.

Table 2.1 Simulation results for pA = 0.1,0.3,0.5 with sample size N = 200,500 and correlation
ρ=0.5.

pA = 0.1 pA = 0.3 pA = 0.5
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP

200 β01 0.620 7.3E-04 0.008 0.008 95.6 1.7E-03 0.009 0.010 96.2 1.5E-03 0.011 0.011 95.0
β02 0.555 -3.9E-04 0.008 0.009 93.2 -1.0E-03 0.010 0.010 92.5 -1.2E-03 0.012 0.011 92.4
β03 0.555 -6.2E-04 0.008 0.008 94.4 -1.2E-03 0.010 0.010 94.2 -8.5E-04 0.012 0.011 93.0
β11 0.577 -2.3E-05 0.018 0.020 91.0 -3.1E-04 0.011 0.011 93.7 -8.6E-04 0.009 0.009 94.7
β12 0.577 -6.3E-04 0.018 0.020 91.3 -3.0E-04 0.011 0.011 94.3 -6.8E-05 0.009 0.009 93.8
β13 0.577 -3.9E-04 0.018 0.020 91.0 2.8E-04 0.011 0.011 94.8 7.1E-04 0.009 0.009 93.1

500 β01 0.620 7.5E-04 0.005 0.005 95.5 1.7E-03 0.006 0.006 95.1 1.6E-03 0.007 0.007 95.8
β02 0.555 -5.7E-04 0.005 0.005 94.4 -1.1E-03 0.006 0.006 94.6 -8.8E-04 0.007 0.007 95.2
β03 0.555 -3.4E-04 0.005 0.005 93.9 -8.7E-04 0.006 0.006 94.1 -1.1E-03 0.007 0.007 94.7
β11 0.577 6.4E-04 0.012 0.012 93.8 -1.7E-04 0.007 0.007 95.6 -7.3E-04 0.006 0.006 95.1
β12 0.577 -6.0E-04 0.012 0.012 93.6 -1.5E-05 0.007 0.007 96.1 5.3E-04 0.006 0.006 94.7
β13 0.577 -4.1E-04 0.012 0.012 94.6 6.0E-05 0.007 0.007 95.0 1.1E-04 0.006 0.006 95.6

The plots for the estimations of m0(u0) and m1(u1) under different sample size and MAFs are

shown in Figure 2.1 and Figure 2.2. The estimated and true functions are denoted by the solid
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and dashed lines, respectively. The 95% confidence band is denoted by the dotted-dash line. The

estimated curves almost overlap with the corresponding true curves as shown in the plots. The

confidence bands are tight, especially under a large sample size. Note that the estimation for the

interaction effects m1(u1) improves as MAF pA increases, while the estimation for the marginal

effects m0(u0) show a opposite direction, which coincides with the results for the parametric esti-

mation in Table 2.1.
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Figure 2.1 The estimation of function m0(·) under different MAFs when N=200, 500 and ρ=0.5.
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.
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Figure 2.2 The estimation of function m1(·) under different MAFs when N=200, 500 and ρ=0.5.
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.

The performance of the estimation for ρ = 0.8 is shown in Table 2.2, Figure 2.3 and Figure

2.4. It is seen that the SD and SE are smaller when ρ is larger compared to the results when

ρ = 0.5. The confidence bands are a little bit wider, especially for m0 when pA=0.5 and for m1

when pA=0.1 for larger ρ . In summary, the simulation results show that the estimation method

performs reasonably well under different simulation settings in finite samples.
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Table 2.2 Simulation results for pA = 0.1,0.3,0.5 with sample size N = 200,500 and correlation
ρ=0.8

pA = 0.1 pA = 0.3 pA = 0.5
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP

200 β01 0.620 4.4E-04 0.005 0.005 95.8 5.5E-04 0.006 0.006 95.8 -5.0E-06 0.007 0.007 95.3
β02 0.555 -2.2E-04 0.006 0.005 92.3 -3.2E-04 0.007 0.006 91.8 -2.8E-04 0.008 0.007 92.7
β03 0.555 -3.6E-04 0.006 0.005 94.1 -4.0E-04 0.006 0.006 94.6 1.4E-04 0.007 0.007 93.7
β11 0.577 -6.7E-05 0.014 0.012 90.3 -2.4E-04 0.007 0.007 94.3 -7.7E-04 0.006 0.006 92.7
β12 0.577 -2.4E-04 0.014 0.012 91.8 -1.3E-04 0.007 0.007 94.2 3.3E-05 0.006 0.006 93.4
β13 0.577 -1.8E-04 0.014 0.012 89.9 2.4E-04 0.007 0.007 93.7 6.4E-04 0.006 0.006 93.5

500 β01 0.620 5.3E-04 0.004 0.003 94.0 5.8E-04 0.004 0.004 95.4 3.3E-04 0.004 0.005 95.6
β02 0.555 -4.0E-04 0.003 0.003 93.8 -4.2E-04 0.004 0.004 94.8 -1.3E-04 0.005 0.004 95.0
β03 0.555 -2.3E-04 0.004 0.003 93.1 -2.8E-04 0.004 0.004 94.2 -2.9E-04 0.004 0.004 94.7
β11 0.577 2.5E-04 0.008 0.007 94.0 -1.5E-04 0.004 0.004 95.3 -6.8E-04 0.004 0.004 93.9
β12 0.577 -2.9E-04 0.008 0.007 93.5 4.4E-05 0.004 0.004 95.7 4.5E-04 0.004 0.004 93.5
β13 0.577 -1.1E-04 0.007 0.007 95.4 6.1E-05 0.004 0.004 95.4 1.9E-04 0.004 0.004 95.2
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Figure 2.3 The estimation of function m0(·) under different MAFs when N=200, 500 and ρ=0.8.
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.
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Figure 2.4 The estimation of function m1(·) under different MAFs when N=200, 500 and ρ=0.8
The estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence band is denoted by the dotted-dash line.

2.6.3 Performance of hypothesis tests

We evaluate the performance of the test for the nonparametric function under the null hypothesis

H0 : m1(·) = m0
1(·), where m0

1(u1) = δ0 +δ1u1, δ0 and δ1 are some constants, which corresponds

to a linear G×E interaction. If we fail to reject the null, then a linear model can be fit to further

assess the linear G×E interaction. Otherwise, we conclude nonlinear G×E interaction. Power is

evaluated under a sequence of alternative models with different values of τ , which is denoted by

Hτ
1 : mτ

1(·) = m0
1(·)+τ{m1(·)−m0

1(·)}. When τ = 0, the corresponding power is the false positive

rate.

Figure 2.5 shows the size (when τ = 0) and power (when τ > 0) at significance level 0.05. We

obtain 1000 Monte Carlo simulations each with 5000 replications to access the null distribution of

test statistic under sample sizes N = 200, 500 with ρ = 0.5. The empirical Type I error under three

MAFs are very close to the nominal level 0.05 and the power increases dramatically when MAF
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increases from 0.1 to 0.3. Results for ρ = 0.8 is presented in Figure 2.6. Similarly, the empirical

Type I error is close to 0.05 and the power increases rapidly when MAF increases from 0.1 to 0.3.

Compared to the performance when ρ = 0.5 shown in Figure 2.5, the power increases a little bit

slower when ρ = 0.8. The results indicate that our method can reasonably control the false positive

rates and has appropriate power to detect the genetic variation.
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Figure 2.5 The empirical size and power of testing the linearity of nonparametric function m1 under
different MAFs when N=200, 500 and ρ=0.5.
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Figure 2.6 The empirical size and power of testing the linearity of nonparametric function m1 under
different MAFs when N=200, 500 and ρ=0.8.
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2.7 Real data application

We applied the proposed FVICM model to a real data set from a study examining the association of

the A118G SNP in OPRM1 to experimental pain sensitivity (Jonson and Terra, 2002). A group of

163 men and women in ages from 32 to 86 years participated in the study. Systolic blood pressure

(SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured at 6 Dobutamine dosage

levels for each subject. Dobutamine is a medication that is used to treat congestive heart failure

by increasing heart rate and cardiac contractility. Dobutamine was injected into these subjects to

investigate their response in heart rate and blood pressure to this drug, at different dosage levels:

0 (baseline), 5, 10, 20, 30 and 40 mcg/min. In this study, dosage levels are treated as time and

measurements at different dosage levels are considered as longitudinal measures. In addition to

that, age and body mass index (BMI) were also recorded.

Total five SNPs in genes Beta1AR and Beta2AR were genotyped, namely, codon16, codon27,

codon49, codon389, and codon492. We choose X1= dosage level as the "time-varying" variable,

and X2 = age and X3= BMI as the "time-invariant" variable. Our goal is to evaluate how the SNPs

interact with age, BMI and dose level to affect SBP, DBP and HR. With the proposed FVICM

model, we can model the dynamic gene effect on drug response under different dosage levels.

In this analysis, we test whether any SNP is associated with the drug response based on the

hypothesis test H0 : m1(u1) = δ0 + δ1u1 with p-value denoted by pm1 in Table 2.3 - 2.5. We also

reported the p-values for testing the significance of coefficients β11, β12 and β13, which are labeled

by pβ11
, pβ12

and pβ13
, based on the asymptotic normality of the estimates. We also compare our

proposed model to an additive varying-coefficient model (AVCM) E(Y |X,G) = β∗01(X1)+β∗02X2+

β∗03X3 +{β∗11(X1)+β∗12X2 +β∗13X3}G, where β∗01(·) and β∗11(·) are unknown functions of X1. To

see the relative gain by integrative analysis, we calculate the MSEs of both models. The p-values

for testing H0 : β∗11(·) = β∗12 = β∗13 = 0 for AVCM is also reported in the tables and denoted by

pAVCM .

Table 2.3 summarizes the performance of our method for response SBP. In the table, pm1 for all
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the 5 SNPs are smaller than the significance level 0.05, which implies the nonlinear function of the

SNPs on SBP in response to the dosage level, age and BMI as a whole. The MSEs in the last two

columns shows that FVICM fits the data better than AVCM, indicating the benefit of integrative

analysis. Besides, the testing results for AVCM do not show significance of the coefficients, which

further implies that the genetic effects of SNPs are nonlinearly modified by the mixture of these

three variables. Figure 2.7 shows the fitted nonlinear functions for each SNP, along with the 95%

confidence bands.

Table 2.3 List of SNPs with MAF, allele, p-values under different hypothesis testing and MSE for
SBP.

p-value MSE
SNP ID MAF Alleles pm1 pβ11

pβ12
pβ13

pAVCM FVICM AVCM

codon16 0.3990 A/G <1.0E-04 0.0011 <1.0E-04 0.0917 0.5308 0.0403 0.0421
codon27 0.4160 G/C <1.0E-04 <1.0E-04 0.0027 0.1675 0.6748 0.0388 0.0415
codon49 0.1387 G/A <1.0E-04 <1.0E-04 0.3614 0.8668 0.2910 0.0398 0.0410
codon389 0.3045 G/C <1.0E-04 <1.0E-04 <1.0E-04 0.7552 0.3927 0.0397 0.0431
codon492 0.4250 T/C <1.0E-04 0.4102 <1.0E-04 0.0182 0.2990 0.0392 0.0409

Table 2.4 presents similar results for response DBP. The values of pm1 shows that the test

results for all 5 SNPs are significant, indicating nonlinear interactions for all 5 SNPs, while no

significance is shown for AVCM model. MSEs further support our method by showing smaller

value for FVICM comparing with AVCM. The estimated interaction curves with 95% confidence

bands are shown in Figure 2.8.

Table 2.4 List of SNPs with MAF, allele, p-values under different hypothesis testing and MSE for
DBP.

p-value MSE
SNP ID MAF Alleles pm1 pβ11

pβ12
pβ13

pAVCM VICM AVCM

codon16 0.3990 A/G 0.0066 <1.0E-04 0.2834 0.0007 0.3160 0.0366 0.0372
codon27 0.4160 G/C 0.0004 0.8431 <1.0E-04 <1.0E-04 0.0946 0.0360 0.0386
codon49 0.1387 G/A 0.0003 0.5750 <1.0E-04 0.0042 0.7986 0.0369 0.0395

codon389 0.3045 G/C 0.0001 <1.0E-04 0.9675 <1.0E-04 0.2615 0.0369 0.0377
codon492 0.4250 T/C 0.0001 0.7934 <1.0E-04 <1.0E-04 0.5837 0.0369 0.0389

In Table 2.5, the performance of our method for trait HR also leads to similar conclusion expect
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Figure 2.7 Plot of the estimate (solid curve) of the nonparametric function m1(u1) for SNPs
codon16, codon27, codon49, codon389 and codon492. The 95% confidence band is denoted by
the dashed line. Response is SBP.

for SNP codon16, which shows significant test results for both models. For all the other SNPs,

FVICM outperforms AVCM in terms of MSE. Figure 2.9 displays the corresponding estimated

nonlinear interaction curves.

Table 2.5 List of SNPs with MAF, allele, p-values under different hypothesis testing and MSE for
HR.

p-value MSE
SNP ID MAF Alleles pm1 pβ11

pβ12
pβ13

pAVCM VICM AVCM

codon16 0.3990 A/G <1.0E-04 <1.0E-04 0.1158 0.0028 0.0328 0.0309 0.0308
codon27 0.4160 G/C <1.0E-04 0.0007 0.6434 0.0001 0.9620 0.0320 0.0325
codon49 0.1387 G/A 0.0001 0.0147 0.0172 0.0133 0.8371 0.0298 0.0300
codon389 0.3045 G/C <1.0E-04 <1.0E-04 0.0024 0.0021 0.8959 0.0311 0.0313
codon492 0.4250 T/C 0.0002 <1.0E-04 0.0011 0.0582 0.3732 0.0315 0.0316
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Figure 2.8 Plot of the estimate (solid curve) of the nonparametric function m1(u1) for SNPs
codon16, codon27, codon49, codon389 and codon492. The 95% confidence band is denoted by
the dashed line. Response is DBP.

2.8 Discussion

In this paper, we propose a functional varying index coefficient modeling procedure to study gene

effects nonlinearly modified by a mixture of environmental variables in a longitudinal design.

We implement the quadratic inference function (QIF) method to estimate the index loading and

spline coefficients. Furthermore, we apply the pseudo likelihood ratio test in a linear mixed model

representation to test the linearity of the nonparametric coefficient function. Simulation study has

been conducted to illustrate the estimation and testing procedures and confirm the asymptotical

property. Real analysis shows that our model outperforms the additive varying coefficient model,

which considers the G×E effect for each single environmental factor separately.

Our FVICM model distinguishes the varying coefficient model for longitudinal data. In fact,

the varying coefficient model is a special case of our model when the dimension of the X variable
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Figure 2.9 Plot of the estimate (solid curve) of the nonparametric function m1(u1) for SNPs
codon16, codon27, codon49, codon389 and codon492. The 95% confidence band is denoted by
the dashed line. Response is HR.

reduces to one. FVICM is able to capture the effect of genes nonlinearly modified by the joint

effect of multiple environmental variables as a whole. In addition, it can reduce multiple testing

burden by treating multiple environmental variables as a single index variable.

We apply the model to a pain sensitivity study. Testing results indicate that all five SNPs have

significant nonlinear interaction effects with environmental factors, which makes practical sense

since these SNPs were genotyped from candidate genes. Our model was motivated by a practical

need in G×E study. However, the method can be applied to any longitudinal data in which the

purpose is to model nonlinear interaction effects. For example, we can consider gene expressions

in a pathway (denoted as XXX) and model how they regulate downstream genes (G) to affect a disease

trait. Both the trait and gene expressions can be measured over time. Thus, one can understand the

dynamic effect of genes nonlinearly regulated by a pathway to affect a disease trait.

29



CHAPTER 3

GENERALIZED FUNCTIONAL VARYING INDEX COEFFICIENT MODEL FOR
DYNAMIC GENE-ENVIRONMENT INTERACTIONS

3.1 Introduction

Longitudinal data analysis is very common in epidemiological studies when the response variables

are measured over time on objectives. Many studies demonstrated the increased power of a lon-

gitudinal design in detecting genetic associations over cross-sectional designs (Sitlani et al. 2015;

Furlotte et al. 2015; Xu et al. 2014). On the other hand, there has been growing interest in the role

of G×E interaction in many human diseases, such as Parkinson disease (Ross and Smith, 2007)

and type 2 diabetes (Zimmet et al., 2001). In many studies, G×E has been traditionally investigat-

ed based on a single environment exposure model. However, evidence from an increasing number

of studies has shown that risk of disease can be modified by simultaneous exposure to multiple en-

vironmental factors, which might be higher than what would be expected from simple addition of

the single effects of environmental factors (Carpenter et al., 2002; Sexton and Hattis, 2007). Thus,

of particular interest and complexity are assessing the combined effect of environmental mixtures

and the mechanism in which they interact with genes to affect disease risk. Some researches have

been done to assess nonlinear interactions between environmental mixtures and genes by apply-

ing some nonparametric or semiparametric models, such as the varying index coefficients model

(VICM) proposed by Ma and Song (2015) and the partial linear multi-varying index coefficients

model (PLMVICM) by Liu et al. (2016) and the generalized PLMVICM by Liu et al. (2017).

However, these methods were developed for cross-sectional data and they can not be used for lon-

gitudinal data. This motivates us to extend the varying index coefficient model to longitudinal

traits.

In our previous work, we proposed a functional varying index coefficient model to capture the

nonlinear G×E interaction for continuous longitudinal traits. However, in practice, it is possible
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that the response measured over time is a discrete variable, for example, a binary measure of

a disease status. In human genetics, many disease traits are binary in nature, being affected vs

unaffected (or cases vs controls). In order to investigate the dynamic nonlinear G×E interaction

with environmental mixtures as a whole for a binary longitudinal trait, we propose the following

generalized functional varying index coefficient model (gFVICM):

g
{

E(Yi j|Xi j,Gi j)
}
= m0(βββ

T
0 Xi j)+m1(βββ

T
1 Xi j)Gi j, (3.1)

where Yi j (= 0 or 1) denotes the binary longitudinal response variable observed for the ith subject

at the jth time point; Xi j is a p-dimensional vector of environmental variables, which can be either

time-variant or time-invariant variables; Gi denotes the SNP variable which does not depend on

time; g(·) is a known link function; m0(·) and m1(·) are unknown nonparametric smooth functions

which depend on the data; and βββ 0 and βββ 1 are p-dimensional vectors of index loading parame-

ters. In this model, the function m1(βββ
T
1 X) captures the interaction effect between environmental

mixtures and the genetic variable (e.g., a single nucleotide polymorphism (SNP)) on the risk of

disease.

The aim of this paper is to develop a set of statistical estimation and hypothesis testing pro-

cedure for model (3.1). The Generalized Estimation Equation (GEE) method, proposed by Liang

and Zeger in 1986, has been widely used in longitudinal data analysis. However, there are several

disadvantages of GEE method due to some of its critical assumptions (Song et al., 2009). One

disadvantage is that the consistency of GEE estimators are based on the consistency of estimators

for the nuisance correlation parameter (Crowder, 1986, 1995). Another shortcoming of the GEE

method is that model selection and hypothesis testing are complicated. This is because the estima-

tion procedure of the GEE method does not involve an objective function. The quadratic inference

function (QIF) approach proposed by Qu et al. (2000) is one of the improvements of the GEE

method. The QIF avoids estimating the nuisance correlation parameters and has been confirmed

by Qu et al. (2000) to be generally more efficient than the GEE. In addition, since the QIF is

built upon an objective function which is asymptotically chi-square distributed, we can naturally

31



implement the model selection criterion such as BIC to the QIF. The asymptotic property can also

allows us to conduct hypothesis tests. This motivates us to extend the QIF method to our model

for estimation and hypothesis testing.

In our proposed estimation procedure, we first use penalized splines (Ruppert and Carroll,

2000) to approximate the nonparametric smooth functions ml(·), l=0, 1. Then we develop a profile

estimation procedure to estimate the index loading parameters and spline coefficients iteratively

based on the QIF approach. In order to avoid overfitting and reduce the number of parameters in

spline approximation, we use BIC method by adding a penalty to the objective function. Under

certain regularity conditions we establish the asymptotic normality of the resulting estimators. In

addition, we are interested in testing the linearity of G×E interaction, i.e. the linearity of function

m1(·). The QIF can be regarded as an inference function which has properties similar to the

likelihood ratio test. Based on that, we construct a testing procedure for linearity of nonparametric

interaction function, where the test statistic asymptotically follows a χ2 distribution.

The rest of this chapter is organized in the following way: In Section 3.2, we propose an esti-

mation procedure for model (3.1) and also provide the consistency and asymptotic normality of the

proposed estimator; In Section 3.3, we derive a testing procedure for the linearity of nonparametric

interaction function based on the goodness-of-fit test of QIF. The finite sample performance of the

proposed procedure are accessed by Monte Carlo simulations illustrated in Section 3.4; In Section

3.5, the application of the proposed methodology is shown through the analysis of a pain sensitivity

data with a binary response variable indicating whether a subject has hypertension or not (Yes=1,

No=0); Some discussions are given in Section 3.6; The proofs of are rendered in Appendix.

3.2 The model and estimation methods

3.2.1 The model

For a longitudinal disease trait, suppose the binary response yi j, the p-dimensional covariate vector

xxxi j, and the SNP variable Gi are observed for the ith observation at the jth time point, where
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i=1,...,N, j=1,...,ni. Assume that the observations from different subjects are independent, but

those within the same subject are correlated. We also assume the model satisfies the first moment

assumption:

µi j(xxxi j,Gi) = E(yi j|xxxi j,Gi) = g−1{m0(βββ
T
0 xxxi j)+m1(βββ

T
1 xxxi j)Gi

}
,

where g−1(·) is a given inverse link function. If we use a logit link function for binary response,

then the model can be written as

µi j(xxxi j,Gi) = P(yi j = 1|xxxi j,Gi) =
exp{m0(βββ

T
0 xxxi j)+m1(βββ

T
1 xxxi j)Gi}

1+ exp{m0(βββ
T
0 xxxi j)+m1(βββ

T
1 xxxi j)Gi}

.

For model identifiability, we have the constraints ‖βββ 0‖ = ‖βββ 1‖ = 1 and the first elements of βββ 0

and βββ 1 are positive.

3.2.2 Quadratic inference function for gFVICM

First, we approximate the unknown coefficient functions m0(u0) and m1(u1) by truncated power

spline basis as

ml(ul) = ml(ul ,βββ )≈ B(ul)
T

γγγ l , for l = 0,1, (3.2)

where βββ = (βββ T
0 ,βββ

T
1 )

T , B(u) = (1,u,u2, ...,uq,(u−κ1)
q
+, ...,(u−κK)

q
+)

T is a q-degree truncated

power spline basis with K knots κ1, ...,κK ; γγγ0 and γγγ1 are (q+K+1)-dimensional vectors of spline

coefficients.

A marginal approach such as the GEE assumes that the marginal mean µi j is a function of the

covariates through a link function and the variance of yi j is a function of the mean var(yi j) =V (µi).

The generalized estimation equation for longitudinal data is

N

∑
i=1

µ̇µµ
T
i V−1

i (yi−µµµ i) = 0,

where yi = (yi1, ...,yini)
T , µµµ i = E(yi) is the mean function and µ̇µµ i =

∂ µµµi
∂θθθ

is the first derivative of

µµµ i with respect to parameters θθθ = (βββ T ,γγγT )T , with γγγ = (γγγT
0 ,γγγ

T
1 )

T . The covariance matrix Vi can

be decomposed as Vi = A1/2
i R(ρ)A1/2

i with Ai being a diagonal matrix of marginal variances and
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R(ρ) being a common working correlation matrix with a small number of nuisance parameters ρ .

Using the spline approximation in (3.2), the mean function can be written as

µµµ i = µµµ i(θθθ) =


µi1(θθθ)

...

µini(θθθ)

=


g−1{BT (βββ T

0 xi1)γγγ0 +BT (βββ T
1 xi1)γγγ1Gi}

...

g−1{BT (βββ T
0 xini)γγγ0 +BT (βββ T

1 xini)γγγ1Gi}

 ,
and the first derivative of µµµ i is

µ̇µµi =


(g−1)

′
BT

d (βββT
0 xi1)γγγ0xT

i1 (g−1)
′
BT

d (βββT
1 xi1)γγγ1Gix

T
i1 (g−1)

′
BT (βββT

0 xi1) (g−1)
′
BT (βββT

1 xi1)Gi
...

...
...

...

(g−1)
′
BT

d (βββT
0 xini

)γγγ0xT
ini

(g−1)
′
BT

d (βββT
1 xini

)γγγ1Gix
T
ini

(g−1)
′
BT (βββT

0 xini
) (g−1)

′
BT (βββT

1 xini
)Gi

 ,
where Bd(u) =

∂B(u)
∂u = (0,1,2u, ...,quq−1,q(u−κ1)

q−1
+ , ...,q(u−κK)

q−1
+ ).

In the QIF method, the inverse of the working correlation matrix can be approximated by a

linear combination of several basis matrices, i.e.

R−1(ρ)≈ a1M1 + ...+ahMh,

where M1 is the identity matrix and M2, ...,Mh are known basis matrixes. For example, if the

working correlation is exchangeable, R−1 ≈ a1M1+a2M2 with M2 having 0 on the diagonal and

1 off-diagonal. If the working correlation is AR(1), then R−1 ≈ a∗1M1 + a∗2M∗2 and we can set

M∗2 to have 1 on its two subdiagonals and 0 elsewhere. The advantage of this method is that the

estimation of nuisance parameters a1, ...,ah are not required.

Following this idea, we can derive the estimation function

ḡN(θθθ) =
1
N

N

∑
i=1

gi(θθθ) =
1
N


∑

N
i=1 µ̇µµ

T
i A−1/2

i M1A−1/2
i (yi−µµµ i)

...

∑
N
i=1 µ̇µµ

T
i A−1/2

i MhA−1/2
i (yi−µµµ i)

 (3.3)

We cannot obtain the estimators by simply setting each element in ḡN to be zero since the number

of equations is more than the number of unknown parameters. To deal with this issue, we can

estimate the parameters by minimizing the following quadratic inference function,

QN(θθθ) = NḡT
NC̄−1

N ḡN ,
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where C̄N = 1
N ∑

N
i=1 gigT

i is a consistent estimator for var(gi). By minimizing the quadratic infer-

ence function, we can obtain the estimation of the parameters as,

θ̂θθ = argmin
θθθ

QN(θθθ).

In order to overcome the issue of over-parameterization, we can add a penalty term to QIF to

penalize the number of knots in the approximation. The penalized QIF is written as

N−1QN(θθθ)+λθθθ
T Dθθθ , (3.4)

where D is a diagonal matrix with 1 if the corresponding parameter is the spline coefficient associ-

ated with knots and 0 otherwise, that is, D = diag(0T
(2p+q+1)×1,1

T
K×1,0

T
(q+1)×1,1

T
K×1). Then the

estimator is given by

θ̂θθ = argmin
θθθ

{
N−1QN(θθθ)+λθθθ

T Dθθθ
}
. (3.5)

To determine the tuning parameter λ , we can extend the generalized cross-validation (Ruppert,

2002; Qu and Li, 2006; Bai et al., 2009) to the penalized QIF. The generalized cross-validation

statistic is defined as

GCV(λ ) =
N−1QN

(1−N−1df)2

with the effective degree of freedom df= tr
{
(Q̈N +2NλD)−1Q̈N

}
, where Q̈N is the second deriva-

tive of QN . The desirable choice of tuning parameter λ is which minimize the GCV(λ ). In the

implementation of GCV, the desired value of λ can be found using a grid search by predefining a

set of values for λ .

3.2.3 Theoretical results

To establish the asymptotic properties for the estimators of the index loading parameters and the

penalized spline regression coefficients, we assume θθθ 0 is the parameter satisfying Eθθθ0
(gi) = 0.

Theorem 3 provides the consistency of the resulting estimators. We show the
√

N-consistency

and asymptotic normality of the estimators in Theorem 4. The theoretical results are similar to

Theorem 1 and 2 in Chapter 2.
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First, to handle the constraints ‖βββ 0‖=‖βββ 1‖=1, and β01 > 0, β11 > 0, we set βl1 =
√

1−‖βββ l,−1‖22
with βββ l,−1 = (βl2, ...,βl p)

T for l=1, 2. Then the parameters space of βββ l , l=1,2, becomes

[{(
√

1−‖βββ l,−1‖22,βl2, ...,βl p)
T} : ‖βββ l,−1‖22 < 1].

Let

Jl =
∂βββ l

∂βββ
T
l,−1

=

 −βββ
T
l,−1/

√
1−‖βββ l,−1‖22

Ip−1


be the Jacobian matrix of dimension p× (p− 1). Denote βββ−1 = (βββ T

0,−1,βββ
T
1,−1)

T , and θθθ
∗ =

(βββ−1,γγγ)
T . From θθθ to θθθ

∗, we have Jacobian matrix J = diag(J0,J1,Iq+K+1,Iq+K+1).

Theorem 3 Suppose the assumptions (A1)-(A6) in the Appendix are satisfied, and the smooth-

ing parameter λN = o(1), then the estimator θ̂θθ , which is obtained by minimizing the penalized

quadratic function in (3.4), exists and converges to θθθ 0 in probability.

Theorem 4 Suppose the assumptions (A1)-(A6) in the Appendix are satisfied, and the smoothing

parameter λN = o(N−1/2), then the estimator θ̂θθ obtained by minimizing the penalized quadratic

function in (3.4) is asymptotically normally distributed, i.e.,

√
N(θ̂θθ −θθθ 0)

d−→ N(0,J(GT
0 C−1

0 G0)
−1JT ),

where the detailed calculation of G0 and C0 are given in the Appendix.

3.3 Model selection and hypothesis test

3.3.1 Model selection

Model selection is important in the spline approximation since too many parameters in the model

might result in the overfitting issue. According to the theocratical property of generalized method

of moments estimator (Hansen, 1982), under the assumption E(g1) = 0 and also the number of

estimating equations is larger than the number of parameters, we have Q(θ̂θθ)→ χ2
r−k in distribution,
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where r is the dimension of ḡN(θθθ), k is the dimension of θθθ and θ̂θθ is the estimator by minimizing

the QIF when certain order and number of knots are chosen. This asymptotic property of the

QIF provides a goodness-of-fit test, which can be useful to determine the order and number of

knots to be selected in our model. However, it is also possible that the goodness-of-fit tests fail to

reject several different models which may not be nested. Since Q(θ̂θθ) is asymptotically chi-square

distributed, it is natural to extend the BIC to the QIF approach, by replacing twice the negative

log-likelihood function by the QIF objective function. In particular, the BIC criterion for a model

with r estimating equation and k parameters is given as,

Q(θ̂θθ)+(r− k) lnN,

The model with the minimum BIC would be considered the optimal one. If we choose h basis

matrices in (3.3), then r− k = hk− k = (h−1)k.

In our simulation and real data application, we search the optimal order and number of knots

over a set of combinations of q and K using the BIC criterion. Knots are evenly distributed in the

range of the single index βββ
T X.

3.3.2 Nonparametric goodness-of-fit test based on QIF

The QIF can also be regarded as an inference function since it has properties similar to the like-

lihood ratio test. Suppose that the d-dimensional parameter vector γγγ is partitioned into (ψψψ,ζζζ ),

where ψψψ is the parameter of interest with dimension d1, and ζζζ is the nuisance parameter with

dimension d2 = d−d1. If we are interested in testing

H0 : ψψψ = ψψψ0,

the test statistic

Q(ψψψ0, ζ̃ζζ )−Q(ψ̂ψψ, ζ̂ζζ )
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follows an asymptotically chi-square distribution with d1 degrees of freedom. The following the-

orem introduced by Qu et al. (2000) provided a way to conduct hypothesis testing in the QIF

framework.

Theorem 5 (Qu et al., 2000) Suppose that all required regularity conditions are satisfied and ψψψ

has dimension d1. Under the null hypothesis, Q(ψψψ0, ζ̃ζζ )−Q(ψ̂ψψ, ζ̂ζζ ) is asymptotically chi-square

distribution with d1 degrees of freedom, where

ζ̃ζζ = argminQ(ψψψ0,ζζζ ), (ψ̂ψψ, ζ̂ζζ ) = argminQ(ψψψ,ζζζ ). (3.6)

When there is no nuisance parameter, which is a special case of the condition in Theorem 5,

Q(γγγ0)−Q(γ̂γγ) has an asymptotical chi-square distribution with d degree of freedom under the null

hypothesis.

3.3.3 Test for linearity of interaction function in gFVICM

In our proposed gFVICM model (3.1), it is of interest to test the unspecified coefficient function.

In particular, we are interested in testing whether a linear function is good enough to describe the

G×E interaction. If the we fail to reject the linearity of the coefficient function, then a parametric

linear interaction function should be fitted to further assess if there exists linear G×E interaction;

otherwise, we conclude there exists nonlinear G×E interaction. Let u1 = βββ
T
1 X. With the truncated

power spline basis, the coefficient function can be modeled by

m1(u1)≈ γ10 + γ11u1 + γ12u2
1 + · · ·+ γ1quq

1 +
K+q+1

∑
k=q+1

γ1k(u1−κk)
q
+.

Our goal is to test the linearity of m1(u1), which is equivalent to test

H0 : γ12 = · · ·= γ1,K+q+1 = 0.

Let θ̃θθ be the estimator of the full parameter θθθ = (βββ T ,γγγT )T under the null hypothesis with

θ̃θθ = (β̃ββ
T
, γ̃γγT

0 , γ̃10, γ̃11,0T )T = argmin
γ12=···=γ1,K+q+1=0

QN(θθθ),
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and the estimator of θθθ under the alternative as

θ̂θθ = argminQN(θθθ).

Then the test statistic

TN = QN(θ̃θθ)−QN(θ̂θθ),

asymptotically follows a chi-square distribution with K + q− 1 degrees of freedom, following

Theorem 5.

3.4 Simulation study

The finite sample performance of the proposed method was evaluated through Monte Carlo simu-

lation studies. We considered the following logistic regression model

P(yi j = 1|Xi j,Gi,βββ ) =
exp{η(Xi j,Gi,βββ )}

1+ exp{η(Xi j,Gi,βββ )}
,

where

η(Xi j,Gi,βββ ) = m0(βββ
T
0 Xi j)+m1(βββ

T
1 Xi j)Gi.

We simulated a three-dimensional environmental variables X = (X1,X2,X3). For the ith subject,

X1i j,X2i j,X3i j are independently generated from a uniform distribution U(0,1). We set the minor

allele frequency (MAF) as pA = 0.1, 0.3, 0.5 and assumed Hardy-Weinberg equilibrium. We used

AA, Aa and aa to denote three different SNP genotypes. These genotypes were simulated from a

multinomial distribution with frequencies p2
A, 2pA(1− pA) and (1− pA)

2, respectively. Variable G

was coded as {0,1,2}, corresponding to genotypes {aa,Aa,AA} respectively. To create correlated

responses, we implemented the R package ‘bindata’ developed by Leisch et al. (1998) under an

AR(1) correlation structure with correlation parameter ρ=0.5. When implementing the function

‘rmvbin’ to generate the correlated binary data, one should specify the marginal probabilities and

the correlation structure.

We set m0(u0) = cos(πu0) and m1(u1) = sin[π(u1−A)/(B−A)] with A =
√

3/2−1.645/
√

12

and B =
√

3/2 + 1.645/
√

12. The true parameters were βββ 0 = (
√

5,
√

4,
√

4)/
√

13 and βββ 1 =
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(1,1,1)/
√

3. We drew 500 data sets with sample size N = 200,500 and time points ni = T = 10,20,

respectively. The basis matrix M2 was set to have 1 on its two subdiagonals and 0 elsewhere. The

order and number of knots of the splines were selected through the BIC method.

3.4.1 Performance of estimation

Table 3.1 and Table 3.2 summarize the parameters estimation results under different sample sizes

and measurement times respectively. In these two tables, the average bias (Bias), the standard

deviation of the 500 estimates (SD), the average of the estimated standard error (SE) based on

the theoretical results, and the estimated coverage probability (CP) at 95% confidence level are

reported. It is shown from each table that, as the sample size increases, the performance of the

estimation improves by showing smaller bias, SD and SE. More repeated measurement for each

subject also results in improvement in estimations, which can be shown when we compare Table

3.1 and Table 3.2. For example, the CP for β01 improves from 86.8% to 90% when the number

of measurement time increases from 10 to 20, under a sample size of 200. The estimation of the

loading parameter βββ 1 improves as MAF pA increases, while the estimation of βββ 0 show a opposite

direction. This is because we have limited data information to estimate the marginal effects m0(·)

when pA increases.

Table 3.1 Simulation results under different MAFs pA = 0.1,0.3,0.5 with sample size N =
200,500, T = 10 and correlation ρ=0.5.

pA = 0.1 pA = 0.3 pA = 0.5
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP

200 β01 0.620 -0.008 0.058 0.057 93.6 -0.003 0.074 0.064 90.6 -0.007 0.084 0.068 86.8
β02 0.555 -0.002 0.066 0.056 90.0 -0.004 0.080 0.062 87.2 -0.008 0.093 0.065 84.5
β03 0.555 -4.1E-05 0.064 0.056 91.8 -0.008 0.074 0.062 88.8 -0.006 0.094 0.066 86.6
β11 0.577 -0.013 0.134 0.091 82.2 -0.003 0.092 0.072 87.2 0.007 0.088 0.063 84.9
β12 0.577 -0.024 0.139 0.090 79.2 -0.10 0.096 0.071 85.2 -0.013 0.085 0.062 87.2
β13 0.577 -0.013 0.140 0.091 82.4 -0.11 0.095 0.071 86.0 -0.014 0.088 0.062 85.4

500 β01 0.620 0.002 0.038 0.038 94.8 -0.002 0.043 0.043 95.4 -0.003 0.047 0.048 95.0
β02 0.555 0.003 0.039 0.037 93.0 -0.002 0.043 0.042 93.4 -2.1E-04 0.052 0.046 92.4
β03 0.555 -0.003 0.038 0.037 93.8 -6.3E-04 0.045 0.042 93.0 -0.004 0.050 0.046 92.5
β11 0.577 -0.007 0.078 0.065 89.6 -0.002 0.055 0.049 92.0 0.002 0.045 0.044 94.2
β12 0.577 -0.003 0.079 0.066 88.0 -0.001 0.052 0.049 92.8 -0.003 0.049 0.043 91.4
β13 0.577 -0.005 0.075 0.066 90.6 -0.004 0.054 0.049 92.8 -0.005 0.047 0.043 92.0
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Table 3.2 Simulation results under different MAFs pA = 0.1,0.3,0.5 with sample size N =
200,500, T = 20 and correlation ρ=0.5.

pA = 0.1 pA = 0.3 pA = 0.5
N Param True Bias SD SE CP Bias SD SE CP Bias SD SE CP

200 β01 0.620 -0.002 0.044 0.043 94.4 -0.002 0.053 0.049 94.2 -0.011 0.062 0.052 90.0
β02 0.555 -0.004 0.048 0.042 90.2 -0.003 0.056 0.048 90.2 -0.003 0.065 0.050 88.3
β03 0.555 2.3E-04 0.048 0.042 91.2 -0.002 0.057 0.048 90.2 0.005 0.063 0.050 87.4
β11 0.577 -0.006 0.074 0.064 90.0 0.008 0.062 0.054 91.8 0.004 0.063 0.050 88.2
β12 0.577 -0.004 0.075 0.064 91.4 -0.009 0.063 0.053 89.8 -0.009 0.064 0.050 87.1
β13 0.577 -0.005 0.072 0.064 91.8 -0.009 0.063 0.054 90.0 -0.006 0.064 0.050 86.8

500 β01 0.620 -0.002 0.028 0.028 97.2 -0.002 0.033 0.033 95.0 -0.004 0.037 0.036 93.2
β02 0.555 -3.2E04 0.028 0.027 94.8 0.001 0.033 0.032 94.0 7.9E-05 0.038 0.035 92.8
β03 0.555 3.5E04 0.029 0.027 93.2 -0.002 0.034 0.032 92.8 6.3E-04 0.037 0.035 94.2
β11 0.577 -0.005 0.044 0.044 92.2 0.004 0.039 0.036 92.4 0.006 0.038 0.035 93.0
β12 0.577 -0.002 0.045 0.045 91.0 -0.003 0.037 0.036 93.0 -0.004 0.036 0.035 94.2
β13 0.577 0.003 0.042 0.042 96.4 -0.005 0.038 0.036 93.4 -0.005 0.035 0.035 93.6

The plots for the estimations of m0(u0) and m1(u1) under different sample sizes and number of

replications are shown in Figure 3.1–3.4. The estimated and true functions are denoted by the sol-

id and dashed lines, respectively. The 95% confidence bands are denoted by the dotted-dash line.

The estimated curves almost overlap with the corresponding true curves as shown in the plots, in-

dicating the estimation accuracy of the method. Also the confidence bands are tight, especially for

large sample size and large number of measurement times. Note that the estimation for the inter-

action effects m1(u1) improves as MAF pA increases, while the estimation for the marginal effects

m0(u0) show a opposite direction, which coincides with the results for the parametric estimation

in Table 3.1 and Table 3.2.
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Figure 3.1 The estimation of function m0(·) when N=200, 500 and T =10. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.
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Figure 3.2 The estimation of function m0(·) when N=200, 500 and T =20. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.
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Figure 3.3 The estimation of function m1(·) when N=200, 500 and T =10. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.
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Figure 3.4 The estimation of function m1(·) when N=200, 500 and T =20. The estimated and true
functions are denoted by the solid and dashed lines respectively. The 95% confidence bands are
denoted by the dotted-dash lines.

3.4.2 Performance of hypothesis tests

We evaluated the performance of the test for the nonparametric function under the null hypothesis

H0 : m1(·) = m0
1(·), where m0

1(u1) = δ0 +δ1u1, δ0 and δ1 are some constants, which corresponds

to a linear G×E interaction. Power is evaluated under a sequence of alternative models with

different values of τ , which is denoted by Hτ
1 : mτ

1(·) = m0
1(·) + τ{m1(·)−m0

1(·)}. When τ =

0, the corresponding power is the false positive rate.

Figure 3.5 shows the size (when τ = 0) and power (when τ > 0) at significance level 0.05

based on 500 Monte Carlo simulations for N=200, 500 under different measurement times T =10

(left panel) and T =20 (right panel). The empirical Type I error is large when N = 200, which

decreases dramatically when the sample size increases to N=500. The power increases when the
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sample size increases from 200 to 500. The results indicate that our method can reasonably control

the false positive rates and has appropriate power to detect the linearity function under a relatively

large sample size. Comparing the results for T =10 and T =20, we can see that the testing power

improves when the number of measurement time increases.
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Figure 3.5 The empirical size and power of testing the linearity of nonparametric function m1 when
N=200, 500 and T =10, 20.

To assess how the values of MAF affect the testing performance, we plot the power plot under

different MAFs pA=0.1, 0.3, 0.5 when N=500, T =10, which is shown in Figure 3.6. Note that the

power increases dramatically when MAF increases from 0.1 to 0.3. The values of power are very

close when pA=0.3 and 0.5.
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Figure 3.6 The empirical size and power of testing the linearity of nonparametric function m1 under
different MAFs when N=500 and T =10.

3.5 Real data application

We applied the proposed gFVICM model to a data set from a study examining the association of

the A118G SNP of OPRM1 to experimental pain sensitivity. A sample of 163 healthy volunteers

were evolved in this study. For each volunteer, Systolic Blood Pressure (SBP) and Diastolic Blood

Pressure (DBP) were measured at 6 Dobutamine dosage levels: 0 (baseline), 5, 10, 20, 30 and

40mcg/min. Clinically, a person is said to be hypertensive if the individuals SBP is greater than

140mm Hg or DBP is greater than 90mm Hg (Choi et al. 2014). Thus, the response variable Y is

a binary variable indicating whether a person has hypertension or not, i.e. Y = 1 for hypertension

and Y = 0 for non-hypertension.

One longitudinal covariate X1= dosage, two time-invariant covariates X2 = age and X3= BMI

are included as the environmental factors in the model. The genetic variables are five SNPs located

at codon16, codon27, codon49, codon389, and codon492 in the gene. Our purpose is to evaluate

how the mixture of age, BMI and dosage modifies the SNP effect on the risk of hypertension. In

particular, we test the hypothesis H0 : m1(u1) = δ0 + δ1u1 with p-value denoted by pm1 in Ta-
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ble 2.7. We also reported the p-values for testing the significance of three components of index

loading coefficients βββ 1 = (β11,β12,β13), which are labeled by pβ11
, pβ12

and pβ13
, based on

the asymptotic property of the estimations. We also compared our proposed model to a gener-

alized additive varying-coefficient model (gAVCM) E(Y |X,G) = η
{

β∗01(X1)+β∗02X2 +β∗03X3 +(
β∗11(X1)+β∗12X2 +β∗13X3

)
G
}

, where β∗01(·) and β∗11(·) are unknown functions of X1. To see the

relative gain by integrative analysis, we calculated the objective function QN in both models. The

p-values for testing H0 : β∗11(·) = β∗12 = β∗13 = 0 for gAVCM are also reported in the tables and

denoted by pgAVCM.

In Table 3.3, pm1 for all the 5 SNPs are smaller than the significance level 0.05, which means

the functions capturing the G×E interactions are nonlinear for all these 5 SNPs. The objective

function QN in the last two columns shows that gFVICM fits the data better than gAVCM, in-

dicating the benefit of integrative analysis. Besides, the testing results for gAVCM do not show

significance of the coefficients for interactions. The results imply that the genetic effects of S-

NPs are modified by the mixture of environmental variables, rather than separately. Figure 3.7

exhibits the fitted nonlinear curves indicating G×E interactions for each SNP, along with the 95%

confidence bands.

Table 3.3 List of SNPs with MAF, allele, p-values under different hypothesis testing and values of
objective function QN .

p-value QN
SNP ID MAF Alleles pm1 pβ11

pβ12
pβ13

pgAVCM gFVICM gAVCM

codon16 0.3990 A/G <1.0E-04 <1.0E-04 0.0207 0.3475 0.2960 3.9240 11.2082
codon27 0.4160 G/C <1.0E-04 0.2329 <1.0E-04 0.0014 0.6982 6.9502 9.3500
codon49 0.1387 G/A <1.0E-04 <1.0E-04 <1.0E-04 0.6325 0.1777 6.6303 12.2648
codon389 0.3045 G/C <1.0E-04 <1.0E-04 <1.0E-04 0.3329 0.8436 3.3678 10.5593
codon492 0.4250 T/C <1.0E-04 0.6731 <1.0E-04 0.0008 0.5001 6.0766 7.4877

Table 3.4 displays the estimated odds for different genotypes at different dosage levels. The

changes in the values of odds demonstrate the interaction between SNP and environmental mix-

tures at different dosage levels. For example, we noted that the odds for genotype AA in SNP

codon16 does not change too much as the dosage level increases, which means that the genetic
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Figure 3.7 Plot of the estimate (solid curve) of the nonparametric function m1(u1) for SNPs
codon16, codon27, codon49, codon389 and codon492. The 95% confidence bands are denoted
by the dashed lines.
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effect of this genotype remains the same when subjects are exposed to different environments at

different doses. While for the other two genotypes, there is an increase in the value of odds until

dosage level four, indicating increased blood pressure as dosage level increases from 0mcg/min to

20mcg/min.

Table 3.4 Estimated odds for different genotypes at each dosage levels.

Dosage level
SNP ID Genotyoe 1 2 3 4 5 6
codon16 AA 0.92 0.92 0.92 0.92 0.92 0.93

GG 1.22 1.89 2.63 3.66 3.17 1.73
GA 1.35 1.66 1.94 2.28 2.14 1.63

codon27 GG 1.25 2.07 2.75 2.96 2.32 1.96
CC 1.06 1.75 2.34 2.58 2.06 1.73
CG 1.08 1.63 2.07 2.21 1.81 1.56

codon49 GG 4.19 3.56 3.05 2.28 1.76 1.38
AA 1.13 1.50 1.79 1.98 1.79 1.52
GA 1.12 2.17 3.41 4.66 3.88 2.80

codon389 GG 1.78 1.78 1.78 1.77 1.77 1.77
CC 1.41 1.87 2.21 2.35 2.09 1.91
CG 0.91 1.57 2.14 2.33 1.86 1.65

codon492 TT 1.11 1.99 2.69 2.77 2.20 2.33
CC 1.12 1.97 2.61 2.63 2.05 2.14
CT 1.03 1.67 2.12 2.12 1.70 1.78

3.6 Discussion

In this paper, we proposed a generalized varying index coefficient modeling procedure to assess

the interaction effect of multiple environmental factors as a whole with a genetic factor. The model

was motivated by empirical evidence and was developed under an longitudinal design with a binary

disease response. We developed a profile estimation procedure to estimate the index coefficients

and nonparametric interaction functions iteratively. The estimation was conducted under the QIF

framework. To estimate the nonparametric functions, we first approximated the function using

truncated power spline basis, then estimated the spline coefficients based on QIF. Furthermore, we

proposed a nonparametric hypothesis test to assess the linearity of the nonparametric interaction

function. Simulation study has been conducted to illustrate the estimation and testing procedures
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to evaluate the finite sample performance. The results indicate reasonable estimation performance

of the method under different sample sizes and measurement times.

Our method was proposed to evaluate the joint interaction effect between multiple environ-

mental variables as a whole with genetic variables. Compared to the generalized additive varying

coefficient model (gAVCM), which considers the G×E effect for each single environmental factor

separately, our model presents two advantages: 1) it is biologically more attractive if there are

synergistic effects between multiple exposures; and 2) it can potentially increase the testing power

for detecting interactions since it can reduce multiple testing burden by treating multiple exposures

as a single index variable. Although our method was motivated by a genetic association study, the

developed model and inference procedures can be applied to other disciplines with the purpose to

model the synergistic effect of multiple variables as a whole.

We applied our method to a real data set from a pain sensitivity study. Testing results indicate

that all of the five SNPs are nonlinear moderated, by the synergistic effect of the three variables

with dosage as a “time"-varying variable, to affect the risk of high blood pressure. These five

SNPs were genotyped from a candidate gene which has been shown to be related to blood pressure

changes (Johnson and Terra, 2002). Although the purpose of the data was not generated to evaluate

the genetic effect on “hypertension", we simply applied the method to this data set to demonstrate

the utility of the method. The estimated odds of different genotypes for a particular SNP at different

dosage levels does give insights into the effect of the SNPs nonlinearly modulated by dosages. Of

particular interest is SNP condon49 in which individuals carrying genotype GG show a decreasing

risk of developing high blood pressure as the dosage level increases, indicating a protective effect

of this genotype. For the same SNP, individuals carrying genotype GA show a different pattern of

developing high blood pressure as the dosage level increases. Such a dynamic change of genetic

effect over different dosage levels cannot be revealed by a cross-sectional study, indicating the

relative merit of a longitudinal design.
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CHAPTER 4

DETECTING GENETIC ASSOCIATIONS WITH MULTIVARIATE PARTIALLY
LINEAR VARYING-COEFFICIENTS MODELS FOR MULTIPLE LONGITUDINAL

TRAITS

4.1 Introduction

Cross-sectional disease traits have been the primary focus in genetic association studies. Given the

improved power to identify disease genes with phenotypic data measured over time, longitudinal

designs are becoming popular in genetic association studies (Sitlani et al. 2015; Macgregor et al.

2005; Furlotte et al. 2012; Xu et al. 2014). Most statistical methods developed so far focus on a

single outcome of interest. When multiple outcomes are measured over time, for example, multiple

measures of heart function in a longitudinal study of cardiac function, methods focusing on just a

single outcome over time may not provide a complete picture of cardiac function.

In genetics, the phenomenon that a single gene or locus influences more than one trait is known

as pleiotropy (Wang et al., 2014; Gratten and Visscher, 2016). Genetic pleiotropy plays a crucial

role in many complex diseases. One of the most well-known examples is the phenylketonuria

(PKU) disease (Lobo, 2008). The conventional approach to identify genetic pleiotropic effects

on multiple traits is to test the association between a gene and each trait individually and then

determine whether the genetic effect is significantly associated with more than one trait. The

disadvantages of this approach, such as the inflation in the family-wise Type I error and incomplete

information in individual tests compared to a combined analysis for multiple traits, have been

discussed in some studies (e.g. Wang et al., 2014). Therefore, a joint genetic association test on

multiple traits is more desirable to control the family-wise Type I error and enhance the power of

tests.

In real life, timing is a very important factor in the development of a disease. Genetic effects

on a disease trait vary during the life span of an individual. The function of a gene depends largely

on when it turns on and off, which could show a temporal pattern. In order to capture the dynamic
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effect of a gene on a disease trait over time, it is natural to model the dynamic effect as a potential

nonlinear function over time. Considering multiple longitudinal traits, we proposed the following

partially linear varying coefficients model,

Yli j = Yli(ti j) = β0l(ti j)+β1l(ti j)Gi +ααα lZi j + εli j, (4.1)

where Yli j is the response variable which measures the l-th phenotype on the i-th subject at the

j-th time point; Zi j is a p-dimensional vector of covariates, which can be either dependent or

independent of time; Gi denotes the time-invariant genetic variable within subject; β0l(·) and β1l(·)

are unknown functions; and εli j is an error term which is assumed to following the following joint

distribution,

εεε i =


εεε1i

...

εεεLi

∼ N
(
0,ΣΣΣ
)

with ΣΣΣ be some covariance structure. If we use a time-varying environmental factor Xi j instead of

ti j in the model, i.e.

Yli j = β0l(Xi j)+β1l(Xi j)Gi +ααα lZi j + εli j,

then the model can be used for jointly modeling dynamic G×E interactions for multiple longitudi-

nal traits.

Models for multivariate longitudinal traits are necessarily complex, because they must consider

different types of correlations for each independent subject: correlation between measurements for

the same trait at different time points, correlation between measurements at the same time point

on different traits, and correlation between measurements at different time points and on different

traits.

Qu and Li (2006) applied the method of quadratic inference functions (QIF) to the varying

coefficients models for longitudinal data. One important advantage is that the QIF method only

requires correct specification of the mean structure and does not require any likelihood or approxi-

mation of the likelihood in hypothesis testing. In addition, when the working correlation structure
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is misspecified, the QIF is more efficient than the generalized estimation equation (GEE) approach.

Another advantage of QIF approach is that the inference function has an asymptotic form, which

provides a model selection criteria similar to AIC and BIC. It also allows us to test whether coeffi-

cients are significantly time-varying based on the asymptotic results.

The purpose of this paper is to develop a set of hypothesis testing procedure, including joint

testing for multiple traits and marginal testing for each individual trait, for model (4.1). We first use

penalized splines (Ruppert and Carroll, 2000) to approximate the nonparametric functions in the

model. Then we develop a 2-step testing procedure to first jointly test the genetic effect on multiple

traits and then separately test marginal genetic effect on each trait based on the QIF approach.

Estimation of the parametric coefficients and nonparametric spline coefficients are obtained under

the QIF framework.

This chapter is organized as follows: we state our proposed model in Section 4.2.1, and define

the objective function in a QIF method in Section 4.2.2. Estimation procedure and asymptotical

properties of estimators are provided in Section 4.2.3. A model selection criteria using BIC is

provided in Section 4.2.4. A theorem for goodness-of-fit test in QIF approach is established in

Section 4.2.5 and we propose a 2-step testing procedure based on that in Section 4.2.6. We assess

the finite sample performance of the proposed procedure with Monte Carlo simulation in Section

4.3 and illustrate the proposed methodology by the analysis of a pain sensitivity data set in Section

4.4. Conclusions and discussion are made in Section 4.5. Proofs are included in Appendix.

4.2 Joint models and statistical methods

4.2.1 Joint multivariate models

In multivariate longitudinal studies, suppose yli j is the l-th continuous outcome collected on the

i-th observation at the time point ti j, where l = 1, . . . , L, i = 1, . . . , N, j = 1, . . . , ni. The joint
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partially linear varying coefficient models are defined as

yli j = yli(ti j) = β0l(ti j)+β1l(ti j)Gi +ααα lZ(ti j)+ εli j,

where Gi is the SNP variable which is not depend on time and type of measurement, ZZZ(ti j) is the

p-dimensional covariate vector, which can be either time-dependent or time-independent. εli j is

an error term and

εεε i =


εεε1i

...

εεεLi

∼ N
(
0,ΣΣΣ
)

with ΣΣΣ be some covariance structure. β0l(·) and β1l(·) are unknown smooth nonparametric func-

tions. To illustrate the idea, in the following we demonstrate the methods assuming L=2. For the

situation where there are more than two traits (L > 2), the technique can be easily extended. For

the case when L=2, the joint models can be written as

y1i j = y1i(ti j) = β01(ti j)+β11(ti j)Gi +ααα1Z(ti j)+ ε1i j,

y2i j = y2i(ti j) = β02(ti j)+β12(ti j)Gi +ααα2Z(ti j)+ ε2i j,

where

εεε i =

 εεε1i

εεε2i

∼ N


 0

0

 ,
 σ2

1 ΣΣΣ11 ρ12σ1σ2ΣΣΣ12

ρ12σ1σ2ΣΣΣ21 σ2
2 ΣΣΣ22




4.2.2 Objective function based on QIF

To construct the objective function using the QIF approach, we first approximate the unknown

functions β01, β11, β02 and β12 by a q-degree truncated power spline basis, i.e.

βsl(t)≈ Bsl(t)
T

γγγsl , for s = 0,1 and l = 1,2, (4.2)

where Bsl(t) = (1, t, t2, ..., tqsl ,(t−κ1)
qsl
+ , ...,(t−κKsl )

qsl
+ )T is a truncated power spline basis with

degree qsl and Ksl knots κ1, ...,κKsl . γγγsl is a (qsl +Ksl + 1)-dimensional vector of spline coeffi-

cients.
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In a GEE approach we solve

N

∑
i=1

µ̇µµ
T
i V−1

i (yi−µµµ i) = 0, (4.3)

where yi = (yT
1i,y

T
2i)

T , yli = (yli1, ...,ylini)
T ; µµµ i = E(yi) is the mean function and µ̇µµ i is the first

derivative of µµµ i with respect to the parameters; Vi is the covariance matrix of yi and can be de-

composed as Vi =A1/2
i R(ρρρ)A1/2

i with Ai being a diagonal matrix of marginal variances and R(ρρρ)

being a correlation matrix with nuisance parameters ρρρ . QIF approach considers the inverse of the

correlation matrix R as a linear combination of several known basis matrices in a form

R−1 ≈ a1M1 +a2M2 + ...+ahMh, (4.4)

where M1 is the identity matrix and M2, ...,Mh are symmetric basis matrixes. For exchangeable

working correlation, M2 has 0 on the diagonal and 1 elsewhere. If the working correlation is

AR(1), we can set M2 to have 1 on its two subdiagonals and 0 elsewhere. Plugging the expression

of R−1 (4.4) into the GEE stated in (4.3), we define the estimation function as

ḡN(θθθ) =
1
N

N

∑
i=1

gi(θθθ) =
1
N


∑

N
i=1 µ̇µµ

T
i A−1/2

i M1A−1/2
i (yi−µµµ i)

...

∑
N
i=1 µ̇µµ

T
i A−1/2

i MhA−1/2
i (yi−µµµ i)

 (4.5)

Using the spline approximation, the mean function µµµ i can be written as

µµµ i(θθθ) =

 µµµ1i(θθθ)

µµµ2i(θθθ)

=



µ1i1(θθθ)

...

µ1ini(θ
θθ)

µ2i1(θθθ)

...

µ2ini(θ
θθ)


=



BT
01(ti1)γγγ01 +BT

11(ti1)γγγ11Gi +ααα1Z(ti1)
...

BT
01(tini)γγγ01 +BT

11(tini)γγγ11Gi +ααα1Z(tini)

BT
02(ti1)γγγ02 +BT

12(ti1)γγγ12Gi +ααα2Z(ti1)
...

BT
02(tini)γγγ02 +BT

12(tini)γγγ12Gi +ααα2Z(tini)


,
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and the first derivative of µµµ i is

µ̇µµ i =



BT
01(ti1) BT

11(ti1)Gi Z(ti1) 0 0 0
...

...
...

...
...

...

BT
01(tini) BT

11(tini)Gi Z(tini) 0 0 0

0 0 0 BT
02(ti1) BT

12(ti1)Gi Z(ti1)
...

...
...

...
...

...

0 0 0 BT
02(tini) BT

12(tini)Gi Z(tini)


,

where θθθ = (γγγT
01,γγγ

T
11,ααα

T
1 ,γγγ

T
02,γγγ

T
12,ααα

T
2 )

T .

Setting each component in (4.5) to be zero will result in more equations than unknown param-

eters. Following the idea of generalized method of moments (Hansen, 1982), the QIF is defined

as

QN(θθθ) = NḡT
NC̄−1

N ḡN , (4.6)

where C̄N = 1
N ∑

N
i=1 gigT

i is a consistent estimator for var(gi). Minimizing the objective function

(4.6) provides the estimations of parameters.

4.2.3 Estimation

The estimation of the parameters can be obtained through minimizing the objective function, i.e.

θ̂θθ = argmin
θθθ

QN(θθθ).

To avoid over-fitting, we can define a penalized QIF in a form

N−1QN(θθθ)+λθθθ
T Dθθθ , (4.7)

where D is a diagonal matrix with 1 if the corresponding parameter is the spline coefficient asso-

ciated with knots and 0 otherwise. Minimizing the penalized QIF provides

θ̂θθ = argmin
θθθ

(N−1QN(θθθ)+λθθθ
T Dθθθ). (4.8)
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To estimate the tuning parameter λ , we can extend the generalized cross-validation (Ruppert, 2002;

Qu and Li, 2006; Bai et al., 2009) to the penalized QIF and define the generalized cross-validation

statistic as

GCV(λ ) =
N−1QN

(1−N−1d f )2

with the effective degree of freedom

df = tr
[
(Q̈N +2NλD)−1Q̈N

]
,

where Q̈N is the second derivative of QN . The optimized tuning parameter λ is given as

λ̂ = argmin
λ

GCV(λ ).

To establish the asymptotic properties for the penalized quadratic inference function estimators

with fixed knots, we assume θθθ 0 is the parameter satisfying Eθθθ0
(gi) = 0. Similar theoretical results

are provided in Qu and Li (2006). Following their idea and extend those results to the estimators

in our model, we get the strong consistency of the resulting estimators in Theorem 6. The
√

N-

consistency and asymptotic normality of the estimators are given in Theorem 7 .

Theorem 6 Suppose conditions (B1)-(B6) in the Appendix hold and the smoothing parameter

λN = o(1), then the estimator θ̂θθ , which is obtained by minimizing the penalized quadratic function

in (4.7), exists and converges to θθθ 0 almost surely.

Theorem 7 Suppose conditions (B1)-(B6) in the Appendix hold and the smoothing parameter

λN = o(N−1/2), then the estimator θ̂θθ obtained by minimizing the penalized quadratic function

in (4.7) is asymptotically normally distributed with the limiting distribution,

√
N(θ̂θθ −θθθ 0)

d−→ N(0,(GT
0 C−1

0 G0)
−1),

where the calculation of G0 and C0 can be found in Appendix.
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4.2.4 Model selection

In contrast to the complicated model selection in GEE method due to the lack of an objective func-

tion in its estimation procedure, it is natural to extend the BIC method to the QIF approach since

the QIF objective function and twice the negative log-likelihood function have similar asymptotic

properties. Under the assumption E(g) = 0 and the number of estimating equations is larger than

the number of parameters, we have Q(θ̂θθ)
d−→ χ2

r−k (Hansen, 1982), where r is the dimension of

ḡN(θθθ), k is the dimension of θθθ , θ̂θθ is the estimator by minimizing the QIF when certain order and

number of knots are chosen. Based on the asymptotic property of QIF, the BIC criterion for a

model with r estimating equations and k parameters is

Q(θ̂θθ)+(r− k) lnN.

The model with minimum BIC would be considered optimal.

4.2.5 Nonparametric goodness-of-fit test

Compared to GEE, an advantage of QIF approach is that QIF provides a goodness-of-fit test with-

out estimations for second moment parameters. In Model (4.1), it is of interest to test whether the

spline approximations for the varying coefficient functions are appropriate.

Qu et al. (2000) constructed a test statistic based on QIF. Suppose that the d-dimension param-

eter vector γγγ is partitioned into (ψψψ,ζζζ ), where ψψψ is the parameter of interest with dimension d1,

and ζζζ is a nuisance parameter with dimension d2 = d−d1. If we are interested in testing

H0 : ψψψ = ψψψ0,

the test statistic

Q(ψψψ0, ζ̃ζζ )−Q(ψ̂ψψ, ζ̂ζζ )

follows an asymptotically chi-square distribution with d1 degrees of freedom.
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Theorem 8 (Qu et al., 2000) Suppose that all required regularity conditions are satisfied and ψψψ

has dimension d1. Under the null hypothesis, QN(ψψψ0, ζ̃ζζ )−QN(ψ̂ψψ, ζ̂ζζ ) is asymptotically chi-square

distribution with d1 degrees of freedom, where

ζ̃ζζ = argminQN(ψψψ0,ζζζ ), (ψ̂ψψ, ζ̂ζζ ) = argminQN(ψψψ,ζζζ ). (4.9)

4.2.6 Two-step hypothesis testing procedure

In Model (4.1), it is of interest to test whether the genetic effects on multiple traits are significant or

not. Based on Theorem 8, we develop a 2-step testing procedure for testing the significance of the

varying coefficient functions. In the first step, the joint test is performed to see whether a genetic

factor has significant effect on at least one longitudinal trait. If the testing result in the first step

is significant, we will further conduct the marginal tests in the second step to assess if the genetic

effect is significant on both traits or just one trait. So the first step is a joint test of significance

followed by a marginal test to assess individual significance.

4.2.6.1 Step 1: Joint test

First, we are interested in testing whether the genetic factor G has effect on at least one longitudinal

trait. The hypothesis is stated as

H0 : β11(·) = β12(·) = 0 v.s. H1 : β11(·) 6= 0 or β12(·) 6= 0.

This can be handled through the truncated power spline approximation of the nonparametric func-

tions stated in (4.2). In particular, test this hypothesis is equivalent to test the following null

hypothesis

H0 : γγγ11 = γγγ12 = 0.

According to Theorem 8, we can construct a test statistic

TN = QN(θ̃θθ)−QN(θ̂θθ),
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where

θ̃θθ = argmin
γγγ11=γγγ12=0

QN
{

γγγ01,γγγ11,ααα1,γγγ02,γγγ12,ααα2 | y1,y2,G,Z
}
,

and

θ̂θθ = argminQN
{

γγγ01,γγγ11,ααα1,γγγ02,γγγ12,ααα2 | y1,y2,G,Z
}
.

The test statistic TN has an asymptotical χ2 distribution with degree of freedom equals the number

of constraints under H0, according to Theorem 8.

4.2.6.2 Step 2: Marginal tests

From the joint test, if there exist a significant genetic effect on at least one longitudinal trait, then

we can further test the marginal effects:

H0 : β1l(·) = 0 v.s. H1 : β1l(·) 6= 0, l = 1,2.

Based on (4.2), this is equivalent to test the following two hypotheses

H0 : γγγ11 = 0

and

H0 : γγγ12 = 0

separately.

For testing H0 : γγγ11 = 0, we use test statistic

TN1 = QN(γ̃γγ01,0, α̃αα1)−QN(γ̂γγ01, γ̂γγ11, α̂αα1),

where

(γ̃γγ01,0, α̃αα1) = argmin
γγγ11=0

QN
{

γγγ01,γγγ11,ααα1 | y1,G,Z
}
,

and

(γ̂γγ01, γ̂γγ11, α̂αα1) = argminQN
{

γγγ01,γγγ11,ααα1 | y1,G,Z
}
.
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We can also construct another test statistic

TN2 = QN(γ̃γγ02,0, α̃αα2)−QN(γ̂γγ02, γ̂γγ12, α̂αα2)

for testing H0 : γγγ12 = 0, where

(γ̃γγ02,0, α̃αα2) = argmin
γγγ12=0

QN
{

γγγ02,γγγ12,ααα2 | y2,G,Z
}
,

and

(γ̂γγ02, γ̂γγ12, α̂αα2) = argminQN
{

γγγ01,γγγ12,ααα2 | y2,G,Z
}
.

The asymptotical distribution of test statistics TN1 and TN2 can be obtained from Theorem 8.

4.3 Simulation study

4.3.1 Simulation setup

In this section, the finite sample performance of the proposed method is evaluated through Monte

Carlo simulation studies. The two continuous variables are generated from the models

y1i(ti j) = β01(ti j)+β11(ti j)Gi +α1z(ti j)+ ε1i j,

y2i(ti j) = β02(ti j)+β12(ti j)Gi +α2z(ti j)+ ε2i j,

where β01(ti j) = 0.5cos(2πti j), β11 = sin(π(ti j − 0.2)), β02(ti j) = sin(πti j)− 0.5, β12(ti j) =

cos(πti j − 0.8), α1 = 0.2 and α2 = 0.3. We generate T time points ti = (ti1, . . . , tiT ) from a u-

niform distribution U(0,1). The predictor variable z(ti j) is also generated from U(0,1). We set

the minor allele frequency (MAF) as pA = 0.5 and assume Hardy-Weinberg equilibrium. Three

different SNP genotypes AA, Aa and aa are simulated from a multinomial distribution with fre-

quencies p2
A, 2pA(1− pA) and (1− pA)

2, respectively. Variable G takes value in the set {0,1,2},

corresponding to genotypes {aa,Aa,AA}. We assume ε1i j and ε2i j are jointly normally distributed

with the correlation corr(ε1i j,ε2i j) = 0.5. Then we generate the error terms from a multivariate
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normal distribution εεε1i

εεε2i

∼ N


 0

0

 ,

 σ2
1 Σ11 0.5σ1σ2Σ12

0.5σ1σ2Σ12 σ2
2 Σ22




We set the marginal variances σ2
1 = σ2

2 = 0.1. The true correlation structure of Σ11, Σ22, and Σ12

are all exchangeable with ρ1 = 0.5, ρ2 = 0.5 and ρ12 = 0.2, respectively.

We draw 1000 data sets with sample size N = 200,500 and time points ni = T = 10, in order

to compare the performances of our proposed method under different sample sizes. We set M1 to

be the identity matrix and M2 to has 1 on subdiagonals and 0 elsewhere. The order and number of

knots of the splines are chosen by the BIC method.

4.3.2 Performance of estimation

Table 4.1 summarizes the parameter estimation for unknown coefficients. In this table, the aver-

age bias (Bias), the standard deviation of the 1000 estimates (SD), the average of the estimated

standard error (SE) based on the theoretical results, and the estimated coverage probability (CP)

at 95% confidence level are reported. In general, the biases for all parameter estimations are very

small, the coverage probabilities are very close to the confidence level 95%, which indicate good

performance of our proposed estimation procedure. As the sample size increases, the performance

of the estimation improves by showing smaller bias, SD and SE.

Table 4.1 Estimation results for parameters α1 and α2 with sample size N = 200,500.

N Parameter True Bias SD SE CP
200 α1 0.2 0.0004 0.018 0.018 94.6

α2 0.3 0.0006 0.018 0.018 94.2

500 α1 0.2 -5.2E-05 0.012 0.012 95.2
α2 0.3 -0.0003 0.012 0.012 94.8

The plots for the estimations of nonparametric functions β01(·) and β11(·) under different sam-

ple sizes are shown in Figure 4.1. The estimated and true functions are denoted by the solid and

dashed lines, respectively. The 95% confidence bands are denoted by the dotted-dash line. The

63



estimated curves almost overlap with the corresponding true curves as shown in the plots, indicat-

ing good estimate of the function. Larger sample size leads to tighter confidence bands. Figure

4.2 displays the estimations for functions β02(·) and β12(·), which are included in the model cor-

responding to response variable y2. The results are similar to those in Figure 4.1 and further

demonstrate the good performance of our estimation methods.
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Figure 4.1 The estimation of nonparametric functions β01(·) and β11(·) when N=200, 500. The
estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence bands are denoted by the dotted-dash line.
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Figure 4.2 The estimation of nonparametric functions β02(·) and β12(·) when N=200, 500. The
estimated and true functions are denoted by the solid and dashed lines respectively. The 95%
confidence bands are denoted by the dotted-dash line.

4.3.3 Performance of hypothesis tests

4.3.3.1 Performance for joint test

We evaluate the performance of the joint test under the null hypothesis H0 : β11(·) = β12(·) = 0.

Power is evaluated under a sequence of alternative models with different values of τ , which is

denoted by Hτ
1 : β τ

11(·) = τβ11(·) and β τ
12(·) = τβ12(·).

Figure 4.3 shows the empirical size (when τ = 0) and power function (when τ > 0) at signif-

icance level 0.05. We obtain 1000 Monte Carlo simulations to assess the null distribution of test

statistic under sample sizes N = 200, 500. The empirical Type I error under both sample sizes are
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close to the nominal level 0.05 and the power increases dramatically when τ increases from 0 to

0.05. To see the effect of sample size, we compare the performances under N=200 and N=500.

As expected, the Type I error is closer to 0.05 and the power increase faster for larger sample size

when N=500. For a relatively small sample size N=200, the Type I error is a little inflated and the

power function increases slower compared to the case with N = 500. Overall, the results indicate

good performance of the proposed joint testing procedure.
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Figure 4.3 The power plot for the joint test under different sample sizes N=200, 500 when T =10.

4.3.3.2 Performance for marginal tests

The performance of the marginal tests for the nonparametric functions corresponding to different

traits is evaluated through simulations. Two null hypotheses H0 : β11(·) = 0 and H0 : β12(·) = 0

were considered separately. For each test, power is evaluated under a sequence of alternative

models, denoted by Hτ
a : β τ

1l(·) = τβ1l(·), l = 1,2, correspondingly.

Figure 4.4 displays the power for both marginal tests under different sample sizes N=200 and

500.The empirical Type I error under both sample sizes are very close to the nominal level 0.05

and the power increases dramatically when τ increases from 0 to 0.05. It is obvious that the power
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increases more rapidly with larger sample size, while the overall performances under N=500 and

N=200 are close, which indicates that our method performances well and does not require very

large sample size.
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Figure 4.4 The power plots for the marginal test for N=200, 500 and T =10.

In summary, the simulation results indicate that our proposed estimation method works well.

The test results indicate that the asymptotic χ2 distribution for the proposed joint and marginal test

works reasonably well under a finite sample size.
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4.4 Real data application

We applied the proposed multivariate partially linear varying coefficients model and the two-step

hypothesis testing procedure to a data set from a study examining the association of the A118G

SNP of OPRM1 to experimental pain sensitivity. A sample of 163 healthy volunteers were evolved

in this study. For each subject, Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)

were measured at 6 dosage levels of Dobutamine to assess the genetic effect on drug response. The

6 dosage levels are: 0 (baseline), 5, 10, 20, 30 and 40mcg/min. We treat the dosage levels as time

in this analysis.

We consider the partially linear varying coefficient model with two longitudinal traits, with the

form

Y SBP
i j = β

SBP
0 (Xi j)+β

SBP
1 (Xi j)Gi +α

SBPZi + ε
SBP
i j ,

Y DBP
i j = β

DBP
0 (Xi j)+β

DBP
1 (Xi j)Gi +α

DBPZi + ε
DBP
i j .

The two longitudinal traits are SBP and DBP. One time-invariant covariate Z = age are included

in the model. Five SNPs codon16, codon27, codon49, codon389, codon492 are considered.

Table 4.2 displays the results of the joint and marginal testing for responses SBP and DBP,

respectively. We note that condon49 and condon389 show significant result with p-values smaller

than the significance level 0.05. Further marginal tests tell us that SNP condon49 has significant

association with SBP but not DBP, while SNP condon389 has significant association with DBP but

not SBP. The results indicate no pleiotropic effect of the two SNPs. In addition, we note that for

SNP condon16, the joint test does not show significant result but the p-value of the marginal test

for SBP is smaller than the significance level. If we choose α = 0.1 significance level, then the

SNP shows a potential pleiotropic effect on the two traits.
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Table 4.2 List of SNPs with MAF, allele, p-values under the joint and marginal testing for SBP and
DBP.

p-values under different null hypotheses
SNP ID MAF Alleles βSBP

1 = βDBP
1 = 0 βSBP

1 = 0 βDBP
1 = 0 βSBP

1 is linear βDBP
1 is linear

codon16 0.3990 A/G 0.0866 0.0428 0.0514 0.8311 0.3094
codon27 0.4160 G/C 0.3048 0.3819 0.1018 0.5938 0.1012
codon49 0.1387 G/A 0.0229 0.0410 0.8349 0.7846 0.4439
codon389 0.3045 G/C 0.0343 0.3550 0.0242 0.2150 0.2938
codon492 0.4250 T/C 0.3234 0.5779 0.6957 0.2611 0.7875

Table 4.3 shows the estimation results for the age effect α1 and α2. The results show that age

does not have significant contribution to the two blood traits in this data set.

Table 4.3 List of SNPs with MAF, allele, estimation of coefficients, p-values of significance for
coefficients corresponding to SBP and DBP, respectively.

p-value
SNP ID MAF Alleles α̂SBP α̂DBP H0 : αSBP = 0 H0 : αDBP = 0
codon16 0.3990 A/G 0.0109 -0.0435 0.8562 0.5005
codon27 0.4160 G/C 0.0235 -0.0365 0.7078 0.5902
codon49 0.1387 G/A 0.0356 -0.0336 0.5637 0.6079

codon389 0.3045 G/C 0.0103 -0.0644 0.8743 0.3409
codon492 0.4250 T/C 0.0213 -0.0494 0.7366 0.4679

Figure 4.5 illustrates the estimated shapes for nonparametric coefficient functions for different

SNPs for trait SBP. The 95% confidence bands cover the zero line for SNPs condon27, condon389

and condon492, which agrees with the testing results that these SNPs do not show significance. For

SNP condon49 which shows significance at α = 0.05 level, the estimated increasing effect function

as dosage increases suggests that this SNP positively responds to dosage increase to affect SBP.

Figure 4.6 illustrates the estimated shapes for nonparametric coefficient functions for different

SNPs for trait DBP. Again, we observe that the 95% confidence bands cover the zero line for SNPs

condon27, condon49 and condon429 which agrees with the testing results that these SNPs are

not significant. For SNP condon389, the estimated effect function shows a marginal significance,

indicating the role of this SNP to drug response on DBP.
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Figure 4.5 Plot of the estimate (solid curve) of the nonparametric function β SBP
1 (·) for SNPs

codon16, codon27, codon49, codon389 and codon492. The 95% confidence bands are denoted
by the dashed line.
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Figure 4.6 Plot of the estimate (solid curve) of the nonparametric function β DBP
1 (·) for SNPs

codon16, codon27, codon49, codon389 and codon492. The 95% confidence bands are denoted by
the dashed line.

4.5 Discussion

Identification of genetic pleiotropy effects has been an important task in genetic association stud-

ies. If one gene is associated with multiple traits, special attention should be paid to such genes
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when designing drug target on those genes. In this paper, we propose a joint multivariate vary-

ing coefficient modeling procedure to accommodate correlated longitudinal traits and propose a

testing procedure to find the dynamic genetic association between SNPs and multiple traits. Both

simulation and real data analysis demonstrate the utility of the proposed method.

One difficulty in jointly modeling multiple longitudinal traits is to model the complex corre-

lation structure. For each subject, we should consider correlation between measurements for the

same trait at different time points, correlation between measurements at the same time point on

different traits, and correlation between measurements at different time points and on different

traits. We implement the QIF approach in estimation and testing procedures. There are several

advantages for QIF approach. First, the QIF approach only requires correct specification of the

mean structure and does not require any joint likelihood in hypothesis testing. Second, it avoids

estimating the nuisance correlation structure parameters by assuming that the inverse of working

correlation matrix can be approximated by a linear combination of several known basis matrices.

Third, when the working correlation structure is misspecified, the QIF is more efficient than the

GEE approach. Forth, the inference function of the QIF approach has an explicit asymptotic form,

which provides a model selection criteria and allows us to test whether coefficients are significant

or time varying based on the asymptotic results.

Our method was demonstrated with the L = 2 case. The proposed method can be extended

to multiple longitudinal traits with L > 2, although the computational cost might increase. In the

real application, we investigate association of SNPs in a candidate gene with two longitudinal

traits SBP and DBP. Although the data were not longitudinal in terms of time measurement, the

increasing dosage levels can be treated in a time scale. So we can apply the proposed method.

The results indicate a weakly pleiotropic effect for SNP condon16 to affect both SBP and DBP.

As the application shows, our method is not restricted to a longitudinal study. It also applies to

other studies where a certain trait can be measured in a linear scale. Therefore, our method is

directly applicable to neuro-genetics studies in which the purpose is to identify SNPs associated

with spatial distribution of neuroimages in brain.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The originalities and contributions of our work can be summarized in two respects. From the re-

spect of statistical methodology, we propose a functional varying index coefficient model (FVICM)

to capture the nonlinear G×E interactions under a longitudinal design. In the development of the

estimation procedure, penalized spline method is implemented to approximate the nonparametric

unctions in the model. A profile estimation procedure is proposed to estimate two sets of param-

eters: the index loading coefficients and spline coefficients. Then the quadratic inference function

approach for analysing longitudinal data is extended to estimate the index loading coefficients and

spline coefficients in the profile estimation method. To test the linearity of nonparametric G×E

interaction function, we apply the pseudo-likelihood ratio test using a linear mixed model rep-

resentation of our proposed model. Consistency and asymptotic normality of the estimators are

established.

To deal with binary longitudinal traits, it is a natural extension of the FVICM to a generalized

functional varying index coefficient model (gFVICM) for investigating nonlinear G×E interaction-

s. We modify the profile estimation procedure with QIF approach to the gFVICM and establish

theoretical results of the estimators. Then we proposed a testing procedure based on the asymptotic

χ2 distribution of the objective function in QIF approach. The testing procedure can be used to

assess the linearity of the interaction function.

For some complex diseases, there are multiple phenotypes that can be used to quantify the risk

of diseases and sometimes they have shared genetic determinations and this phenomenon is termed

genetic pleiotropy. A joint modeling for multiple longitudinal traits using varying index coefficient

model is proposed in our work to deal with correlated longitudinal traits in G×E interaction prob-

lems. One difficulty of the joint model is the specification of the complicated correlation structure.
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The important advantage of QIF approach is that a misspecified working correlation does not affec-

t the consistency of the regression parameter estimation, and the QIF provides a robust sandwich

estimator for the variance of the regression parameter estimator. When the working correlation

structure is misspecified, the QIF is more efficient than the GEE.

From the application perspective, the varying index coefficient modeling is a powerful tool

when we consider the joint effect of environmental mixtures and how they interact with genes to

affect disease risk. Our methods are well motivated by epidemiological studies with the hope to

identify any synergistic G×E interaction effects. Real data application shows that, compared to the

additive varying coefficient model, which consider the G×E for each single environmental factor

separately, our models outperform in detecting the significant interaction effect since it can reduce

multiple testing burden by treating the serval environmental variables as a single index variable.

Also, the assumption of a nonparametric interaction is flexible for possible nonlinear interactions

in practice. We also provide a framework to assess the simultaneous genetic effect on multiple

phenotypes with longitudinal data.

5.2 Future work

In the future, we plan to extend the functional varying index coefficient model to joint modeling

of binary and continuous longitudinal traits. This is practically important for some diseases. For

example, over-weighted people will have a higher chance to develop hypertension. Both obese and

hypertension might share some common genetic determinants. Jointly modeling the binary hyper-

tension and continuous body weight or BMI could shed novel insights into the genetic etiology of

the disease. The main difficulty of joint modeling for binary and continuous longitudinal traits is

the lack of a joint distribution. To overcome this difficulty, many researchers introduce a continu-

ous latent variable underlying the binary response and assuming a joint normal distribution for the

latent variable and the continuous variable. Catalano and Ryan (1992) suggested to decompose the

joint distribution into two components: a marginal distribution for the continuous response and a
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conditional distribution for the binary distribution given the continuous response. The first com-

ponent can be easily modeled. The conditional distribution for binary response can be modeled

using the underlying latent continuous variable through a probit link function. Kürüm et al. (2016)

proposed the time-varying coefficient models for joint modeling binary and continuous longitudi-

nal responses based on the above idea. However, they only focus on the estimation part and did

not provide a testing method for the nonparametric functions in the model. Motivated by their

work, we can extend their method to varying index coefficient models for joint modeling binary

and continuous longitudinal traits and develop a testing method for joint testing of the significance

or linearity of the interaction functions. This will be investigated in our future work.
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Regularity conditions

To establish the asymptotic properties for the estimator of θθθ , we need the following regularity

conditions.

(A1) {ni} is a bounded sequence of integers.

(A2) The parameter space Ω is compact and θθθ
∗
0 is an interior point of Ω.

(A3) The parameter θθθ
∗ is identified, that is, there is a unique θθθ

∗
0 ∈ Ω such that the mean zero

model assumption E[g(θθθ∗0)] = 0.

(A4) E[g(θθθ)] is continuous in θθθ .

(A5) C̄N(θ̂θθ
∗
) = 1

N ∑
N
i=1 gi(θ̂θθ

∗
)gi(θ̂θθ

∗
)T converges almost surely to C0, which is a constant and

invertible matrix.

(A6) The first derivative of ḡN exists and is continuous. ∂ ḡN
∂θθθ∗ (θ̂θθ

∗
) converges in probability to G0

if θ̂θθ
∗

converges in probability to θθθ
∗
0.

(B1) {ni} is a bounded sequence of integers.

(B2) The parameter space Ωθθθ is compact and θθθ 0 is an interior point of Ωθθθ .

(B3) The parameter θθθ is identified, that is, there is a unique θθθ 0 ∈ Ωθθθ such that the first moment

assumption E[gi(θθθ 0)] = 0 holds for i = 1, ...,N, and E[gi(θθθ)] is continuous.

(B4) E[g(θθθ)] is continuous in θθθ .

(B5) C̄N(θ̂θθ) =
1
N ∑

N
i=1 gi(θ̂θθ)gi(θ̂θθ)

T converges almost surely to C0, which is a constant and invert-

ible matrix.

(B6) The first derivative of ḡN exists and is continuous. ∂ ḡN
∂θθθ

(θ̂θθ) converges in probability to G0 if

θ̂θθ converges in probability to θθθ 0.
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Proof of Theorem 1:

If we can prove that θ̂θθ
∗

exist and converges to θθθ
∗
0 almost surely, then we can prove the consistency

of θθθ directly. θ̂θθ
∗
= argmin(N−1QN(θθθ

∗)+ λθθθ
∗T Dθθθ

∗) exists because (2.4) has zero as a lower

bound and the global minimum exists. To prove the consistency, first, the estimator θ̂θθ
∗

is obtained

by minimizing N−1QN(θθθ
∗)+λθθθ

∗T Dθθθ
∗, then we have

1
N

QN(θ̂θθ
∗
)+λN θ̂θθ

∗T
Dθ̂θθ
∗
≤ 1

N
QN(θθθ

∗
0)+λNθθθ

∗T
0 Dθθθ

∗
0. (1)

Since
1
N

QN(θθθ
∗
0) = ḡT

N(θθθ
∗
0)C̄
−1
N (θθθ∗0)ḡN(θθθ

∗
0) = o(1)

by the strong law of large number and (A5), and λN = o(1),

1
N

QN(θθθ
∗
0)+λNθθθ

∗T
0 Dθθθ

∗
0

a.s.−−→ 0.

Thus, we can obtain from (1) that

1
N

QN(θ̂θθ
∗
) = ḡT

N(θ̂θθ
∗
)C̄−1

N (θ̂θθ
∗
)ḡN(θ̂θθ

∗
)

a.s.−−→ 0. (2)

Since the parameter space Ω is compact, by Glvenko-Cantelli theorem,

sup
θ∗∈Ω

∣∣∣ḡN(θθθ
∗)−E[g(θθθ∗)]

∣∣∣ a.s.−−→ 0.

Hence, by (A5) and the continuous mapping theorem,∣∣∣ḡT
N(θ̂θθ

∗
)C̄−1

N (θ̂θθ
∗
)ḡN(θ̂θθ

∗
)−E[g(θ̂θθ

∗
)]T C−1

0 E[g(θ̂θθ
∗
)]
∣∣∣ a.s.−−→ 0.

Combined with (2), we get

E[g(θ̂θθ
∗
)]T C−1

0 E[g(θ̂θθ
∗
)]

a.s.−−→ 0. (3)

Then we will show that it is impossible that θ̂θθ
∗

remains outside of U , where U is any neighbor-

hood of the true parameter θθθ
∗
0. Suppose there exist a neighborhood U such that θ̂θθ

∗
∈Uc. Since

E[g(θθθ∗)]T C−1
0 E[g(θθθ∗)] is a continuous function and Uc is compact, there exists a point θ̃θθ

∗
∈Uc

such that

E[g(θ̃θθ
∗
)]T C−1

0 E[g(θ̃θθ
∗
)]
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achieve its minimum in Uc. By the identification of θθθ
∗ in (A3), there is a unique θθθ

∗
0 ∈Ω satisfying

E[g(θθθ 0)] = 0, we have

E[g(θθθ∗)]T C−1
0 E[g(θθθ∗)]> 0,

which contradicts (3). Then we can prove that θ̂θθ
∗

converges almost surely to θθθ
∗. Thus, θ̂θθ is a

consistent estimator of θθθ .

Proof of Theorem 2

The estimate of θθθ satisfies

0 =
1
N

∂QN
∂θθθ
∗ (θ̂θθ

∗
)+2λNDθ̂θθ

∗
.

By Taylor expansion, we obtain

0 =
1
N

∂QN
∂θθθ

∗
(θθθ∗0)+2λNDθθθ

∗
0 +
( 1

N
∂ 2QN

∂θθθ
∗2 (θ̃θθ

∗
)+2λND

)
(θ̂θθ
∗
−θθθ
∗
0),

where θ̃θθ
∗

is some value between θ̂θθ
∗

and θθθ
∗
0. Thus, we can have

θ̂θθ
∗
−θθθ
∗
0 =−

( 1
N

∂ 2QN

∂θθθ
∗2 (θ̃θθ

∗
)+2λND

)−1( 1
N

∂QN
∂θθθ
∗ (θθθ

∗
0)+2λNDθθθ

∗
0

)
. (4)

Since θ̂θθ
∗

converges to θθθ
∗
0 in probability and θ̃θθ

∗
is between θ̂θθ

∗
and θθθ

∗
0, by (A5) and (A6) we can

get

1
N

∂ 2QN

∂θθθ
∗2 (θ̃θθ

∗
) = 2

∂ ḡN
∂θθθ
∗

T
(θ̃θθ
∗
)C̄−1

N (θ̃θθ
∗
)
∂ ḡN
∂θθθ
∗ (θ̃θθ
∗
)+op(1)

p−→ 2GT
0 C−1

0 G0

When λN = o(N−1/2),

( 1
N

∂ 2QN

∂θθθ
∗2 (θ̃θθ

∗
)+2λND

)−1
=

1
2
(GT

0 C−1
0 G0)

−1 +op(N−1/2).

Similarly, since
1
N

∂QN
∂θθθ
∗ (θθθ

∗
0) =

∂ ḡN
∂θθθ
∗

T
(θθθ∗0)C̄

−1
N (θθθ∗0)ḡN(θθθ

∗
0)
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and λN = o(N−1/2), we have

1
N

∂QN
∂θθθ
∗ (θθθ

∗
0)+2λNDθθθ

∗
0 = GT

0 C−1
0 ḡN(θθθ

∗
0)+o(N−1/2).

Therefore, (4) can be written as

√
N(θ̂θθ

∗
−θθθ
∗
0) =−

√
N(GT

0 C−1
0 G0)

−1GT
0 C−1

0 ḡN(θθθ
∗
0)+op(1). (5)

By Central Limit Theorem,
√

NḡN(θθθ
∗
0)

d−→ N(0,C0). (6)

Using (5) and (6), we obtain

√
N(θ̂θθ

∗
−θθθ
∗
0)

d−→ N(0,(GT
0 C−1

0 G0)
−1),

and directly,
√

N(θ̂θθ −θθθ 0)
d−→ N(0,J(GT

0 C−1
0 G0)

−1JT ).
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