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ABSTRACT 

ANALYSIS OF GEOBIA ALGORITHMS FOR CONTEXTUAL DETECTION OF DPRK MISSILE TESTING 
FACILITIES 

 
By 

Connor Alec Plensdorf 

Remote sensing provides people with an alternative, otherwise unattainable view to 

analyze the earth.  Military and intelligence analysts quickly adopted this technology for tactical 

and strategic applications. Accordingly, these interpreters require increasingly immediate, 

accurate image analysis for decision-making in today’s dynamic military environment. Geographic 

Object-Based Image Analysis (GEOBIA) provides a means for automated image interpretation 

modeled after the expert interpretation processes. Although the system’s flexibility is 

advantageous for creating comprehensive image classifications, its flexibility may also preclude 

full automation and replication.  

The goal of this research was to improve image classification outcomes in the context of 

missile site detection. Here a GEOBIA workflow was developed that incorporates expert human 

knowledge for the detection of DPRK missile testing facilities. After conducting the analyses, I 

determined the best-fitting parameters from those tested include the rule-based classification for 

the Sohae testing facility and random forest classification for Yongbyon, with no conclusive results 

in favor of either software. The results indicate expert human knowledge does not necessarily 

improve classification accuracy for this case of study sites.  

Key Words: GEOBIA, image classification, contextual analysis, situation awareness, DPRK 
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1. Introduction 

Despite its benefits of timely and comprehensive visualization of the earth’s surface, satellite 

imagery may not satisfy consumer needs entirely. Military and intelligence consumers often 

require near real-time analysis for proper tactical or strategic decision-making (Cloud and Clarke 

1999). Military image analysts undertake tedious, time-consuming processes of manually 

analyzing images. As late as 1997, public image analysts manually analyzed imagery to detect and 

confirm the location of the 1974 Indian nuclear weapons test (Gupta and Pabian 1997). The 1990s 

declassification of CORONA satellite imagery opened up dialogues between military and public 

analysts, allowing greater information sharing between the domains (Cloud and Clarke 1999). 

The military has used remote sensing technologies for observation, and intelligence gathering 

for over 100 years. During the American Civil War and the 1849 bombardment of Venice, Italy, 

unmanned hot air balloons conducted aerial reconnaissance for military operations (Watts, 

Kobziar, and Percival 2009). By World War II, the world’s militaries used aerial photography, for 

situation awareness and damage assessment. Greater advances in military technology and 

increasing demands, such as the need for increased visibility and range, led to the development 

of more modern technologies for remote sensing (Perkins and Dodge 2009).  

The Cold War drove developments in remote sensing, particularly satellite imagery, which 

has since dominated national security military applications. The CORONA satellite imagery 

program – the first US spy satellite imagery program - provided strategic means for decision-

making against the Soviet Union throughout the Cold War (Cloud and Clarke 1999).  

With satellite imagery technologies initiated in the CORONA program, the military since 

conducted several operations concerning developments in imagery gathering. Much of the 
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military use today involves the detection of hazardous entities and other forms of intelligence 

gathering. For instance, military personnel have used hyperspectral imagery to detect vehicles 

under vegetation canopies (Shippert n.d.). The use of satellites is also used to assess military 

success and progress. Examples of such analytical goals include the 2007 surge, in which the U.S. 

military deployed over 30,000 military personnel to Baghdad, Iraq, and assessments of its 

effectiveness in swaying the tide of the political and social battle of nation-building and 

reconstruction. Accordingly, the military used satellite imagery from the Defense Meteorological 

Satellite Program (DMSP) to detect changes in city lights visible from space before, during, and 

after the surge. Researchers indicated that the presence of visible light, would display a likely 

increase in infrastructure whereas darkness, or an absence of visible light would likely indicate a 

decrease in infrastructure or absence altogether (Agnew et al. 2008).  

Details about the methods of image analysis used by the military remain classified. The 

increase in availability of commercial satellite imagery, as well as commercial initiatives for 

declassified imagery, such as John Pike’s Public Eye, have improved public awareness about 

military remote sensing. The Public Eye stems from Globalsecurity.org and relates to issues of 

national intelligence and security and uses declassified CORONA imagery and aerial U2 imagery 

(Perkins and Dodge 2009). Widespread use of remote sensing imagery by the media has meant 

there is an increasing demand for open source imagery by the public. With programs such as 

Public Eye and Digital Globe, a commercial producer of Quickbird imagery, high-resolution 

satellite imagery is becoming increasingly open and public.  

Geographic object-based image analysis (GEOBIA) use has risen due to its capability to 

improve analytical output in the face of increasing image analysis demands. GEOBIA challenges 
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and builds upon the largely standardized pixel-based methods, integrating computer vision and 

pattern recognition processes with traditional earth observation workflows (Blaschke et al. 2014). 

Its emergence likely stems from recent historical events, such as the 1990s changes in U.S. space 

policy (Hitchings 2003) and the development of more powerful computers and processing 

technologies (Hay and Castilla 2008). 

GEOBIA is an image analysis method centering on the patterns created by pixels rather than 

the pixels themselves. GEOBIA began to constitute a potential paradigm shift in the early 2000s 

(Blaschke et al. 2014). Patterns created by these pixels are designated as image objects, which 

are items of interest in the image (Blaschke et al. 2014). Focusing on image objects, GEOBIA 

mimics the way humans interpret images, instead of focusing on individual pixels often unseen 

with the naked eye (Hay and Castilla 2008). The issue with this is ultimately that pixels are not 

features of an image and are, thereby, subject to internal homogeneity or heterogeneity, in which 

they capture only parts of features or located on feature edges, respectfully. With a grouping via 

segmentation, pixels of similar spectral value may be logically grouped into recognizable features.  

Hay and Castilla define GEOBIA as a sub-discipline of geographic information science (GIScience) 

that automates segmentation of images and evaluates the spatial and spectral characteristics of 

the image objects created. Results may be used in a GIS-ready format (Hay and Castilla 2008).  

GEOBIA begins by dividing entire images into candidate image objects through segmentation. 

Segmentation is the process of dividing the image into image-objects of spectrally-similar pixel 

groups. Classification, on the other hand, is the process of assigning these image-objects classes 

to represent a given analysis. Pre-built algorithms, such as the multiresolution segmentation and 

chessboard segmentation, and are used for this segmentation, after which the analyst creates 
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objects from segmented images with trial-and-error rule building (Belgiu, Hofer and Hofmann 

2014).  During GEOBIA’s second phase, the image is classified into user-designated classes based 

on classification rules. This step permits the user to draw from his/her knowledge of the 

landscape and subject matter to create threshold-based rules to assign specific classes across the 

image (Belgiu, Hofer and Hofmann 2014). For instance, buildings in an image could be classified 

across an image based on the brightness values of the objects representing them in the image. 

With GEOBIA, users obtain intelligence from the interpretation through a less subjective, less 

labor and time intensive process (Hay and Castilla 2008). 

Though the military has likely begun utilizing GEOBIA for analysis, detailed documentation of 

processes remains classified for security purposes. Military applications of GEOBIA have 

developed noticeably in time. In the late 1990s, military analysts used simple, timely visual 

interpretation in the detection of the 1979 Indian nuclear missile test (Gupta and Pabian 1997). 

Recently, however, researchers adopted this “new paradigm” of GEOBIA to monitor specific sites 

of interest, namely for weapons treaty verification (Niemeyer and Nussbaum n.d.). These 

applications search for activity within facilities to identify suspicious activity suggesting weapons 

development. Given the recent Joint Comprehensive Plan of Action (JCPOA) in Iran regarding 

nuclear energy, GEOBIA research has focused on detection of suspicious activities in suspect 

nuclear sites. Another country which requires remote sensing-based monitoring of nuclear 

activity is the Democratic People’s Republic of Korea (DPRK). Few unclassified studies aim to use 

GEOBIA in the DPRK to monitor its known missile testing facilities, however. A similar GEOBIA 

approach in treaty verification could be used in the DPRK to observe known missile site activities, 
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which would support the intelligence community (IC) in its monitoring for further developments 

in the DPRK missile program or for preparations towards another missile launch or test.   

While the GEOBIA process inherently simulates human interpretation, it is unlikely that a 

single human can interpret every individual feature (image attributes such as spectral values, 

geometric parameters, etc.). A human interpreter is likely to focus on a handful of these features 

to distinguish a house from a tree, since he/she is cognitively incapable of utilizing the plethora 

of data available for a given group of pixels. To better mimic human intelligence of interpretation 

and improve classification accuracy, GEOBIA may exclusively limit its scope to those properties 

that the interpreter uses in his/her analysis. 

This study aims to discover whether the use of interpreter knowledge for informing 

classification improves classification accuracy in the case of military feature identification. To 

accomplish this, here I compare the accuracies of classifying an image with exclusively human-

detectable features to classifying with all available features. It additionally views images of the 

Palisades Nuclear Energy Facility in Michigan, US, as a spatial resolution comparison. This study 

uses the case of the DPRK’s missile testing facilities for classification. The DPRK region is chosen 

in support of national security initiatives and to advance research towards monitoring of 

weapons of mass destruction (WMD). This study was conducted with the objectives in Table 1.  
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Objective 1 intends to gain an understanding of the human interpretation process and visual 

cues used for the analysis of images of missile test sites. To accomplish this objective, I needed 

to discover interpreters who write about their interpretations, particularly those who focus on 

the DPRK and its missile testing. I then extracted the interpretation elements used for the 

detection of each feature in the text. Further details regarding the process are provided in Section 

3. I predicted that the contextual information from interpreters would focus largely on shape and 

texture elements and features, such as rectangularity and coarseness, translatable into a GEOBIA 

format. This hypothesis is based on the notion that much of visual interpretation of images 

involves the recognition of these interpretation elements and would likely accordingly apply to 

adding context to image analysis.  

 

 

 

 

 

 

 

 

Table 1: Objectives of the Study. 

Objective 2 aims to pinpoint the objects of focus for detection and for assessment of the 

methods in Objective 3. Using the same interpretation rules from the content analysis conducted 

in Objective 1, I extracted the artificial features in the images that the interpreters highlighted as 

indicative of a missile testing facility or one which supports missile testing. I predicted that the 

Objective 1 Obtain human interpreter knowledge. 

Objective 2 Determine the features indicative of missile 
testing. 

Objective 3 Segment and classify each of the images using 
the three classification methods and compare 
the accuracies with and without utilizing 
interpreter-used features. 

Objective 4 Compare classification accuracies of multiple 
classification software. 

Objective 5 Determine whether improving spatial 
resolution improves classification accuracies 
of the three classification algorithms.   
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features that interpreters would focus on largely highlight different types of single-purpose 

buildings.  

Objective 3 compares two cases. In the first, only image features that were identified in 

objective one were used in classification. In the second case, a full set of image features was used. 

I developed segmentations and classifications for each of the sites used in the analysis. For 

comparison, this step uses three methods of classification to determine if any combination of the 

classification and feature extraction are more accurate than the others. The methods of 

classification include rule-based classification, nearest neighbor, and random forest classification. 

I implemented all three classifications with both the complete feature selection and the 

interpreter-derived feature extraction achieved from Objective 1. An accuracy assessment was 

completed for each of the six classifications for comparison in detecting the objects discovered 

in Objective 2. I predicted that the use of the human interpreter elements would improve 

accuracies in detection across all three of the classification methods with the greatest increase 

in accuracy being in the random forest classification. I predicted that the random forest classifier 

would perform the best due to previous studies on the topic, discussed in the literature review 

of this thesis, as well as its inherent approach to the classification: the use of training and decision 

trees may better utilize different features for classification than the other methods based on the 

decision trees.  

Objective 4 compares two different types of image classification software. I conduct in each 

software a random forest classification on the same study site using a knowledge-based reduced 

feature set between both platforms. The first software used is eCognition, which remains the 

primary software of this study, and the second is R (Trimble 2019; The R Foundation 2019). 
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Accuracy assessments were completed for each software and are compared for the classification 

of buildings in the respective image from Objective 2. I predicted that there would not be a 

significant difference in accuracies between the two software types with this method of image 

classification.  

Objective 5 conducts an analysis similar to that in Objective 3 but instead compares the 

classification accuracies of two different spatial resolutions. The comparison will conduct all three 

classification algorithms used in Objective 3 for each of the two spatial resolutions of the same 

image. I did not use the same study site for this comparison as with the previous steps, but I did 

retain the parameters from the previous steps to isolate strictly the spatial resolution comparison. 

An accuracy assessment was conducted for each of the classifications of each spatial resolution, 

from which I could determine whether or not finer resolutions using these algorithms yield more 

accurate classification results. The accuracy assessments from this objective viewed the 

classification of all classes in the scene versus solely the building class as with the previous 

objectives.  

The remainder of this document provides details, literature background, and results of the 

study. The following section details current and past research in GEOBIA, the incorporation of 

human cognition into GEOBIA, and the use of GEOBIA in cases of the DPRK. Section 3 discusses 

the data used in the study and the processes used to conduct the project in GEOBIA. Section 4 

discusses the accuracy assessments produced in the project and all results obtained from the 

study. Section 5 discusses the results in the context of military intelligence and its potential 

implications and the limitations and delimitations of the project as a whole. Lastly, Section 6 

concludes the project discussion and describes its contribution to future research and how a 
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similar project may improve the results of this project in future research. All acronyms and 

abbreviations used throughout this study may be viewed in Appendix 1.  
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2. Background  

This study draws from history, geography, and Geographic Information Science (GISci). To 

understand the basis of the research, it is necessary to explain the context in which similar 

research has developed. Since the research maintains a military focus, I will first discuss military 

remote sensing, particularly for strategic operations. The studies and instances of remote sensing 

in this context involve both military-led and civilian-led research. Given this study’s focus in the 

DPRK, a history of the nation’s high-profile missile program, present capabilities and the research 

completed regarding the monitoring of this specific missile program are described. These details 

are necessary for understanding the pressing issue of DPRK to US politics and in gaining a relative 

perspective on the nation’s motivations and testing capabilities.  

Next, I review research concerning the application and development of GEOBIA. This 

explanation will exhibit the common methods of analysis in prominent GEOBIA studies, which 

contributed to decisions made in Section 3 of this study. I focus on rule-based classification 

methods to explain methods and applications common for this type of classification. I also review 

knowledge incorporation for GEOBIA. To provide further reasoning for our methods, we discuss 

trends in feature extraction and feature space reduction, objectivity in knowledge-based 

classifications, and potential workflow reusability.  

Following a discussion of the past and present research in these relevant areas, I discuss the 

present research gaps and how this particular study may contribute towards these gaps.  

2.1. Remote Sensing for Strategic Operations 

The US and foreign militaries use GIS and remote sensing for a variety of applications in 

support of their operations. According to Witmer (2015), military operations were among the 
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first applications of remote sensing in violent conflict settings. Military remote sensing in the US 

began with the use of the hot air balloon to observe the battlefield in the American Civil War 

(Witmer 2015). These technologies allow observation of the battlefield from above and provide 

spatial information for military commanders, permitting these leaders and decision-makers to 

effectively plan from an aerial point of view (Satyanarayana and Yogendran 2013). Remote 

sensing technology has become increasingly popular with the US military, largely in the form of 

unmanned aerial vehicles (UAVs), since they do not put any lives directly at risk in the sake of 

reconnaissance.  

 Remote sensing research in support of strategic military operations takes the form of 

either digital mapping or UAV reconnaissance. Glade (2000) evaluates the use of UAVs in a variety 

of military applications, including transportation, intelligence and surveillance, attack missions, 

and combat support missions. For surveillance, the military has used the UAV technology for 

remote sensing reconnaissance since it remains relatively difficult to detect by those being 

observed. UAVs have also been used to remotely detect chemical and biological weapons 

autonomously (Glade 2000). These platforms have additionally been preferred by the military 

due to their ability to broadcast live information for long periods. Their use is particularly useful 

as it reduces the need to expose military personnel to fatigue and stress that operated flights 

cause.  

 Remote sensing in recent US conflicts has focused largely on the observation of urban 

environments, due to the military presence in both Iraq and Afghanistan. While urban 

environments are a major focus for remote sensing for current military operations, their 

difference from other environments and large variability (cities and towns vary in construction 
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techniques around the world) require smaller and less durable remote sensing platforms for 

operations (Samad, Bay, and Godbole 2007). The use of UAVs for surveillance emphasizes the 

military’s situation awareness (SA) for understanding complex environments, such as the urban 

battlefield of today’s conflicts (Samad, Bay, and Godbole 2007). Although UAVs and remote 

sensing are used for urban reconnaissance, military leaders also use the surveillance capabilities 

for detection outside the urban environment. Commanders use this view of the terrain to 

maneuver troops, materials, or vehicles, and to develop maps of the terrain for optimal resource 

utilization and decision-making for missions (Satyanarayana and Yogendran 2013). Due to the 

variety of environments, no broad ruleset exists for either military or civilian use in support of 

military operations or civilian research (Witmer 2015).  

Military operations also use space-borne remote sensing platforms, such as satellites. The 

search for Osama bin-Laden, the mastermind behind the New York World Trade Center attacks 

in 2001, prompted the combination of Landsat 5 Thematic Mapper imagery and cultural 

geography to search for terrorist groups in the Zhawar Kili region of Afghanistan. This study 

resulted in the detection of terrorist posts containing terrorist-led convoys and potentially high-

value targets in al-Qaeda (Beck 2003). Though military leaders use them in support of planning 

operations, space-borne platforms are not ideal for real-time military operations, due to revisit 

times over the same regions and the need for very high resolution (VHR) imagery, which is 

tougher to attain by space-borne platforms than from a UAV sensor (Witmer 2015). Maathuis 

(2003) accordingly declined the use of satellite imagery to detect individual landmines – due to 

the need for a much higher spatial resolution (in centimeters) than that achievable by airborne 

or spaceborne imagery. Due to the inaccessibility of this high-resolution data, this study instead 
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used Landsat imagery to detect the entire scene for the likely presence of minefields over a region 

(Maathuis 2003).  

Military remote sensing also has a variety of targets. Witmer (2015) addresses the various 

methods and types of remote sensing used for detection and analyzing the effects of violent 

conflicts, including wars and genocide. Beck (2003) uses 30m Landsat imagery in combination 

with GIS and cultural geography to aid intelligence analysts in searching for terrorists hidden in 

mountains and caves in Afghanistan, while Maathuis (2003) used SPOT XS and Landsat Thematic 

Mapper imagery to detect minefields in three different regions of Zimbabwe to support civilian 

or military landmine clearance. All three of these studies use publicly available information in 

their military-oriented applications.  

2.2. The DPRK Missile Program 

Some nations maintain the goal of secrecy, revealing as little as possible to the world outside 

their borders. Recently, the DPRK has emerged in the world news due to this secrecy and 

perplexing behavior on the global scale, particularly regarding its missile program. The DPRK 

poses a major threat to the US, making the development of an intelligent, making remote sensing 

developments concerning the missile testing sites of interest. The DPRK’s ambitions for strategic 

weaponry rose almost immediately after its inception in 1950. Chinese and Soviet powers 

assisted the DPRK in achieving these aspirations. Between 1968 and 1969, the United Soviet 

Socialist Republic (USSR) provided a sample of its S-2 Sopka missiles to The DPRK for coastal 

defense (Sachdov 2000). At the same time, China provided similar assistance with its HY-1 naval 

missiles, themselves a bi-product of the USSR’s SS-N-2 Styx missiles (Sachdov 2000). Additionally, 

Egypt provided the DPRK Scud B missiles in the late 1970s or early 1980s. Shortly after the 
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beginning of this weapons trading relationship, in 1972, the DPRK developed a domestic site to 

develop the Chinese HY-1 naval missiles.  

 

Figure 1: DPRK Missile Ranges. Source: https://www.dw.com/en/which-us-cities-could-
north-koreas-ballistic-missile-hit/a-39881831. 

By the mid-1970s, the DPRK had made adequate progress toward its weapons ambitions with 

the assistance of its trade partners. In 1973, the DPRK possessed 24 unguided FROG 5/7 rockets 

and 6 SS-C-2b missiles (Sachdov 2000). The DPRK with China proposed the joint development of 

a single-stage tactical missile, DF 61, around this time. The project was canceled in 1978 due to 

the collapse of the main Chinese governmental supporters of the project, though the DPRK 

continued additional missile development.  By 1981, the Korean weapons program accelerated 

with the cooperation of Egypt in a technological exchange agreement, which provided the DPRK 

Scud-B technology. The next year a North-Korean-built, Iranian-financed Scud-B missile was 

tested with three more in 1984. The DPRK established an official development and testing facility 

near the capital, Pyongyang, during the mid-1980s where it maintained an annual production of 

50 Scud-B missiles (Sachdov 2000). The missile program and relative success for the DPRK have 

https://www.dw.com/en/which-us-cities-could-north-koreas-ballistic-
https://www.dw.com/en/which-us-cities-could-north-koreas-ballistic-
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tightened relationships with Iran, in that the latter purchased in 1987 approximately 90-100 

Scud-B missiles from the DPRK, due to its limited domestic assembly at its Isfahan plant (Sachdov 

2000).   

The DPRK missile program advanced in the late 1980s and early 1990s, climaxing in the 

development of the Scud C missile in 1987. The first test of Scud C occurred in 1990 and followed 

with full-scale production of 4-8 missiles per month over the next year. The program reached an 

elevated level when it developed the No Dong I missile in 1991, which was allegedly capable of 

reaching all of South Korea. The DPRK revealed this missile to other nations unfriendly to the U.S. 

– for instance, it attempted to sell it to Libya for $7 million and exhibited it for Pakistani officials 

in 1992. DPRK weapons developers completed and finalized the No Dong I missile in 1993, testing 

two of them during missile testing from May 29-30, 1993 (Sachdov 2000).  

The success of the Scud missile program in the DPRK inspired their nuclear weapons 

development. Though US sanctions have stunted the development of the nuclear program, the 

DPRK has continued to establish nuclear facilities across the country, most of which are located 

in Yongbyon. Currently, the Yongbyon facility possesses a 50 MW reactor, with other reactors 

across the country for testing and development. Sanctions from the U.S. froze the nuclear 

operations in the DPRK after the DPRK’s attempted withdrawal from the Nuclear Non-

Proliferation Treaty (NPT) in 1993 (Sachdov 2000).  

The heightened focus on nuclear developments has accelerated the need for The DPRK to 

develop methods of delivery in the form of missiles. The first nuclear detonation test occurred at 

the Punggye-Ri underground testing facility on October 9, 2006, receiving plutonium from the 

Yongbyon nuclear facility (Chung 2016). Subsequent nuclear tests occurred at Punggye-Ri in 2009, 
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2013, and 2016, for a total of four tests. These tests have culminated at what the DPRK officials 

claim is the possession of a hydrogen bomb in 2016 (Chung 2016). As late as 2016, the DPRK has 

progressed towards the development of its KN-11 missile, which is a submarine-launched ballistic 

missile (SLBM) that can carry a nuclear warhead (Postol and Schiller 2016). The missile program 

has made significant increases in its capabilities since its withdrawal from the NPT in 1993.  

Missile development by the DPRK has led to an increase in threatening political posturing by 

the DPRK towards the US. In 2016, in response to condemnations of potential hydrogen bomb 

testing, the Korean Central News Agency (KCNA) announced that the Iraqi and Libyan regimes of 

Hussein and Gaddafi, respectively, succumbed to destruction upon giving up their nuclear 

ambitions amid pressure from the U.S. and the Western nations (Chung 2016). The nuclear 

program came largely from the missile program, so it is worth focusing on the missile testing to 

combat the nuclear ambitions. 

2.3. The DPRK Missile Development Monitoring 

Although the DPRK is a national security interest for the US, not much public research has 

addressed methods of observing the DPRK’s missile development with remote sensing. According 

to Shim (2014), the geographic study of remote sensing for The DPRK lacks focus and strength, 

regardless of the country ‘s abnormality as a “terra incognita sui generis or uncharted land of its 

own.” Satellite imagery has been the focus for obtaining information regarding the developments 

in the DPRK due to lack of ground accessibility. The satellite imagery surveillance has yielded 

mixed results, due to classification inaccuracies resulting from image tampering or disguising 

objects on the ground to reflect a different object from space. Accordingly, greater details are 

obtained through independent monitoring services that may access the country on foot 
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(Squassoni 2005). In its relatively small public domain, however, monitoring the DPRK for 

research largely revolves around non-remote sensing methods, or those not concerning its 

political aims and missile development. Since the DPRK’s withdrawal from the NPT and denial of 

International Atomic Energy Agency (IAEA) inspectors from observing its plutonium enrichment 

facilities, remote sensing methods remain one of the only approaches to monitor the missile and 

nuclear development of the country (Pollack 2003). According to Albright and Brannan (2007), 

the IAEA provided independently in situ monitoring for the US intelligence estimates. Moreover, 

the monitoring focuses on the Yongbyon radiochemical facility, due to its plutonium enrichment 

and chemical laboratories on site.  

Additional sensing monitoring of the DPRK activities from these sites takes the form of seismic 

wave analysis. Kim and Richards (2007) calculate the distance of seismic waves arriving at local 

monitoring sites and compare them to the times and locations of recorded earthquakes and 

compare these wave values with those from the nuclear test to detect the location of the test 

itself as well as the likely origin of the missile. Similarly, Schlittenhardt, Canty, and Grunberg (2010) 

estimated the seismic activity of the test site from different monitoring facilities and agencies for 

the DPRK test site, identifies the locations given these estimates in the low-seismic-yield region 

and confirmed testing activity using ASTER satellite imagery in a change detection analysis. This 

latter method differs from others that use seismic data for detection, as it chooses to 

complement the study and verify the missile tests with remotely sensed imagery. The other 

studies instead tend to focus on the seismic element created from the missile’s impact and 

detonation. These studies address the monitoring of the DPRK for the Comprehensive Nuclear-

Test-Ban Treaty (CTBT) without remote sensing data.  
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Several studies use remote sensing in the country to monitor activities at missile test sites. 

Albright and Brannan (2007) use of commercial imagery for monitoring and estimating 

developments of plutonium stocks at the Yongbyon radiochemical facility, and for monitoring 

related facilities at the same site. Broad et al. (2005) use satellite images by intelligence agencies 

and national monitors to detect tunneling activity likely used for missile and nuclear testing. 

Squassoni (2005) discusses the focus of satellite imagery for monitoring the DPRK by observing 

specific locations, namely the Yongbyon facility, and the components at these sites, such as the 

5MW reactor at Yongbyon.  

Some studies integrate remote sensing data with other information resources. Shim (2014) 

visually interprets nighttime NASA imagery to determine the spatial scarcity and development 

void in the DPRK in support of US policymakers and national security decisions. Ozeki and Heki 

(2010) used GIS to calculate a DPRK missile test’s entrance and exit from the ionosphere using 

the channel frequency disturbances at various Japanese GPS station locations. This latter study 

focuses on the geography of Japan in conjunction with the geography of the missile launched 

from Musudan-ri, DPRK (Ozeki and Heki 2010).  

 Though these studies focus on identifying different components of the nuclear 

developments in the DPRK, none extracts the individual features of a missile testing facility. 

Furthermore, most studies use the Yongbyon facility due to its prominence in nuclear 

development and chemical enrichment. Minimal research appears to use the missile testing 

facility at the Sohae Satellite Launching Station, another prominent testing site.  
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2.4. Rule-Based Image Object Detection 

 According to Castilla and Hay (2008), rule sets are a comprehensive representation of 

procedural knowledge. GEOBIA rule sets are used to classify the image based on user knowledge 

(Castilla and Hay 2008). GEOBIA is carried out through a multi-phase workflow: pre-processing 

the image, segmenting the image into candidate image objects based on spectral features, and 

classifying the image objects based on user-defined parameters for each class (Castilla and Hay 

2008). Few studies in the reviewed literature stray from this workflow; although, some conduct 

a cyclical repetition of multiple iterative segmentations and classifications (Baatz, Hoffmann and 

Willhauck 2008). Castilla and Hay (2008) cite in Benz et al. (2004) that these cycles of 

segmentation and classification are necessary for the incorporation of semantic meaning into 

image objects. 

 Rule-based methods of image object detection in GEOBIA largely focus on the 

classification procedure, focusing mainly on either land cover classification or urban classification. 

Dragut and Blaschke (2006) classified the geomorphology of landforms in Germany and Romania 

by comparing Digital Terrain Models (DTM) to the image segmentation and classification based 

on a hierarchical classification rule-set. Bhaskaran, Paramananda, and Ramnarayan (2010) 

classified boroughs of New York, the US to compare pixel-based- and object-based classification 

methods. They address the separability of the urban features and focus on individual objects in 

the scene to create classes (Bhaskaran, Paramananda and Ramnarayan 2010). This focus on 

individual image objects serves as inspiration for the study described here. The authors conclude 

that GEOBIA significantly increased accuracies in detecting these urban features when compared 

to pixel-based methods (Bhaskaran, Paramananda and Ramnarayan 2010).  
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 As a major component of rule-based GEOBIA, the feature thresholds and scales in the 

rules remain critical to the accurate analysis of the image using GEOBIA. GEOBIA allows for multi-

scale analyses at the pixel, object, and pattern levels. The object scale is the smallest meaningful 

unit for the analysis and most closely resembles semantically meaningful objects (Ming et al. 

2015). Torres-Sánchez, López-Granados, and Peña (2015) investigate different values for the 

scale parameter, shape, and compactness in segmentation for classifying vegetation, 

determining that increases in scale parameter reduce error until an optimal value is achieved 

after which, the error increases. Through their implementation of multiresolution segmentation, 

the authors determine the scale parameter is the most significant parameter for initial 

segmentation parameters, since other values, such as shape and compactness, produced minimal 

impact in comparison (Baatz and Schäpe 2010; Torres-Sánchez, López-Granados and Peña 2015). 

Multiresolution image segmentation is a bottom-up pairwise merging technique that merges 

individual pixels with nearby pixels to produce an image object iteratively based on spectral 

similarity (Torres-Sánchez, López-Granados and Peña 2015).  

Supervised methods include both k-nearest neighbor and random forest classification 

approaches. Supervised classifications in image analysis are those which assign classes to pixels 

or objects based on the spectral values from samples of each class. A common method for 

GEOBIA is a k-nearest neighbor, which Maxwell et al. (2015) used to classify mine presence and 

reclamation land in West Virginia, US compared to other methods of classification, such as 

random forests. In a K-nearest neighbor classification, the algorithm uses the samples to classify 

neighboring objects based on their similarity to the samples (Weinberger, Blitzer, and Saul, 2006). 

A commonly used machine learning algorithm is the random forests classifier. In machine 
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learning, the processor collects spectral data based on a training set (often samples) and 

depending on the classifying algorithm, will use the information to train the classifier and classify 

the image. This method creates a designated number of decision trees and randomly plots the 

points in the image; classification is based on the training data at each location (Breiman 2001). 

Random forest classification has been used in various applications for land cover mapping, for 

example, peatland in Ontario, Canada using LiDAR data (Millard and Richardson 2015), urban 

classifications of LiDAR data (Chen et al. 2014), and determining tree health with IKONOS imagery 

(Wang, et al. 2015).  

Rule-based classification studies tend to focus on incorporating knowledge into the image for 

interpretation. Krtalic (2016) uses a system, T-AI DDS, to conduct segmentation and classification 

for automatic detection of mines and minefields in Croatia. While the authors conclude that the 

application of automatically detecting mines requires more research, their semi-automated 

method of detection incorporates all data and expert knowledge available in the scene (Krtalic 

2016). These types of methods follow a long history of expert-based image analysis systems. For 

example, Wharton (1982) proposed a knowledge integration method based on rules with the 

CONAN, or contextual analysis, method, which classified data into image components and 

conducted a contextual classification based on the mixture of these components. 

2.5. Knowledge Incorporation into GEOBIA Applications 

With a focus on improving classification automation, studies in GEOBIA classifications are 

exploring the potential of complementing computational approaches with knowledge 

incorporation. Johnson and Xie (2013) developed a method to incorporate “super object 

information” into image objects and compare them with and without the information to 
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determine whether or not increased information improved the accuracy of detection. The 

information incorporated included the spectral parameters, texture, size and shape information 

of the image segments’ super objects, which are the larger segments within which the segments 

of focus are located (Johnson and Xie 2013). Instead of comparing methods for accuracy, 

MacFaden and O’Niel-Dunne (2015) created two rule sets (one for each study site) and 

incorporated contextual criteria to detect automatically any potential infrastructure damage on 

roads following major storms using GEOBIA. Nussbaum, Niemeyer, and Canty (2006) similarly 

avoid comparison of multiple methods and develop a GEOBIA-based separability and threshold 

(SEaTH) algorithm for automatically classifying image objects. The study classifies objects in the 

Esfahan Nuclear Facility in Iran using a quantitative classification approach in the form of 

developed mathematic algorithms to classify the images (Nussbaum, Niemeyer and Canty 2006). 

This differs from previous studies that classify using qualitative features, namely the key 

interpretation elements (MacFaden and O'Neil-Dunne 2015). Marpu et al. (2008) use the same 

separability and threshold method and study site as Nussbaum, Niemeyer, and Canty (2006); 

however, their study uses this method to automatically process imagery in GEOBIA (Marpu et al. 

2008). Unlike other studies, this study only focused on detecting a single class (the class of 

interest), which explained the investigation of the two classes, class of interest and background 

(Marpu et al. 2008). 

 The incorporation of knowledge into automated image detection processes has produced 

a large number of studies despite its complications. Many studies focus on knowledge 

incorporation via ontologies. Written, computer-readable, and reproducible representations of 

expert knowledge, ontologies are used in GEOBIA as a means of exploiting structural parameters 
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of an image that is traditionally accomplished only by humans for image interpretation (Blaschke 

et al. 2014). Ontological workflow development is similar to standard rule-based procedures; 

however, developing workflows with ontologies involves hierarchies of classes for use and 

establishing a database of knowledge for defining individuals and classes (Gu et al. 2015).  

 Many studies centering on knowledge integration via ontologies use GEOBIA. Gu et al. 

(2015) studied the development of a universal workflow based on a hybrid machine-learning and 

semantic model, which they applied to farmland in China. Rather than using traditional GEOBIA 

software such as eCognition these authors employ web service applications (GeoBrain) to 

intelligently identify complex artificial features (Trimble 2019; Yue et al. 2013). This study focuses 

on the detection of weapons of mass destruction (WMD) facilities (Krtalic 2016; Nussbaum, 

Niemeyer and Canty 2006; Marpu et al. 2008). Belgiu, Hofer, and Hofmann (2014) developed a 

classification procedure with embedded expert knowledge using GEOBIA. After creating the 

ontology in Protégé, an open-source ontology building program, in the OWL2 

Web Ontology Language, the ontology may be used to classify image objects (Stanford Center for 

Biomedical Informatics Research 2016; WC3 Web Ontology Working Group 2004; Belgiu, Hofer 

and Hofmann 2014).  

 Some studies have also examined the possibility of integrating knowledge into other 

image classification methods. For example, Liedtke et al. (1997) proposed a new program called 

AIDA that integrated semantic nets in image interpretation processes; however, the program 

could not successfully detect complex features as they were and could only detect these features. 

Similar to O’Neil-Dunne, MacFaden, and Pelletier (2011), this study attempts to replicate human 

interpretation in the creation and display of contextual relations, though this study focuses on 
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analyst queries whereas the former study addresses simultaneous segmentation and 

classification. 

2.6. Feature Extraction 

GEOBIA is noted for having large computational demands. One means for reducing processing 

time and computer RAM demands is the use of feature space reduction, the process of reducing 

the number of image attributes used in classification based on target separability. A typical image 

object may retain more than 200 features across different scales. The number of object features 

increases as the spatial resolution becomes finer (Ma, et al. 2015). Limiting the number of 

features used for classification significantly reduces the amount of time needed to compute the 

classification, thereby making it effective for image analysts in need of quick results; however, it 

retains potential to decrease accuracy in classification given its fewer features of consideration 

(Ma, et al. 2015).  

Land cover remains a common application for feature extraction methods in the present 

literature. Yu et al. (2006) classified local vegetation land cover in northern California, US using 

52 features derived from a developed statistical classification and regression tree (CART) 

algorithm. A large number of object features is based on the CART algorithm, an automated 

approach with a higher number of features in this case than other studies (Yu et al. 2006). On the 

other hand, Taubenböck et al. (2010) focus on transferability from one classification to another 

using a limited number of object features. The study used an object feature hierarchy to classify 

and extract urban objects in Istanbul and India, which effectively classified individual homes at 

85% overall accuracy (Taubenböck et al. 2010).  
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Feature reduction affects several varieties of classification algorithms, including rule-based 

and machine learning approaches. According to Pal and Mather (2005), the size of a machine 

learning training set has a significant effect on the algorithm and must contain specific class 

descriptions. Machine learning feature space reduction must aim to include at least 10-30 times 

the number of features in each training set as pixels for training data (Pal and Mather 2005). Ma 

et al. (2015) analyzed the effects of training set sizes at different scales for rural land cover 

classification in Deyang, China. Using the gain ratio from Quinlan (1996), they rank all features 

and a best-first search algorithm to obtain object feature subsets (Ma et al. 2015). These reduced 

feature subsets and varying training sizes were used to conduct a random forest classification 

with minimal computational requirements (Ma et al. 2015).  

2.7. Objectivity 

A central concern in the integration of human knowledge into remote sensing workflows is 

objectivity. Objectivity in the detection and classification of image objects is a difficult task as 

human interpreters, as well as complex objects, are inherently subjective. Krtalic (2016) integrate 

computer-based segmentations with the self-produced T-AI DDS program to reduce the potential 

for subjectivity in the results. Furthermore, Gu et al. (2015) attempt to develop an objective 

GEOBIA workflow by incorporating expert domain knowledge via ontologies and semantic maps. 

Although GEOBIA classification is biased by an operator, subjectivity can be improved by using 

ontologies developed by multiple experts (Gu et al. 2015; Belgiu, Hofer, and Hofmann 2014). 

 Baatz, Hoffmann, and Willhauck (2008) attempts to disregard subjectivity concerns in 

developing a rule-based GEOBIA. Their approach requires the operator to know the real-world 

object for which he or she is searching in the image to segment the image and classify it, which 
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retains some inherent subjectivity. The “spiral method” discussed and applied in the study 

requires the operator to segment by a particular item in the image, permitting the operator to 

choose when the segmentation and classification end and altering the scope based on different 

operator experiences in the domain (Baatz, Hoffmann, and Willhauck 2008). While the method 

retains inherent subjectivity in the knowledge of the features for segmentation, it attempts to 

establish a definition based on the parameters that are useable by different operators for 

classification. Moreover, Arvor et al. (2013) argue that in GEOBIA applications, expert knowledge 

and expert bias ultimately limit the segmentations and classifications, emphasizing the need to 

reduce subjectivity and increase objectivity in GEOBIA workflows.  

2.8. Workflow Reusability 

A universal rule-set or workflow is unlikely to be achieved using GEOBIA due to the complexity 

and heterogeneity of the earth’s surface. Creating limited, repeatable workflows for specific 

scenarios may be possible. Ontologies are one means of addressing this issue. At present, there 

is a lack of a comprehensive, systematic formalization for class definitions in GEOBIA leading to 

subjectivity (Belgiu, Hofer, and Hofmann 2014). These authors continue to address that 

ontologies may potentially serve as standardization for class definitions (Belgiu, Hofer, and 

Hofmann 2014). Arvor et al. (2013) explore the potential for ontologies and argue that they will 

permit objectivity across disciplines, emphasizing ontology mapping as a means to that end. This 

sentiment is shared across other studies (Castilla and Hay 2008).  

Despite the potential for a universal approach and workflow for GEOBIA applications, few 

follow through and conduct testing towards neutral and reusable workflows. Yue et al. (2013) 

incorporated thematic semantics to develop a transferable workflow for weapons site detection. 
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Studying farmland in China, Gu et al. (2015) pursued not only a fair, objective workflow but also 

one that would be universally applicable based on machine learning methods. None of these 

studies has led to the development of a successfully transferable GEOBIA workflow (Gu et al. 

2015). 

2.9. Contributions of the Present Research  

I have reviewed some research studies that have addressed various facets of GEOBIA 

workflow. While these studies have compared outcomes from the application of different 

classification strategies, few of these studies address the usefulness of incorporating expert 

knowledge. A variety of knowledge incorporation methods, such as ontologies and semantic 

networks, have been used in GEOBIA. Feature space reduction appears to be a more common 

approach to classify image objects intelligently. As far as I can tell, no study directly compares the 

use of feature space reduction as a knowledge-based process to a classification without feature 

space reduction. Other studies also do not appear to have used expert interpreters’ annotations 

as a guide for feature selection. Thus, our research explores a new avenue for feature space 

reduction and potential for improving the integration of expert knowledge into GEOBIA.  

Despite a limited number of studies on knowledge integration that focused on military sites, 

none focused on the classification of DPRK missile testing facilities, which is surprising given its 

prominence in modern global affairs. Only a handful of studies focus the remote sensing imagery 

on missile testing sites. GEOBIA research appears to favor of the Islamic Republic of Iran (IRI) and 

India (Niemeyer, Marpu, and Nussbaum 2008; Gupta and Pabian 1997). Though these studies 

focus on the CTB treaty verification, they do not address the issue in the DPRK’s missile program, 

at least publicly. Finally, there does not seem to be a systematic approach to automating GEOBIA 
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for commercial intelligence uses. According to Diamond (2001), the lack of quasi-instantaneous 

automated change detection in satellite imagery as a major problem for government intelligence. 

This study will fill the gaps left regarding the lack of research towards the DPRK missile program 

in GEOBIA and a direct comparison of automated methods of classification comparing 

knowledge-based- and knowledge-devoid-classification methods.  
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3. Methods 

The goal of this research is to develop a GEOBIA workflow for identifying buildings at missile 

test sites in the DRPK and to determine whether the inclusion of expert knowledge improves the 

object detection accuracy. I conducted four main analyses to meet the five objectives of this 

research.   

Objective 1: Obtain human interpreter knowledge. 

Objective 2: Determine the features indicative of missile testing. 

Objective 3:  Segment and classify each of the images using the three classification 

methods and compare the accuracies with and without utilizing interpreter-used 

features. 

Objective 4: Compare classification accuracies of multiple classification software. 

Objective 5: Determine whether improving spatial resolution improves classification 

accuracies of the three classification algorithms.   

The first analysis extracted expert interpreter’s visual cues used for the detection of missile 

testing facilities from text documents. The second analysis compared the different GEOBIA 

classification methods to determine which classification techniques prove more effective in 

classifying buildings of the missile testing facilities. The third analysis then compared these 

classification techniques across classification software. Finally, the fourth analysis compares the 

classification algorithms across different spatial resolutions. Traditional remote sensing accuracy 

assessment methods are used throughout the study to determine the success of these 

classifications. 
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3.1. Study Sites 

The study areas of this project include two major missile-testing facilities in the DPRK, as well 

as the Palisades Nuclear Energy Facility in Michigan, US. Data for the DPRK sites, their locations, 

and test information were retrieved from the Nuclear Threat Initiative (NTI) website (Nuclear 

Threat Inititative 2018). The NTI compiled a Microsoft Excel spreadsheet containing missile test 

information since 2016 with variables including date of tests, type of missile tested, the location 

of the launch, the achievable distance by the missile tested, and the test’s success or failure. For 

this study, I used the test site location from this dataset. 

The DPRK monitoring agency, 38 North, publishes web articles containing very high-

resolution satellite imagery from Digital Globe Company along with interpretations by former 

military analysts in the form of image annotations (38 North 2018). I collected all articles and 

associated images from 38 North’s satellite imagery archive through February 2018, which totals 

roughly 120 articles with approximately 1500 images across all of the articles. Each image 

contains between one and ten analyst-written annotations to highlight specific components 

critical to their analysis of the testing sites, such as a launch tower arm or vehicles present or 

absent.  

The articles were then grouped by the missile test site location, and the five sites with the 

most articles were chosen for the study. Though the DPRK’s main nuclear testing site, Punggye-

Ri, had the greatest number of articles, I excluded it as an outlier being the only confirmed nuclear 

weapons testing facility in the DPRK (Nuclear Threat Inititative 2018). Therefore, I selected the 

next four most-frequently-occurring sites from which to analyze and increase the focus of the 

study-- Sohae, Yongbyon, Sinpo, and Musudan-ri (Tonghae). I selected this subset for several 
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reasons. First, the four sites provided wide spatial coverage horizontally across the country, 

which would ideally require a more comprehensive rule-set that accounts for broader geographic 

variation in the land surface, cover, and uses. Second, the additional sites are seldom mentioned 

in 38 North, making them less appropriate for this study given their likely infrequent use. Lastly, 

the use of four study sites allows a manageable amount of data to analyze and compare with our 

methods as opposed to data from each of 23 testing facilities.  

The four sites yielded 300 total images for which I created an Excel spreadsheet to compile 

each image and article’s data, including the site focus of the article, date of the article, the name 

of the interpreter(s)(left as 38 North if none other indicated), the date of the image, and the 

annotations in each image. I assigned a specific identification (ID) code to each image and its 

respective data and qualitatively coded the annotations, which will be discussed in detail in 

Section 3.2. Figure 2 displays the number of articles and interpretations per the four missile 

testing sites. 
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After further assessing the study sites, I chose to focus on only the Sohae and Yongbyon 

facilities. Imagery available for Sinpo and Musudan-ri did not permit adequately fine resolution 

to distinguish the individual building facilities. Additionally, these two omitted sites operate quite 

differently from Sohae and Yongbyon, which are both largely urban compared to the shipyard, 

Sinpo, and mountain launching facility, Musudan-ri.  

I justify the selection of the Sohae and Yongbyon sites because these sites still adequately 

address urban areas in the DPRK and are likely reproduceable at other similar study sites. Second, 

these two remaining sites retained far greater articles of focus than the respective omitted sites. 

Lastly, focusing on two sites permits far greater focus into the study applications than spreading 

resources across the four sites. For both Sohae and Yongbyon, I retrieved imagery for both 

locations from Planet Labs Imagery & Archive (Planet Labs 2019). 
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Figure 2: Number of expert interpretations from 38 North per missile testing site in this study. 
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3.2. Data 

The imagery used retains a 1m spatial resolution with four spectral bands and was acquired 

in 2016. For the analysis of the different spatial resolutions, the image used was obtained from 

the US Geological Survey (USGS) Earth Explorer as National Agricultural Imagery Program (NAIP) 

imagery. The image retains a 1m resolution initially, which was degraded to 3m resolution for the 

comparison. This image contains four spectral bands and is 1,936 by 2,526 pixels in size. All of the 

original images used may be seen in Figures 3-5. 

  

  

Figure 3: Sohae Image. Source: Planet Labs 



 
 

34 
 

  

Figure 4: Yongbyon Image. Source: Planet Labs. 

Figure 5: Palisades nuclear power plant, 1m resolution and 3m resolution (right). Source: USGS. 
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3.3. Analysis 1 - Extraction of Expert Interpretation Cues 

The objective of this study was to extract expert knowledge from image interpretations on 

the 38 North website and analyze the contests of those interpretations using content analysis. 

Content analysis is often used for qualitative research, a process where text contents are grouped 

into classes based on a theme relevant to the study (Hsieh and Shannon 2005). In content analysis, 

all textual information is classified based on a case-based dictionary of terms (McTavish and Pirro 

1990).  

I use content analysis to codify the expert annotations. After collecting all of the experts’ 

annotations, I codified the annotations hierarchically based on common characteristics. I 

transformed the annotations manually in Microsoft Excel into single-word codes using 

descriptive coding, which provides a general descriptive term for a breadth of information 

(Saldaña 2013), and a priori coding, which employs theoretically-derived codes from prior 

knowledge (Bazeley and Jackson 2013). For example, buildings and train stations received the 

code “building.” I then divided these general codes into more specific categories in a similar a 

priori, descriptive manner. In the same case as above, train stations received the class, “building,” 

and the subclass, “transportation.” I further extracted the annotations and organized them in an 

Excel spreadsheet. In the end we identified six classes: buildings, vehicles, environment, missiles, 

and changes. Since the interpreters of the images used repeated the annotations across images 

due to similar characteristics in different images, I omitted any repeats in the organization of 

these classes for individual annotations.  

Classification of these text documents resulted in a data dictionary that could be used to 

support the second objective of this work. The “buildings” class yielded the highest number of 
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annotations and objects after eliminating duplicate mentions. The remaining classes were 

merged into one of three classes: vegetation (environment), water (environment), and built-up 

(all unaccounted annotations).   

After determining which objects were of most interest, I performed a text analysis of the 

expert-written articles. This analysis aimed to determine the words, and thus visual cues, expert 

analysts used in interpreting the images. I employed the online corpus developer, Sketch Engine, 

to create a corpus and determine these contextual cues. Sketch Engine allows the user to provide 

a corpus of text and extract data about words, parts of speech, position in a sentence, and so on 

(Lexical Computing CZ 2019). I first created a corpus including all of the articles from 38 North 

about the Sohae and Yongbyon study sites for this analysis.  

From these articles, I then analyzed the corpus using the image interpretation elements of 

texture, shape, size, pattern, shadow, location, tone/color, height, and site as search filters. Each 

of the searches was conducted individually and included related terms. For instance, the analysts 

did not often write the word, “texture” or “color” in their reports; however, they would write 

“smooth” and “green,” which thereby yielded greater results than the interpretation terms. 

These results are similar to the results of the content analysis of historical interpretation 

documents presented by Bianchetti and MacEachren (2015). 

After the word frequency analysis was completed on the article corpus, a concordance 

analysis was carried out on the interpretation elements in the document. The entire concordance 

results consisted of 305 entries, retaining the searched word, its grammatical form in the 

sentence, the sentence fifteen words before and after the cue, and the document it in which it 

exists. I then reduced the concordance to a subset which included only the searched adjective 
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cue, its frequency across the articles, and its cognitive code relating to the image interpretation 

elements. Table 2 displays the concordance subset for identifying buildings in images. These 

most-frequently-occurring textual cues were then used in the second portion of this study to 

incorporate expert knowledge as a means of feature space reduction in image analysis.   For 

example, what would be the best features for identifying buildings? The “buildings” class yielded 

the highest number of annotations and compressed (after eliminating repeats) objects.  

Adjective Frequency Cognitive Code 

green 5 Color 

high 32 Height 

low 26 Height 

short 16 Height 

rectangular 7 Shape 

large 107 Size 

small 96 Size 

long 14 Size 
          Table 2: Concordance subset for the knowledge base. 

3.4. Analysis 2 - Classification Methods Most Appropriate for Missile Facility Extraction 

Next, GEOBIA was carried out to determine which classification method performed best at 

identifying buildings. Trimble eCognition was used to develop the GEOBIA workflows, resulting 

in six image classifications per each of the two images. Trimble’s eCognition simplified the 

translation of the concordance results in the image classification.  

 Three of the six classifications included the results of the concordance analysis to reduce 

the feature space. The other three classifications used the same type of classification method but 

did not include a feature space reduction method. The three classification methods selected for 

analysis were rule-based, nearest neighbor, and random forest classification. The rule-based 

classification requires the development of rules based on thresholds of spectral and geometric 

information to classify the image objects. These rules require the user to manually determine the 
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appropriate thresholds for the features used to classify the image. As such, this method required 

the most trial-and-error iteration of the three methods used here and was the most time-

consuming. 

 The two supervised approaches, nearest neighbor and random forests, used in the study 

required training data to classify the images. The nearest neighbor classification method uses the 

feature values from samples and determines, based on the similarity between the training classes 

and candidate objects, which class is most appropriate for each candidate image object 

neighboring the samples. It evaluates the similarity of each object to its neighboring class and 

assigns a class based on whether or not it is more similar to that given class. 

 The random forest classification is a common method of machine learning classification. 

Similar to the nearest neighbor classification method, the random forest classification requires a 

training set. This layer of samples is used to train the algorithm to detect the assigned classes 

based on the value thresholds of the class samples. The algorithm creates a user-designated 

number of decision trees for the computer to process, and a user-defined number of random 

points. After the algorithm is trained, it creates many trees, based on the user’s discretion, and 

determines the classes at each tree, after which it conducts a vote across all trees that determines 

the class at that location.  

 These classification methods were then augmented to incorporate expert knowledge into 

the classification. Feature space reduction decreases the number of features, or attributes, used 

for classification. This approach tends to improve computation speed and improve accuracy, as 

some features used for classification remain difficult or impossible for an expert interpreter to 

employ in analysis and may introduce noise into the classification process. Table 3 displays the 
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segmentations and classifications for the computer knowledge (CB) and expert knowledge (EK) 

feature spaces in the study.  

Computer Knowledge Expert Knowledge 

Rule-based Rule-based 

Nearest Neighbor Nearest Neighbor 

Random Forest Random Forest 
            Table 3 Classifications used for analysis per feature space. 

3.4.1. Rule-Based Classification in eCognition 

To initiate the study and develop a relative understanding of the thresholds of values in the 

data, I began with a rule-based classification. The rules used in the classification are developed 

based on user-designated thresholds of the spectral values of the image objects. Manually 

inputting these values provided us a better understanding of the values in the data for the future 

classifications. 

Before developing the rules for the classification, I first had to segment the image into 

candidate image objects. I used the same segmentation parameters for both images. I used a 

multiresolution segmentation parameter of a 50 scale, 0.1 shapes, and 0.5 compactness for both 

segmentations. These values were selected based on an interactive process and visual 

interpretation. Following the segmentation, we conducted a merge of image objects with similar 

spectral values. I manually merged the image objects by hand using eCognition’s manual merge 

tool to merge similar objects, focusing the image objects representing buildings.  

After the segmentation and merging, I began to develop the classification rules. Each rule 

focused on classifying a particular class. I classified the most prominent classes first, progressing 

to classes with fewer features to classify. I used the following classes for both images: water, 

vegetation, built-up, and buildings. A background class was created to delineate the void portions 
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of the images due to the path of the satellite from the actual image content. Since all values in 

the background class were 0, I classified this class first, followed by the four classes in the order 

listed above.  

To determine the thresholds, I focused on a select number of features to build the rules. I 

used eCognition’s feature selection window to test different thresholds of particular features 

through a trial-and-error method of inputting values. For the CK classifications, I did not limit the 

number of features for analysis. Accordingly, the rules accounted for all four spectral band values, 

geometric values, and shape and positioning values, in the CK case, while the EK classifications 

considered mainly spectral values and geometric values. While I considered these features in the 

development of rules, I developed rules mainly on the spectral values of the classes, including 

brightness, near-infrared, red, blue, green, and maximum difference values. For the EK rule-

based classification, I limited the feature space used for rule development to only those found 

useful in the text analysis. The features in this second case were limited strictly to the most 

equivalent feature in eCognition’s feature space to the word in the concordance. A comparison 

of the features used in each method can be seen in Table 4.  

Table 4: Features that were used for knowledge incorporation. 

CK Features EK Features 

Brightness The radius of Smallest Enclosing 
Ellipse 

Brightness 

Max. Diff. Rectangular Fit Green 

Blue Roundness NIR 

Green Shape Index Area 

NIR Number of Pixels Number of Pixels 

Red Border Index Asymmetry 

Area Compactness Elliptic Fit 

Border Length Density Rectangular Fit 

Rel. Border to Image Border Elliptic Fit Roundness 

Volume Main Direction 
 

Asymmetry The radius of largest enclosed  
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The rule development process continued until I determined the classification produced the 

best results. In eCognition, I produced these rules in a hierarchy that separates the segmentation 

rules from the classification rules and separates the rules for each class. In doing so, the 

classification process can be reapplied without having to re-segment the image. The classification 

parameter values varied between the images, but I retained the rules between the same images. 

The final rulesets for each of the CK and EK classifications are displayed in Appendices 2a-2b. I 

repeated these classification iterations with different rule thresholds until the best-appearing 

classification was produced.  

3.4.2. Nearest Neighbor Classification in eCognition 

The nearest-neighbor classification was completed next. For consistency in the segmentation, 

the same segmentation parameters were used as those described above. The supervised nearest 

neighbor approach does not require specified rules; however, it requires a set of samples to 

compute the classes itself. Using the feature space designated in Table 4 above for the without-

knowledge classifications, I created samples for each class by visually sampling objects for each 

image using the sampling brush in eCognition. While I attempted to keep the number of samples 

the same across both images, the significantly greater number of image objects in the Yongbyon 

image led to a slightly greater number of samples in this image than in the Sohae image. 

Additionally, the number of samples varied across the classes, since some classes, were more 

easily distinguished. The number of samples per class in each image are seen in Table 5.  
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Table 5: Number of samples per class for each DPRK image. 

The number of samples used was scaled to the amount of the respective class objects in the 

image, with a greater emphasis on the building objects and samples. The samples were held 

consistent for both the case that included feature space reduction and the case that did not. The 

samples for both images are visible in Figures 6-7.  

For both the knowledge-based nearest neighbor classification and without-knowledge-based 

variant, I used the same segmentation parameters used in the knowledge-based rule-based 

Class Sohae Yongbyon 

Building 25 25 

Background 1 1 

Water 6 10 

Vegetation 31 25 

Build-up 20 30 

Figure 6: Sohae samples used for supervised and machine learning classifications. 
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classification and used the same samples for both nearest neighbor knowledge levels. The same 

image objects were accordingly analyzed for the algorithm tests across both feature spaces of 

the same respective images. The difference between the two tests per each image is the different 

feature spaces used to classify each in the nearest neighbor algorithm. The knowledge-

incorporated nearest neighbor classification, I used the knowledge-based feature space to 

produce its supervised classifications. The without-knowledge variant, however, used the non-

restricted feature space representing no knowledge incorporation. The same two rules and the 

same classes were used for both with- and without-knowledge classifications of both the Sohae 

and the Yongbyon images to maintain consistency between the study sites. This algorithm 

produced a total of four classifications, as with the other algorithms in this study.  

Figure 7: Yongbyon samples used for supervised and machine learning classifications.. 
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3.4.3. Random Forest Classification in eCognition 

The final classification algorithm is a random forest classification. The segmentation 

parameters were held constant for the without-knowledge and the knowledge-based 

classification workflows resulting in the same candidate image objects as the rule-based and 

nearest neighbor classifications above.  

 This classification required three rules: the image layer copy, training the classifier, and 

executing the classification. To train the classifier, I used samples transferred from the nearest 

neighbor classification. The features used for the training included those in Table 2 from the 

feature spaces. As before, the feature spaces used differed between the without-knowledge and 

the knowledge-based processes. Within this trainer, I also designated the parameters for the 

random forest classification. I used 16 maximum categories, 200 trees, and 0.2 forest accuracy 

to produce the best-appearing classification from the random forest classification. All other 

parameters in the editor remained their default settings.  

Following the establishment of the training parameters, I trained and ran the machine 

learning classifier. Executing the classifier required the use of the final rule in the ruleset. All 

parameters for this rule were default parameters except selecting the appropriate training data. 

I conducted the same steps with the knowledge-based random forest classification with only the 

reduced feature space. As with the other classifications, the random forest classifications for both 

images were rerun until the best-fitting parameters were achieved.  

3.5. Analysis 3 – Comparison of Classification Software 

Several programs exist to conduct image classifications. While this study primarily uses 

eCognition, to find the combination of variables that produces the best classifications of the 
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missile testing facilities in the DPRK, I produced classifications using the R software package. This 

package permits the use of the R computer language to conduct the classifications manually. To 

compare the software packages, I conducted a random forest classification in R on the Sohae 

image to compare to the results obtained from classifications conducted in the previous analysis.  

Both eCognition and R have capabilities for executing random forest classifications, though 

their purposes and processes remain quite different (Trimble 2019; The R Foundation 2019). 

eCognition is a GEOBIA software developed by Trimble that permits the development of rulesets 

to automatically classify and analyze remotely-sensed imagery. eCognition Developer is used to 

develop processes for image analysis whereas the other packages extend the software for other 

analysis scenarios. R is a highly flexible, open-source, and extensive statistical program used for 

a variety of applications. It is a language that relies on coding to produce some statistical 

operations in various programming environments. The wide applicability of the R computer 

language permits the analysis of remote sensing data and conducting classifications of its own.  

For the comparison of the software techniques, I used the random forest classification 

algorithm in eCognition and R. I used only the Sohae image for the comparison using the without-

knowledge case to retain consistency between the two programs. To conduct the classification 

in eCognition, I used the same steps detailed in Section 4.4.3. All of the parameters detailed in 

4.4.3 discussion of the without-knowledge case apply here.  

The process of conducting random forest in R does not require workflow development in the 

same way that eCognition does, but rather, it uses command line processing to call on packages 

to classify the image. To train the random forest classification, a reference dataset constructed 

in ArcMap resembling the samples used in the eCognition classification was used. Using the R 
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ranger library, I conducted random forest classifications and constructed three separate models. 

I began by creating a point sample using the reference data and the pixel values from the image. 

Of the 69 polygons in the reference sample points, 50 were chosen at random for sampling. 

Within the chosen polygons, three-point locations were chosen at a regular sampling interval, 

removing points within 15 meters from another, resulting in 139 points.   

Spatial random forest (RFsp) classifications were executed in R, by generating a grid of 29 

points across the image, with one raster generated for each point. Cell values then represented 

the distance from the cells to each point, which enabled the classifier to use the relative location 

for improved predictions. Of the 139 sample points, 111 were used for the training data, and 28 

were used as a validation set.  

With these training and validation sets, I constructed three models with the RFsp classifier. 

The first model used the pixel value for the random forest classifier. The parameters designated 

were trees=500 and mtry=one, mtry is the parameter that constraining the number of variables 

considered at each decision point in the random forest classification. The second model 

developed and used in R is as follows with equation (1): 

 

Class = z + layer.1 + layer.2 + layer.3 + layer.4 + layer.5 + layer.6 + layer.7 + layer.8 + layer.9 + 

layer.10 + layer.11 + layer.12 + layer.13 + layer.14 + layer.15 + layer.16 + layer.17 + layer.18 + layer.19 + 

layer.20 + layer.21 + layer.22 + layer.23 + layer.24 + layer.25 + layer.26 + layer.27 + layer.28 + layer.29, 

                             (1) 

where z is the pixel value. 

Each layer.x value represents the distance value from each respective grid point. The model 

identifies the best mtry parameter value. Once mtry was defined, the classification was run with 
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500 trees. The third model did not consider pixel value, as it was a purely spatial RFsp model, and 

the model used in R is as follows with equation (2):  

 

Class = layer.1 + layer.2 + layer.3 + layer.4 + layer.5 + layer.6 + layer.7 + layer.8 + layer.9 + layer.10 + layer.11 + 

layer.12 + layer.13 + layer.14 + layer.15 + layer.16 + layer.17 + layer.18 + layer.19 + layer.20 + layer.21 + 

layer.22 + layer.23 + layer.24 + layer.25 + layer.26 + layer.27 + layer.28 + layer.29 

                     (2) 

The mtry value used in this third model was 10, and again, 500 trees were used. The results 

of each model will be displayed in Section 5.  

3.6. Analysis 4- Comparison of Spatial Resolutions 

After achieving poor results using the Planet Lab imagery, I examined whether to improve the 

spatial resolution of the satellite imagery might improve the classification results. Because 

imagery of the DPRK was not available at resolutions greater than 3 meters, I used proxy imagery 

for this final analysis. The three-meter resolution made a visual interpretation of the objects in 

the image difficult.  

I chose to use NAIP (National Agricultural Imagery Program) imagery with a 1-meter spatial 

resolution of the Palisades Nuclear Energy facility in Michigan, US as a proxy for the Planet Labs 

imagery, as it has a finer spatial scale, but similar spectral resolution (United States Department 

of Agriculture 2015). A 2016 NAIP image of this site was obtained from the US Geological Survey 

(USGS) Earth Explorer (United States Geological Survey 2019). Insets of the image of the nuclear 

energy facility are provided in Figure 8 to display in more detail the features of focus. For 

consistency and a further test of the accuracy between different spatial resolutions, I reduced 
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the resolution of the image in ArcMap to three-meters to imitate the spatial resolution of the 

Planet Labs imagery of the DPRK missile testing facilities. 

I conducted the same six classifications described above including the distinction between 

without-knowledge and knowledge-based feature spaces. I copied the exact rules used in 

classifying the Sohae image and employed them towards the classification of both the one- and 

three-meter resolution images of the Michigan nuclear energy facility. The segmentation used 

the same parameters as the Sohae segmentation. The parameters of the rule-based classification 

   Figure 8: Nuclear Power Plant (top) and airfield (bottom).1m images on left and 3m images on 
   right. 
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required altering given the difference in the spectral parameters of the Planet Labs imagery to 

the NAIP imagery. Rules for the other classification algorithms were not altered to maintain as 

much consistency as possible between the images.  

The classifications of the NAIP images followed the same steps for classification of rule-based, 

nearest neighbor, and random forest classifications. The aim of this classification was to create a 

full-scene classification as opposed to focusing on the buildings present. Some classes were 

added – namely, the residential and industrial buildings classes to distinguish the two types of 

buildings visible in the image and determine if the resolution permitted such analysis. Due to this 

addition of classes, some new rules were required for the rule-based classification; however, 

several of the rules remained similar to those copied from the Sohae image classification.  The 

complete rules are found in Appendix 2c. 

The new image and new classes required new samples for the nearest neighbor and random 

forest classifications. The samples from the Sohae imagery would not be representative of the 

Michigan nuclear facility either in geography or in spectral values. I created samples for each of 

the new classes: residential buildings, industrial buildings, built-up, vegetation, and water. The 

background class was excluded from the classes since the image did not contain any spectrally 

void regions. The numbers of each of the samples are as follows: 25 residential buildings, 15 

industrial buildings, 20 built-up, 30 vegetation, and 10 water. The samples were the same for the 

without-knowledge feature space, but the samples changed between the two resolution images. 

Due to the different resolutions, the segmentation algorithms produced different results with far 

fewer image objects in the three-meter resolutions than in the one-meter resolution.  
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As a result, the samples from the one-meter resolution imagery could not be transferred 

accurately to the three-meter imagery, despite applying a Test Time Augmentation (TTA) mask 

for sample creation. Applying the TTA mask required a degree of overlap between the two images 

to be successfully transferred. In doing so, the default overlap of 75 % produced no samples in 

the new image. I reduced this number incrementally to 10%, which ultimately resulted in very 

few samples in the new image. Accordingly, I chose not to use the TTA mask for the sample 

selection of the three-meter resolution image and instead created samples resembling as closely 

as possible the samples from the one-meter imagery. The samples are displayed in Figure 9 to 

show the differences in the samples’ sizes, though the distribution and number remain relatively 

similar.  

The nearest neighbor and random forest classifications retained the same rules and 

parameters aside from different samples between the resolutions. I ran each algorithm until I 

achieved optimal results. The residential building and industrial building classes were removed 

from the classifications in the three-meter resolution imagery due to major misclassifications. 

This issue is discussed in depth Section 5. As with the other classifications, the results of each of 

these classifications is provided in Section 4. comparison. Each of these types of accuracy 

assessments reflected the nature of the information sought from each classification. 
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3.7. Post-classification Accuracy Assessments 

The comparison of several classifications with several different factors required more than 

one type of accuracy assessment. Classification accuracy assessment was conducted for each of 

the classification cases that are described above (DPRK imagery, NAIP imagery).  

Accuracy assessment of the DPRK imagery was completed first. The goal of this assessment 

was object identification accuracy. First, all of the Sohae and the Yongbyon images classification 

were exported as shapefiles to ArcMap. I created a shapefile for each image of the features 

identified by the 38 North image interpreters. I then created a random points layer for each image. 

The attribute table of this random points layer was then joined with each of the six classifications 

results shapefiles. These joins resulted in a file that contained the class results and the expected 

results based on the expert interpretations.   

To assess the accuracy of the DPRK image classifications, I manually created a confusion 

matrix from the attribute tables. For each classification, I visually observed the classes of each 

 Figure 9: Samples used for the spatial resolution comparison 
             classifications. 
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random point based on the respective unclassified images. This visual result acted as the ground 

truth for the accuracy assessment since I have limited access and resources to provide a more 

detailed ground truthing. I then compared the visual interpretations to each point’s respective 

classification in each of the six classifications per image.  

I labeled the classified points as either building or non-building. I included the building of 

interest points created to determine how each classification algorithm performed. The building 

points were compared to their classifications in each algorithm. For each algorithm, out of the 

total number of image objects, I determined the number of true positives (TP) or correctly 

classified buildings; false positives (FP), or non-buildings classified as buildings; true negatives 

(TN), or non-buildings classified as non-buildings; and false negatives (FN), or non-buildings 

classified as buildings. With these values for each of the classifications, I calculated the user’s (UA) 

and producer’s accuracies (PA), the overall accuracy, and the value of F (Radoux et al. 2011). The 

equation used to calculate each of these values is as follows:  

 

CA = [(TP+TN)/(TP+TN+FP+FN)], 

UA = [TP/(TP+FN)], 

PA = [TP/(TP+FP)], 

F = [(UA x PA)/(UA+PA) 

(3) 

 Next, I developed an accuracy assessment to compare the results of the R and eCognition 

processes. To compare the different software, I needed to compare the accuracies of the 

processes from both the eCognition random forest classification and that produced in R. I 

calculated the values for identification accuracy assessment as detailed above for both the 
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eCognition random forest classification (without knowledge) and the R random forest 

classification using the four classes used in the classification, eliminating the background 

classification altogether. The values determined for the R classification used the validation 

dataset created using the 29 generated points and compared the locations of these points to the 

classifications for each model created. Contingency tables were created for all models present 

between the two classifications.  

 The final accuracy assessment compared the impact of spatial resolution on the accuracy 

of NAIP classification. Since these classifications focused on classifying the entire scene of each 

of the images, rather than extracting building features, I constructed a confusion matrix of each 

of the classes. The steps to create the table follow a similar method for extracting resulting 

classes and reference classes. I created 100 random points and linked these points to each of the 

three classifications for each spatial resolution. This link assigned each random point the class 

present at its location in each of the classifications. A contingency table comparing the visually-

observed location of the random point in the image to its respective classification was created 

for each classification for each of the two images. For validation consistency, I retained the same 

random points for each of the contingency tables, only changing the classifications.  
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4. Results 

The goal of this research was to determine whether the introduction of human knowledge 

into the GEOBIA process could improve image classification accuracy in the case of missile test 

sites. Due to a lack of success in the classification of DPRK images, a secondary analysis was 

conducted using USGS NAIP imagery as well. This section provides the details of classification 

results of the three comparisons in this study. Processing times for all classifications may be seen 

at the end of Sections 4.1 and 4.3 in Table 7 and Table 18, respectively. 

4.1. Knowledge Incorporation Comparison 

This section provides the results of the knowledge comparison classifications. I provide results 

of each of the rule-based, nearest neighbor, and random forest classifications for both the with- 

and without-knowledge feature spaces. Each subsection provides details for both the Sohae and 

the Yongbyon images and is detailed accordingly. For each of these classifications, I used the TP, 

FP, TN, and FN to calculate image object detection accuracy (overall, user’s and producer’s 

accuracy), as discussed in the previous section.  
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4.1.1. Rule-Based Classification without Knowledge in eCognition 

To assess the amount of time that it took to classify the images, I accounted for the number 

of rules needed in lieu of time. For the Sohae image, the ruleset required a total of 10 rules. The 

resulting classification for the Sohae rule-based classification without knowledge is seen below 

     Figure 10: Rule-based no knowledge classification, Sohae. 
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Of the 31 image objects representing buildings in the unclassified image, 25 were classified 

correctly as buildings with 6 were misclassified. A table of the accuracies and true/false 

positives/negatives may be seen with according accuracy calculations in Table 6 at the end of 

Section 4.1. 

For the Yongbyon study site, I used a total of 8 rules. The representative classification of the 

Yongbyon site with this classification may be seen below. Of the 27 building image objects, 13 

were classified as buildings and 14 were misclassified as other classes. One image object was 

incorrectly classified as a building (FP).  

 

   Figure 11: Rule-based no knowledge classification, Yongbyon. 
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4.1.2. Rule-Based Classification with Knowledge in eCognition 

The second rule-based classification followed the same methods as the previous rule-based 

classification, only with a reduced feature space based on knowledge from image interpreters. 

For the Sohae image, I used 6 rules. Of the 31 image objects, 25 were correctly classified as 

buildings and 6 misclassified. For the Yongbyon image, 10 of the 27 were correctly classified as 

buildings, with one false positive. I used 5 rules for this image classification. The respective 

classification maps are as follows:  

 

 

Figure 12: Rule-based with knowledge classification, Sohae. 
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4.1.3. Nearest Neighbor Classification without Knowledge in eCognition 

The first nearest neighbor classifications of each site used the no-knowledge feature space. 

Unlike the previous rule-based classifications, the remaining classifications were automated, so I 

recorded the time taken to compute each classification. The Sohae image classification with this 

algorithm took 46.025 minutes and resulted in 25 out of the 31 image objects being correctly 

classified as buildings. For the Yongbyon image, the algorithm took 1:45:32 hours to complete 

and resulted in 21 of the 27 image objects being correctly classified as buildings. The classification 

maps are as seen below: 

 

 

     Figure 13: Rule-based with knowledge classification, Yongbyon. 
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Figure 14: NN no knowledge classification, Sohae. 

Figure 15: NN no knowledge classification, Yongbyon. 
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4.1.4. Nearest Neighbor Classification with Knowledge in eCognition 

These two nearest neighbor classifications used the with-knowledge feature space for 

classification. With the Sohae image, the algorithm took 23.08 minutes and resulted in 24 of 31 

correctly classified buildings with 3 false positives. The Yongbyon image took the algorithm 34.06 

minutes and resulted in 17 of 27 correctly classified buildings. The classification schemes of each 

for this algorithm are as follows: 

 

 

 

 Figure 16: NN with knowledge classification, Sohae. 
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4.1.5. Random Forest Classification without Knowledge in eCognition 

The random forest classifications used two rules. To assess the amount of time the 

classifications required, I added the processing times of the two rules. The first two used the no-

knowledge feature space for classification. For the Sohae image, training the classifier took 0.203 

seconds, and applying the classifier took 1.703 seconds. This resulted in 25 of 31 buildings 

correctly classified. For the Yongbyon image, training the classifier took 0.613 seconds and 

applying the classifier took 7.851 seconds to classify the image. This resulted in 21 of 27 building 

image objects correctly classified. The classification maps for these algorithms are as follows:  

 

 

Figure 17: NN with knowledge classification,   
Yongbyon 
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Figure 18: RF no knowledge classification, Sohae. 

Figure 19: RF no knowledge classification, Yongbyon. 
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4.1.6. Random Forest Classification with Knowledge in eCognition 

The next iteration of random forest classifications used the with-knowledge feature space for 

classification. For the Sohae image, training the classifier took 0.219 seconds and applying the 

classifier took 1.032 seconds, resulting in 25 of 31 correctly classified building image objects and 

2 false positives. For the Yongbyon image, training the classifier took 0.765 seconds and 4.891 

seconds to apply the classifier. This resulted in 17 of 27 correctly classified building image objects 

and 6 false positives. The classifications for the with-knowledge random forest classifications, 

and the accuracy assessment table for all classifications in this first analysis, are as follows: 

 

  Figure 20: RF with knowledge classification, Sohae. 
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      Figure 21: RF with knowledge classification, 
      Yongbyon. 

Classification Sohae, RB, NK Sohae, RB, WK Sohae, NN, NK Sohae, NN, WK Sohae, RF, NK Sohae, RF, WK YB, RB, NK YB, RB, WK YB, NN, NK YB, NN, WK YB, RF, NK YB, RF, WK

TP 25 25 25 24 25 25 13 10 21 17 21 17

FP 0 0 1 3 0 2 1 1 8 3 13 6

TN 100 100 99 97 100 98 99 99 92 97 87 94

FN 6 6 6 7 6 6 14 17 6 10 6 10

CA 0.9542 0.9542 0.9466 0.9237 0.9542 0.9389 0.8819 0.8819 0.8583 0.8898 0.8976 0.874

UA 0.8065 0.8065 0.9615 0.7742 0.8065 0.8065 0.4815 0.4815 0.3704 0.7778 0.6296 0.6296

PA 1 1 0.9615 0.8889 1 0.9259 0.9286 0.9286 0.9091 0.7241 0.85 0.7391

F 0.4464 0.4464 0.4808 0.4138 0.4464 0.431 0.3171 0.3171 0.2632 0.375 0.3617 0.3399

Table 6: Knowledge Incorporation comparison accuracy assessment (above). 
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             Table 7: Knowledge Incorporation Analysis Processing Times. 
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4.2. Software Comparison 

4.2.1. Random Forest Classification in eCognition 

For the random forest software comparison, I used the Sohae image classification without 

feature space reduction. These results do not differ from those discovered in the knowledge 

incorporation analysis of this study. Accordingly, the results - including the classification map and 

the accuracy assessment – may be found in Section 5.1.5 of this study.  

4.2.2. Random Forest Classification in R 

The random forest classifications in R are divided into three models each with its own results. 

Prediction maps for each of the models were created based on their respective results. Model 1, 

which is the simple random forest model using pixel values, achieved an overall accuracy of 64 % 

with the validation dataset. The error matrix for Model 1 is as follows:  

 Building Buildup Vege_mount Water 

Building 3 1 0 0 

Buildup 0 5 4 3 

Vege_mount 0 1 8 0 

Water 0 1 0 2 
Table 8: Model 1 Accuracy Assessment 
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The prediction map of the classifications for Model 1 may be seen below: 

 Model 2 achieved an overall accuracy of 93 % using the validation dataset. This accuracy 

was achieved after several iterations of the model to determine the best choice of mtry value. 

The most appropriate value was 10, which produced the accuracy. The error matrix for Model 2, 

are as follows: 

 Building Buildup Vege_mount Water 

Building 4 0 0 0 

Buildup 0 12 0 0 

Vege_mount 0 1 7 1 

Water 0 0 0 3 
Table 9: Model 2 Accuracy Assessment 

Accordingly, the prediction map of the classification from Model 2 is seen below: 

Figure 22: Prediction using Model 1 (z-value of pixel). 
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For this model, I also calculated the variable importance, which is the proportion of the 

frequency of occurrences of the variable in the classification trees. The z value showed greater 

importance with distance-based variables maintaining high significance, as well. The following 

shows the variables with a variable significance greater than 2.  

 

 

 

 

 

 

Variable Importance 

z 17.0727495 

layer.21 8.8608239 

layer.23 5.8005842 

layer.5 5.1880802 

layer.22 4.9068297 

layer.24 3.9597840 

layer.13 3.5027885 

layer.27 2.4581336 

     Table 10: Model 2 variables with  
     greater than 2 significance. 

Figure 23: Prediction using RF Model 2 (RFsp with z). 
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 Lastly, Model 3 used only the distance variables for the random forest classification. It 

performed best on the validation dataset, producing an overall accuracy of 94 %. The error matrix 

for Model 3 is as follows: 

 

 

 

 

 

 

Below is the prediction map of the classification produced with Model 3: 

 Building Buildup Vege_mount Water 

Building 4 0 0 0 

Buildup 0 12 0 0 

Vege_mount 0 0 8 1 

Water 0 0 0 3 

Table 11: Model 3 Accuracy Assessment 

Figure 24: Prediction using RF Model 3 (RFsp, no z). 
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4.3. Spatial Resolution Comparison 

The spatial resolution comparison analysis used the three classification algorithms used in 

the first analysis on NAIP imagery at 1m and 3m resolution. This analysis used only the 

knowledge-based classification. Each of these classifications was classifying the entire scene as 

opposed to extracting the building class. The bulk of the 100 points used for assessing accuracy 

were either water or vegetation from the reference image, with much lower frequencies of the 

remaining classes. 

4.3.1. Rule-Based Classification 1m 

The first rule-based classification I conducted on the 1m version of the facility image. This 

required a total of 9 rules for classification. The most accurate class of production was the “water” 

            Figure 25: Rule-based 
            classification, 1m 
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and “vegetation” classes, whereas there was confusion with 5 “buildup” points being classified 

as “building” and “vegetation.” The higher accuracy in “vegetation” and “water” classes is likely 

due to the greater number of samples in these classes relative to the remaining classes. The 

classification is seen in Figure 25, and its respective contingency table is seen below: 

 

   Reference Image   

 RB_1 Water Buildup Building Vegetation Total 

 Water 22 0 0 0 22 

 Buildup 0 0 0 0 0 

Classification Building 0 1 0 0 1 

 Vegetation 0 4 0 73 77 

 Total 22 5 0 73 100 
Table 12: Rule-based, 1m Accuracy Assessment 
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4.3.2. Rule-Based Classification 3m 

The next rule-based classification was conducted on the 3m version of the image, for which I 

used the same 9 rules as the 1m rule-based classification. This classification achieved high 

accuracies in classifying water and vegetation but very low accuracy in built-up classification, 

which was confused entirely with vegetation. The classification map is seen in Figure 26, and its 

contingency table is as follows: 

 

   Reference Image   

 RB_3 Water Buildup Building Vegetation Total 

 Water 22 0 0 0 22 

 Buildup 0 0 0 0 0 

Classification Building 0 0 0 0 0 

 Vegetation 0 8 0 70 78 

 Total 22 8 0 70 100 
Table 13: Rule-based, 3m Accuracy Assessment 

Figure 26: Rule-based classification, 3m 
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4.3.3. Nearest Neighbor Classification 1m 

The nearest neighbor classification that I conducted on the 1m version of the facility image 

took approximately 45:02 minutes to complete. The water and vegetation classes achieved the 

highest accuracies with built-up and building classification experiencing low accuracies, with at 

least one correctly classified point in each class. The classification map for the nearest neighbor 

classification of the 1m image is seen in Figure 27, and its contingency table is as follows: 

 

   Reference Image   

 NN_1 Water Buildup Building Vegetation Total 

 Water 22 0 0 1 23 

 Buildup 0 1 0 0 1 

Classification Building 0 5 1 3 9 

 Vegetation 1 0 3 63 67 

 Total 23 6 4 67 100 
Table 14: Nearest Neighbor 1m, Accuracy Assessment 

Figure 27: NN classification, 1m 
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4.3.4. Nearest Neighbor Classification 3m 

For the second nearest neighbor classification for the 3m version of the image, the 

classification algorithm took 20:09 minutes to complete. Vegetation and water again classified 

all respective points correctly, and all 7 built-up points were incorrectly classified as vegetation. 

No points retained building classifications. The classification map is in Figure 28 and the 

contingency table is seen below: 

 

   Reference Image   

 NN_3 Water Buildup Building Vegetation Total 

 Water 22 0 0 0 22 

 Buildup 0 0 0 0 0 

Classification Building 0 0 0 0 0 

 Vegetation 0 7 0 71 78 

 Total 22 7 0 71 100 
Table 15: Nearest Neighbor 3m, Accuracy Assessment 

Figure 28: NN classification,       
3m 
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4.3.5. Random Forest Classification 1m 

The random forest classification of the 1m resolution image took approximately 0.52 seconds 

to train the classifier with the given samples and an additional 6.03 seconds to apply the 

classification to the image. Water and building classes retained the highest accuracy of correctly 

classifying all of their respective points in the reference image. The built-up class experienced an 

increase in correctly identified objects, 3 of 6 correctly classified points, while vegetation 

experienced increased confusion amongst all other classes, though the majority of its points were 

correctly classified. The classification map is in Figure 29, and the contingency table for this 

random forest classification may be seen below: 
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4.3.6. Random Forest Classification 3m 

For the random forest classification of the 3m resolution image, training the classifier took 

0.44 seconds and applying the classifier, 4.56 seconds. Water yielded the highest accuracy, 

similar to the other classifications, while built-up yielded the lowest, again, with all of its points 

classified as vegetation. Vegetation retained its high accuracy though with one point of confusion 

   Reference Image   

 RF_1 Water Buildup Building Vegetation Total 

 Water 22 0 0 3 25 

 Buildup 0 3 0 4 7 

Classification Building 0 0 1 6 7 

 Vegetation 0 3 0 58 61 

 Total 22 6 1 71 100 

Table 16: Random Forest 1m, Accuracy Assessment 

Figure 29: RF classification, 1m 
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with the water class. The classification map and contingency table for this classification are as 

follows, followed by a discussion of these results: 

   Reference Image   

 RF_3 Water Buildup Building Vegetation Total 

 Water 22 0 0 1 23 

 Buildup 0 0 0 0 0 

Classification Building 0 0 0 0 0 

 Vegetation 0 7 0 70 77 

 Total 22 7 0 71 100 
Table 17: Random Forest, 3m Accuracy Assessment 

Figure 30: RF classification, 3m 
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4.3.7. Overall Results 

Each analysis produced a variety of different accuracies, but for this study in determining the best 

algorithm and parameters for this classification, the algorithm with the best accuracy from each 

section will be selected. Our results show that for the first analysis, the most accurate algorithm 

and feature space combination was both feature sets of the rule-based algorithm and the no 

knowledge random forest classification for the Sohae image. For the Yongbyon image, the 

highest accuracy was found in the random forest without knowledge classification. For the 

second analysis, Model 3 in R produced a slightly greater overall accuracy than the knowledge-

incorporated random forest classification in eCognition of the Sohae image. Lastly, for the spatial 

resolution comparison, the 1m nearest neighbor and rule-based classifications produced the 

fewest amount of incorrect classifications and thereby the highest accuracy of the classification-

resolution combinations.   

Table 18: Spatial Resolution Analysis Classification Processing Times 
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5. Discussion 

The goal of this research was to determine whether expert knowledge could be used to 

improve classification accuracy for missile test sites through a process of feature reduction. To 

this end, four analyses were conducted to evaluate the roles that classification method, spatial 

resolution, program, and the inclusion of expert knowledge affect the identification of buildings. 

This research was conducted in the face of some limitations and was restricted further by our 

delimitations. 

5.1. Limitations 

Our study contained several limitations to its full potential results. The most prominent 

limitation is the restriction to only two main study sites. Additionally, these study sites existed in 

the DPRK, one of the more restricted nations in the world. The location of these study sites 

proved problematic in the range of imagery available to public use. Accordingly, I were restricted 

to the 3m Planet Labs imagery, which did not appear to provide adequate resolution for the 

knowledge incorporation classification comparisons. Additionally, I had no direct means to access 

the sites for potential ground truthing, if necessary. These images are susceptible to tampering 

as well, which remains a minor yet critical limitation if the research is to be used for intelligence 

or military applications.  

5.2. Delimitations 

I delimited this study in several ways, including our restriction of study sites to those in the 

DPRK for the initial analysis and to strictly the Michigan nuclear facility in the final analysis. The 

results of this study may accordingly only apply to these specific cases and not to other cases, 



 
 

79 
 

despite the reusability between the DPRK and the Michigan workflows. Furthermore, I limited 

the analysis to GEOBIA instead of incorporating pixel-based analysis methods, which may have 

produced different results for detecting the buildings in these images. Lastly, I limited the 

software comparison to only eCognition and R and limited this analysis to the application of 

random forest classification in the respective software. Similarly, these results could be software 

and algorithm specific – expanding the options and combinations would likely produce different 

results.  

5.3. Analysis 1 – Knowledge Incorporation Comparison 

The results from the knowledge incorporation did not seem to confirm our hypothesis that 

simpler automated classification of buildings would be more successful than using the complete 

image feature information. This feature space reduction seems to have confirmed or reinforced 

notions of timeliness at the cost of accuracy posed by previous work in the GEOBIA literature. 

Aside from the classifications themselves, the calculation of the algorithms took much less time 

with the knowledge-based feature space. This observation is consistent with that seen in Ma et 

al. (2015), which emphasizes decreased computing time with the reduced feature space but also 

a reduced accuracy. This latter point, however, is not confirmed with our analysis. Reducing the 

number of features to reflect the interpreter’s analysis in the feature space did not seem to affect 

the classifications for the Sohae image as much as the Yongbyon image. For the Sohae image, the 

number of true positive remained the same for both with- and without-knowledge classifications, 

except one less true positive in the with-knowledge nearest neighbor classification.  

The features used in the classification of this image seemed to reflect those best used to 

identify buildings already since the building features (such as green and brightness values) tended 
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to be of much greater value in buildings for this image than in the Yongbyon image. The most 

notable difference in the feature space reduction for this image is the slight increase in false 

positives, which is likely due to some confusion between spectrally similar buildings and built-up 

areas in the image. The Yongbyon image, on the other hand, experienced more dramatic changes 

by the reduced accuracy found in previous literature (Ma et al. 2015; Yu et al. 2006). All three 

classifications algorithms for the Yongbyon site classified fewer true positives when the feature 

space was reduced for knowledge incorporation. The number of false positives, however, either 

stayed the same or decreased, likely due in part to this increase in false negatives.  

Based on the classification maps, both sites appeared to have greater misclassifications with 

the reduced feature space. The fewer features, as mentioned in Ma et al. (2015), permit the 

algorithms fewer variables to consider in classifications, thereby leading to likely greater 

misclassification. All images from both sites appear much more speckled, as built-up tends to be 

misclassified as vegetation in the Sohae image due to the spectral similarity of the mountainous 

terrain.  

In the Yongbyon image, the notable confusion apparent in the maps is the increase in water 

features throughout the classification. The image contains some sporadic water features which 

retain similar spectral similarity to the vegetation in the image, which likely attributed to the 

sporadic water classifications throughout the vegetation class in the automated supervised 

algorithms. Despite this water misclassification, the knowledge incorporation refined the building 

features within the built-up features. The accuracy assessments do not appear to reflect this 

refinement, but the knowledge incorporation for both the nearest neighbor and random forest 

classifications of the Yongbyon image appear to better identify the buildings as opposed to 
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creating a large cluster of building-classified image objects which inevitably contain the buildings 

of interest.  

I chose to focus on only the “building” class for this analysis. This choice reflects that found 

in Marpu et al. (2008), which identified the most appropriate method of classifying an Iranian 

nuclear facility as creating two binary classes (class of interest and not class of interest) and 

classifying accordingly, which produced favorable results. Our classifications provide an indicator 

of the presence of buildings rather than identifying specific buildings and their extent, likely due 

to the image quality. Accordingly, a higher resolution image would provide more accurate results 

of the extent of the building class.  

Additionally, while Castilla and Hay (2008) emphasize the requirement of multiple iterations 

of segmentation and classification to incorporate semantic meaning into image objects, the 

results of this study appear to support their findings. Providing a simple feature reduction 

appears to identify the locations of the classes of interest with a single iteration though multiple 

iterations would likely have provided better results and greater semantic meaningful image 

objects.  

The dramatic difference between the Sohae and the Yongbyon images is likely due to the 

sheer size difference between the two and the heterogeneity of the Yongbyon image versus the 

Sohae image. The Sohae image contained 8,019 image objects and the Yongbyon image, 330,722 

image objects, contributing to a large difference in the size of the image objects and the image’s 

overall homogeneity difference. The image objects in the Sohae image, as a result, were more 

representative of visually-interpreted objects and contained relatively similar and more-

distinguishable feature values. Accordingly, the user’s accuracy for all of the Yongbyon 
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classifications regardless of feature space were significantly lower than the Sohae user’s accuracy 

for any classification. Additionally, all other measured accuracies were slightly lower in the 

Yongbyon image than the Sohae image.  

5.4. Analysis 2 – Software Comparison 

Before this comparison, it does not seem a comparison between the R and eCognition 

random forest applications had been previously undertaken. The comparison is further refined 

with the use of random forest classification for analysis.  As mentioned in the previous discussion 

section, the results of the classification in eCognitinion yielded good accuracies with mostly true 

positives in classifying the buildings. For all three models constructed in R, all building 

classifications were correctly classified, though they represent a low number of the validation set. 

Each of the models in R also produced high overall accuracies. Though not the intent of this 

analysis, it suggests the increase in the amount of image data used for classification may 

complicate the classification and lead to misclassifications. The argument reinforces the strength 

of feature reduction for identifying certain classes in an image. 

Of the three models in the R software analysis, Model 2 produced the most accurate map. It 

generalized a fair portion of the built-up area in the image, similar to the eCognition analysis. This 

confusion likely lies in the similarity in spectral values of the built-up area and the vegetation-

mountain class. eCognition appeared to better represent this built-up class, though with some 

errors in classifying as “vegetation,” since the former does not create large, properly 

distinguishable features as groups of the built-up area as does the R classification. The R analysis 

classified a large portion of the bottom-right of the image as “building,” however, which the 

eCognition classification better identifies.  
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5.5. Analysis 3 – Spatial Resolution Comparison 

Per our predictions for the spatial resolution comparison of the Palisades Nuclear Facility 

image, the 1m resolution images provided better classification results across all three 

classification algorithms using the knowledge-based feature space. As was the issue in Maathuis 

(2003), where low-resolution imagery could not accurately classify individual landmines, the 

lower resolution imagery of the Palisades facility reduced accuracy. This observation supports 

the findings in the study above that higher resolution imagery – sub-meter resolution as 

designated by Maathuis (2003) – is needed to identify smaller features in spaceborne imagery 

properly.  

The lower accuracies achieved in the 3m resolution image correlates to the lower accuracies 

reflected in our knowledge incorporation comparison analysis of this study. The 3m resolution 

data did not accurately classify “buildings” or any of the other used classes and the 1m resolution 

imagery with the given rulesets and classification algorithms. The validation points in the 3m 

resolution imagery did not represent the building class in any of the instances, likely due to the 

larger image object size likely placing it in an image object of vegetation or built-up classification. 

Even referring to the built-up class, the 3m resolution imagery did not correctly classify one of 

the built-up points from the reference image. Rather, these were all classified as vegetation, 

again likely due to the over-segmenting of the image objects representing vegetation into built-

up areas of similar spectral value. This may also be due to shadows in the built-up areas being 

improperly classified as vegetation due to their spatial proximity to the vegetation classes. 

Shadows being classified as vegetation is not an expected outcome from our hypotheses; this 

confusion may be due to the darkness of the vegetation in certain parts of the image. Some 
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samples used for vegetation may have extracted these dark-appearing spectral values and did 

not have any other class appropriate for classifying the shadows than “vegetation.” Creating a 

“shadows” class may mitigate this confusion.  

Though the 3m resolution imagery did not yield high accuracy, the 1m resolution imagery was 

not perfect, and yielded higher, though not high, accuracy. The image objects in the 1m 

resolution image merged to represent buildings due largely to their high brightness value in this 

image. The finer imager objects produced allowed an easier merging process that permitted the 

merging of image objects to represent urban and artificial features correctly. The 1m imagery 

better defined the different features and prevented much of the over-segmentation present in 

the 3m resolution image due to finer, more-definable features. Of the three classifications used 

on the 1m resolution imagery, the rule-based classification remained the only algorithm not to 

identify building features at any of the random points used for verification. The other algorithms 

identified buildings in one or more instances at the 1m resolution level but produced mostly 

misclassifications as vegetation class. This confusion is likely due to the spatial proximity of the 

classes and the spectral similarity of vegetation and some of the shadows present near buildings.  

The sample differences between the images may have contributed to the different accuracies 

in classification. As seen in the Methods section of this study, the samples for the 1m resolution 

imagery were much smaller and did not account for as much space as the 3m resolution samples. 

In attempting to transfer the TTA mask created from this 1m sampling, no accurate transfer was 

possible without large image objects being used as samples in the 3m resolution image. 

Accordingly, the 3m resolution samples likely accounted for largely different spectral values than 

the more refined 1m resolution samples. This likely contributed to the error seen in classifying 
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buildings, in particular. The misclassification of the vegetation image objects in the 1m resolution 

imagery may result from the smaller image objects accounting for a more limited threshold of 

values and the increased number of image objects in general due to greater heterogeneity in the 

finer resolution image.  

Both of the resolutions accurately classified non-urban features. The 1m random forest 

classification produced the lowest accuracy for classifying vegetation, however, with confusion 

between water and built-up classes. The confusion may lie in the spectral similarity of shadows, 

darker water features, and darker vegetation, a problem which may potentially be solved with 

the addition of a shadows class. Water features were classified correctly at all identified points, 

except one point in the finer resolution nearest neighbor classification, likely due to over-

segmenting or spectral similarity of very close image objects to water features.  

Even though the 1m resolution image classification produced more favorable results than the 

3m resolution image, the algorithms took a longer duration to complete. For the rule-based 

classifications, I used the same 9 rules to classify the images, while the nearest neighbor took 

almost double the amount of time for the 1m resolution image than it needed for the 3m 

resolution image. The random forest classification took about one-second longer for the 1m 

resolution image classification. This difference in time reflects the greater amount of information 

present in the 1m resolution imagery. Following the segmentation, the 1m resolution image 

yielded a far greater number of image objects to classify than di the 3m resolution image. The 

larger image objects in the 3m resolution image further reduce the amount of information 

needed to classify the image objects, as they account for multiple image objects in the 1m 

resolution image.  
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Based on the classification maps, the lower resolution imagery appears to provide cleaner 

classifications than the 1m resolution imagery. This observation may likely be attributed to the 

far greater number of image objects in the finer resolution imagery. Additionally, the finer 

resolution imagery contains an additional “residential” class, which could not be classified in the 

3m resolution imagery due to large spectral confusion in classifying the entire scene as this class. 

As seen in the 1m resolution classifications, the “residential” class appears sporadically confused 

with “vegetation” and “industrial building” classes. To a degree, these may display accurately, 

since residential buildings were represented by small image objects throughout the image; 

however, the similarity between the residential image objects and the surrounding “vegetation,” 

“industrial,” and “built-up” classes. The 3m classifications did not produce as much apparent 

noise as the 1m resolution classifications. Accordingly, they appear to have identified specific 

buildings better than the 1m classifications, which produce a fair amount of noise for the 

“building” and “built-up” classes, again likely due to the similarity between the “built-up” and 

“building” classes spectrally, and the increased number of image objects. These 3m classifications, 

however, did produce unclassified image objects in the final classification. The rule-based 1m 

resolution classification appears to produce the most realistic classification, including the 

residential buildings divided, whereas the random forest from the same resolution produces a 

noise-filled classification with several apparent misclassifications.  

5.6. Developments on Present Research 

This research builds on and solidifies some of the previous research regarding knowledge 

incorporation into GEOBIA applications and applications observing the DPRK and military 

applications with remote sensing analysis. The research extends previous research regarding the 
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DPRK from a geographic perspective, as designated by Shim 2014 (Shim 2014). It additionally 

details the seldom-analyzed missile testing facility components specifically, which often are 

overshadowed by the missile development and the missile program in the DPRK itself. Regarding 

remote sensing for strategic operations, this research contributes by confirming the need for 

high-resolution imagery to detect small features in images, as observed by Maathuis (Maathuis 

2003). These analyses further show that conducting remote sensing studies reflecting strategic 

operations may be conducted to a lesser degree with publicly available data for little to no cost 

to the analyst.  

There appears to be a large amount of research towards the development of contextual, 

knowledge-incorporated image classification in the realm of GEOBIA. The research produced in 

this study, particularly our first analysis, builds on the assertion by MacFaden and O’Niel-Dunne 

(2015) that different rulesets will be necessary to properly classify different sites with contextual 

information. The comparison of different classification methods is similar to Belgiu and Dragut 

(2016), who compare and supervised classification methods for classification accuracy. 

Additionally, the methods in this study may motivate to further integrate eCognition with the R 

computer software, which has not been directly compared in previous research as far as I am 

aware.  
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6. Conclusion 

In our research study, I aimed to observe the best approach of incorporating expert 

knowledge into classifications of DPRK missile testing facilities. The study compared three 

different perspectives and variables associated with image analysis. Accordingly, I divided the 

study into three analyses, one for each of these factors: knowledge incorporation based on 

feature reduction, software for classification, and spatial resolution of the image for classification. 

Though our specific analyses did not produce outstanding results, it still narrowed the algorithms 

in the study to a most accurate combination across the three analyses, based on the most 

accurate parameters from each analysis. In several cases, I conclude that the different 

classification methods and combinations of analyses results could be used with some success in 

different scenarios. By the results provided above, however, I conclude that the best results 

provided from our analyses based on the comparison is a knowledge-based, random forest 

classification using R and 1-meter spatial resolution. Different applications of the research results 

would require different combinations of the best-resulting variables. Overall, the intent of the 

study remained to see to what extent I could conduct these analyses using publicly-available data 

to perform analyses for intelligence-like applications in a politically isolated nation of the world 

critical to government intelligence interests.  

Several different variables could be accounted for in this study to improve the results for 

future refinement and research. More research could be done to further the results produced in 

this study. The use of strictly 3m resolution data for the DPRK classifications could be improved 

to sub-meter resolutions for likely better analysis and a more accurate representation of each of 

the algorithms and their potentials. Since I restricted the study to only DPRK sites, future research 
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could expand this analysis to similarly rogue nations with nuclear and missile programs, namely 

the IRI, which has been the greater focus of many similar studies. These less-accessible regions 

appear to be one of the only blockades toward achieving entirely public information for similar 

studies. 

According to these future research suggestions to improve the motives of this study, some 

additional factors could be tested to develop and discover the best-fitting combination of 

variables for this political application of image classification. A study of different combinations of 

the results of this study may provide a more diversified analysis of the accuracies of different 

combinations of data, classification algorithms, knowledge incorporation, and software. For 

instance, a future study could take the most accurate approaches found in this study and test the 

three variables together for accuracy. It may add to the study with different combinations to 

compare the accuracies. Performing this combination again on the DPRK sites used in this study 

will also provide a more in-depth analysis of the research area and further refine the results of 

this research.  

While this study focused on GEOBIA applications primarily, it may be an interesting analysis 

to compare the results of the different algorithms for building identification between pixel-based 

methods and GEOBIA methods. The introduction of pixel-based analysis would furthermore 

introduce new software to the software comparison of this study, including ERDAS Imagine and 

ArcGIS programs, to name a few. This software could be added to the software comparison to 

expand on this particular analysis. Additionally, higher and lower resolution images could be used 

for classification to determine the effects of increasing and decreasing the resolution for each of 

the classification algorithms. I would also like to compare highly quantitative methods developed 
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in GEOBIA literature to those that are highly qualitative methods to determine which approach 

provides the most accurate classifications. All of these analyses could be used on the DPRK missile 

sites to advance the research done in this study in the interests of supporting policymaking and 

government decision-making. 

I hope that the results of this study motivate to continue geographic research in the DPRK. 

Little research has been conducted in the region that is available to the public. While some may 

believe it impossible to conduct geographic research of the DPRK without classified government-

level imagery, this study shows that such analysis may be conducted with publicly available assets 

and imagery for little cost to the individual. The DPRK missile program remains a highly significant 

issue in global affairs, particularly in its threats towards the US and its allies historically and 

recently. With this issue becoming publicly available, it is critical that the public view the program 

on the ground to truly understand it and the DPRK capabilities so as to avoid inappropriate 

political moves or gestures. Using the ever-advancing field of remote sensing and GEOBIA and 

results of this study, the public may be able to make further developments and refinements to 

develop an accurate representation of highlighting the buildings in DPRK missile testing facilities 

for better public perception of the program and its developments as they occur using entirely 

open-source data.  
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APPENDIX A: Abbreviations 

- CONAN: Contextual Analysis 

- CTB: Comprehensive Test Ban Treaty 

- DPRK: The Democratic People’s Republic of Korea (The DPRK) 

- FMLE: Fuzzy Maximum Likelihood Estimation 

- GEOBIA: Geographic Object-Based Image Analysis 

- IC: Intelligence Community 

- ICBM: Intercontinental Ballistic Missile 

- ID: Identification 

- IRI: Islamic Republic of Iran 

- MAD: Multivariate Alteration Detection 

- NPT: Nuclear Nonproliferation Treaty  

- NTI: Nuclear Threat Initiative 

- OWL: Ontology Web Language 

- ROK: The Republic of Korea (South Korea) 

- SEaTH: Separability and Threshold 

- SLBM: Submarine Launched Ballistic Missile 

- US: The United States of America 

- USGS: United States Geological Survey 

- USSR: United Soviet Socialist Republics (Soviet Union) 

- WMD: Weapons of Mass Destruction 
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APPENDIX B: Sohae Ruleset 
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APPENDIX C: Yongbyon Ruleset 
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APPENDIX D: Palisades Nuclear Energy Facility Ruleset 
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