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ABSTRACT

INSTITUTIONS AND INCENTIVES FOR THE EFFICIENT USE OF ENERGY

By

Dylan Brewer

Chapter 1: Moral Hazard and Equilibrium Sorting in Residential Energy Markets

This chapter studies tenant behavior in rental housing when the landlord pays for heating. I develop

a model in which renters have heterogeneous preferences for home size and indoor temperature.

When energy is costly, renters choose smaller apartments and turn down the heat—or sort into

apartments with landlord-pay energy bills. I estimate themodel using exogenous variation in energy

prices and use a machine-learning algorithm to explore preference heterogeneity. Surprisingly, I

find that renters who prefer hotter temperatures do not systematically choose landlord-pay units,

though I am unable to rule out sorting on preferences for unobserved home attributes. Eliminating

moral hazard by forcing all renters to pay their own bill reduces energy consumption by 25% due to

renters turning down the heat (22%) and choosing smaller units (3%). Moral hazard in residential

energy contracts cost the United States $839 million per year in welfare losses including $238

million from carbon emissions.

Chapter 2: The Remarkably Inelastic Demand for Home Heating Services: A Choice Exper-

iment

I conduct a stated-choice experiment that presents research subjects with hypothetical costs to adjust

their thermostats. I estimate responses to the cost of heating and analyze the causes for heterogeneity

in household demand for energy services, using the experimental results as a complete-information

baseline. I find that even at the highest price level, half of the participants exhibit zero response

to price. Further, I find that participants’ experimental behavior with complete information can

explain the full range of observed real-world temperature settings, suggesting a limited role for

informational barriers or price salience issues in energy-service demand heterogeneity. Individuals

with higher temperature preferences are more price responsive, suggesting that increasing block



pricing for energy may reduce energy consumption while minimizing the regressivity of the energy

pricing program.

Chapter 3: Negawatts v. Megawatts: Demand Response in Wholesale Electricity Markets

(with Katherine Wagner)

We study the Federal Energy Regulatory Commission’s (FERC) wholesale demand-response pro-

gram. In this program, participants sell a reduction in electricity use from a baseline on the

wholesale electricity market as if it was electricity generation. We show that demand-response par-

ticipants have different incentives to consume electricity based on whether they participate directly,

through a third-party aggregator, or through a utility aggregator. We argue that the current whole-

sale demand-response program is inefficient and should be replaced by retail demand-response

programs run by utilities.



ACKNOWLEDGEMENTS

I thank Soren Anderson for his careful mentorship, friendship, and genuine interest in my well-

being. I would not be the same economist without Soren’s advice and guidance. In addition, I

thank Joseph Herriges, Kyoo il Kim, and Scott Swinton for serving on my committee, reading my

work, and passing on their wisdom. I would also like to thank Steven Haider for his professional

mentorship, Cody Orr for many brilliant insights, and Michael Conlin for getting me to go the extra

mile. Special thanks to Lee Coppock for introducing me to economics and inspiring this journey.

My time spent at the Property and Environment Research Center in Bozeman, Montana was

critical to the development of this thesis. I would like to thank the many individuals that provided

feedback on my research while I was there: Randal Rucker, V. Kerry Smith, Timothy Fitzgerald,

Maximilian Auffhammer, Matthew Kahn, Roger Meiners, and Ryan Kellogg. I also want to thank

the office staff at PERC, in particular Sharie Rucker and Dianna Reinhart, for their excellent support.

The Environmental Science and Policy Program at Michigan State University provided funding

for the choice experiment in the thesis. I would like to thank Joseph Hamm for his help in the

experimental design. I am grateful for fellowship support from the Department of Economics at

Michigan State University, the Graduate School at Michigan State University, the Environmental

Science and Policy Program at Michigan State University, the Institute for Humane Studies, and

the Property and Environment Research Center while earning my PhD. I appreciate the office staff

of the Department of Economics, and in particular Lori Jean Nichols, for their excellent support of

my endeavors while at Michigan State.

Thank you to KatherineWagner for her important work as co-author of Chapter 3. I am grateful

for comments by seminar participants at Michigan State University, the CU Environmental & Re-

source Economics Workshop, Midwest Energy Fest (Northwestern), Energy Camp at Haas, Camp

Resources (NC State), the Midwest Economics Association Annual Meeting, the Heartland Work-

shop (University of Illinois-Urbana Champaign), Davidson College, James Madison University,

Wake Forest University, the University of Georgia, and Georgia Tech.

iv



Finally, thank you to my family for their support, advice, and love. I especially want to thank my

future wife Amanda for being my best friend, supporting my dreams, reading my drafts, becoming

an honorary economist, and moving with me to Georgia. We did it!



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER 1 MORALHAZARDANDEQUILIBRIUMSORTING INRESIDENTIAL
ENERGY MARKETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Data and descriptive evidence of moral hazard . . . . . . . . . . . . . . . . . . . . 5
1.3 Modeling and empirical strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Empirical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Parameter identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Empirical model strengths and limitations . . . . . . . . . . . . . . . . . . 15

1.4 Estimation of model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Heat costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Temperature disutility and bliss points . . . . . . . . . . . . . . . . . . . . 20

1.4.2.1 Exploring heterogeneity with LASSO . . . . . . . . . . . . . . . 22
1.4.3 Hedonic prices and preferences for attributes . . . . . . . . . . . . . . . . 23

1.5 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

CHAPTER 2 THE REMARKABLY INELASTIC DEMAND FOR HOME ENERGY
SERVICES: A CHOICE EXPERIMENT . . . . . . . . . . . . . . . . . . . 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Estimating demand for heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Heterogeneity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 3 NEGAWATTSVS.MEGAWATTS: DEMANDRESPONSE INWHOLE-
SALE ELECTRICITY MARKETS (WITH KATHERINE WAGNER) . . . . 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Institutional background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 A model of demand response incentives . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Direct retail consumer participation . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Third-party aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.3 Utility aggregator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.4 Comparing total surplus in the linear case . . . . . . . . . . . . . . . . . . 50

3.4 Can FERC improve demand response? . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
APPENDIX A FIGURES AND TABLES FOR CHAPTER 1 . . . . . . . . . . . . . . 57
APPENDIX B SUPPLEMENTAL INFORMATION FOR CHAPTER 1 . . . . . . . . 78
APPENDIX C FIGURES AND TABLES FOR CHAPTER 2 . . . . . . . . . . . . . . 81
APPENDIX D FIGURES AND TABLES FOR CHAPTER 3 . . . . . . . . . . . . . . 87

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vii



LIST OF TABLES

Table A.1: Residential Energy Consumption Survey sample means . . . . . . . . . . . . . . 70

Table A.2: American Housing Survey sample means . . . . . . . . . . . . . . . . . . . . . 71

Table A.3: Hedonic price estimates using AHS data . . . . . . . . . . . . . . . . . . . . . . 72

Table A.4: Fuel use estimates using RECS data . . . . . . . . . . . . . . . . . . . . . . . . 73

Table A.5: Average marginal effects on monthly heating costs using RECS data . . . . . . . 74

Table A.6: Temperature setting estimation using RECS data . . . . . . . . . . . . . . . . . 75

Table A.7: Temperature setting estimation using choice experiment . . . . . . . . . . . . . 76

Table A.8: LASSO heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table A.9: Simulation results: Effect of changing all landlord-pay contracts to tenant-pay . . 77

Table C.1: Participant sample mean and standard deviation . . . . . . . . . . . . . . . . . . 86

Table C.2: Estimated semi-elasticities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



LIST OF FIGURES

Figure A.1: Average temperature setting by year compared between landlord-pay and
tenant-pay regimes. The tenant-pay temperature settings statistically vary
between sample years, possibly due to changes in energy prices and resulting
behaviors. This figure does not include households that turn off the heat
completely: 28 (3.1%) landlord-pay households and 244 (6.8%) tenant-pay
households. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure A.2: Average temperature setting when out of the house between landlord-pay
and tenant-pay regimes. This figure does not include households that turn
off the heat completely: 28 (3.1%) landlord-pay housholds and 244 (6.8%)
tenant-pay households. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure A.3: Time series variation in the average ratio of electricity to natural gas price per
BTU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure A.4: Plots of estimated average markup for having the landlord-pay heating ∆p
∆Rj

by census division from the preferred correlated-random-effects regression
in table A.3. 95 percent confidence intervals are derived using cluster-robust
standard errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure A.5: Plots of estimated average hedonic price for 100 square feet ∂ p̂
∂x j

by census
division from the preferred correlated-random-effects regression in table A.3.
95 percent confidence intervals are derived using cluster-robust standard errors. 61

Figure A.6: Density of bliss point temperature settings. Does not include 11 (1.2%)
households that did not use heat in the winter. Plotted against a normal
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure A.7: The LASSO-predicted temperature settings when price is zero (bliss point)
for landlord-pay and tenant-pay households. Landlord-pay households are
predicted as having lower bliss point temperature preferences. . . . . . . . . . . 63

Figure A.8: The implied temperature disutility parameters β2,i estimated from the LASSO
regression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure A.9: The LASSO-predicted effect on temperature setting of requiring landlord-pay
households pay their own heating bills. . . . . . . . . . . . . . . . . . . . . . . 65

FigureA.10:The LASSO-predicted effect on temperature setting of moving tenant-pay
households to a landlord-pay regime. . . . . . . . . . . . . . . . . . . . . . . . 66

ix



FigureA.11:The predicted temperature setting using LASSO versus the observed temper-
ature setting used to train the algorithm. . . . . . . . . . . . . . . . . . . . . . 67

FigureA.12:Estimated bliss points using the preferred β2 = −0.79 by regime. . . . . . . . . 68

FigureA.13:Kernel density of the distribution of estimated preferences for square feet by
regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure C.1: Kernel density of participants’ bliss point temperature preferences and real
temperature settings. A Kolmogorov-Smirnov test of equivalence of distri-
butions easily rejects the null hypothesis that the distributions are equal. . . . . 81

Figure C.2: Scatterplot of bliss point temperature preferences and actual temperature
settings with a 45 degree line for reference. 54 percent of respondents set the
thermostat equal to the bliss point. 6.5 percent reported setting the thermostat
greater than the bliss point. Random noise has been added to the data to show
clustering on common temperature choices such as 70 degrees Fahrenheit. . . . 82

Figure C.3: Histogram of estimated arc semi-elasticities (η). . . . . . . . . . . . . . . . . . 83

Figure C.4: Histogram of semi-elasticities (η) estimated using OLS. . . . . . . . . . . . . . 84

Figure C.5: The marginal effects from a Tobit estimation of the estimated arc semielas-
ticities on average price and participant demographics. The marginal effects
from this estimation can be interpreted as the change in arc semi-elasticity for
a one-standard-deviation change in the predictor variable holding the other
predictor variables constant. 95 percent confidence intervals are bootstrapped
using 1000 replications with sampling at the participant level. . . . . . . . . . . 85

Figure D.1: Aggregate supply and demand curves for electricity consumption. Area 1
corresponds to the surplus loss in the no-demand-response baseline and area
2 corresponds to the surplus loss from a demand response compensation level
greater than pw − r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure D.2: The equilibrium outcome and surplus loss under direct participation. Area
1 corresponds to the surplus loss under the no-demand-response baseline.
When electricity consumers particpate directly in demand response, the op-
portunity cost already includes the retail rate, so the demand curve shifts
downward to D(pw + r). The intersection of D(pw + r) = S(pw) deter-
mines the market-clearing wholesale price under direct participation, which
decreases. Area 2 corresponds to the surplus loss under direct participation. . . 88

Figure D.3: Simulated deadweight loss by regime type plotted against the demand elas-
ticity parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

x



Figure D.4: Simulated deadweight loss by regime type plotted against the retail rate. . . . . 90

Figure D.5: Simulated deadweight loss for each regime type versus the retail rate and
the elasticity parameter. Darker colors indicate larger simulated deadweight
losses. The gray regions indicate where the wholesale price is lower than the
retail rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xi



CHAPTER 1

MORAL HAZARD AND EQUILIBRIUM SORTING IN RESIDENTIAL ENERGY
MARKETS

1.1 Introduction

Economic wisdom suggests that individuals make socially efficient decisions only when they

face the full costs and benefits of those decisions. In landlord-tenant rental regimes, the energy-

efficiency and energy-use decisions are fundamentally divided in what is called the “split-incentive

problem." When the landlord pays for utilities, tenants face no marginal cost for energy use and

so are expected to use more energy than if they were facing the full marginal cost—a form of

moral hazard.1 Meanwhile, household sorting exacerbates incentive problems through the choice

of payment regime and home attributes that affect energy efficiency. First, a household that expects

to consume more energy services will have a higher willingness to pay for landlord-pay utilities, all

else equal. Second, conditional on choosing a landlord-pay unit a household may choose a larger

home because it knows it will not pay the full cost to heat the larger home.2 Thus, the relevant causal

effect of landlord-pay utilities on energy use includes both the direct effect via temperature setting

as well as the indirect effect via the choice of payment regime and housing attributes. An estimated

17 percent of US rental housing has landlord-pay heating contracts, suggesting that eliminating

moral hazard may provide large private energy savings and reduced external costs from fossil fuel

combustion (US Census, 2013).

In this paper, I develop and estimate amodel of rentersmaking joint home-efficiency and energy-

use decisions that characterizemoral hazard and equilibrium sorting in the residential energymarket.

1Conversely, when the tenant pays for utilities, landlords do not directly benefit from energy
efficiency and so are expected to under-invest in energy efficiency—also a form of moral hazard.

2Recent work on energy use suggests that individuals are cognizant of energy costs and savings.
Myers (2017) provides convincing evidence that when purchasing a home, households discount
future energy costs at 8-10 percent. In commercial real estate, properties built under more stringent
energy-efficiency standards rent and sell at a premium relative to those built under less stringent
energy-efficiency standards (Papineau, 2017).
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I find that landlord-pay households spend 25 percent more on energy for heating than they would if

all rental contracts required the household to pay for energy.3 The moral hazard effect dominates,

contributing to 22 percent of extra heating expenditures per household. Meanwhile, landlord-pay

households choose housing units that are 140 square feet larger, contributing an additional 3 percent

of extra heating expenditures. In addition, I find that for a fixed cost of heating, households that

choose tenant-pay contracts prefer higher thermostat settings than households that choose landlord-

pay contracts as predicted by observables. This counter-intuitive result suggests that selection into

the landlord-pay regime is driven by preferences for unobserved characteristics of landlord-pay

units. Finally, I provide evidence of energy-efficiency economies of scale in multi-unit apartment

buildings, suggesting a possible explanation for the persistence of landlord-pay utility regimes.

In the model, renters have heterogeneous preferences for home size and temperature setting.

When energy is costly, renters either choose smaller apartments and turn down the heat to conserve

energy, or they sort into apartments with landlord-pay energy bills. Using data on housing rents,

temperature settings, and exogenous variation in energy prices, I estimate equilibrium hedonic

prices for home size and landlord-pay heating, the engineering energy cost of home size, and the

engineering energy cost of winter temperature settings. Given these estimates, I then estimate

how an average household’s indoor temperature setting responds to the estimated marginal cost

of heating the home. I corroborate the results using a choice experiment that I designed and

implemented on a nationally representative sample of US households. These parameter estimates

allow me to construct unique household utility functions from the model that I use to simulate

counterfactuals. I simulate the effects of eliminating moral hazard by requiring that all tenants

pay for their own energy bills and allow tenants to respond by re-sorting into housing units of

different sizes. With this counterfactual, I quantify the energy impacts of moral hazard, selection

into housing regime, and selection of housing attributes in the landlord-pay utility regime.

This paper makes several contributions to the economics literature studying energy efficiency.

This is the first paper to use a structural model to analyze the split-incentive problem for residential
3This calculation is relative to the average bill for tenant-pay units because the actual heating

bill is not observed for landlord-pay households.
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energy contracts. Experimental interventions requiring tenants to pay the bills find average energy

savings as high as 20 and 25 percent (Dewees and Tombe, 2011; Elinder et al., 2017), while quasi-

experimental approaches measure energy savings of less than 3 percent (Levinson and Niemann,

2004; Jessoe et al., 2018).4 I measure an average impact consistent with the literature, but my

structural approach provides new insights into the relative sizes of moral hazard and equilibrium

sorting. This paper complements theoretical and empirical work studying underinvestment in

energy efficiency due to split-incentive problems (e.g. Jaffe and Stavins, 1994; Harding et al., 2000;

Davis, 2012; Gillingham et al., 2012). While recent reviews conclude that the “energy-efficiency

gap" is small in most sectors (Allcott and Greenstone, 2012; Gillingham and Palmer, 2014), recent

work on energy use in rental housing suggests that asymmetric information between landlords

and tenants significantly distorts energy-efficiency investment incentives (Myers, 2018). Further,

I add to recent work investigating energy-efficiency scale economies in urban space (Borck and

Brueckner, 2017). The modeling and estimation strategy used here can be adapted to other contexts

with an up-front energy-efficiency choice followed by a downstream energy-use choice.

In addition, this paper connects the literature on equilibrium sorting in housing markets (Kumi-

noff et al., 2013) to the literature estimating moral hazard and adverse selection under asymmetric

information.5 I show how to estimate two-stage partial-equilibrium models of selection and moral

4Estimates of conservation behavior by tenants who pay for utilities vary by context. Levinson
and Niemann (2004) estimate that paying for heat reduces energy expenditures by less than 1
percent on average. On the other extreme, Elinder et al. (2017) find 25 percent average reductions
in electricity use when Swedish renters were experimentally switched to tenant-pay. The top 20
percent of energy users completely drive this result; the majority of households in the study did not
change behavior. Furthermore, these households did not use electricity for heating, and heat use is
highly inelastic. An experiment based on a single condominium complex found that submetering
decreased electricity consumption by 20 percent (Dewees and Tombe, 2011). Jessoe et al. (2018)
find that switching to tenant-pay results in a 2.9 percent reduction in average daily electricity use
among the top decile of commercial users, but that the effect for the remaining 90 percent of users
is negligible. The difference between single-site experimental and multi-site quasi-experimental
treatment effects may reflect site-selection bias on the experimental side (Allcott, 2015).

5Most recent papers in this literature focus on asymmetric information in health insurance
markets; e.g., Brot-Goldberg et al. (2017); Finkelstein et al. (2016); Baicker et al. (2015); Autor
et al. (2014); Einav et al. (2013). Other applications study lending markets (e.g. Veiga and Weyl,
2016; Crawford et al., 2018), crop insurance markets (He et al., 2017a,b), online marketplaces (Hui

3



hazard using an assumption on the parametric form of the utility function as in Bajari and Benkard

(2005). One key insight from this paper is that the first-stage choice of home attributes affects

the second-stage heating costs. Households’ choices of housing and subsequent heating use reveal

relative preferences for housing attributes and energy services when housing and fuel marginal

costs vary over time and space. The main appeal of this approach is that it allows for the estima-

tion of completely heterogeneous utility functions without making assumptions on the distribution

of the error term and with minimal supply-side assumptions. Another benefit is that estimation

is computationally simple and transparent. The parametric assumption on the utility function

provides closed-form solutions for the unknown parameters of each household’s utility function.

These parameters can be evaluated using household consumption decisions, hedonic prices, and

downstream energy costs estimated from the data.

Finally, I introduce a novel machine-learning approach to estimate energy-preference parameter

heterogeneity in the structural model. Households that pay their own energy bills do not reveal the

counterfactual winter temperature settings they would choose if the landlord was to pay for heat.

Households in landlord-pay units do reveal their “bliss point" temperature preferences (i.e., the

temperature chosen at zero marginal cost). This bliss point temperature setting is likely a function

of physiological characteristics such as age and sex.6 I train a machine-learning algorithm to

predict underlying bliss-point temperature settings using demographic covariates and the revealed

bliss points of households in landlord-pay units. These predictions characterize household heating

demand when there is zero marginal cost for temperature setting. I use these predictions to explore

heterogeneity in household energy demand, contributing to work analyzing household energy

demand heterogeneity (e.g. Reiss and White, 2005; Auffhammer and Rubin, 2018).

et al., 2016), worker contracts (Jackson and Schneider, 2011, 2015), and vehicle leasing (Weisburd
et al., 2018).

6Appendix B.1 discusses the physiological determinants of temperature setting preferences with
a thorough review of science and engineering studies.
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1.2 Data and descriptive evidence of moral hazard

In this section, I provide descriptive evidence of moral hazard in rental energy use. In 2013, an

estimated 17 percent of US renters had landlord-pay heating (US Census, 2013).7 Space heating

accounts for approximately 42 percent of residential energy use by American households and is the

single largest non-transportation residential energy item (EIA, 2013). For this reason, I focus on

space heating and winter thermostat setting to analyze heterogeneous demand for energy services

and moral hazard in residential energy contracts.

Moral hazard arises in the landlord-pay regime because households do not face the marginal

cost of energy use. A housing unit’s utility payment regime has a larger effect on the household’s

marginal heating cost than home size or any other housing attribute. If utility payments are bundled

into the rent, the household has an effective marginal cost of zero for heating services regardless

of how large the home is. When the marginal cost of heating is zero, the household will heat

their home to a “bliss point," regardless of energy price or outside temperature. Thus, for a given

household, heating use will be weakly higher in a landlord-pay regime than in a tenant-pay regime.

Landlord-pay households do not respond to market signals of scarcity or to the increased cost of

heating due to low outside temperatures.

Sorting into landlord-pay regimes on temperature preferences may also occur. Given heteroge-

neous preferences for heat, households will differ in willingness to pay for the zero-marginal-cost

heating offered in a landlord-pay regime. Households with higher bliss point temperature will be

willing to pay more to heat without marginal cost all else equal. Those with high energy demand

are thus likely to sort into landlord-pay units. This sorting results in higher energy use than would

occur under randomly assigned regimes.

To test for moral hazard, I turn to data in the Residential Energy Consumption Survey (RECS).

The RECS asks landlord-pay and tenant-pay renters about their winter temperature settings. The

7This paper focuses on the rental case. While some owner-occupied housing units have the
utility payment bundled into the homeowners’ association fee, this case is relatively rare. Two
percent of homeowners had utility payments bundled into the homeowners’ association fee.
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RECS is a repeated cross-sectional survey of nationally representative US households collected

every four years. I examine 3,993 electric-heating and gas-heating renters from the 2001, 2005,

and 2009 surveys—3,164 tenant-pay households and 829 landlord-pay households.8 In addition to

thermostat settings, the survey collects heating bills for tenant-pay units, housing characteristics,

heating and cooling degree days, location at the census division level, and household demographics.

Figure A.1 shows that landlord-pay households set their thermostats higher during the winter

than tenant-pay households during the winter. This difference by regime in average thermostat

setting can be explained either by moral hazard or by selection into landlord-pay regime on

temperature preference. Table A.1 shows differences in the demographics of tenant-pay and

landlord-pay households. Landlord-pay renters are older and poorer than tenant-pay renters—and

thus may also be expected to differ in temperature preferences. However, figure A.2 shows a larger

difference in temperature setting between the two regimes when the household is out of the home.

This evidence suggests that some of the difference in temperature setting between regimes is driven

exclusively by moral hazard rather than sorting.

Households also endogenously select housing attributes that influence energy cost. For example,

perhaps an additional 100 square feet increases the rent by five dollars each month but also increases

energy cost by a dollar each month. Then the true cost of 100 additional square feet is six dollars

per month rather than five. Even if households take energy prices as given, a household knows that

it can influence the cost of energy services by selecting different housing attributes. Likewise, it is

more expensive to increase the thermostat setting in a larger housing unit than a smaller unit.

I investigate the relationship between housing attributes, rent price, and utility payment regime

using data from the American Housing Survey (AHS). The AHS is a panel of housing units labeled

at the Metropolitan Statistical Area (MSA) level and includes information on rental price and unit

characteristics for 106,062 rental units from 1997 to 2013.9 Table A.2 displays sample means

for landlord-pay and tenant-pay units. On average, landlord-pay units are cheaper, smaller, older,

8See the appendix for notes on how the final sample is chosen.
9An MSA is a statistical region often centered around a city and the surrounding population

centers.
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and in larger buildings than tenant-pay units. In addition, landlord-pay units are less likely than

tenant-pay units to have large energy-using appliances such as in-unit laundry and air conditioning.

Thus, landlord-pay units are older but otherwise have attributes associated with lower energy use.

It is difficult to draw conclusions about the impacts of equilibrium sorting in this context, because

if more landlord-pay units are in high-cost rental areas we may be mistaking a movement along the

demand curve of an attribute for a systematic difference in regime type. The role of home attribute

prices becomes clear in the formal model—where I turn to next.

1.3 Modeling and empirical strategy

In this section, I develop a model that describes how renters make joint choices of housing and

heating. Renters with heterogeneous preferences select housing units with differentiated attributes

and utility payment regimes that influence the cost of heating. Renters subsequently choose

temperature setting, trading off heating with other consumption. I begin with a general model

that demonstrates the connection between housing attributes, heating cost, and temperature setting.

Next, I specify parametric forms of the utility function, heating cost function, and hedonic price

function that allow me to isolate and estimate the welfare impacts of moral hazard and equilibrium

sorting.

1.3.1 General model

Consider households i ∈ {1, ..., I} choosing to live in housing units j ∈ {1, ..., J} located in a

housing market. Housing units differ in basic housing characteristics x j (e.g., square feet), and

the utility payment regime Rj (a binary variable equal to one if the tenant pays the marginal cost

of utilities and zero if the landlord pays). The equilibrium per-month rental price of each housing

unit is a function of attributes and is given by p j = p(x j, Rj, ξ j), where x j are observed housing

characteristics and ξ j are researcher-unobserved housing characteristics. In this model, the choice

of which market to live in is made before considering housing and energy use so that a rental

unit in one housing market is not a substitute for a rental unit in another housing market. For
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example, households choose jobs that determine which housing market is available to them before

considering housing choice.10

Given incomes yi, households derive utility from the housing characteristics x j and ξ j , con-

sumption of an outside good zi, and the temperature setting within the housing unit si. I represent

household preferences with the utility function ui(x j, si, ξ j, zi), which is concave in x j , si, and ξ j .

Furthermore, there exists a bliss point temperature preference sb
i such that

∂ui
∂s

����
s=sb

i

= 0, and (1.1)

∂2ui

∂s2

�����
s=sb

i

< 0. (1.2)

Intuitively, the bliss point sb
i is an individual’s preferred heating temperature when facing a zero

marginal cost for heating. In addition, I adopt the assumptions of Bajari and Benkard (2005) to

guarantee the existence of a differentiable hedonic price surface in equilibrium.11

The amount the household spends on heating is a function of temperature setting si, housing

characteristics x j , the ambient temperature in the heating season Tj , and the market price of en-

ergy Pe. Let H(x j, si,Tj, Pe, ξ j) be the expected per-month cost of heating unit j to temperature

setting s given outdoor temperature Tj and energy prices Pe. H(·) can be understood as a heating

cost function. Households sign leases without exact knowledge of the future outside temperature.

Households choose among units j with different housing attributes x j and ξ j , taking into considera-

tion future heating costs. Once the households have moved in, they observe the outside temperature

and choose the temperature setting si. At this point, the households cannot change their optimally

chosen housing units j∗(i), so the housing attributes are fixed and denoted x j∗ .

10This assumption is realistic in modeling the short run where a household’s employment is fixed
and therefore tied to a housing market. In the long run, a household may move to take advantage of
differential housing and energy prices across markets. The short run view is more realistic given
large moving costs.

11Specifically, the assumptions on the utility function are that (1) ui is continuously differentiable
in zi and strictly increasing in zi with ∂ui/∂zi > ε for some ε > 0 and zi > 0, (2) ui is Lipschitz
continuous in the housing attributes, and (3) ui is strictly increasing in ξ j . Given discrete housing
attributes, condition (2) is not satisfied, but preferences over continuous attributes are identified as
the choice set becomes large (Bajari and Benkard, 2005).
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In this framework, each household maximizes utility by first choosing a housing unit and

then choosing a temperature setting. Each household solves this problem by reverse induction:

each decides how much heat to use in a housing unit with given characteristics x j and ξ j and

housing regime Rj and then uses this planned behavior to choose the preferred housing unit j∗(i).

The subsequent heating choice is a budget-constrained trade-off between consumption of energy

services and consumption of an outside good zi with price equal to one.

Heating choice: max
{si,zi}

ui(x j∗, si, ξ j∗, zi)

s.t. yi ≥ p(x j∗, Rj∗, ξ j∗) + Rj∗ · H(x j∗, si,Tj∗, Pe, ξ j∗) + zi .

(1.3)

Note that the household cannot change the housing characteristics x j∗ because it has already chosen

its housing unit j∗(i). This problem yields the first-order condition for maximization:

=⇒ [si] :
∂ui
∂si

/
∂ui
∂zi
= Rj∗ ·

∂H
∂si

. (1.4)

Equation 1.4 describes the household’s temperature setting behavior. The left side of the equation

is the marginal rate of substitution between energy services and consumption of the outside good.

The right side is the price ratio with the price of the outside good normalized to one. If the

household is in a landlord-pay regime (Rj∗ = 0), the household sets temperature to the bliss point

sb
i regardless of cost. Intuitively, the bliss point is the temperature at which the utility function

peaks—beyond this point, a person feels too hot and before this point a person feels too cold. Denote

si = s∗i (x j∗, Rj∗,Tj∗, Pe, yi) as the optimal “home heating rule" as determined by the first-order

condition in equation 1.4.

When sorting into a housing unit j, households consider the rent price of the unit and future

heating costs:

Housing choice: max
j

ui(x j, s
∗
i , ξ j, zi)

s.t. yi ≥ p(x j, Rj, ξ j) + Rj · H(x j, si,Tj, Pe, ξ j) + zi .

(1.5)

I treat future energy prices as known by households, which is a realistic assumption given regulated

residential energy prices. I further assume that utility is linearly separable in the outside good to
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allow me to interpret the opportunity cost of housing and heating in dollar terms.12 If there is a

continuum of available housing attributes such that there is continuity in attributes x and ξ, the

first-order conditions to this problem characterize sorting behavior:

=⇒ [x j] :
∂ui
∂x j

/
∂ui
∂zi
=
∂p
∂x j
+ Rj ·

∂H
∂x j

(1.6)

[Rj] : ui(x
r
j , s

r
i , ξ

r
j , z

r
i ) ≥ ui(x

−r
j , s−r

i , ξ−r
j z−r

i ) for Rj = r ∈ {0, 1}, −r , r . (1.7)

These first-order conditions are instructive. The left side of equation 1.6 is the household’s

marginal rate of substitution between consumption of the housing attribute and consumption of the

outside good, while the right side is the price ratio with the cost of the outside good normalized

to one. Note that the implicit price to which each household responds depends on whether the

household sorts into a landlord-pay or tenant-pay regime. If in a tenant-pay regime, then Rj = 1, so

choices of x j (such as square feet) will affect the marginal cost of energy use. If in a landlord-pay

regime, then Rj = 0, so choices of x j no longer affect the marginal cost of energy use, eliminating

the price incentive to conserve energy.13 Equation 1.7 says that the household sorts into the payment

regime that brings it the highest utility when it considers the optimal housing characteristics for

each. The dependence of the first-order conditions on Rj confirms the intuition that households

have different incentives for energy consumption under each payment regime. These conditions

also illustrate the simultaneous choice of heating contract and other housing characteristics that

necessitates studying housing and heating decisions in a joint framework.

How much do the energy-use incentive distortions matter? To answer this question, the differ-

ence in energy use under the current regime and under an alternative regime in which all households

have tenant-pay contracts must be calculated, relying fundamentally on counterfactual housing and

12Linear separability abstracts away from risk aversion. Given regulated energy prices, price
uncertainty plays a small role in this market. Empirical studies of farm tenancy (Allen and Lueck,
1992, 1999), timber contracts (Leffler and Rucker, 1991), groundwater contracts (Aggarwal, 2007),
and even health insurance markets (Einav et al., 2013) reject risk aversion as a determinant of
contract choice. Allen and Lueck (1995) review the literature of contract choice across several
settings and conclude generally that risk aversion does not play a large role in contract choice.

13A similar condition exists describing the choice of the unobserved attribute ξ j but is not the
focus of the analysis.
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heating scenarios that cannot be observed. While the housing and heating choices of households

can be observed, household choices in a world with only landlord-pay or tenant-pay options cannot

be observed. To identify the counterfactual energy outcomes and welfare implications, I estimate

household utility functions with preferences revealed by household sorting and temperature choices.

These utility functions can be used to estimate households’ behavioral responses to policy changes

and to calculate the welfare effects of moral hazard and choice of housing attributes.

1.3.2 Empirical model

Building upon Bajari and Kahn (2005) and Bajari and Benkard (2005), I specify a flexible utility

function for households:

ui(x j, si, ξ j, zi) = β1,iln(x j) −
1

2β2
(si − sb

i )
2 + β3,iln(ξ j) + zi . (1.8)

Households have heterogeneous preferences for how warm they like to keep their homes as well

as for consumption of housing attributes. Note that the utility parameters β1,i and β3,i for housing

attributes in equation 1.8 vary by household. The term sb
i is household i’s heterogeneous bliss

point temperature setting. Deviation from the bliss point temperature causes disutility at a rate that

depends on parameter β2 and the bliss point for household i.14

Monthly average heating cost for household i is the price of fuel Pe multiplied by the quantity

of fuel used Qe,i and the binary regime indicator Rj . The quantity of fuel used to heat to a

given indoor temperature setting is the difference in the temperature setting si from the outside

temperature during winter Tj , scaled by the housing unit’s efficiency level.15 I assume that home

attributes act as energy-efficiency complements (e.g., lower square footage and low temperature

14The distance norm is chosen for differentiability and simplicity. This parametric form is similar
to that adopted in Einav et al. (2013). A more general functional form could be used that allows
for stronger disutility from being too cold than too hot or vice versa, but this is not necessary given
the focus on heating.

15To reflect heating-season temperatures, the outdoor temperature during winter Tj is interpreted
asmean outdoor temperature conditional on being colder than 65◦F. This is to reflect heating-season
temperatures.
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setting could have a multiplicative effect):

Qe,i = (si − Tj)
σ · xγj · ξ

κ
j (1.9)

where σ, γ, and κ are fuel-intensity parameters. From this specification, the marginal heating cost

of attribute x j is

∂H
∂x j
= Rj

(
γ ·

Pe · Qe,i

x j

)
, (1.10)

while the marginal heating cost of the temperature setting si is

∂H
∂si
= Rj

(
σ ·

Pe · Qe,i

si − Tj

)
. (1.11)

In the model, I make the computational assumption that households respond to marginal heating

costs averaged by year, census division, regime, and fuel type.16

In addition, I assume rents are a function of housing attributes x j , fuel prices Pe, regime type Rj ,

and potentially unobserved housing or market attributes νdmj , according to the rent price function:

rentdmj = µ0,m + α1,d x j + α2,dPe,d + α3,d(1 − Rj)Pe,d + α4,d(1 − Rj) + µ1w j + νdmj, (1.12)

where rentdmj is the price of unit j in census division d, and MSA m.17 I allow coefficients on

attributes to vary by census division and allow mean rents to vary by MSA according to µ0,m. The

term w j are controls in estimation used to account for unobserved unit heterogeneity.18 Thus, α1,d

represents the marginal rent cost of attribute x j in division d. The markup for having the landlord

pay for utilities is the difference in energy price pass-through, α3,dPe,d . A higher fuel price should

be capitalized into the implicit rental markup for a landlord-pay housing unit. Different fuel prices

16While my specification provides estimates of completely heterogeneous marginal costs due to
the functional form of heating costs, any given estimate for i is likely a poor estimate (Wooldridge,
2010). Taken on average over division, year, regime, and fuel type, the average marginal heating
cost estimates are unbiased and consistent while preserving the variation due to fuel prices and
average housing stock efficiency differences to identify heterogeneous effects.

17Census divisions are regional groups of states: New England, Mid Atlantic, East North Central,
West North Central, South Atlantic/East South Central, West South Central, and Mountain/Pacific.

18For example, w j includes indicators by unit in the fixed-effects specification or individual
means in the correlated random effects specification.
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should induce changes in markups for landlord-pay units with different fuel types over time. If the

fuel price was equal to zero, it would not matter whether a housing unit’s heating bill was paid by

the landlord or the tenant. Thus, the interaction between fuel price and landlord-pay regime traces

out the markup, while the landlord-pay term controls for unobserved differences correlated with

regime type.

Just as before, households set an optimal heating rule and choose housing attributes. Households

have unlimited wants and limited resources such that total spending on housing, energy services,

and other goods must be less than or equal to income yi. Under my funtional-form assumptions,

the first-order conditions in equations 1.4, 1.6, and 1.7 yield

[si] :
−1
β2
(s∗i − sb

i ) = Rj∗

(
σ ·

Pe,d · Qe,i

si − Tj∗

)
(1.13)

[x j] :
β1,i
x j∗
= α1,d + Rj∗

(
γ ·

Pe,d · Qe,i

x j∗

)
(1.14)

[Rj] : ui(x
r
j , s

r
i , ξ

r
j , z

r
i ) ≥ ui(x

−r
j , s−r

i , ξ−r
j , z−r

i ) for Rj = r ∈ {0, 1}, −r , r . (1.15)

These equations characterize the choices of home heat setting si, home attributes x j , and energy

contract regime Rj .

1.3.3 Parameter identification

Identification of parameter β1,i is straightforward. Solving for β1,i in equation 1.14 reveals that for

the optimal choice j∗(i):

β1,i = x j∗

(
α1,d + Rj∗

(
γ ·

Pe,d · Qe,i

x j∗

))
. (1.16)

A household’s choice of housing characteristic x j∗ , with estimates of the hedonic price α1,m and

marginal cost of heating reveal an estimate of parameter β1,i. Estimation is discussed in more detail

later, but these are relatively simple applications of a hedonic price regression and a “hedonic heat

cost" regression. Note that the first-order conditions and the estimated parameters can be solved

for the counterfactual choices of x j under the two payment regimes.
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Temperature preferences β2 and sb
i are more difficult to identify. Using the home heating rule

in equation 1.13 for individuals in tenant-pay regimes (Rj = 1),:

s∗i = sb
i − Rj∗

(
σ ·

Pe,d · Qe,i

si − Tj∗

)
β2. (1.17)

Thus, temperature settings by landlord-pay households (Rj = 0) reveal bliss-point temperature

settings, so sb
i is directly observed for landlord-pay households. Likewise, temperature settings by

tenant-pay households reveal s∗i , sb
i for tenant-pay households. With an estimate of the disutility

parameter β2 and the marginal cost of temperature setting, I can use equation 1.17 to back out the

unobserved bliss point for tenant-pay households as well as the counterfactual optimal temperature

setting under positive energy prices for current landlord-pay households. I use two complementary

approaches to identify the key parameter β2, both based on equation 1.17: I estimate β2 using a

revealed-preference approach in the RECS as well as design and implement a choice experiment via

a nationally-representative survey to elicit changes in temperature setting in response to randomized

variation in marginal heating costs.

First, I regress observed temperature setting onmarginal costs, controlling for being in landlord-

pay and observed demographics. The bliss point is a physiological parameter that depends on

demographic characteristics Di. I therefore model sb
i = S(Di) + δ(1 − Rj∗) + hi, where S(Di)

is a function of demographics, δ(1 − Rj∗) represents unobserved differences in bliss points for

households which sort into landlord-pay units, and hi represents household taste heterogeneity.19

Using these assumptions and equation 1.13, the optimal heating choice can be rewritten as

s∗i =
[
S(Di) + δ(1 − Rj) + h1,i

]
−

[
β2MC(Pe,Qe,i, si,Tj∗, Rj∗)

]
, (1.18)

where MC(·) is the marginal cost of temperature setting:

MC(Pe,Qe,i, si,Tj∗, Rj∗) = Rj∗ ·

(
σ ·

Pe · Qe,i

si − Tj∗

)
. (1.19)

19I later discuss the possibility that the bliss point temperature setting may be different in different
housing units; e.g., a higher temperature may be preferred in an old and drafty unit relative to a
new unit.
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Equation 1.18 traces out each household’s home heating rule. The first bracketed term represents the

bliss point as a function of demographics, while the second bracketed term represents the response

to the cost of home heating. Thus, a regression of temperature setting on household demographics

and the marginal cost of temperature setting (estimated in the heating cost regression) provides

an estimate of the mean disutility parameter β2. As a side benefit, the coefficients on (1 − Rj)

and D have economically meaningful interpretations. The δ coefficient on (1 − Rj) represents the

mean difference in bliss point preference for households in landlord-pay regimes not explained by

demographics. An estimate of S(Di) provides an estimate of each household’s bliss point that is

explained by observed demographic coefficients.

Second, to supplement this revealed-preference approach, I conduct a choice experiment that

allows me to estimate equation 1.17 directly using exogenous variation in energy costs. To do so,

I first elicit a subject’s bliss point by asking at what temperature they would set their thermostats

if heating was free. Next, I draw a low, medium, and high cost of changing the thermostat that is

calibrated from the estimated heating costs. Finally, I regress temperature setting on marginal cost

to get an estimate of β2 that is free of endogeneity.

Thus, the model provides closed-form expressions for households’ heterogeneous preferences

β1,i and sb
i . I use the estimated utility function parameters and heating costs to calculate partial-

equilibrium counterfactual energy use scenarios for each household and characterize the relative

effects of moral hazard, choice of home size, and sorting based on temperature preference. The

model allows me to estimate the welfare costs of moral hazard and equilibrium sorting through

deadweight loss and the external cost of emissions from fossil fuels.

1.3.4 Empirical model strengths and limitations

The functional-form assumptions on the utility function eliminate the need for several other as-

sumptions common in the literature. First, the functional form allows the utility parameters to

vary arbitrarily by household. Though I specify the parametric form of the utility function, the

parameters are extremely flexible and general. Second, the random coefficients do not require
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a researcher-imposed error term as is common in most random coefficient utility models (Bajari

and Kahn, 2005). Finally, some functional form assumptions are necessary to simulate realistic

counterfactuals in any setting.

Another attractive feature of the estimation strategy is that it does not require any assumptions

about supply-side market structure (Bajari and Kahn, 2005). Households react to prices set outside

of their influence. These prices could arise in a perfectly competitive or monopolistic setting. The

downside to this aspect of flexibility is that I cannot model general-equilibrium supply-side effects.

For example, in a counterfactual simulation of removing the landlord-pay regime, landlords would

likely respond by changing the level of efficiency in the existing housing stock. While housing

attributes such as square footage are difficult to change, changes to appliances are a realistic response

to a policy change. In addition, the hedonic prices of energy-efficiency features of housing units

will adjust in general equilibrium. Computed counterfactuals therefore only reflect the response of

households in a partial equilibrium.

In addition to these relaxed constraints, the estimated parameters have an intuitive reduced-form

interpretation that lends credibility to the functional-form assumption. Equation 1.16 that identifies

β1,i states that a household’s preference for a housing attribute is revealed by the amount of a

housing attribute x j purchased as well as the true cost,
(
∂p/∂x j + Rj · ∂H/∂x j

)
, of the attribute.

This makes sense: if household A purchases more square feet than household B at the same price,

all else equal, then household A’s preference for square feet β1,A is revealed to be greater than

B’s preference, β1,B. Similarly, if household A faces higher cost per square foot than household

B but chooses the same amount of square feet, it is revealed that β1,A > β1,B. Thus, the utility

parameters incorporate information from variation in quantity chosen, the market price, and the

cost to downstream heating.

The empirical identification of the utility parameters depends on the flexibility of the estimated

gradients. To see this, consider estimating an inflexible price gradient by restricting the coefficient on

square feet to be the same for all households in theUnited States. Call this estimate p̂s f , themarginal

effect of square feet from a regression of price on housing attributes. Then consider two households:
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household A chooses a 1,000-square-foot apartment with landlord-pay utilities in Los Angeles,

California, and household B chooses a 1,000-square-foot-apartment with landlord-pay utilities in

Raleigh, North Carolina. Using the framework developed above, β̂s f ,A = β̂s f ,B = 1, 000 · p̂s f . The

issue is that the price of an additional square foot is not the same in Los Angeles and Raleigh—the

household in Los Angeles has likely paid much more per square foot and has a stronger preference.

The utility differences between the two households are not identified due to unobserved price

differences between markets. In fact, the estimation of a single marginal price for square feet

adds no more information beyond the level choice of square footage. In this example, accurate

estimates of the marginal prices of square footage in each market identifies the difference between

two households’ utility parameters in different markets. The difference in quantities purchased

identifies within-market variation in a household’s utility parameters.

I proceed by estimating the model parameters used to construct the utility parameters above.

1.4 Estimation of model parameters

The key empirical objects needed to identify the model’s parameters are the marginal impacts

of thermostat setting and home size on heating cost as well as the hedonic price of landlord-pay

utilities and home size. I estimate these objects using a heat cost regression and hedonic rent

price regression. Using these estimates and individual home choices, I construct estimates of the

preference for square feet β1,i. I then use a regression-based approach to estimate the temperature

disutility parameter β2 and selection into landlord pay based on bliss point. I corroborate these

estimates using data from a choice experiment. Armed with estimates of β2, I am able to back out

unobserved bliss points for current tenant-pay households. Finally, I use a LASSO regression to

explore heterogeneity in bliss-point temperature.

1.4.1 Heat costs

This step estimates the causal effect of home attributes and temperature-setting behavior on home

heating cost. How much more money does it cost to heat an additional square foot of home space,
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ceteris paribus? Given that fuel use is governed by the relationship in equation 1.9, the marginal

heating cost of attribute x j is
(
γ · (Pe · Qe,i)/x j

)
and the marginal heating cost of temperature

setting is
(
σ · (Pe · Qe,i)/(si − Tj)

)
. I estimate γ and σ by log-linearizing equation 1.9:20

ln(Qe) = σln(si − Tj) + γln(x j) + κln(ξ j), (1.20)

where si − Tj is the difference between the winter thermostat setting si and the average outdoor

temperature conditional on being less than 65◦F.21 Of course, the chosen heating intensity si −Tj is

an endogenous function q(·) of the fuel price Pe, home efficiency due to attributes ln(x j), heating

degree days HDD j , demographics Di, and unobserved tastes hi:22

ln(si − Tj) = q(Pe, ln(x j),HDD j,Di, hi). (1.21)

Equations 1.20 and 1.21 are a classic demand system that I estimate using two-stage least squares.

Equation 1.20 is the structural equation of interest, in which si − Tj is endogenous. Equation 1.21

points to a first-stage regression in which energy prices affect temperature setting but satisfy the

standard exclusion restriction and can be used as an instrumental variable for temperature setting.

The estimation sample is all tenant-pay renters in the RECSwhose fuel use is obtained directly from

20For attributes with zero or negative values, I use the inverse hyperbolic sine transformation as
an approximation to the natural log.

21The ideal but infeasible approach would be to calculate an individual measure of heating
intensity for each household i that measures the cumulative daily difference between the indoor
temperature setting and the outside temperature when the temperature outside is lower than the
thermostat setting. Thus if T ideal

j,d is the daily outdoor temperature, the ideal measure would
be (1/365)

∑365
d=1 max{0, si − T ideal

j,d }. Because of data-privacy concerns, I do not observe each
household’s exact daily outdoor temperature over the year. Instead, I observe “65◦F heating-degree
days" for each household (HDD j), which is the cumulative difference between 65◦F and the outdoor
temperature when it is less than 65◦F outside (i.e., HDD j =

∑365
d=1 max{0, 65− (T i

j,ddeal |T ideal
j,d <

65)}). Using the provided HDD j , I back out the average outdoor temperature conditional on the
outdoor temperature being less than 65◦F and label this Tj . The constructed measure of heating
intensity is the difference between the temperature setting si and the average outdoor temperature
conditional on the outdoor temperature being less than 65◦F.

22See footnote 21 for a definition of heating degree days, a commonly-used measurement of
frequency and intensity of cold days per year.
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the utility company.23 Nearly all renters heat with either electricity or gas; therefore, I estimate heat

regressions for electricity and gas only. The final sample of electricity-heated households includes

a repeated cross section of 1,511 renters surveyed in 2001, 2005, and 2009. The final sample of

gas-heated households includes a repeated cross section of 1,653 renters surveyed in 2001, 2005,

and 2009.

Table A.4 displays the ordinary least squares and two-stage least squares estimates of equation

1.20. The two-stage least squares estimates of the energy-impacts of temperature setting σ and

unit characteristics γ are precise. For gas-heated homes (with an average monthly bill of $59), a

one percent increase in thermostat setting increases the heating bill by 0.49 percent, all else equal.

A one percent increase in square feet increases the heating bill by 0.21 percent, all else equal.

Similarly, for electricity-heated homes (with an average monthly bill of $91), a one percent increase

in thermostat setting increases the heating bill by 0.2 percent, all else equal. A one percent increase

in square feet increases the heating bill by 0.26 percent, all else equal.

Table A.5 displays the estimated marginal costs using the two-stage least squares estimates.

Increasing the thermostat setting by one degree increases the heating bill by $3.57 on average for

gas-heated homes. It costs an average of $1.01 per month to heat an additional 100 square feet for

gas-heated homes. Increasing the thermostat setting by one degree increases the heating bill by

$2.89 on average for electricity-heated homes. It costs $2.42 per month to heat an additional 100

square feet for electricity-heated homes. I use estimated marginal heating costs averaged by year,

census division, and by heating fuel type to construct preferences and estimate welfare effects in

the simulation model.

I also display the estimated savings from living in a larger apartment building. For gas- and

electricity-heated homes, heating bills are lower in buildings with a larger number of units. This

relationship between building size and energy savings is not due to the number of floors as argued

by Borck and Brueckner (2017). These results suggest economies of scale in heating for large

buildings with many units, independent of the number of floors.
23I exclude households whose fuel use is estimated. Note that fuel consumption and billing is

not available for landlord-pay households.
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1.4.2 Temperature disutility and bliss points

I first estimate the temperature disutility parameter (β2) in a regression of temperature setting on

estimated marginal cost using revealed-preference data from the RECS. My ordinary least squares

estimates are precise but inconsistent, while my two-stage least squares estimates are consistent

but imprecise. Thus, I use data from a choice experiment that I conducted to get a precise causal

estimate of β2 to corroborate the cross-sectional estimates. Finally, I explore potential heterogeneity

in the disutility parameter using a LASSO approach. The point estimates of my revealed-preference

approach are corroborated by the choice experiment data.

First, I directly estimate the temperature disutility parameter β2 from theRECSusing a specifica-

tion suggested by the heating rule in equation 1.18. I regress temperature settings on demographics

Di, a dummy for being on landlord-pay heating (1 − Rj), and the estimated marginal cost M̂C:

si = ψ0 + ψ1Di + ψ2(1 − Rj) + ψ3M̂Ci + hi, (1.22)

where hi is mean-zero heterogeneity. The marginal cost is estimated for household i in a first

stage as described in the preceding section.24 These predicted marginal cost terms are endogenous

because they depend mechanically on temperature setting, so I use fuel prices as an instrument

for temperature setting. Given the heating rule in equation 1.18, ψ̂3 is an estimate of the mean

disutility parameter β2, while ψ̂2 is the estimated difference in bliss-point temperature preferences

for households in landlord and tenant pay due to factors not in Di.

Table A.6 displays these estimates. The coefficient on the marginal-cost term is imprecise

and sensitive to controls in the two-stage least squares specifications. Meanwhile, the ordinary

least squares estimates are tightly estimated around -0.55. Surprisingly, I find that landlord-pay

households have bliss points that are 1-3◦F lower than tenant-pay households on average (67◦F vs

69-70◦F).

Next, to supplement imprecise estimates from the cross-sectional approaches, I conduct a

24Standard errors are bootstrapped and allow for sampling error in the estimation of the marginal
cost term.
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separate choice experiment to corroborate the estimates.25 The steps are as follows: First, I elicit

bliss point by asking subjects what temperature setting they would choose if there was no cost to

setting the thermostat. Next, I draw a low, medium, and high marginal cost for temperature setting

from three independent uniform distributions. The temperature marginal costs are calibrated from

the estimates obtained from the RECS and range from $1 to $8 per month to change the thermostat

by five degrees Fahrenheit. I then reveal each price to the respondents and ask at what temperature

they would set their thermostat, tracing out each respondent’s demand for energy services.

I conducted the choice experiment in March 2018 using the Qualtrics Survey Panel. The

final sample includes 414 individuals drawn from a nationally representative sample who each

completed three temperature setting choices; combined, these choices make 1,242 individual-

choice observations.26 Using the responses, I directly estimate equation 1.17 using the following

specification:

si,c − sb
i = a + bMCi,c + εi, (1.23)

where si,c is respondent i’s temperature setting for choice c and MCi,c is the randomly drawn

marginal cost. Given this estimating equation, b̂ is an estimate of β2.

Table A.7 displays the ordinary least squares estimates, which indicate a β2 of -0.8. The

estimates are precise and are robust to controlling for individual fixed effects. These results are

similar to those obtained from the RECS approach, lending confidence to the estimates above.

Across the well-powered estimation methods, the disutility parameter β2 ranges from -0.5 to -1.

For the final simulation, I use the fixed-effects estimate of β̂2 = −0.79 from the choice experiment

and explore the sensitivity of the results to alternative parameter values of β2 = -0.5 and -1. Figure

A.12 displays the estimated bliss-point temperature settings for landlord and tenant-pay households

assuming β2=-0.79. Surprisingly, landlord-pay households have lower bliss points than tenant-pay

households. Thus, I do not find strong evidence that households select into landlord-pay regimes

25As described in chapter 2.
26See the appendix for a more detailed description of sampling methodology, a description of

how the final sample was chosen, and exact question text.
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based on bliss-point temperature preference.27

1.4.2.1 Exploring heterogeneity with LASSO

Finally, I use a reduced-form double LASSO approach to flexibly explore heterogeneity in the

bliss point while allowing for heterogeneity in the temperature disutility parameter β2.28 Here, I

estimate an equation for temperature setting as a function of demographics Di, housing attributes xi

including Rj , and heating fuel prices faced by tenant-payers (Rj Pe).29 I also include the interactions

and squared terms of all these variables, resulting in 1,590 covariates. I estimate the equation

si =Υ0 + Υ1x j + Υ2x2
j + Υ3Di + Υ4D2

i + Υ5x j Di + Υ6(1 − Rj) (1.24)

+ Υ7Rj Pe + Υ8Rj P
2
e + Υ9(Rj Pe)x j + Υ10(Rj Pe)Di + ηi (1.25)

where ηi is unobserved mean-zero heterogeneity in preferences using the L1-norm LASSO penal-

ization.30 This approach flexibly traces out a predictive equation for temperature setting. I use

this equation to predict bliss-point temperatures for all households when prices are equal to zero

ŝi,lasso |Pe = 0 (landlord pay), and temperature settings for all households when prices are positive

ŝi,lasso |Pe > 0 (tenant pay).

Figure A.7 displays the distribution of predicted bliss points using the LASSO algorithm. The

figure implies that landlord- and tenant-pay households have nearly indistinguishable bliss points

as predicted by observables. The distribution of estimated temperature disutility parameters β2,i

in figure A.8 shows similar temperature disutilities by regime. Landlord-pay households are less

responsive to marginal heating costs than tenant-pay households on average, though the distribution

of parameters is very similar overall. Finally, figures A.9 and A.10 display the distributions of

27I explore alternative explanations to this finding in the appendix.
28The double LASSO uses a first-stage LASSO algorithm to select variables then performs

ordinary least squares regression on the selected variables. This approach eliminates the parameter
bias introduced by LASSO. See Belloni and Chernozhukov (2013).

29By using fuel prices rather thanmarginal cost in this regression I avoid the endogenousmarginal
cost terms.

30I choose the penalization weight λ using 10-fold cross validation.
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predicted temperature settings under moral hazard and fully internalized prices for landlord-pay

and tenant-pay households. Both groups of households display significant predicted response to

paying for heating.

To demonstrate the improved performance of the LASSO over OLS, I include cross-validation

performance metrics in table A.8 and plot the predicted temperature settings versus the true

distribution in figure A.11. I compare the LASSO to ordinary least squares and find that LASSO

significantly reduces mean-squared error and bias in cross validation. Despite these performance

gains and thewide variety of included predictors, the root-mean-squared error of the best performing

LASSO is still on the order of 5◦F. I conclude that a large degree of heterogeneity in temperature

preferences is idiosyncratic and difficult to predict.

1.4.3 Hedonic prices and preferences for attributes

The goal of this step is to recover the marginal prices of apartment unit attributes. For example,

how much does it cost to rent an apartment with more square feet, ceteris paribus? Using the

AHS data, I regress rental rate on unit characteristics while controlling for housing market and year

effects. I allow for different marginal price coefficients by census division, which is the finest level

of geography that can be used to link prices between the AHS and RECS.

I estimate the hedonic gradient, allowing coefficients to vary by census division:

rentdmj = µ0,m + α1,d x j + α2,dPe,d + α3,d(1 − Rj)Pe,d + α4,d(1 − Rj) + µ1w j + νdmj, (1.26)

where rentdmj is the price of unit j in census division d, and MSA m. I allow coefficients on

attributes to vary by census division and allow mean rents to vary by MSA according to µ0,m. The

term x j represents attributes of unit j, (1− Rj) is a binary variable equal to one if the landlord pays

for heat, Pe,d is the heating fuel price, w j are controls in estimation used to account for unobserved

unit heterogeneity, and νdmj are unobserved attributes or market characteristics affecting rent.31

Pass-through of regional electricity and natural gas prices into the rent identifies the landlord-pay
31I control for unit square feet, bedrooms, bathrooms, air conditioning type, in-unit laundry,

number of units in the building, frequency of the rent payment, heating equipment type (e.g.,
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markup ∆p/∆R—similar to a strategy used in two recent papers by Myers (2017, 2018). If the

fuel price was equal to zero, it would not matter whether a housing unit’s heating bill was paid by

the landlord or the tenant. However, a positive fuel price should be capitalized into the implicit

rental markup for a landlord-pay housing unit. Further, variation in relative fuel prices should

induce differential changes in markups for landlord-pay vs tenant-pay units relying on different

fuel types over time. This intuition allows for the inclusion of a rich set of controls such as unit

fixed effects, indicators for fuel type, and flexible vintage by year indicators. Because of the

relative variation in fuel prices over time (depicted in figure A.3), the landlord-pay markup is still

identified when including unit fixed effects. Intuitively, the identifying variation for the markup

comes from exogenous changes of fuel prices that are capitalized into higher rents for landlord pay

units. This strategy requires the assumption that rentals do not vary over time and space between

payment regimes in unobserved ways that are correlated with changes in relative fuel prices over

time. Figure A.3 displays the time-series variation in the relative fuel prices (in $/MMBTU) used

to identify the markup.

Table A.3 reports the estimates of the hedonic price of square feet and the estimated markups

by census division. The specifications include a “vanilla" ordinary least squares estimation, a

housing unit random-effects estimation, a housing unit fixed-effects estimation, and a housing

unit correlated-random-effects estimation. The preferred correlated-random-effects specification

uses the within-unit variation on fuel prices over time to trace out the markup for having the

landlord pay for heating but uses across-unit variation in square feet to estimate the hedonic price

of square feet. Figures A.5 and A.4 display the results from the preferred correlated-random-effects

specification. I find that 100 additional square feet costs anywhere from $5-$20 extra per month to

rent. These estimates are consistent across all specifications. The high estimates in New England

furnace, electric room heaters, etc), non-heating utilities that the landlord pays, whether the unit
was too cold last year, a subjective rating of neighborhood quality, an indicator for gas heat, division
interacted with fuel type, division indicators, vintage by year interactions, landlord-pay interacted
with division, MSA, and year dummies interacted with the landlord-pay term. Thew j term includes
indicators by unit int he fixed-effects specification or individual means in the correlated random
effects specification.
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and the Mountain/Pacific divisions are likely driven by expensive housing in New York City, San

Francisco, and other such cities. The confidence intervals for the estimated markup for having

heat included in the rent are wide and include zero for most census divisions. The point estimates

suggest a markup as low as zero and as high as $100 per month.

I construct household preferences for square feet β1,i by substituting the estimated values for

the hedonic price and average marginal heating cost into equation 1.16. Figure A.13 displays the

distribution of estimated preferences for square feet. Landlord-pay households have significantly

lower preferences for square feet than tenant-pay households on average and their choices are more

sensitive to changes in the price per square foot.

1.5 Simulation results

Consider requiring all tenants to pay for their own heating bills. Landlord-pay households would

respond by re-sorting into different-sized housing units and changing their temperature settings.

I use the estimated utility parameters for temperature setting and housing unit size to estimate

household responses to such a change. Table A.9 contains the results of the simulation. Column

(1) uses the preferred estimate of the temperature disutility parameter β2 = −0.79 and columns (2)

and (3) display results for alternative values of β2. On average, landlord-pay households re-sort

into housing units that are 140 square feet smaller and reduce their thermostat settings by 4 degrees

Fahrenheit. Overall, these changes translate into lower energy expenditures of $218 per household

per year or a 25 percent decrease relative to observed energy bills.32 While 140 square feet seems

like a large decrease in home size, it only accounts for $30 per household per year. The moral

hazard effect dominates, accounting for a full $188 of lower expenditures per household per year.

What do these results imply for the welfare losses associated with the landlord pay regime? I

calculate the deadweight loss from moral hazard and the sorting effect by considering not just ad-

ditional expenditures but also each household’s benefit from consuming additional energy services

and square feet when the landlord pays. In addition, I calculate the additional carbon dioxide emis-

32This change is relative to the average bill for tenant-pay units because the actual heating bill is
not observed for landlord-pay households.
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sions due to increased demand for fossil fuels.33 The total calculated welfare loss is the deadweight

loss plus the external cost of the carbon dioxide emissions under landlord pay relative to a scenario

in which all tenants pay for their own heating and sort into different-sized housing units.34

Table A.9 breaks down the yearly welfare cost per household and for the entire United States. I

calculate an average welfare loss of $154 dollars per household per year; external emissions costs

account for $43.68 of this total. Using the RECS survey weights, I calculate the annual welfare

loss across all landlord-pay households in the United States. I find that the total welfare loss is

$839 million per year. Of this amount, $238 million is due to the external cost of carbon dioxide

and $601 million is due to the deadweight loss. I also calculate the welare costs based on the high

and low range of disutility parameter (β2) estimates and find that the total welfare loss ranges from

$682 million to $1.26 billion per year.

The model estimates significant regional heterogeneity in welfare impacts. Both the East North-

Central and West North-Central regions have the lowest total deadweight loss impacts at $117 and

$70 per household per year. The Mountain/Pacific and South Atlantic/East South Central regions

have the highest total deadweight loss impacts at $203 per household per year. Regional differences

in fuel prices and the number of carbon-intensive electricity-heated units drive this heterogeneity.

1.6 Conclusions

When the landlord pays for heating, the renter does not face any price incentive for energy

conservation—a clear form of moral hazard. Landlord-pay households thus choose higher thermo-

33I assume a $40/ton external cost of carbon dioxide. For natural gas, I assume that natural
gas combustion releases 53.12 kilograms of carbon dioxide per 1000 cubic feet (EIA, 2016). For
electricity, I calculate a simple carbon emission intensity for each census division by dividing total
electricity production by total carbon emissions from electricity production.

34In terms of the model, the total monthly welfare loss to society from moral hazard in landlord

pay household i is
∫ sb

i
si |Rj=1

∂H
∂si
+ β2

(
s − sb

i

)
+ Cs(e,m)ds where Cs(e) is the marginal carbon cost

of temperature setting for fuel type e in census division m. The total monthly welfare loss to

society from sorting on attribute x j is
∫ x j |Rj=0

x j |Rj=1

(
∂H
∂x j
+ ∂P
∂x j

)
−

β1,i
x + Cx(e,m)dx where Cs(e) is

the marginal carbon cost of square feet for fuel type e in census division m.
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stat settings than if they paid for heating. In addition, when the landlord pays for heating, the renter

does not pay the implicit energy cost of of square feet and other home attributes. Landlord-pay

households thus choose larger housing units than if they paid for heating. Landlord-pay residential

energy contracts create perverse energy-use incentives for moral hazard and equilibrium sorting

that if eliminated could provide private savings and reductions in fossil-fuel emissions.

In this paper, I build amodel inwhich households jointly choose home attributes and temperature

setting. Households sort into housing units by selecting the heating contract and the size of the

unit, considering the difference in heating cost. After selecting a home, the household chooses the

indoor temperature setting. If in a tenant-pay unit, the household faces a tradeoff between energy

services and other consumption. If in a landlord-pay unit, the household ignores heating costs

and heats to its temperature bliss point. The model allows me to estimate the welfare impacts of

choosing a housing unit that is too large and setting the thermostat too high.

Using observed rent prices, home attributes, energy bills, temperature settings, and a choice

experiment, I estimate key parameters in the model. I find that landlord-pay households heat 4◦F

higher than if they were made to pay their own heating bills. In addition, these households choose

housing units 140 square feet larger than if they were made to pay their own bills. These distortions

result in welfare losses of about $154 per household per year. Aggregated across all US landlord-

pay households, these results imply $839 million in welfare losses per year from landlord-pay

contracts, including $238 million due to the external cost of carbon emissions.

The landlord’s role in contract choice is still not well-understood. Future work should explore

the landlord’s role in selecting housing attributes and choosing to bundle utility payments into

the rent. I find suggestive evidence for economies of scale in home heating: for gas-heated

units, units in larger apartment buildings are significantly less expensive to heat. Units in larger

apartment buildings are also significantly more likely to have landlord-pay utilities. Landlord-pay

units may have more energy-efficient appliances and insulation than tenant-pay units (Myers, 2018;

Gillingham et al., 2012). The results here and in the literature suggest that landlords choose to pay

for heating when it is profitable. The landlord’s joint decision has not received much attention in
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the current literature and would shed light on the other side of the market.
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CHAPTER 2

THE REMARKABLY INELASTIC DEMAND FOR HOME ENERGY SERVICES: A
CHOICE EXPERIMENT

2.1 Introduction

The law of demand states that as the price of a good increases, the quantity of the good a

consumer demands will decrease. When applied to environmentally damaging goods, the law of

demand suggests that prices are a powerful tool for conservation. Since the seminal work of Pigou

(1920), environmental economists have studied how prices of polluting goods can be increased to

reduce consumption and account for the external costs of pollution. Energy is the quintessential

polluting good. Energy production typically requires burning fossil-fuel inputs such as oil, natural

gas, or coal.1 Combustion of fossil fuels produces costly local pollutants (e.g., particulate matter,

nitrogen dioxide, and sulfur dioxide) and global pollutants (e.g., carbon dioxide). At the same time,

the energy services derived from fossil fuels provide profound benefits to human well-being (e.g.

lighting, heating, and other electronic technologies). Understanding demand for energy is important

for creating institutions that properly incorporate environmental costs into decision making.2

Central to this story is the assumption that individuals respond to changing energy prices

and trade off the benefit from energy consumption with the cost of energy consumption. Recent

empirical work challenges this assumption. One study of electricity-use data finds that 44 percent

of studied households did not respond to prices at all (Reiss and White, 2005). An analysis of

natural gas billing data finds that both low-income and high-income households do not respond to

prices (Auffhammer and Rubin, 2018). An experiment in Swedenwhere renters were switched from

landlord-pay to tenant-pay electricity shows that while average electricity consumption decreased by

1In 2017, of all useful thermal output in the United States, 37 percent came from non-fossil
fuels. In the electric power sector, only 9.6 percent of thermal output came from non-fossil fuels
(EIA, 2018).

2Energy demand is also a key concern for electricity and natural gas utilities. For example, if the
supply and demand of electricity is not balanced at all times during a day there will be a blackout.
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24 percent, two-thirds of the reduction came from just 20 percent of the studied households (Elinder

et al., 2017). Price responsiveness is low for most energy users but high for a select group. Why do

some individuals fail to respond to prices while other individuals cut energy consumption drastically

when prices are high? There are two main potential explanations for low price responsiveness:

behavioral heterogeneity and preference heterogeneity. Either non-price-responsive individuals

are uninformed or face high costs to monitor energy prices, or these individuals know prices and

rationally choose not to respond because of high valuation of energy services.3

This paper tests whether individual heating-choice behavior is consistent with households

having full information about the cost of energy. I conduct and analyze a stated-choice experiment

with a nationally representative sample of individuals in which participants make choices about

how high to set their thermostat during the winter when told the hypothetical cost of doing so. In

this experimental setting, energy costs are easy to understand, costless to monitor, and salient. The

experimental environment is clean of any potential confounding factors such as unobserved energy

efficiency, thermostat or meter placement, and attrition bias which makes it difficult to interpret

results from field experiments. The results from the choice experiment serve as a fully informed

benchmark to compare to real temperature-setting behavior. If hypothetical temperature-setting

behavior and real temperature-setting behavior match, this provides evidence for heterogeneous

preferences as the primary driver for energy-use heterogeneity. If experimental temperature-setting

behavior differs from real temperature-setting behavior, this is evidence pointing to price salience,

informational barriers, and adjustment costs as determinants of energy-use heterogeneity.

From the experiment, I find that under perfect experimental conditions, 50 percent of individuals

do not change the thermostat at any treatment cost. On average, a 100 percent increase in the cost of

heating the home one degree Fahrenheit warmer induces a 0.31-0.97 degree Fahrenheit reduction

3The literature suggests a number of behavioral responses or informational barriers for energy
use. For example, Ito (2014) find evidence that energy users respond to average rather thanmarginal
prices. Jessoe and Rapson (2014) argue that consumers do not know prices or face a high cost of
determining energy prices. Allcott and Rogers (2014) find that social comparisons impact energy
use and observe behavior consistent with short attention spans. Finally, Allcott and Taubinsky
(2015) argue that consumers do not pay attention to energy prices when choosing light bulbs.
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in the winter heating level. In addition, I find that reported actual household temperature-setting

behavior is consistent with realistic beliefs about the cost of heating. This evidence suggests

that preference heterogeneity plays a large role in driving empirical observations of inelastic and

heterogeneous energy demand. I analyze the heterogeneous price responses and find that individuals

with higher temperature preferences are more price responsive. This is evidence that increasing

block pricing of emissions can reduce emissions while minimizing the regressive properties of

emissions fees.

2.2 Experimental procedure

Experiment participants comprise a nationally representative sample of US individuals drawn

from the online Qualtrics Panel. I eliminated respondents if they failed Qualtrics speeding checks,

failed attention check questions placed in the survey (e.g. “Agree or disagree: I breathe more than

once per day."), if they do not use heat at home in the winter, or if they provided poor-quality

responses (e.g. gibberish in free response boxes). The final sample includes 414 individuals. The

experiment took place in early March 2018, the end of winter for most of the United States; thus,

respondents completed the survey after making heating decisions for several months.

First, I elicit each individual’s temperature preference baseline by asking what temperature they

would choose if there was no cost to heat:4

Imagine that you do not have to pay for heating your home during the winter. In this

situation, what temperature setting (degrees F) would you choose when you are at

home?
4The science and engineering literatures argue that temperature preference is determined by

physiological characteristics such as age (Taylor et al., 1995; Schellen et al., 2010), sex (Kingma
and van Marken Lichtenbelt, 2015; Karjalainen, 2012, 2007; Fanger, 1970; Parsons, 2002; Cena
and de Dear, 2001; Muzi et al., 1998; Pellerin and Candas, 2003; Griefahn and Künemund, 2001;
Nakano et al., 2002; Nagashima et al., 2002), diet (Ringsdorrf Jr. and Cheraskin, 1982), and
previous exposure (Young, 2010). There is some evidence that temperature preferences of men and
women differ by country (Beshir and Ramsey, 1981; Karjalainen, 2007; Indraganti and Rao, 2010)
and that individuals may be able to consciously alter the body’s internal response to temperature
(Kox et al., 2014).
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This baseline temperature preference with no price can be thought of as a bliss point temperature

preference for heating. Next, respondents see an example of how much money would be saved for

a variety of thermostat settings.

I draw a low, medium, and high marginal cost from three indepdendent uniform distributions

spanning $1 to $8 per month for a five degree Fahrenheit change when they are home.5 Respondents

see a price and are asked to input their chosen temperature setting. For example,

Choice #3: Imagine increasing your thermostat by one degree Fahrenheit will increase

your monthly heating bill by $1.60 (or changing your thermostat by five degrees

Fahrenheit will increase your heating bill by $8).

When a one degree change in temperature costs $1.60 per month, what temperature

setting would you choose?

Remember that you said you would set your thermostat to 70 degrees Fahrenheit if you

weren’t paying for heating.

Respondents input their chosen temperature into a text-response box. After completing the experi-

ment, respondents supply their demographic information. Qualtrics compensates each respondent a

small sum after participating successfully. A copy of the survey instrument is available for viewing

in the supplementary dissertation files.

2.3 Data

Table C.1 displays summary statistics from the experimental sample after cleaning the data.

The sample is higher income, older, more female, and more white than the nationally representative

quotas used to recruit subjects. Figure C.1 displays kernel density plots of participants’ bliss

point temperature preferences and actual temperature settings. The distribution of bliss point

temperatures appears to have a higher mean and similar variance to the distribution of actual

5The first price is a random draw from a U(1,2.67) distribution, the second price is a random
draw from a U(2.67,5.33) distribution, and the third price is a random draw from a U(5.33,8)
distribution.
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temperature settings. A Kolmogorov-Smirnov test of equivalence of distributions easily rejects the

null hypothesis that the distributions are the same.

Half (54 percent) of participants report that they set their actual thermostats equal to their bliss

point temperature preference. Figure C.2 shows a plot of bliss point vs actual temperature setting.

6.5 percent of participants report that the thermostat is higher than the bliss point, perhaps because

they did not understand the question or because they are not in control of the thermostat. For

experimental temperature settings, 50 percent of participants continue to choose their bliss point

temperature setting at the highest cost level (including 73 percent of individuals who set their actual

home temperature equal to their bliss point).

2.4 Estimating demand for heating

The experiment provides points on each respondent’s temperature demand curve. The most

intuitive measure of an individual’s temperature response to a change in the price of an additional

degree is the semi-elasticity, or the degree change in the thermostat for a percent change in price.

For each experiment choice c ∈ {1, 2, 3}, an individual i sees a price pricei,c to change the

thermostat and chooses a temperature setting tempi,c. Thus, for a household i, I model the choice

of temperature setting as some function f (·) of the price:

tempi,c = f (pricei,c) + εi, (2.1)

where εi is individual heterogeneity that is orthogonal to pricei,c. The semi-elasticity is

(∂temp/∂price) · pricei,c. (2.2)

First, I pool the sample and estimate the mean semi-elasticity using ordinary-least-squares and

fixed-effects estimation. I estimate the following equation on the pooled temperature choices:

tempi,c = α + βln(pricei,c) + εi .

Taking the derivative with respect to the price variable and solving for β reveals that β =

(∂temp/∂price) · pricei,c. Thus with this functional form, the estimate β̂ serves as an estimate of

the average semi-elasticity.
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Next, I estimate each individual’s unique semi-elasticity for temperature setting by calculating

the arc semi-elasticity directly and using a regression adjustment method. Following the intuition

developed in Allen and Lerner (1934), I calculate the arc semi-elasticity between each pair of

points on each participant’s temperature demand curve. The arc semi-elasticity between two

choices tracing out the demand curve c and c − 1 is

Arc semi-elasticityc,c−1 =
∆c,c−1tempi

%∆c,c−1pricei
, (2.3)

where ∆c,c−1tempi = tempi,c − tempi,c−1, the difference in temperature settings chosen by the

participant, and

%∆c,c−1pricei =
©­«

pricei,c − pricei,c−1
pricei,c+pricei,c+1

2

ª®¬ , (2.4)

the percentage difference in researcher-assigned energy price. One benefit of this approach is that

the arc semi-elasticity can utilize information from the bliss point choice (i.e., when price is zero),

while the regression-based approaches cannot due to the log of zero being undefined. In addition,

this approach provides a heterogeneous and non-parametric measure of price responsiveness.

Finally, I measure each participant’s semi-elasticity using a regression-adjustment approach.

For each participant i, I estimate the following equation separately with ordinary least squares:

tempi,c = αi + βiln(pricei,c) + εi . (2.5)

The estimate β̂i is an estimate of each individual’s mean semi-elasticity over individual i’s exper-

imental choices c. This method provides heterogeneous semi-elasticities but does not incorporate

information provided from the bliss point choice.

Table C.2 displays the estimated average semi-elasticities using all four methods. I bootstrap

the 95 percent confidence intervals of the averages using 1,000 replications and re-sampling at the

participant level. The estimates imply that for a 100 percent increase in the cost of heating, an indi-

vidual reduces the thermostat setting by 0.31-0.97 degrees Fahrenheit. This small average response

is due to the large number of price-insensitive participants and hides significant heterogeneity,

which I analyze in the following section.
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2.5 Heterogeneity analysis

Figure C.3 displays a histogram of participants’ arc semi-elasticities, and figure C.4 displays

a histogram of participants’ regression-adjustment semi-elasticities. The distributions display a

similar bunching of individuals completely unresponsive to prices with a significant portion of

more price-responsive individuals in the tail.

The distribution of elasticities is characteristic of those found in other energy settings. Reiss and

White (2005) estimate a similarly skewed distribution of annual elasticities for electricity use with

a mass of relatively price-insensitive households and a fat tail of more elastic households. They

also find that low-income households are more elastic and conclude that households with space

heating are significantly more elastic than other households. The experiment here shows that the

skewed distribution can be generated without the energy-efficiency responses included in a yearly

elasticity.

I explore what drives heterogeneity in temperature response by regressing the arc semi-

elasticities on standardized vectors of the average price on the arc pricei,c,c−1 and participant

demographics demographicsi. I use a Tobit maximum-likelihood estimation to account for the

clustering at zero in the dependent variable. Thus, denoting Z(·) as the function that transforms a

sample draw of a random variable into its z-score, I estimate the equation

Arc semi-elasticityi,c,c−1 = a + bZ(pricei,c,c−1) + dZ(demographicsi) + ei,c,c−1 (2.6)

using maximum likelihood, treating all non-negative arc semi-elasticities as a corner solution.

Standardization allows the marginal effects of the regression to be easily compared. The marginal

effects from this estimation are interpreted as the change in arc semi-elasticity for a one-standard-

deviation change in the predictor variable holding the other predictor variables constant.6

I explain heterogeneity as a function of bliss point temperature preference, average monthly

heating bill, income, age, household size, number of children living at home, gender, race, ur-
6The marginal effect I estimate is the “unconditional" average partial effect

∂E(Arc semi-elasticity|Z(x))
∂z(x j )

where x is a matrix of predictor variables and x j is a single predictor
variable using the results provided in (Wooldridge, 2010).
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ban/rural status, education, and political party. Figure C.5 plots the estimated marginal effects with

the 95 percent confidence intervals bootstrapped using 1,000 replications with repeated sampling

at the participant level. Most strikingly, individuals with a one-standard-deviation-higher bliss

point temperature have on average a -.42 higher arc semi-elasticty (i.e. are more elastic), all else

equal. Higher-income and higher-education respondents are less elastic on average, all else equal,

although the confidence intervals for the education marginal effects include zero. Participants

living in urban areas are more responsive to price changes. Older participants are less elastic, with

a one-standard-deviation increase in age corresponding with a .23 lower arc semi-elasticity, all else

equal. The marginal effects estimates of average heating bill, participant gender, race, number of

children, and household size have confidence intervals that contain zero.

Political party is not a strong determinant of elasticity, with Republicans, Democrats, and

Independents having statistically indistinguishable elasticity measures when controlling for other

covariates. In two papers, Costa and Kahn estimate heterogeneous energy use patterns by political

ideology. First, Costa and Kahn (2013a) show that total household electricity use is lower for polit-

ically progressive households. Second, Costa and Kahn (2013b) finds that politically progressive

homeowners are more responsive to non-price nudges. The experiment in this paper measures a

different dimension of energy use, but nonetheless the lack of heterogeneity by political group is

surprising. It is possible that in the literature, total energy use and ownership of energy-efficient

appliances are correlated with progressive energy-efficiency policies and thus reflect these policies

rather than individual behavior. In this estimation, I include many controls that are correlated with

ideology and whose influence may be spuriously attributed to ideology (e.g., urban or rural).

In this experiment, age plays a large role in determining elasticity whereas sex does not. While

the science and engineering literatures focus on measuring differences in temperature preference

and sensitivity, differences in behavior are often ignored. While a group of people may on average

be able to detect a difference in temperature in a laboratory more readily, this does not translate

necessarily to differences in thermostat setting behavior. Indeed, I find here that men and women

do not respond to prices differently after other characteristics have been controlled for despite
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numerous findings that women prefer higher temperatures than men.7 The findings in the literature

may reflect how temperature decisions are made in settings that affect multiple individuals with

heterogeneous temperature preferences or other barriers to adjusting the thermostat.8

2.6 Conclusion

The experiment reproduces energy-use heterogeneity distributions comparable to those seen in

actual energy-use data. Half of participants report that they set their actual thermostats equal to their

bliss point temperature preference when at home. Of these individuals, 70 percent were similarly

unresponsive to the cost of heating in the experiment. This is evidence that for these 70 percent of

individuals, there is some perceived negative preference for deviating from their temperature bliss

point in excess of the savings that they could have made in the experiment. These participants’

behavior is consistent with a rational zero response to the cost of heating at the relevant price level.

Under perfect-information conditions, energy-use behavior features significant heterogeneity and

unresponsiveness.

There are two main empirical findings in the paper. First, a majority of individuals set their

thermostats consistent with having perfect information. It is not likely that every individual knows

the exact cost-per-degree change on the thermostat, but over time most people have adjusted their

behavior based on feedback from energy bills. Second, more than half of all individuals are

completely unresponsive to prices. People simply do not like to be cold. The cost of heating is low

enough to take heating for granted, but it is likely that even if the cost of heating was to dramatically

increase (perhaps due to a pollution fee), behavior would respond very little. Inelastic demand for

energy services does not mean that prices are ineffective; instead, it means that the benefits from

energy services are high. As long as the inelasticity does not arise from an artificial barrier such as

false information about the energy cost savings, individuals will make the proper tradeoff between

7See Karjalainen (2012) for a review of this literature.
8For example, Kingma and van Marken Lichtenbelt (2015) discuss temperature demand in

shared office buildings and Karjalainen (2007) finds that women are less likely to change the
thermostat settings than men are.
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costs and benefits from energy use when facing prices that reflect the full external costs of energy

use.

These results imply that the gains from home energy efficiency are likely high. If energy-

use behavior is fixed for many individuals, energy efficiency savings are large and will not be

cannibalized by a rebound effect. It is not clear whether households optimally adopt energy-

efficiency upgrades (i.e., whether there is an “energy-efficiency gap"), but a recent review of the

literature did not find much evidence that individuals systematically fail to adopt energy efficiency

(Gillingham and Palmer, 2014).

One important implication of these findings is that increasing block pricing can be used to reduce

energy use without large incidence for a bulk of inelastic energy users.9 The largest determinant

of elasticity in the experiment was having a high bliss point temperature preference, implying that

large energy users are more price responsive. By increasing the price of energy for large energy

users who are most price-responsive, a regulator or regulated energy provider can reduce load

(and corresponding emissions) without increasing payments from inelastic users. For example, a

carbon tax with a zero-price carbon allowance may not sacrifice efficiency gains but may reduce

the regressivity of the policy.

9Increasing block pricing charges a higher marginal cost per unit of energy for consumption of
units of energy over a threshold. It essentially provides users with an allowance of cheap energy
each billing period before having to spend more on additional energy consumption.
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CHAPTER 3

NEGAWATTS VS. MEGAWATTS: DEMAND RESPONSE IN WHOLESALE
ELECTRICITY MARKETS (WITH KATHERINE WAGNER)

3.1 Introduction

Between 2007 and 2017 in the United States, retail consumers spent $377 billion per year on

electricity—about 2.3% of annual GDP (EIA, 2018; BEA, 2019). Before a utility sells electricity to

a retail consumer, the utility purchases electricity from generators on real-time wholesale markets.

Despite electricity market liberalization in the 1990s, the typical retail rate is regulated and does not

vary with the real-time marginal cost of electricity; thus, consumers do not receive price signals of

scarcity when electricity is expensive during peak hours. During peak hours, the wholesale price of

electricity often exceeds the retail price, and utility companies operate at a loss during these hours

to keep the lights on. To address variability, regulators and utilities use a number of “demand-side

management" tools to induce reductions in electricity demand when the price is high. One of the

most controversial of these tools is wholesale demand response.

Wholesale demand response (hereafter “demand response") is a Federal Energy Regulatory

Commission (FERC) program that allows an end user or middleman to sell a reduction in electricity

use on the wholesale electricity market as if that reduction was generation. In a typical wholesale

electricity market, renewable and fossil-fuel generators make bids to supplymegawatts of electricity

in an hour as long as the wholesale price exceeds the generator’s reserve price. The market operator

then accepts the cheapest generation required to meet demand in the hour and pays all suppliers the

bid of the marginal generator. With demand response, an end user or middleman can participate

in the wholesale market by submitting a bid to supply “negawatts" or reductions in electricity

use in an hour. If the demand response bidder’s reserve price is less than the market-clearing

wholesale price, the bid is accepted, and the bidder must curb electricity use by the accepted

amount or pay a fine. The utility company pays the bidder the wholesale price multiplied by the
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amount of reductions supplied. The logic is that it is cheaper to pay for reduced electricity demand

than it is to produce these marginal units during peak periods when energy production would be

inefficient and expensive. The demand response compensation scheme was the subject of a 2016

Supreme Court case in which the Court ultimately ruled it did not have the expertise to question

FERC’s demand response compensation rate, and that FERC was justified in maintaining a demand

response program “that no one...disputes will curb prices and enhance reliability in the wholesale

market" (Christiansen, 2016). Certainly no one disputes the benefits of a program that properly

passes wholesale prices to electricity consumers; however, institutional design details dictate the

incentives and the ultimate costs and benefits of the program.

In this paper, we analyze electricity consumers’ incentives to contract with middlemen and

reduce electricity use through the demand response program. By mandating that utilities com-

pensate reductions at the wholesale price, FERC allows real-time prices to pass through to retail

consumers during peak hours; however, the economic incentives created by the program are not

well understood. The Supreme Court’s ruling upheld FERC Order 745, which mandates that utili-

ties compensate reductions in electricity at the wholesale electricity price. Thus, for an electricity

consumer participating in demand response, the opportunity cost of consuming electricity includes

both the retail rate and the wholesale price of electricity. However, most consumers do not di-

rectly participate in demand response. Most demand response is contracted through a middleman

aggregator called a “curtailment service provider."1 The aggregator contracts with any number

of electricity consumers and can be any entity participating in the wholesale electricity market,

including utilities or third-party firms. Previous work on demand response ignores the role of the

aggregator and relies on informal conceptions of how demand response operates.2

1For example, in the first 9 months of 2018 over 80 percent of demand response came from four
curtailment service providers (Monitoring Analytics, 2018).

2Eryilmaz et al. (2017) provide some suggestive evidence that wholesalers may be more price-
responsive during demand response periods but they ignore that wholesalers who do not reduce
their demand during demand response periods pay a higher effective price because they forgo
compensation for each unit of electricity purchased. Walawalkar et al. (2008) build a model of
demand response that does not include the retail rate and ignores the effect of aggregators. O’Connel
et al. (2014) review the state of demand response and note a possible effect of aggregators, but do
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To understand the incentives created by demand response, we build a theoretical model of

the PJM electricity market with demand response. Under minimal assumptions, we show that

incentives for electricity use are not surplus-maximizing under the current demand-response rules.

In addition, we show that direct participation, third-party aggregation, and utility aggregation create

different (and inefficient) electricity-use outcomes. When end users participate directly in demand

response, the combined opportunity cost of the retail rate and wholesale price creates an incentive

to provide too many reductions. When there is an aggregator, only some of the incentive to reduce

is passed through to the end user. The degree of pass through depends on the demand elasticity and

which entity is the aggregator. Because the utility loses the retail rate for each unit of electricity

not sold, the utility has a lower incentive to seek demand-response reductions than a third-party

aggregator who does not forgo retail revenue.

Next, we compare the relative size of the economic surplus losses under different regimes.

The effect on surplus depends on the slope of the electricity demand curve and the difference

between the retail electricity rate and the wholesale electricity rate. Using a linear supply and

demand framework, we show that when demand is less elastic and the retail rate is low, third-

party aggregators perform better than the other second-best alternatives. When demand is more

elastic and the retail rate is higher, utility aggregators perform better than the other second-best

alternatives. We also show that direct participation can reduce surplus relative to the no-demand-

response baseline.

Finally, we suggest that to maximize surplus, only utilities should participate in demand re-

sponse. Because the utility is the residual claimant of surplus from load reductions, the utility is the

best steward of demand response. In addition, regulators should recognize that demand response

is a channel through which to exercise market power. A profit-maximizing utility does not have an

incentive to pass on the surplus-maximizing compensation for reductions.

not dwell deeply on the subject.
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3.2 Institutional background

Wholesale demand response is a load reduction program that is connected to the wholesale

market and receives a price formally tied to the current wholesale price of electricity. In the

PJM service area, wholesale demand response is designated as either “emergency" or “economic."

Emergency demand response is actively called upon by the market operator (PJM) during a peak

demand event. Economic demand response allows electricity users to submit reductions from

baselines in electricity use on the wholesale electricity market as generation (PJM, 2014a). Retail

demand response is a load reduction program operated by a utility that is not formally connected to

the wholesale market and is similar to the interruptible load studied by Caves et al. (1988, 1992).

In this paper, we focus on wholesale economic demand response as implemented in PJM. Further

discussion of demand response refers to the wholesale “economic" variety.

Without demand response, utilities buy electricity from generators on a regional real-time

wholesale market and re-sell it to electricity consumers at a regulated rate. On the wholesale

side of the market, renewable- and fossil-fueled generators submit bids to generate megawatts of

electricity at a minimum reserve price in each hour. PJM orders these bids from lowest to highest

cost, creating an electricity wholesale market supply curve. On the retail side of the market, end

users pay a regulated price for electricity determined by state regulatory agencies. These retail rates

are typically disconnected from the real-time marginal cost of generating electricity and instead

reflect regulatory desire for low and stable retail prices with a reliable grid. The utility is compelled

by regulation to purchase electricity on the wholesale market sufficient to supply any level of

demand at the fixed retail rate. The wholesale price of electricity the utility pays is equal to the bid

of the last unit of generation required to meet demand. The utility is required to meet this demand

even when the wholesale price of electricity is higher than the retail rate. Thus, end users do not

have any extra incentive to conserve electricity during peak hours and subsequently demand more

electricity than the surplus-maximizing level.

Demand response is designed to pass on real-time wholesale price fluctuations to end users.

The idea is to subsidize reductions in electricity use by allowing end users to participate directly in
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the wholesale market. This raises the end user’s per-unit opportunity cost of consuming electricity

without raising retail rates—raising retail rates is outside of FERC’s jurisdiction (Christiansen,

2016). Via demand response, end users participate in thewholesalemarket by submitting reductions

in electricity use (“negawatts") as bids on the wholesale market. PJM treats a demand response bid

exactly like an energy supplier’s bid to generate electricity. The demand-response bid consists of an

hourly marginal cost curve of reductions. If the market-clearing price exceeds the price of the bid

for the demand-response reduction, PJM accepts the bid, and the bidder must provide the reductions

within 20 percent of the amount accepted. The utility then must compensate accepted bids at the

locational marginal price of electricity (the wholesale price plus delivery cost) plus shutdown costs.

If the reduction is outside of the 20 percent window, the bidder forfeits any shutdown compensation,

is charged a “balancing operating reserve charge," and receives the locational marginal price of

electricity multiplied by the actual reductions. The utility pays for the demand-response reductions

and no longer purchases actual generation on the wholesale market (PJM, 2013).

PJM determines what qualifies as a reduction by calculating the baseline electricity demand

ahead of time. There is an initial certification process during which the demand response provider

submits hourly meter data from 30 of the past 60 days. Once certified, the baseline load adjusts for

each demand response event based on the electricity use within the past five days and on the day

of the event (PJM, 2014b). Baseline manipulation is possible both during the certification process

and during the same day adjustment (Kema, 2011; Chen and Kleit, 2016).

The market operator only accepts demand response bids when the locational marginal price of

electricity exceeds a “net benefits threshold" set by PJM. The net benefits threshold is determined

monthly by PJM and is meant to represent the price above which reductions in electricity use is

worth soliciting (Rich, 2017). Between April 2012 and January 2013, the wholesale price exceeded

the net benefits threshold for 75 percent of all hours (PJM, 2013).

Reductions must come from electricity end-users with an interval meter on the PJM market;

however, any individual or entity is eligible to submit bids of reduction on the PJMwholesalemarket

(PJM, 2014b). PJM refers to bidders as “curtailment service providers." In theory, curtailment

43



service providers can be the electricity end-users themselves, utilities, or any third party entity.

In practice, many third party firms have emerged as aggregators of demand response reductions

and mainly handle establishing baseline load and submitting bids (McAnany, 2018). While PJM

compensates the curtailment service providers at the locational marginal price, contracts between

the curtailment service provider and the electricity consumer can take any form (PJM, 2017). We

examine these contracts formally.

3.3 A model of demand response incentives

Here we develop an analytical framework to study the differing incentives of demand response

aggregators.

Consider an electricity utility purchasing electricity generation on a competitive wholesale

electricity market and selling electricity to consumers at a retail opportunity cost of pr . In the

wholesale electricity market, generators supply electricity at marginal cost and get paid the cost

of the last accepted bid to generate electricity. Denote the wholesale market-clearing price as pw

and the wholesale market-clearing price without demand response as p0
w. In the retail electricity

market, the electricity price is constrained to a fixed retail rate r by regulation, so without demand

response, the opportunity cost of electricity is the retail rate: pr = r . During peak hours without

demand response, the wholesale price is higher than the retail price p0
w > r , so the utility operates

at a loss during those hours.3

We denote D(p) the aggregate electricity demand at opportunity cost p in an hour and S(p) the

electricity supplied at opportunity cost p in an hour.4 Let MB(q) be the corresponding aggregate

marginal benefit from consumption of q units of electricity and MC(q) be the corresponding

aggregate marginal cost of generating q units of electricity. The retail price cannot fluctuate and

thus the inelastic aggregate hourly electricity demand is I = D(r), but the wholesale price paid

by the utility increases to induce supply that meets demand. Regulation compels the utility to

3In practice, state regulators allow the utility to recover costs through a flat fee per customer.
4Aggregate demand is downward sloping in p: ∂D

∂p > 0. Supply is upward sloping in p: ∂S
∂p > 0.
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supply any level of quantity demanded at the regulated price. Thus, the equilibrium wholesale

price equates supply with demand D(pr ) = S(pw), and the market-clearing wholesale price without

demand response p0
w is found by solving D(r) = S(p0

w) for p0
w.

The total surplus in the electricity market is the total benefit to consumers minus the total

cost of generation at the quantity demanded at the retail opportunity cost D(pr ). Define the total

surplus function W(D(pr )) in the electricity market as total benefits minus total generation costs of

electricity generation:

W(D(pr )) =

∫ D(pr )

0
MB(φ) − MC(φ)dφ. (3.1)

Total surplus ismaximizedwhen themarginal benefit of electricity consumption equals themarginal

cost, which is achievedwhen retail consumers face the same opportunity cost aswholesale suppliers.

Thus, the surplus-maximizing electricity consumption is at D(pw), and the retail opportunity cost

equals the market-clearing wholesale price of electricity p∗r = pw. When the retail opportunity cost

is set equal to the wholesale price, the market-clearing wholesale price equals the retail opportunity

cost.

We examine demand response incentives for electricity consumers and aggregators during peak

hours.

First consider an electricity consumer i consuming electricity in a peak hour.5 In the hour,

customer i has an underlying demand curve Di(p) with corresponding marginal benefit MBi(q).6

Because the retail price is fixed, inelastic demand for electricity is Ii, which is determined by the

underlying demand at the fixed retail price: Ii = Di(r). When the wholesale price exceeds the retail

price, the consumer uses too much electricity relative to the surplus-maximizing level q∗i = Di(p∗w).

Now consider a demand-response program designed to incentivize reductions in electricity

consumption. The demand response program consists of a compensation payment to the consumer

c > 0 per unit of reductions from baseline electricity consumption, i.e. Ii − qi.7 The cost
5The electricity consumer could be an industrial, commercial, or residential customer.
6Aggregate demand is the summation of individual demand curves in the market: D(p) =∑

i Di(p).
7We describe how c is set and who pays later.
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of consuming q units of electricity in the hour is then rqi − c(Ii − qi).8 The corresponding

marginal opportunity cost of electricity consumption is then the retail rate plus the demand-

response payment, i.e. r + c. When choosing how much electricity to consume, the electricity

consumer sets the marginal benefit from electricity consumption equal to the marginal opportunity

cost and consumes qDR
i = Di(r + c). Thus, a demand-response incentive equal to c∗ = pw − r

leads the consumer to respond to the wholesale price and demand the surplus-maximizing amount

of electricity qDR
i (c

∗) = q∗i = Di(p∗w).

The demand-response program lowers the equilibrium wholesale price of electricity. With

demand response, the aggregate demand for electricity is D(r + c). The equilibrium wholesale

price of electricity with demand response pDR
w clears the market so that all demand is supplied:

D(r + c) = S(pDR
w ). Because demand is downward sloping and supply is upward sloping, the

equilibrium wholesale price with demand response is lower than without, i.e., pDR
w < p0

w. With the

optimal demand-response compensation rate, c∗ = pw−r , the equilibrium wholesale price satisfies

D(p∗w) = S(p∗w) and maximizes total surplus.

Figure D.1 plots the aggregate electricity supply and demand curves. Maximum surplus is

at point q∗. Area 1 corresponds to the surplus loss in the no-demand-response baseline where

consumers demand I units of electricity and the market-clearing wholesale cost is p0
w. Area 2

corresponds to the surplus loss for a demand response compensation level c > pw − r that reduces

demand past the surplus-maximizing level.

In practice, FERC requires that the utility pays pw per unit of accepted demand-response

reductions. Further, the compensation rate passed through to the final electricity consumer depends

on whether the consumer participates directly in the demand response market or through an

aggregator. In the next sections, we analyze how aggregators set the compensation rate c and the

differing incentives for electricity use when consumers participate directly, through a third-party

aggregator, or through a utility aggregator. We analyze the impact of each case on the equilibrium

wholesale price of electricity. Finally, we compare the ultimate effect on total surplus in each case.
8This only holds for qi ≤ Ii, but we omit this condition from the remaining notation for

simplicity.
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3.3.1 Direct retail consumer participation

Given demand response, a retail consumer i can sell reductions in electricity use from baseline

consumption Ii and directly receive compensation c1 = pw per unit of reductions. Thus for a direct

participator, the marginal opportunity cost of electricity use is the retail rate plus the wholesale

price pr = r + pw. The consumer sets marginal cost equal to marginal benefit and consumes

q1 = Di(r + pw) < Di(pw). The consumer reduces electricity consumption too much because the

opportunity cost for consumption is artificially too high.

If all consumers participate directly, the aggregate electricity demand is downward sloping in

the wholesale price: D(r + pw). The equilibrium wholesale price then satisfies D(r + pdirect
w ) =

S(pdirect
w ). With direct participation, the equilibrium wholesale price of electricity drops too far

relative to the optimal wholesale price and too little electricity is consumed.

Figure D.2 is a graph with the wholesale price on the vertical axis and quantity of electricity on

the horizontal axis. The optimal amount of electricity consumption is at q∗ when D(pw) = S(pw).

As before, in the baseline without demand response, the surplus loss is equal to area 1. Under

direct participation in demand response, consumers always have an opportunity cost of the retail

rate r . Thus, the demand curve is shifted downward to D(pw + r).9 The intersection where

D(pw + r) = S(pw) is the equilibrium outcome. The equilibrium wholesale price decreases, but

the total demand-response compensation increases. Area 2 corresponds to the surplus loss under

direct participation in demand response.

The relative effect on total surplus depends on the slope of the electricity supply and aggregate

demand curves. To generate useful comparisons between the cases, we calculate total surplus using

linear specifications of supply and demand.10 In particular, let aggregate demand be D(p) = α− βp

and let the marginal cost of electricity supply be MC = γq.11 With the linear demand and supply

9When the wholesale price is zero, D(pw + r) = D(r) = I, which can be seen on the graph.
10This assumption is meant to generate comparisons. To the extent that electricity supply and

demand are locally linear this may be a good approximation to reality, but one should not read into
this assumption as empirically motivated.

11One may also specify MC = δ + γq, but for ease of explanation we normalize δ = 0 (or
equivalently the demand intercept includes the supply intercept).
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specifications, total surplus W is

W =
1
2
(α − βpr )

(
α

β
+ pr − pw

)
, (3.2)

where pw = γ(α − βpr ) and pr = r + c. Taking the first order conditions for maximization

and solving for c shows that the surplus-maximizing demand response compensation is c∗linear =

(αγ)/(1 + βγ) − r with corresponding equilibrium wholesale price p∗
w,linear = (αγ)/(1 + βγ). In

other words, the optimum compensation eliminates the gap between the efficient wholesale price

and retail opportunity cost. When there is no demand response, the equilibrium wholesale price is

p0
w,linear = γ(α − βr).

We return to the case of direct participation by end consumers. With linear aggregate demand,

the equilibrium wholesale price is pdirect
w = (γα − βγr)/(1 + βγ). Thus, the equilibrium demand-

response compensation is c1,linear = (γα− βγr)/(1+ βγ). The equilibrium compensation is larger

than the optimum by r/(βγ+1). Thus, the distortion is increasing in the retail rate r and decreasing

in β and γ. We compare the relative surplus effects in section 3.3.4.

3.3.2 Third-party aggregator

Assume that a third-party aggregator (called a curtailment service provider) contracts with retail

consumers for demand-response reductions. The third-party aggregator acts as a middleman,

receiving pw per unit of reductions sold. The third-party aggregator offers consumers a payment

of c2 per unit of electricity reduced from the baseline and each consumer uses q2,i = Di(c2 + r)

units of electricity.12 We assume that a monopolist aggregator takes the wholesale price as fixed

but can exert market power because it does not compete with other aggregators when setting the

demand-response compensation.13 The aggregator sets c2 to maximize the arbitrage profits:

c2 = argmax
c
(pw − c)(I − D(r + c)). (3.3)

12We assume that there is a single aggregator for this exercise and therefore has market power in
the arbitrage.

13If there is perfect competition in the aggregation arbitrage market and zero cost of aggregation
services, then the third party aggregator case is equivalent to the direct participation case.
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The arbitrage profits are less than or equal to zero when c ≥ pw and when c ≤ 0. Thus,

0 < c2 < pw and electricity demanded is q2 < D(r +c2) < I. The first-order condition for equation

3.3 determines the profit-maximizing c2:

−pwD′(r + c) = I − D(r + c) − cD′(r + c). (3.4)

The left-hand side of equation 3.4 is the marginal arbitrage revenue and the right-hand side is the

marginal arbitrage cost. Thus, the aggregator sets marginal revenue equal to marginal cost when

choosing c2. Finally, the market-clearing wholesale price p3rd
w satisfies the condition D(r + c2) =

S(p3rd
w ). This is a downward shift in the demand curve, so the equilibriumwholesale price decreases

relative to the zero-demand response case.

The relative effect on total surplus depends on the slope of the electricity supply and aggregate

demand curves. We again consider a linear aggregate demand of D(p) = α − βp and linear

marginal cost of electricity supply of MC = γq in order to compare the size of the distortion.

Directly applying the result from the first-order condition in equation 3.3, the aggregator sets

c2 =
pw
2 . Combining the first-order condition with the equilibrium condition, the equilibrium

wholesale price is p3rd
w,linear = (γα − βγr)/((βγ)/2 + 1). Thus, the equilibrium demand response

compensation is c2,linear = 0.5(γα − βγr)/((βγ)/2 + 1). We compare the relative surplus effects

in section 3.3.4.

3.3.3 Utility aggregator

Assume that the utility contracts with consumers for demand response reductions. The utility saves

pw − r for each unit of electricity reduced from the baseline (because it no longer has to purchase

it on the wholesale market but also no longer sells it on the retail market) and offers a payment to

electricity consumers of c3 per unit of reductions. The utility sets c3 to maximize savings from
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participating:14

c3 = argmax
c
(pw − r − c)(I − D(r + c)) (3.5)

s.t. pw = MC(D(r + c)). (3.6)

Note that the utility is a large enough player to know how the reductions will influence the

marginal cost of electricity generation. The savings function in equation 3.5 makes it clear that

0 < c3 < pw−r . If c3 ≤ 0, electricity consumption will not fall and the utility does not save money.

If c3 = pw − r , the utility passes all the savings on to the electricity consumer, and if c3 > pw − r ,

the utility pays out more than the marginal benefit for reductions. Thus, the utility pays too little

for reductions relative to the surplus maximizing level. The first-order condition for optimization

determines the profit maximizing c3:

(r − pw)D′(r + c) + (I − D(r + c3))MC′(D(r + c3))D
′(r + c3)

= (I − D(r + c3)) − cD′(r + c)
(3.7)

The left-hand side of equation 3.7 is the marginal revenue and the right-hand side is the marginal

cost. Thus, the utility sets marginal revenue equal to marginal cost when choosing c3.

The relative effect on total surplus depends on the slope of the electricity supply and demand

curves. We again consider a linear aggregate demand of D(p) = α− βp and linear marginal cost of

electricity supply of MC = γq in order to compare the size of the distortion. Applying the result

from the first-order condition in 3.7, the utility sets c3 = 0.5((γα)/(1+βγ)−r). Combining this with

the equilibrium condition, the equilibriumwholesale price is p3rd
w,linear = 0.5γ(α−βr+(α)/(1+βγ)).

In the next section, we compare the relative surplus effects.

3.3.4 Comparing total surplus in the linear case

We now compare the total surplus from each regime in the linear case. The equilibrium deadweight

loss from retail opportunity cost of electricity pr = r + c is

DW L =
1
2
|D(pr ) − D(p∗w)| |pw − pr |, (3.8)

14This is equivalent to minimizing costs.
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where pw = MC(D(pr )). Substituting the equilibrium compensation levels and wholesale prices

from each of the cases, we find that the deadweight losses are:

DW LNoDR
linear =

(
β

2 + 2βγ

)
(αγ − r − βγr)2 , (3.9)

DW Ldirect
linear =

(
β

2 + 2βγ

)
(r)2 , (3.10)

DW L3rd
linear =

(
β

2 + 2βγ

) (
1
4

) (
αγ − 2r − 2βγr

1 + βγ
2

)2

, (3.11)

DW LUtility
linear =

(
β

2 + 2βγ

) (
1
4

)
(αγ − r − βγr)2 . (3.12)

These deadweight losses are difficult to compare analytically, but are easy to compare compu-

tationally. First, we consider 100 retail rates r ∈ [40, 100], the equivalent to a typical PJM retail

rate between 40 and 100 dollars per megawatt hour. We set α = 120, 000 and use 100 values of

β ∈ [100, 350]. With these parameters, the demand elasticity at the retail price ranges from -0.43 to

-0.03, covering a wide range of electricity demand elasticities estimated in the literature.15 Without

demand response, total load ranges from 85,000 to 116,000 megawatt hours, roughly matching

the above-average (or peak) real-time loads experienced in PJM from 2010-2017 (Bowring, 2018).

For supply, we set γ = 0.0011, leading to wholesale prices ranging from 77 to 104 dollars per

megawatt hour which matches the above-average (or peak) wholesale electricity prices seen in PJM

(Bowring, 2018).

First, we plot the deadweight losses by regime type as we vary the retail rate for a fixed level of

the slope of demand, β. Figure D.3 shows how the deadweight loss varies with r . As the retail rate

increases, the gap between the wholesale price and the retail price of electricity shrinks. Thus, the

no-demand-response case becomes less damaging as the retail rate increases. In the case of direct

participation by electricity consumers, as the retail rate increases, the total opportunity cost of

electricity overshoots the optimum level by a larger amount and increases losses. Similarly, when

15The most commonly estimated elasticities are yearly and typically range from -0.1 to -0.5 on
average (Deryugina et al., 2019; Reiss and White, 2005, e.g.). Long-run elasticities are typically
larger. Hourly elasticities are smaller, for example around -0.16 in Jessoe and Rapson (2014). The
chosen values are meant to span the feasible set of elasticities.
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a third-party aggregator sets demand-response contracts, the total opportunity cost of electricity

for the consumer is too high and increases too quickly. The deadweight loss increases at a slower

rate than in the direct-participation case because the third-party aggregator reduces the demand-

response compensation as the retail price increases. Finally, when the utility is the aggregator, the

deadweight loss decreases as the retail rate increases. Similar to the third-party-aggregator case,

the utility reduces the demand-response compensation as the retail rate increases.

Next, we plot the deadweight losses by regime type as we vary the demand elasticity parameter

β. Figure D.4 shows how the deadweight loss varies with β. In the no-demand-response baseline,

deadweight losses are increasing and then decreasing in elasticity. When demand is perfectly

inelastic, there is no deadweight loss. When electricity consumers directly participate in demand

response, the losses are increasing in elasticity because the consumers respond more strongly to

the artificially-inflated opportunity cost of electricity consumption. This is much the same story

when there is a third-party aggregator—increased price responsiveness increases the distortion.

When the utility is the aggregator, the deadweight loss exhibits a quadratic shape similar to the

no-demand-response baseline.

Finally, we examine the relative sizes of the deadweight losses from the regimes over all the

parameter values tested. Figure D.5 is a set of heat maps of the deadweight losses from the regimes

over the tested values of the retail rate and demand parameter. Each horizontal axis is the range of

retail rates and each vertical axis is the range of demand parameters β. The darker colors are higher

deadweight losses and the lighter colors are smaller deadweight losses. The gray area on the heat

maps is the set of elasticity/retail price combinations at which the wholesale price is less than the

retail rate.16

No regime dominates. Over the range of tested values, the third-party and utility aggregators

outperform the no-demand-response and direct-participation cases. The utility-aggregator case has

the lowest average deadweight loss overall, though when elasticity is low and retail rates are low,

the utility aggregator performs better.
16This occurs when the retail rate is high and demand is more elastic. When demand is more

elastic, the wholesale price is lower and thus closer to the retail price.
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The no-demand-response baseline heat map illustrates that without demand response, the dead-

weight loss is larger when the retail rate is low and elasticity is high. When retail rates are low,

electricity consumers do not have a strong incentive to conserve electricity, and thus surplus is lost

from too much electricity consumed. However, the surplus loss from a too-low retail rate is smaller

if the consumer is less price elastic because behavior under the surplus-maximizing price is not

that different.

When consumers participate directly in demand response, the deadweight loss is larger when

the retail rate is high and elasticity is high. Because directly-participating consumers are overcom-

pensated for reducing consumption by the retail rate, the size of this distortion directly increases in

the retail rate. When consumers are more elastic, they respond more to the improper incentive and

reduce their electricity below the surplus-maximizing level even more.

The third-party aggregator’s heat map shows that the deadweight loss is larger when the retail

rate is high and elasticity is high. The third-party aggregator’s pricing incentives face two partially-

offsetting distortions. First, the third-party aggregator’s marginal revenue per unit of reduction

includes the full wholesale price rather than the difference between the wholesale price and the

retail price, creating an incentive to over-provide reductions. Thus when the retail price is higher,

the marginal revenue distortion is larger. Second, the third-party aggregator’s market power creates

an incentive to reduce reductions by not passing through the full demand-response incentive. This is

easily seen from the aggregator’s profit function in equation 3.3. If the firm compensates consumers

at a full pw per unit of reductions, profit goes to zero.

Finally, the utility aggregator’s heat map shows that the deadweight loss is larger when the

retail rate is small and customers are more elastic. In this case, the utility’s marginal revenue is

pw − r and the remaining distortion is because the savings from demand response are zero if the

utility passes on the full compensation to consumers. The utility as aggregator is the only case

in the current demand-response formulation in which surplus is guaranteed to increase from the

zero-demand-response baseline (easily seen by noting the deadweight loss in this case is always

one-fourth the deadweight loss without demand response in equations 3.9 and 3.12).
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3.4 Can FERC improve demand response?

The analysis above shows that current wholesale demand-response institutions fail to incen-

tivize surplus-maximizing electricity consumption. In fact, unless the utility is the aggregator,

offering demand response is not even guaranteed to increase electricity market surplus. The

FERC-mandated demand-response program requires utilities to compensate third-party and direct-

participating consumers for reductions in load. Thus, while wholesale demand response passes

real-time wholesale price variation on to electricity consumers, the institutional design creates poor

incentives for electricity consumption.

Even without a FERC mandate, utilities have an incentive to enroll customers in programs such

as retail demand response or other time-varying price programs. Utilities supply demand at fixed

retail prices, so the utility is the residual claimant for any programs that increase the opportunity

cost of electricity consumption during peak hours. The only remaining inefficiency is due to

market power, which is currently dealt with through rate-of-return regulation or retail choice on a

state-by-state basis.

This begs the question: why even have wholesale demand response? Proponents of wholesale

demand response often argue that the program provides a path for behind-the-meter renewable

generation to participate in wholesale markets (O’Connel et al., 2014). While perhaps true,

allowing negawatts to be sold as megawatts at the same time reduces efficiency. If FERC wants to

provide a path for distributed generation, it should pursue this goal directly through the wholesale

market rather than through a convoluted demand-response program.

3.5 Conclusion

In this paper, we demonstrate that the aggregator is a potential source of inefficiency in FERC’s

wholesale demand response program. Using a theoretical model, we show that direct participants,

third-party aggregators, and utility aggregators have different incentives to provide reductions

in electricity use. In the current structure of demand response, direct particpants over-provide

reductions because the opportunity cost includes the retail rate plus the wholesale-price incentive.
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Third-party aggregators similarly have an incentive to over-provide reductions because of the

compensation scheme but also have an incentive to under-provide reductions by exercising market

power. Utility aggregators have an incentive to under-provide reductions if the utility can exert

market power.

We argue that the wholesale demand-response institution is inefficient and superfluous to retail

demand-response programs. The compensation scheme does pass on some real-time-wholesale-

price variation to electricity consumers, but the pass-through does not create efficient electricity-use

incentives and can even reduce economic surplus. The primary beneficiary of demand-response

pricing is the utility, which can adopt retail demand-response or time-varying pricing programs

separately from the wholesale market. Thus, we recommend that FERC end its wholesale demand-

response program in favor of retail demand-response programs.
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APPENDIX A

FIGURES AND TABLES FOR CHAPTER 1

Figure A.1: Average temperature setting by year compared between landlord-pay and tenant-pay
regimes. The tenant-pay temperature settings statistically vary between sample years, possibly
due to changes in energy prices and resulting behaviors. This figure does not include households
that turn off the heat completely: 28 (3.1%) landlord-pay households and 244 (6.8%) tenant-pay
households.
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Figure A.2: Average temperature setting when out of the house between landlord-pay and tenant-
pay regimes. This figure does not include households that turn off the heat completely: 28 (3.1%)
landlord-pay housholds and 244 (6.8%) tenant-pay households.
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Figure A.3: Time series variation in the average ratio of electricity to natural gas price per BTU.
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Figure A.4: Plots of estimated average markup for having the landlord-pay heating ∆p
∆Rj

by census
division from the preferred correlated-random-effects regression in tableA.3. 95 percent confidence
intervals are derived using cluster-robust standard errors.
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Figure A.5: Plots of estimated average hedonic price for 100 square feet ∂ p̂
∂x j

by census division from
the preferred correlated-random-effects regression in table A.3. 95 percent confidence intervals are
derived using cluster-robust standard errors.
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Figure A.6: Density of bliss point temperature settings. Does not include 11 (1.2%) households
that did not use heat in the winter. Plotted against a normal distribution.
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FigureA.7: The LASSO-predicted temperature settingswhen price is zero (bliss point) for landlord-
pay and tenant-pay households. Landlord-pay households are predicted as having lower bliss point
temperature preferences.
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Figure A.8: The implied temperature disutility parameters β2,i estimated from the LASSO regres-
sion.
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Figure A.9: The LASSO-predicted effect on temperature setting of requiring landlord-pay house-
holds pay their own heating bills.
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Figure A.10: The LASSO-predicted effect on temperature setting of moving tenant-pay households
to a landlord-pay regime.
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Figure A.11: The predicted temperature setting using LASSO versus the observed temperature
setting used to train the algorithm.
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Figure A.12: Estimated bliss points using the preferred β2 = −0.79 by regime.
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Table A.1: Residential Energy Consumption Survey sample means

(1) (2)
Tenant-pay renters Landlord-pay renters
Mean Std dev Mean Std dev

Mean winter heat temp 67.36 (5.88) 67.40 (7.07)
Temp when home 70.12 (4.91) 70.34 (4.67)
Temp when gone 66.38 (7.02) 68.02 (5.94)
Temp at night 68.59 (5.83) 68.84 (5.69)
Household size 2.65 (1.57) 2.09 (1.38)
Age 40.56 (15.97) 46.59 (20.16)
Female 0.43 (0.49) 0.40 (0.49)
White 0.68 (0.47) 0.70 (0.46)
Black 0.20 (0.40) 0.19 (0.39)
Native American 0.02 (0.13) 0.01 (0.08)
Asian 0.04 (0.20) 0.05 (0.22)
Pacific Islander 0.00 (0.07) 0.00 (0.05)
Other 0.03 (0.17) 0.04 (0.19)
Multi-racial 0.02 (0.15) 0.01 (0.12)
Unemployed 0.29 (0.45) 0.39 (0.49)
Part-time 0.17 (0.38) 0.19 (0.39)
Income $0 to $4,999 0.05 (0.22) 0.09 (0.28)
Income $5,000 to $9,999 0.08 (0.28) 0.16 (0.37)
Income $10,000 to $14,999 0.09 (0.29) 0.16 (0.36)
Income $15,000 to $19,999 0.09 (0.28) 0.10 (0.29)
Income $20,000 to $29,999 0.17 (0.38) 0.16 (0.36)
Income $30,000 to $39,999 0.15 (0.35) 0.11 (0.32)
Income $40,000 to $49,999 0.12 (0.32) 0.08 (0.27)
Income $50,000 to $74,999 0.14 (0.35) 0.09 (0.29)
Income $75,000 to $99,000 0.06 (0.24) 0.03 (0.16)
Income $100,000 or more 0.05 (0.21) 0.03 (0.17)
New England 0.05 (0.23) 0.14 (0.34)
Middle Atlantic 0.07 (0.26) 0.21 (0.41)
East North Central 0.09 (0.29) 0.17 (0.38)
West North Central 0.10 (0.30) 0.09 (0.28)
South Atlantic 0.16 (0.37) 0.10 (0.30)
East South Central 0.06 (0.23) 0.03 (0.17)
West South Central 0.14 (0.34) 0.10 (0.30)
Mountain 0.09 (0.28) 0.07 (0.25)
Pacific 0.24 (0.43) 0.11 (0.31)

Observations 3,164 829
Sample means for tenant- and landlord-pay units using electric or
gas heating in the Residential Energy Consumption Survey. Standard
deviations in parentheses.
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Table A.2: American Housing Survey sample means

(1) (2)
Tenant-pay units Landlord-pay units
Mean Std dev Mean Std dev

Monthly rent 803.01 (388.74) 701.65 (401.02)
Energy price per MMBTU 23.07 (10.45) 19.29 (10.18)
Freq rent payment 11.99 (1.62) 12.25 (3.42)
Sq ft 1098.00 (1133.66) 876.79 (1139.78)
# Bedrooms 1.98 (0.89) 1.50 (0.84)
# Baths 1.29 (0.49) 1.09 (0.35)
# Rooms 4.42 (1.32) 3.70 (1.22)
Sq ft 1098.00 (1133.66) 876.79 (1139.78)
Neighborhood rating 7.48 (2.02) 7.45 (2.16)
Unit age (years) 40.76 (23.14) 47.48 (21.73)
# units in building 16.79 (49.95) 48.28 (89.50)
Urban 0.58 (0.49) 0.62 (0.49)
Laundry 0.52 (0.50) 0.19 (0.39)
Central air 0.60 (0.49) 0.43 (0.50)
Furnace heat 0.61 (0.49) 0.53 (0.50)
Gas heat 0.44 (0.50) 0.69 (0.46)
Unit too cold last year 0.09 (0.28) 0.09 (0.29)

Observations 88,700 17,371
Sample means for tenant- and landlord-pay units using electric or
gas heating in the American Housing Survey. Standard errors in
parentheses.
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Table A.3: Hedonic price estimates using AHS data

(1) (2) (3) (4)
Y = rent j OLS RE FE CRE
Price, 100 sq ft
New England 13.15 13.87 12.69

[10.86,15.43] [10.12,17.61] [9.044,16.33]
Mid Atlantic 6.874 5.423 5.254

[5.466,8.282] [3.208,7.638] [3.025,7.483]
East North Central 7.416 7.960 6.957

[6.283,8.549] [6.649,9.271] [5.690,8.223]
West North Central 8.223 8.030 7.426

[6.457,9.989] [6.039,10.02] [5.499,9.353]
West South Central 9.148 10.05 8.340

[8.010,10.29] [8.720,11.38] [7.065,9.616]
South Atlantic/ 7.888 8.961 7.740
East South Central [7.049,8.727] [7.883,10.04] [6.671,8.809]
Mountain/Pacific 19.43 20.40 18.42

[18.59,20.27] [19.10,21.70] [17.08,19.76]
Landlord-pay markup
New England -79.09 14.78 123.5 128.4

[-192.2,34.05] [-112.3,141.9] [-69.39,316.4] [-66.60,323.4]
Mid Atlantic -83.20 -54.54 -26.90 -19.69

[-178.4,12.02] [-152.2,43.08] [-160.0,106.1] [-156.9,117.5]
East North Central 5.812 -11.72 -21.13 -24.39

[-56.59,68.22] [-68.37,44.93] [-92.44,50.18] [-96.58,47.81]
West North Central 18.12 12.97 31.08 29.03

[-63.72,99.96] [-55.75,81.69] [-58.80,121.0] [-61.33,119.4]
West South Central 39.63 81.98 148.4 141.1

[-53.41,132.7] [-7.716,171.7] [19.40,277.4] [12.11,270.1]
South Atlantic/ 92.19 115.0 146.9 141.5
East South Central [24.66,159.7] [37.85,192.2] [32.83,260.9] [27.16,255.8]
Mountain/Pacific -159.8 -102.6 -37.71 -41.19

[-209.0,-110.7] [-162.4,-42.77] [-118.2,42.79] [-121.7,39.33]

Unit characteristics Y Y Y Y
Vintage × year Y Y Y
Unit FE/means Y Y
LL pay × year Y Y Y Y
Observations 107,725 107,725 107,725 107,725
95% confidence intervals in brackets constructed with cluster-robust standard errors. Interpreta-
tion is the additional monthly rent for 100 additional square feet and the additional monthly rent
to have landlord-pay utilities (i.e., α̂3,d P̄e,d ), ceteris paribus. Unit characteristics controlled for
are bedrooms, bathrooms, air conditioning type, in-unit laundry, number of units in the building,
frequency of the rent payment, heating equipment type (e.g., furnace, electric room heaters, etc),
non-heating utilities that the landlord pays, whether the unit was too cold last year, a subjective rating
of neighborhood quality, an indicator for gas heat, MSA, and division interacted with fuel type.
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Table A.4: Fuel use estimates using RECS data

Natural gas Electric
(1) (2) (3) (4)

Y = ln(Fuelquantity) OLS 2SLS OLS 2SLS
IHS(Tempindoor − Tempoutdoor ) 0.100 0.49 0.019 0.20

[0.071,0.13] [0.39,0.59] [-0.0029,0.042] [0.079,0.33]

ln(Square feet) 0.21 0.21 0.28 0.26
[0.14,0.28] [0.14,0.29] [0.21,0.36] [0.14,0.39]

ln(Units in building) -0.14 -0.15 -0.057 -0.038
[-0.18,-0.10] [-0.19,-0.10] [-0.081,-0.033] [-0.078,0.0015]

ln(Floors in building) 0.042 0.027 -0.0035 -0.021
[0.0041,0.080] [-0.018,0.072] [-0.028,0.021] [-0.056,0.015]

Observations 1653 1653 1511 1511
Mean heat bill ($/month) 58.8 58.8 91.0 91.0
Unit characteristics Yes Yes Yes Yes
Appliances Yes Yes Yes Yes
VintageXYear Yes Yes Yes Yes
Interpretation: For a 1% increase in x, there is a b̂% increase in monthly heating bill for a fixed energy price, ceteris
paribus. Fuel prices at the division level and yearly heating and cooling degree days are instruments. IHS is the inverse
hyperbolic sine function, which approximates the natural log, but is defined for non-positive values. 95% Confidence
intervals calculated using heteroskedasticity-robust standard errors.
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Table A.5: Average marginal effects on monthly heating costs using RECS data

(1) (2)
Natural gas Electric

Heat setting - one degree change 3.57 2.89
[2.76,4.37] [1.06,4.71]

Square feet - 100 sq ft change 1.01 2.42
[0.63,1.39] [1.31,3.53]

Units in building - one unit change -5.86 -1.74
[-7.71,-4.01] [-3.61,0.13]

Floors in building - one floor change 1.11 -1.18
[-0.80,3.02] [-3.25,0.90]

Observations 1653 1511
Unit characteristics Yes Yes
Appliances Yes Yes
VintageXYear Yes Yes
Interpretations: For a unit change in x, there is a b̂ dollar increase in monthly heating bill, ceteris
paribus. Estimates from the two-stage-least-squares specification in table A.4. 95% confidence intervals
are bootstrapped using 1,000 replications.
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Table A.6: Temperature setting estimation using RECS data

OLS 2SLS
Y = temp setting (1) (2) (3) (4) (5) (6) (7) (8)
β̂2 -0.56 -0.57 -0.56 -0.53 -0.98 -1.06 -0.36 1.44

[-0.73,-0.38] [-0.75,-0.39] [-0.73,-0.39] [-0.69,-0.37] [-9.43,7.46] [-13.0,10.9] [-2.86,2.14] [-8.14,11.0]
δ̂ -1.76 -1.65 -1.29 -1.15 -3.14 -3.16 -0.69 4.92

[-2.36,-1.16] [-2.24,-1.06] [-1.89,-0.70] [-1.73,-0.58] [-32.1,25.8] [-42.0,35.7] [-8.94,7.56] [-24.6,34.4]
ŝb
i |Rj∗ = 0 67.4 67.4 67.4 67.4 67.4 67.4 67.4 67.4

[66.9,67.9] [66.9,67.9] [66.9,67.9] [66.9,67.9] [66.9,67.9] [66.9,67.9] [66.9,67.9] [66.9,67.9]
ŝb
i |Rj∗ = 1 69.2 69.2 69.2 69.1 70.5 70.8 68.5 62.7

[68.7,69.6] [68.8,69.6] [68.7,69.6] [68.6,69.5] [41.7,99.4] [30.2,111.4] [59.3,77.8] [31.6,93.8]

Observations 3993 3993 3993 3993 3993 3993 3993 3993
First stage F 29.6 21.0 35.3 4.96
HH characteristics Yes Yes Yes Yes Yes Yes
Division Yes Yes Yes Yes
Year Yes Yes
Estimation of equation 1.18. β̂2 is an estimate of the mean disutility parameter for deviation from the bliss point. Estimated using a two-step
estimator for marginal cost. Instrument for marginal cost in 2SLS estimates is division fuel price. 95% confidence intervals including the
sampling error for marginal cost bootstrapped with 1,000 replications. Sample of all renters from the RECS.
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Table A.7: Temperature setting estimation using choice experiment

(1) (2)
OLS FE

β̂2 -0.76 -0.79
[-1.08,-0.43] [-0.97,-0.61]

Constant -0.45 -0.42
[-0.77,-0.14] [-0.60,-0.24]

Observations 1242 1242
FE Yes
Estimation of equation 1.23. 95 percent confidence intervals in brackets. Estimated on a sample of
choice experiment respondents for which hypothetical marginal cost is varied randomly. I conducted the
choice experiment in March 2018 using the Qualtrics Panel and a nationally representative sample of US
individuals.

Table A.8: LASSO heterogeneity

OLS LASSO
Mean predicted bliss temp 72.01 67.82
Std dev. 5.56 4.39
Mean predicted tenant pay temp 67.31 67.31
Std dev. 4.44 4.24
Mean implied β2 -1.54 -9.31
Std dev. 10.57 59.29

RMSPE 8.73 5.71
MSPE 76.15 32.55
Bias -0.01 0.00
Covariates 1590 1590
FinalCovariates 1590 1209
Observations 3993 3993
Mean-squared error, root-mean-squared error, and bias statistics calculated using ten-fold cross validation.
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Table A.9: Simulation results:
Effect of changing all landlord-pay contracts to tenant-pay

(1) (2) (3)
Reduction in energy expenditures per household, per year
Temperature reduction 4.15 6.54 3.27
Square feet reduction 139.57 139.57 139.57

Implied welfare loss from landlord pay per household, per year
Moral hazard DWL $7.83 $12.33 $6.17
Sorting DWL $1.34 $1.34 $1.34
Carbon damages $3.64 $5.46 $2.97

Total US, per year average
US yearly welfare loss $839,000,000 $1,260,000,000 $682,000,000

β2 -0.79 -0.5 -1.00
Average household responses to eliminating moral hazard by requiring tenant-pay heating in all
units. Total welfare losses include deadweight losses from moral hazard, equilibrium sorting,
and external cost of carbon ($40/ton CO2) over all landlord-pay units using survey weights.
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APPENDIX B

SUPPLEMENTAL INFORMATION FOR CHAPTER 1

B.1 Science and engineering findings on temperature preferences

The science and engineering literatures characterize temperature preferences along three dimen-

sions: temperature sensitivity, temperature discomfort, and mean temperature preference (Kingma

and van Marken Lichtenbelt, 2015; Karjalainen, 2012; Indraganti and Rao, 2010; Schellen et al.,

2010). Temperature sensitivity is the ability to detect changes in temperature from a baseline.

Temperature discomfort is a subjective rating of how uncomfortable deviations from a bliss point

temperature are. Finally, mean temperature preference refers to the temperature bliss point itself. In

terms of the model in this paper, temperature sensitivity and discomfort are factors in the disutility

parameter (β2), while mean temperature preference is a measure of bliss point sb
i (where the indoor

temperature’s contribution to utility is (−1/β2)(si − sb
i )

2).

Human temperature preferences depend on several physiological factors. Diets rich in Vitamin

C improve extreme heat tolerance in many studies (Ringsdorrf Jr. and Cheraskin, 1982). Older

individuals prefer higher temperatures than younger individuals (Schellen et al., 2010), though

the elderly find colder temperatures less unpleasant perhaps due to decreased sensitivity (Taylor

et al., 1995). The majority of scientific temperature studies conclude that women prefer higher

temperatures and are more sensitive to temperature extremes (Kingma and vanMarken Lichtenbelt,

2015; Karjalainen, 2012).1

Culture may play a role in driving temperature preference differences between sexes. A study

of Finnish men and women found that while women report more discomfort than men in both low

and high temperatures, women are less likely to adjust the thermostat and are more likely to prefer

warmer settings in general (Karjalainen, 2007). In another study, Indian men and women exhibited

1See also Karjalainen (2007); Fanger (1970); Parsons (2002); Cena and de Dear (2001); Muzi
et al. (1998); Pellerin and Candas (2003); Griefahn and Künemund (2001); Nakano et al. (2002);
Nagashima et al. (2002)
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a slightly different effect: while women were more sensitive to temperature changes than men, they

were less likely to report discomfort (Indraganti and Rao, 2010). This cross-country difference is

suggestive of a cultural role in temperature preference. In the United States, women express greater

temperature discomfort than men (Beshir and Ramsey, 1981). Another study examining more

general aspects of workplace environment such as air quality, social conditions, and noise levels in

addition to temperature finds that women report a greater number of work-related health symptoms

than men in general (Reynolds et al., 2001). Surprisingly, temperature was a statistically significant

determinant of workplace health problems for men and not women. The authors speculate that

these findings are likely driven by cultural attitudes of “stoic" behavior among men. In any case,

sex and culture are both important determinants of heat preference.

When exposed to heat and cold over time, the human body adapts physiologically to become

more tolerant of hot and cold temperatures (Young, 2010). Households living in colder climates will

likely be more tolerant of cool indoor temperatures. Through this channel, temperature preference

may also be related to income if low-income households develop a resilience to cold weather when

conserving on heating costs, or if low-income households tend to work or commute outdoors in cold

weather. Indraganti and Rao (2010) demonstrate an income-temperature effect for heat resilience

in India with less wealthy individuals reporting a higher comfort level in extreme summer weather

conditions. Thus, local climate and income will likely influence temperature preference.2

Households reveal bliss-point temperature preferences when heating without price constraints.

The science and engineering literature has found that physiological factors such as age, sex, and

previous temperature exposure influence temperature preferences. Other factors such as culture,

behavioral or psychological adaptation (de Dear and Brager, 1998), and idiosyncratic preferences

2In theory, this acclimatization process could be used as a “defensive" behavior tomitigate energy
expenditures. There is recent experimental evidence that suggests individuals can consciously alter
the body’s internal temperature response with training (see Kox et al.’s (2014) study of the “Wim
Hof method" in the Proceedings of the National Academy of Sciences). This relatively unknown
method involves bathing in temperatures near 32◦F over weeks to become acclimatized to low
temperatures. While this form of defensive behavior might be used in theory to reduce heating
costs, I do not think it is likely.
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probably play a large role. If temperature preference is largely determined physiologically, then

preferences can be predicted using reported demographics and revealed heating choices.

B.2 Data cleaning notes

Vacation homes, vacant units, timeshares, tents, mobile homes, and hotel rooms are dropped

from the sample. This essentially leaves only traditional apartment units and rental homes in

the sample. In addition, units where no rent is paid, the rent is reported to be adjusted due to

relationship with the owner, the frequency of the rent payment is not reported, and units where

the square footage is not reported are dropped from the sample. The American Housing Survey is

topcoded in rent price, so units with the top 3% of rents in the sample in the National sample are

dropped, and the top 3% of rents in each geographic area in the Metropolitan sample are dropped.

B.3 Alternative explanations

I provide descriptive evidence showing that landlord-pay households are in control of their

temperature settings. One alternative explanation for the lack of evidence that households select

into landlord pay regimes based on bliss point temperature preference is that thermostat settings

by landlord-payers may not reflect the true bliss point. If the landlord controls the thermostat

in these regimes, interpreting thermostat settings as revealed bliss point is improper; however,

there is only limited evidence to support this hypothesis. In the 2015 version of the Residential

Energy Consumption Survey, respondents are asked whether they control their thermostat. 86%

of landlord-pay households report that they control the temperature setting in their home. The

difference in temperature settings between those in control and not in control is not statistically

different from zero. Given the small number of households and the lack of perceivable differences

in temperature settings, I conclude that it is not likely that this effect is driving the results.
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APPENDIX C

FIGURES AND TABLES FOR CHAPTER 2

Figure C.1: Kernel density of participants’ bliss point temperature preferences and real temper-
ature settings. A Kolmogorov-Smirnov test of equivalence of distributions easily rejects the null
hypothesis that the distributions are equal.
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Figure C.2: Scatterplot of bliss point temperature preferences and actual temperature settings with
a 45 degree line for reference. 54 percent of respondents set the thermostat equal to the bliss point.
6.5 percent reported setting the thermostat greater than the bliss point. Random noise has been
added to the data to show clustering on common temperature choices such as 70 degrees Fahrenheit.
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Figure C.3: Histogram of estimated arc semi-elasticities (η).
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Figure C.4: Histogram of semi-elasticities (η) estimated using OLS.
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Figure C.5: The marginal effects from a Tobit estimation of the estimated arc semielasticities
on average price and participant demographics. The marginal effects from this estimation can
be interpreted as the change in arc semi-elasticity for a one-standard-deviation change in the
predictor variable holding the other predictor variables constant. 95 percent confidence intervals
are bootstrapped using 1000 replications with sampling at the participant level.
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Table C.1: Participant sample mean and standard deviation

(1) (2)
Mean Std dev

Income 79925.13 (71251.68)
Monthly heat bill 121.29 (145.81)
Bliss point 70.77 (3.59)
Temperature at home 69.70 (3.71)
Household size 2.91 (2.85)
Age 50.22 (16.60)
Children 0.44 (1.11)
Female 0.60 (.49)
Non-white 0.29 (.45)
Urban 0.76 (.43)
High school 0.37 (.48)
Some college 0.28 (.45)
College 0.19 (.39)
Graduate degree 0.10 (.30)
Republican 0.28 (.45)
Democrat 0.33 (.47)
Respondents 414
Observations 1242
Sample means presented with sample standard deviations in parenthe-
ses.

Table C.2: Estimated semi-elasticities.

(1) (2) (3) (4)
Elasticity Lower bound Upper bound N

OLS -.52 -.73 -.31 1242
FE -.56 -.69 -.43 1242
Arc semi-elasticity -.69 -.97 -.43 1242
Individual OLS -.66 -.86 -.46 1242
The interpretation is for a 100 percent increase in price, the average participant will
reduce the thermostat by η degrees. 95 percent confidence intervals bootstrapped
using 1000 replications with sampling at the participant level.
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APPENDIX D

FIGURES AND TABLES FOR CHAPTER 3

Figure D.1: Aggregate supply and demand curves for electricity consumption. Area 1 corresponds
to the surplus loss in the no-demand-response baseline and area 2 corresponds to the surplus loss
from a demand response compensation level greater than pw − r .
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Figure D.2: The equilibrium outcome and surplus loss under direct participation. Area 1 corre-
sponds to the surplus loss under the no-demand-response baseline. When electricity consumers
particpate directly in demand response, the opportunity cost already includes the retail rate, so the
demand curve shifts downward to D(pw+r). The intersection of D(pw+r) = S(pw) determines the
market-clearing wholesale price under direct participation, which decreases. Area 2 corresponds
to the surplus loss under direct participation.
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Figure D.3: Simulated deadweight loss by regime type plotted against the demand elasticity
parameter.
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Figure D.4: Simulated deadweight loss by regime type plotted against the retail rate.
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Figure D.5: Simulated deadweight loss for each regime type versus the retail rate and the elasticity
parameter. Darker colors indicate larger simulated deadweight losses. The gray regions indicate
where the wholesale price is lower than the retail rate.

91



BIBLIOGRAPHY

92



BIBLIOGRAPHY

Aggarwal, R. M. (2007). Role of risk sharing and transaction costs in contract choice: Theory
and evidence from groundwater contracts. Journal of Economic Behavior and Organization,
63(3):475 – 496.

Allcott, H. (2015). Site selection bias in program evaluation. The Quarterly Journal of Economics,
130(3):1117–1165.

Allcott, H. and Greenstone, M. (2012). Is there an energy efficiency gap? Journal of Economic
Perspectives, 26(1):3–28.

Allcott, H. and Rogers, T. (2014). The short-run and long-run effects of behavioral interventions:
Experimental evidence from energy conservation. American Economic Review, 104(10):3003–
37.

Allcott, H. and Taubinsky, D. (2015). Evaluating behaviorally motivated policy: Experimental
evidence from the lightbulb market. American Economic Review, 105(8):2501–38.

Allen, D. and Lueck, D. (1992). Contract choice in modern agriculture: Cash rent versus cropshare.
The Journal of Law and Economics, 35(2):397–426.

Allen, D.W. and Lueck, D. (1995). Risk preferences and the economics of contracts. The American
Economic Review, 85(2):447–451.

Allen, D. W. and Lueck, D. (1999). The role of risk in contract choice. The Journal of Law,
Economics, and Organization, 15(3):704–736.

Allen, R. G. D. and Lerner, A. P. (1934). The concept of arc elasticity of demand. The Review of
Economic Studies, 1(3):226–230.

Auffhammer, M. and Rubin, E. (2018). Natural gas price elasticities and optimal cost recovery
under consumer heterogeneity: Evidence from 300 million natural gas bills. Technical report,
Energy Institute at Haas.

Autor, D., Duggan, M., and Gruber, J. (2014). Moral hazard and claims deterrence in private
disability insurance. American Economic Journal: Applied Economics, 6(4):110–41.

Baicker, K., Mullainathan, S., and Schwartzstein, J. (2015). Behavioral hazard in health insurance.
The Quarterly Journal of Economics, 130(4):1623–1667.

Bajari, P. and Benkard, C. L. (2005). Demand estimation with heterogeneous consumers and unob-
served product characteristics: A hedonic approach. Journal of Political Economy, 113(6):1239–
1276.

Bajari, P. and Kahn, M. E. (2005). Estimating housing demand with an application to explaining
racial segregation in cities. Journal of Business and Economic Statistics, 23(1):20–33.

93



BEA (2019). Gross domestic product [gdpa]. Technical report, United States Bureau of Economic
Analysis.

Belloni, A. and Chernozhukov, V. (2013). Least squares after model selection in high-dimensional
sparse models. Bernoulli, 19(2):521–547. arXiv: 1001.0188.

Beshir, M. and Ramsey, J. (1981). Comparison between male and female subjective estimates of
thermal effects and sensations. Applied Ergonomics, 12(1):29 – 33.

Borck, R. and Brueckner, J. K. (2017). Optimal energy taxation in cities. Journal of the Association
of Environmental and Resource Economists, 5(2):481–516.

Bowring, J. (2018). 2017 State of the market report for PJM. Technical report, Monitoring
Analytics, LLC presentation.

Brot-Goldberg, Z. C., Chandra, A., Handel, B. R., and Kolstad, J. T. (2017). What does a deductible
do? The impact of cost-sharing on health care prices, quantities, and spending dynamics. The
Quarterly Journal of Economics, 132(3):1261–1318.

Caves, D. W., Hanser, P., Herriges, J. A., and Windle, R. J. (1988). Load impact of interruptible
and curtailable rate programs: Evidence from ten utilities. IEEE Power Engineering Society
Transactions, 3(4):1757 – 1763.

Caves, D. W., Herriges, J. A., and Windle, R. J. (1992). The cost of electric power interruptions in
the industrial sector: Estimates derived from interruptible service programs. Land Economics,
68(1):42–61.

Cena, K. and de Dear, R. (2001). Thermal comfort and behavioural strategies in office buildings
located in a hot-arid climate. Journal of Thermal Biology, 26(4):409 – 414. International
Thermal Physiology Symposium.

Chen, X. and Kleit, A. (2016). Money for nothing? Why FERC order 745 should have died. Energy
Journal, 37(2):201 – 222.

Christiansen, M. R. (2016). FERC v. EPSA: Functionalism and the Electricity Industry of the
Future. Stanford Law Review Online 100, 68.

Costa, D. L. and Kahn, M. E. (2013a). Do liberal home owners consume less electricity? A test of
the voluntary restraint hypothesis. Economics Letters, 119(2):210 – 212.

Costa, D. L. and Kahn, M. E. (2013b). Energy conservation “nudges" and environmentalist
ideology: Evidence from a randomized residential electricity field experiment. Journal of the
European Economic Association, 11(3):680–702.

Crawford, G. S., Pavanini, N., and Schivardi, F. (2018). Asymmetric information and imperfect
competition in lending markets. The American Economic Review. (forthcoming).

Davis, L. (2012). Evaluating the slow adoption of energy efficient investments: Are renters less
likely to have energy efficient appliances?, chapter 19. National Bureau of Economic Research
Conference Report.

94



de Dear, R. and Brager, G. S. (1998). Developing an adaptive model of thermal comfort and
preference. ASHRAE Transactions, 104:145–167.

Deryugina, T., MacKay, A., and Reif, J. (2019). The long-run elasticity of electricity demand: Ev-
idence from municipal electric aggregation. American Economic Journal: Applied Economics,
forthcoming.

Dewees, D. and Tombe, T. (2011). The impact of sub-metering on condominium electricity demand.
Canadian Public Policy / Analyse de Politiques, 37(4):435–457.

EIA (2013). Heating and cooling no longer majority of U.S. home energy use. Technical report,
United States Energy Information Administration (EIA).

EIA (2016). Carbon dioxide emissions coefficients by fuel. Technical report, United States Energy
Information Administration (EIA).

EIA (2018). Electric power annual 2017. Technical report, United States Energy Information
Administration (EIA).

Einav, L., Amy Finkelstein, S. R., Schrimpf, P., and Cullen, M. (2013). Selection on moral hazard
in health insurance. American Economic Review, 103(1):178–219.

Elinder, M., Escobar, S., and Petre, I. (2017). Consequences of a price incentive on free riding and
electric energy consumption. Proceedings of the National Academy of Sciences, 114(4):3091–
3096.

Eryilmaz, D., Smith, T. M., and Homans, F. R. (2017). Price responsiveness in electricity markets:
Implications for demand response in the midwest. Energy Journal, 38(1):23–49.

Fanger, P. (1970). Thermal comfort: Analysis and applications in environmental engineering.
Danish Technical Press.

Finkelstein, A., Gentzkow, M., and Williams, H. (2016). Sources of geographic variation in health
care: Evidence from patient migration. TheQuarterly Journal of Economics, 131(4):1681–1726.

Gillingham, K., Harding, M., and Rapson, D. (2012). Split incentives in residential energy
consumption. The Energy Journal, 33(2).

Gillingham, K. and Palmer, K. (2014). Bridging the energy efficiency gap: Policy insights from
economic theory and empirical analysis. Review of Environmental Economics and Policy,
8(1):18–38.

Griefahn, B. and Künemund, C. (2001). The effects of gender, age, and fatigue on susceptibility
to draft discomfort. Journal of Thermal Biology, 26(4):395 – 400. International Thermal
Physiology Symposium.

Harding, J., Miceli, T. J., and Sirmans, C. (2000). Do owners take better care of their housing than
renters? Real Estate Economics, 28(4):663–681.

95



He, J., Rejesus, R. M., Zheng, X., and Yorobe Jr, J. (2017a). Advantageous selection in crop
insurance: Evidence from the philippines. Journal of Agricultural Economics.

He, J., Rejesus, R. M., Zheng, X., and Yorobe Jr, J. (2017b). Moral hazard and adverse selection
effects of cost-of-production crop insurance: Evidence from the philippines. Working paper.

Hui, X., Saeedi, M., Shen, Z., and Sundaresan, N. (2016). Reputation and regulations: Evidence
from eBay. Management Science, 62(12):3604–3616.

Indraganti, M. and Rao, K. D. (2010). Effect of age, gender, economic group and tenure on thermal
comfort: A field study in residential buildings in hot and dry climate with seasonal variations.
Energy and Buildings, 42(3):273 – 281.

Ito, K. (2014). Do consumers respond to marginal or average price? Evidence from nonlinear
electricity pricing. American Economic Review, 104(2):537–63.

Jackson, C. K. and Schneider, H. S. (2011). Do social connections reduce moral hazard? Evidence
from the New York City taxi industry. American Economic Journal: Applied Economics,
3(3):244–67.

Jackson, C. K. and Schneider, H. S. (2015). Checklists and worker behavior: A field experiment.
American Economic Journal: Applied Economics, 7(4):136–68.

Jaffe, A. B. and Stavins, R. N. (1994). The energy paradox and the diffusion of conservation
technology. Resource and Energy Economics, 16(2):91–122.

Jessoe, K., Papineau, M., and Rapson, D. (2018). Utilities included: Split incentives in commercial
electricity contracts. Technical Report 029, E2e.

Jessoe, K. and Rapson, D. (2014). Knowledge is (less) power: Experimental evidence from
residential energy use. American Economic Review, 104(4):1417–38.

Karjalainen, S. (2007). Gender differences in thermal comfort and use of thermostats in everyday
thermal environments. Building and Environment, 42(4):1594 – 1603.

Karjalainen, S. (2012). Thermal comfort and gender: A literature review. Indoor Air, 22(2):96–109.

Kema (2011). PJM empirical analysis of demand response baseline methods. Technical report,
Kema, Inc.

Kingma, B. and van Marken Lichtenbelt, W. (2015). Energy consumption in buildings and female
thermal demand. Nature Climate Change, 5:1054–1056.

Kox, M., van Eijk, L. T., Zwaag, J., van den Wildenberg, J., Sweep, F. C. G. J., van der Hoeven,
J. G., and Pickkers, P. (2014). Voluntary activation of the sympathetic nervous system and
attenuation of the innate immune response in humans. Proceedings of the National Academy of
Sciences, 111(20):7379–7384.

Kuminoff, N. V., Smith, V. K., and Timmins, C. (2013). The new economics of equilibrium sorting
and policy evaluation using housing markets. Journal of Economic Literature, 51(4):1007–1062.

96



Leffler, K. B. and Rucker, R. R. (1991). Transactions costs and the efficient organization of
production: A study of timber-harvesting contracts. Journal of Political Economy, 99(5):1060–
1087.

Levinson, A. and Niemann, S. (2004). Energy use by apartment tenants when landlords pay for
utilities. Resource and Energy Economics, 26(1).

McAnany, J. (2018). 2017 Demand response operations markets activity report: April 2018.
Technical report, PJM Demand Side Response Operations.

Monitoring Analytics (2018). State of the market report for pjm: January through september.
Technical report, Monitoring Analytics, LLC.

Muzi, G., Abbritti, G., Accattoli, M. P., and dell’Omo,M. (1998). Prevalence of irritative symptoms
in a nonproblem air-conditioned office building. International Archives of Occupational and
Environmental Health, 71(6):372–378.

Myers, E. (2017). Are home buyers myopic? Evidence from capitalization of energy costs.
Technical report, E2e.

Myers, E. (2018). Asymmetric information in residential rental markets: Implications for the
energy efficiency gap. Technical report, E2e.

Nagashima, K., Yoda, T., Yagishita, T., Taniguchi, A., Hosono, T., andKanosue, K. (2002). Thermal
regulation and comfort during a mild-cold exposure in young Japanese women complaining of
unusual coldness. Journal of Applied Physiology, 92(3):1029–1035.

Nakano, J., ichi Tanabe, S., and ichi Kimura, K. (2002). Differences in perception of indoor
environment between Japanese and non-Japanese workers. Energy and Buildings, 34(6):615 –
621. Special Issue on Thermal Comfort Standards.

O’Connel, N., Pinson, P., Madsen, H., and O’Malley, M. (2014). Benefits and challenges of
electrical demand response: A critical review. Renewable and Sustainable Energy Reviews,
39:686 – 699.

Papineau, M. (2017). Energy efficiency premiums in unlabeled office buildings. The Energy
Journal, Volume 38(Number 4).

Parsons, K. C. (2002). The effects of gender, acclimation state, the opportunity to adjust clothing
and physical disability on requirements for thermal comfort. Energy and Buildings, 34(6):593 –
599. Special Issue on Thermal Comfort Standards.

Pellerin, N. andCandas, V. (2003). Combined effects of temperature and noise on humandiscomfort.
Physiology and Behavior, 78(1):99 – 106.

Pigou, A. C. (1920). The Economics of Welfare. Macmillan, London.

PJM (2013). 2012 Economic demand response performance report: Analysis of economic DR par-
ticipation in the PJM wholesale energy market after the implementation of order 745. Technical
report, PJM Interconnection.

97



PJM (2014a). Demand response and why it’s important. Technical report, PJM Interconnection.

PJM (2014b). PJM economic demand resource in energy market. Technical report, PJM State and
Member Training Department.

PJM (2017). Demand response. Technical report, PJM Interconnection.

Reiss, P. C. and White, M. W. (2005). Household electricity demand, revisited. The Review of
Economic Studies, 72(3):853–883.

Reynolds, S. J., Black, D. W., Borin, S. S., Breuer, G., Burmeister, L. F., Fuortes, L. J., Smith,
T. F., Stein, M. A., Subramanian, P., Thorne, P. S., and Whitten, P. (2001). Indoor environmental
quality in six commercial office buildings in the midwest United States. Applied Occupational
and Environmental Hygiene, 16(11):1065–1077. PMID: 11757903.

Rich, E. (2017). FERC order 825 - economic demand response. Technical report, PJM Market
Settlements Subcommittee.

Ringsdorrf Jr., W. and Cheraskin, E. (1982). Vitamin C and tolerance of heat and cold: Human
evidence. Orthomolecular Psychiatry, 11:128–131.

Schellen, L., Lichtenbelt, W. D. V. M., Loomans, M. G. L. C., Toftum, J., andWit, M. H. D. (2010).
Differences between young adults and elderly in thermal comfort, productivity, and thermal
physiology in response to a moderate temperature drift and a steady-state condition. Indoor Air,
20(4):273–283.

Taylor, N. A., Allsopp, N. K., and Parkes, D. G. (1995). Preferred room temperature of young vs
aged males: The influence of thermal sensation, thermal comfort, and affect. The Journals of
Gerontology: Series A, 50A(4):M216–M221.

US Census (2013). American housing survey 1997-2013.

Veiga, A. and Weyl, E. G. (2016). Product design in selection markets. The Quarterly Journal of
Economics, 131(2):1007–1056.

Walawalkar, R., Blumsack, S., Apt, J., and Fernands, S. (2008). An economic welfare analysis of
demand response in the PJM electricity market. Energy Policy, 36:3692 – 3702.

Weisburd, S., Bird, D., and Ben-Porath, R. (2018). Adverse selection and moral hazard in the
leasing market: Are buybacks the solution? Technical report, CEPR.

Wooldridge, J. (2010). Econometric analysis of cross section and panel data. MIT Press, Cam-
bridge, Mass, 2 edition.

Young, A. J. (2010). Homeostatic responses to prolonged cold exposure: Human cold acclima-
tization, pages 419–438. John Wiley and Sons, Inc., supplement 14: handbook of physiology
edition.

98


