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ABSTRACT 

A COMPARISON OF TWO MEDIATION ANALYSIS METHODS WITH SEQUENTIAL MEDIATORS 

By 

Kyle Bennett 

Two methods for mediation analysis with sequential mediators were compared using multiple 

simulation scenarios. The performances of each method were assessed using three key metrics: 

relative bias, root mean square error, and coverage. The methods shared both similarities and 

key differences and some modification and adjustment were necessary to perform comparable 

simulations across the scenarios. Overall performance was assessed primarily using relative 

bias, where each simulated effect estimate was compared to a “true” effect generated by 

simulating from a theoretical super population. Simulation scenarios included correctly 

specified models using both methods and various mis-specified estimation models by 

incorrectly specifying a critical parameter in the model to assess the performance and 

robustness of each mediation analysis method. The results of the simulations suggest that one 

method was particularly more resilient to mis-specification of the model over the other, and 

that proper specification of the marginal structural model is also critical to minimizing bias and 

maximizing coverage. 

 

Key Words: mediation analysis; sequential mediators; marginal structural models; relative bias; 

data simulation; directed acyclic graph; causal inference 
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Section 1. Introduction 

Mediation analysis in epidemiology is a critical piece for performing causal inference. Because 

the pathway from an exposure to an outcome is not always clearly defined, we must utilize 

analytic methods to help us understand the impact that mediating variables have on the 

pathways from said exposures to said outcomes (1). Substantial academic work on mediation 

analysis has been published prior to this thesis across a wide range of social and life science 

applications (2–6). Two specific methods (2,3) will be scrutinized here and discussed in detail. 

The purpose of this thesis is to execute a thorough comparison of two mediation analysis 

methods. In no particular order, the first method is proposed by Lange et al. (2), which builds 

on work introduced by Lange, Vansteelandt, & Bekaert (7). The second, brought forth by Steen 

et al. (3), focuses heavily on the decomposition of models including multiple mediators, an idea 

previously presented by Daniel et al. (8). For this current work, the focus is on two sequential 

mediators evaluated using Monte Carlo data simulation. The specifics of the data simulation 

will be described in later sections, but in short, model components were incorrectly specified in 

various ways to explore the properties of the estimators by each statistical method. Statistical 

performance was assessed using several metrics: (i) relative bias, expressed as a percent 

difference from a “true” effect obtained from a very large population; (ii) root mean square 

error (RMSE); and (iii) coverage, expressed as a percent of the instances where the confidence 

interval generated by each simulation replicate covers the “true” effect. A discussion on the 

“true” effect and how it was generated occurs later, but it can be summarily thought of as a 

reasonable estimate of the effect if it were generated from a large population of 1,000,000 
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observations. We refer to this large population throughout the paper as a ‘Super Population’ 

and assume that data generated from the Super Population closely reflect true effects 

supported by Bernoulli’s law of large numbers. 

Some motivating background can be found in Liu et al.’s work on the association between poor 

olfaction and mortality (9). In this study, two mediators are presented sequentially, and the 

variables are treated as binary in nature. Part of the statistical analysis was to measure the 

strength of association between the exposure (olfaction impairment), mediators (weight loss 

and dementia and/or Parkinson disease) and outcome (mortality) with respect to explaining the 

overall total effect (TE) via natural direct effect (NDE), natural indirect effect (NIE), and partial 

indirect effect (PIE). Since multiple methods are present in the literature for explaining TE and 

the related direct and indirect effects, this created an ideal opportunity to compare method 

performance using simulated data constructed to resemble Liu et al.’s setting. 

The aforementioned effects of NDE, NIE, PIE, and TE, which are also the primary effects of 

interest in this current study, are the parameters researchers use to measure the impacts of 

variables on an outcome within natural (or counterfactual) effects models (2,3,10). In terms of 

mediation analysis, the NDE (natural direct effect) explains the effect of an exposure when a 

mediator is set to the mediator level that an individual would have experienced without the 

exposure (11). Pearl (12) describes direct effects as quantities measuring the impact of 

exposures on outcomes that are not mediated by other intermediates in a model. The natural 

and partial indirect effects constitute the effects represented in a model that explain the extent 

to which a response variable changes had the exposure been held fixed and the mediator 

variable is allowed to change as it would have if the exposure shifts to a different level (13). 
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Indirect effects can also be thought of as “path-specific” effects since they are measured 

through a specific combination of mediators and confounders from exposure to outcome (14). 

Direct and indirect effects together constitute total effects (11). As Pearl (14) notes, total 

effects are often the easiest to define and interpret since most experiments are designed to 

measure the effect of an exposure variable on a response variable. However, in order to 

conduct a thorough mediation analysis—that is, to attempt to understand the direct and 

indirect effects that sum to the total effects—a proper decomposition of the total effect into its 

smaller parts is appropriate and preferred (2,3,15). 

This thesis will compare Lange et al.’s and Steen et al.’s proposed algorithms for quantifying 

and modeling component and total effects. The performances of each will be assessed through 

multiple data simulation scenarios, each carrying their own unique parameterization and 

specifications in the structural models. The results of the simulations will be tabulated concisely 

to display how well each algorithm, with respect to the specific scenario, manages the correct 

or incorrect specification of the component models. The strengths and weaknesses of each 

method, again with respect to specific scenarios and specifications, will be discussed and an aim 

of this effort will be to provide suggestions on the causes of each pitfall. It is important to note, 

however, that the set of effects chosen for evaluation here are simply one subset of all 

component effects in a natural effects model with multiple mediators. The justification for this 

is that this subset theoretically provides the closest estimation of the natural effects in our 

proposed model, therefore it was believed this was the best point to explore a total effect 

decomposition. 
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Section 2. Description of Deployed Methods 

A primary foundation of this simulation study is depicted in the directed acyclic graph (DAG) 

shown in Figure 1. The causal assumptions shown in the DAG were the basis for establishing the 

true data generating process for both the super population estimates and the properly 

specified models for each statistical method. Of note, the mediators in this causal diagram 

share a sequential relationship, where M1 precedes M2 in all facets and scenarios. The mediator 

pathway is never reversed. Additionally, each confounding variable directly affects two other 

variables. These details will be important to recall when the discussion regarding the 

ramifications of the simulations occurs later. All variables in this DAG are binary.  

Figure 1. Directed Acyclic Graph for Data Generating Process 

 

Notably, Lange et al.’s method (2) was slightly modified as a consequence of the chosen design 

of the data generating process. Since the mediators for the simulation were to be established 

sequentially, it was necessary to model mediator two (M2) using mediator one (M1) as a 

covariate. This effectively renders a step in the published Lange et al. method irrelevant—

testing the mediators for mutual independence (2). Since M2 is modeled from M1, we would 
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expect dependence in the mediators. A proof for how the newly modified procedure featuring 

sequential mediators provides validity is shown in Appendix A. 

The Lange et al. (2) and Steen et al. (3) approaches share several similarities in their respective 

procedures. Both methods require modeling of at least one mediator. Both require an 

expansion of the original dataset. The two methods also require generating weights for at least 

one mediator and using those weights to fit a suitable model to the outcome variable. Each 

approach is also based on comparing counterfactual outcomes to quantify the causal effects. 

Despite these similarities, the Lange et al. and Steen et al. statistical methods also carry some 

contrasts to each other. Perhaps most notably, prior to data expansion and weight generation, 

the Lange et al. method requires that both mediators be modeled, while disregarding any 

model for the response variable. Contrary to this, the Steen et al. method requires only one of 

the two mediators be modeled along with modeling the response. Additionally, the weights for 

Lange et al.’s method must be generated using prediction models based on both mediators M1 

and M2. This is unlike Steen et al.’s approach where regression weights are generated from 

either M1 or M2, dependent entirely on which mediator was modeled in step one of their 

procedure. Finally, since the Steen et al. method requires preemptively modeling the mean 

outcome prior to data expansion, fitted values for the expectation of Y (the response) are used 

to impute outcomes and fit the final natural effects model including given confounders and 

measured covariates. In Lange et al., the response variable is not modeled prior to data 

expansion, therefore the expectation of Y is modeled using only the observed values for Y and 

the exposure (plus interactions, if applicable). 
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A short summary of the procedures executed for each mediation analysis method is provided 

below: 

1. Modified Lange et al. (also referred to as “Lange method”) 

a. Execute data generating process program (DGP; see Appendix B). 

b. Generate models for exposure A and mediators M1 and M2 and store estimated 

parameters. 

c. Expand dataset to create 4 replicates of each observation. 

i. Each replicate is characterized by a unique combination of exposure 

effects. 

ii. All other variables for the subject are repeated in each replicate. 

d. Compute marginal weights using estimated parameters for both mediators M1 

and M2 in step ‘b’. 

e. Define marginal structural model (MSM) in both linear and non-linear forms. 

f. Extract effects of interest from MSM model estimates. 

2. Steen et al. (also referred to as “Steen method”) 

a. Execute DGP. 

b. Generate models for exposure A, mediator M1 or M2, and outcome Y and store 

estimated parameters. 

c. Expand dataset to create 4 replicates of each observation. 

i. Each replicate is characterized by a unique combination of exposure 

effects. 

ii. All other variables for the subject are repeated in each replicate. 
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d. Compute marginal weights. 

i. Generate weights from prediction models using previously stored 

estimates from exposure A and one of two mediators. 

e. Impute outcome Y. 

i. Generate imputed outcomes by recalling the stored parameters from the 

Y model in step ‘b’ and use a prediction process to generate a fitted value 

for Y (fitY). 

f. Define MSM featuring fitY in both linear and non-linear forms. 

g. Extract effects of interest from MSM model estimates. 
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Section 3. Data Generating Process (DGP) 

3.1 True Data and the Super Population 

The process for generating data for this simulation begins with the DAG shown in Figure 1. 

Finding motivation in Liu et al. (9), an aim was to set parameter specifications for the individual 

covariates in such a way that the prevalence of the exposure, mediators, and outcome would 

mimic the observed data in their paper. Equations 1-4 in Appendix D detail the parameter 

specifications for the true data generated from the super population as well as the subsequent 

random variable distribution. 

A check on the prevalence of each generated variable is shown in Table 1. Comparing these 

frequencies to the published data in Liu et al., it was found that the exposure, mediator, and 

outcome prevalence compare well. Referencing their baseline data for the poor olfaction 

exposure (approximately 32%), overall average frequencies for both mediators of 

dementia/Parkinson’s Disease (≈29%) and weight loss ≥ 2% (≈19%), and a total outcome count 

of number of deaths (≈53%), the super population prevalence of exposure (A), mediators (M1 

and M2), and outcome (Y) are similar with estimates of 24%, 32%, 27%, and 46%, respectively.  
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Table 1. Prevalence of Exposure, Mediators, & Outcome in Super Population. 

 Freq  Freq  Freq  Freq 
A Percent M1 Percent M2 Percent Y Percent 

        
0 76.05 0 68.35 0 73.30 0 54.03 
        
1 23.95 1 31.65 1 26.70 1 45.97 
        
Total 1000000 Total 1000000 Total 1000000 Total 1000000 

Abbreviations: A, exposure; M1, mediator 1; M2, mediator 2; Y, outcome. 

3.2 Computing True Effects 

In order to gain some perspective on what the direct and indirect effects from mis-specified 

models mean, it’s vital to discuss how the true effects were derived from the super population. 

After the exposure, mediator, and outcome variables were generated, counterfactuals for M1 

and M2 were computed, followed by generating counterfactual outcomes for potential Y 

scenarios. These counterfactual outcomes are defined as the outcomes that would have been 

observed, perhaps contrary to factual observation, had exposure A been set to a* while the 

mediators were set to the levels they would have taken if A were set to level a (2,3,7,16). From 

here, direct and indirect effects were obtained from these counterfactuals and used as 

benchmarks in assessing the performance of each simulation scenario. Equations 5-8 detail the 

definitions for these effects. Of note, the expressions shown operate on a scale of risk 

difference (RD). To obtain a scale of risk ratio (RR), one would divide the first term by the 

second term as opposed to subtracting. 

(5) 𝑁𝐷𝐸𝑅𝐷 = 𝐸(𝑌1,𝑀1(0),𝑀2(0,𝑀1(0))) − 𝐸 (𝑌0,𝑀1(0),𝑀2(0,𝑀1(0))) 

(6) 𝑁𝐼𝐸𝑅𝐷 = 𝐸(𝑌1,𝑀1(1),𝑀2(1,𝑀1(1))) − 𝐸 (𝑌1,𝑀1(0),𝑀2(1,𝑀1(0))) 
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(7) 𝑃𝐼𝐸𝑅𝐷 = 𝐸(𝑌1,𝑀1(0),𝑀2(1,𝑀1(0))) − 𝐸 (𝑌1,𝑀1(0),𝑀2(0,𝑀1(0))) 

(8) 𝑇𝐸𝑅𝐷 = 𝐸(𝑌1,𝑀1(1),𝑀2(1,𝑀1(1))) − 𝐸 (𝑌0,𝑀1(0),𝑀2(0,𝑀1(0))) 

As explained before, this is one decomposition of the natural effect such that the total effect is 

the sum of the component effects. For other decompositions, see Daniel et al. (8) and Steen et 

al. (3). For each simulation scenario, the DGP as described in equations 1-4 was used for each 

simulation to generate 2000 observations. The direct, indirect, and total effects of interest were 

estimated within each scenario using the two statistical approaches discussed here. To assess 

performance, method- and scale-specific effects from each simulation were then compared to 

the true effects obtained from the super population. 
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Section 4. Data Simulation 

4.1 Simulation Scenarios 

To investigate the robustness of each mediation analysis method, several scenarios featuring 

mis-specified parametric models were defined and implemented into the data simulation 

program. Table 2 provides a condensed description of each numbered scenario. Moving forth, 

scenarios will be referred to either by their method and number (e.g. Steen Scen. 3), or by the 

defining feature of the mis-specification (e.g. outcome Y mis-specified due to unmeasured 

confounding). In addition to a reduced description, it is also indicated which scenarios were 

applicable to the two analysis methods. 

Table 2. Description of Deployed Simulation Scenarios. 

Applicable Methods Scenario #  Description 

Lange & 
Steen 

True  All models correctly specified according to the DGP 
1  M1 mis-specified due to unmeasured confounding 
2  M2 mis-specified due to unmeasured confounding 
3  M2 mis-specified due to lack of A*M1 interaction 

Steen only 
4  Y mis-specified due to unmeasured confounding 
5  Y mis-specified due to lack of M1*M2 interaction 

Abbreviations: DGP, data generating process. 

Lange et al.’s and Steen et al.’s methods vary at their foundations; therefore, it was not possible 

to simulate all scenarios using both methods. Because Lange et al.’s method does not require 

modeling the response variable Y, it was not necessary to mis-specify Y and apply the Lange 

method. As a result, the discussion section will primarily touch on the Steen method’s isolated 

performance with respect to scenarios four and five. 
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4.2 Performance Metrics Definitions 

Each simulation scenario was replicated 2000 times. The performance metrics of interest were 

calculated using the observations in the resulting dataset and stored in a separate file for later 

use in table presentation. Specific metrics of interest to this study were relative bias, RMSE, and 

coverage. 

Relative bias is calculated by 

(
𝛾̂𝑠𝑖𝑚−𝛾𝑟𝑒𝑓

𝛾𝑟𝑒𝑓
) × 100, 

where 𝛾̂
𝑠𝑖𝑚

 and 𝛾𝑟𝑒𝑓 are effect-specific. For example, the NDE RD estimates were obtained 

from 

𝛾𝑟𝑒𝑓𝑅𝐷
= 𝐸(𝑌1,𝑀1(0),𝑀2(0,𝑀1(0))) − 𝐸(𝑌𝑎∗,𝑀1,𝑀2

) and 

𝛾̂
𝑠𝑖𝑚

=
1

2000
∑ (𝛾𝑖)

2000
𝑖=1 , 

where 𝛾𝑖 is the estimate for simulation iteration i. 

On the RR scale, 𝛾𝑟𝑒𝑓 is obtained by 

𝛾𝑟𝑒𝑓𝑅𝑅
=

𝐸(𝑌𝑎,𝑀1,𝑀2)

𝐸(𝑌𝑎∗,𝑀1,𝑀2)
. 

RMSE is given by 

√
1

2000
∑ (𝛾𝑖 − 𝛾𝑟𝑒𝑓)

22000
𝑖=1 . 

Coverage is determined by 
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1

2000
∑ [𝛾𝑟𝑒𝑓 ∈ [𝐿𝐵𝑖, 𝑈𝐵𝑖]]

2000

𝑖=1

 

where 𝐿𝐵𝑖 𝑎𝑛𝑑 𝑈𝐵𝑖 are the respective lower bound and upper bound limits of the 

corresponding effect for simulation iteration i. The standard errors of estimators in each 

simulation were calculated using the cluster robust standard errors due to data expansion. 

Other approaches for calculating the standard errors and confidence intervals are available, 

e.g., bootstrapping. The implication is discussed later.  

4.3 Two-way Interactions 

For all simulation scenarios, two versions of the natural effects MSM model were estimated. In 

the first, only main effects were included. In the second, main effects and two-way interactions 

were included in the MSMs. The second specification is the preferred simulation for 

interpreting the results of the study, since the two-way interactions are implied by the DGP of 

the model. Stata code for how the models were programmed for the preferred simulation is 

shown in Appendix E for the “True” scenarios pertaining to each method. More commentary on 

the impact of omitting the two-way interactions occurs in the Discussion section of this thesis. 
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Section 5. Simulation Results 

The results of the preferred simulation, which includes main effects and two-way interactions, 

are shown in Tables A1-A4, located in Appendix C. They are not included here due to the size of 

the tables. In Tables A1 and A3, each row corresponds to a specific causal effect on the RD 

scale, whether that effect was estimated from a linear or non-linear model, and specified 

performance metrics. In tables A2 and A4, each row corresponds to a specific causal effect on 

the RR scale and specified performance metrics. 

The intention of providing results from linear modeling was to show that even in situations 

where a non-linear approach is preferred, the linear model performed comparably. With 

respect to relative bias and coverage, the two modeling approaches are nearly 

indistinguishable. Where the scenarios featuring mis-specified models failed to provide ample 

coverage and minimize bias, the non-linear and linear models displayed similar trends and 

results. 

For the Lange et al. approach (Tables A1 and A2), when the models were correctly specified, the 

bias for the NDE and TE was small and the coverage was acceptable. The coverage for the NIE 

and PIE in this scenario was lower than expected (<90%). The most relative bias occurred when 

mediator M1 was mis-modeled due to unmeasured confounding (Scen.1). As expected, this 

impacted the NIE resulting in relative bias greater than 20% and poor coverage (57.4%). The 

relative bias for PIE when mediator M2 was mis-specified due to omitting the A*M1 interaction 

(Scen.3) also elevated greater than 20%, but the coverage managed to remain above 80%. 

Smaller relative bias also occurred when M2 was mis-specified due to unmeasured confounding 
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(Scen.2), affecting the PIE in both the linear and nonlinear models. Notably, the total effect (TE) 

was relatively unaffected by any mis-modeling using the Lange method, which speaks to the 

resilience of the method on this effect. For this effect, relative bias remained less than 2% and 

coverage was greater than 93% across all scenarios. The Lange et al. approach performed as 

expected with the only arguable surprise being the resilience shown by the total effect data 

across all scenarios. In comparing results in tables A1 and A2, we see that the bias for RR scales 

was relatively smaller than the bias in the RD scales.  

In terms of relative bias, Steen et al.’s method performed comparably—and in some scenarios, 

better—to the modified Lange et al. method, but coverage was questionable to poor 

throughout (Tables A3 and A4). A detailed discussion on the likely causes of this occurs later. 

Unexpectedly, when mediator M1 was mis-specified, the relative bias was higher for the PIE 

than the NIE (Scen.1). This is also where the relative bias was highest during the entire 

simulation. Elevated relative bias also occurred for the NDE, PIE (in the RD scale), and TE when 

outcome Y was specified incorrectly (Scen.4). Interestingly, when outcome Y was mis-modeled 

due to omission of the M1*M2 interaction (Scen.5), the Steen et al. method was largely 

unaffected despite the additional requirement that Y be modeled prior to data expansion. Like 

Lange et al., the TE was resilient to parameter mis-specification, maintaining coverages greater 

than 80% and relative bias less than 2% across all scenarios except Scen.4 (where Y is mis-

modeled due to unmeasured confounding). Additionally, the coverage for all scenarios during 

the Steen et al. portion of the simulation on the NDE was poor, never exceeding 30%. All things 

considered, the Steen method also performed as expected and a further discussion on this can 

be found in the next section. 
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As stated earlier, the simulation was also executed when the interaction effects in the MSM for 

the outcome Y were omitted from the models. This led to increased relative bias and more 

extreme coverage mishaps in both statistical methods and across all effects. A summary of this 

inadequacy can be seen in Table 3, which shows the performance metrics for both Lange’s and 

Steen’s correct specification scenario. Relative bias is increased for all component effects 

obtained via logistic regression models as compared to linear probability models and coverage 

is poor for NIE and PIE. Both methods are effective at mitigating the bias in NDE, NIE and TE—

but not in PIE—created from two-way interaction omission when linear probability models for 

M1, M2 and Y were used, although the coverage for the Lange method was always better.  

Table 3. Performance in Risk Difference Scale with Interactions Missing from MSM when Both 
Methods Used Correct Specifications. 

   Lange et al. Steen et al. 

True Effects Model Metric Truea Truea 

NDERD = .216 

Linear 

Bias % -1.513 (15.772) -1.710 (11.192) 

RMSE 0.027 (0.020) 0.019 (0.016) 
Coverage 95.6% 35.3% 

GLM 
Bias % -15.121 (14.646) -15.428 (10.328) 
RMSE 0.038 (0.025) 0.035 (0.020) 

Coverage 83.9% 15.8% 

NIERD = .088 

Linear 

Bias % 2.442 (13.714) 2.542 (12.491) 

RMSE 0.010 (0.008) 0.009 (0.007) 

Coverage 83.0% 60.4% 

GLM 

Bias % -25.240 (12.309) -25.137 (10.737) 

RMSE 0.023 (0.010) 0.022 (0.009) 

Coverage 31.4% 9.2% 

PIERD = .059 

Linear 

Bias % 12.138 (18.139) 12.096 (34.595) 

RMSE 0.010 (0.008) 0.017 (0.013) 

Coverage 81.2% 95.7% 

GLM 

Bias % -23.022 (15.453) -22.950 (25.425) 

RMSE 0.014 (0.008) 0.016 (0.012) 

Coverage 54.1% 87.1% 
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Table 3 (cont’d)     

TERD = .363 

Linear 

Bias % 1.667 (8.824) 1.568 (8.710) 

RMSE 0.026 (0.020) 0.025 (0.020) 

Coverage 93.7% 84.5% 

GLM 

Bias % -1.922 (7.798) -2.020 (7.793) 

RMSE 0.023 (0.018) 0.022 (0.019) 

Coverage 95.0% 86.7% 
Note: Values in parentheses are the standard deviations of the measure of interest from 2000 replicates. 

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; PIE, partial indirect effect; TE, total effect; RD, 
risk difference; GLM, generalized linear model; RMSE, root mean square error. 

a All models correctly specified according to the DGP. 
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Section 6. Discussion 

Among the more noteworthy discoveries made during the study, properly specifying the 

marginal structural model (MSM) is critical. After the first execution of the simulation—where 

significant interactions were omitted from the MSM—the relative bias and coverage metrics of 

each scenario in both statistical methods were poor. As Table 3 shows, even in scenarios where 

each parameter is correctly modeled, the performance metrics are unexpectedly poor to 

questionable in quality. While the linear modeling of both methods performs uniformly better 

than the GLM models, GLM models are almost always the default choice in real world 

applications.  The lesson to be learned here is that even if the algorithm is correctly 

programmed and sequenced, omitting interactions implied by the DGP for the MSM model will 

lead to increased relative bias and poor coverage in the effect estimates. To counter the 

problem of mis-specified MSMs, flexibility in the model is encouraged while testing for 

significance in the interaction effects. 

In instances where confounders were unmeasured or interactions were missing from the 

model, relative bias was significantly increased. The only real exception to this consequence 

was the total effect (TE) analysis using the Lange et al. method. Across all scenarios for the 

Lange method, the relative bias remained less than |2|% while the coverage held greater than 

93%. This advantage is likely because the Lange method does not require modeling the 

outcome variable. The outcome is fit after data expansion and weights are calculated, leading 

to an outcome variable that is modeled directly by a weighted approach. Moreover, the mis-

specification of mediator M2 in both statistical methods led to lower relative bias in TE when 
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the A*M1 interaction was omitted (Scen. 3) than in scenarios where confounding was 

unmeasured (Scen. 2). Also, in the Steen et al. method, TE experienced the lowest relative bias 

for outcome mis-modeling in the scenario where the M1*M2 interaction was omitted (Scen. 5), 

not where confounding was unmeasured (Scen. 4). These findings suggest that with respect to 

TE, the omission of interactions versus confounders that are unmeasured leads to lower 

relative bias. In fact, this trend held true in the Steen method across all effects for outcome mis-

modeling and for the NDE when M2 was mis-specified. 

Both the natural indirect effect (NIE) through M1 and partial indirect effect (PIE) through M2 are 

heavily biased for both Lange and Steen when mediator M1 is mis-modeled, but the bias for PIE 

is larger with Steen et al. Interestingly, the NIE bias behaves differently in each method when 

mediator M2 is mis-specified. In the modified Lange et al. method, unmeasured confounding 

leads to higher relative bias, rather than omitting the A*M1 interaction. In the Steen et al. 

method, though, the relative bias for NIE is higher when the A*M1 interaction is missing, rather 

than when unmeasured confounding is in play. This may be due to differences in the methods, 

as Lange’s method models both mediators, while Steen’s method only models one of the 

mediators, which was M2 for scenarios two and three. To help illustrate method- and effect-

specific performance, Table 4 shows a basic comparison of the methods on the RR scale across 

the “True” scenario and Scen. 1-3. 
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Table 4. Comparison of Lange Vs. Steen Methods using Relative Bias in Risk Ratio Scale. 

Effects Metric Truea Scen. 1b Scen. 2c Scen. 3d 

NDERR Bias % — — ✓ — 

NIERR Bias % — — ✓ ✓ 

PIERR Bias % ✓ ✓ — — 

TERR Bias % — — ✓ ✓ 
Note: ‘✓’ if Lange method < Steen method, ‘—’ otherwise. 

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; PIE, partial indirect effect; TE, total effect; RR, 
risk ratio. 

a All models correctly specified according to the DGP. 

b M1 mis-specified due to unmeasured confounding. 

c M2 mis-specified due to unmeasured confounding. 

d M2 mis-specified due to lack of A*M1 interaction. 

Another notable observation from this simulation is the relatively poor coverage across all 

effects and scenarios using Steen et al.’s method. This is likely due to the need to bootstrap in 

order to obtain accurate standard errors, which was not executed for this simulation. Lange et 

al. suggests that robust standard errors can be obtained from the simulation alone, leading to 

conservative confidence intervals (2). We were interested in exploring this approach, so to 

equalize the handling of each statistical method, the same approach was utilized for Steen et 

al.’s method as well. It would be reasonable to consider the absence of bootstrapping a 

limitation of this study, though the information gleaned from this decision may be valuable for 

future work. 

It is interesting that the TE using Lange’s modified method is so resilient to mis-specification of 

relevant models. It seems this is because Lange’s method does not require modeling the 

outcome prior to expansion and weighting. The impact of modeling the outcome preemptively 

is shown using Steen’s method in scenario four, where unmeasured confounding leads to poor 
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coverage and high bias across all effects. Because TE is simply the sum of the direct and indirect 

effects, it would seem reasonable that any mis-modeling of the outcome would bias TE using 

Steen’s method, however this is only witnessed in the scenario where confounders were 

unmeasured. The performance remains relatively unbiased and coverage is fair when the 

M1*M2 interaction is omitted. This suggests that accounting for the confounders involved in the 

exposure and outcome is critical, because one can circumvent the AMkY pathway and still 

assess the total effect through the AY pathway, though somewhat less accurately and 

obviously without proper model decomposition. 

With respect to ‘between scenarios’ relationships, it was found that relative bias for an effect 

could be impacted depending on the confounders chosen for model mis-specification. 

Referencing the DAG in Figure 1, for example, confounders C4 and C5 were omitted when mis-

modeling mediator M1 in scenario one for Lange’s modified method. These confounders also 

affect mediator M2 and outcome Y. The estimated -11% bias in the PIE for simulation scenario 

one reflects this secondary consequence. As such, it would be sensible to extend this thinking 

and expect that omitting C1 from a model of exposure A would impact the NIE through M1, like 

omitting C2 from a model of outcome Y would impact the TE measured through the AY 

pathway. 
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Section 7. Conclusions 

Proper specification of the marginal structural model (MSM) is critical when decomposing total 

effect into direct and indirect effects. To minimize bias in a modeling effort, confounders must 

be measured, and significant interactions included in the modeling processes. When 

confounders are unmeasured and interactions are omitted from a natural effects model, more 

than one component effect can be impacted, depending on the specific confounder(s) or 

interaction(s) that is(are) absent. Linear models perform comparably to non-linear modeling 

techniques, however, are less preferred when working with a series of Bernoulli random 

variables. Furthermore, bootstrapping will likely provide better coverages as the calculation of 

the standard errors becomes more accurate. Compared directly and within the scope of the 

simulation design and with respect to sequential mediation, the Steen et al. method appears to 

be more resilient to mis-specifications and generally more apt at minimizing bias than the 

modified Lange et al. method. In situations where confounders or interactions may be missing 

from an MSM, one may be able to mitigate any shortcomings created as a result by giving extra 

attention to the total effect of a causal pathway, rather than the component effects. When mis-

modeling or mis-specification occurs in a model, the direct and indirect effects can be 

significantly and negatively impacted while the total effect seems to remain rather unperturbed 

to biasing and coverage issues. The exception to this would be in situations where the deployed 

statistical technique requires modeling of the outcome in the algorithm and the outcome 

variable is mis-specified. 
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APPENDIX A: Proof of Modified Lange Method 

𝐸 [𝑌𝑎,𝑀
𝑎1
1 ,𝑀

𝑎2
2 ] = ∑ ∑ 𝐸[𝑌𝑎,𝑚1,𝑚2|𝑀𝑎1

1 = 𝑚1, 𝑀𝑎2
2 = 𝑚2, 𝐶 = 𝑐]

𝑐𝑚1,𝑚2

× 𝑃[𝑀𝑎1
1 = 𝑚1, 𝑀𝑎2

2 = 𝑚2|𝐶 = 𝑐]𝑃(𝐶 = 𝑐) 

= ∑ ∑ 𝐸[𝑌𝑎,𝑚1,𝑚2|𝐶 = 𝑐]𝑃[𝑀𝑎1
1 = 𝑚1|𝐶 = 𝑐]𝑃[𝑀𝑎2

2 = 𝑚1|𝑀𝑎1
1 = 𝑚1, 𝐶 = 𝑐] × 𝑃(𝐶 = 𝑐)

𝑐𝑚1 ,𝑚2

 

= ∑ ∑ 𝐸[𝑌𝑎,𝑚1,𝑚2|𝑀1 = 𝑚1, 𝑀2 = 𝑚2, 𝐴 = 𝑎, 𝐶 = 𝑐]

𝑐𝑚1 ,𝑚2

× 𝑃[𝑀𝑎1
1 = 𝑚1|𝐴 = 𝑎1, 𝐶 = 𝑐]𝑃[𝑀𝑎2

2 = 𝑚1|𝐴 = 𝑎2, 𝑀𝑎1
1 = 𝑚1, 𝐶 = 𝑐]𝑃(𝐶 = 𝑐) 

= ∑ ∑ 𝐸[𝑌𝑎,𝑚1,𝑚2|𝑀1 = 𝑚1, 𝑀2 = 𝑚2, 𝐴 = 𝑎, 𝐶 = 𝑐]

𝑐𝑚1 ,𝑚2

× 𝑃[𝑀1 = 𝑚1|𝐴 = 𝑎1, 𝐶 = 𝑐]𝑃[𝑀2 = 𝑚1|𝐴 = 𝑎2, 𝑀𝑎1
1 = 𝑚1, 𝐶 = 𝑐]𝑃(𝐶 = 𝑐) 

= ∑ ∑ ∑ 𝑦𝑃[𝑌 = 𝑦|𝑀1 = 𝑚1, 𝑀2 = 𝑚2, 𝐴 = 𝑎, 𝐶 = 𝑐]

𝑐𝑚1,𝑚2𝑦

× 𝑃[𝑀1 = 𝑚1|𝐴 = 𝑎1, 𝐶 = 𝑐]𝑃[𝑀2 = 𝑚1|𝐴 = 𝑎2, 𝑀1 = 𝑚1, 𝐶 = 𝑐]𝑃(𝐶 = 𝑐) 

= ∑ ∑ ∑ ∑ 𝑦𝐼(𝐴 = 𝑎)𝑃[𝑌 = 𝑦|𝑀1 = 𝑚1, 𝑀2 = 𝑚2, 𝐴 = 𝑎, 𝐶 = 𝑐]

𝑐𝑚1,𝑚2𝑦𝑎

× 𝑃[𝑀1 = 𝑚1|𝐴 = 𝑎, 𝐶 = 𝑐]
𝑃[𝑀1 = 𝑚1|𝐴 = 𝑎1, 𝐶 = 𝑐]

𝑃[𝑀1 = 𝑚1|𝐴 = 𝑎, 𝐶 = 𝑐]

× 𝑃[𝑀2 = 𝑚2|𝐴 = 𝑎, 𝑀1 = 𝑚1, 𝐶 = 𝑐]
𝑃[𝑀2 = 𝑚2|𝐴 = 𝑎2, 𝑀1 = 𝑚1, 𝐶 = 𝑐]

𝑃[𝑀2 = 𝑚2|𝐴 = 𝑎, 𝑀1 = 𝑚1, 𝐶 = 𝑐]

× 𝑃(𝐶 = 𝑐)
1

𝑃(𝐴 = 𝑎|𝐶 = 𝑐)
 

= ∑ ∑ ∑ ∑ 𝑦𝐼(𝐴 = 𝑎)𝑃[𝑌 = 𝑦, 𝑀1 = 𝑚1, 𝑀2 = 𝑚2, 𝐴 = 𝑎, 𝐶 = 𝑐]𝑊

𝑐𝑚1,𝑚2𝑦𝑎

 

= 𝐸[𝑌𝐼(𝐴 = 𝑎)𝑊] 
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APPENDIX B: Stata Code for Data Generating Procedure for Super Population and Simulations 

/*--------------------------------------------------------------------------------*/ 

// Generating true TE, NDE, NIE1, PIE2 

/*--------------------------------------------------------------------------------*/ 

clear 

set seed 1234 

set obs 1000000 

gen ID=_n 

/*--------------------------------------------------------------------------------*/ 

// Data Generating Process (DGP) for A, M1, M2, Y  

/*--------------------------------------------------------------------------------*/ 

gen byte C1=rbinomial(1,0.5) 

gen byte C2=rbinomial(1,0.5) 

gen byte C3=rbinomial(1,0.5) 

gen byte C4=rbinomial(1,0.5) 

gen byte C5=rbinomial(1,0.5) 

local lgodds_a “-log(16)+log(4)*C1+log(4)*C2” 

gen double Pa=exp(`lgodds_a’)/(1+exp(`lgodds_a’)) 

gen byte A=rbinomial(1,Pa) 

local lgodds_m1 “-log(32)+log(4)*C1+log(4)*C4+log(4)*C5+log(4)*A” 

gen double PM1=exp(`lgodds_m1’)/(1+exp(`lgodds_m1’)) 

gen byte M1=rbinomial(1,PM1) 

local lgodds_m2 “-log(32)+log(3)*M1+log(4)*C4+log(4)*C3+log(3)*A+log(2)*A*M1”  

gen double PM2=exp(`lgodds_m2’)/(1+exp(`lgodds_m2’)) 

gen byte M2=rbinomial(1,PM2) 

local lgodds_y “-
log(32)+log(4)*C3+log(4)*M1+log(4)*M2+log(4)*C5+log(4)*C2+log(3)*A+log(4)*M1*M2+log(3)
*A*M1+log(4)*A*M2”  

gen double PY=exp(`lgodds_y’)/(1+exp(`lgodds_y’)) 
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gen byte Y=rbinomial(1,PY) 

/*Check distribution of A, M1, M2, Y*/ 

tab1 A M1 M2 Y 

/*--------------------------------------------------------------------------------*/ 

// Generate counterfactual Mediator M1:  

// M1(0) 

// M1(1)  

/*--------------------------------------------------------------------------------*/ 

local lgodds_m1_0 “-log(32)+log(4)*C1+log(4)*C4+log(4)*C5+log(4)*0” 

gen double PM1_0=exp(`lgodds_m1_0’)/(1+exp(`lgodds_m1_0’)) 

gen byte M1_0=rbinomial(1,PM1_0) 

local lgodds_m1_1 “-log(32)+log(4)*C1+log(4)*C4+log(4)*C5+log(4)*1” 

gen double PM1_1=exp(`lgodds_m1_1’)/(1+exp(`lgodds_m1_1’)) 

gen byte M1_1=rbinomial(1,PM1_1) 

/*--------------------------------------------------------------------------------*/ 

// Generate counterfactual Mediator M2:  

// M2(0,M1(0)) 

// M2(0,M1(1))  

// M2(1,M1(0))  

// M2(1,M1(1))  

/*--------------------------------------------------------------------------------*/ 

local lgodds_m2_00 “-log(32)+log(3)*M1_0+log(4)*C4+log(4)*C3+log(3)*0+log(2)*0*M1_0”  
 // plug in A = 0, M = M1_0 

gen double PM2_00=exp(`lgodds_m2_00’)/(1+exp(`lgodds_m2_00’)) 

gen byte M2_00=rbinomial(1,PM2_00) 

local lgodds_m2_01 “-log(32)+log(3)*M1_1+log(4)*C4+log(4)*C3+log(3)*0+log(2)*0*M1_1”  
 // plug in A = 0, M = M1_1 

gen double PM2_01=exp(`lgodds_m2_01’)/(1+exp(`lgodds_m2_01’)) 

gen byte M2_01=rbinomial(1,PM2_01) 
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local lgodds_m2_10 “-log(32)+log(3)*M1_0+log(4)*C4+log(4)*C3+log(3)*1+log(2)*1*M1_0”  
 // plug in A = 1, M = M1_0 

gen double PM2_10=exp(`lgodds_m2_10’)/(1+exp(`lgodds_m2_10’)) 

gen byte M2_10=rbinomial(1,PM2_10) 

local lgodds_m2_11 “-log(32)+log(3)*M1_1+log(4)*C4+log(4)*C3+log(3)*1+log(2)*1*M1_1”  
 // plug in A = 1, M = M1_1 

gen double PM2_11=exp(`lgodds_m2_11’)/(1+exp(`lgodds_m2_11’)) 

gen byte M2_11=rbinomial(1,PM2_11) 

/*--------------------------------------------------------------------------------*/ 

// Generate counterfactual Outcome Y:  

// Y(0,M1(0),M2(0,M1(0)))  

// Y(1,M1(0),M2(0,M1(0)))  

// Y(1,M1(0),M2(1,M1(0)))  

// Y(1,M1(1),M2(1,M1(1)))  

/*--------------------------------------------------------------------------------*/ 

local lgodds_y_0000 “-
log(32)+log(4)*C3+log(4)*M1_0+log(4)*M2_00+log(4)*C5+log(4)*C2+log(3)*0+log(4)*M1_0*M
2_00+log(3)*0*M1_0+log(4)*0*M2_00”  

gen double PY_0000 = exp(`lgodds_y_0000’)/(1+exp(`lgodds_y_0000’)) 

gen byte Y_0000 = rbinomial(1,PY_0000) 

local lgodds_y_1000 “-
log(32)+log(4)*C3+log(4)*M1_0+log(4)*M2_00+log(4)*C5+log(4)*C2+log(3)*1+log(4)*M1_0*M
2_00+log(3)*1*M1_0+log(4)*1*M2_00”  

gen double PY_1000 = exp(`lgodds_y_1000’)/(1+exp(`lgodds_y_1000’)) 

gen byte Y_1000 = rbinomial(1,PY_1000) 

local lgodds_y_1010 “-
log(32)+log(4)*C3+log(4)*M1_0+log(4)*M2_10+log(4)*C5+log(4)*C2+log(3)*1+log(4)*M1_0*M
2_10+log(3)*1*M1_0+log(4)*1*M2_10”  

gen double PY_1010 = exp(`lgodds_y_1010’)/(1+exp(`lgodds_y_1010’)) 

gen byte Y_1010 = rbinomial(1,PY_1010) 
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local lgodds_y_1111 “-
log(32)+log(4)*C3+log(4)*M1_1+log(4)*M2_11+log(4)*C5+log(4)*C2+log(3)*1+log(4)*M1_1*M
2_11+log(3)*1*M1_1+log(4)*1*M2_11”  

gen double PY_1111 = exp(`lgodds_y_1111’)/(1+exp(`lgodds_y_1111’)) 

gen byte Y_1111 = rbinomial(1,PY_1111) 

/*--------------------------------------------------------------------------------*/ 

// Total effect (TE)  

/*--------------------------------------------------------------------------------*/ 

sum Y_1111  

local m1111 = r(mean)  

sum Y_0000 

local m0000 = r(mean)  

dis “. TE in risk difference scale = “ `m1111’-`m0000’ 

dis “. TE in risk ratio scale = “ `m1111’/`m0000’ 

/*--------------------------------------------------------------------------------*/ 

// Natural direct effect (NDE)  

/*--------------------------------------------------------------------------------*/ 

sum Y_1000 

local m1000 = r(mean)  

dis “. NDE in risk difference scale = “ `m1000’-`m0000’ 

dis “. NDE in risk ratio scale = “ `m1000’/`m0000’ 

/*--------------------------------------------------------------------------------*/ 

// Natural indirect effect of M1 (NIE1) 

/*--------------------------------------------------------------------------------*/ 

sum Y_1010 

local m1010 = r(mean)  

dis “. NIE1 in risk difference scale = “ `m1111’-`m1010’ 

dis “. NIE1 in risk ratio scale = “ `m1111’/`m1010’ 

/*--------------------------------------------------------------------------------*/ 
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// Partial indirect effect of M2 (PIE2) 

/*--------------------------------------------------------------------------------*/ 

dis “. PIE2 in risk difference scale = “ `m1010’-`m1000’ 

dis “. PIE2 in risk ratio scale = “ `m1010’/`m1000’ 

/*--------------------------------------------------------------------------------*/ 

// Program DGP for Simulation Scenarios 

/*--------------------------------------------------------------------------------*/ 

cap program drop dgp 

program define dgp 

 gen ID=_n 

 gen byte C1=rbinomial(1,0.5) 

 gen byte C2=rbinomial(1,0.5) 

 gen byte C3=rbinomial(1,0.5) 

 gen byte C4=rbinomial(1,0.5) 

 gen byte C5=rbinomial(1,0.5) 

local lgodds_a “-log(16)+log(4)*C1+log(4)*C2” 

 gen double Pa=exp(`lgodds_a’)/(1+exp(`lgodds_a’)) 

 gen byte A=rbinomial(1,Pa) 

local lgodds_m1 “-log(32)+log(4)*C1+log(4)*C4+log(4)*C5+log(4)*A” 

 gen double PM1=exp(`lgodds_m1’)/(1+exp(`lgodds_m1’)) 

 gen byte M1=rbinomial(1,PM1) 

local lgodds_m2 “-log(32)+log(3)*M1+log(4)*C4+log(4)*C3+log(3)*A+log(2)*A*M1”  

 gen double PM2=exp(`lgodds_m2’)/(1+exp(`lgodds_m2’)) 

 gen byte M2=rbinomial(1,PM2) 

local lgodds y “-
log(32)+log(4)*C3+log(4)*M1+log(4)*M2+log(4)*C5+log(4)*C2+log(3)*A+log(4)*M1*M2+log(3)
*A*M1+log(4)*A*M2”  

 gen double PY=exp(`lgodds_y’)/(1+exp(`lgodds_y’)) 

 gen byte Y=rbinomial(1,PY) 
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end 
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APPENDIX C: Tabulated Performance Metrics by Method and Scale 

Table A1. Performance of Lange et al. in Risk Difference Scale. 

True 
Effects 

Model Metric Truea Scen. 1b Scen. 2c Scen. 3d 

NDERD 
= .216 

Linear 
Bias % 

3.028 
(18.486) 

-5.894 
(17.610) 

-2.048 
(18.201) 

-5.484 
(19.490) 

RMSE 0.032 (0.024) 0.032 (0.024) 0.032 (0.024) 0.035 (0.026) 
Coverage 94.3% 95.0% 95.5% 94.2% 

GLM 
Bias % 

2.334 
(18.227) 

-6.783 
(17.324) 

-2.873 
(17.897) 

-6.109 
(19.130) 

RMSE 0.032 (0.024) 0.032 (0.024) 0.031 (0.023) 0.035 (0.026) 
Coverage 94.6% 94.8% 95.2% 94.0% 

NIERD 
= .088 

Linear 

Bias % 
6.652 

(19.470) 
28.203 

(19.321) 
7.325 

(19.590) 
3.552 

(19.153) 

RMSE 0.014 (0.011) 0.026 (0.016) 0.014 (0.012) 0.013 (0.011) 

Coverage 88.0% 47.3% 87.6% 89.6% 

GLM 

Bias % 
2.382 

(19.248) 
23.813 

(19.016) 
2.549 

(19.371) 
0.598 

(19.119) 

RMSE 0.013 (0.011) 0.022 (0.015) 0.014 (0.011) 0.013 (0.010) 

Coverage 89.8% 57.4% 89.8% 89.5% 

PIERD 
= .059 

Linear 

Bias % 
-10.825 
(27.147) 

-10.949 
(26.112) 

7.745 
(28.703) 

20.315 
(28.165) 

RMSE 0.014 (0.010) 0.013 (0.010) 0.014 (0.011) 0.016 (0.012) 

Coverage 84.0% 83.4% 83.8% 86.4% 

GLM 

Bias % 
-5.786 

(26.986) 
-5.685 

(25.780) 
13.372 

(28.622) 
23.885 

(27.971) 

RMSE 0.013 (0.010) 0.013 (0.009) 0.015 (0.011) 0.017 (0.013) 

Coverage 85.3% 85.8% 80.5% 82.3% 

TERD = .363 

Linear 

Bias % 1.661 (8.814) 1.588 (8.841) 1.825 (8.847) 0.906 (8.830) 

RMSE 0.026 (0.020) 0.026 (0.020) 0.026 (0.020) 0.026 (0.020) 

Coverage 93.7% 93.6% 93.5% 94.0% 

GLM 

Bias % 1.027 (8.677) 0.846 (8.677) 1.086 (8.680) 0.395 (8.666) 

RMSE 0.025 (0.019) 0.025 (0.019) 0.025 (0.019) 0.025 (0.019) 

Coverage 94.1% 94.3% 94.0% 94.4% 

Note: Values in parentheses are the standard deviations of the measure of interest from 2000 replicates. 

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; PIE, partial indirect effect; TE, total effect; RD, 
risk difference; GLM, generalized linear model; RMSE, root mean square error. 

a All models correctly specified according to the DGP. 

b M1 mis-specified due to unmeasured confounding. 

c M2 mis-specified due to unmeasured confounding. 

d M2 mis-specified due to lack of A*M1 interaction. 
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Table A2. Performance of Lange et al. in Risk Ratio Scale. 

True Effects Model Metric Truea Scen. 1b Scen. 2c Scen. 3d 

NDERR = 
1.57 

GLM 

Bias % 1.230 (7.219) 
-2.168 
(6.820) 

-0.670 
(7.075) 

-2.032 
(7.412) 

RMSE 0.091 (0.071) 0.091 (0.067) 0.089 (0.067) 0.097 (0.072) 

Coverage 94.9% 95.0% 95.0% 93.9% 

NIERR = 1.14 GLM 

Bias % 0.422 (2.836) 3.444 (2.964) 0.444 (2.853) 0.189 (2.803) 

RMSE 0.025 (0.021) 0.042 (0.030) 0.025 (0.021) 0.025 (0.020) 

Coverage 91.4% 69.5% 91.5% 91.0% 

PIERR = 1.10 GLM 

Bias % 
-0.467 
(2.713) 

-0.182 
(2.663) 

1.470 (2.957) 2.587 (3.118) 

RMSE 0.024 (0.018) 0.023 (0.018) 0.028 (0.023) 0.035 (0.028) 

Coverage 86.5% 88.0% 85.8% 87.9% 

TERR = 1.97 GLM 

Bias % 0.993 (5.394) 0.840 (5.378) 1.043 (5.402) 0.461 (5.336) 

RMSE 0.085 (0.066) 0.085 (0.065) 0.085 (0.066) 0.084 (0.064) 

Coverage 94.3% 94.3% 94.3% 94.5% 

Note: Values in parentheses are the standard deviations of the measure of interest from 2000 replicates. 

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; PIE, partial indirect effect; TE, total effect; RR, 
risk ratio; GLM, generalized linear model; RMSE, root mean square error. 

a All models correctly specified according to the DGP. 

b M1 mis-specified due to unmeasured confounding. 

c M2 mis-specified due to unmeasured confounding. 

d M2 mis-specified due to lack of A*M1 interaction. 
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Table A3. Performance of Steen et al. in Risk Difference Scale. 

True 
Effects 

Model Metric Truea Scen. 1b Scen. 2c Scen. 3d Scen. 4e Scen. 5f 

NDERD 
= .216 

Linear 

Bias % 
2.849 

(12.430) 
0.983 

(12.387) 
3.272 

(12.449) 
3.087 

(12.407) 
23.932 

(13.002) 
1.332 

(12.381) 

RMSE 
0.022 

(0.017) 
0.021 

(0.016) 
0.022 

(0.017) 
0.022 

(0.017) 
0.052 

(0.027) 
0.021 

(0.016) 
Covg. 24.1% 21.6% 24.3% 24.7% 4.3% 22.2% 

GLM 

Bias % 
2.136 

(12.274) 
0.410 

(12.247) 
2.778 

(12.302) 
2.424 

(12.248) 
22.632 

(12.825) 
0.508 

(12.215) 

RMSE 
0.021 

(0.017) 
0.021 

(0.016) 
0.021 

(0.017) 
0.021 

(0.017) 
0.050 

(0.026) 
0.021 

(0.016) 
Covg. 25.4% 22.3% 26.4% 26.5% 4.8% 23.1% 

NIERD 
= .088 

Linear 

Bias % 
6.713 

(16.800) 
24.173 

(17.808) 
-2.650 

(25.622) 
-10.094 
(25.758) 

10.928 
(16.338) 

3.283 
(16.500) 

RMSE 
0.013 

(0.010) 
0.022 

(0.014) 
0.018 

(0.014) 
0.020 

(0.015) 
0.014 

(0.011) 
0.012 

(0.009) 

Covg. 71.7% 32.0% 96.0% 94.5% 62.5% 74.5% 

GLM 

Bias % 
2.363 

(16.826) 
21.694 

(17.873) 
-7.170 

(24.932) 
-14.717 
(25.298) 

5.113 
(16.226) 

0.049 
(16.621) 

RMSE 
0.012 

(0.009) 
0.021 

(0.014) 
0.018 

(0.014) 
0.021 

(0.015) 
0.012 

(0.009) 
0.012 

(0.009) 

Covg. 76.1% 38.9% 95.8% 91.8% 71.8% 76.6% 

PIERD 
= .059 

Linear 

Bias % 
-10.967 
(42.001) 

-35.915 
(40.386) 

3.076 
(26.133) 

14.232 
(23.575) 

-20.297 
(33.643) 

-4.590 
(42.593) 

RMSE 
0.020 

(0.016) 
0.026 

(0.019) 
0.012 

(0.010) 
0.012 

(0.010) 
0.018 

(0.014) 
0.020 

(0.016) 

Covg. 94.4% 88.1% 46.7% 44.5% 90.6% 95.2% 

GLM 

Bias % 
-5.819 

(42.897) 
-32.802 
(41.252) 

8.154 
(26.342) 

19.642 
(23.828) 

-12.842 
(34.661) 

-0.397 
(43.424) 

RMSE 
0.020 

(0.016) 
0.025 

(0.018) 
0.012 

(0.010) 
0.014 

(0.011) 
0.017 

(0.013) 
0.020 

(0.016) 

Covg. 95.0% 90.0% 45.4% 39.0% 93.7% 95.0% 

TERD 
= .363 

Linear 

Bias % 
1.546 

(8.832) 
0.638 

(8.752) 
1.798 

(8.851) 
1.687 

(8.833) 
13.583 
(8.093) 

0.845 
(8.746) 

RMSE 
0.025 

(0.021) 
0.024 

(0.021) 
0.025 

(0.021) 
0.025 

(0.021) 
0.051 

(0.026) 
0.024 

(0.021) 

Covg. 84.5% 85.6% 84.4% 84.7% 31.1% 85.5% 

GLM 

Bias % 
0.900 

(8.681) 
0.200 

(8.611) 
1.229 

(8.675) 
1.046 

(8.681) 
12.604 
(7.913) 

0.249 
(8.603) 

RMSE 
0.024 

(0.021) 
0.023 

(0.021) 
0.024 

(0.021) 
0.024 

(0.021) 
0.048 

(0.025) 
0.023 

(0.021) 

Covg. 85.2% 85.6% 84.8% 85.0% 33.9% 85.7% 
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Table A3 (cont’d) 

Note: Values in parentheses are the standard deviations of the measure of interest from 2000 replicates. 

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; PIE, partial indirect effect; TE, total effect; RD, 
risk difference; GLM, generalized linear model; RMSE, root mean square error; Covg., coverage. 

a All models correctly specified according to the DGP. 

b M1 mis-specified due to unmeasured confounding. 

c M2 mis-specified due to unmeasured confounding. 

d M2 mis-specified due to lack of A*M1 interaction. 

e Y mis-specified due to unmeasured confounding. 

f Y mis-specified due to lack of M1*M2 interaction. 
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Table A4. Performance of Steen et al. in Risk Ratio Scale. 

True 
Effects 

Model Metric Truea Scen. 1b Scen. 2c Scen. 3d Scen. 4e Scen. 5f 

NDERR = 
1.57 

GLM 

Bias % 
1.158 

(5.180) 
0.313 

(5.106) 
1.482 

(5.220) 
1.301 

(5.174) 
10.464 
(5.728) 

0.361 
(5.095) 

RMSE 
0.066 

(0.052) 
0.064 

(0.049) 
0.067 

(0.053) 
0.066 

(0.052) 
0.166 

(0.087) 
0.064 

(0.049) 

Coverage 34.8% 32.0% 35.3% 35.0% 5.5% 32.5% 

NIERR = 
1.14 

GLM 

Bias % 
0.400 

(2.453) 
3.136 

(2.730) 
-0.918 
(3.171) 

-1.920 
(3.129) 

0.235 
(2.290) 

0.091 
(2.416) 

RMSE 
0.022 

(0.018) 
0.038 

(0.028) 
0.030 

(0.022) 
0.034 

(0.024) 
0.020 

(0.016) 
0.022 

(0.017) 

Coverage 76.9% 46.3% 94.1% 89.8% 71.3% 76.8% 

PIERR = 
1.10 

GLM 

Bias % 
-0.521 
(3.993) 

-2.949 
(3.829) 

0.730 
(2.534) 

1.779 
(2.367) 

-1.543 
(3.080) 

-0.005 
(4.059) 

RMSE 
0.035 

(0.027) 
0.043 

(0.032) 
0.022 

(0.019) 
0.025 

(0.021) 
0.030 

(0.023) 
0.035 

(0.028) 

Coverage 94.5% 89.5% 44.0% 38.7% 91.3% 95.2% 

TERR = 
1.97 

GLM 

Bias % 
0.935 

(5.360) 
0.305 

(5.252) 
1.214 

(5.389) 
1.058 

(5.365) 
8.922 

(5.400) 
0.347 

(5.253) 

RMSE 
0.083 

(0.068) 
0.080 

(0.066) 
0.084 

(0.069) 
0.083 

(0.068) 
0.180 

(0.098) 
0.080 

(0.066) 

Coverage 82.8% 83.0% 82.8% 82.8% 28.5% 83.2% 

Note: Values in parentheses are the standard deviations of the measure of interest from 2000 replicates. 

Abbreviations: NDE, natural direct effect; NIE, natural indirect effect; PIE, partial indirect effect; TE, total effect; RD, 
risk difference; GLM, generalized linear model; RMSE, root mean square error; Covg., coverage. 

a All models correctly specified according to the DGP. 

b M1 mis-specified due to unmeasured confounding. 

c M2 mis-specified due to unmeasured confounding. 

d M2 mis-specified due to lack of A*M1 interaction. 

e Y mis-specified due to unmeasured confounding. 

f Y mis-specified due to lack of M1*M2 interaction. 
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APPENDIX D: Equations for Data Generating Procedure 

𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5
𝑖. 𝑖. 𝑑.
~ 𝐵𝑒𝑟𝑛(1, 0.5) 

(1) 𝑃(𝐴) =
exp(− log(16) + log(4) 𝐶1 + log(4) 𝐶2)

1 + exp(− log(16) + log(4) 𝐶1 + log(4) 𝐶2)
; 𝐴~𝐵𝑒𝑟𝑛(1, 𝑃(𝐴)) 

(2) 𝑃(𝑀1) =
𝑒𝑥𝑝(−𝑙𝑜𝑔(32) + 𝑙𝑜𝑔(4)𝐶1 + 𝑙𝑜𝑔(4)𝐶4 + 𝑙𝑜𝑔(4)𝐶5 + 𝑙𝑜𝑔(4)𝐴)

1 + 𝑒𝑥𝑝(−𝑙𝑜𝑔(32) + 𝑙𝑜𝑔(4)𝐶1 + 𝑙𝑜𝑔(4)𝐶4 + 𝑙𝑜𝑔(4)𝐶5 + 𝑙𝑜𝑔(4)𝐴)
; 𝑀1~𝐵𝑒𝑟𝑛(1, 𝑃(𝑀1)) 

(3) 𝑃(𝑀2) =
𝑒𝑥𝑝(−𝑙𝑜𝑔(32) + 𝑙𝑜𝑔(3)𝑀1 + 𝑙𝑜𝑔(4)𝐶4 + 𝑙𝑜𝑔(4)𝐶3 + 𝑙𝑜𝑔(3)𝐴 + 𝑙𝑜𝑔(2)𝐴𝑀1)

1 + 𝑒𝑥𝑝(−𝑙𝑜𝑔(32) + 𝑙𝑜𝑔(3)𝑀1 + 𝑙𝑜𝑔(4)𝐶4 + 𝑙𝑜𝑔(4)𝐶3 + 𝑙𝑜𝑔(3)𝐴 + 𝑙𝑜𝑔(2)𝐴𝑀1)
;  𝑀2~𝐵𝑒𝑟𝑛(1, 𝑃(𝑀2)) 

(4) 𝑃(𝑌)

=
𝑒𝑥𝑝(−𝑙𝑜𝑔(32) + 𝑙𝑜𝑔(4)𝐶3 + 𝑙𝑜𝑔(4)𝑀1 + 𝑙𝑜𝑔(4)𝑀2 + 𝑙𝑜𝑔(4)𝐶5 + 𝑙𝑜𝑔(4)𝐶2 + 𝑙𝑜𝑔(3)𝐴 + 𝑙𝑜𝑔(4)𝑀1𝑀2 + 𝑙𝑜𝑔(3)𝐴𝑀1 + 𝑙𝑜𝑔(4)𝐴𝑀2)

(1 + 𝑒𝑥𝑝(−𝑙𝑜𝑔(32) + 𝑙𝑜𝑔(4)𝐶3 + 𝑙𝑜𝑔(4)𝑀1 + 𝑙𝑜𝑔(4)𝑀2 + 𝑙𝑜𝑔(4)𝐶5 + 𝑙𝑜𝑔(4)𝐶2 + 𝑙𝑜𝑔(3)𝐴 + 𝑙𝑜𝑔(4)𝑀1𝑀2 + 𝑙𝑜𝑔(3)𝐴𝑀1 + 𝑙𝑜𝑔(4)𝐴𝑀2))
;  𝑌~𝐵𝑒𝑟𝑛(1, 𝑃(𝑌)) 
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APPENDIX E: Stata Code for Properly Specified Scenarios 

/*Lange True Scenario*/ 

capture program drop LangeTrue 

program define LangeTrue, rclass 

 drop _all 

 set obs 2000 

/*DGP*/ 

 dgp  

/*Create Expanded Dataset*/ 

 expdata_lange 

/*Correctly specified models*/ 

 gen A_temp=A 

 mlogit M1 C1 C4 C5 A_temp if originalObs==1 

 predict out0 out1, p 

 gen w1denom=out0 if M1==0 

 replace w1denom=out1 if M1==1 

 drop out0 out1 

 replace A_temp=AStar1 

 predict out0 out1, p 

 gen w1num=out0 if M1==0 

 replace w1num=out1 if M1==1 

 drop out0 out1 

 drop A_temp 

 gen A_temp=A 

 mlogit M2 C3 C4 i.M1##i.A_temp if originalObs==1 

 predict out0 out1, p 

 gen w2denom=out0 if M2==0 

 replace w2denom=out1 if M2==1 
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drop out0 out1 

 replace A_temp=AStar2 

 predict out0 out1, p 

 gen w2num=out0 if M2==0 

 replace w2num=out1 if M2==1 

 drop out0 out1 

/*Compute Conditional Weight*/ 

 gen W=(w1num/w1denom)*(w2num/w2denom) 

/*Generating Marginal Weight*/ 

 mlogit A C1 C2 if originalObs==1 

 predict out0 out1 

 gen Wa=1/out0 if A==0 

 replace Wa=1/out1 if A==1 

 gen MW=Wa*W 

/*Return Mean Weight*/ 

 sum MW 

 return scalar mweight = r(mean) 

/*Marginal Structural Model - Linear Probability*/ 

 rename A a0 

 rename AStar1 a1 

 rename AStar2 a2 

 regress Y i.a0 i.a1 i.a2 i.a0#i.a1 i.a0#i.a2 i.a1#i.a2 [pweight=MW], vce(cluster ID) 

 mat b = r(table)  

 *NDE* 

 local nde = _b[1.a0] 

 local lb = b[5,2] 

 local ub = b[6,2] 

 return scalar nde_l_rd= `nde' 
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return scalar nde_l_rd_ll = `lb'  

 return scalar nde_l_rd_ul = `ub' 

 *NIE1* 

 lincom _b[1.a1] + _b[1.a0#1.a1] + _b[1.a1#1.a2] 

 local nie = r(estimate) 

 local lb = r(lb) 

 local ub = r(ub)  

 return scalar nie_l_rd= `nie'  

 return scalar nie_l_rd_ll = `lb'  

 return scalar nie_l_rd_ul = `ub'  

 *PIE2* 

 lincom _b[1.a2] + _b[1.a0#1.a2] 

 local pie = r(estimate) 

 local lb = r(lb) 

 local ub = r(ub)  

 return scalar pie_l_rd= `pie'  

 return scalar pie_l_rd_ll = `lb'  

 return scalar pie_l_rd_ul = `ub'  

 *TE* 

 lincom _b[1.a0] + _b[1.a1] + _b[1.a2] + _b[1.a0#1.a1] + _b[1.a0#1.a2] + _b[1.a1#1.a2] 

 return scalar te_l_rd= r(estimate) 

 return scalar te_l_rd_ll = r(lb) 

 return scalar te_l_rd_ul = r(ub) 

/*Marginal Structural Model - Generalized Linear Model*/ 

 glm Y i.a0 i.a1 i.a2 i.a0#i.a1 i.a0#i.a2 i.a1#i.a2 [pweight=MW], vce(cluster ID) fam(bin) 
link(log) eform 

 *NDE* 

 margins r.a0, at(a1=0 a2=0)  

 mat b = r(table) 



40 
 

 local nde = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nde_nl_rd = `nde'  

 return scalar nde_nl_rd_ll =`lb' 

 return scalar nde_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a0])) 

 mat b = r(table) 

 local nde = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nde_nl_rr = `nde'  

 return scalar nde_nl_rr_ll = `lb' 

 return scalar nde_nl_rr_ul = `ub' 

 *NIE1* 

 margins r.a1, at(a0=1 a2=1) 

 mat b = r(table) 

 local nie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nie_nl_rd = `nie'  

 return scalar nie_nl_rd_ll = `lb' 

 return scalar nie_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a1] + _b[1.a0#1.a1] + _b[1.a1#1.a2])) 

 mat b = r(table) 

 local nie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 
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return scalar nie_nl_rr = `nie'  

 return scalar nie_nl_rr_ll = `lb' 

 return scalar nie_nl_rr_ul = `ub' 

 *PIE2* 

 margins r.a2, at(a1=0 a0=1) 

 mat b = r(table) 

 local pie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar pie_nl_rd = `pie'  

 return scalar pie_nl_rd_ll = `lb' 

 return scalar pie_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a2] + _b[1.a0#1.a2])) 

 mat b = r(table) 

 local pie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar pie_nl_rr = `pie'  

 return scalar pie_nl_rr_ll = `lb' 

 return scalar pie_nl_rr_ul = `ub' 

 *TE* 

 margins, expression(exp(_b[_cons] + _b[1.a0] + _b[1.a1] + _b[1.a2] + _b[1.a0#1.a1] + 
_b[1.a0#1.a2] + _b[1.a1#1.a2]) - exp(_b[_cons])) 

 mat b = r(table)  

 local te = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar te_nl_rd = `te' 

 return scalar te_nl_rd_ll = `lb' 
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 return scalar te_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a0] + _b[1.a1] + _b[1.a2] + _b[1.a0#1.a1] + _b[1.a0#1.a2] 
+ _b[1.a1#1.a2])) 

 mat b = r(table)  

 local te = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar te_nl_rr = `te'  

 return scalar te_nl_rr_ll = `lb'  

 return scalar te_nl_rr_ul = `ub' 

end 

/* Steen True Scenario */ 

capture program drop SteenTrue 

program define SteenTrue, rclass 

 drop _all  

 set obs 2000 

/*DGP*/ 

 dgp  

*Step 0 - Estimate model for exposure A* 

 mlogit A C1 C2 

 estimates store A 

*Step 1 - Estimate model for mediator M1 or mediator M2* 

 logit M1 C1 C4 C5 A 

 estimates store M1 

*Step 2 - Estimate model for outcome Y* 

 logit Y C2 C3 C5 i.A i.M1 i.M2 i.A#i.M1 i.A#i.M2 i.M1#i.M2 

 estimates store Y 

*Step 3 M1 - Create expanded dataset using M1* 

 expand 2 
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bys ID: gen int a0 = (_n-1) 

 expand 2 

 bys ID a0: gen int a1 = (_n-1) 

 gen a2 = A 

*Step 4A M1 - Calculate weights on M1 model for conditional effects* 

 estimates restore M1 

 tempvar temp_A 

 gen `temp_A' = A 

 replace A = a1 

 predict double num_M1 

 replace num_M1 = 1-num_M1 if M1==0 

 replace A = `temp_A' 

 predict double den_M1 

 replace den_M1 = 1-den_M1 if M1==0 

 gen double W_M1 = num_M1/den_M1 

*Step 4B M1 - Calculate weights for marginal effects related to M1* 

 estimates restore A 

 predict predout0 predout1 

 gen double W_a = 1/predout0 if A==0 

 replace W_a = 1/predout1 if A==1 

 gen double W_marg = W_M1*W_a 

 *Return mean weight* 

 sum W_marg 

 return scalar mweight = r(mean) 

*Step 5 - Impute outcome Y using expanded dataset for M1* 

 estimates restore Y 

 tempvar temp_A 

 gen `temp_A' = A 
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 replace A = a0 

 predict fitY 

 replace A = `temp_A' 

*Marginal Structural Model - Linear Probability* 

 regress fitY i.a0 i.a1 i.a2 i.a0#i.a1 i.a0#i.a2 i.a1#i.a2 [pweight=W_marg], vce(cluster ID) 

 mat b = r(table) 

 *NDE* 

 local nde = _b[1.a0] 

 local lb = b[5,2] 

 local ub = b[6,2] 

 return scalar nde_l_rd= `nde' 

 return scalar nde_l_rd_ll = `lb'  

 return scalar nde_l_rd_ul = `ub' 

 *NIE1* 

 lincom _b[1.a1] + _b[1.a0#1.a1] + _b[1.a1#1.a2] 

 local nie = r(estimate) 

 local lb = r(lb) 

 local ub = r(ub)  

 return scalar nie_l_rd= `nie'  

 return scalar nie_l_rd_ll = `lb'  

 return scalar nie_l_rd_ul = `ub'  

 *PIE2* 

 lincom _b[1.a2] + _b[1.a0#1.a2] 

 local pie = r(estimate) 

 local lb = r(lb) 

 local ub = r(ub)  

 return scalar pie_l_rd= `pie'  

 return scalar pie_l_rd_ll = `lb'  
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 return scalar pie_l_rd_ul = `ub'  

 *TE* 

 lincom _b[1.a0] + _b[1.a1] + _b[1.a2] + _b[1.a0#1.a1] + _b[1.a0#1.a2] + _b[1.a1#1.a2] 

 return scalar te_l_rd= r(estimate) 

 return scalar te_l_rd_ll = r(lb) 

 return scalar te_l_rd_ul = r(ub) 

*Marginal Structural Model - Generalized Linear Model* 

 glm fitY i.a0 i.a1 i.a2 i.a0#i.a1 i.a0#i.a2 i.a1#i.a2 [pweight=W_marg], vce(cluster ID) 
family(bin) link(log) eform 

 *NDE* 

 margins r.a0, at(a1=0 a2=0)  

 mat b = r(table) 

 local nde = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nde_nl_rd = `nde'  

 return scalar nde_nl_rd_ll =`lb' 

 return scalar nde_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a0])) 

 mat b = r(table) 

 local nde = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nde_nl_rr = `nde'  

 return scalar nde_nl_rr_ll = `lb' 

 return scalar nde_nl_rr_ul = `ub' 

 *NIE1* 

 margins r.a1, at(a0=1 a2=1) 

 mat b = r(table) 
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 local nie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nie_nl_rd = `nie'  

 return scalar nie_nl_rd_ll = `lb' 

 return scalar nie_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a1] + _b[1.a0#1.a1] + _b[1.a1#1.a2])) 

 mat b = r(table) 

 local nie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar nie_nl_rr = `nie'  

 return scalar nie_nl_rr_ll = `lb' 

 return scalar nie_nl_rr_ul = `ub' 

 *PIE2* 

 margins r.a2, at(a1=0 a0=1) 

 mat b = r(table) 

 local pie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar pie_nl_rd = `pie'  

 return scalar pie_nl_rd_ll = `lb' 

 return scalar pie_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a2] + _b[1.a0#1.a2])) 

 mat b = r(table) 

 local pie = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 
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 return scalar pie_nl_rr = `pie'  

 return scalar pie_nl_rr_ll = `lb' 

 return scalar pie_nl_rr_ul = `ub' 

 *TE* 

 margins, expression(exp(_b[_cons] + _b[1.a0] + _b[1.a1] + _b[1.a2] + _b[1.a0#1.a1] + 
_b[1.a0#1.a2] + _b[1.a1#1.a2]) - exp(_b[_cons])) 

 mat b = r(table)  

 local te = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar te_nl_rd = `te' 

 return scalar te_nl_rd_ll = `lb' 

 return scalar te_nl_rd_ul = `ub' 

 margins, expression(exp(_b[1.a0] + _b[1.a1] + _b[1.a2] + _b[1.a0#1.a1] + _b[1.a0#1.a2] 
+ _b[1.a1#1.a2])) 

 mat b = r(table) 

 local te = b[1,1] 

 local lb = b[5,1] 

 local ub = b[6,1] 

 return scalar te_nl_rr = `te'  

 return scalar te_nl_rr_ll = `lb'  

 return scalar te_nl_rr_ul = `ub' 

end 
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