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ABSTRACT

MINIMUM EMBEDDING DIMENSION FROM THE PERSPECTIVE OF PERSISTENT
HOMOLOGY

By

Christopher Lloyd Sukhu

We investigate the use of 1-dimensional persistence diagrams to determine minimum embedding

dimension. In particular, we test the claim that persistence diagrams look qualitatively the same

once the correct dimension is reached. In some cases, this appears to not be true so we turn to a

quantitative measure, the bottleneck distance, to see if the persistence diagrams are close once the

minimum embedding dimension is attained. In some instances, we see that the persistence diagrams

fail to converge experimentally under the bottleneck distance. The main issue appears to be that it

is difficult to explicitly characterize the persistent homology of delay embeddings of arbitrary time

series. Insteadwe restrict to periodic time series where there exists such an explicit characterization.

We apply Fourier analysis to see that that number of peaks in the frequency spectrum of a delay

embedded time series is related to the minimum embedding dimension. Moreover, we give a

method to filter out less significant peaks while not altering the persistent homology much, with

respect to the bottleneck distance.
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CHAPTER 1

INTRODUCTION

Studying physical processes or phenomena through experimental time series is ubiquitous in

science. To understand the underlying dynamical behavior from these time series we turn to

the Takens’ embedding theorem [17] which allows us to reconstruct the underlying dynamics using

delay embeddings. However, the delay embeddings require parameter choices, namely the delay and

embedding dimension. The choice of embedding dimension is what this thesis chiefly addresses.

Tracking topological invariants like homology for determining the embedding dimension has

been done before [11]. We build upon this by consideringmulti-scale topological quantities, namely

persistent homology. We take a different perspective in this thesis by considering the geometry of

the embedded signal to be important as well. Periodic signals correspond to circular embeddings

so we exploit the connection to 1-dimensional persistence to be able to choose the embedding

dimension. This is quite different but still has some of the same flavor as the traditional methods

involving nearest neighbors [2, 8].

This thesis is divided into three main chapters. In Chapter 2, we develop some background

pertaining to delay embeddings and persistent homology.

In Chapter 3, we investigate the use of 1-dimensional persistence diagrams to determine mini-

mum embedding dimension. This was first considered in [6, 9] where it was claimed that persistence

diagrams look qualitatively the same once the minimum embedding dimension is reached. In some

cases, this appears to not be true so we turn to a quantitative measure, the bottleneck distance,

to see if the persistence diagrams are close once the minimum embedding dimension is attained.

In some instances, we see that the persistence diagrams fail to converge experimentally under the

bottleneck distance. The main issue appears to be that it is difficult to explicitly characterize the

persistent homology of delay embeddings of arbitrary time series.

Therefore in Chapter 4, we restrict to periodic time series where there exists such an explicit

characterization [14]. We apply Fourier analysis to see that that number of peaks in the frequency

1



spectrum of a delay embedded time series is related to the minimum embedding dimension.

Moreover, we give a method to filter out less significant peaks while not altering the persistent

homology much, with respect to the bottleneck distance.

2



CHAPTER 2

BACKGROUND

2.1 Delay embeddings

Wefirst state Takens’ embedding theorem [7, 17] and explain its interpretation and consequences

in the context of time series analysis and signals processing. We will often reformulate the notation

and terminology involved in delay embeddings to maintain consistency with the primary sources

while making certain things clearer and more convenient in context. The only disadvantage is

a small amount of redundancy which stems from the abundance of domain-specific applications

motivated by Takens’ embedding theorem. Then we discuss the minimum embedding dimension

problem.

2.1.1 Takens’ embedding theorem

First, we explain some of the notation and terminology. The functions y are called measurement

functions. The space Diff2(M) is the subspace of diffeomorphisms in Cr (M,M), also called the

diffeomorphism group (which underpins the theorem’s terse notation). And “generic” means open

and dense with respect to the C1 topology. We use the term “delay embedding" to refer to the

process of taking repeated measurements implied by Takens’ embedding theorem. See Figure 2.1.

Theorem 2.1.1 (Takens) Let M be a compact manifold of dimension m. For pairs (φ, y), with

φ ∈ Diff2(M), y ∈ C2(M,R), it is a generic property that the map Φ(φ,y) : M → R2m+1, defined by

Φ(φ,y)(x) = (y(x), y(φ(x)), . . . , y(φ
2m(x)))

is an embedding.

We often make the assumption that real-world data lies on a lower dimensional manifold [3].

This assumption combined with Takens’ embedding theorem means that we can take a sequence
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Figure 2.1: Delay embedding of a noisy cosine wave into R3 which captures the underlying
periodic structure.

of measurements, often indexed by time, to reconstruct a dynamical system, i.e. any deterministic

process that evolves with time. All we need is a sufficiently nice measurement function of some

observable of the dynamical system and enough measurements. The number of measurements

required is twice the dimension of the dynamical system’s true state space plus one [7]. We note

that this dimension is usually not known in practice, but we take consolation that it is at least finite.

To sum up, we can study any deterministic process by a finite time series of measurements of

a single observable. This is truly remarkable, so we take care to state some caveats and hidden

assumptions.

Takens’ embedding theorem assumes no experimental noise and the ability to make measure-

ments up to arbitrary precision. Moreover, while the number of measurements needed is finite,

in practice it might still be very large for dynamical systems with high-dimensional state spaces,

especially if there is noise involved. Another hidden assumption is that we need evenly spaced

measurements which is often not possible in some applications. We note that the time interval, or

delay, between measurements is not specified by the theorem as well. Despite these limitations,

delay embedding has been widely employed as a tool in time series analysis and signals processing.

See [1] for a survey of delay embeddings as well as specific applications to EEG analysis.

For a real-world application, there are a number of parameter choices that go into delay
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Figure 2.2: Lorenz attractor (left) and reconstructed attractor (right).

embeddings. One is the observable to measure and yet another is the measurement function to

use. These are typically chosen with regards to whatever is available and convenient. The main

two parameters that must be specified are the number of measurements and the delay. We refer

to the number of measurements as the “embedding dimension” and endeavor to find the smallest

embedding dimension; this is the minimum embedding dimension problem which is the central

problem addressed by this thesis.

Before we proceed, we mention that there are a number of reformulations and extensions to

Takens’ embedding theorem. See [16] for the following (paraphrased) version involving fractal

sets: A dynamical system with an underlying attractor A of dimension dA needs an embedding

dimension greater than twice dA to be reconstructed faithfully. See Figure 2.2 for the Lorenz

attractor with parameters σ = 16, ρ = 40, and β = 4 for which dA = 2.06 ± 0.01 [10]. We

can see that the minimum embedding dimension is 3. According to the embedding theorem,

an embedding dimension of 5 is sufficient for a good reconstruction, larger than the minimum

embedding dimension.

2.1.2 Minimum embedding dimension

The minimum dimension required for an embedding is often smaller than the bound given in

Takens’ embedding theorem. Being able to determine the minimum embedding dimension for a

particular dynamical system is interesting in its own right. However, the main practical benefit

is that having a smaller dimension facilitates further computations on a reconstructed dynamical
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system.

Before we proceed, we acknowledge that the terms “minimum embedding dimension” and

“embedding dimension” are potentially ambiguous or misleading. When performing a delay

embedding with a particular “embedding dimension”, the result may fail to be an embedding. A

better term, perhaps, would be “reconstruction dimension” or “attempted embedding dimension”,

however we stick to the terms commonly used in the literature with the hope that reader will keep

this warning in mind [2, 7, 14]. A more serious issue is what constitutes a “minimum embedding

dimension.” The Takens’ embedding theorem and its related variants [16] give theoretically

sufficient (minimum) embedding dimensions. Since we seek even smaller dimensions for practical

benefits, which is often possible for specific dynamical systems, we are content to call whichever

dimension we settle on according to our analysis the “minimum embedding dimension” regardless

of whether we can theoretically justify this or not. And when designing a method which chooses

or optimizes the embedding dimension according to a particular heuristic or quantity of interest,

we call the result the “minimum embedding” dimension.

2.1.3 Average False Nearest Neighbors

There exist many methods in the literature attempting to determine the minimum embedding

dimension. One survey of these methods can be found in [1]. We now discuss the popular method

of Average False Nearest Neighbors (AFNN) [2] which we will use for comparison purposes later.

AFNN builds upon the method of False Nearest Neighbors (FNN) [8] which rests on the idea that

points close together in a dimension too low to be an embedding will move further apart if the

dimension increases.

Let {xi : i = 1, . . . ,N} be a collection of sequential measurements, i.e. a time series. The

reconstructed time-delay vectors are {yi(d) = (xi, xi+τ, . . . , xi+(d−1)τ : i = 1, . . . ,N − (d − 1)τ},

for a fixed delay τ, determined in advance. Next we define a quantity that relates distances in one
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embedding dimension to the next

a(i, d) =
| |yi(d + 1) − yn(i,d)(d + 1)| |∞
| |yi(d) − yn(i,d)(d)| |∞

where n(i, d) is the index of the nearest neighbor of yi(d) in dimension d (if the denominator were to

be zero, we choose the next nearest neighbor). AFNN builds on FNN by considering the arithmetic

mean

E(d) =
1

N − dτ

N−dτ∑
i=1

a(i, d)

and defining

E1(d) =
E(d + 1)

E(d)

to track changes as the embedding dimension increases. If E1(d) stops changing for a sequence of

dimensions d = 1,2, . . . after dk , we say dk + 1 is the minimum embedding dimension.

In practice, it may be difficult to determine if E1(d) has stopped changing or is merely increasing

slowly. Indeed, when the time series is random, E1(d) might fail to converge in any meaningful

sense. So we define

E∗(d) =
1

N − dτ

N−dτ∑
i=1
|xi+dτ − xn(i,d)+dτ |

and

E2(d) =
E∗(d + 1)

E∗(d)

wherewe expect for randomdata E2(d)will always equal 1, since the value of the data is independent

across time. For a time series which is deterministic, this will not be the case, so we can use E2(d)

as heuristic for distinguishing time series arising from random versus deterministic processes.

The AFNN method consists of computing both E1(d) and E2(d) across a range of dimensions

d and analyzing the results qualitatively.

2.2 Persistent homology

Wedevelop the basics of simplicial homology and persistent homology needed for the remainder

of this thesis, and therefore not in full generality or detail. The selection of topics closely matches
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the background found in [14]. For more on simplicial homology and persistent homology see [12]

and [5, 13], respectively.

We fix a prime p and the finite field Fp with p elements henceforth.

2.2.1 Simplicial Homology

We begin with the notion of simplices, which can be thought of as the appropriate generalization

of triangles or tetrahedrons to arbitrary dimensions. Let {v0, . . . , vk } be a collection of k + 1 points

in Rk which are affinely independent, i.e. v1 − v0, . . . , vk − v0 are linearly independent.

Definition 2.2.1 (Geometric k-simplex) A k-simplex σ spanned by {v0, . . . , vk } is the set of points

x ∈ Rk such that

x =
k∑

i=0
tivi where

k∑
i=0

ti = 1 and ti ≥ 0 ∀i.

That is, σ is the convex hull of {v0, . . . , vk }.

We often use the notation σ[v0, . . . , vk ] to denote a simplex spanned by those points. Examples

of k-simplices include 0-simplices which are points, 1-simplices which are line segments, 2-

simplices which are triangles, and 3-simplices which are tetrahedrons.

The points {v0, . . . , vk } are called the vertices of a k-simplex σ. The dimension of a k-simplex

σ is simply k. And a simplex spanned by a subset of {v0, . . . , vk } is called a face of σ.

Definition 2.2.2 (Geometric simplicial complex) K is called a simplicial complex if it is a set of

simplices such that

(i) Every face of a simplex in K is also in K .

(ii) The intersection of any two simplices in K is disjoint or a face of both.

A subcomplex is then a subset of the simplices of a simplicial complex K that contains the faces

of all its elements.
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Typically, we are not interested in the particular embedding of a simplicial complex into

Euclidean space and just want a purely combinatorial structure for computations. Hence, we

consider an abstract simplicial complex that has analogous properties to the definitions above.

Definition 2.2.3 (Abstract simplicial complex) An abstract simplicial complex K is a finite collec-

tion of sets Σ such that σ ∈ Σ and ν ⊆ σ implies ν ∈ Σ.

The terminology is analogous to before: The sets σ in Σ are simplices. The dimension of a

simplex σ is the cardinality of σ minus one. And a non-empty subset ν of σ is called a face of σ.

A subcomplex is then a subset of K which is also an abstract simplicial complex.

We are content to use the same notation and terminology because of the following. Starting

with a geometric simplicial complex K′, we can obtain an abstract simplicial complex K by only

keeping the vertices of K′. We then call K′ a geometric realization of K . See [5] for details in the

proof of the following theorem.

Theorem 2.2.4 (Geometric realization theorem) Every abstract simplicial complex of dimension

n has a geometric realization in R2n+1.

Hence, we will just say simplicial complex to refer to an abstract simplicial complex. When

considering sums of simplices for abstract simplicial complexes we do so only formally so that the

operations make sense algebraically, without regard to the underlying geometric meaning.

Definition 2.2.5 (k-chains) We say c is a k-chain if it is a finite formal sum

c =
∑

j
γ jσj with γ j ∈ Fp

and each σj is a k-simplex in K.

We let Ck (K) be the vector space over the field Fp generated by the k-dimensional simplices of

K , i.e. Ck (K) is a vector space consisting of k-chains.
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Definition 2.2.6 (Boundary of k-simplex) The boundary ∂ of a k-simplex σ is the alternating

formal sum of k-1 dimensional faces of σ. We denote this as follows

∂(σ) =

k∑
i=0
(−1)iσ[v0, . . . , v̂i, . . . , vk ]

where the hat symbol over a vertex means that vertex is not present in the spanning set.

Definition 2.2.7 (Boundary of k-chain) The boundary ∂ of a k-chain c is defined by linearly

extending ∂ as follows

δ(c) =
∑

j
γ j∂(σj).

Remark 2.2.8 One can verify that ∂ ◦ ∂ = ∂2 = 0.

Definition 2.2.9 (k-cycles) A k-chain c with ∂(c) = 0 is called a k-cycle.

We denote the space of all k-cycles as Zk which is a subspace of Ck .

Definition 2.2.10 (k-boundaries) If a k-chain c is the boundary of a (k+1)-chain then it is called a

k-boundary.

We denote the space of all k-boundaries as Bk which is a subspace of Ck . By Fact 2.2.8 we

have that Bk ⊂ Zk so we define the following.

Definition 2.2.11 (Simplicial homology) The k-th simplicial homology group ofKwithFp-coefficients

is defined as the quotient Hk (K) = Zk/Bk .

The ranks of the simplicial homology groups, known as Betti numbers, are of particular interest to

us.

Definition 2.2.12 (Betti numbers) The rank of Hk (K) is called the k-th mod p Betti number of K

which we denote βk (K).

The prime p is usually suppressed from the notation because it will be clear in context.
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2.2.2 Persistent homology

We now turn to persistent homology which we develop on top of simplicial homology.

Definition 2.2.13 (Filtration) A filtration of a simplicial complex K is a nested sequence of sub-

complexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K .

Inclusions Ki ⊆ K j for i ≤ j in the filtration induce homomorphisms f i,j
k : Hk (Ki) → Hk (K j)

for each dimension k. We obtain the following sequence of homorphisms of homology groups

0 = Hk (K0) → Hk (K1) → · · · → Hk (Km) = Hk (K)

where the arrows are f i,j
k for 0 ≤ i ≤ j ≤ m,

Persistent homology refers to the images of these induced homomorphisms.

Definition 2.2.14 (Persistent homology) The k-th persistent homology groups of a simplicial com-

plex K are the images of the homomorphisms induced by a filtration of K, Hi,j
k = im f i,j

k . And the

k-th persistent Betti numbers are the ranks of the homology groups, βi,j
k = rank(Hi,j

k ).

We say a homology classα is born atKb if it is not in the image of f b−1,b
k : Hk (Kb−1) → Hk (Kb).

If α is born at Kb, then we say it dies entering Kd if the image of f b−1,d−1
k : Hk (Kb−1) → Hk (Kd−1)

does not contain the image of α but the image of f b−1,d
k : Hk (Kb−1) → Hk (Kd) does.

Definition 2.2.15 (Persistence diagrams) A persistence diagram of homological dimension k, or

k dimensional persistence diagram, denoted dgm(k), is a multiset of points (b,d) for every k-

dimensional homology class that is born at Kb and dies entering Kd . We also adjoin the points on

the diagonal ∆ = {(x, x) : x ≥ 0} to dgm(k) each with countably infinite multiplicity.

If k is clear from context we just say dgm. We refer to d − b as the lifetime or persistence of α.

Definition 2.2.16 (Maximum persistence) Let (b, d) ∈ dgm. Define pers(b, d) = d−b if (b, d) ∈ R2

and as∞ otherwise. Maximum persistence, denoted mp(dgm), is defined to be

mp(dgm) = max(b,d)∈dgmpers(b, d).
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When comparing two diagrams, we use the notation dgm1 and dgm2 for convenience as in the

following definition.

Definition 2.2.17 (Bottleneck distance) The bottleneck distance denoted dB is a metric on persis-

tence diagrams defined as follows

dB(dgm1, dgm2) = inf
φ

sup
x∈dgm1

| |x − φ(x)| |∞

where φ is a bijection dgm1 → dgm2.

Wealways have these bijections, despite potentially unequal numbers of off-diagonal points, because

we can identify points with the diagonal.

We now turn to a particular kind of filtration/complex called the Vietoris-Rips filtration/complex

or simply the Rips filtration/complex which we will use later. First we let X ⊂ Rn be a compact

set, such as a finite point cloud.

Definition 2.2.18 (Rips complex) Fix r ≥ 0. The Rips complex Rr (X) is the simplicial complex

whose vertices are the points of X and whose k-simplices consist of the k+1-tuples of points of X

{x0, . . . , xk } with pairwise distances | |xi − x j | | ≤ r for all i, j with 0 ≤ i < j ≤ k.

Note that higher dimensional simplices are added to the Rips filtration if and only if all its edges

(1-simplices) are. Also, we can adapt this definition for any metric space.

Definition 2.2.19 (Rips filtration) Let 0 = r0 ≤ r1 ≤ · · · ≤ rm. If r ≤ s, then Rr (X) ⊆ Rs(X) so we

obtain the following filtration, called the Rips filtration, from the Rips complexes

X = R0 ⊆ R1 ⊆ · · · ⊆ Rm

where Rj = Rr j (X) and Rm is the largest simplicial complex with X as its vertex set.

It is sufficient to consider only a finite set of values of r j to capture all homological changes in

our particular case.
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Figure 2.3: Pictured (left) is a point cloud in R2 at a particular distance r j just over the value of
0.1 in the Rips filtration, with purple shaded disks of radius r showing which edges will be
included in the Rips complex. Pictured (right) is the one dimensional persistence diagram
showing the 1-cycle that is born at this particular point in the filtration, which we see will die at
filtration value around 0.5, when the purple disks will be large enough to fill in the center of the
point cloud and therefore connect the corresponding vertices, killing the 1-cycle.

The persistence diagram of a point cloud X will be denoted dgm(X) where we consider the

persistent homology induced by the Rips filtration on X. See Figure 2.3 for an illustration.

Since we intend to apply persistence to point clouds from experimental data, we accept that

there will be measurement error and therefore greatly rely on the following stability theorem. See

[4, 13] for more details. First, we define the Hausdorff distance for point clouds.

Definition 2.2.20 (Hausdorff distance) The Hausdorff distance dH between two point X,Y ⊆ Rn

clouds is

dH(X,Y ) = max{sup
x∈X

inf
y∈Y
| |x − y | |, sup

y∈Y
inf
x∈X
| |x − y | |}.

Theorem 2.2.21 (Stability of persistence diagrams)

dB(dgm(X), dgm(Y ) ≤ 2dH(X,Y )).
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Let X be the true point cloud of some experimental process and Y be the measured point cloud

with some measurement error so that dH(X,Y ) ≤ ε . Then, Theorem 2.2.21 says that the bottleneck

distance is bounded above by 2ε , so the error in persistence is not much worse than the measurement

error.
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CHAPTER 3

PERSISTENCE FOR MINIMUM EMBEDDING DIMENSION

3.1 Introduction

We explore the idea of tracking the persistent homology of delay embedded systems across a

range of embedding dimensions to see if this has any utility in the minimum embedding dimension

problem. Tracking topological features for delay embeddings has been done before for homology

[11]. More recently, this has been tried using persistent homology [6, 9] for theminimumembedding

dimension problem. The claim is that, intuitively, one might expect that for increasing embedding

dimension the persistent homology of a reconstructed system might stabilize past the minimum

embedding dimension, and therefore the persistence diagrams should converge in some sense. Or at

the very least the diagrams should look qualitatively similar. To push this idea further, we compute

persistence diagrams from some actual examples and test for convergence experimentally using the

bottleneck metric.

3.2 Method

We compute delay embeddings for a range of increasing dimensions as in [2] where AFNN is

used to determine the minimum embedding dimension. The zero and one dimensional persistence

diagrams are computed with F2 coefficients and we plot the bottleneck distances between adjacent

dimensions to check for any stabilizing behavior. We compare against AFNN as the ground truth.

For the E1 and E2 plots, if the dimension stops changing at index d we consider d to be the

minimum embedding dimension. For the bottleneck distance plots, the x-axis is the higher of the

two adjacent dimensions and the value on the y-axis represents the change in persistence going up

a dimension. If the values are small after index d, we consider this to be an indication that d is the

minimum embedding dimension.
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3.3 Results

We consider four data sets taken from [2]. These are data sets from the first coordinate of a

Henon attractor, torus (i.e. sum of two non-commensurate sines), sum of four iterated sine maps,

and the Santa Fe competition [18]. We reproduce the AFNN E1 and E2 plots for each example so

there may be small differences with the original plots in [2]. See Figures 3.1-3.8 for the relevant

figures.

For the Henon attractor, E1 sharply stops increasing after dimension 2, which is considered

to be the minimum embedding dimension. E2 is not always approximately 1 so we consider the

embedded time series to be deterministic. The bottleneck distances are all fairly small which is

possibly consistent with the minimum embedding dimension being 2.

For the torus, the E1 values quickly stop increasing after dimension 3, which is exactly what we

would expect for a standard torus. E2 is not always approximately 1 so we consider the embedded

time series to be deterministic. We see that the bottleneck distance for the one dimensional diagrams

have the largest jump when going to embedding dimension 3 and afterwards being fairly small,

suggesting a minimum embedding dimension of 3.

The minimum embedding dimension appears to be 4 for the sum of four iterated sine maps

according to E1 and E2 suggests it is deterministic as well. NaN values fail to appear in the E1 plot

which is why it may look different from the corresponding figure in [2].

NaN values also fail to appear in E1 plot for the Santa Fe time series. For this experimental

time series, the results are less clear. The minimum embedding dimension is suggested to be 7 in

[2]. The bottleneck distances are possibly starting to show interesting behavior around dimension

7 but this is far from clear.

3.4 Discussion

Unfortunately, we do not really see any consistent convergent behavior with respect to the

bottleneck distances. So it is not clear that tracking the persistence diagrams across embedding

dimensions will be useful beyond the Lorenz attractor examples in [6, 9].
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Figure 3.1: E1 sharply stops increasing after dimension 2, which is considered to be the minimum
embedding dimension. E2 is not always approximately 1 so we consider the embedded time series
to be deterministic.

There are two potential issues here: One is that since the average distance between points in Rm

increases as the embedding dimension m increases, we actually expect the bottleneck distances to

diverge as the dimension goes to infinity. The other is that not all systems will have a few prominent

off-diagonal points in their zero or one dimensional persistence diagrams that will be reflected well

in the bottleneck distance, so they might not even look qualitatively similar.

For the first issue, we can try re-scaling the persistence diagrams by multiplying the birth and

death points by 1/
√

m. We try this with the Lorenz attractor from Figure 2.2. See Figure 3.9. We

expect two 1-dimensional features from the reconstructed Lorenz attractor, which corresponds to

what we computed. The persistence diagrams look qualitatively similar from embedding dimension

3 to 4, indicating a minimum embedding dimension of 3, which is what we expect. Normalizing

shows clearer convergence as the persistence points are artificially getting larger due to increased

17



Figure 3.2: All of these bottleneck distance values are fairly small which is possibly consistent
with the minimum embedding dimension being 2.

average distance between points in higher dimensions. However, there is seemingly no evidence that

this generalizes in a way that might be useful for determining the minimum embedding dimension

of other systems.

The second issue is the main problem. It is not clear what we can say theoretically about the

persistent homology of delay embeddings of arbitrary time series or signals. This motivates the next

part of this thesis where we restrict to the periodic case and focus on maximizing the connection to

persistence.
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Figure 3.3: E1 values quickly stop increasing after dimension 3, which is exactly what we would
expect for a standard torus. E2 is not always approximately 1 so we consider the embedded time
series to be deterministic.

Figure 3.4: We see that the bottleneck distance for the one dimensional diagrams have the largest
jump when going to embedding dimension 3 and afterwards being fairly small, suggesting a
minimum embedding dimension of 3.
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Figure 3.5: NaN values fail to appear in E1 plot. The minimum embedding dimension appears to
be 4 for this deterministic time series.

Figure 3.6: We do not observe any indication that the bottleneck distances are stabilizing after
embedding dimension 4.
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Figure 3.7: NaN values fail to appear in E1 plot. For this experimental time series, the results are
less clear. The minimum embedding dimension is suggested to be 7 in [2].

Figure 3.8: The bottleneck distances are possibly starting to show interesting behavior around
dimension 7 but this is far from clear.
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Figure 3.9: Lorenz attractor 1-dimensional persistence diagrams for embedding dimensions 3 and
4. Note that the diagonal is not pictured. The main focus should be on the two high persistence
points, corresponding to the figure 8 shape of the Lorenz attractor.
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CHAPTER 4

MINIMUM EMBEDDING DIMENSION OF PERIODIC SIGNALS

4.1 Sliding windows and persistence

We now summarize some of the main points of [14] which forms the basis of the next section.

In this chapter, we only consider 1-dimensional persistence. Maximum persistence of the 1-

dimensional persistence diagram is used as a measure of roundness corresponding to the shape

of a delay embedding of a periodic signal. The following notation and terminology for delay

embeddings will be used for the remainder of the chapter.

Definition 4.1.1 (Sliding window embedding) Suppose that f is a function defined on an interval

of R. Then choose an embedding dimension M ∈ Z≥0 and delay τ ∈ R>0. The sliding window

embedding of f based at t ∈ R into RM+1 is the point

SWM,τ f (t) =



f (t)

f (t + τ)
...

f (t + Mτ)


.

For a range of values t we get the sliding window point cloud for f. The quantity Mτ is called the

window size.

Let C(X,Y ) denote the set of continuous functions from X to Y equipped with the sup norm.

Let T = R/2πZ. The sliding window embedding induces a mapping

SWM,τ : C(T,R) → C(T,RM+1).

Proposition 4.1.2 SWM,τ : C(T,R) → C(T,RM+1) is a bounded linear operator with norm

| |SWM,τ | | ≤
√

M + 1.
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Since we are considering periodic functions f it makes sense to approximate f using Fourier

series. See [15] for an accessible introduction to Fourier series. Let f (t) = SN f (t) + RN ( f (t)).

The first term is the N-truncated Fourier series

SN f (t) =
N∑

n=−N
= f̂ (n)eint

and RN f is the remainder. The n-th Fourier coefficient is

f̂ (n) =
1

2π

∫ 2π

0
f (t)e−int dt .

The following theorem, reprinted from [14] with a minor revision, tells us how SWM,τ behaves

with respect to Fourier series approximations of functions f ∈ L2(T).

Theorem 4.1.3 (Approximation) LetT ⊂ T, f ∈ Ck (T,R), X = SWM,τ f (T), andY = SWM,τSN f (T).

Then,

(i)

dH(X,Y ) ≤
√

2 · | |RN f (k) | |2 ·
(N + 1)1−2k

2k − 1
·
√

M + 1,

(ii)

|mp(dgm(X)) − mp(dgm(Y ))| ≤ 2dB(dgm(X), dgm(Y )),

(iii)

dB(dgm(X), dgm(Y )) ≤ 2
√

2 · | |RN f (k) | |2 ·
(N + 1)1−2k

2k − 1
·
√

M + 1.

As we take more terms in the Fourier series approximation, the remainder goes to zero, and the

persistent homology of the approximation approaches that of the true sliding window point cloud.

Another result is that the sliding window point cloud has maximum persistence when the

window size Mτ is proportional to the underlying frequency 2π
L , with proportionality constant

M
M+1 . Here L is the period of f , specifically f (t + 2π

L ) = f (t). A lower bound on maximum

persistence is also derived and is shown to depend on the field of coefficients used to compute

persistent homology.
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The approach to delay embedding in [14] is markedly different from what is normally done

in the literature. Delay embeddings of periodic signals f have a clear geometric interpretation

which has an explicit connection to 1-dimensional persistent homology. SWM,τ f lives on an M-

dimensional torus embedded in RM+1, so we expect at least one prominent off-diagonal point in

the 1-dimensional persistence diagram and choose parameters to maximize persistence.

4.2 Minimum embedding dimension and persistence

Wenow describe amethod for choosing theminimum embedding dimension for periodic signals

in a way that emphasizes maximum persistence.

Let f ∈ L2(T) and f ∈ Ck (T). Then

f (t) =
∞∑

n=−∞
f̂ (n)eint

since the Fourier series converges by the Riemann-Lebesgue Lemma [15]. Now consider the power

spectrum S f f (n) = | f̂ (n)|2. For a periodic signal, we can expect a few significant peaks in the

power spectrum. Say there are d peaks, then theminimum embedding dimension should be M = 2d

to lose no information [14].

What if we wish to discard some of the peaks in the power spectrum? Say we regard smaller

values as noise. Fix ε > 0. We want to construct a new function g that only has peaks in the power

spectrum above ε

g(t) =
∞∑

n=−∞
gneint

with gn = f̂ (n) if | f̂ (n)|2 > ε and gn = 0 otherwise.

The decay of the Fourier coefficients is related to the smoothness of the function. See [15] for

more details. In particular we have,

| f̂ (n)| ≤
supt | f

(k)(t)|

|n|k
.

So if we choose

N =

[
supt | f

(k)(t)|1/k

ε1/2k
+ 1

]
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where [·] is the integer part of the number, then g is supported on the interval [−N,N]. Define the

set J ⊂ [−N,N] ∩ Z where j ∈ J if and only if | f̂ ( j)|2 > ε . Then we can rewrite g as

g(t) =
∑
j∈J

f̂ ( j)ei jt .

We can think of g as a truncation of f . Fixing ε determines how large N should be and which

coefficients should be included. And we also get the embedding dimension M = 2|J |.

We now want to evaluate how much of the energy, i.e. the L2 norm , of the signal is maintained

when constructing g. The following two identities will be useful to this end.

Proposition 4.2.1 If f ∈ L2(T),

| | f | |22 = | |SN f | |22 + | |RN | |
2
2 .

Proposition 4.2.2 (Parseval’s identity) If f ∈ L2(T),

| | f | |22 =
∑
n∈Z
| f̂ (n)|2.

Using Propositions 4.2.1 and 4.2.2 we can compute all of the terms in

| |g | |2
| | f | |2

=
| |g | |2

(| |SN f | |22 + | |RN f | |22)
1/2

except | |RN f | |22 which we must estimate.

Proposition 4.2.3 (Remainder estimate) The L2 norm of the remainder is bounded as follows

| |RN f | |22 ≤ 2(sup
t
| f (k)(t)|)2

(N + 1)1−2k

2k − 1

.
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Proof.

| |RN f | |22 =
∑

n> |N |

| f̂ (n)|2

≤
∑

n> |N |

(supt | f
(k)(t)|)2

|n|2k

≤ (sup
t
| f (k)(t)|)2 · 2

∞∑
n=N+1

1
n2k

≤ 2(sup
t
| f (k)(t)|)2

∫ ∞
N+1

1
x2k

dx

≤ 2(sup
t
| f (k)(t)|)2

(N + 1)1−2k

2k − 1
.

�

Let B = 2(supt | f
(k)(t)|)2 (N+1)1−2k

2k−1 . We can now estimate the percentage of the energy is at

least
| |g | |2
| | f | |2

=
| |g | |2

(| |SN f | |22 + | |RN f | |22)
1/2
≥

||g | |2
(| |SN f | |22 + B)1/2

× 100%.

If we wish to maintain a certain percentage of the energy of the signal, we can tune ε accordingly.

Since the goal was to maximize persistence we want to bound the bottleneck distance between

the persistence diagrams associated to f and g.

Theorem 4.2.4 Let T ⊂ T, f ∈ Ck (T,R), X = SWM,τ f (T), and Y = SWM,τg(T). Then,

dB(dgm(X), dgm(Y )) ≤ 2
√

M + 1

(
√
ε(2N − |J |) +

√
2| |RN f (k) | |2

(N + 1)1−2k

2k − 1

)
.

Proof.

| f (t) − g(t)| = |
∑
n<J

f̂ (n)eint |

≤ |
∑

n∈[−N,N], n<J

√
ε | + |RN f (t)|

≤
√
ε(2N − |J |) +

√
2| |RN f (k) | |2

(N + 1)1−2k

2k − 1
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By Proposition 4.1.2,

| |SWM,τ f (t) − SWM,τg(t)| | ≤
√

M + 1| | f (t) − g(t)| |∞

≤
√

M + 1

(
√
ε(2N − |J |) +

√
2| |RN f (k) | |2

(N + 1)1−2k

2k − 1

)

Choosing δ >
√

M + 1(
√
ε(2N − |J |) +

√
2| |RN f (k) | |2

(N+1)1−2k
2k−1 ) =⇒ dH(X,Y ) ≤ δ. Letting δ

approach its lower bound and using Theorem 2.2.21 we get the desired result. �

We now have all the ingredients to illustrate the method on numeric data which is covered in

the next section.

4.3 Application and discussion

We illustrate the method on a synthetic data set generated from Re(
∑5

n=1 f̂ (n)e2int) which is

2-periodic on the interval t ∈ [0,2π). The coefficients f̂ (n) are chosen uniformly randomly from

the unit disk in C. We sample the signal at 50 evenly spaced time points on this interval. Gaussian

noise centered at 0 with standard deviation 25% of signal amplitude is added to the sampled signal.

This synthetic data set is similar to one found in [14].

Cubic spline interpolation is then used on the signal to get a continuous function with two

continuous derivatives. This allows us to match the theory of the previous section with the

application. In particular, f ∈ C2 so we use k = 2 in the appropriate bounds. Also, when we

are performing the delay embedding we may want to choose the delay τ small enough to require

evaluating the function at time points not present in the sampling. Cubic spline interpolation allows

us to sidestep this problem.

Fixing ε = 10, a user defined parameter, we compute that we need N = 12 terms in the Fourier

series approximation. See Figure 4.1 and 4.2 for the time series and power spectrum of the sampled

signal and truncated signal, respectively. The truncated signal is estimated to maintain at least 93%

of the energy of the original signal. And the embedding dimension is determined to be M = 10. We
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choose τ = 2π
120(10+1) for a small enough delay. The point clouds are then centered and normalized

as in [14]. The persistence diagrams are then computed forF11 coefficients alongwith the bottleneck

distance dB(dgm1, dgm2) = 0.112062. See Figure 4.3. The bound on dB(dgm1, dgm2) implied by

Theorem 4.2.4 is rather generous since 2
√

10 + 1 is already much larger than 0.112062. In any case,

what we have shown is that it is possible to filter out less significant peaks from a signal’s power

spectrum without altering the persistent homology much, with respect to the bottleneck distance.

In doing so, we have also chosen a minimum embedding dimension.
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Figure 4.1: Pictured (above) is the sampled noisy signal. The power spectrum (below) appears to
have many small peaks.
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Figure 4.2: The truncated power spectrum (below) corresponds to a cleaner signal pictured
(above).
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Figure 4.3: The persistence diagrams are superimposed to show the matching done to compute the
bottleneck distance. Here dgm1 corresponds to the original signal and dgm2 corresponds to the
truncated signal.
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CHAPTER 5

CONCLUSIONS, DISCUSSION, AND FUTUREWORK

The main conclusion of this thesis is that we can use persistent homology to study time series if we

have a geometric understanding of their delay embeddings. Takens’ theorem gives us a topological

guarantee which, while helpful, is not sufficient for every purpose. Periodic time series have a nice,

geometric form when embedded so we can use persistent homology successfully.

The theoretical results in Chapter 4 can be applied to more data sets for testing. While the

theory is interesting in its own right, we would like further evidence that the bounds derived are

useful in practice. Additionally, we could consider alternative ways of determining peaks in the

power spectrum such as peak-finding algorithms or considering statistical properties of the power

spectrum.

It is still unknown what we can say theoretically about the persistent homology of time series

which are not periodic or quasi-periodic. This is perhaps the most interesting idea for future work.

33



BIBLIOGRAPHY

34



BIBLIOGRAPHY

[1] Galka Andreas. Topics in nonlinear time series analysis, with implications for EEG analysis,
volume 14. World Scientific, 2000.

[2] Liangyue Cao. Practical method for determining the minimum embedding dimension of a
scalar time series. Physica D: Nonlinear Phenomena, 110(1-2):43–50, 1997.

[3] Gunnar Carlsson. Topology and data. Bulletin of the American Mathematical Society,
46(2):255–308, 2009.

[4] DavidCohen-Steiner, Herbert Edelsbrunner, and JohnHarer. Stability of persistence diagrams.
Discrete & Computational Geometry, 37(1):103–120, Jan 2007.

[5] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010.

[6] Joshua Garland, Elizabeth Bradley, and James D. Meiss. Exploring the topology of dynam-
ical reconstructions. Physica D: Nonlinear Phenomena, 334:49 – 59, 2016. Topology in
Dynamics, Differential Equations, and Data.

[7] JP Huke. Embedding nonlinear dynamical systems: A guide to takens’ theorem. 2006.

[8] Matthew B. Kennel, Reggie Brown, and Henry D. I. Abarbanel. Determining embedding
dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A,
45:3403–3411, Mar 1992.

[9] Slobodan Maletić, Yi Zhao, and Milan Rajković. Persistent topological features of dynamical
systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(5):053105, 2016.

[10] Mark J. McGuinness. The fractal dimension of the lorenz attractor. Physics Letters A, 99(1):5
– 9, 1983.

[11] MRMuldoon, RSMacKay, JP Huke, and DSBroomhead. Topology from time series. Physica
D: Nonlinear Phenomena, 65(1-2):1–16, 1993.

[12] James R. Munkres. Elements of algebraic topology. Addison-Wesley, 1984.

[13] Steve Y Oudot. Persistence theory: from quiver representations to data analysis, volume 209.
American Mathematical Society Providence, RI, 2015.

[14] Jose A Perea and John Harer. Sliding windows and persistence: An application of topological
methods to signal analysis. Foundations of Computational Mathematics, 15(3):799–838,
2015.

[15] María Cristina Pereyra and Lesley A Ward. Harmonic analysis: from Fourier to wavelets,
volume 63. American Mathematical Soc., 2012.

35



[16] Tim Sauer, James A. Yorke, andMartin Casdagli. Embedology. Journal of Statistical Physics,
65(3):579–616, Nov 1991.

[17] Floris Takens. Detecting strange attractors in turbulence. In Dynamical systems and turbu-
lence, Warwick 1980, pages 366–381. Springer, 1981.

[18] Andreas S Weigend. Time series prediction: forecasting the future and understanding the
past. Routledge, 2018.

36


