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ABSTRACT

THREE-MANIFOLDS OF HIGHER RANK

By

Samuel Zhong-En Lin

Fixing ε = −1, 0, or 1, a complete Riemannian manifold is said to have higher hyperbolic,

Euclidean, or spherical rank if every geodesic admits a normal parallel field making curvature

ε with the geodesic. In this thesis, we establish rigidity results for three-manifolds of higher

rank without a priori sectional curvature bounds. Complete finite volume three-manifolds

have higher hyperbolic rank if and only if they are finite volume hyperbolic space forms.

Complete three-manifolds have higher spherical rank if and only if they are spherical space

forms.

In addition to the rigidity results, we also provide constructions of non-homogeneous

manifolds of higher hyperbolic rank of infinite volume. These examples show the necessity

of the finite volume assumption in hyperbolic rank rigidity results.
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Chapter 1

Introduction

Locally symmetric spaces are defined as spaces symmetric with respect to local geodesic

involutions, or equivalently, spaces with parallel curvature tensors. Properties of locally

symmetric spaces were first studied systematically by Elie Cartan through algebraic classi-

fications. These properties indeed manifest the large symmetries within this special class of

Riemannian manifolds. For example, every geodesic on a certain class of locally symmetric

spaces (compact rank one symmetric spaces) is contained in a totally geodesic two sphere

of constant sectional curvatures one. It is natural to ask if these structures of symmetry

characterize locally symmetric spaces.

Rank rigidity results characterize locally symmetric spaces through the following geomet-

ric notions of rank. Fixing ε = −1, 0, or 1, a complete Riemannian manifold is said to have

higher hyperbolic, Euclidean, or spherical rank if every geodesic admits a normal parallel

field making curvature ε with the geodesic.

Manifolds of higher hyperbolic (respectively spherical) rank includes noncompact (re-

spectively compact) rank one symmetric spaces and their Riemannian quotients. Manifolds

of higher Euclidean rank includes Riemannian products of manifolds and locally symmetric

spaces of higher real rank.

Historically, the notion of Euclidean rank first appeared in the study of nonpositively

curved manifolds. Roughly speaking, the Euclidean rank reflects the amount of infinitesimal
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flat planes in nonpositively curved manifolds. It turns out that structures of nonpositively

curved compact manifolds of higher Euclidean rank are quite rigid. Ballmann [1], and in-

dependently by Burns and Spatzier [5], proved that a compact, locally irreducible, nonposi-

tively curved manifold of higher Euclidean rank is locally symmetric. The proof of Ballmann

also works when the compactness assumption is replaced by the finite volume assumption

and a lower bound on sectional curvatures. The Euclidean rank rigidity result was further

generalized by Eberlein and Heber in [9] to nonpositively curved manifolds whose funda-

mental groups satisfy the duality condition, a dynamical assumption on their actions on the

universal cover.

On the other hand, nonnegatively curved manifolds of higher Euclidean rank are not

rigid. In [17], Spatzier and Strake construct many locally irreducible manifolds of higher

Euclidean rank that are not symmetric.

Hamenstädt first generalized the notion of rank into the hyperbolic setting, proving that

compact manifolds of higher hyperbolic rank are locally symmetric if sec ≤ −1 [10]. The

sectional curvature bound was relaxed by Constantine in some cases. He showed that, when

the dimension is odd, or when the sectional curvatures are very closely pinched, a compact,

nonpositively curved manifold of Euclidean rank one (means not having higher Euclidean

rank) has higher hyperbolic rank if and only if it is real hyperbolic [8]. Recently, Connell,

Nguyen, and Spatzier showed that a compact manifold of higher hyperbolic rank is locally

symmetric if its sectional curvatures are bounded between −1 and −1
4 [6].

The first spherical rank rigidity result was given by Shankar, Spatzier, and Wilking.

Through a Morse theoretic approach, they showed that manifolds of higher spherical rank

are locally symmetric if sec ≤ 1 [16]. Partial spherical rank rigidity results were obtained by

Schmidt, Shankar, and Spatzier in [14] for manifolds with sec ≥ 1.
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In contrast, there are fewer rank rigidity results without a priori assumptions on sec-

tional curvatures. Existing results include the works of Molina-Olmos [12], Watkins [18],

and Bettiol-Schmidt [3], where Euclidean rank-rigidity results are proved after replacing

curvature assumptions with assumptions on having many flats, having no focal points, and

dimension, respectively. Specifically, Molina and Olmos showed that a manifold that satisfies

a strong irreducibility condition must be locally symmetric if every geodesic is contained in

a closed immersed flat of dimension at least 2. The work of Watkins implies that a finite

volume, locally irreducible manifold of higher Euclidean rank without focal point is locally

symmetric. Bettiol and Schmidt proved that the universal cover of a complete three-manifold

splits isometrically if every geodesic in the manifold admits a parallel Jacobi field. Notice

that, without a priori assumption on sectional curvature bounds, a parallel field making

curvature 0 with the geodesic needs not to be Jacobi.

The main goal of this thesis is to establish hyperbolic and spherical rank rigidity results

in dimension three without a priori sectional curvature bounds. In other words, we prove

the following two rigidity results.

Theorem 1. A finite volume complete Riemannian three-manifold M has higher hyperbolic

rank if and only if M is a finite volume hyperbolic space form.

Theorem 2. A complete Riemannian three-manifold M has higher spherical rank if and

only if M is a spherical space form.

In the Euclidean rank case, we show that one can replace the Jacobi assumption with the

finite volume assumption in the rank rigidity theorem of Bettiol and Schmidt [3, Theorem

A].
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Theorem 3. Let M a finite volume three-manifold of higher Euclidean rank. Then the

universal cover of M must split isometrically as N × R.

The finite volume assumption in Theorem 1 is necessary. In this thesis, we give construc-

tions of non-homogeneous manifolds of higher hyperbolic rank with infinite volume. The

following theorem is a cleaner version of Theorem 6.1.

Theorem 4. For each dimension d ≥ 3, there exist a one parameter family of complete,

smooth Riemannian metrics gs on Rd with infinite volume such that

(1) gs are not homogenerous with infinite volume,

(2) every gs geodesic is contained in a totally geodesic hyperbolic plane of curvature −1,

and

(3) the sectional curvatures of gs are between −1 and −2 + es.

Note that (2) in Theorem 4 implies that these examples have higher hyperbolic rank.

To my knowledge, these are the first examples of non-homogeneous manifolds of higher

hyperbolic rank. It shows that infinite volume manifolds of higher hyperbolic rank may even

fail to be homogeneous, even when the sectional curvatures are arbitrary closely pinched. A

more detailed description of properties of these spaces is in Chapter 6.

It should be noted that a non-symmetric manifold with infinite volume and higher hyper-

bolic rank has already been constructed by Connell in [7]. Homogeneous negatively curved

manifolds split as semidirect products of R and nilpotent Lie groups. The homogeneous

examples was constructed on the space obtained by gluing CH2 and a real hyperbolic plane

along the R factors. Our last theorem show that these homogeneous examples, however, do

not exist in dimension three.
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Theorem 5. A homogeneous three-manifold of higher hyperbolic rank is a hyperbolic space

form.

Our strategy for proving the rigidity theorems is to analyze the local structure of three-

manifolds of higher rank in terms of Ricci diagonalizing orthonormal frames. This is roughly

done as follows. At non-isotropic points, the Ricci tensor either has two or three distinct

eigenvalues. The set of points where the Ricci tensor has three distinct eigenvalues is called

the generic set. The majority of work in this paper is to show that on the generic set,

the Christoffel symbols of the Ricci diagonalizing frame satisfy an overdetermined system of

differential equations. From the system of equations, we deduce that the generic set must be

empty for manifolds of higher spherical rank, finite volume manifolds of higher hyperbolic

rank, or finite volume three-manifolds of higher Euclidean rank. Hence the rigidity problem

for a three-manifold M of higher rank is reduced to the case when M has extremal curvatures,

that is secp ≥ ε or secp ≤ ε for each p ∈M .

Three-manifolds with cvc(ε), a pointwise notion of having higher rank, and with ex-

tremal curvature ε are studied by Schmidt and Wolfson in [15]. Their structural results are

strengthened in this thesis by the higher rank assumption, leading to the desired hyperbolic

or spherical rigidity results.

In the Euclidean rank case, the parallel fields making curvature 0 with geodesics are

actually Jacobi if M has extremal curvatures. Hence the Euclidean rank rigidity result

directly follows from the rank rigidity result of Bettiol and Schmidt after showing that the

generic set is empty.

We organize the thesis as follows. In Chapter 2, we introduce preliminary results, in-

cluding a partition of three-manifolds of higher rank into three disjoint sets: isotropic set,

extremal set, and generic set. To establish Theorem 1, 2 and 5, it suffices to show that the
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generic set and the extremal set are empty. To do so, we first study the local structures of

generic and extremal sets in Christoffel symbols of Ricci diagonalizing orthonormal frames

in Chapter 3. We then derive differential equations of geometric quantities in Chapter 4. In

the last section of Chapter 4, we show that the extremal set is empty for the hyperbolic and

spherical cases provided that the generic set is empty. Using the differential equations de-

rived in Chapter 4, we prove the rigidity theorems in Chapter 5 by showing that the generic

set must be empty. The constructions of non-homogeneous manifolds of higher hyperbolic

rank are in Chapter 6. Finally, we give conjectures and possible directions for future works

in Chapter 7.
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Chapter 2

Preliminary

This section introduces notations and preliminary results. Most of the results in this chapter

can be found in [15]. Unless otherwise stated, M denotes a complete Riemannian three-

manifold with Levi-Civita connection ∇ and curvature tensor R. For each p ∈ M , let TpM

and UpM denote the tangent space and unit tangent space at p respectively.

As M is three dimensional, an orthonormal frame {e1, e2, e3} of TpM diagonalizes the

Ricci curvature tensor if and only if

R(e1, e2, e3, e1) = R(e1, e2, e2, e3) = R(e1, e3, e3, e2) = 0. (2.0.1)

Let λij = sec(ei, ej). Throughout the remainder of the paper, we assume that indices have

been chosen such that

λ13 ≤ λ12 ≤ λ23. (2.0.2)

Direct computations using (2.0.1) shows that all sectional curvatures are computable in terms

of the λij as described in the next lemma.

Lemma 2.1. Let σ be a 2-plane with unit normal vector u = c1e1 + c2e2 + c3e3. Then

sec(σ) = c21λ23 + c22λ13 + c23λ12.
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2.1 A Partition of Three-manifolds of Higher Rank

Fix ε = −1, 0, or 1. Recall that M has higher rank if every geodesic γ : R → M admits

a parallel field V (t) perpendicular to γ′(t) such that sec(V (t), γ′(t)) ≡ ε for all t ∈ R. The

following pointwise version of the rank assumption was introduced in [15] to study the local

structure of manifolds of higher rank.

Definition 2.2. A Riemannian manifold has constant vector curvature ε, denoted by cvc(ε),

if every tangent vector is contained in a curvature ε plane.

Clearly, manifolds of higher rank have cvc(ε). For cvc(ε)-manifolds, the following ar-

gument using Lemma 2.1 and (2.0.2) implies that λ12 equals ε. If λ12 < ε, then λ13 < ε

and the vector e1 is not contained in a curvature ε plane, which is a contradiction. Hence

λ12 ≥ ε. A similar argument shows that λ12 ≤ ε, which implies that λ12 = ε.

Letting λ = λ13 and Λ = λ23, we then have

λ13 = λ ≤ ε ≤ Λ = λ23. (2.1.1)

Definition 2.3. A point p ∈M is said to be

(1) isotropic if λ = Λ = ε,

(2) extremal if precisely one of λ or Λ equals ε,

(3) generic if λ < ε < Λ.

Throughout, let I, E ,O denote the set of isotropic, extremal, and generic points respec-

tively. A three-manifold M of higher rank is the disjoint union

M = I ∪ E ∪ O.
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As the sectional curvature is constant on I, hyperbolic or spherical rank rigidity occurs when

E = O = ∅.

Note that for each p ∈ E , either λ < ε = Λ or λ = ε < Λ at p. This motivates the

following partition of E .

Definition 2.4. Define subsets E− and E+ of E by

E− = {p ∈ E |λ = ε}

and

E+ = {p ∈ E |Λ = ε}.

When p is not an isotropic point, one can apply Lemma 2.1 to characterize the curvature

ε planes in TpM in terms of their normal vectors.

Lemma 2.5. Let p ∈ E ∪ O and let σ be a 2-plane in TpM with unit normal vector u =

c1e1 + c2e2 + c3e3. Then sec(σ) = ε if and only if

(1) c1 = 0 when p ∈ E−,

(2) c2 = 0 when p ∈ E+,

(3) c1 = ±mc2 when p ∈ O, where m =
√

ε−λ
Λ−ε .

Proof. Immediate from Lemma 2.1.

We define the following disjoint partition of UpM .

Definition 2.6. A vector X ∈ UpM is

(1) isocurved if every 2-plane in TpM containing X has curvature ε,
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(2) unicurved if X is contained in only one curvature ε 2-plane,

(3) generic if it is neither isocurved nor unicurved.

Definition 2.7. A geodesic γ : (k, l)→M is isocurved if γ′(t) is isocurved for all t ∈ (k, l).

Since the normal vectors of 2-planes containing X form a two dimensional vector sub-

space, Lemma 2.5 implies the following characterization of isocurved vectors.

Corollary 2.8. Let p ∈ E ∪O and let X = x1e1 +x2e2 +x3e3 ∈ UpM . Then X is isocurved

if and only if

(1) x1 = ±1 if p ∈ E−,

(2) x2 = ±1 if p ∈ E+,

(3) x3 = 0 and x2 = ±mx1 if p ∈ O.

On the interior of the generic set or on the interior of the extremal set, it is possible to find

a local orthonormal frame that satisfies (2.0.2). Let {e1, e2, e3} be such a local orthonormal

frame. Throughout, we use the Christoffel symbol Γkij to denote < ∇eiej , ek >. As the

connection is metric, we have that Γkij = −Γ
j
ik. In particular, Γkik = 0.

Lemma 2.9. For each p ∈ O,

Γ3
11 = m2Γ3

22 (2.1.2)

Proof. The lemma follows from (2.0.1) and the differential Bianchi identity

(∇e3)R(e1, e2, e2, e1) + (∇e1)R(e2, e3, e2, e1) + (∇e2)R(e3, e1, e2, e1) = 0.
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Remark 2.10. As the eigenvalues of the Ricci tensor are distinct at points in O, the

eigenspaces define three distinct global smooth line fields on O. Given a connected com-

ponent C of O, each of these line fields may or may not be orientable over C. In the case

where one of these line fields is not orientable on C, it resolves to an oriented line field on

some double cover of C. As the rank assumption and finite volume assumption passes to fi-

nite covers, we may always assume that there exists a global Ricci diagonalizing orthonormal

frame {e1, e2, e3} on C (the finite volume assumption is required for the proof of hyberbolic

rank rigidity).

2.2 Manifolds of Extremal Curvature

Definition 2.11. A three-manifold M of cvc(ε) is said to have extremal curvature if for

every p ∈M , secp ≥ ε or secp ≤ ε.

The definition is equivalent to O = ∅, or equivalently, M = E ∪ I. The following

proposition, a structural result used in subsequent sections, is proved in [11] or [15, Corollary

2.10].

Proposition 2.12. Let M be a three-manifold of cvc(ε) and with extremal curvature. For

each connected component of C of E, there exists a complete geodesic field E on C or a double

cover of C whose integral curves are isocurved geodesics.

The structural result leads to the following rigidity theorems proved in [15, Theorem 1.2]

and [15, Theorem 3.5] respectively. A different proof of Theorem 2.13 is given in Chapter 4.

Theorem 2.13. A finite volume complete Riemannian three-manifold with extremal curva-

ture -1 and higher hyperbolic rank is hyperbolic.
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Theorem 2.14. Assume that M is a connected, simply-connected, complete and homoge-

neous three-manifold with extremal curvature -1. If M has higher hyperbolic rank, then M

is isometric to the three dimensional hyperbolic space.
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Chapter 3

Local Structures

3.1 Local Structures on Generic Sets

This section studies the local structure of generic points in a three-manifold of higher rank.

As the generic set O is open, we may consider a local orthonormal frame {e1, e2, e3} and

satisfying (2.1.1). With respect to this local orthonormal frame,

λ < ε < Λ. (3.1.1)

Specifically, this section derives local equations satisfied by the Christoffel symbols with

respect to this frame in a three-manifold of higher rank. Roughly speaking, these equations

will be derived as follows.

Lemma 3.2 below will show that each generic vector tangent to O belongs to exactly

two curvature ε planes. Generic vectors are characterized by an open condition on tangent

vectors. Hence, given a geodesic with generic initial velocity vector, its velocity vectors

remain generic for short time, and consequently, also belong to exactly two curvature ε planes.

As geodesics have higher rank, they are also contained in a parallel family of curvature ε

planes. As a result, the parallel field equations apply to at least one of these two families of

curvature ε planes along generic geodesics. Essentially, these parallel field equations imply

the desired Christoffel symbol relations.
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3.1.1 Pointwise Calculations

Given a generic point p ∈ O, each unit tangent vector X ∈ UpM may be expressed in the

frame above as X = x1e1 + x2e2 + x3e3, where x2
1 + x2

2 + x2
3 = 1. For simplicity, we will

frequently write X = (x1, x2, x3), omitting the frame vectors from our notation.

Lemma 3.1. Let p ∈ O. For X = (x1, x2, x3) ∈ UpM a generic or unicurved unit vector,

1 +m2 − (mx2 − x1)2 > 0

and

1 +m2 − (−mx2 − x1)2 > 0.

Proof. We prove the first inequality; the second inequality is obtained analogously after

replacing m by −m. Note that

(mx2 − x1)2 = |(x1, x2) · (−1,m)|2 ≤ (x2
1 + x2

2)(1 +m2) ≤ 1 +m2, (3.1.2)

where the first inequality is from Cauchy-Schwartz and the second inequality is from the

fact that X is a unit vector. The statement of the lemma holds if one of these inequalities

is strict. The first inequality is strict unless x2 = −mx1, and the second inequality is strict

unless x3 = 0. The lemma now follows from Corollary 2.8.

By Lemma 3.1, we may associate to each generic or unicurved unit vector X = (x1, x2, x3)

the numbers
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K =
√

1 +m2 − (mx2 − x1)2 (3.1.3)

and

L =
√

1 +m2 − (−mx2 − x1)2, (3.1.4)

and the following two unit vectors:

V + =
1

K

(
1 +mx1x2 − x2

1,mx
2
2 − x1x2 −m, (mx2 − x1)x3

)
(3.1.5)

and

V − =
1

L

(
1−mx1x2 − x2

1,−mx
2
2 − x1x2 +m, (−mx2 − x1)x3

)
. (3.1.6)

Direct computations show that V +, V − ∈ UpM , and V +, V − ⊥ X. Note that the expression

for V − can be obtained by changing every m in the formula for V + to −m.

Lemma 3.2. Let p ∈ O and let X = (x1, x2, x3) ∈ UpM be a unicurved or generic unit

vector and let V = (v1, v2, v3) be a unit vector perpendicular to X.

(1) If x3 = 0, then V + = ±V −. Moreover, sec(X, V ) = ε if and only if V = ±V +.

(2) If x3 6= 0, then V + and V − are linearly independent. Moreover, sec(X, V ) = ε if and

only if V = ±V + or V = ±V −.

Proof. Let u = X × V = (x2v3 − x3v2, x3v1 − x1v3, x1v2 − x2v1). As X and V are unit

vectors and X ⊥ V , u is a unit normal vector to the plane spanned by X and V . By Lemma
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2.5, sec(X, V ) = ε if and only if

x2v3 − x3v2 = ±m(x1v3 − x3v1).

In other words, a unit vector V = (v1, v2, v3) satisfies V ⊥ X and sec(X, V ) = ε if and only

if it satisfies one of the following two linear systems:

x1v1 + x2v2 + x3v3 = 0

mx3v1 − x3v2 + (x2 −mx1)v3 = 0

(3.1.7)

or

x1v1 + x2v2 + x3v3 = 0

−mx3v1 − x3v2 + (x2 +mx1)v3 = 0.

(3.1.8)

To prove the first assertion of (1), use the facts that x3 = 0 and x2
1 + x2

2 = 1 to show

V + = ±(x2,−x1, 0) where ± is positive if and only if x2 + mx1 > 0. Similarly, V − =

±(x2,−x1, 0) where ± is positive if and only if x2 −mx1 > 0.

To prove the second assertion of (1), note that when x3 = 0 and x2 6= mx1, the system

(3.1.7) has a one dimensional solution set spanned by V +. Similarly, when x3 = 0 and

x2 6= −mx1 the system (3.1.8) has a one dimensional solution set spanned by V −.

To prove the second assertion of (2), note that system (3.1.7) has a one dimensional

solution since, for instance, the determinant
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∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

mx3 −x3 x2 −mx1

x3 0 −x1

∣∣∣∣∣∣∣∣∣∣∣
= x3 6= 0. (3.1.9)

Direct verification shows that the solution set is spanned by V +. The same holds after

replacing system (3.1.7) with (3.1.8), m with −m, and V + with V −.

Finally, as ∣∣∣∣∣∣∣∣∣∣∣
x1 x2 x3

mx3 −x3 x2 −mx1

−mx3 −x3 x2 +mx1

∣∣∣∣∣∣∣∣∣∣∣
= −2mx3 6= 0,

V + and V − are linearly independent, concluding the proof.

Remark 3.3. Lemma 3.2 implies that a vector X = (x1, x2, x3) ∈ UpM is unicurved if and

only if x3 = 0 and x2 6= ±mx1, and is generic if and only if x3 6= 0. Furthermore, each

generic vector is contained in exactly two curvature ε planes.

3.1.2 Calculations Along Geodesics

Computations in this subsection are mostly done along geodesics. To be more precise, let

γ : [0, δ] → O be a geodesic. We may write γ′(t) = (x1(t), x2(t), x3(t)). Quantities such as

V + and V − defined on each tangent space now vary along the geodesic γ(t). To simplify

the notation, we may not indicate that a certain quantity is a function of t. For example,

we write xi instead of xi(t) and m instead of m(γ(t)).

The reader may verify that

K ′ =
mm′ − (mx2 − x1)(mx2 − x1)′

K
(3.1.10)
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and

L′ =
mm′ − (−mx2 − x1)(−mx2 − x1)′

L
(3.1.11)

where K and L are defined in (3.1.3) and (3.1.4).

Lemma 3.4. Let γ : [0, δ] → O be a geodesic such that γ′(t) is generic for all t ∈ [0, δ].

Then either V +(t) or V −(t) is a parallel field along γ for all t ∈ [0, δ].

Proof. As M has higher rank, there exists a unit normal parallel field V (t) along γ(t) such

that

sec(γ′(t), V (t)) = ε ∀t ∈ [0, δ].

As γ′(t) is generic for each t, part (2) of Lemma 3.2 implies that for each τ ∈ [0, δ], V (t) =

±V +(t) or V (t) = ±V −(t). By continuity, the lemma follows.

Lemma 3.5. Let γ : [0, δ] → O be a geodesic whose velocity vectors have components

γ′(t) = (x1(t), x2(t), x3(t)). Assume that γ′(t) is generic for all t ∈ [0, δ], then V +(t) is

parallel along γ if and only if

{mΓ3
11 −m

2Γ3
12}x

2
1 + {Γ3

21 −mΓ3
22}x

2
2 + {e3(m)− (1 +m2)Γ2

31}x
2
3

+{Γ3
11 −mΓ3

12 +mΓ3
21 −m

2Γ3
22}x1x2

+{e1(m)− (1 +m2)Γ2
11 −mΓ1

33 +m2Γ2
33}x1x3

+{e2(m) + (1 +m2)Γ1
22 − Γ1

33 +mΓ2
33}x2x3 = 0

(3.1.12)

along γ(t).
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Proof. Writing V +(t) = (v1(t), v2(t), v3(t)) along γ(t), we have that

v1 =
1 +mx1x2 − x2

1

K

v2 =
mx2

2 − x1x2 −m
K

v3 =
(mx2 − x1)x3

K

(3.1.13)

by (3.1.5).

Direct computation using (3.1.3) and (3.1.13) shows that

v1 −mv2 = K. (3.1.14)

The vector field V +(t) is parallel if and only if it satisfies the parallel field equations:

0 =
DV +

dt
=

3∑
k=1

(
dvk
dt

+
∑
i,j

Γkijxivj)ek, (3.1.15)

where i, j ∈ {1, 2, 3} and Γkij =< ∇eiej , ek >. In what follows, we prove the lemma by

showing that equations (3.1.15) hold if and only if (3.1.12) holds.

As a first step, substitute (3.1.13) into the undifferentiated terms in (3.1.15) to obtain

v′1 + x1
mx2

2 − x1x2 −m
K

Γ1
12 + x2

mx2
2 − x1x2 −m

K
Γ1

22

+ x3
mx2

2 − x1x2 −m
K

Γ1
32 + x3

x3(mx2 − x1)

K
Γ1

33

+ x2
x3(mx2 − x1)

K
Γ1

23 + x1
x3(mx2 − x1)

K
Γ1

13 = 0,
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v′2 + x2
1 +mx1x2 − x2

1

K
Γ2

21 + x2
x3(mx2 − x1)

K
Γ2

23

+ x1
1 +mx1x2 − x2

1

K
Γ2

11 + x1
x3(mx2 − x1)

K
Γ2

13

+ x3
x3(mx2 − x1)

K
Γ2

33 + x3
1 +mx1x2 − x2

1

K
Γ2

31 = 0,

and

v′3 + x1
1 +mx1x2 − x2

1

K
Γ3

11 + x1
mx2

2 − x1x2 −m
K

Γ3
12

+ x2
mx2

2 − x1x2 −m
K

Γ3
22 + x2

1 +mx1x2 − x2
1

K
Γ3

21

+ x3
1 +mx1x2 − x2

1

K
Γ3

31 + x3
mx2

2 − x1x2 −m
K

Γ3
32 = 0.

Rearrange terms to get

v′1 +
1

K

{
(mx2 − x1)(

∑
i,j

Γ1
ijxixj)−m

3∑
i=1

xiΓ
1
i2

}
= 0,

v′2 +
1

K

{
(mx2 − x1)(

∑
i,j

Γ2
ijxixj) +

3∑
i=1

xiΓ
2
i1

}
= 0,

v′3 +
1

K

{
(mx2 − x1)(

∑
i,j

Γ3
ijxixj) +

3∑
i=1

xi(Γ
3
i1 −mΓ3

i2)
}

= 0.

(3.1.16)

As γ is a geodesic, it satisfies the geodesic equations

3∑
k=1

(
dxk
dt

+
∑
i,j

Γkijxixj)ek = 0. (3.1.17)

Next, use (3.1.17) in (3.1.16) to obtain
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v′1 −
m(
∑3
i=1 xiΓ

1
i2)

K
− mx2 − x1

K
x′1 = 0, (3.1.18)

v′2 +
(
∑3
i=1 xiΓ

2
i1)

K
− mx2 − x1

K
x′2 = 0, (3.1.19)

and

v′3 +

∑3
i=1 xiΓ

3
i1 −m

∑3
i=1 xiΓ

3
i2

K
− mx2 − x1

K
x′3 = 0. (3.1.20)

Now we claim that equations (3.1.18) and (3.1.19) are equivalent. Indeed, subtract m

times the left hand side of (3.1.19) from the left hand side of (3.1.18), and use equality

(3.1.14) to obtain zero as follows:

(v′1 −mv
′
2)− mx2 − x1

K
(x′1 −mx

′
2)

= (v1 −mv2)′ +m′v2 −
mx2 − x1

K
(x′1 −mx

′
2)

= K ′ +m′v2 −
mx2 − x1

K
(x′1 −mx

′
2)

=
1

K
{mm′ − (mx2 − x1)(mx2 − x1)′}+m′v2 +

mx2 − x1

K
(mx′2 − x

′
1)

= 0.

Since m 6= 0, this claim follows.

Next, we will show that (3.1.19) and (3.1.20) are equivalent. To prove this claim, first

differentiate the vi using (3.1.10) and then substitute into (3.1.19) and (3.1.20) to obtain
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1

K3

{
(x2

1 + x2
2 − 1)m′ + (mx′2 − x

′
1)(x2 +mx1)

}
+

1

K
(

3∑
i=1

xiΓ
2
i1) = 0,

(3.1.21)

and

1

K3

{
(x2 +mx1)x3m

′ + (1 +m2)(mx′2 − x
′
1)x3

}
+

1

K
(

3∑
i=1

xiΓ
3
i1 −m

3∑
i=1

xiΓ
3
i2) = 0.

(3.1.22)

Use (3.1.17) to show that

mx′2 − x
′
1 = −(x2 +mx1)(

3∑
i=1

xiΓ
2
i1)− x3(

3∑
i=1

xiΓ
3
i1 −m

3∑
i=1

xiΓ
3
i2). (3.1.23)

Substitute (3.1.23) into (3.1.21) and (3.1.22) to obtain

1

K3
{x2

3m
′ − x2

3(1 +m2)(
3∑
i=1

xiΓ
2
i1)

+x3(x2 +mx1)(
3∑
i=1

xiΓ
3
i1 −m

3∑
i=1

xiΓ
3
i2)} = 0,

(3.1.24)

and

1

K3
{x3(x2 +mx1)m′ − x3(x2 +mx1)(1 +m2)(

3∑
i=1

xiΓ
2
i1)

+(x2 +mx1)2(
3∑
i=1

xiΓ
3
i1 −m

3∑
i=1

xiΓ
3
i2)} = 0.

(3.1.25)

Observe that equation (3.1.24) and (3.1.25) differ by the nonzero factor
x3

x2+mx1
, concluding
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the proof of the claim.

Up to now, we have shown that the parallel field equations are equivalent to (3.1.25).

Since K 6= 0 and γ′(t) is generic, (3.1.25) is equivalent to

x3{(m′ − (1 +m2)(x1Γ2
11 + x2Γ2

21 + x3Γ2
31)

+ (x2 +mx1)Γ3
31 −m(x2 +mx1)Γ3

32)}

+ (x2 +mx1)(x1Γ3
11 + x2Γ3

21 −mx1Γ3
12 −mx2Γ3

22) = 0.

(3.1.26)

To conclude the proof, note that (3.1.12) follows from (3.1.26), since m′ = x1e1(m) +

x2e2(m) + x3e3(m).

Remark 3.6. With the same assumption as in Lemma 3.5, an analogous proof replacing m

with −m and K with L shows that V −(t) is parallel if and only if

{−mΓ3
11 −m

2Γ3
12}x

2
1 + {Γ3

21 +mΓ3
22}x

2
2 + {−e3(m)− (1 +m2)Γ2

31}x
2
3

+{Γ3
11 +mΓ3

12 −mΓ3
21 −m

2Γ3
22}x1x2

+{−e1(m)− (1 +m2)Γ2
11 +mΓ1

33 +m2Γ2
33}x1x3

+{−e2(m) + (1 +m2)Γ1
22 − Γ1

33 −mΓ2
33}x2x3 = 0

(3.1.27)

along γ(t).

By Remark 3.3, generic tangent vectors form an open subset in the generic set O. Hence,

for p ∈ O and X = (x1, x2, x3) ∈ UpM a generic vector, there exists δ > 0 such that the

velocity vectors of the geodesic γ(t) = expp tX are generic for all t ∈ [0, δ]. By Lemmas 3.4

and 3.5, it follows that either (3.1.12) or (3.1.27) hold along γ(t) on [0, δ]. In particular, for

every p ∈ O and generic vector X ∈ UpM , either (3.1.12) or (3.1.27) holds for X at p. This
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motivates the following definition.

Definition 3.7. Define subsets B+
p and B−p of UpM as follows.

(1) X ∈ B+
p if and only if (3.1.12) holds for X at p.

(2) X ∈ B−p if and only if (3.1.27) holds for X at p.

Lemma 3.8. For each p ∈ O, UpM ⊂ B+
p ∪ B−p .

Proof. Note that the set B+
p and B−p are closed subsets of UpM . By Remark 3.3, the generic

vectors are dense in UpM . Hence the remarks preceding Definition 3.7 and the pigeon-hole

principle imply the lemma.

Proposition 3.9. For each p ∈ O, at least one of the following holds:

Γ3
11 = mΓ3

12 = mΓ3
21 = m2Γ3

22

e1(m) = (1 +m2)Γ2
11 +mΓ1

33 −m
2Γ2

33

e2(m) = −(1 +m2)Γ1
22 + Γ1

33 −mΓ2
33

e3(m) = (1 +m2)Γ2
31,

(3.1.28)

or

Γ3
11 = −mΓ3

12 = −mΓ3
21 = m2Γ3

22

e1(m) = −(1 +m2)Γ2
11 +mΓ1

33 +m2Γ2
33

e2(m) = (1 +m2)Γ1
22 − Γ1

33 −mΓ2
33

e3(m) = −(1 +m2)Γ2
31.

(3.1.29)
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As B+
p and B−p are closed subsets of UpM , Lemma 3.8 implies that at least one of them

contains an interior. Hence to prove the Proposition 3.9, it suffices to prove the following

lemma.

Lemma 3.10. Let p ∈ O. The equation (3.1.28) (respectively (3.1.29)) holds at p if B+
p

(respectively B−p ) contains an interior.

Proof. We prove the case when B+
p contains an interior. The proof for the case when B−p

contains an interior is analogous. If B+
p contains an open set in UpM , then the degree

two homogeneous polynomial in variables x1, x2, x3 defined by the left hand side of (3.1.12)

vanishes identically on an open subset of TpM . Hence its coefficients all vanish. Consider

the coefficients for x1x3, x2x3 and x2
3, we obtain the derivative equations in (3.1.28). As

m 6= 0, by considering the coefficients for x2
1 and x2

2, we have that

Γ3
11 = mΓ3

12 (3.1.30)

and

Γ3
21 = mΓ3

22. (3.1.31)

Now, (2.1.2), (3.1.30), and (3.1.31) imply that

Γ3
11 = mΓ3

12 = mΓ3
21 = m2Γ3

22, (3.1.32)

as desired.
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3.2 Local Structures on Extremal Sets

This section derives relations between Christoffel symbols at interior points to the extremal

set E . Let p ∈ E and let {e1, e2, e3} be a Ricci diagonalizing orthonormal frame at p that

satisfies (2.1.1).

Recall that from Definition 2.4, we had a disjoint partition E = E+ ∪ E−. We first study

the case when p ∈ E−. The following lemma will show that a vector X = (x1, x2, x3) is

unicurved if x1 6= ±1.

Lemma 3.11. Let p ∈ E− and let X = (x1, x2, x3) ∈ UpM with x1 6= ±1. If V ∈ UpM is

perpendicular to X, then sec(X, V ) = ε if and only if

V = ±
( 1− x2

1√
1− x2

1

,
−x1x2√
1− x2

1

,
−x1x3√
1− x2

1

)
. (3.2.1)

Proof. Write V = (v1, v2, v3). We argue like Lemma 3.2. The unit vector

u = X × V = (x2v3 − x3v2, x3v1 − x1v3, x1v2 − x2v1)

is normal to the plane spanned by X and V .

By Lemma 2.5, sec(X, V ) = ε if and only if

x2v3 − x3v2 = 0.

Since V ⊥ X, sec(X, V ) = ε if and only if the following system of equations hold:

(v1, v2, v3) · (0,−x3, x2) = 0
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and

(v1, v2, v3) · (x1, x2, x3) = 0,

or equivalently, if and only if

V = ± (x1, x2, x3)× (0,−x3, x2)

|(x1, x2, x3)× (0,−x3, x2)|

= ±(
1− x2

1√
1− x2

1

,
−x1x2√
1− x2

1

,
−x1x3√
1− x2

1

).

Remark 3.12. Lemma 3.11 and Corollary 2.8 together show that each vector tangent to

E− is either isocurved or univurved. A vector X = (x1, x2, x3) is unicurved if and only if

x1 6= ±1, and is isocurved if and only if x1 = ±1.

Notice that the V in (3.2.1) can be obtained by taking m = 0 in (3.1.5). Likewise, setting

m = 0 in the statement and proof of Lemma 3.5 yields the following:

Lemma 3.13. Let γ : [0, δ] → E− be a geodesic whose velocity vectors have components

γ′(t) = (x1(t), x2(t), x3(t)). If γ′(t) is unicurved for all t ∈ [0, δ], then

V (t) = (
1− x2

1√
1− x2

1

,
−x1x2√
1− x2

1

,
−x1x3√
1− x2

1

)

is parallel along γ if and only if

x3{−x1Γ2
11 − x2Γ2

21 − x3Γ2
31 + x2Γ3

31}+ x2{x1Γ3
11 + x2Γ3

21} = 0. (3.2.2)
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Proposition 3.14. The following is true for each interior point of E−:

Γ2
11 = Γ3

11 = Γ3
21 = Γ2

31 = 0

and

Γ1
33 = Γ1

22.

Proof. Let p be an interior point of E−. Then each geodesic starting from p remains in E−

for a short time. Moreover, by Remark 3.12, the unicurved vectors form an open subset of

unit vectors tangent to M near p. Hence, a geodesic starting from p whose initial velocity is

unicurved, has velocity vectors that remain unicurved for a short time.

Let X = (x1, x2, x3) be a unicurved vector. We claim that

x3{−x1Γ2
11 + x2(Γ1

22 − Γ1
33)− x3Γ2

31}+ x2{x1Γ3
11 + x2Γ3

21} = 0 (3.2.3)

at the point p.

To prove the claim, let γ(t) = expp(tX). As M has higher rank, there exists a unit

normal parallel field W (t) along γ(t) with sec(γ′(t),W (t)) ≡ ε. By Lemmas 3.11 and 3.13,

W (t) = ±V (t) for a short time and the claim follows.

As the unicurved vectors form an open subset of UpM , the degree 2 homogeneous poly-

nomial in variables x1, x2, x3 defined by the left hand side of (3.2.3) vanishes identically on

an open subset of TpM . Hence its coefficients all equal zero, concluding the proof.

Note that only the assumption that Λ 6= ε was used to prove Proposition 3.14. Hence,

for p ∈ E+, the same proposition holds after permuting the indices 1 and 2. We record this

in the following proposition.
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Proposition 3.15. The following is true for each interior point of E+:

Γ1
22 = Γ3

22 = Γ3
12 = Γ1

32 = 0

and

Γ2
33 = Γ2

11.
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Chapter 4

From Local to Global

Recall that a three-manifold of higher rank M = O∪E ∪I, and hyperbolic or spherical rank

rigidity occurs when O = ∅ = E . The goal of this chapter is to study the global structure of

O and E by the Christoffel symbol relations given in Propositions 3.9, 3.14 and 3.15. These

results are the main ingredients in our proof for the rigidity theorems in Chapter 5. More

specifically, we first assume that O is nonempty in section 4.1, and study global structures

of O through evolution equations of along a special family of geodesics. In section 4.2, we

study the local structure of E when O is empty. In the end of section 4.2, we show that

when ε = −1 or 1, E must be empty provided that O is empty. To complete the proof of

rigidity theorems, we show that O = ∅ in Chapter 5.

4.1 Evolution Equations Along Isocurved Geodesics in

Generic Sets

The global structure of O is described in terms of evolution equations of geometric quantities

along a specific family of isocurved geodesics. We begin this section with a construction of

such a family of isocurved geodesics.
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4.1.1 Existence of Isocurved Geodesics

Let C be a connected component of O. Without loss of generality, we may assume that there

exists a global framing {e1, e2, e3} over C satisfying (2.1.1) as in Remark 2.10. With respect

to this framing, at each point p ∈ C either (3.1.28) or (3.1.29) holds by Proposition 3.9.

Definition 4.1. Define closed subsets F+ and F− of C by

F+ =
{
p ∈ C | (3.1.28) holds

}

and

F− =
{
p ∈ C | (3.1.29) holds

}
.

Note that F+ ∪ F− = C.

Remark 4.2. The definition of F+ and F− depends on the Ricci diagonalizing orthonormal

frame. The reader may verify that points in F+ and points in F− are switched if the

orthonormal frame is switched from {e1, e2, e3} to {e1,−e2, e3}.

Lemma 4.3. After possibly switching the frame {e1, e2, e3} to {e1,−e2, e3}, we may assume

that one of the following holds:

(1) F+ = F− = C, or

(2) The set C \ F− contains an open set U in C.

Proof. Note that the sets C \ F− and C \ F+ are open in C. If both of these sets are empty,

then (1) holds. Otherwise, by Remark 4.2, after possibly switching the frame {e1, e2, e3} to

{e1,−e2, e3}, (2) holds.
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Convention 4.4. From now on, we always assume that the Ricci diagonalizing frame is

selected such that either (1) or (2) in Lemma 4.3 holds.

Definition 4.5. Define two vector fields on C by

E+ =
1√

1 +m2
e1 −

m√
1 +m2

e2,

E− =
1√

1 +m2
e1 +

m√
1 +m2

e2.

Remark 4.6. Note that these vector fields are isocurved by Corollary 2.8. They are charac-

terized projectively by having the property that every plane containing one of these vectors

has curvature ε.

Lemma 4.7. On F+, ∇E+E
+ = 0.

Proof. On C, direct calculations shows

< ∇E+E
+, e1 >=

1√
1 +m2

{e1(
1√

1 +m2
)−me2(

1√
1 +m2

)

− m√
1 +m2

Γ1
12 +

m2
√

1 +m2
Γ1

22},

< ∇E+E
+, e2 >=

1√
1 +m2

{e1(
−m√
1 +m2

) +me2(
m√

1 +m2
)

+
1√

1 +m2
Γ2

11 −
m√

1 +m2
Γ2

21},

and

< ∇E+E
+, e3 >=

1

1 +m2
{Γ3

11 −mΓ3
21 −mΓ3

12 +m2Γ3
22}.
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Direct verification using (3.1.28) shows that each of these components is zero, concluding

the proof.

When F+ = F− = C, Lemma 4.7 implies that the integral curves of E+ are geodesics.

Moreover, by part (3) of Corollary 2.8, these geodesics are isocurved.

In what follows, we construct a family of isocurved geodesics when there exists an open

set U ⊂ C \ F−. To prove the desired result, we first prove the lemma below.

Lemma 4.8. Let p ∈ C \F− and let X = (x1, x2, x3) ∈ UpM be a generic vector. Let V + be

the vector perpendicular to X defined by (3.1.5). Then along γX(t) = expp(tX), the parallel

vector field V (t) determined by V (0) = V + satisfies sec(V (t), γ′X(t)) ≡ ε.

Proof. As p ∈ C \ F−, Lemma 3.10 implies that B−p has no interior in UpM . By continuity,

it suffices to prove the lemma for generic vectors X ∈ UpM \ B−p .

Let X = (x1, x2, x3) ∈ UpM \B−p be a generic vector. As M has higher rank, there exists

a normal parallel field V (t) along γX(t) such that sec(V (t), γ′X(t)) ≡ ε. Since X is generic,

Lemma 3.4 implies that V (t) = V +(t) or V (t) = V −(t) for a short time. If V (t) = V −(t)

for a short time, then by Remark 3.6, (3.1.27) holds for X at p, contrary to the assumption

that X /∈ B−p .

Proposition 4.9. Let p ∈ C \ F−. Then the geodesic α(t) = expp(tE
+) is isocurved.

Proof. As generic vectors are dense amongst the unit vectors perpendicular to E+, it suffices

to prove that each generic unit vector W ⊥ E+ generates a parallel vector field W (t) along

α(t) satisfying sec(α′(t),W (t)) ≡ ε.

Given W ∈ UpM as above, consider the great circle in UpM :

c(s) = cos (s)E+ + sin (s)W. (4.1.1)
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For each small s ≥ 0, let γs(t) = expp(tc(s)), and note that α(t) = γ0(t) and that W = c′(0).

Hence, by continuity, it suffices to prove that c′(s) generates a parallel vector field Ws(t)

along γs(t) satisfying sec(γ′s(t),Ws(t)) ≡ ε.

Note that direct computation after substituting (4.1.1) into (3.1.5) shows that c′(s) is

−V + associated to c(s). The proposition now follows from Lemma 4.8.

Corollary 4.10. Let p ∈ C \ F− and let α(t) = expp(tE
+). Let I ⊂ R be the largest

connected interval containing zero such that α(I) ⊂ C. Then on I, α′ = E+.

Proof. Consider the subset T ⊂ I defined by

T = {t ∈ I |α′(t) = E+(α(t))}.

By construction, 0 ∈ T , and T is closed. As I is connected, it remains to prove that T is

open.

For s ∈ T , α′(t) is isocurved for each t in a neighborhood of s by Proposition 4.9. The

lemma now follows by the continuity of the velocity vectors α′(t) and Remark 4.6.

We summarize the results obtained in this subsection in the following proposition.

Proposition 4.11. There exists an open subset U ⊂ C with the property that each integral

curve of E+ with initial point in U is an isocurved geodesic.

Proof. As ∇E+E
+ = 0 on F+, the proposition is obvious when (1) holds in Lemma 4.3.

When (2) in Lemma 4.3 occurs, take U to be an open subset of C \F−, and the proposition

follows from Proposition 4.9 and Corollary 4.10.
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4.1.2 Evolution Equations

By Proposition 4.11, there exists a family of isocurved geodesics in C that are tangent to E+.

In this subsection, let α be one of these geodesics constructed in Proposition 4.11 and let I

be the maximal connected open interval in R containing zero such that α(I) ⊂ C. Clearly,

I 6= ∅. The goal of this subsection is to derive first order differential equations satisfied by

geometric quantities along α on I in Proposition 4.19 below. The geometric quantities are

described in terms of a new framing over C.

Definition 4.12. Define another orthonormal frame {E1, E2, E3} on C by E1 = E+, E3 =

e3, and

E2 =
m√

1 +m2
e1 +

1√
1 +m2

e2.

By Remark 2.10, the orthonormal frame {E1, E2, E3} is not Ricci diagonalizing. In what

follows below, we reserve the Christoffel symbol notation Γkij for < ∇eiej , ek >.

Lemma 4.13. With respect to {E1, E2, E3}, at least one of R(E1, E2, E2, E3) or R(E1, E3, E3, E2)

is nonzero, and

R(E1, E2, E3, E1) = 0. (4.1.2)

Proof. As E1 is isocurved, for every a, b such that a2 + b2 = 1,

ε = R(E1, aE2 + bE3, aE2 + bE3, E1)

= a2R(E1, E2, E2, E1) + b2R(E1, E3, E3, E1) + 2abR(E1, E2, E3, E1)

= ε+ 2abR(E1, E2, E3, E1).

The lemma now follows from (2.0.1), since {E1, E2, E3} does not diagonalize Ricci.
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Note that by Proposition 4.11,

∇E1
E1 = 0 (4.1.3)

along α on I. By using (4.1.3), the following Christoffel symbols vanish when the geodesic

α enters F−.

Lemma 4.14. Let t ∈ I. If α(t) ∈ F−, then

Γ3
22 = Γ3

12 = Γ3
21 = Γ3

11 = 0. (4.1.4)

Proof. First calculate

< ∇E1
E1, E3 >=

1

1 +m2
{Γ3

11 −mΓ3
21 −mΓ3

12 +m2Γ3
22}. (4.1.5)

Next, use (3.1.29) to reduce (4.1.5) to

< ∇E1
E1, E3 >=

1

1 +m2
{4m2Γ3

22}. (4.1.6)

By (4.1.3) and the fact that m is nonzero, it follows that Γ3
22 = 0. This, upon substitution

into (3.1.29), shows that

Γ3
22 = 0 = Γ3

12 = Γ3
21 = Γ3

11.

Lemma 4.15. Along the geodesic α(t) for all t ∈ I, we have that

∇E1
E2 = ∇E1

E3 = 0 (4.1.7)
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and

< ∇E2
E1, E3 >= 0. (4.1.8)

Proof. We first prove (4.1.7). By (4.1.3) and the fact that {E1, E2, E3} is an orthonormal

basis, it suffices to prove that ∇E1
E3 = 0.

Straightforward computation shows that

∇E1
E3 =

1

1 +m2
{(Γ1

13 −mΓ1
23)e1 + (Γ2

13 −mΓ2
23)e2}. (4.1.9)

If α(t) ∈ F+, substitute (3.1.28) into (4.1.9) to obtain ∇E1
E3 = 0. If α(t) ∈ F−, substitute

(4.1.4) into (4.1.9) to obtain ∇E1
E3 = 0.

To prove (4.1.8), first calculate

< ∇E2
E1, E3 >=

1

1 +m2
{mΓ3

11 −m
2Γ3

12 + Γ3
21 −mΓ3

22}. (4.1.10)

The equation (4.1.8) now follows from (3.1.28) when in α(t) ∈ F+, and from (4.1.4) when

α(t) ∈ F−.

Lemma 4.16. We have the following evolution equations along α(t) for all t ∈ I:

E1 < ∇E2
E1, E2 >= −ε− < ∇E2

E1, E2 >
2

and

E1 < ∇E3
E1, E3 >= −ε− < ∇E3

E1, E3 >
2 .

Proof. To prove the first equality, first use the fact that E1 is isocurved and the fact that
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∇E1
E1 = 0 to show

ε = R(E2, E1, E1, E2) =< −∇E1
∇E2

E1 −∇[E2,E1]E1, E2 > . (4.1.11)

By (4.1.7),

< ∇E1
∇E2

E1, E2 >= E1 < ∇E2
E1, E2 > . (4.1.12)

Use (4.1.7) and (4.1.8) to show

< ∇[E2,E1]E1, E2 >

= < ∇∇E2
E1−∇E1

E2
E1, E2 >

= < ∇∇E2
E1
E1, E2 >

= < ∇<∇E2
E1,E2>E2+<∇E2

E1,E3>E3
E1, E2 >

= < ∇E2
E1, E2 >< ∇E2

E1, E2 > + < ∇E2
E1, E3 >< ∇E3

E1, E2 >

= < ∇E2
E1, E2 >

2 .

(4.1.13)

The first equality is now obtained by substituting (4.1.12) and (4.1.13) into (4.1.11).

An analogous proof shows the second inequality.

Definition 4.17. Define an operator A : E⊥1 → E⊥1 on C by A = ∇E1.

As E1 has unit length, A is well-defined. In terms of the orthonormal frame {E2, E3} for

E⊥1 ,

tr(A) =< ∇E2
E1, E2 > + < ∇E3

E1, E3 > .

In Lemma 4.18, we show that A is given by scalar multiplication along α.
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Lemma 4.18. Along the geodesic α(t) for all t ∈ I, we have that

(1) < ∇E2
E1, E3 >=< ∇E3

E1, E2 >= 0

(2) < ∇E2
E1, E2 >=< ∇E3

E1, E3 > .

Proof. To prove (1), it suffices to prove < ∇E3
E1, E2 >= 0, by Lemma 4.15. To prove that

< ∇E3
E1, E2 >= 0, first use (4.1.3) and (4.1.7) to show that

R(E1, E3, E2, E1)

= E1 < ∇E3
E2, E1 > − < ∇[E1,E3]E2, E1 >

= E1 < ∇E3
E2, E1 > + < ∇<∇E3

E1,E2>E2+<∇E3
E1,E3>E3

E2, E1 >

= E1 < ∇E3
E2, E1 > +tr(A) < ∇E3

E2, E1 >

(4.1.14)

By (4.1.2) and (4.1.14),

E1 < ∇E3
E2, E1 >= −tr(A) < ∇E3

E2, E1 > .

Hence if < ∇E3
E2, E1 >= 0 at α(0), then < ∇E3

E2, E1 >= 0 along α by the uniqueness of

solutions to ordinary differential equations.

Direct calculations show that

< ∇E3
E2, E1 >=

e3(m)

1 +m2
− Γ2

31.

Hence, at points in F+, the last equality in (3.1.28) implies that < ∇E3
E2, E1 >= 0,

concluding the proof of (1).

To prove (2), recall from Lemma 4.16 that < ∇E3
E1, E3 > and < ∇E2

E1, E2 > satisfy
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the same first order differential equation, hence it suffices to prove (2) at a point along α(t).

Direct calculations show that

< ∇E3
E1, E3 >=

1√
1 +m2

Γ3
31 −

m√
1 +m2

Γ3
32.

Note that

∇E2
E1 =∇ m√

1+m2
e1+ 1√

1+m2
e2

1√
1 +m2

e1 −
m√

1 +m2
e2

={ m√
1 +m2

e1(
1√

1 +m2
) +

1√
1 +m2

e2(
1√

1 +m2
)

− m2

1 +m2
Γ1

12 −
m

1 +m2
Γ1

22}e1

+{ m√
1 +m2

e1(
−m√
1 +m2

) +
1√

1 +m2
e2(

−m√
1 +m2

)

+
m

1 +m2
Γ2

11 +
1

1 +m2
Γ2

21}e2.

Hence

< ∇E2
E1, E2 >=

m

1 +m2
{me1(

1√
1 +m2

) + e2(
1√

1 +m2
)}

+
1

1 +m2
{me1(

−m√
1 +m2

) + e2(
−m√
1 +m2

)}

− m√
1 +m2

{ m2

1 +m2
Γ1

12 +
m

1 +m2
Γ1

22}

+
1√

1 +m2
{ m

1 +m2
Γ2

11 +
1

1 +m2
Γ2

21}

=
1√

1 +m2

1

1 +m2
(−me1(m)− e2(m))

− m

1 +m2
{ m2
√

1 +m2
Γ1

12 +
m√

1 +m2
Γ1

22}

+
1

1 +m2
{ m√

1 +m2
Γ2

11 +
1√

1 +m2
Γ2

21}.

(4.1.15)
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At points in F+, equality in 2. holds as can be seen after substituting the second and

third equalities in (3.1.28) into (4.1.15).

We are now ready to prove the evolution equations along the geodesic α.

Proposition 4.19. Along the geodesic α(t) for all t ∈ I,

E1(tr(A)) = −2ε− 1

2
(tr(A))2

E1(R(E1, E2, E2, E3)) = −3

2
tr(A)R(E1, E2, E2, E3)

E1(R(E1, E3, E3, E2)) = −3

2
tr(A)R(E1, E3, E3, E2).

(4.1.16)

Proof. By Lemma 4.16 and Lemma 4.18,

E1(tr(A)) = E1(< ∇E2
E1, E2 > + < ∇E3

E1, E3 >)

= −2ε− < ∇E2
E1, E2 >

2 − < ∇E3
E1, E3 >

2

= −2ε− 1

2
(tr(A))2.

The first equality in (4.1.16) is obtained by expanding the second Bianchi identity

(∇E3
R)(E1, E2, E2, E1) + (∇E1

R)(E2, E3, E2, E1) + (∇E2
R)(E3, E1, E2, E1) = 0,

and then making simplifications using the Christoffel symbols relations

∇E1
E1 = ∇E1

E2 = ∇E1
E3 = 0
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< ∇E2
E1, E3 >=< ∇E3

E1, E2 >= 0

< ∇E2
E1, E2 >=< ∇E3

E1, E3 >

obtained in Lemma 4.15 and Lemma 4.18.

The second equality in (4.1.16) is similarly obtained starting from the second Bianchi

identity

(∇E3
R)(E1, E2, E3, E1) + (∇E1

R)(E2, E3, E3, E1) + (∇E2
R)(E3, E1, E3, E1) = 0.

4.2 Evolution Equations Along Isocurved Geodesics in

Extremal Sets

In this section, we prove rigidity results for three-manifolds of higher rank with extremal

curvature ε. Recall that a three-manifold M of higher rank has extremal curvature ε if and

only if O = ∅. Throughout the section, we assume that O = ∅ and E 6= ∅. Let C be a

connected component of E . By Proposition 2.12, on C or a double cover of C (still denoted

by C), there exists a complete isocurved geodesic field E. By the definition of E+ and E−,

C ⊂ E− or C ⊂ E+.

As the rank assumption passes to covers, we may apply Propositions 3.14 and 3.15 to

derive evolution equations along E geodesics on C. The evolution equations are then applied

to prove rigidity results for three-manifolds of higher rank with extremal curvature. These

42



results will be used in the proof of the main theorems in the last section.

Definition 4.20. Let E be the isocurved geodesic field on C. Define Ã : E⊥ → E⊥ by

Ã = ∇E.

The trace of Ã is clearly well-defined and smooth on C.

Proposition 4.21. On C, we have the following evolution equation for tr(Ã) along the E

geodesics:

E(trÃ) = −2ε− 1

2
(trÃ)2.

Proof. We prove the case when C ⊂ E−. The proof for the case when C ⊂ E+ is similar. Let

{e1, e2, e3} be a Ricci diagonalizing orthonormal frame on E− satisfying (2.1.1). To prove

the proposition, first use Proposition 3.14 to obtain

R(e1, e3, e3, e1) = e1(Γ1
33)− (Γ1

33)2.

By Corollary 2.8, e1 is isocurved, so that R(e1, e3, e3, e1) = ε. Therefore,

e1(Γ3
31) = −ε− (Γ3

31)2. (4.2.1)

Note that on E−, we may assume that E = e1. By Proposition 3.14, we have that on E−,

Γ1
33 = Γ1

22. (4.2.2)
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Hence by (4.2.1) and (4.2.2),

E(trÃ) = e1(trÃ) = e1(Γ3
31 + Γ2

21)

= −2ε− 1

2
(trÃ)2

The following proposition is a special case for the characterization of three-manifolds of

higher spherical rank.

Proposition 4.22. Let M be a complete Riemannian three-manifold of higher spherical rank

and extremal sectional curvature 1, then M has constant sectional curvatures.

Proof. Let M be a three manifold of higher spherical rank and extremal curvature 1. Then

M = E ∪ I. To prove the rigidity result, it suffices to show that E is empty.

Suppose that E is nonempty. Let α : (−∞,∞) → C be a complete isocurved geodesic

obtained by integrating the complete geodesic field E on C. By Proposition 4.21,

d

dt
(trÃ) = −2− 1

2
(trÃ)2 (4.2.3)

along α(t). The solution to the differential equation (4.2.3) has a finite time singularity.

This contradicts with the fact that trÃ is a smooth function along α(t). Hence E is empty,

and M has constant sectional curvature 1.

The evolution equations also lead to a different proof of Theorem 2.13.

Proof. Let M be a complete Riemannian three-manifold of higher hyperbolic rank with

extremal curvature and finite volume.
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Suppose that E is nonempty. Let C be a connected component of E . Then C and its double

cover have finite volume. By Proposition 4.21, we have the following evolution equation along

each isocurved E geodesic:

d

dt
(trÃ) = 2− 1

2
(trÃ)2. (4.2.4)

The solution of the differential equation (4.2.4) has a finite forward time singularity when

tr(Ã)(0) < −2, and it has a finite backward time singularity when tr(Ã)(0) > 2. As tr(Ã)

is a smooth function, tr(Ã)(0) ∈ [−2, 2] along each isocurved E geodesic. Hence there exists

an open set U such that either −2 < tr(Ã)(q) ≤ 2 for all q ∈ U or tr(Ã)(q) = −2 for all

q ∈ U .

Let φt denote the flow generated by the complete geodesic fieldE. When−2 < tr(Ã)(q) ≤

2 for all q ∈ U , (4.2.4) implies that div(E) = tr(Ã)→ 2 on φt(U) as t→∞. As

div(E) =
d

dt

∫
φt(U)

dvol,

the volume of φt(U) is arbitrarily large as t→∞, contradicting the assumption that C has

finite volume.

When tr(Ã)(q) = −2 for all q ∈ U . An analogous argument shows that the volume for

φ−t(U) is arbitrary large as t→∞, contradicting the assumption that C has finite volume.

Hence E is empty, and M is hyperbolic.
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Chapter 5

Rigidity Theorems

We prove the main theorems in this chapter. In the proof of each theorem, we first exclude

the possibility that O is nonempty. Then we use Proposition 4.22 or Theorem 2.13 to obtain

the desired rigidity result. The proof of Theorem 2 is in section 5.1 and the proof of Theorem

1 is in 5.2.

Let C be a connected component of O as in Remark 2.10.

Definition 5.1. On the connected component C ⊂ O, define functions R2 and R3 by

R2 = R(E1, E2, E2, E3)

and

R3 = R(E1, E3, E3, E2).

Along a geodesic α(t) constructed in Proposition 4.11, we may solve the differential

equations (4.1.16) to obtain

|Ri(t)| = |Ri(0)| exp
(
− 3

2

∫ t

0
tr(A)(s)ds

)
(5.0.1)

for i = 2, 3.

Recall from Lemma 4.13 that either R2 6= 0 or R3 6= 0 at each point in C. The following
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lemma is a useful observation for the proof of both theorems.

Lemma 5.2. Let p ∈ C and let α : (k, l) → C be a maximal integral curve of E1 with

α(0) = p. Furthermore, assume that α(t) is a geodesic.

(1) If l is finite, then limt→l− Ri(α(t)) = 0, for i = 2, 3.

(2) If k is finite, then limt→k+ Ri(α(t)) = 0, for i = 2, 3.

Proof. We prove (1). The proof of (2) is analogous. Suppose that l <∞, then α(l) ∈ E ∪ I.

As M is complete, we may extend α : (k, l) → C to a complete geodesic α : R → M .

Let {E1(t), E2(t), E3(t)} be the orthonormal framing determined by parallel translating the

orthonormal frame {E1, E2, E3} at α(0) along α(t). By (4.1.7), {E1(t), E2(t), E3(t)} agrees

with the orthonormal framing {E1, E2, E3} of C as long as α(t) ∈ C.

If α(l) ∈ I, then the formula for a curvature tensor at an isotropic point implies that

R(E1(l), E2(l), E2(l), E3(l)) = 0 = R(E1(l), E3(l), E3(l), E2(l)).

The lemma now follows from continuity of parallel translation and the curvature tensor.

Next, consider the case when α(l) ∈ E . Then exactly one of λ(t) or Λ(t) converges to

ε as t → l−. If Λ(t) → ε, then m → ∞. The formulae for E1, E2 and E3 in C then

imply that the distances between the ordered orthonormal frames {E1(t), E2(t), E3(t)} and

{−e2(t), e1(t), e3(t)} converge to zero as t → l−. Continuity of the curvature tensor and

(2.0.1) imply (1) in this case. Likewise, if λ→ ε, then m→ 0. In this case, the distances be-

tween the ordered orthonormal frames {E1(t), E2(t), E3(t)} and {e1(t), e2(t), e3(t)} converge

to zero as t→ l+, concluding the proof similarly.
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5.1 Spherical Rank Rigidity

For three-manifolds of higher spherical rank, we have the following theorem (Theorem 2):

Theorem 5.3. A complete Riemannian three-manifold M has higher spherical rank if and

only if M has constant sectional curvatures one.

Proof. By Proposition 4.22, it suffices to show that O is empty. Suppose that O is nonempty.

By Proposition 4.11, there exists a geodesic α such that α(0) ∈ F+ and α′ = E1 on a

connected component C of O. Let (k, l) be the maximal open interval containing zero such

that α((k, l)) ⊂ C.

Set ε = 1 in Proposition 4.19 to obtain

d

dt
(tr(A)) = −2− 1

2
(tr(A))2. (5.1.1)

If l < ∞, we obtain a contradiction as follows. By Lemma 4.13, either |R2(0)| > 0 or

|R3(0)| > 0. Assume that |R2(0)| > 0. The argument for the case when |R3(0)| > 0 is

similar. Note that −tr(A) is well-defined and smooth on (k, l). Furthermore, (5.1.1) implies

that −tr(A) is strictly increasing on (k, l). Hence by (5.0.1),

lim
t→l−

|R2(t)| = lim
t→l−

|R2(0)| exp
(
− 3

2

∫ t

0
tr(A)(s)ds

)
> |R2(0)| exp

(
− 3

2
tr(A)(0) · l

)
> 0.

This is a contradiction to Lemma 5.2.

In the case when l =∞, a contradiction is obtained as the solution to (5.1.1) has a finite

forward time singularity.
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5.2 Hyperbolic Rank Rigidity

We first prove the following property for the isocurved geodesics constructed in Proposition

4.11.

Lemma 5.4. Let α(t) be an isocurved geodesic as constructed in Proposition 4.11 and let

(k, l) be the maximal open interval containing zero such that α((k, l)) ⊂ C.

(1) l =∞ if tr(A)(0) ≥ −2.

(2) k = −∞ if tr(A)(0) ≤ −2.

Proof. By taking ε = −1 in Proposition 4.19, we have the following evolution equation along

α(t) on (k, l):

d

dt
(tr(A)) =

1

2
(2− tr(A))(2 + tr(A)). (5.2.1)

Note that by Lemma 4.13, either |R2(0)| > 0 or |R3(0)| > 0. Assume that |R2(0)| > 0.

The argument for the case when |R3(0)| > 0 is similar.

To prove (1), suppose that l <∞ when tr(A)(0) ≥ −2. A straightforward analysis on the

stability of equilibrium points for (5.2.1) shows that tr(A)(t) is bounded by some constants

on [0, l) when tr(A)(0) ≥ −2. Hence by (5.0.1), we have

lim
t→l−

|R2(t)| = lim
t→l−

|R2(0)| exp
(
− 3

2

∫ t

0
tr(A)(s)ds

)
> 0.

This is a contradiction to Lemma 5.2, concluding the proof of (1).

To prove (2), suppose that k is finite when tr(A)(0) ≤ −2. In this case, a straightforward

analysis on the stability of equilibrium points for (5.2.1) shows that tr(A)(t) is bounded
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above by -2 on (k, 0]. By (5.0.1),

lim
t→k+

|R2(t)| = |R2(0)| exp
(
− 3

2

∫ k

0
tr(A)(s)ds

)
> 0, (5.2.2)

contradicting Lemma 5.2. Hence k = −∞, concluding the proof of (2).

We now give the proof of Theorem 1, which is restated in the following.

Theorem 5.5. A complete finite volume Riemannian three-manifold M has higher hyperbolic

rank if and only if M is hyperbolic.

Proof. By Theorem 2.13, it suffices to show that O is empty. Suppose that O is nonempty.

Let U be the open subset of C as in Proposition 4.11. For each p ∈ U , let ϕt(p) be the

integral curve of E1 starting from p.

Note that after possibly shrinking the open set U , we may assume that either tr(A)(p) >

−2 for all p ∈ U or tr(A)(p) ≤ −2 for all p ∈ U .

If tr(A)(p) > −2 for all p ∈ U , then Lemma 5.4 implies that ϕt(U) ⊂ C for all t > 0.

Furthermore, (5.2.1) implies that tr(A) approaches to 2 on ϕt(U) as t approaches to infinity.

As

tr(A) = div(E1) =
d

dt

∫
ϕt(U)

dvol, (5.2.3)

the volume of C is infinite, a contradiction to the assumption that M has finite volume.

Hence O is empty.

Likewise, if tr(A)(p) ≤ −2 for all p ∈ U , Lemma 5.4 implies that ϕ−t(U) ⊂ C for all
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t > 0. The equation (5.2.1) again shows that

div(−E1) = −div(E1)→ 2

on ϕ−t(U) as t approaches to infinity. Hence an analogous argument shows that C has infinite

volume, contradicting to the assumption that M has finite volume. Hence O is empty. This

concludes the proof of the theorem.

We now prove Theorem 5.

Theorem 5.6. A homogeneous three-manifold M of higher hyperbolic rank is hyperbolic.

Proof. By Theorem 2.14, it suffices to rule out the case when M = O. Suppose that M = O.

Since M is homogeneous, R2 and R3 are constant on C. At each point in C, either R2 6= 0

or R3 6= 0. By (4.1.16), tr(A) = 0 on C, contradicting with the first equation in (4.19).

5.3 Euclidean Rank Rigidity

In this section, we show that O must be empty for finite volume three-manifolds of higher

Euclidean rank. This leads to the proof of Theorem 3.

Theorem 5.7. Let M be a finite volume three-manifold of higher Euclidean rank. Then M

has extremal curvatures, i.e., M = E ∪ I.

To prove Theorem 5.7, we first prove the following lemma.

Lemma 5.8. Let M be a finite volume three-manifold of higher Euclidean rank and let α(t)

be an isocurved geodesic as constructed in Proposition 4.11. Then

(1) α((−∞,∞)) ⊂ C,
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(2) tr(A) = 0 along α(t) for all t ∈ (−∞,∞), and

(3) either < ∇E3
E3, E2 > or < ∇E2

E2, E3 > is a non-constant linear function of t along

α(t) for all t ∈ (−∞,∞).

Proof. By setting ε = 0 in Proposition 4.19, we have that

d

dt
(tr(A)) = −1

2
(tr(A))2 (5.3.1)

along α on the maximal open interval I containing 0 such that α(I) ⊂ C. The solution to

(5.3.1) goes to −∞ in finite forward time when trA(0) < 0, ∞ in finite backward time when

trA(0) > 0. As α(0) is a generic point, either R2(0) 6= 0 or R3(0) 6= 0. Equation (5.0.1)

and Lemma 5.2 together implies that tr(A) develops singularity on I unless trA(0) = 0.

Therefore, trA(t) = 0 on I. The differential equation (4.1.16) then implies that Ri(t) is

constant along α(t) for t ∈ I and i = 2, 3. Using Lemma 5.2 again, I = (−∞,∞) and

trA(t) ≡ 0, which implies (1) and (2).

To prove (3), first use Lemmas 4.15 and 4.18 and (2) to calculate

R2 = R(E1, E2, E2, E3) = E1(< ∇E2
E2, E3 >)

and

R3 = R(E1, E3, E3, E2) = E1(< ∇E3
E3, E2 >).

As either R2(t) or R3(t) is a nonzero constant, (3) follows.

We now give the proof of Theorem 5.7.

Proof. Let M be a finite volume three-manifold of higher Euclidean rank. Suppose that O
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is nonempty. Let U be the open subset of C as in Proposition 4.11. For each p ∈ U , let ϕt(p)

be the integral curve of E1 starting from p. By (1) and (2) of Lemma 5.8, ϕt gives a volume

measure preserving R action on the open set

G =
⋃
s∈R

ϕs(U).

By assumption, G has finite measure. The Poincare recurrence Theorem then implies that

there exists a small compact set K, a point x ∈ K, and a monotonic sequence of real numbers

{ni} to infinity such that ϕni(x) ∈ K. This contradicts with (3) of Lemma 5.8. Hence O is

empty.

By diagonalizing the Jacobi operator, one can see that when M has extremal curvatures,

a normal parallel field making curvature 0 with the geodesic is actually Jacobi. Therefore,

Theorem 3 is a corollary of Theorem 5.7 and the rigidity theorem of Bettiol and Schmidt

[3, Theorem A]. We would like to remind the reader again that the Euclidean rank in [3] is

defined as the least number of independent normal parallel Jacobi fields.
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Chapter 6

Examples

We now give constructions of non-homogeneous manifolds of higher hyperbolic rank with

infinite volume. Let Hn = {(xi) ∈ Rn|xn > 0} be the upper half-plane model for the

hyperbolic space with the metric hn = x−2
n (dx2

1 + · · ·+ dx2
n). The examples we construct in

this chapter are warped products of R and the hyperbolic space. Throughout, let

Mn = R×Hn−1 = {(t, (xi)) | t ∈ R, (xi) ∈ Hn−1}.

The main goal of the chapter is to prove a more detailed version of Theorem 4.

Theorem 6.1. For each (a, b) ∈ R × [−1, 1], Mn admits a complete Riemannian metric

hn,a,b satisfying the following conditions.

(1) For fixed n ≥ 2, the metrics hn,a,b depend smoothly on (a, b).

(2) There is a surjective homomorphism from Isom(Hn−1, hn−1)→ Isom(Mn, hn,a,b).

(3) Each tangent 2-plane to Mn containing the tangent vector ∂
∂t exponentiates to a totally-

geodesic surface isometric to the hyperbolic plane.

(4) The sectional curvature of a 2-plane σ at p = (t, (xi)) making angle θ ∈ [0, π2 ] with ∂
∂t is

given by

sec(σ) = −1 +
4(1− b2 − e2a)

((1 + b)et + (1− b)e−t)2
sin2(θ).
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(5) For n ≥ 3, (Mn, hn,a,b) Riemannian covers a finite volume manifold if and only if

1 = b2 + e2a, or equivalently, if and only if (Mn, hn,a,b) is isometric to (Hn, hn).

6.1 Warping hyperbolic 1-space over the Euclidean line.

In this section, we describe a way to write hyperbolic space as a warped product over R. Let

t denote the Euclidean coordinate on R and r > 0 the Euclidean coordinate on H1. Consider

the foliation of H2 by the family of (Euclidean) upper-half semicircles with common center

the origin in R2. Each such semicircle, parameterized appropriately, is an h2-geodesic: For

each r > 0, the map

Fr : R→ H2

defined by Fr(t) = (r tanh(t), r sech(t)) parameterizes the semicircle through (0, r) in the

clockwise fashion as a unit-speed h2-geodesic with the initial point (0, r).

Define a diffeomorphism F : R×H1 → H2 by

F (t, r) = Fr(t).

In the coordinates (t, r) on R×H1, the metric F ∗(h2) is given by

F ∗(h2) = dt2 + cosh2(t)h1 = dt2 + e2 ln(cosh(t))h1.

Hence, (H2, h2) is isometric to a warped product of the hyperbolic line over the Euclidean

line.

In fact, the hyperbolic plane H2 is isometric to many different warpings of H1 over R.
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The warping functions are described in terms of solutions to the second order differential

equation

φ′′(t) + (φ′(t))2 − 1 = 0. (6.1.1)

For a ∈ R and −1 ≤ b ≤ 1, the solution to (6.1.1) determined by the initial conditions

φ(0) = −a and φ′(0) = b is given by

φa,b(t) = ln(
(1 + b)et + (1− b)e−t

2ea
). (6.1.2)

Let M2 = R × H1 and let π : M2 → R be the first coordinate projection. Ignore the

slight abuse of notation in letting φa,b also denote the function π∗(φa,b) on M2.

For a and b as above, consider the warped product Riemannian metric

h2,a,b = dt2 + e
2φa,bh1

on M2. In this notation, h2,0,0 = F ∗(h2).

Lemma 6.2. For each (a, b) ∈ R× [−1, 1], (M2, h2,a,b) is isometric to the hyperbolic plane

(H2, h2).

Proof. The proof only uses the fact that φa,b is a solution to (6.1.1). For this reason, and

to simplify notation, set h = h2,a,b and φ = φa,b in the remainder of this proof. As (R, dt2)

and (H1, h1) are complete, so too is their warped product (M2, h) [13, Lemma 40, pg. 209].

Therefore, it suffices to prove that h has constant curvature −1.

The curvature at each point equals−1 as a consequence of (6.1.1) since by [13, Proposition

42 (4), pg. 210], the sectional curvature at a point is given by −φ′′ − (φ′)2.
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6.2 Main Construction

The main construction is a higher dimensional generalization of the analogue in the previous

section. However, for dimension greater than two, the metrics we obtain are no longer

hyperbolic.

Fix n ≥ 2 and (a, b) ∈ R× [−1, 1]. Let φa,b be as in (6.1.2). Let hn,a,b denote the warped

product Riemannian metric on Mn = R×Hn−1 defined by

hn,a,b = dt2 + e
2φa,bhn−1.

The metric hn,a,b is complete by [13, Lemma 40, pg. 209]. We now consider the properties

(1)-(5) stated in Theorem 6.1.

Property (1): Property (1) is immediate since the warping functions φa,b depend smoothly

on (a, b) ∈ R× [−1, 1].

Property (2): Given F ∈ Isom(Hn−1, hn−1), define F̄ : Mn →Mn by

F̄ (t, (xi)) = (t, F (xi)).

Then F̄ ∈ Isom(Mn, hn,a,b) and the map

Isom(Hn−1, hn−1)→ Isom(Mn, hn,a,b)

defined by F 7→ F̄ is a monomorphism.
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Property (3): To find one such totally-geodesic hyperbolic plane, defineG ∈ Isom(Hn−1, hn−1)

by

G(x1, . . . , xn−2, xn−1) = (−x1, . . . ,−xn−2, xn−1).

As Ḡ is an isometry, its fixed point set

Σ = {(t, (0, . . . , 0, xn−1))} ⊂Mn

is a totally-geodesic surface. The map (t, (0, . . . , 0, xn−1)) 7→ (t, xn−1) defines an isometry

between the induced metric on Σ and (M2, h2,a,b). By Lemma 6.2, Σ is isometric to the

hyperbolic plane. We conclude by showing that given an arbitrary tangent plane σ as in

Property (3) there is an isometry of Mn that carries a tangent plane to Σ to σ.

Let π : Mn → R denote the first coordinate projection and Ft̄ the fiber above t̄ ∈ R. For

each p ∈ Ft̄, let Vp denote the set of tangent 2-planes to Mn at p that contain the vector

∂
∂t(p). Let

Xt̄ =
⋃
p∈Ft̄

Vp

and let σ0 denote the tangent space to Σ at the point (t̄, (0, . . . , 0, 1)) and note that σ0 ∈ Xt̄.

As Isom(Hn−1, hn−1) acts transitively on unit-tangent vectors to Hn−1, Isom(Mn, hn,a,b)

acts transitively on the set Xt̄. Hence, there exists an isometry Ī of Mn that carries σ0 to σ.

As

exp(σ) = exp(dĪ(σ0)) = Ī(exp(σ0)) = Ī(Σ),

exp(σ) is a totally geodesic surface isometric to the hyperbolic plane.
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Property (4): Let p = (t, (xi)) ∈M and let v, w, ∂∂t be orthonormal vectors at p.

Property (3) implies that

R(
∂

∂t
, w, w,

∂

∂t
) = −1. (6.2.1)

By [13, Proposition 42 (5), pg. 210],

R(v, w, w, v) = −1 +
4(1− b2 − e2a)

((1 + b)et + (1− b)e−t)2
. (6.2.2)

By [13, Proposition 42 (3), pg.210],

R(
∂

∂t
, w)v = 0. (6.2.3)

Now fix a two dimensional subspace σ ⊂ TpM . Assume that σ makes angle θ ∈ [0, π2 ]

with ∂
∂t . Then there exist unit length vectors v and w perpendicular to ∂

∂t such that

{v̄ = cos(θ)
∂

∂t
+ sin(θ)v, w}

is an orthonormal basis of σ. By (6.2.1)-(6.2.3) and the symmetries of the curvature tensor,

sec(σ) = R(v̄, w, w, v̄)

= cos2(θ)R(
∂

∂t
, w, w,

∂

∂t
) + sin2(θ)R(v, w, w, v)

= −1 +
4(1− b2 − e2a)

((1 + b)et + (1− b)e−t)2
sin2(θ).

Property (5): As (Mn, hn,a,b) is simply connected and complete, it is isometric to (Hn, hn)

if and only if it has constant sectional curvatures −1. By (4), this is equivalent to the

parameters satisfying 1 = b2 + e2a. As (Hn, hn) Riemannian covers finite volume manifolds,
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it remains to prove that when n ≥ 3 and 1 6= b2 + e2a, (Mn, hn,a,b) does not Riemannian

cover a finite volume manifold.

Assume that 1 6= b2 + e2a. As isometries preserve sectional curvatures, Property (4)

implies that each isometry F ∈ Isom(Mn, hn,a,b) splits as F ((t, xi)) = (F1(t), F2(xi)) for

some F1 ∈ Isom(R, dt2) and F2 ∈ Isom(Hn−1, hn−1). If b = ±1, then F1 is the identity. If

b 6= ±1, then F1 is either the identity or reflection about the critical point t0 = ln(
√

1− b)−

ln(
√

1 + b) of ((1 + b)et + (1− b)e−t)2.

Let (N, g) be a Riemannian manifold with universal covering (Mn, hn,a,b). Its funda-

mental group π1(N) is identified with a subgroup Γ of Isom(M,hn,a,b) that acts properly

discontinuously and fixed point freely on Mn. The association γ 7→ γ1 described above

defines a homomorphism Φ : Γ → Isom(R, dt2) whose kernel has index at most two in Γ.

Let (N̄ , ḡ) be the Riemannian covering of (N, g) associated to the subgroup ker Φ of Γ.

As each isometry in ker Φ acts trivially on the first factor of Mn = R×Hn−1, the metric

ḡ is also a warped product metric with the same warping function e
φn,a,b . By (4), ḡ has

negative sectional curvatures. By [4, Lemma 7.6], e
φn,a,b is a non-constant convex function

on (N̄ , ḡ). By [4, Proposition 2.2], (N̄ , ḡ) has infinite volume. Therefore, (N, g) has infinite

volume, as required.
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Chapter 7

Concluding Remarks

Our ultimate goal is to generalize Theorem 1 and 2 into higher dimensions.

Conjecture 7.1. A complete finite volume Riemannian manifold has higher hyperbolic rank

if and only it is locally symmetric. A complete Riemannian manifold has higher spherical

rank if and only if it is locally symmetric.

The full conjecture seems to be hard. Without additional assumptions on the curvature

tensors, it is unlikely that our approach for the three dimensional case can be applied to the

higher dimensional cases. Here in this chapter, we mention several possible directions for

future work.

7.1 Constructing Examples

In Chapter 6, we perturbed umbilic foliations in the real hyperbolic space to obtain a one

parameter family of non-homogeneous manifolds of higher rank. It is natural to ask if one

can generalize this construction to other noncompact rank one symmetric spaces.

Problem 7.2. Is it possible to perturb complex, quaternionic, or octonionic hyperbolic met-

rics to obtain a one parameter family of non-symmetric metrics of higher hyperbolic rank?
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7.2 Curvature Assumption

Fixing ε = −1, 0, or 1, it is less known if geometric rank characterizes symmetric spaces

when sec ≥ ε. Spatzier and Strake showed that manifolds of higher rank are not rigid when

sec ≥ 0 by constructing many non-symmetric examples in [17]. Partial rigidity results were

given by Schmidt, Shankar, and Spatzier in [14]. To explain their result, we introduce the

following definitions.

Fix ε = −1, 0, or 1. Let Md be a complete d dimensional Riemannian manifold with

sec ≥ ε. The rank (hyperbolic, Euclidean, or spherical, depending on ε = −1, 0, or 1) of

a geodesic γ : R → M is defined as the number of linearly independent normal parallel

fields making curvature ε with the geodesic. As we assume that the sectional curvatures

are bounded below from ε, these notions of rank are well-defined. We say that the rank

(hyperbolic, Euclidean, or spherical) of M is at least k if the rank of every geodesic in M is

at least k.

Schmidt, Shankar, and Spatzier showed that, when d is odd, if sec ≥ 1 and the spherical

rank of Md is at least d− 2, then Md must have constant sectional curvatures. It is natural

to ask if one can prove a similar result in the hyperbolic rank setting.

Conjecture 7.3. Let Md be a finite volume, complete, d dimensional Riemannian manifold

with sec ≥ −1. Then the hyperbolic rank of M is at least d − 2 if and only if M is real

hyperbolic.

It should be noted that when sec ≥ −1, the hyperbolic rank of the other negatively

curved d dimensional symmetric spaces are less than d− 2.
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7.3 Stronger Rank assumption

Let M be a complete Riemannian manifold such that every geodesic is contained in a closed,

immersed flat of dimension at least two. Molina and Olmos proved that M is locally sym-

metric if it is locally irreducible at any point in an open nonempty subset. Motivated by

their results, we give the following definition.

Definition 7.4. A complete Riemannian manifold is said to have higher integrable hy-

perbolic (respectively spherical) rank if every geodesic in the manifold is contained in an

immersed totally geodesic submanifold of dimension greater than 2 and constant sectional

curvature −1 (respectively 1).

It is natural to ask if the results given by Molina and Olmos can be generalized into the

hyperbolic and spherical setting.

Problem 7.5. Classify manifolds of higher integrable rank.

Here is one small step towards integral spherical rank rigidity.

Theorem 7.6. Let Mn be a complete n dimensional Riemannian manifold with n ≥ 3

and let k be an integer satisfying 2k > n. Then Mn is isometric to the sphere of constant

sectional curvatures 1 if and only if every geodesic in Mn is contained in an embedded totally

geodesic k dimensional sphere of constant sectional curvatures 1.

Proof. Note that all geodesics in M are simple closed, and prime geodesics have length 2π.

Since the index of each geodesic in M is at least k with k greater than n/2, the Bott-Samelson

Theorem [2, Theorem 7.23] implies that M is a homotopy sphere.

Let p ∈ M and γ a unit speed geodesic starting from p. By assumption, γ is contained

in an embedded totally geodesic k dimensional sphere Sγ of constant sectional curvatures 1.
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Let A(p) be the antipodal point of p in Sγ and let η be any other unit speed geodesic

starting from p. Then η is also contained in an embedded totally geodesic k dimensional

sphere Sη of constant sectional curvatures 1. As 2k > n, the tangent spaces TpSγ and TpSη

share a line. Hence η also passes through A(p) at time π. Therefore, all geodesics starting

from p passes through A(p) at time π and inj(M) = diam(M) = π. Hence M is a Blaschke

manifold homotopic to a sphere. By the solution to the Blaschke conjecture for spheres [2,

Appendix D], M has constant sectional curvatures 1.
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