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ABSTRACT 

REMOTE SENSING FOR MAPPING AND MODELING PRESENCE OF ARMYWORM 

INFESTATION ON MAIZE IN EJURA, GHANA 

By  

Thomas Bilintoh 

The African armyworm poses a significant threat to human food security in many regions. 

Detecting and monitoring the effects of this pest is, therefore, an activity that needs to be carried 

out with the utmost urgency. Field surveys in combination with remote sensing have the 

potential to play a pivotal role in understanding the distribution and effects of the African 

armyworm. However, finding remotely sensed data and reliable variables from field surveys 

to model and predict African armyworm distribution can be a daunting activity. Some of the 

challenges include: which vegetation index to use, how to manage cloud cover in satellite 

imagery and which spatial and temporal resolution to select. On the other hand, field surveys 

are not only subject to biased responses but a lack of recall power from the respondents.  

Despite these challenges, the onus falls on the research community to provide methods that can 

help address the uncertainties in these data sources for research on armyworm impacts on crops. 

This thesis consists of two coupled studies on armyworm infestation in Ejura, Ghana. The first 

is concerned with modeling the relationship between farmer-provided survey responses and 

vegetation quality as captured by satellite remote sensing. To assess the accuracy of field 

survey responses, the first study begins by hypothesizing that Enhanced Vegetation Index 

(EVI) has a positive correlation with armyworm infestation. This hypothesis was then tested 

through a logistic regression, where the dependent variable was farmers’ declaration of 

presence or absence of armyworm infestation in 2017. Independent variables were principal 

components that measured slope and EVI from Landsat 8 for April, May, and July of 2017.  

Results from the logistic analysis revealed that there was no correlation between EVI, slope 

and armyworm infestation. Interestingly, a prediction model resulting from the logistic model 



 
 

performed well by correctly predicting 11 out of 13 armyworm infestation cases. Nevertheless, 

the model could only predict one case of absence of armyworm infestation out of five cases.  

The second study contrast two vegetation index products obtained at very different spatial 

resolutions. I envisage possible applications of the second finding from the second study in 

addressing the issue of cloud cover in satellite-based remote sensing by resampling fine-scale 

Parrot Sequoia imagery to Landsat 8 (30 m resolution) imagery. Although a time lag of 4 days 

was present between Landsat 8 imagery and data obtained from Parrot Sequoia multispectral 

camera deployed on a UAV, a prediction accuracy of 0.67 was achieved. Developing a 

technique that could rescale Parrot Sequoia data to Landsat 8 imagery is a novel aspect of this 

work. Fishnet, which is a popular tool in ArcMap, was instrumental in the rescaling phase of 

this study. Mapping residuals from the EVI (Landsat 8) and EVI2 (rescaled Parrot Sequoia) 

image showed that the regression model developed predicted well in areas with high and 

homogenous vegetation as compared to areas with low and heterogeneous vegetation.     
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CHAPTER ONE 

INTRODUCTION 

     African armyworms (Spodoptera exempta), although believed to have originated in 

North America, are most associated as a major crop pest in the continent of Africa, which 

recorded its first African armyworm infestation in the 1940s (Rose et al., 1987). In recent years 

the country of Ghana has been heavily impacted by outbreaks of these crop pests. In 2017 

Ghana lost a total of 18,000 hectares of cropland to the African armyworm menace (Ghanaweb, 

2017). Given such high levels of infestation which threaten food security not only within Ghana 

but across the globe, several intervention mechanisms have been developed, proposed and 

implemented by researchers such as Brown (2015) and Faithpraise et al. (2015). Field surveys 

and remotely sensed data have been paramount to the success of these intervention 

mechanisms. While field surveys have been used to populate databases that have variables such 

as yield, levels of infestation, years of infestation, farm size, pest management practices to 

mention but a few, the utility of remote sensing has been explored via computation of 

vegetation indices. The normalized differential vegetation Index (NDVI) stands outs in this 

regard. Several researchers have used NDVI to measure vegetation loss due to crop pest and 

subsequently related their findings to a loss in crop yield (Wilson and Gatehouse, 1992; 

Acharya and Thapa, 2015).  

     Although the application of field surveys and remote sensing to detection and 

monitoring of crop pests is important, uncertainties and inaccuracies within the data sources 

need to be addressed if accurate and insightful conclusions are to be achieved. Uncertainties 

and inaccuracies in remotely sensed data may be as a result of cloud cover, gaps in the temporal 

resolution of images, and variation in image spatial resolution (Zhu and Woodcock, 2012). 

While the first problem is an ongoing challenge for the satellite remote sensing community, 

problems from the other two can be mitigated by a combination of different sources of remotely 
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sensed data (UAVs, WorldView-2, Sentinel, Landsat, etc.).  Field surveys are also subject to 

inaccuracies and uncertainties due to the structure of the questionnaire as well as responses 

obtained from respondents (Tessier, 2012). 

 The goal of this study is to validate the relationship between information obtained from 

farmers on the subject of African armyworm infestation via remote sensing and statistical 

techniques. Chapter 2 of this thesis discusses a research project to assess the relationship 

between farmers’ responses to African armyworm infestation in Ejura, Ghana and vegetation 

metrics from satellite remote sensing. A total of 67 farm sites were sampled for inclusion in a 

logistic regression analysis. These farms were partitioned into 51 training sites and 18 testing 

sites. Since the goal in this chapter was to ascertain if remotely sensed data are good predictor 

variables for armyworm infestation, only slope and Landsat 8 EVI values constituted predictor 

variables while farmers’ responses to the presence or absence of armyworm infestation 

(presence=1, absence=0) served as the dependent variable. 

 The goal of Chapter 3 was to provide a solution to the issue of cloud cover in satellite-

based remote sensing.  A linear regression model was developed using Landsat 8 and resampled 

Parrot Sequoia EVI2 and was subsequently tested on a section of the study area (about 17 

acres).    A relatively novel approach was developed to rescale EVI2 from Parrot Sequoia to 

EVI from Landsat 8. Achieving this was based on understanding how the pixel values in the 

Landsat 8 image were obtained. This approach, therefore, facilitated the comparison of these 

two indices even though the spatial resolutions were so different. Comparing EVI and EVI2 in 

this study context serves as another novel attribute of this research  
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CHAPTER TWO 

ASSESSING VALIDITY OF FARMER RESPONSES TO ARMYWORM 

INFESTATION IN EJURA, GHANA: A STATISTICAL AND REMOTE SENSING 

APPROACH 

 

Abstract 

Since the 1960s, Sub-Saharan Africa has experienced an influx of African armyworm 

infestation, including the country of Ghana. Three political regions in Ghana have experienced 

the highest crop losses: Brong Ahafo (Eastern), Volta and Northern. While regional agricultural 

loss assessments are available through field surveys, these surveys are subject to considerable 

uncertainty in regards to the spatial extent and timing of infestation due to the lack of robust 

applications of geospatial and statistical methodologies. This research therefore uses a 

combination of remote sensing and statistical techniques to assess the uncertainty in factors 

involved in African armyworm infestation on maize and their extent in Ejura, Ghana. 

Specifically, this research uses regression analysis to validate survey responses about 

armyworm infestation reported by farmers in Ejura for the farming season of 2017. To achieve 

this, principal components derived from mean Enhanced Vegetation Index (EVI) obtained from 

the Landsat 8 level 2 product for the months of April, May and July as well as mean slope of 

the study area were regressed against presence or absence of armyworm infestation. Although 

this model did not incorporate other significant parameters such as the entire maize 

phenological cycle (from April to September), fertilizer usage, or soil type an armyworm 

infestation prediction model was developed with a 61 percent prediction accuracy for a 

validation dataset. This work therefore shows that making decisions in relation to African 

armyworm infestation from only remotely sensed information or field surveys could lead to 

biased interpretation. 
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2.1. Introduction 

 Food security is a complex topic which involves demand factors such as population 

growth, urban migration, and change in diet, and also supply factors, including number and 

size of farms, total arable land extent, agricultural technology, impact of climate variability and 

change, and other effects on yield. To help tackle this issue, there has been tireless efforts 

across the world to ensure warning systems are in place to help grow, process and store food, 

while other factors such as climate change, land use land cover change and pest control 

continue to pose problems. Crop pests in particular are very important to understand because 

of their potential to devastate crops especially in parts of the world that depend on these crops 

for their food source (SC and Echezona, 2012; Bebber et al., 2014).  

 One pest that has gained notoriety in food security over the past decades is the African 

Armyworm Spodoptera exempta). The African Armyworm has impacted food security in 

African and more specifically Ghana in recent years (Rose et al., 1997; Sibanda, 2004). A 

report by Nboyine et al., (2017) showed that over 4,900 hectares of cropland in Ghana were 

devastated by African Armyworm in 2016, and approximately  $164,000,000 of crop yield 

losses were recorded in  2017 as reported in Table 2.1.  

Table 2.1: Regional statistics of African Armyworm Infestation 

Region Infestation Extent (hectares) 

Brong Ahafo 14,201 

Eastern 1,583 

Ashanti 365 

Central 1,349 

Greater 117 

Northern 354 

Upper West 6 

Volta 227 

Western 15 

Total 18,217 

Source:(Ghanaweb, 2017) 
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 The life cycle of the Africa armyworm revolves around four phases: egg, larvae and 

pupating, adult moth stages. The larvae stage,  which spans between 14-22 days after the eggs 

of a moth are hatched, represents a voracious period of the organism’s life cycle ( Johnson, 

1987; Idrissa et al., 2017). According to Barlow and Kuhar, (2009), Barlow & Kuhar, (2009) 

and Capinera, (2017), maize leaves are among the favored  foliage  consumed by African 

Armyworms, thus affecting the phenology of the maize and resulting in the maize plant’s 

inability to carry out photosynthesis.  

 The magnitude and extent of pest damage on crop yield has motivated a range of 

research on monitoring and modeling the effect of crop pests via remotely sensed data. 

However, while remotely sensed information has been applied over the years to investigate the 

spatial distribution of a variety of crop pests (e.g., Yang et al., 2009; Prabhakar et al., 2013; 

Lausch et al., 2013; Asiedu et al., 2017), investigations of African armyworm infestation 

within sub-Saharan Africa are uncommon. A review of existing literature shows that while 

works such as Riley, (1989) and (Pisani et al., 2000) presented a conceptual frame work that 

could address the issue of African armyworm infestation through remote sensing, only Adama 

and Mochiah, (2017) applied these frameworks in Western Africa. 

 At fine spatial scales, an object oriented approach was used by Alvarez-Taboada, et al., 

(2017)  to identify and quantify the habitat and distribution of invasive plant species. 

Classification of crop cover produced from Unmanned Aerial Vehicle (UAV), or drone was 

compared with classifications from images obtained via orbital platform (WorldView-2: WV2) 

data sets. The results from WV2 classifications showed accuracies above 95% while UAV 

images produced classification above 75%. At broader spatial scales, Adama and Mochiah, 

(2017) used normalized Vegetation Index (NDVI) from MODIS, rainfall data and temperature 

data to assess the relationship between outbreaks of the African armyworm and climatic factors 

in the forest transition zone of Ghana. Their research revealed that NDVI values were low 



6 
 

during times when African armyworm infestation occurred in the study area amidst favorable 

weather conditions.  

 Although studies have been conducted to justify significant drops in vegetation 

greenness while controlling for precipitation and temperature, no research has investigated 

armyworm infestation in relation to enhanced vegetation index (EVI). In theory, EVI could be 

more suitable than NDVI for studies of African armyworm infestation on maize (Huete et al., 

2002): while NDVI estimates leaf area index in canopies without compensating for effects of 

soil background, EVI estimates leaf area index by differentiating soil background from 

vegetation in low ground cover areas. EVI therefore should estimate spectral values that truly 

reflect the vegetation cover without the influence of soil spectral values. EVI can be calculated 

for pixels in multiband imagery with the following equation: 

EVI=G
(NIR − Red)

NIR+(C1*Red-C2*Blue)+L
                                                                                 (1) 

Where L is a soil adjustment factor and C1 and C2 are coefficients used to correct aerosol 

scattering in the red band by the use of the blue band. The Blue, Red, and NIR represent 

reflectance at the blue (0.45-0.52μm), red (0.6-0.7μm), and near-infrared (NIR) wavelengths 

(0.7-1.1μm), respectively. In general, G=2.5, C1=6.0, C2=7.5, and L=1 (Matsushita et al., 

2007). 

 Although  very insightful findings about crop pests can be obtained from remotely 

sensed data, making inferences from remote sensing data without some form of ground truth 

can be misleading (Bobbe et al., 2001; Miyazaki et al., 2011). One way of providing reference 

data for remotely sensed data analysis is with field surveys, and this  approach has been 

explored in several studies ( e.g., Abtew et al., 2016; Osgood et al., 2018; Caiserman et al., 

2019). However, surveys are also subject to errors. Vidich and Bensman (1954) grouped 
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sources of errors from the respondent  into 4 broad categories: 1) purposeful intent, which refers 

to the respondent’s intent to give better impression of a situation via slanted information; 2) 

temporary role of respondent, which occurs when the respondent gives answers with the 

intention of helping the researcher to solve a specific problem; 3) psychology of respondent, 

which refers to situations where the respondent is subject to failure of and selectivity of 

memory recall; and 4) involuntary error, which addresses situations where the respondent is 

unable to give accurate answers due to constraint or blockages resulting from the structure of 

the interview. This study appears to be the first to attempt to validate farm interview responses 

with remotely sensed data applied to African armyworm infestation. 

 This research therefore seeks to use a combination of remote sensing and statistical 

techniques to unravel the uncertainty in questionnaire response about African armyworm 

infestation in maize in Ejura, Ghana. Specifically, this research uses a two-step statistical 

approach to validate farmers’ responses to a question relating to armyworm infestation. In the 

first step, collinearity between five variables (maize yield in 2017, slope, EVI for April, May 

and July 2017) for 69 farms is reduced through Principal Component Analysis (PCA). The 

second step employs logistic regression analysis to develop a model that uses farmers’ 

responses to a question regarding presence/absence of infestation for 2017 as a dependent 

variable and an informative subset of principal components from step one.  

2.2.  Data and methods  

 2.2.1. Study Area 

  The study area is in the district of Ejura-Sekyedumase, located in the northern part of 

the Ashanti Region of Ghana and situated within longitudes 1˚5 W and 1˚39’ W and latitudes 

7˚9’ N and 7˚36’ N (Figure 2.1).  The total population of the district is approximately 85,000 

people, a majority of whom are less than 15 years of age.  The work force (ages 20-64) 
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comprises 43.2% of the population. Ejura-Sekyedumase has an average annual temperature 

range between 26.4  and 27.5°C while its average annual rainfall is between 1,200 mm – 1,500 

mm.  The chief rainy season occurs between April and November. However, the drier dusty 

wind, which results from northeast trade winds, occurs during the dry season (December to 

March). As an area located in the transition zone, the main vegetation cover is comprised of 

both grassland and woodland with broadleaf trees (Morton, 2013). The principal economic 

activity of the study area is agriculture, including crop farming, poultry keeping, and cash tree 

plantations such as teak trees. Beans, maize and rice are planted in crop rotation fashion to help 

retain nitrogen in the soil. The main crops are plantain, maize, yam, rice, beans, cassava, 

groundnuts and watermelon, with maize and watermelon constituting dominant commercial 

crops (Asiedu et al., 2017).   

2.2.2. Armyworm infestation conceptual model 

 The mechanism behind the armyworm infestation within the study area is summarized 

by the model in figure 2.2. The process commences with the cultivation of maize by farmers. 

Once the maize develops foliage, it becomes a potential food source for the African armyworm 

(Holt, 2004).  However, wind speed and temperature need to be suitable to enable the 

armyworms to be transported via wind from a location of origin to a maize farm of interest 

(Wilson and Gatehouse, 1992). The time lapse between the sowing, growing and harvest of the 

maize on the farm is pivotal in this research.  
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Figure 2.1: Map of Ejura showing locations of surveyed farms (upper right insert: Map of 

Ghana) 

 

With the advent of satellite images and pre-processed vegetation index products such as 

MODIS, the various stages of the maize phenology can be extracted from reflectances received 

and reflected by the maize crop (Justice et al., 2007; Griffiths et al., 2019). Figure 2.2 proposes 

that remote sensing is able to capture both the maize planting and growing cycles as well as 

signals for the infestation of African armyworms, thus making remote sensing a reliable source 

of information. Against this background, the various sources of data for summarized in table 

2.2 were used for this work.  

Table 2.2: Data sets used 

Data  Scale Source 

EVI 30 m USGS Landsat 8 OLI/TIRS C1 Level-2  

DEM 30 m USGS 

Farm demographics N/A Farm survey during summer April-July 2018 

   

.  



10 
 

 

Figure 2.2: Conceptual model of Armyworm infestation on maize and remote sensing 

 2.2.3. Farm Surveys 

 IRB certification (ID: STUDY00000653) was obtained from Michigan State University 

to interview a random sample of 75 farmers from the Ejura farming community between the 

months of May and July 2018 with a team of four field technicians with me as the team leader. 

To ensure the homogeneity among data collected by field technicians, I organized a training 

session to educate them on how to effectively and efficiently ask questions and write down 

responses with minimal ambiguity. This I achieved by allowing the field technichians to mock 

the interviews with some farmers in my presence and subsequently correcting them on areas 

where I could sense ambiguity in how the questions were asked and responses documented. 

Information pertaining to farm size (in acres), age of farmer, crops planted, maize yield and 

level of armyworm infestation during the 2017 farming period were obtained from field 

surveys. Out of 75 farms, six had to be eliminated from further analysis because they were 

periodically situated in densely clouded areas on available imagery for the study.  It is also 

important to state that variables such as precipitation, temperature, infestation from other crop 

pests and weed management practices which could have improved the results of this study were 

not included in the field interviews. (For meteorological variables this omission was due to 

their lack of variation over the small (~20 km2).   
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 2.2.4. DEM 

 A digital elevation model (DEM) for Ejura was obtained from an ASTER Global DEM 

file hosted on the USGS website (EarthExplorer). ArcMap was used to clip out slope and 

elevation values for each farm. Since the ultimate goal was to extract summary statistics such 

as mean and standard deviation for elevation and slope, raster summaries of these values for 

each farm were calculated.     

 2.2.5. Enhanced vegetation index 

 While substantial efforts were made to obtain satellite imagery that represented the 

whole maize phonological cycle, only pre-processed EVI products for the months of April, 

May, and July (during 2017) from the United State Geological Survey (USGS) website were 

cloud-free enough for inclusion in this work. This dataset was also used because all necessary 

corrections required to make quantitative and qualitative inference had already been carried 

out. After standardizing the EVI values by multiplying each raster by 0.0001, mean of EVI for 

each farm was obtained after farm polygons were used to clip out the farm areas. Given the 

large number of farms (69) that needed to be clipped for a total of 9 EVI raster maps, a model 

was developed in ArcMap Model Builder to help automate the process (Figure 2.3). 

Figure 2.3: Model for clipping and extracting EVI mean and standard deviation for each farm 
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 2.2.6. Statistical Analysis 

 Reduction in multi-collinearity among the seven independent variables (mean EVI for 

April, May, and July, difference between May and April, difference between July and May, 

difference between July an April and mean slope) was achieved through principal components 

analysis (PCA). To ensure that the independent variables met the requirements for PCA, the 

variables were first standardized to ensure equal distribution of variance.  Three principal 

components were selected based on their cumulative proportion of variance. These components 

were PC1, PC2 and PC3. 51 training and 18 testing sites were randomly selected for further 

analysis. Next, a logistic regression analysis was conducted on the training samples. Farmers’ 

responses to the presence or absence of armyworm infestation served as the dependent variable 

and regressed against the three selected principal components. A model was developed from 

the training data set used to predict the testing data sets. To achieve a high success rate for the 

developed model, Receiver Operating Characteristic (ROC) graphs were used to obtained a 

suitable threshold of 0.81 and fed into the predicting model. ROC graphs were used because 

the ability of a model to be unbiased or biased towards a specific prediction can be readily 

obtained.  

2.3. Results 

 2.3.1. Proportion of variance and loadings 

 Cumulative proportion of variance resulting from the PCA revealed that PC1, PC2 and 

PC3 explained the majority of the variance in the independent variables, as shown in Table 2.3: 

these were chosen for subsequent analysis. Loadings of the first three principal components are 

shown in Table 2.4. Mean EVI for July, difference between July and May as well as that 

between July and April were positively correlated with PC1, while mean EVI values for May 

were negatively correlated. In contrast, PC2 was positively correlated with mean EVI in May 
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and negatively correlated with mean slope and with difference in mean EVI between May and 

April. Mean slope was the only variable that displayed a negative correlation with PC3.  

Table 2.3: Statistical results from PCA on independent variables 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Standard 

Deviation 

1.9357 1.3142 0.8834 0.8636 5.48e-16 3.6e-16 1.60e-16 

Proportion 

of Variance 

0.5353 0.2467 0.1115 0.1065 0.0000 0.0000 0.0000 

Cumulative 

Proportion 
0.5353 0.7820 0.8935 1.0000 1.0000 1.0000 1.0000 

 

Table 2.4: Loading for PC1, PC2 and PC3 

Variables PC1 PC2 PC3 

April EVI 0.0717 0.6459 -0.1266 

May EVI -0.4258 -0.0636 0.2923 

July EVI 0.4640 -0.1044 0.2628 

May-April EVI -0.3968 -0.4274 0.3173 

July-May EVI 0.5152 -0.0438 0.0502 

July-April EVI 0.4182 -0.3847 0.3103 

Slope 0.0229 -0.4851 -0.7937 

  

 2.3.2. Assessing the data structure via biplots 

 Figure 2.4 gives a visual representation of the data structure as explained for PC1, PC2 and 

PC3. Both plots show that an multicollinearity between the original variables has been removed in the 

principal components. The plots also support the description of the loadings discussed in section 

2.3.1.   
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Figure 2.4: Biplots for PC2 versus PC1 and PC3 versus PC2  

 2.3.3. Statistical model 

 Equation 1 represents the model that was used to produce the results displayed in Table 

2.5. Standard errors for each coefficient were large and the large p-values indicated that there 

was no correlation between the dependent variables and independent variables.  

Infestation = 0.08PC1 – 0.12PC2-0.36PC3 + 1.61      (1) 

Table 2.5: Summary table for logistic regression analysis 

Variables Coefficients Estimate Std. 

Error 

z value Pr(>|z|) 

 

PC1 0.07908 0.20139 0.393 0.695 

PC2 -0.10219 0.28758 -0.355 0.722 

PC3 -0.35946 0.46787 -0.768 0.442 

 

2.4. Discussion 

 Validation of field surveys in relation to agriculture practices has been explored in 

several research works  and yielded very informative results (Nespeca et al., 1997; Midega et 
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al., 2012; Abtew et al., 2016). Similarly, crop pest distribution has been characterized with 

remotely sensed data in research activities such as Eklundh et al., (2009) and Rai and Ingle, 

(2012). In this work I developed a prediction model for Armyworm infestation within the 

northern part of Ejura, Ghana using a combination of methods. I achieved this by regressing 

farmers’ response to the presence or absence of African armyworm infestation with three 

principally reduced independent variables.  

 Visual inspection of loadings for the principal components revealed that PC1 had a 

positive correlation with EVI values for difference between July and April as well as July and 

May. While similar observation can be made for EVI for July, EVI value for May appeared to 

be negatively correlated with PC1. This pattern was interpreted as PC1 measuring not only 

monthly variations in vegetation greenness but early changes in vegetation change. PC2 had 

high positive correlation with April but registered negative correlation with slope and 

difference in EVI for May and April (-0.4851 and -0.6459 respectively). PC2 therefore 

captured earlier maize phenology strongly suggesting that it is a good predictor of how terrain 

affects reflectance from vegetation (bidirectional reflectance distribution function, or BRDF). 

A high negative correlation with slope was observed for component 3 (-0.7937) and this was 

associated with either a sharp decrease or increase in slope within the farms.      

 P-values from the logistic regression analysis for PC1, PC2 and PC3 (0.695, 0.722 and 

0.442 respectively) showed that the betas were not significantly different from zero, indicating 

no linear relationship with the dependent variable.  Despite the absence of correlation between 

the dependent variable and independent variables, the prediction phase of the analysis was 

carried out on the validation dataset. At this stage I would like to suggest possible reasons for 

the lack of correlation between the dependent and independent variables. One possibility is 

that, there were inaccurate responses from farmers during the surveys. This could be as a result 

of farmers being biased toward responding ‘yes’ to presence of infestation in anticipation for 
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some form of reimbursement from the government. If this is the case, then the research 

hypothesis that EVI values reflect the degree of armyworm infestation is incorrect. A second 

possibility is that the absence of EVI values for the whole maize seasonal cycle could be a 

contributory factor. In this case obtaining EVI values for each of the two 16-days composite 

(Landsat 8) in a month would be a more accurate representation of the phenology of maize in 

the study area. In addition, using EVI values from sensors such as Sentinel (10 and 20 m spatial 

resolution and temporal resolution of 5 days), WorldView-2 (0.46 m spatial resolution), or 

UAVs (varying but very high spatial resolution), might be capable of capturing changes in 

vegetation more accurately. The reader is however cautioned against the perilous effect of 

cloud cover in remotely sensed images which was inevitable in our case. Cloud cover issues 

proved challenging in this work due to the following reasons: 1) cloud cover was a challenge 

for observation interval in many places; 2) the study site selected for this work is tropical, and 

subject to dense cloud cover during the growing season; 3) this project required extensive 

assessment of the Landsat archives to find scenes cloud-free enough to work. The reader is 

however encouraged to employ the methodology exhibited in this work to validate and selected 

parameters for African armyworm prediction and modeling activities. 

2.5. Conclusions 

 This research has brought to bear the potential and limitations of validating field 

surveys in relation to African armyworm via remotely sensed data and statistical analysis. Most 

importantly the findings indicate that assuming vegetation change measured from satellite 

sensors directly translates to pest infestation is not always the case. This is evident in the 

insignificant p-values that were observed from the logistic regression analysis. However, this 

research work is also the first to address the issue of African armyworm infestation while 

validating the sources of data sets through statistical methods and also using EVI instead of 

NDVI. Admittedly, the model explored in this work did not perform well; nevertheless, the 
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reader’s attention is brought to the techniques and methodology employed in arriving at the 

goal of this research. Several factors could have affected the outcome of this study and I would 

like to address some of these factors. Primarily, not being able to obtain EVI values that would 

represent the entire phenology of maize (April-September) within the study area affected the 

results of this work. While the phenology of maize in Ejura spans over 7 months, only three of 

these months (April, May and June) were used in this study. Shadow as a result of cloud cover 

in the satellite imagery could also impacted the results. Even though conscious effort was made 

to eliminate cloud cover-prone farms from the initial dataset, effects of shadow resulting from 

clouds was not addressed in this work. It is therefore possible that some of the EVI values 

observed were affected by shadows from could cover. Other weather conditions such as 

drought cloud also be driving the changes in EVI values that were observed. Since this factor 

was not controlled for by incorporating climatic data such as precipitation and temperature, 

changes in EVI can not necessarily be assigned to armyworm infestation. The last factor that 

could have impacted the results reported in chapter two is difference in farm management 

practices. A typical example in this sense would be weeding. Weeds have the potential to 

contribute to the total biomass of vegetation observed for a specific field and EVI for that 

matter.  The possibility of the farmers interviewed for this work practicing different weed 

control practices cannot be overruled and therefore have a potential effect on the findings from 

this study. 

 Researchers are therefore advised to tread cautiously when making inferences from 

only field surveys or remotely sensed information in relation to crop pests, especially 

concerning African armyworm infestation on maize. Future work is encouraged in this field 

with similar techniques described in this work but with other variables such as precipitation, 

temperature and wind speed which are all factors affecting the activities of African armyworm. 

Increasing the sample size of the study area with similar methodology is also encouraged, given 
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that this might give the research a better confidence interval for the true representation of the 

total population. 
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CHAPTER 3 

COMPARISON OF ENHANCED VEGETATION INDEXES FROM LANDSAT 8 

AND PARROT SEQUOIA MULTISPECTRAL CAMERA 

 

Abstract 

The presence of earth orbiting satellites such as Landsat and MODIS that constantly produce 

remotely sensed imagery may complement the increasing application of imagery from 

unmanned aerial vehicles (UAVs) in precision agriculture. A vital question is whether 

information obtained from satellite imagery can be compared with similar data obtained from 

UAVs given fundamental differences between these sensors. This study compares Enhanced 

Vegetation Index (EVI) obtained from the Landsat 8 level 2 product with EVI2 calculated from 

a Parrot Sequoia multispectral camera deployed on a DJI Phantom 4 pro drone. The aim of this 

approach is to validate the robustness of the EVI2 equation for low altitude sensors such as 

multispectral cameras deployed on UAVs. The study site is Ejura, a predominantly maize 

farming community situated in the Ashanti region of Ghana, during the month of July, 2018. 

Findings from this research showed that there was a positive correlation between EVI and EVI2 

(with an adjusted R-squared of 0.59). Residuals from the difference between EVI and EVI2 

followed a bell-shaped distribution with the following observed geographic patterns: (1) higher 

residuals distributed around the edges and south-western section of the study area; (2) lower 

residuals situated predominantly in the central section of the study area. The validation stage 

of the model that was developed indicated that the model could predict EVI for Landsat 8 (from 

Parrot Sequoia EVI2) with about 61% accuracy. A map of the residuals between observed EVI 

values from Landsat and predicted EVI values from the model depicted lower residuals in areas 

with homogeneous vegetation than in areas that had heterogeneous vegetation (especially areas 

with a mixture of dry and green maize foliage). This observed pattern was strong even given a 

small time lag between the date of drone image acquisition and Landsat 8 image acquisition.  
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3.1  Introduction 

 Applications of satellite-based remote sensing span many industries including mining, 

construction, and agriculture. Several research papers (Miller and Small 2003; Turner et al., 

2003; Melesse et al., 2007; Rajitha et al., 2007; Klemas 2013) have looked at the applications 

of satellite-based remote sensing in both the private and public sectors and made remarkable 

and insightful revelations. In fact, a visit to EarthExplorer which is hosted on the United State 

Geological Survey (USGS) website reveals a conscious effort to make remotely sensed data 

from satellite imagery readily accessible to both the private and public sector. With the aid of 

a friendly user interface, visitors to the EarthExplorer home page can access and download a 

myriad of post- and pre-processed data that characterize terrain, climate, land use and land 

cover, and raw satellite imagery for the whole globe. Similarly, the Moderate Resolution 

Imaging Spectroradiometer (MODIS) project has a website that allows customization of 

satellite imagery, for rapid download. Although these approaches adopted by traditional 

satellite data hosting websites such as MODIS and USGS continues to be actively patronized 

(Wulder et al., 2012), acquiring remote sensing data from UAVs is gaining currency in the 

twenty-first century (Hackney and Clayton, 2015). 

 Proponents of the application of UAVs in remote sensing argue that they offer high 

resolution, high quality information that can be acquired at any given time without cloud cover 

issues. These characteristics make UAV-based imagery a competitor to satellite dependent 

remote sensing (Xiang and Tian 2011; Torres-Sánchez et al., 2014; Stöcker et al., 2017). Also 

the availability of desktop UAV data processing software such as PIX4D, Global Mapper, 

DroneDeploy and Agisoft makes processing of UAV imagery a less laborious process. 

Currently a substantial number of low budget UAVs on the market do not come with built-in 

multispectral cameras. This is unfortunate, since multispectral image data  have many 

applications in precision agriculture and land use land cover change analysis (Torresan et al., 
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2017; Fernández-Guisuraga et al., 2018). Third party companies such as Parrot and MicaSense 

produce multispectral cameras that fall within the budget range of customers who cannot afford 

more expensive multispectral cameras, which may cost as much as $60,000. This symbiotic 

relationship between UAV manufacturing companies and multispectral sensor production 

firms has revolutionized the application of UAVs in precision agriculture (Lelong et al., 2008; 

Garcia-ruiz et al., 2013; Honkavaara et al., 2013; Candiago et al., 2015; Roosjen et al., 2018; 

Mogili and Deepak 2018). 

 Ahmed et al., (2017), in research that deployed a Parrot Sequoia multispectral camera 

on a UAV, classified land cover in Peterborough, Ontario into five land use land cover classes 

(forest, shrub, herbaceous, bare soil, and built-up); an overall classification accuracy of 95% 

was reported. Tang (2015) proposed the term ‘drone remote sensing’ to refer to the increasing 

application of drones for remote sensing. Their paper discussed the applications of drone 

imagery in forest canopy gap surveys, forest canopy height measurements, and tracking of 

forest wildfires. In a study of vegetation indices for two Italian vineyards, Matese et al. (2015) 

compared normalized differential vegetation index (NDVI) obtained from satellite imagery, 

drone deployed multispectral imagery and aircraft imagery. Findings from their work showed 

that NDVI from the three methods were comparable in homogenous vineyard sections but 

substantially different for heterogeneous sections of the vineyard. Several other papers (e.g., 

Baluja et al., 2012; Das et al., 2015; Kalisperakis et al., 2015; Duan et al., 2017) exemplify 

how NDVI has been derived and used from multispectral cameras deployed on UAVs. 

Despite the simplicity of NDVI, which is calculated as the ratio of difference between 

the near infrared and the red band to the sum of the near infrared and red bands,  and its 

extensive use  (Matsushita et al., 2007) it does have weaknesses. These weaknesses result from 

environmental effects such as soil background and atmospheric condition (i.e., the presence of 

aerosols). These drawbacks to NDVI led to the creation of the EVI algorithm (Xiao et al., 2003; 



22 
 

Montandon and Small, 2008). EVI corrects for soil background and atmospheric effects, 

making it a good choice for measuring vegetation biomass across the globe (Rocha and Shaver, 

2009). However, while research exists in support of EVI computations from satellite imagery 

(Zhu et al., 2014; Peng et al., 2017 ;Testa et al., 2018), very little research has explored 

computation of EVI from multispectral sensor deployed on UAVs (Fang et al., 2016). Given 

that applications of UAV deploying multispectral cameras for precision agriculture are 

increasing, it is in the interest of  researchers  and agricultural and remote sensing practitioners 

to explore the potential of  the EVI2 equation proposed by Jiang et al., (2008) for UAV 

deployed sensors. 

  This study compares two vegetation indices: EVI2 computed from a Parrot Sequoia 

multispectral sensor deployed on a DJI Phantom 4 pro drone, and EVI obtained from the 

Landsat 8 Level 2 preprocessed product. The comparison was achieved by developing a linear 

model that regressed EVI for Landsat 8 against EVI2 computed on resampled (30*30m 

resolution) imagery from a Parrot Sequoia multispectral camera. The prediction phase of this 

research involved using the model developed to predict the spectral structure of a scene of the 

study area that was not included in the initial analysis. The study area is the agrarian community 

of Ejura, located in the Ashanti region of Ghana. It is worth mentioning that the main challenge 

of comparing information from the two sensors mentioned above is the difference in spatial 

resolution: Landsat 8 sensor has a spatial resolution of 30*30 m while the Parrot Sequoia 

imagery flown in this study has a spatial resolution of 0.04*0.04 m.  

3.2. Methods 

 3.2.1. Study Area   

 The study region (see figure 3.1) is a predominantly agricultural area of about 123 

(training site) and 17 (testing) acres located in the district of Ejura-Sekyedumase, in the 
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northern part of the Ashanti Region of Ghana. A bounding box with coordinates:  1˚23 W, 

7˚23’ N (upper left) and 1˚22’ W, 7˚23’03’’ N (lower right) describes the geographical location 

of the study area. The average annual temperature for the region ranges between 26.4 and 27.5 

°C with an average annual rainfall between 1,200 mm – 1,500 mm.  Maize, yam, rice, beans, 

cassava, groundnuts and watermelon are the main crops planted by farmers within the study 

area. However, maize and watermelon constitute the crops that are cultivated on a commercial 

basis (Asiedu et al., 2017).    

 

Figure 3.1: Map of Ejura showing location of the study area (upper right insert: Map of 

Ghana) 

 3.2.2. Image Preprocessing and EVI Calculation 

Imagery obtained from Parrot Sequoia multispectral camera was processed in the Pix4D 

software environment. Multispectral image processing in Pix4D generally goes through three 

main processes (Initial process to develop cloud points, generation of digital surface modules 

and generation of orthophotos). The index calculator option was then selected, and a 
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customized EVI2 equation as proposed by Jiang et al. (2008) for the computation of EVI from 

a low altitude sensor was used to compute EVI for all images, as shown in Equation 3.1: 

EVI2=2.5
(NIR-Red)

NIR+(Red*2.4)+1
                                                                                                 (1) 

Where NIR= Near Infrared band and Red=Red band from the multispectral camera. 

 3.2.3. Resampling and Alignment  

 Since the pre-processed imagery obtained from USGS had EVI values at 30-meter 

resolution, all processed imagery from Pix4D mapper was resampled (nearest neighbor 

method) to 30 m resolution in ArcMap. Georeferencing was then carried out to ensure images 

from both sensors were aligned. To achieve this some landmarks were identified on images 

from both sensors and used as tie points with an overall accuracy of 0.18 m. 

 Next, the processed images from Parrot Sequoia sensor were used to clip the 

georeferenced Landsat 8 EVI imagery obtained from USGS. The clipping process was 

conducted with the “clip to extent” option selected in ArcMap. The final activity in ArcMap 

was to extract the EVI values from both Landsat georeferenced EVI imagery and resampled 

Sequoia EVI imagery. This was achieved by using the “convert from raster to point shapefile” 

tool.  

 3.2.4. Comparison and Modeling 

 Finally, both EVI and EVI2  images  were analyzed with the aid of the raster and 

statistical packages in R Studio (Hijmans, 2019; Team R, 2017). Maps and histograms for both 

EVI and EVI2 were developed for visualization. The next step was to develop a model for EVI 

prediction using EVI2 imagery. The model selected was an ordinary least squares regression 

model which was developed by regressing EVI2 against EVI. The model developed was then 
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used to predict the spectral structure of a Landsat 8 image of a section of the study area. The 

flowchart in figure 3.2 summarizes these processes 

 

Figure 3.2: Flow diagram of methods used 

3.3. Results 

 Plots for EVI and EVI2 maps showed that both maps were consistent in area with high 

plant biomass (south-western parts of the study area). In area with mixed maize phenology, the 

EVI2 map appeared to have high values as compared to the EVI map. Histograms for both 

sensors also showed a somewhat right-skewed distribution. Figure 3.3 shows maps and 

histograms for both sensors. 
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Discussions 

 

Figure 3.3: EVI maps and histogram for Landsat 8 and Parrot Sequoia: (a) Landsat 8 EVI map 

(b) Parrot Sequoia EVI2 map (c) Landsat 8 EVI histogram (d) Parrot Sequoia EVI2 histogram 

 Computing the difference (residuals) between EVI from Landsat 8 and EVI2 from 

Parrot Sequoia gave a mean value of 0.02, with maximum and minimum values of 0.30 and 

0.24 respectively. The residuals from the difference between EVI and EVI2 followed a bell-

shaped distribution with higher residuals being geographically distributed around the edges and 

in the south-western section of the study area. Although lower residuals were situated randomly 

throughout the study area, the central section of the study area registered a larger number of 

low, negative residuals (see figure 3.4).  

(a) (b) 

(c) 
(d) 



27 
 

 

Figure 3.4: Map and histogram of EVI-EVI2 residuals respectively 

 These products were further compared via linear regression to predict EVI from 

Landsat 8 using EVI2 from Parrot Sequoia. Probability value, intercept and adjusted R-squared 

from the ordinary least square regression analysis showed positive correlation between EVI 

and EVI2 (see table 3.1). Plotting predicted values against fitted values from the regression 

model (figure 3.5) showed that the regression model adopted was acceptable; a symmetrical 

pattern could be observed around the 0 reference line. interestingly, a cluster of fitted values 

could be observed around 0.40, -0.04 and 0.45, -0.04. 

Table 3.1: Results from linear regression analysis 

Statistical Quality Value 

Slope 0.76 

Intercept 0.12 

Probability 2e-16 

Adjusted R-squared 0.59 
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Figure 3.5: Scatterplot of EVI and EVI2 as well plot of residuals versus fitted values 

     (left to right respectively) 

 

To validate the robustness of this model, it was used to predict EVI values from a section of 

the study area that was not included in the initial analysis. Data for the validation site was 

collected on the same day that the training site was flown and has similar geographical 

characteristics. Results from the validation process showed a strong positive relationship 

between observed EVI values and predicted EVI values from Landsat 8 with an adjusted R-

squared of 0.61 (figure 3.7). Once again; a map of the residuals (figure 3.6: lower left) depicted 

lower residuals in areas that were homogeneous in vegetation than areas that had heterogeneous 

(especially areas with a mixture of dry and green maize foliage) in vegetation. This observed 

pattern could be due to the time lag between the date of drone image acquisition and Landsat 

8 image acquisition.  

Table 3.2: Results from linear regression analysis on predicted EVI 

Statistical Quality Value 

Slope -0.05 

Intercept 1.12 

Adjusted R-squared 0.61 
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Figure 3.6: Predicted EVI map, observed EVI (first row from left to right respectively), 

difference between observed EVI and predicted EVI maps and histogram 

(from left to right respectively) 

 

 

 

 

 

 

 

Figure 3.7: correlation plot for observed and predicted EVI  
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3.4. Discussion 

 Computation of EVI from satellite imagery has been investigated in several studies 

including (Nagai et al., 2009; Schnur et al., 2010; Setiawan et al., 2014;Son et al., 2014)  and 

continues to be explored by the remote sensing community. However, the difference in the 

design of UAVs, their high spatial resolution, and their associated multispectral cameras 

require that a different algorithm be employed in the computation of EVI. Thankfully, Jiang et 

al., (2008) developed a two band EVI algorithm (EVI2) for low-altitude sensors such as Parrot 

Sequoia deployed on a UAVs. This work has successfully compared the EVI2 algorithm with 

EVI computed for high altitude multispectral sensor (Landsat 8) over maize fields in Ejura, 

Ghana. We initiated the data analysis stage of this work by computing the difference between 

EVI from Landsat 8 and EVI2 from Parrot Sequoia. Ideally, we would expect the residuals 

from the difference between EVI and EVI2 to be approximately 0. However, the residuals from 

the initial analysis had mean, minimum and maximum values of 0.02, -0.24, and 0.299 

respectively indicating some differences. The observed difference in residuals could be as a 

result of the constraints we mentioned at the beginning of this work: (1) difference in sensor 

band center; (2) impact on data due to spatial resampling techniques; (3) difference in time of 

image acquisition, since Landsat 8 imagery was acquired four days after acquisition of the 

Sequoia imagery. However, conscious effort was made to reduce the effect of resampling by 

using a technique similar to the way Landsat 8 imagery is acquired. The other two constraints 

therefore play a role in the interpretation of the final results.  

3.5. Conclusion 

 This work has successfully compared EVI developed from Landsat 8 and EVI 

computed from Parrot Sequoia deployed on a UAV (DJI Phantom4 Pro) by using a novel 

approach: resampling with the fishnet. While the fishnet technique used for resampling is not 
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new, it does not appear to have been used to develop imagery from UVA deployed sensors that 

mimic Landsat 8 resolution for cross-scale comparison. This technique is described in the 

methods section of this work and remain pivotal to the success of this study. In addition, the 

EVI2 modeling equation developed here has the potential to predict EVI values that are 

comparable to Landsat 8 EVI. Results from regression analysis for EVI and EVI2 showed an 

adjusted R-squared value of 59%, suggesting a relationship between EVI and EVI2 exist. Also 

using the model developed from the regression analysis for prediction analysis reported a 

slightly higher adjusted R-squared of 0.61, depicting the robustness of the model developed 

from the regression analysis.  

  Given that the study area did not cover a very large geographical region, the reader is 

encouraged to interpret the results obtained from this work in the context of the study area 

without extrapolating our findings to area of different geographical settings.  Future work in 

this domain should consider: (1) applying the methodology described in this work to a broader 

geographical area with high level of contrasting land use; and (2) comparing other vegetation 

indices such as SAVI from satellite imagery (Sentinel and Landsat 8) with UVA deployed 

sensors such as Parrot Sequoia and MicaSense RedEdge.  
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CHAPTER 4 

CONCLUSIONS 

 In this thesis, remote sensing and statistical methods have been used to bridge existing 

gaps in developing prediction models for African armyworm infestation from imagery and 

farmer surveys. Findings from this work can be examined in two categories as shown in the 

second and third chapters. First, a prediction model for the presence or absence of armyworm 

infestation within the study area (Ejura, Ghana) based on EVI values and slope was developed. 

The model has the potential of aiding stakeholders in developing detection, early warning, and 

preventive schemes for African armyworm outbreaks. While results from a logistic regression 

model showed no correlation between dependent and independent variables, prediction 

accuracy of 0.61 was recorded from the validation sample. This finding shows the potential of 

making informed decisions from the model with some improvements such as increasing sample 

size and including other predictor variables such as precipitation. Results from the second 

chapter of this work does not necessarily imply abandoning EVI and other vegetation indices 

as predictors of armyworm infestation (given that this work could not make use of the full EVI 

spectrum covering the entire maize phenology). This is because several factors could have 

played a significant role in the results obtained in Chapter two. A potential source of inaccuracy 

in the EVI values could be the effect of shadows as a results of clouds. While careful efforts 

were made to reduce the effects of cloud cover within the EVI imagery, the effects of shadows 

resulting from cloud cover could not be eliminated in this study. It is therefore possible that 

EVI values that were used for the analysis phase of this work had pixel values corresponding 

to shadow and not vegetation. Differences in farming practices such as weeding is yet another 

factor that could have impacted the results of this work. If weed management practices among 

farmers were very heterogonous then changes in EVI values as result of weed control practices 

by farmers could have impacted the observation made during the results obtained. There is also 
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a possibility of EVI not being a robust estimator of armyworm infestation. In this regard 

exploring other common vegetation indices such as NDVI in combination with EVI could 

reveal interesting results.   

 The second part of this work (Chapter 3) has several applications notably: computing 

EVI for areas that might not have satellite imagery for a given time period, addressing the issue 

of cloud cover in remote sensing and more specifically satellite imagery at local and regional 

scales, detecting vegetation health via drone imagery. With respect to the issue of cloud cover, 

maize phenology for a significant portion of the Ejura region could not be modeled due to the 

presence of extensive cloud cover in satellite images obtained for this work. This is a general 

issue when it comes to working with imagery on agricultural regions in the tropics, when the 

growing season corresponds to times of high cloud cover. To address this issue, imagery from 

Parrot Sequoia sensor deployed on a UAV was successfully rescaled to match the spectral and 

spatial information of a Landsat 8 image for the study area. EVI and EVI2 algorithms measure 

vegetation cover by accounting for aerosols and soil background effects. Needless to say, EVI 

is usually applied to satellite imagery such as Landsat and MODIS while EVI2 has potential 

applications in low altitude multispectral sensors such as UAV deployed Parrot Sequoia. A 

model was developed to predict EVI from EVI2 to assess these differences. The model 

developed for this purpose performed well in areas with high plant biomass as compared to 

areas with sparse vegetation. An overall adjusted R-squared of 0.61 showed a strong correlation 

between Landsat EVI and drone-based resampled EVI2. This finding will, therefore, contribute 

to existing approaches (such as cloud masking) that have been developed by the remote sensing 

community to help solve the enigma of cloud cover in remotely sensed data.  It is however 

worth mentioning that comparing vegetation indices or spectral information from different 

sensors have some challenges. Prominent challenges that specifically applied to this work is 

difference in spectral, spatial and temporal resolutions. While nothing could be done about the 
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difference in both spectral and temporal resolution between Landsat 8 and the Parrot Sequoia 

imagery, the issue of spatial resolution was handled in this work. Resampling Parrot Sequoia 

imagery to Landsat 8 via a fishnet grid addressed this issue. I therefore admit that the inability 

of the model developed to predict Landsat 8 EVI with a higher accuracy could be as a result of 

differences in spectral and temporal resolutions of both sensors. 

Collectively, the reader is encouraged to see this work as a contribution to filling the existing 

gap in applications of remote sensing for combating African armyworm infestations. 
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