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ABSTRACT

DESIGNING CONVOLUTIONAL NEURAL NETWORKS FOR FACE ALIGNMENT AND
ANTI-SPOOFING

By

Amin Jourabloo

Face alignment is the process of detecting a set of fiducial points on a face image, such as mouth

corners, nose tip, etc. Face alignment is a key module in the pipeline of most facial analysis

tasks, normally after face detection and before subsequent feature extraction and classification.

As a result, improving the face alignment accuracy is helpful for numerous facial analysis tasks.

Recently, face alignment works are popular in top vision venues and achieve a lot of attention.

In spite of the fruitful prior work and ongoing progress of face alignment, pose-invariant face

alignment is still challenging. To address the inherent challenges associated with this problem, we

propose pose-invariant face alignment by fitting a dense 3DMM, and integrating estimation of 3D

shape and 2D facial landmarks from a single face image in a single CNN. We introduce a new

layer, called visualization layer, which is differentiable and allows backpropagation of an error

from a later block to an earlier one.

Another application of facial analysis is the face anti-spoofing, which has recently achieved a

lot of attention. While face recognition systems serve as a verification portal for various devices

(i.e., phone unlock, access control, and transportation security), attackers present face spoofs (i.e.,

presentation attacks, PA) to the system and attempt to be authenticated as the genuine user. We

present our proposed deep models for face anti-spoofing that use the supervision from both the

spatial and temporal auxiliary information, for the purpose of robustly detecting face PA from a

face video.
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Chapter 1

Introduction on Face Alignment and Face

Anti-Spoofing

1.1 Introduction

Face alignment is the process of detecting a set of fiducial points on a face image, such as mouth

corners, nose tip, etc. Face alignment is a key module in the pipeline of most facial analysis tasks,

normally after face detection and before subsequent feature extraction and classification. As a

result, improving the face alignment accuracy is helpful for numerous facial analysis tasks, e.g.,

face recognition [114], face de-identification [55] and 3D face reconstruction [94].

Due to the importance of face alignment, it has been well studied during past decades [115],

with the well-known Active Shape Model [30] and Active Appearance Model (AAM) [70, 78].

Recently, face alignment works are popular in top vision venues and achieve a lot of attention.

Despite the continuous improvement on the alignment accuracy, face alignment is still a very chal-

lenging problem, due to the non-frontal face pose, low image quality, occlusion, etc. Among all the

challenges, we identify the pose invariant face alignment as the one deserving substantial research

efforts, for a number of reasons. First, face detection has substantially advanced its capability in

detecting faces in all poses, including profiles [138], which calls for the subsequent face align-

ment to handle faces with arbitrary poses. Second, many facial analysis tasks would benefit from

the robust alignment of faces at all poses, such as expression recognition and 3D face reconstruc-
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tion [94]. Third, there are very few existing approaches that can align a face with any view angle,

or have conducted extensive evaluations on face images across±90◦ yaw angles [135,151], which

is a clear contrast with the vast face alignment literature [115].

We present our proposed approaches for pose-invariant face alignment in chapters 2 to 4. The

core idea of our proposed methods is that instead of estimating 2D landmarks directly, we estimate

the 3D shape of the face and by projecting the 3D shape to 2D, we can have the 2D locations of

the landmarks.

Another application of facial analysis is face anti-spoofing, which has recently achieved a lot

of attention. While face recognition systems serve as a verification portal for various devices

(i.e., phone unlock, access control, and transportation security), attackers present face spoofs (i.e.,

presentation attacks, PA) to the system and attempt to be authenticated as the genuine user. The

face PAs include printing the face on paper (print attack), replaying a face video on a digital device

(replay attack), and wearing a mask (mask attack). To counteract PA, researchers have developed

face anti-spoofing techniques [27, 38, 39, 65] to detect PA prior to a face image being recognized.

Therefore, face anti-spoofing is vital to ensure that face recognition systems are robust to PA and

safe to use.

In chapters 5 and 6, we present our proposed deep models for face anti-spoofing that use the

supervisions from both the spatial and temporal auxiliary information, for the purpose of robustly

detecting face PA from a face image or a face video.

1.2 Prior work on face alignment

We review prior work on face alignment in seven areas related to the proposed methods: generic

face alignment, pose-invariant face alignment, 3D face model fitting, face alignment via deep
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learning, sharing information in face alignment and deep learning, convolutional recurrent neural

network (CRNN), and visualization in deep learning.

Generic face alignment The first type of face alignment approach is based on Constrained Lo-

cal Model (CLM), where an early example is ASM [30]. The basic idea is to learn a set of local

appearance models, one for each landmark, and the decisions from the local models are fused

with a global shape model. There are generative or discriminative [32] approaches in learning

the local model, and various approaches in utilizing the shape constraint [4]. While the local

models are favored for higher estimation precision, it also creates difficulty for alignment on low-

resolution images due to limited local appearance. In contrast, the AAM method [29, 78] and its

extension [75, 97] learn a global appearance model, whose similarity to the input image drives the

landmark estimation. While AAM is known to have difficulty with unseen subjects [42], the re-

cent development has substantially improved its generalization capability [110]. Motivated by the

Shape Regression Machine [140, 146] in the medical domain, cascaded regressor-based methods

have been very popular in recent years [26, 111]. On one hand, the series of regressors progres-

sively reduce the alignment error and lead to higher accuracy. On the other hand, advanced feature

learning also renders ultra-efficient alignment procedures [56, 93]. Other than the three major

types of algorithms, there are also works based on deep learning [142], graph-model [151], and

semi-supervised learning [105].

Pose-invariant face alignment The methods of [45, 135, 151] combines face detection, pose

estimation and face alignment. By using a 3D shape model with an optimized mixture of parts,

[135] is applicable to faces with a large range of poses. In [120], a face alignment method based

on cascade regressors is proposed to handle invisible landmarks. Each stage is composed of two

regressors for estimating the probability of landmark visibility and the location of landmarks. This

method is applied to profile-view faces of FERET database [89]. However, as a 2D landmark-
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based approach, it cannot estimate 3D face poses. Occlusion-invariant face alignment, such as

RCPR [22], may also be applied to handle large poses since non-frontal faces are one type of

occlusions. [109] is a very recent work that estimates 3D landmark via regressors. However, it

only tests on synthesized face images up to ∼ 50 ◦ yaw.

3D face model fitting Almost all prior works assume that the 2D landmarks of the input face

image is either manually labeled or estimated via a face alignment method. In [48], a dense 3D

face alignment from videos is proposed. At first, a dense set of 2D landmarks is estimated by

using the cascaded regressor. Then, an EM-based algorithm is utilized to estimate the 3D shape

and 3D pose of the face from the estimated 2D landmarks. The authors in [92] aim to make sure

that the locations of 2D contour landmarks are consistent with the 3D face shape. In [152], a 3D

face model fitting method based on the similarity of frontal view face images is proposed.

Face alignment via deep learning With the continuous success of deep learning in vision, re-

searchers start to apply deep learning to face alignment. Sun et al. [99] proposed a three-stage

face alignment algorithm with CNN. At the first stage, three CNNs are applied to different face

parts to estimate positions of different landmarks, whose averages are regarded as the first stage

results. At the next two stages, by using local patches with different sizes around each landmark,

the landmark positions are refined. Similar face alignment algorithms based on multi-stage CNNs

are further developed by Zhou et al. [144] and CFAN [139]. In [139], a face alignment method

based on cascade of stacked auto-encoder (SAE) networks can progressively refine locations of 2D

landmarks at each stage. TCDCN [142] uses one-stage CNN to estimates positions of five land-

marks given a face image. The commonality among most of these prior works is that they only

estimate 2D landmarks and the number of landmarks is limited to 6.

Sharing information in face alignment and deep learning Utilizing different side information

in face alignment can improve the alignment accuracy. TCDCN [142] jointly estimates auxil-
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iary attributes (e.g., gender, expression) with landmark locations to improve alignment accuracy.

In [129], the mirrorability constraint, i.e., the alignment difference between a face and its mir-

rored counterpart, is used as a measure for evaluating the alignment results without the ground

truth, and for choosing a better initialization. The consensus of occlusion-specific regressors [136]

in a Bayesian model is used to share information among different regressors. In [147] multiple

initializations are used for each face image and a clustering method combines the estimated face

shapes. For deep learning methods, sharing information is performed either by transferring the

learned weights from a source domain to the target domain [134], or by using the siamese net-

works [8,137] to share the weights among branches of the network and make a final decision with

combined responses of all branches.

Convolutional recurrent neural network (CRNN) Methods based on CRNNs [107, 116, 122]

are the first attempts to combine cascade of regressors with joint optimization, for aligning mostly

frontal faces. Their convolutional part extracts features from the whole image [122] or from the

patches at the landmark locations [107]. The recurrent part facilitates joint optimization by sharing

information among all regressors. Generally, the main drawbacks of CRNNs are: 1) existing

CRNN methods are designed for near-frontal face alignment; 2) the CRNN methods share the

same CNN at all stages.

Visualization in deep learning Visualization techniques have been used in deep learning to as-

sist in making a relative comparison among the input data and focusing on the region of interest.

One category of these methods exploit the deconvolutional and upsampling layers to either expand

response maps [67, 87] or represent estimated parameters [132]. Alternatively, various types of

feature maps, e.g., heatmaps and Z-Buffering, can represent the current estimation of landmarks

and parameters. In [21, 80, 119], 2D landmark heatmaps represent the landmarks’ locations. [21]

proposes a two step pose invariant alignment based on heatmaps to make more precise estima-

5



tions. The heatmaps suffer from three drawbacks: 1) lack of the capability to represent objects in

details; 2) requirement of one heatmap per landmark due to its weak representation power. 3) they

cannot estimate the visibility of landmarks. The Z-Buffer rendered using the estimated 3D face is

also used to convey the results of a previous CNN to the next one [147]. However, the Z-Buffer

representation is not differentiable, preventing end-to-end training.

1.3 Prior work on face anti-spoofing

We review the prior face anti-spoofing works in three groups: texture-based methods, temporal-

based methods, and remote photoplethysmography methods.

Texture-based Methods Since most face recognition systems adopt only RGB cameras, using

texture information has been a natural approach to tackling face anti-spoofing. Many prior works

utilize hand-crafted features, such as LBP [33, 34, 77], HoG [59, 131], SIFT [84] and SURF [18],

and adopt triditional classifiers such as SVM and LDA. To overcome the influence of illumination

variation, they seek solutions in a different input domain, such as HSV and YCbCr color space [16,

17], and Fourier spectrum [65].

As deep learning has proven to be effective in many computer vision problems, there are many

recent attempts of using CNN-based features or CNNs in face anti-spoofing [37,66,83,130]. Most

of the work treats face anti-spoofing as a simple binary classification problem by applying the

softmax loss. For example, [66, 83] use CNN as feature extractor and fine-tune from ImageNet-

pretrained CaffeNet and VGG-face. The work of [37,66] feed different designs of the face images

into CNN, such as multi-scale faces and hand-crafted features, and directly classify live vs. spoof.

Temporal-based Methods One of the earliest solutions for face anti-spoofing is based on temporal

cues such as eye-blinking [82, 83]. Methods such as [58, 98] track the motion of mouth and lip to
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detect the face liveness. While these methods are effective to typical paper attacks, they become

vulnerable when attackers present a replay attack or a paper attack with eye/mouth portion being

cut. There are also methods relying on more general temporal features, instead of the specific facial

motion. The most common approach is frame concatenation. Many handcrafted feature-based

methods may improve intra-database testing performance by simply concatenating the features of

consecutive frames to train the classifiers [16,33,60]. Additionally, there are some work proposing

temporal-specific features, e.g., Haralick features [3], motion mag [10], and optical flow [6]. In the

deep learning era, Feng et al. feed the optical flow map and Shearlet image feature to CNN [37].

In [125], Xu et al. propose an LSTM-CNN architecture to utilize temporal information for binary

classification. Overall, all prior methods still regard face anti-spoofing as a binary classification

problem, and thus they have a hard time to generalize well in the cross-database testing.

Remote Photoplethysmography (rPPG) Remote photoplethysmography (rPPG) is the technique

to track vital signals, such as heart rate, without any contact with human skin [14, 35, 91, 108,

118]. Research starts with face videos with no motion or illumination change to videos with

multiple variations. In [35], Haan et al. estimate rPPG signals from RGB face videos with lighting

and motion changes. It utilizes color difference to eliminate the specular reflection and estimate

two orthogonal chrominance signals. After applying the Band Pass Filter (BPM), the ratio of the

chrominance signals are used to compute the rPPG signal.

The rPPG signal has previously been utilized to tackle face anti-spoofing [69, 81]. In [69],

rPPG signals are used for detecting the 3D mask attack, where the live faces exhibit a pulse of heart

rate unlike the 3D masks. They use rPPG signals extracted by [35] and compute the correlation

features for classification. Similarly, Magdalena et al. [81] extract rPPG signals (also via [35]) from

three face regions and two non-face regions, for detecting print and replay attacks. Although in

replay attacks, the rPPG extractor might still capture the normal pulse, the combination of multiple
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regions can differentiate live vs. spoof faces. While the analytic solution to rPPG extraction [35]

is easy to implement, we observe that it is sensitive to PIE variations.

1.4 Overview of the thesis

In the second chapter, we propose a novel regression-based approach for pose-invariant face align-

ment, which aims to estimate the 2D and 3D locations of a sparse set of face landmarks, as well

as their visibilities in the 2D image, for a face with arbitrary pose (e.g., ±90◦ yaw). By extending

the popular cascaded regressor for 2D landmark estimation, we learn two fern regressors for each

cascade layer, one for predicting the update for the camera projection matrix, and the other for

predicting the update for the 3D shape parameter. The learning of two regressors is conducted

alternatively with the goal of minimizing the difference between the ground truth updates and the

predicted updates.

In the third chapter, we propose to use Convolutional Neural Networks (CNN) as the regressor

in the cascaded framework, to learn the mapping. While most prior work on CNN-based face

alignment estimate no more than six 2D landmarks per image [99, 142], our cascaded CNN can

produce a substantially larger number (34) of 2D and 3D landmarks. Further, using landmark

marching [150], our algorithm can adaptively adjust the 3D landmarks during the fitting, so that

the local appearances around cheek landmarks contribute to the fitting process.

In the fourth chapter, we introduce a novel visualization layer. We proposed a CNN architecture

which is consist of several blocks, called visualization blocks. This architecture can be considered

as a cascade of shallow CNNs. The new layer visualizes the alignment result of a previous visual-

ization block and utilizes it in a later visualization block. It is designed based on several guidelines.

Firstly, it is derived from the surface normals of the underlying 3D face model and encodes the rel-
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ative pose between the face and camera, partially inspired by the success of using surface normals

for 3D face recognition [79]. Secondly, the visualization layer is differentiable, which allows the

gradient to be computed analytically and enables end-to-end training. Lastly, a mask is utilized to

differentiate between pixels in the middle and contour areas of a face.

The last two chapters contain our proposed methods for the face anti-spoofing problem. In

the fifth chapter, we propose a deep model for face anti-spoofing that uses the supervision from

both the spatial and temporal auxiliary information, for the purpose of robustly detecting face

presentation attacks (PA) from a face video. These auxiliary information are acquired based on

our domain knowledge about the key differences between live and spoof faces, which include two

perspectives: spatial and temporal. From the spatial perspective, it is known that live faces have

face-like depth, e.g., the nose is closer to the camera than the cheek in frontal-view faces, while

faces in print or replay attacks have flat or planar depth, e.g., all pixels on the image of a paper have

the same depth to the camera. Hence, depth can be utilized as auxiliary information to supervise

both live and spoof faces.

From the temporal perspective, it was shown that the normal rPPG signals (i.e., heart pulse

signal) are detectable from live, but not spoof, face videos [69,81]. Therefore, we provide different

rPPG signals as auxiliary supervision, which guides the network to learn from live or spoof face

videos respectively. To enable both supervisions, we design a network architecture with a short-cut

connection to capture different scales and a novel non-rigid registration layer to handle the motion

and pose change for rPPG estimation.

Finally, in the sixth chapter, we propose a CNN method that, given a spoof face image, it can

estimate the spoof noise and reconstruct the original live face. We propose several constraints and

supervisions based on our prior knowledge of the spoof noise. First, a live face has no spoof noise.

Second, we assume that the spoof noise of a spoof image is ubiquitous, i.e., it exists everywhere in
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the spatial domain of the image; and, third, the spoof noise is repetitive, i.e., it is the spatial repe-

tition of certain noise in the image. With such constraints, a novel CNN architecture is presented

in the sixth chapter. Given an image, one CNN is designed to synthesize the spoof noise pattern

and reconstruct the corresponding live image. In order to examine the reconstructed live image,

we train another CNN with auxiliary supervision and a GAN-like discriminator in an end-to-end

fashion. These two networks are designed to ensure the quality of the reconstructed image regard-

ing its discriminativeness between live and spoof, and the visual plausibility of the synthesized live

image.

1.4.1 Contributions of the thesis

In this section, we list some contributions already made towards pose invariant face alignment:

� We propose a pose-invariant face alignment by fitting a dense 3DMM, and integrating esti-

mation of 3D shape and 2D facial landmarks from a single face image.

� We introduce cascaded CNN-based 3D face model fitting algorithm that is applicable to all

poses, with integrated landmark marching and contribution from local appearances around cheek

landmarks during the fitting process.

�A visualization layer is presented which is differentiable, and allows backpropagation of error

from a later block to an earlier one.

Also, we list some of the contributions made toward the face anti-spoofing:

�We propose to leverage novel auxiliary information (i.e., depth map and rPPG) to supervise

the CNN learning for improved generalization of face anti-spoofing systems.

� We propose a novel CNN-RNN architecture for face anti-spoofing which performs end-to-

end learning with the depth map and the rPPG signal.

�We offer a new perspective for detecting the spoofing face from print attack and replay attack
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by inversely decomposing a spoof face image into the live face and the spoofing noise, without

having the ground truth of either.
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Chapter 2

Pose-Invariant 3D Face Alignment

2.1 Introduction

Motivated by the needs to address the pose variation, and the lack of prior work in handling poses,

as shown in Fig. 2.1, this chapter proposes a novel regression-based approach for pose-invariant

face alignment, which aims to estimate the 2D and 3D locations of face landmarks, as well as their

visibilities in the 2D image, for a face with arbitrary pose (e.g., ±90◦ yaw). By extending the

popular cascaded regressor for 2D landmark estimation, we learn two regressors for each cascade

layer, one for predicting the update for the camera projection matrix, and the other for predicting

the update for the 3D shape parameter. The learning of two regressors is conducted alternatively

with the goal of minimizing the difference between the ground truth updates and the predicted

updates. By using the 3D surface normals of 3D landmarks, we can automatically estimate the

visibilities of their 2D projected landmarks by inspecting whether the transformed surface normal

has a positive z coordinate, and these visibilities are dynamically incorporated into the regressor

learning such that only the local appearance of visible landmarks contribute to the learning. Finally,

extensive experiments are conducted on a large subset of AFLW dataset [57] with a wide range of

poses, and the AFW dataset [151], with the comparison with a number of state-of-the-art methods.

We demonstrate superior 2D alignment accuracy and quantitatively evaluate the 3D alignment

accuracy.

In summary, the main contributions of the proposed pose invariant face alignment are:
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Figure 2.1: Given a face image with an arbitrary pose, our proposed algorithm automatically estimates the
2D locations and visibilities of facial landmarks, as well as 3D landmarks. The displayed 3D landmarks are
estimated for the image in the center. Green/red points indicate visible/invisible landmarks.

• We propose a face alignment method that can estimate sparse set of 2D/3D landmarks and

their visibilities for a face image with an arbitrary pose.

• By integrating with a 3D point distribution model, a cascaded coupled-regressor approach is

developed to estimate both the camera projection matrix and the 3D landmarks, where 3D

model enables the automatically computed landmark visibilities via surface normal.

• A substantially larger number of non-frontal view face images are utilized in evaluation with

demonstrated superior performances than the state of the art.

2.2 Pose-Invariant 3D Face Alignment

This section presents the details of our proposed Pose-Invariant 3D Face Alignment (PIFA) algo-

rithm, with emphasis on the training procedure. As shown in Fig. 2.2, we first learn a 3D Point

Distribution Model (3DPDM) [31] from a set of labeled 3D scans, where a set of 2D landmarks on

an image can be considered as a projection of a 3DPDM instance (i.e., 3D landmarks). For each

2D training face image, we assume that there exists the manual labeled 2D landmarks and their

visibilities, as well as the corresponding 3D ground truth– 3D landmarks and the camera projection
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0, S1, S2 and Si is the mean shape and ith shape ba-
sis of the 3DMM respectively, Ns is the total shape bases,
and pi is the ith shape coefficient. Given a dataset of 3D
scans with manual labels on N 3D landmarks per scan,
we first perform procrustes analysis on the 3D scans to re-
move the global transformation, and then conduct Principal
Component Analysis (PCA) to obtain the S0 and {Si} [3]
(Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =
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where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and

p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.

3.2. Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth
as Pi = {Mi,pi}, as well as their initilization, usually
M0

i = (1, 0, 0, 0; 0, 1, 0, 0) and p0
i = 0. Given a dataset of

Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
successful cascaded regressors framework due to its accu-
racy and efficiency []. The general idea of cascaded regres-
sors is to learn a series of regressors, where the kth regres-
sor estimates the difference between the current parameter
Pk�1

i and the ground truth Pi, such that the estimated pa-
rameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

⇥k
1 = arg min

⇥k
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is the current estimated 2D landmarks, �Mk
i = Mi �

Mk�1
i , and Rk

1(·; ⇥k
1) is the desired regressor with the pa-

rameter of ⇥k
1 . After ⇥k

1 is estimated, we obtain �M̂i =
Rk

1(·; ⇥k
1) to all training images and update Mk

i = Mk�1
i +

�M̂i. Note that this liner updating may potentially break
the constraint of the projection matrix. Therefore, we esti-
mate the scale and yaw, pitch, row angles (s, ↵, �, �) from
Mk

i and composite a new Mk
i based on these four parame-

ters.
Similarly the second learning task of the kth regressor is,

⇥k
2 = arg min

⇥k
2

NdX

i=1

||�pk
i �Rk

2(Ii,Ui,vi; ⇥
k
2)||2, (8)

where Ui is computed via Eq 7 except Mk�1
i is replaced

with Mk
i . We also obtain �p̂i = Rk

2(·; ⇥k
2) to all train-

ing images and update pk
i = pk�1

i + �p̂i. This iterative
learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of the regressor. Therefore, we may define them
based on the existing work or any future development in
features and regressors. Specifically, in this work we adopt
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0, S1, S2 and Si is the mean shape and ith shape ba-
sis of the 3DMM respectively, Ns is the total shape bases,
and pi is the ith shape coefficient. Given a dataset of 3D
scans with manual labels on N 3D landmarks per scan,
we first perform procrustes analysis on the 3D scans to re-
move the global transformation, and then conduct Principal
Component Analysis (PCA) to obtain the S0 and {Si} [3]
(Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =
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where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and

p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.

3.2. Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth
as Pi = {Mi,pi}, as well as their initilization, usually
M0

i = (1, 0, 0, 0; 0, 1, 0, 0) and p0
i = 0. Given a dataset of

Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
successful cascaded regressors framework due to its accu-
racy and efficiency []. The general idea of cascaded regres-
sors is to learn a series of regressors, where the kth regres-
sor estimates the difference between the current parameter
Pk�1

i and the ground truth Pi, such that the estimated pa-
rameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

⇥k
1 = arg min

⇥k
1

NdX

i=1

||�Mk
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1(Ii,Ui,vi; ⇥
k
1)||2, (6)

where
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is the current estimated 2D landmarks, �Mk
i = Mi �

Mk�1
i , and Rk

1(·; ⇥k
1) is the desired regressor with the pa-

rameter of ⇥k
1 . After ⇥k

1 is estimated, we obtain �M̂i =
Rk

1(·; ⇥k
1) to all training images and update Mk

i = Mk�1
i +

�M̂i. Note that this liner updating may potentially break
the constraint of the projection matrix. Therefore, we esti-
mate the scale and yaw, pitch, row angles (s, ↵, �, �) from
Mk

i and composite a new Mk
i based on these four parame-

ters.
Similarly the second learning task of the kth regressor is,

⇥k
2 = arg min

⇥k
2

NdX

i=1

||�pk
i �Rk

2(Ii,Ui,vi; ⇥
k
2)||2, (8)

where Ui is computed via Eq 7 except Mk�1
i is replaced

with Mk
i . We also obtain �p̂i = Rk

2(·; ⇥k
2) to all train-

ing images and update pk
i = pk�1

i + �p̂i. This iterative
learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of the regressor. Therefore, we may define them
based on the existing work or any future development in
features and regressors. Specifically, in this work we adopt
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0, S1, S2 and Si is the mean shape and ith shape ba-
sis of the 3DMM respectively, Ns is the total shape bases,
and pi is the ith shape coefficient. Given a dataset of 3D
scans with manual labels on N 3D landmarks per scan,
we first perform procrustes analysis on the 3D scans to re-
move the global transformation, and then conduct Principal
Component Analysis (PCA) to obtain the S0 and {Si} [3]
(Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =
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where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and

p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.

3.2. Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth
as Pi = {Mi,pi}, as well as their initilization, usually
M0

i = (1, 0, 0, 0; 0, 1, 0, 0) and p0
i = 0. Given a dataset of

Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
successful cascaded regressors framework due to its accu-
racy and efficiency []. The general idea of cascaded regres-
sors is to learn a series of regressors, where the kth regres-
sor estimates the difference between the current parameter
Pk�1

i and the ground truth Pi, such that the estimated pa-
rameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

⇥k
1 = arg min

⇥k
1

NdX

i=1

||�Mk
i �Rk

1(Ii,Ui,vi; ⇥
k
1)||2, (6)

where
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is the current estimated 2D landmarks, �Mk
i = Mi �

Mk�1
i , and Rk

1(·; ⇥k
1) is the desired regressor with the pa-

rameter of ⇥k
1 . After ⇥k

1 is estimated, we obtain �M̂i =
Rk

1(·; ⇥k
1) to all training images and update Mk

i = Mk�1
i +

�M̂i. Note that this liner updating may potentially break
the constraint of the projection matrix. Therefore, we esti-
mate the scale and yaw, pitch, row angles (s, ↵, �, �) from
Mk

i and composite a new Mk
i based on these four parame-

ters.
Similarly the second learning task of the kth regressor is,

⇥k
2 = arg min

⇥k
2

NdX

i=1

||�pk
i �Rk

2(Ii,Ui,vi; ⇥
k
2)||2, (8)

where Ui is computed via Eq 7 except Mk�1
i is replaced

with Mk
i . We also obtain �p̂i = Rk

2(·; ⇥k
2) to all train-

ing images and update pk
i = pk�1

i + �p̂i. This iterative
learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of the regressor. Therefore, we may define them
based on the existing work or any future development in
features and regressors. Specifically, in this work we adopt
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face shape is an instance of the 3DMM,

S = S0 +

NsX

i=1

piSi, (4)

where S0 and Si is the mean shape and ith shape basis of
the 3DMM respectively, Ns is the total shape bases, and
pi is the ith shape coefficient. Given a dataset of 3D scans
with manual labels on N 3D landmarks per scan, we first
perform procrustes analysis on the 3D scans to remove the
global transformation, and then conduct Principal Compo-
nent Analysis (PCA) to obtain the S0 and {Si} [3] (Fig. ??).

The collection of all shape coefficients p =
(p1, p2, · · · , pNs

) is termed as the 3D shape parame-
ter of an image. At this point, the face alignment for a
testing image I has been converted from the estimation of
U to the estimation of P = {M,p}. The conversion is
motivated by a few factors. First, without the 3D modeling,
it is very difficulty to model the out-of-plane rotation,
which has a varying number of landmarks depending on
the rotation angle. Second, as pointed out by [29], by only
using 1

6 of the number of the shape bases, 3DMM can have
an equivalent representation power as its 2D counterpart.
Hence, using 3D model might lead to a more compact
representation of unknown parameters.

Ground truth P Estimating P for a testing image implies
that the existence of ground truth P for each training image.
However, while U can be manually labeled on a face im-
age, P is normally unavailable unless a 3D scan is captured
along with a face image. Therefore, in order to leverage the
vast amount of existing 2D face alignment datasets, such as
the AFLW dataset [14], it is desirable to estimate P for a
face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled
2D landmarks as U and the landmark visibility as v, a N -
dim vector with binary elements indicating visible (1) or
invisible (0) landmarks. Note that for invisible landmarks,
it is not necessary to label their 2D location. We define the
following objective function to estimate M and p,

J(M,p) =
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where V = (v|;v|) is a 2 ⇥ N visibility matrix, � de-
notes the element-wise multiplication, and || · ||2 is the
sum of the squares of all matrix elements. Basically
J() computes the difference between the visible 2D land-
marks and their 3D projections. An alternative estima-
tion scheme is utilized, i.e., by assuming p0 = 0, we
estimate Mk = arg minM J(M,pk�1), and then pk =
arg minp J(Mk,p) iteratively until the changes on M and
p are small enough. Both minimizations can be efficiently
solved in closed forms via least-square.

3.2. Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth
as Pi = {Mi,pi}, as well as their initilization, usually
M0

i = (1, 0, 0, 0; 0, 1, 0, 0) and p0
i = 0. Given a dataset of

Nd training images, the question is how to formulate an op-
timization problem to estimate Pi. We decide to extend the
successful cascaded regressors framework due to its accu-
racy and efficiency []. The general idea of cascaded regres-
sors is to learn a series of regressors, where the kth regres-
sor estimates the difference between the current parameter
Pk�1

i and the ground truth Pi, such that the estimated pa-
rameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded
coupled-regressor scheme where two regressors are learned
at the kth cascade layer, for the estimation of Mi and pi

respectively. Specifically, the first learning task of the kth
regressor is,

⇥k
1 = arg min

⇥k
1

NdX

i=1

||�Mk
i �Rk

1(Ii,Ui,vi; ⇥
k
1)||2, (6)

where
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is the current estimated 2D landmarks, �Mk
i = Mi �

Mk�1
i , and Rk

1(·; ⇥k
1) is the desired regressor with the pa-

rameter of ⇥k
1 . After ⇥k

1 is estimated, we obtain �M̂i =
Rk

1(·; ⇥k
1) to all training images and update Mk

i = Mk�1
i +

�M̂i. Note that this liner updating may potentially break
the constraint of the projection matrix. Therefore, we esti-
mate the scale and yaw, pitch, row angles (s, ↵, �, �) from
Mk

i and composite a new Mk
i based on these four parame-

ters.
Similarly the second learning task of the kth regressor is,

⇥k
2 = arg min

⇥k
2

NdX

i=1

||�pk
i �Rk

2(Ii,Ui,vi; ⇥
k
2)||2, (8)

where Ui is computed via Eq 7 except Mk�1
i is replaced

with Mk
i . We also obtain �p̂i = Rk

2(·; ⇥k
2) to all train-

ing images and update pk
i = pk�1

i + �p̂i. This iterative
learning procedure continues for K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme
does not depend on the particular feature representation or
the type of the regressor. Therefore, we may define them
based on the existing work or any future development in
features and regressors. Specifically, in this work we adopt
the HOG-based linear regressor [32] and the fern regres-
sor [4].

For the linear regressor, we denote an function f(I,U) to
extract HOG features around a small rectangular region of
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.

3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓

m1

||m1||
⇥ m2

||m2||

◆
, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
the L2 norm. For fern regressors, v is a soft visibility within

Algorithm 1: The training procedure of PIFA.

Data: 3D model {{S}Ns
i=0,

~N}, training samples and
labels {Ii,Ui}N

i=1.
Result: Cascaded coupled-regressor parameters

{⇥k
1 ,⇥k

2}K
k=1.

1 foreach i = 1, · · · , Nd do
2 Estimate Mi and pi via Eq. 5;
3 M0

i = (1, 0, 0, 0; 0, 1, 0, 0), p0
i = 0 and v0

i = 1 ;

4 foreach k = 1, · · · , K do
5 Compute Ui via Eq 7 for each image ;
6 Estimate ⇥k

1 via Eq 6 ;
7 Update Mk

i and Ui for each image ;
8 Compute vi via Eq 10 for each image ;
9 Estimate ⇥k

2 via Eq 8 ;
10 Update pk

i for each image ;

11 return {Rk
1(·; ⇥k

1), Rk
2(·; ⇥k

2)}K
k=1.

±1. For linear regressors, we further compute v = 1
2 (1 +

sign(v)), which results in a hard visibility of either 1 or 0.
In summary, we present the detailed training procedure

in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use

Rk
2(·; ⇥k

2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1

3
each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
5, 300 (i.e., 1st, 3rd,...), flip the images horizontally, and
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.

R1
1, R1

2, RK
1 , RK

2

3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓
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||m1||
⇥ m2

||m2||

◆
, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes

Algorithm 1: The training procedure of PIFA.

Data: 3D model {{S}Ns
i=0,

~N}, training samples and
labels {Ii,Ui}N

i=1.
Result: Cascaded coupled-regressor parameters

{⇥k
1 ,⇥k

2}K
k=1.

1 foreach i = 1, · · · , Nd do
2 Estimate Mi and pi via Eq. 5;
3 M0

i = (1, 0, 0, 0; 0, 1, 0, 0), p0
i = 0 and v0

i = 1 ;

4 foreach k = 1, · · · , K do
5 Compute Ui via Eq 7 for each image ;
6 Estimate ⇥k

1 via Eq 6 ;
7 Update Mk

i and Ui for each image ;
8 Compute vi via Eq 10 for each image ;
9 Estimate ⇥k

2 via Eq 8 ;
10 Update pk

i for each image ;

11 return {Rk
1(·; ⇥k

1), Rk
2(·; ⇥k

2)}K
k=1.

the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk
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2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1

3
each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.
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3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓
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, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
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5 Compute Ui via Eq 7 for each image ;
6 Estimate ⇥k
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7 Update Mk

i and Ui for each image ;
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9 Estimate ⇥k

2 via Eq 8 ;
10 Update pk

i for each image ;

11 return {Rk
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the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use

Rk
2(·; ⇥k

2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1

3
each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.
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3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
✓
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||m1||
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||m2||

◆
, (10)

where m1 and m2 are the left-most three elements at the
first and second row of M respectively, and || · || denotes
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i=1.
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the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
in Algorithm 1.

Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
coupled-regressor for face alignment. Basically we iter-
atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use
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2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +

P
i pK

i Si, and the
estimated 2D landmarks are Û = MK Ŝ. Note that Ŝ car-
ries the individual 3D shape information of the subject, but
not necessary in the same pose as the 2D testing image.

4. Experimental Results

Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
timated M for each image, we select a subset of 5, 300
images where the numbers of images whose absolute yaw
angle within [0�, 30�], [30�, 60�], [60�, 90�] are roughly 1

3
each. To have a more balanced distribution of the left
vs. right view faces, we take the odd indexed images among
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each one of N landmarks, which returns a 32N -dim feature
vector. Thus, we define the regressor function as

R(·) = ⇥| · Diag⇤(vi)f(Ii,Ui), (9)

where Diag⇤(v) is a function that duplicates each element
of v 32 times and converts into a diagonal matrix of size
32N . Note that we also add a constraint, �||⇥||2, to Eq 6 or
Eq 8 for a more robust least-square solution. By plugging
Eq 9 to Eq 6 or Eq 8, the regressor parameter ⇥ (e.g., a
Ns ⇥ 32N matrix for Rk

2 ) can be easily estimated in the
closed form.

For the fern regressor, we follow the training procedure
of [4]. That is, we divide the face region into a 3 ⇥ 3 grid.
For each one of the 9 zones, a depth 5 random fern re-
gressor is learned from the shape-index features selected by
correlation-based method [5] from that zone only. Finally
the learned R(·) is a weighted mean voting from the top 3
out of 9 fern regressors, where the weight is inversely pro-
portional to the average amount of occlusion in that zone.
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3.3. 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained
in the training procedure is the visibility of projected 2D
landmarks, vi. It is obvious that during the testing we have
to estimate v at each cascade layer for each testing image,
since there is no visibility information given. As a result,
during the training procedure, we also have to estimate v
per cascade layer for each training image, rather than using
the ground truth visibility labeled by human, which is used
for estimating ground truth P as shown in Eq 5.

Depending on the camera projection matrix M, the visi-
bility of each projected 2D landmarks may be dynamically
changing among different layers of the cascade. In order
to estimate v, we decide to use the 3D face surface infor-
mation. We start by assuming every individual has a sim-
ilar 3D surface normal vector at each of its 3D landmarks.
Then, by rotating the surface normal according to the rota-
tion angle indicated by the projection matrix, we can know
that whether the coordinate of the z-axis is pointing toward
the camera (i.e., visible) or away from the camera (i.e., in-
visible). In other words, the sign of the z-axis coordinates
indicates visibility.

By taking a set of 3D scans with manually labeled 3D
landmarks, we can compute the landmarks’ average 3D sur-
face normals, denoted as a 3 ⇥ N matrix ~N. Then we use
the following equation to compute the visibility vector,

v = ~N| ·
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the L2 norm. For fern regressors, v is a soft visibility within
±1. For linear regressors, we further compute v = 1

2 (1 +
sign(v)), which results in a hard visibility of either 1 or 0.

In summary, we present the detailed training procedure
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Model Fitting Given a testing image I and its initial pa-
rameter M0 and p0, we can apply the learned cascaded
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atively use Rk

1(·; ⇥k
1) to compute �M̂, update Mk, use

Rk
2(·; ⇥k

2) to compute �p̂, and update pk. Finally the es-
timated 3D landmarks are Ŝ = S0 +
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ries the individual 3D shape information of the subject, but
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Datasets The goal of this work is to advance the capabil-
ity of face alignment on in-the-wild faces with all possible
view angles, which is the type of images we desire when se-
lecting experimental datasets. However, very few publicly
available datasets satisfy this characteristic, or have been
extensively evaluated in prior work (see Tab. 1). Neverthe-
less, we identify three datasets for our experiments.

ALFW dataset [14] contains ⇠25k in-the-wild face im-
ages, each image annotated with the visible landmarks (up
to 21 landmarks), and a bounding box. Based on our es-
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Figure 2.2: Overall architecture of our proposed PIFA method, with three main modules (3D modeling,
cascaded coupled-regressor learning, and 3D surface-enabled visibility estimation). Green/red arrows indi-
cate surface normals pointing toward/away from the camera.

matrix. Given the training images and 2D/3D ground truth, we train a cascaded coupled-regressor

that is composed of two regressors at each cascade layer, for the estimation of the update of the

3DPDM coefficient and the projection matrix respectively. Finally, the visibilities of the projected

3D landmarks are automatically computed via the domain knowledge of the 3D surface normals,

and incorporated into the regressor learning procedure.

2.2.1 3D Face Modeling

Face alignment concerns the 2D face shape, represented by the locations of N 2D landmarks, i.e.,

U =




u1 u2 · · · uN

v1 v2 · · · vN


 . (2.1)
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A 2D face shape U is a projection of a 3D face shape S, similarly represented by the homogeneous

coordinates of N 3D landmarks, i.e.,

S =




x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN

1 1 · · · 1




. (2.2)

Similar to the prior work [121], a weak perspective model is assumed for the projection,

U = MS, (2.3)

where M is a 2× 4 projection matrix with seven degrees of freedom (yaw, pitch, roll, two scales

and 2D translations).

Following the basic idea of 3DPDM [31], we assume a 3D face shape is an instance of the

3DPDM,

S = S0 +
Ns

∑
i=1

piSi, (2.4)

where S0 and Si is the mean shape and ith shape basis of the 3DPDM respectively, Ns is the total

number of shape bases, and pi is the ith shape coefficient. Given a dataset of 3D scans with manual

labels on N 3D landmarks per scan, we first perform procrustes analysis on the 3D scans to remove

the global transformation, and then conduct Principal Component Analysis (PCA) to obtain the S0

and {Si} (see the top-left part of Fig. 2.2).

The set of all shape coefficients p = (p1, p2, · · · , pNs) is termed as the 3D shape parameter of

an image. At this point, the face alignment for a testing image I has been converted from the
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estimation of U to the estimation of P = {M,p}. The conversion is motivated by a few factors.

First, without the 3D modeling, it is very difficult to model the out-of-plane rotation, which has a

varying number of landmarks depending on the rotation angle and the individual 3D face shape.

Second, as pointed out by [121], by only using 1
6 of the number of the shape bases, 3DPDM can

have an equivalent representation power as its 2D counterpart. Hence, using 3D model might lead

to a more compact representation of unknown parameters.

Ground truth P Estimating P for a testing image implies the existence of ground truth P for each

training image. However, while U can be manually labeled on a face image, P is normally unavail-

able unless a 3D scan is captured along with a face image. Therefore, in order to leverage the vast

amount of existing 2D face alignment datasets, such as the AFLW dataset [57], it is desirable to

estimate P for a face image and use it as the ground truth for learning.

Given a face image I, we denote the manually labeled 2D landmarks as U and the landmark

visibility as v, an N-dim vector with binary elements indicating visible (1) or invisible (0) land-

marks. Note that it is not necessary to label the 2D locations of invisible landmarks. We define the

following objective function to estimate M and p,

J(M,p) =

∣∣∣∣∣

∣∣∣∣∣

(
M

(
S0 +

Ns

∑
i=1

piSi

)
−U

)
�V

∣∣∣∣∣

∣∣∣∣∣

2

, (2.5)

where V= (vT ; vT ) is a 2×N visibility matrix,� denotes the element-wise multiplication, and ||·||2

is the sum of the squares of all matrix elements. Basically J(·, ·) computes the difference between

the visible 2D landmarks and their 3D projections. An alternative estimation scheme is utilized,

i.e., by assuming p0 = 0, we estimate Mk = argminM J(M,pk−1), and then pk = argminp J(Mk,p)

iteratively until the changes of M and p are small enough. Both minimizations can be efficiently

solved in closed forms via least-square error.
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2.2.2 Cascaded Coupled-Regressor

For each training image Ii, we now have its ground truth as Pi = {Mi,pi}, as well as their initial-

ization, i.e., M0
i = g(M̄,bi), p0

i = 0, and v0
i = 1. Here M̄ is the average of ground truth projection

matrices in the training set, bi is a 4-dim vector indicating the bounding box location, and g(M,b)

is a function that modifies the scale and translation of M based on b. Given a dataset of Nd train-

ing images, the question is how to formulate an optimization problem to estimate Pi. We decide

to extend the successful cascaded regressors framework due to its accuracy and efficiency [26].

The general idea of cascaded regressors is to learn a series of regressors, where the kth regressor

estimates the difference between the current parameter Pk−1
i and the ground truth Pi, such that the

estimated parameter gradually approximates the ground truth.

Motivated by this general idea, we adopt a cascaded coupled-regressor scheme where two

regressors are learned at the kth cascade layer, for the estimation of Mi and pi respectively. Specif-

ically, the first learning task of the kth regressor is,

Θ
k
1 = argmin

Θk
1

Nd

∑
i=1
||∆Mk

i −Rk
1(Ii,Ui,vk−1

i ;Θ
k
1)||2, (2.6)

where

Ui = Mk−1
i

(
S0 +

Ns

∑
i=1

pk−1
i Si

)
, (2.7)

is the current estimated 2D landmarks, ∆Mk
i = Mi−Mk−1

i , and Rk
1(·;Θk

1) is the desired regressor

with the parameter of Θk
1. After Θk

1 is estimated, we obtain ∆M̂i = Rk
1(·;Θk

1) for all training images

and update Mk
i =Mk−1

i +∆M̂i. Note that this liner updating may potentially break the constraint of

the projection matrix. Therefore, we estimate the scales and yaw, pitch, roll angles (sx,sy,α,β ,γ)

from Mk
i and compose a new Mk

i based on these five parameters.
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Similarly the second learning task of the kth regressor is,

Θ
k
2 = argmin

Θk
2

Nd

∑
i=1
||∆pk

i −Rk
2(Ii,Ui,vk

i ;Θ
k
2)||2, (2.8)

where Ui is computed via Eq 2.7 except Mk−1
i is replaced with Mk

i . We also obtain ∆p̂i = Rk
2(·;Θk

2)

for all training images and update pk
i = pk−1

i +∆p̂i. This iterative learning procedure continues for

K cascade layers.

Learning Rk(·) Our cascaded coupled-regressor scheme does not depend on the particular feature

representation or the type of regressors. Therefore, we may define them based on prior work or any

future development in features and regressors. Specifically, in this work we adopt the HOG-based

linear regressor [126] and the fern regressor [22].

For the linear regressor, we denote a function f (I,U) to extract HOG features around a small

rectangular region of each one of N landmarks, which returns a 32N-dim feature vector. Thus, we

define the regressor function as

R(·) = Θ
ᵀ ·Diag∗(vi) f (Ii,Ui), (2.9)

where Diag∗(v) is a function that duplicates each element of v 32 times and converts into a diagonal

matrix of size 32N. Note that we also add a constraint, λ ||Θ||2, to Eq 2.6 or Eq 2.8 for a more

robust least-square solution. By plugging Eq 2.9 to Eq 2.6 or Eq 2.8, the regressor parameter Θ

(e.g., a Ns×32N matrix for Rk
2) can be easily estimated in the closed form.

For the fern regressor, we follow the training procedure of [22]. That is, we divide the face

region into a 3×3 grid. At each cascade layer, we choose 3 out of 9 zones with the least occlusion,

computed based on the {vk
i }. For each selected zone, a depth 5 random fern regressor is learned
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from the interpolated shape-indexed features selected by the correlation-based method [26] from

that zone only. Finally the learned R(·) is a weighted mean voting from the 3 fern regressors, where

the weight is inversely proportional to the average amount of occlusion in that zone.

2.2.3 3D Surface-Enabled Visibility

Up to now the only thing that has not been explained in the training procedure is how to estimate

the visibility of the projected 2D landmarks, vi. It is obvious that during the testing we have to

estimate v at each cascade layer for a testing image, since there is no visibility information given.

As a result, during the training procedure, we also have to estimate v per cascade layer for each

training image, rather than using the manually labeled ground truth visibility that is useful for

estimating ground truth P as shown in Eq 2.5.

Depending on the camera projection matrix M, the visibility of each projected 2D landmark

may dynamically change along different layers of the cascade (see the top-right part of Fig. 2.2). In

order to estimate v, we decide to use the 3D face surface information. We start by assuming every

individual has a similar 3D surface normal vector at each of its 3D landmarks. Then, by rotating

the surface normal according to the rotation angle indicated by the projection matrix, we know that

whether the rotated surface normal is pointing toward the camera (i.e., visible) or away from the

camera (i.e., invisible). In other words, the sign of the z-axis coordinates indicates visibility.

By taking a set of 3D scans with manually labeled 3D landmarks, we can compute the land-

marks’ average 3D surface normals, denoted as a 3×N matrix ~N. Then we use the following

equation to compute the visibility vector,

v = ~Nᵀ ·
(

m1

||m1||
× m2

||m2||

)
, (2.10)
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Data: 3D model {{S}Ns
i=0,

~N}, labeled data {Ii,Ui,bi}Nd
i=1

Result: Cascaded regressor parameters {Θk
1,Θ

k
2}K

k=1
/* 3D modeling */

1 foreach i = 1, · · · ,Nd do
2 Estimate Mi and pi via Eq. 2.5

/* Initialization */
3 foreach i = 1, · · · ,Nd do
4 p0

i = 0 ; . Assuming the mean 3D shape
5 v0

i = 1 ; . Assuming all landmarks visible
6 M0

i = g(M̄,bi) and Ui = M0
i S0

/* Regressor learning */
7 foreach k = 1, · · · ,K do
8 Estimate Θk

1 via Eq 2.6
9 Update Mk

i and Ui for all images
10 Compute vk

i via Eq 2.10 for all images
11 Estimate Θk

2 via Eq 2.8 ;
12 Update pk

i and Ui for all images .

Figure 2.3: The training procedure of PIFA.

where m1 and m2 are the left-most three elements at the first and second row of M respectively,

and ||·|| denotes the L2 norm. For fern regressors, v is a soft visibility within ±1. For linear

regressors, we further compute v = 1
2(1+ sign(v)), which results in a hard visibility of either 1 or

0. In summary, we present the detailed training procedure in Algorithm 2.3.

Model fitting Given a testing image I with bounding box b and its initial parameter M0 = g(M̄,b)

and p0 = 0, we can apply the learned cascaded coupled-regressor for face alignment. Basically we

iteratively use Rk
1(·;Θk

1) to compute ∆M̂, update Mk, compute vk, use Rk
2(·;Θk

2) to compute ∆p̂,

and update pk. Finally the estimated 3D landmarks are Ŝ = S0 +∑i pK
i Si, and the estimated 2D

landmarks are Û = MKŜ. Note that Ŝ carries the individual 3D shape information of the subject,

but not necessary in the same pose as the 2D testing image.
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2.3 Experimental Results

Datasets The goal of this work is to advance the capability of face alignment on in-the-wild faces

with all possible view angles, which is the type of images we desire when selecting experimental

datasets. However, very few publicly available datasets satisfy this characteristic, or have been

extensively evaluated in prior work (see Tab. 2.1). Nevertheless, we identify three datasets for our

experiments.

AFLW dataset [57] contains ∼ 25,000 in-the-wild face images, each image annotated with the

visible landmarks (up to 21 landmarks), and a bounding box. Based on our estimated M for each

image, we select a subset of 5,200 images where the numbers of images whose absolute yaw angles

within [0◦,30◦], [30◦,60◦], [60◦,90◦] are roughly 1
3 each. To have a more balanced distribution of

the left vs. right view faces, we take the odd indexed images among 5,200 (i.e., 1st, 3rd), flip

them horizontally, and use them to replace the original images. Finally, a random partition leads

to 3,901 and 1,299 images for training and testing respectively. As shown in Tab. 2.1, among the

methods that test on all poses, we have the largest number of testing images.

AFW dataset [151] contains 205 images and in total 468 faces with different poses within

±90◦. Each image is labeled with visible landmarks (up to 6), and a face bounding box. We only

use AFW for testing.

Since we are also estimating 3D landmarks, it is important to test on a dataset with ground

Table 2.1: The comparison of face alignment algorithms in pose handling (estimation errors may
have different definitions).

Method
3D

Visibility Pose-related database
Pose Training Testing Landmark Estimation

landmark range face # face # # errors
RCPR [22] No Yes COFW frontal w. occlu. 1,345 507 19 8.5
CoR [136] No Yes COFW; LFPW-O; Helen-O frontal w. occlu. 1,345;468;402 507;112;290 19;49;49 8.5
TSPM [151] No No AFW all poses 2,118 468 6 11.1
CDM [135] No No AFW all poses 1,300 468 6 9.1
OSRD [123] No No MVFW <±40◦ 2,050 450 68 N/A
TCDCN [142] No No AFLW, AFW <±60◦ 10,000 3,000;∼ 313 5 8.0;8.2
PIFA Yes Yes AFLW, AFW all poses 3,901 1,299;468 21,6 6.5;8.6
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truth, rather than estimated, 3D landmark locations. We find BP4D-S database [141] to be the best

for this purpose, which contains pairs of 2D images and 3D scans of spontaneous facial expressions

from 41 subjects. Each pair has semi-automatically generated 83 2D and 83 3D landmarks, and

the pose. We apply a random perturbation on 2D landmarks (to mimic imprecise face detection)

and generate their enclosed bounding box. With the goal of selecting as many non-frontal view

faces as possible, we choose a subset where the numbers of faces whose yaw angle within [0◦,10◦],

[10◦,20◦], [20◦,30◦] are 100, 500, and 500 respectively. We randomly select half of 1,100 images

for training and the rest for testing, with disjoint subjects.

Experiment setup Our PIFA approach needs a 3D model of {S}Ns
i=0 and ~N. Using the BU-4DFE

database [133] that contains 606 3D facial expression sequences from 101 subjects, we evenly

sample 72 scans from each sequence and gather a total of 72×606 scans. Based on the method in

Sec. 2.2.1, the resultant model has Ns = 30 for AFLW and AFW, and Ns = 200 for BP4D-S.

During the training and testing, for each image with a bounding box, we place the mean 2D

landmarks (learned from the training set) on the image such that the landmarks on the boundary

are within the four edges of the box. For training with linear regressors, we set K = 10, λ = 120,

while K = 75 for fern regressors.

Evaluation metric Given the ground truth 2D landmarks Ui, their visibility vi, and estimated

landmarks Ûi of Nt testing images, we have two ways of computing the landmark estimation errors:

1) Mean Average Pixel Error (MAPE) [135], which is the average of the estimation errors for

visible landmarks, i.e.,

MAPE =
1

∑
Nt
i |vi|1

Nt ,N

∑
i, j

vi( j)||Ûi(:, j)−Ui(:, j)||, (2.11)

where |vi|1 is the number of visible landmarks of image Ii, and Ui(:, j) is the jth column of Ui. 2)
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Normalized Mean Error (NME), which is the average of the normalized estimation error of visible

landmarks, i.e.,

NME =
1
Nt

Nt

∑
i
(

1
di|vi|1

N

∑
j

vi( j)||Ûi(:, j)−Ui(:, j)||), (2.12)

where di is the square root of the face bounding box size, as used by [135]. Note that normally di

is the inter-eye distance in prior face alignment work dealing with near-frontal faces.

Given the ground truth 3D landmarks Si and estimated landmarks Ŝi, we first estimate the

global rotation, translation and scale transformation so that the transformed Si, denoted as S′i, has

the minimum distance to Ŝi. We then compute the MAPE via Eq 2.11 except replacing U and

Ûi with S′i and Ŝi, and vi = 1. Thus the MAPE only measures the error due to non-rigid shape

deformation, rather than the pose estimation.

Choice of baseline methods Given the explosion of face alignment work in recent years, it is im-

portant to choose appropriate baseline methods so as to make sure the proposed method advances

the state of the art. In this work, we select three recent works as baseline methods: 1) CDM [135]

is a CLM-type method and the first one claimed to perform pose-free face alignment, which has

exactly the same objective as ours. On AFW it also outperforms the other well-known TSPM

method [151] that can handle all pose faces. 2) TCDCN [142] is a powerful deep learning-based

method published in the most recent ECCV. Although it only estimates 5 landmarks for up to ∼

60◦ yaw, it represents the recent development in face alignment. 3) RCPR [22] is a regression-type

method that represents the occlusion-invariant face alignment. Although it is an earlier work than

CoR [136], we choose it due to its superior performance on the large COFW dataset (see Tab. 1

of [136]). It can be seen that these three baselines not only are most relevant to our focus on pose-

invariant face alignment, but also well represent the major categories of existing face alignment

algorithms based on [115].
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Table 2.2: The NME(%) of three methods on AFLW.

Nt PIFA CDM RCPR
1,299 6.52 7.15
783 6.08 8.65

Table 2.3: The comparison of four methods on AFW.

Nt N Metric PIFA CDM RCPR TCDCN
468 6 MAPE 8.61 9.13
313 5 NME 9.42 9.30 8.20

Comparison on AFLW Since the source code of RCPR is publicly available, we are able to

perform the training and testing of RCPR on our specific AFLW partition. We use the available

executable of CDM to compute its performance on our test set. We strive to provide the same

setup to the baselines as ours, such as the initial bounding box, regressor learning, etc. For our

PIFA method, we use the fern regressor. Because CDM integrates face detection and pose-free

face alignment, no bounding box was given to CDM and it successfully detects and aligns 783 out

of 1,299 testing images. Therefore, to compare with CDM, we evaluate the NME on the same

783 testing images. As shown in Tab. 2.2, our PIFA shows superior performance to both baselines.

Although TCDCN also reports performance on a subset of 3,000 AFLW images within±60◦ yaw,

it is evaluated with 5 landmarks, based on NME when di is the inter-eye distance. Hence, without

the source code of TCDCN, it is difficult to have a fair comparison on our subset of AFLW images

(e.g., we can not define di as the inter-eye distance due to profile view faces). On the 1,299 testing

images, we also test our method with linear regressors, and achieve a NME of 7.50, which shows

the strength of fern regressors.

Comparison on AFW Unlike our specific subset of AFLW, the AFW dataset has been evaluated

by all three baselines, but different metrics are used. Therefore, the results of the baselines in

Tab. 2.3 are from the published papers, instead of executing the testing code. One note is that from

the TCDCN paper [142], it appears that all 5 landmarks are visible on all displayed images and
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Figure 2.4: The NME of five pose groups for two methods.

no visibility estimation is shown, which might suggest that TCDCN was evaluated on a subset of

AFW with up to ±60◦ yaw. Hence, we select the total of 313 out of 468 faces within this pose

range and test our algorithm. Since it is likely that our subset could differ to [142], please take

this into consideration while comparing with TCDCN. Overall, our PIFA method still performs

comparably among the four methods. This is especially encouraging given the fact that TCDCN

utilizes a substantially larger training set of 10,000 images - more than two times of our training

set. Note that in addition to Tab. 2.2 and 2.3, our PIFA also has other benefits as shown in Tab. 2.1.

E.g., we have 3D and visibility estimation, while RCPR has no 3D estimation and TCDCN does

not have visibility estimation.

Estimation error across poses Just like pose-invariant face recognition studies the recognition

rate across poses [71, 72], we also like to study the performance of face alignment across poses.

As shown in Fig. 2.4, based on the estimated projection matrix M and its yaw angles, we partition

all testing images of AFLW into five bins, each around a specific yaw angle. Then we compute the

NME of testing images within each bin, for our method and RCPR. We can observe that the profile

view images have in general larger NME than near-frontal images, which shows the challenge of

pose-invariant face alignment. Further, the improvement of PIFA over RCPR is consistent across

most of the poses.

Estimation error across landmarks We are also interested in the estimation error across various
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Figure 2.5: The NME of each landmark for PIFA.

Table 2.4: Efficiency of four methods in FPS.

PIFA CDM RCPR TCDCN
3.0 0.2 3.0 58.8

landmarks, under a wide range of poses. Hence, for the AFLW test set, we compute the NME of

each landmark for our method. As shown in Fig. 2.5, the two eye regions have the least amount of

error. The two landmarks under the ears have the most error, which is consistent with the intuition.

These observations also align well with prior face alignment study on near-frontal faces.

3D landmark estimation By performing the training and testing on the BP4D-S dataset, we can

evaluate the MAPE of 3D landmark estimation, with exemplar results shown in Fig. 2.6. Since

there are limited 3D alignment work and many of which do not perform quantitative evaluation,

such as [43], we are not able to find another method as the baseline. Instead, we use the 3D mean

shape, S0, as a baseline and compute its MAPE with respect to the ground truth 3D landmarks Si

(after global transformation). We find that the MAPE of S0 baseline is 5.02, while our method

has 4.75. Although our method offers a better estimation than the mean shape, this shows that 3D

face alignment is still a very challenging problem. We hope the effort to quantitatively measure the

3D estimation error, which is more difficult than its 2D counterpart, will encourage more research

activities to address this challenge.

Computational efficiency Based on the efficiency reported in the publications of baseline meth-

ods, we compare the computational efficiency of four methods in Tab. 2.4. Only TCDCN is mea-
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Figure 2.6: 2D and 3D alignment results of the BP4D-S dataset.

sured based on the C implementation while other three are all based on Matlab implementation.

It can be observed that TCDCN is the most efficient one. Consider that we estimate both 2D and

3D landmarks, at 3 FPS our unoptimized implementation is reasonably efficient. In our algorithm,

the most computational demanding part is feature extraction, while estimating the updates for the

projection matrix and 3D shape parameter has closed-form solutions and is very efficient.

Qualitative results We now show the qualitative face alignment results for images in two datasets.

As shown in Fig. 2.7, despite the large pose range of ±90◦ yaw, our algorithm does a good job of

aligning the landmarks, and correctly predict the landmark visibilities. These results are especially

impressive if you consider the same mean shape (2D landmarks) is used as the initialization of all

testing images, which has very large deformations with respect to their final landmark estimation.

2.4 Summary

Motivated by the fast progress of face alignment technologies and the need to align faces at all

poses, this chapter draws attention to a relatively less explored problem of face alignment robust to

poses variation. To this end, we propose a novel approach to tightly integrate the powerful cascaded

regressor scheme and the 3D face model. The 3D model not only serves as a compact constraint,
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Figure 2.7: Testing results of AFLW (top) and AFW (bottom). As shown in the top row, we initialize
face alignment by placing a 2D mean shape in the given bounding box of each image. Note the disparity
between the initial landmarks and the final estimated ones, as well as the diversity in pose, illumination and
resolution among the images. Green/red points indicate visible/invisible estimated landmarks.

but also offers an automatic and convenient way to estimate the visibilities of 2D landmarks -

a key for successful pose-invariant face alignment. As a result, for a 2D image, our approach

estimates the locations of 2D and 3D landmarks, as well as their 2D visibilities. We conduct an

extensive experiment on a large collection of all-pose face images and compare with three state-

of-the-art methods. While superior 2D landmark estimation has been shown, the performance on

3D landmark estimation indicates the future direction to improve this line of research.
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Chapter 3

Pose-Invariant Face Alignment via

CNN-based Dense 3D Model Fitting

3.1 Introduction

In the previous chapter, we propose the PIFA method which can estimate the locations of a sparse

set of 3D landmark points. In this chapter, we extend PIFA in a number of ways:

First, we propose to use a dense 3D Morphable Model (3DMM) to reconstruct the 3D shape

of face and the projection matrix as the latent representation of a 2D face shape. Therefore, face

alignment amounts to estimating this representation, i.e., performing the 3DMM fitting to a face

image with arbitrary poses.

Second, we propose to use Convolutional Neural Networks (CNN) as the regressor in the cas-

caded framework, to learn the mapping. The main advantage of CNN over the fern regression trees

(in the previous chapter) is that it does not depend on hand-crafted feature extraction methods. The

CNN can learn and extract more meaningful, generalizable and abstract features by hierarchical

representation. This property is more important in pose-invariant face alignment because a change

in the head pose (frontal to side-view) makes a considerable difference in the face images.

While most prior work on CNN-based face alignment estimate no more than six 2D landmarks

per image [99, 142], our cascaded CNN can produce a substantially larger number (34) of 2D and

3D landmarks. Further, using landmark marching [150], our algorithm can adaptively adjust the
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Figure 3.1: The proposed method estimates landmarks for large-pose faces by fitting a dense 3D shape.
From left to right: initial landmarks, fitted 3D dense shape, estimated landmarks with visibility. The
green/red/yellow dots in the right column show the visible/invisible/cheek landmarks, respectively.

3D landmarks during the fitting, so that the local appearances around cheek landmarks contribute

to the fitting process.

Third, we propose two novel pose-invariant local features, as the input layer for CNN learning.

We utilize the dense 3D face model as an oracle to build dense feature correspondence across

various poses and expressions. We also utilize person-specific surface normals to estimate the

visibility of each landmark by inspecting whether its surface normal has a positive z coordinate,

and the estimated visibilities are dynamically incorporated into the CNN regressor learning such

that only the extracted features from visible landmarks contribute to the learning.

Fourth, the CNN regressor deals with a very challenging learning task given the diverse fa-

cial appearance across all poses. To facilitate the learning task under large variations of pose and

expression, we develop two new constraints to learn the CNN regressors. One is that, there is inher-

ent ambiguity in representing a 2D face shape as the combination of the 3D shape and projection

matrix. Therefore, in addition to regressing toward such a non-unique latent representation, we

also propose to constrain the CNN regressor in its ability to directly estimate 2D face shapes. The

other is that, a horizontally mirrored version of a face image is still a valid face and their alignment
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results should be the flip version of each other. In this work, we propose a CNN architecture with

a new loss function that explicitly enforces these constraints. The new loss function minimizes

the difference of face alignment results of a face image and its mirror, in a siamese network ar-

chitecture [20]. Although this mirrorability constraint was an alignment accuracy measure used in

post-processing [129], we integrate it directly in CNN learning.

These algorithm designs collectively lead to the extended pose-invariant face alignment algo-

rithm. We conduct extensive experiments to demonstrate the capability of proposed method in

aligning faces across poses on two challenging datasets, AFLW [61] and AFW [151], with com-

parison to the state of the art.

We summarize the main contributions of this work as:

– Pose-invariant face alignment by fitting a dense 3DMM, and integrating estimation of 3D

shape and 2D facial landmarks from a single face image.

– The cascaded CNN-based 3D face model fitting algorithm that is applicable to all poses,

with integrated landmark marching and contribution from local appearances around cheek

landmarks during the fitting process.

– Dense 3D face-enabled pose-invariant local features and utilizing person-specific surface

normals to estimate the visibility of landmarks.

– A novel CNN architecture with mirrorability constraint that minimizes the difference of face

alignment results of a face image and its mirror.
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Figure 3.2: The overall process of the proposed method.

3.2 Unconstrained 3D Face Alignment

The core of our proposed 3D face alignment method is the ability to fit a dense 3D Morphable

Model to a 2D face image with arbitrary poses. The unknown parameters of fitting, the 3D shape

parameters and the projection matrix parameters, are sequentially estimated through a cascade of

CNN-based regressors. By employing the dense 3D shape model, we enjoy the benefits of being

able to estimate 3D shape of face, locate the cheek landmarks, use person-specific 3D surface

normals, and extract pose-invariant local feature representation, which are less likely to achieve

with a simple PDM [52]. Fig. 3.2 shows the overall process of the proposed method.

3.2.1 3D Morphable Model

To represent a dense 3D shape of an individual’s face, we use 3D Morphable Model (3DMM),

S = S0 +
Nid

∑
i=1

pi
idSi

id +
Nexp

∑
i=1

pi
expSi

exp, (3.1)

where S is the 3D shape matrix, S0 is the mean shape, Si
id is the ith identity basis, Si

exp is the ith

expression basis, pi
id is the ith identity coefficient, and pi

exp is the ith expression coefficient. The
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collection of both coefficients is denoted as the shape parameter of a 3D face, p = (pᵀid,p
ᵀ
exp)T . We

use the Basel 3D face model as the identity bases [86] and the face wearhouse as the expression

bases [25]. The 3D shape S, along with S0, Si
id , and Si

exp, is a 3×Q matrix which contains x,y and

z coordinates of Q vertexes on the 3D face surface,

S =




x1 x2 · · · xQ

y1 y2 · · · yQ

z1 z2 · · · zQ



. (3.2)

Any 3D face model will be projected onto a 2D image where the face shape may be represented

as a sparse set of N landmarks, on the facial fiducial points. We denote x and y coordinates of these

2D landmarks as a matrix U,

U =




u1 u2 · · · uN

v1 v2 · · · vN


 . (3.3)

The relationship between the 3D shape S and 2D landmarks U can be described by using the

weak perspective projection, i.e.,

U = sRS(:,d)+ t, (3.4)

where s is a scale parameter, R is the first two rows of a 3×3 rotation matrix controlled by three

rotation angles α , β , and γ (pitch, yaw, roll), t is a translation parameter composed of tx and

ty, d is a N-dim index vector indicating the indexes of semantically meaningful 3D vertexes that

correspond to 2D landmarks. We form a projection vector m = (s,α,β ,γ, tx, ty)T which collects all

parameters to this projection. We assume the weak perspective projection model with six degrees

of freedom, which is a typical model used in many prior face-related work [48, 121].
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Figure 3.3: The landmark marching process for updating vector d. (a-b) show the defined paths of cheek
landmarks on the mean shape; (c) is the estimated face shape; (d) is the estimated face shape by ignoring
the roll rotation; and (e) shows the locations of landmarks on the cheek.

At this point, we can represent any 2D face shape as the projection of a 3D face shape. In

other words, the projection parameter m and shape parameter p can uniquely represent a 2D face

shape. Therefore, the face alignment problem amounts to estimating m and p, given a face image.

Estimating m and p instead of estimating U is motivated by a few factors. First, without the

3D modeling, it is non-trivial to model the out-of-plane rotation, which has a varying number of

landmarks depending on the rotation angle. Second, as pointed out by [121], by only using 1
6

of the number of the shape bases, 3DMM can have an equivalent representation power as its 2D

counterpart. Hence, using 3D model leads to a more compact representation of shape parameters.

Cheek landmarks correspondence The projection relationship in Eqn. 3.4 is correct for frontal-

view faces, given a constant index vector d. However, as soon as a face turns to the non-frontal

view, the original 3D landmarks on the cheek become invisible on the 2D image. Yet most 2D

face alignment algorithms still detect 2D landmarks on the contour of the cheek, termed “cheek

landmarks". Therefore, in order to still maintain the 3D-to-2D correspondences as Eqn. 3.4, it is

desirable to estimate the 3D vertexes that match with these cheek landmarks. A few prior works

have proposed various approaches to handle this [24, 92, 150]. In this paper, we leverage the

landmark marching method proposed in [150].

Specifically, we define a set of paths each storing the indexes of vertexes that are not only the
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Data: Estimated 3D face S and projection matrix parameter m
Result: Index vector d
/* Rotate S by the estimated α,β */

13 Ŝ = R(α,β ,0)S
14 if 0 ◦ < β < 70 ◦ then
15 foreach i = 1, · · · ,4 do
16 Vcheek(i) = argmaxid(Ŝ(1,Pathcheek(i)))

17 if −70 ◦ < β < 0 ◦ then
18 foreach i = 5, · · · ,8 do
19 Vcheek(i) = argminid(Ŝ(1,Pathcheek(i)))

20 Update 8 elements of d with Vcheek.

Figure 3.4: Landmark marching g(S,m).

most closest ones to the original 3D cheek landmarks, but also on the contour of the 3D face as it

turns. Given a non-frontal 3D face S, by ignoring the roll rotation γ , we rotate S by using the α and

β angles (pitch and yaw), and search for a vertex in each predefined path that has the maximum

(minimum) x coordinate, i.e., the boundary vertex on the right (left) cheek. These resulting vertexes

will be the new 3D landmarks that correspond to the 2D cheek landmarks. We will then update

relevant elements of d to make sure these vertexes are selected in the projection of Eqn. 3.4. This

landmark marching process is summarized in Algorithm 3.4 as a function d← g(S,m). Note that

when the face is approximately of profile view (|β |> 70 ◦), we do not apply landmark marching

since the marched landmarks would overlap with the existing 2D landmarks on the middle of nose

and mouth. Fig. 3.3 shows the defined set of pathes on the 3D shape of face and one example of

applying Algorithm 3.4 for updating vector d.

3.2.2 Data Augmentation

Given that the projection matrix parameter m and shape parameter p are the representation of a face

shape, we should have a collection of face images with ground truth m and p so that the learning

algorithm can be applied. However, while U can be manually labeled on a face image, m and p are
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normally unavailable unless a 3D scan is captured along with a face image. For most existing face

alignment databases, such as the AFLW database [61], only 2D landmark locations and sometimes

the visibilities of landmarks are manually labeled, with no associated 3D information such as m

and p. In order to make the learning possible, we propose a data augmentation process for 2D face

images, with the goal of estimating their m and p representation.

Specifically, given the labeled visible 2D landmarks U and the landmark visibilities V, we

estimate m and p by minimizing the following objective function:

J(m,p) = ||(sRS(:,g(S,m))+ t−U)�V||2F , (3.5)

which is the difference between the projection of 3D landmarks and the 2D labeled landmarks.

Note that although the landmark marching g(:, :) makes cheek landmarks “visible” for non-profile

views, the visibility V is still necessary to avoid invisible landmarks, such as outer eye corners and

half of the face at the profile view, being part of the optimization.

3.2.2.1 Optimization

For convenient optimization of Eqn. 3.5, we redefine all projection parameters as a projection

matrix, i.e.,

M =


sR

tx

ty


 ∈ R2×4. (3.6)

Also, we denote d = g(S,m) in Eqn. 3.5 by assuming it is a constant given the currently

estimated m and p. We then rewrite Eqn. 3.5 as,

J(M,p) =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣


M




S(:,d)

1T


−U


�V

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

2

F

. (3.7)
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To minimize this objective function, we alternate the minimization w.r.t. M and p at each itera-

tion. We initialize the 3D shape parameter p= 0 and estimate M first, by Mk = argminM J(M,pk−1),

Mk = UV




S(:,dV )

1T




ᵀ





S(:,dV )

1T







S(:,dV )

1T




ᵀ


−1

, (3.8)

where UV is zero-mean positions (by removing the mean from all the elements) of visible 2D

landmarks, dV is a vector contains the index of visible landmarks. Given the estimated Mk, we then

use the Singular Value Decomposition (SVD) to decompose it to various elements of projection

parameter m, i.e, Mk = BDQᵀ. The first diagonal element of D is scale s and we decompose the

rotation matrix R = BQᵀ ∈ R2×3 to three rotation angles (α,β ,γ). Finally, the mean values of U

are translation parameters tx and ty.

Then, we estimate pk = argminp J(Mk,p). Given the orthogonal bases of 3DMM, we choose

to compute each element of p one by one. That is, pi
id is the contribution of i-th identity basis in

reconstructing the dense 3D face shape,

pi
id =

Tr
(
Ûᵀ

V Ûidi

)

Tr
(

Ûᵀ
idi

Ûidi

) , (3.9)

where

ÛV = Mk




S(:,dV )

1T


, Ûidi = Mk




Si
id(:,dV )

1T


 .

Here ÛV is current residual of position of 2D visible landmarks after subtracting contribution

of Mk, and Tr() is the trace function. Once pi
id is computed, we update ÛV by subtracting the

contribution of i-th basis and continue to compute pi+1
id . We alternatively estimate M and p until
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the changes of M and p are small enough. After each step of applying Eqn. 3.8 for computing

a new estimation of M and decomposing to its parameters m, we apply the landmark marching

algorithm (Algorithm 3.4) to update the vector d.

3.2.3 Cascaded CNN Coupled-Regressor

Given a set of Nd training face images and their augmented (i.e., “ground truth") m and p repre-

sentation, we are interested in learning a mapping function that is able to predict m and p from

the appearance of a face. Clearly this is a complicated non-linear mapping due to the diversity of

facial appearance. Given the success of CNN in vision tasks such as pose estimation [88], face

detection [64], and face alignment [142], we decide to marry the CNN with the cascade regressor

framework by learning a series of CNN-based regressors to alternate the estimation of m and p.

To the best of our knowledge, this is the first time CNN is used in 3D face alignment, with the

estimation of over 10 landmarks.

For each training image Ii, in addition to the ground truth mi and pi, we also initialize image’s

representation by, m0
i = h(m̄,bi) and p0

i = 0. Here m̄ is the average of ground truth parameters of

projection matrices in the training set, bi is a 4-dim vector indicating the bounding box location,

and h(m,b) is a function that modifies the scale and translations of m based on b.

Thus, at the stage k of the cascaded CNN, we can learn a CNN to estimate the desired update

of the projection matrix parameter,

Θ
k
m = argmin

Θk
m

JΘ =
Nd

∑
i=1
||∆mk

i −CNNk
m(Ii,Ui,vk−1

i ;Θ
k
m)||2, (3.10)

where the true projection update is the difference between the current projection matrix parameter

and the ground truth, i.e., ∆mk
i = mi−mk−1

i , Ui is current estimated 2D landmarks, computed via

Eqn. 3.4, based on mk−1
i and dk−1

i , and vk−1
i is estimated landmark visibility at stage k−1.
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Similarly another CNN regressor can be learned to estimate the updates of the shape parameter,

Θ
k
p = argmin

Θk
p

JΘ =
Nd

∑
i=1
||∆pk

i −CNNk
p(Ii,Ui,vk

i ;Θ
k
p)||2. (3.11)

Note that Ui will be re-computed via Eqn. 3.4, based on the updated mk
i and dk

i by CNNm.

We use a six-stage cascaded CNN, including CNN1
m, CNN2

m, CNN3
p, CNN4

m, CNN5
p, and

CNN6
m. At the first stage, the input layer of CNN1

m is the entire face region cropped by the ini-

tial bounding box, with the goal of roughly estimating the pose of the face. The input for the

second to sixth stages is a 114×114 image that contains an array of 19×19 pose-invariant feature

patches, extracted from the current estimated 2D landmarks Ui. In our implementation, since we

have N = 34 landmarks, the last two patches of 114×114 image are filled with zero. Similarly, for

invisible 2D landmarks, their corresponding patches will be filled with zeros as well. These feature

patches encode sufficient information about the local appearance around the current 2D landmarks,

which drives the CNN to optimize the parameters Θk
m or Θk

p. Also, through concatenation, these

feature patches share the information among different landmarks and jointly drive the CNN in pa-

rameter estimation. Our input representation can be extended to use a larger number of landmarks

and hence a more accurate dense 3D model can be estimated.

Note that since landmark marching is used, the estimated 2D landmarks Ui include the pro-

jection of marched 3D landmarks, i.e., 2D cheek landmarks. As a result, the appearance features

around these cheek landmarks are part of the input to CNN as well. This is in sharp contrast to [52]

where no cheek landmarks participate the regressor learning. Effectively, these additional cheek

landmarks serve as constraints to guide how the facial silhouettes at various poses should look like,

which is essentially the shape of the 3D face surface.

Another note is that, in stead of alternating between the estimation of m and p, another option

is to jointly estimate both parameters in each CNN stage. Experimentally we observed that such
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Figure 3.5: Architecture of C-CNN (the same CNN architecture is used for all six stages). Color code
used: purple = extracted image feature, orange = Conv, brown = pooling + batch normalization, blue = fully
connected layer, red = ReLU. The filter size and the number of filters for each layer are shown on the top
and the bottom respectively.

a joint estimation schedule leads to a lower accuracy than the alternating scheme, potentially due

to the different physical meaning of m and p and the ambiguity of multiple pairs of m and p

corresponding the same 2D shape. For the alternating scheme, now we present two different CNN

architectures, and use the same CNN architecture for all six stages of the cascade.

3.2.4 Conventional CNN (C-CNN)

The architecture of the first CNN is shown in Fig. 3.5. It has three convolutional layers where each

one is followed by a pooling layer and a batch normalization layer. Then, one fully connected

layer and ReLU layer and, at the end of the architecture, it has one fully connected layer and one

Euclidian loss (JΘ) for estimating the projection matrix parameters or 3D shape parameters. We

use rectified linear unit (ReLU) [41] as the activation function which enables CNN to achieve the

best performance without unsupervised pre-training.

3.2.5 Mirror CNN (M-CNN)

We deal with two inherent ambiguities when we estimate projection matrix parameter m and 3D

shape parameter p. First, mutiple pairs of m and p can represent the same 2D face shape. Second,

the estimated updates of m and p are not explicitly related to the face alignment error. In other

words, the changes in m and p are not linearly related to the 2D shape changes. To remedy these
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ambiguities, we predict 2D shape update simultaneously while estimating the m and p updates.

We extend the CNN architecture of each cascade stage by encouraging the alignment results of

a face image and its mirror to be highly correlated. To this end, we use the idea of mirrorability

constraint [129] with two main differences. First, we combine this constraint with the learning

procedure rather than using it as a post-processing step. Second, we integrate the mirrorability

constraint inside a siamese CNN [20] by sharing the network’s weights between the input face

image and its mirror image and adding a new loss function.

3.2.5.1 Mirror Loss

Given the input image and its mirror image with their initial bounding boxes, we use function

h(m̄,b), that modifies the scale and translations of m̄ based on b, for initialization. Then, according

to the mirror ability constraint, we assume that the estimated update of shape for the input image

should be similar to the update of shape for the mirror image with a reordering. This assumption

is true when both images are initialized with the same landmarks up to a reordering, which is true

in all cascade stages. We use the mirror loss to minimize the Euclidian distance of estimated shape

update of two images. The mirror loss at stage k is,

Jk
M = ||∆Ûk−C

(
∆Ûk

M

)
||2, (3.12)

where ∆Ûk is the input image’s shape update, ∆Ûk
M is the mirror image’s shape update and C() is

a reordering function to indicate landmark correspondence between mirror images.
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New CNN Architecture + Mirrorability 
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Figure 3.6: Architecture of the M-CNN (the same CNN architecture is used for all six stages). Color code
used: purple = extracted image feature, orange = Conv, brown = pooling + batch normalization, green =
locally connected layer, blue = fully connected layer, red = batch normalization + ReLU + dropout. The
filter size and the number of filters of each layer are shown on the top and the bottom of the top branch
respectively.

3.2.5.2 Mirror CNN Architecture

The new CNN architecture follows the siamese network [20] with two branches whose weights are

shared. Fig. 3.6 shows the architecture of the M-CNN. The top and bottom branches are feeded

with the extracted input feature from a training image and its mirror respectively. Each branch

has two convolutional layers and two layers of locally connected layers. The locally connected

layer [102] is similar to convolutional layer and learns a set of filters for various regions of its

input. The locally connected layers are spatial location dependent, which is a correct assumption

for our extracted image feature at each stage. After each of these layers, we have one pooling

and batch normalization layers. At the end in the top branch, after a fully connected layer, batch

normalization, ReLU and dropout layers, we have two fully connected layers, one for estimating

the update of parameters (JΘ) and the other one for estimating the update of 2D shape via the loss

(JU ),

Jk
U = ||∆Uk−∆Ûk||2. (3.13)

In the bottom branch, we only have one loss (JMU ) for estimating the update of 2D shape in the
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mirror image. In total, we have four loss functions, one for the updates of m or p, two for the 2D

shape updates of two images respectively, and one mirror loss. We minimize the total loss at stage

k,

Jk
T = Jk

Θ +λ1Jk
U +λ2Jk

MU +λ3Jk
M, (3.14)

where λ1 to λ3 are weights for loss functions. Despite M-CNN appears more complicated to be

trained than C-CNN, their testing are the same. That is, the only useful result at each cascade

stage of M-CNN is the estimated update of the m or p, which is also passed to the next stage and

initialize the input image features. In other words, the mirror images and estimated ∆U in both

images only serve as constraints in training, and are neither needed nor used in testing.

3.2.6 Visibility and 2D Appearance Features

One notable advantage of employing a dense 3D shape model is that more advanced 2D features,

which might be only possible because of the 3D model, can be extracted and contribute to the

cascaded CNN learning. In this work, these 2D features refer to the 2D landmark visibility and the

appearance patch around each 2D landmark.

In order to compute the visibility of each 2D landmark, we leverage the basic idea of examining

whether the 3D surface normal of the corresponding 3D landmark is pointing to the camera or not,

under the current camera projection matrix [52]. Instead of using the average 3D surface normal

for all humans, we extend it by using person-specific 3D surface normal. Specifically, given the

current estimated 3D shape S, we compute the 3D surface normals for a set of sparse vertexes

around the 3D landmark of interest, and the average of these 3D normals is denoted as ~N. Fig. 3.7
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Figure 3.7: The person-specific 3D surface normal as the average of normals around a 3D landmark (black
arrow). Notice the relatively noisy surface normal of the 3D “left eye corner” landmark (blue arrow).

illustrates the advantage of using the average 3D surface normal. Given ~N, we compute,

v = ~Nᵀ · (R1×R2) , (3.15)

where R1 and R2 are the first two rows of R. If v is positive, the 2D landmark is considered as

visible and its 2D appearance feature will be part of the input for CNN. Otherwise, it is invisible

and the corresponding feature will be zero for CNN. Note that this method does not estimate

occlusion due to other objects such as hairs.

In addition to visibility estimation, a 3D shape model can also contribute in generating ad-

vanced appearance features as the input layer for CNN. Specifically, we aim to extract a pose-

invariant appearance patch around each estimated 2D landmark, and the array of these patches will

form the input layer. In [128], a similar feature extraction is proposed by putting different scales

of input image together and forming a big image as the appearance feature. We now describe

two proposed approaches to extract an appearance feature, i.e., a 19× 19 patch, for the nth 2D

landmark.

Piecewise affine-warped feature (PAWF) Feature correspondence is always very important for

any visual learning, as evident by the importance of eye-based rectification to face recognition.

Yet, due to the fact that a 2D face is a projection of 3D surface with an arbitrary view angle, it

is hard to make sure that a local patch extracted from this 2D image corresponds to the patch
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Figure 3.8: Feature extraction process, (a-e) PAWF for the landmark on the right side of the right eye, (f-j)
D3PF for the landmark on the right side of the lip.

Figure 3.9: Examples of extracting PAWF. When one of the four neighborhood points (red point in the
bottom-right) is invisible, it connects to the 2D landmark (green point), extends the same distance further,
and generate a new neighborhood point. This helps to include the background context around the nose.

from another image, even both patches are centered at the ground truth locations of the same nth

2D landmark. Here, “correspond” means that the patches cover the exactly same local region of

faces anatomically. However, with a dense 3D shape model in hand, we may extract local patches

across different subjects and poses with anatomical correspondence. These correspondences across

subjects and poses facilitate CNN to learn the appearance variation induced by misalignment,

rather than subjects or poses.

In an offline procedure, we first search for T vertexes on the mean 3D shape S0 that are the
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Figure 3.10: Example of extracting D3PF.

most closest to the nth landmark (Fig. 3.8(b)). Second, we rotate the T vertexes such that the 3D

surface normal of the nth landmark points toward the camera (Fig. 3.8(c)). Third, among the T

vertexes we find four “neighborhood vertexes”, which have the minimum and maximum x and y

coordinates, and denote the four vertex IDs as a 4-dim vector d(n)
p (Fig. 3.8(d)). The first row of

Fig. 3.8 shows the process of extracting PAWF for right landmark of the right eye.

During the CNN learning, for the nth landmark of ith image, we project the four neighborhood

vertexes onto the ith image and obtain four neighborhood points, U(n)
i = sRS(:,d(n)

p )+ t, based

on the current estimated projection parameter m. Across all 2D face images, U(n)
i correspond

to the same face vertexes anatomically. Therefore, we warp the imagery content within these

neighborhood points to a 19×19 patch by using the piecewise affine transformation [78].

This novel feature representation can be well extracted in most cases, except for cases such as

the nose tip at the profile view. In such cases, the projection of the nth landmark is outside the

region specified by the neighborhood points, where one of the neighborhood points is invisible due

to occlusion. When this happens, we change the location of the invisible point by using its relative

distance to the projected landmark location, as shown in Fig. 3.9.

Direct 3D projected feature (D3PF) Both D3PF and PAWF start with the T vertexes surrounding

the nth 3D landmark (Fig. 3.8(g)). Instead of finding four neighborhood vertexes as in PAWF,

D3PF overlays a 19× 19 grid covering the T vertexes, and stores the vertexes of the grid points

in d(n)
d (Fig. 3.8(i)). The second row of Fig. 3.8 shows the process of extracting D3PF. Similar to
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PAWF, we can now project the set of 3D vertexes S(:,d(n)
d ) to the 2D image and extract a 19×19

patch via bilinear-interpolation, as shown in Fig. 3.10. We also estimate the visibilities of the 3D

vertexes S(:,d(n)
d ) via their surface normals, and zero will be placed in the patch for invisible ones.

For D3PF, every pixel in the patch will be corresponding to the same pixel in the patches of other

images, while for PAWF, this is true only for the four neighborhood points.

3.2.7 Testing

The testing part of both C-CNN and M-CNN are the same. Given a testing image I and its initial

parameter m0 and p0, we apply the learned cascaded CNN coupled-regressor for face alignment.

Basically we iteratively use Rk
m(·;Θk

m) to compute ∆m̂, update mk, use Rk
p(·;Θk

p) to compute ∆p̂,

and update pk. Finally the dense 3D shape is constructed via Eqn. 3.1, and the estimated 2D

landmarks are Û = sRŜ(:,d)+ t. Note that we apply the feature extraction procedure one time for

each CNN stage.

3.3 Experimental Results

In this section, we design experiments to answer the following questions: (1) What is the perfor-

mance of proposed method on challenging datasets in comparison to the state-of-the-art methods?

(2) How do different feature extraction methods perform in pose-invariant face alignment? (3)

What is the performance of proposed method with different CNN architectures and with different

deep learning toolboxes?
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(a) (b)

Figure 3.11: (a) AFLW original (yellow) and added landmarks (green), (b) Comparison of mean NME of
each landmark for RCPR (blue) and proposed method (green). The radius of circles is determined by the
mean NME multipled with the face bounding box size.

3.3.1 Experimental Setup

Databases Given that this work focus on pose-invariant face alignment, we choose two publicly

available face datasets with labeled landmarks and a wide range of poses.

AFLW database [61] is a large face dataset with 25K face images. Each image is manually la-

beled with up to 21 landmarks, with a visibility label for each landmark. In [52], a subset of AFLW

is selected to have a balanced distribution of yaw angles, including 3,901 images for training and

1,299 images for testing. We use the same subset and manually label 13 additional landmarks for

all 5,200 images. We call these 3,901 images as the base training set. The definition of original

landmarks and added landmarks is shown in Fig. 3.11(a). Using ground truth landmarks of each

image, we find the tightest bounding box, expand it by 10% of its size, and add 10% noise to the

top-left corner, width and height of the bounding box (examples in the 1st row of Fig. 3.17). These

randomly generated bounding boxes mimic the imprecise face detection window and will be used

for both training and testing.

AFW dataset [151] contains 468 faces in 205 images. Each face image is manually labeled

with up to 6 landmarks and has a visibility label for each landmark. For each face image a detected

bounding box is provided, and will be used as initialization. Given the small number of images,
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we only use this dataset for testing.

We use the Nid = 199 bases of Basel Face Model [86] for representing identity variation and

the Nexp = 29 bases of face wearhouse [25] for representing expression variation. In total, there

are 228 bases representing 3D face shapes with 53,215 vertexes.

Synthetic training data Unlike conventional face alignment, one of the main challenges in pose-

invariant face alignment is the limited training images. There are only two publicly available face

databases with a wide poses, along with landmark labeling. Therefore, utilizing synthetic face

images is an efficient way to supply more images into the training set. Specifically, we add 16,556

face images with various poses, generated from 1,035 subjects of LFPW dataset [7] by the method

of [150], to the base training set. We call this new training set as the extended training set.

Baseline selection Given the explosion of face alignment work in recent years, it is important to

choose appropriate baseline methods so as to make sure the proposed method advances the state of

the art. We select the most recent pose-invariant face alignment methods for comparing with the

proposed method. We compare the proposed method with two methods on AFLW: 1) PIFA [52]

is a pose-invariant face alignment method which aligns faces of arbitrary poses with the assistant

of a sparse 3D point distribution model, 2) RCPR [22] is a method based on cascade of regressors

that represents the occlusion-invariant face alignment. For comparison on AFW, we select three

methods: 1) PIFA [52], 2) CDM [135] is a method based on Constrained Local Model (CLM) and

the first one claimed to perform pose-free face alignment, 3) TSPM [151] is based on a mixtures

of trees with a shared pool of parts and can handle face alignment for large pose face images. It

can be seen that these baselines are most relevant to our focus on pose-invariant face alignment.

Parameter setting For implementing the proposed methods, we use two different deep learning

toolboxes. For implementing the C-CNN architecture, we use the MatConvNet toolbox [113] with

a constant learning rate of 1e−4, with ten epochs for training each CNN and a batch size of 100.
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Table 3.1: NME (%) of the proposed method with different features with the C-CNN architecture and the
base training set.

PAWF + Cheek D3PF + Cheek
PAWF

Extracted
Landmarks Landmarks Patch

4.72 5.02 5.19 5.51

For the M-CNN architecture, we use the Caffe toolbox [49] with a learning rate of 1e−7 and the

step learning rate policy with a drop rate of 0.9, in 70 epochs at each stage and a batch size of 100.

We set the weight parameters of the total loss λ1 to λ3 in Eqn. 3.14 to 1. For RCPR, we use the

parameters reported in its paper, with 100 iterations and 15 boosted regressors. For PIFA, we use

200 iterations and 5 boosted regressors. For PAWF and D3PF, at the second stage T is 5,000, and

3,000 for the other stages. According to our empirical evaluation, six stages of CNN are sufficient

for convergence of fitting process.

Evaluation metrics Given the ground truth 2D landmarks Ui, their visibility vi, and estimated

landmarks Ûi of Nt testing images, we use two conventional metrics for measuring the error of

up to 34 landmarks: 1) Mean Average Pixel Error (MAPE) [135], which is the average of the

estimation errors for visible landmarks, i.e.,

MAPE =
1

∑
Nt
i |vi|1

Nt ,N

∑
i, j

vi( j)||Ûi(:, j)−Ui(:, j)||, (3.16)

where |vi|1 is the number of visible landmarks of image Ii, and Ui(:, j) is the jth column of Ui. 2)

Normalized Mean Error (NME), which is the average of the normalized estimation error of visible

landmarks, i.e.,

NME =
1
Nt

Nt

∑
i
(

1
di|vi|1

N

∑
j

vi( j)||Ûi(:, j)−Ui(:, j)||), (3.17)

where di is the square root of the face bounding box size [52]. The eye-to-eye distance is not used

in NME since it is not well defined in large poses such as profile.
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Figure 3.12: Errors on AFLW testing set after each stages of CNN for different feature extraction methods
with the C-CNN architecture and the base training set. The initial error is 25.8%.

3.3.2 Comparison Experiments

Feature extraction methods To show the advantages of the proposed features, Table 3.1 compares

the accuracy of the proposed method on AFLW with 34 landmarks, with various feature presenta-

tion (i.e., the input layer for CNN2 to CNN6). For this experiment, we use the C-CNN architecture

with the base training set. The “Extracted Patch" refers to extracting a constant size (19× 19)

patch centered by an estimated 2D landmark, from a face image normalized using the bounding

box, which is a baseline feature widely used in conventional 2D alignment methods [139,147]. For

the feature “+Cheek Landmarks", additional up to four 19×19 patches of the contour landmarks,

which are invisible for non-frontal faces, will be replaced with patches of the cheek landmarks,

and used in the input layer of CNN learning. The PAWF can achieve higher accuracy than the

D3PF. By comparing Column 1 and 3 of Table 3.1, it shows that extracting features from cheek

landmarks are effective in acting as additional visual cues for the cascaded CNN regressors. The

combination of using the cheek landmarks and extracting PAWF achieves the highest accuracy,

which will be used in the remaining experiments. Fig. 3.12 shows the errors on AFLW testing set

after each stages of CNN for different feature extraction methods. There is no difference in the

errors of the first stage CNN because it uses the global appearance in the bounding box, rather than

the array of local features.
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Table 3.2: The NME (%) of three methods on AFLW with the base training set.

Proposed method
PIFA RCPR

(C-CNN)
4.72 8.04 6.26
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Figure 3.13: Comparison of NME for each pose with the C-CNN architecture and the base training set.

CNN is known for demanding a large training set, while the 3,901-image AFLW training set

is relatively small from CNN’s perspective. However, our CNN-based regressor is still able to

learn and align well on unseen images. We attribute this fact to the effective appearance features

proposed in this work, i.e., the superior feature correspondence enabled by the dense face model

reduces CNN’s demand for massive training data.

Experiments on AFLW dataset We compare the proposed method with the two most related

methods for aligning faces with arbitrary poses. For both RCPR and PIFA, we use their source

code to perform training on the base training set. The NME of the three methods on the AFLW

testing set are shown in Table 3.2. The proposed method can achieve better results than the two

baselines. The error comparison for each landmark is shown in Fig. 3.11(b). As expected, the

contour landmarks have relatively higher errors and the proposed method has lower errors than

RCPR across all of the landmarks.

By using the ground truth landmark locations of the test images, we divide all test images to

six subsets according to the estimated yaw angle of each image. Fig. 3.13 compares the proposed

method with RCPR. The proposed method can achieve better results across different poses, and

more importantly, is more robust or has less variation across poses. For the detailed comparison on
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Figure 3.14: The comparison of CED for different methods with the C-CNN architecture and the base
training set.

Figure 3.15: Result of the proposed method after the first stage CNN. This image shows that the first stage
CNN can model the distribution of face poses. The right-view faces are at the top, the frontal-view faces are
at the middle, and the left-view faces are at the bottom.

the NME distribution, the Cumulative Errors Distribution (CED) diagrams of various methods are

shown in Fig. 3.14. The improvement seems to be over all NME values, and is especially larger

around lower NMEs (≤ 8%). We use the t-SNE toolbox [112] to apply dimension reduction on the

output of ReLU layer in the first stage CNN. The output of each test image is reduced to a two-

dimensional point and all test images are plotted based on their location of the points (Fig. 3.15).

This figure shows that the first stage CNN can model the distribution of face poses.
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Table 3.3: The NME (%) of three methods on ALFW with extended training set and Caffe toolbox.

Proposed method Proposed method
RCPR

(M-CNN) (C-CNN)
4.52 5.38 7.04

Experiments on the AFLW dataset with M-CNN We use the extended training set and the mirror

CNN architecture (M-CNN) for this experiment. We report the NME results of three methods in

Table 3.3. The M-CNN architecture, which incorporates the mirror constraint during the learning,

achieves approximately 16% reduction of error over the C-CNN architecture implemented with the

Caffe toolbox. This shows the effectiveness of the mirrorability constraint in the new architecture.

The comparison of Table 3.2 and Table 3.3 shows that the accuracy of the RCPR method is

lower with the extended training set than with the base training set. We attribute this to the low

quality of the side parts of the synthesized large-pose face images. Although the method in [150]

can synthesize side-view face images, the synthesized images could have some artifacts on the

side part of the face. These artifacts make it hard for the local fern features-based RCPR method

to simultaneously estimate the location and the visibility of landmarks.

In our proposed method, we arrange the extracted PAWF patches in a spatial array and use it as

the input to CNN. An alternative CNN input is to assign the extracted PAWF patches to different

channels and construct a 19× 19× 34 input datum. To evaluate its performance, considering the

change of the input size, we modify the CNN architecture in Fig. 3.6 by removing the first, the

third and the fourth pooling layers. The NME of M-CNN with the extended training set is 4.91%,

which shows that arranging the PAWF patches as a large image is till superior.

Experiments on AFW dataset The AFW dataset contains faces of all pose ranges with labels of

6 landmarks. We report the MAPE for six methods in Table 3.4. For PIFA, CDM and TSPM, we

show the error reported in their papers. Again we see the consistent improvement of our proposed

method (with both architectures) over the baseline methods.
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Table 3.4: The MAPE of six methods on AFW.

Proposed method Proposed method Proposed method
PIFA CDM TSPM

(M-CNN + PAWF) (C-CNN + PAWF) (C-CNN + D3PF)
6.52 7.43 7.83 8.61 9.13 11.09

Comparison of two CNN toolboxes We utilize two toolboxes for our implementations. We use

the MatConvNet toolbox [113] to implement the C-CNN architecture (Fig. 3.5). However, the

MatConvNet toolbox has limited ability in defining different branches for CNN, which is required

to train a siamese network. Therefore, we use the Caffe toolbox [49] to implement the M-CNN

architecture (Fig. 3.6). Based on our experiments on the AFLW test set, there are noticeable

difference between the testing results of these two toolboxes.

Table 3.5 shows the detailed comparison of the C-CNN and M-CNN architectures with differ-

ent settings. The Settings 1 and 2 compare the implementations of the C-CNN architecture on the

AFLW training set, using the MatConvNet and Caffe toolboxes respectively. It shows the superior

accuracy of the MatConvNet implementation in all stages, even when the extended training set is

provided in the Setting 4. These different testing results of two toolboxes might be due to two

reasons. One is that, the implementation of the basic building blocks, the optimization, and the de-

fault parameters could be different on the two toolboxes. The other is the random initialization of

network parameters. The comparison of the Settings 2 and 3 shows the superiority of the M-CNN

architecture. The Setting 5 includes our final result with the M-CNN architecture and the extended

training set.

Landmark visibility estimation For evaluating the accuracy of our visibility prediction, we uti-

lize the ground truth 3D shape of the test images and compute the visibility label of landmarks

due to the self occlusion. We define the “visibility error" as the metric, which is the average of

the ratios between the number of incorrectly estimated visibility labels and the total number of

landmarks per image. The proposed method achieves a visibility error of 4.1%. If we break down
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Table 3.5: The six-stage NMEs of implementing C-CNN and M-CNN architectures with different training
data sets and CNN toolboxes. The initial error is 25.8%.

Sett. Toolbox Method/Data S-1 S-2 S-3 S-4 S-5 S-6

1 MatConvNet 7.68 5.93 5.58 4.94 4.89 4.72
C-CNN/

2

Caffe

Base set
8.75 6.32 6.15 5.55 5.53 5.44

3
M-CNN/

7.18 6.06 5.83 5.08 4.91 4.76
Base set

4
C-CNN/

8.44 6.78 6.60 5.75 5.70 5.38
Extended set

5
M-CNN/

7.41 6.16 5.80 4.76 4.67 4.52
Extended set
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Figure 3.16: The distribution of visibility errors for each landmark. For six landmarks on the
horizontal center of the face, their visibility errors are zeros since they are always visible.

the visibility error for each landmark, their distribution is shown in Fig. 3.16.

Qualitative results Some examples of alignment results for the proposed method on AFLW and

AFW datasets are shown in Fig. 3.17. The result of the proposed method at each stage is shown in

Fig. 3.18.

Time complexity The speeds of proposed method with PAWF and D3PF are 0.6 and 0.26 FPS

respectively, with the Matlab implementation. The most time consuming part in the proposed

method is feature extraction which consumes 80% of the total time. We believe this can be sub-

stantially improved with C coding and parallel feature extraction. Note that the speed of C-CNN

and M-CNN architectures are the same because we only compute response of the top branch of

M-CNN in the testing phase.
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Figure 3.17: The results of the proposed method on AFLW and AFW. The green/red/yellow dots show the
visible/invisible/cheek landmarks, respectively. First row: initial landmarks for AFLW, Second: estimated
3D dense shapes, Third: estimated landmarks, Forth and Fifth: estimated landmarks for AFLW, Sixth: esti-
mated landmarks for AFW. Notice that despite the discrepancy between the diverse face poses and constant
front-view landmark initialization (top row), our model can adaptively estimate the pose, fit a dense model
and produce the 2D landmarks as a byproduct.

3.4 Summary

We propose a method to fit a 3D dense shape to a face image with large poses by combining

cascade CNN regressors and the 3D Morphable Model (3DMM). We propose two types of pose

invariant features and one new CNN architecture for boosting the accuracy of face alignment. Also,

we estimate the location of landmarks on the cheek, which also drives the 3D face model fitting.

Finally, we achieve the state-of-the-art performance on two challenging face alignment with large

poses.

57



Figure 3.18: The result of the proposed method across stages, with the extracted features (1st and 3rd rows)
and alignment results (2nd and 4th rows). Note the changes of the landmark position and visibility (the blue
arrow) over stages.
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Chapter 4

Pose-Invariant Face Alignment with a

Single CNN

4.1 Introduction

In the previous chapter, we propose our PIFA method based on cascade of CNN regressors and 3D

Morphable Model. The cascade of the regressors is the dominant technology for pose-invariant

face alignment [68, 147, 148]. Despite the recent success, the cascade of CNNs, when applied to

the large pose face images, still suffers from the following drawbacks.

Lack of end-to-end training: It is a consensus that end-to-end training is desired for CNN [23,

47]. However, in the existing methods, the CNNs are typically trained independently at each cas-

cade stage. Sometimes even multiple CNNs are applied independently at each stage. For example,

locations of different landmark sets are estimated by various CNNs and combined via a separate

fusing module [99]. Therefore, these CNNs can not be jointly optimized and might lead to a

sub-optimal solution.

Hand-crafted feature extraction: Since the CNNs are trained independently, feature extrac-

tion is required to utilize the result of a previous CNN and provide input to the current CNN. Simple

feature extraction methods are used, e.g., extracting patches based on 2D or 3D face shapes without

considering other factors including pose and expression [99,139] . Normally, the cascade of CNNs

is a collection of shallow CNNs where each one has less than five layers. Hence, this framework
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(a) (b)

Figure 4.1: For the purpose of learning an end-to-end face alignment model, our novel visualiza-
tion layer reconstructs the 3D face shape (a) from the estimated parameters inside the CNN and
synthesizes a 2D image (b) via the surface normal vectors of visible vertexes.

can not extract deep features by building upon the extracted features of early-stage CNNs.

Slow training speed: Training a cascade of CNNs is usually time-consuming for two rea-

sons. Firstly, the CNNs are trained sequentially, one after another. Secondly, feature extraction is

required between two consecutive CNNs.

To address these issues, we introduce a novel layer, as shown in Figure 4.1. Our CNN archi-

tecture consists of several blocks, which are called visualization blocks. This architecture can be

considered as a cascade of shallow CNNs. The new layer visualizes the alignment result of a previ-

ous visualization block and utilizes it in a later visualization block. It is designed based on several

guidelines. Firstly, it is derived from the surface normals of the underlying 3D face model and

encodes the relative pose between the face and camera, partially inspired by the success of using

surface normals for 3D face recognition [79]. Secondly, the visualization layer is differentiable,

which allows the gradient to be computed analytically and enables end-to-end training. Lastly, a

mask is utilized to differentiate between pixels in the middle and contour areas of a face.

Benefiting from the design of the visualization layer, our method has the following advantages

and contributions:

� The proposed method allows a block in the CNN to utilize the extracted features from previ-

60



…

𝐌𝟎, 𝐩𝟎

Visualization Block 𝟏

…

Visualization 

Layer

Visualization Block 𝟐

…

Visualization 

Layer

Visualization Block 𝑵𝒗

𝐌,𝐩
Estimated…

…

Visualization 

Layer

Figure 4.2: The proposed CNN architecture. We use green, orange, and purple to represent the
visualization layer, convolutional layer, and fully connected layer, respectively. Please refer to
Figure 4.3 for the details of the visualization block.

ous blocks and extract deeper features. Therefore, extraction of hand-crafted features is no longer

necessary.

� The visualization layer is differentiable, allowing for backpropagation of an error from a later

block to an earlier one. To the best of our knowledge, this is the first method for pose-invariant

face alignment, that utilizes only one single CNN and allows end-to-end training.

� The proposed method converges faster during the training phase compared to the cascade of

CNNs. Therefore, the training time is dramatically reduced.

4.2 3D Face Alignment with Visualization Layer

Given a single face image with an arbitrary pose, our goal is to estimate the 2D landmarks with

their visibility labels by fitting a 3D face model. Towards this end, we propose a CNN architecture

with end-to-end training for model fitting, as shown in Figure 4.2. In this section, we will first

describe the underlying 3D face model used in this work, followed by our CNN architecture and

the visualization layer.
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4.2.1 3D and 2D Face Shapes

We use the 3D Morphable Model (3DMM) to represent the 3D shape of a face Sp as a linear

combination of mean shape S0, identity bases SI and expression bases SE :

Sp = S0 +
NI

∑
k

pI
kSI

k +
NE

∑
k

pE
k SE

k . (4.1)

We use vector p = [pI,pE ] to indicate the 3D shape parameters, where pI = [pI
0, · · · , pI

NI
] are the

identity parameters and pE = [pE
0 , · · · , pE

NE
] are the expression parameters. We use the Basel 3D

face model [86], which has 199 bases, as our identity bases and the face wearhouse model [25]

with 29 bases as our expression bases. Each 3D face shape consists of a set of Q 3D vertexes:

Sp =




xp
1 xp

2 . . . xp
Q

yp
1 yp

2 . . . yp
Q

zp
1 zp

2 . . . zp
Q



. (4.2)

The 2D face shapes are the projection of 3D shapes. In this work, we use the weak perspective

projection model with 6 degrees of freedoms, i.e., one for scale, three for rotation angles and two

for translations, which projects the 3D face shape Sp onto 2D images to obtain the 2D shape U:

U = f (P) = M




Sp(:,b)

1


 , (4.3)

where

M =




m1 m2 m3 m4

m5 m6 m7 m8


 , (4.4)
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and

U =




xt
1 xt

2 . . . xt
N

yt
1 yt

2 . . . yt
N


 . (4.5)

Here U is a set of N 2D landmarks, M is the camera projection matrix. With misuse of notation, we

define the target parameters P= {M,p}. The N-dim vector b includes 3D vertex indexes which are

semantically corresponding to 2D landmarks. We denote m1 = [m1 m2 m3] and m2 = [m5 m6 m7]

as the first two rows of the scaled rotation component, while m4 and m8 are the translations.

Equation 4.3 establishs the relationship, or equivalency, between 2D landmarks U and P, i.e.,

3D shape parameters p and the camera projection matrix M. Given that almost all the training

images for face alignment have only 2D labels, i.e., U, we preform a data augmentation step

similar to [53] to compute their corresponding P. Given an input image, our goal is to estimate the

parameter P, based on which the 2D landmarks and their visibilities can be naturally derived.

4.2.2 Proposed CNN Architecture

Our CNN architecture resembles the cascade of CNNs, while each “shallow CNN" is defined

as a visualization block. Inside each block, a visualization layer based on the latest parameter

estimation serves as a bridge between consecutive blocks. This design enables us to address the

drawbacks of typical cascade of CNNs in Section 4.1. We now describe the visualization block

and CNN architecture, and dive into the details of the visualization layer in Section 4.2.3.

Visualization Block Figure 4.3 shows the structure of our visualization block. The visualiza-

tion layer generates a feature map based on the latest parameter P (details in Section 4.2.3). Each

convolutional layer is followed by a batch normalization (BN) layer and a ReLU layer. It extracts

deeper features based on the features provided by the previous visualization block and the visual-

ization layer output. Between the two fully connected layers, the first one is followed by a ReLU
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Figure 4.3: A visualization block consists of a visualization layer, two convolutional layers and
two fully connected layers.

layer and a dropout layer, while the second one simultaneously estimates the update of M and p,

denoted ∆P. The outputs of the visualization block are deeper features and the new estimation of

the parameters (∆P+P). As shown in Figure 4.3, the top part of the visualization block focuses on

learning deeper features, while the bottom part utilizes those features to estimate the parameters

in a ResNet-like structure [44]. During the backward pass of the training phase, the visualization

block backpropagates the loss through both of its inputs to adjust the convolutional and the fully

connected layers in previous blocks. This allows the block to extract better features for the next

block and improve the overall parameter estimation.

CNN Architecture The proposed architecture consists of several connected visualization blocks

as shown in Figure 4.2. The inputs include an image and an initial estimation of the parameter

P0. The outputs is the final estimation of the parameter. Due to the joint optimization of all vi-

sualization blocks through backpropagation, the proposed architecture is able to converge with

substantially fewer epochs during training, compared to the typical cascade of CNNs.

Loss Functions Two types of loss functions are employed in our CNN architecture. The first

one is an Euclidean loss between the estimation and the target of the parameter update, with each

parameter weighted separately:

Ei
P = (∆Pi−∆P̄i

)T W(∆Pi−∆P̄i
), (4.6)
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where Ei
P is the loss, ∆Pi is the estimation and ∆P̄i is the target (or ground truth) at the i-th vi-

sualization block. The diagonal matrix W contains the weights. For each element of the shape

parameter p, its weight is the inverse of the standard deviation that was obtained from the data used

in 3DMM training. To compensate the relative scale among the parameters of M, we compute the

ratio r between the average of scaled rotation parameters and average of translation parameters in

the training data. We set the weights of the scaled rotation parameters of M to 1
r and the weights

of the translation of M to 1. The second type of loss function is the Euclidean loss on the resultant

2D landmarks:

Ei
S = ‖ f (Pi +∆Pi)− Ū‖2, (4.7)

where Ū is the ground truth 2D landmarks, and Pi is the input parameter to the i-th block, i.e.,

the output of the i−1-th block. f (·) computes 2D landmark locations using the currently updated

parameters via Equation 4.3. For backpropagation of this loss function to the parameter ∆P, we

use the chain rule to compute the gradient.

∂Ei
S

∂∆Pi =
∂Ei

S
∂ f

∂ f
∂Pi .

For the first three visualization blocks, the Euclidean loss on the parameter updates (Equa-

tion 4.6) is used, while the Euclidean loss on 2D landmarks (Equation 4.7) is applied to the last

three blocks. The first three blocks estimate parameters to roughly align 3D shape to the face im-

age and the last three blocks leverage the good initialization to estimate the parameters and the 2D

landmark locations more precisely.
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4.2.3 Visualization Layer

Several visualization techniques have been explored for facial analysis. In particular, Z-Buffering,

which is widely used in prior works [12, 13], is a simple and fast 2D representation of the 3D

shape. However, this representation is not differentiable. In contrast, our visualization is based on

surface normals of the 3D face, which describes surface’s orientation in a local neighbourhoods. It

has been successfully utilized for different facial analysis tasks, e.g., 3D face reconstruction [95]

and 3D face recognition [79].

In this work, we use the z coordinate of surface normals of each vertex, transformed with the

pose. It is an indicator of “frontability" of a vertex, i.e., the amount that the surface normal is

pointing towards the camera. This quantity is used to assign an intensity value at its projected 2D

location to construct the visualization image. The frontability measure g, a Q dimensional vector,

can be computed as,

g = max
(

0,
(m1×m2)

‖m1‖‖m2‖
N0

)
, (4.8)

where × is the cross product, and ‖.‖ denotes the L2 norm. The 3×Q matrix N0 is the surface

normal vectors of a 3D face shape. To avoid the high computational cost of calculating the surface

normals after each shape update, we approximate N0 with the surface normals of the mean 3D

face. Note that both the face shape and pose are still continuously updated across visualization

blocks, and are used to determine the projected 2D location. Hence, this approximation would

only slightly affect the intensity values. To transform the surface normal based on the pose, we

apply the estimation of the scaled rotation matrix (m1 and m2) to the surface normals computed

from the mean face. The value is then truncated with the lower bound of 0 (Equation 4.8).

The pixel intensity of a visualized image V(u,v) is computed as the weighted average of the

frontability measures within a local neighbourhood:
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Figure 4.4: The frontal and side views of the mask a that has positive values in the middle and
negative values in the contour area.

V(u,v) =
∑q∈D(u,v) g(q)a(q)w(u,v,xt

q,y
t
q)

∑q∈D(u,v)w(u,v,xt
q,yt

q)
, (4.9)

where D(u,v) is the set of indexes of vertexes whose 2D projected locations are within the local

neighborhood of the pixel (u,v). (xt
q,y

t
q) is the 2D projected location of q-th 3D vertex. The weight

w is the distance metric between the pixel (u,v) and the projected location (xt
q,y

t
q),

w(u,v,xt
q,y

t
q) = exp

(
−
(u− xt

q)
2 +(v− yt

q)
2

2σ2

)
. (4.10)

The Q-dim vector a is a mask with positive values for vertexes in the middle area of the face and

negative values for vertexes around the contour area of the face:

a(q) = exp
(
−(xn− xp

q)
2 +(yn− yp

q)
2 +(zn− zp

q)
2

2σ2
n

)
, (4.11)

where (xn,yn,zn) is the vertex coordinate of the nose tip. a is pre-computed and normalized for

zero-mean and unit standard deviation. The mask is utilized to discriminate between the middle

and contour areas of the face. A visualization of the mask is provided in Figure 4.4.

Since the human face is a 3D object, visualizing it at an arbitrary view angle requires the

estimation of the visibility of each 3D vertex. To avoid the computationally expensive visibility
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Normal vectors with

negative z

Normal vector with

positive z and smaller depth

Figure 4.5: An example with four vertexes projected to a same pixel. Two of them have negative
values in z component of their normals (red arrows). Between the other two with positive values,
the one with the smaller depth (closer to the image plane) is selected.

test via rendering, we adopt two strategies for approximation. Firstly, we prune the vertexes whose

frontability measures g equal 0, i.e., the vertexes pointing against the camera. Secondly, if multiple

vertexes projects to a same image pixel, we keep only the one with the smallest depth values. An

illustration is provided in Figure 4.5.

Backpropagation To allow backpropagation of the loss functions through the visualization

layers, we compute the derivative of V with respect to the elements of the parameters M and p.

Firstly, we compute the partial derivatives, ∂g
∂mk

, ∂w(u,v,xt
i ,y

t
i)

∂mk
and ∂w(u,v,xt

i ,y
t
i)

∂ p j
. Then the derivatives of

∂V
∂mk

and ∂V
∂ p j

can be computed based on Equation. 4.9.

4.3 Experimental Results

We evaluate our method on two challenging PIFA datasets, AFLW and AFW, both qualitatively

and quantitatively, as well as the near-frontal face dataset of 300W. Furthermore, we conduct ex-

periments on different CNN architectures to validate our visualization layer design.

Implementation details Our implementation is built upon the Caffe toolbox [49]. In all of the

experiments, we use six visualization blocks (Nv) with two convolutional layers (Nc) and fully
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connected layers in each block (Figure 4.3). Details of the network structure are provided in

Table 4.1.

Instead of using the sequentially pretrain strategy [127], we perform the joint end-to-end train-

ing from scratch. To better estimate the parameter update in each block and to increase the ef-

fectiveness when using visualization blocks, we set the weight of the loss function in the first

visualization block to 1 and linearly increase the weights by one for each later block. This strategy

helps the CNN to pay more attention to the landmark loss used in later blocks. Backpropagation of

loss functions in the last blocks would have more impact in the first block, and the last block can

adopt itself more quickly to the changes in the first block.

In the training phase, we set the weight decay to 0.005, the momentum to 0.99, the initial

learning rate to 1e−6. Besides, we decrease the learning rate to 5e−6 and 1e−7 after 20 and 29

epochs. In total, the training phase is continued for 33 epochs for all experiments.

4.3.1 Quantitative Evaluations on AFLW and AFW

The AFLW dataset [61] is very challenging with large-pose face images (±90◦ yaw). We use the

subset with 3,901 training images and 1,299 testing images released by [53]. All face images in

this subset are labeled with 34 landmarks and a bounding box. The AFW dataset [151] contains

205 images with 468 faces. Each image is labeled with at most 6 landmarks with visibility labels,

as well as a bounding box. AFW is used only for testing in our experiments. The bounding boxes

Table 4.1: The number and size of convolutional filters in each visualization block. For all blocks,
the two fully connected layers have the same length of 800 and 236.

Block # 1 2 3 4 5,6
Conv. 12 (5 × 5) 20 (3 × 3) 28 (3 × 3) 36 (3 × 3) 40 (3 × 3)
layers 16 (5 × 5) 24 (3 × 3) 32 (3 × 3) 40 (3 × 3) 40 (3 × 3)
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Table 4.2: NME (%) of four methods on the AFLW dataset.

Proposed method Extended-PIFA [53] PIFA RCPR
4.45 4.72 8.04 6.26

Table 4.3: NME (%) of the proposed method at each visualization block on AFLW dataset. The
initial NME is 25.8%.

Block # 1 2 3 4 5 6
NME 9.26 6.77 5.51 4.98 4.60 4.45

in both datasets are used as the initilization for our algorithm, as well as the baselines. We crop

the region inside the bounding box and normalize it to 114× 114. Due to the memory constraint

of GPUs, we have a pooling layer in the first visualization block after the first convolutional layer

to decrease the size of feature maps to half. The input to the subsequent visualization blocks is of

57×57. To augment the training data, we generate 20 different variations for each training image

by adding noise to the location, width and height of the bounding boxes.

For quantitative evaluations, we use two conventional metrics. The first one is Mean Average

Pixel Error (MAPE) [135], which is the average of the pixel errors for the visible landmarks. The

other one is Normalized Mean Error (NME), i.e., the average of the normalized estimation error of

visible landmarks. The normalization factor is the square root of the face bounding box size [52],

instead of the eye-to-eye distance in the frontal-view face alignment.

We compare our method with several state-of-the-art LFPA approaches. On AFLW, we com-

pare with Extended-PIFA [53], PIFA [52] and RCPR [22] with the NME metric. Table 4.2 shows

that our proposed method achieves a higher accuracy than the alternatives. The heatmap-based

method, named CALE [21], reported an NME of 2.96%, but suffers from several disadvantages.

To demonstrate the capabilities of each visualization block, the NME computed using the estimated
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P after each block is shown in Table 4.3. If a higher alignment speed is desirable, it is possible to

skip the last two visualization blocks with a reasonable NME. On the AFW dataset, comparisons

are conducted with Extended-PIFA [53], PIFA [52], CDM [135] and TSPM [151] with the MAPE

metric. The results in Table 4.4 again show the superiority of the proposed method.

Some examples of alignment results of the proposed method on AFLW and AFW datasets are

shown in Figure 4.9. Three examples of visualization layer output at each visualization block are

shown in Figure 4.10.

4.3.2 Evaluation on 300W dataset

While our main goal is PIFA, we also evaluate on the most widely used near frontal 300W

dataset [96]. 300W containes 3,148 training and 689 testing images, which are divided into

common and challenging sets with 554 and 135 images, respectively. Table 4.5 shows the NME

(normalized by the interocular distance) of the evaluated methods. The most relevant method is

3DDFA [147], which also estimates M and p. Our method outperforms it on both the common and

challenging sets. Methods that do not employ shape constraints, e.g., via 3DMM, generally have

higher freedom and could achieve slightly better accuracy on frontal face cases. Nonetheless, they

are typically less robust in more challenging cases. Another comparison is with MDM [107] via

the failure rate using a threshold of 0.08. The failure rates are 16.83% (ours) versus 6.80% (MDM)

with 68 landmarks, and 8.99% (ours) versus 4.20% (MDM) with 51 landmarks.

Table 4.4: MAPE of five methods on the AFW dataset.

Proposed method Extended-PIFA [53] PIFA CDM TSPM
6.27 7.43 8.61 9.13 11.09
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Table 4.5: The NME of different methods on 300W dataset.

Method Common Challenging Full
ESR [26] 5.28 17.00 7.58

RCPR [22] 6.18 17.26 8.35
SDM [124] 5.57 15.40 7.50
LBF [93] 4.95 11.98 6.32

CFSS [147] 4.73 9.98 5.76
RCFA [116] 4.03 9.85 5.32
RAR [122] 4.12 8.35 4.94

3DDFA [147] 6.15 10.59 7.01
3DDFA+SDM 5.53 9.56 6.31

Proposed method 5.43 9.88 6.30

4.3.3 Analysis of the Visualization Layer

We perform four sets of experiments to study the properties of the visualization layer and network

architectures.

Influence of visualization layers To analyze the influence of the visualization layer in the testing

phase, we add 5% noise to the fully connected layer parameters of each visualization block, and

compute the alignment error on the AFLW test set. The NMEs are [4.46, 4.53, 4.60, 4.66, 4.80,

5.16] when each block is modified seperately. This analysis shows that the visualized images have

more influence on the later blocks, since imprecise parameters of early blocks could be compen-

sated by later blocks. In another experiment, we train the network without any visualization layer.

The final NME on AFLW is 7.18% which shows the importance of visualization layers in guiding

the network training.

Advantage of deeper features We train three CNN architectures shown in Figure 4.6 on AFLW.

The inputs of the visualization block in the first architecture are the input images I, feature maps

F and the visualization image V. The inputs of the second and the third architectures are {F,V}

and {I,V}, respectively. The NME of each architecture is shown in Table 4.6. While the first one
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Table 4.6: The NME (%) of three architectures with different inputs (I: Input image, V: Visualiza-
tion, F: Feature maps).

Architecture a Architecture b Architecture c
(I,F,V) (F,V) (I,V)

4.45 4.48 5.06

performs the best, the substantial lower performance of the third one demonstrates the importance

of deeper features learned across blocks.

At the first convolutional layer of each visualization block, we compute the average of the filter

weights, across both the kernel size and the number of maps. The averages for these three types of

input features are shown in Figure 4.7. As observed, the weights decrease across blocks, leading

to a more precise estimation of small-scale parameter updates. Considering the number of filters

in Table 4.1, the total impact of feature maps are higher than the other two inputs in all blocks.

This again shows the importance of deeper features in guiding the network to estimate parameters.

Furthermore, the average of the visualization filter is higher than that of the input image filter,

demonstrating stronger influence of the proposed visualization during training.
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Figure 4.6: Architectures of three CNNs with different inputs.
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Table 4.7: NME (%) when different masks are used.

Mask 1 Mask 2 No Mask
4.45 4.49 5.31

Advantage of using masks To show the advantage of using the mask in the visualization layer, we

conduct an experiment with different masks. Specifically, we define another mask for comparison

as shown in Figure 4.8. It has five positive areas, i.e., the eyes, nose tip and two lip corners. The

values are normalized to zero-mean and unit standard deviation. Compared to the original mask

in Fig. 4.4, this mask is more complicated and conveys more information about the informative

facial areas to the network. Moreover, to show the necessity of using the mask, we also test using

visualization layers without any mask. The NMEs of the trained networks with different masks

are shown in Table 4.7. Comparison between the first and the third columns shows the benefit of

using the mask , by differentiating the middle and contour areas of the face. By comparing the first

and second columns, we can see that utilizing more complicated mask does not further improve

the result, indicating the original mask provides sufficient information for its purpose.

Different numbers of blocks and layers Given the total number of 12 convolutional layers in

our network, we can partition them into visualization blocks of various sizes. To compare their
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Figure 4.7: The average of filter weights for input image, visualization and feature maps in three
architectures of Figure 4.6. The y-axis and x-axis show the average and the block index, respec-
tively.
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Figure 4.8: Mask 2, a different designed mask with five positive areas on the eyes, top of the nose
and sides of the lip.

performance, we train two additional CNNs. The first one consists of 4 visualization blocks, with

3 convolutional layers in each. The other comes with 3 block and 4 convolutional layers per

block. Hence, all three architectures have 12 convolutional layers in total. The NME of these

architectures are shown in Table 4.8. Similar to [22], it shows that the number of regressors is

important for face alignment and we can potentially achieve a higher accuracy by increasing the

number of visualization blocks.

4.3.4 Time complexity

Compared to the cascade of CNNs, one of the main advantages of end-to-end training a single

CNN is the reduced training time. The proposed method needs 33 epochs which takes around 2.5

days. With the same training and testing data sets, [53] requires 70 epochs for each CNN. With a

total of six CNNs, it needs around 7 days. Similarly, the method in [147] needs around 12 days

to train three CNNs, each one with 20 epochs, despite using different training data. Compared

Table 4.8: NME (%) when using different numbers of visualization blocks (Nv) and convolutional
layers (Nc).

Nv = 6 , Nc = 2 Nv = 4 , Nc = 3 Nv = 3 , Nc = 4
4.45 4.61 4.83
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Figure 4.9: Results of alignment on AFLW and AFW datasets, green landmarks show the estimated
locations of visible landmarks and red landmarks show estimated locations of invisible landmarks.
First row: provided bounding box by AFLW with initial locations of landmarks, Second: estimated
3D dense shapes, Third: estimated landmarks, Fourth to sixth: estimated landmarks for AFLW,
Seventh: estimated landmarks for AFW.

to [53], our method reduces the training time by more than half. The testing speed of proposed

method is 4.3 FPS on a Titan X GPU. It is much faster than the 0.6 FPS speed of [53] and is similar

to the 4 FPS speed of [122].
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initialization Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Figure 4.10: Three examples of outputs of visualization layer at each visualization block. The first
row shows that the proposed method recovers the expression of the face gracefully, the third row
shows the visualizations of a face with a more challenging pose.

4.4 Summary

We propose a pose-invariant face alignment method with end-to-end training in a single CNN.

The key is a differentiable visualization layer, which is integrated to the network and enables joint

optimization by backpropagating the error from a later visualization blocks to early ones. It allows

the visualization block to utilize the extracted features from previous blocks and extract deeper

features, without extracting hand-crafted features. In addition, the proposed method converges

faster during the training phase compared to the cascade of CNNs. Through extensive experiments,

we demonstrate the superior results of the proposed method over the state-of-the-art approaches.
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Chapter 5

Learning Deep Models for Face

Anti-Spoofing: Binary or Auxiliary

Supervision

5.1 Introduction

With the increasing influence of smart devices in our daily lives, people are seeking for secure

and convenient ways to access their personal information. Biometrics, such as face, fingerprint,

and iris, are widely utilized for person authentication due to their intrinsic distinctiveness and

convenience to use. Face, as one of the most popular modalities, has received increasing attention

in the academia and industry in the recent years (e.g., iPhone X). However, the attention also

brings a growing incentive for hackers to design biometric presentation attacks (PA), or spoofs, to

be authenticated as the genuine user. Due to the almost no-cost access to the human face, the spoof

face can be as simple as a printed photo paper (i.e., print attack) and a digital image/video (i.e.,

replay attack), or as complicated as a 3D Mask and facial cosmetic makeup. With proper handling,

those spoofs can be visually very close to the genuine user’s live face. As a result, these call for

the need of developing robust face anti-spoofing algorithms.

RGB image and video are the standard input to face anti-spoofing systems since the majority
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Figure 5.1: Conventional CNN-based face anti-spoof approaches utilize the binary supervision, which
may lead to overfitting given the enormous solution space of CNN. This work designs a novel network
architecture to leverage two auxiliary information as supervision: the depth map and rPPG signal, with the
goals of improved generalization and explainable decisions during inference.

of face recognition systems adopt RGB cameras as the sensor. Researchers start the texture-based

anti-spoofing approaches by feeding handcrafted features to binary classifiers [18,33,34,59,77,84,

131]. Later in the deep learning era, several Convolutional Neural Networks (CNN) approaches

utilize softmax loss as the supervision [37, 66, 83, 130]. It appears almost all prior work regard the

face anti-spoofing problem as merely a binary (live vs. spoof) classification problem.

There are two main issues in learning deep anti-spoofing models with binary supervision. First,

there are different levels of image degradation, namely spoof patterns, comparing a spoof face to

a live one, which consist of skin detail loss, color distortion, moiré pattern, shape deformation

and spoof artifacts (e.g., reflection) [65, 84]. A CNN with softmax loss might discover arbitrary

cues that are able to separate the two classes, such as screen bezel, but not the faithful spoof

patterns. When those cues disappear during testing, these models would fail to distinguish spoof

vs. live faces and result in poor generalization. Second, during the testing, models learnt with

binary supervision will only generate a binary decision without explanation or rationale for the

decision. In the pursuit of Explainable Artificial Intelligence [1], it is desirable for the learnt
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model to generate the spoof patterns that support the final binary decision.

To address these issues, as shown in Fig. 5.1, we propose a deep model that uses the supervision

from both the spatial and temporal auxiliary information rather than binary supervision, for the

purpose of robustly detecting face PA from a face video. These auxiliary information are acquired

based on our domain knowledge about the key differences between live and spoof faces, which

include two perspectives: spatial and temporal. From the spatial perspective, it is known that live

faces have face-like depth, e.g., the nose is closer to the camera than the cheek in frontal-view

faces, while faces in print or replay attacks have flat or planar depth, e.g., all pixels on the image of

a paper have the same depth to the camera. Hence, depth can be utilized as auxiliary information to

supervise both live and spoof faces. From the temporal perspective, it was shown that the normal

rPPG signals (i.e., heart pulse signal) are detectable from live, but not spoof, face videos [69, 81].

Therefore, we provide different rPPG signals as auxiliary supervision, which guides the network

to learn from live or spoof face videos respectively. To enable both supervisions, we design a

network architecture with a short-cut connection to capture different scales and a novel non-rigid

registration layer to handle the motion and pose change for rPPG estimation.

Furthermore, similar to other vision problems, data plays a significant role in training the

anti-spoofing models. As we know, camera/screen quality is a critical factor to the quality of

spoof faces. Existing face anti-spoofing databases, such as NUAA [104], CASIA [143], Replay-

Attack [28], and MSU-MFSD [117], were collected 3− 5 years ago. Given the fast development

pace of consumer electronics, the types of equipment (e.g., cameras and spoofing mediums) used

in those data collection are outdated compared to the ones nowadays, regarding the resolution

and imaging quality. More recent MSU-USSA [84] and OULU databases [19] have subjects with

fewer variations in facial poses, illuminations, expressions (PIE). The lack of necessary varia-

tions would make it hard to learn an effective model. Given the clear need for more advanced
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Figure 5.2: The overview of the proposed method.

databases, we collect a face anti-spoofing database for training and evaluation, named Spoof in the

Wild Database (SiW). SiW database consists of 299 subjects, 6 spoofing mediums, and 4 sessions

covering variations such as PIE, distance-to-camera, etc. SiW covers much larger variations than

previous databases, as detailed in Tab. 5.1 and Sec. 5.3.

The main contributions of this work include:

�We propose to leverage novel auxiliary information (i.e., depth map and rPPG) to supervise

the CNN learning for improved generalization.

�We propose a novel CNN-RNN architecture for end-to-end learning the depth map and rPPG

signal.

� We release a new database that contains variations of PIE, and other practical factors. We

achieve the state-of-the-art performance for face anti-spoofing.

5.2 Face Anti-Spoofing with Deep Network

The main idea of the proposed approach is to guide the deep network to focus on the known spoof

patterns across spatial and temporal domains, rather than to extract any cues that could separate

two classes but are not generalizable. As shown in Fig. 5.2, the proposed network combines CNN

and RNN architectures in a coherent way. The CNN part utilizes the depth map supervision to
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Figure 5.3: The proposed CNN-RNN architecture. The number of filters are shown on top of each layer,
the size of all filters is 3× 3 with stride 1 for convolutional and 2 for pooling layers. Color code used:
orange=convolution, green=pooling, purple=response map.

discover subtle texture property that leads to distinct depths for live and spoof faces. Then, it feeds

the estimated depth and the feature maps to a novel non-rigid registration layer to create aligned

feature maps. The RNN part is trained with the aligned maps and the rPPG supervision, which

examines temporal variability across video frames.

5.2.1 Depth Map Supervision

Depth maps are a representation of the 3D shape of the face in a 2D image, which shows the face

location and the depth information of different facial areas. This representation is more informative

than binary labels since it indicates one of the fundamental differences between live faces, and print

and replay PA. We utilize the depth maps in the depth loss function to supervise the CNN part. The

pixel-based depth loss guides the CNN to learn a mapping from the face area within a receptive

field to a labeled depth value – a scale within [0,1] for live faces and 0 for spoof faces.

To estimate the depth map for a 2D face image, given a face image, we utilize the state-of-the-

art dense face alignment (DeFA) methods [54,74] to estimate the 3D shape of the face. The frontal

dense 3D shape SF ∈ R3×Q, with Q vertices, is represented as a linear combination of identity

bases {Si
id}

Nid
i=1 and expression bases {Si

exp}
Nexp
i=1 ,

SF = S0 +
Nid

∑
i=1

α
i
idSi

id +
Nexp

∑
i=1

α
i
expSi

exp, (5.1)
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where αid ∈ R199 and αext ∈ R29 are the identity and expression parameters, and α = [αid,αexp]

are the shape parameters. We utilize the Basel 3D face model [86] and the facewearhouse [25] as

the identity and expression bases.

With the estimated pose parameters P = (s,R, t), where R ∈ R3×3 is a rotation matrix, t ∈ R3

is a 3D translation, and s is a scale, we align the 3D shape S to the 2D face image:

S = sRSF + t. (5.2)

Given the challenge of estimating the absolute depth from a 2D face, we normalize the z values

of 3D vertices in S to be within [0,1]. That is, the vertex closest to the camera (e.g., nose) has

a depth of one, and the vertex furthest away has the depth of zero. Then, we apply the Z-Buffer

algorithm [149] to S for projecting the normalized z values to a 2D plane, which results in an

estimated “ground truth” 2D depth map D ∈ R32×32 for a face image.

5.2.2 rPPG Supervision

rPPG signals have recently been utilized for face anti-spoofing [69, 81]. The rPPG signal provides

temporal information about face liveness, as it is related to the changes in the intensities of facial

skins over time. These intensity changes are highly correlated with the blood flow. The traditional

method [35] for extracting rPPG signals has three drawbacks. First, it is sensitive to pose and

expression variations, since it becomes harder to track a specific face area for measuring intensity

changes. Second, it is also sensitive to the changes in illumination, since the extra lighting affects

the amount of reflected light from the skin surface. Third, for the purpose of anti-spoof, the rPPG

signal extracted from spoof videos might not be sufficiently distinguishable to the signal of live

videos.
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One novelty aspect of our approach is that, instead of computing the rPPG signal via [35], our

RNN part learns to estimate the rPPG signal. This eases the signal estimation from face videos with

PIE variations, and also leads to more discriminative rPPG signals, as different rPPG supervisions

are provided to live vs. spoof videos. We assume that the videos of the same subject under different

PIE conditions have the same ground truth rPPG signal. This assumption is valid since the heart

beat is similar for the videos of the same subject that are captured in a short span of time (< 5

minutes). The rPPG signal extracted from the constrained videos (i.e., no PIE variation) are used

as the “ground truth" supervision in the rPPG loss function for all live videos of the same subject.

This consistent supervision helps the CNN and RNN parts to be robust to the PIE changes.

In order to extract the rPPG signal from a face video without PIE, we apply the DeFA [74] to

each frame and estimate the dense 3D face shape. We utilize the estimated 3D shape to track a face

region. For a tracked region, we compute two orthogonal chrominance signals x f = 3r f − 2g f ,

y f = 1.5r f +g f −1.5b f where r f ,g f ,b f are the bandpass filtered versions of the r,g,b channels

with the skin-tone normalization. We utilize the ratio of the standard deviation of the chrominance

signals γ =
σ(x f )

σ(y f )
to compute blood flow signals [35]. We calculate the signal p as:

p = 3(1− γ

2
)r f −2(1+

γ

2
)g f +

3γ

2
b f . (5.3)

By applying FFT to p, we obtain the rPPG signal f ∈ R50, which shows the magnitude of each

frequency.

5.2.3 Network Architecture

Our proposed network consists of two deep networks. First, a CNN part evaluates each frame

separately and estimates the depth map and feature map of each frame. Second, a recurrent neural
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network (RNN) part evaluates the temporal variability across the feature maps of a sequence.

5.2.3.1 CNN Network

We design a Fully Convolutional Network (FCN) as our CNN part, as shown in Fig. 5.3. The CNN

part contains multiple blocks of three convolutional layers, pooling and resizing layers where each

convolutional layer is followed by one exponential linear layer and batch normalization layer.

Then, the resizing layers resize the response maps after each block to a pre-defined size of 64×64

and concatenate the response maps. The bypass connections help the network to utilize extracted

features from layers with different depths similar to the ResNet structure [44]. After that, our CNN

has two branches, one for estimating the depth map and the other for estimating the feature map.

The first output of the CNN is the estimated depth map of the input frame I ∈ R256×256, which

is supervised by the estimated “ground truth" depth D,

ΘD = argmin
ΘD

Nd

∑
i=1
||CNND(Ii;ΘD)−Di||21, (5.4)

where ΘD is the CNN parameters and Nd is the number of training images. The second output of

the CNN is the feature map, which is fed into the non-rigid registration layer.

5.2.3.2 RNN Network

The RNN part aims to estimate the rPPG signal f of an input sequence with N f frames {I j}N f
j=1. As

shown in Fig. 5.3, we utilize one LSTM layer with 100 hidden neurons, one fully connected layer,

and an FFT layer that converts the response of fully connected layer into the Fourier domain. Given

the input sequence {I j}N f
j=1 and the “ground truth" rPPG signal f, we train the RNN to minimize

the `1 distance of the estimated rPPG signal to “ground truth" f,
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Figure 5.4: Example ground truth depth map and rPPG signals.

ΘR = argmin
ΘR

Ns

∑
i=1
||RNNR([{F j}N f

j=1]i;ΘR)− fi||21, (5.5)

where ΘR is the RNN parameters, F j ∈R32×32 is the frontalized feature map (details in Sec. 5.2.4),

and Ns is the number of sequences.

5.2.3.3 Implementation Details

Ground Truth Data Given a set of live and spoof face videos, we provide the ground truth

supervision for the depth map D and rPPG signal f. We follow the procedure in Sec. 5.2.1 to

compute “ground truth" data for live videos. For spoof videos, we set the ground truth depth maps

to a plain surface, i.e., zero depth. Similarly, we follow the procedure in Sec. 5.2.2 to compute

the “ground truth" rPPG signal from a patch on the forehead, for one live video of each subject

without PIE variation. Also, we normalize the norm of estimated rPPG signal such that ‖f‖2= 1.

For spoof videos, we consider the rPPG signals are zero. Fig. 5.4 shows examples of the ground

truth depth map and rPPG signal.

Note that, while the term “depth" is used here, our estimated depth is different to the conven-

tional depth map in computer vision. It can be viewed as a “pseudo-depth" and serves the purpose

of providing discriminative auxiliary supervision to the learning process. The same perspective
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applies to the supervision based on pseudo-rPPG signal.

Training Strategy Our proposed network combines the CNN and RNN parts for end-to-end train-

ing. The desired training data for the CNN part should be from diverse subjects, so as to make the

training procedure more stable and increase the generalizability of the learnt model. Meanwhile,

the training data for the RNN part should be long sequences to leverage the temporal information

across frames. These two preferences can be contradictory to each other, especially given the lim-

ited GPU memory. Hence, to satisfy both preferences, we design a two-stream training strategy.

The first stream satisfies the preference of the CNN part, where the input includes face images I

and the ground truth depth maps D. The second stream satisfies the RNN part, where the input

includes face sequences {I j}N f
j=1, the ground truth depth maps {D j}N f

j=1, the estimated 3D shapes

{S j}N f
j=1, and the corresponding ground truth rPPG signals f. During training, our method alter-

nates between these two streams to converge to a model that minimizes both the depth map and

rPPG losses. Note that even though the first stream only updates the weights of the CNN part,

the back propagation of the second stream updates the weights of both CNN and RNN parts in an

end-to-end manner.

Testing To provide a classification score, we feed the testing sequence to our network and compute

the estimated depth map D̂ of the last frame and the rPPG signal f̂. To avoid overfitting due to

utilizing binary loss function in the network, we compute the final score as:

score = ||f̂||22+λ ||D̂||22, (5.6)

where λ is a constant weight for combining the two outputs of the network.

87



D̂

T

S 0S

V

F

3D Face 

Alignment 

  

U

ijm ijm

Figure 5.5: The non-rigid registration layer.

5.2.4 Non-rigid Registration Layer

We design a new non-rigid registration layer to prepare data for the RNN part. This layer utilizes

the estimated dense 3D shape to align the activations or feature maps from the CNN part. This

layer is important to ensure that the RNN tracks and learns the changes of the activations for the

same facial area across time, as well as across all subjects.

As shown in Fig. 5.5, this layer has three inputs: the feature map T ∈R32×32, the depth map D̂

and the 3D shape S. Within this layer, we first threshold the depth map and generate a binary mask

V ∈ R32×32:

V = D̂≥ threshold. (5.7)

Then, we compute the inner product of the binary mask and the feature map U = T�V, which

essentially utilizes the depth map as a visibility indicator for each pixel in the feature map. If the

depth value for one pixel is less than the threshold, we consider that pixel to be invisible. Finally,

we frontalize U by utilizing the estimated 3D shape S,

F(i, j) = U(S(mi j,1),S(mi j,2)), (5.8)
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Table 5.1: The comparison of our collected dataset with available datasets for the face anti-
spoofing.

Dataset
Year # of # of # of live/attack Pose Different Extra

Display devices
Spoof

subj. sess. vid. (V), ima. (I) range expres. light. attacks
NUAA [104] 2010 15 3 5105/7509 (I) Frontal No Yes - Print
CASIA-MFSD [143] 2012 50 3 150/450 (V) Frontal No No iPad Print, Replay
Replay-Attack [28] 2012 50 1 200/1000 (V) Frontal No Yes iPhone 3GS, iPad Print, 2 Replay
MSU-MFSD [117] 2015 35 1 110/330 (V) Frontal No No iPad Air, iPhone 5S Print, 2 Replay
MSU-USSA [84] 2016 1140 1 1140/9120 (I) [−45◦,45◦] Yes Yes MacBook, Nexus 5, Nvidia Shield Tablet 2 print, 6 Replay
Oulu-NPU [19] 2017 55 3 1980/3960 (V) Frontal No Yes Dell 1905FP, Macbook Retina 2 Print, 2 Replay
SiW 2018 165 4 1320/3300 (V) [−90◦,90◦] Yes Yes iPad Pro, iPhone 7S, Galaxy S8, Asus MB168B 2 Print, 4 Replay

where m ∈ RK is the pre-defined list of K indexes of the face area in S0, and mi j in corresponding

index for the pixel i, j. We utilize m to project the masked activation values U to the frontalized

image F.

This non-rigid registration layer has three main contributions to the proposed network archi-

tecture:

� By applying the non-rigid registration, the input data are aligned and the RNN can compare

the feature maps without concerning about the facial pose or expression. In other words, it can

learn the temporal changes in the activations of the feature maps for the same facial area.

� The non-rigid registration removes the background area in the feature map. Hence the back-

ground area would not participate in RNN learning, although the background information is al-

ready utilized in the layers of the CNN part.

� For spoof faces, the depth maps are likely to be closer to zero. Hence, the inner product

with the depth maps substantially weakens the activations in the feature maps, which makes it

convenient for the RNN to output zero rPPG signals. Likewise, the back propagation from the

rPPG loss also encourages the CNN part to generate zero depth maps for either all frames, or one

pixel location in majority of the frames within an input sequence.
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Figure 5.6: The statistics of the subjects in the SiW database. Left side: The histogram shows the distribu-
tion of the face sizes.

5.3 Collection of Face Anti-Spoofing Database

With the fast advancement of imaging sensor technology, the existing anti-spoofing systems could

become vulnerable to emerging high-quality spoof mediums. One way to make the system robust

to these attacks is to collect new high-quality databases. In responding to this need, we collect

a new face anti-spoofing database named Spoof in the Wild (SiW) database, which has multiple

advantages over previous datasets as shown in Tab. 5.1. First, it contains substantially more live

subjects with diverse races, e.g., 5 times of the subjects of Oulu-NPU. Note that MSU-USSA is

constructed based on existing images of celebrities without capturing live face videos. Second,

live videos are captured with two high-quality cameras (Canon EOS T6, Logitech C920 webcam)

with different PIE variations.

SiW provides live and spoof videos from 299 subjects. For each subject, we have 8 live and

16 spoof videos, in total 7,170 videos. Some statistics of the subjects are shown in Fig. 5.6.

The live videos are collected in four sessions. In Session 1, the subject moves his head with

varying distances to the camera. In Session 2, the subject changes the yaw angle of the head within

[−90◦,90◦], and makes different face expressions. In Sessions 3,4, the subject repeats the Sessions

1,2, while the collector moving the point light source around the face from different orientations.
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Figure 5.7: Examples of the live and spoof attack videos in the SiW database. The first row shows a live
subject with different PIE. The second row shows different types of the spoof attacks.

The live videos from the Canon EOS T6 and Logitech C920 webcam are in the resolution of

1,920×1,080. We provide two print and four replay video attacks for each subject in SiW. Some

examples of the live and spoof videos are shown in Fig. 5.7. To generate different qualities of

print attacks, we capture a high-resolution image (5,184× 3,456) for each subject and use it to

make a high-quality print attack. Also, we extract a frontal-view frame from a live video for lower-

quality print attack. We print the images with an HP color LaserJet M652 printer. The print attack

videos are captured by holding printed images still and warping them in front of the cameras. To

generate high-quality replay attack videos, we select four spoof mediums: Samsung Galaxy S8,

iPhone 7, iPad Pro, and PC screens. For each subject, we randomly select two videos from the four

high-quality live videos to display in the spoof mediums.

5.4 Experimental Results

5.4.1 Experimental Setup

Databases We evaluate our method on multiple databases to demonstrate its generalizability. We

utilize SiW and Oulu databases [19] as new high-resolution databases and perform intra and cross

testing between them. Also, we use the CASIA-MFSD [143] and Replay-Attack [28] databases
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Table 5.2: TDR at different FDRs, cross testing on Oulu Protocol 1.

FDR 1% 2% 10% 20%
Model 1 8.5% 18.1% 71.4% 81.0%
Model 2 40.2% 46.9% 78.5% 93.5%
Model 3 39.4% 42.9% 67.5% 87.5%
Model 4 45.8% 47.9% 81% 94.2%

Table 5.3: ACER of our method at different N f , on Oulu Protocol 2.

PPPPPPPPPTest
Train

5 10 20

5 4.16% 4.16% 3.05%
10 4.02% 3.61% 2.78%
20 4.10% 3.67% 2.98%

for cross testing and comparing with the state of the art.

Parameter setting The proposed method is implemented in TensorFlow [2] with a constant learn-

ing rate of 3e−3, and 10 epochs of the training phase. The batch size of the CNN stream is 10 and

that of the CNN-RNN stream is 2 with N f being 5. We randomly initialize our network by using a

normal distribution with zero mean and std of 0.02. We set λ in Eq. 5.6 to 0.015 and threshold in

Eq. 5.7 to 0.1.

Evaluation metrics To compare with prior works, we report our results with the following met-

rics: Attack Presentation Classification Error Rate APCER [46], Bona Fide Presentation Classi-

fication Error Rate BPCER [46], ACER = APCER+BPCER
2 [46], and Half Total Error Rate HT ER.

The HT ER is half of the summation of the False Rejection Rate (FRR) and the False Acceptance

Rate (FAR).
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Table 5.4: The intra-testing results on four protocols of Oulu.

Prot. Method APCER (%) BPCER (%) ACER (%)
CPqD 2.9 10.8 6.9

1 GRADIANT 1.3 12.5 6.9
Proposed method 1.6 1.6 1.6

MixedFASNet 9.7 2.5 6.1
2 Proposed method 2.7 2.7 2.7

GRADIANT 3.1 1.9 2.5
MixedFASNet 5.3±6.7 7.8±5.5 6.5±4.6

3 GRADIANT 2.6±3.9 5.0±5.3 3.8±2.4
Proposed method 2.7±1.3 3.1±1.7 2.9±1.5

Massy_HNU 35.8±35.3 8.3±4.1 22.1±17.6
4 GRADIANT 5.0±4.5 15.0±7.1 10.0±5.0

Proposed method 9.3±5.6 10.4±6.0 9.5±6.0

5.4.2 Experimental Comparison

5.4.2.1 Ablation Study

Advantage of proposed architecture We compare four architectures to demonstrate the advan-

tages of the proposed loss layers and non-rigid registration layer. Model 1 has an architecture

similar to the CNN part in our method (Fig. 5.3), except that it is extended with additional pooling

layers, fully connected layers, and softmax loss for binary classification. Model 2 is the CNN part

in our method with a depth map loss function. We simply use ||D̂||2 for classification. Model

3 contains the CNN and RNN parts without the non-rigid registration layer. Both of the depth

map and rPPG loss functions are utilized in this model. However, the RNN part would process

unregistered feature maps from the CNN. Model 4 is the proposed architecture.

We train all four models with the live and spoof videos from 20 subjects of SiW. We compute

the cross-testing performance of all models on Protocol 1 of Oulu database. The TDR at different

FDR are reported in Tab. 5.2. Model 1 has a poor performance due to the binary supervision. In

comparison, by only using the depth map as supervision, Model 2 achieves substantially better per-

formance. However, after adding the RNN part with the rPPG supervision, our proposed Model 4

can further the performance improvement. By comparing Model 4 and 3, we can see the advantage
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of the non-rigid registration layer. It is clear that the RNN part cannot use feature maps directly

for tracking the changes in the activations and estimating the rPPG signals.

Advantage of longer sequences To show the advantage of utilizing longer sequences for es-

timating the rPPG, we train and test our model when the sequence length N f is 5, 10, or 20,

using intra-testing on Oulu Protocol 2. From Tab. 5.3, we can see that by increasing the sequence

length, the ACER decreases due to more reliable rPPG estimation. Despite the benefit of longer

sequences, in practice, we are limited by the GPU memory size, and forced to decrease the image

size to 128×128 for all experiments in Tab. 5.3. Hence, we set N f to be 5 with the image size of

256×256 in subsequent experiments, due to importance of higher resolution (e.g, a lower ACER

of 2.5% in Tab. 5.4 is achieved than 4.16%).

5.4.2.2 Intra Testing

We perform intra testing on Oulu and SiW databases. For Oulu, we follow the four protocols [15]

and report their APCER, BPCER and ACER. Tab. 5.4 shows the comparison of our proposed

method and the best two methods for each protocol respectively, in the face anti-spoofing com-

petition [15]. Our method achieves the lowest ACER in 3 out of 4 protocols. We have slightly

worse ACER on Protocol 2. To set a baseline for future study on SiW, we define three protocols

for SiW. The Protocol 1 deals with variations in face pose and expression. We train using the first

60 frames of the training videos that are mainly frontal view faces, and test on all testing videos.

The Protocol 2 evaluates the performance of cross spoof medium of replay attack. The Protocol

3 evaluates the performance of cross PA, i.e., from print attack to replay attack and vice versa.

Tab. 5.5 shows the protocol definition and our performance of each protocol.
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Table 5.5: The intra-testing results on three protocols of SiW.

Prot. Subset Subject # Attack APCER (%) BPCER (%) ACER (%)

1
Train 90 First 60 Frames

3.58 3.58 3.58
Test 75 All

2
Train 90 3 display

0.57±0.69 0.57±0.69 0.57±0.69
Test 75 1 display

3
Train 90 print (display)

8.31±3.81 8.31±3.80 8.31±3.81
Test 75 display (print)
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Figure 5.8: (a) 8 successful anti-spoofing examples and their estimated depth maps and rPPG signals. (b) 4
failure examples: the first two are live and the other two are spoof. Note our ability to estimate discriminative
depth maps and rPPG signals.

5.4.2.3 Cross Testing

To demonstrate the generalization of our method, we perform multiple cross-testing experiments.

Our model is trained with live and spoof videos of 80 subjects in SiW, and test on all protocols of

Oulu. The ACER on Protocol 1-4 are respectively: 10.0%, 14.1%, 13.8±5.7%, and 10.0±8.8%.

Comparing these cross-testing results to the intra-testing results in [15], we are ranked sixth on the

average ACER of four protocols, among the 15 participants of the face anti-spoofing competition.

Especially on Protocol 4, the hardest one among all protocols, we achieve the same ACER of

10.0% as the top performer. This is a notable result since cross testing is known to be substantially

harder than intra testing, and yet our cross-testing result is comparable with the top intra-testing

performance. This demonstrates the generalization ability of our learnt model.

Furthermore, we utilize the CASIA-MFSD and Replay-Attack databases to perform cross test-

ing between them, which is widely used as a cross-testing benchmark. Tab. 5.6 compares the
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Table 5.6: Cross testing on CASIA-MFSD vs. Replay-Attack.

Method
Train Test Train Test

CASIA- Replay Replay CASIA-
MFSD Attack Attack MFSD

Motion [34] 50.2% 47.9%
LBP [34] 55.9% 57.6%

LBP-TOP [34] 49.7% 60.6%
Motion-Mag [11] 50.1% 47.0%

Spectral cubes [90] 34.4% 50.0%
CNN [130] 48.5% 45.5%
LBP [16] 47.0% 39.6%

Colour Texture [17] 30.3% 37.7%
Proposed method 27.6% 28.4%

Live Spoof 

Mean Standard deviation Mean Standard deviation 

Figure 5.9: Mean/Std of frontalized feature maps for live and spoof.

cross-testing HTER of different methods. Our proposed method reduces the cross-testing errors on

the Replay-Attack and CASIA-MFSD databases by 8.9% and 24.6% respectively, relative to the

previous SOTA.

5.4.2.4 Visualization and Analysis

In the proposed architecture, the frontalized feature maps are utilized as input to the RNN part

and are supervised by the rPPG loss function. The values of these maps can show the importance

of different facial areas to rPPG estimation. Fig. 5.9 shows the mean and standard deviation of

frontalized feature maps, computed from 1,080 live and spoof videos of Oulu. We can see that the

side areas of forehead and cheek have higher influence for rPPG estimation.

While the goal of our system is to detect PAs, our model is trained to estimate the auxiliary

information. Hence, in addition to anti-spoof, we also like to evaluate the accuracy of auxiliary
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Figure 5.10: The MSE of estimating depth maps and rPPG signals.

information estimation. For this purpose, we calculate the accuracy of estimating depth maps and

rPPG signals, for testing data in Protocol 2 of Oulu. As shown in Fig. 5.10, the accuracy for both

estimation in spoof data is high, while that of the live data is relatively lower. Note that the depth

estimation of the mouth area has more errors, which is consistent with the fewer activations of the

same area in Fig. 5.9. Examples of successful and failure cases in estimating depth maps and rPPG

signals are shown in Fig. 5.8.

Finally, we conduct statistical analysis on the failure cases, since our system can determine

potential causes using the auxiliary information. With Proctocol 2 of Oulu, we identify 31 failure

cases (2.7% ACER). For each case, we calculate whether anti-spoofing using its depth map or rPPG

signal would fail if that information alone is used. In total, 29
31 , 13

31 , and 11
31 samples fail due to depth

map, rPPG signals, or both. This indicates the future research direction.

5.5 Summary

This chapter identifies the importance of auxiliary supervision to deep model-based face anti-

spoofing. The proposed network combines CNN and RNN architectures to jointly estimate the

depth of face images and rPPG signal of face video. We introduce the SiW database that contains

more subjects and variations than prior databases. Finally, we experimentally demonstrate the

superiority of our method.
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Chapter 6

Face De-Spoofing: Anti-Spoofing via Noise

Modeling

6.1 Introduction

The print and the replay attacks are the the most common spoofs types and they have been well

studied previously, from different perspectives. The cue-based methods aim to detect liveness

cues [82, 83] (e.g., eye blinking, head motion) to classify live videos. But these methods can be

fooled by video replay attacks. The texture-based methods attempt to compare texture difference

between live and spoof faces, using pre-defined features such as LBP [33, 34], HOG [59, 131].

Similar to texture-based methods, CNN-based methods [66, 83, 130] design a unified process of

feature extraction and classification. With a softmax loss based binary supervision, they have the

risk of overfitting on the training data. Regardless of the perspectives, almost all the prior works

treat face anti-spoofing as a black box binary classification problem. In contrast, in this chapter, we

propose to open the black box by modeling the process of how a spoof image is generated from its

original live image.

Our approach is motivated by the classic image de-X problems, such as image de-noising and

de-blurring [36, 51, 62, 85]. In image de-noising, the corrupted image is regarded as a degradation

from the additive noise, e.g., salt-and-pepper noise and white Gaussian noise. In image de-blurring,

the uncorrupted image is degraded by motion, which can be described as a process of convolution.
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Figure 6.1: The illustration of face spoofing and anti-spoofing processes. De-spoofing process aims to
estimate a spoof noise from a spoof face and reconstruct the live face. The estimated spoof noise should be
discriminative for face anti-spoofing.

Similarly, in face anti-spoofing, the spoof image can be viewed as a re-rendering of the live image

but with some “special" noise from the spoof medium and the environment. Hence, the natural

question is, can we recover the underlying live image when given a spoof image, similar to image

de-noising?

Yes. This chapter shows “how" to do this. We call the process of decomposing a spoof face

to the spoof noise pattern and a live face as Face De-spoofing, shown in Fig. 6.1. Similar to the

previous de-X works, the degraded image x ∈ Rm can be formulated as a function of the original

image x̂, the degradation matrix A ∈ Rm×m and an additive noise n ∈ Rm.

x = Ax̂+n = x̂+(A− I)x̂+n = x̂+N(x̂), (6.1)

where N(x̂) = (A− I)x̂+n is the image-dependent noise function. Instead of solving A and n, we

decide to estimate N(x̂) directly since it is more solvable under the deep learning framework [40,

63, 100, 101, 145]. Essentially, by estimating N(x̂) and x̂, we aim to peel off the spoof noise and

reconstruct the original live face. Likewise, if given a live face, face de-spoofing model should

return itself plus zero noise. Note that our face de-spoofing is designed to handle paper attack,
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replay attack and possibly make-up attack, but our experiments are limited to the first two PAs.

The benefits of face de-spoofing are twofold: 1) it reverses, or undoes, the spoofing generation

process, which helps us to model and visualize the spoof noise pattern of different spoof mediums.

2) the spoof noise itself is discriminative between live and spoof images and hence is useful for

face anti-spoofing.

While face de-spoofing shares the same challenges as other image de-X problems, it has a few

distinct difficulties to conquer:

No Ground Truth: Image de-X works often use synthetic data where the original undegraded

image could be used as ground truth for supervised learning. In contrast, we have no access to x̂,

which is the corresponding live face of a spoof face image.

No Noise Model: There is no comprehensive study and understanding about the spoof noise.

Hence it is not clear how we can constrain the solution space to faithfully estimate the spoof noise

pattern.

Diverse Spoof Mediums: Each type of spoofs utilizes different spoof mediums for generating

spoof images. Each spoof medium represents a specific type of noise pattern.

To address these challenges, we propose several constraints and supervisions based on our

prior knowledge and the conclusions from a case study (in Section 6.2.1). Given that a live face

has no spoof noise, we impose the constraint that N(x̂) of a live image is zero. Based on our study,

we assume that the spoof noise of a spoof image is ubiquitous, i.e., it exists everywhere in the

spatial domain of the image; and is repetitive, i.e., it is the spatial repetition of certain noise in the

image. The repetitiveness can be encouraged by maximizing the high-frequency magnitude of the

estimated noise in the Fourier domain.

With such constraints and auxiliary supervisions proposed in [73], a novel CNN architecture is

presented in this paper. Given an image, one CNN is designed to synthesize the spoof noise pattern
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and reconstruct the corresponding live image. In order to examine the reconstructed live image,

we train another CNN with auxiliary supervision and a GAN-like discriminator in an end-to-end

fashion. These two networks are designed to ensure the quality of the reconstructed image regard-

ing its discriminativeness between live and spoof, and the visual plausibility of the synthesized live

image.

To summarize, the main contributions of this work include:

�We offer a new perspective for detecting the spoofing face from print attack and replay attack

by inversely decomposing a spoof face image into the live face and the spoofing noise, without

having the ground truth of either.

� A novel CNN architecture is proposed for face de-spoofing, where appropriate constraints

and auxiliary supervisions are imposed.

� We demonstrate the value of face de-spoofing by its contribution to face anti-spoofing and

the visualization of the spoof noise patterns.

6.2 Face De-spoofing

In this section, we start with a case study of spoof noise pattern, which demonstrates a few impor-

tant characteristics of the noise. This study motivates us to design the novel CNN architecture that

will be presented in Sec. 6.2.2.1.

6.2.1 A Case Study of Spoof Noise Pattern

The core task of face de-spoofing is to estimate the spoofing-relevant noise pattern in the given face

image. Despite the strength of using a CNN model, we are still facing the challenge of learning

without the ground truth of the noise pattern. To address this challenge, we would like to first carry
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Figure 6.2: The illustration of the spoof noise pattern. Left: live face and its local regions. Right: Two
registered spoofing faces from print attack and replay attack. For each sample, we show the local region of
the face, intensity difference to the live image, magnitude of 2D FFT, and the local peaks in the frequency
domain that indicates the spoof noise pattern. Best viewed electronically.

out a case study on the noise pattern with the objectives of answering the following questions: 1)

is Eqn. 6.1 a good modeling of the spoof noise? 2) what characteristics does the spoof noise hold?

Let us denote a genuine face as Î. By using printed paper or video replay on digital devices, the

attacker can manufacture a spoof image I from Î. Considering no non-rigid deformation between

I and Î, we summarize the degradation from Î to I as the following steps:

1. Color distortion: Color distortion is due to a narrower color gamut of the spoof medium

(e.g. LCD screen or Toner Cartridge). It is a projection from the original color space to a

tinier color subspace. This noise is dependent on the color intensity of the subject, and hence

it may apply as a degradation matrix to the genuine face I during the degradation.

2. Display artifacts: Spoof mediums often use several nearby dots/sensors to approximate

one pixel’s color, and they may also display the face differently than the original size. Ap-

proximation and down-sampling procedure would cause a certain degree of high-frequency

information loss, blurring, and pixel perturbation. This noise may also apply as a degradation

matrix due to its subject dependence.
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Figure 6.3: The proposed network architecture.

3. Presenting artifacts: When presenting the spoof medium to the camera, the medium inter-

acts with the environment and brings several artifacts, including reflection and transparency

of the surface. This noise may apply as an additive noise.

4. Imaging artifacts: Imaging lattice patterns such as screen pixels on the camera’s sensor

array (e.g. CMOS and CCD) would cause interference of light. This effect leads to aliasing

and creates moiré pattern, which appears in replay attack and some print attack with strong

lattice artifacts. This noise may apply as an additive noise.

These four steps show that the spoof image I can be generated via applying degradation matri-

ces and additive noises to Î, which is basically conveyed by Eqn. 6.1. As expressed by Eqn. 6.1, the

spoof image is the summation of the live image and image-dependent noise. To further validate this

model, we show an example in Fig. 6.2. Given a high-quality live image, we carefully produce two

spoof images via print and replay attack, with minimal non-rigid deformation. After each spoof

image is registered with the live image, the live image becomes the ground truth live image if we

would perform de-spoofing on the spoof image. This allows us to compute the difference between

the live and spoof images, which is the noise pattern N(Î). To analyze its frequency properties, we
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perform FFT on the spoof noise and show the 2D shifted magnitude response.

In both spoof cases, we observe a high response in the low-frequency domain, which is related

to color distortion and display artifacts. In print attack, repetitive noise in Step 3 leads to a few

“peak" responses in the high-frequency domain. Similarly, in the replay attack, visible moiré

pattern reflects as several spurs in the low-frequency domain, and the lattice pattern that causes

the moiré pattern is represented as peaks in the high-frequency domain. Moreover, spoof patterns

are uniformly distributed in the image domain due to the uniform texture of the spoof mediums.

And the high response of the repetitive pattern in the frequency domain exactly demonstrates that

it appears widely in the image and thus can be viewed as ubiquitous.

Under this ideal registration, the comparison between live and spoof images provides us a

basic understanding of the spoof noise pattern. It is a type of texture that has the characteristics of

repetitive and ubiquitous. Based on this modeling and noise characteristics, we design a network

to estimate the noise without the access to the precisely registered ground truth live image, as this

case study has.

6.2.2 De-Spoof Network

6.2.2.1 Network Overview

Figure 6.3 shows the overall network architecture of our proposed method. It consists of three

parts: De-Spoof Net (DS Net), Discriminative Quality Net (DQ Net), and Visual Quality Net (VQ

Net). DS Net is designed to estimate the spoof noise pattern N (i.e. the output of N(Î)) from the

input image I. The live face Î then can be reconstructed by subtracting the estimated noise N from

the input image I. This reconstructed image Î should be both visually appealing and indeed live,

which will be safeguarded by the DQ Net and VQ Net respectively. All networks can be trained in
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Table 6.1: The network structure of DS Net, DQ Net and VQ Net. Each convolutional layer is followed
by an exponential linear unit (ELU) and batch normalization layer. The input image size for DS Net is
256× 256× 6. All the convolutional filters are 3× 3. 0\1 Map Net is the bottom-left part, i.e., conv1-10,
conv1-11, and conv1-12.

DS Net (Encoder Part) DS Net (Decoder Part) DQ Net VQ Net
Layer Chan./Stri. Outp. Size Layer Chan./Stri. Outp. Size Layer Chan./Stri. Outp. Size Layer Chan./Stri. Outp. Size

Input Input Input Input
image pool1-1+pool1-2+pool1-3 {image,live} {image,live}

conv1-0 24/1 256 resize -/- 256 conv3-0 64/1 256
conv1-1 20/1 256 conv2-1 28/1 256 conv3-1 128/1 256 conv4-1 24/2 256
conv1-2 25/1 256 conv2-2 24/1 256 conv3-2 196/1 256 conv4-2 20/2 256
conv1-3 20/1 256 conv3-3 128/1 256 pool4-1 -/2 128
pool1-1 -/2 128 pool3-1 -/2 128
conv1-4 20/1 128 conv2-3 20/1 256 conv3-4 128/1 128 conv4-3 20/1 128
conv1-5 25/1 128 conv2-4 20/1 256 conv3-5 196/1 128 conv4-4 16/1 128
conv1-6 20/1 128 conv3-6 128/1 128 pool4-2 -/2 64
pool1-2 -/2 64 pool3-2 -/2 64
conv1-7 20/1 64 conv2-5 20/1 256 conv3-7 128/1 64 conv4-5 12/1 64
conv1-8 25/1 64 conv2-6 16/1 256 conv3-8 196/1 64 conv4-6 6/1 64
conv1-9 20/1 64 conv3-9 128/1 64 pool4-3 -/2 32
pool1-3 -/2 32 pool3-3 -/2 32

short-cut connection short-cut connection vectorize
pool1-1+pool1-2+pool1-3 pool3-1+pool3-2+pool3-3 1024

conv1-10 28/1 32 conv2-7 16/1 256 conv3-10 128/1 32 fc4-1 1/1 100
conv1-11 16/1 32 conv2-8 6/1 256 conv3-11 64/1 32 dropout - 0.2%
conv1-12 1/1 32 live (image - conv2-8) conv3-12 1/1 32 fc4-2 1/1 2

an end-to-end fashion. The details of the network structure are shown in Tab. 6.1.

As the core part, DS Net is designed as an encoder-decoder structure with the input I ∈

R256×256×6. Here the 6 channels are RGB + HSV color space, following the suggestion in [5]. In

the encoder part, we first stack 10 convolutional layers with 3 pooling layers. Inspired by the resid-

ual network [44], we follow by a short-cut connection: concatenating the responses from pool1-1,

pool1-2 with pool1-3, and then sending them to conv1-10. This operation helps us to pass the

feature responses from different scales to the later stages and ease the training procedure. Going

through 3 more convolution layers, the responses F ∈ R32×32×32 from conv1-12 are the feature

representation of the spoof noise patterns. The higher magnitudes the responses have, the more

spoofing-perceptible the input is.

Out from the encoder, the feature representation F is fed into the decoder to reconstruct the

spoof noise pattern. F is directly resized to the input spatial size 256×256. It introduces no extra
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grid artifacts, which exist in the alternative approach of using a deconvolutional layer. Then, we

pass the resized F to several convolutional layers to reconstruct the noise pattern N. According to

Eqn. 6.1, the reconstructed live image can be retrieved by: x̂ = x−N(x̂) = I−N.

Each convolutional layer in the DS Net is equipped with exponential linear unit (ELU) and

batch normalization layers. To supervise the training of DS Net, we design multiple loss functions:

losses from DQ Net and VQ Net for the image quality, 0\1 map loss, and noise property losses. We

introduce these loss functions in Sec. 6.2.3-6.2.4.

6.2.3 DQ Net and VQ Net

While we do not have the ground truth to supervise the estimated spoof noise pattern, it is possible

to supervise the reconstructed live image, which implicitly guides the noise estimation. To estimate

a good-quality spoof noise, the reconstructed live image should be quantitatively and visually

recognized as live. For this purpose, we propose two networks in our architecture: Discriminative

Quality Net (DQ Net) and Visual Quality Net (VQ Net). The VQ Net aims to guarantee the

reconstructed live face is photorealistic. The DQ Net is proposed to guarantee the reconstructed

face would indeed be considered as live, based on the judgment of a pre-trained face anti-spoofing

network. The details of our proposed architecture are shown in Tab. 6.1.

6.2.3.1 Discriminative Quality Net

We follow the state-of-the-art network architecture of face anti-spoofing [73] to build our DQ Net.

It is a fully convolutional network with three filter blocks and three additional convolutional layers.

Each block consists of three convolutional layers and one pooling layer. The feature maps after

each pooling layer are resized and stacked to feed into the following convolutional layers. Finally,

DQ Net is supervised to estimate the pseudo-depth D of an input face, where D for the live face is
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the depth of the face shape and D for the spoof face is a zero map as a flat surface. We adopt the 3D

face alignment algorithm in [74] to estimate the face shape and render the depth via Z-Buffering.

Similar to the previous work [50], DQ Net is pre-trained to obtain the semantic knowledge of

live faces and spoofing faces. And during the training of DS Net, the parameters of DQ Net are

fixed. Since the reconstructed images Î are live images, the corresponding pseudo-depth D should

be the depth of the face shape. The backpropagation of the error from DQ Net guides the DS Net

to estimate the spoof noise pattern which should be subtracted from the input image,

JDQ =
∥∥CNNDQ(Î)−D

∥∥
1 , (6.2)

where CNNDQ is a fixed network and D is the depth of the face shape.

6.2.3.2 Visual Quality Net

We deploy a GAN to verify the visual quality of the estimated live image Î. Given both the real

live image Ilive and the synthesized live image Î, VQ Net is trained to distinguish between Ilive

and Î. Meanwhile, DS Net tries to reconstruct photorealistic live images where the VQ Net would

classify them as non-synthetic (or real) images. The VQ Net consists of 6 convolutional layers and

a fully connected layer with a 2D vector as the output, which represents the probability of the input

image to be real or synthetic. In each iteration during the training, the VQ Net is evaluated with

two batches, in the first one, the DS Net is fixed and we update the VQ Net,

JV Qtrain =−EI∈R log(CNNV Q(I))−EI∈S log(1−CNNV Q(CNNDS(I))), (6.3)
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where R and S are the sets of real and synthetic images respectively. In the second batch, the VQ

Net is fixed and the DS Net is updated,

JV Qtest =−EI∈S log(CNNV Q(CNNDS(I))). (6.4)

6.2.4 Loss functions

The main challenge for spoof modeling is the lack of the ground truth for the spoof noise pattern.

Since we have concluded some properties about the spoof noise in Sec. 6.2.1, we can leverage

them to design several novel loss functions to constrain the convergence space. First, we introduce

magnitude loss to enforce the spoof noise of the live image to be zero. Second, zero\one map loss is

used to demonstrate the ubiquitousness of the spoof noise. Third, we encourage the repetitiveness

property of spoof noise via repetitive loss. We describe three loss functions as the following:

6.2.4.1 Magnitude Loss

The spoof noise pattern for the live images is zero. The magnitude loss can be utilized to impose

the constraint for the estimated noise. Given the estimated noise N and reconstructed live image

Î = I−N of an original live image I, we have,

Jm = ‖N‖1 . (6.5)

Zero\One Map Loss: To learn discriminative features in the encoder layers, we define a sub-task

in the DS Net to estimate a zero-map for the live faces and an one-map for the spoof. Since this is

a per pixel supervision, it is also a constraint of ubiquitousness on the noise. Moreover, 0\1 map
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enables the receptive field of each pixel to cover a local area, which helps to learn generalizable

features for this problem. Formally, given the extracted features F from an input face image I in

the encoder, we have,

Jz =
∥∥CNN01map(F;Θ)−M

∥∥
1 , (6.6)

where M ∈ 032×32 or M ∈ 132×32 is the zero\one map label.

6.2.4.2 Repetitive Loss

Based on the previous discussion, we assume the spoof noise pattern to be repetitive, because it

is generated from the repetitive spoof medium. To encourage the repetitiveness, we convert the

estimated noise N to the Fourier domain and compute the maximum value in the high-frequency

band. The existence of high peak is indicative of the repetitive pattern. We would like to maximize

this peak for spoof images, but minimize it for live images, as the following loss function:

Jr =




−max(H(F (N),k)), I ∈ Spoo f

‖max(H(F (N),k))‖1, I ∈ Live
,

where F is the Fourier transform operator, H is an operator for masking the low-frequency domain

of an image, i.e., setting a k× k region in the center of the shifted 2D Fourier response to zero.

Finally, the total loss function in our training is the weighted summation of the aforementioned

loss functions and the supervisions for the image qualities,

JT = Jz +λ1Jm +λ2Jr +λ3JDQ +λ4JV Qtest , (6.7)

where λ1,λ2,λ3,λ4 are the weights. During the training, we alternate between optimizing Eqn. 6.7

and Eqn. 6.3.

109



6.3 Experimental Results

6.3.1 Experimental Setup

Databases We evaluate our work on three face anti-spoofing databases, with print and replay

attacks: Oulu-NPU [19], CASIA-MFSD [143] and Replay-Attack [28]. Oulu-NPU [19] is a high-

resolution database, considering many real-world variations. Oulu-NPU also includes 4 testing

protocols: Protocol 1 evaluates on the illumination variation, Protocol 2 examines the influence

of different spoof medium, Protocol 3 inspects the effect of different camera devices and Proto-

col 4 contains all the challenges above, which is close to the scenario of cross testing. CASIA-

MFSD [143] contains videos with resolution 640× 480 and 1280× 720. Replay-Attack [28] in-

cludes videos of 320×240. These two databases are often used for cross testing [83].

Parameter setting We implement our method in Tensorflow [2]. Models are trained with the

batch size of 6 and the learning rate of 3e−5. We set the k = 64 in the repetitive loss and set λ1 to

λ4 in Eqn. 6.7 as 3,0.005,0.1 and 0.016, respectively. DQ Net is trained separately and remains

fixed during the update of DS Net and VQ Net, but all sub-networks are trained with the same and

respective data in each protocol.

Evaluation metrics To compare with previous methods, we use Attack Presentation Classification

Error Rate (APCER) [46], Bona Fide Presentation Classification Error Rate (BPCER) [46] and,

ACER = (APCER+BPCER)/2 [46] for the intra testing on Oulu-NPU, and Half Total Error Rate

(HTER) [9], half of the summation of FAR and FRR, for the cross testing between CASIA-MFSD

and Replay-Attack.
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Table 6.2: The accuracy of different outputs of the proposed architecture and their fusions.

Method 0\1 map Spoof noise Depth map
Fusion (Spoof noise, Depth map) Fusion of all three outputs
Maximum Average Maximum Average

APCER 2.50 1.70 1.66 1.70 1.27 1.70 1.27
BPCER 2.52 1.70 1.68 1.73 1.73 1.73 1.73
ACER 2.51 1.70 1.67 1.72 1.50 1.72 1.50

6.3.2 Ablation Study

Using Oulu-NPU Protocol 1, we perform three studies on the effect of score fusing, the importance

of each loss function, and the influence of image resolution and blurriness.

Different fusion methods In the proposed architecture, three outputs can be utilized for classi-

fication: the norms of either the 0\1 map, the spoof noise pattern or the depth map. Because of

the discriminativeness enabled by our learning, we can simply use a rudimentary classifier like

L-1 norm. Note that a more advance classifier is applicable and would likely lead to higher per-

formance. Table 6.2 shows the performance of each output and their fusion with maximum and

average. It shows that the fusion of spoof noise and depth map achieves the best performance.

However, adding the 0\1 map scores do not improve the accuracy since it contains the same in-

formation as the spoof noise. Hence, for the rest of experiments, we report performance from the

average fusion of the spoof noise N and the depth map D̂, i.e., score = (‖N‖1 +
∥∥D̂
∥∥

1)/2.

Advantage of each loss function We have three main loss functions in our proposed architecture.

To shows the effect of each loss function, we train a network with each loss excluded one by one.

By disabling the magnitude loss, the 0\1 map loss and the repetitive loss, we obtain the ACERs

5.24, 2.34 and 1.50, respectively. To further validate the repetitive loss, we perform an experiment

on high-resolution images by changing the network input to the cheek region of the original 1080P

resolution. The ACER of the network with the repetitive loss is 2.92 but the network without

cannot converge.

Resolution and blurriness As shown in the ablation study of repetitive loss, the image qual-
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Table 6.3: ACER of the proposed method with different image resolutions and blurriness. To create blurry
images, we apply Gaussian filters with different kernel sizes to the input images.

XXXXXXXXXXXMetric
Resolution

256×256 128×128 64×64

APCER 1.27 2.27 5.24
BPCER 1.73 3.36 5.30
ACER 1.50 3.07 5.27

XXXXXXXXXXXMetric
Blurriness

1×1 3×3 5×5 7×7 9×9

APCER 1.27 2.29 3.12 3.95 4.79
BPCER 1.73 2.50 3.33 4.16 5.00
ACER 1.50 2.39 3.22 4.06 4.89

Table 6.4: The intra testing results on 4 protocols of Oulu-NPU.

Protocol Method APCER (%) BPCER (%) ACER (%)
CPqD [15] 2.9 10.8 6.9

1 GRADIANT [15] 1.3 12.5 6.9
Auxiliary [73] 1.6 1.6 1.6

Ours 1.2 1.7 1.5
MixedFASNet [15] 9.7 2.5 6.1

2 Ours 4.2 4.4 4.3
Auxiliary [73] 2.7 2.7 2.7
GRADIANT 3.1 1.9 2.5

MixedFASNet 5.3±6.7 7.8±5.5 6.5±4.6
3 GRADIANT 2.6±3.9 5.0±5.3 3.8±2.4

Ours 4.0±1.8 3.8±1.2 3.6±1.6
Auxiliary [73] 2.7±1.3 3.1±1.7 2.9±1.5

Massy_HNU [15] 35.8±35.3 8.3±4.1 22.1±17.6
4 GRADIANT 5.0±4.5 15.0±7.1 10.0±5.0

Auxiliary [73] 9.3±5.6 10.4±6.0 9.5±6.0
Ours 5.1±6.3 6.1±5.1 5.6±5.7

ity is critical for achieving a high accuracy. The spoof noise pattern may not be detected in the

low-resolution or motion-blurred images. The testing results on different image resolutions and

blurriness are shown in Tab. 6.3. These results validate that the spoof noise pattern is less discrim-

inative for the lower-resolution or blurry images, as the high-frequency part of the input images

contains most of the spoof noise pattern.

6.3.3 Experimental Comparison

To show the performance of our proposed method, we present our accuracy in the intra testing of

Oulu-NPU and the cross testing on CASIA and Replay-Attack.
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6.3.3.1 Intra Testing

We compare our intra testing performance on all 4 protocols of Oulu-NPU. Table 6.4 shows the

comparison of our method and the best 3 out of 18 previous methods [15, 73]. Our proposed

method achieves promising results on all protocols. Specifically, we outperform the previous state

of the art by a large margin in Protocol 4, which is the most challenging protocol, and similar to

cross testing.

6.3.3.2 Cross Testing

We perform cross testing between CASIA-MFSD [143] and Replay-Attack [28]. As shown in

Tab. 6.5, our method achieves the competitive performance on the cross testing from CASIA-

MFSD to Replay-Attack. However, we achieve a worse HTER compared to the best perform-

ing methods from Replay Attack to CASIA-MFSD. We hypothesize the reason is that images of

CASIA-MFSD are of much higher resolution than those of Replay Attack. This shows that the

model trained with higher-resolution data can generalize well on lower-resolution testing data,

but not the other way around. This is one limitation of the proposed method, and worthy further

research.

6.3.4 Qualitative Experiments

6.3.4.1 Spoof medium classification

The estimated spoof noise pattern of the test images can be used for clustering them into different

groups and each group represents one spoof medium. To visualize the results, we use t-SNE [76]

for dimension reduction. The t-SNE projects the noise N ∈ R256×256×6 to 2 dimensions by best

preserving the KL divergence distance. Fig. 6.4 shows the distributions of the testing videos on
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Table 6.5: The HTER of different methods for the cross testing between the CASIA-MFSD and
the Replay-Attack databases. We mark the top-2 performances in bold.

Method
Train Test Train Test

CASIA Replay Replay CASIA
MFSD Attack Attack MFSD

Motion [34] 50.2% 47.9%
LBP-TOP [34] 49.7% 60.6%

Motion-Mag [11] 50.1% 47.0%
Spectral cubes [90] 34.4% 50.0%

CNN [130] 48.5% 45.5%
LBP [16] 47.0% 39.6%

Colour Texture [17] 30.3% 37.7%
Auxiliary [73] 27.6% 28.4%

Ours 28.5% 41.1%

Oulu-NPU Protocol 1. The left image shows that the noise of live is well-clustered, and the noise

of spoof is subject dependent, which is consistent with our noise assumption. To obtain a better

visualization, we utilize the high pass filter to extract the high-frequency information of noise

pattern for dimension reduction. The right image shows that the high frequency part has more

subject independent information about the spoof type and can be utilized for classification of the

spoof medium.

To further show the discriminative power of the estimated spoof noise, we divide the testing set

of Protocol 1 to training and testing parts and train an SVM classifier for spoof medium classifica-

tion. We train two models, a three-class classifier (live, print and display) and a five-class classifier

(live, print1, print2, display1 and display2), and they achieve the classification accuracy of 82.0%

and 54.3% respectively, shown in Tab. 6.6. Most classification errors of the five-class model are

within the same spoof medium. This result is noteworthy given that no label of spoof medium type

is provided during the learning of the spoof noise model. Yet the estimated noise actually carries

appreciable information regarding the medium type; hence we can observe reasonable results of

spoof medium classification. This demonstrates that the estimated noise contains spoof medium
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Figure 6.4: The 2D visualization of the estimated spoof noise for test videos on Oulu-NPU Protocol
1. Left: the estimated noise, Right: the high-frequency band of the estimated noise, Color code
used: black=live, green=printer1, blue=printer2, magenta=display1, red=display2.

Table 6.6: The confusion matrices of spoof mediums classification based on spoof noise pattern.

XXXXXXXXXXXActual
Predicted

live print display

live 59 1 0
print 0 88 32

display 13 8 99

XXXXXXXXXXXActual
Predicted

live print1 print2 display1 display2

live 59 0 1 0 0
print1 0 41 2 11 6
print2 0 34 11 9 6

display1 10 6 0 13 31
display2 8 7 0 6 39

information and indeed we are moving toward estimating the faithful spoof noise residing in each

spoof image. In the future, if the performance of spoof medium classification improves, this could

bring new impact to applications such as forensic.

6.3.4.2 Successful and failure cases

We show several success and failure cases in Fig. 6.5-6.6. Fig. 6.5 shows that the estimated spoof

noises are similar within each medium but different from the other mediums. We suspect that the

yellowish color in the first four columns is due to the stronger color distortion in the paper attack.

The fifth row shows that the estimated noise for the live images is nearly zero. For the failure cases,

we only have a few false positive cases. The failures are due to undesired noise estimation which

will motivate us for further research.
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Figure 6.5: The visualization of input images, estimated spoof noises and estimated live images
for test videos of Protocol 1 of Oulu-NPU database. The first four columns in the first row are
paper attacks and the second four are the replay attacks. For a better visualization, we magnify the
noise by 5 times and add the value with 128, to show both positive and negative noise.
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Figure 6.6: The failure cases for converting the spoof images to the live ones.

6.4 Summary

This chapter introduces a new perspective for solving the face anti-spoofing by inversely decom-

posing a spoof face into the live face and the spoof noise pattern. A novel CNN architecture with
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multiple appropriate supervisions is proposed. We design loss functions to encourage the pattern

of the spoof images to be ubiquitous and repetitive, while the noise of the live images should be

zero. We visualize the spoof noise pattern which can help to have a deeper understanding of the

added noise by each spoof medium. We evaluate the proposed method on multiple widely-used

face anti-spoofing databases.
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Chapter 7

Conclusions and Future Work

Face alignment is an important research topic because it has many applications in face recognition,

face tracking, expression estimation, augmented and virtual reality, etc. By utilizing deep learning

methods, face alignment systems improved dramatically and they can be used in many commercial

applications for face tracking and augmented reality tasks e.g., Snapchat and Facebook.

In chapter 2 to 4, we propose three face alignment methods with the same idea of converting the

2D face alignment to 3D face alignment and reconstructing the 3D shape of the face. We present

our advantage to perform face alignment for large pose face images by utilizing the estimated 3D

shape. These three methods are an extended version of each other, and the accuracy and the speed

of our pose-invariant face alignment are improved in each method.

The face is one of the most popular biometric modalities that can be used for access control and

authentication. Although face recognition systems can achieve very high identification accuracy,

if we want to use face recognition systems in practice we need to have a robust face anti-spoofing

system

In chapter 5 and 6, we propose our CNN-based face anti-spoofing methods that use the supervi-

sions from both the spatial and temporal auxiliary information for the purpose of robustly detecting

face PA from a face video.
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7.1 Limitations

Pose-invariant Face Alignment: The main limitation of the proposed PIFA methods is that the

estimated 3D shape of face does not contain the detailed changes in the 3D shape e.g., wrinkles.

This is due to the limited numbers of ground truth 2D landmarks which are utilized during training

as supervision. Tran et. al [106] show that utilizing unsupervised loss functions based on the

texture reconstruction is helpful to have more detailed 3D shape estimation.

Face Anti-spoofing: The main challenge of anti-spoofing methods for all of the Biometric modal-

ities is unknown spoof attack (spoof medium). The anti-spoofing methods are mainly constrained

with the spoof medium data which used for training them. Making the anti-spoofing methods more

generalizable and robust to new spoof medium is the main limitation of the proposed methods.

7.2 Future Work

Detailed 3D Shape for Face The estimated 3D shapes, by our proposed methods, are limited to

the 3DMM bases which we utilize to represent the 3D shape. In order to have more powerful bases

to represent the 3D shapes, we can learn the bases from the data and make a more detailed recon-

struction by incorporating unsupervised loss functions. In [106], a CNN based method proposed to

learn a set of non-linear bases for representing the 3D shape of the face. Similarly, Tan et. al [103]

utilize variational auto-encoders for representing the 3D meshes in order to have more flexibility

for representing the 3D shape and allowing non-linear deformations.

General Object Anti-Spoofing: The idea of face anti-spoofing can be extended for detecting

the spoof image for all objects. The general object anti-spoofing has applications for detecting the

spoof images in online shopping websites e.g., eBay and Amazon. The general anti-spoofing is

much more challenging than the face anti-spoof due to various materials and different texture of
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Figure 7.1: Left: A representation of the estimated point cloud in iPhone X. Right: The hardware technol-
ogy in Huawei P11 for capturing the point cloud.

objects. The goal is to detect the print attack and the replay attack for general object anti-spoofing.

3D Point Cloud Classification: The 3D point cloud classification has several applications in

computer vision. Recently, with the advancement of hardware technology, we can have sensors

on the phone for capturing the 3D point cloud. In iPhone X, the point cloud data is utilized for

face anti-spoofing (Left figure in Fig. 7.1). Similarly, other cell phone companies are utilizing

point cloud for face anti-spoofing. For example, the right figure in Fig. 7.1 shows the hardware

technology in Huawei P11 for capturing the point cloud. These data can be utilized for detecting

objects and measuring the length of objects and the distance to the objects.
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