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ABSTRACT

NONPARAMETRIC ESTIMATION OF INTEGRAL CURVES USING HARDI DATA

By

Michael DeLaura

We develop a fully non-parametric method for the estimation of curve trajectories using HARDI

data. For a set of locations Xi ∈ G, G representing a region of the brain, we consider the diffusion

process by applying multivariate kernel smoothing techniques for the estimation of a general

function f describing the signal process obtained from the MRI image. At each location x ∈ G

we search for the direction of maximum diffusion on the unit sphere to obtain estimates of curve

trajectories. We establish the convergence of the deviation between estimated and true curves to

a Gaussian process to develop tests for the connectivity likelihood of regions. This method is

computationally efficient as with each step of the curve tracing we construct a pointwise confidence

ellipsoid region rather than exhaustive iterative sampling methods.
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CHAPTER 1

INTRODUCTION

Diffusion MRI makes use of the properties of protons under an applied magnetic field to measure

dominant diffusion directions in cerebral white matter. Magnetic resonance imaging (MRI) utilizes

the dynamics of self-spinning protons, most commonly in water molecules, as the source of

energy to generate MRI signal. Under a strong magnetic field, a group of these spins form a net

magnetization. This net magnetization can be perturbed by a radio frequency electromagnetic

wave. Its wobbling (precessing) phenomenon can be measured as signals by an MRI scanner. By

manipulating the magnetic field by gradients, we can identify the locations of the signal which

in turn allow us to generate images. Because MRI contains no radiation and thus the potential

damage to the human body is minimal, it has become an important tool in both clinical and research

applications.

These directions for which water is diffusing correspond to those directions that the neural

pathways, or axons, are aligned. Water moves along, but not across these pathways, which is a key

component in determining these path orientations through the use of magnetic fields as in dMRI.

The phenomenon of water diffusion is further taken advantage of in MRI to develop diffusion

weighted imaging (DWI). Water diffusion with the presence of a magnetic field gradient leads

to MRI signal loss. In an unrestricted environment, water and other molecules move or diffuse

randomly in three dimensions resulting from thermal energy. The motion is called Brownian

motion.

These protons in the water molecules moving in constant random motion contained in neural

pathways behave as gyroscopes that either ‘tilt’ or ‘align’ under a magnetic field applied in a

particular direction. A lack of alignment corresponds to a larger signal response. This would

indicate that the applied magnetic field direction is not in agreement with the path orientation.

This lack of alignment increases as the magnetic field gradient becomes more orthogonally

applied with respect to a pathway. In the case that there is an agreement between the applied
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direction and pathway we get an aligned assortment of protons. Indeed, this corresponds to a lower

signal response.

Thus these methods make use of the signal response under an applied magnetic field to measure

the degree to which water is diffusing in a given direction as a means of tracking neural pathways.

With this knowledge one can build models relating the signal response to an orientation distribution

function (ODF) such as in kernel regression estimation. This ODF gives an empirical descrip-

tion of the distribution of diffusion at a location x ∈ R3 in each particular diffusion direction b ∈ R3.

Studying the Brownian motion of molecules (water molecules in our case) in the brain can

provide information regarding the neuronal structural connectivity in vivo. These measurements

have been made possible with DWI [18, 19], which applies diffusion-weighted gradients in various

directions to assess the diffusing directions of the water molecules. With DWI data, as in the

commonly used diffusion tensor imaging (DTI) techniques, diffusivity values and principal diffusion

orientation can be estimated at each voxel. Since healthy axons contain intact myelin sheaths and

tend to align in organized orientations, water diffusivity in a voxel tends to be preferentially along

the direction of the axonal bundles. By inspecting the orientations of the diffusion tensors at

neighboring voxels, axonal fiber bundles can be tracked. The success of the axonal tracking can

be used to understand the structural connections between brain regions [21, 25], and can be used

to assess axonal changes over time in applications such as brain maturation in young children

[20], axonal degeneration in Alzheimer’s diseases [26], and potential axonal damage in traumatic

brain injury [24]. However, successful tractography based on DWI data faces some fundamentally

challenging demands, specifically the need for high image signal-to-noise ratio (SNR), high spatial

resolution, a relative long scan time, the ability to resolve crossing fibers, full coverage of tracks of

interest, and the ability to track at regions with low diffusion anisotropy. To address the issue of

crossing fibers, high angular resolution diffusion imaging (HARDI) [23] in DWI has gained some

success. The issues related to neuronal fiber tractography in DWI motivated our research on the

integral curve estimation.
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The application of a diffusion gradient leads to low image SNR. The subject’s motion as well

as physiological signals within the relatively long scan time in DWI, with a typical range of 8 to

20 min, can further exacerbate the noise issue in DWI. In this work, our goal is to understand the

error propagation due to noise in neuronal fiber tractography under as few model assumptions as

possible, leading to a nonparametric setup.

Using the methods of dMRI one can also discover the degree of likelihood for which two regions

are connected. Of course, this is of great scientific interest since developing our understanding of

the connective features of the brain would inevitably help in the planning of neurosurgeries. This

knowledge would serve as a strong basis for the studying of brain disorders, and research could build

upon itself in a more fruitful manner. Creating an underlying physical connectivity map would

serve as a highly useful foundation in the investigation of functional brain connectivity, i.e., fMRI.

Amore informed schematic of this structure on this small a scale could reveal potential patterns and

insight into understanding of the proportions of the brain used for their respective purposes. One

could upon combining this with fMRI analysis create a more rich analysis of region interactions

and understanding of their purposes. Indeed, continued analysis of brain microstructure should

produce a trustworthy anatomy. These methods could potentially be developed further and applied

to uncover nerve pathway interactions on a small scale.

Probabilistic fiber tractography [19] is one popular technique in DWI because it can assess

the relative strength of fiber connection. However, this technique employs Monte Carlo sampling

and bootstrap techniques, and depends on arbitrary prior parameter assumptions based on fully

parametric models. Incorrect parameter assumptions will exacerbate the error due to the repeated

Monte Carlo sampling. To reduce the need of parameter assumptions, Koltchinskii et.al. [5]

developed a theoretically more rigorous semiparametric approach for the simple vector model [5],

Carmichael and Sakhanenko investigated the “low-order” DTI model [2] and “high-order” HARDI

model [9]. With the later approach, they demonstrated tighter confidence ellipsoids around the

fibers, and their method is more robust in handling crossing of fibers than other DTI methods

[10, 11]. Deterministic fiber tractography [22] is another popular technique in DWI, which does
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not provide the assessment of uncertainty such as confidence regions or occupancy probabilities

estimation.

Based on the improvement of the semiparametric approach in the work by Carmichael and

Sakhanenko, we want to assess the fiber tracking performance based on a completely nonparametric

model using HARDI data. Although the proposed technique is computationally intense, it avoids

the typical limitations of deterministic tractography techniques, and recovers the connectivity

information similar to probabilistic tractography techniques.
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1.1 STEJSKAL TANNER EQUATION

The general form of the Stejskal-Tanner equation relates the diffusion signal E(x, b) to the

diffusion tensor D at a location x ∈ G and for some applied magnetic gradient direction b ∈ R3 :

E(x, b) =
R(x, b)
R0(x)

= e−cbT Db.

At a given location x, R(x, b) denotes the relative amount of water diffusion along the spatial

direction b. R0(x) represents the amount of signal observed without any applied magnetic field.

The ratio of these two gives a metric for amount of diffusion at a given location and direction. This

serves as a basis in dMRI methodology for the construction of any particular type of model.

The amount of diffusion in a particular direction at a given location x ∈ G can be characterized

by this diffusion tensor D. The above relationship between the signal and the diffusion tensor was

first given by Stejskal and Tanner. According to this classical equation, we may report the observed

log-loss of signal obtained from the DTI data (see [8]) as related to a diffusion tensor as follows

y(x, b) = −log
(

R(x, b)
R0(x)

)
= cbT M(x)b, (1.1)

where for each x ∈ G, M(x) (in place of D) is a positive-definite symmetric matrix representing the

3D distribution of diffusion at a location x ∈ G. This M can be visualized as an ellipsoidal structure

describing diffusion at a given location whose diagonals are the eigenvalues corresponding to those

eigenvectors of M aligned with the principal eigenvectors of said ellipsoid. The elongation of

said ellipsoid is determined by those corresponding eigenvalues. Note this makes sense since the

process of water diffusion is Gaussian and the diffusion tensor is representative of the covariance

matrix of the diffusion process at a particular point. This model is quite natural for a single fiber

where the ellipsoids would be really streched out along the fiber, while in the grey matter most

ellipsoids would be spheres.
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1.2 Definitions/Preliminaries

Nonparametric Statistics makes use of methods for which no assumptions are placed on the data

belonging to a parametric family of distributions. The need for these methods arises frequently in

areas for which little is known about the underlying data structure of interest (e.g. the setting of this

paper). Considering the highly unknown structure of the brain, and the unavoidably high amounts

of noise shrouding the details we can in fact uncover, it makes sense to approach the problem with

fewer assumptions. One can then formulate a more theoretically rigorous foundation upon which to

proceed with analysis. Before discussing specific modeling methods we will introduce some basic

concepts in the non-parametric methodology particular to Kernel Regression Estimation.

In Integral Curve Estimation we are concerned with estimating curves able to be represented as

integrals of smooth functions. We have the general form of a regression model

Yi = f (Xi) + σ(Xi)εi,

where the εi are random i.i.d. errors with Eεi = 0, and σ > 0 is a scaling smooth enough function.

The functions f and σ are unknown. We only assume that f exists and is at least ’smooth’ in some

sense. The quantity of interest is the curve x(t) which is known as the ’integral curve’. So as stated

it will be the case that

x(t) =
∫ t

0
g(x(s))ds

for some smooth function g dependent on f . Usually the Xi are non-random points on a regular grid

but they can be approximated by a Xi ∼ Uniform[0,1] setup, which makes analysis slightly easier.

Thus we observe {(Xi,Yi)}
n
i=1 where the Xi ∼ Uniform[0,1] and Yi are some observed responses

thought to be a function of the data. We write

Yi = f (Xi) + σ(Xi)εi .
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Then the goal would be to first estimate f on [0,1], and then to estimate σ. The field of Kernel

Regression Estimation is interested in the function f̂n for estimating f .

Let us review some basics here. Consider again X1, ...,Xn ∼ Uniform[0,1]. If we construct a

histogram to consider f , then a natural estimator of f would be

f̂n(x) =
1

nh

n∑
i=1

I
(

x − Xi
h
∈ [−1,1]

)
Yi,

where h is called the bandwith, or window-width, and it is a smoothing parameter used to correct

’oversmoothing’ or ’undersmoothing’. Thenwe can include all of the Xi within h of x. Alternatively

one can introduce a weight function w(x) = 1
2 I(|x | < 1). Our estimator would then have the form:

f̂n(x) =
1

nh

n∑
i=1

w

(
x − Xi

h

)
Yi .

Now one can go from uniform weights w to arbitrary weights defined by K . More precisely, let

K(x) be a kernel function, which is a probability density satisfying the conditions (K):

(K1) K is non-negative and symmetric about 0,

(K2)
∫ ∞
−∞

K(x)dx = 1,

(K3)
∫ ∞
−∞

xK(x)dx = 0,

(K4) 0 <
∫ ∞
−∞
|x |2K(x)dx < ∞.

Then rather than a simple weighted function w, one may select K to be Gaussian, for example.

Then

f̂n(x) =
1

nhn

n∑
i=1

K
(

x − Xi
h

)
Yi,

where the subscript n is included to indicate that (as usually is the case), the bandwith is a function

of the sample size n.

A primary concern in regression function estimation is how to handle the error on a local vs.

global scale. Of course, there is a trade-off between minimizing the error locally and globally,
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and the problem of minimizing the bias and variance of the estimator f̂ of f with respect to the

bandwith h is problematic since as h increases so does the bias. Optimizing with respect to the

mean squared error is the common practice. We consider the mean integrated squared error (MISE)

between f and its estimator f̂ , that is,

MISE = E
∫ (

f̂n(x) − f (x)
)2dx.

1.3 Simple Vector Model

The first of these works explored by Sakhanenko et al. was the simple vector model (see [5]), in

which the diffusion tensor D was calculated at each location, characterized by a symmetric positive

definite 3×3 matrix. Recall one can envision this diffusion tensor as an ellipsoidal structure whose

principal eigenvector is pointed in the direction of dominant diffusion, giving a measure of the path

direction so that the fiber tract can then be reconstructed in small steps. The method is basically

making use of Euler’s method to reconstruct the curve locations.

Stated explicitly, there is a vector field v : G → R3 observed at uniformly i.i.d. locations Xi ∈ G

with i.i.d. random errors ξ for which Eξ = 0 and Cov(ξ, ξ) = Σ. The ξi are taken to be independent

of the locations Xi. The observations are:

(Xi,Vi) = (Xi, v(Xi) + ξi).

To trace the curves, we look at the Cauchy problem of solving the differential equation:

dx(t)
dt
= v(x(t)), t ≥ 0, x(0) = a ∈ G,

or equivalently,

x(t) = a +

t∫
0

v(x(s))ds.

If the vector field is a very simple one (e.g., a constant vector field), then integrating along the

vector field gives an integral curve x that is another regression function in the space of dimension
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one less than the dimension of the space for which Vi is a member. Note that the set G ∈ R3 is a

bounded open set of Lebesgue measure one and represents some scaled region of the brain.

The Nadaraya-Watson type estimator was used as an estimator of the vector field v (see reference

[5] of [5]):

V̂(x) = V̂n(x) =
1

nhd

n∑
i=1

K
(

x − Xi
h

)
Vi,

where the kernel K satisfies the assumptions (K). The kernel K also should be noted to be defined

on a region of bounded support wherein it is twice continuously differentiable. In particular, the

estimate V̂(x) = 0 outside a bounded neighborhood of G. Thus there is defined a plug-in estimate

of the curve x(t) as X̂(t) = X̂n(t) for t ≥ 0 of the Cauchy problem:

dX̂n(t)
dt

= V̂n(X̂n(t)), t ≥ 0, x(0) = a ∈ G,

or equivalently,

X̂n(t) = a +

t∫
0

V̂n(X̂n(s))ds.

1.4 DTI Model

Amore complete account of how noise in DTI data impacts fiber trajectory estimates is provided

with the low order DTI model. As before, the main goal is to estimate the curve x(t) only now

driven by the vector field v(M(x)) for x ∈ G, where M is a tensor field and M(x) represents the

calculated tensor at the location x. Thus v(M(x)) is a tensor-driven vector field.

The observations are modeled as according to the Stejskal-Tanner equation (1.1) with het-

eroscedastic noise function σ > 0:

y(x, b) = −log
(

R(x, b)
R0(x)

)
= cbT M(x)b + σ(x, b)ξ.
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Thus, given N magnetic field gradient directions b1, ..., bN we have the elements y(x, b j), j = 1, ..,N

that make up the vector Y (x) for a location x ∈ G modeled by

Y (x) = BM(x) + Σ1/2(x)Ξx . (1.2)

Here the fixed matrix B is related to the set of diffusion gradient directions and timing parameters

of the imaging procedure. For DTI, we require at least N = 6 directions. Denoting each diffusion

directional vector b by b = (b(1), b(2), b(3)), we then have for these N directions bi the fixed matrix

B =



b(1)1 b(1)1 2b(1)1 b(2)1 2b(1)1 b(3)1 b(2)1 b(2)1 2b(2)1 b(3)1 b(3)1 b(3)1

b(1)2 b(1)2 2b(1)2 b(2)2 2b(1)2 b(3)2 b(2)2 b(2)2 2b(2)2 b(3)2 b(3)2 b(3)2
...

...
...

. . .
...

b(1)N b(1)N 2b(1)N b(2)N 2b(1)N b(3)N b(2)N b(2)N 2b(2)N b(3)N b(3)N b(3)N


.

This second order tensor M describing the diffusion locally at each x can be represented by a 3× 3

positive-definite symmetric matrix:

M(x) =


M(1,1)(x) M(1,2)(x) M(1,3)(x)

M(2,1)(x) M(2,2)(x) M(2,3)(x)

M(3,1)(x) M(3,2)(x) M(3,3)(x)


where the entry M(i,j) represents a measure of the amount of diffusion in the (i, j) direction. To

be clear, for example, the (1,1) direction would be the direction (1,0,0) and the (1,2) direction

would correspond to the direction (1,1,0). Likewise the (1,3) direction would correspond to the

directional vector (1,0,1). Note each of these matrices in the field is an average within a voxel

located at x that has been corrupted with noise.

Σ is an N × N symmetric positive definite tensor with entries

Σi j (x) = cov(σ(x, bi), σ(x, b j)).

The N × 1 tensor Ξx is a vector of random noise with entries ξ j , j = 1, ..,N .
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The Cauchy problem of solving the ODE for the curve trajectory is now given by

dx(t)
dt
= v(M(x(t))), t ≥ 0, x(0) = a ∈ G,

or equivalently

x(t) = a +

t∫
0

v(M(x(s)))ds.

The vector field v(M(x)) consists of the leading eigenvectors of the tensors M(x) for each x ∈ G.

The direction of diffusion is the eigenvector corresponding to the maximal eigenvalue of M(x).

For a point X j ∈ G we estimate M(X j) using the ordinary least squares estimator:

M̃(X j) = (B
T B)−1BTY (X j),

provided that (BT B)−1 exists.

Weuse a kernel smoothingmethod to estimate M(x) at locations x ∈ G between our observations

X j :

M̂n(x) =
1

nh3
n

n∑
j=1

K
( x − X j

hn

)
M̃(X j),

where K is a kernel function and hn is a bandwidth.

We then compute the eigenvectors and eigenvalues v(M̂n(x)) and λ(M̂n(x)) of M̂n(x). These are

our estimators of the true eigenvectors of M(x). The eigenvector v(M̂n(x)) with the corresponding

maximal eigenvalue λ(M̂n(x)) gives the solution for the estimate X̂n(t) of x(t):

dX̂n(t)
dt

= v(M̂n(X̂n(t))), t ≥ 0, X̂n(0) = a.

The low order DTI approach utilizes a second order tensor. This method requires that one

assume there only be one fiber present per voxel. That is, that only one fiber extends outward from
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each cubic region in consideration rather than branching, touching, or ’kissing’ of two or more

fibers. These situations require a more rich sampling of the directional diffusion space. This gives

us the need for the higher order model known to HARDI, or ’High-Angular Resolution Diffusion

Tensor Imaging’ in which a tensor of order greater than two is utilized.

1.5 HARDI Model

Under the higher order tensor approach the Stejskal - Tanner equation becomes:

log
(

R(x, b)
R0(x)

)
= −c

3∑
i1=1
· · ·

3∑
iM=1

Di1...iM (x)bi1 ...biM + σ(x, b)ξb,

where b is the vector in R3 denoting the applied magnetic field gradient direction on the unit

sphere and c is a constant that depends on the parameters of the imaging procedure. The numbers

Di1...iM (x) are components of the high order diffusion tensor D(x), which is a supersymmetrical

positive definite 3 × ... × 3︸      ︷︷      ︸
Mtimes

tensor. Due to symmetry, D(x) can be represented by a vector D(x) ∈

RJM , where JM = (M + 1)(M + 2)/2. Thus at locations x ∈ G we observe log-losses of signal

Y (x) = log
(

R(x, b)
R0(x)

)
∈ RN

stacked into the vector Y for all directions b. Now the diffusion signal is modeled as:

Y (x) = BD(x) + Σ1/2(x)Ξx, (1.3)

where againwe require N ≥ 6. B ∈ RN×JM is the fixedmatrix whose components are combinations

of the diffusion directions as in the DTI model. Ξx ∈ R
N is random noise and Σ(x) is an N × N

symmetric positive definite tensor.

When M = 2 we have the usual eigenvalue problem. Computing the eigenvalues and eigenvec-

tors of the high order tensor requires a different approach than the usual eigenvalue problem. For

details see [13]. We will outline the basic idea here. First, the rank R of the high order tensor D is

12



the minimal number R for which:

D =
R∑

k=1
vk ⊗ · · · ⊗ vk︸          ︷︷          ︸

M times

f or some v1, ..., vR ∈ R
3,

where u ⊗ w = uTw means the outer product, (u ⊗ w)i j = uiw j . In other words, the minimal

number of vector outer products needed to sum to D.

As we are now considering the possibility of multiple fibers per voxel, we consider the tensor

D(r) describing fiber r , for r = 1, ...,R. Then the best rank-1 approximation of the tensor D(1) = D

is λ1v1 ⊗ · · · ⊗ v1, where λ1 > 0 and v1 is a unit vector. Then R is the minimum number of rank-1

tensors that sum to D.

λ(k), v(k) make up the best rank-1 approximation of a tensor D(k) = D(k−1) − λ(k−1)v(k−1) ⊗

· · · ⊗ v(k−1) for all k = 2, . . . ,R, which minimize the Frobenius norm:

3∑
i1=1
· · ·

3∑
ir=1
(D(k)i1···ir

− λvi1 · · · vir )
2.

λ(1), ..., λ(R) are called the pseudo-eigenvalues of the tensor D. v(1), ..., v(R) are called the

pseudo-eigenvectors of the tensor D.

For locations X j ∈ G,we estimate D(X j), using the ordinary least squares estimators:

D̃(X j) = (B
T B)−1BTY (X j), j = 1, ..,n,

or the weighted LSE:

D̃(X j) = (B
T
Σ
−1(X j)B)

−1BT
Σ
−1(X j)Y (X j), j = 1, ..,n.

As before we use a kernel smoothing method to estimate D at locations x ∈ G between our

observations X j :

D̂n(x) =
1

nhd
n

n∑
j=1

K
( x − X j

hn

)
D̃(X j),

13



where K is a kernel function and hn is a bandwidth.

Given D̂n(x), x ∈ G we calculate its pseudo-eigenvalues λ̂(r)n (x) and pseudo-eigenvectors v̂
(r)
n (x)

for r = 1, ...R by minimizing the Frobenius norm above.

Then we have our r-th curve estimate

dx̂(r)n (t)
dt

= v̂
(r)
n (x̂

(r)
n (t)), t ≥ 0, x̂(r)n (0) = a.

It is the curve whose gradients are the pseudo-eigenvectors v̂(r)n . In practice we trace it in small

steps in the direction v̂
(r)
n , starting at location a.

1.6 Main Result

The primary result is that for each of the above models one can establish the convergence of the

properly normalized deviation process√
nhd−1(X̂n(t) − x(t))

to a vector valued Gaussian process G(t) on [0,T], i.e., the normalized deviation process converges

in the space C[0,T], whose mean and covariance will be a function of the vector field estimates

v̂ or, in the case of the non-parametric approach discussed in this paper, f̂ , and in both cases, the

noise Σ. Of course, the dimension d is usually d = 3. This result allows one to provide hypothesis

tests of whether two regions are connected. This also allows for the production of the popular

probabilistic tractography p-value maps, and the construction of statistics such as in f
t∈[0,T]

| X̂(t) − z |2

that allow the consideration of the curve reaching a location of interest z. These are useful because

they allow scientific users of such data to easily perform tests for the likelihood of regions being

connected without requiring familiarity with the background processes.
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CHAPTER 2

ESTIMATION &MAIN RESULT

2.1 Preliminaries

In the current scenario we wish to model the signal completely non-parametrically (note that the

previous were semi-parametric approaches). We will consider the problem of modeling diffusion

signal with a general function f with heteroscedastic error in the non-parametric regression set-up:

Yi j k = f (Xi, ϕ j, θk ) + S(Xi, ϕ j, θk )εi j k,

where (ϕ j, θk ) are the applied directions on the unit sphere. Recall the Stejskal-Tanner equation

(1.1). Under this regime, we have:

Yi j k = −log
( R(xi, b j k )

R0(xi)

)
= f (xi, ϕ j, θk ) + S(xi, ϕ j, θk )εi j k, (2.1)

where R,R0 are as before and b j k is the vector in R3 corresponding to the magnetic field gradient

applied in the direction (ϕ j, θk ) on the unit sphere. We also include the noise S(xi, ϕ j, θk )εi j k in

the Stejskal-Tanner equation. S describes the covariance structure of the noise at a given location

and direction. εi j k are standardized error terms satisfying the following assumptions (Σ):

(Σ1) Eεi j k = 0, Eε2
i j k = 1, and Eεi1 j kεi2 j k = Σi1i2 for all i, j, k, i1, i2.

(Σ2) {εi1 j1k1} & {εi2 j2k2} are independent when j1 , j2 or k1 , k2.

Let ε j k := (εi1 j k, ..., εnjk ). Σ
j k
i1i2
= cov(εi1 j k, εi2 j k )

Var(ε j k ) = Σ
j k =


Σ

j k
i1i1

Σ
j k
i1i2

. . .

...
. . .

Σ
j k
ni1

Σ
j k
nn


.

Naturally, the degree of diffusion at the locations xi1 and xi2 exhibits short range dependency

for a given direction (φ j, θk ) so that the covariance matrix consists of a high number of zero
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or near-zero entries. For example it could be diagonal or banded. This leads to the sparsity

of Σ described in the condition (Σ3).

(Σ3) For some κ > 0 as n goes to∞ we have h3
n
n

∑
k1,k2 Σk1k2 → κ,where the sequence hn → 0

will be introduced in the main theorem.

As it is true that the diffusion is strongest at a location xi when R is smallest (indeed, the order

of magnitude of R is dependent on the degree of proton disalignment), to search for the direction

of dominant diffusion we seek to maximize the function f in (2.1). As in the previous works, this

will drive the vector field of curve tangents, v. For each x ∈ G we will search for the direction

(ϕ∗(x), θ∗(x)) on the unit sphere for which

∂

∂ϕ
f (x, ϕ∗(x), θ∗(x)) =

∂

∂θ
f (x, ϕ∗(x), θ∗(x)) = 0,

∂2

∂ϕ2 f (x, ϕ∗(x), θ∗(x)) < 0,
∂2

∂θ2 f (x, ϕ∗(x), θ∗(x)) < 0,

∂2

∂ϕ2 f (x, ϕ∗(x), θ∗(x))
∂2

∂θ2 f (x, ϕ∗(x), θ∗(x)) − (
∂2

∂θ∂ϕ
f (x, ϕ∗(x), θ∗(x)))2 > 0. (2.2)

This indicates that (ϕ∗(x), θ∗(x)) is the direction of the maximum gradient flow at x. We use this

direction to define the ODE for which the curve x∗ is a solution:

dx∗(t)
dt

= v∗(x∗(t)) :=


sin θ∗(x∗(t)) cos ϕ∗(x∗(t))

sin θ∗(x∗(t)) sin ϕ∗(x∗(t))

cos θ∗(x∗(t))


, x∗(0) = x0. (2.3)

This integral curve models an axonal fiber x∗(t), t ≥ 0, starting at x0 and flowing along the maximal

gradient direction. The location x0 is typically given as a seed point located in a region of interest.

We assume condition (F) : The function f is twice continuously differentiable in G×[−π, π]×[0, π].

Then the uniqueness of the direction is guaranteed for some open subset of G containing x0. It

then determines implicitly the end time t = T . Thus, the goal is to estimate x∗(t), t ∈ [0,T], based

on the dataset (Yi j k,Xi, ϕ j, θk ), i = 1, . . . ,n, j, k = 1, . . . ,N .

A natural estimation procedure consists of estimating f by some f̂n, then finding the direction

of maximum estimated diffusion (ϕ̂∗n(x), θ̂∗n(x)) as the pair that maximizes f̂n(x, ϕ, θ) at a given
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location x, followed by ODE (2.3) where unknown true x∗, ϕ∗, θ∗ are replaced by their respective

estimators x̂∗n, ϕ̂
∗
n, θ̂
∗
n. Thus the estimated integral curve is defined as the solution of the ODE:

dx̂∗n(t)
dt

= v̂∗n(x̂
∗
n(t)) =


sin θ̂∗n(x̂∗n(t)) cos ϕ̂∗n(x̂∗n(t))

sin θ̂∗n(x̂∗n(t)) sin ϕ̂∗n(x̂∗n(t))

cos θ̂∗n(x̂∗n(t))


, x̂∗n(0) = x0.

Before introducing our estimator f̂ wemake a few comments on the nature of Simpson’s integral

approximation scheme, which would be used later.

2.2 Simpson’s Rule

For a curve g on an interval [a, b] we can approximate the area under the curve of g from a to

b using Simpson’s rule. Rather than the trapezoidal rule, or the left or right Riemann sum, which

use lines or constants, the Simpson’s scheme uses quadratic forms to approximate the function g.

That is, for xi, i = 0, ...,n, forming a partition of [a, b] with x0 = a and xn = b, the quadratic forms

P(x) = px2 + qx + v, p,q, v ∈ R,

can approximate g. P is often called a second order interpolating polynomial because it can be

chosen such that it goes through the points in consideration. In particular, the Lagrange polynomials

defined as

P(x) =
n∑

k=1
pk (x)

where

pk (x) = f (xk )
n∏

j=1
j,k

x − x j

xk − x j

will pass through the curve f at the points xi, i = 1, ..,n.

Requiring an even number of intervals to divide [a, b] into and letting ∆x = b−a
n , as well as

requiring
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P(xi) = g(xi), i = 1, ...,n

enables one to show that we will have

∫ b

a
P(x)dx =

∆x
3
(g(a) + g(x1) + 2g(x2) + ... + 4g(xn−1) + g(b)).

And the main result is used as an approximation to the integral:

∫ b

a
g(x)dx ≈

∫ b

a
P(x)dx.

An easy case to demonstrate this is to take [a, b] = [−h, h] and n = 2. We will use the Simpson

rule in our estimator f̂n when dealing with variables.

2.3 Estimation

Our estimator f̂n(x, ϕ, θ) is a combination of amultivariate kernel smoothing on x with Simpson’s

scheme for numerical approximation of an integralwith respect to ϕ and θ. More precisely, introduce

f̂n(x, ϕ, θ) (2.4)

=

2Nθ∑
m=0

2Nϕ∑
l=0

n∑
k=1

am
hθ

bl
hϕ

1
nh3

n
Kθ

(
θ(x) − θm

hθ

)
Kϕ

(
ϕ(x) − ϕl

hϕ

)
K

(
x − Xk

hn

)
Yklm,

where am, bl are coefficients in the Simpson’s scheme, and hn, hϕ, hθ are bandwiths for the kernels

K,Kϕ,Kθ , respectively, to be optimized later. We have the following conditions (K) on the kernels:

(K1) K is a symmetric probability density in Rd with bounded support,

(K2) ∫
K(u)du = 1,

∫
uK(u)du = 0,∫

K′(u)du = 0,
∫
|u|2K(u)du < ∞.

These conditions hold for the kernels K , Kϕ, and Kθ in R3, R, and R, respectively. Additionally we

assume
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(K3)

Supp(Kϕ) = [−c, c] ⊂ [−N,N], Supp(Kθ) = [−d, d] ⊂ [−N,N].

Recall N2 is the number of equally spaced angles for the observed directions (ϕ j, θk ) on the unit

sphere. These conditions are quite typical in kernel density estimation practices. The follow-

ing proposition will be useful in establishing asymptotic unbiasedness of the estimators of the

derivatives of the signal function f .

Proposition 1. For any kernel K satisfying conditions (K) and any twice continuously differentiable

on compact sets function g we have as h→ 0:∫
h−dK

(
u − u0

h

)
g(u)du = g(u0) + 0.5h2g

′′
(u0)K2(1 + o(1)),

where K2 =
∫
|u|2K(u)du.

Next we will discuss the Simpson’s scheme for the integral of a real function g on a bounded

interval [a, b]. Define

SN (g(u0), ...,g(u2N ),a, b)

=
1

6N
[g(u0) + g(u2N )] +

2
3N

N∑
m=1

g(u2m−1) +
1

3N

N∑
m=1

g(u2m)

with um = a + m
2N (b − a), m = 0,1, . . . ,2N . The following result is well-known in literature.

Proposition 2. For any four times continuously differentiable function g defined on the interval

[a, b] we have as N →∞∫ b

a
g(u)du = SN (g(u0), ...,g(u2N ),a, b) −

(b − a)5

180
gIV (u∗)

1
(2N)4

with some u∗ in [a, b], where gIV is the fourth order derivative of g.

These two propositions together indicate that E f̂n(x, ϕ, θ) = f (x, ϕ, θ) + o(1) as h, hϕ, hθ →

0 and n,Nϕ,Nθ → ∞. We will establish the exact nature of the remainder term in our proofs

section.
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Our curve estimators will be brought about through the estimation of f̂n. The direction (ϕ, θ)

for which f̂n is maximized will yield the tangent vector v̂n. We apply Euler’s method to obtain the

curve estimators using this tangent vector field, meaning that we follow the vector field v̂n in small

steps. We establish the convergence of the properly normalized deviation between our estimator and

the true underlying curve, X̂n(t) − x(t), t ∈ [0,T], to a Gaussian process. We derive test procedures

for testing whether two regions of the brain are connected. This allows us to construct so-called

p-value maps that can rival the probability occupancy maps often used in probabilistic tractography

methods to make inference about the likelihood of connected regions.

There are two cases for each of the bandwidths:

(I) hn = O(n−1/2), hϕ = hθ = h = O(n−1/2), Nϕ = Nθ = N ≥ ν(n) = O(n2) as n→∞.

Or

(I I) hn = O(N−1/5n−1/10), hϕ = hθ = h = O(N−1/5n−1/10), Nϕ = Nθ = N = o(n2) as n→∞.

In practice the number of gradient directions N2 is much smaller (typically around 64) than the

number of voxels n (on the order of 106) in a typical HARDI dataset, so case (II) is more practical,

which is what we will use in the simulation study with simulated and real data.

2.4 Main Result for Asymptotic Normality of Deviation Process

Lemma 1. Suppose that (I) or (II) holds. Then uniformly in t ∈ [0,T], X̂∗n (t) is a consistent

estimator of x∗(t). That is,

sup
t∈[0,T]

| X̂∗n (t) − x∗(t)|
P
→ 0 as n→∞.

Theorem 1. Under case (I),

n(X̂n(t) − x(t))
D
⇒ G(t)

in the spaceC[0,T], where the Gaussian process G has mean function µ(t) and covariance function

C(t1, t2) introduced in the next section.
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Under case (I I),

n1/5N2/5(X̂n(t) − x(t))
D
⇒ G0(t)

in C[0,T], where the centered Gaussian process G0 has covariance function C0(t1, t2) introduced

in the next section.

Then we can show by the Delta Method the following result:

Theorem 2. Suppose conditions of the previous theorem hold under case (II). Moreover, suppose

there exists the unique point τ ∈ (0,T) such that mint∈[0,T] |x
∗(t) − z |2 = |x∗(τ) − z |2. If x∗(τ) , z

then the sequence

n1/5N2/5
[

min
t∈[0,T]

| X̂∗n (t) − z |2 − |x∗(τ) − z |2
]

is asymptotically normal with zero mean and variance

4(x∗(τ) − z)∗C0(τ, τ)(x
∗(τr ) − z).

If x∗(τ) = z then the sequence n2/5N4/5 mint∈[0,τ] | X̂
∗
n (t)−z |2 converges in distribution to a random

variable |Z |2 − ( d
dt x∗(τ)t Z)2, where Z is a normal random variable with zero mean and variance

C0(τ, τ).

This allows us to construct hypothesis tests for the likelihood of different regions being connected

as well as the so-called probabilistic tractography p-value maps (see [2], [5], [9]).
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CHAPTER 3

MEAN AND COVARIANCE OF THE LIMITING GAUSSIAN PROCESSES

3.1 Preliminaries

Before we introduce the step-by-step algorithm for computing the estimated integral curve

together with confidence ellipsoids we need to discuss the mean function and covariance functions

of the limitingGaussian processes, which in turn require introductions of several auxillary functions.

Define the integrals:

Ψ(z) =
∫

K(u)K(z + u)du, Ψ′(z) =
∫

K(u)K′(z + u)du.

Then integration by parts of the above gives

Ψ
′′(z) = −

∫
K′(u)K′(z + u)du.

For instance, for a standard Gaussian kernel Ψ(z) = e
−
|z |2
4

(2
√
π)3

. Now out of kernels Kϕ and Kψ build

the matrix

Ψ0 =

(
Ψ′′ϕ(0)Ψθ(0) Ψ′ϕ(0)Ψ′θ(0)

Ψ′ϕ(0)Ψ′θ(0) Ψϕ(0)Ψ
′′
θ
(0)

)
.

If both Kϕ and Kψ are Gaussian then Ψ0 = −diag
( 1
8π ,

1
8π

)
. For v ∈ R3 define

ψ(v) =

∫
R
Ψ(−τv)dτ,

which is 1
4π |v | for a standard Gaussian kernel. Also introduce

Ψ0(v, x) =
∫
(Ψ(−vτ) + κ) ×(

−Ψ′′ϕ(
∂ϕ∗

∂x (x)vτ)Ψθ(
∂θ∗

∂x (x)vτ) Ψ′ϕ(
∂ϕ∗

∂x (x)vτ)Ψ
′
θ
(∂θ
∗

∂x (x)vτ)

Ψ′ϕ(
∂ϕ∗

∂x (x)vτ)Ψ
′
θ
(∂θ
∗

∂x (x)vτ) −Ψϕ(
∂ϕ∗

∂x (x)vτ)Ψ
′′
θ
(∂θ
∗

∂x (x)vτ)

)
dτ.
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In case of a standard Gaussian kernel

Ψ0(v, x) = −
1

D(x)


1 +

( ∂θ∗
∂x (x)

)2
−
( ∂ϕ∗
∂x (x)

) ( ∂θ∗
∂x (x)

)
−
( ∂ϕ∗
∂x (x)

) ( ∂θ∗
∂x (x)

)
1 +

( ∂ϕ∗
∂x (x)

)2
 ,

where

D(x) = 64π2
(
1 +

(
∂ϕ∗

∂x
(x)

)2
+

(
∂θ∗

∂x
(x)

)2)3/2
.

Also, define

M(s) =


− sin θ∗ sin ϕ∗ cos θ∗ cos ϕ∗

sin θ∗ cos ϕ∗ cos θ∗ sin ϕ∗

0 − sin θ∗

 x∗(s)

and

F(x, ϕ, θ) =

( ∂2
∂ϕ2 f ∂2

∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

)����
(x,ϕ,θ)

.

Next, Green’s function U(t, s) is defined as the solution of the PDE

∂U(t, s)
∂t

= ∇v∗(x∗(t))U(t, s), U(s, s) = I ∀s > 0,

where

∇v(x∗(s)) = −M(s)F−1(x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))

(
∂2
∂ϕ∂x f (x∗(s))

∂2
∂θ∂x f (x∗(s))

)
.

We will show that in case (I) the limit process G(t) has the mean function

EG(t) = −
∫ t

0
U(t, s)M(s)F−1(x∗(s))[( ∂3

∂x2ϕ
f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))12K0,2Kϕ,1,1

∂3
∂x2θ

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))12K0,2Kθ,1,1

)

+

( ∂3
∂ϕ3 f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))16Kϕ,1,3

∂3
∂ϕ2θ

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))13Kθ,1,1Kϕ,0,2

)

+

( ∂3
∂ϕθ2

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))13Kϕ,1,1Kθ,0,2

∂3
∂θ3

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))16Kθ,1,3

)]
ds,
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where Kp,q =
∫

xpK(q)(x)dx. As well as that in case (I) the limit process G(t) has covariance

function satisfying:

Cov(G(t1),G(t2)) =
∫ t1∧t2

0
U(t1, s)M(s)F

−1(x∗(s)){
ψ

(
dx∗

dt
(s)

)
G(x∗(s))GT (x∗(s)) +

25
81
Ψ0

(
dx∗

dt
(s), x∗(s)

)
×S2(x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))

}
MT (s)(FT )−1(x∗(s))UT (t2, s)ds.

For case (II) the centered limit process G0(t) has covariance function defined as follows

C0(t1, t2) =
∫ t1∧t2

0
U(t1, s)M(s)F

−1(x∗(s))
25
81
Ψ0

(
dx∗

dt
(s), x∗(s)

)
×S2(x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))MT (s)(FT )−1(x∗(s))UT (t2, s)ds.

Moreover, the variance function Cv(t) = C0(t, t) satisfies the ODE:

dCv(t)
dt

= M(t)F−1(x∗(t), ϕ∗(x∗(t)), θ∗(x∗(t)))
25
81
Ψ0

(
dx∗(t)

dt
, x∗(t)

)
×S2(x∗(t), ϕ∗(x∗(t)), θ∗(x∗(t)))MT (t)(FT )−1(x∗(t), ϕ∗(x∗(t)), θ∗(x∗(t)))

+∇v∗(x∗(t))Cv(t) + Cv(t)∇Tv∗T (x∗(t)), Cv(0) = 0. (3.1)

Our method for numerically approximating the confidence regions is outlined in the following

section.

3.2 Green’s Function

We will present the basic facts and usefulness of Green’s function here so that the reader need

not refer elsewhere.

Let Θ,Ω ⊂ Rm be open and consider a linear differential operator Q on Θ. Then Green’s

function U(t, s) on Θ ×Ω at a point (t, s) is a solution of

QU(t, s) = δ(t − s), (3.2)

where δ is the normal ’Delta-function’. i.e.,
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δ(x) =


1 x = 0

0 x , 0

By the definition of the function δ for the integral over Rm we have a unit point mass at the

point for which this function is non-zero:∫
Rm

δ(t − s)h(s)ds = h(t).

Now consider the definition of Green’s function and to see its usefulness multiply both sides of

(3.2) by h(s):

QU(t, s)h(s) = δ(t − s)h(s).

Then integrate both sides over Rm:

∫
Rm

QU(t, s)h(s)ds =
∫
Rm

δ(t − s)h(s)ds.

For the linear differential operator Q acting on t ∈ Θ we have

Q
∫
Rm

U(t, s)h(s)ds =
∫
Rm

δ(t − s)h(s)ds.

Thus consequently we have

Q
∫
Rm

U(t, s)h(s)ds = h(t).

Thus if we have a differential equation of the form:

Qw(t) = h(t),

we will have

Qw(t) = Q
∫
Rm

U(t, s)h(s)ds.
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In other words, we have the integral form solution

w(t) =
∫
Rm

U(t, s)h(s)ds.

By Theorem (2.2) in chapter (7) in Coddington and Levinson (1955) [17] the unique solution

of Green’s function U(t, s) exists and is unique.
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CHAPTER 4

ALGORITHM

Our algorithm for calculating curve trajectories with their surrounding confidence ellipsoids is

listed below. We will consider how to trace the fiber in case (II), since this is the typical scenario

in DT-MRI where n is on the order of millions and N is 10–20. The steps are

• Initialize c1, c2, x0, δ, t j = δ j and

hn = c1N−1/5n−1/10, hϕ = hθ = h = c2N−1/5n−1/10, N = n2εn, εn → 0.

• Let f̂n(x, ϕ, θ) be defined as in (2.5).

• Find a direction (ϕ̂∗n(x), θ̂∗n(x)) on the unit sphere such that

∂

∂ϕ
f̂n(x, ϕ̂∗n(x), θ̂

∗
n(x)) =

∂

∂θ
f̂n(x, ϕ̂∗n(x), θ̂

∗
n(x)) = 0,

∂2

∂ϕ2 f̂n(x, ϕ̂∗n(x), θ̂
∗
n(x)) < 0,

∂2

∂θ2 f̂n(x, ϕ̂∗n(x), θ̂
∗
n(x)) < 0,

∂2

∂ϕ2 f̂n(x, ϕ̂∗n(x), θ̂
∗
n(x))

∂2

∂θ2 f̂n(x, ϕ̂∗n(x), θ̂
∗
n(x))

−

(
∂2

∂θ∂ϕ
f̂n(x, ϕ̂∗n(x), θ̂

∗
n(x))

)2
> 0.

This direction indicates where the maximum gradient flow is.

• Solve the ODE that governs a curve along the direction (ϕ̂∗n(x), θ̂∗n(x)) :

dx̂∗n(t)
dt

=


sin θ̂∗n(x̂∗n(t)) cos ϕ̂∗n(x̂∗n(t))

sin θ̂∗n(x̂∗n(t)) sin ϕ̂∗n(x̂∗n(t))

cos θ̂∗n(x̂∗n(t))


, x̂∗n(0) = x0.

numerically using Euler’s method as x̂∗n(tm) ≈ x̂n(tm−1) + δv̂
∗
n(x̂
∗
n(tm−1)).

• Now consider the noise scaling function S. To estimate it we propose 2 approaches. Approach

1: If several b0-images are available then one has m sets of

Y (l)i j k = f (Xi, ϕ j, θk ) + S(X j, ϕ j, θk )ε
(l)
i j k, l = 1, ...,m, i = 1, ...,n, j, k = 1, ...,N,
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where {ε(l)i j k : i = 1, ...,n, j, k = 1, ...,N} are independent for l = 1, ...,m. Then for each

(Xi, ϕ j, θk ) we estimate S2 as follows

Ŝ2
i j k =

1
m − 1

m∑
l=1
(Y (l)i j k −

1
m

m∑
q=1

Y (q)i j k )
2.

Approach 2: If only one b0-image is available then we will assume that S is smooth locally

so averaging locally should serve as its reasonable estimator. This can be done as in step 3 in

section 5 of [9], yielding Ŝ2
i j k .

• Obtain Ŝ2
n(x, ϕ, θ) by plugging Ŝ2

i j k in instead of Yi j k in step 2.

• Calculate and estimate the limiting covariance Cv(t) := Cov(G(t),G(t)), which will be done

by Ĉn, the solution of the ODE similar to (3.1) where all unknown functions are estimated.

The solution is then approximated by Euler’s method as follows

Ĉn(tm) = Ĉn(tm−1) + δM̂n(tm−1)F
−1(x̂∗n(tm−1), ϕ̂

∗
n(x̂
∗
n(tm−1)), θ̂

∗
n(x̂
∗
n(tm−1)))

×
25
81
Ψ0

(
dx̂∗n(tm−1)

dt
, x̂∗n(tm−1)

)
Ŝ2

n(x̂
∗
n(tm−1), ϕ̂

∗
n(x̂
∗
n(tm−1)), θ̂

∗
n(x̂
∗
n(tm−1)))M̂

∗
n (tm−1)

×(F̂T
n )
−1(x̂∗n(tm−1), ϕ̂

∗
n(x̂
∗
n(tm−1)), θ̂

∗
n(x̂
∗
n(tm−1)))

+δ∇v̂∗n(x̂
∗
n(tm−1))Ĉn(tm−1) + δĈn(tm−1)∇

T v̂∗Tn (x̂
∗
n(tm−1)), Ĉn(0) = 0,

where

M̂T
n (t) =


− sin θ̂∗n sin ϕ̂∗n cos θ̂∗n cos ϕ̂∗n

sin θ̂∗n cos ϕ̂∗n cos θ̂∗n sin ϕ̂∗n

0 − sin θ̂∗n

 x̂∗n(t)

and

F̂n(x, ϕ, θ) =

( ∂2
∂ϕ2 f̂n ∂2

∂ϕ∂θ f̂n

∂2
∂ϕ∂θ f̂n ∂2

∂θ2
f̂n

)����
(x,ϕ,θ)

.

∇v̂∗n(x) = −M̂T
n (s)F̂

−1
n (x

∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))

(
∂2
∂ϕ∂x f̂n(x∗(s))

∂2
∂θ∂x f̂n(x∗(s))

)
.

28



• The asymptotical 100(1 − α)% confidence ellipsoid for x(tm),m ≥ 1, is approximated by{����Ĉn(tm)−1/2(x̂n(tm) − x(tm))
���� ≤ Rαn−1/5N−2/5

}
, P(|Z | ≤ Rα) = 1 − α,

where Z is a standard normal vector in R3.

• Repeat the steps above until t j reaches T .

Use of Euler’s method for numerical approximation of the solutions is justified by its simplicity

and by the work of [6], where it was shown that for DTI using the higher order Runge-Kutta

approximations gave no benefit. In fact, the statistical accuracy outweighs the numerical accuracy

on scales typical for brain imaging applications so it is of no concern.
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CHAPTER 5

SIMULATIONS

5.1 Artificial example

To simulate various curve scenarios, we need to design a function f whose maximum will be

in the direction tangential to those curves of interest. To this end, we consider the function of the

form

f (x, ϕ, θ) = a(x) cos ϕ sin θ + b(x) sin ϕ sin θ + c(x) cos θ

with some generic real valued functions a, b, c to be chosen later. The maximal direction is

θ∗(x) = tan−1
(√

a2 + b2

c

)
, ϕ∗(x) = tan−1

(
b
a

)
.

Then the integral curve is defined by the following ODE

dx∗(t)
dt

=


sin θ(x(t)) cos ϕ(x(t))

sin θ(x(t)) sin ϕ(x(t))

cos θ(x(t))


=

1
√

a2 + b2 + c2


a

b

c


.

We first simulate a spiral in 3D which mimics a C-shaped fiber. So we take a = −(x2 − 0.5),

b = x1 − 0.5, and c = x3 and have

f (x, ϕ, θ) = (0.5 − x2) cos ϕ sin θ + (x1 − 0.5) sin ϕ sin θ + x3 cos θ.

Then solving the ODEs yields

x(t) = 0.5 + r0 cos(ln z(t) + c), y(t) = 0.5 + r0 sin(ln z(t) + c),

t + c =
√

z2(t) + r2
0 − r0atanh

(√
z2(t) + r2

0/r0

)
,

c = atan
(
y(0) − 0.5
x(0) − 0.5

)
− ln z(0), r2

0 = (x(0) − 0.5)2 + (y(0) − 0.5)2.
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Figure 5.1: The true curve is in blue, while the estimated curve is in red.
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Figure 5.2: This is an enlargement of the previous figure to show the 95% confidence ellipsoid
surrounding a point on the estimated curve. The true curve in blue touches it.
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We take S to be a constant function which we varied. We take n = 4000, N = 100, m = 5 (from

step 5), δ = 0.02. We trace the curve for 30 steps of size δ. The tracing is very fast but it relies

heavily on the numerical search for the maximal direction in step 3, which we do using Matlab’s

fminsearch. It requires an initial direction, which we take as (ϕ, θ) = (1,1). During the tracing the

initial direction is taken to be the maximal direction obtained on the previous iteration with added

small random perturbation. It was added to prevent the optimization algorithm from getting stuck

at a local maximum. Without it the optimization step 3 introduces a systematic numerical bias

contrary to expected zero bias. This is also the bottleneck of the implementation. It is possible to

improve this step by utilizing a different optimization algorithm.

The results are shown in Figures 5.3 and 5.4. The noise scaling is S = 0.25 and the noise εi j k

is taken to be standard normal, which corresponds to signal-to-noise ratio of 4-5. If we increase S

the curve does not trace, it veers off and tends to go out of bounds. The confidence ellipsoids are

very tight around the estimated curve. The norm of the limiting covariance function is on the order

of 10−7. It is excellent in comparison to typical confidence ellipsoids’ sizes for methods in [2] and

[9].
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Figure 5.3: Diffusion ellipsoids illustrate the corresponding diffusion tensors along the fiber
across the genu of corpus callosum.
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Figure 5.4: Visualization of diffusion via ellipsoids using DTI/HARDI tensor model.
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5.2 Real HARDI dataset

A DWI dataset was collected from a twenty-something-year-old healthy male brain on a GE 3T

Signa HDx MR scanner (GE Healthcare, Waukesha, WI) with an 8-channel head coil. The subject

signed the consent form approved by the Michigan State University Institutional Review Board.

DWI images were acquired with a spin-echo echo-planar imaging (EPI) sequence for 20 minutes

with the following parameters: 32 contiguous 2.4-mm axial slices in an interleaved order, FOV

= 22 rmcm × 22 cm, matrix size = 128 × 128, number of excitations (NEX) = 1, TE = 72.3 ms,

TR = 7.5 s, 150 diffusion-weighted volumes (one per gradient direction) with b = 1000 s/mm2, 9

volumes with b = 0 and parallel imaging acceleration factor = 2.

The desired three-dimensional model is not obtained altogether, but rather by imaging a ‘slice’

repeatedly along the z-direction and then reconstructing using a Fourier transform to form the

aggregate image (see [1]). Typically, the number of pixels n representing the number in a sample

of spatial locations is on the order of n = 128 × 128 × 32 = 524,288. That is, 32 slices in the z

direction with 128 × 128 in each plane. The number can be increased to n = 256 × 256 × 32.

The directions did not have the angular components on a regular grid, so we first used kernel

smoothing of Y -values based on 1350 pairs of (ϕ, θ) to obtain Y -values for 1600 pairs of regularly

spaced angular components, which corresponds to N = 40. The sample of spatial locations Xi

had the size of n = 128 × 128 × 32 = 524,288. For all kernels we used Gaussian kernels of

various dimensions. We used Matlab with C-subroutines to perform the computations. To find the

maximal directions (ϕ̂∗, θ̂∗) we used fminsearch. However, we observed that it is very sensitive

to the choice of the initial vector near which it looks for the local optimizer. We ended up using

the direction from previous iteration perturbed by a small random vector. Without the perturbation

fminsearchwould simply take the initial direction as the optimizer and trace out short straight lines.

We speculate that it is possible to use a more sophisticated optimization code to get faster and more

robust numerical solution for step 3 of our algorithm.

Our rationale for choosing seed regions for evaluation is based on the following: The corpus

callosum (CC) contains thick axonal fibers connecting the two cerebral hemispheres and enabling
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the communication between them. The general anatomical locations of these axonal fibers are well

established. These fibers can be used to evaluate new techniques in fiber tractography. The anterior

part of the CC, called the genu of CC, contains axonal fibers connecting the right and left frontal

lobes.

The second region is the right fornix, which is a much shorter fiber than the CC and it is quite

challenging for tracing, but important for early diagnostics of Alzheimer’s disease. The results are

presented in Figures 1 and 2. The estimated curves are shown in magenta color. The corresponding

confidence ellipsoids are hardly visible, since the norm of the corresponding limiting covariance

matrix was of the order 10−8. Both fibers follow the anatomical ground truth. Anterior fiber is

perfectly centered where expected, while fornix fiber is a bit shifted off the center of the expected

location.

Use of Euler’s method for numerical approximation of the solutions is justified by its simplicity

and by the work of Sakhanenko [6] where it was shown that for DTI using the higher order Runge-

Kutta approximations gave no benefit. In fact, the statistical accuracy outweighs the numerical

accuracy on scales typical for brain imaging applications so it is of no concern.
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Figure 5.5: Axonal fibers across the genu of Corpus Callosum. We traced each fiber branch for 40
steps of size δ = 0.01. The estimated curve is shown in magenta accompanied by blue 95%
confidence ellipsoids.
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Figure 5.6: Right Fornix. We traced the fiber for 30 steps of size δ = 0.01. The estimated curve is
shown in magenta accompanied by blue 95% confidence ellipsoids.
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CHAPTER 6

PROOFS

6.1 Some Results for Simpson’s Scheme and Kernel Smoothing.

Proposition 3. For any kernel K satisfying conditions (K) and any twice continuously differentiable

on compact sets function g we have as h→ 0:∫
h−dK

(
u − u0

h

)
g(u)du = g(u0) + 0.5h2g

′′
(u0)K2(1 + o(1)),

where K2 =
∫
|u|2K(u)du.

Proof. The above follows easily by a Taylor expansion of the integrand. For a detailed description

see [15]. �

We will state the following standard result by Simpson for approximating integrals without

proof:

Proposition 4. For any four times continuously differentiable function g defined on the interval

[a, b] we have as N →∞∫ b

a
g(u)du = SN (g(u0), ...,g(u2N ),a, b) −

(b − a)5

180
gIV (u∗)

1
(2N)4

with some u∗ in [a, b], where gIV is the fourth order derivative of g.

Lemma 2. For any kernel K ∈ C( j)([0,1]d) satisfying conditions (K) and any function g ∈ C( j) on

a compact set, we have as h→ 0∫
h−(d+ j)K( j)

(
u0 − u

h

)
g(u)du = g( j)(u0) + 0.5h2g( j+2)(u0)K2(1 + o(1)),

where j is a non-negative integer and K2 =
∫
|u|2K(u)du as before.
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Proof. Using integration by parts and proposition 1,∫
h−(d+1)K′

(
u0 − u

h

)
g(u)du =

∫
h−dK

(
u0 − u

h

)
g′(u)du

= g′(u0) + 0.5h2g
′′′
(u0)K2(1 + o(1)).

By induction the proof is complete. �

Proposition 5. Consider ordinary Simpson’s scheme for
∫ b
a g(u)du defined by

1
6N
(g(u0) + g(u2N )) +

2
3N

N∑
m=1

g(u2m−1) +
1

3N

N−1∑
m=1

g(u2m).

Then as N →∞

1
36N2 (g(u0) + g(u2N )) +

4
9N2

N∑
m=1

g(u2m−1) +
1

9N2

N−1∑
m=1

g(u2m) =
5

9N

∫ b

a
g(u)du(1 +O(N−1)).

Proof. Straightforward calculation yields the result:

1
36N2 (g(u0) + g(u2N )) +

4
9N2

N∑
m=1

g(u2m−1) +
1

9N2

N−1∑
m=1

g(u2m)

=
2

3N
[

1
6N
(g(u0) + g(u2N )) +

2
3N

N∑
m=1

g(u2m−1) +
1

3N

N−1∑
m=1

g(u2m)]

−
2

3N
[

1
6N
(g(u0) + g(u2N )) +

1
6N

N−1∑
m=1

g(u2m)] +
2

3N
1

24N
(g(u0) + g(u2N ))

=
2

3N

∫ b

a
g(u)du(1 +O(N−1)) −

2
3N

1
6

∫ b

a
g(u)du(1 +O(N−1))

+
1

36N2 (g(u0) + g(u2N )) =
5

9N

∫ b

a
g(u)du(1 +O(N−1)).

�

6.1.1 Existence of Unique Direction and Establishing Approximation of X̂n − x

We now prove the existence of the unique direction corresponding to the direction of dominant

diffusion:

Lemma 3. The direction satisfying (6.2) exists and unique for each x in a neighbourhood of a.
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Proof. Define the function H : G × S2 → R2 as

H
(
x, ϕ, θ

)
=

(
∂

∂ϕ
f
(
x, ϕ, θ

)
,
∂

∂θ
f
(
x, ϕ, θ

) )
.

It is continuously differentiable in G by assumption. For each x ∈ G, the direction (ϕ∗(x), θ∗(x))

yields the maximum of f . Thus we have H
(
x, ϕ∗(x), θ∗(x)

)
= 0 and

det

{
∂H

(
x, ϕ∗(x), θ∗(x)

)
∂
(
ϕ(x), θ(x)

) }
= det


∂2 f (x,ϕ∗(x),θ∗(x))

∂ϕ2
∂2 f (x,ϕ∗(x),θ∗(x))

∂θ∂ϕ

∂2 f (x,ϕ∗(x),θ∗(x))
∂ϕ∂θ

∂2 f (x,ϕ∗(x),θ∗(x))
∂θ2

 , 0.

By the implicit function theorem, there is an open set W ⊂ R3 containing x and a unique continu-

ously differentiable function g : W → R2 such that

g(x) =
(
ϕ∗(x), θ∗(x)

)
and

H
(
x′,g(x′)

)
= 0 for all x′ ∈ W .

�

Remark on Lemmas 3 and 4:

Before stating and proving lemmas 3 and 4, wewould like to explain their place in our estimation

procedure. Now to approximate the process x̂∗n(t)− x∗(t)we will consider a process zn(t), t ∈ [0,T],

defined as the solution of ODE:

dzn(t)
dt

= ∇v∗(x∗(t))zn(t) + (v̂∗n − v
∗)(x∗(t)), zn(0) = 0.

Similar to arguments in [5] we can show that zn(t) approximates x̂∗n(t) − x∗(t). In order to

solve the ODE above note that there exists a function U(t, s) ∈ [0,T]2 which satisfies the following

conditions:

1.
∂

∂t
U(t, s) = ∇v∗(x∗(t))U(t, s), 0 ≤ s ≤ t ≤ T ;
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2. U(t, t) = I3×3;

3. U(t, s) ≡ 0 ,0 ≤ t < s ≤ T .

Then by Theorem (2.2) in chapter (7) in Coddington and Levinson (1955) (see [17]) the unique

solution to the ODE above is given via the Green’s function U(t, s) as the following:

ẑn(t) =
∫ t

0
U(t, s)(v̂∗n − v

∗)(x∗(s))ds.

Even though ẑn(t) approximates x̂∗n(t) − x∗(t) up to terms of order O(‖ x̂∗n − x∗‖2), we need to relate

an estimation procedure to terms based on the deviation f̂n − f . Thus we introduce:

Lemma 4. Let ∆ϕ = ϕ1 − ϕ2 and ∆θ = θ1 − θ2. Then
sin θ1 cos ϕ1 − sin θ2 cos ϕ2

sin θ1 sin ϕ1 − sin θ2 sin ϕ2

cos θ1 − cos θ2


=


∆θ cos θ2 cos ϕ2 − ∆ϕ sin θ2 sin ϕ2

∆θ cos θ2 sin ϕ2 + ∆ϕ sin θ2 cos ϕ2

−∆θ sin θ2


+O

(
max

{
(|∆θ | + |∆ϕ |)

2, (|∆θ | + |∆ϕ |)
3
})
.

Proof.

sin θ1 cos ϕ1 − sin θ2 cos ϕ2

=
1
2

sin(θ1 + ϕ1) +
1
2

sin(θ1 − ϕ1) −
1
2

sin(θ2 + ϕ2) −
1
2

sin(θ2 − ϕ2)

= sin
(
θ1 − θ2 + ϕ1 − ϕ2

2

)
cos

(
θ1 + θ2 + ϕ1 + ϕ2

2

)
+ sin

(
θ1 − θ2 − (ϕ1 − ϕ2)

2

)
cos

(
θ1 + θ2 − ϕ1 − ϕ2

2

)
.
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By a Taylor expansion, at ∆θ = ∆ϕ = 0,

sin
(
θ1 − θ2 + ϕ1 − ϕ2

2

)
cos

(
θ1 + θ2 + ϕ1 + ϕ2

2

)
+ sin

(
θ1 − θ2 − (ϕ1 − ϕ2)

2

)
cos

(
θ1 + θ2 − ϕ1 − ϕ2

2

)
=

(
∆θ

2
+
∆ϕ

2

) [
cos(θ2 + ϕ2) − sin(θ2 + ϕ2)

(
∆θ

2
+
∆ϕ

2

)
+O

((
∆θ

2
+
∆ϕ

2

)2)]
+

(
∆θ

2
−
∆ϕ

2

) [
cos(θ2 − ϕ2) − sin(θ2 − ϕ2)

(
∆θ

2
−
∆ϕ

2

)
+O

((
∆θ

2
−
∆ϕ

2

)2)]
+O

((
∆θ

2
+
∆ϕ

2

)2)
= ∆θ cos θ2 cos ϕ2 − ∆ϕ sin θ2 sin ϕ2 +O

(
max

{
(|∆θ | + |∆ϕ |)

2, (|∆θ | + |∆ϕ |)
3
})
.

Similarly,

sin θ1 sin ϕ1 − sin θ2 sin ϕ2

=
1
2

cos(θ1 − ϕ1) −
1
2

cos(θ1 + ϕ1) −
1
2

cos(θ2 − ϕ2) +
1
2

sin(θ2 + ϕ2)

= − sin
(
θ1 + θ2 − ϕ1 − ϕ2

2

)
sin

(
θ1 − θ2 − (ϕ1 − ϕ2)

2

)
+ sin

(
θ1 + θ2 + ϕ1 + ϕ2

2

)
sin

(
θ1 − θ2 + ϕ1 − ϕ2

2

)
= −

(
∆θ

2
−
∆ϕ

2

) [
sin(θ2 − ϕ2) + cos(θ2 − ϕ2)

(
∆θ

2
−
∆ϕ

2

)
+O

((
∆θ

2
−
∆ϕ

2

)2)]
+

(
∆θ

2
+
∆ϕ

2

) [
sin(θ2 + ϕ2) + cos(θ2 + ϕ2)

(
∆θ

2
+
∆ϕ

2

)
+O

((
∆θ

2
+
∆ϕ

2

)2)]
+O

((
∆θ

2
+
∆ϕ

2

)2)
= ∆θ cos θ2 sin ϕ2 + ∆ϕ sin θ2 cos ϕ2 +O

(
max

{
(|∆θ | + |∆ϕ |)

2, (|∆θ | + |∆ϕ |)
3
})
.
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Finally,

cos θ1 − cos θ2 = −2 sin
(
θ1 + θ2

2

)
sin

(
θ1 − θ2

2

)
= −∆θ sin θ2 +O(∆θ),

thus 
sin θ1 cos ϕ1 − sin θ2 cos ϕ2

sin θ1 sin ϕ1 − sin θ2 sin ϕ2

cos θ1 − cos θ2


=


∆θ cos θ2 cos ϕ2 − ∆ϕ sin θ2 sin ϕ2

∆θ cos θ2 sin ϕ2 + ∆ϕ sin θ2 cos ϕ2

−∆θ sin θ2


+O

(
max

{
(|∆θ | + |∆ϕ |)

2, (|∆θ | + |∆ϕ |)
3
})
.

�

Lemma 5. In a neighbourhood of (x, ϕ∗(x), θ∗(x)) we have(
ϕ̂∗n(x) − ϕ

∗(x)

θ̂∗n(x) − θ
∗(x)

)
= −

( ∂2
∂ϕ2 f ∂2

∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

)−1 (
∂
∂ϕ f̂n − ∂

∂ϕ f

∂
∂θ f̂n − ∂

∂θ f

)

+O
(
∆

2
ϕ + ∆

2
θ + ∆ϕ

���� ∂2

∂ϕ2 ( f̂ − f )
���� + ∆θ ���� ∂2

∂θ2 ( f̂ − f )
���� + (∆ϕ + ∆θ)���� ∂2

∂ϕ∂θ
( f̂ − f )

����) .
Proof. By lemma 2 we have for each x ∈ G a direction (ϕ∗(x), θ∗(x)) for which

∂

∂ϕ
f (x, ϕ∗(x), θ∗(x)) =

∂

∂θ
f (x, ϕ∗(x), θ∗(x)) = 0

and likewise a direction (ϕ̂∗n(x), θ̂∗n(x)) for f̂n for which

∂

∂ϕ
f̂n(x, ϕ̂∗n(x), θ̂

∗
n(x)) =

∂

∂θ
f̂n(x, ϕ̂∗n(x), θ̂

∗
n(x)) = 0.
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Expanding the function f̂ ′ϕ at the point (x, ϕ∗(x) + ∆ϕ, θ∗(x) + ∆θ) gives

f ′ϕ(x, ϕ
∗(x), θ∗(x)) − f̂ ′ϕ(x, ϕ

∗(x), θ∗(x))

= f̂ ′ϕ(x, ϕ
∗(x) + ∆ϕ, θ∗(x) + ∆θ) − f̂ ′ϕ(x, ϕ

∗(x), θ∗(x))

= f̂ ′′ϕϕ(x, ϕ
∗(x), θ∗(x)))∆ϕ + f̂ ′′ϕθ(x, ϕ

∗(x), θ∗(x))∆θ +O
(
∆

2
ϕ + ∆

2
θ

)
= f ′′ϕϕ(x, ϕ

∗(x), θ∗(x)))∆ϕ + f ′′ϕθ(x, ϕ
∗(x), θ∗(x))∆θ

+O
(
∆

2
ϕ + ∆

2
θ + ∆ϕ

���� ∂2

∂ϕ2 ( f̂ − f )
���� + ∆θ ���� ∂2

∂ϕ∂θ
( f̂ − f )

����) .
Note that the continuity of f̂ ′ϕ in ϕ, θ and the fact that

f̂ ′ϕ(x, ϕ
∗(x) + ∆ϕ, θ∗(x) + ∆θ) − f̂ ′ϕ(x, ϕ

∗(x), θ∗(x))

= − f̂ ′ϕ(x, ϕ
∗(x), θ∗(x)) = f ′ϕ(x, ϕ

∗(x), θ∗(x)) − f̂ ′ϕ(x, ϕ
∗(x), θ∗(x))

we have that f̂ ′ϕ(x, ϕ
∗(x), θ∗(x)) → 0 as ∆ϕ,∆θ → 0 and is included in the term O

(
∆2
ϕ + ∆

2
θ

)
.

Likewise, expanding the function f̂ ′
θ
at the point (x, ϕ∗(x) + ∆ϕ, θ∗(x) + ∆θ) gives

f ′θ (x, ϕ
∗(x), θ∗(x)) − f̂ ′θ (x, ϕ

∗(x), θ∗(x))

= f̂ ′θ (x, ϕ
∗(x) + ∆ϕ, θ∗(x) + ∆θ) − f̂ ′θ (x, ϕ

∗(x), θ∗(x))

= f̂ ′′θϕ(x, ϕ
∗(x), θ∗(x))∆ϕ + f̂ ′′θθ(x, ϕ

∗(x), θ∗(x))∆θ +O
(
∆

2
ϕ + ∆

2
θ

)
= f ′′θϕ(x, ϕ

∗(x), θ∗(x)))∆ϕ + f ′′θθ(x, ϕ
∗(x), θ∗(x))∆θ

+O
(
∆

2
ϕ + ∆

2
θ + ∆θ

���� ∂2

∂θ2 ( f̂ − f )
���� + ∆ϕ���� ∂2

∂ϕ∂θ
( f̂ − f )

����) .
Thus, we have the result:( ∂2

∂ϕ2 f ∂2
∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

) (
ϕ̂∗n(x) − ϕ

∗(x)

θ̂∗n(x) − θ
∗(x)

)
=

(
∂
∂ϕ f̂n − ∂

∂ϕ f

∂
∂θ f̂n − ∂

∂θ f

)

+O
(
∆

2
ϕ + ∆

2
θ + ∆ϕ

���� ∂2

∂ϕ2 ( f̂ − f )
���� + ∆θ ���� ∂2

∂θ2 ( f̂ − f )
���� + (∆ϕ + ∆θ)���� ∂2

∂ϕ∂θ
( f̂ − f )

����) .
�
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Therefore, we can approximate ẑn by

Ẑn(t) =

−

∫ t

0
U(t, s)

( − sin θ∗ sin ϕ∗ cos θ∗ cos ϕ∗

sin θ∗ cos ϕ∗ cos θ∗ sin ϕ∗

0 − sin θ∗

) ( ∂2
∂ϕ2 f ∂2

∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

)−1 (
∂
∂ϕ ( f̂n − f )

∂
∂θ ( f̂n − f )

)����
x∗(s)

ds.

which approximates x̂∗n(t) − x∗(t) in terms of f̂n − f .

6.1.2 Establishing Asymptotic Unbiasedness of Estimators of Derivatives of f

Recall that our model is

Yi j k = f (Xi, ϕ j, θk ) + S(Xi, ϕ j, θk )εi j k, i = 1, . . . ,n; j = 1, . . . ,Nϕ; k = 1, . . . ,Nθ,

where Xi ∼ U([0,1]3), ϕ j = −π + 2π j
2Nϕ

, and θk = −
π
2 + π

k
2Nθ

.

First, define

w j,k (x) =
1

nh3
n

n∑
i=1

K
(

x − Xi
hn

)
Yi j k .

Immediately note that

Ew j,k (x) =
∫

K(u) f (x − hnu, ϕ j, θk )du = f (x, ϕ j, θk ) + 0.5h2
n
∂2

∂x2 f (x, ϕ j, θk )K2(1 + o(1)).

Secondly, define

uk (x, ϕ) = SNϕ

(
1

hϕ
Kϕ

(
ϕ − ϕ0

hϕ

)
w0,k (x), ...,

1
hϕ

Kϕ

(ϕ − ϕ2Nϕ

hϕ

)
w2Nϕ,k (x),−π, π

)
.
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Again, note that

Euk (x, ϕ) = SNϕ

(
1

hϕ
Kϕ

(
ϕ − ϕ0

hϕ

)
Ew0,k (x), ...,

1
hϕ

Kϕ

(ϕ − ϕ2Nϕ

hϕ

)
Ew2Nϕ,k (x),−π, π

)
=

∫ ϕ+chϕ

ϕ−chϕ

1
hϕ

Kϕ

(
ϕ − u

hϕ

)
[ f (x,u, θk ) + 0.5h2

n
∂2

∂x2 f (x,u, θk )K2(1 + o(1))]du

+
2chϕ

180(2Nϕ)4
∂ IV

∂ϕ4

[
1

hϕ
Kϕ

(
ϕ − u

hϕ

)
f (x, ϕ, θk )

] ����
ϕ=u∗k

= f (x, ϕ, θk ) + 0.5h2
n
∂2

∂x2 f (x, ϕ, θk )K2(1 + o(1)) + 0.5h2
ϕ
∂2

∂ϕ2 f (x, ϕ, θk )Kϕ,2(1 + o(1))

+
c

1440N4
ϕh4

ϕ

K IV
ϕ

(
ϕ − u∗k

hϕ

)
f (x,u∗k, θk )(1 + o(1)),

where u∗k ∈ [ϕ − chϕ, ϕ + chϕ].

Thirdly, let

f̂n(x, ϕ, θ) = SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
u0(x, ϕ), ...

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
u2Nθ (x, ϕ),−

π

2
,
π

2

)
.

Then

E f̂n(x, ϕ, θ) = SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
Eu0(x, ϕ), ...

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
EuNθ (x, ϕ),−

π

2
,
π

2

)
=

∫ θ+chθ

θ−chθ

1
hθ

Kθ

(
θ − v

hθ

)
[ f (x, ϕ, v) + 0.5h2

n
∂2

∂x2 f (x, ϕ, v)K2(1 + o(1))

+0.5h2
ϕ
∂2

∂ϕ2 f (x, ϕ, v)Kϕ,2(1 + o(1))]dv +
c

1440N4
ϕh4

ϕ

R

= f (x, ϕ, θ) + 0.5h2
n
∂2

∂x2 f (x, ϕ, θ)K2(1 + o(1)) + 0.5h2
ϕ
∂2

∂ϕ2 f (x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ

∂2

∂θ2 f (x, ϕ, θ)Kϕ,2(1 + o(1)) +
c

1440N4
θ

h4
θ

K IV
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗) +

c

1440N4
ϕh4

ϕ

R,

where the remainder is

R = SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
K IV
ϕ

(
ϕ − u∗0

hϕ

)
f (x,u∗0, θ0),

...,
1
hθ

Kθ

( θ − θ2Nθ
hθ

)
K IV
ϕ

(ϕ − u∗2Nθ
hϕ

)
f (x,u∗2Nθ

, θ2Nθ ),−0.5π,0.5π
)
.
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To assess R let u∗ = 1
2Nθ+1

∑2Nθ
j=0 u∗j ∈ [ϕ − chϕ, ϕ + chϕ]. Then

K IV
ϕ

(
ϕ − u∗k

hϕ

)
f (x,u∗k, θk ) = K IV

ϕ

(
ϕ − u∗

hϕ

)
f (x,u∗, θk )

+(u∗k − u∗)[K IV
ϕ

(
ϕ − u∗

hϕ

)
f ′(x,u∗, θk ) −

1
hϕ

KV
ϕ

(
ϕ − u∗

hϕ

)
f (x,u∗, θk )](1 + o(1)).

Then R = O(1), since

R =
∫

1
hθ

Kθ

(
θ − u

hθ

)
K IV
ϕ

(
ϕ − u∗

hϕ

)
f (x,u∗,u)du(1 + o(1))

−2chϕ

∫
1
hθ

Kθ

(
θ − u

hθ

)
1

hϕ
KV
ϕ

(
ϕ − u∗

hϕ

)
f (x,u∗,u)du(1 + o(1)) +O(h2

θ) +O
(

1
N4
θ

h4
θ

)
= K IV

ϕ

(
ϕ − u∗

hϕ

)
f (x,u∗, θ) − 2cKV

ϕ

(
ϕ − u∗

hϕ

)
f (x,u∗, θ) +O(h2

ϕ) +O(h2
θ) +O

(
1

N4
θ

h4
θ

)
Thus, combining several previous calculations we obtain

E f̂n(x, ϕ, θ) = f (x, ϕ, θ) + 0.5h2
n
∂2

∂x2 f (x, ϕ, θ)K2(1 + o(1)) + 0.5h2
ϕ
∂2

∂ϕ2 f (x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ f ′′θθ(x, ϕ, θ)Kϕ,2(1 + o(1)) +

c

1440N4
ϕh4

ϕ

[
K IV
ϕ

(
ϕ − ϕ∗

hϕ

)
f (x, ϕ∗, θ)

−2cKV
ϕ

(
ϕ − ϕ∗

hϕ

)
f (x, ϕ∗, θ)

]
+

c

1440N4
θ

h4
θ

K IV
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)

for some ϕ∗ ∈ [ϕ − chϕ, ϕ + chϕ] and some θ∗ ∈ [θ − chθ, θ + chθ].

Lemma 6. Let hn, hϕ, hθ → 0 and Nϕ,Nθ → ∞. Under conditions (K) on kernels Kϕ and Kθ we

have

E
∂

∂ϕ
f̂n(x, ϕ, θ) =

∂

∂ϕ
f (x, ϕ, θ) +O(h2

n) +O(h2
ϕ) +O(h2

θ) +O
(

1
N4
ϕh5

ϕ

)
+O

(
1

N4
θ

h4
θ

)
,

E
∂

∂θ
f̂n(x, ϕ, θ) =

∂

∂θ
f (x, ϕ, θ) +O(h2

n) +O(h2
ϕ) +O(h2

θ) +O
(

1
N4
ϕh4

ϕ

)
+O

(
1

N4
θ

h5
θ

)
,

E
∂2

∂ϕ2 f̂n(x, ϕ, θ) =
∂2

∂ϕ2 f (x, ϕ, θ) +O(h2
n) +O(h2

ϕ) +O(h2
θ) +O

(
1

N4
ϕh6

ϕ

)
+O

(
1

N4
θ

h4
θ

)
,

E
∂2

∂θ2 f̂n(x, ϕ, θ) =
∂2

∂θ2 f (x, ϕ, θ) +O(h2
n) +O(h2

ϕ) +O(h2
θ) +O

(
1

N4
ϕh4

ϕ

)
+O

(
1

N4
θ

h6
θ

)
,

E
∂2

∂θ∂ϕ
f̂n(x, ϕ, θ) =

∂2

∂θ∂ϕ
f (x, ϕ, θ) +O(h2

n) +O(h2
ϕ) +O(h2

θ) +O
(

1
N4
ϕh5

ϕ

)
+O

(
1

N4
θ

h5
θ

)
.
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Proof. (1) By linearity of the differential operator,

∂

∂ϕ
f̂n(x, ϕ, θ)

= SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
∂

∂ϕ
u0(x, ϕ), ...,

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
∂

∂ϕ
u2Nθ (x, ϕ),−0.5π,0.5π

)
.

Then by the linearity of the expectation operator, we have

E
∂

∂ϕ
f̂n(x, ϕ, θ)

= SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
E

(
∂

∂ϕ
u0(x, ϕ)

)
, ...,

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
E

(
∂

∂ϕ
u2Nθ (x, ϕ)

)
,−0.5π,0.5π

)
.

First, note that

E
∂

∂ϕ
uk (x, ϕ) = SNϕ

(
1

h2
ϕ

K′ϕ

(
ϕ − ϕ0

hϕ

)
Ez0,k (x), ...,

1
h2
ϕ

K′ϕ

(ϕ − ϕ2Nϕ

hϕ

)
Ez2Nϕ,k (x),−π, π

)
=

∫ ϕ+chϕ

ϕ−chϕ

1
h2
ϕ

K′ϕ

(
ϕ − u

hϕ

)
[ f (x,u, θk ) + 0.5h2

n f ′′xx(x,u, θk )K2(1 + o(1))]du

+
2chϕ

180(2Nϕ)4
∂ IV

∂uIV

[
1

h2
ϕ

K′ϕ

(
ϕ − u

hϕ

)
f (x,u, θk )

] ����
u=u∗k

.

By the previous lemma,

E
∂

∂ϕ
uk (x, ϕ) = f ′ϕ(x, ϕ, θk ) + 0.5h2

n f ′′′xxϕ(x, ϕ, θk )K2(1 + o(1))

+0.5h2
ϕ f ′′′ϕϕϕ(x, ϕ, θk )Kϕ,2(1 + o(1))

+
c

1440N4
ϕh5

ϕ

KV
ϕ

(
ϕ − u∗k

hϕ

)
f (x,u∗k, θk )(1 + o(1)).
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Thus by proposition 2,

E
∂

∂ϕ
f̂n(x, ϕ, θ)

= SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
E

(
∂

∂ϕ
u0(x, ϕ)

)
, ...,

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
E

(
∂

∂ϕ
u2Nθ (x, ϕ)

)
,−0.5π,0.5π

)
=

∫ θ+chθ

θ−chθ

1
hθ

Kθ

(
θ − u

hθ

)
[ f ′ϕ(x, ϕ,u) + 0.5h2

n f ′′′xxϕ(x, ϕ,u)K2(1 + o(1))

+0.5h2
ϕ f ′′′ϕϕϕ(x, ϕ,u)Kϕ,2(1 + o(1))]du +

c

1440N4
ϕh5

ϕ

R

+
c

1440N4
θ

h4
θ

K IV
(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)(1 + o(1))

= f ′ϕ(x, ϕ, θ) + 0.5h2
n f ′′′xxϕ(x, ϕ, θ)K2(1 + o(1)) + 0.5h2

ϕ f ′′′ϕϕϕ(x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ f ′′′ϕθθ(x, ϕ, θ)Kθ,2(1 + o(1)) +

c

1440N4
θ

h4
θ

K IV
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)(1 + o(1))

+
c

1440N4
ϕh5

ϕ

[
KV
ϕ

(
ϕ − ϕ∗

hϕ

)
f (x, ϕ∗, θ) − 2cKV I

ϕ

(
ϕ − ϕ∗

hϕ

)
f (x, ϕ∗, θ)

]
(1 + o(1)).

Note the remainder R is calculated exactly the same as above. �

Proof. (2) As in the proof of lemma 2(1), the linearity of the differential operator and expectation

operator gives

∂

∂θ
f̂n(x, ϕ, θ) = SNθ

(
1
h2
θ

K′θ

(
θ − θ0

hθ

)
u0(x, ϕ), ...,

1
h2
θ

K′θ

( θ − θ2Nθ
hθ

)
u2Nθ (x, ϕ),−0.5π,0.5π

)
and

E
∂

∂θ
f̂n(x, ϕ, θ) =

SNθ

(
1
h2
θ

K′θ

(
θ − θ0

hθ

)
Eu0(x, ϕ), ...,

1
h2
θ

K′θ

( θ − θ2Nθ
hθ

)
Eu2Nθ (x, ϕ),−0.5π,0.5π

)
.

51



By proposition 2,

E
∂

∂θ
f̂n(x, ϕ, θ)

=

∫ θ+chθ

θ−chθ

1
h2
θ

K′θ

(
θ − v

hθ

)
[ f (x, ϕ, v) + 0.5h2

n f ′′xx(x, ϕ, v)K2(1 + o(1))

+0.5h2
ϕ f ′′ϕϕ(x, ϕ, v)Kϕ,2(1 + o(1))]dv +

c

1440N4
ϕh4

ϕ

R

+
c

1440N4
θ

h5
θ

KV
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)(1 + o(1))

= f ′θ (x, ϕ, θ) + 0.5h2
n f ′′′xxθ(x, ϕ, θ)K2(1 + o(1)) + 0.5h2

ϕ f ′′′ϕϕθ(x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ f ′′′θθθ(x, ϕ, θ)Kθ,2(1 + o(1)) +

c

1440N4
θ

h5
θ

KV
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)(1 + o(1))

+
c

1440N4
ϕh4

ϕ

[
K IV
ϕ

(
ϕ − ϕ∗

hϕ

)
f ′θ (x, ϕ

∗, θ) − 2cKV
ϕ

(
ϕ − ϕ∗

hϕ

)
f ′θ (x, ϕ

∗, θ)

]
(1 + o(1)).

Note that R was calculated in the same way as before, but this time with

R = SNθ

(
1
h2
θ

K′θ

(
θ − θ0

hθ

)
K IV
ϕ

(
ϕ − u∗0

hϕ

)
f (x,u∗0, θ0)(1 + o(1)),

...,
1
h2
θ

K′θ

( θ − θ2Nθ
hθ

)
K IV
ϕ

(ϕ − u∗2Nθ
hϕ

)
f (x,u∗2Nθ

, θ2Nθ )(1 + o(1)),−0.5π,0.5π
)
.

�

Proof. (3)

∂2

∂ϕ2 f̂n(x, ϕ, θ)

= SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
∂2

∂ϕ2 u0(x, ϕ), ...,
1
hθ

Kθ

( θ − θ2Nθ
hθ

)
∂2

∂ϕ2 u2Nθ (x, ϕ),−0.5π,0.5π
)
.

So again, by the linearity of the expectation operator, we have

E
∂2

∂ϕ2 f̂n(x, ϕ, θ)

= SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
E

(
∂2

∂ϕ2 u0(x, ϕ)
)
, ...,

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
E

(
∂2

∂ϕ2 u2Nθ (x, ϕ)
)
,−0.5π,0.5π

)
.
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We must then first calculate

E
∂2

∂ϕ2 uk (x, ϕ) = SNϕ

(
1

h3
ϕ

K′′ϕ

(
ϕ − ϕ0

hϕ

)
Ez0,k (x), ...,

1
h3
ϕ

K′′ϕ

(ϕ − ϕ2Nϕ

hϕ

)
Ez2Nϕ,k (x),−π, π

)
=

∫ ϕ+chϕ

ϕ−chϕ

1
h3
ϕ

K′′ϕ

(
ϕ − u

hϕ

)
[ f (x,u, θk ) + 0.5h2

n f ′′xx(x,u, θk )K2(1 + o(1))]du

+
2chϕ

180(2Nϕ)4
∂ IV

∂uIV

[
1

h3
ϕ

K′′ϕ

(
ϕ − u

hϕ

)
f (x,u, θk )

] ����
u=u∗k

.

By the preceding lemma,

E
∂2

∂ϕ2Uk (x, ϕ) = f ′′ϕϕ(x, ϕ, θk ) + 0.5h2
n f IV

xxϕϕ(x, ϕ, θk )K2(1 + o(1))

+0.5h2
ϕ f IV
ϕϕϕϕ(x, ϕ, θk )Kϕ,2(1 + o(1))

+
c

1440N4
ϕh6

ϕ

KV I
ϕ

(
ϕ − u∗k

hϕ

)
f (x,u∗k, θk )(1 + o(1)).

Thus by proposition 2,

E
∂2

∂ϕ2 f̂n(x, ϕ, θ)

= SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
E

(
∂2

∂ϕ2 u0(x, ϕ)
)
, ...,

1
hθ

Kθ

( θ − θ2Nθ
hθ

)
E

(
∂2

∂ϕ2 u2Nθ (x, ϕ)
)
,−0.5π,0.5π

)
=

∫ θ+chθ

θ−chθ

1
hθ

Kθ

(
θ − u

hθ

)
[ f ′′ϕϕ(x, ϕ,u) + 0.5h2

n f IV
xxϕϕ(x, ϕ,u)K2(1 + o(1))

+0.5h2
ϕ f IV
ϕϕϕϕ(x, ϕ,u)Kϕ,2(1 + o(1))]du +

c

1440N4
ϕh6

ϕ

R

+
c

1440N4
θ

h4
θ

K IV
(
θ − θ∗

hθ

)
f ′′ϕϕ(x, ϕ, θ

∗)(1 + o(1))

= f ′′ϕϕ(x, ϕ, θ) + 0.5h2
n f IV

xxϕϕ(x, ϕ, θ)K2(1 + o(1)) + 0.5h2
ϕ f IV
ϕϕϕϕ(x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ f IV
ϕϕθθ(x, ϕ, θ)Kθ,2(1 + o(1)) +

c

1440N4
θ

h4
θ

K IV
θ

(
θ − θ∗

hθ

)
f ′′ϕϕ(x, ϕ, θ

∗)

+
c

1440N4
ϕh6

ϕ

[
KV I
ϕ

(
ϕ − ϕ∗

hϕ

)
f (x, ϕ∗, θ) − 2cKV II

ϕ

(
ϕ − ϕ∗

hϕ

)
f (x, ϕ∗, θ)

]
(1 + o(1)).

Note that R was calculated in the same way as before, but this time with

R = SNθ

(
1
hθ

Kθ

(
θ − θ0

hθ

)
KV I
ϕ

(
ϕ − u∗0

hϕ

)
f (x,u∗0, θ0)(1 + o(1)),

...,
1
hθ

Kθ

( θ − θ2Nθ
hθ

)
KV I
ϕ

(ϕ − u∗2Nθ
hϕ

)
f (x,u∗2Nθ

, θ2Nθ )(1 + o(1)),−0.5π,0.5π
)
.
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Proof. (4)

∂2

∂θ2 f̂n(x, ϕ, θ) = SNθ

(
1
h3
θ

K′′θ

(
θ − θ0

hθ

)
u0(x, ϕ), ...,

1
h3
θ

K′′θ

( θ − θ2Nθ
hθ

)
u2Nθ (x, ϕ),−0.5π,0.5π

)
and

E
∂2

∂θ2 f̂n(x, ϕ, θ) =

SNθ

(
1
h3
θ

K′′θ

(
θ − θ0

hθ

)
Eu0(x, ϕ), ...,

1
h3
θ

K′′θ

( θ − θ2Nθ
hθ

)
Eu2Nθ (x, ϕ),−0.5π,0.5π

)
.

By proposition 2,

E
∂2

∂θ2 f̂n(x, ϕ, θ)

=

∫ θ+chθ

θ−chθ

1
h3
θ

K′′θ

(
θ − v

hθ

)
[ f (x, ϕ, v) + 0.5h2

n f ′′xx(x, ϕ, v)K2(1 + o(1))

+0.5h2
ϕ f ′′ϕϕ(x, ϕ, v)Kϕ,2(1 + o(1))]dv +

c

1440N4
ϕh4

ϕ

R

+
c

1440N4
θ

h6
θ

KV I
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)(1 + o(1))

= f ′′θθ(x, ϕ, θ) + 0.5h2
n f IV

xxθθ(x, ϕ, θ)K2(1 + o(1)) + 0.5h2
ϕ f IV
ϕϕθθ(x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ f IV
θθθθ(x, ϕ, θ)Kθ,2(1 + o(1)) +

c

1440N4
θ

h6
θ

KV I
θ

(
θ − θ∗

hθ

)
f (x, ϕ, θ∗)(1 + o(1))

+
c

1440N4
ϕh4

ϕ

[
K IV
ϕ

(
ϕ − ϕ∗

hϕ

)
f ′′θθ(x, ϕ

∗, θ) − 2cKV
ϕ

(
ϕ − ϕ∗

hϕ

)
f ′′θθ(x, ϕ

∗, θ)

]
(1 + o(1)).

Note that R was calculated in the same way as before, but this time with

R = SNθ

(
1
h3
θ

K′′θ

(
θ − θ0

hθ

)
K IV
ϕ

(
ϕ − u∗0

hϕ

)
f (x,u∗0, θ0)(1 + o(1)),

...,
1
h3
θ

K′′θ

( θ − θ2Nθ
hθ

)
K IV
ϕ

(ϕ − u∗2Nθ
hϕ

)
f (x,u∗2Nθ

, θ2Nθ )(1 + o(1)),−0.5π,0.5π
)
.

�
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Proof. (5)

∂2

∂θ∂ϕ
f̂n(x, ϕ, θ) =

SNθ

(
1
h2
θ

K′θ

(
θ − θ0

hθ

)
∂

∂ϕ
u0(x, ϕ), ...,

1
h2
θ

K′θ

( θ − θ2Nθ
hθ

)
∂

∂ϕ
u2Nθ (x, ϕ),−0.5π,0.5π

)
and

E
∂2

∂θ∂ϕ
f̂n(x, ϕ, θ) =

SNθ

(
1
h2
θ

K′θ

(
θ − θ0

hθ

)
E
∂

∂ϕ
u0(x, ϕ), ...,

1
h2
θ

K′θ

( θ − θ2Nθ
hθ

)
E
∂

∂ϕ
u2Nθ (x, ϕ),−0.5π,0.5π

)
.

By proposition 2,

E
∂2

∂θ∂ϕ
f̂n(x, ϕ, θ)

=

∫ θ+chθ

θ−chθ

1
h2
θ

K′θ

(
θ − v

hθ

)
[ f ′ϕ(x, ϕ, v) + 0.5h2

n f ′′′xxϕ(x, ϕ, v)K2(1 + o(1))

+0.5h2
ϕ f ′′′ϕϕϕ(x, ϕ, v)Kϕ,2(1 + o(1))]dv +

c

1440N4
ϕh5

ϕ

R

+
c

1440N4
θ

h5
θ

KV
θ

(
θ − θ∗

hθ

)
f ′ϕ(x, ϕ, θ

∗)(1 + o(1))

= f ′′ϕθ(x, ϕ, θ) + 0.5h2
n f IV

xxϕθ(x, ϕ, θ)K2(1 + o(1)) + 0.5h2
ϕ f IV
ϕϕϕθ(x, ϕ, θ)Kϕ,2(1 + o(1))

+0.5h2
θ f IV
ϕθθθ(x, ϕ, θ)Kθ,2(1 + o(1)) +

c

1440N4
θ

h5
θ

KV
θ

(
θ − θ∗

hθ

)
f ′ϕ(x, ϕ, θ

∗)(1 + o(1))

+
c

1440N4
ϕh5

ϕ

[
KV
ϕ

(
ϕ − ϕ∗

hϕ

)
f ′θ (x, ϕ

∗, θ) − 2cKV I
ϕ

(
ϕ − ϕ∗

hϕ

)
f ′θ (x, ϕ

∗, θ)

]
(1 + o(1)).

Note that R was calculated in the same way as before, but this time with

R = SNθ

(
1
h2
θ

K′θ

(
θ − θ0

hθ

)
KV
ϕ

(
ϕ − u∗0

hϕ

)
f (x,u∗0, θ0)(1 + o(1)),

...,
1
h2
θ

K′θ

( θ − θ2Nθ
hθ

)
KV
ϕ

(ϕ − u∗2Nθ
hϕ

)
f (x,u∗2Nθ

, θ2Nθ )(1 + o(1)),−0.5π,0.5π
)
.

�
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6.2 Calculation of Mean and Covariance of Ẑn

Recall the process

Ẑn(t) =

−

∫ t

0
U(t, s)

( − sin θ∗ sin ϕ∗ cos θ∗ cos ϕ∗

sin θ∗ cos ϕ∗ cos θ∗ sin ϕ∗

0 − sin θ∗

) ( ∂2
∂ϕ2 f ∂2

∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

)−1 (
∂
∂ϕ ( f̂n − f )

∂
∂θ ( f̂n − f )

)����
x∗(s)

ds.

Keep in mind that ∂ f
∂ϕ (x

∗(s)) = ∂ f
∂θ (x

∗(s)) = 0.

The partial derivatives of f̂n are easier to write as

∂ f̂n(x)
∂ϕ

=

2Nθ∑
m=0

2Nϕ∑
l=0

n∑
k=1

am
hθ

bl

h2
ϕ

1
nh3

n
Kθ

(
θ(x) − θm

hθ

)
K′ϕ

(
ϕ(x) − ϕl

hϕ

)
K

(
x − Xk

hn

)
Yklm,

where am = O(N−1
θ
) and bl = O(N−1

ϕ ) are the coefficients in Simpson’s scheme. Denote

Km,l =

∫
ulK(m)(u)du.

Furthermore, denote

M(s) =

( − sin θ∗ sin ϕ∗ cos θ∗ cos ϕ∗

sin θ∗ cos ϕ∗ cos θ∗ sin ϕ∗

0 − sin θ∗

)����
x∗(s)

and

F(x) =

( ∂2
∂ϕ2 f ∂2

∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

)����
x
.

Consider the mean function of the process Ẑn(t).
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Lemma 7. Suppose hn → 0, hϕ → 0, hθ → 0. Then

EẐn(t) = −(1 + o(1))
∫ t

0
U(t, s)M(s)F−1(x∗(s))[

h2
n

( ∂3
∂x2∂ϕ

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))12K0,2Kϕ,1,1

∂3
∂x2∂θ

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))12K0,2Kθ,1,1

)

+h2
ϕ

( ∂3
∂ϕ3 f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))16Kϕ,1,3

∂3
∂ϕ2∂θ

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))13Kθ,1,1Kϕ,0,2

)

+h2
θ

( ∂3
∂ϕ∂θ2

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))13Kϕ,1,1Kθ,0,2

∂3
∂θ3

f (x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))16Kθ,1,3

)]
ds

Proof. We calculated the asymptotic expressions of the expectations of the estimators of the

derivatives of f in the previous section. The above is a result of applying those calculations to the

defined process Ẑn. No other methods are needed to show the above.

�

Next consider the covariance for any t1, t2 ∈ [0,T]

Cov(Ẑn(t1), Ẑn(t2)) =
∫ ∫

I(s1 ∈ [0, t1])I(s2 ∈ [0, t2])U(t1, s1)M(s1)F
−1(x∗(s1))(

Cov
( ∂ f̂n(x∗(s1))

∂ϕ ,
∂ f̂n(x∗(s2))

∂ϕ

)
Cov

( ∂ f̂n(x∗(s1))
∂ϕ ,

∂ f̂n(x∗(s2))
∂θ

)
Cov

( ∂ f̂n(x∗(s1))
∂θ ,

∂ f̂n(x∗(s2))
∂ϕ

)
Cov

( ∂ f̂n(x∗(s1))
∂θ ,

∂ f̂n(x∗(s2))
∂θ

) )
(6.1)

M∗(s2)(F
∗)−1(x∗(s2))U

∗(t2, s2)ds1ds2.

Consider the covariance array in the middle of the above. Then for the first entry we have:
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Cov(
∂ f̂n(x∗(s1))

∂ϕ
,
∂ f̂n(x∗(s2))

∂ϕ
)

=

2Nθ∑
m1=0

2Nϕ∑
l1=0

n∑
k1=1

2Nθ∑
m2=0

2Nϕ∑
l2=0

n∑
k2=1

am1am2
h2
θ

bl1bl2
h4
ϕ

1
n2h6

n

Kθ

(
θ(x) − θm1

hθ

)
Kθ

(
θ(x) − θm2

hθ

)
K′ϕ

(ϕ(x) − ϕl1
hϕ

)
K′ϕ

(ϕ(x) − ϕl2
hϕ

)
Cov(K

( x − Xk1
hn

)
Yk1l1m1,K

( x − Xk2
hn

)
Yk2l2m2),

The latest covariance term consists of two terms

Cov(K
( x1 − Xk1

hn

)
f (Xk1, ϕl1, θm1),K

( x2 − Xk2
hn

)
f (Xk2, ϕl2, θm2))

and

Cov(K
( x1 − Xk1

hn

)
S(Xk1, ϕl1, θm1)εk1l1m1,K

( x2 − Xk2
hn

)
S(Xk2, ϕl2, θm2)εk2l2m2).

The first term is zero for k1 , k2 due to independence, while for k1 = k2 we have

Cov(K
( x1 − Xk1

hn

)
f (Xk1, ϕl1, θm1),K

( x2 − Xk1
hn

)
f (Xk1, ϕl2, θm2))

= h3
n

∫
K(u)K

(
u +

x1 − x2
hn

)
f (x1 − uhn, ϕl1, θm1) f (x1 − uhn, ϕl2, θm2)du

= h3
nΨ

(
x1 − x2

hn

)
f (x1, ϕl1, θm1) f (x2, ϕl2, θm2)(1 +O(h2

n)),

where we used the substitution u =
x−x1

hn
and Ψ(z) :=

∫
K(u)K(u + z)du.

The second term is zero when l1 , l2 or m1 , m2, while for the case of l1 = l2,m1 = m2 we

have for k1 = k2

Cov(K
( x1 − Xk1

hn

)
S(Xk1, ϕl1, θm1)εk1l1m1,K

( x2 − Xk1
hn

)
S(Xk1, ϕl1, θm1)εk1l1m1)

= h3
nΨ

(
x1 − x2

hn

)
S(x1, ϕl1, θm1)S(x2, ϕl1, θm1)(1 +O(h2

n)),

while for k1 , k2 we have

Cov(K
( x1 − Xk1

hn

)
S(Xk1, ϕl1, θm1)εk1l1m1,K

( x2 − Xk1
hn

)
S(Xk1, ϕl1, θm1)εk1l1m1)

= Σk1k2h6
nS(x1, ϕl1, θm1)S(x2, ϕl1, θm1)(1 +O(h2

n)).
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Now we consider the summation for the (1, 1)-component of (6.1):

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) 2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1am2
h2
θ

bl1bl2
h4
ϕ

Kθ

(
θ(x1) − θm1

hθ

)
Kθ

(
θ(x2) − θm2

hθ

)
×K′ϕ

(ϕ(x1) − ϕl1
hϕ

)
K′ϕ

(ϕ(x2) − ϕl2
hϕ

)
f (x1, ϕl1, θm1) f (x2, ϕl2, θm2)

+
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

) 2Nθ∑
m1=0

2Nϕ∑
l1=0

a2
m1
h2
θ

b2
l1

h4
ϕ

Kθ

(
θ(x1) − θm1

hθ

)
Kθ

(
θ(x2) − θm1

hθ

)
×K′ϕ

(ϕ(x1) − ϕl1
hϕ

)
K′ϕ

(ϕ(x2) − ϕl1
hϕ

)
S(x1, ϕl1, θm1)S(x2, ϕl1, θm1)

+

[∑
k1,k2 Σk1k2

n2

] 2Nθ∑
m1=0

2Nϕ∑
l1=0

a2
m1
h2
θ

b2
l1

h4
ϕ

Kθ

(
θ(x1) − θm1

hθ

)
Kθ

(
θ(x2) − θm1

hθ

)
×K′ϕ

(ϕ(x1) − ϕl1
hϕ

)
K′ϕ

(ϕ(x2) − ϕl1
hϕ

)
S(x1, ϕl1, θm1)S(x2, ϕl1, θm1)(1 +O(h2

n)).

The first term above is an ordinary Simpson’s double integral. The next two terms have the

coefficients squared so we need proposition (5).

Now the (1, 1)-component of (6.1) becomes

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) ∫ ϕ+chϕ

ϕ−chϕ

∫ ϕ+chϕ

ϕ−chϕ

∫ θ−chθ

θ−chθ

∫ θ−chθ

θ−chθ

1
h2
θ

1
h4
ϕ

Kθ

(
θ(x1) − u1

hθ

)
Kθ

(
θ(x2) − u2

hθ

)
K′ϕ

(
ϕ(x1) − v1

hϕ

)
K′ϕ

(
ϕ(x2) − v2

hϕ

)
f (x1, v1,u1) f (x2, v2,u2)dv1dv2du1du2

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

] ∫ ϕ+chϕ

ϕ−chϕ

∫ θ−chθ

θ−chθ

1
h2
θ

1
h4
ϕ

Kθ

(
θ(x1) − u

hθ

)
Kθ

(
θ(x2) − u

hθ

)
K′ϕ

(
ϕ(x1) − v

hϕ

)
K′ϕ

(
ϕ(x2) − v

hϕ

)
S(x1, v,u)S(x2, v,u)dvdu

25
81NϕNθ

.

Now we make substitutions in the integrals:
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1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) ∫ ∫ ∫ ∫
1

h2
ϕ

Kθ(y1)Kθ(y2)K
′
ϕ(z1)K

′
ϕ(z2)

f (x1, ϕ(x1) − z1hϕ, θ(x1) − y1hθ) f (x2, ϕ(x2) − z2hϕ, θ(x2) − y2hθ)dz1dz2dy1dy2

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

] ∫ ∫
1
hθ

1
h3
ϕ

Kθ(z)Kθ

(
z +

θ(x2) − θ(x1)
hθ

)
K′ϕ(y)K

′
ϕ

(
y +

ϕ(x2) − ϕ(x1)
hϕ

)
S(x1, ϕ(x1) − zhϕ, θ(x1) − yhθ)S(x2, ϕ(x1) − zhϕ, θ(x1) − yhθ)dzdy

25
81NϕNθ

.

Recall properties (K). Applying Taylor expansion to functions f and S yields the following expres-

sion for the second summand of the (1, 1)-component of (6.1):

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

]
Ψθ

(
θ(x2) − θ(x1)

hθ

)
×(−1)Ψ′′ϕ

(
ϕ(x2) − ϕ(x1)

hϕ

)
S(x1, ϕ(x1), θ(x1))S(x2, ϕ(x1), θ(x1))

1
hθ

1
h3
ϕ

25
81NϕNθ

,

Where we have defined the integrals:

Ψ(z) =
∫

K(u)K(z + u)du, Ψ′(z) =
∫

K(u)K′(z + u)du,

and the integration by parts gives

Ψ
′′(z) = −

∫
K′(u)K′(z + u)du.
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Consider the first summand of the (1, 1)-component of (6.1):

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) [
∂ f
∂ϕ
(x1, ϕ(x1), θ(x1))

∂ f
∂ϕ
(x2, ϕ(x2), θ(x2))K

2
ϕ,1,1

+h2
ϕ(
∂ f
∂ϕ
(x1, ϕ(x1), θ(x1))

∂3 f
∂ϕ3 (x2, ϕ(x2), θ(x2))

+
∂3 f
∂ϕ3 (x1, ϕ(x1), θ(x1))

∂ f
∂ϕ
(x2, ϕ(x2), θ(x2)))Kϕ,1,1Kϕ,1,3

+h4
ϕ(
∂ f
∂ϕ
(x1, ϕ(x1), θ(x1))

∂5 f
∂ϕ3 (x2, ϕ(x2), θ(x2))

+
∂5 f
∂ϕ5 (x1, ϕ(x1), θ(x1))

∂ f
∂ϕ
(x2, ϕ(x2), θ(x2)))Kϕ,1,1Kϕ,1,5

+h4
ϕ
∂3 f
∂ϕ3 (x1, ϕ(x1), θ(x1))

∂3 f
∂ϕ3 (x2, ϕ(x2), θ(x2))K

2
ϕ,1,3

]
,

where Kϕ,m,l =
∫
ϕlK(m)(ϕ)dϕ. Recall that this expression is calculated on x1 = x∗(s1), x2 =

x∗(s2), where
∂ f
∂ϕ is zero. i.e., recall the equations:

∂

∂ϕ
f (x, ϕ∗(x), θ∗(x)) =

∂

∂θ
f (x, ϕ∗(x), θ∗(x)) = 0,

∂2

∂ϕ2 f (x, ϕ∗(x), θ∗(x)) < 0,
∂2

∂θ2 f (x, ϕ∗(x), θ∗(x)) < 0,

∂2

∂ϕ2 f (x, ϕ∗(x), θ∗(x))
∂2

∂θ2 f (x, ϕ∗(x), θ∗(x)) − (
∂2

∂θ∂ϕ
f (x, ϕ∗(x), θ∗(x)))2 > 0.

Then only the last summand in the first summand of the (1, 1)-component of (6.1) is nonzero.

As a result, the (1, 1)-component of (6.1) is:

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

)
h4
ϕ
∂3 f
∂ϕ3 (x1, ϕ(x1), θ(x1))

∂3 f
∂ϕ3 (x2, ϕ(x2), θ(x2))K

2
ϕ,1,3

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

]
Ψθ

(
θ(x2) − θ(x1)

hθ

)
×(−1)Ψ′′ϕ

(
ϕ(x2) − ϕ(x1)

hϕ

)
S(x1, ϕ(x1), θ(x1))S(x2, ϕ(x1), θ(x1))

1
hθ

1
h3
ϕ

25
81NϕNθ

.
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The (2, 2)-component of (6.1) is easily obtained from the above by the exchange of ϕ and θ, so

it is

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

)
h4
θ

∂3 f
∂θ3 (x1, ϕ(x1), θ(x1))

∂3 f
∂θ3 (x2, ϕ(x2), θ(x2))K

2
θ,1,3

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

]
Ψϕ

(
ϕ(x2) − ϕ(x1)

hϕ

)
×(−1)Ψ′′θ

(
θ(x2) − θ(x1)

hθ

)
S(x1, ϕ(x1), θ(x1))S(x2, ϕ(x1), θ(x1))

1
h3
θ

1
hϕ

25
81NϕNθ

.

Now consider the (1, 2)-component of (6.1):

Cov(
∂ f̂n(x∗(s1))

∂ϕ
,
∂ f̂n(x∗(s2))

∂θ
)

=

2Nθ∑
m1=0

2Nϕ∑
l1=0

n∑
k1=1

2Nθ∑
m2=0

2Nϕ∑
l2=0

n∑
k2=1

am1am2
h3
θ

bl1bl2
h3
ϕ

1
n2h6

n

Kθ

(
θ(x) − θm1

hθ

)
K′θ

(
θ(x) − θm2

hθ

)
K′ϕ

(ϕ(x) − ϕl1
hϕ

)
Kϕ

(ϕ(x) − ϕl2
hϕ

)
Cov(K

( x − Xk1
hn

)
Yk1l1m1,K

( x − Xk2
hn

)
Yk2l2m2),

which is

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) 2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1am2
h3
θ

bl1bl2
h3
ϕ

Kθ

(
θ(x1) − θm1

hθ

)
K′θ

(
θ(x2) − θm2

hθ

)
×K′ϕ

(ϕ(x1) − ϕl1
hϕ

)
Kϕ

(ϕ(x2) − ϕl2
hϕ

)
f (x1, ϕl1, θm1) f (x2, ϕl2, θm2)

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

∑
k1,k2 Σk1k2

n2

] 2Nθ∑
m1=0

2Nϕ∑
l1=0

a2
m1
h3
θ

b2
l1

h3
ϕ

Kθ

(
θ(x1) − θm1

hθ

)
×K′θ

(
θ(x2) − θm1

hθ

)
K′ϕ

(ϕ(x1) − ϕl1
hϕ

)
Kϕ

(ϕ(x2) − ϕl1
hϕ

)
S(x1, ϕl1, θm1)S(x2, ϕl1, θm1).

Then applying Simpson’s approximation to the last expression we have:
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1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) ∫ ϕ+chϕ

ϕ−chϕ

∫ ϕ+chϕ

ϕ−chϕ

∫ θ−chθ

θ−chθ

∫ θ−chθ

θ−chθ

1
h3
θ

1
h3
ϕ

Kθ

(
θ(x1) − u1

hθ

)
K′θ

(
θ(x2) − u2

hθ

)
K′ϕ

(
ϕ(x1) − v1

hϕ

)
Kϕ

(
ϕ(x2) − v2

hϕ

)
f (x1, v1,u1) f (x2, v2,u2)dv1dv2du1du2

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

] ∫ ϕ+chϕ

ϕ−chϕ

∫ θ−chθ

θ−chθ

1
h3
θ

1
h3
ϕ

Kθ

(
θ(x1) − u

hθ

)
K′θ

(
θ(x2) − u

hθ

)
K′ϕ

(
ϕ(x1) − v

hϕ

)
Kϕ

(
ϕ(x2) − v

hϕ

)
S(x1, v,u)S(x2, v,u)dvdu

25
81NϕNθ

.

Introduce

y1 =
θ(x1) − u1

hθ
, y2 =

θ(x2) − u2
hθ

, z1 =
ϕ(x1) − v1

hϕ
z2 =

ϕ(x2) − v2
hϕ

as well as

z =
θ(x1) − u

hθ
, y =

ϕ(x1) − v
hϕ

.

Then by substitution the above becomes:

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

) ∫ ∫ ∫ ∫
1

hϕhθ
Kθ(y1)K

′
θ(y2)K

′
ϕ(z1)Kϕ(z2)

f (x1, ϕ(x1) − z1hϕ, θ(x1) − y1hθ) f (x2, ϕ(x2) − z2hϕ, θ(x2) − y2hθ)dz1dz2dy1dy2

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

] ∫ ∫
1
h2
θ

1
h2
ϕ

Kθ(z)K
′
θ

(
z +

θ(x2) − θ(x1)
hθ

)
K′ϕ(y)Kϕ

(
y +

ϕ(x2) − ϕ(x1)
hϕ

)
S(x1, ϕ(x1) − zhϕ, θ(x1) − yhθ)S(x2, ϕ(x1) − zhϕ, θ(x1) − yhθ)dzdy

25
81NϕNθ

.

Finally, the (1, 2)-component of (6.1) is:
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1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

)
h2
ϕh2

θ

∂3 f
∂ϕ3 (x1, ϕ(x1), θ(x1))

∂3 f
∂θ3 (x2, ϕ(x2), θ(x2))Kϕ,1,3Kθ,1,3

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

]
Ψ
′
θ

(
θ(x2) − θ(x1)

hθ

)
Ψ
′
ϕ

(
ϕ(x2) − ϕ(x1)

hϕ

)
S(x1, ϕ(x1), θ(x1))S(x2, ϕ(x1), θ(x1))

1
h2
θ

1
h2
ϕ

25
81NϕNθ

.

Similarly, the (2, 1)-component of (6.1) is

1 +O(h2
n)

nh3
n
Ψ

(
x1 − x2

hn

)
h2
ϕh2

θ

∂3 f
∂θ3 (x1, ϕ(x1), θ(x1))

∂3 f
∂ϕ3 (x2, ϕ(x2), θ(x2))Kϕ,1,3Kθ,1,3

+

[
1 +O(h2

n)

nh3
n
Ψ

(
x1 − x2

hn

)
+

1 +O(h2
n)

n2

∑
k1,k2

Σk1k2

]
Ψ
′
θ

(
θ(x2) − θ(x1)

hθ

)
Ψ
′
ϕ

(
ϕ(x2) − ϕ(x1)

hϕ

)
S(x1, ϕ(x1), θ(x1))S(x2, ϕ(x1), θ(x1))

1
h2
θ

1
h2
ϕ

25
81NϕNθ

.

To balance both terms with f and S in the covariance matrix (6.1) we need the following

assumptions :
1 +O(h2

n)

n2

∑
k1,k2

Σk1k2 =
κ

nh3
n

and

Nϕ = Nθ = N, hϕ = hθ = h,

where κ > 0 is a constant.

Now we plug in the expression for (6.1) into the covariance function of the process Ẑn. First

we define the following (which is a slight restatement for convenience):

Recall:

Ψ(z) =
∫

K(u)K(z + u)du, Ψ′(z) =
∫

K(u)K′(z + u)du,

and the integration by parts gives

Ψ
′′(z) = −

∫
K′(u)K′(z + u)du.
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For instance, for a standard Gaussian kernel Ψ(z) = e
−
|z |2
4

(2
√
π)3

. Now out of kernels Kϕ and Kθ

build the matrix

Ψ0 =

(
Ψ′′ϕ(0)Ψθ(0) Ψ′ϕ(0)Ψ′θ(0)

Ψ′ϕ(0)Ψ′θ(0) Ψϕ(0)Ψ
′′
θ
(0)

)
.

If both Kϕ and Kθ are Gaussian then Ψ0 = −diag( 1
8π ,

1
8π ). For v ∈ R

3 define

ψ(v) =

∫
R
Ψ(−τv)dτ,

which is 1
4π |v | for a standard Gaussian kernel. Also introduce

Ψ0(v, x) =
∫
(Ψ(−vτ) + κ) ×(

−Ψ′′ϕ(
∂ϕ∗

∂x (x)vτ)Ψθ(
∂θ∗

∂x (x)vτ) Ψ′ϕ(
∂ϕ∗

∂x (x)vτ)Ψ
′
θ
(∂θ
∗

∂x (x)vτ)

Ψ′ϕ(
∂ϕ∗

∂x (x)vτ)Ψ
′
θ
(∂θ
∗

∂x (x)vτ) −Ψϕ(
∂ϕ∗

∂x (x)vτ)Ψ
′′
θ
(∂θ
∗

∂x (x)vτ)

)
dτ.

In case of a standard Gaussian kernel

Ψ0(v, x) = −
1

D(x)

( 1 +
( ∂θ∗
∂x (x)

)2
−
( ∂ϕ∗
∂x (x)

) ( ∂θ∗
∂x (x)

)
−
( ∂ϕ∗
∂x (x)

) ( ∂θ∗
∂x (x)

)
1 +

( ∂ϕ∗
∂x (x)

)2 )
,

where

D(x) = 64π2
(
1 +

(
∂ϕ∗

∂x
(x)

)2
+

(
∂θ∗

∂x
(x)

)2)3/2
.

Also, define

M(s) =

( − sin θ∗ sin ϕ∗ cos θ∗ cos ϕ∗

sin θ∗ cos ϕ∗ cos θ∗ sin ϕ∗

0 − sin θ∗

)�����
x∗(s)

and

F(x, ϕ, θ) =

( ∂2
∂ϕ2 f ∂2

∂ϕ∂θ f

∂2
∂ϕ∂θ f ∂2

∂θ2
f

)����
(x,ϕ,θ)

.

Green’s function U(t, s) is defined as the solution of the PDE

∂U(t, s)
∂t

= ∇v∗(x∗(t))U(t, s),U(s, s) = I ∀s > 0,
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where

∇v(x∗(s)) = −M(s)F−1(x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))

(
∂2
∂ϕ∂x f (x∗(s))

∂2
∂θ∂x f (x∗(s))

)
.

Then back to the covariance function of the process Ẑn we combine the above calculations using

these definitions:

Cov(Ẑn(t1), Ẑn(t2)) =
∫ ∫

I(s1 ∈ [0, t1])I(s2 ∈ [0, t2])U(t1, s1)M(s1)F
−1(x∗(s1)){

h4 1 +O(h2
n)

nh3
n
Ψ

(
x∗(s1) − x∗(s2)

hn

)
G(x∗(s1))G

∗(x∗(s2))

+
1

N2h4
1 +O(h2

n)

nh3
n

[
Ψ

(
x∗(s1) − x∗(s2)

hn

)
+ κ

]
25
81
Ψ(s1, s2)

×S(x∗(s1), ϕ
∗(x∗(s1)), θ

∗(x∗(s1)))S(x
∗(s2), ϕ

∗(x∗(s1)), θ
∗(x∗(s1)))

}
M∗(s2)(F

∗)−1(x∗(s2))U
∗(t2, s2)ds1ds2,

where

G(x) :=
( ∂3 f (x)

∂ϕ3 Kϕ,1,3
∂3 f (x)
∂θ3

Kθ,1,3

)
and

Ψ(s1, s2) :=
(
−Ψ′′ϕ(

∆ϕ∗

hϕ
)Ψθ(

∆θ∗

hθ
) Ψ′ϕ(

∆ϕ∗

hϕ
)Ψ′

θ
(∆θ
∗

hθ
)

Ψ′ϕ(
∆ϕ∗

hϕ
)Ψ′

θ
(∆θ
∗

hθ
) −Ψϕ(

∆ϕ∗

hϕ
)Ψ′′

θ
(∆θ
∗

hθ
)

)
with

∆ϕ∗ = ϕ∗(x∗(s2)) − ϕ
∗(x∗(s1)), ∆θ

∗ = θ∗(x∗(s2)) − θ
∗(x∗(s1)).

Now consider the change of variable s2 = s1 + τh with ds2 = hdτ. Then we have proven the

following result:
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Lemma 8.

Cov(Ẑn(t1), Ẑn(t2)) =
1 +O(h2

n)

nh2
n

∫ t1∧t2

0
U(t1, s)M(s)F

−1(x∗(s)){
h4ψ

(
dx∗

dt
(s)

)
G(x∗(s))G∗(x∗(s)) +

1
N2h4

25
81
Ψ0

(
dx∗

dt
(s), x∗(s)

)
×S2(x∗(s), ϕ∗(x∗(s)), θ∗(x∗(s)))

}
M∗(s)(F∗)−1(x∗(s))U∗(t2, s)ds.

6.3 Mean Squared Error of the Process Ẑn

Proposition 6. The optimal bandwidths (hn, h) that minimize the MSE of Ẑn are attained under

either one of the following cases:

(I) hn = O(n−1/2), h = O(n−1/2), N ≥ O(n2) as n→∞.

or

(I I) hn = O(N−1/5n−1/10), h = O(N−1/5n−1/10), N = o(n2) as n→∞.

Remark. In practice in HARDI the number of gradient directions N is much smaller than the

number of voxels n, so we have the case (I I).

Proof. TheMSE has the form c1h4
n+c2h4+c3h2h2

n+
c4h4

nh2
n
+

c5
nh2

nN2h4 . Take partial derivatives

with respect to hn and h and set them to zero:

4c1h3
n + 2c3h2hn −

2c4h4

nh3
n
−

2c5
nh3

nN2h4
= 0

and

4c2h3 + 2c3hh2
n +

4c4h3

nh2
n
−

4c5
nh2

nN2h5
= 0.

Consider the second equation:

c3nhh4
n + 2c2nh3h2

n + 2c4h3 −
2c5

N2h5 = 0.

It is quadratic with respect to h2
n. Then

h2
n =

−2c2nh3 ±

√
4c2

2n2h6 − 4c3nh(2c4h3 −
2c5

N2h5 )

2c3nh
,
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which is

h2
n ≈ −

c2
c3

h2 ±
c2
c3

h2 ±
2c5

c2nh8N2 ∓
2c4
c2n

up to terms of smaller order. Since c2/c3 > 0 we take h2
n ≈

2c5
c2nh8N2 −

2c4
c2n .

Consider 2 cases:

(I) N2h8 → C ∈ (0,+∞], h2
n = O

(
1
n

)
and

(I I) N2h8 → 0, h2
n = O

(
1

nh8N2

)
.

Now we consider the first equation with respect to h for case (I):

2c1n−3/2 + c3h2n−1/2 − c4h4n1/2 −
c5n1/2

N2h4 = 0

or equivalently

2c1n−2 + c3h2n−1 − c4h4 −
c5h4

C
= 0

and furthermore with positive constants c, c0

h4 − c0h2n−1 − cn−2 = 0,

which implies h2 = O(1n ). As a result case (I) becomes

(I) hn = O(n−1/2), h = O(n−1/2), N ≥ O(n2) as n→∞.

Now consider case (I I). The first equation with respect to h is

2c1
n3h24N6 +

c3
n2h14N4 −

c4h4

n
−

c5
nN2h4 = 0,

which is equivalent up to terms of higher order with Nh4 = ε → 0 and h = ε1/4N−1/4

−2c1N − nN1/2ε5/2 + c5n2ε5 = 0,

which is quadratic in ε5/2. Then ε = O(N1/5n−2/5). As a result case (I I) becomes

(I I) hn = O(N−1/5n−1/10), h = O(N−1/5n−1/10), N = o(n2) as n→∞,
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which completes the proof of the proposition.

Remark. From the proof it is clear that in case (I I) the second part of the covariance of Ẑn

with S is the leading term, while the first part is of smaller order. Also the bias squared is of smaller

order as well.

6.4 Asymptotic normality of the Ẑn process

First we need to establish consistency, which will help justify the approximation of X̂∗n (t)− x∗(t)

by Ẑn.

Lemma 9. Suppose that (I) or (II) holds. Then uniformly in t ∈ [0,T], X̂∗n (t) is a consistent

estimator of x∗(t). That is,

sup
t∈[0,T]

| X̂∗n (t) − x∗(t)|
P
→ 0 as n→∞.

In the following proof we use the Gronwall-Bellman Inequality and formulate it before for

completeness: Let F,G be non-negative continuous functions in [a, b] and D ≥ 0 be a constant.

Suppose that for all t ∈ [a, b),

G(t) ≤ D +
∫ t

a
F(s)G(s)ds

Then for all t ∈ [a, b]

G(t) ≤ Dexp

{ ∫ t

a
F(s)ds

}
Proof. Now,

x̂∗n(t) − x∗(t) =
∫ t

0
(v̂∗n(x̂

∗
n(s)) − v

∗(x∗(s)))ds

=

∫ t

0
(v̂∗n − v

∗)(x̂∗n(s))ds +
∫ t

0
(v∗(x̂∗n(s)) − v

∗(x∗(s)))ds

=

∫ t

0
(v̂∗n − v

∗)(x̂∗n(s))ds +
∫ t

0
∇v∗(x∗(s))(x̂∗n(s) − x∗(s))ds +O

(
sup

t∈[0,T]
| x̂∗n(t) − x∗(t)|2

)
.

=

∫ t

0
(v̂∗n − v

∗)(x∗(s))ds +
∫ t

0
(v̂∗n − v

∗)(x̂∗n(s) − x∗(s))ds +
∫ t

0
∇v∗(x∗(s))(x̂∗n(s) − x∗(s))ds

+O
(

sup
t∈[0,T]

| x̂∗n(t) − x∗(t)|2
)
.
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Let O
(

sup
t∈[0,T]

| x̂∗n(t) − x∗(t)|2
)
= rn Since,

∫ t

0
(v̂∗n − v

∗)(x̂∗n(s) − x∗(s))ds =
∫ t

0

∫ 1

0
(v̂∗n − v

∗)′(λ x̂∗n(s) + (1 − λ)x∗(s))(x̂∗n(s) − x∗(s))ds =

= o(| x̂∗n(s) − x∗(s)|) (6.2)

We have

x̂∗n(t) − x∗(t) =
∫ t

0
(v̂∗n − v

∗)(x∗(s))ds +
∫ t

0
∇v∗(x∗(s))(x̂∗n(s) − x∗(s))ds + rn

(6.3)

Now,

zn(t) =
∫ t

0
∇v∗(x∗(s))zn(s)ds +

∫ t

0
(v̂∗n − v

∗)(x∗(s))ds

So that

x̂∗n(t) − x∗(t) − zn(t) =
∫ t

0
∇v∗(x∗(s))[(x̂∗n(s) − x∗(s)) − zn(s)]ds + rn

Then by the Gronwall-Bellman inequality

| | x̂∗n(t) − x∗(t) − zn(t)| | ≤ | |rn | |exp

{ ∫ t

0
∇v∗(x∗(s))ds

}
Now,

| Z̃n(t)| ≤
∫ t

0

�����U(t, s)M(s)F−1(x∗(s))

(
∂
∂ϕ ( f̂n − f )(x∗(s))

∂
∂θ ( f̂n − f )(x∗(s))

)�����ds

≤ ||A| |
∫ t

0

�����
(

∂
∂ϕ ( f̂n − f )(x∗(s))

∂
∂θ ( f̂n − f )(x∗(s))

)�����ds

(6.4)

Then

sup
t∈[0,T]

| Z̃n(t)| ≤ | |A| |T sup
x∈G

�����
(

∂
∂ϕ ( f̂n − f )(x)

∂
∂θ ( f̂n − f )(x)

)�����
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Note | |A| | is the operator norm and we will denote | | · | |∞ = sup
x∈G
| · | as usual for the supremum

norm. By GG proposition 3.1 (see [14]) we have�������� ∂∂ϕ f̂n(x, ϕ, θ) − E
∂

∂ϕ
f̂n(x, ϕ, θ)

��������
∞

= O

(√
log(h)
nN2h6

)
a.s.

Thus �������� ∂∂ϕ f (x, ϕ, θ) −
∂

∂ϕ
f̂n(x, ϕ, θ)

��������
∞

= O

(√
log(h)
nN2h6

)
a.s.

and analogously

�������� ∂∂θ f (x, ϕ, θ) −
∂

∂θ
f̂n(x, ϕ, θ)

��������
∞

= O

(√
log(h)
nN2h6

)
a.s.

To control the error term, we note that(
∆ϕ

∆θ

)
= F−1(x, ϕ∗(x), θ∗(x))

(
∂
∂ϕ ( f̂n − f )(x)

∂
∂θ ( f̂n − f )(x)

)
+O(∆2

ϕ + ∆
2
θ)

And

f̂ ′nϕ(x, ϕ
∗(x∗), θ∗(x∗)) − f ′ϕ(x, ϕ

∗(x∗), θ∗(x∗)) =

f̂ ′′nϕϕ(x, ϕ
∗(x∗), θ∗(x∗))∆ϕ + f̂ ′′nϕθ(x, ϕ

∗(x∗), θ∗(x∗))∆θ +O(∆2
ϕ + ∆

2
θ)

(6.5)

So we may rewrite it as: (
∆ϕ

∆θ

)
= −F−1(x, ϕ∗(x), θ∗(x))

(
∂
∂ϕ ( f̂n − f )(x)

∂
∂θ ( f̂n − f )(x)

)
+O

(
∂

∂θ
( f̂n − f )(x)

)
+O

(
∂

∂ϕ
( f̂n − f )(x)

)
Regarding the second order derivatives of f we have by GG proposition 3.1�������� ∂2

∂ϕ2 f (x, ϕ, θ) −
∂2

∂ϕ2 f̂n(x, ϕ, θ)
��������
∞

= O

(√
log(h)
nN2h7

)
a.s.

and analogously
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�������� ∂2

∂θ2 f (x, ϕ, θ) −
∂

∂θ
f̂n(x, ϕ, θ)

��������
∞

= O

(√
log(h)
nN2h7

)
a.s.

So that the terms governing

O
(
∆

2
ϕ + ∆

2
θ + ∆ϕ

���� ∂2

∂ϕ2 ( f̂ − f )
���� + ∆θ ���� ∂2

∂θ2 ( f̂ − f )
���� + (∆ϕ + ∆θ)���� ∂2

∂ϕ∂θ
( f̂ − f )

����)
have almost sure convergence to zero.

Thus, as n→∞

sup
t∈[0,T]

| x̂∗n(t) − x∗(t)|
P
→ 0

�

We now prove the asymptotic normality of the normalized deviation process Ẑn(t) in the space

C[0,T]. First, we have to establish the convergence of the finite dimensional distributions of

this process for general functions. To this end we will establish that the CLT holds by checking

Lyapunov’s condition and prove asymptotical equicontinuity of the process Ẑn(t).

Theorem 3. Under case (I),

n(X̂n(t) − x(t))
D
⇒ G(t)

in the spaceC[0,T], where the Gaussian process G has mean function µ(t) and covariance function

C(t1, t2) introduced in the next section.

Under case (I I),

n1/5N2/5(X̂n(t) − x(t))
D
⇒ G0(t)

in C[0,T], where the centered Gaussian process G0 has covariance function C0(t1, t2) introduced

in the next section.

72



6.4.1 Lyapunov’s Condition

Under assumption hn = hϕ = hθ one can write

Ẑn(t) = −
1

nh6

n∑
k=1

∫ t

0
U(t, s)M(s)F−1(x∗(s))

2Nθ∑
m=0

2Nϕ∑
l=0

K
(

x∗(s) − Xk
h

)
ambl

×[ f (Xk, ϕl, θm) + S(Xk, ϕl, θm)εklm]

( Kθ

(
θ(x∗(s))−θm

h

)
K′ϕ

(
ϕ(x∗(s))−ϕl

h

)
K′
θ

(
θ(x∗(s))−θm

h

)
Kϕ

(
ϕ(x∗(s))−ϕl

h

) )
ds

=:
1
n

n∑
k=1

ηn,j

For the case (I) one has to establish the following convergence:

n∑
k=1
E|ηn,j − Eηn,j |

4 → 0,

which is the Lyapunov’s condition for the process nẐn.

For the case (II) one has to establish the following convergence:

[n−4/5N2/5]4
n∑

k=1
E|ηn,j − Eηn,j |

4 → 0,

which is the Lyapunov’s condition for the process n1/5N2/5 Ẑn.
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Consider E|ηn,k − Eηn,k |
4. It is bounded by

1
h24E

[ ∫ t

0

∫ t

0

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2{
K

(
x∗(s1) − Xk

h

)
( f (Xk, ϕl1, θm1) + S(Xk, ϕl1, θm1)εkl1m1)

−EK
(

x∗(s1) − Xk
h

)
( f (Xk, ϕl1, θm1) + S(Xk, ϕl1, θm1)εkl1m1)

}
{
K

(
x∗(s2) − Xk

h

)
( f (Xk, ϕl2, θm2) + S(Xk, ϕl2, θm2)εkl2m2)

−EK
(

x∗(s2) − Xk
h

)
( f (Xk, ϕl2, θm2) + S(Xk, ϕl2, θm2)εkl2m2)

}
(
Kθ

(
θ(x∗(s1)) − θm1

h

)
K′ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
,K′θ

(
θ(x∗s1) − θm1

h

)
Kϕ

(ϕ(x∗(s1)) − ϕl1
h

))

B(s1, t1, s2, t2)

( Kθ

(
θ(x∗(s2))−θm2

h

)
K′ϕ

(
ϕ(x∗(s2))−ϕl2

h

)
K′
θ

(
θ(x∗s2)−θm2

h

)
Kϕ

(
ϕ(x∗(s2))−ϕl2

h

) )
ds1ds2

]2

where B(s1, t1, s2, t2) = (F−1(x∗(s1)))
∗M∗(x∗(s1))U∗(t1, s1)U(t2, s2)M(x∗(s2))F−1(x∗(s2)) is a 2×

2 matrix.

The expression after Y ’s is a linear combination of 4 summands of the type

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
with bounded coefficients. Here K(r) stands for the r-th order derivative. One gets all 16 summands

for the squared expression since r1,r2,r3,r4 take values 0 and 1, which are all bounded in the same
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way. So it is enough to consider one of them. Thus, E|ηn,k − Eηn,k |
4 is bounded by

C
h24E

∫ t

0

∫ t

0

∫ t

0

∫ t

0

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

2Nθ∑
m3=0

2Nϕ∑
l3=0

2Nθ∑
m4=0

2Nϕ∑
l4=0

am1bl1am2bl2am3bl3am4bl4

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
K
(r3)
θ

(
θ(x∗(s3)) − θm3

h

)
K
(1−r3)
ϕ

(ϕ(x∗(s3)) − ϕl3
h

)
K
(r4)
θ

(
θ(x∗(s4)) − θm4

h

)
K
(1−r4)
ϕ

(ϕ(x∗(s4)) − ϕl4
h

)
[
6K

(
x∗(s1) − Xk

h

)
S(Xk, ϕl1, θm1)K

(
x∗(s2) − Xk

h

)
S(Xk, ϕl2, θm2)

[K
(

x∗(s3) − Xk
h

)
f (Xk, ϕl3, θm3) − EK

(
x∗(s3) − Xk

h

)
f (Xk, ϕl3, θm3)]δl1=l2,m1=m2

×[K
(

x∗(s4) − Xk
h

)
f (Xk, ϕl4, θm4) − EK

(
x∗(s4) − Xk

h

)
f (Xk, ϕl4, θm4)]δl3=l4,m3=m4

+K
(

x∗(s1) − Xk
h

)
K

(
x∗(s2) − Xk

h

)
K

(
x∗(s3) − Xk

h

)
K

(
x∗(s4) − Xk

h

)
S(Xk, ϕl1, θm1)S(Xk, ϕl2, θm2)S(Xk, ϕl3, θm3)S(Xk, ϕl4, θm4)

×(δl1=l2=l3=l4,m1=m2=m3=m4 + 6δl1=l2,l3=l4,m1=m2,m3=m4)

+[K
(

x∗(s1) − Xk
h

)
f (Xk, ϕl1, θm1) − EK

(
x∗(s1) − Xk

h

)
f (Xk, ϕl1, θm1)]

×[K
(

x∗(s2) − Xk
h

)
f (Xk, ϕl2, θm2) − EK

(
x∗(s2) − Xk

h

)
f (Xk, ϕl2, θm2)]

×[K
(

x∗(s3) − Xk
h

)
f (Xk, ϕl3, θm3) − EK

(
x∗(s3) − Xk

h

)
f (Xk, ϕl3, θm3)]

×[K
(

x∗(s4) − Xk
h

)
f (Xk, ϕl4, θm4) − EK

(
x∗(s4) − Xk

h

)
f (Xk, ϕl4, θm4)]

×(δl1=l2=l3=l4,m1=m2=m3=m4 + 6δl1=l2,l3=l4,m1=m2,m3=m4)

]
ds1ds2ds3ds4.
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This is further bounded by

Ch3

h24

∫ t

0

∫ t

0

∫ t

0

∫ t

0

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

a2
m1b2

l1
a2

m2b2
l2

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm1

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl1
h

)
K
(r3)
θ

(
θ(x∗(s3)) − θm2

h

)
K
(1−r3)
ϕ

(ϕ(x∗(s3)) − ϕl2
h

)
K
(r4)
θ

(
θ(x∗(s4)) − θm2

h

)
K
(1−r4)
ϕ

(ϕ(x∗(s4)) − ϕl2
h

)
Ψ4

(
x∗(s2) − x∗(s1)

h
,

x∗(s3) − x∗(s1)
h

,
x∗(s4) − x∗(s1)

h

)
f 2(x∗(s1), ϕl1, θm1)

×[ f 2(x∗(s1), ϕl2, θm2) + S2(x∗(s1), ϕl2, θm2)]ds1ds2ds3ds4,

where Ψ4(z1, z2, z3) =
∫

K(u)K(u + z1)K(u + z2)K(u + z3)du. Now using the Simpson’s scheme

and the proposition we bound the above by

Ch3

h24N4

∫ t

0

∫ t

0

∫ t

0

∫ t

0

∫ ϕ(x∗(s1))+ch

ϕ(x∗(s1))−ch

∫ ϕ(x∗(s2))+ch

ϕ(x∗(s2))−ch

∫ θ(x∗(s1))+ch

θ(x∗(s1))−ch

∫ θ(x∗(s2))+ch

θ(x∗(s2))−ch

K
(r1)
θ

(
θ(x∗(s1)) − θ1

h

)
K
(1−r1)
ϕ

(
ϕ(x∗(s1)) − ϕ1

h

)
K
(r2)
θ

(
θ(x∗(s2)) − θ1

h

)
K
(1−r2)
ϕ

(
ϕ(x∗(s2)) − ϕ1

h

)
K
(r3)
θ

(
θ(x∗(s3)) − θ2

h

)
K
(1−r3)
ϕ

(
ϕ(x∗(s3)) − ϕ2

h

)
K
(r4)
θ

(
θ(x∗(s4)) − θ2

h

)
K
(1−r4)
ϕ

(
ϕ(x∗(s4)) − ϕ2

h

)
Ψ4

(
x∗(s2) − x∗(s1)

h
,

x∗(s3) − x∗(s1)
h

,
x∗(s4) − x∗(s1)

h

)
f 2(x∗(s1), ϕ1, θ1)

×[ f 2(x∗(s1), ϕ2, θ2) + S2(x∗(s1), ϕ2, θ2)]dϕ1dϕ2dθ1dθ2ds1ds2ds3ds4,
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then by change of variable we have

Ch7

h24N4

∫ t

0

∫ t

0

∫ t

0

∫ t

0

∫ c

−c

∫ c

−c

∫ c

−c

∫ c

−c

K
(r1)
θ
(u1)K

(1−r1)
ϕ (v1)K

(r3)
θ
(u2)K

(1−r3)
ϕ (v2)

K
(r2)
θ

(
u1 +

θ(x∗(s2)) − θ(x∗(s1))
h

)
K
(1−r2)
ϕ

(
v1 +

ϕ(x∗(s2)) − ϕ(x∗(s1))
h

)
K
(r4)
θ

(
u2 +

θ(x∗(s4)) − θ(x∗(s3))
h

)
K
(1−r4)
ϕ

(
v2 +

ϕ(x∗(s4)) − ϕ(x∗(s3))
h

)
Ψ4

(
x∗(s2) − x∗(s1)

h
,

x∗(s3) − x∗(s1)
h

,
x∗(s4) − x∗(s1)

h

)
f 2(x∗(s1), ϕ(x

∗(s1)) − hu1, θ(x
∗(s1)) − hv1)

×[ f 2(x∗(s1), ϕ(x
∗(s3)) − hu2, θ(x

∗(s3)) − hv2)

+S2(x∗(s1), ϕ(x
∗(s3)) − hu2, θ(x

∗(s3)) − hv2)]du1du2dv1dv2ds1ds2ds3ds4,

By a linear approximation and Defining Ψθ,r1,r2 we have:

Ch7

h24N4

∫ t

0

∫ t

0

∫ t

0

∫ t

0
Ψ4

(
x∗(s2) − x∗(s1)

h
,

x∗(s3) − x∗(s1)
h

,
x∗(s4) − x∗(s1)

h

)
Ψθ,r1,r2

(
θ(x∗(s2)) − θ(x∗(s1))

h

)
Ψθ,r3,r4

(
θ(x∗(s4)) − θ(x∗(s3))

h

)
Ψϕ,r1,r2

(
ϕ(x∗(s2)) − ϕ(x∗(s1))

h

)
Ψϕ,r3,r4

(
θ(x∗(s4)) − θ(x∗(s3))

h

)
f 2(x∗(s1), ϕ(x

∗(s1)), θ(x
∗(s1)))

×[ f 2(x∗(s1), ϕ(x
∗(s3)), θ(x

∗(s3)))

+S2(x∗(s1), ϕ(x
∗(s3)), θ(x

∗(s3)))](1 + o(h))ds1ds2ds3ds4,
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By a change of variable, si = s1 + τih, the above becomes:

Ch10(1 + o(1))
h24N4

∫ t

0
f 2(x∗(s1), ϕ(x

∗(s1)), θ(x
∗(s1)))[ f

2(x∗(s1), ϕ(x
∗(s3)), θ(x

∗(s3)))

+S2(x∗(s1), ϕ(x
∗(s3)), θ(x

∗(s3)))]∫ ∫ ∫
Ψ4

(
x∗(s2) − x∗(s1)

s2 − s1
τ2,

x∗(s3) − x∗(s1)
s3 − s1

τ3,
x∗(s4) − x∗(s1)

s4 − s1
τ4

)
Ψθ,r1,r2

(
θ(x∗(s2)) − θ(x∗(s1))

s2 − s1
τ2

)
Ψθ,r3,r4

(
θ(x∗(s4)) − θ(x∗(s3))

s4 − s3
(τ4 − τ3)

)
Ψϕ,r1,r2

(
ϕ(x∗(s2)) − ϕ(x∗(s1))

s2 − s1
τ2

)
Ψϕ,r3,r4

(
θ(x∗(s4)) − θ(x∗(s3))

s4 − s3
(τ4 − τ3)

)
ds1dτ2dτ3dτ4

As h→ 0, by the boundedness of the integrands on their bounded support and their continuity

on their support, we have by the LDCT∫ ∫ ∫
Ψ4

(
x∗(s2) − x∗(s1)

s2 − s1
τ2,

x∗(s3) − x∗(s1)
s3 − s1

τ3,
x∗(s4) − x∗(s1)

s4 − s1
τ4

)
Ψθ,r1,r2

(
θ(x∗(s2)) − θ(x∗(s1))

s2 − s1
τ2

)
Ψθ,r3,r4

(
θ(x∗(s4)) − θ(x∗(s3))

s4 − s3
(τ4 − τ3)

)
Ψϕ,r1,r2

(
ϕ(x∗(s2)) − ϕ(x∗(s1))

s2 − s1
τ2

)
Ψϕ,r3,r4

(
θ(x∗(s4)) − θ(x∗(s3))

s4 − s3
(τ4 − τ3)

)
dτ2dτ3dτ4

→

∫ ∫ ∫
Ψ4

(
v(x∗(s1))τ2, v(x

∗(s1))τ3, v(x
∗(s1))τ4

)
Ψθ,r1,r2

(
d
dt
θ(x∗(s1))τ2

)
Ψθ,r3,r4

(
d
dt
θ(x∗(s3))(τ4 − τ3)

)
Ψϕ,r1,r2

(
d
dt
θ(x∗(s1))τ2

)
Ψϕ,r3,r4

(
d
dt
θ(x∗(s3))(τ4 − τ3)

)
dτ2dτ3dτ4 (6.6)

And so

E|ηn,k − Eηn,k |
4 ≤

Ch10(1 + o(1))
h24N4 =

C
nMn

(6.7)

Therefore
n∑

k=1
E|ηn,j − Eηn,j |

4 ≤
C
Mn
→ 0
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For case (II) we have h = O(N−1/5n−1/10) and N2 = n2αn with αn → 0. Then following the

calculation done above (where h was arbitrary):

E|ηn,k − Eηn,k |
4 ≤

Ch10(1 + o(1))
h24N4 =

C(1 + o(1))
(n2αn)6/5n−7/5 =

C(1 + o(1))

nα6/5
n

(6.8)

and

[n−4/5N2/5]4
n∑

k=1
E|ηn,j − Eηn,j |

4 ≤
α

8/5
n

α
6/5
n

→ 0

6.4.2 Asymptotic Equicontinuity of the Process Ẑn

Define Ẑn(t) := Wn(gt(s)), gt(s) = I[0,t]U(t, s)M(s)F
−1(x∗(s)) Ξ(t1). Then

Ẑn(t) = −
∫

gt(s)

(
∂
∂ϕ ( f̂n − f )

∂
∂θ ( f̂n − f )

)����
x∗(s)

ds.

and

E|nẐn(t) − nEẐn(t)|4 = E
���� n∑

k=1
ηn,k − Eηn,k

����4
=

[
n(n − 1)E2 |ηn,k − Eηn,k |

2 + nE|ηn,k − Eηn,k |
4
]
.

(6.9)

Since ηn,j are row-wise independent we have the last line.

Consider the above with arbitrary g :
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E|nWn(g) − nEWn(g)|
4

=
1

h12E

[ ∫ ∫ 2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2{
K

(
x∗(s1) − Xk

h

)
( f (Xk, ϕl1, θm1) + S(Xk, ϕl1, θm1)εkl1m1)

−EK
(

x∗(s1) − Xk
h

)
( f (Xk, ϕl1, θm1) + S(Xk, ϕl1, θm1)εkl1m1)

}
{
K

(
x∗(s2) − Xk

h

)
( f (Xk, ϕl2, θm2) + S(Xk, ϕl2, θm2)εkl2m2)

−EK
(

x∗(s2) − Xk
h

)
( f (Xk, ϕl2, θm2) + S(Xk, ϕl2, θm2)εkl2m2)

}
(
Kθ

(
θ(x∗(s1)) − θm1

h

)
K′ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
,K′θ

(
θ(x∗s1) − θm1

h

)
Kϕ

(ϕ(x∗(s1)) − ϕl1
h

))

g∗(s1)g(s2)

( Kθ

(
θ(x∗(s2))−θm2

h

)
K′ϕ

(
ϕ(x∗(s2))−ϕl2

h

)
K′
θ

(
θ(x∗s2)−θm2

h

)
Kϕ

(
ϕ(x∗(s2))−ϕl2

h

) )
ds1ds2

]

=
1

h12

∫ ∫ 2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2

Cov
(
K

(
x∗(s1) − Xk

h

)
Ykl1m1,K

(
x∗(s2) − Xk

h

)
Ykl2m2

)
(
Kθ

(
θ(x∗(s1)) − θm1

h

)
K′ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
,K′θ

(
θ(x∗s1) − θm1

h

)
Kϕ

(ϕ(x∗(s1)) − ϕl1
h

))

g∗(s1)g(s2)

( Kθ

(
θ(x∗(s2))−θm2

h

)
K′ϕ

(
ϕ(x∗(s2))−ϕl2

h

)
K′
θ

(
θ(x∗s2)−θm2

h

)
Kϕ

(
ϕ(x∗(s2))−ϕl2

h

) )
ds1ds2

≤
1

h12

∫ ∫ 2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2

Cov
(
K

(
x∗(s1) − Xk

h

)
Ykl1m1,K

(
x∗(s2) − Xk

h

)
Ykl2m2

)
G(i,j)(s1, s2)

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
ds1ds2
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For some (i, j) and r1,r2 ∈ {0,1}. g∗(s1)g(s2) = G(s1, s2) and G(i,j)(s1, s2) are the components

of G

From the previous covariance portion,

Cov
(
K

(
x∗(s1) − Xk

h

)
Ykl1m1,K

(
x∗(s2) − Xk

h

)
Ykl2m2

)
=

(1 +O(h))h3
Ψ

(
x∗(s1) − x∗(s2)

h

)
[

f (x∗(s1), ϕl1, θm1) f (x
∗(s2), ϕl2, θm2) + S(x∗(s1), ϕl1, θm1)S(x

∗(s2), ϕl1, θm1)I{m1=m2,l1=l2}

]
Thus E|nWn(g) − nEWn(g)|

4 is bounded above by

(1 +O(h))h3

h12

∫ ∫
Ψ

(
x∗(s1) − x∗(s2)

h

)
G(i,j)(s1, s2)

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2[
f (x∗(s1), ϕl1, θm1) f (x

∗(s2), ϕl2, θm2) + S(x∗(s1), ϕl1, θm1)S(x
∗(s2), ϕl1, θm1)I{m1=m2,l1=l2}

]
K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
ds1ds2.

First consider the sum:

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2 f (x∗(s1), ϕl1, θm1) f (x
∗(s2), ϕl2, θm2)

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
.

Now consider just

2Nθ∑
m1=0

2Nϕ∑
l1=0

am1bl1 f (x∗(s1), ϕl1, θm1)K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
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The error term in Simpson’s method will be absorbed into the leading (1+O(h)) term above and

will be ignored. It is approximated by:

∫ ϕ(x∗(s1))+ch

ϕ(x∗(s1))−ch

∫ θ(x∗(s1))+ch

θ(x∗(s1))−ch
f (x∗(s1), v1,u1)K

(r1)
θ

(
θ(x∗(s1)) − u1

h

)
K
(1−r1)
ϕ

(
ϕ(x∗(s1)) − v1

h

)
du1dv1

= h2
∫ c

−c

∫ c

−c
f (x∗(s1), ϕ(x

∗(s1)) − ρ1h, θ(x∗(s1)) − τ1h)K
(r1)
θ
(τ1)K

(1−r1)
ϕ (ρ1)dτ1dρ1

=

h5 f ′′′ϕθθ

∫
τ2
1 Kθ(τ1)dτ1 + h5 f ′′′ϕϕϕ

∫
ρ3

1K′ϕ(ρ1)dρ1

or

h5 f ′′′ϕϕθ

∫
ρ2

1Kϕ(ρ1)dρ1 + h5 f ′′′θθθ

∫
τ3
1 K′θ(τ1)dτ1

If r1 = 0 or r1 = 1, respectively. Call it h5C(x∗(s1),r1).

Note we have used a Taylor approximation and the fact that

f ′ϕ((x
∗(s1), ϕ(x∗(s1)), θ(x∗(s1))) = f ′

θ
((x∗(s1), ϕ(x∗(s1)), θ(x∗(s1))) = 0.

Then

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2 f (x∗(s1), ϕl1, θm1) f (x
∗(s2), ϕl2, θm2)

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
= h10C(x∗(s1),r1)C(x

∗(s2),r2) +O(N−4).

(6.10)
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Now consider

2Nθ∑
m1=0

2Nϕ∑
l1=0

2Nθ∑
m2=0

2Nϕ∑
l2=0

am1bl1am2bl2S(x∗(s1), ϕl1, θm1)S(x
∗(s2), ϕl1, θm1)I{m1=m2,l1=l2}

]
K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm2

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl2
h

)
=

2Nθ∑
m1=0

2Nϕ∑
l1=0

a2
m1b2

l1
S(x∗(s1), ϕl1, θm1)S(x

∗(s2), ϕl1, θm1)

K
(r1)
θ

(
θ(x∗(s1)) − θm1

h

)
K
(1−r1)
ϕ

(ϕ(x∗(s1)) − ϕl1
h

)
K
(r2)
θ

(
θ(x∗(s2)) − θm1

h

)
K
(1−r2)
ϕ

(ϕ(x∗(s2)) − ϕl1
h

)
=

1
N2

∫ ϕ(x∗(s1))+ch

ϕ(x∗(s1))−ch

∫ θ(x∗(s1))+ch

θ(x∗(s1))−ch
S(x∗(s1), v1,u1)S(x

∗(s2), v1,u1)

K
(r1)
θ

(
θ(x∗(s1)) − u1

h

)
K
(1−r1)
ϕ

(
ϕ(x∗(s1)) − v1

h

)
K
(r2)
θ

(
θ(x∗(s2)) − u1

h

)
K
(1−r2)
ϕ

(
ϕ(x∗(s2)) − v1

h

)
du1dv1(1 +O(N−1))

=
(1 +O(h))h2

N2

∫ c

−c

∫ c

−c
S(x∗(s1), ϕ(x

∗(s1)) − hp1, θ(x
∗(s1)) − hq1)

S(x∗(s2), ϕ(x
∗(s1)) − hp1, θ(x

∗(s1)) − hq1)K
(r1)
θ
(q1)K

(1−r1)
ϕ (p1)

K
(r2)
θ

(
q1 +

θ(x∗(s2)) − θ(x∗(s1))
h

)
K
(1−r2)
ϕ

(
p1 +

ϕ(x∗(s2)) − ϕ(x∗(s1))
h

)
dq1dp1

=
(1 +O(h)))h2

N2 S(x∗(s1), ϕ(x
∗(s1)), θ(x

∗(s1)))S(x
∗(s2), ϕ(x

∗(s1)), θ(x
∗(s1)))

Ψθ,r1,r2

(
θ(x∗(s2)) − θ(x∗(s1))

h

)
Ψϕ,r1,r2

(
ϕ(x∗(s2)) − ϕ(x∗(s1))

h

)
. (6.11)

Thus E|nWn(g) − nEWn(g)|
4 is bounded above by
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(1 +O(h))h3

h12

∫ ∫
Ψ

(
x∗(s1) − x∗(s2)

h

)
G(i,j)(s1, s2)

[
h10C(x∗(s1),r1)C(x

∗(s2),r2) +

(1 +O(h)))h2

N2 S(x∗(s1), ϕ(x
∗(s1)), θ(x

∗(s1)))S(x
∗(s2), ϕ(x

∗(s1)), θ(x
∗(s1)))

Ψθ,r1,r2

(
θ(x∗(s2)) − θ(x∗(s1))

h

)
Ψϕ,r1,r2

(
ϕ(x∗(s2)) − ϕ(x∗(s1))

h

)]
ds1ds2.

Change of variable s2 = s1 + τh yields:

(1 +O(h))h4

h12

∫ ∫
Ψ

(
τ

x∗(s1) − x∗(s1 + τh)
s2 − s1

)
G(i,j)(s1, s1 + τh)[

h10C(x∗(s1),r1)C(x
∗(s1 + τh),r2) +

(1 +O(h)))h2

N2 S(x∗(s1), ϕ(x
∗(s1)), θ(x

∗(s1)))S(x
∗(s1 + τh), ϕ(x∗(s1)), θ(x

∗(s1)))

Ψθ,r1,r2

(
τ
θ(x∗(s1 + τh)) − θ(x∗(s1))

s2 − s1

)
Ψϕ,r1,r2

(
τ
ϕ(x∗(s1 + τh)) − ϕ(x∗(s1))

s2 − s1

)]
ds1dτ

≤
K(1 +O(h))

n

∫
Ψ

(
τ

x∗(s1) − x∗(s1 + τh)
s2 − s1

) ∫
G(i,j)(s1, s1 + τh)ds1dτ

=
K(1 +O(h))

n

∫
Ψ

(
τ

x∗(s1) − x∗(s1 + τh)
s2 − s1

) 3∑
k=1

∫
gik (s1)g j k (s1 + τh)ds1dτ

≤
K(1 +O(h))

n

∫
Ψ

(
τ

x∗(s1) − x∗(s1 + τh)
s2 − s1

)
3∑

k=1

( ∫
|gik (s1)|

2ds1

)1/2 ( ∫
|g j k (s1 + τh)|2ds1

)1/2
dτ

=
K∗(1 +O(h))

n

3∑
k=1

( ∫
|gik (s1)|

2ds1

)
≤

C(1 +O(h))
n

( ∫
|gip(s1)|

2ds1

)
for some p ∈ {1,2,3} and some large enough constant K to bound both the first and second terms

in brackets.

Thus,

E|nWn(g) − nEWn(g)|
4 ≤

[
n(n − 1)

[
C(1 +O(h))

n

( ∫
|gip(s1)|

2ds1

)]2
+

nC
nMn

]
.
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Since E|ηn,k − Eηn,k |
4 ≤ C

nMn
and gt(s) is Lipschitz and bounded, we can for its components

find an M > 0 such that, with g := gt1 − gt2

∫
|gt1,ip(s1) − gt2,ip(s1)|

2ds1 ≤ C |t1 − t2 |.

Then

E
��nWn

(
gt1(s) − gt2(s)

)
− nEWn

(
gt1(s) − gt2(s)

) ��4
= E

��n(
Ẑn(t1) − EẐn(t1)

)
− n

(
Ẑn(t2) − EẐn(t2)

) ��4
= E

��Ξn(t1) − Ξn(t2)
��4

≤ C
[
|t1 − t2 |

2 + K
]
.

When t1 = t2, K may be taken to be zero. If |t1 − t2 | > 0, choose a constant C large enough so

that K < C |t1 − t2 |.

Therefore

E
��Ξn(t1) − Ξn(t2)

��4 ≤ C |t1 − t2 |
2.

To establish the asymptotic equicontinuity of the process n
(
Ẑn(t1)−EẐn(t1)

)
, we will apply the

following two lemmas from [16].

Here | | · | |ψ = | | · | |4. In terms of the above, we have

| |Ξn(t1) − Ξn(t2)| |ψ ≤ C
1
2 |t1 − t2 |

1
2 = Kd(t1, t2)

For the semi-metric d, a ball of radius ε is the interval [t − ε2, t + ε2] for each t ∈ T . Then

we have N(ε, d) = T
2ε2

, the number of balls of radius ε needed to cover T . Note that since

ψ(x) = x4,ψ−1(x) = x−
1
4 .

To find the integral above, we note that

N(ε, d) ≤ D(ε, d) ≤ N
(
ε

2
, d

)
.
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As is shown in [16], the idea is to, upon defining a nested sequence of maximally separated

subsets S0 ⊂ S1 ⊂ ... ⊂ T , with d(s, t) > η
2n for s, t ∈ Sn, bound the maximum of the process on Sn

by

�����
����� max

s∈Sn
t∈Sn−1

|Ξn(s) − Ξn(t)|

�����
�����
ψ

and

�����
�����max|Ξn(s) − Ξn(t)|

�����
�����
,

where the second maximum is taken over

all (s, t) ≤ δ ∈ Sn whose chains end at a unique pair s0, t0 ∈ S0.

The second lemma bounds the second term:�����
�����max|Ξn(s) − Ξn(t)|

�����
�����
ψ

≤ Kψ−1 (
D2 (

η, d
) )
max

�����
�����Ξn(s) − Ξn(t)

�����
�����
ψ

≤ K

(
2T
η2

) 1
2
δ.

The integral

∫ η

0
ψ−1 (

D(ε, d)
)
dε

can be bounded above by ∫ η

0

(
2T
ε2

) 1
4

dε .

Thus, given any r > 0, by Markov’s inequality and the maximal inequality in the theorem,

P

(
sup
|s−t |≤δ

����Ξn(t1) − Ξn(t2)
���� > r

)
≤

K
r

[ ∫ η

0

(
2T
ε2

) 1
4

dε + δ

(
2T
η2

) 1
2
]
=

2K(2T)
1
4

r4 η
1
2 +

√
2TδK
r4η

.

Choose η arbitrarily small and we have established the asymptotic equicontinuity of the process

n
(
Ẑn(t1) − EẐn(t1)

)
.
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CHAPTER 7

CONCLUSION

The proposed methods provide a general mathematical and statistical framework for tractography

based on HARDI data. Similar to the tensor model approach, the main advantage of the approach

under consideration is the following through of the uncertainty from the acquired raw data level

to the fiber level as it propogates via our ’signal fields’ to vector fields and finally to the integral

curves. But unlike the tensor model approach we do not impose structural assumptions on the

diffusion signal such as supersymmetric tensor or a positive definite matrix.

This approach to tracing curves with surrounding confidence ellipsoids is unique and offers a

computationally cheap alternative to probabilistic tractography methods which are tied to iterative

MCMC sampling techniques. This way, the errors from data measurements are followed through

the model to the level of axonal fibers in an easy to interpret way.

The methods in DTI and HARDI give fiber estimates within O(n−1/3) from the true fiber,

and they require O(n) operations for Gaussian type kernels as well as O(n2) operations for the

asymptotical covariance calculation. Furthermore in DTI and HARDI one has hn = O(n−1/6).

Typically the number of locations n in HARDI is on the order of hundereds of thousands or millions.

The sampling of the directional space contains at least 6 directions for DTI and between 30 and

150 directions for HARDI, that would be N2 in our model. In the non-parametric scenario this is

accomodated by case (II), and then the fiber estimates are within O(n−1ε−2/5
n ) from the true fiber,

and they require the same amount of operations. Our bandwidth is hn = O(n−1/2ε−1/5
n ), where

εn → 0. If we take εn = O(n−5/3), which corresponds to N = O(n1/3), then we will obtain the

same order for bandwidth and accuracy as the methods based on tensor fields.

The practical downside of our approach is the third step of the implementation, in which we

need to solve a complicated optimization problem numerically. In our simulation study this was

the bottleneck and this step often introduced numerical bias which ruined the subsequent statistical

estimation. This systematic bias through the fminsearch is unexpected and difficult to control
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through Matlab. The expected bias should be zero, however the process strays off in a line away

from the true curve before regaining the correct estimated maximum direction. However, the bias

always maintains its roughly distant initial distance strayed from the curve rather than switching

back and forth as in the HARDI simulation scenarios. At this time we can only speculate as to

why the Matlab function cannot escape these ’minimum wells’ to find a more maximal direction

estimate at the beginning of the curve trace.

As a direction of future research one could investigate the interplay between numerical errors

and statistical errors, and one could balance them to come up with a practical guide on how to

select tuning parameters in the optimization step. For future work we will compare in the same

way the performance of the completely non-parametric method to that of the higher-order HARDI

model and low order classical DTI model in the C-pattern scenarios as in [11].

It is also worth considering how one might build this same modeling method without the

assumption of a unique maximal direction at each location so that branching scenarios can be

explored, however the mathematical reasoning behind this may require an approach quite different

than those we have discussed. We may consider the set of all points on a manifold and only require

this existence rather than requiring conditions on the function f for which the unique maximal

direction can be found at each point x.

Although we have an imperfect method when considering the inability to handle crossings or

branchings of fibers, this study was very fruitful in showing that the data can speak for itself in

these noisy MRI data scenarios for which we wish to uncover curve estimates for the C pattern.

The proof of concept that one may obtain these curve estimates is quite valuable as the methods

of obtaining MRI data can continually improve and with them the noise can be reduced through

gathering of multiple images. In addition, all of the methods could in theory trace a sequence

of fibers, although one may be more tedious than another. For example, in the HARDI scenario

we can trace multiple curves simultaneously without violating any assumptions. In the discussed

methodology of this paper, we could skip branch points and search nearby for dominant diffusion

directions outside of a fiber cluster and still within reason estimate a network of fiber trajectories.
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Figure 7.1: A fiber across the genu of corpus callosum with diffusion "blobs" along it.
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Figure 7.2: Visualization of diffusion via nonparametric function using our model.
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