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ABSTRACT 

INSTRUMENT AUTOMATION AND MEASUREMENT DATA CURATION PLATFORM 

FOR ENHANCING RESEARCH REPRODUCIBILITY AND KNOWLEDGE DISCOVERY 

By 

Yousef Gtat 

Many applications demand the continued development of sensing systems that employ 

smart sensors, instrumentation circuits, and signal processing techniques to extract relevant 

information from real-world environments. In the engineering efforts to develop new sensors, tasks 

such as instrument automation, measurement process curation, real-time data acquisition, data 

analysis, and long-term tracking of inter-related datasets generate a significant volume and variety 

of information that is challenging to organize, record, and analyze. Sensor development and 

characterization experiments can be laborious, prone to human error, difficult to repeat precisely, 

and can produce data that are challenging to interpret. Such issues highlight a need for a structured, 

automated approach to curate measurement processes and data acquisition. This thesis presents the 

first software platform for i) digitally designing measurement recipes, ii) remotely scheduling and 

monitoring experiment execution, iii) automatic data acquisition, iv) analyzing and storing results 

datasets, and v) linking the datasets with their prospective meta-datasets for deeper analysis and 

inspection. The proposed platform is flexible and capable of managing a large set of diverse 

instruments, measurement recipes and sensor datasets. By employing several design abstractions, 

it allows users to remotely design, schedule, monitor and execute measurement-based experiments 

while archiving results along with their information-rich metadata therefore preserving the 

provenance of the datasets. The platform enable precise timing control of instruments and stimulus 

signals along with long-term tracking of datasets eliminating manual errors and human omissions 

thus enhancing research reproducibility and promoting knowledge discovery methodologies.
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CHAPTER 1 

MOTIVATION 

1.1 Significance 

 A growing community of researchers have expressed concerns regarding three main 

elements in the field of sensor development and characterization. Researchers have often faced the 

issue of non-reproducible research due to the lack of documentation and human omission [1]. 

Furthermore, the need to implement knowledge discovery methodologies on a complete 

information-rich database has come to a halt due to the unavailability of such a resource [2].  

Finally, the transitioned of such knowledge as turnover occurs between group members is often 

handled poorly which leads to institution memory loss [3]. 

1.1.1 Research Reproducibility 

Many applications require precise documentation of the complex scientific process from 

experiment design and execution through data recording and analysis, where such documentation 

is a key factor in research reproducibility. The inability to replicate the studies of others could 

potentially result in consequences such as significant theories being grounded by experimental 

work that are questionable due to inability to repeat the studies. In fact, upon subsequent 

investigation, reproducibility has scored as low as 10% in a span of scientific fields [4] such as 

medicine and social psychology.  

Reproducible research is defined as a published study with replicable findings and results 

based on the reported scientific methods [5]. For instance, an experimentally obtained value is said 

to be reproducible if there is a high degree of agreement between measurements or observations 

conducted on replicated devices in different locations by different people. Researchers rely on the 
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documentations published by other researchers in order to replicate the findings and results. 

However, the methods recorded are often missing important information resulting in non-

reproducible data. For instance, researchers often do not record the experiment setup and all of the 

instruments used and how they are connected. Moreover, publications tend to neglect 

documentation of the stimuli used, instead focusing on presenting the test measurements and 

results. Furthermore, the experiment flow and the precise timeline of the stimulus applied with 

respect to the recorded measurement timestamp is often not tracked due to manual experimental 

execution.  

Unfortunately, poor reproducibility of scientific publications has grown in many research 

areas, and the need for reproducibility is increasing dramatically as scientific methods and data 

analyses have become more complex. Many research communities are calling for improving 

research methods, standardizing documentation processes, data organization, and meta-data 

recording, thus highlighting the need for a structured and automated approach to i) design and 

conduct experiments, ii) execute and monitor experimental trials, and iii) analyze and store result 

datasets. In other words, the need for a standardized platform with history tracking capabilities to 

curate experiments from the design stage to execution and analysis stages is highly desirable in 

pursuit of achieving reproducible research. Ideally, researchers should be able to use one platform 

to i) describe the experimental setup, ii) define the experiment methods over time, iii) automate 

the experimental execution, iii) automatically collect and store test measurements, and iv) link the 

datasets with their prospective meta-datasets for deeper analysis and inspection. 

1.1.2 Knowledge Discovery 

In addition to reproducible research, the ongoing rapid growth of research data due to the 

plethora of devices connected to the internet [6] and the widespread use of scientific databases [7] 
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have created an immense need for knowledge discovery methodologies [8]. Knowledge discovery 

is an interdisciplinary area focusing upon methodologies for extracting useful knowledge from 

inter-related datasets; a knowledge that may never be observed or learned by researchers due to 

the large volume of information [9]. The resulting knowledge needs to be in a machine-readable 

and machine-interpretable format. In general, knowledge discovery methodologies consist of the 

following stages [10]: i) selection stage: selecting the target data set upon which discovery is to be 

performed, ii) preprocessing stage: data cleansing and preprocessing for removing noise and 

outliers, iii) transformation stage: data reduction and projection for finding useful features 

representing the datasets, iv) data mining stage: searching for patterns and building calcification, 

regression, clustering, etc. models, and v) evaluation stage: interpreting the mined patterns and 

consolidating discovered knowledge 

The process of discovering knowledge in databases is highly dependent on the datasets and 

the targeted application. The above stages assume that the datasets are well constructed for the 

targeted application and available for applying new data mining techniques. The missing, most 

critical stage is the creation of relevant information from structured and well-defined datasets and 

unstructured meta-data sources such as text files, documents, images, timelines, etc. In the realm 

of developing new sensors and recording test measurements, the challenge of extracting 

knowledge from research data lies in the creation of an information-rich database that not only 

contains result datasets, but also all associated metadata and ontologies such as the experimental 

procedures, input stimuli, devices and instruments, post processing algorithm, keywords, 

researcher’s notes and annotations, etc.  This would only be possible through using one general-

purpose platform that can design, execute, and analyze experiments all under one hat. Such a 

platform will generate the desired research database that could pioneer new statistical models for 
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significant knowledge discovery impact on many scientific disciplines. Thus, the main criteria for 

knowledge discovery methodologies should go beyond the reuse of existing formal datasets and 

employing new classification models, extending to focus on the creation of information-rich 

datasets with meta-data integration on which knowledge discovery methods are to be performed.  

1.1.3 Institutional Memory Loss 

Lastly, institutional memory loss is another growing concern in the industry and research 

community. Institutional memory is the accumulated body of data, information, and knowledge 

created over the course of an individual organization’s existence [11]. The collective knowledge 

and learned experiences of a group must be transitioned as turnover occurs between group 

members. Today's employers face higher turnover rates than at any other time in history [12]. 

Employers lose the institutional knowledge or history which the leaving group members take with 

them, and many organizations lack sufficient transfer programs to stem the loss. Without a plan or 

program to transfer business processes, institutional policies and practices, and historical 

knowledge to the new group members, organizations may be faced with severe business continuity 

and knowledge issues as older employees leave them. This issue places a burden on organizations 

and research groups which makes it difficult to build on prior work and advancing knowledge at a 

faster pace, thus leading to an institutional memory loss.  

Researchers have called for knowledge management tools that aim to capture and preserve 

these memories without having too much overhead.  Knowledge management is the process of 

creating, sharing, using, and managing the knowledge and information of an organization [13]. It 

is a multidisciplinary approach to achieving organizational objectives by making the best use of 

knowledge. In the field of sensor instrumentation and test measurement automation, institutional 

memory loss could be mitigated through automation platforms that automatically produce 
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executable processes and store all associated meta-data with results and research findings. This 

would allow new group members to search through executable experimental processes and study 

everything related to the experiment without the need for mentorship from the previous group. 

Moreover, if experimental processes are reproducible, the new group members would be able to 

repeat the experiment and learn from the replicated results with addition to the previous group’s 

notes and documentation. This can be achieved by having one universal platform for designing, 

executing and analyzing research experiments all in one hardware-software flexible environment. 

The history tracking of experimental methods, instrument inventory, and results data could be used 

as a knowledge management tool to facilitate new groups to quickly adapt to the institutional 

knowledge, build on prior work, and ultimately mitigate institutional memory loss 

1.2 Requirements and Challenges 

Creating a platform for enhancing reproducible research, facilitating knowledge discovery, 

and mitigating institutional memory loss requires many elements to be crafted in parallel. In the 

field of sensor development and characterization, such a platform must implement novel ways for 

conducting instrumentation and test measurement automation. Reproducible sensor data and 

information-rich databases are the main two missing elements needed to facilitate ways to create 

novel sensor structures and expedite sensor characterization.  Developing new sensors demands 

tasks such as i) designing multiple sensor characterization experiments, ii) executing multiple 

experimental trials and collecting result datasets in real time, iii) analyzing result datasets and 

applying signal processing models, and iv) storing and long-term tracking of result datasets and 

their prospective meta-data. 

Such tasks are often performed by ad-hoc means along with manual approaches which lead 

to human errors and omissions. For instance, researchers often design and draw the experiments 
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on personal notebooks and lab operators manually adjust instruments (e.g. turn a knob) during an 

ongoing experiment. Moreover, the input stimuli and analysis algorithms are often not recorded 

along with the result datasets, especially in collaborative multi-location research environments. 

Furthermore, characterization data is often collected and stored manually on a personal computer 

which could lead to institutional memory loss if not backed up and annotated properly. Such tasks 

can make it challenging for researchers to i) run long experiments for days or even months, ii) 

track connections between sensors under test and their result datasets, iii) draw honest conclusions 

between experimental and analytical errors, iv) record and organize significant volumes and 

variety of information.   

These challenges above can be articulated in three keywords: repeatability, integrity, and 

productivity. Although these terms are rather generic, in scientific research, repeatability is the 

ability for someone else to repeat the exact experimental process based on the documented 

scientific research methods. In other words, it is the ability to repeat the experiment precisely as 

before and the ability to cross check datasets from multiple trials for reproducible results. 

Repeatability requires detailed precision for an ongoing experiment to have high temporal 

resolution, meaning a precise execution of experimental process, precise timing control, and input-

output signal synchronization. The second keyword is data integrity, which mainly concerns the 

correctness and truthfulness of drawing conclusions by validating event driven results and 

eliminating human errors and omission such as forgetting to perform an experimental step or 

wrongfully recording events as much as possible. This is hard to assess based on the research 

findings, and that is why automation can play a big role in enhancing data truthfulness and 

integrity. Finally, research productivity could slow down findings and hinder an ongoing 

experiment. Many researchers spend consecutive days conducting experiments leading to fatigue 
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and extreme tiredness. This often causes human errors in the measurement processes and human 

omission of documentation. These issues hinder the ability to generate information-rich databases 

that could subsequently be used in developing knowledge discovery models and techniques. 

1.4 Approach and Goals 

In the era of Internet of Things (IoT) [14], the respectable state of the hardware permits 

cloud computing [15] and Software as a Service (SaaS) [16] to address and solve the challenges 

facing research reproducibility and knowledge discovery. Cloud computing refers to running 

workloads remotely over the internet in a commercial provider’s data center such as Amazon Web 

Services (AWS) [17] and Microsoft Azure [18]. SaaS is a software distribution model in which a 

third-party provider hosts application on the cloud and makes them available to customers over 

the Internet, wherein users can access using a thin client such as a web browser. Google’s G Suite 

[19] and Salesforce [20] are great examples of SaaS. This thesis takes the approach of combining 

all three technologies: IoT, cloud computing, and SaaS to resolve the issues obstructing 

instrumentation and test measurement automation. For example, most modern instruments and lab 

equipment have digital interfaces to receive computer permitting real-time automation and report 

back the resulting measurements. The approach is to connect these devices to internet and 

implement a SaaS to enable users to remotely control instruments and log their measurement data 

in realtime while using cloud computing resources to process and store datasets for long-term 

tracking.  

This thesis explores the potential of software solutions to address the challenges outlined 

above through advanced automation of instruments and engineered curation of the measurement 

process. To this end, the goals of this thesis are: 
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1- Develop a software platform for instrumentation and measurement that will enable 

experimental research reproducibility by i) enhancing measurement process precision and 

data integrity, ii) constructing a digital record that permits automated replication of 

measurement process, and iii) achieving accessibility to broad range of disciplines through 

intuitive user interfaces that do not require programming skills. 

2- Design the measurement platform to promote knowledge discovery by i) facilitating 

collaboration across scholarly disciplines and over multiple locations, and ii) providing 

curated results to overcome challenges of institutional memory and permit deep analysis.  

1.5 Summary 

 The presented approach of tackling the issues facing experimental research reproducibility 

and knowledge discovery provides high-level capabilities for remotely controlling lab equipment 

and routing captured sensor data through a vision of connecting research labs to enable IoT 

applications. Chapter 2 will cover the literature review of relevant theories as well as existing 

technologies and software solutions. In Chapter 3, the proposed platform architecture design is 

described in detail along with an overview of the developers’ implementation choices. Chapter 4 

presents experimental result datasets and discuss the proposed platform and its capabilities. 

Finally, Chapter 5 concludes with the summary of the proposed work, author’s contributions, and 

the platform status and future work.  
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CHAPTER 2 

BACKGROUND 

2.1 Experimental Research and Scientific Method 

Research comprises of “creative and systematic work undertaken to increase the stock of 

knowledge, including knowledge of humans, culture and society, and the use of this stock of 

knowledge to devise new applications” [21]. The process of research is the "steps used to collect 

and analyze information to increase our understanding of a topic or issue" [22], which consists of 

three research stages: pose a research question, collect data to answer the research question, and 

present and publish an answer to the research question. 

In the field of experimental research, scientists use the scientific method approach to 

conduct experimental research. The scientific method is the process for experimentation that is 

used to explore observations and answer questions. The fundamental goal of this process is: to 

discover cause and effect relationships by asking questions, carefully gathering and examining the 

evidence, and seeing if all the available information can be combined in to a logical answer. 

Specifically, the scientific method consist of six main phases: ask a question, do background 

research, construct a hypothesis, conduct experiments, analyze data and draw conclusions, and 

report results [23]. However, the scientific method is not merely a series of sequential steps, some 

of these steps generates new information that might causes a scientist to back up and repeat the 

steps at any point during the process.  A process like the scientific method that involves such 

backing up and repeating is called an iterative process [24] as shown in the Fig. 2.1.  



10 

The scientific method shown 

starts when a research question is 

asked about something that 

researchers have observed. The next 

step is to do a background research, 

rather than starting from scratch in 

putting together a plan for answering 

the research question to ensure that 

mistakes from the past are not 

repeated. Subsequently, the 

researcher constructs a hypothesis, 

which is an attempt to answer the 

research question with an explanation 

that can be tested. Researchers often express both the hypothesis and the resulting prediction that 

will be tested, which then they start conducting the necessary experiments, which test whether the 

prediction is accurate and thus the hypothesis is supported or not. Each experiment should conduct 

a fair test by making sure that only one factor at a time is changing while keeping all other 

conditions the same. Each experiment should also be repeated several times to make sure that the 

first results were not just an accident. Scientists often find that their predictions were not accurate, 

and their hypothesis was not supported, and in such case, they will communicate the results of 

their experiment and then go back and construct a new hypothesis and prediction based on the 

information they learned during their initial experiments. Lastly, researchers analyze their data and 

 

 

 

 

Fig. 2. 1 Scientific method flow diagram. 
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draw a conclusion to see if they support the hypothesis or not. The research finding is often 

published in a journal to share the results with the scientific community. 

2.2 Research Objects (ROs) 

Reproducibility and replicability together are among the main beliefs of the scientific 

methods, with the concrete expressions of the ideal of such a method varying considerably across 

research disciplines and fields of study [25]. The reproduced measurement may be based on the 

raw data and computer programs provided by researchers. The values obtained from distinct 

experimental trials are said to be commensurate if they are obtained according to the same 

reproducible experimental description and procedure. An experimentally obtained value is said to 

be reproducible if there is a high degree of agreement between measurements or observations 

conducted on replicate specimens in different locations by different people, that is, if the 

experimental value is found to have a high precision. 

A Research Object (RO) is an advanced form of enhanced publication and a method for 

the identification, aggregation and exchange of scholarly information [26]. The primary goal of 

the research object approach is to provide a mechanism to associate together related resources 

about a scientific investigation so that they can be shared together using a single identifier, 

including supporting data, software executables, source code, presentation slides, presentation 

videos, etc. [27]. This approach is primarily motivated by a desire to improve reproducibility of 

scientific investigations. ROs are not one specific technology but are instead guided by a set of 

principles. Specifically ROs are guided by three principles: I) digital identity: use unique 

identifiers such as DOIs for publications or data [28] and ORCID for researchers [29], II) data 

aggregation: use some form of aggregation to associated related things together that are part of the 

broader study so that others may more readily discover those related resources, and III) annotation: 
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provide additional metadata about those things, how they relate to each other, their provenance, 

and how they were produced. 

2.3 Cloud Computing and Services 

Cloud computing is a general term for anything that involves delivering hosted services 

over the Internet. These services are broadly divided into three categories: Infrastructure-as-a-

Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) [30]. Fig. 2.2 

shows the architecture of cloud computing services and the interactions between the clients and 

the service.  

 

IaaS refers to online services that provide high-level APIs used to dereference various low-

level details of underlying network infrastructure like physical computing resources, location, data 

partitioning, scaling, security, backup etc. [31]. IaaS providers, such as AWS, supply a virtual 

server instance and storage, as well as APIs that enable users to migrate workloads to a VM. Users 

have an allocated storage capacity and can start, stop, access and configure the VM and storage as 

    

Fig. 2. 2 Cloud computing services architecture showing the hierarchy of these services starting 

with lower layer IaaS, PaaS, and then SaaS.  
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desired. IaaS providers offer small, medium, large, extra-large and memory- or compute-optimized 

instances, in addition to customized instances, for various workload needs.  

New emerging cloud technologies and services has led public IaaS providers to offer far 

more than common compute and storage instances. For example, serverless, or event-driven 

computing is a cloud service that executes specific functions, such as image processing and 

database updates [32]. Traditional cloud deployments require users to establish a compute instance 

and load code into that instance. Then, the user decides how long to run -- and pay for -- that 

instance. With serverless computing, developers simply create code, and the cloud provider loads 

and executes that code in response to real-world events, so users don't have to worry about the 

server or instance aspect of the cloud deployment. Users only pay for the number of transactions 

that the function executes. AWS Lambda, Google Cloud Functions and Azure Functions are 

examples of serverless computing services. 

PaaS is the capability provided to the consumer is to deploy onto the cloud infrastructure 

consumer-created or acquired applications created using programming languages, libraries, 

services, and tools supported by the provider [33]. The consumer does not manage or control the 

underlying cloud infrastructure including network, servers, operating systems, or storage, but has 

control over the deployed applications and possibly configuration settings for the application-

hosting environment. In the PaaS model, cloud providers host development tools on their 

infrastructures. Users access these tools over the internet using APIs, web portals or gateway 

software. PaaS is used for general software development, and many PaaS providers host the 

software after it's developed. Common PaaS providers include Salesforce's Force.com, AWS 

Elastic Beanstalk and Google App Engine. 
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Finally, SaaS is the capability provided to the consumer is to use the provider's applications 

running on a cloud infrastructure [34]. The applications are accessible from various client devices 

through either a thin client interface, such as a web browser (e.g., web-based email), or a program 

interface. The consumer does not manage or control the underlying cloud infrastructure including 

network, servers, operating systems, storage, or even individual application capabilities, except for 

limited user-specific application configuration settings. SaaS is a distribution model that delivers 

software applications over the internet; these applications are often called web services. Users can 

access SaaS applications and services from any location using a computer or mobile device that 

has internet access. One common example of a SaaS application is Microsoft Office 365 for 

productivity and email services. 

2.4 Backend Architectures: Monolithic and Microservices  

In software engineering, the terms frontend and backend refer to the separation of concerns 

between the presentation layer (frontend), and the data access layer (backend) of a piece of 

software. In the client–server model [35], the client is usually considered the frontend and the 

server is usually considered the backend, even when some presentation work is done on the server 

itself. While frontend have their own styles and architecture, this section focuses on the backend 

architectures because it has higher impact on the software application services in terms of 

scalability, availability and speed.  

One type of backend architecture is a monolithic application, which is built as a single unit. 

Enterprise applications are often built in three main parts: a client-side user interface (consisting 

of HTML pages and JavaScript running in a browser on the user's machine) a database (consisting 

of many tables inserted into a common, and usually relational, database management system), and 

a server-side application. The server-side application handles HTTP requests, execute domain 
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logic, retrieve and update data from the database, and select and populate HTML views to be sent 

to the browser. This server-side application is a monolith, a single logical executable. Any changes 

to the system involve building and deploying a new version of the server-side application. Such a 

monolithic server is a natural way to approach building such a system. Monolithic applications 

can be successful, but increasingly people are feeling frustrations with them, especially as more 

applications are being deployed to the cloud. Change cycles are tied together, a change made to a 

small part of the application, requires the entire monolith to be rebuilt and deployed. Over time it 

is often hard to keep a good modular structure, making it harder to keep changes that ought to only 

affect one module within that module. Scaling requires scaling of the entire application rather than 

parts of it that require greater resource. 

Microservices are a software development technique that structures an application as a 

collection of loosely coupled services [36]. In a microservices architecture, services are fine-

grained, and the protocols are lightweight. The benefit of decomposing an application into different 

smaller services is that it improves modularity. This makes the application easier to understand, 

develop, test, and become more resilient to architecture erosion. It also parallelizes development 

by enabling small autonomous teams to develop, deploy and scale their respective services 

independently. Microservices architecture is highly maintainable and testable, loosely coupled 

independently deployable, and organized around business capabilities. Fig. 2.3 below shows the 

difference between the traditional monolithic architecture as opposed to microservices 

architecture.  
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2.5 Databases: Relational and Non-relational 

Relational databases like MySQL, PostgreSQL and SQLite3 represent and store data in 

tables and rows [37], meanwhile, non-relational databases like MongoDB represent data 

commonly in collections of JavaScript Object Notation (JSON) documents [38]. Fig. 2.4 below 

shows an example of both database models containing typical user information. 

 

Fig. 2. 3 Shows the difference between two common backend architecture, microserves vs. 

traditional monolithic.  
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MongoDB query data are technically represented as binary JASON (BSON), whereas 

relational databases use Structured Querying Language (SQL). SQL is often a good choice for 

applications that involve the management of several transactions due to its inherent strict 

architecture. The structure of a relational database allows you to link information from different 

tables using foreign keys (or indexes), which are used to uniquely identify any atomic piece of 

data within that table as shown in Fig. 2.5. Other tables may refer to that foreign key, to create a 

link between their data pieces and the piece pointed to by the foreign key. This comes in handy for 

applications that are heavy into data analysis. If the application need to handle a lot of complicated 

querying, database transactions and routine analysis of data, then relational database is a suitable 

option. 

 

Fig. 2. 4 Document based non-relational database model (left) vs. table based relational database 

model (right) 



18 

 

While relational databases are great option for well-defined data structures, they do come 

with trade-offs. One of those is ORM Impedance Mismatching [39], because relational databases 

were not initially created with the OOP languages in mind. The best way to avoid this issue is to 

create your database schema with referential integrity at its core. Thus, when using a relational 

database with an OOP language (like Ruby), it is crucial to think about how to set up your primary 

and foreign keys and the use of constraints (including the cascade delete and update). However, if 

the application is dealing with a phenomenally huge amount of data, this process can be tedious 

and the probability of error increases. In that situation, non-relational database. A non-relational 

database are usually a better option for just storing the data without explicit and structured 

mechanisms to link data from different tables (or buckets) to one another. MongoDB is the most 

popular non-relational database for MEAN stack developers [40] because it is basically written in 

JavaScript and JSON, which is a lightweight data interchange format. If the applications data 

model turns out to be very complex, or if de-normalize process is necessary to the application 

database schema, then non-relational databases is much suitable option. Other reasons for choosing 

a non-relational database include: 

 The need to store serialized arrays in JSON objects  

 

Fig. 2. 5 Relational database example consists of three tables linked together using foreign keys. 
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 The nature of the application data are arbitrary and may not be easy to organize 

 Storing records in the same collection that have different fields or attributes  

 Finding de-normalizing of database schema or coding around performance and horizontal 

scalability issues  

In non-relational databases like MongoDB, there are no joins like there would be in 

relational databases. This means developers need to perform multiple queries and join the data 

manually within the application code, which can get very messy [41]. Since MongoDB does not 

automatically treat operations as transactions the way a relational database does, the application 

API must manually choose to create a transaction and then manually verify it. Some operations 

will succeed while others fail, which emphasize back on knowing how to effectively whiteboard 

the application data model. It is this key step that will allow any software application to determine 

the best route for choosing the use of one database over another. 

2.6 Review of Existing Solutions 

 Among existing tools that can assist in experiment automation is LabVIEW made by 

National Instruments, which permits automatically performing and monitoring panels of 

instrument while choreographing measurement and actuation processes executed by computer-

controlled devices [42]. Other existing tools, such as Apache Taverna, and Kepler, are a specialized 

form of software named scientific workflow systems. These software designed specifically to 

compose and execute a series of computational or data manipulation steps, or workflows, in a 

scientific application [43]. Finally, the last existing software tool worth mentioning is the 

Electronic Lab Notebooks (ELN) which can organize and archive all laboratory data safely, 

manage a research lab, and review students' lab work [44]. It is important to note that most of these 
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software solutions are outdated or not maintained as well as they should be, therefore, many 

researchers do not know of these software tools and use them regularly. 

2.6.1. LabVIEW 

 LabVIEW is a graphical programming language developed by National Instruments in the 

mid to late 80’s.  Creating a program in LabVIEW is called a VI, which stands for Virtual 

Instrument.  To create a VI, the programmer uses the LabVIEW programming environment to 

make the user interface by dragging and dropping objects and arranging them as desired.  To add 

functionality to the interface, the diagram, which resembles a flow chart is wired with the various 

structures and functions.  In most LabVIEW programs, no lines of code are actually written, the 

functionality of the program is provided by the diagram.  For this reason, LabVIEW is called a 

graphical programming language as shown in Fig. 2.6 below.  
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Another important feature of LabVIEW is that it closely supports a multitude of processing 

cards available from National Instruments, and other vendors also build cards that are LabVIEW 

compatible.  The cards are so tightly coupled to the LabVIEW system that it is common to be 

collecting data within a few hours of receiving the data collection cards. For these reasons, 

LabVIEW has become one of the most popular data collection systems in recent years.  Within the 

framework of LabVIEW, user interfaces can be created, data can be collected, signals can be 

 

 

Fig. 2. 6 A simple LabVIEW diagram creating a Virtual Instrument (left) and the user interface 

provided for the functional diagram (right) 
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generated and transmitted from LabVIEW cards, and data can be plotted in realtime. An example 

of the user interface tools are shown in Fig. 2.7 below. LabVIEW, however, does not permit the 

setup and protocols of instruments (e.g. sampling rate, wiring, etc.) to be automatically recorded 

and linked to results datasets, yielding an incomplete record that may inhibits experiment 

reproducibility. When LabVIEW does not provide what is needed, C code or MATLAB programs 

usually are developed to be tied to it to provide the required functionality, which results in more 

scattered software tools and results. 

 

2.6.2. Scientific Workflow Tools 

The typical automated scientific workflows are scripts that call in data, programs, and other 

inputs and produce outputs that might include visualizations and analytical results. These may be 

implemented in programs such as R or MATLAB or using a scripting language such as Python or 

Perl with a command-line interface. However, a significant number of scientists are not 

 

Fig. 2. 7 An example of LabVIEW user interface tools available for data visualization. 
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programmers and therefore they cannot spend many hours into writing code to process their data 

and analyze it for results. Thus, scientific workflow tools and software were developed to equip 

scientist with graphical user interfaces to create scripts and programs that consumes their data and 

analyze it for any research findings. A key assumption underlying all scientific workflow systems 

is that the scientists themselves will be able to use a workflow system to develop their applications 

based on visual flowcharting, logic diagramming, or, as a last resort, writing code to describe the 

workflow logic. Powerful workflow systems make it easy for non-programmers to first sketch out 

workflow steps using simple flowcharting tools, and then hook in various data acquisition, 

analysis, and reporting tools. Details of the underlying programming code should normally be 

hidden from the user to increase productivity.  

Scientific workflows are now recognized as a crucial element of the cyberinfrastructure 

[45], facilitating e-Science [46]. Typically sitting on top of a middleware layer, scientific 

workflows are a means by which scientists can model, design, execute, debug, re-configure and 

re-run their analysis and visualization pipelines. Part of the established scientific method is to 

create a record of the origins of a result, how it was obtained, experimental methods used, machine 

calibrations and parameters, etc. It is the same in e-Science, except provenance data are a record 

of the workflow activities invoked, services and databases accessed, data sets used, and so forth. 

Such information is useful for a scientist to interpret their workflow results and for other scientists 

to establish trust in the experimental result. 

There are wide range of scientific workflow systems that are used in various fields of 

science. The most notable mentions are Apache Taverna, Kepler, and Galaxy. Starting with 

Apache Taverna, it is used by users in many domains, such as bioinformatics, cheminformatics, 

medicine, astronomy, etc. Taverna allows users to integrate many different software components, 



24 

including WSDL SOAP or REST Web services provided by third parties. Taverna enables a 

scientist who has a limited background in computing, limited technical resources and support, to 

construct highly complex analyses over data and computational resources that are both public and 

private. Fig. 2.8 shown below shows the Taverna Workbench during the design of a workflow.  

 

 Another scientific workflow system is Kepler, which is a software application for the 

analysis and modeling of scientific data. Scientists with little background in computer science can 

create executable scientific workflows, which are flexible tools for accessing scientific data 

(streaming sensor data, medical and satellite images, simulation output, observational data, etc.) 

and executing complex analysis on the retrieved data as shown in the Fig. 2.9 below.  

 

Fig. 2. 8 An example workflow designed using Apache Taverna desktop software.  
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The last scientific workflow system to mention is Galaxy, which is a web-based platform 

for data integration and publishing that aims to make computational biology accessible to research 

scientists that do not have computer programming experience [47]. It supports data uploads from 

the user's computer, by URL, and directly from many online resources. Galaxy supports a range 

of widely used biological data formats, and translation between those formats. Galaxy provides a 

web interface to many text manipulation utilities, enabling researchers to do their own custom 

reformatting and manipulation without having to do any programming. The project goal is to create 

a platform for performing accessible, reproducible, and transparent genomic science 

 

Fig. 2. 9 An example of workflow designed using Kepler's graphical interface and components.  
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2.6.3. Electronic Lab Notebooks (ELN) 

 ELN is a concept of a computer program designed to replace paper laboratory notebooks. 

Lab notebooks in general are used by scientists, engineers, and technicians to document research, 

experiments, and procedures performed in a laboratory [48]. A lab notebook cold also be 

maintained to be a legal document and may be used in a court of law as evidence. The lab notebook 

is also often referred to in patent prosecution and intellectual property litigation. There are many 

ELNs, such as Lab Archives, which is designed to safely organize all laboratory data, manage a 

research lab as a principal investigator, or review students' lab work as an instructor.  

Recently, ELNs starting to expand in the field of computer science which resulted in the 

birth of one of the most popular ELNs, Jupyter Notebook. The Jupyter Notebook is an open-source 

web application that allows the user to create and share documents that contain live code, 

equations, visualizations and narrative text. Uses include: data cleaning and transformation, 

numerical simulation, statistical modeling, data visualization, machine learning, etc. as show in 

Fig. 2.10 below.  
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2.6.4. Previous Work 

 A concept architecture has been previously implemented for a collaborative software 

toolchain for automatic collection and comparative analysis of sensor characterization data [49]. 

This work has dubbed the proposed software platform “eGor” which focuses on modularity and 

runtime extensibility of the software for researchers to build upon to meet specific application 

need.  The short coming of the outcomes of this work, however, lies in the lack of a user graphical 

interface and overall a functioning software platform for users to design and automate 

measurement processes and monitor multiple experiment in real time. A previous demonstration 

of the most recent implementation status is shown in Fig. 2.11. 

 

Fig. 2. 10 An example of Jupyter Notebook showing live code containing the algorithm, libraries 

used, and results plots. 
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2.7 Summary 

Several software tools for data acquisition, workflow automation, data sets analysis and 

visualization, and interdisciplinary scientific collaboration have emerged in recent years. Many of 

these packages provide much needed informatics capabilities that are currently being leveraged by 

both research labs and the industry. However, addressing the full set of challenges posed by 

interdisciplinary high-throughput sensor research and development will require the integration of 

many key features from functionality to intuitive interfacing for experiment automation into a 

cloud-based software framework that currently does not exist. The remainder of the thesis chapters 

will describe the proposed design and implementation of a software platform as well as validate 

the proposed software solution by conducting multiple experiments in real time.  

 

Fig. 2. 11 Shows the state of the previously eGor software tool communicating with a device and 

collecting data in real time.  



29 

CHAPTER 3 

DESIGN AND IMPLEMENTATION 

3.1 Requirements and Terminology 

Given the complexity and variety of sensor characterization experiments, a flexible digital 

lab assistant platform must possess many general-purpose capabilities. Ideally, the platform should 

be: 

 Automated, employing computer-controlled instruments to collect raw data in real time 

under user programmable protocols 

 Modular and extendable, promoting adoption of new instruments, test devices, 

experimental methods, and data analysis techniques 

 Provenance-aware, tracking the history of executed measurements along with their recipes 

and any subsequently applied data analysis algorithms 

 User friendly, providing researchers with an intuitive graphic user interface to define, 

schedule, and execute autonomous sensor characterization events 

 Collaborative, allowing results and proposed experiments to be shared, annotated, and 

reviewed at many levels of detail 

Before describing, throughout this chapter, the extensive design efforts to simultaneously 

meet these requirements, it is useful to overview the resulting platform architecture. As shown in 

Fig. 3.1, the proposed digital lab assistant platform consists of three bundles of software tools 

linking users to their instruments and measurement datasets. The Instrument Manager (IM) is a 

tool that runs on a local experiment workbench and communicates with physical instruments for 

real-time automation and data acquisition. The cloud database is a backend tool that integrates and 
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curates data and metadata as digital identity research objects (ROs). To provide a friendly user 

interface to the IM tool and cloud databases, three separate web-based tools are available: the 

Designer tool for digitally defining measurement recipes (instruments used and their methods and 

parameters); the Executor tool for scheduled execution and real-time monitoring of events; and the 

Analyzer tool for producing, browsing and analyzing information rich datasets. 

 

3.2 Instrument Control and Device Drivers 

 Programmable instrument control is a requirement for automating measurement recipes to 

choreograph executable events using a variety of commercial and custom instruments that employ 

many different communication interfaces with poorly standardized data formats. While some 

commercial lab equipment conforms to the Standard Commands for Programmable Instruments 

(SCPI) [50], many other commercial instruments have different standards and data formats.  

 

Fig. 3. 1 A diagram of the platform consisting of three bundles of tools: browser interfaces, 

instrument manager (IM), and database.  

 

Fig. 3. 2 A diagram of the platform consisting of three bundles of tools: browser interfaces, 

instrument manager (IM), and database.  
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To accommodate this need, the first tool developed for this platform was the Instrument 

Manager (IM). The IM tool detects all instruments connected on a physical experiment workbench 

and identifies their communication interface, data format, and functionality allowing the user to 

digitally automate the instruments with only abstract knowledge of their operation. These 

abstractions are manifested in local programs called device drivers. Each apparatus has a unique 

pre-defined device driver that consist of local data storage, instrument operation API, and 

communication protocol as shown in the Fig. 3.2 below. The local data storage is used to act as a 

buffer during real-time data acquisition and thus sending data in chunks to the backend to avoid 

network delays. The operation API is created by developers to identify the functionality of each 

instrument so that the user interface can show a list of methods to the user later on. Lastly, the 

communication protocols are the specific binary commands that the instrument can understand, 

and the data formats returned by the device itself. The IM tool has a library of device drivers at its 

disposal to match them with their perspective instrument at run time. 

 

 

Fig. 3. 3 The Instrument Manager has an aggregation of device drivers, customized 

by user-plugins for communicating with a wide variety of commercial and custom 

lab instruments.  
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The IM design is modular and adaptive so it can easily be expanded to recognize new 

instruments and their protocols. One have to write a device driver in Python3 to a new instrument 

by studying the specific instrument datasheet. The developer have to understand how the 

instrument operate and should create an API that match the device operations. Within each 

operation, the developer write a function that sends a series of commands that achieves the 

described behavior. This is a onetime process required to incorporate new equipment to the IM so 

that it could be integrated with the rest of the proposed software platform.   

The IM tool is connected to the backend and waits for an automation job (or a workflow). 

One a job is received, the IM tool scans for all connected instruments to the PC and match each 

port with a virtual device driver as shown in Fig. 3.3. The matching process is proprietary 

algorithm used to query several common commands and analyze the device response by 

performing pattern recognition using regex. If all of the connected instruments are successfully 

matched with their perspective device driver, then the IM proceeds by comparing the connected 

devices to the received automation job to ensure that all of the instruments required by the job is 

currently available and connected. Otherwise, the IM will not execute the automation job and send 

it back to the backend with an error status reflecting this process.  
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However, if there are no errors, then the IM tool starts the automation job by spawning a 

thread for each port with a connected device. Each thread executes a script of operation that each 

instrument is supposed to do. During execution, each thread also records the datasets in real-time 

and annotates results with metadata such as sampling rate, timestamps, code versions, and error 

messages, allowing users to subsequently deploy deeper analysis on the datasets. The IM 

dynamically spawns other separate threads during run time in case if one instrument operation 

thread relies on another instrument. These separate threads contain some common information 

such as global variables and flags to communicate with each other’s.  

The IM software can be installed as an executable to run on Windows, Linux, and MacOS 

operating systems and was written in Python3, which was chosen for its code organization and 

introspection facilities as well as its large set of libraries. The real-time automation tasks were 

managed using Python’s Multiprocessing and pySerial libraries. The pySerial module encapsulates 

the access for the serial port. It provides backends for Python running on Windows, OSX, Linux, 

and BSD. It supports for different byte sizes, stop bits, parity and flow control with RTS/CTS 

 

Fig. 3. 5 A physical experiment workbench composed of a local PC connected to 

multiple instruments to examine a device under test (DUT). The Instrument Manager 

is an aggregation of device drivers, customized by user-plugins for communicating 

with wide variety of lab instruments.  

 

 

Fig. 3. 6 A physical experiment workbench composed of a local PC connected to 

multiple instruments to examine a device under test (DUT). The Instrument Manager 

is an aggregation of device drivers, customized by user-plugins for communicating 

with wide variety of lab instruments.  
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and/or Xon/Xoff. It also provides a file-like API with “read”, “write”, “readline”, etc. methods. 

Fig. 3.4 shows an example of how pySerial module can be used to open a USB port with default 

baud rate of 9600 and write a hello message to the device connected on the other end of the USB 

port. 

 

An example code of a device driver of a simple commercial temperature and humidity 

sensor called RHTS is shown in Fig. 3.5 below. This driver has four API methods that can be used 

to read the temperature in two units, get the humidity measured, as well as query device internal 

information such as model number and firmware version.  

 

Fig. 3. 7 shows an example of how pySerial library can be used to communicate with a 

device connected to a USB port. 

 

 

Fig. 3. 8 shows an example of how pySerial library can be used to communicate with a 

device connected to a USB port. 
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This driver code seems to be simple due to the modular design of the IM, which has a 

higher generic class called SerialInstrument that takes care of most of the underlying transmission 

communication protocols which details specific information such as read and write terminators, 

encoding mechanism, Unicode handling, logging modules, default sampling rate, data storing, and 

network connectivity.  

 

Fig. 3. 9 shows an example code of a device driver of a commercial sensor. 
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3.3 Web-based Graphical User Interface 

 One of the core challenges of designing the targeted platform was to provide the user with 

an intuitive graphical user interface (GUI) for defining, executing, and analyzing measurement 

events with limited understanding of programming constructs and without being present at the 

physical workbench. To achieve this goal, three frontend tools were developed using web 

technologies that permit a comfortable user experience with remote capability. 

Starting with the Designer tool, it was important to develop a simple, flexible, task model 

that accurately capture realistic experiment parameters and procedures. Fig. 3.6 defines our model 

of a generic measurement recipe, which exhibits a spatial dimension in the form of Setup 

(instruments used and their connectivity) and a temporal dimension in the form of Procedures 

containing the methods (i.e. type of signals) and parameters employed by each instrument over 

time. This model permits a measurement recipe that users can intuitively define and edit using the 

Designer graphical tool and ultimately store as a component of the larger RO document for 

reusability and collaboration purposes. Screenshots of the Designer tool is provided in Chapter 4 

of this thesis, which shows that the graphical interface has a timeline for the procedure tab.  

 

 

 Fig. 3. 11 (left) Model of measurement space as instrument setup and procedures over time. 

(right) Simplified description of the information rich Research Object containing recipe, 

measurement data and more. 
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The Executer tool was designed as a user control panel to remotely execute or schedule 

(for later execution) recipes with “ready” status, monitor “running” measurement events in real-

time, and quickly view and archive “completed” trials. When a design of an experiment is 

submitted by the user, it gets processed and compiled into a job (or workflow) by the backend then 

sent back to the Executer graphical tool to show the users their submitted experiments. The 

Executer tool allows the user to perform few operations on “ready” designs such as execute right 

now or schedule for later execution. Once the execution time is set, the compiled job is sent to the 

IM tool to automate the experiment. The automation process is described in the previous section 

of this Chapter. During experiment execution, the Executer is constantly listing on custom socket 

for realtime datasets. The Executer graphical tool provides several interfacing tools to plot the data 

points or view the raw datasets integrated with information-rich metadata constructed by the device 

driver itself. The realtime data streaming is not stored in the database, the Executer tool was 

designed to quickly investigate and view any “running” experiment to ensure that it is being 

executed properly. Moreover, this tool was designed to be independent of the Designer tool, 

allowing the user to design as many experiments as needed and then switch to the Executer tool to 

remotely schedule, execute, and monitor experiments. 

The last interface element is the Analyzer tool that was designed to allow the user to 

navigate through stored ROs, inspect logs and view/plot measurement data with respect to input 

signals and their parameters. The Analyzer tool was designed to complement the previous two 

graphical tools. The Analyzer tool receives any finished experiments from the Executer tool so 

that the user can employ further data analysis and inspection. Due to the wide variety of datasets 

in each field, the Analyzer tool provides a portal for processing data through built-in common 

filters or user-defined algorithms (e.g. MATLAB code), and for statistical comparison between 
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multiple datasets. This tool also should give the user an option to download the data in various 

data formats (text files, csv, etc.) if needed. However, this feature is not commended because the 

goal of this platform is to encompass every step of scientific workflow and record it along with 

the raw datasets.  

The three frontend GUI tools were implemented using web technologies including Vanilla 

JavaScript, jQuery, HTML, and Bootstrap CSS. Hypertext Markup Language (HTML) is the 

standard markup language for creating static web pages and web applications. With Cascading 

Style Sheets (CSS) and JavaScript, developers can make responsive web design by making static 

HTML web pages into dynamic pages. Responsive web design is the practice of building a website 

suitable to work on every device and every screen size, no matter how large or small, mobile or 

desktop. it is focused around providing an intuitive and gratifying experience for everyone. 

Desktop computer and cell phone users alike all benefit from responsive websites. The main 

component of a responsive web design is flexible layouts, which is the practice of building the 

layout of a website with a flexible grid, capable of dynamically resizing to any width. Flexible 

grids are built using relative length units, most commonly percentages or “em” units. These 

relative lengths are then used to declare common grid property values such as width, margin, or 

padding. Fortunately, Bootstrap CSS framework [51] was developed for this exact reason and 

therefore the three web-based tools designed in this section are implemented with Bootstrap CSS.  

The most notable libraries used to implement the three web-based GUI tools are vis.js, 

chart.js, and JQueryUI. Starting with vis.js [52], the Designer tool uses this library to construct a 

timeline component for the user to describe the experiment procedures. The timeline is an 

interactive visualization chart to visualize data in time. The data items can take place on a single 

date or have a start and end date (a range). It can be freely moved and zoomed by dragging and 
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scrolling in the Timeline. Items can be created, edited, and deleted in the timeline. The time scale 

on the axis is adjusted automatically, and supports scales ranging from milliseconds to years. 

Secondly, chart.js [53] library is used by the Executer and Analyzer tool to visualize and plot 

realtime data. This library provides a wide variety of charts such as line, bar, radar, pie, scatter, 

area, mixed, etc. The last library is JQueryUI, which is a curated set of user interface interactions, 

effects, widgets, and themes built on top of the jQuery JavaScript Library. This library can be used 

whether for building highly interactive web applications for adding a date picker to a form control. 

JQueryUI has many useful common components that are utilized throughout the three web-based 

tools designed in this section. 

3.4 Data Management, Models, and Provenance 

 The backend database management tools were designed to seamlessly integrate data and 

metadata into RO records that enable users to repeat measurements and share recipes and meta-

rich results. The ROs also enable data curation, searching through records and tracing the history 

and connections of any RO component.  

Fig. 3.7 shows the database design and relationships between user accounts and their 

measurement recipes, raw experimental results, and processed results. This architecture enables 

processed datasets to be saved along with the analysis algorithm without losing the original raw 

data. These features enhance collaborative data sharing and permit deep data mining of 

information-rich datasets. The database was designed using the non-relational database 

mechanism, NoSQL, which provides better scalability than SQL databases for large quantities of 

data and more flexibility for rapidly changing structures. Specifically, the MongoDB platform was 

utilized and optimized to manage sensor characterization datasets. Choosing this type of database 
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is the best option for this platform due to the various types of datasets generated from experiments 

and thus flexibility is a key design component. 

 

MongoDB is a complex piece of software used by many large enterprises in the industry. 

However, this platform was implemented to interface with a MongoDB server using a Node.js 

library called Mongoose [54]. Mongoose is a MongoDB object modeling tool designed to work in 

an asynchronous environment. It provides a straight-forward, schema-based solution to model the 

application data. It includes built-in type casting, validation, query building, business logic hooks 

and more, out of the box. Everything in Mongoose starts with a schema. Each schema maps to a 

MongoDB collection and defines the shape of the documents within that collection. The example 

in Fig. 3.8 shows a blogSchema created for saving user blogs in MongoDB. Each key in the code 

blogSchema defines a property in the documents which will be cast to its associated SchemaType. 

For example, this example defines a property title which will be cast to the String SchemaType 

 

Fig. 3. 13 Database architecture depicting digital curation between user account and research 

objects that integrate data, metadata, and processed data in one digital sharable identity. 

 

 

Fig. 3. 14 Database architecture depicting digital curation between user account and research 

objects that integrate data, metadata, and processed data in one digital sharable identity. 
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and property date which will be cast to a Date SchemaType. Keys may also be assigned nested 

objects containing further key/type definitions like the meta property below. 

 

3.5 Microservices and Messaging Mechanisms 

The microservices architectural style is an approach to developing a single application as 

a suite of small services, each running in its own process and communicating with lightweight 

mechanisms, often an HTTP resource API. These services are built around business capabilities 

and independently deployable by fully automated deployment machinery. There is a bare 

minimum of centralized management of these services, which may be written in different 

programming languages and use different data storage technologies. The design of this platform 

utilizes the microservices architecture to implement three main services: compiler, DB and 

scheduler.  

These services are employed to perform specific tasks in the background making the 

platform functional. The compiler service is used by the Designer tool to translate the user defined 

 

Fig. 3. 15 An example schema and instance a blog post using Mongoose Library. 

 

 

 

Fig. 3. 16 An example schema and instance a blog post using Mongoose Library. 

 



42 

recipe into executable instrument commands (or workflow). The compiler was written in C++ 

using Lex, Yacc, Flex, and Bison tools. The scheduler service is used by the Executor tool to 

allocate a date to schedule future execution of multiple experiment trials. The scheduler tool was 

written in Python3 using the Advanced Python Scheduler library. The DB service is used to handle 

specific database CRUD operations: create, read, update and delete. All of these software services 

are wrapped using the Docker [55] container to guarantee that these services will always run the 

same, regardless of the server environment. 

Microservices must communicate with one another to exchange necessary information for 

each service. Therefore, the publish-subscribe messaging mechanism is utilized to handle these 

intercommunications responsibly. Fig. 3.9 illustrates how the messaging scheme is implemented 

in this platform. Starting with the user/client, when the user uses the Designer GUI tool to create 

a new experiment, it would get published with a unique message specifier. Other services are 

designed to listen to a set of specifiers to react to other services and exchange data. For instance, 

one the new experiment is published, the DB service is subscribed to that specifier and will take 

the new experiment in save it in the database. Moreover, the DB service disassemble the new 

experiment and publishes two new messages denoted by “time” and “recipe”. The recipe message 

is heard by the compiler, which gets processed into a workflow and published into a new message. 

The instrument manager tool is listening to the workflow message, which gets automated and 

results into publishing a new message containing the raw datasets. Finally, the datasets are 

subscribed by the DB service and gets published back as a RO message. The DB service is critical 

because it subscribes to most of the messaging specifier to eventually create one research object.  
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3.6 Collaboration, Security, and Networking 

Modern research labs are increasingly interdisciplinary and rely on remote sharing of 

techniques, data, and publications. Software designed for assisting researchers with performing 

and documenting their work should reflect these realities, ideally offering native support for 

sharing and collaboratively reviewing resources over the Internet. Software systems with 

distribution in mind are also well equipped to enforce policies about data usage and to maintain 

end-to-end provenance information about ROs by managing records in a server-side database. This 

platform was designed to provide each user with an account that protects their data and provides 

permission control for sharing results. User accounts are password protected preventing other users 

from unsupervised access. This platform was designed to be deployed in the cloud as a Software 

as a Service (SaaS) [56], permitting network access to be handled by the network’s firewall and 

security layer. Fig 3.10 illustrates the networking model of the deployed platform and how 

communication between two servers are navigated. The platform was designed to be lightweight 

 

Fig. 3. 17 Publish-Subscribe (Pub-Sub) messaging, used for services to interact but function 

independently from each other’s.  

 

 

Fig. 3. 18 Publish-Subscribe (Pub-Sub) messaging, used for services to interact but function 

independently from each other’s.  
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in terms of network connectivity; for instance, instrument drivers have local storage to handle 

chunks of data before sent to the server periodically depending on the sampling rate. Instrument 

drivers also down sample data for real-time plotting and logging, but do not drop packets. 

 

3.7 Platform Versatility and Adaptability to Existing Tools 

 Commercial software with proprietary code is often overly rigid for adapting to the rapidly 

changing needs of users. To overcome this challenge, the platform should be extendible and 

modular to meet the users need. The proposed platform was designed to achieve seamless 

integration of many features while being adaptable to third party user plugs-ins and existing tools. 

First, the IM tool can easily be expanded to include new instruments and/or add new methods and 

parameters. The Executor tool could readily be interfaced with LabVIEW for real-time monitoring 

 

Fig. 3. 19 Networking model of the deployed platform and its inter-communication. 

 

 



45 

and archiving purposes using the LabVIEW WebSocket API [57], allowing users to run the 

platform in parallel with LabVIEW while preserving the platform’s RO database. Moreover, the 

Analyzer tool has the capabilities to incorporate third party workflow management systems such 

as Jupyter or user defined MATLAB and Python algorithms. Together these things enable the 

proposed platform to versatility, expandability, extendibility, and useful to be used in many labs. 

3.8 Platform Dataflow 

Section 3.1 described the design requirement and architecture from a functional point of 

view. However, the implementation of such design greatly affects how the platform operates and 

how the data flows from the IM to the backend and from the database to the three GUI tools on 

the client’s browser. The three GUI tools empowers the users with a virtual lab that enables them 

to remotely control laboratory equipment and automatically collect stream data to their laptop. To 

illustrates the implementation of such platform, Fig. 3.11 below shows the dataflow from the user 

GUI on their personal laptop to the physical experiment workbench and everything in between.  
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3.9 Software Development Environment 

 All code development process was tracked and maintained using the Git [58] version 

control system, which is a standard for software team environment. Version control is a system 

that records changes to a file or set of files over time so that you can recall specific versions later. 

The development process of the proposed software followed a popular approach called Agile 

development process [59], which consist of seven steps to be performed in a specific period of 

time (often two weeks). This period is called a “sprint” in which developers and teams plan a two-

week sprint, design and develop the plan, test and deploy the code, then review the final product 

and launch it to the marker. Fig. 3.12 shows the Agile software development process for a typical 

two-week sprint.  

 

Fig. 3. 21 Functional schematic of the proposed platform for managing user experience from 

the experiment definition and hardware execution stage to digital curation throughout the life 

cycle of experiment data. 

 

 

Fig. 3. 22 Functional schematic of the proposed platform for managing user experience from 

the experiment definition and hardware execution stage to digital curation throughout the life 

cycle of experiment data. 
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3.10 Summary 

 This chapter outlined the system architecture and implementation choices for a set of 

interacting software components. This approach provides a reasonable flexibility to realize the list 

of desirable features to meet the platform goals. In particular, the design patterns and 

implementation choices employed emphasis on modularity benefits any future platform 

development in terms of scalability, extensibility, and user customization that are not seen in 

existing software solutions. In the next chapter, the platform is realized and shown with 

screenshots and experimental results will be discussed and compared with other existing solutions.  

 

Fig. 3. 23 Agile software development environment consisting of seven steps. 
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CHAPTER 4 

RESULTS and DISCUSSION 

4.1 User Experience Design 

The interface is designed to with a dark mode style showing a night sky with stars in the 

background throughout the entire web-based graphical user interface as shown in the Fig. 4.1 

below. The welcome screen shows the platform logo, which is a night owl representing wisdom 

and emphasizing that this platform’s goal is to run experiments throughout the night to increase 

research scientist’s productivity. 

 

 The platform is called “AutoX”, which a release of the digital lab assistant “eGor” 

previously discussed in Chapter 2. Combing the two names together, this work is branding this 

new platform as “eGor:AutoX”.  

 

Fig. 4. 1 shows the welcome screen of the designed user interface. 



49 

The user interface experience begins its functionality with the shown buttons on the 

welcome screen. Once the user clicks on the “TRY IT NOW” button or click on the login icon on 

the top right corner, then the user will be navigated to the login/signup screen as shown in the Fig. 

4.2 below. 

 

 The default behavior of the platform is to navigate to the Executer tool as soon as the users 

logs in so that they can execute “ready” experiments or monitor “running” experiments. We 

anticipate that many users will design several experiments using the Designer tool then spend most 

of their time executing the same experiment for multiple trials, and finally use the Analyzer tool 

to quickly view results and apply data analysis techniques. The three web-based GUI tools are 

shown and discussed in the following section.    

 

Fig. 4. 2 shows the login and signup screen where the user could input their credential to login 

or register to the platform to start using it. 
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4.2 Instrument Automation and Measurement Data Curation 

4.2.1 Experiment Setup 

 To show functionality of web-based tools, different lab bench setups were prepared using 

a combination of different instruments as shown in Fig. 4.3. To verify functionality, the platform 

was used to automate few experiments including a characterization of an experimental 

electrochemical gas sensor [60] using a custom miniaturized electrochemical readout system [61] 

[62]. To record environmental conditions, a commercial relative humidity and temperature sensor 

(RHTS) was used. The platform has been tested to automate other commercial instruments such 

as Fluke 289 digital multimeters, Alicat mass flow controllers, and a custom Badge [63] packed 

with several sensors for social and environmental monitoring. The platform also was live 

demonstrated in professional peer-reviewed IEEE conferences [63] [64] [65]. 

 

 

Fig. 4. 3 hardware and software to configure a test environment and then use eGor:AutoX to 

digitally define their test configuration and execute the tests. 
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4.2.2 Automated Measurement Design using the Designer Tool  

The Designer tool like the rest of the other web-based GUI tools is implemented with a 

tabular format. Specifically, the Designer tool has three main tabs: Setup, Procedure, and Meta as 

shown in the Fig. 4.4 below. 

 

The Setup tab allows the user to search the inventory and add instruments to the 

measurement recipe. The setup tab has two main panels, the left window displays all the instrument 

that the logged-in user can use for defining an experiment. The platform itself controls permission 

accesses to these instruments using a user identification unique identifier (UID) generated by the 

MongoDB database. These instruments represent the device drivers that each user can use during 

 

Fig. 4. 4 Snapshot of the Designer browser tool with a sample setup with two instruments to be 

used during execution of the designed recipe.  
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experiment execution. No other instrument would show up in this panel unless a pre-defined device 

driver is developed for the IM tool to use.  

The user has the ability to organize these instruments in a form of “shelfs” that contain a 

subset of these instruments as shown in the two examples below in the Fig. 4.5. The first window 

shows the “echem” shelf which contains instruments that are often used in conducting 

electrochemical experiments, and the “commercial” shelf contains all commercial instruments that 

the user has access to. One instrument may show up in more than one shelf, however, the backend 

and the database only have one copy of the instrument driver thus reducing data redundancy and 

decreasing the database initial deployment size. 
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The user can add an instrument to the experiment design by clicking on the plus button 

residing right next to each instrument. Subsequently, the instrument will pop up in the right panel 

as shown in Fig. 4.6 with the device name and a suffix indicating how many of each instrument is 

  

   

Fig. 4. 5 Snapshot of the setup shelfs used to organize different types of instruments based on 

user preference. 
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going to be used. The number tagged to each device name as the user adds the same instrument 

multiple times as show below. The user can subsequently delete any instrument added by clicking 

on the red “x” icon. This can be done as long as the experiment is not submitted yet, in which case, 

the experiment recipe (i.e. setup and procedures) are immutable.  

 

Before moving to the procedure tab, the user is recommended to name the designed recipe 

in the top left corner of tabular bar as shown in Fig. 4.7. This name should be used by the user to 

identify experiment from each other’s. The “save” and “folder” icons can be used to save this 

design as a template and subsequently load this template for future experiment design. These 

templates will not show up in the Executor tool because their purpose is meant for expediting the 

design stage by starting from a previously saved template. Users also have the ability to open 

previously submitted experiment recipes and use them as a start, however, once submitted again, 

a new experiment will be created in the database with a new RO document. The platform can track 

if any recipe has originated from a previously submitted design or template. 

  

Fig. 4. 6 Snapshot of the setup indicating which instruments are used and how many of them 

are needed to conduct the designed experiment.  
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The Designer tool includes a second tab, a Procedure tab, that allows users to define the 

sequence of methods and parameters for each instrument in an intuitive and user-friendly manner. 

Once the user is finished with the setup tab, the selected instrument will show up in the Procedure 

tab timeline as shown in Fig. 4.8. In this experiment, a recipe was prepared to continuously record 

temperature and humidity using the environmental sensor (RHTS) and run a cyclic voltammetry 

(CV) method followed by a constant-potential amperometry (CA) method using our custom 

electrochemical instrument, aMEASURE. The timeline indicates when and how long each method 

is going to be executed and can be scaled to seconds, minutes, or hours. 

 

 

Fig. 4. 7 Snapshot of the tabular bar showing the recipe name and all three tabs available in the 

Designer tool. 

 

Fig. 4. 8 Snapshot of the Designer browser tool with a sample recipe with two instruments and 

multiple methods (i.e. CV, CA, etc.) to be executed over a pre-defined time period. 
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 Another example of a recipe was prepared to continuously record humidity using the 

environmental sensor (RHTS) and read measurement data from the FLUKE digital multimeter as 

shown in Fig. 4.9 below.  The method “Read Data” of the digital multimeter is flexible and 

automatically determines what the digital multimeter is measuring, whether it is voltage, current, 

resistance, etc. measurement.  

 

The general parameters for each method (e.g. start time, end time, method type) were 

defined in a pop-up dialog box upon clicking on the method (i.e. the blue bar) as shown in Fig. 

4.10.  These general parameters are common among all methods and are necessary for each method 

to be included as part of the experiment timeline. Furthermore, each method has its own unique 

sets of inputs such as sampling rate, initial voltage, etc. Different inputs for two different methods 

are depicted below.  

 

Fig. 4. 9 Snapshot of the Designer browser tool with a short sample recipe with two 

commercial instruments 
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In the Meta tab, the user can add personal notes and submit the recipe for error checking 

as shown in Fig. 4.11 below. When the recipe was complete, it was archived in the database and 

compiled into an executable form (or workflow) that can be automated by the IM tool at execution 

time. The GUI does not navigate to a new window but rather start a new design sheet for the user 

to work on. The idea is that the platform anticipates that the user would want to design multiple 

experiment then move on to the Executer tool to start running experimental trials. The user gets a 

notification, however, regarding their previous experiment and whether it was compiled 

successfully or not as shown in Fig 4.12. 

  

Fig. 4. 10 Snapshot of the method popup dialog box, all methods has global parameters such 

as start time, end time, etc. However, each method has it is own unique parameters/inputs to 

define the method such as sampling rate, initial violate, etc.  
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Fig. 4. 11 Snapshot of the Meta tab showing user tags, keywords, and notes. 

 

Fig. 4. 12 Snapshot of the Designer tool indicating that the submitted experiment was 

compiled successfully. 
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4.2.3 Measurement Execution and Monitoring using the Executer Tool 

Fig. 4.13 shows the Executer tool without any experiments designed yet. The tool itself has 

a similar look to the previous Designer tool. The Executer tool has three main tabs: Monitor, 

Scheduler, and Notification. The monitor tab has two panels, one for currently running 

experiments and the other is for scheduling (or pending) experiments. This is the default tab that 

the user sees as soon as logged in. We anticipate that the users will run many experiments for such 

long period of time and thus the default monitoring tab will aid the user to periodically and quickly 

check the experiment execution to ensure that the experiment is running accordingly.  

 

Once an experiment design is submitted using the Designer tool, the compiled recipe shows 

up in the second tab of the Executer tool, the scheduler tab. Fig. 4.14 shows these recipes along 

with other meta information such as the date and time of creation, user creator, status of the recipe, 

 

Fig. 4. 13 Snapshot of the Executer browser tool indicating the running, ready, and completed 

status of example measurement recip. 
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etc. Each recipe has a distinct set of action icons for user interaction; for example, users can 

schedule one or more “compiled” recipes for future execution. Other actions include deleting the 

recipe or re-editing it by making a separate copy of the recipe and opening it using the Designer 

tool. The Scheduler tab shown in below also includes a section for filtering the compiled recipes 

through usernames, user tags, data ranges, instruments used, etc. This section enables the user to 

query the database of compiled recipes in case the number of compiled recipes becomes 

overwhelming to the user.  

 

 Once the user clicks on the schedule button, a pop-up screen shows up to let the user either 

run the experiment immediately or schedule it for later time as shown in Fig 4.15. Other options 

 

Fig. 4. 14 Snapshot of the Executer browser tool indicating the running, ready, and completed 

status of example measurement recip. 
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for executing the experiment includes choosing which workbench to run the experiment on in case 

the IM tool was running on multiple desktops, and how many iterations should the platform 

execute the experiment. The pop-up screens for all of these options are shown below. 
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 Once the experiment is scheduled, the platform shows a pop-up notification informing the 

user whether the experiment started executing or not as shown in Fig. 4.16 below. The platform 

 

 

Fig. 4. 15 Snapshot of the pop-up screen used in the Scheduler tab to run an experiment 

immediately or schedule it for later execution time. 
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also navigates from the scheduler tab to the monitor tab, which now show the experiment running 

in the according panel. The user can use the monitor tab to quickly view real-time data and other 

meta information regarding the running experiment. The user is also able to perform a set of actions 

on the running experiment such as stopping the experiment or plotting real time data as shown 

below.  

 

 The second recipe shown in the previous section was also executed simultaneously with 

the first one. Fig. 4.17 shows the monitor tab indicating that two different recipes or experiments 

are currently running in the according panel.  

 

Fig. 4. 16 Snapshot of the Executer browser tool indicating a running experiment scheduled in 

the scheduler tab. 
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 Once an experiment is done executing, the user will be navigated to the notification tab as 

shown in Fig. 4.18 below. This tab has two panels: Completed and Error panels. Each panel 

displays the executed recipes and whether it was successfully executed, or a runtime error has 

occurred. The idea behind this tab is to allow the user to check the results if the recipe was 

successfully executed and decide whether the trial should be archived or deleted. This allows the 

user to save space in the cloud in case the experimental results were not desired. The user is also 

able to reschedule or re-execute the experiment to conduct more trials. The Error panel allows the 

user to view the run-time errors such as an instrument was unplugged during execution and then 

quickly be able to either reschedule the another trial or redesign the experiment recipe to correct 

the errors. Finally, both panels allow the user to delete the data if not desired to save memory 

 

Fig. 4. 17 Snapshot of the Executer browser tool indicating two running experiments 

simultaneously. 
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space. In such case, only the data are deleted, all the associated information will still be saved in 

the databases to preserve provenance of each recipe. 

 

4.2.4 Data Visualization and Analysis using the Analyzer Tool 

Finally, the Analyzer tool, shown in Fig. 4.19, was used to investigate error and debug logs 

and view environmental and electrochemical raw data, all shown here as collapsed windows. The 

Analyzer tool was also used to plot the recorded input stimulus signal and the CV results curve 

measured during electrochemical gas sensor test. The Analyzer tool does not tamper with the raw 

data but associates new processed datasets to the source data, thus providing the user with a 

provenance-aware database. The Analyzer tool was also used to download a .csv record of the RO 

to further inspect and analyze instruments, methods and parameters and their associated datasets 

 

Fig. 4. 18 Snapshot of the Executer browser tool indicating the completed experiments and run-

time errors. 
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using MATLAB. All the Analyzer tools can be used after the experiment has finished and all the 

datasets have been collected and saved in one RO. This simple experiment demonstrates the basics 

operations of the platform. 

 

This experiment recipe was prepared for performing electrochemical cyclic voltammetry 

measurements, of a custom screen-printed electrochemical sensor. The scripting language used to 

define the experiment recipe was given five domain-specific keywords: “IM” to instruct the local 

automation software, “aMEASURE” to automate with the custom readout circuit, “RHTS” to 

monitor the surrounding environment, “delay” to halt the automation process for a set amount of 

time, and “Alicat” to control the air flow directed towards the device under test. To aid the 

experiment recipe design, extra information was displayed for the user, such as defined instruments 

and API functions. Every scheduled experiment is pushed to a temporary stack, waiting for the 

 

Fig. 4. 19 Snapshot of the Analyzer browser tool displaying run time error and debug logs, 

timestamped raw data logs, and plots of cyclic voltammetry measurement data along with an 

input stimulus signal. 
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results to be reported back. The results can be reported back as a csv data recorder along with 

experiment metadata and logging information, all combined within a single research object. The 

RO analysis tool provides researchers with data curation features to track the history of previous 

experiments, apparatus, devices, and their relationship. An external plotting tool was used to 

transcribe the measured electrochemical sensor data from the csv record into a cyclic voltammetry 

plot, both shown in Fig. 4.20 below. 

 

 A second example of a recipe was prepared to continuously record humidity using the 

environmental sensor (RHTS) and read measurement data from the FLUKE digital multimeter. 

The results of this experiments and real-time dataset are shown in Fig. 4.21 below.  

 

Fig. 4. 20 Cyclic voltammetry measurements, data outputted from the Analyzer tool as a simple 

csv file (left) and plotted using a MATLAB script (right). 
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 Finally, the analyze tool provides a querying interface to search for previously executed 

experiments for viewing, annotating, and copying as a template for a new design and investigating 

ROs as shown in Fig. 4.22 below. 

 

 

Fig. 4. 21 Snapshot of the Analyzer browser tool displaying run time error and debug logs, 

timestamped raw data logs, and plots of temperature, humidity, and digital multimeter 

measurement data. 
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4.3 Platform Deployment in the Cloud  

 The platform was deployed using open source cloud providers such as Heroku [66] and 

mLab [67]. Heroku is a cloud platform as a service (PaaS) supporting several programming 

languages. Heroku, one of the first cloud platforms, supports Java, Node.js, Scala, Clojure, Python, 

PHP, and Go. This platform backend and REST API is implemented in Node.js and Heroku 

provides simple virtual buckets to run Node applications in the cloud. As of this writing, the 

platform is currently deployed on the domain https://egorv1.herokuapp.com/. The platform can 

also be deployed locally and privately as illustrated in Fig. 4.23. The user can access the locally 

deployed platform by navigating to the URL https://localhost:3000. 

  

Fig. 4. 22 Snapshot of the Analyzer browser tool displaying ROs residing in the database with 

filtering options. 

https://egorv1.herokuapp.com/
https://localhost:3000/


70 

 

 

mLab is a fully managed cloud database service that hosts MongoDB databases. mLab runs 

on cloud providers Amazon, Google, and Microsoft Azure, and has partnered with platform-as-a-

service providers. Fig. 4.24 shows the MongoDB database deployed using mLab server. The 

collections tab shows the platform database architecture design described in Chapter 3. Each 

collection is a bundle of multiple document-based JSON objects.  

 

Fig. 4. 23 Local deployment of the platform for debugging and privacy. 
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4.4 Table of the Platform Features vs Existing Tools  

 It is important to compare the features of the designed eGor:AutoX platform with the 

existing software solutions discussed in Chapter 2. Below is a table that includes all the essential 

components needed to create such a versatile platform for enhancing research reproducibility and 

knowledge discover. The designed platform is compared against LabVIEW, ELNS (such as Jupiter 

Notebook), and scientific workflow tools (e.g. Apache Taverna). The first two columns list the 

most important features necessary for each stage of scientific method from design and execution 

to instrumentation, data analysis and archiving. The X marker in each column indicates that the 

corresponding software tool has the listed features (or in some cases it indicates that it is achievable 

by obtaining another third-party plugin and extensions).   

 

Fig. 4. 24 Snapshot of the mLab cloud platform deploying the proposed eGor:AutoX platform 

database. 
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Table 1 Proposed Platform Features vs. Existing Software Tools 

 

Features 
LabVIEW ELNs 

Scientific 

Workflow 

Tools 

This Platform 

D
es

ig
n
er

 

Capture experimental 

setup 

X   X 

Capture experimental 

temporal procedures  

(e.g. stimulus signals 

and their parameters) 

   X 

Digital procedures 

creation 

X   X 

Remote 

digital procedures 

creation 

   X 

Sharable repeatable 

measurement plan 

X   X 

Traceable procedure 

provenance 

   X 

Worthwhile time 

domain procedure 

interface that 

eliminates the need for 

programming 

   X 

E
x
ec

u
te

r 

Digital experiment 

execution 

X    

Remote digital 

experiment execution 

   X 

Future scheduling of 

experiment execution 

   X 

Remote real-time data 

monitoring 

with an add-

on 

LabVIEW 

web UI  

  X 
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Table 1 (cont’d) 

In
st

ru
m

en
t 

M
an

ag
er

 Workflow automation 

and data acquisition 

X   X 

User customizable 

instrument drivers 

   X 

A
n
al

y
ze

r 

Data visualization and 

filtering 

X X X X 

Data processing and 

mining 

  X X 

User annotations, tags 

and metadata 

 With an 

add-on 

Electronic 

lab 

notebook 

X X 

Sharable repeatable 

analysis workflow 

  X X 

D
at

ab
as

e 

Data storage with an add-

on 

LabVIEW 

Cloud 

Toolkit for 

AWS 

X  X 

Automatic 

data/metadata curation 

and integration 

   X 

Data and measurement 

plan provenance 

 X  X 

Sharable repeatable 

RO 

   X 

4.5 Summary  

 This chapter presented the eGor:AutoX platform implementation results in the form of 

screenshots for each stage of the experimental process. The platform user experience overviews 
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and shows the welcome screen and the login/signup screen that the user first sees. Subsequently, 

the experiment setup is discussed and the three web-based GUI tools: Designer, Executer, and 

Analyzer tools were presented to show the user experience from defining an experiment recipe 

and setup to executing an experiment using and monitoring realtime datasets. The analyzer tool 

shows a table of successfully complete experiments in the form of ROs. This table also provides 

the user with filtering options to search among a large amount of data. The presented digital lab 

assistant platform was compared to existing solutions to show the advantages of the proposed 

eGor:AutoX platform. The following Chapter will summarize the thesis work and explain the 

contributions made by this work.  
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CHAPTER 5 

CONCLUSION 

5.1 Summary 

This thesis described the first digital assistant platform for facilitating research 

reproducibility and promoting knowledge discovery. The presented approach of tackling the issues 

facing experimental research reproducibility and knowledge discovery methodologies provides 

high-level capabilities for remotely controlling lab equipment and routing captured sensor data 

through a vision of connecting research labs to enable IoT applications. In addition, the proposed 

eGor:AutoX platform has capabilities of archiving information rich datasets to track measurement 

results, recipes, input parameters, instruments, and processed datasets. The design architecture and 

implementation choices of the tools comprising the digital assistant platform were described, and 

the literature review of relevant theories as well as existing technologies and software solutions 

was extensively covered. The proposed digital lab assistant platform was validated by constructing 

a dynamic recipe for characterization of an electrochemical gas sensor in the Designer tool, then 

running the recipe through the Executer tool, which initiated real-time autonomous data acquisition 

using the IM tool, and finally viewing resulting logs, data, and plots in the Analyzer tool. The 

platform was also validated through running other measurements to monitor the temperature and 

humidity of the test environment using commercial sensors and instruments. The eGor:AutoX 

platform provides accessibility across disciplines through its intuitive simple web-based graphical 

user interface and can dramatically improve multi-disciplinary collaboration through generation 

and sharing of a reproducible digital research objects (ROs) that associate all the related resources 

involved in any test measurement projects.  
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5.2 Contributions 

The proposed platform was designed and implemented due to the lack of essential features 

and concepts with the existing software solutions. This thesis takes the approach of combining all 

three technologies of IoT, cloud computing, and SaaS to resolve the issues obstructing 

instrumentation and test measurement automation to achieve reproducible research and promote 

knowledge discovery methodologies. Specifically, the contributions of this work are described in 

the following: 

1. The first available platform to completely automate and curate the entire 

measurement process, allowing users to remotely interface with equipment and the data 

that they generate and enabling collaborate environment with the proper security measures 

2. The design of a new measurement model that facilitates digitalization of the entire 

measurement recipe, enabling experimental processes to be easily repeated, test 

procedures to be precisely replicated, and relationships between input parameters and 

output datasets to be thoroughly explored 

3. The formation of a novel portable digital identity structure of the research object 

(RO) that eliminates obstacles facing research reproducibility by automatically generating 

datasets that are provenance-aware and trackable throughout their entire lifecycle 

promoting methodologies for checking systematic errors and finding unprecedented 

connections between datasets 

4. The development of a new intuitive user-friendly interface that incorporates state of the 

art cloud-based software tools providing accessibility to other disciplines that may not have 

a programming background to use complex tools 
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5.3 Current Status and Future Work 

The proposed software approach should allow the user to define test procedures and 

components through a user-friendly access point. Specific experimental definitions can be saved 

for later use for reproducibility. The user should then be able to remotely execute multiple tests on 

any connected physical experiment workbench in a real lab environment. Once the test is complete, 

the proposed platform would capture an organized and metadata-rich model that includes the raw 

test data, detailed definition of the test setup, and all procedural elements of the executed test such 

as timings, test successions, device conditions, etc. thus creating the database necessary to employ 

any knowledge discovery techniques. The generated model is stored for subsequent curating or 

data analysis, and any access or treatment of the results is automatically recorded to maintain data 

provenance. The proposed approach would also allow stored models to be shared with 

collaborators or provided to any institution that would be interested in reproducing the same 

results. The proposed approach requires an autonomous mechanism for designing, executing, and 

analyzing experiments to be automatic employing computer control over experiment parameters, 

provenance-aware, tracking the history of datasets and user algorithm, user-friendly, providing 

researchers with an intuitive graphical user interface, and collaborative, allowing research 

communities to securely share resources and results to enhance research reproducibility, facilitate 

knowledge discovery methodologies, and mitigate institutional memory loss. 

The vision elaborated in this thesis targets major implementation goals that has not yet 

been completely realized. At the time of this writing, the platform can be usable for automating 

measurements and collecting real-time data using several custom and commercial instruments. We 

realize that in order for this platform to be useful over multiple disciplines, more instruments must 

be added to become compatible with the proposed platform. This goal could be realized by 
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collecting possibly a hundred most common instruments used and developing device drivers so 

that the Instrument Manager (IM) tool could use to automate the instrument. 

The web-based graphical user interface has the essential tools implemented and fully 

functional, this is especially true for the Designer and Executer tool. However, we recognize that 

some usability features have yet to be implemented especially with the Analyzer tool. To achieve 

this implementation goal, the platform’s backend API and database needs to be further expanded 

to handle large amount of information and structure them well. This allows the Analyzer tool to 

query the database microservice for retrieving relevant user information and their experimental 

datasets. The infrastructure for dynamically connecting to microservices and communicating 

between them is completed and functional. Real-time remote interaction with devices via the web-

based interface is available through the Executer tool.  
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