
 

 

 

 

 

THE RELATIONSHIP OF BODY MASS INDEX WITH BEHAVIOR,  

BRAIN STRUCTURE AND LONGITUDINAL CHANGES IN  

MILD COGNITIVE IMPAIRMENT 
 

By 

 

Ashley H. Sanderlin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

 

Submitted to  

Michigan State University 

in partial fulfillment of the requirement 

for the degree of  

 

Neuroscience – Doctor of Philosophy 

 

2017



 

 

ABSTRACT 
 

THE RELATIONSHIP OF BODY MASS INDEX WITH BEHAVIOR, BRAIN STRUCTURE 

AND LONGITUDINAL CHANGES IN MILD COGNITIVE IMPAIRMENT 

 

By 

 

Ashley H. Sanderlin 

 

 Mild Cognitive Impairment (MCI) is a syndrome characterized by cognitive deficits that 

lie on the spectrum between normal aging and dementia. The clinical course of MCI at diagnosis 

is not easily predictable, because it represents a heterogeneous population. Neuropsychiatric 

symptoms (NPS) and midlife obesity increase the likelihood of developing Alzheimer’s disease; 

yet, these two risk factors have not been studied together in MCI. The goal of this dissertation is 

to examine the relationships of weight measured by body mass index (BMI), with behavior, brain 

structure, and longitudinal changes in MCI. First, we examined the relationship of obesity and 

NPS in MCI. It is unknown whether obesity or related health conditions modify the risk of NPS 

or severity of cognitive impairment in MCI. We found that in MCI, obese subjects were younger 

and had a higher frequency and severity of affective (depression and anxiety) symptoms near the 

time of diagnosis. In addition, we examined a number of obesity-related disorders to determine if 

the relationship between BMI and NPS was more strongly mediated by these secondary factors 

than BMI itself. We found that type-2-diabetes mellitus (T2DM) and obstructive sleep apnea, 

also exhibited a specific frequency and severity of NPS. While there were no effects of obesity 

on cognition, T2D subjects had lower cognitive scores and nearly double the NPS burden. Next, 

we wanted to determine whether BMI had an effect on brain structure. We selected 36 regional 

brain volumes related to MCI or weight from the Alzheimer’s disease Neuroimaging Initiative 

(ADNI) dataset. The ADNI sample provided over 600 MCI subjects and we found a main effect 

of BMI on brain volume in 14 out of 36 regions. Surprisingly, normal weight subjects had lower 



 

 

brain volumes.  Since normal weight subjects were significantly older we separated the sample 

by middle age (55-65 years) and Seniors (>65 years) to determine if age group mediated the 

effects on brain structure and found that Seniors had lower brain volumes and there was no 

difference in brain structure for middle-aged subjects. Finally, we measured the relationship of 

BMI on longitudinal behavioral and cognitive changes over two years and measured the survival 

distributions of BMI, age, and NPS groups. Over two years NW subjects had greater cognitive 

deficits. Senior subjects with low baseline NPS showed a faster progression to Alzheimer’s 

dementia. These findings indicate that in MCI obese subjects may have a higher likelihood of 

NPS and those that have T2D may be at risk for cognitive impairment. In addition, NW MCI 

subjects may be at an increased risk for brain atrophy and lower cognitive scores. This research 

may inform lifestyle interventions in regards to obesity, and clinical treatment for NPS prior to 

the establishment of irreversible cognitive impairments. Further, low body weight should be 

monitored in old age for progressive gray matter atrophy and cognitive decline. 
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Mild Cognitive Impairment 

 

 Mild Cognitive Impairment (MCI) is a syndrome characterized by cognitive deficits that 

lie on the spectrum between normal aging and dementia. The clinical course of MCI at diagnosis 

is not easily predictable, because as a whole, MCI represents a heterogeneous population. 

However, MCI is associated with an increased likelihood of developing Alzheimer’s disease 

(AD), with an average conversion rate to dementia of 10-15% per annum over five years. There 

is an increased risk of AD for amnestic (memory-impaired) MCI subtypes 1–4. The high risk of 

developing AD makes the study of MCI a priority for better understanding prodromal states of 

dementia. This is largely based on the theory that early cognitive deficits are the result of an 

underlying neuropathology.  

 The diagnostic criterion for MCI were originally established by Ron Petersen and 

colleagues in 19991.  A few years later these criteria were revised to capture the heterogeneity in 

the cognitive deficits presented. MCI is defined by the following criteria; (a) the subject does not 

have normal cognition and is not demented (b) cognitive deterioration is evident as reported by 

the subject and an informant or objectively measured over time (c) activities of daily living are 

preserved and complex instrumental functions are either intact or minimally impaired5. Potential 

outcomes of MCI over time include; (a) stable MCI, never progressing to AD or other forms of 

dementia (b) AD; (c) other dementias (i.e. Frontotemporal dementia (FTD), vascular dementia 

(VaD), Lewy body dementia (LBD)); and lastly, in some cases, (d) reversion to normal 

cognition.  

  Due to the heterogeneity of MCI, identifying factors within this population that increase 

the risk for dementia are essential. These factors or biomarkers, measured characteristics that are 

indicative of an underlying biological state, condition or disease process, are an important area of 
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dementia research. Biological, behavioral and neuroimaging biomarkers of an underlying AD 

pathology have been previously reported in MCI and include decreased cortical thickness and 

volume of the hippocampus and medial temporal lobe6, hypometabolism of the posterior 

cingulate cortex (PCC)7, amyloid beta deposition8,9, Apolipoprotein e4 allele status10,11 and 

depression.   

 All individuals who develop AD pass through the transient state of MCI and express 

varying degrees of behavioral, cognitive and brain structure changes. Clinical symptoms include 

mild impaired function in daily activities, behavior and mood. In addition to these factors 

epidemiological studies have indicated that age, being female and decreased educational 

attainment increase the risk for the development of AD and conversion from MCI12,13 .   It is now 

known that the changes that occur in the transition from normal cognition to AD begin decades 

prior to clinical symptoms of dementia14,15.  

 Cognitive subtypes are the only recognized subgroups of MCI. In MCI, subtypes that 

have prominent memory deficits, amnestic MCI (aMCI) are at an increased risk for dementia16,17, 

compared to non-amnestic MCI and multi-domain MCI subtypes. However, patients from all 

subtypes of MCI can convert to AD despite their initial cognitive impairments. Many research 

studies and clinical trials focus predominantly on amnestic MCI patients in order to study early 

stages of AD, yet non-cognitive factors that are highly prevalent in MCI are beginning to gain 

more attention. Non-cognitive risk factors such as behavioral changes and metabolic disorders 

may provide additional understanding of the underlying pathology of MCI and allow for the 

construct of a profile of specific subgroups that may be at an increased risk for AD.  
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Neuroimaging in Mild Cognitive Impairment 

Neuroimaging has been an important tool in understanding the pathophysiology of MCI and 

AD18–22. AD is considered to be a disease of the limbic system23,24. Primary regions altered due 

to AD include the cingulate gyrus, hippocampus, parahippocampal gyrus (PHG), entorhinal 

cortex and fornix. Changes within these regions have been quantified using various 

neuroimaging techniques to gauge structural and functional deficits. Structural neuroimaging 

techniques include volumetric MRI (vMRI) which assess the integrity of grey matter regions, 

and diffusion tensor imaging (DTI) which allows for the estimation of microstructural white 

matter fiber tract integrity18,21,25.  Brain atrophy in limbic regions, the bilateral hippocampus, 

amygdala, fornix, and parahippocampal gyri on vMRI have been correlated with cognitive 

deficits of MCI subjects25,26.  Most prominently, volumetric measures of the hippocampus 

correlate with decreased Mini Mental Status Exam (MMSE)27 scores and positively predict 

conversion to AD28. In addition, diffusion imaging has allowed for better understanding of the 

structural changes of white matter tracts and neuronal health. The disease process of AD and 

MCI encompass significant white matter changes including decreased volume, lesions and 

hyperintensities in fornix, cingulum and frontal white matter24,29–31.                                   

 Functional imaging techniques include measures of cerebral glucose metabolism, task 

dependent activation of brain regions and functional connectivity of brain networks at rest, 

through the use of flourodeoxyglucose – Positron Emission Tomography (fdg-PET), stimulation-

based functional MRI (fMRI) and resting state fMRI (rsfMRI) respectively. A reduction in 

glucose metabolism in the posterior cingulate cortex (PCC) is a reliable early clinical biomarker 

for AD pathology in MCI32,33. Many studies have analyzed the reductions in task-dependent 

activation in brain regions affected by AD in memory retrieval, attention, and executive 
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processing tasks 34–36.  Neurodegenerative diseases such as AD also have altered functional 

connectivity of the brain at rest, with reductions of region and network based connectivity among 

temporal, parietal and frontal regions compared to healthy controls37,38. However, in some 

regions increased connectivity is seen and speculated to be a compensation for loss of function in 

regions affected by AD pathology. Resting state fMRI measures blood oxygen level dependent 

(BOLD) signal fluctuations of the brain at rest 36.                                                                          

 In theory, regions that are functionally connected exhibit similar or correlated activity at 

rest. The most widely researched resting state network is the Default Mode Network (DMN) 39. 

Brain activity related to internal thoughts such as autobiographical memory and thinking of the 

future utilize DMN brain regions. The DMN shows increased activity at rest, is deactivated 

during tasks, and is anchored in the posterior cingulate cortex (PCC) and medial prefrontal 

cortex (mPFC) with prominent brain nodes of connectivity in the medial temporal lobe (MTL) 

and angular gyrus.  The network connectivity of the DMN is altered in normal aging and illness, 

including MCI19,40,41. Discovery of the DMN has launched the search for other resting state 

networks involved in numerous cognitive and behavioral disorders42. Among these is the 

cognitive control network (CCN)43. The CCN is involved in attention, working memory, and self 

– control. The CCN has major nodes within the dorsal anterior cingulate cortex (ACC), 

dorsolateral prefrontal cortex (dlPFC), and portions of the parietal lobe. In functional imaging 

studies the DMN is deactivated in the presence of a task where the CCN is active in related tasks 

making them anti-correlated networks37. Network and seed based analysis of CCN regions 

correlate with the degree of executive dysfunction, more prominent in naMCI21.  

Neuropsychiatric symptoms in Mild Cognitive Impairment                                              

 Research studies indicate that individuals with MCI have an increased prevalence of 



 

 6 

neuropsychiatric symptoms (NPS) compared to the normal population44–46. Apathy, depression 

and anxiety are the most prevalent NPS in MCI4,44,47,48. In cognitively normal older adults, NPS 

such as depression and apathy correlate with cognitive decline and the development of MCI at a 

higher rate than cognitively normal subjects without NPS25,49,50. In MCI, apathy symptoms are 

correlated with conversion to AD by almost 7 times, the presence of multiple symptoms on the 

neuropsychiatric inventory-questionnaire (NPI-Q) have an additive effect on progression to AD4. 

There is also evidence that NPS in general may be a marker of MCI severity, decreasing the time 

to progression to dementia by almost 2.5 times44,51. Neuropsychiatric symptoms in MCI 

measured by the NPI-Q with cut off scores of 0-3 and ≥4 are a reliable indicator of group 

differences; scores ≥4 are more likely to be aMCI with increased medical comorbidities and 

functional impairments52. As cognitive scores decline over time, NPS and functional 

impairments increase from MCI to AD and appear to be a result of brain damage. Further, the 

most frequently reported NPS in AD also overlap with those in MCI including, apathy and 

depression for both disorders50,53,54. There may be a link in the transition to dementia between 

cognitive decline and NPS prevalence and severity. Thus, behavioral symptoms lie on the 

continuum of AD pathology, making their presence in early cognitive impairments a feature of 

important research investigation. Proper identification of NPS syndromes in MCI may aid in 

discerning the etiology of MCI subtypes, and provide a more reliable prognosis at the time of 

diagnosis.                                                                                                                         

Neuroimaging of neuropsychiatric symptoms                                                           

 Neuroimaging has aided in the quantification of brain changes in the presence of 

psychiatric symptoms for many years. Many studies have sought to identify specific brain 

regions and neural networks important in emotional regulation. Brain imaging of depression with 
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and without MCI has been widely researched and has provided evidence for structural changes in 

grey and white matter related to affect. For example, white matter microstructural changes in 

depression include decreased fractional anisotropy (FA) in white matter sub-adjacent to the 

ACC, superior frontal gyri, left middle frontal gyrus55,56. In a direct investigation of NPS in MCI, 

low FA values in the anterior cingulate were most related to NPI-Q symptoms of irritability, 

agitation, depression, apathy and nighttime behaviors. Another study using DTI in anxiety 

disorders found decreased FA values of the uncinate fasciculus (UF) and the inferior longitudinal 

fasciculus57. The UF tract connects the amygdala and orbitofrontal cortex, important affective 

brain regions that demonstrate disrupted brain connectivity in the presence of NPS26,58. In 

addition cortical brain atrophy of subjects with high NPS is seen in the ACC, orbitofrontal and 

dorsal parietal lobe regions20. Psychopathology also attenuates the functional connectivity (FC) 

of the brain. Interestingly, FC in depressed patients increases within the thalamus and subgenual 

cingulate59. An example of this has been demonstrated in AD where, Balthazaar and colleagues 

found increased FC in mild AD patients between the ACC and anterior insula54, which was 

related to NPS symptoms of hyperactivity (agitation, irritability, aberrant motor behavior, 

euphoria and disinhibition)60. 

Obesity and cognitive deficits 

Obesity is a prevalent health condition in the United States affecting 36.5% of adults and 

17% of youth (ages 2 – 19)61 and is becoming more prevalent worldwide. Obesity is disorder 

characterized by excess body fat and low energy expenditure that is associated with an increased 

risk for health problems. The prevalence of obesity in the US has dramatically increased over the 

last 30 years and is highest among middle age (aged 40-65) and older adults (aged 66 and older). 

Obesity often occurs co-morbidly with conditions such as, Type 2 Diabetes, vascular diseases, 
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heart disease and sleep apnea, and it is the leading cause of work disability62. Additional side 

effects include decreased global brain volume, a high risk for the metabolic syndrome, a high 

likelihood of comorbid NPS and premature death63. Obesity is considered a modifiable health 

condition with the cause related to a combination of excessive food intact, lack of physical 

activity and genetic susceptibility64.  A common measure of obesity is body mass index (BMI), 

which calculates body fat by taking into account a person’s weight divided by the square of their 

height. There are 3 BMI groups, normal weight, overweight and obese. Body mass index is not 

as accurate as measure of waist to hip ratio or detailed body fat assessments65, but it is widely 

used in research studies on obesity as it allows for a quick assessment of body fat using standard 

clinical measures of height and weight. 

Multiple lines of evidence indicate a link between obesity and the development of 

neurodegenerative diseases66–70. Most importantly, obesity in midlife is associated with an 

increased likelihood of developing AD 54,67. Obesity is association with changes to the central 

nervous system, including changes in appetite-regulating hormones, cortical and subcortical 

brain volumes reductions and increased deficits across age groups71,72. These may be a mediating 

factor in the development of cognitive impairments and eventually dementia as a result. Altered 

hormone signaling of leptin and ghrelin acting on the hypothalamus often occur in obesity73,74. 

Further, studies have shown decreased total brain volume and altered processing within brain 

regions involved in cognitive control, such as the CCN. Most studies examining the relationship 

between obesity and cognition have examined brain differences within weight groups of healthy 

middle aged and older adults or are retrospective studies that link obesity in middle age with an 

ultimate conversion to dementia later in life. However, few studies have investigated obesity 

within the transitional cognitive state of MCI.  
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Neuroimaging of obesity 

There is evidence that chronic obesity affects the structure and function of the brain. 

Brain regions associated with obesity include those within networks of cognitive control. This 

association is hypothesized to be a cause of overeating due to a lack of inhibition which 

ultimately leads to obesity75–77. Primary brain regions of the CCN include the dlPFC, anterior 

cingulate cortex, orbitofrontal cortex, amygdala, hippocampus and nucleus accumbens78,79. 

Obesity in elderly adults is associated with decreased total grey matter volume80. In 

neuroimaging studies on obesity across age groups obese adults have lower brain volumes in 

many AD related regions, such as the temporal lobe, hippocampus, cingulate cortex, dorsolateral 

prefrontal cortex and posterior parietal cortex75,81. Thus, the correlation of brain volume decline 

and obesity may be a sensitive measure in those that develop a cognitive impairment. For 

example, adults obese in midlife exhibit significantly decreased brain volume in predominantly 

frontal and temporal lobes and in measures of global atrophy as they age80,81. Further, a study 

measuring the cortical thickness of regions in the CCN showed that between obese, non-obese 

and successful weight losers (maintenance of significant weight loss for a minimum 3 years), 

obese subjects had significant cortical thinning in the following regions: anterior insula, ventral 

striatum, rostral ACC and ventromedial PFC. In cognitively normal older adults, obesity has also 

been shown to decrease grey matter volume within the orbitofrontal cortex, anterior cingulate 

gyrus, hippocampus and basal ganglia. These results remained even after controlling for diabetes 

status, hypertension, and white matter hyperintensities80. To date, only one article has discussed 

the effect of obesity on brain structure specifically within MCI subjects. Ho et. al. examined the 

effects of obesity on brain volume in MCI and early AD subjects and found that BMI was 
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directly correlated with increased brain atrophy in frontal, temporal and parietal regions. Further, 

every point increase in BMI was associated with a 0.5% - 1.5% decrease in brain volume82.  

 Diffusion tensor imaging of white matter structural integrity depict difference in white 

matter tracts between normal weight and obese individuals. Most prominently, measures of 

decreased FA of the fornix and corpus callosum in obese subjects has been seen in multiple 

studies83–85. In addition a recent study using DTI showed white matter atrophy and decreased FA 

values among obese subjects within the inferior frontal gyrus, temporal gyri, insular cortex, 

occipital gyri and amygdala85. Overall there was a negative relationship between body fat and 

WM volume.  

 Literature on the functional connectivity (FC) of the obese brain in adults is limited and 

currently has not been investigated in MCI. However in adolescents, fMRI studies have shown 

activation of the insula and portions of the operculum in regard to the anticipation of food77.  In a 

similar procedure in young adults, food anticipation (cravings) resulted in increased brain 

activation in the hippocampus, insula and caudate86.  

Comorbidity of obesity and neuropsychiatric symptoms 

 Despite the difference in factors that contribute to the onset of obesity or NPS 

independently, they often occur as comorbid conditions across age groups87. Compared to 

normal weight adults, obese subjects are more likely to exhibit symptoms of depression, apathy 

and anxiety. Adults with severe psychiatric disorders exhibit a prevalence of obesity of 

approximately 50 percent, compared to the national average of 30%88. Further, obesity and NPS 

can be predictive of one another. For example, with depression are more likely to be obese as 

adults89 and obese adolescents are more like to develop psychiatric symptoms  comorbid with 

obesity in adulthood90. A five-year longitudinal study of adults 50 and older measured the 
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relationship between obesity and depression and found that obese subjects were twice as likely to 

be depressed at the end of 5 years and the depressed patients at baseline were more likely to be 

obese after 5 years91. However, depression did not predict obesity at follow up. The relationship 

between NPS and obesity in the literature is unclear and it is unknown how they interact in MCI.  

 The proposed neurocircuitry of both NPS and obese involve dominant pathways from the 

prefrontal cortex with relays through the cingulate gyrus79,92–94, yet the interactive effects of 

obesity and NPS on brain volumes have rarely been studied, especially in older adults, and not at 

all in MCI. In MCI, NPS and obesity have different times of onset and possible course of 

pathology: where as obesity is likely to cause changes in brain structure, NPS may be a symptom 

of such changes. A link between obesity and NPS has been hypothesized as low-grade 

inflammation95. Chronic inflammation is believed to lead to neurodegeneration by affecting the 

expression of amyloid-beta precursor protein96. While both obesity and NPS increase the risk of 

AD they have not been studied together in MCI. This dissertation will investigate the 

relationship of obesity, measured by body mass index, and NPS across clinical, neuroimaging 

and longitudinal measures in MCI subjects. 

Summary 

 Since the original description of MCI in 1999, research in the field has focused on 

longitudinal follow-up of MCI samples, and refining the psychometric and eligibility criteria for 

MCI and its subtypes in order to maximize predictive sensitivity and specificity for the disorder 

over time. Despite the heterogeneity of MCI, subtypes (aMCI/naMCI) are based solely on 

cognitive criteria. The majority of research investigates aMCI/naMCI-related cognitive changes 

of MCI and their relationship to disease progression, neuroimaging markers and behavior, but 

this only captures a piece of the puzzle. Obesity affects the central nervous system and is also 
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associated with cognitive and behavioral changes. Despite the high prevalence of obesity across 

age groups this factor is relatively absent from the body of work that seeks to characterize and 

provide an understanding for MCI and relationships between the brain and behavior. This 

problem is exacerbated by the fact that there is no cure or effective treatment for either MCI or 

AD. The most popular and widely distributed drug for AD, Aricept (donepezil) produces small 

improvements in the cognitive symptoms of AD, and is relatively ineffective in MCI97,98. 

Identifying non-cognitive markers or risk factors for AD may provide clinicians with an avenue 

for concentrated interventions for particularly high-risk individuals within the larger MCI 

population.  

 Thus, the goal of this dissertation is to bring together non-cognitive modifiable risk 

factors for AD that may further characterize behavioral, brain, and longitudinal changes in MCI. 

This research may inform lifestyle interventions in regards to obesity, and clinical treatment for 

NPS prior to the establishment of irreversible cognitive impairments. Prior to this collection of 

research, obesity and NPS have not been studied together in MCI. There is a lack of knowledge 

regarding the comorbidity of obesity and NPS in MCI, the interaction of obesity and NPS on 

brain structure and white matter integrity, and disease progression related to these factors. This 

dissertation will address these gaps in knowledge by using body mass index as a measure of 

adiposity in MCI subjects. The following research aims will,: 1) identify the prevalence of 

obesity in MCI and its comorbidity with NPS; 2) assess volumetric and white matter brain 

changes related to obesity; and 3) examine longitudinal changes in cognitive, functional and 

behavioral measures and progression from MCI to AD. 

 

 

 

 



 

 13 

CHAPTER 1 
 

 

OBESITY AND CO-MORBID CONDITIONS ARE ASSOCIATED WITH SPECIFIC 

NEUROPSYCHIATRIC SYMPTOMS IN MILD COGNITIVE IMPAIRMENT 
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Introduction 
 

Behavioral changes or neuropsychiatric symptoms are prevalent in Mild Cognitive 

Impairment (MCI) and are associated with an increased likelihood of conversion to dementia99. 

MCI is a transitional state between normal cognition and dementia and the presence of 

neuropsychiatric symptoms (NPS) predict the progression of MCI to AD, decreasing the time of 

progression to dementia by 2.5 fold 4,50. Neuropsychiatric symptoms such as depression, anxiety 

and apathy are a hallmark of Alzheimer’s disease (AD) 48,100. As high as 80% of AD patients 

have at least one symptom on the Neuropsychiatric inventory with affective and apathy 

symptoms having the highest prevalence53,101. In MCI, depression is one of the most prevalent 

symptoms and has been directly related to cognitive decline and the development of 

dementia102,103.  

 Obesity is a common disorder characterized by excess adipose tissue and is associated 

with cognitive deficits and an increased likelihood of developing dementia when present at 

midlife104. The prevalence of obesity in the U.S. has nearly tripled over the last 30 years and is 

highest among middle age and older adults 105. Side effects of chronic obesity include lower 

global brain volume, a high risk for metabolic syndrome, and premature death 63. Further, obesity 

affects cognition 66 and often occurs co-morbidly with NPS across age groups 87. Additional 

conditions, consequences of obesity such as type 2 diabetes, sleep apnea and other vascular 

disorders are also associated with cognitive decline and increased neuropsychiatric symptoms. 

Multiple lines of evidence demonstrate a link between midlife obesity and the development of 

dementia 66–68. However, the relationship between NPS and obese subjects and cognitive decline 

within early MCI has not been studied.  

Neuropsychiatric symptoms and obesity have not been measured together to determine 

their co-morbidity in MCI and interactions with cognition. In the present study, our hypothesis is 
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that in MCI, obesity is associated with higher total NPS scores and a higher prevalence and 

severity of affective symptoms (depression and anxiety), as well as more extensive cognitive loss 

as measured by MCI severity compared to normal weight subjects. We sought to first identify the 

prevalence of obesity, obesity-related health conditions, and NPS within MCI, examining their 

relationship and their effect on the severity of cognitive impairment. We then clustered similar 

NPS together, and examined the frequency and severity of behavioral clusters across weight 

groups and BMI-related health conditions. 

Methods 

 All study data came from medical records dating between 2004 and 2014 from a tertiary 

geriatric neurology clinic at Michigan State University serving the mid-Michigan area. Clinical 

and behavioral data were taken at the time of diagnosis of MCI. This study involved minimal 

risk to human subjects and a waiver of consent was requested and approved by the Michigan 

State University Institutional Review Board. 

MCI diagnosis 

 The diagnosis of MCI was determined according to Petersen’s Criteria 1 by an expert 

neurologist (A. Bozoki). The diagnostic process included an initial clinical evaluation by the 

neurologist followed by a neuropsychological assessment battery, MRI (head CT if MRI was 

contraindicated) and serologic testing for metabolic profile, thyroid function and vitamin B12 

level.  The neuropsychological assessment battery (a modified CERAD battery 106, described in 

further detail in the MCI Severity section), assessed memory, verbal and visual delayed recall, 

language, visuospatial and executive functions, and was administered to all subjects. Subjects 

scoring ≥ -1.5 standard deviations (SD) below the education and age-adjusted mean in one or 

more cognitive domains were classified as MCI. The MCI sample represented a heterogeneous 

population consisting of amnestic MCI, non-amnestic MCI and multi-domain MCI subtypes. 
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 Inclusion criteria for this study were as follows: subjects were between the ages of 50-95 

years, able to speak, comprehend and read English with at least 8 years of education, and a Mini 

Mental Status Examination (MMSE) 27 score between 24 - 30. Subjects were excluded if they 

had a history of a coexisting central nervous system disorder or uncontrolled depression that 

could account for the cognitive impairment, any uncontrolled or unstable medical condition, and 

alcohol or substance abuse within the last two years. Exclusion criteria were determined based 

on medical records review. Over the 10-year period, there were 667 subjects with 

neuropsychometric data. Of the 667 subjects examined, 117 were diagnosed with MCI. A total of 

4 subjects were excluded from the study due to a history of major depression (n = 3) and stroke 

(n = 1). Our final sample consisted of 113 subjects that met the inclusion criteria.  

BMI groups 

 The MCI sample was grouped by traditional BMI criteria: normal weight (NW; BMI 

18.5- 24.9), overweight (OW; BMI 25 - 29.9) or obese (OB; BMI ≥ 30). Height (in inches) and 

weight (in pounds) measurements were taken at the time of clinical diagnosis of MCI.  BMI was 

converted to the unit kg/m2 using the follow calculation, [(Weight (lb.) / Height2 (in.)) x 703]. 

BMI-related disorders 

 A clinical history of BMI-related disorders was recorded in order to account for 

conditions that may be comorbid with increased weight 96 but pose an independent risk factor for 

cognitive decline 107, or have an increased prevalence of neuropsychiatric symptoms 108. These 

included, type 2 diabetes (T2D), hypertension (HTN), hyperlipidemia (HL), gastroesophageal 

reflux disease (GERD) and obstructive sleep apnea (OSA). The presence or absence of each of 

these conditions was recorded for each subject at the time of MCI diagnosis. In addition, blood 

pressure recordings at the time of diagnosis were used to calculate a mean arterial pressure 

(MAP) value for each subject as a measure of cardiovascular health. 
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Neuropsychiatric symptoms  

 Neuropsychiatric symptom were measured using the Neuropsychiatric Inventory 

Questionnaire (NPI-Q) 109 and the Geriatric Depression Scale –short form (GDS) 110. The NPI-Q 

is a validated measure for assessing behavioral disturbances across 12 different domains in a 

brief caregiver-reported questionnaire 109. These include; delusions, hallucinations, 

agitation/aggression, depression/dysphoria, anxiety, elation/euphoria, apathy/indifference, 

disinhibition, irritability, aberrant motor behavior, sleep and nighttime behavioral changes, and 

appetite and eating disorders. An informant familiar with the subject reported NPI-Q symptoms, 

by rating each symptom first for their presence (yes / no), and then severity (range of 1 - 3) with 

a total of 36 possible points. Behavioral changes reported on the NPI-Q reflect symptoms present 

within one month of testing. The self-reported 15-point GDS scale was used for further 

quantification of depressive symptoms. Mild NPS was designated as a total score ≥ 1 and 

moderate NPS as ≥ 4 for each test. Quantification of NPS burden was measured based on the 

total symptom score for each test and the prevalence of mild and moderate symptoms groups. 

NPI-Q clusters  

 Neuropsychiatric Inventory- Questionnaire symptoms were grouped into clusters based 

on a prior research study demonstrating that specific neuropsychiatric inventory (NPI; original 

full test version) symptoms tend to cluster together in their prevalence and severity when they 

emerge as part of a dementia 60. The benefits of assessing NPI/NPI-Q clusters instead of 

individual symptoms include both examination of underlying similarities in prevalence, 

progression of symptoms and biological correlates111.  Thus, in the present study the 12 NPI-Q 

symptoms were grouped into 4 clusters: Hyperactivity (agitation, disinhibition, irritability, motor 

disturbances and euphoria), Psychosis (delusions, hallucinations, night-time behaviors), Apathy 

(apathy, appetite), and Affective (depression, anxiety). The presence of a symptom cluster 
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required the presence of at least one symptom within each cluster. The cluster severity was the 

average of the total score (0-3) across each symptom within a cluster for each subject. 

MCI severity 

 To determine whether BMI groups were associated with an increase in MCI severity 

(MCI-SV), a z-score was computed for each cognitive test in the neuropsychological test battery, 

then averaged to obtain a mean overall z score for each subject. Included test measures evaluated 

global cognition (MMSE; Modified Mini Mental Exam (3ME) 112), memory (CERAD Word 

List, immediate/delayed/recognition 113), language (CERAD 15-item Boston Naming Test 114; 

categorical and phonemic verbal fluency 115), executive function (Trail Making Test 116; Stroop 

117), and visuospatial tests (CERAD Constructional Praxis, immediate/delayed 118).  

Statistical analysis 

 The analysis of variance (ANOVA) model was used to compare NPI-Q total score, GDS 

score, NPI-Q cluster severity and MCI severity scores across BMI groups. These comparisons 

were further adjusted for age and education using the analysis of covariance (ANCOVA) model. 

Specific BMI-related disorders that had a high prevalence of obesity were also used as 

independent variables. A chi-square test of independence was conducted to compare the 

frequency of NPI-Q clusters across BMI groups and BMI-related disorders. A Fisher’s exact test 

was used to compare frequencies of NPI-Q clusters between groups when cell sample sizes were 

small. A direct examination of NPI-Q score differences between NW and OB were measured 

using a Student’s t-test. And the relationship of BMI as a continuous variable with NPI-Q was 

measured using a Pearson’s correlation. Statistical analysis was conducted using SPSS software 

(Hewlett Packard; Palo Alto, CA). A two-sided p-value less than 5% (p<0.05) was used for 

statistical significance. 
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Results 

Demographics 

 A description of the study sample is reported in Table 1.1. Of the 113 MCI subjects 

included in the study, 110 had available BMI data and roughly 1/3 each were NW, OW and OB. 

Overall, the average BMI, mean age and MMSE of the sample was 27.4 kg/m2, 74.1 years and 

26.5 respectively. Over 90% of the sample was Caucasian with an average educational 

attainment of 14.6 years. Surprisingly, NW subjects were significantly older than OW and OB (p 

< 0.001). Overall, 78.6 % of subjects had at least one symptom on the NPI-Q and 87.3% had one 

symptom on the GDS. BMI was positively correlated with NPI-Q score (Pearson’s r = 0.225; p = 

0.04), and a direct comparison of NW and OB groups revealed a significantly higher prevalence 

of NPI-Q symptoms (Student’s t = 2.05; p = 0.045, unadjusted). However, there was not an 

effect of BMI on NPS or cognitive measures in the ANOVA model.   
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        TABLE 1.1. Demographic, cognitive and behavioral measures of the MCI sample grouped       

                              by BMI 

Characteristic 
Entire 

Group 
NW OW OB Statistic  

 N = 113 N = 38 N = 39 N = 33 Χ2
 or F P value 

Age (yrs.) 74.3 (0.72) 78.74 (1.00) 72.4 (1.33) 71.2 (1.12) 11.97 <0.01b,c 

Female, n (%) 53 (47) 20 (53) 20 (51) 11 (33) 3.23 0.20 

Education 

(yrs.) 

14.6 (0.31) 15.6 (0.49) 14.2 (0.49) 13.8 (0.64) 2.86 0.06 

MMSE 26.5 (0.17) 26.0 (0.24) 26.8 (0.29) 26.7 (0.33) 2.24 0.11 

MCI-Severity a -0.89(0.06) -1.04 (0.09) -0.80 (0.09) -0.82 (0.14) 1.78 0.18 

NPI-Q score a  5.2 (0.56) 4.0 (0.72) 5.4 (1.02) 6.7 (1.27) 0.47 0.63 

≥ 1, n (%) 68 (79) 25 (74) 26 (87) 17 (77) 1.72 0.42 

≥ 4, n (%) 41 (48) 14 (41) 13 (43) 14 (64) 3.05 0.22 

GDS score a  3.0 (0.26) 3.0 (0.35) 2.7 (0.35) 3.3 (0.73) 0.63 0.53 

≥ 1, n (%) 91 (88) 34 (90) 33 (92) 22 (79) 2.70 0.26 

≥ 4, n (%) 32 (31) 14 (37) 9 (25) 8 (29) 1.29 0.53 

Abbreviations: MCI, Mild Cognitive Impairment; BMI, body mass index; MCI SV, MCI 

severity; MMSE, Mini-Mental State Examination; MCI-SV, MCI severity; GDS, Geriatric 

Depression Scale; NPI-Q, Neuropsychiatric Inventory Questionnaire; NW, normal weight; OW, 

overweight; OB, obese. 

NOTE. Values are presented as mean (standard error) for continuous variables and n (%) for 

categorical variables. The statistic is chi-square test of independence for categorical variables (2 

degrees of freedom) and an ANOVA F statistic for continuous variables. Significance was set as 

p < 0.05.Available behavioral data were as follows: NPI-Q, n = 86 and GDS, n = 102.   

Subscript a indicates adjustment for covariates age and education; b, indicates significant 

difference between NW and OB, c indicates significant difference between NW and OW.  
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BMI-related disorders 

 The frequency of all examined BMI-related disorders are displayed in Table 1.2. There 

was no difference in HTN, HL, GERD and MAP across BMI groups. However, a significantly 

higher proportion of T2D and OSA subjects were OB compared to NW and OW. Thus, T2D and 

OSA were used as independent variables in further analysis of individual NPI-Q cluster 

frequency and severity. 

 

    TABLE 1.2. The frequency of BMI-related disorders within BMI groups 

BMI-related 

disorder 

Entire 

Group 
NW OW OB Χ2 or F P value 

GERD 14% 16% 13% 27% 0.24 0.89 

HP 43% 34% 44% 52% 2.18 0.34 

HTN 53% 53% 49% 58% 0.56 0.76 

OSA 21% 5% 15% 46% 18.37 <0.001b,c 

T2D 21% 11% 13% 42% 13.26 0.001 a 

MAP 95.4 (1.1) 94.2 (2.2) 95.0 (1.8) 97.2 (1.9) 0.55 0.58 

Abbreviations: MCI, Mild Cognitive Impairment; BMI, body mass index; T2D, Type 2 

diabetes; HTN, hypertension; HLD, hyperlipidemia; OSA, obstructive sleep apnea; GERD, 

gastroesophageal reflux disease; MAP, mean arterial pressure; NW, normal weight; OW, 

overweight; OB, obese. NOTE. Values reported as percentages for categorical variables and 

mean (SE) for continuous variables. The statistic is chi-square test of independence (2 degrees 

of freedom) for categorical variables and an ANOVA F statistic for continuous variables. 

Subscript b, indicates significant difference between NW and OB, c indicates significant 

difference between NW and OW.  

 

 The demographics data of subjects with and without T2D and OSA are presented in 

Table 1.3. Age and MCI-SV were similar between groups although education and MMSE score 

were lower in subjects with T2D.  The NPI-Q mean total score was significantly higher in 

subjects with T2D and OSA. Further, the prevalence of moderate level NPI-Q symptoms differed 

based on the presence of T2D and OSA. Depression scores measured by the GDS were also 
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significantly higher for T2D subjects.  There was no difference in age, education, MMSE, MCI-

SV or GDS across OSA groups.   

NPI-Q clusters  

 The prevalence and severity of specific NPI-Q clusters differed with respect to MCI 

subjects who were obese, and had T2D or OSA. The Hyperactivity cluster was the most frequent 

with 56% of subjects having at least one symptom. Figure 1.1A shows the frequency of each 

symptom cluster across groups. Affective symptoms significantly differed between OB and NW 

groups (X2 
2 = 6.76, p = 0.03). Subjects with sleep apnea also showed a significantly higher 

frequency of solely Affective symptoms (X2
1 = 5.39, p = 0.02). Diabetic subjects had a 

significantly higher frequency across 3 clusters, Affective (X2 
1 = 8.85, p = 0.003), Hyperactivity 

(X2
1 = 14.19, p <0.001) and Psychosis (X2

1 = 3.74, p = 0.05) symptoms. A posterior power 

analysis was then conducted to measure the strength of the association between obesity, T2DM, 

and OSA with each NPI-Q clusters. For our significant comparisons of OB and OSA with 

Affective symptoms had a power of 60% and 56% respectively. In addition, for each significant 

association of T2DM, as the cluster significance decreased, the power of the association 

increased: Psychosis, power = 50%, Affective, power = 86% and Hyperactivity, power = 98%. 

 The mean severity of NPI-Q clusters across groups is shown in Figure 1.1B. In OB 

subjects, Affective symptoms were also more severe (F = 3.30, p = .04) along with Psychosis 

cluster (F = 4.55, p = 0.03). Subjects with OSA also had a higher severity of Psychosis 

symptoms (Student’s t = 2.50, p = 0.02) as well as Apathy (Student’s t = 2.17, p = 0.03) 

compared to those without a sleep disorder. Two NPS clusters were more severe in diabetic 

subjects: Affective (Student’s t = 2.11, p = 0.04), and Psychosis (Student’s t = 2.52, p = 0.02); 

Apathy and Hyperactivity was unrelated to this condition. 

              



 

 23 

   TABLE 1.3. Demographic, cognitive and behavioral measures of T2D and OSA groups 

Characteristic 

BMI-

related 

disorder 

Disorder 

Present 

Disorder 

Absent 

Statistic 

Χ2 or F 
P value 

Age (yrs.) 
T2D 73.0 (1.25) 74.6 (0.87) 1.06 0.29 

OSA 72.7 (1.38) 74.7 (0.86) 1.07 0.287 

Female, n (%) 
T2D 12 (52.2) 40 (45.5) 0.33 0.57 

OSA 7 (30.4) 45 (51.1) 3.14 0.076 

Education 

(yrs.) 

T2D 13.3 (0.77) 14.9 (0.33) 2.01 0.047 

OSA 15.0 (0.86) 14.4 (0.33) 0.64 0.45 

BMI (kg/m2) 
T2D 29.9 (1.08) 26.7 (0.47) 3 0.003 

OSA 30.65 (0.92) 26.52 (0.48) 3.95 < 0.001 

MMSE 
T2D 25.8 (0.36) 26.7 (0.19) 2.13 0.035 

OSA 26.74 (0.37) 26.40 (0.19) 0.83 0.411 

MCI-Severity 
T2D -1.04 (0.15) -0.86 (0.06) 1.21 0.23 

OSA -0.73 (0.18) -0.93 (0.06) 1.27 0.208 

NPI-Q score 
T2D 7.63 (1.18) 4.48 (0.62) 2.38 0.019 

OSA 7.75 (1.37) 4.59 (0.60) 2.23 0.028 

≥ 1, n (%) 
T2D 17 (89.5) 51 (76.1) 1.6 0.338 

OSA 14 (87.5) 54 (77.1) 0.84 0.505 

≥ 4, n (%) 
T2D 14 (73.7) 27 (40.3) 6.61 0.01 

OSA 11 (68.8) 30 (42.9) 3.5 0.061 

GDS score 
T2D 4.26 (0.87) 2.67 (0.26) 2.36 0.02 

OSA 3.76 (0.85) 2.77 (0.25) 1.12 0.274 

≥ 1, n (%) 
T2D 18 (94.7) 71 (85.5) 1.18 0.453 

OSA 18 (85.7) 71 (87.7) 0.06 0.812 

≥ 4, n (%) 
T2D 9 (47.4) 22 (26.5) 3.18 0.075 

OSA 8 (38.1) 23 (28.4) 0.74 0.389 

Abbreviations: BMI, body mass index; MMSE, Mini-Mental State Examination; MCI-SV, MCI 

severity; GDS, Geriatric Depression Scale; NPIQ, Neuropsychiatric Inventory Questionnaire; 

T2D - type 2 diabetes; OSA, obstructive sleep apnea. NOTE. Results are presented as mean (SE) 

for continuous variables and n (%) for categorical variables. The statistic is chi-square test of 

independence (1 degree of freedom) for categorical variables and an independent samples t test, t 

statistic for continuous variables.   
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Discussion 

In this study, we assessed the relationship of weight with specific NPS and the severity of 

cognitive impairment in MCI subjects. Our hypothesis was supported, in part, in that the 

frequency and severity of affective NPS were significantly higher in obese MCI subjects. To our 

knowledge, a direct examination of the relationship between BMI and NPS in MCI has not been 

reported, although the prevalence of each BMI group in our sample is similar to national 

averages of overweight and obese individuals in the adult US population 119. While there is a 

growing body of literature on the effects of obesity on behavioral symptoms and cognition we 

sought to include in our analysis obesity related conditions which often occur co-morbidly104 and 

are believed to share neuropathological commonalities. Interestingly, HTN, HL and GERD 

proved not to be significantly related to obesity in our sample; they were present in relatively 

equal proportions in all 3 BMI groups (although HL showed a definite trend toward increase). 

This likely speaks to the multifactorial nature of these conditions, such that the contribution of 

obesity is only one of several driving factors. Our results indicate that in MCI the combination of 

increased weight with T2D showed the greatest differences in behavioral disturbances in regards 

to total scores, symptom cluster frequency and severity as well as changes in global cognition. 

  In our sample of early stage MCI subjects, BMI and related health conditions 

demonstrated a significantly higher prevalence and severity of specific NPS. Previous studies 

have reported depression, anxiety and apathy symptoms as the most frequent NPS seen in MCI, 

among obese persons 87,120 as well as in subjects with T2D 121 and OSA 122. Our study supports 

these findings in that the Affective cluster (depression, anxiety) was more frequent in subjects 

with OB, T2D and OSA compared to those that were NW/OW or without T2D and OSA. The 

Affective cluster was also rated with greater severity for OB and T2D subjects, which leads to 
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our main finding that that there is a relationship between depression, anxiety and obesity in MCI. 

For all groups the Psychosis cluster had a significant difference in mean severity although it was 

only more prevalent in the T2D group. A possible explanation may be that despite delusions and 

hallucinations constituting the least frequent symptoms in MCI 46,48, their presence in the early 

stage of cognitive impairment is perceived more severely by the informant. Further, the presence 

of nighttime behaviors in this cluster were most likely the driving factor: nighttime behaviors 

were the most frequent and severe individual NPI-Q symptom present in 42% of subjects. The 

Apathy cluster did not differ in frequency in any of the group comparisons; however it did have a 

higher severity only in OSA subjects. Higher apathy in relationship to daytime sleepiness has 

been shown in OSA subjects 123, which may explain the heightened severity rating when present 

in this group. Thus, when assessing MCI subjects with behavioral disturbances, consideration 

should be given to higher BMI and BMI-related health conditions, specifically T2D and OSA, as 

possible contributors to the presentation of NPS. Future research will be necessary to determine 

whether lifestyle interventions and treatment of weight related disorders affect the persistence 

and severity of NPS over time.          

           The link between weight-related health conditions and NPS is not well understood. As 

with similar findings between these health conditions and cognition, current research has begun 

to identify central inflammation as a possible mechanism. One theory postulates that weight gain 

modulates adipocyte function resulting in a higher secretion of pro-inflammatory markers that 

reach the brain and alter neuronal function, ultimately leading to alterations in neurocircuitry and 

neural plasticity. These changes affect brain regions such as the prefrontal cortex and cingulate 

gyrus, resulting in the presentation of neuropsychiatric symptoms 74. Moreover, a recent animal 

study showed a possibly direct effect of obesity on dopamine receptor function resulting in 
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depression-like behaviors and alterations in reward circuitry 124. In MCI, obesity is considered to 

be a chronic condition yet the time course of the indirect changes described by the mechanism of 

central inflammation is unclear. Further research is needed to understand whether weight-related 

brain changes present in conjunction with the onset of cognitive impairment or whether they act 

separately to promote the presentation of neuropsychiatric symptoms. 

 In contrast to our hypothesis, MCI severity was not associated with BMI or T2D and 

OSA groups. One explanation may be that MCI is defined by cognitive impairment and 

represents a transitional state with a narrow range of deficits. There is a cut-off to the severity 

that reflects mild cognitive impairments before one achieves psychometric criteria for dementia. 

Moreover our study subjects are diagnosed as MCI by a stringent criterion of -1.5 SD in at least 

one cognitive domain, which in other studies has been broader, (e.g., -1.0 SD in 2 cognitive 

domains). This difference in criteria may provide a more uniform assessment of overall MCI 

severity.  Another possibility is that an overall severity score is not a sufficiently nuanced 

measure of cognitive status. Diabetes and OSA show greater cognitive deficits in executive 

function than memory. It may be more effective to measure individual cognitive domain severity 

in order to detect differences in the effects of disorders such as T2D, OSA and even OB. Finally, 

overall MCI severity may differentiate groups later in the disease course, which cannot be 

examined in a cross-sectional design. However, one research study showed that MCI subjects 

with at least one symptom on the NPI-Q or GDS, and lower initial cognitive status resulted in a 

more rapid development of dementia 102. In our T2D subjects, general cognition measured by the 

MMSE was significantly lower (p = .03) while NPI-Q and GDS total scores were nearly doubled 

compared to subjects without T2D. This may indicate that MCI subjects with T2D and NPS ≥ 4 

are at an increased risk for conversion to dementia. 



 

 27 

 A surprising finding of this study was the lower mean age of overweight and obese MCI 

subjects at the time of diagnosis by nearly 7 years. Middle age obesity promotes a higher risk of 

conversion to AD 125. Since our data come from newly diagnosed MCI patients, this suggests 

that higher adiposity may cause an earlier emergence of cognitive impairment, likely through the 

burden of additional physiologic stressors. Further, an early onset of cognitive impairment in the 

obese may create a group of individuals susceptible to the onset of AD at an earlier age 

compared to those of normal weight. Despite many OB subjects having T2D and OSA, there was 

not a difference in the age at diagnosis based on these conditions. Isolating risk factors associated 

with weight may unmask features of the underlying pathological changes associated with 

prodromal AD. 

Limitations 

 There are some limitations that must be taken into account in interpreting our results. 

First, this study is cross sectional and therefore does not assess cognitive and NPS status over 

time in relationship to BMI groups. For the same reason, it also cannot evaluate the direction of 

the association or capture the initiation and persistence of NPS. Second, due to the sample being 

a specialty referral clinical, genetic testing was not routinely done to establish apolipoprotein 

allele status, chronicity of overweight and obesity, or effectively capture socio economic status. 

In addition, our examination of NPI-Q symptomology was based on a score of ≥ 1, which is a 

very mild disturbance. However, recent studies have shown that even the measurement of the 

presence or absence of symptoms can predict disease progression 126. In this regard, it is notable 

that large differences were seen in the frequency and severity of NPI-Q clusters with respect to 

BMI-related disorders T2D and OSA.  

 Lastly, in our analysis we did not have adequate power to detect some of our associations 

between OB and OSA with affective symptoms. The results provided in this article allow for the 
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generation of hypothesis for future work. This initial investigation provides new information 

about possible co-morbidities in MCI that can be replicated in a larger sample such as the 

Alzheimer’s Disease Neuroimaging Initiative127.  The current focus of this research group is to 

further analyze the relationships of NPS and OB in MCI using a more rigorous epidemiologic 

approach with subjects from the ADNI dataset. Future studies will focus on longitudinal follow-

up to examine whether there is a relationship between weight, NPS prevalence and MCI severity 

at later stages of MCI and early AD, and also to establish whether a higher BMI produces a 

greater incidence of NPS over time. 

Conclusions 

 This study demonstrates that within MCI, BMI and related disorders T2D and OSA 

showed a higher rate of psychopathologic changes, most particularly in the Affective, 

Hyperactivity and Psychosis clusters. Further, increased late life adiposity, which represented 

over 65% of subjects, was associated with a lower mean age at the onset of cognitive symptoms. 

Future research should focus on better understanding the intersection of NPS and OB in MCI, as 

well as the combined effect of these disorders and BMI-related disorders on the brain and 

clinical progression of MCI. In clinical settings, diabetic patients with MCI should be monitored 

for behavioral changes. 
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FIGURE 1.1. The NPI-Q cluster frequency and severity of BMI, T2D and OSA MCI subject 

groups. The 12 NPI-Q symptoms domains are clustered into 4 groups of, Hyperactivity 

(agitation, disinhibition, irritability, motor disturbances and euphoria), Apathy (apathy, appetite), 

Affective (depression, anxiety) and Psychosis (delusions, hallucinations, night-time behaviors). 

A) The frequency of each NPI-Q cluster is plotted for BMI, T2D and OSA groups. Cluster 

frequency statistics were conducted using the chi-square test of independence (2 degrees of 

freedom for BMI and 1 degree of freedom for T2D and OSA). B) The mean (SE) severity of 

NPI-Q clusters for BMI, T2D and OSA groups. Mean differences in cluster severity were 

compared using the analysis of variance (ANOVA) model for BMI and a student’s t-test for T2D 

and OSA. Significant associations are marked as follow, * p < 0.05, ** p < 0.01, *** p < 0.001.  

Abbreviations: NPI-Q, Neuropsychiatric Inventory Questionnaire; MCI, mild cognitive 

impairment; BMI, body mass index; T2D, type 2 diabetes; OSA, obstructive sleep apnea.   
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CHAPTER 2 

 

 
THE EFFECT OF BODY MASS INDEX ON BRAIN STRUCTURE IN  

MILD COGNITIVE IMPAIRMENT 
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Introduction 

 

 Obesity is a growing epidemic affecting 30 million people worldwide and 38% of adults 

in the United States128. In the U.S., the rate of obesity is growing fastest among older adults ages 

40 – 80.  Obesity affects the peripheral and central nervous system resulting in an increased risk 

of metabolic syndrome, cognitive deficits, behavioral disturbances, and Alzheimer’s disease 

(AD)68,129.  Obesity also affects brain structure.  Differences in brain volume have been shown in 

obese (OB) compared to lean controls72,80,83. A few studies have shown lower regional brain 

volume or decreasing volume over time for OB subjects across age groups82,130,131 yet cognitive 

deficits in OB are not consistently present across young, middle and old age adults132,133. 

Previous research in aging studies have demonstrated a high body mass index (BMI) in midlife 

(45-65 years) correlating with increased cognitive impairment and a higher likelihood of 

developing dementia later in life68,134, but high BMI in late life (>65 years) correlating with no 

changes in cognition and a slower progression to dementia135,136. This relates to the obesity 

paradox, which is defined as a counterintuitive relationship of obesity with a seemingly positive 

health outcome135,136. These findings indicate that there is an interaction of weight and age on 

cognition, and cognitive decline.  

 In mild cognitive impairment (MCI), an intermediate state between normal cognition and 

dementia1, the effect of age and weight on brain structure has yet to be explored. All MCI 

subjects are at an increased risk for dementia5. Research on MCI subjects seeks to identify 

individuals at highest risk for conversion by assessing cognitive factors, biomarkers, and 

behavioral and metabolic influences. The combination of these factors makes MCI a 

heterogeneous group of individuals far beyond the three primary cognitive subtypes of amnestic 

(memory dominant), non-amnestic (non-memory, i.e. language) and multi-domain MCI. A 
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multipronged approach to understanding prodromal dementia states is necessary due to the 

possibility of multiple outcomes that reflect different underlying pathologies.  

 Research focusing on non-cognitive symptoms such as metabolic disorders (ie. obesity, 

type-2-diabetes, and hypertension) and general behavioral changes has grown rapidly over the 

last 10 years. Further, age and weight each affect the susceptibility to cognitive and structural 

brain changes. The age of onset of MCI ranges from 55-90 years and spans middle age to old 

age. There is nearly a 3-fold increase (Hazard ratio = 2.7) in the risk of dementia for middle age 

obese subjects with normal cognition68,125,134. However, in studies on patients later in life with 

MCI, low BMI results in greater cognitive decline over time. The apparent susceptibility of 

normal and underweight individuals to faster decline in MCI is not well understood. Based on 

previous research this study seeks to measure the relationship of weight and age on brain 

structure in order to find biological differences that might explain this relationship. 

 Mild cognitive impairment and obesity affect brain volume in specific brain regions. The 

majority of atrophic changes related to amnestic MCI are localized to the medial temporal lobe. 

Specifically, entorhinal cortex and hippocampus atrophy are sensitive measures of early amnestic 

impairment and are predictive of AD pathology82. Only one study has measured the effects of 

BMI on brain volume in a medium sized sample of MCI subjects. Ho et al measured the 

relationship of BMI and brain volume using a voxel based analysis of the whole brain. Their 

results indicated that as BMI increased, brain volume decreased within frontal, temporal and the 

parietal lobes. This complements research that has also found a negative correlation between 

BMI and brain volume in early adulthood and in older adults without cognitive impairments80,137.  

These studies found significant changes in whole brain volume, frontal lobe, occipital lobe and 

the temporal lobe (specifically the hippocampus) volume. Since decreased brain volume is a 
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biomarker for AD, lower brain volumes related to weight in MCI may make individuals more 

vulnerable to dementia. 

 The Alzheimer’s disease Neuroimaging Initiative (ADNI) is a multisite longitudinal 

study that has collected research data from people with normal cognition, MCI and AD to better 

understand the development of AD138. The power of the ADNI lies in the thorough clinical, 

neuroimaging and biomarker data collected on now over 1,000 study volunteers, allowing for the 

analysis of critical questions related to understanding MCI and AD through the use of a large 

sample.  More information on ADNI can be found in the Methods section.   

For this study, the ADNI’s processed volumetric MRI data, analyzed by ADNI 

researchers via the software FreeSurfer allowed for the comparison of region-specific brain 

volumes across BMI groups of MCI subjects139. Our main research question was: how does BMI 

relate to brain structure, if at all, in MCI subjects? Based on previous research in older adults and 

MCI subjects72,80–82,137 we predicted that in MCI a higher BMI will correlate with lower brain 

volume.  

Methods 

Participants 

Behavioral, height, weight, and MRI data were obtained from The Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database138 (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 

companies and non-profit organizations, as a $60 million, 5-year public-private partnership. The 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 

positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early 
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AD. Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well 

as lessen the time and cost of clinical trials.  

ADNI subjects were recruited from over 50 sites across the U.S. and Canada. The initial 

goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-

2. To date these protocols have recruited over 1500 adults ages 55 to 90, to participate in the 

research, consisting of cognitively normal older individuals, people with early or late MCI, and 

people with early AD. Clinical, behavioral and neuroimaging data are collected for each patient 

with up to 54 months of follow up per patient. MRI methods, procedures and preprocessing by 

ADNI have been previously described140 and can also be accessed at the following website: afni-

info.org 

Inclusion criteria for MCI set forth by ADNI, included; a MMSE score between 24 – 30, 

a subjective memory complaint by the patient or caregiver, objective memory loss measured by 

the Wechsler Memory Scale Logical Memory II, a global Clinical Dementia Rating (CDR) of 

0.5, preserved activities of daily living, and the absence of dementia.  

BMI groups                                                                                                                                      

The MCI sample was grouped by traditional BMI criteria: normal weight (NW; BMI 

18.5- 24.9 kg/m2), overweight (OW; BMI 25 - 29.9 kg/m2) or obese (OB; BMI ≥ 30 kg/m2). 

Height (in inches) and weight (in pounds) measurements were taken at the time of clinical 

diagnosis of MCI.  BMI was converted to the unit kg/m2 using the follow calculation, [(Weight 

(lb.) / Height2 (in.)) x 703]. 
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ADNI imaging data acquisition  

 The ADNI MRI method protocol has been previously published139. Briefly, all subjects 

underwent whole-brain MRI scanning on 3-Tesla GE Medical Systems scanners, on at least one 

of two occasions (baseline and 6 months). T1-weighted IR-FSPGR (spoiled gradient echo) 

sequences (256×256 matrix; voxel size = 1.2×1.0×1.0 mm3; TI=400 ms; TR = 6.98 ms; TE = 

2.85 ms; flip angle = 11°), were collected as well as diffusion-weighted images (DWI; 35 cm 

field of view, 128×128 acquired matrix, reconstructed to a 256×256 matrix; voxel size: 

2.7×2.7×2.7 mm3; scan time = 9 min; more imaging details may be found at 

http://adni.loni.usc.edu/wpcontent/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf).  

 

ADNI FreeSurfer methods  

 

 Cortical reconstruction and volumetric segmentation was performed with the Freesurfer 

image analysis suite, which is documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures are described in 

prior publications141–154. Briefly, this processing includes motion correction and averaging 153 of 

multiple volumetric T1 weighted images (when more than one is available), removal of non-

brain tissue using a hybrid watershed/surface deformation procedure152, automated Talairach 

transformation, segmentation of the subcortical white matter and deep gray matter volumetric 

structures (including hippocampus, amygdala, caudate, putamen, ventricles)145,146 intensity 

normalization155, tessellation of the gray matter white matter boundary, automated topology 

correction144,156, and surface deformation following intensity gradients to optimally place the 

gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in 

intensity defines the transition to the other tissue class141–143. Once the cortical models are 

complete, a number of deformable procedures can be performed for further data processing and 

http://surfer.nmr.mgh.harvard.edu/
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analysis including surface inflation147, registration to a spherical atlas which is based on 

individual cortical folding patterns to match cortical geometry across subjects148, parcellation of 

the cerebral cortex into units with respect to gyral and sulcal structure149,157, and creation of a 

variety of surface based data including maps of curvature and sulcal depth. This method uses 

both intensity and continuity information from the entire three dimensional MR volume in 

segmentation and deformation procedures to produce representations of cortical thickness, 

calculated as the closest distance from the gray/white boundary to the gray/CSF boundary at each 

vertex on the tessellated surface143. The maps are created using spatial intensity gradients across 

tissue classes and are therefore not simply reliant on absolute signal intensity. The maps 

produced are not restricted to the voxel resolution of the original data thus are capable of 

detecting sub millimeter differences between groups. Procedures for the measurement of cortical 

thickness have been validated against histological analysis158 and manual measurements159,160. 

FreeSurfer morphometric procedures have been demonstrated to show good test-retest reliability 

across scanner manufacturers and across field strengths150,154.  

FreeSurfer region of interest analysis  

 The regions of interest (ROI) output by FreeSurfer and made available on the ADNI 

website was downloaded for analysis of regional volumes across weight and age groups. Data 

was obtained from the UCSFFX spreadsheet of FreeSurfer Version 5.1. Subjects that had a non-

accelerated T1 screening MRI, whose status was “complete” and had an overall quality check 

(QC) of “Pass” for all QC regions were included in the analyses. Brain regions that related to 

MCI and BMI were selected for analysis, resulting in 36 regions. Each brain region was 

corrected for the total intracranial volume to eliminate subject specific differences in brain region 

volumes that are related to total brain size. The corrected value for each brain region per subject 

was then used for statistical analysis.    
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Statistical analysis  

 Regional brain volumes, behavioral, and clinical data of MCI subjects at screening or 

baseline was downloaded from the ADNI database. The main comparison groups were BMI 

categorized as normal weight (NW, BMI: <25 kg/m2), overweight (OW, BMI: 25 – 29.9 kg/m2) 

and obese (OB, BMI: > 30 kg/m2). Thirty-six cortical and subcortical regional brain volumes 

were selected due to previously reported relationships with either BMI or MCI and averaged 

between hemispheres. The raw brain volumes were corrected for head size by dividing by the 

total intracranial volume (ICV). An analysis of variance (ANOVA) model was used in each 

experiment to compare cognitive and behavioral scores, and regional brain volumes across BMI 

groups. A multivariate ANOVA model corrected for age and education. Lastly, a correlation 

analysis measured the relationship of brain volume with BMI, age, MMSE, CDR-sum of boxes 

(CDR-SB) scores.  

 

Results 

 

Participants 

 

 The MCI sample consisted of 635 subjects with baseline regional brain volume measures. 

The BMI groups consisted of 216 (34%) NW, 282 (44%) OW and 137 (22%) OB. Two 

underweight subjects with a BMI of 17.64 and 17.85 were included in the normal weight group. 

Overall, the MCI cohort had a mean BMI of 27.1, age of 71.9 years, education of 15.9 years, and 

43% were female. Obese subjects were significantly younger than NW, with lower educational 

attainment and a higher mean GDS score. Age and BMI values were negatively correlated (r = - 

0.144, P < 0.001). There were 140 Middle Age (age between 55 and 65) subjects and 494 

Seniors (age greater than 65).  The demographic characteristics of the MCI subjects as whole and 

by BMI groups are reported in Table 2.1.  
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Brain volume 

 

 Baseline regional brain volumes were compared across BMI groups to determine whether 

there was a difference in mean brain volumes. First, a MANOVA model measured the main 

effect of BMI on regional brain volumes. There was a statistically significant difference in brain 

volume across BMI group, F (72, 1194) = 1.36, p = 0.026; Wilks’Λ = 0.854, partial η2 = 0.08. 

Next, age and education were added as covariates, based on previous research indicating their 

relationship with brain volume. In this full factorial model, BMI, age and education were all 

independent significant contributors to volume differences in the overall multivariate tests (BMI: 

F (72, 1186) = 1.31, p = 0.048; Wilks’Λ = 0.858, partial η2 = 0.07; Age:  F (36, 593) = 9.17, p < 

.005; Wilks’Λ = 0.642, partial η2 = 0.36; Education: F (36, 593) = 2.15, p < .005; Wilks’Λ = 

0.885, partial η2 = 0.12). In the full factorial model, 14 (out of 36) regions significantly differed 

by BMI. Each of the regions that significantly differed are displayed in Figure 2.1.  
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TABLE 2.1. Demographic, cognitive, functional and behavioral measures for all MCI subjects  

                     and for each BMI group 

 
All MCI NW OW OB Statistic 

F or Χ2 
P  value 

Characteristic N = 635 N = 216 N = 282 N = 137 

Age (yrs) 71.89 (7.46) 73.03 (7.22) 71.94 (7.41) 69.95 (7.60) 7.34 0.001a, b 

Female, n 

(%) 
272 (43%) 107 (50%) 108 (38%) 57 (42%) 6.52 0.038b 

Education 

(yrs.) 
15.89 (2.88) 16.43 (2.79) 15.73 (2.85) 15.38 (2.94) 6.52 0.002a, b 

MMSE score 27.62 (1.82) 27.52 (1.84) 27.60 (1.84) 27.80 (1.75) 0.983 0.375 

CDR-SB  1.52 (0.86) 1.49 (0.82) 1.53 (0.89) 1.54 (0.89) 0.162 0.850 

NPI-Q score 2.33 (3.23) 2.05 (3.26) 2.24 (2.96) 2.97 (3.62) 3.32 0.037c 

GDS score 1.69 (1.47) 1.65 (1.46) 1.57 (1.34) 2.02 (1.58) 4.54 0.011d 

Values are presented as mean (SD) for continuous variables and number (%) for categorical 

variables. Data are analyzed via analysis of variance (ANOVA) model. Superscripts indicate the 

direction of the differences after Bonferroni method correction: a = NW > OB, b = NW > OW, c 

= OB > NW, d = OB > OW. Statistical significance is set at p < 0.05.  

 

 

For all significant comparisons, brain volume was lowest for NW subjects. Table 2.2. 

lists the regions that significantly differed and the mean raw volume measures for each BMI 

group. A follow-up correlation analysis confirmed a positive association of BMI with brain 

volume. As expected, age was negatively associated with volume in each region. The correlation 

between precuneus volume and BMI (Pearson’s r = .159, p < .001) and age (Pearson’s r = -.391, 

p < .001) are displayed in Figure 2.2. In addition, while neither MMSE nor CDR-SB differed by 

BMI in the ANOVA, the brain volumes of all 14 significant regions were positively correlated 

with the MMSE and 12 out of 14 were negatively correlated with the CDR-SB. This indicates 

the expected cognitive and functional relationship, in that, as brain volume increases MMSE 
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scores increase and CDR-SB scores decrease (moving toward normal cognitive and functional 

abilities).  

TABLE 2.2. Significant cortical and subcortical volume differences across BMI groups of MCI  

          subjects 

 Volume (mm3)   

Brain Region 

Normal 

Weight 

n = 216 

Overweight 

n = 282 

Obese 

n = 137 
F P value 

Precuneus  8005  (1217) 8455  (1197) 8596  (1339) 7.33 0.001a,b 

Middle temporal gyrus 9487  (1485) 9946  (1486) 101743  (1409) 5.26 0.005a,b 

Hippocampus 3226  (537) 3432  (554) 3565  (619) 5.14 0.006a,b 

Lingual gyrus 5662  (924) 5976  (989) 6084  (894) 5.06 0.007b 

Lateral occipital cortex 10099  (1602) 10554  (1523) 10678  (1674) 4.90 0.008b 

Amygdala 1254  (247) 1331  (243) 1363  (233) 4.89 0.008a,b 

Rostral anterior 

cingulate gyrus 
2048  (404) 2164  (390) 2160  (425) 4.04 0.018b 

Superior parietal lobule 11052  (1606) 11549  (1709) 11943  (1913) 3.69 0.026a 

Isthmus cingulate gyrus 2148  (380) 2250  (392) 2317  (381) 3.63 0.027 

Insular cortex 5965  (847) 6226  (830) 6279  (851) 3.56 0.029b 

Pericalcarine cortex 1837  (343) 1938  (370) 1958  (317) 3.47 0.032a,b 

Medial orbitofrontal 

gyrus 
4103  (698) 4325  (727) 4424  (713) 3.46 0.032b 

Inferior parietal lobule 11329  (1822) 11852  (1876) 12061  (1858) 3.30 0.038b 

Banks of the superior 

temporal sulcus 
2109  (342) 2219  (369) 2219  (386) 3.26 0.039b 

Raw brain volumes, mean (SD), for regions that significantly differed by BMI in a MANOVA 

model- BMI; NW (n = 216), OW (n = 281), OB (n = 137). The statistic is a multivariate general 

linear Model (GLM), factored by BMI group, with covariates age, and education. Superscripts 

indicate the direction of the differences after pairwise comparison correction using the 

Bonferroni method: a = NW < OB, b = NW <OW (analysis was done using brain volumes 

corrected for total intracranial volume). Significant was set at p < 0.05.  

    

 

 Next, we further examined the relationship of age and BMI with brain volume in our 

sample by conducting a series of post-hoc analyses to determine whether age might be a 
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confounding variable to our results. For both the Middle Age and Senior groups brain volume 

increased as BMI increased. Body mass index and age values had a significant yet weak 

association (Pearson’s r = -0.146, p < .001). Further, a two-way ANOVA tested the interaction of 

BMI (NW, OW, OB) and age (Middle-aged, Senior), was not significant, F (72, 1180) = 0.75, p 

= 0.939; Wilks’Λ = 0.914, partialη2 = 0.044. Further, we separated the Middle-age and Senior 

groups and ran a MANOVA controlling for age and education to examine the effect of BMI on 

brain volume within these two distinct life stages. In the model of only middle-aged subjects 

there was no difference in any of the 36 brain regions examined based on BMI group. However, 

we found robust effects for brain volume differences by BMI in the Senior group. In addition, 

despite the large age range for the Senior group (range = 55 – 89 years) there was not a 

difference in age across BMI groups. For Seniors, all of the original 14 regions remained 

significant, plus three additional regions; the fusiform gyrus (F= 3.51, p = 0.034), 

parahippocampal gyrus (F = 3.37, p = 0.035), and the superior temporal gyrus (F = 4.5, p = 

0.012). Additional post hoc analyses included BMI, age and brain volumes were also entered 

into a multiple regression analysis with the goal of assessing the relationship of BMI and brain 

volumes with and without age added into the model. In preparation for this analysis the Durbin-

Watson test was run to determine whether there was independence between residuals in the 

model. This test did not meet the threshold of approximately 2.0 and further analyses could not 

be completed due to the higher correlation among our variables (age, BMI, brain volume). 

Finally, one third of the population was randomly removed to test whether the large size of our 

sample may have generated false positive data. Within the reduced sample, with covariates 

added, there was not an effect of BMI on brain volumes, F (72, 770) = 1.09, p = 0.295; Wilks’Λ 

= 0.824, partial η2 = 0.09. The reduction of the sample did not affect the observed power of the 

analysis, power = 0.998.  
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FIGURE 2.1. Cortical brain regions that significantly differed in volume by BMI. Subcortical 

regions that also differed by BMI are not shown: the hippocampus (F = 5.1, p = .006) and 

amygdala (F = 4.9, p = .008). The effects of BMI on brain volumes were analyzed using a 

MANOVA model correcting for age and education. Regions range in their significance with light 

yellow regions meeting statistical significance of p< 0.05 and dark red having a p value of p < 

0.001. 
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FIGURE 2.2. The correlation of precuneus volume with BMI and age. BMI was positively 

associated with precuneus volume whereas age was negatively associated. The associations were 

measured using a Pearson’s correlation with significance set at p < 0.05. 

 

 

Discussion 

 

 This study is the first to provide neurological evidence for the possible association of a 

normal BMI with lower brain volumes in MCI. We predicted that as BMI increased, brain 

volume would decrease. Yet, in our sample, the NW subjects showed statistically lower brain 

volumes. Obese subjects had less education, were younger, with higher mean NPI-Q and GDS 

scores. There were 14 regions (out of 36 preselected cortical and subcortical regions) that 

showed a medium effect of BMI on brain volume and, in all regions, raw and corrected volumes 

were lowest for NW subjects compared to OW and OB subjects. This is the largest MCI study on 

the relationship of weight and brain structure, with over 600 MCI subjects. 

  Previous studies investigating the effect of BMI on brain volume in cognitively normal 

adults have found obesity to result in lower brain volumes and worse cognitive performance161. 

One study in older women found frontal, posterior parietal and occipital regions to be 

specifically vulnerable ROIs in obesity; along with cognitive deficits in executive function that 

were associated with smaller left orbitofrontal gyrus volume72. In elderly men and women,  BMI 

was negatively correlated with brain volume in the orbitofrontal cortex, anterior cingulate gyrus 
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and the medial temporal lobe80.  Across these studies whole brain volume also decreased as BMI 

increased80,82,162 . Possible mediators between a high BMI and brain atrophy include 

inflammation163, Type 2 diabetes164, and hypercortisolemia165. While the link between BMI and 

brain volume is not likely to be direct there may be one or more mediators that play a role in this 

relationship and in MCI the underlying pathology may initiate the opposite responses seen in 

older obese adults with normal cognition. 

 The only other study on BMI and brain volume in MCI found that brain volume 

decreased by 1% for every 1-point increase in BMI82.  The difference between this study’s 

findings and our own is most likely due to different methodologies. In our study, subjects were 

grouped by BMI, and ROI mean volumes were compared, whereas Ho et al., used a whole brain 

voxel based analysis of ADNI MCI subjects (ADNI-1, n = 399) with the addition of 77 subjects 

from the Pittsburgh Cardiovascular Health Study-Cognition Study (CHS-CS). Our study had a 

larger ADNI sample using all 3 phases of only amnestic MCI subjects, and specifically 

compared regional brain volumes related to both MCI and obesity. The hypothesis of this study 

was created in tandem with the available evidence for the effects of BMI on brain volume 

outlined above, yet our findings provide new insight into the relationship of weight and BMI in 

MCI.  

 Our findings were similar in the brain regions affected by BMI however; we found the 

opposite relationship of BMI and brain volume (volume decreased as BMI decreased). The brain 

regions affected by a low BMI primarily constituted the parietal and occipital lobes of the brain. 

The parietal lobe functions primarily in the integration of sensory information and the occipital 

lobe in vision. Specifically, the parietal lobe functions in somatosensory and tactile function 

(postcentral gyrus), motility (precuneus and superior parietal lobule), spatially directed attention 

(R-inferior parietal lobe), symbolic thought and memory (L-inferior parietal lobe) and memory 
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vision and proprioception (inferior parietal lobe, posterior parietal gyrus)166. The occipital lobe 

functions in visual perception, including object motion, face recognition, and visual control of 

skilled actions. The pathological stages of Alzheimer’s disease described by Braak and 

colleagues, indicate involvement of occipital and parietal lobe regions in Stages II – IV of the 

disorder (for amyloid), or early to moderate Alzheimer’s disease.  

 Our findings suggest that the pattern of regional brain volume reductions in NW MCI 

may indicate a more severe state of MCI with early deficits in brain regions that reflect middle to 

late stage Alzheimer’s disease.  Normal weight subjects may have smaller brain volumes 

compared to OW and OB in our sample, yet, the most likely explanation is due to the older age 

of NW subjects. Additional post hoc analyses were conducted including the separate analysis of 

middle-age and Senior groups, multiple regression, random removal of one third of the sample to 

address the possible confounding of age that may have persisted despite correction in the 

MANOVA model. These post-hoc analyses showed a loss in the effect of BMI on brain volume. 

Future studies that aim to assess the relationship of BMI and brain volume in MCI should be 

designed so that there is an equal representation of middle-age and Senior subjects. In addition, 

study designs should focus on specific age groups with a limited age range of 5 years; this will 

more effectively address the possible confounding of age on brain volume, and difference in age 

related brain atrophy that occurs in middle age to Senior stages (increasing from 0.5 to 1% 

atrophy per year after age 70).  

 While our initial findings contradict studies on regional brain volumes in normal 

cognition and MCI obese subjects, they align with many longitudinal studies that demonstrate a 

low BMI resulting in shorter progression time from MCI to AD dementia81,167–170. Current 

research demonstrates an increased risk of developing dementia in normal or underweight MCI 

subjects and a protective effect or decreased risk of dementia in overweight and obese subjects. 
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A longitudinal study of brain volume trajectories of older adults who were obese at middle age 

showed no change in whole brain volume over time and significant regional change only in the 

cingulate gyrus81. Tolppanen and colleagues also found that a decrease in BMI from midlife to 

late life increased the risk of AD (HR = 1.14)170. Our study is the first to provide neurological 

evidence for the findings listed above. The increased risk of dementia and shorter progression 

time of NW-MCI subjects may be due to lower regional brain volumes that extend beyond 

regions initially affected by MCI but of those that represent AD as shown in the present study. 

Limitations  

 Some limitations must be taking into account when interpreting the results of this study.  

The main analysis examined the effect of BMI on brain volumes in brain regions related to high 

adiposity and MCI. There was a strong association between age and brain volume and in our 

sample, as BMI groups significantly differed by age. We controlled for age in our MANOVA 

model to address any potential confounding effects of age on our results171. When we did this the 

p-value for the model increased, from p = .027 to p = 0.048 and the effect decreased from a 

partial η2 = 0.08 to partial η2 = 0.07. Despite this, our analysis had adequate power (observed 

power = 1.0) and remained statistically significant, which may indicate a true effect of BMI on 

brain volumes. However, the interpretation of our results must be made with caution due to the 

high correlation of our variables (BMI, age, and regional brain volumes) within our analysis and 

the loss of a BMI effect in post hoc analyses. 
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Conclusions 

 Normal weight MCI subjects were unexpectedly older with lower regional brain volumes 

compared to OW and OB subjects. This study may provide neurological evidence for recent 

findings of a protective effect of a high BMI on MCI progression, and an increased likelihood of 

NW individuals progressing to dementia. However, further research is needed to elucidate the 

effects of age on brain volume separate from that of BMI on brain volume in MCI subjects. As 

the population of older adults increase, the number of overweight and obese people is expected 

to grow proportionally. Many seniors are surviving to older ages despite their weight; this is 

likely due to evolving treatments for conditions often comorbid with increased weight such as 

type-2-diabetes, cardiovascular disease and hypertension. The survivorship of overweight and 

obese adults increases the susceptibility of MCI and AD to a wide range of BMIs. It will be 

necessary to understand how weight effects or alters the pathophysiology of AD. Understanding 

the interactions of weight, age and brain structure may be important in assessing neurologic 

vulnerability and dementia risk in individuals with MCI.  
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APPENDIX 

 

 

TABLE 2A. Selected FreeSurfer brain regions for volume analysis across BMI groups 

 

The full list of selected regions from the FreeSurfer software are indicated in the table above by 

their label name in FreeSurfer and the full anatomical name of each region. 

 

 

No. Label Region Name No. Label Region Name 

1 ParOrbital Pars orbital cortex 19 PostCing Posterior cingulate 

gyrus 

2 ParOperc Pars opercularis 

cortex 

20 SupPariet Superior parietal 

lobule 

3 ParTriang Pars triangularis 

cortex 

21 SupTemp Superior temporal 

gyrus 

4 ParaHipp Parahippocampal 

gyrus 

22 Supramarg Supramarginal cortex 

5 MidTemp Middle temporal 

gyrus 

23 TempPole Temporal pole 

6 InfTemp Inferior temporal 

gyrus 

24 TransTemp Transverse temporal 

cortex 

7 ParaCent Paracentral lobule 25 Bankss Banks of the superior 

temporal Sulcus 

8 PostCent Postcentral gyrus 26 Cuneus Cuneus 

9 RostAntCing Rostral anterior 

cingulate gyrus 

27 Entorhinal Entorhinal gyrus 

10 CaudAntCing Caudal anterior 

cingulate gyrus 

28 FrontPole Frontal pole 

11 Insula Insular cortex 29 Fusiform Fusiform gyrus 

12 CaudMidFront Caudal middle 

frontal gyrus 

30 InfPariet Inferior parietal lobule 

13 RostMidFront Rostral middle 

frontal gyrus 

31 IsthCing Isthmus cingulate 

gyrus 

14 Precuneus Precuneus 32 LatOrbFront Lateral orbitofrontal 

gyrus 

15 LatOccip Lateral occipital 

cortex 

33 Lingual Lingual gyrus 

16 PreCent Precentral gyrus 34 MedOrbFront Medial orbitofrontal 

gyrus 

17 SupFront Superior frontal 

gyrus 

35 Amygdala Amygdala 

18 Pericalcar Pericalcarine 

cortex 

36 Hipp Hippocampus 
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CHAPTER 3 

 

 
THE INTERACTION OF BODY MASS INDEX, NEUROPSYCHIATRIC SYMPTOMS 

AND AGE IN MILD COGNITIVE IMPAIRMENT:  

A LONGITUDINAL STUDY 
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Introduction 

 A growing number of Americans have Alzheimer’s disease, and the prevalence will 

dramatically increase over the next 30 years. The pathological process of Alzheimer’s disease is 

a long trajectory of physiological, behavioral and cognitive changes that begin many years prior 

to clinical symptoms of dementia172. Prior to meeting clinical criteria for dementia, patients 

experience an intermediate stage of mild cognitive impairment (MCI) that is characterized by 

mild cognitive and behavioral deficits5. Many factors predict the conversion from mild cognitive 

impairments to dementia. The majority of studies on these risk factors focus on cognitive 

changes and their relationship with progression from MCI to dementia. However, there are non-

cognitive factors that predict the development of dementia50,164. These non-cognitive conditions 

are of great interest because they may provide an indication of early changes that are not directly 

related to the irreversible pathological stream that predates cognitive dysfunction. Of even 

further interest are those that are ‘modifiable’, which include conditions that involve lifestyle 

factors such as, diet and exercise.  Two non-cognitive factors that fit these criteria and are 

prevalent in MCI are neuropsychiatric symptoms (NPS) and obesity. When MCI subjects have 

high NPS (>4) in the early stages of MCI, they show greater cognitive deficits and a higher rate 

of conversion to dementia101,102. An increased risk for dementia is also true for individuals that 

are obese in middle age (45 – 65 years old) with normal cognition68,134.  Obesity and NPS often 

occur co-morbidly across age groups in individuals with normal cognition74,173; however, the 

association of these two factors with MCI progression to AD has not been measured. 

 Neuropsychiatric symptoms are highly prevalent in AD (70-90%) and in MCI (40 – 

60%)52,102. MCI subjects with high NPS scores are 2.5 times more likely to develop dementia 

and also show a faster rate of cognitive decline47. Further, when NPS burden worsens over time 

individuals demonstrate faster cognitive and functional decline, and progression to AD over 2 
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years174. Depression, anxiety and apathy are highly prevalent in obese individuals with normal 

cognition87,90. MCI subject who are obese with high NPS may be at an increased risk for 

cognitive decline.  

 The number of longitudinal studies investigating BMI in MCI continues to grow with a 

primary focus on cognition function175 and the risk of conversion to dementia168,169 over one and 

two year intervals. Research findings indicate that a high body mass index (BMI) in MCI does 

not result in increased cognitive deficits or a higher conversion rate to dementia. Many findings 

identify an increased risk of cognitive decline and the development of dementia in normal weight 

MCI subjects 125,169. In these studies normal weight subjects have greater cognitive decline than 

over-weight and obese subjects, demonstrated by tests of global cognition, the mini mental status 

exam (MMSE) and Alzheimer’s disease assessment scale – cognitive (ADAS –cog scores)176. 

The risk of developing dementia is increased 2.5 times in MCI subjects with a low baseline BMI 

whereas being overweight reduces the risk of developing dementia over 2 years177 Further, 

weight loss also increases the risk of cognitive changes. Cognitively normal elderly are more 

susceptible to MCI after weight loss178, and in MCI the risk of dementia is increased by 3.4 fold 

and AD specifically by 3.2 fold with weight loss179. The findings of these studies may seem 

surprising at first in that, one would expect obesity to lead to more cognitive and functional 

dysfunction; yet, being overweight is protective against the onset of dementia. Because the link 

between obesity and AD has only been demonstrated when obesity is present at middle age, the 

relationship between increased weight and cognitive decline represents a paradox with age as its 

nexus135,136. Previous studies have measured cognitive changes and progression to dementia 

across BMI groups. This study will add to previous research by measuring the interaction of BMI 

and NPS within age groups of Middle Age and Senior subjects.  
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Recent work in our lab on MCI subjects near the time of diagnosis has shown that those 

who were obese had a higher frequency of affective neuropsychiatric symptoms (NPS) than 

normal weight subjects.  Further, increased adiposity measured by BMI was associated with a 

younger age at onset of MCI by 7 years on average compared to normal weight subjects. 

Currently, no studies have investigated longitudinal changes in cognitive, functional and 

behavioral scores. This study seeks to address this gap in knowledge and provide evidence for 

specific cognitive and functional changes that may be related to BMI, age, and NPS in MCI. 

While we expect to see greater cognitive changes in the NW groups similar to previous reports, 

we sought to validate the obesity paradox in this context by directly comparing Middle Aged and 

Senior groups who have MCI. We hypothesize that the Middle Age obese group will show a 

faster progression to Alzheimer’s type dementia than normal and over-weight middle-age 

subjects. 

Methods 

Participants 

 Demographic and behavioral data of MCI subjects were obtained from The Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu)127. The ADNI was 

launched in 2005 by the National Institute on Aging (NIA), the National Institute of Biomedical 

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-private 

partnership. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early 

AD. Determination of sensitive and specific markers of early AD progression is intended to aid 
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researchers and clinicians to develop new treatments and monitor their effectiveness, as well as 

lessen the time and cost of clinical trials.  

 ADNI subjects were recruited from over 50 sites across the U.S. and Canada. The initial 

goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-

2. To date these protocols have recruited over 1500 adults ages 55 to 90, consisting of 

cognitively normal older individuals, people with early or late MCI, and people with early AD. 

Clinical, behavioral and neuroimaging data are collected for each patient for up to 54 months. 

MRI methods, procedures and preprocessing by ADNI have been previously described140 and 

can also be accessed at: www.afni-info.org. Inclusion criteria for MCI set forth by ADNI 

include; an MMSE score between 24 – 30, a subjective memory complaint by the patient or 

caregiver, objective memory loss measured by the Wechsler Memory Scale Logical Memory II, 

a global Clinical Dementia Rating (CDR) of 0.5, preserved activities of daily living, and the 

absence of dementia.   

For our study, we abstracted data on individuals who met ADNI-defined MCI criteria 

from all 3-phases of ADNI. Overall, the analysis was undertaken in two parts, first by conducting 

a longitudinal analysis that analyzed baseline, 2-year and change scores (2-yr – bl) on the NPI-Q, 

GDS, MMSE, ADAS-cog 13 and CDR-sb. Second, by determining the number of subjects that 

progressed to AD and examining the survival of subjects based on group membership in BMI 

(NW, OW, OB) or age (Middle-Age and Senior) group. Only MCI subjects with cognitive, 

behavioral and functional measures at both baseline and 2-year time points were included in the 

longitudinal analysis. We also analyzed whether there was an interaction of age with BMI groups 

and how NPS affected progression over 2 years.  

Factors 
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We sub-divided our sample into a Middle Age group, aged 55 – 65 and a Senior group 

who were 66 years of age or older. We also created BMI groups as follows: normal weight (NW; 

BMI 18.5- 24.9 kg/m2), overweight (OW; BMI 25 - 29.9 kg/m2) or obese (OB; BMI ≥ 30 kg/m2). 

Height (in inches) and weight (in pounds) measurements were taken at the time of clinical 

diagnosis of MCI.  BMI was converted to the unit kg/m2 using the follow calculation, [(Weight 

(lb.) / Height2 (in.)) x 703].  

Longitudinal analysis methods and statistical analyses 

 The longitudinal analysis assessed changes in cognitive, functional and behavioral 

measures over a 2-year interval. Global cognitive measures included the MMSE, and ADAS-cog 

13. The MMSE assesses changes in 5 categories: orientation (i.e. date, place), registration or 

immediate recall, delayed recall, attention and calculation (i.e. subtraction) and language27. There 

are 30 questions worth 1 point each with scores ranging from normal cognition (>25) to severely 

impaired (≤ 10). In addition, the ADAS cognitive 13-item subscale tests cognitive domains of 

memory, language, praxis, attention, and other cognitive abilities with a total scoring range of 0 

– 70 points118. Higher scores indicate a higher degree of impairment. Clinical Dementia Rating 

Scale – sum of boxes (CDR-SB)180 scores were compared across groups as an additional measure 

of combined cognitive and functional change. The CDR-SB includes five categories, memory, 

orientation, judgment, community affairs, home and hobbies, and personal care that are assessed 

with item scores ranging from no impairment (0), mild impairment (0.5) up to severe impairment 

(3). The sum of each category score resulted in the total sum of boxes score, which could range 

from 0.5 to 15. 

 Neuropsychiatric symptoms were measured using the Neuropsychiatric Inventory 

Questionnaire (NPI-Q) 109 and the Geriatric Depression Scale –short form (GDS) 110. The NPI-Q 

is a validated measure for assessing behavioral disturbances across 12 different domains in a 
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brief caregiver-reported questionnaire 109. These include; delusions, hallucinations, 

agitation/aggression, depression/dysphoria, anxiety, elation/euphoria, apathy/indifference, 

disinhibition, irritability, aberrant motor behavior, sleep and nighttime behavioral changes, and 

appetite and eating disorders. An informant familiar with the subject reports NPI-Q symptoms, 

by rating each symptom for their presence (yes/no), and severity (range of 0 - 3) for each item. 

Behavioral changes reported on the NPI-Q reflect symptoms present within one month of testing, 

with 36 possible points. The self-reported 15-point GDS scale further quantified depressive 

symptoms. Low NPS was designated as a total score between 0-3 symptoms and high NPS as ≥ 4 

on either test.  

 The total score for each test and the prevalence of mild and moderate symptoms were 

measured across BMI and age groups. A difference score was computed between the baseline 

and two-year visit for each test and analyzed across all subjects and BMI groups. The difference 

in baseline, 2 year, and change scores were compared across BMI groups using an ANOVA 

model. A Bonferroni post-hoc test was used to determine which groups differed from each other. 

Significance was set at p <0.05.  

Survival analysis methods and statistical analyses 

A survival analysis181 was used to measure the survival distribution of BMI, age and NPS groups 

in order to identify differences in cumulative survival over two years related to these conditions 

independently and when factored together. The survival analysis included the following 

parameters: the time of origin was the baseline visit, the event was a dementia (probable AD) 

diagnosis, and the comparison groups were BMI (NW, OW, OB), age group (Middle-Age, 

Senior) and NPS (High/ Low baseline NPI-Q and GDS score). The survival distributions were 

measured for each group independently and factored together. Time was measured in 6-month 

intervals from the baseline visit to the 2-year visit. Censored events included loss to follow-up, 



 

 57 

death, and another diagnosis. All ADNI MCI subjects that met the inclusion criteria were 

included in the survival analysis.  

The cumulative survival of MCI subjects was calculated using Kaplan-Meier plots in 

SPSS version 22.0 (Chicago, IL). Significance was set at p <0.05. 

 

Results  

 

 Baseline measures for all ADNI MCI subjects from each phase were combined into one 

dataset. Selected demographic information for the combined dataset is displayed in Table 1. 

Overall, the sample was predominantly Caucasian, with nearly 16 years of education and over 

66% were overweight or obese. The obese group was younger, less educated, with higher mean 

arterial pressure (MAP) values and a higher proportion of T2D, HTN, HLP and OSA co-morbid 

conditions compared to normal weight. Obese subjects also had higher mean NPI-Q scores and 

symptom prevalence compared to NW subjects. Age group differences in demographic, 

cognitive and behavioral variables are reported in the Appendix, Table 3A. 
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TABLE 3.1. Demographic, cognitive and behavioral characteristics for all ADNI MCI subjects  

                     and across BMI groups 

 

  All MCI NW OW OB F   

Characteristic (n =956) (n = 318 ) (n = 430) (n = 205) 
or 

X2 
p value 

Female, n (%) 396 (41.5%) 162 (50.9%) 144 (33.6%) 90 (43.9%) 23.3 0.015c 

Age, yrs 72.51 (7.9) 73.47 (7.8) 72.68 (7.7) 70.68 (8.1) 8.1 < 0.01 

MidAge, n (%) 199 (20.8%) 51 (16%) 88 (20.5%) 59 (28.8%) 12.3 0.002c 

Senior, n (%) 756 (79.2%) 267 (84%) 341 (79.5%) 146 (71.2%) 12.3 0.002c 

Education, yrs 15.93 (2.8) 16.49 (2.8) 15.84 (2.72) 15.22(2.9) 13.4 < 0.01 

MMSE  27.57 (1.8) 27.46 (1.8) 27.57 (1.8) 27.75 (1.7) 1.7 0.19 

CDR-SB 1.54 (0.9) 1.55 (0.9) 1.53 (0.9) 1.56 (0.9) 0.1 0.88 

BMI (kg/m2) 27.06 (4.7) 22.59 (1.8) 27.09 (1.4) 33.9 (4.0) - < 0.01 

NPI-Q score  2.26 (3.1) 2.0 (3.1) 2.16 (2.9) 2.26 (3.2) 5.6 0.010b 

≥ 1 494 (62.2%) 157 (58.4%) 223 (62.5%) 113 (69.8%) 5.6 0.021c 

≥ 4 183 (23.2%) 53 (19.7%) 82 (23%) 47 (29%) 4.9 0.034c 

GDS score  1.69 (1.5) 1.64 (1.5) 1.6 (1.42) 1.97 (1.8) 4.4 0.059b 

≥ 1 730 (76.4%) 242 (76.1%) 326 (75.8%) 161 (78.9%) 0.8 0.053c 

≥ 4 128 (13.4%) 40 (12.6%) 50 (11.6%) 38 (18.6%) 6.1 0.122c 

 

 

Mean comparisons across BMI groups were conducted using an ANOVA model for continuous 

variables, mean (SD) and the chi-square test of independence for categorical variables, n (%). 

Behavioral tests are reported as the mean score and total symptom categories of ≥1 or ≥4.  b Non-

parametric Kruskal-Wallis Test  C Gamma approx p value, ordinal by ordinal. Significance was 

set at p <0.05. 

Abbreviations: NPI-Q, neuropsychiatric inventory questionnaire; GDS, geriatric depression 

scale; MMSE, Mini Mental Status Examination; CDR-SB, Clinical Dementia Rating Scale – 

Sum of Boxes; BMI, body mass index; NW, normal weight; OW, overweight; OB, obese; 

MidAge, Middle-Age (<66 years), Senior, seniors (>65 years); yrs, years. 

 

 

Longitudinal analysis 

 

 A total of 634 subjects had both baseline and 2 year behavioral, cognitive and functional 

data measurements. The mean test scores for all subjects and by BMI are displayed in Table 2.  

At the 2-year follow-up, average NPS and CDR-SB scores were increased and MMSE scores 

decreased. The baseline and 2 year ADAS-cog scores significantly differed across BMI groups: 
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normal weight subjects had higher mean ADAS-cog 13 scores than obese. Normal weight 

subjects also had a greater degree of cognitive change than obese over two years measured by the 

ADAS-cog 13, nearly three times the mean change of OB subjects. The CDR-SB change scores 

were also greatest for NW subjects indicating more cognitive and functional impairments than 

the OB group. There was no difference in change scores for the NPI-Q, GDS, or the MMSE.  

 

TABLE 3.2. Longitudinal changes in behavior, cognitive and functional test scores over two  

         years for all MCI subjects and across BMI groups 

Test 
All MCI 

N = 634 
NW OW OB 

F 

value 
p value 

NPI-Q       

Baseline 1.83 1.84 1.67 2.17 1.13 0.326 

2 Years 2.53 (.15) 2.40 (.23) 2.43 (.23) 3.01 (.42) 1.13 0.324 

Change 

score 
0.71 (.14) 0.55 (.24) 0.79 (.21) 0.84 (.33) 0.40 0.669 

GDS       

Baseline 1.69 1.64 1.60 1.97 1.66 0.191 

2 Years 1.93 1.86 1.86 2.19 0.12 0.884 

Change 

score 
0.30 (.07) 0.28 (.12) 0.31 (.10) 0.33 (.18) 0.03 0.969 

MMSE       

Baseline 27.57 27.46 27.57 27.75 1.16 0.314 

2 Years 26.36 26.04 26.41 26.78 1.43 0.240 

Change 

score 
-1.29 (.12) -1.44 (.19) -1.28 (.19) -1.08 (.26) 0.61 0.543 

ADAS-cog 13       

Baseline 16.16 (.27) 16.95 (.45) 16.04 (.38) 15.11 (.62) 3.23 0.040 

2 Years 18.63 (.41) 20.48 (.74) 18.29 (.58) 16.36 (.87) 6.95 0.001 

Change 

score 
2.46 (.26) 3.52 (.48) 2.21 (.37) 1.25 (.53) 5.33 0.005 

CDR - SB       

Baseline 1.54 1.54 1.52 1.56 1.92 0.148 

2 Years 2.53 2.74 2.52 2.22 0.12 0.884 

Change 

score 
0.99 (.07) 1.19 (.13) 0.99 (.11) 0.66 (.15) 3.29 0.038 

Mean comparisons across BMI groups were conducted using an ANOVA model and reported as 

the mean value and standard deviation. Significance was set at p < 0.05.  

Abbreviations: 2-yr, 2 year score; NPI-Q, neuropsychiatric inventory questionnaire; GDS, 

geriatric depression scale; MMSE, Mini Mental Status Examination; CDR-SB, Clinical 

Dementia Rating Scale – Sum of Boxes; NW, normal weight; OW, overweight; OB, obese.  
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Survival analysis 

 

 Nine hundred and fifty-six MCI subjects met the inclusion criteria at baseline and were 

included in the survival analysis. Over 2 years, 172 (27%) subjects converted to probable AD 

dementia, 23 (3.6%) reverted to normal cognition and 322 (34%) were lost to follow-up. Kaplan 

Meier plots display the cumulative survival of MCI subjects over 2 years. The survival 

distribution of our primary factors of interest, BMI (NW, OW, OB), NPS (high/low NPI-Q and 

GDS) and age (Middle-Aged, Senior) were analyzed first. A log rank test was used to determine 

if there were differences in the overall survival distributions for the BMI, NPI-Q, GDS and age 

groups. In the analyses, the cumulative survival did not fall below 50% for any comparisons; 

therefore median survival estimates were not generated. However, a similar percentage of 

censorship was present across all group, seen by in the NW (75%), OW (79%), and OB (83%) 

BMI groups, as well as in the middle age (84%) and Senior (77%) groups. The survival 

distributions by BMI (Figure 3.1) were not significantly different, Χ2 (2) = 4.81, p = 0.090. The 

high and low NPS symptom group survival distributions also did not differ for the NPI-Q (Χ2 (2) 

= 0.93, p = 0.336) and GDS (Χ2 (2) = 0.21, p = 0.64). However, the survival distributions by age 

group (Figure 3.2) were significantly different between Middle Age and Senior subjects, Χ2 (1) = 

4.86, p = 0.027. The mean time to conversion was 22 months (95% CI, 21.7 to 22.4) in Senior 

MCI subjects compared to 23 months (95% CI, 22.0 to 23.2 months) for Middle-aged subjects.  

 After analyzing the primary factors we then tested the interactions of age with BMI and 

NPS. The log rank test for the survival distribution factored by age and adjusted for BMI was 

statistically significant, Χ2 (1) = 4.05, p = 0.044 (Figure 3.3). However, further post hoc analysis 

using pairwise comparisons of age distributions within BMI groups was not able to determine the 

where the differences were: NW, Χ2 (1) = 2.81, p = 0.094, OW, Χ2 (1) = 0.706, p = 0.401, OB Χ2 
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(1) = 1.08, p = 0.298. This is likely due to the conservative nature of the test when correcting for 

multiple comparisons. 

 
FIGURE 3.1. Kaplan-Meier curves comparing the rate of survival of BMI groups from baseline 

MCI status to the diagnosis of Alzheimer’s type dementia. The cumulative survival of three BMI 

groups were compared over 24 months or 4 study visits. Crosses indicate censored events. 

Abbreviations: NW, normal weight; OW, overweight; OB, obese. 

 

 

Finally, we were interested in the interaction of BMI and age with behavioral scoring on 

the NPIQ and GDS. Since there was no difference in survival by BMI, the NPS test scores, 

grouped as high or low, were stratified across age groups (Figure 3.4). These interactions 

demonstrated an overall significant relationship between age group, and NPI-Q and GDS 

high/low symptom groups. The survival distributions for Middle-age and Senior groups that had 

low NPIQ score compared to high NPIQ scores at baseline significantly differed, Χ2 (1) = 4.66, p 
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= 0.031 (Fig. 3.4A). There was also a significant difference in survival distributions for Middle-

Age and Seniors that had low GDS score compared to high GDS scores at baseline, Χ2 (1) = 4.68, 

p = 0.031 (Fig. 3.4B). Pairwise comparisons of the low and high NPI-Q groups indicated a 

significant difference in survival for MCI subjects with low baseline NPI-Q scores, Χ2 (1) = 5.0, 

p = 0.025, indicating a faster progression to AD for Seniors with Low NPI-Q scores at baseline. 

The difference in survival was not significant for MCI subjects with high baseline NPIQ scores 

after correction, Χ2 (1) = 0.427, p = 0.514. For GDS groups, there was also no difference in the 

survival distribution for baseline low, Χ2 (1) = 3.29, p = 0.070, or high, Χ2 (1) = 1.52, p = 0.218, 

scores after correcting for multiple comparisons.  

FIGURE 3.2. Kaplan-Meier curves comparing the rate of survival of age groups from baseline 

MCI status to the diagnosis of Alzheimer’s type dementia. The cumulative survival of Middle 

Age and Senior groups were compared over 24 months or 4 study visits. Crosses indicate 

censored events. 
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FIGURE 3.3. Kaplan-Meier curves comparing the rate of survival of BMI groups factored by age 

group from baseline MCI status to the diagnosis of Alzheimer’s type dementia. The cumulative 

survival of Middle Age and Senior subjects within three BMI groups of normal weight, 

overweight and obese were compared over 24 months or 4 study visits. Crosses indicate 

censored events. 
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FIGURE 3.4. Kaplan-Meier curves comparing the rate of survival of age groups factored by high 

and low NPS groups from baseline MCI status to the diagnosis of Alzheimer’s type dementia. 

(A) NPI-Q groups of high and low symptom burden compare the cumulative survival of Middle 

Age and Senior MCI subjects. (B) GDS groups of high and low symptom burden compare the 

cumulative survival of Middle Age and Senior MCI subjects. The low group represents total test 

scores between 0 and 3 and the high scores are ≥ 4. The cumulative survival of age factored by 

NPS group were compared over 24 months or 4 study visits. Crosses indicate censored events. 

Abbreviations: NPS, neuropsychiatric symptoms; NPI-Q, Neuropsychiatric Inventory 

Questionnaire; GDS, Geriatric Depression Scale. 
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Discussion 

 

 This study of over 600 MCI subjects investigated how weight and age influenced the 

progression of MCI by investigating its cognitive, functional, and behavioral features over two 

years. We found that NW subjects had greater cognitive changes over 2 years, similar to 

previous reports169,176,177,182. The Kaplan-Meier curves for BMI did not reach significance to 

show a difference in survival but our sample did show significant, if small, differences in 

survival based on age group. New findings include the interaction of BMI and age resulting in a 

change in the survival distribution. Further, the interaction of age and NPS also affected survival 

in MCI subjects.  We were not able to support our hypothesis that middle aged OB have a faster 

progression time to AD. In our sample, OB individuals had less education, higher NPS scores 

and multiple metabolic co-morbidities, but equivalent levels of cognitive impairment compared 

to NW subjects at baseline.  We showed that in MCI, a higher proportion of Middle Age subjects 

were obese compared to Seniors. However, the duration of our study period did not allow for the 

identification of longitudinal effects of obesity in middle age subjects.  

  Interestingly, MCI subjects with 4 or more symptoms on the NPI-Q had higher CDR-SB 

scores (Appendices, Table 3C.) The mean BMI of the NPI-Q high group was significantly higher 

than the low group, and a higher proportion of OB subject had symptoms ≥ 4. While NW 

subjects had a lower NPS burden compared to OB they had greater cognitive deficits at each visit 

(ADAS-cog 13) and in their overall cognitive change score (ADAS-cog 13 and CDR-SB). A 

possible explanation could be that metabolic and or pathologic changes specific to low body 

weight MCI subjects are added to by even a low NPS, affecting cognition. Other studies have 

found that even a mild NPS burden produces significant cognitive changes over time99,183. 

Moreover the younger age of obese subjects may have a protective effect on cognition.  
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 Senior MCI subjects with low NPS at baseline had a decreased time of progression to 

dementia compared to middle age subjects. The NPI-Q and GDS are common measures of 

behavioral disturbance in geriatric populations, providing insight into changes in mood and 

behavior while being easy and quick to administer. Previous work has shown that even one 

symptom on the NPI-Q can predict future changes in cognitive status. Our average scores for the 

NPI-Q and GDS were low overall and the difference between groups was in the range of 1 point. 

While these values are low as far as indicating significant behavioral disturbances, the difference 

between groups provides evidence for a possible increased risk of dementia to Senior MCI 

subjects when at least one NPS is present.  

 Limitations 

 While this study included a large number of MCI subjects, some limitations should be 

taken into account. First, the age groups within our sample were unequal with over 3 times the 

number of Seniors compared to middle aged subjects. A more diverse group in regards to race, 

ethnicity and educational attainment may provide further insight into how BMI and age influence 

the progression from MCI to AD over 2 years. Second, the sample was primarily Caucasian and 

well educated having an average of almost 16 years of education. A wider range of demographic 

factors may allow for the analysis of patient sub-groups not seen in this study, such as the 

survival distributions of obese subjects with only a high school education. Third, our Kaplan-

Meier analyses did not reach a cumulative survival of at least 50 percent to allow for traditional 

reporting of median difference. Extending the follow-up time of the analysis may provide for a 

more sensitive measurement of the survival distributions. 
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Conclusions 

Mild Cognitive Impairment includes a heterogeneous group of individuals and therefore 

requires the assessment of multiple risk factors for their contributions to disease progression. In 

this study, we provide insight into how age and weight interact with each other and NPS 

symptoms to lower the survival of Senior NW individuals. This study is the first of its kind to 

assess age effects on disease progression within the ADNI cohort, with a focus on middle-aged 

MCI subjects. Weight and NPS are modifiable risk factors for Alzheimer’s type dementia and 

their relationship with age may indicate groups at highest risk for the conversion to dementia. 

Further, a targeted approach to recruiting more middle-aged subjects with MCI may provide 

greater insight to the cognitive, functional and behavioral changes over time specific to this 

group.  Future studies may add to these findings by assessing BMI groups over a longer time 

period. Further, assessing brain structure changes related to BMI and age after two years may 

provide additional insight into cognitive changes and overall progression rate to dementia. 
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APPENDIX 

 

 

TABLE 3A. Demographic, cognitive, cardiovascular, and behavioral characteristics comparing  

          Middle-Age and Senior MCI subjects 

  Middle Age  Senior  Statistic   

Characteristic (n = 199) (n = 756) t or X2 p value 

Female, n (%) 104 (52.3) 
292 

(38.6%) 
12.07 0.001 

Education, years 16.25 (2.6) 
15.85 

(2.86) 
3.13 0.077 

MMSE  28.09 (1.68) 
27.43 

(1.78) 
22.07 < 0.001 

CDR sum of boxes 1.51 (0.93) 1.55 (0.89) 0.261 0.609 

BMI (kg/m2) 28.19 (5.41) 
26.76 

(4.46) 
14.84 < 0.001 

NW, n (%) 51 (25.8%) 267 (35.4) 6.29 0.012 

OW, n (%) 88 (44.4%) 341 (45.2) 0.011 0.918 

OB, n (%) 59 (29.8%) 146 (19.4) 10.11 0.001 

MAP 
94.94 

(10.69) 

95.35 

(10.18) 
0.257 0.612 

T2D 23 (11.9%) 72 (9.8%) 0.67 0.413 

HTN 87 (44.8%) 
369 

(50.5%) 
1.95 0.16 

HLP 68 (35.1%) 
352 

(48.2%) 
10.62 0.001 

OSA 24 (12.4%) 70 (9.6%) 1.31 0.25 

NPI-Q score  2.42 (3.39) 2.23 (3.08) 0.48 0.49 

≥ 1 98 (65.8%) 
396 

(61.9%) 
0.78 0.376 

≥ 4 37 (24.8%) 
146 

(22.8%) 
0.28 0.6 

GDS score  2.07 (1.66) 1.59 (1.49) 15.49 < 0.001 

≥ 1 169 (85.4%) 
560 

(74.1%) 
11.08 0.001 

≥ 4 42 (21.2%) 86 (11.4%) 13.07 < 0.001 

Values are presented as mean (SD) for continuous variables and n (%) for categorical variables. 

The statistic is chi-square test of independence for categorical variables and a t statistic for 

continuous variables. Behavioral tests are reported as the mean score and two total symptom 

categories. The samples for behavioral tests differed for the NPI-Q (n = 789) and GDS (n = 954). 

Significance was set as p < 0.05. 

Abbreviations: MCI, Mild Cognitive Impairment; BMI, body mass index; MCI SV, MCI 

severity; MMSE, Mini-Mental State Examination;  GDS, Geriatric Depression Scale; CDR, 

clinical dementia rating scale; NPI-Q, Neuropsychiatric Inventory Questionnaire; NW, normal 

weight; OW, overweight; OB, obese; MAP, mean arterial pressure; T2D, type-2-diabetes; HTN, 

hypertension; HLP, hyperlipidemia; OSA, obstructive sleep apnea. 
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TABLE 3B. Demographic, cognitive, cardiovascular, and behavioral characteristics comparing  

         male and female MCI subjects 

  Male Female Statistic   

Characteristic (n = 559) (n = 396) F or X2 p value 

Age, years 73.33 (7.68) 71.34 (7.95) 15.17 < 0.001 

Middle Age, n (%) 95 (17%) 104 (26.3%) 12.07 0.001 

Senior, n (%) 464 (83%) 292 (73.7%) 12.07 0.001 

Education, years 16.26 (2.79) 15.48 (2.78) 18.11 < 0.001 

MMSE 27.49 (1.77) 27.68 (1.79) 2.5 0.114 

CDR sum of boxes 1.56 (0.9) 1.51 (0.87) 0.58 0.445 

BMI (kg/m2) 27.33 (4.07) 26.67 (5.46) 4.46 < 0.001a 

NW, n (%) 155 (27.9%) 161 (40.8%) 17.27 < 0.001 

OW, n (%) 287 (51.6%) 144 (36.4%) 21.72 < 0.001 

OB, n (%) 115 (20.7%) 90 (22.7%) 0.57 0.45 

MAP 
95.54 

(10.11%) 

94.88 

(10.53%) 
0.95 0.33 

T2D 65 (12%) 30 (7.8%) 4.3 0.038 

HTN 278 (51.4%) 178 (46.4%) 2.28 0.13 

HLP 263 (48.6%) 157 (40.9%) 5.41 0.02 

OSA 69 (12.8%) 25 (6.5%) 9.59 0.002 

NPI-Q score 2.45 (3.3) 1.99 (2.87) 4.18  0.041a 

≥ 1 299 (64%) 195 (60.6) 0.98 0.32 

≥ 4 117 (25.1%) 66 (20.5%) 2.22 0.14 

GDS score 1.6 (1.51) 1.82 (1.57) 4.48 0.034 

≥ 1 425 (76%) 304 (77%) 0.11 0.74 

≥ 4 63 (11.3%) 65 (16.5%) 5.36 0.021 

Values are presented as mean (SD) for continuous variables and n (%) for categorical variables. 

The statistic is chi-square test of independence for categorical variables and a t statistic for 

continuous variables. Behavioral tests are reported as the mean score and two total symptom 

categories. The samples for behavioral tests differed for the NPI-Q (n = 789) and GDS (n = 954). 

Significance was set as p < 0.05. 

Abbreviations: MCI, Mild Cognitive Impairment; BMI, body mass index; MCI SV, MCI 

severity; MMSE, Mini-Mental State Examination;  GDS, Geriatric Depression Scale; CDR, 

clinical dementia rating scale; NPI-Q, Neuropsychiatric Inventory Questionnaire; NW, normal 

weight; OW, overweight; OB, obese; MAP, mean arterial pressure; T2D, type-2-diabetes; HTN, 

hypertension; HLP, hyperlipidemia; OSA, obstructive sleep apnea. 
a Non-parametric Mann  Whitney U test p-value 
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TABLE 3C. Demographic, cognitive, cardiovascular, and behavioral characteristics comparing  

         MCI subjects with low and high NPI-Q scores 

  NPI-Q low NPI-Q high Statistic   

Characteristic  (n = 606) (n = 183) t or X2 p  value 

Age 73.29 (7.75) 71.66 (7.43) 2.52 0.012 

Middle Age, < 66, n 

(%) 
112 (18.5%) 37 (20.2%) 0.277 0.599 

Senior, > 66, n (%)  494 (81.5%) 146 (79.8%) 0.277 0.599 

Female, n (%) 256 (42.2%) 66 (36.1%) 2.22 0.136 

Education 15.93 (2.89) 15.98 (2.7) 0.206 0.831 

MMSE  27.56 (1.82) 27.54 (1.77) 0.142 0.887 

CDR sum of boxes 1.41 (0.81) 1.9 (0.96) 7.68 <0.001 

BMI (kg/m2) 26.75 (4.53) 27.76 (5.09) 2.57 0.01 

NW 215 (35.5%) 52 (28.6%) 3.028 0.082 

OW 276 (45.5%) 83 (45.6%) 0.12 0.989 

OB 115 (19%) 47 (25.8%) 4.018 0.045 

MAP  95.1 (10.3) 95.2 (11.09) 0.118 0.906 

T2D 50 (8.4%) 22 (12.4%) 2.59 0.107 

HTN 292 (49.2%) 90 (50.8%) 0.156 0.693 

HLP 268 (45.1%) 82 (46.3%) 0.081 0.777 

OSA 56 (9.4%) 21 (11.9%) 0.901 0.343 

GDS score 1.54 (1.37) 2.12 (1.54) 4.55 <0.001 

≥ 1 454 (75%) 155 (85.2%) 8.19 0.004 

≥ 4 64 (10.6%) 37 (20.3%) 11.89 0.001 

Values are presented as mean (SD) for continuous variables and n (%) for categorical variables. 

The statistic is chi-square test of independence for categorical variables and a t statistic for 

continuous variables. Behavioral tests are reported as the mean score and two total symptom 

categories. The samples for behavioral tests differed for the NPI-Q (n = 789) and GDS (n = 954). 

Significance was set as p < 0.05. 

Abbreviations: MCI, Mild Cognitive Impairment; BMI, body mass index; MCI SV, MCI 

severity; MMSE, Mini-Mental State Examination;  GDS, Geriatric Depression Scale; CDR, 

clinical dementia rating scale; NPI-Q, Neuropsychiatric Inventory Questionnaire; NW, normal 

weight; OW, overweight; OB, obese; MAP, mean arterial pressure; T2D, type-2-diabetes; HTN, 

hypertension; HLP, hyperlipidemia; OSA, obstructive sleep apnea. 
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 TABLE 3D. Demographic, cognitive, cardiovascular, and behavioral characteristics    

          comparing  MCI subjects with low and high GDS scores 

Values are presented as mean (SD) for continuous variables and n (%) for categorical variables. 

The statistic is chi-square test of independence for categorical variables and a t statistic for 

continuous variables. Behavioral tests are reported as the mean score and two total symptom 

categories. The samples for behavioral tests differed for the NPI-Q (n = 789) and GDS (n = 954). 

Significance was set as p < 0.05. 

Abbreviations: MCI, Mild Cognitive Impairment; BMI, body mass index; MCI SV, MCI 

severity; MMSE, Mini-Mental State Examination;  GDS, Geriatric Depression Scale; CDR-SB, 

clinical dementia rating scale- sum of boxes; NPI-Q, Neuropsychiatric Inventory Questionnaire; 

NW, normal weight; OW, overweight; OB, obese; MAP, mean arterial pressure; T2D, type-2-

diabetes; HTN, hypertension; HLP, hyperlipidemia; OSA, obstructive sleep apnea. 

 

 

 

 

GDS low GDS high Statistic

Characteristic (n = 827) (n = 126) t or X
2 p  value

Age, yrs 72.81 (7.73) 70.6 (8.34) 2.96 0.003

Mid Age, n (%) 156 (19%) 41 (32.5%) 12.47 <0.001

Senior, n (%) 670 (81%) 85 (67.5%) 12.21 <0.001

Female, n (%) 330 (40%) 65 (51.6%) 6.10 0.014

Education, yrs 15.94 (2.81) 15.93 (2.82) 0.04 0.971

MMSE 27.58 (1.78) 27.51 (1.77) 0.43 0.665

CDR-SB 1.53 (0.89) 1.59 (0.90) 0.64 0.526

BMI (kg/m
2
) 26.93 (4.59) 27.86 (5.38) 1.85 0.67

NW, n (%) 277 (33.7%) 38 (30.2%) 0.60 0.437

OW, n (%) 381 (46.2%) 50 (39.7%) 1.90 0.169

OB, n (%) 166 (20.1%) 38 (30.2%) 6.50 0.011

MAP 95.12 (10.2) 96.15 (10.96) 1.04 0.30

T2D 79 (9.9%) 15 (12.2%) 0.62 0.431

HTN 401 (50.2%) 55 (44.7%) 1.28 0.258

HLP 365 (45.7%) 55 (44.7%) 0.04 0.841

OSA 82 (10.3%) 11 (8.9%) 0.21 0.651

NPI-Q score 2.05 (2.85) 3.67 (4.46) 3.55 0.001

≥ 1 420 (61.2%) 72 (71.3%) 3.80 0.051

≥ 4 145 (21.1%) 37 (36.6%) 11.89 0.001
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CHAPTER 4 

 

 
ALTERNATE METHODS 
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THE EFFECT OF OBESITY ON BRAIN WHITE MATTER IN MILD COGNITIVE 

IMPAIRMENT 

 

Introduction 

 Changes in white matter microstructure result in altered brain connectivity184. A MRI 

diffusion-weighted imaging sequence quantifies possible changes in axonal integrity via 

measures of diffusion rate and directionality. When brain white matter is intact, water diffuses 

along an axon in one direction. However, when there is damage diffusion is altered, suggesting a 

loss in the myelin sheath that insulates the axon and helps propagate neural impulses. The most 

commonly used measures include fractional anisotropy (FA), mean diffusivity (MD), radial 

diffusivity (RD) and axial diffusivity (AxD). These measures provide estimates of the 

microstructural integrity of the axon bundles that structurally connect brain regions185. Fractional 

anisotropy is an estimate of fiber integrity reflecting the coherence of the orientation of water 

diffusion independent of the rate of diffusion, whereas MD, RD, and AxD measure the rate of 

diffusion along an axis. Mean diffusivity measures the average rate of diffusion; RD measures 

diffusion perpendicular to the major axis of water diffusion and AxD is the rate of diffusion 

along the major axis. Each measure is thought to assess different components of white matter 

structure: MD may increase with decreasing myelination, RD decreases with diminished myelin 

integrity and AxD may decrease with axonal damage. 

 Brain white matter is susceptible to microstructural changes associated with MCI and 

obesity30,83,186. Research studies of MCI subjects have demonstrated decreased FA in limbic 

white matter24 with values decreasing from normal cognition to MCI to AD. Another study 

found that diffusivity measures do a better job of distinguishing groups of NC, MCI and AD 

compared to FA184. These studies suggest that as AD pathology progresses clinically, axonal 

fiber integrity diminishes. Since MCI is an intermediate stage, early changes in white matter 
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structure are evident and identifying additional factors that influence axonal integrity may 

highlight features of early pathological changes. 

 Studies investigating the relationship of weight and brain white matter across a wide age 

range of adults demonstrate an inverse relationship between BMI and FA values. In limbic 

system tracts with connections to the temporal and frontal lobe, FA decreases as BMI 

increases83,187. A recent study measuring the association of BMI with all 4 DTI-based measures 

(FA, MD, AxD, RD) found a negative association with FA and RD in the right middle cerebellar 

peduncle, and MD and AxD in the bilateral corticospinal tract and anterior thalamic radiation. In 

the same study, BMI was also positively associated with MD and AxD in the right superior 

longitudinal fasciculus186. As BMI increased so did MD and AxD values suggesting decreased 

fiber integrity (MD). To date there have not been any studies that investigate the relationship of 

brain white matter structure and BMI in MCI. The hypothesis for the following experiments is 

that in MCI, obese subjects will have lower mean FA values and higher MD values indicating 

deficits in axonal fiber structure and myelination.  

 There is limited information regarding white matter integrity in obese individuals and 

none in MCI. The following sections will outline two studies that investigated whether 

differences in brain white matter existed between BMI groups of MCI subjects. The first study 

uses a single site research dataset from the MSU Cognitive and Geriatric Neurology Team 

(COGENT) and the second uses subjects from a large multi-site database, the Alzheimer’s 

disease neuroimaging initiative (ADNI). The methods and results for each study are reported 

independently with a summary and conclusion on the effect of obesity on MCI brain white 

matter at the end. 
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Methods – MSU COGENT 

Participants  

Nineteen participants (16 MCI and 3 cognitively normal) were recruited from the MSU 

Neurology clinic and through community advertisements between 2012 - 2014. Participants were 

diagnosed with MCI based on Petersen criteria1,5 by an expert neurologist prior to study 

participation. Inclusion criteria were as follows; subjects were between the ages of 50-95, able to 

speak, comprehend and read English with at least 8 years of education, and a Mini Mental Status 

Examination (MMSE) 27 score between 24 - 30. Subjects were excluded from the study if they 

had a history of a coexisting central nervous system disorder or uncontrolled depression that 

could account for the cognitive impairment, any uncontrolled or unstable medical condition, and 

alcohol or substance abuse within the last two years. Exclusion criteria were determined based 

on medical records review. 

Data collection overview 

Informed consent was obtained directly from each subject. Subjects were then screened 

to confirm eligibility (see above inclusion/exclusion criteria), and then underwent magnetic 

resonance imaging (MRI) scanning followed by neuropsychological and behavioral testing. All 

study procedures were reviewed and approved by the MSU Institutional Review Board.  

MRI acquisition of COGENT data  

  MRI whole-brain imaging procedures were conducted on a GE 3T Signa HDx MR 

scanner (GE Healthcare, Waukesha, WI) equipped with an 8-channel head coil in the Radiology 

Department of MSU. The MRI protocol lasted approximately 40 minutes. During scanning 

sessions patients were asked to lie still with their eyes open. First and higher-order shimming 

procedures were carried out to improve magnetic field homogeneity. The scanning procedure 

included three MRI sequences: resting state fMRI, DTI, and 3D magnetization-prepared rapid 
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acquisition gradient echo (MPRAGE). The resting state-fMRI data collection involved a 7-

minute functional scan with the following parameters: 38 contiguous 3-mm axial slices in an 

interleaved order, time of echo (TE) = 27.7 ms, time of repetition (TR) = 2500 ms, flip angle = 

80o; field of view (FOV) = 22 cm x 22cm, matrix size = 64 x 64, ramp sampling with the first 

four data points discarded. The first four data points were excluded from analysis due to 

enhanced longitudinal magnetization in the first few scans. Each volume of slices was acquired 

164 times. Next, diffusion-weighted images were acquired using a dual spin-echo echo-planar 

imaging sequence for 12 minutes and 6 seconds with the following parameters: 48 contiguous 

2.4-mm axial slices in an interleaved order, FOV =22cm x 22cm, matrix size=128 x 128, number 

of excitation (NEX) = 2, echo time (TE) = 77.5 ms, repetition time (TR) = 13.7 s, 25 diffusion-

weighted volumes (one per gradient direction) with b=1000 s/mm2, one volume with b = 0, and 

parallel imaging acceleration factor = 2. Finally, 180 T-1 weighted 1-mm3 isotropic volumetric 

inversion recovery fast spoiled gradient-recalled images were acquired (10 minute scan time). 

The whole brain was covered with the following parameters: TE=3.8 ms, TR of acquisition 

=8.6ms, time of inversion (T1) = 831ms, TR of inversion 2332ms, flip angle=8°, FOV =25.6 

cm×25.6 cm, matrix size=256 × 256, slice thickness =1 mm, and receiver bandwidth= ± 20.8 

kHz.  

DTI analyses  

 DTI data were manually preprocessed using the basic processing steam for FSL (the 

FMRIB Software Library)188 . MR images from the scanner were converted from dicom to nifti 

format, for registration and brain extraction followed by eddy- current distortion and motion 

correction.  Finally, DTIFIT was run to generate diffusion weighted maps, including the FA map. 

The tract based spatial statistics (TBSS) program was run after DTIFIT in FSL to compute group 

level statistics of FA (procedure outlined below).  



 

 78 

Analyses of DTI images were done in two parts after all images were pre-processed. The 

first included the analysis of newly recruited MCI subjects (n=12) with a 25-direction DTI 

sequence. Imaging data from MCI subjects previously collected in our lab with a 25-direction 

DTI scan (n = 6) were added to the sample for a total group of 18 subjects. The second included 

the analysis of 19 MCI subjects whose data was previously collected within the COGENT lab 

and used a 6-diffusion-weighted direction DTI sequence (methods outline below). The two 

groups were analyzed separately due to differences in the average eigenvalues computed when 

using 6 compared to 25 directions; the accuracy of estimation may improve at a voxel level as 

diffusion directions increase,189 therefore the two groups were not combined . Subjects who met 

the inclusion criteria and had BMI data were included in the following analyses of white matter 

tract integrity using TBSS. 

MRI acquisition in 6 diffusion weighted directions  

 MCI subjects previously collected were analyzed using the methods of Bozoki et al 2012. 

Briefly, scan time was shorter at 4 minutes and 50 sec with 40 axial slices collected using a spin 

echo EPI pulse sequence with TE = 69.3 ms and TR = 10,000ms. The in-plane resolution = 3 

mm, slick thickness = 3mm, interslice gap = 0 mm, 240 mm FOV (80 x 80 matrix), and NEX = 

4. For this study the diffusion encoding was collected in six non-collinear directions with b-value 

of 1,000 s mm-2. DTI images were interpolated on the scanner to a voxel size of 0.9375 x 0.9375 

x 3mm3.  

Tract Based Spatial Statistics (TBSS) 

 Technique adapted from Smith et al 2006. Voxel-wise statistics were performed by tract-

based spatial statistics (TBSS, version 1.2)190, a part of the FSL program188. All subjects’ FA 

data were first aligned into a common space using the FMRIB’s nonlinear image registration tool 

(FNIRT), which uses a b-spline representation of the registration warp field191. We then 
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registered the FA images to the JHU-DTI atlas as a common space in order to correspond the 

results from voxel wise and ROI analyses. Next, the mean FA image was created and thinned to 

generate a mean FA skeleton that represents the centers of all tracts common to all subjects. Each 

subject’s aligned FA data was projected onto this skeleton and the resulting data were fed into 

voxel wise and ROI-based cross-subject statistics. ROI analysis that is limited to the TBSS 

skeleton was performed using the deep WM atlas (ICBM-DTI-81 white-matter atlas) developed 

by the Johns Hopkins University (JHU)192. Mean values of a diffusion metric for selected ROI 

segmentations were extracted from each participant. 

BMI groups 

 For this analysis we used MCI subjects with available BMI data. Between groups t-tests 

were used to compare FA values between a combined normal weight/over-weight group  

(NW/OW; BMI < 30) and obese group (OB; BMI ≥ 30). 

Statistical analysis 

 Voxel wise statistics were performed by general linear model, a part of the FSL-

randomise program. Diffusion metrics (FA) were compared between groups in the TBSS 

program. Threshold-free cluster enhancement corrected for multiple comparisons with 5,000 

permutations. These corrected maps were further thresholded by P<0.05. Twenty-six white 

matter tracts were assessed voxel by voxel as surviving multiple comparisons and P-value 

thresholding on the WM skeletons. The final statistics included thresholding the mean_FA 

skeleton, performing a t-test between groups followed by permutation testing (500 times) and 

test fully corrected for multiple comparisons across time. 
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Results – MSU COGENT 

 DTI measures were compared across BMI groups to assess whether the structural 

integrity of brain white matter differed between groups. After processing the two groups (25-

direction and 6-direction sequences) through the TBSS processing stream independently, the 

mean FA skeletons showed no significant differences between the NW/OW (n = 9) and OB (n = 

9) groups. The raw (unthresholded) and multiple correction images for FA in both the 25 and 6-

direction scans were non-significant (25 direction, Figure 4.1). 

 

FIGURE 4.1. The 25-direction MSU-COGENT FA results comparing NW/OW and OB groups. 

Multiple corrections were computed per voxel and overlaid on the mean FA skeleton. The green 

trace indicates the mean FA comparison between groups and is non-significant shown in a 

coronal section on the left and a sagittal section on the right. Abbreviations: S, superior; R, right; 

L, left; I, inferior.  
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METHODS - ADNI 

Participants 

 MRI data were obtained from the ADNI database (adni.loni.ucla.edu). The ADNI was 

launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical 

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-private 

partnership. The primary goal of ADNI has been to test whether serial magnetic resonance 

imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and early 

AD. Determination of sensitive and specific markers of very early AD progression is intended to 

aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well 

as lessen the time and cost of clinical trials.  

 ADNI subjects were recruited from over 50 sites across the U.S. and Canada. The initial 

goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-

2. To date these protocols have recruited over 1500 adults ages 55 to 90, to participate in the 

research, consisting of cognitively normal older individuals, people with early or late MCI, and 

people with early AD. Clinical, behavioral and neuroimaging data are collected for each patient 

with up to 54 months of follow up per patient. MRI methods, procedures and preprocessing by 

ADNI have been previously described140 and can also be accessed at the following website: afni-

info.org 

 Inclusion criteria for MCI set forth by ADNI, include; a MMSE score between 24 – 30, a 

subjective memory complaint by the patient or caregiver, objective memory loss measured by the 

Wechsler Memory Scale Logical Memory II, a global Clinical Dementia Rating (CDR) of 0.5, 

preserved activities of daily living, and the absence of dementia.  
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MRI acquisition of ADNI data 

 The MRI acquisition of ADNI data has been previously described (Chapter 2-Methods). 

In brief, all subjects underwent whole-brain MRI scanning on 3-Tesla GE Medical Systems  

scanner, on at least one of two occasions (baseline and 6 months). T1-weighted IR-FSPGR 

(spoiled gradient echo) sequences (256×256 matrix; voxel size = 1.2×1.0×1.0 mm3; TI=400 ms; 

TR = 6.98 ms; TE = 2.85 ms; flip angle = 11°), were collected as well as diffusion-weighted 

images (DWI; 35 cm field of view, 128×128 acquired matrix, reconstructed to a 256×256 matrix; 

voxel size: 2.7×2.7×2.7 mm3; scan time = 9 min; more imaging details may be found at, 

http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_T2.pdf. Forty-six 

separate images were acquired for each DTI scan: 5 T2-weighted images with no dedicated 

diffusion sensitization (b0 images) and 41 diffusion-weighted images (b=1000 s/mm2). 

DTI and inversion-recovery spoiled gradient recalled (IR-SPGR) T1-weighted imaging data were 

acquired on several General Electric 3 T scanners using scanner specific protocols. Briefly, DTI 

data were acquired with a voxel size of 1.372 × 2.70 mm3, 41 diffusion gradients and a b-value 

of 1000 s/mm2. In order to increase data uniformity, the data underwent a standardized 

preprocessing procedure at the ADNI project. All imaging protocols and preprocessing 

procedures are available at the ADNI website (http://adni.loni.usc.edu/methods/) 

DTI analyses  

 FSL and TBSS procedures were the same as stated above [COGNENT-DTI analyses].  

The same JHU ‘EVE’ atlas was used to calculate FA and MD measures across the 26 DTI tracts. 

These analyses were done by the Laboratory of Neuro Imaging at USC and made available on 

the ADNI research website. The DTI-template, with corresponding white matter tract atlas, was 

registered to each individual subject using the JHU ‘EVE’ DTI atlas192, which included a total of 
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26 regions and 5 summary regions. Summary measures of each tract were computed based off of 

a subject’s mean FA skeleton.  

Statistical analysis  

 To determine whether BMI affected brain connectivity we examined differences in DTI 

measures across BMI groups. We categorized subjects BMI into three groups of, normal weight 

(NW, BMI: <25 kg/m2), overweight (OW, BMI: 25 – 29.9 kg/m2) and obese (OB, BMI: > 30 

kg/m2). White matter tracts from the JHU ‘EVE’ DTI atlas192, a total of 26, were averaged 

between hemispheres. An analysis of variance (ANOVA) model was used in each experiment to 

compare the summary ROI measures (FA, MD) of white matter tracts across BMI groups, 

corrected for age and gender. Statistical significance was set at p<0.05. Statistical analyses were 

performed using SPSS 22.0 (SPSS inc., Chicago, IL).  

Results - ADNI 

 MCI subjects with a MRI diffusion sequence at screening (available in ADNI-GO and 

ADNI-2 only) totaled 102. We measured the effect of BMI on DTI measures of anisotropy (FA) 

and diffusivity (MD) in all 26 white matter tracts using an ANOVA model. A large percentage of 

the sample were overweight (49%) and obese (24.5%). Results indicated differences in BMI in 5 

out of 26 tracts for FA, and 4 out of 26 for MD. (Table 4.1.). For each of these regions FA values 

were lower and MD values were higher for NW subjects. This indicates adverse microstructural 

changes of lower fiber integrity and myelination for NW subjects.  

 Based on this initial summary analysis we then analyzed group differences using a 

MANOVA model in order to control for age and gender, two variables that affect white matter 

structure.  First, we measured the main effect of BMI on FA values and found there were no 

longer significant differences, F (52, 148) = 1.17, p = 0.23; Wilks’Λ = 0.502, partial η 2 = 0.29, 

nor were was there an effect in the full factorial MANOVA model with covariates, F (52, 144) = 
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1.18, p = 0.22; Wilks’Λ = 0.49, partial η 2 = 0.30.  There was also not a main effect of BMI on 

MD values, F (52, 148) = 1.08, p = 0.28; Wilks’Λ = 0.525, partial η 2 = 0.28, nor in the full 

factorial model, F (52, 144) = 1.10, p = 0.33; Wilks’Λ = 0.512, partial η 2 = 0.28. 

 

TABLE 4.1. White matter tracts that significantly differed across BMI groups for fractional 

anisotropy and mean diffusivity measures 

Tract 

label 
Tract Name 

NW OW OB F value P value 

FA       

ICP Inferior cerebellar 

peduncle 
0.308 (.01) 0.328 (.04) 0.329 (.03) 3.46 

0.035 

 

SCP Superior cerebellar 

peduncle 
0.411 (.03) 0.426 (.02) 0.415 (.03) 3.38 0.038 

PTR Posterior thalamic 

radiation 
0.365 (.04) 0.387 (.03) 0.380 (.04) 3.01 0.054 

FX-ST Fornix (cres) / Stria 

terminalis 
0.254 (.05) 0.277 (.03) 0.279 (.04) 3.03 0.053 

TAP 
Tapetum 0.253 (.07) 0.299 (.06) 0.286 (.08) 4.24 0.017 

MD       

PTR Posterior thalamic 

radiation 

1.0x10-3 

(1.3x10-4) 

9.4x10-4 

(1.0x10-4) 

9.5x10-4 

(1.1x10-4) 
3.72 0.028 

FX_ST Fornix (cres) / Stria 

terminalis 

1.4x10-3 

(3.0x10-4) 

1.3x10-3 

(2.6x10-4) 

1.2x10-3 

(2.8x10-4) 
3.58 0.032 

SCC Splenium of corpus 

callosum 

1.2x10-3 

(1.8x10-4) 

1.1x10-3 

(1.2x10-4) 

1.1x10-3 

(1.7x10-4) 
3.45 0.036 

TAP Tapetum 1.8x10-3 

)))(3.9x10-

4) 

1.5x10-3 

(3.2x10-4) 

1.5x10-3 

(4.3x10-4) 
3.57 0.032 

Mean fractional anisotropy (FA) and mean diffusivity (MD) values that significantly differed in 

an ANOVA model. Values are presented as mean (standard error). The statistic is an ANOVA F 

statistic for continuous variables. Significance was set as p < 0.05. 

Abbreviations: NW, normal weight; OW, overweight; OB, obese. 
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Summary and conclusions – MSU COGENT & ADNI DTI analysis 

 

  We used two different samples to analyze the relationship between BMI and white 

matter microstructure. First, the MSU COGENT dataset, a single site, small sample of MCI 

subjects that were recruited from the mid-Michigan area compared white matter microstructure 

values of FA across two weight groups (NW/OW and OB). In this study the administration of all 

neuropsychological, behavioral scales, and DTI processing were completed locally. Due to the 

limitation of a small sample size in the COGENT study, data from the ADNI, a large, multi-site 

study, was also examined across three BMI weight groups (NW, OW, OB). The DTI pre-

processing and TBSS analysis of FA and MD values in this dataset were completed by ADNI 

investigators and available for download. In both, BMI was used as a grouping variable to 

compare white matter microstructure.    

  In our analyses of the samples, we did not find significant differences in white matter 

structural measures across BMI groups. In the COGENT study, there were no between group 

differences in the raw and corrected FA values. In the ADNI study, specific white matter tracts 

showed microstructural changes of decreased FA and increased MD values, in the brain stem, 

corpus callosum and temporal lobes, but this effect was lost in the MANOVA model that took 

into account covariates of age and gender.  The initial differences in ADNI all indicated poorer 

white matter structural integrity for NW MCI subjects. This was similar to our brain volume 

results (Chapter 2) on regional gray matter volumes. 

 In older adults with normal cognition, DTI studies indicate an opposite relationship than 

we found, regarding white matter integrity and weight83,85,186. Mild cognitive impairment specific 

white matter changes included the posterior cingulate cortex and hippocampus193 while obesity 

prominently effects the midbrain and brain stem nuclei194. A possible explanation for our 

findings of white matter measures being negatively altered in NW subjects may be that these 
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subjects are more vulnerable to neural changes associated with their age and likely underlying 

AD pathology. Fractional anisotropy measures of the fornix and corpus callosum are altered in 

OB subjects, and their changes in NW may indicate that these regions are related in some way to 

body weight independent of MCI. Interestingly, our volumetric results (Chapter 2.) indicated 

decreased volume of the amygdala and hippocampus, which make connections with the fornix 

and stria terminalis. Further, the tapetum, a bundle of axons branching off the corpus callosum 

laterally toward the inferior temporal lobe, correspond with the decreased volume in the banks of 

superior temporal sulcus and inferior middle temporal gyrus also seen in NW subjects. White 

matter changes of these tracts may suggest early microstructural changes that precede decreases 

in brain volume and eventual cognitive dysfunction as the severity of MCI progresses over time.   

 Some limitations may be responsible for the null findings of these analyses. First, the 

sample size of the MSU COGENT dataset was very small which likely affected the ability to 

measure differences between even two groups. The ADNI sample was larger with 102 subjects 

but this analysis was still underpowered to measure differences across three BMI groups. In our 

ADNI analysis of brain volume across BMI groups we had over 600 subjects and were able to 

show a medium effect of BMI (partial η 2 = 0.08) on brain volume. Second, the ADNI data in 

this study were processed by another lab, not manually computed from the original DTI images. 

Because of this, the statistics could not be computed within the TBSS procedure thus preventing 

group level statistics to be drawn directly from the group mean FA and MD skeletons. With the 

knowledge of differences in brain volume, with regard to BMI group, hypotheses can be 

generated that outline a targeted approach for understanding the effects of weight on brain white 

matter a priori, that expand on these analyses and measure changes prospectively. Third, BMI is 

not the most accurate measure of adiposity and may not definitively establish groups that reflect 

the true metabolic effects of adiposity on the brain. A study of MCI subjects that uses waist 
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circumference measures or calculates body fat percentages for each participant may provide a 

more accurate measure of over-weight and obesity status. Moreover, co-morbid metabolic 

conditions, such as type 2 diabetes mellitus, hypertension, and serum inflammation markers, 

must also be taken into account to assess their influence on brain structure compared to BMI 

alone. Many metabolic conditions are associated with specific white matter changes such as 

lesions and white matter hyperintensities195,196. Finally, utilizing weight groups with cut-offs in 

values that do not border each other may demonstrate more clearly the differences in brain 

structure related to adiposity. Overall, increasing the sample sizes of these groups and manually 

processing the DTI scans may offer a more sensitive approach.  

Modern neuroimaging allows us to visualize disease pathology in vivo. In MCI, there 

may be altered brain structure related to adiposity that affects both neuronal cell bodies and 

impulse transmission via axon bundles. It is not possible to determine a direction of change: 

whether white matter damage results in grey matter atrophy or vice-versa. Further investigation 

into white matter changes of these tracts in MCI subjects is necessary in both normal and over-

weight to determine what types of microstructural changes occur that may precede decreases in 

brain volume and eventual cognitive dysfunction as the severity of MCI progresses over time.   
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THE EFFECT OF OBESITY ON BRAIN CORTICAL THICKNESS IN MILD 

COGNITIVE IMPAIRMENT 

 

Introduction 

 

 Cortical thickness in neuroimaging is measured as the space between the pial surface and 

the beginning of brain white matter. The thickness of the cortex is mostly determined genetically 

but changes throughout life can occur as a result of diseases197,198. In MCI, cortical thinning 

present in frontal brain regions can reliably differentiate progressive compared to stable MCI 

subjects over time199. This can even be more reliable than cognitive test scores. In obese young 

and older adults with normal cognition, decreased cortical thickness is also evident compared to 

normal weight adults137. Some studies suggest that cortical thinning precedes changes in volume, 

making cortical thickness measurement a possible early indicator of pathologic influences. 

 Cortical thickness changes related to obesity are located in specific brain regions. One 

study found that a high BMI and visceral adipose tissue were independently connected to 

reduced levels of cortical thickness within the lateral occipital area, inferior temporal lobule, the 

precentral gyrus and the inferior parietal brain region200. Hassenstab et al. examined the cortical 

thickness of the cognitive control network (CCN, described further in Introduction – 

Neuroimaging of Obesity) between three groups; successful weight loss maintainers (SWLM), 

never obese lean (NOL), and obese (OB) individuals.  They found that SWLM had a thicker 

cortex compared to OB and more prefrontal and temporal brain activation when shown pictures 

of foods high in calories.  Obese individuals also had cortical thinning within the anterior 

cingulate and posterior parietal cortices. They found structural differences within CCN regions 

between OB and NOLs, yet these regions in SWLM did not significantly differ from the OB 

group 75,201. These findings suggest cortical changes are plastic in regards to obesity. The brain 
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may even alter its structure in relation to positive metabolic changes, or in this case attaining a 

healthier body weight.  

 Currently, no studies have investigated cortical thickness changes related to obesity in 

MCI. Based on previous finding on cortical changes related to obesity and thickness described 

above, we hypothesized that OB MCI subjects will have decreased cortical thickness averages 

compared to normal weight (NW) and overweight (OW) groups. This study focused primarily on 

region directly related to either MCI or obesity and included 17 regions from the frontal, parietal 

and temporal lobes. The full list of regions is located in Table 4B. 

 

Methods 

Participants 

 The analysis for this project began in 2015 with the collection of ADNI MCI subject data 

that met the inclusion criteria for MCI with a baseline MRI scan and FreeSurfer analysis. The 

study procedures, MCI inclusion criteria and MRI acquisition protocol are documented in 

Chapter 4 [MRI acquisition of ADNI data], and FreeSurfer analysis methods are found in 

Chapter 2 [ADNI FreeSurfer methods].  

Cortical thickness analysis 

 Alzheimer’s disease neuroimaging initiative MCI subjects with a screening MRI scan and 

FreeSurfer analysis were included in the data analysis of cortical thickness measurements across 

BMI groups. All three phases of ADNI were used and merged into one dataset. Subjects with a 

non-accelerated T1 image, that passed the ‘Overall QC’ a quality check for accurate cortical 

parcellation by FreeSurfer of the frontal, parietal, occipital and temporal lobes were included in 

this study. From this sample, demographic (age, sex, BMI), cognitive (MMSE) and behavioral 

(NPI-Q and GDS) measures were then matched to each MCI subject. A total of 76 brain regions 
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were included in the FreeSurfer analysis, from this list we selected regions previously identified 

as related to obesity. The left and right hemisphere data was combined for each region, resulting 

in a total of 17 regions.  These regions were analyzed preliminarily to our cortical volume 

measures within chapter 2. The few papers that highlight cortical thickness changes related to 

weight, showed significant changes in these specific regions and the full list is available in Table 

4B. 

FreeSurfer region of interest analysis  

 The ROI thickness average (TA) values were generated using FreeSurfer and made 

available on the ADNI website was for download. Data was obtained from the UCSFFX 

spreadsheet of FreeSurfer Version 5.1. Subjects that had a non-accelerated T1 screening MRI, 

whose status was complete and had an overall quality check (QC) of Pass for all QC regions 

were included in the analyses.  

Statistical analysis 

 An ANOVA model was used to compare average thickness measures for each region 

across BMI groups. First, the main of effect of BMI was calculated across all 17 regions. Then, a 

full factorial model included age and education as covariates. The analysis was conducted using 

SPSS version 22. Statistical significance was set at p < 0.05. 

Results 

 There were 635 MCI subjects that met the inclusion criteria and had MRI data that passed 

the overall quality check for FreeSurfer indicating successful cortical parcellation. The 

demographic, behavioral and cognitive measures across BMI groups were the same as those 

reported in Table 2.1.  
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Brain cortical thickness 

  

 Baseline cortical thickness averages were compared across BMI groups to determine 

whether there was a difference in mean thickness related to the subject’s BMI. First, a 

MANOVA model measured the main effect of BMI on regional brain volumes. There was a 

statistically significant difference in brain thickness averages based on BMI group, F (34, 1234) 

= 1.61, p = 0.015; Wilks’Λ = 0.917, partial η2 = 0.042. Next, age and education were added as 

covariates based on previous research indicating their relationship with the cortical thickness of 

the brain. In this full factorial model, BMI, and age were independent significant contributors to 

volume differences in the overall multivariate tests, although education was not: BMI: F 

(34,1226) = 1.60, p = 0.017; Wilks’Λ = 0.917, partial η2 = 0.042; Age:  F (17, 613) = 15.171, p < 

.005; Wilks’Λ = 0.704, partial η2 = 0.296; Education: F (17, 613) = 1.468, p = 0.10; Wilks’Λ = 

0.961, partial η2 = 0.039. In the full factorial model, 3 (out of 17) regions significantly differed 

by BMI, the Precuneus, lateral occipital cortex and the post central gyrus. Table 4.2 shows the 

brain regions that differed in cortical thickness measures across BMI groups. For all significant 

comparisons cortical thickness was lower in NW subjects compared to OW and/or OB.  

 

TABLE 4.2. Brain regions that significantly differed in cortical thickness average measures 

across BMI groups of MCI subjects 

Brain Region NW OW OB F p value 

Precuneus 2.11 (0.18) 2.17 (0.19) 2.21 (0.19) 7.36 0.001a,b 

Lateral Occipital 

Cortex 

2.03 (0.18) 2.08 (0.17) 2.10 (0.17) 5.06 0.007a,b 

Post Central gyrus 1.82 (0.16) 1.86 (0.17) 1.87 (0.15) 3.11 0.045b 

Values are reported as the mean (standard deviation (SD)). The MANOVA model corrected for 

age and education. Superscripts indicate the direction of the differences after Bonferroni method 

correction: a = NW < OB, b = NW < OW. Statistical significance is set at p < 0.05.  

Abbreviations: NW, normal weight; OW, overweight; OB, obese. 
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Summary and conclusions – Thickness averages 

 In this sub-study of ADNI FreeSurfer data, we sought to identify whether BMI was 

related to decreased cortical thickness in MCI subjects. The available data on the effect of weight 

on cortical thickness measures is limited and has not been studied in MCI. We again combined 

the 3 phases of ADNI and found small yet significant effects of BMI on cortical thickness in a 

MANOVA model that included age and educations covariates. In our analysis, NW subjects had 

significantly lower cortical thickness measurements in 3 out of 17 brain regions compared to OW 

and OB subjects  

 In our study, only two regions overlapped with the volume reductions we saw in NW 

subjects, the precuneus and the lateral occipital cortex. An additional region, the post central 

gyrus, also had a lower thickness average in NW compared to OB subjects, yet there were no 

volume differences for this region. To better compare our volumetric and cortical thickness 

analyses, we also analyzed cortical brain volumes using only the 17 regions within the cortical 

thickness analyses. The MANOVA model for this comparison showed a significant effect of 

BMI on brain volumes, F (34, 1224) = 1.86, p = 0.002; Wilks’Λ = 0.904, partial η2 = 0.05. All of 

the regions that were significant in the original volume analysis and included in this smaller 

analysis remained significant; middle temporal gyrus (F = 5.26, p = 0.005), rostral anterior 

cingulate gyrus (F = 4.04, p = 0.018), insula (F = 3.56, p = 0.029), precuneus (F = 7.33, p = 

0.001), and the lateral occipital gyrus (F = 4.90, p = 0.008). 

 Initially, this study was designed to provide a complete assessment on brain structural 

changes with the hope of complementing the investigation of grey matter volume and white 

matter microstructure. However, there were not consistent changes in brain regions across our 

multiple neuroimaging modalities. This inconsistency may be due to the wide range of ages 

included in our analyses. While reduced cortical thickness has been hypothesized as an early 
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indicator of cortical change199 this may only be true when investigating discreet age ranges. A 

recent study has shown that as a person ages there is a dynamic relationship in the direction and 

magnitude of changes to cortical thickness, surface area and the total volume of brain regions197. 

For example, this study demonstrated that in adults with normal cognition ranging in age from 23 

– 87 years, as age increased there was accelerated changes in temporal and occipital brain 

regions, while frontal and anterior cingulate regions decelerated in overall volume, surface area 

and thickness. These finding may help explain why only two regions overlapped between our 

cortical thickness and cortical volume analyses; due to the significant differences in age across 

BMI groups (Table 2.1).  

 Our study had a large age range of over 30 years (age range 55 – 89 years) which may 

require targeted analysis of Middle-Age and Senior groups as well as investigating discreet age 

ranges within these two larger age categories. More work needs to be done to better understand 

the effect obesity has on brain structure in older adults with normal cognition and in those with 

pathological changes that are a signature of MCI or Alzheimer’s disease. Future studies should 

assess volume and cortical thickness measures together, with a specific focus on measuring the 

relationship of BMI and brain structure within discreet age groups of MCI subjects.  
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APPENDIX 

 

 

 TABLE 4A. Regions of interest from the JHU ‘EVE’ atlas white matter tract list generated in            

                         FreeSurfer 

 

ROI Label ROI definition 

ACR Anterior corona radiata*   

ALIC Anterior limb of internal capsule *  

BCC Body of corpus callosum *  

CGC Cingulum* 

CGH Cingulum (hippocampus)*  

CP Cerebral peduncle  

CST Corticospinal tract  

EC External capsule*  

FX Fornix *  

FX_ST Fornix (cres) / Stria terminalis*  

GCC Genu of corpus callosum*   

ICP Inferior cerebellar peduncle  

IFO Inferior fronto-occipital fasciculus*  

ML Medial lemniscus  

PCR Posterior corona radiata *  

PLIC Posterior limb of internal capsule*   

PTR Posterior thalamic radiation  

RLIC Retrolenticular part of internal capsule*   

SCC Splenium of corpus callosum*   

SCP Superior cerebellar peduncle   

SCR Superior corona radiate*  

SFO Superior fronto-occipital fasciculus*   

SLF Superior longitudinal fasciculus*   

SS Sagittal stratum*  

TAP Tapetum *  

UNC Uncinate fasciculus*  

SUMBCC Bilateral body of the corpus callosum*  

SUMCC Bilateral full corpus callosum*  

SUMFX Bilateral fornix*  

SUMGCC Bilateral genu of the corpus callosum*  

SUMSCC Bilateral splenium of the corpus callosum*  

White matter tract list from the JHU “EVE” atlas. There are a total of 26 

unique tracts and 5 summary measures. The ROI label lists the atlas label and 

the ROI definition indicates the full name of the white matter tract or adjacent 

brain region. *White matter commissural and association fibers.  
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TABLE 4B. Selected brain regions of interest for the cortical thickness analysis generated in 

FreeSurfer  

 

ROI Label Region Name 

Precuneus Precueus 

LateralOccipital Lateral occipital gyrus 

PostCentral Postcentral gyrus 

ParsOrbital Pars orbitalis 

ParOperc Pars opercularis 

ParsTriang Pars triangularis 

ParaHipp Parahippocampal gyrus 

MiddleTemp Middle temporal gyrus 

InfTemporal Inferior temporal gyrus 

ParaCentral Paracentral gyrus 

RostralAntCing Rostral anterior cingulate gyrus 

CaudalAntCing Caudal anterior cingulate gyrus 

Insula Insular cortex 

CaudalMidFront Caudal middle frontal gyrus 

RostralMidFront Rostral middle frontal gyrus 

SuperiorFrontal Superior frontal gyrus 

PreCentral Precentral gyrus 

Seventeen brain regions were selected based on literature that indicated a relationship of the 

region and structural brain changes related to weight or BMI. The ROI label indicated the 

FreeSurfer label and the Region Name gives the full anatomical name for each region. 
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CHAPTER 5 

 

 
CONCLUSIONS AND FUTURE DIRECTIONS 
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 Prior to this work the intersections of obesity, NPS, age and cognitive decline in MCI had 

not been explored. This dissertation has begun to explore these relationships. Each of the 

previously mentioned elements are an independent risk factor for the ultimate development of 

dementia and may or may not have a significant effect on the time to conversion additively. 

While we have provided new insight into these relationships more research is necessary. It is not 

well understood how NPS and obesity structurally and functionally alter the brain in the presence 

of cognitive deficits, or whether those factors are additive. In addition, the direction of the 

relationship linking NPS and obesity with AD and with each other is not well understood. And 

results in more questions such as, does obesity cause a relatively toxic environment to neurons 

thereby producing brain damage over time, or is obesity a marker for certain pre-existing brain 

“weaknesses” (e.g. as seen in the cognitive control network) that enable the emergence of 

cognitive impairment more readily at a later age?  We do know that NPS tends to emerge de 

novo at the time MCI onset, whereas obesity is highly likely to have persisted throughout 

adolescence, adulthood, middle age and later life. Thus, NPS is more likely to be a marker for 

emerging brain pathology while obesity is more likely to indicate either a pre-existing or an 

ongoing state of independent loss of connectivity. 

 This research has provided new information on the effects of obesity in MCI. First, it was 

demonstrated that in MCI obese subjects have a higher prevalence of NPS measured by the NPI-

Q. Specifically, OB had a higher percentage of affective symptoms of depression and anxiety 

and when these symptoms were present, they were most severe. In Chapter 1. type-2-diabetes 

mellitus and obstructive sleep apnea also have specific NPS associated with these conditions. 

Throughout each of the preceding chapters, when measured, obese subjects had significantly 

higher mean NPI-Q scores compared to NW subjects. However, we were not able to draw a 

direct connection between obesity, NPS and deficits in cognition.  
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 Many factors emerged in Chapters 2 – 4 that may influence or mediate the effects of 

weight on either cognition, or brain structure. The effects of obesity on cognitive decline are 

demonstrated when OB are middle age. Studies that have shown this relationship sampled 

individuals with normal cognition. In our studies, we did not see a cross sectional difference in 

cognitive scoring related to obesity. In our cross-sectional imaging study, we found that normal 

weight MCI subjects had lower brain volumes and similar cognitive scores as OW and OB 

subjects. While we expected to see deficits primarily related to obesity Chapters 2 and 3 of this 

dissertation identified that difference related to BMI were driven by the normal weight group. In 

Chapter 2, NW subjects had lower brain volumes and in Chapter 3 lower baseline cognitive 

scores (ADAS-cog) followed by greater cognitive changes over two years. These studies suggest 

that in regards to increased risk for cognitive decline and progression to dementia, normal weight 

MCI subjects may be a high-risk group. Despite obese subjects having higher NPS and more 

metabolic comorbidities, NW subjects were more vulnerable to structural brain changes, which 

likely preceded the cognitive changes that occurred after two years.  

 Another well-known factor that we simply grouped was age. This was done to highlight 

that MCI comprises two very different life stages, an approach that has not been taken in current 

research. In our samples, the NW group was consistently older than the OB group. The age of 

NW subjects is likely a large driving factor that plays a role in the expression of dementia related 

pathologic changes in a way that is more dominate than mood and physiologic changes related to 

metabolic conditions. So, where does that leave future research on obese MCI subjects? One 

could argue that the young age of OB subjects should not be overlooked. Even if their clinical 

course to dementia is slower, the development of MCI at a young age could be related an early 

development of AD. With a large prevalence of obese MCI subjects this groups needs better 

characterization in future work, specifically, middle age obese persons with MCI.   
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 The goal of this dissertation was to introduce obesity as a measurable risk factor for 

Alzheimer’s disease within MCI. The ultimate goal of nearly all MCI research involves 

understanding the development of Alzheimer’s disease. Thus, research studies that identify BMI 

groups in MCI have done so only in cases where progression to Alzheimer’s disease is being 

studied directly, such as longitudinal and survival analysis research. The focus of this research 

took a new direction, to study and characterize obesity in MCI directly. With the high prevalence 

of obesity on the rise from adolescences to older adulthood, the effects of chronic obesity on 

brain and behavior over a lifetime are relatively unknown. The addition of a pathological 

disorder to the aging process, such as MCI, introduces an avenue where there is no knowledge 

regarding the effect that increased weight has on the presentation of the disease, or what 

symptoms reflect metabolic changes and not the disease pathology. In this research, we were not 

able to take into account some key features that may answer such complex questions regarding 

the interaction between chronic obesity and Alzheimer’s disease pathology.  Future directions of 

this research involve tracking the chronicity of obesity and using that time variable as a control 

measure for brain structure changes. In addition, designing studies prospectively where changes 

in BMI are tracked over time, along with cognitive, brain imaging and behavioral measures. 

Further, many of the studies in this dissertation categorized BMI into three categories of NW, 

OW and OB, but a study design that uses regression analyses may identify relationships of 

weight and brain structure that provide interpretations on associative relationship that could 

change under different conditions. 
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