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ABSTRACT

OPTIMIZING MESSAGE TO VIRTUAL LINK ASSIGNMENT IN AVIONICS
FULL-DUPLEX SWITCHED ETHERNET NETWORKS

By

Joseph Klonowski

Avionics Full-Duplex Switched Ethernet (AFDX) is an Ethernet-based data network that

provides deterministic performance, high reliability, and lower costs and development time by

utilizing commercial off-the-shelf networking components. As AFDX networks have become

the common solution for network design in aviation, analyses for optimizing different aspects

of the network are continually being evaluated. There are two main types of solutions to

improving network performance: changes to the physical layer and changes to the logical

layer. Because the physical network is setup prior to defining the data that is transferred

on the network, logical layer optimization becomes important and is often the only viable

solution. Previous research has explored optimization of different aspects of the logical

solution for a given target (whether it be latency or bandwidth), however, an approach for

a customizable target using optimization techniques has not been attempted. In this work,

we provide an overview of AFDX networks and discuss factors engineers consider while

optimizing the network. Previously researched solutions are evaluated for effectiveness. We

identify the need for an optimization solution that allows for a customizable objective to

account for both message latency and bandwidth. To fill this gap, we consider the problem

of assigning messages to virtual links, which are configurable, logical unidirectional links

from publishing end systems to one or more subscribing end systems. We propose a flexible

framework based on particle swarm optimization (PSO) that performs message to virtual

link assignment in AFDX networks to optimize a user-defined objective. We discuss and

provide results on PSO optimization for a range of hyperparameters. Finally, results for a

sample swarm are presented to prove the feasibility and usefulness of the proposed approach.
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CHAPTER 1

INTRODUCTION

Avionics Full-Duplex Switched Ethernet (AFDX) is an Ethernet-based data network that

provides deterministic performance, high reliability, and lower costs and development time

by utilizing commercial off-the-shelf networking components. It was designed specifically

to meet the stringent integrity and availability requirements required in aviation [16]. This

widely accepted solution implements the ARINC 664-Part 7 [1] standard required in the

avionics networking industry. The interest in AFDX networks as the network solution is

due to its high speed, low cost, high flexibility, and reduced weight because of less wiring

[20]. As AFDX networks have become the common solution for network design in aviation,

analyses for optimizing different aspects of the network are continually being evaluated.

With growth in the amount of data on the network, network performance optimization has

gained increasing significance. There are two main types of solutions to improving network

performance: changes to the physical layer and changes to the logical layer. Physical layer

changes might yield better results for increasing the capacity of a network, however, they are

much more difficult to implement once the aircraft’s design has begun. Because the physical

network is setup prior to defining the data that is transferred on the network, logical layer

optimization becomes important and is often the only viable solution.

1.1 Motivation

In today’s world, people want access to more data and they want to receive that data

quicker. The aviation industry is no different. With the introduction of more complex

aircraft, systems are publishing more data than ever. A recent relatable example of this is

the introduction of entertainment systems on airplanes. The entertainment data is published

on the AFDX network and is sharing the same physical network as more important data

such as flight control data. So the introduction of this new data is decreasing the amount
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of available resources of the AFDX network. Given that aircraft are not using the most up-

to-date hardware (because aircraft development is much slower than commercial networking

development), it becomes a problem of how can we fit more data on legacy hardware.

Aviation is an industry where space is limited, weight is heavily scrutinized, and power is

of utmost importance, any area where savings can be found is extremely important. To get

an idea of the importance, one extra pound on an airplane has the cost of roughly $1M USD

over the life-cycle of the fleet of an aircraft [12] [13]. For example, with the Airbus A380

containing 500 km of cables, the pressure to more effectively use a given physical design of

a network continues to be scrutinized [11]. However many times due to time and budget

constraints, optimization is not considered once development is complete. This is where

developing a smarter logical layer solution for a given physical layer solution can help solve

this optimization problem. An optimal logical layer solution will allow for more data to be

transmitted on the AFDX network using legacy networking hardware. The importance of

this is that it makes it easier to route data through the network without contention and

doesn’t violate the ARINC 664-Part 7 availability and integrity requirements [1].

1.2 Problem Background

The reasoning for finding a new network implementation prior to AFDX’s introduction

was because legacy network solutions (such as ARINC 429) had reached their limits for

performance and design complexity [21], [24]. The amount of data on AFDX networks is

continuously growing due to a continuous increase in the number of electronic components

publishing and subscribing to data on the AFDX network [10]. This increase in data on the

network brings about the problem of how the extra data will affect network performance.

With the constant increase in the amount of data on the network, the physical network is

approaching its limits for performance. An optimal logical network will also allow more data

to be put onto the current hardware used in aviation (keeping in mind that this is legacy

hardware since aircraft development is not as fast as commercial network development).
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There currently isn’t a great understanding of how different logical choices impact latency

and throughput of an aircraft’s network on a large scale. With the ever-growing amount

of data on airplanes (both safety critical and non-safety critical), ensuring that an optimal

solution is designed is more important than ever. Given the competitive nature of the

aviation industry, finding the optimal network solution will be revolutionary to a future, and

in some cases current, problem in the avionics field.

1.3 Researched Solutions

Optimizing the logical layer solution has a vast majority of possibilities. Three options

that this research will focus on are virtual link construction, message to virtual link assign-

ment, and virtual link scheduling. Previously research methods for optimizing these options

are summarized with an overview of the results of studies on different algorithms. The gap

in research for a customizable objective function will be shown.

1.4 Contributions

This thesis will give some insight into network development and implementation in the

aviation industry. An exhaustive search of research for optimizing AFDX networks was

done and concluded that optimization for a user-defined objective function, accounting for

both message latency and bandwidth, has not been attempted. To fill this gap, we consider

the problem of assigning messages to virtual links. We propose a flexible framework based

on particle swarm optimization (PSO) that performs message to virtual link assignment in

AFDX networks to optimize a user-defined objective. We discuss and provide results on

PSO optimization for a range of hyperparameters.

1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, background and definitions of Avionics

Full-Duplex Switched Ethernet networks are provided. These definitions are important to

understand the research that is being done. In Chapter 3, previously researched solutions
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for optimization of AFDX networks will be outlined. Each solution will be introduced and

explained, then the results of the research will be shown and areas for improvement will

also be discussed. In Chapter 4, an introduction to Particle Swarm Optimization will be

presented. An explanation of how Particle Swarm Optimization will be used to solve the

optimization problem of message to virtual link assignment will be given. An overview of the

framework that was created will be covered along with how it can be translated for future

research. In Chapter 5, the network that will be used as the test setup will be explained.

Results of the algorithm will be shown as well as limitations with the research. Finally in

Chapter 6, the conclusion of the research and future work will be discussed.
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CHAPTER 2

AVIONICS NETWORKING BACKGROUND

In order to fully understand the problem, it is important to understand common terminology

used throughout this research.

2.1 Avionics Full-Duplex Switched Ethernet

Avionics Full-Duplex Switched Ethernet (AFDX) is the implementation of the ARINC

664-Part 7 standard for aircraft networks [1]. This is the aviation equivalent of a standard

Ethernet network with more stringent bandwidth and redundancy requirements. Within

the AFDX network, end systems (any publisher and/or subscriber of data), switches, and

physical links make up the physical layer while virtual links outline the logical layer. A

simple example of an AFDX network can be seen below in Figure 2.1. An example of the

type of data that is transmitted within the AFDX network can be found in Table 2.1. Note

that Design Assurance Level (DAL) is a label determined from a safety assessment process

and hazard analysis by examining the effects of a failure condition in the system [15]. This

label correlates with the criticality of messages. The most stringent DAL is DAL A, while

the least stringent DAL is DAL E.

Example AFDX Data DAL

Flight Control Systems A
Braking Systems B

Backup Landing Systems C
Ground Navigation Systems D

Entertainment Systems E

Table 2.1: Example Network Data
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2.2 Virtual Link

A Virtual Link (VL) is a configurable and logical unidirectional link from one publishing

end system to one or more subscribing end systems. Virtual links provide the avenues for

messages to go from end system to end system. An easy way to think of a virtual link is

to think of it as a path through the physical network from a publisher to subscriber. See

Figure 2.1 for an example of how virtual links fit into a simple AFDX network. The figure

includes four end systems. ES1 and ES2 are publishing data on the AFDX network, while

ES3 and ES4 are subscribing to the data on the AFDX network. Note that end systems can

subscribe to data on the AFDX network, publish data on the AFDX network, or both.

Figure 2.1: Simple AFDX Network

Each VL has certain characteristics which define its behavior. First is the Bandwidth

Allocation Gap (BAG). BAG is the minimum time interval between successive frames of a

virtual link. A given BAG, assigned to each VL, can range anywhere from 1ms to 128ms in

power of two increments. Maximum Transmission Unit (MTU) is the size of the message

(bytes) in each VL’s frame (size of the VL). BAG and MTU are used in combination to

determine the scheduling of VLs for transmission to the AFDX network. This can be seen
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graphically in Figure 2.2.

Figure 2.2: BAG and MTU

A given VL can be further partitioned into up to a maximum of four sub-VLs. The

sub-VLs are aggregated into a FIFO queue prior to transmission to the AFDX network. The

goal of sub-VLs is to optimize the bandwidth utilization of a given VL. This can be seen in

Figure 2.3, which has three sub-VLs. They’re put into the FIFO queue and transmitted out

to the AFDX network. This is more effectively using the VL’s bandwidth utilization because

of the ability to send out separate data individually, rather than sending larger data frames

all at once.

Figure 2.3: sub-VL Transmission
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The transmission of VLs can get complex when an ES has multiple VLs which need to

be sent out to the AFDX network. This is where two common techniques can help with

scheduling, namely First-In-First-Out (FIFO) queues and a generic scheduling technique.

FIFO queues are simplistic in that the first VL that is ready to be transmitted by an ES

will be transmitted first (while still not violating the BAG requirement discussed above).

Subsequent VLs will be transmitted as they are received, while still adhering to the BAG

requirement.

Generic scheduling techniques are more in-depth. This scheduling involves assigning each

VL a time-slice in which it is able to transmit messages to the AFDX network. If a VL is

ready to be transmitted, it will be sent. However if it is not ready to be transmitted, a ripple

effect could be propagated through the network. The goal of creating this schedule is a more

consistent scheduling mechanism with more effective use of the physical link’s bandwidth.

Figure 2.4: Example VL Transmission

The example in Figure 2.4 shows the transmission behavior for a generic scheduling

methodology. In each of the three scenarios, VL1 and VL3 are ready to transmit at their

time slice. However VL2 isn’t ready to transmit until a later time in each scenario. In

the first scenario, each VL is ready to transmit at its appropriate time slice. In the second

scenario, the delay in VL2 doesn’t affect the normal transmission time of VL3, so VL3 is

still transmitted at the same time. However in the third scenario, VL2’s delay runs over the
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regular transmission time of VL3. This causes a ripple effect where VL3 is now transmitting

a bit delayed from the previous two scenarios. In the event of a relatively lightly loaded

network, such as in these scenarios, the ramifications of the ripple effect are not too serious.

In the event of a heavily loaded network where each time slice is allotted to a particular VL

with little buffer in between, the ripple effect can cause large amounts of delay. This delay

leads into the concept of jitter.

The last characteristic of VLs needed to understand this research is jitter. Jitter is the

difference between the minimum and maximum time from when a publisher sends a VL to

when the subscriber receives the VL. This means that it is the variation of the latency of a

particular VL. Jitter is caused by contention with other VLs on the AFDX network. Because

AFDX networks are a real-time network, jitter is heavily scrutinized and has constraints

levied upon it defined by ARINC 664-Part 7. A graphical view of jitter can be seen in

Figure 2.5.

Figure 2.5: Jitter Example

2.2.1 Virtual Link Grouping

Virtual links define the path from a publisher to subscribers, however what if there is more

than one VL sharing a similar path from a publisher to similar subscribers? This is where

the concept of grouping similar messages is important.
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Figure 2.6: VL Grouping Example

As an example, imagine the scenario in Figure 2.6. The Flight Management System (End

System 1) is sending a message to the Flight Data Recorder (End System 2), Landing Gear

Controller (End System 3), and Flaps Controller (End System 4). Looking at the example

in Figure 2.6, there are six possible ways to group these messages (flows). They can be found

in the table below.

VL1 VL2 VL3

F1,2, F1,3, F1,4 empty empty
F1,2, F1,3 F1,4 empty
F1,2, F1,4 F1,3 empty
F1,3, F1,4 F1,2 empty
F1,2 F1,3 F1,4

Table 2.2: Possible Groupings into Virtual Links

Grouping of virtual links makes scheduling of transmissions easier for end systems. The

main drawback is that the size of the virtual link increases with each grouped virtual link.

For example, the first row of the table above groups all of the messages into one VL. That
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VL will then be sent to all three end systems. The subscribing end systems will still receive

the data intended for the it, but it is reserving more bandwidth on the physical link than is

required. Grouping creates an inefficiency because the physical links end up reserving more

bandwidth than is necessary. Grouping messages into VLs makes scheduling easier by the

publishing end system, which will reduce jitter. The cost is that the overall bandwidth of

the system will increase. The other extreme would be to have each message in its own VL.

Then each end system will get only the data that it needs, however scheduling is tougher

for the publishing end system. When the number of messages increases, scheduling will be

more difficult. Also there are sometimes requirements levied upon the publishing end system

capping the number of VLs transmitted. If the number of messages needed to be published

exceeds the maximum allotted VLs for the end system, this extreme case of one message per

VL isn’t feasible.

Once messages have been grouped together into VLs, the VLs can then be partitioned

into sub-VLs, as shown in Figure 2.3. These two design decisions affect the VL routing,

scheduling, throughput, and latency for the network.

2.2.2 Message Grouping in Realistic Scenario

In looking at more realistic scenarios, the number of messages published by a remote gateway

will be more in the hundreds to thousands. This means that there are potentially thousands

of messages that have the possibility of being grouped together in VLs. Because the number

of messages grouped together in VLs is a design decision, the number of VLs that exist

throughout the network varies based upon design decisions. This leads to the question, how

many grouping pairs are possible? The solution to this is not trivial, since the number of

VLs is variable, as well as the number of messages in each VL.

A similar problem with the same solution space can be analyzed to see the number of

possibilities. Grouping messages into VLs is equivalent to determining the number of dis-

tinct objects that can be placed into identical bins, where the number of identical bins is

11



anywhere from 1 to the number of objects. The solution to this problem is a summation of

Stirling Numbers of the Second Kind [8].

Permutations =
∑#RDCs

i=1

∑ni
ki=1

1

ki!

∑ki
j=0(−1)ki−j

(ki
j

)
jni

where ki is the number of virtual links for the RDC and ni is the number of messages

published from the RDC. As the number of RDCs of the network and number of messages

published per each RDC increase, number of possible permutations is drastically increased.

With the number of RDCs of a network usually between 10 and 20, and each RDC typically

publishing at least hundreds of messages, this problem has a vast number of solutions. Thus,

finding a close formed mathematical expression to find an optimal message grouping for a

given network is nearly impossible.

2.2.3 Virtual Link Frame Structure

The frame structure used for VL frames closely resembles standard IEEE802.3 Ethernet

frame structure [17]. Figure 2.7 below shows the structure for a VL [14]. The size in bytes

is listed for each segment of the frame, with the maximum payload for each VL being 1471

bytes. If a payload ever exceeds 1471 bytes, its payload will be fragment into multiple

transmissions. This is typically behavior that is avoided.

Figure 2.7: Virtual Link Frame

The differences from IEEE802.3 include the IP and UDP headers, along with the Received

Sequence Number (RSN). Boxes highlighted in gray represent overhead due to the physical

links. Boxes not highlighted in gray represent the VL’s frame, where the AFDX payload is
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variable. The overhead that is included for bandwidth calculation purposes includes every

segment aside from the AFDX payload (67 bytes).

2.2.4 Bandwidth, Throughput, and Latency

Before looking at implementation of AFDX networks, an understanding of a few network

definitions are needed. Bandwidth (B) is defined as the maximum rate of data transfer across

a given path. In the avionics industry, this is typically a fraction of the possible total band-

width of a physical link. Bandwidth is a constraint levied upon the network implementation

based both on physical limitations, and leaving a margin to reduce jitter. For a full-duplex

network there are two different aspects to bandwidth, source to destination and destination

to source bandwidth. Since the physical connections for AFDX networks are bi-directional,

both directions of the bandwidth must be analyzed. A given bandwidth is an upper bound

for each physical link in the network, denoted by Bi,j (where i, j represents the physical link

from i to j).

B = {B1,2, B1,3, . . . , B2,1, B2,3, . . . , Bi,j}

Latency (L) is defined as the time it takes for a bit of data to travel from a publisher

to a subscriber. Evaluating the latency of each dataflow is necessary because latency impact

is variable depending on the type of data that is being sent. For example, a engine failure

message sent to a flight computer is very important and a high latency would not be accept-

able. However an in-flight entertainment health message sent to the entertainment manager

is not critical and a high latency would be non-ideal, but tolerable. Latency is measured per

dataflow on the network. This is denoted by Li,j (where i, j represents the dataflow from i

to j).

L = {L1,2, L1,3, . . . , L2,1, L2,3, . . . , Li,j}
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Throughput (TP) is defined as the capacity of the bandwidth being used. This is measured as

a percentage of the bandwidth used of the maximum bandwidth (as determined by the phys-

ical limitation and determined margin). A given throughput is the percentage of the maxi-

mum bandwidth that the physical link is using. Often times bandwidth and throughput are

used interchangeably. Since bandwidth is a fixed constraint on the system, often times when

researchers try to optimize bandwidth, in reality it is to optimize bandwidth usage (through-

put). Throughput is denoted by TPi,j (where i, j represents the physical link from i to j).

TP = {TP1,2, TP1,3, . . . , TP2,1, TP2,3, . . . , TPi,j}

The following equation shows how to calculate the throughput for a particular physical link

from (x to y) which has n number of VLs on it (where li is the frame size for the VL) [1].

TPx,y =
∑n

i=0
li

BAGi

Note that in order for the network to be feasible, the throughput must be less than the

bandwidth for each physical link. If for some reason the calculated throughput is greater

than the available bandwidth for the physical link, the VL structure will need to be recreated

or a new routing scheme will need to be implemented.

2.2.5 Virtual Link Constraints

Because the VLs are harmonic (due to the BAG of each VL being a power of two), constraints

can be derived via utilization analysis that form requirements levied upon BAG, MTU, and

message grouping. These requirements will shape the allowable BAG (bytes) and MTU (ms)

values.

The below expression, derived in research by [2], shows the message constraint of V Li

with ni messages, each of size li (bytes) with a publish rate of pi (ms) to guarantee the

real-time requirement of all message flows (from i to j) in the link:∑ni
j∈Fi

|lj/MTUi|
pj

≤ 1
BAGi

Similarly the following bandwidth constraint, derived in research by [2], for a system with
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n VLs and a maximum bandwidth of B. Each V Li is configured with {MTUi, BAGi} such

that MTUi bytes are transmitted every BAGi ms. Thus the {MTUi, BAGi} for each V Li

must be configured to satisfy this constraint on bandwidth. This constraint is to ensure that

the sum of all of the individual VL’s bandwidths do not exceed the maximum bandwidth of

the physical link. Note that each VL requires an overhead of 67 bytes. For more information

on the overhead of each VL, see Section 2.2.3. Additionally, the factors of 8 and 103 are

because B is measured as bits per second rather than bytes per millisecond.

8
∑n

i=1
MTUi+67
BAGi

× 103 ≤ B

Finally a jitter constraint, derived in research by [2], is levied upon the MTU choice.

The ARINC 664-Part 7 specification requires jitter less than 500 µsec, with typical jitter in

Ethernet hardware being 40 µsec [1] [2]. Thus a suitable MTU must be chosen for each VL

such that the jitter constraint is satisfied.

40 +

8
n∑

i=1
(67+MTUi)

B ≤ 500

In a given network, the designers of end systems will inform the network engineers how

often messages are published, as well as the size of the messages being sent (li and pi from the

equations above). Similarly, the designers of end systems work with the network engineers to

identify how frequently messages need to be received. This defines the ultimate publisher and

ultimate subscriber of the data. There are generally a few switches and other end systems

which will pass the data along the AFDX network. How the data is packed into VLs and

traversed through the network is only relevant to the network engineers as the end systems

aren’t affected by the path of the data. End systems only care that the data arrives on time.

Packing the data into VLs and creating the path of the data through the network is where

the majority of the design decisions are made in the AFDX network. In order to understand

basic AFDX networking concepts, the definitions of a Remote Data Concentrator and a

Remote Gateway are needed.
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2.3 Remote Data Concentrator and Remote Gateway

A Remote Data Concentrator (RDC) serves the purpose of translating messages to and

from avionics protocols (Analog to ARINC 664, ARINC 664 to Discrete, etc.). There is typ-

ically only one RDC per dataflow from publisher to subscriber, however there are instances

where an RDC might send a message to another RDC prior to sending the message to the

ultimate subscriber.

The Remote Gateway (RGW) is the logical side of the RDC. This means it is a hosted

software application used to configure gateways to allow the hardware to send and receive

data. A RGW controls the input and output data (I/O) for the RDC. There could be many

RGWs per each RDC, but each RGW will be tied to a single RDC. Each RGW is configurable

to define the messages received, the way messages are constructed, and how messages are

published to subscribers.

For a typical network there will be end systems publishing and subscribing to data,

however the protocol that the end systems can communicate through could be any viable

avionics protocol. For example let’s say an end system is publishing a message in ARINC

664, and there are two subscribers to that message expecting to receive it in ARINC 664.

Figure 2.8: Simple Network Example
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The following would occur at the logical layer in Figure 2.8:

1. Publish message (A664)

2. A664 Message sent to Remote Gateway on Remote Data Concentrator

3. Message reconstructed as A664 message

4. Message sent to subscribers

This shows messages are sent between the RGW and the two ultimate subscribing end

systems. The way the data is carried between the end systems is through a virtual link.

2.4 Interface Control Document

All of the logical layer information is contained in the Interface Control Document (ICD)

which maps out the avionics network for the entire aircraft. The ICD consists of XML

files which include all the detailed information of the AFDX network. ICDs are used to

define the physical layer (such as Flight Management Computers, Landing Gear, In-flight

Entertainment Systems), as well as the logical layer (defining the dataflows between physical

units). The ICD creates a mapping between the physical and logical layer, hence the entire

AFDX network is captured within the ICD.

Once an ICD has been created, builds are done on the ICD to create software which is

loaded onto the physical units of the AFDX network. The ICD is constantly being updated

during network development. However once a solution is finalized, the ICD is not updated

and deployed to the field. Prior to deploying to the field, simulations are run to gather

network performance. The two performance characteristics that this research will focus on

are latency and throughput numbers for the network.

The ideal network would have no latency, no jitter, and would have a throughput that is

100% (perfectly optimizing the physical network). This is impossible. A more realistic end

goal for a network is to have minimal latency, minimal jitter, and would have a throughput

that leaves enough margin such that contention is minimized and there is room for growth.
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CHAPTER 3

CURRENT DESIGN APPROACH AND RELATED WORK

Figure 3.1: Example Aircraft AFDX Network

Each of the systems in Figure 3.1 represent an ES which needs to communicate with the

AFDX network. The location of these end systems are determined prior to the network’s

design. The network is created by determining which of the end systems need to commu-

nicate and designing the road map of how data will travel to and from each end system.

Messages with similar paths can be then grouped into virtual links, which define the path

from the publisher to the subscriber for each message. For example, if the aircraft’s Flight

Management System publishes a message from both the flight data recorder and engine con-

troller of the airplane, they might be grouped together in a virtual link and sent from the

Flight Management System to those subscribing end systems. That virtual link would have

an associated BAG and MTU, and possibly other messages in that share a similar path.
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The current approach for the commercial aviation networking area is to only evaluate

network statistics after the network has already been designed, with a few lessons learned

from previous programs implemented in the design. When latency issues arise, for example,

network redesigns are required. These redesigns could be as simple rerouting messages

though different hardware, or as serious as requiring major scheduling changes to the end

systems messages. AFDX networks nearly always meet the requirements levied upon the

system by the aircraft manufacturer, however there is much room for improvement in the

latency and throughput of the system. Designing the optimal solution for these two will

ensure the best possible network solution is found for a given physical layout. The problem

is not trivial because a network design is trying to balance the networks characteristics. For

example, trying to decrease the latency will likely increase the throughput. Determining

the best possible network design is a balancing act and can change depending on what the

stakeholders are interested in and what size bandwidth margins are deemed acceptable.

When looking at possible changes to improve latency and throughput there are a few ways

to approach a solution. One solution would be to move the end systems around to reduce

physical travel time. While this solution would be the most simple to implement from a

software perspective, often times the physical locations of end systems are determined prior

to network design. The other way to approach it is to make changes at the logical level to

adjust pathing and scheduling characteristics. This research focuses on the logical layer, more

specifically manipulating virtual links and scheduling, while assuming that the hardware is

constant.

3.1 Optimal BAG and MTU Values

Two parameters on virtual links that can be manipulated are BAG and MTU. Research

has been done for determining the optimal values for MTU and BAG values while still

adhering to the constraints noted by Section 2.2.5. The approach taken by this research

group is to determine every possible BAG and MTU values for a given set of VLs. Then
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use a branch and bound technique to determine the optimal values for the VL. Figure 3.2

shows the results of the two branch and bound algorithms used and the results of a brute

force technique [2].

Figure 3.2: Branch and Bound Results [2]

While the results from Figure 3.2 shows an improvement for selecting a BAG/MTU

suitable for a given set of VLs, it doesn’t address the issue of how messages are grouped into

VLs. The test run in [2] with only 6 virtual links, which is a small number in comparison to

AFDX networks for a full aircraft. A more realistic test scenario would have anywhere from

100 to 1000 VLs [25].
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3.2 Message Grouping and Virtual Link Aggregation

Another area to manipulate for optimization is the grouping of messages into VLs and

sub-VLs. Research has been done to determine the optimal grouping of messages into Virtual

Links to reduce bandwidth [4]. As part of the research in [4], they used two algorithms to

grouping the messages. Algorithm 1 is to start with one large VL and start splitting into

separate VLs when the bandwidth would decrease as a result of the split (noted by the first

row of the table in section 2.2.1). Algorithm 2 is to have each message in its own VL (noted

by the last row of the table in section 2.2.1), then combine VLs when the bandwidth would

decrease as a result of combining. The results of this research is summarized by Figure 3.3.

Figure 3.3 shows the network’s bandwidth for all messages in their own VL, all messages

in 1 VL, and the two algorithms stated above [4]. For all three test data sets, Algorithm 2

performed the best in reducing the network’s bandwidth.

The algorithm for splitting and combining is a greedy algorithm and in likelihood would

settle on a local minimum as opposed to the global minimum. This test was used with a set

of 8 messages. This is a very small number for AFDX networks, messages are typically in the

hundreds or thousands per RDC [25]. Due to the small number of messages, the possibility

of having too many messages grouped into one VL is not an issue. However in real networks,

this would be an issue because of the 1471 byte payload limit noted in section 2.2.3. Also

this doesn’t address how the BAG and MTU are recalculated when a new grouping scheme

is created. Finally the number of VLs doesn’t take into account the affect of latency on

the system as a result of aggregating or splitting of VLs. If the number of VLs that an ES

publishes is only 8, such as in [4], there will be no difficulty in scheduling and transmission

of those VLs. When the number of VLs increases, scheduling and transmission become more

difficult which leads to an increase in latency. Because the test data set is small and latency

is not evaluated, this is a gap in research that needs to be investigated.
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Figure 3.3: Message Grouping Results [4]

3.3 Optimized Transmission Scheduling

Another potential solution for network optimization is a more robust scheduling algorithm

for transmitting VLs. Research has been done to evaluate the performance of algorithms for

scheduling based on the following characteristics [3]:

1. Round Robin - a policy to allow the data frames of all queues, i.e. all virtual links in

this case, to be regulated in each turn. During each round of the operation, all virtual

links are guaranteed to be equally served one by one. The aim of Round Robin is to

provide fairness of all virtual links regardless their arrival time, queue size, etc.

2. Smallest BAG - a policy to allow the data frame of the virtual link of which the BAG
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value is the smallest to be regulated before the other data frame regardless their arrival

time at the queue.

3. Longest Queue - a policy aimed to reduce the queue size as quickly as possible to avoid

frame dropping due to no space left in the queue for a new coming frame. This policy

allows a data frame of the virtual link, of which the number of frames waiting in the

queue for traffic shaping is the largest, to be regulated before the others. This policy,

hence, is suitable for the dense traffic communication where the frame dropping rate

is high.

4. Smallest Size - a policy allows the smallest data frame to be regulated before the other

larger data frame regardless their arrival time at the queue.

5. FIFO - The FIFO allows the data frame to be regulated according to their arrival time

at the queue. The data frame which arrives first will be regulated before the others.

This is a similar approach to a more comprehensive study on FIFO policy in AFDX

networks [22] [23].
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The results of the research can be seen in Figure 3.4.

Figure 3.4: Scheduling Algorithm Results [3]

The goal in the research of [3] was to evaluate the algorithms based on the lowest jitter

for the system. The results of their research indicated that a FIFO and Longest Queue

algorithm were the best performing scheduling algorithms. This result shows how to reduce

jitter, however this test was run on a low loaded network. A more comprehensive test would

be needed to ensure these results hold true for a realistic AFDX end system.

3.4 New Contribution For Research

The discussed algorithms in this chapter discuss different optimization techniques that

have been tried for AFDX networks. After an extensive search of research in this field, a

customizable algorithm that accounts for both latency and bandwidth does not exist. Also

Particle Swarm Optimization has not been attempted
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CHAPTER 4

PARTICLE SWARM IMPLEMENTATION

The following sections will lay out a unique solution to solving AFDX network optimization.

The provided algorithm in this chapter will be configurable such that the swarm will converge

on a solution that is the best for the stakeholders (whether it’s low latency, low bandwidth

or a custom combination of both).

4.1 Particle Swarm Optimization Introduction

Particle Swarm Optimization (PSO) is an non-deterministic, meta-heuristic, optimization

algorithm originally developed by Kennedy and Eberhart [6] [7] [18]. It is classified as an

evolutionary algorithm which means that over iterations, the position of particles will shift

towards the best performing particle of the group. Over enough iterations, the particles will

converge on a good solution. A visual representation of this is shown in Figure 4.1.

The particles are initialized at random x values on the graph to start. Each x is an

N-dimensional vector, where N is the dimension of the optimization problem that is being

solved. Each of the particles is evaluated at their current position. After evaluation, each

particle’s x vector is pushed toward the particle with the minimum F(x) value of the swarm.

After the particles are moved, the next iteration of particles are evaluated at their new

positions. After evaluation, each particle’s x vector is again pushed toward the particle

with the minimum F(x) value of the swarm. Note that this could be a different particle

than the first iteration. After enough iterations, the particles will converge onto a minimum

solution. For a simple function similar to the one noted in Figure 4.1, the global minimum

will most likely be found. However for a very complex N-dimensional solution, the particles

might converge on a local minimum. While the algorithm might settle on a local minimum,

this still might be a better solution than found without using this algorithm. With more

randomness in the position update functions and a sophisticated particle update function,
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Figure 4.1: Particle Swarm Optimization Example

there is a better chance of converging on a good solution.

4.2 Particle Swam Optimization Mathematics

Each particle is defined by its position and velocity. Consider the jth particle from the

ith iteration in an N dimensional space. It would be represented by the following position

and velocity tuples:

xj(i) = {xj1, xj2, ..., xjn}

vj(i) = {vj1, vj2, ..., vjn}

At any particular iteration, each particle will have its own position and velocity. Both of

these tuples are a function of the iteration, with the position update function defined as:

xj(i+ 1) = xj(i) + vj(i+ 1)
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The hyperparameters which define the behavior of the velocity function of the swarm

are m, c1, and c2. The multiplier for the carry over velocity, vc(i), from the last iteration is

given by m. Parameter c1 gives the cognitive multiplier, while c2 gives the social multiplier.

The cognitive velocity, vcog(i), takes the difference between the particle’s own best position,

regardless of iteration (yj), and it’s current position. The social velocity, vsoc(i) takes the

difference in position between the particle’s current position, and the position of the best

particle in the swarm at the current iteration (ŷj(i)). The velocity function is defined as:

vj(i+ 1) = vc(i) + vcog(i) + vsoc(i)

vc(i) = m× vj(i)

vcog(i) = c1 × r1,j(i)× [yj − xj(i)]

vsoc(i) = c2 × r2,j(i)× [ŷj(i)− xj(i)]

PSO is non-deterministic due to the particles being initialized randomly to start and

the update functions not being constant. Research has shown that introducing a bit of

randomness in the velocity update function with clamping yields a faster convergence [9].

This is where the r1,j(i) and r2,j(i) functions come in. The functions r1,j(i) and r2,j(i)

generate a random vector (with each value in the vector varying from 0 to 1) for each

particle. These random vectors are multiplied by the velocity vector to get the final particle

velocity for the iteration.

As an example, imagine the hyperparameters were set to m = 0, c1 = 0, c2 = 1. Without

the random multiplier on the social velocity, each particle of the swarm would jump to the

best particle of the first iteration and there would be no change in subsequent iterations.

Another similar example where m = 1, c1 = 0, c2 = 1 would result in the swarm jumping

to the best particle of the first iteration, then performing an equal jump past the group’s

best during the second iteration since the carryover velocity is set to 1. This choice of

hyperparameters would struggle to settle on a minimum due to this un-damped oscillation.

Using the intuition from these two examples, it is easy to see that hyperparameters are
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typically chosen to be between 0 and 1.

4.3 Modeling Message to Virtual Link Assignment

PSO is the method that will be used to find the best message to VL assignment. In order

to implement this, a particle structure is needed to translate how a particle will represent a

message grouping configuration. Each particle will be represented by a matrix. The example

particle in Table 4.1 would represent a particle for 3 RDCs publishing 4, 5 and 3 messages

respectively:

RDC Messages Msg 1 Group Msg 2 Group Msg 3 Group Msg 4 Group Msg 5 Group

4 1 3 3 4 X
5 3 2 1 3 4
3 2 2 2 X X

Table 4.1: Example Particle

Each row in Table 4.1 represents one RDC. The first column of each row is the total

number of messages published by that RDC. The rest of the columns in that row will be

constrained to be an integer between 1 and the number of messages transmitted by that

RDC. Two cells in a given row having the same integer value means that they will be

grouped together in a VL. If all of the cells in a given row have the same value, they will

all be grouped into one VL. The example PSO particle in Table 4.1 equates to 3 VLs in

RDC1 (messages 2 and 3 being grouped together), 4 VLs for RDC2 (messages 1 and 4 being

grouped together), and 1 VL for RDC3 (messages 1 2 and 3 being grouped together).

Note that this particle modeling is only one of many possibilities. The discussed modeling

in Table 4.1 has an enormous solution space if the number of messages transmitted for an

RDC is in the hundreds or more. One alternate approach would be to limit the number of

virtual links that the RDC could transmit. For example, if an RDC publishing 5 messages

were limited to a maximum of 3 VLs. The constraints on the particles would be that the

published messages would be assigned an integer from 1 to 3, as opposed to 1 to 5. An
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example of the limited VL modeling can be shown in Table 4.2.

Messages Msg 1 Group Msg 2 Group Msg 3 Group Msg 4 Group Msg 5 Group

5 1-3 1-3 1-3 1-3 1-3

Table 4.2: Example Particle With Limited Virtual Links

An additional way to model the problem to reduce the solution space would be to define

a set number of VLs that must be non-empty. For example, if an RDC is publishing 100

messages must publish exactly 20 VLs. The constraints on the particles would be that the

published messages would be assigned an integer from 1 to 20, as opposed to 1 to 100. Also

there will be a constraint on the particles there is at least one message for every integer from

1 to 20.
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4.4 Framework for Implementation

Figure 4.2: Optimization Block Diagram

Figure 4.2 shows the process for implementing this algorithm. Included in the figure is

the software that was used to implement each portion of the framework. First, the network

will be analyzed to determine number of messages published per RDC. This will define the

constraints on the particles for optimization. Next, the particles will be randomly initialized

to define their initial position in the solution space. Each particle will then be translated

from a particle (defined as a matrix as shown in 4.3), to a VL grouping assignment in the

network model. This is done via a parsing script to create an XML file, similar to the few

lines shown in Figure 4.3. Once the XML file is created to define the groupings, a series of

SQL queries are executed on the network model to implement the message to VL groupings.
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Figure 4.3: Example Grouping in XML

Now that the new groupings have been defined by the algorithm and translated into

groupings in the network’s SQL model, VLs can be created. VL creation is done using a

deterministic algorithm to ensure that comparison between particles is relevant. With the

newly created VLs (each with their own BAG and MTU values) implemented in the network

model, the particle has been translated from the PSO algorithm to the network model.

Next, simulations are executed to determine the network performance. After the simulation

is completed, the results are pulled and analyzed to determine how successful the simulation

was for optimizing the AFDX network.

After each particle in the iteration has been evaluated, the algorithm will push all the

particle toward the best performing particle of the group. Once each particle has moved, the

updated particles be translated into new virtual links and more simulations will be executed.

After this process has completed for the set number of iterations, the solution will be found.

When implementing the PSO solution, the most important variable is the fitness function.

The fitness function will define the ”best” solution that is converged upon. The fitness func-

tion will shape the graph denoted in Figure 4.1. This means that the solution is configurable

to converge on solutions that prioritize different characteristics of AFDX networks. To create

the fitness function, the output of the simulation must be concatenated into one number,

representing the fitness of the simulation. How the concatenation occurs is dependent upon

the stakeholder’s decision about the importance of each output of the network. For example,

some stakeholders might be interested in extremely low latency but wouldn’t care as much

about high bandwidth utilization numbers. Other stakeholders might be interested in low

bandwidth numbers while not caring about latency statistics. An example fitness function
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(for a network with n dataflows and m physical links) would be the following:

F (x) = c1 ×
∑
n

L + c2 ×
∑
m

B

The stakeholders would be in charge of adjusting the weights of the simulation outputs

to ensure a desirable solution is converged upon. With only the task of creating a fitness

function to assign a single cost to each run, this algorithm allows for the stakeholder to

customize a solution best suitable for their interests.

4.5 Scope of Algorithm

This algorithm is restricted to the logical layer of an AFDX network. This means that

the physical layer for the network will be constant. From the logical layer, the following will

be held constant

1. Message construction, rate, and path from the publisher to the RGW.

2. Message construction and rate from the RGW to the subscriber.

Figure 4.4 shows an example network for one RDC. The circled dataflows show the scope

of where the message grouping will occur. Note that the message grouping will only be done

on the messages published by the RDCs. This is because often times, publishing end systems

will be predefined prior to the network’s logical layer design. However this algorithm could

be expanded to include messages published by end systems.

This isn’t to say the the scope of algorithm couldn’t grow to contain more than just what

is listed here. To increase the scope of the algorithm, the particle definition would need to

be updated to include the new scope. Increasing the scope would increase the time it takes

for the solution to converge on a solution, as well as introduce complexity in how the particle

would need to be designed. The algorithm, however, would still be feasible for the increased

scope.
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Figure 4.4: Scope of Algorithm
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CHAPTER 5

NETWORK IMPLEMENTATION AND RESULTS

This chapter will go into detail about the network (test data) that was used for this research.

An explanation of the hyperparameter choice will be provided. Finally, the results from a

3 week algorithm run will be shown to prove the algorithm is feasible for this optimization

problem.

5.1 Network Used for Testing

The network design for testing included multiple publishing end systems, multiple sub-

scribing end systems, one RDC, and switches. Figure 5.1 shows the setup for the network

model for this research.

Figure 5.1: Test Network Design

The RDC for the network is publishing a total of 475 messages, varying in payload size

from 16 bytes to 400 bytes. Each message is being published out at a rate of 20, 40, 80, 160,

320, 640, or 1280 ms. Note that both the number of messages and the size of the messages

means that some grouping assignments are not possible due to the payload restriction noted

in Section 2.2.3. When an illegal grouping assignment is created from a particle, a maximum
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bandwidth (100%) is assigned to that particle. This will ensure that the other particles are

not pushed towards this illegal grouping assignment.

This test data originated from a real aircraft network but was severely scaled down to

save time and prove the feasibility of the algorithm. A typical real aircraft network would

have around 4 - 20 switches, 6-20 RDCs, 200-500 end systems, and 1000-5000 messages.

The following computing hardware and software was used for testing.

• Hardware

– Intel(R) Xeon(R) CPU E5-2640 @ 2.50 Ghz 2.50 Ghz (2 processors)

– 32.0 GB of RAM

– 64-bit Operating System

• Software

– Python (2.6.5)

– Python package - pyswarms (0.3.1) [5]

– Architecture Configuration Toolset (GE Aviation Systems LLC)

5.2 Hyperparameter Selection

From the time the algorithm is started, each particle is initialized and a build is run to

determine the performance of that particle. Each particle roughly takes about 20 minutes

to complete. Once one particle is finished, the next particle is run. After the entire group

of particles is completed in an iteration, the particles are updated per the velocity function

noted in section 4.2. Because of the resource constraints and the time it takes to execute

builds, five combinations of hyperparameters were tested for performance on a small number

of particles and iterations to get a sense of how the algorithm would behave. The test

patterns for the hyperparameters are listed in the table below [19]. Note that m is set to

zero for this research. This is because during preliminary testing, particles were drifting
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beyond the constraints discussed in 4.3. When particles drifted beyond the constraints, their

velocity for the rest of the iterations was set to 0. This drove the decision to set m to zero

for this research.

Test Pattern m c1 c2

1 0 .1 .9
2 0 .3 .7
3 0 .7 .7
4 0 .7 .3
5 0 .9 .1

Table 5.1: Test Patterns

Originally the fitness function included latency along with bandwidth. However in pre-

liminary testing the latency, which averaged about 1250 ms, had a maximum variance of .25

ms between particles. This is more than likely because the physical ports on the RDC did

not have enough traffic on them. When this variance was discovered, latency was no longer

included in the fitness function. The updated fitness function is just taking the percentage

bandwidth used for the physical link from the RDC to the switch connected to it. This is

the data shown in the results that follow.

Note that the particles were not moving aggressively enough during initial testing. In an

effort to speed up the convergence of the algorithm, the cognitive and social functions noted

in section 4.2 were updated to use a random number from .5 to 1 instead of 0 to 1. While

this compromises part of the randomness, this created a faster velocity which helped in a

more aggressive algorithm to save on time.
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Figure 5.2 shows the first test pattern. This has a low cognitive velocity and a high

social velocity. This did not have a great improvement among the swarm as compared to the

rest of the test patterns that follow. This highlights the importance of cognitive and social

velocities together. This hyperparameter set will not be used for the final run.

Figure 5.2: 8 Particles 8 Iterations {m, c1, c2} = {0, .1, .9}
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Figure 5.3 shows the second test pattern. This has a slightly higher cognitive velocity

and a slightly lower social velocity. The trend for this test set is not desirable as their is not

as much improvement as the next test pattern. Thus, this hyperparameter set will not be

used for the final run.

Figure 5.3: 8 Particles 8 Iterations {m, c1, c2} = {0, .3, .7}
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Figure 5.4 shows the third test pattern. This has an equal social velocity and cognitive

velocity. Although this has the worst nominal result for the test sets, the trend of each

particle is desirable since the improvement from the first to last iteration shows the best

improvement. This is the hyperparameter set will be used for the final run.

Figure 5.4: 8 Particles 8 Iterations {m, c1, c2} = {0, .7, .7}
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Figure 5.5 shows the fourth test pattern. This has a higher cognitive velocity and a lower

social velocity. This yielded better results than test pattern two, but did not have as good of

an improvement among the swarm as compared to test pattern three. This hyperparameter

set will not be used for the final run.

Figure 5.5: 8 Particles 8 Iterations {m, c1, c2} = {0, .7, .3}
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Figure 5.6 shows the fifth test pattern. This has a high cognitive velocity and a low social

velocity. This trend for this test set is not desirable because in order to fully see the cognitive

velocity’s affect, there needs to be a great number of iterations to allow each particle to get

a chance to move. This hyperparameter set will not be used for the final run.

Figure 5.6: 8 Particles 8 Iterations {m, c1, c2} = {0, .9, .1}
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5.3 Optimization Results

Figure 5.7 shows the final run with 10 particles over 100 iterations. Because each particle’s

evaluation takes about 20-30 minutes, this test setup took about 3 weeks to complete.

Figure 5.7: 10 Particles 100 Iterations {m, c1, c2} = {0, .7, .7}

Figure 5.7 shows a progression over time of a continuously improving bandwidth. Un-

derstanding that the algorithm was only run with 10 particles over 100 iterations, the slight

improvement shown is expected. The important thing to see is that the same particle is

not the global best for all iterations. A new particle becoming the global best shows that

the particles are shifting and moving toward settling on a solution. If this algorithm would

continue to run with a larger number of particles and more iterations, the algorithm would

settle on a good VL grouping solution.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The contributions of this thesis include an explanation of the basics of the AFDX networks

and the major factors engineers are interested in within the AFDX network. Additionally,

a few researched solutions to AFDX network optimization were evaluated for effectiveness

based on relevant criteria. It was discovered that an optimization algorithm that takes into

account both bandwidth and latency had not been researched after an extensive review.

To fill this gap, a framework for how to set up this optimization problem through Particle

Swarm Optimization is detailed. While the algorithm was only used for bandwidth in this

research, an explanation of how this algorithm could expand to include latency was detailed.

The choice of hyperparameters for this research was {m, c1, c2} = {0, .7, .7}. Results for a

sample swarm was shown to prove the feasibility and usefulness of this custom algorithm.

Ideally a comparison of the researched solutions would be presented to see how the

Particle Swarm Optimization algorithm performs against the other algorithms on the same

data set. Given time constraints and resource constraints, comparing the other algorithms

against this data set was not possible for this research. Running the simulation to test

each grouping scenario takes about 20 minutes. In order to implement the algorithms and

gather results, it would take months to complete. Instead of implementing and testing

the researched algorithms as a comparison, the limited resources were put solely into the

implementation and testing of the Particle Swarm Optimization algorithm.

Future work would include running this algorithm over more particles and iterations.

The limited resources for this research forced the research to turn more into a proof of

concept. With more iterations and and more particles, the algorithm will converge onto a

good solution. Another area of future work would be to run the different modeling technique

described in section 4.3. The modeling that was used for this research, although feasible,

has a large solution space. The different modeling techniques descried in section 4.3 attempt
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to reduce the solution space. This would help the algorithm converge on a solution quicker

than the original modeling technique used for this research. The final point for future works

would be to put more data on the network to see more variance in latency from particle to

particle. Because the latency variance was so small, the multi-objective fitness function’s

performance wasn’t fully tested.
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