
 

 

 

 

 

HARNESSING ELASTIC INSTABILITIES FOR ENERGY TRANSDUCTION 

By 

Suihan Liu 

 

 

 

 

 

 

 

A DISSERTATION 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

 

Engineering Mechanics - Doctor of Philosophy 

2019



 

 

 

ABSTRACT 

 

HARNESSING ELASTIC INSTABILITIES FOR ENERGY TRANSDUCTION 

 

By 

 

Suihan Liu 

The recent reconsideration of structural instabilities as a favorable mechanism instead of a route 

leading to failure, has brought increased attention across disciplines to extend their understanding 

of structural instabilities in both form and function. In biological systems energy transduction is a 

concept that describes the conveyance of energy – the process to collect and store energy and then 

release it to perform work. Given the ingenious examples from nature, developing “smart” 

structures that can emulate biological ones has long been an engineering goal. Realizing energy 

transduction in mechanical systems offers many opportunities in the design of smart structural 

systems that can respond and react to their environment. Due to the ability of internal energy 

exchange within a structure or solid, the presence of elastic instabilities allows to drive dynamic 

reactions by releasing the system energy in a designed manner. Therefore, elastic instabilities can 

be harnessed to achieve energy transduction in a mechanical system. The research reported in this 

dissertation was aimed to address two challenges in mechanical energy transduction: (1) harvest 

electric energy from low frequency quasi-static mechanical deformations, and (2) dissipate energy 

in materials subject to cyclic shear deformations in a recoverable and rate-independent manner.  

Novel structural concepts are proposed to address the noted challenges. Physical prototypes of 

both concepts were built through 3D multi-material polymer printing and tested experimentally to 

verify the expected behavior. For each structural system, a theoretical model was developed based 

on energy methods, and numerical simulations were carried out by finite element analyses (FEA) 



 

 

 

using the commercial program ABAQUS. The experimentally validated analytical and numerical 

models were used to predict system response and explore the design space for each concept. 

In the energy harvesting concept, the strain energy accumulated in axially compressed 

bilaterally constrained columns under quasi-static deformations is released through multiple 

buckling instabilities in their elastic postbuckling response. The released strain energy is 

transformed into usable electric energy by coupling the dynamic response with the piezoelectric 

effect of mounted transducers. This proposed concept overcomes the poor performance of 

piezoelectric materials under low frequency excitations and it was shown to be effective in 

harvesting energy directly from quasi-static deformation sources. This work focused on enhancing 

this concept by maximizing the output through non-prismatic column designs for piezoelectric 

oscillators and integrated piezoelectric patches for geometric efficiency in energy harvesting 

devices. It was demonstrated that the resulting energy generation can adequately provide power 

supply for low-power budget devices with enhanced performance, which can be potentially used 

to power structural health monitoring systems and human wearable/implantable bio-sensors.  

The energy-dissipative material concept, which proposes the use of elastic inclined beams in 

the microstructure of the material architecture, was shown to manage the strain energy generated 

due to cyclic shear deformations and dissipate it through sequential snapping instabilities. The 

periodic arrangement of the elastic inclined beams permits the generation of a ‘twinkling’ 

phenomenon under repeated in-plane deformations, which results in rate-independent energy 

dissipations and a fully recoverable response. This concept overcomes the disadvantages of 

permanent deformations and rate dependency in traditional energy dissipating mechanisms and 

materials. The developed material design concept can be deployed in diverse applications such as 

personal protection, packaging, and civil structures. 
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Chapter 1  

INTRODUCTION 

1.1 Motivation 

Recently, the reconsideration of structural instabilities as a favorable mechanism to provide 

functionality instead of representing a failure limit state, have brought together the disciplines of 

physics, mechanics, mathematics, biology, and materials science to extend their understanding of 

elastic instabilities for both form and function. Ingenious examples on the use of structural 

instabilities can be found in nature, as shown in Figure 1-1. One of the fastest motions in the plant 

kingdom, the rapid closure of the Venus flytrap lobes to capture insects, results from a snap-

through instability [1]; buckling instabilities in flagella allows bacteria to change swimming 

direction within a faction of a second [2], and is also the smallest example of using the mechanism 

of instabilities. In addition, buckling instabilities also explain the wave-like shape of a snake 

crawling between walls [3], and the cause behind the helical shape of plant roots as they penetrate 

into soils [4, 5]. 

Developing “smart” structures that can emulate biological systems in their integrated ability to 

sense and adapt has long been an engineering goal. In biological systems, energy transduction is a 

concept that describes the conveyance of energy, such as the processes of photosynthesis and 

respiration, which collect photonic energy and convert into chemical energy that is released by 

plants to grow. Realizing was for energy transduction in mechanical systems offers ample 

opportunities in the design of smart structural systems that can respond and react to the 

environment. Due to the ability of internal exchange of energy within a structure or solid, the 
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presence of elastic instabilities allows to drive dynamic reactions by releasing the system energy 

in a designed manner. Therefore, structural instabilities can be harnessed to achieve energy 

transduction in mechanical system.  

 
Figure 1-1: Examples of structural instabilities in nature for both form and function: (a) the snap 

closure of the Venus flytrap lobes [1], (b) the flagellar buckling of swimming bacteria [2], (c) the 

wave-like shape of a crawling snake [3], and (d) the helical buckling shape of plant roots [5]. 

 Before turning deeply into a presentation of the controls and uses of structural instability, it is 

necessary to briefly introduce structural instability in terms of its historical development, 

definitions, relevant phenomena and structural forms, and current developments and applications. 

1.2 History and relevance of structural instability 

The study of structural instability cannot be separated from stability theory in mechanics, which 

has a long history that can be traced back to the seventeenth century. A brief timeline of the 

historical developments of structural (in)stability is shown in Figure 1-2. The first idea of stability 

was brought by Torricelli in 1644, in which he considered a system of two interconnected weights 

that would not be moving if they take the lowest possible position under gravity [6]. Without 

specifically using the term ‘stability,’ Torricelli’s axiom undeniably paved the foundation of 
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defining stability based on the potential energy concept. The theory of elastic stability began with 

the work of Euler on the buckling of compressed columns in 1744, which is also the first time the 

term ‘stability’ was introduced [7]. Based on a formulation of the differential equation of the 

elastica, he concluded that a slender column would bend (i.e., buckle) instead of shortened under 

compression. In 1788, Lagrange formalized the Torricelli’s axiom and posed that the system is 

stable if its potential energy has a strict minimum (i.e., if it is positive definite), assuming the total 

energy is continuous and the system contains only conservative and dissipative forces [8]. 

Lagrange’s theorem was later on rigorously proven by Dirichlet, showing that a minimum of the 

potential energy is sufficient to prove stability [9]. Thus, the energy criterion of stability, known 

as the Lagrange-Dirichlet theorem, gives the definition of stability for conservative systems. Even 

though instability is a dynamic concept, the Lagrange-Dirichlet theorem allows determining the 

limits of stability statically (i.e., reduces the stability problem to an investigation of the shape of 

the potential energy surface as a function of the generalized displacements of the structure). In 

1885, Poincaré first introduced a general bifurcation theory and classified various types of 

stationary points [10]. The exact mathematical definition of stability was given by Lyapunov in 

1945, which stated that an equilibrium state is stable if, and only if, all motions of the system 

starting close to the equilibrium state remain close to this state for all time [11]. This definition of 

stability is general and applies to all systems in mechanics, as well as other scientific fields beyond 

the context of mechanics. Lyapunov proved his theorem through two distinct methods, the indirect 

method through linearization and the direct method based on energy, which essentially employed 

the Lagrange–Dirichlet stability theorem. Comparing these two theorems, the Lagrange–Dirichlet 

theorem is a special case of the Liapunov theorem, which only permits dissipative forces in 

conservative systems that do not destroy the existence of the potential energy function (i.e., not 
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applicable for dissipative forces due to material damage). After the definition of stability was 

rigorously defined, the emergence of the theory of structural stability began; which has resulted in 

numerous analytical theories and numerical tools to provide safe design guidelines. Most linear 

elastic problems of structural stability were solved by the end of the 19th century, and nonlinear 

elasticity problems were extensively explored in the early 20th century. However, the focus of these 

studies were on the onset of critical limits of stability. The post-critical behavior in elastic 

structures started attracting more attention only a few decades ago. A fundamental and detailed 

discussion on elastic stability and instability can be found in the books by Thompson and Hunt 

[12, 13] and by Bažant and Cedolin [14]. 

 
Figure 1-2: Timeline of the historical developments of structural (in)stability. 

1.3 Energy criterion of stability  

The structural systems that are considered in this dissertation are conservative; thus, the stability 

definition by the Lagrange-Dirichlet theorem applies. The potential energy of a system consists 

the (elastic) strain energy due to stretching and bending, and the external work; which can be 

written as:  

𝑈 = 𝑈𝑠 + 𝑈𝑏 −𝑊. Equation 1-1 
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The energy concept of stability is often illustrated by considering a simple “ball on the hill” 

analogy, as shown in Figure 1-3. The potential energy of the ball with mass m due to gravity 

depends on its position on a smooth hill with height h, which can be written as: 

𝑈(𝑥) = 𝑚𝑔ℎ(𝑥). Equation 1-2 

Since the force of a system is the first variation of the potential energy with respect to displacement, 

and recalling Newton’s second law that equilibrium it yields: 

𝜕𝑈

𝜕𝑥
= 𝐹 = 𝑚𝑔

𝜕ℎ

𝜕𝑥
= 0. Equation 1-3 

The equilibrium states can be either stable or unstable. According to the Lagrange-Dirichlet 

theorem, the system is at a stable equilibrium state when the second variation of the potential 

energy is greater than zero, as 

𝜕2𝑈

𝜕𝑥2
=
𝜕𝐹

𝜕𝑥
= 𝑚𝑔

𝜕2ℎ

𝜕𝑥2
> 0, Equation 1-4 

where the ball is resting at the local energy minimum. This indicates that any small perturbation 

δx will return the ball to its original position, increase the potential energy, and increase the 

reaction force. The system is at an unstable equilibrium state when the second variation of energy 

is less than zero, as 

𝜕2𝑈

𝜕𝑥2
=
𝜕𝐹

𝜕𝑥
= 𝑚𝑔

𝜕2ℎ

𝜕𝑥2
≤ 0, Equation 1-5 

where the ball is resting at the local energy maximum. This indicates that any small perturbation 

δx will roll the ball away from its original position, decrease the potential energy, and decrease the 

reaction force. The critical limit between the stable and unstable states is at 
𝜕𝐹

𝜕𝑥
= 0. 

From the above illustration, we can therefore conclude that instability can be identified in 

elastic systems by a non-convex potential energy surface and a negative stiffness region (i.e., the 

right half of Figure 1-3). The non-convex potential energy allows the displacement to increase as 
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energy decreases, which leads an energy release from the system. The stiffness of most elastic 

systems is positive and the reaction force exerted onto the system is in the opposite direction to 

that of the system’s governing deformation, which corresponds to a restoring force. A system with 

a negative stiffness region exerts a reaction force in the same direction as the deformation, which 

helps the deformation increase further and indicates a dynamic motion. In structures under 

conservative loads, instability is elicited by either buckling or snapping phenomena, which are 

discussed in the following sections. 

 
Figure 1-3: Illustration of stability and instability in terms of potential energy of an elastic 

structural system. 
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1.4 Basic structural instability phenomena 

 Buckling 

Buckling occurs in slender structures that fail in carrying compressive load by membrane stresses, 

shown as the development of out-of-plane deformations due to bending. The simplest example to 

be considered for buckling is a pin-ended column under compressive load, as shown in Figure 1-4. 

Slender structures are most efficient at carrying loads under a membrane stress state. Thus, the 

column will initially try to deform by pure compression before buckling, and the potential energy 

of the column due to compressive load P can be written as: 

𝑈 = 𝑈𝑠 −𝑊 = ∫
𝐸𝐴

2
𝜀2𝑑𝑥

𝑙

0

− 𝑃∆𝐿 Equation 1-6 

After buckling, the curvature in the column causes bending energy to develop in the system. The 

potential energy thus becomes 

𝑈 = 𝑈𝑠 + 𝑈𝑏 −𝑊 = ∫
𝐸𝐼

2
𝜅2𝑑𝑥

𝑙

0

+∫
𝐸𝐴

2
𝜀2𝑑𝑥

𝑙

0

− 𝑃∆𝐿 Equation 1-7 

where  

∆𝐿 = ∫ (√𝑑𝑥2 + 𝑑𝑦2 − 𝑑𝑥) 𝑑𝑥
𝑙

0

= ∫ (√1 + (𝑦′)2 − 1)𝑑𝑥
𝑙

0

≅
1

2
∫ (𝑦′)2 𝑑𝑥
𝑙

0

 Equation 1-8 

𝜅 = 𝑦" 𝑎𝑛𝑑 𝜀 =
1

2
(𝑦′)2 Equation 1-9 

It can be seen that the stretching energy appears in the column before and after buckling. Therefore, 

the incremental compressive load P at the onset of critical buckling only causes an increase of the 

strain energy due to bending, and the potential energy at the critical buckling can be written as: 

𝜕𝑈

𝜕𝑥
= 𝑈𝑏 −𝑊 = ∫ [

𝐸𝐼

2
(𝑦")

2
−
𝑃

2
(𝑦′)2] 𝑑𝑥

𝑙

0

 Equation 1-10 
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Equation 1-10 yields the equilibrium state at 
𝜕𝑈

𝜕𝑥
= 0, which gives the critical buckling load as: 

𝑃𝑐𝑟 = 𝐸𝐼
∫ 𝑦"

2
𝑑𝑥

𝑙

0

∫ 𝑦′2𝑑𝑥
𝑙

0

 Equation 1-11 

Assuming the deformed shape of the column after the critical buckling as: 

𝑦(𝑥) = sin (
𝜋𝑥

𝑙
) Equation 1-12 

which satisfies the kinematic boundary conditions. Substituting the deformed shape into Equation 

1-11 we can get the critical buckling load as: 

𝑃𝑐𝑟 = 𝐸𝐼
𝜋2 ∫ sin2 (

𝜋𝑥
𝑙
) 𝑑𝑥

𝑙

0

𝑙2 ∫ cos2 (
𝜋𝑥
𝑙
) 𝑑𝑥

𝑙

0

=
𝐸𝐼𝜋2

𝑙2
 Equation 1-13 

which is the same as the Euler’s critical buckling load for pin-ended column. 

 
Figure 1-4: Axially compressed pin-ended column. 

 From the above example one can see that the strain energy developed in slender structures 

under external loads consists two parts: the stretching energy, which is due to extension or 

compression of the mid-plane and proportional to the thickness (t); and the bending energy, which 

is due to the curvature change of the structure and proportional to the cube of the thickness (t3). 

The equilibrium shape of a structure is determined by a competition between the stretching and 

bending energies. Slender structures are most efficient by carrying load in a membrane stress state; 
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thus, when compressed they will try to deform by pure compression. However, smaller thickness 

makes the bending energy decreases (∝ t3) faster than the stretching energy (∝ t). Therefore, 

slender structures are easier to deform by bending after the appearance of curvature, which triggers 

buckling. Consequently, buckling is a bifurcation of equilibrium. At the critical point of buckling 

a small variation in the control parameter makes the structure switch to another equilibrium path, 

or, according to Poincaré’s discussion about bifurcation, leads to an exchange of stability. 

 However, buckling does not necessarily lead to instability, since the postbuckling equilibrium 

path can be either stable (i.e., positive stiffness) or unstable (i.e., negative stiffness). Postbuckling 

behavior is commonly categorized into: (1) symmetric stable buckling, which is often seen in 

compressive columns, (2) symmetric unstable buckling, which is exhibited by many thin-walled 

shells, and (3) asymmetric buckling, which occurs less frequently but can be found in frames. 

These three types of buckling are schematically shown in Figure 1-5. More examples and 

discussion  can be found in the books by Thompson and Hunt [12, 13] and by Bažant and Cedolin 

[14]. 

 
Figure 1-5: Postbuckling responses of elastic structures. (a) Symmetric stable buckling. (b) 

Symmetric unstable buckling. (c) Asymmetric buckling. 
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Figure 1-6: Two-bar shallow truss. 

 Snapping 

Snapping (also called snap-through) occurs in slender structures that fail when carrying out-of-

plane loads primarily by membrane stresses. In this type of instability the structure snaps from its 

initial equilibrium shape to an inverted equilibrium shape. Let’s consider a two-bar hinge-linked 

rigid truss model (a.k.a. von Mises truss) for snapping, as shown in Figure 1-6, assuming the bar 

is rigid enough to avoid buckling. The potential energy of the truss due to the transverse load at 

the apex can be written as  

𝑈 = 𝑈𝑠 −𝑊 =
1

2
(2𝑘∆𝐿2) + 𝑃𝛿  Equation 1-14 

where  

∆𝐿 = √𝐿2 + (ℎ − 𝛿)2 − √𝐿2 + ℎ2  Equation 1-15 

Thus, the reaction force P at the apex can be solved at the equilibrium state at 
∂U

∂δ
= 0. We can thus 

plot the force-displacement response and the second variation of the potential energy as shown in 

Figure 1-7, where the gray dotted lines indicate the unstable region (i.e., negative stiffness at 
∂2U

∂δ2
<

0). 
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Figure 1-7: Snapping response of the two-bar shallow truss. 

Comparing the strain energy formulation of a snapping shallow arch (Equation 1-14) with a 

buckling column (Equation 1-7), one can see that the strain energy of a shallow truss leading to 

snapping instability is only due to stretching and without an alternative energy path available, 

which results in a single continuous force-displacement response curve with no branches. 

Therefore, snapping is a limitation of equilibrium. At the critical point of snapping, a small 

variation in the control parameter makes the structure lose stability at its equilibrium path. The 

equilibrium path becomes unstable as the structure snaps, and regains stability as the structure 

reaches an inverted stable shape. The snapping phenomenon always leads to instability, which is 

often exhibited by domes and shallow arches. 

 Buckling vs. snapping 

A slender structure can exhibit buckling or snapping depending on its geometry or loading 

condition. The case scenarios in Section 1.4.2 of the two-bar truss is under the assumption that the 

bar stiffness ka is large enough to avoid buckling. Now we consider the same truss but assume the 

bars are slender enough that they may buckle during loading. The response is then governed by a 
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combination of membrane action (i.e., axial shortening of the element’s center line) and bending 

action, where axial shortening leads to a symmetric deformation mode and bending is dominant 

for an asymmetric mode. The force response of the buckled bars is roughly 2Pcr, where Pcr is the 

critical buckling load of a single bar. For a given axial stiffness of the bars, the initial height h of 

the bars controls the bending and axial interaction of the truss, as shown in Figure 1-8. When h is 

low, the truss will follow the limit point response curve since the maximum load for a snapthrough 

response is lower than the buckling load. As h increases, the slopes for both responses increase, 

but the limit point response grows at a faster rate. If buckling of the bars occurs at or after the limit 

point there will be no influence on the snapthrough behavior. As h keeps increasing the bifurcation 

buckling response intersects the limit point response before the maximum point, and the bars will 

buckle and follow the bifurcation path instead. The effect of the increase in h can also be thought 

as a gradual change of the governing deformation from the transverse direction of the bars to the 

axial direction of bars; thus changing the structure from being susceptible to snapping to becoming 

prone to buckling. 

 
Figure 1-8: Effect of height h of a two-bar truss by considering buckling of the bars. 
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 Common structural elements permitting buckling and snapping 

Elastic instability is often seen as either buckling or snapping in slender structural members. 

Classical examples including the buckling of columns, plates, shells, and frames with different 

boundary conditions [14-24], and the snapping of von Mises trusses [25], inclined beams [26, 27] 

and shallow arches, for which their initial shape can be generated either by pre-compression (pre-

stressing) [28-32] or pre-shaped [33-35]. If the initial shape is pre-compressed to its critical 

buckling stress level then the second stable shape has the same stress as the initial one, which 

results in a symmetric energy landscape. If the initial shape of a buckled beam is pre-shaped and 

stress-free, then bistability depends on its geometry and results in an asymmetric energy landscape. 

For a pre-shaped geometry, the rise to span ratio must not be too small to exhibit bistability, but it 

should also not be too large to trigger asymmetric buckling [36]. Buckled beam structures have 

been studied in many early works to determine their limit point response under distributed and 

concentrated loads [37-40], and their behavior with different boundary conditions has also been 

studied for: pinned-pinned [41-44], clamped-clamped [35, 45-47], and torsional spring [48] 

constrained ends. 

Commonly seen planar structures such as curved shells in singly-curved, doubly-curved, or 

axisymmetric configuration also may exhibit snapthrough instability. A singly-curved shell 

structure is straight in the longitudinal direction with a curved cross-section, and the second stable 

configuration flips the original shape such that it results with a curvature in the initially straight 

longitudinal direction and becomes straight in the transverse direction [49, 50]. The non-

monotonic response of single-curved shells is due to induced stresses during manufacturing, which 

can be obtained with isotropic materials thru pre-stress in the initial configuration [50, 51], or 

anisotropic materials (such as laminated composites) thru residual stresses [52, 53]. Multistability 
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in thin laminates can be provided by the mismatch of the effective (or global) thermal expansion 

coefficients between plies, which create residual stresses during curing, either with asymmetric 

[54-56] or hybrid symmetric layups [57]; or caused by pre-stress induced prior to curing for 

symmetric layups [58, 59]. A double-curved shell that is curved in two orthogonal directions can 

be initially stress-free and exhibit multistability purely due to nonlinear geometric effects. The 

initial shape of a shell determines whether there is a change in the Gaussian curvature that develops 

from the coupling of bending and stretching deformation modes [60, 61]. The work done by [62] 

analytically demonstrated that geometry and curvatures control the existence of bistability in 

general planar structures with linear elastic material properties. In composites, different cured 

shapes of multistable laminates can be obtained, such as a bistable saddle, a twisted saddle, a 

tristable doubly-curved shell [63], and twisted cylindrical shapes [59, 64, 65]. Other planar form 

examples include shallow elliptical shells [66, 67] and circular shells [63, 68, 69]. All these forms 

are affected by many factors including the materials’ elastic properties, degree of anisotropy, and 

arrangement, which define the coupling deformation characteristics [55, 70]. In nature, bistable 

mechanisms share the same principle. For example, the carnivorous waterwheel plant [71] and 

Venus flytrap [1] have doubly-curved leaves, where bending of the leave causes its mid-plane to 

be stretched and then to rapidly snap from an open to a closed configuration to capture their prey. 

Helical ribbons, which are typically the result from balancing residual stresses with restoring 

forces from bending and stretching, can either be in a single-curved form, like cylindrical helical 

or tubular shapes, or in a double-curved form, such as twisted or straight helicoidal shapes. Helical 

ribbons also exhibit multistability as a consequence of the mechanical anisotropy pertinent to 

helical deformation and geometric nonlinearity [72, 73]. Axisymmetrical caps can experience 

snapthrough in both thin shells [74-76] and thick shells [77] under various boundary and loading 
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conditions. Moreover, spherical rubber balloons or cylindrical tubes also undergo limit point 

instabilities under inflation [78, 79]. 

 
Figure 1-9: Multiple instabilities exhibited in the post-critical regime of an elastic system. 

1.5 Post-critical response with multiple elastic instabilities 

Most slender structures as discussed above exhibit a single instability in the post-critical regime, 

either due to snapping or buckling. The occurrence of multiple instabilities for structures in their 

elastic post-critical regime is relatively less common. A force-displacement response of such 

behavior is schematically shown in Figure 1-9. After the initial critical point the structure loses 

stability, and it is able to regain stability in the post-critical regime from an alternative stable 

equilibrium path and keep deforming until reaching the critical point of the current path, upon 

which it again loses stability. The structure switches to a different shape configuration according 

to each stable equilibrium, and the same process can keep repeating in an elastic post-critical 

regime that possesses multiple instabilities. This type of phenomena was first observed by Yamaki 
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in 1984 from a series of experiments on  elastic polyester cylindrical shells under axial shortening 

[80], and later on was also found in structures under buckling or snapping, including axially 

compressed plates supported by multiple longitudinal fixtures [81], strut supported by a nonlinear 

elastic foundation [82, 83], and strips or plates with bilateral rigid constraints [84, 85]. 

This post-critical behavior is fairly less studied, but a couple shared key parameters can still 

be drawn from structures that exhibit multiple elastic instabilities. The slenderness of a structure 

and the elasticity of the material are necessary to allow deformations to continue in the far post-

critical regime, and the structure needs to have more than one degree-of-freedom (DOF) to provide 

multiple equilibrium paths that allow some DOFs to lose stability while others remain stable. 

To gain further understanding of this phenomenon, let’s consider a structure with multiple 

DOF where each DOF is the previously discussed two-bar shallow truss which ensures the 

presence of an unstable response. The instability can be triggered either by buckling or snapping, 

as illustrated in Figure 1-10. Two condition can then be considered: that the trusses are in parallel 

connection or in series connection. 

 
Figure 1-10: A two-bar shallow truss loses stability under buckling and snapping. 
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 DOF in parallel connection 

Recall that if the trusses are in parallel connection, the displacement is the same everywhere 

and the system force is a summation of forces at each truss. Let’s then consider the simplest case: 

two identical trusses connected by a rigid bar, and a uniform displacement is applied on the bar 

such that it deforms the two trusses. This system is illustrated in Figure 1-11. The resistance of 

each truss to the load varies by the stiffness of the connecting spring k1 and k2, which can be 

considered as the imperfection in the system, and causes each truss to snap at a different time. 

Since the total force is a sum of forces at each truss, they system response is simply a superposition 

of the response from each truss; which results in multiple snap-through events in the force-

displacement curve. It follows that the number of snap-through instabilities depends on the number 

of truss (DOF) in a system.  

 

 

Figure 1-11: Two shallow truss in parallel connection. 
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 DOF in series connection 

For a system of trusses connected in series the force is same everywhere and the total 

displacement is a summation of displacements at each truss. Let’s first consider a single shallow 

truss connected in series with a spring of stiffness kb at its apex, as shown in Figure 1-12a. Consider 

that the displacement is applied at the end of the spring instead of instead of directly to the truss’s 

apex. When the stiffness of the spring is large most of the displacement goes to deform the truss 

due to the equal forces, and the resulting system behavior is similar to the situation if the 

displacement had been applied directly on the truss. When the stiffness kb decreases the applied 

displacement is shared by deforming the spring and the truss, which delays the response of the 

truss due to the applied displacement thus reducing the force for each incremental displacement. 

This has an effect of moving the limit points of the primary and secondary stable equilibrium paths 

farther from their stable equilibrium points (i.e., zero-force intersections) symmetrically. As a 

consequence, the positive stiffness decreases but the negative stiffness increases. As the stiffness 

kb keeps decreasing, the two stable equilibrium paths overlap. Under a small increase in the 

displacement beyond the limit point, the truss will snap vertically down to reach the secondary 

equilibrium path instead of snapping ‘back’, since the structure always wants to follow the lowest 

energy path. This results in an enclosed hysteresis area between the loading and unloading force-

deformation paths – leading to energy dissipation. 
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Figure 1-12: Two-bar shallow truss in series connection with a spring. (a) Schematic of the 

system. (b) Force-displacement response of the system. 

Similarly, now considering n trusses connected in series by elastic springs and applying a 

displacement at the end of the series, as shown in Figure 1-13a. The applied displacement is shared 

by the trusses and the deformation of each truss started at a different increments of displacement. 

Therefore, each truss provides a single response path to the system response along the horizontal 

displacement axis.  

The force-displacement of the system with n trusses in series connection is schematically 

illustrated in Figure 1-13b - Figure 1-13d, for different values of n. It can be seen when n is small, 

few available response paths, thus no overlap between the paths - no hysteresis. As n keeps 

increasing, a hysteresis area is formed in the response by increased equilibrium paths that are 
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provided by each of the connected trusses and a shortened distance of the unstable ‘jumps’, thus 

providing energy dissipation in the loading cycle. 

 
Figure 1-13: In series connected two-bar shallow trusses. (a) A chain of serially connected two-

bar shallow trusses. (b) Force-displacement response path of 2 trusses (grey dashed line 

represents the path for 1 element). (c) Force-displacement response path of 3 trusses. (d) Force-

displacement response path of n trusses. 

The phenomenon just described can also be studied in a dynamic sense, in which the energy 

dissipation arises from the unstable ‘jumps’ as they generate an unbounded motion that allows the 

truss to travel back and forth between the two energy minima until the motion dies out due to 

friction, and the energy dissipation is a consequence of the release of the mechanical energy 

through unstable snap-through motions into kinetic energy that converts it into heat. This 
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phenomenon, termed ‘twinkling,’ has been studied thru a spring-mass chain with non-monotonic 

stiffness buckling elements that exhibiting oscillatory behavior of the inner masses [6-8].  

Compared to structural systems that exhibit a single instability, systems with multiple 

instabilities in their elastic post-critical regime have more complex nonlinear responses. The 

multiple local potential energy extrema allow these systems, when acted upon continuous loading, 

to release and restore energy, have multiple unstable motions and shape configurations, etc. 

Responses with a post-critical behavior possessing multiple elastic instabilities give more design 

capabilities. The research aim of this dissertation was thus focused on controlling and harnessing 

this type of unstable behavior.  

1.6 Engineering applications of elastic instabilities 

As reviewed in Section 1.2, the history of studying structural instability goes back centuries, and 

it has been paramount for engineering design that it has been commonly aimed at preventing 

instability for safe design guidance. However, elastic instability have been recently reconsidered 

as a mechanism to provide functionality instead of defining a failure limit sate. The features of 

mechanical elastic instabilities to release and restore energy, set critical stress threshold, provide 

discrete stiffness, and allow reversible shape reconfiguration and dynamic motion make them a 

perfect mechanism for many practical and technological applications. These include, as 

summarized in Figure 1-14, adaptive structures and morphing surfaces, micro/nano electro-

mechanical systems, soft robotics and devices, composites and metamaterials. Examples of how 

elastic instabilities are being used for engineering applications across different length and time 

scales, and for a variety of smart uses, are reviewed in this section. A couple recent review papers 

on this topic provide complimentary information to the following discussion [86-89]. 
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Figure 1-14: Engineering applications of elastic instabilities. 

 Adaptive structures 

Structures with multiple stable/unstable equilibriums have multiple self-maintained discrete 

stable positions and undergo large and reversible shape changes in response to diverse external 

stimuli, including: kinematic [1], magnetic [90-92], thermal [93-95], electric [96-98], and 

electrostatic [99-103], during deformations over the unstable transition threshold. This ability to 

adapt their shape and properties in response to stimuli makes multistable structures ideal for 

adaptive systems undergoing reconfiguration in a programmable manner without a continuous 

power supply in different fields, such as architecture, robotics, and aeronautics [104]. These 

adaptive systems typically utilize specific material compounds exhibiting multi-physics couplings, 

e.g., piezoelectric, magnetostrictive, and shape memory materials, for generating functions that 

include shape adaptation, actuation, sensing, and energy harvesting [105].  

In morphing surface applications, a structure’s shape changes in order to adapt to different 

environmental conditions. This feature is used often in aerodynamic designs, which also require 
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light weight and high-strength design solutions. Multistable composite laminates are thus favored 

in the design of morphing structures due to their high stiffness-to-mass ratio, long fatigue life, and 

could also consist fewer components [106, 107]. Different concepts have been investigated to 

introduce multistable structures into piezoelectrically actuated morphing applications [96, 97, 108-

113], and aircraft systems such as wings, air inlets, blended winglets or wind turbines [94, 114-

117]. Geometric change between stable branches provides alternative stiffness; therefore, 

approaches for varying stiffness in multistable composite laminates have also been exploited [118, 

119]. Several review papers can be found related to this topic, including the use of bistable 

composite laminates for morphing structures [120], morphing structures for aircraft [106, 121-123] 

and automobile uses [124], and stiffness variability for morphing applications [125, 126]. 

Deployable structures, which can be self-maintained in a significantly compressed shape as a 

consequence of multistability for ease of transportation storage are ideal for space [127-129], 

robotic [130-134], and architectural applications [135-137]. A commonly used deployable 

multistable structure is a bistable tape spring for deployable reflectors [138, 139] and antennas 

[140, 141]. Monolithic deployable structures that are load bearing and possess multiple, 

predictable, activated geometries have been shown to be possible via 3D printing from a flat 

surface incorporating a hierarchical framework, where a bistable actuator serves as the building 

block [142]. For example, a deployable structure using soft composite actuators for hinge-like 

movement was developed as a prototype for a deployable mirror to reflect sunlight onto a solar 

panel [143]. Tensegrity structures are perfect candidates for deployable structures, as they can 

change their shape and size from a compact state to the service state with improved packaging 

efficiency and a reduced number of joints [144]. They are also able to capture the essential 

qualitative features of cytoskeletal shape distortion in adherent cells and to underlie the shape 
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stability of the cytoskeleton [145-147]. In robotic applications, multistable tensegrity structures 

are used for the locomotion of robots [131-134] and grippers [148-150]. Designs based on 

multistable origami, bistable cylindrical shells with Kresling [151] or Miura patterns [152] have 

been studied and shown to be foldable in the axial direction to a flat state, while keeping their axis 

and internal envelope like a bellow. Moreover, Kresling patterned multistable origami actuated by 

DC motors have been used to achieve forward locomotion and steering for robots [153, 154]. 

 Sensing and actuating devices 

For sensing applications, the tunable unstable transition limits between stable states are often 

used for threshold-type sensing. For example, latching accelerometers that can function without 

electrical power for shock sensing [155, 156], accelerometers capable of accurate threshold 

sensing [157-159], and a bidirectional acceleration switch using magnetic fields based on a 

tristable mechanism [160]. For actuation applications, multistability allows a system to maintain 

distinct positions while saving energy consumption, since continuous driving power is not required. 

For example, a bistable response thru the use of a dielectric elastomer for minimum energy 

structures has been proposed to achieve large angular deformations due to small voltage-induced 

strains [161]. Shape memory actuators using bistable metallic foils have been proposed as switches 

for tactile graphic displays [162]. An electrostatic-driven large-displacement micro actuator 

incorporating multiple serially connected bistable arch-shaped beams was shown to have improved 

larger stable displacements compared to conventional comb drive actuators with low voltage input 

[163]. An energy saving actuator with multistable composites and electromechanical motor was 

exploited for exoskeleton applications [164]. A multistable linear actuation mechanism articulated 

with electroactive polymer actuators was shown to accurately transform angular displacement into 

rectilinear displacement [165]. 
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The nature of bistable mechanisms is ideal for switch-type applications. Examples include 

mechanically bistable switching micro-devices [166]; mechanically tristable switch mechanisms 

(based on a laterally moving electrostatic curved-electrode actuators) configured in a ‘true’ single-

pole-double-throw configuration [167]; a bistable micro-actuator that uses a laser heated shape 

memory alloy for selective addressing capability in optical filters [168]; a bistable micro-

hemisphere actuated electrostatically to switch between two stable curvatures for valve design 

[169]; a bistable thermos-pneumatic actuated micro-valve that can withstand high pressure loads 

[170, 171]; a nonvolatile bistable optomechanical switch comprising of two parallel buckling 

waveguides for all-optical writing and reading processes that involves relatively strong and 

relatively weak optical pulses with no maintenance power requirement [172]; a silicon-based high-

frequency nano-mechanical device capable of switching controllably between two states in the 

hysteretic nonlinear regime at room temperature for a low-power and high-speed mechanical 

switch [173]; a chevron-type bi-stable micro-actuator optical switch [174]; and a bistable dc-

switch designed for an implantable electrode multiplexer for medicine delivery [175].  

For memory applications, instead of storing the information in the form of a packet of electric 

charge, the single bits of information (“0” and “1”) can be retained by mechanically bistable 

elements having two stable states separated by a strain energy barrier. This concept was first 

proposed 40 years ago [176] and later developed by [177, 178] using an electrostatically actuated 

silicon micro-bridge, in which the read and write operation is performed by sensing the capacitance 

of the two stable states of the bridge. In recent applications, a nano-dot silicon electromechanical 

memory device was incorporated into a bistable floating gate beam to realize about 1 GHz 

switching speed and nonvolatile memory operation [179]; high-speed nano-mechanical memory 

cells that consist of clamped beams that are driven into transverse oscillation with the use of a 
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radiofrequency source have been explored [180]; a static memory micro-mechanical device was 

designed using a bistable nanowire that is actuated between two stable positions in order to store 

information in a mechanical way [181, 182]; and a micromechanical static memory device based 

on a bistable buckling beam with on-chip readout was shown to perform stable data storage after 

a stress-relaxation “burn-in” period [183]. 

 Energy harvesting devices 

Harnessing elastic instabilities has found its way towards the enhancement of energy harvesters 

by using the snap-through behavior of pre-buckled elements to introduce nonlinear behavior to 

linear generators, and thus overcome bandwidth limitations for higher efficiency. Jung and Yun 

[184] proposed an energy-harvesting device with buckled bridges to up-convert the generator’s 

resonate frequency under low-frequency vibration excitation. An experimental investigation 

conducted by Sneller et al. [185] showed that a post-buckled piezoelectric beam with attached 

central mass can achieve a broadened the frequency range over snap-through under a lower 

harmonic forcing amplitude. Enhanced power generations have also been found when thin 

piezoelectric beams are used in their buckled configuration under random vibrations [186] and 

chaotic vibrations [187]. For a bistable system with non-monotonic response under vibrational 

load, three distinct dynamic operating regimes can be obtained as the excitation amplitude 

increases: intrawell vibrations, aperiodic or chaotic vibrations between wells, and periodic 

interwell oscillations. Depending on the excitation level and frequency, these devices can exhibit 

either periodic or chaotic inter-well vibration, have been shown promising performance as used 

for nonlinear energy harvesters. Further, the snapthrough is triggered independently from the 

external excitation for a wider bandwidth [188, 189], which allows operating under low frequency 
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vibrations [190] or even quasi-static input [191-193]. A detailed review on the dynamics of bistable 

structures for vibration, energy harvesting, and sensing can be found in [194, 195]. 

 Energy dissipative/absorptive materials 

Elements that experience elastic instabilities have be increasingly used as the microstructures 

in design novel materials with tunable functionality. One of the prominent properties that achieved 

materials based on instabilities is high energy dissipation/absorption/damping. For example, 

enhanced overall stiffness and mechanical damping can be achieved in composite materials by 

adding negative stiffness inclusions in a positive stiffness viscoelastic matrix [196-202]. Using a 

snap fit structure as the unit element in design mechanical materials can achieve tunable 

compressive behavior with energy absorption [203]. An elastomeric architected material with unit 

strut has independently tailorable compression and shear response with negative shear stiffness 

[204]. A 3D printed cellular material at the millimeter-scale was demonstrated to yield a serrated 

force–displacement behavior similar to martensitic transformations in shape memory alloys for 

large energy dissipation in 2D [205] or 3D configurations [206, 207]. A honeycomb consisting 

bistable negative stiffness elements fabricated in nylon 11 using selective laser sintering has been 

shown to exhibit relatively large positive stiffness, followed by a stress plateau region with 

hysteresis, with full recovery after compression [208, 209]. Further, by changing the geometry of 

the unit cell, the sequence of snapthrough deformation can also be predicted and controlled [210]. 

Shape reconfigurable materials based on bistable units have been shown to achieve independent 

multi-axial deformation with high volumetric and morphological change in 1D, 2D and 3D 

configurations, with energy dissipative behavior due to negative stiffness [211]. As final examples, 

bistable elements with two asymmetric energy wells have been used as microstructures in design 

metamaterials that allow energy trapping under tension [212] and compression  [27, 213-215]. 
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1.7 Problem statement and research hypothesis 

In ordinary elastic structures and materials, the functional states are stable (i.e. positive definite) 

for load carrying purpose, and strain energy is simply accumulated in deformed objects and could 

eventually leads to damage or failure. As described in section 1.5, the presence of multiple elastic 

instabilities in a structure or solid allow strain energy imposed from external mechanical 

deformations to store during the stable states, and then release during the unstable states through 

dynamic motions. Therefore, the research hypothesis behind this dissertation is that if multiple 

elastic instabilities in a mechanical system are harnessed, then energy transduction in bio systems 

can be mimicked to design smart structural systems that allow conveying strain energy to drive 

predefined responses or to do desirable work. This process is illustrated and compared to the 

photosynthesis and respiration processes in biological systems in Figure 1-15. 

 
Figure 1-15: Energy transduction in biological and mechanical systems. 
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The research objectives in this dissertation aim to address two challenges through mechanical 

energy transduction: (1) harvest electric energy from low frequency quasi-static mechanical 

deformations, and (2) dissipate energy in materials subject to cyclic shear deformations in a 

recoverable and rate-independent manner.  

 Piezoelectric energy harvesting from quasi-static mechanical deformations 

The basic concept of energy harvesting is to generate electric power from ambient mechanical 

energy. The most common energy harvesting approach is to use piezoelectric materials, whose 

direct piezoelectric effect allows the materials to transform mechanical strain into electrical charge. 

Many ambient mechanical energy sources can induce deformations in solids and structures that 

develop strain energy, including forces, displacements, pressures, vibrations, temperature variation, 

and etc. Sources of ambient mechanical energy available for conversion include forces, 

displacements, pressures, and vibrations. To date, vibration is the most used and efficient 

mechanical energy source since it can generate large strain changes at high rates and thus lead to 

relatively high-level continuous power generation. However, vibration-based energy harvesters 

have a narrow operating frequency bandwidth and perform poorly under low frequency excitation 

sources [194, 216, 217]. Low frequency quasi-static (<<1 Hz) deformation sources are very 

common in daily life – from deformations in large civil structures to biomechanical motions such 

as human walking or heart beats [218]. Yet, much less attention has been paid to harnessing power 

from low frequency excitation sources because, contrary to vibration, they are well below the 

resonance frequency of piezoelectric materials and generate small strain changes at low rates [219]. 

Since the unstable motions due to elastic instabilities are rate-independent of the externally 

applied deformation, the hypothesis is that use of elastic instabilities as the fundamental 



30 

mechanism for energy harvesting can overcome the disadvantage of low frequency deformations 

to effectively harvest energy directly from quasi-static mechanical sources. 

 
Figure 1-16: Frequency response of the vibrations found in various applications [220]. 

 Energy dissipation in materials subject to cyclic shear deformations 

Energy dissipation, an important and desirable material property to be used in mechanical and 

civil engineering applications, consists of an irreversible energy loss in solids and structures as a 

result of the conversion of mechanical energy into heat [221]. The ability to dissipate energy 

enables materials to undergo large deformations at limited stresses, which is imperative for 

enhancing damage tolerance. The common mechanisms to achieve this goal, such as plastic 

yielding (associated with permanent deformations) and rate dependent viscosity, perform poorly 

under repetitive loading cycles or low strain-rate deformations. Recently, elastic instabilities are 

attracting increased attention for use as the fundamental mechanism in the design of energy 
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dissipating/absorbing mechanical metamaterials [87-89] due to their rate-independent and motion-

recoverable nature. Many material porotypes have realized this concept for uniaxial tension [212] 

or compression loading conditions [27, 203, 205-209, 214, 215], but little attention has been given 

to shear behavior.  

Shear deformations often occurs in materials when subjected to relative in-plane motion. 

Materials that can dissipate energy under shear are necessary for public safety and personnel 

protection purposes, and could be deployed in applications such as helmets to prevent energy 

transfer to the brain due to glancing blows, backpacks to limit impact on the wearer, and civil 

structures to limit damage from ground motions (see Figure 1-17).  

It has been demonstrated that the connection of a large number of snapping elements in series 

can lead to energy dissipation. Thus, the research hypothesis is that by using elastic instabilities as 

the fundamental mechanism, high energy-dissipative materials can be designed in a recoverable 

and rate-independent manner under shear deformations. 

 
Figure 1-17: A building with and without shear energy dissipation at the base. 
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1.8 Overall research approach 

The presence of multiple elastic instabilities in structural elements was used as the fundamental 

mechanism for all design concepts. For each of the problems stated in Section 1.7, integrated novel 

structural systems were proposed. Multi-material 3D printing was used to manufacture table-size 

prototypes to serve as physical demonstrators of the novel structural concepts, and tested 

experimentally to verify the expected behavior. For each structural system, a theoretical model 

was developed based on energy methods, and numerical simulations were carried out by finite 

element analyses (FEA) using the commercial software package ABAQUS. After validating the 

theoretical models and numerical simulation with experiments, they were used to predict system 

response and explore the design space for each concept.  

1.9 Dissertation outline 

This dissertation presents an investigation on the nonlinear post-critical behavior structures with 

multiple elastic instabilities such as to harness this behavior for energy transduction in mechanical 

systems. This dissertation consists of six chapters and is organized as follows. 

Chapter 1 gives a general introduction to the topic of elastic structural instabilities, summarizes 

current developments and applications on their use, states the two research problems and 

hypotheses guiding the study, and discusses the general research approach.  

Chapter 2 proposes the concept for piezoelectric energy harvesting from low frequency quasi-

static mechanical deformations by using the nonlinear response of axially compressed bilaterally 

constrained columns that are coupled with the electro-mechanical effect of piezoelectric materials. 

Existing strategies and relevant investigations of the topic are reviewed, two design models are 

proposed, and the detailed methodology to investigate the proposed systems through 3D 
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prototyping, experimental evaluations, theoretical analyses, and numerical simulations are 

presented. The content for design I of this concept has been published in [222], and the content for 

design II was published in [191, 223, 224]. 

Chapter 3 proposes a concept to dissipate energy in materials subjected to cyclic shear 

deformations, by using the sequential snapthrough behavior of architected materials that feature 

inclined beams in their microstructure. Similar to Chapter 2, the existing strategies and relevant 

investigations on the topic are reviewed, two design layouts are proposed, and the detailed 

methodology to investigate the proposed systems through 3D prototyping, experimental 

evaluations, theoretical analyses, and numerical simulations are presented. The content of this 

concept have been published in [225]. 

Chapter 4 presents the results the proposed energy harvesting concept from two structural 

models: a bilaterally constrained prismatic column (BCPC) with a bonded PZT film layer, and a 

bilaterally constrained non-prismatic column (BCNC) with a PZT oscillator. Experimental results 

from the prototyped systems show that, due to the controlled and tailored postbuckling behavior, 

effective energy harvesting from quasi-static deformations was obtained with enhanced 

performance. A theoretical model and numerical investigations are shown to have good agreement 

to the experiments, predict the behavior, and used to explore the parameter space of the system 

with different form-factor requirements.  

Chapter 5 presents the results the proposed energy dissipative material concept under two 

loading conditions: half-cycle and full-cycle shear deformations. Experimental results from 3D 

printed material multi-unit prototypes verify their recoverable and repeatable response and rate-

independent energy dissipation under cyclic shear loading. Numerical results predict the behavior 

of the single-beam unit element with different geometries, and theoretical results obtain the 
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optimal energy dissipation of the multi-unit material systems for a given unit geometry. Results 

from parametric studies based on the theoretical model are presented to explore the design space 

of the proposed materials.  

Finally, the findings of the study presented in this dissertation are concluded in Chapter 6, and 

possible future works extended from the current investigation are also discussed.  
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Chapter 2  

QUASI-STATIC ENERGY HARVESTING – 

CONCEPT AND METHODS 

 

2.1 Background 

 Energy harvesting from quasi-static loads 

Structural vibrations, coupled with piezoelectric transducers, are the still most used and efficient 

mechanical energy source since they can generate large strain changes at high rates and thus lead 

to relatively high-level continuous power generation. However, several studies have investigated 

harvesting energy directly from quasi-static loading conditions, a common situation in large civil 

structure deformations to biomechanical motions, and which can be sufficient to power low energy 

budget devices. Theoretical and experimental studies on PVDF (polyvinylidene fluoride) film 

energy harvesters for MEMS (micro-electro-mechanical systems) power sources have shown that 

the maximum power output of a 1 cm2 piezo-film is in the range 0.0025-0.37 μW, depending on 

its geometry and thickness [226]. This level of harvested power could be sufficient for a DNA 

(deoxyribonucleic acid) detection chip, which requires 10 mW to activate twice a day [227]. 

Energy harvesting from arterial blood pressure was investigated theoretically and numerically, and 

the results show that about 20 μW of peak power can be converted at a blood impulse rate of 0.89 

Hz [228]. It is widely agreed that ~ 100 μW of continuous power is the minimum requirement to 

operate a single sensor. However, as technologies advance, some sensors, or in vivo bio-MEMS, 

are highly energy-efficient and can operate at a power budget level < 1 μW [229, 230]. For example, 
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a data computation and logging system for sensing applications developed at Michigan State 

University can achieve data processing and storage at power levels below 1 μW [231]; and a brain 

micro stimulation device for treatment of Parkinson’s disease, epilepsy, spinal cord injuries, and 

neurological disorders requires less than 1 μW to stimulate a single neuron [232]. 

 Energy harvesting using buckling instabilities 

The new vision of harnessing structural instabilities has found its way towards the 

enhancement of energy harvesters by using the snap-through behavior of pre-buckled elements to 

introduce nonlinear behavior in linear piezoelectric generators, and thus overcome bandwidth 

limitations for higher efficiency. Jung and Yun [184] proposed an energy-harvesting device with 

buckled bridges to up-convert the generator’s resonate frequency under low-frequency vibration 

excitation. An experimental investigation conducted by Sneller et al. [185] showed that a post-

buckled piezoelectric beam with attached central mass can achieve a broadened the frequency 

range over snap-through under a lower harmonic forcing amplitude. Nano-scaled buckled PZT 

ribbons reveal an enhancement in their stretchability by an order-of magnitude, and an amplified 

piezoelectric effect of up to 70% [233]. A random analysis was conducted on a controlled buckling 

structure for energy harvesting that shows the optimal locations of electrodes are robust to the 

upper bound of environmental excitation [234]. Controlled buckling of piezoelectric beams were 

used to generate electricity from the weight of passing cars and crowds [235]. Enhanced power 

generations have also been found when thin piezoelectric beams are used in their buckled 

configuration under random vibrations [186] and chaotic vibrations [187]. Other attempts to 

expand the operational bandwidth of vibration harvesters include magnetic interactions [186, 236, 

237], tunable resonators [238], amplitude limiters [239] and other concepts [194, 240]. However, 

even with a widened operational band frequency, all the previously noted harvesters are still 
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limited to an external vibration input, and are thus inadequate for operating under quasi-static input 

sources. 

 A quasi-static energy harvester: concept, prototype and limitations 

A concept for a quasi-static micro-energy harvester that made use of buckling instabilities 

originally proposed by Burgueño and Lajnef [192, 241] is shown in Figure 2-1. The structural 

model consists a bilaterally constrained prismatic column (BCPC) with a cantilever configured 

piezoelectric energy transducer attached to the mid-length of the column. This model demonstrated 

that the mechanism of buckling instabilities provided by a bilaterally constrained axially 

compressed columns can be used as mechanical triggers to transform external quasi-static global 

displacement input (< 1 Hz) to local high-rate motions and excite vibration-based piezoelectric 

transducers for energy harvesting devices [192, 241, 242]. The local high-rate motions are due to 

the local bifurcations, which are sensitive to their location along the column. A small local motion 

may generate a large acceleration at that location but it could correspond to a relatively small 

global kinetic energy release.  

In the original energy harvester model, the buckling location at each mode transition changes 

along the column length. Thus, the cantilever configured piezoelectric energy transducer cannot 

be strategically placed on the column for optimal energy generation, and the performance of energy 

generation was affected. Therefore, two energy harvester designs were developed based on this 

concept in this research to improve the original design.  

In the first design, the cantilever configured piezoelectric energy transducer was replaced by a 

piezoelectric layer bonded to the column surface. The continuously elastic postbuckling 

deformation of the column provides axial strain directly for the bounded piezoelectric film to 

generate electric power. For the second design, the aim was controlling the location of local 
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buckling events at each mode transitions such as to strategically place the piezoelectric oscillator 

for enhanced energy harvesting performance. Each of these two design strategies are discussed in 

details in the section 2.3. 

 
Figure 2-1: Original energy harvester design prototype: bilaterally constrained prismatic column 

(BCPC) with PZT oscillator [192].  

2.2 Postbuckling behavior of bilaterally constrained columns 

 Development of local contact zone 

Multiple buckling instabilities behavior in the elastic postbuckling regime of axially compressed 

slender columns can be obtained by the provision of bilateral rigid constrains (i.e., walls) to the 

transverse deformations of the element [85, 243, 244]. A homogeneous prismatic column with 

symmetric boundary conditions and subjected to an axial compressive load reaches its first critical 

stability point and buckles with a maximum transverse deformation amplitude at mid-span. If the 

column is provided with continuous rigid parallel lateral supports, a contact zone develops between 
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the element and the constraints, which grows from a condition of point contact to line contact with 

increasing load [243]. The first few buckling modes for the case in which the axially loaded column 

is initially placed adjacent to one of the constraining walls are shown in Figure 2-2, which shows 

the transition from point to line contact for the different buckling modes. After a line contact 

condition has developed, the bending moment vanishes within this region due to the lack of 

curvature and independent boundary conditions form for the segment, equivalent to clamped-

clamped ends in an Euler column, develop. Local buckling occurs in the longest flattened region 

when the critical load within this segment is reached [3, 85, 243]. The higher order buckled 

configuration forms after the buckling event corresponds to a lower state of energy.  

 
Figure 2-2: Schematic of the elastic postbuckling response of an axially compressed bilaterally 

constrained column at the first few buckling modes, with profiles for point contact (dashed line) 

and line contact (solid line). 



40 

 Buckling configuration based on energy considerations 

For an axially compressed column the equilibrium shape is determined by a competition 

between the column’s bending and compressive energy due to the external applied force. For a 

bilaterally constrained column, the shape during the deformation process is divided into flat and 

curved segments before each critical buckling mode transition (Figure 2-2). The key parameter 

triggering the buckling mode transitions is the length of the isolated line contact sections [3, 243]. 

Taking the first buckling mode as an example (shown in Figure 2-3), the column total length is 

defined L0 and the curved and flat segments have projected length L2 and L1, respectively. For a 

given end shortening ΔL, the constraint on the column total length yields ΣL2 + ΣL1 = L0 – ΔL.  

At the same total strain energy level (i.e., the same L2), three conditions can be considered to 

form different buckled equilibrium shapes by redistribution of the flat segments (i.e., ΣL1) along 

the column: symmetric, upper limit, and lower limit cases [3]. For a buckled column in an ideal 

condition, a symmetric wave shape is assumed to accommodate the end shorting ΔL, with the flat 

segment symmetrically arranged next to curved segments [85, 243]. Based on Euler’s buckling 

equation the critical buckling load is inversely proportional to the critical length [245]; that is, the 

longer the column the easier it is for it to buckle. Thus, upper and lower limits can be considered 

for the generation of mode transitions. In the upper limit, each straight segment needs to be as 

short as possible, which makes instability more difficult, and they are thus distributed evenly at 

each line contact zone. In the lower limit case, which is opposite to the upper limit one, the straight 

segments mere into a single line contact zone at the middle of the column to form a single straight 

segment and thus facilitate buckling.  
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Figure 2-3: Schematic depiction of different buckling shapes for modes 1 based on energy 

consideration: symmetric case, upper and lower limit cases. 

The buckling shape of mode 1 and mode 3 for bilaterally constrained prismatic columns under 

a symmetric assumption is schematically shown in Figure 2-4. It can be seen, that for mode 1 the 

longest straight segment first forms at the middle section of the column, where buckling occurs. 

However, three equal length straight segments form in mode 3, and buckling can be triggered in 

any of these segments. In addition, asymmetry occurs due to the presence of friction between the 

column and the side walls [85, 243] and causes the buckling shape to be sensitive to imperfection. 

Therefore, the maximum buckling location cannot be controlled in prismatic columns. 
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Figure 2-4: Schematic depiction of symmetric buckling shapes for modes 1 and mode 3. 

 Tailoring postbuckling response through non-uniform stiffness 

Studies related to the stability of non-uniform columns and the advantage that they could offer 

for controlling static and dynamic response date back to more than a century. However, most 

efforts have focused on determining the critical buckling load of non-uniform beams/columns/rods 

subject to varying axial loads and boundary conditions with [246, 247] or without laterally 

restraints [248-251] through closed-form solutions, and also via a semi-analytical procedures [252] 

and a higher-order perturbation approach [14]. Details on these solutions can be found in reference 

[253]. The use of non-uniform strip elements for controlling static and dynamic response by 

strategic selection of non-uniform cross-section geometry and materials has also been explored 

[254-257]. However, the studies conducted thus far focused on the onset of buckling and up to the 

first bifurcation in the postbuckling response. Yet, recent related studies by our group [258, 259] 
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have shown that the elastic postbuckling response of cylindrical shells can be tailored by 

introducing non-uniform stiffness distributions. It follows that the multi-stable response of non-

prismatic columns in the far elastic postbuckling regime remains unexplored and that non-

prismatic column designs are a viable way to tailor the desired elastic instabilities. 

2.3 Model designs 

 Design I - Bilaterally constrained prismatic column (BCPC) with a bonded PZT film 

layer 

Eliminating the protruding PZT oscillator and replacing it as a PZT film layer bonded directly to 

the column surface would permit future miniaturization and packaging of the harvesting device, 

as shown in Figure 2-5. The axially compressed BCPC allows a continuously large deformation in 

its elastic regime, thus providing axial strain for the bounded piezoelectric film to generate electric 

power. A theoretical model was developed to predict the corresponding strain of the buckled 

configuration of the strip, and thus calculate the electrical energy generation. An experimental 

investigation and finite element simulations were conducted to validate the theoretical results. 

 
Figure 2-5: Schematic of design I - bilaterally constrained column with a bonded PZT film layer.  
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 Design II - Bilaterally constrained non-prismatic column (BCNC) with a cantilever 

PZT oscillator 

In this model, the bilateral constrained prismatic column was modified from a prismatic 

column to a non-prismatic column with thickness variation to control the buckling location for 

optimal placement of the cantilever PZT oscillator. Stiffness variation within a column was 

introduced by changing its thickness, which is the most effective parameter to control bending 

stiffness along segments of its length. Therefore, column designs with thickness variations in three 

segments along their length were considered, as shown in Figure 2-6. 

 
Figure 2-6: Schematic of design II - bilaterally constrained non-prismatic column (BCNC) with a 

cantilever PZT oscillator. 

Since the column configuration (i.e., deformed shape, or elastica) between the constraining 

walls is the one that accommodates the end shortening with the minimum potential energy, the 

hypothesis behind the non-prismatic column design is that the energetically favorable (lower) 

configuration is achieved by reducing the bending strain energy from stiff regions by introducing 
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stiffness variations along the column length. The larger bending resistance of stiff segments will 

allow them to remain straight and develop a line contact with the constraints while flexible regions 

accommodate the end shortening primarily through bending. Therefore, to achieve a higher 

number of local instabilities and controlled (or predefined) buckling locations. The larger bending 

resistance of the thick segment in the middle section of the column makes it more favorable to 

remain straight and develop a line contact with the constraints while the two end flexible regions 

accommodate the end shortening primarily through bending, thus creating the condition for the 

column to behave towards the lower buckling limit case (see Figure 2-7). 

 
Figure 2-7: The effect of non-uniform stiffness on the buckling shapes. 
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2.4 Prototype fabrication 

All the structure prototypes presented in this dissertation were fabricated with a 3D polymer printer 

(Objet Connex350, Stratasys Ltd., Eden Prairie, MN). A single rigid photo-polymer material 

(VeroWhite RGD835) was used for the prismatic and non-prismatic columns with material 

properties and geometry as shown in Table 2-1. The 3D printed column specimens are shown in 

Figure 2-8.  

Table 2-1: Geometry and material properties of the baseline column. 

Property Value 

Elastic Modulus, E 2.5 GPa 

Column Length, L0 190 mm 

Width, b 20 mm 

Thickness of Prismatic Base Column, t0 1.78 mm 

 

For the non-prismatic columns, the middle (thicker) segment thickness, t0 was equal to the 

uniform thickness in the prismatic column. The ratio between the outer (thinner) segment thickness 

t1 and the baseline column thickness was defined as  = t1/t0; and the ratio between the thicker 

segment length to the column length L0 was defined as .  The value of  was limited as 0.25 ≤  

≤ 0.65 to avoid extreme values towards a prismatic column. The dimensionless parameters  and 

 were varied to generate different designs, the parameters are defined in Figure 2-6. The 

postbuckling behavior of non-prismatic columns with different combinations of  and  was 

experimentally and numerically investigated, and further analyzed by a theoretical model. The 

results were also compared with those from a prismatic column. 



47 

 

Figure 2-8: 3D printed prismatic and non-prismatic column specimens. 

2.5 Experimental evaluation 

A universal testing machine (Instron 5982) was used to obtain the stress-strain measurements for 

all the design prototypes with a 50/s data acquisition rate. The maximum loading rate of the 

machine is 16.9 mm/s. The deformation process of the specimens during the test was video 

recorded using a SONY Alpha a5000 digital camera. 

The rigid constraints in the test setup consisted of aluminum plates (Figure 2-9 (a)). The walls 

were separated by a gap h0, such that the h0/t0 ratio was kept constant at 1.7. The strip prototypes 

were printed integrally with top and bottom loading blocks (see Figure 2-8). The bottom end-block 

of the strip samples were fully fixed and rotations and transverse translations were constrained on 

the top end-block. For all cases, the strips were subjected to a full loading and unloading cycle (20 
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s period) of axial compression under controlled end shortening to a target of 3.8 mm (i.e., 2% 

global axial strain). 

For the prismatic column with piezoelectric film layer design, a piezoelectric film was glued 

to one side of the strip surface using an epoxy adhesive, and the aluminum plates were glued with 

an electrical insulating layer on their surfaces. For the non-prismatic columns with cantilever 

piezoelectric oscillator design, a PVDF piezoelectric oscillator (with substrate) was mounted in a 

cantilever configuration at the mid-span of both prismatic and non-prismatic columns to compare 

the harvested energy levels. Considering the mass and beam length of the PVDF film, the 

bilaterally constrained column setup transforms the input deformation frequency from 0.05 Hz (20 

s loading/unloading cycle period) to the harvester’s natural frequency of 5.85 Hz. The piezoelectric 

and the substrate properties are listed in Table 2-2. 

 
Figure 2-9: Test setup. a) Bilaterally constrained column. b) Prismatic column with PVDF film 

layer. c) Non-prismatic column with cantilever PVDF oscillator.  
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Table 2-2: Piezoelectric PVDF film properties. 

PVDF Film Value 

Longitudinal Elastic Modulus 2 GPa 

Density 1780 kg/m3 

Thickness (with electrodes) 28 µm / 40 µm 

Piezo Strain Constant d31 23 × 10-12 C/N 

Piezo Strain Constant d33 -33 × 10-12 C/N 

Electrical Permittivity 115 × 10-12 F/m 

Length 190 mm 

Width 20 mm 

Table 2-3: Piezoelectric oscillator properties. 

PVDF oscillator Value (piezoelectric PVDF/substrate) 

Young's Modulus 2 GPa / 2.4 GPa 

Density 1780 kg/m3/ 1390 kg/m3 

Thickness 28 µm / 205 µm 

Width 12 mm / 16 mm 

Length 27 mm 

Tip Mass 3.15 g 

Piezo Strain Constant d31 23 × 10-12 C/N 

Piezo Strain Constant d33 -33 × 10-12 C/N 

Piezo Stress Constant g31 216 × 10-3 Vm/N 

Piezo Stress Constant g33 -330 × 10-3 Vm/N 

Electrical Permittivity 115 × 10-12 F/m 

Capacitance 280 pF/cm2 @ 1KHz 

 



50 

To quantify the power output of the integrated column/piezoelectric device, the voltage as a 

function of load resistance was assessed. The generated voltage dissipates over time in a close 

circuit and depends on the load resistance, as shown in Equation 2-15. The outlets from two 

electrode layers of the piezoelectric film were connected in parallel with the load resistance, and 

the corresponding load circuit voltage and power were measured for various resistance values. 

PVDF has a very high output impedance under low frequency loading conditions. Thus, to 

properly interface it with the device, a JFET-based op-amp (TI LF411), which has a very high 

input impedance (1 TΩ), was used to minimize the effect of slow loading. The device was 

connected to the JFET op-amp buffer and the output was probed with an oscilloscope (RIGOL 

DS1102E, China). Data was collected at 0.1 s intervals. The interface circuit is shown in Figure 

2-10. 

 
Figure 2-10: Interface circuit and data collection system. 
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2.6 Theoretical analysis 

 Postbuckling response of a BCPC 

An analytical model based on the results of Chai [243] and the simplified approach of Xiao and 

Chen [3] to predict the mode transitions and the buckling shapes of the bilaterally constrained strip 

with clamped boundary condition under controlled end shortening was adopted, and the model 

was modified for the placement of the strip adjacent to one side of the constraint. The deformed 

shapes can be discretized into three parts (see Figure 2-11) [3, 85, 243]: the curved segment with 

projected length L2, the straight segment L1, and the end shortening ΔL; which yield the column’s 

total length L0 = ΣL2 + L1 + ΔL. Figure 2-11 also shows the first three buckling mode 

configurations for this theoretical model.  

 
Figure 2-11: Schematic of the theoretical model with the first 3 buckling mode configurations. 
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The response of an elastic Euler beam under axial compression is defined as 

𝑦′′′′ + 𝑘2𝑦′′ = 0, 𝑘2 ≡
𝑃

𝐸𝐼
 Equation 2-1 

where y(x) is the transverse displacement of the beam as a function of the axial coordinate x, the 

compression force P and the moment of inertia I. Under a symmetry assumption, taking mode 1 

as an example, the shape of the curved sections between x = [L1, L1+L2] and x = [3L1+L2, 3L1+2L2] 

can be written as in Equation 2-2 and Equation 2-3: 

𝑦 =
ℎ0
𝐿2
(𝑥 − 𝐿1) −

ℎ0
2𝜋
sin (

2𝜋

𝐿2
(𝑥 − 𝐿1)) Equation 2-2 

𝑦 = −
ℎ0
𝐿2
(𝑥 − 3𝐿1 − 𝐿2) +

ℎ0
2𝜋
sin (

2𝜋

𝐿2
(𝑥 − 3𝐿1 − 𝐿2)) + ℎ Equation 2-3 

where h0 is the gap between the constraining walls. The constraint of coefficient k in Equation 2-1 

satisfies 𝑘𝐿1 2𝜋⁄ = 1. The shape of the curved segments in other modes can be represented in a 

similar manner. Therefore, the length of the curved segments can be calculated as: 

𝐿𝑐𝑢𝑟𝑣𝑒𝑑 =∑∫ √1 + (𝑦′)2
𝐿

𝑑𝑥 Equation 2-4 

The total length of the deformed strip is Ldeformed = ∑Lcurved + ∑L1. The linear axial strain is 

𝜀1 =
𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 − 𝐿0

𝐿0
 Equation 2-5 

and the axial stress of the strip due to bending and compression is 

𝜎1 = 𝐸𝜀1 = 𝐸
𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 − 𝐿0

𝐿0
 Equation 2-6 

The potential energy of the strip in this model is considered to consist two parts: compression 

energy and bending energy. The compression energy is assumed to be uniform per cross-sectional 



53 

area along the strip and the bending energy is assumed to only exist in the curved segments [3]. 

Therefore, the compression energy of the strip is  

𝐸𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

2
𝐸𝜀1

2𝐴0𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 Equation 2-7 

The curvature of the curved segments is 

𝜅 =
𝑦′′

(1 + 𝑦′2)3/2
 Equation 2-8 

The bending energy of the curved segments is 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝐸𝐼

2
∫

(𝑦′′)2

(1 + 𝑦′2)3
𝑑𝑥

𝐿

 Equation 2-9 

Therefore, for a given end shortening ΔL, the length of the straight segment length, L1, and the 

projection of the curved segment, L2, can be determined at the minimum strain energy (i.e., 

Ecompression + Ebending). Thus, the buckling shape configurations can be estimated accordingly. The 

buckling amplitude increases with ΔL and the deformed strip makes lateral contact with the 

constraint that forms straight segments L1. The straight segment keeps growing until the 

compression strain in the longest straight segment (i.e., the length is 2L1 for the symmetric 

condition) exceeds the critical strain, at which point the strip transitions to a higher mode 

configuration. The critical strain for the straight segment 2L1 is calculated as 

𝜀𝑐𝑟 =
𝜋2𝐼

(𝐾2𝐿1)2𝐴0
 Equation 2-10 

However, the effective length factor, K, is unknown since the boundary conditions of the straight 

segment L1 are somewhere between pin-pin (K = 1) and fixed-fixed (K = 0.5). The average value 

of K = 0.75 was adopted in this study.  
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 Piezoelectric response of a bounded PZT layer 

The piezoelectric layer bonded to the column was modeled as a thin beam based on the Euler-

Bernoulli beam theory, the cross section of the strip with a unimorph PVDF film is shown in Figure 

2-5(a). Since the thickness of the piezoelectric layer is much smaller compared to that of the strip, 

only the axial stress component 𝜎1 of the strip is considered since all other stress components are 

negligible. The transverse electric displacement is given by 

𝐷3 = 𝑑31𝜎1 + 𝜀33
𝑇 𝐸3 Equation 2-11 

where subscripts 1 and 3 indicate the longitudinal and transverse (poling) directions; s is the 

compliance tensor (m2/N); d is the piezo strain tensor (C/N); εT is the permittivity tensor (F/m); D 

is the electric displacement (C/m2); and E3 is the electric field in the transverse direction (N/C). 

The total electric charge Q is given by the integral of the effective piezoelectric surface area Ap 

over the electric displacement, expressed by: 

𝑄(𝑡) = ∫ 𝐷3𝑑𝐴𝑝
𝐴𝑝

= ∫ (𝑑31𝜎1 + 𝜀33
𝑇 𝐸3)𝑑𝐴𝑝

𝐴𝑝

 Equation 2-12 

The current i in a closed-circuit condition is the time derivative of charge Q: 

𝑖(𝑡) =
𝑑𝑄(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
∫ (𝑑31𝜎1 + 𝜀33

𝑇 𝐸3)𝑑𝐴𝑝
𝐴𝑝

 Equation 2-13 

Thus, the voltage across a resistance load RL can be written as 

𝑉𝑅𝐿(𝑡) = 𝑖(𝑡)𝑅𝐿 = 𝑅𝐿
𝑑

𝑑𝑡
∫ (𝑑31𝜎1 + 𝜀33

𝑇 𝐸3)𝑑𝐴𝑝
𝐴𝑝

 Equation 2-14 

Based on an equivalent current model for the piezoelectric energy harvester, an equivalent 

capacitance of the piezo-layer Cp is connected in parallel with the resistive load RL. Thus, the 

voltage across the equivalent capacitance of the piezoelectric patch Cp is equal to the voltage across 
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the resistive load RL. With Maxwell's equation, the transverse electric field and voltage follows the 

relation E3 = -V(t)/hp, where hp is the thickness of the piezo-layer. Thus, Equation (14) can be 

rewritten as: 

𝑉𝑅𝐿(𝑡) = 𝑅𝐿
𝑑

𝑑𝑡
∫ (𝑑31𝜎1 −

𝜀33
𝑇 𝑉(𝑡)

ℎ𝑝
)𝑑𝐴𝑝

𝐴𝑝

 Equation 2-15 

𝜀33
𝑇 𝐴𝑝

ℎ𝑝

𝑑𝑉𝑅𝐿(𝑡)

𝑑𝑡
+
𝑉𝑅𝐿(𝑡)

𝑅𝐿
=
𝑑

𝑑𝑡
∫ (𝑑31𝜎1)𝑑𝐴𝑝
𝐴𝑝

 Equation 2-16 

where 𝜀33
𝑇 𝐴𝑝 ℎ𝑝⁄ = 𝐶𝑝. If we replace the above equation with the time constant 𝜏 = 𝑅𝐿𝐶𝑝, then 

the equation can be expressed as 

𝜏
𝑑𝑉𝑅𝐿(𝑡)

𝑑𝑡
+ 𝑉𝑅𝐿(𝑡) = 𝑅𝐿

𝑑

𝑑𝑡
∫ (𝑑31𝜎1)𝑑𝐴𝑝
𝐴𝑝

 Equation 2-17 

The electrical power generated is therefore written as 

𝑃(𝑡) =
1

𝑇
∫
𝑉𝑅𝐿(𝑡)

2

𝑅𝐿
𝑑𝑡

𝑇

0

 Equation 2-18 

where T is the total time and t is the time variable. The electrical energy generated by the 

postbuckling of the strip is 

𝑈(𝑡) =
1

2
𝑄(𝑡)𝑉(𝑡) Equation 2-19 

For an open-circuit condition E3 equal to zero since there is no applied external electric field. Thus, 

from the relation 𝑄 = 𝐶𝑝𝑉(𝑡), the voltage present at the electrodes is 

𝑉𝑂𝐶(𝑡) =
𝑄(𝑡)

𝐶𝑝
=

ℎ𝑝

𝜀33
𝑇 𝐴𝑝

∫ (𝑑31𝜎1)𝑑𝐴𝑝
𝐴𝑝

 Equation 2-20 
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Figure 2-12: Schematic of the theoretical model with the first 3 buckling mode configurations. 

 Postbuckling response of a BCNC 

The same modeling concept as presented for the bilaterally constrained prismatic column 

(BCPC) in Section 2.6.1 was adopted for non-prismatic column, see Equation 2-1 to Equation 2-5, 

and the only change for this case is the cross-sectional stiffness as a piece-wise variable according 

to the sectional geometry. Figure 2-12(a) presents the undeformed column with two equal-length 
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outer segments with flexural stiffness 𝐸𝐼1 = 𝐸𝑏𝑡1
3/12 and cross-sectional area 𝐴1 = 𝑏𝑡1, and a 

middle segment with flexural stiffness 𝐸𝐼0 = 𝐸𝑏𝑡0
3/12 and cross-sectional area 𝐴0 = 𝑏𝑡0. The 

other parameters were as described in Section 2.6 and contact friction was neglected. Under the 

assumption that the column stays at the lower limit configurations (see Figure 2-3), the first three 

buckling modes are as presented in Figure 2-12(a) to Figure 2-12(d), where the straight section 

only appears at the middle region of the column.  

The potential energy for the column in this model is considered to consist of two parts: 

compression energy and bending energy. The compression energy is assumed to be uniform over 

cross-sectional area along the column and the bending energy is assumed to only exist in the curved 

sections [3]. Therefore, the compression energy of the column is 

𝐸𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
𝐸𝜀2

2
(𝐴0𝛽𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 + 𝐴1(1 − 𝛽)𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑) Equation 2-21 

The bending energy of the curved sections when Lcurved ≤ (1-) Ldeformed is 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝐸𝐼1
2
∫

(𝑦′′)2

(1 + 𝑦′2)3
𝑑𝑥

𝐿

 Equation 2-22 

and when Lcurved > (1-) Ldeformed is 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝐸

2
[(

𝐿𝑐𝑢𝑟𝑣𝑒𝑑
𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑

− 1 + 𝛽) 𝐼0 + (𝛽

−
𝐿𝑐𝑢𝑟𝑣𝑒𝑑
𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑

)𝐼1]∫
(𝑦′′)2

(1 + 𝑦′2)3
𝑑𝑥

𝐿

 

Equation 2-23 

 Therefore, for a given end shortening ΔL, either the length of the straight section length L1 or 

the length of the curved section L2 can be determined at the minimum potential energy (i.e., 

Ecompression + Ebending). Thus, the buckling shape configurations can be estimated accordingly.  

Similarly, the critical strain of the straight section L1 is calculated as 
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𝜀𝑐𝑟 =
𝜋2𝐸

(
𝐾𝐿1
𝑟 )

2 , 𝑟 =
1

𝐴0
2 Equation 2-24 

2.7 Numerical simulation 

Numerical simulations were conducted using the finite element (FE) program ABAQUS (Simulia 

2014). The column was modeled with 4-node quadrilateral finite-membrane-strain elements (S4). 

The analysis procedure followed two general steps: a linear eigenvalue analysis of the ideal column 

and a second-order elastic dynamic analysis of the column with artificial imperfections. In the 

linear analysis, the critical buckling loads and the corresponding mode shapes are found. The 

dynamic analysis was conducted using the implicit solver in ABAQUS with consideration of large 

deformations. An artificial imperfection based on the superposition of buckling mode shapes was 

added to the column’s original geometry to trigger the second-order effects, the first three bucking 

mode shapes are shown in Figure 2-13. The seeded imperfection had contributions from four mode 

shapes with gradually decreasing amplitude with respect to the column’s thickness: 1st (3%), 3rd 

(0.23%), 5th (0.08%) and 7th (0.016%). Consistent with the experimental setup (Section 2.5) the 

column/strip in the model was placed so that it was adjacent to one of the constraining walls. Since 

shell elements have no physical thickness, the distance between the rigid walls and the strip was 

the net gap h = h0 – t0. An offset of 5% of the net gap was provided on the near wall side to 

accommodate seeding of the initial imperfections for the nonlinear analysis and to avoid 

interaction with the no penetration rigid wall boundary and the strip. The constraints were modeled 

with rigid shell elements with no-penetration contact behavior. The friction coefficient between 

the wall and the column surfaces was 0.2, chosen by calibration of the simulation results with test 

data. 
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Figure 2-13: First three buckling mode shapes of the prismatic column. 

For model I - bilaterally constrained prismatic column (BCPC) with a bonded PZT film layer, 

an additional piezoelectric film was also modeled using linear piezoelectric brick elements 

(C3D8E). The contacted side of the piezoelectric film surface was tie-constrained with the strip, 

thus enforcing equal deformations, and a ground electric potential boundary condition was 

assigned on the same surface of the piezo-layer to allow an electric potential difference to be 

generated. A reference point tied all the nodal electric potential degrees of freedom on the top free 

surface of the piezo-layer to add up the generated voltage.  
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Chapter 3  

SHEAR ENERGY DISSIPATION – CONCEPT 

AND METHODS 

 

3.1 Background 

A single inclined elastic beam element under end shear deformation exhibits a negative stiffness 

region but follows the same load-deformation path upon unloading with no energy dissipation 

(Figure 3-1a). The proposed structures (see Figure 3-1b) consist of an array of m × n beam units, 

with m units that are equally spaced in a vertical stack (rows) and rigidly connected to end-

constraining segments, and n repeating columns of the multi-row beam assemblies. Under in-plane 

shear motion, the beam units within a column respond simultaneously with the critical force being 

simply the summation of the individual critical forces of the m elements in the column. Given the 

unavoidable geometric imperfections in the system, the n coupled columns in series connection 

respond in sequential snap-through transitions, with the force-displacement response displaying n 

‘jumps’ and n unstable paths, and the total deformation is equal to the summation of the 

displacements from the n columns. Since the ‘jumps’ are due to unstable transitions of the beams 

within a column, the unit elements are able to experience unbounded motions between the two 

stable equilibrium states until the motion decays due to friction. Energy dissipation consequently 

occurs by the release of mechanical energy, through the unstable snap-through motions, and its 

conversion to kinetic energy and in turn into heat. This phenomenon has been termed ‘twinkling’ 

and can be modeled by a spring-mass chain with non-monotonic stiffness elements that permit 

oscillatory behavior of the inner masses [260-262]. 
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Figure 3-1:  Schematic of snapping element(s) and their force-displacement response. a) A single 

unit elastic snapping beam element in its initial and deformed configuration (left), and its 

response curve under applied displacement with a negative stiffness region but no energy 

dissipation (right). b) An array of m × n connected units (left) and its sequential snap-through 

response curve under an applied displacement with energy dissipation (right), where the gray 

dotted line shows the response of the system when there is no imperfection. 

3.2 Model designs 

The design concept is illustrated in Figure 3-1b.Elastic inclined beams were chosen as the unit 

elements, which can experience limit-point snap-through instability under vertical displacement. 

The limit point is an inflection of the primary equilibrium path that causes a stiffness change from 

stable to unstable. This transition corresponds to a negative stiffness region, which leads to a rapid 

unstable motion that triggers a release of the system’s stored strain energy and is reflected in the 
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energy-deformation curve as a loss of convexity. The unstable transition stops when the system 

reaches its next closest stable equilibrium path, and the rate of the motion is independent from the 

external deformation/load rate if it is not constrained by the system’s boundary conditions. 

The material structures (Figure 3-2) consist of elastic beam unit segments and rigid (much 

higher material stiffness) end-constraining segments. The rigid end-constraining segments feature 

a linear sliding mechanism at their ends (top and bottom) to allow relative vertical movement 

between adjacent columns but prevent lateral motion of the beam elements within a column. The 

effects of the two dominant parameters, initial angle and slenderness t/L, on the mechanical 

response of single inclined beams has been numerically investigated [27] with the aim of 

characterizing their energy trapping or energy restoring features. Based on the noted study, two 

beam geometries (= 25°, t/L = 0.17 and = 40°, t/L = 0.18) were used as the unit elements for 

all the test prototypes considered in this study; with all beam elements having constant 20 mm 

depth (d) and 7 mm length (L). For the proposed energy-dissipating material system, consisting of 

multiple-unit structures, all beams in the array had the same geometry and each column of beam 

elements deforms in a predefined direction.  

 
Figure 3-2: Schematic the proposed material model for a unit element with geometric 

illustrations. 
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Two multiple-unit design layouts, differing in the arrangement of the columns’ beam orientation, 

were designed to operate under half-cycle (i.e., only positive loading-unloading) and full-cycle 

(i.e., positive and negative loading-unloading) cyclic in-plane shear demands. For the half-cycle 

conditions, the loading cycles were applied in the positive direction, imposing a stress-strain 

response that occurred in the positive domain only. For the full-cycle conditions the loading cycles 

were applied in both positive and negative directions, resulting in a full stress-strain response. Both 

loading conditions are illustrated in Figure 3-3. 

 

 

Figure 3-3: a) Strain-controlled loading cycle: half cycle (left) and full cycle (right) conditions. 

Time is normalized by the time period T for one complete cycle of loading. b) Schematics of the 

stress-strain response under half cycle (left) and full cycle (right) loading conditions. 
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3.3 Prototype fabrication 

Structure prototypes were fabricated using a 3D polymer printer (Objet350 Connex3, Stratasys 

Ltd., Eden Prairie, MN) that allows monolithic multi-material printing by jetting microscopic 

layers of liquid photopolymer and instantly curing them with UV light. A soft rubber-like polymer 

(TangoBlackPlus) was used for the elastic beam segment and a stiff polymer (VeroWhite) was 

used for the rigid end-constraining segments. The initial and deformed configuration of a 3D 

printed unit under vertical displacement (shear deformation) are shown in Figure 3-4. 

 
Figure 3-4: Initial and deformed configuration of a 3D printed unit beam. 

Two single-beam unit elements with the geometries (= 25°, t/L = 0.17 and = 40°, t/L = 0.18) 

were 3D printed and tested to verify their snap-through behavior. The three 3D printed material 

multi-unit prototypes for the half- and full-cycle design layouts are shown in Figure 3-5a and 

Figure 3-5b, respectively. 
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Figure 3-5: 3D printed material prototypes for a) half-cycle loading condition (left: = 25°, t/L = 

0.17, m, n = 12, 8; right: = 40°, t/L = 0.18, m, n = 10, 10), and b) full-cycle loading condition 

(= 40°, t/L = 0.18, m, n = 10, 5×2). Solid and dashed line indicates loading and unloading 

direction respectively. 

3.4 Experimental evaluation 

A universal testing machine (Instron 5982) was used for the stress-strain measurements for all the 

design prototypes with a 50/s data acquisition rate. The maximum loading rate of the machine is 

16.9 mm/s. The deformation process of the specimens during the test was video recorded using a 

SONY Alpha a5000 digital camera. 

The loading frames were made of aluminum plates. The vertical flags of the two ‘T’ shape 

loading frames were bolt-tied with the specimens’ vertical edges, and the lateral flags of the frames 

were bolt-tied with the top and bottom loading plates. The top end of the loading plate was fixed 

all the time during the test, and the shear deformation was applied to the specimens by the vertical 

movement of the bottom loading plate under strain control. The test setup is shown in Figure 3-6. 

The vertical displacement was applied until all columns aligned with the loading direction fully 

snapped to their deformed states, which varied with the geometry of the specimens. All the 

specimens were tested at three different loading rates: 5 mm/s, 10 mm/s and 15 mm/s, to verify 

the rate dependency of the responses.  
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Figure 3-6: Test setup for architected materials. 

3.5 Analog model 

A simple analog model is used here to qualitatively capture the behavior of a system of snapping 

inclined beams. Instead of solving the large deformation problem, the analog model uses a linear 

spring kb to represent the bending stiffness of the beam and the beam only deforms axially with a 

stiffness ka, as shown in Figure 3-7. Since lateral opening was observed during preliminary tests, 

resistance to the lateral expansion is introduced by the linear spring kL. The height h and the span 

L define the beam’s original geometry at its stress-free equilibrium state. The structure is deformed 
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under displacement control by  with the deformed angle and the reaction force F. This model 

has been analytically and experimentally studied in many works [14, 107, 207, 263, 264]. The 

potential energy of the beams in one column is given by: 

𝑈𝑖 =
𝑚

2
(𝑘𝑎∆𝐿

2 + 𝑣𝑖
2𝑘𝐿 + 𝑘𝑏𝛿𝑖

2),  𝑖 = 1,2, … , 𝑛. Equation 3-1 

with ∆𝐿 = √(𝐿 − 𝑣)2 + (ℎ − 𝛿)2 − √𝐿2 + ℎ2 Equation 3-2 

Thus the reaction force of the system can be solved by the following coupled equilibrium equations: 

(

 
 

𝜕𝑈𝑖
𝜕𝛿𝑖
𝜕𝑈𝑖
𝜕𝑣𝑖)

 
 
= (

𝐹𝑖
0
) Equation 3-3 

For the system response of multi-unit structures (Figure 3-5b), the unit beams are rigidly connected 

in parallel in a column that moves simultaneously, and the coupled behavior between columns in 

series connection was obtained by minimizing the total energy of the system for a given 

displacement (Δmax). The problem is formulated as: 

𝑚𝑖𝑛 𝑈𝑡𝑜𝑡𝑎𝑙(𝛿1, 𝛿2,  … , 𝛿𝑛−1, 𝛿𝑛) =∑𝑈𝑖

𝑛

𝑖=1

 

𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝛿1, 𝛿2,  … , 𝛿𝑛−1 

 

Equation 3-4 

𝑤ℎ𝑒𝑟𝑒 𝛿𝑛 = 𝛥𝑚𝑎𝑥 −∑ 𝛿𝑖

𝑛−1

𝑖

  

Imperfection is introduced randomly to the beams in each column by varying the nominal 

Young’s modulus by ± 0.01% to trigger the sequential snap-through transitions. This optimization 

problem was solved using Mathematica with the local minimization function FindMinimum, along 
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with the constraints  
𝜕𝑈

𝜕𝑣
= 0 and 𝛿𝑛 = 𝛥𝑚𝑎𝑥 − ∑ 𝛿𝑖

𝑛−1
𝑖 . Since the total energy function contains 

multiple local minimums, the initial search point for each iteration as the total displacement 

proceeded was the result from the previous search step. 

 
Figure 3-7: Analog model for theoretical analysis. 

3.6 Numerical simulation* 

(* The numerical model and analysis presented in this section was conducted by Ali Imani Azad.) 

Finite element (FE) analyses were conducted using the program ABAQUS to explore the effect of 

beam unit geometry on the performance of the proposed material systems. Dynamic analyses were 

conducted using the program’s implicit solver with consideration of large deformations under 

quasi-static conditions. The 2D continuum-type element CPE4 was used assuming plane strain 

conditions, and artificial imperfection was introduced to the system through mesh variation at one 

randomly selected beam unit in each column. For the single unit system, only the elastic beam 

element was modelled and each beam was deformed by applying a vertical displacement to one of 

the ends and fixing all motions of the other end. Out-of-plane movements were constrained. For 

the multiple-unit system, both the elastic beams and rigid constraining segments were modelled 
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and their adjoining surfaces were constrained to each other (tie). A friction coefficient was assigned 

to the contacting surfaces to model the linear sliding mechanisms at the ends of the constraining 

columns. The response of the rubber-like polymer was simulated using a visco-hyper-elastic model 

(see Figure 3-8); and an elastic modulus of 2300 MPa and Poisson’s ratio of 0.3 were used for the 

stiff polymer material. 

The properties and rate-dependent viscoelastic effect on the behavior of the TangoBlackPlus 

material were determined through tensile tests based on the ASTM D638-14 standard at loading 

rates of 50 mm/min and 500 mm/min. The tensile stress-strain responses of 6 test specimens and 

the visco-hyper-elastic material model used in the numerical analysis are compared in Figure 3-8. 

 
Figure 3-8: Nominal stress-strain curves of the TangoBlack material under tensile test. 



70 

Based on the observed behavior (in Figure 3-8) and modeling suggestions from [265], the 

material used in the numerical simulations was modelled as visco-hyper-elastic. Yeoh’s model was 

used for the hyper-elastic behavior, with the strain energy as a function of the principle stretches 

as: 

𝑊 =∑𝐶𝑖

𝑛

𝑖=1

(𝐼1 − 3)
3, 𝐼1 = 𝜆1 + 𝜆2 + 𝜆3 Equation 3-5 

The material coefficients were determined through a calibration process with the experimental 

data as 𝐶1 = 0.1244, and 𝐶2 = 0.005069. The viscous behavior was modelled using Prony series 

as: 

𝐷(𝑡) = 1 −∑𝛾𝑖

𝑛

𝑖=1

 Equation 3-6 

where 𝜏1 = 0.1, 𝛾𝑖 = 0.002; 𝜏2 = 1, 𝛾2 = 0.2631; 𝑎𝑛𝑑 𝜏3 = 100, 𝛾3 = 0.1529. 
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Chapter 4  

ENERGY HARVESTING DEVICES – 

RESULTS 

 

Results from the experimental evaluations, theoretical analyses, and numerical simulations of the 

energy harvesting concept proposed in Chapter 2 for two structural models, bilaterally constrained 

prismatic column (BCPC) with a bonded PZT film layer and bilaterally constrained non-prismatic 

column (BCNC) with a PZT cantilever oscillator, are presented in this chapter. The results from 

the numerical and theoretical models are first validated with the experimental results, and then the 

models are further used to predict the postbuckling behavior of the considered structures. The 

experimental energy generations are compared and evaluated with other existing strategies, and 

results from parametric studies are presented at the end of this chapter to explore the design space 

of the proposed systems.  

4.1 Model I - BCPC with a bonded PZT film layer 

 Model validation 

The developed theoretical and numerical models were validated by comparing their response 

predictions with experiments. The mechanical response of the strip obtained from the theoretical 

model, the numerical simulation, and the experiment are compared in Figure 4-1, for a load cycle 

to 3.8 mm end shortening in 20 s (full loading-unloading cycle). It can be seen that the theoretical 

model and FE simulations adequately captured the number of buckling mode transitions, and the 

initial and end response stiffness. The mode jump triggering time is very sensitive and difficult to 
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predict exactly, as eccentricities on the placement of the strip and loading plate, actual 

imperfections, and friction resistance between and strip and walls, will affect the onset of mode 

jumping. Therefore, differences between the results due to these modeling uncertainties are 

difficult to avoid. Nonetheless, the theoretical and numerical models are considered acceptable for 

the purposes of this study. 

 

Figure 4-1: Mechanical response of the bilaterally constrained strip under 3.8 mm end 

shortening. 

 Mechanical response 

The postbuckling transition process of the bilaterally constrained strip, in terms of the buckling 

shape configuration and the axial force, can be obtained from the theoretical model. The 

development of the curved segment length L2 and the axial force of the strip versus the strip end 
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shortening are shown in Figure 4-2. It can be seen that during the initial loading stage the strip is 

at its pre-buckled initial configuration, which is straight with no curved segment lengths. Two 

curved segments develop when the first buckling mode jump is triggered. The length of the curved 

segments decreases as the end shortening increases since more flat segments (L1) develop as the 

strip contact with the constraint’s surface grows. Once the flat segment increases to the critical 

length (i.e., the axial stress of an individual flat segment is higher than the overall axial stress of 

the strip), its buckling is triggered and the strip keeps deforming in a similar manner in the next 

buckling mode configuration until the next critical buckling limit is reached. The buckling 

configurations at the beginning and end of each buckling mode are shown in Figure 4-3, which 

also show the growth of the flat segments and the decrease of the curved segments (for each mode 

shape) as loading proceeds. 

 
Figure 4-2: Postbuckling transition process as obtained from theoretical analysis for the 

development of curved segments and axial force on the strip versus the strip end shortening 

(normalized by the initial strip length). 



74 

 
Figure 4-3: Profiles of buckled strip obtained from theoretical analysis at the beginning and the 

end of each buckling mode (height and length are normalized by the initial gap distance and strip 

length). 

 Piezoelectric response 

The open-circuit voltage of the device obtained from the theoretical model (Equation 2-20) 

and the numerical simulation are shown in Figure 4-4. It can be seen that the models are in good 

agreement, predicting a peak voltage around 208V at a 3.8mm end shortening. It can also be 

observed that the voltage curve has the same shape as the load-history response curve (Figure 4-1). 

If the load resistance value is very high in a circuit, the resulting voltage is close to the theoretical 

open circuit voltage output. However, since the peak open-circuit voltage is much higher than the 

maximum voltage of the op-amp (~18V), only the load-circuit voltage output was verified 

experimentally.  
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Figure 4-4: Open-circuit voltage of the energy harvesting device under 3.8mm end shortening in 

a 20s loading-unloading cycle. 

The device was interfaced with a circuit containing a variable resistor and an op-amp, as shown 

in Figure 2-10. Two load resistance cases, 100 MΩ and 125 MΩ, are presented in Figure 4-5 to 

compare with the theoretical and numerical results. The frequency response needs to be considered 

for the analytical and numerical analyses since the device operates under a distribution of transient 

signals over a band of frequencies. The capacitance of the piezoelectric film and the resistive load 

in the interface circuit together form a divider network with a simple RC high-pass filter 

characteristic, which only passes a signal when the frequency of the input is higher than the “cut-

off” frequency (i.e., 0.707 of the magnitude of the input quantity). Therefore, the raw time-domain 

voltage signal was filtered (using a fast Fourier transform (FFT) algorithm) to obtain the resulting 

output signal spectrum and the corresponding time-domain voltage output (by using inverse FFT), 

which gives an asymptotic curve of the output voltage in the corresponding time-domain. 
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Figure 4-5: Load circuit voltage generated by the device for: (a) over 100 MΩ load resistance, 

and (b) over 125 MΩ load resistance. 
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The power-load curve shows the power generated at various load values, which represents the 

theoretical maximum power that can be generated by the device when it is impedance-matched 

with the resistance load for a given end shortening. Piezoelectric materials have a very high internal 

impedance. Under quasi-static deformations, loading effects are substantial when the circuit load 

is small, and the corresponding voltage and power output are low. When the circuit resistance load 

matches the piezo resistance value the generated power is maximum. As the load resistance 

increases beyond the piezo impedance the voltage remains almost constant and close to the open 

circuit voltage value, but the power will drop since the current will keep diminishing. To obtain 

the curve, only the voltage and load resistance are needed since the power can be calculated from 

both variables. The circuit used to obtain the load-voltage and the power-load curves is shown in 

Figure 2-10. The voltage output data collected from the oscilloscope was processed using 

MATLAB to be integrated using Equation 18, and the resulting power-load curve is shown in 

Figure 4-6 for the prototyped piezo-strip (properties are shown in Table 2-2) under three different 

deformation cycles with the same 3.8 mm end shortening. The power is given in μW per cm2 of 

the PVDF surface area, and it is plotted versus the load resistance values in log scale. It can be 

seen that a peak power of 1.33 μW/cm2 is obtained and remains unchanged with varying loading 

time. However, the duration (time) of the deformation cycle affects the dominant response 

frequency, which implies that the resistance load increases with the deformation cycle period. As 

seen in Figure 4-6 resistance loads of 1 GΩ, 2 GΩ, 3 GΩ matched piezoelectric resistance values 

for 20 s, 40 s and 60 s deformation cycles. 
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Figure 4-6: Power-load curves of the energy harvesting device under 3.8 mm end shortening for 

different duration deformation cycles. The power is given in μW per cm2 of the PVDF surface 

area. 

A comparison between the proposed systems from this research with two other investigated 

strategies on harvesting energy from quasi-static loading conditions is shown in Table 4-1. Since 

the device dimensions for each system are different, the maximum power output is normalized by 

the piezoelectric surface area for a better comparison. It can be seen that the proposed system’s 

performance is higher compared to the existing strategies. This demonstrates that the device 

concept developed through this research can adequately and efficiently provide power to devices 

with low-power budgets.  
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Table 4-1: Comparison between our system to other investigated strategies on harvesting energy 

from quasi-static loading conditions. 

Investigated strategies 

on harvesting energy 

from quasi-static 

loading conditions 

Approaches 
Max. Power 

Output (μW/cm2) 
Analytical Experimental Numerical 

Sohn, Choi et al. [226] √ √   0.0025-0.37 

Nanda and Karami [228] √   √ 0.58 

Our system √ √ √ 1.33 

 

 Parametric study 

A parametric study was conducted using the FE model presented in Section 2.7 to determine 

the correlation between power generation and the device’s dimensions. Prior studies on the 

postbuckling behavior of the bilaterally constrained strip, the strip thickness and gap distance were 

identified as the key parameters controlling the postbuckling response [192]. Therefore, Figure 4-7 

shows how the peak power varies with changing strip thickness (specifically, 1.3 mm, 1.1 mm, 0.9 

mm, 0.7 mm, 0.5 mm) and gap distance (specifically, 1.8 mm, 1.6 mm, 1.4 mm, 1.2 mm, and 1 

mm) for 25 different case scenarios. Figure 4-7(a) plots the peak power generated in μW/cm2, 

which increases as the gap distance decreases and the strip thickness increases. However, when 

the peak power is normalized by the maximum external work done, an inverse relation is observed 

as the normalized peak power increases with a decrease of the gap distance and the strip thickness, 

as shown in Figure 4-7(b). Therefore, the optimal dimension of the device is not absolute and it 

can be selected depending on shape factor requirements for placement within a structure or other 

energy-harvesting environment. 
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Figure 4-7: Parametric studies: (a) peak power with changing strip thickness and gap distance, 

and (b) peak power normalized with respect to the maximum external work done. 
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4.2 Model II - BCNC with a cantilever PZT oscillator 

 Model validation 

The theoretical predictions and numerical simulations of the critical buckling configurations (i.e., 

buckling shapes right before mode transitions) of the first three modes for a non-prismatic column 

( = 0.80 /  = 0.35) are compared in Figure 4-8. It can be seen that the models are in good 

agreement in predicting the critical straight section length, which is the key factor for triggering 

the mode transitions. Larger discrepancies are found at the two outer curved sections, which are 

mainly caused by three reasons. First, the buckling shapes in the theoretical model assume that the 

flat segment only forms at the middle of the column. However, this ideal lower limit configuration 

cannot be achieved in reality. Second, the contact friction, which is neglected in the theoretical 

model, causes asymmetry on the buckling shapes of the numerical simulations. Third, using small 

deformation theory and linear strain leads to inaccuracies in the theoretical analysis as the buckling 

wave number and curvature increases [85, 243]. In spite of the noted shortcomings, the theoretical 

model is considered to provide an adequate prediction of the buckling morphologies and it was 

adopted to study the effect of the critical straight segment length on the column’s local instabilities. 
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Figure 4-8: Comparison between the theoretical predictions and numerical simulations of the 

critical buckling configurations for the first three modes. The gap is scaled 3 times for clarity. 

Experimental and simulation results for the first two mode transitions are summarized in Table 

4-2. The force-displacement responses of the baseline design and two non-prismatic design cases 

([/] = [0.85/0.35] and [0.75/0.50]) are presented in Figure 4-9. The snap-through events for 

each buckling mode transition are circled. It can be seen that the FE simulations adequately 

captured the mode transitions, as well as the initial and end response stiffness. The differences 

between the simulated and experimental responses are due to uncertainty in modeling parameters, 

such as the actual imperfections, friction resistance between and strip and walls, and the boundary 

conditions. Nonetheless, the simulation approach is considered acceptable for the purpose of this 

study given that the simulations can adequately capture the number and onset of the mode 

transitions, the initial and end stiffness, and the magnitude of the load drops. 
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Table 4-2: Comparison of simulation and experimental postbuckling results. 

Case 

Mode 3 Mode 5 

Disp. (mm) Force (N) Disp. (mm) Force (N) 

  Exp Num Diff Exp Num Diff Exp Num Diff Exp Num Diff 

0.7 0.4 1.1 1.2 0.1 285 312 27 2.5 2.6 0.2 668 691 23 

0.75 0.5 0.4 0.6 0.3 117 204 87 1.9 2.2 0.3 595 614 19 

0.8 0.45 1.2 1.2 0.0 338 412 74 1.8 1.9 0.1 589 606 17 

0.85 0.35 0.4 0.6 0.3 117 193 76 2.0 2.3 0.4 735 800 65 

0.9 0.5 0.6 0.8 0.2 256 309 53 3.0 2.5 0.5 1216 1036 180 

Baseline 0.7 1.1 0.4 272 375 103 2.9 2.5 0.4 1083 962 121 

 

 
Figure 4-9. Comparison of experimental and numerical force-displacement responses of the 

prismatic baseline column and two non-prismatic columns. 
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Figure 4-9 (cont’d) 
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 Mechanical response 

The experimental configurations for each mode transition of the baseline column and a non-

prismatic column ( = 0.85 /  = 0.35) during the loading phase are shown in Figure 4-10. The 

line contact regions before each mode transition are also indicated in the figure. It can be observed 

that for both columns the snap-through events are always generated at the longest line contact 

region (shown by the red arrows). Thus, controlling the formation of the longest line contact region 

allows control of the buckling locations. The length of the straight segment increases with axial 

shortening. In the prismatic column there is no control of the buckling location since the 

distribution of the line contact segments changes as the mode configuration shifts. However, the 

longest straight segment is always located in the middle of the non-prismatic column (Figure 4-10 

(b)) due to its larger bending resistance. This allows it to behave similar to the lower limit case 

proposed in Figure 2-6. The mode shapes of the non-prismatic strips also feature localized 

transverse deformations in the flexible segments that are superposed on the global buckling shape. 

This is due to the distribution of transverse deformations from traveling strain energy stress waves 

from the stiffer regions to the flexible ones after the snap-through mode transitions.  
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Figure 4-10: Postbuckling transition process as obtained from experiments for (a) baseline design 

and (b) non-prismatic design case  = 0.85/ β = 0.35. 

Figure 4-11 compares the change in length of the straight segment as a function of end 

shortening to a maximum of 2% strain for the baseline and non-prismatic columns ( = 0.85 /  = 

0.35), the results are from the theoretical model (Section 2.6.3) and normalized by the column 
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length L0. For both cases, the length of the straight section at the pre-buckling stage is clearly zero 

as end shortening increases until the column buckles and teaches one side of the walls. The line 

contact region keeps growing as compression proceeds and is followed by a downward jump upon 

reaching the critical point. The columns then re-stabilize at a higher buckling mode configuration 

until the next buckling limit is reached. The solid lines indicate the stable states during the 

postbuckling process and the dotted lines indicate the unstable mode transition phases. It can be 

seen that for the non-prismatic column the normalized critical straight section length at the 

transition to mode 3 is 0.35 (i.e., the same as ). This corresponds to the experimental results 

shown in Figure 4-10, where all of the middle segment length was in contact with the wall before 

buckling. As the buckling mode increases the line contact regions reduce in length to accommodate 

the increased number of buckling waves in the outer segments and the end shortening. Therefore, 

the middle straight section gets shorter each time the column jumps to a higher mode; which 

requires a larger end shortening to trigger the next buckling event, as shown in Figure 4-11. 

Taking the transition to mode 3 as an example, the results in Figure 4-11 show that the non-

prismatic column forms the straight line contact section quicker and reaches the critical limit 

sooner compared to the prismatic baseline column. This comparison holds true for every mode 

transitions shown, as indicated in Figure 4-11 by the much steeper slope of the curves representing 

the straight section length development with end shortening for the non-prismatic column. 

Therefore, in addition to permitting control of the buckling location, the non-prismatic design 

accelerates the development of local instabilities and is able to attain a higher number of buckling 

mode transitions under the same global deformation level (2% global axial strain) compared to the 

baseline uniform design. 
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Figure 4-11: Development of the middle straight section length versus column end shortening 

from theoretical analysis (the data is normalized by the column length L0) for the baseline design 

and non-prismatic design case  = 0.85/ β = 0.35. 

The evolution of buckling shapes (i.e., normalized transverse deflection with respect to the gap 

distance h0 of the strip) for each mode transition of the non-prismatic case ( = 0.85 /  = 0.35) 

from the FE simulations is shown in Figure 4-12. The predicted buckling shapes and the mode 

transitions are consistent with experimental results in that every snap-through event is triggered at 

the middle thicker segment. Besides allowing control of the buckling location, stiffness variations 

along the column lead to a transient response after mode transitions that is quite different to that 

in prismatic columns. In the postbuckling response of a uniform strip the new mode shape 

stabilizes quickly after the snap-through buckling event and the column’s deformed shape 

experiences minor changes until the next mode jump occurs. However, non-prismatic strips 

display a longer transient dynamic response following the snap-through buckling events and stress 
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waves travel along the strip leading to the propagation of local buckling deformations within the 

global stable buckling shape. Once the stiffer region buckles a relatively larger deformation and 

curvature develops at the stiffer region compared to the rest of the column. However, the stored 

strain energy seeks minimization in its distribution along the strip and propagates to the thinner 

regions, which have lower bending stiffness, finally stabilizing at the lowest potential energy level. 

The wave’s travelling direction is shown with arrows in Figure 4-12. 

 
Figure 4-12: Postbuckling transition process as obtained from finite element simulations for non-

prismatic design case  = 0.85/ β = 0.35 ( the longitudinal coordinate is normalized by the 

column length L0; the transverse deflection is normalized by the gap distance h0). 

It is also of interest to compare the postbuckling response features of different segments in the 

non-prismatic columns. The maximum acceleration, average acceleration and the number of 

acceleration impulses at the mid-span of each segment in the column are compared in Table 4-3 

for five selected non-prismatic designs. The value shown for the outer segment is the average from 

the upper and lower thin segments. It can be seen that both the maximum and average acceleration 

at the controlled buckling location (thicker region) are significantly higher. This is attributed to a 
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relatively larger mass and kinetic energy release at the middle thicker segment, where the buckling-

induced high-rate motions were generated. Regarding the number of acceleration impulses: in most 

cases more events were found at the outer segments. This response feature is due to the propagation 

of stress waves towards these regions, which experience local motions in addition to the global 

mode transitions. 

Table 4-3:  Comparison of the absolute maximum acceleration, average acceleration of all 

impulses and the number of impulses at the mid-span of the thicker segment (controlled buckling 

location) and thinner segments for selected cases. 

Cases Abs. Max. Acc. (103 g) Avg. Acc. (103 g) No. of Acc. Impulses 

  Outer Seg. 
Middle 

Seg. 

% 

Diff. 
Outer Seg. 

Middle 

Seg. 

% 

Diff. 
Outer Seg. Middle Seg. Diff. 

0.80 0.35 2.35 3.7 36.5 1.32 2.03 35.0 3 3 0 

0.80 0.50 1.27 3.63 65.0 0.76 1.98 61.7 3 2 1 

0.85 0.35 3.76 13.5 72.2 2.95 8.88 66.7 4 3 1 

0.90 0.45 0.84 8.2 89.8 0.11 4.33 97.4 4 2 2 

0.90 0.35 8.02 9.85 18.6 3.59 8.00 55.1 3 3 0 

 

 Parametric study 

Experimental observations showed that when  was less than 0.7 the thicker segment would 

not be able to buckle due to insufficient force transfer from the thin segment and a kink was 

observed at the stiffness interface of the strip for the three segment case with  = 0.5 during loading. 

When  was greater than 0.90 there was insufficient stiffness variation between the segments to 

make the non-prismatic column behave differently from a prismatic one. Thus, the range of  was 

selected to be 0.7 ≤  ≤ 0.9. Forty-five cases of non-prismatic columns were numerically studied 

within this domain and the results are shown in Figure 4-13 as a response map for the non-prismatic 
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column designs. The postbuckling response was evaluated by two parameters: the highest buckling 

mode shape reached and whether the buckling location was controlled (i.e., pre-determined) or un-

controlled. The design domains with a controlled buckling location are enclosed by the hatched 

region in the diagram. These results support the hypothesis that buckling location along the 

element can be contolled at the stiff segments by reducing the bending strain energy from these 

regions such that they remain straight and develop a line contact with the constraints, therefore 

dictating the triggering location of the snap-through buckling events. Limits to the influence of 

non-prismatic designs for controlled postbuckling response can also be identified in Figure 4-13 

when the thickness and length ratios between segments reach extreme values. The response map 

thus provides guidance for designing non-prismatic column elements as energy concentrators to 

excite vibration-based piezoelectric transducers. 

 
Figure 4-13:  Effect of  and  on the postbuckling location and highest achievable buckling 

mode for the non-prismatic column design. Hatched regions are design domains with controlled 

buckling response. 
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 Dynamic features 

The sequence of postbuckling events was assessed from the transverse accelerations at the top, 

middle (thickened), and bottom segments during the postbuckling response, since the buckling 

location is related to the place of highest kinetic energy release. Figure 4-14 shows the acceleration 

time history for each segment of the non-prismatic case ( = 0.85 /  = 0.35) from the FE 

simulation. The buckling mode shapes are labeled according to each acceleration impulse. It can 

be seen that for each buckling event, the highest acceleration magnitude is always in the middle 

segment, albeit with a slight forward time shift. This means that buckling is triggered in the middle 

segment and that the energy propagates to the top and bottom segments. This result confirms that 

the sequence and location of the postbuckling events can be tailored and controlled through local 

stiffness variations on the strip. In addition, the small peaks on Figure 4-14 that are not labeled are 

due to the motion created by the noted traveling stress waves. Even though they are small 

compared to the other major impulses due to buckling, they are still large enough to count as a 

valid energy input to the target energy harvesters, that is, they exceed 10 g. Moreover, the non-

uniform design largely increased the acceleration magnitude from the order of 103 g to 104 g for 

most of the non-prismatic cases. 
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Figure 4-14: Acceleration time history of case ( = 0.85 /  = 0.35) for each segment along the 

strip from a finite element simulation. 

The acceleration impulses generated by the postbuckling mode transitions of the bilaterally 

constrained column act as a transverse base input excitation to a piezoelectric energy harvesting 

transducer (cantilever bimorph) to generate voltage output. The piezoelectric oscillator is attached 

to the slender axially loaded column element (with the cantilever’s longitudinal axis perpendicular 

to the supporting column’s own longitudinal axis so that it responds as a single-degree-of-freedom 
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oscillator (Figure 2-9(c)). The correlation between the base acceleration input (resulting from the 

snap-buckling events of the axially loaded bilaterally constrained column) and the generated 

piezoelectric voltage output from a bimorph PVDF cantilever with properties shown in Table 2-3 

is illustrated with simulated results in Figure 4-15. The acceleration impulses have positive and 

negative magnitudes (directions normal to the strip’s surface) as a result of the column’s wall 

impact and reaction directions. Therefore, a synthetic acceleration record (Figure 4-15 (a)) with 

impulses of varying magnitudes: equal values in both directions (1s – 3s), larger value in the 

positive direction (4s – 6s) and larger value in the negative direction (7s – 9s) was designed to 

represent different scenarios in the dynamic response of a bilaterally constrained strip during the 

elastic postbuckling response. The acceleration record was then used as the base excitation for the 

bimorph piezoelectric cantilever beam and the generated voltage output calculated using a 

simplified Rayleigh-Ritz approach [266] is shown in Figure 4-15 (b). As expected, the generated 

voltage clearly corresponds to the acceleration pulses. It can also be seen that the magnitude of the 

output voltage is directly proportional to the magnitude of the acceleration impulse. Therefore, 

enhanced performance of the energy harvesting device, from the system’s mechanical aspect, 

requires that the targets for the elastic postbuckling behavior of the bilaterally constrained strip be: 

a) increasing the number of acceleration impulses or mode transitions, b) increasing the magnitude 

of the accelerations impulses, and c) controlling (or predetermining) the buckling locations. The 

piezoelectric responses are evaluated in later sections under these parameters. It is recognized that 

energy harvesting can also be enhanced by modifying the piezoelectric oscillator, but such an 

approach was within the scope of this study. 
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Figure 4-15:  Piezoelectric voltage output by a bimorph piezoelectric oscillator from a set of 

acceleration impulses. 

 Piezoelectric response 

Figure 4-16 presents, from experiments, the applied axial force and the output piezoelectric 

voltage of a PVDF oscillator transducer (Table 2-3) attached to a prismatic baseline column and a 

non-prismatic column ( = 0.80 /  = 0.40) in the configuration shown in Figure 2-9(c), for a full 

loading/unloading 20 s cycle. It can be clearly seen that the non-prismatic column generated a 

higher level and more sustanable voltage output. Since the buckling location is uncontrolable in 

the prismatic column, the local buckling motions are not always at the mounting location of the 

harvester (column mid-height) for every mode, which leads to a much lower level of harvested 

power. By comparison with the baseline column, the increased number global mode transitions of 
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the non-prismatic column provides a more continous series of acceleration impulses to the 

oscillator, and the predefined buckling location at the column mid-height allows all the mode 

transitions to create larger levels of acceleration input to the PVDF oscillator. Therefore, enhanced 

performance of the energy harvesting device was achieved by controlling the elastic postbuckling 

behavior of the non-prismatic strip with increased/enlarged acceleration impulses and a predefined 

and concentrated buckling location. 

 
Figure 4-16:  Piezoelectric output voltage generated for (a) prismatic baseline column and (b) 

non-prismatic column with  = 0.80/  = 0.40. 
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4.3 Conclusions 

This chapter presented the evaluation of the approach for harnessing elastic postbuckling of axially 

compressed bilaterally constrained columns compounded with piezoelectric materials to convert 

strain energy into useful electric power. Two model designs based on this concept were evaluated: 

(1) bilaterally constrained column with a bonded PZT film layer, and (2) bilaterally constrained 

non-prismatic column with a PZT oscillator, through theoretical analyses, numerical simulations, 

and experimental evaluations. The following conclusions were drawn from the results presented 

in this chapter: 

(1) A new approach for converting quasi-static deformations into usable electric energy to 

power energy-efficient micro- sensors and devices, by using an axially compressed 

bilaterally constrained strip with a bonded unimorph piezoelectric layer was demonstrated. 

A simple theoretical model, based on an energy-method, was used to predict the 

corresponding strain of the strip’s buckled configuration for the purpose of calculating the 

electrical energy generation. An experimental investigation and finite element simulations 

were conducted to validate the theoretical results. The analytical model allows accurate 

prediction on the axial strain caused by the buckled configuration of the strip as a function 

of its axial shortening. Numerical and experimental results were shown to be in good 

agreement with the analytical analysis. Experimental results from the prototyped device 

show that a peak power of 1.33 μW/cm2 can be generated, which is independent from the 

deformation loading rate, and which can adequately provide power supply for low-power 

budget devices. Results from a parametric study provide design guidance on selecting 

dimensions for the energy-harvesting device for different form-factor requirements. 
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(2) This design concept demonstrated that the buckling location of multiple mode 

transitions in bilaterally constrained columns under compression can be controlled by 

introducing flexural stiffness variations along the column length. A theoretical model was 

developed based on the stationary potential energy principle through a simplified approach 

for predicting growth of the critical line contact segment length and the column’s buckling 

morphologies as axial compression proceeds.  Non-prismatic designs (obtained through 

thickness variations in discrete form along the column length) increase local instabilities 

in the elastic postbuckling regime, which increases the number of buckling mode 

transitions compared to prismatic columns for the same global strain level. Results showed 

that increased stiffness regions in non-prismatic columns are able to define where local 

buckling will be triggered, such that columns with stiffness variations within an identified 

design domain can attain a controllable location for the buckling events. Therefore, a 

predefined high kinetic energy release spot can be designed on the strip. This feature allows 

predicting where buckling will occur so that piezoelectric oscillators can be optimally 

placed on the strip for use in energy harvesting devices. The direct relation between the 

acceleration base input and the voltage output of piezoelectric oscillator transducers allows 

the tailorable postbuckling response features of non-prismatic columns to be used as a 

multi-stable energy concentrator strip with enhanced performance, in terms of more 

sustainable voltage output from mounted piezoelectric oscillators, for use in quasi-static 

micro-energy harvesting devices. 

 



99 

Chapter 5  

ENERGY DISSIPATIVE MATERIALS – 

RESULTS 

 

Results from experimental evaluations, theoretical analyses, and numerical simulations of the 

energy dissipative materials concept proposed in Chapter 3 are presented in this chapter. 

Experimental results from 3D printed prototypes are shown to verify their recoverable and 

repeatable response and rate-independent energy dissipation of the multi-unit material systems 

under cyclic shear loading. After experimentally validating the theoretical models and numerical 

simulation, numerical results are used to predict the behavior of the single-beam unit element with 

different geometries, and theoretical results are obtained for the optimal energy dissipation of the 

multi-unit material systems for a given unit geometry. Results from parametric studies based on 

the theoretical model are presented at the end of the chapter to explore the design space of the 

proposed materials.  

5.1 Experimental results 

Two beam geometries (= 25°, t/L = 0.17 and = 40°, t/L = 0.18) were used as the unit elements 

for all the test prototypes presented in this chapter. Experiments were performed on two 3D printed 

single-beam units and three multiple-unit structures (Figure 3-5a and Figure 3-5b) to characterize 

their shear behavior and showcase the design concept under both half- and full-cycle loading. The 

tested structures were initially placed in their undeformed states, and the in-plane shear 

deformation was applied as a relative vertical displacement along one edge of the test sample with 



100 

respect to the other fixed edge. Testing was conducted at three deformation rates: 5 mm/s, 10 m/s 

and 15 mm/s. 

 Single-unit beam response 

Experiments on two 3D printed single-beam units with geometries (= 25°, t/L = 0.17 and = 

40°, t/L = 0.18) were first performed. The mechanical responses of the single-beam units are shown 

in Figure 5-1a and Figure 5-1b. To better compare between different structure geometries, a stress 

measure was calculated by normalizing the reaction force by the number of beam elements in the 

columns (i.e., m) and their unit geometry; and the strain is the displacement normalized by the 

maximum displacement applied during the test (max). Two observations are noted. First, the 

response curves of both units are consistent for the different deformation rates, which is indicative 

of a small rate effect from the viscoelastic nature of the polymer material in the 3D printed samples. 

Second, there is a small deviation between the loading and unloading paths. From experimental 

observation, this deviation is due to the unavoidable eccentricity from the alignment between the 

loading frames when shear deformation was applied (see Figure 3-6). Nonetheless, the resulting 

enclosed areas are small and it is not considered to contribute towards energy dissipation in the 

system. 



101 

 
Figure 5-1: Experimental results of single beam units. a) Stress-strain response of single beam 

(= 25°, t/L = 0.17). b) Stress-strain response of sample (= 40°, t/L = 0.18). All samples were 

loaded at various strain rates (5 mm/s, 10 mm/s, and 15 mm/s). Note: the normalized force 

(stress) 𝐹̅ equals to FL3/mIh, and the normalized displacement (strain) is defined as /max. 
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 Multiple-unit system response 

The two multiple-unit structures in Figure 3-5a were also loaded at the three noted deformation 

rates, and the measured shear stress-strain responses for the = 25° and = 40° systems are shown 

in Figure 5-2c and Figure 5-2d, respectively. It is immediately obvious that, unlike the single-beam 

units, the multi-unit structures display hysteretic force-deformation responses with a large 

enclosed areas and thus energy dissipating capacity. Under the applied shear deformation, the 

beam elements within the columns deform simultaneously and snap to their deformed state once 

their critical stress is reached. Due to manufacturing imperfections a given beam in the column 

stack will reach its critical stress first, and this effect will lead to one column reaching essentially 

simultaneous snap-through buckling of all its beams. This deformation process is passed on to 

another column as loading proceeds. The applied shear deformation was stopped when all columns 

switched to their buckled configuration. The test unit was then unloaded by reversing the 

deformation to the initial positon and the structure snapped back column by column during this 

process until all columns (and their beams) returned to their initial undeformed configuration in 

sequential snap-through motions. Because of manufacturing imperfections, the snap-through 

sequence of the columns may vary in different loading cycles. Sequential images at different 

strains of the deformation response of the one half-cycle structure (= 25°, t/L = 0.17, m, n = 12, 

8) due to the applied shear during loading and unloading are shown in Figure 5-3. 



103 

 
Figure 5-2: Stress-strain response of multiple-unit material prototypes for half-cycle shear 

loading condition with (a) = 25°, t/L = 0.17, m, n = 12, 8), and (b) = 40°, t/L = 0.18,7 m, n = 

10, 10. All samples were loaded at various strain rates (5 mm/s, 10 mm/s, and 15 mm/s). Note: 

the normalized force (stress) 𝐹̅ equals to FL3/mIh, and the normalized displacement (strain) is 

defined as /max. 
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Figure 5-3: Sequential deformation process of the sample (= 25°, t/L = 0.17, m, n = 12, 8) 

under a shear loading/unloading cycle. 

For a given base material, the critical stress limit is defined by the beam unit geometry. Figure 

5-2a and Figure 5-2b show that the structure with = 25°, t/L = 0.17 has average peaks around 20 

MPa and the structure with = 40°, t/L = 0.18 has average peaks around 40 MPa, which are 

consistent with the responses of the corresponding single-beam geometry, see Figure 5-1a and 

Figure 5-1b. As each column snaps-through at the critical stress limit, it results in a peak on the 

stress-strain curve and followed by a negative stiffness region. The system regains a positive 

stiffness as the load resisted by the un-buckled columns provide a stable equilibrium path until 

another undeformed column reaches its critical stress limit. Thus, the number of units in a row, or 

number of columns, (i.e., n) controls the number of peaks and the number of unstable regions in 

the response. Ideally all the peaks in the response should be identical since the columns are in a 

series connection that deforms sequentially (one at a time) under the applied end displacement, 

and the columns that experience snap-through buckling should not deform further as the total 

displacement increases. However, gravity and friction resistance at the sliding mechanisms on the 

rigid end-constraining segments affect the experimental response and lead to additional 
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displacement transfer to the snapped columns that deforms them beyond their snapped state. These 

factors in the experiments added a stiffening effect on the response curves and also resulted in a 

residual force on the structure when the applied displacement was removed. Nonetheless, it is clear 

the response is repeatable and stable under cyclic shear loading, and that its features are 

characterized by the structures’ unit geometry and the number of units in series connection (n).  

 Full-cycle loading condition 

In the material structures designed for a half-cycle condition (Figure 3-5a), the shear 

deformation takes place in a single direction, and the response cycle only occurs in the positive 

domain of the stress-strain diagram. The deformation process of the full-cycle structure prototype 

(Figure 3-5b), for which a fully-reversed shear deformation cycle takes place, is shown in Figure 

5-4a. Of the ten columns in this structure, five have their beam units tilted to permit deformation 

in one direction while the other five feature a beam inclination that allows deformation in the other 

direction, and the columns were alternatively arranged to allow fully reversed cyclic loading within 

a single structure. Under an applied displacement, the columns with beams aligned with the active 

loading direction deform in a sequential manner while the columns with beams aligned in the 

opposite direction remain at their undeformed states. The same deformation process takes place 

by the columns with oppositely aligned beams when loading reverses to the other direction. Each 

loading direction activates snap-through instabilities in five columns, which leads to five jumps in 

the stress-strain curves in both the positive and negative domains; and generates a hysteresis area 

that covers the entire response diagram. This sample was also tested at three different deformation 

rates and the shear stress-strain responses are shown in Figure 5-4b. As learned from the half-cycle 

test units, the response was also repeatable and rate-independent under full-cycle shear 

deformations. 
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Figure 5-4: Experimental results of a multiple-unit material prototype for full-cycle shear loading 

condition (= 40°, t/L = 0.18, m, n = 10, 5×2). a) Sequential deformation process of the sample 

under a full-cycle of shear deformation. b) Stress-strain response of the sample at various strain 

rates. All samples were loaded at various strain rates (5 mm/s, 10 mm/s, and 15 mm/s). Note: the 

normalized force (stress) 𝐹̅ equals to FL3/mIh, and the normalized displacement (strain) is 

defined as /max. 

 Discussions 

The polymer material used for the elastic beam units (TangoBlackPlus) is known to have 

hyperelastic behavior (see Figure 3-8). However, the mechanism used in the proposed design 

concept to realize energy dissipation is based on the ‘twinkling’ phenomena and not the 

viscoelastic nature of the base material. This is confirmed by noting from Figure 5-2a, Figure 5-2b , 
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and Figure 5-4a that there is only a small difference between the response curves of the multiple-

unit structures when tested at different strain rates. While the small differences in the responses 

can be attributed to the viscoelasticity of the base material, its effect is small and it can be 

concluded that proposed energy dissipation mechanism is preserved without any viscous material 

effects. This claim is also supported by the analytical model presented in Section 3.5. Thus, the 

shear stress-strain response of the designed material system is dependent on its architecture but 

independent from the external loading rate. 

5.2 Model validation 

The numerical (see Section 3.6 for details) and experimental stress-strain responses of two 

structures with multiple units (= 25°, t/L = 0.17, m, n = 12, 8 and = 40°, t/L = 0.18, m, n = 10, 

10) are compared in Figure 5-5. The numerical simulation takes into consideration the friction 

between the rigid constraining segments when the structures open up during loading, and is 

considered to be in good agreement with the experimental traces. However, the numerical 

simulations become computational expensive when the number of unit elements increases and 

were further used only for predicting single element response. Thus, the simplified analytical 

model presented in Section 3.5 was used to explore the effect of number of unit elements n on the 

material structure behavior for a given unit geometry.  
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Figure 5-5: Experimental and numerical stress-strain response for two multiple-unit structures 

for = (25°, 40°), t/L = (0.17, 018), and m, n = (12, 8; 10, 10). 

 
Figure 5-6: Numerical and analytical stress-strain and strain energy responses for two unit beams 

for = (25°, 40°) and t/L = (0.17, 0.18). The normalized strain energy equals to UL3/mnIh with 

the unit in MPa or J/mm3. 
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Figure 5-6 compares numerical and analytical results of the stress-strain and strain energy 

responses of single elements with = 25o and  = 40o. It can be seen that the negative stiffness 

region caused by a release of the system stored strain energy is reflected as a non-convex energy 

curve. The simplified model can qualitatively capture the snap-through behavior of the unit beams 

in terms of critical forces, as well as the maximum and minimum energy; which is adequate to 

predict the multi-unit system response for a given material architecture. 

5.3 Optimal energy dissipation 

The effect of n on the amount of energy dissipated in the structure was explored analytically using 

unit elements with = 25° and t/L = 0.174. The force-deformation response for a half-cycle shear 

loading condition is presented in Figure 5-7. It can be seen that when the number of units is lower 

than three the loading and unloading paths are coincident, with negative stiffness regions but no 

energy dissipation. This response follows from the fact that the unstable motion of the unit’s DOFs 

(degrees-of-freedom) are imposed/stabilized by the applied deformation and the boundary 

conditions. When n increases to three the middle element’s DOF is free to become unstable under 

the applied displacement, which leads to energy dissipation of the system – as seen by the areas 

defined by the different loading and unloading paths. As n is further increased, more DOFs from 

the inner connected elements are free to experience an unstable response, which leads to higher 

energy dissipation and reflected as an enlarged hysteresis area. The distance (deformation) 

between the unstable ‘jumps’ in the force-deformation response curve reduces as more stable 

equilibrium paths are provided by the increased number of elements in the system, which in the 

limit results in a smooth response curve that encloses a region such that it becomes defined by two 

flat horizontal lines at the critical stress values and the two stable equilibrium paths. This leads to 
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an elastic-plastic-type behavior [267, 268] of the proposed structures that is recoverable.  

 

Figure 5-7: Effect of n on the stress-strain response for a given unit geometry (= 25°, t/L = 

0.17). 

Taking into consideration the work energy imposed to the system, energy dissipation efficiency 

can be quantified by the loss factor,  = 𝐷̅/𝑈̅𝑚𝑎𝑥, where 𝐷̅ is the dissipated energy per loading-

unloading cycle (area enclosed by the 𝐹̅ − 𝛿̅ curve), 𝑈̅𝑚𝑎𝑥 is the strain energy at max, and  is 

used instead of 2 since only the positive stress-strain cycle is considered in this case (because the 

cyclic integral extends only over a half cycle.) The loss factor for material systems with five 

different unit beam geometries are presented as a function of n in Figure 5-8. The effect of system 

architecture on the stress-strain response of the structures can also be observed by the -n curves. 

The results show that no energy dissipation occurs, and  equals to zero, when n is less than three 
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(i.e., grey region in Figure 5-8). As n increases beyond three  has a dramatic growth with 

increasing n and keeps rising towards a plateau. When n exceeds one-hundred  stabilizes at a 

plateau value based on the unit geometry and becomes independent of n. This plateau is reached 

as the loading and unloading paths in the stress-strain response of the multi-unit material structure 

become bounded by two horizontal lines at the critical snap-buckling stresses, leading to the 

maximum hysteresis area. From the -n diagram, we can see that once the number of units reaches 

a ‘saturation’ point the optimal energy dissipating performance of the proposed material structures 

is solely based on the beam unit geometry. Therefore, properties of the proposed material systems 

at their optimal condition for a given unit geometry can be calculated. 

 
Figure 5-8: Effect of the unit geometry on the energy dissipation efficiency (loss factor) for five 

unit beams for = (25°, 40°, 30°, 35°, 40°) and t/L = (0.17, 0.18,0.15,0.14,0.1). 
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Figure 5-9: Stress-strain response of structures at their optimal performance (n = inf) with a 

given unit geometry for different values of  and t/L. 
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Figure 5-9 (cont’d) 

 
 

5.4 Parametric study 

A parametric study was conducted to explore the effect of unit geometry on the structures’ energy 

dissipation properties at their optimal performance. Stress-strain responses for single beam 

element within the given range of and t/L, for a total of 132 combinations, were obtained from 

numerical simulations and post-processed (see Figure 5-9). Under the assumption of optimal 

performance, that is n = infinite, the response curve is defined as the two stable equilibrium paths 

and the two flat horizontal paths at the structures’ critical stress limits. Thus, the maximum and 

minimum critical snap-through points of a curve are searched. If the limit points exist then the 

optimal response curve is defined by the two initial stable equilibrium paths and the two flat 

horizontal paths connecting the limit point to the closest equilibrium path with an enclosed 

hysteresis area, and the maximum energy dissipation can be calculated. If there is no limit points 
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on the curve then a snap-though response does not occur and there is no energy dissipation. The 

simulation was terminated if a self-contact condition was detected.  

 
Figure 5-10: Response map of the energy properties in the proposed structures at their optimal 

performance (n = infinite) with different combination of  and t/L. a). Normalized dissipated 

energy 𝐷̅, b). Normalized maximum strain energy 𝑈̅𝑚𝑎𝑥, and c). Loss factor . 

A response map, shown in Figure 5-10, that covers all the different combination of and t/L 

was created to evaluate the geometric effect of the unit element on the energy dissipation properties 

of the proposed structures at their optimal performance. The response map covers a wide range of 

unit geometries through combinations of and t/L, and the resulting properties are shown in terms 

of normalized dissipated energy 𝐷̅, normalized maximum strain energy 𝑈̅𝑚𝑎𝑥, and loss factor . 
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The raw data used to generate this map can be found in Table 5-1, Table 5-2, and Table 5-3 below. 

A beam element experiences no snap-through instability when the value of is too low (i.e., the 

beam is close to perpendicular to the applied displacement direction), and self-contact due to large 

deformation occurs when the value of is too high (i.e., the beam is close to parallel to the applied 

displacement direction). These two conditions, indicated as white regions in Figure 5-9, define the 

feasible design domain of the material structures – colored area in the figure. Within the design 

domain, the system dissipates more energy as increases and t/L decreases as a result of the 

increased absolute difference between the two critical snap-through stresses (see  Figure 5-9). Also, 

the maximum strain energy due to the applied shear deformation increases as both  and t/L 

increase. This narrows the map that leads to high loss factor values in the left middle region of the 

domain, which gives the highest η equal to 0.167 for a unit beam element with = 25° and t/L = 

0.1. 

Table 5-1:   Normalized energy dissipation (FL3/mIh × ∑δ/Δmax) for half-cycle loading 

condition of structures at their optimal performance (n = inf) with a given unit geometry for 

different values of and t/L. The unit of normalized energy is MPa (or J/mm3). 

/ t/L 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

10 3.36 3.13 4.69 NaN NaN NaN NaN NaN NaN NaN NaN 

15 14.90 11.19 8.39 6.31 4.76 3.79 3.27 3.22 3.68 4.96 NaN 

20 30.71 25.26 20.77 17.07 13.94 11.48 9.48 7.85 6.55 5.53 4.73 

25 45.80 39.59 34.21 29.58 25.47 22.08 19.20 16.71 14.64 12.88 11.36 

30 58.73 52.47 46.81 41.74 37.09 33.15 29.71 26.63 24.03 21.78 19.77 

35 69.47 63.43 57.90 52.77 47.85 43.65 39.88 36.38 33.44 30.85 28.45 

40 78.33 72.74 67.46 62.43 57.49 53.17 49.25 45.46 42.30 39.46 36.74 

45 85.81 80.56 75.66 70.83 65.95 61.68 57.70 53.67 50.41 47.45 44.48 

50 92.23 87.36 82.69 78.28 73.42 69.21 65.27 61.13 57.82 54.78 51.61 

55 97.84 93.30 88.90 84.78 80.07 76.06 72.25 67.99 64.66 61.60 58.27 

60 102.80 98.66 94.64 90.70 86.09 82.23 78.55 74.19 70.89 67.82 NaN 

65 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

70 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
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Table 5-2:  Normalized maximum strain energy (UL3/mnIh) for half-cycle loading condition of 

structures at their optimal performance (n = inf) with a given unit geometry for different values 

of  and t/L. The unit of normalized energy is MPa (or J/mm3). 

/ t/L 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 

5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

10 20.4 18.3 15.0 NaN NaN NaN NaN NaN NaN NaN NaN 

15 41.2 39.4 37.9 36.6 36.1 34.9 32.9 31.8 29.4 26.4 NaN 

20 61.4 61.5 59.3 58.5 58.7 57.2 56.6 56.1 55.6 54.5 53.7 

25 86.7 84.1 82.0 80.1 82.7 81.1 81.1 80.7 79.5 79.5 78.9 

30 113.8 109.5 108.6 107.8 107.7 107.0 104.4 107.0 106.4 105.8 105.8 

35 142.2 149.2 138.2 136.4 138.3 136.7 135.2 134.9 133.4 132.1 133.7 

40 169.3 166.5 168.9 166.1 167.3 168.9 166.2 164.9 165.9 163.3 164.6 

45 198.8 195.2 197.9 194.1 200.3 201.7 197.8 199.9 200.6 196.7 197.4 

50 223.4 226.9 229.7 225.0 231.2 232.6 233.7 235.4 230.1 230.6 230.9 

55 249.4 253.3 256.4 259.0 265.2 266.5 267.4 269.0 262.6 263.0 263.1 

60 287.1 281.3 284.7 287.5 294.1 295.5 296.5 298.1 298.6 298.9 NaN 

65 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

70 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

 

Table 5-3:  Loss factor (η = 𝐷̅/𝜋𝑈̅𝑚𝑎𝑥) for structures at their optimal performance (n = inf) with 

a given unit geometry for different values of  and t/L.  

/ t/L 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 

5 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

10 0.05 0.05 0.10 NaN NaN NaN NaN NaN NaN NaN NaN 

15 0.12 0.09 0.07 0.05 0.04 0.03 0.03 0.03 0.04 0.06 NaN 

20 0.16 0.13 0.11 0.09 0.08 0.06 0.05 0.04 0.04 0.03 0.03 

25 0.17 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.05 

30 0.16 0.15 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06 

35 0.16 0.14 0.13 0.12 0.11 0.10 0.09 0.09 0.08 0.07 0.07 

40 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.09 0.08 0.08 0.07 

45 0.14 0.13 0.12 0.12 0.10 0.10 0.09 0.09 0.08 0.08 0.07 

50 0.13 0.12 0.11 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.07 

55 0.12 0.12 0.11 0.10 0.10 0.09 0.09 0.08 0.08 0.07 0.07 

60 0.11 0.11 0.11 0.10 0.09 0.09 0.08 0.08 0.08 0.07 NaN 

65 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

70 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 
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5.5 Conclusions 

This chapter presented a new class of 3D printed architected materials with the ability to tailor 

shear response with controllable energy dissipation. This was demonstrated by combining 

experiments, simulations, and analyses. The proposed materials offer recoverable and rate-

independent response under cyclic shear deformations by utilizing the unique response of elastic 

instabilities in their microstructure. Design of the material’s periodic architecture allows 

independent control of the critical stress limit and the energy dissipation properties; and permits 

the material structures to be functional under both half- and full-cycle in-plane shear deformations. 

The amount of dissipated energy in these materials depends solely on the microstructural geometry 

once the number of unit elements reach saturation, and their response is highly predictable. These 

mechanical metamaterial may find applications in mechanical engineering for protective 

equipment and packaging, or civil systems for infrastructure safety under a variety of shear loading 

conditions. 
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Chapter 6  

CONCLUSIONS 

6.1 General remarks 

Energy transduction in mechanical systems by harnessing elastic instabilities was demonstrated in 

this dissertation by addressing two challenges: (1) harvesting electric energy from low frequency 

quasi-static mechanical deformations, and (2) dissipating energy in materials subject to cyclic 

shear deformations in a recoverable and rate-independent manner. Two novel concepts that 

leveraged the phenomena of multiple elastic instabilities in structural systems were presented to 

address each of the noted challenges. Each structural system was systematically investigated using 

3D polymer-printing prototyping, theoretical analyses, numerical simulations, and experiments.  

In the energy harvesting concept, the strain energy accumulated in axially compressed 

bilaterally constrained columns under quasi-static deformations was released through multiple 

buckling instabilities in their elastic postbuckling response. The strain energy accumulated in the 

structures was transformed into usable electric energy by coupling this response with the 

piezoelectric effect of mounted transducers. This concept overcomes the disadvantage of poor 

performance of piezoelectric materials under low frequency excitations and it was shown to be 

effective in harvesting energy directly from low frequency quasi-static deformation sources. It was 

demonstrated that the resulting energy generation can adequately provide power supply for low-

power budget devices, such as self-powered structural health monitoring sensors or in vivo bio-

MEMS. 
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The proposed energy harvesting devices were experimentally validated through 3D polymer-

printed strip/ prototypes outfitted with commercial piezoelectric materials. The prototypes were 

tested under quasi-static loading and unloading. Results from numerical and analytical models 

were in good agreement with the experiments, and were the models were further used to predict 

the postbuckling behavior of the considered structures. The experimental results showed that the 

non-prismatic strip/column design permits controlling the buckling location at each buckling mode 

transition thus leading to enhanced energy generation compared to prismatic designs, which do 

now allow controlling the localized buckling locations. The proposed energy-harvesting devices 

incorporating non-prismatic cross-section were shown to generate a peak power of 1.33 μW/cm2, 

which is considerably higher than other current quasi-static piezoelectric energy harvesting 

strategies.  

The energy-dissipative material concept, which proposes the use of elastic inclined beams in 

the microstructure of the material architecture, was shown to manage the strain energy generated 

due to cyclic shear deformations and dissipate it through sequential snap-through instabilities. The 

periodic arrangement of the elastic inclined beams permits the generation of a ‘twinkling’ 

phenomenon under repeated in-plane deformations, which results in rate-independent energy 

dissipations and a fully recoverable response. This concept addresses the need of high energy-

dissipative materials under shear loads, and overcomes the disadvantages of permanent 

deformations and rate dependency in traditional energy dissipating mechanisms and materials. The 

developed material design concept can be deployed in diverse applications such as personal 

protection, packaging, and civil structures. 

Prototypes of the energy-dissipating material concept were experimentally tested at different 

loading rates showing controllable, repeatable, and rate-independent response under both half- and 
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full-cycle in-plane shear deformations. The critical stress limit and the energy dissipation 

properties can be designed through the material’s periodic architecture and can be predicted 

analytically. The system reaches optimal energy dissipation performance for a high number of unit 

elements, reaching a saturation point that was found to be one-hundred for the geometry and 

material evaluated in this study. The dissipated energy then depends solely on the microstructural 

geometry, predicted numerically in this work, with the highest loss factor η for the studied system 

found to be equal to 0.167. 

This dissertation leveraged the phenomena of internal energy exchange within a structure or 

solid due to the presence of multiple elastic instabilities, as well as multi-physics coupling effects, 

to convey strain energy accumulated in a system into predefined responses or to perform desirable 

functions. The presented investigation led to improved understanding on the methods to control 

elastic instabilities in slender structures for desirable purposes. The novel structural concepts 

developed in this research, along with the demonstrated analytical and numerical methods, enable 

and push forward the design of adaptive and smart structural systems. 

6.2 Remaining questions 

Several questions arose over the course of this study that are outside the scope of this dissertation 

but warrant further investigation. The most salient ones are presented here. 

 The behavior of the structural design concepts was demonstrated using 3D printed polymer 

prototypes without considering the operating environment for specific applications. Effects from 

the operating environment on the behavior of the proposed systems needs to be studied for 

appropriate base-material selection and manufacturing methods. Important effects to consider are 

temperature, moisture and surrounding media interaction/exposure; as well as long-term behavior 
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due to material degradation and fatigue. Design optimization for optimal material/structural 

performance can also be implemented accordingly. 

 The architected material concept was demonstrated with table-top scale prototypes with 

only a few unit elements, rather than the high number of units required for their optimal 

performance. In addition, questions and challenges remain regarding scale-down and scale-up of 

the concept in order to deploy it for targeted applications. For example, for use in the inner layer 

of a helmet the architecture of the material needs to be fabricated at the microscale; or for use as 

connector between building shear walls, the materials need to be fabricated in large scales. Thus, 

effective fabrication methods need to be further considered for the large number of complex 

architecture design under different size scale requirements. 

6.3 Potential future research 

Potential future studies that follow directly from what was investigated and discovered in this 

research is discussed in the following.  

Fatigue test on slender columns/beams made with different materials under repeated 

axial/transverse loading-unloading cycles to trigger buckling/snapping instabilities should be 

evaluated to assess the structures’ long-term behavior. Materials with a range of stiffness variations 

and with high-flexibility to support large elastic rotations should be selected to fabricate the 

samples, since the response of elastic instabilities is associated the material’s ability to store and 

release strain energy before and after the critical limit (i.e., pre- and post- critical stiffness).  

The proposed energy-dissipating architected material designs are functional under half and full 

cycle unidirectional in-plane shear deformation. Designs for bi-directional shear deformations can 

be explored to expand the material design space from two-dimensional to three-dimensional. In 
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the current investigation, the architected material prototypes were evaluated under quasi-static 

loading conditions with regular loading-unloading cycles. Their responses under dynamic loading 

conditions with consideration of inertia effects and under irregular loading-unloading cycles (e.g., 

seismic induced deformations) can also be further investigated.  

Only two structural systems featuring a behavior with multiple elastic instabilities were 

investigated in this dissertation. However, the core knowledge and analytical and numerical 

methods developed and used in this research also enable the exploration other slender structures 

with highly nonlinear structural behavior. Further, while the multi-physics coupling of mechanical 

instabilities with piezoelectric effects was applied in the current work, other multi-physics 

phenomena, such as interactions with fluids, optoelectronics, or electromagnetism, can also 

provide fruitful and exciting research areas to be explored. Looking forward, the ample 

opportunities offered by elastic instabilities go well beyond the scope of this dissertation are a 

myriad of opportunities remain to be explored for leveraging this unique phenomena in solids for 

improved form and function of smart materials and adaptive structures. 
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