
FASTER ALGORITHMS FOR MACHINE LEARNING PROBLEMS IN HIGH DIMENSION

By

Mingquan Ye

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science – Master of Science

2019

ABSTRACT

FASTER ALGORITHMS FOR MACHINE LEARNING PROBLEMS IN HIGH DIMENSION

By

Mingquan Ye

When dealing with datasets with high dimension, the existing machine learning algorithms often

do not work in practice. Actually, most of the real-world data has the nature of low intrinsic

dimension. For example, data often lies on a low-dimensional manifold or has a low doubling

dimension. Inspired by this phenomenon, this thesis tries to improve the time complexities of two

fundamental problems in machine learning using some techniques in computational geometry.

In Chapter two, we propose a bi-criteria approximation algorithm for minimum enclosing ball

with outliers and extend it to the outlier recognition problem. By virtue of the “core-set” idea and

the RandomGradient Descent Tree, we propose an efficient algorithm which is linear in the number

of points n and the dimensionality d, and provides a probability bound. In experiments, compared

with some existing outlier recognition algorithms, our method is proven to be efficient and robust

to the outlier ratios.

In Chapter three, we adopt the “doubling dimension” to characterize the intrinsic dimension of

a point set. By the property of doubling dimension, we can approximate the geometric alignment

between two point sets by executing the existing alignment algorithms on their subsets, which

achieves a much smaller time complexity. More importantly, the proposed approximate method

has a theoretical upper bound and can serve as the preprocessing step of any alignment algorithm.

ACKNOWLEDGEMENTS

Firstly, I want to express my thanks to my parents and my brother for supporting me to go abroad

and do research.

I also thankmy advisor Prof. HuDing for leadingme to the research on computational geometry

and theoretical computer science.

Thanks to Prof. Eric Torng and Prof. Yiying Tong for being my thesis committee members.

I thank our department secretary Steven Smith for helping me a lot during my master stage.

Finally, I also would like to thank my fellows Liyang Xie, Kaixiang Lin, Qinhao Zhang, Jun

Guo and my friends Qianqian, Zhengfa, Yue Wang and Shuo Wang.

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ALGORITHMS . vii

KEY TO ABBREVIATIONS . viii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 ANOVEL GEOMETRIC APPROACH FOROUTLIER RECOGNITION
IN HIGH DIMENSION . 3

2.1 Introduction . 3
2.1.1 Related Work . 4
2.1.2 Preliminaries . 5

2.2 Our Algorithm and Analyses . 6
2.2.1 Algorithm for MEB with Outliers . 7
2.2.2 Parameter Settings and Quality Guarantee 8
2.2.3 Complexity Analyses . 12
2.2.4 Boosting . 13

2.3 Experiments . 14
2.3.1 Datasets and Methods to Be Compared . 14
2.3.2 Random Datasets . 15
2.3.3 Benchmark Image Datasets . 16
2.3.4 Comparisons of Time Complexities . 19

2.4 Summary . 19

CHAPTER 3 GEOMETRIC ALIGNMENT IN LOW DOUBLING DIMENSION 21
3.1 Introduction . 21

3.1.1 Related Work . 25
3.1.2 Outline of Our Work . 26

3.2 The Proposed Method . 28
3.3 Time Complexity Analysis . 33
3.4 Experiments . 34

3.4.1 Random dataset . 34
3.4.2 Real dataset . 36

3.5 Summary . 36

BIBLIOGRAPHY . 38

iv

LIST OF TABLES

Table 2.1: The F1 scores for the high-dimensional random dataset. 16

Table 2.2: The F1 scores of the four methods on MNIST by using PCA-grayscale; the
three columns for each γ correspond to PCA-0.95, PCA-0.5 and PCA-0.1,
respectively. 17

Table 2.3: The F1 scores of the four methods on MNIST by using autoencoder feature. . . . 18

Table 2.4: The F1 scores of the four methods on Caltech-256 by using VGG net feature. . . 18

Table 2.5: The F1 scores of the four methods on Caltech-256 by using PCA-VGG feature;
the three columns for each γ correspond to PCA-0.95, PCA-0.5 and PCA-0.1,
respectively. 19

Table 3.1: Random dataset: EMD and running time of different compression levels. 35

Table 3.2: Linguistic datasets: EMD and running time of different compression levels. . . . 37

Table 3.3: PPI network datasets: EMD and running time of different compression levels. . . 37

v

LIST OF FIGURES

Figure 2.1: The blue links represent the path from root r to node v, and Pr
v contains the

four points along the path. The point set Sv corresponds to the child nodes of v. 9

Figure 2.2: The illustration of MEB(Pr
v) and MEB(Pr

v′
); the blue and red points repre-

sent the inliers and outliers, respectively. 11

Figure 2.3: The illustration of our algorithm on a 2-dimensional point set. 16

Figure 3.1: The illustration of alignment of two geometric patterns. 21

Figure 3.2: The illustration of EMD between two weighted point sets. 22

Figure 3.3: This image is excerpted from (Zhang et al. (2017)). After obtaining Chinese
and English word embeddings, the problem becomes finding the optimal
geometric alignment to minimize their EMD. 23

Figure 3.4: The illustration of PPI networks alignment (Liu et al. (2017)). 24

Figure 3.5: Illustration of Algorithm 4. 31

Figure 3.6: The EMDs over baseline for different noise levels. 35

vi

LIST OF ALGORITHMS

Algorithm 1 (ε, δ)-approximation Algorithm of Outlier Recognition Problem 7

Algorithm 2 Approximation Algorithm of MEB . 12

Algorithm 3 2-approximation k-center clustering . 28

Algorithm 4 Geometric Alignment . 30

vii

KEY TO ABBREVIATIONS

PCA principal component analysis

MDA multiple discriminant analysis

SVM support vector machine

MEB minimum enclosing ball

RGD random gradient descent

EMD earth mover’s distance

PPI protein-protein interaction

PTAS polynomial-time approximation scheme

ICP iterative closest point

OP orthogonal procrustes

viii

CHAPTER 1

INTRODUCTION

In the era of big data, we expect to replace some polynomial time algorithms with linear or even

sub-linear time algorithms. Generally speaking, we focus on two aspects: data quantity and data

dimensionality.

1. For the former case, intuitivelywe only employ a part of dataset by sampling some “important”

data points. A relevant concept is called “core-set”. Specifically, given a point set P and a

class of functions F , for any function f ∈ F , we denote cost(f , P) as the cost of function f

on dataset P, then a (weighted) subset S of P is called the core-set of P if for ε > 0 and any

f ∈ F we have that

(1 − ε) · cost(f , P) ≤ cost(f , S) ≤ (1 + ε) · cost(f , P).

For core-sets, we refer readers to several surveys (Phillips (2016); Clarkson (2010);Munteanu

and Schwiegelshohn (2018)).

2. For the second case, the dimension reduction is themost commonly used technique in practice.

There are a lot of classical methods in different fields including machine learning, statistics

and theoretical computer science, such as principal component analysis (PCA), multiple

discriminant analysis (MDA) and Johnson-Lindenstrauss lemma (Achlioptas (2003)). In

practice, the method that we adopt is determined by the specific problems. For a survey, we

refer readers to (Song et al. (2018)).

In this thesis, we concentrate on two machine learning problems in high dimension. Our

motivation is the observation that many real-world datasets often have low intrinsic dimensions

(Belkin (2003)). For example, the core-set size of minimum enclosing ball is d1/εe (Badoiu and

Clarkson (2003)) which is independent of the number of points n and the dimensionality d; in

computational geometry, the intrinsic dimension of a metric space is often characterized by the

1

concept “doubling dimension”, which is also independent of the dimensionality of the space. Based

on the key observation, in this thesis we improve the time complexities of two important problems

in machine learning. Specifically, the contributions of this thesis are summarized as follows.

1. We present a novel geometric approach for outlier recognition. An approximate minimum

enclosing ball is built to cover the inliers but exclude the outliers. However, the existence

of outliers makes the problem to be not only non-convex but also highly combinatorial,

and the high dimensionality makes the problem more difficult. To tackle these challenges,

we develop a randomized algorithmic framework using the core-set idea. Comparing with

existing methods for outlier recognition, our method has a quality guarantee and lower time

complexity.

2. We are the first to develop efficient algorithmic framework for the geometric alignment

problem in large-scale and high dimension. By virtue of the property of doubling dimension,

we prove that the given geometric patterns with low doubling dimension can be substantially

compressed and thus save a lot running time when computing alignment. More importantly,

our method is an independent step, therefore it can serve as the preprocessing for various

alignment algorithms.

2

CHAPTER 2

A NOVEL GEOMETRIC APPROACH FOR OUTLIER RECOGNITION IN HIGH
DIMENSION

2.1 Introduction

In this big data era, we are confronted with an extremely large amount of data and it is important

to develop efficient algorithmic techniques to handle the arising realistic issues. Due to its recent

rapid development, deep learning (Hinton et al. (2012)) becomes a powerful tool for many emerging

applications; meanwhile, the quality of training dataset often plays a key role and seriously affects

the final learning result. For example, we can collect tremendous data (e.g., texts or images)

through the internet, however, the obtained dataset often contains a significant amount of outliers.

Since manually removing outliers will be very costly, it is very necessary to develop some efficient

algorithms for recognizing outliers automatically in many scenarios.

Outlier recognition is a typical unsupervised learning problem and its counterpart in supervised

learning is usually called anomaly detection (Tan, Steinbach, and Kumar (2006)). In anomaly

detection, the given training data are always positive and the task is to generate a model to depict

the positive samples. Therefore, any new data can be distinguished to be positive or negative (i.e.,

anomaly) based on the obtained model. Several existing methods, especially for image data, include

autoencoder (Sakurada and Yairi (2014)) and sparse coding (Lu, Shi, and Jia (2013)).

Unlike anomaly detection, the given data for outlier recognition are unlabeled; thus we can

only model it as an optimization problem based on some reasonable assumption in practice. For

instance, it is very natural to assume that the inliers (i.e., normal data) locate in some dense region

while the outliers are scattered in the feature space. Actually, many well known outlier recognition

methods are based on this assumption (Breunig et al. (2000); Ester et al. (1996)). However, most

of the density-based methods are only for low-dimensional space and quite limited for large-scale

high-dimensional data that are very common in computer vision problems (note that several high-

3

dimensional approaches often are of heuristic natures and need strong assumptions (Kriegel et al.

(2009); Kriegel, Schubert, and Zimek (2008); Aggarwal and Yu (2001)). Recently, (Liu, Hua,

and Smith (2014)) applied the one-class support vector machine (SVM) method (Schölkopf et al.

(1999)) to high-dimensional outlier recognition. Further, (Xia et al. (2015)) introduced a new

unsupervised model of autoencoder inspired by the observation that inliers usually have smaller

reconstruction errors than outliers.

Although the aforementioned methods could efficiently solve the problem of outlier recognition

to a certain extent, they still suffer from several issues such as high time and space complexities or

unstable performances for different datasets. In this chapter, we present a novel geometric approach

for outlier recognition. Roughly speaking, we try to build an approximate minimum enclosing ball

(MEB) to cover the inliers but exclude the outliers. This model is seemed to be very simple but

involves a couple of computational challenges. For example, the existence of outliers makes the

problem to be not only non-convex but also highly combinatorial. Also, the high dimensionality

makes the problemmore difficult. To tackle these challenges, we develop a randomized algorithmic

framework using a popular geometric concept called “core-set”. Comparing with existing results

for outlier recognition, we provide a thorough analysis on the complexities and quality guarantee.

Finally, we test our algorithm on both random and benchmark datasets and the experimental results

reveal the advantages of our approach over various existing methods.

2.1.1 Related Work

Besides the aforementioned existing results, many other methods for outlier recognition/anomaly

detection were developed previously and the readers can refer to several excellent surveys (Kriegel,

Kröger, and Zimek (2009); Chandola, Banerjee, and Kumar (2009); Gupta et al. (2014)).

In computational geometry, a core-set (Agarwal, Har-Peled, and Varadarajan (2005)) is a

small set of points that approximates the shape of a much larger point set, and thus can be used

to significantly reduce the time complexities for many optimization problems (please refer to a

recent survey (Phillips (2016))). In particular, a core-set can be applied to efficiently compute an

4

approximate MEB for a set of points in high-dimensional space (Badoiu, Har-Peled, and Indyk

(2002); Kumar, Mitchell, and Yildirim (2003)). Moreover, (Bădoiu and Clarkson (2008); Badoiu

and Clarkson (2003)) showed that it is possible to find a core-set of size d1/εe that yields a (1+ ε)-

approximate MEB, with an important advantage that the size is independent of the original size

and dimensionality of the dataset. In fact, the algorithm for computing the core-set of MEB is a

Frank-Wolfe style algorithm (Frank and Wolfe (1956)), which has been systematically studied by

Clarkson (Clarkson (2010)).

The problem of MEB with outliers also falls under the umbrella of the topic robust shape fitting

(Har-Peled and Wang (2004); Agarwal, Har-Peled, and Yu (2008)), but most of the approaches

cannot be applied to high-dimensional data. (Zarrabi-Zadeh and Mukhopadhyay (2009)) studied

MEB with outliers in high dimension, however, the resulting approximation is a constant 2 that is

not fit enough for the applications proposed in this chapter.

Actually, our idea is inspired by a recent work about removing outliers for SVM (Ding and Xu

(2015)), where they proposed a novel combinatorial approach called Random Gradient Descent

(RGD) Tree. It is known that SVM is equivalent to finding the polytope distance from the origin

to theMinkowski Difference of the given two labeled point sets. Gilbert algorithm (Gilbert (1966);

Gärtner and Jaggi (2009)) is an efficient Frank-Wolfe algorithm for computing polytope distance,

but a significant drawback is that the performance is too sensitive to outliers. To remedy this issue,

RGD Tree accommodates the idea of randomization to Gilbert algorithm. Namely, it selects a small

random sample in each step by a carefully designed strategy to overcome the adverse effect from

outliers.

2.1.2 Preliminaries

As mentioned before, we model outlier recognition as a problem of MEB with outliers in high

dimension. Here we first introduce several definitions that are used throughout this chapter.

Definition 1 (Minimum Enclosing Ball (MEB)). Given a set P of points in Rd , MEB is the ball

covering all the points with the smallest radius. The MEB is denoted by MEB(P).

5

Definition 2 (MEBwith Outliers). Given a set P of n points inRd and a small parameter γ ∈ (0, 1),

MEB with outliers is to find the smallest ball that covers at least (1 − γ)n points. Namely, the task

is to find a subset of P having at least (1 − γ)n points such that the resulting MEB is the smallest

among all the possible choices; the induced ball is denoted by MEB(P, γ).

From Definition 2 we can see that the major challenge is to determine the subset of P which

makes the problem a challenging combinatorial optimization. Therefore we relax our goal to its

approximation as follows. For the sake of convenience, we always use Popt to denote the optimal

subset of P, that is, Popt = argP′min{ the radius of MEB(P′) | P′ ⊂ P, |P′| ≥ (1 − γ)n}, and ropt

to denote the radius of MEB(Popt).

Definition 3 (Bi-criteria Approximation). Given an instance (P, γ) for MEB with outliers and two

small parameters 0 < ε, δ < 1, an (ε, δ)-approximation is a ball that covers at least (1− (1+ δ)γ)n

points and has the radius at most (1 + ε)ropt.

When both ε and δ are small, the bi-criteria approximation is very close to the optimal solution

with only a slight violation on the number of covering points and radius.

2.2 Our Algorithm and Analyses

In this section, we present our method in detail. For the sake of completeness, we first briefly

introduce the core-set for MEB based on the idea of (Badoiu and Clarkson (2003)).

The algorithm is a simple iterative procedure with an elegant analysis: initially, it selects an

arbitrary point and places it into a set S that is empty at the beginning; in each of the following

d2/εe steps, the algorithm finds the farthest point to the center of MEB(S) and adds it to S; finally,

the center of MEB(S) induces a (1 + ε)-approximation for MEB of the whole input point set.

The selected d2/εe points are also called the core-set of MEB. To ensure that there is at least

certain extent of improvement achieved in each iteration, (Badoiu and Clarkson (2003)) showed

that the following two inequalities would hold if the algorithm always selects the farthest point to

6

the temporary center of MEB(S):

ri+1 ≥ (1 + ε)ropt − Li, (2.1)

ri+1 ≥
√

r2
i + L2

i , (2.2)

where ri and ri+1 are the radii of the i-th and the (i + 1)-th iterations respectively, ropt is the optimal

radius of the MEB, and Li is the shifting distance of the center of MEB(S).

Algorithm 1 (ε, δ)-approximation Algorithm of Outlier Recognition Problem
Input: A point set P with n points in Rd , the fraction of outliers γ ∈ (0, 1) and four parameters

0 < ε, δ, µ < 1, h ∈ Z+.
Output: A tree with each node whose attached point is a candidate for the (ε, δ)-approximation

solutions.
1: Each node v in the tree is associated with a point (with a slight abuse of notation, we also use

v to denote the point). Initially, randomly pick a point from P as root node r .
2: Starting with root, grow each node as follows:

(1) Let v be the current node.
(2) If the height of v is h, v becomes a leaf node. Otherwise, perform the following steps:

(a) Let Pr
v denote the set of points along the path from root r to node v, and cv denote

the center of MEB(Pr
v). We say that cv is the attached point of v.

(b) Let k = (1 + δ)γn. Compute the point set Pv containing the top k points which have
the largest distances to cv .

(c) Take a random sample Sv of size
(
1 + 1

δ

)
ln h

µ from Pv , and let each point v′ ∈ Sv be
a child node of v.

2.2.1 Algorithm for MEB with Outliers

We present our (ε, δ)-approximation algorithm for MEB with outliers in this section. Although

the outlier recognition problem belongs to unsupervised learning, we can estimate the fraction of

outliers in the given data before executing our algorithm. In practice, we can randomly collect a

small set of samples from the given data, and manually identify the outliers and estimate the outlier

ratio γ. Therefore, in this chapter we assume that the outlier ratio is known.

To better understand our algorithm, we first illustrate the high-level idea. If taking a more

careful analysis on the previously mentioned core-set construction algorithm (Badoiu and Clarkson

7

(2003)), we can find that it is not necessary to select the farthest point to the center of MEB(S) in

each step. Instead, as long as the selected point has a distance larger than (1 + ε)ropt, the minimal

extent of improvement would always be guaranteed (Ding and Xu (2011)). As a consequence, we

investigate the following approach.

We denote the ball centered at point c with radius r > 0 as Ball(c, r). Recall that Popt is

the subset of P yielding the optimal MEB with outliers, and ropt is the radius of MEB(Popt) (see

Section 2.1.2). In the i-th step, we add an arbitrary point from Popt \Ball(ci, (1+ ε)ropt) to S where

ci is the current center of S. Based on the above observation, we know that a (1+ ε)-approximation

is obtained after at most d2/εe steps, that is,
��P ∩ Ball(ci, (1 + ε)ropt)

�� ≥ (1 − γ)n when i ≥ d2/εe.

However, in order to carry out the above approach we need to solve two key issues: how to

determine the value of ropt and how to select a point belonging to Popt \ Ball(ci, (1 + ε)ropt).

Actually, we can implicitly avoid the first issue via replacing the radius (1+ε)ropt by the k-th largest

distance from the points of P to ci, where k is some appropriate number that will be determined in

our following analysis. For the second issue, we have to take a small random sample instead of a

single point from Popt \ Ball(ci, (1 + ε)ropt) and try each of the sampled points; this operation will

result in a tree structure that is similar to the RGD Tree introduced by (Ding and Xu (2015)) for

SVM. We present the algorithm in Algorithm 1 and place the detailed parameter settings, proof of

correctness, and complexity analyses in Sections 2.2.2 & 2.2.3.

We illustrate Step 2(2)(a-c) of Algorithm 1 in Figure 2.1.

2.2.2 Parameter Settings and Quality Guarantee

We denote the tree constructed by Algorithm 1 as H. The following theorem shows the success

probability of Algorithm 1.

Theorem 1. If we set h = d2ε e + 1, then with probability at least (1 − µ)(1 − γ) there exists at least

one node of H yielding an (ε, δ)-approximation for the problem of MEB with outliers.

Before proving Theorem 1, we need to introduce several important lemmas.

8

Figure 2.1: The blue links represent the path from root r to node v, and Pr
v contains the four

points along the path. The point set Sv corresponds to the child nodes of v.

Lemma 1 (Ding and Xu (2014)). Let Q be a set of elements, and Q′ be a subset of Q with size

|Q′| = β |Q | for some β ∈ (0, 1). If one randomly samples 1
β ln 1

η elements from Q, then with

probability at least 1 − η, the sample contains at least one element in Q′ for any 0 < η < 1.

Lemma 2. For each node v, the set Sv in Algorithm 1 contains at least one point from Popt with

probability 1 − µ
h .

Proof. Since |Pv | = (1 + δ)nγ and
��P\Popt�� = nγ, we have��Pv ∩ Popt

��
|Pv |

= 1 −
��Pv\Popt

��
|Pv |

≥ 1 −
��P\Popt��
|Pv |

=
δ

1 + δ
.

(2.3)

Note that the size of Sv is (1 + 1
δ) ln

h
µ . If we apply Lemma 1 via setting β = δ

1+δ and η = µ
h , it is

easy to know that Sv contains at least one point from Popt with probability 1 − µ
h . �

Lemma 3. With probability (1−γ)(1−µ), there exists a leaf node u ∈ H such that the corresponding

set Pr
u ⊂ Popt.

9

Proof. Lemma 2 indicates that each node v has a child node corresponding to a point from Popt

with probability 1 − µ
h . In addition, the probability of root r belonging to Popt is 1 − γ (recall that

γ is the fraction of outliers). Note that the height of H is h, then with probability at least

(1 − γ)
(
1 −

µ

h

)h
> (1 − γ)(1 − µ), (2.4)

there exists one leaf node u ∈ H satisfying Pr
u ⊂ Popt. �

In the remaining analyses, we always assume that such a root-to-leaf path Pr
u described in

Lemma 3 exists and only focus on the nodes along this path. We denote R̂ = (1 + ε)ropt where

ropt is the optimal radius of the MEB with outliers. Let Ball(cv, rv) be the MEB covering P \ Pv

centered at cv , and the radii of MEB(Pr
v) and MEB(Pr

v′
) be r̃v and r̃v′ respectively. Readers can

refer to Figure 2.2. The following lemma is a key observation for MEB.

Lemma 4 (Badoiu and Clarkson (2003)). Given a set P of points in Rd , let rP and cP be the radius

and center of MEB(P) respectively. Then for any point p ∈ Rd with a distance K ≥ 0 to cP, there

exists a point q ∈ P such that ‖p − q‖ ≥
√

r2
P + K2.

The following lemma is a key for proving the quality guarantee of Algorithm 1. As mentioned

in Section 2.2.1, the main idea follows the previous works (Badoiu and Clarkson (2003); Ding and

Xu (2011)). For the sake of completeness, we present the detailed proof here.

Lemma 5. For each node v ∈ Pr
u , at least one of the following two events happens: (1) cv is an

(ε, δ)-approximation; (2) its child v′ on the path Pr
u satisfies

r̃v′ ≥
R̂
2
+

r̃2
v

2R̂
. (2.5)

Proof. If rv ≤ R̂, then we are done; that is, Ball(cv, rv) covers (1 − (1 + δ)γ)n points and rv ≤

(1 + ε)ropt. Otherwise, rv > R̂ and we consider the second case.

By triangle inequality and the fact that v′ (i.e., the point associating the node “v′”) lies outside

Ball(cv, rv), we have cv − cv′
 + cv′ − v

′
 ≥ cv − v′

 > rv > R̂. (2.6)

10

Let
cv − cv′

 = Kv . Combining the fact that
cv′ − v

′
 ≤ r̃v′, we have

r̃v′ > R̂ − Kv . (2.7)

Figure 2.2: The illustration of MEB(Pr
v) and MEB(Pr

v′
); the blue and red points represent the

inliers and outliers, respectively.

By Lemma 4, we know that there exists one point q (see Figure 2.2) in MEB(Pr
v) satisfyingq − cv′

 ≥ √
r̃2
v + K2

v . Since q is also inside MEB(Pr
v′
),

q − cv′
 ≤ r̃v′. Then, we have

r̃v′ ≥
√

r̃2
v + K2

v . (2.8)

Combining (2.7) and (2.8), we obtain

r̃v′ ≥ max
{

R̂ − Kv,

√
r̃2
v + K2

v

}
. (2.9)

Because R̂ − Kv and
√

r̃2
v + K2

v are decreasing and increasing on Kv respectively, we let R̂ − Kv =√
r̃2
v + K2

v to achieve the lower bound (i.e., Kv =
R̂2−r̃2

v
2R̂

). Substituting the value of Kv to (2.9), we

have r̃v′ ≥
R̂
2 +

r̃2
v

2R̂
. As a consequence, the second event happens and the proof is completed. �

Now we prove Theorem 1 by the idea from (Badoiu and Clarkson (2003)). Suppose no node in

Pr
u makes the first event of Lemma 5 occur. As a consequence, we obtain a series of inequalities

11

for each pair of radii r̃v′ and r̃v (see (2.5)). For ease of analysis, we denote r̃v = λi R̂ if the height

of v is i in H. By Inequality (2.5), we have

λi+1 ≥
1 + λ2

i
2

. (2.10)

Combining the initial case λ1 = 0 and (2.10), we obtain

λi ≥ 1 −
2

i + 1
(2.11)

by induction (Badoiu and Clarkson (2003)). Note that the equality in (2.11) holds only when i = 1,

therefore,

λh > 1 −
2

h + 1
= 1 −

2
d2ε e + 2

≥ 1 −
2

2
ε + 2

=
1

1 + ε
. (2.12)

Then, r̃u = λh R̂ > ropt (recall that u is the leaf node on the path Pr
u), which is a contradiction to

our assumption Pr
u ⊂ Popt. The success probability directly comes from Lemma 3. Overall, we

obtain Theorem 1.

2.2.3 Complexity Analyses

We analyze the time and space complexities of Algorithm 1 in this section.

Time Complexity. For each node v, we need to compute the corresponding MEB(Pr
v). To

avoid computing the exact MEB costly, we apply the approximation algorithm proposed by (Badoiu

and Clarkson (2003)). See Algorithm 2 for details.

Algorithm 2 Approximation Algorithm of MEB
Input: A point set Q in Rd , and N ∈ Z+.
1: Start with an arbitrary point c1 ∈ Q, t ← 1.
2: while t < N do
3: Find the point q ∈ Q farthest away from ct .
4: ct+1 ← ct +

1
t+1 (q − ct).

5: t ← t + 1.
6: end while
7: return ct .

For Algorithm 2, we have the following theorem.

12

Theorem 2 (Badoiu and Clarkson (2003)). Let the center and radius of MEB(Q) be cQ and rQ

respectively, then ∀t,
cQ − ct

 ≤ rQ
√

t
.

FromTheorem2, we know that a (1+ε)-approximation forMEBcan be obtainedwhen N = 1/ε2

with the time complexity O
(
|Q |d
ε2

)
. Suppose the height of node v is i, then the complexity for

computing the corresponding approximate MEB(Pr
v) is O

(
id
ε2

)
. Further, in order to obtain the

point set Pv , we need to find the pivot point that has the (n − k)-th smallest distance to cv . Here

we apply the PICK algorithm (Blum et al. (1973)) which can find the l-th smallest from a set of

n (l ≤ n) numbers in linear time. Consequently, the complexity for each node v at the i-th layer

is O
((

n + i
ε2

)
d
)
. Recall that there are |Sv |i−1 nodes at the i-th layer of H. In total, the time

complexity of our algorithm is

T =
h∑

i=1

((
1 +

1
δ

)
ln

h
µ

)i−1 (
n +

i
ε2

)
d. (2.13)

If we assume 1/ε is a constant, the complexity T = O(nd) is linear in n and d, where the hidden

constantC =
((

1 + 1
δ

)
ln h

µ

)h−1
. In our experiments, we can carefully choose the parameters δ, ε, µ

so as to keep the value of C not too large.

Space Complexity. In our implementation, we use a queue Q to store the nodes in the tree.

When the head of Q is popped, its |Sv | child nodes are pushed into Q. In other words, we simulate

breadth first search on the treeH. Therefore,Q always keeps its size at mostC =
((

1 + 1
δ

)
ln h

µ

)h−1
.

Note that each node v needs to store Pr
v to compute its corresponding MEB, but actually we only

need to record the pointers to link the points in Pr
v . Therefore, the space complexity of Q is O(Ch).

Together with the space complexity of the input data, the total space complexity of our algorithm

is O(Ch + nd).

2.2.4 Boosting

By Theorem 1, we know that with probability at least (1 − µ)(1 − γ) there exists an (ε, δ)-

approximation in the resulting tree. However, when outlier ratio is high, say γ = 0.5, the success

13

probability (1− γ)(1− µ)will become small. To further improve the performance of our algorithm,

we introduce the following two boosting methods.

1. Constructing a forest. Instead of building a single tree, we randomly initialize several root

nodes and grow each root node to be a tree. Suppose the number of root nodes is κ. The

probability that there exists an (ε, δ)-approximation in the forest is at least 1−(1−(1−γ)(1−µ))κ

which is much larger than (1 − γ)(1 − µ).

2. Sequentialization. First, initialize one root node and build a tree. Then select the best node

in the tree and set it to be the root node for the next tree. After iteratively performing the

procedure for several rounds, we can obtain a much more robust solution.

2.3 Experiments

From our analysis in Section 2.2.2, we know that Algorithm 1 results in a tree H where each

node v has a candidate cv for the desired (ε, δ)-approximation for the problem ofMEBwith outliers.

For each candidate, we identify the nearest (1 − (1 + δ)γ)n points to cv as the inliers. To determine

the final solution, we select the candidate that has the smallest variance of the inliers.

2.3.1 Datasets and Methods to Be Compared

In our experiments, we test the algorithms on two random datasets and two benchmark image

datasets. In terms of the random datasets, we generate the data points based on normal and uniform

distributions under the assumption that the inliers usually locate in dense regions while the outliers

are scattered in the space. The benchmark image datasets include the popular MNIST (LeCun et

al. (1998)) and Caltech (Fei-Fei, Fergus, and Perona (2007)). All of the experiments are performed

on Windows workstation with 2.4GHz Intel Xeon CPU and 32GB DDR4 Memory.

To make our experiment more convincing, we compare our algorithm with three well known

methods for outlier recognition: angle-based outlier detection (ABOD) (Kriegel, Schubert, and

Zimek (2008)), one-class SVM (OCSVM) (Schölkopf et al. (1999)), and discriminative recon-

14

structions in an autoencoder (DRAE) (Xia et al. (2015)). Specifically, ABOD distinguishes the

inliers and outliers by assessing the distribution of the angles determined by each 3-tuple data

points; OCSVMmodels the problem of outlier recognition as a soft-margin one-class SVM; DRAE

applies autoencoder to separate the inliers and outliers based on their reconstruction errors.

The performances of the algorithms are measured by the commonly used metric F1 score

= 2∗Precision∗Recall
Precision+Recall , where precision is the proportion of the correctly identified positives relative

to the total number of identified positives, and recall is the proportion of the correctly identified

positives relative to the total number of positives in the dataset.

2.3.2 Random Datasets

We validate our algorithm on the following two random datasets.

A toy example in 2D. To better illustrate the intuition of our algorithm, we first run it on a

random dataset in 2D. We generate an instance of 10, 000 points with the outlier ratio γ = 0.4. The

inliers are generated by a normal distribution; the outliers consist of four groups where the first

three are generated by normal distributions and the last is generated by a uniform distribution. The

four groups of outliers contains 800, 1200, 800, and 1200 points, respectively. See Figure 2.3. The

red circle obtained by our algorithm is the boundary to distinguish the inliers and outliers where the

resulting F1 score is 0.944. From this case, we can see that our algorithm can efficiently recognize

the densest region even if the outlier ratio is high and the outliers also form some dense regions in

the space.

High-Dimensional Points. We further test our algorithm and the other three methods on high-

dimensional dataset. Similar to the previous 2D case, we generate 20, 000 points with four groups

of outliers in R100; the outlier ratio γ varies from 0.1 to 0.5.

The F1 scores are displayed in Table 2.1, fromwhich we can see that our algorithm significantly

outperforms the other three methods for all the levels of outlier ratio.

15

Figure 2.3: The illustration of our algorithm on a 2-dimensional point set.

Table 2.1: The F1 scores for the high-dimensional random dataset.

γ
Algs ABOD OCSVM DRAE Ours

0.1 0.907 0.967 0.951 0.984
0.2 0.815 0.926 0.889 0.965
0.3 0.705 0.880 0.809 0.939
0.4 0.586 0.827 0.709 0.938
0.5 0.419 0.745 0.572 0.898

2.3.3 Benchmark Image Datasets

In this section, we evaluate all the four methods on two benchmark image datasets.

1. MNIST Dataset

MNIST contains 70, 000 handwritten digits (0 to 9) composed of both training and test

datasets. For each of the 10 digits, we add the outliers by randomly selecting the images

from the other 9 digits. For each outlier ratio γ, we compute the average F1 score over all

the 10 digits. To map the images to a feature (Euclidean) space, we use two kinds of image

16

features: PCA-grayscale and autoencoder feature.

(1) PCA-grayscale Feature. Each image in MNIST has a 28 × 28 grayscale which is

represented by a 784-dimensional vector. Note that the images of MNIST have massive

redundancy. For example, the digits often locate in the middle of the images and all the

background pixels have the value 0. Therefore, we apply principal component analysis

(PCA) to reduce the redundancy by trying multiple projection matrices which preserve

95%, 50%, and 10% energy of the original grayscale features. These three features are

denoted as PCA-0.95, PCA-0.5 and PCA-0.1, respectively. The results are shown in

Table 2.2. We notice that our F1 scores always achieve the highest by PCA-0.5; this is

due to the fact that PCA-0.5 can significantly reduce the redundancy as well as preserve

the most useful information (comparing with PCA-0.95 and PCA-0.1).

Table 2.2: The F1 scores of the four methods on MNIST by using PCA-grayscale; the three
columns for each γ correspond to PCA-0.95, PCA-0.5 and PCA-0.1, respectively.

γ
Algs ABOD OCSVM DRAE Ours

0.1 0.898, 0.895, 0.892 0.937, 0.941, 0.934 0.913, 0.908, 0.911 0.939, 0.941, 0.936
0.2 0.775, 0.774, 0.771 0.874, 0.883, 0.867 0.822, 0.818, 0.816 0.881, 0.891, 0.880
0.3 0.648, 0.617, 0.642 0.804, 0.817, 0.798 0.726, 0.722, 0.711 0.822, 0.853, 0.823
0.4 0.500, 0.470, 0.496 0.725, 0.740, 0.713 0.620, 0.617, 0.602 0.760, 0.778, 0.773
0.5 0.346, 0.329, 0.364 0.648, 0.639, 0.605 0.531, 0.501, 0.488 0.633, 0.658, 0.651

(2) Autoencoder Feature. Autoencoder (Rumelhart, Hinton, and Williams (1988)) is often

adopted to extract the features of grayscale images. The autoencoder model trained in

our experiment has seven symmetrical hidden layers (1000-500-250-60-250-500-1000),

and the input layer is a 784-dimensional grayscale. We use the features output by the

middle hidden layer. The results are shown in Table 2.3 and our method achieves the

best for most of the cases.

2. Caltech Dataset

The Caltech-256 dataset1 includes 256 image sets. We choose 11 concepts as the inliers in

1http://www.vision.caltech.edu/Image_Datasets/Caltech256/

17

http://www.vision.caltech.edu/Image_Datasets/Caltech256/

Table 2.3: The F1 scores of the four methods on MNIST by using autoencoder feature.

γ Algs ABOD OCSVM DRAE Ours
0.1 0.894 0.906 0.933 0.932
0.2 0.778 0.807 0.883 0.885
0.3 0.637 0.706 0.819 0.831
0.4 0.479 0.598 0.737 0.770
0.5 0.313 0.496 0.625 0.694

our experiment, which are airplane, binocular, bonsai, cup, face, ketch, laptop, motorbike,

sneaker, t-shirt, and watch. We apply VGG net (Simonyan and Zisserman (2014)) to extract

the image features, which have 4096 dimensions output by the second fully-connected layer.

The results are shown in Table 2.4.

Table 2.4: The F1 scores of the four methods on Caltech-256 by using VGG net feature.

γ Algs ABOD OCSVM DRAE Ours
0.1 0.945 0.930 0.955 0.964
0.2 0.838 0.885 0.937 0.948
0.3 0.707 0.839 0.930 0.932
0.4 0.499 0.783 0.927 0.924
0.5 0.233 0.739 0.912 0.906

Unlike the random data, the distribution of real data in the space is much more complicated.

To alleviate this problem, we try to capture the key parts of the original VGG net feature.

Similar to MNIST dataset, we apply PCA to reduce the redundancy of VGG net feature.

Three matrices are obtained to preserve 95%, 50%, and 10% energy respectively. The results

are shown in Table 2.5, from which we can see that our method achieves the best for all the

cases, especially when using PCA-0.5 (marked by underlines). More importantly, PCA-0.5

considerably improves the results that use the original VGG net features (compare Table 2.5

with Table 2.4), and has only 50 dimensions, which significantly reduces the running time.

18

Table 2.5: The F1 scores of the four methods on Caltech-256 by using PCA-VGG feature; the
three columns for each γ correspond to PCA-0.95, PCA-0.5 and PCA-0.1, respectively.

γ
Algs ABOD OCSVM DRAE Ours

0.1 0.944, 0.942, 0.941 0.932, 0.914, 0.921 0.955, 0.947, 0.928 0.966, 0.986, 0.949
0.2 0.837, 0.832, 0.869 0.884, 0.894, 0.867 0.918, 0.924, 0.878 0.950, 0.984, 0.923
0.3 0.707, 0.708, 0.715 0.837, 0.869, 0.827 0.873, 0.914, 0.835 0.934, 0.978, 0.897
0.4 0.497, 0.489, 0.525 0.782, 0.830, 0.771 0.873, 0.902, 0.773 0.916, 0.973, 0.871
0.5 0.223, 0.199, 0.288 0.717, 0.790, 0.699 0.869, 0.887, 0.692 0.899, 0.958, 0.844

2.3.4 Comparisons of Time Complexities

From Section 2.3.2 and Section 2.3.3 we know that our method achieves the robust and competitive

performances in terms of accuracy. In this section, we compare the time complexities of all the

four algorithms.

ABOD has the time complexity O(n3d). In the experiments, we use its speed-up edition

FastABOD which has the reduced time complexity O((n2 + nk2)d) where k is some specified

parameter.

OCSVM is formulated as a quadratic programming with the time complexity O(n3).

DRAE alternatively executes the following two steps: discriminative labeling and reconstruc-

tion learning. Suppose it runs N1 rounds; actually the two inner steps are also iterative procedures

which both run N2 iterations. Thus, the total time complexity of DRAE is O(N1N2hdn), where h

is the number of the hidden layer nodes that can be generally expressed as d/m (m is a constant);

then the total time complexity becomes O(nd2) where the hidden constant C̃ is a large constant

depending on N1, N2 and m.

When the number of points n is large, FastABOD, OCSVM, and DRAE will be very time-

consuming. On the contrary, our algorithm takes only linear running time (see Section 2.2.3) and

usually runs much faster in practice.

2.4 Summary

In this chapter, we present a new approach for outlier recognition in high dimension. Most

existing methods have high time and space complexities or cannot achieve a quality guaranteed

19

solution. On the contrary, our method yields a nearly optimal solution with the time and space

complexities linear in the input size and dimensionality. Furthermore, the experimental results

indicate that our approach outperforms several popular methods in terms of accuracy.

20

CHAPTER 3

GEOMETRIC ALIGNMENT IN LOW DOUBLING DIMENSION

3.1 Introduction

Given two geometric patterns, the problem of alignment is to find their appropriate spatial

positions so as to minimize their difference. In general, a geometric pattern is represented by a set

of (weighted) points in a space, and their difference is often measured by some objective function.

Figure 3.1 presents an illustration of alignment.

Figure 3.1: The illustration of alignment of two geometric patterns.

In this chapter, we focus on the geometric alignment. Before introducing the definition of

geometric alignment, we first define Earth Mover’s Distance (EMD) and rigid transformation.

Definition 4 (EMD). Let A = {a1, · · · , an1} and B = {b1, · · · , bn2} be two sets of weighted

points in Rd with non-negative weights αi and β j for each ai ∈ A and b j ∈ B respectively, and

WA =
∑n1

i=1 αi,WB =
∑n2

j=1 β j be their respective total weights. The EMD between A and B is

defined as

EMD(A, B) =
1

min{WA,WB}
min

F

n1∑
i=1

n2∑
j=1

fi j
ai − b j

2
, (3.1)

where F = { fi j, i = 1, · · · , n1, j = 1, · · · , n2} is a feasible flow from A to B, i.e., fi j ≥ 0,∑n1
i=1 fi j ≤ β j ,

∑n2
j=1 fi j ≤ αi, and

∑n1
i=1

∑n2
j=1 fi j = min{WA,WB}.

See Figure 3.2 for an illustration of EMD. Intuitively, EMD can be viewed as the minimum

transportation cost between A and B, where the weights of A and B are the “supplies” and “demans”

21

respectively, and the cost of each edge connecting a pair of points from A to B is their “ground

distance”. Generally, the “ground distance” has various forms, and herewe simply use the Euclidean

distance. In addition, the major advantage of EMD over other measures is its robustness with regard

to noise in practice.

Figure 3.2: The illustration of EMD between two weighted point sets.

Definition 5 (Rigid Transformation). Let P be a set of points in Rd . A rigid transformation T on

P is a transformation (i.e., rotation, translation, reflection, or their combination) which preserves

the pairwise distances of the points in P.

We consider rigid transformation for alignment, because it is very natural to interpret in real-

world problems. Given the definitions of EMD and rigid transformation, here we formally define

geometric alignment.

Definition 6 (Geometric Alignment). Given two weighted point sets A and B as described in

Definition 4, the geometric alignment between A and B under rigid transformation is to determine

a rigid transformation T for B so as to minimize the EMD EMD(A,T(B)).

In practice, geometric alignment has many applications in the field of computer vision such as

image retrieval and matching (Cohen and Guibas (1999)), fingerprint recognition (Maltoni et al.

(2009)) and face alignment (Cao et al. (2014)). Besides the computer vision applications in 2D or

3D, there are a lot of high dimensional problems that can be solved by geometric alignment. Here

we briefly introduce several examples.

22

(1) Natural language processing

Some research on natural language processing has indicated that different languages often share

some similar structure at the word level (Youn et al. (2016)); particularly, recent study on word

semantics embedding has also shown that there exists structural isomorphism across languages

(Mikolov, Le, and Sutskever (2013)), and EMD is a good distance metric for languages and

documents (Zhang et al. (2017); Kusner et al. (2015)). Therefore, (Zhang et al. (2017))

proposed to learn the transformation between different languages without any cross-lingual

supervision, and the problem is reduced to minimizing the EMD by finding the optimal

geometric alignment in high dimension. Figure 3.3 shows us an illustration of geometric

alignment of word embeddings.

Figure 3.3: This image is excerpted from (Zhang et al. (2017)). After obtaining Chinese and
English word embeddings, the problem becomes finding the optimal geometric alignment to
minimize their EMD.

(2) Protein-Protein interaction (PPI) network

APPI network is a graph representing the interactions among proteins. Given two PPI networks,

it is a fundamental bioinformatics problem to find their alignment in order to understand the

correspondences between different species (Malod-Dognin, Ban, and Pržulj (2017)). However,

most existing methods need to solve the subgraph isomorphism problem which is NP-hard, and

often suffer from a high computational complexity. To circumvent this issue, (Liu et al. (2017))

23

developed a new framework based on geometric alignment in Euclidean space. See Figure 3.4

for an illustration of PPI networks alignment.

Figure 3.4: The illustration of PPI networks alignment (Liu et al. (2017)).

Despite of a number of applications in reality, the research on geometric alignment algorithms

is quite limited and far from being satisfactory. Basically, we need to take into account high

dimensionality and large number of points of the geometric patterns simultaneously. Unfortunately,

even for the 2D and 3D cases, it is quite challenging to solve the geometric alignment problem.

In this chapter, we develop an efficient algorithmic framework for the geometric alignment prob-

lem with large size and high dimensionality. Our key observation is that many real-world datasets

often manifest low intrinsic dimensions (Belkin (2003)). For example, human handwriting images

can be well embedded into some low dimensional manifold though their Euclidean dimensions

can be very high (Tenenbaum, De Silva, and Langford (2000)). Inspired by the observation, we

adopt the widely used concept “doubling dimension” (Krauthgamer and Lee (2004); Talwar (2004);

Karger and Ruhl (2002); Har-Peled and Mendel (2006); Dasgupta and Sinha (2013)) to charac-

terize the intrinsic dimension in geometric alignment problems. We prove that when computing

geometric alignment, the geometric patterns with low doubling dimensions can be substantially

compressed and thus save a lot running time. What’s more, our proposed compression method is

an independent algorithm which can be utilized for various alignment approaches.

24

3.1.1 Related Work

In this section, we recall some related work.

Given a bipartite graph where the two sets of nodes correspond to the points of A and B respec-

tively and each edge connecting ai and b j has the weight
ai − b j

2, then computing EMD(A, B)

is actually a min-cost flow problem. A lot of min-cost flow algorithms have been proposed in the

past decades, such as network simplex algorithm (Magnanti and Orlin (1993)) which is a specialized

version of the simplex algorithm. Computing EMD is an instance of min-cost flow problem in

Euclidean space, and a lot of faster algorithms have been proposed in computational geometry

(Indyk (2007); Cabello et al. (2008); Agarwal et al. (2019)). However, most of these methods only

work in low dimensional cases.

Actually, it is more challenging to find the geometric alignment between two sets because it

requires one rigid transformation and EMD flows simultaneously. Moreover, because of the variety

of rigid transformations, we can not employ the EMD embedding techniques (Indyk and Thaper

(2003); Andoni et al. (2009)) to alleviate these issues. Specifically, the embedding can only preserve

the EMD between A and B, however, since we do not know the rigid transformation T in advance,

there are infinite T for set B, therefore, it is difficult to preserve the EMD between A and T(B). In

addition, some theoretical methods have been proposed. (Klein and Veltkamp (2005)) presented

an O
(
2d−1

)
-approximation algorithm in d-dimensional, then (Cabello et al. (2008)) proposed

a (2 + ε)-approximation solution to the 2D case. Recently, (Ding and Xu (2017)) developed a

polynomial-time approximation scheme (PTAS) for constant dimensionality. Unfortunately, these

theoretical methods are impractical when dimensionality is not constant. (Ding and Xu (2017))

also proved that any constant factor approximation has a time complexity at least nΩ(d) based on

some reasonable assumptions in the computational complexity theory, where n = max{|A|, |B|},

i.e., it is unlikely to obtain a (1 + ε)-approximation within practical running time, especially when

n is large.

25

3.1.2 Outline of Our Work

In this section, we briefly introduce our work.

Our work is mainly based on (Cohen and Guibas (1999)), which proposed an alternating

minimization method to obtain the geometric alignment between two point sets. Roughly speaking,

this method is similar to the Iterative Closest Point (ICP) method (Besl and McKay (1992)) which

alternatively updates the rigid transformation and EMD flows in each iteration. To update the rigid

transformation, we utilize the Orthogonal Procrustes (OP) analysis (Schönemann (1966)).

Suppose the EMD flows F = { fi j } are known and we are updating the rigid transformation.

Suppose that the two new sets of weighted points are

Â =
{
a1

1, · · · , a
n2
1 ; a1

2, · · · , a
n2
2 ; · · · ; a1

n1, · · · , a
n2
n1

}
, (3.2)

B̂ =
{
b1

1, · · · , b
1
n2; b2

1, · · · , b
2
n2; · · · ; b

n1
1 , · · · , b

n1
n2

}
, (3.3)

where each a j
i (resp. bi

j) has the weight fi j and the same spatial position with ai (resp. b j). With

a slight abuse of notations, a j
i is also used to denote the corresponding column vector in Rd .

(1) We obtain a translation vector v satisfying that the weighted centroids of Â and B̂ + v coincide

with each other, which can be easily proved because of the fact that the objective function

employs squared distance (Cohen and Guibas (1999)).

(2) Through the OP analysis, we obtain an orthogonal matrix R for B̂ + v to minimize its weighted

`2
2 distance to Â. For this purpose, we generate two d × (n1n2) matrices MA and MB, where

each point in Â (resp. B̂ + v) corresponds to one column in MA (resp. MB). Specifically, the

point a j
i ∈ Â (resp. bi

j + v ∈ B̂ + v) corresponds to the column
√

fi ja
j
i (resp.

√
fi j (bi

j + v))

in MA (resp. MB). Let the singular value decomposition (SVD) of MAMT
B be UΣVT ,

then by the OP analysis, the optimal orthogonal matrix R equals UVT . In fact, we do not

need to explicitly construct the matrices MA and MB, instead, we can compute MAMT
B in

O
(
n1n2d +min{n1, n2} · d2

)
time (see Lemma 6 for details). Therefore, the time complexity

of obtaining the optimal R is O
(
n1n2d +min{n1, n2} · d2 + d3

)
.

26

Lemma 6. The multiplication MAMT
B can be computed in O(n1n2d +min{n1, n2} · d2) time.

Proof. Denote F as the n1×n2 matrix of the EMD flows where each entry is fi j , and Fi,: represents

the i-th row of F. For a vector f,
√

f is a new vector whose each entry is the square root of the

corresponding one in f. Also, diag(f) is a diagonal matrix whose i-th diagonal entry is the i-th

entry of f. Following the constructions of MA and MB, we have

MA =
[√

f11a1
1, · · · ,

√
f1n2an2

1 ,
√

f21a1
2, · · · ,

√
f2n2an2

2 , · · · ,
√

fn11a1
n1, · · · ,

√
fn1n2an2

n1

]
=

[
a1

√
F1,:, a2

√
F2,:, · · · , an1

√
Fn1,:

]
,

MB =
[√

f11b1
1, · · · ,

√
f1n2b1

n2,
√

f21b2
1, · · · ,

√
f2n2b2

n2, · · · ,
√

fn11bn1
1 , · · · ,

√
fn1n2bn1

n2

]
= B

[
diag

(√
F1,:

)
, diag

(√
F2,:

)
, · · · , diag

(√
Fn1,:

)]
,

then

MAMT
B =

n1∑
i=1
(ai

√
Fi,:) × (diag(

√
Fi,:)BT)

=

n1∑
i=1

aiFi,:BT

= AFBT,

which takes time O
(
n1n2d +min{n1, n2} · d2

)
. �

Based on the above analyses, we summarize as follows:

Proposition 1. In (Cohen and Guibas (1999)), each iteration costs

Γ(n1, n2, d) +O
(
n1n2d +min{n1, n2} · d

2 + d3
)
,

where Γ(n1, n2, d) is the time complexity of computing flow matrix. Assume n1, n2 = O(n) and

n ≥ d, then the time complexity is simplified to Γ(n, d) +O
(
n2d

)
.

We notice that the bottleneck in each iteration is large n and d. To reduce the time complexity,

we utilize the property of doubling dimension to construct two subsets SA and SB of the two

27

original point sets A and B, and run the same alignment algorithm on SA and SB instead. Since n

is decreased, the total time complexity is evidently reduced. Moreover, the proposed compression

method is independent of the alignment algorithm provided that the alignment algorithm has the

same objective function as Definition 6.

3.2 The Proposed Method

In this section, we present the proposed method in detail.

Our method starts with k-center clustering. Given an integer k ≥ 1 and a point set P in some

metric space, k-center clustering is to partition P into k clusters and each cluster is covered by a

ball such that the maximum radius of the k balls is minimized. It is known that k-center clustering

is NP-hard. Fortunately, (Gonzalez (1985)) proposed an elegant 2-approximation algorithm, which

is shown in Algorithm 3, where dis(p, S) = mins∈S ‖p − s‖.

Algorithm 3 2-approximation k-center clustering
Input: Point set P and parameter k
Output: Point set S
1: Choose an arbitrary point c1 from P and S ← {c1}
2: for i = 2 to k do
3: ci ← arg maxp∈P dis(p, S)
4: S ← S ∪ {ci}
5: end for

Initially, arbitrarily choose one point c1 from P and let S = {c1}, then iteratively select the point ci

that has the largest distance to S from P and add ci to S until |S | = k.

At first, we denote (X, dX) as a metric space, where dX is a metric of set X . A ball centered at

point x ∈ X with radius r > 0 is formulated as

Ball(x, r) = {p ∈ X |dX (x, p) ≤ r},

which is a subset of X .

Claim 1. Suppose S = {c1, · · · , ck } and r = min
{ci − c j

 , 1 ≤ i, j ≤ k
}
, then P can be covered

by the k balls, Ball(c1, r), Ball(c2, r), · · · , Ball(ck, r).

28

Proof. Suppose that there exists such one point p ∈ P that cannot be covered by any Ball(ci, r), 1 ≤

i ≤ k, then ‖p − ci ‖ > r and p should be inside S, which is a contradiction. �

Now we introduce the definition of doubling dimension.

Definition 7 (Doubling Dimension). The doubling dimension of a metric space (X, dX) is the

smallest ρ such that for any x ∈ X and r ≥ 0, Ball(x, r) can be always covered by the union of at

most 2ρ balls with radius r .

For doubling dimension, we have the following claim.

Claim 2. Let (X, dX) be a metric space with doubling dimension ρ and Y ⊂ X . If the aspect ratio

of Y is upper bounded by α, then |Y | ≤ (2α)ρ.

Here the aspect ratio is the ratio of the maximum and the minimum inter-point distances in one

point set. Then we have the following lemma.

Lemma 7. Let P be a point set inRd with doubling dimension ρ � d. The diameter of P is denoted

as ∆ = max{‖p − q‖ | p, q ∈ P}. Given a small parameter ε > 0, if one runs Algorithm 3 with

k =
(

2
ε

) ρ
, then the radius of each resulting ball is at most ε∆.

Proof. Let S be the output of Algorithm 3 and r be the resulting radius, then obviously the aspect

ratio of S ∪ {ck+1} is at most ∆r . By Claim 2, we have that k + 1 =
(

2
ε

) ρ
+ 1 ≤

(
2∆
r

) ρ
and

r ≤ ε∆. �

Let A and B be two given point sets, and the maximum of their diameters be ∆. We also assume

that their doubling dimension is ρ. The proposed algorithm for compressing the two original sets A

and B is as follows. Set k =
(

2
ε

) ρ
, run Algorithm 3 on A and B and return SA and SB respectively.

Denote SA =
{
cA
1 , · · · , c

A
k

}
and SB =

{
cB
1 , · · · , c

B
k

}
. For each cluster center cA

i (resp. cB
i), we

assign it a weight which equals the total weights of the points belong to this cluster. After that, we

obtain a new instance (SA, SB) for geometric alignment. Note that the total weights of SA (resp.

SB) equal WA (resp. WB). Our method is shown in Algorithm 4.

29

Algorithm 4 Geometric Alignment
Input: An instance (A, B) of the geometric alignment problem in Definition 6 with bounded

doubling dimension ρ in Rd ; parameter ε ∈ (0, 1).
Output: A rigid transformation T̃ on B and the EMD flows between A and T̃ (B).
1: k ←

(
2
ε

) ρ
.

2: Run Algorithm 3 on A and B, and obtain their subsets SA and SB respectively.
3: Apply the existing alignment algorithm, e.g., (Cohen and Guibas (1999)) on (SA, SB) and obtain

the rigid transformation T̃ .
4: Compute the EMD flows between A and T̃ (B).

The Algorithm 4 is illustrated in Figure 3.5. The proposed algorithm is not only efficient in

practice but also has a theoretical upper bound.

Theorem 3. Suppose ε > 0 is a small parameter in Lemma 7. Given constant c ≥ 1, let T̃ be

a rigid transformation yielding c-approximation of minimizing EMD(SA,T(SB)) in Definition 6.

Then we have

EMD(A, T̃ (B)) ≤ O(c) ·min
T
EMD(A,T(B)) +O(cε)∆2. (3.4)

Proof. Firstly, we denote

Topt = arg min
T
EMD(A,T(B)). (3.5)

Since T̃ yields c-approximation of minimizing EMD(SA,T(SB)), we have

EMD(SA, T̃ (SB)) ≤ c ·min
T
EMD(SA,T(SB))

≤ c · EMD(SA,Topt(SB)).

(3.6)

Recall that the weight of each point cA
i (resp. cB

i) equals the total weights of the points belonging

to cA
i (resp. cB

i). For instance, if the corresponding cluster of cA
i is {ai1, · · · , aim}, the weight of

cA
i equals

∑m
l=1 αil . Actually, we can view cA

i as m overlapping points
{
a′i1
, · · · , a′im

}
with each

a′il
, 1 ≤ l ≤ m having the weight αil . Therefore, for the sake of convenience, we reformulate SA

and SB as follows:

SA =
{
a′1, · · · , a

′
n1

}
,

SB =
{
b′1, · · · , b

′
n2

}
,

(3.7)

30

(a) Point sets A and B (b) Subsets SA and SB returned by Algorithm 3

(c) Rigid transformation T̃ on (SA, SB) (d) Apply T̃ on (A, B)

Figure 3.5: Illustration of Algorithm 4.

31

where each a′i (resp. b′j) has the weight αi (resp. β j). By Lemma 7, we have that for 1 ≤ i ≤

n1, 1 ≤ j ≤ n2, a′i − ai
 ≤ ε∆,b′j − b j

 ≤ ε∆,
and these bounds hold for any rigid transformation in the space. Consequently, for any rigid

transformation T and 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, by applying triangle inequality we have thatai − T(b j)
2
≤

(ai − a′i
 + a′i − T(b

′
j)
 + T(b′j) − T (b j)

)2

≤

(a′i − T(b
′
j)
 + 2ε∆

)2

=

a′i − T(b
′
j)
2
+ 4ε∆

a′i − T(b
′
j)
 + 4ε2

∆
2

≤

a′i − T(b
′
j)
2
+ 2ε

(
∆

2 +
a′i − T(b

′
j)
2

)
+ 4ε2

∆
2

= (1 + 2ε)
a′i − T(b

′
j)
2
+ (2ε + 4ε2)∆2.

(3.8)

Using the same idea, we have thata′i − T(b
′
j)
2
≤

(a′i − ai
 + ai − T(b j)

 + T(b j) − T (b
′
j)
)2

≤ (1 + 2ε)
ai − T(b j)

2
+ (2ε + 4ε2)∆2.

(3.9)

Based on Definition 4, we denote F̃ = { f̃i j } as the induced flows of EMD(SA, T̃ (SB)) (using

expression (3.7) for SA and SB). Then (3.8) directly implies that

EMD(A, T̃ (B)) ≤
1

min{WA,WB}

n1∑
i=1

n2∑
j=1

f̃i j
ai − T̃ (b j)

2

≤
1 + 2ε

min{WA,WB}

n1∑
i=1

n2∑
j=1

f̃i j

a′i − T̃ (b
′
j)
2
+ (2ε + 4ε2)∆2

= (1 + 2ε)EMD(SA, T̃ (SB)) + (2ε + 4ε2)∆2.

(3.10)

32

Similarly, let F = { fi j } be the induced flows of EMD(A,Topt(B)), then (3.9) directly implies that

EMD(SA,Topt(SB)) ≤
1

min{WA,WB}

n1∑
i=1

n2∑
j=1

fi j

a′i − Topt(b
′
j)
2

≤
1 + 2ε

min{WA,WB}

n1∑
i=1

n2∑
j=1

fi j
ai − Topt(b j)

2
+ (2ε + 4ε2)∆2

= (1 + 2ε)EMD(A,Topt(B)) + (2ε + 4ε2)∆2.

(3.11)

Combining (3.6), (3.10) and (3.11), we can obtain that

EMD(A, T̃ (B)) ≤ (1 + 2ε) · EMD(SA, T̃ (SB)) + (2ε + 4ε2)∆2

≤ (1 + 2ε) · c · EMD(SA,Topt(SB)) + (2ε + 4ε2)∆2

≤ c(1 + 2ε)2 · EMD(A,Topt(B)) + (8cε3 + 8cε2 + 4ε2 + 2ε + 2cε)∆2

= O(c) · EMD(A,Topt(B)) +O(cε)∆2,

(3.12)

which completes the proof. �

3.3 Time Complexity Analysis

In this section we analyze the time complexity of Algorithm 4 and consider the steps 2 − 4

individually. To simplify the analysis, we let n = max{n1, n2}. In step 3, we assume that the

alignment algorithm (Cohen and Guibas (1999)) takes λ iterations.

(1) Step 2. A straightforward implementation of Algorithm 3 is selecting the k cluster centers

iteratively where the resulting running time is O(knd). Several faster implementations for the

high dimensional case with low doubling dimension have been studied before; their idea is to

maintain some data structures to reduce the amortized complexity of each iteration. We refer

readers to (Har-Peled and Mendel (2006)) for more details.

(2) Step 3. We run the alignment algorithm (Cohen andGuibas (1999)) on instance (SA, SB) instead

of (A, B), by Proposition 1, the time complexity of Step 3 is O
(
λ

(
Γ(k, d) + k2d + kd2 + d3

))
.

(3) Step 4. In this step, we compute T(B) first and then EMD(A,T(B)), which cost O(nd2) and

Γ(n, d) respectively.

33

Note that the complexity Γ(n, d) is usually O(n2d), which dominates the complexity of Step 2 and

Step 4. Based on the above analyses, we have the following theorem.

Theorem 4. Suppose n = max{n1, n2} ≥ d and the alignment algorithm (Cohen and Guibas

(1999)) takes λ iterations. The running time of Algorithm 4 is

O
(
λ

(
Γ(k, d) + k2d + kd2 + d3

))
+ Γ(n, d).

As a contrast, the time complexity of running the same alignment algorithm on the original

instance (A, B) is O
(
λ

(
Γ(n, d) + n2d

))
by Proposition 1. When k � n, Algorithm 4 achieves a

significant reduction on the running time.

3.4 Experiments

In this section we implement the proposed method and test the performance on both random

and real datasets. All of the experiments are performed onWindows workstation with 2.4GHz Intel

Xeon CPU and 32GB DDR4 Memory. For each dataset, we run 20 trials and report the average

results. We set the iterative approach (Cohen and Guibas (1999)) to terminate when the change of

the objective value is less than 10−3.

3.4.1 Random dataset

To construct a random dataset, we randomly generate two manifolds in R500, which are represented

by the polynomial functions with low dimension (≤ 50); in the manifolds, we take two sets of

randomly sampled points having the sizes of n1 = 2 × 104 and n2 = 3 × 104 respectively. Also, for

each sampled point, we randomly assign a positive weight and finally obtain two weighted point

sets as an instance of geometric alignment.

For each instance, we try different compression levels. In Algorithm 4, we set the size of each

point set to be k. In experiments, we set k = γ ×max{n1, n2} where γ ∈ { 1
50,

1
40,

1
30,

1
20,

1
10, 1}; in

particular, γ = 1 indicates that we directly run the alignment algorithm (Cohen and Guibas (1999))

34

without compression. The purpose of our proposed approach is to design a compression method,

such that the resulting quantities on the original and compressed datasets are close.

The results of random dataset are shown in Table 3.1. The obtained EMDs on the compressed

instances are only slightly higher than the one of γ = 1, while their running time is significantly

reduced. For example, the running time of γ = 1/50 is less than 5% of the one of γ = 1.

Table 3.1: Random dataset: EMD and running time of different compression levels.

γ 1/50 1/40 1/30 1/20 1/10 1
EMD 0.948 0.946 0.945 0.943 0.941 0.933
Time (s) 48.7 54.2 61.0 80.6 144.6 1418.2

To further show the robustness of our method, we particularly add Gaussian noise to the random

dataset and study the change of the objective value by varying the noise level. The standard variance

of the Gaussian noise is set to be η × ∆, where ∆ is the maximum diameter of the point sets and

η varies from 0.5 × 10−2 to 2.5 × 10−2. Figure 3.6 shows that the obtained EMDs over baseline

remain very stable (slighly higher than 1).

1/50 1/40 1/30 1/20 1/10

Compression level

1

1.02

1.04

1.06

1.08

1.1

E
M

D
 o

v
e
r

b
a
s
e
lin

e

=0.005

=0.010

=0.015

=0.020

=0.025

Figure 3.6: The EMDs over baseline for different noise levels.

35

3.4.2 Real dataset

For real datasets, we consider the two applications mentioned in Section 3.1, unsupervised bilingual

lexicon induction and PPI network alignment.

(1) In the first application, we have 5 pairs of languages: Chinese-English, Spanish-English,

Italian-English, Japanese-Chinese, and Turkish-English. Provided by (Zhang et al. (2017)),

each language has a vocabulary list that consists of 3000 to 13000 words. We follow their

preprocessing idea to represent all the words using vectors in R50 through the embedding

technique (Mikolov, Le, and Sutskever (2013)). Actually, each vocabulary list is represented

by a distribution in the space where each vector has the weight that equals the corresponding

frequency in the language.

(2) In the second application, we use the popular benchmark dataset NAPAbench (Sahraeian and

Yoon (2012)) of PPI networks, which contains 3 pairs of PPI networks and each network is a

graph of 3000 − 10000 nodes. As the preprocessing step, we apply the node2vec technique

(Grover and Leskovec (2016)) to represent each network by a group of vectors in R100, and

assign a unit weight to each vector (Liu et al. (2017)).

We obtain the similar performances with the random dataset on the two real datasets whose

results are shown in Table 3.2 and Table 3.3 respectively. The EMD for each compression level is

always at most 1.2 times the baselinewith γ = 1while the corresponding runing time is dramatically

reduced.

3.5 Summary

In this chapter, we propose a novel framework for compressing point sets in high dimension

and simultaneously approximately preserving the quality of geometric alignment. This work is

motivated by several emerging applications in the fields of machine learning, bioinformatics and

wireless networks. We propose an efficient compression algorithm by virtue of the property of low

doubling dimension. What’s more, our method has a theoretical upper bound and achieves a much

36

Table 3.2: Linguistic datasets: EMD and running time of different compression levels.

Datasets
γ 1/50 1/40 1/30 1/20 1/10 1

es-en EMD 0.989 0.969 0.955 0.931 0.892 0.820
Time (s) 3.4 3.6 3.7 3.9 5.3 100.5

it-en EMD 0.983 0.966 0.951 0.935 0.899 0.847
Time (s) 5.4 5.9 6.1 6.5 8.8 162.6

ja-zh EMD 0.991 0.975 0.962 0.941 0.910 0.836
Time (s) 1.6 2.1 2.2 2.0 3.0 67.0

tr-en EMD 0.982 0.960 0.946 0.922 0.889 0.839
Time (s) 10.1 10.4 11.2 11.9 15.9 287.0

zh-en EMD 1.014 1.012 0.990 0.962 0.923 0.842
Time (s) 1.9 1.7 2.2 2.4 2.7 51.6

Table 3.3: PPI network datasets: EMD and running time of different compression levels.

Datasets
γ 1/50 1/40 1/30 1/20 1/10 1

CG EMD 0.0645 0.0644 0.0643 0.0643 0.0642 0.0642
Time (s) 2.3 1.8 2.3 1.9 2.5 7.6

DMC EMD 0.0642 0.0641 0.0641 0.0639 0.0639 0.0638
Time (s) 3.0 2.9 3.0 3.0 3.1 11.4

DMR EMD 0.0567 0.0566 0.0564 0.0564 0.0563 0.0562
Time (s) 2.3 2.1 2.4 2.1 2.7 13.7

dm-mm EMD 0.1344 0.1343 0.1343 0.1342 0.1342 0.1341
Time (s) 0.6 0.6 0.6 0.7 0.8 2.0

hs-mm EMD 0.0774 0.0773 0.0773 0.0773 0.0772 0.0772
Time (s) 1.4 1.5 1.5 1.6 1.8 4.3

smaller time complexity. Experimental results indicate that our method can significantly speed up

the existing alignment algorithms while preserve the alignment quality.

37

BIBLIOGRAPHY

38

BIBLIOGRAPHY

Achlioptas, D. 2003. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of computer and System Sciences 66(4):671–687.

Agarwal, P. K.; Fox, K.; Panigrahi, D.; Varadarajan, K. R.; and Xiao, A. 2019. Faster algorithms
for the geometric transportation problem. arXiv preprint arXiv:1903.08263.

Agarwal, P. K.; Har-Peled, S.; and Varadarajan, K. R. 2005. Geometric approximation via coresets.
Combinatorial and Computational Geometry 52:1–30.

Agarwal, P. K.; Har-Peled, S.; and Yu, H. 2008. Robust shape fitting via peeling and grating
coresets. Discrete & Computational Geometry 39(1-3):38–58.

Aggarwal, C. C., and Yu, P. S. 2001. Outlier detection for high dimensional data. ACM Sigmod
Record 30(2):37–46.

Andoni, A.; Do Ba, K.; Indyk, P.; and Woodruff, D. 2009. Efficient sketches for earth-mover
distance, with applications. In 2009 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 324–330.

Badoiu, M., and Clarkson, K. L. 2003. Smaller core-sets for balls. InProceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 801–802.

Bădoiu, M., and Clarkson, K. L. 2008. Optimal core-sets for balls. Computational Geometry
40(1):14–22.

Badoiu,M.; Har-Peled, S.; and Indyk, P. 2002. Approximate clustering via core-sets. InProceedings
of the ACM Symposium on Theory of Computing (STOC), 250–257.

Belkin, M. 2003. Problems of learning on manifolds.

Besl, P. J., and McKay, N. D. 1992. Method for registration of 3-d shapes. In Sensor Fusion IV:
Control Paradigms and Data Structures, volume 1611, 586–607.

Blum, M.; Floyd, R. W.; Pratt, V.; Rivest, R. L.; and Tarjan, R. E. 1973. Time bounds for selection.
Journal of Computer and System Sciences 7(4):448–461.

Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; and Sander, J. 2000. Lof: identifying density-based
local outliers. ACM Sigmod Record 29(2):93–104.

Cabello, S.; Giannopoulos, P.; Knauer, C.; and Rote, G. 2008. Matching point sets with respect to
the earth mover’s distance. Computational Geometry 39(2):118–133.

Cao, X.; Wei, Y.; Wen, F.; and Sun, J. 2014. Face alignment by explicit shape regression.
International Journal of Computer Vision 107(2):177–190.

39

Chandola, V.; Banerjee, A.; and Kumar, V. 2009. Anomaly detection: A survey. ACM Computing
Surveys (CSUR) 41(3):15.

Clarkson, K. L. 2010. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM
Transactions on Algorithms 6(4):63.

Cohen, S., and Guibas, L. 1999. The earth mover’s distance under transformation sets. In Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision (ICCV), volume 2,
1076–1083.

Dasgupta, S., and Sinha, K. 2013. Randomized partition trees for exact nearest neighbor search.
In Conference on Learning Theory (COLT), 317–337.

Ding, H., and Xu, J. 2011. Solving the chromatic cone clustering problem via minimum span-
ning sphere. In Proceedings of the International Colloquium on Automata, Languages, and
Programming (ICALP), 773–784.

Ding, H., and Xu, J. 2014. Sub-linear time hybrid approximations for least trimmed squares
estimator and related problems. InProceedings of the International SymposiumonComputational
geometry (SoCG), 110.

Ding, H., and Xu, J. 2015. Random gradient descent tree: A combinatorial approach for svm with
outliers. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2561–2567.

Ding, H., and Xu, J. 2017. Fptas for minimizing the earth mover’s distance under rigid transfor-
mations and related problems. Algorithmica 78(3):741–770.

Ester, M.; Kriegel, H.-P.; Sander, J.; and Xu, X. 1996. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 226–231.

Fei-Fei, L.; Fergus, R.; and Perona, P. 2007. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. Computer vision
and Image understanding 106(1):59–70.

Frank, M., andWolfe, P. 1956. An algorithm for quadratic programming. Naval Research Logistics
Quarterly 3(1-2):95–110.

Gärtner, B., and Jaggi, M. 2009. Coresets for polytope distance. In Proceedings of the International
Symposium on Computational geometry (SoCG), 33–42.

Gilbert, E. G. 1966. An iterative procedure for computing the minimum of a quadratic form on a
convex set. SIAM Journal on Control 4(1):61–80.

Gonzalez, T. F. 1985. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science 38:293–306.

Grover, A., andLeskovec, J. 2016. node2vec: Scalable feature learning for networks. InProceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining
(KDD), 855–864.

40

Gupta, M.; Gao, J.; Aggarwal, C.; and Han, J. 2014. Outlier detection for temporal data. Synthesis
Lectures on Data Mining and Knowledge Discovery 5(1):1–129.

Har-Peled, S., and Mendel, M. 2006. Fast construction of nets in low-dimensional metrics and
their applications. SIAM Journal on Computing 35(5):1148–1184.

Har-Peled, S., and Wang, Y. 2004. Shape fitting with outliers. SIAM Journal on Computing
33(2):269–285.

Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R. R. 2012.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Indyk, P., and Thaper, N. 2003. Fast image retrieval via embeddings.

Indyk, P. 2007. A near linear time constant factor approximation for euclidean bichromaticmatching
(cost). In SODA, volume 7, 39–42.

Karger, D. R., and Ruhl, M. 2002. Finding nearest neighbors in growth-restricted metrics. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing (STOC), 741–
750.

Klein, O., and Veltkamp, R. C. 2005. Approximation algorithms for computing the earth mover’s
distance under transformations. In International Symposium on Algorithms and Computation
(ISAAC), 1019–1028.

Krauthgamer, R., and Lee, J. R. 2004. Navigating nets: simple algorithms for proximity search.
In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
798–807.

Kriegel, H.-P.; Kröger, P.; Schubert, E.; and Zimek, A. 2009. Outlier detection in axis-parallel
subspaces of high dimensional data. InProceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), 831–838.

Kriegel, H.-P.; Kröger, P.; and Zimek, A. 2009. Outlier detection techniques. Tutorial at PAKDD.

Kriegel, H.-p.; Schubert, M.; and Zimek, A. 2008. Angle-based outlier detection in high-
dimensional data. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 444–452.

Kumar, P.; Mitchell, J. S. B.; and Yildirim, E. A. 2003. Approximate minimum enclosing balls in
high dimensions using core-sets. ACM Journal of Experimental Algorithmics 8.

Kusner, M.; Sun, Y.; Kolkin, N.; and Weinberger, K. 2015. From word embeddings to document
distances. In International Conference on Machine Learning (ICML), 957–966.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11):2278–2324.

41

Liu, Y.; Ding, H.; Chen, D.; and Xu, J. 2017. Novel geometric approach for global alignment of
ppi networks. In Thirty-First AAAI Conference on Artificial Intelligence (AAAI).

Liu, W.; Hua, G.; and Smith, J. R. 2014. Unsupervised one-class learning for automatic outlier
removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 3826–3833.

Lu, C.; Shi, J.; and Jia, J. 2013. Abnormal event detection at 150 fps in matlab. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), 2720–2727.

Magnanti, T., and Orlin, J. 1993. Network flows: theory, algorithms and applications.

Malod-Dognin, N.; Ban, K.; and Pržulj, N. 2017. Unified alignment of protein-protein interaction
networks. Scientific reports 7(1):953.

Maltoni, D.; Maio, D.; Jain, A. K.; and Prabhakar, S. 2009. Handbook of fingerprint recognition.
Springer Science & Business Media.

Mikolov, T.; Le, Q. V.; and Sutskever, I. 2013. Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Munteanu, A., and Schwiegelshohn, C. 2018. Coresets-methods and history: A theoreticians design
pattern for approximation and streaming algorithms. KI-Künstliche Intelligenz 32(1):37–53.

Phillips, J. M. 2016. Coresets and sketches. Computing Research Repository.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1988. Learning representations by back-
propagating errors. Cognitive Modeling 5(3):1.

Sahraeian, S. M. E., and Yoon, B.-J. 2012. A network synthesis model for generating protein
interaction network families. PloS one 7(8):e41474.

Sakurada, M., and Yairi, T. 2014. Anomaly detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the Workshop on Machine Learning for Sensory Data
Analysis (MLSDA), 4.

Schölkopf, B.; Williamson, R.; Smola, A.; Shawe-Taylor, J.; and Platt, J. 1999. Support vector
method for novelty detection. In Proceedings of the Advances in Neural Information Processing
Systems (NIPS), 582–588.

Schönemann, P. H. 1966. A generalized solution of the orthogonal procrustes problem. Psychome-
trika 31(1):1–10.

Simonyan, K., and Zisserman, A. 2014. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Song, L.; Ma, H.; Wu, M.; Zhou, Z.; and Fu, M. 2018. A brief survey of dimension reduction. In
International Conference on Intelligent Science and Big Data Engineering (IScIDE), 189–200.

Talwar, K. 2004. Bypassing the embedding: algorithms for low dimensional metrics. In Proceed-
ings of the thirty-sixth annual ACM symposium on Theory of computing (STOC), 281–290.

42

Tan, P.-N.; Steinbach, M.; and Kumar, V. 2006. Introduction to Data Mining.

Tenenbaum, J. B.; De Silva, V.; and Langford, J. C. 2000. A global geometric framework for
nonlinear dimensionality reduction. science 290(5500):2319–2323.

Xia, Y.; Cao, X.; Wen, F.; Hua, G.; and Sun, J. 2015. Learning discriminative reconstructions for
unsupervised outlier removal. InProceedings of the IEEE International Conference on Computer
Vision (ICCV), 1511–1519.

Youn, H.; Sutton, L.; Smith, E.; Moore, C.; Wilkins, J. F.; Maddieson, I.; Croft, W.; and Bhat-
tacharya, T. 2016. On the universal structure of human lexical semantics. Proceedings of the
National Academy of Sciences 113(7):1766–1771.

Zarrabi-Zadeh, H., and Mukhopadhyay, A. 2009. Streaming 1-center with outliers in high di-
mensions. In Proceedings of the Canadian Conference on Computational Geometry (CCCG),
83–86.

Zhang, M.; Liu, Y.; Luan, H.; and Sun, M. 2017. Earth mover’s distance minimization for
unsupervised bilingual lexicon induction. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 1934–1945.

43

	List of Tables
	List of Figures
	List of algorithms
	Key to Abbreviations
	Introduction
	A Novel Geometric Approach for Outlier Recognition in High Dimension
	Introduction
	Related Work
	Preliminaries

	Our Algorithm and Analyses
	Algorithm for MEB with Outliers
	Parameter Settings and Quality Guarantee
	Complexity Analyses
	Boosting

	Experiments
	Datasets and Methods to Be Compared
	Random Datasets
	Benchmark Image Datasets
	Comparisons of Time Complexities

	Summary

	Geometric Alignment in Low Doubling Dimension
	Introduction
	Related Work
	Outline of Our Work

	The Proposed Method
	Time Complexity Analysis
	Experiments
	Random dataset
	Real dataset

	Summary

	Bibliography

