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ABSTRACT 

ADAPTATION TO VISUAL PERTURBATIONS WHILE LEARNING A NOVEL VIRTUAL REACHING 
TASK 

By 

Sachin Devnathan Narayanan 

 

The movements we do to perform our day-to-day activities have always been riddled with 

perturbations, to which we adapt and learn. The studies looking at this aspect of motor 

learning should consider, the biomechanical differences that exist between individuals and 

create a novel task that can test every individual without any bias. This was achieved in our 

study by using a virtual environment to perform a novel motor skill in order to investigate how 

people learn to adapt to perturbations. 13 college age participants (females = 7, Mean = 21.74 

± 2.55) performed upper body movements to control a computer cursor. Visual rotation of the 

cursor position was introduced as a perturbation for one half of the practice trials. Movement 

time and normalized path length were calculated. One way repeated measures ANOVA was 

performed to analyze significance between the performance at different times of the task. 

Significant learning seen while learning the initial baseline task (p<0.0001) and significant drop 

in performance upon immediate exposure to the perturbation (p =0.005). No significant 

adaptation over practice with the perturbation (p = 0.103) or significant after-effects on 

removal of the perturbation (p = 0.383). Results suggests differences in adaptation when the 

task is novel, when compared to other adaptation studies and such novel tasks trigger a 

different type of learning mechanism when compared to adaptation. 
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CHAPTER 1 
 

 

INTRODUCTION & REVIEW OF LITERATURE 
 

 

While learning and performing motor skills daily, we see that there exist various 

disturbances to our movements, to which we constantly try to adjust and adapt with ease. This 

process of adjusting or modifying our movements to new demands by gradual trial-to-trial basis 

using the feedback from the errors, in order to reduce the same is called motor adaptation and 

this gives rise to motor learning (Martin et al., 1996;  Bastian, 2008). These demands or 

disturbances may be external, such as environmental conditions/forces, use of certain devices 

like prisms, or internal like muscle fatigue or injuries (Krakauer, 2009). Common examples of  

adaptation are walking on slippery or snowy surfaces, where our walking patterns would have to 

adjust to the change in the nature of the surface or trying to use computers which have different 

mouse sensitivities, to name a few.  

 

Motor adaptation in research 

In order to help us understand the effects of adaptation in our real life movements, 

studies have extensively used tasks based on error-based paradigms, such as visual or mechanical 

perturbations (Shadmehr et al., 2010; Mazzoni & Krakauer, 2011). Study-specific examples of 

such paradigms being used include perturbations being introduced to the upper body such as, 

reaching and pointing movements. Studies with visual perturbations include visuomotor 

transformations using prism goggles (Helmholtz, 1962; Newport & Schenk, 2012; Redding & 

Wallace, 1996; Rossetti et al., 1998) or virtual rotation of the hand or finger displacement using 
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a mouse cursor on the computer screen (Wigmore et al., 2002; Scheidt et al., 2011). Alternatively, 

mechanical perturbations can be used in the form of lateral external forces being brought about 

using a robot arm manipulandum.  In these studies, there are constant modifications to the 

movements in the task from trial-to-trial, where the movement retains the identity of action, but 

over practice, changes in terms of other parameters such as movement direction or intensity of 

force (Martin et al, 1996).  

 

Visuomotor adaptation 

Between the two types of perturbations, a lot of studies have used visuomotor rotations 

and visual perturbations to study adaptation and the subsequent learning associated with it. 

There are many reasons and findings that support this. First, many studies using this type of 

perturbation have provided results that provide important results regarding procedural learning 

and memory. Second, rotational learning is implicit, which means that the participants tend to 

adapt to the perturbation even without awareness and without any explicit strategies regarding 

the perturbation being provided. Visuomotor adaptation studies also have tasks that are 

predominantly reaching based, which has a significance that the human nervous system plans 

reaching movements as a vector consisting of separate details for extent and direction (Gordon 

et al., 1994; Vindras and Viviani, 1998; Ghez et al., 2000). Reaching tasks primarily involve arm 

movements and visuomotor rotation works by introducing a direction based change in the reach 

target position, which in turn is related to the arm movement. Therefore, this can be used to 

study the adaptation in important movements such as reaching (Krakauer, 2009).  
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In such adaptation studies using visual perturbations, we see certain common trends in 

the structure of the experimental protocol used. There is a primary, task familiarization phase, 

where the participant learns to perform a certain movement for the task in hand. This phase 

usually consists of a certain number of trails, after which the participant is exposed to the 

perturbation of the task. Then there is a series of trials where the participant performs the task 

with the perturbation influencing the movements and it is over this period of performance where 

people study the effects and rate of adaptation taking place. After a considerable period of 

practice under the perturbation, it is taken off, and the task becomes similar to the initial 

familiarization task. This “washout” block is to see how the effects of the adaptation get carried 

over to the baseline movements.  

 

Performance in visuomotor adaptation studies 

Looking at the performance in such adaptation studies, we see that initially in the 

familiarization block, the participants perform well with minimum errors in the task parameters. 

This was because most of the tasks involve movements that participants already have some idea 

about. Then, upon introduction of the perturbation, the participant has a significant drop in 

performance and a rise in the errors, as they are not aware of the perturbation and do not yet 

know how to develop counter-measures to adapt. With practice over several trials, the 

participants gradually get better in performing the task with the perturbation, showing the 

presence of adaptation. This is seen in many studies by the trial-by-trial reduction in the errors 

made during the perturbed phase (Buch et al., 2003, Shadmehr et al., 2011). On removing the 

perturbation in the washout block, it is seen that there are significant after-effects, which are 
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seen in the form of a sudden increase in the occurrence of errors. The presence of after-effects 

indicates that the participant does not merely react to the perturbation that has been introduced 

but also gradually adapts and anticipates the expected dynamics of the visually rotated 

environment. This therefore shows that motor adaptation appears to work by updating the 

internal model of an existing baseline environment, when changes are made (Huang and 

Krakauer, 2009). 

 

Lack of task novelty in existing studies    

However, in the tasks performed in most of the visuomotor adaptation studies done 

earlier, there is always  the possibility of some participants having prior knowledge about the 

task. For example, if it is a dart-throwing task, some participants who have been prior experience 

throwing darts, or if they are trained in dart-throwing before. This would make these participants 

use strategies that they already know to result in better performance that all the other 

participants who have not experienced dart-throwing before. Another potential issue is that, 

there might exist certain biomechanical body differences between various participants, which 

might cause the them to get an edge over others. This for example can be understood in reaching 

tasks, where people with longer arms might be able to reach further when compared to people 

with shorter arms. In short, most of the previous studies involve tasks which try to look at 

adaptation through re-parameterization of an already existing, well-learn movement 

coordination pattern (Lee et al., 2018). These two aspects of prior task experience and the 

biomechanical differences play a crucial role in every task because these might prevent studies 

from looking at true learning from scratch. Therefore, tasks that are novel enough in the 
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movements executed by the participants, so that they have no prior experience advantage, nor 

do they have any edge in the performance due to biomechanical differences, should be used.  

 

Studies using novel tasks 

To overcome these issues, there have been newer few studies that have taken task 

novelty into consideration and have structured a task which involves the learning of a novel 

movement coordination patterns such as using a split-belt treadmill to perform walking based 

adaptation tasks (Reisman et al., 2007) or the use of a data glove (Liu et al., 2011). But even in 

these studies, for example in Liu et al., 2011, the movements performed by the data glove were 

not completely novel and exploratory. The participants were made to wear a data glove and 

control a cursor on the screen, but when  calibrating the movements, they were not given 

complete freedom to explore and define their movements, but rather made to perform 

repetitions of a random sequence of 24 hand postures corresponding to the static finger spelling 

characters from the American Manual Alphabet (AMA). Further, subjects were provided with 

photographic images of an expert in AMA performing these postures. This therefore restricted 

participants from completely exploring and defining their own set of movements for calibration. 

 

Need for this study 

Therefore, it was critical for us to investigate the effects of visual perturbations when 

learning a novel, exploratory motor task to understand the true effects of adaptation and give us 

a better understanding in real life. To achieve these task goals of novelty and lack of 

biomechanical differences, we used a Body Machine Interface (BoMI). There are various kinds of 



6 

 

Body Machine Interfaces which basically help to connect body movements and transform them 

to perform new functional tasks such as controlling a computer cursor, a prosthetic arm or even 

a wheelchair. A body-machine interface does not take account of previous biases: subjects 

perform novel virtual tasks that are independent from their prior experience and their 

biomechanical characteristics (Casadio et al., 2012). We used one such interface, which uses 

upper body movements to control a cursor on a computer screen (Casadio, Ranganathan, & 

Mussa-Ivaldi, 2012).  With this, we focused on answering our following research questions. 

 

Specific aims 

Using a novel and exploratory virtual reaching task, we investigated 

Aim 1: Adaptation on introduction to visual perturbation with practice. 

Aim 2: After-effects of the adaptation to perturbation on its removal. 

 

Proposed hypothesis 

For Aim 1, we expected to see an initial drop in the performance upon introduction of the 

visual perturbation, but also expect to see a gradual improvement in the performance over 

practice over a period of reaching trials. For our second aim, we expected to see significant after-

effects when the visual perturbation is removed, which would see a sudden drop in the 

performance similar to the drop seen on the onset of perturbation (Helmholtz, 1867; Liu and 

Scheidt, 2011; Pierella et al., 2015).  
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CHAPTER 2 

 

METHODOLOGY 

Participants 

In order to answer our research questions, we had 13 healthy college-age adult participants 

(Mean = 21.74, SD = 2.25) with no recent history of upper body disabilities, out of which 7 were 

females. All the participants were undergraduate and graduate student from the Department of 

Kinesiology in Michigan State University (East Lansing, Michigan) and received an extra credit in 

one of their courses to perform the experiment as compensation. The procedures were approved 

by Michigan State University Human Research Protection Program (MSU HRPP) and all the 

participants were given consent forms to sign and a copy of the signed consent form was given 

to them. In this study, all the participants performed the same task with the same experimental 

protocol and were all exposed to the visual perturbation when they were performing a novel and 

exploratory virtual reaching task using a Body Machine Interface (BoMI). 

 

The body machine interface 

The Body Machine Interfaces are a  means for the human body to interact with an external 

device. These interfaces play an essential role in assisting the people with reduced motor skills 

on a daily basis. The main aspect of this Body Machine Interface that makes it significant in our 

study is that it does not take account of previous biases: subjects perform novel virtual tasks that 

are independent from their prior experience and their biomechanical characteristics (Casadio et 

al., 2012). General scheme for a body machine interface is shown in the following figure: 
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Figure 1. Schematic Diagram of a BoMI (adapted from Casadio et al., 2012) 

 

A typical Body Machine Interface consists of three main components. The body being the 

first, refers to the human body from which signals are obtained. The second component is the 

machine, which refers to the device or machine that is to be controlled. The final component is 

the one that links these two, which is the interface. The interface plays an important role in the 

functioning of the BoMI by receiving and transforming the body signals into commands for 

controlling the device. 

The general aim of a body-machine interface is to enable the user to retain a complete or 

shared control over the device (e.g a prostethic limb, a wheelchair or the cursor position on a 

computer monitor) through signals derived from the user’s body. These signals may be extracted 

directly from body motions, using goniometers, magnetic or infrared sensors, accelerometers, 

cameras, force sensors and pressure switches.  

Human Body

Body 
Machine 
Interface 
(BoMI)

Device to be 
controlled

Neural Firing 
EEG 

Muscle activity 
EMG 

Movements 
(limbs, head, 

tongue, gaze...) 
 

Forces - 
Pressure 
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Structure of a body machine interface 

Signal acquisition 

The initial part of a BoMI involves acquiring the signals from the body, which is done using 

various measuring devices and, in our case, we use four wireless Inertial Measurement Units 

(IMUs). These IMU sensors are placed on the shoulders of the participants (two on each shoulder) 

to record the movement.  

Transformation of body signals into control space 

The acquired body signals are mapped onto the control space, i.e. the space defined by 

the commands of the external device. This mapping process is typically obtained by executing a 

dimensionality reduction which allows mapping the n-dimensional body signal into the m-

dimensional control signal (with m<n). This dimensionality reduction exploits several machine 

learning algorithms, such as PCA, independent component analysis (ICA), and the Isomap 

method. These algorithms rely on the extraction of key features, selected basing only on input 

signals' statistical properties. Among these, we use PCA, which is an unsupervised machine-

learning algorithm that allows to find the directions, i.e. the principal components (PCs), of the 

greatest variance in the input data. These PCs are orthogonal lines of best fit to the input dataset. 

Only the first two PCs are generally used in our study to create the control space because they 

explain the biggest percentage of variance of the dataset. PCA returns an eigenvectors matrix 

that has the same dimension as the input matrix's independent variables. Each eigenvector is 

associated with an eigenvalue that is used to order the eigenvectors matrix (first eigenvector is 
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the one which has the highest eigenvalue). The eigenvectors are used to create the map that 

allows the projection of the input dataset into the PC dataset.  

Substantially, PCA projects those input variables, i.e. body signals q = [q1 q2 . . qN], in a 

new Cartesian system in which the new x-axis is the 1st PC (the one that explains the highest 

amount of variance), h1 = [h11 h12 . . h1N] , and the y-axis is the 2nd PC (the PC with the second 

highest amount of explained variance) , h2 = [h21 h22 . . h2N] , and so on. To control a cursor on a 

monitor it is enough to have a map H made up only by the first two eigenvectors. 

 

 

Figure 2. Cursor coordinates mapping equation 

The control interface 

 Once the cursor map has been generated, we built a control mechanism which consisted 

of a task, which served as an interface between the body signals and the signals for the control 

of the external device. This is done using custom programs in MATLAB (R2014a) and Simulink. 

 

Experimental setup 

For our experiment, the participants sat comfortably and faced a 23” (58.4 cm) computer 

display monitor positioned at about 70 cm in front of them, at eye level. The participant was 

asked to wear a customized vest with Velcro strips near the shoulder region. Four wireless inertial 

measurement units (IMUs) (3-space, YEI Technology, Ohio, USA) were attached to the vest on 
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the Velcro strips to capture the shoulder’s scapular retraction. protraction, elevation and 

depression (Farashchiansadegh et al., 2014). The position of the sensors was on the anterior and 

posterior ends of the acromioclavicular joint of the shoulder, on both the left and the right sides 

(Figure 2) . The number of sensors was chosen in order to balance the need to capture a rich set 

of movements and be able to use low cost instruments that can be adopted for a more home-

based setting in the future.  

 

 

Figure 3. IMU position and experimental setup 

 

The orientation of the sensors was estimated using a sensor-fusion algorithm through the 

combination of measurements derived from three types of sensors within these IMUs: a 

gyroscope, an accelerometer and a magnetometer. Each IMU measured three real-time signals, 

corresponding to the Euler angles: roll, pitch and yaw. The IMU signals were captured at the rate 

of 50 Hz and then mapped into the position of a computer cursor using a custom program in 
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Matlab/Simulink (Mathworks, Natick, MA). No filtering or pre-processing was applied to the IMU 

signals. In IMU design, the earth magnetic field is used to stabilize the yaw (heading angle). 

Therefore, the heading angle is unreliable when the earth‟s magnetic field is disturbed. This 

phenomenon takes place when ferromagnetic materials are in proximity of the sensors or when 

the sensor is subject to magnetic fields other than the Earth‟s magnetic field. For this reason, 

only the roll and the pitch were used as input signals for the interface. 

 

Dimensionality reduction 

 The significance of BoMI lies in its ability to convert the countless number of body signals 

of such a high dimension and map it to get a low dimensional control space signal (a cursor). In 

order to define this body-to-cursor map for our task, the eight-dimensional body space vector 

defined by the signal values coming from the four IMUs (h) is made to undergo dimensionality 

reduction using PCA to reduce to a two dimensional coordinate system of task space (cursor x 

and y on the computer monitor) (u), which is referred to as the Euclidean domain.  

A calibration phase was required to compute the transformation matrix needed to 

perform the dimensionality reduction. During this phase the participant had to execute a “body 

dance” for 70 seconds in which he was asked to perform exploratory movements with his upper 

body while maintaining a comfortable range of motion. Then, PCA was applied and the 

transformation matrix A was constructed using the coefficients of the first two principal 

components (PCs): 

u = Ah + p0 
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where p is the 2-D cursor position vector, h is the 8-D body space vector, A is the 

individual’s map and p0 is the offset term (Farschiansadegh et al., 2014). The individual map A 

will be determined using a calibration method where the participant shall perform exploratory 

movements for 60 seconds. They will be told to perform all kinds of upper body movements while 

staying seated, to let the computer know their boundary of motion. This calibration data will be 

dimensionally reduced using PCA and the first two vector components will be extracted 

(containing most of the variance) and scaled by a gain factor that shall be equal to their 

corresponding eigen vectors. The offset p0 will be added finally to set the cursor roughly to the 

center of the screen. The map can be further rotated to get the most relatable and intuitive map 

between the body motion and cursor movement. 

The task interface 

The Body-Machine Interface software comprises of two different programming levels: a 

higher level, the Matlab G.U.I (Graphic User Interface), which allows both the experimenter to 

execute the program and the participant to perform the experiment; a lower level, the Simulink 

model, not visible to the participant, through which the experimenter has direct access to the 

program. Both the programming levels were previously developed by the Northwestern 

University (Chicago, U.S.A.) and were subsequently edited in order to conduct this study. 
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The G.U.I 

 

Figure 4. Matlab G.U.I to set experimental parameters and control overall task protocol 

 

The Matlab G.U.I was used to help the experimenter control the overall protocol and 

interact with the interface and start/stop the Simulink part of the program when necessary. 

 

Experimental flow 

Before beginning to run the program, the experimenter has to update the destination 

folder name in the Simulink program in the corresponding “To File” destination and save the 

model. 
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Once the program is started, the G.U.I pops up and the participant ID and session number 

data are inserted into their respective slots. This will lead to the creation of a customized folder 

in which the data collected during the experiment will be saved. Subsequently, the user selected 

the “Warm up‟ button. 

This action starts both the Simulink model and connects the wireless sensors to the 

computer. This connection process usually takes about one minute, during which all the sensors 

and the dongle connected to the computer blink constantly, signifying successful connection. 

 

 

Figure 5. Simulink layout of the perturbation block 

 

By clicking “Start Calibration” the calibration phase will start. A “calibration window“ 

showing the floating values of the yaw, pith and roll angles will appear and, at the end of this 

phase, the transformation matrix (A) will be computed. The participants were instructed on doing 

all different kinds of shoulder and upper body movements for the given period. 
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By selecting the “Calculate PCs” button. Another window will appear showing the results 

of the dimensionality reduction. This will display both the Variance Accounted For (VAF) by the 

PCs and the calibration data projected on the two-dimensional PC space, allowing the 

experimenter to understand if the participant will be able or not to perform the task. 

Then, it goes on to the customization phase. This is started by selecting the “PC 

Customization” button. During this phase, a grey window appears, and the participant controls a 

red dot on the screen by moving his upper body. At this level, the experimenter asks the 

participant to hit all four sides of the screen moving his upper body. If the participant cannot 

touch one or more sides, the calibration must be repeated. 

  

 

Figure 6. Customization window with the red dot task 
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During this, it is possible to modify the map multiplying it by a gain, adding and offset or 

applying a rotation. The gain will allow to stretch (if gain >1) or contract (gain <1) the workspace, 

whereas the offset and rotation values will allow respectively the translation and rotation of the 

workspace. For our study purposes, we use a Gain of +1 and an Offset value of 0. 

Both parameters are selected in accordance to participant’s preferences, in order to let 

them move the cursor in the entire workspace more intuitively. After selecting the “Save 

customization parameters” button, the user must select a group (Group 1, Group 2). Each group 

is characterized by a different protocol and the selection must be done according to the protocol 

that the participant must follow. 

 

The experimental protocol 

The participants were told to move their upper body (shoulders and torso) to control a 

cursor on the monitor and perform a center-out reaching task, designed in the custom made 

Matlab/Simulink program. The overall goal of the participant was to move the cursor into a 

specific target circle as fast and as close to the center as possible. On reaching the target circle, 

they would have to stay in it for at least 500ms. All participants performed 12 training blocks each 

consisting of 24 trials where the target circles appeared in random order in both the cardinal and 

diagonal directions at 11.5 cm from the center of the screen. They went back and forth between 

these peripheral targets and a central base target. In these blocks, the participant received a 

score that reflected their individual performance for each trial. Among the 12 blocks, the first five 

blocks were without any kind of visual perturbation, but rather a baseline or familiarization block. 
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Figure 7. The task interface (a) Cursor while reaching to a peripheral target. (b) Cursor upon reaching a target and 

holding there for 500 ms (c) Position of all eight targets with the effect of visual perturbation seen while reaching 

for the top target 

 

The visual perturbation blocks 

From the sixth block, the visual perturbation was introduced. The perturbation was in the 

form of a constant clockwise rotation of 45⁰ of the cursor position (Figure 6.c). Previous literature 

on cursor rotation tasks show that the response time. error reduction and adaptation rate are 

a b 

c 
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maximum at 45⁰ (Krakauer, 2009; Newell, 2012). The cursor rotation was brought about by 

applying a rotation matrix on the final 2-D task space vector. The participants were not given any 

information about the perturbation and were completely oblivious to its onset. Such a 

perturbation was applied to the next five blocks (training blocks 6-10). At the end of these five 

perturbed training blocks, the participants performed two more blocks of the original 

unperturbed condition, which was a washout block to investigate the presence of after-effects 

of the perturbation. The overall layout of the study is shown in Figure 5. 

 

Figure 8: Overall protocol common for all the participants 

 

Data analysis 

The data that we received was in the form of .mat files, with sensor information and 

cursor position and time information in the files. Based on this, we will be looking at two different 

parameters to evaluate the participant’s performance. 

 

Performance metrics 

The two different performance metrics we will be using are movement time and 

normalized path length, where movement time was our primary variable because all the targets 

Baseline 
Block

120 Trials

Perturbation 
Block 

120 Trials

Washout 
Block

48 Trials



20 

 

were equidistant from one center target and we also looked at path length to check for the 

straightness in the path. We used such these measures because previous literature has shown 

that there is a gradual straightening of the path in reaching tasks over practice (Shadmehr and 

Mussa-Ivaldi, 1994; Mosier et al., 2005). 

Movement time is defined as the time at which the cursor leaves the center target to the 

time at which the cursor reaches the destination target and stays inside the target for the next 

500 ms.  Normalized path length between two targets is defined as the ratio of the actual distance 

travelled by the cursor from the center target to the destination target, to the straight line 

distance between the two targets. 

We use normalized path length as our secondary measure to analyze how the cursor has 

travelled, especially when there have been high movement times. If the path length has also been 

correspondingly large, it means that the participant did not have a very good control of the cursor 

during that trial. If the path length was comparatively smaller, it would mean that the participant 

moved slowly, but still tried to maintain a straight line. This therefore gives us a better idea as to 

how participants reach and learn the task. 

 

Statistical analysis 

In order to answer our research questions, we analyzed the performances of all the 

twelve training blocks and investigated the effects of learning and adaptation across these.  

First, we wanted to confirm if learning of the baseline task had taken place, therefore we 

compared the performance between training 1 and training 5, i.e. the first and last training blocks 

of the baseline version of the task. Next, in order to see if the introduction of the perturbation 
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has affected the participant’s performance, we look at the performance between training 5 and 

training 6, i.e. the last baseline training block and the first block of perturbation. Then, to study 

the rate of adaptation, we would compare training 6 and 10, which are the first and last blocks 

of perturbation. This would be followed by the washout blocks. Here, we would compare training 

10 and 11 to check for the presence of after-effects upon the removal of the perturbation. Also, 

in order to check for any immediate after-effects upon the removal of the perturbation, we 

closely investigated the last cycle of target reaches of training 10 (last perturbation block) with 

the first cycle of target reaches of training 11 (first washout block). 

For all these comparisons, we ran individual one-way repeated measures ANOVA with the 

training block (baseline, perturbation and washout) being our independent variable and taking 

the performance measures (movement time and normalized path length) as our dependent 

variables. Since all participants performed both the baseline and the perturbation blocks, there 

were no separate groups or group-effects. Post-hoc Tukey’s tests were done to analyze the 

significance of the comparisons. The significance levels were set at p < .05. All the statistical 

analyses were performed using Jamovi version 0.9.6.9. 

  



22 

 

CHAPTER 3 

RESULTS 

Movement time 

Baseline (Training 1 to training 5) : As we see from Figure 8, there was significant improvement 

in the performance initially between training blocks 1 and 5 (df = 48.0, t = 5.943, Ptukey <.001), 

which shows that considerable learning of the baseline task has happened. This was supported 

by a significant drop in the movement time.  

Perturbation (Training 6 to training 10) : Upon introduction of perturbation, we saw that there is 

a significant drop in performance, which was shown by the sudden increase in movement time 

between trainings 5 and 6 (df = 48.0, t = -3.699, Ptukey = 0.005). Over the period of five training 

blocks under the visual perturbation, we noticed that there was a gradual reduction in the 

movement time, although not statistically significant (df = 48.0, t = 2.518, Ptukey = 0.103). 

Washout (Training 11 and training 12) : Upon removal of the perturbation, at the end of training 

10, we saw that there was no significant change in the movement time curve, which in fact 

reduces a little bit. We saw that the performance from training 10 to 11 (last block of perturbation 

and first block of washout) was not significant (df = 48.0, t = 1.804, Ptukey = 0.383). We also looked 

to see if there were any gender-related differences with movement time and found that there 

were no significant differences at any point through the 12 training blocks (df = 11.0, t = 0.320, 

Ptukey = 0.755).  
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Figure 9. Performance graphs plotted for movement time against training number. The green part of the graph 

focuses on the baseline blocks, the blue part on the perturbation blocks and the grey part on the washout blocks. 

(a) Movement times (s) of individual participants plotted with respect to the training block number. (b) Movement 

time (s) averaged across all participants, represented with respect to the 12 blocks (c) Movement time comparison 

between males and females averaged across the participants plotted with respect to the training blocks 
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Path length 

Baseline (Training 1 to training 5) : From Figure 9, we saw that path length followed a trend that 

was similar to movement time. There was significant improvement in the performance initially 

between training blocks 1 and 5 (df = 48.0, t = 4.79269,  Ptukey <.001), which shows that 

considerable learning of the baseline task had happened. This was supported by a significant 

drop in the normalized path length.  

Perturbation (Training 6 to training 10) : On introducing of perturbation, we saw that there was 

not such a significant increase in the normalized movement time, which indicated that there was 

no significant drop in performance between training blocks 5 and 6 (df = 48.0, t = -1.64893, Ptukey 

= 0.475). Over the period of five training blocks under the visual perturbation, we saw that there 

was a gradual reduction in the normalized path length almost to near baseline performance, 

which was not statistically significant (df = 48.0, t = 1.8334, Ptukey = 0.367).  

Washout (Training 11 and training 12) : When the perturbation is taken off at the end of training 

10, we saw that there was almost no change in the normalized path length curve, which stayed 

almost exactly at the same level. We saw that the performance from training 10 to 11 (last block 

of perturbation and first block of washout) was not significant (df = 48.0, t = -0.19362, Ptukey = 

1.000). Even for normalized path length, we did not see any significant gender-related differences 

at any point through the 12 training blocks, although we saw that the females had slightly lower 

normalized path length than the males (df = 11.0, t = -2.00, Ptukey = 0.070).  
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Figure 10. Path length trajectories at various stages of the protocol (a) Training 1 (first baseline block) (b) Training 

5 (last baseline block) (c) Training 6 (First block of perturbation) (d) Training 10 (last block of perturbation) (e) 

Training 11 (first block of washout). This clearly shows that gradual learning has happened to an extent along the 

perturbation block but there are no big differences on removal of the perturbation. 

a b 

c 

d 

e 
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Figure 11. Performance graphs are plotted for normalized path length against training number. The green part of 

the graph focuses on the baseline blocks, the blue part on the perturbation blocks and the grey part on the 

washout blocks. (a) Normalized path lengths of individual participants plotted with respect to the training block 

number. (b) Normalized path length averaged across all participants, represented with respect to the 12 blocks (c) 

Normalized path length comparison between males and females averaged across the participants plotted with 

respect to the training blocks 
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Immediate after-effects 

Although we saw that there was no significant results for both movement time and normalized 

path length between training blocks 10 (last perturbation block) and training block 11 (first 

block of washout), which showed the absence of after-effects on removal of the perturbation, 

we wanted to see if there were any immediate after-effects on the first few trials of the 

washout block. For this, we compared the performance of participants in the last 8 of the 24 

trials of the perturbation block (training 10) with the first 8 trials of the washout block (training 

11). Eight reaches were chosen because they corresponded to the one cycle of reaches to all 

the eight targets.  

The results showed that the last cycle of target reaches for training 10 (perturbation block) 

were significantly higher than the first cycle of target reaches for training 11 (washout block) for 

movement time (df = 7.0, t = 4.76, Ptukey = 0.002). For normalized path length, although the 

reaches in the washout block were more than the ones in the perturbation block for certain 

targets, they were not statistically significant for us to make a defining conclusion (df = 7.0, t = -

0.287, Ptukey = 0.435).  
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Figure 12. Comparison between the average of reaches for the last cycle of training 10 and the first cycle of 

training 11. The performance parameters (movement time and normalized path length) have been plotted for 

each participant, averaged across each cycle.  
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CHAPTER 4 

DISCUSSION  

Summary 

Learning a motor pattern is one of the most primitive and important processes in human 

development. This process of motor learning also leads to adjustment of movements, when 

encountered by forces or changes in the environment, which results in motor adaptation. During 

adaptation, eventually new motor patterns are learnt, and adaptation always tends to work in 

the direction of bringing back the performance to near baseline (unperturbed) conditions (Izawa 

et al., 2008). This is done through a feedback process using the errors we commit in the previous 

trials, which is used to correct movements in future trials (Wei and Kording, 2008). 

 We initially aimed to investigate motor adaptation in a novel, exploratory virtual reaching 

task using a visual perturbation (visuomotor rotation). We identified that the lack of task novelty 

would cause some participants to have undue advantage due to prior task experience or 

biomechanical differences giving Previous literature has shown that the performance worsens on 

the onset of the perturbation but over practice, it does get better, which suggests that motor 

adaptation has taken place. Also, it was seen that once the perturbation is removed and the 

participant performs the baseline task, the performance goes bad once more, which suggests the 

presence of after-effects in the washout trials. This is also what we expected to see in our study. 
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Baseline performance 

We initially saw that there was significant learning of the baseline task, which 

corresponded well with the results of previous studies done with the same baseline task (Lee et 

al., 2018). The performance curves were similar for both movement time and normalized path 

length. This suggested that our initial number of blocks given for practice was enough for the 

participants to learn the task, although it was novel. 

 

Perturbation block performance 

Our first aim was to see how participants would react to the perturbation and how the 

corresponding motor adaptation to the visuomotor rotation of the cursor position would be. We 

saw that the performance on both parameters, movement time and normalized path length, 

reduced considerably upon introduction of the visual perturbation. This suggested that all the 

participants had a significant reaction to the perturbation on its exposure, although none of them 

were given any feedback or knowledge about the perturbation or it’s onset. Over practice, where 

the number of trials were the same as that of the baseline block (5 training blocks, 24 trials each), 

we saw that there was a significant improvement in performance which was seen with the 

reduction in movement time. The normalized path length also gradually reduced although not 

statistically significant. This suggested that although the task was novel, adults could adapt their 

movements to visual perturbations after learning a novel task from scratch. 
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Washout block performance and after-effects 

 On removing the perturbation, we expected to see considerable after-effects in the 

movements. The presence of after-effects has been found in most of the previous motor 

adaptation studies, even the few that have been done in novel tasks (Liu and Scheidt, 2011). It 

demonstrates that the participant doe not just react to the changes in the environment or the 

perturbation to movement, but rather also works according to a prediction-based model where 

he/she tries to anticipate the dynamics of the changed environment and perform movements 

accordingly. Therefore, there is an update that happens to the existing internal model of the 

external environment.  

 In this study, we expected to see significant after-effects, but we found that participants 

exhibited no after-effects at all when the perturbation was removed. The performance with 

respect to both movement time and normalized path length remained almost the same after the 

perturbation was removed like it was before removal. We looked closely to check for any 

immediate after-effects in the few reaches, by comparing the last cycle of reaches of the final 

perturbation block with the first cycle of reaches in the first washout block. Even in that case, we 

found that there was not drop in performance which could indicate any after-effects. We saw 

that the movement time for the reaches of the last perturbation block was higher than the 

movement time for the washout block. This shows the lack of after-effects. Also, the performance 

at the beginning of the washout block was almost at the same level as that of the last block of 

baseline (both unperturbed conditions).  
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 The lack of after-effects can be attributed to two possible reasons. One, the practice that 

occurred during the perturbation phase might have helped strengthen the original motor plan of 

the baseline block. In that case, it is not just adaptation to the visual perturbation but also 

reinforcement of the existing map. The second possibility could be that the novelty of the task 

might have made it too difficult for the participant to adapt to the perturbation and this might 

have caused the them to learn two separate motor plans one for the unperturbed condition and 

one for the baseline condition.  

 

Limitations 

 A major limitation of our study was the small sample size. The statistical insignificance of 

the results can be attributed to the low power of the study, which in turn is related to the sample 

size. For now, although we see significance for adaptation over the period of visual perturbation, 

the results are not so conclusive for the after-effects phase, which could be understood better if 

we had a bigger population.  

 

Future direction 

 Few suggestions for the future would include trying to look at similar adaptation in 

different populations, as previous literature has suggested that there are significant age-related 

differences when the task performed is novel. For children, we expect the populations that are 

slightly older (around 12 years) to not show any after-effects and perform similar to the adults, 

whereas expect the younger populations of children to have lower performances with significant 
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after-effects. That being said, this study can be potentially used as an effective tool to investigate 

the effects of aging on the ability to adapt to visuomotor perturbations an also in understanding 

motor adaptation, motor planning and execution.  

 Another suggestion would be to look at the data from a different perspective. Although 

in this study we have considered movement time to be the primary variable to measure learning, 

literature has looked at other parameters such as error in path deviation and directional error 

(Kagerer et al., 1997, Buch et al., 2003). These are measures of the angle and distance and with 

our perturbation being a visuomotor rotation, this might give us a better understanding of how 

it affects movement. This is because, a participant can reach to a target very fast, but can have 

randomness or deviation in their movement. It is this angular deviation that might give us a better 

reading about how the visual rotation has affected the movement.   
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Data Analysis Tables 

Movement Time 

 

Figure 13. One-way repeated measures analysis for movement time averaged for all participants with blocks as the 

repeated measures factor. 
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Normalized path length 

 

 

 

Figure 14. One-way repeated measures analysis for normalized path length averaged for all participants with 

blocks as the repeated measures factor 
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Immediate after-effects 

Movement time 

 

 
 

Figure 15. One-way repeated measures analysis of movement time, comparing the last eight reaches of the 

training 10 to the first eight reaches of training 11. 

Normalized path length 

 

 

Figure 16. One-way repeated measures analysis of normalized path length, comparing the last eight reaches of the 

training 10 to the first eight reaches of training 11. 
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