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ABSTRACT	
	

A	GENOMIC	INVESTIGATION	OF	MAREK’S	DISEASE	LYMPHOMAS	
	
By	
	

Alexander	Cordiner	Steep	
	

Meq,	a	bZIP	transcription	factor	and	the	viral	oncogene	for	pathogenic	strains	of	

Marek’s	disease	virus	(MDV),	is	required	to	induce	CD4	T	cell	lymphomas	that	characterize	

Marek’s	disease	(MD)	in	chickens.	However,	Meq	is	not	sufficient	for	neoplastic	transformation	

as	not	all	birds	infected	with	pathogenic	strains	of	MDV	developed	Marek’s	disease.	We	

hypothesize	that	additional	drivers	or	somatic	mutations	in	the	chicken	genome	are	required	

for	MDV-induced	transformation.	Using	and	integrating	DNA	and	RNA	genomic	screens	of	

Marek’s	disease	tumors	from	genetically-defined	experimental	layers,	our	analyses	reveal	0.3	

somatic	mutations	per	megabase	consisting	primarily	of	somatic	single	nucleotide	variants	

(SNVs)	and	small	insertions	and	deletions	(Indels).	Somatic	deletions,	insertions,	and	point	

mutations	were	enriched	in	IKZF1	(Ikaros),	the	first	driver	gene	of	Marek’s	disease	lymphomas.	

Ikaros,	a	Zn-finger	transcription	factor	and	the	master	regulator	of	lymphocyte	development,	is	

a	known	tumor	suppressor	in	human	and	murine	acute	leukemias	and	lymphomas.	In	our	

surveyed	Marek’s	disease	tumors,	41%	of	the	samples	had	somatic	mutations	in	key	N-terminal	

Zn-finger	binding	domains,	strongly	suggesting	perturbed	Ikaros	function	in	its	ability	to	bind	

DNA	and	regulate	transcription.	Somatic	mutations	in	IKZF1	were	preferentially	found	in	tumors	

of	gonadal	tissues	as	well	as	their	metastatic	clones.	IKZF1	mutant	Marek’s	disease	tumors	

revealed	gene	expression	profiles	indicative	of	Ikaros	perturbation.	In	addition	to	IKZF1,	other	

putative	somatic	mutations	reside	in	ZNF384,	EFNA5,	CLDND1,	FOXD1,	ROBO1,	and	ROBO2	and	



	 	

warrant	evaluation.	Our	results	suggest	MDV-induced	tumors	are	driven	by	both	Meq	

expression	and	IKZF1	somatic	mutations	that	in	combination	lead	to	unregulated	proliferation,	

increased	cell	adhesion,	increased	migration,	and	dedifferentiation.	
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CHAPTER	1	
	

Introduction	
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Marek’s	disease	(MD)	is	a	lymphoproliferative	disease	in	chickens	caused	by	Marek’s	

disease	virus	(MDV),	a	highly	oncogenic	alphaherpesvirus.	Marek’s	disease	is	characterized	by	a	

chronic	peripheral	neuropathy,	in	which	demyelination	of	nerve	sheaths	and	paralysis	occurs.	

Often	these	observations	are	associated	with	the	most	serious	pathology	that	is	characteristic	

of	the	disease,	an	acute	lymphoma	in	visceral	organs1.	Marek’s	disease	was	first	described	by	

Jószef	Marek	in	1907	as	polyneuritis,	however,	the	disease	has	become	increasingly	neoplastic	

since	the	induction	of	high-density	chicken	rearing	practices	introduced	in	the	1960s.2	Vaccine	

regimens	have	been	proposed	to	promote	MDV	to	become	more	virulent3.	Although	highly	

successful,	the	current	control	strategy	for	Marek’s	disease	is	not	sustainable	as	vaccination	

does	not	prevent	horizontal	transmission	of	more	virulent	viral	genotypes.4	In	high-density	

chicken	rearing	environments,	MDV	is	ubiquitous.	In	such	situations,	chickens	are	immediately	

exposed	after	hatch,	suggesting	that	unless	vaccinated,	the	first	pathogen	to	interact	with	their	

immune	system	is	MDV.	These	series	of	events	have	generated	one	of	the	most	rapid	

transformation	processes	known,	which	is	estimated	to	occur	between	2-4	weeks	within	the	

cell.	Elucidating	the	ordered	series	of	events	surrounding	Marek’s	disease	transformation	

influence	lymphomagenesis	will	be	instrumental	in	controlling	one	of	the	world’s	most	

prevalent	and	acute	cancers.	

	

Marek’s	disease	lymphomas	

MDV	is	a	highly	contagious,	oncogenic	alpha-herpesvirus	that	elicits	inflammation,	

immunosuppression,	polyneuritis,	and	acute	T	cell	lymphomas	in	infected	chickens.	The	current	

model	of	pathogenesis	and	subsequent	transformation	begins	in	the	respiratory	tract,	where	



	 	 3	

inhaled	virus	is	engulfed	by	phagocytic	cells,	including	macrophages,	and	is	transported	to	the	

major	lymphoid	organs,	such	as	the	spleen,	bursa,	and	thymus	within	24	hours.	In	these	visceral	

organs	where	lymphocyte	populations	are	highly	proliferative,	MDV	targets	B-	and	activated	

CD4	T-lymphocytes	for	cytolytic	infection.	The	infection	peaks	3	to	6	days	post	infection	(dpi)	

often	causing	atrophy	to	the	bursa	and	thymus.		

The	CD4	T	cell	population	is	the	primary	target	for	viral	latency	and	subsequent	

transformation.	Latency	is	a	hallmark	of	herpesviruses	and	this	dormant	period	allows	the	virus	

to	evade	the	immune	system.	MDV	transitions	to	latency	with	some	overlap	between	the	

reduction	of	cytolytic	replication	and	the	induction	of	latency,	usually	within	7	dpi.	For	example,	

latency	has	been	observed	as	early	as	24	hours	post	infection	and	peaked	at	4	dpi	under	

experimental	conditions.5	Transformation	with	gross	lesions	occurs	as	early	as	two	to	four	

weeks	post	infection.6	The	transition	process	that	occurs	in	CD4	T	lymphocytes	is	not	well	

understood.	However,	the	CD4	targets	of	MDV	replication	have	been	described	as	highly	

proliferative	from	the	onset	of	latency	to	their	transformation.7	This	environment,	rich	in	highly	

proliferative	lymphocytes	and	oncogenic	virus,	is	ideal	for	the	transformation	process	because	

somatic	mutations	accumulate	with	each	cycle	of	cell	division,	especially	under	inflammatory	

conditions.	

Cancer	is	a	disease	of	the	genome	that	nearly	always	results	from	somatic	mutations	or	

sometimes	with	the	aid	of	viral	infection.	The	key	factors	involved	in	Marek’s	disease	

transformation	include:	the	pathogen	MDV,	its	CD4	host	cell	genome,	and	the	timing	and	

context	of	these	interactions.	Past	research	has	examined	the	MDV	genome,	including	the	

necessary	integration	and	expression	of	viral	constituents	These	efforts	have	shed	light	on	two	
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events	known	to	be	necessary	for	CD4	transformation:8	integration	of	MDV	into	the	chicken	

genome5,9	and	the	activity	of	the	primary	viral	oncogene,	Meq.10		

	

Marek’s	disease	virus	integration	drives	Marek’s	disease	lymphomas	

MDV	enters	latency,	including	integration,	as	a	natural	part	of	its	herpesvirus	life	cycle	

preceding	transformation.	In	1993,	Delecluse	and	Hammerschmidt	demonstrated	the	first	

evidence	that	MDV	integrates	into	the	host	genome11	and	subsequent	efforts	confirmed	and	

further	explained	the	mechanics	of	this	process.5,9,12	Similar	events	have	also	been	observed	in	

herpesvirus-associated	malignancies	in	human;	both	Epstein-Barr	Virus	(EBV)	and	Human	

Herpesvirus-6	(HHV6)	are	capable	of	integration	into	their	respective	host	genomes	prior	to	

transformation.13	Integration	is	a	necessary	step	that	must	occur	prior	to	transformation5,9	and	

studies	have	suggested	that	tumors	are	monoclonal	in	vivo5,9	and	in	cell	lines.11	But	these	

studies	focused	on	either	tumors	from	middle	and	late	stages	of	Marek’s	disease	or	in	vitro	cell	

cultures.	One	particularly	interesting	experiment5	examines	the	temporal	series	of	events	

surrounding	integration	as	the	early	stages	and	initiation	of	Marek’s	disease	pathogenesis.			

Integration	events	are	key	markers	for	Marek’s	disease	lymphomagenesis	and	

progression.	They	illustrate	the	microevolution	of	Marek’s	disease	tumors	from	a	

heterogeneous	mix	of	pre-transformed	and	transformed	cells,	to	gross	tumors	with	

predominantly	homogenous	CD4	populations	of	transformed	cells.	Subsets	of	predominantly	B	

and	T	cells	from	spleen,	bursa,	and	thymus	from	birds	inoculated	at	hatch	show	both	cytolytic	

growth	and	integration	in	tandem.5	These	groups	of	cells	demonstrate	both	integrated	viral	

genomes	and	associated	virus	as	early	as	1	dpi;	however,	the	transitions	to	cells	demonstrating	
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only	integrated	virus—MDV-integrated-only	cells	demonstrating	latency—occurs	sometime	

between	2	and	3	weeks	in	these	major	lymphoid	organs.	This	process	is	most	pronounced	in	the	

spleen.5	Robinson	et	al.	observed	that	a	rapid	increase	of	MDV-integrated-only	cells	in	the	

spleen	coincided	with	tumor	incidence.	Although	both	B	and	T	lymphocytes	show	MDV-

integration	in	the	major	lymphoid	organs,	spleen	showed	the	highest	concentration	of	cells	

with	integration-only	profiles.5	These	observations	are	supported	in	part	by	Marek’s	disease	

studies	revolving	around	the	spleen.	In	addition	to	harboring	MDV-integrated	cells	and	gross	

tumors,	the	spleen	is	an	important	site	in	Marek’s	disease	pathogenesis	because	infection	leads	

to	splenomegaly.14	Collectively,	these	observations	suggest	that	spleens	may	play	a	role	in	and	

harbor	the	transformation	process.	The	spleen	is	not	required	for	transformation,	however,	as	

birds	having	undergone	splenectomy	and	subsequent	infection	with	MDV	still	demonstrated	

gross	tumors.15		

Robinson	et	al.’s	study	of	MDV-integrated	lymphocytes	in	spleens	indicated	a	pattern	

for	the	transformation	process.	A	heterogeneous	population	of	transformed	cells	and	tumors	

characterized	by	their	diverse	integration	signatures	would	eventually	give	way	to	a	

predominant,	likely	a	clonal,	population	of	transformed	cells—based	on	identical	integration	

profiles—	that	also	constituted	late-stage	tumors.5	Consistent	with	their	prior	observations,9	

late-stage	tumors	demonstrated	uniformity	in	their	integration	profiles.	Collectively,	these	

observations	suggest	a	series	of	events	in	which	a	diverse	group	of	T	and	possibly	B	cells	

undergo	the	genetic	and	cellular	reprogramming	necessary	for	transformation.	More	than	one	

cell	is	likely	transformed	and	these	cells	likely	emigrate	to	or	from	lymphoid	organs,	but	

especially	to	the	spleen.	Time	series	analysis	of	MDV	integration	profiles	suggests	that	the	
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process	that	preferentially	selects	for	a	predominant—usually	clonal—transformed	cell	type	

typically	occurs	within	the	spleen.5,9	

	

Meq	drives	Marek’s	disease	lymphomas	

Although	integration	is	a	hallmark	of	Marek’s	disease	lymphomas,	it	alone	is	not	sufficient	

to	transform	the	cell.	Meq	is	the	primary	viral	oncogene	and	required	for	transformation.10,16	

The	instrumental	mechanism	of	Meq	was	revealed	when	Lupiani	et	al.	showed	that	a	Meq-

deleted	Md5	(rMd5ΔMeq)	recombinant	virus	failed	to	induce	transformation	in	vivo,	resulting	

in	an	attenuated	virus	that	could	still	replicate.10	Indeed,	both	integration	and	Meq	activity	are	

required	for	transformation.8	Robinson	et	al.	used	a	similar	approach	and	demonstrated	that	

cells	with	BACdelMEQ17	demonstrated	viral	replication	and	even	integration	but	did	not	enter	

latency	or	subsequent	transformation,	suggesting	that	Meq	homodimers	are	not	required	for	

integration	but	are	necessary	for,	or	are	thought	to	promote,	the	establishment	of		latency.5	

Although	other	viral	proteins	and	products	have	been	examined	for	their	oncogenicity,	such	as	

pp38,	Meq	is	widely	accepted	as	the	primary	oncogene	associated	with	Marek’s	disease	

lymphomagenesis.		

	 Meq	is	the	most	well	studied	MDV	protein.	It	has	been	shown	to	be	expressed	

throughout	the	lytic	and	latent	phases	of	the	MDV	life	cycle18	and	during	transformation.7,10	Its	

functions	are	diverse.	It	is	a	transactivator	and	chromatin	remodeler	that	can	bind	to	itself,	viral	

and	cellular	proteins,	and	DNA.6	The	influential	function	of	Meq	seems	to	be	delivered	through	

transcriptional	regulation.19	Both	the	chicken	and	integrated	viral	genomes	are	subject	to	

regulation	of	gene	expression.1	Meq	is	able	to	bind	to	transcription	factors	associated	with	cell	
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cycle	control,	such	as	Rb,	p53,	and	cyclin-dependent	kinase	2	(CDK2).18	As	Meq	is	a	bZIP	protein	

it	is	thought	to	bind	and	dimerize	most	commonly	and	strongly	to	proteins	within	the	bZIP	

family,	such	C-Jun,	JunB,	Fos,	and	itself.20	Of	all	heterodimers,	the	interaction	between	Meq	and	

Jun	is	considered	both	the	most	biochemically	stable20	and	relevant	to	positive	regulation	of	

transcription.19	

Although	heterodimers	of	Meq	and	Jun	have	been	shown	to	up-regulate	genes,	Meq	

homodimers	have	been	shown	to	act	on	distinctly	different	sites	to	down-regulate	genes	and	

both	of	these	mechanisms	have	been	extensively	characterized.19	Meq	is	a	multifunctional	

transcription	factor	that	regulates	many	pathways	involved	in	cellular	proliferation,	survival,	

and	migration.	Dimers	bind	to	promoters	containing	MERE	sites	(Meq	responsive	elements	that	

harbor	CRE/TRE	cores).	Homodimers	bind	preferentially	to	MERE-II	sites	to	repress	

transcription,19,20	and	heterodimers	containing	Jun	bind	MERE-I	AP-1	like	sites	to	enhance	

expression.20,21	Both	homo-	and	hetero-dimerization	of	Meq	are	necessary	for	

transformation;22	and	their	effects	on	gene	expression	and	subsequent	pathway	enrichment	

have	been	examined.19	The	five	most	enriched	pathways	associated	with	Meq	regulation	

involve	the	ERK/MAPK	signaling,	ErbB	signaling,	apoptotic	and	death	receptor	signaling,	and	

JAK-STAT	signaling.19	In	nearly	all	major	pathways	that	are	up-regulated	by	Meq	dimers,	in	

general,	Meq	homodimers	down-regulate	the	cellular	proteins	tightly	regulating	pathways—

often	tumor	suppressors—and	Meq	heterodimers	up-regulate	cellular	proteins—often	

oncogenes—that	activate	their	pathway.		

An	example	of	this	is	demonstrated	in	the	ErbB/MAPK	pathway	in	which	heterodimers	

up-regulate	kinases,	such	as	ErbB	and	Src,	and	down-regulate	phosphatases—such	as	PP1,	PP2,	
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and	DUSP4—known	to	target	the	MAPK	signaling	pathways.	Furthermore,	Meq	up-regulates	

Ras	and	MEK1/2	activities.	Subramaniam	et	al.	used	specific	inhibitors	of	ErbB1/2	and	MEK1/2	

in	cell	proliferation	assays	demonstrating	reduced	proliferative	effect	of	Meq	and	further	

supporting	the	role	of	Meq	on	MAPK	activation.	Meq	was	also	suggested	to	positively	influence	

proliferation	via	activation	of	the	JAK-STAT	pathway	by	down-regulating	tumor	suppressors—

SHP-1,	SOCS2,	and	PIAS,	and	up-regulating	the	oncogene,	STAT3.19	Meq	aids	to	prevent	cell	

death	by	up-regulation	of	the	anti-apoptotic	genes,	Bcl-2,	Bcl-XL,26–28	and	cIAP-1.	In	addition,	

Meq	down-regulates	pro-apoptotic	proteins	Bid,	Caspase	3	and	Caspase	6.19	Collectively,	Meq	

dimers	work	in	tandem	to	utilize	opposing	functions	of	activation	or	repression	of	gene	

expression	orchestrated	on	the	same	target	pathways	to	achieve	increased	cell	proliferation	

and	resistance	to	apoptosis.	

The	expression	of	Meq	in	vivo	has	been	assumed	to	occur	in	lytic	and	latent	phases	and	

in	transformed	cells,	based	on	experiments	in	vitro.23,24	However,	a	recent	in	vivo	analysis	of	

the	temporal	expression	of	Meq	fused	with	Green	Fluorescent	Protein	(GFP)	challenges	past	

assumptions.	In	vivo	expression	of	Meq	was	not	detected	during	the	presumed	peak	of	lytic	

growth.	Instead,	the	first	evidence	of	cells	expressing	Meq	was	in	CD4	cells	(CD4+Meq+)	

occurring	at	7	dpi.7	These	observations	are	in	tune	with	the	onset	of	latency	and	the	current	

understanding	that	Meq	is	the	only	protein	consistently	translated	during	latency.16	A	stark	

increase	in	CD4+Meq+	cells	occurred	from	7	to	14	dpi,	indicating	a	rapid	proliferative	process.	

This	observation	is	of	interest	because	of	its	temporal	coincidence	with	the	expression	of	Meq.	

The	authors	could	not	deduce	whether	these	cells	were	transformed	or	activated;7	however,	it	
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is	possible	that	Meq	could	play	a	role	in	triggering	a	rapid	proliferation	response,	especially	

considering	its	ability	to	activate	pathways	associated	with	proliferation.		

Presumably,	all	transformed	cells	compete	to	emerge	from	the	transformation	process	

by	expressing	Meq	and	harnessing	its	ability	to	reprogram	the	cell.	What	gives	the	final	

monoclonal	cell	population	strategic	advantage	during	this	process	is	unknown.	Whether	those	

advantages	were	somatically	inherited	prior	to	infection	or	acquired—perhaps	in	the	setting	of	

highly	proliferative	T	and	B	lymphocytes	infected	with	MDV	and	triggered	by	Meq—is	of	great	

interest.	Regardless	of	this	uncertainty,	the	most	likely	place	for	such	a	third	party	to	reside	is	

within	the	chicken	genome	in	the	form	of	somatically	acquired	mutations.	

	

Characteristics	of	cancer	genomes	

Cancer	is	a	genetic	disease	that	arises	from	mutations	in	the	genomes	of	cancer	cells,	

most	often	as	somatic	mutations.	Somatic	mutations	arise	through	cellular	divisions,	which	may	

occur	normally	or	are	induced.	In	cancer	cells,	these	mutations	often	represent	the	

accumulation	of	mutational	processes	that	have	been	working	through	every	division	of	the	

cell—from	the	fertilized	egg	to	the	cancer	cell.25–27	Tumors	often	arise	from	a	clone	of	cells	in	an	

unregulated	manner,	demonstrating	an	“uncontrolled	growth”	caused	by	somatically	acquired	

mutations.	Additional	forces	may	work	in	tandem	with	somatically	acquired	mutations	to	

influence	the	growth	of	the	cell,	including	integration	or	expression	of	oncogenic	proteins	from	

viruses28	as	well	as	epigenetic	changes.29	Somatic	mutations	occur	most	commonly	as	single	

nucleotide	variants	(SNVs)	representing	a	single	nucleotide	substitution,	or	less	frequently	as	

small	insertions	or	deletions	generally	fewer	than	50	base	pairs	in	length	(Indels),	large	Indels	
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often	accompanied	by	changes	in	copy	number	of	DNA	segments,	and	rearrangements	in	DNA	

that	sometimes	express	themselves	as	gene	fusion	events.		

The	acquisition	of	somatic	mutations	is	a	normal	process	that	occurs	in	all	cells	during	

cellular	division.	This	process	occurs	in	ovo	or	in	utero	during	development	and	is	continued	in	

postnatal	life	as	self-renewing	cells	replenish	themselves.	Acquisition	may	be	influenced	by	

inherited	“germline”	mutations	in	the	fertilized	egg—thus	in	all	somatic	cells	of	the	individual—

that	increase	cellular	susceptibility	to	mutation	acquisition.	Collectively,	endogenous	and	

exogenous	forces	act	through	cell	division	to	drive	the	acquisition	of	somatic	mutations.	

Endogenous	mechanisms,	including	methylation-mediated	spontaneous	deamination	of	5-

methylcytosines,	drive	the	acquisitions	of	C>T	and	G>A	SNVs	in	CpG	dinucleotides	and	CpNpG	

trinucleotides.30	Exogenous	influence	of	mutation	acquisition	may	directly	result	from	chemical	

influence—carcinogens	from	cigarette	smoke31—or	biological	influence—virally	induced	

inflammation	and	subsequent	APOBEC/AID	driven	cytidine	deaminase.32	Germline	mutations	

can	further	enhance	susceptibly	to	somatic	mutation	acquisition	by	influencing	endogenous	

somatic	mutations	rates,	the	severity	of	the	inflammatory	process,	normal	or	cancer	cell	

growth,	or	the	metabolism	of	carcinogens.		

A	small	subset	of	somatic	mutations	in	cancer	clones	is	referred	to	as	“driver	

mutations.”	“Drivers”	often	reside	in	cancer	genes	and	impart	a	distinct	growth	advantage	to	

the	cancer	cell	by	reprogramming	the	cell	to	deregulate	normal	processes	like	cellular	

proliferation,	differentiation,	and	cell	death.	These	normal	functions	become	deregulated	and	

the	homeostasis	between	the	cancerous	cell	and	its	microenvironment	shifts	out	of	balance	in	

favor	of	uncontrolled	growth.	The	driver	mutations	that	provide	growth	advantage	allow	the	
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cancer	clone	to	outgrow	all	other	cells	from	the	same	tissue,	invade	other	surrounding	tissues,	

or	even	metastasize.26,33	Cancer	cells	are	suggested	to	have	between	1-10+	driver	mutations	

depending	on	cancer	type.34	The	remaining	and	vast	majority	of	somatic	mutations	are	

classified	as	“passenger	mutations.”	By	definition,	passenger	mutations	do	not	convey	growth	

advantages	to	the	cell.	The	number	of	passenger	mutations	reflects	the	number	of	mitotic	

cellular	divisions	between	the	fertilized	egg	and	the	cancer	cell	and	the	mutation	rate	at	each	

division.	This	phenomenon	can	be	seen	in	the	disparity	in	somatic	mutation	quantity	between	

two	morphologically	identical	colorectal	tumors	from	individuals	generations	apart.33	Passenger	

mutations,	however,	provide	useful	clues	into	the	mutational	process;	their	somatic	mutation	

signature	and	frequency	help	to	elucidate	mutational	processes	and	pinpoint	clusters	of	

mutations	in	“hotspots”	often	associated	with	cancer	drivers.		

	

Somatic	mutations	in	cancer	genomes	

Tumors	from	different	cell	and	tissue	types	demonstrate	stark	differences	in	mutational	

frequency.	Cancers	may	range	in	their	mutational	load	by	several	orders	of	magnitude.33,35	

Typically,	there	are	somewhere	between	1,000	and	10,000	somatic	substitutions	in	the	

genomes	of	most	adult	cancers26	and	the	number	of	mutations	in	self-renewing	tissue	is	often	

directly	correlated	with	age.36	Tumors	in	individuals	in	different	generations	and	with	distinct	

mutational	mechanisms	occur	at	each	end	of	the	spectrum	of	mutational	frequency.	For	

instance,	tumors	with	high	mutational	loads	such	as	lung,	melanoma,	stomach,	colorectal,	

endometrial,	and	cervical	cancers	demonstrate	“hypermutation.”37	These	tumors	may	

demonstrate	scores	of	thousands	of	somatic	mutations,	which	reflect	their	mutation	processes.	
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Tumors	harboring	high	mutation	frequencies	may	result	from	carcinogenic	processes	such	as	

exposure	to	mutagens31	and	defects	in	DNA-repair.38	For	instance,	lung	cancer	tumors	from	

smokers	have	nearly	10-fold	more	somatic	mutations	than	tumors	nonsmokers.31	Tumors	on	

the	other	end	of	the	spectrum	such	as	pediatric	solid	tumors	arising	from	non-self	renewing	

tissues	and	leukemias	have	a	much	lower	mutational	load.33	For	instance,	glial	cells	of	the	brain	

are	non-self	renewing	and	normally	do	not	demonstrate	high	somatic	mutation	frequencies	in	

glioblastoma.	The	influence	of	exogenous	factors	however	may	also	occur	in	non-self	renewing	

tissues	of	young	individuals.	This	is	revealed	in	patients	with	glioblastoma	treated	with	

temozolomide	or	lomustine,	which	demonstrate	significantly	increased	mutation	rates	and	

subsequent	tumor	mutation	load.39	

	

Cancer	genes	and	drivers	

Prior	research	supports	the	concept	that	that	driver	mutations	grant	a	selective	growth	

advantage	to	a	cancer	cells	but	passenger	mutations	do	not.40	Although	driver	mutations	occur	

in	driver	genes,	there	is	an	important	distinction	between	the	two.	A	driver	gene	is	a	cancer	

gene,	which	contains	function-altering	driver	mutations.	However	a	driver	gene	may	also	

contain	passenger	mutations.	Therefore,	not	all	mutations	in	driver	genes	act	as	cancer	

drivers.33	In	large	cohorts	of	individuals	with	identical	tumor	types,	the	patterns	associated	with	

the	mutations	in	cancer	genes	can	aid	in	their	discovery.	

	 Driver	mutations	within	driver	genes	may	be	recognized	from	distinct	patterns,	

including,	but	not	limited	to:	their	mutation	types,	whether	the	mutations	cluster	in	a	hotspot	

of	significantly	enriched	mutational	frequency,	the	pattern	of	mutational	clusters	in	context	the	



	 	 13	

architecture	of	the	gene,	and	in	some	cases	the	mutually	exclusive	nature	of	drivers	in	the	same	

pathways	in	large	sample	cohorts.	The	majority	of	cancer	drivers	in	common	solid	tumors	of	

humans	demonstrate	about	95%	of	mutations	as	somatic	SNVs.	The	remaining	cancer	drivers	

are	usually	small	Indels,	occurring	within	the	gene	in	a	non-synonymous	fashion.33	The	

distribution	of	these	variant	types	and	others	is	also	of	great	importance	as	significantly	

mutated	genes	speckle	the	cancer	genome	and	label	drivers	for	discovery.	In	cancer	genome	

landscapes,	if	the	most	mutated	driver	genes	are	the	“mountains,”	then	the	remaining	less,	yet	

significantly,	mutated	genes	are	referred	to	as	“hills.”	This	common	analogy	explains	the	

universal	mutation	patterns	in	cancers	across	the	mutational	spectrum.	There	is	often	a	small	

number	of	mountains	and	a	large	collection	of	hills.41	

The	functional	relevance	of	driver	mutations	within	cancer	genes—mountains	and	

hills—may	be	revealed	from	their	recurrent	mutation	patterns	and	clustering	via	the	“20/20	

rule.”33	Driver	mutations	usually	influence	gene	products	by	granting	a	gain-of-function	in	

oncogenes	and	a	loss-of-function	in	tumor	suppressor	genes.27,42	For	a	gene	to	be	classified	as	

an	oncogene,	>20%	of	missense	mutations	must	tightly	cluster	at	recurrent	positions,	usually	

within	conserved/functionally	relevant	areas	of	the	gene.	To	be	classified	as	a	tumor	suppressor	

>	20%	of	mutations	must	be	inactivating.33	Although	inactivating	mutations	may	occur	

throughout	most	tumor	suppressor	genes,	there	are	exceptions	to	this	rule	in	which	>20%	of	

missense	mutations	will	impart	loss-of-function	to	a	tumor	suppressor,	yet	collectively	cluster	in	

a	pattern	indicative	of	drivers	in	oncogenes.		An	example	of	such	an	exception	occurs	in	our	

investigation	of	Marek’s	disease	lymphomas.	
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	 A	typical	tumor	contains	1	to	10+	driver	mutations	and	the	remaining	are	classified	as	

passenger	mutations.34	These	estimates	are	derived	from	the	number	of	coding	substitutions	

under	positive	selection,	which	is	possible	because	most	cancer	genomes	receive	limited	impact	

from	negative	selection.	On	average	tumors	demonstrate	approximately	4	coding	variants	

under	positive	selection,	which	is	commonly	reflected	by	their	mutational	load.	For	instance,	

low	mutation	thyroid	and	testicular	cancers	demonstrated	<1	coding	variant	under	positive	

selection.	Furthermore,	in	low-grade	glioma,	originating	from	non-self	replicating	glial	cells,	

roughly	75%	and	about	15-20%	of	non-synonymous	mutations	in	known	cancer	genes	and	the	

remaining	protein-coding	genes	are	predicted	to	be	drivers,	respectively.	Whereas	in	

melanoma,	a	cancer	from	self-renewing	tissue	often	demonstrating	higher	mutational	loads,	

only	about	25%	of	non-synonymous	variants	are	suspected	to	be	drivers.34	

	 	



	 	 15	

CHAPTER	2	
	

The	Somatic	Landscape	of	Marek’s	Disease	Lymphomas	
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Introduction	

	

Marek’s	disease	virus	(MDV)	is	a	highly	oncogenic	α-herpesvirus	that	drives	Marek’s	

disease	(MD),	a	lymphoproliferative	disease	of	chickens.	Originally	characterized	by	a	chronic	

polyneuritis	in	1907,	Marek’s	disease	has	evolved	into	a	more	severe	lymphoproliferative	

disease,	demonstrating	monoclonal	invasion	of	peripheral	nerves—resulting	in	paralysis—and	

the	acute	onset	of	metastatic	T	cell	lymphoma	in	visceral	organs.1	Selective	pressures	first	

introduced	in	the	1960s—such	as	high-density	poultry	rearing	practices,	shorter	growing	

periods,	vaccination	control	strategies,	and	incorporated	genetic	resistance	to	Marek’s	

disease—continue	today	and	have	increased	the	virulence	of	MDV	field	strains	and	the	severity	

of	the	disease.	Marek’s	disease	is	consistently	listed	as	one	of	the	top	infectious	poultry	

diseases	of	concern.	The	primary	strategy	of	control	is	widespread	vaccination,	however,	

despite	initial	successes	repeated	vaccine	breaks	have	occurred	through	the	later	half	of	the	

20th	century.6,43	To	develop	more	sustainable	control	strategies	an	understanding	of	the	genetic	

etiology	of	lymphomagenesis	is	needed.43	

	 Infection	with	Marek’s	disease	virus	alone	is	not	sufficient	to	drive	transformation;	not	

every	bird	that	is	infected	with	Marek’s	disease	virus	develops	Marek’s	tumors.	We	anticipated	

that	a	series	of	coordinated	events	were	necessary	to	aid	the	oncogenic	capacity	of	Marek’s	

disease	virus,	most	likely	through	the	acquisition	of	somatic	mutations.	This	hypothesis	is	

consistent	with	the	paradigm	that	cancer	is	a	genetic	disease	that	results	from	alterations	of	the	

genome.25–27	A	small	minority	of	somatic	mutations,	referred	to	as	“drivers,”	is	predicted	to	
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drive	transformation	by	granting	significant	influence	on	cellular	processes	such	as	

proliferation,	dedifferentiation,	and	cell	death.	

The	genesis	of	Marek’s	disease	lymphomas	is	not	well	understood.	Both	integration	of	

MDV	into	the	chicken	genome	and	the	primary	viral	oncogene	Meq10,16	are	necessary	for	

transformation,5,9,10	however,	we	suspect	that	additional	somatically	acquired	mutations	are	

required	for	transformation.	The	series	of	events	that	lead	to	Marek’s	disease	lymphomas	

begins	when	MDV	is	inhaled	and	seeded	in	the	respiratory	tract	where	it	is	engulfed	

(presumably)	by	phagocytic	cells	and	within	24	hours	is	transported	to	the	spleen,	bursa,	and	

thymus.	B	and	T	lymphocytes	are	targeted	by	MDV	for	cytolytic	infection,	which	peaks	3-6	dpi.6	

In	B	and	T	cells	MDV	usually	transitions	to	latency	within	7	dpi	but	may	integrate	into	the	

genome	as	early	as	1	dpi	under	experimental	conditions.5	CD4	T	cells	are	the	primary	target	for	

transformation	and	if	transformed	results	in	one	or	more	monoclonal	neoplasms	detectable	as	

gross	lesions	2-4	weeks	post	infection.6	CD4	T	lymphocytes,	are	highly	proliferative	in	the	

period	from	latency	to	their	transformation.7	This	inflammatory	environment,	rich	in	cellular	

division—and	presumably	deregulated	by	MDV	and	Meq—is	ideal	for	mutation	and	we	suspect	

drives	the	transformation	process.	Somatic	drivers	and	the	mechanism(s)	driving	their	

accumulation	in	the	Marek’s	disease	cancer	genome	play	a	fundamental	role	in	MDV-induced	

transformation.	

To	catalog	somatic	mutation	types,	frequencies,	and	mechanisms	of	accumulation,	we	

performed	a	comprehensive	investigation	of	the	Marek’s	disease	genome	in	metastatic	tumors	

seeded	in	the	gonad.	To	compare	the	genetic	differences	that	were	somatically	unique	to	

tumors,	we	incorporated	whole	genome	sequencing	(WGS),	transcriptome	sequencing	(RNA-
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Seq),	custom	Affymetrix	SNP-arrays,	and	targeted	genomic	sequencing.	This	combination	of	

technologies	revealed	an	exceptionally	low	somatic	mutation	frequency.	Tumors	demonstrated	

between	0-3	non-synonymous	mutations	on	average	and	approximately	0.3	mutations	per	MB	

in	sufficiently	powered	samples.	Recurrent	non-synonymous	mutations	cluster	in	the	DNA-

binding	domain	(BDB)	of	IKZF1,	which	encodes	Ikaros—a	master	regulator	of	T	cell	

development	and	a	known	driver	of	acute	leukemia	in	human.	A	high	proportion	of	somatic	C>T	

and	G>A	transitions	suggests	methylation-mediated	spontaneous	deamination	of	5-

methylcytocines	at	CpG	dinucleotides	is	one	likely	endogenous	mechanism	contributing	to	

somatic	mutation	accumulation.	In	this	dissertation,	we	focus	on	mutations	in	IKZF1—our	most	

confident	candidates	to	drive	Marek’s	disease	lymphomas—and	how	they	drive	the	progression	

of	Marek’s	disease.	

	

Materials	and	Methods	

	

Experimental	birds,	tissue	sampling,	and	extraction	of	DNA	

The	genetic	backgrounds	of	birds	used	in	these	experiments	were	designed	to	reduce	

genetic	variation	between	biological	samples,	while	maintaining	genetic	backgrounds	

heterozygous	for	alleles	associated	with	resistance	and	susceptibility	to	Marek’s	disease.	

Experimental	birds	were	an	F1	cross	between	highly	inbred	parental	lines	6	and	7,	which	were	

Marek’s	disease	resistant	and	susceptible,	respectively.	F1	progeny	provided	highly	similar	

genetic	backgrounds	within	progeny	cohorts	and	served	as	biological	replicates.	Use	of	the	
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heterozygous	6x7	F1	progeny	allowed	for	genetic	examination	of	the	Marek’s	disease	

lymphoma	genome	landscapes	in	reference	to	both	genetic	backgrounds.	

	 At	hatch,	200	line	6x7	F1	chicks	were	subcutaneously	infected	with	1,000	pfu	of	MDV	

strain	JM/102W.	Birds	were	cared	for	and	monitored	twice	daily	for	evidence	of	moribundity.	If	

birds	became	moribund	or	reached	8	weeks	of	age,	they	were	euthanized	and	immediately	

necropsied.	Tumors	within	each	bird	were	counted	and	the	largest	were	collected.	Gonadal	

tumors	were	given	priority	because	they	were	the	largest	and	most	homogenous.	Tumor	size	

was	captured	from	pictures	of	tumors	in	reference	to	a	scale.	Images	were	processed	with	

ImageJ44	and	an	approximate	estimate	of	tumor	size	was	calculated.	Tumors	were	collected	

from	gonad,	heart,	spleen,	thymus,	pancreas,	liver,	proventriculus,	kidney,	and	bursa.	Normal	

tissue	samples	visibly	absent	of	infiltrating	lymphoma	were	also	collected	from	liver	and	spleen.	

Tumor	tissue	was	divided	for	different	analyses:	RNA-Seq	samples	were	stored	in	RNAlater	at	-

20°C	and	DNA-Seq	and	SNP-array	samples	were	stored	at	-80°C.	Additional	controls	for	

microarray	analysis	were	extracted	from	six	line	6x7	F1	progeny	(blood)	that	were	not	

challenged	with	MDV.	

RNA	from	CD4	T	cells	of	unchallenged	F1	birds	was	used	as	matched	normal	in	comparison	

to	tumor	RNA.	CD4	T	cells	were	extracted	from	spleens	of	uninfected	birds	via	MACS	CD4	T	Cell	

Isolation	Kit,	human	(Miltenyi	Biotec,	Bergisch	Gladbach,	Germany).	A	group	of	16	uninfected	

birds	from	the	same	hatch	were	separately	housed	and	were	not	challenged	with	MDV.	

Uninfected	birds	were	necropsied	for	RNA	in	4	cohorts	of	4	birds	at	2,4,6,	and	8	weeks	of	age.	

Only	birds	from	cohorts	2	and	6	weeks	of	age	resulted	in	ample	RNA	of	sufficient	quality,	
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resulting	in	8	samples.	MACS	extracted	CD4	T	cell	samples	were	subjected	to	flow	cytometry	

and	measured	for	immune	cell	types.		

Whole	genomic	DNA	was	extracted	from	frozen	tumor	and	control	tissue	via	the	QIAamp	

DNA	Blood	Mini	Kit	(Qiagen;	Germantown,	MD).	DNA	integrity	and	quantity	was	measured	via	

gel	electrophoresis	and	Qubit.	Whole	genome	sequencing	(WGS)	was	performed	in	3	different	

batches;	26	gonadal	tumor	samples	from	22	tumors	from	22	birds,	3	matched	normal	samples,	

and	19	matched	normal	samples.	All	samples	underwent	WGS	125	bp	paired-end	reads	via	the	

Illumina	TruSeq	Nano	DNA	Library	Preparation	Kit	on	Illumina	HiSeq	machines	at	the	Michigan	

State	University	(MSU)	RTSF	Genomics	Core.	

RNA	was	extracted	from	tumor	biopsies	using	the	miTNeasy	mini	kit	(Qiagen).	RNA	

quantification	and	integrity	was	measured	via	the	Agilent	Bioanalyzer	2100	(Agilent,	CA,	USA).	

RNA	sequencing	was	performed	in	1	batch	on	26	samples	from	22	gonadal	tumors	(4	biological	

replicates)	from	22	birds	and	8	samples	of	isolated	CD4	splenic	T	cells	from	8	uninfected	birds.	

RNA-Seq	libraries	were	prepared	using	the	NuGen	Ovation	Single	Cell	RNA-Seq	System.	All	

samples	underwent	sequencing	to	produce	125	bp	paired-end	reads	on	an	Illumina	HiSeq.	

	

Bioinformatic	analysis	of	whole	genome	sequencing	data	

	

DNA-Seq	processing	and	mapping	

The	following	analysis	was	designed	following	the	Genome	Analysis	Toolkit	(GATK)	best	

practices	pipeline.45	Reads	were	inspected	for	quantity	and	quality	before	and	after	trimming	

with	FastQC	(v0.11.3).46	Reads	were	trimmed	of	low	quality	bases	and	primers	via	Cutadapt	
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(v.1.14).47	Trimmed	reads	were	aligned	to	the	Gallus	gallus	5	reference	genome48	with	BWA-

MEM.49	Read	group	annotation	was	added	via	Picard	tools	(v1.113).50	Reads	within	each	sample	

and	sequencing	lane	were	filtered	of	duplicate	reads	and	were	realigned	around	Indels	via	

Picard	tools	(v1.113)50	and	GATK	(v3.7.0).51	Indel	realignment	was	performed	once	more	after	

samples	were	merged	across	lanes.	Additional	processing	procedures	were	performed	with	

SAMtools	(v1.3.1).52,53	

A	rudimentary	power	analysis	was	performed	to	assess	the	power	to	detect	

heterozygous	somatic	point	mutations	within	monoclonal	tumor	samples	according	to	tumor	

purity.	The	coverage	at	each	genomic	loci,	excluding	micro	chromosomes,	was	measured	using	

SAMtools	(v1.3.1)52,53	across	genomic	positions	with	base	and	mapping	qualities	≥	20	in	aligned	

files.	A	sequencing	error	rate	of	10-3,	a	false	positive	rate	of	5x10-7,	and	at	least	3	supporting	

reads	were	required	to	predict	the	power	to	detect	somatic	variants	based	on	coverage	across	

the	genome/exome	using	equations	9	and	10	from	Carter	et.	al.54	

	

Detection	of	somatic	variants	

	

Somatic	copy	number	alterations	

Somatic	copy	number	alterations	(CNAs)	were	detected	using	both	whole	genome	

sequencing	data	and	Affymetrix	SNP-arrays	that	were	designed	for	our	experimental	model,	F1	

chickens.55	The	log	R	ratio	(LRR)	and	the	B	allele	frequency	(BAF)	for	each	SNP-array	was	

calculated	using	PennCNV-Affy.56	The	population	B	allele	frequency	(PFB)	was	generated	from	6	

uninfected	F1	birds	using	PennCNV.56	LRR	and	BAF	data	was	normalized	for	input	into	genoCN	
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(v1.26.0),57	which	is	able	to	detect	gain	and	loss	of	copy	number	as	well	as	loss	of	

heterozygosity	(LOH).	CNAs	were	also	called	in	whole	genome	sequencing	data	via	control	

FREEC	(v9.8b)58,59	(gains,	losses,	and	LOH)	and	copycat	(v1.6.11)	(gains	and	losses),	which	is	an	

extension	of	the	ReadDepth	algorithm.60	

	

Somatic	structural	variants	

Somatic	structural	variants	(SVs)	were	called	from	WGS	data	using	three	callers:	

Breakdancer	(v1.4.3),61	Delly	(v0.7.8),62	and	novoBreak	(v1.1.3rc).63	Breakdancer	has	the	ability	

to	detect	multiple	SV	types	including:	deletions,	insertions,	inversions,	intrachromosomal	

translocations,	and	interchromosomal	translocations.	Variants	with	a	confidence	score	of	≥	80	

were	called	from	genomic	loci	with	a	minimum	mapping	quality	≥	20.	Delly	has	the	ability	to	

detect	copy-number	variable	deletions	and	duplications,	inversions,	and	reciprocal	

translocations.62	Variants	≥	400	base	pairs	with	at	least	3	supporting	variant	reads	at	a	

minimum	allele	frequency	of	0.10	were	called	from	≥	10	reads	of	mapping	quality	≥	20.	All	

putative	candidates	were	further	filtered	and	removed	if	found	in	any	normal	matched	tissue.	

We	used	Novobreak	to	detect	deletions,	insertions,	duplications,	inversions,	and	

translocations.63	Variants	≥	100	base	pairs	and	mapping	quality	≥	20	were	filtered	using	the	

empirically	determined	default	filters	of	the	algorithm63	and	a	confidence	score	threshold	≥	40.		

	

Somatic	gene	fusions	

Gene	fusions	were	queried	from	paired-end	RNA-Seq	data	mapped	collectively	to	the	

Gallus	gallus	5.0	reference	genome48	and	the	Gallid	herpersvirus	2	genome	(NC_002229.3)64	
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(detailed	methods	in	Chapter	3).	Both	tumor	and	normal	CD4	samples	were	queried	via	

ChimPipe65	with	default	parameters.	Putative	gene	fusions	in	tumors	were	queried	across	the	

entire	cohort	of	normal	CD4	T	cell	samples	to	reduce	false	positive	calls.	

	

Somatic	single	nucleotide	variants	and	small	insertions	and	deletions	

Somatic	single	nucleotide	variants	(SNVs)	and	small	insertions	and	deletions	(Indels)	

were	called	from	WGS.	Somatic	SNVs	were	called	from	6	algorithms:	MuSE	(v1.0rc_c039ffa),66		

MuTect2	(v1.1.7),67	JointSNVMix2	(v0.7.5),68	SomaticSniper	(v1.0.5.0),69	VarDict	(v1.4.4),70	and	

VarScan2	(v2.4.1).71	Somatic	Indels	were	called	from	4	algorithms	that	were	also	used	to	call	

somatic	SNVs	(VarScan2,	MuTect2,	JointSNVMix2,	and	VarDict).	The	default	hard	filters	were	

used	for	all	algorithms.		

Somatic	SNVs	and	Indels	were	processed,	annotated,	and	combined	via	SomaticSeq	

(v2.0.2),72	SAMtools	(v1.3.1),52,53	GATK	(v3.5),51	Picard	tools	(v1.141),50		and	SnpEff	(v4.0e)73	

with	supporting	annotation	from	the	Gallus	gallus	dbSNP	(build	145)74	and	SNPs	from	our	

Affymetrix	SNP-arrays.55	Additional	annotation	was	applied	to	each	putative	variant	to	infer	

relevant	functional	and	biological	information	associated	with	variants.	To	determine	the	effect	

of	variants	on	genes,	transcripts,	and	their	protein	products	we	generated	a	pipeline	

incorporating	the	Ensembl	Variant	Effect	Predictor	(VEP)	(release	87),75	SnpEff	(v4.0e),73		

PROVEAN	(v.1.1.5),76	SIFT	(v4.2)77,78	to	infer	mutational	impact	in	and	around	genes.	To	

differentiate	driver	mutations	from	passenger	mutations,	all	raw	calls	were	fed	into	MuSiC	

(v0.0401),79	oncodriveCLUST	(v1.0.0)80,	and	MUFFINN	(v1.0.0).81	Genes	harboring	and	in	

proximity	to	putative	variants	were	queried	for	high	confidence	orthologs	in	human	via	the	
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Ensembl	database.	Orthologs	of	all	mutated	genes	were	queried	for	cancer-specific	annotations	

in	the	COSMIC	database82	(Figure	1.	Somatic	SNV	and	Indel	detection	pipeline).
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Figure	1.	Somatic	SNV	and	Indel	detection	pipeline:	Six	somatic	SNV	callers	(green)	and	4	somatic	Indel	callers	(yellow)	are	run	on	

tumor	and	matched	normal	pairs	of	aligned	WGS	BAM	files.	Resulting	variants	are	annotated	for	functional	impact	on	gene	products	

(purple)	and	cancer-specific	mutation	and	gene	characteristics	(orange).	By	means	of	SAMtools	mpileup	and	custom	investigation,	

variants	are	validated	in	silico;	genotyped	across	the	entire	cohort	of	tumors	and	matched	normal	samples;	and	non-synonymous	

variants	expressed	in	mRNA	are	annotated.	After	being	prioritized	by	annotation	and	undergoing	hard	filters,	variants	are	validated	

as	true	by	targeted	high	coverage	amplicon	DNA	sequencing.
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Genomic	survey	of	putative	results	

Somatic	variants	were	queried	for	overlaps	(minimum	10%	variant	≥	100	base	pairs)	per	

sample	within	each	respective	variation	type	to	distinguish	the	agreement	between	algorithms	

and	technologies.	Overlap	between	callers	was	visualized	with	UpSetR83	and	gridExtra.84	

Somatic	variants	were	collectively	visualized	across	samples	as	an	“oncoprint”	via	GenVisR.85		

	

Validation	of	putative	variants	

	

In	silico	validation	and	prioritization	

The	amount	of	calls	from	somatic	SNV	and	Indel	callers	was	very	large	suggesting	a	high	

number	of	false	positive	calls.	To	compensate,	we	applied	additional	filters	with	custom	scripts.	

Genomic	loci	with	reads	of	mapping	and	base	qualities	≥	20	were	queried	for	in	their	respective	

BAM	files	with	SAMtools	(v1.3.1).52,53	High	quality	reads	were	required	to	demonstrate	a	

variant	allele	frequency	≥	0.05	and	coverage	of	≥	4x	at	loci	in	both	the	tumor	and	match	normal	

samples.	Each	putative	somatic	variant	was	queried	within	tumor	BAM	files	manually	with	

Integrative	Genomics	Viewer	(IGV)86,87	and	with	a	custom	script	using	SAMtools	mpileup.52,53	

Somatic	non-synonymous	SNVs	and	Indels	variants	were	granted	more	confidence	if	they	

appeared	in	mRNA	sequence	reads.		

Putative	variants	were	considered	for	validation	based	on	the	following	criteria	in	order	

of	importance:	variants	called	by	multiple	algorithms,	variants	in	multiple	tumors,	variants	in	

known	cancer	genes	according	to	the	literature	and	the	COSMIC	database,82	variants	with	high	
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impact	mutations,	and	variants	supported	by	more	2	or	more	reads.	In	total,	733	putative	

variants	met	these	criteria.	

	

Targeted	DNA	sequencing	and	variant	validation	

	 Approximately	150	of	the	most	high	confidence	variants	(136	genomic	loci)	were	

tested	for	validation.	In	total,	188	samples	were	tested	including	tumors	and	matched	normal	

samples	of	the	gonad,	heart,	spleen,	thymus,	pancreas,	liver,	proventriculus,	kidney,	and	bursa.	

Additionally,	samples	from	uninfected	lines	6	and	7	and	Marek’s	disease	cell	lines	MSB1,	RP2,	

RP19	were	tested.	Targeted	Illumina	DNA	sequencing	(Illumina	MiSeq	150	bp	paired-end	reads)	

was	performed	on	each	genomic	region	of	interest	across	all	samples	via	the	Agriplex	Genomics	

PlexSeq
(TM)

	method.		

Resulting	amplified	regions	were	analyzed	via	2	independent	methods	and	compared:	an	

analysis	from	Agriplex	via	the	PlexCall
(TM)

	software	and	an	in-house	investigation	with	custom	

scripts	utilizing	SAMtools	mpileup
52,53

	and	VarDict.
70
	Reads	were	trimmed	of	low	quality	bases	

and	primers	via	Cutadapt	(v.1.14).
47
	Trimmed	reads	were	aligned	to	regions	of	interest	from	the	

Gallus	gallus	5	reference	genome
48
	with	BWA.

49
	Further	processing	of	aligned	reads	was	

performed	with	Picard	tools	(v1.113),
50
	Bamtools	(v2.2.3),

88
	and	GATK	(v3.7.0).

51
	Reads	with	a	

mapping	quality	≥	60	for	somatic	SNVs	and	≥	20	for	somatic	Indels	were	queried	with	SAMtools	

(v1.5)
52,53

	and	VarDict	(v1.4.4)
70
	and	variant	allele	frequencies	were	calculated	for	all	variants.	

To	rule	out	germline	variants	putative	somatic	variants	were	filtered	via	SAMtools	mpileup
52,53

	

if	any	matched	normal	sample	from	within	the	cohort	demonstrated	a	variant	allele	frequency	

≥	0.1;	normal	samples	with	contaminating	tumor	tissue	were	omitted	from	this	step.	Variants	
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were	called	if	there	were	≥	5	variant	supporting	reads,	≥	500x	high	quality	read	coverage,	and	≥	

0.01	variant	allele	frequencies.	

	

Annotation	of	IKZF1	variants	

Ikaros	protein	isoforms	were	collected	from	the	UniProt	database89	and	referenced	

from	IKZF1-201	and	IKZF1-202	transcript	sequences	from	both	Ensembl90	and	RefSeq.91	Ikaros	

isoforms	were	compared	to	proteins	in	the	UniRef90	database92	via	pBlast	(E-threshold	of	

0.001)93,94	and	resulting	protein	sequences	were	aligned	via	Clustal	Omega.95	Hierarchical	

analysis	of	amino	acid	residue	conservation96	was	performed	within	JalView97	and	results	were	

reduced	to	5	species.	A	custom	illustration	of	somatic	mutations	was	performed	on	Ikaros	

alignments.	

	

Results	and	Discussion	

	

Genomic	datasets	and	sample	cohorts	

Marek’s	disease	lymphomas	are	known	to	be	driven	by	the	MDV	bZip	transcription	

factor,	Meq.	MDV-infected	birds	demonstrate	genomic	integration	of	MDV	in	CD4	T	cells	and	

latent	expression	of	Meq,	however,	not	all	birds	develop	tumors.	Therefore,	we	hypothesize	

that	additional	somatic	mutations	are	required	to	promote	tumorigenesis.	The	genomes	of	

MDV-transformed	CD4	T	cells	that	constitute	Marek’s	disease	tumors	have	not	been	thoroughly	

examined	for	somatic	mutations.	To	investigate	the	genomic	landscape	of	Marek’s	disease	

tumors,	we	studied	two	cohorts	(Hatch	1	&	2)	each	of	200	experimental	white	leghorn	chickens,	
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challenged	at	one	day	of	age	with	1,000	plaque-forming	units	(pfu)	of	virulent	MDV.	All	birds	

were	F1	progeny	from	highly	inbred	parental	lines	63	(MD	resistant)	and	72	(MD	susceptible),	

which	have	been	used	extensively	for	studies	on	genetic	resistance	to	Marek’s	disease	(e.g.	

Stone,	H.,	197598	and	Cheng	H.	H.	et	al.,	201555).	MDV	strain	JM/102W	was	chosen	because	it	

promotes	the	induction	of	large	gonadal	tumors.	All	birds	were	necropsied	for	gross	tumors	

until	moribund	or	until	eight	weeks	of	age.	In	total,	117	birds	(29%)	demonstrated	one	or	more	

gross	focal	tumors	across	multiple	tissues.	Genomic	material	extracted	from	the	largest	gonadal	

tumors—22	tumors	and	biological	replicates	from	4	of	the	largest	tumors—underwent	whole	

genome	sequencing	(WGS),	transcriptome	sequencing	(RNA-Seq),	and	custom	Affymetrix	SNP-

arrays.	In	each	of	these	22	birds,	DNA	from	normal	matched	tissue	also	underwent	WGS	and	

was	collected	from	tissue	free	of	visible	lesions	(Table	1.	Summary	of	biological	samples	and	

genomic	datasets).	 	
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Table	1.	Summary	of	biological	samples	and	genomic	datasets:	Birds	(Line	6x7	F1)	from	2	
hatches	were	subjected	to	multiple	genomic	screens.	
	

	
	

Preliminary	investigation	of	the	somatic	landscape	

In	a	preliminary	investigation,	we	used	multiple	genomic	screens	(WGS,	RNA-Seq,	and	

SNP-arrays)	and	variant	calling	algorithms	to	query	somatic	variants	from	22	gonadal	tumors.	

Priority	was	given	to	variants	called	by	multiple	algorithms,	which	we	refer	to	as	candidate	

variants	(Figure	2.	Agreement	between	somatic	mutation	algorithms).	The	majority	of	variants	

were	somatic	SNVs	and	Indels,	which	we	investigated	in	greater	scrutiny	and	validated	with	

high	coverage	targeted	DNA	sequencing.	Somatic	SVs,	CNAs,	and	gene	fusions	remain	

candidates	and	share	pathways	with	validated	somatic	SNVs	and	Indels	(Tables	S1-4).

Sample Hatch	1 Hatch	2
Challenged	birds 200 200
Unchallenged	birds 20 0
Tumor	positive	birds 54 63
Tumors 112 112

Genomic	Test Normals Tumors Birds Hatch
Whole	genome	sequencing 22 22 22 1
Targetted	DNA-Seq 22 153 98 1	&	2
RNA-Seq 8 14 22 1
Affymetrix	SNP-arrays 0 60 36 1

Total
400
20
117
224
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Figure	2.	Agreement	between	somatic	mutation	algorithms:	The	agreement	between	somatic	variant	calling	algorithms	by	variant	
type.	Somatic	SNVs	(a),	Indels	(b),	CNAs	(c),	and	SVs	(d).	The	height	of	bars	and	annotated	values	represent	variant	frequencies—the	
agreement—between	algorithms.	The	horizontal	bar	plots	to	the	left	of	algorithm	names	represent	the	total	variants	called	per	
algorithm.	Algorithms	used	include:	MuSE	“MUSE”,	SomaticSniper	“SOMSNI”,	VarScan2	“	VS2”,	MuTect	“MUTECT”,	JoinSNVMix2	
“JSM2”,	and	VarDict	“VARDICT”,	genoCN	“genoCN”,	CopyCat	“copycat”,	ControlFREEC	“control_freec”,	novoBreak	“novoBreak”,	
Delly	“Delly”,	BreakDancer	“BreakDancer”.	
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Marek’s	disease	lymphomas	demonstrate	low	somatic	mutation	frequency	

The	majority	of	well-annotated	cancer	driver	mutations	occur	in	coding	regions	of	

protein	coding	genes,25	and	somatic	SNVs	make	up	the	majority	of	cancer	driver	mutations	in	

common	tumors	in	human.33	Somatic	SNV	and	Indel	detection	has	not	been	comprehensively	

performed	in	Marek’s	disease,	so	we	took	inspiration	from	a	successful	machine	learning	

pipeline	that	used	SomaticSeq72	and	created	a	similar	workflow	that	incorporated	multiple	

callers,66–71,99,100	disease-associated	annotations,	and	multiple	sequencing	technologies:	WGS,	

RNA-Seq,	and	amplicon	DNA	resequencing	(Figure	1.	Somatic	SNV	and	Indel	detection	pipeline).		

Somatic	mutation	rates	in	Marek’s	disease	genomes	were	exceptionally	low—

approximately	0.30	mutations	per	MB	in	high	and	medium	powered	samples	(Table	2.	Somatic	

single	nucleotide	variant	frequency	in	Marek’s	disease	lymphomas).	Tumors	demonstrated	

between	0-3	non-synonymous	mutations	each.	

Table	2.	Somatic	single	nucleotide	variant	frequency	in	Marek’s	disease	lymphomas:	The	
Average	somatic	mutation	frequencies	across	samples	in	high,	medium,	and	low	purity	tumors.		
	

	
	

	 Somatic	mutation	signatures	across	Marek’s	disease	tumors	are	enriched	for	C>T	and	

G>A	transitions,	of	which	many	occur	in	CpG	dinucleotides;	(Figure	3.	Mutation	signature	of	

somatic	single	nucleotide	variants	in	Marek’s	disease	lymphomas)	it	is	possible	that	

Estimated	PurityŦ Tumors SNVs	per	Tumor* Nonsynonymous	SNVs	per	Tumor*
High	 9 329	+/-	67.6 2.44	+/-	1.53
Medium 8 263	+/-	81.5 2.00	+/-	1.36
Low 6 165	+/-	29.3 0.83	+/-	0.61
Ŧ	Tumor	purity	estimated	from	CD4	mRNA	expression:	High	(x>x),	Medium	(x>x),	Low	(x>x).
*	Mean	±	2	standard	errors.
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methylation-mediated	spontaneous	deamination	of	5-methylcytosines	is	helping	to	drive	the	

acquisition	of	C>T	and	G>A	SNVs.	

	
Figure	3.	Mutation	signature	of	somatic	single	nucleotide	variants	in	Marek’s	disease	
lymphomas:	The	mutation	signatures	of	high	confidence	and	validated	somatic	single	
nucleotide	variants.	
	

Whole	genome	sequencing	identifies	IKZF1	as	frequently	mutated	

The	workflow	above	yielded	seven	validated,	somatic	non-synonymous	mutated	genes	

(IKZF1,	PRDM12,	DHX35,	DESI2,	BAG1,	PEX10,	and	ATP6V1C1).	The	most	frequent	and	recurrent	

somatic	mutations	across	tumors	occurred	in	IKZF1,	the	gene	encoding	the	transcription	factor	

Ikaros.	Approximately	41%	of	Marek’s	disease	gonadal	tumors	tested	contained	somatic	non-

synonymous	mutations	in	IKZF1.	Furthermore,	60%	of	somatic	non-synonymous	mutations	

targeted	IKZF1—the	only	gene	to	demonstrate	non-synonymous	SNVs	and	Indels	across	tumors	

(Figure	4.	Summary	of	somatically	mutated	genes	in	Marek’s	disease	lymphomas).	
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Figure	4.	Summary	of	somatically	mutated	genes	in	Marek’s	disease	lymphomas:	Recurrently	
mutated	genes	in	Marek’s	disease	lymphomas	harboring	somatic	variants.	Genes	with	somatic	
non-synonymous	mutations	are	listed	in	the	Y-axis	in	decreasing	order	of	occurrence.	The	
column	labeled	“%Mutant”	represents	the	percentage	of	samples	with	non-synonymous	
somatic	mutations	per	gene	across	22	tumors	and	4	additional	replicates	sequenced.		
	

Genomic	gains	and	losses	from	whole	genome	sequence	and	SNP-arrays	

We	complemented	our	initial	analysis	of	22	tumors	that	underwent	WGS	to	query	large	

genomic	variants	with	supporting	Affymetrix	15K	SNP-arrays.	We	detected	deletions	and	

amplifications	called	by	some	combination	of	Breakdancer,61	Copycat,60	genoCN,57	novoBreak,63	

control	FREEC,58,59	and	Delly.62	In	general,	we	measured	more	deletion	events	than	

amplifications—a	trend	which	has	been	previously	reported	across	malignancies.101	We	

measured	11	candidate	amplifications	in	3	tumors.	Amplifications	were	large,	often,	spanning	

entire	chromosomes	or	chromosomal	arms.	

Amplifications	occured	sparsely.	One	sample	demonstrated	3	large	amplifications.	The	

largest	event	occurred	across	20%	of	chromosome	1	(p	arm)	spanning	cancer	genes	MDM2,	

LRIG3,	WIF1,	PDGFB,	HMGA2,	MET,	BRAF,	ST7,	BTG1,	and	MYH9.	We	also	measured	
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amplifications	in	the	entire	q	arm	of	chromosome	17	(GARNL3),	across	40%	of	chromosome	23	

(RCAN3),	and	in	the	entire	the	q	arm	of	chromosome	26	(MICAL1).	Additional	tumors	

demonstrated	a	duplication	of	chromosome	17	(NOTCH1,	SET,	PPP6C,	CNTRL,	and	TNC)	and	

small	amplifications	that	converged	on	a	RFAM	and	miRBase	predicted102	miRNA	

(ENSGALG00000031911)		in	the	middle	of	the	q	arm	of	chromosome	1.	Cancer	genes	that	

spanned	these	amplifications	included	kinases	and	growth	factors	(MET,	PDGFB,	and	BRAF),	

microtubules-associated	genes	(MICAL1	and	CNTRL),	contained	EGF	motifs	(NOTCH	and	TNC),	

and	demonstrated	significant	differential	gene	expression	across	tumors	(MET,	LRIG3,	and	ST7).	

Large	genomic	deletions	and	losses	were	more	frequent	across	the	tumor	cohort.	In	

total,	we	observed	178	losses	across	18	tumors.	There	was	a	median	of	6	deletions	per	tumor	

with	one	tumors	demonstrating	46	deletions	across	major	chromosomes,	considerably	more	

than	any	other	tumor.	The	majority	of	deletions	were	either	small	and	focal	or	the	length	of	an	

entire	chromosome	or	chromosome	arm—also	a	common	trend	in	human	malignancies.101	We	

detected	10	deletions	of	chromosome	arms	in	6	tumors,	most	commonly	in	chromosome	27	

and	the	p	arm	of	chromosome	3.	One	tumor	demonstrated	total	deletion	of	chromosomes	24	

and	28.	In	total,	50	genes	from	the	COSMIC	Cancer	Genes	Consensus	were	deleted,	of	which	

the	most	frequent	were	CLDND1	and	FOXD1.	Focal	deletions	in	4	samples	converge	on	CLDND1	

and	a	mix	of	large	and	small	events	converge	on	FOXD1	in	3	samples.	Recurrent	deletion	

breakpoints	were	measured	in	ADARB1,	PDGFD,	and	TARP	and	lone	breakpoints	were	found	in	

cancer	genes	FAT3,	GPHN,	and	XPO1.	
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Genomic	structural	rearrangements	in	Marek’s	disease	lymphomas	

We	detected	somatic	inversions	and	loss-of-heterozygosity	(LOH)	events	from	genomic	

DNA	sequencing	and	SNP-arrays.	LOH	events	were	predicted	using	controlFREEC58,59	and	

genoCN.57	To	our	surprise,	LOH	events	were	infrequent	across	tumors;	we	chose	highly	

heterozygous	F1	birds	for	this	experiment	to	better	detect	LOH	events.	Only	3	candidate	events	

were	detected	in	2	tumors.	Two	LOH	events	targeted	chromosome	Z	in	2	tumors	and	converged	

on	a	small	cluster	of	genes	(EFNA5,	NREP,	REEP5,	SLC2546,	STARD4,	and	WDR36);	a	segment	

that	was	also	targeted	for	deletion	in	2	additional	tumors.	The	other	sizable	event	(37	MB)	was	

observed	in	the	p	arm	of	chromosome	7	over	a	cluster	of	cancer	genes	(ERBB4,	COL3A1,	and	

ITGAV),	of	which	COL3A1	is	the	most	recurrently	mutated.	

	 Intrachromosomal	inversions	were	predicted	using	Breakdancer,61	novoBreak,63	and	

Delly62	(interchromosomal	events	were	not	considered	in	this	analysis).	A	total	of	115	

intrachromosomal	inversion	candidates	were	detected	across	20	tumors.	Samples	

demonstrated	between	1	and	17	(median	=	5)	events	per	tumor.	The	largest	event	observed	

was	5.12	MB	and	the	remaining	were	focal.	Recurrent	events	targeted	26	genes;	only	one	

cancer	gene—ZNF384—was	recurrently	targeted.	The	gene	IGF1	was	the	only	gene	to	

demonstrate	recurrent	breakpoints	from	inversions.	Other	targeted	cancer	genes	include	

OLIG2,	KDSR,	IRF4,	ETV1,	and	BCL2.	

One	algorithm	was	used	to	detect	gene	fusions	from	RNA-Seq.	The	roundabout	protein	

ROBO2	demonstrated	candidate	frameshift	intrachromosomal	chimeras	with	pre-mature	stop	

codons	in	4	tumors,	respectively	(Table	S4.	Somatic	gene	fusion	candidates).	ROBO2	is	a	known	

driver	gene	in	colorectal	cancer,	adenocarcinoma,	and	melanoma.82		
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These	diverse	mutation	types	converge	to	target	common	pathways	in	complementary	

fashion.	Collectively,	somatic	driver	candidates	target	pathways	associated	with	immune	

response,	chromatin	modification,	lymphocyte	differentiation,	and	neural	growth.	There	are	

many	genes	that	warrant	further	investigation;	in	this	dissertation	we	focused	our	analyses	on	

the	most	(likely)	influential	driver—IKZF1.	

	

There	is	an	association	between	IKZF1	mutation	status	and	gonadal	tumors	

Empirical	knowledge	and	prior	studies	have	shown	that	the	diversity	and	distribution	of	

neoplastic	lesions	is	contingent	upon	the	strain	of	MDV	and	the	genetic	background	of	its	

host.103–107	We	chose	a	specific	strain	of	MDV—JM/102	W108—for	its	consistent	ability	to	

produce	large	gonadal	tumors.103–105,107	Although	we	expected	to	observe	an	enrichment	of	

gonadal	tumors	from	all	collected	tumor	tissue,	we	considered	whether	mutations	in	IKZF1	

were	preferential	to	tumors	of	certain	tissue	types;	alterations	in	certain	driver	genes	appear	

tissue-specific.109		

To	determine	the	distribution	of	non-synonymous	somatic	mutations	across	tumors	of	

different	tissue	types,	we	queried	results	from	targeted	deep	sequencing	(~1,500x)	in	158	

tumors	(98	birds)	of	gonad,	spleen,	heart,	proventriculus,	liver,	kidney,	pancreas,	thymus,	and	

bursa	(Table	1.	Summary	of	biological	samples	and	genomic	datasets).	Additionally,	samples	

from	uninfected	lines	6	and	7	and	Marek’s	disease	cell	lines	MSB1,	RP2,	RP19	were	tested.	In	

total,	150	variants	across	136	genomic	loci	(50	bp)	were	queried.		

The	only	recurrent	non-synonymous	SNVs	and	Indels	across	tissues	occurred	in	the	

DNA-binding	domain	of	IKZF1.	Twenty-four	tumors	from	19	birds	demonstrated	IKZF1	
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mutations	in	gonad,	spleen,	heart,	liver,	and	proventriculus.	The	majority	of	mutations	occurred	

in	tumors	seeded	in	gonad	consisting	of	31%	of	gonadal	tumors	tested	across	the	entire	cohort	

(Table	3.	Tumors	subjected	to	targeted	DNA-Seq	and	somatic	variant	validation).	Tumors	

harnessing	mutations	in	IKZF1	were	also	found	in	heart,	spleen,	proventriculus,	and	liver	in	7	

birds.	Five	of	seven	birds	also	harbored	a	gonadal	tumor	with	the	identical	somatic	IKZF1	

variant;	gonads	were	not	sequenced	in	the	remaining	two	birds.	To	test	if	IKZF1	mutations	were	

associated	with	gonadal	tissue,	a	stratified	logistic	regression	was	performed	adjusting	for	

splenic	tumors	(splenic	tumors	lacked	IKZF1	mutations).	Among	non-splenic	tumors,	gonadal	

tumors	have	3.36	times	the	odds	to	contain	an	IKZF1	mutation	compared	to	other	tumor	types	

(95%	C.I.	=	1.47	-	8.35;	p-value	=	0.0208).	In	mice,	heterozygous	drivers	in	the	DNA-binding	

domain	of	IKZF1,	similar	to	those	found	in	Marek’s	disease	tumors,	causes	lymphoproliferative	

characteristics	in	which	lymphocytes	aggressively	infiltrate	nonlymphoid	organs.110	It	is	possible	

that	putative	driver	mutations	in	the	DNA	binding	domain	of	IKZF1	may	correlate	with	the	

ability	of	transformed	CD4	cells	of	Marek’s	disease	lymphomas	to	preferentially	migrate	and	

invade	gonadal	tissue.	
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Table	3.	Tumors	subjected	to	targeted	DNA-Seq	and	somatic	variant	validation:	Marek’s	
disease	tumors	are	grouped	by	tissue	type.		
	

	
	

IKZF1	mutations	target	the	DNA-binding	domains	of	Ikaros	

In	total,	35	somatic	non-synonymous	IKZF1	mutations	were	found	across	24	tumors	(Table	

4.	Validated	somatic	mutations	in	IKZF1).	With	respect	to	IKZF1,	all	somatic	variants	clustered	in	

the	critical	C2H2	zinc	finger	binding	domains	in	exon	4	(Figure	5.	Validated	focal	somatic	

mutations	in	IKZF1	mapped	onto	Ikaros).	Ikaros	isoforms	1	(Ensembl	IKZF1-201;	RefSeq	IKZF1-

X1)	and	2	(Ensembl	IKZF1-202;	RefSeq	IKZF1-X3)	were	chosen	for	this	analysis	because	isoforms	

1	and	2	are	the	most	abundantly	expressed	isoforms	throughout	development	of	

hematopoietic	cells	in	both	human	and	mouse.111,112	Chicken	Ikaros	isoforms	1	and	2	closely	

resemble	the	human	Ikaros	isoforms	1	and	2	with	86%	and	78%	amino	acid	identity,	

respectively.	

Tissue Tumors IKZF1-mutant	tumors
Gonad 55	(36%) 17
Spleen 47	(31%) 1
Heart 28	(18%) 4
Proventriculus 9	(6%) 1
Liver 6	(4%) 1
Kidney 4	(3%) 0
Pancreas 2	(1%) 0
Thymus 1	(1%) 0
Bursa 1	(1%) 0
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Table	4.	Validated	somatic	mutations	in	IKZF1:	A	total	of	35	Somatic	mutations	in	IKZF1	in	24	tumors	from	a	cohort	of	132	
additional	tumors.	PROVEAN	and	SIFT	predict	deleterious	impact	of	somatic	mutations.	
	
Chrom Pos Ref Alt Variant AA	Change PROVEAN SIFT Prediction Samples	(DNA) VAF	(DNA)

2 80972101 C T
missense	
variant p.Arg162Cys -6.945 0 Deleterious

777-1;	862-1;	901-2;	901-
2-2;	841-3;	777-3

0.012;	0.136;	0.167;	0.140;	
0.026;	0.522

2 80972102 G T
missense	
variant p.Arg162Leu -6.098 0 Deleterious 835-1 0.173

2 80972104 C T
missense	
variant p.His163Tyr -5.237 0 Deleterious 842-2-2;	927-2;	842-2 0.451;	0.042;	0.427

2 80972114 T TGCACTC
inframe	
insertion

p.His167	
Ser168dup -9.668 NA Deleterious 43-G 0.061

2 80972116 C T
missense	
variant p.His167Tyr -5.205 0 Deleterious 44-G;	901-2;	901-2-2 0.106;	0.011;	0.045

2 80972118 C G
missense	
variant p.His167Gln -6.817 0 Deleterious 112-G;	756-2;	756-3 0.020;	0.015;	0.022

2 80972141 G A
missense	
variant p.Cys175Tyr -9.652 0 Deleterious 36-H;	36-G;	901-2;	874-2 0.098;	0.157;	0.023;	0.055

2 80972141 G GCCA
inframe	
insertion p.His176dup -8.770 NA Deleterious 901-2;	874-2 0.020;	0.054

2 80972149 T A
missense	
variant p.Cys178Ser -8.767 0 Deleterious 35-G 0.165

2 80972149

TGTAACTA
CGCCTGCC
GGCGCA T

inframe	
deletion

p.Cys178	
Arg185delinsTrp -56.780 NA Deleterious 911-1;	911-2;	911-1-2 0.181;	0.117;	0.094

2 80972152 A AACT
inframe	
insertion p.Tyr180dup -8.854 NA Deleterious 918-3 0.216

2 80972167 C T
missense	
variant p.Arg184Cys -7.028 0 Deleterious 927-2;	776-1 0.147;	0.146

2 80972168 G A
missense	
variant p.Arg184His -4.390 0 Deleterious 112-G;	26-H 0.223;	0.010

2 80972173 GA TT
missense	
variant p.Asp186Phe -7.913 0 Deleterious 25-G 0.071

2 80972174 A G
missense	
variant p.Asp186Gly -6.128 0.1 Deleterious 112-P;	112-G 0.161;	0.059
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In	human	and	mouse	Ikaros,	zinc	fingers	2	and	3	are	necessary	for	DNA	binding,	which	

strongly	suggests	that	MD	tumor	specific	IKZF1	mutations	disrupt	the	ability	of	Ikaros	to	bind	to	

DNA,	resulting	in	loss	of	tumor	suppressor	function.111	All	somatic	mutations	in	IKZF1	are	

concentrated	in	a	conserved	functionally	relevant	DNA-binding	domain.		

At	both	the	genome	and	protein	levels,	IKZF1	and	Ikaros	are	highly	conserved.	All	of	the	

amino	acid	residues	targeted	for	substitution	by	non-synonymous	mutations	in	Marek’s	disease	

tumors	are	conserved	across	species	from	sea	lamprey—the	most	distant	species	with	

orthologous	Ikaros—to	human	(Figure	5.	Validated	focal	somatic	mutations	in	IKZF1	mapped	

onto	Ikaros).	Ikaros	function	is	also	highly	conserved.113	Furthermore,	all	residues	targeted	by	

missense	mutations	and	in-frame	deletions	are	considered	essential	for	human	Ikaros	to	bind	to	

DNA	(Figure	5.	Validated	focal	somatic	mutations	in	IKZF1	mapped	onto	Ikaros).114	In	zinc	finger	

2,	these	targeted	mutations	include	the	two	zinc	chelating	histidines	(163H;	167H)	as	well	as	

the	arginine	at	position	6	of	the	alpha	helices	(162R).	In	zinc	finger	3,	essential	residues	targeted	

include	the	two	zinc	chelating	cysteines	(175C;	178C),	as	well	as	arginine	(184R)	and	aspartic	

acid	(186D)	at	positions	-1	and	2	of	the	alpha	helices,	respectively.	We	also	noticed	in-frame	

insertions	that	do	not	remove	essential	residues.	We	speculate	that	in	the	alpha	helix	of	zinc	

finger	2	and	the	beta-sheet	of	zinc	finger	3,	somatic	in-frame	insertions	may	elongate	these	

essential	structures	in	attempts	to	denature	these	zinc	fingers	(Figure	5.	Validated	focal	somatic	

mutations	in	IKZF1	mapped	onto	Ikaros).	Consistent	with	our	observations,	PROVEAN	and	SIFT	

protein	analysis	both	predicted	a	loss	of	protein	function	for	all	non-synonymous	variants	

(Table	4.	Validated	somatic	mutations	in	IKZF1).	
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Figure	5.	Validated	focal	somatic	mutations	in	IKZF1	mapped	onto	Ikaros:	IKZF1	alterations	in	
Marek’s	disease	lymphomas.	A	schematic	presentation	of	the	Ikaros	protein	showing	the	
collection	of	all	validated	somatic	non-synonymous	mutations	from	Marek’s	disease	tumors.	
Mutations	cluster	on	essential	amino	acids	(red)	for	DNA-binding	in	zinc	fingers	2	and	3.	Amino	
acid	conservation	scores	(yellow	bars	under	sequence)	were	calculated96	from	aligned	
consensus	protein	sequences.95,97	
	

Ikaros	is	a	known	tumor	suppressor	gene	(TSG)	in	human	leukemia	and	lymphoma	(e.g.	T	

and	B	cell	acute	lymphoblastic	leukemia	[T-ALL;	B-ALL],	Acute	myeloid	leukemia	[AML],	Chronic	

myelogenous	leukemia	[CML],	and	Diffuse	large	B-cell	lymphoma	[DLBCL]).115,116	The	mutational	

signature	more	closely	resembles	an	oncogene	with	a	gain	of	function	based	on	the	20/20	

rule.33	It	is	also	known	in	human	and	mouse	that	the	two	C-terminal	zinc	fingers	are	necessary	

for	dimerization	with	itself	and	other	Ikaros	family	members,110,117,118	providing	a	mechanism	

for	how	somatic	mutations	in	the	N-terminal	zinc	finger	domains	can	act	as	dominant	negatives.	

Our	data	suggest	heterozygous	mutations	resulting	in	the	same	dominant	negative	behavior	

observed	in	human	lymphoma	and	leukemia;117	DNA	(0.010	to	0.523)	and	mRNA	(0.029	to	

0.466)	variant	allele	frequencies	and	estimated	tumor	(96%	or	less)	collectively	suggest	
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heterozygous	mutations	and	stable	copy	number	(Table	4.	Validated	somatic	mutations	in	

IKZF1).	Furthermore,	the	diverse	mutations	are	entirely	in-frame,	thus	preserving	the	two	C	

terminal	zinc	fingers	required	for	protein	dimerization.	Therefore,	we	believe	that	mutated	

Ikaros	loses	DNA-binding	function	yet	retains	protein-binding	ability	to	become	a	dominant	

negative	driver	of	Marek’s	disease	lymphomas.	 	
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CHAPTER	3	
	

Mutations	in	IKZF1	Driver	Marek’s	Disease	Lymphomas	
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Introduction	

	

The	somatic	landscapes	of	Marek’s	disease	(MD)	lymphomas	reflect	it’s	unique	nature:	a	

young,	virally	induced,	aggressive/metastatic,	lymphoma	originating	from	a	differentiated	CD4	

T	cell.	Compared	to	other	well-studied	cancer	types,	Marek’s	disease	lymphomas	share	

similarities	with	pediatric	leukemias	in	humans,	especially	acute	leukemias	such	as	acute	

myeloid	leukemia	(AML)	and	acute	lymphocytic	leukemia	(ALL).
119–121

	MD,	AML,	and	ALL	

demonstrate	mutations	in	the	tumor	suppressor	gene,	IKZF1.	Although	we	previously	

demonstrated	that	Marek’s	tumors	harbor	somatic	mutations	in	IKZF1	indicative	of	drivers,	we	

must	also	scrutinize	the	transcriptional	landscape	of	Marek’s	tumors	for	the	effects	of	

(potentially)	dominant	negative	Ikaros	isoforms.		

The	most	frequently	mutated	gene	in	Marek’s	disease	lymphomas	is	IKZF1,	which	likely	

acts	as	a	dominant	negative	driver.	IKZF1	and	its	collective	isoforms—Ikaros—are	the	founding	

members	of	the	zinc	finger	family	of	transcription	factors.
122

	Family	members	also	include	

Ikaros	homologs	Helios,	Aiolos,	Eos,	and	Pegasus.
123

	Each	family	member	contains	two	C-

terminal	C2H2	zinc-fingers	mediating	protein-protein	interactions	and	up	to	four	N-terminal	

C2H2	zinc	fingers	for	recognition	of	DNA-sequences.	The	number	of	DNA-binding	zinc	fingers	

may	vary	among	isoforms	of	each	family	member	due	to	deletions	or	alternative	splicing.	

Isoforms	lacking	N-terminal	zinc	fingers	often	result	in	null	or	dominant-negative	products.
110

	

For	instance,	small	deletions	over	critical	N-terminal	DNA-binding	zinc	fingers	in	IKZF1	produce	

dominant-negative	Ikaros	isoforms	that	may	hetero-dimerize	with	wild	type	isoforms	to	drive	

human	and	murine	hematopoietic	malginacies.
115,118,124,125

	Furthermore,	isoforms	may	interact	
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with	each	other	from	across	the	family	generating	a	large	number	of	combinations.123	Much	like	

alternative	splicing	and	deletions,	point	mutations	have	the	capacity	to	generate	isoforms	with	

null	or	dominant-negative	function.114	Marek’s	lymphomas	demonstrate	point	mutations	and	in	

frame	insertions	and	deletions	in	the	IKZF1	N-terminal	binding	domains,	suggesting	that	these	

mutations	may	generate	null	or	dominant	negative	Ikaros	transcripts.	

	 	Both	the	sequence	and	function	of	Ikaros	are	conserved	across	species126–128	and	the	

mutations	we	see	in	Marek’s	tumors	are	well	studied	for	their	functional	impact	in	other	

systems.129	To	better	characterize	mutations	in	IKZF1	across	Marek’s	tumors	we	thoroughly	

examined	sequencing	data	(DNA-Seq	and	RNA-Seq)	and	supporting	metadata	from	our	22	

gonadal	tumor	cohort.	IKZF1	mutations	target	residues	critical	for	Ikaros	function,	strongly	

suggesting	they	are	legitimate	drivers.	Further	evidence	was	found	in	mutant	transcripts	of	

IKZF1;	however,	to	our	surprise,	no	alternatively	spliced	dominant	negative	transcripts	lacking	

N-terminal	zinc	fingers	were	evident.		

Marek’s	tumors	demonstrated	expression	profiles	indicative	of	genomic	reprogramming	

by	mutant	Ikaros	isoforms.	Profiles	were	remarkably	similar	across	tumors	and	differentially	

expressed	genes	were	enriched	for	targets	of	Ikaros	regulation.	Differentially	expressed	genes,	

pathways,	and	ontologies	were	indicative	of	hematopoietic	malignancies	and	developing	

neurons.	The	most	enriched	pathways	and	ontologies	included:	cellular	adhesion,	cellular	

migration,	extracellular	matrix	organization,	axon	guidance,	lymphocyte	dedifferentiation,	and	

a	stem-cell	state.	We	strongly	suspect	that	tumors	arise	from	differentiated	T	cells	

reprogrammed	to	a	stem-cell	state.	Furthermore,	it	is	possible	that	transformed	stem-like	T	
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cells	elicit	the	highly	proliferative	attributes	of	developing	neurons	by	awaking	the,	otherwise,	

dormant	pathways	of	early	neuron	development.		

	

Materials	and	Methods	

	

RNA-Seq	processing	and	mapping	

RNA-Seq	reads	were	assessed	for	quality	before	and	after	read	trimming	via	FastQC	

(v0.11.3).46	Reads	were	trimmed	for	adaptors	and	low	quality	reads	via	Trimmomatic	(v0.33).130	

Reads	were	mapped	to	Gallus	gallus	ribosomal	RNA	(rRNA)	obtained	from	GenBank64	to	

determine	the	proportion	of	rRNA	per	sample	and	to	compare	to	percentages	of	reads	

successfully	mapped	to	the	Gallus	gallus	5	reference	genome.	Reads	that	mapped	to	rRNA	and	

did	not	map	to	the	reference	genome	were	removed.	Reads	were	mapped	to	both	the	Gallus	

gallus	5.0	reference	genome48	and	the	Gallid	herpersvirus	2	genome	(MDV	genome)	

(NC_002229.3);64	the	MDV	genome	was	added	to	the	Gallus	gallus	5	fasta	file	as	an	additional	

chromosome.	MDV	annotations	were	retrieved	from	GenBank64	and	adjusted	with	custom	

Python	scripts	to	gff3	and	gtf	file	formats.	Reads	were	mapped	to	the	combined	chicken	and	

MDV	genomes	via	the	spliced	read	mapper—TopHat	(v2.1.0)	of	the	Bowtie	suite	(v2.2.6)131.	The	

total	reads	successfully	mapped	to	the	reference	genome	was	measured	and	BAM	files	were	

generated	and	further	processed	via	SAMTools	(v1.2).52,53	

	



	 	 48	

Power	of	RNA-Seq	analysis	

Gene	counts	were	investigated	under	an	unsupervised	model	in	R	using	the	DESeq2	

infrastructure.132	Genes	with	low	expression	of	<	10	reads	per	gene	were	removed.133	Gene	

counts	were	normalized	(regularized	log).132	Single	value	decomposition,96	subsequence	

principle	component	analysis	(PCA)132	and	complete	linkage	hierarchical	clustering135	were	

performed	to	assess	potential	factors	influencing	variance	in	the	data,	whether	biological	or	

technical.	Factors	influencing	variance	were	explored	under	different	models	with	aid	from	

Surrogate	Variable	Analysis	(SVA).136	Assessment	of	RNA-Seq	power	was	performed	with	

datasets	and	interactive	analyses	from	the	PROPER	package.133		

	

Differential	gene	expression	analysis	

	 Differential	expression	analysis	was	performed	with	DESeq2.132	Two	comparisons	were	

made	under	identical	technical	parameters	to	detect	differentially	expressed	genes.	To	

compare	tumors	against	CD4	T	cell	samples,	nine	tumor	samples	were	compared	to	8	samples	

of	uninfected	CD4	T	cells.	To	compare	tumors	with	mutations	in	IKZF1	from	those	without,	6	

tumors	with	mutations	and	3	without	were	compared.	All	tumors	demonstrated	estimated	

purity	≥	50%.	Genes	were	differentially	expressed	if	they	demonstrated	a	log2	fold	change	≥	

0.50	and	an	FDR	≤	0.05.	Statistical	models	in	DESeq2	were	adjusted	based	on	estimated	tumor	

purity.	Genomic	annotation	was	incorporated	from	Ensembl90	via	GenomicFeatures137	and	from	

AnnotationDbi.138	
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Pathway	enrichment	analysis	

The	list	of	1,598	differentially	expressed	genes	between	Marek’s	disease	tumors	and	

normal	CD4	T	cell	samples	was	queried	for	enrichment	in	custom	gene	sets	and	databases	

associated	with	gene	ontologies,139,140	pathways	(e.g.	Kegg	and	Reactome),141–148	gene	

sets,149,150	and	putative	genes	regulated	by	Ikaros.151	Enrichment	was	performed	with	

Enrichr,152,153	gprofiler154,	and	gene	set	enrichment	analysis	(GSEA).149	Heatmaps	were	

generated	with	pheatmap.155	

	

Differential	exon	expression	in	IKZF1	

A	candidate	intragenic	deletion	in	IKZF1	was	detected	with	Delly.62	Although	the	

deletion	was	only	supported	with	2	reads	and	did	not	pass	our	filtering	parameters,	it	was	

investigated.	WGS	reads	and	supporting	mRNA	sequencing	reads	spanning	the	IKZF1	locus	were	

manually	investigated	and	visualized	via	IGV	(v2.3.91).86	mRNA	reads	were	quantified	per	exon	

via	Subread	(v1.6.1)156,157	using	the	NCBI	Gallus	gallus	5.0.86	annotation.91	Differential	IKZF1	

exon	expression	was	assessed	and	visualized	via	DEXSeq	(v1.28.0).158,159	

	

Results	and	Discussion	

	

Analysis	of	Marek’s	disease	lymphomas	with	RNA-Seq	

To	investigate	the	transcriptional	landscape	of	Marek’s	disease	tumors,	RNA-Seq	was	

performed	on	14	of	the	22	gonadal	tumors	that	underwent	WGS	(Table	1.	Summary	of	

biological	samples	and	genomic	datasets).	Most	Marek’s	disease	tumors	originate	form	
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transformed	CD4	T	cells,160	therefore,	transcriptome	profiles	of	isolated	CD4	cells	from	8	

uninfected	F1	6x7	birds	were	compared	to	tumor	transcriptome	profiles.	RNA-Seq	analysis	

revealed	that	tumors	were	primarily	monoclonal	with	an	average	estimated	purity	of	45%	

(33.2%	–	56.88%,	95%C.I.)	and	demonstrated	gene	expression	profiles	indicative	of	their	

respective	somatic	mutation	landscape	suggesting	T	cell	dedifferentiation,	“stemness”,	

increased	adhesion,	and	expression	of	transcripts	in	neural	growth	and	development	pathways.	

	

IKZF1	dominant	negative	transcripts	and	splice	variants	were	not	detected	

Whole	genome	sequencing	data	suggested	a	low-confidence	candidate	deletion	in	the	

IKZF1	DNA	binding	domain	from	exons	3	to	6	(IKZF1∆3-6)	(Figure	6.	Putative	deletion	between	

exons	2	and	7	of	IKZF1	(IKZF1∆3-6).	Small	deletions	over	the	IKZF1	DNA	binding	domain	often	

produce	null	or	dominant-negative	Ikaros	protein	isoforms—detectable	as	dominant-negative	

transcripts—that	drive	many	human	and	murine	lymphoid	malignancies.115,118,124,125	We	did	not	

have	supporting	RNA-Seq	data	from	this	particular	tumor;	however,	we	suspected	IKZF1∆3-6	

deletions	might	have	escaped	out	detection	across	other	tumors.	To	determine	if	small	

deletions	in	IKZF1	occurred	in	additional	tumors,	we	performed	exon-specific	and	isoform-

specific	expression	analysis.	Our	results	show	that	the	relative	usage	of	each	exon	is	consistent	

between	control	samples	and	tumors	(Figure	7.	Normalized	and	relative	expression	of	IKZF1	

exons).	Dominant	negative	isoforms	were	not	preferentially	expressed	in	the	tumors	we	

measured.		
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Figure	6.	Putative	deletion	between	exons	2	and	7	of	IKZF1	(IKZF1∆3-6):	The	top	and	bottom	
panels	represent	the	matched	normal	and	tumor	samples	from	bird	017788,	respectively.	
Reads	are	matched	as	pairs	and	colored	by	insert	size.	The	two	reads	at	the	top	of	the	bottom	
panel	represent	a	putative	deletion.	
	

	
Figure	7.	Normalized	and	relative	expression	of	IKZF1	exons:	Comparative	IKZF1	exon	
expression	and	usage	of	Marek’s	disease	low	purity	tumors	(red)	versus	CD4	T	cell	control	
samples	(blue).	Top:	the	normalized	(regularized	log)	expression	per	exon.	Middle:	the	relative	
exon	usage.	Bottom:	Isoforms	of	IKZF1.
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Marek’s	disease	tumors	were	primarily	monoclonal	

Gross	and	visible	Marek’s	disease	tumors	have	been	suggested	to	be	monoclonal	based	on	

MDV	integration	signatures	and	TCR	profiling5,9,161.	However,	Marek’s	disease	tumor	clonality	

associated	with	transformation	has	not	been	measured	in	context	with	genetic	drivers.	To	test	

if	IKZF1	mutation	was	present	at	different	parts	of	tumors,	sections	from	opposite	ends	of	two	

tumors	were	investigated.	In	addition	to	IKZF1,	pre-neoplastic	markers	were	investigated	in	

tumors.	Mature	CD4	T	cells,	the	cells	that	typically	undergo	Marek’s	disease	transformation,	

clonally	express	single	or	double	T	cell	receptor	(TCR)	VBeta	(VB)	specificity.162	In	mice	with	

germline	dominant	negative	IKZF1	mutations,	the	majority	of	T	cells	are	clonal,	highly	

lymphoproliferative,	and	demonstrate	single	or	double	VB	specificity.110	To	determine	if	one	or	

more	predominant	neoplastic	origin	was	present	in	tumors,	TCR	spectratyping	was	performed	

in	13	tumors	and	2	biological	replicates	(6	tumors	and	one	replicate	pair	with	mutant	IKZF1).	

RNA-Seq	of	the	TCR	VB	region	was	also	examined	in	10	of	the	same	tumors.	In	9	of	10	tumors	

and	in	all	replicates,	TCR	VB	spectratyping	and	RNA-Seq	agreed;	the	majority	of	tumors	were	

monoclonal	or	biclonal	(Figure	8:	T	cell	receptor	Vbeta-1	and	Vbeta-2	region	spectratype	

signatures).		Five	of	six	tumors	with	IKZF1	mutations	demonstrated	single	or	double	clonality.		
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Figure	8.	T	cell	receptor	Vbeta-1	and	Vbeta-2	region	spectratype	signatures:	Biological	replicates	share	the	first	7	digits	of	sample	ID	
listed.	Spectratype	signatures	are	not	represented	to	scale.	Tumors	with	IKZF1	mutations	denoted	with	an	asterisk.	
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Spectratype	

Vbeta-2	
Spectratype	 Tumor	

Vbeta-1	
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Spectratype	

Control	 	
	 017834-2

017741-1 	
	 017835-1*

017766-1 	
	 017842-2_2*

017777-3* 	
	 017855-1

017787-2	 	
	 017911-1*

017798-1 	
	 017911-1_2*	

017798-1_2	 	
	 017918-3*

017833-1 	
	 017927-2*	
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Marek’s	disease	tumor	purity	was	estimated	from	CD4	expression		

	 Genetic	material	was	collected	from	tumor	cross	sections,	which	we	suspected	were	

contaminated	by	surrounding	tissue.	Therefore,	we	assumed	that	the	14	tumors	in	our	RNA-Seq	

analysis	contained	contaminating	RNA	from	gonadal	tissue	and	infiltrating	cells.	We	noticed	a	

correlation	between	the	expression	of	mRNA	unique	to	CD4-specific	genes	(e.g.	CD4)	and	the	

allelic	frequencies	of	IKZF1	point	mutations;	a	relationship	that	allowed	us	to	predict	tumor	

purity	from	CD4	expression.	

The	constituents	of	advanced	gonadal	tumors	consist	primarily	of	transformed	CD4	T	

cells163	with	a	minority	of	B-cells	and	other	immune	cell	types.103–105	If	IKZF1	maintained	normal	

copy	number	and	was	mutated	before	tumorigenesis	(i.e.	a	truncal	mutation),	then	IKZF1	

variant	allele	frequencies	would	equal	approximately	one	half	of	tumor	purity	in	monoclonal	

tumors.	IKZF1	demonstrated	the	most	candidate	truncal	mutations	across	tumors	and	acts	as	a	

truncal	mutation	in	subsets	of	Acute	Lymphoblastic	Leukemia.164	We	queried	normalized	gene	

expression	for	genes	that	correlated	with	allele	frequencies	of	truncal	mutations.	Genes	with	

the	strongest	correlations	were	CD4-specific	(CD47,	ARHGAP15,	and	FLI1),	especially	CD4	itself	

(Adjusted	R-squared:		0.8564,	p-value	=		6.11x10-4).	We	constructed	a	simple	linear	model	to	

estimate	tumor	purity	from	CD4	expression.		

Tumor	purity	can	be	approximated	by	the	equation	

y	=	9.871e-05x	-	1.152x10-1,	

where	y	=	tumor	purity	and	x	=	normalized	CD4	expression	(regularized	log).	
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This	relationship	is	illustrated	in	Figure	9	by	comparing	tumor	CD4	expression,	which	we	

transformed	in	comparison	to	normal	CD4	expression,	to	IKZF1	variant	allele	frequencies	

multiplied	by	2.		

We	defined	the	transformed	CD4	expression	(CD4adj)	for	each	tumor	by	the	equation		

CD4adj	=	CD4/CD4mu		

where	CD4	=	the	expression	of	CD4	per	tumor		

and	CD4mu	=	the	average	of	CD4	expression	of	all	normal	CD4	T	cell	samples.		

All	expression	values	were	normalized	to	transcripts	per	million	(TPM).	

Transformed	CD4	expression	and	IKZF1	variant	allele	frequencies	(multiplied	by	two)	

demonstrated	strong	correlation	(p-value	=	1.61×10-3;	R2	=	0.8029)	(Figure	9.	Transformed	CD4	

expression	vs.	IKZF1	VAF*2).	
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Figure	9.	Transformed	CD4	expression	vs.	IKZF1	VAF*2:	The	linear	relationship	between	tumor	

purity	and	CD4-associated	genes	is	evident	illustrated	with	the	correlation	between	the	variant	

allele	frequencies	(multiplied	by	2)	of	somatic	truncal	single	nucleotide	variants	in	IKZF1	and	the	
transformed	expression	of	CD4	in	predominantly	monoclonal	tumors	(p-value	=	1.61×10

-3
;	R

2
	=	

0.8029).		

IKZF1	mutant	and	non-mutant	tumors	demonstrated	similar	expression	profiles	

Marek’s	disease	lymphomas	have	not	yet	been	categorized	into	unique	subtypes	by	

their	mutational,	epigenetic,	or	expression	profiles.	Instead,	they	are	often	categorized	by	

tissue	tropism	and	the	genetic	backgrounds	of	their	host	and	MDV	strain.	We	suspected	that	

IKZF1	mutant	tumors	might	represent	a	distinct	subtype	of	Marek’s	disease	lymphomas	and	
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queried	their	expression	profiles	for	unique	characteristics.	We	were	not	able	to	determine	if	

IKZF1	mutant	tumors	demonstrated	distinct	gene	expression	profiles.	However,	we	observed	

limited	evidence	that	MDV	expression	may	be	influenced	by	IKZF1	mutation	status.	
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Figure	10.	Principal	component	analysis	of	RNA-Seq:	Principal	component	analysis	before	(a	&	
b)	and	after	(c)	normalization	for	estimated	tumor	purity	of	tumors	and	removal	of	tumor	
samples	with	estimated	purity	<	50%.	The	variance	between	samples	of	different	tumor	purities	
has	reduced,	while	the	variance	has	increased	between	the	primary	dichotomous	relationship	
of	interest—Marek’s	disease	tumors	versus	CD4	normal	samples.
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We	performed	a	surrogate	variable	analysis	(SVA)136	on	all	tumors	to	test	for	infer	the	

effects	of	contaminating	gonadal	tissue	and	test	for	batch	effects.	Although	batch	effect	was	

not	present,	tumors	expression	profiles	demonstrated	significant	influence	from	contaminating	

male	and	female	gonadal	tissue.	We	adjusted	for	tumor	purity	(Figure	10.	Principal	component	

analysis	of	RNA-Seq)	and	performed	a	supervised	hierarchical	clustering	analysis	to	assess	if	

expression	profiles	differed	based	on	IKZF1	mutation	status.	Under	our	adjusted	model,	the	sex	

of	the	birds	dominated	clustering	likely	resulting	from	contamination	of	gonadal	tissue	rather	

than	IKZF1	mutation	status.	Gene	expression	profiles	between	IKZF1	mutant	and	non-mutant	

tumors	were	remarkably	similar	across	and	between	sexes;	no	host	genes	were	differentially	

expressed	between	IKZF1	mutant	and	non-mutant	tumors	(Figure	11.	Clustering	of	tumor	and	

normal	gene	expression	profiles).	We	expected	that	the	high	dimensionality	of	gene	expression	

would	reveal	signatures	unique	to	IKZF1	mutation	status.	However,	it	is	possible	that	IKZF1	

mutant	and	non-mutant	tumors	demonstrate	similar	expression	profiles;	a	phenomenon	in	

cancer	exists	in	which	cancer	cells	converge	upon	prominent	expression	profiles	across	tissue	

types.165	
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Figure	11:	Clustering	of	tumor	and	normal	gene	expression	profiles	
:	Hierarchical	clustering	across	tumors	and	adjusted	for	tumor	purity	demonstrates	that	tumor	
expression	profiles	do	not	cluster	predominantly	by	IKZF1	mutation	status.	IKZF1	status—IKZF1	
mutation	status;	Sample	status—whether	sample	results	from	a	male	tumor,	female	tumor,	or	
CD4	T	cells;	Estimated	purity—estimated	tumor	purity	on	a	scale	of	0.2	to	1.	CD4	normal	
samples	were	issued	a	purity	of	0.95	arbitrarily	because	they	represent	95%	pure	
untransformed	CD4	T	cells.	
	

We	also	compared	MDV	gene	expression	between	IKZF1	mutant	and	non-mutant	

tumors	(estimated	purity	≥	40%).	In	our	adjusted	model	we	noticed	significant	differences	

between	relative	quantities	of	MDV	transcripts;	however,	we	cannot	decipher	whether	MDV	

transcripts	measured	resulted	from	latent	or	cytolytic	expression.	In	total,	13	MDV	genes	

demonstrated	significant	difference	in	transcript	quantities	(LFC	≥	0.5,	adjusted	p-value	≤	0.1)	

resulting	in	6	and	7	genes	with	comparatively	low	and	high	RNA	read	counts,	respectively	(Table	
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5.	Marek’s	disease	virus	gene	expression	and	IKZF1	mutation	status)	(Figure	12.	Marek’s	disease	

viral	transcripts	in	Marek’s	disease	tumors).	Meq	was	expressed	in	all	tumors,	and	in	a	separate	

cohort	of	advanced	tumors	we	detected	Meq	via	immunohistochemistry	(Figure	13.	

Immunohistochemistry	reveals	Meq	presence	in	gonadal	tumors).	However,	in	IKZF1	mutant	

tumors	both	transcripts	from	both	Meq	loci	demonstrated	comparatively	lower	transcripts.	
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Table	5.	Marek’s	disease	virus	expression	and	IKZF1	mutation	status	:	The	differential	gene	
expression	(Log2	Fold	Change)	of	Marek’s	disease	virus	genes	between	tumors	with	and	without	
IKZF1	mutations.	
	

	

	
Figure	12.	Marek’s	disease	viral	transcripts	in	Marek’s	disease	tumors:	Normalized	expression	
(regularized	log)	of	expressed	genes	in	the	MDV	genome	between	tumors	with	and	without	
mutations	in	IKZF1.	mut—IKZF1	mutation	status;	sex—the	sex	of	host	bird;	purity—estimated	
tumor	purity;	and	tissue—tumor	tissue.

Gene	Name Gene	ID Log2FoldChange Adjusted	pval
MDV005:oncoprotein_MEQ 4811550 -5.210178769 2.21533E-06
MDV097:protein_SORF2A 4811456 -4.273943055 0.005217402
MDV076:oncoprotein_MEQ 4811549 -4.237186925 0.005733948
MDV073:protein_pp38 4811534 -3.027565428 0.000445262
MDV072:protein_LORF5 4811533 -2.460232485 0.042078235
MDV010:lipase 4811470 -1.417083589 0.099367982
MDV095:envelope_glycoprotein_I 4811454 1.923555602 0.062440248
MDV055:DNA_polymerase_processivity_subunit 4811516 2.056389333 0.099367982
MDV046:DNA_packaging_protein_UL32 4811506 2.234421506 0.062440248
MDV050:tegument_protein_UL37 4811511 2.948403582 0.089389286
MDV066:helicase-primase_primase_subunit 4811527 3.298147945 0.071937315
MDV061:transactivating_tegument_protein_VP16 4811522 3.598073831 0.004830689
MDV051:capsid_triplex_subunit_1 4811512 4.377172609 0.007252397
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Figure	13.	Immunohistochemistry	reveals	Meq	presence	in	gonadal	tumors:	A	late-stage	Marek’s	disease	gonadal	tumor	(IKZF1-
mutant)	cross-section	illustrating	the	presence	of	Meq	in	neoplastic	cell	nuclei	bound	by	Meq-specific	antibody	(brown	stain).		
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Differentially	expressed	genes	associated	with	non-coding	point	mutations	

The	expression	profiles	of	tumor	samples	of	sufficient	purity	(53	-	95%)	were	compared	

against	profiles	of	8	replicates	of	CD4	T	cell	isolated	from	uninfected	birds.	In	total,	12,518	

genes	were	queried	for	differential	expression	(LFC	≥	0.5,	adjusted	p-value	≤	0.05	using	DESeq2)	

resulting	in	1,253	significantly	up	regulated	genes	and	1,032	significantly	down	regulated	genes.	

(Figure14.	Top	50	differentially	expressed	genes	in	Marek’s	disease	lymphomas).		

As	expected	the	vast	majority	of	somatic	point	mutations	in	and	around	genes	were	non-

coding,	with	the	majority	of	variants	residing	in	intronic	regions	of	large	genes.	In	total,	131	

differentially	expressed	genes	contained	or	were	proximal	to	somatic	non-coding	mutations.	

We	performed	a	logistic	regression	analysis	to	assess	the	association	between	genes	proximal	

to	non-coding	mutations	(intronic,	upstream,	and	downstream)	and	differentially	expressed	

genes.	The	odds	that	genes	with	non-coding	mutations	were	differentially	expressed	were	

1.697	times	the	odds	of	genes	without	non-coding	mutations	(95%	CI:	1.43-2.01;	p-value	=	

2.86e-07),	suggesting	that	these	often	overlooked	mutation	types	(non-coding	mutations)	

influenced	differential	gene	expression.
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Figure	14.	Top	50	differentially	expressed	genes	in	Marek’s	disease	lymphomas:	The	
normalized	expression	of	the	top	The	50	most	differentially	expressed	genes	orthologous	to	
human.	Annotations:	mut—mutational	status;	sex—bird	status	(male	tumor,	female	tumor,	or	
normal	CD4	T	cell	sample);	purity—estimated	tumor	purity;	and	tissue—status	of	sample	
(tumor	or	normal).	
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Gene	expression	profiles	of	Marek’s	disease	lymphomas	

In	hematopoietic	cells,	Ikaros	acts	as	a	master	regulator	of	gene	expression	and	chromatin	

remodeling.166	Reduction	or	even	complete	loss	of	Ikaros	regulation	has	been	shown	to	greatly	

alter	gene	expression	resulting	in	cells	with	high-risk-gene	expression	signatures	leading	to	

lymphoma	and	leukemia.167–173	Ikaros	is	essential	for	the	highly	permissive	chromatin	

environment	it	regulates,	and	its	function	is	so	critical	that	it	cannot	be	compensated	for	by	

other	transcription	factors.174	Thus,	the	consequences	of	Ikaros	loss	impair	tumors	with	specific	

hallmarks,	and	we	believe	that	evidence	for	these	hallmarks	are	expressed	from	Marek’s	

disease	tumor	transcription	profiles.	

Six	of	nine	tumors	that	underwent	differential	gene	expression	analysis	demonstrated	

mutations	in	IKZF1	and	we	anticipated	that	IKZF1	mutations	influenced	tumor	expression	

profiles.	We	queried	a	gene	set	of	Ikaros	targets—mouse	leukemic	T	cells	genetically	deficient	

of	IKZF1	and	exposed	to	retroviral	induction	of	the	Ikaros1	isoform151—and	noticed	enrichment	

for	Ikaros	targets	in	differentially	expressed	genes	from	Marek’s	disease	tumors.	Considering	

genes	with	basal	expression	(at	least	ten	total	reads	per	sample),	differentially	expressed	genes	

were	34%	±	14%	more	likely	to	be	Ikaros	targets	than	genes	not	differentially	expressed	(p-

value	=	8.34x10-6,	95%	CI	by	logistic	regression).	

The	list	of	differentially	expressed	genes	between	Marek’s	disease	tumors	and	normal	CD4	

T	cell	samples	was	queried	for	pathway	enrichment141–143	and	MSigDB	gene	sets149,150	to	infer	

phenotypic	changes	in	Marek’s	disease	tumors	that	differed	from	CD4	T	cells.	Furthermore,	the	

list	of	302	differentially	expressed	genes	that	also	showed	enrichment	for	putative	Ikaros1	

regulation	was	queried	to	infer	the	molecular	mechanisms.	Enriched	terms	and	pathways	show	
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striking	similarities	to	those	in	leukemia	with	loss	of	Ikaros174–177	demonstrating	increased	

cellular	adhesion,	increased	extracellular	matrix	organization,	increased	cell	surface	receptor	

signaling,	increased	cell	migration	and	motility,	decreased	T	cell	receptor	signaling,	T	cell	

dedifferentiation,	and	a	neural	stem	cell-like	phenotypes.	A	similar	scenario	has	been	described	

in	BCR-ABL1+	pre-B	ALL	cells	with	loss	of	Ikaros,	which	demonstrate	a	“neuro-epithelial”	gene	

signature	and	epithelial	cell-like	phenotype	with	aberrant	expression	of	genes	normally	

expressed	in	neuro-epithelial	cells.174–177	Several	cellular	and	molecular	processes	in	pre-B	ALL	

cells	with	loss	of	Ikaros	are	indicative	of	the	enriched	pathways	and	ontologies	in	Marek’s	

disease	tumors	including	increased	adhesion-mediated	receptor	signaling,	actin	filament-based	

processes,	axon	guidance,	and	integrin	binding	(Figure	15.	Enriched	pathways	from	differential	

gene	expression).	The	50	most	differentially	expressed	genes	in	enriched	pathways	and	

enriched	for	Ikaros	regulation	demonstrate	genes	(potentially)	driving	these	mechanisms	

(Figure	16.	Differentially	expressed	genes	in	enriched	pathways	and	Ikaros1	targets).	
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Figure	15.	Enriched	pathways	from	differential	gene	expression:	Enriched	pathways	for	differentially	expressed	genes	between	
Marek’s	disease	tumors	and	normal	isolated	CD4	T	cell	samples.	Pathway	enrichment	was	performed	with	gene	ontologies139,140	and	
pathways	(e.g.	Kegg	and	Reactome).141–148	Enrichment	was	performed	with	Enrichr152,153	and	gprofiler.154
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Figure	16.	Differentially	expressed	genes	in	enriched	pathways	and	Ikaros1	targets:	The	50	most	significantly	differentially	
expressed	genes	in	enriched	pathways	(a)	and	transcriptionally	regulated	by	Ikaros151	(b).	Red	and	blue	represent	up	and	down	
regulation	of	gene	expression,	respectively.		
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Dedifferentiation	is	also	a	common	theme	shared	between	Ikaros	Marek’s	disease	

tumors	and	pre-B	ALL	cells	with	a	dominant	negative	Ikaros	allele.	In	mature	CD4	T	cells,	Ikaros	

mediates	its	tumor	suppressor	ability	by	repressing	expression	of	lineage	inappropriate	genes,	

especially	those	found	in	hematopoietic	stem	cells	and	neural	development	pathways.178	Loss	

of	Ikaros	has	been	shown	to	drive	cells	to	dedifferentiate	coupled	with	the	acquisition	of	more	

stem-like	and	epithelial	cell	characteristics.174,176	We	noticed	evidence	of	similar	expression	

profiles	in	Marek’s	disease	tumors;	T	cell	receptor	signaling	and	T	cell	differentiation	were	

among	the	most	significantly	enriched	pathways	for	down	regulation	of	gene	expression.	

Furthermore,	the	gene	expression	profiles	of	Marek’s	disease	tumors	were	significantly	

enriched	for	gene	sets	up	regulated	in	neural	crest	stem	cells	(Figure	17.	Tumor	expression	

profiles	enriched	for	T	cell	dedifferentiation	and	stemness).179	Among	the	most	significantly	up	

regulated	genes	was	CDK6—a	transcriptional	target	of	Ikaros151	and	a	master	regulator	of	

leukemic	stem	cell	(LSC)	activation.180	CDK6	is	frequently	up	regulated	in	tumors	of	

hematopoietic	origin	including	AML	and	ALL.181–183	Specifically,	CDK6	suppresses	Egr1,	which	

was	also	down	regulated	in	Marek’s	disease	tumors,	allowing	for	LSC	activation.180		

Marek’s	disease	tumor	expression	profiles	reveal	striking	similarities	to	other	well-

documented	cancers	that	lack	Ikaros	tumor	suppressor	ability.	We	strongly	suspect	that	

mutations	in	the	DNA-binding	domain	of	IKZF1	drive	Marek’s	disease	tumors.	
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Figure	17.	Tumor	expression	profiles	enriched	for	T	cell	dedifferentiation	and	stemness:	Gene	set	enrichment	analysis	(GSEA)	of	
differentially	expressed	genes	between	Marek’s	disease	tumors	and	normal	CD4	T	cell	samples.	Differentially	down	regulated	genes	
in	Marek’s	disease	tumors	(blue)	are	enriched	for	genes	associated	with	T	cell	differentiation184	(a).	Normalized	enrichment	score:	-
3.72,	nominal	p-value:	<	1x10-5,	FDR	q-value:	<	1x10-5.	Differentially	up	regulated	genes	in	Marek’s	disease	tumors	(red)	are	enriched	
for	genes	associated	with	neural	crest	stem	cells185	(b).	Normalized	enrichment	score:	4.237,	nominal	p-value:	<	1x10-5,	FDR	q-value:	
<	1x10-5.	

b.	a.	
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SUMMARY	
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Our	observations	expand	upon	the	current	model	of	Marek’s	disease	lymphomagenesis.	We	

observed	that	(1)	MDV	integration	is	necessary	and	must	precede	clonal	expansion;	and	(2)	

Meq	activity	and	expression	is	also	necessary.	We	expand	upon	this	model	by	comprehensively	

examining	the	somatic	landscapes	of	Marek’s	tumors	and	reveal	the	first	driver	gene	of	Marek’s	

disease	lymphomas,	IKZF1.	

	 We	demonstrated	that	the	DNA-binding	domain	of	IKZF1	was	frequently	mutated	in	the	

largest	gonadal	tumors	in	our	model.	Mutations	cluster	across	essential	residues	in	the	critical	

N-terminal	zinc	fingers	of	IKZF1,	which	is	conserved	across	species.		All	considerations	from	the	

literature	and	bioinformatic	algorithms	suggest	that	mutated	IKZF1	is	a	driver	gene	and	that	

somatic	mutations	are	deleterious	to	the	DNA-binding	capacity	of	the	mutated	allele.	Mutation	

of	IKZF1	is	a	driving	event	in	Marek’s	disease	lymphomas.		

The	relationship	between	mutant	IKZF1	and	Meq	has	not	been	thoroughly	examined,	

but	we	suspect	that	they	work	in	tandem.	These	considerations	require	mutational	analysis	of	

IKZF1	and	Ikaros	in	chicken	CD4	T	cells	in	the	context	of	MDV	integration	and	Meq.	The	advent	

of	CRISPR	would	allow	for	the	precise	functional	analysis	of	the	somatic	IKZF1	mutations	in	the	

Marek’s	disease	context.	Furthermore,	the	exact	series	of	events	surrounding	driver	acquisition	

could	be	investigated.	We	suspect	that	mutations	in	IKZF1	are	heterozygous	and	occur	prior	to	

neoplastic	clonal	expansion	because	IKZF1	variants	are	consistently	the	dominant	variant	allele	

in	Marek’s	tumors.		

Pediatric	malignancies	in	human	are	suggested	to	require	at	least	two	drivers	and	that	

initial	driver	mutations	often	occur	spontaneously	during	development.186	Bloodspots	taken	at	

birth	from	patients	with	acute	lymphoblastic	leukemia	(ALL)	demonstrated	that	the	initial	
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mutation	usually	occurred	in	utero.
187

	Similarly,	blood	recovered	at	hatch	and	prior	to	MDV	

infection	for	mutations	in	IKZF1	could	be	queried	to	determine	if	IKZF1	mutations	

spontaneously	occur	in	ovo.	On	the	other	hand,	mutations	in	IKZF1	could	arise	from	an	MDV-

induced	inflammatory	response.	In	ALL,	mutations	in	IKZF1	are	consistently	the	secondary	

driver
164

	and	their	acquisition	have	been	associated	with	early	viral	infections.
120,188

	Whether	

initiating	or	acquired,	the	etiology	of	IKZF1	mutations	and	the	mechanisms	leading	to	

mutagenesis	may	shed	light	on	the	mutational	process	and,	by	extension,	the	discrepancy	of	

tumor	incidence	between	Marek’s	disease	resistant	and	susceptible	birds.	

	 Although	we	detected	mutated	IKZF1,	it	is	plausible	that	additional	drivers	exist.	We	are	

confident	that	we	successfully	measured	the	majority	of	somatic	variants—somatic	SNVs	and	

Indels—with	adequate	power	and	confirmed	their	presence	and	relative	frequency,	about	0.3	

somatic	SNVs	and	Indels	per	megabase.	However,	the	average	genomic	coverage		(14x)	and	

tumor	purity	(45%)	suggested	that	we	queried	early	tumors	with	suboptimal	power	to	

comprehensively	catalog	complex	somatic	variants	such	as	structural	variants.	However,	whole	

genome	sequencing	suggested	an	additional	deletion	in	the	IKZF1	DNA-binding	domain;	

targeted	sequencing	demonstrated	non-synonymous	variants	in	additional	genes,	such	as	FLT3;	

multiple	technologies	suggested	deletions	and	copy	number	loss	in	the	SOX1	and	VWF	regions	

of	chromosome	1;	and	RNA-Seq	generated	candidate	read-through	fusion	events	in	ROBO1	and	

ROBO2.	These	candidates	demonstrate	sufficient	evidence	to	warrant	further	bioinformatic	

interrogation	and	targeted	sequencing	to	determine	legitimacy.	

	 IKZF1	mutant	Marek’s	disease	tumors	revealed	gene	expression	profiles	indicative	of	

Ikaros	perturbation	including	cellular	adhesion,	cellular	migration,	extracellular	matrix	
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organization,	axon	guidance,	lymphocyte	dedifferentiation,	and	a	stem-cell	state.	These	

characteristics	are	suggested	through	expression	profiles;	however,	functional	assays	are	

required	to	determine	if	the	IKZF1	mutant	cells	legitimately	exhibit	these	phenotypes.	

Furthermore,	the	targets	of	Ikaros	transcriptional-regulation	and	accompanied	motifs	should	be	

considered	with	chromatin	immunoprecipitation	sequencing	and	complimentary	RNA-Seq.	

Although	analyses	of	Marek’s	disease	tumor	transcriptomes	may	demonstrate	enrichment	of	

differentially	expressed	putative	Ikaros	targets,	according	to	the	literature,	we	may	only	

speculate	on	the	potential	reprogramming	to	the	Marek’s	disease	lymphoma	transcriptome	by	

mutant	Ikaros.	

The	investigations	presented	in	this	thesis	resulted	in	a	few	robust	claims	and	many	

more	speculations.	These	experiments	were	hypothesis	generating.	We	hope	to	inspire	the	

Marek’s	disease	community	to	further	investigate	Marek’s	disease	lymphomagenesis	and	

determine	its	major	drivers	and	mutational	mechanisms.	These	insights	might	aid	in	the	

development	of	better	vaccines,	genetic	resistance,	creative	control	strategies,	and	our	

knowledge	of	cancer	biology.	
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APPENDIX
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Table	S1.	Somatic	non-synonymous	SNVs	and	Indels:	The	collection	of	predicted	somatic	non-synonymous	SNVs	and	Indels	across	
22	Marek’s	disease	tumors.
CHROM POS REF ALT VAR_TYPE CON TOOLS SYMBOL SAMPLE

2 80972116 C T SNV missense_variant 4 IKZF1 901-2_2_S26,	901-2_S22

2 80972101 C T SNV missense_variant 6 IKZF1 777-3_S14,	901-2_S22

2 80972152 A AACT INDEL inframe_insertion 4 IKZF1 918-3_S10

2 80972118 C G SNV missense_variant 4 IKZF1 756-3_S3

2 80972104 C T SNV missense_variant 5 IKZF1 842-2_S20

1 179279863 C G SNV missense_variant 5 PARP4 842-2_S20

1 179279863 C G SNV missense_variant 4 PARP4 842-2_2_S25

12 7233917 A G SNV missense_variant 4 CHDH 911-1_S24

12 7233915 C T SNV missense_variant 4 CHDH 911-1_S24

1 176041476 T A SNV missense_variant 5 FLT3 794-1_S17

26 2618494 C CCGGCCG INDEL inframe_insertion 4 PFKFB2 798-1_S5

7 13771765 T G SNV missense_variant 5 NBEAL1 842-2_2_S25,	842-2_S20

4 81134701 C T SNV missense_variant 6 AFAP1 766-1_S4

3 34836601 A AT INDEL frameshift_variant 4 DESI2 834-2_2_S12

19 9001333 G A SNV missense_variant 6 AKAP1 901-2_2_S26,	901-2_S22

17 6421696 TCTC T INDEL inframe_deletion 4 PRDM12 834-2_2_S12

14 14979283 T C SNV missense_variant 5 ZP2 842-2_S20

3 48988967 A C SNV missense_variant 5 AKAP12 884-2_S21

26 2327458 C T SNV missense_variant 6 SLC26A9 833-1_S6

20 3990397 G A SNV missense_variant 5 DHX35 911-1_S24

2 104762631 G T SNV missense_variant 4 CHST9 841-3_S19

17 1129731 C T SNV missense_variant 6 AMBP 766-1_S4

15 11190293 A T SNV missense_variant 4 NEFH 927-2_S11

14 12504866 C A SNV stop_gained 4 SLX4 833-1_S6

12 11280899 G A SNV missense_variant 5 CCDC174 787-2_S15

1 49800139 C T SNV missense_variant 6 L3MBTL2 766-1_S4
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Table	S2.	Somatic	structural	variant	candidates:	The	collection	of	candidate	somatic	structural	
variants	across	22	Marek’s	disease	tumors.	

	

Chrom Start End Type Sample Gene
chr1 24295614 60369698 DUP 017834-2 PAH,	TPH2,	TEAD4,	PP
chr1 52841831 52855913 INV 017788-1 LARGE1
chr1 53345388 53403253 INV 017788-1 PAH,	TPH2,	TEAD4,	PP
chr1 55360406 56151630 INV 017906-1 IGF1,	PARPBP,	CHPT1,
chr1 55361021 56151506 INV 017918-3 IGF1,	PARPBP,	CHPT1,
chr1 59617071 59978532 DEL 017756-3 SINHCAF
chr1 63336212 63341684 INV 017777-3 PAH,	TPH2,	TCP11L2,	
chr1 77068345 77156789 INV 017756-3 ING4,	COPS7A,	ZNF384
chr1 77068527 77156914 INV 017842-2_2 ING4,	COPS7A,	ZNF384
chr1 77068652 77156788 INV 017901-2 ING4,	COPS7A,	ZNF384
chr1 79057362 79106476 DEL 017901-2_2 ZYX,	EPHB6,	CD47,	CC
chr1 82269182 82378762 DEL 017756-3 GAP43
chr1 102542273 102543130 INV 017906-1 JAM2
chr1 104554587 105212111 INV 017834-2 CFAP298,	SCAF4,	OLIG
chr1 113131681 116830119 INV 017842-2_2 XK,	CYBB,	DYNLT3,	PR
chr1 122573459 123166687 DEL 017906-1 TRAPPC2B,	RAB9A,	GPM
chr1 130103092 130118467 INV 017911-1 EDNRB,	PAH,	TPH2,	TE
chr1 140048249 140146532 INV 017901-2 TNFSF13B
chr1 153077883 156257327 DEL 017855-1 EDNRB,	PAH,	TPH2,	TE
chr1 154413747 154423205 INV 017835-1 EDNRB,	PAH,	TPH2,	TE
chr1 164600039 164649334 INV 017756-3 ELF1,	SUGT1,	OLFM4,	
chr1 172050175 172050636 INV 017834-2_2 EDNRB,	TEAD4,	PPARA,
chr1 178953267 178997740 INV 017901-2 GJB2
chr1 181040723 181100010 INV 017834-2 EDNRB,	TEAD4,	PPARA,
chr1 182005407 182006079 DEL 017794-1 PDGFD
chr1 182005458 182006071 DEL 017787-2 PDGFD
chr1 186765604 186769576 DEL 017766-1 FAT3
chr2 361456 455848 INV 017884-2 SSPO
chr2 26652916 27567220 INV 017842-2_2 SCIN,	ETV1
chr2 42037543 42060179 INV 017911-1 MRPL3,	POMGNT2,	SH3B
chr2 42037550 42060175 INV 017911-1 MRPL3
chr2 55293219 55330719 INV 017901-2_2 TNS3
chr2 66577991 67441089 INV 017911-1 EXOC2,	IRF4
chr2 67884994 68793866 INV 017777-3 SERPINB8,	VPS4B,	SER
chr2 67967886 67981148 DEL 017842-2 SERPINB4
chr2 105178187 106193560 INV 017777-3 CDH2
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Table	S2	(cont’d)

	
	 	

Chrom Start End Type Sample Gene
chr2 115789870 116358256 DEL 017901-2 CPA6
chr2 115790070 116358249 DEL 017901-2_2 CPA6
chr2 118357501 118358188 INV 017777-3 STAU2
chr2 121381554 121954081 INV 017756-3 FABP5,	TPD52
chr2 127561287 127599604 INV 017901-2_2 SDC2,	RPL30,	AZIN1,	
chr3 4359738 4454621 INV 017766-1 PTK7,	SRF
chr3 6984643 7680185 DEL 017794-1 NRXN1,	STON1,	GTF2A1
chr3 7280868 7917090 DEL 017855-1 EHD3,	STON1,	GTF2A1L
chr3 7917364 8345322 INV 017756-3 YPEL5,	LBH,	LCLAT1
chr3 60000033 60000390 DEL 017863-1 NCOA7
chr4 20178992 21968489 INV 017756-3 GRIA2,	NPY2R,	CTSO,	
chr4 46338551 46338722 DEL 017842-2 MAPK10
chr6 545588 9246463 DEL 017911-1_2 CDHR1,	SIRT1,	NCOA4,
chr6 15082600 15734003 INV 017863-1 ADK,	AP3M1,	VCL
chr6 19447558 19945624 INV 017901-2 HTR7,	PCGF5,	TNKS2,	
chr6 19479871 19954026 INV 017787-2 HTR7,	PCGF5,	TNKS2,	
chr11 14429252 14429681 DEL 017911-1_2 WWOX
chr13 2676548 2995943 INV 017927-2 HSPA9,	FBXW11
chr13 2677477 2995789 INV 017911-1_2 HSPA9,	FBXW11
chr13 15938740 16142754 INV 017855-1 PPP2CA,	SKP1,	C5orf1
chr17 793963 1099834 INV 017738-1 EDF1,	FBXW5,	PHPT1,	
chr17 793973 1099796 INV 017884-2 EDF1,	FBXW5,	PHPT1,	
chr18 633069 668600 DEL 017901-2_2 MYH2
chr18 755781 1270831 INV 017927-2 MYOCD
chr18 842373 1291110 DEL 017834-2_2 MYOCD
chr19 4920321 4933412 DEL 017901-2_2 ASL
chr20 835908 1215863 INV 017901-2_2 NFS1,	CPNE1,	ROMO1,	
chr20 836158 1215870 INV 017901-2 NFS1,	CPNE1,	ROMO1,	
chr28 87420 524183 INV 017911-1_2 TIMM44
chr28 87423 524195 INV 017766-1 TIMM44
chr28 87424 524093 INV 017835-1 TIMM44
chrZ 21516654 22254222 DEL 017794-1 SLC30A5,	MTX3,	CENPH
chrZ 44670399 44883474 INV 017901-2 FANCC,	AUH,	SYK,	NAA
chrZ 44670749 44884848 INV 017901-2_2 CDC42SE2
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Table	S3.	Somatic	copy	number	variant	candidates:	The	collection	of	candidate	somatic	copy	
number	alterations	across	22	Marek’s	disease	tumors.

	
	 	

Chrom Start End Type Sample Gene
chr1 74374001 74414000 loss 017835-1 VWF
chr1 83168001 83196000 loss 017756-3 CLDND1
chr1 83168001 83218000 loss 017906-1 CLDND1
chr1 83168001 83265098 loss 017835-1 CLDND1
chr1 83170001 83194000 loss 017863-1 CLDND1
chr1 139808080 139825940 loss 017842-2 SOX1
chr2 49280001 49345605 loss 017906-1 AMPH
chr2 142699457 142842000 loss 017835-1 MIR30D,	MIR30B
chr2 142752001 143016000 loss 017906-1 MIR30D,	MIR30B
chr3 2364939 2601803 loss 017835-1 RTN4,	XPO1,	RTN4
chr3 2444001 2524000 loss 017906-1 RTN4
chr3 5662001 5692000 loss 017835-1 OTOR
chr3 5674001 5756000 loss 017756-3 OTOR
chr3 12222001 12278709 loss 017906-1 CDC42BPA
chr3 108778001 108808000 loss 017906-1 TFAP2D
chr11 3354001 3390116 loss 017835-1 ESRP2
chr17 10533828 10551688 loss 017842-2 LMX1B
chr17 10838202 10943916 gain 017798-1 FBXW2,	GARNL3,	SLC2A
chr17 10913448 10944219 gain 017834-2 GARNL3
chrZ 48048264 48613911 neutral 017794-1 EFNA5
chrZ 55146410 56245470 neutral 017756-3 PHAX,	LMNB1
chr15 12632355 12746000 loss 017906-1 SDSL,	LHX5
chr15 12636120 12746000 loss 017756-3 SDSL,	LHX5
chr16 6001 254000 loss 017835-1 RACK1,	TRIM41,	BRD2,
chr21 6776001 6862722 loss 017906-1 DDOST
chr23 5751354 5773560 loss 017835-1 RCAN3
chr23 5761015 5772000 gain 017834-2 RCAN3
chr24 285760 303620 loss 017842-2 MSANTD2,	NRGN
chr27 4765048 4786480 loss 017842-2 THRA
chr5 5206001 5224950 loss 017842-2_2 PAX6
chr5 31397310 31420368 loss 017788-1 MEIS2
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Table	S3	(cont’d)	

	

Chrom Start End Type Sample Gene
chr5 55912516 55930376 loss 017842-2 OTX2
chr7 7253960 7300000 loss 017835-1 ADARB1,	ADARB1,	ADAR
chr7 7274001 7314000 loss 017906-1 ADARB1,	ADARB1,	ADAR
chr7 7300001 7334000 loss 017835-1 ADARB1,	ADARB1,	ADAR
chr7 7846001 7908000 loss 017835-1 GLS
chr7 16318001 16408000 loss 017911-1 HOXD4,	HOXD11,	HOXD1
chr8 27125768 27140056 loss 017842-2 NFIA
chr9 11902001 11946000 loss 017842-2_2 ZIC1
chr9 16898001 16940000 loss 017911-1 SOX2
chr9 16906500 16921800 loss 017842-2_2 SOX2
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Table	S4.		Somatic	gene	fusion	candidates:	The	collection	of	candidate	somatic	gene	fusions	across	22	Marek’s	disease	tumors.	

	

Junction	Coordinate Fusion	Type Gene	ID	A Gene	ID	B Gene	A Gene	B Tumor
1_73643375_+:1_73645365_+ readthrough ENSGALG00000036222 ENSGALG00000017280 na KCNA1 017738-1
1_90844166_+:1_90966203_+ intrachromosomal ENSGALG00000040949 ENSGALG00000015418 na EPHA6 017738-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017738-1
1_97305206_-:1_97052465_- intrachromosomal ENSGALG00000028863 ENSGALG00000015519 na ROBO2 017741-1
17_8741205_-:17_8712864_- readthrough ENSGALG00000041608 ENSGALG00000001645 na KCNT1 017741-1
10_20102972_-:10_20102901_- readthrough ENSGALG00000029714 ENSGALG00000023237 UNC45A na 017766-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017766-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017787-2
Z_9146403_-:Z_9164929_+ interstrand ENSGALG00000026655 ENSGALG00000023622 na AVD 017794-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017794-1
7_6877361_+:7_6874546_+ inverted ENSGALG00000006141 ENSGALG00000027664 POFUT2 YBEY 017798-1
1_55614936_+:1_55616619_+ readthrough ENSGALG00000012763 ENSGALG00000012766 GNPTAB SYCP3 017798-1
1_97305206_-:1_97052465_- intrachromosomal ENSGALG00000028863 ENSGALG00000015519 na ROBO2 017798-1
3_26293731_+:3_26395483_+ intrachromosomal ENSGALG00000034313 ENSGALG00000010000 na PRKCE 017798-1
18_9346764_+:18_9344962_+ inverted ENSGALG00000042060 ENSGALG00000006880 na SLC38A10 017798-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017798-1
2_60487565_-:2_60460152_- readthrough ENSGALG00000043391 ENSGALG00000012683 na RNF144B 017798-1
1_75650407_-:1_75636968_- readthrough ENSGALG00000013422 ENSGALG00000013424 RHNO1 TULP3 017798-1_2
1_75650639_-:1_75636968_- readthrough ENSGALG00000013422 ENSGALG00000013424 RHNO1 TULP3 017798-1_2
1_97305206_-:1_97052465_- intrachromosomal ENSGALG00000028863 ENSGALG00000015519 na ROBO2 017798-1_2
10_20102968_-:10_20102687_- readthrough ENSGALG00000029714 ENSGALG00000023237 UNC45A na 017798-1_2
20_10248814_+:20_10239179_+inverted ENSGALG00000038194 ENSGALG00000006267 na TPX2 017798-1_2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017798-1_2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017833-1
11_20157498_+:11_20167292_+readthrough ENSGALG00000003219 ENSGALG00000000913 TMEM231 CHST6 017835-1
3_26556239_+:3_25402442_- interstrand ENSGALG00000010000 ENSGALG00000009967 PRKCE LRPPRC 017835-1
2_32690122_-:2_32678847_- readthrough ENSGALG00000028908 ENSGALG00000027925,ENSGALG00000022622HOXA6 HOXA3,HOXA4017835-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017835-1
22_86148_+:22_96982_+ readthrough ENSGALG00000041911 ENSGALG00000039261 AAK1 na 017841-3
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017841-3
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Table	S4	(cont’d)	
Junction	Coordinate Fusion	Type Gene	ID	A Gene	ID	B Gene	A Gene	B Tumor
AADN04008201.1_795_-:AADN04006022.1_10400_-interchromosomal ENSGALG00000041807 ENSGALG00000042711 PC na 017842-2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017842-2
AADN04008201.1_795_-:AADN04006022.1_10400_-interchromosomal ENSGALG00000041807 ENSGALG00000042711 PC na 017842-2_2
4_88306232_-:4_88095672_- intrachromosomal ENSGALG00000015966 ENSGALG00000027853 na CTNNA2 017855-1
1_24736019_-:1_24735461_- readthrough ENSGALG00000028180 ENSGALG00000037206 RF02184 ST7 017855-1
AADN04008201.1_795_-:AADN04006022.1_10400_-interchromosomal ENSGALG00000041807 ENSGALG00000042711 PC na 017855-1
13_6705340_-:13_6706233_- inverted ENSGALG00000034774 ENSGALG00000001750 na MAT2B 017855-1_2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017855-1_2
1_97305206_-:1_97052465_- intrachromosomal ENSGALG00000028863 ENSGALG00000015519 na ROBO2 017863-1
33_584816_-:33_596443_+ interstrand ENSGALG00000037953 ENSGALG00000040260 TUBA1A TUBA1C 017863-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017863-1
17_9327965_+:17_9334340_+ readthrough ENSGALG00000001225 ENSGALG00000046223 RABGAP1 na 017884-2
5_12577450_-:5_12573281_- readthrough ENSGALG00000006342 ENSGALG00000006312 UEVLD TSG101 017884-2
2_36715175_-:2_36520955_- intrachromosomal ENSGALG00000039873 ENSGALG00000011283 na ZNF385D 017884-2
5_16802494_-:5_16812988_- inverted ENSGALG00000041460 ENSGALG00000007203 na RAB3IL1 017884-2
17_8741205_-:17_8712864_- readthrough ENSGALG00000041608 ENSGALG00000001645 na KCNT1 017884-2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017884-2
33_584816_-:33_596443_+ interstrand ENSGALG00000037953 ENSGALG00000040260 TUBA1A TUBA1C 017901-2_2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017901-2_2
17_9327965_+:17_9334340_+ readthrough ENSGALG00000001225 ENSGALG00000046223 RABGAP1 na 017906-1
4_34582504_+:4_34589007_+ readthrough ENSGALG00000010185 ENSGALG00000037040 HSPA4L na 017906-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017906-1
1_55614936_+:1_55616619_+ readthrough ENSGALG00000012763 ENSGALG00000012766 GNPTAB SYCP3 017911-1
22_2212167_+:22_2211334_+ inverted ENSGALG00000038826 ENSGALG00000003092 na ERLIN2 017911-1
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017911-1
Z_11948598_+:Z_11954617_+ readthrough ENSGALG00000032030 ENSGALG00000003726 na EGFLAM 017911-1_2
16_74803_+:16_88780_- interstrand ENSGALG00000041380 ENSGALG00000033932 BF2 BF1 017911-1_2
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017911-1_2
20_9806274_+:20_9805703_+ inverted ENSGALG00000031365 ENSGALG00000006062 na ZBTB46 017918-3
3_4395365_+:3_4412978_+ readthrough ENSGALG00000035047 ENSGALG00000008609 na PTK7 017918-3
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017918-3
1_96340958_+:1_96490290_+ intrachromosomal ENSGALG00000042104 ENSGALG00000015511 na ROBO1 017927-2
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