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ABSTRACT

GREEN’S FUNCTIONS FOR VARIANTS OF THE SCHRAMM-LOEWNER
EVOLUTION

By

Benjamin Mackey

We prove upper bounds for the probability that a radial SLE, curve comes within spec-
ified radii of n different points in the unit disc. Using this estimate, we then prove a similar
upper bound for the probability that a whole-plane SLE, passes near any n points in the
complex plane. We then use these estimates to show that the lower Minkowski content of
both the radial and whole-plane SLE traces has finite moments of any order.

For k < 4, the reverse flow of the Loewner equation driven by /kB; generates a random
continuous function ¢ : Rt — RT called the conformal welding. In studying backward
SLE, this plays the roll of the global random object, rather than the SLE trace. Given
any x,y > 0 we use the Girsanov theorem to construct a family of probability measures,
depending on some parameters, under which the conformal welding satisfies ¢(z) = y almost
surely. For one such law, we prove a one-point estimate for the backward SLE welding and
show how it coincides with the Green’s function. In another case, we decompose the law of
the welding conditioned to pass through (x,y) into two pieces. Using this decomposition,
we integrate this law over a set U C [0, 00) X [0,00) to get a new measure on weldings which
is absolutely continuous with respect to the original backward SLE welding. Moreover, the
Radon-Nikodym derivative is given by the capacity time that the graph of ¢ spends in U.

In the last chapter, we study a generalization of the chordal Loewner equation called
chordal measure driven Loewner evolution. We show existence of a solution to the equation,

and a one-to-one correspondence between the appropriate measures and all continuously



growing families of H-hulls. In [19], the notion of measure driven Loewner evolution was
first introduced in the radial setting, and a similar theorem was proven. This result is pure

complex analysis, without any reference to probability theory.
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Chapter 1

Introduction

1.1 Description of SLE

This thesis is concerned with the study of conformally invariant randomly growing processes
in subdomains of the complex plane. The main object is the Schramm-Loewner evolution,
or SLE, which was introduced by Oded Schramm in [29] as a candidate for several lattice
models in statistical physics. The processes all arise from solving a variant of the Loewner
differential equation driven by time scaled Brownian motion. In all cases, there is a domain
D C C and a random curve 7 contained in the closure of D starting and ending at fixed
points.

To motivate the definition, we will informally describe the loop erased random walk in
a domain from a to b. Let D C C be a simply connected domain, and let 6 > 0 be a small
number. Consider the lattice Ds = DN 672, and let 5 be the path of a simple random walk
on Dg starting at the point (nearest to) a € dD, and stopped when it hits a point (nearest
to) bin D, the closure of D. The path 75 can be turned into a simple path fy(SLE by removing
all of the loops. Is there is a random path ~ so that 76LE — v in law as § — 07 SLE provides
an answer, which is that the scaling limit is an SLE curve.

SLE has a parameter £ > 0 on which the behavior of the SLE, path depends. For the

loop erased random walk, SLE9 has been proven to be the scaling limit for the loop erased



random walk [13]. Several other lattice models have proven to converge to SLE, for other
values of k. SLE3 and SLE4 /3 are the scaling limits for Ising model interfaces [35], SLEg
is the scaling limit of the critical percolation explorer curve [34], SLEy4 is the scaling limit of
the harmonic explorer [30], and SLEg is the scaling limit of the uniform spanning tree Peano
curve [13].

There are several varieties of SLE which differ based on where they begin and end, and
each variety has a standard domain in which it is easier to define and study. The two primary
types are called chordal SLE, which begins and ends at fixed boundary ponts, and radial
SLE, which begins at a fixed boundary point and ends at a fixed interior point.

Making this more precise, fix a simply connected domain D, and fix a point a € 9D
(technically, a should be a prime end of D, but we will not define that now), and let b € D.
If b € D (or bis a prime end of D), then chordal SLE in D from a to b is a random path in
D which begins at a and ends at b almost surely. The standard domain for studying chordal
SLE is the upper half-plane H = {z € C : Im(z) > 0}, starting at 0 and ending at co, where
oo can seen as a point in the Riemann sphere. If b is in the interior of D, then radial SLE
in D from a to b is a random path in D which begins at a and ends at b almost surely. The
standard domain for radial SLE; is the unit disc D = {z € C : |z| < 1}, starting at 1 and
ending at 0.

Once the SLE path is defined in its standard domain, in either case, it can be defined
in any simply connected domain D. To define chordal SLE, in a simply connected domain
D from a to b, let ¢ : H — D be a conformal tranformation with ¢(0) = a and ¢(c0) = b.
Then if p is the probability measure on paths in H which is the law of the standard chordal

SLE, then the law of SLE; in D from a to b is given by the pushforward meaure induced

by ¢ on fu.



This describes conformal invarience. Schramm proved that the only processes which have
conformal invarience and the domain Markov property are SLE processes. These properties

are described more precisely as:

o (Conformal invarience) If v is an SLE, path in D from a to b, and ¢ : D — D' is a
conformal transformation with ¢(a) = @’ and ¢(b) = ¥/, then ¢(7) is a time changed

SLE, path in D’ from o’ to V'.

e (Domain Markov property) Let T be a stopping time with respect to the filtration
generated by an SLE, path in a domain D from a to b. For any ¢t > 0, Let Dy be the
component of D\7[0,#] which contains the target point b. Then if 7 (t) = ~(T +t),

after conditioning on [0, 7], the path 47 is an SLE, path in Dy from (T to b.

The laws of chordal SLE and radial SLE are not absolutely continuous with each other,
but there is local absolute continuity [31]. If v is radial SLE, in D from 1 to 0, let € > 0 and
T = inf{t > 0 : |y(t)| = €}, which is finite a.s.. Then radial SLE; restricted to time ¢t < T
is absolutely continuous with respect to a stopped chordal SLE, up to a time change, so
the paths share many of the same local properties. For example, in each case, the Hausdorff
dimension of the SLE, path is d = min{l + x/8,2} [3]. Also, the path has two phase
transitions as x varies [27].

We state the transitions when v is the chordal SLE, path in H from 0 to co. For
0 <k <4, v(0,00) is a simple path which stays in H. For k > 8, v is a space filling path.
That is, 7(0,00) = H almost surely. For 4 < k < 8, 7 has both boundary intersections and
self intersections. If k < 8, for any z € H, we have P[z € 4] = 0. This is proven in [27]
reducing the SLE, maps started on the boundary to the study of Bessel processes.

Note that if K < 4, the domain Dp, as described in the domain Markov property, is

3



exactly equal to D\7[0, T}, since the path is simple and has no boundary intersections. For
k > 4, Dp the piece of the domain which has not yet been cut off from the endpoint by the
path.

Another variety of SLE is called whole-plane SLE, which is a path in C which grows from
0 to co. It can be seen as a limit of radial SLE paths in large discs from the boundary to
0. This can be extended to whole-plane SLE from any a € C to any other b € @, where C is
the extended complex plane, by applying a Mdbius transformation which takes 0 to a and
00 to b, which gives an SLE path connecting any two interior points of C.

The domain Markov property has a slightly different form for whole-plane SLE,. If v* is
the whole-plane SLE,; path, then v* is a path v* : (—00, 00) — C. For any stopping time 7',
the path 47 (t) = v*(T +t), conditioned on v*(—o0, T7, is a a radial SLE, in C\ Dy, where

D1 is the unbounded component of C\y*(—o0, T7.

1.2 Definitions of variants of SLE

There are several varieties of the Loewner equation. First, we describe the types of hulls
which correspond to each Loewner equation. We then briefly discuss the chordal equation,
then introduce radial and whole-plane Loewner equations. Complete details can be found in

[7]. We also introduce the reverse Loewner equation and define backward SLE.

1.2.1 Hulls in the complex plane

Let H = {z € C: Im(z) > 0} be the upper half-plane. A set K C H is called an H-hull if K
is relatively compact in H and H\ K is simply connected. Then there is a unique conformal

map g : H\K — H with gg(z) = z + g + O(272) as z — oo. The constant ¢ is called



the half-plane capacity, and is denoted by hcap(K), and it is equal to 0 if and only if K is
empty. We call a domain H C H and H-domain if H = H\ K for some H-hull K.

Half-plane capacity is monotonic, in that if K7 C K9 are both H-hulls, we have hcap(K7) <
hcap(Ks). Moreover, if K1 C K9 are both H-hulls, we can define a new H-hull Ko/K7 :=
9K, (K5\ K1), called the quotient hull. In [26], it has been shown that hcap(K9) = hcap(K7)+
hcap(Ko/K1). Therefore, if K7 is properly contained in Kj, it follows that hcap(Kq) <
heap(Ks). Half-plane capacity also satisfies the scaling rule heap(rK + a) = r?hcap(K) for
any a,r € R.

In [26], the authors define the support of an H-hull K and prove the following results.
Let B = KNR, and let K/ = {Z : z € K}. Define the double of K by K = K U K’ U By.
Then gK(C\k) = C\ Sk, for a compact S C R, which we will call the support of K. Then
the inverse fg = g[_(1 defined in H can be extended conformally to C\Sg by the Schwarz
reflection principle, but no further. If K only has one component, then S is an interval,
but in general K can consist of several components. Let S7- denote the convex hull of S,
so that S7- is a compact interval. If K1 C Ko, then S}k(l C 5}2.

Let D = {z € C: |z| < 1} be the unit disc. A D-hull is a set K C D which is relatively
closed in D, 0 ¢ K, and D\ K is simply connected. By the Riemann mapping theorem, there
is a unique conformal map gg : D\K — D with gz (0) = 0 and g’K(O) > 0. The D-capacity
of K is defined by dcap(K) = In(¢}(0)). A set D C D is called a D-domain if D = D\K for
a D-hull K.

D-capacity can be readily shown to be monotonic with respect to inclusion. If K1 C Ky
and the quotient hull Ko/K7 := 9K, (K3\ K1), then 9Ky = 9Ky Ky O IK > and the chain rule
implies that 9/K2 (0) = g’K2 K, (0) g/K1 (0). Taking the natural logarithm of both sides yields

the monotonicity.



A compact hull in C is a set K C C such that 0 € K, K is connected and com-
pact, and C\K is connected. Then there is a unique conformal map F : C\ﬁ — C\K
with lim, o0 F(2)/2 > 0. Looking at C\K under the inversion z — 1/z gives a sim-
ply connected domain U containing 0, for which there is a unique conformal Riemann map
[ : D — U with f}-(0) > 0. Then Fg(z) = 1/fx(1/z), and the logarithmic capacity of K

is defined by cap(K) = log(f}(0)).

1.2.2 Chordal Loewner evolution in H

The chordal Loewner equation describes the growth from a boundary point to another bound-
ary point. The standardized domain is the upper half-plane H = {z € C : Im(z) > 0}, and

the chordal Loewner equation driven by a real valued A € C[0,0) at z € H is

2

Orgt(z) = OES

90(2) = 2. (1.1)

If 7, = inf{t > 0: Im(g¢(2)) = 0} is the lifetime of (1.1) at z, define Ky = {z € H: 7, < t}.
Then Ky is an H-hull with half-plane capacity hcap(K;) = 2¢, and g+ = ¢ K, s the conformal
map sending H\ K; to H.

If Kk > 0 and By is a standard one dimensional Brownian motion, then (1.1) driven
A\t = /KBy is called chordal SLE,. In [27], it is proven that there is a path v : [0,00) — H
called the chordal SLE, trace, also called the path or curve, which grows from 0 to co. Then

for each t > 0, H\ K} is the unbounded component of H\~]0, t].



1.2.3 Radial Loewner evolution in D

Given any real valued continuous function A € C|0, 00), the radial Loewner equation driven

by A at z € D,
eM) + gi(2)

Orge(z) = gt(z)ei/\(t)——gt(z)

, g0(2) = z. (1.2)

If 7, =inf{t > 0: |g:(2)| = 1} is the lifetime of (1.2) at z € D and Ky = {z € D : 7, < ¢},
then K; is a D-hull with dcap(Ky) = t.

For x > 0, the radial SLE, process is the solution (1.2) for \(t) = y/kBt, where By is
standard one dimensional Brownian motion. Similarly to the chordal case, there is a a radial
trace v : [0,00) — D so that D\ Ky is the component of D\7[0,¢] containing 0 with v(0) = 1
and 7(oo0) = 0. The radial SLE,; trace has the same phrase transitions as the chordal SLE
and the same dimension. The radial SLE, process can be studied by looking at the covering
space for D under the exponential map e’?, which is the cylinder H* = {[z]~ : z € H}, where

z ~w if z —w € 277Z. This space will be discussed in more detail in Section 2.2.2.

1.2.4 Whole-plane Loewner evolution in C

If A € C(—00,00) is real valued and z € C\{0}, the whole-plane Loewner equation driven

by A is
=M 4 gi(2)
Ogi(2) = gf (2)———L2 and  lim elgf(z) = 2. 1.3
1 (2) = 0 e) e el 72 (13)
This can be interpreted as a radial Loewner equation driven by —\ started from ¢t = —oo.

For each t € (—o0,00), Kt = {z € C : 7, < t} is a compact hull in C with logarithmic
capacity cap(K3) =t, and g; : C\K; — C\D conformally.

To define whole-plane SLE,, we need to define two sided Brownian motion. Let Btl and



Bﬁ2 be independent standard one dimensional Brownian motions, and let Y be an independent
uniform [—m/\/k, 7/+/K] random variable. Construct a two sided Brownian motion B : R —
Rby By =B} +Y ift >0, and B; = B?, +Y if t < 0. Then g is a whole-plane SLE, if it
solves (1.3) with \y = /kDB.

* 1 (—o00,00) — C called the whole-plane SLE, trace. For each

There is a curve 7y
t € R, C\K; is the unbounded component of C\y*(—o0,t]. Also, lim;__~,7y*(t) = 0 and
limy oo 7*(t) = o0, and so the whole-plane SLE, curve grows from 0 to co in the entire
complex plane. Since at any time s € R the process (Bt);>s is a Brownian motion with

a random start time, it follows that +* has the same phrase transitions and dimension

depending on x as the chordal and radial processes.

1.2.5 Backward Loewner evolution

The backward Loewner equation started at z € H driven by A\t € C[0,T) is

—2

O fi(z) = OESY

folz) = =. (1.4)

The process (ft)¢<7 is called the backward Loewner process driven by A. Suppose solving
equation (1.1) with the function ¢ — A(ty — t) generates a forward Loewner trace ¢ —
Yt (tg — t) for each tyg < T. Then we say that A generates a family of backward Loewner
traces (%0)150<T. If the paths 7y, are all simple paths, then fy, : H — H\%O [0,t0] is
conformal for each ¢ty < T'. Note that in this case, growth does not occur at the tip as in the
forward case. Rather, growth occurs at the base of the curve, which is A(t) at each ¢, and
the rest of the curve is the image of the previous curves under a conformal map.

Suppose £ > 0, and let \y = \/kB¢. Then the process given by solving (1.4) is called



the backward SLEj process, and will be denoted by BSLE. For a fixed T' < oo, the trace
7 — A has the same law as a forward SLE,; trace on [0, T]. So, to study the SLE trace at a
finite time, it suffices to study backward SLE, where the Loewner equation may be easier to
work with. However, the backward SLE traces are not a good global object to study, since
the images [0, T'| evolve over time, rather than grow from the tip. If the traces are simple,
there is another object called the conformal welding which serves as global object to study.

For k < 4, the SLE traces are simple, and so the BSLE,, process generates a random
function ¢ : RT™ — R™ called the conformal welding. The conformal maps f; can be extended
to the boundary of H. For any x € R, let 7, denote the lifetime of the backward Loewner
equation, which is finite almost surely. For x,y > 0, the welding is defined by ¢(z) = y if
Ty = T—y, which is true if and only if fi(z) = fi(—y) for some ¢ > 0. Then ¢ is a random
monotonic function on R™. This welding is the main object of study in [26], where the
welding is shown to satisfy a reversability property analogous to a fundamental property of
the forward SLE trace [38] [20].

We will also need to keep track of which points are welded together at a given capacity
time ¢. To this end, let by = sup{z > 0: 7, < t} and a; = sup{y > 0 : 7y < t}, so that
ft(by) = fi(—ar) = A for every t. Define ®(t) = (bt,ar), which we will call the welding
curve. Then if Q1 = [0,00) x [0, 00) is the first quadrant, ® : [0, 00) — @7 is a random path

whose image is the graph of the welding function ¢.

1.3 Natural parametrization and Green’s functions

The lattice models which converge to SLE paths converge not only as sets, but also as

continuous functions. To make that conclusion, the lattice model paths and the SLE paths



must be parametrized in a particular way. By construction, SLE is parametrized so that the
capacity of the path grows as a constant rate. The lattice model paths which converge to
SLE must also use the capacity parametrization, which is not the natural way to run the
model. It is desirable to run the models so that each discrete segment takes the same length
of time. The most intuitive approach is to simulaneously run the SLE path parametrized by
length, but since the fractal dimension of SLE, is d = min{l + x/8,2} > 1, the length of
the SLE trace is always infinite.

Recently, there has been a program to develop a d-dimensional measurement of length
for chordal SLE,; which can be used to study convergence. In [12], the Doob-Meyer theorem
was used to create an increasing process related to the path which was called the natural
parametrization, or natural length, for x < 5.021.... It was conjectured to coincide with some
d-dimensional measurment. In [17], the Doob-Meyer construction was extended to all kK < 8.
In [22], it was proven that the Hausdorff measure of the path is 0 almost surely. Instead, the
Minkowski content of the path has been proven to be the correct candidate for the natural

parametrization. The d-dimensional Minkowski content of a set E C C is defined by
Conty(E) = lir% Td_QArea{z € C:dist(z, E) <r},
r—

provided that the limit exists. In [9], it was proven that the d-dimensional Minkowski content
of the path exists almost surely, and that it differs from the Doob-Meyer construction by a
multiplicative constant. The first proof of convergence in the natural parametrization is [14],
where it is proven that the loop erased random walk converges to SLEo when parametrized
by the Minkowski content.

One of the main tools for studying the natural parametrization is called the Green’s

10



function, which gives the normalized probability that the SLE path passes through a point.
For kK > 8, P[z € 7] = 1 for all z, so the question is not interesting. For x € (0,8),
P[z € 7] = 0 implies that the probability P[dist(z,~) < 7] should decay as r — 0. Moreover,
if the dimension of the path is d, the probability should decay as 2= The Green’s function
is defined to be

G(z) = lim r? 2P [dist(z,7) < 1],

r—0

provided this limit exists. In the chordal case, this was first studied with the event {radg, (z) <
r} rather than distance, where radp(z) is defined to be the conformal radius of D at z (de-
fined in Section 2.2.2).

In [27], it was observed that for chordal SLE, and any z € H, the process

My(2) = |94(2)|* "G ge(2) — VK DBy)

should be a local martingale. To construct the natural parametrization in [12], the authors
weighted the probability measure by My(z) and used the Girsanov theorem to construct
what is called two-sided radial SLE, through z, which is chordal SLE, conditioned to pass
through z. In order to further study the Minkowski content, the two point Green’s function
was proven to exist and analyzed [9] [10] [16]. In [23] and [24], the Green’s function for any
finite number of points was proven to exist for chordal SLE,. That is,

G(z1,. .. = lim rd 2]P ﬂkzldist(zk,”y) < 7"]
7“—>O

was proven to exist, where r = (r1,...,7,) and z1,...,2, € H are arbitrary. The upper

bound for the multipoint Green’s function found in [23] is used to prove that the Minkowski

11



content has finite moments of all orders.
In [37], the construction of two-sided radial SLE using the Girsanov theorem is general-

ized. For p € R and z € H, functions G”(z) are found so that if

M (2) = g ()P GP (g1(2) — VK By)

for an appropriate power p = p(p), then Mtp (z) is a local martingale which can be used to
create a measure P9 under which P9[z € 7] = 1. A few special cases of these generalized
Green’s functions are used to prove decompositions of the SLE, path. In each case, the
measures P? are averaged over z € U weighted by G”(z) to generate a new measure P?;,
which is absolutely continuous with respect to the original measure P. The Radon-Nikodym
derivatives for three of these constructions are found, and are shown to be the Minkowski
content of v N U, the capacity time spent by + in U, and the analogue of the natural
parametrization for the boundary intersection of v in U C R for x € (4,8). The result for
Minkowski content extends the result in [5] which was proven for £ < 4. These decomposition
theorems have been used to define SLE loop measures [41].

The Green’s function for radial SLE, is not as well understood as the Green’s function
for chordal SLE,. In [2], the conformal radius version of the one-point Green’s function is
proven to exist for k € (0,8), though an exact form is only found for x = 4. In Chapter 2,
we establish an upper bound for the probability that radial SLE, in D from 1 to 0 passes
near any finite collection of points in I. This should serve as the first step towards proving
the multipoint Green’s function for radial SLE, exists. The strategy is to move from the
covering space H* of D under the exponential map e*?, where H* is the upper half-plane H

under the equivalence relation z ~ w if z—w € 277Z. Here, one-point estimates are developed

12



in [2] for both the boundary and interior case, which we adapt into appropriately general and

conformally invarient estimates. After establishing a sufficiently robust one-point estimate

for radial SLE, we follow the strategy in [23] to extend the estimate to multiple points.
The Minkowski content of radial SLE; and whole-plane SLE, have not yet been proven

to exist, but the lower content

Conty(E) = lim i(I)lf rT =2 Area{z € C : dist(z,7) < r}
r—

always exists. Using the multipoint estimate for radial SLE, we develop, we prove that
Cont () has finite moments of all orders. If the Minkowski content were proven to exist,
the same proof would show that Contg(7) has finite moments of all orders.

Using the reversibility of whole-plane SLE,; [40] [21] and the domain Markov property,
we then establish a similar upper bound for the probability that a whole-plane SLE, passes
near any finite collection of points using the estimate for radial SLE,. Using this estimate
and a proof similar to the radial case, we then prove that the lower Minkowski content of a
whole-plane SLE, path in any compact set has finite moments of any order.

In Chapter 3, we establish a theory of Green’s functions for the backward SLE, welding
for k < 4. Given any two points x,y > 0 we establish estimates for the probability of
the event that = and y are almost welded together in a way analogous to the estimate of
the probability that an SLE, path passes near a point. Normalizing this estimate yields a
function G(z,y) which we call a backward SLE, Green’s function. Moreover, we observed

that the process

My(z,y) = G(fi(x) — VKB, VEBt — fr(—y))

is a local martingale, and weighting the original probability measure by My(z,y) gives a
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measure Py, under which ¢(x) = y almost surely.
Following the strategy in [37], we generalize this construction to get a family of functions
G%P(z,y) which serve as generalized Green’s functions for the BSLE, welding. For any a, b,

we find powers p, ¢ so that

M (@, y) = fl(@) fl(—y) G (fi(x) — VEB, VEBy — fi(~y))

K
is a local martingale. If a,b < — , using this local martingale with the Girsanov theorem

yields a measure P?,ﬁf{, under which ¢(z) = y almost surely.

For a = b = —4, we show that this measure gives insight into the BSLE, welding in the
capacity parametrization in a way similar to what has been proven for forward chordal SLE.
Given any U C [0, 00) x [0, 00), we average the law of the welding conditioned to pass through
U by integrating ]13’;73’_4 against G_47_4(x, y) over U. This yields a decomposition theorem
similar to those proven in [37] for the welding, and gives a measure Py; which is absolutely
continuous with respect to the original probability measure. The resulting Radon-Nikodym

derivative is then shown to be the capacity time spent by the graph of the welding ¢ in U.

1.4 (eneralizations of the Loewner equation

When Charles Loewner first introduced his differential equation in 1923 [18], it was a tool
used to study the Bieberbach conjecture. His version of the equation was the radial Loewner
equation, and the setting was entirely deterministic. The strategy was to solve (1.2) using
real valued continuous functions to study slit-domains as a way to answer extremal questions

about conformal maps in the unit disc. In [29], Oded Schramm recontextualized Loewner’s
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ideas in order to study scaling limits of discrete random processes by using a Brownian motion
as the driving function. Along with introducing randomness, Schramm also introduced the
chordal Loewner ODE to study growth from a boundary point to another boundary point.

In the text [7], Lawler introduces generalized versions of both the chordal and radial
Loewner equation. Rather than being driven by a continuous function A\, the equations he
introduces are driven by a family of locally bounded Borel measures {ut}¢>0 on R (or oD
in the radial case) so that t — p; is weakly continuous. In the chordal case, the Loewner

equation driven by {u}¢>0 is

Brge(z) = /]R gt(z)%udut(u), g0(2) = 2.

Then for each ¢t > 0, g : H\Ky — H is conformal for some increasing family of H-hulls
(K¢)¢>0 with heap(K;) = fg ps(R)ds. This family of measures can be reparametrized so
that the corresponding family of hulls K; satisfy hcap(Ky) = 2t. For a real valued continuous
function A, the regular chordal Loewner equation driven by A is the above equation with
W = 5)\15’ where §, is the point mass measure at .

In [19], Miller and Sheffield introduce a further generalization in the radial case which
they called measure driven Loewner evolution. They establish existence and uniqueness in
the radial setting, and then prove a one-to-one correspondence between families of D-hulls
and solutions to the measure driven Loewner evolution. Moreover, convergence on hulls was
shown to be equivalent to convergence of the corresponding measures.

In Chapter 4, we introduce measure driven chordal Loewner evolution. For a measure u

on [0,00) x R with the appropriate assumptions, we show existence and uniqueness of the
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solution to the integral equation

2
91(z) — 2z = /[O,ﬂXR mdﬂ(s»u)
for all z € H. For a family of measures {4 }+>0 as in Lawler’s definition, we define a measure
p by dp(t,u) = dpg(u)dt so that p and {4 }4>0 generate the same process..

If \V is the family of measures which generate a measure driven chordal Loewner equation,
any o € N generates a family of H-hulls (K3)¢>o with heap(K;) = 2t so that g = 9K,
Conversely, we show that any family of H-hulls (K;);>0 parametrized by capacity is the
resulting family of hulls for some measure u € N. Moreover, we endow N with a topology
and show that a family of measures u™ — p in A if and only if the domains H\ K} — H\ K}
in the Carathéodory topology (to be defined in Section 4.2) for each ¢, which is equivalent

-1

to the conformal maps (g;') ™" converging locally uniformly to g, L
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Chapter 2

Multipoint estimates for radial and

whole-plane SLE

2.1 Statement of results
The main theorem of this chapter is the multipoint estimate for radial SLE.

Theorem 1. Fiz k € (0,8). Let v be a radial SLE, in' D from 1 to 0, let z;, € D\{0} for
k=1,...,n, and let zo = 1. Let y, = 1 — |z}| be the distance of each point to the boundary,
and define lj, = min{|zx|, |z — 1|, |21 — 21|, -, |2k — 2_1|}. Then there exists an absolute

constant Cy, < 0o, depending on k and n, so that

P, Tk /\lk)
PNy _{dist(vy, z,) <ri}] < Cn H y]jD—
l
=1 Yk

(2.1)

The function Py(z) used in the upper bound in Theorem 1 is defined by

where d = 1+ /8 is the Hausdorff dimension of the path, and a = 8/k — 1 is related to the

boundary exponent for SLE,. This upper bound mixes the estimates for interior points and
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points near the boundary. Roughly speaking, if the point z; is far from the boundary, the
term on the right hand side of (2.1) corresponding to z will be (rj, /I;;)2~®. If zj, is near the
boundary of the unit disc, then the corresponding term on the right side of (2.1) is (1. /1;,)®.
If 2, is close, but not too close, then the corresponding estimate is a mixture of the two.
The following Lemma about the functions Py, is Lemma 2.1 in [24], and can be proven

with a case by case argument.

Lemma 1. For 0 <z <9, 0<y; <9, 0 <z, and 0 <y, we have

Py (1) _ Ppy(e)
Py1 (z2) ~ Pyg(@)7

<ﬂ>a_(2_d) < Pnlo) 1.
Y2 T Pyy(z) T

Theorem 1 can then be used to prove a similar estimate for whole-plane SLE:
Theorem 2. Fiz k € (0,8), and let v* be a whole-plane SLE,; trace from 0 to co. Let

21,...,2n € C\{0}. Foreach k=1,...,n, let 0 <1 < |z;| and define l, = min{|zx|, |21 —

21ly ooy |2k — zp—1l}. Then

—d

PINE_{dist(v*, z1,) < rp}] < H (Tk A lk) : (2.2)

Note that the expression of this bound is simpler than Theorem 1, since there are no

boundary points with which to be concerned. Both of these estimates are used to prove the
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following theorem about Minkowski content:
Theorem 3. Fix x € (0,8).
a) Let ~y be a radial SLE); trace in D from 1 to 0. Then E[Conty(v)"] < oo for alln € N.

b) Let v* be a whole-plane SLE; trace from 0 to oo, and suppose D C C is compact. Then

E[Conty(v* N D)"] < oo for every n € N.

The chapter will be organized as follows. First we review preliminary information, in-
cluding information about the covering space H*. We also review some information about
crosscuts, prime ends, and extremal length which will be used. Next, we provide one-point
estimates for radial SLE in the forms which will be useful for us. We then use these one-point

estimates to prove some key lemmas, followed by the proofs of the main theorems.

2.2 Preliminaries

2.2.1 Crosscuts and prime ends

In later sections, we will be studying the behavior of the radial SLE curve as it crosses many
interior curves, creating different components of the initial domain ID. We need to introduce
some notation which will make it easier to distinguish which component is discussed at any
point in time. This is the same framework introduced in [23].

Recall that a crosscut in a simply connected domain D C C is a simple curve p : (a,b) —
D such that lim, , 4 p(t) := p(a™) and lim, ,,— p(t) := p(b~) both exist and are elements
of the boundary of D. Then p lies inside D, but the endpoints do not. The endpoints p(a™)

and p(b~) determine prime ends for the domain. Note that if f : D — D’ is a conformal
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map, then f(p) is a crosscut in D’. More information about crosscuts and prime ends can
be found in [1].

Note that if p is a crosscut in a domain D, then p divides D into two components.
Even more generally, let K C D be relatively closed. Let S be either a connected subset
of D\K or a prime end of D\K. We then define D(K;S) to be the component of D\K
which contains S. We also introduce the symbol D*(K,S) = D\ (K U D(K;S)), which
is the union of the remaining components of D\ K. This notation is useful for expressing
whether K seperates points. For example, if p C D is a crosscut which separates two points
z,w € D, then D(p;z) # D(p;w). In fact, in this case, we have D(p;w) = D*(p; z), and
D(p;z) = D*(p; w).

Since we will be working with domains which have 0 as an interior point, and in particular
will be concerned with components containing 0, we will use D(K') and D*(K) to represent
D(K:;0) and D*(K;0) respectively. Note that this is a departure from the notation in [23],
where the point being suppressed was the prime end oco. Since we are working with radial SLE
rather than chordal SLE, the change is to reflect the fact that we are looking at components
with respect to the endoint of the SLE curve, which in this work will be the interior point
of 0.

For an example of how this notation will be used, let v be a radial SLE, curve in D from
1 to 0, and define Dy = D(v[0,¢]). This is the component of D\~[0,¢] which contains the
origin. If p is a crosscut in Dy, and z € Dy\p, we will ask if zg € D¢(p). That is, does p
seperate zg from 0 in Dy? Suppose the circle £ = {|z — zg| = r} is contained in Dy\p. If £
doesn’t enclose 0, then D*(§) = {|z — 29| < r}. Then D*(§) C DJ(p) means the circle § is
seperated from 0 in Dy by p.

The next lemma is Lemma 2.1 in [23]:
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Lemma 2. Let D C D be simply connected domains in C. Let p either be a Jordan curve
in D which intersects D or a crosscut in D. Let Z1, 29 be two connected subsets or prime
ends of D such that b(p; Z;) is well defined for both j = 1,2, and are nonequal. This means
that D\p is a neighborhood of both Zy and Zy in D, and Zy is disconnected from Zy in D
by p.

Suppose that D is a neighborhood of Z1 and Zy in D. Let A be the set of connected
components of D N p. Then there exists a unique \; € A such that D(A1; Z1) # D(\1; Z3),
and if X € A such that D(\; Z1) # D(\; Zs), then D(A\1;Z1) C D(\; Z1) and D(X\; Za) C

D(\1; Z9).

The \; obtained in Lemma 2 will be referred to as the first subcrosscut of p to seperate
Z1 and Z9 in D. The conclusion of the lemma states that of all subcrosscuts of p in D which
disconnect Z1 and Z9, A1 is closest to Z7 in the sense that the component containing 77 it

determines is contained in the component determined by any other such subcrosscut.

2.2.2 The covering space H* for D

The upper half-plane can be seen as a covering space for the unit disc under the exponential
map. Let H* be the cylinder defined by H* = {[z]~ : z € H}, where ~ is the equivalence
relation z ~ w if 2 — w € 27Z. Under this equivalence relation, the map e : H* — D\{0}
defined by €'(z) = €'? is a conformal map. The boundary of H* is R* = R with the same
equivalence relation. We can treat 0 as the preimage of oo under ¢’, and ¢’ = 1. The map
%log :D\{0} — H* is also seen as a conformal map.

Any set K’ C H* can be viewed as a 27r-periodic set K + 27Z C H. An H*-hull is a

set K ¢ H* so that ¢’(K’) € D is a D-hull, and an H*-domain is a set H C H* so that
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¢'(H) C D is a D-domain. Therefore, an H*-domain is H*\ K’ for an H*-domain K'.
Radial SLE, can be studied by looking at the covering space H*. Let A € C[0, 00) and

z € H*. The covering radial Loewner equation driven by A is given by

8tht(z) = cotg(ht(z) — )\t), ho(z) =z, (2.3)

where coto(z) = cot(z/2). Note that if (g¢) is the radial Loewner evolution driven by A, then
hi(z) = —ilog g; (') satisfies (2.3). If \y = \/kB;, where By is a standard one dimensional
Brownian motion, let 4/ be the preimage under ¢ of the radial SLE,; trace in D from 1 to 0
driven by A. Then we call 7/ a radial SLE trace in H* from 0 to oo, which is a 27-periodic
family of paths in the cylinder H*. If H is an H*-domain with a prime end w('), we can define
a radial SLE, process in H from w6 to oo by mapping conformally from H to D = e'(H),
to D, then back to H* with %log.

To work in the cylinder H*, we must carefully define what distance and conformal radius
mean in this domain. For 2/, v’ € H" which can be represented as z + 2774, w + 277
respectively for z,w € H, then the distance from 2’ to w’ in H" is defined to be Euclidean
distance between the sets z + 277 and w + 277 in H. It will be written as |2/ — w'[« to

/

distinguish from the distance between points in C. Then |2’ — w'| is the distance between

closest representatives of equivalence classes.

Similarly, if A, B’ ¢ H" with A’ = A+ 27Z and B’ = B + 27Z, then the distance from
A’ to B in H* is the Euclidean distance from A + 27Z to B + 27Z, and is denoted by
distyy« (A’, B'). Given any 2’ € H" with 2’ = 2z + 277Z, the ball of radius r centered at 2’ is
denoted by B(z',r), and is represented in H by B(z,7) NH+ 277Z. Note that for r < 7, then

the representatives of B(2/,r) are nonoverlapping in H.
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In [2], several estimates are proven about one-point estimates with conformal radius
instead of distance, so we need to provide the definition of conformal radius in H*. Given
any simply connected domain D C C, and a point z € D, the conformal radius of z in D
is defined by radp(z) = 1/|¢/(z)|, where ¢ : D — D is conformal with ¢(z) = 0. It follows
readily that radp(2) is a conformal invariant. That is, if ¢ : D — D’ is a conformal map and
z € D, then radyp)(6(2)) = |¢/(2)[radp(z). Since ¢ : H* — D\{0} defined by ¢(2/) = ¢
is a conformal map in the covering space, we can add oo into H*, thus adding 0 back into
the image of ¢ : H* U{oo} — D so that ¢ is conformal and the cylinder is simply connected.
We can then use the conformal invarience formula to define conformal radius in the covering
space H*, and any other H*-domain.

If a set D is not connected, we define T p(z) to be the conformal radius of z in the
component of D in which z lies. This will be relevant when z becomes cut off from the
target of the SLE path by the curve. In this case, even though we define Dy to denote the
component of D\[0, ¢] containing the target by time ¢, we will still use the notation Y p, (z).

For slightly easier calculations, we introduce the scaling Y p(z) = radp(z)/2. From the

1 — |22
definition, a quick calculation verifies that radp(z) = 1 — |z|?, and so YTp(z) = QM . For

any 2’ € H*, we can show that

Ty« (2) = sinh(y/), (2.4)
where ¢/ = Im(z’). To see this, note that the conformal invarience definition shows that

1

a2y =il il oy =y
P = e =

radps(2) =

and dividing by 2 gives (2.4).

Remark 1: We will need to use applications of Koebe’s distortion theorem for the map
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e’ on sets in H*. For this to be valid, the set will have to sit inside B(z,r) 4 27 for some
r < 7 so that e’ can be restricted to a conformal map on a subdomain of C.
Remark 2: In [2]|, the covering space H* is defined slightly differently than we do by

/

2iz . and

assuming z ~ w if z—w € 7Z. In this case, the associated conformal map is ¢(2’) = e
the same calculation as above gives rady«(z') = 2cosh(z') sinh(2') = sinh(2y’). However,

this slight change in coordinates only affects the estimates by a constant factor.

2.2.3 Extremal length and conformal transformations

Let dg(A, B) denote the extremal distance from A to B in €. For the definition of extremal
distance, see [1]. Note that this is distinct from the notations dist(A, B) and distyx (4, B),
both of which represent Euclidean distance. Define A(R) = dQR([—l,O], [R,00)), where
Qrp = C\{[-1,0] U [R,00)}. By Teichmiiller’s theorem [1], this is maximal among doubly
connected domains in modulus (extrememal distance between boundary components) which
separate {—1,0} and {w, o0} with |w| = R. Moreover, A(R) < %10g(16(R + 1)) for all
values of R > 1.

We are going to need to prove some estimates about extremal length which are con-
formally invariant, and so are more flexible than estimates involving Euclidean distance.
Moreover, we are going to look at extremal distance in the cylinder H*. Since H* looks
locally like H, if two sets are sufficiently close to each other, the extremal distance between

them should behave the same as the extremal distance in H.

Lemma 3. Let n be a crosscut in {z € H : Re(z) > 0} with endpoints 0 < a < b. Define

r =sup{|z —a| : z € n}. Then there is a constant C' < oo so that, if r < a,

< Ce~ T (=00,0]), (2.5)

Q=
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Proof. Let Q be the component of H\7n whose boundary contains 0, and define Q' = QU
(0,a) U (b,00). Let Qdoub — 0/ U {z : z € Q}, and let n9°P be the component of the

boundary of Q4°"P which does not contain 0, which is the closure of the double of 7. Then

dH((_OO7 0]7 77) = 2deoub((_OO’ O]v ndoub).

Fix some w in the closure of n with |w—a| = r, and let £ be the argument of w —a. Then
o(z) = ((z - a)e_’f/r) — 1 is the affine transformation with ¢(a) = —1, ¢(w) = 0, and
16(0)| = |ae™® /r 4+ 1|. If Q@ = (4P then Q is a doubly connected domain seperating
{—1,0} from {¢(0), c0}. By the conformal invarience of extremal distance and Teichmiiller’s

theorem, we have

deydoun (=00, 01, 7%7™) = dgy (é((—o0, 0], 6(n ™)) <

[N}

™

<A (; + 1) < % In(16(a/r + 1) + 1) < 2i In (339) .

Rearranging this proves (2.5) for r small.

[]

The following application of Koebe’s distortion theorem will be used repeatedly in the
next section to show that interior estimates are comparable after applying conformal maps.

We also derive a growth estimate for the inverse of the covering map for the cylinder.

Lemma 4. a) Let D C C be a domain, and assume that B(zg, R) C D. Suppose ¢ is a
conformal map defined on D, and let M =dist(zy,0D). Suppose that r < R/7, and

define

Rl¢/ (=) . = rl¢'(20)]

R mpe T T
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Then
¢(B(z0,7)) C B(¢(20),7) C B(d(20), R) C ¢(B(20, R))

and there is an absolute constant C < oo so that

| =

r
< =< C—.
“ R~ R

==
v

b) Let D be a D-domain, and let H be an H*-domain with ¢'(H) = D. Let 2y € D and

1
z(/) € H so that €0 = zy. Then there is a constant C' < oo so that if yg = 1—|zg| < 1/2,

we have dist(zp, 0D) < Cdistyx(2(, OH).

Proof. Applying the Growth Theorem to the univalent map f : D — C defined by

Fw) = ¢(Mw]\}r(;(zio—) o(20)

we get that if |z — 2| = p € (0, M), then
M
p/ (2.6)

pIM_|8(z) — dlz0)] _
(/A2 = M)~ (- p/M

Then 7 is M|¢/(zg)| times the right hand side of (2.6) for p = 7, and R is M|¢'(zg)| times
the left hand side for p = R. Then if

P r (14 R/M)?
R R(—r/M)?2
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is smaller than 1, we get the desired containments. If r < R/7 and R < M, then

mzl ]

Moreover,
(1+ R/M)? 4
VS = e

which proves the comparability.
To prove part b) let, ¢(z) = %log(z) be the map from D\{0} to H. Let r =dist(zg, D),
so that the assumption yg < 1/2 implies that a single valued branch of ¢ is conformal on

the open ball B(zy, 7). By Koebe’s 1/4 theorem,

B(z(/),r/él) C ¢(B(zp,r)) C H.

If w' € OH, this implies that |z, — w'[« > r/4 = dist(z9, dD) /4.

2.3 Interior and boundary estimates

The following estimate is Proposition 5.1 in [2]
Proposition 1. (Interior estimate 1) Let v' be a radial SLEy curve in H* from 0 to oo.

There exists constants 0 < c1 < ¢y < 00 so that if 2/ € H* withy' = Im(2') <1 and e < 1/2,

then
v\ v\
a () @ <Plrat) <o) s (H) &
|Z|* |Z|*

where Y¢(2') is the conformal radius of 2" in H*\+/[0,].
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Lemma 5. (Interior estimate 2) Let o be a radial SLEx trace in H* from 0 to oo. Then

there is a constant C < oo so that if 2/ € H* with iy =Im(z") <In(2) and r < ¢/,

_ ! Q r 2—d P/(T)

Remark: By restricting to 3/ < In(2), we are restricting slightly further than we are in
Proposition 1. We do this restriction so that we can use Lemma 4, part b). Later, we will

use part a) of Lemma 4 applied to a Loewner map to extend to the whole space.

Proof. Let z € D so that ei? — 2, denote the H*-hull determined by +'[0,] by Hy, and let
Dy = €'(Hy) for each t. By the definition of conformal radius of domains in H*, we have
Tp,(2) = () ()| Te(2) = e_y/Tt(z’) for all ¢ < co. By Koebe’s 1/4 theorem and the

assumption 3’ < log(2), we have
() = ey/TDt(z) < Cdist(z, 0Dy).
Part b) of Lemma 4 implies that dist(z,dD;) < Cdistyx(2', 0Hy), and therefore
Ti(2') < Odistyy« (2, 0Hy) < Cdistyg«(2,7/[0,1]).

Taking t — oo gives Too(2') < edistyx(2/,7/) for an absolute constant ¢ < co.
By the above paragraph, for small €, we have {disty(2’,7) < To(z')f} C {YTx(?) <
c

€Yo(2")}. Therefore,

/ «
Pldistygs (2, 7) < To(2')5] < C (y—) 24,
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Renaming variables and picking e sufficiently small depending on 2’ and r, we can let r =

Tg(z’)z. Then

' a 2—d / « 2—d
- N el < y cr < (] r
s < <0 (30) (a) <o(im) (7)

where the last inequality follows from (2.4), which says that T(z") = Ty« (2') = sinh(y/) >

y'. This is equal to Py/(r)/Py/(\z’|*), since |2'|« > ¢/ implies that Py/(|z’|*) = |2/|% and

r <y’ implies that Py/(r) = (y’)o‘*@*d)rQ*d,

The initial boundary estimate we will work with is Lemma 5.1 in [2].

Lemma 6. (Boundary estimate 0) There is a constant C' < oo so that if ¥ is a radial SLE
curve in H*, 2/ € R*, and r < |2/|, then

Pldist(z',7) < 1] < C < 4 )a.

|2«

We want to modify this estimate into a more general and conformally invariant version
which can be applied in more general domains. In the next lemma, we will derive an estimate
involving the extremal distance between two crosscuts in the cylinder H*. This will be
determined by the domain between the crosscuts, and will be the same as the extremal

distance between a representation of each of them in H.

Lemma 7. Let D be any D domain, and let v be radial SLE; in D from a prime end wq of

D to 0. Let p,n be crosscuts in D with small radius, n contained in the component of D\p
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distinct from the component containing 0 and wqg. Then
Plynn #£0] < Ce—omdp(p). (2.7)

Similarly, the inequality (2.7) holds when ~' is radial SLE, in an H* domain D from wy,
to oo, and p,n are non-self-intersecting 2mw-periodic crosscuts in H* so that p separates w6

and oo from 1.

Proof. In either case of the lemma, let ¢ be a conformal map from the domain to H* sending
wo to 0. Then p/ = ¢(p) is a non-self-intersecting crosscut in H* which separates 0, oo
from 7' = ¢(n), and ¢(y) = 7 is a time changed radial SLE,; curve in H*. Let 7, be the
representative for n’ in H with n, C {z € H: 0 < Re(z) < 27}, and define p|, similarly.

Denote the endpoints of 776 by 0 < a < b < 27, and let * = min{a, 27 — b}. If x = a,
define r = sup{|z —a| : z € ny}. If & = 27 — b, let r = sup{|z — b| : z € n)}. Either way,
ny C B(z,r), and so by Lemma 6, we have

B[y N # 0] = Pl N 0] < Pldist(3,2) <#] < C (5)"

T

Applying Lemma 3 to 776, we have

IN

o [ (. (—o0.0]) efwdH(n(),[%,oo))] < e~ mmle) ).

83

where the last inequality is due to the comparison principle of extremal length. Combining

these two inequalities gives

Ply Ny # 0] < Ce ™M) — ce—amdp (o),
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where the last equality is from the conformal invariance of extremal length, and since it is
the domain between the crosscuts which determines the length.

]

Now we can combine the interior and boundary estimates into the general one-point
estimate for the cylinder. We now also remove the assumption that y6 < In(2) to extend the

estimate to the whole space.

Lemma 8 (One-point estimate for cylinder). Suppose that H is an H* domain, and ~' is
radial SLEy, in H from a prime end w6 to co. Fix 26 € H* with imaginary part yé, and let
T >R >r>0. Define p={z € H* : |2/ — 2|« = R},n = {z/ e H" : |2/ — 2[|x = r}.
Moreover, suppose that {z' € H* : |2/ — 2|« < R} C D and that w)y ¢ {a’ € R* : |z5—2/[« <
R}. Then

P/(?“)

/ Y%
Py nn#0] < OPy(/)(R)'

Proof. Observe that, by assumption, the representatives for p in H under the equivalence
relation consists of multiple disconnected components, rather than having overlap. This
means any of the covering maps are locally conformal at each piece of p, and everything
inside of p, so Lemma 4 will be applicable.

The proof breaks down into three cases, each depending on how far from R* is the point
z(’) The first case is the far away case, when yg > R. Also, we must first assume that
Yo < In(2). Let hyy : H — H* be the canonical conformal map taking w(, to 0 and oo to oo,
so that ¥ = hy (/) is a time-changed radial SLE, curve from 0 to oo . Let Zy = hy(z(),
and let gg = Im(Zy). Since hp is conformal on a simply connected neighborhood of any

component of p, Lemma 4 a) implies that, assuming r < R/7 without loss of generality (else
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we modify the constant by a factor of 7),

Plynn # 0] =Py N hy(n) # 0] < Pldistyx(Z0,7) < 7

Py (7) Py (7) 7\ 2@ r\2—d
= CPgoy(Oléol*) = CP;;)(R) =¢ <_) =C (‘) ’

where 7, R are defined as in Lemma 4 with respect to the conformal map r, R, and hpy.
Assume now that z| € H is arbitrary, and let hy : H\7'[0,t] — H be the Loewner
maps for the radial SLE, process in H. For any T > 0, define ’yT(t) = ~/(T + 1), so that

conditioned on Frp, 7T

is a radial SLE, trace from 7/(T') to co. Define z; = hy(z), and
define a stopping time by 7 = inf{t > 0 : Im(2) < In(2)}. Define r, R, as in Lemma 4 at

26 with respect to r, R, hr. Then Lemma 4 implies that

2—d r\2—d
P[distys (2,77) < r|Fr, 7 < 00] < C (—) <C <—> :
Ry

Since P[7 < oo] < 1, this proves the lemma for all z{, € H.

For case 2, we consider the close case, 0 < y6 < r. We will use the boundary estimates
to derive an upper bound of (%)a. By modifying the constant slightly, we can assume that
R > 4r. Then in order to cross from p to 1, v/ must also pass through p/ = {2/ € H* :
|2/ = Re(z()|« = R/2} and i = {2/ € H* : |2’ — Re(()|+ = 2r}, which are two semicircles

such that dp(p',n') = (1/7)log(R/4r). Using Lemma 7, we get that

Pl N # 0] <Pl N £ 0] < Ce~omdplv) = ¢ (}%)“.

Lastly, we have to mix interior and boundary estimates in the middle distance case when
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0<r <y, <R Letp ={eHl: |~z =y} which is a circle tangent to
R* between n and p. Let T = inf{t > 0 : /() € p'}, which is a stopping time so that

{¥'Nn+#0} C {T < o}. Using case 2, we can see that

/
Py(/) (?Jo)

Py(/)(R) '

Define PyT(t) = +/(T +t). By the domain Markov property and the first case, we can see

that
Py (r)

e
Py(/) (y())

PlyT iy # 0[0,T],T < 00 < C

Combining these two inequalites gives case 3.

O

Using the Growth Theorem estimate again, we can prove the analogous estimate for

radial SLE in the disc.

Lemma 9 (One-point estimate for disc). Let D be a D domain with a prime end wy, and
let v be a radial SLEy curve in D from wq to 0. Let 2y € D, yog = 1 —|2g|. Suppose that 0 <
r < R < dist(zg,{0,wp}). Let p={z€ D :|z— 2| =R}, andn={z€ D :|z— 2| =71},

and assume that {z € D : |z — z9| < R} C D. Then

thn%@]scg’g—%.

Proof. Let ¢ : D\{0} — H* be defined by ¢(z) = llog(z)7 and suppose z(’) € H = ¢(D)

1

)
so that e"“0 = zy. The proof will break into the same 3 cases as in the proof of Lemma 8:
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R < yp, r >y, and r < yg < R. In the first two cases, we want to prove that

P[dist(zg,7)] < C (%)p

for p € {a,2—d}, so it will suffice to prove an upper bound for r/R which will work for both
cases simultaneously. The third case can be handed similarly to the third case in Lemma 8.

By assumption, ¢ is a conformal map on a domain which has positive distance from
B(zg, R). Let 7/ be a radial SLE,; trace in H from ¢(wp) to co. Define 7, R as in Lemma 4
with respect to ¢ and 2. If r < R/7, the inclusions in Lemma 4, part a), imply that in the
interior case, we can apply the interior estimate of Lemma 8 to 26, 7, R, and in the boundary
case we can apply the boundary estimate. In either case,

7

Pldist(zg,v) < r] < Pldisty«(2),7) <7 < C T\ <C <1>p
0> = = H 0 = = R = R )

where p € {a,2 — d} is chosen appropriately.

]

Lemma 10. Let D be a D domain with a prime end wq, and let v be a radial SLE,; curve
in D from wqy to 0. Let p be a crosscut in D such that D*(p) is not a neighborhood of wy
in D, and let S C D*(p). Let D be a domain that contains D, and j be a subset of D that
contains p. Let ij be either a Jordan curve in D which intersects D or a crosscut in D.

Suppose that 1 disconnects p from S in D. Then
PlyN S # 0] < Ce *™DpP),

Proof. By Lemma 2, 7 has a subcrosscut 7 in D which disconnects S from p. Since S C
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D*(p), we have n C D*(p) and S C D*(n). Therefore, D(p;n) = D*(p) is neither a

neighborhood of 0 nor wq in D. Using the boundary estimate from Lemma 7, we see that
BlyNS # 0] < Plyn D*(5) # 0] < Ce ™) < ¢~ p P,

The last inequality follows from the comparison principle for extremal length, since any path

in D connecting p and 7 is a subarc of itself contained in D which connects j and 7.

2.4 Components of crosscuts

Before we state the main theorem of this section, we will introduce the notation to be used.
Let F; be the right continuous filtration determined by the radial SLE curve v. For any set
S C D, let 7g = inf{t > 0 : y(t) € S}. For any stopping time 7, define 7 (t) = v(7 + t).

Define Dy = D(v]0, t]).

Theorem 4. Let v be a radial SLE) curve in D from 1 to 0. Suppose that 2o, 21, ..., 2m €
D\{0,1}. For each zj, let 0 < rj < Rj, and define the circles éj = {lz — zj| = Rj} and

§ = {lz — zj| = rj}. Assume that neither 0 nor 1 are contained in ]D*(éj;zj) for each j,

and that ]D*(éj) ND*(&) = 0 for j # j. Let ro € (0,70) and define &) = {|z — 20| = r{}.

Define the event

E:{T§O<Tél§7-€1<---<7-ém§7'€m<7'56<oo}.
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Ifyj =1 — |z, then

a/d mo P (r;)
m [ 70 Y5\
PIEIF,, ] < (1) ] w22

Note that the assumptions here imply that neither the start point, 1, nor the endpoint
0, of the SLE curve are enclosed by the discs fj. We also assume interiors of circles with

different centers have no overlap, and that the boundary circles do not meet. The proof is

similar to the proof of Theorem 3.1 in [23], but for completeness we include complete details.

Proof. Consider the discs £ which intersect the boundary. We know that the probability
that ~ hits the points in £NID is equal to 0, and so 7¢ = T¢qp a.s. Therefore, we can assume
that each ¢ is either a Jordan curve or a crosscut in D. For each j =0,1,...,m, let 7; = ¢
and 7; = Téj, and define 7,41 = T€6 .

By the Domain Markov Property of SLE and Lemma 9, we see that

Py.(r5)
Plr; < ool 7] < c%. (2.8)
J

Combining these together gives

m P, (1)
Y\
PIE|Fr) < C™ ] 525=~
If 1o = Rp, then we are done. Suppose that Ry > rg. Create a new arc p = {z € D :
|z — 29| = /Roro}, so that p is either a Jordan curve or a crosscut in D between & and &.

Therefore, we know that

dp(p, o), dp(p, o) > W. (2.9)
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Note that p seperates &y from 0. In the following argument, we will need to keep track of
how the D-domains D; are divided by p at any particular time. Let 7' = inf{t > 0 : §6 Z Dy}
Then if o <t < T, 56 is a connected subset of Dy. In this case, since the starting point 1 is
outside of 50 and ~ intesercts &, it must be that 7 intersects p, and so p intersects dD;. By
Lemma 2, there is a first subcrosscut of p in Dy, to be denoted p¢, which seperates 56 from
0 for each 1o <t < T.

Now, we need to break the event E into several cases based on the behavior of the curve
7 as it intersects the circles in the correct order. Let I = {(j,7+ 1) : 0 < j <m}U{(4,J) :

1< j < m}, and define a sequence of events {4; : i € I} by
L A1y ={T> 7} N{D*(&1) € D7, (pry)}
2. Agj gy = AT > 7y 0ADE) € Dry_y (pry_ )} OAD™(§) © D7 (pry)}ys L < < m.
3 Agj g1y = AT > 73 H{DY(&) € Dry(pr;)y NAD* (1) © D7j(pry)} 1< j <m—1.
4 Apms1) =T > T} 0D (&m) C Drpy (07) }-

Observe that for each 7, the events A(J}j)’ A(j,j 1) are .7-"Tj measurable. What I claim is that
E C UiGIAi' (2.10)

To see this, observe that A(mm +1) is the event that at time 7, &, lies outside of p, relative
to 0 and the path ~. If that does not happen, then &, must lie inside p at time 7,,,. Now
suppose that A(m’m) does not happen, which is the event that at time 7,,,_1, &, lies outside
of p, but at time 7, &, lies inside of p. Then it must be that &, lies inside of p at

Tm—1- Proceeding along this way inductively proves (2.10). Complete details can be found
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in Section 2.7. Now it will suffice to show that

P[E N Ai| Fry] < O™ (r—(’)m ﬁ Ptr5) (2.11)

for each ¢ € I. We will break it down to the four cases i = (m,m + 1), (4,7), (4,7 + 1), and
(0,1). In all of these cases, we will use the convention v7 (t) = (T +t) for any T',t > 0.

Case (0,1). Suppose that A(O,l) occurs, and that 79 < 7;. First, we claim that & C
]D);k-o (pry)- Note that both ¢; and D* (&1) are contained in D* (51) U €}, which is a connected
subset of the disjoint union Dy, (pr,) U D;k_o (pry)- By assuming that the event A(o,1) occurs,
however, we can conclude that they must both be contained in Dio (pry), which proves the
claim. Also, note that p disconnects fl from 56 in D, and p must intersect aDTO. By Lemma
2, there is a subcrosscut p/TO of p which is first to seperate él from 56 in the domain Dz,.
Since both & and &) lie in D3, (pry), so does '0/70' Note that this implies that p/To # pry, and
that Dio(p'TO) C Dio (pry)- Since pr, was defined to be the first subcrosscut of p in D7, that
disconnects f(’) from 0, and since Dio (p/TO) is contained in the domain determined by pr,, it
cannot be that p/TO disconnects §6 from 0. Therefore, we conclude that 56 C DT()(p;'o) and
& DE (o).

Observe that D*(§p) is a connected subset of Dy, \p/TO’ and contains &) and a curve which

approaches v(mg) € &y. Therefore,

Dy (03 7(70)) = Dry (0753 €0) = Dy (0,)-

It follows that D, (pé.o; 1) = D;“.O (pg.o) is not a neighborhood of v(mp) = +70(0), where 40

(conditioned on Fr) is a radial SLE, curve in the D-domain Dy,. Since 79 < 71, the event

38



{71 < oo} implies that the conditioned SLE curve 470 visits 51. Since fo disconnects fl from
plTO C pin D, and é() intersects 8DTO, we can apply Lemma 10 to conclude that

. a/4
Pl#1 < 00| Fry, A1), 70 < 71] < Ce™@DP0) < ¢ (%) '

Note that the second inequality follows from (2.9). Combining the above inequality with
inequality (2.4) proves that inequality (2.11) holds for the case i = (0, 1).

Case (7,7 + 1), for 1 < j <m — 1. Suppose that A(j’jJrl) occurs, and 7; < 7j 1. By the

same argument used in the case for A(0,1)> we can conclude that there exists a subcrosscut of
p, which we will call p’Tj, which disconnects & j+1 from &) in DTj. It follows that Dij (p’Tj) C
D%(Prj), and then we can conclude that &) C DTj (p’Tj) and éj+1 C D;'fj (p/Tj). Since D*(;)
is a connected subset of DTj<ij) and contains a curve approaching v(7;) € §;, we can see
that Dr; (pr;;7(7)) = Dr;(pr;; D*(§5)) = Dr;(pr;). Therefore, D7 (p) C D7 (pr;) is not
a neighborhood of (7;) = 777 (0).

Since 7; < 741, the event {71 < co} implies that ~"J, the radial SLE, curve in DTj
after conditioning on ]-"Tj, visits f j+1- Since fo disconnects f j+1 from p, and therefore from

plTj’ in D, Lemma 10 implies that

J ~ 0 a/4

As in the above case, this proves inequality (2.11) for the case i = (j,j7 + 1) when 1 < j <
m — 1.

Case (m,m + 1). Suppose that 7, < 7,41, and that A( ) occurs. The set D* (&) is

m,m-+1

connected and contained in D7, \pr,,, and also v(7pm,) € &m. This implies that Dr,,, (pry,; 7(Tm)) =
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Drpy (pr; D*(Em)) = Dy (7). Therefore, DY (pr,,) is not a neighborhood of 4™ (0) =
Y(Tm) in Dr,,. Since we are assuming that 7,, < 7,41, the event {7,,,41 < oo} implies that
the curve 4™ which after conditioning on F,, is a radial SLE,, in Dy, from ~(7p) to 0,
must visit &) C D% (pryp)- Since &y disconnects & from p in D and intersects dDr,,, we

can apply Lemma 10 to show that

ro a/d
P[Tm+1 < OO’}—Tma A(m m~+1)> Tm < Tm+1] < Ce_omdD(gO’p) <C (R_) .
’ 0

Case (j,4), for 1 < j < m. We now prove inequality (2.11) for A(J}j)' Fix a j in
{1,...,m}, and define o; = inf{t > 7;_1 : D*(§;) C Df(pt)}. This can be seen as the first
time after 7;_1 that the SLE curve v hits the crosscut p on the “correct” side of éj, i.e. v cuts
the disc off from 0. There are a few observations to make about o; which follow from Lemma
11 (in Section 2.7). First, o; is an Fy-stopping time. If o; < oo, then D*(¢;) C Déj (Poj).
If the event A(jJ) occurs, then so does {7;,_1 < 0; < 7j}. Finally, if 7;_1 < 0; < oo,
then it must be that v(c;) is an endpoint of poj- This implies that D(’;j(/)aj) is neither a
neighborhood of (o) nor of 0.

We define two events which seperate the event A( ) Define
F. = {Uj < 72]'}, and F> = {Tj >05 2 7A'j}.

Notice that A(j,j) C F<UF>, so if we can prove (2.11) for both F< and F> instead of A(j,j)a
the case will be proven.
First, assume that F'« happens. Then D* (fj) uéj is a connected subset of (D\~[0, pgj])\p

that contains D*(&;), and so fj C D;’}j (pgj;]D)* (&) = Dj;j(pgj). Since &y disconnects p from
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~

§; in D, Lemma 10 and (2.9) imply that

. a/4
P[7; < oo|fgj,F<] < Cemmip(P%0) < ¢ (T—()) :

This implies that
4
M Py (r))

0
Plr; < 00, F<|Fr. ] <C |22 I
¥ <Ml < ) Fy; (Rj))

h)

Next, we assume that > occurs, which is the more difficult case. Define N = [log(R;/r;)],
where [-] is the integer valued ceiling function. In the event F*, the SLE curve passes through
the outer circle f j» then hits the crosscut p before returning to hit the inner circle §;. What
we need to do is divide the annulus {r; < |z — 2;| < R;} into N subannuli until we can

identify the last subcircle to be crossed before the time o;.

: Nk )\ /N .
Define the circles ¢, = {|z — z;| = (Rj TJ-) } for 0 <k < N. Note that (y = &j,

(N = &j, and a higher index k£ indicates that (. is more deeply nested inside éj. Then
F> C U{C\leFk, where

Fp. = {Tfk;—l <o < Tgck}.
If the event F}. occurs, then (;. C DZ’;J_ (paj). This is because D*((;) U} is a connected subset
of (D\7[0,04]) \p which contains (j, D*(¢;), and DZ.]. (pgj). By Lemma 10 and inequality

(2.9), we conclude that
P[Tgk < oo|]-"gj, F.] < Ce (P Cr—1) < Ce*a”(dﬂ)(Pvfo)er]D(CO»Ck_ﬁ)

a/d ;.\ a(k—1))/2N
o i
o) (@)
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By Lemma 9, we get that

Pyj <(R§\Pk+lrk—1)1/N)
Pyj (Rj) 7

P[Fk‘ij,ij—l < 7A'j] <(C

Pyj (Tj)
O

P[Tj < OO’.FCk,Fk] <C
J

Combining the above three inequalities and the upper bound in Lemma 1 gives

alk—1)

a/d . N\ —o/N P,.(r:)
o 70 T] 2N ’T‘J y] J
*hy<oemlFy << (B) 0 (F) (7 .

Since F> C Uévle i, adding up the above inequality yields

a/4 Pyj(rj>
Pyj(Rj)

N o
P[Tj < OO,F2|.FTJ._1,T];1 < Tj] <C <R—O)

CARRRELUO ] |
j L— (rj/Rj)°/2N

In Section 2.7, we prove that

(i)—a/N 1—(Tj/Rj)a/2 - e

R; 1— (rj/Ry)*2N = 1 — e/

(2.13)

and so we get

A 0 Y5\
Plr; < oo, FS|Fr. ,Ti1 < T SC’(—) ,
& =FF7j1T i Ry Fy; (Rj)

which is the same bound as that acheived for F«, though with a different constant. Com-
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bining these two inequalities gives

0 )—a/4 Pyj(rj>

Plr; < 00, Ar; | Fr. ,T-_1<%-§(J(— e Ay
[J (jaj)| Ti—121J ]] RO Pyj(Rj)

which completes the proof of (2.11) in the final case, and so the theorem follows. ]

2.5 Concentric circles

Let = be a family of mutually disjoint circles in C with centers in D\{0}, none of which pass
through or enclose 0 or 1. We can define a partial order on = by &; < &9 if &9 is enclosed by
&1. Note that the larger circle has a smaller radius than the larger circle because the order
is determined by visiting time. If &1 < &9, any continuous path which hits both circles must
pass through &; before it hits £&9. When ~ is an SLE curve in D starting from 0, {1 < &9
means that Tey < Tey) assuming ~y passes through &. Also, observe that circles in = are not
necessarily contained in . In fact, we want to account for circles in = which have center in
the boundary as well.

Further, we assume that = has a partition U,cg=¢ with the following properties:

1. For each e € &£, the elements of =, are concentric circles whose radii form a geometric
sequence with a common ratio of 1/4. For each e, let the common center be z.. Note
that elements of =, are totally ordered. Let R be the radius of the smallest circle (in
the ordering on =), and let re be the radius of the largest circle. Then there is some

integer M > 0 with R, = r64M.

2. Let Ae = {2z € C : 1 < |z — z¢] < Re} denote the closed annulus containing all of

the circles in Z.. Then we assume that the collection of annuli {A¢}.cg is mutually
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disjoint.

We make a couple of quick remarks about the generality of this assumption. It may be that
|Z¢| = 1, in which case re = Re, and the annulus A, is just the single circle contained in =.
Also, if e1 # eg, that does not necessarily mean that z¢; # z¢,. There can be multiple sets of
concentric circles in = with the same center with gaps between them. In this case, if members
of Z¢, have the smaller radii, we have Re, < r¢;. Also, there can be two components of the
partition 561,562 so that each element in 562 is ordered larger than each element of 561'

In this case, the annulus Ae2 is contained in the bounded component of C\Ael.

Theorem 5. Let = be a family of circles with the properties listed above, and assume that ~y
is a radial SLE,; curve in D from 1 to 0. For each e € &, let ye = 1 — |z¢|. Then there exists

a constant C’|5‘ < 00, which only depends on k and the size of the partition |E|, so that

P, (re
Plnges(n€ # 0} < G [T 20l
ecE " Yer e

The strategy is to consider all possible orders o that the SLE curve 7 can visit all elements
of Z. Under o, v may pass through several elements of a family Z¢, leave and visit other
Ee’s, before returning to pass through the more inner circles in Z¢;. Theorem 4 provides an
estimate of the price paid by 7 in order to return to the interior circles of Z¢,. This gives
an estimate for the probability of Ne{y N & # 0} in the prescribed order o. We then add up

over all appropriate orders o and show that the constant only depends on |£].

Proof. Define S to be the set of permutations o : {1,2,...,|=Z|} — Esuch that £ < & implies
o1 (&) < 071(&). Then S is the set of viable orders in which  can visit the elements of =

for the first time. For an ordering o € S, o(j) € Z is the j-th circle visited by 7. Define the
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event E7 = {7,1) < -+ < 75z < oo}. Then E := Negez{yNE{ # 0} = UyegE?. What
we need to do is bound P[E].

Fix some ¢ € S. Our first goal is to create a subpartition of {Z¢}.ce into {Z;}ier,
where the elements of =; receive first visits from ~ without interruption in the event E¢.

For each e € &, let Ne = |E¢| — 1, and label the elements of Z¢ by {f < --- < 67\/—6. Define

Je € {0,1,...,N¢} by
Je={1<n<Ne:o M) >0 18 )+ 1} u{oh.

Then n is a nonzero element of Je if, after v visits £ _;, the curve visits other new circles
in = before £f. That is, there is some £ € Ue/%eEe such that Tg’rel—l < Te < Tee. Order the
elements of Je by 0 = s5¢(0) < se(1) < -+ < se(Me), where Mg = |Je| — 1 is the number of
times that the progress of v through =, is interrupted. Define s¢(Me + 1) = Ne + 1. Using

this framework, each Z¢ can be partitioned into M, + 1 subsets
Beg) = {6n 1 se(i) Sn<se(j+1) =1}, 0<j < Me.

These are the elements of =, which are visited without interruption. Let I = {(e,j) : e €
E,0<j< M} Then {Z;};cs is a finer partition with the desired properties.

Forie I, let i = (e;,j). We need to do some relableing. Let

ci= ey Yi = 1= |z, min{=;} = gzé.(j)’
(3
Py (Rysr=1)
=1 _ ¢% J— Yi max{ul}
max{Z;} = gsei(j+1)—17 = Pyz'(Rmin{Ei}) |
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where Ry, 1=,y is the radius of max{=;}, and R, (g} 1s the radius of min{Z;}. By Lemma
9, we can see that

P[Tmax{Ei} < OO‘FTm | <CP;. (2.14)

in{E;}
For e € &, let P. = Py, (r¢)/Pyo(Re). We claim that for each e € £, we have

Me
1 Pej) <aMep.. (2.15)
7=0

This follows from Lemma 1, and the details are provided in Section 2.7.

Observe that |I| = Y ce(Me + 1) is the number of uninterrupted sequences of circles
visited by v under o. Then o induces a map ¢ : {1,...,|I|} — I so that if n; < ng, we have
maX{o_l(E[,(nl))} < min{a_l(E&(@))}, and n1 = no — 1 implies max{a_l(E&(nl))} =

min{o_l(E&(nQ))} — 1. In other words, ¢ is the order that the families Z; are visited. In

particular, we can rewrite the event £ as

E% = {Thmin=. 1« < TmaxZ. 1\ < * < Tmin= < Tmax = < 00§
{ mll’l_a_(l) maxu&(l) mln_a_(m) maXHa_(uD }

We will use Theorem 4 to estimate the probability of this event.

Fix some eg € &, and let nj = 6 ((eg,4)) for 0 < j < Mey,. In the event £, the family
E(eo,j) is the nj-th family to be visited by the curve. For 0 < j < Me — 1, njiq > nj + 2
since at least one other family not contained in Z¢; must be hit by the curve between them.

Fix 0 < j < Mgy — 1, and let m =nj1 —n; —1 > 1. We are going to apply Theorem 4 to

the family

—_

2 . = — — / e .
e {p = min=¢;,§{ = max Zeg.g) = max:&(nj), and {; = min S(egt1) = M50, )
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° &) = minE6(nj+k), and & = maXE&(nj+k) for 1 <k <m.

In plain words, m is the number of other families {Z;} first visited by v between first visits
of the j-th level and the (j + 1)-st level of the family Z¢,. The curves &, ék are the k-th

family first visited before returning to E(e 0d+1)"

Define an event by E[Umax = () 0 Dy l by
7 j+1)
{7’50 < e, <7 < < Ty < 7’5/} € Frim=. i 34_1)
Theorem 4 implies that
njy1-1
P[ ﬁnaha(n,),mina&(nﬁl)]|fmaxaa(nj)] < cmy=§lseg(i+1)= n I;IHPA

Varying j = 0,1,..., M¢, — 1 and using inequality (2.14), we see that

M
iel

If we use inequality (2.15) and |I| =), Me + 1, we can deduce that the right hand side is

bounded above by

5~ Meg
ClEl oS ees Mey~ (/D2 D seq i HPe
ec&

Recall that this estimate was based on a fixed e € &, but the left hand side does not depend

on this choice. Taking the geometric average with respect to eg € £, we can see that

P[EO} < C|5|C’Ze€g Me4 4|g| Zeeg Z] 1 se(j H Pe
ect
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Note that the finer partition I and associated terms M, s¢(j) are dependent on our initial

choice of order o. Using the fact that £ = UE? and the above inequality, we get

_LZ ZM@ se(j)
PE] < I > S0 (s (j))) | C2eee Mea TEN=eCE Zi=1 1~
(o)
(2.16)
where

S(Me,se(j))) =10 €5 M7 = Me,s2(j) = se(j), for 0 < j < Me,e € E}

and the first sum in inequality (2.16) is over all possible (Me; (se(j))j.\iel)eeg. That is, for
each e, all possible M, > 0 and possible orderings 0 = s¢(0) < se(1) < -+ < se¢(Me) < Ne.
Recall that No = |Z¢| — 1 is fixed with the initial partition £. To finish the proof of the
theorem, it suffices to show that the large term in the parenthesis in (2.16) can be bounded
above by some finite constant depending only on |£| and x.

We claim that

|S(Me, se(5))] < |E|2=ece Met1, (2.17)

Notice that the pair (Me, se(j)) completely determines the partition {Z;};c 0, and the par-
tition o can be recovered from the induced partition & : {1,...,[I?|} — I°. This is because
the order that circles in any given =; are visited is predetermined by the ordering on =, and
so moving from & to o requires no new information. Next, we claim that ¢ is determined
by knowing €5(n)> for each 1 < n < |I9]. If €5(n) = €0; then a(n) = (eg,jo) where jg
can be determined by jo = min{0 < j < M : (ep,j) : (eo,j) & 6(m),m < n}. There are

[17] = X _cee(Me+1) terms to determine for e,,), each of which has at most [€] possibilities,
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which proves (2.17). Using this to estimate the constant in (2.16), we see that

|C’Zee€ Me, 4\<‘I| 2cef ZJ 1 %¢l9)

Z ‘S(M& Se

(Me;(se(j))j'\/jzel)eeg

< )
(Me;(se(j))?iel)eeg

__a sMe o
e X Qe A

eef

(Mexse(i)j24) g
o Me .
4_4|g| ijl 56(.7).

Ne
=gl T >° (clen™ >

665 M€:1 O:Se(o)<"'<5€(Me)§Ne
This can be bounded above by removing the upper bound on the variable M, = M, and

letting the variables sq(j) = s(j) start at its lowest possible point j and adding with no

upper bound, giving the inquality
M :
4|Oé| ijl s(7)

<] 3 €™ Z Z

ecE M=0

< [e®1T] fj (ClE]) ﬁ

TM8
(\'3

ecE M=0
- M €]
— Y M(M+1
= |&|I€l 3 % S MM
M=0 \1—4 4l

Note that this bound only depends on |€| and k. It is finite because inside the exponent it

has the form A" < o0 for some b > 1.
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2.6 Main theorems

The strategy for proving Theorem 1 is to construct a family of circles = and a partition
{Zc}ece satisfying the hypothesis of Theorem 5 from the discs {|z — 2;| < r;j} and the
distances [;. The constant given will depend on the size of the partition £, but then it can
be shown that that |£| can be bounded above in a way which depends only on the number

of points n.

Proof of Theorem 1. We can assume without loss of generality that for each j = 1,...,n,
the radius T satisfies T = lj /4hj for some integer hj > 1. This is because the ratio must

-1 < rj/l; < 47" for some integer hj, and any increase of r; by at most a

satisfy 47"
factor of 4 only affects the constant for each term j. Moreover, if h; < 0, then the j-th term
in the inequality (2.1) is equal to 1, so we can assume that that h; > 1.

Construct =: for each 1 < 7 < n, construct a sequence of circles by
s lj
& :{|z—zj]:4—8}, for 1 <s <hj.

The family of circles {{f; }j,s may not be disjoint, so we may have to remove some circles.
For any fixed k < n, let D} = {|z — 2| <;./4}, which is a closed disc containing all of the
circles centered at zj,. For j < k < n, define I, = {539 11 < s < hyj, and 5; N D # 0}.
These are the circles centered at z; which intersect Dy, if zj is closer to z; than z; is to
10,1, 21, .., zj—1}-

Define the family
E={& 1< <hj1<s <hiP\Uigjcpn ik
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Then Z is composed of mutually disjoint circles by construction. If dist(v, z;) < r;, then v

intersects each Sj for1 <s< hj, and therefore

POy {dist(z,7) < rj}] < PlNgez{y N ¢ # 0}]. (2.18)

In order to apply Theorem 5, we need to partition =.

Partitioning Z: The family of circles already has a partition {Z; };‘:1, where Z; is the
set of circles £ € = with center z;, but this may not be sufficiently fine to satisfy Theorem 5.
For example, it may be that there are circles centered at z3 which lie between circles centered
at z9. To make a finer partition, for each Z;, we will construct a graph GG; whose connected
components are the uninterrupted circles. Being more precise, the vertex set of GG is =;, and
£1,82 € = are connected by an edge if, assuming §; < & in the ordering on = introduced
in the last section, the radii satisfy rad&; = 4radés, and the open annulus between &; and
&2 contains no other circles from =. Let &; denote the set of connected components in =;.
Then each =; can be partitioned into {Ee}ee€j> where Z¢ is the vertex set of e € &;. The
circles in =, for e € £, are all concentric circles with center z; whose radii form a geometric
sequence with common ratio 1/4, and the closed annuli A, are mutually disjoint.

By construction, we see that for any j < k and e € &, the annulus A, does not intersect
D;., which contains every Ae for e € &.. Thus, if we let £ = U?Zlgj, Theorem 5 implies

that we can bound (2.18) by

& Py (re)
Pleeetrne# 0 < Qe T I 57 (2.19)
j=1e€g; yjitre

where 7. =rad(max{{ € &}) and Re =rad(min{{ € &.}), where again the ordering for
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the maximum and minimum is in terms of crossing time. It suffices now to show that |£]

Py (re)
is comparable to some value depending on n, and that [[.c & P J is comparable to
yj(Re)
)
——— where R; =1;/4.

Bounding |£]: First, we observe a useful fact. If 1 < j < k < n, observe that

max,cp, {1z — 251} |z, —z.|+0./4 5

min.ep, {lz =z} |z — 2l —lk/4 7 3
To check the inequality, note that f(z) = (a 4+ z)/(a — z) is an increasing function of z for
any a, and [, < |z; — zj| by the definition of [;,. Then [z; — 2| cancels in the fraction,

leaving 5/3. This inequality has the following two consequences:
a) If 1 <j <k <mn,then [[;;| <1

l:
b) If 1 <j <k <mn, then U§€5k§ C D;. intersects at most 2 annuli {4—jr <lz—zl <

L

gr—1-"

These follow readily from the definitions and (2.20), but full details are provided in Section
2.7.

These consequences can be used to bound |;|. Recall that |£;] is the number of connected
components made from =; in the graph G;, which comes from the simple graph =; where
sequential circles are connected. In order to create a new component, either a vertex or an
edge has to be removed. Consequence a) says that for each k > j, the number of vertices
removed is at most 1. Consequence b) says that for each k > j, the number of edges removed

is at most 2. Thus, for each 1 < j < n, the number of components created is bounded above
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by > s (1+2) = 3(n —j). It follows that [£;] <14 3(n — j). Summing over j yields

3n(n —1
€] = Z|5|<Zl+3n—j )=n+"—"— Sn(n = 1),

2

This completes the proof that C| g| can be bounded above by some constant C), < oo
depending only on n and k.

Final estimate: To finish the proof, we need to show that

H Pyj(Re) N Pyj(Rj)‘

665]'

We introduce some new notation. For any annulus A = {z : r < |z — 29| < R}, where
yo = 1 — |z for 2z € D fixed, let P(A) = Py (r)/Pyy(R). For 1 < s < hy, let A =
{lj/4s <l|z-— Zj| < lj/48_1}, and let Sj ={se{l,.. .,hj} : Aj,s C UeGEjAe}' Using this

new notation, what we want to show is that

Py (re) Py (r "
J j

= | | P(A; ) < | |
Py-(Re) ( J»S) = nPy L ],
eEgj J SESj .7

By the estimate in Lemma 1, for each e € £;, we have Pyj (re)/Pyj (Re) > (re/Re)® =

47% Let S;f ={1,...,h;}\S;. Then

b
) P(A; Py (rj :
H P(Aj §) = Hs:l ( J,S> < yj( J)4a\5’]c|'

s€S; HSES‘? P(Ajs) ~ Pyj (R;)

We need to estimate |SJC] If s e SJ‘?, then either s = 1 or there is some k£ > j so that

DN Aj s # 0. By consequence b) of (2.20), for each k > j, this happens at most twice for

53



each k > j. Therefore, |SJC| <143 4>j2=142(n—j). By equation (2.19),

PlNeez{y N & # 0} < Clur(3/2)n(n—1) H a(l42(n=j) = ¢l go(n H

]

Using Theorem 1, the analogous estimate for whole-plane SLE can be proven. The
strategy will be to appeal to reversibility, reduce to the radial case, and then carefully use
the Growth Theorem to show that the estimates from the radial case are comparable to the

desired upper bound.

Proof of Theorem 2. By the reversibility of whole-plane SLE, for x < 8 ([40],[21]), the
desired probability is the same as the corresponding probability when v* is a whole-plane
SLE from oo to 0, which we will assume for the rest of the proof. For any stopping time 7,
the path t — *(T + ¢), conditioned on v*(—o0,T), is a radial SLE,; path in C\y*(—o0, T
from ~*(T") to 0.

For z1,...,2n, € C\{0}, let 29 = 0, and define R = max{|z; —z;| : 0 < j,k < n}. Assume
without loss of generality that rj, < [;. for each k. Otherwise, the corresponding factor on
the right hand side of the estimate is 1. Let 7" = inf{t > —oo : |y*(t)| = 4R}, which is
finite a.s. since the radial SLE, tip converges to the target point with probability 1. Let
¢ be a conformal map from C\y*(—o0,T] to D which fixes 0 and sends v*(7) to 1. Then,
conditioned on v*(—o0, T, the path v := ¢(y*(T + -)) is a radial SLE, trace from 0 to 1.

Therefore,
PGy {dist(zg, ") < 7" (=00, T]] = PNy {y N (B2, k) # O} " (=00, T]].  (2.21)
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By the Schwarz lemma, for each k, sz = ¢(z},) satisfies |le| < 1/4, since |z < R
and ¢ takes 4RD into D. Let rkT = max{|o(z) — ¢(z;)| : 2 € IB(2p,7)}, and define
llz = min{|z — 1], |zg — ij| : 0 < j < k}. Since |le;| < 1/4, l% is not |le — 1] for any k,

and l% <1/2<3/4<1-— |z,:£| = yg. Therefore,

Pp(rl) 1

e Tk
T T

for each k =1,...,n. Theorem 1 and (2.6) imply that (2.21) is bounded above by

n T 2—d
PN}y {dist(=);,7) <} (—o0, T < O T (l—:’,i> . (2.22)
k=1 k

It suffices to show that the quotients 7"17; / l% are uniformly comparable to r./l;. for each k.
For each k, we will apply the Growth theorem on the ball B(zj,3R), since ¢ is conformal
on B(0,4R). There is a small subtlety, in that ¢ may not preserve the order of z1,..., zp.
That is, for a given k, if * € {0,...,k — 1} so that [ = |z — z.x|, it may be that
l% = |z,{ — ij| for some j # k*. This will only affect our estimate by a constant, since if we

define [}, = |z£ - le*|’ we have by (2.6)

~ (1+M) 9
e _ k= 5 W) )
2

3R

The second inequality follows by the choice of £*, and since |z}, — z;| < R for all 0 <

J,k < n. Therefore, for each k, we have r%/l% < C(rg/l;f). By applying (2.6) to z;. and
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w € 0B(z, 1) with Tg = |¢(zg) — o(w)], and to I = |z — z.x|, we get

o~

S | S

2
T
don (k) _noram?  n

)2 1-1/32 I

Therefore, we have r% / l% < Cry /1l uniformly.

ik ~ (1_

]

Proof of Theorem 3. First, we prove the theorem for radial SLE. Recall that we defined

Contg(E;r) = r@=2Area{z € C : dist(z, E) < r} for any r > 0. Fixing r > 0, we have

E[Conty(v; r)"] = Er™94=2) (Area{z € D : dist(z,7) < r})"]

=rld-2)g [(/]D) ]I{z:dist(z,'y)<7“} (Z)dA(Z)) }

= / pr(d=2)p [dist(z1,7) <7r,...,dist(zpn,7) <71]dA(21) ... dA(z).
Dn

The last equality holds by Fubini’s theorem, since all of the terms are positive. By Theorem

1, we have

- Pyk(r/\lk)

rn(d72)]P’[dist(zk, v)<nrVk=1,...,n] < rd=2)c,
k=1 Pyk (lk‘)

Ifr <l ., 1;, and r is greater than the rest, then the above expression is

ko Py (r)

k n
_ Tn(d_2)0 J <C Tn(d—Z) r <C ld_2.

To explain the last inequality, there are two cases. If r < [;, the numerator cancels with
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one of the 74=2’s outside of the product. If r > [;, then one of the r4=25 from the outside
product is added to the product, and is smaller than l;.i_2.

Thus, if f(z1,...,2n) = [[f—y min{|z], |26 — 1], |26 — 2], - - s |21 — 261 [}9 2 and r > 0,
then

E[Conty(v;7)"] < Cy, (21, 2n)dA(21) ... dA(zp).

f
Dn

By Fatou’s Lemma,

E[Cont;(7)"] < lim i(r)le[Contd(v; r)" < C’n/ f(z1,- .y 2n)dA(21) . .. dA(zp).
r— Dn

If we can show that f is integrable, then we are done.
Fix k=1,...,n, and let 21,...2;_1 € D be arbitrary. Let z_1 = 0 and 29 = 1. Then

for any k,

k—1
. d—2 d—2
/Dmm{mm—1|,|zk—Z1|,...,|zk—Zk_1|} Az < Y /Dm—z]-r dA(z1).
j=—1

Note that for each j, D — z; C 2D, and so the above inequality satisfies

2
< (k+ 1)/ 12|972dA(2) = (k + 1)27T/ rldr < .
2D 0

By Fubini’s theorem, it follows that fID)” fdA...dA < oo, and so we are done in the radial
case.

The proof for whole-plane SLE follows similarly. We start off by writing

E[Conty(v*ND);r)"] = / r=2)Pdist(z1,v") < r,. .., dist(2n,7%) < r]dA(z1) ... dA(zn).
Dn
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The function f(z1,...,2,) excludes the distance from 1 in the whole-plane case. That is,

n
fe1s- ) = [ min{lzgl, [z — 21l Lo — 2 3972
k=1

Then

E[Contg(y N D)" / f(z1, ... 2n)dA(21) ... dA(zp).

If D C RD for R < oo, then D — z; C 2RD for each z; € D, so we can perform the same

bound as in the radial case, except integrating over 2RID rather than 2. O

2.7 Technical lemmas

The following lemma is proven in [23], and serves as a technical lemma to prove that a certain

random variable is a stopping time.

Lemma 11. Let D C C be a simply connected domain, and let p be a crosscut in D. Let
wg, w1, and wee be connected subsets or prime ends of D such that D\p is a neighborhood
of all of them in D. Suppose that p disconnects wqy from wee in D. Let v(t),0 <t < T, be a
continuous curve in D with v(0) € dD. Suppose for 0 <t < T, D\v|[0,t] is a neighborhood
of wg, w1, and wee in D, and wy,w; C Dy := D(Y[0,t];ws). For 0 < t < T, let py be
the first subcrosscut of p in Dy that disconnects wq from weo as given by Lemma 2. For
0<t<T,let f(t) =1 if w1 € Di(pt;weo), and f(t) = 0 if wy € Dj(pt;woo). Then f is
right continuous on [0,T), and left continuous at those ty € (0,T) such that y(tg) is not an

end point of py.

We can provide the complete rigorous details for some of the steps in the main theorems,

whose arguments would clutter the presentation of the proofs.
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Proof of (2.10) in Theorem 4: First, I need to show that, in the event F, if ¢ < 7;, then
D*(&;) is either contained in D¢ (py) or Df(pt) for j =1,...,m. Ift < 75, and E occurs, then
§; cannot be swallowed by the curve, since v still needs to intersect £;. Therefore, it must
be that {; C Dy. Moreover, since D(§;) is disjoint from the curve p, it cannot be that the
subcrosscut p goes through D(&;). It follows that either D(§;) C Dy¢(pt) or D(§;) C Df (pt).
Similarly, in the event E, it must be that 56 C Dr,,.

Let I be totally ordered by (0,1) < (1,1) < (1,2) < (2,2) < --- < (m,m) < (m,m + 1).
Define a family of events by

Using a reverse induction argument, we can show that
* *
E; € D" (&iy) € Dry (pryy )}

for all i = (i1, i2) # (m,m+1). Note that E,, ., 1) = (). For the base case of the induction,

we consider

E(m,m) = E\A(m7m—|—1) =EN <{T < T} U {DTm(fm) Z DTm(pq—m)}> .

Note that EN{T < 7,} = 0, and the preceding paragraph shows that £ N {D,,(&m) ¢
Dry (7))} 1s contained in { Dz, (§m) C D7, (prpy, )} This proves the base case.

To complete the induction, assume that E; ;y C {D*(;) C Dij (ij)}. Then

E(i1.5) = Ej) N A ;) ©
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C D" (&) € Dr(prp)} 1 [{D*(&) € D7y (pry )} U AD™(&) € Drylory)} ]

The intersection with the right hand side is empty, and so we get that E( is contained

jfl,j)
in {D*(§;) C Dij_1('07jfl)}' This completes the proof that the (j,j) case implies the
(j—1,4) case. The argument for (j,j -+ 1) implies (7, j) is identical, and so the the induction

is complete.

The final step of the above induction sequence implies that

E\ Ujs(0,1) 4i = Eg,1) € {D*(&1) € D7 (pry)} € A(0,1);

from which claim (2.10) follows.

Proof of (2.13) in Theorem 4. Let x = Rj/r;, then N = [In(z)]. We are trying to show

Lo/N 1— /2 e

< .
1 — z—@/2N — 1 _ o—a/d

If 1 <z <e, then N =1, and the left hand side is equal to

1— x—a/2 e

1— /2 B

xO{

Suppose that x > e, in which case N < In(x)+ 1, and so 1 — g—o/2(n(@)+1) < 1 _ g—a/2N

The function

(a In(z)
1— x—a/Q(ln(x)—i—l) —1_¢ ( /2)(1n(x)+1)

is increasing, and so is bounded from below for x € (e, 00) at = e, which yields the bound
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1 — e~ /4, Therefore, we get

1 < 1
1 — p—a/2N = | _ —a/d4’

Since In(z) < N # 0, we get that z1/N < g1/ n(z) — e, and so z/N < e®. Combining
this with the above inequality completes the proof.

]

Proof of (2.15) in Theorem 5. In the total order on =, max{Ze, j)} < min{Z ; 1)}, and

there are no circles between them by construction. By the assumption that sequential radii

in =, form a geometric sequence, we know that R, {E(e j)} =4R i, (= (e j+1)} Therefore,
expanding the product gives

«
e Pure) et PrelFmax(z, ) Vet [ Pmaxtz ) aMe
Hp(e,j):pe(Re) H Py (Rt )SPGH R - = = Fed™,
i=0 j=0 "ve Hmin{E i j=0 \ " mi{Ee ji)h

which proves claim (2.15). Note that the above inequality follows from applying Lemma 1
to each term in the product.

]

Proof of consequences a) and b) in Theorem 1: To prove a), suppose that it is false. Then

rad (¢
there are distinct &1, §j2 € I with —(32)
7 rad(fj )

and a w € 5’]2 N Dy. Then |z — z;|/|w — 2j| > 4. Taking the maximum over all z € Dy,

> 4. By both being in [ 1., thereis a z € £}OD;€
then implies that max,cp, {[z — zj[}/|w — zj| > 4. Taking the minimum of this in w € Dy,

contradicts (2.20).

The proof of b) follows similarly. Suppose b) is false. Then there exist 2 < r| < r9 <
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r3 < h; and wy, w2, w3 € Dy, such that

L; l; l; l; L; L;
J . J J .. J J _ J
473 S |U)3 - Z.7| S 47‘3—1 S 472 S |w2 ZJ| S 47“2—1 — 471 S |w1 J| — 47"1—1
From this series of inequalities, we get
Ry 1./471

|w3 — Zj| - lj/4r3_1

This contradicts (2.20) in the same way as in a), proving b).
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Chapter 3

Decomposition of backward SLE in

the capacity parametrization

3.1 Introduction

In some cases, the reverse flow of the Loewner equation is easier to study and can be used
to answer questions about the regular, or forward, SLE process. Analysis of the reverse
flow was used to show existence of the SLE, trace for x # 8 [27]. In [8], a multifractal
analysis is used to study moments for the backward SLE flow, which is used to provide a
new proof of the Hausdorff dimension of an SLE path. The reversibility of the welding [26]
has been used to study ergodic properties of the tip of a forward SLE in [39]. BSLE and
the conformal welding have been coupled with the Gaussian free field and what is called the
Liouville quantum zipper [33], where the welding of the real line onto the backward SLE,
traces is seen as the conformal image of gluing random surfaces together. Recently [4], this
connection to the Gaussian free field was used to provide a new proof of the existence of the
forward SLE trace.

In this chapter, we construct a family of functions G‘“b(x,y) with which we use the
Girsanov theorem to construct a new measure ]Pf;’f; under which ¢(z) = y almost surely.

That is, we condition the process so that the graph of the welding function passes through
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the point (z,y). In order to do this, we need the notion of a BSLE process with force points,
which are introduced in [26].
A process (ft) which solves the chordal Loewner equation with driving function A which

satisfies the SDE:

adt L bdt
felar) = A filg2) — A¢

d\t = \/EdBt + Ao = T

is called a BSLE(a,b) process started from (xq;q1,q2), where a,b € R are weights at the
force points q1,q2 € R. This definition can be extended to include more than two force
points, which can also be placed in the interior of H, but this is the amount of generality we
will need. This process can be constructed by applying the Girsanov theorem, which will be
discussed in a later section, and therefore for k < 4, the backward SLE process with force
points also generates a conformal welding on RY.

For any set U contained in the first quadrant, we then average the measures of paths
passing through U by integrating Pﬁ;ﬁ against Ip7(z,y)G%?(x,y). For xk € (0,4), and for
a = b = —4, we then prove a decomposition theorem relating this particular case to the
amount of capacity time that the graph of ¢ spends in U. In order to establish these results,
we review the framework established in [37] to study processes with a random lifetime.

For all K < 4, and for a = b = —k — 4, we also show that the Green’s function Ga’b(m, Y)
can be realized as the normalized probability the two points z,y are welded together. This
is similar to how the Green’s function for the forward SLE process captures the normalized

probability that the path passes through a given point.
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3.2 Processes with a random lifetime

For this paper, we will need to review the framework introduced in [37] to study stochastic
processes with a random lifetime. We will need to introduce the notation which will be used
in this paper, and several propositions will be stated without proof. For complete details,
the reader can refer to [37].

Define the space

Y= UO<T§OOC[O7 T)7

where C10,T) is the set of real valued functions which are continuous on [0,7"). Then the law
of Brownian motion is a probability measure on . We will have to define a few operations

on this space.

o Lifetime: First, the lifetime of a function f € ¥ is given by Ty = sup{t > 0: f €

C[o,t)}.

e Killing: For 0 < 7 < oo, define K7 : ¥ — 3 by K-(f) = f\[Oan)’ where ¢ =

min{7, T}

e Continuing: This is an operation which glues two functions together. Define subspaces
of by X9 = {f e X : T < o0, f(T7) := lim, - f(t) € R} and Xg = {f € &
f

f(0) = 0}. Then we define @ : ¥ x ¥g — ¥ by

f(t), 0<t<Ty
f@glt) =
f(Tf_>+g(t_Tf)? Tf §t<Tf—|—Tg

o Time marked continuation: Define & : X% x Xg — ¥ x [0,00) by fdg = (f @ 9, Ty).
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Then @ records the information of where the first function ends and the second begins.

Probability measures on ¥ will be the laws of the random driving function for the back-
ward Loewner process. To talk about measures, we need to create a sigma algebra on 3.

First, for ¢t < oo, define a filtration by

ft:a({f62:5<Tf,f(s) € U},s <t,U C R is measurable) .

Then define F = Vg<t<ooFt- Then the operations above are all measurable on (X, F). Given
any two measures p, v on (3, F) let u ® v denote the product measure. We then define the

following measures:
e 1 @ v is defined by the pushforward measure G«(pu ® v) on X.
e 1Dy is the pushforward measure @ (p ® v) defined on ¥ x [0, 00).

We will also have to work with random measures on different spaces, which are called
probability kernels. More precisely, suppose (U,U) and (V,V) are measurable spaces. A
kernel from (U,U) to (V,V) is amap v : (U,V) — [0, 00) such for each u € U, v(u,-) : V —
[0, 00) is a measure and for each E € V, the function v(-, F) : U — [0,00) is U-measurable.
If i is a measure on (U,U), then v is called a p-kernel if it is a kernel on the p-completion
of (U,U). We say that v is a finite p-kernel if v(u, V) < oo for p-a.s. u € U, and we say
v is a o-finite p-kernel if V' = U>° | F}, such that for each n, for py-a.s. u € U, we have
v(u, Fy) < oo.

Combining kernels with measures, we have the following operations for measures:

e If i is a o-finite measure on (U,U) and v is a o-finite p-kernel from (U,U) to (V, V),
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then we define p ® v on U x V by

pRU(E X F)= /Ey(u, F)du(u).

In this case, u - v is the marginal measure on V' given by - v(F) = p @ v(U x F).

e If v is a o-finite measure on V' and p is a o-finite v-kernel from (V,V) to (U,U), we

define u%y on U x V by

,u%y(E x F) = /FM(U,E)dV(U).

e If v is a o-finite p-kernel from ¥ to (0,00), define a measure K, (u) on ¥ to be the

pushforward measure of p ® v under the map K : ¥ x (0,00) — X given by (f,r) —

Kr(f).

To study the law of a random process over time, the notion of absolute continuity can be
extended to what we call local absolute continuity. For 0 <t < oo, let Xy = {f € ¥: Ty > t}
be the set of functions defined at least until time ¢. Note that Ny~ oYX = C[0, 00). For each
t > 0, let Fx N X; denote the restriction of F; onto the subspace ;. If u,v are measures
on (X, F), then we say that v is locally absolutely continuous with respect to u if, for every
t>0, v Finy, is absolutely continuous with respect to i Fins,- We will use the notation
v < 1 to mean absolute continuity and v <1 u to mean local absolute continuity.

The following propositions are in [37], and will be stated without proof:

Proposition 2. Let 1 be a measure on (3, F) which is o-finite on Fy. Let (Y,G) be a
measurable space. Let v : T x F — [0,00] be such that for every v € Y, v(v,-) is a finite

measure on F that is locally absolutely continuous with respect to p. Moreover, suppose that
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the local Radon Nikodym derivatives are equal to (M¢(v,-))¢~q, where My : T x X — [0, 00)
is G X Fy measurable for every t > 0. The v is a kernel from (Y, G) to (X, F). Moreover, if
§ is a o-finite measure on (Y, G) such that p-a.s., [y Mi(v,-)dé(v) < oo, then & - v <, and

the local Radon-Nikodym deriwatives are [y My(v,-)d§(v) for 0 <t < oc.

Proposition 3. Let u be a probability measure on (X, F). Let & be a u-kernel from (3, F) to
(0,00) that satisfies E,[|€|] < co. Then K¢(p) < p, and the local Radon-Nikodym derivatives

are E,[E((t,00))|Ft) for 0 <t < oo.

Throughout this chapter, we will use P, to denote the measure on Y which gives the law
of (v/kB¢t)¢>0, where (Bt)¢~q is a standard one dimensional Brownian motion. Then Py is
supported on C[0,00) N Xg. We will use E,; to denote expectation under the measure Py,
and ]—'tB to be the completion of F; under P, for 0 < t.

We state two more propositions from [37] without proof. The first extends the Girsanov
theorem to a statement about local absolute continuity, and the second extends the strong

Markov property of Brownian motion.

Proposition 4. Suppose that (X;)o<t< satisfies the FP-adapted SDE:
dX; = /RdBy + opdt, 0<t<T, and Xo =0,

where T is a positive }"f—stoppz'ng time. Let P™7 denote the law of X. Then P < P.

Moreover, if (Mt)o<<T is a ]ftB—adapted continuous local martingale that satisfies the SDE

dMy = MtﬁdBt, 0<t<Ty, and My=1, (3.1)
K

7
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then
dPH’U ’]: na
t' '~
—— =1 M, 0<t< . 3.2
d]P)IilftﬂEt {T>t} ! N ( )
If (0) is an .FtB -adapted increasing process, it induces a kernel from ¥ to [0, co) defined by

df.(f), which is the random measure induced by the monotonic function 6¢(f) on t € [0, c0).

Proposition 5. Let (0t)o<t<oo be a might continuous increasing ff-adapted process that

satisfies 0y = 0y+ = 0 and Ex[0c] < 0o. Then

’Cdg(P,{)EBPH =P, ®db. (3.3)

Thus, K49 ® Py < Py, and 0 is the Radon-Nikodym derivative.

Define £ to be the set of A € ¥ which generate a Loewner trace. By the existence of the
SLE,. trace for any x > 0, we know that P, is supported in X£. Let € = Up<t<oaCc0, 1),
where C[0, t) is the set of complex valued continuous functions with domain [0, ¢). Define the
Loewner operator L : ¥£ — € to be the map which takes a driving function to its chordal
trace. Then the pushforward measure L4(Py) is the law of the SLE,; curve. More generally,
if u is any law supported in ZE, then L,(u) is the law of the associated Loewner curve.
We can also define the extended Loewner map £ : {(\,¢) : A € 2£,¢t < Ty} — 2C x H by
L) = (L), L)1), If v is any measure on {(X, 1) : A € ©£,t < T\}, then £ generates
a pushforward measure ﬁ*(u) on Y€ x H. This approach is taken in [37] to study chordal
SLE in both the capacity parametrization and natural parametrization.

Since our object of study is the conformal welding generated by the driving function,
we will consider a different operator. Let Y denote the functions in £ which generate a

continuous conformal welding under the backward Loewner equation. For x < 4, since the
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Loewner traces are simple, it follows that Py is supported in YW, We will use (21 to denote
the first quadrant [0,00) x [0,00). The welding operator W : £ — %€ can be defined
by W(A) = the welding curve ® generated by A\. We can also define the extended welding
operator W()\,t) = (D,P(t)) € € x Q. Then any law p supported on ="V generates a
pushforward measure Wy (1) on £C, and any law v on {(\,t) : A € 2Vt < T)\} generates a

pushforward measure W*(l/) on € x Q.
Lemma 12. If k € (0,4), then the welding operator VWV is injective on the support of Py.

Proof. Suppose the backward Loewner processes generated by A, A are ( ft)t>0 and ( ft)tzo
respectively, and assume they generate the same welding curve ®. For a fixed ¢t > 0, define
Fi(2) = fi(z)—M\ and Ft(z) = ft(z)—;\t, and let G¢(z) = FtOFt_l(z), which maps H\{v:—\¢}
onto H\ {5 — A}, where (14)¢>0 and (5¢);>0 are the families of backward Loewner traces
driven by A and ) respectively.

For k < 4, since 4+ — A\t has the same law under Py, as a forward SLE, trace up to time
t, it was proven in [27] that v¢ — A¢ is the boundary of a Holder domain. In [6], it was shown
that this condition is enough to make the image of the trace conformally removable. That
is, any conformal map defined on H\{y; — A¢} which can be extended continuously to the
boundary can be conformally extended to H.

Suppose ®(t) = (b, ar), and assume —a; < —y < 0 < x < by with ¢(x) = y. Note
that since both processes have the same welding process, they also have the same welding
function ¢. Therefore, fy(z) = fi(—y) and f;(z) = fy(—y), and so G} extends continuously

from v — A\¢ to y — M. Conformal removability then implies that Gy extends to a conformal
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map from H onto H, and so it must be that

for some a, b, c,d € R with ad — bc = 1.

Assuming ®(t) = (by, ), we get fr(—ar) = fe(be) = A\ and fr(—ar) = fi(b) = M. This
implies that G¢(0) = 0, and so b = 0. Also, f; and f; each fix oo, and so ¢ = 0. Therefore,
G¢(z) = az for some constant a. Since Gi(y — A\¢) = Y — Mt, the scaling rule for half
plane capacity implies that 2t = hcap(y; — A¢) = |a|?hcap(5; — S\t) =2t,and so a = 1 or
a = —1. Since f; and ft both have positive derivative at oo, we have a = 1. Therefore,
V¢ — At = Y — M\t for each t > 0. Since the reverse flow is uniquely determined by the driving

function, we get that A = .

3.3 (Glossary of notation for Ito’s formula calculations

We define some terms which will be used for Ito’s formula calculations for this chapter in

multiple sections.

e Fix z,y > 0, and let A\ be a driving function for the backward Loewner equation (1.4).
Let (ft)t>0 be the solution of (1.4) driven by A. For z € R, let 7, be the lifetime of

(1.4) started from z. If z,y > 0, let 7,y = min{7,, 7y }.
e For t <7, define Xy = X¢(z) = fr(z) — A\

o For t < 7y, define Yy = Yi(y) = M — fi(—y). Note that X; and Y; are defined

specifically to be nonnegative for all ¢t < 7 4.
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e These two formulas imply that

d( Xt + Yy —2
(Xt ¥) _ dt. (3.4)
Xt +Y: XYy
Xt —Y;
o Fort < 7z, let Wy = Wi(x,y) = X, 1Y, Then Wi € (—1,1) for each t < 75 ,. If

Ty # T—y, then Wr, . is well defined and is either 1 or —1.

o For t < 74y, define uy = wy(z,y) = fg XHY dr. By equation (3.4), this is equal to
rLr
K Xt + Yy
t)y=—=1 . 3.9
) =~ (S5 35)

The process uz will be used to define a random time change.

e For Z € {X,Y, W}, we will use Ty = Zu—l(t)‘

3.4 Generalized Green’s functions

In this section, we will be doing Ito’s formula calculations using the framework in Section
3.3. For the first lemma, \¢ = \/kB; is the driving function for BSLE,. We will then do
calculations when ); is the driving function for the BSLE(a, b) process.

For k < 4, let (ft) be the standard backward SLE, process driven by A\t = \/kB;. For
x,y > 0 define Xy = Xy¢(z) = fr(x) — A\t and Y = Yi(—y) = A\t — fr(—y) as in Section 3.3.
Ito’s formula then implies that

2 2
dX; = —/kdBy — —dt, and dY; = \/kdB; — —dt.
Xi Yy
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Note that fi(x) is decreasing in t and f;(—y) is increasing in ¢. Since )¢ is unbounded in
both directions, then 7, = inf{t > 0 : X4(z) = 0} < oo a.s. and 7 = inf{t > 0: Yi(y) =
0} < oo with probability 1, and X3, Y; track the flow of z and —y towards 0. The stopping
time 7y = 7, ATy stops the process as soon as either x or —y are absorbed by the welding.
What we want to do is weight the measure PPy in such a way that 7,y = 7, = 7y almost
surely. That is, we want to change the probability measure so that ¢(x) = y with probability
1. We will find a new family of measures IP’%:Z on Y which do this, and we call the process

an extended BSLE (a, b) process started from (0;x, —y).

(=)

a
a,b K

Proposition 6. Fiza,b € R. Then Mta’b = M""(z,y) == X; RY, F(Xp+Yy)7 fl(z)P f](—y)1

s a local martingale if and only if

a(oz—l—4;<—|—4)7 q:_b(b-f-li-f-ll), andyz—a—b.
K

P=- 4k 2K

In this case, the process (ft)>o weighted by this local martingale using the Girsanov theorem

is a backward SLE(a,b) process started from (0;x, —y).

Proof. For ease of notation, let « = —a/k and 8 = —b/k. This follows from an Ito’s formula

calculation, which will be included for completeness. Observe first that

-2 /

(felz) = M) (—fi(2)) = 2f1(2)

roy d B
O fi(z) = Eatft(z) = i) = A2

Therefore,

df{(z)r B dft/(z) B or it

AGT THE T (i) = a2
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Applying this at both x and —y gives

! p ()4
4 (@) = 2Pt and (o)t _ 24,

fl@y X (=9t Y?

Also, direct applications of Ito’s formula gives

d( Xt +Yy)7 =2y @t axg —a\/EdBt N h(a)dt
) 2 7

(Xe+Y)7 XY Xy X :
vy o h(B)
—2 = dBt + —5~dt,
vy Y

tt — 1)
2

where h(t) = —2t + " By the product rule, we get that

aMy _dXp  dY] dXPYY) X+ )| @ ()]
My XpoyP o xeyf (G Y)Y fl@P 0 fi(=y)
axe dyP axeyf oy 2p 2
_AXE L Y A t>+<—7+—p+—q>dt

Xta Y’tﬁ Xta}/tﬁ

—av/k | BVE h(a)+2p  h(B)+29 afr+2y
= + dBy + + — dt.
( X; W ) ! ( X2 Y2 XY

b
Notice that % + = - - 0 for all z,y, € R if and only if a = b = ¢ = 0. This occurs if

4 Y Ty

and only if p, ¢, and ~ are chosen as indicated. Once these are chosen, we then get that

dMy —Of\/ﬁ+ —BVk it
My X Y:

Using this as a drift term and weighting the original measure to obtain a new probability
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measure P, the Girsanov theorem says that

B B N —akK — Bk
@t = VdBy = VidBy + (ft(if) — M\ * fr(=y) — )\t) i

where By is a P-Brownian motion. This is precisely the definition of a backward SLE (—ak, — k)
process started from (0;z, —y), where a = —ak and b = —fk.

]

The force points at x and —y serve as magnets. If a and b are chosen correctly, we can

force z and —y to be absorbed by the process at the same time, which would imply that
Xt —Yi
Xe+Y

a process that stays in (—1,1) for as long as it exists. It only fails to exist if 7, = 7y,

¢(x) = y. Along with X; and Y}, define W} as in Section 3.3 by W; = which is
where 7, is the time at which z is swallowed by the BSLE traces. If this does not happen
(which is a.s. under Py), then W} is constant at +1 after 7, . The strategy is to perform
an appropriate random time change, under which W becomes a diffusion process. We can

then analyze the lifetime of this diffusion.

Lemma 13. A BSLE.(a,b) process started from (0;x,—y) welds x and y together with
—4 -k

probability 1 if a,b < 5

Proof. Consider a backward chordal SLE(k; a, b) process started from (0; z, —y) with driving
function A. Let X, Y, Wy, and u(t) be defined as in Section 3.3. We proceed similarly to

Proposition 6. By definition,

a b 2 a b 2
dX; = —v/kdBt — | — — — | dt — —dt ddY; = dB — — — | dt — —dt.
= VB <Xt Yt) x; 1 and d¥i = Ve t+<Xt Yt) Y;
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Therefore,

a—+2 b a b+ 2
— — | dt d dY; = dB — — —— | dt. .
X, Y%) , an » = \/kdB; + (Xt Y, ) (3.6)

dXﬁZ—Jﬂ%—(

Simple Ito’s formula calculations show that

dXi +Ys =2
Xi+Y: XY

X - 2 P
X=Xy Xt —Y:

dt, and AN,

and therefore

th 4 2 —QﬁdBt i (4Wt 19 bXt — aYt ) d

= — dvy = dW: =
Wr  XY; X - Y ! X 1Y XY (X + V)XY

b — _
Using the basic algebraic equality 2 R— (b—a)+ (b+ a)x Y
Tty T+

, this becomes

—2\/kdB 4 b— b
v, — —2VRdB: (VW+( @+(+@M>ﬁ
Xt +Y: XYy XYy

Recall the function u(t) = fot XHY dr = —g In((X¢ + Y)/(x + y)).Using u to perform a
rir
random time change, we get
- — = (b— b+a)W,
mm:ﬂh—wﬁ&+( ®+<+®tﬁ, (3.7)

K

where By is a Brownian motion and W; = Wu—l( £ Anything satisfying equation (3.7) is
associated with a radial Bessel process, and is studied in [39]. Thus, our process W is such
a process traversed at a random speed. Observe that Ury y 18 the lifetime of (3.7). Also,

note that Xrpyt Yy =0 if and only if Uy 4 = OO. According to the appendix in [39], the
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lifetime of (3.7) is infinite if a,b < —2 — g with probability 1. Hence, if a,b < —2 — g, then
XTx,y + Ym,y = 0, and thus = and y are welded together. O]

Proposition 6 and Lemma 13 motivate us to define the a,b-backward SLE, Green’s
function for a,b < —2 — k/2 by G@P(z,y) = x*%y*%(x + y)_%, so that M®P(z,y) =
Ga’b(Xt,Y;g)f{(:v)pfé(—y)q is the local martingale whose weighting gives the BSLE(a,b)
process starting from (0;x, —y). What we want to do now, however, is run the backward
SLE(a, b) process until it welds z and y together, and then revert the driving function back
to a standard Brownian motion after 7 y.

To make this precise, let a,b < —2 — k/2. Let IP’?;”Z on X be the measure of the driving
function for the BSLE(a, b) process starting from (0; z, —y) until time 7 . Then 7, < 0o
means that ]P%;Z is supported on ©%. Since Py, the law of /s times a Brownian motion, is
supported on ©¥, that means we can define the measure IP’%:Z ® Py on EW, which we will call
the law of the driving function for an extended BSLE(a,b) process started from (0; x, —y).
Then W, (]I”g:by &Py ) is the measure on XC giving the law of the extended BSLEj (a, b) started
from (0;z, —y) welding curve. Under this measure, the welding curve passes through (z,y)
almost surely.

Our goal is to show that backward SLE can be decomposed into the average of weighted
extended BSLE(a,b) processes. Fix a measurable U C @1 = [0,00) X [0,00), and observe

that the measure ]P%;Z is a probability kernel from @) to (X, F). Define a new measure on

// abGabx ,y)dxdy.

We say that BSLE, admits a BSLE,(a,b) decomposition if for all measurable U C Q)

(3, F) by
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there is some increasing random process © = (@g )t 0 so that
>
P ER, = Py @ dOV.

Recall then that dOV is a kernel from X to [0, c0).

This is a backward analogue to the definition in [37], which defines what it means for SLE,
to admit an SLE,(p) decomposition. In [37], it is proven that SLE, admits both an SLE (k—
8) decomposition and an SLE,(—8) decomposition. In the first case, this corresponds to
weighting the SLE, curve against the natural parametrization, and in the latter the SLE
curve is weighted by the capacity parametrization. In the next section, we will show that
BSLE,; admits a BSLE(—4, —4) decomposition, and see that the corresponding weight is
capacity time.

We will need to study the distribution of the stopping time 75, under Pg:g

Lemma 14. Under ]P’%’,Z, the stopping time Ty 4 salisfies

2 o g X
Tay = %/0 e w1 = WP)dt (3.8)

IP’%:Z a.s., where W satisfies (3.7) for a,b < —2 — k/2.

K
XsYs
y)), and we will use the convention that Ty = Zu—l(t)’ for Z € {X,Y,W}. We claim that

Proof. Recall the time change from before, where u(t) := fot ds = —g In((X¢+Y:)/(z+

]P’g’,g—almost surely,

© XY,
Tx’y - / 5 Sds. (39)
0 K
2
Recall that under Pg:g,we have 7, = 7y, and so u(7zy) = —— In(X; + Y7) = oo Py y-almost
K
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surely, where 7 = 7 . We are using the fact that z and y are welded together here. Then

u ( ) —1y/ T T
/ Xsst - / XYy @) / X% yar = / 1t = 7.
( 0 0

Loy & (@ (u(ul(s)) K

X-Y 4XY . N
Using W = d the identity 1 — W? = ———— and the fact that X; + ¥} =
sing X+Yan e 1dentity <X+Y)2,an e fac at X¢ + Yy
2
(z +y)e %', we can rewrite the integrand in equation (3.9) and obtain (3.8).
[
Define a function 0%b(xz, y; t) = Py Z[’Tx y < t|. By equation (3.8), we can conclude that
(;E yit) = o™ ( ) , for all t > 0. (3.10)
Vit \f
This holds because
2 oo g 5
@Y ™ s _vi2yds <
4K 0 5

if and only if

(x/VE+y/Vi)?
4K

o0 4 A
/ e RS (1 —W2)ds < 1,
0

where the diffusion (Wt)t>0 has the same starting point at (z,%) as at (z/v/t,y/V/1).
It is worth observing that the local martingale obtained in Proposition 6 is a local mar-

tingale, but not a martingale.

Lemma 15. Ifa,b < 0, then
Ex[My(2,y)] = G4 (@, y)PEy (1 y) > ) = 2%97 (2 + ) (1 = 0% (,y5t),  (3.11)

where « = —a/k, 8= —b/k, and v = —ab/(2k). In particular, My is a local martingale, but
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a strict supermartingale.

Proof. For this lemma, since z and y are fixed, we will let 7 = 7 5. Define 7, = inf{t :
M; > n}. Then for each n, Mias, is a bounded local martingale, and hence a martingale.
Therefore,

Ex[M;] = nlggo ]E/-@[Mt]l{q—n>t}] = nlggo EK[Mt/\Tn]ITn>t]

= G(a,y) lim PED (7 > 1) = Gla, y)PLY (Unfmn > 1}).

We claim that ]P’%’Z (Up{m >t}) = IP’%ZZ(T > t). It is clear that Up{m, > t} C {7 > t},

since 7 is the lifetime of (My). It suffices to show Ny {m, < t} C {7 < t}. In the event
Np{mn < t}, My is unbounded for s € [0,t]. It can easily be seen that if ¢ < 7, then
fi(x) =M <x— M <24y, and M — fr(—y) <z + y similarly. It follows immediately that
Xf‘Yf <(z +y)0‘+6 , and so this factor of My is bounded uniformly for fixed x,y. Therefore,
if Mg is unbounded on [0,], then it must be that either (X + Y5)7 or fl(z)P fl(—y)? is
unbounded on [0, ¢]. In the first case, since v = —ab/(2x) < 0, this implies that Xs+Ys — 0

before time t. That is, T(x,—y) < t. In the latter case, the reverse Loewner equation implies
2 2
/ p gl q _
x —y)? =ex — + —dr}.
fs(@)P fs(—y) p{/O Xg YTQ }

This term is unbounded only if p and ¢ are nonnegative and Xg,Ys — 0 before time ¢.

Therefore, in either case, we have 7 < t.
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3.5 Capacity parametrization

The goal of this section is to show that BSLE, has a BSLE,(—4, —4) decomposition, and
to show the relationship between this decomposition and the capacity time for the welding

curve. For this section, we will use Py 4 := ]P;é’_zl for x,y > 0.
Lemma 16. [;° [ Py ylrzy < 1]dzdy € (0,00).

This lemma states that the probability of two points which are far away being welded
together in a short time decays rapidly. By the scaling relation, what matters most is how
relatively far x is from 0 in comparison to y. This is reflected in the proof, where we perform
a change of variables from (x,y) to r(¢t,1 — t) and perform the most work integrating the

single variable .

Proof. By equation (3.8), we have P, y-almost surely that

(z+y)? /0" 4y (z+y)?
< \TrY)” d = LY
T =g fy O 16

Thus, if x +y < 4, then
Py ylrey < 12> Prylray < (¢ +y)?/16] = 1,

and therefore

(0.0 o0
/ / Poyltey < 1] > / ldzdy > 0.
0 0 r4y<4

To use the scaling relation for BSLE to show that [ [7° Psylmey < 1dzdy < oo,

we perform a change of variables. Observe that the distribution of 7,4 is the same as

(x + y)ZTM_t, where t = To simplify notation, we will write Py = P;1_; and

Tr+vy
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7t = T¢,1—¢ for 0 <t < 1. Performing the change of coordinates z = rt,y = (1 — t), we get

1
/ / nyTxy<1dxdy—// P[4 —QT’dT’dt

For any fixed ¢, observe that

o L 11 Y
P < r“Jrdr = Py | — rdr = =Ky | —
0 0 Tt 2 T m

where E; is the expectation with respect to the measure P;. Thus, it suffices to show that

that

fO E; [ } dt is finite.
Tt

For any small § > 0, we can break up the integral as

1 1 5/2 1 1-§/2 1 1 1
[m o [ as [ w ] ar [ w]Ya
0 t 0 Tt 5/2 Tt 1-6/2 L7

To complete the proof, we will produce a small § > 0 so that:

a) There is a constant Cj5 < 0o so that if 0 < ¢ < §/2,

1 1
o {;J < CsEs - ] < 0. (3.12)
b) For each t € (§/2,1—6/2),
E H<E Ll 4E ! (3.13)
“lm] =02 5/2 1-0/2 Ti_sj2 | '

Note that if (3.12) is proven, a symmetric argument proves a similar bound for ¢ € [1—40/2,1).

Once a correct 6 can be chosen for (3.12), then (3.13) and both boundary estimates imply
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that fol E¢ [1/7¢] dt < oo.
Note that tg = x/(xz + y) being near 0 is the same as starting the process Wy = (X —
Y1)/ (Xe+Y:) at w= (z—y)/(x+y) =2ty — 1 near —1, and ¢y being near 1 corresponds to

starting the process Wy near 1. Under the measure Py, equation (3.7) reduces to

R R -8 . R
AWy = —\/1 — W2dB; + ?Wtdt, Wy = w. (3.14)

We will use this diffusion to prove (3.13). Suppose § > 0 is small, and fix any t* € (§/2,1 —
6/2). Let (W;)=0 be (3.14) started at w = 2t* —1, (W} );=q be (3.14) started at w = —1+4,

and let (W7)s~0 be (3.14) started at w = 1 — d. Then for each ¢ > 0,
1— (W;)? > min{1 — (W/)?:j=1,2}.

Thus, by equation (3.8), we can see that there is a coupling so that 7+ > miH{Té/T 71_5/2},
where 7, Té /2 and 7'{_ 5/2 are defined on the same probability space, and each 7/, has the

distribution of 7, under Py, for w € {4,1 — §/2}. Therefore,

1 1 1 1
— < max{——, 5 < —+ 5 )
T Ts;2 Ti—s/2 Tsi2 T1-6/2

Applying the expectation gives (3.13).

The rest of the proof is showing that (3.12) holds. Fix (for now) some § > 0, and let
—1 <w < —1+4. In the t coordinates, suppose W(0) = w = 2t—1, so that -1 < w < =149
corresponds to 0 <t < §/2. Fix any t* € (0,9/2), and let w = 2t* — 1 be the starting point

of the process (Wt)t>0 solving (3.14), where W has an infinite lifetime. Define a stopping
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time by T5 = inf{t > 0 : Wy = —1 4 6}. Then equation (3.8) implies

L R P L[ 4y 2
4/43 0 4H T(;
1 o0 4 A
_ 4r ~4 p
— ¢ K 5@ ; e kK (1_Wt+T5>dt'

The right hand side is the stopping time for the process started at ¢ = §/2, so conditioned
4
on {Ty = s}, we have 7« > e K°75)9 in distribution. Therefore, Epx [1/7;x|T5 = s] <

4
6/‘68E5/2 [1/75/2] It follows that

1 - 1
Ex|—| = Ex|—|Ts€|n—1 P —-1<Ts <
o] = ke [ Lins e - 1] Pai- 1< <

Ty
t n=1

1

4
dnt1
<D KBy 752

n=0

We claim that Py« [T > n| decays exponentially in n. Observe that

P«[T5 > n] = Pu[{ sup Wy < —1+6},...,{ sup Wi < —1+4d}]
0<t<1 n—1<t<n
In [39], the transition density for W is found, and it can be extended via the Kolmogorov
consistency theorem to a process which can start at —1. Observe then that during each
time interval k — 1 <t < k, the process lies above a coupling of the same diffusion started
at —1. Therefore, if ps = Po[T5 > 1], where Py is the law of W started at —1, then
Pyx [supg_1<t<k Wy <6 — 1] < ps. Moreover, by the Markov property, these couplings are
independent of the path before each time, so therefore Py« [Ty > n] < Py

1 4
—] > ner'py. Now we need to show that § can be

1
Thus, we have Fx {—] < E(;/Q
75/2

Tt*
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chosen sufficiently small so that this infinite sum converges. What we need to know is if ps
can be made sufficiently small as 6 — 0. It is easier to see that this is the case if instead we

look at 6y = arccos(W;), which satisfies the SDE

4— K

df; = dBy + cot(0y)dt. (3.15)

Then 6 is what is called a radial Bessel process. It is a diffusion with range in [0, 7] represented
as a Brownian motion with strong drift directed towards the center of this interval. Also,

note that this drift is positive when 6; is small (we are using that x < 4). Then

Py | sup 0 <e| <P[sup By <e —0
0<t<1 0<t<1

as € — 0. It follows then that lims ,ops = 0, and a fixed § can be chosen so that the

1
expectation Ex [—} can be bounded uniformly in t* € (0,6/2). Speaking more precisely,
Tt*

§ can be chosen small enough so that ¢*/%ps < 1/2, and so for all t* € (0,8/2)

4
ek"Pu [Ty <n]<e

BN

< 27,

Therefore, to finish proving (3.12), it suffices to show that Es [1/75/2} < 00.
Let 0 = &' = arccos(—1 + d), and define a stopping time by T = inf{t : 6; € {§' /2,7 —

6'/2}}. Then equation (3.8) and 1 — WE — sin?(6;) imply that

g 4 2 2 T 4 4T
()72 Z/ ¢ R® sin® (05)ds > sin*(9'/2) / e~ wids = Cy(1 — e 7).
0 0
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Therefore,

1
Esjo | —| < Coslsjo | —
/ T5/2 / | —e w7
> 1
—n—1 a— —n—1 a—
=Cs Y Eg) — 1, ITel 2T Pyl e 277,277
n=0 l—e®
= 1
—n
Sc(sz_:l_ _42_n_1p5/2[T§2 ]7
n=0 e kK

where Cj is some constant which depends only on § and x. What we need is a good bound

on Ps [T < ¢] as € — 0. By the equation (3.15), whenever t < T', we have

By — At < 0y — &' < By + At,

4— K

where A = cot(8’/2) > 0.
5 5
Let T' = inf{t : 6; = 5}, and T" = inf{t : 6y = 7 — 5}, so that T'= min{T",T7"}. Then
Ps /o[l < €] =Ps/o T <e,T=T]+ Ps /o [T" < €, T = T"]. Both of these probabilities will
be estimated similarly, so we will show that the first has sufficiently strong decay. Observe

that

/< — / < : < / Y
Pspo[l" <e,T T]_Pa/Q[Og%;@t_5/27021;6975<7T §'/2]

= IP’(;/Q[nggeﬁt — < —5//2,Os<1;1266t <m—6/2

<P[inf By — At < —¢'/2] =P[sup By + At > /2] <P[ sup By > /2 — Ael,
0<t<e 0<t<e 0<t<e

where P is the law of standard Brownian motion. Note that with ¢ fixed, € can be chosen

small enough so that this probability is nontrivial. Moreover, by the scaling property of
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Brownian motion and the reflection principle, we get

"2~ A "2~ A
—P| sup B, > Y/2—Ac zzp{BlzL]
0<i<1 Ve Ve
Using the elementary bound P[N(0,1) > M| < %e_ﬂ/ﬂ/?, this implies that

Ae)?

!/
Byl < .7 =T < Oveesp{~ DDAV < oK

where C, K are both constants depending only on ¢ and k. An identical bound can be found
for the event {T” < €},s0 the same bound holds for P5/2[T < €.

Combining the inequalities of the previous paragraphs, we can conclude that

s 1 n n
Esjp |—| < C ( . )(TaeKQ)
T, —go—n—1
—K2"
The terms pp—— are bounded, and therefore
1—e"k

1 > n
&m{}gc§:f7<m

™
0

We will now make use of the results in Section 3.2, which originate from [37]. For
any N > 0 and z,y > 0, define the measure P;,y;]\f by P;,y;N[E] = P} ,[E\XN], where

Yy ={f€X:T; > N}. Note that this is not a probability measure. By Proposition 4, we
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know that the local Radon Nikodym derivative ]P’;,y with respect to Py is given by

dpz,y|ftﬂ2t

— _ !/ /
d]P)H|]-'tﬂZt = H{frx,y>t}Mt(xv y) - ]I{Tx7y>t}G(Xt(x)a Y;f(y))ft ($>ft(_y), (316)

4 4 _8
Kyk K

where G(z,y) = G~4 4x,y) = akyr (z + y) " & is the (—4, —4)-backward SLE Green’s

function in the capacity parametrization. Let £ € Fz % If t > N, then P ” NIE]=0.If

t < N, then

My (z,y) / My (z,y)
* Bl =P B —P* [ENSy] = [ =222 qP, — NI ap
2.V E] rylBl = Foy[E O D) /E G(r.y) " Jprzy Gloy) 7

1
" G(n,y) /E My(w,y) — Ex[My (2, y)|F]dPp.

Therefore, we conclude that

AP ynlFns,  Liany

dPs|pny,  Glz,y) (M(z,y) = sl My (2, )l 7)) (3.17)

For each t > 0, define a function G¢(z,y) by

Gt($,y) _ M()(ilj',y) - E/{[Mt(x7y)]
G(z,y) G(z,y)

- P*’y [7_337y S t]

The second equality follows by Proposition 4. By equation (3.10), and the fact that G(z,y)

is homogeneous of degree 0, it follows that G¢(x,y) = Gy < ) Also, Gy(z,y) = 0 for

* Y
V'Vt
all z,y > 0, and limy_,o0 G¢(z,y) = G(x,y)IP’;y[T%y < 00| = G(z,y).

Let Cyt =[5 Jo  Gi(z,y)dady = [5° [5° Gz, y)P*(72y < t)dzdy, and let Cx = Cj 1.

We claim that Cy ¢ = tCy, where Cy € (0,00). The equality follows from scale invarience
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and the change of variables formula. In particular,

Cur= [ | Gleasty= [T [T (—,—>da:dy
" 0o Jo (z-9) o Jo ViVt

- [ [ Gwsan

Since Cx =[5~ J5~ G(x,y)P; ey < 1drdy, Lemma 16 and the fact that G(x,y) > 0
implies that C;, > 0. Moreover, GG is bounded, which combined with Lemma 16 implies that
Cr < 0.

Recall that Q1 = [0, 00) x [0, 00) denotes the first quadrant. Given a A € YW we denote
the welding curve generated by A by ® : [0,00) — @1, where ®(t) = (z,y) if z and —y are
absorbed at time ¢. That is, ¢(x) =y and 7, = 7y = ¢. For U C )1 measurable, we define

an increasing process (Q}) by
of = Cumy{®~H(U) N [0,4]}, (3.18)

where m {-} is one dimensional Lebesgue measure on [0, 00). Then OV is the capacity time
spent by ® in the set U before t. Note that then dOV is a kernel from (2, F) to [0, 00)
and can be thought of as an F-measurable random measure on the line. Also, recall that
(z,y) = Pz y is a probability kernel from @7 to ¥, and we can define a measure on ¥ for

U C @1 measurable by Py = IP)(_]4’_4 = [y PryG(z,y)dzdy.

Theorem 6. Fix x € (0,4). For any measurable U C Q1,

—4,—4 ~
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Wi(Pry @ P BTG4 Y, y)dedy = Wi(Py) @ My 4, (3.20)

where My = /\/l[;4’_4 1s the kernel from the set of welding curves W(ZW) to Q1 defined by

_ U _ U
My (@, B) = @.(d6V) (B} = ol

To ensure clarity, we recall that the measures in equation (3.19) are measures on the
space 9 x Yg, and the measures in equation (3.20) are measures on yC x ()1 supported
on W(EW) X Q1. Throughout the rest of the chapter, for any measure p on >, we will use
(|t to denote the restricted measure p| Fns,- The proof of the theorem follows the same

strategy as the proofs of Theorems 4.1, 5.1, and 6.1 in [37].

Proof. For any t < N, the renewal property of the backward Loewner equation and the

Markov property of /By imply that My (z,y)—Ex[My (2, y)| Ft] = Ii7, syl @) f;(=9)|Gn—1(X1, Y1),
where X¢(z) = fr(z) — A\t and Yi(y) = A\t — fir(—y). Also, recall the welding curve satisfies

®(t) = (bt, at), where by = sup{x > 0: 7, <t} and a; = sup{y > 0: 7y < t}. Therefore,
[ee] o [ee] (o] / /
A A MQMAmWmeﬂww—/’A G (Xe(2), Vi) ()] () | dady
at t

oo oo
=A‘Acm4@ww@=%w%=w>w@. (3.21)

The second equality follows from a direct application of the change of variables formula,
since fi(—at) = fi(br) = 0.

Let £ be the measure on Q)1 given by d§ = G(x,y)dzdy, and observe that v((z,y), E) =
P, y:n(E) is a kernel from Q1 to ¥. By Proposition 2, § - v = le P NG (7, y)dzdy

is absolutely continuous with respect to Px, and the local Radon-Nikodym derivatives are
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given by

dg - V’t / /oo dP Z,Y; N|t
2 — G(x,y)dxd

/ /OO My(z,y) E&/;[J\;)N(x y)|ft]G($’ y)dxdy = C(N —t) V0.

The second equality comes from (3.17), and the last inequality comes from (3.21). Applying

Proposition 3, we get

0 0
|| Ben Gl dedy = Ko aonne B
Taking N — oo, it follows that
e} o0
_/0 /0 Py yG(x,y)dxdy = ICCK;dtGPH)'
Therefore, K¢, qt(Pr)OPx = ]P’Q1®}P’m and so Proposition 5 implies that

Note that this is (3.19) in the case U = Q.

We claim that for any (z,y) € Q1,

where 5<x7y) is the point mass measure on Q1. Observe that P, is supported on {f €
4 Wi (Ty) = (z,y)}, and recall that W*(ny@}?ﬁ) is the pushforward of the measure

Py.y ® Py under the transformation Wod: 29 x S — 1€ x Qq given by W(&(f,9)) =
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W(f ®g,Tr) = (9,9(T¢)), where ® is the welding induced by f & g. Thus, if £ C »C and

U CQu,
WPy y P ){E x U} = Py y @ Po{(f,9) : @ = W(f ® g) € E and &(Ty) = (w,y) € U},

which proves the claim.

Integrating (3.23) over all (z,y) € Q1 with respect to the measure G(x,y)dzdy gives
We(Br © Crms) = Wa(Pg, GPy) = Wi(Pay © Pr) B.G(x, y)dady,
where the first equality comes from (3.22). It will follow that
Wi(Pyy ® ) & G, y)dudy = Wi (Pr) ® M, (3.24)

where M = Mg, is the kernel from WEMY) to Q1 given by M(®,U) = m {®~1(U)}.
To see this, observe that W : W x [0,00) — =€ x Qq is injective by Lemma 12. For
E e W(EW) and U C Q1, let (®,z) € E x U, then there is a unique A € SWand t € [0, 00)

with W(A) = ® and ®(t) = 2. Then
WL Com ) (BXU} = BsComy OV B0} = [ s (V)™ ()00

_ /Em{@—lw)}dm(m)(@) = Wa(Pr) @ M{E x U}.

Since the measures agree on all cylinder sets, they must be the same.

For any U C Qp, the kernel My is the restriction of M to W(E"W) x U, and so (3.20)
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follows from restricting both sides of (3.24) to W(XW) x U. Finally, if we apply the inverse
map W1 to (3.20), we get equation (3.19).

]

Corollary 1. Suppose U C [0,00) x [0,00) with [ [;; G~ 4z, y)dzdy < co. If the laws
of the welding curve of an extended BSLE;(—4,—4) process started from (0;x, —y) are in-
tegrated against ]IUG_47_4(:1:,y)d:z:dy, it results in a bounded measure on curves which s

absolutely continuous with respect to the law of the BSLEy welding curve, and the Radon-

Nikodym derivative is |My(®,Q1)| = Cmy (®~H(U)).

Proof. For any measurable E ¢ W(X"), (3.20) implies that
[ | W@ o BB G s)dady = WPy & B BTGl )dady % Q1)

— WL (Pr) ® My {E x Q1) = /E My (@, Q1)dWs (Br){®)

_ [E Croim{ @ (U)W (B ) {®).

3.6 Omne-point estimate

The goal of this section is to establish a one-point estimate for the BSLE welding, similar to
the one-point estimate used to establish the Green’s function for forward SLE. After doing
this, we will see that G(z,y) = GF =475 4(z y) = :B1+4/“y1+4/“(x + y)*4*“/2*8/“ serves
as an appropriate Green’s function to use to condition welding x and y together. This is the

only special case in which we have been able to construct G via a geometrically motivated
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limit procedure.
Fix any x,y > 0. We will again be doing Ito’s formula calculations using the definitions
from Section 3.3. For clarity, we will review the definitions. Let X; = fi(x) — /KB and

Y; = kB¢ — fr(—y) so that both X and Y are positive. Ito’s formula implies that
2 2
dX; = —/kdBy — —dt, and dY; = \/kdB; — —dt.
Xi Yi

Moreover,

d( Xt +Yy) —2
= dt. 3.25
Xt +Y: XYy (3.25)

Define W; = % as before, which is a process which stays in (—1,1) for as long as it
exists. It only fails to exist if 7, = 7—, where 7, is the time so that z is swallowed by the
BSLE traces. If this does not happen (which is P.- a.s.), then W; is constant at +1 after

T = Tpy = min{7;, 7y }. What we want to estimate is P(E¢), where Ee = {X; + Y < e}

Theorem 7. For any x,y > 0, with the notation above, there is a constant C' < oo depending

only on Kk so that

hH(l) 6_%(K+4)P(E€) = Oty 4/ () =AE278/8 = Qg y). (3.26)
e

Proof. By Ito’s formula,

- . 4 .
AWy = —\/1 — W2dB; + EWtdt, (3.27)

94



where By is a Brownian motion and Wy = Wu—1 @) Recall that Wt is a radial Bessel process.
Observe that ur is the lifetime of a process satisfying (3.7). By [39], there exists a constant

C depending only on « so that for any ¢ > 0,

Plu, > 1} < C’exp{%l(Z + %)t}. (3.28)

By equation (3.5), we have Xy +Y; = € if and only if u; = —gln< j_ > := h(e), and
rTy

E¢ = {ur > h(e)}. Thus, equation (3.28) implies

r+vy

P(E,.) = P{u, > %ﬁln( ‘ )}

—1 —K € € %(’H'ZL)
gCeXp{7(2+8/ﬁ)71n (x—l—y)}zc(x—i-y) : (3.29)

In order to find the exact value of equation (3.26), we make use of a more precise bound

for P(ur > t). Equation (B.14) in [39] states that

IP{T >t} — 25(t,w)| < Ce (6+12/K)t, (3.30)
where w = (x — y)/(x + y) and

Bt w) = Cro(1 — w2) /e (1H4/m)t,

Inequality (3.29) implies that

P(E) — 29(0(e). )| < Cexp{—(6+ 12/ (n/2n ()} = ¢ (4 )M.

Tr+y r+y
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—1/2(k+4)

Multiplying through by e gives

3K+6
|6—1/2(/£+4)IP>(E€) N 26—1/2(H+4)ﬁ(h(6)’w)| <C ( 1 ) 65/2,‘64-4 0

r+y

as € — 0. Thus,

elg% 6—1/2(H+4)P(E6> _ elg% 26—1/2(I€+4)ﬁ<h(6)7w)7

if this second limit exists.

By the definition of p, we have

Y

1/2(k+4
ﬁ(h(e),w):C’,{(l—w2)l+4/” (;) /2(k+4)
rT+y

and therefore, using w = (x — y)/(x + y), we get

(1- w2)1+4/,‘£

—1/2(k+4) ~ _
€ /2 )p<h<€>7w> = Cyg (I n y)l/Q(HJA)

for every € > 0.
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Chapter 4

Measure driven chordal Loewner

evolution

4.1 Theorem statement and definitions

For any T > 0, let N denote the set of positive measures p on [0,7] x R whose first
coordinate marginal is Lebesgue measure m on the Borel subsets of [0,7]. That is, for any
Borel set E C [0,T], we have u(E x R) = m(F). We also assume that the support of p is
compact. Define Ry to be the minimal R > 0 so that H|[O,T]><R = N|[O,T]><[7R,R]- This set of
measures has a natural topology induced by weak convergence of measures. That is, u, — p
in N if for every bounded ¢ € C([0,T] x R), where C'(X) = continuous functions on X, we

have

lim od g, — od .
=20 J10,T]xR [0,T]xR

Similarly, define the space N' by u € N if p is a measure on [0,00) x R which has
locally compact support and whose first coordinate marginal is Lebesgue measure. Then we
define the natural projections Pp : N' — Np by Pr(p) = #ljo,71xr- The topology on N is
determined by py — pin N if Pp(py) — Pp(u) for every positive T.

Let G be the set of familes of conformal maps (g¢) with g; : H\K; — H, where (Kj})

is a family of growing H-hulls with hcap(K;) = 2t for every t. We will always use (f;) to
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represent the family of inverse maps f; : H — H\ K;. We put a topology on G induced by
(gf') = (gt) if fi/(2) = fi(2) locally uniformly in (¢, 2).

For pn € N, we say that (g¢) solves the chordal Loewner equation driven by g if

gt(z)—Z—/ B, gs(2))dp(s,u), D, 2) = ——, (A1)
[0,¢]] xR

zZ—U

for every z € H\ K¢, where K} is the set where the solution blows up by time ¢.

Theorem 8. a) There is a one-to-one correspondence between measures i € N and con-
tinuously growing families of H-hulls (K¢) with hcap(Ky) = 2t. This correspondence is

given by the unique solution (g¢) of (4.1) driven by p, where g = 9K, -

b) Suppose {u"} and p in N have solutions to (4.1) given by (g') and (gt) respectively.
Assume further that for allt > 0, the associated hulls {K]'},cn are uniformly bounded.
Then p™ — p in N if and only if the associated hulls K{* — Ky in the Carathéodory

topology.

The basic argument for the proof is as follows. First, given a measure u € N, we use
the general form of the chordal Loewner equation in [7] to approximate a disintegration
of p as dupdt — dpydt = dp. For each n, the family of measures duy* define a family of
chordal Loewner hulls (K}");~¢ with corresponding Loewner maps (g;')¢>0. We show that
subsequences of these converge to a family of conformal maps (g¢) and chordal hulls (k%)
such that g; solves (4.1). To show the correspondence in the other direction, we start with
a family of hulls (K}). For any hull K with hcap(K) = 27" we show that there is some
measure pp so that pp can be associated with K. For the whole process (Kt), we use this

construction to build measures u% which account for growth in each interval of length 4.
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Taking the limit of this approximation as § — 0, we get a measure p which corresponds to

the family of hulls (K7).

4.2 Preliminary results

Theorem 8 mentions convergence in the Carathéodory sense. The definition of this conver-
gence can be found in [26], and will be restated here. Let {Dp},,en and D be domains in

C. We say that D,, — D in the Carathéodory sense if
(i) For any compact K C D, there is an N so that K C D, for all n > N.
(ii) For any z € 0D, there exists a sequence z, € 0Dy, so that z, — z.

Hulls K™ are said to converge in the Carathéodory sense to K if their complements converge.
That is, if H\ K™ — H\ K in the Carathéodory sense. The following lemma can be found in

126].

Lemma 17. Suppose that Dy, — D as domains, gy, : Dy — C are conformal, and g : D — C
1s a function so that gn, — ¢ locally uniformly on D. Then either g is constant or g is

conformal. In the latter case, the following statements hold:
(a) gn(Dyp) — g(D) in the Carathéodory topology,
(b) ggl — g~ 1 locally uniformly in g(D).

Here we provide the proof that the assumptions of the classical existence and uniqueness
theorem are satisfied for the chordal Loewner ODE driven by a weakly continuous family of

measures on R as introduced in [7].
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Proposition 7. Suppose that {vi}1<7 is a family of positive Borel measures on R so that
t — vy is continuous in the weak topology. Further, assume that for all t, there exists some
M > 0 so that vg(R) < M and supp{vs} C [—My, My] for all s < t. Then for all z € H,

there exists a unique solution to the differential equation

Orr(=) = /}R gt(z)%udut(z), go(z) = 2

on some mazximal interval [0,T%).

Proof. Fix z € H and T' > 0. Define R = {(t,w) : 0 < ¢ < T,Im(w) > Im(z)/2}. Let

so that Org¢(z) = ¥(t, gi(2)). By the classical local and maximal existence and uniqueness
theorems for ODEs, if both ¢ and 0,1 are continuous in some [0,¢] X B(z,7) C R, then
there exists a solution to the ODE in some maximal time interval [0, 7%).

First, we compute 0,0 (t, w). Observe that if w, £ have imaginary parts at least Im(z)/2,

then

¢(t’w£:?(t’§)24<w15)< 2 2 )dvt(U)

w—u &—u

= 2 . g_w V+lu _—2V u
- L e [, g

where the limit is as & — w. This follows by the dominated convergence theorem, since
|€ — u|, |w — u| >Im(2)/2 and 14 is a finite measure.
Next, we will prove that 1 is continuous in the desired region. Suppose that (t,,w,) —

(t,w), with (t,,wp) € R. Then
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[0 (tn, wn) — P (L, w)]

2 2 2 2
d — d d — d :
|t = [ ) + | [ v - [ dnt)

Since Im(w) >Im(z)/2, the function u is uniformly bounded, so weak continuity

<

+

w—u

implies that the second term approaches 0. To estimate the first term, the map w +—

(w — u)_l is Lipschitz with constant C' depending only on the fixed z, so

2 2
/R — udutn(u) — /IR o udutn(u) < C/R |wp, — w|dv, (v) < CMp|w, —w| — 0.

Thus, ¢ is continuous in the desired region. The proof for 9,1 will be identical based on

the above formula, only it will use the Lipschitz constant for w — (w — )2

]

We need to establish an important result about H-hulls. In [36], it is proven that there

is a positive measure p with support in S7- so that || || =hcap(K), and

fK(Z)_Z:/S* Z__luduK(U)-

K

Lemma 18. If K is an H-hull, then for all z € H,
|fr(2) — 2| < Tdiam(K).

Proof. Suppose without loss of generality that K C K, := {z € H : |z|] < r}, where
r = max{|z| : z € K}. In [7], it is proven that hcap(K;) = 72 and Sk C Sk, = [-2r,2r].
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Fix any L > 2r, and suppose that |z| > L. Then

1 2

Z—U

< el _ 7 '
— L—-2r — L—-2r

File) — 2| < / dyige ()

S

*
K

Suppose that |z| < L. Then the maximum modulus principle implies that

|fr(2)] < sup | fxc(w)].

{Jw|=L}U{—L<w<L}

Since fx can be extended to an analytic function on C\Sg (see [26]), the maximum in
{Jw| < L} occurs either on Ay, :={w € H: |w| = L} or on Sk . Extending fx continuously

to H, we get that |fx(2)| <diam(K) < r as z — Sk. For z € A, we've already shown that
2

] < Jel+

= L. Thus, picking L = 3r, we get that

r2

3r — 2r

\fic(2) — 2| < |z| + max{r, |z| + } < 3r+max{r,3r +r}="1r.

4.3 A disintegration lemma

We begin by demonstrating how we disintegrate a measure pu € N.
Lemma 19. Let p € N. Then there exists a family of measures (11} );~0nen on R so that
(a) Each pf} is a probability measure on R.

(b) For every n € N, the map t — pj' is continuous with respect to the weak topology on

measures on R.
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(c) The measure given by dpj'dt is in N, and duj'dt — p as n — oo in N.

(d) For almost every t € [0,00), there is a probability measure pi so that pt — iy weakly.

Also, dudt = dp.

Proof. First, we must define the measures py'. For each n € N,z > 0, define a linear

functional Ly, ; : Ce(R) — C by

Lugé)=n | S(u)du(s, u). (42)
[tt+1/n] xR

To see that this map is well defined, observe that

Lnt(6)] < n /[t oo P18 ) S [6lloomp(e -+ 1] x B) = [l < o0

The map Ly, is clearly a positive linear functional. By the Riesz representation theorem,
there exists a Radon measure p* defined on the Borel sets of R so that equation (4.2)=
Jr Ot

To prove (a), for every k € N, define ¢, € C¢(R) so that ¢p(u) = 1 for u € [—k, k],
and ¢y (u) — 1 monotonically for every u. By the monotone convergence theorem (applied

twice) and equation (4.2),

(@) = Jim [ Gy = lim O () dpu(s, )
k—oo JR k—00 [t,t4+1/n]xR
=nu(t,t+1/n] xR) = 1.
We will now make several arguments about the measures converging weakly on R. For

weak convergence, we need to test all bounded continuous functions on R. However, we
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are testing the local properties of the measures ;1 before some time 7. We assume that
our measure p, when restricted to [0,7] x R, has support contained in [0,7] x [—Rp, R7].
Therefore, if ¢ is any bounded continuous function, there exists some ¢* € C.(R) so that
¢* = ¢ on [—Ryp, Ry]. Hence, for all weak convergence arguments below, we will make this
reduction automatically and work only with continuous functions with compact support.
To see (b), suppose that t;. — ¢ in [0, 00). Then ;. — ¢ in [0, T for some T". Let ¢ € C(R)

be arbitrary. Then
/ Gduiy =n / o (u)dpu(s, u)
R [tg tp.+1/n]xR
=n /[O,T]xR H[tk,tk+1/n]xR($, w)o(u)dpu(s, u). (4.3)

Then H[tk,tk+1/n]xR(S’ w)p(u) = Ly 141 /n)xr) (8, )@ (u) p-almost everywhere, and is domi-
nated by ||¢||sc € Ll([O, T|xR, p). Thus, Lebesgue’s dominated convergence theorem implies

that

k—o0

lim (4.3) = n/[OvT]XR]I{[t,H—l/n]xR}(SaU)¢(u>dﬂ(37u) = /RcbdM?-

Now we must show c¢), starting with dui'dt € N. For any Borel set E C R, part (a)

[E(/Rmu;}) it= [ it=m(E),

Also, if t < T, then it is clear that the support of ' is contained in [—Rp 1, Rpiq].

implies that

Therefore, duj'dt € N. To show convergence, suppose that ¢ € Cc([0,T] x R). For any

T >0,

/[OMW, )y (u)t = /[O,T] ([ ottt ar

T
:/ (n/ qzﬁ(t,u)du(s,u)) dt
0 [t,t4+1/n] xR
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S s T
S VA Y S | [\, ) retmanieon
[0,1/n]xR JO [1/n,T)xR Js—1/n [T, T+1/n]xR Js—1/n

Since ¢ has compact support, fixing n guarantees that this function is Ll(,u x m), so the
above use of Fubini’s theorem is justified. We will show that the first and third terms go to
0, and the middle term converges to f[O T)xr @5, u)dp(s, u).

To bound the first term, observe that

‘ | [netadants.o| <ol [ [ dduts.o
[0,1/n]xR JO [0,1/n]xR JO

- /
[0,1/n]xR

,1/m]x

I#]

1
sdu(s,) < ol [ (s, u) =190,

[0,1/n]xR
which converges to 0 as n goes to infinity. The third integral converges to 0 by a similar

argument. Thus, it suffices to show that

1 S
I — tou)dt | du(s,u) = w)dp(s, u). 4.4
R (1/n /S_l/nqb( u) ) (s, u) /[OvT]qub(s wdu(s,u).  (44)

For each u, the map t — ¢(t,u) is continuous on [0, 00), so the fundamental theorem of
calculus implies that
1 S
lim — o(t,u)dt = ¢(s,u)

n—oc 1/n s—1/n

for each s. Thus, for p-almost every (s,u),

S

H{[l/n,T]xR} (s,u) (n /_1/ o(t, u)dt) — H{[O,T}XR}(Sv w)P(s, u)
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as n — 0o. Also, for every n € N, s > 0, and u € R, we have

< (16 llooTfo 7y [ v, v] (5:w) € L (1),

H{[l/n,T}XR}(& u)n /1/ gb(t, u)dt

where the support of ¢ is contained in [0, 7] x [- N, N] for some N > 0. Therefore, Lebesgue’s
dominated convergence theorem implies that (4.4) holds, which completes the proof of (c).
We now prove (d). Since py is a collection of Radon probability measures with uniformly
compact support for each ¢, there is a subsequential weak limit p;. Let {¢p }ren be a dense
countable subset of C(R), which is separable. We claim that for each k, there exists a subset

B}, C [0,00) so that m(EY) = 0, and for all t € E}, we have

n—oo

i, [ oxtu)dif ) = [ onl)dpw)

To see this, define a measure v on R by vi(E) := [p, g &k (u)du(s, u), which is absolutely
continuous with respect to Lebesgue measure. By (28], Theorem 7.14) we have for m-almost
all ¢ (where a.e. depends on ¢y, hence the set E}.),

n_i . Vk[t,t+1/n] dl/k
/]R o = 7 /[t o1y R0 = T kD)

Thus, limy, [ ¢pdpy’ exists, and there is subsequential limit equal to | ¢xdpus, and therefore

[ opdpi — [ ¢pdpy for each k.
Let E = Np.Ep, so that m(E€) = 0, and suppose t € E. Let ¢ € C.(R). We claim that

[ ¢du} — [ ¢dus as n — oo. Let € > 0. Then there exists some k so that ||¢p — ¢leo < €.
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Then for sufficiently large n,

Awwmﬂw—émmwmu

<e+e+e

+'/R¢kdu?—/R¢kdut +'/R¢>k—¢dut

Thus, pi' — pp weakly for all ¢ € E, and hence for m-almost every ¢.

< '/R¢—¢kd/1?

The final claim is true because for any ¢ € C¢([0,T] x R), for any u and almost any s, we
have [p ¢(s, u)dus(u) = limpy o0 g ¢(s, u)dpy(u). Therefore, the dominated convergence

theorem implies that

/Ot/Rcb(s,u)dMs(U)ds:/()tnILI%O/IR{¢(s,u)dMg(u)ds

t
:nhanéo/o /Rgb(S’U)dM?(U)dS:/[O,t]XRQS(S’U)dM(S’U)‘

The last equality follows from part (c), since duj'dt — dp in N.

O

Remark: For each ¢ > 0 so that p; as in part (d) exists, we can exactly repeat this

construction with the functional

¢%n/ o(w)du(s, )
[t—1/n,t] xR

for each n. The resulting measures will converge to the same py for almost all ¢. Therefore,
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if h < 0, we can use the convention

/ (s, u)du(s, u) = — / o5, u)du(s, u)
[t,t+h] xR

[t+h,t] xR

as in Riemann integration to discuss differences g; 1 (2) — g¢(2) without making reference to

whether A is positive or negative.

4.4 Elementary calculations

Next, we will make several calculations assuming that (4.1) driven by p has a solution (g¢).
These calculations will then be applied to the measures du™ = dyj'dt, which have solutions
(g') for each n by Proposition 7. Moreover, the maps g;* are all conformal, and a solution
to (4.1) will be constructed as a locally uniform limit of g}, and so we can treat any solution
as conformal. We state and prove these lemmas in their more general state since we will
need them after a solution is proven to exist. First, we have to prove two Lipschitz estimates

which will be used repeatedly.

Lemma 20. a) If z,w € H with imaginary parts at least h > 0 and u € R, then

2
|P(u, z) — P(u,w)| < ﬁ|z — w|.

b) Suppose (g¢) is a solution to the chordal Loewner equation driven by p € N'. Then for

any z € H and t1 <to <T < 7y,

2
|9t (2) — g11 (2)] < mﬁz — 1.
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Proof. To prove a), observe that |z —u| > h and |w — u| > h. Therefore,

2 2

2
< ﬁ|z —w|.

(z —u)(w—u)

To prove b), observe that (4.1) implies that the imaginary part of g;(z) is a decreasing

function of ¢t. Therefore,

2

/ 2
[tl,tQ]xR gS(Z) —u

d s S —d )
o] € [ T e

\th(Z) — 9t (Z)’ =

2 9 5
- /[151,t2]><R mdu(s’ u) < /[t1,t2]><]R mdu(s, u) = mlm —t].

]

Lemma 21. If (g¢) is a solution to the chordal Loewner equation driven by p € N and

z € H. Then for almost any t < 7,

ran(z) = | ()

where py is the measure from Lemma 19 part d).

Proof. This follows from Lemma 19 part d), which says that dug(u)dt = du(t,u). In partic-

ular, if ' < 7, Lemma 19 part d) implies that for ¢t < T,

t 2
ge(z) — 2 = /{WR B(u, gs(2))du(s, u) = /0 /]R ().

Since

2
|



the fundamental theorem of calculus implies that dyg;(z f]R il th z) for almost every

t. O]
We can now prove uniqueness.

Proposition 8. A solution of the chordal Loewner equation driven by pn € N must be unique.

Proof. Fix z € H, and suppose that g; and g; are two solutions of the integral equation

2
gt(z) =z +/ ————du(s,u)
0,4]xR 9s(2) — u
up to some time 7" +¢e. Then {Im(g¢) };<7 is decreasing and bounded below by Im(g7). The
same is true for g¢, so we can assume that there is a constant C' so that for all ¢ < T', we have
Im(g¢) and Im(g;) are bounded below by C. By Lemma 21, for almost all ¢ < T (depending

on z, which is fixed), we know that

B gt — gt "
o190 =2 [ G

Therefore,

. Gt — gt 2 . 2 .
Ot(gt — gt SQ/ = dur < —5 | |Gt — gtldp(v) = =59t — gt
194 ) R [(9t — u)(gt — )| C? R| e ) C2| |

Since g¢ and g¢ are absolutely continuous by Lemma 20 , we get that

t
|gt_§t| S/O |as gs |d3< / |gs gs|d3

By Gronwall’s inequality applied to |g; — g¢|, it follows that g = g for all ¢ < T. Since T

was an arbitrary number below the lower blow-up time, it follows that g+ = g+ for all £.
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]

Next, we need to derive some basic continuity and differentiability properties of the

inverse function f = fi(z) = gt_l(z).

Lemma 22. Suppose that g(t,z) = g+(z) solves the chordal Loewner equation driven by

pweN, and let fi(z) = gt(z)_l. Then both f and f' are continuous in the variables (t,z).

Proof. The main part of this lemma is that if (K%) is an increasing family of hulls with
hcap(Ky) = 2t, then the map t — H\ K is continuous in the Carathéodory topology. Then
Lemma 17, part (b) implies that if ¢, — ¢, then f;, — f; locally uniformly in H\ K}, and
therefore ftln — f} locally uniformly in H\K}.

It suffices to prove that H\Ky, — H\K; in the cases where ¢, increases to ¢t and t;,
decreases to t separately. First, assume that ¢,, decreases to . Then K; C Ky, for all n. 1
claim that N, K¢, = K. Let K' = Mn K, which is an H-hull with K¢ C K’ and assume that
K" # K;. Then hcap(K’) >hcap(K}). However, 2t,, =hcap(K;) >hcap(K’) >hcap(K;) =
2t, which contradicts the assumption that ¢, — t. Thus, K = N, Ky,. The properties for
Carathéodory convergence are readily verified

Now, suppose that ¢;, increases to t. Note that we do not necessarily have Up Ky, = Kz,
so we must argue differently. Observe that H\K; C H\Ky, for each n, so g4, is defined
on H\Kjy, for each n. Let D, = D = H\K;. Then D, — D clearly. Also, g1, — gt
locally uniformly, and g; is not constant. By Lemma 17 (a), we have that gy, (H\K;) — H.
Applying it again to the inverse maps yields H\ Ky, — H\ K.

]

Lemma 23. Let p € N, and let du"™ = dpj'(u)dt, where py is as in Lemma 19. Then there
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are functions (g;') which solve (4.1) driven by p". If fj* = (g?)_l, then

e = e (4.5)
[0,¢] xR

Z—U

for each z €e H;t > 0,n € N.

Proof. For each n, Lemma 19 part b) and Proposition 7 imply that there is a solution of

o () = [ i (), () =

which is the solution of (4.1) driven by x". This equation holds for all ¢ < 7. If fJ* = (g/*) ™!,
the chain rule then implies that

ot - [ I . e - -

Z—U

Integrating this gives with respect to ¢ yields (4.5).

]

We are now almost ready to prove existence of a solution to the chordal measure driven
Loewner equation. In order to use a limiting argument, we need some sort of control on the
size of the hulls {Kf}tgto for any fixed ty. This control will be provided by the following

two lemmas.

Lemma 24. Suppose (g¢) is a solution of the chordal Loewner equation driven by p € N.
For each t, define My = max{\/t, R¢}. Then for all z € Ky, we have |z| < 4M;. Moreover,

if |2| > 4My, then |gs(z) — z| < My for all 0 < s < t.

Remark: This lemma is an extension of Lemma 4.13 in [7], where it is proven for the
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chordal Loewner equation driven by a continuous function. The proof is different, however.

The argument follows the standard proof for the existence of a solution of an ODE.

Proof. Fix t > 0 and z € H with |z| > 4M;. Recall that Ry is defined to be Ry = inf{R >
0+ pljo xR is supported in [0,7] x [-R, R]}. We will use a Picard iteration argument to

show that 7, > ¢, where 7, is the lifetime of (4.1) at z. Let w € B(z, M), which implies

|lw| > 3M;. For any u € [—Ry, Ry], we have |w — u| > |w| — |u| > 3My — My = 2M;.

Therefore, if ®(u,z) = , we have for any w,w’ € B(z, My),

Z—U

2(w —w')
(w —u)(w" —u)

2lw — w'|

1 /
5— = lw—w]
AME T 2M:

| (u, w) — ®(u,w')| = ’

1 -
This implies that ®(u,w) has Lipschitz constant 2 for w € B(z,My). Also, if w €

B(z, M) and u € [—Ry, Ry],

Then the restriction of ® to [~ Ry, Rt] x B(z, M) satisfies ||P]|oo < 1/M;.
To perform the Picard iteration, fix an a > 0 to be determined later, and define an

operator A on the set of continuous functions from [0, a| to B(z, M) by

AG)(r) = = + /[O g PN ), 057 <0

We will show that for each a < ¢, A(¢) will be a continuous map from [0, a] to B(z, My). If

a < t, then a < ME by construction of My. For r < a,

[A(P)(r) — 2| =

| awo)du(s.n
[0,r]xR
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a
sAWQwW@MwMSESM. (4.6)

Therefore, A(¢) sends [0, a] into B(z, My).
Next, we need to show that A is a contraction. For any continuous ¢1,¢9 : [0,a] —

B(z, My), the Lipschitz estimate implies that for any r € [0, al,

|mem—M@mws/’ 1B (1, 61(5)) — B(u, bo(s))] dp(s, )

[0,7] xR

1 a
< 51191 = P2lloodp(s, u) < —5[|¢1 = P2]|o0,
Sy 7191~ @2loedi(s,0) < gl =l

where a/Mt2 < 1. Thus, A is a contraction between Banach spaces, and the Banach fixed

point theorem implies that there is a unique continuous ¢ : [0,a] — B(z, M) so that

du(s,u), 0<r<a.

amzAwwv=z+/ &

[0,r]xR o(s) —u

By Proposition 8, ¢(r) = gr(z) for all r < a < t. Thus, 7, > t. Moreover, if |z| > 4My, this
construction can be stretched to a = ¢, and so applying (4.6) to g¢(z) proves |gs(2) — z| < My
for all s <.

]

Lemma 25. If p € N, let puf be as in Lemma 19. For each n, let (g3*) be the Loewner maps
driven by {uf < with corresponding H-hulls (K{*)i<p. Then for every to > 0, there ewists

some My, >0 so that KI' C {z € H: |z| < M, }.
0 to 0

Proof. By Lemma 24, it suffices to show that the support of the measures {M?}tgtojngN are
uniformly bounded. We have assumed that p restricted to [0,ty + 1] X R is supported in

[0,tg+ 1] X [-R, R] for some R > 0. Suppose that € R and € > 0 so that (x — 2¢, x4 2¢) X
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[t,t+1/n) C ([0,tg + 1] x [=R, R]). In particular, pu((x — e,z +€) x [t,t + 1/n]) = 0. Let

o € Ce(R) be a monotonic sequence converging to I(z—ez+e)- Then
pi(z —e,x +€) = lim / b (uw)dp (u) = lim n b (u)dp(s, u)
k—oo JR k=00 J[tt+1/n]xR

=nu((z —e,x+¢€) x [t,t+1/n]) =0.

Since the supports of the measures jj are uniformly bounded, it follows that the hulls K}

are bounded independently of n.

4.5 Proof of existence

Using the boundedness of hulls from Lemma 25, we can prove equicontinuity of some subse-
quence of any family f™ of inverse functions associated with a sequence of measures u" € N’

associated with p.

Lemma 26. Let p € N, and suppose (g;')¢>0 is the family of conformal maps which solve
the chordal Loewner equations driven by the measures du" (t,u) = duy' (u)dt for eachn. Then

there exists a family of conformal maps (g¢) so that a subsequence of (g;') converges to (g¢)

mg.

Remark: The proof of this lemma will hold for any u"™ € N with u™ — N as long as
(4.5) holds at each n, and if the hulls (K}") are uniformly bounded for each ¢. We will do

this to prove that Theorem 8 part b) holds.

Proof. Fix T' < oo. Applying Lemma 18 to each member of the family (K}');<7 pen, and us-
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ing the assumption that the hulls are uniformly bounded, we get that the family (f;*);<7 nen
is normal in H. We will use this normality and equation (4.5) to show that the functions
f™ are equicontinuous in both ¢ and z on any compact set [0, N| x Ry C [0,00) x H, where
Ry = [~N,N] x [I/N,N]. Since (f{")i<Tnen is a normal family on H, so are the families
of derivatives ( ft”);t <NneN and ( ftn)g <N.neN- Since Ry C H is compact, this implies that
there are constants C'y, CX; < oo with [(f&)(z)| < C'y and |(f§)"(2)] < C}; for all s < N

and z € Rp. Therefore,

() (21) = (f&) (22)] < Cl21 — 22|, forall s <N,z € Ry. (4.7)

If0 <t <t9g <N and 21,29 € Ry, equation (4.5) implies that

i1 (21) = fi5(22)] < |21 — 22| + 2

/ (fH)' (=) (f?)'(zz)dﬂn(s )
[0,t]xR ’

21— U 29— U

/ (fg)l_(z2)dun(s, U)
[t1,t9]xR 22 — U

If we can bound (I) and (II) uniformly in N, |to — ¢1], and |z — 22|, we will have that f is

+2 = |21 — 29| + 2(I) + 2(II).

equicontinuous in [0, N| X Ry.

For any u € R and z € Ry, we have |z — u| > 1/N. Therefore, (II) can be bounded by

2
m<cy | dp(s,u) < O (2N)|ta — ty].

[tl,tQ]XR ’Z - U’|

To estimate (I), observe that for any u € R, we have

(f) (1) _ (/) (22)

21 —u 29 — U

(f$)'(z1) _ () (=)

21— u 29 — U

(f)' (1) _ (f5) (22)

290 — U 29 — U

+

<
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29 — 21
(21 —u)(22 — )

< Cl + N (z1) = (f) (22)]
< N2C’§V|zl — 29| + NCK{|21 — 29],

where the last inequality follows from (4.7). Therefore, since the marginal of u" is Lebesgue

measure and t1 < N, we have

(I) < /[Ot | RN2C§V\21 — 29| + NCY |21 — 2o|du(s,u) < (NZCA; +NC’§<[> |21 — 29
1]

< <N3C§V + NZCK;> |21 — 23].

Therefore, we have equicontinuity of f™ on [0, N] x Ky for every N. By the Arzela-
Ascoli theorem, there is a subsequence so that "k — fN for each N locally uniformly on
[0, N] x K. Taking N — oo and applying a diagonal argument gives the desired limit
function f : [0, 00) x HL.

]

Lemma 27. If (g') is a solution of the chordal Loewner equation driven by p", (g3*) — (gt)

in G, and u'" — pin N, then (g¢) is a solution to the chordal Loewner equation driven by .

Proof. The chordal equation (4.1) implies that

g(z) = / B(u, g(2)) — B(u, gs(2))dp" (5, u) + / B(u, gs(2))du" (5, u) + 2. (4.8)
[0,¢] xR [0,¢] xR
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To estimate this, we will need to show that

lim sup {g7(z) — gs(=)[} = 0. (4.9)

This will be justified at the end of the proof. It is easy to show that Im(g7(2)) is decreasing
in s for each n, so taking the limit as n — oo shows that Im(gs(2)) is also a decreasing

function of s. Tt also follows that Tm(g%(z)) > min{Im(g¢(2)), Im(g}(2)),---} = h > 0 for

o

each n € N and s < ¢. Strict inequality follows since {g}'(2)},7 ¢

is a sequence of numbers

in H converging to g;(z) € H. By Lemma 20, if L = 2/h?,

/ 1B, g (2)) — B(u, gal(2))|dp" (5, ) < / LI (=) — gs(2)|dia" (s, u)
[0,¢]xR [0,¢] xR

< Lsup{lgg (2) — gs(2)[ 11 ([0, 2] x R) = Lt sup{|gg (2) — gs(2)[} = 0
s<t s<t

as n — oo by (4.9).
To estimate the second term in equation (4.8), observe that for a fixed z, since s — gs(2)
is continuous, the mapping (s,u) — ®(u,gs(2)) is a continuous function. Since p — pu

weakly on [0, ] x R, it follows that

[ e s > [ gu)duts, ).
[0¢]xR 0,¢] xR

Therefore, the above and (4.9) imply that

gt(z) = lim gi'(2) = lim equation (4.8) = / D(u, gs(2))dp(s, u) + z.
n—00 [0,t] xR
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Now we prove (4.9). Suppose otherwise, so that there is some € > 0, some subsequence

ny, and some sequence sj, € [0, t] with
n
1957 (2) = gs;.(2)] > € (4.10)

Passing to a new subsequence if necessary, we can assume that there is some s* € [0, t] with
s — s*. Since g¢(z) is continuous in ¢, g5, (z) converges to gg«(2) as k — co. We also claim

that g?lf(z) is bounded. To see this, if h is defined as above,

~

2 2 2
e e [ ks < SR <
0,5) xR |gs*(2) — u h

Therefore, passing to a subsequence if necessary, we can assume that g?lf(z) converges to
some w € H as k — oco. Since ftn k(z) converges to fi(z) locally uniformly in (£, z), it follows

that z = f:kk(ggf(z)) — fgx(w), and so gg«(2) = w. Since gs; (2) = g¢x(2), we get that

lim g?]f (Z> - gsk(z) = Gg* (Z) — gg* (Z> =0,

k—o0

which contradicts (4.10).

Finally, we can prove existence.

Proposition 9.  a) If u € N, then the solution to the chordal Loewner equation driven

by p exists.

b) If (g¢) is the solution of the chordal Loewner equation driven by u € N, and if fy = gt_l,
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then (4.5) holds for f. That is,

_ —2f(2)
fi(z) — 2= /[O,t}xR ﬁdu(s,u).

c¢) Assume p" — pin N, and suppose the respective corresponding Loewner maps are (g;')
and (g). Assume further that the associated hulls { K]'},ecn are uniformly bounded for

each t > 0. Then g = gt in G.

Proof. Lemma 26 can be applied to the sequence duy'dt € N to conclude that (g;') — (g¢)
subsequentially in G to some family of functions (g¢). By Lemma 27 it follows that (g¢)
solves the chordal Loewner equation driven by u, which proves a).

To prove b), Lemma 26 can be applied to f" (after passing to a subsequence if necessary),
to conclude that |f"(z) — f(z)] — 0. Therefore, it suffices to show that the difference of

(4.5) for f{*(z) and f¢(2) goes to 0. To see this, observe that

OUE) [ 2
Jupa e W= f e

fi(x) _ () () f5(2) f5(2) ) n
/[O,t] —du(S’U)_/[O,t] =—dp"(s,u)|.

zZ—u zZ—u <R Z—U <R Z—U

du" (s, u)+2

o
[0,¢] xR

The first term goes to 0 by the dominated convergence theorem, since (f}')s<¢ is a normal
family, so is the family of derivatives. Therefore, |(f™)%(2)| can be bounded uniformly in
s < t. Since fI*(z) — fs(z) locally uniformly in z for all s < ¢, and so does (f™);. The
second term goes to 0 because u'* — p.

The last assertion follows from Lemmas 25, the proof of 26 with b), and 27. In particular,

by b) and Lemma 25, the remark after Lemma 26 implies that there is a subsequential limit
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g+ for which f™ converges to f uniformly in both space and time. Lemma 27 implies that
gt is a solution to the Loewner equation driven by u. Also, Lemma 27 implies that any
subsequential limit of g;* solves the Loewner equation driven by j, which must be unique by

Proposition 8, and therefore the sequence (g;') converges to (g¢). O

4.6 Growing Hulls

In this section, we prove the reverse direction of Theorem 8. We start with a continuously
growing family of hulls (K%) and construct a measure u € N whose solution to (4.1) generates

the family (K%).

Proposition 10. Let Ky be growing hulls with hcapKy = 2t for every t. Then there is a

measure € N so that g; : H\K; — H, where g; solves the Loewner equation driven by .
We first prove the following lemma. The proof is identical to that of Lemma 6.5 in [19].

Lemma 28. Let K be an H-hull, and let 2T =hcap(K). Then there exists some pu € Np so

that if g¢ is the solution to the Loewner equation driven by p, then gp : H\K — H.

Proof. Let € > 0, and let 7€ : [0,T¢] — H be a simple curve so that v¢ begins in R, encloses
K, and has Hausdorff distance from K less than e, where K is the union of K and the convex
hull of K NR. By ([7], Proposition 4.4), there exists a continuous function A€ so that if gi is
the solution of the chordal Loewner equation driven by A, then gf : H\»[0,¢] — H for all
t. If we define u¢ = do )\e(t)dt and take a subsequential weak limit as ¢ — 0, Proposition 9

implies that there is a measure u € N whose solution g; satisfies g7 : H\ K — H.
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Proof of Proposition 10. Suppose for now that g; = 9K, for each t. Let § > 0, and let

[ € {0,1,2,---}. Then hcap(K5<l+1)/K5l) = 20. By Lemma 28, there exists a measure

% on [0,0] x R so that if gf’l solves the Loewner equation driven by %!, then gg’l :

H\(K§(41)/Ksi) — H. Define a new measure 1% on [01,6(1 + 1)] x R by shifting the

previous measure. That is,

p(E) = i ({(x = l,y) : (z,y) € B}).

Finally, define a measure /L(S e N by p‘s = Zi’io ,u(s’l, and let gf solve the Loewner equation
driven by pd with gg : ]HI\K;s — H.
We will show that K5 = Kgl for every [ and 6. We prove this by induction. The case

[ = 0 is obvious, since if t < ¢, then

B =2+ / B(u, g ()i (s, w),
[0,¢] xR

and therefore gg = §?’O(z) for each t < ¢, and Ks5/Ko = Kj.

Suppose this is true for [. Then fgl : H — H\ Kj;. For any t € [0, 9],

G = g (732 = £ + /[0 s PSRN 0

S ¢d 5
+/WNH]X}R‘I’(U,gs(fél(z)))du (s,u)
= f3(2) + (g5 (F3(2) = (=) + /[5l,<5l+t] (u, g3 (2 (2)))dpd (5, )

=24+ ) 7(5 § d~57l |
’ /[O,t]x]R (u, 95145 (f51(2)))di™ (s, u)
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— / O(u, GO (2))djid (s, w).
[0,¢] xR

Thus, Gf’l solves the Loewner equation driven by %!, and so Gg’l = gg CH\(Ks(141)/ Kot) =

H. It follows that

5 5
K5q41)/ K51 = K1)/ Kt

Therefore, since ggl = 9Ky, by the induction hypothesis,

5 _ 5 _ _
Io(+1) T Ikl /K © 900 T IR0y /Ky © IR = IKg (141

(I4+1)

If uk = /fsk is a sequence with a weak limit u € A/, which exists because the hulls KLES are
uniformly bounded for each ¢ < oo, then Proposition 9 implies that gf converges to g+, the
solution of the Loewner equation driven by . Since f* — f locally uniformly in space and
time, it follows that Ktk — Ky in the Carathéodory topology for every t. Hence, g; solves
the Loewner equation driven by u, and gy : H\ Ky — H.

]

The last part of Theorem 8 which remains to be proven is the convergence fact. We
need to prove that convergence of a family of hulls implies convergence of the corresponding

measures.

Proposition 11. Suppose that " € N, and that gi : H\K]* — H is the associated solution
of the chordal Loewner equation. Then if K;' — Ky in the Carathéodory topology for some
increasing family of hulls Ky and the family {K}'}pen is uniformly bounded for each t, then

there is a measure i € N so that (K;) are the hulls associated with p and p"™ — wu in N

Proof. By Proposition 9, we know that there is a measure p which drives the family of
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hulls K;. Let fi be any subsequential limit of z*, which exists because the hulls K are
bounded for each t < oo. Also by Proposition 9, p"k — [ implies that Kf k converges in
the Carathéodory topology to the hulls driven by fi. Since we know that K? k converges to
K, and the hulls are uniquely determined by the measures, it follows that i = u. Since

was an arbitrary subsequential limit, it follows that ™ — pu in V.
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