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ABSTRACT 

THE DISTRIBUTION AND DYNAMICS OF  
RESISTANCE GENES IN SOIL MICROBIOMES 

 
By 

 
Taylor Katherine Dunivin 

 
 

 The soil microbiome harbors immense microbial biodiversity that encodes important 

functions of interest to public health. These include functional genes that encode resistance to 

antibiotics and arsenic. In the case of antibiotic resistance, transfer from environmental strains to 

pathogens is a public health risk, and arsenic resistance and metabolisms are important for 

bioremediation as they impact the fate of arsenic in the environment. While these resistance 

genes are well-characterized in vitro, the full scope of their environmental distribution, diversity, 

and interspecies transfer is unknown. A better understanding of the diversity and distribution of 

resistance genes would provide insights into the potential for mitigation of public health 

problems such as arsenic contamination and antibiotic resistance.  

 The work in this dissertation used a combination of cultivation-dependent and -

independent techniques to better understand the dynamics and distributions of antibiotic and 

arsenic resistance genes in the environment. The influence of a disturbance on microbial 

antibiotic resistance and arsenic related genes was investigated by examining soils overlaying an 

underground coal mine fire in Centralia, PA. Additionally, soil meta-analyses were used to 

determine broader distributions patterns of these genes. These data and methods not only provide 

insights into the distributions and dynamics of antibiotic resistance and arsenic related genes in 

soil microbiomes but also provide a framework for future studies of other functional genes.  
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Overview 

Soil harbors immense microbial biodiversity. This diversity, which constitutes the soil 

microbiome, serves as a reservoir of functions that can affect public health. These functions 

include 1) arsenic resistance and metabolism and 2) antibiotic resistance. Arsenic resistance and 

metabolism impacts the biogeochemical cycling of arsenic (1), a toxic metalloid, and the 

dissemination of antibiotic resistance genes (ARGs) can lead to antibiotic resistant infections. 

Both gene groups are widespread in the environment and can be horizontally transferred.  

Additionally, arsenic related genes and ARGs have been found together on plasmids (2–4). 

Despite relevance to public health, the full scope of the environmental distribution, genomic 

distribution (chromosome vs. plasmid) diversity, and interspecies transfer of these genes is 

unknown. This knowledge gap is due, in part, to the immense diversity of the soil microbiome. 

This dissertation uses an environmental disturbance gradient and soil meta-analyses to examine 

the distribution and dynamics of ARGs and arsenic related genes in soil.  

 

Arsenic tolerance, resistance, and metabolism 

Arsenic is a toxic metalloid included on the Environmental Protection Agency’s list of 

priority pollutants (5). Soil arsenic levels are generally low (< 15 ppm) (6), but anthropogenic 

activities, including application of arsenic-containing pesticides, burning fossil fuels, and mining 

increase environmental arsenic concentrations (7). All domains of life are sensitive to arsenic 

because it exhibits toxicity on a cellular level by inhibiting energy production, causing oxidative 

stress, and inappropriately binding proteins (8). In humans, acute arsenic exposure can be fatal, 

while chronic arsenic exposure causes gastrointestinal, cardiovascular, and kidney disease as 

well as a multitude of cancers (9). Chronic exposure from drinking water contamination alone 

currently impacts over 200 million people worldwide (10). Exposure prevention is complex 
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because the flow of arsenic through the environment depends on anthropogenic activities, 

geochemistry, and microbial activities (11). As an element, arsenic cannot be degraded, so 

exposure prevention is the most effective measure to reduce arsenic-related disease. The 

environmental fate of arsenic is thus an important health concern. The toxicity and mobility of 

arsenic varies between its two most common oxidation states with arsenate being less mobile and 

less toxic than arsenite (12). While the mobility of arsenic depends on several abiotic factors in 

the environment, including oxygen levels and pH (13), microorganisms are the main drivers of 

arsenic biogeochemical cycling (14).  

 

Because arsenic is toxic (8), microbes have evolved a variety of mechanisms to cope with 

this element, including tolerance, resistance, and metabolism (15–21). Tolerance mechanisms 

include intracellular chelation, adjusting the cytoplasmic redox environment, and biofilm 

formation (21). These tolerance mechanisms provide transient protection and do not alter arsenic 

speciation, but arsenic resistance and metabolism, encoded by arsenic related genes, can impact 

the biogeochemical cycling of this metalloid. This dissertation will focus on four major 

functional classes of genes encoding arsenic resistance and metabolism in Bacteria and Archaea.  

 

Arsenite efflux pumps and accessory functions (acr3, arsB, arsD)  

 Perhaps the most streamlined form of arsenic resistance is the extrusion of arsenite from 

the cell through arsenite efflux pumps. The minimum requirements for resistance to arsenite with 

this mechanism include a repressor protein, ArsR, along with an efflux pump (22, 23). Genes 

encoding arsenite efflux pumps are present in a variety of soil microorganisms and include acr3 

and arsB. Additional genes included in the operon include arsA and arsD. Gene arsA encodes an 

ATPase that drives arsenite efflux pumps (24). Gene arsD encodes a repressor and arsenite 
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chaperone (25). Arsenite efflux pumps can also function downstream of arsenate reductases, 

which will be discussed in the next section.  

 

 Arsenite permeases ArsB and Acr3 both remove arsenite from the cytoplasm, but they are 

not homologous (26). For example, COG0798 (from the COG database (27)) is entitled 

“Arsenite efflux pump ArsB, ACR3 family” (28), but it detects only Acr3 family sequences. 

acr3 is diverse and requires two sets of primers, one for each clade: acr3(1) and acr3(2) (29, 30). 

Most sequences in clade acr3(1) belong to Actinobacteria (29, 30), but clade acr3(1) is not 

monophyletic. Studies have found sequences of acr3(1) that belong to Firmicutes as well as 

Proteobacteria and are distinct from Actinobacteria-related sequences (29–31). Clade acr3(2) is 

known to contain mostly Proteobacteria (29–31). Known arsB sequences have lower 

phylogenetic diversity (29, 30), and only one primer set is required to target arsB (29). Evidence 

exists for horizontal gene transfer (HGT) of both acr3 and arsB (30), and both are found on 

plasmids (32, 33).  

   

Cytoplasmic arsenate reductases (arsC (trx), arsC (grx)) 

 In Bacteria and Archaea, cytoplasmic arsenate reduction is encoded by two non-

homologous genes: arsC (trx) and arsC (grx). These genes are phylogenetically widespread, 

suggested to be evolutionarily ancient (16), and have been shown to undergo HGT (34). arsC 

(grx) likely evolved from a glutaredoxin family protein (35), and arsC (trx) likely evolved from a 

phosphotyrosine phosphatase (36). Additionally, they are thought to differ in their efficiency to 

reduce arsenate with arsC (trx) having greater efficiency than arsC (grx) (31, 37). arsC (grx) is 

typically associated with Gamma- and Alphaproteobacteria while arsC (trx) is associated with 

low GC Gram positive Bacteria (16). While some argue that both arsC genes evolved from a 
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single ancestral gene (16), more recent reports suggest that cytoplasmic arsenate reduction 

evolved multiple times throughout history (15).  

  

Arsenite methylation (arsM) 

 The gene arsM encodes an arsenite S-adenosylmethionine (SAM) methyltransferase 

which adds methyl groups to arsenite (38). As its nomenclature suggests, arsM can be 

incorporated into ars operons and is regulated by the transcriptional repressor ArsR (39). In this 

dissertation, arsM is separated from general discussions of the ars operon due to its distinct 

impact on arsenic biogeochemical cycling. While the ars operon is commonly known for 

reduction of arsenate and subsequent efflux of arsenite, ArsM methylates arsenic, ultimately 

creating organoarsenical compounds. The evolutionary history of arsM was recently reported 

(19, 40), and revealed that ArsM and its eukaryotic homolog AS3MT are widespread throughout 

the tree of life. Two independent analyses concluded that several inter-domain transfers of arsM 

have occurred (19, 40). Chen and colleagues (2017) also suggest that ArsM evolved in 

Cyanobacteria roughly 2.5 billion years ago (19). Thus, the evolutionary history of arsM is both 

long and complicated.  

 

Bioenergetic arsenic related genes (aioA, arxA, arrA) 

 Arsenic bioenergetic enzymes include AioAB, ArxAB, and ArrAB. All three of these 

enzymes are molybdoenzymes and belong to the DMSO-reductase superfamily (18). Most 

known organisms harboring these genes belong to phylum Proteobacteria (21, 30, 31, 41–43). 

Despite these similarities, all three perform distinct functions and have distinct evolutionary 

histories.  
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AioAB is a periplasmic arsenite oxidase that functions in both aerobic and anaerobic 

environments (18).  Nomenclature in this field was updated when Lett and colleagues (2012) 

replaced three circulating names for an arsenite oxidase (AroAB, AoxAB, AsoAB) with AioAB 

(44). AioAB versions have been found in Bacteria and Archaea (18, 21), and phylogenetic 

analysis of aioA shows a separation of Bacterial and Archaeal-derived sequences (18, 45, 46), 

suggesting that aio evolved before the divergence of Bacteria and Archaea (18).  

 

 Arx and Arr do not have known representatives from Archaea and thus are thought to 

have evolved in Bacteria (18). ArxAB is an anaerobic arsenite oxidase while ArrAB is a 

dissimilatory arsenate reductase (46). ArxAB is thought to have evolved in Bacteria (46), and 

Arr is thought to have evolved from Arx (18). Because ArxAB and ArrAB are phylogenetically 

similar and because ArxAB was not formally discovered until 2010 (47), papers published prior 

to 2010 could have improperly annotated ArxAB as ArrAB (48). arrA has representatives in 

Chrysiogenetes, Crenarchaeota, Deferribacteres, and Firmicutes in addition to Proteobacteria 

(21), but all known arx representatives are in phylum Proteobacteria (21).  

 

Arsenic biogeochemical cycling 

  Bacteria and Archaea impact arsenic biogeochemical cycling through arsenic reduction, 

oxidation, methylation, and demethylation (Figure 1.1). Reduction of arsenate produces the 

more toxic and more mobile arsenite. Cytoplasmic arsenate reduction (encoded by arsC (grx) 

and arsC (trx)) reduces arsenate to arsenite and allows subsequent extrusion of arsenite through 

efflux pumps (encoded by acr3, arsB) (8). Arsenate can also be used as a terminal electron 

acceptor through a dissimilatory arsenate reductase (encoded by arrAB) (49). The genes aioAB 

and arxAB encode arsenite oxidases (49, 50) which decreases arsenite mobility and is often  
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Figure 1.1. Arsenic biogeochemical cycle.  

Species of arsenic are colored based on oxidation state: oxidized (blue) and reduced (red). 

Reaction descriptions are labeled outside of grey arrows, and related genes are labeled within 

arrows. Green arrows and boxes highlight environmental consequences of different arsenic 

species.  
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considered a tool for bioremediation. Genes encoding biomethylation (arsM) (51) and de-

methylation (arsI) (52) are understudied but nonetheless occur in the environment and increase 

or decrease the volatilization of arsenic respectively. Microbial interactions with arsenic can 

therefore impact the distribution of arsenic in the environment. The abundance of these genes in 

the environment is thus an important consideration for bioremediation and risk assessment (21). 

 

Arsenic exposure and arsenic related genes 

 Arsenic is common in the environment, but its concentrations range from < 1 ppm to > 

4,000 ppm (53). A low-arsenic site (< 10 ppm) was shown to harbor cultivable arsenic resistant 

isolates (6), and arsenic related genes are present across a wide variety of arsenic concentrations 

(37, 54). Thus, arsenic related genes are a poor candidate for arsenic monitoring. The impact of 

arsenic on microbial communities, however, can be estimated using arsenic gradients. Arsenic 

gradients over small geographic scales can occur naturally from geological variations or 

unnaturally from anthropogenic activities such as mining. These gradients are useful for probing 

the influence of arsenic on arsenic related gene distributions. Despite being a known, strong 

selective pressure, the impact of arsenic on arsenic related gene content is convoluted.  

 

Several studies have examined arsenic related genes along environmental arsenic 

gradients. Escudero and colleagues (2013) examined water and sediment samples from the 

Andean plateau, which has a naturally occurring arsenic gradient (0.1 – 10,000 ppm As) (37). 

They screened for the presence of acr3, arsC (grx), arsC (trx), aioA, and arrA using PCR. Genes 

acr3, arsC (trx), aioA, and arrA were detected in the majority of samples regardless of arsenic 

concentration; however, arsC (grx) was ubiquitous in low-arsenic samples (< 10 ppm) and only 

detected in one high-arsenic sample (37). Similarly, Luo and colleagues (2014) examined 
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metagenomes from soils with arsenic ranging from 30 – 820 ppm and observed arsenic related 

genes acr3, arsB, arsC (trx), aioA, and arrA in all samples (54). While end-point PCR only gives 

occurrence information, the authors also examined whether arsenic related genes changed in 

diversity or abundance along the arsenic gradient. Samples with higher arsenic concentrations 

had a greater diversity and abundance of arsenic related genes. Furthermore, arsenic 

concentration was correlated with aioA and arsC (trx) (54). Similarly, metagenomic analysis of 

arsenic related genes in paddy soils showed a relationship between arsenic concentration and 

genes arsC, arsM, aioA, and arrA (55).  

 

 Some studies have found gene-specific changes along arsenic gradients, but these are 

inconsistent across studies and environments. Desoeuvre and colleagues (2015) compared 

arsenic related genes from waters upstream, within, and downstream of acid mine drainage 

(AMD). Using PCR and clone libraries, the authors tested for the presence of acr3, arsB, arsM, 

and arrA (56). Reinforcing previous results, arsenic related genes were present in all samples. 

Gene arsB, however, was more diverse in upstream, pristine samples compared with AMD-

contaminated samples. Notably, acr3 diversity did not change, suggesting that arsB is less 

tolerant to high arsenic concentrations. Hu and colleagues (2019) estimated the arsenic related 

gene content of iron plaques from paddy soils with varying arsenic concentrations (6.7 –  210  

ppm) (57). They observed greater relative abundance of arsC and arsB in samples with higher 

arsenic concentrations. Arsenic metabolism genes arr, aio, and arsM were generally detected 

across all samples but in low abundance (57). Costa and colleagues (2015) examined 

metagenomes from freshwater sediments with 85 and 297 ppm arsenic (58). They detected 

arsABCDHR and arrAB in at least one sample. arsC was not detected in the low arsenic site but 

was detected in the higher arsenic site, while arrAB and arsD were more abundant in the lower 
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arsenic site. Thus, while arsenic has a direct relationship with arsenic related genes, future work 

is needed to distinguish between background resistance and arsenic-driven changes.  

 

Abiotic gradients and arsenic related genes  

 Environmental gradients are known to have strong influences on microbial community 

structure (59–61), which can impact functional potential. As discussed previously, arsenic related 

genes are widespread, and several are phylogenetically conserved. Thus, arsenic related gene 

content of the soil microbiome is subject to change with changing community membership 

regardless of changes in arsenic exposure. Several studies have documented this phenomenon by 

examining environmental gradients that were not characterized by changing arsenic 

concentrations (55, 62, 63).  

 

 For example, Zhang and colleagues (2015) examined 13 paddy soils across Southern 

China with low arsenic concentrations and found a relationship between soil pH and arsenic 

related gene distribution (55). Individual arsenic related genes were correlated with other 

geochemical parameters as well (55). A follow up analysis examined metagenomes from similar 

sites and also observed a relationship with pH (62). Similarly, a clone library study of arsenic 

related genes in AMD waters observed a relationship between arsenic related gene content and 

pH (56). Because there is a well-described relationship between soil pH and microbial 

community structure (64), the observation that a change in soil pH can result in a change in 

arsenic related gene content is expected.  

 

 Other factors can influence arsenic related gene content as well. Metal (and metalloid) 

resistance has been shown to co-occur with antibiotic resistance (65–67). While multiple 



10 

examples of metal pollution impacting ARG content in the environment (68–70), the reverse 

relationship could also be true especially because co-occurrence is more common on genomes 

than plasmids (66). Thus, geochemical and anthropogenic factors beyond arsenic are likely to 

impact arsenic related gene diversity and abundance in the environment.  

 

Antibiotic resistance  

ARGs are another group of functional genes in soil microbiomes that are important for 

public health. The Centers for Disease Control and Prevention estimates that 23,000 people die 

each year due to infections from antibiotic resistant bacteria in the United States (71). While 

these infections are caused by ARGs in clinically-relevant strains, ARGs present in 

nonpathogenic strains are also important. This importance is because there is a potential for HGT 

of ARGs to pathogenic strains (72–74). This potential transfer is particularly relevant for the soil 

microbiome because soil is considered a reservoir for ARGs due to greater ARG diversity than 

the clinic (75).  

 

While soil harbors a diverse array of ARGs, it is unclear how much this reservoir impacts 

clinical antibiotic resistance (76). Understanding the propagation and dissemination of ARGs in 

soil is difficult because multiple interacting factors influence their fate (77, 78). Like arsenic 

related genes, direct selective pressure (e.g. antibiotics) can influence ARG abundance (79). 

Additionally, several ARGs are thought to have evolved > 2 billion years ago (80) and can 

propagate vertically without direct selection pressure. For example, abiotic changes, such as 

nitrogen addition, have been shown to alter ARG distributions in soil (81, 82), and increased 

temperatures have been shown to reduce ARG abundance (83, 84). Furthermore, it is unclear 

what proportion of ARGs in soil are mobile, and HGT rates in bulk soil are estimated to be lower 
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than areas with higher population densities such as gut microbiomes and the phyllosphere (85). 

Additionally, a functional metagenomic study across soil types showed evidence for 

predominantly vertical, rather than horizontal, transfer of ARGs (82). Investigations of the 

dynamics of ARGs in soil microbiomes and the distribution of ARGs on soil-associated 

chromosomes and plasmids would improve understanding of their environmental dissemination.  

 

Environmental Disturbance and Centralia, PA 

The abundance of ARGs and arsenic related genes depends on microbial community 

membership, direct selective pressure (e.g., from antibiotics or arsenic), and rates of HGT. Local 

antibiotic and arsenic concentrations select for organisms with functional ARGs and arsenic 

related genes, respectively, but relationships between abundance of arsenic related genes and some 

ARGs within a microbial community are nuanced, in part, due to their long evolutionary histories 

(86–88). Vertical transfer of arsenic related genes throughout evolutionary history implies that 

these genes are not necessarily correlated with contemporary arsenic concentrations (86, 87). 

Similarly, ARGs have been detected 30,000 year old permafrost samples (88) and in caves with 

minimal anthropogenic influence (89). Organisms harboring antibiotic and arsenic related genes 

also can increase in abundance in the absence of direct selection pressures (e.g. in response to some 

other biotic or abiotic driver). In present day, antibiotic and arsenic related genes are found on 

chromosomes and several mobile genetic elements (21), and HGT of ARGs and arsenic related 

genes has been shown (30, 34, 43, 90), indicating that the numbers and distributions of these genes 

are subject to change without parallel turnover in microbial community membership. The 

abundance of these functional genes and the impact of their encoded mechanisms are thus 

intimately linked with community dynamics.  
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Environmental disturbance gradients provide an appropriate framework to study 

functional gene dynamics. Disturbances such as increased temperature and pollution can impact 

diversification (91), population diversity (92) and rates of HGT (93, 94). While many 

disturbances are transient, a good system to test hypotheses about functional gene dynamics 

should include a multigenerational disturbance with a clear endpoint. Underground coalmine 

fires act as a multigenerational disturbance and expose soil microbial communities to increased 

temperatures as well as coal combustion pollutants. Soil surface temperatures of coal mine fire-

affected areas range from 21-80°C (95). Steam from these fires emits gases including CO and 

CO2 (95–97), and arsenic, along with lead, zinc, mercury, and copper have all been found 

surrounding active vents of underground coal fires (98). The Centralia, PA coalmine fire ignited 

in 1962 and has traveled along the coal seam ever since, creating a fire-impact gradient that can 

be linked to historical fire movement.. The soil microbial communities overlying the 

underground coal mine fire thus experience a multitude of stressors, including temperature and 

pollution. The influence of coalmine fires on soil microbial community antibiotic and arsenic 

related genes is unknown, but it may influence their distribution and diversity.  

 
Summary and Aims  

This dissertation aims to improve understanding of the distribution and dynamics of two 

functional genes groups in soil: 1) antibiotic resistance and 2) arsenic resistance and metabolism. 

Using a model disturbance and soil meta-analyses, this dissertation investigates hypotheses about 

resistance gene ecology. The Centralia, PA ecosystem is an underground coal seam fire and was 

used as a model disturbance. This system is used to test whether microbiome functional potential 

changes with disturbance (Chapters 2 – 3). Furthermore, bioinformatic methods were developed 

to detect ARGs and arsenic related genes and then applied to soil microbiomes (Chapters 4 – 5). 

Chapter 2 describes the genetic and functional characterization of an isolate collection of arsenic 
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resistant bacteria cultivated from soil impacted by the Centralia disturbance. Chapter 3 tests the 

hypothesis that the Centralia disturbance reduced clinically-relevant ARGs in the soil. Chapter 4 

compares the diversity and distributions of ARGs on plasmids among cultivable microorganisms 

from soil and other environments (e.g., clinic). Chapter 5 is a meta-analysis of the distribution 

and diversity of arsenic related genes in soil that leverages public metagenomes and 

metatranscriptomes. New bioinformatic tools were applied to soil microbiomes to elucidate the 

distributions, diversity, and dynamics of ARGs and arsenic related genes. Ultimately, this work 

contributes to understanding of ARGs and arsenic related genes in the environment and provides 

insights into mitigation of antibiotic resistance and arsenic bioremediation. 
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CHAPTER 2 : Taxonomically-linked growth phenotypes during arsenic stress among 

arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Work presented in this chapter has been published as Dunivin TK, Miller J, and Shade A. 
Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria 
isolated from soils overlying the Centralia coal seam fire. Plos ONE. 2018; 13(1) 
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Abstract 

Arsenic, a toxic element, has impacted life since early Earth. Thus, microorganisms have 

evolved many arsenic resistance and tolerance mechanisms to improve their survival outcomes 

given arsenic exposure. We isolated arsenic resistant bacteria from Centralia, PA, the site of an 

underground coal seam fire that has been burning since 1962. From a 57.4°C soil collected from 

a vent above the fire, we isolated 25 unique aerobic arsenic resistant bacterial strains spanning 

seven genera. We examined their diversity, resistance gene content, transformation abilities, 

inhibitory concentrations, and growth phenotypes. Although arsenic concentrations were low at 

the time of soil collection (2.58 ppm), isolates had high minimum inhibitory concentrations 

(MICs) of arsenate and arsenite (>300 mM and 20 mM respectively), and most isolates were 

capable of arsenate reduction. We screened isolates (PCR and sequencing) using 12 published 

primer sets for six arsenic resistance genes. Genes encoding arsenate reductase (arsC) and 

arsenite efflux pumps (arsB, ACR3(2)) were present, and phylogenetic incongruence between 

16S rRNA genes and arsenic resistance genes provided evidence for horizontal gene transfer. A 

detailed investigation of differences in isolate growth phenotypes across arsenic concentrations 

(lag time to exponential growth, maximum growth rate, and maximum OD590) showed a 

relationship with taxonomy, providing information that could help to predict an isolate’s 

performance given arsenic exposure in situ. Our results suggest that microbiological 

management and remediation of environmental arsenic could be informed by taxonomically-

linked arsenic tolerance, potential for resistance gene transferability, and the rare biosphere. 
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Introduction 

Arsenic, a toxic metalloid, is naturally present in soil, but levels are generally low (< 10 

ppm) (99). Because of the ubiquity of arsenic and its toxicity, bacteria have evolved a variety of 

arsenic-specific detoxification mechanisms (21). Bacterial strains have been shown to oxidize, 

reduce, methylate, and demethylate arsenic (50). The toxicity and mobility of arsenic can change 

depending on its oxidation state with arsenate (As5+) being less soluble and less toxic than 

arsenite (As3+) (100); thus, environmental bacteria are considered important constituents of the 

biogeochemical cycling of arsenic because the presence and transfer of the resistance genes 

encoding these activities affect the mobility of arsenic.  

 

Arsenic resistance genes can be located on chromosomes, plasmids, or both (21). Several 

studies indicate that horizontal gene transfer (HGT) has occurred with arsenic resistance genes 

(16, 34, 43, 90, 101), suggesting the potential exists for arsenic resistance genes to propagate in a 

microbial community given a selective pressure of arsenic exposure; however, timing of HGT is 

difficult to determine (16). In addition to arsenic-specific mechanisms of resistance conferred by 

arsenic resistance genes, microorganisms can also employ nonspecific and transient cellular 

mechanisms to withstand arsenic exposure. Cell envelope permeability to arsenic, oxidative 

stress response, and heat shock proteins have all been shown to be differentially regulated in 

response to arsenic (21, 102–106). These are collectively referred to as arsenic tolerance 

mechanisms (103, 107). However, tolerance in the absence of resistance (i.e. arsenic resistance 

genes) is often not enough to enable cell survival given lasting arsenic exposure (107).  

 

Much of the current understanding of arsenic resistance and tolerance has come from the 

detailed study of arsenic resistant isolates that have been cultivated from arsenic contaminated 
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sites (e.g., (30, 34, 101, 108–112). More broadly, culture-dependent approaches to improve 

knowledge of microbial diversity and functions are experiencing a renaissance in today’s age of 

high-throughput meta ‘omics (e.g., (113–115). In addition to direct assessment of physiology and 

functional capabilities, characterized isolates can provide high quality genome references for 

culture-independent metagenome and single-cell genome assemblies (116–118). Thus, culture-

dependent approaches continue to offer opportunity to examine several aspects of arsenic 

resistance that are not captured with culture-independent approaches. For example, growth 

phenotypes in arsenic and minimum inhibitory concentrations (MICs) are best determined 

directly with isolates. Additionally, it is difficult to assess potential horizontal gene transfer 

(HGT) from culture-independent methods (119, 120), and HGT is an important consideration in 

arsenic resistance gene ecology. Finally, cultured isolates provide access to microorganisms that 

may be used to support applications like bioremediation of contaminated sites (e.g., (116, 118)).  

Though isolate collections do not provide comprehensive knowledge of microbial diversity and 

are limited by cultivation conditions, these collections can be used to inform isolate ecology in 

the context of their larger microbial community, especially when coupled with culture-

independent approaches (e.g., (121)).   

 

The underground coal seam fire in Centralia, PA ignited in 1962 and has been burning 

ever since. The soil microbial communities overlying the underground fire experience a 

multitude of fire-related stressors, including high temperatures and exposure to coal combustion 

products and CO and CO2 gas emissions; these coal fire pollutants impact local biogeochemistry 

(95–97).  Because arsenic is naturally present in coal, exposure to the coal seam fire is expected 

to influence soil microbial arsenic resistance and arsenic resistance gene transfer. Along with 

lead, zinc, mercury, and copper, arsenic has been documented in increased concentrations near 
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active vents, which are steaming surface fissures created by instability from the underground 

coal fire (98).  

 

Our objective was to characterize arsenic resistant bacterial isolates from an active 

thermal vent (57.4ºC) in Centralia in order to expand knowledge of the characteristics of arsenic 

resistant bacterial isolates from a coal mine contaminated site. This knowledge will improve 

metagenome analysis and genomic analysis of similar organisms, as there is a move towards 

expanding culture collections and knowledge of cultivated organisms (e.g., (118)). We aimed to 

gain insights into their genetic mechanisms of arsenic resistance, growth consequences under 

increasing arsenite and arsenate exposure, and potential for interspecies transfer of arsenic 

resistance. Our culture-dependent approach provided insights into isolate distinctions in growth 

phenotypes given arsenic exposure. Considering culture-independent information (16S rRNA 

gene amplicon sequencing) additionally allowed us to determine the relative contributions of 

these isolates to their larger community. These findings bring to light complexities of predicting 

microbial community-level response to arsenic. 
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Materials and Methods 

Soil collection and site description 

The Pennsylvania Department of Environmental Protection provided permission to 

access the field site. The field site is not a protected area. This work did not involve 

endangered or protected species. This study did not involve vertebrates. A soil surface core (20 

cm depth and 5.1 cm diameter) was collected in October 2014 from an active vent (steam 

escaping) in Centralia, PA. This vent (site Cen13, GPS coordinates: 40 48.070, 076 20.574) was 

selected because it has had historical fire activity since at least 2007 (95) and was the hottest 

detected at the time of sampling with a measured surface temperature (10 cm depth) of 57.4°C 

(ambient air temperature was 13.3°C). Detailed soil geochemical data was assayed by the 

Michigan State University Soil and Plant Nutrient Laboratory (East Lansing, MI, USA, 

http://www.spnl.msu.edu/) according to their standard protocols, and total arsenic was measured 

by Element Materials Technology using the Environmental Protection Agency’s method 3050B 

for sample preparation and ICP-MS (Appendix A Table 1). Upon sampling, the soil was kept on 

ice until transport to the lab where it was manually homogenized, sieved through 4 mm mesh, 

and stored at -80°C until further processing.   

 

Cultivation-dependent soil bacterial community growth  

Five grams of soil were removed from -80°C and kept at 4°C for 48 h. The soil was 

warmed to room temperature for 1 h and then suspended in 25 mL of sterile Dulbecco's 

phosphate-buffered saline (ThermoFisher; dPBS), vortexed for 2 min, and allowed to settle for 2 

min. The supernatant was plated onto 50% tryptic soy agar (Becton Dickinson and Company; 

TSA50) with 200 µg mL-1 of cycloheximide added to inhibit fungal growth. Plates were 

incubated at 27°C for 24 h. To obtain a culture-dependent bacterial community representative of 
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these growth conditions, overgrown plates were scraped to make a 25% glycerol stock and stored 

at -80°C for future assays.  

 

Isolation of arsenic resistant bacteria 

Twenty mL of trypticase soy broth (TSB50) was inoculated with the bacterial community 

glycerol stock and grown for 6 h with shaking at 200 rpm and 12 mm amplitude. Arsenic was not 

included in the medium to avoid transfer of arsenic resistance genes. The culture was plated onto 

TSA50 with either 10 mM Na2HAsO4 or 1 mM NaAsO2 to screen for arsenate or arsenite 

resistant colonies, respectively. Ninety-four total colonies (35 from sodium arsenate; 59 from 

sodium arsenite) were streaked to purity (3x) on their respective media type; 69 pure isolates 

were recovered and made into 25% glycerol stocks for long term storage at -80°C. From these 

pure cultures, 25 distinct isolates were identified by genotype with 16S rRNA gene sequencing 

and by phenotype using MIC assays.  

 

Morphological characterization and temperature maxima  

Overnight cultures of isolates grown in 3 mL TSB50 were examined using a Nikon E800 

Eclipse microscope. Cell morphology was visualized using a photometrics CoolSnap MYO 

microscope camera (Tuscan, AZ, USA) and Micromanager 4.22 (122) was used for image 

acquisition. Cell size was measured using Fiji image analysis software (123). Colony 

morphology on TSA50 plates was imaged after incubation at 27°C for 24 h. To measure growth 

temperature maxima, isolates (2% culture in fresh TSB50) were incubated in a T100 Thermo 

Cycler (BioRad) for 24 h with a thermal gradient (32-52°C). Optical density at 590 nm (OD590) 

was measured using an Infinite F500 plate reader (Tecan). The maximum temperature for growth 
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was determined as the highest temperature with an increase in OD590 from background. This 

process was repeated for a minimum of two biological replicates per isolate.  

 

DNA extraction and quantification 

Freezer stocks of isolates were inoculated into 3 mL TSB50 and shaken at 27°C at 200 

rpm with a 12 mm amplitude until turbid. Genomic DNA (gDNA) was extracted using the 

E.Z.N.A. Bacterial DNA Kit (Omega Bio-Tek) according to the manufacturer’s instructions. 

Isolated gDNA was quantified with fluorometry using the Qubit dsDNA broad range assay kit 

(Invitrogen) and a Qubit 2.0 (Invitrogen) according to the manufacturer’s instructions. DNA was 

stored in sterile Tris-EDTA buffer (Sigma; pH 8) at -20°C.  

 

Endpoint PCR and amplicon sequencing 

The near full length 16S rRNA gene was amplified for each isolate using the universal 

primer pairs Uni-27F and Uni-1492R (Appendix A Table 2). PCR amplification of 16S rRNA 

was carried out in a T100 Thermo Cycler (BioRad) using 25 μL total volume including 30 ng 

genomic DNA, 0.4 µM of each primer, 0.8 mM dNTPs (Sigma), 2.5 μL 10X Pfu Buffer 

(Promega), 2X high fidelity Pfu DNA Polymerase (Promega), and nuclease free water to a final 

volume of 25 µL. The 16S rRNA PCR reaction cycle included a 2 min initial denaturation at 

95°C, 30 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C 

for 1 min, and a final extension at 72°C for 10 min. PCR products were run on a 1% agarose gel 

for 45 min at 700 mV. The PCR product of 1.4 kb from the 16S rRNA gene was gel extracted 

using the Wizard SV Gel and PCR Clean Up System (Promega) according to the manufacturer's 

instructions. Gel extraction products were quantified as described above. Purified 16S rRNA 

amplicons were sequenced using the ABI Prism BigDye Terminator Version 3.1 Cycle 
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sequencing kit by the Michigan State University Genomics Core Research Technology Support 

Facility. Forward and reverse 16S rRNA sequences were aligned using CAP3 (v. 3.0,(124)) to 

obtain near full length 16S rRNA gene sequences, except for isolates A2707, A2723, and A2735 

which could not be sequenced using the 1492R primers. For these three isolates, primer U515F 

(125) was used to obtain a near-full length 16S rRNA sequence. Sequences were assigned 

taxonomy using both the Ribosomal Database Project (RDP) 16S rRNA database (v. 2.10, (126)) 

and the EzTaxon server (127). 

 

Isolates were screened for the following arsenic resistance genes: arsB, ACR3(1), 

ACR3(2), arsC, arrA, aioA, and arsM using published primers that were chosen because of their 

continued use in the literature (Appendix A Table 2; (29, 90, 101, 128–130)). All PCRs were 

carried out with published reaction conditions in a T100 Thermo Cycler (BioRad). While 

amplicons were obtained for all primer sets used, only products confirmed by sequencing were 

considered positive hits. Once a product was confirmed, the PCR was repeated using the 

confirmed isolate as a positive control. All amplicons were gel extracted and sequenced as 

described above. At least one forward and one reverse gene sequence was merged in 

CodonCodeAligner (v. 6.0.2, Codon Code Corporation) to create arsenic resistance gene contigs. 

All sequences >200 bp were submitted to NCBI, and sequences can be accessed from GenBank 

with the following accession numbers: 16S rRNA KX825887- KX825911, arsC KY405022- 

KY405029, ACR3(2) KY405030- KY405032, and arsB KY405033- KY405040. Four arsC 

contigs were < 200 bp and are included in Appendix A Table 3. Amino acid sequences for each 

protein-coding gene are also available in NCBI GenBank. 
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Phylogenetic analysis 

To compare the 16S rRNA phylogenetic diversity of Centralia arsenic resistant isolates to 

previous reports, isolates from existing literature were included in the phylogenetic analysis. 

Only studies with both 16S rRNA sequences > 700 bps and confirmed arsenic resistance 

(selection on arsenic-containing media) were included. Ultimately 6 studies (101, 110, 131–134) 

were included, and all sequences from relevant lineages were included in the final tree (55 

sequences total). Closest 16S rRNA gene relatives deposited at the NCBI 

(http://www.ncbi.nlm.nih.gov/) were also included in the analysis. Sequences were aligned using 

the RDP aligner (135). RDP characters were removed from aligned sequences using BioEdit (v. 

7.2.5, (136)). 16S rRNA gene trees were made with MEGA7.0 (137) and constructed with the 

Neighbor-joining algorithm using the Kimura 2 parameter model with 1000 bootstrap 

replications.  

 

To examine the phylogeny of arsC, arsB, and ACR3(2) sequences, arsenic resistance 

gene sequences from the isolates were compared with homologous, chromosomal sequences 

from related organisms deposited at the NCBI. Sequences from phylogenetic relatives were 

found by searching chromosomes deposited at the NCBI, and closest NCBI matches for arsenic 

resistance gene sequences were determined using BLAST. A corresponding 16S rRNA tree was 

made using sequences from the isolates and their phylogenetic relatives. The sequences obtained 

from NCBI can be found with the following accession numbers: Acinetobacter baumannii strain 

A1 (CP010781.1), Enterobacter cloacae subsp. cloacae ATCC 13047 (296100371), 

Pseudomonas aeruginosa PAO1 (AE004091.2), Enterobacter kobei strain DSM 13645 

(CP017181.1), Escherichia coli str. K-12 substr. MG1655 (NC_000913.3), Enterobacter 

asburiae L1 (NZ_CP007546.1), Bacillus cereus ATCC 10987 (AE017194.1), Paenibacillus 
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terrae HPL-003 (374319880), Bacillus thuringiensis strain Bc601 (CP015150.1), Shewanella  

oneidensis MR-1 (NC_004347), Stenotrophomonas  maltophilia K279a (AM743169.1), Bacillus  

thuringiensis strain 97-27 (CP010088.1), Rhodoferax ferrireducens T118 (CP000267.1), 

Cyclobacterium marinum DSM 745 (CP002955.1) Trees were constructed using MEGA7.0 

(137) and constructed with the maximum likelihood algorithm using the Kimura 2 parameter 

model with 100 bootstrap replications. Distances between arsenic resistance and 16S rRNA gene 

trees were calculated using the R environment for statistical computing (138) with the Phangorn 

package (139). 

 

To further investigate evidence for HGT, the GC content of arsenic resistance gene 

sequences was compared with reference GC content from whole genomes of related species. 

Reference GC content was calculated by averaging the GC content of all organisms in NCBI 

“Genome Groups” for the related taxon.  

 

Cultivation-independent 16S rRNA amplicon sequencing and analysis 

Soil DNA was extracted, sequenced, and analyzed in a previous work (140) from the 

same sample used for isolation. Using BLAST (v. 2.2.26), a database of representative 16S 

rRNA gene sequences was constructed. Isolate 16S rRNA gene sequences from Sanger 

sequencing were used as queries against this database to find top hits and to estimate the relative 

abundance of our isolates in the microbial community. The top hit was determined as the hit with 

the highest percent identity for that isolate with a minimum percent identity of 96%, and the 

relative abundance of representative sequence (140) was used as the estimate of the relative 

abundance of each isolate.  
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Arsenic transformation capabilities 

The ability of the isolates to reduce arsenate or oxidize arsenite was measured using a 

slightly modified (described below) silver nitrate colorimetric assay as described previously 

(141). 0.1 M Tris-HCl (pH 7.3) was used as a reaction buffer instead of 0.2 M, and 1.33 mM 

sodium arsenate or sodium arsenite was used instead of 0.67 mM. Cells were inoculated in 3 mL 

TSB50 and incubated at 27°C for 15 h before plating. Cells were washed with sterile reverse 

osmosis (RO) water to remove culture media as indicated in Simeonova et al. (141), and 20 µL 

of the washed cell suspension was incubated with 80 µL of 0.1 M Tris-HCl and 1.33 mM As in a 

96-well plate for 72 h at 27°C. Two standard curves with different ratios of sodium arsenate and 

sodium arsenite (0:100, 10:90, 25:75, 50:50, 75:25, 90:10, 100:0) were also included alongside 

the cells. After a 72 h incubation, cell viability was tested. Cells were patched onto fresh TSA50 

plates to test cell viability. The reaction was initiated by adding 100 μL of sterile 0.1M AgNO3 to 

each sample in the 96-well plate. After the silver nitrate reaction was initiated, plate photographs 

were taken, and colorimetric changes were assessed. This protocol was performed with at least 

two biological replicates plated in duplicate. 

 

Minimum inhibitory concentrations (MICs) 

To determine the MICs of arsenate and arsenite as well as their growth phenotypes, 

isolates were inoculated from 25% glycerol stocks into 3 mL TSB50 and incubated with shaking 

at 200 rpm with a 12 mm amplitude at 27°C for 6 h. Inocula were added to a 96-well plate with 

arsenic-containing TSB50 to make a 1% inoculum. Concentrations tested include 0, 10, 50, 100, 

150, 200, 250, and 300 mM sodium arsenate and 0, 1, 3, 5, 7, 10, 14, and 20 mM sodium 

arsenate. Plates were shaken continuously at 288 rpm with a 3 mm amplitude in an Infinite500 

plate reader (Tecan) for 72 h at 27 ± 1°C. OD590 was measured every 15 min. Growth 
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experiments were repeated with at least two biological replicates for each isolate, and growth 

curves for further analysis were made using technical triplicates.  

 

The R environment for statistical computing (138) was used to plot growth curves and 

analyze key features of growth inhibition across the range of arsenate and arsenite concentrations 

tested using a modified script (http://bconnelly.net/2014/04/analyzing-microbial-growth-with-r/). 

Using the GroFit package (142), splining was used to extract growth parameters including time 

to exponential growth (λ), maximum growth rate (μ), and maximum OD590 (A). When splining 

was not appropriate (e.g. curves do not have a smooth fit), parameters were estimated 

parametrically using either Logistic, Gompertz, or Richards models informed by their Akaike 

information criterion (AIC) (143). Parameters for each isolate in TSB50 containing arsenic were 

normalized to arsenic-free controls. We used hierarchical clustering to examine similarities in 

growth phenotypes in arsenic for genera with more than two representatives (n > 2). The 

clustering included growth parameters (λ, μ, and A) in 1 mM sodium arsenite and 10 mM 

sodium arsenate for each isolate. Only one arsenic concentration was used so that MIC NA 

values did not impact the clustering. All R scripts are available on GitHub 

(https://github.com/ShadeLab/Arsenic_Growth_Analysis/tree/master/R_scripts) for future 

studies interested in isolate fitness in arsenic.   
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Results 

Taxonomic diversity and composition of arsenic resistant isolates  

Arsenic resistant isolates were cultivated from soil near an active vent (Appendix A 

Table 1) of the Centralia coal seam fire with a low arsenic concentration (2.58 ppm) by 

screening for arsenic resistance on 10 mM sodium arsenate and 1 mM sodium arsenite. Isolates 

spanned seven genera, including Acinetobacter, Bacillus, Enterobacter, Microbacterium, 

Olivibacter, Paenibacillus, and Pseudomonas (Figure 2.1and Appendix A Table 4). The colony 

morphologies of the isolates aligned with expectations given 16S rRNA gene classification (near 

full length sequences were obtained), and all isolates grew in 24 h at or above 39°C (Appendix 

A Table 4). This cultivation effort resulted in an abundance of Firmicutes (48% of isolates). To 

determine the relative abundances of these arsenic resistant isolates within their larger 

community, we used BLAST to query isolate full-length 16S rRNA gene sequences against 

representative 16S rRNA gene sequences of operational taxonomic units from amplicon data 

(948,228 raw reads) obtained in our previous study (140). The relative abundance of top hits for 

each isolate ranged from 6.23x10-6 to 1.59x10-4 (Table 2.1), suggesting that all arsenic resistant 

isolates isolated in this study are rare members of this soil community.  

 

Genetic characterization of arsenic resistance 

Arsenic resistance genotypes of the isolates were characterized using endpoint 

polymerase chain reaction (PCR) with a collection of published primers (Appendix A Table 2) 

specific for genes encoding resistance via diverse mechanisms, including arsenate reduction, 

arsenite oxidation, methylation, and arsenite efflux (Figure 2.2A). After endpoint PCR, all 

amplicons were sequenced to confirm their identities. Eight isolates (32%) had the gene 

encoding the arsenite efflux pump, arsB. The majority of arsB-positive isolates belonged to the 
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Table 2.1.  Relative abundance of isolate 16S rRNA gene sequences from our 

amplicon survey of the same soil. 

 

 

Genus group Isolates
Relative 
abundance

Acinetobacter I2759, A2705, A2716 6.23x10-6

Bacillus anthrasis I2723, I2745, A2707, A2723, A2735 3.12x10-6

Bacillus subtilis A2708, A2733 1.03x10-4

Bacillus nealsonii I2716, I2742 1.59x10-4

Enterobacter I2706, I2707, I2726, I2727, A2706, A2724, A2731 3.12x10-5

Microbacterium I2748 3.12x10-6

Paenibacillus I2746, I2747 3.12x10-6

Pseudomonas A2712, A2727 9.35x10-6

Olivibacter I2749 2.49x10-5
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Figure 2.1. Phylogenetic tree of 16S rRNA sequences from Centralia arsenic resistant 

isolates.  

Isolates from this study were compared with isolates from other studies that cultivated arsenic 

resistant isolates from soil. A) Actinobacteria, Proteobacteria, and  

This study 
Cavalca, et al. 2010 
Huang, et al. 2010 
Chang, et al. 2008 
Chang, et al. 2010 
Drewniak, et al. 2008 
Suresh, et al. 2004 
Das, et al. 2014

A B
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Figure 2.1 (cont’d) 

Sphingobacteria. B) Firmicutes. Scale bars indicate the percent difference in nucleotide 

sequence.  
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Figure 2.2. As resistance genotypes and phenotypes of isolated bacterial strains.  

A) Presence of arsenic resistance genes from end-point PCR are indicated (+). MICs of B) sodium arsenate and C) arsenite. D) 

Categorical range of arsenate reduced based on standard curve of known ratios of arsenate and arsenite.  
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genus Enterobacter with the exception of one Acinetobacter isolate. Three isolates (12%) had the 

gene encoding arsenite efflux pump, ACR3(2). Twelve isolates (48%) had the arsenate reductase 

gene, arsC. We did not find evidence for genes encoding other resistance mechanisms including 

dissimilatory arsenate reductase (arrA), arsenite oxidase (aioA), arsenite efflux pump (ACR3(1)), 

or arsenite methyltransferase (arsM) in the isolate collection. Thus, only genes related to arsenate 

reduction and arsenite extrusion were detected among these Centralia isolates using prominent 

primer sets. Notably, five isolates (20%) did not test positive for any arsenic resistance genes 

tested using published primers, suggesting sequence diversity of tested genes that are not 

captured with these primer sets, undescribed resistance genes, or resistance through general 

stress responses. 

 

Arsenic transformation  

We determined the abilities of isolates to transform arsenate and arsenite using a 

published semiquantitative measure of percent arsenic transformation without growth media 

(141). No isolates oxidized arsenite in this assay (data not shown). However, we observed a wide 

range of capabilities for arsenate reduction that generally corresponded to isolate taxonomy 

(Figure 2.2D). All isolates belonging to the genus Enterobacter had transformation capabilities 

at or above 50%. Isolates belonging to Bacillus had varied arsenate reduction capabilities ranging 

from 0-90%. The Microbacterium isolate (I2748) reduced 10-25% of arsenate in solution, and 

Acinetobacter isolates reduced 0-10% of arsenate. While nine isolates (36%) reduced arsenate in 

vitro and tested positive for arsC, there were discrepancies between the in vitro and genetic data. 

Isolates belonging to genera Olivibacter, Paenibacillus, and Pseudomonas did not reduce 

arsenate in this assay (Figure 2.2D). An additional three isolates (12%) tested positive for arsC 

but did not reduce arsenate in this assay. It is possible that arsC is nonfunctional in these 
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bacterial strains, not active in these conditions, or that arsenate reduction occurred but was below 

the limit of detection of this assay. Additionally, eight isolates (32%) reduced arsenate in this 

assay but did not test positive for the genes encoding arsenate reductases (arsC or arrA). These 

isolates may contain less characterized arsenate reductase genes (144).   

 

Incongruent phylogenies of arsenic resistance and 16S rRNA genes 

Maximum likelihood trees of detected arsenic resistance genes were compared with their 

corresponding 16S rRNA gene trees, and there was incongruence in all instances (Figure 2.3). 

All arsB sequences were related to Enterobacter, including those from an Acinetobacter isolate 

(Figure 2.3A). Three isolates spanning two genera (Pseudomonas, Bacillus) tested positive for 

ACR3(2), and all had high sequence homology to Stenotrophomonas-derived ACR3(2) (Figure 

2.3B). Comparing the arsC and 16S rRNA phylogenetic trees revealed several inconsistencies 

between gene sequence and phylogeny (Figure 2.3C). Twelve isolates spanning three genera 

(Bacillus, Paenibacillus, and Enterobacter) had high sequence homology to Bacillus-derived 

arsC, suggesting HGT. Closest NCBI BLAST hit and GC content for each arsenic resistance 

gene and corresponding taxa further suggested incongruence (Appendix A Table 5). 

Collectively, these data suggest past, and potential future, movement of these arsenic resistance 

genes via HGT. 

 

MICs and growth phenotypes in arsenic 

In parallel to characterization of genetic mechanisms of arsenic resistance, we determined 

the MICs of arsenate and arsenite for each isolate (Figure 2.2BC). MIC phenotypes ranged from 

50 mM to >300 mM for sodium arsenate and from 3 to 20 mM for sodium arsenite. Both 

Pseudomonas isolates could withstand >300 mM sodium arsenate, which is typical for 
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previously reported pseudomonads resistant to arsenic (110, 145). High sodium arsenate 

resistance (>200 mM) (87) was observed in 20% of the isolates. High sodium arsenite resistance 

(>15 mM) (110) was observed in 16% of the isolates, all of which belong to phylum Firmicutes.  

 

We also analyzed growth phenotypes (lag time, maximum growth rate, and maximum 

OD590) in arsenic, and our results highlight a nuanced relationship between growth in arsenic and 

taxonomy that was more informative than the observed MIC data alone (Figure 2.4, Appendix 

B Figure 1– Appendix B Figure 4). Limited conclusions can be made about Paenibacillus, 

Microbacteriun, Olivibacter, and Pseudomonas isolates due to the small sample size (n ≤ 2) of 

these genera. Maximum growth rate (μ) and maximum OD590 (A) showed similar patterns in 

each isolate, so we only report μ here and provide A in supporting materials (Appendix B 

Figure 2–  Appendix B Figure 4). In general, relative growth phenotypes were similar between 

arsenate and arsenite. Firmicutes isolates maintained basal growth rates in the presence of 

arsenic. Here we offer a qualitative description of the isolates’ growth phenotypes in arsenic.  

More work will be needed to understand how general these growth phenotypes may be within 

lineages. While Paenibacillus isolates had the lowest MICs, they showed the least overall growth 

phenotype change in arsenic. Bacillus isolates, however, exhibited larger increases in lag time (λ) 

as compared with Paenibacillus isolates. Conversely, the Olivibacter isolate showed an increase 

in lag time along with reductions in growth rate.  
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Figure 2.3. Comparison of arsenic resistance gene sequences and 16S rRNA gene 

sequences from arsenic resistant isolates.  

Maximum likelihood trees for arsenic resistance genes (left) A) arsB, B) ACR3(2), and C) 

arsC are shown alongside trees of corresponding 16S rRNA genes (right). Incongruence is 

highlighted with grey lines between the two trees. Scale bars indicate the percent difference in 
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Figure 2.3 (cont’d) 

nucleotide sequence. Bootstrap values greater than 50% are indicated at the corresponding 

node, and boxes are colored based on isolate genus.  
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Again, because there was only one Olivibacter isolate, we cannot know how general its growth 

trends in arsenic are. Members of Enterobacter had reductions in growth rate as well as 

increased lag time with increasing arsenic concentrations despite their high MICs. Hierarchical 

clustering of growth phenotypes in genera with more than two isolates revealed clustering based 

on taxonomy rather than genotype or MIC (Appendix B Figure 5). Despite variability in λ in 

Acinetobacter isolates, they clustered apart from Enterobacter and Bacillus and had comparably 

higher values. Similarly, Bacillus strains clustered together despite variability in μ observed 

within genus. Again, because we have limited representatives of Paenibacillus, Pseudomonas 

and Microbacterium, future studies should investigate the generality of their growth phenotypes 

in arsenic. These results suggest that, aside from the concentration of arsenic exposure, growth 

changes in lag time, rate, and maximum OD590 may impact an isolate’s survival outcomes in situ. 

More work is needed to determine if collective growth phenotype changes among arsenic 

resistant isolates within a soil community may be in part predicted by taxonomy and by 

occurrence of HGT.
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Figure 2.4. Growth phenotypes of isolates in increasing concentrations of arsenic.  
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Figure 2.4 (cont’d) 

Lag time (�) and maximum growth rate (�) of isolates in TSB50 with increasing concentrations of A) arsenate and B) arsenite 

normalized to growth without arsenic.  
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Discussion 

Our results from characterizing this modest isolate collection of arsenic resistant soil 

bacteria expose two considerations regarding the microbial community ecology of arsenic 

exposure.  First, our data show that members of the rare biosphere harbor arsenic resistance 

genes that appear to be transferred via HGT in the past and therefore could have potential for 

transfer in the future. Second, our results suggest that nuanced growth phenotypes in arsenic may 

be predictable by the taxonomic identity of the microorganism that has not been described 

previously. This has implications for understanding a microbial community’s response to 

arsenic, as it suggests there are differential growth responses, and therefore different competitive 

abilities, of resistant taxa. Thus, while the distribution and transfer of arsenic resistance genes in 

the microbial community have implications for filtering of community members given arsenic 

exposure, knowledge of arsenic growth phenotypes could be used to predict the compositional 

outcome (re-structuring) of an arsenic-exposed community; however, more work examining 

consistency of growth phenotypes in arsenic within and among lineages would inform the 

feasibility of such forecasting. 

 

In this study, we described a collection of 25 aerobic arsenic resistant bacterial strains 

isolated from soils of an active vent from an underground coal seam fire in Centralia, PA, a 

unique terrestrial environment. We subsequently determined that, despite the fire activity at this 

particular site, the soil had relatively low arsenic concentrations at the time of soil collection 

(2.58 ppm). This is not surprising, given that 1) the fire is dynamic and past arsenic 

concentrations at the vent may have been higher given the natural occurrence of arsenic as a 

byproduct of coal combustion (97, 98) and 2) the widespread observation of microbial arsenic 

resistance from soils that have generally low contamination (29, 42, 87, 146, 147). While our 



41 

isolation resulted in an abundance of Firmicutes, this is not surprising since members of phylum 

Firmicutes have been shown to be resistant to arsenic previously with varied MICs (87, 148).  

Additionally, we acknowledge cultivation bias and that freezing soil prior to cultivation may 

have influenced our ability to resuscitate some strains (149). Accordingly, all 25 isolates were 

rare within their soil microbial community (Table 2.1). Previous studies have shown that 

cultivation from soil can isolate rare community members (121), but this investigation is the first 

specific documentation of enrichment of arsenic resistant bacteria from the rare biosphere. This 

finding is relevant to the Centralia community because soil arsenic concentrations may increase 

due to coal combustion (97, 98). While we cannot determine the response of the general 

community to additional arsenic deposition, our results suggest that members of the rare 

biosphere are capable of surviving arsenic stress and have potential to transfer resistance genes.  

 

We also found that growth phenotypes in arsenic provided richer context for tolerance 

than MICs. Our results are consistent with previous reports that Proteobacteria often have high 

MICs of arsenic (Figure 2.2B) (30, 101); however, when simultaneously analyzing reductions in 

growth with arsenic, our results show distinct growth strategies among lineages, in both arsenate 

and arsenite (Figure 2.4 and Appendix B Figure 5). While other reports have examined growth 

reduction in the presence of arsenic to find suitable strains for bioremediation (109, 146, 147, 

150, 151), a suite of growth parameters are not typically investigated. Our full characterization of 

growth in increasing concentrations of arsenic showed a modest relationship between growth 

phenotype and taxonomy and highlights discrepancies between fitness in arsenic and MIC. This 

taxonomic delineation of growth phenotypes may be attributed to lineage-distinct mechanisms of 

arsenic tolerance; however, limited conclusions can be made for genera with small sample sizes 

(Paenibacillus, Microbacteriun, Olivibacter, and Pseudomonas). Jobby and colleagues (102) 
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found an increased lag time with arsenic addition in an Enterobacter isolate from Navi Mumbai, 

which is similar to the lag times observed for Enterobacter isolates from Centralia, PA. This 

further implicates taxonomy as an important factor in an organism’s tolerance to arsenic in liquid 

culture. Accounting for tolerance mechanisms may explain some of the discrepancies between 

MIC and arsenic resistance genotype (29) and between MIC and isolate abundance in 

contaminated sites (148). Valverde and colleagues (148) observed an increase in Firmicutes with 

increasing arsenic concentrations despite their lower MICs in vitro. Our findings suggest that 

arsenic resistant Firmicutes, in general, had modest changes in growth phenotypes in arsenic. 

Generally, this result questions the precision of MICs in predicting the success of a 

microorganism in the presence of arsenic. While this report is descriptive and not an exhaustive 

look at the relationship between growth phenotype in arsenic and taxonomy, consideration of 

both growth phenotype and taxonomy may offer additional predictive value and future studies 

should further examine growth phenotypes in arsenic. 

 

Microbial arsenate reduction and the transfer of associated functional genes are important 

environmental health concerns because these processes increase the mobility of environmental 

arsenic (100). Incongruence between the phylogenetic alignment of arsC, arsB, and ACR3(2) 

and the 16S rRNA gene within this isolate collection suggests horizontal transfer of arsenic 

resistance genes (Figure 2.3), despite a low arsenic concentration and therefore low direct-

selection pressure at this site. Determining the genetic environment of these arsenic resistance 

genes (chromosomal location or plasmid-borne) through whole genome sequencing would 

further determine whether these genes were horizontally transferred and provide insights into 

mechanisms of transfer. These results further emphasize the potential HGT of genes encoding 

arsenite efflux pumps and arsenate reductase seen previously (30, 34). Specifically, HGT of the 
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gene encoding an arsenite efflux pump (arsB) has been seen in environments with low arsenic 

concentrations (30). Notably, these data indicate potential HGT from multiple species, 

suggesting community-level contributions to arsenic resistance rather than a limited source of 

resistance genes. Investigating interactions among community members in the context of arsenic 

contamination may provide insights into the sources and sinks underlying the movement of 

resistance genes.      

 

Finally, we observe multiple discrepancies between genetic and functional assays when 

characterizing the isolates’ arsenic resistance. Despite using twelve published and commonly 

used primer sets to screen for arsenic resistance genes, three isolates with relatively high MICs 

did not test positive for any arsenic resistance genes screened in this study, highlighting a caveat 

of using primers for detection (29, 101). We also observe inconsistencies between genetic results 

and arsenate transformation capabilities, suggesting divergent gene sequences, presence of 

untested arsenic resistance genes (including the possibility of novel genes (111)), or general 

stress responses. A wider breadth of arsenic resistance gene diversity is likely to be captured 

using complementary cultivation-independent methods. 

 

Our focus on growth phenotypes in arsenic revealed a relationship with taxonomy that 

has not been described previously. Additionally, our data show that rare community members 

can exhibit arsenic resistance and contain arsenic resistance genes. These observations have 

implications not only for arsenic tolerance but also for mechanisms supporting general microbial 

community robustness to arsenic stress.  
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CHAPTER 3 : Community structure explains antibiotic resistance gene dynamics over a 

temperature gradient in soil 
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Abstract 

Soils are reservoirs of antibiotic resistance genes (ARGs), but environmental dynamics of ARGs 

are largely unknown. Long-term disturbances offer opportunities to examine microbiome 

responses at scales relevant for both ecological and evolutionary processes and can be insightful 

for studying ARGs. We examined ARGs in soils overlying the underground coal seam fire in 

Centralia, PA, which has been burning since 1962. As the fire progresses, previously hot soils 

can recover to ambient temperatures, which creates a gradient of fire impact. We examined 

metagenomes from surface soils along this gradient to examine ARGs using a gene-targeted 

assembler. We targeted 35 clinically-relevant ARGs and two horizontal gene transfer-related 

genes (intI and repA). We detected 17 ARGs in Centralia: AAC6-Ia, adeB, bla_A, bla_B, bla_C, 

cmlA, dfra12, intI, sul2, tetA, tetW, tetX, tolC, vanA, vanH, vanX, and vanZ. The diversity and 

abundance of bla_A, bla_B, dfra12, and tolC decreased with soil temperature, and changes in 

ARGs were largely explained by changes in community structure. We observed sequence-

specific biogeography along the temperature gradient and observed compositional shifts in 

bla_A, dfra12, and intI. These results suggest that increased temperatures can reduce soil ARGs 

but that this is largely due to a concomitant reduction in community-level diversity.   
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Introduction 

The dissemination of antibiotic resistance genes (ARGs) is a pressing public health 

concern. The One Health initiative recognizes the intrinsic link between evolution of bacterial 

resistance in clinical and environmental settings (152). Clinically relevant antibiotic resistance 

genes (ARGs) have been detected in “pristine environments” (153) as well as a variety of 

marine, plant, and soil microbiomes (81, 154–156). Soil is considered to be an environmental 

reservoir of ARGs, with greater ARG diversity than observed in the clinic (75). Despite our 

ability to easily detect ARGs in soil, the dynamics of soil ARGs are not fully understood (78). 

Understanding of the dissemination of ARGs in the environment is impeded by our limited 

information on their diversification, maintenance, and dissemination (157). 

 

 Investigating the propagation and dissemination of ARGs in soil is difficult because 

multiple interacting factors influence their fate (77, 78). Perhaps most obviously, ARGs can be 

selected when there is environmental exposure to antibiotic (79). Environmental exposure can 

result from the anthropogenic use of antibiotics, for example in agriculture or via wastewater 

treatment outputs (158, 159), or it can result from environmental antibiotic production by 

microorganisms in situ (75). Antibiotic exposure can kill sensitive populations and allow for 

propagation of resistant strains. Additionally, ARGs can be horizontally transferred (157) and are 

often detected on plasmids and other mobile genetic elements (66, 160). Thus, ARGs on mobile 

genetic elements may be disseminated more rapidly than through population growth alone. 

Furthermore, several ARGs are thought to have evolved >2 billion years ago (80), and these may 

be maintained in the absence of selective pressure from antibiotics and transferred vertically. 

Another complicating factor for understanding ARG dissemination is the influence of the 

dynamics of soil microbial communities. While interspecies competition can impact ARG 
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abundance, one study of many habitats showed that abiotic soil conditions can be important 

drivers of ARG profiles (81). Anthropogenic influences, such as nitrogen addition to the soil, 

also can impact ARGs (82). Similarly, studies with changing abiotic conditions, such as 

increased temperatures, have reported subsequent reductions in ARG abundance (83, 84). In 

these examples and others, environmental disturbance can alter soil microbial community 

structure (161–163), and then can impact local ARGs and their dissemination. 

 

Long-term disturbances that impact multiple microbial generations can provide 

opportunities to investigate the changes in ARGs in response to environmental stress. One such 

disturbance is Centralia, PA, the site of an underground coal seam fire that ignited in 1962. 

Because this town was evacuated in 1984, it also represents a post-urban ecosystem of minimal 

contemporary anthropogenic influence. This fire continues to advance along the coal seam, 

creating a gradient of contemporary and historical fire impact and allowing for observation of 

multiple microbial generations’ responses to disturbance and their potential recovery. Surface 

soil microbial communities in Centralia are exposed to elevated temperatures (21 – 57°C) (140) 

and coal combustion pollutants (97) which include trace elements such as arsenic, copper, 

aluminum, and lead (96, 97). While temperature increases are large, deposition of coal 

combustion pollutants occurs at a slow rate and varies based on the subsurface structure and 

geochemical properties of the burning coal (97). The depth of the coal seam varies from surface-

level to 46 m (95). Furthermore, surface temperatures cool to ambient levels as the fire 

progresses, but coal combustion pollutants are not necessarily removed. Previously, we observed 

changes in bacterial and archaeal community structure with fire history that was well explained 

by temperature rather than soil properties such as arsenic concentration (140).    
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We leveraged the long-term disturbance in Centralia to examine ARG biogeography 

given both the abandonment of human habitation and the presence of a multigenerational stressor 

for the microorganisms. We investigated 12 metagenomes of microbial communities from 

surface soils along the Centralia temperature gradient for 35 clinically-relevant ARGs conferring 

resistance to eight classes of antibiotics, as well as multi drug efflux pumps and two HGT-

relevant genes repA and intI. We used gene targeted assembly of the metagenomes to capture a 

breadth of ARG diversity. To examine the potential extent of HGT in Centralia, we asked 

whether changes in community structure explained any changes in ARG profiles. Because we 

previously identified changes in community structure along the stressor (140), we also asked 

whether functional redundancy (e.g., different ARG sequences belonging to the same resistance 

class) within the soil microbial community moderated the impact of a disturbance on ARG 

profiles. Functional redundancy allows for changes in community structure to occur without 

subsequent change in ARG abundance. Also, because we focused on clinically relevant ARGs 

rather than potentially novel ARGs from thermophilic lineages, we hypothesized that ARG 

abundance would decrease with temperature, as observed in other studies (Diehl and Lapara 

2010; Qian et al. 2016; Tian et al. 2016). We were, however, also interested in the biogeography 

of specific gene sequences and hypothesized that they may have unique responses, even within 

the same resistance class.   
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Materials and methods 

Reference Database construction 

Reference gene databases of diverse, near full length sequences were constructed using 

selected sequences from FunGene databases (164) for the following genes: AAC6-Ia, adeB, 

ANT3, ANT6, ANT9, bla_A, bla_B, bla_C, CAT, cmlA, dfra1, dfra12, ermB, ermC, intI, mexC, 

mexE, qnr, repA, strA, strB, sul2, tetA, tetD, tetM,  tetQ, tetW, tetX, tolC, vanA, vanC, vanH, 

vanT, vanW, vanX, vanY, and vanZ. Seed sequences and Hidden Markov Models (HMMs) for 

each gene were downloaded from FunGene, and diverse protein and corresponding nucleotide 

sequences (reference sequences) were selected with gene-specific search parameters (Appendix 

A Table 6). Briefly, minimum size amino acid was set to 70% of the HMM length; minimum 

HMM coverage was set to 80% as is recommended by Xander software for targeted gene 

assembly (165); and a score cutoff was manually selected based on a notable score reduction 

between consecutive sequences, as suggested by the Ribosomal Database Project (personal 

communication). Reference sequences were de-replicated before being used in subsequent 

analysis, and final sequence numbers are included in Appendix A Table 6.  

 

Sample collection, sequencing, and quality control  

 Study site, soil sampling and soil biogeochemistry were all performed as described 

(140). Briefly, surface soils were sampled along a gradient of fire-impact that was determined 

from historical characterizations of the site (95): fire-affected (n = 6), recovered (n = 5), and 

reference (n = 1). Fire-affected soils had elevated temperatures due to fire; recovered soils were 

at ambient temperature but historically had elevated temperatures from the fire; and the reference 

soil was never impacted by the fire. The reference sample was used as a qualitative control and is 

not intended as an quantitative and definitive comparison to non-impacted soils. Microbial 
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community DNA was obtained using a phenol chloroform extraction (Cho et al., 1996) and 

purification with MoBio DNEasy PowerSoil kit without vortexing. All samples were sequenced 

on the Illumina HiSeq 2500 platform with 2 x 150 bp paired end format at the Joint Genome 

Institute (JGI) and quality filtered using BBDuk (https://sourceforge.net/projects/bbmap/). 

Metagenome coverage was estimated using Nonpareil (166).  

 

Gene targeted assembly and quality control 

A gene targeted metagenome assembler (165) was used to assemble antibiotic resistance 

genes of interest from quality-filtered metagenomes. For each gene of interest, seed sequences, 

HMMs, and reference gene databases, as described above, were included. The rplB reference 

gene database, seed sequences, and HMMs from the Xander package were used. In most 

instances, default assembly parameters were used, except to incorporate differences in protein 

length (i.e. if the protein was shorter than 150 aa (default), as was the case for dfra1, dfra12, 

AAC6-Ia, ermB, ermC, qnr, vanX, and vanZ) (Appendix A Table 6). While the assembler 

includes chimera removal, additional quality control steps were added. Specifically, final 

assembled sequences (contigs) were searched against the reference gene database as well as the 

non-redundant database (nr) from NCBI (August 28, 2017) using BLAST (v. 2.2.26,(167)). 

Genes were re-examined if the top hit had an e-value > 10-5 or if top hit descriptors were not the 

target gene. Genes with low quality results were re-assembled with adjusted parameters. Aligned 

sequences from each sample were dereplicated and clustered at 90, 97, and 99% amino acid 

identity using the RDP Classifier (168). Our quality control analyses can be accessed on GitHub 

(‘assembly_assessments’ repository in 

https://github.com/ShadeLab/PAPER_Dunivin_Antibiotics_2017/tree/master/assembly_assessm

ents). 
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Ecological analyses 

Phylum-level rplB relative abundance was used to examine differences in community 

structure. Relative abundance for each site was averaged among samples of the same fire 

classification (i.e. fire-affected, recovered, reference) and compared to 16S rRNA gene sequence 

data from a previous work (140). For subsequent ecological analyses, the RDP Classifier was 

used to generate an OTU table from 90, 97, and 99% amino acid identities. We refer to contigs 

clustered at 99% identity as “ARG sequences” throughout the remainder of the text. The OTU 

tables were analyzed in R (138). OTU tables were separated based on the gene(s) of interest 

(rplB and ARGs). Due to Nonpareil-estimated differences in coverage, rplB and ARG OTU 

tables were rarefied to an even sampling depth (258 and 180 assembled sequences, respectively) 

using the vegan package (169). Pieluo’s evenness was calculated, and richness was estimated 

using PhyloSeq (170). The Psych package was used to calculate Spearman’s rank correlations 

between alpha diversity (richness and evenness) and soil temperature for both rplB and ARGs. 

Bray-Curtis distance was used to obtain dissimilarity matrices, and principal component analysis 

was used to visualize beta diversity. Distance matrices of rarefied, relativized data were analyzed 

using Mantel tests with Spearman’s rank correlations. Mantel tests were performed on rplB, 

ARG, and spatial distance matrices of sample locations.  

 

Resistance gene comparison 

We assessed ARG biogeography at the gene, taxonomic class, and sequence levels. To 

compare the abundance of ARGs among data sets, total counts of rplB were used to normalize 

the abundance of each ARG sequence. Total counts of each ARG were calculated as the sum of 

the relative abundance of each ARG sequence. The Psych package (171) was used to calculate 

Spearman’s rank correlations between soil geochemical properties and total gene counts for each 
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ARG. Pairwise correlations for the total abundance of each resistance gene were also calculated. 

For taxonomic analysis of each ARG, the top BLAST result and the taxize package (172) were 

used to assign taxonomy to each ARG sequence. When the top hit was an uncultured bacterium, 

the second or third hit was used, and when all three top hits were unknown, the taxonomy was 

labeled unknown. Total counts of each taxonomic class were summed for each ARG, and 

Spearman’s rank correlations were used to test for correlations between class abundance and 

temperature for all ARGs with representatives from at least three taxonomic groups. Spearman’s 

rank correlations were performed on normalized and relativized abundance information, but only 

relativized abundance is shown because it agreed with normalized data and also had unique 

features. Furthermore, we examined biogeography of individual ARG sequences. A Venn 

analysis was performed between ARGs in fire affected and recovered samples using the 

VennDiagram package (173). The mean normalized abundance for each ARG sequence among 

samples was plotted against the number of sites it was observed in (occurrence). ARG sequences 

present in only one site were subsequently removed, and we used hierarchical cluster and 

heatmap analysis with the pheatmap package (174) to examine similar sequence biogeography 

along the temperature gradient.  

 

Reproducibility, code, and data 

Our computing workflows and R script can be accessed on GitHub 

(https://github.com/ShadeLab/PAPER_Dunivin_Antibiotics_2017).  Metagenomes are available 

from IMG/GOLD study ID: Gs0114513.   
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Results and Discussion  

Soil samples and gene targeted assembly 

We previously collected soils along the Centralia temperature gradient (140). We 

submitted DNA extracted from twelve soils (temperature range = 12.1 - 54.2°C) to the Joint 

Genome Institute for a small-scale Community Science Project; we did not submit all 18 

originally collected samples because there was a 12-sample limit with the small-scale award, and 

so we chose samples for sequencing that were representative of the thermal gradient. We 

sequenced metagenomes from soils that had elevated temperatures due to the fire (fire-affected, n 

= 6), those that were historically impacted (recovered, n = 5), and those with no documented 

impact (reference, n = 1) (Appendix B Figure 6). Quality filtered metagenome size ranged from 

21-51 Gbp, and Nonpareil-estimated coverage (166) varied from 29.12 to 89.96% (Appendix A 

Table 7). Though we measured a suite of geochemical data (Appendix A Table 8), our previous 

work found temperature to be the strongest driver of community structure (140), and we found 

that ARGs only correlated with temperature (Appendix A Table 9).  

 

We used a gene-targeted metagenome assembler to probe Centralia metagenomes for 

ARGs. While this gene-centric methodology does not permit analysis of entire gene cassettes or 

flanking regions, it improves detection of low abundance genes, increases the length of 

assembled gene sequences, and is capable of detecting strain-level sequence variation (165). In 

addition to assembling ARGs of interest, we assembled rplB, a single copy gene and 

phylogenetic marker. We recently reported changes in community structure in surface soils along 

the Centralia coal seam fire, and this conclusion was based on analysis of 16S rRNA gene 

amplicon data (140). In this work, we used rplB community structure to compare ARG profiles 

because both were determined by the same annotation and assembly methods from shotgun 
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metagenomes. Thus, we first asked whether patterns observed using rplB sequences were similar 

to patterns we observed previously with 16S rRNA gene amplicons. Overall, patterns in 

community structure were consistent between these analyses (Appendix B Figure 7). This was 

verified based on significant Mantel tests between rplB and 16S rRNA genes (Mantel’s r = 

0.5877, p = 0.001 on 999 permutations, at the OTU level. There was no relationship between 

spatial proximity of soils and rplB community structure (Mantel’s r = -0.14, p > 0.05 on 999 

permutations), confirming our previous report that community structure is not strongly driven by 

local dispersal. rplB evenness was negatively correlated with temperature (ρ = -0.66; p < 0.05), 

and rplB richness also trended negatively (ρ = -0.55; p = 0.05). Decreased alpha diversity with 

increased temperature was expected because of the complex and extreme fire stressor (e.g., 

exposure to high temperature and coal combustion pollutants, Janzen and Tobin-Janzen 2008), 

and, again, is in agreement with our previous study (Lee and Sorensen et al. 2017). The only 

obvious difference was that the rplB dataset had a greater abundance of Firmicutes than the 16S 

rRNA gene dataset, which may be due to differences in DNA extraction methods (175) or 

marker gene target. Thus, we found that rplB assembled using these methods was comparable to 

16S rRNA gene data (Appendix B Figure 7), showing that gene targeted assembly produced 

results consistent with previous work.  

 

Detected ARGs and changes in their abundance with temperature 

 We examined a suite of genes encoding resistance to aminoglycosides, beta-lactams, 

chloramphenicol, sulfonamides, tetracyclines, trimethoprim, and vancomycin, as well as 

plasmid-related and genes encoding multidrug efflux pumps (Table 3.1). From Centralia 

metagenomes, we assembled 1,165 unique ARG clustered at 99% amino acid identity. Though  
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Table 3.1. Resistance genes tested in this study.  

 

Table 1. Resistance genes tested in this study.  
	

Antibiotic	specificity	 Gene	

Aminoglycoside	 AAC6-Ia,	ANT3,	ANT6,	ANT9,	strA,B	
β-Lactams	 Class	A	(bla_A),	Class	B	(bla_B),	Class	C	(bla_C)	
Chloramphenicol	 CEP,	cmlA	
Macrolide	 ermB,C,	qnr	
Multidrug	efflux	 adeB,	mexC,E,	tolC	
Plasmid	 intI,	repA	
Sulfonamide	 sul2	
Tetracycline	 tetA,D,M,Q,W,X	
Trimethoprim	 dfra1,	dfra12	
Vancomycin	 vanA,C,H,T,W,X,Y,Z	
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we targeted 35 distinct types of ARGs and two HGT-related genes, only 17 of these could be 

assembled from Centralia metagenomes. The genes ANT3, ANT6, ANT9, CAT, dfra1, ermB, 

ermC, mexC, mexE, qnr, repA, strA, strB, tetD, tetM, tetQ, vanC, vanT, vanW, and vanY were not 

observed, suggesting that they were either below the detection limit or absent. For detected 

ARGs, we found positive correlations between vanA, H, and X genes and between tolC and 

dfra12 (Appendix B Figure 8). vanAHX genes are known to be associated with one another in 

VanA-type operons (176), and genes tolC and dfra12 have previously been observed in isolates 

(177). While sul2 and intI1 have been previously shown to be correlated (178), we did not 

observe a significant correlation between these genes. This discrepancy could be because our 

analysis does not distinguish between integron classes. Several ARGs in Centralia were 

negatively correlated with soil temperature (Figure 3.1;Appendix A Table 9), but no ARGs 

were correlated with other measured soil geochemical properties (results not shown, Appendix 

A Table 8). The most abundant ARGs detected in Centralia were adeB, bla_B, and dfra12 

(Figure 3.1, Appendix B Figure 9). We note that the highest ARG normalized abundance was 

typically in Cen04 (13.3°C) but that this is due to low rplB abundance in the sample.  

 Our results are generally in agreement with other studies of ARGs in soils. For example, 

Fitzpatrick and Walsh (2016) also reported low abundance or absence of qnr, tet and van genes 

in soil. Several studies also reported that genes encoding dihydrofolate reductases and/or beta-

lactamases were abundant in soils (67, 82, 154). Previous studies reported reductions in 

clinically-relevant ARGs with increased temperatures in digesters and compost (83, 84, 179). 

Diehl and Lapara (2010) observed a negative relationship between temperature and genes 

encoding tetracycline resistance and class 1 integrons in anaerobic digesters, but not aerobic 

ones. This may be further relevant to Centralia soils, as there likely are pockets of anaerobic   
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Figure 3.1. Negative correlations between normalized abundance of ARGs and soil 

temperature.  

Coverage-adjusted abundance for bla_A, bla_B, tolC, and dfra12 was normalized to total 

abundance of the single copy gene rplB. Normalized abundance is plotted against soil 

temperature. Note the differences in y-axes. The linear trend line and p-value corresponding to 

the Spearman’s rank correlation are shown. Symbol indicates soil classification based on fire 

history. 
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activity in hot soils, especially at venting sites, which have measurably higher percent moisture 

content due to steam escaping (Appendix A Table 8). To our knowledge, this is the first 

description of a reduction in ARG abundances with temperature in situ with soil. These results 

suggest that ARGs may be reduced in soil environments by increasing temperature. Thus, we 

speculate that increases in temperatures expected to reduce microbial community diversity may 

result in decreased clinically relevant ARGs in the environment.  

 

Diversity of ARGs 

  We also examined the amino acid-level diversity of ARGs in Centralia metagenomes. 

We tested sequence cutoffs of 90, 97, and 99% amino acid identity, but overarching patterns did 

not vary based on sequence cutoff (results not shown). Thus, our subsequent diversity analysis 

applied the most stringent cutoff (99% amino acid identity), as was applied in the original gene 

targeted assembly paper (165). ARG richness was negatively correlated with temperature (ρ = -

0.57; p < 0.05), but evenness had a variable response with temperature (ρ = -0.47; p > 0.05) 

(Figure 3.2BD). ARG alpha diversity (within-sample) trends were thus similar to rplB and 16S 

rRNA gene diversity trends (Figure 3.2AC), highlighting the influence of community structure 

on soil ARG profiles. In addition, overall differences in the composition of ARGs among sites 

were related to differences in rplB community structure (Mantel’s r = 0.54; p < 0.05 on 999 

permutations; Appendix B Figure 10). This result also supports the proposal that compositional 

shifts in membership among Centralia sites were driving the observed differences in ARGs, not 

propagation of ARGs by gene transfer. These results agree with a recent analysis that reported 

congruence between community structure and ARG profiles in soils (82). Similar to patterns in  
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Figure 3.2. Observed richness (AB) and evenness (CD) of rplB (AC) and ARG (BD) along 

the Centralia temperature gradient. 

Assembled sequences were clustered at 99% amino acid identity and rarefied to an even 

sampling depth. Observed number of sequences (richness) and Pielou’s evenness is plotted 

against soil temperature. Symbol indicates soil classification based on fire history. 
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rplB and 16S rRNA genes, ARG profiles could not be explained by distance between sample 

sites (Mantel’s r = 0.01, p > 0.05 on 999 permutations). This result suggests that local dispersal 

of ARGs, which could be indicative of HGT, is not a common mechanism of ARG dissemination 

in this system. However, when we considered fire-affected and recovered metagenomes 

separately, we found that rplB community structure explained ARG composition in fire-affected 

soils (Mantel’s r = 0.71; p < 0.05 on 719 permutations), but not in recovered soils (Mantel’s r = 

0.30; p > 0.05 on 119 permutations). We determined that this result was not driven by one 

anomalous sample by performing iterative “leave-one-out” Mantel tests with four of five 

recovered soils, and all tests showed no correlation between rplB and ARGs (results not shown). 

The reason for no relationship between rplB and ARG in recovered soils is unclear (one 

hypothesis is that there is no signal given higher diversity), but this observation very indirectly 

suggests a potential larger influence of HGT in recovered soils than fire-affected soils that could 

be explored in future work. 

 

ARG distribution and sequence-specific biogeography 

Only twelve ARG sequences were shared between fire-affected and recovered soils 

(Figure 3.3A). On one hand, this is expected because soils are heterogeneous and have high 

ARG diversity (154). Forsberg and colleagues (2014) observed 2,895 ARG sequences in a 

functional antibiotic resistance screen from 18 agricultural and grassland soils. Of these, only 

2.6% were present in two or more soils, which is comparable to our data (1.1%). Similarly, the 

distinction between fire-affected and recovered soil in our study is in part explained by generally 

high ARG diversity, with minimal overlap of ARG sequences detected between all sites. 

Furthermore, most ARG sequences (94.16%), whether they were rare (< 1.5% normalized 

abundance to rplB) or prevalent, were detected only in one metagenome (Figure 3.3B). Though 
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Figure 3.3. Presence of ARG sequences in Centralia metagenomes. 

A) Venn diagram of ARG sequences observed in recovered and fire-affected soils. B) ARG 

abundance-occurrence patterns in Centralia metagenomes. Percent normalized abundance of 

ARG sequences was averaged among 12 metagenomes and plotted against the number of sites 

in which each sequence occurs in. Each point represents one cluster, and color indicates gene. 
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the gene-targeted assembly approach maximizes observation of diversity given metagenome 

coverage, it is possible that even greater coverage of these metagenomes could result in detection 

of more shared ARG sequences between samples. There were 13 distinct biogeographical 

dynamics that indicated genes sensitive to the fire, and these were classified into two categories 

based on their prevalence and patterns of detection: abundant-transient, and rare-transient 

sequences (Figure 3.4). Abundant-transient ARG sequences belonged to genes adeB, bla_B, 

dfra12, intI, sul2, and vanZ. These sequences had a rplB-normalized abundance of ≥ 1.5% of the 

total community within at least one metagenome. Rare-transient biogeographic patterns were 

observed for ARG sequences belonging to adeB, bla_A, bla_B, CEP, dfra12, intI, tolC, vanA, 

vanX, and vanH. Rare-transient sequences represented those with ≤ 1.5% of the total community. 

However, step-wise relationships with temperature were observed for several ARG sequences, 

suggesting the potential enrichment by fire for microbes harboring these ARG sequences. Two 

clusters of rare-transient sequences with no temperature relationship were observed based on 

differences in normalized abundance (Figure 3.4), suggesting that they had no relationship with 

fire or temperature. Thus, we observed sequence-specific biogeography for ARG sequences 

along the temperature gradient, showing that the average changes in ARG abundance does not 

always fully explain the biogeography of each unique resistance gene sequence detected within 

that gene family.  
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Figure 3.4. Normalized abundance of ARG sequences in Centralia metagenomes. 

Abundance of each gene sequence (clustered at 99% amino acid identity) present in ≥ 2  
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Figure 3.4 (cont’d) 

metagenomes was normalized to rplB. Complete-linkage clustering was calculated with the 

rplB-normalized abundance of each ARG sequence. Heatmap shows normalized abundance on 

a blue scale. Soil sites (column) are ordered by increasing soil temperature. Each row 

represents one ARG sequence, and ARG is noted by color. 
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ARG Compositional shifts 

 We examined both rplB-normalized and relativized abundance patterns to compare 

changes in composition of ARGs and changes in proportional contributions of ARGs.  For this 

analysis, composition was considered at the phylum or Proteobacteria class levels based on top 

BLAST hits. For ARGs that represented more than three phyla or Proteobacteria classes, (bla_A, 

bla_B, dfra12, intI; Appendix A Table 10; Appendix A Table 11), we explored for correlations 

with temperature and observed changes in ARG composition with temperature for bla_A, dfra12, 

and intI (Figure 3.5).  

 

Generally, community structure was associated with ARG composition. rplB-level 

reduction in Betaproteobacteria corresponded with reductions in Betaproteobacteria-related 

ARG. Betaproteobacteria-related bla_A and dfra12 genes decreased with temperature (Figure 

3.5; Appendix A Table 11). Thus, reductions in total bla_A and dfra12 counts is largely 

explained by a reduction in Betaproteobacteria. This pattern does not extend to bla_B since 

Betaproteobacteria-related bla_B genes were only detected in one soil (Cen16). We did not 

detect changes in Gammaproteobacteria based on rplB. This corresponded with consistent 

relative abundances of Gammaproteobacteria-related bla_A, bla_B, dfra12, and intI (Appendix 

A Table 11).Gammaproteobacteria-related dfra12 increased in relative abundance with soil 

temperature (ρ = 0.95, p < 0.05), further highlighting that a reduction in total dfra12 relative 

abundance is not due to changes in Gammaproteobacteria-related sequences. Phylum-level 

community structure, therefore, corresponded with compositional changes in ARGs, highlighting 

the influence of the underlying community on soil ARGs.  

 

We observed evidence for functional redundancy of ARGs in Centralia through  
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Figure 3.5. Relative abundance of taxonomically similar ARGs. 

Phylum-level taxonomy for bla_A, bla_B, dfra12, intI, and rplB for each site is shown. Color indicates phylum- and Proteobacteria 

class-level taxonomy of ARGs, and sites are ordered by increasing soil temperature. dfra12 was not detected in Cen01.   
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compositional shifts along the temperature gradient. Total bla_A relative abundance decreased 

with temperature (Figure 3.1); however, taxonomic groups of bla_A were differentially 

impacted along the temperature gradient (Figure 3.5; Appendix A Table 11). Both normalized 

and relativized abundance of Actinobacteria-related bla_A genes increased (ρ > 0.6, p < 0.05) 

while Betaproteobacteria-related bla_A genes decreased (ρ < 0.6, p < 0.05) with temperature 

(Appendix A Table 11). Thus, fire impacted the abundance and composition of bla_A. A 

decrease in total bla_A (Figure 3.1) was accompanied by an increase in Actinobacteria-related 

bla_A. This asymmetric response with temperature suggests an impact of functional redundancy 

on soil ARG profiles. We also observed a shift in intI composition despite consistent intI 

abundance along the temperature gradient. The relative abundance of Beta- and 

Gammaproteobacteria-related intI decreased with temperature (ρ < 0.6, p < 0.05), but the 

relative abundance of Nitrospirae-related intI increased with temperature (ρ > 0.6, p < 0.05) 

(Figure 3.5; Appendix A Table 11). We therefore observed changes in composition of intI with 

fire despite a lack of change in total intI abundance. Notably, previous studies have described 

Nitrospirae-related intI.  Oliveira-Pinto and colleagues (2016) isolated an intI gene cassette 

related to Nitrospirae from a metal-rich stream, and Goltsman and colleagues (2009) identified 

both integrase and ARGs on chromosomes of Nitrospirae strains isolated from acid mine 

drainage. It is unclear, however, whether Nitrospirae-related intI genes are associated with ARG 

transfer. As intI encodes for a DNA integrase, this result suggests that Nitrospirae might 

contribute more to HGT in fire affected soils, but we cannot determine whether this putative 

gene transfer would include ARGs. We posit that reductions in ARG abundance due to increased 

temperature could increase subsets of clinically relevant ARGs, and studies using temperature as 

a control for ARGs should consider sequence-level ARG dynamics within the system.   
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Conclusions 

This case study of ARG biogeography over a long-term, severe thermal disturbance 

demonstrates the importance of community structure on soil ARG abundance and composition. 

Despite the stressor and the withdrawal of human activity, the diversity of ARG observed in 

Centralia is comparable to other soil systems (82, 154). For several clinically relevant ARGs, we 

observed a reduction in total abundance with increased temperature. While this has been reported 

in anthropogenic systems (83, 84, 179), we further probed Centralia datasets for compositional 

and sequence-specific ARG biogeography and found nuanced results. Generally, the reduction in 

ARG abundance could be explained by indirect effects (i.e. compositional shifts in the 

community). We posit that increased temperatures could result in a reduction in the diversity and 

abundance of ARGs in the environment, but our data also suggest that this reduction will not 

impact all ARG sequences similarly. ARG biogeographical dynamics in soil are thus largely 

dependent on community structure, which may also drive the observed fine-scale abundance-

occurrence patterns.    
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CHAPTER 4 : RefSoil+: A reference database for genes and traits of soil plasmids 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Work presented in this chapter has been published as Dunivin TK, Choi J, Howe AC, and Shade 
A. 2019. RefSoil+: A reference database for genes and traits of soil plasmids. mSystems. 4(1) 
e00349-18  
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Abstract 

Plasmids harbor transferable genes that contribute to the functional repertoire of microbial 

communities, yet their contributions to metagenomes are often overlooked. Environmental 

plasmids have the potential to spread antibiotic resistance to clinical microbial strains. In soils, 

high microbiome diversity and high variability in plasmid characteristics present a challenge for 

studying plasmids. To improve understanding of soil plasmids, we present RefSoil+, a database 

containing plasmid sequences from 922 soil microorganisms. Soil plasmids were relatively larger 

than other described plasmids, which is a trait associated with plasmid mobility. There was a 

weak relationship between chromosome size and plasmid size and no relationship between 

chromosome size and plasmid number, suggesting that these genomic traits are independent in 

soil. We used RefSoil+ to inform the distributions of antibiotic resistance genes among soil 

microorganisms as compared to non-soil microorganisms. Soil-associated plasmids, but not 

chromosomes, had fewer antibiotic resistance genes than other microorganisms. These data 

suggest that soils may offer limited opportunity for plasmid-mediated transfer of described 

antibiotic resistance genes. RefSoil+ can serve as a reference for the diversity, composition, and 

host-associations of plasmid-borne functional genes in soil, a utility that will be enhanced as the 

database expands. Our study improves understanding of soil plasmids and provides a resource 

for assessing the dynamics of the genes that they carry, especially genes conferring antibiotic 

resistances.   
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Introduction 

Soil harbors immense microbial biodiversity, and the soil microbiome has functional 

consequences for ecosystems, like supporting plant growth (182, 183) and mediating key 

biogeochemical transformations (184). It also serves as a reservoir of microbial functional genes 

of interest to human and animal welfare. Within microbial genomes, important functions can be 

encoded on both chromosomes and extrachromosomal mobile genetic elements such as plasmids. 

Plasmids can be laterally transferred among community members, both among and between 

phyla (93, 119, 185).  This capability causes the propagation of plasmid functional genes and 

allows for them to spread among divergent host strains. Within microbial communities, plasmids 

influence microbial diversification (186) and contribute to functional gene pools (119). Plasmids 

can alter the fitness of individuals in a community as they can be gained or lost in the 

environment, which alters functional gene content in the community and can have consequences 

for local competitiveness.  

 

Antibiotic resistance genes (ARGs) provide a prime example of the importance of 

functional genes encoded on plasmids. ARGs can undergo plasmid-mediated horizontal gene 

transfer (160, 187). There is particular concern about the potential for spread of ARGs between 

environmental and clinically-relevant bacterial strains. Studies of ARGs in soil have shown 

overlap between environmental and clinical strains that suggests horizontal gene transfer (HGT) 

(72–74). For example, plasmid-encoded quinolone resistance (qnrA) in clinical 

Enterobacteriaceae strains likely originated from the environmental strain Shewanella algae (73). 

The extent of the impact of environmental reservoirs of ARGs is unknown (76), but studies have 

shown evidence for predominantly vertical, rather than horizontal, transfer of these genes (82). 
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Additionally, it is speculated that rates of transfer in bulk soil are low compared to environments 

with higher population densities such as the rhizosphere, phyllosphere, and gut microbiomes of 

soil microorganisms (85). In the case of antibiotic resistance, mobilization is a public health risk.  

Broadly, the ability of plasmids to rapidly move genes both between and among membership is 

linked to diversification in complex systems, especially soils (186).   

 

Despite their ecological and functional relevance, plasmids are not well characterized in 

soil. Plasmids vary in copy number, host range, transfer potential, and genetic makeup (119, 

188), making them difficult to assemble and characterize from complex soil metagenomes that 

contain tens of thousands of bacteria and archaea (189). Plasmid extraction from soil is biased 

towards smaller plasmids and excludes linear plasmids (119). Additionally, the mosaic gene 

content on plasmids makes their assembly from metagenomes difficult (119). Though new 

methods for plasmid assembly from metagenomes are being developed (190, 191), the resulting 

contigs represent a population average of plasmid gene content and size because they are very 

likely not derived from an individual cell. Thus, the size ranges of plasmids in soils is largely 

unknown, but of consequence because size is one factor reported to contribute to plasmid 

potential for transferability (185). Furthermore, “plasmidome” analysis and plasmid assembly 

from metagenomes do not provide host information. New methods, such as single-cell analysis 

and proximity ligation of chromosomes to plasmids prior to sequencing (192), are still expected 

to assemble plasmids with some degree of mosaicism. However, whole genomes sequenced from 

soil associated microorganisms, inclusive of both chromosomes and plasmids, could provide 

plasmid host and size information.  A database including this information could also provide 
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information as to how much overlap there is as to functional genes encoded on plasmids within 

the host cell chromosome(s).   

 

To aid in the study of plasmids and their associated functional genes in soil, we establish 

a resource to compare genetic locations of functional genes in soil microorganisms. We extended 

the RefSoil database (193) of 922 soil microorganisms to include their plasmids. We used this 

database to test whether soil-associated plasmids are distinct from plasmids from a broad, 

general database of microorganisms, RefSeq (194). We focused our comparisons on plasmid size 

and the content, diversity, and location of ARGs on plasmids and chromosomes. We used hidden 

Markov models from the ResFams database (155) to search for ARGs in the extended soil 

database, RefSoil+, and RefSeq.  RefSoil+ provides insights into the range of plasmid sizes and 

their functional potential within soil microorganisms. RefSoil+ can be used to inform and test 

hypotheses about the traits, functional gene content, and spread of soil-associated plasmids and 

can serve as a reference for plasmid assembly from metagenomes. 
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Materials and Methods 

Data availability 

 All data and workflows are publicly available on GitHub 

(github.com/ShadeLab/RefSoil_plasmids). A table of all RefSoil microorganisms with genome 

and plasmid accession numbers is available on GitHub in the DATABASE_plasmids repository. 

This repository also hosts amino acid and nucleotide sequences for RefSoil+ genomes and 

plasmids. Plasmid retrieval workflows are included in the BIN_retrieve_plasmids directory.  

All workflows are included on Github as well in the ANALYSIS_antibiotic_resistance 

repository.  

 

RefSoil plasmid database generation 

 Accession numbers from RefSoil genomes were used to collect assembly accession 

numbers for all 922 strains. Assembly accession numbers were then used to obtain a list of all 

genetic elements from the assembly of one strain. Because all RefSoil microorganisms have 

completed genomes, all plasmids present at the time of sequencing are included in the assembly. 

Plasmid accession numbers were compiled for each strain and added to the RefSoil database to 

make RefSoil+. Plasmid accession numbers were used to download amino acid sequences, 

coding nucleotide sequences, and GenBank files. To ease comparisons between genome and 

plasmid sequence information, sequence descriptors for plasmid protein sequences were adjusted 

to mirror the format used for bacterial and archaeal RefSoil files. 

 

Accessing RefSeq genomes and plasmids 

 Complete RefSeq genomes and plasmids were downloaded from NCBI to compare with 

RefSoil. All RefSeq bacteria and archaea protein sequences were downloaded from release 89 
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(ftp://ftp.ncbi.nlm.nih.gov/refseq/release). All GenBank files for complete RefSeq assemblies 

were downloaded from NCBI. A total of 10,270 bacterial and 259 archaeal assemblies were 

downloaded. GenBank files were used to extract plasmid size and to compile a list of 

chromosomal and plasmid accession numbers. GenBank information was read into R and 

accession numbers for plasmids and chromosomes were separated. Additionally, all RefSoil 

accession numbers were removed from the RefSeq accession numbers. Ultimately, 10,335 

chromosomes and 8,271 plasmids were collected to represent non-RefSoil microorganisms. 

Protein files were downloaded and tidied using the protocol for RefSoil plasmids as described 

above.  

 

Plasmid characterization 

 We summarized the RefSoil+ and RefSeq plasmids in several ways. Plasmid size was 

extracted from GenBank files for each RefSoil genome and plasmid. For comparison, size was 

also extracted from RefSeq plasmids. These data were compiled and analyzed in the R statistical 

environment for computing (195). The RefSoil metadata, which contains host information for 

each plasmid, was used to calculate proportions of RefSoil microorganisms with plasmids.  Both 

the number of plasmids per organism and the number of RefSoil microorganisms with one 

plasmid were examined. Plasmid size distributions were compared using Mann Whitney U tests, 

Hartigan’s dip test (196), and bimodality coefficients (197). The environmental abundances of 

RefSoil plasmids were calculated using estimations of RefSoil organism environmental 

abundance (193). Only soil orders with the most Refsoil+ representatives (Alfisols, Mollisols, 

Vertisols; (193)) were included in the analysis.  
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Antibiotic resistance gene detection 

 We examined ARGs from the ResFams database (174 total (155) in RefSoil+ (Appendix 

A Table 12). We then used HMMs from the ResFams database (155) to search amino acid 

sequence data from RefSoil genomes and plasmids with a publicly available, custom script and 

HMMER (198). To perform the search, hmmsearch (198) was used with –cut_ga and –tblout 

parameters. These steps were repeated for protein sequence data from the complete RefSeq 

database (accessed 24 July 2018). Tabular outputs from both datasets were analyzed in R. 

Quality scores and percent alignments were plotted to determine quality cutoff values for each 

gene (Appendix B Figure 11). All final hits were required to be within 10% of the model length 

and to have a score of at least 30% of the maximum score for that gene. When one amino acid 

sequence was annotated twice (i.e. for similar genes), the hit with the lower score was discarded. 

The final, quality filtered hits were used to plot the distribution of ARGs in RefSoil genomes and 

plasmids.  
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Results and Discussion 
 
Plasmid characterization 

RefSoil+ is an extension of the RefSoil database inclusive of soil-associated plasmids. 

RefSoil+ includes taxonomic information, amino acid sequences, coding nucleotide sequences, 

and GenBank files for a curated set of 922 soil-associated microorganisms. In total, 928 plasmids 

were associated with RefSoil microorganisms, and 370 RefSoil microorganisms (40.1%) had at 

least one plasmid (Figure 4.1A). This percentage is high compared to the proportion of non-

eukaryotic plasmids in the general RefSeq database (34%; Mann-Whitney U p < 0.01). The mean 

number of plasmids per RefSoil organism was 1.01, but the number of plasmids per organism 

varied greatly (variance = 3.2; Figure 4.1B). For example, strain Bacillus thuringiensis serovar 

thuringiensis (RefSoil 738) had 14 plasmids, ranging from 6,880 to 328,151 bp. The mean 

number of plasmids per RefSoil organism was also greater than RefSeq (Mann-Whitney U p < 

0.01). The abundance of plasmids found in RefSoil genomes highlights plasmids as an important 

component of soil microbiomes (186, 199). 

 

Soil-associated plasmids tended to be larger than plasmids from other environments 

(Mann-Whitney U p < 0.01). Plasmid size in RefSoil microorganisms ranged from 1,286 bp to 

2.58 Mbp (Figure 4.2A), which rivals the range of all known plasmids from various 

environments (744 bp – 2.58 Mbp) (16). In the distribution of plasmid size, both upper and lower 

extremes had representatives from soil. Plasmids from all habitats were previously shown to 

have a characteristic bimodal size distribution with peaks at 5 kb and 35 kb (15–17). In this 

analysis, the subset RefSeq plasmids had a multimodal distribution (Hartigans' dip test p < 0.01; 

Bimodality coefficient = 0.745) and modes at 3 kb and 59 kb (Figure 4.2). Soil-associated  
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Figure 4.1. Summary of RefSoil plasmids. 

A) Percentage of RefSoil microorganisms with (blue) and without (green) detected plasmids. 

B) Distribution of the number of plasmids per RefSoil microorganism. 
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Figure 4.2. Plasmid size distributions. 

A) Histogram of plasmid size (kbp) from RefSoil plasmids. B) RefSoil (blue) and RefSeq 

(gray) plasmid size distributions. C) Estimation of plasmid size distribution in three soil 

orders. Color indicates soil order and n indicates the community size. 

 

5 10 35 100 1000

0

5000

10000

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05

0

2500

5000

7500

Plasmid size (kbp)

Nu
m

be
r o

f p
las

m
ids

Order Vertisols Mollisols Alfisols

C



80 

plasmids in RefSoil+ also had a multimodal size distribution (Hartigans' dip test p < 0.05; 

Bimodality coefficient = 0.800)) but had modes at 1 kb, 3 kb, 49 kb, and 183 kb. Additionally, 

RefSoil+ plasmids were larger than RefSeq plasmids (Mann Whitney U p < 0.01) (Figure 4.2). 

Specifically, RefSoil+ proportionally contained more plasmids > 100 kb (Figure 4.2B). Thus, 

while soil-associated plasmids vary in size, they are, on average, large. This is of particular 

importance because of the established differences in mobility of plasmids in different size ranges 

(185). Smillie and colleagues (2010) showed that mobilizable plasmids, which have relaxases, 

tend to be larger than non-transmissible plasmids, with median values of 35 and 11 kbp 

respectively (185). The majority of soil-associated plasmids (68.2%) were > 35 kbp (Figure 4.2), 

suggesting they are more likely to be mobile. Additionally, conjugative plasmids, which encode 

type IV coupling proteins, have a larger median size (181 kbp) (185). Similarly, RefSoil+ 

plasmids had a mode of 183 kb (Figure 4.2), suggesting that these soil-associated plasmids are 

more likely to be conjugative. Future works should examine genetic potential for transfer of 

plasmids associated with different ecosystems to test this hypothesis.  

 

Plasmid size may vary in the environment. To estimate the environmental size 

distributions of plasmids, we used estimates of the environmental abundance of RefSoil 

microorganisms (193). We focused on soil orders previously shown to include the most RefSoil 

representatives (Alfisols, Mollisols, Vertisols) (193). We found that plasmid size distributions 

varied based on soil order (Kruskal-Wallis p < 0.01; Figure 4.2C). True environmental 

abundance may vary based on plasmid copy number within individuals and plasmids from 

uncultivated microorganisms, but this estimation gives a rough idea of plasmid size distributions 
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in the environment,  and provides some baseline information because there are methodological 

challenges to accurately measuring plasmid size in situ (119, 190, 191).  

Genome size, inclusive of chromosomes and plasmids, is an important ecological trait 

that is difficult to estimate from metagenomes (202). Due to incomplete assemblies, genome size 

must be approximated based on the estimated number of individuals through single-copy gene 

abundance (203). Extrachromosomal elements, however, inflate these estimated genome sizes 

because they contribute to the sequence information of the metagenome often without 

contributing single-copy genes (204). While our methodologies do not account for plasmid copy 

number (205), we examined the relationship between genome size and plasmid size in soil-

associated microorganisms and found a weak but significant correlation (Spearman’s ρ = 0.12; p 

< 0.001; Figure 4.3). Additionally, chromosome size was not predictive of the number of 

plasmids (Figure 4.3; Appendix B Figure 11). For example, Bacillus thuringiensis subsp. 

thuringiensis strain IS5056 had the most plasmids in RefSoil+, but these plasmids spanned the 

size range of 6.8 - 328 kbp. This strain’s plasmids make up 19% of its coding sequences (206), 

but its chromosome (5.4 Mbp) is average for soils (204). Despite the weak relationship between 

genome size and plasmid characteristics within these data, the plasmid database can be used to 

inform estimates of average genome sizes from close relatives detected within metagenomes.  

 

 ARGs on soil plasmids 

It is unclear whether soil ARGs are predominantly on chromosomes or mobile genetic 

elements. While mobile gene pools are not static, there is evidence to suggest low transfer of  
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Figure 4.3. Relationship between plasmid size and genome size.  

Total plasmid size (sum of all plasmids in an microorganism, kbp) is plotted on a log scale 

against total genome size for each RefSoil microorganism. Density plots are included for each 

axis to represent the distribution of RefSoil microorganisms with different numbers of 

plasmids (none (green), one (blue), or multiple (purple)). 
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ARGs in soil (82, 85, 207). For example, bulk soils are not a “hot spot” for HGT because they 

are often resource-limited (208), and surveys of ARGs in soil metagenomes have suggested a 

predominance of vertical transfer, rather than horizontal transfer, of ARGs (82, 207). Using 

RefSoil+ sequences and ResFams HMMs (155), we examined 174 genes encoding resistance to  

beta-lactams, tetracyclines, aminoglycosides, chloramphenicol, glycopeptides,  macrolides, 

quinolones, and trimethoprim. After quality filtering, we detected 154,392 ARG sequences in 

RefSoil chromosomes and plasmids (Figure 4.4).  

 

Adding plasmids to the RefSoil database increased the number of functional gene types, 

or genes that have functional potential (164),  represented in the database, as 7 ARGs (16S rRNA 

methyltransferase, AAC6-Ib, ANT6, CTXM, ErmC, KPC, TetD) were only detected on 

plasmids. Notably, these functional genes would be missed if only chromosomes were 

considered.  However, the majority of ARGs were chromosomally encoded in RefSoil+ 

microorganisms (Figure 4.4AB; chromosome v. plasmid Mann Whitney U p < 0.01). We next 

examined the genomic distributions of ARGs in RefSoil+ based on taxonomy (Figure 4.4CD). 

Proteobacteria had the most plasmid-associated ARGs, which has been reported previously (66).  

 

We were curious whether ARGs were more commonly detected on chromosomes than 

plasmids in general, or if this trend was specific to soil microorganisms. We found that the 

number of ARGs per genome was comparable for RefSoil and RefSeq (Mann Whitney U p > 

0.05), but RefSoil plasmids had fewer ARGs than RefSeq plasmids (Mann Whitney U p < 0.05; 

Figure 4.5). Normalizing to individual microorganisms is biased towards chomosomes,  
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Figure 4.4. Distribution of ARGs in RefSoil genomes and plasmids.  

A) The raw numbers and B) proportions of ARGs on plasmids (light blue), genomes (green) or 
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Figure 4.4 (cont’d) 

both (dark blue) in RefSoil+ microorganisms by antibiotic resistance gene group. The number 

of genes included in each group is shown in parentheses. C) The raw numbers and D) 

proportions of detected ARGs on plasmids (light blue), genomes (green) or both (dark blue) in 

RefSoil+ microorganisms by phylum-level taxonomy. The number of taxa included in each 

phylum is shown in parentheses. 
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Figure 4.5. Proportion of ARGs on genomes and plasmids in RefSoil+ and RefSeq 

databases. 

Number of ARGs was normalized to number of genetic elements. Boxplots are colored by 

database. Points represent individual ARGs and are colored based on classification. Kruskal-

Wallis test results are shown in addition to significant results from pairwise Mann Whitney U 

tests. 
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however, because chromsomes typically have more base pairs than plasmids. To account for this, 

we also normalized ARGs to base pairs, and plasmids from both databases had more ARGs 

compared to chromosomes (Mann Whitney U p < 0.05). Notably, RefSoil+ had less ARGs 

compared with RefSeq (Mann Whitney U p < 0.01) (Appendix B Figure 12). This finding 

suggests that plasmid-mediated HGT rates of ARGs may be relatively low in these soil 

microorganisms. We note that the RefSoil database is limited in representatives of 

Verrucomicrobia and Acidobacteria which may change these estimates (193); however, this 

deficiency will improve as the database grows.  

 

We examined this trend for each antibiotic class and observed a greater proportion of ARG 

sequences on plasmids in RefSeq compared with RefSoil+ for genes encoding glycopeptide and 

tetracycline resistance (Appendix B Figure 13). Gibson and colleagues (2015) also found a lack 

of tetracycline resistance genes in soil-associated isolates compared to water and human-

associated strains (155). By determining whether ARGs were encoded on plasmids or 

chromosomes, our analysis suggests that these patterns were due to chromosomal genes and 

more likely vertically transferred (Figure 4.5). Thus, these soil bacteria harbor relatively fewer 

ARGs on plasmids, suggesting that RefSoil+ microorganisms have limited capacity for plasmid-

mediated transfer of these genes. Future assessments of functional gene content on chromosomes 

and plasmids together will help to delineate changes in transfer potential and reveal selective or 

environmental factors that impact transfer potential.  

 

While genome data from isolates cannot speak to environmental abundance of ARGs, our 

data support observations of ARGs in mobile genetic elements in soil from cultivation-

independent studies as well. Luo and colleagues (2016) observed a low abundance of 
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chloramphenicol, quinolone, and tetracycline resistance genes in soil mobile genetic elements 

(199), and Xiong and colleagues (2015) also observed low abundance of qnr genes. Similarly, 

we observed fewer plasmid-encoded tetracycline resistance genes in soil-associated 

microorganisms than RefSeq microorganisms (Appendix B Figure 13). We did not observe 

significant differences for genes encoding quinolone or chloramphenicol resistance; however, 

these genes had small sample sizes (n = 2 and 3 respectively). Mobile genetic elements in soil 

have also been shown to have an abundance of genes encoding multidrug efflux pumps and 

resistance to beta-lactams, aminoglycosides, and glycopeptides (199). Genes encoding beta-

lactam and aminoglycoside resistance were comparable between RefSoil+ and RefSeq (Kruskal-

Wallis P > 0.05; Appendix B Figure 13). However, plasmid-borne glycopeptide resistance 

genes were less common in RefSoil+ plasmids (Mann Whitney U P < 0.05).  

 

RefSoil+ applications  

 RefSoil+ is publicly available on GitHub (github.com/ShadeLab/RefSoil_plasmids). It 

includes an excel file linking RefSoil+ organism taxonomy with accession numbers for 

corresponding chromosomes and plasmids. It also contains several fasta files with protein coding 

sequences and amino acid sequences. These files can be downloaded directly from GitHub. 

RefSoil+ has been used to better estimate genome sizes in soil (209) and to estimate the 

distribution of arsenic resistance genes in soil-associated chromosomes and plasmids (210).  

 

Our results show that soil-associated plasmids have distinctive traits and can harbor 

functional genes that are not encoded on host chromosomes. RefSoil+ expands knowledge of 

functional genes with potential for transfer among soil microorganisms and  offers insights into 

plasmid size and host ranges in soil (and improves accuracy of estimates of their genome sizes). 
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Because it is populated by the chromosomes and plasmids of isolates, RefSoil+ links host 

taxonomy to plasmid content. This linkage is important especially for heterogeneous ecosystems 

with high microbial richness like soils, which rely heavily on cultivation-independent methods 

for observing microbial diversity.  RefSoil+ can guide assembly and support annotation of 

plasmids from soil metagenomes, and also direct hypotheses of host identity (190, 211).  

Notably, plasmid gene content is not static (212), and individuals can gain or lose plasmids (213, 

214). Despite this potential issue, historical data of the genetic makeup and host range of 

plasmids can be used to better understand plasmid ecology, and to serve as an important 

reference to understand by how much host plasmid numbers and contents change in the future.  

This information contributes to information needed to understand patterns of plasmid 

dissemination, both across environments and among hosts. 

 

RefSoil+ can be used as a reference database or as a database for primer design to target 

plasmids in the environment. Advances in microbiome sequencing methods such as pre-

sequencing proximity linkage (e.g. Hi-C) (192), long-read technology (215), or single cell 

sequencing (216) could add to and leverage RefSoil+ to improve characterization of plasmid-

host relationships in soil. As movement of ARGs are observed in the clinic and the environment, 

RefSoil+ can also serve as a reference for comparison with legacy plasmid and chromosome 

content and distributions. Novel genomes and plasmids could be added in future RefSoil+ 

versions, and plasmid-host relationships as well as encoded functions could be compared 

between cultivation-dependent and –independent methodologies. RefSoil+ provides a rich 

community resource for research frontiers in plasmid ecology and evolution within wild 

microbiomes.  
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CHAPTER 5 : A global survey of arsenic related genes in soil microbiomes  
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Shade A. A global survey of arsenic related genes in soil microbiomes. 
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Abstract 

Environmental resistomes include transferable microbial genes. One important resistome 

component is resistance to arsenic, a ubiquitous and toxic metalloid that can have negative and 

chronic consequences for human and animal health. The distribution of arsenic resistance and 

metabolism genes in the environment is not well understood. However, microbial communities 

and their resistomes mediate key transformations of arsenic that are expected to impact both 

biogeochemistry and local toxicity. We examined the phylogenetic diversity, genomic location 

(chromosome or plasmid), and biogeography of arsenic resistance and metabolism genes in 922 

soil genomes and 38 metagenomes. To do so, we developed a bioinformatic toolkit that includes 

BLAST databases, hidden Markov models and resources for gene-targeted assembly of nine 

arsenic resistance and metabolism genes: acr3, aioA, arsB, arsC (grx), arsC (trx), arsD, arsM, 

arrA, and arxA. Though arsenic related genes were common, they were not universally detected, 

contradicting the common conjecture that all organisms have them. From major clades of arsenic 

related genes, we inferred their potential for horizontal and vertical transfer. Different types and 

proportions of genes were detected across soils, suggesting microbial community composition 

will, in part, determine local arsenic toxicity and biogeochemistry. While arsenic related genes 

were globally distributed, particular sequence variants were highly endemic (e.g., acr3), 

suggesting dispersal limitation. The gene encoding arsenic methylase arsM was unexpectedly 

abundant in soil metagenomes (median 48%), suggesting that it plays a prominent role in global 

arsenic biogeochemistry. Our analysis advances understanding of arsenic resistance, metabolism, 

and biogeochemistry, and our approach provides a roadmap for the ecological investigation of 

environmental resistomes.   
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Introduction 

Microbial communities drive global biogeochemical cycles through diverse functions. The 

biogeography of functional genes can help to predict and manage the influence of microbial 

communities on biogeochemical cycling (217). These trait-based analyses require that the 

functional genes are well-characterized from both evolutionary and genetic perspectives (218). 

The arsenic resistance and metabolism genes exemplify a suite of well-characterized functional 

genes that have consequences for biogeochemistry. Arsenic is a toxic metalloid that, upon 

exposure, can have negative effects for all life, including humans, livestock, and 

microorganisms. The toxicity and mobility of arsenic depends, in part, on its oxidation state: the 

trivalent arsenite is more mobile and more toxic than the pentavalent arsenate (14). The toxicity 

of methylated arsenic species varies with oxidation state and number of methyl groups 

(monomethyl, dimethyl, trimethyl). Pentavalent methylarsenicals are progressively less toxic 

than inorganic arsenate, while trivalent methylarsenicals are progressively more toxic than 

inorganic arsenite with the exception of trimethylarsine which is the least toxic arsenic species 

(219, 220). Additionally, volatilization of arsenic can occur through methylation (221), which 

has varied impacts. Methylated forms of arsenic can be released to new areas through air (222), 

captured during bioremediation (7), or accumulate in crops such as rice (90). Microbial 

transformations of arsenic can have consequences for arsenic speciation and methylation; 

therefore, they impact arsenic ecotoxicity and the fate of arsenic in the environment. 

 

Arsenic biogeochemical cycling by microbial communities is both an ancient (15, 17) and a 

contemporary (14, 63) phenomenon. Changes to the methylation or oxidation state of arsenic 

alter biogeochemical cycling of arsenic, and microbes have evolved a variety of mechanisms to 

carry out these functions. Arsenic related genes are generally separated into two categories: 
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resistance and metabolism (21). Arsenic resistance, or detoxification, is encoded by the ars 

operon (8). The ars operon protects the cell from arsenic but does not detoxify arsenic itself in 

the environment. This operon includes arsenite efflux (ArsB, Acr3) which is potentially 

precluded by cytoplasmic arsenate reduction with either glutaredoxin (ArsC (grx)) or thioredoxin 

(ArsC (trx)) (8). Arsenic metabolisms include methylation (ArsM), oxidation (AioAB, ArxAB), 

and dissimilatory reduction (ArrAB) (21). While these genetic determinants of arsenic 

detoxification and metabolism are well-characterized, the full scope of arsenic detoxification and 

metabolism gene distribution, diversity, and interspecies transfer is unknown (223–225).  

 

 Microbial arsenic resistance is reportedly widespread in the environment. Arsenic 

resistant organisms have been found in sites with low arsenic concentrations (< 7 ppm) (6, 226), 

and it has been speculated that nearly all organisms have arsenic resistance genes (1). While the 

number of identified microorganisms with arsenic resistance genes continues to grow (21), the 

number of microorganisms without arsenic resistance genes is unclear. Furthermore, though the 

complete arsenic biogeochemical cycle has been detected in the environment (17), the relative 

contributions of genes encoding detoxification and metabolism remain unknown (15). A global, 

biogeographic perspective of environmental arsenic related genes would improve understanding 

of their ecology. This information would expand foundational knowledge of arsenic 

detoxification and metabolism, including local and global abundances, gene diversity, dispersal 

across different environments, and representations over the microbial tree of life.   

 

Knowledge gaps concerning the diversity of microbial arsenic related genes are driven, in 

part, by numerous inconsistencies in nomenclature and detection methods. Though public 

microbial metagenome and genome data continue to surge, there are several practical hurdles to 
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achieving a robust, global assessment of microbial arsenic related genes from this wealth of data. 

First, tools to detect these genes rely on imperfect annotation (223) and widely vary in 

nomenclature (31). Next, the use of different reference databases (58, 63, 227–229) and 

normalization techniques (229, 230) complicates comparisons between studies. To overcome 

these hurdles, we developed an open-access toolkit to examine arsenic resistance and metabolism 

genes in microbial sequence datasets. This toolkit allowed us probe genomic and metagenomic 

datasets simultaneously to investigate arsenic related genes in soil microbiomes. We first asked 

whether arsenic related genes are universal in soil-associated microorganisms. Next we tested the 

hypothesis that genes encoding arsenic detoxification are more abundant than those encoding 

arsenic metabolism. We also tested the hypothesis that arsenic resistance genes with redundant 

function (i.e. acr3 and arsB; arsC (grx) and arsC (trx)) would have complementary 

environmental abundances. Third, we asked whether estimations of arsenic related gene 

abundance are biased by cultivation efforts, as cultivation is often a research emphasis because 

cultivable, arsenic resistant microorganisms can be used in bioremediation (225). Finally, we 

tested the hypothesis that sequence variants of arsenic related genes are endemic, not 

cosmopolitan.  
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Materials and Methods 

Gene Selection and Functional Gene (FunGene) Database Construction 

Marker genes can be used to estimate their potential to influence the arsenic 

biogeochemical cycle (31, 229), so we selected nine well-characterized genes: acr3, aioA, arsB, 

arsC (grx), arsC (trx), arsD, arsM, arrA, and arxA. FunGene databases (164) were constructed 

for the following arsenic related genes: arsB, arsC (grx), arsC (trx), acr3, aioA, arrA, and arxA. 

The arxA database was constructed with seed sequences from (63). For all other genes, UniProt 

(231) was used to obtain full length, reviewed sequences when possible. NCBI clusters of 

orthologous groups (COG) (27) for each gene were examined for evidence of function in the 

literature. All COG and UniProt sequences were aligned using MUSCLE (232). Aligned 

sequences were included in a maximum likelihood tree with 50 bootstrap replications made with 

MEGA (v7.0,(137)). Sequences that did not cluster with known sequences and had no evidence 

of function were removed. A final FASTA file for each gene was submitted to the Ribosomal 

Database Project (RDP) to construct a FunGene database (164). All arsenic related gene 

databases are freely available on FunGene (http://fungene.cme.msu.edu/).   

 

Arsenic related genes in cultivable soil microorganisms 

The RefSoil+ database (233) was used to obtain high-quality genomes (chromosomes and 

plasmids) from soil microorganisms in the Genomes OnLine (GOLD) database (234). RefSoil+ 

chromosomes and plasmids were searched with hmmsearch (198) using hidden Markov models 

(HMMs) from FunGene with an e-value cutoff of 10-10. The top hits were analyzed in R (195). 

For each gene, scores and percent alignments were plotted to determine quality cutoffs. Stringent 

percent alignment scores were included since this search was against completed genome 

sequences: only hits with scores > 100 and percent alignment > 90% were included. Hits with the 
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lowest scores were manually examined to test for false positives. Due to false positives, hits 

against aioA, arrA, and arxA were further quality filtered to have scores > 1,000. When one open 

reading frame (ORF) contained multiple hits, the hit with a lower score was removed. Taxonomy 

was assigned using the RefSoil database (193), and the relative abundance of arsenic related 

genes within phyla were examined. A 16S rRNA gene maximum likelihood tree of RefSoil+ 

bacterial strains was with RAxML (v.8.0.6 (235)) based on the Whelan and Goldman (WAG) 

model with 100 bootstrap replicates (“-m PROTGAMMAWAG -p 12345 -f a -k -x 12345 -# 

100”). Based on accession numbers, gene hits were extracted from RefSoil+ sequences and used 

to construct maximum likelihood trees for each gene.  

 

Reference Database Construction 

Reference gene databases of diverse, near full length sequences were constructed using 

limited sequences from FunGene databases (164) for the following genes: acr3, aioA, arrA, 

arsB, arsC (grx), arsC (trx), arsD, arsM, and arxA. Seed sequences and HMMs for each gene 

were downloaded from FunGene, and diverse protein and corresponding nucleotide sequences 

were selected with gene-specific search parameters (Appendix A Table 13). Briefly, minimum 

amino acid length was set to 70% of the HMM length; minimum HMM coverage was set to 80% 

as is recommended by Xander software for targeted gene assembly; and a score cutoff was 

manually selected based on a drop off point. Sequences were de-replicated before being used in 

subsequent analysis, and final sequence counts are included in Appendix A Table 13.Reference 

databases were converted to publicly available BLAST databases using BLAST+ (167). 

Reference and BLAST databases are publicly available on GitHub 

(https://github.com/ShadeLab/meta_arsenic). 
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Sample collection and preparation  

A soil surface core (20 cm depth and 5.1 cm diameter) was collected in October 2014 

from Centralia, Pennsylvania (GPS coordinates: 40 48.070, 076 20.574). For cultivation-

dependent work, a soil slurry was made by vortexing 5 g soil with 25 mL phosphate-buffered 

saline (PBS) for 1 min. Remaining soil was stored at -80°C until DNA extractions. The soil 

slurry was allowed to settle for 2 min. 100 μL of the slurry was then removed and serial diluted 

using PBS to a 10-2 dilution. 100 μL of the solution was added to 50% trypticase soy agar 

(TSA50) with 200 μg/ml cycloheximide to prevent fungal growth. Plates were incubated at 60°C 

for 72 h. Lawns of growth were extracted by adding 600 μL trypticase soy broth with 25% 

glycerol to plates. The plate scrapings were stored at -80°C until DNA extraction.  

 

DNA extraction and metagenome sequencing 

DNA for cultivation-independent analysis was manually extracted from soil using a 

phenol chloroform extraction (236) and the MoBio DNEasy PowerSoil Kit (MoBio, Solana 

Beach, CA, USA) according the manufacturer’s instructions. DNA extraction for cultivation-

dependent analysis was performed in triplicate from 200 μL of plate scrapings using the 

E.Z.N.A. Bacterial DNA Kit according to the manufacturer’s instructions. All DNA was 

quantified using a Qubit dsDNA BR Assay Kit (Life Technologies, NY, USA) and was 

submitted for NGS library prep and sequencing at the Michigan State University Genomics Core 

sequencing facility (East Lansing, MI, USA). Libraries were prepared using the Illumina TruSeq 

Nano DNA Library Preparation Kit. After QC and quantitation, the libraries were pooled and 

loaded on one lane of an Illumina HiSeq 2500 Rapid Run flow cell (v1). Sequencing was 

performed in a 2 x 150 bp paired end format using Rapid SBS reagents. Base calling was 
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performed by Illumina Real Time Analysis (RTA) v1.18.61 and output of RTA was 

demultiplexed and converted to FastQ format with Illumina Bcl2Fastq v1.8.4. 

 

Public soil metagenome acquisition  

In total, 38 soil metagenomes were obtained for this work (Appendix A Table 14). 

Datasets from Centralia, PA were generated in our research group. All other metagenome data 

sets were obtained from MG-RAST (http://metagenomics.anl.gov/). The MG-RAST database 

was searched on May 15, 2017, with the following criteria: material = soil, sequence type = 

shotgun, public = true. The resulting list of metagenome data sets was ordered by number of base 

pairs (bp). Metagenomic data sets with the most bp were only included if they were sequenced 

using Illumina to standardize sequencing errors, had an available FASTQ file for internal quality 

control, and contained < 30% low quality as determined by MG-RAST. Within high quality 

Illumina samples, priority for inclusion was given to projects with multiple samples so that 

comparisons could be made both within and between soil sites. When a project had multiple 

samples, data sets with the greatest bp were selected. While we prioritized samples with multiple 

datasets, several replicate samples were omitted early on due to > 30% of data removed during 

quality filtering, and samples Illinois soil, Russian permafrost, and Wyoming soil have just one 

sample. This search ultimately yielded 26 data sets from 12 locations and five countries.  

 

Soil metagenome processing and gene targeted assembly 

 Sequences from MG-RAST data sets as well as Centralia sample Cen13 were quality 

controlled using the FASTX toolkit (fastq_quality_filter, "-Q33 -q 30 -p 50"). Twelve datasets 

from Centralia, PA, were obtained from the Joint Genome Institute and quality filtered as 

described previously (207). Quality filtered sequences were used in all downstream analyses. For 
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each data set, a gene targeted metagenome assembler (237) was used to assemble each gene of 

interest. For each gene of interest, seed sequences, HMMs, and reference gene databases 

described above were included. For rplB, reference gene database, seed sequences, and HMMs 

from the Xander package were used. In most instances, default assembly parameters were used 

except to incorporate differences in protein length (i.e. protein is shorter than default 150 amino 

acids) or to improve quality (i.e. maximum length is increased to improve specificity) 

(Appendix A Table 13). While the assembler includes chimera removal, additional quality 

control steps were added. Final assembled sequences (operational taxonomic units, OTUs) were 

searched against the reference gene database as well as the non-redundant database (nr) from 

NCBI (August 28, 2017) using BLAST (167). Genes were re-examined if the top hit had an e-

value > 10-5 or if top hit descriptors were not the target gene. Genes with low quality results were 

re-assembled with adjusted parameters.  

 

Soil metagenome comparison  

To compare assembled sequences between samples, gene-based OTU tables were 

constructed. Aligned sequences from each sample were dereplicated and clustered at 90 amino 

acid identity using the RDP Classifier (168). Dereplicated, clustered sequences were converted 

into OTU tables with coverage-adjusted abundance. These tables were subsequently analyzed in 

R (195). RplB OTUs were used to compare community structure. The six most abundant phyla 

were extracted to include at least 75% of each community; the full community structure is 

available. To compare the abundance of arsenic related genes among data sets, total counts of 

rplB were used to normalize the abundance of each OTU. Relative abundance of arsenic related 

genes was also calculated for each sample. 

 



100 

Results 

A bioinformatic toolkit for detecting and quantifying arsenic related genes  

We developed a toolkit to improve investigations of microbial arsenic related genes 

(Figure 5.1)(8, 25, 46, 238–240). We selected these nine genes because they are markers of 

arsenic detoxification and metabolism (31, 229) and because their genetic underpinnings are well 

established. Seed sequences (high quality and full length sequences) for each gene of interest 

were collected and used to construct BLAST databases (241), functional gene (FunGene) 

databases (164), hidden Markov models (HMMs (242)), and gene resources for gene-targeted 

assembly (Xander (237)) (Figure 5.1A). Altogether, this toolkit relies on consistent references 

and nomenclature and can search both amino acid and nucleotide sequence data. 

 

To demonstrate the utility of our toolkit, we performed an analysis of arsenic related 

genes in soil-associated genomes and metagenomes. We used HMMs for marker genes for 

arsenic detoxification and metabolism to search RefSoil+ genomes, a set of complete 

chromosomes and plasmids from cultivable soil microorganisms (233). Additionally, we used a 

gene-targeted assembler (237) to test 38 public soil metagenomes from Brazil, Canada, 

Malaysia, Russia, and the United States for arsenic resistance and metabolism genes (Appendix 

A Table 14). Ultimately, these data serve as a broad baseline of arsenic detoxification and 

metabolism genes in soil.  

 

Phylogenetic distributions and genomic locations of arsenic related genes 

We asked whether arsenic resistance and metabolism genes were universal in RefSoil+ 

organisms (233). Of the 922 RefSoil+ genomes spanning 25 phyla (Figure 5.2; Appendix A 

Table 15), 14.3% (132 genomes) did not contain any tested arsenic related genes. Of the 25  
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Figure 5.1. Arsenic resistance and metabolism gene toolkit schematic. 

A) Seed sequences for nine arsenic resistance genes were used to construct an arsenic 

resistance gene database with existing tools (164, 167, 198, 237). Lines indicate 

interdependence between modules. B) Table of arsenic resistance and metabolism genes 

included in the toolkit. The toolkit is freely available on GitHub: 

github.com/ShadeLab/meta_arsenic 

 
  

A B
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Figure 5.2. Arsenic resistance and metabolism genes in RefSoil+ organisms. 

A) Maximum likelihood tree of 16S rRNA genes in RefSoil+ organisms. Bootstrap support > 

50 is shown with black circles. Tree branches and the first ring are colored by organism  
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taxonomy. Each node node is annotated with arsenic resistance genotype where color indicates 

the gene. Filled boxes indicate gene presence on chromosome, and open boxes indicate gene 

presence on plasmid. B) Proportion of RefSoil+ organisms and organisms containing arsenic 

resistance genes are colored by the taxonomy of the organism containing the gene. “None” 

refers to the number of genomes that do not test positive for any of the nine arsenic resistance 

genes analyzed. Note the difference between y-axes. 
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phyla in RefSoil+, two phyla (Chlamydiae and Crenarchaeota) did not have any of these genes. 

These phyla, however, had few RefSoil+ representatives (three and nine, respectively), so other 

members of these phyla may have arsenic detoxification and metabolism genes. Supporting this 

suggestion, a Crenarchaeota isolate was previously reported to oxidize arsenic (243). 

Nonetheless, these data suggest that arsenic related genes are widespread but not universal, even 

among cultivable soil organisms (Figure 5.2). 

 

We next asked whether 16S rRNA gene phylogeny was predictive of arsenic genotypes 

using a test for phylogenetic signal (Bloomberg’s K (244)). No phylogenetic signal was observed 

for plasmid-borne sequences or genes encoding arsenic metabolisms (aioA, arrA, arxA); 

however, relatively few RefSoil+ microorganisms tested positive for these genes. Despite their 

phylogenetic breadth (Appendix B Figure 14 – Appendix B Figure 18), chromosomally-

encoded acr3, arsB, arsC (grx), arsC (trx), and arsM were similar between phylogenetically 

related organisms (false discovery rate adjusted p < 0.01; Figure 5.2A).  

 

Phylogenetic diversity of arsenic related genes: insights into vertical and horizontal transfer 

We examined the phylogenetic diversity of distinct genes encoding arsenite efflux 

pumps, acr3 and arsB, for soil-associated microorganisms (Figure 5.3, Appendix B Figure 14 – 

Appendix B Figure 15). Gene acr3 is separated into two clades: acr3(1) and acr3(2) (30). Clade 

acr3(1) is typically composed of Proteobacterial sequences while acr3(2) is typically composed 

of Firmicutes and Actinobacterial sequences (30, 31, 86). Though RefSoil+ genomes were 

mostly composed of acr3(2) sequences from Proteobacteria (Figure 5.3A; Appendix B Figure 

14), we  
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Figure 5.3. Phylogeny of arsenite efflux pumps in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of A) Acr3 and B) ArsB sequences 

predicted from RefSoil+ genomes. Tree scale = 1. Leaf tip color indicates phylum-level 

taxonomy. Bootstrap values > 50 are represented by black circles within the tree. Grey circles 

on the exterior of the tree indicate that a hit was detected on a plasmid and not a chromosome.  
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observed greater taxonomic diversity observed than previously reported for this clade (30, 31, 

86). Surprisingly, there were deep branches in acr3(2) that belonged to Bacteroidetes, 

Euryarchaeota, Firmicutes, Fusobacteria, and Verrucomicrobia. Similarly, acr3(1) contained 

closely related acr3 sequences present in a diverse array of phyla (10 out of 25). Both clades had 

sequences present on plasmids (6.1%). Plasmid-borne arsB sequences were only present in 

Proteobacteria and Deinococcus-Thermus strains (Figure 5.3B; Appendix B Figure 15). 

Sequences from Actinobacteria, Proteobacteria, and Firmicutes were each present in two distinct 

phylogenetic groups, and previous studies also observed separation of arsB sequences based on 

phylum (30, 86). Interestingly, our genome-centric analysis revealed that microorganisms with 

multiple copies of arsB did not harbor identical copies. For example, seven Bacillus subtilis 

subsp. subtilis strains had two copies of arsB, with one from each of the two clades (Appendix B 

Figure 15). 

 

Cytoplasmic arsenate reductase (ArsC (trx)) was phylogenetically widespread in 

RefSoil+ microorganisms (Figure 5.4A; Appendix B Figure 16). While some arsC (trx) 

sequences were plasmid-borne, the majority were chromosomally encoded. Similarly, plasmid 

encoded arsC (grx) made up 4.6% of RefSoil+ hits (Figure 5.4B; Appendix B Figure 17). 

Notably, several Proteobacteria strains have multiple copies of arsC (grx) with distinct 

sequences. It is possible that this is the result of an early gene duplication event or HGT of a 

second arsC (grx).  

 

arsM was relatively uncommon in RefSoil+ microorganisms (5.2%) (Figure 5.2). In the 

RefSoil+ database, arsM was observed in Euryarchaeota as well as several bacterial phyla  



107 

 

Figure 5.4. Phylogeny of cytoplasmic arsenate reductases in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of A) ArsC (trx) and B) ArsC (grx) 

sequences predicted from RefSoil+ genomes. Tree scale = 1. Leaf tip color indicates phylum-

level taxonomy. Bootstrap values > 50 are represented by black circles within the tree. Grey 

circles on the exterior of the tree indicate that a hit was detected on a plasmid and not a 

chromosome. 
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Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, 

Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria, Verrucomicrobia (Figure 5.5; 

Appendix B Figure 18). Notably, only one RefSoil+ microorganism, Rubrobacter radiotolerans 

(NZ_CP007516.1), had a plasmid-borne arsM.  

 

Arsenic metabolism genes aioA, arrA, and arxA were phylogenetically conserved 

(Figure 5.6). Genes encoding arsenite oxidases aioA and arxA were restricted to Proteobacteria. 

aioA sequences clustered into two clades based on class-level taxonomy: all Alphaproteobacteria 

sequences cluster separately from Gamma- and Betaproteobacteria sequences. The gene 

encoding dissimilatory arsenate reduction arrA was also phylogenetically conserved in RefSoil+ 

strains, with strains from Proteobacteria clustering separate from Firmicutes (Figure 5.6).  

 

Cultivation bias and environmental distributions of arsenic related genes 

To gain a cultivation-dependent perspective of the abundances of arsenic related genes in 

soils, we used inferred environmental abundances of RefSoil microorganisms (61, 193). The 

environmental abundance of RefSoil microorganisms, which are cultivable, soil-associated 

microorganisms, was previously estimated by comparing 16S rRNA gene sequences in RefSoil 

with those in soil metagenomes (193). We used this estimated abundance of cultivable 

microorganisms along with arsenic related gene information from this study (Figure 5.2) to 

estimate the environmental abundances of arsenic related genes from the cultivated bacteria. 

Arsenic metabolism genes (aioA, arrA, arsM, arxA) were predicted to be less common in the 

environment compared with arsenic detoxification genes (acr3, arsB, arsC (grx), arsC (trx), and 

arsD) (Figure 5.7A; Mann Whitney U test p < 0.01). Despite similar distributions of acr3 and 

arsB in RefSoil+ (Figure 5.2B), acr3 was more abundant in most soil orders (Figure 5.7A;  
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Figure 5.5. Phylogeny of ArsM in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of ArsM sequences predicted from 

RefSoil+ genomes. Tree scale = 1. Leaf tip color indicates phylum-level taxonomy. Bootstrap 

values    > 50 are represented by black circles within the tree. Grey circles on the exterior of the 

tree indicate that a hit was detected on a plasmid and not a chromosome. 
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Figure 5.6. Phylogeny of AioA, ArrA, and ArxA in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of dissimilatory arsenic resistance 

proteins predicted from RefSoil+ genomes. Tree scale = 0.1. Leaf tips show the name of the 

RefSoil+ organisms and background color indicates phylum-level taxonomy. Bootstrap values > 

50 are represented by black circles within the tree.  
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Figure 5.7. Comparison of arsenic resistance and metabolism gene abundance between 

cultivation dependent and cultivation independent methods. 
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Figure 5.7 (cont’d) 

A) Mean normalized abundance of arsenic related genes based on RefSoil microorganisms 

abundance estimated from corresponding 16S rRNA gene abundance in Earth Microbiome 

Project datasets. Points are colored by soil order. B) Normalized abundance of arsenic 

resistance genes in RefSoil+ and 38 metagenomes. Metagenome abundance was normalized to 

rplB, and RefSoil+ normalized abundance was calculated using the number of RefSoil+ 

genomes. Only metagenomes with an arsenic resistance gene detected are shown, and the total 

number of datasets (including RefSoil+) is shown in parentheses. C) rplB-normalized 

abundance of arsenic resistance genes in cultivation dependent and independent metagenomes 

from the same soil sample. 
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Mann Whitney U test p < 0.05). For genes encoding cytoplasmic arsenate reductases, arsC (grx) 

was more abundant than arsC (trx) (Mann Whitney U test p < 0.01). 

 

To gain a cultivation-independent perspective of the abundances of arsenic related genes, 

we examined their normalized abundance from soil metagenomes (Figure 5.7B). An undetected 

gene does not confirm absence, so we present a conservative estimate that only includes 

metagenomes testingpositive for a gene. Arsenic detoxification genes (acr3, arsB, arsC (grx), 

arsC (trx), and arsD) were more abundant than arsenic metabolism genes (aioA, arrA, arsM, and 

arxA) (Mann Whitney-U test p < 0.01; Figure 5.7B). Genes encoding arsenite efflux pumps 

differed in their abundance with acr3 being more abundant than arsB (Mann Whitney U test p < 

0.01). We also observed differences in cytoplasmic arsenate reductases: arsC (grx) was more 

abundant than arsC (trx) (Mann Whitney U test p < 0.01).  

 

We explored cultivation bias of arsenic related genes with a case study comparing 

cultivation-dependent (lawn growth on the standard medium TSA50) and -independent 

communities from the same soil. Genes in the ars operon (acr3, arsB, arsD, and arsC (trx)) were 

elevated in the cultivation-dependent metagenome (Figure 5.7C). Additionally, arsenic 

metabolism genes were not detected (aioA, arrA, arxA) or in low abundance (arsM) in the 

cultivation-dependent sample; however, all four of these arsenic metabolism genes were detected 

in the cultivation-independent sample. Though this is a single case study of cultivation-

dependent and independent methods, these results recapitulate the general discrepancies between 

RefSoil+ genomes and soil metagenomes (Figure 5.7B). This bias has important implications for 

studies focusing on arsenic bioremediation because cultivation-dependent studies could 

misestimate the potential of microbiomes for arsenic detoxification and metabolism in situ.    
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Figure 5.8. Arsenic resistance and metabolism gene biogeography. 
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Figure 5.8 (cont’d) 

A) Relative abundance of arsenic resistance genes in soil metagenomes. B) Rank rplB-

normalized abundance of arsenic related genes in soil metagenomes. Sites are ordered by rank 

mean abundance. Note the differences in y axes. C)  Abundance-occurrence plots of arsenic 

related gene sequences clustered at 90% amino acid identity. Number of samples included are 

as follows Brazilian forest n = 3, California grassland n = 2, Centralia active n = 7, Centralia 

recovered n = 5, Centralia reference n = 1, Disney preserve n = 2, Illinois soybean n = 2, 

Illinois switchgrass n = 1, Iowa agricultural n = 2, Iowa corn n = 2, Iowa prairie n = 3, 

Mangrove n = 2, Minnesota grassland n = 2, Permafrost Canada n = 2, Permafrost Russia n = 

1, and Wyoming soil n = 1. 
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Arsenic related gene endemism 

 Arsenic related genes are globally distributed, but their biogeography is poorly 

understood. Broadly, arsenic related genes had comparable abundance among different soils 

(Figure 5.7AB). The relative distributions of distinct arsenic detoxification and metabolism 

mechanisms in one site, however, are relevant for predicting the impact of microbial 

communities on the fate of arsenic. To understand site-specific distributions, we explored soil 

metagenomes from Brazil, Canada, Malaysia, Russia, and the United States (Appendix A Table 

14). These 16 sites had differences in community membership (Appendix B Figure 20) and 

arsenic related gene content (Figure 5.8A). Geographic location was not predictive of arsenic 

related gene content (Mantel’s r = 0.03493; p > 0.05). Soils had different distributions of arsenic 

related genes and therefore differed in their potential impact on the biogeochemical cycling of 

arsenic. While arsC (grx) and arsM dominated most samples, their relative proportions varied 

greatly (Figure 5.8A). RefSoil+ data suggests that arsM can be found in Verrucomicrobia 

(100%, n = 2), which is of particular importance for soil metagenomes since Verrucomicrobia 

are often underestimated with cultivation-dependent methods (245). The mangrove sample had 

the most even proportions of arsenic related genes (Figure 5.8A). This distribution was driven 

by a high abundance of arsC (trx) and arrA. 

 

We further examined the arsenic resistance gene abundance at individual sites. We did 

not include arr and arx in this analysis due to limited available data. For each gene, the 

abundance varied greatly, but replicates within one site had similar abundances (Figure 5.8B). 

The majority of arsenic related gene sequences (99.3%) were endemic and only found in one to 

two sites, but 24 sequences were detected in three or more sites (Figure 5.8C; Appendix A 

Table 16). The majority (70.8%) of cosmopolitan sequences belonged to arsC (grx). This 
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analysis suggests that arsenic related genes acr3, arsB, arsC (trx), arsD, arsM, and aioA are 

generally endemic. 

 

Discussion 

A bioinformatic toolkit for detecting and quantifying arsenic related genes  

We developed a toolkit for detecting arsenic related genes from sequence data that 

supports a variety of applications (Figure 5.1A): arsenic related genes can be detected in amino 

acid sequences from completed genomes (HMMs (198), BLAST (241)), nucleotide sequences in 

draft genomes (BLAST), as well as metagenomes and metatranscriptomes (Xander (237)). 

Because each tool relies on the same seed sequences, there is consistency and opportunity for 

comparison between sequence datasets that were generated from different sources. While 

primers already exist for arsenic related genes: aioA (130, 246), acr3 (29), arsB (29), arsC (grx) 

(128), arsC (trx) (34), arsM (90), and arrA (129, 247, 248), these FunGene (164) databases can 

be used for testing primer breadth, designing new primers, and browsing sequences.  

 

The toolkit is scalable for additional mechanisms for arsenic resistance and other 

functional genes of interest (e.g., methylarsenite oxidase (ArsH), C-As lyase (ArsI), trivalent 

organoarsenical efflux permease (ArsP), organoarsenical efflux permease (ArsJ) (1)), or redox 

transformations of elements involved in arsenic biogeochemical cycling (e.g., nitrate reductase 

(NarG) and sulfate reductase (DsrAB) (1, 14)). This toolkit serves as both a resource and an 

example workflow for developing similar toolkits to examine functional genes, beyond arsenic 

related genes, in microbial sequence datasets.   
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Phylogenetic diversity and distribution of arsenic related genes 

 It has been conjectured that nearly all organisms have arsenic resistance genes (1), and 

though this assumption has propagated in the literature, it had never been explicitly quantified. 

Our data suggest that arsenic detoxification and metabolism genes are ubiquitous but not 

universal in RefSoil+ microorganisms (Figure 5.2). It is possible for these 132 organisms to 

have untested or novel arsenic related genes; nonetheless, these nine well-characterized genes 

were not universally detected. Additionally, phylogeny was predictive of the presence of acr3, 

arsB, arsC (grc), arsC (trx), and arsM. This correlation suggests that taxonomy is predictive of 

arsenic genotype despite documented potential for HGT (19, 30, 40, 226, 249). This result could 

be explained by ancient rather than contemporary HGT, as seen with arsM (19) and arsC (grx) 

(249). Therefore, we next assessed evidence for HGT by examining the phylogenetic congruence 

and genomic location (e.g. chromosome or plasmid) of arsenic related gene sequences. 

 

Horizontal transfer of arsenic related genes has been well documented (19, 30, 40, 226, 

249–251) and is an important consideration for understanding the propagation and taxonomic 

identity of arsenic related genes. We examined the phylogenetic diversity of arsenic related 

genes in RefSoil+ microorganisms, including plasmids and chromosomes, and compared them 

with the 16S rRNA gene taxonomy.  

 

While known acr3 sequences separates into two clades (30, 31, 86), plasmid-borne acr3 

sequences were present across clades, suggesting a potential for transfer across unrelated taxa. 

Therefore, studies assigning taxonomy to acr3 in the absence of host information should 

consider the clade precisely and proceed with caution. Despite their functional redundancy as 

arsenite efflux pumps, acr3 and arsB have very distinctive diversity. As compared with acr3, 
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arsB was less diverse and more phylogenetically conserved (Figure 5.3B; Appendix B Figure 

15). This observation is in agreement with previous reports comparing the diversity of arsB to 

acr3 (30, 86). Multiple, phylogenetically distinct copies of arsB were present in some RefSoil+ 

organisms, which could be due to an early gene duplication and subsequent diversification or to 

an early transfer event. Therefore, despite relatively lower sequence variation, this arsB 

phylogeny suggests an interesting evolutionary history that could be investigated further. 

 

arsC (trx) was predominantly found on RefSoil+ chromosomes, not plasmids, suggesting 

vertical transfer of arsC (trx) is common. arsC (trx) was present in both Bacteria and Archaea, 

and sequences from the two domains formed two distinct clades. arsC (trx) sequences that 

cluster separately from Bacterial-arsC (trx) sequences have been documented in Thermococci, 

Archaeoglobi, Thermoplasmata, and Halobacteria (16) Together, this distribution supports an 

early evolutionary origin for arsC (trx). Thus, arsC (trx) appears to be an evolutionarily old 

enzyme that is phylogenetically conserved despite its presence on plasmids and potential for 

HGT. Plasmid-encoded arsC (grx) were also observed in RefSoil+ microorganisms, highlighting 

a contemporary potential for HGT that has been documented in soil (249). Thus, both genes 

encoding cytoplasmic arsenate reductases were more common on chromosomes.  

 

The evolutionary history of the gene encoding arsenite S-adenosylmethionine 

methyltransferase, arsM, was recently investigated (19, 40). Both studies independently 

determined that arsM evolved billions of years ago and was subject to HGT (19, 40). In this 

work, arsM sequences from Euryarchaeota were dispersed throughout the arsM phylogeny, 

supporting the potential for inter-kingdom transfer events that were recently suggested (19, 40). 

Very few RefSoil+ organisms had arsenic metabolism genes aioA, arrA, or arxA, which limits 
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phylogenetic analysis. Nonetheless, they were mostly found in Proteobacteria, which is in 

agreement with previous work (21).  

 

Cultivation bias and environmental distributions of arsenic related genes 

 Cultivation-based assessments of arsenic related gene content are important since 

cultivable strains are often favored for bioremediation (100). We estimated distributions of 

arsenic related genes in cultivable microorganisms from soils and found a greater abundance of 

arsenic detoxification genes acr3, arsB, and arsC (trx) (Figure 5.7A). A previous study also 

reported an abundance of acr3 over arsB in cultivable microorganisms from forest soils and 

attributed this to the greater phylogenetic distribution of acr3 compared with arsB (86). 

Additionally, they found that arsC (grx) was more abundant than arsC (trx) in cultivated 

microorganisms from these soils. It has been posited in cultivation-independent studies that arsC 

(trx) is more efficient than arsC (grx) and that high local arsenic concentrations result in a 

relatively greater abundance of arsC (trx) (31, 37). Our cultivation-dependent abundances 

suggest that acr3 and arsC (grx), rather than arsB and arsC (trx), predominantly comprise the 

arsenic detoxification pathway in soils.  

 

To assess arsenic related gene content without cultivation bias, we examined arsenic 

related genes in soil metagenomes. As predicted by cultivable organisms, arsenic metabolism 

genes (aioA, arrA, arxA) were generally in low abundance while acr3 and arsC (grx) were in 

high abundance. Estimates of genes encoding arsenic detoxification (acr3, arsB, arsD, arsC 

(grx), arsC (trx)) were considerably lower in these cultivation-independent samples. This result 

could be due, in part, to the large number of RefSoil+ microorganisms with multiple copies of 

these genes (Appendix B Figure 19). Cultivation-independent genomes (e.g., single-cell 
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amplified genomes and metagenome-assembled genomes) could provide greater context about 

the environmental distributions of copy numbers of arsenic related genes. 

 

Notably, arsM was abundant in soil (median 48%), which greatly exceeds cultivation-

dependent estimations, and in a case-study of cultivation dependent and independent techniques, 

arsM was more abundant in the cultivation independent sample (Figure 5.7C).  Due to the early 

phylogenetic origins of arsM and its independent functionality (19), this abundance of arsM in 

soil metagenomes is not unexpected. arsM is typically studied in paddy soils (221, 252, 253), but 

metagenomes in this study suggest it is an important component of the arsenic biogeochemical 

cycle in a variety of soils.  

 

Arsenic related gene endemism 

We examined the relative abundance of arsenic related genes in soil metagenomes and 

observed differences in genetic potential for arsenic transformation that could impact 

biogeochemical cycling (Figure 5.8A). Notably, the mangrove sample had the most even 

proportions of arsenic related genes. While the arsenic concentrations in this sample are 

unknown, mangroves are considered sources and sinks for arsenic (254–256). This could explain 

the greater abundance of arsC (trx), which is hypothesized to be more abundant in high arsenic 

sites (31, 37). Additionally, arrA encodes a dissimilatory arsenate reductase that functions in an 

anaerobic environment (240), so its greater abundance in sediment is expected. Soil geochemical 

data was not available for all metagenomes examined in this work, so direct comparisons of 

arsenic related gene content and soil geochemistry were not possible. This highlights the 

importance and utility of depositing geochemical data with DNA sequences. Future work, 
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however, could further examine relationships between arsenic resistance genes and soil 

geochemical data, including arsenic concentration and redox potential. 

 

We also measured whether arsenic related gene sequence variants were endemic or 

cosmopolitan in soil metagenomes (Figure 5.8C).  We found that genes acr3, arsB, arsC (trx), 

arsD, arsM, and aioA were generally endemic, suggesting regional dispersal limitation. Only one 

aioA and three acr3 sequences were detected in multiple sites. This supports a previous finding 

that acr3 and aioA from the acid mine drainage in Carnoulès were endemic (257). Conversely, 

arsC (grx) was cosmopolitan which could suggest genetic migration via HGT or vertical transfer 

and a limited gene diversification. Both are plausible since arsC (grx) was common in RefSoil+ 

plasmids and had low phylogenetic diversity (Figure 5.4B; Appendix B Figure 17).  

 

Conclusions 

We developed a bioinformatic toolkit for detecting arsenic detoxification and metabolism 

genes in microbial sequence data and applied it to analyze the genomes and metagenomes from 

soil microorganisms. This toolkit informs hypotheses about the evolutionary histories of these 

genes (including potential for vertical and horizontal transfers) and how community ecology in 

situ may influence their prevalence and distribution. This study reports the phylogenetic 

diversity, genomic locations, and biogeography of arsenic related genes in soils, integrating 

information from different ‘omics datasets and resources to provide a broad synthesis. The 

toolkit and the synthesis presented here can catalyze future work to understand the ecology and 

evolution of microbial arsenic biogeochemistry. Furthermore, the toolkit acts as a framework for 

similar studies of other functional genes of interest.   
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CHAPTER 6 : Conclusions and future directions 
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Summary 

This dissertation examined the impact of disturbance on the soil microbiome using the 

Centralia, PA, coalmine fire as a model disturbance (Chapters 2 – 4). Chapter 2 showed that 

Arsenic resistant strains can be isolated from the low arsenic (1.5 ppm) surface soils in Centralia, 

PA. We found that arsenic resistant isolates are in low abundance (rare) in this soil system. This 

finding is important for bioremediation as it suggests that the rare biosphere could contribute to 

microbiome dynamics during arsenic stress. Chapter 3 showed that antibiotic resistance genes 

related to clinical treatments decreased with disturbance in Centralia. This change was related to 

concomitant changes in the soil microbiome composition, suggesting that reduced microbiome 

diversity decreases the abundance clinically-relevant ARGs in the environment. This body of 

work exemplifies the utility of examining functional genes along disturbance gradients.  

 

This dissertation also examined antibiotic and arsenic related genes in soil microbiomes, 

broadening the scope of this work beyond Centralia. Chapter 4 detailed RefSoil+, a new database 

of soil-associated chromosomes and plasmids. This database showed that antibiotic resistance 

genes were less common on soil-associated plasmids compared with plasmids in general, 

suggesting reduced potential for plasmid-mediated HGT in soil microbiomes. This observation 

broadens understanding of plasmids in soil and provides a community resource for investigating 

clinic-environment dynamics of important plasmid-associated genes. Chapter 5 described a new 

bioinformatic toolkit to detect arsenic related genes in genomes and metagenomes. This toolkit 

showed the phylogenetic diversity, genomic locations, and biogeography of arsenic related genes 

in soils, integrating information from different ‘omics datasets and resources to provide a broad 

synthesis. Arsenic related genes were widespread in soil, suggesting that endemic microbiomes 

could be harnessed for bioremediation. 
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Broadly, this dissertation highlights the importance of ecological phenomena on dynamics 

and distributions of functional genes in soil microbiomes. It showed how environmental 

disturbances can impact functional genes through changes in community structure. Furthermore, 

data from this work suggest that soils offer limited opportunity for plasmid-mediated transfer of 

ARGs. This finding has important implications for ARGs whose environmental proportions are 

relevant to public health. The tools created in this work (RefSoil+ and arsenic toolkit) can be 

applied to future research questions concerning these important functional genes. Furthermore, 

ecological insights from this work can be used to model dynamics of these functional genes in 

the environment. Ultimately, this set of findings can allow for manipulation of endemic 

microbiomes for public health outcomes such as arsenic bioremediation or reduction of antibiotic 

resistance.  

 

Future Directions 

 An ambitious goal is to be able to predict and manage the outcomes of arsenic resistance 

and metabolism as it relates to arsenic bioremediation or biogeochemistry.  Ecological aspects of 

microbial communities, including rarity, dormancy, and dispersal, influence microbial 

community structure and can impact local arsenic resistance gene content and activity. These 

factors are expected to exhibit considerable variation over time and are sensitive to 

environmental changes (258). Longitudinal studies that examine the contributions of these 

factors to arsenic resistance and metabolism will inform prediction and, potentially, management 

of arsenic outcomes in the environment. 

 

  Eco-evolutionary processes, such as HGT, play an important role in the history and 

dissemination of arsenic related genes (19, 40). While studies frequently cite evidence of HGT as 
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inferred from environmental samples (34), it is unclear whether these transfers are due to 

historical evolutionary outcomes (19, 40, 210, 250) or recent endemic transfers. Efforts should 

be made to determine contemporary rates of arsenic related gene HGT. Furthermore, 

metagenomic studies should exert care when assigning taxonomy to arsenic related genes, 

particularly for sequence variants that are known to be phylogenetically widespread. Relatedly, 

many studies highlight the co-selection of arsenic (and heavy metal) related genes with ARGs 

(65, 66, 259), and increases in antibiotic resistance genes have been observed in metal(loid) 

contaminated environments (68–70). It is unclear, however, whether the reverse phenomenon, 

where antibiotics increase metal(loid) resistance genes, occurs. This is another direction ripe for 

interrogation. 

 

 Determining the distribution of ARGs on plasmids in the environment is another potential 

future direction. This dissertation showed that ARGs are more common on soil associated 

plasmids than chromosomes in cultivable microorganisms, but it is unclear whether this 

localization is true for soil microbiomes which may differ in plasmid content due to variations in 

community membership, presence of uncultivable microorganisms, and variations in plasmid 

content and copy number. As methodologies such as pre-sequencing proximity linkage (e.g. Hi-

C) (192), long-read technology (215), single cell sequencing (216), and other technologies 

advance, it will be possible to estimate the genomic distribution of ARGs in the environment and 

ultimately determine the influence of the soil microbiome on clinical antibiotic resistance.  
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Appendix A Table 1. Soil geochemical data. 

 

Air 
temperature 

(°C)

Soil 
temperature 

(°C)

Organic 
matter 
(360°C)

Organic 
matter 
(500°C)

NO3- 

(ppm)
NO4+ 

(ppm) pH S 
(ppm)

K 
(ppm)

Ca 
(ppm)

Mg 
(ppm)

Fe 
(ppm)

As 
(ppm)

13.3 57.4 3.1 7.1 4.6 1.7 8 28 37 2545 114 67.1 2.58
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Appendix A Table 2. Degenerate primers used for end point PCR. 

 

Gene Primer Sequence (5'-3') Name Source

16S AGAGTTTGATCCTGGCTCAG Uni-27F Weisburg et al., 1991

16S GGTTACCTTGTTACGACTT Uni-1492R Weisburg et al., 1991

16S GTGCCAGCMGCCGCGGTAA U515F Baker et al., 2003

arsB GGTGTGGAACATCGTCTGGAAYGCNAC darsB1F Achour et al., 2007

arsB CAGGCCGTACACCACCAGRTACATNCC darsB1R Achour et al., 2007

ACR3(1) GCCATCGGCCTGATCGTNATGATGTAYCC dacr1F Achour et al., 2007

ACR3(1) CGGCG ATGGCCAGCTCYAAYTTYTT dacr1R Achour et al., 2007

ACR3(2) TGA TCTGGGTCATGATCTTCCCVATGMTGVT dacr5F Achour et al., 2007

ACR3(2) CGGCCACG GCCAGYTCRAARAARTT dacr4R Achour et al., 2007

arsC TCGCGTAATACGCTGGAGAT amlt-42-f Sun et al., 2004

arsC ACTTTCTCGCCGTCTTCCTT amlt-376-r Sun et al., 2004

arsC TCACGCAATACCCTTGAAATGATC smrc-42-f Sun et al., 2004

arsC ACCTTTTCACCGTCCTCTTTCGT smrc-376-r Sun et al., 2004

arsC AGCCAAATGGCAGAAGC P52F Cavalca, et al., 2010

arsC GCTGGRTCRTCAAATCCCCA P323R Cavalca, et al., 2010

arrA CGAAGTTCGTCCCGATHACNTGG AS1F Song et al., 2009

arrA GGGGTGCGGTCYTTNARYTC AS1R Song et al., 2009

arrA GTCCCNATBASNTGGGANRARGCNMT AS2F Song et al., 2009

arrA ATANGCCCARTGNCCYTGNG AS2R Song et al., 2009

aioA CCACTTCTGCATCGTGGGNTGYGGNTA aoxBM1-2F Quemeneur et al., 2008

aioA TGTCGTTGCCCCAGATGADNCCYTTYTC aoxBM3-2R Quemeneur et al., 2008

arsM TCYCTCGGCTGCGGCAAYCCVAC arsMF1 Jia et al., 2013

arsM GTGCTCGAYCTSGGCWCCGGC arsMF2 Jia et al., 2013

arsM GGCATCGACGTGCTKCTBTCSGC arsMF3 Jia et al., 2013

arsM AGGTTGATGACRCAGTTWGAGAT arsMR1 Jia et al., 2013

arsM CGWCCGCCWGGCTTWAGYACCCG arsMR2 Jia et al., 2013

arsM GCGCCGGCRAWGCAGCCWACCCA arsMR3 Jia et al., 2013
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Appendix A Table 3. Isolates with short arsC sequences (< 200 bp). 

 

Isolate arsC sequence

A2707 cgatgctgatttagtctgttacgcttttgtggccatgcggatgctgtttgtccgtctactccgccgcatgtgaatcgagttcactggggatttgacgacccagcaa

A2723 gctggatttagtctgtnacnctttgtggtcacgcagatgctgtctgtccnncaacacctccgcacgtgaancgagttcactggggatttgacgacccagcaa

A2733 caatgaanatcnggatggtttgattccgttatgatcgatgtctacttcgtttcattgctttaattgcnttcggattcactccgtgtgcctcnatacccgcagaaantac

A2735 cgatgctgatttagtctgttacgctttgtggtcacgcagatgctgtctgtccnncaacacctcctcacgtgaancgagttcactggggatttgacgacccagcaaa
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Appendix A Table 4. Phenotypes of arsenic resistant isolates. 

 

Isolate Closest 16S rRNA gene sequence described        
(% similarity)

Colony 
Morphology

Temperature 
Maximum 
(°C)

Length 
(µm)

Width 
(µm)

I2706 Enterobacter absuriae JM 6051 (99.43%) 44.3 1.43 1.21

I2707 Enterobacter absuriae JM 6051 (99.35%) 44.3 1.34 1.16

I2716 Bacillus nealsonii DSM 150-7577 (99.49%) 44.3 4.63 1.16

I2723 Bacillus anthrasis ATCC 14578 (100%) 44.3 4.46 1.36

I2726 Enterobacter absuriae JM 6051 (99.5%) 44.3 2.37 1.45

I2727 Enterobacter absuriae JM 6051 (99.56%) 44.3 2.89 1.05

I2742 Bacillus nealsonii DSM 150-7577 (99.49%) 44.3 2.60 0.85

I2745 Bacillus anthrasis ATCC 14578 (99.86%) 44.3 4.11 0.90

I2746 Paenibacillus xylanilytius XIL14 (98.63%) 44.3 1.68 1.46

I2747 Paenibacillus xylanilytius XIL14 (98.58%) 39.7 3.96 1.12

I2748 Mirobaterium paraoxydans F36 (99.85%) 47.7 1.19 1.14

I2749 Olivibater oleidegrans TBF2/20.2 (99.42%) 44.3 1.58 1.23

I2759 Acinetobacter baumanii ATCC 19606 (99.78%) 44.3 1.20 1.16

A2705 Acinetobacter baumanii ATCC 19606 (99.64%) 44.3 1.25 1.19

A2706 Enterobacter absuriae JM 6051 (99.50%) 44.3 2.07 1.10

A2707 Bacillus anthrasis ATCC 14578 (100%) 44.3 3.83 0.91

A2708 Bacillus subtilis subsp. inoquosorum KT 13429 (99.93%) 52.0 3.26 0.90

A2712 Pseudomonas hibisicola ATCC 19867 (99.36%) 39.7 2.01 1.01

A2716 Acinetobacter baumanii ATCC 19606 (99.78%) 44.3 1.12 0.96

A2723 Bacillus anthrasis ATCC 14578 (99.73%) 44.3 3.20 1.64

A2724 Enterobacter absuriae JM 6051 (99.57%) 44.3 1.19 1.09

A2727 Pseudomonas geniculata ATCC 19374 (99.78%) 39.7 1.23 0.79

A2731 Enterobacter absuriae JM 6051 (99.49%) 44.3 1.18 1.15

A2733 Bacillus subtilis subsp. inoquosorum KT 13429 (99.93%) 52.0 3.61 0.91

A2735 Bacillus anthrasis ATCC 14578 (99.85%) 44.3 4.30 2.04
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Appendix A Table 5. Comparison of arsenic resistance gene sequences with NCBI 

references. 

 

Isolate Genus Gene Closest NCBI match (% similarity) %GC 
gene

%GC 
reference 
genomes

I2706 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.62 55 ± 0.37

I2707 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.42 55 ± 0.37

I2726 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.51 55 ± 0.37

I2727 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.83 55 ± 0.37

I2759 Acinetobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.69 39.03 ± 0.11

A2706 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.14 55 ± 0.37

A2724 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 59.78 55 ± 0.37

A2731 Enterobacter arsB Enterobacter cloacae isolate MBRL1077 (97%) 60 55 ± 0.37

A2712 Pseudomonas ACR3(2) Stenotrophomonas maltophilia strain ISMMS2 (84%) 62.96 66.54 ± 0.25

A2727 Pseudomonas ACR3(2) Stenotrophomonas maltophilia strain ISMMS2 (95%) 64.69 66.54 ± 0.25

A2733 Bacillus cereus ACR3(2) Stenotrophomonas maltophilia D457 (83%) 64.83 43.89 ± 0.71

I2716 Bacillus nealsonii arsC Bacillus cereus ATCC 14579 (95%) 39.5 35.1

I2723 Bacillus cereus arsC Bacillus cereus ATCC 10987 (96%) 41.2 35.26 ± 0.18

I2726 Enterobacter arsC Bacillus cereus F837/76 (99%) 40.97 55 ± 0.37

I2727 Enterobacter arsC Bacillus cereus ATCC 10987 (96%) 40.89 55 ± 0.37

I2745 Bacillus cereus arsC Bacillus thuringiensis strain KNU-07 (98%) 37.67 35.26 ± 0.18

I2746 Paenibacillus arsC Bacillus cereus strain A1 (98%) 37.8 50.9 ± 0.14

I2747 Paenibacillus arsC Bacillus sp. ABP14 (95%) 39.29 50.9 ± 0.14

A2707 Bacillus cereus arsC Bacillus cereus D17 (92%) 43.28 35.26 ± 0.18

A2708 Bacillus subtilis arsC Bacillus anthracis strain Tyrol 4675 (95%) 40.38 43.89 ± 0.71

A2723 Bacillus cereus arsC Bacillus sp. CH19 (86%) 42.79 35.26 ± 0.18

A2733 Bacillus subtilis arsC Bacillus cereus strain FORC_024 (88%) 40.1 43.89 ± 0.71

A2735 Bacillus cereus arsC Bacillus sp. CH19 (88%) 42.29 35.26 ± 0.18
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Appendix A Table 6. Parameters for reference gene (FunGene) database construction 

and gene-targeted assembly for each protein of interest. 

 

Table S1. Parameters for reference gene (FunGene) database construction and gene-
targeted assembly for each protein of interest.  
 
 

 
 
 

FunGene Database Protein Minimum 
HMM score 

 Minimum 
length (aa) 

 Minimum 
HMM 
coverage (%) 

Number of 
FunGene 
sequences 

Number of 
dereplicated 
sequences 

Minimum 
length (aa) 

Chloramphenicol efflux 
pump CmlA 298 390 80 3747 491 150 

Dfra1 Dfra1 100 135 80 4659 211 50 

Dfra12 Dfra12 90 130 80 26637 1252 50 

IntI IntI 90 315 80 9418 2562 150 

RepA RepA 400 220 80 387 31 150 

Resfam_AAC6-Ia AAC6-Ia 100 170 80 757 112 100 

Resfam_AdeB AdeB 1400 1000 80 53493 10025 150 

Resfam_ANT3 ANT3 310 245 80 7806 790 150 

Resfam_ANT6 ANT6 130 260 80 4097 1066 150 

Resfam_ANT9 ANT9 400 245 80 4044 41 150 
Resfam_Chloramphenicol 
Acetyltransferase CAT CAT 195 200 80 9996 1299 150 

Resfam_ClassA ClassA 179 275 80 34258 5713 150 

Resfam_ClassB ClassB 76 255 80 9853 2087 150 

Resfam_ClassC ClassC 400 370 80 12916 3641 150 

Resfam_ermB Resfam_ermB 400 200 80 2090 182 100 

Resfam_ermC Resfam_ermC 265 200 80 7173 246 100 

Resfam_MexC MexC 300 340 80 2569 720 150 

Resfam_MexE MexE 400 390 80 1567 665 150 
Resfam_Quinolone 
Resistance Protein Qnr Qnr 230 200 80 2562 558 100 

Resfam_tetA TetA 680 390 80 2060 70 150 

Resfam_tetD TetD 795 350 80 261 9 150 

Resfam_tetX TetX 300 360 80 227 112 150 

Resfam_TolC TolC 350 430 80 19431 3189 150 

Resfam_vanA VanA 700 300 80 250 28 150 

Resfam_vanC VanC 730 300 80 35 29 150 

Resfam_vanH VanH 500 280 80 438 61 150 

Resfam_vanT VanT 600 650 80 304 97 150 

Resfam_vanW VanW 130 220 80 1311 423 150 

Resfam_vanX VanX 100 150 80 16689 2340 100 

Resfam_vanY VanY 220 300 80 250 35 150 

Resfam_vanZ VanZ 80 120 80 1042 189 100 

StrA StrA 400 230 80 4286 154 150 

StrB StrB 159 230 80 4695 222 150 

tet_sul2 Sul2 200 245 80 9031 298 150 

TetM TetM 1175 600 80 5531 543 150 

TetQ TetQ 650 600 80 242 70 150 

TetW TetW 1260 600 80 345 169 150 
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Appendix A Table 7. Sequencing depth and Nonpareil-estimated coverage of Centralia 

metagenomes. 

 
 

Table S2. Sequencing depth and Nonpareil-estimated coverage of Centralia metagenomes.  
 

Site name Fire History Sequencing depth 
(Gbases) Coverage (%) 

Cen01 Recovered 23 58.96 

Cen03 Recovered 26 49.49 

Cen04 Recovered 25 38.32 

Cen05 Recovered 25 45.97 

Cen06 Fire-affected 22 54.23 

Cen07 Recovered 21 53.26 

Cen10 Fire-affected 36 89.96 

Cen12 Fire-affected 24 88.63 

Cen14 Fire-affected 24 82.79 

Cen15 Fire-affected 20 76.48 

Cen16 Fire-affected 51 76.30 

Cen17 Reference 24 29.12 
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Appendix A Table 8. Sample site characteristics and measured soil geochemical data. 

 

Table S3. Sample site characteristics and measured soil geochemical data.  
 

Sample latitude longitude 
Soil 
temperature 
(°C) 

Classification 

Date 
since 
fire 
(Elick 
2011) 

Organic 
matter 
(500°C) 

NO3- 
(ppm) 

NH4- 
(ppm) pH S 

(ppm) 
K 
(ppm) 

Ca 
(ppm) 

Mg 
(ppm) 

Fe 
(ppm) 

As 
(ppm) 

 Soil 
Moisture 
(%) 

Cen01 40 47.926 076 20.357 14.1 Recovered 1982 3.9 0.7 2.2 4.7 1 35 194 61 48.6 2.63 7 

Cen03 40 47.881 076 20.468 14.7 Recovered 2002 48.9 0.3 3.2 4.5 4 31 1416 241 54.7 7.1 5 

Cen04 40 47.870 076 20.489 13.3 Recovered 1999 12.8 0.8 5 4.6 23 34 103 46 167.2 3.6 4 

Cen05 40 47.831 076 20.572 14.0 Recovered 2009 25.4 5.7 5 4.1 6 43 63 43 164.5 1.75 27 

Cen06 40 47.849 076 20.506 24.1 Fire affected 2014 11.9 0.8 3.2 4.7 4 46 111 52 75.6 2.05 17 

Cen07 40 48.086 076 20.736 13.5 Recovered 2005 6 0.7 4 4.6 14 40 78 37 108.9 5.56 242 

Cen10 40 48.062 076 20.582 54.2 Fire affected 2007 24.5 98.4 120.6 4 21 57 245 70 508 3.79 111 

Cen12 40 48.078 076 20.589 32.0 Fire affected 2009 6 0.2 2 4.8 7 24 51 30 150.3 3.9 70 

Cen14 40 48.040 076 20.469 34.1 Fire affected 2002 21.9 0.9 2.7 5 5 58 394 64 102.7 2.97 64 

Cen15 40 48.045 076 20.489 38.9 Fire affected 2002 9.6 1.1 4 5.2 13 44 224 50 93.3 2.25 119 

Cen16 40 48.048 076 20.487 21.7 Fire affected 2002 10.6 0.5 1.2 5.6 8 33 497 56 80.8 3.57 78 

Cen17 40 47.998 076 20.416 12.1 Reference NA 6.1 0.1 3.3 5.7 6 99 652 73 48.6 1.99 27 
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Appendix A Table 9. Spearman’s rank correlation between relative abundance of ARGs 

and soil temperature.  

Significant differences are bolded. 
 

 

Table S4. Spearman’s rank correlation between relative abundance of ARGs and soil 
temperature. Significant differences are bolded. 
 

Gene Spearman’s rho p value 

AAC6-Ia 0.119326331 0.711849439 

ClassA -0.594405594 0.0457531 

ClassB -0.741258741 0.00817064 

ClassC -0.035212141 0.91348822 

CEP 0.204271555 0.524238954 

intI -0.013986014 0.973693904 

adeB -0.045765054 0.887688984 

tolC -0.697619343 0.011658884 

sul2 0.542908013 0.068150085 

dfra12 -0.706293706 0.013286114 

vanA -0.108581603 0.736943708 

vanH -0.169018276 0.59949787 

vanX -0.125874126 0.699712221 

vanZ -0.270429867 0.39525819 
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Appendix A Table 10. Correlations between ARG phylum and Proteobacteria class 

normalized abundances and soil temperature.  

Spearman’s rank correlations with rplB-normalized abundance and soil temperature. 

Significant correlations (p < 0.05) are bolded. 

 

Table S5. Correlations between ARG phylum and Proteobacteria class normalized 
abundances and soil temperature. Spearman’s rank correlations with rplB-normalized 
abundance and soil temperature. Significant correlations (p < 0.05) are bolded.  
 

Gene Phylum Spearman’s rho p value 

ClassA Acidobacteria -0.045765054 0.887688984 

ClassA Actinobacteria 0.66567352 0.018134057 

ClassA Alphaproteobacteria -0.293706294 0.354332534 

ClassA Betaproteobacteria -0.8048763 0.001588848 

ClassA Deltaproteobacteria -0.425485705 0.167901396 

ClassA Gammaproteobacteria -0.448469578 0.143665129 

ClassB Acidobacteria -0.440559441 0.15421575 

ClassB Alphaproteobacteria -0.004160459 0.989761605 

ClassB Bacteroidetes -0.086009076 0.790410909 

ClassB Betaproteobacteria 0.043671315 0.892800448 
ClassB Deltaproteobacteria 0.550736912 0.063497906 

ClassB Gammaproteobacteria -0.384615385 0.218387427 

ClassB Gemmatimonadetes 0.393041832 0.206255757 
ClassB Verrucomicrobia 0.263402795 0.408125175 

dfra12 Acidithiobacillia -0.354787438 0.257796301 

dfra12 Actinobacteria 0.070727811 0.827099003 

dfra12 Alphaproteobacteria -0.734265734 0.009052097 

dfra12 Bacteroidetes -0.683115531 0.014338998 

dfra12 Betaproteobacteria -0.690018571 0.013012243 

dfra12 C. Peregrinibacteria -0.305699203 0.333893136 

dfra12 Deinococcus-Thermus -0.082610537 0.798539196 

dfra12 Deltaproteobacteria -0.514830787 0.08675862 

dfra12 Firmicutes -0.608391608 0.040002049 

dfra12 Gammaproteobacteria 0.202797203 0.528100237 
dfra12 Microgenomates 0.108237592 0.737751195 

dfra12 Parcubacteria -0.330442147 0.294152738 

dfra12 Verrucomicrobia -0.156042125 0.628187113 

intI Acidithiobacillia 0.043671315 0.892800448 

intI Betaproteobacteria -0.475524476 0.121319356 

intI Chlorobi 0.241900526 0.448765409 
intI Chloroflexi 0.06425264 0.842745428 
intI Cyanobacteria 0.366606083 0.241141519 

intI Deltaproteobacteria -0.364273764 0.244376487 

intI Gammaproteobacteria -0.496503497 0.104092833 

intI Gemmatimonadetes 0.319717875 0.311035387 
intI Nitrospirae 0.517482517 0.088650879 
intI Planctomycetes 0.458947427 0.133408824 
intI Verrucomicrobia 0.104011487 0.747690649 
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Appendix A Table 11. Correlations between ARG phylum and Proteobacteria class 

relative abundances and soil temperature. 

Spearman’s rank correlations with relative abundance and soil temperature. Significant 

correlations (p < 0.05) are bolded.  

 

Table S6. Correlations between ARG phylum and Proteobacteria class relative abundances 
and soil temperature. Spearman’s rank correlations with relative abundance and soil 
temperature. Significant correlations (p < 0.05) are bolded.  
 
Gene Phylum Spearman’s rho p value 

ClassA Acidobacteria -0.045765054 0.887688984 
ClassA Actinobacteria 0.66567352 0.018134057 
ClassA Alphaproteobacteria -0.293706294 0.354332534 
ClassA Betaproteobacteria -0.8048763 0.001588848 
ClassA Deltaproteobacteria -0.425485705 0.167901396 
ClassA Gammaproteobacteria -0.448469578 0.143665129 
ClassB Acidobacteria -0.440559441 0.15421575 
ClassB Alphaproteobacteria -0.004160459 0.989761605 
ClassB Bacteroidetes -0.086009076 0.790410909 
ClassB Betaproteobacteria 0.043671315 0.892800448 
ClassB Deltaproteobacteria 0.550736912 0.063497906 
ClassB Gammaproteobacteria -0.384615385 0.218387427 
ClassB Gemmatimonadetes 0.393041832 0.206255757 
ClassB Verrucomicrobia 0.263402795 0.408125175 
dfra12 Acidithiobacillia -0.354787438 0.257796301 
dfra12 Actinobacteria 0.070727811 0.827099003 
dfra12 Alphaproteobacteria -0.734265734 0.009052097 
dfra12 Bacteroidetes -0.683115531 0.014338998 
dfra12 Betaproteobacteria -0.690018571 0.013012243 
dfra12 C. Peregrinibacteria -0.305699203 0.333893136 
dfra12 Deinococcus-Thermus -0.082610537 0.798539196 
dfra12 Deltaproteobacteria -0.514830787 0.08675862 
dfra12 Firmicutes -0.608391608 0.040002049 
dfra12 Gammaproteobacteria 0.202797203 0.528100237 
dfra12 Microgenomates 0.108237592 0.737751195 
dfra12 Parcubacteria -0.330442147 0.294152738 
dfra12 Verrucomicrobia -0.156042125 0.628187113 
intI Acidithiobacillia 0.043671315 0.892800448 
intI Betaproteobacteria -0.475524476 0.121319356 
intI Chlorobi 0.241900526 0.448765409 
intI Chloroflexi 0.06425264 0.842745428 
intI Cyanobacteria 0.366606083 0.241141519 
intI Deltaproteobacteria -0.364273764 0.244376487 
intI Gammaproteobacteria -0.496503497 0.104092833 
intI Gemmatimonadetes 0.319717875 0.311035387 
intI Nitrospirae 0.517482517 0.088650879 
intI Planctomycetes 0.458947427 0.133408824 
intI Verrucomicrobia 0.104011487 0.747690649 
rplB Acidobacteria -0.412587413 0.184480685 
rplB Actinobacteria 0.195804196 0.542873521 
rplB Alphaproteobacteria 0.251748252 0.430115289 
rplB Aquificae -0.84354992 0.000564148 
rplB Bacteroidetes -0.53522454 0.072939241 
rplB Betaproteobacteria -0.664335664 0.022159207 
rplB Caldiserica 0.043671315 0.892800448 
rplB C. Saccharibacteria 0.17935393 0.577012393 
rplB Chlamydiae -0.128974244 0.689537493 
rplB Chlorobi 0.137295163 0.67047431 
rplB Chloroflexi 0.727272727 0.010000917 
rplB Cyanobacteria 0.082610537 0.798539196 
rplB Deltaproteobacteria -0.485927542 0.109227185 
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Appendix A Table 11 (cont’d) 
 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table S6. Correlations between ARG phylum and Proteobacteria class relative abundances 
and soil temperature. Spearman’s rank correlations with relative abundance and soil 
temperature. Significant correlations (p < 0.05) are bolded.  
 
Gene Phylum Spearman’s rho p value 

ClassA Acidobacteria -0.045765054 0.887688984 
ClassA Actinobacteria 0.66567352 0.018134057 
ClassA Alphaproteobacteria -0.293706294 0.354332534 
ClassA Betaproteobacteria -0.8048763 0.001588848 
ClassA Deltaproteobacteria -0.425485705 0.167901396 
ClassA Gammaproteobacteria -0.448469578 0.143665129 
ClassB Acidobacteria -0.440559441 0.15421575 
ClassB Alphaproteobacteria -0.004160459 0.989761605 
ClassB Bacteroidetes -0.086009076 0.790410909 
ClassB Betaproteobacteria 0.043671315 0.892800448 
ClassB Deltaproteobacteria 0.550736912 0.063497906 
ClassB Gammaproteobacteria -0.384615385 0.218387427 
ClassB Gemmatimonadetes 0.393041832 0.206255757 
ClassB Verrucomicrobia 0.263402795 0.408125175 
dfra12 Acidithiobacillia -0.354787438 0.257796301 
dfra12 Actinobacteria 0.070727811 0.827099003 
dfra12 Alphaproteobacteria -0.734265734 0.009052097 
dfra12 Bacteroidetes -0.683115531 0.014338998 
dfra12 Betaproteobacteria -0.690018571 0.013012243 
dfra12 C. Peregrinibacteria -0.305699203 0.333893136 
dfra12 Deinococcus-Thermus -0.082610537 0.798539196 
dfra12 Deltaproteobacteria -0.514830787 0.08675862 
dfra12 Firmicutes -0.608391608 0.040002049 
dfra12 Gammaproteobacteria 0.202797203 0.528100237 
dfra12 Microgenomates 0.108237592 0.737751195 
dfra12 Parcubacteria -0.330442147 0.294152738 
dfra12 Verrucomicrobia -0.156042125 0.628187113 
intI Acidithiobacillia 0.043671315 0.892800448 
intI Betaproteobacteria -0.475524476 0.121319356 
intI Chlorobi 0.241900526 0.448765409 
intI Chloroflexi 0.06425264 0.842745428 
intI Cyanobacteria 0.366606083 0.241141519 
intI Deltaproteobacteria -0.364273764 0.244376487 
intI Gammaproteobacteria -0.496503497 0.104092833 
intI Gemmatimonadetes 0.319717875 0.311035387 
intI Nitrospirae 0.517482517 0.088650879 
intI Planctomycetes 0.458947427 0.133408824 
intI Verrucomicrobia 0.104011487 0.747690649 
rplB Acidobacteria -0.412587413 0.184480685 
rplB Actinobacteria 0.195804196 0.542873521 
rplB Alphaproteobacteria 0.251748252 0.430115289 
rplB Aquificae -0.84354992 0.000564148 
rplB Bacteroidetes -0.53522454 0.072939241 
rplB Betaproteobacteria -0.664335664 0.022159207 
rplB Caldiserica 0.043671315 0.892800448 
rplB C. Saccharibacteria 0.17935393 0.577012393 
rplB Chlamydiae -0.128974244 0.689537493 
rplB Chlorobi 0.137295163 0.67047431 
rplB Chloroflexi 0.727272727 0.010000917 
rplB Cyanobacteria 0.082610537 0.798539196 
rplB Deltaproteobacteria -0.485927542 0.109227185 
rplB Dictyoglomi -0.480384461 0.113937412 
rplB Elusimicrobia 0.431410581 0.161423074 
rplB Epsilonproteobacteria -0.530263793 0.076151068 
rplB Firmicutes 0.223776224 0.48491114 
rplB Gammaproteobacteria 0.251748252 0.430115289 
rplB Gemmatimonadetes -0.433566434 0.161446426 
rplB Ignavibacteriae 0.004160459 0.989761605 
rplB metagenomes -0.188811189 0.557827775 
rplB Nitrospirae -0.119326331 0.711849439 
rplB Planctomycetes 0.083916084 0.800197518 
rplB Synergistetes 0.197187988 0.53902672 
rplB Thermobaculum 0.626433696 0.029292738 

rplB Thermodesulfobacteria -0.470131923 0.122998942 
rplB Thermotogae -0.218356573 0.49536676 
rplB Verrucomicrobia -0.34965035 0.266004309 
rplB Viridiplantae 0.480384461 0.113937412 
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Appendix A Table 12. ResFams HMMs and antibiotic classifications. 

ResfamID Gene Description Classification 

RF0001 16S_rRNA_methyltrans 16S ribosomal RNA methyltransferase 
rRNA 
Methyltransferase 

RF0002 AAC3 Aminoglycoside Acetyltransferase (AAC3) Aminoglycoside 

RF0003 AAC3-I Aminoglycoside Acetyltransferase (AAC3-I) Aminoglycoside 

RF0004 AAC6-I Aminoglycoside Acetyltransferase (AAC6-I) Aminoglycoside 

RF0005 AAC6-Ib Aminoglycoside Acetyltransferase (AAC6-Ib) Aminoglycoside 

RF0006 AAC6-II Aminoglycoside Acetyltransferase (AAC6-II) Aminoglycoside 

RF0007 ABC_efflux ATP-binding cassette (ABC) antibiotic efflux pump ABC Transporter 

RF0008 ABC_tran PF00005.22 ABC transporter ABC Transporter 

RF0009 ABC1 PF03109.11 ABC1 family ABC Transporter 

RF0010 ABC2_membrane PF01061.19 ABC-2 type transporter ABC Transporter 

RF0011 Acetyltransf_1 PF00583.19 Acetyltransferase (GNAT) family Aminoglycoside 

RF0012 Acetyltransf_3 PF13302.1 Acetyltransferase (GNAT) domain Aminoglycoside 

RF0013 Acetyltransf_4 PF13420.1 Acetyltransferase (GNAT) domain Aminoglycoside 

RF0014 Acetyltransf_7 PF13508.1 Acetyltransferase (GNAT) domain Aminoglycoside 

RF0015 Acetyltransf_8 PF13523.1 Acetyltransferase (GNAT) domain Aminoglycoside 

RF0016 Acetyltransf_9 PF13527.1 Acetyltransferase (GNAT) domain Aminoglycoside 

RF0017 ACR_tran PF00873.14 AcrB/AcrD/AcrF family Other Efflux 

RF0018 Acyltransferase PF01553.16 Acyltransferase Aminoglycoside 

RF0019 adeA-adeI adeA-adeI: membrane fusion protein of multidrug efflux complex 
RND Antibiotic 
Efflux 

RF0020 adeB adeB: membrane fusion protein of multidrug efflux complex 
RND Antibiotic 
Efflux 

RF0021 adeC-adeK-oprM 
adeC-adeK-oprM: outer membrane factor the multidrug efflux 
complex 

RND Antibiotic 
Efflux 

RF0022 adeR adeR: positive regulator of AdeABC efflux system Other Efflux 

RF0023 adeS adeS: gene modulating antibiotic efflux regulating AdeABC Other Efflux 

RF0024 Aminotran_1_2 PF00155.16 Aminotransferase class I and II Other 

RF0025 Aminotran_4 PF01063.14 Aminotransferase class IV Other 

RF0026 ANT2 Aminoglycoside Nucleotidyltransferase (ANT2) Aminoglycoside 

RF0027 ANT3 Aminoglycoside Nucleotidyltransferase (ANT3) Aminoglycoside 

RF0028 ANT4 Aminoglycoside Nucleotidyltransferase (ANT4) Aminoglycoside 

RF0029 ANT6 Aminoglycoside Nucleotidyltransferase (ANT6) Aminoglycoside 

RF0030 ANT9 Aminoglycoside Nucleotidyltransferase (ANT9) Aminoglycoside 

RF0031 Antibiotic_NAT PF02522.9 Aminoglycoside 3-N-acetyltransferase Aminoglycoside 

RF0032 APH PF01636.18 Phosphotransferase enzyme family Aminoglycoside 

RF0033 APH3 aminoglycoside phosphotransferase (APH3) Aminoglycoside 

RF0034 APH6 aminoglycoside phosphotransferase (APH3) Aminoglycoside 

RF0035 baeR baeR: subunit of gene modulating antibiotic efflux 
Gene Modulating 
Resistance 

RF0036 baeS baeS: subunit of gene modulating antibiotic efflux 
Gene Modulating 
Resistance 

RF0037 BCII 
Bacillus cereus beta-lactamase II (subclass B1 (metallo-) beta-
lactamase) Beta-Lactam 

RF0038 Beta-lactamase PF00144.19 Beta-lactamase Beta-Lactam 

RF0039 Beta-lactamase2 PF13354.1 Beta-lactamase enzyme family Beta-Lactam 
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Appendix A Table 12 (cont’d)  

RF0040 BJP BJP beta-lactamase (subclass B3 (metallo-) beta-lactamase) Beta-Lactam 

RF0041 BlaB Beta-lactamase B (BlaB) (subclass B1 (metallo-) beta-lactamase) Beta-Lactam 

RF0042 blaI 
blaI: gene modulating beta-lactam resistance, regulates PC1 beta-
lactamase (blaZ) 

Gene Modulating 
Resistance 

RF0043 blaR1 
blaR1: gene modulating beta-lactam resistance, regulates PC1 beta-
lactamase (blaZ) 

Gene Modulating 
Resistance 

RF0044 CARB-PSE CARB-PSE beta-lactamases (class a) Beta-Lactam 

RF0045 CAT PF00302.13 Chloramphenicol acetyltransferase Aminoglycoside 

RF0046 CblA CblA cephalosporin (class a) Beta-Lactam 

RF0047 CepA CepA cehphalosporin (class a) Beta-Lactam 

RF0048 Cfr23_rRNA_methyltrans Cfr 23S ribosomal RNA methyltransferase 
rRNA 
Methyltransferase 

RF0049 CfxA CfxA cephalosporin (class a) Beta-Lactam 

RF0050 Chlor_Acetyltrans_CAT chloramphenicol acetyltransferase (CAT) Chloramphenicol 

RF0051 Chlor_Efflux_Pump chloramphenicol efflux pump Chloramphenicol 

RF0052 Chlor_Phospho_CPT chloramphenicol phosphotransferase (CPT) Chloramphenicol 

RF0053 ClassA Class A beta-lactamase Beta-Lactam 

RF0054 ClassB Class B beta-lactamase Beta-Lactam 

RF0055 ClassC-AmpC Class C beta-lactamases Beta-Lactam 

RF0056 ClassD Class D beta-lactamases Beta-Lactam 

RF0057 
CMY-LAT-MOX-ACT-
MIR-FOX 

A grouping of the related CMY, LAT, MOX, ACT, MIR, and FOX 
beta-lactamases (class c) Beta-Lactam 

RF0058 CPT PF07931.7 Chloramphenicol phosphotransferase-like protein Chloramphenicol 

RF0059 CTXM CTX-M beta-lactamase (class a) Beta-Lactam 

RF0060 Dala_Dala_lig_C PF07478.8 D-ala D-ala ligase C-terminus Gylcopeptide 

 D_ala_D_ala  Gylcopeptide 

RF0061 Dala_Dala_lig_N PF01820.16 D-ala D-ala ligase N-terminus Gylcopeptide 

RF0062 DHA DHA beta-lactamase (class c) Beta-Lactam 

RF0063 DHFR_1 PF00186.14 Dihydrofolate reductase Trimethoprim 

RF0064 DIM-GIM-SIM 
A grouping of the related DIM, GIM, and SIM beta-lactamases 
(subclass B1 (metallo-) beta-lactamases) Beta-Lactam 

 emrB  MFS Transporter 

RF0065 efflux_EmrB emrB: subunit of efflux pump conferring antibiotic resistance MFS Transporter 

RF0066 emrE emrE: small multidrug resistance (SMR) antibiotic efflux pump Other Efflux 

RF0067 Erm23S_rRNA_methyltrans 
Emr 23S ribosomal RNA methyltransferase: rRNA methyltransferase 
conferring antibiotic resistance 

rRNA 
Methyltransferase 

RF0068 Erm38 
Erm38: Erm 23S ribosomal RNA methyltransferase: rRNA 
methyltransferase conferring antibiotic resistance 

rRNA 
Methyltransferase 

RF0069 ErmA 
ErmA: Erm 23S ribosomal RNA methyltransferase: rRNA 
methyltransferase conferring antibiotic resistance 

rRNA 
Methyltransferase 

RF0070 ErmB 
ErmB: Erm 23S ribosomal RNA methyltransferase: rRNA 
methyltransferase conferring antibiotic resistance 

rRNA 
Methyltransferase 

RF0071 ErmC 
ErmC: Erm 23S ribosomal RNA methyltransferase: rRNA 
methyltransferase conferring antibiotic resistance 

rRNA 
Methyltransferase 

RF0072 Exo Exo beta-lactamase (class a) Beta-Lactam 

RF0073 FAD_binding_2 PF00890.19 FAD binding domain Other 

RF0074 Fluor_Res_DNA_Topo Fluoroquinolone Resistant DNA Topoisomerase Quinolone 

RF0075 FmrO PF07091.6 Ribosomal RNA methyltransferase (FmrO) 
rRNA 
Methyltransferase 

RF0076 GES GES beta-lactamase (class a) Beta-Lactam 

RF0077 Glyoxalase 
PF00903.20 Glyoxalase/Bleomycin resistance protein/Dioxygenase 
superfamily Other 

RF0078 GOB GOB beta-lactamase (subclass B3 (metallo-) beta-lactamase) Beta-Lactam 
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RF0079 HTH_AraC 
PF00165.18 Bacterial regulatory helix-turn-helix proteins, AraC 
family 

Gene Modulating 
Resistance 

RF0080 IMP 
Plasmid mediated IMP-type carbapenemases (subclass B1 (metallo-) 
beta-lactamase) Beta-Lactam 

RF0081 IND IND beta-lactamases (subclass B1 (metallo-) beta-lactamase) Beta-Lactam 

RF0082 KHM KHM beta-lactamases (subclass B1 (metallo-) beta-lactamase) Beta-Lactam 

RF0083 KPC 
Klebsiella pneumoniae carbapenem resistant (KPC) beta-lactamases 
(class a) Beta-Lactam 

RF0084 L1 L1 beta-lactamase (subclass B3 (metallo-) beta-lactamase) Beta-Lactam 

RF0085 Lactamase_B PF00753.22 Metallo-beta-lactamase superfamily Beta-Lactam 

RF0086 Lactamase_B_2 PF12706.2 Beta-lactamase superfamily domain Beta-Lactam 

RF0087 LRA LRA beta-lactamase (subclass B3 (metallo-) beta-lactamase) Beta-Lactam 

RF0088 macA macA: subunit of efflux pump conferring antibiotic resistance Macrolide 

RF0089 macB macB: subunit of efflux pump conferring antibiotic resistance Macrolide 

 macrolide_glycosyl  Macrolide 

RF0090 MacrolideGlycosyltransfer macrolide glycosyltransferase: macrolide inactivation enzyme Macrolide 

RF0091 marA marA: transcription factor induces MDR efflux pump AcrAB 
Gene Modulating 
Resistance 

RF0092 MarR PF01047.17 MarR family 
Gene Modulating 
Resistance 

RF0093 MarR_2 PF12802.2 MarR family 
Gene Modulating 
Resistance 

RF0094 mecR1 mecR1: gene modulating beta-lactam resistance 
Gene Modulating 
Resistance 

RF0095 Methyltransf_18 PF12847.2 Methyltransferase domain Other 

RF0096 MexA 
mexA: membrane fusion protein of the MexAB-OprM multidrug 
efflux complex 

RND Antibiotic 
Efflux 

RF0097 MexC 
mexC: membrane fusion protein of the MexCD-OprJ multidrug 
efflux complex 

RND Antibiotic 
Efflux 

RF0098 MexE 
mexE: membrane fusion protein of the MexEF-OprN multidrug 
efflux complex 

RND Antibiotic 
Efflux 

RF0099 MexH 
mexH: membrane fusion protein of the efflux complex MexGHI-
OpmD 

RND Antibiotic 
Efflux 

RF0100 MexW-MexI 
A grouping of related mexW and mexI subunits of efflux pumps 
conferring antibiotic resistance 

RND Antibiotic 
Efflux 

RF0101 MexX mexX:  subunit of efflux pump conferring antibiotic resistance 
RND Antibiotic 
Efflux 

RF0102 MFS_1 PF07690.11 Major Facilitator Superfamily MFS Transporter 

RF0103 MFS_3 PF05977.8 Transmembrane secretion effector MFS Transporter 

RF0104 MFS_efflux major facilitator superfamily (MFS) antibiotic efflux pump MFS Transporter 

RF0105 MoxA MoxA beta-lactamase (class a) Beta-Lactam 

RF0106 mprF mprF: peptide antibiotic resistance gene 
Gene Modulating 
Resistance 

RF0107 msbA msbA: ATP-binding cassette (ABC) antibiotic efflux pump ABC Transporter 

RF0108 NDM-CcrA A grouping of related NDM and CcrA beta-lactamases Beta-Lactam 

RF0109 norA norA: major facilitator superfamily (MFS) antibiotic efflux pump MFS Transporter 

RF0110 Nuc_H_symport PF03825.11 Nucleoside H+ symporter Other 

RF0111 PC1 PC1: blaZ beta-lactamase (class a) Beta-Lactam 

RF0112 phoQ phoQ: subunit of gene modulating antibiotic efflux 
Gene Modulating 
Resistance 

RF0113 Qnr 
quninolone resistance protein (Qnr): antibiotic target protection 
protein Quinolone 

RF0114 ramA ramA: gene modulating antibiotic efflux 
Gene Modulating 
Resistance 

RF0115 RND_efflux resistance-nodulation-cell division (RND) antibiotic efflux pump 
RND Antibiotic 
Efflux 

RF0116 robA robA: transcriptional activator of AcrAB antibiotic efflux pump 
Gene Modulating 
Resistance 
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Appendix A Table 12 (cont’d)  

RF0117 romA romA: trasncription factor mediating antibiotic resistance 
Gene Modulating 
Resistance 

RF0118 Sfh sfh beta-lactamases (subclass B2 (metallo-) beta-lactamase) Beta-Lactam 

RF0119 SHV-LEN A grouping of the related SHV and LEN beta-lactamases (class a) Beta-Lactam 

RF0120 SME SME beta-lactamase (class a) Beta-Lactam 

RF0121 soxR 
soxR: mutant efflux regulatory protein conferring antibiotic 
resistance 

Gene Modulating 
Resistance 

RF0122 SPM 
Sao Paulo metallo-beta-lactamase (SPM-1) (subclass B1 (metallo-) 
beta-lactamase) Beta-Lactam 

RF0123 SubclassB1 
Subclass B1 (metallo-) beta-lactamase hydrolize penicillins, 
cephalosporins and carbapenems Beta-Lactam 

RF0124 SubclassB2 
Subclass B2 (metallo-) beta-lactamase selectively hydrolize 
carbapenems Beta-Lactam 

RF0125 SubclassB3 
Subclass B3 (metallo-) beta-lactamase hydrolize penicillins, 
cephalosporins and carbapenems Beta-Lactam 

RF0126 TEM TEM beta-lactamase (class a) Beta-Lactam 

RF0127 TetA tetA: tetracycline resistance MFS efflux pump Tetracycline 

RF0128 TetA-B tetA(B): tetracycline resistance MFS efflux pump Tetracycline 

RF0129 TetA-G tetA(G): tetracycline resistance MFS efflux pump Tetracycline 

RF0130 TetD tetD: tetracycline resistance MFS efflux pump Tetracycline 

RF0131 TetE tetE: tetracycline resistance MFS efflux pump Tetracycline 

RF0132 TetH-TetJ tetH and TetJ: tetracycline resistance MFS efflux pumps Tetracycline 

RF0133 TetM-TetW-TetO-TetS 
tetM, tetW, tetO, and tetS: tetracycline resistance ribosomal 
protection protein Tetracycline 

RF0134 tet_MFS_efflux 
tetracycline resistance MFS efflux pump: selectively pump out 
tetracycline or tetracycline derivatives Tetracycline 

RF0135 tet_ribosomoal_protect 
tetracycline resistance ribosomal protection protein: protect RNA-
polymerase from tetracycline inhibition Tetracycline 

RF0136 TetX tetX: tetracycline inactivation enzyme Tetracycline 

RF0137 TetY tetY: tetracycline resistance MFS efflux pump Tetracycline 

RF0138 Tex_N PF09371.5 Tex-like protein N-terminal domain 
Gene Modulating 
Resistance 

RF0139 thym_sym PF00303.14 Thymidylate synthase Other 

RF0140 efflux_Bcr_CflA 
TIGR00710 efflux Bcr CflA: drug resistance transporter, Bcr/CflA 
subfamily MFS Transporter 

RF0141 EmrB 
TIGR00711 efflux EmrB: drug resistance MFS transporter, drug:H+ 
antiporter-2 (14 Spanner) (DHA2) family MFS Transporter 

RF0142 MATE_efflux TIGR00797 matE: MATE efflux family protein Other Efflux 

RF0143 drrA 
TIGR01188 drrA: daunorubicin resistance ABC transporter, ATP-
binding protein ABC Transporter 

RF0144 DalaDala TIGR01205 D ala D alaTIGR: D-alanine--D-alanine ligase Gylcopeptide 

RF0145 SoxR TIGR01950 SoxR: redox-sensitive transcriptional activator SoxR 
Gene Modulating 
Resistance 

RF0146 Thymidylat_synt TIGR03284 thym sym: thymidylate synthase Other 

RF0147 tolC tolC: subunit of efflux pump conferring antibiotic resistance ABC Transporter 

RF0148 Transpeptidase PF00905.17 Penicillin binding protein transpeptidase domain Beta-Lactam 

RF0149 vanA VanA: D-Ala-D-Ala ligase that can synthesize D-Ala-D-Lac Gylcopeptide 

RF0150 vanB VanB: D-Ala-D-Ala ligase that can synthesize D-Ala-D-Lac Gylcopeptide 

RF0151 vanC VanC: D-Ala-D-Ala ligase that can synthesize D-Ala-D-Ser Gylcopeptide 

RF0152 vanD VanD: D-Ala-D-Ala ligase that can synthesize D-Ala-D-Lac Gylcopeptide 

RF0153 vanH 
VanH: D-specific alpha-ketoacid dehydrogenase that synthesizes D-
lactate Gylcopeptide 

RF0154 vanR VanR: transcriptional activator regulating VanA, VanH and VanX Gylcopeptide 

RF0155 vanS VanS: trasncriptional regulator of van glycopeptide resistance genes Gylcopeptide 

RF0156 vanT 
VanT: membrane bound serine racemase, converting L-serine to D-
serine Gylcopeptide 
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Appendix A Table 12 (cont’d) 

RF0157 vanW VanW: glycopeptide resistance gene Gylcopeptide 

RF0158 vanX VanX: glycopeptide resistance gene Gylcopeptide 

RF0159 vanY VanY: glycopeptide resistance gene Gylcopeptide 

RF0160 vanZ VanZ: glycopeptide resistance gene Gylcopeptide 

RF0161 VEB-PER VEB and PER beta-lactamases (class a) Beta-Lactam 

RF0162 VIM 
Verone integron-encoded (VIM) metallo-beta-lactamase (subclass 
B1 (metallo-) beta-lactamase) Beta-Lactam 

RF0163 Whib PF02467.11 Transcription factor WhiB 
Gene Modulating 
Resistance 

RF0164 RND_mfp 
TIGR01730: RND_mfp: efflux transporter, RND family, MFP 
subunit 

RND Antibiotic 
Efflux 

RF0165 Dihydropteroate TIGR01496_DHPS: dihydropteroate synthase Trimethoprim 

RF0166 ANT Aminoglycoside Nucleotidyltransferase Aminoglycoside 

RF0167 Aminoglyc_resit PF10706.4_Aminoglycoside-2''-adenylyltransferase Aminoglycoside 

RF0168 TE_Inactivator Leginoella_TE_Inactivator Tetracycline 

RF0169 Small_Multi_Drug_Res PF00893.14_Small Multidrug Resistance protein Other Efflux 

RF0171 Usp PF00582.21_Universal stress protein family Other 

RF0172 APH3'' Streptomycin phosphotransferase Aminoglycoside 

RF0173 APH3' Broad-spectrum Aminoglycoside Phosphotransferase Aminoglycoside 

RF0174 ArmA_Rmt 16S rRNA methyltransferase providing aminoglycoside resistance Aminoglycoside 
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Appendix A Table 13. Summary of reference arsenic resistance and metabolism protein 

sequences from FunGene databases. 

FunGene 
Database/ 
Protein 

Minimum 
HMM score 

 Minimum 
length (aa) 

 Minimum HMM 
coverage (%) 

Number of 
FunGene 
sequences 

Number of 
dereplicated 
sequences 

Minimum 
assembled 
length (aa) 

ArsB 150 400 80 23680 5250 150 

ACR3 140 300 80 19812 8002 150 

ArsC_glut 80 120 85 18082 9635 50 

ArsC_thio 172 100 80 7180 7180 50 

ArrA 175 75 5 1621 1487 150 

AioA 800 800 80 382 293 150 

ArsM 200 100 30 3446 2948 160 

ArsD 80 100 80 5404 876 150 

ArxA 600 800 80 67 54 150 
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Appendix A Table 14. Available metadata and accession numbers for soil metagenomes used in this study. 

Project Name Sample Location Country Sample Shortname Accession 
location Project ID Sample Name Gbp 

ARMO Rondonia Brazil Brazilian_forest MG-RAST mgp3731 mgm4546395.3 13.27 

ARMO Rondonia Brazil Brazilian_forest MG-RAST mgp3731 mgm4536139.3 9.04 

ARMO Rondonia Brazil Brazilian_forest MG-RAST mgp3731 mgm4535554.3 9.69 

Axel Heiberg Permafrost: Part 4A Central Axel 
Heiberg Island Canada Permafrost_Canada MG-RAST mgp252 mgm4523023.3 6.52 

Axel Heiberg Permafrost: Part 4A Central Axel 
Heiberg Island Canada Permafrost_Canada MG-RAST mgp252 mgm4523145.3 5.52 

CedarCreek_minsoil_June2013 Bethel, MN USA Minnesota_grassland MG-RAST mgp5588 mgm4541646.3 10.65 

CedarCreek_minsoil_June2013 Bethel, MN USA Minnesota_grassland MG-RAST mgp5588 mgm4541645.3 9.77 

Fermi-syntheticlongreads 
Fermi National 
Accelerator 
Laboratory 

USA Illinois_switchgrass MG-RAST mgp14596 mgm4653791.3 7.95 

GED prairie unassembled Iowa USA Iowa_prairie MG-RAST mgp6377 mgm4539575.3 18.79 

GED prairie unassembled Iowa USA Iowa_prairie MG-RAST mgp6377 mgm4539572.3 17.58 

GED prairie unassembled Iowa USA Iowa_prairie MG-RAST mgp6377 mgm4539576.3 17.43 

GP corn unassembled  Iowa USA Iowa_corn MG-RAST mgp6368 mgm4539522.3 8.19 

GP corn unassembled  Iowa USA Iowa_corn MG-RAST mgp6368 mgm4539523.3 8.12 

Hofmockel Soil Aggregate COB KBASE  Boone County, IA USA Iowa_agricultural MG-RAST mgp2592 mgm4509400.3 24.98 

Hofmockel Soil Aggregate COB KBASE  Boone County, IA USA Iowa_agricultural MG-RAST mgp2592 mgm4509401.3 7.86 

ISA-SMC-2011 Auburn, IL USA Illinois_soybean MG-RAST mgp2076 mgm4502542.3 12.54 

ISA-SMC-2011 Auburn, IL USA Illinois_soybean MG-RAST mgp2076 mgm4502540.3 10.60 

Loma_Ridge_grassland Loma Ridge, CA USA California_grassland MG-RAST mgp1992 mgm4511115.3 6.50 
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Appendix A Table 14 (cont’d) 

Loma_Ridge_grassland Loma Ridge, CA USA California_grassland MG-RAST mgp1992 mgm4511062.3 5.77 

Mining of new genes and pathways   from soil of 
mangrove forest 

Matang Mangrove 
Forest Malaysia Mangrove MG-RAST mgp11628 mgm4603402.3 24.38 

Mining of new genes and pathways   from soil of 
mangrove forest 

Matang Mangrove 
Forest Malaysia Mangrove MG-RAST mgp11628 mgm4603270.3 24.54 

NEON Disney Wilderness 
Preserve, FL USA Disney_preserve MG-RAST mgp13948 mgm4664918.3 11.20 

NEON Disney Wilderness 
Preserve, FL USA Disney_preserve MG-RAST mgp13948 mgm4664925.3 4.14 

Permafrost sediments, North-East Siberia, Kolyma 
lowland 

Kolyma river 
lowland Russia Permafrost_Russia MG-RAST mgp7176 mgm4546813.3 19.20 

Ungulate Exclosure 2015 Wyoming USA Wyoming_soil MG-RAST mgp15600 mgm4670120.3 6.41 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_recovered JGI Gp0112853 
 Cen01 23 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_recovered JGI Gp0112853 Cen03 26 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_recovered JGI Gp0112853 Cen04 25 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_recovered JGI Gp0112853 Cen05 25 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_fire-affected JGI Gp0112853 Cen06 22 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_recovered JGI Gp0112853 Cen07 21 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_fire-affected JGI Gp0112853 Cen10 36 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_fire-affected JGI Gp0112853 Cen12 24 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_fire-affected JGI Gp0112853 Cen14 24 
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Appendix A Table 14 (cont’d) 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_fire-affected JGI Gp0112853 Cen15 20 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_fire-affected JGI Gp0112853 Cen16 51 

Surface soil microbial communities from Centralia 
Pennsylvania 
 

Centralia, PA USA Centralia_reference JGI Gp0112853 Cen17 24 

Surface soil microbial communities from an active vent of 
coal mine fire in Centralia Pennsylvania, Sep 20 ‘18 Centralia, PA USA Centralia_fire-affected NCBI SRR7882662 Cen13 56 

 

 



150 

Appendix A Table 15. Phylum-level summary of arsenic related genes in RefSoil+ chromosomes and plasmids. 

Number of phylum representatives are shown in parentheses, and percentage of RefSoil+ organisms with respective arsenic related 
genes are shown. 
 

PHYLUM CHROMOSOME PLASMID 

 arsB acr3 arsC 
(grx) 

arsC 
(trx) arsM aioA arxA arrA arsB acr3 arsC 

(grx) 
arsC 
(trx) arsM aioA 

ACIDOBACTERIA (7) 57.1 100 0 14.3 14.3 0 0 0 0 0 0 0 0 0 

ACTINOBACTERIA 
(118) 44.1 61.9 33.1 5.9 1.7 0 0 0 0 4.2 0 0.8 0.8 0 

BACTEROIDETES 
(19) 0 73.7 31.6 36.8 21.1 0 0 0 0 5.3 0 0 0 0 

CHLOROFLEXI (9) 88.9 88.9 0 0 100 0 0 0 0 0 0 0 0 0 

CYANOBACTERIA 
(26) 3.8 76.9 11.5 34.6 3.8 0 0 0 0 0 0 3.8 0 0 

DEINOCOCCUS-
THERMUS (6) 50 0 0 16.7 0 0 0 0 16.7 0 0 16.7 0 0 

FIRMICUTES (207) 65.7 44.4 1 45.9 5.8 0 0 1.4 0 3.4 0 1.9 0 0 

PROTEOBACTERIA 
(531) 33.1 40.7 79.5 4 1.9 2.4 0.2 0.9 2.1 4.1 5.6 0 0 0.4 

SPIROCHAETES (12) 0 25 0 16.7 0 0 0 0 0 0 0 0 0 0 
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Appendix A Table 16. Summary of endemic arsenic related gene sequences. 

A sequence was considered endemic if it was present in less than three different soil sites. 
 

Gene Number of 
sequences 

Number of endemic 
sequences Percent endemic  

acr3 610 607 99.5 
aioA 63 62 98.4 
arrA 63 63 100 
arsB 8 8 100 
arsC (grx) 1316 1299 98.7 
arsC (trx) 292 291 99.7 
arsD 64 64 100 
arsM 1193 1191 99.8 
arxA 12 12 100 
Totals 3621 3597 99.3 
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Appendix B Figure 1. Average OD590 over 72 h in TSB50 with increasing concentrations 

of arsenate A) or arsenite B).  
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Appendix B Figure 1 (cont’d) 

Grey ribbon represents 95% confidence intervals from three replicates. Note the difference in 

color scales for A and B. 
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Appendix B Figure 2. Lag time in TSB50 with increasing concentrations of arsenate and 

arsenite normalized to growth in TSB50 without arsenic.  
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Appendix B Figure 2 (cont’d) 

Points are averages from three technical replicates, and error bars show standard deviation. 

Note the different scale for λ in arsenite for isolatesA2705, A2716, and I2759. 
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Appendix B Figure 3. Growth rate in TSB50 with increasing concentrations of arsenate 

and arsenite normalized to growth in TSB50 without arsenic. 
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Appendix B Figure 3 (cont’d) 
 
Points are averages from three technical replicates, and error bars show standard deviation. 
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Appendix B Figure 4. Maximum OD590 in TSB50 with increasing concentrations of 

arsenate and arsenite normalized to growth in TSB50 without arsenic. 
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Appendix B Figure 4 (cont’d) 
 
Points are averages from three technical replicates, and error bars show standard deviation. 
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Appendix B Figure 5. Dendrogram of isolate growth phenotypes in arsenic. 

Only isolates belonging to genera with n > 2 are included. Growth parameters (λ, μ, A) in 1 

mM sodium arsenite and 10 mM sodium arsenate were normalized to those with no arsenic 

controls and used for clustering. Color indicates isolate genus. 
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Appendix B Figure 6. Sampling strategy along the Centralia temperature gradient.  

Twelve surface soils were collected along two fire fronts. Sampling sites are classified based 

on historical fire activity (Elick 2011) and observations of fire activity at the time of sampling: 

fire affected (red), recovered (yellow), and reference (green). Red bullseye indicates fire 

origin, and fire fronts one and two are indicated with arrows F1 and F2, respectively. 
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Appendix B Figure 7. Comparison of community structure assessed using two different methods. 

Community structure determined by rplB (A) is similar to previously described community structure determined by 16S rRNA gene 

sequencing reported in Lee and Sorensen et al. 2017 (B). Samples are classified by their fire history: fire affected (n = 6), recovered 

(n = 5), and reference (n = 1). Note the differences in x-axes. 
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Appendix B Figure 8. Pair-wise Spearman’s correlations of normalized ARG 

abundances in Centralia. 

Spearman’s rho is indicated in each cell and by color, where negative correlations are red and 

positive correlations are blue. False discovery rate adjusted significance is noted by asterisks. 
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Appendix B Figure 9. Relationship between normalized abundance of ARGs and soil 

temperature. 

Point shape indicates soil fire classification. Coverage-adjusted abundance for each gene was  
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Appendix B Figure 9 (cont’d) 

normalized to total abundance of single copy gene rplB. Normalized abundance is plotted 

against soil temperature. Note the differences in y-axes. Shape indicates soil classification 

based on fire history. 
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Appendix B Figure 10. Beta diversity of Centralia microbial communities with rplB and 

ARGs. 

Principal coordinate analysis (PCoA) based on weighted Bray-Curtis distances of community 

structure (A) and ARG structure (B). Colors represent soil temperature, and shape indicates 

soil classification based on fire history.  
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Appendix B Figure 11. Relationship between plasmid number and chromosome size.  

Boxplots showing the distribution of genome sizes based on the number of plasmids. Numbers 

of microorganisms in that category are shown below each catergory name. P value from 

ANOVA is also shown.  
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Appendix B Figure 12. Proportion of ARGs on genomes and plasmids in RefSoil+ and 

RefSeq databases normalized to base pairs.  

Numbers of ARGs were normalized to total numbers of base pairs. Boxplots are colored by 

database. Points represent individual ARGs and are colored based on classification. Kruskal-

Wallis test results are shown in addition to significant results from pairwise Mann-Whitney U 

tests.  
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Appendix B Figure 13. Proportion of ARGs by classification in RefSoil and RefSeq 

databases.  
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Appendix B Figure 13 (cont’d) 

 

Boxplots of the proportion of ARGs per genetic element. Each ARG was normalized to the 

number of genetic elements in the database. Points are colored by ARG category. Kruskal-

Wallis P values are shown, and where applicable, significant Mann-Whitney U test results are 

shown (ns, P > 0.05; *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001; ****, P ≤ 0.0001). 
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Tree scale: 1

Appendix B Figure 14. Phylogeny of Acr3 in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of Acr3 sequences from RefSoil+ 

organisms. Leaf tips show the name of the RefSoil+ organisms and background color indicates 

phylum-level taxonomy. Bootstrap values > 50 are represented by black circles within the tree. 
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Tree scale: 1

Appendix B Figure 15. Phylogeny of ArsB in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of ArsB sequences from RefSoil+ 

organisms. Leaf tips show the name of the RefSoil+ organisms and background color indicates 

phylum-level taxonomy. Bootstrap values > 50 are represented by black circles within the tree. 
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Tree scale: 1

Appendix B Figure 16. Phylogeny of ArsC (trx) in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of ArsC (trx) sequences from RefSoil+ 

organisms. Leaf tips show the name of the RefSoil+ organisms and background color indicates 

phylum-level taxonomy. Bootstrap values > 50 are represented by black circles within the tree. 
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 Tree scale: 1

Appendix B Figure 17. Phylogeny of ArsC (grx) in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of ArsC (grx) sequences from RefSoil+ 

organisms. Leaf tips show the name of the RefSoil+ organisms and background color indicates 

phylum-level taxonomy. Bootstrap values > 50 are represented by black circles within the tree. 
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Appendix B Figure 18. Phylogeny of ArsM in RefSoil+ organisms. 

Maximum likelihood tree with 100 bootstrap replications of ArsM sequences from RefSoil+ 

organisms. Leaf tips show the name of the RefSoil+ organisms and background color indicates 

phylum-level taxonomy. Bootstrap values > 50 are represented by black circles within the tree. 

 

Tree scale: 1
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Appendix B Figure 19. Histogram of arsenic related gene copy numbers in RefSoil+ 

organisms. 

Total copy number is based on hits from both chromosomes and plasmids from the same 

organism. 
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Appendix B Figure 20. Phylum-level community structure of soil metagenomes. 
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