
 

 

 

 

 

 

 

INVESTIGATION INTO THE DYNAMIC AND STRUCTURAL PROPERTIES OF THE 

LITHIUM GARNET SERIES (Li7-xLa3Zr2-xTaxO12, x = 0-2): A COMBINED MOLECULAR 

DYNAMICS AND QUASI−ELASTIC NEUTRON SCATTERING STUDY 

By 

Matthew Klenk 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

Materials Science and Engineering − Doctor of Philosophy 

2019 

  



 

 

ABSTRACT 

INVESTIGATION INTO THE DYNAMIC AND STRUCTURAL PROPERTIES OF THE 

LITHIUM GARNET SERIES (Li7-xLa3Zr2-xTaxO12, x = 0-2): A COMBINED MOLECULAR 

DYNAMICS AND QUASI−ELASTIC NEUTRON SCATTERING STUDY 

By 

Matthew Klenk 

The lithium garnet series Li7-xLa3Zr2-xTaxO12  (x = 0−2) has shown great promise as a 

solid electrolyte material, however the room temperature conductivity is currently too low to find 

wide commercial success. In order to better understand the mechanisms of ionic diffusion within 

the crystal, a combined molecular dynamics and quasi-elastic neutron scattering (QENS) study 

was investigated. Using molecular dynamics simulations, we are able to easily probe atomic 

scale events that are usually difficult to examine experimentally. Like the local arrangement of 

lithium on its sublattice, or how the trajectory of lithium ions is affected by the nearest neighbor 

sites. The QENS experiment directly measures the dynamic structure factor S(Q,ω), which is 

capable of capturing both the residence time and mean jump distance experimentally allowing us 

to directly compare experimental and simulated intermediate scattering functions I,(Q,t). Overall, 

we saw good agreement between the two techniques, both predicting a jump-diffusion model in 

the form described by Singwi and Sjölander. 

Three different simulation models were employed in this study, two using classical 

molecular dynamics (MD), while a third using density functional theory (DFT) based 

calculations. All three model types are used to first better understand the phase transformation 

behavior for the end member composition Li7La3Zr2O12, which undergoes a characteristic phase 

transformation from an ordered tetragonal to disordered cubic phase at 900 K. First DFT 

methods are used to better understand what role the selection of an electron exchange-correlation 



 

 

functional plays on the accuracy of lattice parameter and phase transformation behavior. In total 

14 different functional forms are investigated. Similarly, two different classical MD models, one 

being a “core-shell” model, where each atomic nucleus is connected by a spring potential to an 

electron shell that can capture the polarization of species, while the other being a “core-only” 

model that treats each atom as a point charge, which can be used for larger and faster 

simulations.  

The dynamics of the two end member compositions Li5La3Ta2O12 (L5LT) and 

Li7La3Zr2O12 (L7LZ), were looked at using the core-shell model with respect to properties like 

the conductivity, self-diffusivity, thermodynamic correction factor, and entropy of configuration. 

While the core-only model is used to investigate the finite-size effects of atomic simulation, by 

changing the number of particles within the simulation by using four different crystal sizes for 

L7LZ. Simulation cells consisting of 1×1×1 (192 atoms), 2×2×2 (1536 atoms), 3×3×3 (5184 

atoms), and 4×4×4 unit cells (12288 atoms) were generated in order to find convergent behavior 

to the properties highlighted above. Having determined a 3 x 3 x 3 simulation provides adequate 

accuracy, a verity of garnet compositions corresponding to [Li] = 5, 5.5, 6, 6.25, 6.5, 6.75, & 7 

were generated to determine the optimal composition for use as an electrolyte material. Our 

simulations predict that the best performing room temperature composition corresponds to when 

[Li] = 6.5 corresponding to the maximum lithium concentration that results in a disordered cubic 

phase at room temperature. Lastly, we look at the role lithium disorder plays in the phase 

transformation behavior of L7LZ, and the use of excess entropy calculations as a means of 

determining the performance of an electrolyte material. 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Dedicated to 

Friends and family 

  



v 

 

ACKNOWLEDGEMENTS 

 

I would first like to thank my advisor Dr. Lai for the wonderful opportunity granted to me 

to peruse this work at Michigan State University. You have been a wonderful mentor to me, 

showing me the hard work and dedication required to be a scientist in today’s competitive 

research environment. I have been in constant awe of the way he carries himself professionally 

and personally, always providing a platform for discussion, and a willingness to be open to new 

ideas of exploration. If I am so lucky to follow a similar path, I could not ask for a better person 

to provide a model for my behavior. Your kindness, understanding, and willingness to accept the 

difficulties I endured during this process has forever changed me and I could not ask for a better 

PhD advisor. Thank you from the bottom of my heart, I could not be where I am today without 

your help.  

I would like to thank my colleagues, former and current, for the all the times we have 

shared together over the years. Without the guidance and work of Yuxing Wang, I wouldn’t even 

begin to know where to start in the work presented in this thesis. You are instrumental in my 

success and I will always be grateful for our discussions that lead to many of the ideas explored 

here. Rengaranjan Shanmugam, you are one of the kindest people I have been so lucky to meet. 

If I ever felt drained or ran out of ideas, talking with you always seemed to bring a fresh 

perspective and reinvigorated me to dive back in and solve any issue troubling me. Junchao Li, 

Jin Dai, and Qian Chen, I wish you all the success in the world with your coming endeavors. Jin  

your fresh perspective on our work continually opened me up to new possibilities and areas of 

study, and your assistance in performing tasks with me on the garnet series has undoubting led to 

some of the results presented here. Chen and Junchao, your work on other materials systems has 



vi 

 

kept me captivated and motived to continue working in materials science. I would like the thank 

the undergraduate research assistants Sydney Boeberitz, Dong Feng, Christina Lopez, and Yalun 

Cai. Each one of you contributed directly to the work presented in this thesis and without your 

assistance, it would not be possible. 

Lastly, I would like to thank all my friends and family for all of your support throughout 

the years. Mom and Dad, you never doubted me for second, and gave me the confidence to 

follow my dreams. Without your love and support, I would not be the person I am today.  My 

sisters Mary and Becky, thanks for putting up with my ramblings on the state of my research. 

Having you there for me whenever I needed it cleared my head and always reminded me of 

what’s important in life. Finally, to my unbelievable girlfriend Kasey. You always see the 

potential in me and give me the structure and motivation to be my best self.  

The neutron scattering experiments used resources at the Spallation Neutron Source, a 

DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.  I wish to 

acknowledge the Michigan State University High Performance Computing Center and the 

Institute for Cyber-Enabled Research for access to their computing resources. The work is 

financially supported by the Ceramics Program of National Science Foundation (DMR-1206356) 

and partially by the James Dyson Foundation Fellowship. 

 

 

 



vii 

 

TABLE OF CONTENTS 

 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ....................................................................................................................... xi 

CHAPTER 1: Introduction ............................................................................................................. 1 
1.1 Motivation for study .............................................................................................................. 1 
1.2 The lithium garnet crystal ..................................................................................................... 8 
1.3 Tetragonal to cubic transformation in Li7La3Zr2O12 ........................................................... 12 

1.3.1 Experimental observations ........................................................................................... 12 

1.3.2 Simulations of garnet in literature ................................................................................ 13 
1.4 Experimental measurement of conductivity and diffusivity ............................................... 16 

1.4.1 Conductivity ................................................................................................................. 16 

1.4.2 Diffusivity..................................................................................................................... 17 

CHAPTER 2: Materials and methods ........................................................................................... 19 

2.1 Sample preparation .............................................................................................................. 19 
2.2 Quasi-elastic neutron scattering .......................................................................................... 19 

2.3 Molecular dynamic simulations .......................................................................................... 20 
2.3.1 Core-shell model .......................................................................................................... 21 
2.3.2 Core-only model ........................................................................................................... 23 

2.4 Finite size effects in L7LZ .................................................................................................. 25 

2.5 Effect of Ta/Zr substitution ................................................................................................. 26 
2.6 Density functional theory: XC functional analysis ............................................................. 26 

2.6.1 Background................................................................................................................... 26 

2.6.2 Simulation method........................................................................................................ 30 

CHAPTER 3: Molecular dynamics analysis methods .................................................................. 32 
3.1 Diffusivity and conductivity calculation methods .............................................................. 32 
3.2 Calculation of collective diffusivity .................................................................................... 34 

3.3 Practical considerations for fast-ion conductors ................................................................. 37 
3.4 Dynamic structure functions : G(r,t), S(Q,ω), & I(Q,t) ....................................................... 39 
3.5 Thermodynamic factor ........................................................................................................ 47 

3.6 Excess entropy ..................................................................................................................... 52 

3.7 Statement on structure of this thesis .................................................................................... 55 

CHAPTER 4: Effects of electron exchange-correlation functionals on the density functional 

theory simulation of phase transformation of fast-ion conductors: A case study in the Li garnet 

oxide Li7La3Zr2O12........................................................................................................................ 58 
4.1 Abstract ............................................................................................................................... 58 

4.2. Results and discussion ........................................................................................................ 59 
4.2.1. Phase behavior at 1000 K: all 14 functionals .............................................................. 59 
4.2.2. Lattice parameters at all temperatures: 8 functionals .................................................. 61 



viii 

 

4.2.3 Correlation between XC functionals and phase behavior/volume ............................... 66 

4.3 Conclusion ........................................................................................................................... 67 

CHAPTER 5: Core-shell Modeling of L5LT and L7LZ .............................................................. 68 
5.1 Abstract ............................................................................................................................... 68 
5.2 Results and discussion ......................................................................................................... 68 

5.2.1 Validation of simulation process .................................................................................. 68 

5.2.2 L7LZ van Hove correlation functions (VHCF) ............................................................ 74 
5.2.3 Lithium distribution and its relation to phase transition ............................................... 78 
5.2.4 Lithium clusters ............................................................................................................ 82 

5.3 Conclusions ......................................................................................................................... 91 

CHAPTER 6: Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a combined 

quasi-elastic neutron scattering and molecular dynamics study ................................................... 92 
6.1 Abstract ............................................................................................................................... 92 

6.2 Results and discussion ......................................................................................................... 93 

6.2.1 Static structure factor .................................................................................................... 93 
6.2.2 Overall intermediate scattering function and dynamic structure factor ....................... 93 
6.2.3 Species-resolved dynamics: La, Ta, and O .................................................................. 97 

6.2.4 Li dynamics .................................................................................................................. 97 
6.3 Conclusions ....................................................................................................................... 102 

CHAPTER 7: Finite-size effects on the molecular dynamics Simulation of fast-ion conductors: A 

case study of lithium garnet oxide Li7La3Zr2O12 ........................................................................ 103 

7.1 Abstract ............................................................................................................................. 103 

7.1.1 Background................................................................................................................. 103 
7.2 Results and discussion ....................................................................................................... 104 

7.2.1 Phase characterization ................................................................................................ 104 

7.2.2 Self-diffusivity, ionic conductivity, and Haven ratio ................................................. 107 
7.2.3 Thermodynamic factor and Fickian diffusivity .......................................................... 110 

7.3 Conclusions ....................................................................................................................... 113 

CHAPTER 8: Modeling Li7-xLa3Zr2-xTaxO12 using core only model ........................................ 114 

8.1 Abstract ............................................................................................................................. 114 
8.2 Results and discussion ....................................................................................................... 115 

8.2.1 Phase characterization of 3x3x3 LLZT cells .............................................................. 115 

8.2.2 Ionic conductivity, ...................................................................................................... 117 

8.2.3 Self-diffusivity ............................................................................................................ 119 

8.2.4 Haven ratio, thermodynamic factor ............................................................................ 120 
8.2.5 Li site occupancy and regular solution model ............................................................ 124 
8.2.6 Li sub-lattice and configurational energy ................................................................... 127 

8.3 Conclusions ....................................................................................................................... 132 

CHAPTER 9: Future work and conclusions ............................................................................... 134 
9.1 Future work ....................................................................................................................... 134 

9.1.1 Exploration in to multivalent doping schemes ........................................................... 134 



ix 

 

9.1.2 Electrolyte-electrode interface modeling. .................................................................. 135 

9.1.3 Evaluation of density correlation functions ................................................................ 135 

9.2 Conclusions ....................................................................................................................... 136 

BIBLIOGRAPHY ....................................................................................................................... 140 

 



x 

 

LIST OF TABLES 

 

Table 1: Core-shell Buckingham and spring pair interaction parameters for LLZT .................... 22 

Table 2: Core-only force field parameters .................................................................................... 25 

Table 3: Exchange and correlation enhancement factors ............................................................. 29 

Table 4: Properties derived by changing the weighting factor in Equation 16 ............................. 36 

Table 5: Coherent and incoherent scattering powers of elements involved in the present study. 46 

Table 6: Summary of simulation results using different XC functionals ..................................... 60 

Table 7: Parameters for the regular solution model .................................................................... 125 

Table 8: Refined regular solution parameters ............................................................................. 127 

 

  

file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8173546


xi 

 

LIST OF FIGURES 

 

Figure 1: Diagram of a simplified electrochemical cell in the charged state. The ion (green) is 

transported through the electrolyte, the electron (yellow) travels through an external circuit, 

where it recombines with the ion in the cathode............................................................................. 2 

Figure 2: Conductivity of various electrolyte materials compared to that of LLZT2. The blue box 

designates the room temperature conductivity for the various materials ....................................... 6 

Figure 3: Space filling model of L5LT (left), La (green) and Ta (brown) make a framework 

structure for lithium (blue) to diffuse. (right) Lithium tetrahedral (pink) and octahedral (blue) 

sites in the lithium garnet (Wang35). ............................................................................................... 8 

Figure 4: Diagrams of lithium occupancy for three different compositions of LLZT at 300 K. (a) 

Li3La3Te2O12, (b) Li5La3Ta2O12, and (c) Li7La3Zr2O12. ............................................................... 10 

Figure 5: Schematic showing the relationship between possible lithium Wyckoff positions in the 

cubic (left) and tetragonal (right) crystals. Filled circles are occupied lithium sites and hollow 

circles are unoccupied sites. .......................................................................................................... 11 

Figure 6: Mean squared displacement  of lithium ions in L7LZ at various temperatures during a 

1000 ps simulation. ....................................................................................................................... 33 

Figure 7: The Li–Li  velocity autocorrelation in the longitudinal (Black) and transverse (red) 

scattering directions. ..................................................................................................................... 37 

Figure 8: QENS HWHM fitting of L5LT at 600 K for possible diffusion models. ..................... 43 

Figure 9: Finite size effects of -1 for L7LZ at 1400 K for 1 x 1 x 1  to 4 x 4 x 4 simulation cells. 

(a) Absolute magnitude of -1 as a function of the inverse length of the sub-volume, solid lines 

denote guides to the eye. (b) -1 as a function of the volume ratio of the sub-volume and the 

simulation cell with a third order polynomial fit. ......................................................................... 48 

Figure 10: Simulated Li–Li  PDF for L7LZ at 1400 K for various simulation cell sized. ........... 51 

Figure 11: Time dependent lattice parameter for the 14 tested functionals at 1000 K. ................ 59 

Figure 12: Time dependent lattice parameters for 8 XC functionals at 900 K ............................. 62 

Figure 13: Time dependent lattice parameter for 8 XC functionals at 300 K ............................... 63 

Figure 14: Time dependent lattice parameters for 8 XC functionals at 700 K ............................. 63 

Figure 15: Average lattice parameters for 8 XC functionals at 300 K, 700 K, 900K, and 1000 K 

(red). Experimental lattice parameter by X-ray diffraction by Matsuda. ..................................... 65 

file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175027
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175027
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175027
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175028
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175028
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175029
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175029
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175029
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175030
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175030
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175031
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175031
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175031
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175032
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175032
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175033
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175033
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175034
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175035
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175035
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175035
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175035
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175036
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175037
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175038
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175039
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175040
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175041
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175041


xii 

 

Figure 16: Plot of exchange enhancements factors of GGA functionals employed in the study. 

The second order gradient expansion as 1+μGEs2 is shown in the dotted line. ........................... 66 

Figure 17: (a) Lattice parameter of L5LT compared to neutron and x-ray diffraction studies. (b) 

Atomic pair distribution function from total scattering experiments compared to MD simulations

....................................................................................................................................................... 70 

Figure 18: (a) conductivity for L5LT and (b) L7LZ as a function of temperature. Blue lines 

represent the conversion of MSD to D*, and then applying the Nernst-Einstein (N-E) equation 

(Equation 8). Red lines are the thermodynamically corrected (-1*N-E) Nernst-Einstein 

equation. (c) Comparison between the inverse thermodynamic factors (-1) for L5LT and L7LZ 

using the fluctuation method (Equation 38).................................................................................. 72 

Figure 19: (a) Self-part of the van hove correlation function and (b) its spatial and temporal 

projection at 300 K. (c) Distinct- part of the van Hove correlation function and (d) its spatial and 

temporal projection at 300 K. ....................................................................................................... 74 

Figure 20: (a) Mean squared displacement (MSD) for LLZ at 300 K and 1100 K. (b) Partial pair 

distribution function of Li–Li  pairs at different temperatures compared to that of Adams et al. 75 

Figure 21: (a) Self-part of the van Hove correlation function and (b) its spatial and temporal 

projection at 1100 K. (c) Self-part of the van Hove correlation function and (d) its temporal 

projection of a continuous random-walk model at 1100 K. .......................................................... 76 

Figure 22: Lithium density maps on (111) for LLZ. (a) 300 K by Revitfield refinement, (b) 300 

K, (c) 500 K, (d) 800 K, and (e) 1100 K by MD simulation. Isosurface level is 0.3 Å-3 ............. 78 

Figure 23: (a) Tetrahedral and octahedral cage occupancy for L7LZ as a function of temperature. 

Error bars represent the degree of dynamic fluctuation in the occupancy observed during MD 

simulation. Values from Bernstein et al are shown for comparison. (b) MSD for selected atoms 

occupying three different cages type at 300 and 500 K. ............................................................... 79 

Figure 24: Lithium density maps for L5LT derived from MD simulation at (a) 700 K, (b) 475 K, 

and (c) 300 K along the [100] direction. Isosurface level of 0.1 Å-3.Two-dimensional Li density 

maps for the (111) plane, with a distance of 23 Å to the origin, cutting through Td-Oh-Td cages 

at (d) 700 K, (e) 475 K, and (f) 300 K with isosurface levels from 0 to 1 Å-3. ........................... 81 

Figure 25: Possible local arrangements of Li  with respect to their nearest neighbors ................ 82 

Figure 26: Average number of each type of possible lithium nearest neighbor arrangement as a 

function of temperature for L5LT centered upon Td (a) and Oh (b) sites, LLZ for Td (c) and Oh 

(d). `............................................................................................................................................... 83 

Figure 27: Observed dynamical events at 500 K for L5LT. Yellow circles represent Li ions. Pink 

squares are tetrahedral sites and blue rectangles are octahedra lcages. In each example, the local 

environment, Li trajectories, and geometries of bottlenecks as Li goes through the faces are 

illustrated....................................................................................................................................... 85 

file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175042
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175042
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175043
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175043
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175043
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175044
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175044
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175044
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175044
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175044
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175045
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175045
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175045
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175046
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175046
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175047
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175047
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175047
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175048
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175048
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175049
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175049
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175049
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175049
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175050
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175050
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175050
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175050
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175051
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175052
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175052
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175052
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175053
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175053
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175053
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175053


xiii 

 

Figure 28: Examples of lithium dynamics at 300 K for (a) T14 cluster, (b) a T04 cluster, and at 

1100 K for a (c) T14 cluster, and (d) a T04 cluster. Yellow dots represent Li atoms. Pink squares 

and blue rectangles schematically represent Td and Oh cages ..................................................... 87 

Figure 29: Histograms of lithium position on the face of the bottle neck with respect to distance 

from the nearest oxygen or shared edge of oxygen polyhedral for LLT and LLZ. (a) diagram of 

bottle neck with solid lines representing distance to nearest oxygen, dashed lines representing 

distance to nearest face. Shown are events for LLT at  (b) 550 K, (d) 900 K, and (f) 1100 K. 

Shown for LLZ at (c) 600 K, (e) 900 K, and (g) 1100 K. ............................................................. 90 

Figure 30: (a) The static structure factor obtained from the QENS experiment and MD 

simulations at 700 K. The results are vertically offset for clarity and lines serve as a guide to the 

eye. (b) Neutron -weighted (including both coherent and incoherent intermediate scattering 

functions calculated from MD at 700 K for several Q .................................................................. 93 

Figure 31: (a) Dynamic structure factor S(Q, E) from QENS experiments at 700 K for different 

Q. (b) Dynamic structure factor S(Q,E) from QENS at Q = 0.45 Å-1, for different temperatures. 

(c) An example of the Wens fit with background, delta, and Lorentzian functions convoluted 

with the resolution function for 700 K and Q = 0.35 Å-1, along with the residuals of the fit. (d) 

HWHM () of the Lorentzian as a function of Q2 at different temperatures. Solid lines are the 

fits to the Singwi-Sjölander model. .............................................................................................. 95 

Figure 32: (a) Intermediate scattering functions of species La, Ta, and O at 700 K from Md for 

selected Q. (b) fit of the plateau values in a “a” to the Debye-Waller formula. (c) Comparison of 

the mean square displacement Uiso from MD with that obtained from neutron powder 

diffraction.3 ................................................................................................................................... 96 

Figure 33: (a) intermediate scattering functions of Li at 700 K from MD for selected Q. The solid 

lines are the fit of the KWW model to data after the first 10 ps. (b) Q-dependence of the KWW 

stretching parameter at different temperatures. (c) Schematic of the nearest-neighbor tetrahedral 

(pink) and octahedral (blue) cages in lithium garnet oxides. Filled yellow circles are the 

octahedral 48g sites and the marked distance is ≈ 4 Å. ................................................................ 98 

Figure 34: (a) HWHM () experimentally measured using QENS and equivalent  of Li 

diffusion derived from MD simulations in L5LT at 700 K. Solid lines are the fit of the SS model. 

(b) Self-diffusivity of Li in lithium garnet oxides of different compositions at different 

temperatures using various measurement probes. The activation energies for both MD and 

experimental sources are also provided. ....................................................................................... 99 

Figure 35: (a) Mean residence time () of Li diffusion in Li5La3Ta2O12 at sites obtained from 

MD simulation and QENS experiments. Solid lines are an Arrhenius fit. The residence time 

obtained from SLR-NMR experiments are also shown for Al-doped Li7La3Zr2O12 (cubic, C-

L7LZ). (b) Mean jump length of Li diffusing in Li5La3Ta2O12 obtained from MD simulation 

and QENS experiments. Solid lines are guides to the eye. (c) Schematic of the relation between 

crystallographic sites for Li within tetrahedral (Td) and octahedral (Oh) cages in Li5La3Ta2O12 

showing key distances from previous results.............................................................................. 100 

file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175054
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175054
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175054
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175055
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175055
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175055
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175055
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175055
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175056
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175056
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175056
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175056
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175057
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175057
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175057
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175057
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175057
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175057
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175058
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175058
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175058
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175058
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175059
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175059
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175059
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175059
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175059
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175060
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175060
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175060
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175060
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175060
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175061


xiv 

 

Figure 36: Finite-size effects on the phase transition.  (a) Average lattice parameters as a function 

of temperature for 1×1×1 – 4×4×4 simulations.  Solid lines are guide to the eye.  Experimental 

data from Matsuda et al98 and Larraz et al43 are shown for comparison.  (b) Fluctuation of lattice 

parameters as a function of number of atoms for selected temperatures.  Solid lines are the linear 

fit (slopes close to -0.5).  (c) Time evolution of lattice parameters for different cell sizes at 900 

K. ................................................................................................................................................. 105 

Figure 37: Change in lattice parameter for 3x3x3 and 4x4x4 under heating and cooling cycles 106 

Figure 38: Self-diffusivity as a function of temperature for four different simulation sizes.  

Literature data from the FPMD simulation (1×1×1) by Jalem et al are shown for comparison.  

The inset shows details at high temperatures.  Solid lines are guide to the eye. ........................ 107 

Figure 39: Finite-size effects on the ionic conductivity for 3×3×3 and 4×4×4 cells.  Values 

calculated from both Equation 8 (named “ideal) and Equation 19 are presented.  Literature data 

from experimental measurements by Wang et al1 and Matsui et al4, along with FPMD 

simulations by Miara et al5 (also “ideal”), are shown for comparison. ...................................... 109 

Figure 40: Finite-size effects on the Haven ratio for four simulation cell sizes.  Solid lines are 

guide to the eye. .......................................................................................................................... 110 

Figure 41: Finite-size effects on the inverse thermodynamic factor Γ-1 at different temperatures.  

Solid lines are guide to the eye. .................................................................................................. 111 

Figure 42: Finite-size effects on the Fickian diffusivity for four simulation sizes. .................... 112 

Figure 43: Anisotropic NPT simulations on 3x3x3 simulation cells. (A) Unit cell lattice 

parameters for LLZT series. Solid lines are guides to the eye. (B) Unit cell volume at 300 K, 600 

K, 900 K, and 1200 K for LLZT series. Experimental data from Logeat et al, Mukhopadhyay et 

al, and Wang et al. are shown for comparison. (C) Time dependent lattice parameter for 

L6.75LZT at 300 K, 400 K, 500 K, 600 K. ................................................................................ 115 

Figure 44: (a) Arrhenius plot of conductivity for LLZT series. Squares are calculated 

conductivity values; lines are best fit from 1000 K – 500 K then extrapolated down to 300 K. 

Experimental total conductivty for LLT shown by Thangadurai. Inset shows high temperature 

conductivity with lines as guides. (b) Iso-temperature plot of conductivity as a function of 

lithium concentration. 1200 K, 900 K, 600 K are direct measurements, 300 K is extrapolated 

from best fit line in (a). (c) Activation energy as a function of lithium concentration for LLZT 

series Compared to reported activation energies for various garnet compositions with standard 

deviation bars. ............................................................................................................................. 117 

Figure 45: (a) Arrhenius plot of self-diffusivity for LLZT series with extrapolated best fit lines to 

300 K. Inset shows high temperature 1400 K to 1000K with lines acting as guides to the eye. (b) 

Isothermal plot of self-diffusivity as a function of lithium concentration. 300 K data taken from 

extrapolated lines of (a). ............................................................................................................. 119 

Figure 46: (a) Haven ratio for Li diffusion in the LLZT series at 300 K, 600 K, 900 K, and 1200 

K  and (b) 𝛤𝐿𝑖𝐿𝑖 − 1 for Li–Li  pairs at 300 K, 600 K, 900 K, and 1400 K . ............................ 120 

file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175063
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175064
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175064
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175064
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175065
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175065
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175065
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175065
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175066
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175066
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175067
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175067
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175068
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175069
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175069
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175069
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175069
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175069
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175070
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175071
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175071
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175071
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175071
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175072
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175072


xv 

 

Figure 47:  𝛤𝐿𝑖𝛼 − 1 (𝛼 ≠ 𝐿𝑖) for (a) Li-La pairs, (b) Li-Ta pairs, (c) Li-O pairs, and (d) Li-Zr 

pairs. ............................................................................................................................................ 123 

Figure 48: (a) tetrahedral and (b) octahedral occupancy as a function of Li concentration and 

temperature. ................................................................................................................................ 125 

Figure 49: Normalized excess entropy for the LLZT series as a function of composition and 

temperature. ................................................................................................................................ 129 

Figure 50: Lithium nuclear density maps for LLZT series along the [100] direction at 300 K, 600 

K, 900 K, and 1200 K. Isosurface level 0.3 Å-3. ......................................................................... 131 

 

 

 

  

file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175073
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175073
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175074
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175074
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175075
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175075
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175076
file:///H:/Klenk%20dissertation%205_1_19_edit.docx%23_Toc8175076


1 

 

CHAPTER 1: Introduction 

1.1 Motivation for study 

One of the more transformative technologies of the past 30 years has been the lithium-ion 

battery6-10. When first introduced to power what we would now consider rudimentary phones, it 

would have been inconceivable to predict the wide range of applications where we can now find 

the technology. The untethering of electrical devices from outlets has become a defining 

characteristic of modern society, the ability to use computers, smartphones, or tablets anywhere 

has led to fundamental shifts in the ways we work and play. The ubiquity of mobile computing 

and communication has even made possible to connect to every other human on the planet by as 

little as four intermediaries, making the “six degrees of separation” game a rather simple task.11 

The technology that underpins and powers these innovations is the lithium-ion battery, and the 

development of new battery technology will help usher in a new age of environmentally 

friendlier and safer personal devices. 

The lithium-ion battery revaluation goes beyond just communication devices or 

computers. We can now not only take electrical power with us anywhere, the push for the 

development of affordable electric vehicles will propel us to that anywhere.12-13 This major shift 

in fundamental transportation technology may help pave a path to a greener future by reducing 

the use of fossil fuels and help in curbing global warming. Major developments in battery 

capacity and safety will be needed to achieve such lofty goals but these are challenges being 

heavily researched today.  

Because lithium-ion batteries are so widely used it is paramount that the technology 

provides a safe interface with the user to ensure best experience possible. Newspaper and 

television articles have been filled with stories like the exploding smartphone or that of the 
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“hoverboard” toy that exemplify the necessity to ensure new batteries work without fault. In the 

cases above, a flammable liquid organic mixture is used transport lithium-ions between two 

electrodes. When this liquid is overcharged, heated, or decomposed through aging, catastrophic 

consequences can occur in the form of thermal runaway.14-15 A series of irreversible exothermic 

reactions that can cause a fire or explosion endangering the users of the device. One possible 

method of avoiding thermal runway is to change to composition of the battery by removing the 

liquid electrolyte material and replacing it with a solid-state fast lithium-ion conductor like that 

of the lithium garnet explored in this thesis. 

Today’s commercial Li-ion batteries are made up of three major components, the 

electrodes one “negative” the other “positive”, and the “electrolyte” (Figure 1). These 

constituents together make up what is called an “electrochemical cell.” The assembly of many 

electrochemical cells  make what is colloquially known as a battery. The properties of the battery 

Figure 1: Diagram of a simplified electrochemical cell in the charged state. The ion (green) is 

transported through the electrolyte, the electron (yellow) travels through an external circuit, where it 

recombines with the ion in the cathode. 
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are thus dependent upon the specific reduction and oxidation reactions that occur between the 

components within the cells. Much of the work in the development of new battery technology is 

spent focusing on how to improve the performance of a battery by modifying the composition of 

the three major components in order to find an optimal composition. 

Operation of a battery requires the movement of both electrons and ions from an 

electrode of higher potential to one of lower potential by means of an electrochemical gradient. 

The diffusion of ions within the gradient can be described as arising from Onsager like 

thermodynamics.16 The diffusion of mass and charge is coupled through the electronic potential 

of elections/holes and the chemical potential of a species or their vacancies. The potential is 

acted upon at the surface of an electrode where a redox half reaction occurs generating lithium-

ions and elections. The ion diffuses through the electrolyte to the other electrode via the “inner 

circuit.” Simultaneously, an electron travels through a wire from one electrode to the other 

forming an “external circuit.” At the opposing surface, an electron will recombine with the 

lithium-ion by a reduction half reaction completing the coupled mass-charge transfer.  

Importantly, the system as described implies a passive electrolyte with complete 

reversibility of chemical and physical reactions in the electrodes. That is to say, during cell 

cycling the electrolyte only transports ions between electrodes and does not directly partake in 

chemical reactions. The major challenge in designing an electrolyte is that any change in 

composition, volume, or texture at the electrodes must be completely accommodated by the 

electrolyte. Anyone who owns a cell phone can understand why this simple model is not quite 

true. Over the lifecycle of the battery it is quite common to experience a diminished capacity, or 

loss of energy accessible in the battery. The major culprit being parasitic side reactions that 

convert electrolyte material and degrade electrodes as energy is transferred in the cell.  
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Having knowledge of the materials used currently in lithium-ion batteries is therefore an 

important first step in determining what can be tweaked and modified to achieve better 

performance. Positive electrodes are typically crystalline solids dispersed in a film, taking the 

forms of LixMOy or LixM(PO4)y, where M is a transition metal such as Co, Ni, Mn, or Fe.17 

Cobalt is most commonly used due to its superior performance and relative stability. However, 

it’s limited supply and cost to mine and refine result in a price premium. Using binary or ternary 

substitution at the M site can help compensate for the cost of cobalt by using cheaper metals and 

in some cases even improve the specific capacity. Such is the case for lithium cobalt manganese 

oxide and lithium nickel cobalt aluminum oxide. In any case, typically Li/Li+ half reaction 

potential is around 4 volts and specific capacity will range from 150 to 200 mAh g-1.  

On the other electrode, commercially available negative electrodes are commonly made 

from group IV materials: carbon, silicon, tin, germanium, or the crystalline solid lithium titanium 

oxide (LTO).17 These can further be broken up into two main types, intercalation (C, LTO) and 

conversion materials (Si, Sn, Ge). Intercalation electrodes exhibit small lattice strain upon 

insertion because of voids within the structure have enough space to accept a lithium. The most 

commonly used negative electrode material is graphitic carbon, which allows lithium ions to 

insert themselves between the sheets of layered carbon. Carbon’s combination of relatively low 

cost, high quantity, high electrical/ionic conductivity/diffusivity, and low Li/Li+
  reaction 

potential make it a good choice as a negative electrode in most applications. The major 

drawbacks of carbon relate to its reactivity with some electrolyte materials which can result in 

exfoliation of graphite sheets leading to diminished capacity over time. While conversion 

electrodes exhibit much higher capacity, they operate in a manner in which the electrode 

undergoes chemical reactions. The major disadvantages being imperfect reversibility of the 
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reactions and extreme changes in electrode volume upon lithium oxidation/reduction which can 

diminish interfacial contact and isolate particles making them inert. 

The final component of an electrochemical cell to be discussed is the electrolyte. In most 

modern lithium-ion batteries, a nonaqueous solution of organic esters and carbonate solvents are 

used to dissolve a lithium salt. The salt will dissociate in solution releasing lithium-ions which 

can be used to facilitate the redox reactions at the electrodes. A typical solution would be that of 

ethylene carbonate (EC) and dimethyl carbonate (DMC) with a salt such as LiPF6.
18 Here the 

cyclic EC is used to dissolve the salt, while the linear DMC is used to lower the melting point of 

EC optimizing the transport of ions. 

It is common during the first cycling of the cell to form what is known as the solid 

electrolyte interface (SEI)13, 19. This complex material is a product of the electrolyte and 

electrode reacting to form a passivating layer. This passivating layer helps control the rate of 

electrode degradation but impedes lithium activity resulting in slower kinetics and loss of 

capacity. The exact formulation of the SEI is an active area of research and dependent upon the 

composition of both the electrolyte and electrode partaking in the reaction.19-20 

The organic nature and liquid phase of modern electrolytes brings with it a plethora of 

problems. During normal operation, patristic side reactions between the electrolyte, SEI, and 

electrodes can result in capacity loss during cycling. Exceeding a safe operating voltage can 

cause the SEI to break down, fragment, and lead to further degradation of electrodes resulting in 

capacity loss.13 The narrow range of thermal stability of the solvents requires supplemental 

cooling systems that add complexity and mass.7 Manufacturing concerns like moisture 

contamination can result in hydrolysis reactions that break down the SEI.8 Most critically, if any 
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one of the above systems failures arise, thermal runaway can occur igniting the organic solvent 

causing potential for injury of the end user.21  

To avert the inherent safety issues with today’s liquid electrolytes, proposals for safer all 

solid-state batteries using a solid electrolyte are again gaining traction in the literature.22-23 In 

principal, the operation of the battery would remain the same, except the liquid electrolyte would 

be replaced by a solid fast-ion conductor, removing the hazardous organics. A wide range of 

solid electrolytes have been investigated exhibiting conductivities comparable to those of liquid 

systems above 10-3 Scm-1.2 Figure 2 plots the conductivity for a range of solid electrolytes at 

various temperatures. The best performing of these, Li10GeP2S12 (LGPS) , shows extremely 

promising room temperature conductivity of around 10-2 Scm-1 but suffers from moisture 

sensitivity and a stability window possibly as small as 1.7 to 2.1 V24. Similar concerns of 

Garnet LLZT 

Figure 2: Conductivity of various electrolyte materials compared to that of LLZT2. The blue box 

designates the room temperature conductivity for the various materials 
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stability and shared with other high performing materials like the polymer/gel and phosphate-

based electrolytes making oxide-based compounds an interesting route of study. 

Of the solid electrolytes in Figure 2, the lithium garnet series Li7-xLa3Zr2-xTaxO12 (LLZT) 

has been of great interest because of its high ionic conductivity, high thermal stability, passivity 

toward common electrodes, and flexibility to incorporate various structural ion substitutions that 

allow for lithium concentration tuning.25-33 Figure 2 places the conductivity of the garnet series 

about an order of magnitude lower than conventual electrolytes or LGPS at room temperature. 

Bridging the conductivity gap is of interest to researchers and engineers because it will allow for 

the incorporation of solid electrolytes without diminished performance as compared to current 

batteries. The means for increasing the conductivity of LLZT has been focused on doping or  

substituting aliovalent ions modifying the composition of the framework atoms and the 

distribution or concentration of lithium in the crystal. 

Experimental measurements have allowed scientists to identify the structure and 

conductivity of the garnets, but to obtain a more comprehensive understanding of the mechanism 

of diffusion requires an atomic-level precision. Material simulation is therefore a required 

technique to better understand how the movement of individual atoms gives rise to the 

macroscopic properties. Through simulation, we are capable of tracking both the position and 

velocity of every atom which allows us to apply analysis techniques derived from statistical 

mechanics and observe their relation to properties at the thermodynamic limit. By simulating this 

material, we hope to obtain properties in agreement with experimental values with respect to 

diffusivity, conductivity, and phase change phenomena. Once confirmed, we then take a deeper 

look at the distribution of species to better understand the role of the local environment of each 

species and how it modifies the dynamic properties. With a better understanding of how the 
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garnet system works, not only will we be able to provide suggestions on how to improve the 

performance of this material, but also take our understanding of simulating materials and expand 

to other ionic conductors of interest.  

1.2 The lithium garnet crystal 

The name garnet for these electrolyte materials originates from the mineral, 

Ca3Al2(SiO4)3, which shares the same crystallographic space groups Ia3d and I41/acd.  The 

formulation A3B2C3O12 is commonly used in geology and crystallography, representing the 

eight, six, and four-fold coordination with oxygen respectivly.29 It is common among researchers 

studying the material to rearrange this formula to signify the importance of lithium to the form 

LixA3B2O12, where the lithium concentration is derived by the oxidation state of the A and B 

cations. With regards to the work presented the A cation is lanthanum in its 3+ state while B is 

either tantalum or zirconium in the 5+ and 4+ states respectively. The resulting formula of Li7-

xLa3Zr2-xTaxO12 (LLZT) can thus describe the range of compositions explored in this work.  

Figure 3: Space filling model of L5LT (left), La (green) and Ta (brown) make a framework structure for lithium 

(blue) to diffuse. (right) Lithium tetrahedral (pink) and octahedral (blue) sites in the lithium garnet (Wang35).  

 

(a) (b) 
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Garnet was first discovered to be a potential solid electrolyte in 2003 with the work reported by 

Thangadurai, Kaack, and Weppner in 2003.25  Based upon the structural refinement of 

Li5La3M2O12 crystals, where M is a metal of 5+ valency, it was shown that chains of La3M2O12 

are surrounded by interconnected tetrahedral and octahedral sites with random lithium 

occupation. It is these dispersed vacancies that give rise to the potential of lithium diffusion 

network which is show in Figure 3. The blue spheres in Figure 3 (a) show all the possible lithium 

positions within the crystal on the left, while the right figure shows the local spatial arrangement 

of the tetrahedral (pink) and octahedral (blue) sites. The lithium sites are commonly referred to 

by their Wyckoff positions in the cubic phase, the tetrahedral sites being the 24d site, and the 

octahedral being the 48g site. 

After the initial reporting of high ionic conductivity in the garnet class of materials, there 

was great interest in finding out what other cations could be substituted in the crystal in hopes of 

improving the conductivity and reducing material cost. A review by Thangadurai et al34 gives a 

thorough reporting of the various experimental results for approximately one hundred different 

garnet compositions. It is evident from the number of accommodating substitutions that the 

garnet structure provides a robust platform for controlling lithium concentration through multiple 

doping strategies. Specifically of interest are substitutions on the “B” site with six coordination 

with oxygen forming octahedrons. Substituting tellurium with its 6+ oxidation state allows for a 

minimal concentration of lithium of three per formula unit (p.f.u). While lithium concentrations 

exceeding seven p.f.u. have been achieved by co-doping with the crystal with 3+ ions such 

yttrium or scandium with 4+ ions of zirconium, tin, or hafnium.  
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A maximal conductivity is reportedly achieved with lithium concentrations between six 

and seven35 with dramatically lower room temperature conductivities for compositions at the end 

of the series when the [Li] = 3 & 734. The dramatically lower conductivity arises from lithium 

ordering on the tetrahedral and octahedral sites that form the lithium sublattice. As shown in 

Figure 4 (a) when [Li] = 3, lithium fully occupies the tetrahedral sites while leaving all 

octahedral sites unoccupied. It was shown through simulation work by Xu et al36 that a large 

energy barrier exists within the octahedral that join tetrahedral sites making the conduction of 

lithium unfavorable. As the concentration of lithium is increased Figure 4 (b), the only sites 

available for occupation are the octahedral sites which are seemingly unfavorable when 

compared to tetrahedral sites. The disorder in the lithium sublattice is hypothesized to arise from 

Li–Li  repulsion which results in a balancing of site preference to minimizing lithium 

interactions.37 In this work an examination of how these forces balance is explored by applying a 

regular solution model to the disordered compositions, but much work is still to be done in 

understanding this complicated relationship. 

[Li] =3 [Li] =5 [Li] =7 

Figure 4: Diagrams of lithium occupancy for three different compositions of LLZT at 300 K. (a) 

Li3La3Te2O12, (b) Li5La3Ta2O12, and (c) Li7La3Zr2O12. 

(a) (b) (c)
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For the [Li] = 7 compositions ordering again plays an important role in describing why 

the conductivity is so low compared to other compositions (Figure 4 (c)). In the case of [Li] = 7 

structures, the crystal symmetry changes from Ia3d to I41/acd  at room temperature, resulting in 

a tetragonal crystal. The transformation results in a splitting of the 24d tetrahedral into two sites. 

An 8a site that has full lithium occupancy, and the 16e site that has zero lithium occupancy. The 

48g octahedral site also splits into 32g and 16f sites both with full occupancy. The defining 

characteristic separating the two octahedral Wyckoff positions being that the 32g octahedra 

bridge 8a and 16e tetrahedra, while 16f bridge two 16e tetrahedra. A more general refinement 

splits each 48g site into two 96h sites which can help account for the displacement of lithium off 

the crystallographic ideal.37 A simplified schematic of these symmetry positions as they relate to 

lithium are shown below in Figure 5 (a) and (b) with the net result of ordering in Figure 4. 

Previous work by Wang et al.37 provided structural refinement data and analyzed the 

occupancy of lithium on its crystallographic sites using a combination of neutron diffraction and 

energy minimization simulations. Essentially, they showed that there appears to be a preference 

for tetrahedral occupancy at low lithium concentrations and temperatures due to the increased 

symmetry of the site. Lithium occupancy into octahedral sites then results as is a means to 

  

  

 

 

  

Figure 5: Schematic showing the relationship between possible lithium Wyckoff positions in 

the cubic (left) and tetragonal (right) crystals. Filled circles are occupied lithium sites and 

hollow circles are unoccupied sites. 

24d 48g 24d 
96h 

96h 

8a 16e 

16f 

32g 

(a) (b) 
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minimize the Li–Li  interactions by populating the larger and less coordinated octahedral sites. 

This work provided a good understanding of how one can expect lithium to act under static 

conditions and is to be expanded upon in the proceeding work of this thesis as to better 

understand the dynamic properties of the garnet system. Properties such as how the preference 

for certain Li–Li  configurations change with composition and temperature, how these 

configurations relate to the observed trajectory of lithium through the triangular “bottleneck” 

connecting the tetrahedral and octahedral faces, and how changes in the lithium sublattice relate 

to the changes in the overall structure and phase of the garnet crystal. 

1.3 Tetragonal to cubic transformation in Li7La3Zr2O12  

1.3.1 Experimental observations 

The first reporting of Li7TLa3Zr2O12 (L7LZ) compositions showed a cubic phase with a 

room temperature conductivity of 0.5 mS/cm.38 It was later discovered that Al3+ ions leeched 

from the crucibles during the synthesis process, replacing tetrahedral lithium, resulting in the 

cubic phase the high conductivity.30, 39-41 Subsequent experimental work reported tetragonal 

phase garnet with orders of magnitude lower conductivity. Groups followed up on this work by 

purposefully doping Al3+or Ga3+ ions which causes disorder on the lithium sublattice by repelling 

neighboring octahedral lithium and removing three total lithium in order to maintain charge 

neutrality. Electron diffraction studies performed by Thompson et al.42 establish that a critical 

concentration of [Li]=6.5 is necessary to achieve a room temperature cubic phase with high ionic 

conductivity. It is proposed that a similar critical concentration is needed to achieve a room 

temperature cubic phase trough tantalum doping on the zirconium site. While experimental 

results suggest that this is indeed the case, an in-depth investigation into the mechanisms 

controlling this transformation through modeling warrant exploration.  



13 

 

Pure L7LZ upon sufficient heating will transform from the tetragonal phase to a cubic 

one exhibiting high conductivity. The phase transformation is thought to be a first order phase 

transformation expressing volume conservation, with the added energy contributing to an 

increase in entropy attributed to lithium disordering.43 The cause of the transformation is not 

explicitly known and is a major point of interest for this thesis work. Matsui et al4 reports the 

phase transformation temperature to be between 600 and 650 oC through high-temperature X-ray 

diffraction (XRD) and impedance spectroscopy. Larraz et al.43 report a temperature around 650 

C in their own XRD and differential scanning calorimetry (DSC) experiment. While Wang et 

al.1 identify a transformation around 610-630 C depending upon the heating or cooling of the 

system via impedance spectroscopy. These reported temperatures are fairly consistent with pure 

L7LZ as will be shown in the simulation work presented in the following sections. 

1.3.2 Simulations of garnet in literature 

Simulating the transformation from tetragonal to cubic is therefore an important reference 

point for model verification. Bernstein et al44 approached modeling the phase transformation 

using molecular dynamics derived from density functional theory (DFT) calculations. They 

determined vacancy free L7LZ would transform between 800 K and 1000 K. Introducing lithium 

vacancies while keeping zirconium concentration constant resulted in a depressing of the 

transition temperature to below 300 K when the critical concentration was obtained. They 

postulate that the transformation to a tetragonal symmetry occurs in order to preserve ZrO6 

octahedra orientation due to increased columbic interactions between Li–Li  pairs in the ordered 

state. While this methodology fits the narrative that lithium vacancies are the reason for 

depressing the tetragonal to cubic transformation, their model does not account for cooperative 
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effects tantalum may play in the phase transformation witch its smaller ionic radius and higher 

formal charge.  

Other MD-DFT studies on garnet materials have been performed, namely the work by Xu 

et al36, Miara et al5, Meier et al45, Jalem et al46-48, and Rettenwander et al.49 In general these 

studies avoid making their models transform from one phase to the other by simulating 

temperatures above the transition point or by explicitly making two crystals, one for the ordered 

tetragonal phase and one for the cubic phase. This is done to focus more clearly on the location 

of dopants and the motion of lithium in the crystals versus the transformational effects as 

explored by Bernstein. Each of these studies only employ one type of electron exchange-

correlation (XC) energy functional, leaving to question how optimal each simulation was with 

respect to modeling the complex bonding environment in these crystals. This question is 

addressed in Chapter 4 of this thesis in my work looking solely at the role of the XC functional 

in modeling the L7LZ high temperature phase transformation.  

Minimum energy simulations for the Ta/Zr series of garnet performed by Wang37 et al 

using General Utility Lattice Program (GULP) showed how the configurational energy of static 

structures of garnet distribute with varying levels of lithium concentration. In this experiment 

5000 initial structures with random Li, Ta, and Zr distribution were optimized for each 

composition. The cubic garnets with [Li] = 5-6.25, exhibit mostly gaussian distributions and 

inspection of their atomic positions suggests all stable disordered structures. As the concentration 

of lithium is increased further to 6.5-7, the single gaussian begins to split into two peaks, with the 

lower energy peak becoming increasingly spiky as more lithium is added. Structures that 

optimized in this spike all exhibit identical structures upon optimization which are associated 

with the ordered tetragonal phase. Importantly to the work presented in this thesis, increasing the 
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size of simulation from a 1 x 1 x 1 unit cell to a 2 x 2 x 2 cell gave statistics consistent with 

classical statistical thermodynamics and provided a solid foundation for evaluating the dynamic 

properties of these materials using molecular dynamics. 

The first attempt at modeling L7LZ using classical molecular dynamics was done by 

Adam and Rao50 whose model was fit to diffraction data that supported a much lower phase 

transition temperature of only 400 K. The model is capable of identifying possible diffusion 

pathways, but values of activation energy, conductivity, and site occupancy may not be reliable 

due to the lower than predicted phase transition. As will be seen in the proceeding work of this 

thesis, getting a single model to accurately capture the properties of these materials is complex. 

Initial work by us in Wang et al51 and Klenk et al52 modeling L5LT and L7LZ respectively, using 

classical molecular dynamics with a core-shell model, are able to reproduce lithium dynamics in 

agreement with experimental quasi-elastic neutron scattering experiments for L5LT. 53 But, 

when trying to predict accurate lattice volumes for L7LZ, the model over binds the atoms 

predicting a smaller volume and distorted lattice. The following work in Klenk et al16 using a 

core only MD model, is much better at approximating the transformation from tetragonal to 

cubic in L7LZ, and presents compelling structural information for intermediary compositions, 

though the dynamics of lithium are likely overestimated. This is of course the difficulty in 

modeling real materials, while all models might be “wrong” it is important to identify what they 

perform well and if it is possible to generate useful information with them. 

From the work highlighted above you can see that simulations of the garnet can be 

divided into two main categories. First there are the DFT studies that use the higher-level 

calculations to investigate individual atomic interactions in order to better understand the 

energetics of diffusion pathways and the effects of dopants on the arrangement of atoms. The 
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other set being classical molecular dynamic studies that take advantage of the more efficient 

calculations in order to run larger and longer simulations. This allows for better statistical 

sampling and ultimately hopes to better approximate macroscopic properties.  

1.4 Experimental measurement of conductivity and diffusivity 

1.4.1 Conductivity 

In order to measure the conductivity of a solid electrolyte like the lithium garnet one 

would most commonly use electrochemical impedance spectroscopy (EIS). Typically, an 

electrical stimulus is applied to a system, either a known voltage or current, and based upon the 

response of the system, it is possible to deduce what kinds of electrical processes are occur. 

When a sinusoidal input is applied, like AC voltage, to a linear system, the output current will 

have an identical angular frequency. 

Equation 1 

𝐸(𝑡) =  ∆𝐸 ∙ exp(𝑗𝜔𝑡) 

𝐼(𝑡) =  Δ𝐼 ∙ exp (𝑗𝜔𝑡 + 𝜑) 

The impedance Z(ω) is comprised of two components one real (ZR) and one imaginary (ZI). 

Equation 2 

𝑍(𝜔) =
𝐸(𝑡)

𝐼(𝑡)
= 𝑍𝑒−𝑗𝜙 = 𝑍𝑐𝑜𝑠𝜙 − 𝑗𝑍𝑠𝑖𝑛𝜙 = 𝑍𝑅 − 𝑗𝑍𝐼 

Plotting the real vs imaginary parts of Z( ) in the complex plane will give a characteristic semi-

circle when applied to an ionic conductor such as the lithium garnet. By defining an equivalent 

circuit, typically a constate phase element/resistor in parallel with a capacitor, it is possible to fit 

the measured spectrum to the model circuit and identify the bulk, grain boundary, or total 

resistance of the system. Taking the geometry of the system into account and obtaining the 

dimensionless resistivity, then taking the inverse gives the conductivity of the sample. Because 
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collecting the conductivity is a fairly easy experiment to perform there are many reports of the 

conductivity for a verity of compositions. An exhaustive list of measured conductivities can be 

found in the review by Thangadurai.34 It is assumed that the garnet series follows Arrhenius 

behavior as the temperature increases, and fitting the conductivity vs inverse temperature is used 

to obtain activation energy values for the solid electrolyte.  

1.4.2 Diffusivity 

Understanding the Li diffusion mechanism in this material is essential to optimizing Li 

transport behavior and realizing its full potential as a solid electrolyte. Experimentally, it is very 

difficult to directly measure the diffusivity and requires the use of exotic techniques such as 

nuclear magnetic resonance (NMR)31, 54-58 and muon-spin relaxation (µSR)59-60 Conventional 

powder diffraction analysis3 has been combined with maximum entropy methods to study the Li 

distribution in lithium garnet oxides61. This work found a channel of lithium that delocalizes 

along 24d–96h–48g–96h–24d site chains, through both tetrahedral and octahedral cages. 

Although giving insight into the lithium diffusion pathway, this experimental approach does not 

directly measure lithium dynamics. 

The translational dynamics of Li in lithium garnet oxides have been the subject of intense 

investigations using nuclear magnetic resonance (NMR)31, 54-58 and muon-spin relaxation 

(µSR)59-60 measurements. For example, the residence time of Li at crystallographic sites was 

extracted by applying the Bloembergen-Purcell-Pound (BPP) equation to the longitudinal/spin-

lattice relaxation (SLR) time31, 54-55. Alternatively, Li self-diffusivity was obtained by applying 

the Stejskal-Tanner equation to pulse gradient spin echo (PGSE) NMR measurements56-58. 

Similarly, only the residence time of Li could by extracted from the dynamic Gaussian Kubo–

Toyabe function by µSR measurements59-60. If we consider that diffusivity (D) is related to both 
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length (l) and residence time (t), such as by 𝐷 =
𝑙2

𝑡
, SLR-NMR and µSR techniques are 

extremely limited in that they only yield information for 𝑡, and PGSE-NMR only provides 

information at the long-range limit of 
𝑙2

𝑡
. 

To probe diffusion both spatially and temporally, scattering-based techniques such as 

quasi-elastic neutron scattering (QENS) are essential. QENS measures neutron scattering 

intensity as a function of momentum (Q) and energy (E) transfer (or Fourier time in a spin-echo 

measurement) of neutrons interacting directly with atomic nuclei. In terms of atomic dynamics, 

its results contain the neutron-weighted self-part of the van Hove correlation function 𝐺𝑠(𝑟, 𝑡) 
62, 

i.e. the probability of finding a particle after it travels a length of r for a time duration of t, 

shedding light on self-diffusion. Before this work was initiated there has been only one QENS 

report on lithium garnet oxides59 in which only the elastic intensity of the measured spectrum 

was quantitatively treated and the spatial and temporal features were not discussed. 

The goal of this thesis is to tie together simulation and experimental approaches in order 

to present a compelling narrative for how the dynamic properties of the lithium garnet series are 

related to the crystalline structure with respect to lithium concentration and arrangement. Further, 

an investigation into the effects of Ta/Zr doping using simulations over a wide range of 

concentrations has not been reported and currently there is no verified explanation as to why the 

we see a maximum conductivity at the concentrations we do. The procedures and analysis 

techniques utilized in this work are of great interest to those specializing in simulating materials 

and are generalizable to other materials. 
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CHAPTER 2: Materials and methods 

2.1 Sample preparation 

Li5La3Ta2O12 powder was synthesized by conventional solid-state reaction methods. 

7LiOH·H2O (Cambridge Isotope Laboratories) and La2O3 (Sigma-Aldrich) were dried at 215 o C 

and 600 o C, respectively before mixing. 7LiOH·H2O, La2O3, ZrO2 (Alfa-Aesar), and Ta2O5 

(Alfa-Aesar) were added in stoichiometric amounts with a 5% excess of 7LiOH·H2O to account 

for lithium loss during synthesis. Sample precursors were mixed in polyethylene jars and ball-

milled for 24 h in isopropanol with yttria-stabilized-zirconia grinding balls. The dried mixture 

was placed in MgO crucibles and fired at 900 oC for 10 h. Upon completion of the synthesis, 

powders were placed in an argon atmosphere and vacuum packaged in metallized bags for 

storage to minimize moisture contamination. The powders were examined using X-ray 

diffraction with a Bruker D8 Advance diffractometer and shown to be phase-pure. 

2.2 Quasi-elastic neutron scattering 

QENS data were collected on the backscattering spectrometer (BASIS)63 at the spallation 

neutron source (SNS) at Oak Ridge National Laboratory (ORNL). Approximately 10 g of 

powder was sealed in an annular Al container and was initially heated to 700 K to remove any 

moisture and contaminating gas accumulated during handling. Spectra were collected in 100 K 

decrements to 300 K and then at 50 K to define the resolution function. Data were converted 

from time-of-flight to energy transfer spectra at selected Q using Mantid software package64.  

S(Q,E) were binned over 0.4 μeV from −100 to 100 μeV and Q over 0.1 Å-1 from 0.25 Å-1 to 

1.95 Å-1. The QENS analysis was performed using the Data Analysis and Visualization 

Environment (DAVE) package65.  
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2.3 Molecular dynamic simulations 

The majority of the work presented in this dissertation is the result of molecular dynamic 

(MD) simulations comprising of three different simulation models for evaluation. Two of which 

are pair-potential models, and one that uses DFT. Classical MD, being a simpler technique is 

based upon the idea that only the position of the particles is necessary to calculate the potential 

energy of a system, while DFT requires solving for the potential energy of a system based upon 

the electron density.  

In classical MD, we start with Newton’s equations of motion. Newton’s second law states 

that 𝐹 = 𝑚
𝜕2𝑟

𝜕𝑡2
= −∇𝑈, with F being a force, m, the mass, r the position, t the time, and U the 

potential energy. From this, if you can predict the next position of an atom after some small time 

differential it should be possible to calculate the force experienced by each particle. To calculate 

the potential energy (U) of a system as a summation of pair-wise interactions where 𝑈 =

∑ ∑ 𝑢𝑖𝑗
𝑁
𝑗>1

𝑁
𝑖=1 . In this work we use a pair-potential model that simulates the long-range 

Coulombic interactions and short-range Buckingham interactions as 

Equation 3 

𝑢𝑖𝑗 = 𝐴𝑒
−
𝑟𝑖𝑗
𝜌 −

𝐶

𝑟𝑖𝑗
6 +

𝑧𝑖𝑧𝑗

4𝜋𝜀0

1

𝑟𝑖𝑗
 

where A, , and C are fitting parameters, rij is the distance between species i and j, z is the 

charge, and 0 is vacuum permittivity. Once the force on each atom is calculated dividing by its 

mass will give the acceleration experienced by each atom setting up the possibility solve for the 

atoms next position through Verlet integration. 

Equation 4 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
𝑎(𝑡) + 𝑎(𝑡 + ∆𝑡)

2
∆𝑡 



21 

 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)∆𝑡 +
1

2
𝑎(𝑡)∆𝑡2 

This process of calculating the potential energy, to then calculate the next velocity and position is 

repeated until a specified number of steps has been performed. 

2.3.1 Core-shell model 

The first model to be discussed is the Dick-Overhauser “core-shell” model where we 

assign a charge to each atomic nucleus “core” and a separate electron “shell” charge to 

polarizable species like Ta and O. A simple harmonic oscillator is then used to connect the cores 

and shells together. The addition a “shell” to our MD simulation is thought to more accurately 

describe the bonding environment within the garnet at the expense of shortening the time-step 

used in the integration. Our Buckingham, electrostatic, and core-shell parameters for the core-

shell model can be found in Table 1. 

Initial average atomic position and lattice parameters for the garnet series were calculated 

from neutron scattering experiments performed by Wang et at.37 From these structures, we 

randomized Li, Ta, and Zr distributions and performed static energy minimization at 0 K using 

the General Utility Lattice Program (GULP). The majority of the model terms A, , and C, were 

taken from literature, while the preexponential terms (A) in Table 1 for Zr-O and Ta-O were 

obtained from potential parameter fitting from neutron diffraction structures at 10 K. The energy 

minimization of structures was performed in two steps, first to relax only the position of the 

electron shells, and then a relaxation of all species, to improve convergence to the local 

minimum. The minimization utilized conjugant gradient then hessian inversion for solving for 

the next local minimum when the difference in the gradient was above or below 2 eV 

respectively. 
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It is important to note that when dealing with compositions of LLZT with a [Li] < 7 it is 

computationally infeasible to obtain an absolute minimum energy due to the disordered nature of 

the lithium sublattice. There are between 40 and 56 lithium atoms per unit cell to be distributed 

about 72 possible ideal sites meaning the number of permutations of lithium occupancy is 

immense. In order to obtain a representative structure of a unit cell in the bulk, 1000 randomized 

2 x 2 x 2 simulation cells were generated and optimized. The energy of the optimized structures 

was placed in a histogram and a structure was taken from the most probable energy. 

MD simulations were performed with the DL_POLY Classic software package66 at 

temperatures ranging from 300 K to 1400 K. To calculate the trajectories of the ions, the velocity 

Verlet integration method was employed with a 0.25 fs time-step. The first step in our simulation 

process was to take one of the optimized structures from the GULP evaluation and heat it to 

1400 K for L7LZ, and 1200 K for L5LT, under constant number, stress/pressure, and 

Adiabatic shell model    Core-Shell model parameters 

Species Mass (AMU) z (C)  Species Y (e) k (ev Å-2) 

Li 6.9410 1.000  Ta -4.596 5916.77 

La 138.9055 3.000  O -2.760 30.20 

Ta 179.9480 9.596     

Zr 91.2240 4.000     

O 15.7994 0.760     

Ta (shell) 1.0000 -4.596     

O  (shell 0.2000 -2.760      

       

Buckingham potential parameters      

interactions A (eV)  (Å) 
C (eV 
Å6)    

Li-O 632.102 0.2906 0.00    

La-O 4597.230 0.3044 0.00    

Ta-O 1152.340 0.3690 0.00    

Zr-O 1470.100 0.3500 0.00    

O-O 22764.300 0.1490 27.36    
 

Table 1: Core-shell Buckingham and spring pair interaction parameters for LLZT  
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temperature (NT/NPT). The Berendsen thermostat and barostat was used with relaxation time 

constants of 0.1 and 0.5 ps respectively and a stress/pressure of 0 GPa. We then sequentially 

cooled the resulting structure to 300 K in 100 degree decrements for L7LZ, and at temperatures 

of 1100, 900, 700, 550, 475, 350, and 300 K for L5LT. The average lattice parameters were 

taken from the last 50 ps of the NPT simulation. The final configurations of the NPT simulation 

were then rescaled to the calculated average lattice parameters for use in constant number, 

volume, and energy (NVE) simulations.  

NVE simulation times varied depending upon the particular study, in Wang et al.51 

(L5LT) and Klenk et al.52 (L7LZ) 100 ps of equilibration and 1ns of production was performed 

with trajectory output every 0.1 ps. An additional 2.5 ps of production simulation with output 

every 2.5 fs was performed at 300, 1100 K (L7LZ) and 550 K (L5LT) to better refine more 

subtle details of diffusion. 

In Klenk et al.53 the total number of temperatures investigated was reduced to 400, 475, 

550, 700, 900, and 1000 K. The same equilibration was used as above but the production run 

time was reduced to 500 ps for 550, 700, 900, and 1000 K. For 475 K a production time of 5 ns 

was used while at 400 K the run was extended to 10 ns. The mass of the O shell was increased to 

0.4 AU and the time step for simulation was reduced to 0.1 fs at 400 K in order to keep the 

system adiabatic. 

2.3.2 Core-only model 

Computational constraints with DL_POLY Classic restricted our simulations to a  

maximum size of 2 x 2 x 2 due to the parallelization using the replicated data strategy. Here the 

positions and velocities are stored on every processor increasing causing excess memory usage. 

We saw no appreciable improvement in running DL_POLY in parallel and choose to limit our 
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simulations to run on a single processor. A more efficient means of allocating memory in a 

simulation would be to employ a domain decomposition strategy that separate the storage and 

computation of forces into subdomains determined by the spatial representation of the unit cell, 

and the number of processors used for simulation. We choose to use the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS)67 as a means of increasing our 

simulation size in order to explore finite sizing effects, and the effects of Ta/Zr substitution for 

compositions with [Li]= 5, 5.5, 6, 6.25, 6.5, 6.75, &7. We were able to perform simulations with 

up to a size of 4 x 4 x 4 for L7LZ, and as will be shown 3x 3 x 3 simulations cells were deemed 

large enough to observe convergent behavior for all other composition. 

Due to imitations in LAMMPS not allowing for the use of our previous core-shell model 

we instead employed a partial charge model that is based on first-principles density functional 

theory (DFT) calculations.  Specifically, we obtained the partial charges of atoms in the DDEC 

(Density Derived Electrostatic and Chemical charge) scheme68, from results of DFT calculation 

with the VASP package69,70,71,72 employing the Projector Augmented-Wave (PAW) method.73,74 

The simulation cell was a 1×1×1 supercell of Li7La3Zr2O12 with 192 atoms.  Structural 

parameters were taken from experimental values in literature.37  A self-consistent calculation was 

performed with the Generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof 

parametrization (PBE)75,76 as the exchange-correlation functional, a 600 eV cut-off energy, and 

at the Gamma point.  Valence electron configurations for La, Li, O, and Zr atoms are 

5s25p65d16s2, 1s22s1, 2s22p4 and 4s24p64d25s2, respectively.  The DDEC charges of all atoms in 

the same species were averaged to yield values of 2.53 (La), 1.01 (Li), -1.70 (O), and 2.86 (Zr).  

In order to facilitate the investigation of Li7La3Zr2O12-Li5La3Ta2O12 we slightly offset these 

DDEC charges to values reported in Table 2.  The interaction parameters were refined against 
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the experimental structure37 by the GULP package77,78, with initial values taken from the 

reference.48  The force-field parameters are listed in Table 2 

Table 2: Core-only force field parameters  

   Buckingham Pair Interaction with Oxygen 

Species Mass z (e) A (eV) ρ (Å) C (eV Å6) 

Li 6.9400 1.00 1087.29 0.260 0.00 

La 138.9050 2.50 2075.26 0.326 23.25 

Ta 180.9479 3.65 1177.30 0.322 0.532 

Zr 91.2240 2.65 1650.32 0.311 5.10 

O 15.9990 -1.65 4870.00 0.267 77.00 

For the disordered compositions of LLZT, 200 3 x 3 x 3 simulation cells were generated 

with randomly dispersed Li, Ta, and Zr. The local energy minimization was obtained using 

GULP static energy minimization based upon structures from neutron diffraction.37 Due to the 

increased size of the simulations, it was no longer efficient to use Hessian inversion in order to 

obtain the gradient in energy for these structures. Instead, only the conjugant gradient method 

was used to offset the atoms from their ideal positions to obtain convergence within 0.001 eV per 

structure. 

2.4 Finite size effects in L7LZ 

Initial tetragonal L7LZ simulation cells consisting of 1×1×1 (192 atoms), 2×2×2 (1536 

atoms), 3×3×3 (5184 atoms), and 4×4×4 unit cells (12288 atoms) were generated using the same 

structure as the DFT calculation.  The Ewald summation of long-range interactions was 

calculated using a cutoff radius of 6 Å for 1×1×1 cells and 12 Å for 2×2×2 and larger cells.  

Anisotropic NPT simulations were carried out by heating the initial tetragonal structure to 1400 

K and sequentially cooling the simulation cells in 100 K decrements until 300 K was achieved.  
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For the 3×3×3 and 4×4×4 cells, we implemented additional sequential heating and cooling from 

800-1000 K in 25 K increments to study the hysteresis.  NPT simulations ran for 75 ps with a 1.0 

fs time-step employing the Nose-Hoover thermostat and barostat79-82 with relaxation time 

constants of 0.05 ps and 0.25 ps respectively.  Lattice parameters were extracted from the last 50 

ps.  Once average lattice parameters were determined, NVE simulations were performed for 1 ns 

utilizing the same 1.0 fs time-step.  The atomic trajectories are saved every 10 fs.  

2.5 Effect of Ta/Zr substitution 

In accordance to the procedure used for the core-shell model outline above, 3 x 3 x 3 

LLZT compositions with [Li]= 5, 5.5, 6, 6.25, 6.5, & 6.75 were generated by selecting a 

structure from the most probable energy in a histogram of energy distribution. These structures 

were simulated under anisotropic NPT isotropic conditions at 1400 K and sequentially cooled in 

100 degree decrements down to 300 K. As with L7LZ these simulations ran for 75 ps with the 

same time-step, barostat, and thermostat settings. The average lattice parameters were taken from 

the last 50 ps from anisotropic NPT calculations, and averaged to form cubic lattices. The atomic 

positions from the last frame of the NPT simulation was rescaled to the average lattice 

parameters calculated to be used in NVE simulations. Initial velocities were generated randomly 

based upon a gaussian distribution, and equilibration was run for 100 ps. A time-step of 1 fs was 

used to calculated trajectories for up to 1 ns, with data output every 10 fs. 

2.6 Density functional theory: XC functional analysis 

2.6.1 Background 

Research focusing on simulating physical and chemical proper-ties of materials has 

grown tremendously as the raw computational power and algorithm efficiency have improved 

drastically over the past decades. Density functional theory (DFT)83-84 has resultantly become a 
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common simulation technique to predict the thermodynamic and kinetic properties of a variety of 

simple and complex materials based upon the electron density (r). Starting with the 

Hamiltonian (Η̂) for the many electron Schrödinger equation of wavefunction (Ψ) the total 

energy (E) under the Born-Oppenheimer approximation is 

Equation 5 

Η̂Ψ = [𝑇̂𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂𝑒𝑥𝑡 + 𝑉̂𝐼𝐼]Ψ = EΨ 

where 𝑇̂𝑒 is the kinetic energy of electrons, 𝑉̂𝑒𝑒 is the electron-electron interaction, 𝑉̂𝑒𝑥𝑡 is the 

electron-nuclei interaction, and 𝑉̂𝐼𝐼is the interaction potential between nuclei. Kohn-Sham takes 

this calculation of energy and puts in in terms of the electron density 

Equation 6 

𝐸[𝜌] =  𝑇0[𝜌(𝑟)] + ∫𝑑𝑟 𝜌(𝑟)𝑣𝑒𝑥𝑡(𝑟) + 𝐸𝐻[𝜌(𝑟)] + 𝐸𝑥𝑐(𝑟)       𝜌(𝑟) =∑|𝜓,𝑚|
2

𝑚

 

with the kinetic energy 𝑇0[𝑛(𝑟)], external potential 𝑣𝑒𝑥𝑡(𝑟), and Hartree energy 𝐸𝐻[𝑛(𝑟)] 

known, the electron exchange-correlation energy 𝐸𝑥𝑐(𝑟) (XC hereafter) is an unknown 

parameter. The XC functional is comprised of two parts one pertaining to the electron exchange 

energy (Fx(s)), or the energy caused by the spatial separation of two elections with the same spin, 

and the correlation energy (Fc(s)), the interaction energy of electrons from Coulomb repulsion. 

These parameters are presented as functions of s, the reduced density gradient. 

Equation 7 

𝑠 = |∇ρ| [2(3𝜋2)1 3⁄ 𝜌4 3⁄ ]⁄  

Within the DFT framework, the electron XC functional is not known a priori and approximate 

functionals have to be employed.  This work takes functionals from the LibXC85 package and 

currently contains about 180 functionals with the expectation that more will added. 
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The simplest XC functional is the local density approximation (LDA)84  which 

approximates the XC energy density at a local position by the value of a uniform electron gas 

(UEG) with the same electron density. The next two rungs on the Jacob’s ladder86 are 

generalized gradient approximation75 (GGA) which includes the electron density gradient and 

meta-GGA which further includes the Laplacian of the density. Within each family of 

approximation, many different functional forms on the density, gradient, or Laplacian have been 

proposed based on the electron gas with slowly-varying density75, Airy gas87, or semiclassical 

neutral atom88. Due to the wide range of structure features and bonding environment within 

complex materials, choosing the proper functional for a system can be difficult. This is one of 

the reasons that much effort has been devoted to test a variety of XC functionals for different 

solids to see how simulation results are close to experimental values (lattice constants, bulk 

modulus, cohesive energy, etc.), e.g. by Haas et al.89-90, Csonka et al.91, Hao et al.92, Labat et 

al.93, He et al.94, Rasander et al.95, Tran et al.96. However, most of these studies are focused on 

the static structure (0 K) of simple metals and binary compounds. 

Fast-ion conductors on the other hand are complex materials with at least one mobile 

species and often exhibit a phase transformation from a low-symmetry structure to a high-

symmetry structure upon heating. At present, the effect of XC functionals on simulated materials 

properties of fast-ion conductors remains elusive. The objective of the present work is to 

evaluate a collection of XC functionals on the phase transformation of a model fast-ion 

conductor: lithium garnet oxide Li7La3Zr2O12 (L7LZ). L7LZ was chosen because of its high 

lithium-ionic conductivity, importance to solid-state battery research, and characteristic phase 

transformation from a tetragonal to a cubic phase around 900 K38, 97-98. L7LZ has been the 

subject to several DFT studies, e.g. Xu et al.36, Bernstein et al.44, Jalem et al.47, Meier et al.45, 
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Rettenwander et al.49, Miara et al.5, Kang et al.99but only one XC functional was employed in 

each of these investigations. In this work, we selected 14 different XC functionals (LDA, 13 

GGA including 2 dispersion corrected ones) and recorded the dynamic response of the L7LZ 

system over the course of a simulation to categorize if or what type of transformation occurs. We 

then compared the average crystal structure at different temperatures to experimental results in 

order to determine the best XC functional for this system. It is expected such investigation could 

also provide insight into studies of other fast-ion conductors. 

Table 3: Exchange and correlation enhancement factors  

 Name Exchange Fx(s) Correlation Fc(s) 

PBE75 

 

PBEc 

PBE2100 

 

PBEc 

PBEsol101 

 

PBEc with b=0.046 

RPBE102 
 

PBEc 

SOGGA103 

 

PBEc 

RGE2104 

 

PBEc with b=0.053 

WC06105 

 

PBEc 

1 + 𝜅𝑃𝐵𝐸 (1 −
1

1 + 𝜇𝑃𝐵𝐸𝑠
2/𝜅𝑃𝐵𝐸

) 

1 + 𝜅𝐸𝐿 (1 −
1

1 + 𝜇𝐺𝐸𝑠
2/𝜅𝐸𝐿

) 

1 + 𝜅𝑃𝐵𝐸 (1 −
1

1 + 𝜇𝐺𝐸𝑠
2/𝜅𝑃𝐵𝐸

) 

1 + 𝜅𝑃𝐵𝐸(1 − 𝑒
−𝜇𝑃𝐵𝐸𝑠

2/𝜅𝑃𝐵𝐸) 

1 + 𝜅𝐸𝐿 (1 −
1

2

1

1 +
𝜇𝐺𝐸𝑠

2

𝜅𝐸𝐿

−
1

2
𝑒−𝜇𝐺𝐸𝑠

2/𝜅𝐸𝐿) 

1 + 𝜅𝑃𝐵𝐸

(

 1 −
1

1 +
𝜇𝐺𝐸𝑠2

𝜅𝑃𝐵𝐸
+ (
𝜇𝐺𝐸𝑠2

𝜅𝑃𝐵𝐸
)
2

)

  

𝜇𝑊𝐶06 =  𝜇𝐺𝐸 + (𝜇𝑃𝐵𝐸 − 𝜇𝐺𝐸)𝑒
(−𝑠2) + ln(1 + 𝑐𝑊𝐶06𝑠

4) /𝑠2 

1 + 𝜅𝑃𝐵𝐸 (1 −
1

1 +
𝜇𝑊𝐶06𝑠

2

𝜅𝑃𝐵𝐸

) 
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Table 3 (cont’d)   

PBE-FE106 

 

PBEc with b=0.043 

VMT84107 

 

PBEc 

PBE = 0.219516, GE = 10/81, FE = 0.346, 

PBE = 0.804, EL = 0.552, FE= 0.473 

CWC06 = 0.00079325, VMT84 = 0.000023 

 

2.6.2 Simulation method 

The first-principles DFT-based molecular dynamics computation was performed by the 

Quickstep code108implemented in the cp2k109package, which employs mixed Gaussian and plane 

wave (GPW) basis sets. The valence electron configurations were La (5s25p66s25d1), Li (1s22s1), 

Zr (4s24p65s24d2), and O (2s  22p4) with Goedecker–Teter–Hutter (GTH) norm-conserving 

pseudopotentials.110-111 The plane wave cutoff was 400 Ry and the Gaussian basis sets were 

molecular optimized double zeta-valence basis sets with a polarization function (DZVP)112. The 

simulation cell was a unit cell of Li7La3Zr2O12 with 192 atoms and 1200 valence electrons, 

sampled at the gamma point. The constant number/pressure/temperature (NPT) simulation was 

performed for 6 or 12 ps (1 fs time step) at different temperatures and zero pressure, with a 

canonical sampling through velocity rescaling (CSVR) thermostat113 (time constant of 5 fs) and 

Martyna-Tuckerman-Tobias-Klein (MTTK) barostat114 (time constant of 300 fs). Local density 

approximation (LDA) and thirteen generalized gradient approximation (GGA) XC functionals, 

1 + 𝜅𝐹𝐸 (1 −
1

1 + 𝜇𝐺𝐸𝑠
2/𝜅𝑃𝐵𝐸

)   

1 +
𝜇𝐺𝐸𝑠

2𝑒−𝛼𝑉𝑀𝑇84𝑠
2

1 + 𝜇𝐺𝐸𝑠
2

+ (1 − 𝑒−𝛼𝑉𝑀𝑇84𝑠
4
) (𝑠−2 − 1) 
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implemented in the original and modified LibXC85package were investigated. GGA functionals, 

except PW91115and AM0587, have 9 different PBE-like functional forms. The dependence of 

exchange enhancement factor FX(s) of these 9 functionals on the reduced density gradient, i.e. s, 

is presented in Table 3 They are mainly composed of two parameters, μ and . The parameter μ 

determines the behavior at small s, whose value was set to PBE in the PBE approximation by 

cancelling second-order exchange and correlation terms. Other values inspired by the gradient 

expansion of electron gas with slowly-varying density (GE)101 or formation-energy fitting 

(FE)89 have also been used. On the other hand, parameter κ determines the behavior at large s, 

whose value was chosen to be κPBE to satisfy the Lieb–Oxford bound75. Other tightened values 

inspired by the electron liquid (κEL)116or formation-energy fitting (κFE) have been used89. The 

functional form of correlation enhancement factor FC(s) can be found in the literature75. 

Modified parameters of  in FC(s) and other parameters in FX(s) are also presented in Table 3. 

Finally, the dispersion correction in the Grimme D3(BJ) formalism117-118 was applied to two of 

PBE-like functionals, PBE and PBEsol. 

  



32 

 

CHAPTER 3: Molecular dynamics analysis methods 

3.1 Diffusivity and conductivity calculation methods 

The efficiency of an electrolyte is measured through two main properties; diffusivity and 

conductivity. Ideally the two have an equivalency as described through the Nernst-Einstein 

relation in Equation 8. 

Equation 8 

 𝜎 =
(𝑧𝑖𝑒)

2𝐷𝜌

(𝑘𝐵𝑇)
 

Where  is the conductivity, zie charge of species i, D the diffusivity,  is the nominal number 

density, kB is Boltzmann constant, and T the absolute temperature. However, Equation 8 is only 

true in the limiting case of dilute solutions of noninteracting particles though it is commonly 

applied to electrolyte materials like the garnet. A correction term donated in this work by -1, the 

inverse thermodynamic factor, can be applied to the right-hand side of Equation 8 to address the 

nonideal case as expanded upon later. This work takes the approach of separating the 

“diffusivity” into two forms, the self-diffusivity (𝐷𝛼
∗); which captures the motion of individual 

particles, and the Fickian (𝐷𝛼𝛼) or collective diffusivity, that describes how the ensemble mass 

flux of particles moves. It is the ladder that can therefore be used make the mass-charge 

equivalency possible because it more closely relates to the drift velocity of the ions. 

To obtain the kinetic/dynamic properties for the lithium garnet series we use two main 

approaches. First, we can calculate the mean squared displacement (MSD) 

Equation 9 

𝑀𝑆𝐷 = 〈𝑟(𝑡)0 − 𝑟(𝑡)𝑡〉
2 = 2𝑛𝐷𝑎

∗𝑡  

of ions at the long-time limit, where we expected to observe Fickian like diffusion as in Equation 

9. Where r(t)0 is the initial position of a particle, r(t)t is the position at time t, n is the 
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dimensionality of the system, 𝐷𝑎
∗ is the self-diffusivity, and t is the time. As seen in Figure 6 for 

L7LZ, the MSD is not perfectly linear and each line fitting will incur some error. The causes for 

the nonlinear behavior can stem from two causes. Either the length of time for simulation was 

not long enough, which results in too few sampling events for statistical evaluation, or the 

simulation cell is too small and we are observing errors incurred from the periodic boundary 

condition. The nonlinearity was accounted for in this work by finding a region that is well into 

the simulation time and performing linear regression over a consistent time window. This 

approach however fails to address the range of possible diffusivities that could be reported at 

each temperature. 

Taking 1200 K (dark blue) as an example, if you were to fit the lines from 400 ps to 600 

ps and 600 to 800 ps, the diffusivity calculated from the first set would be almost half that of the 

second set. Such lack of precision with this approach requires caution and is wholly dependent 

upon the proper selection of a time window. This problem is exacerbated when performing 

Figure 6: Mean squared displacement  of lithium ions in L7LZ at various temperatures during a 1000 ps simulation. 
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simulations at lower temperatures where the mobility of ions decays exponentially and jump 

times approach the length of the simulation. This simpler model of calculating diffusion was 

used predominantly in the early work by Wang51 and Klenk16, 51-52 and converted to conductivity 

via the modified Nernst-Einstein equation (Equation 8).  

The limitations brought by obtaining the diffusivity via the MSD led to the development 

of a second approach, calculating the diffusivity and conductivity by way of the dynamic 

structure factor S(Q,) as you approach the hydrodynamic limit, i.e. Q→0 and →0.16 

Practically for the sake of this work, we extrapolate from the smallest Q’s (Å-1) for a given 

simulation size and equate that to be approximately the value at the limit. A formal derivation of 

this method is outlined thusly. 

3.2 Calculation of collective diffusivity 

Starting with of Onsager’s phenomenological flux equation62: 

Equation 10 

𝐽𝛼 = −∑𝐿𝛼𝛽𝛻𝜇𝛽
𝛽

 

where the flux (J) of species  is the sum of the kinetic coefficient L multiplied by the gradient 

of the chemical potential μ of species .119  With respect to the concentration gradient ∇𝑐𝛾 

Equation 10 can be rewritten to take the form: 

Equation 11 

𝐽𝛼 = −∑𝑘𝐵𝑇𝐿𝛼𝛽∑Γ𝛾𝛽
∇𝑐𝛾

𝑐𝛾
𝛾𝛽

, Γ𝛾𝛽 =
𝜕 (

𝜇𝛽
𝑘𝑏𝑇

)

𝜕𝑙𝑛𝑐𝛾
  

with the term Γ𝛾𝛽 being the thermodynamic factor, T the absolute temperature, and kB the 

Boltzmann constant.16 In the case of a charged species, the equilibrium chemical potential of 

Equation 10 can be expressed as 𝛻𝜇𝛽 = −𝑧𝛽𝑒𝛻𝜙 where z is the charge of species , e is the 
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elementary charge, and  is the electrical potential. Rewriting Equation 10 in these terms, the  

current flux can then be defined as: 

Equation 12 

𝑧𝛼𝑒𝐽𝛼 = ∑𝑧𝛼𝑧𝛽𝑒
2𝐿𝛼𝛽𝛻𝜙

𝛽

=∑𝜎𝛼𝛽𝐿𝛼𝛽𝛻𝜙

𝛽

 

with  being the species-species electrical conductivity of  and . In the case of the garnet 

system there is only one mobile species lithium, so contributions from other atoms are generally 

ignored and reduces to Equation 13.  

Equation 13 

𝜎𝛼 = (𝑧𝛼𝑒)
2𝐿𝛼𝛼 

The kinetic coefficient L of Equation 10, 11, 12, & 13 is found by taking the species 

flux density based on the density autocorrelation at the hydrodynamic limit as Q goes to zero: 

Equation 14 

𝐿𝛼𝛽 = lim
𝑄→𝑂

1

3𝑉𝑘𝐵𝑇
∫ ⟨𝐽𝛼(𝑄, 0
∞

0

) ∙ 𝐽𝛽(𝑄, 𝑡)⟩𝑒
−𝑖𝜔𝑡𝑑𝑡  

Equation 15 

𝐽𝛼(𝑄, 𝑡) =  ∑𝑤𝑎𝑣𝛼
𝑘(𝑡)

𝑁𝛼

𝑘=1

𝑒−𝑖𝑄∙𝑟𝛼
𝑘(𝑡) 

where 𝑣𝛼
𝑘  and 𝑟𝑎

𝑘 is the velocity and position of the kth atom of  at time t, ω being the angular 

frequency, and V the volume of the simulation cell. The term 𝐽𝛼(𝑄, 𝑡) represents the coherent 

scattering of species  at time t and is the reformulation of the Kubo formula in Fourier space.120 

Equation 16 

𝐽𝛼(𝑄, 𝑡) =  ∑𝑤𝑎𝑣𝛼
𝑘(𝑡)

𝑁𝛼

𝑘=1

𝑒−𝑖𝑄∙𝑟𝛼
𝑘(𝑡) 
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The additional term wa is a weighting factor based upon whether we are looking at collective 

particle, charge, or mass correlation The correlation of velocity for species  at time zero 

,𝐽𝛼(𝑄, 0) with that of species  at time t, 𝐽𝛽(Q,t), can take two forms as is expressed in Equation 

17, 

Equation 17 

𝐶𝛼𝛽
𝐿 (𝑄, 𝑡) =  

1

𝑄2
〈(𝑄 ∙ 𝐽𝛼(𝑄, 0)) (𝑄 ∙ 𝐽𝛽(𝑄, 𝑡))〉 

𝐶𝛼𝛽
𝑇 (𝑄, 𝑡) =  

1

2𝑄2
〈(𝑄 × 𝐽𝛼(𝑄, 0)) (𝑄 × 𝐽𝛽(𝑄, 𝑡))〉 

with 𝐶𝛼𝛽
𝐿  𝑎𝑛𝑑 𝐶𝛼𝛽

𝑇  being the longitudinal and transverse velocity correlations. Assuming 

isotropic diffusion behavior, at the limit as Q→0 the longitudinal component goes more quickly 

to zero, while the relativity slower decaying transverse component can be used to obtain the 

kinetic coefficient by taking the Laplace transform in the time domain.62 The rate of decay for 

the longitudinal and transverse velocity correlations is displayed for L7LZ at 1400 K in Figure 7. 

The different weighting factors and their respective properties derived by the coherent 

correlation are shown in Table 4. 

 

Table 4: Properties derived by changing the weighting factor in Equation 16 

Property 
Weighting 

factor 
Equation 

Diffusivity (unity) 1nw =  
,

00
0

1
lim ( , )T unit i t

B

D C Q t e dt
Vk T







→
→

= Q
 

Conductivity (charge) n nw z e=  
,

00
0

1
lim ( , )T charge i t

B

C Q t e dt
Vk T








→
→

= Q
 

Sound/shear viscosity 

(mass) 
n nw m=  

2
,

2 00
0

1
lim ( , )T mass i t

B

C Q t e dt
Vk T Q










→
→

= Q
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3.3 Practical considerations for fast-ion conductors 

With only one mobile species it is possible to rewrite Equation 11 in terms of Fick’s first 

law looking at the number flux for a collection of a single species. (Equation 18) 

Equation 18 

𝐽𝛼 = −∑
𝑘𝐵𝑇𝐿𝛼𝛼Γ𝛾𝛼

𝑐𝛾
∇𝑐𝛾

𝛾

, 𝐷𝑎𝛼 = 
𝑘𝐵𝑇𝐿𝛼𝛼Γ𝑎𝛼

𝑐𝑎
 

The terms between the summation and concentration gradient can then be considered as the 

Fickian or collective diffusivity 𝐷𝑎𝛼. Using 𝐷𝛼𝛼 from Equation 18 it is possible to rewrite 

Equation 13 to the thermodynamically corrected Nernst-Einstein equation as in Equation 19. 

Equation 19 

𝜎𝛼 = (𝑧𝛼𝑒)
2 (
𝐷𝛼𝛼
𝑘𝐵𝑇

) (𝑐𝛼Γ
−1) = (𝑧𝛼𝑒)

2 (
𝐷𝛼
𝜎

𝑘𝐵𝑇
) (𝑐𝛼) , 𝐷𝛼

𝜎 = 𝐷𝛼𝛼Γ
−1 

Figure 7: The Li–Li  velocity autocorrelation in the longitudinal (Black) and 

transverse (red) scattering directions. 
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Where 𝐷𝛼
𝜎 is the conduction diffusivity, or the thermodynamically corrected collective 

diffusivity, which corrects for the finite scale of our small simulations cells and takes them to the 

thermodynamic limit of infinite media. 

This is in contrast to the tracer or self-diffusivity (𝐷𝛼
∗ ) which is commonly employed to 

make conductivity calculations. To obtain 𝐷𝛼
∗  you can use MSD as described above or the 

velocity autocorrelation function for individual particles as in Equation 20. 

Equation 20 

𝐷𝛼
∗ =

1

3
∫

1

𝑁𝛼
∑〈𝑣𝛼

𝑘(0) ∙ 𝑣𝛼
𝑘(𝑡)〉𝑑𝑡 =

1

6
lim
𝑡→∞

1

𝑁𝛼
∑〈|𝑟𝛼

𝑘(𝑡) − 𝑟𝛼
𝑘(0)|2 〉

𝑁𝛼

𝛼=1

𝑁𝑎

𝑘=1

∞

−∞

 

Equation 20 is a generalization of Equation 9 defining the average displacement of all individual 

particles over some time. A simple analogy can be made to see the contrasting nature of 

𝐷𝛼
∗  and 𝐷𝛼

𝜎 . 𝐷𝛼
∗  finds how far individual particles travel and then averages them to get an average 

displacement, while 𝐷𝛼
𝜎 averages the position of the particles and measures how far they 

collectively displace or the rate at which the collection moves. We choose to replace 𝐷𝛼
∗  with 𝐷𝛼

𝜎 

in our calculations because the collective motion captured in 𝐷𝛼
𝜎 is more representative of the 

current flux which is measured experimentally using impedance spectroscopy. 

We have outlined here three different ways of calculating the conductivity of lithium in 

the garnet system. The simplest and quickest route would be to calculate the self-diffusivity via 

the mean squared displacement, but the distinction between self and collective diffusivity is lost 

potentially making the analysis of conductivity unrepresentative of the true system dynamics. 

Rather, we could calculate the collective diffusivity by applying a weighting factor of one to 

Equation 16, and proceed by evaluating Equation 14, Equation 18, and Equation 19. This method 

will take computationally longer but it will calculate the collective motion of mobile species. It 

does however introduce two complicating terms, -1 and c. -1 will be addressed further but 
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determining the proper value of c, the concentration of  is not clear. It is common to take the 

concentration to equal to the total number density of the mobile species, but this could be 

problematic if not all species are moving during the correlation time. It is possible that -1
 may 

also account for this concentration discrepancy, but more work needs to be performed to validate 

this assumption.  

The third method for calculating the conductivity would be to directly evaluate the 

correlation with the charge of the species as shown in Table 4. Now the concentration should be 

accounted for by direct computation of charge flux. However, this will be the most 

computationally expensive method, requiring sufficient simulation and correlation times. 

Ongoing work is evaluating the Q dependence of conductivity using this method in order to 

ensure convergent behavior is observed. At the completion of this work, the best method for 

conductivity calculation is not clear, and will continue to be an area of interest for further 

research. 

3.4 Dynamic structure functions : G(r,t), S(Q,ω), & I(Q,t) 

The dynamics of a multi-component material with n different chemical species can be 

described by the total number density function, 

Equation 21 

𝜌𝑖(𝑟, 𝑡) =  ∑𝛿[𝑟 − 𝑟𝑖,𝑘(𝑡)]

𝑁𝑖

𝑘=1

 

 where r is an arbitrary position in the material, 𝑟𝑖,𝑘(𝑡) is the position of kth atom of species i at 

time t, and Ni is the total number of atoms in species i. The correlation of the number density is 

the total van Hove correlation function62. (Equation 22) 
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Equation 22 

𝐺𝑖𝑖(Δ𝑟, Δ𝑡) =  
1

𝑁
〈∑∑𝛿

𝑁

𝑙=1

𝑁

𝑘=1

[Δ𝑟 + 𝑟𝑖,𝑘(0) − 𝑟𝑖,𝑙(Δ𝑡)] 〉 

Equation 22 can be split into two parts, the “self-part” 𝐺𝑖𝑖,𝑠(𝑟, 𝑡) and a “distinct-part” 𝐺𝑖𝑖,𝑑(𝑟, 𝑡) 

for when k = l and k ≠ l respectively. 

Equation 23 

𝐺𝑖𝑖,𝑠(Δ𝑟, Δ𝑡) =  
1

𝑁
〈∑𝛿[Δ𝑟 + 𝑟𝑖,𝑘(0) − 𝑟𝑖,𝑙(Δ𝑡)]

𝑁

𝑘=𝑙

 〉 

𝐺𝑖𝑖,𝑑(Δ𝑟, Δ𝑡) =  
1

𝑁
〈∑ ∑ 𝛿

𝑁

𝑘≠𝑙=1

𝑁

𝑘=1

[Δ𝑟 + 𝑟𝑖,𝑘(0) − 𝑟𝑖,𝑙(Δ𝑡)] 〉 

The self-part calculates the probability of finding an atom after some time Δ𝑡 at a distance of Δ𝑟. 

While the distinct part shows the probability of finding an atom when centered about a different 

species of atom. These functions show the dynamic relationship of lithium diffusion by 

combining the spatial relationship of pair-distribution function with the motion of the mean 

squared displacement, allowing you to see a time evolution of the probability density. 

When Δt = 0, Gii(Δr,Δt) reports the “static” correlation and can be written as 

Equation 24 

𝐺𝑖𝑖(Δ𝑟, 0) = 𝛿(Δ𝑟) + 𝜌𝑖𝑔𝑖𝑖(Δ𝑟) 

with gii(Δr) is the “static” atomic pair distribution functions and the number density  is Ni/V. It 

is convenient to divide Gii by  in order to obtain a normalization as is done in this work. The 

MSD is related to the von Hove correlation by, 

Equation 25 

〈Δ𝑟𝑖(𝑡)
2〉 = ∫ (∆𝑟)2 ∙ 4𝜋(∆𝑟)2𝐺𝑖𝑖,𝑠(∆𝑟, ∆𝑡)

∞

0

𝑑∆𝑟 



41 

 

further, 〈Δ𝑟𝑖(𝑡)
2〉 and 4𝜋(∆𝑟)2𝐺𝑖𝑖,𝑠(∆𝑟, ∆𝑡) can be approximated for oscillation-type dynamics 

by, 

Equation 26 

4𝜋(∆𝑟)2𝐺𝑖𝑖,𝑠(∆𝑟, ∆𝑡) = 4𝜋(∆𝑟)
2

1

(𝜋𝑢𝑖
2)3/2

exp [−
(∆𝑟)2

𝑢𝑖
2 ] , 〈Δ𝑟𝑖(𝑡)

2〉 =
3

2
𝑢𝑖
2 

where 𝑢𝑖
2 is the average displacement parameter. If the process is a continuous random walk then 

Equation 27 

4𝜋(∆𝑟)2𝐺𝑖𝑖,𝑠(∆𝑟, ∆𝑡) = 4𝜋(∆𝑟)
2

1

(4𝜋𝐷∆𝑡)3/2
exp [−

(∆𝑟)2

4𝐷𝑡
] , 〈Δ𝑟𝑖(𝑡)

2〉 = 6𝐷∆𝑡 

with D being the diffusivity of the atom.  

While the van Hove correlation function gives an intuitive perspective on how to imagine 

the probability of particle motion, real world experiments typically measure the features of the 

van Hove correlation in Q and ω space related by the four-dimensional Laplace transform of the 

G(r,t). 

Equation 28 

𝑆(𝑄,𝜔) =
1

2𝜋
∫𝑑𝑡 𝑒−𝑖𝜔𝑡∫𝑑𝑟 𝑒𝑖𝑄∙𝑟𝐺(𝑟, 𝑡) 

S(Q,ω) being the dynamic structure factor, or scattering function, tells us the intensity at which Q 

dependent scattering events occur during an experiment. We measured S(Q,ω) directly using 

quasi-elastic neutron scattering (QENS), on the BASIS instrument at Oak Ridge National Lab. 

In a QENS experiment the number of scattered neutrons is measured as a function of the 

momentum energy transfer for collision events at specific scattering angles. The amount of 

energy transfer is in the range of one hundred μeV, resulting in features that manifest as a 

broadening of elastic peak. In our garnet system, incoming neutrons will scatter off mobile 

lithium coherently and incoherently relating to the self and distinct van Hove correlations.119  
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Equation 29 

𝑆𝑖𝑛𝑐(𝑄, 𝜔) =  
1

2𝜋
∫𝑑𝑡 𝑒(−𝑖𝜔𝑡)∫𝑑𝑟 𝑒(𝑖𝑄∙𝑟)𝐺𝑖𝑖,𝑠(𝑟, 𝑡) 

𝑆𝑐𝑜ℎ(𝑄,𝜔) =  
1

2𝜋
∫𝑑𝑡 𝑒(−𝑖𝜔𝑡)∫𝑑𝑟 𝑒(𝑖𝑄∙𝑟)𝐺𝑖𝑖,𝑑(𝑟, 𝑡) 

When plotting S(Q,ω) as a function of energy transfer, the resulting spectrum will comprise of 

three major components. The elastic response comprising most of the scattered information, is 

modeled by a delta function where there is no change in neutron energy after scattering off an 

element. A background function, which is applied to account for instrumental noise. Lastly, a 

Lorentzian peak, used to capture the small changes in energy transfer as a function Q and 

temperature. Taking the half width half max (HWHM, Δ(Q)) of the Lorentzian, and plotting 

versus Q2, one can extract out the diffusivity based upon the shape of the plot, signifying 

different modes of diffusion. 

We looked at four different models as to describe the specific types of motion that could 

occur in the garnet sample. The most basic model would be that of continuous motion as 

described by Fick’s first and second law62. At the small Q limit where we are probing long time 

and distance scales, all models should reduce to the linear form of  ΔΓ(𝑄) = 𝐷∗𝑄2. If the motion 

of particles follows a jump diffusion model, as Q→0 applying a Fickian model is applicable 

when extrapolating from the smallest two or three Q’s from the experiment.  

There are three jump diffusion models investigated in this work. A Chaudy-Elliot 

model121 (CE), which assumes a uniform jump frequency and distance. A Hall-Ross model122 

(HR), where the jump frequency is constant, and the jumps follow a gaussian distribution, 

designed to model diffusion within a confined volume. And a Singwi and Sjolander model123 

(SS), meant to capture the diffusion when a particle will alternate between vibrating about a 
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position, and directed motion. Equation 30119 lays out the expressions used to model the three 

jump mechanisms. 

Equation 30 

∆Γ(𝑄)𝐶𝐸 = 
1

𝜏
(1 −

sin(𝑄𝑑)

𝑄𝑑
) 

∆Γ(𝑄)𝐻𝑅 = 
1

𝜏
(1 − exp(−

𝑄2〈𝑟2〉

6
)) 

∆Γ(𝑄)𝑆𝑆 = 
1

6𝜏
(

𝑄2〈𝑟2〉

1 +
𝑄2〈𝑟2〉
6

) 

From these expressions it is possible to extract  the residence time and 〈𝑟2〉 is the mean jump 

length. We now have a method for directly observing the spatial jump length and residence time, 

features that independently are unobtainable through other methods. 

Each of the four models were fit to the QENS experimental data for L5LT at 

temperatures ranging from 50 K to 700 K. Figure 8 shows the fitting for L5LT to the four models 

Figure 8: QENS HWHM fitting of L5LT at 600 K for possible diffusion models. 
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at 600 K. Because of large coherent scattering at Q values larger than 1.2 Å-1 our fitting range for 

experimental S(Q,ω) makes it difficult to determine the best model for capturing the jump 

mechanics between HR and SS. Clearly CE with its sinusoidal decay at large Q does not 

adequately apply, implying that the diffusive jumps are irregular in time and length. HR and SS 

models both predict a plateauing maximum at large Q, though our data does not allow us to 

easily see this feature.  

The major difference between HR and SS models relates to the definition of the average 

jump length distribution. HR models a gaussian jump distribution, in contrast SS assumes a 

gamma distribution and captures more short hopping events. A plot of Δ𝜔(𝑄) vs Q2 for the two 

models shows a more rapidly converging plateau for the HR model, while the SS model will 

gradually approach the maximum. Despite both models being reasonably fit to our data, the 

descriptive definition of the SS model more closely matches what we see in the garnet system 

and is the jump model used for determining the average jump distance and site residence time. 

A convenient means of relating G(r,t) and S(Q,ω) is to transform one variable in each 

function to make what is known as the intermediate scattering function I(Q,t). This partial 

transformation of G(r,t) by Equation 31, 

Equation 31 

𝐼(𝑄, 𝑡) =  ∫𝑑𝑟 𝑒(𝑖𝑄∙𝑟)𝐺(𝑟, 𝑡) 

translates the real space component r to the Fourier space Q. Taking the Laplace transform of 

S(Q,ω) on the other hand changes the time variable from frequency to real time by Equation 32. 

Equation 32 

𝐼(𝑄, 𝑡) = ∫𝑑𝜔 𝑒(𝑖𝜔𝑡)𝑆(𝑄, 𝜔) 
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When modeling using molecular dynamics, it is possible to calculate the species-specific 

incoherent intermediate scattering function as,  

Equation 33 

𝐼𝑖𝑛𝑐,𝛼(𝑄, 𝑡) =
1

𝑁𝛼
⟨∑𝑒𝑖𝑄⋅𝑟𝑛

𝛼(0)𝑒−𝑖𝑄⋅𝑟𝑛
𝛼(𝑡)

𝑁𝛼

𝑛=1

⟩ 

where 𝑁𝛼 is the number of atoms in species  and 𝑟𝑛
𝛼(𝑡) is the position of nth atom at time t. The 

allowed 𝑄 values are 

Equation 34 

𝑛𝑥2𝜋

𝐿𝑥̂
+
𝑛𝑦2𝜋

𝐿𝑦̂
+
𝑛𝑧2𝜋

𝐿𝑧̂
 

where 𝐿 is the lattice parameter, 

𝑛𝑥
𝑛𝑦

𝑛𝑧
 the integers, and 

𝑥̂

𝑦̂

𝑧̂
 the unit Cartesian vectors. The neutron-

weighted coherent ISF is than calculated according to 

Equation 35 

𝐼𝑐𝑜ℎ
𝑁 (𝑄, 𝑡) = ⟨∑𝑏𝑐𝑜ℎ,𝑛𝑒

𝑖𝑄⋅𝑟𝑛(0) ∑ 𝑏𝑐𝑜ℎ,𝑚
∗ 𝑒−𝑖𝑄⋅𝑟𝑚(𝑡)

𝑁𝑡

𝑚=1

𝑁𝑡

𝑛=1

⟩ 

where 𝑏𝑐𝑜ℎ is the coherent scattering length (0 for shells) and 𝑁𝑡 is the total number of particles.  

The total neutron-weighted ISF is then the sum of coherent and incoherent contributions,  

Equation 36 

𝐼𝑐𝑜ℎ+𝑖𝑛𝑐
𝑁 (𝑄, 𝑡) =

[𝐼𝑐𝑜ℎ
𝑁 (𝑄, 𝑡) + ∑ 𝑁𝛼𝐼𝑖𝑛𝑐,𝛼(𝑄, 𝑡)

𝜎𝑖𝑛𝑐,𝛼
2

4𝜋
𝑛𝛼
𝛼=1 ]

∑ 𝑁𝛼
𝜎𝑖𝑛𝑐,𝛼
2

4𝜋
𝑛𝛼
𝛼=1

 

(arbitrarily weighted by the total incoherent scattering power), where 𝑛𝛼 is the number of species 

and 𝜎𝑖𝑛𝑐
2  the incoherent scattering cross section (0 for shells).  The coherent and incoherent 
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scattering parameters of the elements based on the natural abundance of isotopes (except for Li 

where values from 7Li isotope were used) are shown in Table 4 

Table 5: Coherent and incoherent scattering powers of elements involved in the present study. 

 7Li La Ta Zr O 

𝑏𝑐𝑜ℎ (fm) -2.22 8.24 6.91 7.16 5.803 

𝜎𝑖𝑛𝑐
2  (fm2) 0.0078 0.0113 0.0001 0.0002 0.000008 

 

Because the signal from a QENS experiment takes the form of a Lorentzian peak for 

mobile species, taking the Laplace transform of the peak yields an exponentially decaying 

function in I(Q,t). Fitting the exponential is equivalent to the Lorentzian fitting of S(Q,ω), and 

can be used as a means of calculating the self-diffusivity of the mobile species by evaluating the 

Q dependence of the decay. 

The relaxation of I(Q,t) for the garnet system did not appear to conform to strictly 

exponential decay and the stretched exponential model of Kohlrausch-Williams-Watts 

(KWW)124 was applied. 

Equation 37 

𝐼𝐾𝑊𝑊(𝑄, 𝑡) = exp(−[Γ𝐾𝑊𝑊(𝑄)𝑡]𝛽(𝑄)) 

KWW is the relaxation frequency, and  is the stretching parameter. Taking 1/KWW will yield 

the relaxation time and the mean relaxation rate can be obtained from 
Γ𝐾𝑊𝑊(𝑄)𝛽−1

𝐺(𝛽−1)
 when G is the 

gamma function. Comparisons between the experimentally observed S(Q,ω) and simulated I(Q,t) 

were performed by transforming the HWHM of S(Q,ω) from units eV to frequency and fitting 

the HWHM from experiments to the calculated KWW.  
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3.5 Thermodynamic factor 

One of the fundamental problems when running simulations is the relatively small 

number of particles being simulated when compared to the number of species in an experiment. 

This difference of scale means it is likely that a  property derived from the finite sampling using 

statistical mechanics may differ from one observed at the thermodynamic limit.125-127 Such a 

property as discussed previously is the ionic conductivity. If a system is dilute and 

noninteracting, the inverse thermodynamic factor equals one, (Γ−1 = 1)  evaluating the 

conductivity of the system is equivalent to the basic Nernst-Einstein equation. As the particles in 

the system interact more and more, the value of Γ−1 will decrease proportionally to the degree of 

interaction.128 When performing simulations on the garnet series, as done in this work, if you 

simply derive the diffusivity from the mean squared displacement and apply the Nernst-Einstein 

equation, the calculated conductivity will be overestimated by about an order of magnitude.  

Γ−1 is defined as the change in number density of particles with respect to a change in 

chemical potential. Numerically one can evaluate this expression as done in Equation 38 

Equation 38 

Γ−1 = [
𝜕𝑙𝑛〈𝑁𝛼〉

𝜕 (
𝜇𝛽
𝑘𝑏𝑇

)
]

𝑇,𝑉,𝜇𝛾≠𝛽

𝜕𝑙𝑛〈𝑁𝛼〉

𝜕 (
𝜇𝛽
𝑘𝑏𝑇

)
=  
〈𝑁𝛼𝑁𝛽〉 − 〈𝑁𝛼〉〈𝑁𝛽〉

〈𝑁𝛼〉
=  
〈(𝑁𝛼 − 〈𝑁𝛼〉)(𝑁𝛽 − 〈𝑁𝛽〉)〉

〈𝑁𝛼〉
 

by selecting a fixed volume within a microcanonical (NVE) simulation and measuring the 

difference between the number of particles at some point in time with the average number of 

particles in the sub-volume. Effectively this sub-volume now models a grand canonical system 

freely exchanging particles with those outside of the sub-volume. This results in energetically 

discrete configurations while the entire simulation remains at constant energy. Selection of an 

appropriate sub-volume was explored with the goal of finding a sub-volume with enough species 
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to adequately provided minimal variations in the total number of particles, while still being small 

enough as to not envelope the entire simulation cell and provide no reservoir for particle 

exchange or exhibit self-reinforcing through the periodic boundary.  

To test the validity of an appropriate sub-volume, classical MD simulations were 

performed for 1 ns on L7LZ with varying simulation sizes ranging from a 1 x 1 x 1 unit cell, to a 

4 x 4 x 4 supercell. A MATLAB script was generated in order to divide each simulation cell into 

smaller sub regions and track the particle count over the last 500 ps of a simulation. As can be 

seen in Figure 9 the magnitude of -1 is dependent on both the absolute size of the simulation as 

well as the size of the sub-volume within the simulation. As the size of the simulation increases it 

is possible to probe larger sub-volumes and thus provide a more appropriate representation of 

continuum behavior. In such an experiment, we hope to find converging behavior in order to 

maximize the efficiency of the simulation and produce meaningful insights. Based upon other 

Figure 9: Finite size effects of -1 for L7LZ at 1400 K for 1 x 1 x 1  to 4 x 4 x 4 simulation cells. (a) Absolute magnitude of -1 

as a function of the inverse length of the sub-volume, solid lines denote guides to the eye. (b) -1 as a function of the volume 

ratio of the sub-volume and the simulation cell with a third order polynomial fit. 

(a) (b) 
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factors related to proper phase behavior, a 3 x 3 x 3 cell appears to have mostly identical 

properties to the 4 x 4 x 4 simulation cell and deemed sufficient for further evaluation.  

But as can be seen in Figure 9 there is still the question of what an appropriate sub-

volume is even within a specific simulation size. For 1 x 1 x 1 the simulation cell is too small to 

reasonably provide statistical significance and this method should not be used. 2 x 2 x 2 

simulations allow for the inclusion of a 1 x 1 x 1 cell centered within the 2 x 2 x 2 total volume, 

and this appears to be a decent benchmark for such a sized simulation. In our first 

implementation of this technique, 2 x 2 x 2 simulations were sub divided into two sizes, one at 

1/8 the total volume and 1/16 the total volume. These two values were averaged and applied to 

Equation 8 to find the final conductivity.  

A refinement on this technique was attempted by increasing the number of sub-volumes 

within the simulation, until the entire simulation space was covered, averaging among the sub-

volumes, and performing this for many possible sub-volume sizes. Figure 9 (b), plots -1 versus 

the ratio of the sub-volume to the total volume of the simulation cell. To account for the 

uncertainly in selecting a specific sub-volume, we attempted to fit -1 with lines, third order 

polynomials, and fourth order polynomials in order to extrapolate -1 at Vsub/Vcell = 0. There was 

also an attempt at linear fitting by selecting Vsub/Vcell values in the mainly linear region between 

0.2 and 0.8, but ultimately felt that the manual selection of an appropriate region was not 

rigorous enough to confidently predict conductivity values. For the third and fourth order 

polynomials, the entire Vsub/Vcell range was fit, however because of the rapid increase of -1 at 

low Vsub/Vcell, it is likely that the extrapolated value of -1 would under correct when applied to 

Equation 19 resulting in an over estimation of conductivity. 
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Kirkwood and Buff129 first showed that thermodynamic properties such as partial molar 

volumes and activity coefficients can be solved for by integrating pair correlation functions in 

real space. Krüger et al130 expanded upon this by attempting to apply the theories of Kirkwood 

and Buff to liquid finite systems like those in a molecular dynamics simulation. The number 

density fluctuation can be obtained by integrating g(r), the pair distribution function, with an 

analytic expression for the Dirac delta functions in three dimensions (Equation 39).130-131  

Equation 39 

〈𝑁𝛼𝑁𝛽〉 − 〈𝑁𝛼〉〈𝑁𝛽〉

〈𝑁𝛼〉〈𝑁𝛽〉
=
1

𝑉
∫[𝑔(𝑟𝛼𝛽) − 1]𝑑𝑟𝛼𝛽 + 𝛿𝛼𝛽

1

〈𝑁𝛼〉
=𝐺αβ

𝑉 + 𝛿𝛼𝛽
1

〈𝑁𝛼〉
 

In the case of the garnet system, with the assumption that the Li distribution is random, at large 

values of r we would expect g(r) to converge to one like a liquid solution. We attempted to 

extrapolate the value of -1 as r→ by applying a window function and performing linear 

regression on the oscillating signal. 

As can be seen in Figure 10 (A) the g(r) for Li does not nicely converge to one within the 

range of simulation cells tested. It appears that the distribution of lithium has some form of order 

within the volume explored in this work. The resulting plot shows nonuniform bumps in g(r) 

similar to that of a semi-crystalline material at large values of r. Failing to converge neatly to one 

results in the decaying oscillatory signal obtained in Figure 10 (B) making the extrapolation at 

r→ difficult to determine. This technique while more rigorous than the fluctuation describe 

previously, does not appear applicable to the garnet as tested because the Li distribution is too 

dissimilar to that of a liquid in which this approach was formulated. 
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Being limited to half the simulation size, makes the extrapolation as r goes to infinity 

quite difficult because there will always be a question as to whether making the simulation size 

any larger will result in more useful information at the expense of expediency. One possible 

method of alleviating this problem is to obtain -1 by taking the Fourier transform of g(r) or 

directly evaluating the static structure factor S(Q) at the limit as Q→0 (Equation 40).  

Equation 40 

⟨𝑁𝛼𝑁𝛽⟩ − ⟨𝑁𝛼⟩⟨𝑁𝛽⟩

⟨𝑁𝛼⟩⟨𝑁𝛽⟩
= lim
𝑄→𝑂

𝑆𝛼𝛽(𝑄, 0) ,  𝑆𝛼𝛽(𝑄, 0) =
1

𝑁𝛼𝑁𝛽
⟨∑ 𝑒𝑖𝑄∙𝑟𝛼(0)
𝑁𝛼

𝛼=1

∑𝑒−𝑖𝑄∙𝑟𝛽(0)

𝑁𝛽

𝛽=1

⟩ 

This method allows for the use of the smallest Q vector possible form a given simulation cell. 

Which in turn is longer than the half of a simulation cell we are limited to in the previous method 

and used to calculate -1 for our core-only models. 

Figure 10: Simulated Li–Li  PDF for L7LZ at 1400 K for various simulation cell sized.  

(a) (b) 
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3.6 Excess entropy 

As previously stated, it is thought that the transformation from tetragonal to cubic for 

L7LZ at high temperatures is driven by an increase in the entropy associated with going from an 

ordered to disordered lithium sublattice. Evidence to this point is inferred from scattering 

experiments that show the lithium symmetry breaking about tetrahedral and octahedral sites but 

quantifying the change in entropy and determining whether it is a first or higher order phase 

transformation process is still debated. By adopting the ideas of both Gibbs’ entropy and 

Shannon’s information entropy and applying them to the probability of an atom being located in 

a specific region it is possible to compare the relative amount of disorder being introduced by the 

addition of heat or through substitution.132 

Information theory defines entropy as the measure of how much more information is 

required to define the exact state of a system132. For a statistical mechanical system this translates 

to determining the probability for a particle to occupy a microstate at that energy, the more 

particles and possible microstates, the more information required to define the system When 

performing a constant number, volume, and energy (NVE) MD simulation we are probing the 

configurational space at a specific energy, identifying possible configurational microstates. If we 

track the position of each atom during the simulation, we can determine the probably that a 

particle will occupy some small volume called a voxel. Voxels are three dimensional pixels and 

act as an analog to a microstate as only one atom can occupy a voxel at a time. In this work each 

voxel is 0.1 Å in length, ensuring a constant voxel volume at the expense of constant voxel 

number.  
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The probability of a voxel being occupied is calculated by summing the number of times 

a voxel is occupied divided by the total number of frames in the simulation. Plugging the 

probability into Shannon’s entropy equation for the configurational entropy. (Equation 41) 

Equation 41 

 𝑆𝑐 = −𝑘𝐵∑𝑝𝑖 ln 𝑝𝑖 

we then determine the entropy of a given garnet composition. Because each composition of 

garnet has different number of total lithium, absolute unit cell length, and voxel number making 

a direct comparison of  entropy in each simulation cannot be performed. To make a relative 

comparison possible we calculate amount of normalized excess entropy generated by the 

addition of additional lithium. The normalized excess entropy is defined as 

Equation 42 

𝑆𝑒𝑥 = 
𝑆𝑐 − 𝑆𝑖
𝑆𝑖

 

where Sex is the normalized excess entropy, and Si is the ideal entropy. The ideal entropy is taken 

classically as the Boltzman entropy, where each voxel has equal probability of being occupied.  

A helpful analogy to explain how Shannon entropy works is the case of a fair and a 

biased coin. Plugging a fair coin in to Equation 41 yields a result of one. While in the case of a 

coin with a 33% chance of being heads Equation 41 would be 𝑆𝑐 = −0.33 log2(0.33) −

0.77 log2 0.77 ≈  0.82. In this system the amount of excess entropy would be -0.18, meaning 

under ideal circumstances, a fair coin introduces more disorder than a biased one. In the limiting 

case of a double-sided coin Sc = 0, and the state can be determined absolutely. 

We use the same type of evaluation in this work. The more ordered the system, the 

smaller the normalized excess entropy. As more lithium is added or when the temperature is 

increased, it is expected that the amount of entropy will increase. It is suspected that a 
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composition with a larger excess entropy is correlated with a larger diffusivity and it may be 

possible to use excess entropy calculations in the future as a means of identifying highly 

conductive materials without having to perform the more computationally expensive correlation 

evaluations. 

We make a visualization of voxel probability during this process by generating a nuclear 

density map. The resulting file can be used to generate isosurface plots which represent the three-

dimensional probability distribution function. These isosurface plots are like long exposure 

photographs allowing us to see the diffusion network for lithium by superimposing the positions 

occupied by the species throughout the simulation. By comparing the isosurface plots across 

temperature and composition for the garnet series we can visually see the changes in diffusivity 

and site occupancy allowing for an intuitive look at the dynamic processes.  
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3.7 Statement on structure of this thesis 

With the background and methods established in Chapter 1-3, Chapter 4 turns to the 

application of the acquired information to the lithium garnet series of ionic conductors. I begin 

by first looking into the phase transformation behavior of LLZ through DFT-MD simulations. It 

is critical that a model accurately captures the proper dynamic response upon heating in terms of 

lattice expansion coefficient and phase transformation behavior. As stated above the XC 

functional is a selectable parameter when running these types of simulations and choosing the 

right one for a system is typically a matter of trial and error. We took a look at 14 different XC 

functionals in this work, and while by no means encompass the total number of functionals in the 

literature, it made a representative sample for the most commonly used by other researchers. 

Because DFT is a higher-level simulation experiment, it is often used as the premier simulation 

method for materials. Results from DFT are commonly used to form model parameters for lower 

level simulations like classical MD as done in this work. From this work we can gain a context 

as to how our lower level perform and evaluate sources of deviation in our classical MD models. 

In Chapters 5 & 6 we evaluate the performance of the first classical MD model used in 

the course of this study, the “core-shell” model. Here we establish an understanding of the 

dynamics involved in lithium motion. Chapter 5 compares and contrasts the behavior of the two 

end member compositions in Li7-xLa3Zr2-xTaxO12 (x=0, 2) by first evaluating our ability to 

capture structural and diffusive behavior consistent with experimental results and then by 

evaluating the local environment of lithium, and how the differences in environment effect the 

macroscopic properties. The compositions chosen represent two model materials within the 

garnet series, each containing only one type of element in the Ta/Zr site so combinatorial effects 

are negated. L5LT is the ideal cubic garnet, with lithium fully disordered about its sublattice, 
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contrasting with L7LZ with its ordered lithium sublattice and low temperature tetragonal phase. 

It is here we also introduce our first correlation function, the von Hove correlation function, 

laying the groundwork for the evaluation of diffusivity by QENS and the calculation of the 

intermediate scattering function. 

The properties of L5LT are expanded upon in Chapter 6 as we investigate the self- 

diffusivity through experimental QENS measurements and the simulated intermediate scattering 

functions. This novel work establishes QENS as a viable technique in the study of lithium-ionic 

conductors. The results of this study are meant to support the dynamic processes previously 

reported for the garnet series.  

Chapter 7 takes a look at a new simulation model, that of the “core-only” verity. This 

model was created to act as a more efficient means of calculating simulation trajectories by 

eliminating the calculations involving the shell in the previous work. This allows us to lengthen 

the timestep for each frame in our simulation by no longer requiring us to capture the very fast 

electron polarization while simultaneously allowing us to use a more efficient simulation 

program utilizing a domain decomposition algorithm in way of a replicated data strategy. The 

validity of this new model is then tested on the model material L7LZ at various simulation sizes 

to confirm convergent property behavior.  

Lastly, Chapter 8 culminates our efforts in model selection and analysis techniques by 

looking at a range of possible lithium concentrations within the garnet series. This work was 

performed in order to investigate the role of lithium concentration on the properties of the garnet 

in order to better explain the optimal composition for use in a solid-state battery. The previous 

core-shell model used in chapter 5 and 6 was only used to model two model garnet compositions. 
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Here the efficiency of the core-only model allows for seven different Li7-xLa3Zr2-xTaxO12 (x=0, 

0.5, 1, 1.25, 1.5, 1.75, & 2) compositions.  
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CHAPTER 4: Effects of electron exchange-correlation functionals on the density functional 

theory simulation of phase transformation of fast-ion conductors: A case study in the Li 

garnet oxide Li7La3Zr2O12 

4.1 Abstract 

The phase transformation of Li7La3Zr2O12 (L7LZ) is investigated upon heating using 

first-principle molecular dynamics simulation by applying the local density approximation 

(LDA) and thirteen generalized gradient approximations (GGA) of the electron exchange and 

correlation (XC) energy functionals within the density-functional theory (DFT) framework. It 

was found that some functionals in the selected group failed to predict the phase transformation 

behavior while others predicted lattice volumes and lattice parameters larger or smaller than 

those experimentally. Of the fourteen, three functional types, PBEsol, SOGGA, and PBE2, 

exhibited behaviors consistent with the tetragonal to cubic phase transformation upon heating 

and they were able to reproduce crystallite volumes with 1.5% of the experimental values. The 

correlation of XC functional forms and their accuracy in predicting materials properties is 

discussed. 
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4.2. Results and discussion 

4.2.1. Phase behavior at 1000 K: all 14 functionals 

To first determine whether an XC functional merited further study, an initial structure of 

tetragonal L7LZ based on experimental neutron diffraction data37was heated to 1000 K to check 

if a tetragonal to cubic phase transformation could be observed, as the experimental transition 

temperature is around 900 K97-98. Figure 11 presents the results of these initial simulations by 

plotting lattice parameters (a, b, c) as a function of time. In general, lattice variation could be 

Figure 11: Time dependent lattice parameter for the 14 tested functionals at 1000 K.  
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characterized as two categories. First, systems with functionals such as LDA, PBEsol-D3(BJ), 

VMT84, WC06, PBE-D3(BJ), AM05 and PBE-FE almost always stay as a tetragonal phase in 

the duration of simulation. These functionals are categorized as the tetragonal (T) group. The 

remaining functionals exhibit moments of cubic phase before reverting back to some form of 

tetragonal structure. They are categorized as the T/C* group with varying degree of 

cubic/tetragonal volatility. 

Table 6: Summary of simulation results using different XC functionals 

XC Functional 

Lattice 

Shape Lattice Volume Error 

  (1000 K) 1000 K 900 K 700 K 300 K 

LDA84 T -2.86 -3.53 -3.51 -3.57 

PBEsol-D3 (BJ) T -2.56 

   
VMT84104 T 0.40 

   
WC06105 T 0.46 

   
PBE-D3 (BJ) T 0.77 

   
AM0575 T 1.46 1.50 1.30 0.84 

PBE-FE102 T 1.94 1.87 1.78 1.43 

PBE3100 T/C* -1.02 -1.25 -1.00 -0.01 

SOGGA101 T/C* -0.36 -0.43 -0.45 0.72 

PBEsol105 T/C* 0.31 0.35 0.23 -0.01 

RGE2116 T/C* 2.70 

   
PW91113 T/C* 3.87 3.81 3.49 2.97 

PBE86 T/C* 4.30 4.12 3.87 3.35 

RPBE115 T/C* 8.17       
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In Table 6, we present the quantitative comparison of lattice volume at 1000 K obtained 

from simulation to that of extrapolated X-ray diffraction data from Matsuda98. We can see that 

lattice volumes are delimited by LDA (smallest) and RPBE (largest), which can be correlated to 

how the exchange energy depends on the reduced gradient, to be shown in Figure 16. LDA and 

PBEsol-D3(BJ) functional underestimate the volume by more than 2%, while PBE, PW91 and 

RPBE functionals overestimate the volume by more than 3%. Some of the newer functionals 

specifically designed for solids, e.g. AM05, WC06, SOGGA, PBEsol are able to predict volume 

values within 1.5%. These two observations were also made in several other studies of effect of 

XC functionals89-96. Other more recent functionals such as VMT84, PBE-FE, PBE2, and RGE2 

have scattered success in obtaining values consistent with experiments. 

While VMT84 predicts a very accurate lattice volume, it does not predict the right phase 

behavior. Both PBE-FE and RGE2 slightly overestimate while PBE2 slightly underestimates the 

volume. When we compare dispersion corrected and non-corrected functionals, it seems that 

addition of dispersion energy reduces the lattice volume, which brings lattice volume from PBE-

D3(BJ) close to experimental values and leads to underestimation from PBEsol-D3(BJ). This 

observation is similar to those reported in the literature on strongly and weakly bound 

materials96. 

4.2.2. Lattice parameters at all temperatures: 8 functionals 

Based on results in Figure 11/Table 6 and popularity of functionals in the field, we further 

selected 8 functionals, i.e. AM05, LDA, PW91, PBE-FE, SOGGA, PBEsol, PBE, and PBE2, to 

perform simulations at lower temperatures (300, 700, and 900 K) to investigate the phase 

transformation and lattice volumes. Plots of the time dependent lattice parameters at 300 K, 700 

K, and 900 K, can be found in Figure 13, Figure 14, and Figure 12 respectively. 
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The 900 K trials are of particular interest because the response of the cell at or near the 

transition temperature can very widely throughout the time of the simulation. It appears the eight 

functionals that we decided to evaluate further remain consistent with their 1000 K analogs with 

a major exception being the response of LDA. In the 1000 K simulation LDA consistently 

maintains a tetragonal structure over the length of our averaging time, however it is clear at 900 

K LDA is capable of capturing the phase transformation, its susceptibility to over-binding still 

makes it a poor candidate as an XC functional to use in the garnets. 

The 300 and 700 K simulations well below the transition temperature for this material 

show consistent tetragonal phases in agreement with our expectations. It is evident from 

comparing the lattice parameters at these temperatures which models will over-bind (LDA), and 

which will under-bind (AM05, PBE). The other five functionals evaluated overall have quite 

good agreement with experimental measurements. 

Figure 12: Time dependent lattice parameters for 8 XC functionals at 900 K 
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Figure 13: Time dependent lattice parameter for 8 XC functionals at 300 K 

Figure 14: Time dependent lattice parameters for 8 XC functionals at 700 K 
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Figure 15 consists of the time averaged lattice parameters with standard deviation for 

L7LZ at all four simulated temperatures. Each simulation is then compared to the X-ray 

diffraction structure reported by Matsuda et al.98. Their study shows a transformation 

temperature of about 927 K, consistent with our experimental investigation of impurity free 

L7LZ97. While all structures in Figure 15 maintain consistent tetragonal character below 900 K, 

we consider that four functionals, i.e. SOGGA, PBEsol, PBE, and PBE2 functionals are able to 

predict a cubic-like average structure at 1000 K due to the overlapping standard deviations. Out 

of these four, SOGGA, PBEsol, and PBE2 are able to predict lattice volume within 1.5% of 

experimental values at all temperatures. 
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Figure 15: Average lattice parameters for 8 XC functionals at 300 K, 700 K, 900K, and 1000 K (red). Experimental lattice 

parameter by X-ray diffraction by Matsuda. 
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4.2.3 Correlation between XC functionals and phase behavior/volume 

It is common in the literature to plot the density gradient dependence of the exchange 

enhancement factor to examine the difference of XC functionals, since there is generally less 

variation in the correlation energy. The plot of different GGA functionals employed in this study 

is shown in Figure 16. The second-order gradient expansion (GE) of electron gas with slowly-

varying density is shown as the dotted line. In general, it is proposed that a functional will 

overestimate the volume if its enhancement factor is larger than the gradient expansion at small 

s. This is the case for RPBE, PBE, PW91, and PBEFE. On the other hand, functionals with 

similar values to the dotted line at small s generally can predict volumes close to experiments, 

e.g. PBEsol, WC06, SOGGA, PBE2, with the exception of RGE2 and VMT84, both of which 

have higher values than the other four at large s. This suggest that functional forms at both small 

and large s range affect the predicted lattice volumes. This is also illustrated with the AM05 

functional whose deviation from the GE line at small s is likely to be compensated by its large 

value at large s. Out of the four functionals with good accuracy in lattice volume, PBEsol, 

Figure 16: Plot of exchange enhancements factors of GGA functionals employed in the study. The second order 

gradient expansion as 1+μGEs2 is shown in the dotted line. 
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SOGGA, PBE2, and WC06, the first three are also able to predict the right phase behavior, 

possibly due to their lower values at large s compared with WC06. 

We think part of the difficulty of these GGA functionals to predict correctly both the 

phase transformation behavior and lattice volume is the complex bonding environment (a mix of 

ionic and covalent bonding with different elements) in Li7La3Zr2O12, along with the intrinsic 

limitation of GGA approximations as they only depend on the gradient (1st order) of density. It 

was proposed that approximations involving higher-order terms (Laplacian of density), i.e. meta-

GGA, could lead to more accurate results within the DFT framework, as demonstrated with the  

Minnesota meta-GGA MN15-L133 and Strongly Constrained and Appropriately Normed (SCAN) 

functionals134. We plan to investigate the effect of these meta-GGA functionals in the future. 

4.3 Conclusion 

The present study shows that molecular dynamics modeling of phase transformation of 

fast-ion conductors within the DFT frame-work can be a challenging task as it strongly depends 

on the employed XC functional. For the PBE-like GGA functional, the functional forms at both 

small and large density gradient ranges affects whether the correct lattice volume or phase 

behavior can be obtained. Of the fourteen functionals studied, SOGGA, PBEsol, and PBE2 show 

strong agreement with experimental crystal structures of L7LZ and appear to be candidates for 

further study into the dynamics of lithium diffusion in this material family. 

 

  



68 

 

CHAPTER 5: Core-shell Modeling of L5LT and L7LZ 

5.1 Abstract 

To better understand the processes that determine the ionic conductivity and phase 

transformation behavior of the lithium garnet series we employ molecular dynamic simulations 

on two model materials within the series L5LT and L7LZT. We first compare the lattice 

parameter, and phase behavior using NPT simulations, and the conductive/diffusive properties 

using NVE type simulations to experimentally measured values. We find good agreement for 

structural and dynamic properties of both compositions when a thermodynamically corrected 

Nernst-Einstein equation is applied. We show that a general conduction pathway is difficult to 

determine because trajectory of lithium through the shared triangular bottleneck conjoining the 

neighboring polyhedral is observed between the two compositions and changes with temperature. 

We also show that at higher temperatures and concentrations of lithium, there is more “structured 

diffusion” where lithium atoms move in concert with one another while at low temperatures most 

lithium atoms perform an oscillatory jump diffusion mechanism. The differences in diffusion 

mechanism appear to be related to the local arrangement of lithium with its nearest neighbors, 

denoted as “clusters” with the more symmetrical clusters of L7LZ present more “center-pass” 

type trajectories and the asymmetrical clusters of L5LT exhibit a higher fraction of “edge-pass” 

trajectories through the shared bottleneck. 

5.2 Results and discussion 

5.2.1 Validation of simulation process 

To demonstrate the validity of our “core-shell” force-field model and our simulation 

approaches, we compared lattice parameters, neutron scattering PDF, and ionic conductivities 

calculated from MD simulation with those from literatures for both L5LT (Figure 17 (a)) and 
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L7LZ (Figure 17 (b)). The L5LT model presents lattice parameters that  match well with X-ray 

and neutron diffraction data independently collected from Wang et al.37, Cussen3, Thangadurai et 

al.25 The total scattering PDF (Figure 17 (a)) from neutron diffraction collected by Wang et al.37 

also matches well with simulation results suggesting our simulations provide a representative 

structure of cubic garnet. 

The L7LZ core-shell model predicts lattice parameter and thermo-expansion coefficients 

smaller than those measured experimentally.37, 39, 43 The thermal expansion along the a/b 

directions in particular is smaller than expected in the tetragonal phase, and after transformation 

to cubic, still grows at a smaller rate than measured by Matsuda.98 The tetragonal phase appears 

to constrict above 700 K in our simulations contrasting the experimental measurements which 

show a consistent growth until the transformation temperature is achieved. The rate of thermal 

expansion along the c direction increases in a nonlinear fashion until the temperature reaches 900 

K, above which L7LZ is in the cubic phase.  

When the tetragonal lattice parameters were converted to pseudo-cubic ones, by taking 

the cube root of the volume, a linear expansion was observed for the whole temperature range. 

This transition temperature of 900 K agrees with the reported transition temperature of 918 K by 

Larraz et al.43, 913 K by Matsuda et al.98 and 923 K by Matsui et al.4 using high-temperature 

XRD and thermal analysis. First principles DFT work by Bernstein et al.44 predicted a transition 

temperature between 800–1000 K but did not investigate the transition temperature to a higher 

resolution. This temperature of 900 K is much higher than those reported elsewhere, e.g. 373–

423 K from Geiger et al.,30 450 K from Adams et al.,50 623 K from Kuhn et al.31 It is plausible 
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that these samples were contaminated with Al, H2O, or CO2, which lowers the temperature of 

phase transition as shown by Wang.97 

The comparison of PDF at 300 K, in the form of GPDF(r), from MD simulation and 

neutron scattering experiments is shown in Figure 17 (d). Since we do not have neutron total-

scattering data for L7LZ, we calculated GPDF(r) based on the Rietveld refinement results of 

conventional neutron diffraction data from our previous work.37 Specifically, we utilized the 

Figure 17: (a) Lattice parameter of L5LT compared to neutron and x-ray diffraction studies. (b) Atomic pair distribution 

function from total scattering experiments compared to MD simulations 

(a) (b) 

(c) (d) 
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software package PDFGUI126 to calculate GPDF(r) from the structure file of L7LZ at 300 K, 

supplied as supplementary data in the literature.37 We consider this as an ‘‘experimental’’ 

approach. Because Rietveld refinement assumes independent atomic models, it is expected that 

this approach will generate PDF patterns similar to those from total-scattering experiments but 

with variance in peak intensities and width. Such variance is due to the difference in the average 

structure (from the Rietveld refinement) and the local structure, as shown in the study of Bi2O3. 

As shown in Figure 17 (d), the PDF plot from MD simulation agrees well with that from the 

‘‘experimental’’ approach, except the first two peaks. MD simulation predicts stronger peaks 

suggesting atomic correlation. 

Finally, we looked at the ionic conductivity values for L5LT and L7LZ as a function of 

temperature to ensure not only accurate structural properties but also dynamic ones. Figure 18 (a) 

& (b) shows the MD simulation results for L5LT and L7LZ respectively Applying the Nernst-

Einstein (N-E) relation directly (blue lines) predicts ionic conductivity values an order of 

magnitude larger than those observed experimentally4, 25, 35, 97 but will within the reported range 

of other simulations that did not perform a thermodynamic correction.5, 47 The inverse 

thermodynamic factor -1 for these compositions is shown in Figure 18 (c) as calculated from the 

fluctuation method (Equation 36). The addition of -1 brings the conductivity values to well 

within experimental reports particularly with respect to the high temperature measurements 

though the low temperature conductivities for both models are divergent. Matsui et al.4 and 

Wang et al.97 both report a superionic transition135 for L7LZ, where a poorly conductive phase 

turns into a more conducting phase upon heating. The superionic transition temperature 

coincides neatly with the tetragonal to cubic phase transition in Figure 17 (b) at 900 K.  
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It is possible that experimental samples contain more disorder than our simulation cells 

and this contributes to the higher conductivities. Another classical MD simulation, labeled as 

‘‘Adams’’, presented higher conductivities across the temperature range but predicted the 

transition temperature to be 400 K (not shown). This simulation also yielded Li–Li pair 

distribution function inconsistent with experiments, which will be discussed later. 

Figure 18: (a) conductivity for L5LT and (b) L7LZ as 

a function of temperature. Blue lines represent the 

conversion of MSD to D*, and then applying the 

Nernst-Einstein (N-E) equation (Equation 8). Red 

lines are the thermodynamically corrected (-1*N-E) 

Nernst-Einstein equation. (c) Comparison between 

the inverse thermodynamic factors (-1) for L5LT 

and L7LZ using the fluctuation method (Equation 

38). 

L5LT L7LZ 
(a) (b) 

(c) 
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The failure to obtain accurate conductivity values at low temperature is a major area of 

exploration in ongoing research. The decrease in conductivity for L5LT reported by 

Thangadurai26, is mostly related to the properties of the total conductivity, incorporating grain 

boundary resistance, and the possible addition of impurities. However, Wang in his bulk 

conductivity measurement actually reports a slightly higher conductivity than that obtained from 

simulation. For L7LZ it is much of the same story, the activation energy extracted form the 

simulations appear much more in line with the first few data points, but there is clearly some 

form of nonlinear change in activation energy as the temperature continues to decrease. At 

present we do not have a means of rectifying the discrepancies between the simulations and 

experimental values, though investigations leading us to peruse more sophisticated experimental 

and analysis techniques are expanded upon later in this thesis. 

The low values of -1 observed in our simulations indicate each Li hopping event is not 

independent and is affected by how the other Li in the system are moving. The inverse 

thermodynamic factor for L7LZ,  reported in Figure 18 is consistently lower than that calculated 

for L5LT.51 This is a reasonable result considering that increasing the Li concentration limits the 

number of ways in which Li will locally distribute themselves. This point will be discussed 

further in the later section regarding lithium clusters and dynamics. 

It can be seen from Figure 17 and Figure 18 that our MD simulations have predicted 

physical parameters that agree reasonably with those from experiments. With this conformation, 

in the subsequent sections we will take a closer look at the atomic-scale details of local structure 

and dynamics for L5LT and the  phase transition of L7LZ. 
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5.2.2 L7LZ van Hove correlation functions (VHCF) 

Figure 19 shows (a) the self-part of VHCF as 4pr2Gs(r,t) of lithium atoms and (b) 

its projection along the space and time axis at 300 K. There is a high probability of finding 

lithium atoms with displacement of 0.2 Å and such probability shows weak time 

dependence for different displacement values (0.11, 0.23, 0.58 Å). This type of correlation 

is typical of atomic oscillation around equilibrium positions, which is expected for lithium 

atoms in the ordered tetragonal phase. Figure 19 also shows the (c) distinct-part of the 

VHCF as Gd(r,t) of lithium atoms and (d) its projection along the space and time axis at 

Figure 19: (a) Self-part of the van hove correlation function and (b) its spatial and temporal projection at 300 K. (c) Distinct- part 

of the van Hove correlation function and (d) its spatial and temporal projection at 300 K. 



75 

 

300 K. The dependence on the distance is characteristic of pairs showing short-range order 

(peaks at small distances) but long-range disorder (oscillating around 1 at large distances). 

Such structure features are generally found in liquids or glasses. A small time-dependence 

at short time, e.g. 0.1 ps, was observed. 

The high-level presentation of VHCF is shown in Figure 20 as MSD and PDF plots for 

both 300 K and 1100 K. Again, a flat MSD plot at 300 K in Figure 20 (a) is a signature of 

oscillation. The linear MSD plot at 1100 K is a signature of diffusion that we will discuss more 

in Figure 21. In Figure 20 (b), we also present the Li–Li PDF plots from ‘‘experiments’’ and 

literature. Using the same approach discussed previously for the neutron scattering PDF, we 

calculated the ‘‘experimental’’ partial Li–Li PDF and we found it is similar to that from our MD 

simulation. Again, the slight difference is due to the difference between the average and local 

structure, as discussed previously. However, MD simulation by Adams et al. generates two peaks 

(2.35 and 2.8 Å), suggesting that their Morse-type force-fields may not be able to capture the real 

(a) (b) 

Figure 20: (a) Mean squared displacement (MSD) for LLZ at 300 K and 1100 K. (b) Partial pair distribution function of 

Li–Li  pairs at different temperatures compared to that of Adams et al. 
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dynamics of lithium motion. With the increase of temperature from 300 to 1100 K, the first peak 

in the Li–Li pair becomes wider and moves to a smaller distance, indicating weaker Li–Li 

repulsion at higher temperatures. 

Figure 21 shows (a) the self-part of VHCF as log10 4pr2Gs(r,t) of lithium atoms and (b) 

projection of 4pr2Gs(r,t) along the space and time axis at 1100 K. It is apparent that lithium atoms 

at this temperature can move different distances for different time intervals, as expected for a 

diffusion mechanism. To understand such complex time and space dependence and diffusion 

details, we can look at a simple model system. A linear MSD plot at 1100 K as seen in Figure 20 

(a) is consistent with a continuous random-walk or structureless diffusion model. Based on the 

diffusivity extracted from Figure 20 (a), we then plot the self-part of VHCF of a continuous 

Figure 21: (a) Self-part of the van Hove correlation function and (b) its spatial and temporal projection at 1100 K. (c) Self-part of 

the van Hove correlation function and (d) its temporal projection of a continuous random-walk model at 1100 K. 



77 

 

random-walk model in Figure 21 c and d. As expected, there is one peak along the distance axis 

in Figure 21 (d) due to the competing quadratic and exponential term in Equation 26. Similarly, 

there is one peak along the time axis due to the competing power and exponential term in 

Equation 27). In Figure 21 (c), such dependence shows up as ‘‘expanding galaxies’’. When we 

compare Figure 21 (b) and (d), it is clear that selected projection plots at different spatial and 

temporal values in Figure 21 (b) deviate from this continuous random-walk model. For example, 

several peaks along the distance axis were observed and this leads to ‘‘mountain-like’’ features 

in the overall VHCF plot in Figure 21. When we compare Figure 19 (a) and Figure 21 (a) and 

(c), we can propose that diffusion behaviors at 1100 K, i.e. Figure 21 (a), are intermediate 

between an oscillation type and continuous random-walk type, which we will call as ‘‘structured 

diffusion’’. This has generally been called a local jump mechanism when quasielastic neutron 

scattering (QENS) experiments were used to study atomic diffusion in materials. Several models, 

e.g. Chudley–Elliott,27 Hall–Ross,28 Singwi–Sjölander,29 has been proposed to quantify the 

QENS results. Parameters in these models are related to VHCF parameters by taking the Fourier 

transform as examined in Chapter 3. A Look into these jump models is expanded upon in the 

Chapter 6 of this thesis. 
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5.2.3 Lithium distribution and its relation to phase transition 

Probability density functions (p.d.f.) or density maps offer an intuitive way to visualize 

lithium distribution in the tetragonal and cubic phase. Figure 22 (a) shows the isosurface plot 

(isosurface level of 0.3 Å 3) for a slice along the (111) lattice plane that constitute the looping 

structure of Li sites in the Li diffusion pathway, where the two tetrahedral sites (Td-8a and 16e) 

and two octahedral sites (Oh-32g and 16f) are all visible. Figure 22 (a) is based on Rietveld 

refinement results so the density maps are local and harmonic (spheres or ellipsoids). Our 300 K 

MD simulation (Figure 22 (b)) predicts lithium density to be primarily located at the Td-8a, Oh-

32g, and Oh-16f sites in agreement with Figure 22 (a). However, we also observed a degree of 

anharmonicity arising from an elongation of the Oh-16f and Oh-32g sites toward the Td-16e 

sites. This elongation of the Oh-32g sites that connect Td-8a to Td-16e continues to grow as the 

temperature is increased, leading to a small occupancy of the Td-16e site at 500 K (Figure 22 

(c)). At 800 K (Figure 22 (d)) a near complete loop structure is observed for the tetragonal 

Figure 22: Lithium density maps on (111) for LLZ. (a) 300 K by Revitfield refinement, (b) 300 K, (c) 500 K, (d) 800 K, and (e) 

1100 K by MD simulation. Isosurface level is 0.3 Å-3 
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crystal. After the phase transition to cubic has occurred, the probability of occupying either of 

the now degenerate tetrahedral sites is equal, and a complete ring structure is observed as shown 

in the density map at 1100 K (Figure 22 (e)). 

Additional insight into the phase transition can be obtained by examining the cage 

occupancy and MSD of lithium at different sites shown in Figure 23. The change in occupancies 

of tetrahedral sites with increasing temperatures (Figure 23 (a)) clearly indicates the depletion of 

Td-8a site and filling of Td-16e, especially around the transition temperature of 900 K. On the 

other hand, the occupancies of the two octahedral sites remain close to one at all temperatures 

but do experience a decrease in occupancy as the temperature is increased. Equivalently, there is 

a small increase in the overall occupancy of the tetrahedral sites. The shift of lithium atoms from 

Td-8a to Td-16e site was also proposed by Bernstein et al.44 but they stated there was no 

exchange of lithium atoms between tetrahedral and octahedral sites. In the meantime, slightly 

lower Td occupancy was observed in their work, as shown in Figure 23 (a). Error bars in this 

Figure 23: (a) Tetrahedral and octahedral cage occupancy for L7LZ as a function of temperature. Error bars represent the 

degree of dynamic fluctuation in the occupancy observed during MD simulation. Values from Bernstein et al are shown for 

comparison. (b) MSD for selected atoms occupying three different cages type at 300 and 500 K. 

(a) (b) 
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figure represent the degree of dynamic fluctuation in occupancy observed during MD simulation. 

Furthermore, the MSDs of all three sites at 300 K in Figure 23 (b) indicate lithium atoms 

oscillating as shown in the VHCF plot of Figure 21. At 500 K, MSDs of Td-8a and Oh-32g 

lithium atoms show a simultaneous increase at short time suggesting that their motion is 

correlated. 

From the above observation and discussion of both Figure 22  and 23, we believe that the 

tetragonal to cubic phase transition is an entropy-driven one that involves redistribution of 

lithium atoms among all tetrahedral sites. The ordered tetragonal structure is energetically 

favored as it has the smallest number of nearest-neighbor Li–Li repulsion pairs.37 Redistribution 

of Li among all tetrahedral sites will increase the entropy but is likely to raise the internal energy, 

since an occupied Oh site (32g or 16f) has a maximum of only two Li–Li pairs while an occupied 

Td site (8a or 16e) has a maximum of four Li–Li pairs. Above the transition temperature, the 

entropy contribution overshadows the energy contribution. The transition is likely to initiate on 

the Td-8a site but needs the cooperation of neighboring Oh-32g sites. Lithium atoms at Oh-32g 

sites mainly act as relay atoms, instead of contributing directly to the filling of Td-16e site. 

Again, the reason that Oh sites prefer to be consistently occupied is to minimize Li–Li repulsion. 

However, there is indeed a slight shift of lithium atoms from octahedral to tetrahedral sites with 

increasing temperatures, since the higher temperature is more accommodating to increased Li–Li 

repulsion.  
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L5LT with is lower lithium concentration and constant cubic phase does not exhibit the 

lithium sublattice ordering as described for L7LZ. Instead its lithium distributions are random 

and the density maps of L5LT show much more interconnectedness between the Td and Oh sites. 

Figure 24 shows the Li density at various temperatures for L5LT along the [100] direction as 

well as for slices along the (111) plane. Importantly from these projections we do not see any 

lithium density directly linking between Oh-Oh cages, instead lithium must pass through the Td 

site in order contribute to the conduction. This is consistent for both L5LT and L7LZ showing 

that there is no change in jumping mechanism between the two compositions. Any difference in 

the magnitude of the conductivity must result from the degree of interconnected ness between 

lithium and their nearest occupied or unoccupied site. 

  

Figure 24: Lithium density maps for L5LT derived from MD simulation at (a) 700 K, (b) 475 K, and (c) 300 K along the [100] 

direction. Isosurface level of 0.1 Å-3.Two-dimensional Li density maps for the (111) plane, with a distance of 23 Å to the origin, 

cutting through Td-Oh-Td cages at (d) 700 K, (e) 475 K, and (f) 300 K with isosurface levels from 0 to 1 Å-3. 
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5.2.4 Lithium clusters 

We will now take a closer look at the structure of nearest-neighbor Li–Li pairs and their 

effects on lithium dynamics. There are theoretically 16 different ways in which lithium can 

distribute itself about neighboring Td and Oh sites, designated as clusters. A simplified notation 

has been previously introduced to easily differentiate the types of lithium clusters.51 First, the 

type of site is identified as either tetrahedrally (Txx) or octahedrally (Oxx) centered. The first ‘x’ 

is then used to identify a site as either occupied ‘1’ or unoccupied ‘0’. The second ‘x’ in this 

notation refers to the number of nearest occupied lithium sites. For Txx this ranges from 0–4 

because there are four Oh sites surrounding a Td site, and for Oxx this ranges from 0–2 with two 

neighboring Td sites. 

Figure 25: Possible local arrangements of Li  with respect to their nearest neighbors 
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Figure 26 shows the evolution in the number of tetrahedrally and octahedrally centered 

clusters with temperature. It is expected that each cluster is associated with a unique potential 

energy and that the exact conduction path of a hopping event is decided by the type of clusters 

that the hopping Li belongs to at the initial and final states. The number of clusters was evaluated 

Figure 26: Average number of each type of possible lithium nearest neighbor arrangement as a function of temperature for 

L5LT centered upon Td (a) and Oh (b) sites, LLZ for Td (c) and Oh (d). ` 

L5LT L7LZ 

(a) (b) 

(c) (d) 



84 

 

from the last 500 ps of simulation, with the error bars in Figure 26 representing the standard 

deviation of each cluster type at a particular temperature. 

Looking at L5LT first, at 300 K the most common clusters for tetrahedral sites are the 

T11, T12, T04, T03, and T10 types. These particular arrangements suggest that the system 

minimizes the total Li–Li  interaction by maximizing the number of octahedral Li around empty 

an empty Td and minimizing the number of Li around an occupied Td cage. It is for this reason, 

the T14, and T00 have the lowest probability of occurrence. The two most common occupied Td 

centered sites, the T11 and T12, can be seen as asymmetrical clusters that lead to uneven Li–Li  

interactions that will offset both the Td and Oh lithium from their crystallographic centered 

position. This in turn will drive the dynamics of lithium diffusion to take what is called and 

“edge-pass” like trajectory where the lithium diffuses close to the bottle neck edge joining 

neighboring Td and Oh polyhedral.  

As the temperature is increased, we see the number of T11 and T04 configurations 

dramatically drop, while T03 and T02 distributions see a proportional increase. The overall 

distribution of configurations becomes more uniform at higher temperatures, where the increase 

in kinetic energy is sufficient to overcome unfavorable interactions. Coupled with the 

distribution is the increase in standard deviation with each configuration. The fluctuations of 

clusters is related to the number of hopping events, so the degree of fluctuation indirectly 

indicate the stability of each cluster type at a given temperature. At high temperatures the lithium 

is equally mobile across all observed cluster types as expressed from the large error bars. The 

analysis of cluster distribution has been focused on the Txx type only, though similar reasoning 

can easily be applied to the trends observed in the Oxx types.  
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Figure 27 (a) shows a sample of the different dynamic processes observed in our 

simulations for L5LT. In the fist block a O11 cluster is shown with lithium rattling about their 

crystallographic sites. There is a very large amount of displacement observed for each site with 

the tetrahedral moving about almost the entire volume of the cage. The electrostatic repulsion 

between the neighboring lithium causes the Oh Li to be heavily displaced from its ideal site, only 

moving to the middle of the cage after the tetrahedral has displaced itself to the far side of its 

cage. 

There are also two types of single particle diffusion events observed in Figure 27 (b) and 

(c). The first type of event shown in Figure 27(b) is of a Td to Oh hopping even. Here a lithium 

moves from a T12 or T13 type cluster into a neighboring unoccupied Oh site. This process is 

Figure 27: Observed dynamical events at 500 K for L5LT. Yellow circles represent Li ions. Pink squares are tetrahedral sites and 

blue rectangles are octahedra lcages. In each example, the local environment, Li trajectories, and geometries of bottlenecks as Li 

goes through the faces are illustrated. 

(a) (b) 

(c) (d) 



86 

 

carried out by lithium diffusing through the bottle neck as shown in the accoupling diagram. This 

is a “center-pass” type event though the actual position is offset from a geometric center. An 

example of “edge-pass diffusion is shown in Figure 27(c), when a single T03 type lithium 

diffuses by a Oh-Td-Oh diffusion pathway. It is clear in this third example how the clustering of 

lithium impacts the overall trajectory followed, the non-diffusing T03 lithium act as a repulsive 

force on the diffusing lithium forcing it to pass through the edge of bottleneck and immediately 

into a neighboring unoccupied This minimizes the Li–Li  interactions by avoiding the formation 

of an unfavorable T13 type cluster. 

The final type of diffusion event presented in Figure 27d) is an example of collective 

diffusion, were two neighboring lithium diffuse simultaneously through the center of their 

respective bottlenecks. This type of movement is consistent with Meier’s136 AIMD calculations 

on the L7LZ composition and expected to be more common as the concentration of Li increases 

due to the interconnectedness of the sublattice and increased symmetry of the lithium clusters. 

The dynamics of clusters for L7LZ tell a somewhat different story. For the low-

temperature tetragonal phase at 300 K, there are only two types of observed clusters, T14 and 

T04 resulting from ordering about lithium sites, to minimize Li–Li repulsion. As we increase the 

temperature, the number of T14 and T04 clusters decreases, first leading to an increase in the 

originally unobserved T13 and eventually the creation of T03 clusters. A similar trend can be 

identified for the Oh clusters. Initially only O11 and O10 clusters are observed. As the 

temperature increases the amount of O10 remains relatively constant, but the concentration of 

O11 decreases significantly while we see the generation of the previously unobserved O12 and 

O02 clusters. It is to be noted that it was reported by Xie et al.137 and Jalem et al.47 that it was not 

possible to have O12 clusters in L7LZ, based on the exclusion principle. Error bars in Figure 
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26show the degree of fluctuation over the course of a simulation, with larger error bars 

signifying larger fluctuations from more mobile ions. The dominance of clusters with high 

coordination numbers, e.g. Tx3, Tx4, implies that highly correlated motion is expected, 

consistent with the low inverse thermodynamic factors throughout the temperature range, and 

with lower inverse thermodynamic factors in the tetragonal phase as seen in Figure 18 (c).  

To visualize the oscillatory and diffusive motion discussed in Figure 19and Figure 21. 

Figure 28 (a) and (b) show the schematics and trajectories (connected small beads) of vibratory 

motions exhibited by lithium atoms in T14 and T04 clusters at 300 K. Within a T14 cluster 

(Figure 28 (a)), the center is Td-8a site, and four neighbors are Oh-32g sites. Lithium atoms at 

Figure 28: Examples of lithium dynamics at 300 K for (a) T14 cluster, (b) a T04 cluster, and at 1100 K for a (c) T14 cluster, and 

(d) a T04 cluster. Yellow dots represent Li atoms. Pink squares and blue rectangles schematically represent Td and Oh cages 
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Oh-32g sites are rattling around positions that are far away from the occupied Td-8a. Within a 

T04 cluster (Figure 28 (b)), the center is Td-16e site, and two neighbors are Oh-32g and the other 

two are Oh-16f sites. Lithium atoms at Oh-32g and Oh-16f sites are rattling around but staying 

close to the empty 16e site. Both types of oscillation can be considered as ways to minimize Li–

Li repulsion. 

Figure 28 (c)and (d) show the schematics and bottlenecks of diffusion in L7LZ at 1100 

K. In Figure 28 (c), two lithium atoms (Li1 and Li2) will move in concert to change a T14 

cluster to a T04 cluster. During the process, two triangular bottlenecks that connect the 

neighboring tetrahedral and octahedral cages were crossed. Locations of lithium atoms on these 

bottlenecks are also shown. The observation that lithium atoms prefer to stay close to one of the 

triangular edges is referred to as an ‘‘edge-pass’’ mechanism. This mechanism has been 

suggested by the NEB study by Xu et al.,36 FPMD simulation by Jalem et al.47 and Miara et al.5, 

and our classical MD simulation for Li5LT at low temperatures.51 Figure 28 (d)presents the 

correlated motion of three lithium atoms crossing four bottlenecks. First, both Li1 and Li2 move 

synchronously with Li1 expelling Li2 into the empty Td cage. Effectively this changes a T04 

cluster to a T14 cluster. Then Li2 and Li3 move synchronously in that Li3 migrates into the 

empty Td cage on the left while Li2 hops into the Oh cage that hosted Li3 previously, 

reestablishing the T04 cluster. Examination of bottlenecks suggests that both ‘‘edge-pass’’ and 

‘‘center-pass’’ mechanisms were observed. 

To obtain statistical details on how lithium atoms move across the bottlenecks, we 

recorded the Li locations on the bottleneck for a simulation time between 900 ps to 1 ns in the 

MD simulation. More than 1000 lithium atoms were collected we used both the distance to three 

corners, denoted as on-face-Li-to-oxygen distances, and distance to three edges, denoted as on-
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face-Li-to-edge distances, to project where lithium is relativity located as it diffuses through the 

bottleneck. Figure 29 compares the distribution of these distances between L5LT and L7LZ at 

various temperatures with a comparison to reverse Monte Carlo simulations performed by 

Wang37. 

For both compositions a Gaussian distribution was observed for the lithium to oxygen 

distance, however the lithium to edge distance especially at low temperatures presents a bimodal 

distribution. As the temperature is increased, the bimodal distribution becomes Gaussian in both 

cases as the lithium clusters redistribute to obtain a more uniform distribution. L5LT 

interestingly exhibits more edge-pass type events signified by the increases fraction of events at 

low Li to edge distances.  

The deterministic factors of ‘‘center-pass’’ and ‘‘edge-pass’’ mechanism can be 

understood from the consideration of global and local symmetry. It is expected that the centers of 

a tetrahedron and of a bottleneck would be favored for Li to pass from the perspective of global 

symmetry, while local symmetry might distort this picture, especially at lower temperatures. In 

Figure 26 (b)we saw that T04 dominates the T0x clusters in L7LZ. It can be reasoned that the 

local symmetry of T04 clusters causes a more uniform repulsive force on the Li, making the 

center of the bottleneck the easiest for the Li to approach. In Li5LT there was a greater variety of 

clusters observed especially at low temperature. These clusters have a greater local asymmetry at 

most tetrahedrons due to Li+ not fully occupying the surrounding octahedral sites, causing an 

asymmetrical force to be applied to Li and push it to the edge of the bottleneck. At higher 

temperatures, the influence of local Li–Li repulsion becomes less important and Li will proceed 

with a ‘‘center-pass’’ pattern in either material consistent with the global symmetry.  
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L7LZ 

Figure 29: Histograms of lithium position on the face of the bottle neck with respect to distance from the nearest 

oxygen or shared edge of oxygen polyhedral for LLT and LLZ. (a) diagram of bottle neck with solid lines 

representing distance to nearest oxygen, dashed lines representing distance to nearest face. Shown are events for 

LLT at  (b) 550 K, (d) 900 K, and (f) 1100 K. Shown for LLZ at (c) 600 K, (e) 900 K, and (g) 1100 K. 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 

L5LT 
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5.3 Conclusions 

Using molecular dynamics, we investigated local structure and dynamics in the solid 

electrolyte Li7La3Zr2O12 and origin of tetragonal to cubic phase transition. First, validation of our 

force-field parameters was accomplished by comparing our simulation output to lattice 

parameter, neutron scattering, and conductivity measurements obtained from experimental 

techniques. Thermal expansion, phase transition, and neutron scattering PDF, and conductivity 

results at various temperatures concur with experimental values. Second, we show that lithium 

dynamics predominantly consisted of oscillations at low temperatures in the tetragonal phase and 

‘‘structured diffusion’’ in the high temperature cubic phase. This was accomplished by 

combining self and distinct part of van Hove correlation function and MSD data to make a more 

complete analysis of structure and dynamics of Li. Third, we show that the tetragonal to cubic 

phase transition coincides with the redistribution of Td-8a lithium to Td-16e sites. For this 

reason, we believe that the phase transition from tetragonal to cubic is entropy driven. Li 

diffusion is likely initiated at the 8a tetrahedral sites, requiring the neighboring 32g octahedral 

lithium to simultaneously diffuse into the unoccupied 16e tetrahedral site. However, lithium at 

32g site mainly act as relay atoms and only contribute slightly to the direct filling of 16e site at 

high temperatures. Finally, we see that in both the tetragonal and cubic phase that lithium is 

locally distributed in clusters in only a few ways. These local clusters are mostly symmetrical 

leading to a ‘‘center-pass’’ mechanism dominating most of the diffusion through the bottleneck. 
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CHAPTER 6: Lithium self-diffusion in a model lithium garnet oxide Li5La3Ta2O12: a 

combined quasi-elastic neutron scattering and molecular dynamics study 

6.1 Abstract 

In this work lithium self-diffusion in the model lithium garnet oxide Li5La3Ta2O12 was 

investigated by combining quasi-elastic neutron scattering experiments and molecular dynamics 

simulation. The Q-dependence of the quasi-elastic broadening measured experimentally and of 

the mean relaxation rate of lithium calculated by molecular dynamics simulations were both well 

described by the Singwi-Sjölander diffusion model. This model describes lithium nuclei that 

undergo diffusion via a jump-type mechanism consisting of a distribution of jumps with a mean 

square jump distance and residence time. The extracted mean jump length is consistent with a 

jump between tetrahedral (24d) to octahedral (48g and 96h) sites within the Ia3̅d symmetry 

structure and the residence time of Li at these sites obeys an Arrhenius relation from ~ ps 

timescales at 1100 K to the ~ ns range at 400 K. This result supports a lithium diffusion 

mechanism in which jumps are more frequent (smaller residence time) and shorter at higher 

temperature. The self-diffusivities of Li from both experiment and calculation were in good 

agreement, but deviations from those previously measured using nuclear magnetic resonance and 

muon spin relaxation were observed and discussed. Analysis of stretching parameter describing 

the relaxation of lithium calculated by molecular dynamics indicated that Li motion is more 

cooperative at shorter length scales, below ~ 4.4 Å, which corresponds to the distance between 

octahedral sites across the tetrahedral site.    
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6.2 Results and discussion 

6.2.1 Static structure factor 

The “static” structure factor at 700 K obtained from QENS as ∑ 𝑆(𝑄, 𝐸)𝐸  reveals three 

Bragg peaks (Figure 30 (a)). For comparison, the static structure factor, 𝐼𝑐𝑜ℎ+𝑖𝑛𝑐
𝑁 (𝑄, 𝑡 = 0), from 

the 700 K MD simulation is also presented in Figure 30 and is in agreement with that 

experimentally measured. The four sharp features are the 112, 022, 123, and 004 reflections from 

the Ia3̅d structure3, 37.  Experimental peaks contain instrumental broadening. 

6.2.2 Overall intermediate scattering function and dynamic structure factor 

The neutron-weighted ISF 𝐼𝑐𝑜ℎ+𝑖𝑛𝑐
𝑁 (𝑄, 𝑡) calculated at 700 K is useful for understanding 

the components of the measured DSF that will be used to form a phenomenological model, and 

is presented in Figure 30 (b). The ISF is shown (in later sections) to consist of vibrating La, Ta, 

and O with the only diffusing species being Li. Among the four species, only Li and La have 

Figure 30: (a) The static structure factor obtained from the QENS experiment and MD simulations at 700 K. The results are 

vertically offset for clarity and lines serve as a guide to the eye. (b) Neutron -weighted (including both coherent and incoherent 

intermediate scattering functions calculated from MD at 700 K for several Q 

(a) (b) 
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significant incoherent scattering power (Table 4). I(Q,t) for vibrating species contributes to the 

plateau in Figure 30 (b) that becomes a delta function in the energy domain, S(Q,E), whilst the 

clear decay in I(Q,t) arising from Li becomes a Lorentzian-like function in S(Q,E). Therefore, it 

is expected that the experimentally-measured S(Q,E) is well described by a linear function 

(arising from the background) B(Q,E), a delta function (arising from vibrating atoms) δ(Q,E), 

and a Lorentzian function (arising from diffusing Li) L(Q,E), convoluted with the resolution 

function: 

Equation 43 

𝑅(𝑄, 𝐸): 𝑆(𝑄, 𝐸) =  [𝐼1𝛿(𝑄, 𝐸) + 𝐼2𝐿(𝑄, 𝐸)] 𝑅(𝑄, 𝐸) + 𝐵(𝑄, 𝐸) 

where I1 and I2
 are intensities. The centers of both delta and Lorentzian functions were fixed to be 

zero and analysis was performed for Q < 1.1 Å-1 and at 1.55 and 1.65 Å-1 to avoid coherent 

Bragg peaks (Figure 30 (a)), i.e. to limit the analysis to incoherent scattering and self-diffusion. 

The measured S(Q,E) at 700 K for selected Q and at different temperatures for Q = 0.45 

Å-1 are shown in Figure 31 (a) and Figure 31 (b), respectively. An example of the fit of the 

model to the data is shown Figure 31 (c) for 700 K at Q = 0.35 Å-1. With increasing Q and 

temperature, the peaks broaden, with data at 300 and 400 K (Figure 31 (b)) close to that of the 

instrumental energy resolution (~ 3.0 µeV) due to limited Li mobility. A plot of the half-width-

half-maximum (HWHM, ) of the Lorentzian function with Q2 is shown in Figure 31 (d). A 

linear dependence of  with Q2 (DQ2
, dotted line) is characteristic of continuous random walk 
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translational diffusion, also called Fickian diffusion, where D is the self-diffusion constant. The 

broadening of  with Q2 at low Q is linear and reaches a horizontal asymptotically at higher Q as 

is typical of a jump-diffusion process (Figure 31 (d)). The Q-dependent broadening of , 

describing the translation of Li, was described well by a special version of the Singwi-Sjölander 

(SS) jump diffusion model119, 138 in which diffusion occurs via jump diffusion where the time 

taken for the jump is much shorter than the residence time of the diffusing nucleus at a site, τ. 

This SS model is characterized by 𝛤𝑆𝑆(𝑄) =
1

𝜏

𝑄2⟨𝑟2⟩

6

1+
𝑄2⟨𝑟2⟩

6

, where jumps are described by a spatial 

Figure 31: (a) Dynamic structure factor S(Q, E) from QENS experiments at 700 K for different Q. (b) Dynamic structure factor 

S(Q,E) from QENS at Q = 0.45 Å-1, for different temperatures. (c) An example of the Wens fit with background, delta, and 

Lorentzian functions convoluted with the resolution function for 700 K and Q = 0.35 Å-1, along with the residuals of the fit. (d) 

HWHM () of the Lorentzian as a function of Q2 at different temperatures. Solid lines are the fits to the Singwi-Sjölander model. 
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probability (gamma) distribution with a mean square jump distance of ⟨𝑟2⟩. At low Q the model 

reduces to the Fickian model with 𝐷 =
⟨𝑟2⟩

6𝜏
.  The residence time and mean jump length 𝑙 =

√⟨𝑟2⟩ are 7.50.9 ps and 1.960.15 Å, respectively, at 700 K. The Q-dependent broadening of  

at 600 and 500 K is also shown in Figure 31 (d), alongside a fit of the SS model. 

Figure 32: (a) Intermediate scattering functions of species La, Ta, and O at 700 K from Md for selected Q. (b) fit of the plateau 

values in a “a” to the Debye-Waller formula. (c) Comparison of the mean square displacement Uiso from MD with that obtained 

from neutron powder diffraction.3 
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6.2.3 Species-resolved dynamics: La, Ta, and O 

The ISF for individual atomic species (La, Ta, and O) at 700 K calculated from MD 

simulations are shown in Figure 32 (a) for selected Q. A rapid exponential decrease in the ps 

range was followed by a stable non-zero plateau, which suggests that these species are vibrating 

instead of diffusing, as consistent with the Li5La3Ta2O12 crystal structure (Figure 32 (a))3, 37. For 

a harmonic oscillator, the structure factor has a Debye-Waller formula as 𝐼𝐷𝑊(𝑄) =

𝑒𝑥𝑝(−𝑄2𝑈𝑖𝑠𝑜), where 𝑈𝑖𝑠𝑜 is the mean square displacement (atomic displacement parameter) 

and the plateau values (Figure 32 (a)) were in good agreement with this. Similarly, the extracted 

𝑈𝑖𝑠𝑜 are in good agreement with those obtained from neutron powder diffraction3 as shown in 

Figure 32 (c). 

6.2.4 Li dynamics 

In contrast to La, Ta, and O species, I(Q,t) of Li at 700 K from MD (Figure 33 (a)) 

exhibit decay that is faster at higher Q, indicating diffusion. Ignoring data for the first 10 ps that 

undergo ballistic collision and other short-time dynamics, the decay was described by a stretched 

exponential (Kohlrausch-Williams-Watts, KWW139) function 𝐼𝐾𝑊𝑊(𝑄, 𝑡) =

𝑒𝑥𝑝(−[𝛤𝐾𝑊𝑊(𝑄)𝑡]𝛽(𝑄)), where 𝛽 is the stretching parameter and 
1

𝛤𝐾𝑊𝑊
 the relaxation time. An 

equivalent 𝛤 value ⟨𝛤⟩, mean relaxation rate, can be obtained from 
𝛤𝐾𝑊𝑊(𝑄)𝛽−1

𝐺(𝛽−1)
 where 𝐺 is the 

Gamma function.  Although the physical meaning of the stretching parameter is not well 

established, the deviation from a purely exponential decay, i.e. 𝛽 ≠ 1  has been considered 

previously to arise from cooperativity140 or coupling141 of atomic motions.  
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For example, 1 − 𝛽 was called the coupling parameter in the coupling model by Ngai141.  The 

behavior of 𝛽 as a function of Q (Figure 33 (b)) reveals that although 𝛽 = 1 at small Q, this 

value decays and converges to a plateau at higher Q for all investigated temperatures. We note 

that a similar behavior of 𝛽 was predicted by Mode-Coupling Theory (MCT)124 and observed in 

the dynamics of protons in supercooled water obtained from MD simulation142. This Q-

dependence of 𝛽 could be understood by comparing the length scale associated with Q and the 

intrinsic cooperative length in the material.  At small Q (longer distance), the interaction between 

any pair of two atoms is weak so their motion becomes uncooperative or not coupled (𝛽 ~ 1).  At 

higher Q (shorter distance), the short-range interaction renders atomic motion cooperative or 

coupled (𝛽 < 1).  Considering coupling behavior of Li dynamics in Li5La3Ta2O12, the pure 

exponential decay (𝛽 = 1) at small Q indicates that the motion of different Li atoms are 

uncooperative (not coupled) and Li motions couple (𝛽 < 1) at higher Q and plateau at  

Figure 33: (a) intermediate scattering functions of Li at 700 K from MD for selected Q. The solid lines are the fit of the KWW 

model to data after the first 10 ps. (b) Q-dependence of the KWW stretching parameter at different temperatures. (c) Schematic of 

the nearest-neighbor tetrahedral (pink) and octahedral (blue) cages in lithium garnet oxides. Filled yellow circles are the 

octahedral 48g sites and the marked distance is ≈ 4 Å.  
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 Q2 ≈ 2.0 Å-2, yielding a cooperative length of ≈ 4.4 Å that corresponds to the approximate 

distance between octahedral sites across the tetrahedral site (Figure 33 (c)).  

Figure 34 compares results from the experimental measurement using QENS and 

calculated MD simulations for Li motions in Li5La3Ta2O12 at 700 K, with the Q-dependent 

broadening of which are both described well by the SS jump diffusion model. If we also plot  

from the QENS data (Figure 31(d) in Figure 34 we can see that diffusion is slightly faster from 

experiments than from MD simulation. We note that experimental data were analyzed in the 

energy domain using a Lorentzian function, which corresponds to an exponential function in the 

time domain, while the analysis of MD results utilized a stretched exponential. We suppose this 

difference in data analysis might cause the mismatch, in addition to the intrinsic limitation of the 

empirical force fields. 

(a) 

Figure 34: (a) HWHM () experimentally measured using QENS and equivalent  of Li diffusion derived from MD 

simulations in L5LT at 700 K. Solid lines are the fit of the SS model. (b) Self-diffusivity of Li in lithium garnet oxides of 

different compositions at different temperatures using various measurement probes. The activation energies for both MD and 

experimental sources are also provided. 

(b) 
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The residence time and jump length obtained from the SS model fits to both MD 

simulation and QENS experiments are shown in Figure 35. These values are in good agreement, 

and the residence time of Li in the investigated temperature range is in the ps range, with slightly 

higher values obtained from MD simulation. Activation energies obtained from an Arrhenius fit 

are 0.340.02 and 0.280.03 eV for MD and QENS, respectively. These results are shown 

alongside those previously reported for the lithium garnet oxide Al-doped Li7La3Zr2O12, obtained 

from SLR-NMR experiments54, in which Li is reported to reside in the cage an order of 

magnitude longer than we find for Li5La3Ta2O12. We note that there are significant differences in 

the measurements used to obtain these results, with QENS measuring a density correlation and 

SLR-NMR measures the spin Hamiltonian correlation. 

The mean jump length obtained from QENS data is ~ 1.9 Å between 500 and 700 K, 

which is roughly the distance between 24d (tetrahedral) and 48g (octahedral) sites in 

Li5La3Ta2O12 from previous results3. As the temperature increases to 1100 K (from MD), this 

jump length decreases to 1.5 Å, corresponding to the distance between 24d (tetrahedral) and the 

closest off-center 96h (octahedral) site, whilst at lower temperatures (400 K) the jump distance 

Figure 35: (a) Mean residence time () of Li diffusion in Li5La3Ta2O12 at sites obtained from MD simulation and QENS 

experiments. Solid lines are an Arrhenius fit. The residence time obtained from SLR-NMR experiments are also shown for Al-

doped Li7La3Zr2O12 (cubic, C-L7LZ). (b) Mean jump length of Li diffusing in Li5La3Ta2O12 obtained from MD simulation 

and QENS experiments. Solid lines are guides to the eye. (c) Schematic of the relation between crystallographic sites for Li 

within tetrahedral (Td) and octahedral (Oh) cages in Li5La3Ta2O12 showing key distances from previous results. 
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increases to 2.5 Å, corresponding to the distance between 24d (tetrahedral) and the farthest off-

center 96h (octahedral) site. These results suggest a lithium diffusion mechanism in which jumps 

are more frequent (a smaller residence time) and shorter at higher temperatures, consistent with 

the delocalization of Li in Li5La3Ta2O12 at higher temperatures previously measured61.  

The dynamics of Li in Li5La3Ta2O12 that we measure and calculate lead to translational 

self-diffusion constants as shown in Figure 34 (b). Since MD simulation results yield a similar 

mean jump length but slightly larger average residence time compared to those experimentally 

measured using QENS, the diffusivity determined from MD is lower than those obtained from 

the QENS measurement. The derived activation energies from the Arrhenius fit are 0.300.01 

and 0.270.02 eV for MD and QENS, respectively, in good agreement with each other. The Li 

diffusivity obtained from other experimental probes for similar materials are also plotted in 

Figure 34. These include PGSE-NMR measurements of Li6.6La3Zr1.6Ta0.4O12 by Hayamizu et 

al56, of Al-doped Li7La3Zr2O12 by Hayamizu et al57, and of Li5.22Al0.26La3Zr1.5W0.5O12 by Wang 

et al58, as well as µSR measurements of Li5La3Nb2O12 by Nozaki et al59 and 

Li6.6Al0.25La2.92Zr2O12 by Amores et al (we took the units discussed in the text, cm2/s, instead of 

what was labeled in the figure, m2/s)60. The fast Li diffusivity in Li5.22Al0.26La3Zr1.5W0.5O12 was 

attributed to the measurement capturing only faster octahedral Li motions58. Diffusivity of Li in 

Li6.6La3Zr1.6Ta0.4O12 and Al-doped Li7La3Zr2O12 (Hayamizu et al56-57) are slightly lower than we 

determine for Li in Li5La3Ta2O12, while those determined for µSR in Li5La3Nb2O12 (Nozaki et 

al59) and Li6.6Al0.25La2.92Zr2O12 (Amores et al60) are significantly lower. Compositional 

differences are likely to play a part in these differences, and our future work will focus on 

studying Li diffusivity in Zr-doped Li5La3Ta2O12 to understand these effects. Additionally, 

different probe methods capture different processes, with PGSE-NMR directly measuring 
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diffusivity at Q→0 and in the s-ms time scale in which Li motions at the crystal surface and 

defects are sampled, and µSR measuring changes to the muon site local field and indirectly 

probing residence time.  

6.3 Conclusions 

In this work, we combine backscattering QENS experiments (energy domain 

measurements) and MD simulation (time domain calculations) to study Li self-diffusion in 

Li5La3Ta2O12. Both QENS experiments and MD simulation suggests that Li motion follows a 

jump-diffusion type mechanism that is well described phenomenologically by the Singwi-

Sjölander model in which Li move between crystallographic sites with a distribution of jump 

lengths. The Li motion becomes more cooperative at length scales shorter than ~ 4.4 Å, 

corresponding to the approximate distance between octahedral (48g and 96h) sites across the 

tetrahedral (24d) site. The extracted residence times for Li at these sites obeys an Arrhenius 

relation to temperature. The extracted average jump lengths between 500 and 700 K are 

consistent with jumps between 24d (tetrahedral) and 48g (octahedral) sites. As the temperature 

increases to 1100 K the jump length decreases, corresponding to jumps between 24d (tetrahedral) 

sites and the closest off-center 96h (octahedral) sites, whilst at lower temperatures (400 K) the 

jump length increases, corresponding to jumps between 24d (tetrahedral) sites and the further 

off-center 96h (octahedral) sites. This result supports a lithium diffusion mechanism in which 

jumps are more frequent (smaller residence time) with shorter at higher temperatures, consistent 

with the delocalization of Li at elevated temperatures. 

  



103 

 

CHAPTER 7: Finite-size effects on the molecular dynamics Simulation of fast-ion 

conductors: A case study of lithium garnet oxide Li7La3Zr2O12 

7.1 Abstract 

A useful tool to study ionic conduction mechanisms in fast-ion conductors is the 

molecular dynamics (MD) simulation performed on finite simulation cells with periodic 

boundary conditions.  While there have been many studies of the effect of cell size on the 

thermodynamics and kinetics of simple liquids, the finite-size effect in fast-ion conductors 

remains elusive.  This work presents a case study to investigate the finite-size effect on the phase 

transition, self-diffusivity, ionic conductivity, Haven ratio, thermodynamic factor, and Fickian 

diffusivity using lithium garnet oxide Li7La3Zr2O12 as a model material.  It was found that cell 

sizes influence extracted thermodynamic and kinetic characteristics in different ways with 

magnitude ranging from weak to strong.  For Li7La3Zr2O12, reliable properties can be obtained 

with a 3×3×3 (5184 atoms) cell. 

7.1.1 Background 

Molecular dynamics (MD) simulations for crystalline materials are generally performed 

within a finite simulation cell with periodic boundary conditions.  In many MD simulation 

studies, it was observed that structural and dynamical properties obtained from MD results varied 

with the size of the simulation box.  For example, the self-diffusivity of liquid atoms was often 

found to increase with increasing system size.143-146  In addition, small subsystems are usually 

carved out from the cell to simulate the grand canonical ensemble and extract thermodynamic 

properties.  These thermodynamic properties were found to depend strongly on the size of 

subsystems.126, 130 However, most investigations into these finite-size effects have been centered 

on simulating water or Lenard-Jones fluids while leaving fast-ion conductors largely unexplored. 
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7.2 Results and discussion 

7.2.1 Phase characterization 

An important aspect in determining the validly of our simulations is to ensure that they 

accurately reproduce lattice parameters and phase transition characteristics represented 

experimentally.  In the literature, a wide variety of transition temperatures ranging from 373 to 

923 K was reported.4, 30-31, 43, 98 Literature results and our previous work suggest that such 

variation could be attributed to intentional or inadvertent impurity (e.g. Al)/dopant incorporation, 

H2O or CO2 exposure, all of which reduces the transition temperature.1, 30, 98  Thus we chose 

experimental data with the highest transition temperatures, i.e. works of Larraz et al43 and 

Matsuda et al98, as the benchmark.  Figure 36(a) shows the lattice parameters (normalized to 

1×1×1 cell) for different cell sizes resulting from the sequential cooling from 1400 K, along with 

experimental measurements.  Overall, our simulation results match closely to experimental ones 

in terms of change of lattice parameters and phase transition temperature (~900 K), with the 

exception of 2×2×2 cells indicating a transition temperature of 1000 K.  The only major 

deviation in average lattice parameter shown is for the 1×1×1 simulation at low temperatures, 

where it consistently has larger lattice parameters compared to the larger simulations. 
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(a) (b) (c) 

   

Figure 36: Finite-size effects on the phase transition.  (a) Average lattice parameters as a function of temperature for 1×1×1 – 

4×4×4 simulations.  Solid lines are guide to the eye.  Experimental data from Matsuda et al98 and Larraz et al43 are shown for 

comparison.  (b) Fluctuation of lattice parameters as a function of number of atoms for selected temperatures.  Solid lines are the 

linear fit (slopes close to -0.5).  (c) Time evolution of lattice parameters for different cell sizes at 900 K. 

 

The standard deviation of lattice parameters decreases with the increase of cell sizes in 

Figure 36(a).  These values are plotted in Figure 36(b) as a function of number of particles to 

further investigate the size effects.  For simplicity, we only plotted data for 800, 1100, and 1400 

K.  For the ideal gas with 𝑁 number of particles and 𝐿 cubic length, the fluctuation of 𝐿 in a NPT 

ensemble takes the form of 
𝛿𝐿

𝐿
∼

1

√𝑁
.  The linear fit of the log-log plot in Figure 36(b) yields 

slopes varying from -0.49 to -0.50, consistent with the dependence of ideal gas.  

Another way to study size effects is to examine the fluctuation of lattice parameters 

around the phase transition when cells are volatile.  Lattice parameters (as orthogonal a, b, c) are 

shown as a function of time at 900 K in Figure 36(c).  Larger 3×3×3 and 4×4×4 simulations both 

show very small variation in lattice parameter and maintain a mostly cubic phase throughout the 

simulation.  The 2×2×2 simulation shows a more complicated situation where a slightly 

tetragonal unit cell undergoes reorientation of its lattice vectors as the simulation completes.  We 

treated 2×2×2 simulation as a tetragonal phase and extracted the average lattice parameters from 
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25-60 ps.  The 1×1×1 simulation shows larger fluctuations with more frequent tetragonal 

reorientation, making an accurate description of phase difficult.  To simplify the extraction of 

lattice parameters, we characterized it as being cubic. 

After determining that 3×3×3 and 4×4×4 cells were large enough for the phase 

characterization, we further explored the hysteresis of phase transition in L7LZ by sequentially 

cooling from 1000 K and heating from 800 K, respectively, in 25 K steps. Figure 37 plots the 

lattice parameters in a heating or cooling cycle.  For 3×3×3 cells, we see that starting at 800 K 

and heating, the tetragonal to cubic transition occurs at around 950 K, but during cooling we did 

not observe a tetragonal phase until below 875 K.  For 4×4×4 cells, the hysteresis region was 

slightly reduced to within around 25 K.  Similar hysteresis behavior was also observed in our 

previous ionic conductivity measurements.  We think 4×4×4 cells capture the hysteresis more 

accurately but 3×3×3 cells offer a good balance of accuracy and efficiency. 

  

Figure 37: Change in lattice parameter for 3x3x3 and 4x4x4 under heating and cooling cycles 
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7.2.2 Self-diffusivity, ionic conductivity, and Haven ratio 

Self-diffusivity represents the ability of an individual atom to move.  The self-diffusivity 

values of Li ions for the four cell sizes are shown in Figure 38. Our calculated values are slightly 

higher than those from Jalem et al47 employing first-principles molecular dynamics (FPMD) 

simulation with 1×1×1 cell sizes.  The difference could be caused by the difference in lattice 

parameters employed.  Experimental measurement of Li self-diffusivity by the spin-lattice 

relaxation Nuclear Magnetic Resonance (NMR) studies yielded diffusivities on the order of 10-14 

cm2s-1 at ~300 K.31  Our simulations were unable to calculate diffusivity at such a low 

temperatures due to the low mobility of Li, but extrapolating from 800-700 K for the 3×3×3 and 

4×4×4 simulations yields a diffusivity on the order of 10-17 cm2s-1.  However, it is worth noting 

that two relaxation times that differ by around 3 orders of magnitude were reported in the NMR 

study and the faster relaxation time was employed to calculate the diffusivity.  If the slower 

Figure 38: Self-diffusivity as a function of temperature for four different simulation sizes.  Literature data from the FPMD simulation 

(1×1×1) by Jalem et al are shown for comparison.  The inset shows details at high temperatures.  Solid lines are guide to the eye. 
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relaxation time was used instead, the result would be closer to the value obtained in the present 

computational work. 

Previous MD simulations have shown that self-diffusivity of simple liquids such as 

water143 and silica144 increases with increasing cell size in the form of 𝐷(𝐿) = 𝐷∞ −
2.837𝑘𝐵𝑇

6𝜋𝜂𝐿
, 

where 𝐷(𝐿) is the diffusivity at cell size 𝐿, 𝐷∞ the diffusivity at the thermodynamic limit, 𝑘𝐵 the 

Boltzmann constant, 𝑇the temperature, and 𝜂 the shear viscosity.  While the present study 

indicates that 1×1×1 structures maintain a consistently higher diffusivity than that in larger 

simulation cells, overall we observe no size-determining trend for 2×2×2, 3×3×3, and 4×4×4 

simulations in Figure 38.  Such a lack of clear size effects could be due to different interaction 

potentials in L7LZ compared with those in simple liquids.  With respect to the appropriate 

simulation size, the 2×2×2 simulations allow for a reasonable calculation of diffusivity at higher 

temperatures, but as we approach the transition temperature the increased stability of the larger 

3×3×3 and 4×4×4 cells allow for a more reasonable diffusivity calculation. 

Next, we will study the size effect on the ionic conductivity, one of the most important 

properties of fast-ion conductors.  The ionic conductivity σ of both cubic and tetragonal L7LZ 

has been widely studied, and is commonly used to draw comparisons between experimental and 

simulation properties.29, 34, 38-39 For the reason discussed earlier, we selected the experimental 

conductivity results with high transition temperatures (~900 K), e.g. from Wang et al1 and 

Matsui et al4.  For the computational results, we first applied the Nernst-Einstein relation for 

ideal solutions, i.e. Equation 8, to convert self-diffusivity 𝐷∗ to conductivity, as commonly done 

in the literature, e.g. in the classical MD simulation by Adams et al50 and FPMD simulation by 

Jalem et al47 and Miara et al.5   The computed conductivities for 3×3×3 cells are similar to those 

from Miara et al5 (1×1×1 cell) in Figure 39.  For nonideal solutions such as L7LZ, we plot the 
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ionic conductivity calculated from Equation 19 in Figure 39 for all cell sizes. Similar to what 

was observed for self-diffusivity, ionic conductivity shows small variations from 2×2×2 to 

4×4×4 cells.  

The difference between calculated and experimental values in diffusivity and 

conductivity could be due to impurity incorporation of the experimental samples, e.g. Al.  Such 

impurity effect will be reported in future publications. We are also in the process of exploring 

other means of calculating the conductivity with respect to the methods outlined in Table 4. It 

appears out model may be under-binding for lithium despite the good agreement with structural 

parameters. 

As discussed in the Chapter 3, the Haven ratio characterizes the ratio of self-diffusion vs 

collective diffusion (ionic conductivity). Its value is commonly assumed to be 1, i.e. no 

correlation of motion of different atoms.  This allows the use of self-diffusivity and Nernst-

Figure 39: Finite-size effects on the ionic conductivity for 3×3×3 and 4×4×4 cells.  Values calculated from both Equation 8 

(named “ideal) and Equation 19 are presented.  Literature data from experimental measurements by Wang et al1 and Matsui et 

al4, along with FPMD simulations by Miara et al5 (also “ideal”), are shown for comparison. 
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Einstein equation to calculate the ionic conductivity, named as “ideal” in the previous discussion.  

However, for complex materials such as fast-ion conductors, the Haven ratio is expected to 

deviate from 1.  Finite-size effects on the Haven ratio are shown in Figure 40. At high 

temperatures, Haven ratios are around 0.3 and size dependence is weak.  At lower temperatures, 

the ratios dropped to a few percent signifying strong collective motion. 

7.2.3 Thermodynamic factor and Fickian diffusivity  

In fast-ion conductors, the thermodynamic factor reveals the effective fraction of mobile 

charge carriers, as discussed in the Appendix. There are three methods in obtaining the 

thermodynamic factor 𝛤 from the trajectory of MD simulation: fluctuation, KBI, and static 

structure factor.  The fluctuation method involves dividing a simulation cell into subsystems that 

are large enough compared with the microscopic volume 𝑉𝑠𝑢𝑏 >> 𝑉𝑚𝑖𝑐𝑟𝑜 but small enough 

compared with the cell volume (𝑉𝑠𝑢𝑏 << 𝑉𝑐𝑒𝑙𝑙 to achieve grand canonical ensemble).126, 147  We 

applied this method in our previous study of Li7La3Zr2O12 by averaging values corresponding to 

𝑉𝑠𝑢𝑏

𝑉𝑐𝑒𝑙𝑙
 of 1/8 and 8/125 for 2×2×2 cells.148  However, the guideline to choose the right size of 

Figure 40: Finite-size effects on the Haven ratio for four simulation 

cell sizes.  Solid lines are guide to the eye. 
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subsystem remains unclear.  The KBI method involves evaluating the Kirkwood-Buff integral of 

the Li–Li  pair distribution function130.  For simple liquids in which the pair distribution function 

decays to the value of one quickly, this method allows reliable estimation of 𝛤−1.  For complex 

materials such as fast-ion conductors, such KB integrals are more susceptible to finite size 

truncation errors.  An alternative is the static structure factor method which is the KBI method in 

the Fourier space.  This is the method employed in the present study.   

 

The plot of the inverse thermodynamic factor Γ-1 from different cell sizes at different 

temperatures are shown in Figure 41.  Overall, with increasing temperature we see a 

corresponding increase in Γ-1 suggesting that Li diffusion is becoming less coordinated at higher 

temperatures.  A kink at 900 K was identified for all cell sizes, corresponding to the tetragonal to 

cubic phase transition.  Since the thermodynamic factor is related to the number fluctuation 

reflecting interatomic interaction, the two regions above and below 900 K imply different Li–Li  

interaction in the cubic and tetragonal phases, respectively.  In addition, the Γ-1 values are 

Figure 41: Finite-size effects on the inverse thermodynamic factor Γ-1 at different temperatures.  Solid lines are guide to the eye.  
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decreasing with the increasing cell sizes and they start to converge above 3×3×3 cells.  The 

values of Γ-1 in both 3×3×3 and 4×4×4 cells are on the order of a few permille which suggest that 

only a small fraction of Li ions contribute to the conduction.  A value of ~6% was reported in the 

literature based on the muon-spin relaxation and conductivity measurement for L7LZ at 300 K, 

although the reported conductivity is similar to our calculated value at around 800 K.59  Such 

difference in effective concentration is likely caused by the impurity incorporation discussed 

earlier for the ionic conductivity. 

Finite-size effects on the Fickian diffusivity are shown in Figure 42.  According to Figure 

42, the Fickian diffusivity is related to the ionic conductivity (Equation 19) through the 

thermodynamic factor (Figure 41).  While the ionic conductivity has weak dependence on the 

cell size, the Fickian diffusivity increases with increasing cell sizes due to the opposite trend in 

thermodynamic factors. 

Figure 42: Finite-size effects on the Fickian diffusivity for four simulation sizes. 
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7.3 Conclusions 

In this work, we performed the molecular dynamics simulation and investigated the effect 

of simulation cell sizes on the phase transition, self-diffusivity, ionic conductivity, Haven ratio, 

thermodynamic factor, and Fickian diffusivity of a model fast-ion conductor: Li7La3Zr2O12.  In 

terms of phase transition, even the smallest cell size (1×1×1 with 192 atoms) was able to capture 

the tetragonal to cubic phase transition.  Increasing the cell size reduces the fluctuation of lattice 

parameters in the form of 
𝛿𝐿

𝐿
∼

1

√𝑁
 and increases the accuracy in estimating the phase transition 

hysteresis.  No obvious size effect was detected for the self-diffusivity of Li7La3Zr2O12, as 

opposed to the observation of increasing diffusivity with increasing cell size for simple liquids.  

The ionic conductivity and Haven ratio also shows similar weak size dependence as the self-

diffusivity.  In terms of thermodynamics, the inverse thermodynamic factor decreases with the 

increasing cell sizes, with values on the order of a few permille suggesting only a small fraction 

of all lithium-ions are responsible for the electrical conduction.  On the contrary, Fickian 

diffusivity increases with increasing cell sizes since it is inversely related to the inverse 

thermodynamic factor.  Overall, a cell size of 3×3×3 (5184 atoms) offers the best balance 

between accuracy and efficiency for Li7La3Zr2O12.  The methods and consideration employed in 

this study can be extended to other fast-ion conductors. 
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CHAPTER 8: Modeling Li7-xLa3Zr2-xTaxO12 using core only model 

8.1 Abstract  

Critically, one of the most important areas of investigation regarding the lithium garnet 

series is the effect of lithium concentration coupled with the tantalum and zirconium substitution. 

Based upon the results from the finite size effects on L7LZ, 3 x 3 x 3 simulation cells were 

generated for Li7-xLa3Zr2-xTaxO12 for x = 0, 0.25, 0.5, 0.75, 1, 1.5, & 2. Within this framework 

we were able to show that the phase transformation temperature is a function of composition, 

where the critical lithium concentration of 6.5 per formula unit (p.f.u) is observed with 

agreement to reports by Thompson et al42 for aluminum substitution. Our simulations predict a 

maximum conductivity for concentrations of Li in the range of 6.5 to 6.75 p.f.u. in agreement 

with previous reports. 35 The inverse thermodynamic factor for Li−Li interactions (LiLi
-1) is 

maximized for a lithium concentration of 6 p.f.u. implying this composition allows for the 

highest degree of mobile species.  for nonidentical pairs, with respect to Li and the frame work 

atoms La, Ta, Zr, and O are also investigated. We show that the framework atoms may play a 

crucial role in the redistribution of lithium across the Li sublattice maximizing the entropy of the 

system, and encouraging higher self-diffusivity values when the concentration of Li is around 6.5 

p.f.u. 
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8.2 Results and discussion 

8.2.1 Phase characterization of 3x3x3 LLZT cells 

Previous work showed that 3 x 3 x 3 simulations are sufficiently large and efficient 

enough to model the phase transformation in L7LZ. Continuing upon that work, potential set 

verification was performed by comparing the simulated structural properties of the LLZT series 

to X-ray and neutron diffraction values in the literature. Lithium garnets of composition 𝑥 =

0.5 → 2 have consistently shown the cubic single-phase behavior experimentally and the 

anisotropic NPT simulations performed on these compositions concur with reported values and 

are plotted in Figure 43 (a). Similarly, when comparing the volume of unit cells within this 

compositional range to X-ray and neutron diffraction studies general agreement with Vegard’s 

law is observed, in accordance to other simulation studies. There are however two noticeable 

deviations. First the predicted volume of L5LT (x=2) in Figure 43(b) is about 1.4% less than the 

values reported from experiments. Second, both X-ray and neutron studies have shown that there 

is a deviation from Vegard’s law for tetragonal L7LZ which is not captured by most simulation  

Figure 43: Anisotropic NPT simulations on 3x3x3 simulation cells. (A) Unit cell lattice parameters for LLZT series. Solid lines 

are guides to the eye. (B) Unit cell volume at 300 K, 600 K, 900 K, and 1200 K for LLZT series. Experimental data from 

Logeat et al, Mukhopadhyay et al, and Wang et al. are shown for comparison. (C) Time dependent lattice parameter for L-

6.75LZT at 300 K, 400 K, 500 K, 600 K. 

(a) (b) (c) 
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studies. It is likely that the loss of volume conservation is related to impurity incorporation from 

moisture exposure causing lattice distortions and the creation of multiple garnet compositions. 

For 𝑥 ≤ 0.25 compositions, the simulations suggest that at low temperatures the 

tetragonal phase is preferable. Figure 43(c) plots orthogonal a, b, and c lattice vectors as a 

function of time. At 500 K and 600 K the a, b, and c lattice remain relatively constant while 

fluctuating within 0.1 Å of the mean. As the temperature is lowered to 400 K, a separation begins 

to form between the lattice vectors as the cubic phase transforms to a slightly tetragonal phase by 

the end of the simulation. Finally, when the simulation cell is cooled to 300 K we see a 

consistent tetragonal phase indicating that this composition of garnet may be unstable. There is 

some evidence that lithium will self-separate into tetragonal L7LZ and cubic L6.5-yLZT.149 

In compositions where 𝑥 < 0.5 the critical Li concentration has been exceeded leading to 

evidence that a single-phase solution is not formed but instead a mixture of L6.5LZT and L7LZ. 

Due to the relatively small simulation cell used in this study it is not possible to model the 

possible formation of multiple phases, so further discussion on structural properties of L6.75LZT 

will assume a single tetragonal phase is formed. From this assumption if we consider L7LZ to be 

the starting composition, Ta substation on the 16a sites works in a similar manner to other 

dopants. When Zr is substituted for Ta the cubic to tetragonal phase transition temperature is 

depressed. For compositions above the critical Li concentration (𝑥 ≥ 0.5) the tetragonal phase is 

completely suppressed. In the case of L6.75LZT, simulations suggest that the cubic to tetragonal 

transformation it is depressed to ~500 K versus ~900 K for uncontaminated L7LZ. Excess 

entropy calculations discussed in a subsequent section of this paper suggest a more ordered sub-

lattice configuration reminiscent of tetragonal L7LZ is present in L6.5LZT making a definitive 

answer on the stability of this composition difficult to determine.  
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8.2.2 Ionic conductivity,  

The collective movement of Li ions denoted as the ionic conductivity has been proven to 

exhibit unique phenomena related to the stoichiometry of Ta and Zr at room temperature. The 

expected trend of having the lowest conductivity at the lowest Li concentration (L5LT, x = 2) 

and highest conductivity at the highest Li concentration (L7LZ, x = 0) is disrupted with the 

actual maxima disputed to be in the range of 𝑥 =  0.25 → 0.6 depending on the quality of the 

sample. The dramatic decrease in conductivity in L7LZ results from the ordering of Li on the 

occupied 8a, 16f, and 32g sites and the unoccupied 16e sites. Figure 44 (a) plots Li conductivity 

from 1400 K to 500 K with an extrapolation down to 300 K. Except for L7LZ each composition 

has a near linear profile in accordance with Arrhenius behavior. Upon closer inspection, it is 

evident that around 900 K, each composition exhibits a slight kink in their slope profile. This 

kink has can be observed with most garnet compositions experimentally at around 500 K and is 

potentially a sign of a glassy transition of the Li sub-lattice.  

(a) (b) (c) 

Figure 44: (a) Arrhenius plot of conductivity for LLZT series. Squares are calculated conductivity values; lines are best fit from 1000 K – 

500 K then extrapolated down to 300 K. Experimental total conductivty for LLT shown by Thangadurai. Inset shows high temperature 

conductivity with lines as guides. (b) Iso-temperature plot of conductivity as a function of lithium concentration. 1200 K, 900 K, 600 K 

are direct measurements, 300 K is extrapolated from best fit line in (a). (c) Activation energy as a function of lithium concentration for 

LLZT series Compared to reported activation energies for various garnet compositions with standard deviation bars. 
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Figure 44 (b) plots the conductivity of Li as a function of Li concentration. Due to poor 

kinetics at 300 and 400 K, the values shown at 300 K are that of the extrapolated line from 

Figure 44 (a). The highest room temperature conductivity observed in the simulation is that of 

Li6.75LZT, but because this data set is extrapolated from its cubic phase the effects of having a 

tetragonal phase are not captured in this analysis. Based upon sub-lattice structural effects 

described later in this work it is likely that L6.5LZT is the most conductive phase at room 

temperature. The experimental values by Wang35 indicate good agreement with the simulations 

where. Their reported maximum being located at Li6.75LZT is likely from Al contamination and 

stabilization derived from the synthesis and sintering process. It is likely the actual concentration 

of Li in the bulk is less than the theoretical stoichiometry.  

From the best fit lines in Figure 44 (a), the activation energy (EA) for each composition 

was calculated and plotted in Figure 44 (c). L5LT to L6.25LZT have a mainly flat profile with a 

slight peak and valley at L5.5LZT and L6LZT respectively ranging from 0.34 to 0.31 eV. When 

the concentration of Li increases from 6.25 to 6.75 there is a decrease in activation energy equal 

to about 0.1 eV to a value of approximately 0.22 eV before shooting up dramatically for the 

tetragonal L7LZ. When compared to the activation energy for all Li garnet type compositions in 

the review by Thangadurai34, there is a strong agreement in the general trend, but a difference of 

about 0.15 eV for all measurements33. The discrepancy between observed activation energies and 

those modeled is likely resulting from reports of total resistivity which includes a merging of the 

bulk and grain boundary signals. Typically, these will increase the activation energy and they a 

feature that is not modeled in my system. 
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8.2.3 Self-diffusivity 

While the conductivity discussed above concerns itself with the collective motion of Li 

atoms the self-diffusivity allows for discussion about the ability of individual Li atoms to jump 

between neighboring sites. Ideally, the two properties should be highly correlated. In the case of 

an ideal gas where the Nernst-Einstein relation is valid, the motion of each species is 

independent of its neighbors. While this assumption has been used quite liberally previously, 

lithium garnets have a relatively small concentration of independent mobile species and instead 

primarily move through collective motions making calculations of conductivity through the 

Nernst-Einstein relation incomplete without a corrective term.  

Self-diffusivity and conductivity exhibit nearly identical trends regarding the LLZT 

series. Evident from Figure 45 (a) and Figure 45 (b) as the concentration of lithium is increased 

up to 6.75 there is a corresponding increase in self-diffusivity terminating with a sharp decrease 

at L7LZ. A deviation is observed from this trend the x = 1.5 composition L5.5LZT, which has a 

lower self-diffusivity than that of the x = 2 composition L5LT. Except for L7LZ, which is much 

(a) 

Figure 45: (a) Arrhenius plot of self-diffusivity for LLZT series with extrapolated best fit lines to 300 K. Inset 

shows high temperature 1400 K to 1000K with lines acting as guides to the eye. (b) Isothermal plot of self-

diffusivity as a function of lithium concentration. 300 K data taken from extrapolated lines of (a). 

(b) 
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lower due to the tetragonal phase transformation, the simulations predict self-diffusivity values 

four to six orders of magnitude lower then what is seen with solutions of LiPF6 in ethylene 

carbonate (EC) and diethyl carbonate (DEC). Despite the dramatic difference in self-diffusivity, 

the conductivities of EC/DEC solutions and that of LLZT are only one to two orders of 

magnitude apart. Making it evident that low a self-diffusivity for structured vacancy materials 

such as LLZT is not a major hindrance to the overall conductivity of ions. 

8.2.4 Haven ratio, thermodynamic factor 

The following discussion will explore two measures of collective and independent 

diffusion in the garnet series. Firstly, the Haven ratio (HR) expresses the ratio of self-diffusion 

(𝐷𝑎
∗) vs collective diffusion (𝐷𝑎

𝜎) of a species. Figure 46 (a) shows that the Haven ratio for LLZT 

series is in general increasing with temperature and lithium concentration. In the case of 300 K 

the data is quite noisy due to the poor kinetics at low temperatures. Nevertheless, the low 

temperature trend of maximizing the ratio of self to collective diffusion at L6.5LZT is observed 

up to 600 K where a maximum of about 0.3 is observed for all lithium concentrations. As the 

temperature is further increased, we see that for all compositions the Haven ratio begins to level 

(a) (b) 

Figure 46: (a) Haven ratio for Li diffusion in the LLZT series at 300 K, 600 K, 900 K, and 1200 K  and (b) 

𝛤𝐿𝑖𝐿𝑖
−1  for Li–Li  pairs at 300 K, 600 K, 900 K, and 1400 K . 
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out. Effectively showing that increasing the lithium concentration to 6.5 allows for more 

independent diffusion events at lower temperatures, essentially maximizing the ratio of 

independent diffusion to collective diffusion at a lower temperature compared to other 

compositions.  

It is possible that this composition is on the boundary of stability for the local cluster 

arrangements. In Chapter 4 we showed that the dependence of concentration on what types of 

cluster formed for L5LT and L7LZ respectively. Assuming that increasing the Li concentration 

is going to force more Li-Li type interactions, it is possible that this composition will undergo 

more local rearrangements than the others, leading to a larger diffusivity. 

The second method for probing collective and independent motion, is the inverse 

thermodynamic factor (Γ𝛾𝛼
−1). Here in contrast to the previous reports in Chapter 4, it is evaluated 

from the static structure factor Sab(Q,0) as we approach the long-wavelength limit (Q→0). The 

subscripts γ and α represent species one and species two of the pair correlation function 

respectively. If Γ𝛾𝛼
−1 = Γ𝐿𝑖𝐿𝑖

−1  the correlated pairs are all the mobile lithium type, when this 

condition is met the effective fraction of charge carriers is determined. Whereas in the case 

Γ𝛾𝛼
−1 = Γ𝐿𝑖𝛼

−1  (𝛼 ≠ 𝐿𝑖), α is an immobile framework atom and the interaction between mobile 

species and the lattice are evaluated. For the sake of discussion, we postulate that only 

interactions consisting of the highest order of magnitude will be considered influential to lithium 

diffusion. 

Contrasting the single maximum in the conductivity, self-diffusion, and Haven’s ratio 

calculations, evaluation of Γ𝐿𝑖𝐿𝑖
−1  presents a bimodal distribution. The two peaks in Figure 46 (b) 

located at L6LZT and L6.5LZT respectively are orders of magnitude greater than values for the 

end members L5LT and L7LZ having effective carrier concentrations of only a few permille. In 
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the exemplary case of an ideal gas Γ𝐿𝑖𝐿𝑖
−1 = 1, meaning all lithium contribute to the conductivity, 

while no garnet composition approaches this limit, at all investigated temperatures the fraction of 

charge carriers approach ~11% in L6LZT. Increasing lithium concentration further decreases the 

carrier concentration at 300 K in both L6.25LZT and L6.5LZT to ~6% & ~7% respectively. For the 

last intermediary composition L6.75LZT the fraction of carriers is further decreased to only ~1.5% 

at room temperature. Inferring from the data presented Figure 45 and Figure 46, the increase in 

self-diffusivity associated with high lithium concentration compositions plays a greater role in 

the resulting conductivity than the effective concentration of charge carriers. 

Interestingly, as the temperature increases for L6.25LZT and L6.5LZT there is a slight 

decrease in the fraction of effective charge carriers. Changes in Γ𝐿𝑖𝐿𝑖
−1  have previously been related 

to changes in how lithium is dispersed about tetrahedral and octahedral sites and the resulting 

lithium sub-lattice. L6.75LZT for example undergoes a change in Γ𝐿𝑖𝐿𝑖
−1  similar to that of L7LZ. At 

temperatures sufficient to undergo the tetragonal to cubic phase transformation there is a 

noticeable increase in the number of effective charge carriers. In a subsequent section, we 

discuss a descriptive reasoning for these results as it relates to the excess entropy of the lithium 

sub-lattice. 

Now that Li–Li  interactions have been modeled the effects of the surrounding 

framework atoms need to be explored. Figure 47 plots the thermodynamic factor of framework 

atoms with mobile lithium species. For all end member compositions Γ𝐿𝑖𝛼
−1  is relatively close to 

zero. This is indicative of a homogenous bulk structure where at the potential field around all 

pairs is nearly equivalent. As heterogeneity is introduced through Ta/Zr substitution what we call 

“the effective potential field” becomes unbalanced and a preferential pair coordination 

environment is formed. With respect to Li-O and Li-La pairs, it can be assumed that these 
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framework ions have no effect on lithium conduction because Γ𝐿𝑖𝛼
−1  is an order of magnitude 

lower than of Ta and Zr and close to zero. 

For Li-Ta and Li-Zr pairs however we can see that these ions act as a mirror to one 

another at each composition, Zr with its 4+ valance state correlates positively with lithium-ions 

and indicating a preference between the pairs. Ta with its 5+ state is negatively correlated with 

lithium positions over time suggesting the imbalance in charge between these two atoms on 16a 

sites may act as a force for driving for the self-diffusion of lithium. As more disorder is 

introduced the lithium may rearrange themselves in order to obtain preferential interactions. The 

Figure 47:  𝛤𝐿𝑖𝛼
−1 (𝛼 ≠ 𝐿𝑖) for (a) Li-La pairs, (b) Li-Ta pairs, (c) Li-O pairs, and (d) Li-Zr pairs. 

(a) (b) 

(c) (d) 
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magnitude of Γ𝐿𝑖𝛼
−1  at each composition likely correlates with the degree of heterogeneity on 16a 

sites. L6LZT with its equally numbered and randomly dispersed Ta and Zr species could allow 

for the most favorable distribution of Ta/Zr ensuring that the supporting framework of the 

lithium sublattice is sufficiently disordered.  

8.2.5 Li site occupancy and regular solution model 

Experimental neutron diffraction studies have shown a shifting in lithium site preference, 

predicting that with increased Li concentration, Td sites are depopulated as Oh sites become 

favored.37 This has been reasoned to be a result of minimizing Li−Li interactions, and a change 

in relative site energy. Because of the wide range of possible lithium distributions, and the highly 

cooperative diffusion mechanism involving the motion of nearest and next nearest neighbor 

dynamics it is infeasible to model each configuration and predict changes in site energy and how 

a given initial state will result in a final state using techniques such as nudge elastic band. In an 

NVE simulation however, it is possible to probe a wide range of configurational energy and use 

the statistics of site occupancy and average potential energy to form a regular solution model. 

First looking at the occupancy for both tetrahedral and octahedral sites for the garnet 

series. At the end member composition of L7LZ two phase behavior exists as 33% of Td sites are 

occupied at 300 K and 600 K accompanied by 100% occupancy of Oh sites. Once the simulation 

is heated and the phase transformation occurs, the total Td occupancy is increased to ~40% while 

Oh occupancy is decreased to ~96%. This agrees with our previous work on L7LZ using the core 

shell model and matches the trend of migrating some of the fully occupied 8a lithium to the 

unpopulated 16e sites giving a uniform distribution across all Td sites. 
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For other Li compositions, it is evident that increases in temperature cause a depopulation 

of 24d sites while increasing Oh occupancy. The regular solution model is constructed by 

assuming the 24d and 48g sites are separate sub-lattices with the interaction energy between 

them defined by a mean-field term where the entropy of each sub-lattice is treated as if it is an 

ideal solution. A summary of terms is defined in Table 7. Where d is the tetrahedral site 

occupancy, g the octahedral site occupancy, kB the Boltzmann constant, T the absolute 

temperature, Φ the interaction energy, and ε24d and ε48g being the site energy of 24d and 48g sites 

respectively.  

Table 7: Parameters for the regular solution model 

Number of 24d sites, N; constraint: 3d +6g = 5 + x        x=[Zr] 

Site/Interaction Site Energy Entropy Interaction 

Energy 

24d Ndε24d kBTN[d ln d + (1-d) ln (1-d)] 0 

48g 2Ngε48g kBT2N[g ln g + (1-g) ln (1-g)] 0 

24d-48g   4𝑁𝑑𝑔𝛷𝐿𝑖48𝑔+ −𝐿𝑖24𝑑
+  

 

(a) (b) 

Figure 48: (a) tetrahedral and (b) octahedral occupancy as a function of Li concentration and temperature. 
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The term ε used for the site energy encapsulates the interaction potential Φ of for Li-La, 

Li-O, and Li-Ta/Zr pairs as follows, 

Equation 44 

𝜀 =∑Φ𝐿𝑖+−𝑂2− +∑Φ𝐿𝑖+−𝑇𝑎5+
𝑍𝑟4+

+∑Φ𝐿𝑖+−𝐿𝑎3− 

Combining all terms in Table 7 we are left with an expression for the free energy: 

Equation 45 

𝐹 = 𝑁𝑑𝜀24𝑑 + 2𝑁𝑔𝜀48𝑔 + 𝐾𝐵𝑇𝑁[𝑑 𝑙𝑛 𝑑 + (1 − 𝑑)𝑙𝑛 (1 − 𝑑)]

+ 𝐾𝐵𝑇2𝑁[𝑔 𝑙𝑛 𝑔 + (1 − 𝑔)𝑙𝑛 (1 − 𝑔)] + 4𝑁𝑑𝑔Φ𝐿𝑖48𝑔+ −𝐿𝑖24𝑑
+ + 𝐹𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 

The resulting expression is similar to that of a regular solution or Frumkin adsorption isotherem 

on a single lattice. For each simulation, the time averaged potential energy from NVE trials is 

taken to be F, while the corrective input term Fintrinsic accounts for the configurational energy 

contribution from the framework atoms at 0 K taken from GULP simulations. The terms 

𝜀24𝑑 ,  𝜀48𝑔, and Φ𝐿𝑖48𝑔+ −𝐿𝑖24𝑑
+  were then refined using the Td and Oh occupancy values from 0 K 

to 1400 K. The results of the refinement procedure are displayed in Table 8. 

From the regular solution model, we can now see that as we transition from low to high 

Li compositions the relative site energy difference between 24d and 48g sites changes from 

slightly positive to strongly negative values implying that Td occupancy is favored at low Li 

concentration while Oh occupancy is favored at high concentrations. With respect to 

Φ𝐿𝑖48𝑔+ −𝐿𝑖24𝑑
+ , negative numbers represent the degree to which Li is willing to coordinate with 

neighboring Li species. As the concentration of Li goes up there is a consistent trend of 

decreasing interaction potential allowing for a greater nearest neighbor occupancy. The 

magnitude of  𝜀48𝑔 − 𝜀24𝑑 for 𝑥 = 2 → 1 compositions is quite small compared to higher Li 

compositions suggesting that both lithium sites are at similar relative energies and the driving 
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force for dispersed Li species stems from interaction parameters that suggest week coupling of 

Li–Li  pairs. For compositions with 𝑥 < 1, octahedral sites become heavily preferred with values 

of Φ𝐿𝑖48𝑔+ −𝐿𝑖24𝑑
+  implying that highly coordinated and occupied nearest neighbor clusters are 

formed. Overall this regular solution model was able to adequately fit our observed occupancy 

trends and provides insight on the degree of site preference for the LLZT series. 

Table 8: Refined regular solution parameters 

[Li] (p.f.u) 

ε48g -ε24d  

(eV unit-cell-1)  

Φ𝐿𝑖48𝑔+ −𝐿𝑖24𝑑
+  

(eV unit-cell-1) 

R2 

5 (x=2) 5.984 -1.173 0.9973 

5.5 (x=1.5) 8.307 -2.787 0.9942 

6 (x=1) -4.688 -6.415 0.9825 

6.25 (x=0.75) -20.182 -13.12 0.9902 

6.5 (x=0.5) -63.158 -29.97 0.9888 

6.75 (x=0.25) -180.53 -72.18 0.9857 

 

8.2.6 Li sub-lattice and configurational energy 

Thus far we have examined Hr, Γ𝛾𝛼
−1, and Td/Oh occupancy values in pursuit of finding a 

descriptor for predicting what properties mark a highly conductive Li garnet composition. A final 

method to be explored is through the calculation of the excess entropy of the Li sub-lattice. 

Shannon132 described the amount of information a system contains is proportional to the entropy 

of the system. From Equation 41,  𝑆 = −𝑘𝐵 ∑𝑝𝑙𝑛(𝑝) where S is the entropy, kB is the 

Boltzmann constant, and p is the probability that a location within the unit cell is occupied is 

derived. To perform this calculation, we record the position of each atom for every frame of a 
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simulation and superimpose its position upon a three-dimensional lattice composed of “voxels” 

with uniform dimensions equal to approximately 0.1 Å. For every frame in which the pixel is 

occupied a value of 1 is assigned it. We then sum the pixels and divide by the total number of 

frames to find the probability of each pixel being occupied.  

In the case of an ideal gas each pixel will have a uniform probability for which the ideal 

entropy (SI) of the system is maximized. The Li sub-lattice for the garnet series however has a 

finite number of positions in which Li can occupy, we call this the configurational entropy (SC) 

for Li. The excess entropy for the system is then the difference of SI-SC. Because each of our unit 

cells is of varying length we then normalize the excess entropy by dividing by SI to ensure a 

uniform pixel density. Figure 49 plots the normalized excess entropy as both a function of 

composition (a) and a function of temperature (b) for the garnet series. 

We can see from the Figure 49 (a) that at room temperature the excess entropy is 

maximized for the [Li] = 6.5 composition. Upon heating this peak shifts to higher lithium 

concentration indicating that if the same amount of energy was added to the Li sublattice, more 

disorder is generated in the [Li] =  6.75 case vs the others. At 700 K, every composition except 

for L7LZ is maximally disordered for a given temperature, this change does not occur L7LZ unto 

900 K consistent with the tetragonal to cubic phase transformation.  
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The maximizing of the normalized excess entropy, we believe is proportional to the 

collective diffusion of lithium. When comparing the density maps of these garnet compositions 

across various temperatures we observe that as the concentration of lithium increases so too does 

the interconnectedness of our density maps. This type of response is similar to an idea proposed 

in the Adam-Gibbs entropy model of thermally activated transitions.150 In the Adams-Gibbs 

theory, a change in activation energy is proportional to the inverse of the configurational entropy. 

Therefore, a composition with the largest normalized excess entropy (most disorder) will have a 

lower activation energy compared to the other compositions.  

If the entropy of the system can be defined rigorously it may be possible to modify our 

extrapolations of conductivity to lower temperatures. One of the major problems still being 

addressed, is calculating low temperature properties where the cost of simulation time inhibits 

our ability to gather a statistical representation of diffusion events. The calculation of excess 

entropy is less computationally expensive than other methods and still valid if only vibrational or 

“jump-back” type motions are observed when an atom moves to one site and quickly returns to 

Figure 49: Normalized excess entropy for the LLZT series as a function of composition and temperature. 

(a) (b) 
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the original. Such motions are difficult to capture in the mean squared displacement and auto 

correlation calculations, though they still represent low temperature events. By modeling how 

entropy changes with temperature it may be possible to correct for any non-Arrhenius behavior. 

As reported previously, we believe the transformation to the cubic phase at high 

temperatures appears to be driven by the change in entropy of the system. We can see a 

discontinuity in excess entropy between 800 K and 900 K, indicative of a first order phase 

transformation with respect to the dimensionless heat capacity of the system. The transformation 

coincides with the increase in conductivity reported previously in section 8.2.2 suggesting that 

increasing lithium disorder is the major contributor to the existence of a highly conductive phase. 

To visualize the changes in entropy we again can look to the density maps as a function 

of temperature for the various compositions. There are two major trends to be addressed, first the 

change in density for a single composition at different temperatures, and second the differences 

in density at a single temperature for different compositions. Figure 50 shows that as the 

concentration of lithium is increased the degree of interconnectedness between the lithium sites 

is visually greater. This is evident of more diffusion occurring at lower temperatures for higher 

concentration compositions.  
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Figure 50: Lithium nuclear density maps for LLZT series along the [100] direction at 300 K, 600 K, 900 K, and 1200 K. 

Isosurface level 0.3 Å-3. 
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One of the major changes among the compositions at 300 K is the shift from more 

spherical to oblong shaped density regions as lithium-ions shift from tetrahedral to octahedral 

sites with increasing lithium concentration. The [Li] = 6 composition even shows evidence of 

long-distance diffusive motion within the volume shown. All compositions except L7LZ show 

signs of some “jump back” or single jump events with density connecting one tetrahedral and 

octahedral site. The L7LZ ordering is quite evident at both 300 K and 600 K with identical 

structures with the only difference being an increase in occupied volume at the higher 

temperature. 

When the temperature in increased to 600 K for the other compositions, the density maps 

are much more connected when compared to 300 K. There is now evidence of multiple site 

jumps for most compositions with the [Li] = 6.5 & 6.75 compositions showing almost complete 

disorder in agreement with the entropy plots of Figure 49. The 900 K and 1200 K isosurfaces are 

completely interconnected for all compositions suggesting that the conductivity weakly 

composition dependent at high temperatures. 

Finally, the density maps at every temperature confirm the Td-Oh-Td conduction 

mechanism. This is shown by only having nuclear density within the described sites with 

diffusion occurring by directly passing through the bottle-neck region connecting the 

crystallographic sites. The reduced density around the bottle-neck for higher lithium 

concentration compositions indicates that there are likely more center-pass type events in 

supporting the cluster analysis and dynamics in Chapter 4. 

8.3 Conclusions 

The role of lithium concentration on the structural and dynamic properties in the lithium 

garnet series was successfully modeled using our core-only force field. The lattice parameter and 



133 

 

phase transformation phenomena were accurately captured as both a function of temperature and 

lithium showing that the doping of Ta onto Zr sites in L7LZ acts as a means of depressing the 

phase transition temperature by introducing lithium disorder and limiting Li−Li interactions. The 

regular solution model was applied to the lithium sublattice with respect to tetrahedral and 

octahedral sites, showing a trend for decreasing tetrahedral and increasing octahedral occupancy 

with respect to increasing lithium concentration and temperature. The maximum room 

temperature conductivity is likely to be observed for the [Li] = 6.5 when the critical lithium 

concentration is reached. Despite the [Li] = 6.75 composition having a higher self-diffusivity, 

and conductivity at room temperature, these values are extrapolated from high temperature 

simulations where only cubic LLZT is observed. We believe the tetragonal like structure 

observed when [Li] = 6.75 indicates this composition may not be phase stable at room 

temperature and will likely separate into L6.5LZT and L7LZ phases as suggested by Thompson 

et al.149 The excess entropy of the LLZT series was also evaluated, supporting the maximum 

conductivity at [Li] = 6.5, but will shift to [Li] = 6.75 once the transformation to a cubic phase 

has occurred. Similarly, the excess entropy calculations suggest that the tetragonal to cubic phase 

transformation for L7LZ is entropy driven, and a first order transformation with respect to the 

dimensionless heat capacity. 
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CHAPTER 9: Future work and conclusions 

9.1 Future work 

9.1.1 Exploration in to multivalent doping schemes 

The work presented in Chapter 8 suggests that a fundamental way of improving the 

conductivity in the garnet series is by maximizing the amount of disorder about the lithium 

sublattice. Having identified that a [Li] = 6.5 is likely the ideal composition for use in devices 

because it exhibits the highest conductivity, there merits further evaluation into the role of 

dopants on the lithium conduction pathway by Al3+ and Ga3+ substitution, and framework doping 

onto the La, Ta/Zr and O sites. Based upon the thermodynamic factor and excess entropy results, 

introducing more lithium disorder by performing multiple doping strategies with maintaing the 

critical lithium concentration may result in a more conductive composition.  

One such theoretical composition would involve doping Al3+ on to lithium sites, focusing 

the lithium conduction pathway by eliminating octahedral and tetrahedral sites. This will likely 

lower the self-diffusivity, by limiting the possible number of available sites for lithium jumps, 

but overall may make the collective diffusion higher by forcing more Li−Li interactions and 

simultaneous jumps. Subsequence doping the La site with a 2+ ion and doping Ta/Zr site with a 

3+ or 6+ ion, the internal framework of the garnet will become maximally anisotropic. A 

theoretical composition would look something like Li6.5Al0.16La2.35Y0.5Ba0.15Zr1.75Ta0.2Sc0.05O12. 

This composition places multiple atom types on each site effectively changing the bonding 

character of oxygen within each polyhedral. The introduction of anisotropy within the 

framework, by initiate continual lithium rearrangements on the lithium the sublattice to obtain a 

favorable local arrangement.  
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What needs to be further addressed in order to allow such an investigation is the synthesis 

of such a heavily doped composition. Because so many different elements are involved, care 

needs to be taken in order to assure pure phase garnet is obtained through solid-state or sol-gel 

synthesis. If deemed possible, interatomic potential and DFT models will need to be created 

using the techniques used in the previous work. This again introduces problems in the search for 

an appropriate model, because such a dynamic bonding environment is created, it will be 

difficult to make it preform well for each pair of atoms. 

9.1.2 Electrolyte-electrode interface modeling. 

With the evaluation of bulk LLZT reasonably understood, the next major issue to 

understanding the performance of the garnet as an electrolyte would be to evaluate the 

electrolyte-electrode interface. To date the formation of a strongly interacting interface remains 

an elusive problem. It is possible to use spark plasma sintering or sputtering techniques to join 

the solid electrolyte to an electrode, but the formation of intermediary phases and the quality of 

interface are still relatively unknown. The dynamics of charge transfer across the interface could 

be evaluated by joining the current model with that of an electrode material to evaluate the 

conductivity across the region. Impedance spectroscopy has shown that the density of an 

electrolyte pellet is critical to having high conductivity with high grain boundary resistances. So, 

evaluating the quality of interfacial alignment should have similar results and be a major 

contributor to internal resistances. 

9.1.3 Evaluation of density correlation functions 

The presented work initiates the application of density correlation functions as a means of 

evaluating the performance of solid electrolytic materials. However, the discrepancy between 

experimental and simulation results still remains. In this work we assumed an isotropic response 
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in density fluctuation with respect to our Q vector. It may be that the diffusion in the garnet is not 

isotropic and the reduction to just using the transverse correlation is insufficient in modeling the 

system. An exploration of directionally dependent Q vectors therefore merits investigation. A 

model system could be diffusion in layered materials like lithium cobalt oxide or sodium nickel 

titanium oxide. Here we would be reduced to two-dimensional planar diffusion, and the role of Q 

in directions not parallel to the plane can be investigated. Lastly, because we are no longer 

assuming isotropic charge density fluctuations, the macroscopic conductivity, 𝜎 = lim
𝜔→0

𝜎(𝜔), is 

no longer identical to 𝜎𝑙 = lim
𝑄,𝜔→0

𝜎(𝑄,𝜔). 62 The identification of a method that can accurately 

calculate the conductivity for fast ion conducting solids is therefore critical to any future work 

performed within the field of material simulation, and these other systems or methods need be 

evaluated.  

9.2 Conclusions 

Compositions within the fast-ionic conducting series of Li7-xLa3Zr2-xTaxO12 were 

investigated using a combination of molecular dynamics and quasi-elastic neutron scattering 

techniques. These materials have shown promise as potential solid electrolyte materials in all 

solid-state lithium-ion batteries, with room temperature ionic conductivities approaching 10-3 

S/cm. An intimate look at the role of lithium concentration on the observed structural and 

dynamic properties was evaluated using both classical molecular dynamics and density 

functional theory-based calculations. The analysis techniques employed in this study give rise to 

best practices for exploring other fast ion conducting materials with respect to proper model 

selection and the evaluation of physical properties like conductivity, diffusivity, thermodynamic 

factor, and entropy. All of which can be easily applied to other materials of interest. 
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First to establish a means of proper model selection, the role the electron exchange-

correlation functional (XC) was evaluated on Li7La3Zr2O12 using density functional theory 

(DFT) based molecular dynamics simulations. Fourteen different functional forms were 

evaluated and the prediction of a tetragonal to cubic phase transformation was highly dependent 

upon what XC functional was chosen. The functional forms at both small and large density 

gradient ranges affected whether the correct lattice volume or phase behavior was obtained for 

PBE-like GGA simulations. SOGGA, PBEsol, and PBE2 were the best performing XC 

functional forms generating structures comparable to that of experimental of L7LZ. 

The model garnet materials Li5La3Ta2O12 (L5LT) and Li7La3Zr2O12 (L7LZ) were 

modeled using a core-shell potential model in order to investigate phase change phenomena and 

the mechanisms of ionic diffusion with the garnet crystal. The model was able to accurately 

capture the tetragonal to cubic phase change behavior of L7LZ, predicting a transformation 

temperature around 900 K, and a consistent cubic phase for L5LT. The lithium-ion dynamics of 

these two compositions were investigated by observing the role of local clusters on the trajectory 

of lithium through the bottleneck region connecting the tetrahedral and octahedral sites. Through 

our observations and analysis by the van Hove correlation function G(r,t), we show that lithium 

undergoes jump diffusion type dynamics, switching between oscillation within a site and 

jumping to the nearest neighbor. The modeling also shows that as the concentration of lithium 

increases more center-pass type diffusion events occur because of the increased interaction of 

lithium-ions and increased symmetry around tetrahedral sites. 

From the molecular dynamic simulations on L5LT we were able to calculate the 

intermediate scattering function I(Q,t) and compare the results with experimental dynamic 

structure factor S(Q,ω) measurements using quasi-elastic neutron scattering (QENS) on the 
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BASIS instrument at Oak Ridge National Lab. Our simulations and experimental diffusion 

values are in good agreement with each other predicting a Singwi and Sjölander (SS) jump type 

mechanism, quantifying the behavior in G(r,t) performed previously on L7LZ. The relaxed 

exponential decay of I(Q,t) was fit using the Kohlrausch-Williams-Watts (KWW) model, with 

the stretching parameter  relating to the degree of interaction between diffusing particles. At 

low Q, long time and distance, the lithium is weakly interacting ( ≈ 1), while at high Q the 

values of  converge to a plateau ( < 1) comparable to the distance between two octahedral sites 

through the tetrahedral. The results of the simulation are in agreement with reports of diffusivity 

through pulsed gradient spin echo nuclear magnetic resonance (PGSE-NMR) and muon spin 

relaxation (μSR). However, these techniques only resolve residence time values while QENS is 

able to capture the jump-diffusion distance. Our results suggest more frequent and shorter jumps 

at high temperature, and slower longer jumps at low temperatures. 

A core-only classical molecular dynamics model was created to investigate the finite-size 

effects during simulation and role of lithium concentration on the performance of LLZT as a 

solid electrolyte material. The core-only model was able to accurately predict the phase change 

behavior for L7LZ and lower lithium compositions, suggesting that the introduction of disorder 

on the lithium sublattice is what introduces the phase change during heating or reduction in 

lithium concentration. Based upon the finite-size study, a 3 x 3 x 3, simulation cell is required to 

obtain convergent behavior in dynamic processes like conductivity, self-diffusivity, Fickian-

diffusivity, and thermodynamic factor, so this was determined to be the minimum cell size for 

evaluation on the effects of lithium concentration on these properties.  

With respect to lithium concentration, the highest conductivity is obtained when the 

concentration of lithium is equal to 6.5 p.f.u., the critical concentration to maintain a single room 
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temperature cubic phase. This maximum shifts to 6.75 as the temperature increases and a single 

cubic phase is observed for this composition. This is in agreement with excess entropy 

calculations showing a identical trend. This suggests that calculating the information entropy of 

the system may act as a correction factor for non-Arrhenius behavior observed at low 

temperatures for simulating materials. The regular solution model was applied to the lithium 

sublattice by identifying tetrahedral and octrahedral sites as separate phases. The model predicts 

a shift from tetrahedral to octahedral site preference as the composition of lithium is increases, 

minimizing Li−Li interactions, eventually leading to the ordered structure of L7LZ. The 

thermodynamic factor -1, for Li−Li interactions tracts closely with that of Li−Zr, and opposed to 

Li−Ta pairs, indicating that the framework atoms may play an underlying role in the distribution 

of lithium leading to a more conductive electrolyte.  
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