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ABSTRACT

PHASE RETRIEVAL FROM CONTINUOUS AND DISCRETE PTYCHOGRAPHIC
MEASUREMENTS

By

Sami Eid Merhi

In this dissertation, we present and study two novel approaches to phase retrieval �

an inverse problem in which one attempts to reconstruct a complex-valued function (or

vector) from phaseless (or magnitude-only) measurements. Phase retrieval arises in several

scienti�c areas including bio-chemistry, optics, astronomy, quantum mechanics, and speech

signal processing. Early solutions to phase retrieval, although practical, lacked robustness

guarantees. To this day, practitioners in scienti�c imaging are still seeking demonstrably

stable and robust recovery algorithms.

Ptychography is a form of coherent di�ractive imaging where di�raction patterns are

processed by algorithms to recover an image of a specimen. More speci�cally, small regions

of a specimen are illuminated one-at-a-time, and a detector captures the intensities of the

resulting di�raction patterns. As such, the measurements are local and phaseless. In this

work, we present two algorithms to recover signals from ptychographic measurements. The

�rst algorithm aims to recover a discrete one-dimensional signal from discrete spectrogram

measurements via a modi�ed Wigner distribution deconvolution (WDD) method. While the

method is known to practitioners of scienti�c imaging, robustness and recovery guarantees

are lacking, if not absent; our contribution is to supply such guarantees.

The second algorithm aims to approximately recover a compactly supported function from

continuous spectrogram measurements via lifting and angular synchronization. This setup

can be interpreted as the in�nite-dimensional equivalent of discrete ptychographic imaging.



Our contribution is a model which assumes in�nite-dimensional signals and measurements

ab initio, as opposed to most recent algorithms in which discrete models are a necessity.

Finally, we consider the worst-case noise robustness of any phase retrieval algorithm which

aims to reconstruct all nonvanishing vectors from the magnitudes of an arbitrary collection

of local correlation measurements. The robustness results provided therein apply to a wide

range of ptychographic imaging scenarios. In particular, our contribution is to show that

stable recovery of high-resolution images of extremely large samples is likely to require a vast

number of measurements, independent of the recovery algorithm employed.

The �rst chapter introduces the phase retrieval problem and presents historical context,

as well as applications in which phase retrieval manifests. In addition, we introduce pty-

chography, discuss existing WDD formulations, and compare these to our contribution in

the discrete setting. Chapter 2 provides recovery guarantees for using aliased WDD methods

to solve the phase retrieval problem in a discrete setting with sub-sampled measurements.

In Chapter 3 we provide lower Lipschitz bounds for generic phase retrieval algorithms from

locally supported measurements. Finally, Chapter 4 presents a numerical method to recover

compactly supported functions from local measurements via lifting and angular synchroniza-

tion.
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KEY TO SYMBOLS

The following is a list of some of the notation used throughout this paper.

• For d ∈ N, [d]0 := {0, 1, . . . , d− 1} is the set of remainders modulo d.

• For d ∈ N, [d] := {1}+ [d]0 = {1, 2, . . . , d}.

• L1(R), the set of integrable functions on R.

• L2(R), the set of square-integrable functions on R.

• ‖ · ‖2, ‖ · ‖F , ‖ · ‖∞, the Euclidean, Frobenius, and supremum norms, respectively.

• ‖ · ‖
L2

:= ‖ · ‖
L2(H), the L

2 norm on the Hilbert space H.

• 〈x,y〉, the complex inner product of x,y ∈ Cd.

• F , the Fourier transform on L2(R).

• Fd, the d× d Fourier transform matrix; also denoted F when dimension is clear.

• ∗, the continuous convolution operator on L2(R)× L2(R).

• ∗d, the discrete convolution operator on Cd × Cd.

• ◦, the componentwise Hadamard product.

• I, the identity matrix.

• M∗, the Hermitian (conjugate) transpose of matrix M .

• diag (M), the diagonal of matrix M .

• σmin (M), the smallest singular value of matrix M .

• M � 0 denotes a positive semi-de�nite matrix M .

• |S|, the cardinality of set S.

• χS , the characteristic (or indicator) function of set S.

• x|S , the restriction of vector x to the index set S.

• ∇f , the gradient of function f .

• N (0, 1), the standard normal distribution.

• sinc(x) := sin(x)/x, the unnormalized sinc function at x.
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KEY TO ABBREVIATIONS

• AP, the Alternating Projections algorithm.

• CCD, charge-coupled device.

• DFT, the discrete Fourier transform.

• ePIE, the extended Ptychographic Iterative Engine.

• FFT, the Fast Fourier transform.

• HIO+ER, the Hybrid Input-Output + Error Reduction algorithm.

• PIE, the Ptychographic Iterative Engine.

• SNR, signal-to-noise ratio.

• STFT, the short-time Fourier transform.

• WDD, the Wigner distribution deconvolution.

• WDF, the Wigner distribution function.

• WF, the Wirtinger Flow algorithm.
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Chapter 1

History of Phase Retrieval and

Ptychography

1.1 Problem De�nition and Applications

Phase retrieval in the discrete setting is the process of algorithmically recovering an estimate

to a vector x ∈ Cd from D (possibly noisy) measurements of the form

y = |Bx|2 + η ∈ CD. (1.1.1)

Here, B ∈ CD×d is (usually) a known measurement matrix, and η ∈ CD is an additive noise

vector. The operator |·|2 represents the componentwise magnitude squared operation, so

that (
|u|2

)
n

:= |un|2 ∀ u := (u0, . . . , ud−1)T ∈ Cd.

A simple inspection of (1.1.1) shows that any solution to the phase retrieval problem is only

possibly unique up to a global phase factor. More precisely, if x0 ∈ Cd solves (1.1.1), then

so does eiθx0 for any θ ∈ [0, 2π). This phase ambiguity means that any phase retrieval
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algorithm aims to �nd a unique solution to (1.1.1) under the equivalence relation

u ∼ v ⇐⇒ u = λv

for some λ ∈ C with |λ| = 1.

Phase retrieval originates from the fact that light detectors, such as photographic plates or

charge-coupled devices (CCDs), can often times only measure the intensity of incident light.

This is because these devices respond only to the number and energy of photons arriving at

their surface. More speci�cally, these detectors record the squared magnitude of the Fresnel

or Fraunhofer di�raction pattern of the radiation that is scattered from an object. These

measurements are therefore incomplete, because a light wave has not only an amplitude

(related to the intensity), but also a phase, which is systematically lost in a measurement.

It is important to note that the phase part of the wave often encodes relevant information

about the specimen of interest, especially in di�raction or microscopy experiments.

Historically, the �rst application of phase retrieval is X-ray crystallography [29, 45], a

technique used for determining the atomic structure of a crystal, in which the crystalline

arrangement causes a beam of incident X-rays to di�ract into many speci�c directions. X-ray

crystallography is still the primary method for characterizing the atomic structure of new

materials and in discerning materials that appear similar by other experiments.

Other areas of imaging science in which phase retrieval is employed include di�raction

imaging [11, 52], optics [59], electron microscopy [32], astronomy [21], and X-ray tomography

[19], to name a few. Phase retrieval also appears in solutions to problems in quantum

mechanics [18], speech recognition and audio processing [46, 4, 56], and self-calibration [40].

2



1.2 Existing Solutions to Phase Retrieval

Prior to algorithmic solutions to phase retrieval, practitioners had to invent, and contend

with, ad hoc methods to resolve their phaseless imaging experiments. Indeed, the 1915

Nobel Prize in Physics was awarded jointly to Sir William Henry Bragg and his son, William

Lawrence Bragg, for their geometric analysis of crystal structures by means of X-rays. It

was not until the 1970s that a systematic method for phase retrieval came to the scene, and

showed promise outside the X-ray crystallography regimen. The method, called Alternating

Projections (AP), was proposed by Gerchberg and Saxton in 1971 [24], and later re�ned and

improved. In the sections below, we provide brief outlines of the generic AP algorithm, as

well as more recent numerical methods for phase retrieval which enjoy theoretical recovery

guarantees.

1.2.1 Alternating Projections

By and large, the most popular methods for phase retrieval from over-sampled data are

alternating projections (AP) algorithms pioneered by Gerchberg and Saxton [24] and Fienup

[22, 23]. AP algorithms provided greats improvements over ad hoc methods, since they could

be applied to fairly general data, with very minimal assumptions made on the structure of

the specimen being imaged.

A typical AP algorithm works in the following manner. Suppose one has to recover

x ∈ Cd from the measurements y = |Ax|, where the D rows of A ∈ CD×d are a frame,

and D ≥ d. Two pieces of information are available concerning the solution of this phase

retrieval problem: the solution has amplitude y and is located on the range of A, denoted
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RA. One then de�nes a phase correction operator PA : CD → CD as

PA := A (A∗A)−1A∗,

which projects a complex vector to RA, and an amplitude correction operator Py : Cd → Cd,

de�ned for all u ∈ CD componentwise by

(
Pyu

)
j := yj

uj∣∣uj∣∣χuj + yj

(
1− χuj

)
.

As such, Py substitutes the amplitude uj by yj and preserves phase information.

With the notation above, solving the phase retrieval problem amounts to �nding a vector

x0 ∈ CD which is a �xed point of both operators PA and Py; that is, x0 satis�es the two

conditions

‖ (x0 − PAx0) ‖ = 0 and ‖x0 − Pyx0‖ = 0.

The unknown x may then be estimated as (A∗A)−1A∗x0.

The AP algorithm gets its name from the iterative scheme used to �nd the �xed point

x0:

gj+1/2 := Pygj, gj+1 := PAgj+1/2,

where j ranges over N and g0 is the initial guess.

Marchesini and his collaborators proved in 2015 that AP algorithms using generic mea-

surements are guaranteed to converge when provided with a su�ciently accurate initial guess

[43]. To this day, no global recovery guarantees exist for AP algorithms in the case of lo-

cal measurements. These algorithms will converge when provided with an accurate enough
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initialization; however, the geometry of the basin of attraction is unknown. Although easy

to state and explain, Marchesini et al. argue that AP algorithms often require careful ex-

ploitation of signal constraints and delicate parameter selection to increase the likelihood

of convergence. For instance, our knowledge may be that the signal is real-valued, posi-

tive, band-limited, or spatially-limited. More can be said about AP algorithms when the

measurements are Gaussian. For example, Waldspurger has argued that when provided with

Gaussian measurements, spectral initialization is su�ciently accurate for AP algorithms [58].

1.2.2 PhaseLift

In 2011, Emmanuel J. Candès and his collaborators proposed PhaseLift, an algorithm based

on convex programming, to solve the phase retrieval problem [14]. Their approach included

two main components: multiple structured illuminations, as is the case in ptychographic

imaging, and the formulation of phase recovery as a matrix completion problem.

To summarize the PhaseLift algorithm, let us pose the phase retrieval problem as

Find x ∈ Cd satisfying |〈x, ak〉|2 = yk ∀ k ∈ [D]0 := {0, 1, . . . , D − 1}. (1.2.1)

Let us now denote by X the rank-one matrix xx∗, and by Ak the rank-one matrix akak
∗.

Moreover, let A denote the linear operator mapping positive semi-de�nite matrices into

{Tr (AkX) : k ∈ [D]0}. Then the phase retrieval problem is equivalent to

�nd X minimize rank (X)

subject to


A (X) = y

X � 0

rank (X) = 1

⇐⇒ subject to

{
A (X) = y

X � 0.

Once the left-hand side of the problem above is solved, the rank-one solution X can
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be factorized as xx∗, hence �nding solutions to the phase retrieval problem up to a global

phase, if the linear operator A is well-behaved. The problem above is a rank minimization

problem over an a�ne slice of the positive semi-de�nite cone. As such, it falls in the realm

of low-rank matrix completion or matrix recovery.

Since the minimization problem above is NP hard, the authors propose using the trace

norm as a convex surrogate for the rank functional, giving the semi-de�nite program

minimize Trace (X)

subject to

{
A (X) = y

X � 0.

One should note that while SDP based relaxation methods provide tractable solutions,

they become computationally prohibitive as the dimension d of the signal increases.

1.2.3 Wirtinger Flow

In 2015, Candès, Li, and Soltanolkotabi developed a non-convex formulation of the phase

retrieval problem, and proposed a solution algorithm [13]. The algorithm, referred to as

Wirtinger Flow (WF), relies on a spectral initialization and update rules of low computa-

tional complexity.

The WF algorithm works as follows. Consider the phase retrieval problem as stated in

(1.2.1). Set

λ2 = d

∑
k yk∑

k ‖ak‖2
.

Then the initial guess, g0, is the leading eigenvector (normalized so that ‖g0‖ = λ) of the

matrix

Y =
1

D

D∑
k=1

ykakak
∗.
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The guess is updated via the following steepest-descent recursion:

gj+1 = gj −
αj+1

‖g0‖2
∇f

(
gj
)
,

where αj+1 is the step size, and f : Cd → R is the loss function

f(u) :=
1

2D

D∑
k=1

(
yk − |ak∗u|

2
)2
.

The authors in [13] motivate the spectral initialization step by considering the simple

case where everything is real-valued, and the measurement vectors ak are i.i.d. N (0, I). In

this case, the matrix Y is equal to I + 2xx∗ in the limit of large samples. Moreover, the top

eigenvector of I + 2xx∗ is of the form λx for some positive scalar λ. This means that x can

be recovered perfectly by the initialization step, up to a global sign ±1.

Both PhaseLift [15, 28] and Wirtinger Flow [13] achieve recovery guarantees with high

probability when using O
(
d log4 d

)
masked Fourier coded di�raction pattern measurements,

but stop short, however, of providing guarantees when the measurements are not randomized.

We end this section by noting that the methods aforementioned do not provide theoret-

ical recovery guarantees for locally supported and deterministic measurements of the type

encountered in ptychography.
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1.3 Ptychography

1.3.1 Experimental Setup

Ptychography is a computational method of microscopic imaging, in which images are gener-

ated by processing a large number of coherent di�raction patterns that have been scattered

from a specimen of interest. The interference patterns are generated by a constant function,

say a �eld of illumination, moving laterally by a known amount with respect to the specimen.

As such, ptychography is translation-invariant. The interference patterns are captured by a

detector, some distance away from the specimen, so that the scattered waves fold into one

another. This explains the origin of the name: ptycho in Greek means to fold.

Detector
Test pattern Pinhole

Focusing 
lens

Laser
source

Detector

Focusing
lens

Fast-scan axis

Figure 1.3.1: Experimental setup for �y-scan ptychography. Adapted from �Fly-scan pty-
chography�, Huang et al., Scienti�c Reports 5 (9074), 2015.

The name �ptychography� was coined by Hegerl and Hoppe in 1972 [30] to describe a

solution to the crystallographic phase problem �rst suggested by Hoppe in 1969 [31]. In

this early stage, the concept required the specimen to be a crystal, and to be exposed

to a precisely engineered wave, so that only two pairs of di�raction peaks interfere with

one another at a time. The Fourier shift theorem implies that a shift in the illumination

changes the interference condition. This means that two ptychographic measurements can
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be used to solve for phase di�erences between the di�raction peaks, by breaking a complex-

conjugate ambiguity that would otherwise exist [52]. In non-crystalline objects, millions of

beams interfere at the same time, making the phase di�erences inseparable; for this reason,

crystalline ptychography could not be used to image continuous media.

Between the years 1989 and 2007 Rodenburg and his colleagues created multiple inver-

sion methods for the general ptychographic phase problem, including Wigner distribution

deconvolution (WDD) [49], SSB [50], the PIE iterative method [51] (a precursor of the ePIE

algorithm [41]), demonstrating proof-of-principles at di�erent wavelengths. Chapman used

Wigner deconvolution to demonstrate the �rst implementation of X-ray ptychography in

1996 [17]. The poor quality of detectors and rudimentary computing abilities of the time

may account for the limited adoption of ptychography by other practitioners.

1.3.2 Ptychography and Continuous Wigner Distribution Deconvo-

lution

In this section, we introduce the method of Wigner distribution deconvolution as presented

by Rodenburg and Bates [49], discuss how it applies to phase retrieval in the continuous

setting, and present novel ideas in the case of discrete measurements. A more thorough

discussion on WDD, and a further expansion of the method, are the subject of Chapter 2.

Let F : L2 (R)→ L2 (R) denote the continuous Fourier transform, de�ned via:

F{h} (ω) :=

ˆ ∞
−∞

h (t) e−2πiωtdt. (1.3.1)

Let f : R → C denote an unknown specimen, and g : R → C denote a known mask or

window function. The short-time Fourier transform of f at a physical shift ` ∈ R and

9



frequency ω ∈ R, given the window function g, is de�ned as

STFT{f, g} (`, ω) := F{f · S−`g} (ω) , (1.3.2)

where St is the shift operator de�ned so that (Stg) (x) = g (x+ t). To each STFT measure-

ment STFT{f, g} (`, ω) corresponds a spectrogram measurement b (`, ω) formed by squaring

the absolute value:

b (`, ω) := |STFT{f, g} (`, ω)|2 . (1.3.3)

Spectrogram measurements are ptychographic in nature, since the mask or window function

g may be seen as a spatially-limited probe function, the function f represents an unknown

specimen, and b (`, ω) represents a phaseless intensity measurement as captured by a de-

tector. One is then interested in recovering f from a �nite number of such spectrogram

measurements. The WDD method does so due to the following equality:

F
{
F {b}

(
ω′
)} (

`′
)

= F
{
f · Sω′f

} (
`′
)
· F
{
g · S−ω′g

}(
`′
)

(1.3.4)

for all
(
`′, ω′

)
∈ R × R. In simple terms, applying the continuous Fourier transform twice

to the spectrogram measurements, �rst in the frequency variable and then in the spacial

variable, leads to a decoupling of the unknown function f from the known mask g.

For the sake of completeness, we present a computational proof of (1.3.4). The proof

uses the following elementary properties of the Fourier transform as de�ned in (1.3.1), which

hold for any h : R→ C:

|F {h}|2 = F
{
h ∗ h̃

}
,
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F {F {h}} = h̃,

where ∗ denotes the convolution operator, and h̃ is the reversal of h about zero, so that

h̃ (t) = h (−t) for all t ∈ R. Now observe that for (`, ω) ∈ R× R,

b (`, ω) =

∣∣∣∣ˆ ∞−∞ f (t) g (t− `) e−2πiwtdt
∣∣∣∣2

= |F {f · S−`g} (ω)|2

= F
{

(f · S−`g) ∗
(
f̃ · S̃−`g

)}
(ω) .

Upon taking a Fourier transform in the ω variable, at ω′, one gets

F {b (`, ·)}
(
ω′
)

= F
{
F
{

(f · S−`g) ∗
(
f̃ · S̃−`g

)}} (
ω′
)

=
(

(f · S−`g) ∗
(
f̃ · S̃−`g

)) (
−ω′

)
=

ˆ ∞
−∞

f (t) g (t− `)
(
f̃ · S̃−`g

) (
−t− ω′

)
dt

=

ˆ ∞
−∞

f (t) g (t− `) f (t+ ω′) · g (t− `+ ω′)dt

=

ˆ ∞
−∞

f (t)Sω′f(t)g (t− `)Sω′g (t− `) dt

=

ˆ ∞
−∞

(
f · Sω′f

)
(t) ·

(
g̃ · S−ω′ g̃

)
(`− t)dt

=

ˆ ∞
−∞

fω′ (t) g−ω′ (`− t) dt,

where

fω′ (t) :=
(
f · Sω′f

)
(t),

g−ω′ (t) :=
(
g̃ · S−ω′ g̃

)
(t).
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Therefore, we have

F {b (`, ·)}
(
ω′
)

=

ˆ ∞
−∞

fω′ (t) g−ω′ (`− t) dt

=
(
fω′ ∗ g−ω′

)
(`)

=
((
f · Sω′f

)
∗
(
g̃ · S−ω′ g̃

))
(`) .

Taking a Fourier transform one last time, in the ` variable, at `′, yields

F
{
F {b}

(
ω′
)} (

`′
)

= F
{
f · Sω′f

} (
`′
)
· F
{
g̃ · S−ω′ g̃

}(
`′
)
,

by the Convolution Theorem. This proves (1.3.4).

The WDD method gets its name from observing that each of the Fourier transforms on

the right-hand side of (1.3.4) is a Wigner distribution function. Namely,

F
{
f · Sω′f

} (
`′
)

= WDFf
(
ω′, `′

)
, (1.3.5)

F
{
g̃ · S−ω′ g̃

}(
`′
)

= WDFg̃
(
−ω′, `′

)
, (1.3.6)

where the Wigner distribution function of h at (u, v) is de�ned as

WDFh (u, v) :=

ˆ ∞
−∞

h (t)h (t+ u)e−2πivtdt. (1.3.7)

In Chapter 4, we propose a di�erent approach to recover compactly supported functions

from their spectrograms. The method does not require applications of Fourier transforms,

but rather a rewriting of the phaseless measurements in a lifted form. Angular synchroniza-

tion is then used to solve for a vectorized version of the in�nite dimensional specimen.
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1.3.3 Ptychography via Discrete Wigner Distribution Deconvolu-

tion

In this section, we de�ne a discrete Wigner distribution deconvolution method for recovering

a discrete signal from its spectrogram measurements. To be precise, we de�ne such (noiseless)

measurements as follows. Let x,m ∈ Cd×1 denote specimen and mask, respectively. The

spectrogram of x given mask m at a physical shift ` ∈ [d]0 and Fourier mode k ∈ [d]0 is the

phaseless quantity ∣∣∣∣∣∣
d−1∑
n=0

xnmn−`e
−2πink

d

∣∣∣∣∣∣
2

. (1.3.8)

The approach below is the discrete equivalent of the WDD method introduced by Rodenburg

and Bates in 1992 [49]. Speci�cally, the mask, specimen, and measurements are assumed to

be discrete ab initio. Before discussing this approach in detail, we introduce some notation

and basic properties of the discrete Fourier transform (DFT).

1.3.3.1 Notation and Basic Properties of the DFT

Let x = (x0, x1, . . . , xd−1)T ∈ Cd×1. Recall that [d]0 = {0, 1, . . . , d − 1} is the set of

remainders modulo d. We denote by supp (x) the index set corresponding to the nonzero

entries of x; that is,

supp (x) := {n ∈ [d]0 |xn 6= 0} .

The Fourier transform of x, denoted by x̂ ∈ Cd×1, is de�ned componentwise via

x̂k := (Fdx)k =
d−1∑
n=0

xne
−2πink

d ,
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where Fd ∈ Cd×d denotes the d× d DFT matrix with entries

(Fd)`,k = e
−2πi`k

d ∀ (`, k) ∈ [d]0 × [d]0 .

With this de�nition one can invert the Fourier transform via

xn =
(
F−1d x̂

)
n

=
1

d

d−1∑
k=0

x̂ke
2πikn
d .

Given a vector u ∈ Cd×1, denote by ũ the reversal of u about its �rst entry so that its

components are

ũn := u−n mod d ∀n ∈ [d]0 .

Given ` ∈ [d]0, de�ne the circular shift operator S` : Cd×1 → Cd×1 componentwise via

(S`u)n = u(`+n) mod d ∀n ∈ [d]0 .

Similarly, given k ∈ [d]0, de�ne the modulation operatorWk : Cd×1 → Cd×1 componentwise

via

(Wku)n = une
2πikn
d ∀n ∈ [d]0 .

We summarize some properties of the DFT and the operators above in the lemma below.

The interested reader may refer to the Appendix for a complete proof.

Lemma 1.3.1. The following equalities hold for any x ∈ Cd×1 and for all ` ∈ [d]0:

1. Fdx̂ = d · x̃.

2. Fd (W`x) = S−`x̂.
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3. Fd (S`x) = W`x̂.

4. W−`Fd
(
S`x̃

)
= x̂.

5. S̃`x = S−`x̃.

6. Fdx = Fdx̃.

7. ˜̂x = Fdx̃.

Let ∗d and ◦ denote the circular convolution operator and the Hadamard product in

Cd×1, respectively. More precisely, given x,y ∈ Cd×1 and ` ∈ [d]0, we de�ne

(x ∗d y)` :=
d−1∑
n=0

xny(`−n) mod d,

(x ◦ y)` := x`y`.

The discrete version of the Convolution Theorem may be stated as follows:

Lemma 1.3.2. (Convolution Theorem) For all x,y ∈ Cd×1 one has

F−1d (x̂ ◦ ŷ) = x ∗d y

and

(Fdx) ∗d (Fdy) = d · Fd (x ◦ y) .

We also introduce some technical lemmas below, which will be used in the proofs of

lemmas and theorems throughout this chapter, as well as in Chapter 2.
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Lemma 1.3.3. Let x,y ∈ Cd×1 and `, k ∈ [d]0. Then

(
(x ◦ S−`y) ∗d

(
x̃ ◦ S`ỹ

))
k

=
(

(x ◦ S−kx) ∗d
(
ỹ ◦ Skỹ

))
`
.

Proof. Let x,y ∈ Cd×1 and `, k ∈ [d]0 be arbitrary. We calculate

(
(x ◦ S−`y) ∗d

(
x̃ ◦ S`ỹ

))
k

=
d−1∑
n=0

(x ◦ S−`y)n

(
x̃ ◦ S`ỹ

)
k−n

(by de�nition of ∗d)

=
d−1∑
n=0

xnyn−`x̃k−nỹ`+k−n (by de�nition of ◦)

=
d−1∑
n=0

xnxn−kỹ`−nỹ`−(n−k) (by de�nition of ·̃)

=
(

(x ◦ S−kx) ∗d
(
ỹ ◦ Skỹ

))
`
. (by de�nition of ∗d)

Lemma 1.3.4. For any x ∈ Cd×1, one has

|Fdx|2 = Fd

(
x ∗d x̃

)
.

Proof. Let x ∈ Cd×1 be arbitrary. Then

|Fdx|2 = (Fdx) ◦ (Fdx)

= (Fdx) ◦
(
Fdx̃

)
(by Lemma 1.3.1(4) with ` = 0)

= Fd

(
x ∗d x̃

)
. (by Lemma 1.3.2)
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1.3.3.2 Wigner Distribution Deconvolution in the Discrete Setting

We are now ready to provide the equivalent of (1.3.4) in the discrete, noisy setting. Let

x,m ∈ Cd×1 denote the unknown specimen and known mask, respectively. Assume we have

d2 noisy spectrogram measurements of the form

(y`)k =

∣∣∣∣∣∣
d−1∑
n=0

xnmn−`e
−2πink

d

∣∣∣∣∣∣
2

+ (η`)k , (`, k) ∈ [d]0 × [d]0 . (1.3.9)

Let these measurements populate a matrix Y ∈ Rd×d, whose `th column we will denote

by y` ∈ Cd×1, for ` ∈ [d]0. Similarly, let the noise measurements (η`)k populate a matrix

N ∈ Cd×d, whose `th column we will denote by η` ∈ Cd×1. We have the following lemma.

Lemma 1.3.5. Let x ∈ Cd×1 denote an unknown specimen, and let m ∈ Cd×1 denote a

known mask (or window). Let Y ∈ Rd×d be the matrix of noisy spectrogram measurements

as in (1.3.9). Then for any k ∈ [d]0,

Fd

(
(Y −N)T FTd

)
k

= d · Fd (x ◦ Skx) ◦ Fd
(
m̃ ◦ S−km̃

)
. (1.3.10)

Proof. By Lemma 1.3.4, we may write for any ` ∈ [d]0,

y` = |Fd (x ◦ S−`m)|2 + η`

= Fd

(
(x ◦ S−`m) ∗d

(
x̃ ◦ S`m̃

))
+ η`. (1.3.11)

Taking a Fourier transform of y` at k ∈ [d]0 yields

(Fdy`)k = d ·
(

(x ◦ S−`m) ∗d
(
x̃ ◦ S`m̃

))
−k

+ (Fdη`)k ,
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by Lemma 1.3.1(1); by Lemma 1.3.3, we get

(Fdy`)k = d ·
(

(x ◦ Skx) ∗d
(
m̃ ◦ S−km̃

))
`

+ (Fdη`)k . (1.3.12)

For a given ` ∈ [d]0, the vector Fdy` ∈ Cd×1 is the `th column of the matrix FdY ; its

transpose, yT` F
T
d ∈ C1×d is the `th row of the matrix (FdY )T . Similarly, the vector Fdη` ∈

Cd×1 is the `th column of the matrix FdN ; its transpose, ηT` F
T
d ∈ C1×d is the `th row of

the matrix (FdN)T . We may thus write

((
Y TFTd

)
k

)
`

= d ·
(

(x ◦ Skx) ∗d
(
m̃ ◦ S−km̃

))
`

+
((
NTFTd

)
k

)
`
,

so that for any k ∈ [d]0, the vector
((
Y T −NT

)
FTd

)
k
∈ Cd×1 may be computed as a

convolution: ((
Y T −NT

)
FTd

)
k

= d · (x ◦ Skx) ∗d
(
m̃ ◦ S−km̃

)
.

Taking a �nal Fourier transform now yields

Fd

(
(Y −N)T FTd

)
k

= d · Fd (x ◦ Skx) ◦ Fd
(
m̃ ◦ S−km̃

)
,

by Lemma 1.3.2.

The result of Lemma 1.3.5 can be interpreted as the discrete analogue to (1.3.4). In

(1.3.10), the unknown specimen x and the known mask m are decoupled. This allows for

the recovery of x via angular synchronization, which is discussed in Chapter 2.

18



Chapter 2

Phase Retrieval via Aliased Wigner

Distribution Deconvolution and Angular

Synchronization

In Chapter 1, we discussed how the Wigner distribution deconvolution method could be

applied to d2 discrete ptychographic measurements in order to recover a vector x ∈ Cd. The

method consisted of applying two consecutive Fourier transforms to the matrix of measure-

ments, yielding the product of two Wigner distribution functions, one for the specimen and

one for the mask.

In practice, one is interested in collecting as few measurements as possible, while main-

taining robust recovery guarantees. This amounts to shifting the mask by a �xed step-size

larger than 1, while maintaining spatial overlap between consecutive shifted masks. Another

form of sub-sampling takes place in the Fourier domain, where the spectrogram measure-

ments may be collected at a subset of equally spaced Fourier modes. One could also combine

both forms of sub-sampling, thus reducing the number of measurements drastically.

In what follows, we discuss phase retrieval from sub-sampled short-time Fourier transform

(STFT) magnitude measurements of a vector x ∈ Cd based on a two-step approach: �rst,

a modi�ed Wigner distribution deconvolution approach is used to solve for a portion of the
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lifted rank-one signal x̂x̂∗ ∈ Cd×d. Second, an angular synchronization approach is used to

recover x̂ (and then, by Fourier inversion, x) from the known portion of x̂x̂∗. In addition

to being computationally e�cient, the proposed method also gives insight into the design of

good window (or probe) functions.

Before discussing aliased WDD methods, we introduce some additional notation to that

in Chapter 1. Let sgn : C→ C be the normalization mapping

sgn (z) =


z
|z| , if z 6= 0,

1, if z = 0.

For a given n ∈ N, we introduce the operator C2n−1 : Cd×(2n−1) → Cd×d de�ned via

(C2n−1 (M))j,k =


Mj,n−1+(k−j) mod d, if |j − k| < n or |j − k| > d− n,

0, otherwise.

(2.0.1)

We note, in particular, that this operator preserves the Frobenius norm. With the de�nition

above, C2n−1 (M) ∈ Cd×d is a circulant version of M ∈ Cd×(2n−1), in such a way that

column n− 1 of M (the middle column) is the diagonal of C2n−1 (M). For example,

C3





a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

...
...

...

ad−2,0 ad−2,1 ad−2,2

ad−1,0 ad−1,1 ad−1,2




=



a0,1 a0,2 · · · 0 a0,0

a1,0 a1,1 a1,2 0

...
. . . . . . . . .

...

0 ad−2,0 ad−2,1 ad−2,2

ad−1,2 0 · · · ad−1,0 ad−1,1


.
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Given a natural number s which divides d, we introduce the sub-sampling operator

Zs : Cd×1 → C
d
s×1,

de�ned componentwise via

(Zsu)n := un·s ∀n ∈
[
d

s

]
0
.

Fourier transforms of sub-sampled vectors have an aliasing e�ect which is described in the

lemma below. A proof is provided in the Appendix.

Lemma 2.0.1. (Aliasing) For any d ∈ N and s ∈ N that divides d, and for any u ∈ Cd×1

and ω ∈
[
d
s

]
0
, one has (

Fd
s

(Zsu)

)
ω

=
1

s

s−1∑
r=0

û
ω−r ds

.

Finally, we provide a technical lemma which provides an equivalence between the Fourier

transform of an autocorrelation of a vector x and that of its Fourier transform, x̂. A proof

is provided in the Appendix.

Lemma 2.0.2. Let x ∈ Cd×1 and α, ω ∈ [d]0. Then

(Fd (x ◦ Sωx))α =
1

d
e
2πiωα
d

(
Fd

(
x̂ ◦ S−αx̂

))
ω
.

2.1 Aliased WDD for Phase Retrieval

In this section, we expand on the classical WDD method to include sub-sampling. Speci�-

cally, in Section 2.1.1, we provide a WDD formulation for the case when one collects mea-

surements on a small subset of all d Fourier modes in [d]0. Next, in Section 2.1.2, we explore
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further to include the case where one shifts the mask m at a subset of all d possible shifts

in [d]0. We then provide two algorithms in Section 2.1.3 which allow for the recovery of

a specimen x from sub-sampled measurements via aliased WDD formulations and angular

synchronization. Recovery guarantees are then provided for Algorithms 1 and 2.

2.1.1 Sub-sampling in Frequency

Let K be a positive integer which divides d, and assume that the data is measured at K

equally spaced Fourier modes. As such, we restrict the Fourier modes of step-size d
K to

K =
d

K
[K]0 =

{
0,
d

K
,
2d

K
, . . . , d− d

K

}
. (2.1.1)

De�nition. Given a matrix A ∈ Cd×d with columns aj , and an integer K which divides d,

we denote by AK,d ∈ CK×d the submatrix of A whose `th column is equal to Z d
K

(a`).

The following lemma is a generalization of Lemma 1.3.5.

Lemma 2.1.1. Suppose that the measurements in (1.3.9) are collected on a subset K ⊆ [d]0

of K equally spaced Fourier modes. Then for any ω ∈ [K]0,

Fd

((
YK,d −NK,d

)T
FTK

)
ω

= K

d
K−1∑
r=0

Fd (x ◦ Sω−rKx) ◦ Fd
(
m̃ ◦ SrK−ωm̃

)
,

where
(
YK,d −NK,d

)
∈ CK×d is the matrix of sub-sampled noiseless K · d measurements.

Before providing a proof, we note that in the special case where one collects data at all

d frequencies in [d]0, i.e., when K = d, the lemma above reduces to (1.3.12):

(
FK

(
Z d
K

(y` − η`)
))

ω
= (Fd (y` − η`))ω = d ·

(
(x ◦ Sωx) ∗d

(
m̃ ◦ S−ωm̃

))
`
.
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Proof. Let us recall from (1.3.11) that for ` ∈ [d]0, the `
th column of the matrix Y −N is

y` − η` = Fd

(
(x ◦ S−`m) ∗d

(
x̃ ◦ S`m̃

))
.

We may write, for any α ∈ [K]0,

(
Z d
K

(y` − η`)
)
α

=
(
Fd

(
(x ◦ S−`m) ∗d

(
x̃ ◦ S`m̃

)))
α dK

.

Upon taking a Fourier transform at ω ∈ [K]0, we get

(
FK

(
Z d
K

(y` − η`)
))

ω
=
K

d

d
K−1∑
r=0

(ŷ` − η̂`)ω−rK (by Lemma 2.0.1)

= d · K
d

d
K−1∑
r=0

(
(x ◦ Sω−rKx) ∗d

(
m̃ ◦ SrK−ωm̃

))
`
.

(by (1.3.12))

Note that the `th column of
(
YK,d −NK,d

)
∈ CK×d is equal to Z d

K
(y` − η`). Then the ωth

column of
(
YK,d −NK,d

)T
FTK ∈ Cd×K , for any ω ∈ [K]0, may be computed as

((
YK,d −NK,d

)T
FTK

)
ω

= K

d
K−1∑
r=0

(x ◦ Sω−rKx) ∗d
(
m̃ ◦ SrK−ωm̃

)
∈ Cd×1.

Taking one �nal Fourier transform now yields

Fd

((
YK,d −NK,d

)T
FTK

)
ω

= K

d
K−1∑
r=0

Fd (x ◦ Sω−rKx) ◦ Fd
(
m̃ ◦ SrK−ωm̃

)
, (2.1.2)
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by Lemma 1.3.2 and the linearity of the Fourier transform.

2.1.2 Sub-sampling in Frequency and Space

Let L be a positive integer which divides d. Let us assume that the measurements are

collected at L equally spaced physical shifts of step-size d
L , so that the set of shifts is

L =
d

L
[L]0 =

{
0,
d

L
,
2d

L
, . . . , d− d

L

}
. (2.1.3)

De�nition. Given a matrix A ∈ Cd×d, and an integer L which divides d, we denote by

Ad,L ∈ Cd×L the submatrix of A whose rows are those of A, sub-sampled in step-size d
L .

We state a more generalized version of Lemma 2.1.1 and Lemma 1.3.5 below.

Lemma 2.1.2. Suppose that the measurements in (1.3.9) are collected on a subset K ⊆ [d]0

of K equally spaced frequencies and a subset L ⊆ [d]0 of L equally spaced physical shifts.

Then for any ω ∈ [K]0 and α ∈ [L]0,

(
FL
(
YK,L −NK,L

)T (
FTK

)
ω

)
α

=
KL

d3

d
K−1∑
r=0

d
L−1∑
`=0

(
Fd

(
x̂ ◦ S`L−αx̂

))
ω−rK

(
Fd

(
m̂ ◦ Sα−`Lm̂

))
ω−rK

, (2.1.4)

where
(
YK,L −NK,L

)
∈ CK×L is the matrix of sub-sampled noiseless K · L measurements.

Proof. For �xed ` ∈ [d]0 and ω ∈ [K]0, we have computed (in the proof of Lemma 2.1.1)

(
FK

(
Z d
K

(y` − η`)
))

ω
= K

d
K−1∑
r=0

(
(x ◦ Sω−rKx) ∗d

(
m̃ ◦ SrK−ωm̃

))
`
.
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Let us �x ω ∈ [K]0, and look at the vector pω ∈ CL×1, de�ned componentwise via

(pω)` :=

(
FK

(
Z d
K

(
y
` dL
− η

` dL

)))
ω
∀` ∈ [L]0 . (2.1.5)

Note that the rows of
(
YK,L −NK,L

)
∈ CK×L are those of

(
YK,d −NK,d

)
∈ CK×d, sub-

sampled in step-size of dL . With this, one can see that

(pω)` =
((
YK,L −NK,L

)T (
FTK

)
ω

)
`
,

where
(
FTK

)
ω
∈ CK×1 is the ωth column of FTK . Therefore,

pω =
(
YK,L −NK,L

)T (
FTK

)
ω
∈ CL×1 ∀ω ∈ [K]0 .

Now, observe that for any ` ∈ [L]0, we have

(pω)` = K

d
K−1∑
r=0

(
(x ◦ Sω−rKx) ∗d

(
m̃ ◦ SrK−ωm̃

))
` dL

= K ·

Z d
L


d
K−1∑
r=0

(x ◦ Sω−rKx) ∗d
(
m̃ ◦ SrK−ωm̃

)

`

.

For any α ∈ [L]0, one has by Lemma 2.0.1 and Lemma 1.3.2

(FLpω)α =
KL

d

d
K−1∑
r=0

d
L−1∑
`=0

(
Fd

(
(x ◦ Sω−rKx) ∗d

(
m̃ ◦ SrK−ωm̃

)))
α−`L

=
KL

d

d
K−1∑
r=0

d
L−1∑
`=0

(Fd (x ◦ Sω−rKx))α−`L

(
Fd

(
m̃ ◦ SrK−ωm̃

))
α−`L

.
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Using Lemma 2.0.2, we can write for any ω ∈ [K]0 and α ∈ [L]0,

(
FL
(
YK,L −NK,L

)T (
FTK

)
ω

)
α

=
KL

d3

d
K−1∑
r=0

d
L−1∑
`=0

(
Fd

(
x̂ ◦ S`L−αx̂

))
ω−rK

(
Fd

( ̂̃m ◦ S`L−α ̂̃m))
rK−ω

.

Finally, Lemma 1.3.1(7), applied to the last Fourier transform in the equality above, yields

(
Fd

( ̂̃m ◦ S`L−α ̂̃m))
rK−ω

=

(
Fd

( ˜̃̂
m ◦ Sα−`L

˜̃̂
m

))
ω−rK

=
(
Fd

(
m̂ ◦ Sα−`Lm̂

))
ω−rK

.

Lemma 1.3.5 can now be seen as a corollary of Lemma 2.1.2 above; in the special case

where one collects data at all shifts ` ∈ [d]0 and all Fourier modes ω ∈ [d]0, i.e., when

K = L = d, one has

(
Fd (Y −N)T

(
FTd

)
ω

)
α

=
d · d
d3

d
d
−1∑
r=0

d
d
−1∑
`=0

(
Fd

(
x̂ ◦ S`d−αx̂

))
ω−rd

(
Fd

(
m̂ ◦ Sα−`dm̂

))
ω−rd

=
1

d

(
Fd

(
x̂ ◦ S−αx̂

))
ω

(
Fd

(
m̂ ◦ Sαm̂

))
ω
,

which is an equivalent result to that of Lemma 1.3.5.

2.1.3 Recovering Diagonals of x̂x̂∗

Let us assume that m is band-limited with supp (m̂) = [δ]0 for some δ � d. Then Algorithm

1 below allows for the recovery of an estimate of x̂ from spectrogram measurements via

Wigner distribution deconvolution and angular synchronization.
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Algorithm 1 WDD and Angular Synchronization for Band-limited Masks

Inputs

1: Yd,L ∈ Cd×L: matrix of d · L noisy measurements of the form

(y`)k =

∣∣∣∣∣∣
d−1∑
n=0

xnmn−`e
−2πink

d

∣∣∣∣∣∣
2

+ ηk,`, (k, `) ∈ [d]0 ×
d

L
[L]0 . (2.1.6)

2: Band-limited mask (or window) m ∈ Cd×1, with supp (m̂) = [δ]0.

3: Integer κ ≤ δ, so that 2κ− 1 diagonals of x̂x̂∗ are estimated, and L = δ + κ− 1.

Steps

1: Estimate the perturbed vectors Fd

(
x̂ ◦ Sαx̂

)
(assuming no noise) according to

Fd

(
x̂ ◦ S−αx̂

)
≈
d2
(
Fd
(
Yd,L

) (
FTL

))
α

L · Fd
(
m̂ ◦ Sαm̂

) ∀α ∈ [κ]0 ,

Fd

(
x̂ ◦ SL−αx̂

)
≈
d2
(
Fd
(
Yd,L

) (
FTL

))
α

L · Fd
(
m̂ ◦ Sα−Lm̂

) ∀α ∈ [L]0 \ [L− κ+ 1]0 .

2: Invert the Fourier transforms above to recover estimates of the (2κ− 1) vectors x̂ ◦Sαx̂.

3: Form the banded matrix C2κ−1 (Y2κ−1) from the measurements in step 2.

4: Hermitianize the matrix above: C2κ−1 (Y2κ−1)←[ 12
(
C2κ−1 (Y2κ−1) + C2κ−1 (Y2κ−1)∗

)
.

5: Estimate |x̂| from the diagonal of C2κ−1 (Y2κ−1).

6: Normalize C2κ−1 (Y2κ−1) componentwise to form Ỹ2κ−1.

7: Compute the leading eigenvector, u, of Ỹ2κ−1.

Output An estimate x̂e (up to a global phase) to x̂, given componentwise via:

(x̂e)j :=
√

(C2κ−1 (Y2κ−1))j,j · uj .
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Lemma 2.1.3. Let x ∈ Cd×1 be arbitrary and m ∈ Cd×1 with supp (m̂) = [δ]0. Assume

d
L ∈ N, and let Yd,L ∈ Cd×L contain d ·L noisy autocorrelation measurements as in (2.1.6).

Then for any α ∈ [L]0 and ω ∈ [d]0,

(
FL
(
Yd,L −Nd,L

)T (
FTd

)
ω

)
α

=
L

d2

d
L−1∑
`=0

(
Fd

(
x̂ ◦ S`L−αx̂

))
ω

(
Fd

(
m̂ ◦ Sα−`Lm̂

))
ω
.

(2.1.7)

Moreover, if L = δ + κ− 1 for some 1 ≤ κ ≤ δ, then for all ω ∈ [d]0 the sum above reduces

to exactly one term as follows:

d2

L

(
FL
(
Yd,L −Nd,L

)T (
FTd

)
ω

)
α

=


(
Fd

(
x̂ ◦ S−αx̂

))
ω

(
Fd

(
m̂ ◦ Sαm̂

))
ω
, if α ∈ [κ]0,(

Fd

(
x̂ ◦ SL−αx̂

))
ω

(
Fd

(
m̂ ◦ Sα−Lm̂

))
ω
, if α ∈ [L]0 \ [δ]0 .

Proof. Equation (2.1.7) follows from equation (2.1.4) in Lemma 2.1.3 by setting K = d. It

remains to show that if L is chosen so that L = δ−1 +κ for some 1 ≤ κ ≤ δ and α is chosen

in [L]0 \ {κ, κ+ 1, . . . , L− κ}, then the sum reduces to a single term for all ω ∈ [d]0.

To that end, assume that supp (m̂) = [δ]0 for some δ � d and set L = δ−1+κ. Observe

that m̂ ◦ Sα−`Lm̂ = 0 whenever the supports of m̂ and Sα−`Lm̂ are disjoint. Note that

supp (m̂) ∩ supp
(
Sα−`Lm̂

)
6= ∅ ⇐⇒ |α− `L| ≤ δ − 1.

Now, since L ≤ 2δ − 1, then for any α ∈ [κ]0, |α− `L| ≤ δ − 1 if and only if ` = 0, and for

any α ∈ {L− κ+ 1, . . . , L− 1}, |α− `L| ≤ δ − 1 if and only if ` = 1.

We are now ready to provide recovery guarantees for Algorithm 1.
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Theorem 2.1.1. Let x ∈ Cd×1 be arbitrary and m ∈ Cd×1 with supp (m̂) = [δ]0. Let

L = δ + κ− 1 for some 1 ≤ κ ≤ δ, and assume L divides d. Let Yd,L ∈ Cd×L contain d · L

noisy autocorrelation measurements as in (2.1.6). De�ne

Sε :=

{
n : |x̂n| < ε−

1
4 ·
∥∥Nd,L∥∥14F

}
, (2.1.8)

and let µ > 0 denote the mask-dependent constant

µ := min
|p|≤κ−1
q∈[d]0

∣∣∣∣Fd (m̂ ◦ Spm̂)q
∣∣∣∣ . (2.1.9)

Then Algorithm 1 outputs an estimate x̂e to x̂ with

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ C ′ ‖x̂‖∞ ·

d2

κ2
·

√
εd4

κLµ2

∥∥Nd,L∥∥F + |Sε|+ C ′′
(
d5

L

)1
4

√∥∥Nd,L∥∥F
µ

,

(2.1.10)

for some constants C ′, C ′′ ∈ R. If ε =

∥∥∥Nd,L∥∥∥F
min|x̂|4

, then

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ C ′

d4 ‖x̂‖∞
∥∥Nd,L∥∥F

L
1
2µκ

5
2 ·min |x̂|2

+ C ′′
d
5
4
∥∥Nd,L∥∥12F
L
1
4µ

1
2

. (2.1.11)

Proof. Let x, m, and the measurements be as in Theorem 2.1.1. By Lemma 2.1.3,

Fd

(
x̂ ◦ S−αx̂

)
=
d2

L

(
Fd
(
Yd,L −Nd,L

) (
FTL

))
α

Fd

(
m̂ ◦ Sαm̂

) ∀α ∈ [κ]0 ,

Fd

(
x̂ ◦ SL−αx̂

)
=
d2

L

(
Fd
(
Yd,L −Nd,L

) (
FTL

))
α

Fd

(
m̂ ◦ Sα−Lm̂

) ∀α ∈ [L]0 \ [L− κ+ 1]0 ,
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where the division is componentwise. Thus, the (2κ− 1) diagonals of the rank-one matrix

x̂x̂∗ can be computed as

x̂ ◦ S−αx̂ =
d2

L
F−1d


(
Fd
(
Yd,L −Nd,L

) (
FTL

))
α

Fd

(
m̂ ◦ Sαm̂

)
 ∀α ∈ [κ]0 ,

x̂ ◦ SL−αx̂ =
d2

L
F−1d


(
Fd
(
Yd,L −Nd,L

) (
FTL

))
α

Fd

(
m̂ ◦ Sα−Lm̂

)
 ∀α ∈ [L]0 \ [L− κ+ 1]0 .

Distributing the inverse Fourier transform yields

x̂ ◦ S−αx̂ +
d2

L
F−1d


(
FdNd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sαm̂

)
 =

d2

L
F−1d


(
FdYd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sαm̂

)


for all α ∈ [κ]0, and

x̂ ◦ SL−αx̂ +
d2

L
F−1d


(
FdNd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sα−Lm̂

)
 =

d2

L
F−1d


(
FdYd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sα−Lm̂

)


for all α ∈ [L]0 \ [L− κ+ 1]0. One can thus learn (2κ− 1) diagonals of x̂x̂∗ exactly assuming

the noise is known and the mask m is chosen so that µ (as in (2.1.9)) is positive. In practice,

however, Nd,L is entirely unknown, save for possibly an estimate on its norm.

Let us denote by X2κ−1 ∈ Cd×(2κ−1) the matrix with columns

x̂ ◦ Sσx̂, |σ| ≤ κ− 1,

ordered by increasing σ. Also, denote by N2κ−1 ∈ Cd×(2κ−1) the matrix with ordered
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columns

d2

L
F−1d


(
FdNd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sαm̂

)
 , α ∈ {κ− 1, κ− 2, . . . , 0} ,

and

d2

L
F−1d


(
FdNd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sα−Lm̂

)
 , α ∈ {2κ− 2, 2κ− 3, . . . , k} .

Similarly, denote by Y2κ−1 ∈ Cd×(2κ−1) the matrix with ordered columns

d2

L
F−1d


(
FdYd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sαm̂

)
 , α ∈ {κ− 1, κ− 2, . . . , 0} ,

and

d2

L
F−1d


(
FdYd,L

(
FTL

))
α

Fd

(
m̂ ◦ Sα−Lm̂

)
 , α ∈ {2κ− 2, 2κ− 3, . . . , k} .

Then

Y2κ−1 = X2κ−1 +N2κ−1. (2.1.12)

Using ‖Fd‖2 =
√
d and

∥∥∥F−1d

∥∥∥
2

= 1√
d
, we compute the following bound on the Frobenius

norm of N2κ−1:

‖Y2κ−1 −X2κ−1‖2F = ‖N2κ−1‖2F

≤ d4

L2
·
(

1√
d

)2

∥∥∥FdNd,LFTL ∥∥∥2F
µ2

=
d3

L2µ2
· L · d

∥∥Nd,L∥∥2F
=

d4

Lµ2

∥∥Nd,L∥∥2F ,
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where µ is as in (2.1.9). Thus,

‖N2κ−1‖F ≤
d2√
Lµ

∥∥Nd,L∥∥F . (2.1.13)

Now, one can write (2.1.12) into a circulant form using the operator C2κ−1 de�ned in (2.0.1):

C2κ−1 (X2κ−1) = C2κ−1 (Y2κ−1)− C2κ−1 (N2κ−1) .

Finally, let X̃2κ−1 and Ỹ2κ−1 be the (componentwise) normalized versions of the matrices

C2κ−1 (X2κ−1) and C2κ−1 (Y2κ−1), respectively:

X̃2κ−1 := C2κ−1 (sgn (X2κ−1)) ,

Ỹ2κ−1 := C2κ−1 (sgn (Y2κ−1)) .

Let Sε be as in (2.1.8). For any j, k ∈ Scε , we bound
∣∣∣∣(X̃2κ−1

)
j,k
−
(
Ỹ2κ−1

)
j,k

∣∣∣∣ as follows:
∣∣∣∣(X̃2κ−1

)
j,k
−sgn

 (C2κ−1 (Y2κ−1))j,k∣∣∣(C2κ−1 (X2κ−1))j,k

∣∣∣
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
(
X̃2κ−1

)
j,k
−

(C2κ−1 (Y2κ−1))j,k∣∣∣(C2κ−1 (X2κ−1))j,k

∣∣∣
∣∣∣∣∣∣

+

∣∣∣∣∣∣ (C2κ−1 (Y2κ−1))j,k∣∣∣(C2κ−1 (X2κ−1))j,k

∣∣∣ − sgn

 (C2κ−1 (Y2κ−1))j,k∣∣∣(C2κ−1 (X2κ−1))j,k

∣∣∣
∣∣∣∣∣∣

≤ 2

∣∣∣∣∣∣
(
X̃2κ−1

)
j,k
−

(C2κ−1 (Y2κ−1))j,k∣∣∣(C2κ−1 (X2κ−1))j,k

∣∣∣
∣∣∣∣∣∣
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= 2

∣∣∣(C2κ−1 (N2κ−1))j,k

∣∣∣∣∣∣(C2κ−1 (X2κ−1))j,k

∣∣∣
≤ 2

√
ε
∥∥Nd,L∥∥−1F · ∣∣∣(C2κ−1 (N2κ−1))j,k

∣∣∣ .
The last inequality holds since j, k ∈ Scε , whence

1∣∣x̂kx̂j∣∣ > ε−
1
2
∥∥Nd,L∥∥12F .

We can now calculate

∥∥∥Ỹ2κ−1 − X̃2κ−1
∥∥∥2
F
≤

∑
j,k∈Scε

4ε∥∥Nd,L∥∥F
∣∣∣(C2κ−1 (N2κ−1))j,k

∣∣∣2
+

∑
j or k∈Sε

∣∣∣∣(X̃2κ−1
)
j,k
−
(
Ỹ2κ−1

)
j,k

∣∣∣∣2
≤ 4ε∥∥Nd,L∥∥F ‖N2κ−1‖2F +

∑
j∈Sε

4 (4κ− 3)

≤ 4εd4

Lµ2

∥∥Nd,L∥∥F + 4 (4κ− 3) · |Sε| ,

where the last inequality follows from (2.1.13). Thus, there exists a constant C ′ ∈ R such

that ∥∥∥Ỹ2κ−1 − X̃2κ−1
∥∥∥2
F
≤ C ′

(
εd4

Lµ2

∥∥Nd,L∥∥F + κ |Sε|
)
.

Since
∥∥∥X̃2κ−1

∥∥∥
F

=
√

(2κ− 1) d, we can write

∥∥∥Ỹ2κ−1 − X̃2κ−1
∥∥∥
F
≤ C

√
d−1

(
εd4

κLµ2

∥∥Nd,L∥∥F + |Sε|
)
·
∥∥∥X̃2κ−1

∥∥∥
F
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for some universal constant C. Now, by Corollary 2 of [36], we have

min
θ∈[0,2π]

∥∥∥∥ x̂

|x̂|
− eiθsgn (u)

∥∥∥∥
2
≤ C ′

√
d−1

(
εd4

κLµ2

∥∥Nd,L∥∥F + |Sε|
)
· d

5
2

κ2
, (2.1.14)

where x̂
|x̂| is the vector of true phases of x̂, and u is the top eigenvector of Ỹ2κ−1.

Let x̂e be the estimate of x̂ produced by Algorithm 1, so that

(x̂e)j =
√

(C2κ−1 (Y2κ−1))j,j · sgn (u)j ∀j ∈ [d]0 .

We compute

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2

= min
φ∈[0,2π]

∥∥∥∥|x̂| ◦ x̂

|x̂|
− |x̂e| ◦ eiφ

x̂e
|x̂e|

∥∥∥∥
2

≤ min
φ∈[0,2π]

∥∥∥∥|x̂| ◦ x̂

|x̂|
− |x̂| ◦ eiφ x̂e

|x̂e|

∥∥∥∥
2
+

∥∥∥∥|x̂| ◦ eiφ x̂e
|x̂e|
− |x̂e| ◦ eiφ

x̂e
|x̂e|

∥∥∥∥
2
,

where the second term is independent of φ. We thus have

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ ‖x̂‖∞

(
min

φ∈[0,2π]

∥∥∥∥ x̂

|x̂|
− eiφ x̂e

|x̂e|

∥∥∥∥
2

)
+ C ′′

√
√
d · d2√

Lµ

∥∥Nd,L∥∥F
for some absolute constant C ′′ > 0. Here the bound on the second term follows from Lemma

3 of [37] and the Cauchy-Schwartz inequality. Combining the bound above with (2.1.14)

yields

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ C ′

‖x̂‖∞√
d

√
εd4

κLµ2

∥∥Nd,L∥∥F + |Sε| ·
d
5
2

κ2
+ C ′′

√√√√ d
5
2

√
Lµ

∥∥Nd,L∥∥F
= C ′ ‖x̂‖∞

d2

κ2

√
εd4

κLµ2

∥∥Nd,L∥∥F + |Sε|+ C ′′
(
d5

L

)1
4

√∥∥Nd,L∥∥F
µ

.
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Note that if ε =

∥∥∥Nd,L∥∥∥F
min|x̂|4

, then Sε = ∅, and thus

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ C ′

d4 ‖x̂‖∞
∥∥Nd,L∥∥F

L
1
2µκ

5
2 ·min |x̂|2

+ C ′′
d
5
4
∥∥Nd,L∥∥12F
L
1
4µ

1
2

.

In order to guarantee that the constant µ is nonzero, we state the following lemma.

Lemma 2.1.4. Let m ∈ Cd×1 be band-limited to [δ]0, so that its Fourier transform is

m̂ =
(
a0e

iθ0 , . . . , aδ−1e
iθδ−1 , 0, . . . , 0

)T

for some real numbers a0, . . . , aδ−1. Let

µ := min
|p|≤κ−1
q∈[d]0

∣∣∣Fd (m̂ ◦ Spm̂) q∣∣∣ ,

where 1 ≤ κ ≤ δ. If

|a0| > (δ − 1) |a1| (2.1.15)

and

|a1| ≥ |a2| ≥ · · · ≥ |aδ−1| > 0, (2.1.16)

then µ > 0.
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Proof. For 0 ≤ p ≤ κ− 1, we have

(
m̂ ◦ Spm̂

)
n

=


anan+pe

i
(
θn−θn+p

)
, if n ∈ [δ − p]0 ,

0, otherwise,

and for −κ+ 1 ≤ p < 0,

(
m̂ ◦ Spm̂

)
n

=


an−|p|ane

i
(
θn−θn−|p|

)
, if n ∈ {|p| , |p|+ 1, . . . , δ − 1} ,

0, otherwise.

Therefore for any q ∈ [d]0,

Fd

(
m̂ ◦ Spm̂

)
q

=

δ−1−|p|∑
n=0

ana|p|+ne
iφn,p,q ,

where φn,p,q is some real number depending only on n, p, and q. Using the assumptions

(2.1.15) and (2.1.16) we see that

∣∣∣∣∣∣
δ−1−|p|∑
n=1

ana|p|+ne
iφn,p,q

∣∣∣∣∣∣ ≤ (δ − 1) |a1|
∣∣∣a1+|p|∣∣∣ < |a0| ∣∣∣a|p|∣∣∣ . (2.1.17)

With this,

∣∣∣∣Fd (m̂ ◦ Spm̂)q
∣∣∣∣ =

∣∣∣∣∣∣
δ−1−|p|∑
n=0

ana|p|+ne
iφn,p,q

∣∣∣∣∣∣
=

∣∣∣∣∣∣a0a|p|eiφ0,p,q +

δ−1−|p|∑
n=1

ana|p|+ne
iφn,p,q

∣∣∣∣∣∣
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≥

∣∣∣∣∣∣
∣∣∣a0a|p|eiφ0,p,q ∣∣∣−

∣∣∣∣∣∣
δ−1−|p|∑
n=1

ana|p|+ne
iφn,p,q

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∣∣∣a0a|p|∣∣∣−

∣∣∣∣∣∣
δ−1−|p|∑
n=1

ana|p|+ne
iφn,p,q

∣∣∣∣∣∣
∣∣∣∣∣∣ > 0,

where the last inequality follows by (2.1.17). This completes the proof.

The interested reader may read Proposition 2 on page 63 of [48] for a connection between

µ and the condition number of the measurement system.

2.1.3.1 A Special Case of Theorem 2.1.1

Let us consider the special case of Theorem 2.1.1, where δ = 2 so that supp (m̂) = {0, 1},

κ = δ = 2 so that L = 3. We may design m ∈ Cd×1 so that

m̂ =
(
aeiψ, beiφ, 0, . . . , 0

)T

for some nonzero a, b ∈ R, with |a| > |b|. For this choice of mask, we have for any ω ∈ [d]0:

(
Fd

(
m̂ ◦ m̂

))
ω

=

(
Fd

(
a2, b2, 0, . . . , 0

)T)
ω

= a2 + b2e
−2πiω

d 6= 0,(
Fd

(
m̂ ◦ S1m̂

))
ω =

(
Fd

(
abei(ψ−φ), 0, . . . , 0

)T)
ω

= abei(ψ−φ) 6= 0,(
Fd

(
m̂ ◦ S−1m̂

))
ω =

(
Fd

(
0, abei(φ−ψ), 0, . . . , 0

)T)
ω

= abei(φ−ψ)e−
2πiω
d 6= 0.

The mask-dependent constant µ is

µ := min
ω∈[d]0

{
|ab| ,

∣∣∣∣a2 + b2e
−2πiω

d

∣∣∣∣} > 0.
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We have

x̂ ◦ S−px̂ +
d2

3
F−1d


(
FdNd,3F

T
3

)
p

Fd

(
m̂ ◦ Spm̂

)
 =

d2

3
F−1d


(
FdYd,3F

T
3

)
p

Fd

(
m̂ ◦ Spm̂

)
, p ∈ {−1, 0, 1} .

Let us denote by X3 ∈ Cd×3 the matrix with columns x̂ ◦ S−1x̂, x̂ ◦ x̂, and x̂ ◦ S1x̂, so that

X3 =



x̂0x̂d−1 |x̂0|2 x̂0x̂1

x̂1x̂0 |x̂1|2 x̂1x̂2

...
...

...

x̂d−1x̂d−2 |x̂d−1|2 x̂d−1x̂0


,

and by Y3, N3 ∈ Cd×3 the matrices

Y3 =
d2

3
F−1d ([ψ1|ψ0|ψ−1]) , N3 =

d2

3
F−1d ([φ1|φ0|φ−1]) ,

whose columns are given by

ψp :=

(
FdYd,3F

T
3

)
p

Fd

(
m̂ ◦ Spm̂

) , φp :=

(
FdNd,3F

T
3

)
p

Fd

(
m̂ ◦ Spm̂

) .
We may write

C3 (X3) = C3 (Y3)− C3 (N3) ,
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where

C3 (X3) =



|x̂0|2 x̂0x̂1 · · · 0 x̂0x̂d−1

x̂1x̂0 |x̂1|2 x̂1x̂2 0

...
. . . . . . . . .

...

0 x̂d−2x̂d−3 |x̂d−2|2 x̂d−2x̂d−1

x̂d−1x̂0 0 · · · x̂d−1x̂d−2 |x̂d−1|2


is a banded version of the rank-one matrix x̂x̂∗ ∈ Cd×d. Finally, let X̃3, Ỹ3, and Ñ3 be the

(componentwise) normalized versions of C3 (X3), C3 (Y3), and C3 (N3), respectively, so that

if x̂ =
(
|x̂0| eiα0 , . . . , |x̂d−1| e

iαd−1
)
, then

X̃3 =



1 ei(α0−α1) · · · 0 e
i
(
α0−αd−1

)
ei(α1−α0) 1 ei(α1−α2) 0

...
. . . . . . . . .

...

0 e
i
(
αd−2−αd−3

)
1 e

i
(
αd−2−αd−1

)
e
i
(
αd−1−α0

)
0 · · · e

i
(
αd−1−αd−2

)
1


.

We have

Ỹ3 = X̃3 + Ñ3.

As before, de�ne the set

Sε :=

{
n : |x̂n| < ε−

1
4 ·
∥∥Nd,3∥∥14F

}
,
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and let x̂e be the estimate of x̂ produced by Algorithm 1. Then

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ C ′ ‖x̂‖∞

d2

22

√
εd4

3µ2

∥∥Nd,3∥∥F + |Sε|+ C ′′d
5
4

√∥∥Nd,3∥∥F√
3µ

.

Additionally, if ε =

∥∥∥Nd,3∥∥∥F
min|x̂|4

, then Sε = ∅ and

min
φ∈[0,2π]

∥∥∥x̂− eiφx̂e∥∥∥
2
≤ C ′

d4 ‖x̂‖∞
∥∥Nd,3∥∥F

µmin |x̂|2
+ C ′′

d
5
4
∥∥Nd,3∥∥12F
µ
1
2

.

2.1.4 Other Support Conditions

We have considered above the case where the mask m ∈ Cd×1 is band-limited so that

supp (m̂) = [δ]0 with δ � d, and x ∈ Cd×1 is arbitrary. Let us now consider other cases on

the supports of x, x̂,m, and/or m̂.

Lemma 2.1.5. Let x ∈ Cd×1 be arbitrary and m ∈ Cd×1 with supp (m) = [ρ]0. Assume

d
K ∈ N, and let YK,d ∈ RK×d contain noisy autocorrelation measurements of the form

(y`)k =

∣∣∣∣∣∣
d−1∑
n=0

xnmn−`e
−2πink

d

∣∣∣∣∣∣
2

+ ηk,`, (k, `) ∈ d

K
[K]0 × [d]0 .

Then for any α ∈ [d]0 and ω ∈ [K]0,

(
Fd
(
YK,d −NK,d

)T (
FTK

)
ω

)
α

=
K

d2

d
K−1∑
r=0

(
Fd

(
x̂ ◦ S−αx̂

))
ω−rK

(
Fd

(
m̂ ◦ Sαm̂

))
ω−rK

(2.1.18)
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= K

d
K−1∑
r=0

(Fd (x ◦ Sω−rKx))α (Fd (m ◦ Sω−rKm))−α .

(2.1.19)

Moreover, if K = ρ − 1 + κ for some 1 ≤ κ ≤ ρ, and if ω ∈ [K]0 \ {κ, κ+ 1, . . . , K − κ},

then for all α ∈ [d]0, the sum above collapses to only one term as follows:

(
Fd
(
YK,d −NK,d

)T (
FTK

)
ω

)
α

=


K (Fd (x ◦ Sωx))α (Fd (m ◦ Sωm))−α , if ω ∈ [κ]0 ,

K (Fd (x ◦ Sω−Kx))α (Fd (m ◦ Sω−Km))−α , if ω ∈ [K]0 \ [K − κ+ 1]0 .

Proof. The equality in (2.1.18) follows from Lemma 2.1.2 with L = d, while (2.1.19) holds

by by Lemma 2.0.2:

(
Fd

(
x̂ ◦ S−αx̂

))
ω−rK

= d · e
−2πiα(ω−rK)

d (Fd (x ◦ Sω−rKx))α ,(
Fd

(
m̂ ◦ Sαm̂

))
ω−rK

= d · e
+2πiα(ω−rK)

d (Fd (m ◦ Sω−rKm))−α .

It remains to show that if K is chosen so that K = ρ − 1 + κ for some 1 ≤ κ ≤ ρ and ω

is chosen from [K]0 \ {κ, κ+ 1, . . . , K − κ}, then the sum reduces to a single term for all

α ∈ [d]0.

Assume that supp (m) = [ρ]0 for some ρ � d and set K = ρ − 1 + κ. Observe that

m ◦ Sω−rKm = 0 whenever the supports of m and Sω−rKm are disjoint. Now,

supp (m) ∩ supp (Sω−rKm) 6= ∅ ⇐⇒ |ω − rK| ≤ ρ− 1.
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Note that since K ≤ 2ρ− 1, for any ω ∈ [κ]0, |ω − rK| ≤ ρ− 1 if and only if r = 0, and for

any ω ∈ {K − κ+ 1, . . . , K − 1}, |ω − rK| ≤ ρ− 1 if and only if r = 1.

We have so far considered conditions on the supports of the mask m or its Fourier

transform m̂. Next, we consider the e�ect of imposing support conditions on x̂.

Lemma 2.1.6. Let x ∈ Cd×1 be arbitrary with supp (x̂) = [γ]0 and m ∈ Cd×1 with

supp (m) = [ρ]0. Assume L and K divide d, and let YK,L ∈ RK×L contain noisy auto-

correlation measurements of the form

(y`)k =

∣∣∣∣∣∣
d−1∑
n=0

xnmn−`e
−2πink

d

∣∣∣∣∣∣
2

+ ηk,`, (k, `) ∈ d

K
[K]0 ×

d

L
[L]0 .

Then for any α ∈ [L]0 and ω ∈ [K]0,

(
FL
(
YK,L −NK,L

)T (
FTK

)
ω

)
α

=
KL

d3

d
K−1∑
r=0

d
L−1∑
`=0

(
Fd

(
x̂ ◦ S`L−αx̂

))
ω−rK

(
Fd

(
m̂ ◦ Sα−`Lm̂

))
ω−rK

=
KL

d2

d
K−1∑
r=0

d
L−1∑
`=0

e
2πi
d

(ω−rK)(α−`L)
(
Fd

(
x̂ ◦ S`L−αx̂

))
ω−rK

(Fd (m ◦ Sω−rKm))`L−α .

Moreover, if K = ρ− 1 + κ for some 1 ≤ κ ≤ ρ and L = γ − 1 + ξ for some 1 ≤ ξ ≤ γ, then

for all ω ∈ [K]0 \ {κ, κ+ 1, . . . , K − κ} and α ∈ [L]0 \ {ξ, ξ + 1, . . . , L− ξ}, the sum above

collapses to only one term, so that
(
FL
(
YK,L −NK,L

)T (
FTK

)
ω

)
α
is equal to

1. KL
d3

(
Fd

(
x̂ ◦ S−αx̂

))
ω

(
Fd

(
m̂ ◦ Sαm̂

))
ω
if ω ∈ [κ]0 and α ∈ [ξ]0, or

2. KL
d3

(
Fd

(
x̂ ◦ SL−αx̂

))
ω

(
Fd

(
m̂ ◦ Sα−Lm̂

))
ω
if α ∈ {L− ξ + 1, . . . , L− 1} and ω ∈

[κ]0, or
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3. KL
d3

(
Fd

(
x̂ ◦ S−αx̂

))
ω−K

(
Fd

(
m̂ ◦ Sαm̂

))
ω−K

if ω ∈ {K − κ+ 1, . . . , K − 1} and

α ∈ [ξ]0, or

4. KL
d3

(
Fd

(
x̂ ◦ SL−αx̂

))
ω−K

(
Fd

(
m̂ ◦ Sα−Lm̂

))
ω−K

if ω ∈ {K − κ+ 1, . . . , K − 1}

and α ∈ {L− ξ + 1, . . . , L− 1}.

Proof. The equivalence of the two double sums in the lemma above is an application of

Lemma 2.0.2. Let's consider the second double sum; using the argument from Lemma 2.1.5,

we observe the following cases:

1. If ω ∈ [κ]0 and α ∈ [ξ]0, the sum reduces to r = 0 and ` = 0.

2. If ω ∈ [κ]0 and α ∈ {L− ξ + 1, . . . , L− 1}, the sum reduces to r = 0 and ` = 1.

3. If ω ∈ {K − κ+ 1, . . . , K − 1} and α ∈ [ξ]0, the sum reduces to r = 1 and ` = 0.

4. If ω ∈ {K − κ+ 1, . . . , K − 1} and α ∈ {L− ξ + 1, . . . , L− 1}, the sum reduces to

r = 1 and ` = 1.

If we think of x̂ ◦ Sj x̂, |j| ≤ ξ − 1, as columns of a matrix X̃2ξ−1 ∈ Cd×(2ξ−1), then the

theorem above allows us to recover estimates of the �rst κ and last κ− 1 entries of each of

the columns of Fd

(
X̃2ξ−1

)
∈ Cd×(2ξ−1).

2.1.4.1 A Special Case of Lemma 2.1.6.

We present below an algorithm which allows for the recovery of a band-limited signal x

through measurements with a compactly supported mask m. Speci�cally, if supp (x̂) = [γ]0

and supp (m) = ρ, then x̂ may be recovered from (2ρ− 1) · (2γ − 1) measurements as

prescribed in Algorithm 2.
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Algorithm 2 Aliased WDD and Angular Synchronization for Band-limited x

Inputs

1: YK,L ∈ RK×L: matrix of KL noisy measurements of the form

(y`)k =

∣∣∣∣∣∣
d−1∑
n=0

xnmn−`e
−2πink

d

∣∣∣∣∣∣
2

+ ηk,`, (k, `) ∈ d

K
[K]0 ×

d

L
[L]0 . (2.1.20)

2: Spatially-limited mask (or window) m ∈ Cd×1.

3: Integers γ and ρ, support sizes of x̂ and m, respectively, so that L= 2γ− 1, K= 2ρ− 1.

Steps

1: Estimate
(
Fd

(
x̂ ◦ Sσx̂

))
β
(assuming no noise) for |σ| ≤ γ − 1 and |β| ≤ ρ− 1 as:

• if ω ∈ [ρ]0 and α ∈ [γ]0, then

(
Fd

(
x̂ ◦ S−αx̂

))
ω
≈ d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω

;

• if ω ∈ [ρ]0 and α ∈ {γ, . . . , 2γ − 2}, then

(
Fd

(
x̂ ◦ SL−αx̂

))
ω
≈ d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sα−Lm̂

))
ω

;

• if ω ∈ {ρ, . . . , 2ρ− 2} and α ∈ [γ]0, then

(
Fd

(
x̂ ◦ S−αx̂

))
ω−K

≈ d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω−K

;

• if ω ∈ {ρ, . . . , 2ρ− 2} and α ∈ {γ, . . . , 2γ − 2}, then

(
Fd

(
x̂ ◦ SL−αx̂

))
ω−K

≈ d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sα−Lm̂

))
ω−K

.
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Algorithm 2 Continued

2: Organize the estimates of
(
Fd

(
x̂ ◦ Sσx̂

))
β
in a matrix V ∈ C(2ρ−1)×(2γ−1).

3: Compute W+V as an estimate to A ∈ Cγ×(2γ−1), where

Wj,k = e
−2πi(j−ρ+1)k

d , (j, k) ∈ [2ρ− 1]0 × [γ]0 ,

W+ = (W ∗W )−1W ∗ ∈ Cγ×(2ρ−1),

A =



0 · · · 0 |x̂0|2 x̂0x̂1 · · · x̂0x̂γ−1

0 · · · x̂1x̂0 |x̂1|2 x̂1x̂2 · · · 0

...
...

...
...

...
...

...

0 · · · x̂γ−2x̂γ−3
∣∣x̂γ−2∣∣2 x̂γ−2x̂γ−1 · · · 0

x̂γ−1x̂0 · · · x̂γ−1x̂γ−2
∣∣x̂γ−1∣∣2 0 · · · 0


. (2.1.21)

4: From W+V , form an estimate G ∈ Cγ×γ to the rank-one matrix

x̂| [γ]0 x̂∗| [γ]0 =



|x̂0|2 x̂0x̂1 x̂0x̂2 · · · x̂0x̂γ−1

x̂1x̂0 |x̂1|2 x̂1x̂2 · · · x̂1x̂γ−1

...
...

. . .
...

...

x̂γ−1x̂0 x̂γ−1x̂1 x̂γ−1x̂2 · · ·
∣∣x̂γ−1∣∣2


.

5: Hermitianize the matrix G above: G←[ 12 (G+G∗).

6: Compute λ1, the largest magnitude eigenvalue of G, and v1, its associated eigenvector.

Output An estimate x̂e (up to a global phase) to x̂, given componentwise via

(x̂e)j =


√
|λ1| (v1)j , if j ∈ [γ]0 ,

0, otherwise.
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We are now ready to provide recovery guarantees for Algorithm 2.

Theorem 2.1.2. Let x ∈ Cd×1 be band-limited so that supp (x̂) = [γ]0 and m ∈ Cd×1 with

supp (m) = [ρ]0. Let L = 2γ − 1 and K = 2ρ − 1, and assume ρ ≥ γ and d
L ,

d
K ∈ N.

Let YK,L ∈ CK×L contain KL noisy autocorrelation measurements as in (2.1.20), with∥∥NK,L∥∥F ≤ β ‖x̂‖22 for some β ≥ 0. Let µ > 0 denote the mask-dependent constant

µ := min
|p|≤γ−1
|q|≤ρ−1

∣∣∣∣Fd (m̂ ◦ Spm̂)q
∣∣∣∣ . (2.1.22)

Then Algorithm 2 outputs an estimate x̂e to x̂ with

min
φ∈[0,2π]

∥∥∥eiφx̂− x̂e

∥∥∥
2
≤
(
1 + 2

√
2
)
β

σmin (W )

d3√
KLµ

‖x̂‖2 , (2.1.23)

where W is the partial DFT matrix described in (2.1.21).

Proof. Let us consider the special case of Lemma 2.1.6 where L and K are chosen as

L := 2γ − 1, K := 2ρ− 1,

where γ and ρ are the support sizes of x̂ and m, respectively. Then we have the following:

1. if ω ∈ [ρ]0 and α ∈ [γ]0, then

(
Fd

(
x̂ ◦ S−αx̂

))
ω

+
d3

KL

(
FLN

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω

=
d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω

;
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2. if ω ∈ [ρ]0 and α ∈ {γ, . . . , 2γ − 2}, then

(
Fd

(
x̂ ◦ SL−αx̂

))
ω

+
d3

KL

(
FLN

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sα−Lm̂

))
ω

=
d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sα−Lm̂

))
ω

;

3. if ω ∈ {ρ, . . . , 2ρ− 2} and α ∈ [γ]0, then

(
Fd

(
x̂ ◦ S−αx̂

))
ω−K

+
d3

KL

(
FLN

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω−K

=
d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω−K

;

4. if ω ∈ {ρ, . . . , 2ρ− 2} and α ∈ {γ, . . . , 2γ − 2}, then

(
Fd

(
x̂ ◦ SL−αx̂

))
ω−K

+
d3

KL

(
FLN

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sα−Lm̂

))
ω−K

=
d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sα−Lm̂

))
ω−K

.

Let us represent the four cases above with a matrix equation

T + U = V,

where T, U, V ∈ C(2ρ−1)×(2γ−1) have entries

(
Fd

(
x̂ ◦ S−αx̂

))
ω
,
d3

KL

(
FLN

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω

,
d3

KL

(
FLY

T
K,L

(
FTK

)
ω

)
α(

Fd

(
m̂ ◦ Sαm̂

))
ω

,

respectively, for properly chosen α and ω. Let µ be as in (2.1.22). We compute the following

bound:

‖V − T‖2F = ‖U‖2F
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≤ d6

K2L2
·

∥∥∥FLNK,LFTK∥∥∥2F
µ2

=
d6

K2L2µ2
· L ·K

∥∥NK,L∥∥2F
=

d6

KLµ2

∥∥NK,L∥∥2F ,
so that

‖U‖F ≤
d3√
KLµ

∥∥NK,L∥∥F . (2.1.24)

In short, we are able to estimate

(
Fd

(
x̂ ◦ Sσx̂

))
φ

for all |σ| ≤ γ − 1 and |φ| ≤ ρ− 1. Observe furthermore that for all such φ and σ,

(
Fd

(
x̂ ◦ Sσx̂

))
φ

=

γ−1∑
n=0

e
−2πiφn

d x̂nx̂n+σ

=: vφaσ

where vφ is the φth row of the matrix W ∈ C(2ρ−1)×γ and aσ is the σth column of the

matrix A ∈ Cγ×(2γ−1) as in (2.1.21).

One can organize the (2ρ− 1) · (2γ − 1) values of
(
Fd

(
x̂ ◦ Sσx̂

))
φ
in the matrix T ∈

C (2ρ−1)×(2γ−1) so that

T(2ρ−1)×(2γ−1) = W(2ρ−1)×γAγ×(2γ−1).
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Since the measurements are contaminated with noise, we have

T + U = WA+ U = V,

so that

W+V = A+W+U,

where

W+ = (W ∗W )−1W ∗ ∈ Cγ×(2ρ−1)

is the pseudoinverse of W . This matrix exists since ρ ≥ γ and since W is full-rank (being

the transpose of a Vandermonde matrix). We have

∥∥W+V − A
∥∥
F =

∥∥W+U
∥∥
F

≤
∥∥W+

∥∥
2 ‖U‖F

≤ 1

σmin (W )

d3√
KLµ

∥∥NK,L∥∥F ,
where the last inequality follows from (2.1.24).

Once an estimate of the matrix A ∈ Cγ×(2γ−1) is computed as W+V , one can form an

estimate G ∈ Cγ×γ of the rank-one matrix

x̂| [γ]0 x̂∗| [γ]0 =



|x̂0|2 x̂0x̂1 x̂0x̂2 · · · x̂0x̂γ−1

x̂1x̂0 |x̂1|2 x̂1x̂2 · · · x̂1x̂γ−1

...
...

. . .
...

...

x̂γ−1x̂0 x̂γ−1x̂1 x̂γ−1x̂2 · · ·
∣∣x̂γ−1∣∣2


,
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where x̂|[γ]0 =
(
x̂0, . . . , x̂γ−1

)T ∈ Cγ×1. We have

∥∥∥G− x̂| [γ]0 x̂∗| [γ]0
∥∥∥
F
≤
∥∥A−W+V

∥∥
F

≤ 1

σmin (W )

d3√
KLµ

∥∥NK,L∥∥F .
Given that

∥∥NK,L∥∥F ≤ β ‖x̂‖22 for some β ≥ 0, we obtain

∥∥∥G− x̂| [γ]0 x̂∗| [γ]0
∥∥∥
F
≤ β

σmin (W )

d3√
KLµ

‖x̂‖22 .

Finally, by Lemma 8 of [36], if λi is the i
th largest magnitude eigenvalue of G and vi an

associated eigenvector, such that the vi form an orthonormal eigenbasis, then

min
θ∈[0,2π]

∥∥∥eiθx̂− x̂e

∥∥∥
2

= min
θ∈[0,2π]

∥∥∥eiθ x̂|[γ]0 −√|λ1|v1∥∥∥2
≤
(
1 + 2

√
2
)
β

σmin (W )

d3√
KLµ

‖x̂‖2 .

Remark 2.1.1. While there are literary works on the condition numbers of Vandermonde

matrices (see for example [2]), the formulations therein do not apply to the matrix W above.

Before exploring the proposed algorithms numerically, we note that the recovery guar-

antees (upper bounds) provided in this chapter su�er from a dependence on powers of the

signal dimension, d. A natural question arises then, concerning the lower Lipschitz bounds

for phase retrieval from locally supported measurements. This is the topic of Chapter 3. As

we will see, the dependence on powers of d is not entirely out of the ordinary.
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2.2 Numerical Results

Numerical experiments demonstrating the robustness and e�ciency of the proposed frame-

work, as well as comparisons to existing phase retrieval algorithms are now presented. These

results were generated using the open source BlockPR Matlab software package (freely avail-

able at [34]) on a laptop computer with an Intelr CoreTMM-5Y10c (5th generation, dual

core) processor, 8GB RAM, and running GNU/Linux (Ubuntu 16.04 x86_64) and Mat-

lab R2018a. Each data point in the execution time and robustness plots was obtained by

averaging results from 100 trials.

Unless otherwise stated, we use i.i.d. zero-mean complex Gaussian random test signals

with measurement errors modeled using a (real) i.i.d. Gaussian noise model. In particular,

applied measurement noise and reconstruction error are both reported in decibels (dB) in

terms of signal-to-noise ratios (SNRs), with

SNR (dB) = 10 log10

(∑D
1 |〈x,mk,`〉|4

Dσ2

)
, Error (dB) = 10 log10

(
minθ ‖eiθxe − x‖22

‖x‖22

)
,

where mk,` = WkS−`m is one of D shifted and modulated versions of the mask m, and

x,xe, σ
2 and D = KL denote the true signal, recovered signal, (Gaussian) noise variance,

and number of measurements respectively.

For completeness, we also present selected results comparing the proposed formulation

against other well established phase retrieval algorithms such as PhaseLift [16] (implemented

as a trace-regularized least-squares problem using the �rst order convex optimization package

TFOCS [9, 8], Hybrid Input-Output/Error Reduction (HIO+ER) alternating projection al-

gorithm [7, 23], andWirtinger Flow [13]. We note that more accurate results using PhaseLift

may be obtained using other solvers and software packages (such as CVX [26, 25]), albeit at
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prohibitively expensive computational costs. For the HIO+ER algorithm, the following two

projections were utilized: (i) projection onto the measured magnitudes, and (ii) projection

onto the span of the measurement vectors {mk,`} =
{
WkS−`m

}
. The initial guess was

set to be the all-zero vector, although use of a random starting guess did not change the

qualitative nature of the results. Furthermore, as implemented in popular practice (see, for

example, [23]) every few (25) HIO iterations were followed by a small number of (5) ER

iterations, with the maximum number of HIO+ER iterations limited to 600 � this choice

of iteration count ensures convergence of the algorithm (see Figure 2.2.1) while comparing

favorably with the computational cost (see Figure 2.2.5) of the proposed method.

0 200 400 600 800 1000 1200
-30

-25

-20

-15

-10

-5

0

Figure 2.2.1: Selection of HIO+ER iteration parameters. (HIO,ER) = (x, y) indicates that
every set of x iterations of the HIO algorithm was followed by a set of y iterations of the ER
algorithm.
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2.2.1 Empirical Validation of Theorem 2.1.1 (Algorithm 1)

Recall from Algorithm 1 that this measurement construction involves the use of band-limited

masks. Numerical experiments were performed with the following three types of masks:

m̂k =


aN e

2πiθU , if k ∈ [δ]0,

0, otherwise,

aN ∼ N (0, 1), θU ∼ U(0, 1), (random mask) (2.2.1)

where N (0, 1) and U(0, 1) denote i.i.d. standard Gaussian and uniform (in the interval [0, 1])

random distributions respectively;

m̂k =


e−k/a
4√2δ−1

, if k ∈ [δ]0,

0, otherwise,

a = max(4, (δ − 1)/2), (exponential mask) (2.2.2)

and

m̂k =


1 +

(
k
δ−1

)
(δ − 1), if k ∈ [δ]0,

0, otherwise.

(linear mask) (2.2.3)

The exponential mask in (2.2.2) is related to the deterministic masks �rst introduced and

constructed in [36]. The corresponding values of the mask-dependent constant µ (see Lemma

2.1.4) for these three masks were 3.085× 10−1, 6.149× 10−2, and 2.585× 101 respectively.

The qualitative and quantitative performance of all three masks were similar.

We begin by examining the improvement in accuracy o�ered by adding an inexpensive

post-processing step to Algorithm 1. More speci�cally, the recovered solution xe is post-

processed using 60 iterations of the HIO+ER algorithm (in two blocks; each block consisting

of 25 iterations of HIO followed by 5 iterations of ER). In addition, an eigenvector-based
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magnitude estimation procedure described in �6.1 of [36] may be utilized in place of the

diagonal element based estimates in Step 5 of Algorithm 1. Numerical results showing the

utility of these procedures is shown in Figure 2.2.2, which plots the reconstruction error in

recovering a test signal (d = 255) using 15 shifts and a random mask band-limited to δ = 8 at

several noise levels. The �gure shows that the combination of these two procedures improves

reconstruction accuracy (at a negligible increase in computational cost), and will therefore

be utilized in the numerical results which follow.1
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Figure 2.2.2: Reconstruction accuracy with and without HIO+ER (60 iterations) post-
processing, improved magnitude estimation.

Next, we examine the importance of the number of shifts L in relation to reconstruction

accuracy. We expect that reconstructions using larger L (which entails using more mea-

surements, each corresponding to greater overlap between successive masked regions of the

specimen) would o�er improved accuracy. This is indeed con�rmed by Figure 2.2.3 where

1Where appropriate, results using no post-processing will also be included.
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the reconstruction accuracy (at various noise levels) for several di�erent values of L is plot-

ted. We note that each value of L corresponds to a slightly di�erent value of d to ensure L

divides d. In this case, δ = 16 was chosen, along with random masks and the post-processing

procedure described earlier. As expected, reconstruction accuracy improves for larger L,

with about a 10dB performance spread. A suitable value of L can be chosen depending on

whether the proposed method is used as a reconstruction procedure, or as an initializer for

another algorithm.
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Figure 2.2.3: Reconstruction accuracy vs. number of shifts L.

In Figure 2.2.4, we compare the performance of the proposed method to other popular

phase retrieval methods. Reconstruction errors for recovering a d = 60-length signal using

a random mask with δ = 8 and L = 15 shifts are plotted for di�erent levels of added noise.
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We see that the proposed method (both with and without post-processing) compares well

with the popular HIO+ER algorithm. The noise performance is also almost as good as the

signi�cantly more expensive SDP-based PhaseLift algorithm. We note that the Wirtinger

Flow method is sensitive to the choice of parameters and iteration counts. We use fewer total

iterations (50 at 10dB noise) at higher noise levels and more iterations (6500 at 60dB) as

the noise level decreases to ensure convergence of the algorithm to the level of noise. We are

not aware of any methodical procedure for setting the various algorithmic parameters when

utilizing the (local) measurement constructions considered in this paper. We also note that

none of the competing methods shown in the plot have recovery guarantees for this class of

(local, spectrogram-type) measurements.

Finally, Figure 2.2.5 plots the corresponding execution time for the competing algorithms

as a function of the problem size d. In this case, random masks were chosen with δ =

d1.25 log2 de along with L = δ+dδ/2e−1 shifts. The �gure con�rms the essentially FFT�time

computational cost of Algorithm 1; furthermore, it also con�rms that the post-processing

procedure introduced in Figure 2.2.2 does not increase the computational cost drastically.

More speci�cally, the proposed method provides best�in�class computational e�ciency, is

about a factor of 2 − 5 faster than the HIO+ER and Wirtinger Flow methods, and several

orders faster than the SDP PhaseLift.
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Figure 2.2.4: Reconstruction accuracy vs. added noise.
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Figure 2.2.5: Execution time vs. signal size d.
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2.2.2 Empirical Validation of Lemma 2.1.5

We next provide numerical results validating Lemma 2.1.5. Recall that this measurement

construction requires that supp (m) = [ρ]0; i.e., support restrictions are imposed in the

physical (space) domain. As with Section 2.2.1, experiments were conducted with various

masks � all yielding comparable qualitative and quantitative results. The �gures below use

the exponential mask construction �rst introduced in [36]

mk =


e−k/a
4√2ρ−1

, if k ∈ [ρ]0,

0, otherwise,

a = max(4, (ρ− 1)/2), (2.2.4)

thereby allowing us to directly compare the performance of the proposed method with the

algorithm introduced in [36]. We begin with Figure 2.2.6 which plots the reconstruction

error in recovering a test signal (d = 257) using the masks in (2.2.4) with ρ = 10 and

K = 19 (yielding a total of 19dmeasurements). Results with and without the post-processing

procedure detailed in Section 2.2.1 are provided, along with results from [36] with and without

the same post-processing procedure.
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Figure 2.2.6: Reconstruction accuracy with and without HIO+ER (60 iterations) post-
processing, improved magnitude estimation, and comparison with results from [36].

As can be seen in the �gure, the post-processing procedure yields a small improvement

of about 5dB in the reconstruction error, especially at low noise levels. We also observe that

the proposed method compares well with those from [36]. Although the results from [36] are

comparable, they are less �exible; for example, they do not allow for physical domain shifts

(L) greater than 1 as was possible in Section 2.2.1.

Next, we investigate the reconstruction accuracy as a function ofK, the number of Fourier

modes. Figure 2.2.7 plots reconstruction error in recovering a test signal for K = 13, 15, 17

and 19 respectively. The test signal size (approximately d = 256) varies slightly in each case

to satisfy the divisibility conditions (d divides K) while the support of the exponential mask,

ρ, was chosen to be 10. As expected, the plot shows that reconstruction accuracy improves

over a wide range of added noise levels when K increases; i.e., when more measurements are

acquired.
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Figure 2.2.7: Reconstruction accuracy vs. number of Fourier modes K.

For completeness, we include noise robustness (Figure 2.2.8) and execution time (Figure

2.2.9) plots comparing the performance of the proposed method to the HIO+ER, PhaseLift,

and Wirtinger Flow algorithms. From Figure 2.2.8, we see that the proposed method (both

with and without post-processing) compares well with the HIO+ER implementation across a

wide range of SNRs. We also see, as with Figure 2.2.9 in Section 2.2.1, the essentially FFT�

time computational cost of the method as well as the best-in-class computational e�ciency

when compared to other competing algorithms.
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Figure 2.2.8: Reconstruction accuracy vs. added noise.
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Figure 2.2.9: Execution time versus signal size d.

61



2.2.3 Empirical Validation of Theorem 2.1.2 (Algorithm 2)

We provide preliminary numerical results validating Algorithm 2, with comparisons to the

HIO+ER algorithm. Consider the signal parameters: d = 190, ρ = 48, γ = 10, K = 2ρ −

1, L = 2γ − 1, D = KL. Algorithm 2 has an execution time of 0.033 seconds. When adding

the post-processing method from Section 2.2.1, the execution time increases to 0.589 seconds.

Both of these methods are considerably faster than HIO+ER, which reconstructs signals in

2.635 seconds. Note that in Step 3 of Algorithm 2, we utilize the Tikhonov regularization

A = (W ∗W + σ2I)−1W ∗V , where σ2 is chosen using the L-curve method.

Finally, in Figure 2.2.10 we compare Algorithm 2 to HIO+ER. When post-processed with

60 iterations of HIO+ER, Algorithm 2 compares well with the HIO+ER implementation (600

iterations) across a wide range of SNRs, while being signi�cantly faster in reconstruction.
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Figure 2.2.10: Reconstruction accuracy vs. added noise.
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Chapter 3

Lower Lipschitz Bounds for Phase

Retrieval from Locally Supported

Measurements

The work in this chapter �rst appeared in [35].

As demonstrated in Chapter 2, noise robustness guarantees are desirable for any reliable

phase retrieval algorithm. Much of the work in this �eld is dedicated to the design of

algorithms that are simultaneously e�cient and robust. As in many other areas of harmonic

analysis, a natural question arises: what is the worst-case noise robustness of any phase

retrieval algorithm? As it stands this questions is too general, as algorithms vary widely

based on the measurement model and the assumptions on the specimen of interest. In this

chapter, we narrow down the question above to the following setting: what is the worst-case

noise robustness of any phase retrieval algorithm which aims to reconstruct all nonvanishing

vectors x ∈ Cd (up to a single global phase multiple) from the magnitudes of an arbitrary

collection of local correlation measurements?

Examples of such measurements include both spectrogram measurements of x using lo-

cally supported windows and masked Fourier transform intensity measurements of x using

band-limited masks. As a result, the robustness results considered herein apply to a wide
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range of both ptychographic and Fourier ptychographic imaging scenarios. In particular, the

main results imply that the accurate recovery of high-resolution images of extremely large

samples using highly localized probes is likely to require an extremely large number of mea-

surements in order to be robust to worst-case measurement noise, independent of the recovery

algorithm employed. As a result, recent pushes to achieve high-speed and high-resolution

ptychographic imaging of integrated circuits for process veri�cation and failure analysis will

likely need to carefully balance probe design (e.g., their e�ective time-frequency support)

against the total number of measurements acquired in order for their imaging techniques to

be stable to measurement noise, no matter what reconstruction algorithms are applied.

3.1 Introduction and Statement of Results

We consider the robustness of the �nite-dimensional phase retrieval problem in which one

attempts to recover a signal x := (x1, . . . , xd)
T ∈ Cd from one of two nonlinear measurement

maps α, β : Cd → RN given by

α(x) = {|〈x, fk〉|}Nk=1 and β(x) = {|〈x, fk〉|2}Nk=1,

where the vectors {f1, . . . , fN} ⊂ Cd form a frame (i.e., a spanning set) of Cd. We will focus

on a special class of frame vectors fk which have localized support (i.e., all of whose nonzero

entries are contained in an interval of length at most δ � d). Such frames are commonly

encountered in applications like ptychographic imaging.

Since, as previously stated, phase retrieval is only possible up to a global phase, consider

the equivalence relation x ∼ x′, if x = eiθx′ for some θ ∈ R. Following the work of Balan et
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al. [3, 5], we will consider two commonly used metrics on Cd/ ∼: the natural metric

D2(x,x′) := min
θ∈R
‖x− eiθx′‖2,

and the matrix-norm induced metric

d1(x,x′) := ‖xx∗ − x′x′∗‖1 :=
∑
k

σk(xx∗ − x′x′∗),

where σk(xx∗−x′x′∗) is the k-th singular value of the (at most rank-two) matrix xx∗−x′x′∗.

In [5], Balan et al. showed that if α and β are injective on Cd/ ∼, then β is bi-Lipschitz with

respect to d1, and α is bi-Lipschitz with respect to D2, where in both cases RN is equipped

with the Euclidean norm.

Motivated by applications such as (Fourier) ptychography [52, 60] and related numerical

methods [37, 36], we will study frames which are constructed as the shifts of a family of

locally supported measurement vectors. Speci�cally, we assume that {m1,m2, . . . ,mK} is

a family of measurement masks in Cd such that for all 1 ≤ k ≤ K the nonzero entries of mk

are contained in the set [δ] := {1, . . . , δ} for some δ ≤ d
4 (although all of our results remain

valid if the support of our masks are contained in any interval of length δ). Letting L be an

integer which divides d, such that a := d
L < δ, we consider nonlinear phaseless measurement

maps Y, Z : Cd → RK×L de�ned by their coordinate functions

Yk,`(x) := |〈S`amk,x〉|2 (3.1.1)

and

Zk,`(x) := |〈S`amk,x〉| (3.1.2)
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for 1 ≤ k ≤ K and 1 ≤ ` ≤ L. Here S` is the circular shift operator on Cd de�ned for all

` ∈ Z by

(S`x)n := x(n+`−1) mod d+1.

(The +1 is needed because we are indexing our vectors from one.) For notational convenience,

we will assume that d is even, although our results remain valid, with similar proofs, when

d is odd.

The purpose of this work is to provide lower bounds on the Lipschitz constants of any

maps, A and B, which reconstruct x from Y and Z, respectively. With such lower bounds

in hand, one would be better equipped to, e.g., judge the optimality of theoretical noisy

reconstruction guarantees for phase retrieval algorithms which utilize locally supported mea-

surements (see, e.g., [37, 36]). Unfortunately, Y and Z are not injective on all of Cd/ ∼. For

example, if two vectors x± ∈ Cd are de�ned by

x±n :=



1, 1 ≤ n ≤ d
2 − δ

0, d
2 − δ < n ≤ d

2

±1, d
2 < n ≤ d− δ

0, d− δ < n ≤ d

, (3.1.3)

then x+ 6∼ x−, but Y (x+) = Y (x−) and Z(x+) = Z(x−). (If d were odd, we could add

an extra entry of 1 to x±.) However, it can be shown [37] that Y and Z are injective when

restricted to the subset of Cd such that xn 6= 0 for all 1 ≤ n ≤ d, for certain choices of masks

in the case where L = d. Given this, we will consider the maps Y and Z restricted to the
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subset

Cp,q = {x ∈ Cd/ ∼ such that p ≤ |xn| ≤ q for all 1 ≤ n ≤ d},

for some �xed 0 < p ≤ q, and provide lower bounds on the Lipschitz constants of A and B

which grow linearly with respect to the ratio q
p .

3.1.1 Related Work and Implications

Our local measurement maps (3.1.1) and (3.1.2) are closely related to several practical mea-

surement models that have been explored in the phase retrieval literature including, for

example, short-time Fourier transform (STFT) magnitude measurements (see, e.g., [10, 38,

47, 53]). In particular, suppose that our STFT magnitude measurements are generated by a

compactly supported window w ∈ Cd whose nth-entry wn is nonzero only if n ∈ [δ]. In this

setting, we can use one locally supported mask mk to represent each measured frequency

ωk ∈ Ω ⊂ [d] := {1, . . . , d} by letting mk := Wωk
w for each frequency index k, where Wωk

is the modulation operator de�ned on Cd by

(Wωk
w)n := e

2πi(n−1)(ωk−1)
d wn.

In this case, we have

|〈S`amk,x〉| =
∣∣∣〈x, S`aWωk

w
〉∣∣∣ =

∣∣∣∣∣
〈
x, e

2πi`a(ωk−1)
d Wωk

S`aw

〉∣∣∣∣∣ =
∣∣∣〈x,Wωk

S`aw
〉∣∣∣

for all k and `. Therefore, one can see that the main results below yield lower Lipschitz

bounds for any such STFT magnitude measurements in terms of the total number of shifts

L, the number of measured frequencies K, and the window w's support size δ.
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Another common model considered in the phase retrieval literature concerns masked

Fourier measurements of the form

|F Diag(wk) x|2, (3.1.4)

where F is the d× d discrete Fourier transform matrix whose entries are de�ned by

Fj,k := e
−2πi(j−1)(k−1)

d ,

and {w1, . . . ,wK} ⊂ Cd is a family of measurement vectors (see, e.g., [6, 14, 15, 28]). In this

setting one can ask what e�ect, if any, requiring each wk to be band-limited (i.e., to have

support size δ � d in the Fourier basis) might have on the stability of these measurements.

Furthermore, one might also consider sub-sampling each of the masked Fourier measurements

in frequency instead of acquiring measurements for all d frequencies. (This may even be a

necessity due to, for example, detector limitations.) We will show that our results may also

be applied to these types of measurements as a special case.

Suppose for example that each measurement vector wk has (ŵk)n := (Fwk)n = 0 for

all n /∈ {1} ∪ {d− δ + 2, . . . , d}.1 For a vector u ∈ Cd, let ũ ∈ Cd be the vector obtained by

re�ecting the entries of u about its �rst entry so that

ũn := u(1−n) mod d+1.

In this case, we see that the measurements (3.1.4) are given by the measurement map (3.1.1)

1Note that this particular support interval (modulo d) is not particularly special. The same arguments
below can be extended to apply to any interval of support of size ≤ δ in a straightforward fashion.
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applied to x̂ with the locally supported measurement masks mk := 1
d
˜̂wk. Indeed,

|〈S`amk, x̂〉| =
1

d

∣∣∣∣〈x̂, S`a ˜̂wk

〉∣∣∣∣ =
1

d

∣∣∣∣∣∣
d∑

n=1

x̂n

(
S`a

˜̂wk

)
n

∣∣∣∣∣∣
=

1

d

∣∣∣∣∣∣
d∑

n=1

x̂n (ŵk)(1−`a−n) mod d+1

∣∣∣∣∣∣
=

1

d

∣∣(ŵk ∗ x̂)−`a mod d+1

∣∣ , (3.1.5)

where x ∗ y ∈ Cd is the circular convolution of x,y ∈ Cd, de�ned componentwise by

(x ∗ y)m =
d∑

n=1

xny(m−n) mod d+1.

Continuing from (3.1.5), we see by the Convolution Theorem

|〈S`amk, x̂〉| =
∣∣∣F (wk ◦ x)(−`a mod d)+1

∣∣∣ =
∣∣∣F (Diag (wk)x)(−`a mod d)+1

∣∣∣ ,
where ◦ represents the Hadamard (componentwise) product.

As a result, we see that recovering a vector x from masked Fourier measurements of

the form (3.1.4) with band-limited measurement vectors wk is equivalent to recovering x̂

from measurements (3.1.1) with locally supported measurement masks mk. Therefore, the

main results below also yield lower Lipschitz bounds for any such masked Fourier magnitude

measurements in terms of the total number of frequencies L collected per measurement

vector, the total number K of measurement vectors used, and the maximum Fourier support

size δ of each band-limited measurement vector.
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3.1.2 Main Results

The main results of this paper are the following two theorems which provide lower bounds

for the Lipschitz constants of any maps A and B for which A(Y (x)) = x and B(Z(x)) = x

for all x ∈ Cp,q.

Theorem 3.1.1. Let 0 < p ≤ q, and consider the map Z restricted to the subset Cp,q ⊂

Cd/ ∼ . Assume that δ ≤ d
4 and that d = aL for some integer 1 ≤ a < δ. Then if B is any

Lipschitz map (with respect to D2) such that B(Z(x)) = x for all x ∈ Cp,q, we have that

CB ≥ C
q
√
da

p
√
K‖m‖∞δ3/2

= C
qd

p
√
KL‖m‖∞δ3/2

, (3.1.6)

where CB is the Lipschitz constant of B, ‖m‖∞ := max1≤k≤K ‖mk‖∞, and C is a universal

constant.

Theorem 3.1.2. Let 0 < p ≤ q, and consider the map Y restricted to the subset Cp,q ⊂

Cd/ ∼. Assume that δ ≤ d
4 and that d = aL for some integer 1 ≤ a < δ. Then if A is any

Lipschitz map (with respect to d1) such that A(Y (x)) = x for all x ∈ Cp,q, we have that

CA ≥ C
qd
√
a

p
√
K‖m‖2∞δ5/2

= C
qd3/2

p
√
KL‖m‖2∞δ5/2

, (3.1.7)

where CA is the Lipschitz constant of A, ‖m‖∞ := max1≤k≤K ‖mk‖∞, and C is a universal

constant.

Ideally, we would like a stable phase retrieval algorithm to have have CA = O(1) (or

CB = O(1)) while using only KL = O(d) total measurements. Unfortunately, Theo-

rems 3.1.1 and 3.1.2 demonstrate that this is impossible when δ, the support size of the

masks, is very small. At best, a phase retrieval algorithm that uses only KL = O(d) local
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correlation measurements can have global Lipschitz constants that are of size O
(

d

δ5/2

)
in

the case of Y -measurements, and O
( √

d

δ3/2

)
in the case of Z-measurements. This implies that

extremely large samples x (i.e., with d large) cannot be stably recovered from measurements

which are noisy and extremely localized (i.e., with δ small) in the worst case using only

O(d) total measurements. To contextualize this in an application setting, one may consider

recent research initiatives aimed at achieving the ability to rapidly obtain detailed images

of relatively large circuit boards [33]. One approach to solving this problem involves using

ptychographic imaging and taking STFT magnitude measurements of the circuit board us-

ing a probe (i.e., an STFT window function) with a comparably small e�ective support size

δ. In this context, Theorem 3.1.2 implies that the probe's e�ective support size should not

be taken to be too small unless additional measurements are taken in order to help ensure

stability to noise.

As we shall see, the proofs of both Theorems 3.1.1 and 3.1.2 will depend on signals mod-

eled along the lines of (3.1.3) whose support sets are composed of two disjoint components

separated from one another by at least δ zeroes. In [37] it was noted that phase retrieval

of such signals using locally supported masks mk of the type proposed herein was impos-

sible, and that recovery of signals with more than δ consecutive small entries appeared to

be unstable. Interestingly enough, subsequent work in the in�nite-dimensional setting has

independently identi�ed such disjointly supported signals as being the principal cause of in-

stability in phase retrieval problems using continuous Gabor measurements as well because

they lead to measurements which are supported on disjoint subsets of the time-frequency

plane [1, 27]. Similarly, we will use (essentially) disjointly supported signals similar to those

in (3.1.3) to provide lower bounds on the Lipschitz constants of our maps A and B using

the fact that they (i) are relatively far apart with respect to the D2 and d1 metrics de�ned
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above and (ii) produce measurements with respect to our maps Y and Z which are (nearly)

identical.

3.2 The Proofs of Theorem 3.1.1 and Theorem 3.1.2

We are now prepared to prove our main results.

Proof of Theorem 3.1.1. First observe that for any x,x′ ∈ Cp,q,

D2(x,x′) = D2(B(Z(x)), B(Z(x′))) ≤ CB‖Z(x)− Z(x′)‖2.

Therefore,

CB ≥ sup
D2(x,x′)

‖Z(x)− Z(x′)‖2
, (3.2.1)

where the supremum is taken over all x 6∼ x′ ∈ Cp,q. De�ne x+ and x− ∈ Cd by

x±n :=



q, 1 ≤ n ≤ d
2 − δ,

p, d
2 − δ < n ≤ d

2 ,

±q, d
2 < n ≤ d− δ,

p, d− δ < n ≤ d.

Note that D2(x+,x−) ≥ q
√
d since d < d

4 and for all θ ∈ R,

‖x+ − eiθx−‖22 ≥
d/2−δ∑
n=1

|(1− eiθ)q|2 +
d−δ∑

n=d/2+1

|(1 + eiθ)q|2

=

(
d

2
− δ
)
q2|1− eiθ|2 +

(
d

2
− δ
)
q2|1 + eiθ|2
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≥ d

4
q2
(
|1− eiθ|2 + |1 + eiθ|2

)
= dq2,

since |1− eiθ|2 + |1 + eiθ|2 = 4 for all θ. Let Z± := Z(x±). We will show that

‖Z+ − Z−‖2 ≤ C
√
Kp‖m‖∞

δ3/2√
a
. (3.2.2)

Since B(Z±) = x±, combining this with (3.2.1) will complete the proof.

Observe that for all k, the support of S`amk is contained in [1 + `a, δ + `a]. Therefore,

Z+
k,` = Z−k,` except when 1 + `a ≤ d

2 < δ + `a or 1 + `a ≤ d− δ < δ + `a since if the support

of S`amk does not intersect (d2 , d− δ], we have that 〈S`amk,x
+〉 = 〈S`amk,x

−〉, and if the

support of S`amk is contained in (d2 , d − δ], then 〈S`amk,x
+〉 = −〈S`amk,x

−〉. We will

restrict attention to the case where 1+`a ≤ d−δ < δ+`a. The case where 1+`a ≤ d
2 < δ+`a

is similar.

For �xed ` such that 1 + `a ≤ d− δ < δ + `a, let

j := `a+ 2δ − d

so that the last j nonzero entries of S`amk are located in positions greater than d − δ and

the �rst δ− j nonzero entries are located in positions less than or equal to d− δ. (Note that

1 ≤ j ≤ δ − 1.) Then,

〈S`amk,x
−〉 = −q

δ−j∑
n=1

(mk)n + p
δ∑

n=δ−j+1

(mk)n = −〈S`amk,x
+〉+ 2p

δ∑
n=δ−j+1

(mk)n .

Therefore,

|Z−k,` − Z
+
k,`| ≤ 2jp‖m‖∞. (3.2.3)
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Since 1 ≤ j ≤ δ − 1, summing over the set of ` such that 1 + `a ≤ d − δ < δ + `a,

corresponds to summing over j = a, 2a, . . . , bδ−1a ca if a divides d − 2δ, or summing over

j = j0, j0+a, j0+2a, . . . , j0+bδ−j0−1a ca for some 0 < j0 < a otherwise. Therefore, in either

case

‖Z+ − Z−‖22 ≤ C‖m‖2∞p2
K∑
k=1

bδ/ac+1∑
t=1

|at|2 ≤ CKa2‖m‖2∞p2
(
δ

a

)3

= CKp2‖m‖2∞
δ3

a
,

(3.2.4)

which proves (3.2.2) and completes the proof.

Proof of Theorem 3.1.2. Similarly to the proof of Theorem 3.1.1,

CA ≥ sup
d1(x,x′)

‖Y (x)− Y (x′)‖2
, (3.2.5)

where the supremum is again taken over all x 6∼ x′ ∈ Cp,q. Let x± be in as in the proof

of Theorem 3.1.1, and let Y ± := Y (x±). By the same reasoning as in the previous proof,

Y +
k,` = Y −k,`, unless 1 + `a ≤ d

2 < δ + `a or 1 + `a ≤ d − δ < δ + `a. We will again restrict

attention to the case where 1+`a ≤ d−δ < δ+`a. Let ` be such that 1+`a ≤ d−δ < d+`a,

and again let j := `a+ 2δ − d.

Since for all k and `, we have

|Z±k,`| ≤ q‖m‖∞δ,

we see

|Y +
k,` − Y

−
k,`|2 = |(Z+

k,`)
2 − (Z−k,`)

2| = |Z+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`| ≤ 4‖m‖2∞qδpj,
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by (3.2.3). Therefore, by the same reasoning as in (3.2.4),

‖Y + − Y −‖22 ≤ C‖m‖4∞q2δ2p2
K∑
k=1

bδ/ac+1∑
t=1

|ta|2

≤ CK‖m‖4∞q2δ2p2a2
(
δ

a

)3

= CK‖m‖4∞q2p2
δ5

a
.

Thus, the proof will follow from (3.2.5) once we show d1(x+,x−) ≥ Cdq2.

For n,m ∈ N, let 0n×m and 1n×m denote the n×m matrices of all zeros and of all ones

respectively. With this notation we see that

x± = (q11×η, p11×δ,±q11×η, p11×δ)T ,

and

x±x±
∗

=



q21η×η qp1η×δ ±q21η×η qp1η×δ

qp1δ×η p21δ×δ ±qp1δ×η p21δ×δ

±q21η×η ±qp1η×δ q21η×η ±qp1η×δ

qp1δ×η p21δ×δ ±qp1δ×η p21δ×δ


,

where η := d
2 − δ. Therefore,

x+x+
∗ − x−x−

∗
= 2q



0η×η 0η×δ q1η×η 0η×δ

0δ×η 0δ×δ p1δ×η 0δ×δ

q1η×η p1η×δ 0η×η p1η×δ

0δ×η 0δ×δ p1δ×η 0δ×δ


.
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We will show that the matrix

M :=



0η×η 0η×δ q1η×η 0η×δ

0δ×η 0δ×δ p1δ×η 0δ×δ

q1η×η p1η×δ 0η×η p1η×δ

0δ×η 0δ×δ p1δ×η 0δ×δ


∈ Rd×d

has two nonzero singular values given by

σ1 = σ2 =

√
η2q2 + 2ηδp2. (3.2.6)

This will imply d1(x+,x−) = 4q
√
η2q2 + 2ηδp2 ≥ Cdq2 as desired.

Using the fact that 1m×n1n×k = n1m×k, we see that

MTM =



q1η×ηq1η×η q1η×ηp1η×δ 0η×η q1η×ηp1η×δ

p1δ×ηq1η×η p1δ×ηp1η×δ 0δ×η p1δ×ηpη×δ

0η×η 0η×δ q1η×ηq1η×η + 2p1η×δp1δ×η 0η×δ

p1δ×ηq1η×η p1δ×ηp1η×δ 0δ×η p1δ×ηp1η×δ



=



ηq21η×η ηqp1η×δ 0η×η ηqp1η×δ

ηqp1δ×η ηp21δ×δ 0δ×η ηp21δ×δ

0η×η 0η×δ ηq21η×η + 2δp21η×η 0η×δ

ηqp1δ×η ηp21δ×δ 0δ×η ηp21δ×δ


.

Therefore, MTM has rank at most two because the second block of rows is equal to the

fourth block of rows, which in turn is a multiple of the �rst block of rows. (Each block

can of course have at most one linearly independent row.) We may check that two linearly
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independent eigenvectors are given by

(01×η,01×δ,11×η,01×δ)
T

and

(q11×η, p11×δ,01×η, p11×δ)
T ,

each with eigenvalue η(ηq2+2δp2). This proves (3.2.6) and therefore completes the proof.

3.3 Examples: Lower Bounds for Speci�c Measurement

Masks

In this section, we will see that the estimates of Theorems 3.1.1 and 3.1.2 can be improved

for speci�c choices of well-conditioned measurement masks.

3.3.1 Windowed Fourier Measurement Masks

In this subsection, we consider a family of masks {mk}2δ−1k=1 , de�ned by

(mk)n :=


e−n/b

(2δ−1)1/4
e2πi(k−1)(n−1)/(2δ−1), if 1 ≤ n ≤ δ,

0, if δ < n ≤ d,

(3.3.1)

for some �xed parameter b > 4. Masks of this form are closely related to those used in pty-

chographic imaging (see, for example, [37], Section 1.3 and the references provided therein).

In [37] it was shown that, with this choice of masks, the map Y, restricted to the subset of

Cd where xn 6= 0 for all 1 ≤ n ≤ d, can be inverted by an algorithm which is both e�cient
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and numerically stable in the case where L = d.

Corollary 3.3.1. Let 0 < p ≤ q, and consider the map Z restricted to the subset Cp,q ⊂

Cd/ ∼ . Assume that δ ≤ d
4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is

the family of masks given by (3.3.1) and B is any Lipschitz map (with respect to d1) such

B(Z(x)) = x for all x ∈ Cp,q, then

CB ≥ CKb
q
√
da

p(2δ − 1)1/4δ1/2
= CKb

qd

p
√
L(2δ − 1)1/4δ1/2

, (3.3.2)

where Kb := e1/b − 1, CB is the Lipschitz constant of B, and C is a universal constant.

Corollary 3.3.2. Let 0 < p ≤ q, and consider the map Y restricted to the subset Cp,q ⊂

Cd/ ∼ . Assume that δ ≤ d
4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is

the family of masks given by (3.3.1) and A is any Lipschitz map (with respect to d1) such

A(Y (x)) = x, for all x ∈ Cp,q, then

CA ≥ CK2
b
qd
√
a

p
√
δ

= CK2
b
qd3/2

p
√
L
√
δ
, (3.3.3)

where Kb := e1/b − 1, CA is the Lipschitz constant of A, and C is a universal constant.

Remark 3.3.1. For this choice of masks, K = 2δ − 1 and ‖m‖∞ = e−1/b(2δ − 1)−1/4.

Therefore, the constants obtained in Corollaries 3.3.1 and 3.3.2 have the same asymptotic

behavior with respect to a and d, but are larger with respect to δ than those obtained by

directly applying Theorems 3.1.1 and 3.1.2 to this choice of masks.

Remark 3.3.2. Similar lower bounds can be derived for any choice of masks along the lines of

(3.3.1) whose nonzero entries have magnitudes that form a truncated geometric progression.
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Proof of Corollary 3.3.1. Let x± and Z± be as in the proofs of Theorems 3.1.1 and 3.1.2. As

before, note that Z+
k,` = Z−k,` except when either 1+`a ≤ d

2 < δ+`a or 1+`a ≤ d−δ < δ+`a.

We will again restrict attention to the case where 1 + `a ≤ d− δ < δ + `a.

Fix ` such that 1 + `a ≤ d− δ < δ+ `a, and as in the proof of the preceding theorems, let

j := `a+ 2δ − d so that the last j nonzero entries of S`amk are located in positions greater

than d − δ and the �rst δ − j nonzero entries are located in positions less than or equal to

d− δ. We have seen that

Z±k,` =

∣∣∣∣∣∣±q
δ−j∑
n=1

(mk)n + p
δ∑

n=δ−j+1

(mk)n

∣∣∣∣∣∣ .
Therefore,

|Z−k,` − Z
+
k,`| ≤ 2p

∣∣∣∣∣∣
δ∑

n=δ−j+1

(mk)n

∣∣∣∣∣∣ ≤ 2p
δ∑

n=δ−j+1

| (mk)n |. (3.3.4)

To estimate the above sum, we note that | (mk)n | = (2δ−1)−1/4sn, where s := e−1/b. Since

0 < s < 1,
δ∑

n=δ−j+1

|(mk)n| ≤ (2δ − 1)−1/4
δ∑

n=1

sn ≤ (2δ − 1)−1/4
s

1− s
.

For each 1 ≤ k ≤ 2δ − 1, there are at most δ
a choices of ` such that 1 + `a ≤ d− δ < δ + `a.

Therefore,

‖Z+ − Z−‖22 ≤ C(2δ − 1)
δ

a
p2(2δ − 1)−1/2

(
s

1− s

)2

= C(2δ − 1)1/2
δ

a
p2

(
e−1/b

1− e−1/b

)2

= C(2δ − 1)1/2
δ

a
p2
(

1

e1/b − 1

)2

.
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Recalling that D2(x+,x−) ≥ q
√
d as shown in the proof of Theorem 3.1.1 and applying

(3.2.1) completes the proof.

Proof of Corollary 3.3.2. Let x± and Y ± be as in the proofs of Theorems 3.1.1 and 3.1.2.

Note that for all k, `,

|Z±k,`| ≤ q

δ∑
n=1

| (mk)n | ≤ q(2δ − 1)−1/4
δ∑

n=1

sn ≤ q(2δ − 1)−1/4
s

1− s
, (3.3.5)

where s = e−1/b as in the proof of Corollary 3.3.2. We again note that Y +
k,` = Y −k,` except

when either 1 + `a ≤ d
2 < δ + `a or 1 + `a ≤ d− δ < δ + `a and again restrict attention to

the case where 1 + `a ≤ d− δ < δ + `a. Combining (3.3.4) and (3.3.5) gives

|Y +
k,` − Y

−
k,`| = |Z

+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`|

≤ Cqp(2δ − 1)−1/2
(

s

1− s

)2

.

For each 1 ≤ k ≤ 2δ − 1, there are at most δ
a choices of ` such that 1 + `a ≤ d− δ < δ + `a.

Therefore,

‖Y + − Y −‖22 ≤ C(2δ − 1)
δ

a
q2p2(2δ − 1)−1

(
s

1− s

)4

≤ C
δ

a
q2p2

(
e−1/b

1− e−1/b

)4

= C
δ

a
q2p2

(
1

e1/b − 1

)4

.

Recalling d1(x+,x−) ≥ Cdq2, as shown in the proof of Theorem 3.1.1, completes the proof.
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3.3.2 Two-Shot Measurement Masks

Consider the family of masks {mk}2δ−1k=1 de�ned by

m1 := e1

m2j := e1 + ej+1 (3.3.6)

m2j+1 := e1 + iej+1

for 1 ≤ j ≤ δ − 1, where {e1, . . . , ed} is the standard orthonormal basis for Rd. In [36] it

was shown that, with this choice of masks, the map Y is injective on the subset of Cd where

all entries are nonzero and can be inverted through a well-conditioned algorithm in the case

L = d.

Corollary 3.3.3. Fix 0 < p ≤ q, and consider the map Z restricted to the subset Cp,q ⊂

Cd/ ∼ . Assume that δ ≤ d
4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is

the family of masks de�ned by (3.3.6) and B is any Lipschitz map (with respect to D2) such

that B(Z(x)) = x for all x ∈ Cp,q, then

CB ≥ C
q
√
da

pδ
= C

qd√
Lpδ

,

where CB is the Lipschitz constant of B and C is a universal constant.

Corollary 3.3.4. Let 0 < p ≤ q, and consider the map Y restricted to the subset Cp,q ⊂

Cd/ ∼ . Assume that δ ≤ d
4 and that d = aL for some integer a < δ. Then if {mk}2δ−1k=1 is

the family of masks de�ned by (3.3.6) and A is any Lipschitz map (with respect to d1) such

that A(Y (x)) = x for all x ∈ Cp,q, then
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CA ≥ C
qd
√
a

pδ
= C

qd3/2√
Lpδ

,

where CA is the Lipschitz constant of A and C is a universal constant.

Remark 3.3.3. Note that for this choice of masks K = 2δ − 1. Therefore, the constants

obtained in Corollaries 3.3.3 and 3.3.4 exhibit the same asympotic behavior with respect to

d and are asymptotically larger with respect to δ than those obtained by applying Theorems

3.1.1 and 3.1.2 to this choice of masks.

Proof of Corollary 3.3.3. Let x± be as in the proof of Theorems 3.1.1 and 3.1.2. Note that

for all 1 ≤ n ≤ d, |x+n | = |x−n |. Therefore, it is clear that for all `,

|〈S`am1,x
+〉| = |x+`a+1| = |x

−
`a+1| = |〈S`am1,x

−〉|,

and

|〈S`am2j+1,x
+〉| = |x+`a+1 + ix+`a+j+1|

= |x−`a+1 + ix−`a+j+1|

= 〈S`am2j+1,x
−〉|

since the real and imaginary parts of 〈S`am2j+1,x
+〉 and 〈S`am2j+1,x

−〉 have the same

absolute values. Therefore, to estimate ‖Z+ − Z−‖2 we only need to consider the terms

Z+
2j,` − Z

−
2j,`. Furthermore, it is clear that Z+

2j,` will equal Z
−
2j,`, unless ` is chosen in such a

way that either `a + 1 ≤ d
2 < `a + j + 1 or `a + 1 ≤ d − δ < `a + j + 1. In either of these

cases,
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|Z+
2j,` − Z

−
2j,`| = 2p. (3.3.7)

Therefore, we will be able to compute ‖Z+ − Z−‖2 once we estimate the number of ` such

that `a+ 1 ≤ d
2 < `a+ j+ 1 or `a+ 1 ≤ d− δ < `a+ j+ 1, which we will do in the following

lemma.

Lemma 3.3.1. For �xed j, the number of ` such that `a + 1 ≤ d
2 < `a + j + 1 is less than

or equal to j
a . Likewise, the number of ` such that `a + 1 ≤ d − δ < `a + j + 1 is less than

or equal to j
a .

Proof. If `a + 1 ≤ d
2 < `a + j + 1, then d

2 − j ≤ `a ≤ d
2 − 1, and any set of j consecutive

integers can contain at most j
a multiples of a. Likewise, if `a+ 1 ≤ d− δ < `a+ j + 1, then

d− δ − j ≤ `a ≤ d− δ − 1.

Combining (3.3.7) and Lemma 3.3.1 gives

‖Z+ − Z−‖22 ≤
δ∑
j=1

2j

a
(2p)2 ≤ C

p2δ2

a
= C

Lp2δ2

d
.

Therefore, recalling the fact that D2(x+,x−) ≥
√
dq, as shown in the proof of Theorem

3.1.1, the proof follows from (3.2.1).

Proof of Corollary 3.3.4. Since each mk has at most two nonzero entries, |Z+
k,` +Z−k,`| ≤ 4q

for all k and `. Therefore, by (3.3.7) each nonzero entry of Y + − Y − satis�es

|Y +
k,` − Y

−
k,`| ≤ |Z

+
k,` + Z−k,`||Z

+
k,` − Z

−
k,`| ≤ Cqp.

Furthermore, similarly to the proof of Corollary 3.3.3, Y +
k,` − Y

−
k,` is nonzero if and only if
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k = 2j for some 1 ≤ j ≤ δ − 1 and `a+ 1 ≤ d
2 < `a+ j + 1 or `a+ 1 ≤ d− δ < `a+ j + 1.

Therefore, by Lemma 3.3.1,

‖Y + − Y −‖22 ≤ C
δ∑
j=1

2j

a
(pq)2 ≤ C

q2p2δ2

a
= C

Lq2p2δ2

d
.

Finally, recalling from the proof of Theorem 3.1.2 that d1(x+,x−) ≥ Cdq2, the result follows

from (3.2.5).

3.4 Discussion and Future Work

We believe that this initial work opens up several interesting corridors for further research.

First and perhaps most obvious among these is the development of algorithms together with

optimal STFT windows, etc., that have Lipschitz upper bounds which match these lower

bounds to the extent possible (keeping in mind, of course, that the lower bounds developed

here may be gross underestimates). Existing algorithms for local correlation measurements

such as [37, 36] yield upper bounds for the measurements Y considered above (3.1.1) with

respect to the D2-metric, a metric with respect to which an inverse of Y will not generally

be Lipschitz [5]. As a result, the upper bounds they provide are not quite appropriate

to compare to the lower bounds considered here. Nonetheless, the Lipschitz lower bounds

developed here do seem to at least heuristically justify the necessity of, e.g., the d-dependence

present in those existing worst-case upper bounds.

Another interesting avenue of research would be to explore the extension of the related

in�nite-dimensional results developed by Alaifari et al. [1, 27] to the �nite-dimensional

discrete setting. The resulting theory would potentially provide more �ne-grained insights
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into the recovery of samples x from discrete STFT magnitude measurements, and could also

possibly be extended to results concerning general local correlation measurement maps of the

type we consider here in a way that would allow for the relaxation of the support assumptions

currently made on the masks {m1,m2, . . . ,mK}. Finally, one could also consider local

Lipschitz and Hölder lower bounds as opposed to global lower bounds. Though perhaps

more di�cult to analyze, such lower bounds may be more likely to correspond to achievable

upper bounds.
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Chapter 4

Recovery of Compactly Supported

Functions from Spectrogram

Measurements via Lifting

The work in this chapter �rst appeared in [44].

In Section 1.3.2, we discussed an existing Wigner distribution deconvolution method for

phase retrieval. The model, which assumed continuous ptychographic measurements of the

form

b (`, ω) =

∣∣∣∣ˆ ∞−∞ f (t) g (t− `) e−2πiwtdt
∣∣∣∣2 ,

was based on decoupling the unknown signal f from the known mask g. This was done

through two consecutive applications of the continuous Fourier transform to the measure-

ments. This formulation, however, says nothing about parameter selection, i.e., for which

values of physical shifts and Fourier modes is recovery possible. While the aliased WDD

formulation in Chapter 2 provides the means for parameter selection, it does not assume a

continuous model.

In this chapter, we attempt to bridge the gap between continuous phase retrieval and

parameter selection. Thus, a novel phase retrieval method, motivated by ptychographic imag-

ing, is proposed for the approximate recovery of a compactly supported specimen function
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f : R → C from its continuous short-time Fourier transform (STFT) spectrogram mea-

surements. The method, partially inspired by the PhaseLift algorithm, is based on a lifted

formulation of the in�nite dimensional problem, which is then later truncated for the sake

of computation. Numerical experiments demonstrate the promise of the proposed approach.

4.1 Introduction

Motivated by ptychographic imaging in the 1-D setting, consider a compactly supported

specimen, f : R → C, being scanned by a focused illuminating beam g : R → C which

translates across f in �xed overlapping shifts `1, . . . , `K ∈ R. At each such shift of the beam

(or, equivalently, the specimen) a phaseless di�raction image is then sampled in bulk by a

detector. Due to the underlying physics the collected measurements are modeled as sampled

STFT magnitude measurements of f of the form

bk,j :=

∣∣∣∣ˆ ∞−∞ f (t) g (t− `k) e
−2πiωjtdt

∣∣∣∣2 (4.1.1)

for a �nite set of KN shift and frequency pairs (`k, ωj) ∈ {`1, . . . , `K}× {ω1, . . . , ωN}. Our

objective is to approximate f (up to a global phase) using these bk,j measurements.

As discussed in the Introduction, there has been a good deal of work on signal recovery

from phaseless STFT measurements in the last few of years in the discrete setting, where

f and g are modeled as vectors ab initio, and then recovered from discrete STFT magni-

tude measurements. In this setting many related recovery techniques have been considered

including iterative methods along the lines of Gri�n and Lim [46, 56] and alternating pro-

jections [43], graph theoretic methods for Gabor frames based on polarization [53, 47], and
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semi-de�nite relaxation-based methods [38], among others [20, 10, 37, 36].

Herein we will instead consider the approximate recovery of f (as a compactly supported

function) from samples of its continuous STFT magnitude measurements bk,j as per (4.1.1).

Besides perhaps better matching the continuous models considered in some applications such

as ptychography, and allowing one to more naturally consider approaches that utilize, e.g.,

irregular sampling, we also take recent work on phase retrieval in in�nite dimensional Hilbert

spaces [57, 12, 1] as motivation for exploring numerical methods to solve this problem.

In particular, the recent work of Daubechies and her collaborators implies that the sta-

bility of such continuous phase retrieval problems is generally less well behaved than their

discrete counterparts [12, 1]. Speci�cally, [1] characterizes a class of functions for which

in�nite dimensional phase retrieval (up to a single global phase) from Gabor measurements

is unstable, and then proposes the reconstruction of these worst-case functions up to several

local phase multiples as a stable alternative. We take this initial work on stable in�nite di-

mensional phase retrieval from Gabor measurements as a further motivation to explore new

fast numerical techniques for the robust recovery of compactly supported functions from

their continuous spectrogram measurements.

4.1.1 The Problem Statement and Speci�cations

Given a vector of stacked spectrogram samples from (4.1.1),

b =

(
b1,1, . . . , b1,N , b2,1, . . . , bK,N

)T
∈ [0,∞)NK , (4.1.2)

our goal is to approximately recover a piecewise smooth and compactly supported function

f : R → C. Of course f can only be recovered up to certain ambiguities (such as up to a
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global phase, etc.) which depend not only on f , but also the window function g (see, e.g., [1]).

Without loss of generality, we will assume that the support of f is contained in [−1, 1]. Given

our motivation from ptychographic imaging we will, herein at least, primarily consider the

unshifted beam function g to also be (approximately) compactly supported within a smaller

subset [−a, a] ⊂ [−1, 1]. Furthermore, we will also assume that g is smooth enough that its

Fourier transform decays relatively rapidly in frequency space compared to f̂ . Examples of

such g include both suitably scaled Gaussians, as well as compactly supported C∞ bump

functions [39].

4.1.2 The Proposed Numerical Approach

The proposed method aims to recover samples from the Fourier transform of f at frequencies

in Ω = {ω1, . . . , ωN}, giving f ∈ CN with fj = f̂(ωj), from which f̂ can then be approx-

imately recovered via standard sampling theorems (see, e.g., [55]). The inverse Fourier

transform of this approximation of f̂ then provides our approximation of f .

Recovery of the samples from f̂ , f ∈ CN , is performed in two steps using techniques

from [37, 36] adapted to this continuous setting: �rst, a truncated lifted linear system is

inverted in order to learn a portion of the rank-one matrix f f∗ from a �nite set of STFT

spectrogram samples, then, an eigenvector based angular synchronization method is used

in order to recover f from the portion of f f∗ computed in the �rst step. Note that this

truncated lifted linear system is both banded and Toeplitz, with band size determined by

the decay of ĝ. If g is e�ectively band-limited to [−δ, δ] the proposed lifting-based algorithm

can be implemented to run in O
(
δN(logN + δ2)

)
-time, which is essentially FFT-time in N

for small δ.
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4.2 Our Lifted Formulation

The following theorem forms the basis of our lifted setup.

Theorem 4.2.1. Suppose f : R→ C is piecewise smooth and compactly supported in [−1, 1].

Let g ∈ L2 ([−a, a]) be supported in [−a, a] ⊂ [−1, 1] for some a < 1, with ‖g‖
L2

= 1. Then

for all ω ∈ R,

|F [f · S`g] (ω)| = 1

2

∣∣∣∣∣∣
∑
m∈Z

e−πi`mf̂
(m

2

)
ĝ
(m

2
− ω

)∣∣∣∣∣∣
for all shifts ` ∈ [a− 1, 1− a].

Proof. Denote by S`g the right shift of g by `. The short-time Fourier transform (STFT)

[42] of f given g, at a shift ` and frequency ω, is de�ned by

F [f · S`g] (ω) =

ˆ ∞
−∞

f (t) g (t− `) e−2πiωtdt.

The squared magnitude of the Fourier transform above is called a spectrogram measurement:

|F [f · S`g] (ω)|2 =

∣∣∣∣ˆ ∞−∞ f (t) g (t− `) e−2πiωtdt
∣∣∣∣2 = |〈f, h〉|2

where h (t) := g (t− `)e2πiωt. We calculate

ĥ (k) =

ˆ ∞
−∞

h (t) e−2πiktdt

=

ˆ ∞
−∞

g (t− `)e2πiωte−2πiktdt

=

ˆ ∞
−∞

g (τ)e2πiω(τ+`)e−2πik(τ+`)dτ

= e2πi`(ω−k)
ˆ ∞
−∞

g (τ)e−2πi(ω−k)τdτ.

90



So, we have

ĥ (k) = e2πi`(w−k)F
[
g (·)

]
(w − k) .

Now, by Plancherel's Theorem, we have

|〈f, h〉|2 =
∣∣∣〈f̂ , ĥ〉∣∣∣2 =

∣∣∣∣ˆ ∞−∞ f̂ (k) ĥ (k)dk

∣∣∣∣2
=

∣∣∣∣ˆ ∞−∞ f̂ (k) e−2πi`(ω−k)F
[
g (·)

]
(ω − k)dk

∣∣∣∣2
=

∣∣∣∣ˆ ∞−∞ f̂ (k) e2πi`kF
[
g (·)

]
(ω − k)dk

∣∣∣∣2
=

∣∣∣∣ˆ ∞−∞ f̂ (ω − η) e−2πi`ηF
[
g (·)

]
(η)dη

∣∣∣∣2
=

∣∣∣∣ˆ ∞−∞ f̂ (ω − η) ĝ (−η) e−2πi`ηdη

∣∣∣∣2 ,
where in the last equality we have used the following Fourier transform property:

F
[
g (·)

]
(η) = ĝ (−η) .

And so, applying Shannon's Sampling Theorem [54] to f̂ , we see that

|F [f · S`g] (ω)|2 =

∣∣∣∣ˆ ∞−∞ f̂ (ω − η) ĝ (−η) e−2πi`ηdη

∣∣∣∣2

=

∣∣∣∣∣∣
ˆ ∞
−∞

ĝ (−η)
∑
m∈Z

f̂
(m

2

)
sincπ (m− 2 (ω − η)) e−2πi`ηdη

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)ˆ ∞
−∞

ĝ (−η) e−2πi`ηsincπ (m− 2 (ω − η)) dη

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)ˆ ∞
−∞

ĝ (η) e2πi`ηsincπ (m+ 2 (−ω − η)) dη

∣∣∣∣∣∣
2
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=

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

) [
ĝ (·) e−2πi`(·) ∗ sincπ (m+ 2 (·))

]
(−ω)

∣∣∣∣∣∣
2

,

where ∗ denotes the convolution operator:

(p ∗ q) (t) :=

ˆ
R
p (x) q (t− x) dx ∀ (p, q, t) ∈ L2(R)× L2(R)× R.

The Convolution Theorem states

F [f ∗ g] = f̂ · ĝ =⇒ f ∗ g = F−1
[
f̂ · ĝ

]
.

To apply the Convolution Theorem, we calculate the Fourier transforms

F
[
ĝ (·) e−2πi`(·)

]
(ξ) = ̂̂g (ξ + `) = g (−`− ξ) ,

and

F [sincπ (m+ 2 (·))] (ξ) = F
[

sinπ (m+ 2x)

π (m+ 2x)

]
(ξ) =

eπimξ

2
χ(−1,1) (ξ) .

Thus, the spectrogram measurements may be expressed as

|F [f · S`g] (ω)|2 =

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)
F−1

[
g (−`− (·)) e

πim(·)

2
χ(−1,1) (·)

]
(−ω)

∣∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)ˆ ∞
−∞

g (−`− x) eπimxχ(−1,1) (x) e−2πixωdx

∣∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)ˆ 1

−1
g (−`− x) eπimxe−2πixωdx

∣∣∣∣∣∣
2
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=
1

4

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)ˆ −`−1
−`+1

g (u) eπi(−`−u)(m−2ω)du

∣∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)
e−πi`(m−2ω)

ˆ −`+1

−`−1
g (u) e

−2πiu
(
m
2 −ω

)
du

∣∣∣∣∣∣
2

.

Since ` is such that [−`− 1,−`+ 1] ∩ [−a, a] = [−a, a], we have

|F [f · S`g] (ω)|2 =
1

4

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)
e−πi`(m−2ω)

ˆ a

−a
g (u) e

−2πiu
(
m
2 −ω

)
du

∣∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∣
∑
m∈Z

f̂
(m

2

)
e−πi`(m−2ω)

ˆ ∞
−∞

g (u) e
−2πiu

(
m
2 −ω

)
du

∣∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∣
∑
m∈Z

e−πi`mf̂
(m

2

)
ĝ
(m

2
− ω

)∣∣∣∣∣∣
2

.

We have now proven the theorem.

Using Theorem 4.2.1 we may now write

|F [f · S`g] (ω)|2 =
1

4

∑
k∈Z

∑
j∈Z

vkvj

where vn := e−πi`nf̂
(n
2

)
ĝ
(n
2 − ω

)
.

4.2.1 Obtaining a Truncated, Finite Lifted Linear System

If ĝ decays quickly we may truncate the sums above for a given frequency ω with minimal

error. To that end, we pick the indices j and k so that
∣∣∣k2 − ω∣∣∣ ≤ δ and

∣∣∣ j2 − ω∣∣∣ ≤ δ for some
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�xed δ ∈ N. If we denote

Sω = {(j, k) ∈ Z× Z| |k − 2ω| ≤ 2δ and |j − 2ω| ≤ 2δ} ,

then

|F [f · S`g] (ω)|2 =
1

4

∑
(j,k)∈Sω

vkvj + error.

We may write ∑
|j−2ω|≤2δ

eπi`j f̂

(
j

2

)
ĝ

(
j

2
− ω

)
= e2πi`ωx`

∗yω

where x` ∈ C4δ+1 and yω ∈ C4δ+1 are the vectors

x` =



eπi`(2δ)ĝ (−δ)

eπi`(2δ−1)ĝ
(
1
2 − δ

)
...

eπi`·0ĝ (0)

...

eπi`(1−2δ)ĝ
(
δ − 1

2

)
eπi`(−2δ)ĝ (δ)



, yω =



f̂ (ω − δ)

f̂
(
ω − δ + 1

2

)
...

f̂ (ω)

...

f̂
(
ω + δ − 1

2

)
f̂ (ω + δ)



.

This notation allows us to write our measurements in a lifted form:

|F [f · S`g] (ω)|2 ≈ 1

4
e2πi`ωx`

∗yω · e2πi`ωx`∗yω =
1

4
x`
∗yωyω∗x`.
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Here, yωyω
∗ is the rank-one matrix



∣∣∣f̂ (ω − δ)
∣∣∣2 · · · f̂ (ω − δ)f̂ (ω) · · · f̂ (ω − δ)f̂ (ω + δ)

...
. . .

...
...

...

f̂ (ω)f̂ (ω − δ) · · ·
∣∣∣f̂ (ω)

∣∣∣2 · · · f̂ (ω)f̂ (ω + δ)

...
...

...
. . .

...

f̂ (ω + δ)f̂ (ω − δ) · · · f̂ (ω + δ)f̂ (ω) · · ·
∣∣∣f̂ (ω + δ)

∣∣∣2


.

For each x` ∈ C4δ+1, rewrite it as

x` =

(
m`
−δ, m`

−δ+1
2
, . . . , m`

δ−1
2
, m`

δ

)T

so that m`
k = e−πi`(2k)ĝ (k). Then construct the Toeplitz matrix X` ∈ CN×N as



m`
0 m`

1
2
· · · m`

δ 0 0 · · · 0

m`
−1
2

m`
0 · · · m`

δ−1
2

m`
δ 0 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 m`
−δ m`

−δ+1
2
· · · m`

1
2

0 0 · · · 0 0 m`
−δ · · · m`

0



95



where N is the number of frequencies ω being considered. Then we construct the block

matrix G ∈ CNK×N as

G =



X`1

X`2
...

X`K


where K is the number of shifts of the window g.

Let H ∈ CN×N be de�ned as

Hi,j =


f̂
(
i−2n−1

2

)
f̂
(
j−2n−1

2

)
, if |i− j| ≤ 2δ,

0, otherwise,

where n = N−1
4 . Note that H is composed of overlapping segments of the rank-one matrices

yωyω
∗ for ω ∈ {−n, . . . , n}. Thus, our measurements can be written as

b ≈ diag(GHG∗), (4.2.1)

where b is de�ned in (4.1.2). By consistently vectorizing (4.2.1), we can obtain a simple

linear system which can be inverted to learn h, a vectorized version of H. In particular, we

have

b ≈Mh, (4.2.2)

where the matrix M ∈ CNK×N2
can be computed by, e.g., passing the canonical basis

elements for CN×N through (4.2.1). We solve the linear system (4.2.2) as a least squares

problem; experiments have shown that M is of rank NK. The process of recovering the
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Fourier coe�cients of f from h is known as angular synchronization, and is described in

detail in [36].

4.3 Numerical Results
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Figure 4.3.1: Modulated Gaussian signal and 11 shifts of a Gaussian window.
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Figure 4.3.2: True Gaussian signal and its reconstruction.
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Figure 4.3.3: True modulated Gaussian signal and its reconstruction.
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Figure 4.3.4: Characteristic function and its reconstruction.
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Figure 4.3.5: Piecewise continuous function and its reconstruction.

98



We test the phase retrieval algorithm above for four di�erent choices of signal f . The �rst

is a Gaussian signal

f (x) = 2
1
4 e
−25

(
4x
3

)2
χ[−1,1](x).

The second is an oscillatory Gaussian

f (x) = 2
1
4 e−8πx

2
cos (24x)χ[−1,1](x).

The third is a characteristic function

f (x) = χ[
−1
5 ,

1
5

](x).

The fourth is a piecewise continuous function

f (x) =
1

2
χ[
− 3
10 ,0

](x) +

(
1− 10

3
x

)
χ[

0, 310

](x).

In the �rst two experiments, the window used is the Gaussian

g (x) = c · e−16πx
2
χ[
−1
2 ,

1
2

](x)

where c is a constant chosen so that ‖g‖
L2

= 1. We use a total of 11 shifts of g. Since g is

supported on
[
−1

2 ,
1
2

]
, any two consecutive shifts are separated by 0.5

11 (see Figure 4.3.1). We

choose 61 values of ω from [−15, 15] sampled in half-steps, and set δ = 7. The reconstructions

in physical space are shown at selected grid points in Figures 4.3.2 and 4.3.3. The relative

`2 error in physical space is 1.47 × 10−3 for the �rst experiment and 1.872 × 10−2 for the

second.
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In the third and fourth experiments (in which the signals are discontinuous), the window

used is the (thinner) Gaussian

g (x) = c · e−32πx
2
χ[
−1
2 ,

1
2

](x).

For the recoveyr of the characteristic function, we use a total of 21 shifts of g, and choose

293 values of ω from [−73, 73] sampled in half-steps, and set δ = 10. The reconstruction in

physical space for the third experiment is shown in Figure 4.3.4. The relative `2 error in

physical space is 1.509× 10−1.

For the recovery of the piecewise continuous function, we use a total of 41 shifts of g,

and choose 121 values of ω from [−30, 30] sampled in half-steps, and set δ = 10. The

reconstruction in physical space for the fourth experiment is shown in Figure 4.3.5. The

relative `2 error in physical space is 1.343× 10−1.

4.4 Future Work

While this paper addresses the 1D problem, the extension of this method to the 2D setting

is an appealing avenue for future research. Indeed, preliminary results indicate that the

underlying discrete method that forms the basis for this paper extends to two dimensions

without too much di�culty.

Furthermore, empirical results suggest that the method proposed here demonstrates ro-

bustness to noise, although we defer a detailed analysis (and derivation of an associated

robust recovery guarantee) to future work.
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Proof of Lemma 1.3.1

Proof. Let x ∈ Cd×1 and `, ω ∈ [d]0 be arbitrary. We have

(Fdx̂)ω =
d−1∑
k=0

x̂ke
−2πikω

d =
d−1∑
k=0

d−1∑
n=0

xne
−2πink

d e
−2πikω

d

=
d−1∑
k=0

d−1∑
n=0

x−ne
2πik(n−ω)

d = dx−ω = (dx̃)ω ,

(Fd (W`x))ω =
d−1∑
k=0

(
xke

2πik`
d

)
e
−2πikω

d =
d−1∑
k=0

xke
−2πik(ω−`)

d

= x̂ω−` = (S−`x̂)ω ,

(Fd (S`x))ω =
d−1∑
k=0

xk+`e
−2πikω

d =
d−1∑
k=0

xk+`e
−2πi(k+`)ω

d e
−2πi(−`)ω

d

= e
2πi`ω
d x̂ω = (W`x̂)ω ,(

W−`Fd
(
S`x̃

))
ω

= e
−2πi`ω

d
(
W`
̂̃
x
)
ω

=
(̂̃
x
)
ω

=
d−1∑
k=0

x̃ke
−2πikω

d

=
d−1∑
k=0

x̃ke
2πikω
d =

d−1∑
k=0

x−ke
2πikω
d =

(
x̂
)
ω
,

(
S̃`x

)
ω

= (̃S`x)ω = (S`x)−ω = x`−ω

= x̃ω−` =
(
S−`x̃

)
ω
,

(Fdx)ω =
d−1∑
k=0

xke
−2πikω

d =
d−1∑
k=0

xke
2πikω
d

=
d−1∑
k=0

x−ke
−2πikω

d = (Fdx̃)ω,

(˜̂x)
ω

= (x̂)−ω =
d−1∑
n=0

xne
2πinω
d =

d−1∑
n=0

x−ne
−2πinω

d = (Fdx̃)ω .
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Proof of Lemma 2.0.1

Proof. Let d ∈ N and suppose s ∈ N divides d. Then for any u ∈ Cd×1 and ω ∈
[
d
s

]
0
,

(
Fd
s

(Zsu)

)
ω

=

d
s−1∑
n=0

(Zsu)n e
−2πinω

d/s

=

d
s−1∑
n=0

unse
−2πinω

d/s

=
1

d

d
s−1∑
n=0

d−1∑
r=0

ûre
2πirns
d

 e
−2πiωns

d

=
1

d

d−1∑
r=0

ûr

d
s−1∑
n=0

e
2πin(r−ω)

d/s

=
1

s

s−1∑
r=0

û
ω+r ds

=
1

s

s−1∑
r=0

û
ω−r ds

.

Proof of Lemma 2.0.2

Proof. Let x ∈ Cd×1 and α, ω ∈ [d]0 be arbitrary. Observe that

(Fd (x ◦ Sωx))α =
1

d
(x̂ ∗d Fd (Sωx))α (by Lemma 1.3.2)

=
1

d

(
x̂ ∗d

(
Wωx̂

))
α

(by Lemma 1.3.1(3))

=
1

d

d−1∑
n=0

x̂n

(
Wωx̂

)
α−n

(by de�nition of ∗d)

=
1

d

d−1∑
n=0

x̂nx̂α−ne
2πiω(α−n)

d (by de�nition of Wω)
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=
1

d
e
2πiωα
d

d−1∑
n=0

x̂n
˜̂xn−αe−2πiωnd (by de�nition of ·̃)

=
1

d
e
2πiωα
d

d−1∑
n=0

x̂nx̂n−αe
−2πiωn

d (by Lemma 1.3.1(6,7))

=
1

d
e
2πiωα
d

(
Fd

(
x̂ ◦ S−αx̂

))
ω
.
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