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ABSTRACT

TOWARDS INTERPRETABLE FACE RECOGNITION

By

Bangjie Yin

Deep CNNs have been pushing the frontier of visual recognition over past years. Besides recog-

nition accuracy, strong demands in understanding deep CNNs in the research community motivate

developments of tools to dissect pre-trained models to visualize how they make predictions. Recent

works further push the interpretability in the network learning stage to learn more meaningful

representations. In this work, focusing on a specific area of visual recognition, we report our efforts

towards interpretable face recognition. We propose a spatial activation diversity loss to learn more

structured face representations. By leveraging the structure, we further design a feature activation

diversity loss to push the interpretable representations to be discriminative and robust to occlusions.

We demonstrate on three face recognition benchmarks that our proposed method is able to achieve

the state-of-art face recognition accuracy with easily interpretable face representations.
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CHAPTER 1

INTRODUCTION

In the era of deep learning, one major focus in the research community has been on designing

network architectures and objective functions towards discriminative feature learning He et al.

(2016); Iandola et al. (2014); Lin et al. (2017); Wen et al. (2016); Liu et al. (2017b); Tran et al.

(2017a). Meanwhile, given its superior even surpassing-human recognition accuracy He et al.

(2015); Lu & Tang (2015), there is a strong demand from both researchers and general audiences

to interpret its successes and failures Goodfellow et al. (2014); Olah et al. (2018), to understand,

improve, and trust its decisions. Increased interests in visualizing CNNs lead to a set of useful

tools to dissect their prediction paths to identify the important visual cues Olah et al. (2018). While

it is interesting to see the visual evidences for predictions from pre-trained models, what’s more

interesting is to guide the learning towards better interpretability.

CNNs trained towards discriminative classification may learn filters with wide-spreading at-

tentions – usually hard to interpret for human. Prior work even empirically demonstrate models

and human attend to different image areas in visual understanding Das et al. (2017). Without

design to harness interpretability, even when filters are observed to actively respond to certain

local structure across several images, there is nothing preventing them to simultaneously capture

a different structure; and the same structure may activate other filters too. One potential solution

to address this issue is to provide annotations to learn locally activated filters and construct a

structured representation from bottom-up. However, in practice, this is rarely feasible. Manual

annotations are expensive to collect, difficult to define in certain tasks, and sub-optimal compared

with end-to-end learned filters.

A desirable solution would keep the end-to-end training pipeline intact and encourage the

interpretability with a model-agnostic design. However, in the recent interpretable CNNs Zhang

et al. (2017), where filters are trained to represent object parts to make the network representation

interpretable, they observe degraded recognition accuracy after introducing interpretability. While
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Figure 1.1: An example on the behaviors of an interpretable face recognition system: left most
column is three faces of the same identity and right six columns are filter responses from six
filters; each filter captures a clear and consistent semantic face part, e.g., eyes, nose, and jaw;
heavy occlusions, eyeglass or scarf, alternate responses of corresponding filters and make the
responses being more scattered, as shown in red bounding boxes.

the work is seminal and inspiring, this drawback largely limits its practical applicability.

In this paper, we study face recognition and strive to learn an interpretable face representation

(Fig. 1.1). We define interpretability in this way that when each dimension of the representation is

able to represent a face structure or a face part, the face representation is of higher interpretability.

Although the concept of part-based representations has been around Li et al. (2001); Felzenszwalb

et al. (2008); Berg & Belhumeur (2013); Li & Hua (2017), prior methods are not easily applicable

to deep CNNs. Especially in face recognition, as far as we know, this problem is rarely addressed

in the literature.

In ourmethod, the filters are learned end-to-end from data and constrained to be locally activated

with the proposed spatial activation diversity loss. We further introduce a feature activation

diversity loss to better align filter responses across faces and encourage filters to capture more

discriminative visual cues for face recognition, especially occluded face recognition. Compared

with the interpretable CNNs from Zhang et al. Zhang et al. (2017), our final face representation

does not compromise recognition accuracy, instead it achieves improved performance as well as
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enhanced robustness to occlusion. We empirically evaluate our method on three face recognition

benchmarks with detailed ablation studies on the proposed objective functions.

To summarize, our contributions in this paper are in three-fold: 1)we propose a spatial activation

diversity loss to encourage learning interpretable face representations; 2) we introduce a feature

activation diversity loss to enhance discrimination and robustness to occlusions, which promotes

the practical value of interpretability; 3) we demonstrate superior interpretability, while achieving

improved or similar face recognition performance on three face recognition benchmarks, compared

to base CNN architectures.
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CHAPTER 2

RELATEDWORK

2.1 Interpretable Representation Learning

Understanding the visual recognition has a long history in computer vision Mahendran &

Vedaldi (2016); Sudderth et al. (2005); Juneja et al. (2013); Singh et al. (2012); Parikh & Zitnick

(2011). In early days when most models use hand-craft features, a number of research focused on

how to interpret the predictions. Back then visual cues include image patches Juneja et al. (2013),

body parts Yao et al. (2011), face parts Li & Hua (2017), or middle-level representations Singh

et al. (2012) contingent on the tasks. For example, Vondrick et al. Vondrick et al. (2013) develop

the HOGgles to visualize HOG descriptors in object detection. Since features such as SIFT Lowe

(2004), LBP Ahonen et al. (2006) are extracted from image patches and serve as building blocks

in the recognition pipeline, it was intuitive to describe the process from the level of patches. With

the more complicated CNNs, it demands new tools to dissect its prediction. Early works include

direct visualization of the filters Zeiler & Fergus (2014), deconvolutional networks to reconstruct

inputs from different layers Zeiler et al. (2011), gradient-based methods to generate novel inputs

that maximize certain neurons Nguyen et al. (2015), and etc. Recent efforts along this line include

CAM Zhou et al. (2016) which leverages the global max pooling layer to visualize dimensions

of the representation and Grad-CAM Selvaraju et al. (2016) which relaxes the constraints on the

network with a general framework to visualize any convolution filters. While our method can be

related to visualization of CNNs and we leverage the tools to visualize our learned filters, it is not

the focus of this paper.

Visualization of CNNs is a good way to interpret the network but by itself it does not make

the network more interpretable. Attention model Xu et al. (2015) has been used in image caption

generation. By attention mechanism, their model can push the feature maps responding separately

to each predicted caption word, which is seemingly close to our idea, but needs many labeled data
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for training.

One recent work on learning a more meaningful representation is the interpretable CNNs Zhang

et al. (2017). In their method, they design two losses to regularize the training of late-stage

convolutional filters: one to encourage each filter to encode a distinctive object part and another to

push it to respond to only one local region. AnchorNet Novotny et al. (2017) adopts the similar

idea to encourage orthogonality of the filters and filter responses to keep each filter activated by

a local and consistent structure. In our method, we generally extend the ideas in AnchorNet with

some new aspects for face recognition in designing our spatial activation diversity loss. Another

line of research in learning interpretable representations is also referred to as feature disentangling,

e.g., InfoGAN Chen et al. (2016), face editing Shu et al. (2017), 3D face recognition Liu et al.

(2018), and face modeling Tran & Liu (2018). They intend to factorize the latent representation to

describe the inputs from different aspects, of which the direction is largely diverged from our goal

in this paper.

2.2 Parts and Occlusion in Face Recognition

Face recognition is extensively studied in computer vision Learned-Miller et al. (2016); OâĂŹ-

Toole et al. (2018). Early works constructing meaningful representations for face recognition are

mostly intended to improve the recognition accuracy. Some face representations are composed

from face parts. The part-based models are either learned unsupervised from data Li et al. (2013)

or specified by manually annotated landmarks Cao et al. (2010). Besides local parts, different

face attributes are also interesting elements to build up face representations. Kumar et al. (2009)

proposed to encode a face image with scores from attribute classifiers and demonstrate improved

verification performance before the deep learning era. In this paper, we propose to learn mean-

ingful part-based face representations with a deep CNN and the face part filters are learned with

the carefully designed losses. We demonstrate how we leverage the interpretable representation for

occlusion robust face recognition. Prior methods addressing pose variations in face recognition Li

et al. (2013); Cao et al. (2010); Tran et al. (2017b); Chai et al. (2007); Yin et al. (2017); Yin & Liu
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(2018) can be related since pose changes may lead to self-occlusions. However, in this work, we are

more interested in more explicit situations when faces are occluded by hand, sunglasses, and other

objects. Interestingly, this specific aspect is rarely studied with CNNs. Cheng et al. (2015) propose

to restore occluded faces with deep auto-encoder for improved recognition accuracy. Zhou et al.

(2015) argue that naively training a high capacity network with sufficient coverage in training data

could achieve superior recognition performance. In our experiment, we indeed observed improved

recognition accuracy to occluded faces after augmenting training data with synthetic occluded

faces. However, with the proposed method, we can further improve robustness to occlusion without

increasing network capacity, which highlights the merits of interpretable representation.

2.3 Occlusion Handling with CNNs

Different methods are proposed to handle occlusion with CNNs for robust object detection and

recognition. Wang et al. (2017) learn an object detector by generating an occlusion mask for each

object, which synthesizes harder samples for the adversarial network. In Singh & Lee, occlusion

masks are utilized to enforce the network to pay attention to different parts of the objects. Ge

et al. (2017) solve face detection with heavy occlusions by proposing a masked face dataset and

applying it on their proposed LLE-CNNs. Despite using masked images, our occlusion robustness

mainly comes from enforcing constraints for the spreadness of the feature activations and guiding

the network to extract features from different parts of the face.
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CHAPTER 3

PROPOSED METHOD

Our network architecture in training is shown in Fig. 3.1. From a high-level perspective, we

construct a Siamese network with two branches sharing weights to learn face representations from

two faces: onewith synthetic occlusion and onewithout. Wewould like to learn a set of diverse filter

F, which applies on a hyper-column descriptor Φ, consisting of feature at multiple semantic levels.

The proposed Spatial Activation Diversity (SAD) loss encourages the face representation to be

structured with consistent semantic meaning. Softmax loss helps encode the identity information.

The input to the lower network branch is a synthetic occluded version of the above input. The

proposed Feature Activation Diversity (FAD) loss requires filters to be insensitive to the occluded

part, hence more robust to occlusion. At the same time, we mask out parts of the face representation

sensitive to the occlusion and train to identify the input face solely based on the remaining elements.

As a result, the filters respond to non-occluded parts are trained to capture more discriminative

cues for identification.

Figure 3.1: overall network architecture of the proposed method.
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3.1 Spatial Activation Diversity Loss

Novotny et al. (2017) proposed a diversity loss for semantic matching by penalizing correlations

among filters weights and their responses. While their idea is general enough to extend to face

representation learning, in practice, their design is not directly applicable due to the prohibitively

large number of identities (classes) in face recognition. Their approach also suffers fromdegradation

in recognition accuracy. We first introduce their diversity loss and then describe our proposed

modifications tailored to face recognition.

3.1.1 Spatial Activation Diversity Loss

For each of K class in the training set, Novotny et al. (2017) proposed to learn a set of diverse filters

with discriminative power to distinguish an object of the category and background images. The

filers F apply on a hypercolumns descriptorΦ(I), created by concatenating the filter responses of an

image I at different convolutional layers Hariharan et al. (2015). This helps F to aggregate features

at different semantic levels. The response map of this operation is denoted as ψ(I) = F ∗ Φ(I).

The diversity constraint is implemented by two diversity losses L f ilter
SAD and Lresponse

SAD , encour-

aging the orthogonality of the filters and of their responses, respectively. L f ilter
SAD makes filters

orthogonal by penalizing their correlations:

L
f ilter
SAD (F) =

∑
i, j

������∑p

〈Fp
i ,F

p
j 〉

‖Fp
i ‖F ‖F

p
j ‖F

������ , (3.1)

where Fp
i is the column of filter Fi at the spatial location p. Note that orthogonal filters are

likely to respond to different image structures, but this is not necessarily the case. Thus, the second

term Lresponse
SAD is introduced to directly decorrelate the filters’ response maps ψk (I):

L
response
SAD (I;Φ,F) =

∑
i, j

 〈ψi, ψ j〉

‖ψi ‖F ‖ψ j ‖F

2
(3.2)

This term is further regularized by using the smoothed response maps ψ′(I) � gσ ∗ (ψ(I)) in

place of ψ(I) in Lresponse
SAD loss computing. Here the channel-wise Gaussian kernel gσ is applied

to encourage filter responses to spread farther apart by dilating their activations.
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3.1.2 Our Proposed Modifications

Novotny et al. (2017) learn K sets of filters, one for each of K categories. The discrimination

of the features are maintained by K binary classification losses for each category vs. background

images. The discriminative loss is proposed to enhance (or suppress) the maximum value in the

response maps ψk for the positive (or negative) class. In Novotny et al. (2017), the final feature

representation f is obtained via global max-pooling operation on ψ. This design is not applicable

for face classification CNN as the number of identities K are usually prohibitively large (usually in

the order of ten thousands or above).

Here, to make the feature discriminative, we only learn one set of filters and connect the

representation f(I) directly to a K-way softmax classification:

Lid = − log(Pc(f(I))). (3.3)

Here we minimize the negative log-likelihood of feature f(I) being classified to its ground-truth

identity c.

Furthermore, global max-pooling could lead to unsatisfied recognition performance, as shown

in Novotny et al. (2017) where they observed minor performance degradation compared to the

model without their diversity loss. One empirical explanation of this performance degradation

is that max-pooling has similar effect to ReLU activation which makes the response distribution

biased to non-negative range [0,+∞). Hence it significantly limits the feasible learning space.

Most recent works choose to use global average pooling Yi et al. (2014); Tran et al. (2017b).

However, when applying average-pooling to introduce interpretability, it does not promote desired

spatially peaky distribution. Empirically, we found the learned feature response maps of average

pooling failed to have strong activation in small local regions.

Here we propose to design a pooling operation that satisfies two objectives: i) promote peaky

distribution to be well-cooperated with the spatial activation diversity loss; ii) maintain the statistics

of the feature responses for the global average-pooling to achieve good recognition performance.

Based on these considerations, we propose the operation termedLargemagnitude filtering (LMF),

9



as follows:

For each channel in the feature responsemap, we assign d% of elementswith smallestmagnitude

to be 0. The size of the output remains the same. The Lresponse
SAD loss is applied on the modified

response map ψ′(I) � gσ ∗ (LMF(ψ(I))) in place of ψ(I) in Eqn. 3.2. Then, the conventional global

average pooling is applied to LMF(ψ(I)) to obtain the final representation f(I).

By removing small magnitude values from ψk , f won’t be affected much after global average

pooling, which favors discriminative feature learning. On the other hand, the peaks of the response

maps are still well maintained, which leads to more reliable computation of the diversity loss.

3.2 Feature Activation Diversity Loss

One way to evaluate whether the diversity loss is effective is to compute the average location

of the peaks within the kth response maps ψ′k (I) for an image set. If the average locations across

K filters spread all over the face spatially, the diversity loss is well functioning and can associate

each filer with a specific face area. With the SAD loss, we do observe the improved spreadness

compared to the base CNN model trained without the SAD loss. Since we believe that more

spreadness indicates higher interpretability, we hope to further boost the spreadness of the average

peak locations across filters, i.e., elements of the learnt representation.

Motivated by the goal of learning part-based face representations, it is desirable to encourage

that any local face area only affects a small subset of the filter responses. To fulfill this desire, we

propose to create synthetic occlusion on local areas of a face image, and constrain on the difference

between its feature response and that of the non-occluded original image. The second motivation

for our proposal is to design an occlusion-robust face recognition algorithm, which, in our view,

should be a natural by-product or benefit of the part-based face representation.

With this in mind, we propose a Feature Activation Diversity (FAD) Loss to encourage the

network to learn filters robust to occlusions. That is, occlusion in a local region should only affect

a small subset of elements within the representation. Specifically, leveraging pairs of face images

I, Î, where Î is a version of I with a synthetically occluded region, we enforce the majority of two
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feature representations, f(I) and f(Î), to be similar:

LFAD(I, Î) =
∑

i

��τi(I, Î) [fi(I) − fi(Î)
] �� , (3.4)

where the feature selection mask τ(I, Î) is defined with threshold t: τi(I, Î) = 1 if
��fi(I) − fi(Î)

�� < t,

otherwise τi(I, Î) = 0. There are multiple design choices for the threshold: number of elements

based or value based. We evaluate and discuss these choices in the experiments.

We also would like to correctly classify occluded images using just subset of feature elements,

which is insensitive to occlusion. Hence, the softmax identity loss in the occlusion branch is applied

to the masked feature:

Loccluded
id = − log(Pc(τ(I, Î) � f(Î))). (3.5)

By sharing the classifier’s weights between two branches, this classifier is learned to be more robust

to occlusion. It also leads to a better representation as filters respond to non-occluded parts need

to be more discriminative.

3.3 Implementation Details

Our proposed method is model agnostic. To demonstrate this, we apply the proposed SAD and

FAD losses to two different network architectures: one inspired by the widely used CASIA-Net Yi

et al. (2014); Tran et al. (2018), the other based on ResNet50 He et al. (2016), both of which are

popular in face recognition community. The structure of the CASIA-Net is shown in Tab. 3.3.

ResNet50 contains a lot of layers, we put its structure in Appendix. And theWe add HC-descriptor-

related blocks for our SAD loss learning. Conv33, conv44, conv54 layers are used to construct

the HC descriptor via conv upsampling layers. We set the feature dimension N f = 320. As for

ResNet50, we take the modified version in Deng et al. (2018), where N f = 512. We also construct

the HC descriptor by using 3 layers at different resolutions. To speed up the training, we reuse the

pretrained feature extraction network shared by Tran et al. (2018) and Deng et al. (2018). All new

weights are randomly initialized using a truncated normal distribution with std of 0.02. The entire

network is jointly trained using SGD optimizer at an initial learning rate of 0.001 and a momentum

of 0.9. The learning rate is divided by 10 for twice when the training loss is stabled.
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Table 3.1: The structures of our network architecture.

Layer Input Filter/Stride Output Size
conv11 Image 3 × 3/1 96 × 96 × 32
conv12 conv11 3 × 3/1 96 × 96 × 64
conv21 conv12 3 × 3/2 48 × 48 × 64
conv22 conv21 3 × 3/1 48 × 48 × 64
conv23 conv22 3 × 3/1 48 × 48 × 128
conv31 conv23 3 × 3/2 24 × 24 × 128
conv32 conv32 3 × 3/1 24 × 24 × 96
conv33 conv32 3 × 3/1 24 × 24 × 192
conv41 conv33 3 × 3/2 12 × 12 × 192
conv42 conv41 3 × 3/1 12 × 12 × 128
conv43 conv42 3 × 3/1 12 × 12 × 256
conv51 conv43 3 × 3/2 6 × 6 × 256
conv52 conv51 3 × 3/1 6 × 6 × 160
conv53 conv52 3 × 3/1 6 × 6 × N f

conv43-U conv43 upsampling 24 × 24 × 256
conv44 conv43-U 1 × 1/1 24 × 24 × 192
conv53-U conv53 upsampling 24 × 24 × 320
conv54 conv53-U 1 × 1/1 24 × 24 × 192
Φ (HC) conv33,44,54 3 × 3/1 24 × 24 × 576
Ψ Φ 3 × 3/1 24 × 24 × N f

AvgPool Ψ 24 × 24/1 1 × 1 × N f
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Figure 3.2: With barycentric coordinates, we warp the vertices of the template face mask to each
image within the 64-image mini-batch.

For FAD, the feature mask τ can be computed per image pair I and Î. However, to obtain a more

reliable feature mask, we opt to compute τ using multiple image pairs sharing the same physical

occluded mask, i.e., τi({I, Î}Nj=1) = 1 if 1
N

∑N
j=1

��fi(I j) − fi(Î j)
�� < t, otherwise 0.

To provide the same physical mask to images in a batch regardless their poses, we first define

a frontal face template with 142 triangles created by 68 facial landmarks. A 32 × 12 rectangle,

which is randomly placed and may cover the face area, such as eye, nose and mouth, is selected as a

normalized mask. Each of the rectangle’s four vertices can be represented by the barycentric coor-

dinate w.r.t. the triangle enclosing the vertex. For each image within a mini-batch, corresponding

four vertices of a quadrilateral can be found via the same barycentric coordinates. This quadrilateral

denotes the location of a warped mask of that image. An example of this mask warping process is

shown in Fig. 3.2.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Experimental Settings

4.1.1 Introduction

The following sections provide ablation studied, qualitative and quantitative evaluation. Firstly, to

further analyze the influence of parameters setting in our model, ablation studies are conducted.

We set the different thresholds in feature activation diversity loss to explore the face recognition

performance, and then compare the performance among models trained with different occlusion

types and dynamic occlusion window sizes. Besides, turn off one of the diversity losses also help

us to understand the effect of the proposed two loss functions. Secondly, to better illustrate the

results of our method, we present qualitative visualization of the learned representations, response

maps, etc. Lastly, we compare the face recognition performance on three benchmark datasets:

IJB-A Klare et al. (2015), IJB-C Brianna Maze et al. (2018) and AR face Martinez (1998).

4.1.2 Database

For CASIA-Net, we take CASIA-WebFace databases Yi et al. (2014) as the training databases.

For ReNet50, we use MS-Celeb-1M database Guo et al. (2016) for training, and IJB-A Klare

et al. (2015), IJB-C Brianna Maze et al. (2018) and AR face Martinez (1998) for testing. CASIA-

WebFace contains 493, 456 images of 10, 575 subjects. MS-Celeb-1M includes 1M images of 100k

subjects. Since it contains many labeling noise, we use a cleaned version of MS-Celeb-1M Guo

et al. (2016). In our experiments, we evaluate IJB-A in three different scenarios, i.e., original faces,

synthetic occlusion and natural occlusion faces. For synthetic occlusion, we randomly generate a

warped occluded area for each testing image, the same as what we did in training. IJB-C extends

IJB-A, also is a video-based face database with 3, 134 images and 117, 542 frames from videos of
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a) b) c)

Figure 4.1: Example face from (a) IJB-A, (b) IJB-C and (c) AR face databases. The occlusions
include scarf, eyeglass, hands, etc.

3, 531 subjects. One unique property of IJB-C is its label on fine-grained occlusion area. Thus,

we use IJB-C to evaluate occlusion-robust face recognition, using testing images with at least one

occluded area. AR face is another natural occlusion face database, with ∼ 4K faces of 126 subjects.

We only use AR faces with natural occlusions, including wearing glass and scarfs. Some examples

of IJB-A, IJB-C and AR databases are in Fig. 4.1. Following the setting in Deng et al. (2018),

all training and test images are processed and resized to 112 × 112. Note that, all ablation and

qualitative evaluations use the CASIA-Net-based model, and the quantitative evaluations use both

models.

4.2 Ablation Study

4.2.1 Different Thresholds

As mentioned in Sec. 3.2, the threshold t for Eqn. 3.4 denotes the number of elements in two

N f -dim features that the FAD loss encourages their similarity. To study the effect of t to face

recognition, we train different models with t = 130, 260, 320. The first three rows in Tab. 4.2.1

show the comparison on all three variants of IJB-A dataset. When forcing all elements of f(I)

and f(Î) to be the same (t = N f = 320), the performance significantly drops on all three sets.

In this case, the feature representation of the non-occluded face is negatively affected as being

completely pushed toward a representation of the occluded one. While the model with t = 130 has

similar performance with model t = 260, we will use the latter for the rest of the paper, due to the

observation that the latter model affects less filters, push other filter responses away from any local

occlusions, and subsequently enhances the spreadness of the average response locations.

Moreover, in our Feature Activation Diversity Loss (FAD), the feature mask is computed by
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Table 4.1: Ablation study on IJB-A database.

Method IJB-A Manual Occlusion Natural Occlusion
Metric (%) @FAR=.01 @Rank-1 @FAR=.01 @Rank-1 @FAR=.01 @Rank-1
BlaS(t = 130) 79.0 ± 1.6 89.5 ± 0.8 76.1 ± 1.7 88.0 ± 1.4 66.2 ± 4.0 73.0 ± 3.3
BlaS(t = 260) 79.2 ± 1.8 89.4 ± 0.8 76.1 ± 1.4 88.0 ± 1.2 66.5 ± 6.4 72.3 ± 2.8
BlaS(t = 320) 74.6 ± 2.4 88.9 ± 1.3 71.8 ± 3.1 87.5 ± 1.6 61.0 ± 6.5 71.6 ± 3.2
GauD(t = 260) 79.3 ± 2.0 89.9 ± 1.0 76.2 ± 2.4 88.6 ± 1.1 66.8 ± 3.5 73.2 ± 3.3
SAD only 78.1 ± 1.8 88.1 ± 1.1 66.6 ± 5.6 81.2 ± 1.9 64.2 ± 6.9 71.0 ± 3.3
FAD only 76.7 ± 2.0 88.1 ± 1.1 75.2 ± 2.4 85.1 ± 1.2 66.5 ± 6.4 72.3 ± 2.8

Table 4.2: Comparison of selected filter numbers.

Method Forehead EyeL Nose cheek Mouth
Metric (nsel \ ntotal)
GauD(t = 260) 60 \ 320 60 \ 320 60 \ 320 60 \ 320 60 \ 320
BlaS(fixed) 1 \ 320 59 \ 320 98 \ 320 41 \ 320 82 \ 320

thresholding on the averaged feature difference. There are also multiple design choices for the

thresholding operation, such as number of element based or value based thresholding. In our paper,

we explored the first choice: minimizing the difference of t, out of 320, elements with smaller

averaged difference values. Under this setting, the number of filters enforced to be similar by FAD

loss are fixed regardless the occlusion location. Intuitively, dynamic selected number of filters can

be more natural, as different occlusion areas might cover different regions, some of which contains

more discriminative feature (i.e eye, mouth area) than the others (cheek, forehead). To further

evaluate this effect, we explore the latter thresholding options: setting a fixed threshold value to

select different number of filters. As shown in Table 4.2,the forehead only has one filter been

selected, which means covering forehead won’t affect the face recognition, since forehead contain

little identity information. However, for eye, nose and mouth, there are 80 filter on average been

affected. Because they are the most dicriminative parts of the face.
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4.2.2 Different Occlusions and Dynamic Window Size

In FAD loss, we use the warped black window as the synthetic occlusion. It is important to

introduce another type of occlusion to see the effects on face recognition. Thus, we use Gaussian

noise to replace the black color in the occlusion window. Further, we employ a dynamic window

size by randomly generating a value from [12, 32] for both the window height and width. The face

recognition results on IJB-A are shown in Tab. 4.2.1, where ’BlaS’ means black window with static

sizes, while ’GauD’ means Gaussian noise window with dynamic sizes. From the results, it is

interesting to find that the performance is slightly better than ’BlaS’. Comparing to black window,

Gaussian noise contains more diverse information.

4.2.3 Spatial vs. Feature Diversity Loss

Since we propose two different diversity losses in our model, it is important to evaluate the effects

of two losses on face recognition performance respectively. As shown in Tabs 4.2.1, we can train

our models using either diversity loss, or both of them. We observe that, while the SAD loss

performs reasonably well on general IJB-A, it suffers for data with occlusions, being synthetic or

natural. Alternatively, using only the FAD loss can improve the performance on the two occlusion

datasets. Finally, using both losses, the row of ‘BlaS(t = 260)’, improves upon both models with

only one loss.

4.3 Qualitative Evaluation

4.3.1 Spreadness of Average Locations of Filter Response

Given an input face image, our model computes ψ′(I), the 320 feature maps of size 24 × 24,

where the average pooling of one map is one element of the final 320-d feature representation.

Each feature map contains both the positive and negative response values, which are distributed

at different spatial areas of the face. We select the locations of both the highest value for positive

response and the lowest value for negative response as the peak response locations. To better
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illustrate the spatial distribution of peak locations, we randomly select 1, 000 testing images and

calculate the weighted average location for each filter, with three notes. One is that there are two

types of locations, for the highest (positive) and lowest (negative) responses respectively. The other

is that, since the filters are responsive to semantic facial components, their 2D spatial locations

may change with pose. To compensate that, we warp the peak location in an arbitrary-view face to

a canonical frontal-view face, by its barycentric coordinates w.r.t. the triangle enclosing it. Similar

to Fig. 3.2, we use 68 estimated landmarks Liu et al. (2017a); Jourabloo & Liu (2017) and control

points on the image boundary to define the triangular mesh. Finally, the weight of each location is

determined by the magnitude of its peak response.

With that, the average locations for all feature maps (or filters) are shown in Fig. 4.2. To

compare the visualization results between our models and CNN base model, we compute d̄ =

1
N f

∑N f
i

���ci −
1

N f
∑N f

i ci

��� to quantify the average locations spreadness, where ci denotes the (x, y)

coordinates of the ith average location. For both the positive and negative peak response, we take

the mean of their d̄. As stated in Fig. 4.2, our model with SAD loss enlarge the spreadness of

the average locations. Further, our model with both losses continue to push the filter responses

apart from each other. This demonstrates that indeed our model is able to push filters to attach to

diverse face areas, while all filters doesn’t attach to specific facial part, results in average locations

stay near the image center. In addition, we compute the standard deviation for each filter’s peak

location from 1, 000 images. From Fig. 4.2, we can observe that the base model has larger standard

deviations than SAD only model or our model, which means our model can better concentrate on

a local part than the base model.

In above analysis, we set the LMF rate d to be 95.83%. It is worthy to ablate the impact of the

rate d. We train models with different d of 0%, 75%, 87.5% and 95.83%. Since before average

pooling the feature map is of 24∗24, the last 3 percentages mean that we remove 24×18, 24×21 and

24 × 23 responses respectively for each model and 0% denotes the base model. Tab. 4.3 compares

the average of standard deviations of peak locations across 320 filters. Note the values of the best

model (12.9/13.4) equals to the average color of Fig. 4.2(c). When we use the larger LMF rate, the
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Table 4.3: Compare standard deviations of peaks with varying d.

LMF (d%) 0 75.00 87.50 95.83

std(pos./neg.) 25.7/25.7 14.7/14.4 13.5/14.0 12.9/13.4

(a) (b) (c)

Figure 4.2: The average locations of positive (top) and negative (bottom) peak responses of 320
filters for three models: (a) base CNN model (d̄ = 6.9), (b) our (SAD only, d̄ = 17.1), and (c) our
model (d̄ = 18.7), where d̄ quantifies the average locations spreadness. The color on each location
denotes the standard deviation of peak locations. The face size is 96 × 96.

model tends to be more concentrated onto a local facial part. For this reason, we set d = 95.83%.

4.3.2 Mean Feature Difference Comparison

Both of our losses promotes part-based feature learning, which leads to occlusion robustness.

Especially, in FAD, we directly minimize the difference in a portion of representation of face with

and without occlusion. We now study the effect of our loss on faces with occlusion. Firstly, we

randomly select 1, 000 test faces in different poses and generate the synthetic occlusion. After that,

we calculate the mean of feature difference of each filter on both original and occluded faces based

on different models. Fig. 4.3 (a) and (b) illustrates the sorted feature difference of three models

at two different occlusion parts, eye and nose, respectively. Compare to the base CNN (trained

with Lid), both of our losses have smaller magnitude of differences. Diversity properties of SAD

loss could help to reduce the feature change on occlusion, even without directly minimizing this
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(a) Eye part occlusion (b) Nose part occlusion

Figure 4.3: Mean of feature difference on two occluded parts.

difference. FDA loss further enhances robustness by only letting the occlusion alternate a small

portion of the representation, keeping the remaining elements invariant to the occluded part.

4.3.3 Visualization on Feature Difference Vectors

Fig. 4.2 demonstrates that each of our filter spatially corresponds to a face location. Here we further

study the relation of these average locations and semantic meaning on input images. In Fig. 4.4,

we visualize the magnitude of changes of each filter response due to five different occlusions. We

observe the locations of points with large feature difference are around the occluded face area,

which means our learned filters are indeed sensitive to various facial areas. Further, the magnitude

of the feature difference can be vary with different occlusions. The maximum feature difference

can be as high as 0.7 with occlusion in eye or mouth, meanwhile this number is only 0.3 in less

critical area, e.g., forehead.

4.3.4 Filter Response Visualization

Fig. 4.5 visualizes the feature responses of some filters on different subjects’ faces. From the

heat maps, we can see how each filter is attached to a specific semantic location on the faces,

independent to either identities or poses. This is especially impressive for faces with varying poses,
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Figure 4.4: The correspondence between feature difference magnitude and occlusion locations.
Best viewed electronically.

in that despite no pose prior is used in training, the filter can always respond to the semantically

equivalent local part.

4.4 Quantitative Evaluation on Benchmark

Although we have shown some results of standard deviations of peaks in Fig. 4.2, we still want

to further investigate the response concentration properties between our model and base model,

which we will give some histograms to illustrate. To show that our method is model agnostic, we

use two different base CNN models, CASIA-Net and ResNet50. Our proposed method and the

respective base model only differs in the loss functions. E.g., both our CASIA-Net-based model

and base CASIA-Net model use the same network architecture as Tab. 3.3. We test on two types of

datasets: the generic in-the-wild faces and occlusion faces.

4.4.1 Standard Deviation of Peaks

Fig. 4.2 shows the average of the peak locations of 320 filter responses, and also use the different

color to show the vary standard deviations of peak locations for each filter across 1,000 images.

But it is hard to tell which model has the smallest standard deviation, therefore We can also

compute the histograms of standard deviations across 320 filters, for both the positive responses

and negative responses, respectively. As shown in Fig. 4.6, our model can generate filter responses

whose locations have smaller standard deviations than CNN base model, i.e., our filter can be more

concentrated on one specific location of the face. Note that the SAD loss only model also reduces

the standard deviation over the CNN base model, our model can have a slightly smaller standard
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Figure 4.5: Visualization of filter response “heat maps" of 10 different filters on faces from
different subjects (top 4 rows) and the same subject (bottom 4 rows). The positive and negative
responses are shown as two colors within each image. Note the high consistency of response
locations across subjects and across poses.

deviations than SAD loss only model.

4.4.2 Generic in-the-wild faces

As shown in Tabs. 4.4.2, 4.4.3, when comparing to the base CASIA-Net model, our CASIA-

Net-based model with two losses achieves the superior performance. The same superiority is

demonstrated w.r.t. CASIA-Net with data augmentation, which shows that the gain is caused by

the novel loss function design. For the deeper ResNet50 structure, our proposed model achieves

22



Figure 4.6: Histograms of standard deviations of peak locations for positive (left) and negative
(right) responses.

.

Table 4.4: Comparison on IJB-A database.

Method ↓ Verification Identification

Metric (%)→ @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

DR-GAN Tran et al. (2018) 79.9 ± 1.6 56.2 ± 7.2 88.7 ± 1.1 95.0 ± 0.8
CASIA-Net 74.3 ± 2.8 49.0 ± 7.4 86.6 ± 2.0 94.2 ± 0.9
Ours (CASIA-Net) 79.3 ± 2.0 60.2 ± 5.5 89.9 ± 1.0 95.6 ± 0.6
FaceID-GAN Shen1 et al. (2018) 87.6 ± 1.1 69.2 ± 2.7 − −

VGGFace2 Cao et al. (2018) 93.9 ± 1.3 85.1 ± 3.0 96.1 ± 0.6 98.2 ± 0.4
PRFaceCao2 et al. (2018) 94.4 ± 0.9 86.8 ± 1.5 92.4 ± 1.6 96.2 ± 1.0
ResNet50 He et al. (2016) 94.8 ± 0.6 86.0 ± 2.6 94.1 ± 0.8 96.1 ± 0.6
Ours (ResNet50) 94.6 ± 0.8 87.9 ± 1.0 93.7 ± 0.9 96.0 ± 0.5

similar performance as the base model, and both outperform the models with CASIA-Net as the

base. Even comparing to state-of-art methods, the performance of our ResNet50-based model

is still competitive. It is worthy note that this is the first time that a reasonably interpretable

representation is able to demonstrate competitive state-of-the-art recognition performance on a

widely used benchmark, e.g., IJB-A.
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Table 4.5: Comparison on IJB-C database.

Method ↓ Verification Identification

Metric (%)→ @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

DR-GAN Tran et al. (2018) 88.2 73.6 74.0 84.2
CASIA-Net 87.1 72.9 74.1 83.5
Ours (CASIA-Net) 89.2 75.6 77.6 86.1
VGGFace2 Cao et al. (2018) 95.0 90.0 89.8 93.9
Mn-v Xie & Zisserman (2018) 96.5 92.0 − −

AIM Zhao et al. (2018) 96.2 93.5 − −

ResNet50 He et al. (2016) 95.9 93.2 90.5 93.2
Ours (ResNet50) 95.8 93.2 90.3 93.2

4.4.3 Occlusion faces

We test our models and base models on multiple occlusion face datasets. The synthetic occlusion

of IJB-A, the natural occlusion of IJB-A, and the natural occlusion of IJB-C have 500/25, 795,

466/12, 703, and 3, 329/78, 522 images/subjects, respectively. As shown in Tabs. 4.4.3, 4.4.3,

4.4.3, the performance improvement on the occlusion datasets are more substantial than the generic

IJB-A database, which shows the advantage of interpretable representations in handling occlusions.

For AR faces, we select all 810 images with eyeglasses and scarfs occlusions, from which

6, 000 same-person and 6, 000 different-person pairs are randomly selected. We compute the

representations of an image pair and its cosine distance.

As shown in Fig. 4.7, the Equal Error Rates of CASIA-Net, ours (CASIA-Net), ResNet50 and

ours (ResNet50) are 21.6%, 16.2%, 4.2% and 3.9%, respectively. We observe that our model based

on CASIA-Net achieves the superior performance comparing to the CASIA-Net base model. And

as for the state-of-art ResNet50 model, we can still observe the performance improvement of our

model to the ResNet50 base model.
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Table 4.6: Comparison on IJB-A database with synthetic occlusions.

Dataset IJB-A synthetic occlusion

Method ↓ Verification Identification

Metric (%)→ @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

DR-GAN Tran et al. (2018) 61.9 ± 4.7 35.8 ± 4.3 80.0 ± 1.1 91.4 ± 0.8
CASIA-Net 61.8 ± 5.5 39.1 ± 7.8 79.6 ± 2.1 91.4 ± 1.2
Ours (CASIA-Net) 76.2 ± 2.4 55.5 ± 5.7 88.6 ± 1.1 95.0 ± 0.7
ResNet50 He et al. (2016) 93.0 ± 0.7 80.9 ± 4.7 92.8 ± 0.9 95.5 ± 0.8
Ours (ResNet50) 94.2 ± 0.6 87.5 ± 1.5 93.4 ± 0.7 95.8 ± 0.4

Table 4.7: Comparison on IJB-A database with natural occlusions.

Dataset IJB-A natural occlusion

Method ↓ Verification Identification

Metric (%)→ @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

DR-GAN Tran et al. (2018) 64.7 ± 4.1 41.8 ± 6.4 70.8 ± 3.6 81.7 ± 2.9
CASIA-Net 64.4 ± 6.1 40.7 ± 6.8 71.3 ± 3.5 81.6 ± 2.5
Ours (CASIA-Net) 66.8 ± 3.4 48.3 ± 5.5 73.2 ± 2.5 82.3 ± 3.3
ResNet50 He et al. (2016) 86.0 ± 1.8 64.3 ± 7.7 79.8 ± 4.2 84.9 ± 3.1
Ours (ResNet50) 86.0 ± 1.6 72.6 ± 5.0 80.0 ± 3.2 85.0 ± 3.1

Table 4.8: Comparison on IJB-C database with natural occlusions.

Dataset IJB-C natural occlusion

Method ↓ Verification Identification

Metric (%)→ @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

DR-GAN Tran et al. (2018) 82.4 66.1 70.8 82.8
CASIA-Net 83.3 67.0 72.1 83.3
Ours (CASIA-Net) 83.8 69.3 74.5 83.6
ResNet50 He et al. (2016) 93.1 89.0 87.5 91.0
Ours (ResNet50) 93.4 89.8 87.4 90.7
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Figure 4.7: ROC curves of different models on AR database.

.

Figure 4.8: Partial face retrieval with mouth (left), and nose (right).

4.5 Other Applications

4.5.1 Partial face retrieval

In addition to the interpretable face recognition, another novel potential application of our method

is partial face retrieval. Assuming we are interested in retrieving images with similar mouth, we

can define“mouth filters" base on filters’ average peak location with our models, as in Fig. 4.9.
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Figure 4.9: The overall framework of partial face retrieval.

Assume we have M original and occluded face pairs as the input, for all the pairs, we compute

their average feature difference fdi f f = |favg(I) − favg(Î)|, where favg =
∑M

i=1 fi
M . Then we find

the indexes of top N f − t elements in fdi f f , which we denote as IDlarge. After that, we can use

IDlarge to filter the ’mouth’ related feature elements for each testing face Ii. By giving a probe

face Ii and the gallery faces I j , j ∈ {1, ..., L}, our model conducts the features f(Ii) and f(I j). For

each probe-gallery pair, the ’mouth’ related features, fmouth(Ii) and fmouth(I j), will be computed.

Through applying cosine distance on those two part-based features, we can retrieve the most similar

I j to Ii.
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For experimental demonstration, we select one pair of images from a subset of 150 identities

from IJB-A test set, to create a set of 300 images in total. Using different facial parts of each image

as a query, our accuracy of retrieving the remaining image of the same subject as the top 1 result

are 71%, 58% and 69% for eyes, mouth, and nose respectively. Results are visualized in Fig. 4.8,

we can retrieve facial parts that are not from the same identity but visually very similar to the query

part.

4.5.2 Occlusion detection

Face occluded area detection is another interesting task that we can explore. As observed from

Fig. 1.1, filter responses will be weak and scattered if there exists a heavy occlusion on the region

to which the filter responding. This observation can be leveraged to unsupervisely detect the

existed occlusion areas. Fig. 4.10 describes our approach of occlusion detection. For each filter,

its visibility is defined by three criterias: (i) distance to the average peak location, (ii) the feature

activation spreadness, (iii) inverse peak value. More specifically, we would like to have a detailed

discussion here about this approach.

Figure 4.10: The framework of occlusion detection on AR database.

.

Assume we have N occluded images just like the leftmost face shown in Fig. 4.10. Then we

create a 6 × 4 grid on the facial part for each occluded face. Since manually labeling those grids

will be inefficiently, we firstly select a frontal face and create such grid for it, then we use the

barycentric coordinates to warp the vertices of the grid to other faces within the N occluded images

set. Once we get the grids, their ground truth labels can be given. When looking at the rightmost
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face given by Fig. 4.10, the ground truth label is constructed as a binary form string, 1 denotes

existing occlusions within a square of the grids, while 0 defines the non-occluded square. For

example, the ground truth label of the face in Fig. 4.10 is "000000001111111100000000".

After obtaining labels for all the occluded faces, we should design our approach to detect the

occlusions. Before that, we pair the occluded face image with another twin image, which has the

similar properties except having the heavy occlusions. By utilizing the twin images, we can train a

two-class classifier for the visibility. Because we have defined the criterias for its visibility of each

filter, it is worthy to discuss the detailed formulations of those criterias.

Firstly, distance to the average peak location is a meaningful way to measure the visibility.

Our previous experiments have shown that the standard deviations among peaks will be small by

applying our two loss functions. If there is a heavy occlusion, the locations of the peak response

of the filters could be scattered. We can compute a average location for each filter across N non-

occluded images and then for both non-occluded images and occluded images sets, we can calculate

the average distances to the average peak location for each filter. Ideally, the one computed on the

occluded images will be larger.

Secondly, we can also evaluate the difference of the feature activation spreadness. In our

assumption, smaller activation spreadness means stronger interpretability. We observe that the

feature response of a filter for non-occluded face is concentrated on a local part, in other words,

its area will be small. As for occluded face, the heavy occlusion will push the filters respond to

a scatter area. Based on this observation, we compute the average area of each filter for the two

sets of images. By comparing the average areas, we can get some knowledge about the difference

between occluded and non-occluded images.

Thirdly, except for using the spreadness of the feature response, we now explore the property

of response strength. Through looking at the value of peaks of each filters, we find that the filters

tend to respond stronger to non-occluded faces than the occluded faces. To quantitatively evaluate

this response strength, we select the average peak values for each filter across N images for both

occluded and non-occluded sets.
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The summation of the normalized scores of three criterias’ output will determine the filter

visibility. For each region in the 6 × 4 grid, the binary decision of the region’s visibility is decided

by majority votes from all filters it contains. One note, our output is also a binary string. As

shown in Fig. 4.10, the middle face illustrates the estimated detection results, its predicted label

is "001001111110111000000100". Using Simple Matching Coefficient (SMC) metrics, we can

compute the coefficient of the sample image to be 0.71. On N = 810 faces with occlusion of AR

dataset, our method achieves the averaged SMC score of 0.58.
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CHAPTER 5

CONCLUSIONS

In this paper, we present our efforts towards interpretable face recognition. Our grand goal is to learn

from data a structured face representation where each dimension activates on a consistent semantic

face part and captures its identity information. We propose two novel losses to encourage both

spatial activation diversity and feature activation diversity in the final-stage convolutional filters

and the face representation. We empirically demonstrate the proposed method can lead to more

locally constrained individual filter responses and overall widely-spreading filters distribution. A

by-product of the harnessed interpretability is improved robustness to occlusions in face recognition.
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CHAPTER 6

RESNET50

6.1 The network structure of our modified ResNet50

Table 6.1: The structures of the modified ResNet50.

Layer Input Filter/Stride Output Size

conv11 Image 3 × 3/2 56 × 56 × 64
MaxPool conv11 3 × 3/2 56 × 56 × 64

conv21 MaxPool 1 × 1/1 56 × 56 × 64
conv22 conv21 3 × 3/1 56 × 56 × 64
conv23 conv22 1 × 1/1 56 × 56 × 256
conv24 conv23 1 × 1/1 56 × 56 × 64
conv25 conv24 3 × 3/1 56 × 56 × 64
conv26 conv25 1 × 1/1 56 × 56 × 256
conv27 conv26 1 × 1/1 56 × 56 × 64
conv28 conv27 3 × 3/1 56 × 56 × 64
conv29 conv28 1 × 1/1 56 × 56 × 256

conv31 conv29 1 × 1/2 28 × 28 × 128
conv32 conv32 3 × 3/1 28 × 28 × 128
conv33 conv32 1 × 1/1 28 × 28 × 512
conv34 conv33 1 × 1/1 28 × 28 × 128
conv35 conv34 3 × 3/1 28 × 28 × 128
conv36 conv35 1 × 1/1 28 × 28 × 512
conv37 conv36 1 × 1/1 28 × 28 × 128
conv38 conv37 3 × 3/1 28 × 28 × 128
conv39 conv38 1 × 1/1 28 × 28 × 512
conv310 conv39 1 × 1/1 28 × 28 × 128
conv311 conv310 3 × 3/1 28 × 28 × 128
conv312 conv311 1 × 1/1 28 × 28 × 512

conv41 conv312 1 × 1/2 14 × 14 × 256
conv42 conv41 3 × 3/1 14 × 14 × 256
conv43 conv42 1 × 1/1 14 × 14 × 1024

Layer Input Filter/Stride Output Size

conv44 conv43 1 × 1/1 14 × 14 × 256
conv45 conv44 3 × 3/1 14 × 14 × 256
conv46 conv45 1 × 1/1 14 × 14 × 1024
conv47 conv46 1 × 1/1 14 × 14 × 256
conv48 conv47 3 × 3/1 14 × 14 × 256
conv49 conv48 1 × 1/1 14 × 14 × 1024
conv410 conv49 1 × 1/1 14 × 14 × 256
conv411 conv410 3 × 3/1 14 × 14 × 256
conv412 conv411 1 × 1/1 14 × 14 × 1024
conv413 conv412 1 × 1/1 14 × 14 × 256
conv414 conv413 3 × 3/1 14 × 14 × 256
conv415 conv414 1 × 1/1 14 × 14 × 1024
conv416 conv415 1 × 1/1 14 × 14 × 256
conv417 conv416 3 × 3/1 14 × 14 × 256
conv418 conv417 1 × 1/1 14 × 14 × 1024

conv51 conv418 1 × 1/2 7 × 7 × 512
conv52 conv51 3 × 3/1 7 × 7 × 512
conv53 conv52 1 × 1/1 7 × 7 × 2048
conv54 conv53 1 × 1/2 7 × 7 × 512
conv55 conv54 3 × 3/1 7 × 7 × 512
conv56 conv55 1 × 1/1 7 × 7 × 2048
conv57 conv56 1 × 1/2 7 × 7 × 512
conv58 conv57 3 × 3/1 7 × 7 × 512
conv59 conv58 1 × 1/1 7 × 7 × N f

conv418-U conv418 upsampling 28 × 28 × 1024
conv419 conv43-U 1 × 1/1 28 × 28 × 512
conv59-U conv59 upsampling 28 × 28 × 512
conv510 conv510-U 1 × 1/1 28 × 28 × 512

Φ (HC) conv312,419,510 3 × 3/1 28 × 28 × 1536
Ψ Φ 3 × 3/1 28 × 28 × N f

AvgPool Ψ 28 × 28/1 1 × 1 × N f

As shown in Tab.6.1, for ResNet50, the image input size will change to 112 × 112. And the

final dimention of the feature representaion will also be N f = 512. And we take the same block
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setting as described in Deng et al. (2018), which is shown in Fig. 6.1. This more advanced residual

unit, which has a BN-Conv-BN-PReLu-Conv-BN structure, has been proved to be efficient in face

reocognition.

Figure 6.1: The block setting.

.
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