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ABSTRACT

MULTISCALE BIOMECHANICAL MODELING OF ARTERIAL
NETWORKS

By

Hamidreza Gharahi

Cardiovascular diseases are the leading cause of death all around the world. With the

expansion of our understanding in biomedical sciences, a variety of factors associated with the

onset and progression of such diseases have been identified. In particular, mechanical stresses

such as wall shear stress and circumferential stress have been proven to be primary factors

for the mechanobilogy, and their homeostatic conditions are regarded as a bridge between

biomechanics and cardiovascular biology. The study of vascular growth and remodeling

(G&R) is a field that exploits computational modeling to study the changes in mechanical

structure and function of blood vessels in response to altered stimuli. During the past

decade, vascular G&R modeling has made significant contributions to the field of biomedical

engineering through all areas of cardiovascular research. However, the previous modeling

has mostly been devoted to arteries, and few studies developed vascular G&R models of

the microvasculature. Additionally, other remaining tasks for the modeling include: 1)

consolidation of different physical models and taking into account their interactions (e.g.,

fluid-solid-interactions, fluid-solid-growth) and multiscale levels in space and time and 2)

realization of the modeling for the clinical practice.

To this end, we developed a novel computational framework that incorporates biofluid and

biosolid mechanics of arterial networks in physiological conditions and expanded it to model

different vascular adaptation processes. This framework integrated essential features from

a constrained mixture model of G&R and blood circulation with an extension of Murray’s

law to construct a spatially multiscale vascular tree. We formulated the framework as a cost

optimization problem where the design of the vasculature was governed by minimization of



the metabolic dissipation under mechanical equilibrium as a constraint. Subsequently, we

presented two implementations of the model to study two multiscale problems: pulmonary

arterial hypertension (PAH) and coronary flow regulation.

In the case of PAH, we used the framework to estimate the homeostatic characteristics of

the arterial tree as well as their hemodynamics. The results showed good agreement with

the available experimental data in the pulmonary arterial vasculature. Furthermore, we used

Womersley’s analytical solution combined with the theory of small-on-large in finite elasticity

to simulate the pulsatile hemodynamics in the pulmonary arterial tree. This study lays the

groundwork for further temporally multiscale studies of PAH where long-term G&R in the

vasculature (days to weeks) are coupled with short-term hemodynamics (cardiac cycle) in a

fluid-solid-growth modeling (FSG) framework.

In the case of coronary network, the baseline properties of two myocardial arterial trees distal

to left anterior descending coronary artery were established using the presented method.

Consequently, three different coronary flow regulation mechanisms (flow-induced, myogenic,

and metabolic) were implemented using the constrained mixture models of small arteries and

arterioles. The model was then calibrated against the experimental autoregulatory pressure-

flow relations. Moreover, the prediction capability of the model was evaluated by simulations

of exogenous adenosine infusion and inhibition of nitric oxide synthesis.

In closing, the developed framework exhibited great promise for applications in the study

of vascular adaptations in physiological and pathophysiological conditions. Particularly,

after the homeostatic baseline of an arterial tree is established, the kinetics of production

and removal of constituents from stress-mediated G&R models can be used to simulate

the short- and long-term evolution of vascular tissues in disease conditions. Furthermore,

this research will set the cornerstone for much needed in-silico experiments on palliative or

curative managements of vascular diseases.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) are the leading cause of death globally with an annual death

rate of around 17.9 million [1] and they cost of almost $1 trillion in healthcare expenses

[2]. Broadly, many CVDs are often characterized by chronic structural alterations, such

as narrowing, thickening, and stiffening of the arteries. Consequently, the importance of

vascular biomechanics in the progression of CVDs has been extensively studied over the last

50 years. Motivated by the biomechanical markers, vascular computational models have

been employed as critical tools in enhancing our knowledge of the fundamental processes

involved in the onset and progression of the disease.

An important advancement in such computational models was the introduction of a con-

strained mixture model of arterial growth and remodeling (G&R) [3]. The modeling frame-

work of G&R, and its later extensions to include biochemomechanical [4] and fluid-solid-

growth (FSG) models [5], provide a powerful tool to test various hypotheses in the cardio-

vascular disease research. The main focus of the previous applications of G&R has been
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to study the vascular adaptations in large arteries. However, little attention has been paid

to the modeling of G&R in arterial networks in the presence of hemodynamics. Since the

formation and progression of many CVDs are traced to the initial malfunctions in the distal

vasculature, there is a crucial need to expand the G&R framework to capture the multiscale

arterial networks.

Motivated by this need, the ultimate goal of the current study is to provide a modeling

framework that embeds the essential features of G&R coupled with the hemodynamics within

an arterial network characterized by bifurcation rules (Fig 1.1). An accurate multiscale

modeling of G&R requires the reconstruction of the arterial networks as well as mechanical

considerations of individual vessels.

The cardiovascular system maintains a state of mechanical homeostasis in the physiological

conditions. The concept of the mechanical homeostasis, via quantities such as stresses and/or

strains, is essential in understanding the biomechanics of long-term responses (i.e., G&R).

Alternatively, in the studies on the optimal design of vascular systems, initiated by Murray

in 1926 [7], the in-vivo structure of an arterial tree has been attributed to a minimum

energy dissipation hypothesis (i.e., Murray’s law). Each of these theoretical ideas, G&R

and Murray’s law, may encapsulate inconsistent or even contradictory ramifications when

compared to experimental observations. Therefore, there is a need to rigorously evaluate

these concepts with respect to the available experimental data in the literature. We will

briefly review the previous work on G&R and generalizations of Murray’s law and highlight

the shortcomings of the existing frameworks in Section 2.1.

In this dissertation, for the first time, a framework is presented that integrates features

from G&R and Murray’s law, and provides a theoretical model which can be used for mul-

tiscale modeling of arterial networks based on available experimental data. The presented

framework can be further utilized for analysis of distal arterial structure where non-invasive

assessment of the arteries is not readily available [8]. Moreover, a constrained mixture model
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Hemodynamics; pressure & flow rate
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Constrained mixture model of G&R Bio-chemo-mechanical model

Figure 1.1: Schematic diagram of the modeling framework. The structure of the arterial
tree is defined by a bifurcation rule. Every individual vessel is endowed with a constrained
mixture model which is capable of extension to include the underlying biochemechanical
processes of vascular adaptation. The insets are adapted from [5] and [6].

of the arterial segments facilitates the in-silico study of introducing therapeutic mediators

into the vascular network. Therefore, we employ our model to study two prominently mul-

tiscale problems in cardiovascular research: pulmonary arterial hypertension and coronary

flow regulation.

In the next sections of the introduction, we first review current literature on pulmonary

arteries in normal and hypertensive states (Section 1.2.1). Next, a review of the existing

publications on coronary arteries and their function in supplying blood to the myocardium

is presented (Section 1.2.2). The structure of the dissertation and specific aims of this study

are outlined at the of this chapter (Section 1.3).
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1.2 Background

1.2.1 Pulmonary arterial hypertension

Pulmonary hypertension (PH) is a complex disorder associated with an elevated pulmonary

arterial pressure (PAP). The prevalence of PH, which strikes women twice as frequently as

men [9], is fairly rare with 15 incidents out of a million people [10]. Death rate of PH,

however, have been steady and/or increasing between 1999 to 2008 with around 5.6 and 5.7

deaths per 100,000 population for men and women respectively [11]. Moreover, unlike the

systemic hypertension, PH prognosis remains poor with >10% mortality within 1 year for

for high risk patients [12]. In general, once PH patients are diagnosed, the progression of

PH is not reversible. Primary PH patients are treated pharmacologically with vasodilators

and inotropes [13]. The patient population is closely monitored using cardiac magnetic reso-

nance imaging (CMR) and cardiac catheterization. Early detection of PH is however difficult

because the standard diagnosis is based on using invasive catheterization, which might be

already too late for clinical intervention.

In a healthy individual, the blood pressure in the pulmonary arteries is about 25/10 mmHg

which is around six times less than that of the systemic arterial pressure. Based on clinical

classifications, PH is present when the arterial pressure exceeds about 40/20 mmHg or the

average pressure rises above 25 mmHg [14]. Pulmonary arterial hypertension (PAH), previ-

ously known as primary PH, is the first of the five PH groups according to the NICE clinical

classification [15]. PAH includes idiopathic, heritable, drug-induced PH, or hypertension due

to hypoxia in high altitude, in addition to other pathological conditions such as congenital

heart disease. Moreover, PAH can be the cause to grave complications such as right-sided

heart enlargement and heart failure (cor pulmonale), blood clots, arrhythmia, and bleeding.

The usual cause of death in PAH is right ventricle (RV) failure [16] which is related to RV
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hypertrophy due to chronic pressure overload where events during isovolumeic relaxation

are disorganized [17]. Finally, right heart catheterization with the measurements of PAP,

cardiac output (CO), and pulmonary arterial wedge pressure remain the gold standard for

the diagnosis of PAH [14]. Besides the extreme invasiveness of this procedure, right heart

catheterization yield possible risks and complications such as excessive bleeding due to vein

puncture during catheter insertion, and infection.

1.2.1.1 Morphometry of pulmonary arteries

Pulmonary arteries enter the lung through the center of the lobe from the hilus and, ac-

companied by their paired airways (especially in smaller arteries [18]), navigate their way to

the pleural surface [19]. The morphometry of the human pulmonary vasculature has been

studied to provide more anatomical insight into the hemodynamics, geometry and branch-

ing of the pulmonary arterial tree. Singhal et al. [20] presented one of the earlier studies

on the morphometric analysis of the human pulmonary vasculature. They used resin casts

and injections of human vascular trees to measure the diameter, length, and order of all

branches of blood vessels in the range of 13 µm to 3 cm for arterial vessels. They reported

an arterial tree comprised of 17 branch orders with an estimated total number of 3 × 108

vessels of order one in Strahler’s ordering system [21] with diameter of 13 µm. Moreover,

they showed around a 60-fold increase in the total cross sectional area from the pulmonary

trunk to the arteriolar level. Yen and Sobin [22] studied the elasticity and branching order

of non-capillary pulmonary blood vessels of the size 1785 µm to less than 100 µm diameter.

They observed a slight decrease in the compliance, expressed by percentage of change in di-

ameter, of the arterioles as blood vessels become smaller. Using Strahler’s ordering method,

they observed that arteries of the same order (specifically between 4-8) have the same size

(87 µm to 1785 µm), regardless of their location in the lung (upper, middle, or lower lobe).
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Huang et al. [23] published an extensive study on the morphometry of the pulmonary arteries.

They classified the pulmonary arterial network into 15 orders employing diameter-defined

Strahler ordering system [24,25]. Using silicone elastomer casting technique, they measured

the diameter and length of the pulmonary arteries of two postmortem human subjects. They

presented the connectivity matrix which expresses how blood vessels of one order are con-

nected to vessels of another order. In this study, the diameters of order 1 have an average

diameter of 20 µm increasing to an average of 1.4 cm (order 15). Several hemodynamic

studies have used the work by Huang and colleagues as a baseline for generation of the

downstream arterial tree [26, 27].

1.2.1.2 Structure of pulmonary arteries

The pulmonary arterial wall usually consists of three distinct layers of tunica intima, tunica

media, and tunica adventitia. The intima is the innermost layer of the artery and consists

of a layer of endothelial cells, a subendothelial layer of connective tissue, and the internal

elastic lamina. The media, which is the middle layer, consists of concentrically arranged

smooth muscle cells, collagen fibers and elastin. The adventitia, outermost layer, of pul-

monary arteries is fairly disorganized [28] and is comprised of extra-cellular matrix (ECM),

fibroblasts or other interstitial cells, nerves, elastin and collagen fiber bundles.

The composition of the vessel wall, however, significantly varies from the proximal pulmonary

trunk to the smallest arterioles [28]. Hislop and Reid’s [29] histological study on rats reported

that the main pulmonary artery had a muscular media between internal and external elastic

laminae with four concentric elastic lamina in between. However, while the medial structure

of the left and right pulmonary arteries remained the same, fewer layers of elastic laminae

were present relative to pulmonary trunk. The smaller the vessel in the pulmonary vascula-

ture, the more media became clearly distinguishable by a single internal and external elastic
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lamina. Moreover, in small distal pulmonary arteries, the internal elastic lamina started

to fragment and eventually disappear which usually facilitates myo-endothelial communica-

tions [30]. As rat’s arterial tree approached the alveolar level, the blood vessels became less

muscular until the muscular coat was no longer seen in 80% of arteries larger than capil-

laries [29, 31]. Regardless, although muscular arteries in human adults extend as far as the

alveolar level, below 1 mm diameter, arteries in rat and human are similar in structure, with

the media having only internal and external elastic lamina [29].

Population based studies have shown the relationship between age and an elevated PAP [32].

The study of the pulmonary arterial wall with age can shed light on the structural basis of

the arterial wall in PAH. Heath et al. [33] investigated the medial layer of the pulmonary

trunk and aorta with age in human subjects. Figure 1.2 shows the evolution of the pul-

monary trunk’s medial layer against age for 71 human subjects without any cardiovascular

disease.

Heath et al. [33] observed that the medial thickness and structural configuration the pul-

monary trunk and the aorta are fairly similar for a fetal subject or a newborn. However, as

humans age, the pulmonary trunk transitions to a more distinctive structure where elastic

configuration is more open and loose. Furthermore, the medial thickness reduces between

40% and 70% that of aorta’s medial thickness in 6 to 24 months. In adults’ pulmonary trunk,

the elastic laminae remained more irregular and sparser than the aorta.

MacKay et al. [34] studied the structural properties of the pulmonary vessels with age.

Their results demonstrated that there was an almost steady decrease in the compliance of

pulmonary artery with increasing age. The changes in the stiffness of the pulmonary arteries

can be tracked qualitatively on histological images. Histology of a 7 year old male (Fig. 1.3-

(a)) shows that the arterial elastin had nearly straight lamina. However, correspondingly to

the histology images in [33], the structural configuration is different from that of aorta with

more dispersed elastic fibers. Nevertheless, the elastic lamina becomes wavier and further

apart (Fig. 1.3-(b)). In the older age, the elastic lamina continues to spread and be scant,
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Figure 1.2: The medial thickness (above) and the ratio of pulmonary and aortic medial
thickness (bottom) with age, reproduced from data available in [33]. The letters A, T, an P on
the thickness plot represent the aortic, transitional, and pulmonary structural configuration
of the trunk, respectively.

whereas the intima thickens and consists of a small amount of collagen fibrils.

While the elastic lamina serves the function of elastic recoil of the arterial wall, the adventi-

tial network of collagen fibers prevents over-extension of the artery. To this point, MacKay

et al. [34] studied 42 arterial specimens from humans aged 7 to 87 years, and showed a 1%

per decade reduction in the amount of collagen as human get older.

1.2.1.3 Histopathology of PAH

PAH is associated with significant structural changes in the microstructure of the arteries.

A study on 58 PAH patients [35] demonstrated some of the arterial histological abnormal-

ities in PAH. While thrombotic lesions often a present pattern in PAH, complex plexiform

8



Figure 1.3: a) Male, 7 years old. b) Female, 47 years old. c) Male, 78 years old. Photographs
at ×192 magnification. Arrow heads show the limits of media and black area are elastin.
Pictures adapted from [34].

lesions1 and laminar intimal fibrosis were collectively present in almost half of the cases.

Alternatively, laminar intimal fibrosis, while less common in PAH, leads unstable deposition

and degradation of collagen and elastin [40].

Undoubtedly, several distinct histopathologic patterns of PAH exist. However, layer-wise

remodeling seems to predominantly occur in diseased arteries. Chazova et al. [41] observed

1Plexiform lesions are one form of dilatation lesion which grow in the late stages of PAH [36]. They are
usually associated with focal hypertrophy and proliferation of vascular smooth muscle, endothelial hyperpla-
sia, and over-expression of matrix metalloproteinases (MMP) which lead to enzymatic degradation of ECM
proteins [37–39].
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Figure 1.4: Intimal, medial, and adventitial thickness (percent of external diameter) of
pulmonary arteries of vessels of various sizes. Solid bars represent PAH patients and open
bars represent control subjects. Pictures adapted from [41].

that, in addition to intimal and medial thickening and remodeling, adventitial thickening and

remodeling are consistent features of PAH vasculature (Fig. 1.4). Particularly, the increase

in the adventitial thickness is attributed to the increased collagen deposition. Figure 1.5

reinforces this observation in hypoxia-induced PAH calves [42]. On the other hand, medial

thickness is affected by smooth muscle cell hypertrophy that involves both muscular arteries

(70-500 µm diameter) and smaller arterioles (smaller than 70 µm) [43].

The pulmonary vascular remodeling characteristics in PAH can be summarized as medial

hypertrophy, intimal proliferation, arteriolar muscularization, and adventitial thickening [43,

44]. Nevertheless, the pathophysiology of PAH remains widely unclear [45, 46]. Although

endothelial injury and excessive vasoconstriction which lead to a decrease in the internal

diameter (i.e., increase in vascular resistance), seem to be important elements in pathogenesis

of PAH [41,43,47,48], multiple studies hypothesized that increased elastolytic activity [37,49,

50] and collagen deposition [42,51] contribute to the pathogenesis of PAH through remodeling
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Figure 1.5: Optical microscopy images of pulmonary trunk (a) control and (b) hypertensive
calves. Collagen and elastin appear red and black. Right to left direction is from intima to
adventitia. Qualitatively, collagen deposition can be delineated in the adventitia. Addition-
ally, fragmentation and dispersion of elastin is clear in the picture as the black areas of (a)
are much more condensed and straight relative to (b). Pictures adapted from [42].

of the ECM (i.e., increased stiffness).

1.2.1.4 Significance of pulsatile hemodynamics

Although an elevated mean PAP is essential in diagnosis of PAH, the capability of mean

PAP in prognosis of PAH has been relatively underperforming [52]. Animal models of PAH

show that the distal vascular remodeling in PAH, results in “early return” of reflected pres-

sure waves during RV contraction and consequently affects the RV systolic function [53].

Motivated by such analysis, several studies [54–56] have investigated the wave reflection in

PA vasculature. Particularly, Hollander and colleagues [55] found a negative wave reflection

in canine PA which facilitates the RV ejection in physiological condition. Quail and cowork-

ers [56] observed congruent results in healthy human subjects. Conversely, they found that

the increased stiffness, reduced vessel area, and persistent vasoconstiction created reflection

sites with positive wave reflections which resulted in compressive reflections.

Furthermore, pulse pressure has been observed to act in concert with mean pressure and shear

stress in modulating smooth muscle cells function [57]. Particularly, experimental studies of
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cyclic stretch (∼10 Hz) applied to smooth muscle cells has shown increased collagen synthesis

and decreased NO synthase expression which is a vasodilation mediator [58, 59]. Overall, a

pathological pulse pressure may lead to increased collagen deposition, smooth muscle cells

hypertrophy, endothelial dysfunction, etc. which result in stiffening, inflammation, and

thickening of the blood vessels [60–66].

1.2.1.5 Modeling efforts

The significance of pulsatile hemodynamics in the pulmonary arterial networks compels

multiscale computational modeling efforts to include the fluid-solid interactions (FSI) anal-

ysis. A significant portion of such efforts is focused on image-based 3D models coupled

with Windkessel elements (0D) at the outlets [67]. Although such models are necessary for

patient-specific studies, they cannot capture the salient features of the progression of PAH,

for instance, proximal to distal wave propagation. Alternatively, full pulmonary arterial tree

reconstructions can be used to model the pulmonary circulation [27, 68]. The main limita-

tion of such simulations, however, is the computational cost which renders a fully detailed

analysis impossible.

To circumvent limitations of the 3D computational modeling, one-dimensional (1D) mod-

els of the circulation have been developed and extensively used to study pressure and flow

rate in different applications such as the whole systemic circulation [69], coronary arter-

ies [70,71], cerebral arteries [72], and pulmonary arteries [73–75]. An appropriate utilization

of 1D hemodynamics theories in vascular networks, however, requires a physiologically real-

istic and complete tree morphometry of distal vasculature which is challenging due to data

acquisition and modeling complexities. Therefore, studies by Olufsen and colleagues [73,74]

on pulmonary arterial networks have focused on the fractal structure of the arterial tree. The

choice of a fractal structure, inspired by the airway structure [76], is particularly attractive

since it provides a computationally inexpensive model of multiscale vascular networks.
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Any 1D FSI modeling effort, however, has to be endowed with realistic estimation of size-

and function-dependent mechanical properties of downstream vessels. Due to difficulties in

measuring such properties of the vasculature in small blood vessels, there is a crucial need

to utilize a unified framework that can facilitate the parameter estimation by exploiting all

the available data.

1.2.2 Coronary flow regulation

Coronary artery disease (CAD) is the most common type of CVDs with causing more

than 610,000 deaths annually in the United States [77]. CAD is primarily characterized

by atherosclerosis in the epicardial coronary arteries which can lead to complications such as

myocardial infarction. However, the prevalence of non-obstructive CAD has been reported to

be up to 30% [78], where despite the absence of stenosis, patients experience adverse cardio-

vascular events [79]. Regardless, coronary microvascular abnormalities leading to ischemia

and angina have been observed in both obstructive and non-obstructive CAD patients. Cur-

rent clinical managements of CAD focus on the treatment of the atherosclerotic plaque in

the major epicardial vessels [80], whereas myocardial blood is contingent on a range of fac-

tors in microvasculature besides the severity of the stenosis in major arteries. Therefore,

one of the current challenges in treatment of CAD is understanding the functional signifi-

cance of microvascular networks in myocardial perfusion. A crucial aspect of the research

in CAD is a better understanding of the structure-function relations in the whole coronary

circulation [81].

1.2.2.1 Anatomy, morphometry, and hemodynamics of coronary arteries

The coronary arteries are unique in that they are responsible for delivering oxygen and sub-

strate, needed for oxidative myocyte metabolism, to the heart to supply the power required
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for pumping the blood to the entire circulation system. Two main coronary arteries split

from the aorta in the sinuses of Valsalva. The left main coronary artery is a short vessel that

bifurcates into left anterior descending (LAD) and left circumflex (LCx) arteries. The LAD

is mainly responsible for supplying the anterior side of left ventricle (LV) and left atrium

(LA) and 2/3 of the septum [82]. Alternatively, the LCx courses horizontally around the

heart and supplies the lateral side of the LV and LA. Right coronary artery (RCA) delivers

blood the the RV and right atrium (RA) and the septum to a lesser extent [83]. These

main vessels divide to conduit epicardial vessels over the surface of the heart into 17 regions

after reaching a size of 1-3 mm [84]. During the course of these vessels, transmural branches

at almost right angles penetrate the myocardium where they give rise to a network of ves-

sels (i.e., myocardial vessels) which spread through the myocardium from subepicardial to

subendocardial layers.

Morphometric analysis of swine coronary arteries has been extensively studied in the works of

Kassab and colleagues [24,25,85–87]. They analyzed the main coronary branches separately,

and showed 11, 11, and 10 orders of vessels (diameter-defined Strahler) for LAD, RCA, and

LCx, respectively [24]. Specifically, the vessels in LAD network span from ∼ 3000µm to 9

µm. This data has been used extensively for hemodynamics analysis in the last two decades.

We will present a summary of these contributions later in this chapter (Section 1.2.2.4).

The total flow in coronary arteries is directly proportional to coronary perfusion pressure and

inversely proportional to the vascular resistance, which resides in blood vessels of smaller

than 170µm [86]. However, a detailed description of the pulsatile nature of the coronary

arterial hemodynamics (at rest) requires considerations of the other determinants such as

vascular-myocardial interactions (extravascular compressive forces) and duration of diastolic

time [88]. In this dissertation, we limit our analysis to the steady state hemodynamics in

the coronary arteries. Instead, our study aims modeling the vascular adaptations in the

coronary circulation which occur in a much larger timescale than that of a cardiac cycle (15
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seconds-2 minutes) [89]. Henceforward, the coronary hemodynamics analysis in this study

uses only to the average steady-state properties of blood flow.

1.2.2.2 Structure coronary artery

Similar to other arteries, coronary arteries are composed of three distinct layers including

adventitia, media, and intima which consist of collagen fibers, elastin, and smooth muscle

cells [90]. Chen and coworkers [91] showed that the ratio of collagen to elastin in the adven-

titial layer of LAD and RCA is 1.5 and 1.1, respectively, which is likely due to the size of the

vessels and their different mechanical environment. However, medial layers of the coronary

arteries are mechanically the most important layer at normal conditions. Most of the smooth

muscle cells are concentrically arranged in the medial layer of the arterial wall within thick

continuous sheets of elastin and collagen fibers [92]. It is worthy to mention that Chen et

al. [93] observed that the alignment of smooth muscle cells are slightly deviated from the

circumferential direction (18.7◦±10.9◦). According to Zoumi et al. [92], the intimal layer of

the coronary arteries in pigs is very thin and does not contribute to the mechanical properties

of the arterial wall. In aged human coronary arteries, Holzapfel and coworkers [94] reported

the relative thickness of adventitia, media, and intmia as 0.4, 0.36, and 0.27, respectively.

Regardless, Most of the previous microstructural studies on coronary arteries were limited

to the large epicardial vessels, while the mechanical structure of the coronary arteries and

arterioles are major determinants of the severity of CAD and susceptibility of the patient to

ischemia [95].

1.2.2.3 Physiology of coronary flow regulations

A normal functioning heart has a high metabolic demand and is rich in mitochondria which

generate up to 90% of the energy needed for pumping blood via oxidative phosphorylation
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Figure 1.6: Normal relationship between coronary blood flow and coronary venous PO2,
which is an index of myocardial tissue oxygenation. Picture adapted from [82].

[96]. Because of this limited anaerobic capacity, any increase in cardiac activity (oxygen

demand) is immediately met with an increase of available oxygen almost completely via an

increase in blood flow [97].

An analysis of the oxygen demand in exercise shows that an augmented oxygen consumption

rate (MVO2) is in part the direct result of the heart beating faster. In addition, a rise in

MVO2 can be attributed to the elevation of contractility and ventricular work due to activa-

tion of the sympathetic signals [82,98]. Although, a precise delineation of each contribution is

difficult, the relative role of the heart rate has been suggested to be between 40-60% [82,97].

On the oxygen supply side, the left ventricular oxygen extraction from arterial blood remains

almost constant with 70-80% of the inflow of oxygen absorbed during rest and exercise [99].

This high level of utilization of oxygen extraction capacity by the myocardium necessitates

the oxygen to be supplied by increased perfusion proportionally to MVO2. Consistent with
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Figure 1.7: Schematic diagram of the heterogeneous regulatory response of vessels in response
to pressure, shear-dependent, and metabolic mechanisms. Picture adapted from [104].

these observations, experiments on the coronary arterial responses to the changes in cardiac

activity have shown 70% and 170% increases in the blood flow rate during pacing and exer-

cise, respectively [82]. On the other hand, the right ventricular oxygen extraction is ∼45%,

which means a moderate rise in MVO2 is met with little increase in RCA flow and more

contribution from oxygen extraction [100]. Figure 1.6 shows the coronary blood flow change

in LV and RV. Henceforth, our analysis is focused on the coronary flow regulation in the LV.

To facilitate regulation of oxygen supply to myocytes, vasodilation (or vasoconstriction)

occurs in the small artery and arteriolar level via extrinsic and intrinsic pathways [101].

Although a myriad of control mechanisms affect the coronary blood perfusion [81, 97], the

primarily influential mechanisms are the metabolic, myogenic, and shear-dependent controls

[102,103]. Figure 1.7 shows the heterogeneous regulation of coronary vascular tone.

As a sympathetic response to an increase in MVO2, β1- and β2-adrenergic receptors are stim-

ulated eliciting a vasodilation in the arteries. Concurrently, at the onset of exercise (or stress)
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α-adrenergic receptors on vascular smooth muscles are stimulated which result in a seemingly

paradoxical vasoconstriction [105]. It is worthy to mention that in patients with coronary

artery disease, blockade of α1- and α2-adrenoceptors has been proven beneficial for coronary

blood flow and myocardial function [106]. Regardless, the net sympathetic stimulation in

microvasculature is overridden by large β-adrenergic feedforward vasodilation. Furthermore,

the feedforward metabolic regulation occur simultaneously with a feedback mechanism in

which adenosine triphosphate (ATPs) and its metabolites2 released from RBCs, act as va-

sodilators [107]. Specifically, as a response to desaturation of the oxyhemoglobin, ATP,

ADP, and AMP activate purinergic receptors on capillary endothelial cells which initiate a

conducted vasodilatory signal to the arterioles and small arteries (<150 µm) [81].

While the metabolic stimulus (i.e., increase in MVO2) is essential in alteration of coronary

perfusion, the flow rate is relatively unaffected by changes of arterial pressure in the range

of 50-160 mmHg, demonstrating a significant autoregulatory response in myocardium [103].

Interestingly, this mechanism has been observed in other systemic circulations except for

pulmonary circulation where the pressure and flow rate relation follows a monotonically

increasing trend (Fig. 1.8).

Although the metabolic control is crucially effective in autoregulation, this mechanism is

facilitated through an intrinsic myogenic tone in the vascular smooth muscle cells [109].

Briefly, studies have shown that increased transmural pressure leads to depolarization of

smooth muscle cells and the opening of calcium channels responsible for increased intracel-

lular calcium leading to the contraction of actin-myosin [110, 111]. The development and

maintenance of a basal vascular tone via myogenic response is physiologically essential for

vasodilators for regulation of blood flow and pressure [112]. Similar to the metabolic control,

however, the myogenic tone varies in vessels with different diameter. The conduit coronary

arteries do not exhibit a significant myogenic activity [81]. Unsurprisingly, the autoregula-

2adenosine diphosphate (ADP) and adenosine monophosphate (AMP).
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Figure 1.8: Whole organ pressure flow relationships. Picture adapted from [108].

tory response occurs primarily in the resistance vessels (<100-150 µm) [113, 114]. In addi-

tion, the myogenic activity of coronary arteries varies across the myocardium [103,115,116].

Kuo and colleagues [113] showed that at high pressure (70-100 mmHg) both subepicar-

dial and subendocardial arterioles demonstrated myogenic activity, but subepicardial vessels

exhibited greater constriction than subendocardial arterioles. In addition, Duncker and col-

leagues [115] determined that the lower autoregulatory pressure limit for subendocardial

vessels (40 mmHg) is higher than that of subepicardial vessels (25 mmHg) indicating that

vessels are maximally dilated for pressure below 40 mmHg and they are more prone to

develop myocardial ischemia.

The third mechanism affecting the coronary blood flow is the wall shear stress dependent (i.e.,

shear- or flow-dependent) control. Shear-dependent dilation particularly has been observed

in large coronary arteries from a variety of species [108]. This vasodilatory mechanism is the

result of shear-induced production of the vasodilator NO by endothelial cells. The shear-

dependent dilatory mechanisms in-vivo have been shown to be blunted in coronary micro-
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circulation in comparison to conduit arteries [117,118]. However, physical training has been

shown to augment the shear-dependent vasodilation throughout the coronary circulation. In

fact, studies on exercise-trained rats by Laughlin and colleagues [119,120] have showed that

this improved effectiveness is primarily a result of increased endothelial expression of nitric

oxide synthase (NOS).

1.2.2.4 Modeling efforts

Arterial network studies - Since the direct measurements of the hemodynamics in the

whole coronary network is difficult, data from morphometric studies has been used to con-

struct the coronary arterial network for hemodynamics analysis. Beard and Bassingth-

waighte [121] were the first to use an “avoidance” algorithm to present a three-dimensional

model reconstruction of the LAD arterial network in an idealized model of the heart using

statistical morphometric data. They used the reconstructed tree to analyze the fractal na-

ture of spatial myocardial blood flow dispersion and temporal particle wash-out and were

able to reproduce trends similar to experiments. Almost concurrently, Smith et al. [122]

provided a similar algorithm that produced the network with the optimal bifurcating an-

gles (based on [123]). However, due to computational limitations they were only able to

generate a relatively smaller reconstructed network (largest six generations). Alternatively,

Karch and coworkers [124] used a constrained constructive optimization method to generate

the coronary arterial tree in a three-dimensional slab via successively adding new segments

under a set of physiological constraints. Recently, Jaquet and colleagues [125] expanded this

optimization to generate a patient specific coronary arterial network based on human car-

diac CT image data. It is worthy to mention that two-dimensional network reconstruction

attempts have been made using direct use of the statistical data [86].

Kaimovitz et al. [126, 127] provided a stochastic framework for modeling the entire coro-

nary vasculature using a space-filling optimization process subject to morphological features
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from [24]. These studies were later used as a basis for pulsatile hemodynamics analysis in

the works of Algranati and colleagues [88] on the study of pulsatile hemodynamics of coro-

nary vasculature coupled with vascular-myocardial interactions. Finally, Namani et al. [128]

recently developed an algorithm to minimize the flow disparity in Kaimovitz’s model of

the coronary arterial network. They showed that a concurrent minimization of flow dis-

persion and diameter re-assignment in generation of coronary microvascular trees resulted

in congruous results with the measured flow characteristics while following the measured

morphometric data.

Flow regulation modeling - Flow and pressure regulation in the whole systemic circula-

tion has been the subject of several studies over the last 50-60 years. The seminal works of

Guyton and colleagues [129–131] used complex mathematical models, including several hun-

dred equations, aiming to understand the regulation of blood pressure and cardiac output in

closed-loop system. Alternatively, the mathematical models of local interaction between reg-

ulation mechanisms in microvasculature have been studied in different vasculature [109,132].

Coronary flow regulation has been under constant focus over the last 50 years [97]. How-

ever, important aspects of the coronary flow regulation and their diagnostic and prognostic

capabilities remain greatly unknown [95]. Many such questions cannot be experimentally

answered due to factors including failure to reach full dilation of vessels [133], difficulties in

quantifying in-vivo hemodynamics [134], etc.

Previous studies have attempted to theoretically investigate the interaction and balance be-

tween the regulatory mechanisms in coronary circulation [102,135]. While these studies man-

age to incorporate the heterogeneity of the response into their model, the main limitations

of their studies are crude classification of the arteries into 4 classes and ignoring the interac-

tions of the vessels with the surrounding tissue. Alternatively, Pradhan et al. [99] presented

a data-driven closed loop model of the coronary flow regulation which relied heavily on ex-

perimental data. Their model, however, only captures the total flow and pressure regulation
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without any spatial information. More recently, Namani and colleagues [103, 116] revisited

the computational modeling of coronary flow regulation and incorporated two networks of

vessels in subendocardial and subepicardial layers of the cardiac wall. They reconstructed

the arterial tree based on the morphometric data [24,126] and included the myocardial inter-

actions in their model [88]. For the hemodynamic analysis, they used a 3-element Windkessel

model which does not include the wave propagation and reflection in the arteries. More-

over, they used an empirical pressure-diameter relation to model the passive and active wall

behavior.

1.3 Specific aims and organization of the dissertation

The specific aims of this dissertation are summarized as following:

Aim 1. To develop a computational framework of one-dimensional (1D) arterial net-

work that captures essential features of vascular G&R and blood circulation using an

extended Murray’s law to establish the homeostatic baseline.

Aim 2. To construct a model of the pulmonary circulation.

1. Integrate the experimental data into the modeling framework to establish the

homeostatic baseline of pulmonary arteries.

2. Apply the 1-D model for simulating the pulsatile hemodynamics and study the

wave propagation phenomena in pulmonary circulation.

Aim 3. To develop a model of the coronary flow regulation.

1. Apply the modeling framework to construct the coronary arterial network with

respect to the experimental data available in the literature.
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2. Formulate and model coronary flow regulation mechanisms to understand their

heterogeneous interactions and effectiveness.

The remainder of this dissertation is organized in the following manner: Chapter 2 presents

a new computational framework of arterial network that generate and optimize 1D arterial

geometry using an extended Murray’s law and a constrained mixture model of arteries.

Chapter 3 presents the application of the optimization on a pulmonary arterial tree to find

the homeostatic characteristics of individual segments. Then, the result of application of a

1D theory to simulate the pulsatile hemodynamics in an arterial tree with physiologically

realistic properties is presented. Chapter 4 presents the application of the optimization to

the physiology of coronary arteries, specifically with regards to coronary flow regulation.

The estimated basal arterial tree is endowed in flow regulation mechanisms to study the of

vascular adaptation in the coronary arteries. Finally, Chapter 5 summarizes the simulation

results and discusses about their significance, limitations, and future improvements.
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Chapter 2

A Theoretical Framework for

Estimating Homeostasis in Vascular

Trees

2.1 Introduction

Theoretical studies on vascular G&R date back to the early 1980s [136, 137]. Theoretical

and computational modeling of vascular G&R via constrained mixture models, however, only

recently have been gaining attention. Originally proposed by seminal work of Humphrey and

Rajagopal [3], several studies have adopted and developed G&R computational models to

test multiple hypotheses based on experimental and clinical studies in applications such as

aneurysms, cerebral vasospasm, and hypertension [138–141].

In essence, the G&R model includes constitutive relations for the mechanical response of

the load bearing constituents and their time-varying masses. The latter accounts for the

production and removal of cells and extracellular matrix during adaptation. The mediation
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process of the adaptation is based on the existence of a mechanical homeostatic baseline, the

deviation from which causes a change in the turnover rate or structure of each individual

constituent.

In many applications of G&R modeling, the constituents of the arterial wall are specified

to have individually prescribed mechanical behavior and homeostatic values. Vascular G&R

models, therefore, have been developed to allow more insight into the component-wise mech-

anisms of G&R [4, 6, 142]. These models facilitate theoretical and numerical simulations of

progressive collagenous stiffening, elastin damage/degradation, and flow- or pressure-induced

vasoactive tone.

Previous extensive research of vascular adaptations has proposed mechanical homeostasis

at multiple levels, tissue, cells, and subcellular structures that are mediated primarily by

endothelial cells, vascular smooth muscle cells, and fibroblasts [142]. Therefore, processes of

vascular adaptation have several intrinsic length and time scales. An iterative coupling of

G&R and fluid-structure interaction (FSI), namely fluid-solid growth (FSG) modeling, has

been proposed to deal with different time-scales in vascular adaptation using a linearization

of the nonlinear behavior of the arterial wall over the cardiac cycle time scale [5, 143].

On the other hand, little attention has been paid to the spatially multiscale G&R applications

in arterial adaptation. Particularly, while the principal concept of the stress-mediated G&R,

as proposed by Humphrey and Rajagopal [3], is pivotal for predicting vascular adaptation

and testing homeostatic hypotheses of individual constituents for the arteries, previous ap-

plications were limited to large arteries and the concept has not been extended to the whole

arterial network. Furthermore, although not many experimental studies have reported cir-

cumferential stress and wall shear stress through the arterial network, it is not likely that

the homeostatic values are constant. For instance, phenomenological studies on swine coro-

nary arterial network [144,145] evaluated the homeostatic stress and showed that the mean

circumferential stress significantly reduces along the arterial tree. Similar trends have been
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shown in the works of Pries and Secomb on rat’s mesenteric microvasculature [146]. There-

fore, an extension of the computational G&R framework to an arterial network requires

a more general hypothesis for the whole arterial network that eventually takes account of

meticulous considerations of the physiological data such as pressure, flow, thickness and

radii.

As a matter of fact, the most successful theory to predict arterial network structure was

based on metabolic energy consumption [7, 87, 147]. Based on the principle of minimum

work, Murray [7] suggested the design of the blood vessels to be an optimization problem

between the metabolic cost of maintaining the volume of blood and the power needed to

overcome viscous forces. The optimization results in a cubic relationship between the diam-

eter of a parent and its daughter vessels (R3
p = R3

d1
+R3

d2
) which is called the Murray’s law.

Alternatively, studies by Zamir [123] and Kassab and Fung [85] have pursued the uniform

shear hypothesis in the arterial networks. It is worthy to note that the uniform shear hy-

pothesis is also an implication of Murray’s work [85]. However, uniform shear hypothesis has

has been challenged when it comes to microvasculature, similarly to the circumferential wall

stress. While Kamiya et al. [148] observed a narrow variation in wall shear stress throughout

the whole systemic circulation from the aorta to the precapillaries (1-2 Pa), other studies

observed a 3- to 6-fold increase in wall shear stress from arteries (>100µm) to precapillary

arterioles (<100µm) [118,149].

Murray’s law has been used extensively in studies for topology and reconstruction of in-

vivo arterial network structures [27, 124, 125, 150]. Zhou and coworkers [87] proposed a

generalized Murray’s law for an entire coronary arterial tree and discovered new scaling laws

that relate the diameter, length, and volume of the arterial tree. This generalization was

later expanded to include the metabolic dissipation of wall constituents (e.g., active smooth

muscle tone) in swine coronary arteries [147] and other vasculature [151]. These studies were

able to successfully adapt the theoretical formulations, including the extension of Murray’s

26



law, with the measured anatomical data and find the scaling laws. These scaling laws are

particularly important for understanding the fractal nature and local hemodynamics of blood

vessels in the homeostatic arterial tree. Murray’s idea and its generalizations, however, were

unable to provide information on the microstructure of the vessel wall. Inspired by the work

of Taber [152], Lindström et al. [153] incorporated the conventional G&R into Murray’s law

as a unified modeling framework that studied vascular adaptation in a single vessel modeled

using a constrained mixture model. Lastly, a study by Pries et al. [154] showed the influential

role of metabolic responses in determining the wall shear stress and circumferential stress

through the circulatory system.

Motivated by the incompleteness of our current understanding in the concept of homeostasis

for arterial networks, the ultimate goal of this chapter is to establish a common framework

for estimation of the homeostatic characteristics of the arterial trees. Inspired by the works

of Pries et al. [154] and Lindström et al. [153], our framework constructs an arterial network

that includes the essential features from G&R models with metabolic considerations (via an

extended Murray’s law approach). Moreover, the presented framework relies heavily on the

reconciliation of available experimental data to predict pressure-flow relations in physiological

conditions. Consequently, after we establish the homeostatic baseline, an application of the

model to study multiscale adaptation of arterial networks will be unchallenging.

2.2 Methods

2.2.1 General workflow and initialization

By definition, mechanical homeostasis is the vascular adaptation of the arterial wall in the

long term [155]. In other words, while a cardiac cycle typically is of the order of a second,

the vessel wall adaptation takes place in a much slower time from a few minutes (in flow
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Figure 2.1: Information exchange for the homeostatic optimization applied for the tree in
the nested manner: from the tree to bifurcation and then to individual vessels.

regulation) to weeks (in growth and remodeling). Therefore, the optimization process in this

chapter must be considered in view of a slow-time scale. In a slow-time scale, the homeostatic

condition of the artery is embedded into the strain energy function to describe the mechanical

constitutive response and then incorporated into slow-time stress equilibrium, expressed via

Laplace law (see Section 3.1 for more details on timescale considerations).

The general workflow of the presented model and its implementations begins from a construc-

tion of an initial arterial tree from bifurcation rules. Subsequently, an optimization procedure

is applied to the tree which may alter initially defined diameters and bifurcation parameters.

Finally, the optimization results are used in simulation of pulsatile hemodynamics (Chapter

3) and flow regulation (Chapter 4).

Arterial networks show characteristics of a fractal tree structure to some extent [156]. In-

spired by this, we construct an initial self-similar arterial tree using bifurcation rules follow-
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ing [69]. First, we assume a power law determines the radius change across a bifurcation

Rξ
p = Rξ

d1
+Rξ

d2
, (2.1)

where subscript p refers to the parent vessel, and subscripts d1 and d2 refer to the daughter

vessels. To compute the radius of each vessel, we introduce two bifurcation parameters, area

ratio (η) and asymmetry ratio (γ), defined as

η =
R2
d1

+R2
d2

R2
p

, and γ =
R2
d1

R2
d2

, (2.2)

where γ = 1 defines a symmetric tree. The parameters ξ, η, and γ are related by

η =
1 + γ

(1 + γξ/2)2/ξ
. (2.3)

Using these relations, we can define scaling parameters α and β as

α =
1

(1 + γξ/2)1/ξ
, and β = α

√
γ. (2.4)

Finally, the radius of daughter vessels can be computed using the parent vessel using the

scaling parameters as

Rd1 = αRp, and Rd2 = βRp. (2.5)

Equation 2.5 illustrate that the radii of vessels can be computed from their respective parent

vessel. Therefore, if we specify a root radius R0 and two bifurcation parameters (e.g., ξ

and η), we can construct the whole arterial tree. Moreover, the length of each segment in

the arterial tree must be specified. In each implementation of the model a length-diameter

relation obtained from morphometric studies will be used (for more details see Chapters 3

and 4).
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We present the homeostasis of an arterial tree as an optimization problem at individual

vessel segments and then extend it to an entire arterial tree, which we call “homeostatic

optimization” hereafter. The steady state hemodynamics and stress equilibrium are the

constraints applied to the optimization problem. This framework will determine the optimal

design of the arterial tree (i.e., changes the bifurcation rules above), hemodynamics (i.e.,

pressure-flow relations), and structure of arterial wall. Figure 2.1 shows schematic diagram

of the homeostatic optimization from a tree outlook to individual vessels.

2.2.2 Arterial mechanics of a single segment

A single segment of the arterial tree is considered as a thin-walled cylindrical tube composed

of three main load-bearing constituents: elastin, collagen, and smooth muscle cells. Each

constituent is assumed to separately contribute to the strain energy density:

w = we + wm + wc (2.6)

where subscripts e, m, and c represent elastin, smooth muscle, and collagen respectively.

In addition, following Baek et al. [157], we assume distinct pre-stretch for each constituent

mapping them from natural configuration to the overall loaded configuration. In particular,

the pre-stretch mapping for elastin can be expressed as

Ge =


Ge
r 0 0

0 Ge
θ 0

0 0 Ge
z

 (2.7)

where Ge
θ and Ge

z are pre-stretches associated with circumferential and axial directions, and

Ge
r = 1

GeθG
e
z
.

Similarly, for collagen fibers and smooth muscle, Mi, i ∈ {k,m} is defined as the unit vector
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in the direction of the collagen fiber (k) or smooth muscle cell. The pre-stretch mappings

for collagen and smooth muscle cells are given as

Gk = Gc
hM

k ⊗Mk, Gm = Gm
h Mm ⊗Mm. (2.8)

where the pre-stretches Gc
h and Gm

h are identified as homeostatic stretches, which are the

stretches of the constituents when they are produced [157]. We should note that in the

previous applications of G&R, the pre-stretches were assumed to be constant. However, in

our generalization of the framework to an arterial tree, we assume that the pre-stretches

may vary across the arterial tree (for more details see Section 3.2.3). Nevertheless, the

pre-stretch implies that the homeostatic state in an individual vessel is associated with a

constant homeostatic stress for materials with a finite turnover in the vessel.

The orientation of collagen fibers and smooth muscles in their reference configuration, defined

by angle γk, can be written as

Mk = cos γkeZ + sin γkeΘ, Mm = eΘ. (2.9)

For modeling and extension and inflation of a thin wall model, we consider a deformation

gradient F = diag[λr, λθ, λz]. The incompressibility of the wall material is imposed by

assuming an isochoric motion (i.e., det F = 1), therefore, λr = 1
λθλz

. Using membrane

theory [158], the membrane Cauchy stress (force per deformed length) can be written as

T =
1

J2D

F
∂w

∂FT
, ⇒ Tθθ =

1

λz

∂w

∂λθ
, and Tzz =

1

λθ

∂w

∂λz
, (2.10)
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where J2D = λθλz. The following strain energy density functions for the three materials are

used as constitutive relations [159]

Ψe =
c1

2

(
(λeθ)

2 + (λez)
2 +

1

(λeθ)
2(λez)

2
− 3
)
, (2.11)

Ψk =
c2

4c3

(
exp

(
c3

(
(λk)2 − 1

)2
)
− 1
)
, (2.12)

Ψm =
c4

4c5

(
exp

(
c5

(
(λm)2 − 1

)2
)
− 1
)
. (2.13)

The total strain energy per unit area can be written as

w = M e
RΨe +

∑
k

Mk
RΨk +Mm

R Ψm, (2.14)

where M i
R, i ∈ {e, k,m} is the mass of each constituent per unit reference area. Moreover,

λi, i ∈ {e, k,m} is the stretch in each constituent, and can be expressed in terms of the

pre-stretches using Fi = FGi

λeθ = Ge
θλθ, λez = Ge

zλz λk = Gc
h

√
λ2
θ sin2 γk + λ2

z cos2 γk, λm = Gm
h λθ (2.15)

Therefore, the circumferential membrane Cauchy stress can be written as

Tθθ =
1

λz

(
M e

R

∂Ψe

∂λθ
+
∑
k

Mk
R

∂Ψk

∂λθ
+Mm

R

∂Ψm

∂λθ

)
. (2.16)

Substituting 2.15 into 2.16, and using chain rule, we can write

Tθθ =
1

λz

(
M e

R

∂Ψe

∂λeθ

dλeθ
dλθ

+
∑
k

Mk
R

dΨk

d(λk)2

d(λk)2

dλ2
θ

dλ2
θ

dλθ
+Mm

R

dΨm

d(λm)2

d(λm)2

dλ2
θ

dλ2
θ

dλθ

)
(2.17)
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Equation above shows the passive tension response of the artery. To include the active tone

of vascular smooth muscle, we use a potential function as given by [160]

Ψm
act =

S

ρ

(
λθ +

1

3

(λM − λ̃)3

(λM − λ0)2

)
, (2.18)

where λM and λ0 are stretches at which the active force generation is maximum and zero,

respectively, and S is the stress at the maximum contraction. Note that S is generally a

function of wall shear stress, internal pressure, and metabolites but in a short time scale of

a cardiac cycle the value of S is considered as constant (e.g., Chapter 3). In addition, λ̃

is an active stretch of the SMCs in the circumferential direction. Although the vasoactive

response can change via remodeling of the SMCs, the current formulation is applied for the

homeostatic states of the arteries. In the application of the model in next chapters, we

consider only the homeostatic baseline, in contrast to those of the long-term adaptations

(days to weeks) of the arteries. Therefore, we assume λ̃ = λθ. Finally, the total tension in

the artery can be written as

Tθθ =
1

λz
M e

R

dΨe

dλeθ

dλeθ
dλθ︸ ︷︷ ︸

T eθθ

+
∑
k

1

λz
Mk

R

dΨk

d(λk)2

d(λk)2

dλ2
θ

dλ2
θ

dλθ︸ ︷︷ ︸
Tkθθ

+
1

λz

(
Mm

R

dΨm

d(λm)2

d(λm)2

dλ2
θ

dλ2
θ

dλθ
+Mm

R

dΨm
act

dλθ

)
︸ ︷︷ ︸

Tmθθ

(2.19)

where T iθθ, i ∈ {e, c,m} is the tension in each constituent. Finally, for an inflated thin wall

cylinder with pressure ps, the force equilibrium in the circumferential direction gives

psR = Tθθ, (2.20)

where R is the deformed radius of the cylinder.
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2.2.3 Metabolic cost of a single segment

As proposed by Murray [7] and later extended by [152] and [153], the blood vessel wall

composition and geometry strive to optimize the energy cost that includes the metabolic

cost of blood supply, power needed to overcome resistance, and the cost of maintaining the

vessel wall materials. We assume that homeostatic state is governed by such an optimization

rule that can be defined for each individual vessel separately.

We define three contribution terms for the extended Murray’s law. First, the metabolic cost

of arterial wall constituents per unit length is assumed to be

Cwall = (2πR/ρsolid)
∑
i

ϑiM i
R, (2.21)

where M i
R is mass per unit reference area of each constituent (as in the previous section);

ϑi is the metabolic cost of constituent i per unit volume; and R is the vessel radius in

homeostatic condition. Note that the metabolic cost of smooth muscle cells (SMC; i = m),

ϑm, includes both the metabolic cost of maintenance ϑmmaint and active tension ϑmact. Second,

the metabolic power needed for blood supply is proportional to ϑb and the blood volume

that needs to be sustained; hence, this metabolic power per unit length is

Cblood = ϑbπR2. (2.22)

Third, the power per unit length needed to overcome the resistance of Poiseuille flow (viscous

drag forces) is

Cdrag =
8µqs2

πρfluidR4
, (2.23)

with average volumetric flow rate qs. Thus, the total energy cost per unit length at individual
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blood vessel is summarized as

C(M i
R, R) = Cwall + Cblood + Cdrag

=
(2π

ρ

∑
i

ϑiM i
R

)
R + ϑbπR2 +

8µqs2

πρfluidR4
.

(2.24)

Using the minimum metabolic energy principle, Eq. (2.24) is minimized subject to the

constraint of the mechanical equilibrium (Eq. 2.20).

2.2.4 Cost optimization of a single segment in terms of radius

Next we incorporate mass content to the cost function to express minimization in terms

of radius. To this aim, we define total mass as M t
R and mass fractions of elastin, smooth

muscle, and collagen as

νe =
M e

R

M t
R

, νk =
Mk

R

M t
R

, and νm =
Mm

R

M t
R

. (2.25)

Introducing Eq. 2.25 into 2.19 gives

Tθθ =
M t

R

(1− φf )ρλθλz
(∑

i

νiσiθθ), (2.26)

where σiθθ is acting part of the tensor σσσi in circumferential direction, defined as

σσσi =
1

hi
Ti, hi =

M i
R

(1− φf )ρsolidλθλz
, i ∈ {e, k,m}. (2.27)

The parameter φf is the volume fraction of the interstitial fluid. Then the minimization

problem (Eq. 2.24) is constrained by stress equilibrium relation (Eq. 2.20) with membrane
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stress component expressed in terms of σθθ

psR =
M t

R

(1− φ)ρsolid

∑
i

νiσiθθ. (2.28)

Rearranging Eq. 2.28 for M t
R gives

M t
R =

(1− φf )ρsolidpsR∑
i ν

iσiθθ
. (2.29)

The metabolic cost for elastin can be neglected for adult subjects, ϑe = 0, since it is mostly

produced in early ages and owing to a long half-life, remains relatively constant over time.

Finally, for a single vessel the metabolic cost function (Eq. 2.24), embedding stress equilib-

rium constraint 2.28, can be written in terms of radius for a given steady-state flow qs and

pressure at the middle of arterial segment p̄s

C(R; p̄s, qs) = 2π(1− φ)p̄sR2 (ϑcνc + ϑmνm)∑
i

νiσiθθ
+ ϑbπR2 +

8µqs2

ρfluidπR4
. (2.30)

Equation (2.30) expresses the optimization problem in terms of radius given p̄s and qs. The

generalization of this optimization is discussed in the following section.

2.2.5 Iterative process of optimization

A bifurcating arterial tree is initialized based on the fractal rule for vessel radii (Section 2.2.1).

To update the vessel radii over entire tree the cost function minimization has to be imple-

mented together with global hemodynamics. Algorithmically, this implementation can be

done sequentially for each bifurcation or globally for all vessels at once. Without loss of gen-

erality we proceed with the sequential minimization, which is iteratively solving the global

hemodynamics relation between pressure and flow, and local minimization the cost func-

tion. The iterative process is illustrated in Fig. 2.1. The pseudo-code for the optimization
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procedure is presented in Appendix 5. The information transfer in this optimization can be

conceived as a coupling of a G&R model with hemodynamics, similar to what was presented

in [5].

2.3 Summary and conclusion

In this chapter, we developed a numerical framework to estimate the homeostatic conditions

in arterial networks. This framework relies on minimizing the metabolic cost to maintain

the blood volume and constituents of the wall, with the local mechanics and global hemody-

namics as constraints. The proposed framework can be applied to various vascular networks

given that we have a specific dataset or rules that would serve to construct the structure of

the tree (i.e., vessel connectivity, length, etc.). In Chapters 3 and 4 we test our framework

on models of pulmonary and coronary arterial trees.
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Chapter 3

Homeostatic Baseline and

Hemodynamics in the Pulmonary

Arterial Tree

3.1 Introduction

Pulmonary arterial hypertension (PAH) is a complex disorder associated with an elevated

pulmonary arterial pressure. Progressive stiffening and narrowing of distal pulmonary vessels

result in an increase in pulmonary arterial pressure in PAH, which can lead to fatal right

heart failure. The pathology of PAH is connected to the long-term vascular remodeling with

prominent features such as: smooth muscle hypertrophy, endothelial dysfunction, deposition

of collagen and elastin, and increased elastolytic activities [45]. Alternatively, the short-

term hemodynamic effects such as the magnitude of pulse pressure and wave propagation

phenomena in the pulmonary arterial tree have been observed to be influential in development

of PAH (for more details see Section 1.2.1.4).
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The current understanding of G&R process in PAH is greatly limited due to paucity of

detailed analyses on the manner in which the pulsatile nature of hemodynamics (in the

short-term scale) induces pathological changes in the vasculature (in the long-term scales)

[161]. This limitation necessitates an application of temporally multiscale computational

models of the pulmonary arteries that include both timescales in vascular adaptations. As

explained in Chapter 2, the G&R model corresponds to long-term changes in the structure

of the pulmonary arteries where the arterial wall is modeled as a constrained mixture of the

wall constituents endowed with the kinetics of their production and removal. Among the

main driving factors in G&R models are the hemodynamics loads (wall shear stress, and

circumferential stress) on the vascular wall. On the other hand, fluid-solid-interaction (FSI)

models of the pulmonary arteries facilitate the simulation of the pulsatile hemodynamics

in short-time scale [74]. Realistic consideration of deformable wall properties are integral

part of the biomedical FSI problems. Therefore, exchanging information between the G&R

and FSI models is pivotal in the study of the progression of PAH. This coupling has been

previously proposed in fluid-solid-growth (FSG) modeling framework by Figueroa et al. [5].

In this study we present a snapshot of such coupling where the pulmonary arteries are in

healthy condition.

The main goals of this chapter is to establish the homeostatic baseline and simulate the

pulsatile hemodynamics in a pulmonary arterial network. To this end, the current chapter is

organized as follows: First, we briefly explain the workflow for assimilation of the homeostatic

optimization with a 1D FSI model. Second, we provide the formulation of FSI in a pulmonary

arterial tree. Subsequently, the parameters used for the implementation of the homeostatic

optimization (Chapter 2) and FSI in the distal pulmonary arterial tree are examined. Finally,

we present and discuss the results of the optimization in symmetric and asymmetric trees.
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Figure 3.1: Schematic components of the pulmonary arterial tree and their corresponding
data availability: large vessels (3D patients-specific anatomy, flow and pressure waveforms
from clinical imaging and catheterization) and small vessels (limited morphometrical and
biomechanical data).

3.2 Method

3.2.1 Fluid-solid-growth

Figueroa et al. [5] illustrated how the FSI analysis during one cardiac cycle can be coupled

with an arterial G&R model through a FSG modeling framework. In our study, we extend

the FSG framework to the distal pulmonary arterial tree (shown as red binary trees in Fig.

3.1). First, we established that the results of homeostatic optimization essentially construct

an instant of G&R modeling where arteries are in healthy condition (Chapter 2). Second,

we use small-on-large theory to compute the linearized mechanical response (i.e., Young’s

modulus) for the implementation of the constrained mixture model into the FSI model. We

present a general formulation of the small-on-large in Appendix 5. Finally, we use a 1D FSI

model (i.e., Womersley’s theory) for the pulsatile hemodynamics of the pulmonary arterial

tree where the vessel walls are considered linearly elastic (Section 3.2.2).
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3.2.2 Pulsatile hemodynamics

Given the geometry of the tree, vessel wall stiffness, and steady-state pressure and flow

from the homeostatic optimization, we proceed to obtain the pulsatile solutions and pulse

wave velocity in a tree using Womersley’s solutions (see Appendix 5). Note that within the

homeostatic optimization formulation the fast-time hemodynamics (denoted by their Fourier

domain representatives P and Q in this section) in a tree is decoupled from the slow-time

problem, and thus it represents a post-processing operation after homeostatic optimization.

In general, this procedure can be fully coupled with slow-time problem.

Womersley’s solution to pulstatile flow in a deformable tube can be found in Appendix 5. In

this section, we briefly explain the generalization to an arterial network. Each bifurcation is

a reflection site for the traveling wave. Womersley’s theory can be adapted to incorporate

such reflections of traveling waves. Due to the system linearity the pressure and flow can be

decomposed to the forward and backward waves

P = Pforw + Pback, Pforw = Hforwe
−iωz/c, Pback = Hbacke

iωz/c

Q = Qforw +Qback, Qforw =
Hforw

Zc
e−iωz/c, Qback = −Hback

Zc
eiωz/c

(3.1)

with constant coefficients Hforw and Hback for individual harmonics. The characteristic

impedance Zc and velocity of the wave propagation c are the same for both forward and

backward waves [162]: Zc = Pforw/Qforw = Pback/Qback. We can define the reflection coeffi-

cient as [163,164]

Γ =
ZT − Zc

ZT + Zc
=

Pback
Pforw

∣∣∣∣
z=L

. (3.2)

The reflection coefficient varies between -1 and 1. If Γ = 0, then no wave reflection is present,

indicating that impedances match ZT = Zc. The so-called open-end type of reflection is
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associated with Γ = −1 , where ZT = 0 or P |z=L = 0. In this case, the reflected wave is

negative [165], similar to a wave traveling in a string of fixed end. The so-called closed-end

type of reflection is related to Γ = 1 for ZT = ∞ or P |z=L = 0, where the reflected wave is

positive (as illustrated in analogy with wave traveling in a string of free end).

Using Γ and Zc, total impedance at frequency ω can be obtained as a function of location

along the vessel of length L.

Z(z, ω) =
P

Q
(z, ω) = Zc 1 + Γe−iω2(z−L)/c

1− Γe−iω2(z−L)/c
. (3.3)

Combining equations 3.1 and 3.2, the pressure and flow along the vessel can be written as

P (z, ω) = Hforwe
−iωz/c(1 + Γeiω2(z−L)/c),

Q(z, ω) =
Hforw

Zc
e−iωz/c(1− Γeiω2(z−L)/c).

(3.4)

Moreover, the input impedance can be written as

Zinp = Zc 1 + Γe−iω2L/c

1− Γe−iω2L/c
. (3.5)

Considering conservation of the total pressure and flow at bifurcation and the input impedance

at each daughter vessel Zinp
d1

and Zinp
d2

, we obtain the terminal impedance in the parent vessels

ZT
p =

(
1

Zinp
d1

+
1

Zinp
d2

)−1

. (3.6)

Given the root vessel flow qsp, Qp, terminal pressure psT , and reflection coefficient ΓT at the

terminal vessels, we use bifurcation relations Eq. 3.6 to compute the input impedance eq.

3.5, recursively from the bottom-to-the top and then reconstruct the pressure and flow at

each vessel of the fractal tree from the top-to-the-bottom, using Eq. 3.4.

Using wave-intensity analysis, Hollander and Colleagues [55] demonstrated that the normal

42



pulmonary arterial circulation (in dogs) is characterized by negative wave reflections (an

open-end reflector). The primary factor for creating the open-end type of reflection in

pulmonary arterial system is likely the large increase in cross-sectional area over a short

distance. As discussed in [55], the magnitude of negative, open-end type reflection increases

as daughter-to-parent ratio is ad/ap > 1.2.

3.2.3 Parameter selection

The parameters of the model are listed in Table 3.1. The focus of this study is on the

intermediate-to-small region of the pulmonary tree, from the end of the right interlobar

artery to the arterioles. For hemodynamics boundary condition at the inlet, we prescribe

input flow waveform taken from human data at main pulmonary artery [67] and scaled to

fourth generation downstream. The first nine harmonics are used to represent the waveform

in frequency domain. The length-to-radius ratio is taken from Olufsen et al. [73] which

approximates human data from a single pulmonary arterial tree cast reported in Huang

et al. [23]. However, the length was scaled by a factor of half to better approximate the

characteristics of the tree in the beginning of modeling tree. Terminal radius, similar to [73],

defines the number of generations in a symmetric tree (this results in 19 generations). For

the asymmetric case, first a full arterial tree is constructed, then the initial tree is pruned

with a radius threshold of 0.18 cm which leads to different number of generations in different

paths. Although the tree terminates at arteriolar level, we consider a mean terminal pressure

close to the capillary pressure as the pressure drop is small between pulmonary arterioles

and capillaries. The basal and active energy consumption rates for vascular smooth muscle

cells are measured using the the flux of adenosine triphosphate (ATPs) in the extracellular

space [166, 167]. Although the basal metabolic cost of vessel wall constituents may vary

throughout the arterial tree, we chose the value 1500 W/m3 for the entire pulmonary tree

[147]. The metabolic cost of active tension in SMC, as measured in [166], is considered to be
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0.00872 1/s and proportional to the active tension. Since the active tension is proportional

to the mass of SMCs in the vessel wall, the metabolic cost can be written as proportional to

SMC content (Eq. 2.30). Furthermore, the energy requirement for sustaining the blood in

the arteries is adopted from [168] based on number of red blood cells, white blood cells, and

platelets in a unit volume of blood and their oxygen consumption rate for a normal adult

human subject.

The mechanical properties (Table 3.1) of the wall for the constrained mixture model are

calibrated against experimental data obtained in five inflation tests of porcine right/left

pulmonary arteries (conducted at Michigan State University [169]). The intrinsic material

stiffness parameters are assumed to be constant for all the vessels in the arterial network.

However, the pre-stretch of collagen and elastin is adjusted in each vessel downstream in order

to match the thickness-to-diameter ratio reported in [170, 171]. The underlying assumption

here is that in an arterial tree, the pre-stretch of the collagen and elastin are dependent

on the homeostatic arterial pressure. This is inspired by the experimental observations

showing wavier or even compressed collagen fibers and elastin sheets in the small arteries and

arterioles with active tension [112]. The mass fractions of all constituents are estimated for

the entire arterial tree: constant in Case 1 and variable in Case 2 (Table 3.1). To determine

the composition of the arterial wall, the adventitial layer of arterial wall was assumed to

have 95% of collagen and 5% of elastin in Case 1. The mass fractions were estimated using

the relative layer thickness reported in [41] and medial layer mass fractions reported in [34].

However, the adult pulmonary arterial wall composition varies throughout the arterial tree.

The variable composition of the wall is reflected in the model (Case 2) by changing the

content of elastin and SMCs in the medial layer using data from [41]. Particularly, most

of the arteries larger than 0.32 cm in diameter are elastic arteries endowed with multiple

layers of elastic lamina. The arterial structure transitions from elastic to muscular type over

a range of 0.32-0.2 cm where the elastic layers fragment and are replaced by SMC [172].

The arteries smaller than 0.2 cm have a muscular media with two distinctive internal and
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Table 3.1: Model parameters for homeostatic optimization and pulsatile hemodynamics

Parameter description Ref.

Initialization of the tree geometry

Root vessel radius 0.55 cm (symm); [73]
0.36 cm (asymm)

Root vessel wall thickness 0.42 cm [170]
Terminal radius 0.005 cm (symm); [73]

0.018 cm (asymm)
Radial exponent 2.72
Daughter-to-parent area ratio 1.2

Extended Murray’s law

Metabolic cost of collagen and SMC 1500 W/m3 [147]
Metabolic cost of blood supply 51.7 W/m3 [168]

Metabolic cost of active tension 0.00872 1/s [166]

Vessel wall

Wall density 1060 kg/m3

Case 1: Constant mass fractions (c/m/e) 77%/12%/11% [34]
Case 2: Variable mass fractions 77-59% collagen, [29]

12-39% SMCs,
11-2% elastin

Passive and active wall elasticity parameters c1 = 28.83Pa/kg,Geθ = Gez = 1.16− 1.27
c2 = 178.60Pa/kg, c3 = 1.05, Gkh = 1.08− 1.15

Gkh = 1.15− 1.08, αk = 0,±45◦, 90◦

c4 = 24.51Pa/kg, c5 = 0.75, Gmh = 1.21
S = 20kPa, λM = 1.2, λ0 = 0.7

Hemodynamics

Input flow waveform, scaled by 1/8 mean flow 11.65 ml/s [67]
Length-to-radius relations, scaled by 1/2 L = 6.2R1.1mm [73]
Symmetric tree: mean terminal pressure 10 mmHg [74]
Terminal reflection coefficient -1 [55]
Blood density 1060 kg/m3

Dynamic viscosity 0.0035 Pa.s

external elastic laminas [29]. While the arteries smaller than 0.01 cm are not included in this

study, we note that the number of muscular arteries significantly drops when the arterial size

approaches 0.01 cm and below so that the vessels become partially or fully non-muscular.
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3.3 Results and discussion

3.3.1 Symmetric tree

An advantage of symmetric tree is that any vessel within a generation is representative of the

whole generation, and thus the results can be evaluated with respect to generations rather

than individual vessels.

3.3.1.1 Case 1: constant mass fractions

In this section we show the results of the homeostatic optimization related to the constant

mass fractions Table 3.1. The study by Huang and colleagues [23] on the branching pat-

tern and vascular geometry of the human pulmonary arterial trees found 15 orders in the

pulmonary arteries using the Strahler ordering system. In their study, 1st and 15th orders

correspond to the precapillary vessels and right/left pulmonary arteries, respectively. A

comparison of results obtained in the current study to the results from Huang et al. [23]

indicates an agreement between the diameter of our 1st generation and their 14th order

pulmonary vessel corresponding to the Strahler ordering technique. Figure 3.2 compares the

reported human data for right interlobar artery [73] and larger vessels [23]. The exponent ξ

in daughter-to-parent radius relation along the tree (Fig. 3.2, right panel)) remains close to

the cubic relation (Murray’s law).

The wall thickness is obtained from the mass of the constituents resulting from the optimiza-

tion. The resulting thickness-to-diameter ratios, by tuning the pre-streches, are shown in Fig.

3.3, top-left panel. Pressure in the middle of the arterial segments along the tree is shown in

(Fig. 3.3, top-right). Pressure gradient becomes steeper towards the arteriolar level to meet

the terminal pressure. Finally, homeostatic shear and circumferential stresses are obtained
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Figure 3.2: Symmetric tree – homeostatic optimization results plotted versus generation
number: Left: diameter distribution compared to reported data of larger vessels; Right:
radius exponent in daughter-to-parent radii relation;

(Fig. 3.3 bottom row). Although the original Murray’s law implies that the wall shear stress

is constant throughout the arterial tree [173], wall shear stress value increases in our model,

which is consistent with the experimental studies for the systemic circulation [148,174]. The

decreasing trend of circumferential stress value (Fig. 3.2, bottom-right) is consistent with

observations in the coronary arterial network [144].

3.3.1.2 Case 2: variable mass fractions

Experimental studies by Hislop and Reid [29] showed that the composition of the pulmonary

arteries varies across the arterial tree. This variability was taken into account by modifying

mass fractions based on the composition in Table 3.1

Two distinct optimizations results for Case 2 are compared to Case 1 in Fig. 3.5. During

the transition region (Fig. 3.4) elastin is replaced by two materials that require metabolic

energy for maintenance (i.e., metabolically expensive materials). The optimization, however,

prefers a smaller vessel with more percentage of collagen and SMCs to a large vessel with less
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Figure 3.3: Symmetric tree – homeostatic optimization results plotted versus diameters:
Top-left: wall thickness-to-diameter ratio (h: wall thickness); Top-right: mid-artery pressure;
Bottom-left: homeostatic value of wall shear stress (τ); Bottom-right: homeostatic value of
circumferential stress σh.

percentage of collagen and SMCs. This is reflected in a drop in the radius exponent (Fig.

3.5, left). The drop in results in a step-increase of the wall shear stress (Fig. 3.5, right).

The stiffness results from the homeostatic optimization are obtained from a linearization

of orthotropic elastic membrane properties in the pmid of each artery (Appendix 5). The

axial Young’s modulus is markedly lower than those in systemic arteries [160,175]; and both

decrease across the generations (for both cases, Fig. 3.6, left). An increase of compliance

distally is consistent with the reflections site of the open-end type which is imposed in the
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Figure 3.4: Prescribed variable mass fractions of the wall constituents: elastin, smooth
muscle cells and collagen. The arrows on the top show the trend in arterial composition.
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Figure 3.5: Symmetric tree – Left: radius exponent in daughter-to-parent radii relation;
Right: homeostatic value of wall shear stress.

model [55]. Comparison between the two cases of modeling shows that the axial stiffness

drops significantly in the muscular arteries. This result is expected since most the smooth

muscle cells are oriented circumferentially in the vessel wall.

It is experimentally a challenge to estimate the in-vivo arterial stiffness of distal pulmonary

tree. However, experimental studies have employed a distensibility parameter λ which be
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Figure 3.6: Symmetric tree – homeostatic optimization results for the wall stiffness versus
generation number: Left: Young’s modules in circumferential and longitudinal directions;
Right: Structural stiffness normalized by the unstressed radius and compared to distensibility
relations from data.

used to construct the relation R/R0 = 1 + λp with transmural pressure p and radius at zero

pressure R0. For instance, Yen and colleagues [176] analyzed the mechanics of the arteries

of different sizes dissected from human lung and concluded that the distensibility does not

vary significantly with size (with λ = 0.012/mmHg). Alternatively, Krenz and Dawson [177]

conducted a meta-analysis on different pulmonary arteries of various animals with different

sizes and while they confirmed that the distensibility is almost constant, they reported a

larger value of λ = 0.02/mmHg. To be able to compare our results to these studies, we use

a normalized ratio of structural stiffness to the unstressed radius which can be expressed via

distensibility parameter Eh/R0 = 3/(4λ) [74]. Right panel of Fig. 3.6 shows a near constant

value for the normalized stiffness for the variable mass fraction simulation (Case 2) which

is consistent with experimental studies. Moreover, the computed stiffness from the model

is consistent with that of our experiments on pig’s pulmonary artery (indicated for the first

generation in Fig. 3.6, right panel). However, the optimization is predicting larger stiffness

(smaller distensibility) compared to other experimental studies.
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3.3.1.3 Pulsatile hemodynamics

Before discussing the results of the fast time hemodynamics, it is important to note that

we used the optimization results of Case 2 for the following analysis since it captures the

physiology of the downstream arteries more accurately. Furthermore, to validate the choice

of Γ = −1 for the open-end wave reflection, Fig. 3.7 shows the duaghter-to-parent area ratio

compared to bounds proposed by Hollander and colleagues in 2001 [55].

One of the most valuable outcomes from the modeling of pulsatile flow in the distal vascu-

lature is estimation of the pulse wave velocity (c) across the tree (see Appendix 5). The

pulse wave velocity (shown for two harmonics in Fig. 3.8, left) depends on the stiffness of

the wall as well as Womersley’s number α = R
√
ωρfluid/µ (shown for two harmonics in

Fig. 3.8, right). Particularly, the decrease in α indicates the dominance of viscous forces

in small arteries (consistent with higher resistance) relative to transient inertial forces. The

pulse wave velocity in the first generation shows excellent consistency with the experimental

measurements of c in main pulmonary arteries [178, 179]. Moreover, heterogeneous stiffness

of the arterial wall and α result in a steep decrease in c after the first few generations. The

idealized Moens-Korteweg (MK) (cMK =
√
Eh/2Rρfluid) pulse wave velocity is also plotted

for the comparison. Clearly, the assumptions of MK equation, such as non-viscous fluid, are

voided in smaller vessels.

To understand limitations of the model, we check the validity of the deformable wall Wom-

ersley’s theory by computing the ratio of maximum lumen oscillatory velocity to the pulse

wave speed, δmax = max
t
vfz /c , which must be significantly smaller than 1 for the long wave

approximation to be valid. Figure 3.9 shows that at first several generations of the tree, there

might be significant nonlinear contribution (nonlinear inertia term for fluid flow) which is

neglected in the Womersley theory.

Total hemodynamics solution along the vascular bed is demonstrated in Fig. 3.10. The
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Figure 3.8: Symmetric tree – pulsatile hemodynamics results versus generation number: (a)
pulse wave velocity for two harmonics, compared to data and MK velocity; (b) Womersley’s
number for two harmonics.

total input flow splits evenly at each generation. The total terminal pressure is within the

physiological range 8-25 mmHg. The minimum extreme is located below the mean pressure

that is consistent with negative reflections

The patient-specific models reconstructed from medical images of large pulmonary arteries

can be connected to the distal vasculature model via an impedance boundary condition at
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Figure 3.10: Symmetric tree: Total input flow (top) and terminal pressure (bottom) over
the generations

the interface. The outflow impedance at the large vessel is equivalent to input impedance

at following vascular tree. Finally, using the pulsatile hemodynamics at the root vessel we

compute the input impedance for the arterial tree (Fig. 3.11). For comparison we plot
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characteristic and terminal impedance at the root vessels.

3.3.2 Asymmetric tree

This section illustrates a asymmetric tree example for the homeostatic optimization and

hemodynamics. Initially, an asymmetric tree is generated by the area ratio η0 = 1.2 and

radial exponent ξ0 = 2.72 following [73]. Homeostatic optimization on such a tree leads

to a symmetric tree as a result, since the symmetric structure is more energy efficient. To

introduce asymmetry in the optimization, the initial arterial tree is pruned with a terminal

radius of Rmin = 0.018 cm. For the steady state hemodynamics, the boundary conditions

are switched to pressure at the inlet and flow at the outlets. Homogeneous distribution

of the perfusion flow over all the outlets has been used in other attempts for anatomic

reconstruction of arterial networks [124, 180]. Although the homeostatic optimization is

capable of simulating a highly asymmetric tree, only a slightly asymmetric tree is considered

in this study to ensure that the analytical solution is valid in the fast-time hemodynamic

analysis. Therefore, an initial tree with 15 generation is constructed (32,767 vessels) and

then pruned with respect to the terminal radius, which resulted in 4,233 individual segments

in 14 generations. Without loss of generality, we identify a short and a long path (X) along

the tree for presentation of results.

Figure 3.12 shows the results of the optimization, bounded by the shortest and longest paths,

for the asymmetric case mass fractions are determined from Case 2. At the outlet vessels

the flow is the same while terminal pressure is not (Fig. 3.12 top) as expected from the

boundary conditions. The distribution of results within the bounds can be explained by

dominance of the symmetric subtrees. The ratio of structural stiffness to unstressed radius

is distributed around 9 kPa and varies more toward the outlets (Fig. 3.12 bottom-right).

The wall shear stress, affected by variable mass fraction (Case 2) increases toward outlets
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Figure 3.11: Symmetric tree – Top: total flow and pressure at the root vessel of the distal
tree; Bottom-left: root vessel input impedance in time domain compared to terminal and
characteristic impedance; Bottom-right: input impedance modulus and phase angles in the
frequency domain.

(Fig. 3.12 bottom-left).

Left panel of Fig. 3.13 shows the δ parameter for the longest and shortest paths of the

asymmetric tree. For number of generations smaller than 10 in the shortest path, the δ

parameter becomes significantly larger than 0.5 which indicates that the Womresley theory

is not valid in those branches (the simulation not shown). Furthermore, the right panel of

Fig. 3.13 shows c for the longest and shortest paths. The speed of the wave propagation

seems to be larger in the longer paths given the depth of the vessel segment in the arterial
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Figure 3.12: Asymmetric tree – homeostatic optimization results versus distance (from the
root, along the branch pathway), dots represents optimization results for each vessel, red
and blue lines indicate the short and long path, respectively: (a) log of steady-state flow
rate; (b) terminal steady pressure; (c) ratio of structural stiffness to unstressed radius; (d)
homeostatic value wall shear stress.

tree.

Finally, the pulsatile hemodynamics at the root of the arterial tree is computed and shown in

Fig. 3.14. The asymmetric structure of the arterial tree significantly changes the impedance

at the root of the artery. This is particularly crucial since this impedance can be used as an

outlet boundary conditions in the patient-specific modeling. Therefore, an accurate analysis

of the distal tree is crucial in performing realistic hemodynamics simulations.
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Figure 3.13: Asymmetric tree – delta parameter and pulse wave velocity for longest and
shortest paths.

3.4 Summary and conclusion

We successfully implemented the homeostatic optimization method to estimate the baseline

state of the distal pulmonary arterial tree. Our study included vascular tissue properties via

a constrained mixture model (previously used for G&R) as well as the pulsatile hemody-

namics using the metabolic demand considerations (Murray’s law) and an analytical blood

flow theory. Particularly, the vessel sizes and mechanical properties were estimated using

an extension of Murray’s law, and Womersley’s theory was used for simulating the pul-

satile blood flow in a network of elastic vessels. The material behavior of the vessel wall,

presented by orthotropic membrane, was described by nonlinear constitutive law at slow

time-scale, and then linearized at the steady pressure to obtain a pulsatile solution for car-

diac cycle. The proposed method does not necessitate computational cost associated with

nonlinear problem solvers, nested iterative optimizations, and complex tree morphometry.

Instead, our framework is a computationally efficient tool that greatly simplifies the biome-

chanical analysis in vascular trees. Indeed, it allows focusing primarily on complex wall

tissues processes and associated biomechanical/biochemical stimuli. We have illustrated the
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Figure 3.14: Symmetric tree – Top: total flow and pressure at the root vessel of the distal
tree; Bottom-left: root vessel input impedance in time domain compared to terminal and
characteristic impedance; Bottom-right: input impedance modulus and phase angles in the
frequency domain.

framework functionality on examples of symmetric and asymmetric binary trees representing

distal intermediate pulmonary arterial vasculature. The results show good agreement with

the available experimental and clinical observations. The homeostatic optimization provided

the wall composition content, vessel size, and structural stiffness giving valuable estimation

of intrinsic wall properties that otherwise are not measurable (at the range of 14-19 genera-

tions after the large vessel). In addition, the hemodynamics solution gave the total pressure

and flow distribution along the tree revealing the evolution of arterial pressure which is a
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crucial marker for pulmonary arterial hypertension. While in our examples we considered

healthy subjects, the proposed framework can be applied to pulmonary hypertension sub-

jects once more clinical and experimental data are available. Another not measurable distally

but valuable characteristic is the pulse wave velocity distribution along the tree. Our results

demonstrated the decrease of pulse wave velocity over the generations as a consequence of

wall stiffness and Womersley number changes. Furthermore, the low computational cost of

our model renders it immensely useful for parametric studies, as illustrated by considering

cases of constant and variable mass fractions of wall constituents. The proposed framework

is also useful for obtaining the impedance outflow boundary conditions essential for coupling

distal vasculature with large vessel 3D simulations in the patient-specific models. We re-

ported such input impedance obtained for the symmetrical and asymmetric trees. In this

study, we used constant blood viscosity which is justified for the intermediate range of vessel

size. However, constant viscosity is not a requirement of the formulation though it greatly

simplifies fluid dynamics. For microvasculature closer to capillaries, the apparent viscosity

can be considered as a function of vessel diameter and hematocrit level [181]. In this case,

the total hemodynamics has to be generalized to accommodate viscosity updates. Addi-

tional data and work are needed to improve the pulmonary arterial tree model. In presented

examples, the tree is described by a fractal structure based on a bifurcating radial rule. In

future, the tree structure has to be reconstructed from a comprehensive morphometry of

the pulmonary arterial tree. Ideally, such morphometry has to be statistically representative

for human subjects, specific for age group, healthy or affected by pulmonary hypertension –

these are data and tasks that are currently unavailable, limited, and/or challenging. Sim-

ilarly, in the current examples, the wall parameters and constituent content was estimated

from limited open-literature resources and internal experiments. Thus, to improve and val-

idate the arterial wall modeling there is a need of more experimental data on pulmonary

arterial wall tissue mechanics for humans.
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Chapter 4

Baseline Characteristics and

Adaptations in Coronary Flow

Regulation

4.1 Introduction

Coronary arteries are responsible for supplying blood to the myocardium. The coronary

arterial network is inherently different from other circulatory systems in the body in two

major aspects. First, since the heart has limited anaerobic capacity, energy production in

myocytes is highly dependent on oxidative phosphorylation [82]. Therefore, a continuous

supply of oxygen to the cardiac myocytes is necessary for normal function and without

sufficient oxygen delivery, their contractile function declines within seconds of the ischemic

insult. The continuous supplement of oxygen to myocytes is a burden on the coronary

vasculature, i.e., a tight regulation of coronary vascular functions is necessary for maintaining

the blood circulation in the heart and eventually the whole cardiovascular system (for more
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details see Section 1.2.2).

Second, myocardial arteries are under significant compressive forces from the myocardium

during the systolic phase. The interaction of compressive forces and vascular wall (namely

myocardial-vascular interactions) are hypothesized to be primarily dependent on the cavity-

induced extracellular (interstitial) pressure (pCEP ), muscle shortening-induced pressure (pSIP ),

and changes of myocardial stiffness (i.e., varying elastance) [88]. Dependence on pCEP im-

plies that the compressive forces are larger in the inner layers of the left ventricle (LV) than

those in the outer (epicardial) layers [182]. It has been long established that this variation

in pressure affects the flow distribution and structure of the arteries in different layers [183].

Determination of the spatially differential baseline characteristics of the coronary arteries

is crucial for the analysis of the coronary flow regulation, since the active response of the

vessels to changes in biomechanical and/or biochemical stimuli varies with their size and

location in the cardiac wall. Most of the flow regulation occurs in the networks of tree-like

branching arteries in the different layers of the myocardium (subepicardial, mid-wall, and

subendocardial) [81, 82]. Similarly, the resistance arterties in the coronary arterial network

are less than 100 µm in size and reside in the myocardial layers of the cardiac wall [184].

These vessels are main regulators of the flow control mechanism by intrinsic and/or extrinsic

modifications in diameter via vasoreactivity of smooth muscle cells (SMCs).

In this chapter, we aim to first apply the homeostatic optimization framework to establish

the baseline characteristics of two coronary arterial trees in subendocardial and subepicardial

layers. Next, we use the defined baseline to study coronary flow regulation. Particularly,

differential analysis of the pressure-flow autoregulation will be performed. Finally, we test

the capability of the model in capturing the effects of drug administrations, such as adenosine

infusion and inhibition of NO synthesis.

61



4.2 Methods

4.2.1 Baseline construction of coronary arterial tree

The general workflow of arterial tree construction is described in Chapter 2. In this chapter,

the optimization workflow is implemented to construct a coronary microvascular tree model

embedded in different layers of the myocardium with specific scale factors. First, two sym-

metric trees (subendocardial and subepicardial) with 12 generations of vessels are generated

with the initial radial exponent ξ = 2.55 based on Arts and Reneman [182] and Karch et

al. [124]. This choice of ξ is motivated the experimentally observed fractal nature of the

vasculature [121]. The length-to-diameter ratio is prescribed using the morphometric swine

data from Kassab et al. [24]. The subendocardial and subepicardial trees are assumed to be

located in 5/6 and 1/6 of the myocardium, respectively.

For modeling, we consider the slow-time conditions (average over minutes to hours), and a

mean intramyocardial pressure is imposed on the individual vessel depending on its location.

Specifically, the mechanical equilibrium is written as

ptmr = Tθθ, (4.1)

where ptm is the transmural pressure of the blood vessels located within the myocardium,

Tθθ is given by equation (2.19), and r is the inner radius of the segment. The transmural

pressure can be written as

ptm = p− pim, (4.2)

where p is the luminal pressure as presented by previous chapters and pim is the intramy-

ocardial pressure. Following the analysis by Algranati et al. [88] on myocardium-coronary
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vessel interaction, pim is assumed as

pim = pCEP + pSIP . (4.3)

For the free wall of the LV, pCEP varies linearly from endocardium (LV pressure, pLV ) to

pericardium, where the pericardial pressure is assumed to be negligible. Therefore, for the

subendocardial and subepicardial trees in this chapter, the average pCEP values are 5/6 and

1/6 of pLV , which is consistent with their respective relative myocardial depth. The pressure

pSIP was chosen so that the pim in the subendocardium is 20% larger than the pLV [71]. The

boundary conditions of the baseline optimization in both subepicardial and subendocardial

trees are the inlet and outlet pressures. In addition, the layer-wise total flow in the arterial

tree is considered as an extra constraint.

4.2.2 Coronary flow regulation

Coronary blood flow is tightly regulated as a response to changes in perfusion pressure and/or

imbalance between myocardial oxygen demand and supply. The reactivity of the vessel wall

to changes in stimuli is dominated by the SMCs. From the constrained mixture model in

Chapter 2, the active stress Tact in the smooth muscle is

Tact =
S

ρ

(
1−

( λM − λ̃
λM − λ0

)2)
, (4.4)

where λM and λ0 are stretches at which the active force generation is maximum and zero,

respectively, and S is the stress at the basal vasoactive tone. Moreover, λ̃ is an active stretch

which can evolve by SMC remodeling. Since we model the short timescale adaptations (min-

utes to hours), SMC remodeling is not considered which results in λ̃ = λθ.. The parameter

S, the basal active tone, is a function of transmural pressure, and shear stress from their
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homeostatic values, and the cardiac activity (MVO2), which gives

S = A(ptm − ph, τ − τh,MVO2)Smax(ptm). (4.5)

The activation, A, determines the activation level from fully dilated to fully constricted. The

maximum active stress, Smax, is a function of transmural pressure as was observed in [102]

and shown in Fig. 4.3. Following the work of Cornelissen and colleagues [135], we assume

that the maximum active tone has a sigmoidal shape, described with a hill curve

Smax(ptm) = S0
pβtm

pβ0 + pβtm
, (4.6)

where β is the slope of the curve, S0 is the maximum tone, and p0 is the a parameter that

offsets the center of the curve. Three primary mechanisms that predominantly regulate the

vascular reactivity are myogenic (pressure), shear stress, and metabolic controls. The flow

regulation is essentially a dynamic process involving activation of each of these mechanisms

with their respective time response. In this study, however, we focus on the steady state of the

vasculature, which is reached within 2 minutes after the perturbation form the homeostatic

value [89,116,132]. This time-scale is large enough for our analysis to be valid with respect

to the discussion in Section 3.1.

Myogenic control is the SMC contraction in response changes in the local wall stress deter-

mined by the transmural pressure. The deviation from the basal (homeostatic) pressure (ph)

leads to a constrictive stimulus. This stimulus in each vessel can be written as

sp = ap(
ptm − ph

ph
). (4.7)

Contrary to myogenic tone, an increase in wall shear stress, induces relaxation of the SMCs

facilitated by an increase the NO production of the endothelial cells. This vasodilation
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stimulus can be written as

sτ = −aτ (
τ − τh
τh

). (4.8)

Finally, experimental studies have shown that during an increased MVO2 (e.g., exercise),

while the oxygen extraction capacity of the cardiomyocytes does not change [99]. Therefore,

an increase in MVO2 must be met with a proportional increase in flow rate. Although the

measurement of MVO2 is not directly used, the flow can be conceived as the representative

of metabolic demand [116]. Therefore, the metabolic mechanism of flow regulation can be

written as

sm = −am(
q̂(MVO2)− qterm

qterm
), (4.9)

where q̂(MVO2) is the target flow as a function of the myocardial oxygen consumption, and

qterm is the flow rate at the terminal arterioles.

To write the integrated stimuli from the mechanisms, two following factors are considered.

First, the effectiveness of the mechanisms is different for arteries at different sizes. In partic-

ular, the myogenic reactivity is the highest in blood vessels with 100 µm diameter [102,135]

while the shear-dependent vasodilation becomes mostly blunted vessels smaller than 100

µm [118]. Meanwhile, the signal for metabolic response from different signaling pathways

(oxygen imbalance and/or adrenergic) is originated in capillaries and is conducted upstream

to precapillary arterioles [132]. The conducted response, however, decays exponentially so

that it mostly affects the arterioles. Second, the above-mentioned phenomenological equa-

tions only describe the stimuli when a deviation from homeostasis is occurred (i.e., stress con-

dition). However, smooth muscle cells maintain a basal tone under resting conditions [185].

This smooth muscle tone is expressed as a basal stimuli mediated by the control mechanisms.
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Considering these factors, we can express the total stimuli as

stotal = φp(r)(sp + s0p) + φτ (r)(sτ − s0τ ) + φm(r)(sm − s0m), (4.10)

where s0p, s0τ and s0m set the basal tone in SMCs at rest (s0 = φp(r)s0p + φτ (r)s0τ +

φm(r)s0m). Furthermore, φp, φτ , and φm are the weights representing the effectiveness of

each mechanism in the total stimulation (Fig. 4.1). These stimuli dictate the activation

in the SMC tone where full activation (A = 1) represents maximal constriction and zero

activation (A = 0) represent the full dilation. Following [132], a sigmoidal function is used

to convert the stimuli to the activation level

A =
1

1 + exp(−stotal)
. (4.11)

The modeling framework for the flow regulation starts with introducing a stimulus for au-

toregulation (change in pressure) or exercise (change in MVO2), and the simulations are

conducted in two nested loops. The inner loop determines the diameters (i.e., resistances)

and the outer loops computes the hemodynamics using Poiseuille flow and updates the ac-

tivation levels. The procedure is continued until convergence in flow and pressure (Fig.

4.2).

4.2.3 Model parameters

Hemodynamics - In this study, we perform the homeostatic optimization on two arterial

trees located downstream of the LAD, and inside the free wall of LV. Assuming that the

pressure drop in epicardial arteries is small, the inlet pressure is considered to be the same

as the aortic pressure 100 mmHg. Moreover, the outlet pressure at the terminal arterioles

is considered 55 mmHg [186]. The total ratio of subendocardial to subepicardial flow rates
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Figure 4.1: The effectiveness of each regulation mechanisms, based on the analyses of [113,
114,117,118,135].

(ENDO/EPI) is assumed to be ∼1.25 [97]. The prescribed intramyocardial pressures (pim)

are 47 and 13 mmHg imposed on subendocardial and subepicardial vessels, respectively.

Viscosity - Pries and colleagues [149] observed that the viscosity in the systemic vasculature

is dependent on the size of the vessel and the hematocrit level (HD). Particularly, the

variation of viscosity is more pronounced as the arteries and arterioles become smaller. In

our study, we prescribe the viscosity using the following in-vivo viscosity law given in [149]

C =
(
0.8 + exp(−0.07D)

)(
− 1 +

1

1 + 10−11D12

)
+

1

1 + 10−11D12
, (4.12)

hf =
(1−HD)C − 1

(1− 0.45)C − 1
, (4.13)

µ0.45 = 6 exp(−0.085D) + 3.2− 2.44 exp(−0.06D0.645), (4.14)

µvivo = µ0

(
1 + hf (µ0.45 − 1)(

D

(D − 1.1)
)2
)
(

D

(D − 1.1)
)2, (4.15)
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Figure 4.2: Schematic diagram illustrating the workflow of the simulations, with possible
extension to a closed-loop model. The inputs are the coronary pressure (pin) and MVO2. The
convergence defines the equilibrium state of the flow regulation. The feedback mechanism
(not included in the current study) relates the local flow regulation in coronaries to the
cardiac function; heart rate, cardiac output, etc.

Table 4.1: Model parameters for the homeostatic optimization

Parameter description Reference

Extended Murray’s law

Metabolic cost of collagen and SMC 1070 W/m3 [167]
Metabolic cost of blood supply 51.7 W/m3 [168]

Metabolic cost of active tension 0.00872 1/s [166]
Wall density 1060 kg/m3

Hemodynamics and geometry

Flow at the outlet arterioles (subendocardium) 0.002 mm3/s [116,187]
Inlet pressure 100 mmHg [86]
Pressure at the outlet arterioles 55 mmHg [186]
Hematocrit level (HD) 0.45 [135]
Blood density 1060 kg/m3

Plasma dynamic viscosity µ0 0.001 Pa.s [149]
Length-to-radius relation (LAD) L = 0.145D + 20 µm [24, 86]

where D is the anatomical diameter in micron, and µ0 is the viscosity of the blood plasma.
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Vascular wall properties - Similar to Chapter 3, the basal and tension dependent metabolic

cost of SMCs are adapted from energetic considerations of the vascular smooth muscle in

swine coronary arteries [167]. To estimate the constitutive parameters for each constituent

in the arterial wall, the vessel segments in the myocardial arterial trees are subdivided into

four classes: small arteries (D ≥ 190 µm), large arterioles (100 ≤ D < 190 µm), inter-

mediate arterioles (50 ≤ D < 100 µm), and small arterioles (D ≤ 50 µm), based on the

classifications in [102, 135]. In the biomechanical study of the microvasculature, two factors

must be considered; First, under physiological condition, the extracellular matrix compo-

nents in the arteriolar wall are in a state of compression whereas SMCs are contracted to

exert tone [112]. Moreover, a microscopic analysis of the mechanical structure of rabbit’s

arterioles has shown that the amount of SMCs gradually decrease from arterioles of 100µm

to 30µm [188]. Therefore, the intrinsic passive and active mechanical properties of the con-

stituents (i.e., collagen fibers, elastin, and SMCs) are assumed to be constant across all

four classes in the current study. Consequently, we estimate the mechanical properties, pre-

streches and mass fractions using the pressure-diameter relationships in [102, 135]. Figure

4.3 shows the diameter-pressure relationship for passive and fully-constricted representative

vessels in the myocardial layers. Furthermore, the mass fractions are estimated, as shown

in Fig. 4.4. The mechanical parameters are kept constant in the homeostatic optimization.

However, the basal activation level of the muscle tone (via parameter s0) is considered as a

variable which is used to match the vessel thickness-to-diameter ratio from the optimization

results with those reported in the literature [144].
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Figure 4.3: Solid circles show the passive behavior of the vessels, digitized from data in [135].
Open circles show the fully activated response of the arteries. Red dots are the estimated
response from fitted parameters. (R0: the radius at zero pressure)
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Table 4.2: Estimated constitutive parameters for the constrained mixture model of the
arteries

Parameter description

Passive material parameters c1 = 113.60 Pa/kg,
c2 = 333.70 Pa/kg, c3 = 4.64, αk = 0,±45◦, 90◦

c4 = 78.02 Pa/kg, c5 = 0.47

Active material parameters S0 = 2.45 Mpa, p0 = 70 mmHg, β = 2.1
λ0 = 0.5, λM = 1.7

Subendocardium pre-stretches (A,LA,IA,SA)* Geθ = Gez = (1.15, 1.12, 1.00, 0.96)
Gkh = (1.02, 0.99, 0.94, 0.9)
Gmh = (1.05, 1.05, 1.05, 1.02)

Subepicardium pre-stretches (A,LA,IA,SA)* Geθ = Gez = (1.22, 1.12, 1.06, 1.06)
Gkh = (1.05, 1.04, 0.97, 0.92)
Gmh = (1.05, 1.05, 1.05, 1.05)

*A: Arteries, LA: Large, IA: Intermediate, SA: Small arterioles.
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Figure 4.4: Estimated mass fractions for the arteries and arterioles of different layers. (A:
Small arteries, LA: Large, IA: Intermediate, SA: Small arterioles.)

4.3 Results and discussion

4.3.1 Baseline optimization

Figure 4.5 shows the diameter and radius exponent as results of the optimization. Suben-

docardial blood vessels appear to be larger than their subepicardial counterparts. This dif-
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Figure 4.5: The baseline optimization results plotted along with the generation number:
Left: diameter distribution; Right: radius exponent in daughter-to-parent radii relation
(Rξ

p = Rξ
d1 +Rξ

d2).

ference, consistent with experimental and simulation results from [88, 133], is due to higher

blood perfusion in the subendocardial layer. Furthermore, the optimization results in in-

creasing radius exponent ξ (2.5-2.7) with the generation number, for the blood vessels from

600 µm to 25 µm. The original Murray’s law predicted a cubic radius exponent. However,

several experimental studies on the morphometry of vascular trees have shown varying ξ

between 2 in larger vessels to near 3 in precapillary level [85, 86, 189, 189, 190]. Arts and

Reneman [182] studied the the scaling laws in dog’s coronary vasculature and showed an

exponent of 2.55 for the vessel distal segments with 400 µm diameter. Suwa and cowork-

ers [190] showed an exponent of 2.7 by analyzing different vasculature in several organs in

human body. Nevertheless, the radial exponent from our optimization result is consistent

with those experimental studies.

Figure 4.6 shows the structural and hemodynamics results of the optimization. The opti-

mization framework is able to capture the experimental thickness-to-diameter ratio ( [144])

by slight modification of the basal active tone (within 10% of the estimated activation). Top

left panel of Fig. 4.6 shows the performance of the optimization in this regard. Most of the

72



coronary vascular resistance is located in arterioles of smaller than 100 µm. This range seems

to be the constant across different organs and different species (Fig. 4.6). Similarly, Van-

Bavel and Spaan [191] showed that the pressure in the coronary microvasculature drops from

90 to 30 mmHg in the small vessels of 10-µm order. On the other hand, the wall shear stress

increases almost 4-fold in the arterioles, consistent with experimental studies. In particular,

Stepp and colleagues [118] analyzed τ in canine coronary microvasculature and observed that

arterioles of <160 µm have an elevated level of shear stress. In summary, the hemodynamics

results, wall shear stress and pressure, fit the available data on the microcirculatory system

in a quantitative and qualitative manner.

Furthermore, the bottom-right panel of Fig. 4.6 shows homeostatic circumferential stress,

which is computed from Laplace’s law (σh = ptmR
H

) where H is the in-vivo thickness. There-

fore, since the intramyocardial pressure is lower towards the epicardium (higher transmural

pressure), the subepicardial homeostatic stress is larger. Guo and Kassab [194] analyzed the

circumferential stress in the swine coronary arterial tree and reported the circumferential

stress in the range of 9.4-159 kPa for arteries of 9.8-3097 µm. Although we captured the

same trend, the values from our simulation do not completely match with those of their

study. This discrepancy may be attributed to the fact that their hemodynamics analysis

was conducted in an arrested heart where the vascular transmural is equal to the luminal

pressure (i.e., no intramyocardial pressure). In a more recent study, Choy and Kassab [145]

evaluated the medial and intimal thickness in coronary arterial trees and observed that the

thickness in subendocardial layer is lower than the thickness in subepicardial layer, which

leads to a higher diastolic circumferential stress (pim = 0). It is worth noting that the

aforementioned studies were conducted on vessels without a significant SMC tone.
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Figure 4.6: Homeostatic optimization results plotted against diameters: Top-left: wall
thickness-to-diameter ratio in unloaded configuration [144]; Top-right: mid-artery pres-
sure [86,186,192,193]; Bottom-left: homeostatic value of wall shear stress (τ) [118,135,186];
Bottom-right: homeostatic value of circumferential stress σh.

4.3.2 Autoregulation

Before presenting the results for the coronary flow regulation, it should be noted that the

outlet pressure prescribed in the homeostatic optimization is at the precapillary arterioles.

To enhance the fitting for the range of coronary flow in the arterial tree, we add lumped

parameters with constant resistance at the end of each arterial tree segment and prescribe the

venous pressure 20 mmHg as the outlet pressure boundary condition of the tree. To calibrate
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Table 4.3: Estimated control parameters for the autoregulatory response.

Parameter Subendocardial Subepicardial

ap 0.32 0.23
aτ 1.30 1.10
am 0.50 1.5
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Figure 4.7: Pressure-flow autoregulation in the combined trees compared to the collected
experimental data in [103]. The flow is normalized (q̄) against the flow at pin = 100 mmHg.

the controlling parameters, ap, aτ , and am, we used the pressure-flow autoregulation data

collected in [103]. The estimated controlling parameters are presented in Table 4.3.

Figure 4.7 shows the estimated autoregulatory response of the coronary vasculature as the

average of the response in subendocardial and subepicardial layers. Our model fits the

experimental observations capturing the essential features of the autoregulation in range of

inlet coronary pressures 70-140 mmHg. However, in the lower inlet pressures (20-50 mmHg)

the flow rate predictions are on average 20% lower than the experimental measurements.

In this range, the model predictions of pressure-flow curve is bounded by the fully dilated

(passive) response of the arteries. Thus, the scarcity in the range and number of available
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Figure 4.8: The predicted dependence of wall shear stress and activation on the mean inlet
pressure. Wall shear stress in each vessel is normalized (τ̄) against its value at pin = 100
mmHg.

data on pressure-diameter relationships could be a contributing factor in this discrepancy.

A detailed analysis of the hemodynamics of the arterial trees is necessary in understanding

the heterogeneous interaction between different mechanisms in the coronary flow autoreg-

ulation. Figure 4.8 shows the normalized wall shear stress (τ̄) and the activation level for

four vessels in the layers of the myocardium. Clearly, since the mechanism controlling the

shear is almost fully ineffective in the smallest vessels, wall shear stress does not show any

significant regulation in the small and intermediate arterioles [118]. The arteries, however,
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Figure 4.9: The effects of pressure reduction on coronary arterial microvessels compared to
the experimental observations on epicardial microvasculature in dogs [114].

exhibit notable of regulation of wall shear stress around the baseline pressure.

Activation levels (a marker of vasoconstriction) in the arterioles monotonically increase from

low to high inlet pressures. This is expected, since the myogenic and metabolic mechanisms

simultaneously play dominant roles in autoregulation [195,196]. Furthermore, the arterioles

of the subepicardial layer seem to be more sensitive to changes in pressure and show a greater

variability in the activation level. Alternatively, the activation level in large vessels remains

almost constant, exhibiting no significant response to changes in the coronary pressure.

To identify the location of the autoregulation in swine coronary arteries, two cases of pressure

reduction are considered. When the coronary pressure was mildly reduced, the vessels smaller

than 150 µm were dilated whereas the large vessels almost remained in their homeostatic

value. Moreover, the magnitude of dilation was intensified with severely reducing the inlet

pressure, pin = 38 mmHg, while the larger vessels showed some degree of constriction. Similar

results was observed in a study by Kanatsuka et al. [114] on the epicardial coronaries of dogs.

However, a direct quantitative comparison might not be accurate due to the interspecies

differences in the coronary physiology.
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Figure 4.10: Diameters as functions of pin for different vessels of subendocardial and subepi-
cardial layers.

It is worthy to note that the extravascular pressures acting on vessels embedded in the layers

of myocardium are significantly different (13-47 mmHg). Particularly, the subendocardial ptm

is negative in large parts of the arterial tree when pin is low. Consequently, the subendocardial

activation of the SMCs is delayed compared to the subepicardial layer. This discrepancy

between location of dilated diameters leads to an increase of ENDO/EPI in pin = 75 mmHg.

A dilation of the arterioles followed by a constriction has been observed in autoregulation of

other circulatory systems [109].

Alternatively, differential autoregulatory response of the arteries to a change in pressure are

analyzed in terms of ENDO/EPI (Fig. 4.11). Normal ENDO/EPI blood flow ratios have

been reported between 1.09 to 1.49 across different species [97]. The model, however, shows

that with a severe reduction of pressure (pin <60 mmHg), the ENDO/EPI ratio reduces to

below one. The inset in Fig. 4.11 shows a similar trend observed in the transmural analysis

of autoregulation in canine coronary circulation [197]. Similarly, the experiments by Ball and

Bache [198] showed a 50%-60% decrease in the ENDO/EPI ratio in canine LV as a result of

mild-severe obstructions in large coronary arteries.
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Figure 4.11: The predicted transmural distribution of the flow during pressure-flow autoreg-
ulation. The inset shows the observations in dogs, from [197].

4.3.3 Effects of adenosine and NO inhibitors

To evaluate the prediction capabilities of the model, administration of adenosine and inhi-

bition of NO production are parameterically modeled in this section (Fig. 4.12). Adenosine

is a metabolic vasodilator which mostly affects the downstream coronary microvessels [102].

The adenosine administration is modeled by setting the arteriolar activation to zero (A = 0).

Alternatively, the inhibition of NO is modeled via 1) almost full constriction of small arteries,

due to inhibition of shear-dependent vasodilation, and 2) utilization of the full vasodilatory

capacity in the arterioles. The former is justified by considering the fact that in the small

arteries, τ is the only mediator of vasodilation. The absence of this dependency (via inhibi-

tion of NO) leads to full SMC tone in small arteries. The latter, however, is justified by the

experimental observation in epicardial coronaries of dogs, in the work of Jones et al. [199]. In

fact, they observed that an inhibition of NO synthesis obstructs further dilation as a result of
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Figure 4.12: The effects of adenosine infusion and NO inhibition on coronary arterial mi-
crovessels compared to the experimental observations on epicardial microvasculature in
dogs [199].

adenosine administration. It is worthy to mention that infusion of such exogenous agents did

not significantly change the coronary pressure. Figure 4.12 shows a fair agreement between

our simulation results and the experimental observations. However, it should be noted that

our model relies on the data from swine myocardial vessels while the observations are from

canine epicardium.

4.4 Summary and conclusion

In this chapter, the homeostatic optimization framework of Chapter 2 was employed to

estimate the baseline characteristics of coronary arterial tree. Diverse experimental data of

swine coronaries were integrated to construct two arterial trees located in subendocardial

and subepicardial layers of the myocardium. Consequently, the estimated homeostatic state

of the arterial trees was used to construct a constrained mixture model for the coronary flow

regulation.

The implemented mechanical model was calibrated against pressure-diameter available data
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in the literature. Our parameter estimation indicated that upon the in-vivo level of SMC

tone, the collagen fibers and elastin are virtually in a compressed state in the coronary

arterioles. Moreover, the estimated mass fractions of the SMCs justify the heterogeneity

of the active response across the arterial tree. In addition, the relative myocardial depth

of blood vessels seems to be a contributing factor in establishing their baseline mechanical

properties.

Our computational predictions showed excellent congruity compared to the data from ob-

servations in the microcirculatory networks, both quantitatively and qualitatively. Previous

modeling efforts in coronary flow regulation were based on the ex-vivo observations of the

active responses of the arteries. The physiological flow regulation in the coronary vascula-

ture, however, greatly relies on the deviations from basal quantities such as pressure and

wall shear stress. Therefore, one of the contributions of our model is estimating the basal

conditions for the flow control mechanisms.

The constructed arterial trees were used to study the flow regulation, specifically pressure-

flow autoregulation in distal coronary arterial network. To the author’s knowledge, this is

the first implementation of a constrained mixture model to coronary arterial trees. This

implementation enhances the prediction capability for coronary flow regulation as well as

arterial function and vascular adaptation. This study illustrated that the model was capable

of capturing the essential flow-pressure relationship in the autoregulation of coronary arteries.

Furthermore, we were able to perform an differential analysis of the size-dependent and

transmural heterogeneity of the autoregulatory response. The model highlighted that the

autoregulation occurs mostly in the level of coronary arterioles whereas shear regulation is

dominant only at the level of arteries. In addition, we observed that the range of dilation

and constriction of vessels is a function of their relative depth within the myocardium.

Furthermore, we used computational simulations of adenosine infusion and inhibition of NO

production and compared the results with available experimental data.
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The present study has several limitations. First, the computational model is not yet fully val-

idated by well-controlled animal experiments. Particularly, the information on the pressure-

diameter relationship of vessels inside the myocardium is still scarce. In this study, we used

the relationships from epicardial and subepicardial vessels for parameter estimations of the

mechanical model. Moreover, the available pressure-diameter data extend to the vessels of

around 50 µm, while a great portion of the coronary vascular resistance resides in smaller

vessels (terminal arterioles). More data on arterioles smaller than 50 µm will enhance the

prediction capability of the model. In addition, we did not include the tethering of the arteri-

oles to the myocardium in our model. Although as proposed by Young et al. [200], the small

arterioles can freely constrict, the dilation of vessels might be limited by their tethering to

myocardium. Regardless, the two-way tethering of the myocardium and coronary arteries is

not fully understood, yet. Furthermore, our analysis is limited to the averaged steady state

of the vasculature, while the hemodynamics of the coronary arteries is highly dependent

on the systolic and diastolic phases. As a matter of fact, most of the subendocardial flow

has been shown to occur during the diastolic phase where the myocardial pressure vanishes.

While our analysis showed that an application of an analytical 1D theory (see Chapter 3) to

coronary hemodynamics is not physically realistic, the current model can be endowed with

a non-linear finite element model of the arterial tree to overcome this limitation. Lastly, an

open loop analysis of the metabolic regulation, as was done in this chapter, may obstruct

clear interpretation of the interaction of the mechanisms. Therefore, extending the regu-

lation model to include the closed-loop aspects of metabolic vasodilation will improve the

capabilities of the model and facilitate the physiological interpretations.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we described a novel computational framework for multiscale biome-

chanical modeling of vascular adaptations in arterial networks. The principle of minimum

metabolic energy consumption with local important mechanical homeostatic values was suc-

cessfully implemented in modeling the architecture of vascular networks. Such a model pro-

vides the general workflow of G&R in an arterial network and establishes a baseline which

is substantial in the G&R studies of the onset and progression of many vascular diseases.

The model developed in this dissertation constructs arterial trees via an extension of Murray’s

law which provides a tight coupling of the hemodynamics and the arterial wall mechanics.

Furthermore, each individual vessel in the network is endowed with a constrained mixture

model which paves the way for multiscale modeling of stress-mediated mass production

and removal during growth and remodeling of arterial trees. Our model relies heavily on

available data from the literature and provides a uniform framework in which data from

different studies (i.e., hemodynamics, morphometric, structural, etc.) are integrated in a
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biomechanically consistent manner. Moreover, since most the available data are recorded

in external environment, another novelty of our model is in predicting the in-vivo geometry

and properties of the vasculature which is difficult, if not impossible, to measure.

We have shown implementations of the framework to study mutliscale vascular phenomena.

The first application was to estimate the homeostatic baseline characteristics of pulmonary

arterial trees. The framework produced an estimation of important properties of the distal

vasculature such as homeostatic mass fractions, constituent-wise stresses, and steady state

hemodynamics. Such properties are essential in the study of stress-mediated growth and

remodeling of the distal vasculature, which is a prominent feature of the early stages of PAH.

We also illustrated the capability of the model in FSG simulation via a one-way coupling of

the results of homeostatic optimization with pulsatile hemodynamics. The equivalent input

impedance was also computed for the distal vessels which can be used for patient-specific

modelings of pulmonary arterial hemodynamics.

Second, we highlighted the versatility of the model by an implementation of the model to

study the of coronary flow regulation. We used two myocardial arterial sub-trees, distally

located to the LAD and inside the left ventricle. The myocardial-vascular interactions were

included in our model via consideration of average interstitial fluid pressure and myocyte

shortening. Furthermore, we utilized the passive and active pressure-diameter relations from

the literature to estimate the mechanical properties, mass fractions of constituents, the basal

activation level of smooth muscle cells, and baseline hemodynamics in coronary microvascu-

lature. The results of the baseline optimization demonstrated excellent consistency with the

data from the experimental studies. Furthermore, we used the established basal properties to

study the pressure-flow autoregulation of coronary arteries. Our model, consistent with ex-

perimental data on dogs, showed that the autoregulation mostly occurs in smaller arterioles.

Moreover, subendocardial vessels seem to reach full dilation in a larger inlet pressure when

compared to the subepicardial vessels. These analyses, coupled with experimental data, are
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crucial in identification of the myocardial ischemic susceptibility. We also illustrated the ca-

pability of the model in simulating the microvascular response to the introduction of dilatory

or constrictive agents.

Although specific limitations of the developed framework in pulmonary and coronary imple-

mentations has been already documented in Section 3.4 and 4.4, it is worthy to highlight a

few remarks on general limitations in the computational method that can be considered for

further investigation. First, the current study of optimization was operated using previous

references of smooth muscle cell metabolic costs, which did not take into account of the other

constituents. Therefore, a systematic parameter sensitivity study needs to be conducted to

distinguish the main sources of uncertainties in the modeling framework. Such analysis will

be crucial in calibration and validation of the model against experimental observations. Sec-

ond, the structure of the tree in this study is based on generations and bifurcations (inspired

by fractal tree idea in [69]) whereas experimental studies describe the morphometry of arterial

networks based on ordering methods (e.g., Strahler ordering method). This disparity may

hinder a global comparison of the morphometry of the generated tree with the experimental

studies. Our modeling framework, however, can be applied to the pre-constructed arterial

networks for diameter assignment and hemodynamics as indicated in the next section.

5.2 Future work

Additional experimental data on the structure of the proximal and distal vessels (i.e., thick-

ness and mass fractions of constituents), morphometry of the arterial trees, energetic con-

siderations of the vascular wall, etc. are required for validation and/or calibration of the

model. With more availability in human data, the framework can be implemented on arterial

networks which are representatives for human subjects, healthy or affected by disease.
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Morphometric studies on the structure of arterial networks were conducted on dissected vas-

culature where the properties of the arterial tissue might have altered (e.g., no vasoactive

tone). Therefore, the main limitation of such studies was their inability to predict the in-vivo

diameters of vessel segments whereas the presented framework is capable of model-based di-

ameter re-calibration in such analyses. This will greatly improve the current knowledge of

the microvascular networks and enhance the accuracy of modeling studies. Alternatively,

endowing our model with “volume-filling” or “avoidance” algorithms are other possible ex-

tension of the model that may be explored.

Womersley’s solution is capable of simulating the pulsatile hemodynamics in a physiologically

realistic manner. The main advantage of implementation of this theory is the computational

and algorithmic simplicity. Nonlinear finite element models, however, can enhance the me-

chanical analysis by including biomechanical complexities such as nonlinearity of the vascular

wall and/or extravascular forces (e.g., intramyocardial pressure). The results of the proposed

framework can be directly used in a non-linear 1D finite element model for detailed analysis

of pulsatile hemodynamics and extensions to FSG.

We established the homeostatic baseline for the pulmonary arterial network in Chapter

3. Consequently, our model enables us to study long-term pathological conditions in PAH

such as inflammation and proliferation of SMCs, remodeling of extracellular matrix etc.

Furthermore, the model facilitates in-silico experiments on introduction external stimuli

such as vasodilation (via NO inhalation [201]), elastase inhibition (via elafin [202]). Similarly,

the distal pathological conditions of the microvasculature in obstructive and non-obstructive

CAD can be studied. Alternatively, the model can be employed to study cardiac allograft

vasculopathy (CAV) where the distal remodeling is pronounced by endothelial dysfunction,

inflammation, and intimal thickening.

In closing, the main goal of this dissertation, to develop a framework to embed the G&R in

multiscale arterial networks, has been achieved. We anticipate that our framework paves the
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way for future studies of vascular G&R in characteristically multiscale problems. Utilization

of such computational models is substantial in understanding the onset and progression of

diseases and advancing new therapies for their management.
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APPENDIX A: Formulation of small on large theory

The theory of small deformations superimposed on large (namely ‘theory of small on large’

(SoL)) has been well formulated in 1950-60s [203–205]. Only recently, however, the SoL was

reformulated to link model the pulsatile deformations in vivo [5, 160]. This theoretical tool

hence serves as a useful tool to obtain a linearized response of wall during the cardiac cycle

without compromising important mechanical characteristics such as anisotropy and smooth

muscle tone. However, the prior formulation of SoL was still not fully understood in order

to provide a solid theoretical foundation in vascular mechanics. Particularly, the prior SoL

formulation adopted a Lagrange multiplier approach as many studies have regularly done

for biological continuum-mechanics problems. However, Baek and Srinivasa [206] illustrated

that constraints prescribed by the Lagrange multiplier could obscure the physical interpre-

tation of mathematical operations, for instance, when taking the second derivatives of the

energy functions for deriving bulk modulus and specific heat. Likewise, this Lagrange mul-

tiplier approach may impede a clear physical interpretation of SoL application on vascular

mechanics [207].

Preliminaries

Let the motion of a solid-like body B be represented by mappings χ of a particle from a

reference configuration κR(B) at time t,

x = χ(X, t), (A.1)

where X and x are position vectors with respect to the reference and current configurations.

Furthermore, we consider the body occupies a configuration κ0(B) with the position vector

x0 = χ(X, t0) which is characterized by a large deformation measured from the reference
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configuration. Thus, the deformations of the body consist of two consecutive parts: a small

displacement, u = u(x0, t), superimposed upon the large deformation. Therefore, the current

position of a particle can be written as

x = x0 + u(x0, t). (A.2)

Therefore, deformation gradients associated with mappings from the reference configuration

to the intermediate and current configurations are

Fo =
∂χ(X, t0)

∂X
, F =

∂χ(X, t)

∂X
. (A.3)

Similarly, for the small deformations we can define

F∗ =
∂x

∂x0

= I + H, H =
∂u

∂x0

, (A.4)

where

F = F∗Fo. (A.5)

In linear elasticity, the symmetric and skew-symmetric parts of H can be expressed as

ε∗ =
1

2

(
H + HT

)
, (A.6)

Ω∗ =
1

2

(
H−HT

)
, (A.7)

where ε and Ω∗ are the infinitesimal strain and infinitesimal rotation, respectively. The

Cauchy stress can be written in terms of the deformation gradient and the second Piola-
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Kirchhoff stress S with respect to the reference configuration

T = J−1FSFT , S = 2
∂W

∂C
, (A.8)

where J = det(F), and W is the stored strain energy function as a function of C = FTF.

The second Piola-Kirchhoff stress S∗ with respect to the intermediate configuration κ0(B)

can be expressed as

S∗ = Jo−1FoSFoT , (A.9)

where Jo = det(Fo). Using a push forward operation, the Cauchy stress can be written as

T = J∗−1F∗S∗F∗T , (A.10)

where J∗ = det(F∗) .

Let Cauchy stress in any convenient intermediate configuration be represented by To whereas

that in any current configuration be denoted as T. We can write the incremental stress as

∆T = T−To. Therefore, we are seeking an elasticity tensor connecting ∆T and the ε∗.

To derive an expression for the incremental stress response in the small deformation, we use

equations A.4 and A.10 to get the relation

T =
1

Jo
{det(I + H)}−1(I + H)Fo

(
So +

∂S

∂C

∣∣∣
Co

C∗
)
FoT (I + H)T , (A.11)

where the right Cauchy-Green tensor C∗ is defined as

C∗ = 2FoT ε∗Fo (A.12)
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Using the approximation {det(I + H)}−1 ≈ 1− tr(H) for small H and neglecting the higher

order terms will give

∆T = −tr(H)To + HTo + ToHT + Fo ∂S

∂C

∣∣∣
Co

C∗FoT (A.13)

= −tr(H)To + HTo + ToHT + 2Fo ∂S

∂C

∣∣∣
Co

FoT ε∗FoFoT (A.14)

Writing the last term in index notation gives

∆Tij = −HkkT
o
ij +HikT

o
kj + T oikHjk +

2

Jo
F o
iαF

o
jβF

o
lpF

o
mq

∂Sαβ
∂Cpq

∣∣∣
C=Co

ε∗lm. (A.15)

Inserting the second Piola-Kirchhoff from equation (A.8) gives

∆Tij = −HkkT
o
ij +HikT

o
kj + T oikHjk +

4

Jo
F o
iαF

o
jβF

o
lpF

o
mq

∂2W

∂Cαβ∂Cpq

∣∣∣
C=Co

ε∗lm. (A.16)

Using the decomposition in equations A.6 and A.7, the linearized stress response can be

written as

∆Tij = Cijklε∗kl +DijklΩ∗kl, (A.17)

where

Cijkl = −δklT oij + δikδmlT
o
mj + δjkδmlT

o
im +

4

Jo
F o
iαF

o
jβF

o
lpF

o
mq

∂2W

∂Cαβ∂Cpq

∣∣∣
C=Co

, (A.18)

Dijkl = δikδmlT
o
mj + δjkδmlT

o
im, (A.19)

Finite deformation mechanics of an artery

We assume the arterial wall to be compressible at first, and then incompressiblity is consid-

ered as a limit. To this aim, a compressibility term k(J − 1) is added to the strain energy
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of the artery given in (2.2.2). However, before re-introducing the constitutive relations,

let us expand the motion of the artery from a reference configuration to an intermediate

configuration as

Fo =


λr 0 0

0 λθ 0

0 0 λz

 ⇒ Co =


λ2
r 0 0

0 λ2
θ 0

0 0 λ2
z

 . (A.20)

We can re-write the strain energy per unit area as

w = M e
RΨe +

∑
k

Mk
RΨk +Mm

R (Ψm + Ψm
act) + k(J − 1)2, (A.21)

where J = det(F). Following the formulation in 2.2.2, the deformation gradient mapping

each constituent form its natural configuration to the intermediate configuration can be

written as

Feo = FoGe, Fko = FoGk, Fmo = FoGm, (A.22)

With regards to the relations

∂J

∂F
= J−1F−T , (A.23)

∂J

∂C
=
J

2
C−1, (A.24)

∂C−1
ij

∂Cpq
= −1

2

(
C−1
ip C

−1
jq + C−1

iq C
−1
jp

)
, (A.25)
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it can be shown that

∂w

∂Cij
= M e

R

∂Ψe

∂Cij
+
∑
k

Mk
R

∂Ψk

∂Cij
+Mm

R (
∂Ψm

∂Cij
+
∂Ψm

act

∂Cij
) +

(
kJ(J − 1)

)
C−1
ij , (A.26)

∂2w

∂Cij∂Cpq
= M e

R

∂2Ψe

∂Cij∂Cpq
+
∑
k

Mk
R

∂2Ψk

∂Cij∂Cpq
+Mm

R (
∂2Ψm

∂Cij∂Cpq
+

∂2Ψm
act

∂Cij∂Cpq
)

− 1

2

(
kJ(J − 1)

)(
C−1
ip C

−1
jq + C−1

iq C
−1
jp

)
+

1

2
kJ(2J − 1)C−1

pq C
−1
ij

(A.27)

The Cauchy stress in the intermediate configuration can be written as

To =
2

Jo
Fo ∂w

∂C

∣∣
C=Co

FoT , (A.28)

and, thus, from equation (A.26), we can write

T oij =
2

Jo
M e

RF
o
iαF

o
jβ

∂Ψe

∂Cαβ

∣∣
C=Co

+
2

Jo

∑
k

Mk
RF

o
iαF

o
jβ

∂Ψk

∂Cαβ

∣∣
C=Co

+
2

Jo
Mm

R F
o
iαF

o
jβ(

∂Ψm

∂Cαβ

∣∣
C=Co

+
∂Ψm

act

∂Cαβ

∣∣
C=Co

) + 2k(Jo − 1)δij

= T̂ oij + 2k(Jo − 1)δij.

(A.29)

For the sake of simplicity, we merge the first three terms of Eq. A.29 into T̂ oij, which denotes

the internal stress in the artery as a result of deformation. Similarly, Eq. (A.27) can be

written as

∂2w

∂Cij∂Cpq

∣∣
C=Co

= Ĉijpq −
1

2

(
kJ(J − 1)

)(
C−1
ip C

−1
jq + C−1

iq C
−1
jp

)
+

1

2
kJ(2J − 1)C−1

pq C
−1
ij ,

(A.30)

Ĉijpq = M e
R

∂2Ψe

∂Cij∂Cpq

∣∣
C=Co

+
∑
k

Mk
R

∂2Ψk

∂Cij∂Cpq

∣∣
C=Co

+Mm
R (

∂2Ψm

∂Cij∂Cpq

∣∣
C=Co

+
∂2Ψm

act

∂Cij∂Cpq

∣∣
C=Co

)

(A.31)
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Constitutive relations

The strain energy density function for the constituents of the arterial wall are given in Eqs.

2.11-2.13. Using these relations, equations (A.20), (A.22), and (A.29) and the chain rule, we

can write the stress components at the intermediate configuration as

T orr =
c1

Jo
M e

R(Ge
r)

2λ2
r + 2k(Jo − 1), (A.32)

T oθθ =
c1

Jo
M e

R(Ge
θ)

2λ2
θ +

c2

Jo

(∑
k

Mk
R(Gk

h)
2((λk)2 − 1) exp(c3(λk − 1)2) sin2(αk)

)
λ2
θ

+
c4

Jo

(
(Gm

h )2((λm)2 − 1) exp(c5(λk − 1)2)
)
λ2
θ +

1

Jo
S

ρ
Mm

R

(
1 +

(λM − λθ)2

(λM − λ0)2

)
λθ + 2k(Jo − 1),

(A.33)

T ozz =
c1

Jo
M e

R(Ge
z)

2λ2
z +

c2

Jo

(∑
k

Mk
R(Gk

h)
2((λk)2 − 1) exp(c3(λk − 1)2) cos2(αk)

)
λ2
z + 2k(Jo − 1).

(A.34)

For the inflation and extension of an artery, we assume that the rotational part Ω∗kl = 0.

Moreover, we assume the arterial wall to be an orthotropic material. Thus, the elasticity

tensor in Eq. A.18 can be written in Voight notation and the reference system of principal

direction

C =



Crrrr Crrθθ Crrzz 0 0 0

Cθθrr Cθθθθ Cθθzz 0 0 0

Czzrr Czzθθ Czzzz 0 0 0

0 0 0 Cθzθz 0 0

0 0 0 0 Crzrz 0

0 0 0 0 0 Crθrθ


=

C1 0

0 C2

 , (A.35)
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where the components of C1 can be expressed as

Crrrr = T orr + 2k,

Crrθθ = −T orr + 2k(2Jo − 1),

Crrzz = −T orr + 2k(2Jo − 1),

Cθθrr = −T oθθ + 2k(2Jo − 1),

Cθθθθ = T oθθ + 2k +
2

Jo
Aθθλ

4
θ

Cθθzz = −T oθθ + 2k(2Jo − 1) +
2

Jo
Aθzλ

2
θλ

2
z,

Czzrr = −T ozz + 2k(2Jo − 1),

Czzθθ = −T ozz + 2k(2Jo − 1) + +2k(2Jo − 1) +
2

Jo
Aθzλ

2
θλ

2
z

Czzzz = T ozz + 2k +
2

Jo
Azzλ

4
z

(A.36)

Aθθ = c2

∑
k

Mk
R(Gk

h)
4(2c3((λk)2 − 1)2 + 1) exp(c3((λk)2 − 1)2) sin4(αk)

+ c4

(
Mm

R (Gm
h )4(2c5((λm)2 − 1)2 + 1) exp(c5((λm)2 − 1)2) +

S

ρ
Mm

R

(λM − λθ)
λθ(λM − λ0)2

Aθz = c2

∑
k

Mk
R(Gk

h)
4(2c3((λk)2 − 1)2 + 1) exp(c3((λk)2 − 1)2) sin2(αk) cos2(αk)

Azz = c2

∑
k

Mk
R(Gk

h)
4(2c3((λk)2 − 1)2 + 1) exp(c3((λk)2 − 1)2) cos4(αk)

(A.37)

For simplicity, the terms related to collagen fibers and passive smooth muscle response in

equation A.36 are denoted as Aθθ, Aθz, and Azz, and the term corresponding the active tone

as Aact.

The elastic moduli Ei, Poisson ratios νij, and shear moduli µij can be obtained by finding
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the following inverse matrix

S =



1
Er

−νθr
Eθ
−νzr

Ez
0 0 0

−νrθ
Er

1
Eθ

−νzθ
Ez

0 0 0

−νrz
Er
−νθz

Eθ

1
Ez

0 0 0

0 0 0 1
2µθz

0 0

0 0 0 0 1
2µrz

0

0 0 0 0 0 1
2µrθ


=

C−1
1 0

0 C−1
2

 , (A.38)

Specifically, we can derive the following formulas for Young’s moduli

Er =
det(C1)

CθθθθCzzzz − CθθzzCzzθθ
, (A.39)

Eθ =
det(C1)

CrrrrCzzzz − CrrzzCzzrr
, (A.40)

Ez =
det(C1)

CθθθθCrrrr − CrrθθCθθrr
. (A.41)

Calculation of elastic modulus with the incompressibility constraint

as a limit

Now, let us again consider the inflation and extension of a straight segment of artery. We

assume that the artery can be modeled as a thin-walled cylinder, therefore, we approximate

T orr ≈ −P o/2 where P o is the inside pressure in the intermediate configuration. Moreover,

substituting Jo = det(Fo) into equation (A.32) gives

T orr =
c1

λrλθλz
M e

R(Ge
r)

2λ2
r − 2k(λrλθλz − 1) = −P

o

2
. (A.42)
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Solving this equation for λr gives

λr =
λθλz(4k − P o)

2(C1 + 2kλ2
θλ

2
z)

(A.43)

where C1 = c1M
e
R(Ge

r)
2 for the sake of brevity. Equation (A.43), thus, calculates the Jo

Jo =
λ2
θλ

2
z(4k − P o)

2(C1 + 2kλ2
θλ

2
z)
. (A.44)

Components of the elasticity tensor C show that the expressions for elastic moduli include

volume change ratio as well as the pre-stresses and pre-stretches.

The arterial wall is considered an incompressible material. The strain energy function

given in Eq. A.21, however, has a compressibility term k(J − 1)2 which vanishes when

an incompressible material is taken as a limit. In other words, the term k(J − 1) can be

treated as a penalty term for incompressible material. Clearly from Eq. (A.44), if we write

limk→∞ J
o = 1, we will achieve the incompressibility. Nevertheless, under such conditions,

the term k(J − 1) will remain an undetermined term. Specifying the boundary conditions

will facilitate finding this parameter. Specifically in the current application, the pressure P o,

and pre-stretches λθ and λz can be considered as boundary conditions. Thus, we can write

lim
k→∞

k(Jo − 1) = lim
k→∞

k(
λ2
θλ

2
z(4k − P o)

2(C1 + 2kλ2
θλ

2
z)
− 1), (A.45)

which brings an indeterminate form of ∞× 0. Using L’Hospital’s rule gives

lim
k→∞

k(Jo − 1) = −1

4
(

2C1

λ2
θλ

2
z

+ P o), (A.46)

which will bring the an undetermined term. Incorporating relation (A.46) into (A.39-A.41),

will give the effective elastic moduli and Poisson’s ratios in the three principal directions.
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Er =
(

2(−A2
θzλ

4
θλ

4
z + (3(2C1 + λ2

θλ
2
zP

o)2)/(4λ4
θλ

4
z)− 2Aθzλ

2
θλ

2
zT

o
rr + T orrT

o
θθ

+ Azzλ
4
z(T

o
rr + T oθθ) + (T orr + T oθθ)T

o
zz + Aθθλ

4
θ(Azzλ

4
z + T orr + T ozz)

+ ((2C1 + λ2
θλ

2
zP

o)(Aθθλ
4
θ − Aθzλ2

θλ
2
z + Azzλ

4
z + T orr + T oθθ + T ozz))/(λ

2
θλ

2
z))
)/

(
Aθθλ

4
θ + (2C1)/(λ2

θλ
2
z)− 2Aθzλ

2
θλ

2
z + Azzλ

4
z + P o + T oθθ + T ozz

)
(A.47)

Eθ =
(

2(−A2
θzλ

4
θλ

4
z + (3(2C1 + λ2

θλ
2
zP

o)2)/(4λ4
θλ

4
z)− 2Aθzλ

2
θλ

2
zT

o
rr + T orrT

o
θθ

+ Azzλ
4
z(T

o
rr + T oθθ) + (T orr + T oθθ)T

o
zz + Aθθλ

4
θ(Azzλ

4
z + T orr + T ozz)

+ ((2C1 + λ2
θλ

2
zP

o)(Aθθλ
4
θ − Aθzλ2

θλ
2
z + Azzλ

4
z + T orr + T oθθ + T ozz))/(λ

2
θλ

2
z))
)/

(
(2C1)/(λ2

θλ
2
z) + Azzλ

4
z + P o + T orr + T ozz

)
(A.48)

Ez =
(

2(−A2
θzλ

4
θλ

4
z + (3(2C1 + λ2

θλ
2
zP

o)2)/(4λ4
θλ

4
z)− 2Aθzλ

2
θλ

2
zT

o
rr + T orrT

o
θθ

+ Azzλ
4
z(T

o
rr + T oθθ) + (T orr + T oθθ)T

o
zz + Aθθλ

4
θ(Azzλ

4
z + T orr + T ozz)

+ ((2C1 + λ2
θλ

2
zP

o)(Aθθλ
4
θ − Aθzλ2

θλ
2
z + Azzλ

4
z + T orr + T oθθ + T ozz))/(λ

2
θλ

2
z))
)/

(
(2C1)/(λ2

θλ
2
z) + Aθθλ

4
θ + P o + T orr + T oθθ

)
(A.49)

ν12 =
2C1 + λ2

θλ
2
z(−2Aθzλ

2
θλ

2
z + 2Azzλ

4
z + P o + 2T ozz)

(4C1 + 2λ2
θl3

2(Aθθλ4
θ − 2Aθzλ2

θλ
2
z + Azzλ4

z + P o + T oθθ + T ozz)
(A.50)

ν21 =
2C1 + λ2

θλ
2
z(−2Aθzλ

2
θλ

2
z + 2Azzλ

4
z + P o + 2T ozz)

4C1 + 2λ2
θλ

2
z(Azzλ

4
z + P o + T orr + T ozz)

(A.51)

ν13 =
2C1 + λ2

θλ
2
z(2Aθθλ

4
θ − 2Aθzλ

2
θλ

2
z + P o + 2T oθθ)

4C1 + 2λ2
θλ

2
z(Aθθλ

4
θ − 2Aθzλ2

θλ
2
z + Azzλ4

z + P o + T oθθ + T ozz)
(A.52)

ν31 =
2C1 + λ2

θλ
2
z(2Aθθλ

4
θ − 2Aθzλ

2
θλ

2
z + P o + 2T oθθ)

4C1 + 2λ2
θλ

2
z(Aθθλ

4
θ + P o + T orr + T oθθ)

(A.53)

ν23 =
2C1 + λ2

θλ
2
z(2Aθzλ

2
θλ

2
z + P o + 3T orr − T oθθ)

4C1 + 2λ2
θλ

2
z(Azzλ

4
z + P o + T orr + T ozz)

(A.54)

ν32 =
2C1 + λ2

θλ
2
z(2Aθzλ

2
θλ

2
z + P o + 3T orr − T oθθ)

4C1 + 2λ2
θλ

2
z(Aθθλ

4
θ + P o + T orr + T oθθ)

(A.55)
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Calculation of elastic modulus with the incompressibility constraint

using a Lagrange multiplier

The method described above, expresses the problem using an incompressible material using

the k(J − 1) term in the constitutive relation. However, this condition could be relaxed by

allowing the material to be compressible but prescribing an isochoric motion. In the realm of

continuum mechanics, this motion is characterized by det(F ) = 1. However, this kinematical

constraint is expressed by adding the term −pI to the stress tensor, where the hydrostatic

pressure p is a Lagrange multiplier. Therefore, the Cauchy stress in Eq. A.8 can be written

as

T = −pI + FSFT , S = 2
∂w

∂C
, (A.56)

It is convenient to use T̂ = FSFT representing the stress as a result of deformation in the

material. Following Eqs. (A.9 to A.14), the stress can be written as

T = −pI + (I + H)Fo
(
So +

∂S

∂C

∣∣∣
Co

C∗
)
FoT (I + H)T , (A.57)

where p = po+p∗ are the Lagrange multipliers for the large (po) and small (p∗) deformations,

respectively. Finally, the incremental stress can be written as

∆Tij = −p∗δij +HikT̂
o
kj + T̂ oikHjk + 4F o

iαF
o
jβF

o
lpF

o
mq

∂2w

∂Cαβ∂Cpq

∣∣∣
C=Co

ε∗lm, (A.58)

= −p∗δij + C̄ijklε∗kl + D̄ijklΩ∗kl (A.59)
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where

C̄ijkl = δikT̂
o
lj + δjkT̂

o
il +

4

Jo
F o
iαF

o
jβF

o
lpF

o
mq

∂2w

∂Cαβ∂Cpq

∣∣∣
C=Co

, (A.60)

D̄ijkl = δikT̂
o
lj + δjkT̂

o
il. (A.61)

Now, we consider the example of inflation and extension of the artery. Following the previous

section, we consider the rotation to be negligible Ω∗ = 0. In addition, let us agains assume

that the strain energy function is given by Eq. (2.14). By the assumption of orthotropic

material, the stress components and the stiffness tensor is given as

T̂ orr = c1M
e
R(Ge

r)
2λ2

r, (A.62)

T̂ oθθ = c1M
e
R(Ge

θ)
2λ2

θ + c2

(∑
k

Mk
R(Gk

h)
2((λk)2 − 1) exp(c3(λk − 1)2) sin2(αk)

)
λ2
θ

+ c4

(
(Gm

h )2((λm)2 − 1) exp(c5(λk − 1)2)
)
λ2
θ +

S

ρ
Mm

R

(
1 +

(λM − λθ)2

(λM − λ0)2

)
λθ,

(A.63)

T̂ ozz = c1M
e
R(Ge

z)
2λ2

z + c2J
o
(∑

k

Mk
R(Gk

h)
2((λk)2 − 1) exp(c3(λk − 1)2) cos2(αk)

)
λ2
z. (A.64)

C̄rrrr = 2T̂ orr,

C̄rrθθ = 0,

C̄rrzz = 0,

C̄θθrr = 0,

C̄θθθθ = 2T̂ oθθ + 2Aθθλ
4
θ

C̄θθzz = 2Aθzλ
2
θλ

2
z,

C̄zzrr = 0,

C̄zzθθ = 2Aθzλ
2
θλ

2
z,

C̄zzzz = 2T̂ ozz + 2Azzλ
4
z.

(A.65)
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Directional Young’s modulus can be computed by considering a simple uniaxial stretch in the

desired direction. For instance, we consider the pre-stressed artery incurs a circumferential

incremental stress. Therefore, the linearized response can be written in the following reduced

form 
0

∆T

0

 =


−p∗

−p∗

−p∗

+


C̄rrrr 0 0

0 C̄θθθθ C̄θθzz

0 C̄zzθθ C̄zzzz



εrr

εθθ

εzz

 . (A.66)

Reordering the equations for the strains, we can write

εrr =
p∗

C̄rrrr
,

εzz =
p∗ − C̄θθzz
C̄zzzz

,

εθθ =
(
C̄θθθθ −

C̄2
θθzz

C̄zzzz
)−1(

∆T + p∗ − C̄θθzz
C̄zzzz

p∗
)

(A.67)

Because of incompressibility of the material, we can write εrr + εθθ + εzz = 0. Thus, using

this condition and the symmetries, the Lagrange multiplier can be computed as

p∗ =
C̄rrrr(C̄θθzz − C̄zzzz)

−C̄2
θθzz + C̄θθθθC̄zzzz + C̄rrrr(C̄θθθθ − 2C̄θθzz + C̄zzzz)

∆T. (A.68)

Substituting p∗ into equation A.67, gives the following linear relationship between stress and

strain

εθθ =
(C̄rrrr + C̄zzzz)

−C̄2
θθzz + C̄θθθθC̄zzzz + C̄rrrr(C̄θθθθ − 2C̄θθzz + C̄zzzz)

∆T. (A.69)

Therefore, the effective Young’s modulus can be written as

Ēθ =
−C̄2

θθzz + C̄θθθθC̄zzzz + C̄rrrr(C̄θθθθ − 2C̄θθzz + C̄zzzz)
C̄rrrr + C̄zzzz

(A.70)
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Figure A.1: Pressure versus radius during inflation at a fixed length. The linearized elastic
parameters were calculated at 90 mmHg.

Finally, inserting the corresponding terms from Eq. A.65

Ēθ =
(

2(−A2
θzλ

4
θλ

4
z − 2Aθzλ

2
θλ

2
zT̂

o
rr + Azzλ

4
zT̂

o
rr + Azzλ

4
zT̂

o
θθ + T̂ orrT̂

o
θθ (A.71)

+ T̂ orrT̂
o
zz + T̂ oθθT̂

o
zz + Aθθλ

4
θ(Azzλ

4
z + T̂ orr + T̂ ozz))

)/(
Azzλ

4
z + T̂ orr + T̂ ozz

)
(A.72)

Similarly, other directional Young’s moduli and Poisson’s ratios can be computed.

Computation of arterial modulus in vivo

For the purpose of illustration and validation of the presented linearization, the inflation at

a fixed length of an arterial segment from rabbit’s basilar artery is presented. The param-

eters are directly obtained from [160]. First, the finite elasticity solution to the inflation
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Figure A.2: Linearized parameters for different degrees of smooth muscle tone.

problem is found using the equilibrium for large deformations. Then, using the lineariza-

tion, pressure-radius relationship over approximately one cardiac cycle is computed based

on an intermediate state (at po = 90mmHg). Figure A.1 shows the discrepancy between the

linearization and the hyperelastic response of the artery.

Despite early advances in solving coupled fluid-solid problems [208], large scale computa-

tional problems remain challenging because of nonlinear material properties, the complex

wall geometry, and the pulsatility of the blood flow in large arteries. The proposed formu-

lation for the theory of small on large shows that by choosing an appropriate intermediate

configuration, the linearization gives the error in radius within ±1.32%. The stiffness of the

wall however can change due to alterations in pressure, smooth muscle tone, or microstruc-

ture (from growth and remodeling) [160]. To illustrate this point, the value basal tone (S)

in Eq. 2.18 is changed from 0 to 80 kPa. The circumferential and axial Young’s moduli are

plotted against normalized value of the basal tone in Fig. A.2.
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The calculations show that as the vasoconstriction increases, Young’s modulus decreases. A

similar prediction was made in [209] were this increase was attributed to transfer of the load

to more rigid elements (like collagen) in the arterial wall. Nevertheless, as mentioned the

estimation of in-vivo stiffness of the artery highly depends on the contents of the elastic wall

(mass fractions) as well as their deposition stretches and the artery’s homeostatic condition.
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APPENDIX B: Optimization and Steady state hemo-

dynamics of the arterial tree

In the present model, the whole arterial tree is assumed to have a binary tree structure.

Each vessel in the tree is modeled as a straight segment with steady laminar blood flow.

Thus, using Poiseuille flow in each segment, the pressure drop along the blood vessel can be

calculated as

∆ps =
8µl

πR4
qs = Z0(R)qs, (B.73)

where µ is the viscosity of blood, l is the length of the artery, and Z0(R) is the hydraulic

resistance. Note that the assumption of Poiseuille flow was used once in formulating Cdrag.

The bifurcation is assumed to occur at one point. The conservation of mass at the bifurcation

requires

qsp = qsd1 + qsd2 , (B.74)

and assuming that pressure is continuous over the bifurcation

psp = psd1 = psd2 , (B.75)

where subscripts p, d1, and d2 show the quantity at a parent and its daughter vessels,

respectively.

Before constructing the system of equations to solve the hemodynamics of the problem, we

need to index every bifurcation point in the arterial tree.

Figure B.3 shows a bifurcation point in the arterial tree structure. Index k defines the
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generation number of the parent vessel ranging from 1 to previous to last generation number

N−1. Alternatively, value of s shows the index of the bifurcation point across one generation,

therefore, ranging between 1 to the number of bifurcations in the kth generation. The

arrows on figure show the direction of the numbering. In addition, the segments are counted

successively, in accord with the fashion used for k and s. Therefore, the block of matrix

related to the bifurcation point [k, s] can be constructed as



2k+2s−3 2k+2s−2 2k+1+4s−5 2k+1+4s−4 2k+1+4s−3 2k+1+4s−2

3(2k−1+s−2)+1 1 0 −1 0 −1 0

3(2k−1+s−2)+2 0 1 −Z0(Rj+1) −1 0 0

3(2k−1+s−2)+3 0 1 0 0 −Z0(Rj) −1


×



qs(k,s)

ps(k,s)

qs(k+1,2s−1)

ps(k+1,2s−1)

qs(k+1,2s)

ps(k+1,2s)



=


0

0

0


(B.76)

where qs(k,s) is essentially the flow rate in the parent vessel at the bifurcation. The system

of equations (B.76) calculates flow rate and pressure at every location in the arterial tree

with prescription of appropriate boundary conditions (pressure and flow rate at the inlet

and outlets).

The cost function minimization, minC(R; p̄s, qs) in Eq. 2.30, at each individual vessel [k, s]

is solved together with the steady state hemodynamics acting on the entire tree (B.76).

Such minimization is implemented in the nested loop. At the external loop, for a current

tree geometry (i.e., given R and L) the tree hemodynamics ps and qs is resolved. Then for

current hemodynamics state (i.e., given ps and qs) in the internal loop, Newton-Raphson
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Figure B.3: Schematic of the bifurcation point [k, s] in the arterial tree.

method solved the optimization problem to update R at each vessel sequentially.
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APPENDIX C: Axisymmetric solution to pulsatile hemo-

dynamics in one vessel

Here we demonstrate the solution to the fast time (cardiac cycle) hemodynamics (velocity

v and pressure p) for axisymmetric in cylindrical coordinates (r, z, θ). Consider a cylindrical,

straight, long vessel with a wall described as elastic membrane with no torsion and rotation:

h << R << L with wall thickness h, lumen radius R, and vessel length L. The velocity

field can be decomposed to

vs = [0, vsz(z), 0],

vf = [vfr (r, z), vfz (r, z), 0],

(C.77)

where superscripts s and f denote the slow and fast time-scales, respectively. The boundary
conditions and constraints are

1. no-slip boundary condition near the wall: at r = R

vsz = 0,

vfr = ∂ufr
/
∂t,

vfz = ∂ufz
/
∂t.

(C.78)

2. finite velocity at r = 0.

The steady-state solution of the slow-time system can be described by Poiseuille velocity

and flow rate under linear pressure

vsz =
1

4µ

(
r2 −R2

) ∂ps
∂z

,

qs = −πR
4

8µ

∂ps

∂z
=
πR4∆ps

8µL
, ∆ps = ps(0)− ps(L).

(C.79)
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Next, we first consider the long wave approximation for pulsatile flow: c/ω >> R and c >>

vfz >> vfr , where c is the pulse wave propagation speed and ω is angular frequency. Second,

we consider the artery to be longitudinally constrained with the pressure and wall shear stress

acting as fast-time body forces, as proposed by [210]. Finally, we use an orthotropic relation

for the membrane stiffness. Therefore, using the analytical solution presented in [208, 210],

we can drive the hemodynamics solution of perturbation fields at each given frequency ω

pf = Peiω(t−z/c), qf = Qeiω(t−z/c) Q =
πR2P

cρfluid
(1− g) ,

vfr =
iPωR

2c2ρfluid

(
r

R
− J1 (Λr/R)

ΛJ0 (Λ)

)
eiω(t−z/c),

vfz =
P

cρfluid

(
1− J0 (Λr/R)

ΛJ0 (Λ)

)
eiω(t−z/c),

ufr =
PR

2c2ρfluid
(1− g) eiω(t−z/c), ufz = 0,

(C.80)

with the Bessel functions of the first kind J0, J1, g = 2J1(Λ)/(ΛJ0(Λ)), Λ = i3/2α, and the

Womersley number

α = R
√
ωρfluid/µ. (C.81)

The wave propagation speed c (i.e., pulse wave velocity) is a clinically important cardiovas-

cular metric, used to infer the vascular wall stiffness [165]. The pulse wave velocity for the

longitudinally tethered vessel wall motion can be expressed as

c =

√
(1− g)hAθθ|ps

2Rρfluid
. (C.82)

Since the vessel wall is longitudinally constrained, the main stiffness contribution to the wave

propagation equations comes from the circumferential component of the stiffness matrix, Aθθ

which is linearized at current steady pressure ps (see Chapter 2 for more detail). The total

pressure and flow rate at time domain are obtained by applying Fourier series for solution
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(C.80) with Pn and Qn at multiple frequencies ωn = 2πn/T , and using slow-time solution

(C.79) at zero-frequency

p = ps + Re

(
∞∑
n=1

Pne
iωn(t−z/cn)

)
, q = qs + Re

(
∞∑
n=1

Qne
iωn(t−z/cn)

)
, (C.83)

where real values of oscillatory pressure and flow rate are taken. Furthermore, we compute

the characteristic impedance Zc(ω) [165] in frequency domain, using Womersley’s solution

(C.80), and hydraulic resistance using Poiseuille flow (C.79)

Zc(ω) =
P

Q
=

cρfluid
πR2 (1− g)

=
1

πR2

√
hρfluidAθθ|ps

2R(1− g)
. (C.84)

Similarly we also compute the input impedance Zinp(ω) = P/Q|z=0 and terminal impedance

ZT (ω) = P/Q|z=L. The pressure-flow relation in time domain (here at vessel end) can be

expressed via convolution integral of terminal impedance and flow as

p(L, t) =
1

T

∫ t

t−T
q(L, t1)zT (L, t− t1)dt1, (C.85)

which can be used as outflow impedance boundary condition for patient-specific geometries

[211].
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APPENDIX D: Recursive algorithms: fast-time hemo-

dynamics

Here we present the recursive algorithm that for a given tree geometry and discrete frequency
computes the impedance at each bifurcation from the bottom to the top for using equations
(3.3-3.6).

Algorithm 1

Fast-time: Step I (backward):

Given: ρfluid, µ, h, T,

R[k, s], L[k, s],Aθθ[k, s] = Aθθ|ps[k,s], s = 1, ..2k−1,

Zinp
n [N, s], s = 1, · · · 2N−1

Find Zinp
n [k, s] for k < N and s = 1, · · · 2k−1

for k = (N − 1) : −1 : 1

for s = 1 : 2k−1

{gn, cn}[k, s]= WomersleyOneVessel(ρfluid, µ, h, T,R[k, s],Aθθ[k, s])

ZT
n [k, s] =

Zinp
n [k + 1, 2s] · Zinp

n [k + 1, 2s− 1]

Zinp
n [k + 1, 2s] + Zinp

n [k + 1, 2s− 1]
terminal impedance)

Zc
n[k, s] =

ρfluidcn[k, s]

πR2[k, s] (1− gn[k, s])
(characteristic impedance)

Γn[k, s] =
ZT
n [k, s]− Zc

n[k, s]

ZT
n [k, s] + Zc

n[k, s]
(reflection coefficient)

Zinp
n [k, s] = Zc

n[k, s]
1 + Γn[k, s]e−iωn2L[k,s]/cn[k,s]

1− Γn[k, s]e−iωn2L[k,s]/cn[k,s]
(input impedance)

end

end

The pulsatile hemodynamics can be reconstructed from the top to the bottom. The com-
ponents of the fast-time terminal pressure P n

T and input flow Qn
inp in frequency domain are

found using Eq. 3.4. Without loss of generality, here the input pressure is given

Algorithm 2:
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Fast - time: Step II (forward)

Given P n
inp[1, 1]

at vessel [k, s] : R,L, cn,Γn, Z
c
n, Z

inp
n

Find P n
T [k, s], Qn

inp[k, s]

fork = 1 : N

for s = 1 : 2k−1

s̄ = round(s/2)

P n
inp[k, s] = P n

T [k − 1, s̄] for k > 1

Qn
inp[k, s] = P n

inp[k, s]
/
Zinp
n [k, s]

Hn
forw = P n

inp[k, s]
/(

1 + Γn[k, s]e−i2ωnL[k,s]/cn[k,s]
)

P n
T [k, s] = Hn

forwe
−iωnL/cn[k,s] (1 + Γn[k, s])

end

end
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