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ABSTRACT

KNOT CONCORDANCES IN 3-MANIFOLDS

By

Eylem Zeliha Yıldız

We deal with some questions regarding concordance of knots in arbitrary closed 3-manifolds. We

first prove that, any non-trivial element in the fundamental group of a closed, oriented 3-manifold

gives rise to infinitely many distinct smooth almost-concordance classes in the free homotopy class

of the unknot. In particular, we consider these distinct smooth almost-concordance classes on the

boundary of a Mazur manifold and we show none of these distinct classes bounds a PL-disk in the

Mazur manifold. On the other hand, all the representatives we construct are topologically slice. We

also prove that all knots in the free homotopy class of S1 × pt in S1 × S2 are smoothly concordant.



To the Gökova Geometry Topology Conferences.
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CHAPTER 1

INTRODUCTION

1.1 Overview

This thesis is focused on understanding different notions of knot concordance (topological concor-

dance, PL-concordance, and smooth concordance) in general 3-manifolds, and classifying knots in

terms of concordance.

Knot concordance and the resulting knot concordance group were first studied by Fox and Milnor

[FM66] in the context of classical knot theory; that is, the theory of embeddings of a circle S1

into S3. Although the definition of concordance extends naturally to arbitrary 3-manifolds, several

important differences arise when working in this broader setting, and until recently little systematic

work had been conducted in this vein. Motivation for the development of concordance theory in a

broader context is well motivated by a swath of beautiful applications of the classical case to the

difficult subject of 4-manifolds. For instance, many constructions of exotic copies of R4 and the

recent construction of Akbulut-Ruberman type of absolutely exotic compact 4-manifolds [AR16]

rely on concordance in a fundamental way.

Concordance is an equivalence relation on knots in a 3-manifold. Specializing to the particular case

of knots in S3 leads to interesting further structure: concordance classes of knots in S3 forms an

abelian group under the operation induced by connected sum. This latter structure does not extend

to concordance classes in a general 3-manifold; indeed, the connected sum operation changes the

ambient manifold. There is, however, an action of the concordance group of knots in S3 on the

set of concordances classes of knots in an arbitrary 3-manifold given by connected sum. This

action was studied by Celoria [Cel18], where he introduced the terminology almost-concordance

to denote the quotient of the set of concordance classes of knots in Y by this action. Shortly after

the notion of almost-concordance had been introduced, it was noticed that Almost-concordance
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and PL-concordance are equivalent definitions. In this thesis, we investigate natural classification

problems for knots in 3-manifolds up to concordance and almost-concordance. We attack these

problems with a two-pronged approach (1) by constructing concordances in 4-manifolds and (2)

by finding obstruction to smooth or PL-surfaces in 4-manifolds using topological techniques.

1.2 Results and methods

Zeeman conjectured that there exists a contractible 4-manifold W4 and a loop α ∈ ∂W such that

α doesn’t bound an embedded PL-disc in W [Zee63]. Akbulut verified the conjecture in [Akb91]

using gauge theory. As a consequence of his theorem, we have a 3-manifold which is ∂W and a

loop in ∂W which can’t be almost-concordant to the unknot. Inspired by this work, we are able

construct an infinite family of knots as in Figure 1.1, in the free homotopy class of the unknot with

the same property. Furthermore we show that all these knots αn bound a locally flat topologically

embedded disk in the contractible ball W4 by combining Freedman’s result with a calculation of

Alexander polynomials of knots.

Theorem 1.2.1 ([Yil18]). There is a contractable 4-manifold W4 and family of knots {αn |n ∈ Z+}

in the boundary manifold ∂W , such that, αn doesn’t bound a PL-disk, but bounds a locally flat

topological disk in W4.

0

αn

. . .

Figure 1.1 W4
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Next we are interested to distinguish these knots in terms of almost concordances. A particular

concordance invariant introduced by Schneiderman [Sch03], denoted µ, stands out as a candidate

tool for this question; indeed, µ applies to knots in arbitrary closed 3-manifolds and vanishes on

knots in S3. This invariant arises from a nice application of Wall’s intersection number [WR99],

lying in a quotient of the group ring on the fundamental group of a 4-manifold. The invariant is a

perfect candidate to investigate almost-concordance and indeed we prove that it is an invariant of

almost-concordance. This allows us to prove

Theorem 1.2.2 ([Yil18]). Given a closed 3-manifold Y , any non-trivial element g ∈ π1(Y ) can be

used to construct infinitely many distinct almost-concordance classes in the free homotopy class

of the unknot. If h < {g, g−1}, then the almost-concordance classes constructed using g and h are

disjoint.

Using Theorem 1.2.2 we can distinguish all αn’s in Figure 1.1 in terms of almost-concordance.

A similar result to Theorem 1.2.2 was obtained for lens spaces L(p, 1) by Celoria [Cel18] using

shifted τ-invariant coming from Heegaard Floer theory. His paper was the motivation for the work

in [Yil18].

It is worth remarking that this theorem does not say anything about whether a knot in the boundary

3-manifold bounds a PL-disk in the 4-manifold or not. The theorem shows that the trivial homotopy

class is represented by non-trivial almost-concordance classes in any closed 3-manifold (except for

the 3-sphere). This raises a natural question. Can we find a 3-manifold with a free homotopy class

that is represented by a unique knot, up to almost-concordance? The following theorem provides a

positive answer.

Theorem 1.2.3 ([Yil18]). All knots in the free homotopy class of S1× {pt} in S1× S2 are smoothly

concordant, i.e., |Cx (S1 × S2) | = 1 where x represents S1 × {pt} in S1 × S2.

We give a constructive proof to the Theorem 1.2.3. We introduce a genus zero cobordism move

and we use handlebody techniques for the construction.

Theorem 1.2.2 and Theorem 1.2.3 are also obtained in [FNOP19] in the topological category.
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CHAPTER 2

PRELIMINARIES

2.1 Definitions, conventions, and notations

We consider manifolds that are smooth and oriented. Let Y be a closed, connected, oriented 3-

manifold. A knot k inY is an isotopy class of a smooth embedding S1 ↪→ Y . Two knots k1 and k2 are

said to be concordant if there is a smooth proper embedding of an annulusF : S1×[0, 1] ↪→ Y×[0, 1],

such that its boundary is ∂F (S1 × [0, 1]) = (−k1) × {0} ∪ k2 × {1} where (−k1) is the same knot k1

with the reversed orientation. If we allow F to have only finitely many singular points, all of which

are cones over knots, then k1 and k2 are called PL-concordant. We call these knots singularly

concordant if we allow F to be an immersion instead of an embedding. Two knots are singularly

concordant if and only if they are freely homotopic. One can see this fact by using the Immersion

Theorems and general position arguments (these can be found in [Hir12]) on the trace of homotopy.

Concordance is an equivalence relation “∼” on the set of oriented knots inY . The set of equivalence

classes is denoted by;

C(Y ) = {Oriented knots in Y}/ ∼ .

Concordant knots k1 and k2 are freely homotopic, hence they are homologous. In [Cel18] Daniele

Celoria defines the concept of almost-concordance of knots. Two knots k1 and k2 in Y are said

to be almost-concordant if there are k
′

1, k
′

2 ⊂ S3 such that k1#k
′

1 ∼ k2#k
′

2, and this is expressed

by k1∼̇k2. Like concordance, almost-concordance is an equivalence relation, and it implies free

homotopy of knots.

4



We denote almost-concordance classes by C̃(Y ). More generally;

Cγ (Y ) := Kγ (Y )/ ∼, C̃γ (Y ) := Kγ (Y )/∼̇,

where Kγ (Y ) is the set of knots in free homotopy class γ in Y .

A knot k ∈ Y3 = ∂W4 is called topologically slice if it bounds a locally flat topologically embedded

disk D in the 4-manifold W4. It is called smoothly slice if D is smoothly embedded, and PL slice

if D is a smooth embedding away from finitely many cone singularities.

2.2 Wall’s Self Intersection Number,
and a Concordance Invariant

There aremany approaches to the knot concordance problem; herewe focus on a classical technique.

This technique is based onWall’s intersection number [WR99]. The application of this idea to knot

concordance was studied in [Sch03] by Schneiderman.

Let k be a null-homotopic knot in Y ; consider a singular concordance of k to the unknot u. After

capping the unknot with a disk, we get a proper immersion of a disk D # Y × I with k = ∂D. Let p

be a transverse self-intersection of the immersion D; then any small neighbourhood of p looks like

two surfaces intersecting at p. These surfaces are called sheets. The self-intersection number of k,

defined as Wall’s self intersection number of D, takes its value in the group ring Z[π1Y ]. To define

this self-intersection number we first fix a path from the basepoint y0 of Y × I to a basepoint of the

immersed disk D, called a whisker of D. Now gp ∈ π1(Y, y0) is defined in the following way: it is

a loop starting from y0 going to the basepoint of D using the whisker, then to the self-intersection

point p of D, then changing the sheet at the intersection point, going back to the basepoint of D,

and finally to y0 using the whisker. Then

µ(k) := µ(D) =
∑

p
sign(p) · gp ∈ Z[π1Y ].
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Since D is simply connected, the loop gp does not depend on the path we choose while travelling on

D as long as it stays away from self-intersection points. The value of sign(p) is +1 if the orientation

of Y × I at p matches with the orientation induced from sheets of D at p, and it is −1 otherwise.

After fixing the whisker there is still an indeterminacy coming from the choice of the first sheet.

Altering this choice changes the loop from gp to g−1
p . Also, self-intersection points coming from

cusp homotopies give elements which are trivial in π1(Y ). Since we are interested in a homotopy

invariant, we also quotient out these elements, arriving at the abelian group

Λ̃ :=
Z[π1Y ]

{g − g−1 | g ∈ π1(Y )} ⊕ Z[1]
.

Here Z[1] is the abelian subgroup generated by the trivial element of π1(Y ). Homotopy invariance

in the above discussion follows from the following two Propositions.

Proposition 2.2.1 (Chapter 1.6 of [FQ14]). A homotopy between immersions of a surface in a

4−manifold is homotopic to a composition of homotopies, each of which is a regular homotopy or

a cusp homotopy in some ball, or the inverse of a cusp homotopy.

Proposition 2.2.2 (Chapter 1.7 of [FQ14]). Intersection numbers and reduced self intersection

numbers in Λ̃ are invariant under homotopy rel boundary. The Z[1] component of the self intersec-

tion number is invariant under regular homotopy, and conversely two immersions of a sphere or disk

which are homotopic rel boundary, and have the same framed boundary, are regularly homotopic

rel boundary if and only if the Z[1] components of the self intersection numbers are equal.

Now we state and prove Schneiderman’s knot concordance invariant.

Theorem 2.2.3 ([Sch03]). The map

µ : C1(Y ) → Λ̃

k 7→ µ(k)

is well defined and onto.
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Proof. We recall the proof from [Sch03].

Well Defined Let D and D
′
be singular null-concordances of a knot k, taking a singular sphere

S = D ∪
k

D
′
⊂ Y × I gives S ∈ π2(Y × I) � π2(Y ). By [Hat00] Proposition 3.12, there exists

a disjoint collection of embedded 2-spheres generating π2(Y ) as a π1(Y )−module. Tubing these

generators together in Y × I we get an embedded sphere in Y × I. This implies

µ(S) = 0 = µ(D) − µ(D
′
),

therefore µ(k) doesn’t depend on D.

Concordance Invariance If k1, k2 ∈ C1(Y ) and k1 ∼ k2 then µ(k2) = µ(C ∪ D) = µ(D) = µ(k1)

where C is a concordance from k1 to k2, and D is the singular concordance of k1.

Surjectivity To construct ±g ∈ Z[π1(Y )] start with an unknot u and push an arc from u around a

loop representing g ∈ π1(Y ) and create a ± clasp as in Figure 2.1. Iterating this process one can

get any desired element in Z[π1(Y )] via connected summing of such knots. �

g

u k

Figure 2.1 µ(k) = g
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CHAPTER 3

PROOF OF THEOREM 1.2.1

3.1 PL-Slice

The notion of almost-concordance is same as the PL-concordance in Y × I. Indeed, if k1 and k2

are PL-concordant then we may assume, without loss of generality that the concordance has only

one singular point which locally looks like a cone over a knot k. It is easy to see k1#(−k) is

smoothly concordant to k2 by removing a ball around the cone point and connecting two boundary

components by removing a neighbourhood of an arc lying on the concordance connecting k1 to k.

On the other hand if we have an almost concordance between k1 and k2 i.e., k1#k′1 is concordant

to k2#k′2, then push the local knots inside the 4-manifold and take the cone over the knots in some

local ball to get a PL-concordance. This tells us the family of knots we construct in Example 1 in

particular in Figure 4.2 can not bound a PL-disk in the collar of the manifold. It can still, however,

bound in a 4-manifold which Y bounds.

Next we see that none of these family members {αn} in Figure 3.1 bounds a PL-disk in the Mazur

manifold W4.

0

αn

. . .

0

βn

. . .

∂
'

Figure 3.1 Boundary diffeomorphism
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Herewe useAkbulut’s techniques [Akb16]. Observe thatW4 is a Stein domain by [Eli90]. Consider

the boundary diffeomorphism which takes αn to βn as in Figure 3.1, using 0 ↔ • exchange and

symmetry of the link surgery diagram of Mazur manifold. The knot βn is smoothly slice. To see

that αn is not slice we use the adjunction inequality as in [AM97]. Let F ⊂ W4 be a properly

embedded oriented surface in a Stein domain, such that k = ∂F ⊂ ∂W4 is a Legendrian knot with

respect to the induced contact structure.

Let f denote the framing of k induced from the trivialization of the normal bundle of F; then

−χ(F) ≥ (tb(k) − f ) + |rot(k) |.

Recall that the rotation number rot(k), and the Thurston-Bennequin number tb(k) are given by the

formulae

rot(k) =
1
2

(number of “downward” cusps − number of “upward” cusps),

tb(k) = bb(k) − c(k),

where bb(k) is the blackboard framing (or writhe) of the front projection of k, and c(k) is the

number of right cusps.

Assume the curve αn is slice, so χ(F) = 1. By Figure 3.2, tb(αn) = 2n − (2n − 1) = 1, and

rot(αn) = 0. The framing is f = 0. We have a contradiction: −1 ≥ 1, hence αn is not slice.

g n full twist

0

αn

Figure 3.2 Stein handlebody of W4

The same argument as in [[Akb91], Theorem 1] shows αn does not bound a PL-disk in W4.

9



3.2 Topologically Slice

Here we show that the family of knots that we constructed in the previous example are all topo-

logically slice and therefore they are all distinct elements in the almost-concordance class of

topologically slice knots on the boundary of the Mazur manifold.

A knot k in a homology sphere Y has well-defined Alexander polynomial ∆k (t) ∈ Z
[
t±

]
. Let F

be a Seifert surface of k in Y and X be the knot complement. Then

∆k (t) := det(tS − ST ),

where S is an associated Seifert matrix of the bilinear form η

η : H1(F;Z) × H1(F;Z) → Z,

η(α, β) = lk (α+, β).

We adopt the convention that α+ ∈ H1(X − F) is the image of α ∈ H1(F) via pushing α in the

positive normal direction of F. As is seen in Figure 3.3, the Seifert surface F of kn links the

0−framed knot. One of its generators x links that knot. In this case lk (x+, x) is not a direct

calculation, since we have to find a Seifert surface Fx ( or Fx+) of x (or x+) to calculate lk (x+, x).

On the other hand, using the lemma below we can calculate the Seifert matrix easily.

Lemma 3.2.1 (Lemma 7.13 of [Sav12]). Let k ∪ l be a boundary link (i.e., knots k and l bound

disjoint Seifert surfaces) in a homology sphere Y , and Y ′ is a ±1 surgery of Y along k. Then

∆l⊂Y (t) = ∆l′⊂Y′(t), where l′ ⊂ Y ′ is the image of l ⊂ Y under the surgery.

Since α and kn have disjoint Seifert surfaces, see —Figure 3.3, left —we perform −1 surgery on α,

and after some isotopy of kn we get the right diagram. Therefore for the Seifert matrix S =
*..
,

0 1

0 n

+//
-

we have the corresponding Alexander polynomial

∆kn⊂Y (t) = det
(
tS − ST

)
= t=̇1.

Thanks to Freedman and Quinn’s [FQ14] Theorem 11.7B these knots are all topologically slice.
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0

0

. . .

α

-n twist

⊂ S3

kn

Figure 3.3 Alexander polynomial in homology sphere
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CHAPTER 4

PROOF OF THEOREM 1.2.2

Lemma 4.0.1. For any knots k ∈ K1(Y ), k
′
⊂ S3 we have

µ(k#k
′
) = µ(k).

This implies that µ : C̃1(Y ) → Λ̃ is well defined and onto.

Proof. We will construct a singular disk which will give us the desired result. By definition, k

bounds a proper immersion of a disk D ⊂ Y × I, and similarly k
′
bounds D

′
⊂ S3 × I. Any band

sum D#
b
D
′
where the interior of b is away from k and k

′
gives a proper immersion of a disk in

Y × I bounded by k#k
′
. Take the base point and the whisker of D as a base point and a whisker for

D#
b
D
′
so

µ(D#
b
D
′
) = µ(D) + βµ(D

′
) β−1,

where β ∈ π1(Y ) is determined by the band b and the whisker. On the other hand π1(S3) = 1 and

D
′
lies entirely in S3 × I therefore βµ(D

′
) β−1 = 0 ∈ Λ̃ hence

µ(D#
b
D
′
) = µ(D) , and µ(k#

b
k
′
) = µ(k). �

This implies that Schneiderman’s concordance invariant µ is also an almost-concordance invariant

on freely null-homotopic knots.

Proof of Theorem 1.2.2. By Theorem 2.2.3 and Lemma 4.0.1, µ : C̃1(Y ) → Λ̃ is well defined, onto,

and is an almost-concordance invariant on null-homotopic knots. For every non-trivial element

g ∈ π1(Y ) the target space Λ̃ contains a subgroup isomorphic to Z generated by g. �

Example 1. Let W4 be a Mazur manifold as in Figure 4.1. There are various ways to see that the

boundary is not the 3-sphere. Its fundamental group is known to be non-trivial [Lau79].
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0

γ

0

γ

∂
'

0
γ

xy

b
c

d

f

α

e

Figure 4.1 A homology sphere, Wirtinger presentation

The Wirtinger presentation gives 9 generators and 11 relations. Notice that last two relations come

from the 0-surgeries.

π1(Y ) = { γ, x, y, α, b, c, d, e, f | γαγ−1b−1(1), γ f γ−1α−1(2), γe−1γ−1d(3),

dyd−1γ−1(4), αyα−1x−1(5), bxb−1γ−1(6),

bαc−1α−1(7), f d f −1c−1(8), df d−1e−1(9),

dα−1b−1(10), γ−1α f γdγ−1α−3(11) }.

Using the relations 1, 2, 3, 4, 5, 6, 7, and 10 we can easily eliminate b, c, d, e, f , and x as

(1) b = γαγ−1, (2) f = γ−1αγ, (10) d = γαγ−1α, (3) e = αγ−1αγ, (4) y = α−1γα−1γαγ−1α,

(5) x = γα−1γαγ−1, (6) x = γα−1γαγ−1, (7) c = α−1γαγ−1α.

(8) and (9) give the same relation which is γ2αγ−1αγ−1α−1γα−1γα−1γ−1αγ−1α = 1, and (11)

is γ−1αγ−1αγ3αγ−1αγ−1α−3 = 1.

We describe the fundamental group:

π1(Y ) = { γ, α | γ2αγ−1αγ−1α−1γα−1γα−1γ−1αγ−1α = 1,

γ−1αγ−1αγ3αγ−1αγ−1α−3 = 1 }.

Setting γ = 1 in this presentation would make this group trivial, hence γ is a nontrivial element

of π1(Y ). To construct an example corresponding to Theorem 1.2.2, take an unknot and push an

arc along a nontrivial loop γ we get left diagram of Figure 4.2. Obviously µ(k1) = γ± ∈ Λ̃ is

nontrivial. Hence it is not almost-concordant to the unknot. On the other hand by iterating this

13



process (i.e. increasing the number of twists) we can construct infinitely many null-homotopic

knots kn with distinct µ invariant in the homology sphere, see the right diagram of Figure 4.2.

0

0

0

0

k1 kn

µ(k1) = γ µ(kn) = nγ

. . .

Figure 4.2 Distinct almost-concordant families
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CHAPTER 5

PROOF OF THEOREM 1.2.3

In this chapter, we prove Theorem 1.2.3, which we restate here:

Theorem 5.0.1 ([Yil18]). All knots in the free homotopy class of S1× {pt} in S1× S2 are smoothly

concordant, i.e., |Cx (S1 × S2) | = 1 where x represents S1 × {pt} in S1 × S2.

Proof. First we introduce a (genus zero) cobordism move to a knot k, which starts with k, and ends

with a two-component link, consisting of the knot obtained from k by changing one of its crossings

union a small linking circle, as shown in Figure 5.1.

Figure 5.1 Crossing change

Let k be a knot freely homotopic to k′ = S1 × pt in S1 × S2, one can go from k to k′ by finitely

many crossing changes and isotopies. Change all the necessary crossings of k by the cobordism

described above. Notice that for every crossing change, we get a small linking circle to the resulting

knot. See Figure 5.2 as an example. It is obvious from Figure 5.3 that all those small circles which

link k′ bound disks in S1 × S2 disjoint from k′. We accomplish this by sliding over the 0−framed

circle. By capping with disks these unknots we get a concordance from k to k′ in S1 × S2. �
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Cobordism Isotopy

0 0 0

k k′
S1 × pt

Figure 5.2 An example of crossing change

...
0

k′

...
0

k′

Slide

Figure 5.3 Sliding and capping with disks
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