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ABSTRACT	

DEVELOPMENT	OF	MOLECULAR	DYNAMICS	FORCE	FIELD	OF	YOPRO-1	AND	
DEEP	LEARNING	MODELS	FOR	PROTEIN	CLASSIFICATION	

By	

Chi	Jin	

Cyanine	dyes,	such	as		Oxazole	yellow	(YOPRO),	are	almost	non-fluorescent	in	

water	 but	 their	 fluorescence	 is	 greatly	 enhanced	 after	 intercalation	 in	 double-

stranded	DNA,	providing	the	basis	of	DNA	concentration	assays.	The	rationale	for	this	

property	is	the	flexibility	difference	of	the	conformations	of	the	molecule	in	different	

environments,	mainly	attributed	to	the	linker	dihedral	rotations.		

We	compared	two	methods	for	deriving	the	specific	dihedral	force	field	on	the	

linker	of	YOPRO,	namely	by	modifying	the	AMBER	generated	force	field	(GAFF)	and	

by	 using	 the	 IPolQ	 fitting	 protocol.	 There	 are	 two	 dihedral	 angles	 and	 the	 IPolQ	

method	 showed	 that	 their	 potential	 surfaces	 are	 coupled.	 Thus,	 going	 beyond	 the	

GAFF	approach,	coupled	dihedral	surfaces	were	obtained	for	the	ground	S0	and	first	

excited	S1	electronic	states.	Molecular	Dynamics	(MD)	simulations	of	YOPRO	were	

carried	 out	 in	 water	 and	 intercalations	 using	 these	 force	 field	 models.	 The	 MD	

simulations	started	at	the	minima	of	the	S0	state	vertically	excited	to	the	S1	state.	The	

contrast	between	YOPRO	conformational	relaxation	on	the	S1	surface	in	water	and	

when	 intercalated	 provided	 the	 non-radiative	 relaxation	 pathways	 relevant	 to	

fluorescence	decay	and	explain	the	differences	in	quantum	yield.	

	 For	the	second	topic,	we	investigated	a	number	of	deep	machine	learning	(ML)	

models	for	protein	family	classification.	We	used	one	dimensional	sequence	and	three	



dimensional	secondary	structural	information	of	proteins	as	the	input	for	training	the	

neural	network	models.	The	results	show	that	deeper	convolutional	networks	of	the	

Long	 Short	 Term	 Memory	 (LSTM)	 variety	 significantly	 enhanced	 the	 prediction	

accuracies	 compared	 to	 less	 sophisticated	models.	 The	 addition	 of	 the	 secondary	

structural	information	greatly	increases	the	testing	accuracies	with	the	training	data	

size	remaining	the	same.	Proteins	belonging	to	different	families	can	be	successfully	

distinguished	using	these	methods.	
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1 Introduction	

1.1 General	Introduction	

Oxazole	yellow	(YOPRO),	shown	in	Figure	1.1.1,	is	a	cyanine-based	dye	widely	

used	in	commercial	DNA	concentration	assays.1,	2	During	gel	electrophoresis	for	DNA	

detection,	 it	 forms	 a	 stable	 complex	 with	 the	 DNA	 to	 avoid	 its	 removal.3,	 4	

Furthermore,	it	is	also	used	to	monitor	the	formation	and	break	up	of	protein-DNA	

complexes,5,	 6	 due	 to	 its	 high	 binding	 affinity	 to	 double-stranded	 DNA.	 At	 low	

concentrations,	the	preferred	binding	mode	of	YOPRO	is	intercalation	between	paired	

bases7,	whereas	at	higher	dye-to-DNA	ratios,	other	binding	modes	on	the	surface,	like	

external	electrostatic	binding	or	minor	groove	binding	can	occur.	

	

Figure	1.1.1	Structure	of	YOPRO	(without	hydrogen	atoms)	

YOPRO	 is	 almost	non-fluorescent	 in	water	but	 its	 fluorescence	 is	 enhanced	

~1800	fold	after	intercalation	in	double-stranded	DNA,	providing	the	basis	of	DNA	

concentration	assays1,	8-10.	The	rationale	for	this	difference	is	that	in	water	rotation	

around	the	linker	connecting	the	benzoxazole and quinoline rings (Figure 1.1.1) lets the 

excited molecule decay through nonradiative relaxation pathways, thus quenching the 
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fluorescence. However, intercalation into double-stranded DNA enhances the constraints 

on the rotational motion around the linker, therefore eliminating this pathway and results 

in the observed intense fluorescence. 

In	 this	work,	we	 first	 carried	 out	molecular	 dynamics	 (MD)	 simulations	 to	

explore	 the	 conformational	 sampling	 of	 YOPRO	 in	 the	 different	 environments	 as	

discussed	 above	 and	 constructed	 free	 energy	 surfaces	 (potentials	 of	 mean	 force)	

along	 the	dihedral	angles	using	modified	Amber	generated	 force	 field	models.	The	

simulation	results	and	defects	of	these	force	field	models	are	discussed	in	Chapter	2.	

Then	 in	Chapter	3,	we	 introduce	a	more	accurate	dihedral	 force	 field	by	using	 the	

implicitly	polarized	charge	method	(IPolQ)11		for	both	the	ground	(S0)	and	the	first	

excited	electronic	states	(S1).	Then,	MD	simulations	using	 the	new	force	 fields	are	

carried	 out	 on	 both	 electronic	 surfaces	 for	 water	 solvated	 and	 intercalated	 dye.	

Finally,	 a	 steepest	 decent	 algorithm	 was	 implemented	 to	 find	 the	 non-radiative	

relaxation	 pathway	 on	 the	 S1	 free	 energy	 surfaces	 for	 both	 YOPRO	 in	 water	 and	

intercalated.	The	distinct	energy	barrier	found	on	the	intercalated	path	that	is	absent	

in	the	water	solvated	path	supports	the	hypothesis	that	constraints	on	linker	between	

the	two	ring	systems	are	responsible	for	the	large	difference	in	fluorescence	intensity	

in	different	environments.	

Chapter	4	is	devoted	to	the	different	topic	of	protein	family	classification12	using	

Machine	Learning13.	Proteins	are	classified	into	families	based	on	evolutionary	ancestry.	

A	 given	 protein	 family	 has	 similar	 three	 dimensional	 structure	 and	 function.	 In	 our	

investigations	we	studied	if	a	neural	network	can	be	trained	to	discriminate	between	

protein	families	based	on	sequence	alone,	and	based	on	sequence	and	corresponding	
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structure.	 	That	sequence	alone	can	discriminate	between	different	families	indicates	

that	sequence	does	encode	protein	structure	and	function.	

We	 investigated	 different	 neural	 network	 models	 for	 predicting	 protein	

families	 and	 found	 that	 the	 long	 short-term	memory	 networks	 (LSTM)14	 show	 the	

highest	performance	among	all	the	models	studied.	Different	methods	 for	extracting	

protein	structural	information	as	the	input	data,	by	mapping	the	extracted	structural	

information	into	protein	family	labels,	were	considered.		

Because	 there	 are	 many	 more	 sequences	 known	 than	 their	 structures	 and	

because	machine	learning	is	data	intensive	there	is	a	tradeoff	between	the	sequence	and	

sequence	plus	structure	approaches.	

All	 in	all,	 the	LSTM	neural	network	approach	 is	shown	to	be	capable	of	good	

discrimination	in	binary	comparison	of	pairs	of	protein	families.			
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1.2 	 Molecular	Dynamics	Simulation	

1.2.1 General	Description	

Molecular	 dynamics15,	 16	 (MD)	 is	 a	 method	 that	 simulates	 the	 motion	 of	

molecules	 in	 a	 	 closed	 system	 using	 by	 computationally	 integrating	 Newton’s	

equations	of	motion.	The	inter	and	intramolecular	motions	are	driven	by	a	force	field	

that	 is	 predesigned	 to	 approximate	 physical	 laws.	 Therefore,	 MD	 simulations	 can	

provide	dynamic	information	of	a	molecular	system	at	atomic	level.		For	instance,	by	

examining	the	resulting	trajectory	of	a	simulation	which	is	a	sample	in	an	ensemble,	

one	can	evaluate	 the	 	average	system	properties	 such	as	energy,	entropy	and	 free	

energy	by	calculating	their	time	averages.	

The	 algorithms	 that	 implement	 MD	 simulations	 are	 to	 answer	 one	

fundamental	question:	if	the	current	configuration	of	the	system	is	given,	what	is	for	

next	 moment?	 By	 answering	 it	 repeatedly,	 MD	 propagates	 the	 system	 in	 time	

following	Newton’s	equation	of	motion:	

	 		 (1.2.1)	

Specifically,	three	steps	are	involved	for	MD	to	propagate	the	system:	first,	one	

needs	to	initialize	the	positions	and	velocities	to	all	the	atoms	in	the	system.	For	most	

biological	 systems,	 MD	 starts	 out	 with	 the	 crystal	 structure	 of	 the	 molecules	 of	

interest.	 To	 conduct	 simulation	 in	 solvent,	 either	 implicit	 solvent	 is	 added	 as	 a	

continuous	 media	 or	 explicit	 solvent	 are	 added	 by	 putting	 the	 system	 into	 an	

equilibrated	box	of	solvent	molecules.	Then	the	velocities	of	the	system	are	initialized	

with	a	random	seed	generated	from	a	Maxwell	distribution17.	Secondly,	the	forces	are	

  
!!r = F

m
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evaluated	 according	 to	 the	 force	 field.	 Finally,	 an	 integrator	 is	 used	 to	predict	 the	

configuration	for	the	next	moment	given	a	certain	time	step.	The	last	two	steps	are	

repeated	until	the	preset	number	of	step	are	completed.	

	

1.2.2 Force	Field	

A	MD	force	field	is	a	set	of	functional	forms	and	parameters	that	are	used	to	

simulate	 the	 potential	 energy	 change	 due	 to	 the	 intramolecular	 interactions	 	 and	

intermolecular	 motions.	 	 The	 force	 field	 parameters	 is	 developed	 to	 fit	 the	

experimental	 data	 or	 quantum	 calculation	 results	 into	 the	 following	 terms:	 bond	

stretches	 and	 vibrations,	 dihedral	 torsions,	 Lennard-Jones	 and	 electrostatic	

potentials.	A	number	of	force	fields	have	been	developed	for	biological	systems	such	

as	the	AMBER18,	CHARMM19	and	GROMOS20	force	fields.	As	an	example,	equation	1.1.2	

shows	the	functional	form	of	the	AMBER	internal	bonded	force	field:	

	
		 (1.2.2)	

The	first	term	on	the	right	is	the	bond	stretching	term	as	the	function	of	the	

bond	 length	 	with	 the	equilibrium	bond	 length	at	 	and	 force	constant	equal	 	.	

The	second	term	is	the	bond	bending	term	as	the	function	of	the	bond	angle	 	with	

the	 equilibrium	bond	angle	 at	 	and	 force	 constant	 equal	 	.	 The	 last	 one	 is	 the	

dihedral	torsional	term	as		a	function	of	 	with	the	multiplicity	 	and	 	as	the	phase	

shift	.	
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1.2.3 Integrator	

Many	integrators	have	been	designed,	one	of	which	is	the	leap-frog	

algorithm21:	

	 		 (1.2.3)	

where	t	is	the	time,	and	r(t),	v(t)	and	a(t)	are	the	coordinates,		the	velocity	and	

the	acceleration	of	 	 the	particles.	The	 integration	step,	 	Δt,	should	be	chosen	small	

enough	to	catch	the	fastest	motion	which	is	the	hydrogen	related	bond	vibrations.	To	

speed	up	the	MD,	the	SHAKE	algorithm17	is	usually	used	to	constrain	these	bonds	to	

increase	the	step	size	to	the	scale	of	1fs.	This	should	be	a	good	approximation	since	

these	bond	vibration	motions	will	be	averaged	out	in	a	normal	simulation	scale.	

	

1.2.4 Period	Boundary	Condition	

Period	 Boundary	 Conditions	 (PBC)	 are	 used	 to	 simulate	 an	 infinite	 system	

with	a	finite	size	box	by	representing	it	as	a	repeated	array	of	the	box	(Figure	1.2.1).	

Certainly	an	artificial	periodicity	is	imposed	on	the	system	simulated.	In	conjunction	

with	using	PBC,	the	long	range	interactions	can	be	calculated	using	the	Ewald	Lattice	

Sum17	implemented	by	the	Particle	Mesh	Ewald	method22.	

	

	

  

r(t + Δt) = r(t)+ v(t − Δt
2

)Δt

v(t + Δt
2

) = v(t − Δt
2

)+ a(t)Δt
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Figure	1.2.1	Illustration	of	the	Periodic	Boundary	Condition.	The	center	black	box	is	
the	primary	box	and	all	the	others	are	the	copies	of	it.	Once	the	dark	green	particle	
in	the	primary	box	goes	out,		the	light	green	one	in	the	bottom	copy	enters	the	box	
to	compensate.	From	https://en.wikipedia.org/wiki/Periodic_boundary_conditions	

	
1.2.5 Temperature	and	Pressure	Control	

The	 Newton’s	 equation	 (equation	 1.2.1)	 conserves	 the	 total	 energy	 of	 the	

system	simulated.	Therefore,	without	temperature	control,	the	system	is	simulated	in	

a	 microcanonical	 ensemble	 with	 fixed	 number	 of	 particles	 (N),	 volume(V)	 and	

energy(E).	 However,	 the	 normal	 experimental	 conditions	 usually	 allows	 the	 total	

energy	to	fluctuate	but	fix	temperature	and	the	pressure	of	the	system.	Therefore,	we	

need	to	control	the	temperature	and	pressure.	

Several	methods	have	been	developed	for	this	problem23,	one	of	them	is	the	

Berendsen24	method.	 It	 couples	 the	simulated	system	with	an	external	bath	of	 the	

temperature	 	.	For	any	particle	 i,	Berendsen	et	al	proposed	the	modification	on	

the	velocity:	

 
Tref
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	 		 (1.2.4)

	 	

where	 τ	 is	 the	 coupling	 time	 and	 usually	 τ=0.2ps	 is	 used.	 T	 is	 the	 instantaneous	

temperature,	 which	 is	 equal	 to	 	,	 where	 N	 is	 the	 total	 number	 of	

particles	kB	is	the	Boltzmann	constant.	The	extra	term	added	in	equation	1.2.3	serves	

as	a	frictional	force	as	a	feedback	mechanism	to	scale	T	back	to	 .	The	velocity	is	

therefore	scaled	by	a	factor	 	,	where		Δt	is	the	MD	step	size.		

The	instantaneous	pressure		P	is	computed	by	

	 		 (1.2.5)	

where	K	 is	 the	kinetic	 energy	of	 the	 system	and	Virial	 is	 the	virial	 function17.	The	

pressure	of	a	n	isotropic	system	is	constrained	by	a	factor	of	γ:	

	 		 (1.2.6)	

where	 	is	the	reference	pressure.	For	an	anisotropic	box,		the	pressure	control	is	

complicated	where	a	pressure	 tensor	has	 to	be	used24.	Given	 the	 simplicity	of	 the	

implementation	 of	 the	 Berendsen	method,	 however,	 it	 doesn’t	 lead	 to	 any	 known	

ensemble.	To	guarantee	an	NPT	ensemble,	methods	such	as	the	Langevin	dynamics	

need	to	be	used25.	
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1.2.6 Long-range	Interactions	

The	potential	energy	of	the	non-covalent	interactions	is	usually	expressed	as	

a	sum	of	the	pair-wise	electrostatic	and	Lennard-Jones	contributions:	

	 		 (1.2.7)	

The	first	term	on	the	right,	which	represents	the	electrostatic	contribution,	has	

a	 form	of	 	with	p	=1.	 It	 is	known	that	a	summation	of	 long-range	interaction	

terms	of	this	form	with	p	≤	3	is	a	conditionally	convergent	sum26.	The	easiest	way	to	

solve	the	convergence	problem	is	to	use	a	cut-off	method,	which	simply	ignores	the	

interactions	beyond	some	chosen	cutoff	distance.	But	later	more	accurate	methods	

were	 developed,	 such	 as	 the	 Ewald	 summation17.	 It	 divides	 the	 calculation	 of	

summation	 into	 two	 parts	 that	 are	 in	 the	 real	 space	 and	 the	 reciprocal	 space,	

respectively,	which	converge	rapidly	given	the	system	is	charge	neutral.	The	original	

reciprocal	summation	was	implemented	in	O(N2),	which	is	still	too	expensive	for	large	

systems.	Particle	Mesh	Ewald	(PME)	method22	makes	interpolation	of	the	reciprocal	

structure	factor	in	the	lattice	points	and	uses	Fast	Discrete	Fourier	Transform	(FDFT)	

to	reduce	the	time	cost	to	O(NlogN). 		
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1.3 Weighted	Histogram	Analysis	Method	 	

1.3.1 Umbrella	Sampling	

The	 current	 affordable	 time	 scale	 for	 MD	 simulations	 for	 a	 normal-sized	

protein	in	explicit	solvents	is	limited	to	only	tens	of	nanoseconds.	Therefore,	when	

there	are	 large	barriers	 in	the	complex	potential	energy	surface	of	the	molecule	of	

interest,	 MD	 may	 not	 be	 able	 to	 sample	 the	 configuration	 space	 properly.	 To	

compensate	for	this	defect,	umbrella	sampling	method	is	often	used23.	In	an	umbrella	

sampling,	 a	 restraint	 potential,	 which	 is	 usually	 a	 parabolic	 function	 of	 the	

coordinates,	 is	 added	 to	 the	 original	 potential	 surface	 to	 force	 the	 system	 to	 stay	

around	 the	 restraint	 coordinate	 and	make	 a	 biased	 energy	 surface.	 This	modified	

system	 is	 called	 a	 window.	 Multiple	 restraint	 potentials	 centered	 at	 different	

locations	can	be	applied	to	make	multiple	windows,	which	are	sampled	by	MD	one	

after	the	other.	Finally,	the	resulting	window	biased	probability	data	are	combined	

(figure	 1.3.1)	 and	 unbiased	 using	 the	 Weighted	 Histogram	 Analysis	

method(WHAM)27,	28	to	construct	a	potential	of	mean	force	(PMF)29,	30	of	the	whole	

sampling	space.	
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Figure	1.3.1	Overlapping	of	the	probability	peaks	of	all	the	windows	sampling	the	
angle	space	of	a	bond	angle31.	

	
1.3.2 Unbiasing	Procedure	

Suppose	 the	 original	 potential	 energy	 surface	 	and	 the	 restraint	

potential	 of	 the	 	window	 	are	 functions	 of	 the	 reaction	 coordinate	 	,	

where	 	is	the	set	of	atom	coordinates.	Thus,	the	biased	and	unbiased	probability	

distributions	are:	

	 	 	(1.3.1)		

and	

	 			 (1.3.2)	

respectively.	By	plugging	equation	1.3.2	into	equation	1.3.1,	we	can	obtain:	

	 		 (1.3.3)	
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We	now	define	the	free	energy	of	a	certain	of	the	 	window	 	using	the	third	

term	on	the	right	of	equation	1.3.3:	

	 		 (1.3.4)	

Now	 we	 combine	 the	 unbiased	 probability	 	of	 all	 the	 windows	 to	

approximate	the	global	unbiased	probability	 	,	and	use	 	to	replace	 	

in	equation	1.3.4:	

	 	 	(1.3.5)	

where		

	 		 (1.3.6)	

where	 	is	the	weight	of	the	 	windows,	and	it	is	normalized:	

	 		 (1.3.7)	

In	 order	 to	 minimize	 the	 statistical	 error	 on	 the	 global	 probability	

distribution32,	we	differentiate	the	standard	deviation	with	respects	to	the	weights	

and	set	them	to	0:	

	 		 (1.3.8)	
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	 	 	(1.3.9)	

Note	that	 	is	the	number	of	data	points	in	 	window.	

The	resulting	 	then	goes	back	to	equation	1.3.5	to	start	the	next	iteration.	

So	on	and	so	forth	until	the	difference	of	the	 	value	for	all	the	windows	obtained	

from	two	iterations	converges	to	some	given	tolerance.	The	final	 	is	then	used	

to	construct	the	PMF	surface.	
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1.4 Implicitly	Polarized	Charge	Method	

The	simulation	of	the	solute	molecule	of	interest	relies	on	the	construction	of	

accurate	 force	 field	 parameters33.	 The	 Implicitly	 Polarized	Charge	method	 (IPolQ)	

derives	the	partial	charge	set	of	the	molecule	in	solution	as	the	first	step	to	obtain	

these	 potentials	 from	 ab	 initio	 quantum	 calculations11.	 To	 start	 with,	 the	 solute	

molecule	 is	 solvated	 in	 a	 water	 box,	 and	 it	 is	 kept	 fixed.	 A	 10	 ns	 conformational	

sampling	of	the	water	solvent	at	450K	is	carried	out	to	collect	a	set	of	equilibrated	

water	configurations.	The	solvent	charge	density	and	the	electrostatic	field	of	these	

water	configuration	is	calculated	as	the	reaction	field	in	Figure	1.4.1.	

For	the	second	step,	the	MD	simulation	of	the	solute	molecule	is	performed	

from	each	equilibrated	water	configuration	with	the	water	solvent	fixed	to	obtain	a	

set	of	time	average	solute	configurations.	The	fixed	locations	of	the	water	solvent	later	

will	serve	to	create	a	field	of	point	charges	surrounding	the	solute.	

Once	 the	 MD	 simulation	 of	 the	 solute	 is	 finished,	 the	 quantum	 chemistry	

program	orca34	is	used	to	calculate	the	single	point	energy	and	electrostatic	potential	

of	each	solute	configuration	in	vacuum	for	charge	fitting.	The	solvent	charge	density	

calculated	in	the	first	step	is	taken	as	a	perturbation	for	the	electrostatic	potentials	of	

the	 solute	 in	 water.	 The	 final	 IPolQ	 charge	 set	 was	 derived	 from	 the	 perturbed	

electrostatic	 potential	 set	 using	 the	 Restrained	 Electrostatic	 Potential	 (RESP)	

model35.	

The	IPolQ	charges	set	was	used	to	replace	the	original	guess	to	start	the	next	

iteration	of	charge	fitting.	Once	the	fitted	charge	set	is	converged,	the	charge	fitting	
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process	is	finished.	The	IPolQ	charge	set	then	goes	to	the	force	constant	fitting	section.	

The	architecture	of		whole	procedure	is	show	as	below:	

	

Figure	1.4.1	Work	cycle	of	the	IPolQ	Method	
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1.5 Force	Constant	Fitting	

The	partial	charge	set	of	the	molecule	of	interest	obtained	by	the	IPolQ	method	

in	Section	1.4	is	used	to	sample	a	set	of	conformations	in	vacuum	by	systematically	

varying	 the	 investigated	 degrees	 of	 freedom	 (one	 or	 two)	 for	 which	 the	 force	

constants	are	to	be	fitted	and	optimizing	the	rest	part	of	the	molecule.	

For	each	conformation,	the	single	point	energy	Q	and	the	classical	potential	

energy	V	from	the	AMBER	Generalized	Force	Field18	with	the	fitted	terms	excluded	

were	calculated.	Therefore,	the	pure	contribution	of	the	fitted	terms	is	computed	by	

subtracting	V	from	Q	to	construct	a	“subtracted”	potential	surface	along	them.	

If	we	have	two	terms	to	fit	and	the	resulting	potential	surface	shows	a	strong	

coupling	of	them	then,	for	each	conformer,	we	fit	the	force	constant	parameters	of	

one	of	them	(D1)	with	the	other(D2)	fixed	at	a	set	of	preset	values.	For	any	fixed	D2	

value,	a	Fourier	expansion	of	the	potential	energy	of	D1	with	four	terms	(equation	

1.2.2)	 is	used.	For	 instance,	 if	both	D1	and	D2	are	dihedrals,	we	use	 the	 following	

equation	to	express	the	torsional	energy	 	of	D1 	at	a	fixed	D2	value:	

	 		 (1.5.1)	

where	 the	 	and	 	values	 are	 the	 fitted	 force	 field	 parameters	 for	 the	 energy	

barrier	and	phase	shift,	respectively.		
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The	whole	procedure	is	repeated	with	the	roles	of	D1	and	D2	interchanged;	

thus,	each	conformation	has	a	fitted	force	field	parameter	set	for	its	corresponding	

window	in	the	later	umbrella	samplings.		
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1.6 Fluorescence	Theory	

An	atom	absorbs	a	photon	when	resonance	happens,	namely	the	oscillations	

of	the	light	wave	are	coupled	with	the	oscillation	of	the	electrons	of	the	atom,	causing	

the	electron	distribution	to	“reshape”	and	conversion	of	the	low	electronic	state	to	

higher	electronic	state,	which	the	has	more	nodes	on	the	orbital	surface36.	The	energy	

gap	between	the	two	state	is	equal	to	the	energy	of	the	photon:	 .	

In	a	molecule,	this	electronic	transition	is	coupled	with	nucleic	motions	such	

as	 vibrations,	 rotations.	 According	 to	 the	 Franck-Condon	 principle,	 since	 the	

electronic	motions	are	much	faster	than	the	nuclear	motions,	the	molecule	maintains	

its	nuclear	structure	after	the	transition,	therefore	the	transition	often	ends	at	higher	

vibrational	states	rather	 than	 the	ground	state	as	 indicated	by	 the	end	of	 the	blue	

arrow	 in	 Figure	 1.6.1.	 The	 excited	molecule	 usually	 quickly	 relaxes	 to	 the	 lowest	

vibrational	state	of	the	excited	electronic	state	through	non-radiative	relaxations	by	

dissipating	heat	to	the	surroundings	and	from	there	decays	to	the	ground	electronic	

state	as	shown	with	the	green	arrow	in	Figure	1.6.1,	where	a	photon,	known	as	the	

fluorescence	is	emitted.		
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Figure	 1.6.1	 Fluorescence	 Theory.	
https://en.wikipedia.org/wiki/Franck%E2%80%93Condon_principle	

In	addition	to	fluorescence,	the	excited	molecule	may	also	decay	to	the	ground	

electronic	 state	 via	 non-radiative	 transitions	 at	 critical	 nuclear	 configurations,	 rc	

(Figure	1.6.2),	which	correspond	to	the	minima	on	the	excited	surface.	In	the	vicinity	

of	rc,	ѱ(ground)	and	ѱ(excited)	are	mixed,	especially	when	the	energy	gap	ΔE	is	large	

and	the	surface	jump	is	“strongly	avoided”,	which	leads	the	electron	to	stay	on	the	

same	 	 adiabatic	 surface.	 36	On	 the	 other	 hand,	when	 the	 energy	 gap	 is	 small,	 	 the	

surface	jump	becomes	possible	near	rc	so	the	electron	can	therefore	go	down	to	the	

ground	state	surface	.			
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Figure	1.6.2	Avoided	crossing.	(Turro	P157,	Fig	6.3c)	

Another	type	of	non-radiative	transitions	happen	at	conical	intersections	(CI),	

where	the	S1	and	S0	surfaces	 intersects(Figure	1.6.3).	 In	this	case,	 there’s	no	such	

region	where	ѱ(ground)	and	ѱ(excited)	are	mixed	except	the	CI	point.	

	

Figure	 1.6.3	 Conical	 Intersection.	
https://commons.wikimedia.org/wiki/File:Conical_intersection.svg	
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The	basis	of	DNA	concentration	assays	using	cyanine	dyes	like	YOPRO	relies	

on	 the	 fact	 that	 these	 dyes	 are	 almost	 non-fluorescent	 in	 aqueous	 solutions,	 but	

intensely	 fluorescent	 when	 intercalated	 in	 DNA.1,	 9,	 10,	 37-40	 This	 results	 from	 the	

different	configurational	distributions	in	the	two	environments.	In	solution,	twisting	

around	 the	 linker	 between	 the	 two	 ring	 systems	 leads	 to	 geometries	 that	 let	 the	

excited	dye	access	nonradiative	decay	through	avoided	crossing	or	CI,	quenching	the	

fluorescence.	 However,	 when	 intercalated,	 the	 environment	 rigidity	 increases	 the	

constraints	on	the	rotational	motion	around	the	linker	by	forming	energy	barriers	on	

the	pathway,	resulting	in	fluorescence	enhancements	of	greater	than	1,000	fold.7,	41	

This	 mechanism	 has	 been	 suggested	 broadly	 in	 the	 context	 of	 molecular	

photochemistry	 arising	 from	 increasing	 medium	 viscosity42;	 for	 example,	 the	

molecular	motions	of	the	stilbenes	in	solution	versus	rigid	environments.	36,	43	It	has	

been	 studied	 that	 the	 quantum	 yield	 of	 fluorescence	 of	 the	 stilbenes	 depends	 on	

rotational	isomerization	which	is	inhibited	by	the	high	viscosities.44	Moreover,	in	the	

first	excited	singlet	state	of	stilbenes,	there	has	been	found	some	vibrational	modes	

that	are	responsible	for	the	low	quantum	yield	at	low	viscosities.	The	population	of	

these	modes	are	all	decreased	at	high	viscosities	where	an	increase	in	the	quantum	

yield	is	observed.	These	motion	are	absent	in	rigid	nonplanar	molecules	even	at	low	

viscosities.43,	44	For	YOPRO,	this	scenario	has	also	been	inferred	from	the	similarity	

between	 the	 activation	 energies	 for	 the	 temperature	 dependence	 of	 non-radiative	

decay	processes	and	for	viscous	flow38.	

Similar	results	has	also	been	observed	for	the	dyes	such	as	DPTox,	T3ox42	and	

YO38	 in	 a	 viscous	 solution,	 where	 the	 rotational	 mobility	 around	 the	 linker	 is	
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decreased	and	the	corresponding	activation	energy	for	the	temperature-dependent	

nonradiative	decay	is	similar	to	that	for	the	intercalation.		Based	on	these,	a	series	of	

hemicyanine	 derivatives	 are	 used	 as	 sensors	 for	 the	 viscosity	 in	 solutions	 or	

biological	 fluids	 in	vivo.	By	measuring	 the	 lifetime,	 intensity	and	anisotropy	of	 the	

fluorescence,	 the	 viscosity	 of	 the	 cell	 membranes	 and	 the	 cytoplasm	 can	 be	

determined	 for	 biological	 researches	 of	 intracellular	 mass	 and	 signal	 transport,	

reactive	metabolites	and	biomacromolecules	interactions	and		diffusions,	and	clinical	

diagnoses.	By	making	choice	of	the	heterocycles	on	the	hemicyanine	dyes,	different	

levels	 of	 sensitivity	 can	 be	 achieved.39	 In	 contrast,	 understanding	 this	mechanism	

helps	 to	 increase	 the	 quantum	 yield	 of	 many	 chromophores	 used	 as	 noninvasive	

markers.		By	binding	them	to	rigid	macromolecular	matrixes	to	restrict	the	twisting	

motions,	their	fluorescence	intensities	are	raised	by	several	orders	of	magnitude.41	A	

good	example	 is	 the	green	 fluorescent	protein	 (GFP),	which	 is	 	used	 to	mark	gene	

expression	and	protein	localization.	Restraining	the	twisting	degrees	of	freedom	of	

its	chromophores	by	tightly	fixing	the	inside	the	protein	exhibits	a	quantum	yield	of	

~0.8,40	and	the	fluorescence	emission	can	be	reduced	by	protease	digestion	or	heat	

denaturation,	when	the	chromophores	regain	their	flexibility.	This	is	analogue	to	the	

intercalation	of	cyanine	dye	molecules	like	YOPRO	in	the	double-stranded	DNA.			
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1.7 Kramers	Theory	

In	1940,	Kramers	developed	a	model	describing		the	reaction	rate	of	thermally	

activated	barrier	crossing	processes.45,	46	As	shown	in	Figure	1.7.1,	a	classical	particle	

of	mass	M	is	moving	in	a	asymmetric		double-well		potential	U(x),	where	the	two	local	

minima	at	xa	and	xc			on	the	reaction	coordinate	axis	X	designate	the	initial	and	final	

states,	and	the	local	maximum	at	xb	gives	the	energy	barrier	of	Eb+.	We	now	derive	the	

escaping	rate	of	the	particle	over	the	potential	barrier	in	consequence	of	Brownian	

motion.		

	

Figure	1.7.1	Potential	U(x)	with	two	metastable	states	A	and	C.	Escape	occurs	via	the	
forward	rate	k+	and	the	backward	rate	k-	respectively,	and	Eb+	is	the	corresponding	
activation	energy	(Reaction	Rate	Theory	--	50	Years	after	Kramers,	FIG	3).	

	
Given	the	Langevin	Equation,	

	 		 (1.7.1)	

where	γ	is	the	fiction	coefficient,	and	η	is	fluctuating	force.	

In	the	overdumped	region	where	the	inertial	term	(left	hand	side	of	equation	

1.5.1)	is	neglected,	by	reordering	the	equation,	we	have:	

		 
M!!x = − ∂U(x)

∂(x) −γ !x +η



	

	 24	

	 			 (1.7.2)	

The	Fokker-Planck	equation	for	the	probability	density	P(x,t)	corresponding	

to	this	Langevin	equation,	is47		

	 	 		(1.7.3)	

where	J	is	known	as	the	current	density:	
	

		 (1.7.4)

	

with	D	a	diffusion	coefficient.		

Therefore,	J	can	be	rewritten	as:	

	 	 (1.7.5)	

Hence	

	 	 (1.7.6)	

By	integrating	both	sides	from	A	to	C,	we	get:	

	 		 (1.7.7)	
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By	 assuming	 P(x=C)	 is	 very	 small,	 because	 the	 activation	 energy	 is	 large	

compared	with	kBT,	we	get:	

	 		 (1.7.8)	

We	now	want	to	evaluate	the	escape	rate	r.	First,	if	the	barrier	is	high	then	we	

have	approximate	equilibrium,	which	makes	J	in	equation	1.7.5	close	to	0,	therefore:	

	 		 (1.7.9)	

The	probability	of	finding	the	particle	in	the	well	A	is	therefore:	

	 	 (1.7.10)	

where	Δ	is	the	size	of	the	well	A.	The	integrand	is	peaked	at	x=A,	hence:	

	 		 (1.7.11)	
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	 	 	(1.7.12)	

for	the	denominator	of		the	current	J	in	equation	1.7.8,	similarly,	we	have	

	 	 	(1.7.13)	

so	

	 		 (1.7.14)	

Finally,	the	Kramers	flux	over	probability	escape	rate	is	

	 		

	 (1.7.15)	
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p p-

= ´ ´ = ´
( ) ( ) 1 1

2 2
'' ''

2 2( ) ( ) ( ) ( )
( ) ( )

B B

U A U A
k T k T B Bk T k Tp P A e e P A

U A U A

p

+ ´ - + ´ -
+D

-D

´ -
+D

-D

»

=

=

ò ò

ò

' '' 2
'

'' 2

1[ ( ) ( ) ( ) ( ) ( ) ]( ) 2
' '

1 ( ) ( )( ) 2
'

( ) 1
2

''
2( )
( )

B B

B B

B

U b U b b x U b b xU x
C Bk T k T

A B

U b b xU b
Bk T k T

B
U b
k T B

e dx e dx

e e dx

k Te
U B

p
=

( )

( ) 1
2

''

( )
2( )
( )

B

B

U A
k T

U B
k T B

De P AJ
k Te

U B

p

p

p

p

w w
pg

-

-

-

= =
´

=

=

=

( ) ( )

( )

( ) 1
2

''

1
2

''

1
'' '' 2

1
'' '' 2

( )
2( )
( )

2( ) ( )
( )

[ ( ) ( )]
2

[ ( ) ( )]
2

1
2

B

B

U A U B
k TB

Eb
k TB

Eb
k TB

U A
k T

U B
k T B

B

B

B

A B

De P A
k Te

J U Br
p k TP A

U A

D U A U B e
k T

D U A U B e
k T

e



	

	 27	

exponentially	with	the	barrier	height.	It	also	decreases	when	the	potential	surface	at	

point	A	and	B	become	flatter,	namely	the	curvatures	decrease.	On	the	other	hand,	the	

diffusion	coefficient	D	decreases	with	the	increase	of	the	viscosity	γ	in	the	solution.	

All	these	factor	decreases	the	escape	rate	r	of	the	particle	from	the	potential	well	A.	

Note	this	only	applied	to	the	overdumped	region	where	Eb	>>kBT,	since	we	assumed	

the	particle	is	at	quasi-equilibrium	and	the	current	density	J	is	close	to	0.	
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1.8 Gas	Phase	Approaches	

In	1999,	Bernhard	Schlegel	et	al.	investigated	the	ultrafast	photoisomerization	

of	three	cyanine	dye	models	( ,	 	correspond	to	tri-,	penta-	and	

heptamethine	 cyanines,	 respectively)	 of	 different	 chain	 lengths	 using	 CASSCF	

quantum	 chemical	 calculations.48	 In	 summary,	 for	 all	 the	 three	 models,	 the	

photoisomerization	 processes	 terminate	 with	 torsional	 motions	 coupled	 with	 the	

decay	in	the	region	of	the	twisted	intramolecular	charge-transfer(TlCT)49	state	with	

an	adjacent	conical	intersection	(CI).	Excited	to	S1	state	at	the	planar	conformation,	

the	 dyes	 are	 driven	 off	 the	 Franck−Condon	 point	 through	 a	 symmetric	 skeletal	

stretching	mode	along	a	barrierless	path.	Then	a	second	non-symmetric	vibrational	

mode		is	dominated	by	torsional	motion	about	one	of	the	double	bonds	in	the	linker	

that	leads	the	system	towards	a	90°	twisted	configuration	which	is	adjacent	to	the	CI.	

Schlegel	et	al.	found	the	intersection	is	not	located	at	the	bottom	of	the	S1	surface	but	

near	a	fully	twisted	minimum	that	corresponds	to	a	twisted	intramolecular	charge-

transfer(TlCT)	 state.	 After	 partial	 equilibration	 of	 the	 TICT	 state,	 the	 skeletal	

asymmetric	stretching	and	NH	wagging	modes	modified	 the	equilibrium	geometry	

and	 triggered	 the	nonradiative	decay	 through	 the	CI,	 	 leading	 to	 the	 low	quantum	

yield.	 Inhibition	 of	 this	 trans-cis	 isomerization	 by	 dissolving	 the	 dye	 in	 viscous	

medium	or	chemically	rigidizing	the	linker50	or	by	intercalation	as	found	in	our	work,	

prevents	this	decay	mechanism,	leading	to	the	dramatic	fluorescence	enhancement.	

	

Gao	 et	 al.	 investigated	 the	 photoisomerization	 of	 1,10	 -dimethyl-2,20	 -

pyridocyanine	(Me-1122P	in	Figure	1.8.1)	both	in	gas	phase	and	in	methanol.51		It	was	

  HN (CH )n NH +
  n = 3,4,5
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found	that	in	the	gas	phase,	conical	intersections	were	near	the	minima	of	the	S1	state,	

and	the	S1	decay	follows	a	barrierless	pathway	to	the	global	minimum	of	S1	(minS1)	

before	 relaxing	 to	 the	 S0	 state	 through	 the	CI.	 The	 solvent	 effects	were	 estimated	

using	the	polarizable	continuum	model	(PCM)52.	In	methanol	as	well	as	other	solvents	

with	high	polarities	such	as	1-propanol,	ethanol	and	water,	the	system	would	reach	a	

stationary	structure	(minS1-trans	in	Figure	1.8.2)	first	before	the	CI,	and	a	significant	

barrier	exists	between	the	stationary	structure	and	minS1,	which	results	in	a	much	

longer	lifetime	of	the	excited	state.	

	

Figure	1.8.1	Me-1122P51	
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Figure	1.8.2	S1	state	energy	profiles	along	the	constructed	Linearly	interpolated	
internal	coordinate	(LIIC)	pathways	.The	inset	illustrates	the	energy	profile	in	the	
gas	phase	between	the	Franck-Condon	point	and	minS1.	51	
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2 Methods	

2.1 	Simulations	with	Modified	Amber-Generated	Force	Fields	

2.1.1 Introduction	

Oxazole	yellow,	known	as	YOPRO	(Figure	2.1.1),	is	a	member	of	the	cyanine	

dye	family.	It	consists	of	benzoxazole	and	quinoline	rings	connected	by	a	linker	of	two	

carbon-carbon	bonds.	YOPRO	is	almost	non-fluorescent	in	water	but	its	fluorescence	

is	 enhanced	~1800	 fold	after	 intercalation	 in	double-stranded	DNA,	providing	 the	

basis	of	DNA	concentration	assays1,	8-10.	The rationale for this difference is that in 

solution, rotational	motion	of	the	two	rings	around	the	linker	permits	non-radiative	

decay	to	the	ground	state,	while	when	intercalated,	twisting	is	suppressed,	eliminate	

the	non-radiative	pathway.  

To	 explore	 the	 conformational	 sampling	 of	 YOPRO,	we	 first	 simulated	 it	 in	

water	 and	when	 intercalated	 in	double	 stranded	DNA	 that	 is	 stabilized	by	 a	basic	

leucine	zipper	(bZIP)	protein.	Both	unrestrained	and	umbrella	sampling	molecular	

dynamics	were	used	to	obtain	the	free	energy	as	a	function	of	rotation	around	the	two	

dihedral	angles	of	the	linker.	Three	different	YOPRO	force	were	built	by	varying	the	

dihedral	force	constants	of	the	linker	bonds,	reflecting		different	assumptions	on	the	

linker	bonding.		
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Figure	 2.1.1	 Structure of YOPRO (without hydrogen atoms) with benzoxazole and 
quinoline rings connected by a cyanine-based linker. Dihedral C2−C6−C10−C11 (D1) and 
C6−C10−C11−O1 (D2) are the two dihedrals on linker C11−C10−C6 that define the twist 
angle of the two ring systems. In this example, D1 = 180° and D2 = 162°. 

	
2.1.2 YOPRO	Structure	and	Internal	Force	Field	Parameters	

A	structure	of	YOPRO	was	obtained	 from	the	ChEBI	website53.	 Its	structure	

was	optimized	using	Gaussian	0354	and	the	Merz-Kollman	fitting	procedure55	used	to	

generate	partial	charges	and	a	mol2	file.	Parmchk	in	Amber56	was	used	to	generate	a	

frcmod	file	for	tleap.	In	the	frcmod	file,	we	modified	the	dihedral	force	constants	of	

the	two	linker	dihedrals	to	produce	three	models:		

Model	1:	The	original	force	field	generated	by	Parmchk	has	a	double	bond	C6-C10	

and	a	single	bond	C10-C11.	But	consideration	of	the	stable	resonant	structure	has	a	

single	bond	C6-C10	and	a	double	bond	C10-C11.	Dihedral	force	field	parameters	from	

the	 Generalized	 Amber	 Force	 Field	 (GAFF)	 of	 1.0	 kcal/mol	 for	 each	 of	 the	 nine	

contributions	to	single	bonds	and	6.65	kcal/mol	for	each	of	the	four	contributions	to	

double	bond	were	then	used.		

Model	2:	In	the	GAFF,	the	force	constant	of	each	of	the	four	torsional	energies	of	a	
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carbon-carbon	double	bond	is	set	to	26.6/4=6.65	kcal/mol,	(the	values	are	half	the	

barriers	 in	accord	with	 the	 form	of	 the	Amber	dihedral	 force	 field)	while	 that	of	a	

single	bond	is	set	to	1.4/9=	0.156	kcal/mol.	If	the	numbers	of	dihedrals	involved	in	a	

double	 bond	 and	 a	 single	 bond	 are	 considered,	 these	 two	 force	 constants	 are	

partitioned	 in	 the	 force	 field	 by	 dividing	 by	 4	 and	9,	 respectively.	 Based	 on	 these	

values,	we	estimated	the	force	constant	for	the	two	YOPRO	dihedrals	by	splitting	the	

difference	between	single	and	double	bonds;	that	is,	using	the	geometric	average	of	

these	partitioned	force	constants	for	single	and	double	bonds.	The	result	is	close	to	1	

kcal/mol.	This	 value	 agrees	with	 the	 force	 constant	 for	 an	 sp2	 carbon-sp2	 carbon	

bond	in	the	middle	of	a	conjugated	system	in	the	GAFF.	Thus,	we	adopt	this	value	for	

the	conjugated	cyanine	system.  

Model 3: Both	dihedral	force	constants	were	reduced	by	half	to	0.5	kcal/mol.		

 

2.1.3 YOPRO	Solvation	in	Water	

The	solvation	of	YOPRO	with	TIP3P	waters	was	done	using	tleap.56	The	buffer	

distance	 chosen	 was	 8	 Å.	 To	 achieve	 electroneutrality	 of	 the	 system,	 2	 chloride	

counterions	were	added.	Thus,	the	YOPRO	was	surrounded	by	751	water	molecules	

and	2	Cl−	 ions	(which	made	the	total	size	of	 the	system	2312	atoms).	A	restrained	

energy	minimization	was	 performed	 using	 the	 SANDER	module	 of	 AMBER12.	 For	

both	 the	 minimizations	 and	 the	 subsequent	 MD	 runs,	 the	 long-range	 Coulombic	

interactions	were	handled	by	 the	particle	mesh	Ewald	method.	The	minimizations	

were	performed	in	2	stages.	In	both	stages	4000	iterations	of	steepest	descent	were	

performed	 followed	 by	 4000	 iterations	 of	 conjugate	 gradient	 algorithm.	 A	 force	
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constant	of	10	kcal/mol/rad2	was	applied	to	the	restrained	atoms.	During	the	first	

minimization,	 the	 heavy	 atoms	 of	 YOPRO	were	 restrained,	 which	 allowed	 for	 the	

optimization	of	the	hydrogens	of	the	waters	added	by	tleap.	While	in	the	second	one,	

all	atoms	in	the	system	are	minimized.	

	

After	the	restrained	minimizations,	a	200	ps	heating	run	was	done	to	300	K.	

The	 heat	 run	 used	 the	 exact	 same	 restraints	 that	were	 used	 in	 the	minimizations	

except	 that	 a	 force	 constant	 of	 100	 kcal/mol/rad2	 was	 applied	 to	 the	 restrained	

atoms.	SHAKE57	was	used	in	the	heating	and	subsequent	production	runs	for	bonds	

involving	hydrogen	atoms	allowing	for	a	2-fs	time	step.		A	Langevin	thermostat56	was	

used	to	maintain	the	temperature	at	300	K.		The	heated	structures	were	used	as	the	

reference	structures	for	the	next	800	ps	equilibration	run,	which	allowed	the	solvent	

environment	to	reach	their	proper	densities.	At	the	end	of	the	equilibration	run,	the	

density	 of	 the	 YOPRO	 system	 was	 0.9922	 g/cc.	 The	 restart	 files	 from	 those	

equilibration	runs	were	then	used	as	the	inputs	for	all	of	the	subsequent	production	

runs.	 Then	 MD	 runs	 were	 performed	 at	 300	 K	 using	 constant	 NPT	 conditions	

(isothermal-isobaric)	 for	 the	 three	models	 as	detailed	 in	Chapter	3.	The	 reference	

pressure	was	set	equal	to	1	bar,	and	the	Berendsen	barostat58	used	with	a	pressure-

coupling	 constant	 of	 0.1	 psec.	 The	 temperature	was	maintained	 at	 300	 K	 using	 a	

Langevin	thermostat	with	a	collision	frequency	of	0.2	ps–1.	

	

2.1.4 bZIP-DNA	Solvation	in	Water	

The	crystal	 structure	of	GCN4	 in	 the	presence	of	DNA	 (PDB	accession	code	
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1YSA)	was	used59	to	initiate	the	simulations	with	bZIP.	It	was	solvated	with	22526	

TIP3P	waters	with	an	8	Å	buffer	distance.	25	Na+	counterions	were	added	to	achieve	

electroneutrality.	The	minimization	and	heating	runs	were	performed	using	the	same	

restraints	that	were	used	for	the	“YOPRO	in	water”	system.	The	heating	run	lasted	

200	ps	and	was	followed	by	a	400	ps	equilibration	run.	At	the	end	of	the	equilibration	

run,	 the	 density	 of	 the	 bZIP	 system	was	 1.0070	 g/cc.	 The	 restart	 file	 from	 those	

equilibration	runs	were	then	used	as	the	inputs	for	the	subsequent	production	MD	

runs.	The	20	ns	MD	run	was	performed	at	300	K	using	constant	NPT	conditions	with	

reference	 pressure	 1	 Bar	 and	 pressure-coupling	 constant	 of	 0.1	 psec	 using	 a	

Berendsen	barostat.58	The	temperature	was	maintained	at	300	K	using	a	Langevin	

thermostat	with	a	collision	frequency	2	ps–1.		

	

2.1.5 bZIP-DNA-YOPRO	Intercalation	in	Water   

We	used	PyMOL60	 to	 intercalate	YOPRO	 into	 the	 space	between	 the	2	base	

pairs	C4-G38	and	T5-A37	in	the	bZIP	structure	to	obtain	a	coordinate	file	for	the	bZIP-

DNA-YOPRO	complex.	The	two	oxygen	atoms	on	end	bases	1	and	21	were	deleted	to	

make	 the	 structure	 compatible	 with	 tleap.	 The	 bZIP-DNA-YOPRO	 complex	 was	

solvated	with	20524	TIP3P	waters	with	a	buffer	distance	of	8	Å.	21	Na+	counterions	

were	added	for	electroneutrality.	The	minimization	and	heating	run	were	performed	

using	the	same	restraints	that	were	used	for	the	YOPRO	in	water	system.	The	heating	

run	lasted	200	ps	and	was	followed	by	the	equilibration	run.	The	heated	structures	

were	used	as	the	reference	structures	for	the	next	200	ps	equilibration	run,	which	let	

the	 protein	 maintain	 its	 original	 structure	 while	 the	 solvent	 environments	 were	
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allowed	to	reach	their	proper	densities.	At	the	end	of	the	equilibration	run,	the	density	

of	 the	 bZIP-DNA-YOPRO	 complex	 was	 1.011g/cc.	 The	 restart	 file	 from	 those	

equilibration	runs	were	then	used	as	the	inputs	for	the	subsequent	production	MD	

runs.		After	equilibration,	different	starting	dihedral	angles	were	used,	as	detailed	in	

the	following	sections.	

 

2.1.6 Umbrella	Sampling	of	YOPRO	Model	1	and	Model	2	in	Water		

For	 the	 model	 1,	 the	 umbrella	 sampling	 of	 the	 dihedral	 C2-C6-C10-C11	

referred	 to	 as	 D1	 started	 from	 -110	 degrees	 using	 the	 restart	 file	 from	 the	 free	

simulation.	The	windows	were	spaced	20	degrees	apart	from	-170	to	170	degrees.	A	

force	 constant	 of	 20	 kcal/mol/rad2	 was	 used	 for	 the	 windows	 from	 -130	 to	 -10	

degrees	while	the	force	constant	of	all	other	windows	was	40	kcal/mol/rad2.	Each	

window	was	started	with	a	200	ps	energy	minimization	consisting	of	500	iterations	

of	steepest	descent	and	1500	iterations	of	conjugate	gradient	algorithm.	The	next	step	

was	200	ps	equilibration.	The	same	conditions	as	for	unrestrained	runs	were	used.	A	

Berendsen	thermostat	was	used	to	heat	the	system	from	0	to	300	K	under	constant	

pressure	(1	bar)	with	a	pressure	relaxation	time	of	5	ps.	Each	window	production	run	

was	1	ns.		

For	the	model	2,	two	dimensional	umbrella	sampling	was	carried	on	D1	and	

D2	(dihedral	C6-C10-C11-O1)	starting	from	D1=–120	and	D2=0	degrees.	The	restart	

file	from	the	free	simulation	was	used.	For	D1,	the	“regular”	windows	were	spaced	20	

degrees	apart	from	–180	to	180	degrees	with	the	addition	of	several	windows	at	the	

extremes	for	better	overlapping	(D1=±19	and	±10	degrees).	D2	was	 limited	to	the	
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interval	 [-40,	 40]	 with	 5	 windows	 spaced	 20	 degrees	 apart	 because	 the	 free	

simulation	results	indicated	the	probability	density	distribution	concentrated	only	in	

that	range.	The	force	constant	for	D2	was	always	20	kcal/mol/rad2,	while	that	of	D1	

was	also	20	kcal/mol/rad2	in	all	window	except	those	six	where	the	force	constant	of	

D1	was	set	to	60	kcal/mol/rad2:	(D1=–10,	D2=0,	±20,	±40)	and	(D1=10,	D2=–40).	All	

constraints	used	except	the	force	constants	were	the	same	as	those	in	Model	1.	Each	

window	was	simulated	 for	10	ns	after	1ns	equilibration.	 	All	 the	windows	overlap	

with	their	neighboring	ones	very	well	(Figure	2.1.2).	

	

Figure	2.1.2	This	density	distribution	shows	that	these	105	windows	mentioned	
above	cover	the	whole	region	of	D1∈	[-180,180]	and	D2∈	[-40,40]	for	the	model	2.	

	

2.1.7 Unrestrained	Intercalation	Simulation	of	Model	1,	2	and	3 

For the model 1, a 10ns simulation of D1 was started from –165.0	degrees.	For	

both	model	2	and	3,	D1	was	started	from	–152.4	degrees	and	D2	was	started	from	–

4.6	degrees,	after	equilibration.	Two	successive	trajectories	of	10	and	13	ns	were	run	

for	Model	2	and	one	trajectory	of	13	ns	was	run	for	Model	3.		
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2.1.8 Umbrella	Sampling	Simulation	of	Models	2	and	3	Intercalated	  

Only	D1	was	scanned,	while	D2	was	constrained	around	0	degrees	(for	model	

2)	and	20	(for	model	3).	The	restart	file	from	the	free	simulation	was	used	for	start	

up.	The	sampling	was	started	from	D1=–160	degrees	(for	model	2)	and	–140	degrees	

(for	model	3)	and	then	extended	to	both	positive	and	negative	directions	to	cover	the	

whole	range	[–340,10].	After	unbiasing	by	WHAM,	this	dihedral	was	converted	to	[-

180,180]	 for	plotting.	The	 force	constant	of	D2	was	always	20	kcal/mol/rad2.	The	

force	constants	of	D1	are	given	in	Table	2.1.1	and	2.1.2:	

D1		 Force	constant	(kcal/mol/rad2)	
-240	to	-340,	every	10	degrees	 60	
-170	to	-230,every	10	degrees	 40	
-160	to	-120,every	10	degrees	 20	
-110	to	-50,	every	10	degrees	 40	
-40	to	-20,	every	10	degrees	 60	
-10	to	0,	every	5	degrees	 80	
1	degree		 100	
3	degrees	 160	
5	degrees	 200	
8	degrees	 200	
10	degrees	 100	

Table	2.1.1	Window	data	for	Umbrella	sampling	of	Model	2	intercalated.	

	

	

	

	

D1		 Force	constant	(kcal/mol/rad2)	
15	degrees		 160	
10	degrees	 160	
5	degrees	 140	
0	degree	 120	
-2	degrees	 120	
-5	degrees	 120	
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-7	degrees	 120	
-10	degrees	 100	
-12	degrees	 100	
-15	degrees	 60	
-19	degrees	 80	
-20	to	-30,	every	10	degrees	 60	
-40	to	-110,	every	10	degrees	 40	
-120	to	-160,	every	10	degrees	 20	
-170	to	-230,	every	10	degrees	 40	
-240	to	-280,	every	10	degrees	 60	
-290	to	-340,	every	10	degrees	 80	

Table	2.1.2	Window	data	for	Umbrella	sampling	of	Model	3	intercalated	
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2.2 Simulations	with	Fitted	Force	Fields	by	the	Implicitly	Polarized	Charge	

Method	 	

2.2.1 Partial	Charge	Set	Fitting	for	Water-solvated	YOPRO  	

The	Implicitly	Polarized	Charge	Method(IPolQ)11	described	in	Section	1.3	was	

used	to	fit	for	the	partial	charge	set	for	water-solvated	YOPRO.		

After	solvating	YOPRO	in	2238	SPC	water	molecules,	we	froze	the	YOPRO	and	

carried	out	10	ns	conformational	sampling	of	the	solvent	at	450K	to	collect	a	set	of	

equilibrated	water	configurations.		

Next,	 the	 MD	 simulation	 of	 the	 solute	 YOPRO	 were	 performed	 from	 each	

equilibrated	 water	 configuration	 with	 the	 solvent	 fixed	 to	 obtain	 a	 set	 of	 time	

averaged	 solute	 configurations.	 The	 fixed	 locations	 of	 the	water	 solvent	 served	 to	

create	a	field	of	point	charges	surrounding	the	solute.		

Once	the	MD	simulations	were	finished,	we	used	orca34	to	calculate	the	single	

point	energy	and	electrostatic	potential	of	each	solute	configuration	in	vacuum	for	

charge	fitting	at	B3LYP/cc-pvTZ	level,	and	took	the	solvent	charge	density	as	a	

perturbation	for	the	electrostatic	potentials	in	water.	The	final	IPolq	charge	set	was	

derived	from	the	perturbed	electrostatic	potential	set.		

The	IPolQ	charges	set	was	used	as	the	input	for	the	next	iteration	by	replacing	

the	original	guess.	Once	the	fitted	charge	set	is	converged,	the	charge	fitting	process	

is	finished.	The	IPolQ	charge	then	goes	to	the	force	constant	fitting	section.		
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2.2.2 Dihedral	Force	Constant	Fitting	

The	force	constant	fitting	method	described	in	Section	1.5	was	used	to	fit	for	

the	 force	 constant	 parameter	 of	 D1	 and	 D2	 (figure	 2.1.1).	 To	 start	 with,	 36×36	

conformations	of	YOPRO	were	generated	by	applying	NMR	constraints	on	 the	 two	

dihedrals,	in	vacuum.		

The	following	are	some	fitted	force	field	parameters	( 	and	 	values	):	

D2a,	b		 a2	 a4	 a6	 a8	 b2	 b4	 b6	 b8	

-175	 8.595	 4.010	 0.645	 1.836	 174.181	 -20.620	 101.500	 155.290	
-125	 10.940	 2.592	 2.462	 0.867	 165.630	 -113.100	 91.120	 -145.600	
-75	 12.715	 2.286	 1.456	 1.829	 202.610	 55.780	 -107.900	 -120.900	
-25	 12.060	 2.026	 1.684	 0.917	 194.400	 7.009	 240.300	 -70.410	
25	 11.420	 2.217	 1.458	 2.348	 171.478	 -37.760	 125.800	 94.930	
75	 11.440	 2.221	 0.502	 0.940	 165.770	 -45.790	 125.700	 -1.898	
125	 11.470	 2.978	 2.003	 0.246	 188.932	 143.040	 -77.370	 -106.500	
175	 8.920	 1.405	 2.334	 3.090	 188.786	 22.430	 162.860	 -105.300	

Table	2.2.1	S0	YOPRO	a	and	b	values	of	D1	surface	as	functions	of	D2	

	

D1a,	b	 a2	 a4	 a6	 a8	 b2	 b4	 b6	 b8	

-175	 9.775	 3.437	 1.02	 1.091	 174.767	 -0.924	 225.55	 192.52	
-125	 10.515	 1.615	 1.173	 1.704	 168.71	 3.323	 105.8	 147.17	
-75	 12.305	 2.829	 1.633	 1.595	 216.69	 69.53	 247.71	 -121.3	
-25	 8.91	 1.683	 0.457	 0.431	 187.063	 -28.27	 130.61	 166.36	
25	 11.15	 1.53	 0.936	 1.871	 167.91	 0.261	 81.66	 137.3	
75	 11.625	 2.368	 1.279	 1.564	 150.78	 -32.03	 -211.5	 244.04	
125	 11.235	 2.846	 1.274	 0.638	 191.13	 78.67	 -76.14	 244.86	
175	 8.175	 3.289	 0.783	 1.872	 184.417	 14.44	 181.946	 208.43	

Table	2.2.2	S0	YOPRO	a	and	b	values	of	D2	surface	as	functions	D1	

	

	

	

D2a,	b	 a2	 a4	 a6	 a8	 b2	 b4	 b6	 b8	

 an  bn
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-175	 6.105	 3.742	 3.375	 1.806	 8.553	 195.350	 -16.860	 -14.480	
-125	 10.145	 7.520	 2.179	 5.580	 -38.470	 145.020	 -113.800	 206.900	
-75	 2.409	 2.747	 3.171	 3.212	 -90.120	 132.980	 -86.530	 -97.600	
-25	 6.815	 5.790	 4.004	 3.725	 -27.000	 178.759	 0.349	 3.228	
25	 7.130	 3.825	 4.503	 1.315	 -7.339	 166.330	 -23.730	 -24.470	
75	 2.326	 1.223	 1.960	 2.091	 202.530	 179.736	 48.600	 41.410	
125	 9.795	 9.875	 2.198	 5.295	 37.870	 210.960	 86.170	 166.440	
175	 5.195	 3.522	 3.143	 4.763	 15.890	 177.134	 -5.574	 -4.631	

Table	2.2.3	S1	YOPRO	a	and	b	values	of	D1	surface	as	functions	of	D2	

The	 torsional	 force	 constants	 of	 D1	 are	 minimized	 at	 D2=	 ±75,	 which	

corresponds	to	high	energy	regions	on	the	quantum	energy	surface	of	S1	YOPRO.	

D2a,b	 a2	 a4	 a6	 a8	 b2	 b4	 b6	 b8	

-175	 11.105	 2.344	 0.914	 0.565	 183.751	 -7.855	 -95.060	 92.930	
-125	 13.855	 3.599	 2.018	 0.195	 188.427	 63.950	 -55.720	 589.300	
-75	 12.830	 8.380	 4.466	 1.256	 146.220	 -22.980	 208.160	 164.430	
-25	 10.140	 0.889	 2.142	 1.866	 177.814	 -114.000	 -9.114	 31.450	
25	 11.160	 0.985	 0.905	 0.564	 174.326	 247.670	 84.830	 6.343	
75	 19.335	 12.31	 5.855	 1.534	 209.330	 18.080	 170.567	 198.240	
125	 14.565	 2.001	 1.653	 0.452	 175.116	 -48.170	 61.610	 9.348	
175	 10.055	 3.188	 0.230	 0.629	 180.027	 29.220	 -21.640	 -93.940	

Table	2.2.4	S1	YOPRO	a	and	b	values	of	D2	surface	as	functions	D1	

The	 torsional	 force	 constants	 of	 D2	 are	 maximized	 at	 D1=	 ±75,	 which	

corresponds	to	low	energy	regions	on	the	quantum	energy	surface	of	S1	YOPRO.	

The	final	fitted	result	shows	that	in	the	S0	state,	the	two	linker	bonds	are	more	

or	less	in	the	same	bond	order,	as	expected	for	the	ground	state	of	YOPRO,	while	in	

the	S1	state,	D1	(see	Figure	2.1.1)	turns	to	be	more	like	a	pure	single	bond	and	D2	

more	like	a	pure	double	bond.		

	

2.2.3 Umbrella	Sampling	of	YOPRO	in	Water	on	the	S0	and	S1	Surfaces		

Two	 dimensional	 umbrella	 sampling	 on	 the	 S0	 surface	was	 carried	 out	 on	

dihedrals	 D1	 (C2-C6-C10-C11)	 and	 D2	 (C6-C10-C11-O1).	 	 Note	 that	 the	 dihedral	
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potentials	 that	we	developed,	coupling	D1	and	D2,	are	well-suited	 to	 the	umbrella	

sampling	method	whereby	restricted	window	ranges	 for	 these	dihedrals	are	used.	

Otherwise,	 in	 a	 free	 simulation,	 the	 specific	 dihedral-dependent	 force	 field	would	

have	 to	 be	 introduced	when	 the	 dihedrals’	would	 reach	 different	 regions	 of	 their	

angles.	 That	 would	 require	 monitoring	 the	 dihedral	 values	 and	 stopping	 and	

restarting	the	simulation	for	the	new	force	field	values.		

The	windows	were	started	from	the	trans-cis	conformation	(180,	0)	which	is	

around	 the	 global	 minimum	 on	 the	 quantum	 chemical	 energy	 surface	 with	 the	

corresponding	fitted	internal	force	constant	sets.		The	starting	window	was	initialized	

with	 a	minimization	 followed	by	 a	5ns	 equilibration	 at	 300	K	using	 constant	NPT	

(isothermal-isobaric)	 conditions,	 and	 the	 restart	 file	 was	 passed	 to	 start	 the	

equilibration	of	its	neighboring	windows.	Each	adjacent	window	was	spaced	by	10	

degrees	 along	 D1	 or	 D2.	 Finally,	 the	 sampling	 range	 expanded	 to	 the	 full	 space	

(360⁰×360⁰)	covered	by	36×36	windows.	Once	all	 the	windows	were	equilibrated,	

their	production	runs	were	started	at	the	same	time.	All	minimization,	equilibration	

and	 production	 runs	 were	 carried	 out	 with	 a	 restraint	 force	 constant	 of	 10	

kcal/mol/rad2	for	both	D1	and	D2.	

All	the	umbrella	samplings	were	unbiased	with	the	WHAM	methodology61,	62	

to	 obtain	 the	 two	dimensional	 free	 energy	 surfaces	 along	 the	D1	 and	D2	dihedral	

angles.	

For	the	S1	surface,	two	ways	of	generating	the	window	data	were	used.	The	

first	way	was	started	at	the	same	places	as	in	S0	sampling.	The	exact	same	protocol	
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was	used,	except	that	the	internal	force	fields	of	YOPRO	for	each	window	were	those	

for	the	S1	state.		

In	the	second	way,	the	umbrella	sampling	was	started	at	all	four	minima:	(0,0),	

(0,180),	(180,0)	and	(180,180)	on	the	“subtracted”	S0	surface	of	YOPRO	for	the	force	

constant	parameter	fitting	as	described	in	Section	1.5	with	the	corresponding	fitted	

internal	force	constant	sets	for	the	S1	state.	The	same	protocols	were	used	as	in	the	

first	method,	except	this	time	we	sampled	four	regions	covered	by	15×15	windows	

with	the	four	starting	windows	in	the	center.		

This	protocol	is	used	since	the	minima	on	the	S0	surface	are	the	Frank-Condon	

transition	points	as	discussed	in	Section	1.6.	Later	on	this	protocol	is	used	for	the	S0	

and	S1	intercalations	as	discussed	in	the	next	section	because	during	the	full	space	

sampling	 of	 intercalated	 YOPRO,	 deintercalation	 always	 happens	 which	 must	 be	

avoided	because	YOPRO	never	go	back	to	the	“box”	after	that.	

	

2.2.4 Umbrella	Sampling	Simulation	of	Intercalated	YOPRO	Surfaces		

The	same	protocols	were	used	to	sample	intercalated	YOPRO	in	the	S0		and	S1	

states	as	for	the	second	sampling	method	of	S1	YOPRO	in	water	outlined	in	Section	

2.2.	When	the	production	runs	were	finished,	VMD63	was	used	to	view	the	trajectories	

of	the	windows	to	exclude	those	where	YOPRO	de-intercalated.
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3 Results	

3.1 bZIP-DNA	in	Water	

	

Figure	3.1.1	The	bZIP	crystal	structure59	showing	the	two	monomers	composed	of	
leucine	zipper	and	basic	domains.	The	dsDNA	 that	 is	perpendicular	 to	 the	protein	
dimer	is	held	in	place	by	the	basic	domains.	

The	bZIP-dsDNA	 complex	 is	 comprised	of	 40	paired	bases	 and	 two	 leucine	

zipper	 	 	 	 monomers	 each	with	 57	 residues.	 The	 crystal	 structure	 of	 GCN4	 in	 the	

presence	of	DNA	(PDB	accession	code	1YSA)59	was	used	to	initiate	the	simulations	

(see	Chapter	2).	Figure	3.1.1	displays	the	two	alpha-helical	monomers	and	the	DNA	

that	is	bound	essentially	perpendicular	to	dimerized	bZIP.	

The	bZIP-DNA	was	first	simulated	without	YOPRO	intercalated	for	20	ns.	Root	

mean	square	fluctuations	(RMSFs)	were	traced	for	DNA	(nucleic	acid	residues)	and	

bZIP	(protein	residues)	separately,	as	shown	in	Figure	3.1.2.	For	the	double	stranded	

dsDNA	we	ignored	the	bases	at	the	beginnings	of	the	two	strands	so	the	RMSFs	of	

DNA	start	from	base	2	and	end	at	base	40,	with	one	strand	labeled	as	2-20	and	the	

other	 22-40.	 The	 DNA	 is	 quite	 stable,	 with	 greater	 fluctuations	 at	 its	 extremities	

where	it	is	not	as	constrained	by	interactions	with	bZIP.	
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Figure	3.1.2	RMSFs	of	the	DNA	bases	and	protein	residues	for	bZIP-DNA.	The	dsDNA	
strands	are	numbered	2-20	and	22-40.	The	protein	monomers	are	numbered	41-97	
and	 98-154.	 The	 bases	 and	 residues	 are	 quite	 stable	 with	 the	 protein	 dimer	
maintained	and	base	pairing	maintained	with	greater	fluctuations	at	the	ends	of	both	
monomers	and	both	DNA	strands.	

In	 order	 to	 simulate	 bZIP	 with	 intercalated	 YOPRO	 space	 must	 be	 provided	

between	paired	bases.	The	procedure	and	results	for	doing	so	are	now	presented.	
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3.2 Preparing	Space	in	bZIP-DNA	for	YOPRO	intercalation	

Based	 on	 experiments	 intercalating	 YOYO,	which	 consists	 of	 two	 YOPRO	moieties	

connected	by	a	bridge	region,	sites	for	YOPRO	intercalation	were	found.	The	rings	of	

each	YOPRO	predominantly	 intercalated	 in	a	double	stranded,	palindromic	dsDNA	

consisting	of	16	or	24	residues.	The	YOYO	rings	intercalate	preferentially	to	d1(5'-	

CTAG-3')	 :	 d2(3’-GATC-5’)	 binding	 sites.	 64	 Therefore,	 we	 assume	 that	 YOPRO	

intercalates	 into	 d1(CT):d2(GA)	 and	 d1(AG):d2(TC)	 	 binding	 sites.	We	 picked	 one	

d1(5’-C4T5-3’):d2(3’-G38A37-5’)	and	used	constraint	MD	to	gradually	separate	these	

neighbor	base	pairs	to	provide	intercalation	space	for	YOPRO.	The	expansion	protocol	

is	detailed	in	the	Methods	section.		

	

Figure	 3.2.1	The	 hydrogen	 bonded	 base	 pairs,	 G38-C4	 and	A37-T5	 separated	 for	
YOPRO	intercalation,	with	the	three	GC	and	two	AT	hydrogen	bond	distances	at	the	
end	of	the	separation	indicated.		

Figure	3.2.1	displays	the	endpoint	of	the	separation	simulation	and	Table	3.2.1	

provides	key	distances.	The	figure	shows	that	the	five	hydrogen	bonds	between	the	
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GC	 and	AT	 bases	 are	 preserved.	 The	 distances	 that	measure	 the	 expansion	 of	 the	

space	between	the	neighbor	base	pairs	increase	from	about	3.5	to	9.4	Å.	This	about	6	

Å	increase	in	separation	is	required	to	intercalate	YOPRO.	

Atom	pairs	 C4C2-
G38C4	

G38C4-
A37C2	

C4C2-
A37C2	

T5C5-
A37C2	

C4C2-
T5C5	

T5C5-
G38C4	

Starting	
Distance	(Å)	

6.08	 3.59	 7.06	 5.49	 3.37	 6.44	

Ending		
Distance	(Å)	

6.08	 9.39	 11.19	 5.49	 9.37	 10.9	

Table	3.2.1	Box	expanded	atom	pair	distances.	

Plots	of	the	hydrogen	bond	distances	(Figure	3.2.2)	show	that	all	five	are	well	

maintained	throughout	the	expansion.	
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Figure	3.2.2	During	the	expansion	to	provide	room	for	YOPRO	intercalation,	the	
base	pairing	hydrogen	bonds	are	well	maintained.	
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3.3 YOPRO	Models	1,2	and	3	

3.3.1 YOPRO	Model	1	Intercalation	in	bZIP-DNA	

The	structure	of	YOPRO	is	given	in	Figure	2.1.1.1.	As	commonly	drawn64,	65,	the	

linker	between	the	benzoxazole	and	the	quinoline	ring	systems	consists	of	a	single	

bond	(C11-C10)	and	a	double	bond	(C10-C6).	Therefore,	the	dihedral	defined	by	C2-

C6-C10-C11	is	sufficient	to	represent	the	angle	between	the	two	rings	systems.	This	

YOPRO	will	be	referred	to	as	YOPRO	Model	1.	Standard	internal	force	field	parameters	

for	 these	 single	and	double	bonds	were	 set	by	 the	Generalized	Amber	Force	Field	

(GAFF),	as	discussed	in	Chapter	2.		

YOPRO	was	manually	docked	into	the	‘box’	in	Figure	3.2.1,	and	10	ns	MD	of	

this	bZIP-DNA-YOPRO	complex	initiated.	Figure	3.3.1	shows	the	intercalated	YOPRO	

along	with	some	distances	that	are	used	to	characterize	its	bounding	box.	
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Figure	3.3.1	A	snapshot	from	the	10	ns	MD	trajectory	of	YOPRO	intercalated	into	the	
‘box’	formed	from	the	separating	the	base	pairs.	Six	distances	are	used	to	characterize	
the	stability	of	the	box:	A37C2-C4C2,	T5C5-C4C2,	G38C4-T5C5,	G38C4-C4C2,	A37C2-
T5C5,	and	A37C2-G38C4.		

	
The	five	GC	and	AT	hydrogen	bonds	and	the	box	dimensions	were	well	

maintained	during	the	simulation,	as	summarized	in	Tables	3.3.1-3.3.2.		

H	bonds	 Average	bond	lengths	(Å)	 Standard	deviations	(Å)	
A37N1-T5N3	 2.944	 0.1082	
A37N6-T5O4	 3.017	 0.1921	
G38N1-C4N3	 2.961	 0.1065	
G38N2-C4O2	 2.896	 0.1309	
G38O6-C4N4	 2.969	 0.1965	

Table	 3.3.1	 Hydrogen	 bond	 averages	 and	 standard	 deviations	 of	 the	 YOPRO-
intercalated	bases	over	a	10	ns	simulation.	
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Atom	pairs	 Average	distances	(Å)	 Standard	deviations	(Å)	
A37C2-C4C2	 8.739	 0.5273	
A37C2-G38C4	 7.754	 0.5518	
A37C2-T5C5	 5.992	 0.1656	
G38C4-C4C2	 6.268	 0.1157	
G38C4-T5C5	 10.407	 0.5296	
T5C5-C4C2	 7.408	 0.5799	

Table	 3.3.2	 Averages	 and	 standard	 deviations	 of	 the	 YOPRO-intercalated	 box	
dimensions	over	a	10	ns	simulation.	

In	addition,	the	location	of	YOPRO	relative	to	the	box	was	parameterized	by	

some	distances	between	atoms	belonging	to	YOPRO	and	the	bases,	as	displayed	 in	

Figure	3.3.2.			

	

Figure	3.3.2	Base-to-YOPRO	distances	used	to	characterize	the	intercalation	extent,	
for	a	snapshot	from	the	10	ns	MD	trajectory.		

Monitoring	these	distances	over	the	MD	trajectory	(see	Table	3.3.3)	shows	that	

YOPRO	always	remains	inside	the	box	in	the	sense	that	both	rings	are	kept	within	the	

enclosure	of	the	four	bases.	
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Atom	pairs	 Ave	distances	(Å)	 Standard	deviations	(Å)	
A37N7-YOPRO	C3	 4.3574	 0.9552	
C4C2-YOPRO	C14	 5.5450	 1.9467	
G38N3-YOPRO	C8	 3.8205	 0.5871	
T5C4-YOPRO	C17	 5.7346	 1.4060	

Table	3.3.3	Averages	and	standard	deviations	of	distances	between	G,	C,	A	and	T	
and	indicated	YOPRO	atoms	over	the	MD	trajectory.	

The	propanamine	“tail”	does	stick	out	of	the	base	enclosure;	however,	what	is	

key	is	that	the	two	ring	systems	remain	well	intercalated	during	the	MD	trajectory.		

	

3.3.2 YOPRO	Model	1	in	Water	

Using	 the	model	 1	 force	 field	 (see	 Section	 2.1),	 two	 simulations	 of	 YOPRO	

Model	 1	 were	 carried	 out	 in	 water.	 First,	 a	 10	 ns	 simulation	 started	 from	 a	

configuration	 with	 the	 single	 bond	 dihedral	 D1	 (C2-C6-C10-C11)	 at	 angle	 –170.5	

degrees,	 obtained	 from	 the	 intercalated	 structure.	 This	 unrestrained	 simulation	

covered	a	small	dihedral	range.	A	histogram	of	the	dihedral	probability	shows	that	

the	dihedral	fluctuated	around	–120	degrees.	This	is	far	from	a	planar	conformation	

of	the	two	ring	systems.	However,	even	in	water,	MD	may	not	indicate	the	global	free	

energy	minimum	of	a	system	by	not	being	able	to	surmount	barriers	in	the	complex	

potential	energy	surface.	Therefore,	we	carried	out	standard	umbrella	sampling66,	67	

to	obtain	the	probability	of	observing	this	dihedral	angle.	Nineteen	windows,	each	

simulated	for	1	ns,	were	used	to	cover	the	range	(–180,180),	as	detailed	in	the	Section	

2.1.	The	umbrella	constraints	were	unbiased	with	WHAM27,	61,	62.	Figure	3.3.3	shows	

that	 the	 dihedral	 angle	 is	 indeed	 restrained	 to	 about	 –115	 degrees	 while	 the	

unrestrained	simulation	dihedral	probability	agrees	well	over	its	limited	range	with	

that	obtained	from	the	umbrella	sampling.		
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Figure	3.3.3	PMF	of	the	dihedral	D1(C2-C6-C10-C11).	The	red	line	is	the	result	of	the	
unrestrained	simulation	while	the	black	line	is	obtained	from	umbrella	sampling.	

The	second	minimum	at	around	90	degree	is	about	4	kcal/mol	higher	than	the	

global	minimum,	indicating	that	it	has	a	population,	 	,	relative	to	the	global	

minimum.	Thus,	in	water	the	YOPRO	the	single	bond	C2-C6-C10-C11	dihedral	is	quite	

well	restricted	to	sampling	around	–120	degrees.	

	

3.3.3 YOPRO	Model	1	Intercalated	

To	 see	 if	 the	 intercalated	 YOPRO	 model	 1	 would	 lead	 to	 a	 more	 planar	

configuration	of	 the	ring	systems,	we	simulated	 the	 intercalated	bZIP-DNA-YOPRO	

complex	for	10	ns	starting	from	the	geometry	at	the	end	of	the	docking	intercalation	

run	in	Section	3.3.1,	when	D1	was	–165.0	degrees.	A	histogram	of	D1	is	displayed	in	

Figure	3.3.4.	

	

	

   P ∼ 0.0007
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Figure	3.3.4	PMF	of	the	dihedral	D1(C2-C6-C10-C11).	The	red	line	is	the	result	of	the	
unrestrained	simulation	while	the	black	line	is	obtained	from	umbrella	sampling.	

The	unrestrained	simulation	of	intercalated	YOPRO	shows	that	this	dihedral	

fluctuates	 in	 a	 range	 around	 –145	 degrees,	 which	 is	 not	 very	 different	 from	 that	

obtained	with	YOPRO	in	water	(see	Figure	3.3.4).	Thus,	the	differentiation	between	

YOPRO	in	water	and	intercalated	is	not	evident	here.	Of	course,	it	is	possible	that	if	a	

different	 initial	 D1	 angle	 were	 used,	 YOPRO	 could	 fluctuate	 around	 some	 other	

minimum	angle.	However,	 rather	 than	pursue	an	umbrella	 sampling	 simulation	 to	

obtain	a	PMF	around	this	dihedral,	a	more	realistic	model	for	the	YOPRO	linker	will	

be	now	introduced	in	the	next	section.	

With	regard	to	the	overall	structure	of	the	bZIP-DNA-YOPRO	complex,	Figure	

3.3.5	shows	the	RMSFs	of	the	bases	and	the	residues	for	the	complex,	along	with	those	

for	bZIP-DNA.	The	RMSFs	are	all	quite	similar.	Thus,	both	in	terms	of	overall	structure	

and	the	specifics	of	the	YOPRO	intercalation,	the	bZIP-DNA-YOPRO	complex	is	stable	

and	the	YOPRO	ring	systems	are	properly	intercalated	within	the	four	bases.		
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Figure	3.3.5	Model	1	RMSFs	of	the	DNA	bases	and	bZIP	residues	compared	for	bZIP-
DNA	and	bZIP-DNA	with	intercalated	YOPRO	over	their	MD	trajectories.	

	

3.3.4 Revision	of	the	YOPRO	Force	Field,	Model	2	

The	small	difference	between	the	YOPRO	single	bond	dihedral	angle	in	both	

water	and	when	intercalated	brought	us	to	the	idea	of	reconsidering	the	accuracy	of	

the	force	field	for	the	atoms	forming	the	linker	between	the	ring	systems.	Indeed,	the	

quantum	chemical	optimization	(see	Section	2.1)	showed	that	the	two	bonds	forming	

the	linker	are	essentially	the	same	length,	1.4	Å,	and,	therefore,	should	be	of	the	same	

bond	order,	as	appropriate	to	a	more-or-less	symmetrical	cyanine	dye.	Cyanine	dyes	

with	 the	 structure	 Aryl=N+=CH[CH=CH]n-N=Aryl	 are	 generally	 considered	 as	

delocalized	systems.68,	69	That	seems	to	be	the	case	here.	Thus,	the	two	linker	bonds	

are	 considered	 as	 delocalized	 “bond-and-a-half”	 bonds	 and	 modifications	 to	 the	

generalized	amber	force	field	(GAFF)	were	made.	The	result	is	that	the	torsional	angle	

force	constants	for	the	two	dihedrals	D1	and	D2	were	set	to	values	that	interpolate	

single	and	double	bonds	(see	Section	2.1	for	details).	This	model	will	be	referred	to	

as	YOPRO	Model	2.		
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3.3.5 YOPRO	Model	2	in	Water	

We	carried	out	a	270	ns	simulation	of	YOPRO	in	water	with	this	revised	force	

field.	 Now	 the	 dihedral	 angles	 around	 the	 both	 bonds	 in	 the	 YOPRO	 linker	 were	

monitored.	D1	is	the	original	dihedral,	while	the	new	one,	D2,	is	defined	as	C6-C10-

C11-O1	(see	Figure	2.1).	Figure	3.3.6	shows	that	D2	fluctuates	around	zero	degrees,	

while	D1	now	has	four	positions	of	high	probability:	±70	and	±140	degrees,	which	is	

quite	different	from	the	previous	result	shown	in	Figure	3.3.6.		

	

Figure	3.3.6	The	probability	density	for	the	two	dihedrals	for	the	unrestrained	
YOPRO	Model	2	in	water.		

We	also	carried	out	two	dimensional	umbrella	sampling	to	support	this	result,	

as	detailed	in	the	Section	2.5.	A	total	of	105	windows	were	used	to	sample	D1	from	–

180	 to	180	degrees	 and	D2	 from	–40	 to	40	degrees,	 to	 cover	 the	high	probability	

ranges	of	the	unrestrained	simulation.	The	probability	are	displayed	in	Figure	3.3.7.	



	

	 58	

	

Figure	3.3.7	The	probability	density	(top)	for	the	two	dihedrals	from	the	2D	umbrella	
sampling	simulation.	

This	 result	 is	 in	 good	 agreement	with	 that	 obtained	 from	 the	 unrestrained	

simulation	in	the	sense	that	D1	peaks	are	at	±65	and	±130	degrees,	the	same	position	

as	those	in	the	free	simulation.	

To	investigate	why	the	probability	distributes	like	this,	we	used	PYMOL60	to	

constrain	D2	at	0	and	rotated	the	benzoxazole	ring	around	the	bond	between	C6	and	

C10	and	measured	the	distances	between	different	atom	pairs	every	20	degrees.	As	

is	 evident	 in	 Figure	 2.1,	 the	 C7-O1	 and	C5-O1	 are	 two	 atom	pairs	 for	which	 their	

distances	 could	 sample	 smaller	 than	 van	 der	Waals	 contact.	 Assuming	 that	 these	

distances	might	be	 the	dominant	 factors	 in	 the	PMF,	we	evaluated	 the	 sum	of	 the	

Lennard-Jones	potentials	of	these	two	atom	pairs	at	different	D1	values.	The	results	

show	 that	 when	 D1	 approaches	 zero	 degrees,	 both	 C7-O1	 and	 C5-O1	 distances	

become	very	short,	leading	to	Lennard-Jones	potential	energies	that	are	much	larger	
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than	thermal.	This	clash	explains	much	of	the	structure	of	Figure	3.3.6.	There	is	more	

structure	 in	 the	 probability	 surface	 of	 the	 umbrella	 sampling.	However,	 the	 slight	

enhanced	probability	around	 65	degrees	corresponds	to	only	about	a	1	kcal/mol	

barrier	in	the	PMF,	which	is	on	the	thermal	energy	scale.		

	

3.3.6 YOPRO	Model	2	Intercalated	

We	 then	 carried	 out	 a	 10	 ns	 simulation	 on	 intercalated	 YOPRO	 with	 this	

modified	force	field.	Table	3.3.4	shows	that	the	five	intercalating	base-base	hydrogen	

bonds	are	well	maintained	and	Table	3.3.5	shows	that	the	atom	pair	distances	of	the	

box	that	confines	YOPRO	are	stable.				

H	bonds	 Average	bond	lengths	(Å)	 Standard	deviations	(Å)	
G38N1-C4N3	 2.952	 0.08896	
G38O6-C4N4	 2.926	 0.1410	
A37N6-T5O4	 2.996	 0.1968	
A37N1-T5N3	 2.956	 0.1086	
G38N2-C4O2	 2.866	 0.1201	

Table	 3.3.4	 The	 intercalating	 hydrogen	 bond	 average	 lengths	 and	 standard	
deviations	over	the	10	ns	simulation.	

	

Atom	pairs	 Average	distances	(Å)	 Standard	deviations	(Å)	
A37C2-C4C2	 8.535	 0.4529	
A37C2-G38C4	 7.449	 0.4120	
A37C2-T5C5	 6.007	 0.1595	
T5C5-C4C2	 7.166	 0.6327	
G38C4-C4C2	 6.286	 0.1082	
G38C5-T5C4	 10.137	 0.7354	

Table	3.3.5	The	box	atom	pair	average	lengths	and	standard	deviations	over	the	10	
ns	simulation.	

The	distance	monitors	 for	 the	YOPRO	 ring	 systems	 remaining	 between	 the	

confining	bases	displayed	in	Table	3.3.6also	show	that	the	intercalation	is	stable.		

	

	

±
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Atoms	pairs	 Average	distances(Å)	 Standard	deviation	(Å)	
C4C2-YOPRO	C14	 4.356	 0.5716	
T5C4-YOPRO	C17	 4.283	 0.4600	
A37N7-YOPRO	C3	 3.966	 0.4196	
G38N3-YOPRO	C8	 4.900	 0.9586	

Table	3.3.6	The	atom	pairs	average	lengths	and	standard	deviations	(see	Figure	7)	
for	 the	 distances	 used	 to	 characterize	 the	 intercalation	 extent	 over	 the	 10	 ns	
simulation.	

	
Figure	3.3.8	demonstrates	that	there	is	no	significant	difference	of	the	RMSF	

profiles	between	the	solution	and	the	intercalation	simulations	with	the	new	force	

field:	

	

Figure	3.3.8	Model	2	RMSFs	of	the	DNA	bases	and	bZIP	residues	compared	for	bZIP-
DNA	(black)	and	bZIP-DNA	with	intercalated	YOPRO	(red)	over	their	MD	trajectories.	

This	10	ns	MD	trajectory	was	started	from	–150	degrees	for	D1	and	0	degrees	

for	D2.	Figure	3.3.9	shows	that	D2	still	 fluctuates	around	0	degrees,	as	 in	solution,	

while	D1	is	fixed	at	around	–165	degrees.	The	behavior	is	significantly	different	from	

the	solution	model	2	YOPRO	result	shown	in	Figure	3.3.7.	It	indicates	that	intercalated	

YOPRO	in	this	model	is	reasonably	close	to	planar.	Certainly	much	more	so	than	in	

solution.		
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Figure	3.3.9	The	dihedral	angles	D1	and	D2	for	intercalated	YOPRO	Model	2. 	

To	confirm	the	conclusions	regarding	the	stability	of	the	YOPRO	intercalation	

and	 its	 negligible	 effect	 on	 the	 structure	 of	 the	 bZIP-DNA-YOPRO	 complex	 the	

simulation	was	continued	for	another	13	ns.	The	results	are	presented	as	follows	and	

are,	to	statistical	fluctuations,	the	same	as	what	has	been	presented	in	this	section.	

H	bonds	 Average	bond	lengths	(Å)	 Standard	deviations	(Å)	
A37N1-T5N3	 2.9473	 0.1043	
A37N6-T5O4	 2.9983	 0.1882	
G38N1-C4N3	 2.9530	 0.08568	
G38N2-C4O2	 2.8702	 0.1222	
G38O6-C4N4	 2.9232	 0.1383	

Table	3.3.7	The	hydrogen	bond	average	lengths	and	standard	deviations	over	the	
13	ns	simulation.		All	H	bond	are	well	maintained.	

	

Atom	pairs	 Average	distances	(Å)	 Standard	deviations	(Å)	
T5C5-C4C2	 7.0020	 0.7810	
G38C4-T5C5	 9.9039	 0.8569	
A37C2-C4C2	 8.5856	 0.4828	
A37C2-G38C4	 7.4347	 0.4508	
A37C2-T5C5	 5.9951	 0.1620	
G38C4-C4C2	 6.2891	 0.1088	

Table	3.3.8	The	box	atom	pair	average	lengths	and	standard	deviations	over	the	13	
ns	simulation.	
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Atom	pairs	 Average	distances	(Å)	 Standard	deviations	(Å)	
A37N7-YOPRO	C3	 4.0691	 0.4155		
C4C2-YOPRO	C14	 4.2586	 0.5404	
G38N3-YOPRO	C8	 5.2105	 1.0278	
T5C4-YOPRO	C17	 4.3699	 0.5268	

Table	3.3.9	The	atom	pair	average	lengths	and	standard	deviations	for	the	distances	
used	to	characterize	the	intercalation	extent	over	the	13	ns	simulation.	

	

	

Figure	3.3.10	Model	2	extended	dihedral	angles	D1	and	D2	for	intercalated	YOPRO.	

As	 for	 YOPRO	 model	 1	 in	 water,	 we	 carried	 out	 umbrella	 sampling	 to	

investigate	this	result.	Of	course,	with	an	intercalated	YOPRO,	if	a	PMF	around	one	or	

both	 linker	dihedrals	 is	 constructed	 there	 is	 the	distinct	 possibility	 that,	 for	 some	

twist	angle	range	between	the	two	ring	systems,	YOPRO	will	no	longer	be	intercalated	

and/or	the	bases	will	no	 longer	be	hydrogen	bonded,	or	 form	a	box.	The	windows	

procedure	 was	 started	 from	 D1	 at	 –152.4	 and	 D2	 at	 –4.6	 degrees,	 where	 the	

probability	 is	 maximum.	 The	 D1	 dihedral	 was	 restrained	 to	 cover	 the	 range	 (–

180,180)	while	the	D2	dihedral	was	restrained	around	0	degrees	(see	Section	2.1).	

This	probability	is	shown	in	Figure	3.3.11.	
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Figure	3.3.11	The	intercalated	YOPRO	probability	density	(top)	for	the	two	dihedrals	
from	a	2D	umbrella	sampling	simulation.	

The	minimum	on	the	PMF	profile	shifted	from	about	–160	to	–135	degrees.	

This	 is	 going	 away	 from	 the	 more	 planar	 conformation	 of	 the	 intercalated	 MD	

simulation.	To	understand	this	result,	we	explored	the	possibility	that	the	ring	system	

might	no	longer	be	well	confined	by	the	box	formed	from	the	surrounding	bases.	If,	

for	example,	the	benzoxazole	ring	protruded	from	the	box,	its	rotational	motion	could	

become	unfrozen.	As	indicated	in	Figure	3.3.12,	the	G38N3-YOPRO	C8	and	A37N7-

YOPRO	C3	distances	can	be	used	to	characterize	the	quinoline	ring	position	relative	

to	the	bases,	while	the	T5C4-YOPRO	C17	and	C4C2-YOPRO	C14	distances	can	be	used	

to	characterize	the	benzoxazole	ring	position	relative	to	the	bases.		
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Figure	 3.3.12	 Four	 characteristic	 distances	 (see	 Figure	 3.3.2)	 to	 monitor	 the	
positions	of	the	ring	systems,	as	a	function	of	the	D1	dihedral	angle.	

Figure	3.3.12	plots	these	four	characteristic	distances	as	a	function	of	the	D1	

dihedral	 angle.	 The	 T5C4-YOPRO	 C17	 distance	 rapidly	 increases	 when	 D1	 goes	

beyond	–160	degrees,	 indicating	 that	 the	benzoxazole	 ring	does	go	out	of	 the	box	

when	the	conformation	of	YOPRO	is	constrained	to	be	further	from	planar.	

The	relative	location	of	YOPRO	shown	in	Figure	3.3.13	supports	this	

conclusion.		
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Figure	3.3.13	The	last	snapshot	from	the	window	where	D1	is	constrained	at	–120	
degrees.	In	this	twisted	configuration	the	benzoxazole	ring	has	moved	out	of	the	box	
formed	from	the	surrounding	bases.	

It	is	significant	that	the	five	hydrogen	bonds	of	the	box	base	pairs	are	still	well-

preserved	 during	 the	 windowing,	 as	 shown	 in	 Figure	 3.3.14.	 Thus,	 the	 box	

conformation	 didn’t	 undergo	 very	 significant	 changes	 when	 the	 benzoxazole	 ring	

departs	from	the	box	confines	suggesting	the	existence	of	another	binding	mode.	
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Figure	3.3.14	Model	2	average	and	standard	deviations	of	the	three	AT	and	two	GC	
hydrogen	bonds	as	a	function	of	the	angle	D1.	The	hydrogen	bonding	of	the	four	bases	
is	maintained	even	as	the	oxazole	ring	is	no	longer	intercalated.		

In	addition,	the	RMSFs	of	the	residues	for	the	most	twisted	window,		(–120,	

0),	also	show	that	they	are	hardly	affected	by	the	benzoxazole	de-intercalation	as	

below.	

	

Figure	3.3.15	Model	2	extended	RMSFs	of	the	DNA	bases	and	bZIP	residues	
compared	for	bZIP-DNA	and	bZIP-DNA	with	intercalated	YOPRO	of	the	most	twisted	
window,	(-120,	0)	over	their	MD	trajectories.	

	
3.3.7 YOPRO	Model	3		

That	YOPRO	is	a	conjugated	system	is	quite	clear	from	the	quantum	chemistry	

and	 from	 previous	 work	 on	 cyanine	 dyes	 as	 a	 class.68-70	 It	 is	 worth	 exploring	 a	
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somewhat	reduced	value	for	these	force	constants	to	see	what	sensitivity	there	is	to	

the	bridging	dihedral	force	constants.	We	use	the	values	0.5	kcal/mol	for	this	model	

3	as	a	value	that	is	about	the	thermal	energy.		

	

3.3.8 YOPRO	Model	3	in	Water	

YOPRO	was	simulated	in	water	for	30	ns	with	the	new	force	constant	values.	

Figure	3.3.8.1	displays	the	two	dihedral	probability	distributions.	

	

Figure	3.3.16	The	dihedral	angles	D1	and	D2	for	unrestrained	YOPRO	Model	3	in	
water.	

The	D1	probability	distribution	 is	 similar	 to	Model	2	 (see	Figure	3.3.6)	but	

without	the	“holes”	in	the	distribution.	D2	is	still	peaked	around	zero	degrees.	Thus	

there	 is	some	 influence	 from	the	reduction	 in	 force	constant,	but	 the	 features	 that	

YOPRO	in	water	is	far	from	planar	and	samples	broad	ranges	of	these	dihedral	angles	

are	still	in	evidence.		
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3.3.9 YOPRO	Model	3	Intercalated	

The	 bZIP-DNA	 complex	with	 YOPRO	 intercalated	was	 simulated	 for	 13	 ns.	

Monitors	of	the	stability	of	Model	3	intercalation	are	presented	in	the	figure	3.3.17	

and	the	tables	3.3.10–3.3.12.	Figure	3.3.18	displays	the	probability	distributions	of	

the	dihedrals.	

	

Figure	3.3.17	Model	3	RMSF	of	the	DNA	bases	and	bZIP	residues	compared	for	bZIP-
DNA	and	bZIP-DNA	with	intercalated	YOPRO	over	their	MD	trajectories.	

	

	

Figure	3.3.18	The	dihedral	angles	D1	and	D2	for	intercalated	YOPRO	Model	3.	

D1	is	now	centered	at	–140	degrees,	while	the	equilibrium	position	of	D2	is	

shifted	 to	 20	 degrees.	 Therefore	 the	 angle	 between	 the	 two	 ring	 systems	 is	
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	degrees.	That	is	a	significant	shift	away	from	planarity	in	the	Model	

2	intercalation	simulation.	 	Furthermore,	in	contrast	to	Model	2,	in	this	simulation,	

the	oxazole	ring	does	not	remain	intercalated	(see	Table	3.3.12).	After	about	3	ns	over	

an	 interval	 of	 about	 200	 ps	 its	 position	 shifts	 from	 being	 intercalated	 to	 de-

intercalated,	much	like	in	the	Model	2	PMF	simulation.			

	

H	bonds:	 Average	bond	lengths	(Å)	 Standard	deviations	(Å)	

G38O6-C4N4h:	 2.918	 0.1463	

G38N2-C4O2h:	 2.901	 0.1338	

G38N1-C4N3h:	 2.953	 0.09067	

A37N6-T5O4h:	 3.184	 0.3313	

A37N1-T5N3h:	 2.962	 0.1527	

Table	3.3.10	The	hydrogen	bond	average	lengths	and	standard	deviations	over	the	
simulation.	All	H	bond	are	well	maintained.	

	

Atom	pairs	 Average	distances	(Å)	 Standard	deviations	(Å)	

A37C2-C4C2	 8.3688	 0.4334	

A37C2-G38C4	 7.6844	 0.3977	

A37C2-T5C5	 5.9107	 0.1753	

G38C4-C4C2	 6.2544	 0.1143	

G38C4-T5C5	 9.4147	 0.6400	

Table	3.3.11	The	box	atom	pair	average	lengths	and	standard	deviations	over	the	
simulation.	

	

Atom	pairs	 Average	distances	(Å)	 Standard	deviations	(Å)	

A37N7-YOPRO	C3	 5.5613	 0.6491	

C4C2-YOPRO	C14	 4.5867	 0.5057	

G38N3-YOPRO	C8	 4.1045	 0.4293	

T5C4-YOPRO	C17	 7.7156	 0.4282	

Table	3.3.12	The	atom	pair	average	lengths	and	standard	deviations	for	the	
distances	used	to	characterize	the	intercalation	extent.	

 −140+ 20 = −120
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Figure	3.3.19	The	intercalated	YOPRO	probability	density	for	the	two	dihedrals	from	
the	2D	umbrella	sampling	simulation	for	YOPRO	Model	3.	

Similar	to	model	2,	we	also	carried	out	umbrella	sampling	to	explore	the	free	

energy	surface	around	the	probability	maxima	of	the	unrestrained	simulation,	with	

D1	around	–140	and	D2	around	20	degrees	as	shown	in	Figure	3.3.19.	Windows	were	

spaced	10	degrees	apart	for	D1	while	D2	was	always	constrained	around	20	degrees.	

The	details	are	given	in	the	Section	2.1.		

The	 free	 energy	 minimum	 is	 found	 around	 D1	 =	 –135	 degrees,	 which	 is	

consistent	with	the	result	from	the	unrestrained	simulation.	This	is	quite	far	from	the	

planar	conformation,	indicating	that	the	reduced	force	constants	leads	to	deviations	

from	planarity,	compared	to	the	original	force	constants	1	kcal/mol	of	Model	2.		This	

PMF	run	was	initiated	from	the	end	of	the	unrestrained	run	with	the	oxazole	ring	de-

intercalated,	and	measurement	of	the	characteristic	distances	shows	that	it	remains	

de-intercalated.	
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3.3.10 Discussion	and	Conclusion	Remarks	of	the	Three	Models	

Three	models	of	YOPRO	were	investigated.	In	model	1	the	two	linker	bonds	

are	treated	as	a	single	(C10-C11)	and	a	double	bond	(C10-C11)	with	standard	GAFF	

values	for	the	dihedrals	associated	with	these	bonds.	For	models	2	and	3	both	bonds	

are	treated	as	appropriate	to	a	delocalized	bonds	resulting	in	dihedral	force	constants	

that	 are	 intermediate	 between	 single	 and	 double	 bond	 values,	 as	 detailed	 in	 the	

Methods	Section.	Model	3	was	generated	by	simply	reducing	the	model	2	value	by	a	

factor	of	two.	Thus,	model	2	should	be	considered	as	the	most	accurate	model	based	

on	the	GAFF	methodology.		

The	results	of	our	simulations	are	summarized	in	Table	3.3.13.	Only	the	peak	

positions	are	indicated,	but	looking	at	the	various	plots	indicated	in	the	table	shows	

that	the	intercalated	simulations	lead	to	somewhat	more	constrained	dihedral	angle	

sampling	than	do	the	water	simulations.		

	 Model	1	(a)	 Model	2	 Model	3	
	 D1	 D2	 D1	 D2	 D1	 D2	
Water,	unrestrained	 –100	(b)	 	 ±70;	±140	(c)	 0	(c)	 ±100	(d)	 0	(d)	
Water,	window	 –115(e)	 	 ±65;	±130	(f)	 ±10	(f)	 –	 –	
Inter,	unrestrained	 –145	(g)	 	 –165	(h)	 0	(h)	 –140	(i)	 20	(i)	
Inter,	window	 –	 	 –135	(j)	 –	 –135	(k)	 –	

Table	3.3.13	Dihedral	probability	peaks	(degrees)	for	all	the	simulations.	
(a)	Only	D1	fluctuates.	 (b)	Figure	3.3.2.1.	 (c)		Figure	3.3.5.1.	 (d)	Figure	3.3.8.1.	(e)	Figure	
3.3.2.1.	(f)	Figure	3.3.5.2.(g)	Figure	3.3.3.1.	(h)	Figure	3.3.6.2.	(i)	Figure	3.3.9.2.	(j)	Figure	
3.3.6.4.(k)	Figure	3.3.9.3	
	

Model	1	 in	water	 shows	 that	YOPRO	 is	 far	 from	planar	 in	 the	unrestrained	

simulation	and	is	in	good	agreement	with	the	umbrella	sampling	simulation	over	the	

range	sampled	by	the	unrestrained	simulation.	That	the	unrestrained	sampling	of	D1	

is	 so	 limited	 does	 show	 that	 even	 in	 water	 there	 are	 substantial	 barriers	 to	 this	

dihedral.	Turning	this	dihedral	introduces	some	van	der	Waals	clashes	within	YOPRO,	
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along	with	 various	 solvation	 effects.	When	 intercalated,	D1’s	 sampling	 shifts	 from	

peaking	 around–120	 to	 around	 –145	 degrees.	 Though	 the	 YOPRO	 intercalated	

between	the	base	pairs	 is	somewhat	more	planar	 than	the	unrestrained	YOPRO	in	

water,	both	are	far	from	planar.		

In	 model	 2,	 the	 water	 unrestrained	 and	 window	 simulations	 qualitatively	

agree	 with	 each	 other.	 The	 water	 simulation	 has	 four	 peaks	 in	 the	 probability	

distributions.	The	D1	(C2-C6-C10-C11	dihedral)	is	always	far	from	planar	and	the	D2	

(C6-C10-C11-O1)	 dihedral	 samples	 around	 zero	 degrees.	 The	 window	 simulation	

does	put	more	of	the	D1	weight	on	the	±65	versus	±130	degree	peaks	than	does	the	

unrestrained	simulation.		In	either	case	a	large	range	of	angles	between	the	planes	of	

the	two	rings	is	sampled.		

The	 model	 2	 intercalated	 unrestrained	 simulation	 shows	 that	 the	 angle	

between	the	two	ring	systems	is	much	closer	to	planar	with	(D1,	D2)	around	(–165,0)	

degrees.	The	bases	surrounding	YOPRO	are	quite	constraining	though	there	are	still	

fluctuations	of	both	D1	and	D2	around	their	average	values.	But	the	fluctuations	are	

certainly	much	smaller	than	in	water.		

In	the	corresponding	model	2	intercalation	window	simulation,	where	D2	was	

restrained	 around	 zero	 degrees	 and	 D1	 rotated	 through	 its	 entire	 range,	 the	

possibility	of	de-intercalation	of	either	one	of	or	both	ring	systems,	break-up	of	the	

four	intercalating	bases	and	general	decomposition	of	the	bZIP-DNA	complex	arises.	

What	 did	 happen,	 actually,	 is	 a	 shift	 of	 the	 D1	 peak	 from	 –165	 to	 –135	 with	 a	

corresponding	change	in	the	position	of	the	benzoxazole	ring	so	as	to	protrude	from	

its	 confining	 box	 (see	 Figure	 3.3.13),	 as	 D1	 was	 rotated	 over	 this	 range.	 The	



	

	 73	

probability	displayed	in	Figure	3.3.11	strongly	favors	this	conformation.	Note	that	D1	

and	D2	are,	respectively,	proximally	associated	with	the	quinoline	and	benzoxazole	

ring	systems.	Nevertheless	it	is	the	benzoxazole	that	comes	out	of	its	confining	box.	

That	 is	 potentially	 due	 to	 the	 pyrimidine	 bases	 that	 are	 associated	 with	 the	

benzoxazole	ring	system	(see	Figure	3.3.13)	presenting	less	ring	surface	area	than	do	

the	purine	bases.	In	spite	of	the	benzoxazole	de-intercalation,	the	hydrogen	bonding	

of	the	four	confining	bases	was	not	significantly	altered	(see	Figure	3.3.14)	for	all	the	

sampled	 D1	 values	 indicating	 that	 this	 binding	 mode	 does	 not	 disturb	 the	 DNA	

pairing.	The	experimental	linear	dichroism	data	on	YOPRO	that	suggested	a	surface	

binding	 mode	 at	 higher	 concentration	 was	 based	 on	 an	 excitonic71	 interaction	

mechanism	that	indicates	sufficiently	close	multiple	dye	binding	to	the	DNA.	Clearly,	

in	 the	 MD	 with	 one	 YOPRO	 molecule,	 such	 effects	 are	 beyond	 the	 scope	 of	 this	

investigation.		While,	it	should	be	understood	that	any	MD	force	field	used	may	not	

completely	reflect	reality,	it	is	still	of	interest	that	an	external	binding	mode	of	lower	

free	energy	can	be	found,	at	least	in	a	reaction	coordinate-based,	window	simulation.		

Model	3	also	has	both	linker	bonds	equivalent	but	with	reduced	(by	a	factor	of	

two)	 dihedral	 force	 constant	 values	 relative	 to	 model	 2.	 The	 values	 are	 not	

fundamentally	based,	but	were	introduced	to	explore	the	consequences	of	increasing	

the	ability	to	twist	around	these	dihedrals.	In	water,	the	D2	probability	mainly	peaks	

around	zero	degrees,	and	is	essentially	the	same	as	model	2.	Along	the	D1	dihedral	

coordinate,	the	four	peak	behavior	of	model	2	is	smeared	out	into	two	peaks.	Thus	

reduction	of	the	dihedral	potential,	though	intrinsically	weak	(from	a	barrier	of	2	to	

1	 kcal/mol,	 so	 essentially	 thermal)	 has	 a	 modest	 but	 noticeable	 effect	 on	 the	
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probability	along	the	D1	coordinate.	The	sampling	 is	very	diffuse	and	certainly	 far	

from	producing	planar	configurations.	

When	intercalated,	the	unrestrained	model	3	simulation	produces	an	average	

D1+D2	angle	(essentially	the	angle	between	the	planes	of	the	two	ring	systems)	of	–

120	degrees.	This	is	substantially	different	than	the	much	more	planar	arrangement	

in	Model	2.	This	difference	can	be	traced	to	the	“spontaneous”	de-intercalation	that	

occurs	rapidly	in	the	unrestrained	simulation.	Once	the	benzoxazole	ring	is	no	longer	

confined	 by	 the	 surrounding	 bases,	 it	 becomes	 freer	 in	 its	 ability	 to	 rotate.	 	 An	

exploration	of	the	PMF	with	D2	restrained	around	20	degrees,	its	average	position	in	

the	unrestrained	simulation,	and	D1	rotating	through	its	entire	range	finds	the	free	

energy	 minimum	 around	 –135	 degrees.	 Thus,	 again	 a	 stable	 de-intercalated	

conformation	is	found.		

In	summary,	model	2	that	is	best	among	the	three	from	the	point	of	view	of	

force	field	development,	leads	to	a	view	of	the	intercalation	that	is	in	good	agreement	

with	experimental	data.64,	71	Namely,	YOPRO	does	intercalate	in	a	cage	of	four	bases	

with	 a	 relatively	 planar	 conformation	 of	 the	 two	 ring	 systems.	 Furthermore,	 the	

orientation	of	the	YOPRO	ring	planes	is	essentially	perpendicular	to	direction	of	the	

dsDNA.	Another	potential	mode	of	YOPRO	binding	is	found	where	the	oxazole	ring	is	

de-intercalated.	A	surface	binding	mode	is	also	inferred	in	the	experimental	data71	at	

higher	YOPRO	concentrations.		
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3.4 Defects	of	the	Three	Models	

By	examining	three	distinct	parameterizations	of	the	methine	linker	differing	

in	 the	 dihedral	 force	 constants,	 we	 revealed	 considerable	 sensitivity	 of	 the	 dye’s	

conformational	 behavior	 and	 intercalation	 stability	 to	 the	 parameterization	 of	 the	

dihedral	 potentials	 involved.	 This	 finding	 points	 to	 the	 improper	 description	 of	

YOPRO	and	other	cyanine	dyes	by	automated	force	field	parameter-assigning	tools	

and	would	be	relevant	for	future	MD	studies	of	YOPRO	and	related	dyes.	

However,	 these	 modified	 Amber-Generated	 models	 have	 several	 severe	

defects.	 Firstly,	 these	 models	 are	 not	 parameterized	 from	 quantum	 chemical	

calculations	but	based	on	the	empirical	estimations	on	the	delocalized	system	on	the	

linker.	Therefore,	the	choice	of	Model	2	as	the	most	accurate	parameterization	may	

not	be	reasonable.		

Most	importantly,	none	of	these	models	investigated	the	possible	correlations	

between	D1	and	D2		in	this	conjugated	system.	As	we	show	in	Section	3.3,	this	turns	

out	to	be	crucial	to	the	correct	description	of	the	linker	dihedral	force	field	and	has	a	

major	influence	on	the	sampling	in	both	water	and	when	intercalated.	

Secondly,	only	one	planar	conformation	(trans-cis	as	shown	in	Figure	3.3.2)	

was	used	to	initialize	the	simulations	of	the	intercalation,	which	leads	to	the	limitation	

of	 the	 sampling	 range	 of	 the	 intercalated	 YORPO.	 Intuitively,	 all	 four	 planar	

conformations	should	be	considered	equivalently	as	the	initial	state	since	every	time	

YOPRO	is	“trapped”	in	one	conformation	by	the	box	constraints	and	can	hardly	jump	

to	another	without	the	de-intercalation.		So	the	chosen	trans-cis	conformation	may	

not	represent	all	intercalation	cases.	
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Thirdly,	 the	 bZIP	 bound	 DNA	 may	 not	 be	 necessary	 for	 the	 intercalation	

simulations.	When	 intercalated,	 the	YOPRO	doesn’t	 interact	with	 the	bZIP	directly.	

The	 DNA	 concentration	 assays	 using	 YOPRO	 doesn’t	 require	 protein-bound	 DNA	

samples	either72.	

Finally,		all	simulation	were	performed		on	the	electronic	ground	state,	while	

the	 relevant	 dynamics	 during	 fluorescence	 take	 place	 in	 the	 excited	 state.	 The	

conformational	probability	distribution	for	solvated	and	intercalated	YOPRO	must	be	

evaluated.	Therefore,	later	on	we	carried	out	charge	and	force	field	parameter	fitting	

using	the	IPolQ	method11		as	in	Section	2.2	and	reran	the	MD	simulations	on	both	S0	

and	S1	states	with	the	corresponding		fitted	force	field	respectively.	
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3.5 S0	and	S1	YOPRO	Free	Energy	Surfaces	in	Water	with	Fitted	Force	

Constant	Parameters	

Due	 to	 defects	 of	 the	 AMBER	 modified	 force	 field	 models	 as	 discussed	 in	

section	3.4,	we	developed	our	own	force	field	models	for	both	S0	and	S1	electronic	

states	 of	 YOPRO	 starting	 from	 IPolQ	 charge	 fitting	 model11.	 The	 whole	 fitting	

procedure	is	detailed	in	Section	2.2.	The	following	is	the	results	from	performing	the	

simulations	 with	 the	 fitted	 force	 field	 models	 and	 closely	 follows	 the	 our	 paper	

Molecular	Dynamics	of	Oxazole	Yellow	Dye	in	its	Ground	and	First	Excited	Electronic	

States	in	Solution	and	when	Intercalated	in	dsDNA	published	in	201773.		

	

Figure	3.5.1	PMF	surfaces	of	S0	and	S1	YOPRO	in	water.	

We	 carried	 out	 two-dimensional	 umbrella	 sampling	 to	 obtain	 free	 energy	

surfaces,	as	detailed	in	Section	2.2.	The	two	dimensional	 free	energy	surfaces,	also	

known	 as	 the	 	 potential	 of	 mean	 force	 (PMF)	 surfaces	 are	 defined	 as	

	where	 	is	 the	 corresponding	

probability	distribution	function.	The	results	are	shown	in	Figure	3.5.1:	

  PMF(D1, D2) ≡ −kBT ln[ p(D1, D2)]   p(D1, D2)
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The PMF plots of the S0 and S1 states reproduce the minima and maxima on 

the corresponding subtracted energy surfaces from subtracting the AMBER derived 

classical potential V from the quantum chemical energy Q as used for the force 

constant parameter fitting in Section 1.4 (Figure 3.5.2), which indicates that the 

dihedral potentials are quite strong compared to the solvation ability of water. On 

both the PMF and subtracted energy surfaces, S0 has four minima around (0, 0), (0, 

±180), (±180, 0), (±180, ±180), which characterize the four planar conformations: 

cis−cis, cis−trans, trans−cis, trans−trans, respectively. In the S1 state, all of these 

minima become high-free-energy regions.  

The	probability	analysis	corresponding	to	the	PMF	shows	that	the	S0	state	is	

dominated	by	the	trans−cis	conformer,	peaked	around	(±180,0).	Thus,	it	should	the	

region	with	the	highest	probability	of	Franck−Condon	transitions.	For	the	S1	state,	

the	probabilities	peak	around	(+90,0)	and	(−90,0).		

	

Figure	3.5.2	Subtracted	energy	surfaces	of	S0	and	S1	YOPRO. 
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The	umbrella	sampling	results	of	the	S1	state	in	Figure	3.5.3,	obtained	by	using	

the	second	method	described	in	the	Section	2.2,	show	that	all	four	minima	on	the	S0	

surface	correspond	to	high	free	energy	regions	of	the	S1	surface,	which	is	consistent	

with	the	result	of	the	full	range	sampling	using	the	first	method.	Thus,	they	are	also	

suitable	starting	points	for	obtaining	trajectories	on	the	S1	surface	starting	from	the	

respective	 Franck−Condon	 points.	 However,	 as	 noted	 above,	 the	 S0	 surface	

probability	is	dominated	by	the	trans-cis	conformation.		

	

Figure	3.5.3	PMFs	of	S1	YOPRO	in	water	around	the	four	minima	on	the	S0	quantum	
energy	surface.	
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3.6 S0	and	S1	YOPRO	dsDNA	intercalated.	

As	discussed	in		Section	2.2,	we sampled intercalated YOPRO in the vicinity 

of the four local minima on the S0 state. The YOPRO does stably intercalate in the 

S0 state at all four planar conformations as in Figure 3.6.1. For the S1 state, PMFs	

of	intercalated	YOPRO	around	the	three	S0	minima	at	(0,	0),	(0,180)	and	(180,180)	

show	that	intercalation	of	these	planar	conformations	of	S1	YOPRO	doesn’t	change	

free	energy	profile	pattern	significantly.		

The global minimum of the S0 state is at around (±180, 0) which, therefore, 

is the geometric origin of the Franck−Condon transition to the S1 surface. This most 

highly populated ground-state conformer de-intercalates when D1 goes below 150°. 

Thus, the only relaxation path for this S1-intercalated YOPRO is in the direction of 

increasing D1.  The PMF surfaces of the two electronic states of the intercalations 

are shown below in Figure 3.6.1 and Figure 3.6.2. 
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Figure	3.6.1	PMFs	of	intercalated	S0	YOPRO	centered	at	the	S0	global	minima.	
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Figure	3.6.2	PMFs	of	intercalated	S1	YOPRO	centered	at	the	S0	global	minima.	
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3.7 Nonradiative	Relaxation	Path	on	the	S1	Surface	from	the	S0	Equilibrium	

Position	

We obtained the relaxation pathway on the S1 surface of both water-solvated 

and intercalated YOPRO starting from the S0 equilibrium position (±180,0) using a 

steepest-descent algorithm that we implemented. As shown in Figure 3.7.1, the 

intercalated path has a distinct barrier between the initial (FC point) and final (local 

minimum) positions that is absent in the water simulation path.  

 

Figure 3.7.1a shows that starting from the lower point of 15.85 kcal/mol on 

the intercalated surface the relaxation path goes uphill at D1 = 210° and forms a 

barrier of 2.73 kcal/mol, whereas the path on the water-solvated surface starts from 

the higher point of 20.07 kcal/mol and is completely downhill. Figure 3.7.1b shows 

that the relaxation path for the intercalation is elongated due to the uphill region, 

which indicates that a longer free-energy pathway is involved in the relaxation 

process on the intercalated surface than on the water-solvated surface.  
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Figure	3.7.1	PMFs and relaxation pathways for S1 YOPRO in water and intercalated. The 
two views displayed, panels (a) and (b), are for better visualization. Black (path) and gray 
(PMF) are in water. Red (path) and light red (PMF) are intercalated. The barrier to 
relaxation is present only in the intercalated pathway.	
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3.8 Discussion	and	Concluding	Remarks	of	the	Results	from	the	Fitted	Force	

Field	of	the	Two	Electronic	States	

Conformational	 sampling	 of	 YOPRO	 in	 its	 S0	 and	 S1	 electronic	 states	 in	

solution	and	when	 intercalated	 in	DNA	was	 investigated	with	the	aims	of	showing	

that	YOPRO	could	stably	 intercalate	 in	dsDNA	and	that	 intercalation	leads	to	more	

constrained	sampling	around	the	linker	dihedrals.		

The	 Methods	 Section	 2	 used	 a	 recently	 developed	 procedure11	 to	 obtain	

potentials	for	the	linker	dihedrals.	A	coupling	of	the	two	dihedrals	in	both	electronic	

states	was	observed.	Therefore,	an	 individual	 force	constant	 fitting	 is	essential	 for	

each	dihedral	conformational	range.	The	S0	quantum	energy	surface	along	the	two	

dihedrals	shows	a	centrosymmetric	pattern,	which	indicates	the	two	C-C	bonds	on	

the	linker	(C6-C10	and	C10-C11)	are	of	the	same	bond	order.	This	symmetry	is	not	

present	in	the	S1	surface,	revealing	destruction	of	the	conjugation	of	the	linker	due	to	

charge	transfer	to	the	central	carbon	(C10)	from	its	adjacent	carbons	(C6	and	C11)	48.	

Tables	2.2.3-2.2.4	show	that	in	the	S1	state	the	D1	dihedral	(C6-C10)	becomes	more	

like	a	single	bond	when	D2	goes	to	the	high	energy	regions around	±90°,	while	the	D2	

dihedral	(C10-C11)	becomes	more	like	a	pure	double	bond	when	D1	goes	to	the	same	

angles,	which	correspond	to	the	energy	minima.	

The	 ground	 state	 dihedral	 population	 distributions	 in	 solution	 and	 when	

intercalated	 are	 essential	 to	 finding	 out	 where,	 in	 the	 vertical,	 Frank-Condon	

transition,	 there	 will	 be	 excited	 state	 population.	 Computational48,	 74,	 75	 and	

experimental76-81	investigations	of	the	S1	excited	state	of	cyanine	dyes	suggest	that	

torsional	motions	and	other	deformations	in	the	bonds	linking	the	two	ring	systems,	
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if	not	restrained,	can	take	place	readily.	From	the	computational	perspective,	there	is	

consensus	 that	 the	 S1	 potential	 surface	 varies	 more	 slowly	 than	 the	 S0	 surface.	

Experiments	 suggest	 correspondingly	 rapid	 motions	 along	 the	 S1	 surface.	 Thus,	

without	some	constraint	mechanism,	twisting	in	the	excited	state	 is	 facile,	avoided	

crossings	or	conical	intersections	(CIs)	between	excited	and	ground	electronic	states	

are	readily	reached,	and	the	ground	state	is	accessed	via	a	nonradiative	pathway.	This	

process	 leads	 to	 a	 great	 reduction	 in	 fluorescence	 intensity.	 To	 prevent	 twisting,	

various	 constraints	 have	 been	 invoked.	 Lowering	 the	 temperature	 and	 increasing	

solution	viscosity,	or	both,	are	the	standard	ways	to	prevent	access	of	nonradiative	

pathways.82	83	

Dye	 Intercalation	 in	 DNA	 is	 another	method	 of	 enforcing	 a	 constraint.	 Our	

umbrella	samplings	show	that	when	intercalated	in	the	S0	equilibrium	conformation	

(trans-cis),	 the	 difference	 between	 the	 starting	 pointing,	which	 is	 the	 free	 energy	

maximum	on	the	S1	surface	in	the	sampling	region,	and	the	local	minimum,	is	reduced	

from	20.07	kcal/mol	to	15.85	kcal/mol.	On	the	S1	surface	of	ME-1122P,	a	related	dye,	

the	local	minimum	is	in	the	vicinity	of	the	conical	intersection	point.74	This	reduction	

is	 also	 observed	 when	 the	 S1	 YOPRO	 is	 intercalated	 in	 the	 other	 three	 planar	

conformations	 (Figures	 3.5.3	 and	 3.6.1),	 which	 correspond	 to	 the	 other	 low	 free	

energy	regions	on	the	S0	surface.		

The	S1	surface	dynamics	of	starting	from	the	Franck-Condon	point	to	a	conical	

intersection	point	that	is	in	the	vicinity	of	S1	surface	minimum	can	be	thought	of	as	

consisting	of	two	steps:	a	diffusive	motion	along	a	reaction	coordinate,	followed	by	

the	transition	from	the	S1	to	S0	surface	around	the	CI	point.	Thus,	the	overall	rate	
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constant	 for	 this	 consecutive	 process	 can	 be	 written	 as	 	with	 	a	

diffusive	 rate	 constant	and	 	the	 rate	of	 S1→S0	deactivation.	Assuming	 that	 is	

large	compared	with	 	as	is	often	the	case83,	the	overall	rate	is	dominated	by	 .	For	

the	intercalation	case,	where	there	is	a	barrier	to	transition,	and	what	amounts	to	a	

high	viscosity	for	the	reorientation	of	the	linker	dihedrals,	a	Kramers	rate	expression	

in	 the	 highly	 overdamped	 regime	 is	 indicated.84	 In	 this	 regime,	 is	 given	 by	 the	

expression:		

	 (3.8.1)	

where	 	is	the	product	of	the	well	 and	barrier	 frequencies,	respectively,	 	

is	the	friction	coefficient	along	the	reaction	coordinate	and	 is	the	barrier	height	

relative	to	the	well	origin.	The	Boltzmann	factor	rate	reduction	from	the	barrier	of	

2.73	kcal/mol,	when	D1	goes	to	210°	and	D2	fluctuates	around	0°,	would	reduce	the	

rate	constant	of	non-radiative	relaxation	by	about	100	fold.	It	is	not	possible	to	obtain	

a	value	for	the	friction	coefficient	for	twisting	of	intercalated	YOPRO,	however	it	 is	

safe	to	assume	that	it	would	be	considerably	larger	than	that	for	YOPRO	twisting	in	

water.	 Furthermore,	 the	 longer	 path	 to	 climb	 the	 barrier,	 when	 intercalated,	 also	

should	decrease	the	rate	of	passage.	Therefore,	intercalation	provides	a	combination	

of	increased	viscosity	and	a	barrier	to	reaching	the	CI	point,	relative	to	the	completely	

downhill	process	 in	water,	and	leads	to	the	 increase	of	 fluorescence	intensity	with	

YOPRO	intercalation.		
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3.8.1 	C++	program	implementing	the	steepest	descent	algorithm	

#include<iostream>	

#include<string>	

#include<vector>	

#include<fstream>	

#include<utility>	

using	namespace	std;	

int	main()	

{	

				ifstream	input;	

				string	in_name	=	"";	

				cout<<"input	a	file"<<endl;	

				cin>>in_name;	

				input.open(in_name);	

				if(!input.is_open())	

				{	

								cout<<"No	such	file!"<<endl;	

								return	0;	

				}	

					

				double	xbsize,ybsize=0;	

				cout<<"input	xbin	size,	ybin	size:"<<endl;	

				cin>>xbsize>>ybsize;	
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				double	xmax,xmin,ymax,ymin	=0;	

				cout<<"input	xmin,xmax,ymin,ymax"<<endl;	

				cin>>xmin>>xmax>>ymin>>ymax;	

					

				int	xbnum	=	1+(xmax-xmin)/xbsize;	

				int	ybnum	=	1+(ymax-ymin)/ybsize;	

					

				double**	PMF	=	new	double*	[xbnum];	

				for(int	i=0;i<xbnum;i++)	

				{	

								PMF[i]	=	new	double[ybnum];	

				}	

				

				string	skip="";	

				getline(input,skip);	

					

				for(int	i=0;i<xbnum;i++)	

				{	

								for(int	j=0;j<ybnum;j++)	

								{	

												input>>skip>>skip>>PMF[i][j]>>skip;	

												//cout<<PMF[i][j]<<endl;	

								}	
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				}	

				double	x_st,y_st=0;	

				cout<<"starting	point:"<<endl;	

				cin>>x_st>>y_st;	

				int	x_index	=	(x_st-xmin)/xbsize;	

				int	y_index	=	(y_st-ymin)/ybsize;	

				double	PMF_st	=	PMF[x_index][y_index];	

				ofstream	output(in_name+"result.txt");	

				vector<pair<int,int>>	x_y;	

				x_y.push_back(make_pair(x_index,y_index));	

				cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	"<<PMF_st<<endl;	

				output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	"<<PMF_st<<endl;	

					

				double	neighbor_up	=	PMF[x_index][y_index];	

				double	neighbor_down	=	PMF[x_index][y_index];	

				double	neighbor_right	=	PMF[x_index][y_index];	

				//double	PMF_next	=	PMF[x_index][y_index];	

					

				while(x_index<=xbnum-1	&&	x_index>=0	&&	y_index<=ybnum-1	&&	y_index>=0)	

				{	

								if(y_index<ybnum-1)	

								neighbor_up	=	PMF[x_index][y_index+1];	
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								if(y_index>0)	

								neighbor_down	=	PMF[x_index][y_index-1];	

									

								if(x_index<xbnum-1)	

								neighbor_right	=	PMF[x_index+1][y_index];	

								else	

								break;	

											

								double	PMF_old	=PMF[x_index][y_index];	

								double	PMF_next	=	PMF[x_index][y_index];	

									

								if(neighbor_up<=neighbor_down	&&	neighbor_up<=neighbor_right	/*&&	

neighbor_up<=PMF_old*/)	

								{						

												y_index++;	

												if(x_y.size()>2)	

												{	

																if(y_index==x_y[x_y.size()-2].second	&&	x_index	==	x_y[x_y.size()-2].first)	

//prevent	stepping	back	and	forth	

																{	

																				y_index--;	

																				if(neighbor_right<=neighbor_down)	

																				{	
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																								PMF_next	=	neighbor_right;	

																								x_index++;	

																				}	

																				else	

																				{	

																								PMF_next	=	neighbor_down;	

																								y_index--;	

																				}	

																				if(PMF_next==PMF_old)	

																				{	

																								cout<<"done"<<endl;	

																								break;	

																				}	

																				x_y.push_back(make_pair(x_index,y_index));	

																				cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				continue;	

																}	

												}	

												PMF_next	=	neighbor_up;	

								}	
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								if(neighbor_down<=neighbor_up	&&	neighbor_down<=neighbor_right	/*&&	

neighbor_down<=PMF_old*/)	

								{	

												y_index--;	

												if(x_y.size()>2)	

												{	

																if(y_index==x_y[x_y.size()-2].second	&&	x_index	==	x_y[x_y.size()-2].first)	

//prevent	stepping	back	and	forth	

																{	

																				y_index++;	

																				if(neighbor_right<=neighbor_up)	

																				{	

																								PMF_next	=	neighbor_right;	

																								x_index++;	

																				}	

																				else	

																				{	

																								PMF_next	=	neighbor_up;	

																								y_index++;	

																				}	

																				if(PMF_next==PMF_old)	

																				{	

																								cout<<"done"<<endl;	
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																								break;	

																				}	

																				x_y.push_back(make_pair(x_index,y_index));	

																				cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				continue;	

																}	

												}	

												PMF_next	=	neighbor_down;	

								}	

								if(neighbor_right<=neighbor_up	&&	neighbor_right<=neighbor_down	/*&&	

neighbor_right<=PMF_old*/)	

								{	

												x_index++;	

												PMF_next	=	neighbor_right;	

								}	

								if(PMF_next==PMF_old)	

								{	

												cout<<"done"<<endl;	

												break;	

								}	
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								x_y.push_back(make_pair(x_index,y_index));	

								cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

								output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

				}	

}	
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4 Protein	Classification	Using	Deep	Neural	Networks	

4.1 Introduction	

Proteins	are	functional	macromolecules	for	many	biological	processes.	They	

consist	of	one	or	more	peptide	chains	of	amino	acid	residues	that	are	folded	in	the	

three	dimensional	space.	A	peptide	chain	is	usually	synthesized	by	the	dehydration	of	

twenty	types	of	amino	acids	and	their	derivatives,	forming	the	primary	structure	of	a	

protein.	The	chain	is	then	folded	into	the	secondary	structures	such	as	alpha	helices	

and	beta	sheets	by	forming	hydrogen	bonds	between	non-adjacent	amino	acids.	One	

or	 more	 secondary	 structures	 grouped	 together	 form	 the	 tertiary	 structure	 of	 a	

protein	by	covalent	interactions	between	the	side	chains	of	the	neighboring	amino	

acids,	 for	 example,	 a	 disulfide	 bond	 formed	 between	 two	 cystines.	 The	 tertiary	

structure	 is	 the	 geometric	 structure	 of	 a	 protein.	 Finally,	 a	 number	 of	 tertiary	

structures	as	subunits	can	be	folded	into	the	quaternary	structure	of	a	multi-subunit	

protein	complex	like	hemoglobin	and	ion	channels.85,	86		

Proteins	are	classified	 into	different	 families.	A	protein	 family	 is	a	group	of	

proteins	that	share	a	common	evolutionary	ancestor	and	usually	a	similar	primary	

structure	and	physiological	functions.	There	are	many	protein	family	databases.		For	

instance,	Pfam12,	collects	16,712	protein	families	in	the	most	recent	vesion.	For	each	

family,	a	representative	set	of	sequences	are	aligned	into	a	seed	alignment,	which	is	

then	 used	 to	 build	 a	 profile	 hidden	Markov	model	 (HMM)87,	 88.	 The	 HMM	 is	 then	

searched	 against	 the	 sequence	databases	 and	 classify	 all	 hits	 reaching	 a	manually	

curated	gathering	threshold	into	that	family.	The	collection	of	the	hits	is	then	aligned	

to	the	HMM	to	generate	a	full	alignment.	Another	example	is	UniProt89,	which	was	
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built	 on	 the	 collaboration	 of	 Swiss	 Institute	 of	 Bioinformatics,	 	European	

Bioinformatics	Institute	and		Protein	Information	Resource.90-94	

There	are	other	more	machine	learning	oriented	ways	to	predict	whether	a	

given	protein	belongs	to	a	certain	family	or	not	by	using	the	sequential	information	

of	the	peptide	chains	directly	or	indirectly.	For	example,	Asgari	and	Mofrad	developed	

the	ProtVec	model95	which	 embeds	3-grams	of	 amino	 acids,	 namely	 the	 sequence	

consisting	of	any	three	neighbor	residues,	into	a	vector	of	length	100.		Such	a	vector	

is	obtained	in	the	same	way	as	the	word	representations96	that	are	used	in	a	skip	gram	

model97	by	optimizing	the	softmax	function	of	the	3-gram:	

	
		 	(4.1.1)

	 	

where	wi	is	the	ith	word	in	the	text	and	2c	is	the	window	size	as	the	context	that	is	

centered	at	word	i,	and	

	

		 	(4.1.2)	

where	vw	and	vw’	are	the	input	and	output	vector	representation	of	word	w.		

Each	sequence	is	therefore	represented	by	the	element	wise	summation	of	its	

ProtVecs	 of	 all	 3-grams.	 This	 method	 makes	 use	 of	 only	 the	 primary	 structure	

information	but	ignore	the	higher	order	structure	information.	In	this	chapter,	we	aim	

to	predict	protein	families	using	both	the	primary	structure	and	the	tertiary	structure	
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information.	

Our	plan	is	to	train	three	models:	1)	a	vanilla	neural	network	with	one	hidden	

layer	2)	a	convolutional	network	3)	a	long	short-term	memory	network.		The	first	two	

models	use	only	the	sequential	information	of	the	protein	sequences	and	the	resulting	

prediction	accuracies	are	compared,	and	the	last	one	uses	both	the	sequential	and	the	

structural	information	as	a	comparison	of	the	accuracies.		
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4.2 Data	Sources	

For	the	first	two	models,	the	input	data	comes	from	the	fasta	files	downloaded	

from	 the	 UniProt	 website	 (https://www.uniprot.org/uniprot/)89.	 A	 fasta	 file	 is	 a	

collection	of	discovered	sequences	of	a	protein	family	in	which	the	amino	acids	are	

represented	using	single-letter	codes.	Four	families	are	picked	for	their	abundance	of	

sequences:	

1. PDOC00137	(ATP	synthase	alpha	and	beta	subunits)	

2. PDOC50003	(GTPASE	PH	domain)	

3. PS00178(Aminoacyl-transfer	RNA	synthetases	class-I)		

4. PS50862(Aminoacyl-transfer	RNA	synthetases	class-II)	

From	each	family	we	picked	7500	sequences	with	the	total	length	(number	of	

residues)	falling	between	600	and	800.	The	first	600	residues	of	a	sequence	are	used	

as	 an	 input	 sample.	 The	 one	 letter	 codes	 of	 the	 residues	 are	 converted	 into	 their	

alphabetic	indices	as	the	numeric	inputs.	For	instance,	alanine	has	“A”	as	its	one	letter	

code,	therefore	it’s	represent	by	the	integer	“0”;	Asparagine’s	one	letter	code	is	“N”,	

which	is	converted	into	the	integer	“1”.	Among	these	15000	sequences	in	total	from	

the	two	classes	we	randomly	picked	10500	for	training	and	all	rest	as	the	testing	set.		

For	the	third	model	that	also	uses	structural	information,	the	input	data	are	

extracted	from	the	protein	data	bank	(PDB)	files	on	the	protein	data	bank	website98	

(https://www.rcsb.org/).	 A	 PDB	 file	 contains,	 in	 addition	 to	 sequence,	 the	

coordinates	of	all	atoms	in	the	molecule.	We	picked	another	four	classes	each	of	which	

provides	400	PDB	files:	

5.	Helicase	
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6.	Transmembrane	receptor	

7.	Amino	acid	kinase		

8.	ATPase	

For each protein sample, the first 100 residues which is the approximate average 

length of a protein domain are truncated as an input.  For the both sequential and 

structural inputs, each residue is represented by an integer vector of length 26 which is 

the Alphabet length.  

For	the	sequential	inputs,	the	representation	of	a	residue	is	a	one-hot	vector	

that	 	 has	one	 at	 the	 alphabetic	 index	of	 its	 one	 letter	 code	and	 zeros	 for	 all	 other	

elements.	For	example,	the	one	letter	code	of	cysteine	is	“C”,	so	it’s	an	one-hot	vector	

started	 with	 two	 “0”s	 followed	 by	 one	 “1”	 and	 twenty	 five	 “0”s,	 that	 is:		

[0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].	

For	the	structural	inputs,	we	tested	two	ways	to	represent	a	residue:		

1)	the	vector	of	a	residue	has	one	at	the	alphabetic	indices	of	its	own	one	letter	code	

as	well	as	 its	neighbors,	and	zero	 for	all	 the	others.	A	neighbor	 is	another	residue	

inside	its	“neighborhood”	which	is	the	region	of	a	certain	radius	centered	at	its	Cα	

atom.	For	example,	if	an	leucine	(L)	has	two	alanines	(A)	and	one	arginine(R)	in	its	

neighborhood,	 it’s	 vector	 representation	would	 have	 a	 one	 for	 the	 	 11th	 element	

(contributed	by	itself),	a	one	for	the	first	element	(contributed	by		the	two	alanines),	

a	one	for	the	17th	element	(contributed	by	the	arginine)	,	and	zeros	for	all	the	others,	

that	is,	[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0].		

2)	 The	 vector	 records	 the	 numbers	 of	 the	 type	 occurrences	 of	 the	 residue’s	

neighbors.	The	vector	representation	of	the	example	mentioned	above	now	has	a	two	
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for	its	first	element,	that	is,	[2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]	
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4.3 List	of	terms	used	

This	list	provides	the	definition	of	frequently	terms	in	machine	learning:	

artificial	neural	network:	abbreviated	as	neural	network,	it’s	a	collection	of	layers	

of	nodes,	known	as	artificial	neurons,	that	is	used	to	transmit	the	input	features	of	the	

samples	and	output	their	label	predictions.	

feature	vector:	vectorized	representation	of	a	sample.	For	a	residue,	it	is	an integer 

of length 26; for a whole sequence, it’s composed by concatenating the feature vectors of 

all its residues. 

input matrix: a matrix consisting of feature vectors. The number of rows is the number of 

input samples and the number of columns is the length of the feature vector. 

parameter matrix: a matrix to which a feature vector or an input matrix is multiplied to 

generate the predicted results. 

parameter vector : if the predict results are scalars, then the parameter matrix is reduced 

into a parameter vector with only one column. 

label:	desired	output	of	a	sample.	For	example,	the	family	that	a	protein	belongs	to.	

loss	function:	the	function	that	measures	the	extent	to	which	the	predictions	deviate	

from	the	observed	labels.	

activation	function:	a	function	acting	on	the	output	of	a	layer	element-wisely	to	add	

nonlinearity	to	the	neural	networks.	The	sigmoid	function	and	the	rectified	linear	unit	

(ReLU)	function	as	mentioned	below	are	two	typical	activations	functions.	

gradient:	first	order	derivative	of	the	loss	function	with	respect	to	the	parameters.	

learning	rate:	the	step	size	by	which	the	parameter	matrix	elements	are	updated	at	

each	iteration.	
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bias:	the	term	added	to	the	product	of	the	parameter	matrix	and	feature	vector	to	

make	the	prediction	closer	to	the	label	

overfitting:	 the	 trained	 model	 corresponds	 too	 closely	 to	 the	 training	 set	 and	

therefore	fails	to	predict	the	testing	data	well.	

regularization:	a	technique	to	relieve	overfitting	by	minimizing	the	sum	of	the	loss	

function	and	the	norm	of	the	parameter	matrix	together.	

filter:	a	matrix	that	is	used	to	convolve	the	input	data.	

stride:	the	step	size	by	which	a	filter	moves	each	time.	

accuracy:	number	of	true	positives	and	true	negatives	divided	by	the	total	number	of	

samples.	

Some	other	specific	terms	are	defined	with	equations	in	the	following	sections.	
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4.4 Neural	Network	Experiments	

4.4.1 Model	1:	Vanilla	neural	network	with		one	hidden	layer	

For	the	first	model,	we	implemented	a	vanilla	network13.	This	network	has	one	

input	layer	which	is	the	input	matrix(10500	samples	×	600	features),	followed	by	a	

hidden	layer	of	40	neurons,	and	an	output	layer	of	one	neuron	indicating	what	family	

the	protein	belongs	to.	The	loss	function	is	defined	as	below:	

	
	 	(4.4.1)	

where	w	is	the	parameter	vector	mapping	the	feature	vector	to	the	label,	x	is	the	

feature	vector	and	y	is	the	label	of	a	particular	sample.		

The	learning	rate	is	set	to	0.003,	meaning	that	for	each	iteration,	the	parameter	

matrix	 elements	 are	 updated	 by	 -0.003×gradient.	 The	 gradient	 vector	 is	 the	 first	

order	derivative	of	the	loss	function	with	respect	to	the	parameter	vector.	We	used	

30000	iterations	for	the	whole	training	process.		

This	network	is	 	designed	for	binary	classifications99,	namely	to	classify	the	

samples	into	two	families.	Therefore,	each	time	two	classes	are	picked.	The	accuracies	

shown	 in	Table	4.4.1	are	defined	as	 the	 sum	of	all	 true	positive	and	 true	negative	

predictions	divided	by	the	total	number	of	the	test	samples:	

training/testing	
accuracies	

class	1	 class	2	 class	3	

class	2	 0.999/0.903	 -	 -	
class	3	 0.994/0.926	 0.988/0.860	 -	
class	4	 0.996/0.927	 0.987/0.862	 0.992/0.888	

Table	4.4.1	Accuracies	of	binary	classification	using	the	vanilla	neural	network	

	

   
J (w) = y log(

1
1+ e−wTx

)+ (1− y) log(
1

1+ e−wTx
)
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The	 difference	 between	 the	 training	 and	 testing	 accuracies	 indicates	 the	

existence	of	the	overfitting	issue100,	since	for	each	pair,	the	resulting	testing	accuracy	

is	lowered	by	about	10%	compared	to	the	training	accuracy	

The	 most	 commonly	 used	 technique	 for	 relieving	 overfitting	 is	

regularization.101	 It	 adds	 the	 L2-norm	 of	 the	 parameter	matrix	 w	multiplied	 by	 a	

constant	λ	to	the	J(w)	in	equation	4.4.1,	therefore,	

	
		 (4.4.2)	

where	 λ	 is	 the	 coefficient	 used	 to	 determine	 the	 extent	 to	 which	 the	 norm	 of	 w	

contributes	to	the	object	J(w).		When	λ	goes	to	0,	equation	4.4.2	degrades	to	equation	

4.4.1.	

We	then	tested	regularization	on	class	2	and	class	3	where	the	largest	gap	

between	the	training	and	testing	accuracy	appears:		

lambda	 0.1	 1	 10	 100	 1000	 10000	
training/testing	
accuracies	

0.985/	
0.859	

0.988/	
0.861	

0.987/	
0.860	

0.832/	
0.757	

0.921/	
0.843	

0.718/	
0.711	

Table	4.4.2	Accuracies	of	classifying	class	2	and	3	with	regularization.	

According	to	the	results	above,	the	regularization	didn’t	seem	to	make	a	big	

difference	to	relieve	the	overfitting.		

		 Overfitting	 can	 be	 reduced	 by	 increasing	 the	 training	 set	 size	 and	 by	

decreasing	what	is	included	in	the	model.	However,	is	seems	better	to	change	the	NN	

method,	as	now	discussed.	

	

   
J (w) = y log(

1
1+ e−wTx

)+ (1− y) log(
1

1+ e−wTx
)+ λwTw
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4.4.2 Model	2:	Convolutional	Neural	Network		

Our	motivation	 for	 the	 second	model	 is	 to	 improve	 the	performance	of	 the	

neural	network	by	using	a	Convolutional	Neural	Network	(CNN).102	

In	 a	 CNN,	 a	 input	 sample	 is	 usually	 one-dimensional	 or	 two-dimensional,	

though	 it	 can	 be	 of	 higher	 dimension.	 Figure	 4.4.1	 shows	 a	 4×5	matrix	 as	 a	 two-

dimensional	 input	 (blue	 grid	 in	 the	 left	 panel).	 In	 the	 next	 convolutional	 layer,	 a	

convolution	operation	is	applied	to	the	input	with	a	filter	(red	grid	on	the	left	panel).	

The	part	on	the	input	covered		by	the	filter	is	multiplied	by	the	filter	element	wisely,	

and	the	products	are	summed	to	give	a	output	square	(red	grid	in	the	middle).	The	

stride	is	set	to	1×1,	meaning	that	every	time	the	filter	goes	to	the	right	or	to	the	bottom	

by	a	step	of	one	element.	Therefore,	the	output	layer	is	a	3×4	matrix.	Finally,	a	flatten	

operation	concatenates	all	rows	of	the	output	matrix	and	makes	a	vector	of		

length	12.	

	

Figure	4.4.1	Convolution	and	Flatten	Operation	

Other	convolutional	operations	are	known	as	Batch	Normalization	and	Max	

Pooling.	In	a	Batch	Normalization,	what’s	covered	by	a	filter	is	defined	as	a	batch,	and	

all	values	in	the	batch	are	subtracted	by	their	average.	While	in	a	Max	Pooling,	the	

output	of	a	convolution	is	set	to	be	the	maximum	value	of	the	batch	convolved.	
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In	this	simple	convolutional	neural	network	model(CNN),	 	we	use	the	same	

input	as	for	the	vanilla	network.	The	samples	are	reshaped	into	a	600×1	matrices	to	

fit	in	the	built-in	Conv1D	layer	in	keras103,	which	is	a	framework	written	in	Python	for	

neural	 network	 designs.	 64	 filters	 of	 size	 7	 and	 stride	 2	 are	 used.	 After	 the	

convolution,	a	BatchNorm	step	is	added	to	speed	up	the	training.		

Next,	the	rectified	linear	unit	(ReLU)104	activation	function	is	applied,	which	

takes	the	positive	part	of	the	Batch	Norm	result:	

	 		 	(4.4.3)	

It	 is	 followed	by	 a	MaxPooling	 layer	using	 a	 filter	 of	 length	3	 and	 stride	 of	

length	2.		The	inputs	are	then	flattened	and	go	to	the	output	layer	with	a	normalized	

exponential	activation	function	as	in	equation	4.4.4:	

	
		 (4.4.4)	

The	whole	architecture	of	the	model	is	described	in	Figure	4.4.2:	

	
Figure	4.4.2	A	simple	CNN	network.	What’s	inside	the	parentheses	above	the	arrows	
show	the	shapes	of	the	sample	inputted	into	the	next	step.	

  f (x) = max(0,x)
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ex j
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The	accuracies	are	shown	in	Table	4.3:		

training/testing	
accuracies	

class	1	 class	2	 class	3	

class	2	 0.982/0.941	 -	 -	
class	3	 0.991/0.967	 0.924/0.883	 -	
class	4	 0.985/0.965	 0.941/0.900	 0.961/0.917	

Table	4.4.3	Accuracies	of	using		the	above	convolutional	neural	network	

Apparently	 the	 convolutional	 neural	 network	 has	 a	 significantly	 improved	

performances.	The	testing	accuracies	are	significantly	increased	although	still	lower	

than	the	corresponding	training	accuracies	as	expected.	This	results	from	the	fact	that	

convolutions	 reduce	 the	 dimensionality	 of	 the	 inputs,	 	 therefore	 relieves	 the	

overfitting	issue.	

	

4.4.3 A	Deeper	CNN	

Although	 the	 simple	 1D	 CNN	 	with	 one	 hidden	 layer	 shows	 a	much	 better	

performance	than	the	vanilla	neural	network,	we	still	want		to	test	a	deeper	one.	The	

main	 benefit	 of	 a	 deep	 network	 is	 that	 it	 can	 represent	 complicated	 nonlinear	

functions.	It	also	learns	features	at	many	different	levels	of	abstraction.	Consider	face	

recognition	as	an	example:	a	deeper	network	learns	the	edges	at	the	lower	layers,	and	

complex	features	like	eyes	and	nose	at	the	deeper	layers.105		

In	a	network	of	multiple	layers,	the	inputs	are	propagated	from	the	input	layer	

through	the	hidden	layers	to	the	final	output	layer.	This	process	is	named	forward	

propagation106,	each	step	of	which	is	a	matrix	multiplication	of	the	output	matrix	of	

the	previous	layer	with	the	parameter	matrix	and	the	current	layer:	

	 		 (4.4.5)	   z
(l+1) =Θ(l+1)a( l+1) (z(l) )
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where	z(l)	is	the	output	of	the	layer	l,	and	Θ(l+1)	is	the	parameter	matrix	and	a(l+1)	is	the	

activation	function	of	layer	l+1	acting	on	z(l).	

Its	inverse	process,	namely	backward	propagation106,	107,	is	used	to	minimize	

the	error	of	each	 layer	 in	 the	 learning	process.	 In	backward	propagation,	 first,	 the	

error	of	the	output	layer	δ(output	layer)	is	computed	by	subtracting	the	sample	labels	y	

from	the	corresponding	predictions	a(output	layer):	

	 		 (4.4.6)	

Next,	δ(output	layer)	is	multiplied	by	the	parameter	matrix	of	the	last	hidden	layer	

Θ(last	hidden	layer)	on	the	left	and	the	gradient	of	its	activation	function	a’(last	hidden	layer)	

to	derive	the	error	vector	of	the	last	hidden	layer:	

	 		 (4.4.7)	

And	so	on	and	so	forth	until	of	error	of	all	the	layers	are	calculated.	Finally,	the	

error	gradient	for	all	the	layers	are	calculated	using	equation	4.4.8:	For	a	certain	layer	

l,	its	error	gradient	matrix	Δ(l)	is	computed	by	multiplying	the	error	vector	of	the	next	

layer(δ(l+1)	which	is	a	column	vector)	with	the	transposed	output	of	the	present	layer	

((a(l))T	which	is	a	row	vector)	divided	by	the	number	of	samples	m:	

	
		 (4.4.8)	

The	gradients	are	then	used	to	update	the	parameter	matrix	for	all	the	layers.	

However,	a	huge	issue	of	a	deeper	network	is	the	vanishing	gradient108:	in	the	

forward	propagation,	the	gradient	signal	declines	to	zero	quickly	when	it	goes	deeper	

and	deeper,	while	in	the	backward	propagation,	the	weight	matrices	are	multiplied	at	

(  ) (  ) (  )( )output layer output layer output layerad = -z y

(last hidden layer) (last hidden layer) (output layer) (last hidden layer) (last hidden layer)( ) ( )T ad ¢= Q zd

( ) ( 1) ( )1 ( )l l l Ta
m
d +=D
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each	 step,	 making	 the	 gradient	 decrease	 exponentially	 to	 zero.	 To	 overcome	 this	

issue,	we	used	the	idea	of	and	built	a	Residual	Network	(ResNet).109	

In	a	ResNet,	a	shortcut	allows	the	gradient	 to	be	directly	propagated	to	 the	

destination	layers	by	skipping	over	several	intermediate	ones.	Although	the	gradients	

still	vanish	on	the	main	path,	they	don’t	vanish	through	propagations	on	the	shortcut	

path	due	to	the	absence	of	the	intermediate	layers.	In	our	ResNet	model,	we	designed	

an	 identity	 block	 consisting	 of	 	 three	 convolution	 layers	 for	 the	 skip	 connection.	

Figure	4.4.3	shows	its	architecture:		

	

Figure	4.4.3	An	identity	block	consisting	of	two	paths.	

The	 name	 “identity	 block”	 comes	 from	 the	 same	 dimension	 of	 the	 input	

(number	of	training	samples	×	600	features)	and	the	output	of	the	block.	The	block	

has	two	paths	as	shown	in	Figure	4.4.3.	The	upper	path	is	the	"shortcut	path."	The	

lower	 path	 is	 the	 "main	 path."	 In	 each	 layer	 of	 convolution,	 we	 also	 added	 the	

BatchNorm	and	the	ReLU	step.	The	first	CONV1D	has	32	filters	of	shape	1	and	a	stride	

of	1,	the	second	CONV1D	has	32	filters	of	shape	3	and	a	stride	of	1,	and	the	last	one	
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has	 64	 filters	 of	 shape	 1	 and	 a	 stride	 of	 2.	 By	 use	 of	 these	 parameters,	 the	 input	

recovers	 its	dimensionality	of	number	of	training	samples	×	600	features	after	the	

three	convolution	layers.		

Our	deeper	CNN	model	 consists	of	 two	parts.	The	 first	part	 is	 the	previous	

simple	CNN	ended	at	the	max	pooling	step	which	generated	a		matrix	of	149×64	for	

each	training	sample	(see	Figure	4.4.2).	The	second	part	is	the	identity	block	of	three	

convolution	layer	and	a	short	cut,	ending	with	the	outputs	of	the	same	dimensionality.	

Finally	 the	 input	 goes	 into	 the	 flatten	 and	 fully	 connected	 layer	 and	 outputs	 the	

prediction.	The	resulting	accuracies	are	listed	below	in	Table	4.4.4:	

training/testing	
accuracies	

class	1	 class	2	 class	3	

class	2	 1.00/0.983	 -	 -	
class	3	 1.00/0.981	 0.997/0.953	 -	
class	4	 1.00/0.988	 1.00/0.940	 1.00/0.951	

Table	4.4.4	Accuracies	of	binary	classification	using	a	deeper	convolutional	neural	
network	with	the	identity	block	

By	using	a	deeper	convolutional	network,	 the	prediction	results	are	 further	

improved	even	 though	 the	 input	datasets	are	 the	same	as	used	 in	 the	simple	CNN	

model,	which	again	only	contains	sequential	information.	

In	order	to	test	the	robustness	of	this	model,	we	included	the	nucleoporin	(Nup)	

family	as	another	class.	Unlike	the	first	four	families,	Nups	are	intrinsically	disordered	

proteins	 (IDPs)	 that	 lack	 much	 secondary	 and	 tertiary	 structures110-112.	 The	

classification	results	are	shown	in	Table	4.4.5:	

training/testing	
accuracies	

class	1	 class	2	 class	3	 class4	

Nup	 1.0/0.970	 0.958/0.727	 0.972/0.911	 0.998/0.946	
Table	4.4.5	Accuracies	of	binary	classifications	between	Nup	and	the	first	four	
families	with	the	deep	CNN	model	
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These	 accuracies	 are	 lower	 than	 the	 results	 among	 the	 four	 families	

themselves,	which	may	be	attributed	to	different	properties	 in	sequence	 that	 IDPs	

have	 from	 the	 structured	 proteins.	 For	 example,	 many	 IDP	 sequences	 are	 of	 low	

complexity,	meaning	that	they	are	over-represented	by	a	few	specific	residues113.		The	

lack	of	diversity	of	residues	of	the	IDP	sequences	is	undesired	for	classifications.	

	

4.4.4 Model	3:	LSTM	network	

Long	short-term	memory	network	(LSTM)	is	a	special	kind	of	recurrent	neural	

network	 (RNN).	A	 recurrent	neural	 saves	 the	output	of	 a	hidden	 layer	and	uses	 it	

along	with	the	next	sample	as	the	inputs	for	making	predictions	as	shown	in	Figure	

4.4.4.	

	

Figure	 4.4.4	 Architecture	 of	 a	 RNN.	 From	
https://en.wikipedia.org/wiki/Recurrent_neural_network	

where	xt	 (number	of	 features	(m)×1)	 is	 the	 input	vector	of	sample	 t,	U(number	of	

neurons	in	the	hidden	layer	(h)×	number	of	features	(m))	is	the	parameter	matrix	to	

derive	ht	(h×1)	which	is	the	hidden	state	vector	of	dimension	h.	ht		is	then	multiplied	

by	a	parameter	vector	W(m×h)	to	derive	the	output	vector	of	the	current	sample	ot	

(m×1)	and	multiplied	by	a	coefficient	V	as	the	weight	and	added	to	the	next	example	
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ht+1.	 	σh	and	σo	are	the	tanh	activation	function	and	sigmoid	activation	function	for	

deriving	ht	and	ot,	and	bh	and	bo	are	corresponding	bias	vectors,	respectively:	

	 	

	 		 (4.4.9)	

In	this	way,	a	RNN	connects	the	previous	information	to	the	present	task	by	

adding	the	hidden	layer	outputs	of	previous	samples	to	the	current	input.	The	label	

information	 of	 all	 the	 previous	 samples	 is	 therefore	 accumulated	 to	 affect	 the	

prediction	 of	 the	 present	 sample.	 Thus	 RNN	 networks	 apply	 well	 to	 sequential	

information.	

However,	like	all	other	multilayer	neural	networks,	RNNs	also	suffer	from	the	

vanishing	gradient	problem.	When	the	distance	between	the	current	point	and	the	

relevant	sample	in	the	past	is	long,	RNN	can	hardly	make	use	of	the	connection	due	

to	the	vanishing	gradient.108	

	 Long	 Short	 Term	 Memory	 networks	 (LSTM)	 introduced	 by	 	Hochreiter	 &	

Schmidhuber	14	was	designed	to	solve	long-term	dependency	problem.	Figure	4.4.5	

shows	the	repeating	cell	module	of	a	LSTM,	which	has	four	layers.	

1( )t h t tVs -= + +hh Ux b h

( )o ts= +t oo Wh b
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Figure	4.4.5	Structure	of	the	repeating	cell	module	in	an	LSTM.	From	
http://colah.github.io/posts/2015-08-Understanding-LSTMs/	

The	first	layer	is	the	“forget	gate	layer”,	which	controls	the	extent	to	which	the	

information	remains	in	the	memory	cell.	The	output	vector	ft(number	of	the	neurons	

in	the	forget	gate	layer	m×1)	is	given	by:		

	 		 (4.4.10)	

where	Wf	(m×d)and	Uf	(m×m)	are	the	parameter	matrices	applying	to	the	input	

vector	xt(d×1)	and	the	last	hidden	layer	ht-1	(m×1).	bf	(m×1)is	the	bias,	σg	is	the	

sigmoid	activation	function.		

The	next	step	is	to	decide	what	new	information	to	store	in	the	memory	cell.	It		

has	two	paths.	The	first	path	is	called	the	“input	gate	layer”	it(m×1)which	controls	the	

extent	to	which	a	new	value	flows	into	the	cell.		The	second	path	outputs	a	candidate	

value	 (m×1)	added	to	the	cell	state:		

	 		 (4.4.11)	

   
ft =σ g (Wf xt + Uf ht-1 + bf )

  
!Ct

    

it =σ g (Wixt + Uiht-1 + bi )
!Ct =σ C (WCxt + Ucht-1 + bC )
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where	σC	is	the	tanh	activation	function.	Wi	(m×d),	Wc	(m×d),	and	Ui	(m×m),	

Uc(m×m)	are	the	parameter	matrices	that	apply	to	the	x	and	h	as	mentioned	above.	

bi	(m×1)and	bc	(m×1)are	the	corresponding	bias	vectors	for	it	and	 .	

Thus	the	new	state	of	the	cell	is	updated	from	Ct-1(m×1)	to	Ct	(m×1)	by	

	 		 (4.4.12)	

Note	that	the	operator	 	denotes	the	entry-wise	product.	

Finally,	the	output	vector	of	the	cells	from	the	last	layer	“output	gate”,	

ot(m×1),	is	given	by	

	 		 (4.4.13)	

with	Wo	(m×d),	Uo	(m×m),	and	bo	(m×1).	The	hidden	layer	vector	ht	(m×1)	that	goes	

to	the	next	sample	is	also	obtained	by	equation	4.4.13.	

	

We	used	the	Keras.layers.LSTM	package	to	implement	the	LSTM	network	with	

the	 inputs	of	 the	 four	 classes	mentioned	 in	 the	Section	4.2	 (class	5	 to	8:	Helicase,	

Transmembrane	 receptor,	 Amino	 acid	 kinase,	 ATPase)	 from	 the	 PDB	 website98	

obtained	by	four	different	methods:		

1)	sequential	data	representing	the	primary	structure	information,		

2)	add	in	structural	data	recording	the	residue	types	that	enter	the	neighborhood	of	

radius	8Å of	the	first	100	residues,		

3)	add	in	structural	data	and	recording	the	number	of	occurrences	of	the	neighbors	

with	neighborhood	radius:	6Å	and		

  
!Ct

  Ct = ft !Ct-1 + it ! "Ct

 !

    

ot =σ g (Woxt + Uoht-1 + bo )

ht = ot !σ C (Ct )
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4)	add	in	structural	data	and	recording	the	number	of	occurrences	of	the	neighbors	

with	neighborhood	radius:	12Å.	

The	training	set		contains	600	samples	in	total	while	the	testing	set	contains	

200	 samples.	 The	 results	 obtained	 from	 the	 different	 input	 sources	 are	 shown	 in	

Tables	4.4.6-9	in	the	order	as	above:	

training/testing	
accuracies	

class	5	 class	6	 class	7	

class	6	 1.00/0.750	 -	 -	
class	7	 1.00/0.815	 0.982/0.820	 -	
class	8	 0.958/0.705	 1.0/0.873	 1.00/0.850	

Table	4.4.6	Method	1:	Accuracies	of	LSTM	using	the	sequential	representation	
	
training/testing	
accuracies	

class	5	 class	6	 class	7	

class	6	 1.00/0.830	 -	 -	
class	7	 1.00/0.918	 0.987/0.828	 -	
class	8	 0.963/0.730	 1.00/0.905	 1.00/0.893	

Table	 4.4.7	 Method	 2:	 Accuracies	 of	 LSTM	 adding	 in	 the	 first	 structural	
representation	with	threshold	=	8Å	
	
	
	
	
training/testing	
accuracies	

class	5	 class	6	 class	7	

class	6	 1.00/0.886	 -	 -	
class	7	 1.00/0.872	 0.991/0.876	 -	
class	8	 0.965/0.789	 0.997/0.897	 1.00/0.898	

Table	 4.4.8	 Method	 3:	 Accuracies	 of	 LSTM	 adding	 in	 the	 second	 structural	
representation	with	threshold	=	6Å	
	
training/testing	
accuracies	

class	5	 class	6	 class	7	

class	6	 0.996/0.880	 -	 -	
class	7	 0.997/0.908	 0.989/0.903	 -	
class	8	 0.974/0.790	 0.993/0.901	 0.983/0.892	

Table	 4.4.9	 Method	 4:	 Accuracies	 of	 LSTM	 adding	 in	 the	 second	 structural	
representation	with	threshold	=	12Å	
	

The	results	obtained	from	these	four	methods	show	that	the	first	way	of	using	

only	 the	 sequential	 information	 gives	 the	 lowest	 prediction	 accuracies.	 The	
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accuracies	 increase	 when	 the	 structural	 information	 is	 introduced.	 Then	 the	

accuracies	 are	 further	 increased	 when	 the	 occurrences	 of	 the	 neighbor	 type	 are	

counted	as	in	Tables	4.4.8	and	4.4.9.	The	resulting	accuracies	from	the		6Å		threshold	

in	 Table	 4.4.8	 show	 a	 heavier	 overfitting	 compared	 to	 the	 those	 from	 the	 	 12Å		

threshold	in	Table	4.4.9.	
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4.5 Conclusion	and	Remarks	

To	study	the	protein	classification	problem,	we	implement	three	models:	model	

1)	a	vanilla	network,	model	2)	a	CNN	and	model	3)	an	LSTM.	For	the	CNN	model,	we	

tried	 a	 simple	 network	 with	 one	 convolution	 layer	 and	 a	 deeper	 one	 with	 three	

convolution	layers	and	a	shortcut	path.	The	prediction	accuracies	show	that	a	deep	

CNN	 solves	 the	 overfitting	 problem	 of	 the	 vanilla	 network	 by	 increasing	 the	 test	

accuracies	efficiently.	For	the	LSTM	model,	we	compared	two	ways	to	extract	input	

data	from	the	PDB	files.	The	first	way	gives	the	sequential	representation	of	proteins,	

while	 the	 second	way	 includes	 some	 structural	 information.	 Namely,	 information	

about	the	residue	types	in	the	neighborhood	of	each	residue.		

The	 results	 show	 that	 the	 introduction	 of	 such	 structural	 information	

significantly	increases	the	testing	accuracies	for	all	the	pairs	in	comparison	with	the	

training	set	of	the	same	sample	size	which	has	only	the	sequential	information	in	it.	

However,	we	note	that	the	testing	accuracy	obtained	by	using	the	structural	

information	 in	 model	 3	 is	 still	 much	 lower	 than	 the	 results	 in	 model	 2.	 This	 is	

attributed	to	 the	smaller	number	of	 the	training	samples	(400	per	 family)	 that	we	

have	from	the	PDB	structure	files	for	model	3	compared	to	the	training	sample	size	

(7500	per	family)	for	model	2.		Note	that	400	samples	per	family	are	too	few	to	run	

model	2	since	it	starts	with	600	features	(type	of	the	first	600	residues)	that	is	even	

greater	than	400	which	leads	to	significantly	lowered	accuracies	for	both	training	and	

testing	set	and	a	dramatic	overfitting		problem	(see	Table	4.5.1):	
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training/testing	
accuracies	

class	1	 class	2	 class	3	

class	2	 0.828/0.613	 -	 -	
class	3	 0.958/0.884	 0.890/0.764	 -	
class	4	 0.863/0.814	 0.865/0.729	 0.833/0.704	

Table	4.5.1	Accuracies	of	binary	classification	using	the	deeper	convolutional	neural	
network	in	Model	2	with	400	sequence	for	each	class	

	
Thus	 the	 combination	 of	 sequence	 and	 structure	 does	 provide	much	more	

information	than	sequence	alone.		
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5 Conclusion	and	Outlook	

5.1 Intercalation	Outlook	

We	 investigated	 the	 Molecular	 Dynamics	 of	 S0/S1	 YOPRO	 in	 different	

environment	 and	 revealed	 the	 relationship	 between	 the	 enhanced	 fluorescent	

intensity	of	intercalated	YOPRO	in	dsDNA	and	its	configuration	distribution.	YOPRO	

is	the	monomer	of		the	oxazole	yellow	homodimer	YOYO71	(Figure	5.1.1).	The	use	of	

dimeric	 dyes	 greatly	 enhances	 the	 fluorescence	 intensity	 due	 to	 both	 aromatic	

systems	intercalating	and	accordingly	dimers	are	typically	used	in	assays.	

According	to	the	studies	by	Franci	Johansen	et	al.,	YOYO	strongly	favors	bis-

intercalating	to	the	(5’-CTAG-3’)2	binding	sites	in	oligonucleotide	d(CGCTAGCG)2	and	

to	the	(5’-CCGG-3’)2	binding	sites	in	oligonucleotide	d(CGCCGGCG)2	64.	Examination	of	

our	 dsDNA	 structure	 shows	 that	 it	 has	 two	 d1(CT):d2(GA)	 sites	 and	 one	

d1(GA):d2(CT)	 sites	 as	 well	 as	 	 two	 d1(CC):d2(GG)	 sites.	 All	 these	 five	 sites	 are	

suitable	for	intercalation.	In	our	study,	we	only	picked	d1(5’-C4T5-3’):d2(3’-G38A37-

5’)	 for	 intercalation	 as	 described	 in	 Section	 3.2.	 Other	 binding	 sites	 can	 be	

investigated	as	well	to	verify	and	generalize	our	observations	and	conclusions	in	the	

future.	
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Figure	 5.1.1	 Chemical	 structure	 of	 YOYO	 (1,1'-(4,4,8,8-	 tetramethyl-4,8-
diazaundecamethylene)bis[4-[3-methyl-benzo-	 1	 OX-	 azol-2-yl]methylidene]-1,4-
dihydroquinolinium])71.	

We	used	constraint	MD	in	water	to	gradually	separate	the	neighbor	base	pairs	

on	the	binding	site	to	provide	intercalation	space	for	YOPRO.	Then	the	YOPRO	at	its	

planar	conformations	was	manually	docked	into	the	binding	site.	In	drug	design	and	

protein	 design	 projects,	 researchers	 also	 use	 	 docking	 softwares	 such	 as	 1-Click	

Docking114,	 Blaster115	 and	 DOCK116,	 which	 automatically	 optimize	 the	 binding	

orientation	 with	 the	 binding	 affinities	 provided.	 These	 methodologies	 will	 be	 of	

particular	use	for	intercalation	of	dimeric	dyes.	
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5.2 Molecular	Dynamics	of	MiR-155	

We	 propose	 to	 carry	 out	 MD	 simulations	 of	 miR-155	 (Figure	 5.2.1),	 a	

microRNA	(miRNA)	present	in	humans	encoded	by	the	MIR155	host	gene.	microRNAs	

play	a	key	role	 in	 the	 regulation	of	gene	expression117,	118.	Human	miRNAs	silence	

messenger	 RNA	 (mRNA)	 at	 the	 post-transcription	 stage	 by	 binding	 through	

complementary	matches	with	a	relatively	small	number	of	the	bases	(as	few	as	6-8) 

in	 the	messenger	RNA119-121.	This	binding	prevents	 translation	of	 the	mRNA	into	a	

protein	at	the	ribosome.	

	

Figure	5.2.1	miR-155	secondary	structure	and	sequence	conservation.	

https://commons.wikimedia.org/w/index.php?curid=24565688	

	

For	the	molecular	dynamics	studies	of	miR-155,	we	will	use	the	AMBER	force	

field	for	RNA,	drawing	on	a	recent	revision	of	the	RNA	dihedral	parameters18.	We	will	

examine	the	motion	of	a	double-stranded	species	in	which	miR-155	is	paired	with	a	
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complementary	strand	of	RNA.	We	also	propose	to	simulate	RNA/RNA	interactions	

between	 the	 miR-155	 and	 RNA	 segments	 that	 contain	 a	 sequence	 of	 6	 to	 8	

complementary	bases,	but	then	have	base	mismatches	at	other	positions.	

We	will	take	advantage	of	the	AMBER	tool	nucleic	acid	builder	(nab)18,	which	

facilitates	construction	of	RNA/RNA	duplexes.	Given	the	sequence	for	miR-155	above	

and	its	complement,	nab	will	properly	pair	the	complementary	bases,	thus	providing	

the	 starting	 geometry	 for	 the	 simulations	 of	 the	 duplexes.	 	 The	 behavior	 of	 the	

partially	matched	double	RNA	strands	will	be	challenging	to	determine,	because	of	

the	increased	dynamical	degrees	of	freedom,	but	MD	studies	should	still	be	feasible.		

Fluorescent	labeling	has	been	established	for	miRNA	duplexes122,	although	the	

stable	binding	coordinates	for	the	dye	and	the	RNA	duplex	is	not	known.	This	must	

be	determined	prior	 to	MD	simulations.	 	Fluorescence	microscopy	studies	 suggest	

that	 a	 surface	 binding	 mode	 is	 important	 for	 miRNA	 duplexes123,	 although	 an	

intercalation	mode	should	also	be	possible.	 	 In	our	work	on	DNA/YOPRO,	we	have	

found	a	surface-binding	mode	(see	Section	3.3),	and	 this	can	be	used	as	a	starting	

point	 to	 locate	 dye-RNA	duplex	 surface	 binding	 coordinates.	 	Molecular	 dynamics	

modeling	 of	 the	 motion	 of	 the	 complex	 can	 then	 proceed.	 We	 will	 also	 examine	

whether	any	increase	in	fluorescence	intensity	is	predicted	for	an	oxazole	dye	label	

on	single-stranded	miRNA.	Single-stranded	miRNA	is	often	imaged	after	complexing	

with	a	luciferase	reporter	vector124-126	rather	than	a	fluorescent	dye.		
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5.2.1 

APPENDICES	
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APPENDIX	A	Fitting	Protocol	from	IpolQ	Method	

Input	file:	“d1__d2_kcal.txt”	which	is	subtracted	surface	with	d1	fixed	and	d2	varied.	

The	content	has	three	columns	corresponding	to	d1,	d2	and	Q-V	in	the	units	of	kcal.		

Note	each	two	adjacent	fixed	d1	values	by	the	string	“9999											9999										9999”	

which	is	the	separation	line.	

1.	 run	d1_make_slice.cpp,	 get	 a	bunch	of	 	 “d1_at_X.txt”,	where	 “X”	 is	 the	 fixed	d1	

location.	Collect	all	 “X”	values	 to	make	 the	 file	 “fix_d1_namelist.txt”	which	has	all	

fixed	D1	values.	

2.	run	d1_amber_fit.m,	get	the	output	“amber_YOPRO_s0_4cos.txt”,	which	is	a	diary	

file	that	contains	the	fitted	force	constant	parameters	for	all	the	terms	in	eq.	1.4.1	at	

different	fixed	D1	values.		

3.	 run	 d1_make_gaffpieces.cpp,	 get	 “fix_d1_fc_slice.txt”	 which	 is	 extraction	 from	

“amber_YOPRO_s0_4cos.txt”	that	contains	all	force	constant	parameter.		

Now	do	the	same	thing	to	D2:	

Input	file	:	“d1__d2_kcal_gnup.txt”	is	a	copy	of	“d1__d2_kcal.txt”	with	all	separation	

lines	“9999											9999										9999”	deleted.	

4.	run	transpose.cpp	to	transpose	d1__d2_kcal_gnup.txt	into	“d2__d1_kcal.txt”.	Add	

the	separation	lines	to	separate	adjacent	d2	values.	

5.	 run	d2_make_slice.cpp,	get	a	bunch	of	 	 “d2_at_X.txt”,	where	“X”	 is	 the	 fixed	d2	

location.	Collect	all	“X”	values	to	make	the	file	“fix_d2_namelist.txt”.	

6.	run	d2_make_gaffpieces.cpp,	get	“fix_d2_fc_slice.txt”.	

Now	make	AMBER	frcmod	files	for	umbrella	samplings:	

Input	file:	“YOPRO.frcmod”	is	a	frcmod	template	file.		
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7.	run	creatfrcmod.cpp	to	obtain	all	frcmod	files	for	the	umbrella	samplings.	
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APPENDIX	B	C++	program	implementing	the	steepest	descent	algorithm	

#include<iostream>	

#include<string>	

#include<vector>	

#include<fstream>	

#include<utility>	

using	namespace	std;	

int	main()	

{	

				ifstream	input;	

				string	in_name	=	"";	

				cout<<"input	a	file"<<endl;	

				cin>>in_name;	

				input.open(in_name);	

				if(!input.is_open())	

				{	

								cout<<"No	such	file!"<<endl;	

								return	0;	

				}	

					

				double	xbsize,ybsize=0;	

				cout<<"input	xbin	size,	ybin	size:"<<endl;	

				cin>>xbsize>>ybsize;	
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				double	xmax,xmin,ymax,ymin	=0;	

				cout<<"input	xmin,xmax,ymin,ymax"<<endl;	

				cin>>xmin>>xmax>>ymin>>ymax;	

					

				int	xbnum	=	1+(xmax-xmin)/xbsize;	

				int	ybnum	=	1+(ymax-ymin)/ybsize;	

					

				double**	PMF	=	new	double*	[xbnum];	

				for(int	i=0;i<xbnum;i++)	

				{	

								PMF[i]	=	new	double[ybnum];	

				}	

				

				string	skip="";	

				getline(input,skip);	

					

				for(int	i=0;i<xbnum;i++)	

				{	

								for(int	j=0;j<ybnum;j++)	

								{	

												input>>skip>>skip>>PMF[i][j]>>skip;	

												//cout<<PMF[i][j]<<endl;	
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								}	

				}	

					

				double	x_st,y_st=0;	

				cout<<"starting	point:"<<endl;	

				cin>>x_st>>y_st;	

				int	x_index	=	(x_st-xmin)/xbsize;	

				int	y_index	=	(y_st-ymin)/ybsize;	

				double	PMF_st	=	PMF[x_index][y_index];	

				ofstream	output(in_name+"result.txt");	

				vector<pair<int,int>>	x_y;	

				x_y.push_back(make_pair(x_index,y_index));	

				cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	"<<PMF_st<<endl;	

				output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	"<<PMF_st<<endl;	

					

				double	neighbor_up	=	PMF[x_index][y_index];	

				double	neighbor_down	=	PMF[x_index][y_index];	

				double	neighbor_right	=	PMF[x_index][y_index];	

				//double	PMF_next	=	PMF[x_index][y_index];	

					

				while(x_index<=xbnum-1	&&	x_index>=0	&&	y_index<=ybnum-1	&&	y_index>=0)	

				{	

								if(y_index<ybnum-1)	
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								neighbor_up	=	PMF[x_index][y_index+1];	

												

								if(y_index>0)	

								neighbor_down	=	PMF[x_index][y_index-1];	

									

								if(x_index<xbnum-1)	

								neighbor_right	=	PMF[x_index+1][y_index];	

								else	

								break;	

											

								double	PMF_old	=PMF[x_index][y_index];	

								double	PMF_next	=	PMF[x_index][y_index];	

									

								if(neighbor_up<=neighbor_down	&&	neighbor_up<=neighbor_right	/*&&	

neighbor_up<=PMF_old*/)	

								{						

												y_index++;	

												if(x_y.size()>2)	

												{	

																if(y_index==x_y[x_y.size()-2].second	&&	x_index	==	x_y[x_y.size()-2].first)	

//prevent	stepping	back	and	forth	

																{	

																				y_index--;	



	

	 131	

																				if(neighbor_right<=neighbor_down)	

																				{	

																								PMF_next	=	neighbor_right;	

																								x_index++;	

																				}	

																				else	

																				{	

																								PMF_next	=	neighbor_down;	

																								y_index--;	

																				}	

																				if(PMF_next==PMF_old)	

																				{	

																								cout<<"done"<<endl;	

																								break;	

																				}	

																				x_y.push_back(make_pair(x_index,y_index));	

																				cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				continue;	

																}	

												}	



	

	 132	

												PMF_next	=	neighbor_up;	

								}	

								if(neighbor_down<=neighbor_up	&&	neighbor_down<=neighbor_right	/*&&	

neighbor_down<=PMF_old*/)	

								{	

												y_index--;	

												if(x_y.size()>2)	

												{	

																if(y_index==x_y[x_y.size()-2].second	&&	x_index	==	x_y[x_y.size()-2].first)	

//prevent	stepping	back	and	forth	

																{	

																				y_index++;	

																				if(neighbor_right<=neighbor_up)	

																				{	

																								PMF_next	=	neighbor_right;	

																								x_index++;	

																				}	

																				else	

																				{	

																								PMF_next	=	neighbor_up;	

																								y_index++;	

																				}	

																				if(PMF_next==PMF_old)	
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																				{	

																								cout<<"done"<<endl;	

																								break;	

																				}	

																				x_y.push_back(make_pair(x_index,y_index));	

																				cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

																				continue;	

																}	

												}	

												PMF_next	=	neighbor_down;	

								}	

								if(neighbor_right<=neighbor_up	&&	neighbor_right<=neighbor_down	/*&&	

neighbor_right<=PMF_old*/)	

								{	

												x_index++;	

												PMF_next	=	neighbor_right;	

								}	

								if(PMF_next==PMF_old)	

								{	

												cout<<"done"<<endl;	
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												break;	

								}	

								x_y.push_back(make_pair(x_index,y_index));	

								cout<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

								output<<xmin+x_index*xbsize<<"	"<<ymin+y_index*ybsize<<"	

"<<PMF_next<<endl;	

				}	

}	
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