PRIMETORSIONINTHEBRAUERGROUPOFANELLIPTICCURVE By CharlotteUre ADISSERTATION Submittedto MichiganStateUniversity inpartialentoftherequirements forthedegreeof Mathematics|DoctorofPhilosophy 2019 ABSTRACT PRIMETORSIONINTHEBRAUERGROUPOFANELLIPTICCURVE By CharlotteUre TheBrauergroupisaninvariantinalgebraicgeometryandnumbertheory,thatcanbe associatedtoaeld,variety,orscheme.Let k beaofcharacteristictfrom2or 3,andlet E beanellipticcurveover k .TheBrauergroupof E isatorsionabeliangroup withelementsgivenbyMoritaequivalenceclassesofcentralsimplealgebrasoverthefunction k ( E ).TheMerkurjev-Suslintheoremimpliesthatanysuchelementcanbedescribed byatensorproductofsymbolalgebras.Wegiveadescriptionofelementsinthe d -torsion oftheBrauergroupof E intermsofthesetensorproducts,providedthatthe d -torsionof E is k -rationaland k containsaprimitive d -throotofunity.Furthermore,if d = q isa prime,wegiveanalgorithmtocomputethe q -torsionoftheBrauergroupoveranyld k ofcharacteristictfrom2,3,and q containingaprimitive q -throotofunity. Tomyfamily. iii ACKNOWLEDGMENTS Thesepastsixyearsofgraduateschoolhavebeenanincredibleexperienceforme.Iam stillamazedtoseehowmuchIhavegrownbothpersonallyandacademicallywiththe encouragementandsupportIreceivedfromthepeopleIencountered. Firstandforemost,IwouldliketothankmyadvisorRajeshKulkarni,withoutwhom thisthesiswouldnotexistinthisform.Thankyouforalwayshavinganopendoorandfor guidingmethroughoutthisprocess.ThankyouforlettingmestrugglewhenIneededto, butespeciallyforencouragingmewhenIwantedtosurrender.Thankyouforbeingnotonly myadvisorandmentor,butalsobecomingagoodfriend. ThefacultyandatMichiganStateUniversityhavebeenaconstantsourceofsupport overtheyears.Iwouldn'thavecometoMichiganStateUniversitywithoutCasimAbbas whooriginallymademeawareoftheprogram.Mystudywaspartiallysupportedbythe StudienstiftungdesDeutschenVolkes.AtMichiganStateUniversity,Iamespeciallygrateful fortheworkofmycommitteemembers:IgorRapinchuk,MichaelShapiro,AaronLevin,and GeorgePappas. IhaveencounterednumerouswonderfulpeoplewithoutwhomthedaysinWellsHall wouldhavebeenverydull.ThankyouReshmaandHiteshforcountlessconversations. Thankyou Akosforalwaysbrighteningmydayswithyourjokes.Thankyoutomy AmericanroommatesandgoodfriendsSamanthaandAllisonformakingEastLansingfeel likehome.ThankyouChristine,Christos,Dimitris,Michael,Mollee,Rami,Rani,Sami, Sarah,Sebastian,Sugil,Tyler,andcountlessothersforagreattimetogether.Finally,thank youtoallmyfellowparticipantsoftheStudentAlgebraSeminaratMSUwhoinspiredme toworkharder. iv Iwouldalsoliketothankmyfamilyfortheircontinuedsupportandfortheiruncondi- tionalbeliefinmyabilities.HereistomyparentsInaandEwaldwhoaremyrolemodels forlifelonglearning.ThankyoutomysisterLenaforbeingtherewheneverIneededher. ThankyouOmiInge,whoisalwaysinterestedinmystoriesandwhoseindependencecontin- uestobeaninspirationtome.ThankyouOmaMariaandOpaSeppl,whoseunconditional supportmeanstheworldtome. MyspecialthanksgoestomyeSteviewhocanalwaysmakemesmile! v TABLEOFCONTENTS KEYTOSYMBOLS .................................. viii Chapter1Introduction ............................... 1 Chapter2Background ................................ 10 2.1EllipticCurves..................................10 2.1.1TorsionPoints...............................11 2.1.2Isogenies..................................12 2.1.3WeilPairing................................14 2.2Cohomology....................................15 2.2.1GroupCohomologyforabstractgroups.................15 2.2.2MapsonGroupCohomology.......................16 2.2.3GroupCohomologyforGroups................18 2.2.4Torsorsand H 1 ..............................19 2.2.5TheBrauerGroup,SymbolAlgebras,and H 2 .............21 2.2.6TheBrauergroup......................24 2.3Anexactsequence................................25 Chapter3Torsorgivenbymultiplicationby d ................. 28 3.1Overawithrationaltorsion........................28 3.2Overany...................................30 3.3GeneralArgumentthat inducesthecorrectsplit...............33 3.3.1DigressiontoDerivedCategories....................35 3.3.2Applicationtoourcase..........................38 Chapter4Generatorsof Br( E )........................... 40 4.1 M is k -rational..................................42 4.2[ L : k ]iscoprimeto q ..............................46 4.3[ L : k ]equals q ..................................48 4.3.1TheImageoftheMap.....................49 4.3.2TheImageoftheRestrictionMap....................53 4.4 q dividesthedegree[ L : k ]............................56 Chapter5Relations ................................. 58 5.1 M is k -rational..................................58 5.2[ L : k ]iscoprimeto q ...............................60 5.3[ L : k ]= q .....................................61 5.4 q divides[ L : k ]..................................62 Chapter6Conclusions{TheAlgorithm .................... 64 vi Chapter7Examples ................................. 67 7.1 M is k -rationaloveranumber.......................67 7.2Degree L=k coprimeto q for k anumber.................68 7.3Degree L=k = q for k anumber......................74 7.4Positiverankoveranumber........................76 7.5Overalocal.................................78 7.6Overa.................................79 7.7Degree[ L : k ]divisibleby q ...........................80 APPENDIX ........................................ 82 BIBLIOGRAPHY .................................... 86 vii KEYTOSYMBOLS d;qd integer 2, q isanoddprime k baseofcharacteristictfrom2or3,coprimeto d , q ˆ primitive d -thor q -throotofunityin k F aseparableclosureofthed F G F theabsoluteGaloisgroupofthe F E anellipticcurveover k ; denotethepointadditionandsubtractionon E [ d ] ; [ q ]multiplicationby d or q mapon E ( k ) Md -torsionor q -torsionof E ( k ) e( :;: )theWeilpairingon M ,section2.1.3 P;Q generatorsof M withe( P;Q )= ˆ k ( E )Functionof E H i ( F;A )the i -thgroupcohomologyof G F withcotsinthe G F -module A , section2.2 restherestrictionmap,example2.2.3 corthecorestrictionmap,example2.2.6 infthemap,example2.2.4 [ : ] ˆ for ˆ i 2 d ,let ˆ i ˆ = i 2 Z =d Z : [ : ] Z ˆ for ˆ i 2 d ,let ˆ i Z ˆ = i 2f 0 ;:::;d 1 gˆ Z : viii Chapter1 Introduction TheBrauergroupisanimportantinvariantassociatedwitharing,variety,orascheme ingeneral.OveraitselementsaregivenbyMoritaequivalenceclassesofcentralsim- plealgebras.FirstintroducedbyBrauerinthe1920's,theBrauergroupsofglobal werecompletelydescribedbyAlbert,Brauer,Hasse,andNoether[BNH32].TheBrauer groupsofpurelytranscendentalextensionsofglobalareeasiertounderstand.They werecalculatedbytheauthorsin[FSS79].Theydeducethatallrationalfunctionover aglobalhaveisomorphicBrauergroups,independentlyoftheirtranscendence degree.TheofaBrauergroupwasgeneralizedtocommutativeringsbyAuslan- derandGoldman[AG60].Inthe1960's,GrothendieckdescribedaversionoftheBrauer groupofaschemeusingetalecohomology[Gro68a].Itistobe H 2 et ( X; G m ),where G m isthesheafofmultiplicativeunitsoftheringofregularfunctionson X .TheBrauer groupalsohasanalgebraicincarnationthatwedenotebyBr( X ).ItselementsareMorita equivalenceclassesofsheavesofAzumayaalgebras.Thesearesheavesof O X -algebrasthat areetalelocallyisomorphictomatrixalgebras.ThisrealizationdescribestheBrauergroup asatorsionabeliangroup.Ifascheme X admitsanampleinvertiblesheaf,thetorsionof thecohomologicalBrauergroupcoincideswiththegroupofequivalenceclassesofAzumaya algebras[dJ].ElementsintheBrauergroupmayalsobethoughtofastranscendentalcycles {complementstoalgebraiccycles.WeareinterestedinBr( E )for E anellipticcurve. 1 TheBrauergrouphasprovenusefulinstudyinggeometricpropertiesofvarieties.Forexam- ple,ArtinandMumfordutilizedittogiveanegativeanswertotheLurothproblemindimen- sionthree.TheyconstructedunirationalvarietiesthatarenotrationalusingBrauerclasses overthefunctionoftheprojectivespace P 2 [AM72].TheBrauergroupcanalsodetect arithmeticpropertiesoftheunderlyingvariety.Maninanobstructionlyinginthe BrauergroupthatmeasuresthefailureoftheHasseprincipleforvarieties[Man71,Sko01]. UsinggeometricconstructionsofBrauerclasses,VirayandCreutzdescribedtheBrauer- Maninobstructionexplicitlyinthecaseofhyperellipticcurves.Usingthis,theyconstructed anfamilyofabeliansurfacesover Q withnontrivialTate-Shafarevichgroup[CV15]. Throughoutthisnote,let k beaofcharacteristictfrom2and3andlet E be anellipticcurveover k .WewillexploretheBrauergroupof E .First,recallthattheBrauer groupof E isatorsionabeliangroupandthereforeitwillbeenoughtodescribethetorsion d Br( E ),where d 2isaprimepower.TheBrauergroupof E isnaturallyisomorphicto theBrauergroupofthefunction k ( E )(section2.2.6and[CTS07,Theorem 5.11]).Furthermore,MerkurjevandSuslinrelatethesecondMilnor K 2 withtheBrauer groupinthefollowingtheoremfrom[MS82]and[Mer86]. Theorem1.0.1 (Merkurjev-Suslin) . Let F beaandlet d 2 beaninteger.Assume additionallythat F containsaprimitive d -throotofunity ˆ .Thereisanisomorphism K 2 ( F ) =dK 2 ( F ) ! d Br( F ) 2 thattakesasymbol f a;b g tothesymbolalgebra ( a;b ) d;F =( a;b ) d;F;ˆ = F D x;y : x d = a;y d = b;xy = ˆyx E : Weapplythistheoremtothecase F = k ( E )anddeducethateveryelementintheBrauer groupof k ( E )canbewrittenasatensorproductofsymbolalgebrasover k ( E ).Ourmain goalisthefollowing. Goal1.0.2. Let k beaofcharacteristicentfrom 2 and 3 .Fixanellipticcurve E over k .Let d 2 beanintegercoprimetothecharacteristicof k andassumeadditionally that k containsaprimitive d -throotofunity.Describegeneratorsandrelationsof d Br( E ) astensorproductofsymbolalgebrasoverthefunction k ( E ) . Suchadescriptionisavailableforcertainintegers d and k .In[CG01],Chernousov andGuletskidescribegeneratorsandrelationsof 2 Br( E )foranyellipticcurveoverany ofcharacteristictfrom2.Inparticular,theyprovethefollowingtheorem[CG01, Theorem3.6]. Theorem1.0.3. Let k beaofcharacteristicentfrom 2 andlet E beanelliptic curveover k dbytheequation y 2 =( x a )( x b )( x c ) with a;b;c 2 k .Then 2 Br( E )= 2 Br( k ) I andeveryelementin I canbepresentedbya tensorproduct ( r;x b ) 2 ;k ( E ) ( s;x c ) 2 ;k ( E ) ofquaternionalgebraswith r;s 2 k .Any suchalgebraistrivialin I ifandonlyifitissimilartooneofthefollowing 3 ( u c;x b ) 2 ;k ( E ) ( u b;x c ) 2 ;k ( E ) ,where u isthe x -coordinateofapointin E ( k ) suchthat u b 6 =0 and u c 6 =0 , ( b c;x b ) 2 ;k ( E ) (( b c )( b a ) ;x c ) 2 ;k ( E ) ,or (( c a )( c b ) ;x b ) 2 ;k ( E ) ( c b;x c ) 2 ;k ( E ) . ChernousovandGuletskifurtherdescribe 2 Br( E )iftheequation y 2 = f ( x )for E hasoneornorootsover k .Notethatthetwotorsionof E ( k )is k -rationalifandonlyif f ( x ) admitsthreerootsin k .Theauthorsin[CRR16,Section6]givegeneratorsofthe d -torsion oftheBrauergroupoftheJacobianofacurveusingatmethod.Theyprovethe followingtheorem. Theorem1.0.4. Let C beasmoothprojectivegeometricallyirreduciblecurveofgenus g overa k .Let d 2 beanintegercoprimetothecharacteristicof k andsupposethat k containsaprimitive d -throotofunity.DenotetheJacobianof C by J .Supposethat d J ( k ) is k -rational.Fixabasis P 1 ;:::P 2 g of d J ( k ) ˘ = ( Z =d Z ) 2 g .Pickadivisor ^ P i representing P i andlet t P i 2 k ( C ) betheelementwithdivisor d ^ P i .Then d Br( k ( C )) ur = d Br( k ) I andeveryelementin I canbewrittenasatensorproduct a 1 ;t m 1 P 1 d;k ( C ) a 2 g ;t m 2 g P 2 g d;k ( c ) ; forsome a 1 ;:::;a 2 g 2 k andsomeintegers m 1 ;:::;m 2 g . 4 Inthisthesis,wewillgiveadescriptionof d Br( E )inthefollowingcases: 1. Any d coprimetothecharacteristicof k ,assumingthat k containsaprimitive d -th rootofunityandthe d -torsion M of E ( k )is k -rational(theorem1.0.5). 2. d = q anoddprime,thatiscoprimetothecharacteristicof k ,assumingonlythat k containsaprimitive q -throotofunity(chapter6). Notethatwerecovertheresultfrom[CG01]iftheellipticcurveissplitandalsotheresult from[CRR16]inthecaseofanellipticcurve.Wenowproceedtogiveourdescriptioninthe case. Theorem1.0.5. Let k beaofcharacteristicentfrom 2 and 3 .Fixaninteger d 2 coprimetothecharacteristicof k andassumethat k containsaprimitive d -throotof unity.Let E beanellipticcurveover k with k -rational d -torsion M .Fixtwogenerators P and Q of M ,andlet t P ;t Q 2 k ( E ) with div( t P )= d ( P ) d (0) and div( t Q )= d ( Q ) d (0) . Additionally,assumethat t P [ d ] ;t Q [ d ] 2 k ( E ) d .Then d Br( E )= d Br( k ) I andeveryelementin I canberepresentedbyatensorproduct ( a;t P ) d;k ( E ) ( b;t Q ) d;k ( E ) forsome a;b 2 k .Furthermore,suchatensorproductistrivialifandonlyifitissimilar tooneofthefollowing t Q ( P ) ;t P k ( E ) t P ( P Q ) t P ( Q ) ;t Q k ( E ) , t Q ( P Q ) t Q ( P ) ;t P k ( E ) t P ( Q ) ;t Q k ( E ) ; or t Q ( R ) ;t P k ( E ) t P ( R ) ;t Q k ( E ) forsome R 2 E ( k ) nf 0 ;P;Q g . 5 Remark1.0.6. Wemaydroptheassumptionthat t P [ d ] ;t Q [ d ] 2 k ( E ) d intheprevious theorem.Inthiscaseourrelationsbecome t Q ( R S ) t Q ( S ) ;t P k ( E ) t P ( R S ) t P ( S ) ;t Q k ( E ) forsome R 2 E ( k ) and S 2 E ( k ) isanypointsothatthefractionexistsandisnonzero. Proof. Let t P ;t Q 2 k ( E )withdiv( t P )= d ( P ) d (0)anddiv( t Q )= d ( Q ) d (0).Fixsome point P 0 2 E ( k )with[ d ] P 0 = E ( k ).Thereexists g P 2 k ( E )withdiv( g P )=[ d ] ( P ) [ d ] (0)= P R 2 M P 0 R : NotethatthedivisorisinvariantundertheactionoftheGalois group G k andthereforewemaychoose g P 2 k ( E ).Furthermore,sincethedivisorscoincide, thereissome 2 k sothat g d P = P [ d ] 2 k ( E ) d .Forany R 2 E ( k ) P ( R )= P ( R S ) P ( S ) = t P ( R S ) t P ( S ) ; where S isanyotherpointsothat t P isnonzeroandwd. Now,let q beanoddprimenotequaltothecharacteristicof k andsupposethat k containsaprimitive q -throotofunity.Wegiveanalgorithmtodescribe q Br( E )explicitly inchapter6.ConsiderthestandardGaloisrepresentation : G k ! Aut( M )= GL 2 F q anddenotetheofitskernelby L .Then L isthesmallestGaloisextensionof k so that M is L -rational.Notethatthedegreeof L over k dividestheorderof GL 2 F q ,which is( q +1) 2 q ( q 1).Weconsiderthreecasesforthedegreeof L over k : 6 1. q - [ L : k ] Wedescribegeneratorsandrelationsin q Br( E )usingthatrestrictionfollowedbycore- strictionisanisomorphism(section4.2andsection5.2). 2. q =[ L : k ] Inthiscase,thecompositionofrestrictionandcorestrictionisthezeromap.Weuse insteadtherestrictionexactsequencetodeterminegeneratorsandrelations of q Br( E )(section4.3andsection5.3). 3. q j [ L : k ] Wecombinetheresultsfromtheprevioustwocasestogetadescriptionof q Br( E ) (section4.4andsection5.4). WenowproceedtoreviewthemainideaswewillusetodeterminetheBrauergroup. Foranyinteger d 2,thereisasplitexactsequence 0 / / d Br( k ) / / d Br( E ) / / q H 1 ( k;E ( k )) / / 0 ; (1.1) whichisinducedbytheHochschild-Serrespectralsequence(formoredetails,seesection2.3). Weneedanexplicitsplittingtothissequenceontheright.ConsidertheKummersequence 0 / / M / / E ( k ) [ d ] / / E ( k ) / / 0(1.2) andtheinducedsequenceongroupcohomology 0 / / E ( k ) = [ d ] E ( k ) / / H 1 ( k;M ) / / q H 1 ( k;E ( k )) / / 0 : (1.3) 7 Wewillamap : H 1 ( k;M ) ! d Br( E )thatinducesthedesiredsplit.Thismapis givenbythefollowingcomposition : H 1 ( k;M ) ˘ / / H 1 et (Spec( k ) ;M ) p / / H 1 et ( E;M ) [ T ] / / H 2 et ( E;M M ) e / / H 2 et ( E; d ) / / d Br( E ) ; (1.4) where p isthemorphisminducedbythestructuremap p : E ! Spec k , T isthetorsor givenbymultiplicationby d ontheellipticcurve(seechapter3),andeisthemapinduced bytheWeil-pairing(seesection2.1.3).Denoteby I theimageof Wededucethat d Br( E )= d Br( k ) I: Further,anelementin H 1 ( k;M )becomestrivialunder ifandonlyifitisintheimageof fromsequence1.1. In[Sko01]and[Sko99],theauthordescribesthemap abstractlyinthemoregeneral settingofanabelianvariety X andanytorsor T on X .Hefurtherprovesthatsuchan inducesthedesiredsplit.Wereviewhisabstractproofinsection3.3.Inthisthesis,wemake thisconstructionexplicitandprovedirectlythatthemap inducedbythecup-product inducesasplit. Thisthesisisorganizedasfollows.Inchapter2,wereviewbackgroundmaterialthat willbeusedthroughoutthiswork.Forexample,wediscusssomefactsaboutellipticcurves, cohomology,Brauergroups,andsymbolalgebrasasnecessaryfortheproofsinthefollowing chapters.Wealsonotationthatwillbeusedthroughoutthiswork.Inchapter3,we 8 describethetorsorgivenbymultiplicationby d ontheellipticcurve.Wealsocalculate thecocyclecorrespondingtothistorsoratthegenericpoint.Furthermore,wedescribethe generaltheorybehindourmainresultandjustifyitusingderivedcategories.Inchapter4, weexplorethealgorithmtocalculategeneratorsoftheBrauergroup.Wedescribethese generatorsprovidedthat M is k -rational.Wethenproceedtodescribethegeneratorsofthe primetorsioninvariouscases.Finally,inchapter5wegivetherelationsinthetorsionofthe Brauergroup.Wesummarizeourresultsandgiveacompletealgorithmtodeterminethe oddprimetorsionintheBrauergroupinchapter6.Lastly,wedeterminetheprimetorsion oftheBrauergroupinvariousexamplesinchapter7. 9 Chapter2 Background Thischaptercontainsbackgroundmaterialthatwillbeusedthroughoutthiswork.We discusspropertiesofisogeniesofellipticcurvesandtheWeilpairing.Inasecondpart,we reviewsomegeneralresultsongroupcohomologyandetalecohomology.Wefurtherconnect thesetothenotionsoftorsorsandtheBrauergroup.Weproceedtotheunra BrauergroupofaFinally,wedescribeanexactsequence,thatwillproveusefulto determinetheBrauergroupofanellipticcurve. 2.1EllipticCurves Let E beanellipticcurveovera k ofcharacteristictfrom2and3.Then E canbedescribedbyanequation y 2 = x 3 + Ax + B with A;B 2 k .Thediscriminant= 16 4 A 3 +27 B 2 of E isnonzero.Furthermore, E is anabelianvarietywithidentitythepoint0=[0:1:0]aty.Wedenotethepointwise additionon E ( k )by andthepointwisesubtractionby . 10 2.1.1TorsionPoints Let d beanaturalnumberandanalgebraicclosure k of k .Wedenoteby [ d ]: E ( k ) ! E ( k ) R 7! R R | {z } d -times themultiplicationby d mapontheellipticcurve.Thekernelof[ d ]arethe d -torsionpointsof E ( k ),whichisdenotedby M .Weextendourofmultiplicationto[ d ]=[ 1] [ d ]. Further,[0]istheconstantmapto0. Wenowreviewdivisionpolynomials,whichareacomputationaltooltodetermine M . Prop2.1.1. Foranyinteger d , d 2 and P =( x 1 ;y 1 ) 2 E ( k ) ,there arepolynomials n 2 k [ x;y ] for n 2 Z + sothat [ d ] P = x 1 d 1 ( x 1 ;y 1 ) d +1 ( x 1 ;y 1 ) 2 d ( x 1 ;y 1 ) ; 2 d ( x 1 ;y 1 ) 2 4 d ( x 1 ;y 1 ) ! : Thesepolynomialsareexplicitlygivenby 1 ( x;y )=1 ; 2 ( x;y )=2 y; 3 ( x;y )=3 x 4 +6 Ax 2 +12 Bx A 2 ; 4 ( x;y )=4 y x 6 +5 Ax 4 +20 Bx 3 5 A 2 x 2 4 ABx 8 B 2 A 3 ; 2 m +1 ( x;y )= m +2 3 m m 1 3 m +1 ; for m 2 and 2 m ( x;y )= m 2 y m +2 2 m 1 m 2 2 m +1 ; for m 3 : 11 Proof. Seeforinstance[Lan78,Ch.2 x 1]. Example2.1.2. Let P =( x 1 ;y 1 ) 2 E ( k ) .Then P isatwo-torsionpointifandonlyif P = P .If E isgivenbytheequation y 2 =( x a 1 )( x a 2 )( x a 3 ) with a 1 ;a 2 ;a 3 2 k , then 2 E ( k )= f 0 ; ( a 1 ; 0) ; ( a 2 ; 0) ; ( a 3 ; 0) g ˘ = Z = 2 Z Z = 2 Z : Example2.1.3. Let P =( x 1 ;y 1 ) 2 E ( k ) .Then P isathree-torsionpointifandonlyif P = [2] P .Thisisequivalentto x 1 = x 1 3 x 4 1 +6 Ax 2 1 +12 Bx 1 A 2 4 y 2 1 = x 1 3 x 4 1 +6 Ax 2 1 +12 Bx 1 A 2 4 x 3 1 + Ax 1 + B ; whichistrueifandonlyif 3 x 4 1 +6 Ax 2 1 +12 Bx 1 A 2 =0 : Let x 1 ;:::;x 4 bethefourdistinctzerosofthispolynomial,andlet y i = q x 3 i + Ax i + B , then 3 E ( k )= f 0 ; ( x i ;y i ) ; ( x i ; y i ):1 i 4 g ˘ = Z = 3 Z Z = 3 Z : 2.1.2Isogenies Let E 1 and E 2 betwoellipticcurvesovera k .Anisogenyisamorphism ˚ : E 1 ! E 2 ofcurvessuchthat ˚ (0)=0.Itfollowsthatanisogenyisagrouphomomorphism onthesetofpoints[Sil09,ChapterIII,Theorem4.8].Wedenoteby ˚ : k ( E 2 ) ! k ( E 1 ) theinducedmaponfunctionIf ˚ isconstant,wesetthedegreeof ˚ tobezero.Ifit 12 isnotconstant,thedegreeof ˚ isthedegreeoftheextension deg ˚ =[ k ( E 1 ): ˚ k ( E 2 )] : Furthermore,wedenotebydeg s ˚ theseparabledegreeoftheextensionandbydeg i ˚ theinseparabledegree.Finally,let P 2 E 1 ( k ).Theindexof ˚ at P ,denoted by e ˚ ( P )is e ˚ ( P )=ord P ˚ t ˚ ( P ) ; where t ˚ ( P ) isauniformizerat ˚ ( P ).Thefollowingclassicaltheoremcanforinstancebe foundin[Sil09,Theorem4.10]. Proposition2.1.4. Let ˚ : E 1 ! E 2 beanonzeroisogenybetweenellipticcurves. 1. Forevery Q 2 E 2 ( k ) ,thenumberofpreimagesof Q under ˚ isequaltothedegree deg s ˚ .Furthermore,forevery P 2 E 1 ( k ) , e ˚ ( P )=deg i ˚ . 2. Thereisanisomorphism ker( ˚ ) ! Aut k ( E 1 ) =˚ k ( E 2 ) : T 7! ˝ T ; where ˝ T isthetranslationby T map, ˝ T : E ( k ) ! E ( k ): R 7! R T . 3. Supposethat ˚ isseparable,then ˚ isunrd,thenumberofelementsinthekernel isequaltothedegreeof ˚ ,and k ( E 1 ) isaGaloisextensionof ˚ k ( E 2 ) . Example2.1.5. Let d 2 beanintegerandsupposethatthecharacteristicof k iscoprime to d .Denotethe d -torsionof E ( k ) by M ˘ = Z =d Z Z =d Z .Multiplicationby [ d ] isadegree d 2 mapand k ( E ) = [ d ] k ( E ) isaGaloisextensionofdegree d 2 (formoredetails,seealso 13 [Sil09,ChapterIII]).Furthermore, k ( E ) = [ d ] k ( E ) isGaloisofdegree d 2 providedthat M is k -rational. 2.1.3WeilPairing Let E beanellipticcurveover k andlet D = P n R R 2 Div( E )beadivisor.By[Sil09, ChapterIII,Corollary3.5], D isaprincipaldivisorifandonlyif P R 2 E ( k ) n R =0and P R 2 E ( k ) [ n R ] R =0,wherethesumisregularadditionintheintegersandthesecond sumisgivenbyadditionontheellipticcurve. AkeytoolinthestudyofellipticcurvesistheWeilpairingwhoseconstructionwewillnow review.Formoredetails,seealso[Sil09,SectionIII.8].Let d 2beanintegerandlet P be a d -torsionpointon E .Asbefore,denoteby M the d -torsionof E ( k ).Asdiscussedbefore, thereexistssome f P 2 k ( E )sothat div( f P )= d ( P ) d (0) : Nowlet P 0 2 E ( k )suchthat[ d ] P 0 = P .Since P R 2 M ( P 0 R )=[ d 2 ] P 0 =[ d ] P =0,there existssome g P 2 k ( E )suchthat div( g P )=[ d ] ( P ) [ d ] (0)= X R 2 M ( P 0 R ) ( R ) : Sincethedivisorscoincide,wemayassumethat f P [ d ]= g d P .For Q 2 M the Weil-pairingof P and Q as e( Q;P )= g P ( X Q ) g P ( X ) ; 14 where X 2 E ( k )isanypointsothat g P ( X )and g P ( X Q )isandnonzero.The Weil-pairingtakesvaluesinthesetof d -throotsofunity. Example2.1.6 (example2.1.5,contd.) . Let P;Q 2 M andlet g P and g Q bedas before,then ˝ Q ( g P )=e( P;Q ) g P ; (2.1) where ˝ Q isthetranslationby Q map, ˝ Q : E ( k ) ! E ( k ): R 7! R Q . 2.2Cohomology Inthissection,wesetupourcohomologicalnotation.Formoredetails,see[Ser79,Ch.VII x 5],[NSW08],or[GS17]. 2.2.1GroupCohomologyforabstractgroups Throughoutthissectionlet G beagroupandlet A beanabeliangroup.Assumethat G actson A ontheleftvia g:a . Let C i bethesetofofmaps n i =1 G ! A .Thecoboundarymap d : C i ! C i +1 isgiven by df ( g 1 ;:::;g i +1 )= g 1 :f ( g 2 ;:::;g i +1 ) + j = i X j =1 ( 1) j f g 1 ;:::;g j g j +1 ;:::;g i +1 +( 1) i +1 f ( g 1 ;:::;g i ) : (2.2) Adirectcomputationshowsthat d 2 =0andthus( C i ;d )isacomplex.Elementsinthe imageof d arecalledcocyclesandelementsinthekernelof d arecochains.The i -thgroup cohomology,denoted H i ( G;A ),isthequotientofcocyclesbycochainsin C i . 15 Example2.2.1. A 1 -cocycleisamap f : G ! A satisfying f ( gh )= g:f ( h )+ f ( g ) forall g;h 2 G .Wealsocalltheseelementscrossedhomomorphism.Acrossedhomomorphismis trivialifthereexistssome a 2 A suchthat f ( g )= g:a a forall g 2 G . Example2.2.2. A 2 -cocycleisamap f : G G ! A suchthat g:f ( g 0 ;g 00 ) f ( gg 0 ;g 00 )+ g ( g;g 0 g 00 ) f ( g;g 0 )=0 forall g;g 0 ;g 00 2 G: Suchacocycleistrivialifandonlyifthereis amap ~ f : G ! A suchthat f ( g;h )= g: ~ f ( h ) ~ f ( gh )+ f ( g ) forall g;h 2 G . 2.2.2MapsonGroupCohomology Let G and G 0 begroups.Fixa G -module A anda G 0 -module A 0 .Let ˚ : G ! G 0 and : A ! A 0 begrouphomomorphisms.Wesaythat ˚ and arecompatibleif ( ˚ ( g ) :a )= g: ( g ) forall g 2 G and a 2 A .Apair( ˚; )ofcompatiblemorphismsinducesamaponcohomology givenbypost-andprecomposition ( ˚; ) i : H i ( G;A ) f 7! f ˚ / / H i ( G 0 ;˚ A ) f 7! f / / H i ( G 0 ;A 0 ) : Example2.2.3 (Restriction) . Supposethat H isasubgroupof G .Theinclusionof H into G iscompatiblewiththeidentityon A .Theinducedhomomorphism res: H i ( G;A ) ! H i ( H;A ) iscalledtherestrictionhomomorphism. Example2.2.4 . If H isanormalsubgroupof G ,wedenoteby A H thesubgroup of A ofelementsdby H .Theidentityon G iscompatiblewiththeinclusionof A H 16 into A .Theinducedhomorphism inf: H i G=H;A H ! H i ( G;A ) iscalledthe homomorphism. Example2.2.5 (Conjugation,actionon H n ) . Let H ˆ G beasubgroup, A a G -module,and B an H -submoduleof A .Foranyd ˙ 2 G themorphisms ˙ 1 H˙ ! H : h 7! ˙h˙ 1 and B ! ˙ 1 B : b 7! ˙ 1 b arecompatibleandinduceisomorphisms ˙ : H n ( H;B ) ! H n ( ˙ 1 H˙;˙ 1 B ) called conjugation .Thisanactionof G (orif H isnormalin G of G=H )on H n ( H;A ) . Example2.2.6 (Corestriction) . Supposethat H isasubgroupof G .Foreveryrightcoset c 2 H n G acosetrepresentative c 2 c ˆ G .Onthelevelofcocyclesthecorestriction cor: C i ( H;A ) ! C i ( G;A ) isgivenby cor( f )( g 1 ;:::;g i )= X c 2 H n G c 1 f cg 1 cg 1 1 ;:::; cg i cg i 1 : Thefollowingpropositionsrelatingirestriction,andcorestrictionwillbeuseful forourcalculationsinchapter4. Proposition2.2.7. Let H beanormalsubgroupof G andlet A bea G -module.Thenthe followingsequenceisexact 0 / / H 1 ( G=H;A H ) inf / / H 1 ( G;H ) res / / H 1 ( H;A ) : Proof. See[Ser79,Ch.VII x 6,Proposition4]. 17 Proposition2.2.8. Let H beasubgroupof G ofindexandlet A bea G -module.Then thecomposition H i ( G;A ) res / / H i ( H;A ) cor / / H i ( G;A ) coincideswithmultiplicationby [ G : H ] . Proof. See[Ser79,Ch.VII x 7,Proposition6]. 2.2.9 (cup-product) . Let G beagroupand A and B be G -modules.The cup- product onthelevelofcocyclesisgivenby H n ( G;A ) H m ( G;B ) ! H n + m ( G;A B ) f [ g ( ˙ 1 ;:::˙ n + m )= f ( ˙ 1 ;:::;˙ n ) ˙ n g ( ˙ n +1 ;:::˙ m + n ) : 2.2.3GroupCohomologyforGroups Inthissection,weextendthepreviousofgroupcohomologytonitegroups. Recallthatagroup G istheinverselimitlim G ofaninversesystemof groups f G g .Withoutlossofgeneralitywemaytake G tobeaquotient G=U of G byan opennormalsubgroup U . Example2.2.10. Let K over k beaGaloisextension.TheGaloisgroup Gal( K=k ) isthe inverselimitoftheinversesystemoftheGaloisgroupsofsubextensionsandassuch isaprgroup. Aitegroup G =lim G admitsanaturaltopologyasfollows.Considerthediscrete topologyon G andtheinducedproducttopologyon Q G .Weendow G withthesubspace topolgyoftheproduct.Acontinuous G -moduleisa G -module A sothatthestabilizerof each a 2 A isopenin G . 18 2.2.11. Let G =lim G beaprgroupwith G = G=U andlet A bea continuous G -module.Then A U isa G -module.Considerthemaps inf : H i G ;A U ! H i G ;A U asinexample2.2.4.the i -thgroupcohomology H i cont ( G;A ) asthedirectlimitofthe system H i G ;A U ; inf . FortheabsoluteGaloisgroup G k ofa k ,wedenote H i ( k;A )= H i cont ( G k ;A ) . Remarkthatbyconstructionofdirectlimitsasaquotientofthedirectsum,forevery f 2 H i cont ( G;A )thereexistssome sothat f 2 H i G ;A U .Weusethisidenation throughoutthefollowingchapters,particularlyfor H i ( k;A ). Let H beaclosedsubgroupofaitegroup G and A acontinuous G -module.The restrictionmapres: H i cont ( G;A ) ! H i cont ( H;A )isasthedirectlimitoftheusual restrictionongroupcohomology(example2.2.3).If H isopenin G ,thecontinuouscorestric- tionissimilarlyandif H isaclosednormalsubgroup,wecanconstructcontinuous maps.Furthermore,thereisacontinuouscupproductinducedbythecupprod- uctin2.2.9.Finally,propositions2.2.7and2.2.8canberecoveredfor cohomology[GS17,Chapter4.2and4.3]. 2.2.4Torsorsand H 1 Wenowproceedtodescribethecorrespondencebetweentorsorsandelementsinthe cohomologygroup.Formoredetails,see[Sko01].Let A beanalgebraicgroupover a k .A k -torsorunder A isanon-empty k -variety T equippedwitharight-actionof A 19 sothat T ( k )isaprincipalhomogeneousspaceunder A ( k ).Thismeans,thatthemap T ( k ) A ( k ) ! T ( k ) T ( k ) ( t;a ) 7! ( t;t:a ) isanisomorphism. Thereisabijection H 1 ( k;A ) $ 8 > > < > > : k -torsorsunder A uptoisomorphism 9 > > = > > ; thatisexplicitlygivenasfollows.Let T bea k -torsorunder A .Choosea k -point x 0 of T .Bytheof k -torsor,forany ˙ 2 G k ,thereexistsaunique a ˙ 2 A ( k )sothat ˙ ( x 0 )= x 0 :a ˙ .Themap ˙ 7! a ˙ thecocyclein H 1 ( k;A )correspondingto T . Let X beavarietyover k .An X -torsorunderan X -groupscheme A isascheme T over X togetherwithan A -actioncompatiblewiththeprojectionto X thatisetale-locallytrivial. Asbefore,thereisaone-to-onecorrespondencebetween X -torsorsunder A andelementsof theetalecohomology H 1 et ( X; A ). Theorem2.2.12 (Colliot-Thelene{Sansuc) . Assumethat k [ X ] = k .Let S bea G k - moduleanddenoteby M = Hom k groups ( S ; G m ) thedualof S .Thereisanexactsequence 0 / / H 1 et (Spec k; M ) p / / H 1 et ( A ; M ) type / / Hom k M ; Pic( A ) / / H 2 et (Spec k; M ) ; where p isthemapinducedbythestructuremorphism p : A! Spec k . If type ( T )= foratorsor T ,wesaythat T has type . 20 Proof. Thisisthesequenceoflowdegreetermsforthespectralsequenceoflocaltoglobal Ext.Formoredetails,seeforinstance[CTS87,Theorem1.5.1andEquation2.0.2]or[Sko01, Theorem2.3.6andCorollary2.3.9]. Example2.2.13. A d -coveringofanabelianvariety X isapair ( T ; ) ,where T isa k -torsorunder X and : T! X isamorphismsuchthat ( x:t )= dx + ( t ) forany t 2T ( k ) ;x 2 X ( k ) : Let bethecomposition : d X _ ( k ) / / X _ ( k )=Pic 0 ( X ) / / Pic( X ) ofthenaturalinjectionfollowedbytheinclusion,where X _ denotesthedualabelianvariety of X .By[Sko01,Proposition3.3.4(a)],any d -coveringisan X -torsorunder d X of type , andviceversa. Example2.2.14. Multiplicationby d on X determinesa d -covering ( X; [ d ]) ,andtherefore an X -torsorof type bythepreviousproposition. 2.2.5TheBrauerGroup,SymbolAlgebras,and H 2 Inthissection,wedescribethecorrespondencebetweentheBrauergroupandthesecond cohomologygroup.Let F bealdandlet d 2.Wesaythattwocentralsimplealgebras A and B areMoritaequivalentifthereexistsome n;m 2 N 0 sothat A M n ( F )and B M m ( F ) areisomorphicas F -algebras.ElementsintheBrauergrouparegivenbyequivalenceclasses ofcentralsimplealgebrasmoduloMoritaequivalenceandthegroupstructureisgivenby thetensorproduct.ThereisagroupisomorphismbetweenBr( F )and H 2 ( F; F ).Wewill describethecorrespondenceforaGaloisextension K=F .Forfurtherdetailsseefor instance[GS17]. 21 2.2.15 (CrossedProductAlgebra) . Let K=F beaGaloisextensionwith Galoisgroup G andlet f beacocyclerepresentinganelementin H 2 ( G;K ) .Considerthe F -vectorspace A = F x g : g 2 G withmultiplication g = x g g ( a ) and x g x h = f ( g;h ) x gh . Thisturns A intoadimensionalcentralsimplealgebraover F . Fromnowonsupposethatthe F containsaprimitive d -throotofunity ˆ .Fix anisomorphism[ : ] ˆ : d ! Z =d Z with ˆ i ˆ = i .Furthermore,identify Z =d Z withthe subset f 0 ;:::;d 1 g oftheintegersanddenotetheimageof ˆ i underthecompositionby ˆ i Z ˆ = i 2 Z . 2.2.16. Let a;b 2 F .Thesymbolalgebraisthe F -algebra ( a;b ) d;F =( a;b ) d;F;ˆ := F D x;y : x d = a;y d = b;xy = ˆyx E : Itiseasytoshowthat ( a;b ) d;F isacentralsimplealgebraover F . Example2.2.17. Let a;b 2 F .Theelementin H 2 ( F; F ) correspondingtothesymbol algebra ( a;b ) d;F;ˆ canberepresentedbythecocycle ( ;˝ ) 7! 8 > > > > < > > > > : a if " d p a d p a # Z ˆ + " ˝ d p b d p b # Z ˆ d 1 else : Formoredetails,see[Rei03,Chapter7 x 29]. Thefollowingcocyclerepresentingthesymbolalgebra( a;b ) d;F willprovemoreusefulfor ourpurposes. 22 Proposition2.2.18. Let M bethe d -torsionofanellipticcurve E withgenerators P and Q .AssumethattheWeil-pairing e( P;Q )= ˆ .Let a;b 2 F ,thenthesymbol algebra ( a;b ) d;F canberepresentedbythecocycle ( ;˝ ) 7! e 0 @ d p a d p a P; d p b d p b Q 1 A 1 : Proof. Considerthemap g : ! d p a 2 4 d p b d p b 3 5 Z ˆ : Thetialof g is dg ( ;˝ )= 0 B B B B B @ d p a 2 4 ˝ d p b d p b 3 5 Z ˆ 1 C C C C C A d p a 2 4 d p b d p b 3 5 Z ˆ d p a 2 4 ˝ d p b d p b 3 5 Z ˆ = 8 > > > > > > > > > > < > > > > > > > > > > : a d p a d p a ! 2 4 ˝ d p b d p b 3 5 ˆ if " d p a d p a # Z ˆ + " ˝ d p b d p b # Z ˆ d d p a d p a ! 2 4 ˝ d p b d p b 3 5 ˆ else = 8 > > > > > < > > > > > : a e d p a d p a P; d p b d p b Q ! if " d p a d p a # Z ˆ + " ˝ d p b d p b # Z ˆ d e d p a d p a P; d p b d p b Q ! else Subtractingthistrivialcocyclefromthecocycleinexample2.2.17givesthedesiredresult. Asmentionedbefore,thesecanbegeneralizedtotheBrauergroupofavariety 23 orascheme,see[Mil80,ChapterIV]fordetails.AfamousresultofGabber[dJ]statesthat theBrauergroupasequivalenceclassesofAzumayaalgebrascoincideswiththe torsionof H 2 et ( X; G m )if X canbeendowedwithanampleinvertiblesheaf. 2.2.6TheBrauergroup AnimportantsubgroupoftheBrauergroupofaistheBrauergroup.In thissection,wereviewitstionandsomebasicfactsaboutit.Formoredetails,see [Sal99,Chapter10].First,let R beadiscretevaluationdomaindomainwithoffractions K .Denoteby v : K ! Z thevaluationby R .Let ˇ beaprimewith v ( ˇ )=1. Denoteby ^ K thecompletionof K withrespectto v .Let R = R=ˇR anddenoteby p the characteristicof R .Let K ur bethemaximalextensionofthecompletion ^ K .The followingresultgivenin[Sal99,Theorem10.1]willhelpusthemap. Theorem2.2.19. Anyelementin Br( ^ K ) oforderprimeto p issplitby K ur . Foraprime p andanabeliangroup A ,denoteby A 0 theprime-to- p part.Extendthe valuation v to v : K ur ! Z .By[Ser79,p.28]thevaluationmapiscompatiblewiththe actionofGal K ur = ^ K ,wheretheactionon Z istrivial.nethemapasthe composition ram R : Br( K ) 0 / / Br( ^ K ) 0 ˘ theorem2.2.19 / / H 2 Gal K ur = ^ K ;K ur 0 v / / H 2 Gal K ur = ^ K ; Z 0 ˘ / / H 1 Gal K ur = ^ K ; Q = Z 0 ˘ / / Hom Gal K ur = ^ K ; Q = Z 0 ; wherethesecondtolastmapistheinverseofthecoboundaryinducedbytheexactsequence 0 ! Z ! Z ! Q = Z ! 0.Itcanbeshown[Sal99,Theorem10.3]thatthe 24 intheexactsequence 0 / / Br( R ) 0 / / Br( K ) 0 ram R / / Hom Gal K ur = ^ K ; Q = Z 0 / / 0 : Wewillnowreturntothegeneralsetting.Let k beaground,andlet F be aextensionof k .Let R F bethesetofdiscretevaluationringscontaining k thathave offraction F . 2.2.20. TheunrdBrauergroupof F (withrespectto k )is Br ur ( F )= \ R 2R F ( Imageof Br( R ) ! Br( F )) : Wewillusethefollowingidenthroughoutthiswork. Theorem2.2.21. Let X beaprojectiveregularvarietyover k withfunction k ( X ) . Then Br( X ) equals Br ur k ( X ) . Proof. Seeforinstance[CTS07,Theorem5.11]or[Sal99,Proposition10.5(c)]. 2.3Anexactsequence Inthissection,wedescribethemapsintheexactsequence1.1explicitly.Considerthe Hochschild-Serrespectralsequence[Mil80,III.2.20] H i k;H j E; G m ) H i + j ( E; G m ) : 25 Itssequenceoflowdegreetermsis 0 / / Br( k ) i / / Br( E ) r / / H 1 k;E k / / 0 ; (2.3) wherethemapsendstheclassofacentralsimplealgebra A totheclassof A k ( E ).For moredetailsonthissequence,seealso[Fad56]and[Lic69].Thesecondmapismorecompli- cated.Let 2 Br( E ).UsingTsen'stheoremweview asanelementin H 2 G k ; k ( E ) ˘ = Br k ( E ).Considertheexactsequence 0 / / k ( E ) / / Prin( E ) / / Div( E ) / / 0 ; wherePrin( E )denotesthesetofpricipaldivisorson E andDiv( E )isthesetofdivisorson E .Thesequenceinducedongroupcohomologyis H 2 ( G k ; k ( E ) ) / / H 2 ( G k ; Prin( E )) / / H 2 ( G k ; Div( E )) ; wherethemaptakes tosome 0 inthekernelofthesecondmap.Nowconsiderthe degreesequence 0 / / Div 0 ( E ) / / Div( E ) / / Z / / 0 ; whereDiv 0 ( E )isthegroupofdegreezerodivisors.Notethat H 1 ( G k ; Z )=0andtherefore themap H 2 ( G k ; Div 0 ( E )) / / H 2 ( G k ; Div( E )) 26 isinjective.Finally,theexactsequence 0 / / Prin( E ) / / Div 0 ( E ) / / E ( k ) / / 0 inducesanexactsequence 1 / / H 1 ( G k ;E ( k )) / / H 2 ( G k ; Prin( E )) / / H 2 ( G k ; Div 0 ( E )) : Theelement 0 isinthekernelofthesecondmap,andthereforethereexistsaunique 00 2 H 1 ( G k ;E ( k ))withimage 0 .Set r ( )= 00 . Thiscompletesthedescriptionoftheexactsequence(2.3).Wewillusethisexplicit descriptiontoprovethatthemap inducedbythecupproduct(eq.(4.1))inducesasplit. 27 Chapter3 Torsorgivenbymultiplicationby d Let k beaofcharacteristictfrom2or3.Let d 2beanintegercoprimetothe characteristicof k .Assumeadditionallythat k containsaprimitive d -throotofunity ˆ .Fix anisomorphism[ : ] ˆ : d ! Z =d Z with ˆ i = i .Furthermore,for ˆ i 2 d ,let ˆ i Z ˆ = i 2 f 0 ;:::;d 1 gˆ Z .Let E beanellipticcurveover k anddenoteits d -torsionby M .This chaptercontainsacocycledescriptionofthetorsorgivenbymultiplicationby d on E .Fix twogenerators P and Q of M .Denotebye( :;: )theWeilpairing(section2.1.3)andassume thate( P;Q )= ˆ .Let t P ;t Q 2 k ( E )withdiv( t P )= d ( P ) d (0)anddiv( t Q )= d ( Q ) d (0). 3.1Overawithrationaltorsion Assumethroughoutthissectionthat M is k -rational.Wemayassumethat t P ;t Q 2 k ( E ) sinceitsdivisorisinvariantundertheGaloisactionof G k .Let T bethetorsorgivenby multiplicationby d on E asinsection2.2.4. Proposition3.1.1. Thepull-back ( T ) alongthegenericpoint :Spec k ( E ) ! E corre- spondstotheelementin H 1 ( k ( E ) ;M ) givenbythecocycle 7! " Q Q # ˆ P ( P ) P ˆ Q; where P ; Q 2 k ( E ) with d P = t P and d Q = t Q . 28 Proof. Forthecorrespondencebetweentorsorsandelementsin H 1 seesection2.2.4.Let P 0 2 E ( k )sothat[ d ] P 0 = P .Thenthereissome g P 2 k ( E )with div( g P )=[ d ] ( P ) [ d ] (0)= X R 2 M ( P 0 R ) ( R ) : Notethatwemaychoose g P 2 k ( E )sincethedivisorisinvariantundertheactionofthe absoluteGaloisgroupof k .Nowdiv g d P =div([ d ] t P )andthuswemayassumethat g d P =[ d ] t P .Similarlywe g Q 2 k ( E )with g d Q =[ d ] t Q .Nowconsiderthepullbackof T alongthegenericpoint :Spec k ( E ) ! Spec k .Fixa k ( E )-point x 0 ofthispullback,i.e. amapofalgebrassothat x 0 [ d ] = ,where : k ( E ) ! k ( E )istheinclusion. Spec k ( E ) / / [ d ] E [ d ] Spec k ( E ) 8 8 / / Spec k ( E ) / / E k ( E ) x 0 | | k ( E ) k ( E ) [ d ] O O o o Afterpossiblyrenaming P and Q ,wemayassumethat x 0 ( g P )= P and x 0 g Q = Q . Byproposition2.1.4thereisagroupisomorphism M ! Gal( k ( E ) = [ d ] k ( E )): R 7! ˝ R ; where ˝ R : E ! E isthetranslationby R -map; ˝ R : E ! E : S 7! S R .Bythe oftheWeil-pairinge( R;P )= g P ( X S ) g P ( X ) = ˝ S ( X ) g P ( X ) ; forany R 2 M , X 2 E ( k )anypointso that g P ( X )and g P ( X S )areTheanalogousresultholdsfor g Q aswell.Finally, 29 wecalculate x 0 ˝ " ( Q ) Q # ˆ P ( P ) P ˆ Q ( g P )= x 0 e ( Q ) Q ˆ P ( P ) P ˆ Q;P ! g P ! = x 0 e ( P ) P ˆ Q;P ! g P ! = x 0 ( P ) P g P = ( P ) P P = ( P ) and x 0 ˝ " ( Q ) Q # ˆ P ( P ) P ˆ Q g Q = x 0 e ( Q ) Q ˆ P ( P ) P ˆ Q;Q ! g Q ! = x 0 e ( Q ) Q ˆ P;Q ! g Q ! = x 0 ( Q ) Q g Q = ( Q ) Q Q = ( Q ) : Thestatementfollowssince k ( E ) = [ d ] k ( E )isgeneratedby g P and g Q . 3.2Overany Let k beanyConsidertheGaloisrepresentation : G k ! Aut( M )= GL 2 ( F d ) 30 givenbytheactionon M anddenotetheofitskernelby L .Considerthetower ofextensions k ( E ) L ( E ) M Gal( L=k ) [ d ] L ( E ) Gal( L=k ) k ( E ) [ d ] k ( E ) Fixaset ~ G L=k ˆ G k ( E ) ofcosetrepresentativesof G k ( E ) =G L ( E ) ˘ = Gal( L=k ).Notethat ~ G L=k isalsoasetofcosetrepresentativesof G [ d ] k ( E ) =G [ d ] L ( E ) ˘ = Gal( L=k )andev- ery~ ˙ 2 ~ G L=k k ( E ).Let 2 G [ d ] k ( E ) ,then decomposesas = 0 ~ ˙ forsome 0 2 G [ d ] L ( E ) andsome~ ˙ 2 ~ G L=k . Let T bethetorsorgivenbymultiplicationby d on E .Considerthepullback k ( E ) of T tothegenericpoint.Notethatxinga k ( E )-pointof T isthesameasan isomorphism ˚ 0 : k ( E ) ! k ( E )makingthefollowingdiagramcommute{orequivalentlyan elementinGal( k ( E ) = [ d ] k ( E )). k ( E ) 1 / / k ( E ) [ d ] k ( E ) O O 1 / / k ( E ) k ( E ) ˘ [ d ] O O 1 / / k ( E ) ˘ ˚ d O O : 31 Wewillidentify G [ d ] k ( E ) with G k ( E ) and G [ d ] L ( E ) with G L ( E ) .Fixasetofcosetrep- resentatives ~ G L=k asbefore.Thenevery 2 G k ( E ) canbedecomposedas 0 ~ ˙ forsome 0 2 G L ( E ) andsome~ ˙ 2 ~ G L=k .Furthermore,~ ˙ theimageof k ( E ) (topleftcornerof thediagram)byconstruction. Wewanttodescribethecocyclecorrespondingtothepullbackof T alongthegeneric pointusingthecorrespondenceinsection2.2.4.Let x 1 bea k ( E )point.Wemayassume, that x 0 = 1 x 0 forsome x 0 asinthefollowingcommutativediagram. k ( E ) 1 / / x 1 L ( E ) x 0 ! ! k ( E ) [ d ] O O 1 / / L ( E ) [ d ] O O / / k ( E ) : Any = 0 ~ ˙ 2 G k ( E ) with 0 2 G L ( E ) ; ~ ˙ 2 ~ G L=k actson x 1 by :x 1 = 0 ~ ˙x 0 1 = 0 :x 1 : Finally, 0 :x 1 canbecomputedasinproposition3.1.1.Summarizingthisweconcludethe followingproposition. Proposition3.2.1. Thepull-backof T tothegenericpointcorrespondstotheelementin H 1 ( k ( E ) ;M ) givenbythecocycle G k ( E ) ! M : 7! " 0 ( Q ) Q # ˆ P 0 ( P ) P ˆ Q; 32 where = 0 ~ ˙ asabove,forsome ~ ˙ 2 ~ G L=k and 0 2 G L ( E ) , P ; Q 2 k ( E ) sothat d P = t P and d Q = t Q . Wenowproceedtogiveanexplicitdiscriptionoftheelements t P and t Q .Remarkthat thesecanbechosenin k ( E ) if M is k -rational.Formoredetailsontheconstruction,see also[Mil04,Section4.1].Foranytwopoints R;S 2 E ( k ),denoteby L R;S thenormalized functionsuchthat L R;S =0givestheequationofthelinethrough R and S .Itsdivisoris div( L R;S )=( R )+( S )+( ( R S )) 3(0).anelement h R;S = L R;S L R S; ( R S ) 2 k ( E ) withdiv h R;S =( R )+( S ) ( R S ) (0).Nowthefunction t P = Q d i =1 h P; [ i ] P 2 k ( E )has divisor div( t P )= d 1 X i =1 ( P )+([ i ] P ) ([ i +1] P ) (0) =( d 1)( P )+ P ([ d ] P ) ( d 1)(0) = d ( P ) d (0) : Similarly,weconstruct t Q .Notethatinthecase q =3,wecanchoosethenormalized function t P ;t Q 2 k ( E ) suchthat t P =0and t Q =0givethetangentlinesat P ,and Q respectively. 3.3GeneralArgumentthat inducesthecorrectsplit Inthissectionwereviewanabstractargumentgivenin[Sko01,Chapter4]toprovethat themap beforeinducesthedesiredsplit.Wewillreprovethisinchapter4inour spcaseusingexplitmethods. 33 Let k beawithalgebraicclosure k andlet X bea k -variety.Denotethestructure mapby p : X ! Spec k .Further,let X = X Spec k Spec k .Assumethat M isa G k -module thatisgeneratedasanabeliangroup.Assumethattheorderofthetorsionof M is coprimetothecharacteristicof k .Denoteby S =Hom( S; G m )thedual k -groupof M .Let T bean X -torsorof type forsome inHom k M; Pic( X ) (theorem2.2.12)andassume that k [ X ] = k .ConsiderthelongexactsequencefromthespectralsequenceofExt's 0 / / Pic( X ) / / Pic( X ) G k / / Br( k ) / / Br 1 ( X ) r / / H 1 ( k; Pic( X )) / / H 3 ( k; G m ) ; whereBr 1 ( X )denotesthekernelofthenaturalmapBr( X ) ! Br( X ) G k : Br ( X ):= r 1 H 1 ( k;M ) Br 1 ( X ) : Theorem3.3.1. Thecup-product p ( ) [ [ T ] isanelementof Br ( X ) forany 2 H 1 ( k;M ) and r ( p ( ) [ [ T ])= ( ) 2 H 1 k; Pic( X ) : Thatis,thefollowingdiagramcommutes H 1 ( k;M ) p ( : ) [ [ T ] w w / / Br( k ) / / Br 1 ( X ) r / / H 1 ( k; Pic( X )) / / H 3 ( k; G m ) : (3.1) Furthermore,any A 2 Br ( X ) canbewrittenas A = p ( ) [ [ T ]+ p ( A 0 ) 34 forsome 2 H 1 ( k;M ) andsome A 0 2 Br( k ) . Thisis[Sko01,Theorem4.11].Wewillreviewtheproofhereforcompletion.Notethat itisenoughtoshowthatthefollowingdiagramcommutes H 1 ( X;S ) Ext 1 X ( p M; G m ) type / / d Hom k ( M; Pic( X )) d Br 1 ( X ) r / / H 1 ( k; Pic( X )) ; (3.2) where d istheconnectinghomomorphismofthelongexactsequenceofExt.Theproofwill requiresomefactsonthederivedcategoryof X from[Wei94],thatwewillreview 3.3.1DigressiontoDerivedCategories Let X bea k -variety.Considerthecategories Sh ( X )ofetalesheaveson X , G k -mod of G k modules,and Ab ofabeliangroups.Denoteby D + ( X ) ; D + ( k ),and D + ( Ab )the correspondingderivedcategoriesofboundedbelowcomplexes.Notethatallthesecategories haveenoughinjectives.For M inoneofthesecategories,let M betheelementinthe derivedcategorywith M i = 8 > > > < > > > : Mi =0 0else : Forany n 2 Z ,wedenoteby ˝ n and ˝ n thetruncationfunctors.Thatis,foracomplex F we ˝ n ( F )asthecomplex ! 0 ! F n = Im( d ) ! F n +1 ! 35 Furthermore,denote ˝ [ m;n ] ( F )= ˝ m ˝ n ( F )and ˝ [ n ] ( F )= ˝ [ n;n ] ( F ). Let0 / / A / / B / / C / / 0beanexactsequenceof G k -modulesandlet F be anobjectin D + ( k ).Thenthefollowingdiagramin D + ( Ab )commutes R Hom k A;˝ 1 ( F ) / / d R Hom k A;˝ [1] ( F ) d R Hom k C;˝ 1 ( F ) [1] / / R Hom k C;˝ [1] ( F ) [1] ; (3.3) wheretheverticalmapsaretheconnectinghomomorphismsinducedbytheexactsequence. Considerthestructuremorphism p : X ! Spec k .Thedirectimagefunctor p assigns toanetalesheafon X anetalesheafonSpec k .Fixthegeometricpoint s :Spec k ! Spec k inducedbytheinclusion k k .By[Sta19,Lemma54.58.1,Tag04JQ],thestalkfunctor F7!F s inducesanequivalenceofcategoriesbetweenthecategoryofetalesheavesover X andthecategoryof G k -modules.Considerthecompositionof p withthisequivalenceof categories.Abusingnotation,wewilldenotethiscompositionby p aswell.Furthermore, thereisafunctorHom k ( M; ): G k -mod ! Ab .For M = Z ,thisfunctorisgivenby sendinga G k -module N toits G k -invariants N G k .Denotetheassociatedderivedfunctors by R p ; R Hom k ( M; ),and H ( k; )= R Hom k ( Z ; ).Recall,thatunderourequivalence ofcategoriesgivenbythestalkfunctor F7!F s ,thesheaf R i p G m correspondstothe G k -module ^ H i ( X; G m ) s = H i ( X; G m ) ; (3.4) by[Har77,IIIProposition8.5]andthesecondequalityholdstrue,becausetakingstalks 36 commuteswithcohomology. Thefunctor p admitsaleft-adjoint p sothatHom k ( M;p F )=Hom X ( p M;F )forany G k -module M andanyetalesheaf F on X .Wewillusethefollowingidentitiesofadjoint functorsthroughout R Hom k ( M; ) R p = R Hom X ( p M; )(3.5) H ( k; ) R p = H ( X; ) : (3.6) Wenowreviewthedeofthehypercohomologyfunctorasgivenin[Mil80,Ap- pendixC].Let f : A!B bealeft-exactfunctorbetweenabeliancategoriesandassume that A hasenoughinjectives.Denoteby C + ( A )thecategoryofcomplexesboundedbelow. Let A 2 C + ( A ).Thenthereexistsacomplex I 2 C + ( A )whoseobjectsareinjectives, thatisquasi-isomorphicto A .Theright-hyperderivedfunctor R i f of f assignsto A the object H i ( fI )in B .Denoteby H i ( k; )thehyperderivedfunctorof H ( k; ). Fora G k -module M thatisgeneratedasanabeliangroupwithtorsioncoprime tothecharacteristicof k ,asequence 0 / / M / / N / / Z / / 0 of G k -modules,where G k actstriviallyon Z .Thecommutativediagram3.3givesthe 37 followingaftersetting F = R p G m andtakingcohomology. R 1 Hom k M;˝ 1 ( R p G m ) / / d R 1 Hom k M;˝ [1] ( R p G m ) d H 1 k;˝ 1 ( R p G m )[1] / / H 1 k;˝ [1] ( R p G m )[1] : (3.7) Itremainstoshowthatthediagrams3.2and3.7areisomorphic,i.e.thereexistisomor- phismsbetweentheirobjectssothatthefollowingdiagramcommutes. R 1 Hom k M;˝ 1 ( R p G m ) / / ˘ ' ' R 1 Hom k M;˝ [1] ( R p G m ) ˘ ( ( Ext 1 X ( p M; G m ) / / Hom k ( M; Pic( X )) d H 1 k;˝ 1 ( R p G m )[1] / / ˘ ' ' H 1 k;˝ [1] ( R p G m )[1] ˘ ( ( Br 1 ( X ) r / / H 1 ( k; Pic( X )) (3.8) Fortheproofswereferthereaderto[Mil80,AppendixC],[Sko01,p.67or[Wei94, Corollary10.8.3]. 3.3.2Applicationtoourcase Let E beanellipticcurveovera k ofcharacteristicprimeto d .Denoteby M the d -torsionof E ( k ).Considerthetorsor T givenbymultiplicationby d asinexample2.2.14. It's type isthecomposition : M ! E ( k )=Pic 0 ( E ) ! Pic( E ) : 38 Furthermore,recallthatPic( E )=Pic 0 E Z and H 1 ( k; Z )=0.Thenthecohomology becomes H 1 k; Pic( E ) = H 1 k; Pic 0 ( E ) = H 1 ( k;E ( k )) : Thediagram3.1becomes H 1 ( k;M ) x x 0 / / Br( k ) / / Br( E ) r / / H 1 ( k;E ( k )) / / 0 : Notethatboth and r aresurjectiveandthereforeby Br ( E )= d Br( E ) : Bytheorem3.3.1,everyelementin d Br( E )canberepresentedasacupproduct p ( ) [ [ T ]+ p ( A 0 ) forsome 2 H 1 ( k;M )and A 0 2 Br( k ).Furthermore,thealgebra p ( ) [ [ T ]istrivialif andonlyif isintheimageoftheKummermap : E ( k ) = [ d ] E ( k ) ! H 1 ( k;M ). 39 Chapter4 Generatorsof Br( E ) Let k beadofcharacteristictfrom2or3.Let d 2beanintegercoprimeto thecharacteristicof k andassumeadditionallythat k containsaprimitive d -throotofunity ˆ .Let E beanellipticcurveover k .Recallthatourmethodofcomputinggeneratorsof d Br( E )isviaanexplicitsplittotheexactsequence 0 / / d Br( k ) i / / d Br( E ) r / / d H 1 k;E k / / 0 describedinsection2.3.ConsidertheKummersequence 0 / / M / / E ( k ) [ d ] / / E ( k ) / / 0 : Thesequenceinducedoncohomologyis 0 / / E ( k ) = [ d ] E ( k ) / / H 1 ( k;M ) / / d H 1 k;E ( k ) / / 0 : Wewilldescribeamap : H 1 ( k;M ) ! d Br( E ),thatinducesasplitofthesequencein section2.3.Denoteby T thetorsorgivenbymultiplicationby d on E asinchapter3. 40 : H 1 ( k;M ) ! d Br( E )asthefollowingcomposition : H 1 ( k;M ) ˘ / / H 1 et (Spec( k ) ;M ) p / / H 1 et ( E;M ) [ T ] / / H 2 et ( E;M M ) e / / H 2 et ( E; d ) / / d Br( E ) : (4.1) In[Sko01,Theorem4.1.1],theauthorprovesabstractlythat inducessuchasplitusing generalpropertiesoftorsorsandthecup-product.Inthischapter,wewilldetermine explicitlyandprovedirectlythatthemapinducesthedesiredsplit. Proposition4.0.1. Onthelevelofcocycles coincideswiththemapthatassignstoa 1-cocycle f : G k ! M the2-cocycle ( f ): G k ( E ) G k ( E ) ! k ( E ) ( ;˝ ) 7! e 0 @ f ( ) ; 0 @ " ˝ 0 ( Q ) Q # ˆ P ˝ 0 ( P ) P ˆ Q 1 A 1 A ; (4.2) for ;˝ 2 G k ( E ) ;˝ = ˝ 0 ~ ˙ forsome ~ ˙ 2 ~ G L=k and ˝ 0 2 G k ( E ) .(Foradescriptionof ~ G L=k seesection3.2). Proof. Considerthefollowingdiagram H 1 ( k;M ) p / / H 1 et ( E;M ) [ T ] / / H 2 et ( E;M M ) e ˘ / / H 2 et ( E; d ) H 1 et ( k ( E ) ;M ) [ T ] / / H 2 et ( k ( E ) ;M M ) e ˘ / / d Br k ( E ) Ithascommutativesquaresasthecup-productcommuteswith [Bre97,Chapter2,8.2]. Foreverycocycle f : G k ! M ,theBrauerclasse ( p ([ f ]) [ [ T ])canbedescribed bythecocycleineq.(4.2)byproposition3.2.1andbytheofthecup-productin 41 groupcohomology(see2.2.9).Recallthatby[CTS07,Theorem5.11]themapon therightisgivenbytheinjectionthatidenBr( E )withtheunBrauergroupof k ( E )(fortheBrauergroupseealsosection2.2.6). 4.1 M is k -rational Assumethroughoutthissectionthat M ˆ E ( k )withgenerators P and Q sothate( P;Q )= ˆ . Wearenowreadytocalculateasetofgeneratorsof d Br( E ).ByKummer-theorythereisan isomorphism ˚ : k = ( k ) d k = ( k ) d ! H 1 ( k;M ) ( a;b ) 7! c a;b ; (4.3) where c a;b canberepresentedbythecocycle G k ! M 7! " d p a d p a # ˆ P 2 4 d p b d p b 3 5 ˆ Q: Proposition4.1.1. Thecomposition ˚ ( a;b ) correspondstotheBrauerclassofthetensor productofsymbolalgebras ( a;t P ) d;k ( E ) b;t Q d;k ( E ) forany ( a;b ) 2 k = ( k ) d k = ( k ) d . Proof. Observethattheclassof k ˚ ( a;b )canberepresentedbythecocyclethattakesthe 42 pair( ;˝ ) 2 G k ( E ) G k ( E ) to e 0 B @ " d p a d p a # ˆ P 2 4 d p b d p b 3 5 ˆ Q; ˝ ( Q ) Q ˆ P ˝ ( P ) P ˆ Q 1 C A =e 0 @ " d p a d p a # ˆ P; ˝ ( P ) P ˆ Q 1 A 1 e 0 B @ 2 4 d p b d p b 3 5 ˆ Q; ˝ ( Q ) Q ˆ P 1 C A : Thestatementfollowsfromproposition2.2.18. Recallthatweneedtoprovethat inducesasplittothesequenceinsection2.3onthe right,i.e.weneedtoshowthat r = and (ker( ))=0.Fortheof r and seesection2.3.Westprovethat r = . Proposition4.1.2. r = . Proof. Wewillonlyprovethat r ˚ ( a; 1)= ˚ ( a; 1) : Theothercasesaresimilar.We showedpreviouslythat ˚ ( a; 1)=( a;t P ) d;k ( E ) ,whichcorrespondstothecocycle ( ;˝ ) 7! 8 > > > > < > > > > : 1 ( d p a ) d p a Z ˆ + ˝ ( d p a ) d p a Z ˆ > > > < > > > > : 1 ( d p a ) d p a Z ˆ + ˝ ( d p a ) d p a Z ˆ > > > < > > > > : d ( P ) d (0)if ( d p a ) d p a Z ˆ + ˝ ( d p a ) d p a Z ˆ d 1else ; whichcoincideswithwhatwecalculatedin( ).Thestatementfollows. 44 Proposition4.1.3. (ker( ))=0 : Proof. Recallthatker( )=Im( )andlet R 2 E ( k ).Bythepreviousproposition r ( R )= ( R )istrivial.Thusthealgebra ( R )isintheimageoftheBr( k ) ! Br( E ).Itremains toshowthatthespecializationof ( R )at0istrivial.Thecup-productcommuteswith specializationataclosedpoint[Bre97,Chapter2,8.2],i.e. [ T 0 ] [ [ T ] S = [ T 0 ] S [ ([ T ]) S forevery S 2 E ( k )andevery[ T 0 ] 2 H 1 et ( E;M ).Bydeof , ( ( R )) S = ( R ) [T S 2 Br( k ) forany S 2 E ( k ).Inparticular,( ( R )) 0 = ( R ) [T 0 .Thespecializationof T at0admits apoint(thepoint0)andisthereforethetrivialtorsor.Wededucethat( ( R )) 0 istrivial andthussois ( R ). Theorem4.1.4. Supposethatthe d -torsion M of E is k -rational.Fixtwogenerators P and Q of M .Let t P ;t Q 2 k ( E ) withdivisors div( t P )= d ( Q ) (0) and div( t Q )= d ( Q ) q (0) . Thenthe d -torsionof Br( E ) decomposesas d Br( E )= d Br( k ) I andeveryelementin I canberepresentedasatensorproduct ( a;t P ) d;k ( E ) b;t Q d;k ( E ) with a;b 2 k . Thisresultwaspreviouslyknownandwasprovedusingtmethodsforinstancein 45 [CRR16,Remark6.3]. Proof. Proposition4.1.2andproposition4.1.3implythat inducesthedesiredsplit.There- fore d Br( E )= d Br( k ) Im( ) : Thetheoremfollowsfromproposition4.1.1. 4.2 [ L : k ] iscoprimeto q Fromnowonlet q = d beanoddprimeanddroptheassumptionthat M is k -rational. ConsiderthenaturalGaloisrepresentation : G k ! Aut( M )= GL 2 ( F q ) : Denoteby L theofthekernelofThedegreeoftheGaloisextension L over k dividestheorderof GL 2 ( F q ),whichis( q +1) q ( q 1) 2 . Let T bethetorsorgivenbymultiplicationby d on E .Denotethegenericpointsof E and E Spec L by :Spec k ( E ) ! E and L :Spec L ( E ) ! E Spec L ,respectively. Considerthepull-back L ( T )of T to L ( E )andthepull-back k ( T )of T to k ( E ).By proposition3.1.1andproposition3.2.1weseeimmediatelythatres k ( T ) = L ( T ).By [NSW08,Ch.1,Proposition1.5.3(iii)and(iv)]andtheconstructionof ,thefollowing diagramcommutes H 1 ( k;M ) res / / k H 1 ( L;M ) cor / / L H 1 ( k;M ) k q Br( E ) res / / q Br( E L ) cor / / q Br( E ) : Throughoutthissection,weassumethat q doesnotdividetheorder[ L : k ].The 46 corestrictionmap cor: q Br( E L ) ! q Br( E ) issurjectiveandeveryelementin I canbewrittenascor( A )with A 2 q Br( E ).Wesummarize thisobservationinthefollowingtheorem. Theorem4.2.1. Let t P ;t Q 2 L ( E ) withdivisors div( t P )= q ( Q ) q (0) and div( t Q )= q ( Q ) q (0) .Thenthe q -torsionof Br( E ) decomposesas q Br( E )= q Br( k ) I andeveryelementin I canberepresentedasatensorproduct cor( a;t P ) q;L ( E ) cor b;t Q q;L ( E ) with a;b 2 L . Remark4.2.2. Notethatcorestrictionisingeneralnotinjective.Togetasmallersetof generators,observethatby[NSW08,Ch,1,Corollary1.5.7]theimageoftherestrictionmap H 1 ( k;M ) ! H 1 ( L;M ) coincideswiththeimageoftheNormmap N L=k : H 1 ( L;M ) ! H 1 ( L;M ) : NowbyKummertheory H 1 ( L;M ) ˘ = L = ( L ) q L = ( L ) q viatheisomorphism ˚ .Let g 2 G k and ( a;b ) 2 L = ( L ) q L = ( L ) q .Supposethat g 1 ( P )= c 1 P c 2 Q and 47 g 1 ( Q )= c 3 P c 4 Q .Theactionof g compatiblewith ˚ is g: ( a;b )= ˚ 1 g:˚ ( a;b ) = ˚ 1 0 B @ g: 0 B @ 7! ( q p a ) q p a ˆ P 2 4 q p b q p b 3 5 ˆ Q 1 C A 1 C A = g 1 ( a ) c 1 g 1 ( b ) c 3 ; g 1 ( a ) c 2 g 1 ( b ) c 4 : Nowtheimageoftherestrictionfollowedby ˚ coincideswiththeimageofthenormon L = ( L ) q L = ( L ) q undertheaboveaction. 4.3 [ L : k ] equals q Inthissection,weassumethat L isofdegree q over k .Afterrenaming P and Q wemay assumewithoutlossofgeneralitythatthereissome ˙ 2 G k suchthat ˙ ( Q )= P Q and ˙ generates G k =G L .Fixacosetrepresentative~ ˙ of ˙ in G k ( E ) (comparesection3.2).To avoidconfusion,wewilladdsubscriptstothemaps ;r ,and todenotetheirof Additionallydenoteaprimitiveelementfortheextension L=k by l . Considerthediagram 0 / / H 1 ( G k =G L ;M ) inf / / H 1 ( G k ;M ) res / / k H 1 ( G L ;M ) G k =G L L q Br( E ) res / / q Br( E k Spec L ) ; wheretherowistherestrictionexactsequence.Thediagramcommutesby 48 constructionof andsincetherestrictionmapandthecup-productcommute[NSW08,Ch. 1Proposition1.5.3(iii)].Wewilldescribetheimageofthemap,andthen exploretherestrictionafterwards.Wewillapplythefollowingtechnicallemmathroughout. Lemma4.3.1. P q 1 i =0 ˙ i ( R )=0 forevery R 2 M . Proof. Let R = mP nQ 2 M .Wecalculatedirectlythat q 1 X i =0 ˙ i ( mP nQ )= q 1 X i =0 ( mP inP nQ )= mqP q ( q 1) 2 nP nqQ =0 : 4.3.1TheImageoftheMap Lemma4.3.2. Thegroup H 1 ( G k =G L ;M ) iscyclicofrank q withgenerator f L dby f L ( ˙ )= Q . Proof. Lemma4.3.1impliesthat f L ( ˙ q )= P q 1 i =0 ˙ i f L ( ˙ )=0andthus f L acocycle. Since G k =G L iscyclicwithgenerator ˙ ,everyelement f in H 1 ( G k ;G L ;M )isdetermined by f ( ˙ ).Furthermore,if f ( ˙ )= mP nQ ,then f ( ˙ ) ˙ ( mP )= mP nQ mP = nQ = f b L ( ˙ ) : Thestatementfollows. Let Q 2 k ( E )with q Q = t Q .Consider n Q = Q q 1 i =0 ~ ˙ i Q .Notethat n Q is tobetheelementin k ( E )with n q Q = N L ( E ) =k ( E ) ( t Q ).Furthermore,notethatdiv n Q = P q 1 i =0 ˙ i ( Q ) (0) . 49 Proposition4.3.3. k (inf( f L )) istheinverseoftheBrauerclassofthesymbolalgebra l q ;n Q q;k ( E ) ; where Q 2 k ( E ) with q Q = t Q . Proof. Weshowthat Q q 1 i =0 ~ ˙ i Q 2 k ( E ).Let 2 G L ( E ) .Byourpreviouscalcula- tionsandwith x 0 and g Q asintheproofofproposition3.2.1,wededucethatthereissome R 2 M suchthat ( Q )= R:x 0 ( g Q ).Then 0 @ q 1 Y i =0 ~ ˙ i Q 1 A = 0 @ p 1 X i =0 ˙ i ( R ) 1 A :x 0 ( g Q )= Q (4.4) bylemma4.3.1.Now Q q 1 i =0 ~ ˙ i Q isobviouslyby~ ˙ andtherefore Q q 1 i =0 ~ ˙ i Q 2 k ( E ) : Let ;˝ 2 G k ( E ) anddenote = 0 ~ ˙ i ;˝ = ˝ 0 ~ ˙ j with 0 ;˝ 0 2 G L ( E ) .Thenby of weseethat k (inf( f L ))( ;˝ )=e 0 @ ( i 1) i 2 P iQ;˙ i 0 @ " ˝ 0 Q Q # ˆ P ˝ 0 ( P ) P ˆ Q 1 A 1 A =e 0 @ ( i 1) i 2 P iQ; " ˝ 0 Q Q ˝ 0 ( P ) P i # ˆ P ˝ 0 ( P ) P ˆ Q 1 A =e ( i 1) i 2 P; ˝ 0 ( P ) P ˆ Q ! e 0 @ iQ; " ˝ 0 Q Q ˝ 0 ( P ) P i # ˆ P 1 A = ˝ 0 ( P ) P ( i 1) i 2 ˝ 0 ( Q ) Q ! i ˝ 0 ( P ) P i 2 = ˝ 0 ( P ) P ( i +1) i 2 ˝ 0 ( Q ) Q ! i 50 Nowconsiderthemap g : G k ( E ) ! k ( E ) 7! 0 i 1 Y n =0 ~ ˙ n ( Q ) ! ; (4.5) where = 0 ~ ˙ i forsome 0 2 G L ( E ) .Thetialof g canbecalculatedasfollows:If i + j > > < > > > : 1 i + j > > > > > > > > > > > < > > > > > > > > > > > > : ˙ i P j m =0 ( ˙ m ( Q )) (0) P i + j m =0 ( ˙ m ( Q )) (0) + P i m =0 ( ˙ m ( Q )) (0) i + j > > < > > > : 1 i + j > > > > > > > > > > > < > > > > > > > > > > > > : (1 ; 1) R =0 t Q ( P ) ; t P ( P Q ) t P ( Q ) R = P t Q ( P Q ) t Q ( P ) ;t P ( Q ) R = Q t Q ( R ) ;t P ( R ) else TheproofofthispropositionisinspiredbyacomputationoftheKummerpairingin [Sil09,Ch.X,Theorem1.1]. Proof. Let R 2 E ( k ) =dE ( k ) nf 0 ;P;Q g andsome S 2 E ( k )with[ d ] S = R .Let t P ;t Q as aboveand g P ;g Q 2 k ( E )with g d P = t P [ d ]and g d Q = t Q [ d ].Sincethedivisorsof g P and g Q are G k -invariant,wemaychoose g P ;g Q 2 k ( E ).Bytheof ˚ weseethat for ˚ ( f )=( a;b )forsomecocycle H 1 ( k;M )meansthat e( f ( ) ;P )= d p b d p b ande( f ( ) ;Q )= d p a d p a : TheWeilpairing e( ( S ) S;P )= g P ( ( S ) S S ) g P ( S ) = g P ( ( S )) g P ( S ) = ( g P ( S )) g P ( S ) : Additionallybyof g P ,weseethat g P ( S ) d = t P [ d ]( S )= t P ( R ).Asimilarresult holdsfor Q aswell.Therefore ˚ 1 ( R )= t Q ( R ) ;t P ( R ) .Theotherresultsfollowby bilinearityoftheWeilpairing. 59 Summarizingtheseresults,weconcludetheorem1.0.5. Fromnowonassumethat d = q isanoddprimeand L isthesmallestGaloisextension of k sothat M is L -rational. 5.2 [ L : k ] iscoprimeto q Supposethroughoutthissectionthat q doesnotdividetheorder[ L : k ].Considerthe followingcommutativediagram E ( k ) = [ q ] E ( k ) res / / k E ( L ) = [ q ] E ( L ) cor / / L E ( k ) = [ q ] E ( k ) k H 1 ( k;M ) res / / H 1 ( L;M ) cor / / H 1 ( k;M ) ; wherethehorizontalcompositionscoincidewithmultiplicationby[ L : k ]andaretherefore isomorphisms.Thus,theimageof k isalsogivenbytheimageofthecomposition k cor= cor L .Usingthedescriptionoftheimageof L intheprevioussection,wededucethe followingresult. Proposition5.2.1. Supposethat [ L : k ] isnotdivisibleby q .Fixtwogenerators P and Q of M andandlet t P ;t Q 2 L ( E ) with div( t P )= q ( P ) q (0) and div( t Q )= q ( Q ) q (0) . Assumeadditionallythat t P [ q ] ;t Q [ q ] 2 L ( E ) d : Anelement cor( a;t P ) L ( E ) cor( b;t Q ) L ( E ) in I istrivialifandonlyifitissimilartooneofthefollowing 60 cor t Q ( P ) ;t P k ( E ) cor t P ( P Q ) t P ( Q ) ;t Q k ( E ) , cor t Q ( P Q ) t Q ( P ) ;t P k ( E ) cor t P ( Q ) ;t Q k ( E ) ; or cor t Q ( R ) ;t P k ( E ) cor t P ( R ) ;t Q k ( E ) forsome R 2 E ( k ) nf 0 ;P;Q g . Thefollowingobservationwillbeusefultocalculatethesecorestrictionsexplicitly.Con- siderthefollowingcommutativediagram E ( k ) / / k E ( L ) / / L E ( k ) / / k E ( L ) / / L E ( k ) k H 1 ( k;M ) res / / k H 1 ( L;M ) cor / / L H 1 ( k;M ) res / / k H 1 ( L;M ) cor / / L H 1 ( k;M ) k q Br E / / q Br E L / / q Br E / / q Br E L / / q Br E ; wherethecompositionofmorphismsalongarowgivemultiplicationby[ L : k ] 2 ,whichisan isomorphism.Furthermore,thecompositionres corcoincideswiththeNormmap[NSW08, Ch.1,Corollary1.5.7].Therefore,anelementin I istrivialifitliesintheimageofthe compositioncor L N L=k L res.Insection7.2,weseehowthisobservationcanbe appliedtothecalculationoftherelationsin I . 5.3 [ L : k ]= q Throughoutthissectionsupposethat[ L : k ]= q andsomegenerator ˙ ofGal( L=k ).Let P;Q 2 M sothat ˙ ( P )= P and ˙ ( Q )= P Q .Furthermore,let l 2 L with l q 2 k and L = k ( l ).Fix t P ;t Q 2 L ( E )withdiv( t P )= q ( P ) q (0)anddiv( t Q )= q ( Q ) q (0).Assume additionallythat t P [ q ] ;t Q [ q ] 2 L ( E ) d : Fix~ ˙ 2 ~ G L=k asinsection4.3.Furthermore, 61 let Q 2 k ( E )sothat q Q = t Q anddenote n Q = Q n 1 i =0 ~ ˙ i ( Q ). Considerthecommutativediagramwithexactrowsandcolumns 0 0 0 / / E ( k ) \ [ q ] E ( L ) [ q ] E ( k ) inf / / L=k E ( k ) = [ q ] E ( k ) res / / k E ( L ) = [ q ] E ( L ) L 0 / / H 1 (Gal( L=k ) ;M ) inf / / H 1 ( k;M ) res / / H 1 ( L;M ) ; where L=k isthemapinducedby k .Itisimmediatethat L=k isinjective.Recall that H 1 (Gal( L=k ) ;M )iscyclicoforder q withgenerator f L .Furthermore,wesawthat L (inf( f L ))= l q ;n Q k ( E ) (proposition4.3.3).Wededucethefollowingresult. Proposition5.3.1. TheBrauerclassof l q ;n Q k ( E ) istrivial,thatis,itisintheimageof themap Br( k ) ! Br( E ) ,ifandonlyifthequotient E ( k ) \ [ q ] E ( L ) [ q ] E ( k ) isnon-trivial. Recallthatbyproposition4.3.9anyelementintheimageof ˚ 1 res canbewritten as( a; 1)forsome a 2 k . Proposition5.3.2. TheBrauerclassof ( a;t P ) k ( E ) istrivialifandonlyifthereissome R 2 E ( k ) = [ q ] E ( k ) sothat ˚ 1 ( a; 1)= L ( R ) . 5.4 q divides [ L : k ] Supposethat q divides[ L : k ]andusethenotationusedinsection4.4.Recallthatevery elementin I canbewrittenascor( A )forsome A 2 q Br( E Spec( L 0 )).Suchanelementis trivialifandonlyifitissimilarto L 0 L 0 .Remarkthatsomecorestrictionsofelementsin 62 q Br( E L )maycoincideandwedonotaccountforthisinourdescription. 63 Chapter6 Conclusions{TheAlgorithm Inthischapter,wesummarizetheresultsfromthepreviouschaptersandassemblethe algorithmtocalculategeneratorsandrelationsoftheBrauergroup.Let k beaof characteristictfrom2or3andlet q beanoddprime.Assumethat q iscoprimeto thecharacteristicof k andthat k containsaprimitive q -throotofunity.Let E beanelliptic curveover k .Denoteby M the q torsionof E ( k ). TheBrauergroupof E decomposesas q Br( E )= q Br( k ) I andgenerators G andrelations R of I canbecalculatedusingthefollowingalgorithm. 1. DeterminethekernelofthenaturalGaloisrepresentation : G k ! End( M )= GL 2 F q : Denoteby L theofthiskernel. 2. (a) If q dividestheorderof L=k ,someintermediate L 0 sothat L=L 0 isa Galoisextensionofdegree q .Let P and Q beelementsin M sothatGal( L=L 0 ) 64 isgeneratedby ˙ with ˙ ( P )= P and ˙ ( Q )= P Q .Set G L 0 = n l q ;n Q L 0 ( E ) ; ( a;t P ) L 0 ( E ) : a 2 L o ; where t P 2 L 0 ( E )withdiv( t P )= q ( P ) q (0)and n Q 2 L 0 ( E )withdiv( n Q )= P q 1 i =0 ˙ i ( Q )= P q 1 i =0 ( iP + Q ) : Furthermore,let t Q 2 L ( E )withdiv( t Q )= q ( Q ) q (0)and n q Q = N L ( E ) =k ( E ) ( t Q ). (b) If q doesnotdividetheorderof L=k ,somegenerators P and Q of M .Set G L 0 = n ( a;t P ) L ( E ) ; b;t Q L ( E ) : a;b 2 L o ; where t P ;t Q 2 L ( E )withdiv( t P )= q ( P ) q (0)anddiv( t Q )= q ( Q ) q (0). 3. Set R L = 8 > > > > < > > > > : t Q ( P ) ;t P L ( E ) t P ( P Q ) t P ( Q ) ;t Q L ( E ) ; t Q ( P Q ) t Q ( P ) ;t P L ( E ) t P ( Q ) ;t Q L ( E ) 9 > > > > = > > > > ; [ n t Q ( R ) ;t P L ( E ) t P ( R ) ;t Q L ( E ) : R 2 E ( L ) nf P;Q g o : (a) If q dividestheorderof L=k ,let R L 0 ; res = n ( a;t P ) L 0 ( E ) :res( a;t P ) L 0 ( E ) 2R L o : 65 Further,ifthequotient E ( k ) \ [ q ] E ( L ) [ q ] E ( k ) isnottriviallet R L 0 ; inf = n l q ;n Q L 0 ( E ) o : Ifthequotientistrivial,let R L 0 ; inf = ; .Set R L 0 = R L 0 ; res [R L 0 ; inf : (b) If q doesnotdividetheorderof L=k ,let L = L 0 and R L 0 = R L . 4. Set G = cor( A ): A 2G L 0 and R = cor( A ): A 2R L 0 : Notethatthereareadditionalrelationsthatcomefromthefactthatthecorestrictionmap isnotinjective.Theserelationsneedamorecarefultreatment.Seeforexamplesection7.2. Adirectconsequenceofalgorithm7.2.2isthefollowing. Corollary6.0.1. Everyelementin I asabovecanbewrittenasatensorproductofatmost 2( q 1) 2 ( q +1) symbolalgebras. Remark6.0.2. Notethatweassumethatthecharacteristicof k isentform 2 or 3 for simplicityofthepresentationoftheellipticcurvesanditstorsionsubgroups.Thegeneral resultsstillholdincharacteristicequaltotwoandthree. 66 Chapter7 Examples Inthischapter,wecalculatethe q -torsionoftheBrauergroupforsomeellipticcurves E , where q isanoddprime.Forcomputationalreasons,weonlyconsiderthecase q =3.The algorithmdescribedinchapter6canbeusedtodetermine q Br( E )foranyoddprime q .As before,wewillconsidervariouscasesdependingontheextension L ,thatisthesmallest Galoisextensionof k ,sothat M is L -rational. 7.1 M is k -rationaloveranumber Let k = Q ( ! ) ˆ C ,where ! isaprimitivethirdrootofunity.In[Pal10]theauthordescribes afamilyofellipticcurvessuchthat M is Q ( ! )-rational,forexample E givenbythe equation y 2 = x 3 +16.Inthiscase,thethreetorsionof E isgeneratedby P =(0 ; 4)and Q =( 4 ; 8 ! +4)=( 4 ; 4 p 3 i ).Furthermore,thetangentlinesat P and Q ,respectively aregivenby t P = y 4and t Q = y 6 2 ! +1 ( x +4) 8 ! 4= y 4 p 3 ix 20 p 3 i: Bythepreviousdiscussion 3 Br( E )= 3 Br( k ) I andeveryelementin I canbewrittenasa tensorproduct ( a;y 4) 3 ;k ( E ) b;y 4 p 3 ix 20 p 3 i 3 ;k ( E ) (7.1) 67 forsome a;b 2 k : Wecalculatewiththemagmacodeintheappendix,that E ( k )= M andthereforealso E ( k ) = 3 E ( k )= M .Byourpreviouscalculationsontherelations,atensor productasineq.(7.1)istrivialifandonlyifitissimilartoanelementinthesubgroup generatedby 4 20 p 3 i;t P k ( E ) and 6 19 8 19 p 3 i;t P k ( E ) 4 p 3 i 4 ;t Q k ( E ) : 7.2Degree L=k coprimeto q for k anumber Weneedtodiscusscomputationalresultsforthecorestrictionofsymbolalgebras. Lemma7.2.1. Let K ˆ F beaextensionofover k .Then cor F=K ( a;b )= a;N F=K ( b ) forall a 2 K ;b 2 F . Proof. Seeforinstance[Ser79,page209]. Thefollowingalgorithmfrom[RT83,Section3]mayalsobeusedtocalculatethecore- strictionexplicitly.Forapolynomial p ( t )= a n t n + a n 1 t n 1 + + a m t m with a m a n 6 =0 p ( t )= p ( t ) a m t m and c ( p )=( 1) n a n . Algorithm7.2.2. Let K ˆ F beaextensionofover k andlet a;b 2 F . Let g ( t ) 2 K [ t ] betheminimalpolynomialof a over K and f ( t ) 2 K [ t ] isthepolynomial ofsmallestdegreesuchthat N F=K ( a ) ( b )= f ( a ) .asequence g 0 ;:::;g m ofnonzero 68 polynomialsbysetting g 0 = g;g 1 = f; andfor i 1 let g i +1 betheremainderofthedivision of g i 1 by g i aslongas g i 6 =0 .Then cor F=K ( a;b ) F = m X i = q c ( g i 1 ) ;c ( g i ) K : Let k = Q ( ! )and E theellipticcurvegivenbytheequation y 2 = x 3 + B; where B 2mod( Q ) 3 and B 1 ; 3mod( Q ) 2 .By[BP12,Theorem3.2andCorol- lary3.3]wegetthat L = k ( p B ).Let ˙ begivenby ˙ ( p B )= p B .Thethreetorsionof E hasgenerators P and Q with P =(0 ; p B )and Q = 3 p 4 B; p 3 B : Then ˙ ( P )=2 P and ˙ ( Q )=2 Q .Weneedtocalculate cor L ( E ) =k ( E ) ( a;t P ) L ( E ) ( b;t Q ) L ( E ) : Recallthatbyremark4.2.2,itwillbeenoughtoconsider( a;b )aNormin L = ( L ) 3 L = ( L ) 3 .For( a;b ) 2 L = ( L ) 3 L = ( L ) 3 wehave N L=k ( a;b )= a ˙ ( a ) ; b ˙ ( b ) ,or equivalentlywemayassumethat N L=k ( a )=1and N L=k ( b )=1and a;b 2 L n k .Note that t P = y p B and t Q = y 3 3 p 4 B 2 p 3 B x 3 p 3 B: Furthermore, p 3 2 k as ! 2 k and 3 p 16 B 2 2 k since B 2mod( Q ) 3 . 69 Let a = a 1 p B + a 2 with a 1 6 =0and N L=k ( a )=1.Wenowemployalgorithm7.2.2to calculatecor( a;t P ) L ( E ) .Inthenotationofalgorithm7.2.2,wecalculate g 0 =MinimalPolynomialof a over k =( t a 1 p B a 2 )( t + a 1 p B a 2 ) = t 2 2 a 2 t + a 2 2 Ba 2 1 = t 2 2 a 2 t + N L=k ( a ) = t 2 2 a 2 t +1 ; g 0 = t 2 2 a 2 t +1 ; g 1 = y a 2 t a 1 = 1 a 1 t + y a 2 a 1 g 1 = 1 a 1 y a 2 t +1 : Theelement g 2 istheremainderofthedivisionof g 0 by g 1 .Notethat a 1 t a 1 a 2 a 2 1 y g 1 = t 2 2 a 2 t + a 2 2 a 2 1 y 2 = g 0 1+ a 2 2 a 2 1 y 2 andtherefore g 2 =1 a 2 2 + a 2 1 y 2 =1 a 2 2 + a 2 1 x 3 + a 2 1 B =1 N L=k ( a )+ a 2 1 x 3 = a 2 1 x 3 : 70 Overall,thecorestrictionis cor( a;t P )= 1 ; 1 a 1 1 k ( E ) 1 a 2 a 1 y ;a 2 1 x 3 1 k ( E ) = a 2 a 1 y;a 2 1 x 3 k ( E ) = a 2 a 1 y;a 2 1 k ( E ) : Finally,let b = b 1 p B + b 2 with b 1 6 =0and N L=k ( b )=1.Usethenotationofalgo- rithm7.2.2tocalculatecor( b;t Q ) L ( E ) .Then g 0 = t 2 2 b 2 t +1 ; g 0 = t 2 2 b 2 t +1 ; g 1 = p 3 i b 1 ( x +1) t + y + p 3 ib 2 b 1 ( x +1) : Furthermore,notethat b 1 p 3 i ( x +1) t + b 1 b 2 p 3 i ( x +1) + yb 2 1 3( x +1) 2 ! g 1 = t 2 2 b 2 t + b 2 2 + b 2 1 3( x +1) 2 y 2 = g 0 1+ b 2 2 + b 2 1 3( x +1) 2 y 2 andtherefore g 2 =1 b 2 2 b 2 1 3( x +1) 2 y 2 =1 b 2 2 b 2 1 ( x 3 + B ) 3( x +1) 2 : 71 Wededucethat cor( b;t Q ) L ( E ) = 1 ; p 3 i b 1 ( x +1) ! 1 k ( E ) 0 B @ p 3 i b 1 ( x +1) y + p 3 ib 2 b 1 ( x +1) ; 1 b 2 2 b 2 1 ( x 3 + B ) 3( x +1) 2 1 C A 1 k ( E ) = yb 1 p 3 i ( x +1) + b 2 ; 1 b 2 2 b 2 1 ( x 3 + B ) 3( x +1) 2 ! k ( E ) : Overall,the3-torsionoftheBrauergroupdecomposesasfollows. Proposition7.2.3. Let k = Q ( ! ) andlet E beanellipticcurvegivenby y 2 = x 3 + B; where B 2mod( Q ) 3 and B 1 ; 3mod( Q ) 2 .Thenthe 3 -torsionoftheBrauer groupdecomposesas 3 Br( E )= 3 Br( k ) I andeveryelementin I canbewrittenasatensorproduct a 2 a 1 y;a 2 1 k ( E ) yb 1 p 3 i ( x +1) + b 2 ; 1 b 2 2 b 2 1 ( x 3 + B ) 3( x +1) 2 ! k ( E ) forsome a 1 ;a 2 ;b 1 ;b 2 2 k with a 1 ;b 1 6 =0 ,and a 2 2 Ba 2 1 = b 2 2 Bb 2 1 =1 . Tocalculatetherelationsweneedtospecify B .Weconsiderthecase B = 1024. Usingthecodeintheappendix,wecalculatethat E ( k )=0.Thustherearenoadditional relations.Notethatsomeelementsmightstillbecometrivialduetothefactthatthecore- strictionmapisnotsurjective. Considerthecase B =2.Weusethecodeintheappendixtoseethat E ( k ) ˘ = Z 2 with generators R =( !; 1)= 1 2 p 3 2 ; 1 and S =( 1 ; 1).Inthiscase P =(0 ; p 2) ;Q = ( 2 ; p 3 p 2) ;t P = y p 2 ; and t Q = y + p 3 p 2 x + p 3 p 2 : Thereforebyadirect 72 computation t P ( R )=1 p 2 ; t P ( R ) ˙ ( t P ( R )) =2 p 2 3 ; t Q ( R )=1+ 3 2 p 3 p 2+ 3 2 p 2 ; t Q ( R ) ˙ ( t Q ( R )) 51+57 i p 3 p 2 323+18 i p 3 ; t P ( S )= 1 p 2 ; t P ( S ) ˙ ( t P ( S )) = 2 p 2 3 ; t Q ( S )= 1 ; t Q ( S ) ˙ ( t Q ( S )) =1 : Considerthefollowingcommutativediagram E ( k ) / / k E ( L ) / / L E ( k ) / / k E ( L ) / / L E ( k ) k H 1 ( k;M ) res / / k H 1 ( L;M ) cor / / L H 1 ( k;M ) res / / k H 1 ( L;M ) cor / / L H 1 ( k;M ) k 3 Br E / / 3 Br E L / / 3 Br E / / 3 Br E L / / 3 Br E ; wheretherowscomposetomultiplicationby4,whichistheidentityonthreetorsion.An elementin I istrivialifitissimilartoanelementinthesubgroupgeneratedby k k ( R ) and k k ( S ).Finally, k k ( R )=cor L N L ( E ) =k ( E ) L res( R ) 73 andthereforebyourpreviouscalculationsoftheNormmapandcorestriction,wegetthat k k ( R )=cor t Q ( R ) ˙ ( t Q ( R )) ;t P L ( E ) cor t P ( R ) ˙ ( t P ( R )) ;t Q L ( E ) = 323+18 i p 3 51+57 i p 3 y; 51+57 i p 3 2 k ( E ) 2 y p 3 i ( x +1) 3 ; 8 4( x 3 +2) 3( x +1) 2 k ( E ) andsimilarly k k ( S )=cor t P ( S ) ˙ ( t P ( S )) ;t Q L ( E ) = 2 y p 3 i ( x +1) 3 ; 8 4( x 3 +2) 3( x +1) 2 k ( E ) : 7.3Degree L=k = q for k anumber Let k = Q ( ! ), ! = 1 2 + i p 3 2 andlet E betheellipticcurvegivenbytheequation y 2 = x 3 +4 : Thenthethirddivisionpolynomialis 3 ( x )=3 x 4 +48.Weusethistocalculatethat generatorsofthethreetorsionaregivenby P =(0 ; 2)and Q =( 2 3 p 2 ; 2 i p 3).Let l = 3 p 2. Inourpreviousnotation L = k 3 p 2 andtheGaloisgroupGal( L=k )isgeneratedby ˙ with 74 ˙ ( Q )= P + Q =( ! 2 3 p 2 ; 2 i p 3).Itcanbeseenthat t P = y 2 t Q = y + i p 3 3 p 4 x +2 i p 3 Usingchapter6ortheorem4.3.10wededucethattheBrauergroup 3 Br( E )= 3 Br( k ) I and I isgeneratedby ˆ l 3 ;n Q k ( E ) ; ( a;t P ) k ( E ) : a 2 k : ˙ Wewillnowdetermine n Q explicitly.Notethatthelinethrough Q and P + Q hasdivisor Q +( P Q )+(2 P Q ).Furthermore,astraightforwardcalculationshowsthat ( y 2 p 3 i ) 3 = y 3 6 p 3 iy 2 36 y +24 p 3 i = y 3 +6 p 3 iy 2 36 y 24 p 3 i 12 p 3 i y 2 4 = y 3 +6 p 3 iy 2 36 y 24 p 3 i 12 p 3 ix 3 = y +2 p 3 i 3 +4 i p 3 x 3 = N L ( E ) =k ( E ) ( t Q ) Wesummarizeourcalculationsinthefollowingproposition. Proposition7.3.1. Let k = Q ( ! ) , ! = 1 2 + i p 3 2 andlet E betheellipticcurvegivenby theequation y 2 = x 3 +4 : ThentheBrauergroupdecomposesas 3 Br( E )= 3 Br( k ) I 75 andeveryelementin I canbewrittenasatensorproductofthesymbolalgebras 2 ;y 2 p 3 i 3 ;k ( E ) and ( a;y 2) 3 ;k ( E ) forsome a 2 k . Wecalculatewithmagma,that E ( k )= h P i and E ( L ) ˘ = Z = 6 Z Z = 6 Z .Therefore E ( k ) = 3 E ( k )= h P i and E ( L ) = 3 E ( L )= M andthequotient E ( k ) \ [3] E ( L ) [3] E ( k ) istrivial.Therefore thesymbolalgebra 2 ;y 2 p 3 i k ( E ) isnottrivial. Finally, res( P )= 2+ i p 3 ;y 2 L ( E ) andthereforeasymbolalgebra( a;y 2) k ( E ) istrivialifandonlyifitissimilartooneofthefollowing ˆ (1 ; 1) k ( E ) ; 2+ i p 3 ;y 2 k ( E ) ; 8+8 i p 3 ;y 2 k ( E ) ˙ 7.4Positiverankoveranumber Let ! beaprimitivethirdrootofunityin C ,i.e. ! = 1 2 + i p 3 2 .Set k = Q ( ! )andlet E betheellipticcurvebytheequation y 2 = x 3 48 : Thethirddivisionpolynomialassociatedto E is 3 ( x )=3 x 3 576 x =3 x 3 2 6 3 2 x: 76 Wecalculatedirectlythatthethreetorsion M of E ( k )isgeneratedby P =(0 ; 8 ! +4)= 0 ; 4 i p 3 and Q = 4 3 p 3 ; 12 .Furthermore,weseebydirectcomputationthat P Q = ! 2 4 3 p 3 ; 12 .Nowusingthecodeintheappendixwecalculatethat E ( k ) ˘ = Z 2 Z = 3 Z and E ( L ) ˘ = Z 2 Z = 3 Z Z = 3 Z .Furthermore,generatorsof E ( L )are 8 > > < > > : P;Q;R =( 4 ! 4 ; 4)= 2 i p 3 ; 4 ; S = ( ! +1) 3 p 3 2 + ! 3 p 3+3 ; ( ! 1) 3 p 3 2 +(3 ! +6) 3 p 3+6 ! +3 9 > > = > > ; Weconcludethatthequotient E ( k ) \ [3] E ( L ) [3] E ( L ) isnontrivial.Finally,thepolynomials t P and t Q are t P = y 8 ! 4= y 4 i p 3 t Q = y 1 6 3 p 3 2 x 12 2 3 ByouralgorithmthethreetorsionoftheBrauergroupdecomposesas 3 Br( E )= 3 Br k I andeveryelementin I canbewrittenasa( a;t P ) k ( E ) with a 2 k .Furthermore,an elementin I istrivialifandonlyifitsrestrictionto L issimilartoanelementinthe 77 subgroupgeneratedby 8 > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > : 4 i p 3 12 2 3 ;t P L ( E ) ; 1 134 5 9 i p 3 ;t P L ( E ) 12 4 i p 3 ;t Q L ( E ) ; p 3 i 3 3 p 3 2 16 2 3 ;t P ! L ( E ) 4 4 i p 3 ;t Q L ( E ) ; ( ! 3) 3 p 3 2 +( ! +4) 3 p 3+ 11 2 ! 20 3 ;t P L ( E ) ( ! 1) 3 p 3 2 +(3 ! +6) 3 p 3 2 ! 1 ;t Q L ( E ) 9 > > > > > > > > > > > > > > > = > > > > > > > > > > > > > > > ; 7.5Overalocal Denoteby Q 7 the7-adicItiseasytoseethatthe Q 7 containsaprimitivethird rootofunity ! .Let E betheellipticcurve E : y 2 = x 3 +16 over k .Considerthereduction ~ E of E modulo7.Then ~ E isanon-singularcurveandusing thecodeintheappendixweseethat ~ E ( F 7 )= Z = 3 Z Z = 3 Z = f 0 ; (0 ; 3) ; (0 ; 4) ; (3 ; 1) ; (3 ; 6) ; (5 ; 1) ; (5 ; 6) ; (6 ; 1) ; (6 ; 6) g : Denoteby ^ E theformalgroupassociatedto E andconsiderthegroup ^ E (7 Z 7 ).By[Sil09,IV Theorem6.4],thereisanisomorphism ^ E (7 Z 7 ) ! ^ G a (7 Z 7 ),where G a denotestheadditive group.By[Sil09,IV.3andVII.2]thereisanexactsequence 0 / / ^ G a (7 Z 7 ) / / E ( Q 7 ) / / ~ E ( F 7 ) / / 0 : 78 Furthermore,by[Sil09,VII.3Proposition3.1]thereductionmap 3 E ( Q 7 ) ! ~ E ( F 7 )isin- jective.Thus E has k -rational3-torsion.Since3isaunitin Z 7 wefurtherdeducethat E ( Q 7 ) = [3] E ( Q 7 )= ~ E ( F ) = [3] ~ E ( F )= M: Finally, Q 7 = Q 7 3 ˘ = Z 7 (7 Z 7 ) = Z 7 (7 Z 7 ) 3 ˘ = Z = 3 Z Z = 3 Z : Therefore, H 1 ( k;M ) ˘ = Q 7 = Q 7 3 2 ˘ = ( Z = 3 Z ) 4 .Bythealgorithmandusing[Gro68b, Corollaire2.3],the3-torsionoftheBrauergroupdecomposesasfollows 3 Br( E ) ˘ = 3 Br( Q 7 ) ( Z = 3 Z ) 2 = 3 ( Q = Z ) ( Z = 3 Z ) 2 =( Z = 3 Z ) 3 : Remark7.5.1. Theabovecomputationsalsoshowthat 3 Br ~ E = 3 Br( F 7 )=0 . 7.6Overa Let k = F 5 ( ! )betheextensionofthewitheelementsgivenbyattachingathird rootofunity ! .Let E betheellipticcurvegivenbytheequation y 2 = x 3 +1 : Thethreetorsionof E ( k )isalso k -rationalwithgenerators P =(0 ; 4)and Q =(1 ; 3 ! +4). Furthermore,weusethecodeintheappendixtocalculatethat E ( k ) ˘ = Z = 6 Z Z = 6 Z .A directcalculationgivesthat( k ) 3 = F 5 [ (1+2 ! ) F 5 Therefore,thequotient k = ( k ) 3 isisomorphicto Z = 3 Z withdistinctrepresentatives f 1 ;!;! +1 g .Weconcludethat is surjective,andtherefore 3 Br( E )= 3 Br( k ).Since F 5 isa C 1 andextensionsof 79 C 1 are C 1 aswell[GS17,Lemma6.2.4,page161],wededucethatBr( k )=1and 3 Br( E )istrivial. 7.7Degree [ L : k ] divisibleby q Let k = Q ( ! ),where ! isaprimitivethirdrootofunity.Considertheellipticcurve E given bytheequation y 2 = x 3 + x +1 : Thethreetorsion M of E ( k )isgeneratedby P =( x 1 ;y 1 )and Q =( x 2 ;y 2 )with x 1 = 1 2 v u u u t 3 p 8 3 8 p 3 q 3 p 4 + q 3 p 4 2 p 3 ; x 2 = 1 2 v u u u t 3 p 8 3 8 p 3 q 3 p 4 + q 3 p 4 2 p 3 ; y 1 = q x 3 1 + x 1 +1 ; y 2 = q x 3 2 + x 2 +1 where= 496isthediscriminantof E (see[Pal10,Section3]).Denote P + Q =( x 3 ;y 3 ) and2 P + Q =( x 4 ;y 4 ).By[Pal10,Theorem4.1(1)],the L is k ( x 1 ;x 2 ;y 1 )= k ( x 2 x 1 ;y 1 )andtheGaloisgroupof L over k isisomorphicto SL 2 ( F 3 ).Considerthe subgroup P generatedby 0 B @ 11 01 1 C A anddenoteitsby L 0 .Bytheproofofthe primitiveelementtheorem,anelement l 2 L with l 3 2 L 0 and L = L 0 ( l )is l = x 2 + !x 3 + ! 2 x 4 : 80 Aswehaveseenbefore, n Q isgivenbytheequationofthelinethrough Q and P + Q ,that is n Q = y y 2 y 3 y 2 x 3 x 2 ( x x 2 ) : Bythemainalgorithmwededucethat 3 Br( E )= 3 Br( k ) I andeveryelementin I canbewrittenasatensorproduct cor L 0 ( E ) =k ( E ) x 2 + !x 3 + ! 2 x 4 3 j ;y y 2 y 3 y 2 x 3 x 2 ( x x 2 ) L 0 ( E ) cor L 0 ( E ) =k ( E ) a;y y 1 3 x 2 1 +1 2 y 1 ( x x 1 ) ! L 0 ( E ) forsome a 2 L 0 andsome j 2f 0 ; 1 ; 2 g .Itremainstocalculatecor L 0 ( E ) ;k ( E ) ofthesealgebras, whichcanbecomputedforspvaluesof a and j usingalgorithm7.2.2.Wecantherefore writeeveryelementin I asatensorproductofatmost16symbolalgebrasover k ( E ). 81 APPENDIX 82 Appendix MagmaCode Thisappendixcontainsthemagma-codeusedinchapter7. Codeforsection7.1 K:=CyclotomicField(3); E:=EllipticCurve([L|0,16]); AbelianGroup(E); Generators(E); Codeforsection7.2 Thisisthecodefor B = 1024: K:=CyclotomicField(3); E:=EllipticCurve([L|0,-1024]); AbelianGroup(E); Thisisthecodefor B =2: K:=CyclotomicField(3); E:=EllipticCurve([L|0,2]); 83 AbelianGroup(E); Generators(E); Codeforsection7.3 Wecalculatethe k -rationalpointsof E byusing: K:=CyclotomicField(3); E:=EllipticCurve([L|0,4]); AbelianGroup(E); Generators(E); Nowwecalculatethe L -rationalpointsof E with: K:=CyclotomicField(3); R:=PolynomialRing(K); f:=y^2-2; L:=ext; E:=EllipticCurve([L|0,4]); Generators(E); Codeforsection7.4 K:=CyclotomicField(3); E:=EllipticCurve([K|0,-48]); AbelianGroup(E); Generators(E); 84 R:=PolynomialRing(K); f:=y^3-3; L:=ext; E:=EllipticCurve([L|0,-48]); AbelianGroup(E); Generators(E); Codeforsection7.5 F:=FiniteField(7); E:=EllipticCurve([F|0,16]); AbelianGroup(E); Points(E); Codeforsection7.6 F:=FiniteField(5); R:=PolynomialRing(F); f:=w^2+w+1; L:=ext; E:=EllipticCurve([L|0,1]); AbelianGroup(E); Points(E); 85 BIBLIOGRAPHY 86 BIBLIOGRAPHY [AG60] MauriceAuslanderandOscarGoldman.TheBrauergroupofacommutativering. Trans.Amer.Math.Soc. ,97:367{409,1960. [AM72] M.ArtinandD.Mumford.Someelementaryexamplesofunirationalvarietieswhich arenotrational. Proc.LondonMath.Soc.(3) ,25:75{95,1972. [BNH32] R.Brauer,E.Noether,andH.Hasse.BeweiseinesHauptsatzesinderTheorieder Algebren. J.ReineAngew.Math. ,167:399{404,1932. [BP12] AndreaBandiniandLauraPaladino.Numbergeneratedbythe3-torsionpoints ofanellipticcurve. Monatsh.Math. ,168(2):157{181,2012. [Bre97] GlenE.Bredon. Sheaftheory ,volume170of GraduateTextsinMathematics . Springer-Verlag,NewYork,secondedition,1997. [CG01] V.ChernousovandV.Guletski2-torsionoftheBrauergroupofanellipticcurve: generatorsandrelations.In ProceedingsoftheConferenceonQuadraticFormsand RelatedTopics(BatonRouge,LA,2001) ,pages85{120,2001. [CRR16] VladimirI.Chernousov,AndreiS.Rapinchuk,andIgorA.Rapinchuk.Onthesize ofthegenusofadivisionalgebra. Tr.Mat.Inst.Steklova ,292(Algebra,Geometriya iTeoriyaChisel):69{99,2016.ReprintedinProc.SteklovInst.Math. 2 92(2016), no.1,63{93. [CTS87] Jean-LouisColliot-TheleneandJean-JacquesSansuc.Ladescentesurlesvarietes rationnelles.II. DukeMath.J. ,54(2):375{492,1987. [CTS07] Jean-LouisColliot-TheleneandJean-JacquesSansuc.Therationalityproblemfor ofinvariantsunderlinearalgebraicgroups(withspecialregardstotheBrauer group).In Algebraicgroupsandhomogeneousspaces ,volume19of TataInst.Fund. Res.Stud.Math. ,pages113{186.TataInst.Fund.Res.,Mumbai,2007. [CV15] BrendanCreutzandBiancaViray.TwotorsionintheBrauergroupofahyperelliptic curve. ManuscriptaMath. ,147(1-2):139{167,2015. [dJ] A.J.deJong.AresultofGabber.http://www.math.columbia.edu/dejong/papers/2- gabber.pdf. [Fad56] D.K.Faddeev.Simplealgebrasoveraofalgebraicfunctionsofonevariable. Amer.Math.Soc.Transl.(2) ,3:15{38,1956. [FSS79] BurtonFein,MurraySchacher,andJackSonn.Brauergroupsofrationalfunction Bull.Amer.Math.Soc.(N.S.) ,1(5):766{768,1979. 87 [Gro68a] AlexanderGrothendieck.LegroupedeBrauer.II.Theoriecohomologique.In Dix exposessurlacohomologiedesschemas ,volume3of Adv.Stud.PureMath. ,pages 67{87.North-Holland,Amsterdam,1968. [Gro68b] AlexanderGrothendieck.LegroupedeBrauer.III.Exemplesetcomplements.In Dixexposessurlacohomologiedesschemas ,volume3of Adv.Stud.PureMath. , pages88{188.North-Holland,Amsterdam,1968. [GS17] PhilippeGilleandTasSzamuely. CentralsimplealgebrasandGaloiscohomology , volume165of CambridgeStudiesinAdvancedMathematics .CambridgeUniversity Press,Cambridge,2017.Secondeditionof[MR2266528]. [Har77] RobinHartshorne. Algebraicgeometry .Springer-Verlag,NewYork-Heidelberg,1977. GraduateTextsinMathematics,No.52. [Lan78] SergeLang. Ellipticcurves:Diophantineanalysis ,volume231of Grundlehrender MathematischenWissenschaften[FundamentalPrinciplesofMathematicalSciences] . Springer-Verlag,Berlin-NewYork,1978. [Lic69] StephenLichtenbaum.Dualitytheoremsforcurvesover p -adic Invent.Math. , 7:120{136,1969. [Man71] Y.I.Manin.LegroupedeBrauer-Grothendieckengeometriediophantienne.In ActesduCongresInternationaldesMathematiciens(Nice,1970),Tome1 ,pages 401{411.Gauthier-Villars,Paris,1971. [Mer86] A.S.Merkurjev. K 2 ofandtheBrauergroup.In Applicationsofalgebraic K - theorytoalgebraicgeometryandnumbertheory,PartI,II(Boulder,Colo.,1983) , volume55of Contemp.Math. ,pages529{546.Amer.Math.Soc.,Providence,RI, 1986. [Mil80] JamesS.Milne. Etalecohomology ,volume33of PrincetonMathematicalSeries . PrincetonUniversityPress,Princeton,N.J.,1980. [Mil04] VictorS.Miller.TheWeilpairing,anditstcalculation. J.Cryptology , 17(4):235{261,2004. [MS82] A.S.MerkurjevandA.A.Suslin. K -cohomologyofSeveri-Brauervarietiesandthe normresiduehomomorphism. Izv.Akad.NaukSSSRSer.Mat. ,46(5):1011{1046, 1135{1136,1982. [NSW08] JurgenNeukirch,AlexanderSchmidt,andKayWingberg. Cohomologyofnumber ,volume323of GrundlehrenderMathematischenWissenschaften[Fundamental PrinciplesofMathematicalSciences] .Springer-Verlag,Berlin,secondedition,2008. [Pal10] LauraPaladino.Ellipticcurveswith Q ( E [3])= Q ( 3 )andcounterexamplestolocal- globaldivisibilityby9. J.Theor.NombresBordeaux ,22(1):139{160,2010. 88 [Rei03] I.Reiner. Maximalorders ,volume28of LondonMathematicalSocietyMonographs. NewSeries .TheClarendonPress,OxfordUniversityPress,Oxford,2003.Corrected reprintofthe1975original,WithaforewordbyM.J.Taylor. [RT83] ShmuelRossetandJohnTate.Areciprocitylawfor K 2 -traces. Comment.Math. Helv. ,58(1):38{47,1983. [Sal99] DavidJ.Saltman. Lecturesondivisionalgebras ,volume94of CBMSRegionalCon- ferenceSeriesinMathematics .PublishedbyAmericanMathematicalSociety,Provi- dence,RI;onbehalfofConferenceBoardoftheMathematicalSciences,Washington, DC,1999. [Ser79] Jean-PierreSerre. Local ,volume67of GraduateTextsinMathematics . Springer-Verlag,NewYork-Berlin,1979.TranslatedfromtheFrenchbyMarvin JayGreenberg. [Sil09] JosephH.Silverman. Thearithmeticofellipticcurves ,volume106of GraduateTexts inMathematics .Springer,Dordrecht,secondedition,2009. [Sko99] AlexeiN.Skorobogatov.BeyondtheManinobstruction. Invent.Math. ,135(2):399{ 424,1999. [Sko01] AlexeiSkorobogatov. Torsorsandrationalpoints ,volume144of CambridgeTracts inMathematics .CambridgeUniversityPress,Cambridge,2001. [Sta19] TheStacksProjectAuthors. StacksProject .https://stacks.math.columbia.edu, 2019. [Wei94] CharlesA.Weibel. Anintroductiontohomologicalalgebra ,volume38of Cambridge StudiesinAdvancedMathematics .CambridgeUniversityPress,Cambridge,1994. 89