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ABSTRACT

PRIME TORSION IN THE BRAUER GROUP OF AN ELLIPTIC CURVE

By

Charlotte Ure

The Brauer group is an invariant in algebraic geometry and number theory, that can be

associated to a field, variety, or scheme. Let k be a field of characteristic different from 2 or

3, and let E be an elliptic curve over k. The Brauer group of E is a torsion abelian group

with elements given by Morita equivalence classes of central simple algebras over the function

field k(E). The Merkurjev-Suslin theorem implies that any such element can be described

by a tensor product of symbol algebras. We give a description of elements in the d-torsion

of the Brauer group of E in terms of these tensor products, provided that the d-torsion of

E is k-rational and k contains a primitive d-th root of unity. Furthermore, if d = q is a

prime, we give an algorithm to compute the q-torsion of the Brauer group over any field k

of characteristic different from 2,3, and q containing a primitive q-th root of unity.



To my family.

iii



ACKNOWLEDGMENTS

These past six years of graduate school have been an incredible experience for me. I am

still amazed to see how much I have grown both personally and academically with the

encouragement and support I received from the people I encountered.

First and foremost, I would like to thank my advisor Rajesh Kulkarni, without whom

this thesis would not exist in this form. Thank you for always having an open door and for

guiding me throughout this process. Thank you for letting me struggle when I needed to,

but especially for encouraging me when I wanted to surrender. Thank you for being not only

my advisor and mentor, but also becoming a good friend.

The faculty and staff at Michigan State University have been a constant source of support

over the years. I wouldn’t have come to Michigan State University without Casim Abbas

who originally made me aware of the program. My study was partially supported by the

Studienstiftung des Deutschen Volkes. At Michigan State University, I am especially grateful

for the work of my committee members: Igor Rapinchuk, Michael Shapiro, Aaron Levin, and

George Pappas.

I have encountered numerous wonderful people without whom the days in Wells Hall

would have been very dull. Thank you Reshma and Hitesh for countless conversations.
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KEY TO SYMBOLS

d, q d integer ≥ 2, q is an odd prime

k base field of characteristic different from 2 or 3, coprime to d, q

ρ primitive d-th or q-th root of unity in k

F a separable closure of the field F

GF the absolute Galois group of the field F

E an elliptic curve over k

⊕,	 denote the point addition and subtraction on E

[d], [q] multiplication by d or q map on E(k)

M d-torsion or q-torsion of E(k)

e(., .) the Weil pairing on M , section 2.1.3

P,Q generators of M with e(P,Q) = ρ

k(E) Function field of E

Hi(F,A) the i-th group cohomology of GF with coefficients in the GF -module A,
section 2.2

res the restriction map, example 2.2.3

cor the corestriction map, example 2.2.6

inf the inflation map, example 2.2.4

[.]ρ for ρi ∈ µd, let
[
ρi
]
ρ = i ∈ Z/dZ.

[.]Zρ for ρi ∈ µd, let
[
ρi
]Z
ρ = i ∈ {0, . . . , d− 1} ⊂ Z.
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Chapter 1

Introduction

The Brauer group is an important invariant associated with a field, ring, variety, or a scheme

in general. Over a field, its elements are given by Morita equivalence classes of central sim-

ple algebras. First introduced by Brauer in the 1920’s, the Brauer groups of global fields

were completely described by Albert, Brauer, Hasse, and Noether [BNH32]. The Brauer

groups of purely transcendental extensions of global fields are easier to understand. They

were calculated by the authors in [FSS79]. They deduce that all rational function fields over

a fixed global field have isomorphic Brauer groups, independently of their transcendence

degree. The definition of a Brauer group was generalized to commutative rings by Auslan-

der and Goldman [AG60]. In the 1960’s, Grothendieck described a version of the Brauer

group of a scheme using étale cohomology [Gro68a]. It is defined to be H2
ét(X,Gm), where

Gm is the sheaf of multiplicative units of the ring of regular functions on X. The Brauer

group also has an algebraic incarnation that we denote by Br(X). Its elements are Morita

equivalence classes of sheaves of Azumaya algebras. These are sheaves of OX -algebras that

are étale locally isomorphic to matrix algebras. This realization describes the Brauer group

as a torsion abelian group. If a scheme X admits an ample invertible sheaf, the torsion of

the cohomological Brauer group coincides with the group of equivalence classes of Azumaya

algebras [dJ]. Elements in the Brauer group may also be thought of as transcendental cycles

– complements to algebraic cycles. We are interested in Br(E) for E an elliptic curve.

1



The Brauer group has proven useful in studying geometric properties of varieties. For exam-

ple, Artin and Mumford utilized it to give a negative answer to the Lüroth problem in dimen-

sion three. They constructed unirational varieties that are not rational using Brauer classes

over the function field of the projective space P2 [AM72]. The Brauer group can also detect

arithmetic properties of the underlying variety. Manin defined an obstruction lying in the

Brauer group that measures the failure of the Hasse principle for varieties [Man71, Sko01].

Using geometric constructions of Brauer classes, Viray and Creutz described the Brauer-

Manin obstruction explicitly in the case of hyperelliptic curves. Using this, they constructed

an infinite family of abelian surfaces over Q with nontrivial Tate-Shafarevich group [CV15].

Throughout this note, let k be a field of characteristic different from 2 and 3 and let E be

an elliptic curve over k. We will explore the Brauer group of E. First, recall that the Brauer

group of E is a torsion abelian group and therefore it will be enough to describe the torsion

dBr(E), where d ≥ 2 is a prime power. The Brauer group of E is naturally isomorphic to

the unramified Brauer group of the function field k(E) (section 2.2.6 and [CTS07, Theorem

5.11]). Furthermore, Merkurjev and Suslin relate the second Milnor K2 with the Brauer

group in the following theorem from [MS82] and [Mer86].

Theorem 1.0.1 (Merkurjev-Suslin). Let F be a field and let d ≥ 2 be an integer. Assume

additionally that F contains a primitive d-th root of unity ρ. There is an isomorphism

K2(F )/dK2(F )→ dBr(F )
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that takes a symbol {a, b} to the symbol algebra

(a, b)d,F = (a, b)d,F,ρ = F
〈
x, y : xd = a, yd = b, xy = ρyx

〉
.

We apply this theorem to the case F = k(E) and deduce that every element in the Brauer

group of k(E) can be written as a tensor product of symbol algebras over k(E). Our main

goal is the following.

Goal 1.0.2. Let k be a field of characteristic different from 2 and 3. Fix an elliptic curve E

over k. Let d ≥ 2 be an integer coprime to the characteristic of k and assume additionally

that k contains a primitive d-th root of unity. Describe generators and relations of dBr(E)

as tensor product of symbol algebras over the function field k(E).

Such a description is available for certain integers d and fields k. In [CG01], Chernousov

and Guletskĭı describe generators and relations of 2Br(E) for any elliptic curve over any field

of characteristic different from 2. In particular, they prove the following theorem [CG01,

Theorem 3.6].

Theorem 1.0.3. Let k be a field of characteristic different from 2 and let E be an elliptic

curve over k defined by the affine equation

y2 = (x− a)(x− b)(x− c)

with a, b, c ∈ k. Then 2Br(E) = 2Br(k) ⊕ I and every element in I can be presented by a

tensor product (r, x − b)2,k(E) ⊗ (s, x − c)2,k(E) of quaternion algebras with r, s ∈ k×. Any

such algebra is trivial in I if and only if it is similar to one of the following
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• (u− c, x− b)2,k(E)⊗ (u− b, x− c)2,k(E), where u is the x-coordinate of a point in E(k)

such that u− b 6= 0 and u− c 6= 0,

• (b− c, x− b)2,k(E) ⊗ ((b− c)(b− a), x− c)2,k(E), or

• ((c− a)(c− b), x− b)2,k(E) ⊗ (c− b, x− c)2,k(E).

Chernousov and Guletskĭı further describe 2Br(E) if the affine equation y2 = f(x) for E

has one or no roots over k. Note that the two torsion of E(k) is k-rational if and only if f(x)

admits three roots in k. The authors in [CRR16, Section 6] give generators of the d-torsion

of the Brauer group of the Jacobian of a curve using a different method. They prove the

following theorem.

Theorem 1.0.4. Let C be a smooth projective geometrically irreducible curve of genus g

over a field k. Let d ≥ 2 be an integer coprime to the characteristic of k and suppose that k

contains a primitive d-th root of unity. Denote the Jacobian of C by J . Suppose that dJ(k)

is k-rational. Fix a basis P1, . . . P2g of dJ(k) ∼= (Z/dZ)2g. Pick a divisor P̂i representing Pi

and let tPi ∈ k(C) be the element with divisor dP̂i. Then

dBr(k(C))ur = dBr(k)⊕ I

and every element in I can be written as a tensor product

(
a1, t

m1
P1

)
d,k(C)

⊗ · · · ⊗
(
a2g, t

m2g
P2g

)
d,k(c)

,

for some a1, . . . , a2g ∈ k× and some integers m1, . . . ,m2g.
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In this thesis, we will give a description of dBr(E) in the following cases:

1. Any d coprime to the characteristic of k, assuming that k contains a primitive d-th

root of unity and the d-torsion M of E(k) is k-rational (theorem 1.0.5).

2. d = q an odd prime, that is coprime to the characteristic of k, assuming only that k

contains a primitive q-th root of unity (chapter 6).

Note that we recover the result from [CG01] if the elliptic curve is split and also the result

from [CRR16] in the case of an elliptic curve. We now proceed to give our description in the

first case.

Theorem 1.0.5. Let k be a field of characteristic different from 2 and 3. Fix an integer

d ≥ 2 coprime to the characteristic of k and assume that k contains a primitive d-th root of

unity. Let E be an elliptic curve over k with k-rational d-torsion M . Fix two generators P

and Q of M , and let tP , tQ ∈ k(E) with div(tP ) = d(P )− d(0) and div(tQ) = d(Q)− d(0).

Additionally, assume that tP ◦ [d], tQ ◦ [d] ∈
(
k(E)×

)d
. Then

dBr(E) = dBr(k)⊕ I

and every element in I can be represented by a tensor product (a, tP )d,k(E) ⊗ (b, tQ)d,k(E)

for some a, b ∈ k×. Furthermore, such a tensor product is trivial if and only if it is similar

to one of the following

•
(
tQ(P ), tP

)
k(E)

⊗
(
tP (P⊕Q)
tP (Q)

, tQ

)
k(E)

,

•
(
tQ(P⊕Q)

tQ(P )
, tP

)
k(E)

⊗
(
tP (Q), tQ

)
k(E)

, or

•
(
tQ(R), tP

)
k(E)

⊗
(
tP (R), tQ

)
k(E)

for some R ∈ E(k) \ {0, P,Q}.
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Remark 1.0.6. We may drop the assumption that tP ◦[d], tQ◦[d] ∈
(
k(E)×

)d
in the previous

theorem. In this case our relations become

(
tQ(R⊕ S)

tQ(S)
, tP

)
k(E)

⊗
(
tP (R⊕ S)

tP (S)
, tQ

)
k(E)

for some R ∈ E(k) and S ∈ E(k) is any point so that the fraction exists and is nonzero.

Proof. Let tP , tQ ∈ k(E) with div(tP ) = d(P )− d(0) and div(tQ) = d(Q)− d(0). Fix some

point P ′ ∈ E(k) with [d]P ′ = E(k). There exists gP ∈ k(E) with div (gP ) = [d]∗(P ) −

[d]∗(0) =
∑
R∈M

(
P ′ ⊕R

)
. Note that the divisor is invariant under the action of the Galois

group Gk and therefore we may choose gP ∈ k(E). Furthermore, since the divisors coincide,

there is some λ ∈ k so that gdP = λtP ◦ [d] ∈ k(E)d. For any R ∈ E(k)

λtP (R) =
λtP (R⊕ S)

λtP (S)
=
tP (R⊕ S)

tP (S)
,

where S is any other point so that tP is nonzero and well-defined.

Now, let q be an odd prime not equal to the characteristic of k and suppose that k

contains a primitive q-th root of unity. We give an algorithm to describe qBr(E) explicitly

in chapter 6. Consider the standard Galois representation

Ψ : Gk → Aut(M) = GL2
(
Fq
)

and denote the fixed field of its kernel by L. Then L is the smallest Galois extension of k so

that M is L-rational. Note that the degree of L over k divides the order of GL2
(
Fq
)
, which

is (q + 1)2q(q − 1). We consider three cases for the degree of L over k:
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1. q - [L : k]

We describe generators and relations in qBr(E) using that restriction followed by core-

striction is an isomorphism (section 4.2 and section 5.2).

2. q = [L : k]

In this case, the composition of restriction and corestriction is the zero map. We use

instead the inflation restriction exact sequence to determine generators and relations

of qBr(E) (section 4.3 and section 5.3).

3. q | [L : k]

We combine the results from the previous two cases to get a description of qBr(E)

(section 4.4 and section 5.4).

We now proceed to review the main ideas we will use to determine the Brauer group.

For any integer d ≥ 2, there is a split exact sequence

0 //
dBr(k) //

dBr(E) //
qH

1(k,E(k)) // 0 , (1.1)

which is induced by the Hochschild-Serre spectral sequence (for more details, see section 2.3).

We need an explicit splitting to this sequence on the right. Consider the Kummer sequence

0 //M // E(k)
[d]
// E(k) // 0 (1.2)

and the induced sequence on group cohomology

0 // E(k)/[d]E(k) // H1(k,M) δ //
qH

1(k,E(k)) // 0 . (1.3)

7



We will define a map ε : H1(k,M) → dBr(E) that induces the desired split. This map is

given by the following composition

ε :
H1(k,M) ∼ // H1

ét (Spec(k),M)
p∗ // H1

ét(E,M)

−∪[T ]
// H2

ét(E,M ⊗M) e // H2
ét (E, µd) //

dBr(E)

, (1.4)

where p∗ is the morphism induced by the structure map p : E → Spec k, T is the torsor

given by multiplication by d on the elliptic curve (see chapter 3), and e is the map induced

by the Weil-pairing (see section 2.1.3). Denote by I the image of ε. We deduce that

dBr(E) = dBr(k)⊕ I.

Further, an element in H1(k,M) becomes trivial under ε if and only if it is in the image of

δ from sequence 1.1.

In [Sko01] and [Sko99], the author describes the map ε abstractly in the more general

setting of an abelian variety X and any torsor T on X. He further proves that such an ε

induces the desired split. We review his abstract proof in section 3.3. In this thesis, we make

this construction explicit and prove directly that the map ε induced by the cup-product

induces a split.

This thesis is organized as follows. In chapter 2, we review background material that

will be used throughout this work. For example, we discuss some facts about elliptic curves,

cohomology, Brauer groups, and symbol algebras as necessary for the proofs in the following

chapters. We also fix notation that will be used throughout this work. In chapter 3, we

8



describe the torsor given by multiplication by d on the elliptic curve. We also calculate

the cocycle corresponding to this torsor at the generic point. Furthermore, we describe the

general theory behind our main result and justify it using derived categories. In chapter 4,

we explore the algorithm to calculate generators of the Brauer group. We describe these

generators provided that M is k-rational. We then proceed to describe the generators of the

prime torsion in various cases. Finally, in chapter 5 we give the relations in the torsion of the

Brauer group. We summarize our results and give a complete algorithm to determine the

odd prime torsion in the Brauer group in chapter 6. Lastly, we determine the prime torsion

of the Brauer group in various examples in chapter 7.

9



Chapter 2

Background

This chapter contains background material that will be used throughout this work. We first

discuss properties of isogenies of elliptic curves and the Weil pairing. In a second part, we

review some general results on group cohomology and étale cohomology. We further connect

these to the notions of torsors and the Brauer group. We proceed to define the unramified

Brauer group of a field. Finally, we describe an exact sequence, that will prove useful to

determine the Brauer group of an elliptic curve.

2.1 Elliptic Curves

Let E be an elliptic curve defined over a field k of characteristic different from 2 and 3. Then

E can be described by an affine equation

y2 = x3 + Ax+B

with A,B ∈ k. The discriminant ∆ = −16
(
4A3 + 27B2

)
of E is nonzero. Furthermore, E is

an abelian variety with identity the point 0 = [0 : 1 : 0] at infinity. We denote the pointwise

addition on E(k) by ⊕ and the pointwise subtraction by 	.

10



2.1.1 Torsion Points

Let d be a natural number and fix an algebraic closure k of k. We denote by

[d] : E(k)→ E(k)

R 7→ R⊕ · · · ⊕R︸ ︷︷ ︸
d-times

the multiplication by d map on the elliptic curve. The kernel of [d] are the d-torsion points of

E(k), which is denoted by M . We extend our definition of multiplication to [−d] = [−1]◦ [d].

Further, [0] is the constant map to 0.

We now review division polynomials, which are a computational tool to determine M .

Proposition/Definition 2.1.1. For any integer d, d ≥ 2 and P = (x1, y1) ∈ E(k), there

are polynomials ψn ∈ k[x, y] for n ∈ Z+ so that

[d]P =

(
x1 −

ψd−1(x1, y1)ψd+1(x1, y1)

ψ2
d(x1, y1)

,
ψ2d(x1, y1)

2ψ4
d(x1, y1)

)
.

These polynomials are explicitly given by

ψ1(x, y) = 1,

ψ2(x, y) = 2y,

ψ3(x, y) = 3x4 + 6Ax2 + 12Bx− A2,

ψ4(x, y) = 4y
(
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 − A3

)
,

ψ2m+1(x, y) = ψm+2ψ
3
m − ψm−1ψ

3
m+1, for m ≥ 2 and

ψ2m(x, y) =

(
ψm
2y

)(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

)
, for m ≥ 3.

11



Proof. See for instance [Lan78, Ch. 2 §1].

Example 2.1.2. Let P = (x1, y1) ∈ E(k). Then P is a two-torsion point if and only if

P = −P . If E is given by the affine equation y2 = (x−a1)(x−a2)(x−a3) with a1, a2, a3 ∈ k,

then

2E(k) = {0, (a1, 0), (a2, 0), (a3, 0)} ∼= Z/2Z× Z/2Z.

Example 2.1.3. Let P = (x1, y1) ∈ E(k). Then P is a three-torsion point if and only if

P = −[2]P . This is equivalent to

x1 = x1 −
3x4

1 + 6Ax2
1 + 12Bx1 − A2

4y2
1

= x1 −
3x4

1 + 6Ax2
1 + 12Bx1 − A2

4
(
x3

1 + Ax1 +B
) ,

which is true if and only if

3x4
1 + 6Ax2

1 + 12Bx1 − A2 = 0.

Let x1, . . . , x4 be the four distinct zeros of this polynomial, and let yi =
√
x3
i + Axi +B,

then

3E(k) = {0, (xi, yi), (xi,−yi) : 1 ≤ i ≤ 4} ∼= Z/3Z× Z/3Z.

2.1.2 Isogenies

Let E1 and E2 be two elliptic curves defined over a field k. An isogeny is a morphism φ :

E1 → E2 of curves such that φ(0) = 0. It follows that an isogeny is a group homomorphism

on the set of points [Sil09, Chapter III, Theorem 4.8]. We denote by φ∗ : k(E2) → k(E1)

the induced map on function fields. If φ is constant, we set the degree of φ to be zero. If it
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is not constant, the degree of φ is the degree of the field extension

deg φ = [k(E1) : φ∗k(E2)] .

Furthermore, we denote by degs φ the separable degree of the field extension and by degi φ

the inseparable degree. Finally, let P ∈ E1(k). The ramification index of φ at P , denoted

by eφ(P ) is

eφ(P ) = ordP

(
φ∗tφ(P )

)
,

where tφ(P ) is a uniformizer at φ(P ). The following classical theorem can for instance be

found in [Sil09, Theorem 4.10].

Proposition 2.1.4. Let φ : E1 → E2 be a nonzero isogeny between elliptic curves.

1. For every Q ∈ E2(k), the number of preimages of Q under φ is equal to the degree

degs φ. Furthermore, for every P ∈ E1(k), eφ(P ) = degi φ.

2. There is an isomorphism

ker(φ)→ Aut
(
k(E1)/φ∗k(E2)

)
: T 7→ τ∗T ,

where τT is the translation by T map, τT : E(k)→ E(k) : R 7→ R⊕ T .

3. Suppose that φ is separable, then φ is unramified, the number of elements in the kernel

is equal to the degree of φ, and k(E1) is a Galois extension of φ∗k(E2).

Example 2.1.5. Let d ≥ 2 be an integer and suppose that the characteristic of k is coprime

to d. Denote the d-torsion of E(k) by M ∼= Z/dZ× Z/dZ. Multiplication by [d] is a degree

d2 map and k(E)/[d]∗k(E) is a Galois extension of degree d2 (for more details, see also
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[Sil09, Chapter III]). Furthermore, k(E)/[d]∗k(E) is Galois of degree d2 provided that M is

k-rational.

2.1.3 Weil Pairing

Let E be an elliptic curve over k and let D =
∑
nRR ∈ Div(E) be a divisor. By [Sil09,

Chapter III, Corollary 3.5], D is a principal divisor if and only if
∑
R∈E(k) nR = 0 and∑

R∈E(k)[nR]R = 0, where the first sum is regular addition in the integers and the second

sum is given by addition on the elliptic curve.

A key tool in the study of elliptic curves is the Weil pairing whose construction we will now

review. For more details, see also [Sil09, Section III.8]. Let d ≥ 2 be an integer and let P be

a d-torsion point on E. As before, denote by M the d-torsion of E(k). As discussed before,

there exists some fP ∈ k(E) so that

div(fP ) = d(P )− d(0).

Now let P ′ ∈ E(k) such that [d]P ′ = P . Since
∑
R∈M (P ′ ⊕ R) = [d2]P ′ = [d]P = 0, there

exists some gP ∈ k(E) such that

div(gP ) = [d]∗(P )− [d]∗(0) =
∑
R∈M

(
(P ′ ⊕R)− (R)

)
.

Since the divisors coincide, we may assume that fP ◦ [d] = gdP . For Q ∈ M define the

Weil-pairing of P and Q as

e(Q,P ) =
gP (X ⊕Q)

gP (X)
,
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where X ∈ E(k) is any point so that gP (X) and gP (X ⊕ Q) is defined and nonzero. The

Weil-pairing takes values in the set of d-th roots of unity.

Example 2.1.6 (example 2.1.5, contd.). Let P,Q ∈ M and let gP and gQ be defined as

before, then

τ∗Q(gP ) = e(P,Q)gP , (2.1)

where τQ is the translation by Q map, τQ : E(k)→ E(k) : R 7→ R⊕Q.

2.2 Cohomology

In this section, we set up our cohomological notation. For more details, see [Ser79, Ch. VII

§5], [NSW08], or [GS17].

2.2.1 Group Cohomology for abstract groups

Throughout this section let G be a group and let A be an abelian group. Assume that G

acts on A on the left via g.a.

Let Ci be the set of of maps×n
i=1G→ A. The coboundary map d : Ci → Ci+1 is given

by

df (g1, . . . , gi+1) = g1.f (g2, . . . , gi+1)

+

j=i∑
j=1

(−1)jf
(
g1, . . . , gjgj+1, . . . , gi+1

)
+ (−1)i+1f (g1, . . . , gi) .

(2.2)

A direct computation shows that d2 = 0 and thus (Ci, d) is a complex. Elements in the

image of d are called cocycles and elements in the kernel of d are cochains. The i-th group

cohomology, denoted Hi(G,A), is the quotient of cocycles by cochains in Ci.
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Example 2.2.1. A 1-cocycle is a map f : G → A satisfying f(gh) = g.f(h) + f(g) for all

g, h ∈ G. We also call these elements crossed homomorphism. A crossed homomorphism is

trivial if there exists some a ∈ A such that f(g) = g.a− a for all g ∈ G.

Example 2.2.2. A 2-cocycle is a map f : G × G → A such that g.f(g′, g′′) − f(gg′, g′′) +

g(g, g′g′′) − f(g, g′) = 0 for all g, g′, g′′ ∈ G. Such a cocycle is trivial if and only if there is

a map f̃ : G→ A such that f(g, h) = g.f̃(h)− f̃(gh) + f(g) for all g, h ∈ G.

2.2.2 Maps on Group Cohomology

Let G and G′ be finite groups. Fix a G-module A and a G′-module A′. Let φ : G→ G′ and

ψ : A→ A′ be group homomorphisms. We say that φ and ψ are compatible if

ψ (φ(g).a) = g.ψ(g)

for all g ∈ G and a ∈ A. A pair (φ, ψ) of compatible morphisms induces a map on cohomology

given by post- and precomposition

(φ, ψ)∗i : Hi(G,A)
f 7→f◦φ // Hi(G′, φ∗A)

f 7→ψ◦f // Hi(G′, A′) .

Example 2.2.3 (Restriction). Suppose that H is a subgroup of G. The inclusion of H into G

is compatible with the identity on A. The induced homomorphism res : Hi(G,A)→ Hi(H,A)

is called the restriction homomorphism.

Example 2.2.4 (Inflation). If H is a normal subgroup of G, we denote by AH the subgroup

of A of elements fixed by H. The identity on G is compatible with the inclusion of AH
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into A. The induced homorphism inf : Hi
(
G/H,AH

)
→ Hi(G,A) is called the inflation

homomorphism.

Example 2.2.5 (Conjugation, action on Hn). Let H ⊂ G be a subgroup, A a G-module, and

B an H-submodule of A. For any fixed σ ∈ G the morphisms σ−1Hσ → H : h 7→ σhσ−1

and B → σ−1B : b 7→ σ−1b are compatible and induce isomorphisms

σ∗ : Hn(H,B)→ Hn(σ−1Hσ, σ−1B)

called conjugation. This defines an action of G (or if H is normal in G of G/H) on

Hn(H,A).

Example 2.2.6 (Corestriction). Suppose that H is a subgroup of G. For every right coset

c ∈ H\G fix a coset representative c ∈ c ⊂ G. On the level of cocycles the corestriction

cor : Ci(H,A)→ Ci(G,A) is given by

cor(f)(g1, . . . , gi) =
∑

c∈H\G
c−1f

(
cg1cg1

−1, . . . , cgicgi
−1
)
.

The following propositions relating inflation, restriction, and corestriction will be useful

for our calculations in chapter 4.

Proposition 2.2.7. Let H be a normal subgroup of G and let A be a G-module. Then the

following sequence is exact

0 // H1(G/H,AH) inf // H1(G,H) res // H1(H,A) .

Proof. See [Ser79, Ch. VII §6, Proposition 4].
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Proposition 2.2.8. Let H be a subgroup of G of finite index and let A be a G-module. Then

the composition

Hi(G,A) res // Hi(H,A) cor // Hi(G,A)

coincides with multiplication by [G : H].

Proof. See [Ser79, Ch. VII §7, Proposition 6].

Definition 2.2.9 (cup-product). Let G be a group and A and B be G-modules. The cup-

product on the level of cocycles is given by

Hn(G,A)×Hm(G,B)→ Hn+m (G,A⊗B)

f ∪ g (σ1, . . . σn+m) = f (σ1, . . . , σn)σng (σn+1, . . . σm+n) .

2.2.3 Group Cohomology for Profinite Groups

In this section, we extend the previous definitions of group cohomology to profinite groups.

Recall that a profinite group G is the inverse limit lim
←
Gα of an inverse system of finite

groups {Gα}. Without loss of generality we may take Gα to be a quotient G/Uα of G by an

open normal subgroup Uα.

Example 2.2.10. Let K over k be a Galois extension. The Galois group Gal(K/k) is the

inverse limit of the inverse system of the Galois groups of finite subextensions and as such

is a profinite group.

A profinite group G = lim
←
Gα admits a natural topology as follows. Consider the discrete

topology on Gα and the induced product topology on
∏
Gα. We endow G with the subspace

topolgy of the product. A continuous G-module is a G-module A so that the stabilizer of

each a ∈ A is open in G.
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Definition 2.2.11. Let G = lim
←
Gα be a profinite group with Gα = G/Uα and let A be a

continuous G-module. Then AUα is a Gα-module. Consider the inflation maps

inf
β
α : Hi

(
Gα, A

Uα
)
→ Hi

(
Gβ , A

Uβ
)

as in example 2.2.4. Define the i-th group cohomology Hi
cont(G,A) as the direct limit of the

system
(
Hi
(
Gα, A

Uα
)
, inf

β
α

)
.

For the absolute Galois group Gk of a field k, we denote Hi(k,A) = Hi
cont(Gk, A).

Remark that by construction of direct limits as a quotient of the direct sum, for every

f ∈ Hi
cont(G,A) there exists some α so that f ∈ Hi

(
Gα, A

Uα
)

. We use this identification

throughout the following chapters, particularly for Hi(k,A).

Let H be a closed subgroup of a profinite group G and A a continuous G-module. The

restriction map res : Hi
cont(G,A) → Hi

cont(H,A) is defined as the direct limit of the usual

restriction on group cohomology (example 2.2.3). If H is open in G, the continuous corestric-

tion is defined similarly and if H is a closed normal subgroup, we can construct continuous

inflation maps. Furthermore, there is a continuous cup product induced by the cup prod-

uct in definition 2.2.9. Finally, propositions 2.2.7 and 2.2.8 can be recovered for profinite

cohomology [GS17, Chapter 4.2 and 4.3].

2.2.4 Torsors and H1

We now proceed to describe the correspondence between torsors and elements in the first

cohomology group. For more details, see [Sko01]. Let A be an algebraic group defined over

a field k. A k-torsor under A is a non-empty k-variety T equipped with a right-action of A
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so that T (k) is a principal homogeneous space under A(k). This means, that the map

T (k)× A(k)→ T (k)× T (k)

(t, a) 7→ (t, t.a)

is an isomorphism.

There is a bijection

H1(k,A)↔


k-torsors under A

up to isomorphism


that is explicitly given as follows. Let T be a k-torsor under A. Choose a k-point x0 of

T . By the definition of k-torsor, for any σ ∈ Gk, there exists a unique aσ ∈ A(k) so that

σ(x0) = x0.aσ. The map σ 7→ aσ defines the cocycle in H1(k,A) corresponding to T .

Let X be a variety over k. An X-torsor under an X-group scheme A is a scheme T over

X together with an A-action compatible with the projection to X that is étale-locally trivial.

As before, there is a one-to-one correspondence between X-torsors under A and elements of

the étale cohomology H1
ét(X,A).

Theorem 2.2.12 (Colliot-Thélène–Sansuc). Assume that k[X]× = k
×

. Let S be a Gk-

module and denote by M = Homk−groups (S,Gm) the dual of S. There is an exact sequence

0 // H1
ét(Spec k,M)

p∗ // H1
ét(A,M)

type // Homk

(
M,Pic(A)

)
// H2

ét(Spec k,M),

where p∗ is the map induced by the structure morphism p : A → Spec k.

If type(T ) = λ for a torsor T , we say that T has type λ.
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Proof. This is the sequence of low degree terms for the spectral sequence of local to global

Ext. For more details, see for instance [CTS87, Theorem 1.5.1 and Equation 2.0.2] or [Sko01,

Theorem 2.3.6 and Corollary 2.3.9].

Example 2.2.13. A d-covering of an abelian variety X is a pair (T , ψ), where T is a

k-torsor under X and ψ : T → X is a morphism such that ψ(x.t) = dx + ψ(t) for any

t ∈ T (k), x ∈ X(k). Let λ be the composition

λ : dX
∨(k) // X∨(k) = Pic0(X) // Pic(X)

of the natural injection followed by the inclusion, where X∨ denotes the dual abelian variety

of X. By [Sko01, Proposition 3.3.4 (a)], any d-covering is an X-torsor under dX of type λ,

and vice versa.

Example 2.2.14. Multiplication by d on X determines a d-covering (X, [d]), and therefore

an X-torsor of type λ by the previous proposition.

2.2.5 The Brauer Group, Symbol Algebras, and H2

In this section, we describe the correspondence between the Brauer group and the second

cohomology group. Let F be a field and let d ≥ 2. We say that two central simple algebras A

and B are Morita equivalent if there exist some n,m ∈ N0 so that A⊗Mn(F ) and B⊗Mm(F )

are isomorphic as F -algebras. Elements in the Brauer group are given by equivalence classes

of central simple algebras modulo Morita equivalence and the group structure is given by

the tensor product. There is a group isomorphism between Br(F ) and H2(F, F
×

). We will

describe the correspondence for a finite Galois extension K/F . For further details see for

instance [GS17].
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Definition 2.2.15 (Crossed Product Algebra). Let K/F be a finite Galois extension with

Galois group G and let f be a cocycle representing an element in H2(G,K×). Consider the

F -vector space A = F
〈
xg : g ∈ G

〉
with multiplication λxg = xgg(a) and xgxh = f(g, h)xgh.

This turns A into a finite dimensional central simple algebra over F .

From now on suppose that the field F contains a primitive d-th root of unity ρ. Fix

an isomorphism [.]ρ : µd → Z/dZ with
[
ρi
]
ρ = i. Furthermore, identify Z/dZ with the

subset {0, . . . , d − 1} of the integers and denote the image of ρi under the composition by[
ρi
]Z
ρ = i ∈ Z.

Definition 2.2.16. Let a, b ∈ F×. The symbol algebra is the F -algebra

(a, b)d,F = (a, b)d,F,ρ := F
〈
x, y : xd = a, yd = b, xy = ρyx

〉
.

It is easy to show that (a, b)d,F is a central simple algebra over F .

Example 2.2.17. Let a, b ∈ F×. The element in H2(F, F
×

) corresponding to the symbol

algebra (a, b)d,F,ρ can be represented by the cocycle

(γ, τ) 7→


a if

[
γ
(
d√a
)

d√a

]Z
ρ

+

[
τ
(
d√b
)

d√b

]Z
ρ

≥ d

1 else

.

For more details, see [Rei03, Chapter 7 §29].

The following cocycle representing the symbol algebra (a, b)d,F will prove more useful for

our purposes.
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Proposition 2.2.18. Let M be the d-torsion of an elliptic curve E with generators P and

Q. Assume that the Weil-pairing satisfies e(P,Q) = ρ. Let a, b ∈ F×, then the symbol

algebra (a, b)d,F can be represented by the cocycle

(γ, τ) 7→ e

γ ( d√a)(
d√a
) P, γ

(
d√b
)

(
d√b
) Q

−1

.

Proof. Consider the map

g : γ → d√a

γ( d√b)(
d√b
)
Z
ρ .

The differential of g is

dg(γ, τ) = γ

 d√a

τ( d√b)(
d√b
)
Z
ρ

 d√a

γ( d√b)(
d√b
)
Z
ρ d√a

−

γτ( d√b)(
d√b
)
Z
ρ

=



a

(
γ
(
d√a
)

d√a

)τ( d√b)(
d√b
)

ρ if

[
γ
(
d√a
)

d√a

]Z
ρ

+

[
τ
(
d√b
)

d√b

]Z
ρ

≥ d

(
γ
(
d√a
)

d√a

)τ( d√b)(
d√b
)

ρ else

=


a e

(
γ
(
d√a
)

(
d√a
) P, γ

(
d√b
)

(
d√b
) Q

)
if

[
γ
(
d√a
)

d√a

]Z
ρ

+

[
τ
(
d√b
)

d√b

]Z
ρ

≥ d

e

(
γ
(
d√a
)

(
d√a
) P, γ

(
d√b
)

(
d√b
) Q

)
else

Subtracting this trivial cocycle from the cocycle in example 2.2.17 gives the desired result.

As mentioned before, these definitions can be generalized to the Brauer group of a variety
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or a scheme, see [Mil80, Chapter IV] for details. A famous result of Gabber [dJ] states that

the Brauer group defined as equivalence classes of Azumaya algebras coincides with the

torsion of H2
ét(X,Gm) if X can be endowed with an ample invertible sheaf.

2.2.6 The unramified Brauer group

An important subgroup of the Brauer group of a field, is the unramified Brauer group. In

this section, we review its definition and some basic facts about it. For more details, see

[Sal99, Chapter 10]. First, let R be a discrete valuation domain domain with field of fractions

K. Denote by v : K× → Z the valuation defined by R. Let π be a prime with v(π) = 1.

Denote by K̂ the completion of K with respect to v. Let R = R/πR and denote by p the

characteristic of R. Let Kur be the maximal unramified extension of the completion K̂. The

following result given in [Sal99, Theorem 10.1] will help us define the ramification map.

Theorem 2.2.19. Any element in Br(K̂) of order prime to p is split by Kur.

For a prime p and an abelian group A, denote by A′ the prime-to-p part. Extend the

valuation v to v : Kur → Z. By [Ser79, p. 28] the valuation map is compatible with the

action of Gal
(
Kur/K̂

)
, where the action on Z is trivial. Define the ramification map as the

composition

ramR :

Br(K)′ // Br(K̂)′ ∼
theorem 2.2.19

// H2
(

Gal
(
Kur/K̂

)
, K×ur

)′
v // H2

(
Gal

(
Kur/K̂

)
,Z
)′ ∼ // H1

(
Gal

(
Kur/K̂

)
,Q/Z

)′
∼ // Hom

(
Gal

(
Kur/K̂

)
,Q/Z

)′
,

where the second to last map is the inverse of the coboundary induced by the exact sequence

0 → Z → Z → Q/Z → 0. It can be shown [Sal99, Theorem 10.3] that the ramification fits
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in the exact sequence

0 // Br(R)′ // Br(K)′
ramR // Hom

(
Gal

(
Kur/K̂

)
,Q/Z

)′
// 0 .

We will now return to the general setting. Let k be a fixed ground field, and let F be

a field extension of k. Let RF be the set of discrete valuation rings containing k that have

field of fraction F .

Definition 2.2.20. The unramified Brauer group of F (with respect to k) is

Brur(F ) =
⋂

R∈RF

(Image of Br(R)→ Br(F )) .

We will use the following identification throughout this work.

Theorem 2.2.21. Let X be a projective regular variety over k with function field k(X).

Then Br(X) equals Brur k(X).

Proof. See for instance [CTS07, Theorem 5.11] or [Sal99, Proposition 10.5 (c)].

2.3 An exact sequence

In this section, we describe the maps in the exact sequence 1.1 explicitly. Consider the

Hochschild-Serre spectral sequence [Mil80, III.2.20]

Hi
(
k,Hj (E,Gm))⇒ Hi+j (E,Gm) .
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Its sequence of low degree terms is

0 // Br(k) i // Br(E) r // H1
(
k,E

(
k
))

// 0 , (2.3)

where the first map sends the class of a central simple algebra A to the class of A⊗k(E). For

more details on this sequence, see also [Fad56] and [Lic69]. The second map is more compli-

cated. Let α ∈ Br(E). Using Tsen’s theorem we view α as an element in H2
(
Gk, k(E)×

) ∼=
Br k(E). Consider the exact sequence

0 // k(E)× // Prin(E) // Div(E) // 0 ,

where Prin(E) denotes the set of pricipal divisors on E and Div(E) is the set of divisors on

E. The sequence induced on group cohomology is

H2(Gk, k(E)×) // H2(Gk,Prin(E)) // H2(Gk,Div(E)) ,

where the first map takes α to some α′ in the kernel of the second map. Now consider the

degree sequence

0 // Div0(E) // Div(E) // Z // 0 ,

where Div0(E) is the group of degree zero divisors. Note that H1(Gk,Z) = 0 and therefore

the map

H2(Gk,Div0(E)) // H2(Gk,Div(E))
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is injective. Finally, the exact sequence

0 // Prin(E) // Div0(E) // E(k) // 0

induces an exact sequence

1 // H1(Gk, E(k)) // H2(Gk,Prin(E)) // H2(Gk,Div0(E)) .

The element α′ is in the kernel of the second map, and therefore there exists a unique

α′′ ∈ H1(Gk, E(k)) with image α′. Set r(α) = α′′.

This completes the description of the exact sequence (2.3). We will use this explicit

description to prove that the map ε induced by the cup product (eq. (4.1)) induces a split.
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Chapter 3

Torsor given by multiplication by d

Let k be a field of characteristic different from 2 or 3. Let d ≥ 2 be an integer coprime to the

characteristic of k. Assume additionally that k contains a primitive d-th root of unity ρ. Fix

an isomorphism [.]ρ : µd → Z/dZ with
[
ρi
]

= i. Furthermore, for ρi ∈ µd, let
[
ρi
]Z
ρ = i ∈

{0, . . . , d− 1} ⊂ Z. Let E be an elliptic curve over k and denote its d-torsion by M . This

chapter contains a cocycle description of the torsor given by multiplication by d on E. Fix

two generators P and Q of M . Denote by e(., .) the Weil pairing (section 2.1.3) and assume

that e(P,Q) = ρ. Let tP , tQ ∈ k(E) with div(tP ) = d(P )− d(0) and div(tQ) = d(Q)− d(0).

3.1 Over a field with rational torsion

Assume throughout this section that M is k-rational. We may assume that tP , tQ ∈ k(E)

since its divisor is invariant under the Galois action of Gk. Let T be the torsor given by

multiplication by d on E as defined in section 2.2.4.

Proposition 3.1.1. The pull-back η∗ (T ) along the generic point η : Spec k(E)→ E corre-

sponds to the element in H1 (k(E),M) given by the cocycle

γ 7→

[
γ
(
αQ
)

αQ

]
ρ

P −
[
γ (αP )

αP

]
ρ
Q,

where αP , αQ ∈ k(E) with αdP = tP and αdQ = tQ.
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Proof. For the correspondence between torsors and elements in H1 see section 2.2.4. Let

P ′ ∈ E(k) so that [d]P ′ = P . Then there is some gP ∈ k(E) with

div (gP ) = [d]∗(P )− [d]∗(0) =
∑
R∈M

(
(P ′ ⊕R)− (R)

)
.

Note that we may choose gP ∈ k(E) since the divisor is invariant under the action of the

absolute Galois group of k. Now div
(
gdP

)
= div ([d]∗tP ) and thus we may assume that

gdP = [d]∗tP . Similarly we find gQ ∈ k(E) with gdQ = [d]∗tQ. Now consider the pullback of

T along the generic point η : Spec k(E)→ Spec k. Fix a k(E)-point x0 of this pullback, i.e.

a map of algebras so that x0 ◦ [d]∗ = ι, where ι : k(E)→ k(E) is the inclusion.

Spec k(E)
η //

[d]
��

E

[d]
��

Spec k(E)

88

// Spec k(E)
η // E

k(E)
x0

||

k(E) k(E)

[d]∗
OO

ι
oo

After possibly renaming αP and αQ, we may assume that x0 (gP ) = αP and x0
(
gQ
)

= αQ.

By proposition 2.1.4 there is a group isomorphism

M → Gal (k(E)/[d]∗k(E)) : R 7→ τ∗R,

where τR : E → E is the translation by R-map; τR : E → E : S 7→ S ⊕R. By the definition

of the Weil-pairing e(R,P ) =
gP (X⊕S)
gP (X)

=
τ∗S(X)

gP (X)
, for any R ∈ M , X ∈ E(k) any point so

that gP (X) and gP (X ⊕ S) are defined. The analogous result holds for gQ as well. Finally,
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we calculate

x0 ◦ τ∗[γ(αQ)
αQ

]
ρ

P−
[
γ(αP )
αP

]
ρ
Q

(gP ) = x0

(
e

([
γ(αQ)

αQ

]
ρ

P −
[
γ(αP )

αP

]
ρ
Q,P

)
gP

)

= x0

(
e

(
−
[
γ(αP )

αP

]
ρ
Q,P

)
gP

)

= x0

(
γ(αP )

αP
gP

)
=
γ(αP )

αP
αP = γ(αP )

and

x0 ◦ τ∗[γ(αQ)
αQ

]
ρ

P−
[
γ(αP )
αP

]
ρ
Q

(
gQ
)

= x0

(
e

([
γ(αQ)

αQ

]
ρ

P −
[
γ(αP )

αP

]
ρ
Q,Q

)
gQ

)

= x0

(
e

([
γ(αQ)

αQ

]
ρ

P,Q

)
gQ

)

= x0

(
γ(αQ)

αQ
gQ

)
=
γ(αQ)

αQ
αQ = γ(αQ).

The statement follows since k(E)/[d]∗k(E) is generated by gP and gQ.

3.2 Over any field

Let k be any field. Consider the Galois representation

Ψ : Gk → Aut(M) = GL2(Fd)
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given by the action on M and denote the fixed field of its kernel by L. Consider the tower

of field extensions

k(E)

L(E)

M

Gal(L/k)

[d]∗L(E)
Gal(L/k)

k(E)

[d]∗k(E)

Fix a set G̃L/k ⊂ Gk(E) of coset representatives of Gk(E)/GL(E)
∼= Gal(L/k). Note that

G̃L/k is also a set of coset representatives of G[d]∗k(E)/G[d]∗L(E)
∼= Gal(L/k) and ev-

ery σ̃ ∈ G̃L/k fixes k(E). Let γ ∈ G[d]∗k(E), then γ decomposes as γ = γ′σ̃ for some

γ′ ∈ G[d]∗L(E) and some σ̃ ∈ G̃L/k.

Let T be the torsor given by multiplication by d on E. Consider the pullback η∗k(E)

of T to the generic point. Note that fixing a k(E)-point of η∗T is the same as fixing an

isomorphism φ0 : k(E)→ k(E) making the following diagram commute – or equivalently an

element in Gal (k(E)/[d]∗k(E)).

k(E)
ι1 // k(E)

[d]∗k(E)

OO

ι1 // k(E)

k(E)

∼ [d]∗
OO

ι1 // k(E)

∼ φd

OO

.
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We will identify G[d]∗k(E) with Gk(E) and G[d]∗L(E) with GL(E). Fix a set of coset rep-

resentatives G̃L/k as before. Then every γ ∈ Gk(E) can be decomposed as γ′σ̃ for some

γ′ ∈ GL(E) and some σ̃ ∈ G̃L/k. Furthermore, σ̃ fixes the image of k(E) (top left corner of

the diagram) by construction.

We want to describe the cocycle corresponding to the pullback of T along the generic

point using the correspondence in section 2.2.4. Let x1 be a k(E) point. We may assume,

that x0 = ι1 ◦ x0 for some x0 as in the following commutative diagram.

k(E)
ι1 //

x1

��

L(E)

x0

!!

k(E)

[d]∗

OO

ι1 // L(E)

[d]∗

OO

ι // k(E)

.

Any γ = γ′σ̃ ∈ Gk(E) with γ′ ∈ GL(E), σ̃ ∈ G̃L/k acts on x1 by

γ.x1 = γ′ ◦ σ̃x0 ◦ ι1 = γ′.x1.

Finally, γ′.x1 can be computed as in proposition 3.1.1. Summarizing this we conclude the

following proposition.

Proposition 3.2.1. The pull-back of T to the generic point corresponds to the element in

H1(k(E),M) given by the cocycle

Gk(E) →M : γ 7→

[
γ′(αQ)

αQ

]
ρ

P −
[
γ′(αP )

αP

]
ρ
Q,
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where γ = γ′σ̃ as above, for some σ̃ ∈ G̃L/k and γ′ ∈ GL(E), αP , αQ ∈ k(E) so that

αdP = tP and αdQ = tQ.

We now proceed to give an explicit discription of the elements tP and tQ. Remark that

these can be chosen in k(E)× if M is k-rational. For more details on the construction, see

also [Mil04, Section 4.1]. For any two points R, S ∈ E(k), denote by LR,S the normalized

function such that LR,S = 0 gives the equation of the line through R and S. Its divisor is

div(LR,S) = (R)+(S)+(	(R⊕S))−3(0). Define an element hR,S =
LR,S

LR⊕S,−(R⊕S)
∈ k(E)×

with div hR,S = (R) + (S)− (R⊕ S)− (0). Now the function tP =
∏d
i=1 hP,[i]P ∈ k(E) has

divisor

div(tP ) =
d−1∑
i=1

(P ) + ([i]P )− ([i+ 1]P )− (0)

= (d− 1)(P ) + P − ([d]P )− (d− 1)(0)

= d(P )− d(0).

Similarly, we construct tQ. Note that in the case q = 3, we can choose the normalized

function tP , tQ ∈ k(E)× such that tP = 0 and tQ = 0 give the tangent lines at P , and Q

respectively.

3.3 General Argument that ε induces the correct split

In this section we review an abstract argument given in [Sko01, Chapter 4] to prove that

the map ε defined before induces the desired split. We will reprove this in chapter 4 in our

specific case using explit methods.
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Let k be a field with algebraic closure k and let X be a k-variety. Denote the structure

map by p : X → Spec k. Further, let X = X×Spec k Spec k. Assume that M is a Gk-module

that is finitely generated as an abelian group. Assume that the order of the torsion of M is

coprime to the characteristic of k. Denote by S = Hom(S,Gm) the dual k-group of M . Let

T be an X-torsor of typeλ for some λ in Homk

(
M,Pic(X)

)
(theorem 2.2.12) and assume

that k[X]× = k
×

. Consider the long exact sequence from the spectral sequence of Ext’s

0 // Pic(X) // Pic(X)Gk // Br(k)

// Br1(X) r // H1(k,Pic(X)) // H3(k,Gm) ,

where Br1(X) denotes the kernel of the natural map Br(X)→ Br(X)Gk . Define

Brλ(X) := r−1λ∗
(
H1(k,M)

)
⊆ Br1(X).

Theorem 3.3.1. The cup-product p∗(α)∪[T ] is an element of Brλ(X) for any α ∈ H1(k,M)

and

r (p∗(α) ∪ [T ]) = λ∗(α) ∈ H1 (k,Pic(X)
)
.

That is, the following diagram commutes

H1(k,M)

λ∗
��

p∗(.)∪[T ]

ww
// Br(k) // Br1(X) r // H1(k,Pic(X)) // H3(k,Gm)

. (3.1)

Furthermore, any A ∈ Brλ(X) can be written as

A = p∗(α) ∪ [T ] + p∗(A0)

34



for some α ∈ H1(k,M) and some A0 ∈ Br(k).

This is [Sko01, Theorem 4.11]. We will review the proof here for completion. Note that

it is enough to show that the following diagram commutes

H1(X,S) Ext1
X(p∗M,Gm)

type //

d
��

Homk(M,Pic(X))

d
��

Br1(X) r // H1(k,Pic(X))

, (3.2)

where d is the connecting homomorphism of the long exact sequence of Ext. The proof will

require some facts on the derived category of X from [Wei94], that we will review first.

3.3.1 Digression to Derived Categories

Let X be a k-variety. Consider the categories Sh(X) of étale sheaves on X, Gk-mod

of Gk modules, and Ab of abelian groups. Denote by D+(X),D+(k), and D+(Ab) the

corresponding derived categories of bounded below complexes. Note that all these categories

have enough injectives. For M in one of these categories, let M• be the element in the

derived category with

M i =


M i = 0

0 else

.

For any n ∈ Z, we denote by τ≤n and τ≥n the truncation functors. That is, for a complex

F we define τ≥n(F ) as the complex

· · · → 0→ Fn/Im(d)→ Fn+1 → · · ·
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Furthermore, denote τ[m,n](F ) = τ≥mτ≤n(F ) and τ[n](F ) = τ[n,n](F ).

Let 0 // A // B // C // 0 be an exact sequence of Gk-modules and let F be

an object in D+(k). Then the following diagram in D+(Ab) commutes

R Homk

(
A, τ≤1(F )

)
//

d
��

R Homk

(
A, τ[1](F )

)
d
��

R Homk

(
C, τ≤1(F )

)
[1] //R Homk

(
C, τ[1](F )

)
[1]

, (3.3)

where the vertical maps are the connecting homomorphisms induced by the exact sequence.

Consider the structure morphism p : X → Spec k. The direct image functor p∗ assigns

to an étale sheaf on X an étale sheaf on Spec k. Fix the geometric point s : Spec k → Spec k

induced by the inclusion k ⊆ k. By [Sta19, Lemma 54.58.1, Tag 04JQ], the stalk functor

F 7→ Fs induces an equivalence of categories between the category of étale sheaves over X

and the category of Gk-modules. Consider the composition of p∗ with this equivalence of

categories. Abusing notation, we will denote this composition by p∗ as well. Furthermore,

there is a functor Homk(M, ·) : Gk-mod → Ab. For M = Z, this functor is given by

sending a Gk-module N to its Gk-invariants NGk . Denote the associated derived functors

by R p∗,R Homk(M, ·), and H(k, ·) = R Homk(Z, ·). Recall, that under our equivalence

of categories given by the stalk functor F 7→ Fs, the sheaf Ri p∗Gm corresponds to the

Gk-module

˜Hi(X,Gm)s = Hi(X,Gm), (3.4)

by [Har77, III Proposition 8.5] and the second equality holds true, because taking stalks
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commutes with cohomology.

The functor p∗ admits a left-adjoint p∗ so that Homk(M, p∗F ) = HomX(p∗M,F ) for any

Gk-module M and any étale sheaf F on X. We will use the following identities of adjoint

functors throughout

R Homk(M, ·) ◦R p∗ = R HomX(p∗M, ·) (3.5)

H(k, ·) ◦R p∗ = H(X, ·). (3.6)

We now review the definition of the hypercohomology functor as given in [Mil80, Ap-

pendix C]. Let f : A → B be a left-exact functor between abelian categories and assume

that A has enough injectives. Denote by C+(A) the category of complexes bounded below.

Let A• ∈ C+(A). Then there exists a complex I• ∈ C+(A) whose objects are injectives,

that is quasi-isomorphic to A. The right-hyperderived functor Ri f of f assigns to A• the

object Hi(fI•) in B. Denote by Hi(k, ·) the hyperderived functor of H(k, ·).

For a Gk-module M that is finitely generated as an abelian group with torsion coprime

to the characteristic of k, fix a sequence

0 //M // N // Z // 0

of Gk-modules, where Gk acts trivially on Z. The commutative diagram 3.3 gives the
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following after setting F = R p∗Gm and taking cohomology.

R1 Homk

(
M, τ≤1 (R p∗Gm)

)
//

d
��

R1 Homk

(
M, τ[1] (R p∗Gm)

)
d
��

H1
(
k, τ≤1 (R p∗Gm) [1]

)
// H1

(
k, τ[1] (R p∗Gm) [1]

)
. (3.7)

It remains to show that the diagrams 3.2 and 3.7 are isomorphic, i.e. there exist isomor-

phisms between their objects so that the following diagram commutes.

R1 Homk

(
M, τ≤1 (R p∗Gm)

)
//

��

∼
''

R1 Homk

(
M, τ[1] (R p∗Gm)

)
∼

((

��

Ext1
X(p∗M,Gm) //

��

Homk(M,Pic(X))

d

��

H1
(
k, τ≤1 (R p∗Gm) [1]

)
//

∼

''

H1
(
k, τ[1] (R p∗Gm) [1]

)
∼

((

Br1(X) r // H1(k,Pic(X))

(3.8)

For the proofs we refer the reader to [Mil80, Appendix C], [Sko01, p. 67 ff.], or [Wei94,

Corollary 10.8.3].

3.3.2 Application to our case

Let E be an elliptic curve over a field k of characteristic prime to d. Denote by M the

d-torsion of E(k). Consider the torsor T given by multiplication by d as in example 2.2.14.

It’s type is the composition

λ : M → E(k) = Pic0(E)→ Pic(E).
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Furthermore, recall that Pic(E) = Pic0
(
E
)
⊕Z and H1(k,Z) = 0. Then the first cohomology

becomes

H1 (k,Pic(E)
)

= H1
(
k,Pic0(E)

)
= H1(k,E(k)).

The diagram 3.1 becomes

H1(k,M)

λ
��

ε

xx
0 // Br(k) // Br(E) r // H1(k,E(k)) // 0

.

Note that both λ and r are surjective and therefore by definition

Brλ(E) = dBr(E).

By theorem 3.3.1, every element in dBr(E) can be represented as a cup product

p∗(α) ∪ [T ] + p∗(A0)

for some α ∈ H1(k,M) and A0 ∈ Br(k). Furthermore, the algebra p∗(α) ∪ [T ] is trivial if

and only if α is in the image of the Kummer map δ : E(k)/[d]E(k)→ H1(k,M).
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Chapter 4

Generators of Br(E)

Let k be a field of characteristic different from 2 or 3. Let d ≥ 2 be an integer coprime to

the characteristic of k and assume additionally that k contains a primitive d-th root of unity

ρ. Let E be an elliptic curve over k. Recall that our method of computing generators of

dBr(E) is via an explicit split to the exact sequence

0 //
dBr(k) i //

dBr(E) r //
dH

1
(
k,E

(
k
))

// 0

described in section 2.3. Consider the Kummer sequence

0 //M // E(k)
[d]
// E(k) // 0 .

The sequence induced on cohomology is

0 // E(k)/[d]E(k) δ // H1(k,M) λ //
dH

1
(
k,E(k)

)
// 0 .

We will describe a map ε : H1(k,M) → dBr(E), that induces a split of the sequence in

section 2.3. Denote by T the torsor given by multiplication by d on E as in chapter 3.
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Define ε : H1(k,M)→ dBr(E) as the following composition

ε :
H1(k,M) ∼ // H1

ét (Spec(k),M)
p∗ // H1

ét(E,M)

−∪[T ]
// H2

ét(E,M ⊗M) e // H2
ét (E, µd) //

dBr(E) .

(4.1)

In [Sko01, Theorem 4.1.1], the author proves abstractly that ε induces such a split using

general properties of torsors and the cup-product. In this chapter, we will determine ε

explicitly and prove directly that the map induces the desired split.

Proposition 4.0.1. On the level of cocycles ε coincides with the map that assigns to a

1-cocycle f : Gk →M the 2-cocycle

ε(f) : Gk(E) ×Gk(E) → k(E)
×

(γ, τ) 7→ e

f(γ), γ

[τ ′(αQ)

αQ

]
ρ

P −
[
τ ′(αP )

αP

]
ρ
Q

 ,

(4.2)

for γ, τ ∈ Gk(E), τ = τ ′σ̃ for some σ̃ ∈ G̃L/k and τ ′ ∈ Gk(E). (For a description of G̃L/k

see section 3.2).

Proof. Consider the following diagram

H1(k,M)
p∗ // H1

ét(E,M)

η∗
��

−∪[T ]
// H2

ét(E,M ⊗M) e
∼ //

η∗
��

H2
ét(E, µd)

��
H1

ét(k(E),M)
−∪[η∗T ]

// H2
ét(k(E),M ⊗M) e

∼ //
dBr k(E)

It has commutative squares as the cup-product commutes with η∗ [Bre97, Chapter 2, 8.2].

For every cocycle f : Gk → M , the Brauer class e ◦ (η∗p∗([f ]) ∪ [η∗T ]) can be described

by the cocycle in eq. (4.2) by proposition 3.2.1 and by the definition of the cup-product in
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group cohomology (see definition 2.2.9). Recall that by [CTS07, Theorem 5.11] the map on

the right is given by the injection that identifies Br(E) with the unramified Brauer group of

k(E) (for the unramified Brauer group see also section 2.2.6).

4.1 M is k-rational

Assume throughout this section that M ⊂ E(k) with generators P and Q so that e(P,Q) = ρ.

We are now ready to calculate a set of generators of dBr(E). By Kummer-theory there is an

isomorphism

φ :
(
k×/(k×)d

)
×
(
k×/(k×)d

)
→ H1(k,M)

(a, b) 7→ ca,b,

(4.3)

where ca,b can be represented by the cocycle

Gk →M

γ 7→

[
γ
(
d√a
)

d√a

]
ρ

P ⊕

γ
(
d√b
)

d√b


ρ

Q.

Proposition 4.1.1. The composition ε◦φ(a, b) corresponds to the Brauer class of the tensor

product of symbol algebras

(a, tP )d,k(E) ⊗
(
b, tQ

)
d,k(E)

for any (a, b) ∈ k×/(k×)d × k×/(k×)d.

Proof. Observe that the class of εk ◦φ(a, b) can be represented by the cocycle that takes the
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pair (γ, τ) ∈ Gk(E) ×Gk(E) to

e

[γ ( d√a)d√a

]
ρ

P ⊕

γ
(
d√b
)

d√b


ρ

Q,

[
τ(αQ)

αQ

]
ρ

P −
[
τ(αP )

αP

]
ρ
Q


= e

[γ ( d√a)
d√a

]
ρ

P,

[
τ(αP )

αP

]
ρ
Q

−1

e


γ
(
d√b
)

d√b


ρ

Q,

[
τ(αQ)

αQ

]
ρ

P

 .

The statement follows from proposition 2.2.18.

Recall that we need to prove that ε induces a split to the sequence in section 2.3 on the

right, i.e. we need to show that r ◦ ε = λ and ε(ker(λ)) = 0. For the definitions of r and λ

see section 2.3. We first prove that r ◦ ε = λ.

Proposition 4.1.2. r ◦ ε = λ.

Proof. We will only prove that r ◦ ε ◦ φ(a, 1) = λ ◦ φ(a, 1). The other cases are similar. We

showed previously that ε ◦ φ(a, 1) = (a, tP )d,k(E), which corresponds to the cocycle

(γ, τ) 7→


1

[
γ( d
√
a)

d√a

]Z
ρ

+

[
τ( d
√
a)

d√a

]Z
ρ
< d

tP else

(∗)

in H2(Gk, k(E)×). This gives an element in H2(Gk,Prin(E)) via

(γ, τ) 7→


1

[
γ( d
√
a)

d√a

]Z
ρ

+

[
τ( d
√
a)

d√a

]Z
ρ
< d

d(P )− d(0) else

.
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On the other hand for any γ ∈ Gk,

λ(φ(a, 1))(γ) = φ(a, 1)(γ) =

[
γ( d
√
a)

d√a

]Z
ρ

P.

Now we follow the proof of the snake lemma to calculate the image of λ(f) under the

connecting homomorphism

H1(k,E(k))→ H2(k,Prin(E))

induced by the sequence

0→ k(E)× → Prin(E)→ Div(E)→ 0.

First lift it to

γ 7→

[
γ( d
√
a)

d√a

]Z
ρ

((P )− (0)) ∈ Div0(E).

Now use the boundary map to get

(γ, τ) 7→γ

[τ( d
√
a)

d√a

]Z
ρ

((P )− (0))

− [γτ( d
√
a)

d√a

]Z
ρ

((P )− (0)) +

[
τ( d
√
a)

d√a

]Z
ρ

((P )− (0))

=

[
τ( d
√
a)

d√a

]Z
ρ

((P )− (0))−

[
γτ( d
√
a)

d√a

]Z
ρ

((P )− (0)) +

[
τ( d
√
a)

d√a

]Z
ρ

((P )− (0))

=


d(P )− d(0) if

[
γ( d
√
a)

d√a

]Z
ρ

+

[
τ( d
√
a)

d√a

]Z
ρ
≥ d

1 else

,

which coincides with what we calculated in (∗). The statement follows.
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Proposition 4.1.3. ε (ker(λ)) = 0.

Proof. Recall that ker(λ) = Im(δ) and letR ∈ E(k). By the previous proposition r◦ε◦δ(R) =

λ◦δ(R) is trivial. Thus the algebra ε◦δ(R) is in the image of the Br(k)→ Br(E). It remains

to show that the specialization of ε ◦ δ(R) at 0 is trivial. The cup-product commutes with

specialization at a closed point [Bre97, Chapter 2, 8.2], i.e.
(
[T ′] ∪ [T ]

)
S =

(
[T ′]

)
S ∪ ([T ])S

for every S ∈ E(k) and every [T ′] ∈ H1
ét(E,M). By definition of ε,

(ε ◦ δ(R))S = δ(R) ∪ TS ∈ Br(k)

for any S ∈ E(k). In particular, (ε ◦ δ(R))0 = δ(R)∪T0. The specialization of T at 0 admits

a point (the point 0) and is therefore the trivial torsor. We deduce that (ε ◦ δ(R))0 is trivial

and thus so is ε ◦ δ(R).

Theorem 4.1.4. Suppose that the d-torsion M of E is k-rational. Fix two generators P and

Q of M . Let tP , tQ ∈ k(E) with divisors div(tP ) = d(Q) − (0) and div(tQ) = d(Q) − q(0).

Then the d-torsion of Br(E) decomposes as

dBr(E) = dBr(k)⊕ I

and every element in I can be represented as a tensor product

(a, tP )d,k(E) ⊗
(
b, tQ

)
d,k(E)

with a, b ∈ k×.

This result was previously known and was proved using different methods for instance in
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[CRR16, Remark 6.3].

Proof. Proposition 4.1.2 and proposition 4.1.3 imply that ε induces the desired split. There-

fore dBr(E) = dBr(k)⊕ Im(ε). The theorem follows from proposition 4.1.1.

4.2 [L : k] is coprime to q

From now on let q = d be an odd prime and drop the assumption that M is k-rational.

Consider the natural Galois representation

Ψ : Gk → Aut(M) = GL2(Fq).

Denote by L the fixed field of the kernel of Ψ. The degree of the Galois extension L over k

divides the order of GL2(Fq), which is (q + 1)q(q − 1)2.

Let T be the torsor given by multiplication by d on E. Denote the generic points of

E and E × SpecL by η : Spec k(E) → E and ηL : SpecL(E) → E × SpecL, respectively.

Consider the pull-back η∗L(T ) of T to L(E) and the pull-back η∗k(T ) of T to k(E). By

proposition 3.1.1 and proposition 3.2.1 we see immediately that res
(
η∗k(T )

)
= η∗L(T ). By

[NSW08, Ch. 1, Proposition 1.5.3 (iii) and (iv)] and the construction of ε, the following

diagram commutes

H1(k,M) res //

εk
��

H1(L,M) cor //

εL
��

H1(k,M)

εk
��

qBr(E) res //
qBr(E ⊗ L) cor //

qBr(E)

.

Throughout this section, we assume that q does not divide the order [L : k]. The
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corestriction map

cor : qBr(E ⊗ L)→ qBr(E)

is surjective and every element in I can be written as cor(A) with A ∈ qBr(E). We summarize

this observation in the following theorem.

Theorem 4.2.1. Let tP , tQ ∈ L(E) with divisors div(tP ) = q(Q) − q(0) and div(tQ) =

q(Q)− q(0). Then the q-torsion of Br(E) decomposes as

qBr(E) = qBr(k)⊕ I

and every element in I can be represented as a tensor product

cor (a, tP )q,L(E) ⊗ cor
(
b, tQ

)
q,L(E)

with a, b ∈ L×.

Remark 4.2.2. Note that corestriction is in general not injective. To get a smaller set of

generators, observe that by [NSW08, Ch, 1, Corollary 1.5.7] the image of the restriction map

H1(k,M)→ H1(L,M) coincides with the image of the Norm map

NL/k : H1(L,M)→ H1(L,M).

Now by Kummer theory H1(L,M) ∼= L×/(L×)q × L×/(L×)q via the isomorphism φ. Let

g ∈ Gk and (a, b) ∈ L×/(L×)q × L×/(L×)q. Suppose that g−1(P ) = c1P ⊕ c2Q and
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g−1(Q) = c3P ⊕ c4Q. The action of g compatible with φ is

g.(a, b) =φ−1g.φ(a, b)

=φ−1

g.
γ 7→ [

γ ( q
√
a)

q√a

]
ρ
P ⊕

γ
(
q√b
)

q√b


ρ

Q




=
((
g−1(a)

)c1 (
g−1(b)

)c3
,
(
g−1(a)

)c2 (
g−1(b)

)c4)
.

Now the image of the restriction followed by φ coincides with the image of the norm on

L×/(L×)q × L×/(L×)q under the above action.

4.3 [L : k] equals q

In this section, we assume that L is of degree q over k. After renaming P and Q we may

assume without loss of generality that there is some σ ∈ Gk such that σ(Q) = P ⊕ Q and

σ generates Gk/GL. Fix a coset representative σ̃ of σ in Gk(E) (compare section 3.2). To

avoid confusion, we will add subscripts to the maps ε, δ, r, and λ to denote their field of

definition. Additionally denote a primitive element for the extension L/k by l.

Consider the diagram

0 // H1 (Gk/GL,M) inf // H1(Gk,M) res //

εk
��

H1(GL,M)Gk/GL

εL
��

qBr(E) res //
qBr(E ×k SpecL)

,

where the first row is the inflation restriction exact sequence. The diagram commutes by
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construction of ε and since the restriction map and the cup-product commute [NSW08, Ch.

1 Proposition 1.5.3 (iii)]. We will first describe the image of the inflation map, and then

explore the restriction afterwards. We will apply the following technical lemma throughout.

Lemma 4.3.1.
∑q−1
i=0 σ

i(R) = 0 for every R ∈M .

Proof. Let R = mP ⊕ nQ ∈M . We calculate directly that

q−1∑
i=0

σi(mP ⊕ nQ) =

q−1∑
i=0

(mP ⊕ inP ⊕ nQ) = mqP ⊕ q(q − 1)

2
nP ⊕ nqQ = 0.

4.3.1 The Image of the Inflation Map

Lemma 4.3.2. The group H1 (Gk/GL,M) is cyclic of rank q with generator fL defined by

fL(σ) = Q.

Proof. Lemma 4.3.1 implies that fL(σq) =
∑q−1
i=0 σ

ifL(σ) = 0 and thus fL defines a cocycle.

Since Gk/GL is cyclic with generator σ, every element f in H1(Gk, GL,M) is determined

by f(σ). Furthermore, if f(σ) = mP ⊕ nQ, then

f(σ)− σ(mP ) = mP ⊕ nQ	mP = nQ = fbL(σ).

The statement follows.

Let αQ ∈ k(E) with α
q
Q = tQ. Consider nQ =

∏q−1
i=0 σ̃

i
(
αQ
)
. Note that nQ is defined

to be the element in k(E) with n
q
Q = NL(E)/k(E)(tQ). Furthermore, note that div nQ =∑q−1

i=0

(
σi(Q)− (0)

)
.
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Proposition 4.3.3. εk (inf (fL)) is the inverse of the Brauer class of the symbol algebra(
lq, nQ

)
q,k(E)

, where αQ ∈ k(E) with α
q
Q = tQ.

Proof. We first show that
∏q−1
i=0 σ̃

i
(
αQ
)
∈ k(E). Let γ ∈ GL(E). By our previous calcula-

tions and with x0 and gQ as in the proof of proposition 3.2.1, we deduce that there is some

R ∈M such that γ(αQ) = R.x0(gQ). Then

γ

q−1∏
i=0

σ̃i
(
αQ
) =

p−1∑
i=0

σi(R)

 .x0(gQ) = αQ (4.4)

by lemma 4.3.1. Now
∏q−1
i=0 σ̃

i
(
αQ
)

is obviously fixed by σ̃ and therefore
∏q−1
i=0 σ̃

i
(
αQ
)
∈

k(E). Let γ, τ ∈ Gk(E) and denote γ = γ′σ̃i, τ = τ ′σ̃j with γ′, τ ′ ∈ GL(E). Then by

definition of ε we see that

εk (inf (fL)) (γ, τ) = e

(i− 1)i

2
P ⊕ iQ, σi

[τ ′ (αQ)
αQ

]
ρ

P −
[
τ ′ (αP )

αP

]
ρ
Q


= e

(i− 1)i

2
P ⊕ iQ,

[
τ ′
(
αQ
)

αQ

(
τ ′ (αP )

αP

)−i]
ρ

P −
[
τ ′ (αP )

αP

]
ρ
Q


= e

(
(i− 1)i

2
P,−

[
τ ′ (αP )

αP

]
ρ
Q

)
e

iQ,[τ ′ (αQ)
αQ

(
τ ′ (αP )

αP

)−i]
ρ

P


=

(
τ ′ (αP )

αP

)− (i−1)i
2

(
τ ′(αQ)

αQ

)−i(
τ ′ (αP )

αP

)i2

=

(
τ ′ (αP )

αP

) (i+1)i
2

(
τ ′(αQ)

αQ

)−i
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Now consider the map

g : Gk(E) → k(E)
×

γ 7→ γ′
(
i−1∏
n=0

σ̃n(αQ)

)
,

(4.5)

where γ = γ′σ̃i for some γ′ ∈ GL(E). The differential of g can be calculated as follows: If

i+ j < q, then

dg(γ, τ) =
γ′
(∏i−1

n=0 σ̃
n(αQ)

)
γ
(
τ ′
(∏j−1

n=0 σ̃
n(αQ)

))
(γτ)′

(∏i+j−1
n=0 σ̃n(αQ)

)
=
γ′
(∏i−1

n=0 σ̃
n(αQ)

) (
γ′σ̃iτ ′

) (∏j−1
n=0 σ̃

n(αQ)
)

(
γ′σ̃iτ ′σ̃−i

) (∏i+j−1
n=0 σ̃n(αQ)

)
=

γ′
(∏i−1

n=0 σ̃
n(αQ)

)
(
γ′σ̃iτ ′σ̃−i

) (∏i−1
n=0 σ̃

n(αQ)
)

=

∏i−1
n=0 σ̃

n(αQ)(
σ̃iτ ′σ̃−i

) (∏i−1
n=0 σ̃

n(αQ)
)

=
i−1∏
n=0

σ̃n(αQ)(
σ̃iτ ′σ̃−i+n

)
(αQ)

=
i−1∏
n=0

σ̃−i+n(αQ)(
σ̃iτ ′σ̃−i+n

)
αQ)

=
i−1∏
n=0

(
αP

τ ′(αP )

)−i+n αQ
τ ′(αQ)

=

(
αP

τ ′(αP )

)−i2+
(i−1)i

2
(

αQ
τ ′(αQ)

)i

=

(
αP

τ ′(αP )

)− (i+1)i
2

(
αQ

τ ′(αQ)

)i
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A similar calculation shows that if i+ j ≥ q, then

dg(γ, τ) =

q−1∏
n=0

σ̃n(αQ)

( αP
τ ′(αP )

)− (i+1)i
2

(
αQ

τ ′(αQ)

)i

The statement follows by subtracting this trivial cocycle and applying proposition 2.2.18.

Proposition 4.3.4. r ◦ ε ◦ inf(fL) = λ ◦ inf(fL).

Proof. By the previous lemma, we get from ε(inf(fL)) the element

(γ′σi, τ ′σj) 7→


1 i+ j < q

∑q−1
i=0 (σ(Q)− (0)) i+ j ≥ q

in H2(Gk,Prin(E)), where γ′, τ ′ ∈ Gk. On the other hand, r(inf(fL)) can be presented by

the cocycle

γ′σi 7→
i∑

m=0

σm(Q)− 0.

This lifts to the map

γ′σi 7→
i∑

m=0

(σm(Q))− (0) ∈ Div0(E),
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and a direct computation of the boundary map gives

(γ′σi, τ ′σj) 7→



σi
(∑j

m=0 (σm(Q))− (0)
)
−
(∑i+j

m=0 (σm(Q))− (0)
)

+
(∑i

m=0 (σm(Q))− (0)
)

i+ j < q

σi
(∑j

m=0 (σm(Q))− (0)
)
−
(∑i+j−q

m=0 (σm(Q))− (0)
)

+
(∑i

m=0 (σm(Q))− (0)
)

i+ j ≥ q

=


1 i+ j < q(∑q−1

m=0 (σm(Q))− (0)
)

i+ j ≥ q

,

which coincides with the previous calculation.

Corollary 4.3.5. ε induces a split to the sequence

0 //
qBr(k) i //

qBr(E) r //
qH

1
(
k,E

(
k
))

// 0 .

Proof. We deduce from the previous proposition and proposition 4.1.2 that r ◦ ε = λ. Fur-

thermore, ε(ker(λ)) = 0 follows as in the proof of proposition 4.1.3.

4.3.2 The Image of the Restriction Map

We now calculate the image of the composition φ−1 ◦ res with φ as in eq. (4.3). By [Ser79,

Chapter VII, Section 5] the action of Gk on L×/(L×)q × L×/(L×)q compatible with φ is

given by

σ.(a, b) = φ−1 (σ.φ(a, b)) =

(
σ−1(a)

σ−1(b)
, σ−1(b)

)
.
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Lemma 4.3.6. Under the isomorphism φ−1, the fixed set H1(L,M)Gk/GL corresponds to

{(
a,

a

σ(a)

)
: σ(a)2 ≡ σ2(a)a mod (L×)q

}
.

Proof. Let (a, b) ∈ L×/(L×)q × L×/(L×)q be fixed by the above action. Then a ≡ σ−1(a)

σ−1(b)
,

which implies that b ≡ a
σ(a)

. Now b ≡ σ−1(b) and thus a
σ(a)

≡ σ−1(a)
a which implies that

a2 ≡ σ(a)σ−1(a) or equivalently σ(a)2 ≡ σ2(a)a.

Lemma 4.3.7. f ∈ H1 (L,M)Gk/GL is in the image of the restriction map if and only if

f(γq) = 0 for any γ ∈ Gk.

Proof. Let γ ∈ Gk and suppose that f is in the image of the restriction map with preimage

g. Then we can write γ = γ′σi for some γ′ ∈ GL. We calculate directly using lemma 4.3.1

that

f(γq) = g(γq) =

q−1∑
i=0

γqg(γ) =

q−1∑
i=0

σiqg(γ) =

q−1∑
i=0

σig(γ) = 0.

For the converse, assume that f satisfies the condition that f(γq) = 0 for any γ ∈ Gk. In

particular f(σq) = 0. Define g ∈ H1(k,M) by setting g(γ) = f(γ′), where γ = γ′σi for γ′ ∈

GL. This is well-defined as for any γ, τ ∈ Gk with γ = γ′σi, τ = τ ′σj and γ′, τ ′ ∈ GL we have

that g (γτ) = g
(
γ′
(
σiτ ′σ−i

)
σi+j

)
= g

(
γ′
)
g
(
σiτ ′σ−i

)
= g

(
γ′
)
σig(τ ′) = g (γ) γg(τ).

We will now prove a technical lemma that will be useful to determine the image of the

restriction.

Lemma 4.3.8. Let k be a field of characteristic prime to q containing a primitive q-th root of

unity. Let k ⊂ L ⊂ F be a tower of field extensions so that each extension is Galois of degree

q. Let a ∈ L× such that F = L ( q
√
a). Fix a representative σ ∈ Gk that generates Gal(L/k).
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Suppose that for every γ ∈ Gk we have that γq
(
q
√
σi(a)

)
= q
√
σi(a) for 0 ≤ i < q. Then

there exists some b ∈ k× such that a ≡ b mod (L×)q.

Proof. Assume that a 6∈ k×. Fix σ ∈ Gk such that σ generates Gal(L/k). Denote the Galois

closure of the extension F over k by L̃. By Galois theory L̃ = L
(
q√a, q

√
σ(a), . . . , q

√
σq−1(a)

)
and Gal(L̃/L) is isomorphic to (Z/qZ)r for r = 1, or r = q. We prove the lemma by con-

tradiction. So assume that r = q. Let τ ∈ Gal(L̃/L) be the element with τ ( q
√
a) = ρ q

√
a

and τ
(
σi q
√
a
)

= σi q
√
a for 1 ≤ i < q. Now (στ) ( q

√
a) = (ρσq) ( q

√
a) = ρ ( q

√
a), which is a

contradiction to our assumptions. We conclude that F/k is Galois of degree q2. We want to

show that Gal(F/k) = Z/qZ× Z/qZ.

Next suppose that Gal(F/k) = Z/q2Z and denote the generator by τ . Then τ q fixes L,

as τ q( q
√
a) = q√a implies that τ q(a) = a and L = k(a). Hence τ ∈ Gal(F/L), which implies

that τ is of order q, a contradiction. We conclude that Gal(F/k) ∼= Z/qZ×Z/qZ. Consider

the fixed field F 〈σ〉, which is a degree q extension of k. By Kummer theory, there exists

an element b ∈ k× so that F 〈σ〉 = k
(
q√b
)

. Finally, F = L
(
q√b
)

= L ( q
√
a) and thus by

Kummer theory a ≡ b mod (L×)q.

Proposition 4.3.9. The image of the restriction map corresponds to the set

(
k×/

(
(L×)q ∩ k×

))
× {1} ⊂ L×/(L×)q × L×/(L×)q

under the isomorphism φ−1.

Proof. Let (a, b) ∈ L×/(L×)q × L×/(L×)q be in the image of the restriction map. There

exists some f ∈ H1(k,M) so that φ−1 ◦ res(f) = (a, b). Then (a, b) is necessarily in the

preimage φ−1
(
H1(L,M)Gk/GL

)
and by lemma 4.3.6 we see that (a, b) ≡

(
a, a
σ(a)

)
so that
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σ(a)2 ≡ σ2(a)a mod (L×)q. It remains to show that we can choose a ∈ k×.

By definition of φ and by lemma 4.3.7, we get that γq ( q
√
a) = q√a and γq

(
q
√

a
σ(a)

)
=

q
√

a
σ(a)

for any γ ∈ Gk and for any choice of qth root of a
σ(a)

. Using the condition that

σ(a)2 ≡ σ2(a)a, we deduce that γp
(
q
√
σi(a)

)
= q
√
σi(a) for any i. The statement follows

from lemma 4.3.8.

The following theorem summarizes the results of this section.

Theorem 4.3.10. Suppose that [Gk : GL] is of order q and assume that there is some

σ ∈ Gk with σ(Q) = P ⊕ Q such that σ generates Gk/GL. Additionally denote a primitive

element for the extension L/k by l.

qBr(E) = qBr(k)⊕ I

and I has generators
{(
lq, nQ

)
k(E)

, (a, tP )k(E) : a ∈ k×
}
, where nQ ∈ k(E) with n

q
Q =

NL(E)/k(E)(tQ).

4.4 q divides the degree [L : k]

Suppose for this section that q divides [L : k]. Let k ⊂ L′ ⊂ L be an intermediate field so

that L/L′ is a Galois extension of degree q and q does not divide the degree L′/k. After

renaming P and Q, we may assume that there is some element σ ∈ Gk so that σ generates

Gal(L/L′) and σ(P ) = P and σ(Q) = P ⊕ Q. Furthermore, let l ∈ L with lq ∈ L′ and

L = L′(l). Fix tP , tQ ∈ L(E) with div(tP ) = q(P ) − q(0) and div(tQ) = q(Q) − q(0).

Assume additionally that tP ◦ [q], tQ ◦ [q] ∈
(
L(E)×

)d
. Furthermore, let αQ ∈ k(E) so that
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α
q
Q = tQ.

Although the field extension L′/k might not be Galois, restriction followed by corestric-

tion coincides with multiplication by [L′ : k], which is an isomorphism. Using the previous

section we deduce the following result.

Proposition 4.4.1. Under the above assumptions, the Brauer group decomposes as

qBr(E) = qBr(k)⊕ I

and every element in I can be expressed using the generators

{
cor
(
lq, nQ

)
L′(E)

, cor(a, tP )L′(E) : a ∈ L′×
}
.

This completes the description of the generators of qBr(E).
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Chapter 5

Relations

In this chapter we describe the relations in the Brauer group. Recall that that an element

in I as before is trivial if and only if it is in the image of the composition

E(k)/[d]E(k) δ // H1(k,M) ε //
dBr(k) .

As in the section before, we will consider various cases depending on the rationality of the

d-torsion M .

5.1 M is k-rational

Assume for this section that M is k-rational. Recall the isomorphism

φ :
(
k×/

(
k×
)d)× (k×/ (k×)d)→ H1(k,M)

(a, b) 7→
[
ca,b
]

from eq. (4.3). We first describe the composition φ−1 ◦ δ.
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Proposition 5.1.1. Let R ∈ E(k)/[d]E(k) and let tP , tQ ∈ k(E) with div(tP ) = d(P )−d(0),

div(tQ) = d(Q)− d(0). Assume that tP ◦ [d], tQ ◦ [d] ∈ (k(E)×)d. Then

φ−1 ◦ δ(R) =



(1, 1) R = 0(
tQ(P ),

tP (P⊕Q)
tP (Q)

)
R = P(

tQ(P⊕Q)

tQ(P )
, tP (Q)

)
R = Q

(
tQ(R), tP (R)

)
else

The proof of this proposition is inspired by a computation of the Kummer pairing in

[Sil09, Ch. X, Theorem 1.1].

Proof. Let R ∈ E(k)/dE(k) \ {0, P,Q} and fix some S ∈ E(k) with [d]S = R. Let tP , tQ as

above and fix gP , gQ ∈ k(E) with gdP = tP ◦ [d] and gdQ = tQ ◦ [d]. Since the divisors of gP

and gQ are Gk-invariant, we may choose gP , gQ ∈ k(E). By the definition of φ we see that

for φ(f) = (a, b) for some cocycle H1(k,M) means that

e (f(γ), P ) =
γ
(
d√b
)

d√b
and e (f(γ), Q) =

γ
(
d√a
)

d√a
.

The Weil pairing satisfies

e(γ(S)	 S, P ) =
gP (γ(S)	 S ⊕ S)

gP (S)
=
gP (γ(S))

gP (S)
=
γ(gP (S))

gP (S)
.

Additionally by definition of gP , we see that gP (S)d = tP ◦ [d](S) = tP (R). A similar result

holds for Q as well. Therefore φ−1 ◦ δ(R) =
(
tQ(R), tP (R)

)
. The other results follow by

bilinearity of the Weil pairing.
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Summarizing these results, we conclude theorem 1.0.5.

From now on assume that d = q is an odd prime and L is the smallest Galois extension

of k so that M is L-rational.

5.2 [L : k] is coprime to q

Suppose throughout this section that q does not divide the order [L : k]. Consider the

following commutative diagram

E(k)/[q]E(k) res //

δk��

E(L)/[q]E(L) cor //

δL
��

E(k)/[q]E(k)

δk��

H1(k,M) res // H1(L,M) cor // H1(k,M)

,

where the horizontal compositions coincide with multiplication by [L : k] and are therefore

isomorphisms. Thus, the image of δk is also given by the image of the composition δk ◦cor =

cor ◦ δL. Using the description of the image of δL in the previous section, we deduce the

following result.

Proposition 5.2.1. Suppose that [L : k] is not divisible by q. Fix two generators P and Q

of M and and let tP , tQ ∈ L(E) with div(tP ) = q(P ) − q(0) and div(tQ) = q(Q) − q(0).

Assume additionally that tP ◦ [q], tQ ◦ [q] ∈
(
L(E)×

)d
. An element

cor(a, tP )L(E) ⊗ cor(b, tQ)L(E)

in I is trivial if and only if it is similar to one of the following
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• cor
(
tQ(P ), tP

)
k(E)

⊗ cor
(
tP (P⊕Q)
tP (Q)

, tQ

)
k(E)

,

• cor

(
tQ(P⊕Q)

tQ(P )
, tP

)
k(E)

⊗ cor
(
tP (Q), tQ

)
k(E)

, or

• cor
(
tQ(R), tP

)
k(E)

⊗ cor
(
tP (R), tQ

)
k(E)

for some R ∈ E(k) \ {0, P,Q}.

The following observation will be useful to calculate these corestrictions explicitly. Con-

sider the following commutative diagram

E(k) //

δk��

E(L) //

δL
��

E(k) //

δk��

E(L) //

δL
��

E(k)

δk��

H1(k,M) res //

εk
��

H1(L,M) cor //

εL
��

H1(k,M) res //

εk
��

H1(L,M) cor //

εL
��

H1(k,M)

εk
��

qBrE //
qBrEL //

qBrE //
qBrEL //

qBrE

,

where the composition of morphisms along a row give multiplication by [L : k]2, which is an

isomorphism. Furthermore, the composition res ◦ cor coincides with the Norm map [NSW08,

Ch. 1, Corollary 1.5.7]. Therefore, an element in I is trivial if it lies in the image of the

composition cor ◦εL ◦ NL/k ◦ δL ◦ res. In section 7.2, we see how this observation can be

applied to the calculation of the relations in I.

5.3 [L : k] = q

Throughout this section suppose that [L : k] = q and fix some generator σ of Gal(L/k). Let

P,Q ∈ M so that σ(P ) = P and σ(Q) = P ⊕ Q. Furthermore, let l ∈ L with lq ∈ k and

L = k(l). Fix tP , tQ ∈ L(E) with div(tP ) = q(P )− q(0) and div(tQ) = q(Q)− q(0). Assume

additionally that tP ◦ [q], tQ ◦ [q] ∈
(
L(E)×

)d
. Fix σ̃ ∈ G̃L/k as in section 4.3. Furthermore,
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let αQ ∈ k(E) so that α
q
Q = tQ and denote nQ =

∏n−1
i=0 σ̃

i(αQ).

Consider the commutative diagram with exact rows and columns

0

��

0

��
0 // E(k)∩[q]E(L)

[q]E(k)
inf //

δL/k
��

E(k)/[q]E(k) res //

δk
��

E(L)/[q]E(L)

δL
��

0 // H1(Gal(L/k),M) inf // H1(k,M) res // H1(L,M)

,

where δL/k is the map induced by δk. It is immediate that δL/k is injective. Recall

that H1 (Gal(L/k),M) is cyclic of order q with generator fL. Furthermore, we saw that

εL (inf(fL)) =
(
lq, nQ

)
k(E)

(proposition 4.3.3). We deduce the following result.

Proposition 5.3.1. The Brauer class of
(
lq, nQ

)
k(E)

is trivial, that is, it is in the image of

the map Br(k)→ Br(E), if and only if the quotient
E(k)∩[q]E(L)

[q]E(k)
is non-trivial.

Recall that by proposition 4.3.9 any element in the image of
(
φ−1 ◦ res

)
can be written

as (a, 1) for some a ∈ k×.

Proposition 5.3.2. The Brauer class of (a, tP )k(E) is trivial if and only if there is some

R ∈ E(k)/[q]E(k) so that φ−1(a, 1) = δL(R).

5.4 q divides [L : k]

Suppose that q divides [L : k] and use the notation used in section 4.4. Recall that every

element in I can be written as cor(A) for some A ∈ qBr(E × Spec(L′)). Such an element is

trivial if and only if it is similar to εL′ ◦ δL′ . Remark that some corestrictions of elements in
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qBr(EL) may coincide and we do not account for this in our description.
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Chapter 6

Conclusions – The Algorithm

In this chapter, we summarize the results from the previous chapters and assemble the

algorithm to calculate generators and relations of the Brauer group. Let k be a field of

characteristic different from 2 or 3 and let q be an odd prime. Assume that q is coprime to

the characteristic of k and that k contains a primitive q-th root of unity. Let E be an elliptic

curve over k. Denote by M the q torsion of E(k).

The Brauer group of E decomposes as

qBr(E) = qBr(k)⊕ I

and generators G and relations R of I can be calculated using the following algorithm.

1. Determine the kernel of the natural Galois representation

Ψ : Gk → End(M) = GL2
(
Fq
)
.

Denote by L the fixed field of this kernel.

2. (a) If q divides the order of L/k, fix some intermediate field L′ so that L/L′ is a

Galois extension of degree q. Let P and Q be elements in M so that Gal(L/L′)
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is generated by σ with σ(P ) = P and σ(Q) = P ⊕Q. Set

GL′ =
{(
lq, nQ

)
L′(E)

, (a, tP )L′(E) : a ∈ L′×
}
,

where tP ∈ L′(E) with div(tP ) = q(P ) − q(0) and nQ ∈ L′(E) with div(nQ) =∑q−1
i=0 σ

i(Q) =
∑q−1
i=0 (iP + Q). Furthermore, let tQ ∈ L(E) with div(tQ) =

q(Q)− q(0) and n
q
Q = NL(E)/k(E)(tQ).

(b) If q does not divide the order of L/k, fix some generators P and Q of M . Set

GL′ =
{

(a, tP )L(E) ,
(
b, tQ

)
L(E)

: a, b ∈ L×
}
,

where tP , tQ ∈ L(E) with div(tP ) = q(P )− q(0) and div(tQ) = q(Q)− q(0).

3. Set

RL =


(
tQ(P ), tP

)
L(E)

⊗
(
tP (P ⊕Q)

tP (Q)
, tQ

)
L(E)

,(
tQ(P ⊕Q)

tQ(P )
, tP

)
L(E)

⊗
(
tP (Q), tQ

)
L(E)


∪
{(
tQ(R), tP

)
L(E)

⊗
(
tP (R), tQ

)
L(E)

: R ∈ E(L) \ {P,Q}
}
.

(a) If q divides the order of L/k, let

RL′, res =
{

(a, tP )L′(E) : res(a, tP )L′(E) ∈ RL
}
.
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Further, if the quotient
E(k)∩[q]E(L)

[q]E(k)
is not trivial let

RL′, inf =
{(
lq, nQ

)
L′(E)

}
.

If the quotient is trivial, let RL′, inf = ∅. Set RL′ = RL′, res ∪RL′, inf .

(b) If q does not divide the order of L/k, let L = L′ and RL′ = RL.

4. Set

G =
{

cor(A) : A ∈ GL′
}

and

R =
{

cor(A) : A ∈ RL′
}
.

Note that there are additional relations that come from the fact that the corestriction map

is not injective. These relations need a more careful treatment. See for example section 7.2.

A direct consequence of algorithm 7.2.2 is the following.

Corollary 6.0.1. Every element in I as above can be written as a tensor product of at most

2(q − 1)2(q + 1) symbol algebras.

Remark 6.0.2. Note that we assume that the characteristic of k is different form 2 or 3 for

simplicity of the presentation of the elliptic curves and its torsion subgroups. The general

results still hold in characteristic equal to two and three.
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Chapter 7

Examples

In this chapter, we calculate the q-torsion of the Brauer group for some elliptic curves E,

where q is an odd prime. For computational reasons, we only consider the case q = 3. The

algorithm described in chapter 6 can be used to determine qBr(E) for any odd prime q. As

before, we will consider various cases depending on the extension L, that is the smallest

Galois extension of k, so that M is L-rational.

7.1 M is k-rational over a number field

Let k = Q(ω) ⊂ C, where ω is a primitive third root of unity. In [Pal10] the author describes

a family of elliptic curves such that M is Q(ω)-rational, for example E given by the affine

equation y2 = x3 + 16. In this case, the three torsion of E is generated by P = (0, 4) and

Q = (−4, 8ω + 4) = (−4, 4
√

3i). Furthermore, the tangent lines at P and Q, respectively

are given by tP = y − 4 and

tQ = y − 6

2ω + 1
(x+ 4)− 8ω − 4 = y − 4

√
3ix− 20

√
3i.

By the previous discussion 3Br(E) = 3Br(k)⊕ I and every element in I can be written as a

tensor product

(a, y − 4)3,k(E) ⊗
(
b, y − 4

√
3ix− 20

√
3i
)

3,k(E)
(7.1)
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for some a, b ∈ k×. We calculate with the magma code in the appendix , that E(k) = M

and therefore also E(k)/3E(k) = M . By our previous calculations on the relations, a tensor

product as in eq. (7.1) is trivial if and only if it is similar to an element in the subgroup

generated by (
4− 20

√
3i, tP

)
k(E)

and (
6

19
− 8

19

√
3i, tP

)
k(E)

⊗
(

4
√

3i− 4, tQ

)
k(E)

.

7.2 Degree L/k coprime to q for k a number field

We first need to discuss computational results for the corestriction of symbol algebras.

Lemma 7.2.1. Let K ⊂ F be a finite extension of fields over k. Then

corF/K(a, b) =
(
a,NF/K(b)

)

for all a ∈ K×, b ∈ F×.

Proof. See for instance [Ser79, page 209].

The following algorithm from [RT83, Section 3] may also be used to calculate the core-

striction explicitly. For a polynomial p(t) = ant
n + an−1t

n−1 + · · · + amt
m with aman 6= 0

define p∗(t) =
p(t)
amtm

and c(p) = (−1)nan.

Algorithm 7.2.2. Let K ⊂ F be a finite extension of fields over k and let a, b ∈ F×.

Let g(t) ∈ K[t] be the minimal polynomial of a over K and f(t) ∈ K[t] is the polynomial

of smallest degree such that NF/K(a)(b) = f(a). Define a sequence g0, . . . , gm of nonzero
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polynomials by setting g0 = g, g1 = f, and for i ≥ 1 let gi+1 be the remainder of the division

of g∗i−1 by gi as long as gi 6= 0. Then

corF/K(a, b)F = −
m∑
i=q

(
c(g∗i−1), c(gi)

)
K .

Let k = Q(ω) and E the elliptic curve given by the affine equation

y2 = x3 +B,

where B ≡ 2 mod (Q×)3 and B 6≡ 1,−3 mod (Q×)2. By [BP12, Theorem 3.2 and Corol-

lary 3.3] we get that L = k(
√
B). Let σ be given by σ(

√
B) = −

√
B. The three torsion of

E has generators P and Q with P = (0,
√
B) and Q =

(
3√−4B,

√
−3B

)
. Then σ(P ) = 2P

and σ(Q) = 2Q. We need to calculate

corL(E)/k(E)

(
(a, tP )L(E) ⊗ (b, tQ)L(E)

)
.

Recall that by remark 4.2.2, it will be enough to consider (a, b) a Norm in L×/(L×)3 ×

L×/(L×)3. For (a, b) ∈ L×/(L×)3 × L×/(L×)3 we have NL/k(a, b) =
(

a
σ(a)

, b
σ(b)

)
, or

equivalently we may assume that NL/k(a) = 1 and NL/k(b) = 1 and a, b ∈ L× \ k×. Note

that

tP = y −
√
B

and

tQ = y − 3 3√−4B

2
√
−3B

x− 3
√
−3B.

Furthermore,
√
−3 ∈ k as ω ∈ k and

3√
16B2 ∈ k× since B ≡ 2 mod (Q×)3.
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Let a = a1
√
B + a2 with a1 6= 0 and NL/k(a) = 1. We now employ algorithm 7.2.2 to

calculate cor(a, tP )L(E). In the notation of algorithm 7.2.2, we calculate

g0 = Minimal Polynomial of a over k

= (t− a1

√
B − a2)(t+ a1

√
B − a2)

= t2 − 2a2t+ a2
2 −Ba

2
1

= t2 − 2a2t+NL/k(a)

= t2 − 2a2t+ 1,

g∗0 = t2 − 2a2t+ 1,

g1 = y − a2 − t
a1

=
1

a1
t+ y − a2

a1

g∗1 =
1

a1y − a2
t+ 1.

The element g2 is the remainder of the division of g∗0 by g1. Note that

(
a1t− a1a2 − a2

1y
)
g1 = t2 − 2a2t+ a2

2 − a
2
1y

2

= g∗0 − 1 + a2
2 − a

2
1y

2

and therefore

g2 = 1− a2
2 + a2

1y
2 = 1− a2

2 + a2
1x

3 + a2
1B = 1−NL/k(a) + a2

1x
3 = a2

1x
3.
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Overall, the corestriction is

cor(a, tP ) =

(
1,− 1

a1

)−1

k(E)
⊗
(

1

a2 − a1y
, a2

1x
3
)−1

k(E)

=
(
a2 − a1y, a

2
1x

3
)
k(E)

=
(
a2 − a1y, a

2
1

)
k(E)

.

Finally, let b = b1
√
B + b2 with b1 6= 0 and NL/k(b) = 1. Use the notation of algo-

rithm 7.2.2 to calculate cor(b, tQ)L(E). Then

g0 = t2 − 2b2t+ 1,

g∗0 = t2 − 2b2t+ 1,

g1 = −
√

3i

b1
(x+ 1) t+ y +

√
3ib2
b1

(x+ 1).

Furthermore, note that

(
− b1√

3i(x+ 1)
t+

b1b2√
3i(x+ 1)

+
yb21

3(x+ 1)2

)
g1 = t2 − 2b2t+ b22 +

b21
3(x+ 1)2

y2

= g∗0 − 1 + b22 +
b21

3(x+ 1)2
y2

and therefore

g2 = 1− b22 −
b21

3(x+ 1)2
y2 = 1− b22 −

b21(x3 +B)

3(x+ 1)2
.
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We deduce that

cor(b, tQ)L(E) =

(
1,

√
3i

b1
(x+ 1)

)−1

k(E)

⊗


√

3i
b1

(x+ 1)

y +
√

3ib2
b1

(x+ 1)
, 1− b22 −

b21(x3 +B)

3(x+ 1)2


−1

k(E)

=

(
yb1√

3i (x+ 1)
+ b2, 1− b22 −

b21(x3 +B)

3(x+ 1)2

)
k(E)

.

Overall, the 3-torsion of the Brauer group decomposes as follows.

Proposition 7.2.3. Let k = Q(ω) and let E be an elliptic curve given by y2 = x3 + B,

where B ≡ 2 mod (Q×)3 and B 6≡ 1,−3 mod (Q×)2. Then the 3-torsion of the Brauer

group decomposes as

3Br(E) = 3Br(k)⊕ I

and every element in I can be written as a tensor product

(
a2 − a1y, a

2
1

)
k(E)

⊗

(
yb1√

3i (x+ 1)
+ b2, 1− b22 −

b21(x3 +B)

3(x+ 1)2

)
k(E)

for some a1, a2, b1, b2 ∈ k× with a1, b1 6= 0, and a2
2 −Ba

2
1 = b22 −Bb

2
1 = 1.

To calculate the relations we need to specify B. We first consider the case B = −1024.

Using the code in the appendix , we calculate that E(k) = 0. Thus there are no additional

relations. Note that some elements might still become trivial due to the fact that the core-

striction map is not surjective.

Consider the case B = 2. We use the code in the appendix to see that E(k) ∼= Z2 with

generators R = (−ω, 1) =
(

1
2 −

√
−3
2 , 1

)
and S = (−1,−1). In this case P = (0,

√
2), Q =

(−2,
√
−3
√

2), tP = y −
√

2, and tQ = y +
√
−3
√

2x +
√
−3
√

2. Therefore by a direct
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computation

tP (R) = 1−
√

2,
tP (R)

σ(tP (R))
= 2
√

2− 3,

tQ(R) = 1 +
3

2

√
−3
√

2 +
3

2

√
2,

tQ(R)

σ(tQ(R))
≡
(
−51 + 57i

√
3
)√

2− 323 + 18i
√

3,

tP (S) = −1−
√

2,
tP (S)

σ(tP (S))
= −2

√
2− 3,

tQ(S) = −1,
tQ(S)

σ(tQ(S))
= 1.

Consider the following commutative diagram

E(k) //

δk��

E(L) //

δL
��

E(k) //

δk��

E(L) //

δL
��

E(k)

δk��

H1(k,M) res //

εk
��

H1(L,M) cor //

εL
��

H1(k,M) res //

εk
��

H1(L,M) cor //

εL
��

H1(k,M)

εk
��

3BrE //
3BrEL //

3BrE //
3BrEL //

3BrE

,

where the rows compose to multiplication by 4, which is the identity on three torsion. An

element in I is trivial if it is similar to an element in the subgroup generated by εk ◦ δk(R)

and εk ◦ δk(S). Finally,

εk ◦ δk(R) = cor ◦εL ◦NL(E)/k(E) ◦ δL ◦ res(R)
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and therefore by our previous calculations of the Norm map and corestriction, we get that

εk ◦ δk(R) = cor

(
tQ(R)

σ(tQ(R))
, tP

)
L(E)

⊗ cor

(
tP (R)

σ(tP (R))
, tQ

)
L(E)

=

(
−323 + 18i

√
3−

(
−51 + 57i

√
3
)
y,
(
−51 + 57i

√
3
)2
)
k(E)

⊗
(

2y√
3i (x+ 1)

− 3,−8− 4(x3 + 2)

3(x+ 1)2

)
k(E)

and similarly

εk ◦ δk(S) = cor

(
tP (S)

σ(tP (S))
, tQ

)
L(E)

=

(
−2y√

3i (x+ 1)
− 3,−8− 4(x3 + 2)

3(x+ 1)2

)
k(E)

.

7.3 Degree L/k = q for k a number field

Let k = Q(ω), ω = −1
2 + i

√
3

2 and let E be the elliptic curve given by the affine equation

y2 = x3 + 4.

Then the third division polynomial is ψ3(x) = 3x4 + 48. We use this to calculate that

generators of the three torsion are given by P = (0, 2) and Q = (−2 3√2, 2i
√

3). Let l = 3√2.

In our previous notation L = k
(

3√2
)

and the Galois group Gal(L/k) is generated by σ with
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σ(Q) = P +Q = (−ω2 3√2, 2i
√

3). It can be seen that

tP = y − 2

tQ = y + i
√

3
3√

4x+ 2i
√

3

Using chapter 6 or theorem 4.3.10 we deduce that the Brauer group 3Br(E) = 3Br(k)⊕I

and I is generated by {(
l3, nQ

)
k(E)

, (a, tP )k(E) : a ∈ k×.
}

We will now determine nQ explicitly. Note that the line through Q and P + Q has divisor

Q+ (P ⊕Q) + (2P ⊕Q). Furthermore, a straightforward calculation shows that

(y − 2
√

3i)3 = y3 − 6
√

3iy2 − 36y + 24
√

3i

= y3 + 6
√

3iy2 − 36y − 24
√

3i− 12
√

3i
(
y2 − 4

)
= y3 + 6

√
3iy2 − 36y − 24

√
3i− 12

√
3ix3

=
(
y + 2

√
3i
)3

+ 4
(
i
√

3x
)3

= NL(E)/k(E)(tQ)

We summarize our calculations in the following proposition.

Proposition 7.3.1. Let k = Q(ω), ω = −1
2 + i

√
3

2 and let E be the elliptic curve given by

the affine equation y2 = x3 + 4. Then the Brauer group decomposes as

3Br(E) = 3Br(k)⊕ I
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and every element in I can be written as a tensor product of the symbol algebras

(
2, y − 2

√
3i
)

3,k(E)
and (a, y − 2)3,k(E)

for some a ∈ k×.

We calculate with magma, that E(k) = 〈P 〉 and E(L) ∼= Z/6Z × Z/6Z. Therefore

E(k)/3E(k) = 〈P 〉 and E(L)/3E(L) = M and the quotient
E(k)∩[3]E(L)

[3]E(k)
is trivial. Therefore

the symbol algebra
(
2, y − 2

√
3i
)
k(E) is not trivial.

Finally, ε◦δ◦res(P ) =
(
2 + i

√
3, y − 2

)
L(E) and therefore a symbol algebra (a, y−2)k(E)

is trivial if and only if it is similar to one of the following

{
(1, 1)k(E),

(
2 + i

√
3, y − 2

)
k(E)

,
(
−8 + 8i

√
3, y − 2

)
k(E)

}

7.4 Positive rank over a number field

Let ω be a primitive third root of unity in C, i.e. ω = −1
2 + i

√
3

2 . Set k = Q (ω) and let E

be the elliptic curve defined by the affine equation

y2 = x3 − 48.

The third division polynomial associated to E is

ψ3(x) = 3x3 − 576x = 3x3 − 2632x.
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We calculate directly that the three torsion M of E(k) is generated by P = (0, 8ω + 4) =(
0, 4i
√

3
)

and Q =
(

4 3√3, 12
)

. Furthermore, we see by direct computation that P ⊕ Q =(
ω24 3√3, 12

)
. Now using the code in the appendix we calculate that E(k) ∼= Z2 ⊕ Z/3Z

and E(L) ∼= Z2 ⊕ Z/3Z⊕ Z/3Z. Furthermore, generators of E(L) are


P,Q,R = (−4ω − 4,−4) =

(
−2i
√

3,−4
)
,

S =

(
(ω + 1)

(
3√

3
)2

+ ω
3√

3 + 3, (ω − 1)
(

3√
3
)2

+ (3ω + 6)
3√

3 + 6ω + 3

)


We conclude that the quotient
E(k)∩[3]E(L)

[3]E(L)
is nontrivial. Finally, the polynomials tP and

tQ are

tP = y − 8ω − 4 = y − 4i
√

3

tQ = y − 1

6

(
3√

3
)2
x− 12− 2

3

By our algorithm the three torsion of the Brauer group decomposes as

3Br(E) = 3Br k ⊕ I

and every element in I can be written as a (a, tP )k(E) with a ∈ k×. Furthermore, an

element in I is trivial if and only if its restriction to L is similar to an element in the
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subgroup generated by



(
4i
√

3− 12− 2

3
, tP

)
L(E)

,

(
1

134

(
5− 9i

√
3
)
, tP

)
L(E)

⊗
(

12− 4i
√

3, tQ

)
L(E)

,(√
3i

3

(
3√

3
)2
− 16− 2

3
, tP

)
L(E)

⊗
(
−4− 4i

√
3, tQ

)
L(E)

,

(
(ω − 3)

(
3√

3
)2

+ (ω + 4)
3√

3 +
11

2
ω − 20

3
, tP

)
L(E)

⊗
(

(ω − 1)
(

3√
3
)2

+ (3ω + 6)
3√

3− 2ω − 1, tQ

)
L(E)


7.5 Over a local field

Denote by Q7 the 7-adic field. It is easy to see that the field Q7 contains a primitive third

root of unity ω. Let E be the elliptic curve

E : y2 = x3 + 16

over k. Consider the reduction Ẽ of E modulo 7. Then Ẽ is a non-singular curve and using

the code in the appendix we see that

Ẽ (F7) = Z/3Z⊕ Z/3Z = {0, (0, 3), (0, 4), (3, 1), (3, 6), (5, 1), (5, 6), (6, 1), (6, 6)} .

Denote by Ê the formal group associated to E and consider the group Ê (7Z7). By [Sil09, IV

Theorem 6.4], there is an isomorphism Ê (7Z7)→ Ĝa (7Z7), where Ga denotes the additive

group. By [Sil09, IV.3 and VII.2] there is an exact sequence

0 // Ĝa (7Z7) // E(Q7) // Ẽ (F7) // 0 .
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Furthermore, by [Sil09, VII.3 Proposition 3.1] the reduction map 3E(Q7) → Ẽ (F7) is in-

jective. Thus E has k-rational 3-torsion. Since 3 is a unit in Z7 we further deduce that

E(Q7)/[3]E(Q7) = Ẽ(F)/[3]Ẽ(F) = M. Finally,

Q×7 /
(
Q×7
)3 ∼= (Z×7 × (7Z7)

)
/
(
Z×7 × (7Z7)

)3 ∼= Z/3Z× Z/3Z.

Therefore, H1(k,M) ∼=
(
Q×7 /

(
Q×7
)3)2 ∼= (Z/3Z)4. By the algorithm and using [Gro68b,

Corollaire 2.3], the 3-torsion of the Brauer group decomposes as follows

3Br(E) ∼= 3Br (Q7)⊕ (Z/3Z)2 = 3(Q/Z)⊕ (Z/3Z)2 = (Z/3Z)3 .

Remark 7.5.1. The above computations also show that
3
Br
(
Ẽ
)

= 3Br (F7) = 0.

7.6 Over a finite field

Let k = F5(ω) be the extension of the field with five elements given by attaching a third

root of unity ω. Let E be the elliptic curve given by the affine equation

y2 = x3 + 1.

The three torsion of E(k) is also k-rational with generators P = (0, 4) and Q = (1, 3ω + 4).

Furthermore, we use the code in the appendix to calculate that E(k) ∼= Z/6Z × Z/6Z. A

direct calculation gives that (k×)3 = F×5 ∪ (1 + 2ω)F×5 Therefore, the quotient k×/(k×)3

is isomorphic to Z/3Z with distinct representatives {1, ω, ω + 1}. We conclude that δ is

surjective, and therefore 3Br(E) = 3Br(k). Since F5 is a C1-field and finite extensions of
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C1-fields are C1 as well [GS17, Lemma 6.2.4, page 161], we deduce that Br(k) = 1 and

3Br(E) is trivial.

7.7 Degree [L : k] divisible by q

Let k = Q(ω), where ω is a primitive third root of unity. Consider the elliptic curve E given

by the affine equation

y2 = x3 + x+ 1.

The three torsion M of E(k) is generated by P = (x1, y1) and Q = (x2, y2) with

x1 =− 1

2

√√√√√ 3√∆− 8

3
− 8

√
3√

− 3√∆− 4

+

√
− 3√∆− 4

2
√

3
,

x2 =
1

2

√√√√√ 3√∆− 8

3
− 8

√
3√

− 3√∆− 4

+

√
− 3√∆− 4

2
√

3
,

y1 =
√
x3

1 + x1 + 1,

y2 =
√
x3

2 + x2 + 1

where ∆ = −496 is the discriminant of E (see [Pal10, Section 3]). Denote P +Q = (x3, y3)

and 2P + Q = (x4, y4). By [Pal10, Theorem 4.1 (1)], the field L is k (x1, x2, y1) =

k (x2 − x1, y1) and the Galois group of L over k is isomorphic to SL2(F3). Consider the

subgroup P generated by

1 1

0 1

 and denote its fixed field by L′. By the proof of the

primitive element theorem, an element l ∈ L with l3 ∈ L′ and L = L′(l) is

l = x2 + ωx3 + ω2x4.
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As we have seen before, nQ is given by the equation of the line through Q and P +Q, that

is

nQ = y − y2 −
y3 − y2

x3 − x2
(x− x2) .

By the main algorithm we deduce that

3Br(E) = 3Br(k)⊕ I

and every element in I can be written as a tensor product

corL′(E)/k(E)

((
x2 + ωx3 + ω2x4

)3j
, y − y2 −

y3 − y2

x3 − x2
(x− x2)

)
L′(E)

⊗ corL′(E)/k(E)

(
a, y − y1 −

3x2
1 + 1

2y1
(x− x1)

)
L′(E)

for some a ∈ L′ and some j ∈ {0, 1, 2}. It remains to calculate corL′(E),k(E) of these algebras,

which can be computed for specific values of a and j using algorithm 7.2.2. We can therefore

write every element in I as a tensor product of at most 16 symbol algebras over k(E).
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APPENDIX
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Appendix

Magma Code

This appendix contains the magma-code used in chapter 7.

Code for section 7.1

K<w> := CyclotomicField(3);

E := EllipticCurve([L|0,16]);

AbelianGroup(E);

Generators(E);

Code for section 7.2

This is the code for B = −1024:

K<w> := CyclotomicField(3);

E := EllipticCurve([L|0,-1024]);

AbelianGroup(E);

This is the code for B = 2:

K<w> := CyclotomicField(3);

E := EllipticCurve([L|0,2]);
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AbelianGroup(E);

Generators(E);

Code for section 7.3

We first calculate the k-rational points of E by using:

K<w> := CyclotomicField(3);

E := EllipticCurve([L|0,4]);

AbelianGroup(E);

Generators(E);

Now we calculate the L-rational points of E with:

K<w> := CyclotomicField(3);

R<y> := PolynomialRing(K);

f := y^2-2;

L := ext<K|f>;

E := EllipticCurve([L|0,4]);

Generators(E);

Code for section 7.4

K<w> := CyclotomicField(3);

E := EllipticCurve([K|0,-48]);

AbelianGroup(E);

Generators(E);
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R<y> := PolynomialRing(K);

f := y^3 - 3;

L := ext<K|f>;

E := EllipticCurve([L|0,-48]);

AbelianGroup(E);

Generators(E);

Code for section 7.5

F := FiniteField(7);

E := EllipticCurve([F|0,16]);

AbelianGroup(E);

Points(E);

Code for section 7.6

F := FiniteField(5);

R<w> := PolynomialRing(F);

f := w^2 + w + 1;

L := ext<F|f>;

E := EllipticCurve([L|0,1]);

AbelianGroup(E);

Points(E);
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