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ABSTRACT

MODULATIONAL STABILITY OF MULTI-PULSES WITHIN THE
FUNCTIONALIZED CAHN-HILLIARD GRADIENT FLOW

By

Hayriye Giickir Cakir

The Functionalized Cahn-Hilliard (FCH) energy is a model describing the interfacial
energy in a phase separated mixture of amphiphilic molecules and a solvent. On a bounded
domain in R, the Euler-Lagrange equation for the mass constrained Functionalized Cahn-
Hilliard(FCH) free energy with zero functionalization terms is derived and a large family of
multi-pulse critical points is constructed. We show that the FCH energy with no functiona-
lization terms subject to a mass constraint has global minimizers over a variety of admissible
sets. We introduce a multi-pulse ansatz as the extensions of the periodic multi-pulse critical
points to R and establish the H2-coercivity of the second variation of the energy about
multi-pulse ansatz. Modulational stability and the dynamic evolution of the multi-pulse

ansatz with respect to the Ilp-gradient flow are also addressed.



ACKNOWLEDGMENTS

I would like to express my deepest appreciation and gratitude to my advisor Dr. Keith
Promislow for his continuous personal and professional support throughout my years at
MSU. I would like to thank him for his contributions to my knowledge on partial differential
equations and applied mathematics with several courses he taught and useful discussions
during our regular meetings in spite of his busy schedule. The completion of this dissertation
would not be possible without his guidance, extensive knowledge and endless patience.

I would also like to thank my committee members Dr. Jeffrey Schenker, Dr. Russell
Schwab and Dr. Zhengfang Zhou for their helpful feedback and valuable time.

No words would be enough to express my gratitude to my parents and my sisters, Hale
and Esra, for their belief in me and unconditional support to pursue my dreams. I am deeply
indebted to my husband, Firat. Thank you for sharing my dreams and walking this journey
with me with joy for the last 14 years. Last but not least, I am grateful to my children, Miran
and Nehir, who have given me happiness and power keeping me motivated to complete this

work.

il



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . o e v

Chapter 1 Introduction . . . . . . . . . . .. ... ... ... ... 1
1.1 Functionalized Cahn-Hilliard Free Energy . . . . . . . . . .. ... ... ... 1
1.2 Description of the Problem . . . . . . . . . .. .. ... ... ... ...... 4
1.3 Main Results . . . . . . . . . 8

Chapter 2 The Euler-Lagrange Equation . . . . .. ... ... ... ... .. 11
2.1 Derivation of the FEuler-Lagrange Equation over Various Admissible Sets . . 12
2.2 The Euler-Lagrange Equation with a small mass constraint . . . . . . . . .. 24

2.2.1 Notation . . . . . . . . . . 24
2.2.2 Motivation . . . . . ... 27
2.2.3 Solutions to the Euler-Lagrange Equation with a small mass constraint 29
2.2.4 Some Remarks . . . . . . . .. ... 32
2.2.5  Energy values at the critical points . . . . . . .. ... ... ... .. 33

Chapter 3 Existence Of the Minimizers . . . . . ... ... ... ....... 37
3.1 Existence of the Minimizers . . . . . . . . .. .. .. ... ... ....... 37

Chapter 4 Modulational Stability of n-pulses . . . . . . . .. ... ... ... 46
4.1 HZ?-coercivity of the second variation of 1. . . . . . . . . ... .. ... ... 46

4.1.1 Introduction: m-pulses . . . . . . .. ... 47

4.1.2  H?-coercivity of the second variation of I about n-pulse ansatz . . . . 49

4.1.3  H?-coercivity of £2 . . . . . . ... ... 59

4.2 Modulational Stability of n-Pulses . . . . . . . . ... ... ... ... ..., 65
4.3 Pulse Dynamics . . . . . . . . ... 7
4.4 Conclusion . . . . . . . . . e 87
APPENDIX . . . . . e 88
BIBLIOGRAPHY . . . . . . e 94

v



Figure 1.1:

Figure 1.2:

Figure 2.1:

Figure 2.2:

Figure 4.1:

LIST OF FIGURES

When the hydrocarbons in different shapes introduced into a solvent, the
solvent particles create a cavity to avoid the solute(left) Wiebe et al., 2012].

The simulation depicts packing of amphiphilic molecule at interface between

external solvent molecules and internal solvent(right). . . . . . . . .. ..

Figure 1.2a is the phase plane for the ODE (1.2.6) which demonstrates
the orbit (solid line) homoclinic to b— attaining its maxima at Up; and
the periodic solutions (dotted lines) that are the solutions to the boundary

value problem(1.2.5). Figure 1.2b is an example of an n = 4 pulse solution
to (1.2.5) . o o

Figure 2.1a represents a phase plane for the dynamical system given in
(2.2.2) extended to R for A\¢ = 0. Figure 2.1b is a phase plane for the

—

dynamical system when A\¢ # 0. The boundary conditions t(0) € W*(b)
and U <L2> € W#(b) where b = (b,0,0,0) mimic the behavior of the

e
whole line system. The distance between the fixed points of the dynamical
Lo
systems is [b — b—| = & while |u(0) — b| = O(e” " ) <« . However, for
the clarity of the graph both distances are depicted in similar lengths. . .

The reduced energy, I(®;), versus mass constraint M. The blue lines
demonstrate the energy values at the critical points, &, forn = 0, %, 1, %, 2.
The red lines represent the infimum of the energy values over all the blue
lines. . . . . . e

Figure (a) is a depiction for the spectrum of £,(p). In the descending
order \g > 0 = A\; > Ay > ... (red disks) are the eigenvalues of £1(p) =
L. Ln(p) has n associated eigenvalues(black crosses) to each localized
eigenvalue of £1(p) such that |\j, — Ak jlj=1,..,n decays exponentially with

30

36

growing pulse separation. Figure (b) demonstrates the spectrum for Zf?(p) 53



Chapter 1

Introduction

1.1 Functionalized Cahn-Hilliard Free Energy

Amphiphilic molecules are chemical compounds consisting of a hydrophobic group and a
hydrophilic group, such as lipids and surfactants. When a molecule with an amphiphilic
structure is introduced to a solvent(water), the hydrophobic group may alter the structure
of the solvent which causes an increase in the free energy of the system. As a respond to this
change the system minimizes the contact between the hydrophobic group with formation
of bilayer interfaces and pores. Network formations differ from single layer interfaces that
occur in binary metals and other purely hydrophobic blends. While single layer interfaces
separate two distinct phases from each other, bilayers separate one phase by thin sheets of
other phase.

The Cahn-Hilliard(CH) free energy has been used broadly to model single layer interfaces

in hydrophobic blends. In 1958, the CH free energy was proposed as

62
E(U):/Q—(VUHZ—I—W(u)dm, (1.1.1)

in [Cahn and Hilliard, 1958] to describe the free energy of an interface occurred by a phase
separation in a binary mixture due to spinodal decomposition. Here on a fixed domain

Q C R”, v € H(Q) is the volume fraction of one of the components in the binary mixture,



W : R — R is the free energy density of the mixture and ¢ is the thickness of the interface.

Figure 1.1: When the hydrocarbons in different shapes introduced into a solvent, the solvent
particles create a cavity to avoid the solute(left)[Wiebe et al., 2012]. The simulation depicts
packing of amphiphilic molecule at interface between external solvent molecules and internal
solvent (right).

Since CH was introduced, its minimizers, minimizers subject to a constraint and critical
points of the CH have been broadly studied. Although a double well with two unequal depth
minima is generic, W (u) is assumed to be a smooth double-well potential with two equal
depth minima at b+.,i.e, W(b—) = W(by) and a maxima at b— < by < b4 in most studies.
This assumption on the form of the potential does not affect the following minimization

problem with a mass constraint

min{/ﬁ?KVu)F—i—W(u)dm:ueHI(Q),/Q(u—b_)dx:c}, (1.1.2)



since this problem is equivalent to minimizing

2
- [ = W2+ W (u)dx — u—b_)dx
S(u)—/Q (V)P + W (w)d A/Q( b-)d .

2
:/ (V)2 + W (w)dz — e,
0 2

where X is a Lagrange multiplier and so ¢\ is only a fixed quantity. The functional & is the
same as & with the well W replaced by W (u) + Au. An appropriate choice of A will render
W(u) + Au a double well with equal depth minima. The critical points of the CH are the
solutions to ‘% = (0 where

o€

5= e2Au— W' (u), (1.1.4)

is the variational derivative with respect to L? inner-product. Changing variables into the

inner variables z = %, at the leading order the critical point equation becomes
Ou—W'(u) = A (1.1.5)

From the phase-plane analysis, the critical points of the CH subject to a mass constraint are
heteroclinic orbits or single layer interfaces which are the co-dimension 1 interfaces between
two distinct phases. Further, the single layer interfaces are the minimizers of the CH subject
to a mass constraint. The I'-convergence as ¢ — 0 for the single layers structures of CH free
energy to a scaled surface area was established in [Modica, 1987| and [Sternberg, 1988]. A
model for the network formation in amphiphilic mixtures motivated by small-angle X-ray
scattering (SAXS) data was introduced in |Gompper and Schick, 1990] and

|Teubner and Strey, 1987| adding a higher order term in the CH free energy. Based on

these models, The FCH free energy was developed in [Promislow and Wetton, 2009 and in



|Gavish et al., 2011] as a mathematical model to describe the interfacial energy in a phase-

separated mixture with amphiphilic molecules.

F(u) = /Q% <52Au - W’(u))2 — &P (@Wup + ngW(u)) dx, (1.1.6)

where € < 1 is the ratio of amphiphilic molecule length to domain size and n; > 0,72 € R.
For p = 1, the FCH corresponds to the strong functionalization while for p = 2 it is a
model for the weak functionalization. It is generic to assume that W(u) is a double-well
with two unequal depth minima at b+. Further, due to the quadratic term in FCH it is not
possible to rewrite the energy in terms of an equal-depth double-well. We also assume that
a+ :=W"(by) > 0. As a consequence, the dominant term in the FCH energy is the square
of the first L? variational derivative of CH energy. Indeed the FCH energy can be viewed
as measuring L2 distance to the critical points of the associated CH energy. When n; = 0
and 19 = 0, all critical points of CH free energy are the global minimizers of the FCH free
energy since % = 0 asserts that F'(u) = 0. In [Promislow and Zhang, 2013], the existence
of global minimizers was established over a variety of admissible function space for a general

class of high order energies such as FCH free energy. Further, the authors showed that the

the critical points of CH are the critical points of the higher order energies.

1.2 Description of the Problem

Let a small amount of a polymer(soap) be added to a solvent(water) in a container with
impermeable walls and allow the system reach an equilibrium. Suppose that the mass of

the soap, m, scales with ¢ with a relation m = eM where € > 0 is a small parameter and



M = O(1). We adapt the FCH free energy introduced in the previous section to model the
free energy of this system. For fixed Ly > 0, independent of e, and 2 = [0, Ls] C R, the

FCH free energy describing the free energy of the soap-water mixture is

I(u) = /O "2 % (02 - w’(u))2 dz, (1.2.1)

subject to the mass constraint
Ly
m = / (u—b_)dx =M, (1.2.2)
0

where M € [0, M*] C R for fixed M* and u satisfying non-flux boundary conditions. Here
the density function u € H?(Q) map Q into Rt and the potential W (u) is an unequal
double well with two minima at b+ for which W (b—) = 0 > W(by) and a maxima at by
where b— < bys < by. For simplicity, we prefer converting our problem from macroscopic to
misroscopic level by converting spacial variables into inner variables. Introducing the inner

variable z = £ in (1.2.1), the inner scaling of the FCH free energy takes the form

Loy

I(u):/o ) 1(aﬁu—w’(u)fdz, (1.2.3)

\V)

subject to the mass constraint
Lo

/E(u —b_)dz = M. (1.2.4)
0

In this thesis, we aim constructing a special class of critical points of the inner scaling of the

FCH free energy subject to the mass constraint (1.2.4) as the possible minimizers of the free



energy. Apparently, I(u) > 0 for all uw € H*(Q). When I(u) is free of any constraints, the

solutions to

O2u = W' (u), 2

0.u(0) = 0,0.u(22) = 0,
are global minimizers of I since they return I(u) = 0. To establish the existence of these

solutions we write the (1.2.5) as a non-linear system of first order differential equations

Ul = V9
(1.2.6)
vy = W'(v1)
and analyze the associated phase-plane diagram. The dynamical system (1.2.6) has two
saddle points at (b+,0) and a center at the equilibrium point (bys,0).(See Figure 1.2.) A
homoclinic solution is an orbit connecting a saddle point to itself. From the first integral of

(1.2.5)

%(azuﬁ = W(u) + Cp, (1.2.7)

for any constant C,. For the choice C), = 0, we deduce that we have an orbit starting
at b—, hitting the u, = 0 axis at Ups for which W(u) = 0 and joining back to b— by
reversibility. Thus, there exists a homoclinic solution, ¢y, converging to b— as z — co. The
homoclinic solutions do not satisfy the Neumann boundary conditions, having exponentially
small derivatives at z = 0 and z = % We can construct periodic solutions of (1.2.5) which
do satisfy the boundary conditions. The solutions satisfying the boundary conditions of
(1.2.5), ¢n, are the periodic solutions at the center starting at a point between b— and Uy

k+1

Ly making n = *5=,

on the axis u; = 0 and ending at a point on the same axis when z = —



k € N tours. (See Figure 1.2.) By adjusting the value of the minimum of ¢, we adjust the
period, which we can tune to be an integral multiple of%. Translating the n-pulse periodic

so that the zero derivative points lie at 2 = 0 and 2z = % gives an exact solution of (1.2.5).

Pn

Ly

A A A A

(a) Phase plane diagram (b) An illustration for ¢4
Figure 1.2: Figure 1.2a is the phase plane for the ODE (1.2.6) which demonstrates the orbit
(solid line) homoclinic to b— attaining its maxima at Ups and the periodic solutions (dotted
lines) that are the solutions to the boundary value problem(1.2.5). Figure 1.2b is an example
of an n = 4 pulse solution to (1.2.5)

Upon this analysis, among many possible critical points of the mass constrained inner
scaling of the FCH free energy we desire to obtain a special class of those which are the
expansions of the minimizers of the unconstrained inner scaling of the FCH free energy,
n-periodic pulses.

Further, motivated by [Promislow, 2002] we survey the modulational stability and dynamical

evolution of the n-pulse structure of the inner scaling of the FCH energy. For this purpose,

we introduce the mass-preserving projection gradient flow of the FCH energy given in (1.2.3)

ol
Ut = —H05—<U)7
u (1.2.8)

u(zv 0) = UO(Z)a



where the zero-mass projection, Iy, is given as Iy f := f — (f)q with (f)q := ﬁ/ f(z)dz
Q
and observe that any critical point of the. As the zero-mass projection gradient of the FCH

energy evolves the mass of the initial data is preserved,
—(uyp =0, (1.2.9)

and the FCH energy given in (1.2.3), I, decreases,

%I(u) <0. (1.2.10)

The mass-preserving gradient flow of the CH free energy modeling a phase separation process

in a binary mixture was analyzed in [Rubinstein and Sternberg, 1992].

1.3 Main Results

In Chapter 2, the main goal is to construct a class of the critical points of the inner scaling
of the FCH free energy subject to the mass constraint over the space of functions u € H 2((2)
satisfying the no-flux boundary conditions. In this purpose, we derive the Euler-Lagrange(E-

L) equation of the inner scaling of the FCH,

(02 — W (w)) (9%u — W' (u)) = A1,
(1.3.1)

93u(0) = 0, 9 (%) —0,8,u(0) = 0, d:u (%) —0,



over the admissible space

A ::{ue}ﬂqo,%b

Motivating the corresponding scaling of the Langrange multiplier A\c = € to the scaling of

Lo

/Os(u —b_)dz = M,uz(0) = u, (L2> oy (132)

€

the mass constraint, we use an asymptotic expansion to solve the E-L equation and obtain a
class of the critical points of the mass-constrained FCH energy I. Another result we present
in this chapter is that the mass constraint value has a significant impact on the minimizers
belonging to the class of the critical points we construct.

In Chapter 3, utilizing the classical tools from Calculus of Variations we obtain the
existence of the global minimizers of the FCH energy, I, subject to the mass-constraint
(1.2.4) over the admissible space Aj.

In Chapter 4, we introduce n-pulse ansatz as the corrected extensions of the n-pulse
solutions of the E-L equation to the whole line R. We establish the H?2-coercivity of the
second variation of the FCH energy I about n-pulse ansatz and further the H2-coercivity of
the second variation of the FCH energy I about periodic multi-pulses ¢,,. With an application
of the result on modulational stability of the steady-state solutions of the gradient system
in [Promislow, 2002|, we demonstrate that n-pulse ansatz, the steady-state solutions of the
mass-preserving projection gradient of I, is stable in the modulational sense. The evolution
equations of the pulse-locations and the background are derived as

N =0,

(1.3.3)
P = —a?i/Q (6—@(19“1—1%) — e—\/f(Pi—Pi—l)> + 0(8).

With an analysis of the evolution equations of the pulse locations we conclude that the



stationary solutions, equally spaced n-pulses(periodic) are spectrally stable. More significantly,

2—neighborhood of the n-pulse ansatz we recover the pulse

for a given initial data in an e
dynamics to O(62) where § is exponentially small in e. Moreover, the solutions remain

within a O(8) neighborhood in H? of the periodic n-pulses(equally spaced).

10



Chapter 2

The Euler-Lagrange Equation

In the calculus of variations, the Euler-Lagrange equations are used to construct the critical
points of a functional. In this section, we will derive the Euler-Lagrange equation for the

problem

Ly Lo

1 2
min/ - <8§u — W (u)) dz subject to / c (u—b_)dz = M, (2.0.1)
ueA g 2 0

'€

where the choice of the space of admissible functions A C H2 ([0 2]) will be addressed
later. As described earlier, the problem is based on an experiment during which a polymer
is being added in to a solvent to form a dispersion in a fixed container with an impermeable
boundary and then the system is allowed to relax to reach its equilibrium. To model this,
we consider u € H? ([O, %D satisfying the mass constraint and the Neumann boundary

conditions due to impermeable membrane. With this description, we define the space of the

admissible functions

aim e ([o2])

Lo
e

(= b )dz = M, u,(0) = u, (_> _op. (202)

J

11



Additionally, the free energy given (1.2.3) is well-defined on the following natural admissible

spaces
P O 20

and

Ay = {u e B qo %D A HY ([0 %Dy/o?(u— b_Vdz = M, u.(0) w(%) - o}.

(2.0.4)

It may be easily observed that Ay C A C Ap.
We will construct the Fuler-Lagrange equation over all these spaces and discuss the
necessary boundary conditions. In the sequel, we will further see that the value of the mass

constraint has a considerable impact on the form of the actual minimizer(s).

2.1 Derivation of the Euler-Lagrange Equation over

Various Admissible Sets

The Euler-Lagrange equation characterizes the smooth critical points of the free energy
Lo
=
functional I(-). Recall that we consider u € H 2 satisfying the mass constraint / udz = M
0

and the boundary conditions u,(0) = u, (%) = 0 in the problem and our main purpose is
to construct the Euler-Lagrange equation for the critical points satisfying these conditions
in this section.

We first consider the largest space of admissible functions

ao=fuent([o.22])] [ P -} 21)

12



Let u € Ag be any critical point of the energy I(u) subject to the mass constraint and form

a curve u + 710 € Ag for 7 € R and v € A}, where

Apy = {UGH2 ([0,%})&@1}, (2.1.2)

is the tangent plane to Ap. The orthogonality condition is seen to be required by observing

’ €

L2
that u + 70 € Ap holds if and only if v € H? ([0 ﬁ]) and %/ i u+ Tvdz = 0, this
0

second requirement implies

Ly
d (&
0 = (u+7v)dz,
-
0 L (2.1.3)
9
= / vdz,
0
and we deduce that v L 1.
We denote by i(7) the evaluation of I on the curve u + Tv
i(1) = I(u+ T0). (2.1.4)

For the following calculations, let us assume that i(7) is differentiable at 7 = 0 which will
be established in Theorem 2.1.2 later. Assuming that u is a critical point of I, ¢ has zero

derivative at 7 = 0, i.e. i/(0) = 0. We formally calculate the variation of I

o5

i'(1) = (Gg(u +7v) — W (u+ T’U)>2 dz,

a
dr

N | =

S—

o5

P (u+7v) — W (u+ TU)) (831) — W (u+ TU)U) dz,

I
S—

o5

I
%
/N VS

P (u+7v) — W (u+ TU)) 820 — <8§(u +7v) — W (u+ TU)) W (u+ Tv)vdz.
(2.1.5)

13



Let 7 = 0 and since i'(0) = 0

0=1(0) = / (agu — W’(u)) v — (agu — W'(u)) W (u)vdz, (2.1.6)

for all v € Ay’

Further, if the critical point u € H 4 ( [0, %} ) we may twice integrate by parts the second

term in the integrand and obtain

A (2.1.7)

for all v € Aj,. The map v — Gy(v) is the weak formulation of the variational derivative
of the free energy I(u). The equality in (2.1.7) holds for all v € Ay but different subspaces
Aj) afford information on different terms in the RHS of (2.1.7). In particular, if we choose v
from the subspace S = {v € CZ° ([0, %D ‘v 1 1} C Aj, then the boundary terms B are 0
and we deduce that
Loy
/ (2 wrw) (92w) ~ W) vz = (2.1.8)
0
for all v € ).
By the density of S}, in A}, in L? ([O ZD we infer that

'€

(03 - W”(u)) (af;‘u - w’(u)) LA, (2.1.9)

14



since AL = {v € H? ([0, %D v L 1} we see that ,46L = span{1} and hence

(ag - W”(u)) (agu - W’(u)) = A\l (2.1.10)

for some Lagrange multiplier A.. Consequently, the relation (2.1.8) holds for all v € .A6
even for those which are not in S(/). This information implies that A = 0 in (2.1.7) and we
conclude that B = 0 to preserve the equality in (2.1.7). Since the trace map v € .A6 —

(v(0), v(%), 0,v(0), 830(%)) € R* is onto, we may choose v1, v9, v3, vy for which this trace
map yields the canonical basis eq, e, e3, e4. These choices of v show that the critical point

u from the admissible space A satisfy the following boundary conditions,

(O3u— W' (W)d.u) |,_g=0, (9%u—W'(w)d.u)| 1,=0,
e (2.1.11)

(8§u — W(u)) ’Z:(): 0, (8§u —W(u)) | Lo=0.

We summarize the results obtained so far in the following proposition.

Proposition 2.1.1. Any critical point of the problem (2.0.1) over Ay that lies in H* ([O, %D

satisfies

(02 — W (u)) (0%u — W' (u)) = A1,

(8§u — W' (u)o.u) ‘z:o =0, (8§u — W' (w)o.u) ’ Ly=0, (2.1.12)
=
x (8gu — W(u)) |Z:0: 0, (8§u — W(u)) ‘z—ﬁ: 0.
- €

Another admissible space, which is actually our main focus of interest for the minimization

15



problem, is given by

Lo

L T L
Al = {u € H? <[0, ?2]) / i (u—b_)dz = M,u,(0) = u, (f) - 0}7 (2.1.13)
0
where Neumann-boundary conditions u,(0) = wu; <%) = 0 emulate no-flux boundary

conditions due to the impermeable boundary. Following the same procedure we adopted
as deriving the Euler-Lagrange equation satisfied by any u € A, we achieve (2.1.8) for all

v E A’l where

e ()

is the tangent plane to the admissible space Aj.

v L 1,0.(0) = v, (ﬁ) :0}, (2.1.14)

3

Taking this into consideration and inserting the boundary conditions u;(0) = u, (—) =

0 imposed in the admissible space A; in (2.1.7) we obtain

Lo
= (2.1.15)

0=0, <8§(u) — W’(u)) o),

for all v € .A'l. Similar to the previous case, we conclude that any critical point v €

AN HY ([0 QD satisfies

)€

(83 — W"(u)) (agu — W' (u)) = Ael,
(2.1.16)

33u(0) = 0,83 (%) = 0,8.u(0) = 0, 9-u (%) —0.

16



The last natural admissible space we discuss in this section is

ao=fuent([o.22]) g (Jo 2] )| [ om0t =00 =0 (22) =0},

which has the tangent plane

S (S ()

In a similar manner to the previous two cases, it can be easily demonstrated that any

v L 1,05(0) = v, (2> - o}. (2.1.18)

minimizer u € Ay N H([0, %]) solves the Euler-Lagrange equations

(02 — W (u)) (9%u — W'(u)) = A1,
(2.1.19)

u(0) = 0,u (ﬁ) = 0,0.u(0) = 0,9-u (L2) —0,

9 &

and no new boundary conditions arise. From now on, for simplicity of notation we let
A=A
Our earlier construction of the Euler-Lagrange equation assumed that i(7) is differentiable

at 7 = 0. The following theorem provides a justification for this fact.

Theorem 2.1.2. Consider I(u) given (1.2.3). Then, for any u,v € H? ([0, —])
i(1) = I(u+Tv), (2.1.20)

1s differentiable at T = 0.

17



Proof. Take any u,v € H? <[O ﬁ]) and set

€

i(r) = I(u+ Tv). (2.1.21)

First, i(7) is finite for all 7 since u € H? ([0, %D and the square of L? functions lie in L.

Let 7 # 0. Evaluate the difference quotient for a.e. z

L
i(r) = i(0) /2 3 (2t o) =W (ut 70)"dz = § (D2u— W' ()"
— 2.
T 0 T (2.1.22)
Inserting the Taylor series expansion of W/ (u + 7v) with integral remainder,
u+Tv
W (u+7v) = W (u) + W (u)v + / W"(s) (u+Tv — s)ds, (2.1.23)
u

in to (2.1.22), and after some simplifications we find that the quotient reduces to

i(r) —i(0) _1 [
— 7

% 1 u+TU 2
5 <8§u + 7820 — W'(u) — W (u)v — / W (s) (u+ 70— s) ds) dz+
u

<82u — W (u )de,
( ) ( — W (u)v ) + </UU+TU W (s) (u+Tv — s) ds>2 +
_ ( ( u+m W"(s) (u+ v — s) ds) + 72 (831} - W"(u)v>2 +

-7 (@30 - W”(u)v) < /u o W (s) (u+ v — s) ds> dz,

- /0 L7(2)dz,

(2.1.24)

18



where we have introduced

[T () (oo W) +
_ (agu - W’(u)) ( /u o W (s) (u+ v — s) ds> e (agv - W”(u)v>2 +

—r (020~ W (wp) ( /u T8y (7o — ) ds)] .

u+Tv

L7 =

N

2
W"(s) (u+7v—s) d3> +

(2.1.25)

We claim that L™ € L1 ([0, ﬁ] > For the proof we first apply the triangle inequality to the

g

integrand and obtain

Lo Loy

/Os L7 (2)|dz = %/05 T <a§u - W’(u)> (821) - W”(u)v) 4

N (/uu—l—ﬂ) ) (0t 0 ) ds) 2 .

— (2Pu—w'w) ( /u W) o — ) ds)
+ 72 (821) - W”(u)v>2 +

7 (02— W () ( /u W) (0t — ) ds)

dz.
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1
Taking — inside the integral and by the triangle inequality we have
T

Ly Ly
/ S LT(2)]dz < / : (agu . W’(u)) (agv - W”(u)v) +
0 o |
= A
1 [utTv 2
+ T(—/ W”/(s)(u+7v—s)ds) +
T Ju
=B
utTU q
+ <8§u - W’(u)) (/ —W"(s) (u+Tv— 5) d5> +
u T
—c
2
+ |7 <8§v - W”(u)v) +
d ~~ P
1 [utTV
+ (3?1} — W”(u)v) (— / W"(s) (u+Tv — s) ds) dz.
T Ju
—F
(2.1.26)

By the Lebesgue Dominated Convergence Theorem, it suffices to show that each of the terms

A,B,C,D and E are in L} ([O, %} ) For the first term, by the Holder’s inequality

L

L2
/8 Adzg)
0

Then, from the triangle inequality we have

0%u — W' (u)HL2 ]

2 I 2.1.27
020 — W (u)vHL2, (2.1.27)

L

/OEQAdzg (‘
< (]

By the smoothness of W, for each n there exists an a; > 0 such that HW(”)(S) HLOO < aq for

% %

o+ W wllg2) (o2 o + W@l 2)

o+ @l ge) (]

(2.1.28)

u v

2T W ()| oo ||U||L2> :

all s € [—|Jul| oo — 7 ||v|| zoo s ull oo +7 |[v]| foo |- Since u € H? implies ||ul| 00 is bounded,
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we conclude that A € L1 ([O, %D for each u,v € H? ([O, %] ) The same arguments show

that there exists a constant aq such that
Ly
e
/ Ddz < aqT. (2.1.29)
0

On the other hand, bounding B,C and E requires estimates on the integral remainder
term. From the smoothness of W and the compact range of u and u + Tv, there exists a

a9 > 0 such that [W"(s)| < as for s running over u to u + 7v. Then,

1 u+TU
—/ W"(s) (u+ Tv — ) ds
u

T

as u+T1U
< —/ ‘u—l—ﬂ;—s ds. (2.1.30)
T U

By the change of variables t = u + 7v — s we obtain

U+TV 0 7_2
/ \u+rv—s|ds:/ tldt < —|v?. (2.1.31)
u TV 2
Inserting this in (2.1.30) we have
1 u+TU
—/ W"(s) (u+Tv — s)ds| < a2 1)2‘. (2.1.32)
T Ju 2
With these estimates we deduce that
% u+TU 2
/ Bdz < / W"(s) (u+71v—s)ds||
0 U L2
4 2
T 2 2 (2133)
s ez ‘LQ ’
4
T 2 4
=72 llvll7s-
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Here we controlled the L* norm by H! and L> norms using the estimate

Ly
4 o4 2 2 2 9 1
lol34 :/0 vhdz < [ull3oo [[ull? < llull?y lul2oo (2.134)

and further L norm by H! norm

Loy
[o] 00 = su " 0p(0?)dz| < 20ul| 2)10:0] 2 < Jol2y + 0:0]25 < ol (2.135)
we obtain
4 4 4
oty < ol < Clollds. (2.1.36)
Utilizing this estimate in (2.1.33), we have
2 4 1.
/0 Bdz < 3 vl (2.1.37)
With the same arguments we obtain upper bounds for C' and E such that
% % 1 U+TV
/ Cdz = / (8§u - W’(u)) (— / W"(s) (u+71v—8) ds) dz,
0 0 T Ju
Lo
7—062 9 2 2 /
T 2 2
< Z20l3a ([[02u] o + I @l 2).
T 2 2
< 2 iz ([[02u] 0 + o)
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and

Loy Loy
13 13
/ Edz:/
0 0
Lo
2 4
T " g
< 2/
=75,

TQCYQ 3

2

dz,

T

r (820 — W) (1 /u TS (o — ) ds)

(2.1.39)

dz,

v? (831} — W (u) v)

< (1+aq)

Considering all these estimates for A, B, C, D and E and u,v € H? ([O, %D we conclude
that there exists a constant 7 := (H@%uHLQ + HW’(u)HL2> (||a§vHL2 + | W (w)]| 0o HUHL2> €
R such that

Ly
|7 1@l < v+ 00 (2.1.40)
0
which implies that L™ € L1 <[O, %]) as 7 — 0.

Indeed our estimates applied to (2.1.25) show that
L™ — <8§u — W’(u)) (8?1} — W"(u)v) as T—=0  for ae z, (2.1.41)

Applying the Dominated convergence theorem, from (2.1.40) and (2.1.41) we show that the

limits
. 0 Ly
/(0) = lim ir) —i0) _ lim, S LTdz,
T— T T—
I 0 (2.1.42)
_ & 52 / 2 7
= Zu—Wi(u)) (07 — W (u) ) vdz,
0
exist. This proves that ¢ is differentiable at 7 = 0. ]
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2.2 The Euler-Lagrange Equation with a small mass

constraint

Recall that the inner scaling of the Functionalized Cahn-Hilliard free energy with no functionalization

terms is

Lo

= 5
I(u)= / - <8§u — W’(u)) dz.
0o 2
In this section, we address the dependence of the minima of the functional I upon the

mass M,

Lo
=

/ (u—b_)dz =M, (2.2.1)
0

by analyzing an asymptotic expansion of the Euler-Lagrange equation (2.1.10). We construct
a class of solutions of the E-L equation which corresponds to a scaling of the Lagrange
multiplier, A\ = €, arising from the e-dependence of the mass constraint, m. Following this

information, specifically, we seek solutions to the perturbed E-L equation,

(aﬁ - W”(CD)) (agcp - W’(<I>)> — A (22.2)

2.2.1 Notation

Introduce the operator

L:=002—W"¢), (2.2.3)
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that is the linearization of (1.2.5) about ¢y, and define the operator
Ln(p) =02 —=W" (up), (2.2.4)
acting on H2 (R) where uy, is the extension ¢, to R defined as

up =Y oy (2= pj) +b-, (2.2.5)
j=1

where ah = ¢p, — b— and p = (p1,p2, ...,pn)t € R" is the vector of pulse locations. The

admissible set of pulse locations is given by
P={peR":p,<pjy1 for i=1,..,n and Ap>1}, (2.2.6)

where Ap = n;éln lpi — pj| and [ > 0 is sufficiently large. Let B; denote the functions
i#]

L7971 € L®(R) for j = 1,2 that are the solutions to
LIB; =1, (2.2.7)

and orthogonal to the kernel of £. Actually, the function Bj; is in the form

Bj = Bj + Bj . (2.2.8)
Specifically, By takes the form
4 1
B =B — —, (2.2.9)
o
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where a_ is the coercivity value of W (u) at b— and By is the solution to the

_ W"en)

(o7

LB = (2.2.10)

Since ¢, — b_ at an exponential rate as z — oo, the RHS of (2.2.10) is in L?(R) and

even about z = 0, hence orthogonal to gb;L €kerL. The existence of By is established

similarly. Further, we truncate B; to have compact support on the bounded interval [0, %]

and introduce the functions

n
Bin = Bj(z=pi) + Bjo, (2.2.11)
=1
so that
L) yBjn =1+ 0(6%) (2.2.12)

where Zn,b represents the restriction of the operator £, (p) to the bounded domain [0, %]

Remark 2.2.1. The kernel of the operator £ = 02 — W” (¢},), the linearization of (1.2.6)
about the homoclinic solution ¢, is spanned by (b;l. Indeed, the equation (1.2.6) has a
translational symmetry on R since ¢p,(z + ) also solves the equation (1.2.6). If we insert

¢p(z+ ) in the ODE (1.2.6) and take its derivative with respect to v we have

Loy’ =0, (2.2.13)

and conclude that kerl = span{¢}}. Since L is a second order Sturm-Liouville operator
acting on an unbounded domain it has real-valued simple eigenvalues that can be written in a

strictly decreasing order. Since kerL = span{¢;’}, ¢’ is an eigenfunction of £ corresponding

26



to the eigenvalue A = 0. Since the eigenfunctions of a Sturm-Liouville operator, {wj}, has j
simple zeros and ¢, has one node, it is the second largest eigenfunction, 1)1, corresponding
to the second eigenvalue Ay = 0. Then, there exists a ground-state eigenfunction, 1
corresponding to Ag > 0 and the remainder of the spectrum is real and O(1) distance

to the left of 0 by Weyl’s essential spectrum theorem.

Remark 2.2.2. By standard perturbation theory, the properties of the point spectrum of
L, (p) presented in Lemma 4.1.4 carry over up to exponentially small terms to the operator
on the large bounded domain, vab(p). (See Section 9.6 in [Kapitula and Promislow, 2013].)
For the purposes of exposition we do not distinguish between the operator L,(p) acting

upon the whole line or Zmb(p) acting upon the large bounded domain when inverting the

operator, except where doing so is essential to the argument.

2.2.2 Motivation

Before we proceed to the asymptotic expansion analysis of the E-L equation, we would like
to motivate e-dependence of the Lagrange multiplier, \c, due to the e-dependence of the

total mass, m. Assume u. is a solution to equation (2.2.2), or to

Odu — 2W' (u)02u — W (w)(95u)? + (W (W)W (u) — \e) = 0, (2.2.14)

written explicitly.
Rather than dealing with possible different types of solutions to (2.2.2), we focus on
the construction of multipulse solutions as the possible minima of I. For this purpose, we

simplify the problem taking ¢ — 0 which extends the domain to R™ and the considering its
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even extension to R™. Further, keeping the mass constraint fixed

/ (ug — b—)dz = M, (2.2.15)
R

we deduce that ug — b_ as z — £oo. Consistent with ug — b_ as z — +o00, the exponential

dichotomies of (2.2.2) on R imply

6§ (ug—b=) =0 for k=1,2,3 exponentially as z — Foo, (2.2.16)

(See Section 2.1.4 in [Kapitula and Promislow, 2013|). In other words, there exist constants
¢, k > 0 such that

iy — b_| < ce ", (2.2.17)
where b_ = (b_,0,0,0), do(-) = (uo(+), up (), ug(+),up(-)). Returning to (2.2.14), setting
¢ = 0 and taking z — +o00 by (2.2.16) we obtain the equality

W (O )W"(b-) = \g. (2.2.18)

Since W/ (b_) = 0 we conclude that Ay = 0.
For the finite domain problem associated to (2.2.2), namely when £ # 0 but small, we
choose boundary conditions that best approximate the whole line problem. In particular,

we assume u becomes asymptotically close to b which solves

W ()W () = Ae, (2.2.19)
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and impose the exponential dichotomies like boundary conditions

d(0) e Wi(b) and d (%) € W(b),

where b = (b,0,0,0), G(-) = (u(-),u(-),w"(-),«""(-)) and WH(b) and W$(b) are the
unstable and stable manifolds of l;, respectively. This yields a finite domain problem that
best approximates the whole-line problem. This assumption is consistent with the mass

constraint, away from the pulses scale like
Ly
e Lo
M = / (u—>b_)dz =~ ?(b —b_) =0(1), (2.2.20)
0
and we deduce that b = b_ 4+ O(e). From (2.2.19) we deduce that
Ae = (W(b2)))2(b—b-) = O(e). (2.2.21)
To fix notation, we write b = b_ 4 eby and A = e for by = O(1) and A = O(1).

2.2.3 Solutions to the Euler-Lagrange Equation with a small mass
constraint

In the light of the comments about our motivation discussed in Section 2.2.2, our main focus
of interest is constructing a class of solutions to (2.2.2) when A¢ = e\. We are specifically

interested in an asymptotic expansion of these solutions which has an expansion form
- 2 (2.2.22)
O = g + ep1 + O(%).
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Tl
lU"l

Wu(b_) Ws(

A4

Ao=0 A0

(a) Phase plane for when A¢ =0 (b) Phase plane when A¢ # 0

Figure 2.1: Figure 2.1a represents a phase plane for the dynamical system given in (2.2.2)
extended to R for \¢ = 0. Figure 2.1b is a phase plane for the dynamical system when

Ae # 0. The boundary conditions u(0) € W (b) and G <%> € WS(B) where b = (b,0,0,0)

mimic the behavior of the whole line system. The distance between the fixed points of the
Lo

dynamical systems is |b—b_| = & while |u(0) —b| = O(e”"F ) < . However, for the clarity

of the graph both distances are depicted in similar lengths.

To find ¢ and @1 we first insert (2.2.22) in (2.2.2).

ex= (02 =W (@) (20 - W' (®)),

(82 =" (wo 201 +0()) (22 (40 + 201 +OE)) =W (0 +201 +OD))).
= (82— (W (g0) +21W"" (00t) + O(2)) (220 + c0or +

— (W' (o) +e01W" (o)) + 0(52)>.

(2.2.23)

Matching the terms with the same order of €, we obtain O(1) and O(e) equations

(92 =" (00)) (9200 = W' (20)) =0, (2:2.24)
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(92 =W (00)) (921 — o1W" (20)) + 1" (v0) (0200 — W' (90)) = A, (2.2.25)

As our base profile we choose the solutions ¢, for n € {% : k € N} to the problem (1.2.5)

as a special classes of solutions of equation (2.2.24). Inserting pg = ¢, in (2.2.25),

A= (32 =" (0n) (9o — W (6n)

- (83 - W (%)) (33 -’ (¢n)) o1, (2.2.26)

where we have denoted the linearization of (1.2.6) about the periodic solution ¢, by
Ly =02 —W"(¢n). (2.2.27)

For each n = 1,2, 3, the equation

201 = A, (2.2.28)

has a solution ¢; € L? if and only if A L kerl, by the Fredholm Alternative. Indeed, X is

orthogonal to kerL,;, because we have

/ A/ dz = 0, (2.2.29)
R

since ker Ly, = span{¢y’} and ¢, is odd about z = 0. Then, the solution to (2.2.28) can be

written as

p1 = ABay, (2.2.30)
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where B j, solves

L2By, = 1. (2.2.31)

Therefore, the periodic solutions to the Euler-Lagrange equation (2.1.10) in other words the

critical points of I subject to the mass constraint (1.2.4) have the asymptotic expansion
Dy = Gn +2MBo + O (7). (2.2.32)

2.2.4 Some Remarks

Recall that the equation (1.2.5) has solutions, ¢y, which are global minimizers of the free
energy (1.2.3) when I(u) is not subject to any constraints. These have background state,

b = b_. In Section 2.2.2 we motivate the construction of the solutions with background.

b = by, where by, — b— = O(e) solves
W (b )W (by) = Ac. (2.2.33)

Since W/ (b_) = 0 it follows Ac is also O(g). Let 7(b,) be the period of the orbit ¢,. The

periodic solutions ®,, to the Euler-Lagrange equation (2.1.10) which satisfy 7(b,) = % can

fit precisely n periods of the orbit into the interval [0, %} and may be translated to exactly

solve the boundary conditions. Moreover, the period scales like 7(by,) = O (ln < bn—l = )) and
is monotonically decreasing as b—b_ increases, achieving a minima at the center equilibrium.

These considerations suggest n = L2 _ O (-1 , however we further restrict the size
eT(bn) gllnel

of by, so that n = O(1)

Remark 2.2.3. If 7(b) # ﬁ—g then we state without proof that by adjusting the associated ¢
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for which (¢, ¢') passes through (b,0), we may arrive at a solution of (1.2.5) that satisfies

o . . / 1, Lo _L2
the boundary conditions. Indeed by translating ¢ we may achieve ¢'(0), ¢'(—=) = O(e™ €
The corrections to ¢ are exponentially small and have no impact on the value of the energy
or total mass to the order considered here. In particular, we define

n = L%big - %J (2.2.34)

we proceed formally with the construction of &, ignoring the issue of exponentially small

boundary mismatch.

2.2.5 Energy values at the critical points

Inserting the critical points (2.2.32) in (1.2.3) and in the mass constraint (1.2.4) we calculate
their energy values and their mass constraint M to determine which has minimum energy

at prescribed mass.

(aﬁ% W (<I>n)>2dz,

Loy
_[F 1l N 20\ ) 2
_/0 y (02 (60 +\Byn + O2)) =W (60 +NBy + O()) ) dz,

L

RN " 2 3 (2.2.35)
= [ g™ (aZBM—W (¢n)82,n) + OB dz, 2.
= / 55%2 (LnBon)” + O(3)dz,

0

Ly
/O ) %m (£0Ba.n) (LnBon) + O(e%)dz.
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Since L;,’s are self-adjoint and from (2.2.31) we obtain the reduced energy

Lo
=1
I@0)= [ 322 (£2B2n) Br + Oz,
0
21
0

(2.2.36)

Let 1’5’2,” denote the mass for By j, that is
(2.2.37)

and My, be the mass for the critical point (2.2.32)

Lo

0

(2.2.38)

Substituting the mass (2.2.37), we have

Lo

My = Loa"2\ + / " (¢ — b_)dz. (2.2.39)
0

For the sake of convenience, we write the mass of ¢, in terms of the mass of ¢y,

Ly Ly

/o (= b-)dz = n/o (O = b-)dz, (2.2.40)

= th,
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where M}, is the mass for the homoclinic solution ¢y, namely

Ly

Mp, 3:/0 ) (pp, — b-)dz. (2.2.41)

We insert (2.2.40) in (2.2.38) and obtain

M, = nMj, + Aa~"2Ls. (2.2.42)
Setting M, = M and solving for A\ gives an expression for A\ in terms of the mass
constraint M,
a?
A= — (M —nMp). (2.2.43)
Lo

Utilizing this formula of A in (2.2.36), we calculate the reduced energy critical point of I in

terms of the mass constraint M

2
1(D,) = /0 : 552/\282’ndz,

1 _
— 552)\232’71, (2.2.44)

6052_

— = (M —nlM)?.
2L2( nMp)

We minimize (2.2.44) for n to find the n-pulses with the minimal free energy. Note that
when M = nMj,, &, is a global minimizer. Since I(®,) is a discrete function of n, the
closest value of n to Mﬂh is the minima of I (®;,). We conclude that the inner scaling of FCH
free energy, I(u), attains its minima, over the n pulse solutions we have constructed, at @,

M

for which n is closest to -
h

From Figure 2.2 | it can be observed that among the n-pulse profiles we have constructed
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0 1/2mh m 3/2mh 2m M

Figure 2.2: The reduced energy, I(®,), versus mass constraint M. The blue lines
demonstrate the energy values at the critical points, ®,,, for n = 0, %, 1, %,2. The red
lines represent the infimum of the energy values over all the blue lines.

the one with minimal energy sensitively depend on the mass constraint. In the sequel, we
show the existence of a global minima and that integral values of n the associated n-pulse

®,, is a local minima of I.
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Chapter 3

Existence Of the Minimizers

3.1 Existence of the Minimizers

In this section, we use classical tools from direct methods of Calculus of Variations to
establish the existence of a global minimizer the energy functional (1.2.3) subject to the
mass constraint (1.2.4) following the procedures in [Promislow and Zhang, 2013]. Recall

that the space of admissible functions is given by

a=fuenr ([ 2])] [ % b= v =00 (2) =0}

We consider a general form for the double-well potential W (u). In addition to the
assumptions earlier on, we suppose that W (u) is convex at infinity and satisfies some growth
conditions and b— = 0 for the sake of easiness in the calculations. Specifically, there exist

p>1,¢c_ >0,ug>0and S > 1 sufficiently large such that

W'u) <eulf,  |u[ =1,

(3.1.1)
Wiu) <e—,  |uf <1,
W (u) > 5, lu| > ug. (3.1.2)
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In the following lemma, we establish an estimate for H! norm of u € A which is utilized in

the proof of the H2-coercivity of the energy in Theorem 3.1.2.

For simplicity in the proof of existence of a global minima, for fixed ¢ > 0 and Loy € R we

introduce scaled Cahn-Hilliard free energy functional on a large bounded domain [O, %} eR

= 1
E :/ ° 5(8211)2 + W(u)dz.
0

The variational derivative of E with respect to L? inner product is

i—i = —0%u+ W' (u),

and note that the FCH free energy, I, can be written in terms of %—5

Lo )
= 1 /0F

_LfeE”
2| du

2
Lemma 3.1.1. Fiz e > 0. There exists a constant C > 0 such that

+C,

JE ||
2

< || —
s < |52

for all u € A.

Proof. Multiplying ‘;—5 by u and integrating by parts, we obtain

(3.1.3)

(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)



So,

L9 L
/ ) (Dzu)?dz = / ud—E — uW! (u)dz. (3.1.8)
0 0

Applying Young’s inequality to the first term on the right and adding ||u||2L2 to both

sides, we have

H> = 2 \ u
b (3.1.9)
=1I(u) + S22 uW' (u)dz
o 2
%
We need to get an upper bound for / h(z)dz where
0
39 ! 1.1
h(z) = U~ ulW' (u). (3.1.10)
From the assumption (3.1.2) there exists § and ug such that
W' (u) > B (u—ug) + W (ug) for wu > ug, (3.1.11)
W' (u) < Blug +u) + W'(—ug) for u< —uy. (3.1.12)
Multiplying (3.1.11) and (3.1.12) by —u and adding %u2 , we obtain
h(u) < (; - B) u? + Bugu — uW'(ug)  for u > ug, (3.1.13)
h(u) < (g — ﬁ) u? — Bugu — uW'(—ug) for u < —ug. (3.1.14)

The inequalities (3.1.13) and (3.1.14) imply that on R/[—ug, ug] h(u) is bounded above

for sufficiently large  because it is bounded by a function whose dominant term is quadratic
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with a negative coefficient for sufficiently large 3. Further, h(u) is bounded on [—uq), ug
since it is continuous. Hence, h(u) is bounded above for sufficiently large 3, in other words

there exists a constant C' > 0 independent of ¢ such that

Ly
/ ° h(2)dz < C. (3.1.15)
0
From this and (3.1.9) , the bound we aimed in (3.1.6) has been achieved. O

Theorem 3.1.2. Fixze > 0 and Lo, independent of €. The energy functional given in (1.2.3)
subject to the mass constraint (1.2.4) has a global minimizer over the admissible set A. In

other words, there exists at least one u € A satisfying

I(w) > I(u), (3.1.16)

for all w € A.

Proof. Since I(-) is well-defined on A and bounded below by 0, we define m := in fe 4l (w) >
0.

The key step in the proof of the existence of a minimizer is to show the coercivity of I(u)
over the admissible set A. More specifically we show that there exist constants g and 7 such

that

(1) < =+ Bllul 2. (3..17)

To establish this bound we pursue the preliminary step of bounding the variational derivative
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of E, given in (3.1.3). By the relation obtained from (3.1.4)

O
&2u = S0 W' (u).

Taking L2 norm of both sides and applying the triangle inequality, we obtain

oF
ou
oF

ou

% W (u)

’L2:’

< + HW/(U)HL%

< ‘

L2

and by the second relation in (3.1.5),

oFE

8§u 5

‘LQ = ' P W) 2

— @) + W (w2

Then, we add [[ul| ;1 on both sides of (3.1.20) and obtain

1
lull g2 < (21(w))2 + [[W(w)]| 2 + [lull 1 -

Here using the bound for H! norm of u constructed in Lemma 3.1.1, we have

D=

lull g2 < (21(w)2 + [[W(w)|| 2 + llull g1 ,

oE

ou

D=

< (21(u))

1
2 2
+c) |
L2

@l

and by the second relation in (2.1.24), we obtain

lull 2 < 1()2 + [W'(w)]| 2 + (21(u) + C)2
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Further, by the assumptions (3.1.1) we have

W (w)|[72 :52/||>1 |u|2pdz—|—c2_/ ul?dz,
U

|u|<1
Ly
§a2/ § ]u|2pdz+c2/ u|2dz,
0 lul<1 (3.1.24)
=211,112P 2 =2
<c ||uHL2p + .
90 12p 9 Lo
<c ”“HHl + it

Taking square root of both sides of (3.1.24) and by Lemma 3.1.1, we deduce that there exists

P
L2> ’

_ (1 4 (21(u))§) ,

a ¢ > 0 such that
oF
||W/(u)HL2 <c (1 + H(S_u

(3.1.25)

for p > 1. Inserting (3.1.25) in (3.1.23) we conclude that there exist constants «,y > 0 such

that

[Vt

lull y2 < o+ v (I (u)2, (3.1.26)

for p > 1 and this provides the H? coercivity of I (u).

The other essential part of the proof is showing the weak lower semi-continuity of the
energy. Since the energy functional is bounded below, there exists a minimizing sequence
{up i, € A and so,

I(ug,) — m. (3.1.27)

From the H? coercivity of I(u), the sequence {u} is bounded in H? and there exists a
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subsequence {ujk} and 7 € H? such that

ujkéﬂ weakly in HQ, (3.1.28)

and further, there exists a subsequence (ujk)n — @ in H! since H' cc H?. Before the
proof of weak lower semi-continuity of I(u), we need to verify that such « resides in A. First
observe that (9Zuj'k — 9,7 weakly in L? and aguj'k — 8211 in L2. From integration by parts,

for any w € H? <[O ﬁ]) we have

)€

/ " (02w) vdz = - / * gowdw + (D)ol yf . (3.1.29)
0 0

Lo
g

for any v € C*° ([0 ]) We substitute w = Ujy in (3.1.31).Since uj, € A the boundary

term is 0 and hence the equation (3.1.31) becomes

Lo Ly

e ) B 3 .
/0 <8Zu]~k> vdz = —/0 Oz uj, Ozv. (3.1.30)

On the other hand, we substitute w = @ € H? ([O ﬁ]) in (3.1.31) and obtain

'€

= L Ly
/ (aﬁﬂ) vdz = — / 0,100 + (9:1) v| F (3.1.31)
0 0

Lo
» e

for all v € C*° ([O ]) Consequently, since 8Zujk — 9,7 weakly in L? and agujk — 9%a

in L? and comparing the non-zero terms in (3.1.30) and (3.1.31) we conclude that

(0:1)v|,F =0, (3.1.32)
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for all v € C*° <[O, %]) This proves that d,u(0) = 8271(%) and hence, u € A.
For the weak lower-semi continuity of I(u), we utilize the weak convergence of the first

variation of F,

) 1)
% (Dujk’ujk’z> — 5;17: (Du,u,z) weakly in L2, (3.1.33)

which is established in Lemma 3.1.3.

Since weak convergence is lower semi continuous,

2 5 2 2 2
lim inf/ — (Duj , Uj ,z) dz > / — (Du,u,z) | dz. (3.1.34)
0 ou k k 0 ou
Considering u € A, it follows that
m < I(u) < liminf I(Ukj) =m. (3.1.35)
Thus, the energy, I, attains its minima at u. O

Lemma 3.1.3. If Uj, — U weakly in H% and strongly in L2, then the variational derivative

of F, given in (3.1.3), converges

OF oF
S0 (Duj-k,u]-k,z) — — (Da,u,z), (3.1.36)

weakly in L? ([O, %D
Proof. We already know that 8gujk — 020 in L? ([0, %D and it suffices to show that
w’ <u3k> — W/(u) in L2 ([0, %D By the mean value theorem and since , uj, are

uniformly bounded there exists fjk € L™ ([0 QD with ngkHLOO uniformly bounded,

'€
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independent of ¢, such that

Squaring both sides of (3.1.37) and integrating over [O, ﬁ] we obtain

3

W (v ) =] o < Wit =]

= HW//(gjk)HLoo Hu]k —u “LQ’ (3.1.38)

which converges to zero since W (fjk) is uniformly bounded in L*° <[O, %]) and uj, —

weakly in H2 ([0 ﬁ]) and also, uj, — U in L2 ([0, %D Thus, W/(ujk) converges W' (@)

'€

in 22 ([0,%2]). O
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Chapter 4

Modulational Stability of n-pulses

In this chapter, our main interest is the dynamical stability of a manifold of n-pulses given
as the graph of an n-pulse ansatz, ®,(z, p, A). These are related to the periodic multi-pulse
solutions, {®y|n € N}, constructed in Chapter 2 as a class of critical points to the free
energy I. The H 2—coercivity of the second variation of I about ®,(z,p, ), modulational
stability and dynamic evolution of the n-pulse ansatz with respect to the Ily-gradient flow

are addressed.

4.1 H?-coercivity of the second variation of

In this section, we prove the H?2-coercivity of the second variation of the free energy I
821 —

about n-pulse ansatz, 5—2(¢)n(z,p),5\). The second variation is defined from the Riesz
u

representation theorem

(4.1.1)

for any v € H*(R).

Definition 4.1.1. : Let D be a subspace of Hilbert space H. A linear operator A : D — H
satisfying
(Au,u) > pllul|?, YueD (4.1.2)
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for some p > 0 is called a coercive operator and p is called the coercivity constant.

4.1.1 Introduction: n-pulses
Recall that n-pulse ansatz defined on R is given in (2.2.5) as

n

Up 1= Zg_bh (z —pj) +b-, (4.1.3)

J=1

where ¢, := ¢, — b— and p = (p1,p2, ..., pn)t € R™ is the vector of pulse locations. The

admissible set of pulse locations is given by
P={peR":p;<pir1 for i=1,...,n and Ap >1}, (4.1.4)

where Ap = rrin |pi —pj| and I > 0 is sufficiently large so that the exponential terms e™ v a—l
7]

arising in the calculations are negligible. We extend u,, to be defined on all of R, and add

a correction term that reduces the size of residual. Recalling the definition of By ,, given in

(2.2.31), we introduce the corrected extension by
@, (2,p,A) = up + 6ABay, (4.1.5)

and let M;,, = {®,,(p, \)|p € P} be the n-dimensional manifold formed by these solutions.

Let X, (p) represent the tangent plane to the manifold M,,, X, (p) = span{a(}%p(‘p) 'p €
1

P C R"} = span{¢}, (z — pi)}7 ;.

Recall that in (2.2.4) we introduced the operator

La(p) =02 =W (uy), (4.1.6)
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acting on H?2 (R). The second variation of the free energy I about n-pulse ansatz is
— 2 — — —
L:= (af - W”((Dn)> - (azcbn - W’(@n)> W (®,). (4.1.7)
Taylor expanding (4.1.7) about u, up to @(52) terms we obtain

_ _ 2 _
L= (ﬁn — AW (1) By py + (9(52)) - (agun — W (un) + 6302Ba,,
— SAW" (un) By, + (9((52)> <W///(Un) + AW (u,) By + (4.1.8)

+ 0(52)).

Recalling that an’gm = By, we obtain

_ _ 2
L= (cn — AW (un)Bap + 0(52)) . (azun — W () + "
4.1.9

+OMBL, + o<52)) (W’”(un) + AW (1) By, + 0(52)>.

From the definition of u,,, partitioning the domain into sub-intervals about pulse locations as

fori=1,...,n we have up = ¢; + (’)(efva_e) on each sub-interval. We

Pi—11Pi PitPi4+1
2 7 2

Taylor expand 02u, — W (uy) about ¢y, (z — p;) and obtain 2w, — W (upn) = =W (¢p,(z —

pi))e_\/a_g +O(e 2V O‘—E) on [pi_;rpi : Pi+127i+1 since ¢y, solves the equation (1.2.6).
n
Summing up over all sub-intervals provides 92w, — W/ (uy) = — 3. W (¢p,(z — p;))e” Vv ot
1=1

Here we set § = e~V which will be our scaling value of the background parameter through

the rest of this thesis.

48



We insert this expansion into (4.1.9) and calculate the inner product

(Lv,v) = <(<Zn — 55\W"/(un)l§2,n + (9((52)>2+

4 (—5 ; W (b (z — pi)) + 5X61,n) W () + (4.1.10)

+ 0(52))v,v>,

for any v € H2. Here we must be careful when expanding the quadratic term and simplifying

further. Precisely, we have

(Lv,v) = <<Ziv — 55\Zn(WW(un)Bg7nv) — 5/_\W/"(un)l’>’27nznv> +
n
4 (-5 SO W (gn(z - pi)) + 67\81,71) W (g Yo+ (4.1.11)
=1

v,0) + 000 o] 22).

621
Further, for the proof of H2-coercivity of L and later to verify H?2-coercivity of ﬁ(qbn) =
u

E% we establish and utilize H?2-coercivity of the second variation of the inner scaling of FCH

free energy about n-pulse ansatz at the leading order so it is worth noting that

(Lv,v) = (Lrv,0) + O ||v]|%,). (4.1.12)

4.1.2 H?-coercivity of the second variation of I about n-pulse ansatz

For the stability analysis of the n-pulse ansatz purposes, we establish the H2-coercivity of

the second variation of I about n-pulse ansatz given in (4.1.10).

Theorem 4.1.2. Consider the inner scaling of FCH free energy, I, given in (1.2.3) and
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n-pulse ansatz given in (4.1.5). Then, the bilinear form induced by L given in (4.1.10) is

coercive, i.e, there exists a o > 0 independent of € such that

(Lo,0) > pllol o g, (41.13)

for all v € X;-(p).

The essential step in the proof of this theorem is the H?-coercivity of Zi over X;-(p).
Before we present the proof of Theorem 4.1.2 we establish the H2-coercivity of Z?L over

Xi (p).

Theorem 4.1.3. Consider the operator Ly, given in (2.2.4) on H? (R) which is the linearization

021
of (1.2.6) about n-pulses, uy, given in (2.2.5). Then, the bilinear form induced by 6—2(un) =
u

L, is coercive, i.e, there exists a fi > 0 independent of € such that
—2 -
(Tov.v) > ol 2 gy (11.14)

for allv € X;-(p).

The HZ2-coercivity of the operator Z%(p) arises from the L2-coercivity of Z?L(p). We

prove the L?-coercivity of Zi(p) in Lemma 4.1.4.

Lemma 4.1.4. There exists a fi > 0 such that

(Cap)o.) = fillo]s g, (4.1.15)

for allv € X;-(p).
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Proof. Tt suffices to show that there exists a fi > 0 such that

—2 -
(Ln(P) — R)v,v) =0, (4.1.16)
for all v € X;-(p). Zn2(p) —ji: H*(R) € L*(R) — H™2(R) is a self-adjoint operator on

L*(R). Let

blo, o] = ((Za(p) — v, ), (4.1.17)

be the bilinear form associated to Zn2(p) in the L2 inner product. We first find the operator
induced by the constrained bilinear form defined by the restriction of b[v,v] to XTJL- (p).
We introduce the orthogonal projection P : H*(R) — Xy (p) and II := I — P which has

the range X;-(p). The bilinear form constrained to X,-(p) induces the constrained operator

(La(p) — i1 = T(Ls(p) — )T : H2(R) N X;-(p) — TTH2(R). (4.1.18)

The operator H(Z?L(p) — [)II is self adjoint, so its spectrum is real-valued. If the point
spectra of H(Zi(p) — )1 is strictly positive for some values of i then we obtain (4.1.31).

It remains to show that the point spectra of H(Z?L(p) — )II is strictly positive. By
Proposition 5.3.1 in [Kapitula and Promislow, 2013|, number of the negative eigenvalues of

the constrained operator is given by the difference between the number of the negative

eigenvalues of the operator and the constrained matrix, D(fi),namely,

n((Ly,(p) — ) = n(Ly(p) — i) — n(D()), (4.1.19)
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where n represents the count of the negative eigenvalues and D(f1) is given as

- —2 \—1
Dij(f) = (&' (2 = pi), (Ln(P) — 1) ¢/ (2 — pj))- (4.1.20)
We first calculate the number of negative eigenvalues of the operator Z?L(p) — [ by directly
examining the spectrum of the operator.
Since u; = ¢p,(z — p1) and ¢, is translation invariant, the linearized operator £ about
¢5, and L£1(p) are the same operators. Hence, we have that o(£) = o(£1(p)). On the other

hand, the essential spectrum of £ is

oess(L1) = {—k> —a_ : ke R}. (4.1.21)

Further, oess(Ln(p)) = 0ess(L£1(p)) by the classical Weyl essential spectrum theorem since
the operators have the same limiting states, lim;—4ooup. (See Chapter 3 in [Kapitula and Promislow, 2013
On the other hand, to each point spectrum A, of £1(p), there are associated n eigenvalues
of Ln(p), {)‘k‘,j}?:l such that ; :rr117ax7n [\ — g j| decays exponentially with growing pulse
separation.(See [Sandstede, 1998|.)

Since Ly (p) is a self-adjoint operator, by the spectral mapping theorem U(Zi(p)) =
(o(£n(p)))?. Recall that in Remark 2.2.1 we present that the eigenvalues of £, has an order
A < 0= X < X < .... By the choice of i > 0, the eigenvalues of Zi(p) associated to
the eigenvalue of £1(p) at A\; = 0 are shifted to the left by fi(See Figure 4.1). Choosing
it > 0 but less than the minimum of )\(2) and /\% we see that the eigenvalues of Zi(p) — [i are
positive except n eigenvalues of £, (p) associated to A; = 0, {)\173}?:1.

We conclude that

=2

n(L,(p) — ft) = n. (4.1.22)

52



ess(L) ess(L2)

A2 1=0 Ao 5 X

=%
Il
o

(a) Spectrum of Ly (p) (b) Spectrum of Z%(p)

Figure 4.1: Figure (a) is a depiction for the spectrum of L£,(p). In the descending order
Ao > 0= A1 > )Xo > ... (red disks) are the eigenvalues of £1(p) = £. L, (p) has n associated
eigenvalues(black crosses) to each localized eigenvalue of £1(p) such that |\, — Mejli=1,..n
decays exponentially with growing pulse separation. Figure (b) demonstrates the spectrum

for Zi(p).

The next step is calculating the number of negative eigenvalues of the constrained matrix,
n(D(f1)). The eigenfunctions of Zi(p) — fi corresponding to the eigenvalues {)\% iYi— are in
the form ¢ ; = Z?:l Bij#,(2—p;) up to exponentially small terms. (See [Sandstede, 2001].)

Using the definition of D we have the identity
- 2
> Dij(in)Bi = (P13, (L () — 1) 6},(2 — pi))- (4.1.23)

J=1

-1

Since inverse of a self-adjoint operator is also self-adjoint, transposing (Zi(p) — [1)~" onto
1, provides
- U1
Dij(f1)Bij = <A—Z~ (2 — pi)>. (4.1.24)
j=1 10 — M
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Then, inserting the formula of 11 ; we obtain

d > =1 8ij9),(2 — p))
- =1
: )
j=1 (4.1.25)
= L + exp. small terms.
Ay — [

Let A be the matrix of the coefficients 3;; of eigenfunction ¢1 ; which is comprised of the

vector of columns B; = (81, Bi2, - - -, Bin)’ . Then, by (4.1.25) we have

B 1
Ai— B

DB; B;, (4.1.26)

up to exponentially small terms. Hence, we conclude that € (D) and there exists

Ali— [
a value of i € R for which
min Ag; >p> max Aj; V 1=1,...,n, (4.1.27)
i=l,.n 2 i=l,m
that guarantees
n(D(f1)) = n. (4.1.28)

If we insert (4.1.22) and (4.1.28) in (4.1.19), we obtain the desired result as

n((£,(p) — ) =0, (4.1.29)

which implies the L? coercivity of Zi(p), i.e. there exists a ft > 0 independent of domain

size such that

_2 -
(CoP)o,v) = vl (4.1.30)
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for all v € X;-(p). O

Corollary 4.1.5. There exists a ji; > 0, independent of the domain size, such that

=2 -
(Lo(P)v,v) > jin [[0]1%2 (4.1.31)

for allv € X;-(p).
Proof. We already proved the L2-coercivity of the bilinear form induced by Zi(p) in Lemma

4.1.4. We utilize this result to establish the H?2-coercivity of the bilinear form induced by

Zi(p). By the L?-coercivity of Z?L, there exists a constant i > 0 such that

= 2
<£n1}, £n’U> > [ HUHL2(R) ) (4132)
for all v € X;,(p). Expanding the inner product, we fix 6 € (0,1) and write

<va,ZnU> — 9<Zn’U,ZnU> + (]. - 0) <va,znv>,
) (4.1.33)
> e/R (920)" + P (%) v+ QuPdz + (1 - 0)i o]

where P := —2W"(uy,) and Q := (W (uy))?. Applying the Holder’s inequality to the term

with P, ||v(9§vHL1 < HUHL2 H822UHL2 we obtain

8311

_ 2 3
(Zav, Lav) 2 0 (( 2~ I1Plee [09:0l 1 = Q) oo Hvuiz) + (=0l

2
> 0620 = 01Plzo0 0:0ll 2 [l 2 + (1 = 0)1 = 011 o) 025

(4.1.34)
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We apply Young’s inequality to the second term on the second line of (4.1.34),

0 N
o[}y = S IPIBoo I2 + (1= ) — 01l o) o]z

2 0
‘L2_§‘

o (a-0n- eu@uLoo——r|PHLoo) o2,

(4.1.35)
0
Choosing #% = min {5, ((1 — 0 —0|Q| foo — g HPH2L00> } independent of domain size we

obtain

(Cnv, Lyv) > b5 (‘

2 P
of ,+vii22). .
= 0 0[5

]

Proof of Theorem 4.1.2. We show the H?2-coercivity of the second variation of I about

n-pulse ansatz using bilinear form given in (4.1.11).

<]Lv, v> = <(Zi’U - 55\Zn(W///(Un)BQ’nU) - 55\W/"(un)l5’2,nznv>~l—

n (4.1.37)
— (=8 DS W (6n(= = pi)) + SABL )W (wn)u, 0) + O vl 2)
=1
(Lv,v) > <Ziv, v> — 55\<zn(W”/(un)Bg7nv),v> - 55\<W”/(un)l32,nznv, v>—|—
_ 6<W’"(un) zn: W (ép,(= — pi))o, v> . —5X<W"’(un)61mv, v>+ (4.1.38)
=1
O [[v]13,2)-

From Corollary 4.1.5, there exists a fi; > 0 independent of € such that (Ziv, v) > fiq HUH%{?
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and hence
(Lo,v) > fir [[o) %2 = X (W (wn) Ba ), ) — SX(W"" (wn) Bo,n Lt v ) +
n
= 3(W" () 3 W (012 = pi))v,v) = MW () Brgw,v)+ (4.1.39)
=1
+ 08 [v]13;2).

By the smoothness of the functions W over bounded functions and the smoothness of By j,
and By, and by the definition of L, we get the following estimates for the inner products

in (4.1.39). Since Ly, is self-adjoint, transposing that onto v we have

<Zn<W”’<un)Bz,nv),v> = <W”/(un)5’27nv,znv>
= HWW(UTL)BZ,nUan”Ll (4.1.40)

< W wn)l| oo B2l poo [[0£nv]| 11

Then, we apply the Holder’s inequality to the term with L' norm

<Zn(W”/(Un)BZ”U)’U> < HW///(un)HLoo ||627n }LOO HZnU”LQ ”UHLZ . (4.1.41)

Here we use the fact that there exists a constant ¢ > 0 such that Han||L2 < c||flly2 for

all f € H2(R) and get

(Lo (W (un)Byv). v) < e[ (un) | o0 1Bzl oo el 2 el . (4.1.42)

2
<01 o]

for some 61 > 0. With a similar calculation, we get an upper bound for the second inner
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product,

<W”/(U/n)627n2nv7’l}> = HW”/(un)Bz’nZTLUQHL].

< W un)l| oo || B2

o ]

< HW///(un)HLOO ||627n (4.1.43)

| oo [[£av][ g2 10l 2

< W )| o 1Bl o [1Eno 2

2
< by [o]%5 .

for some fo > 0. For the remaining two inner products, there exist constants 3 > 0 and

64 > 0 such that

n
<W’”(un) > WGz — pi)v, v> < 03 ||U||22 : (4.1.44)
=1
and
<Wm(un)31,nv,v> A (4.1.45)

Inserting the estimates (4.1.42), (4.1.43), (4.1.44) and (4.1.45) in (4.1.39) provides us

(Lo, v) > iy [[v]|5,2 — 0X01 0] 7,9 — 5A02 [[v]1%,9 +
a a a (4.1.46)
— 603 |[v

) — 5304|025 + O ull%0).

2 2
I I

o . 6T —
Choosing the jig = max{Aq, Ao, 03, \04}, we obtain the H2-coercivity of 5—2(<I>n) as
u

(Lo, v) > fix [|v]| 32 = O [v]3,2 - (4.1.47)

We also show the H?-coercivity of the Zi(p) restricted to the bounded domain |0, %]
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that is an essential step in the verification of the assumption (H3) in Section 4.2.

Corollary 4.1.6. Let the operator Zn’b(p) acting on H? ([0, %D be the restriction of the

Ln(p) given in (2.2.4) to the large bounded domain [0 ﬁ] Then, the bilinear form induced

' £

by Zi,b(l’) is coercive, i.e, there exists a p* > 0 independent of € such that

(Lo p(P)v,v) 2 u*nvuﬂzqo L]y (4.1.48)

e
for allv € Y, (p).

Proof. Let © € Y/ (p) have a compact support. Let v € H2(R) be the extension of © to R

so that we have

(Lo y(p)v,v) = (La(p)v, v), (4.1.49)

for all v € XTJL-(p). By Corollary 4.1.5, there exists a ji; such that
—2 —2 ~
(22 (). 0) = (). o) = ol 2 g (4.150)

'€

for all v € Xﬁ(p). Since H2 <[O ﬁ]) with compact support is dense in H2 ([0 ﬁ]) the

result follows. O

4.1.3 H?-coercivity of L2

For the stability of the periodic multi-pulse solutions, ®,,, given in (2.2.37) of the free energy
I, the H?%-coercivity of the second variation of I about ®,, at leading order is established
utilizing the H?2-coercivity of the operator Zi. See Appendix for the derivation of second

variation of I about ®,, at leading order.
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Theorem 4.1.7. Consider the operator Ly, given in (2.2.27) on H? ([O QD which 1s the

€

linearization of (1.2.6) about periodic multi-pulse solutions, ¢n, at the leading order. Then,

2

the bilinear form induced by ﬁ(un) = E% is coercive, i.e, there exists a u* > 0 independent
u

of € such that

(L2v,0) > p*||v (4.1.51)

||H2(R))
for allv € X;-(p).

Lemma 4.1.8. There exist smooth functions (p,n) : H> — RN x H? satisfying p(0) = p«

such that for all ||v O(1) sufficiently small

||H2 =

Bu + v = Bu(z,pN) + (o), (4.152)
where n(v) € X;-(p). Further, there exists o > 0 constant such that

||p(v) - p*HL2 <a ||U||H2, (4.1.53)

where v € X;-(p).

Proof. Introduce F = (Fy, ..., Fy)! where

fori =1,...,nand (-,-) is L? inner product. F; = 0 for each i since n(v) = v4+®y,(p)—Pp(p) €
X;-(p). Indeed, Fj for each 7 attains its minima for some values of v on the compact set of
p € P C R". Assume that F' attains its minima at p(vg) and so, p = p(vg) is one solution

to F(v,p) = 0 for v = vg. We apply the Implicit Function Theorem to F'(v,p). The ij th
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entry of the gradient Vp I is

(0D,
<—< a(.p),d)/h(z—pi)H
bi i=J,
pr— @n_an 7_ i - Z ;
(VPF (vo,pwo))ij Hlot L) (v9.p(0)
0Bn(P) . . o,
\(Wﬂﬁh(z’ i) (vo:p(vg))’ i # J,
(=00 = nilo(O), 6hz —mileo+ _
=+ =gz = pilo)),
O’ Z 7& j7
\ (4.1.55)

where h = vy + ®, — ®p(p(vg)) is small with [l 2 = O(d). By a proper choice of far

apart pulse locations p € P, ¢/(z — p;) satisfy

Kk for 1=,
(¢3,(z — pi), &, (= — pj)2 = (4.1.56)

0 for i#j,

for constant £ > 0. From this relation, we write the gradient as

Vol = —rl + O(9). 4.1.57
p (vo:p(v0) K () ( )

We see that VpF (v0.p(v0) has non-zero determinant, and from this the Implicit Function
v0,PLvQ
Theorem implies that there exists a neighborhood (vg, p(vg)) and a unique function p(v)

such that F(p(v),v) = 0. Further, by the Implicit Function Theorem p is smooth since F;
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is smooth. Thus, the Taylor expansion of p about v = 0 yields

op
p(r) = P(0) + {2 (0),) 2 + O(oll32) (1159
From this, we obtain
op
() - ()] < DO, ol ol <Ol (4159)
for a constant 6 > 0. O

Proof of Theorem 4.1.7. We prove the H?-coercivity of E%(p) using H?2-coercivity of
Zi(p) Expanding the bilinear form induced by £2(p) in terms of the bilinear form induced
by Zi (p) and utilizing H? coercivity of the bilinear form induced by Zi(p) from Corollary
4.1.5, we obtain a lower bound for the first term in the expansion,

(L2 (p)v,v) = (La(p)v,0) + (L2(P) — Lo (P))v, ),
(4.1.60)

> fin [0]2,2 + (L2(p) — Zn(p))v, v),

for all v € X;-(p) with |v][ ;2 < 1. Hence, it suffices to show that the remaining term in

the expansion (4.1.60) is small. We attack this term splitting it into

(L2(p) = Ly (p))v,v) = (L2(D) — Lo (P*))v,0) + (L0 (p*) — Lo (p))v,v).  (4.1.61)
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Let uy := up(z,p*).

(Z20) ~Zate)) v = (22— W) 0 — (32 = ")) o,

= (8211) - 63 (W”(u;';)) v — 28§UW”(UZ) — 26Z082(W"(u;:)) + (I/V”(u;kl))2 v) ,

— (020 = 02 (W (wn)) v = 20200 (uy) = 20,00 (W (un)) + (W (1)) )

(4.1.62)
Define
Ao(z.p) = (W (un))? = 02 (W (un))
Ay (z,p) == =20, (W"(up)) , (4.1.63)
Ag(z,p) = —20" (up),
which are smooth functions in z. Then,
(£3(p") = Z0(p)) v = (Ao(=.P") = Ao (= P) v
+ (A1(z,p*)0:0 — A1(2,p)) Oz, (4.1.64)

+ (As(z,0)020 — As(z,p)) v,
and so, by the Mean Value Theorem for several variable functions, there exist &gy, &1,&9 €

[p(0), p(v)] so that

Ly
(Zap") —Za() v.v) < /0 © (Ao(2,p) = Ao(2,p") v + (A1(2,) — A1(z,p")) vd-v

+ (Ag(z,p) — Ag(z, p)) vd2udz,
Lo
< [T WpAne0lIp(e) — 02 + [Tpr(elip(o) — p°fodo

+ |VpA2(&)|p(v) — p*[vd?vdz,
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Ly
< HVpAo(&))HLoo/O " Ip(v) — p*oldz+
Ly
+ HVPA1<§1)||L00/O : lp(v) —p*|v2dz+ (4.1.65)
Ly
+ HVpA2(§2)||Loo/O " Ip(v) — p*vd2udz.

Utilizing the bound for |p(v) — p*| in Lemma 4.1.8,

Ly
( (ZZ(P) —Zi(p*)> v,v) < [v]] g2 (”vaO(fO)HLOO/O v2d
Ly
+ vaAl(gl)HLoo/O ) voyvdz+ (4.1.66)

Loy
+ HVPA2(£2)HLOO/O ) v@fvdz).

Now let C' = félfgg){”Vij(fj)HLoo}-

—=2 =2, %
(220~ Z2067) ) < Calolge (ol + 10:0l 2 ol + 10:0l 2 ol )

3
< Cillvll52-
(4.1.67)

On the other hand, a similar calculation gives a bound for the second term in (4.1.60)

~

() - Bope) = [ (- (00) - (02— w7 ) s

0

?2

sé (Ao(2) — Ao(z:p*) 02 + (A1(z) — Ay (2, p")) e,

t~

+ (Ag(2) — Ag(z,p")) v0Zvdz

2
< Colo)22.-
(4.1.68)
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Hence, inserting (4.1.67) and (4.1.68) in (4.1.61),
c2(p) - L2 > 4 |[v]3,5 — Cs ||v]|2 4.1.69
(L2(0) = Z2(B))or0) = —C [0l2,5 — Ca ol (4.1.69)

and (4.1.69) in (4.1.60) we obtain the H2-coercivity

(L2 (p)v.v) = fir vl 2 + (L2(P) — Ty (p))o,v),
(4.1.70)

2 3
> allolly — C1 ol

4.2 Modulational Stability of n-Pulses

We establish the modulational stability for n-pulse ansatz, ®;,, with respect to the Il
gradient flow of the inner scaling of the FCH energy given (1.2.3) with an application
of Theorem 2.1 in |[Promislow, 2002| where modulational stability of manifolds of quasi-
stationary solutions to dispersive equations is established.

Introduce the ITy-gradient flow of the inner scaling of the FCH free energy, I, given (1.2.3)

oI
up = —Hoﬁ(u), (4.2.1)

where g—i is the first variational derivative of I with respect to L2 inner product and I is

the mass preserving L2 projection

Lo
Ty f ;:f—LiQ/O " f(2)dz. (4.2.2)
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Consider the family of multi-pulse critical points {®;, : n € N} of the free energy I and
the n-dimensional manifold My, = {®,(p, \)|p € P} where P C R" defined in (4.1.4).

For the modulational stability of the n-pulses {®, : n € N}, we apply renormalization
techniques from [Promislow, 2002]. We are interested in the evolution of the solutions which
lie in a neighborhood of the manifold M,, which consists of the n-pulse solutions ®,(p, \)

for p € P. Introduce

u(z,t) = @ (2, p, A) + w(2). (4.2.3)

We reduce the dynamics of (4.2.1) near the manifold M, to a weakly non-linear flow which
is predominantly controlled by the terms that are linear in their deviation, w, of U from
My, and non-linear in the pulse evolution p = p(t) about ®,(p, \). Taylor expanding the

flow (4.2.1) about ®,(p, \) we obtain

_ Hog—i(U(z, t)) = —Iy (g—i@n(p, X))) L (p)w + N (w), (4.2.4)

where £, (p) given (2.2.4) is the linearization about u, and A represents the non-linear
terms. The linearization about wu,, will be weakly time dependent through the slow evolution
of the pulse positions, p, and the background state A\. The n + 1 parameters form the
coordinates of the slow n-pulse manifold, one of which is determined by the mass constraint.

In Theorem 2.1 of [Promislow, 2002|, there are some assumptions on the linearized
operator and the manifold of the steady-state solutions to the gradient flow. Here we present
those assumptions adapting to the linearized operator —HOZi(p) and the manifold M,, but
defer the verification of each assumption to the proof of Theorem 4.2.1.

(HO) The manifold M,, is quasi-steady, i.e, for § > 0, the scaling of A, there exists M > 0
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such that

ol — <
—Ilp— (P < M. 4.2.
|-ty @uto )| <0 (4.25)

(H1) The spectrum of each operator —HOZi(p) consists of a stable part o5 C {A\A <
k
—kg} for some kg > 0 and a slow part o9 C {A||A| < coe_?o} for some cq, kg > 0.

(H2) Each operator —HOZi(p) generates a Cp semigroup Sp which satisfies

[Sp(t)ul 2 < Me™" Jull 2, (4.2.6)

forallt >0,uey, = Xﬁ- (p)NH? ([0, %} ), where X,JL- (p) is perpendicular to the tangent
plane X, (p) of ®,(p, A).

Let Y}, represent the slow space of the linearized operator —H()Zi(p)7 the n+1 dimensional
space associated with small eigenvalues of —HOZi (p)-

Recall that X, (p) = span{%p(m :p € P CR"} = span{¢} (z — p;)}—; is the tangent
]

plane to the manifold M,,. Introduce X, 11(p) = span{{gzﬁ/h(z —pi) iU {Bgm}} and

Yy (p) =X,y (p) N H? <[0, ED : (4.2.7)

where Xé]rl(p) is the orthogonal space to X, 11(p).

(H3) Y}, is well-approximated by X, 11(p). In [Promislow, 2002|, this assumption is
utilized to establish the coercivity of the linearized operator. Instead, here we will establish
the H2-coercivity of HOZi(p) over the space Y, ;(p) which follows from the H 2_coercivity
of Zi,b(P) over Y (p). Recall that H?-coercivity of Zi,b(P) over Y, (p) was established in
Corollary 4.1.6 using Corollary 4.1.5.

We assume that the adjoint of the elements in Y, and X,,11(p) satisfy the following
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normalization condition

(Gl = Lo (4.2.8)
Zaj L.

0 for i+ j.

With this condition, the adjoint of X, 1(p) is defined as

X;[Hl(p)::Xn(p)Uspan{l}. (4.2.9)

(H4) The normalized adjoint eigenvectors {wjlr, s w;g 417} of the space Y), satisfy

%‘T(P)HHQ + HV%@(D)HHQ) < M, (4.2.10)

~max (’
1=1,....n

pEeP

for some M.

Theorem 4.2.1. Fiz a pulse separation value { = O(e™1) > 0in P C R™. Then, there exists
a manifold My, = {®,(p, \)|p € P} satisfying the hypothesis (H0)-(H/) for some constants
M and k and there exist eg, My for € € [0,eq] such that for all initial data u(z,ty) = ug(2)

2

within e2-neighborhood in H2-norm of M, whose mass lies within §-neighborhood of the

mass of ®p(p, ), the solution u of (4.2.1) can be decomposed as

u(z) = ®n(2,p(t), A) +w(z,1), (4.2.11)
where the deviation w €'Y, {(p(t)) satisfies

(-, )]l o < Mo(e?e Fst=10) 16)  for t >4, (4.2.12)

The pulse locations p(t) = (p1,...,pn)t may be chosen to lie on a smooth curve in P. After
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an initial transient T" ~ m, that is, for t >ty + T*, the evolution of the pulse locations

18 governed to leading order by the closed system

V= { Ty @a(p, V), 04z —p) ) + OW)  for 1210+ T (4213

H hllz2
fori=1,....,n

Proof. Here we verify that the M, and the linearized operator —HOZi(p) satisfy the
hypothesis (H0)-(H4) and a direct application of Theorem 2.1 from [Promislow, 2002| provides
the result.

(HO) We prove that the manifold M,, is quasi-steady, namely,

H o1 < M, (4.2.14)

tog @a(o. )|

for some M > 0. Recall that ®,(p,\) = up + (55\15’2,n where u, = Z;-lzl o (z — pj) +b—

with Eh = ¢p, — b—. The Taylor series expansion of %% about wuy, provides

5 @n(0.2)) = (22 = W/ (@a(p))) (22Fn(p) ~ W' (@ ()

(ag W + 55\827,1) <3§(un +0ABy ) — W (un + 5%’2,”))

(4.2.15)

(ag — W () — 5XB2,nw’”(un)) (agun + A2 (By.p)+

() — OAB W () — 502 (BT 1) ).

Since the tail-tail interaction of the adjacent pulses dominates the value of wu,, on each

. - + . ._|_ .
window |2 % pl,pz 229@+1]

we can write up = ¢;_1 + ¢; + 5@4_1 where ¢; = ¢p,(2 — p;) and

i = ¢; — b—. Letting ¢a; := ¢;_1 + ¢;1 and Taylor expanding 5—(<I>n(p, \)) about ¢; we
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obtain

= (@a(p, ) = (02 = W (@u(p.N)) (2P, ) = W' (@alp, V)

—w <¢i + o + 5X827n> (4.2.16)

+ N2 By = W/(1) = W(81) (6 + 5\Ba.s) ).

Letting £; = 07 — W (¢;) and taking into account that ol =W (¢;), g—i(an(p, \)) can be

written as

ol —

= (@u(p, )

> <£i - W" () <¢Ai + 55\15’2,n>> <£i¢Az’ + 55\5il5’2,n>

N
I
—

(L5 = W"(@0)0ni ) Litai + ON(Ls = W (61)0ni ) LiBant  (4.2.17)

Il

I
1L

— AW (¢3)Ban Lida; + O(62).

Applying —IIj onto (4.2.17) and recalling the definition of By ,, given in (2.2.12) we rearrange
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the terms

n

5 EY 3\ " 3\ "
Ty (@, 1) = — Ty ((zi — W(0)6ni) Lidai + ON(L; = W (6,)6; ) LiBan+
i=1
— OAW"(63) B nLidai + 0(52))
= =31 (LFoni — W (0:)oaiLioni + O — AW (6)6 B+
=1

— AW (¢;)Ba n Lida; + 0(52)) :

(4.2.18)
Since Il onto any constant is 0, IIpdA = 0 and hence,
ol — 7_n 2. "y . 3 " B
_H()%((I)n(pa )‘)) = Z _HO‘Ci ¢Az + HO (W (¢z)¢Az£z¢Az) + 5)‘1_[0 (W (¢z)¢Az 1,n) +
1=1
+ 0Ny (W"(61)BanLidai) ) + O(67)
(4.2.19)

Then, we calculate the H 2_norm of (4.3.5). By the triangle inequality we have

oS @a(p V)| <

H n
H2 5

5] P, "
H m [Tlo (W™ (¢i)pniLlidni)|| g2 +

(H—Hoﬁz%m

+0X || Ty (W (¢i)pniBin) || 2 +

+ 0N [Tl (W™ (64)B2nLid i) HHz) +0(6%).
(4.2.20)

Since Il is a H 2_orthogonal projection, for any function u € H2 we have the estimate

IMoull o < flull o (4.2.21)

71



and hence the (4.2.20) becomes

n

Y (

5[

gt W (¢i)bailionill g2 +

+ O ||(W"(6i)paiBrn) || 2 + (4.2.22)

+ X || (W (6:) Ban Lid i) HHz) +0(5%).

We know that the functions B;,, € H? for j = 1,2 and by the smoothness of W, for k < 4
there exists an ay > 0 such that HW(k)(un)HLOO < «aqp. Here the value of a1 depends upon

the uniform bound on |juy||;cc. Utilizing all these facts we get upper bound for the H?

norm of -TTg 8L (@,,(p)).

szn:(\

+ 0N [[W(0i)| poo [|(02iB1n) [| 72 +

ol
- @ )|

] e W (di)|| oo lloaiLidaill g2 +

AW (00)]| e ||<82,ncz-¢m>||ﬂ2) L o)

{

+odar || (6aiBin)|| g2 +

(4.2.23)
<

NE

i 98i|| o T o1 ldnilionill g2 +

~.
l

T %0 || (BonLion:) ||H2) L o).
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Here we use the fact that the product of two H?2 functions lies in H 2(See Appendix. ),

ol — , - -
H_HOE((D"(I)’ /\))HH2 < Z(‘ LI 2 Falloail g2 1€idaill g2 +
1=1
N 4.2.24
+ 82an ol ga [ Buall 2 + (4:2.24)
#0301 [Ban 2 [1i0ilg2 ) + O
We also use the fact that ‘ ZZfHHQ < c1 || f]l 242k for some ¢1 > 0 and obtain
ol — - &
—Ho s (®n(p, 1)) - <Y leadll g6 + a1 lloaill g2 1Lidaill 2 +
=1
N 4.2.25
+ 0 [ oaill g2 1B g2 + ( )
830 [[Ba g2 0l 12 ) + OGP
On the window pi_{rpi, Pi+12?i+1} , wWe write
OA;i = Pmaxe v a=(z=pi-1) + Pmaze Vv a_(pH_l—z)’ (42'26)
where ¢pqz is the amplitude of the pulse. Using this form of ¢a;, we obtain [|¢a|| ;1 = O(0)

. + . .+ . .
for k = 1,2,... on [pz % pl,pl 12%+1] Hence, we conclude that there exists a constant

M > 0 such that

H o1 < M5, (4.2.27)

Tl @)

(H1) The spectrum of each operator —HOZi(p) consists of a stable part o5 and a slow

part og. The spectrum of Z,i(p) has been examined in detail in the proof of Lemma (4.1.4).

73



It can be easily seen that J(—HOZi(p)) = 0(—H02i(p)ﬂo) U {0} and further

=2
o(—IloLy,(p)p) = o5 U 0y, (4.2.28)

k,
where o5 C {AMA < —ks} for some ks > 0 and o C {A||A\| < coe_g

} for some kg, co > 0
and o( consists of n + 1 eigenvalues.

(H2) Each operator —HOZi(p) generates a Cp semigroup Sy which satisfies
o6l 2 < e full (4220

forallt > 0, u € er_H(p). This estimate on the semigroup is a result of Priiss-Gearhart
Theoremwhich states that the boundedness of a Cj-semigroup generated by an operator is
from boundedness of the resolvent on the right half plane(See |Gearhart, 1978] and

[Priiss, 1984]). To complete the verification, we need to show the boundedness of the

resolvent of the constrained operator over the space X+

n Jr1(p) because the semigroup is

constrained to the space X#Jrl(p). Let 1I, = I — P, be the orthogonal projection where
Py : H*(R) — X, 11(p). Introduce the constrained operator Hp(—HOZT%(p)HO)Hp that is
generating the constrained semigroup onto X T% 1 (p). Since we already obtained the spectrum
of —HOZi(p)HO, it is easy to see that , U(Hp(—HOZ?L(p)HO)Hp) = a((—HOZi(p)HO)) \ 09
and hence

U(Hp(—HOZi(p)HO)Hp) C {AMA < —ks}. On the other hand, Hp(—HOZi(p)HO)Hp is a

self-adjoint operator and so, ¢ € R(Hp(—HOZi(p)HO)Hp) ={z ¢ C|(Hp(—HOZ,21(p)HO)Hp —
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() is bijective} and \ € J(Hp(—HOZTQL(p)HO)Hp),
—9 —1 1
| (e e, ) | <sw - (1.2:30

(See [Kato, 1976]).
(H3) As mentioned earlier, here we establish the H?-coercivity of HOZi(p) over the space
(p) which is a result of the H?-coercivity of Z?L (p) over X;-(p). Recall from Corollary

1
Xn+1

(4.1.5) that there exists a ji; > 0, independent of domain size, such that

—2 -
(Ln(P)v,v) > fin |[v]7,2

for all v € X;-(p).

Let v € X;-(p). Then, w = yv € XT%Jrl(p) C X;-(p) and

(Mo Ly (p)w, w) = (L (p)Tgo, Tyv)
— (L2 (p)Tlgv, T3v)
— (L2 (p)Tgv, Tgo)

—2 -
— (Lo (p)w,w) > fir [wlls

which proves the H?-coercivity of Hozgl(p) over the space X f{_H(p).
(H4) The normalized adjoint eigenvectors {11, ..., ¥, 11} of the space X, +1(p) which are

same with the normalized eigenvectors of the space since Zi(p) is self-adjoint satisfy

max ([0 2 + || VEei)|| ) < M. (4.2.31)

i=1,...,n
pEP
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for some M since gb%(z — p;j) € C"™ for some n. Analyticity of the eigenvectors of an
unbounded, self-adjoint operator with compact resolvent is proved in details in [Kriegl et al., 2011].
Following the verification of these conditions required in the main theorem in [Promislow, 2002],

we apply the theorem to problem 4.2.1 and obtain the desired result. O
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4.3 Pulse Dynamics

In this section, we study the ODE’s given in (4.2.13) to understand the evolution of an initial
data given in a neighborhood of the manifold M,,.

Reformulating the evolution equations of pulse locations given in [Promislow, 2002| we
obtain n + 1 evolution equations, n equations for the pulse locations and an equation for the

background parameter \,

Wy

P = (Mo (n(p, V), 2 Oz = i) + O(), (4.3.1)
for i = 1,...,n and the evolution of background parameter
_ ol —
N = (~Tly = (®u(p, V), 1), (4.3.2)

where 1 is the adjoint eigenfunction corresponding to B ,, which is one of the n+1 eigenfunctions

of —Ip$L (B (p, N)).
Recall that the n-pulse ansatz is given as @, (p,\)) = uy + (ﬁBgm with uy, defined in

(2.2.5). Note that the mass of an n-pulse configuration is

b_ Lo

L
M = nMy, + +OA2
£

2 )

(4.3.3)

Ex

Ly
where M), = / : (¢p, — b—)dz is the mass of the homoclinic solution.
0

Remark 4.3.1. We assume that n is a fixed number, independent of ¢, and |p;11 — p;| > ¢

for all e = 1,...,n. These choices provide us ¢ := e VIl <« 2P for all .
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Let the initial mass of the polymer added to the solvent be

b_L _
My = nM;, + TQ + My, (4.3.4)
where M is the excess mass remaining after the formation of n-pulses. Evaluating the inner
product given in (4.3.1) and (4.3.2) we would like to construct explicit ODE’s for the pulse

locations and the background state A to study their evolutions. Inserting the expression

obtained in (4.2.17) in the inner product in (4.3.1) we have

v = < ~ 1y ((.c@- — W(6:)05) Lidni + AL = W (60)6; ) LiBBan+
(4.3.5)

\ 11 1 /
— 0AW (¢i)82,n£i¢Ai+o<52))a e ¢i>-
H¢2‘HL2

Remark 4.3.2. Since Il is self-adjoint, we project that onto gb; and obtain that Ilye,” =

¢ + O(0). Hence, the higher order terms in p; are O(02).

i = —< (ﬁi - W’"(@)cbm)ﬁmm +6A (ﬁi - W///<¢i)¢Ai>£iB2,n+
1

— T ¢;> + O(6%)

ol

= —<£%¢>m — W (i) paiLidai + INLZBo y — AW (¢7)dpi LiBon+

— SAW" (¢)Ban Lidai,
(4.3.6)

_ 1
— AW (¢;)Ban Lid A #¢2> +0(5?).
9|72
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Here since ,C% is self-adjoint and gb; € ker(L;), we have (ﬁ?(% ¢;> —0.

A\ 3 1
h= _< = W7 (@1)dnilidni — AW (di)oailiBan — AW (6i)BynLidnis — ¢2>

¢§HL2
+ O((Se—\/ﬁg)
= <W’”(<Z5i)¢m£i¢m,¢§> + 55\<W///(¢i>(¢Ai£iB2,n + BonLitas). ¢/1H2 ¢;>
ill L2
+ O(8%).
(4.3.7)

Transposing W (¢;) to the right of the inner products and writing W (¢;)¢, = (W"(¢;))-,

we obtain
1 - 1
Pi=1s <¢A¢£i¢m, (W"(¢1))., > A <¢Ai£i62,n + BanLidni, (W'(61))., >
IR o _ 9] 72 . -~
A B
+0(8%).
(4.3.8)
For the calculation of A we use the explicit formula of £;,
A= {(oniLioni (W"(1)), )
(4.3.9)

B <¢Ai¢l&” (W//(¢i))z> - <W”(¢z‘)¢2m'a (W//(¢i))z>-

Taking W (¢;) to the other side in the second inner product and observing that W” (¢;) (W (¢;)) . =

<% (W”(@)) 2) K we obtain

A= (om0 (W'(69). ) = (6305 (W769)7) ). (4:3.10)

To evaluate these inner products, we write ¢; = b_ + (bmaxe—\/fp—pﬂ foralli—1, .n
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where ¢mqz represents the maximum value of a single pulse in the n-pulse configuration, and

’

on the window [pz % Pi Py 127@4-1 we have pA; = Gmaze Va—(z p2_1)+¢max€ VO—(pjy1—2)

A= a7<<¢max€_\/ﬁ(2_pi_l) + ¢max€_\/ﬁ(pi+1_z))2> (W//(¢Z))Z >+
. (4.3.11)
. —Ja—(z—p;_1) —Ja—(pjr1—2) * 100 \\2
<¢max€ Vo—{lapi + Pmaze Vo=Pit1 '9 ((W (¢z)) )z>
We integrate by parts the terms in the last two lines of (4.3.11) and obtain
A= =20 \Ja(¢P e WO Pip172) _ g2 em 2GR W ()4
(4.3.12)

-2/ .= — D 2
+ v a_<¢%naxe 2va=(pit1-2) _ ¢%nam6 2va=(z pz—l)’ (W//(¢z)) >
Further, writing the explicit formula for ¢; and Taylor expanding W (¢;) about b_ we obtain

A=— 204,\/04_,<¢72na$6—2\/0t(%’+1—z) LR i),
W (b= + Gmage V=1l )4
T \/a_—<¢?naxe_2\/f(1)z’+1—z) _ g2 AR,
(W00 + GmaseVa=7)

Y o € I R G Y

(4.3.13)

W (b=) + W (b-)maze Vo—1Pil) 4
+ \/aT<¢%1ame—2W(pz+1—z) — 2 e  Wa=(Epio1)

<W”<b*) + W///(bwmaxe_\/fk—pi')? >
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Recall that W”(b_) = a_ and define y— := W"”'(b_). Rearranging (4.3.13) provides

A= _2a—\/a_—<¢%nax6_2\/f(pi+1_z) - ¢%naa:€_2\/ﬁ(z_pi_l)a
a— + 7—¢maw67\/f‘27pi|>+
(4.3.14)
+ \/a__<¢%naa:e_2\/0t(pi+l_z) - ¢7271ax6_2\/0t(z_pi71)’

042, + 2a_7_¢maxe—\/f|z—pil + 73¢72mx6—2\/ot\z—pi|>.

For further simplification we move the constants —2a_,/a— and ,/a— to the right side of

the inner product.

A - <¢%naq:€_2\/@(pi+1_z) - ¢72’nagje_2\/ﬁ(2—pi—1)?

—2a% Ja— — 2a_w/a_'y_¢ma$e*\/0t|zfpz‘\>+
+ <¢?name’2\/04—(m+1*z) _ ¢72mx6*2\/0f(2*pi71)’

(4.3.15)

Y% a_a’ + 2\/a—a_y—pmaze v a—lz=pil + \/a—7%¢1%1ax€_2\/f|z_pi|>'

Adding up these two inner products and grouping or canceling common terms we obtain

A= <¢%naa:672\/6t(pi+liz) - anaxei%/ﬁ(z*pi*l)?

—a? Ja_ + Vga/a_gb%mxe_%a—‘z_pib

_ <e—2\/ﬁ(pz’+1—z) . 6—2\/Ot(z—pi_1)’ —¢%1axa%ﬁ> (4316)
A ‘I, -~
+ (e 2VA=Pit1=2) _ 2= (EPim1) 42 gk 2/l
}; 4

: + .
p—rl L0 ond

Pi—1¥Pi Pi 12’1+1] Let m; —

We evaluate these inner products on the interval [ 5
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miy] = IM We start by calculating the first inner product I,

mi4+1
= —a2_\/a_—¢%za$ / (6_2\/Ct(pi+1_z) - 6_2*/@(2_1)2._1))6[2

_ a? (bmax( =2, /a—(pj41—2) + 6—2\/ﬁ(2_pi—1))

miy1

- (4.3.17)

o2
_ ¢mam ( —Va=(Pi41-Pi) _ o=/O=(2pj41-P;~Di—1)

i e—\/cf(pi+1+pi—2pi—1) — e—\/@—(l’i—i"i—l))‘

Similarly, we calculate the second inner product and obtain

Mi+1
" 7& O‘—ﬁbfnm / (672\/@(1724172) - 672ﬁ(zfpifl))€72\/f|zfpi|)dz
=7- ¢max(4( =2/ a=(pi11-p;) _ zﬁ(pi-i-l_pi—l)_i_

1 (4.3.18)

9 (i —p;
+5(piv1 = pi)e Vo= i p2)>+
- 73¢%mx (5(192 —Dpi-1)e Vo=(p; pz—1)+

+ %(62\/@7(%%1) _ G*Qx/ct(l’wrpiq))_

Then, adding I and II together and simplifying we obtain

o2
Ao ¢max ( —VA=(Pig1-Di) _ o=/ (2pjp1—Di—Pi—1)
N e—\/ﬁ(pHﬁpi—?pi_l) _ e—\/of(m—m—l)>+
L2 ¢mam( =2/ (D 1-D;) _i —2ya=(pi=pi—1) (4.3.19)

1 L .
+ 5 (pig1 — pi)e VI PP

2 (pi — pi_l)e‘Qx/‘f@i—piq))

DN —
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With similar calculations we evaluate the last inner product B. Taking By, = a2 away
from pulses provides ¢a; L£; B2, = —CY:2W”(¢1)¢A¢ and By , Lipn; = a:2¢’&—a:2W”(¢i)¢Ai.

Combining these two in the inner product B making further simplifications we obtain

B = {0ailiBon + BanLioni (W(67), )
_ _204:2<Wl/(¢i)¢m7 (W//<¢z’)>z > n a:2<¢’&, (W//(¢i))z> (4.3.20)
= —a=(o0 (W"(6))?) ) +a=>(oks: (W"(60)., )

Here recall that ,A”z = a_(b’m-. Expanding W”(¢;) about b— and grouping common terms

in these two inner products give

B = =20y, (W (61)) — a=H{dlp,, (W(01)) )

- a:2<¢/Az’7 a? + 27—a—Pmaze a=l|z=pil + 73@5%““672\/ a_|z—pl-|>

(4.3.21)
oMl +20 )
= 06:17*¢ma:r<¢,AZ‘a e—\/flz—pi|> + a:273¢%nax<¢lAi, 6_2\/Ct‘z_pi|>_
Then, we calculate the inner products in B.
Mi+1
myg (4.3.22)

ta 22 g2 Jas (e VEPin172) _ o= (Empio1)) m2Va=Epil g,
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; g2 (e P(piﬂ—pi)_e—Jof(piJrl—Pz'—U)

1 (1
— 502 O /A= (pi = pimr)e VO PiTPi=1)) g

1 o —_— . —1 . [p— .
+Oé ’}/ gbmal,(g(e_\/f(pl-f—l pz)_e Q\/K(2pl+1+pz 3p2_1))+

— (e~ Va=Pi=pi—1) _ e—g’\/f(pi—pi—ﬂ))Jr
(4.3.23)
; Ly 62 (e VA= WPit17Pi-1) _ o m VA= (PimPi-1))
L  a—(os s —p:
30 T GRaa /A (pig1 — pi)e VO P14
+a”242 ¢mw<;(e—%x/f(3pi+1—m—2pz1)_6W(pipi—1))+

— (e—%\/f(pz‘ﬂ—m) — e_ﬁ(pile_Pi)))‘

Inserting (4.3.19), and (4.3.23) in (4.3.8) we obtain the evolution equations of pulse locations,

2 12
i = 1 5 <_O‘—¢ma$ <€*\/0‘*(pi+1*pi) — e VA= (2piy1-Pi—Pi—1)
/ 2
161172

+ e VO (Pig1Pi—2pi—1) _ e‘va—(pi_pi—1)> +

1 - 1 o (pi—p:
-+ 2(])24_1 ) 2\/7(2%_’_1 pz) _ §(pz _pi—l)e 2\/7—(172 pz—1)>)+

N /1 P I
H¢1H22<§O‘—17—¢%mx<(6 VO=(Pit1-P) _ o= /a=(p; pz—1))+
il L

+a=((pig1 — pi)e VO PiHLTP) — (p; — pi_l)e*\/ai—(PrPiq))jL
+ 072 Braa (%(6_\/@(”2*1_”) — e V= Pi=Pi—1)y 4 (¢~ VA= Pit17Pi) 4
— e Va=Pi=Pi-1)) (e—%\/ﬁ(piﬂ—pi) _ 6—%@(@—”_1)”

+ 1(e_%v“*(?’I%'Jrl‘pi_Q?’i—l) _ e—%W(2P1+1+Pz‘—3Pi—1))>'
3
(4.3.24)

. 7112 ¢%nax\/ a_ . . .
Observing that H(bz H 72 = — 5 — and neglecting exponentially small terms comparing to

the big terms e VO—Li where ¢; represents the distance between the centers of two adjacent
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pulses we conclude that
p,/L — _a?l/Q (e_\/a_(pi—l-l_pi) — @_Va—(pi_pi—l)) + O<52)’ (4325)

: L
assuming pg = —p1 and pp41 = 2?2 — pn.
After we derived the ODE’s for pulse locations we also construct the ODE for the

background parameter A evaluating the inner product in (4.3.2).

A’::Q—Hogéﬁﬂxp,A»,1) (4.3.26)

Since Il is self-adjoint and Ker(Ily) = span{l}, we move Il to the right side of the inner
product and obtain

N =o0. (4.3.27)

From this we conclude that there are no background dynamics. Hence, the ODE system,

consisting of n + 1 evolution equations for n pulse positions and ), is

X' =0,
(4.3.28)
pé::__a§/2<efyﬁfi@%+1*pﬁ _.efwﬁff@%*p%—ﬂ) +0(8?).

It is easy to see that if the pulses are equally separated, p; 11 —p; = p; —pi—1 = ¢, for £ > 0

big enough for all 2 = 1,...,n then, these pulses are stationary, namely,
pi=0, Vi=1,--- n. (4.3.29)
Further, we would like to study the stability of these stationary n-pulse configurations
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examining the Jacobian matrix of this ODE system.

v -3 0 0 0
’)’ y
0 -3 v -3 0
J= 2 2 (4.3.30)
7
0 —3
0 0 0 -3 7
where 7y := —a2 e V%! The matrix J has n eigenvalues
2 k —Ja_t
A = —aZ | 1+ cos e <0, (4.3.31)
n+1
for all kK = 1,...,n. From this, we conclude that the stationary solutions are spectrally

stable.
Moreover, assuming that the initial data is given for two-pulse configuration Uy = ¢1 + @9
and setting ¢; := p; — p;_1 we obtain the evolution equations for pulse locations as

o= _a3/2¢2 <€—\/I62 _ 67\/cf£1> +O(82)
! - ’ (4.3.32)

/
2

3

— —o%? <67ﬁ£3 - 67\/@@) +0(8?).

If the distance between ¢1 and ¢9 is smaller than their distance to adjacent pulses, /3 >
01 > ly or #1 > 3 > {9, then p’l < 0 and p’2 > 0. From this analysis, we conclude that if
two adjacent pulses are closer to each other than other neighbor pulses, then they repel each

other. If two pulses more far apart comparing to other neighbor pulses than they attract
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each other.

4.4 Conclusion

We have shown that the pulses are attracted into and remain within an O(62) window of the
equally spaced (periodic) distribution. Moreover, the full solution remains within an O(J)
neighorhood in H? of the periodic n-pulse. By compactness, a subsequence of times ¢,, with
tn — 00 as n — oo exists such that u(t,) converges to usx in the ball of radius § of the
n-periodic solution. As this is a gradient flow, ux must be an equilibrium and then we must
have u(t) — u« for the whole sequence as traversing the distance between wu, and a distinct
equilibrium value infinitely many times would expend infinite energy. In particular, the flow

converges to an equilibrium which is exponentially close to the periodic n-pulse.
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Appendix

A bound for H? norm of the product of two H? functions

Lemma A.0.1. Let f,g € H*([R]). Then, there exists a constant C' > 0 such that

1fgllg2 < Cllfl g2 lgll g2 - (A.0.1)

Proof.
1ol 2 = /R (1+ K22 Fa (k) 2dk.

:/R(Hk?)? (A|f(k—%)g(é)|dé)2dk, (A.0.2)

_ (14 k)| f(k — k)||g(k)|dk Qdk;.
h U )
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Writing k = k — k + k and then by the inequality (a + b)? < 2a% + 2b%, we have

2
ol < [ ([ (20 G2+ 204 B) 10— Rl ) ar
= ot [ (0 o= B BNk + 1+ 7)1 — B |g(R) R ar,

24

:U\PU\

(104 R f ) 9|+ 11+ )il 1)

906

IA

(10 + k7@ al) dk+28 [ (10 ka1« 1) d

2 ([ w2yt + i+ a1, )

(A.0.3)

By the Young’s inequality for convolutions that is || f * g, < ||f||p Hqu for f € LP and

1

gequith%+%:F+1,

k>

12 <2 (s 255 1012 + o+ 4239

2
)’

A2
<2 (Ufllge 19l + ot 7] ) (A0.4)

< ClIf 52 lgll2 -

since ||g||;1 < c|lgl| 2 for a constant ¢ > 0. O
Second variation of [

The second variation of I with respect to L? inner product is calculated taking derivative of

i(T) twice,
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L
22 ) 2
— <8Z (Py, + Tv) — W(Py, + TU)> dz,

~
I
—~
\1
SN—
Il
c>\.>

dr?
L
= /52 4 <82 (B, 4+ 70) — W (D +TU)> (82"0 —W" (@, + Tv) v) dz
0 dT z n n z n N
Ly
3
— /o (82 — W (@, + Tv) ) (agv —W" (@, + Tv) v) (A.05)
+ (83 (B, + T0) — W (O, 4 T0) ) < W (&, + 1v) 2) dz,
Lo
= 2
= /0€ ((83 —W" (@, + Tv) v))
+ (83 (B, + T0) — W (O, 4 T0) ) < W (&, + 1v) 2) dz.
Evaluating this derivative at 7 = 0,
Lo
= 2
M0y =2 ° (02— W (@) v) + (020, — W (@) (—W" (¥,) v2) dz,
z z
0 (A.0.6)

h

2

2/05 <a§ W (<I>n)>2 v+ (a§q>n W (<I>n)> (—W”’ (@) v2> dz.

When we insert the expansion for @, in (A.0.6) and expand it about ¢,,, we have
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(32— (W () + NV (6) Ba) ) 02

(0260 + €202Ba, — (W' (90) + AW (60) Ba.n) ) (W (60) + AW (6,) By ) 0%,

Lo

= /06 ((65 —w (%))2 — (260 — W' (60)) (W (6)) + 0(@) e

(A.0.7)
Since ¢y, solves d2u — W' (u) = 0, at the leading order we obtain
2 2
=2 [ (0E =W o) o
0
L2 A.0.8
:2/6 (Lnv)? dz, (A.0.8)
0
= 2L %0, v).
Thus, the second variation of I at the leading order is
621
sz (@) = L2, (A.0.9)

H? norm of the projection Il

Lemma A.0.2. Let Iy be the orthogonal projection of H* onto U C H? given in (4.2.2).

Then, for any u € H?
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IToull 2 = [lull 2 - (A.0.10)

Proof. For any u € H?,

2
Moull%ye = (Hou, Hou) ;o
— <H%U’U>H2 (A.0.11)
< [Moull g2 lull g2 ,
and therefore, [[Ilpul| ;2 < [[ul| ;2. On the other hand, since Ilj is a projection we can write

u = Igu + o' where v/ € U+ and obtain

2
lull?9 = (Hou + o/, Tlpu + ') = |[Toull %5 + || 372 (A.0.12)
which proves that [[Tloul| ;2 > [lull ;2 O
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