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ABSTRACT
PSYCHOMETRIC TOOLS FOR FORMATIVE CLASSROOM ASSESSMENT: TEST

CONSTRUCTION AND ITEM POOL DESIGN BASED ON COGNITIVE DIAGNOSTIC
MODELS

By
Jiahui Zhang

This thesis is concerned with the potential applications of cognitive diagnostic models
(CDMs) with hierarchical attributes in supporting formative classroom assessments. The
conventional CDM approach that requires large sample sizes is impractical in the classroom setting.
Three are three CDM-based approaches that do not involve item calibration and thus are practical
in the classroom setting: 1) CDM classifications using non-adaptive tests assembled from a
calibrated item pool, 2) nonparametric classifications using non-adaptive tests based on CDMs,
and 3) computerized adaptive testing (CAT) combined with CDMs (i.e., CD-CAT). Since most
CDMs and their applications assume independent attributes, relevant model parameterizations, and
the Q-matrix for hierarchical CDMs were discussed. Three studies were conducted to address the
test construction and item pool design issues related to the three CDM-based approaches.
Specifically, new indices based on the Kullback-Leibler information are proposed for non-adaptive
test construction with a calibrated item pool. Different Q-matrix designs were explored for
nonparametric classifications, and recommendations regarding the Q-matrix design were provided
for teachers. For CD-CAT, an item pool design method based on simulation was proposed and
evaluated. The intended contribution of the thesis consists of psychometric tools for the teachers
that help them facilitate formative assessments in the classroom and instrumental guidelines for

developers of formative assessment systems.
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Chapter 1 Introduction
Assessments are ubiquitous in most education systems. Educational assessments have the

potential to provide feedback. The positive effect of feedback on learning has long been

established in numerous studies in educational psychology, cognitive science, and learning science
(e.g., Fyfe & Rittle-Johnson, 2015; Hattie & Timperley, 2007; Moreno, 2004). Therefore, various
types of assessments have been widely used in schools to improve learning and teaching, which
can be classified into summative assessment (providing a summary evaluation at the end of an
educational program) and formative assessment (providing timely diagnostic information for
learning and teaching during an educational program).

Despite its potential usefulness in learning, assessment or testing is among the most
debated issues in public education. There have been concerns from teachers and parents that tests
take up too much time from teaching and learning (Hefling, 2015; Walsh, 2017). A survey by the
Council of the Great City Schools (CGCS) on large urban districts revealed that the average
amount of testing time spent on required assessments among eighth-grade students in the 2014-15
school year was 4.22 days or 2.34% of school time (Hart et al., 2015). Examples of required
assessments in the CGCS report are (i) state summative assessments for accountability (e.g., the
Partnership for Assessment of Readiness for College and Careers [PARCC] assessments), (ii) state
and local formative assessments, (iii) local end-of-course exams, and (iv) SAT, ACT, and
Advanced Placement (AP) tests (optional in some places). Specific categories of students
(including students with disabilities and English language learners) take (V) special assessments in
addition to the required and optional tests.

Many of the required tests mentioned above are external, high-stakes, and summative

measures for accountability purposes, fueled by important educational policy questions (Baker,



Chung, & Cai, 2016). These tests are not designed for assisting daily classroom learning and
teaching. Even if diagnostic information can be extracted, it would be too late to be useful in the
classroom (Hart et al., 2015). Too many of such tests would inevitably disrupt the learning process
and may lead to problems such as teaching to the tests (e.g., Copp, 2018) and test anxiety (e.g.,
Schutz & Pekrun, 2007, p.3), both of which result from the misuse and abuse of educational
assessments.

To address this issue, the U.S. Department of Education called on states to make
assessments fewer and smarter in the Testing Action Plan (U.S. Department of Education, 2015).
It calls for more classroom, low-stakes, and formative tests that are “smart” to provide timely
feedback to learning and teaching and fewer external, high-stakes, and summative tests. We are
entering a new era of K-12 assessments, where both accountability and instructional improvement
are emphasized (Chang, 2012), and, correspondingly, both summative and formative educational
assessments are required.

Research topics in the psychometric society echo the change in educational policies: the
concepts of “assessment for learning” and “assessment as learning” have become popular as
researchers emphasize on making assessment truly useful for learning (e.g., Bennett, 2011; Wilson,
2018). If tests are designed for producing feedback for learning and teaching and eventually
integrate with the learning process, some problems of educational tests, including disrupting the
learning process and teaching to the tests may be solved.

Renewed attention has been brought to the old concepts of classroom assessment and
formative assessment (e.g., Bennett, 2015; Black & William, 2008; Gotwals, 2018; Shepard, 2018).
Classroom assessment refers to the assessment taking place in the classroom and initiated by the

teacher (Shepard, 2006; Wilson, 2018). Formative assessment is designed for providing timely and



constructive feedback that is closely connected to a curriculum and are based on students' learning
history. It should be a thoughtful integration of the process to provide feedback and the appropriate
measurement instrument or methodology (Bennet, 2011). This thesis concerns formative
assessment in the classroom henceforth referred to as formative classroom assessment.

A huge responsibility for implementing formative classroom assessments lies on the
shoulders of the teachers. Specifically, teachers need to take two iterated actions that are at the
core of formative assessment: one is the identification of the gap between the desired goal and the
learner’s present state, and the other isthe action taken to close the gap (Black & William,
1998). Identifying the gap is a measurement issue per se because the gap is the difference between
a student’s current state and the goal. However, many teachers do not feel adequately prepared for
this assessment task (Mertler, 2003). Despite the increasing emphasis on educational
measurement in policies and research, in some states, preservice teachers are not required to take
specific coursework in classroom assessment or educational assessment in general (Campbell,
2013). As a result, teachers’ formative assessment practices are not without struggles (Black
& Wiliam, 1998; Gotwals, 2018). There is a gap between policy and research on one side and
teachers’ practice on the other side.

Although formative assessment is an attractive concept, the effectiveness of formative
assessment hinges on its quality, not on its existence in the classroom (Black & Wiliam, 1998). As
it takes time and resources to improve teacher preparation and professional development in
assessment, there is an urgent need now to provide teachers with psychometric tools to facilitate
formative assessment in the classroom. Teachers especially need assistance in constructing and
delivering formative assessments as well as interpreting the results (Bennett, 2015; Campbell,

2013; Gotwals, 2018). Psychometric tools, which has guided and supported most standardized



testing programs, if used appropriately, can also help with constructing, delivering, and
interpreting formative assessments (Bennett, 2011; Bennett, 2015).

Note that the use of psychometric tools, especially item response models, inevitably
introduces some degree of standardization. ldeally, the teacher would develop his or her own
formative assessment because it is the teacher who knows best the learning history of each student
and the learning goals. Teachers’ self-developed assessment is the exact opposite of
standardization. With limited educational resources, therefore, we need to strike a balance between
individualization and standardization when thinking of psychometric tools for formative classroom
assessment.

In choosing appropriate psychometric tools (e.g., item response models) for formative
classroom assessment, the best place to start is the validity, which is mainly decided by the
usefulness of the feedback for formative purposes. Therefore, the first question we should ask is:
What kind of feedback do teachers need? The needs of teachers were reflected in a survey
conducted on a nationally representative sample of 400 elementary and secondary mathematics
and English language arts teachers in the U.S. about a decade ago (Goodman & Huff, 2006; Huff
& Goodman, 2007). The survey shows that norm-referenced information, standards-based
information, and performance information at the item level from large-scale standardized
assessments are of comparatively little interest to teachers because the information cannot be used
directly in the instruction; what teachers need is detailed information about the strengths and
weaknesses of individual students regarding specific knowledge, skill, and competencies.

Various methods have been proposed for providing diagnostic feedback. Some approaches
involve extracting information from summative tests based on and calibrated with unidimensional

item response theory (IRT) models (e.g., subscores; see Haberman, 2008). However, some



researchers caution that each purpose can be compromised if a single assessment is expected to
serve multiple purposes (Pellegrino, Chudowsky, & Glaser, 2001, p2; Reckase, 2017). Although
unidimensional IRT models have been successfully applied in summative tests aiming at selecting
and differentiating, they might not be the most appropriate ones for formative purposes because
the diagnostic nature of formative assessment usually suggests multidimensionality.
1.1 Psychometric solutions for formative classroom assessment

A family of measurement models—cognitive diagnostic models (CDMs; e.g., Rupp,
Templin & Henson, 2010), which were developed for modeling diagnostic assessment data, are
chosen for formative classroom assessment in this thesis. These models target multiple fine-
grained latent constructs (referred to as attributes) that are typical in interim or formative
assessments. With categorical latent variables, they are less affected by the high dimensionality as
multidimensional IRT (MIRT) models and are more appropriate for finer-grained constructs than
MIRT models (Templin & Bradshaw, 2013). The identification of these finer-grained constructs
as well as their relationship is often based on cognitive or learning theories, and require
collaborations between psychometricians and content experts. This construct space is similar to
the concept of a domain in domain-referenced testing (Hively, 1974; Houang, 1980). The
assessment developed based on CDMs can be integrated with the learning process through these
constructs. Therefore, CDMs have the potential to be an essential part of the solution to formative
classroom assessment.

Specifically, this thesis concerns formative classroom assessment that (i) can be linked to
an instructional program lasting for several weeks, and (ii) can provide formative information for
learning and instruction. The underlying measurement models are CDMSs. Note that the assessment

of interest does not intend to measure relatively stable traits such as ability or aptitude. Instead, the



targeted construct is the internalized knowledge or skills that the student acquires after particular
several days’ or weeks’ instruction.

Although current CDM methods (i.e., calibration and classification) work well in large-
scale assessments with hundreds or thousands of examinees and long tests, the application of
CDMs in small-scale test settings in the classroom would be problematic due to limited testing
time and the lack of response data required for reliable estimation (Chiu, Sun, & Bian, 2018).
There are three alternatives to conventional CDM analysis, which do not require item calibrations
and therefore, are practical in the classroom setting:

1) parametric classifications using non-adaptive tests assembled from a calibrated item
pool (e.g., Henson & Douglas, 2005),

2) nonparametric classifications using non-adaptive tests based on CDMs (e.g., Chiu, Sun,
& Bian, 2018), and

3) cognitive diagnostic computerized adaptive testing (CD-CAT,; e.g., Chen, 2009).

The first two approaches use non-adaptive tests, which means the same test is given to all
students in a classroom, so test construction is a critical question. The CD-CAT approach uses
adaptive tests that are tailored to the state of individual students, the success of which depends on
a well-designed item pool. How to design the appropriate item pool for a CD-CAT program
remains a research question. Responding to practical needs and gaps in the literature, this thesis
addresses the test construction and item pool design issues for these three approaches.

These CDM-based approaches are intended for facilitating formative classroom
assessment, which is related to domain-referenced testing and curriculum-based assessment.
Therefore, the rest of Chapter 1 reviews these related concepts as well as the broader concept of

educational assessment and the so-called next-generation assessment.



The next chapter reviews the fundamentals and previous studies of the three CDM -based
approaches with a focus on CDMs with hierarchical attributes. Chapter 3 deals with
parameterizations and Q-matrices of CDMs with hierarchical attributes, followed by three chapters
addressing three research questions related to the test construction or item pool design issues.

1.2 Related concepts

Formative classroom assessments belong to the broader concept of educational assessment
or achievement assessment. The terms educational assessment and achievement assessment have
been used interchangeably in the literature. More specifically, Mislevy, Steinberg, and Almond
(2003) in their seminal work on assessment design defined an educational assessment to be "a
machine for reasoning about what students know, can do, or have accomplished, based on a
handful of things they say, do, or make in particular settings.” Baker, Chung, and Cai (2016)
offered a broader construction: ““A test or an assessment consists of a systematic method of gaining
a sample of information about people or programs so as to draw inferences about examinees’
knowledge, characteristics, or propensities.” The definition of Mislevy et al. (2003) focuses on
the types of inferences made from the assessment, and the definition of Baker et al. (2016) also
highlights the process of making inferences (i.e., via sampling) in educational assessment.

The history of educational assessment has been intertwined with that of psychological
assessment. Their connection can be seen from the title of the Standards for Educational and
Psychological Testing (AERA, American Psychological Association [APA], & National Council
on Measurement in Education [NCME], 1985, 1999, 2014) as well as journals and books (e.g.,
Educational and Psychological Measurement). The first generation of standardized achievement
tests was developed in the same period and by the same researchers as 1Q tests were (Sheperd,

2006). As a result, educational assessments and psychological assessments tend to have the same



item formats and often utilize the same statistical models (e.g., item response theory models), with
both having roots in individual differences psychology. In this section, the discussion is limited to
IRT-based assessment because most large-scale or commercial achievement tests (e.g., PARCC,
NAEP, PISA, SAT, ACT) use IRT models.

More and more researchers in the educational assessment field, however, have realized the
critical differences between educational and psychological assessments despite their entwined
histories. Among the most discussed issues is the definition of the measured domain, the stability
of the unobserved constructs, the dimensionality of the construct space, the normality assumption,
and the purpose of assessment.

The unobserved constructs measured in psychological assessments are usually not well-
defined. As noted by Brody (2000, p.39), researchers know how to measure the construct called
intelligence, but they still do not know what has been measured; what the 1Q test does, as a result,
is merely trying to differentiate people along a hypothetical scale. In some sense, the test that is
supposed to measure intelligence defines what intelligence is. This is not true in education where
domains could be well defined according to the instructional goals of a specific instructional
program. However, the measured domains are not well delineated for some educational tests
(Baker, 2009). In such cases, it can be said that we know how to measure achievement, but we do
not know what has been measured, particularly, if and when educational assessments follow the
tradition of psychological measurement.

The unobserved constructs in psychological assessments are usually stable traits, such as
intelligence, self-efficacy, or personality. These traits are assumed, or believed, to remain stable
for an extended period. The purpose of psychological assessments is to reflect the relative location

of a person regarding this latent trait, and improvement or change within a short period is not



expected (Baird, Andrich, Hopfenbeck, & Stobart, 2017). However, examinees in educational
assessments are expected to show changes in their educational attributes and accomplishments
within a short period, which is the primary purpose of any educational program.

The existence of content blueprints complicates the definition of the unobserved constructs
in educational assessment. Unlike a psychological test, an educational test is usually developed
based on a content blueprint (Luecht, 2013; Reckase, 2017). A content blueprint is usually
constructed as a set of test specifications that is independent of the psychometric modeling of test
responses (Luecht, 2013). However, a test blueprint with multiple content domains may suggest,
and be consistent with, a multidimensional space (Reckase, 2017). Besides content dimensions,
cognitive dimensions have also been considered for educational assessments, which further
complicates the dimensionality issue (George & Robitzsch, 2018; Harks, Klieme, Hartig, & Leiss,
2014). In an analysis of TIMSS data, content dimensions are number, geometry, and data, and
cognitive dimension are knowing, reasoning, and applying (George & Robitzsch, 2018).

For most of the commercial achievement tests, the interpretation of a test score is directly
based on the assumed normal distribution of underlying stable psychological characteristics (Baker,
2009). This normality assumption is another inheritance educational measurement inherited from
the psychological measurement under the general framework of latent variable modeling (Baker
& Kim, 2004). Consistent with the interpretation of scores, a normal distribution is usually
assumed in IRT modeling for the unobserved construct. Specifically, the normal distribution is
used (i) in the integration step in item calibration and (ii) as a prior distribution in Bayesian IRT-
based scoring (Baker & Kim, 2004). While the normality assumption may work well for a variety

of stable psychological traits (e.g., intelligence, self-efficacy), whether it is suitable for the



measurement of learning or mastery of educational attributes is questionable (Bloom, 1968; Baker,
2009).

Educational assessment designers, following the guidelines developed for psychological
assessments, tend to optimize the test for detecting differences among examinees. It would work
well if the goal is selection. However, the test development guidelines may need some adaptations
when we consider the purpose of improving student learning because the differences between
different test scores could be trivial regarding the subject matter (Bloom, 1968).

One characteristic of educational assessments that is different from psychological
assessments, however, is the existence of many dichotomies, such as classroom assessment versus
external tests, formative versus summative assessment, domain-referenced (or criterion-referenced)
versus norm-referenced testing (assessment).

1.2.1 External and classroom assessment

External assessments are constructed outside of the classroom by measurement and subject
experts and are often fueled by educational policies (Baker, Chung & Cai, 2016), also referred to
as the large-scale standardized assessments. There is a rich literature on the theories and practices
of external assessments. They have served well the purpose of selection and accountability over
the past decades. However, the effects of external assessments on learning are difficult to establish
(Wilson, 2018).

Educational assessments can be divided into classroom assessments and external
assessments, depending on the administration of the assessments. Teachers usually create and
grade classroom assessments based on particular instructional goals, and they make short-term
decisions based on assessment results (Hanna & Dettmer, 2004, p. 8). Classroom assessments may

also be developed out of the classroom but initiated by teachers or students in the classroom.
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Classroom assessments, when used in a constructive way by teachers, can send the message to
students telling them what is important (Nitko, 2001), and have been shown to have a substantial
impact on student success (Shepard, 2006; Wilson, 2018). Some researchers believe that we can
make measurement truly important for education through classroom assessments (Wilson, 2018).
1.2.2 Summative and formative assessment

The dichotomy of formative assessment versus summative assessment has been proposed
for decades. While great improvement has been seen in the practices and research of summative
assessment over the past few decades, formative assessment mostly appears as the subject of
theoretical discussion (Scriven, 1967; Bloom, 1968; Bloom, Hastings, & Madaus, 1971). Scriven
(1967) and Bloom (1968) were among the first to use the terms “formative evaluation” and
“summative evaluation.” A summative evaluation judges what students have mastered at the end
of an educational program (Bloom, 1968). Defining formative assessments, however, can be much
more complicated: There has been debate over conceptualization of formative assessment as a test
or a process (Bennet, 2011). For Bennet (2011), neither side of the argument can provide a full
picture of formative assessments: He defined formative assessment to be a thoughtful integration
of process, on the one hand, and methodology or instrumentation, on the other hand. Other
researchers put more emphasis on the process part (e.g., Furtak, Circi, & Heredia, 2018; Gotwals,
2018).

Recently, formative assessment is receiving renewed attention (Bennet, 2011, p. 5). Since
formative assessments generally take place in the classroom as a type of classroom assessments,
teachers need to take many responsibilities. However, it remains a challenging task for teachers to
learn how to do formative assessments (Bennet, 2011; Furtaka, Circib &, Heredia, 2018; Gotwals,

2018; Shavelson, 2008). Teachers need guidance and assistance in various aspects of assessments,
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including goal setting, extracting information, providing feedback, and using feedback to modify
instructions (Gotwals, 2018, p.157). Bennett (2011, p. 18) argued that teachers need “deep
cognitive-domain understanding” and “knowledge of measurement fundamentals” in addition to
“pedagogical knowledge”, in order to be able to realize effective formative assessments. However,
even if teachers can acquire all the knowledge, understanding, and skills needed for formative
assessment, they still need a substantial amount of time to put them into practice (Bennet, 2011).
1.2.3 Domain-referenced and norm-referenced testing/interpretations

Another well-known contrast in educational measurement is between domain-referenced
(or criterion-referenced) testing and norm-referenced testing (Hively, 1974). Norm-referenced
testing (NRT) has its roots in the psychological measurement of individual differences. NRT goes
hand in hand with latent trait modeling (Hively, 1974; Houang, 1980). The test construction for
NRT based on latent trait modeling places great emphasis on correlation or the so-called internal
consistency among a set of items, which plays a significant role in the decisions of including or
excluding certain items (Hively, 1974; Houang, 1980). However, this test construction procedure
may pose a danger to the validity of measurement because 1) variables that are conceptually
disconnected can be correlated (Baird et al., 2017) and 2) the obtained set of items may not be a
representative sample from the targeted domain (Houang, 1980).

Domain-referenced testing (DRT), in contrast, bears more educational considerations.
More emphasis is placed on validity instead of reliability. Much research is devoted to the
discussion of the domain and item sampling within the domain (Baker, 1974; Hively, 1974;
Millman, 1974). A domain can be defined by an explicitly specified set of items (Hively, 1974) or
a set of rules according to which a large number of test items could be generated (Baker, 1974). A

complex domain can be divided into sub-domains. The examinee's measurement of principal
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interest in NRT is the examinee's score over all items in domain or sub-domain (Brennan, 1981;
Hively, 1974). This score, referred to as the domain score (or the sub-domain score), cannot be
directly obtained because it is impossible to administer all the items in the domain (or sub-domain).
It can be estimated by the examinee's observed percent of correct responses on a set of items if the
set is a representative sample (Brennan, 1981). Estimates for large domains may be obtained by
stratified sampling over their constituent sub-domain, and diagnostic profiles may be gathered by
sampling within sub-domains (Hively, 1974). IRT-based estimators are available for domain or
sub-domain scores, given a large set of calibrated items (Bock, Thissen, & Zimowski, 1997). For
a complicated domain, the set of sub-domain scores serves a diagnostic profile (Hively, 1974);
alternatively, one can assign sub-domain scores weights to calculate a single domain score
(Millman, 1974). The estimated domain or sub-domain scores are then compared to some criterion
to decide whether mastery is achieved. In contrast to the two-stage methods, Houang (1980) took
a latent class approach to estimate the mastery of a simple domain.

The concept of DRT as an assessment type lost its popularity after the 1970s. Since the
1974 Standards for Educational and Psychological Tests, the distinction between two types of test
score interpretations—criterion-referenced and norm-(or criterion-)referenced interpretations—
have received more attention. Instead of differentiating two different types of assessments (i.e.,
NRT and DRT), test developers draw from both test development perspectives to ensure the
reliability and validity of measurement (Brennan, 2006). Although most standardized testing
programs are designed to primarily provide norm-referenced interpretations, there has been an

increasing need for domain-referenced or criterion-referenced interpretations.
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1.2.4 Curriculum-based assessment

Educational assessments are based on a specific curriculum or not. To be useful for learning,
however, assessment needs to be integrated into a coherent process of assessment, instruction, and
curriculum based on learning theories (Black, Wilson, & Yao, 2011; Shepard, Penuel, & Pellegrino,
2018). This is especially true for formative classroom assessment. If the assessment is not aligned
to the curriculum that students are learning, the validity of the formative feedback will be in doubt.

A link between curriculum and achievement assessment has been well established in the
international assessments led by the International Association for the Evaluation of Educational
Achievement (IEA). The curriculum-achievement alignment constitutes a vital part of the validity
evidence for the subject achievement tests. The validity check (by comparing assessment items
with the curriculum students have experienced) has been carried out in some form in all IEA
studies (Cogan & Schmidt, 2019). For example, teachers provided validity check on the test items
in the pilot study and the First International Mathematics Study (FIMS) and in the second studies,
SIMS and SISS (Husén, 1967a; Keeves, 1974; Travers & Westbury, 1989). The 1995 Third
International Mathematics and Science Study (TIMSS-95) conducted a more extensive curriculum
analysis, and provided evidence for the relationship between assessment, instruction, and
curriculum (Schmidt & McKnight, 1995; Schmidt, Jorde, et al., 1996; Schmidt, McKnight,
Valverde, Houang, & Wiley, 1996).

A curriculumis structured around subject content. Taking the subject of mathematics as an
example, as Schmidt and his colleagues put it, “mathematics, even circumscribed by what is taught
in school, encompasses a very large content domain.” The question is then how to model
curriculum-sensitive content in the psychometric model for curriculum-based assessment. Under

the typical unidimensional IRT modeling framework, content exists in the form of content
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constraints, independent of the measured construct (e.g., Kingsbury & Zara, 1991; van der Linden,
2005a). The separation of the measured construct and the curriculum-sensitive contents makes it
difficult, if not impossible, to extract formative feedback from the test data regarding the contents.
1.2.5 Next-generation assessment

Since we entered the new millennium, there have been increasing discussion over the so-
called next-generation assessment. Questions like “Are we entering a new era for the educational
assessment?” are being asked. In the discussion of the next-generation assessment, researchers
and measurement practitioners attempt to respond to the critiques on educational measurement
mentioned earlier and the needs from learners, parents, and teachers (e.g., Bennett, 2011; Conley,
2018; Embretson, 2003; Heritage, 2010).

A lengthy, but not exhaustive list of next-generation assessment topics includes formative
assessment (e.g., Gorin, & Mislevy, 2013; Heritage, 2010), assessment of new constructs such as
critical thinking (e.g., Liu, Frankel, & Roohr, 2014), technology-based assessment (e.g., Beatty &
Gerace, 2009; Bennett, 2015; Mislevy, 2016), classroom assessment (e.g., Shepard et al., 2018),
personalized testing and learning (e.g., Chen, Li, Liu, & Ying, 2018; Clark, 2016), integration of
learning and assessment (e.g., Baird et al., 2017), and automatic item generation and scoring (e.g.,

Bennett, 2015; Gierl & Lai, 2012).
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Chapter 2 Literature review of CDM-based approaches

This chapter provides brief literature reviews for the basics of CDM, nonparametric
classifications based on CDM, and CD-CAT, which form the foundations of the three CDM-based
approaches for formative classroom assessment proposed in Chapter 1.

The CDM-based test construction begins with the identifications of the attribute profile
space and the Q-matrix characterizing the relationship between items and attributes (described in
detail in Chapter 2). The attribute profile space defines the domain in the language of domain-
referenced testing. Test construction based on CDMs has many similarities with domain-
referenced testing (Hively, 1974; Houang, 1980). The identifications of the relationships between
attributes and items usually depend on cognitive theories and learning theories. In this way, the
assessment can be integrated with the learning process.

2.1 CDM

CDMs (cognitive diagnostic models), also known as diagnostic classification models,
belong to the confirmatory or constrained latent class modeling framework in which individuals
are classified into groups defined by combinations of categorical (usually binary) latent variables
(Rupp, Templin & Henson, 2010). The categorical unobserved variables that define the
measurement constructs underlying a CDM are often referred to as attributes (Tatsuoka, 1983,
1990), elsewhere called finer-grained proficiencies (de la Torre, & Karelitz, 2009) or facets
(Henson, DiBello, & Stout, 2018).

Macready and Dayton (1977) and Houang (1980) were among the first to apply latent class
models using only one dichotomous trait to measure mastery of a simple domain. Later, the works
of Tatsuoka (1983) and Leighton, Gierl, and Hunka (2004) involve more complex domains with

multiple attributes, and they introduced the concepts of Q-matrix and attribute hierarchy. In the
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past three decades, a large number of CDMs that employ item response functions (IRFs) and
explicit Q-matrices have been proposed and studied intensely (Rupp, Templin, & Henson, 2010;
Templin & Bradshaw, 2014) in response to the pressing demand for individualized diagnostic
information in education (Center for K-12 Assessment and Performance Management at ETS,
2014; U.S. Department of Education 2014).

2.1.1 Attributes

Since the introduction of attributes to diagnostic assessments by Tatsuoka (1983, 1990),
the terminology of attributes has been used in the CDM literature to refer to the unobserved
variables that the test aims to measure. Long before the time of diagnostic assessment, Guttman
(1944) used “attribute” interchangeably with “qualitative variable” (i.e., categorical variable).
Tatsuoka (1990) provided a broad definition of attributes as “production rules, procedural
operations, item types, or, more generall, any cognitive tasks” (p. 465). Embretson (1995) viewed
attributes as "sources of cognitive complexity” in test performance, which may consist of both
cognitive and content components. Leighton, Gierl, and Hunka (1999) defined attributes as the
procedural or declarative knowledge needed to perform a task in a specific domain. Most of the
above definitions include both cognitive and content components.

In an educational setting, possessing an attribute is often referred to as mastery of an
attribute, and lacking an attribute is referred to as non-mastery (Templin & Bradshaw, 2014). Like
most CDM research, we restrict the scope of this thesis to attributes with two levels, so that a;, =
1 indicates mastery of attribute k and @, = 0 indicates non-mastery of this attribute.

An attribute profile (Templin & Bradshaw, 2014), which is also referred to as an attribute
pattern (Ma, laconangelo, & de la Torre, 2015) or attribute mastery pattern (Henson & Douglas,

2005), is a specific combination of attribute mastery and non-mastery, with each combination
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representing a unique latent class of examinees. Attribute profiles are denoted by column vectors
a=(a,..ay, .., ax)T, where a; € {0,1} indicates the absence or presence, respectively, of the
kth attribute (mastery vs. non-mastery), and the superscript T denotes transpose.
2.1.1.1 Interaction among attributes in an item

CDMs can be categorized as noncompensatory or compensatory models based on the
assumptions about how attributes interact with each other to affect the probability of an item
response. According to DiBello, Roussos, and Stout (2006), a noncompensatory (or conjunctive)
model assumes that lacking competency on any required attribute poses a severe obstacle to
successful performance on the task. In other words, successful performance on a task requires
mastery of all the required attributes; mastery of some of the required attributes does not
compensate for the non-mastery of other required attributes. The terms of conjunctive models and
noncompensatory models are often used interchangeably. Opposite to the noncompensatory nature,
compensatory interaction of attributes means that mastering one required attribute can compensate
for nonmastery of other required attributes. An extreme case of compensatory models is a
disjunctive model in which mastering each subset of the required attributes would lead to the
equally high probability of a correct response (DiBello, Roussos, & Stout, 2006).
2.1.1.2 Interdependencies among attributes

Most CDMs assume independent attributes (Rupp et al., 2010). Nevertheless, there are
cases in which data analysis suggested the presence of interdependencies among attributes
(Templin & Bradshaw, 2014). To account for the relationships between attributes, de la Torre and
Douglas (2004) proposed a higher-order model linking the categorical attributes to an underlying
multivariate normal distribution. The interdependencies among attributes are reflected in the

correlated dimensions of the multivariate normal distribution. Another approach to modeling the
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attribute relationships is to impose a hierarchical structure, in which mastering an attribute could
be prerequisite to mastering another attribute (Leighton et al., 2004; Tatsuoka, 2009; Templin &
Bradshaw, 2014). This thesis adopts the hierarchical approach, which is reviewed in more details
below.

A hierarchy of attributes specifies the relationship between each pair of attributes. For

attribute i and attribute j, if P(a; = 1|a; = 0) = 0, attribute i is called a prerequisite of attribute

j. Suppose there are three attributes in a linear relationship. We have P(a, = 1|a; = 0) = 0,
P(as = 1|la; = 0) = 0,and P(a3 = 1]|a, = 0) = 0.

Attribute hierarchies are often visualized by a tree graph with a set of attributes connected
with arrows. An arrow that points from attribute i to attribute j means that mastering attribute i is
a prerequisite to mastering attribute j (Gierl, Leighton, & Hunka, 2000; Kéhn & Chiu, 2018;
Leighton et al., 2004). Attribute i is a lower-level attribute, and attribute j is a higher-level
attribute in this case.

These pair-wise prerequisite relationships can be formally defined by a K-by-K binary
matrix called the adjacency matrix (A-matrix), in which K is the number of attributes (Tatsuoka,
1983, 2009; Gierl et al., 2000). The A-matrix represents the direct relationships among attributes
usually illustrated by one-way arrows. The (i,j)th element of the A matrix indicates whether
attribute i is directly connected in the form of a prerequisite to attribute j. The diagonal elements
of the A-matrix are zeros. The following is an example of a complex hierarchy in Kéhn and Chiu

(2018) with its 11-by-11 A-matrix.
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Figure 1: A complex example of attribute hierarchy in Kéhn and Chiu (2018)

In an attribute hierarchy, there are direct and indirect relationships. A direct relationship is
characterized by a one-way arrow. In the example below, a; and a, has a direct relationship
because there is an arrow pointing from a, to a,. An indirect relationship can be found between
a, and a,, which are connected through two arrows and a, in between.

If compared to a road map, an attribute hierarchy consists of at least one path of attributes.
A path is defined to be a subset of attributes connected by one-way arrows. The complex attribute
hierarchy below has more than one paths, for example, the path a; = a, = @; = ag = @9 = @4.
For any hierarchy of K attributes, the longest path involves at most K attributes and has at most
K — 1 arrows. The maximum is reached when the K attributes form a linear hierarchy.

Note that some attributes appear in the same path while others do not share a common path.
For example, a; and a, in the following hierarchy do not share a common path. Another example

is the pair of a;o and a;4.
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The prerequisite relationships between attributes are quite common in content standards
for mathematics. As shown in the map of College- and Career-Ready Standards (CCRS - formerly
called the Common Core State Standards), content standards do not stand alone but form a
complicated network (Zimba, 2011, 2015). Some standards form a linear structure with one
standard being the prerequisite of another one (Figure 2a). Some standards serve as prerequisites
for several other standards (Figure 2b). There are also standards that are based on several other

standards (Figure 2c).
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Figure 2: Three types of standard relationships in the Common Core Graph (a: the upper panel, b:
left bottom panel, c: right bottom panel)

However, attribute hierarchies have long been poorly represented in the current CD
literature, and related studies have begun only recently (e.g., Templin & Bradshaw, 2014).
Research on hierarchical attributes has focused on hypothesis testing of the assumed attribute
hierarchy (Templin & Bradshaw, 2014) and model estimation (Tu et al., 2018). When attribute

hierarchies are proved to be present, it is recommended to incorporate this information in the
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modeling process by reparameterizing the original model and excluding certain attribute profiles
(Templin & Bradshaw, 2014; Tu et al., 2018).

Hierarchies that have been used in simulation studies are summarized below. Leighton et
al. (2004) proposed four types of attribute hierarchies, which have been adopted in many studies—
linear, divergent, convergent, and unstructured hierarchies—as illustrated in Figure 3. Liu and
Huggins-Manley (2016) renamed the unstructured hierarchy and the convergent hierarchy in
Leighton et al. (2004) as the “invert pyramid” and the “diamond hierarchy,” respectively. They
replaced the divergent hierarchy with the pyramid hierarchy (Figure 4). Tu et al. (2018) added a

mixed type to the list, which is a combination of two hierarchies (Figure 5).
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Figure 3: Four hierarchical structures using six attributes (Leighton, Gierl, & Hunka, 2004)
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Figure 4: Linear, pyramid, inverted pyramid and diamond structures using five attributes (Liu &
Huggins-Manley, 2016)
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Figure 5: Four types of attribute hierarchies and an independent structure (Tu, Wang, Cai, Douglas,
& Chang, 2018)

Note that a pyramid (e.g., Liu & Huggins-Manley, 2016) or a convergent (e.g., Tu, et al.,
2018) hierarchy comes with an implicit assumption that all prerequisite attributes must be mastered
so that the mastery of the higher-level attribute can be possible.

In application studies of CDMs with hierarchical attributes, the most commonly seen
hierarchy is the linear hierarchy (Gierl, Wang, & Zhou, 2008; Gierl, Alves & Majeau, 2010). To
get an idea of the hierarchical relationships in real classroom instruction, two CCRS-aligned
textbooks for Grade 4 math, Eureka Math (2015) and Engaged NY (2014), were analyzed. The
content structures of the textbooks may shed some light on classroom instruction because
textbooks provide an essential source of information and guidance for teachers, especially when
new standards are introduced. The content analysis results can be found in Appendix A. Generally,
three to five attributes (standards) are involved in a period of one to four weeks. Pyramid and invert
pyramid structures following the definitions of Liu and Huggins-Manley (2016) are observed

besides the linear structure.

23



2.1.2 Attribute profile space of hierarchical attributes

For a test involving K attributes, the set of all possible attribute profiles, subject to the
relationship between attributes, is called the attribute profile space (also called latent attribute
space or latent space; e.g., Kéhn & Chiu, 2018; Tatsuoka, 2009). The attribute profile space,
denoted by L, is defined by a matrix with K columns representing K attributes and each row vector
representing an attribute profile.

Identifying the attribute profile space for K independent attributes is straightforward.
Assuming K independent attributes, the attribute profile space £ isa 2X-by-K matrix, representing
2K different classes into which the examinees would be classified.

The hierarchical relationships between attributes constrain the latent attribute space
because some attribute profiles become impossible. Specifically, it is not allowed to master an
attribute without mastering its prerequisite. Researchers have reached a consensus on restricting
the attribute profile space at the presence of hierarchical attributes (e.g., Templin & Bradshaw,
2014; Tu et al., 2018). However, the identification of the attribute profile space is not
straightforward, especially when the number of attributes is large (Kéhn & Chiu, 2018).

Kohn and Chiu (2018) proposed the lattice-theoretical approach to obtain the latent space.
The first step is to derive the K basic proficiency classes “by inspection” from the tree graph of the
attribute hierarchy. Each basic proficiency class is a K-element vector characterizing a possible
path from the lowest-level attribute to a higher-level attribute. The next step is to reconstruct the
attribute space as a set of linear combinations of the basic proficiency classes. However, the
inspection becomes more difficult as the number of attributes increases and the process is prone to

mistakes.
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An alternative way to derive the attribute profile space begins with the A-matrix. The first
step is to derive the basic proficiency classes as defined in Kéhn and Chiu (2018) in the form of
column vectors of a matrix, called the reachability matrix (R-matrix; Tatsuoka, 1983, 2009; Gierl
et al., 2000). This approach is, therefore, referred to as the R-matrix approach.
2.1.2.1 R-matrix approach

We define some Boolean operations before elaborating the R-matrix approach. A Boolean
vector or matrix is one for which all entries are either 0 or 1. The Boolean addition of two Boolean
vectors of K elements is defined as

X1+ ¥y, = (11 Vrig, o, T V72), €Y
where V is the Boolean “or” operator.

The product of the I-by-K Boolean matrix A and the K-by-J Boolean matrix B is defined

by a matrix C, the [i, j]th element of which is
clijl = \/ AL KIABL,j), @
k

where V is the Boolean “or” operator and A is the Boolean “and” operator.

For a square Boolean matrix B,andany n = 0, the nth Boolean power of B is the Boolean
product of n copies of B.

B" = BOB® - OB (3)
%(_/
n times

The derivation of the R-matrix from the A-matrix and the derivation of the attribute profile
space from the R-matrix are elaborated below.

The R matrix can be calculated as the nth Boolean power of the matrix A + I (Leighton et

al., 2004);
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R=(A+ D" (4)
where n is the integer required for R to reach invariance and can represent the numbers 1 through
K — 1. The number n is decided by the number of arrows in the longest path of the hierarchy.

The next step of the R-matrix approach derives the attribute profile space from the R-matrix.
Note that the A-matrix and R-matrix are of order (k, k). The attribute profile space £, with k
columns indicating different attributes, however, may have more than k rows. The following
algorithm produces the transpose of the attribute profile space (Ding, Luo, Cali, Lin, & Wang,
2008).

1) For the ith column of the R-matrix, we take the Boolean addition of the ith column
and each column on its right side.

2) When a new column vector is obtained, it is added to the right of the R-matrix.

3) The first two steps are repeated for each column of the original R-matrix, including
the last one. Note that the column vectors in the Boolean addition include the new
columns.

The obtained matrix is called the expanded R-matrix, denoted as R*, because it expands
the K-by-K R-matrix by adding columns. This algorithm is referred to as the expanding algorithm.
The attribute profile space £ is the transpose of the expanded R-matrix (R*") with an additional
row of 0s. The space contains at most 2X rows, representing 2X attribute profiles, denoted as as.
The maximum is reached when the attributes are independent. The number of attribute profiles
(as) in the space decreases with hierarchical attributes.

The R-matrix approach is equivalent to the lattice-theoretical approach (Kéhn & Chiu,

2018), but is easier to apply in practice. Appendix B provides R code for the expanding algorithm.
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2.1.2.2 Interpretations of the Boolean operations

The interpretations of the Boolean operations involved in the R-matrix approach are
provided below.

Note that the A-matrix only captures the direct relationship between two attributes. Each
1-entry in the A-matrix stands for a one-way arrow that connects two attributes. The R-matrix
should also capture indirect relationships. Therefore, the first step is to add the identity matrix to
the A-matrix to account for the relationship with an attribute itself. The next step multiplies A + I

to itself until invariance is achieved. The [i, j]th element of (4 + I)? is

A+ D?[i,]] = \/(A + DI, kIA (4 + D[k, j], (5)
k

in which (A+ D[i,k]JA(A+D[k,jl=1if i> k and k —» j, which means attribute i and
attribute j has an indirect relationship through attribute k; else, (A + D[i, k]A(A + D[k, j] = 0.
The disjunction among k attribute \/,, AV[i, k]A AD[k, j] takes the value of 1 if attribute i and
attribute j has an indirect relationship through any attribute.

Consequently, the elements in (4 + I)? capture all indirect relationships between attribute
i and attribute j inthe form of i - k — j. Similarly, it can be shown that the [, j]th element of the
matrix (A + I)3 takes the value of 1 if attribute i and attribute j has an indirect relationship
through two attributes in the form of i - m — n — j. Since the longest possible path in an
attribute hierarchy has K — 1 arrows, the largest number n would take in equation (4) is K — 1.

Take the jth column of the R-matrix. The ith element of the jth column takes the value of
1 if there a path from attribute i to attribute j. If the jth attribute is at the lowest level in any path,

then the jth column has only one non-zero entry; otherwise, the jth column describes a path which
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ends at attribute j. As a result, the columns in the R-matrix correspond to different paths as shown
in the tree graph, equivalent to the basic proficiency classes defined in Kéhn and Chiu (2018).

We use a linear hierarchy with four attributes to demonstrate the derivation of the R-matrix.

01 0 0
10 01 0
A_0001 (6)
0 0 0 0
11 0 0
1011 0
A+I—0011 (7)
0 0 0 1
1 11 0
, |01 1 1
(A+I)—0011 (8)
0 0 0 1
1 1 1 1
_ s_[001 11
R(A+I)0011 (9)
0 0 0 1

The four columns in the R-matrix in equation (9) describe four paths that start from
attribute 1 (i.e., the lowest-level attribute) and end with each attribute, respectively. Invariance is
achieved at n = 3 because the longest path (i.e., a; = a; = a3z = a,) has three arrows.

The columns of the R-matrix can be seen as attribute mastery profiles. If the K attributes
forma single linear hierarchy, then the R-matrix contains all the possible attribute mastery profiles.
However, if there exist two attributes that do not appear in the same path, the R-matrix fails to
account for all the possible combinations of states of two such attributes.

Consider the following attribute hierarchy. The first path (column) is nested within the
other three paths (columns). The second path is nested within the two paths on the right. However,
the last two paths are not nested within each other because A3 and A4 are not connected directly

or indirectly in any path. The four columns in the R-matrix also correspond to four profiles.
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Another possible profile [1 1 1 1]7, which is not included in the R-matrix, can be obtained by

adding the last two columns of the R-matrix.

A1 A2 R =
>

The expanding algorithm involves the Boolean addition of two columns r;,r jin the R-

(10)

oo R
COoOR R
O R R R
N

matrix shown in equation (11) and (12).

[1 712 o Tk
R — |T2:‘1 f:l '.." rz:‘Kl (11)
|_TK,1 Tk2 1 J
ri+r; =V, .o 1kiVrgg) (12)

Addition of two nested paths as defined in equation (12) does not produce a new column.
Addition of two independent paths, however, produces a new column, which expands the original
R-matrix.

Continuing with the complex hierarchy example in Kéhn and Chiu (2018), the attribute
profile space L derived from the expanding algorithm contains 31 attribute profiles.

2.1.3 Q-matrix

The relationship between the items and the attributes is described in an indicator matrix,
called the Q matrix, which has rows corresponding to items, columns corresponding to attributes,
and binary elements indicating whether an attribute is measured by an item (that is, whether
mastery of an attribute is required to succeed on an item). The Q-matrix was initially proposed by
Tatsuoka (1983) and has been employed in most of the commonly used CDMs.

The Q-matrix reflects the test blueprint (Leighton, Gierl, & Hunka, 2004). Specifically, the

Q-matrix operationalizes the substantive and cognitive theories based on which the test has been
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developed and provides evidence for the construct and content aspects of validity (Rupp, Templin,
& Henson, 2010). Itis often considered an analog to the specified factor structure in a confirmatory
factor analysis (Henson, DiBello, & Stout, 2018). The row vectors of the Q-matrix are also referred
to as g-vectors. Items with a g-vector with only one non-zero entry are called single-attribute items.
Others are multiple-attribute items.

An example of Q-matrix is

0 1 0 (13)
10 1
111

which shows that the test measures three attributes with three items, the first item probes the second
attribute, the second item targets the first and the third attributes, and the last item requires all three
attributes. In other words, an examinee needs to master the second attribute to succeed on item 1
without guessing or slipping.

The specification of the Q-matrix precedes any model fitting and classifying. The Q-matrix
is part of the model assumption that can be falsified (e.g., Wang et al., 2018). While most
theoretical and empirical studies assume that the Q-matrix is correctly specified (e.g., Henson et
al., 2018), recent efforts on Q-matrix construction and validation have pointed out the negative
effects of incorrectly identified Q-matrices and proposed solutions (e.g., de la Torre, 2008; Liu,
Xu, & Ying, 2012).
2.1.3.1 Reduced versus full Q-matrix

With hierarchical attributes, researchers have reached a consensus on restricting the
attribute profile space (e.g., Templin & Bradshaw, 2014; Tu et al., 2018). However, there has not
been a consensus on the Q-matrix. Two types of Q-matrices are being used: the full (or unrestricted)
Q-matrices (Liu et al., 2016; Templin & Bradshaw, 2014) and the reduced (or restricted) Q-

matrices (Kohn & Chiu, 2018; Leighton et al., 2004; Tu et al., 2018), which are defined below.
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Consider a test with three independent attributes. The expanded R-matrix R* below has

seven columns and each column represents an item type:
0 1.1 0 1

R*={0 1. 0 1 0 1 1| (14)
1 01 1 1

If we randomly sample from the columns of R* in equation (14) as the g-vectors,
regardless of the attribute hierarchy, the Q-matrix is called a full Q-matrix. With any attribute
hierarchy, a full Q-matrix could have all seven types of g-vectors or a random subset of them. In
a test of three linear attributes, for instance, although the attribute profile @ = (10 1) is not
allowed, the g-vector g = (1 0 1) is possible in the full-Q-matrix approach.

Considering that some attributes profiles become illegitimate under a certain hierarchy;
particularly, it is impossible to master an attribute without mastering all prerequisite attributes.
Therefore, in another line of research, it is assumed that an item probing a higher-level attribute
also requires its prerequisite. This assumption would lead to the removal of some g-vectors. For
example, ¢ = (0 1 0) under a linear hierarchy (a1 = a2 — a3) would be unreasonable because
the item requires the mastery of the second attribute without requiring its prerequisite. A reduced
Q-matrix can only have columns of R* as g-vectors. A special reduced Q-matrix is the transpose
of R*, denoted as Q,. For three linear attributes, for example, R* and Q,- are defined in equation

(15) and (16).

1 1 1
R =0 1 1] (15)
0 0 1
1 1 117
Qr=[0 1 1] (16)
0 0 1

The only difference between Q. and the attribute profile space £ is the exclusion or inclusion of

the vector of all 0s. Therefore, @Q,- can also be derived using the R-matrix approach.
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While studies using full Q-matrices tend not to discuss the necessity to make any change
in the Q-matrix, researchers using reduced Q-matrices believe that the items should reflect the
attribute hierarchy (Kéhn & Chiu, 2018; Tu et al., 2018). The choice between the full Q-matrix
and the restricted one has not been formally addressed in the literature.
2.1.3.2 Complete Q-matrix

A complete Q-matrix is needed to identify all possible attribute profiles (Chiu, Douglas, &
Li, 2009; Chiu & Kdéhn, 2015). With a complete Q-matrix, we have S(a) = S(a') = a = a’,
where S(a) denotes the expected response vector (E[Y; |a], E[Y;a] ..., E[Y]|a]). Completeness

of the Q-matrix is evaluated by checking the definition S(a) = S(a’) = a = a' for each pair,
a and ', in the attribute profile space. It was proved in Chiu et al. (2009) that a Q-matrix
containing the identity matrix (i.e., K single-attribute items) is complete for the DINA model with
independent attributes. Kéhn and Chiu (2018) later showed that any Q-matrix that contains the
transpose of the R-matrix is complete for the DINA model, given any attribute hierarchy. This rule,
however, does not apply to more complicated CDMs such as ACDM and GDINA (Kéhn & Chiu,
2018).
2.1.4 1tem response models and calibration methods

The relationship between each attribute profile and the probability of a correct response is
expressed in terms of IRF (de la Torre, 2011; Rupp, Templin, & Henson, 2010). A variety of
models with different IRFs for multiple-attribute items have been proposed; most of them are
equivalent to each other in the parameterization for a single-attribute item.

Some CDMs are more general models that subsume most other specific models. The

general frameworks include the general diagnostic model (GDM; von Davier 2005), the log-linear
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cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009), and the generalized DINA
(Deterministic Input, Noisy “and” Gate) model (GDINA; de la Torre, 2011).

The rest of the section introduces the GDINA framework and two reduced models from
GDINA. The following notations are used:

e K; isthe number of required attributes for item j, as in K; = YK L Qik-

e aj; is the reduced attribute vector consisting of the columns of the required attributes,
where [ = 1, ..., 25.

e The probability of a correct response on item j by students with attribute pattern a;j; will

be denoted by P(X; = 1

aj; ) =P(aj;).

The IRF of the GDINA model (de la Torre, 2011) is given by

K K]-—l K]-

j
g[P(“fj)] =obj + Z by + Pkt X Quer + -+ Pjaa. i 1_[ Ak (17)

k=1 1 k=1 k=1

el

==
1l

where g[P(aj;)] is P(a;;), log[P(a;;)], and logit(P(a;j;)) in the identity, log, and logit links,
respectively; ¢, is the intercept for item j; ¢ is the main effect due to ay; @i is the
interaction effect due to a;;, and ay,; ¢]-12_"K; is the interaction effect due to a;4, ..., a;k=.

The G-DINA model is a saturated model and subsumes several widely used reduced CDMs,
including the DINA model (Haertel 1989; Junker and Sjitsma 2001; Macready and Dayton 1977)

and the A-CDM (de la Torre, 2011).

To obtain the DINA model, all terms in the GDINA model in identity link, except ¢ ;, and

qulz__,(;f, are constrained to zero, that is,
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K;

P(“?j) = ¢jo + ¢j12...1<;f 1_[ Ak (18)

k=1
The A-CDM is the constrained identity-link G-DINA model without the interaction terms.

It can be formulated as

K*

P(“?j) = ¢jo+ Z b jx A (19)
k=1

Current methods for fitting CDMs use either marginal maximum likelihood estimation that
relies on the Expectation Maximization algorithm (MMLE-EM) or Markov chain Monte Carlo
(MCMC) techniques (Rupp et al., 2010).

2.1.5 Classification methods

The prime objective of CDM data analysis is to classify examinees into one of the attribute
profiles. The estimated attribute profile denoted as @, takes the value of one of the possible skill
patterns a; for [ =1, ...,L. When K dichotomous attributes are involved and assumed to be
independent, the attribute profile space consists of L = 2K latent classes. If an attribute hierarchy
exists, the number of attribute profiles L decreases with some attribute profiles becoming
impossible.

Examinees are often classified via maximum likelihood estimation (MLE; de la Torre,
2008), maximum a posteriori (MAP; Rupp et al., 2010), or expected a posteriori (EAP; de la Torre,
2008; Rupp et al., 2010), which are applicable to any CDM that is a special case of a restricted
latent class model. Huebner and Wang (2011) conducted a simulation study comparing the
accuracy of the three methods under different testing conditions.

The likelihood function of the responses given the attribute profile « is given by
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! X;; 1-X;; (20)
LX|a) = HP(XU =1la)"’[1-P(X; =1|a)] 7.
=1

The MLE estimator is the attribute profile a; for [ = 1, ..., L that maximizes the likelihood,

and is formally denoted as

(21)

@, = argmax L(X;|a).
l

If prior probabilities denoted as P(a;) for I =1, ..., L, are available from previous test
administrations, the posterior probability P(e;|X;) for each a; can be calculated:

L(X;|a))P(ex;)

P(a|X;) = . 22
W = S LK ) P () (22)
The MAP estimator is then denoted as

Qy4p = argmax P(a;|X;). (23)

l

It is generally true that MLE and MAP estimates are equivalent if flat priors are used in
MAP estimation (Huebner & Wang, 2011).

For the EAP approach, the probabilities of mastery for each attribute (the marginal skill
probabilities), &, for k = 1, ... K, are calculated for an examinee and rounded at .50 to obtain
binary mastery classifications. The posterior probabilities P(a;|X;) are aggregated to obtain the

marginal probabilities &, fork = 1,...K:

L
dy = l P(ay|X)I(ay, = 1) (24)
=1

1 if element k of Attribute Profile | equals 1,

where 1(“l,k =1) = {0 otherwise.

The marginal probability @, is usually rounded at .50 to obtain a binary classification for

attribute k (k = 1, ...K).
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With hierarchical attributes, researchers have reached a consensus on restricting the
attribute profile space (e.g., Templin & Bradshaw, 2014; Tu et al., 2018). The MLE estimator
maximizes the likelihood function over the set of all possible attribute profiles when the item
parameters are assumed to be known, which is referred to as unrestricted MLE (Tu et al., 2018).
When hierarchical attributes are involved, a restricted MLE is recommended in which the
probability of some attribute profiles are fixed to zero due to the hierarchy (Templin & Bradshaw,
2014; Tu et al., 2018). The only difference between unrestricted and restricted MLE is in the
attribute profile space. Similarly, restricted MAP and EAP estimators should be used for
hierarchical attributes.

2.1.6 Q-matrix design

The CDMs provide guidance for test construction. Cognitive theories could have a real
impact on testing practice through CDM model assumptions about relationships between attribute
as well as the relationship between attributes and item responses. Given a set of attributes, instead
of relying heavily on post hoc item analysis surrounding internal consistency, test development in
the CDM context begins with a set of possible item types that are characterized by their g-vectors.
For example, a test with three independent attributes can have at most seven different item types.
The Q-matrix for a particular test can be obtained by sampling with replacement from the column
vectors of the corresponding R*. The Q-matrix is a core element of the CDM-based test design.

Madison and Bradshaw (2015) defined the Q-matrix design as "the deliberate arrangement
of a set of test items according to the specific subset of attributes measured by each individual
item." The Q-matrix plays a significant role in the statistical identification of the model (Kéhn &
Chiu, 2018; Xu & Zhang, 2016). However, Q-matrices that lead to identification may provide

varying classification accuracy rates.
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Three studies have been done with the effects of Q-matrix design on classification accuracy
with independent attributes. Chiu, Douglas, and Li (2009) showed that each attribute needs to be
measured by at least one single-structured item in order to obtain acceptable classification accuracy
in both DINA (Haertel, 1989; Junker & Sjitsma, 2001; Macready & Dayton, 1977) and DINO
(Templin & Henson, 2006) models. Similarly, DeCarlo (2011), in his investigation of the DINA
model, found that if an attribute is always measured through interaction terms and never measured
inisolation, the classification obtained only reflects the prior probabilities. The finding of DeCarlo
(2011) was echoed in Madison and Bradshaw (2015), in which they concluded that attributes
measured in isolation could help increase classification accuracy when holding constant the
number of times an attribute is measured on a test, based on the log-linear cognitive diagnosis
model (LCDM; Henson, Templin, & Willse, 2009).

Recent efforts expanded the research on Q-matrix design to testing situations with
hierarchical attributes (Liu & Huggins-Manley, 2016; Liu, Huggins-Manley, & Bradshaw, 2017).
In Liu, Huggins-Manley, and Bradshaw (2017), different Q-matrix designs were generated using
the so-called independent approach, adjacent approach, or reachable approach when the attribute
hierarchy was linear, divergent, convergent, or unstructured. The CDM was the hierarchical
diagnostic classification model (HDCM; Templin & Bradshaw, 2014). The independent approach
only allows for simple-structured items. Each item measures at most two attributes with direct
relationships in the adjacent approach. Each item can measure any combination of attributes that
are directly or indirectly connected in the reachable approach. Their simulations found that the
adjacent approach leads to higher classification accuracy in a shorter test and they recommended
using the adjacent approach to design the Q-matrix when a hierarchy is present (Liu et al., 2017).

Using the adjacent approach in Liu et al. (2017), Liu and Huggins-Manley (2016) found that
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"higher-level attributes were often associated with higher classification accuracy than lower-level
attributes™ as a result of more information about higher-level attributes from the hierarchical
structure.
2.1.7 Criteria for test construction

A research area closely related to Q-matrix design is the development of item and test
indices. When estimated item parameters are available for a pool of items, an item index based on
the estimated item parameters can be calculated to identify good items that achieve high
classification rates with a minimal number of items (Henson, DiBello, & Stout, 2018). This type
of item indices is referred to as item discrimination in Henson et al. (2018). The Fisher information
is an example of such item indices in the IRT context. For CDMs, a counterpart of the Fisher
information is the Kullback-Leibler information (KLI; also called KL divergence or KL distance).
Much of the work on item-level and test-level indices in CDMs have been based on KLI.
2.1.7.1 Kullback-Leibler information

KLI measures how far a distribution g is away from the actual distribution p (Gray, 2011;
Chang & Ying, 1996; Xu, Chang, & Douglas, 2003). Given a probability space (Q, B, P), with Q
being a finite space, and another measure M on the same space, the KL information of P with
respect to M (Gray, 2011) is defined as

D(P, M) = z P(w)In (( )) (25)

which ranges from 0 to co.

The Fisher information can be used in the test construction because the test information is
the sum of item information, and the variability of the maximum likelihood estimate decreases as
the information increases. Test construction criteria for CDMs should have similar properties

(Henson & Douglas, 2005).
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The KL information for an item j for differentiating o, and a,, is defined as

1

Djyy = ZP(xI a,)In e llzg (26)
X=0

Note that Dj,,, # Djyy; Djyy = 0 for u = v. An item is most useful in determining the

difference between two attribute profiles, a, and «,,, if D, and D;,,, are large. All D;,,,s for item

j can be recorded in a matrix D; of L columnsand L rows where L is the size of the attribute profile

space.

The KL information for a test is defined as

P(X|at,)
Dy me 5 X,y @7

where X represents the response pattern for J items. The KL information for a test compares the
probability distribution for an item response vector X, given a,, when compared to the probability
distribution of X given an alternative attribute pattern, a,. Because of the assumption of local
independence among items conditional on a, it can be shown that the test information is the sum
of the KL information across all items in the exam. The test KL information D ,,,, for all pairs of
(u, v) in the attribute profile space, £, forms an L X L matrix D where L is the size of L.

of a 2K x 2K matrix containing 2% (2K — 1) possible comparisons because the KL
information is not symmetric. The diagonal elements of the matrix are zero. The KL information
provides a general method that will apply to all CDMs (Henson & Douglas, 2005), based on which
researchers have proposed attribute, item, or test-level indexes for test construction.
2.1.7.2 Cognitive diagnostic index (Henson & Douglas, 2005)

The cognitive diagnostic index (CDI) for an item j is proposed as a weighted average of

the off-diagonal elements of D; since the matrix expands exponentially with the number of
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attributes K and makes it difficult in simultaneously evaluating all the elements (Henson &

Douglas, 2005). The CDI; for item j is defined as

1
CDI; = Z h(ea,, a,) 1D;,,.
j Y o h(a, a,) 1 £ w Ay juv (28)

where h(.,.) is the Hamming distance and Dj,,,, stands for the element of the matrix D; at (u, v).

The CDI for a test is defined as

1
CDI = Z h(a,, 1Dy
Zu:#v h(au: av)_l m (au av) w (29)

u#v

where D,,,, stands for the element of the matrix D(a, a*) at (u, v). It can be shown that the CDI
for a test is the sum of CDI; for all the items in the test.

Henson and Douglas (2005) showed that the CDI strongly relates to the average correct
classification rates across attributes and examinees for a test and they suggest using the cognitive
diagnostic index (CDI) as a measure of an item’s or test’s discrimination power.

Other indexes based on the KL information include the Attribute Discrimination Index
(ADI) that is supposed to be related to the correct classification rate of the masters for the kth
attribute (Henson, Roussos, Douglas & He, 2008), and the modified CDI and modified ADI (Kuo,
Pai, & de la Torre, 2016). Note that all the indexes mentioned above are overall indexes that are
not conditional on a.
2.1.7.3 A unified item and test discrimination approach (Henson, DiBello, & Stout, 2018)

Henson et al. (2018) proposed a probability-based attribute-specific index for items with

multiple options. For dichotomous items, the index is reduced to

DIy = max(|P(X; = 1]a) — P(X; = 1]a”)]), (30)
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where a~¥ denotes an attribute pattern that differs from a only on the kth attribute. The
maximization is taken over all as. The index DI, describes the discrimination power of item j in
measuring attribute k and has a value between 0 and 1.
2.2 Nonparametric classification based on CDM conception

An alternative to classification when calibrating a parametric CDM is not practical or even
possible is the nonparametric approach. The nonparametric approach shares with the conventional
CDM approach the conceptions of a Q-matrix, a set of attributes, and different attribute interaction
effects on correct responses. The test is still constructed based on a CDM, but a probabilistic model
is not used to characterize the correct response probabilities of different attribute profiles. Instead,
the examinees are classified into different attribute profiles using a nonparametric method.

Barnes (2010) developed a nonparametric exploratory approach to build the Q-matrix and
classify examinees. Some researchers employ cluster analysis for nonparametric classifications
(Ayers, Nugent, & Dean, 2008; Chiu, Douglas, & Li, 2009; Willse, Henson, & Templin, 2007).
Another stream of research is based on the idea of minimizing the distance between observed item
response patterns and the ideal response patterns according to the Q-matrix (Chiu & Douglas, 2013;
Chiu, Sun, & Bian, 2018; Wang & Douglas, 2015). The rest of the section reviews the third type
of nonparametric methods that minimize distance measures.
2.2.1 The nonparametric (NPC) method

Chiu and Douglas (2013) proposed a simple method to classify examinees by matching
observed item response patterns to the nearest ideal response pattern, henceforth referred to as the

nonparametric (NPC) method. The ideal response of examinee i on item j is denoted as »;;, and

the vector containing ideal responses of examinee i on all the items in a test is denoted as n;.
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The ideal response patterns are derived from the Q-matrix and the assumption on attribute
interactions. Consider a g-vector q, = (1 1) and four possible attribute profiles a;, =
0 0),a,=(1 0),a3=(0 1),andea,=(1 1). If we assume a conjunctive model
underlying the responses, the ideal responses for the four attribute profiles would be n,, = 0,7,, =
0,13, = 0,and n,, = 1, respectively. For a test with more than one item, each possible attribute
profile is associated with an ideal response pattern. The observed response pattern of an examinee
is compared with the ideal response patterns. The attribute profile of the closest ideal response
pattern is the estimate for the examinee. Three distance measures were proposed by Chiu and
Douglas (2013). Denote the observe response pattern as x. The hamming distance between x and
n is given by

J
dnCem) = ) by =yl (3D

j=1

where J stands for the test length. A weighted Hamming distance is defined as

J
dywn(x, 1) =;ﬁ(1—1_ﬁ)|xj—ﬁj|' (32)
where p denotes the proportion correct on the jth item. They also proposed the penalized
Hamming distance for the special cases where the slipping parameter is much less than the
guessing parameter or vice versa (Chiu & Douglas, 2013).
Chiu and Douglas (2013) found that accurate classification can be achieved when the true
model is DINA and NIDA with slip and guess parameters considerably higher than 0. The

estimator of a would be perfect without any slipping or guessing but still performs with good

relative efficiency even when this is not the case (Chiu & Douglas, 2013). A formal justification
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for the NPC methods was provided in Wang and Douglas (2015), showing that the nonparametric
method yields consistent classifications under a variety of underlying conjunctive models.
2.2.2 The general nonparametric classification (GNPC) method

The general nonparametric classification (GNPC) method (Chiu, Sun, & Bian, 2018) was
proposed as an extension of the NPC methods (Chiu & Douglas, 2013). The example in 3.2.1 is
revisited to illustrate the need for this extension. The ideal responses for the four attribute profiles
are 11, = 0,1, = 0,73, = 0,and n,, = 1, respectively, assuming an underlying conjunctive
model. The ideal responses would become 7, = 0,1, = 1,n3, =1,andn,, =1 if the
underlying model is a disjunctive one. In the NPC method, either the conjunctive ideal response
patterns (denoted as (?)) or the disjunctive ideal response patterns (denoted as n(?) are used
according to the assumptions about the cognitive process. However, using (€ or (¥ may not be
adequate if the underlying CDM is a complex one, such as a saturated GDINA model. Consider a
set of GDINA parameters for this item (B, B1, B2, B3) = (0.1, 0.4, 0.6, —0.2). The probabilities
for the four possible attribute profiles to answer the item correctly are (0.1,0.5,0.7,0.9).
Obviously, neither the ideal responses (0, 0, 0, 1) nor (0, 1, 1, 1) would be appropriate.

Besides, before any analysis of the response data, we cannot decide which of the ideal
response patterns is more suitable. Therefore, the GNPC method defines the weighted ideal

response on item j for the [th attribute profile in the attribute profile space as

d
e = wyntd + (1 - wy)ni?, (33)

inwhich 0 < w;; < 1 isaweight calculated from the data in an iterative procedure. Conceptually,
the weight is found when the total distance between the observed responses and the weighted ideal
responses is minimized. Denote the attribute profilesas C; for [ = 1, ... L. The total distance can be

denoted as

43



dy = (xy=n5")" (34)

ieC;

wy; is obtained by minimizing d;;:

Ziecl(xij B 77l(Jl']l))
™ (nl(jC) B 771(1@) ’

where n, is the number of examinees classified to attribute profile C;. The w;; can be computed

(35)

le =

via an iterative procedure described in Chiu et al. (2018). The NPC method can be used to provide
a set of initial classifications to calculate the initial w;.

The NPC (Chiu & Douglas, 2013; Wang & Douglas, 2015) and the GNPC (Chiu et al.,
2018) methods do not have limitations regarding the number of attributes, the sample size or the
test length as the conventional CDMs do, which makes them a practical option for small-scaled
classroom assessments.
2.3 CD-CAT
2.3.1 From IRT-based CAT to CD-CAT

Computerized adaptive testing (CAT), built on the idea of “individualized testing,” can
tailor both items in the test form and the test length to an individual examinee. The maximum
information criterion is usually adopted in IRT-based CAT’s item selection to optimize test
efficiency in terms of shorter test length or higher measurement precision or both compared to
linear testing. There have been many operational CAT programs since the 1980s and rich literature
in the past decades (Reckase, 2010).

CAT algorithms based on CDMs (denoted as CD-CAT) have been developed with the same
motivation behind the IRT-based CAT, that is, to increase testing efficiency (Cheng, 2009;

McGlohen & Chang, 2008; Xu, Chang, & Douglas, 2003). When the cognitive diagnosis is
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combined with CAT, we can proceed from “individualized testing” to a new stage of
“individualized learning.” As technologies become more available in the classroom, CD-CAT can
play a more important role in learning and teaching. Chang (2015) reported an experimental CD-
CAT program was implemented in Zhengzhou, China and a survey suggested that “CD-CAT
encourages critical thinking, making students more independent in problem solving, and offers
easy to follow individualized remedy, making learning more interesting. (p. 15)”

Similar to the CATs based on other measurement models, a CD-CAT algorithm consists
of a measurement model (e.g., the DINA model), a method for selecting the first item(s) to
administer, a scoring method, a rule to select the next item conditional on examinee responses to
the previous item(s), and a termination rule to end the test. An item pool with calibrated items is
needed for the implementation of the CAT algorithm.

2.3.2 Item selection methods for CD-CAT

Item selection is a core element of CAT algorithms. Three item selection indices based on
the KL information are reviewed in this section because they will be used in the simulation study.
There are item selection methods based on other criteria such as the Shannon entropy (Wang, 2013;
Xu et al., 2003) and mutual information (Huebner, Finkelman, & Weissman, 2018).

The following notations are used for the CD-CAT context:

?xl@ denotes the attribute profile estimate for examinee i after t items have been
administered,

xgt) denotes the observed response pattern for examinee i when t items have been

administered,
L denotes the size of the attribute profile space;

a, (I = 1,2,..,L) denotes the [th attribute profile in the attribute profile space;
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R® denotes the available items in the item pool when t items have been administered; and

X;1, denotes the response of examinee i to item h from R(®,

The KL algorithm. Xu, Chang, and Douglas (2003) proposed using the straight sum of the
KL distances between f(X;; |¢’il@) and all the f(X;, |a;)s forl = 1,2,...,L. Note that L = 2¥

when there are K independent attributes. The KL index is defined as

L
kLy(@®) = > D@ 1 (36)

=1

where
- (t)
D,@" Il @) = Z log(PID(é?h_ qllAa )))P(th = qla). (37)
=
q=0

Then the (t + 1)th item for the ith examinee is the item in R(® that maximizes KL( (t))

The KL index KL( (t)) is referred to as the global discrimination index (GDI) in Xu et al. (2003).

This item selection method is referred to as the KL algorithm in Cheng (2009).

The KL algorithm selects items that are the most powerful in distinguishing the current
attribute profile estimate from all other possible attribute profiles on average (Cheng, 2009). Cheng
(2010) points out that the KL algorithm does not consider attribute coverage. Another drawback

is that this algorithm may not be effective at the early stage with inaccurate & A(t)

The posterior-weighted KL (PWKL) index. The PWKL index weights the KL index by the
posterior distribution (Cheng, 2009). If informative priors m(; are available for each attribute

profile, posterior distributions can be obtained at each step t:

i (c|x) o< o L (x| ar,) (38)

Denote ni,t(al|x§t)) by m; . (et;) for simplicity in notation. The PWKL index is defined as
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). (39)

L L
PWKL, (@) = Z (@ Il a) i () = Z D (@ Il &) oL (x*
=1 =

=1

Assuming local independence, the likelihood function L(xl@|al) can be written as

t
L(x]a) = [ [1PCa1 1 - Pap)— (40)
j=1
where P(a;) is the IRF defined by a CDM. Then the (t + 1)th item for the ith examinee is the

item in R(® that maximizes PWKL( (t)) If the prior is discrete uniform, the PWKL index is

reduced to the likelihood-weighted KL (LWKL) index:

~

LWKLy(a") Z (@ na)L(x)a.) (41)

=1
The modified posterior-weighted Kullback-Leibler (MPWKL) index. The KL and PWKL

A()

index use the current estimate @;  with an implicit assumption that the point estimate is a good

summary of the current information. However, the point estimate &L@

may be inaccurate
especially at the early stages of a test. To solve this problem, Kaplan, de la Torre, and Barrada
(2015) used the entire posterior distribution instead of a point estimate. The MPWKL index is
given as

L L 1
® _ P(Xin = qlap)
MPWKL,’ = z Z Z log (P(Xih —ala) )P(th qlap)mi () [mi (@) | (42)

m=1|1=1|q=0
2.3.3 Item pool design
The potential benefits of CAT cannot be realized without a well-constructed item pool
(Reckase, 2010). There are some studies on item pool design for CAT based on IRT models (e.g.,
Reckase, 2010; Thissen, Reeve, Bjorner, & Chang, 2007), and more research is needed in this area.

Considering the difference between items based on IRT and CDM, the findings from IRT -based

47



CAT cannot be directly applied to CD-CAT. However, the item pool design for CD-CAT has not
been addressed in the literature despite its importance.

Simulation findings on item usage in CD-CAT might inform the item pool design process
(Kaplan et al., 2015). For example, a CD-CAT based on the DINA model tends to use items with
a g-vector matching the examinee’s true attribute profile and items that required single attributes
which were not mastered by the examinee, which implies that it is important to include sufficient
single-attribute items in the item pool.

Since there is no published research on item pool design for CD-CAT, the studies on the
IRT-based CAT are reviewed below. There is a body of literature on selecting operational pools
from a larger pool called a “master pool” (Belov & Armstrong, 2009; Swanson and Stocking, 1998;
van der Linden, Ariel, & Veldkamp, 2006; Way, Steffen, & Anderson, 1998). The problem they
address is related to item pool design but is more appropriately described as item pool assembly
(van der Linden et al., 2006).

van der Linden et al. (2006) argues that an item pool design problem occurs before actual
items are available and the output is a blueprint for an item pool that defines the distribution of
numbers of items over the space of all possible combinations of statistical and nonstatistical item
attributes (e.qg., item difficulty parameter and word count). The goal of item pool design is to guide
the item writing and pool maintenance process (Reckase, 2010; Veldkamp and van der Linden,
2000).

Item pool design studies for IRT-based CAT focuses on different aspects of an item pool.
Veldkamp and van der Linden (2000) proposes a method for item pool design that minimizes item-
writing costs subject to test constraints. Test constraints are represented in the classification table

that contains all possible combinations of item attributes such as word counts, difficulty parameters,
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difficulty parameters, and discrimination indices (Veldkamp & van der Linden, 2000).
Quantitative attributes are transformed to categorical variables represented by intervals, for
example, (—o, —2.5), (2.5, -2), ...,(2,2.5), (2.5, =) for the difficulty parameter. The goal of
the item pool design process is to find out the number of items needed for each cell of the
classification table. The number of items in each cell of a previous item pool, however, is needed
to define item writing costs as the inverse of that number, based on the idea that items written more
frequently tend to be less costly.

Another stream of research based on the bin-and-union method (Reckase, 2010) explores
item pool design without any information of existing item pools as a starting point (He & Reckase,
2014; Mao, 2014). This family of research focuses on the psychometric performances of item
pools instead of the item-writing costs. Reckase (2010) thinks an optimal item pool should always
provide the desired item for every item selection. An optimal item pool for a CAT procedure based
on 1PL model, for example, is “one that has an item in the pool that has a b-parameter exactly
equal to the current 0 estimate for every item selection.” (Reckase, 2010) The size of an optimal
item pool is 2™ — 1 where n is the test length, which is too large to be practical. If the latent scale
is divided into bins and the items with b-parameters within a bin are treated equivalent, the item
pool size will be greatly decreased to a reasonable level. The definition of “bins” is similar to the
categorization of the difficulty parameter in Veldkamp and van der Linden (2000).

The item pool design methods of Veldkamp and van der Linden (2000) and Recakse (2010;
also see He & Reckase, 2014; Mao, 2014) are based on different definitions of optimal item pool,
but a common feature they share is the use of computer simulation. The simulations in Veldkamp
and van der Linden (2000) are carried out using integer programming and the shadow test approach

(van der Linden, 2005a, 2005b; van der Linden & Diao, 2014; van der Linden & Reese, 1998) and
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sampling examinees from a hypothetical examinee distribution. The goal is to record the counts of
the number of times items from each cell in the classification table are used, and the final blueprint
is calculated from these counts (Veldkamp & van der Linden, 2000). The bin-and-union method
(Reckase, 2010) takes a more direct approach by simulating an operational CAT and sampling

from an examinee population.
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Chapter 3 CDM parameterization and Q-matrix with hierarchical attributes
3.1 Introduction

The CDMs with a restricted attribute profile space due to the attribute hierarchy is
henceforth referred to as hierarchical CDMs. This section addresses parameterizations and the Q-
matrix of hierarchical CDMs. Parameterizations for hierarchical CDMs have not been formally
discussed except for the HDCM (Liu et al., 2017; Templin & Bradshaw, 2014) and the DINA
model. When it comes to the Q-matrix, two types of Q-matrices are being used by two groups of
researchers, respectively: the full (or unrestricted) Q-matrices (Liu et al., 2016; Templin &
Bradshaw, 2014) and the reduced (or restricted) Q-matrices (Kéhn & Chiu, 2018; Leighton et al.,
2004; Tu et al., 2018). The choice between the full Q-matrix and the restricted one has not been
formally addressed.

Therefore, the first set of research questions is about the parametrization of hierarchical
CDMs and the difference between reduced and full Q-matrix. These questions are important
because the test constructions and item pool designs all depend on correctly-defined CDMs and
Q-matrices.

In this thesis, it is assumed that the hierarchical relationship and the Q-matrix have been
established and validated, and we focus on test construction or item pool design for different types
of attribute hierarchies.

3.2 Attribute hierarchies

Before discussing parameterizations and Q-matrices, we define the attribute hierarchies
studied in this thesis. The formative assessment is designed for a period of two to four weeks.
Therefore, we consider situations with three, four, or five attributes in this study. The subsets of

attribute hierarchies chosen for 3-attribute, 4-attribute, or 5-attribute conditions, respectively, are
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listed in Table 1 and illustrated in Figure 6-Figure 8. Most of the selected attribute hierarchies can

be found in the textbook analysis, as well as previous empirical and simulation studies.

Table 1: Subsets of attribute hierarchies for 3-attribute, 4-attribute, or 5-attribute conditions

ID Number of attributes Size of attribute Attribute hierarchy
profile space

H3.1 3 8 Independent
H3.2 3 4 Linear
H3.3 3 5 Inverted pyramid
H3.4 3 5 Pyramid
H4.1 4 16 Independent
H4.2 4 5 Linear
H4.3 4 8 Linear + single
H4.4 4 6 Inverted pyramid
H4.5 4 6 Pyramid
H5.1 5 32 Independent
H5.2 5 6 Linear
H5.3 5 10 Inverted pyramid |
H5.4 5 11 Inverted pyramid Il
H5.5 5 10 Pyramid |
H5.6 5 11 Pyramid Il

H3.1 Independent H3.2 Linear

H3.3 Inverted pyramid H3.4 Pyramid

Figure 6: A subset of attribute hierarchies with 3 attributes
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H4.1 Independent H4.4 Inverted pyramid

H4.2 Linear

H4.5 Pyramid

H4.3 Linear + single

Oa020I0NO

Figure 7: A subset of attribute hierarchies with 4 attributes

H5.1 Independent

H5.2 Linear

H5.3 Inverted pyramid |

H5.4 Inverted pyramid Il

H5.5 Pyramid | I H5.6 Pyramid Il

@

Figure 8: A subset of attribute hierarchies with 5 attributes
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3.3 Parameterizations of hierarchical CDMs

We discuss the parameterizations for the DINA (Junker & Sijtsma, 2001), ACDM (de la
Torre, 2011), and GDINA model with the identity link function (de la Torre, 2011) when the
attributes are hierarchical.

An item requiring K attributes can classify students into at most 2X classes. A hierarchical
relationship among attributes leads to fewer than 2X classes. A saturated model for an item
requiring K independent attributes can have 2¥ item parameters including an intercept, K main
effect terms, and 2X — K — 1 interaction terms. The number of item parameters cannot exceed the
number of classes.

The parameterizations for DINA and ACDM do not change with hierarchical attributes.
The DINA model has two parameters for each item disregarding the g-vector of the item: an
intercept and an interaction term (or a guessing parameter and a slipping parameter in an alternative
parameterization). Under the A-CDM, an item requiring K independent attributes has K + 1 item
parameters (i.e., one intercept and K main effect terms).

For GDINA, some item parameters (i.e., the main effects of nested attributes and some
interaction terms) need to be fixed at zero, which is parallel to the parameterizations of the
Hierarchical Diagnostic Classification Model (HDCM; Templin & Bradshaw, 2014).

Before demonstrating the parameterizations of hierarchical models, we present the
parameterizations of three models—DINA, ACDM, and GDINA—for a single-attribute item and
a two-independent-attribute item. The three models are equivalent regarding a single-attribute item
but have different parameterizations for an item requiring two independent attributes, which are

shown in Table 2 in the form of expected response E|[Y; |e].
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Table 2: Expected responses on two items with two independent attributes

q; = (01) q; =11
a

Any model DINA ACDM GDINA
(00) ®jo ®jo ®jo djo
(10) djo djo djo + dj1 djo + dj1
(01)  ¢jo+ dj2 djo djo T ¢j2 bjo + D)2

(11) djo+ bj2 Pjo+ dj12 Djot+ dj1+ bj2 Pjot+dj1+ dj2+ P2

Note: Item j involves two independent attributes a; and a,; all models the identity link; DINA =
deterministic input noisy “and” gate; ACDM = additive cognitive diagnosis modeling; GDINA =
generalized DINA; ¢, = intercept; ¢ ;; = main effect of the kth attribute (k = 1,2); ¢; ;, = two-
way interaction.

Suppose a; is the prerequisite of a, (i.e., a; — a;). The item q; = (0 1), under each
model (DINA, A-CAM, or GDINA), classifies examinees into two groups: those who master both
a, and its prerequisite a; and those who have not mastered «,. The parameterizations of the three
hierarchical models are in Table 3. Under the DINA model, the item q; = (1 1) has the same
parameterizations as q; = (0 1). For the parameterizations of the item q; = (11) under
GDINA, the main effect of the higher-level attribute (i.e., a,) needs to be fixed at zero. Both
ACDM and GDINA have three item parameters. ACDM has an intercept and two main effects.
GDINA has an intercept, a main effect, and an interaction effect. Although parameterized

differently, the two models become mathematically equivalent for an item measuring two linear

attributes.
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Table 3: Expected responses on two items with two linear attributes (a;—a5)

q; = (01) q; = (11)
: Any model  DINA ACDM GDINA
(00) bjo Pjo Pjo bjo
(10) bjo bjo bjo+ dj1 $jot+ b1

(11) Pjo+ dj2  Djot Pj1z Pjot Pjpnt djz bjot+ Pt PDjaz

Note: Item j involves two attributes a; and a, under a linear hierarchy; all models the identity link;
DINA = deterministic input noisy “and” gate; ACDM = additive cognitive diagnosis modeling;
GDINA = generalized DINA; ¢;, = intercept; ¢, = main effect of the kth attribute (k = 1, 2);

;12 = two-way interaction.

Next, we consider a situation involving three attributes with one attribute being the

prerequisite of the other two as in an inverted pyramid hierarchy (H3.3). Table 4 presents the

parameterizations of three models for g; = (11 1). For thisitem, the three models have different

parameterizations. The difference between ACDM and GDINA lies in the interaction effect

between a, and as.

Table 4: Expected responses on q; = (11 1) under an inverted pyramid hierarchy (H3.3)

q; = (111)
: DINA ACDM GDINA
(000) o $io b0
(100) &y $jo+ bja Bjo+ bja
(110) ¢ Bio+ i1+ b2 bio+ b1+ iz
(101) ¢ Bio+ b1+ b Bio+ i1+ s

(111) pjo+ Pj123 Pjot i1+ Pj2+ PjsPjo + Pj1+ Pj12 + Pj13+ )23

Note: The inverted pyramid hierarchy defines oy —» a,, @; = a3. @, and a3 do not share a

common path.
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We then consider a situation involving three attributes with two attributes being the
prerequisite of the third one as in a pyramid hierarchy (H3.4). Table 5 presents the
parameterizations of three models for g; = (11 1). For thisitem, the three models have different
parameterizations. The difference between ACDM and GDINA lies in the interaction effect

between «; and a,.

Table 5: Expected responses on q; = (11 1) under a pyramid hierarchy (H3.4)

q; = (111)
: DINA ACDM GDINA
(000)  9jo bjo bjo
(100)  9jo $jo+ P bjot+ Pp
(010)  ¢jo Pjo+ Pj2 Pjo + b2
(110)  djo Gjo+dj1+ P2 bjo+dj1+ Pj2+ Pj12

(111) @jo + djz Pjo+ Pj1+ Pj2 + Pjsbjo+ Pj1 + Pjz + Pjr12 + Pj123
Note: The pyramid hierarchy defines a; = a3, a, = a3. a; and a, do not share a common path.

3.4 Q-matrix of hierarchical CDMs
3.4.1 Reduced or full Q-matrix

In previous studies, either a reduced Q-matrix or a full Q-matrix is used. With hierarchical
attributes, the argument is around whether it is possible for an item to measure a higher-level
attribute without measuring its prerequisite(s). A full Q-matrix allows all types of g-vectors as in
an independent-attribute situation. A reduced Q-matrix requires that items that measure a higher-

level attribute also require all its prerequisite(s). In other words, a reduced Q-matrix can only
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contain g-vectorsin @, (the transpose of the expanded R-matrix R*). We will demonstrate that the
reduced Q-matrix approach is equivalent to the full Q-matrix approach under the DINA model.

It can be shown that, under the DINA model, a multiple-attribute item q; =
(91 -+ 9k-1 15 Ogyq1 -..0x) is  equivalent to the  single-attribute item q, =
(01 ... 0p—1 14 Op41 .. 0g), inwhich g; (i = 1, ..., k — 1) takes the value 1 or O if the previous k —
1 attributes are the direct or indirect prerequisites of the kth attribute, or takes the value 0 if the
ith attribute is not connected with the kth attribute in any path. The multiple-attribute item q4 and
the single-attribute item q, are equivalent because they classify attribute profiles into the same
two groups (i.e., as mastering the kth attribute or not), and they have the same expected response
for each group as shown in Table 6.

Therefore, under the DINA model with a linear hierarchy, the reduced Q-matrix Q, is
equivalent to an identity matrix consisting of K single-attribute g-vectors. Table 7 presents the
equivalent g-vectors for each row of @, in the case of three linear attributes.

Under the DINA model and any attribute hierarchy, each g-vector in Q,. representsa unique
type of items (Table 7-Table 10). Other g-vectors can find their equivalent one in Q... Consequently,
there would be no difference between the reduced Q-matrix approach and the full Q-matrix
approach under the DINA model. However, it is noteworthy that there are less than 2K — 1
distinctive g-vectors with hierarchical attributes.

Note that all the single-attribute items are included in Q,- under the DINA model. Under
the ACDM or GDINA, however, each g-vector is distinctive, and consequently Q,  does not
include all the single-attribute items. We use H3.2 under the ACDM to demonstrate this in Table
11. If the reduced Q-matrix approach is used with ACDM or GDINA, it means that some single-

attribute g-vectors will be excluded from the Q-matrix.
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Table 6: The expected responses of two groups of attribute profiles on q; and q, under the DINA
model

a q1 = (A1 - qk-1 1k O41 - 0x) G2 = (01 ... O—q g Opyq ... Og)
as with a;, =0 dio bjo
as with a, =1 ®jo+ Pjau ®jo + djau

Note: a; stands for the kth attribute; g; (i = 1, ...,k — 1) takesthe value 1 or O if the previous k —
1 attributes are the direct or indirect prerequisites of the kth attribute, or takes the value 0 if the
i th attribute is not connected with the Kk th attribute in any path;
@ jo = intercept; ¢; 4, = interaction.

Table 7: The g-vectors in Q. and their equivalent g-vectors under the DINA model with three
linear attributes (H3.2)

Q, Equivalent gs Attribute Profiles a
E[Y|a] = ¢j0 $jo+ Pjau
(100) (000) 1o00(110(111
(110) (010) (000)(100) 110)(111)
(111) (001)(101)(011) (000)(100)(110) 111)

Note: Single-attribute items are bolded; ¢ ;, = intercept; ¢; ,;; = interaction.
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Table 8: The g-vectors in Q. and their equivalent g-vectors under the DINA model with three
inverted pyramid attributes (H3.3)

Q, Equivalent gs Attribute Profiles a
E[Y;|a] = ¢ $jo+ Pjau
(100) (000) 100(110(2101) (1112
(110) 010 (000)(100) 110)(101)(111)
(101) 001) (000)(100)(110) 101)(111)
(111)* 011) 000)(100)(110)(101) (111)

Note: Single-attribute items are bolded; ¢;, = intercept; ¢; 4;; = interaction; * = g-vector that is
not in the R-matrix.

Table 9: The g-vectors in Q. and their equivalent g-vectors under the DINA model with three
pyramid attributes (H3.4)

Q, Equivalent gs Attribute Profiles a
E[lea] =djo bjo + djau
(100) (000)(010) (100)(110)(2111)
(010) (000)(100) ©0100(110(2111)
(110)* (000)(100)(010) 110)(111)

(111)  (001)(101)(011) (000)(100)(010)(L10) (1L11)

Note: Single-attribute items are bolded; ¢ ;, = intercept; ¢; ;; = interaction; * = g-vector that is
not in the R-matrix.
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Table 10: The g-vectors in Q. and their equivalent g-vectors under the DINA model with four or
five attributes

Hierarchy Q, Equivalent gs Hierarchy Q, Equivalent gs
H4.2 (1000) H5.4 (10000)
(1100)  (0100) (11000) (01000)
(1110)  (gq10), e.g.,(0010) (10100) (00100)
(1111) (gggl), e.g.,(0001) (11100) (01100)
H4.3 (1000) (11010) (gq010), e.g., (00010)
(0001) (11001) (gq001), e.g., (00001)
(1100)  (0100) (11110) (gql10)
(1001) (11101) (ggqlo1)
(1110) (qg10), e.g., (0010) (11011) (gq011)
(1101) (0101) (11111) (gql1l)
(1111) (0111) (1011) (0011) H55 (10000)
H4.4 (1000) (01000)
(1100)  (0100) (00100)
(1110)  (gq10), e.g.,(0010) (11000)
(1101) (qgo1), e.g., (0001) (10100)
(1111) (qgll) (01100)
H4.5 (1000) (11100)
(0100) (11110) (9qq910), e.g., (00010)
(1100) (11111) (gqggl), e.g., (00001)
(1110) (qg10), e.g., (0010) H5.6 (10000)
(1111) (gggl), e.g., (0001) (01000)
H5.2 (10000) (00010)
(11000) (01000) (11000)
(11100) (gg100), e.g., (00100) (10010)
(11110) (gggl0), e.g., (00010) (01010)
(11111) (qgqgl) e.g., (00001) (11100) (gql00), e.g., (00100)
H5.3 (10000) (11010)
(11000) (01000) (11110) (gql10)
(11100) (qg100), e.g., (00100) (11111) (gqgql), e.g., (00001)

(11010) (qq010), e.g., (00010)
(11001) (qqo01), e.g., (00001)
(11110) (qq110)
(11101) (qq101)
(11011) (qq011)
(11111) (qql11)

Note: g takes the value of 0 or 1. Single-attribute items are bolded.
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Table 11: The g-vectors in Q. and their equivalent g-vectors under the ACDM with three linear
attributes (H3.2)
Q. Other g Attribute Profiles a

E[Y;|a] = ¢ Pjo + P Pjo+ Pjk, t Pjk,  Pjot IPjk

(100) (000) (100) (110) (111)
(110) (000) (100) (110) (111)

(010)  (000) (100) (110) (111)

(001)  (000) (100) (110) (111)

(101)  (000) (100) (110) (111)

(011)  (000) (100) (110) (111)
(111) (000) (100) (110) (111)

Note: Single-attribute items are bolded; ¢, = intercept; ¢, = main effect of attribute k.

If the reduced Q-matrix approach is taken, there are only three g-vectors under ACDM.
However, if the model selection is made at the item level and an item pool of mixed models can
be constructed (Ma et al., 2015), items calibrated with the DINA model can be included in this
item pool. For the linear hierarchy H3.2, for example, the mixed item pool has five distinct item
types in Table 12. If the full Q-matrix approach is taken instead, the mixed item pool can have two

more item types: g = (1 01) and g = (0 1 1) calibrated by the ACDM.

Table 12: Distinct g-vectors in a mixed item pool under DINA and ACDM for H3.2 using the
reduced Q-matrix approach
q Model Attribute Profiles a

E|Y|a] = ¢ ®jo + Pjk Pjot i, + Pjk,  Pjo + P
(100) - (000) (100) (110) (111)
(110) ACDM (000) (100) (110) (111)
(110) DINA  (000) (100) (110) (111)
(111) DINA  (000) (100) (110) (111)
(111) ACDM (000) (100) (110) (111)

Note: Single-attribute items are bolded; ¢ ;o = intercept; ¢ ;;, = main effect of attribute k.
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3.4.2 Complete Q-matrix for hierarchical attributes

A Q-matrix containing the identity matrix is complete for the DINA model with
independent attributes, according to Chiu et al. (2009). Since the completeness of a Q-matrix is
evaluated by checking whether it holds that S(a) = S(a’) = a = a' for each pair of @ and a’
in the attribute profile space, the completeness will not change if some as are excluded from the
attribute profile space. Since there is only one way to define single-attribute items under different
models, it is safe to conclude that the identity matrix is complete for any attribute hierarchy under
any model. Under the DINA model, @, is complete since Q,- equals to or contains the identity
matrix; another type of complete matrix is the transpose of the R-matrix that equals to the identity
matrix, consistent with the conclusion of Kéhn and Chiu (2018). The expected response vectors

given «a are presented in Table 13.

Table 13: Expected response vectors given a of two Q-matrices (Q,- and I) for the inverted
pyramid (H3.3) under the DINA model

a Qr I
91 q: qs q4 qs 9s q;
= (100) = (110) =(101) =(111)  =(100) =(010) = (001)
S(a) S(a)
(000) ¢10 ¢20 ¢30 ¢40 ¢50 ¢60 ¢70
(100) ¢10 ¢20 ¢30 ¢40 ¢50 ¢60 ¢70
+ P11 + ¢s.an
(110) 10 ®20 ®30 Pa0 ®s0 beo b0
+dran F Pdzan +¢san Tt dean
(101) ¢10 ¢20 ¢30 ¢40 ¢50 ¢60 ¢70
+ dran + ¢3a1 + ¢sa1 + ¢7a1
(111) ¢)10 ¢20 ¢30 ¢40 ¢50 ¢60 4)70
+Pra1 FPran FPzan + dsan +Psan tdean  tPran

Note: Single-attribute items are bolded; ¢ ;o = intercept; ¢ ;;, = main effect of attribute k.
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Under ACDM, one type of items— q, = (111)—alone would be sufficient for
completeness by definition as long as the three main effects (¢4, P42, and ¢,,) are different from
each other (Table 14). Without assuming the differences between ¢4, @45, and ¢,4, an inspection
of Table 14 shows that Q,. of each attribute hierarchy is a complete Q-matrix disregarding the

attribute hierarchy.

Table 14: Expected response vectors given a of five g-vectors for independent attributes under
ACDM

a q: = (100) q, = (110) q; = (101) q, = (111) qs = (010)
(000) ®10 ®20 ®30 P40 ®s0
(100) @19+ P11 20+ b21 $30 + P31 a0 + Pas ®s0
(010) ®10 20+ b22 ®30 a0 + Daz $s0 + P52
(001) ®10 ®20 $30 + ¢33 a0 + Paz ®s0
(110) @10+ o112 ¢2¢0)+ b21 $30 + P31 ba0 + Pa1 + Pu $s0 + P52

+ @22
(101) @10+ d11 20+ b21 ¢3((])5+ $31 ba0 + Pa1 + Puz ®s0
+ P33
(011) b10 20+ b22 $30 + P33 ba0 T Pa1 + Puz $s0 + P52
(111) @10+ P11 b0 + P21 $30 + P31 bao + a1 + Pu $s0 + ¢s2
+ ¢2 + P33 + Paz

Note: q4, q,, and q, form the Q, for the linear hierarchy (H3.2); q1, 9, q3, and g, form the Q,. for
the inverted pyramid hierarchy (H3.3); g1, 92, 94, and gs form the Q, for the pyramid hierarchy
(H3.4).

3.5 Summary

In discussing the parameterizations of hierarchical CDMs, we identified equivalent models
when an attribute hierarchy is present. The three models in the GDINA family parameterize single-
attribute items in the same way regardless of the attribute hierarchy. The hierarchical ACDM and
hierarchical GDINA model are equivalent to each other but different from the hierarchical DINA

model when two linear attributes are involved in an item. The hierarchical ACDM and GDINA
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model have different parameterizations when two “independent” attributes are involved.
Independence refers to the fact that the two attributes are not on the same path in the tree graph.

Under the hierarchical DINA model, the g-vectors in Q,. represent distinct item types.
Since the number of g-vectors in Q, is smaller than 2K — 1, a full Q-matrix may have two
seemingly different g-vectors that are are equivalent. By equivalence, we mean that the items have
the same parameterizations and would thus lead to the same classifications of examinees given the
same item parameters. For example,q = (1 01)and g = (11 1) are equivalenttoqg = (00 1)
in the hierarchical DINA model if attribute «; and attribute a, are prerequisite to attribute a;.
As a result, the choice between the reduced and the full Q-matrix approaches does not make a
difference under the hierarchical DINA model.

Under the ACDM or GDINA model, any combination of attributes is a distinct g-vector so
there are in theory 2K — 1 different item types. A reduced Q-matrix under the hierarchical ACDM
or GDINA model inevitably excludes the single-attribute items for the higher-level attributes. For
example, a reduced Q-matrix Q,- in H3.4 (pyramid hierarchy) only includes two single-attribute g-
vectors corresponding to the two lower-level attributes. The single-attribute g-vector for the other
attribute is excluded from a reduced Q-matrix. The absence of single-attribute g-vectors in the
recuded Q-matrices may have serious impact on the classifications, which is discussed in the next

chapter.
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Chapter 4 Conditional KLI-based indexes for hierarchical CDMs
4.1 Introduction

In the previous chapter, we discuss two approaches to constructing Q-matrices with
hierarchical attributes. We mainly talk about equivalent g-vectors and complete Q-matrices. There
are, however, numerous ways to construct the Q-matrix for a test from all the available g-vectors.
Previous studies in Q-matrix design simulate tests with different Q-matrices to compare the
classification results (Chiu et al., 2009; Liu & Huggins-Manley, 2016; Liu et al., 2017; Madison
& Bradshaw, 2015). We address the issue of Q-matrix design from the perspective of item-level
and test-level indices. The indices can be used to automate test assembly with a calibrated item
pool. The indices also provide a basis for comparing different Q-matrix designs.

The existing item-level and test-level indexes based on the KL information are overall
indexes for a population of examinees, and they are found to be positively correlated with the
overall classification rates (Henson & Douglas, 2005; Kuo et al., 2016). However, the correct
classification rates (CCRs) could vary substantially across different attribute profiles within the
same test regardless of independent or hierarchical attributes. The CCRs conditional on the
attribute profile are usually not reported as most studies only calculate an overall CCR for the
population of examinees.

With independent attributes, the conditional CCRs are different for different attribute
profiles when each attribute is measured in different numbers of items. In this situation, attribute-
level indexes could compensate for overall indices for items or tests (Henson et al., 2008; Kuo et
al., 2016). However, the attribute-level index ADI fails to consider the dependency between

attributes as a result of attribute hierarchies. To address this problem, the modified ADI proposed
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by Kuo and colleagues (2016) add weights on the original ADI but remains to be an overall index
for a population of examinees.

The following examples show the necessity for conditional indices instead of an overall
index. Suppose items are calibrated with the DINA model and the intercept ¢, = 0.1 and the
interaction effect ¢,; = 0.8 for all items. The Q-matrix Q5 contains a multiple-attribute item in
addition to three single-attribute items. When Q is used for three independent attributes, different
attribute profiles have substantially different conditional CCRs. Another example Q, isthe identity
matrix but is used for measuring three linear attributes (i.e., &y = a, = a3). The CCRs for

complete mastery and complete non-mastery are higher than other profiles.

I 100
Q1= Q2= 0 1 0
0 0 1 0 0 1
1 1 0
CCR CCR
0.76 0.90
0.74 0.85
0.72 0.80
0.7 0.75
0.68 0.70
AOOOA100A010A110A001A101A011A112 A000 A100 Al110 All1l

Figure 9: Correct classification rates under two conditions

Since the goal is to estimate the attribute profile for every examinee accurately, it is
necessary to develop an index conditional on the attribute profile, especially when hierarchical
attributes are present. This thesis proposes two conditional indices based on the KL information

that can be used for non-adaptive test construction and Q-matrix design.
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In this chapter, it is assumed that a large number of items have been developed for a well-
defined domain and that the Q-matrix, as well as the relationship between attributes, are correctly
specified. We take the full Q-matrix approach and allow all types of g-vectors. It is also assumed
that item parameter estimates have been obtained from previous calibrations.

4.2 Conditional KL indices for test construction

A set of two indices is proposed, conditional on the attribute profile. The two conditional
indices summarize the information from the L-by-L test KLI matrix D as defined in equation (27)
in 2.1.7, where L is the size of the attribute profile space. The first index is the average of the

elements in the uth column and the uth row of the test KLI matrix. The second index is the

L L
1
mean KLI(a,) = In 2L=D <z Do+ Z D.lu) , (43)
=1 =1
range KLI(a,) = In (mlax(D_ul,D,lu)) —1In (mlin(D_ul, D_lu)), (44)

where D, isthe (u, v)th element of the test KLI matrix D and L represents the size of the attribute
profile space. The two KLI-based indices were log-transformed to get a linear relationship with
CCR (Henson et al., 2008; Henson et al., 2018).

The index mean KLI(a,) describes the average discrimination power of a test to
differentiate ar,, from other attribute profiles. It is supposed to be positively correlated with the
conditional CCR for a,,. However, this index alone is not sufficient for predicting CCR due to the
multidimensional nature of the CDMs. When the mean KLI;(a,,) is fixed, if the test does not
differentiate well between two particular attribute profiles «, and a,,, the CCR for «,, or a,,
suffers (Cheng, 2010). This phenomenon was mentioned in Cheng (2010)’s CD-CAT study and
compared to Liebig’s “law of the minimum,” or Liebig’s barrel. Therefore, a second index

range KLI(a,) was defined in (44) to characterize the weakest point of a test. One particularly
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low KLI between two as leads to a relatively large range given the same mean KLI;(a,,). Arange
measure was used instead of the minimum measure to control the effect of mean KLI(a,,). The
index range KLI(a,,) is negatively correlated with the conditional CCR for a,, but has a low or
insignificant correlation with mean KLI(a,,).

The need for the second index is best illustrated by comparing the following two Q-

matrices under the DINA model. Three independent attributes are measured with nine items.

I
Q, = \I]' Q; =
I

O O O O O O~

Rk R P
cCooooOo |

where [ is the identity matrix.

Assuming the intercept ¢, = 0.1 and the interaction effect ¢,; = 0.8 for all items, the
two indices were calculated for the two tests. The CCRs were also obtained from the simulation.
In the Table 15, the two tests have the same mean KLI for each attribute profile but the second

test has substantially lower CCRs.

Table 15: KLI indices and the CCRs for two Q-matrices

0 Q2
a mean KLI range KLI CCR mean KLI range KLI CCR
000 2.20 1.10 0.92 2.20 2.20 0.81
100 2.20 1.10 0.92 2.20 2.20 0.81
010 2.20 1.10 0.92 2.20 2.20 0.81
001 2.20 1.10 0.92 2.20 2.20 0.81
110 2.20 1.10 0.92 2.20 2.20 0.80
101 2.20 1.10 0.91 2.20 2.20 0.80
011 2.20 1.10 0.91 2.20 2.20 0.81
111 2.20 1.10 0.91 2.20 2.20 0.81
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The difference between the two Q-matrices in Table 15 was referred to as an issue of
content balancing in Cheng (2010) since the number of items for each attribute is not balanced in
Q.. Given the same mean KLI, the second index range KLI is needed in this case to account for
the different CCRs. A larger range index corresponds to a lower CCR.

The two conditional KL indices would be good predictors of the conditional CCR of a
with a fixed test length. To make them useful for between various test lengths, the following two
conditions need to be satisfied:

1. For each a, there are no zero off-diagonal entries in the test KLI matrix D because
In(0) is not defined;
2. There is an odd number of items in each item type (i.e., a distinct g-vector).

The first condition is satisfied when the Q-matrix is complete. The second condition is

necessary for the indices to be useful because when the examinee correctly respond to half of the

items, the examinee is likely to be misclassified. For example, if the test has two items with q =

(100), for examinees who master attribute a,, the likelihood function is L, = l'[le(d)jo +
bian) (1= ¢jo— qu,au)l_xj; for examinees who do not possess attribute a,, the likelihood

function is Lo = [T2_1 (o) (1 - quo)l_xj. It is possible that an examinee correctly answers
item 1 but fails at item 2. Then L; = (10 + Pr.a)(1 — b20 — b2.au) s Lo = P20(1 — P20)-
When the items are homogenous in quality, the difference between L, and L, would be very small.
In an extreme case when ¢, = 0.1and ¢; 5;; = 0.8 for all items, L; = L, = 0.1 X 0.9.
KLI-based item selection in CD-CAT uses indices similar to mean KLI(a,,) and ignores
the minimum effect. As a result, researchers found it necessary to add extra constraints to the item

selection algorithm in order to improve the CCR (Cheng, 2010). Such constraints intend to balance

attribute coverage, and this process is also referred to as content balancing (Cheng, 2010). The
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result of content balancing is a smaller KLI range given the same mean KLI(a,,). When attribute
hierarchies are present, content balancing becomes tricky. Using the two indices together in test
construction becomes more practical with hierarchical attributes than content balancing.
4.3 Simulation design

A simulation study was conducted to assess the performance of the two indices. Random
tests were generated as described below with items calibrated using DINA or A-CDM. The
hierarchical GDINA model is equivalent to A-CDM in most cases, so the GDINA model is
excluded from the simulations. The attribute hierarchies shown in 3.2 were used to simulate the
examinee responses. The assessment tasks may be embedded in the classroom instruction and
scattered in multiple class sessions. As a result, the assessment is not necessarily a concise one.
We consider test lengths of three, five, and seven times the number of attributes, respectively.

For each combination of test length (e.g., nine items) and attribute hierarchy (e.g., H3.2),
three sets of tests were simulated. The first set of 25 tests consists of single-attribute items, the
second set of 25 tests consists of g-vectors from the full Q-matrix calibrated by the DINA model,
and the third set of 50 tests consists of g-vectors from the full Q-matrix calibrated by the ACDM.
The actual Q-matrix for each random test was constructed by randomly sampling from all the
possible g-vectors with replacement if the full Q-matrix approach is used or from the identity
matrix if only single-attribute items are wanted. Each Q-matrix contained the identity matrix to
ensure completeness. There was an odd number of items in each item type (i.e., a distinct q-vector).

For all items, the intercept parameter (¢, = P(X = 1]a = 0)) was generated from the
uniform distribution U(0.1,0.4) and P(X = 1]|a = 1) was generated from U(0.6,0.9).

A total of 5,000 examinees are simulated for each true attribute profile for each random

test. Given each examinee's attribute profile, item scores are generated based on the chosen model.
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A random U(0, 1) variable u is generated. The correct response probability P(X;; = 1|a) is

compared with u to decide the response of examinee i to item j:
=l otnerase )

The two conditional indices were calculated for each attribute profile for each random test.
Classifications were accomplished via MLE for independent attributes or restricted MLE for
hierarchical attributes because the item parameters are known. Conditional profile-wise CCR were
recorded for each a.

The index of means is supposed to be positively correlated with the CCR, and the index of
range is supposed to be negatively correlated with the CCR. For each attribute hierarchy, a linear
regression model with normal errors was fit using the two indices to predict the CCR:

CCR = B,range KLI(a,,) + B,mean KLI(a,) + € (46)

The regression estimates were used to produce a linear combination of the two indices as
a combined index, cKLI:

cKLI = Byrange KLI(a,)) + B;mean KLI(a,) (47)
The combined index cKLI is expected to be highly correlated with the CCR.
4.4 Simulation results

The regression estimates and the R? for each attribute hierarchy were summarized in Table
16. A combined index was calculated as a linear combination of the two indices using the
regression estimates as weights. This combined index (cKLI) was plotted against the CCR
conditional on « in the following scatter plots to visualize the relationships (see Figure 10-Figure

24). For brevity, we only present the scatter plots for a subset of as when there are more than K +

1 attribute profiles in the space.
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Table 16: Regression estimates and R? for each attribute hierarchy

Attribute hierarchy range KLI(a,) mean KLI(a,) R?

H3.1 Independent -0.07 0.24 0.76
H3.2 Linear -0.07 0.19 0.78
H3.3 Inverted pyramid -0.07 0.20 0.74
H3.4 Pyramid -0.06 0.21 0.79
H4.1 Independent -0.08 0.27 0.82
H4.2 Linear -0.08 0.21 0.80
H4.3 Linear+single -0.08 0.24 0.80
H4.4 Inverted pyramid -0.08 0.22 0.81
H4.5 Pyramid -0.07 0.22 0.81
H5.1 Independent -0.07 0.28 0.81
H5.2 Linear -0.09 0.21 0.82
H5.3 Inverted pyramid I  -0.08 0.26 0.82
H5.4 Inverted pyramid Il -0.08 0.26 0.81
H5.5 Pyramid | -0.08 0.25 0.80
H5.6 Pyramid Il -0.08 0.25 0.81

Table 17: The overall correlation and the correlations for different test lengths between cKLI and
the CCR

Attribute hierarchy All

Test length
3XK 5xXxK 7XK

H3.1 Independent 0.87 060 0.76 0.85
H3.2 Linear 0.88 0.83 0.87 0.87
H3.3 Inverted pyramid 086 079 082 084
H3.4 Pyramid 0.89 081 0.88 0.86
H4.1 Independent 090 0.77 082 0.88
H4.2 Linear 089 086 0.86 0.86
H4.3 Linear+single 090 081 084 0.85
H4.4 Inverted pyramid 0.90 0.83 087 0.89
H4.5 Pyramid 090 084 0.87 0.87
H5.1 Independent 0.90 0.77 087 0.85
H5.2 Linear 0.90 0.8 091 0.87

H5.3 Inverted pyramidl 091 084 0.88 091
H5.4 Inverted pyramid Il 0.90 0.81 0.88 0.89
H5.5 Pyramid | 0.90 0.80 0.87 0.90
H5.6 Pyramid Il 090 0.84 087 0.88

Note: K is the number of attributes.

The overall correlation between cKLI and the CCR is presented in Table 17. All the overall

correlations are around 0.9. The correlations for different test lengths are also calculated (Table
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17). The correlation generally increases substantially as the test length goes up from three times of

K to five or seven times of K where K is the number of attributes. This trend can also be seen in

the scatter plots.
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Figure 11: A plot for tests with three linear attributes (H3.2) of the combined index with CCRs
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Figure 13: A plot for tests with three pyramid attributes (H3.4) of the combined index with CCRs
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Figure 18: A plot for tests with four pyramid attributes (H4.5) of the combined index with CCRs
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Figure 20: A plot for tests with five linear attributes (H5.2) of the combined index with CCRs
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Figure 22: A plot for tests with five inverted pyramid attributes (H5.4) of the combined index with
CCRs
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Figure 23: A plot for tests with five pyramid attributes (H5.5) of the combined index with CCRs
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Figure 24: A plot for tests with five pyramid attributes (H5.6) of the combined index with CCRs
4.5 Discussion

The two indices can predict the CCR well according to the linear regression results showing
that abut 80% of the total variance was explained. The prediction of two indices was a substantial
improve from the prediction of either index alone. This relationship was also reflected by the high
correlation between the combined index cKLI and the CCR. These results suggest that using an
averaged KLI may not be sufficient for predicting CCR. Therefore, any single index based on the
maximum or the mean of KLI would have serious limitations as a test construction index. As
mentioned earlier, it has been found necessary to add extra constraints to the item selection

algorithm based on a single KLI index, in order to improve the CCR in CD-CAT research (Cheng,

2010). Such constraints would lead to a decreased range index, and balanced attribute coverage
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would be observed with independent attributes. In other words, content balancing could have the
same effect as having a range index when attributes are independent. With hierarchical attributes,
however, there is no clear way to define content balancing. Therefore, using the two indices
together in test construction would be more appropriate with hierarchical attributes than content
balancing. This applies to both non-adaptive and adaptive test construction.

It is important to note that the (cKLI, CCR) relationship does not depend on the model
selected (DINA or ACDM) or test length. However, the relationship between the two indices and
the CCR may depend on the attribute hierarchy, more specifically, the number of attribute profiles
as suggested by the different regression estimates in Table 15. Moreover, the indices lead to better
predictions of the CCR as the test length increases.

The proposed index can be used to assemble tests from an item pool by setting an
information target or a fixed test length. Setting an appropriate information target may not be easy
because on the one hand, a target needs to be set for each attribute profile and on the other hand,
also noted in Henson et al. (2018), the threshold value that would ensure a certain CCR may depend
on the number of attributes and the attribute hierarchy.

If the test length is fixed, the test assembly algorithm could take two steps: a set of tests
with largest mean KLI is identified first, and then the one with the largest minimum KLI or smallest
range index is chosen. Alternatively, the regression estimates in Table 16 an be used to calculate
the combined index. The test assembly can be automated in various ways. With the two
information indices, we do not need extra constraints like “each cognitive attribute is measured by

an adequate number of items (Cheng, 2010, p. 903).”
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The (cKLI, CCR) relationship is visualized for each attribute profile in Figure 11 - Figure
24 because the CCR could vary substantially between as. We chose four random tests in the

condition H4.2 to demonstrate the variation of CCR in Figure 25.
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Figure 25: The conditional CCRs from four random tests in H4.2

With a linear hierarchy and an identity matrix as the Q-matrix, the attribute profiles that
master some but not all attributes are easier to be misclassified than the two attribute profiles on
the two ends (i.e., the one with all Os and the one with all 1s). This pattern can also be explained
in terms of the KL indices (Table 18). Another way to see the various CCRs for a linear hierarchy
is the item with g = (1 0 0) differentiates @« = (0 0 0) with other as and the item with q =
(0 0 1) differentiates « = (1 1 1) with other as, and as a result these two as have a higher
classification rates than the as in the middle.

We use the two KLI-based indices to compare the full and reduced Q-matrix approaches
under the ACDM. As mentioned earlier, the two approaches are equivalent under the ACDM. The
major difference between a full Q-matrix with ACDM and a reduced Q-matrix with ACDM is the

exclusion of some single-attribute items from the reduced Q-matrices. Therefore, we compare the
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identity matrix with Q,- with ACDM in terms of the two indices for a linear hierarchy of three
attributes (H3.2). The item parameters are presented in Table 18. The indices for the two three-
item tests are shown in Table 19.

If the reduced Q-matrix approach is adopted and all the items are calibrated with the
ACDM, classifications for the attribute profiles @ = (100), @ = (110), and @ = (111) become
much more difficult. As suggested by the combined index, much longer tests are required to
achieve comparable classification rates for most of the attribute profiles if two types of single-
attribute items, ¢ = (01 0) and g = (0 0 1), are excluded from the candidate pool.

In addition to the consideration of classification efficiency, the choice between a reduced
Q-matrix and a full Q-matrix should depend on answers to questions such as whether it is possible
to a mixed item pool, whether it is possible to develop a certain item type, and the model-data fit

at the item level.

Table 18: Item parameters of five items for H3.2
q Model @0 @1 P2 dj3

(010) - 01 038
(001) - 01 0.8
(100) 01 08

Q, + ACDM (110) ACDM 0.1 04 04
(111) ACDM 0.1 027 027 027

Table 19: Comparison between two three-item tests in terms of the two indices

I3 Q.+ ACDM
mean KLI range KLI cKLlI mean KLI range KLI cKLI
000 1.26 1.10 0.05 1.38 0.82 0.12
100 0.85 0.69 0.04 0.33 1.35 -0.17
110 0.85 0.69 0.04 0.52 2.84 -0.38
111 1.26 1.10 0.05 0.80 3.34 -0.42
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Chapter 5 Q-matrix design for nonparametric classifications with

hierarchical attributes

5.1 Introduction

Without a calibrated item pool, the nonparametric classification (NPC) method (Chiu, Sun,
& Bian, 2018) provide an alternative approach for classifications. The NPC method allows the
teachers to develop their own items based on CDMs if they can identify the attribute hierarchy and
the Q-matrix. There is no need for item calibration, and students are classified based on their
response data without the need to estimate item parameters.

The Q-matrix design plays an even more important role in nonparametric classifications
than in parametric classifications, but it has not been formally addressed in the literature. Related
studies explore different Q-matrix designs with hierarchical attributes in the context of parametric
classifications (Liu, Huggins-Manley, & Bradshaw 2017; Tu, Wang, Cai, Douglas, & Chang,
2018). There is a consensus on the effect of single-structured items on accurate classifications
regardless of the attribute hierarchy (Chiu et al., 2009; DeCarlo, 2011; Madison & Bradshaw,
2015). However, the role of items with multiple attributes is not clear. Other factors in Q-matrix
design that receive less attention in existing research include test length and the number of items
in each item type.

In this study, the NPC method (Chiu & Douglas, 2013) was used Because it is assumed
that the teacher develops a CDM-based test for a particular classroom. Prior data are not expected
to be available. Therefore, the general nonparametric classification method (Chiu, Sun, & Bian,

2018) that requires some prior response data is not considered.
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5.2 Tiesin NPC

There is a tie when the observed response pattern of an examinee is at an equal distance to
more than one ideal response pattern. Some Q-matrices lead to more ties than others. With an ideal
Q-matrix, the item responses of high probabilities are always closest to the ideal response pattern
of the true a, and there would be no ties in the hamming distance. In this study, if a tie occurs, the
examinee would be randomly classified into one attribute profile with the minimal hamming
distance.

We present a comparison between two Q-matrices as an example. The underlying model
isthe DINA model. The item quality isassumedtobe high: 1 - P(X = lla=1) = P(X = 1l|a =
0) = 0.1. Three independent attributes are involved. We focus on an examinee with ¢ = (11 1).
The hamming distances between several likely response patterns of a;,, and each of the ideal
response patterns are shown in the cells of Table 20 and Table 21. With an identity matrix as the
Q-matrix, there are no ties in the hamming distance and the probability of correctly classifying the
examinee with @ = (1 1 1) equals to the probability of observing the response pattern of (11 1),
which is 0.93.

When the Q-matrix contains the identity matrix I5 and an item probing all three attributes,
ties are observed when the examinee slips on one of the items (Table 21). The probability of a tie
is the probability of observing such a response patter, which is 0.93 x 0.1 x 4 = 0.29. It is still
possible to clarify the examinee with a tie in the hamming distance. The CCR for a4, can be
calculated as a weighted sum of probabilities: 0.9* + 0.9% x 0.1 x 0.25 + 0.9% x 0.1 x 0.33 +
0.9% X 0.1 X 0.5 + 0.9 x 0.1 x 0.5 = 0.77. Comparing the two Q-matrices reveals that adding
an item with g = (1 1 1) to the identity matrix leads to a slight increase in the CCR for a;,; from

0.73 to 0.77. The second Q-matrix leads to a probability of 0.29 to obtain a tie.
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Table 20: Hamming distances for a;,; with @ = I; (H3.1)
Response  Probability  a: (Ideal response pattern)

pattern X Pr(X) Qooo - Qg0 - ®p1o - QAgo1 - ®y110 - ®y01 - Aopp - Oqqq -
(000) (100) (010) (001) (110) (101) (011) (111)
(111) 09° 3 2 2 2 1 1 1 0
(110) 092x0.1 2 1 1 3 0 2 2 1
(101) 092x01 2 1 3 1 2 0 2 1
(011) 0.92x0.1 2 3 1 1 2 2 0 1

Table 21: Hamming distances for a;,, with Q = [I5,9;11]7 (H3.1)
Response  Probability  a: (Ideal response pattern)

pattern X Pr(X) Qooo - X100 - @10 - @Xoo1 - P110 - #101 - @Xo11 - X111 -
(000) (100) (010) (001) (110) (101) (011) (111)
(1111) 0.9* 4 3 3 3 2 2 2 0
(1110) 093x0.1 3 2 2 2 1 1 1 1
(1101) 093x0.1 3 2 2 4 1 1 3 1
(1011) 093x01 3 2 4 2 3 1 3 1
(0111) 093x0.1 3 4 2 2 3 3 1 1

5.3 Simulation design

The identity matrix served as the baseline Q-matrix. We considered the following situations:
1) adding one or two simple-attribute items to the baseline, 2) adding one or two multiple-attribute
items to be baseline, and 3) adding an identity matrix. A total of 15, 19, and 23 Q-matrices are
obtained for K = 3, 4, and 5, respectively, presented in Table 22.

The computations of CCRs and the probability of a tie become more complicated with a
longer test or more attributes. Therefore, a simulation study was conducted to compare Q-matrices.
Item parameters were simulated based on 1 —P(X =1lla=1)=PX =1la=0)=0.1. A
total of 5,000 examinees are simulated for each true attribute profile for each Q-matrix. Given each
examinee's attribute profile, item scores are generated based on the DINA. A random U(0, 1)

variable u is generated. The correct response probability P(X;; = 1|a) is compared with u to

decide the response of examinee i to item j:
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o {1 ifusP(;= 1|a).
Y 0 otherwise (48)

Examinee responses were classified using the nonparametric classification method (Chiu
& Douglas, 2013). Conditional profile-wise CCR were recorded for each a. The percent of ties

was recorded for each simulation condition as an estimate of the probability of getting a tie.

Table 22: Q-matrix designs for the simulation study of nonparametric classifications

Q-matrix Q-matrix Q-matrix
3-1 Iy 4-1 I 5-1 I
3-2 T 4-2 T 5-2 T
o [13; ‘I{100}]T - [14:‘1{1000}]T o [15’ ‘I{10000}]T
3- [13' ‘I{110}]T ) [14: Q{1100}]T ) [15' Q{11000}]T
-4 4-4 5-4
o [13: ‘I{111}] T oas [14:‘1{1110}] . o [15’ ‘I{11100}]T
3-6 [13"1{100}' ‘I{loo}]T -6 [14; ‘I{1111}] . -6 [15; ‘I{1111o}]T
- 4- 5-
. [13,‘1{110}' ‘I{110}]T o [14: q{1000} ‘I{1000}]T - [15'Q{11111}] .
3-8 [13"1{111}' q;lll}] -8 [14; d{1100}p ‘I{1100}]T -8 [15' d{10000} Q{1oooo}]T
- 4- 5-
LEREY L, qd{1110) CI{1110}] (15, q{11000}) CI{11000}]
3-9 T 4-9 T 5.9 T
[13:13:‘1{100}] [14: q{1111p Q{1111}] [15' d{11100}p Q{11100}]
3-10 T 4-10 T 5-10 T
[13'13"1{110}] 4 1] [15» d{11110)p CI{11110}]
3-11 T 4-11 T 5-11 T
[13:13r¢I{111}] . [14; Iy, ‘I{1000}]T [15’ d{11111p q§11111}]
3-12 4-12 5-12
[13'13"1{100}"1{100}]T [14: Iy, Q{1100}]T s, I5] .
3-13 4-13 5-13
[13'13"1{110}:4{110}]T [14: Iy, ‘I{1110}]T [15:ISJQ{10000}]T
3-14 4-14 5-14
[13.13.CI{111}, CI§111}] [14: Iy, Q{1111}] , [15,15,(1{11000}]T
315 3,13, 15] 15 [14' 14, 9g1000) ‘I{1000}] > [15: Is, Q{11100}]
4-16 T 516 T
[14» 14, 91100y ‘I{1100}] [15; I, Q{1111o}]
4-17 T 5-17 T
[14»14»‘1{1110}' ‘I{1110}] [15;15;‘1{11111}]
4-18 T 5-18 T
[14' Iy, 91111 ‘I{1111}] [15: Is, 410000} ‘I{10000}]
4-19 T 5-19 T
[, 14, 14] [15; Is, (11000} ‘I{11000}]
5-20 T
[15. Is, {11100y Q{11100}]
5-21 T
[15; Is, 911110} Q{11110}]
5-22 T
[15. Is, 911111y Q{11111}]
5-23 [15, 15; Is]T
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5.4 Simulation results

Simulation results for the conditions with three attributes are summarized in Table 22-
Table 25. For brevity, we only present the results for four attribute profiles. Comparing each Q-
matrix to the baseline (Q3-1), we found that a very high probability of obtaining a tie usually
suggests no increase in the CCR and a lack of ties suggests an increased CCR for some as. A
longer test does not necessarily lead to higher CCR for each attribute profile.

As shown in Table 22, adding a single-attribute item to the baseline Q-matrix does not
lead to an increased CCR with three independent attributes. The lack of change can be explained
by the ties in hamming distances that cancel the effect of adding one more item. It is more likely
to obtain a tie when there are an even number of g0}, g(o10}, OF Gg0013iN the Q-matrix. Adding

d{110) Slightly increases the CCR of a;4¢ and a,,, and adding g4y slightly increases in the

CCR of a;41. In the above conditions, ties are likely to occur for all or some attribute profiles.
However, when two items of each g-vector are added to the baseline, as in Q3-5, Q3-6, and Q3-7,
the CCRs of all or some attribute profiles increase substantially, and almost no ties are observed.
With a linear hierarchy, all g-vectors have their equivalent single-attribute g-vectors.
Therefore, all the Q-matrices contain single-attribute g-vectors. The comparison between Q3-2
and Q3-5, between Q3-3 and Q3-6, and between Q3-4 and Q3-7 in Table 24 suggests that a large
probability for getting ties would hurt the classifications. For example, the CCR for a,, increases

slightly after adding a g0y (Q3-2) but the classifications for other attribute profiles are not
benefited. When two gy 00)s are added (Q3-5), the CCR for a0 and e, increase substantially.
The probability of ties decreases from 0.23 (Q3-2) to 0.08 (Q3-5) with another gy, 40 added to the

Q-matrix. Similar patterns can be found for the inverted pyramid or pyramid hierarchies in Table

25 and Table 26.
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The negative effect of having even numbers of items in an item type is highlighted in the
comparison between Q3-1, Q3-8, and Q3-15 in Table 23-Table 26. When the Q-matrix consists of
two identity matrices, the CCR for each a does not change or increase slightly compared to the
baseline. However, when Q-matrix consists of three identity matrices, the CCR for each a
increases substantially.

Summarizing simulation results for three attributes, we conclude that tests with even
number of items from each g-vector are less efficient than tests with each g-vector in odd times.
When a g-vector appears in an even number and the item quality is homogeneous, it is more likely
to have ties compared to the baseline situation of each attribute hierarchy, and consequently, the
effect of extra test length is partially or completely canceled out. This conclusion also applies to

conditions of four or five attributes, shown in Table 27-Table 37.
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Table 23: NPC results for H3.1

0 J Jq CCR Pr(tie)

{100y 9010y  9foo1}y  9{110}  49{111} ®ooo H100 @110 A19 Qoo X100 R110  R119
3-1 3 1 1 1 0 0 0.73 0.74 0.74 0.74 0.00 0.00 0.00 0.00
3-2 4 2 1 1 0 0 0.73 0.74 0.73 0.73 0.18 0.18 0.18 0.18
3-3 4 1 1 1 1 0 0.72 0.71 0.76 0.76 0.03 0.16 0.24 0.25
34 4 1 1 1 0 1 0.73 0.72 0.72 0.77 0.00 0.02 0.15 0.28
3-5 5 3 1 1 0 0 078 079 0.77 0.79 0.00 0.00 0.00 0.00
3-6 5 1 1 1 2 0 0.73 0.75 0.86 0.86 0.01 0.07 0.02 0.02
3-7 5 1 1 1 0 2 0.74 0.72 0.75 0.93 0.00 0.02 0.07 0.03
3-8 6 2 2 2 0 0 0.74 0.73 0.74 0.71 0.46 0.45 0.46 0.45
3-9 7 3 2 2 0 0 079 079 0.78 0.78 032 033 033 0.33
3-10 7 2 2 2 1 0 0.74 0.78 0.85 0.85 0.44 0.32 0.18 0.18
3-11 7 2 2 2 0 1 0.73 0.73 0.78 0.93 0.46 0.44 0.33 0.02
3-12 8 4 2 2 0 0 0.78 0.79 0.79 0.79 0.36 0.37 0.36 0.36
3-13 8 2 2 2 2 0 0.73 0.79 0.86 0.85 0.45 0.36 0.25 0.25
3-14 8 2 2 2 0 2 0.73 0.73 0.78 0.93 0.44 0.44 0.36 0.11
3-15 9 3 3 3 0 0 0.92 0.92 0.91 0.92 0.00 0.00 0.00 0.00

Note: J = test length; J, = number of items with a certain g-vector; CCR = correct classification rate.
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Table 24: NPC results for H3.2

9 ] Jq CCR Pr(tie)

4100} 4110} {1113 Xoo00 X100 X110 X111 %00 X100 X110 X111
3-1 3 1 1 1 0.85 0.77 0.77 0.86 0.09 0.10 0.08 0.09
3-2 4 2 1 1 0.90 0.77 0.80 0.85 0.17 0.23 0.03 0.09
3-3 4 1 2 1 0.89 0.81 0.80 0.89 0.04 0.15 0.15 0.03
3-4 4 1 1 2 0.85 0.80 0.77 0.89 0.10 0.03 0.23 0.17
3-5 5 3 1 1 0.95 0.84 0.79 0.86 0.03 0.08 0.03 0.08
3-6 5 1 3 1 0.89 0.87 0.87 0.89 0.02 0.02 0.03 0.03
3-7 5 1 1 3 0.85 0.80 0.83 0.96 0.08 0.03 0.09 0.03
3-8 6 2 2 2 0.89 0.82 0.81 0.89 0.18 0.33 0.33 0.19
39 7 3 2 2 0.97 0.86 0.81 0.89 0.01 0.18 0.32 0.18
3-10 7 2 3 2 0.89 0.88 0.88 0.90 0.18 0.18 0.17 0.17
3-11 7 2 2 3 0.89 0.81 0.86 0.97 0.19 0.31 0.19 0.01
3-12 8 4 2 2 0.97 0.86 0.82 0.89 0.05 0.23 0.33 0.19
3-13 8 2 4 2 0.90 0.87 0.88 0.90 0.18 0.22 0.22 0.19
3-14 8 2 2 4 0.89 0.81 0.87 0.97 0.20 0.31 0.22 0.05
3-15 9 3 3 3 0.97 0.94 0.94 0.97 0.01 0.01 0.01 0.01

Note: J = test length; J, = number of items with a certain g-vector; CCR = correct classification rate.
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Table 25: NPC results for H3.3

9 J Jq CCR Pr(tie)

4{100} q{110} 4001} q{111) %000 X100 X110 X111 ®o00 X100 X110 d111
3-1 3 1 1 1 0 0.81 0.72 0.78 0.81 0.17 0.02 0.08 0.02
3-2 4 2 1 1 0 0.88 0.75 0.80 0.80 0.16 0.14 0.02 0.01
3-3 4 1 2 1 0 0.85 0.72 0.80 0.81 0.11 0.18 0.17 0.18
34 4 1 1 1 1 0.81 0.72 0.76 0.83 0.17 0.05 0.24 0.24
3-5 5 3 1 1 0 0.95 0.78 0.80 0.81 0.04 0.00 0.02 0.00
3-6 5 1 3 1 0 0.85 0.79 0.87 0.87 0.11 0.01 0.02 0.00
3-7 5 1 1 1 2 0.81 0.72 0.80 0.95 0.17 0.04 0.15 0.02
3-8 6 2 2 2 0 0.88 0.75 0.80 0.80 0.19 0.44 0.33 0.33
39 7 3 2 2 0 0.97 0.78 0.81 0.81 0.01 0.31 0.33 0.32
3-10 7 2 3 2 0 0.89 0.79 0.87 0.87 0.19 0.32 0.18 0.18
3-11 7 2 2 2 1 0.88 0.74 0.86 0.95 0.19 0.44 0.18 0.01
3-12 8 4 2 2 0 0.96 0.78 0.80 0.81 0.05 0.35 0.34 0.33
3-13 8 2 4 2 0 0.89 0.79 0.87 0.87 0.19 0.36 0.22 0.23
3-14 8 2 2 2 2 0.88 0.73 0.86 0.95 0.20 0.43 0.23 0.08
3-15 9 3 3 3 0 0.96 0.91 0.94 0.94 0.01 0.00 0.01 0.00

Note: J = test length; J, = number of items with a certain g-vector; CCR = correct classification rate.
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Table 26: NPC results for H3.4

9 Jq CCR Pr(tie)

d{100} {010} d{110} {111} Qoo0 A100 Ai10 111 Aoo0 A100 X110 111
3-1 3 1 1 0 1 0.81 0.76 0.73 0.81 0.02 0.08 0.02 0.17
3-2 4 2 1 0 1 0.81 0.78 0.73 0.84 0.19 0.25 0.17 0.11
3-3 4 1 1 1 1 0.80 0.78 0.76 0.88 0.03 0.15 0.22 0.04
3-4 4 1 1 0 2 0.80 0.81 0.73 0.88 0.01 0.02 0.14 0.16
3-5 5 3 1 0 1 0.87 0.83 0.79 0.85 0.00 0.08 0.01 0.11
3-6 5 1 1 2 1 0.81 0.82 0.86 0.88 0.02 0.10 0.02 0.04
3-7 5 1 1 0 3 0.81 0.80 0.78 0.95 0.00 0.02 0.01 0.04
3-8 6 2 2 0 2 0.81 0.80 0.73 0.88 0.33 0.34 0.45 0.20
3-9 7 3 2 0 2 0.87 0.86 0.80 0.90 0.18 0.19 0.32 0.18
3-10 7 2 2 1 2 0.81 0.86 0.86 0.89 0.32 0.18 0.19 0.17
3-11 7 2 2 0 3 0.81 0.81 0.80 0.97 0.32 0.31 0.31 0.01
3-12 8 4 2 0 2 0.87 0.87 0.79 0.89 0.22 0.24 0.36 0.18
3-13 8 2 2 2 2 0.80 0.86 0.86 0.89 0.33 0.23 0.25 0.19
3-14 8 2 2 0 4 0.81 0.81 0.78 0.96 0.34 0.32 0.36 0.06
3-15 9 3 3 0 3 0.95 0.94 0.92 0.96 0.00 0.01 0.00 0.01

Note: J = test length; ], = number of items with a certain g-vector; CCR = correct classification rate.
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Table 27: NPC results for H4.1

Q J CCR Pr(tie)

Qo000 X1000 1100 %1110 1111 Qo000 X1000 %1100 X1110 1111
4-1 4 065 065 065 065 0.66 0.00 0.00 000 0.00 0.00
4-2 5 066 064 066 065 0.66 017 018 018 019 0.18
4-3 5 065 064 068 068 0.68 003 017 025 024 0.25
4-4 5 067 067 064 072 0.70 0.00 0.02 014 028 0.29
4-5 5 066 065 064 064 0.73 0.00 0.00 002 013 0.33
4-6 6 071 072 071 070 071 0.00 0.00 000 0.00 0.00
4-7 6 067 068 076 077 0.77 0.01 0.08 002 0.02 0.02
4-8 6 066 065 067 084 084 0.00 0.02 006 0.03 0.03
4-9 6 065 065 065 067 090 0.00 0.00 001 0.06 0.04
4-10 8 066 066 066 065 0.66 054 055 054 056 0.55
411 9 071 071 071 070 071 044 045 046 045 045
4-12 9 064 071 077 077 0.76 055 044 032 033 034
4-13 9 066 064 070 083 0.84 054 055 045 020 0.19
4-14 9 066 065 065 069 0091 054 054 055 045 0.03
4-15 10 071 071 072 071 071 046 048 047 047 047
4-16 10 066 070 0.76 077 0.77 054 048 038 039 0.38
4-17 10 064 066 070 083 0.84 056 055 048 027 0.27
4-18 10 065 066 065 071 091 054 054 055 047 014
4-19 12 090 089 089 0.89 0.89 0.00 0.00 0.00 0.00 0.00

Table 28: NPC results for H4.2

Q J CCR Pr(tie)

@000 %1000 X1100  X1110  @X1111 @000 %1000 %1100 1110 X1111
4-1 4 08 076 074 077 0.86 010 010 016 0.09 0.0
4-2 5 08 076 076 077 0.84 017 023 011 0.09 0.09
4-3 5 088 079 076 079 0.85 003 016 022 0.04 0.09
4-4 5 08 079 076 079 0.88 0.10 0.04 022 016 0.03
4-5 5 08 078 076 078 0.88 009 010 010 023 0.18
4-6 6 09 082 077 077 084 003 010 011 0.09 011
4-7 6 088 08 081 080 0.85 003 002 011 0.03 0.09
4-8 6 086 080 082 087 0.89 0.10 0.04 012 0.02 0.03
4-9 6 08 076 076 082 0.96 009 009 012 0.09 0.02
4-10 8 089 080 079 080 0.89 018 034 034 033 0.19
4-11 9 097 087 080 082 0.89 001 017 032 032 0.19
4-12 9 089 088 086 081 0.89 0.17 017 020 032 0.8
4-13 9 089 081 086 087 0.90 019 031 019 018 0.17
4-14 9 089 079 080 087 097 019 033 034 018 0.01
4-15 10 097 088 080 080 0.89 005 022 034 033 019
4-16 10 090 087 087 082 0.89 018 022 023 032 0.19
4-17 10 089 081 086 087 0.89 020 033 023 022 019
4-18 10 089 082 080 0.87 097 019 032 034 023 0.06
4-19 12 097 095 094 095 0.97 001 001 002 0.01 0.01
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Table 29: NPC results for H4.3

Q J CCR Pr(tie)

®o000 %1000 %1100 %1110 %1111 @o000 %1000 %1100 %1110 %1111
4-1 4 077 070 070 0.76 0.76 0.09 009 010 0.09 0.09
4-2 5 079 069 072 076 0.76 0.18 024 003 0.09 0.10
4-3 5 080 073 073 079 0.80 0.03 015 014 0.03 0.03
4-4 5 076 071 069 079 0.79 0.10 003 023 017 0.16
4-5 5 077 069 070 076 0.82 009 009 011 022 024
4-6 6 086 076 073 076 0.76 0.02 009 003 0.09 0.09
4-7 6 081 077 078 080 0.79 0.02 003 003 0.02 0.03
4-8 6 075 072 076 087 0.86 0.10 003 0.09 0.02 0.03
4-9 6 076 069 069 079 094 0.10 009 010 0.15 0.04
4-10 8 080 072 073 081 0381 034 046 045 034 0.33
4-11 9 087 077 074 081 0.79 019 034 044 032 035
4-12 9 081 078 080 081 0.80 033 033 032 031 0.32
4-13 9 080 072 078 086 0.87 034 045 033 019 0.18
4-14 9 080 073 073 085 095 034 046 044 018 0.01
4-15 10 088 0.78 0.73 080 0.80 022 038 046 034 034
4-16 10 080 0.78 0.78 0.81 0.80 033 036 037 032 033
4-17 10 080 072 078 087 0.88 033 046 037 023 0.22
4-18 10 080 073 072 086 094 033 044 046 0.23 0.09
4-19 12 094 091 092 094 0.9 001 001 001 0.01 o0.00

Table 30: NPC results for H4.4

Q J CCR Pr(tie)

@000 %1000 X1100  X1110  @X1111 @000 %1000 %1100 1110 X1111
4-1 4 084 073 069 078 0.76 010 016 009 0.09 0.09
4-2 5 087 074 073 0.77 0.76 018 029 003 0.09 0.10
4-3 5 08 079 073 080 0381 005 014 013 0.03 0.03
4-4 5 083 076 070 077 0.79 0.10 011 024 025 0.17
4-5 5 08 073 069 076 0.75 009 016 011 023 024
4-6 6 09 078 074 079 0.76 003 017 003 0.08 0.09
4-7 6 089 08 078 080 0.78 0.03 004 002 0.02 0.02
4-8 6 08 076 075 083 0.86 009 011 009 0.08 0.02
4-9 6 08 072 069 079 0.80 009 016 010 015 0.5
4-10 8 088 080 073 080 081 019 033 044 034 033
4-11 9 097 08 073 080 081 001 020 044 034 033
4-12 9 090 087 079 081 081 0.18 019 030 031 0.32
4-13 9 089 080 078 0.87 0.87 018 032 033 019 0.8
4-14 9 088 079 073 085 0.86 019 034 044 019 0.8
4-15 10 097 086 0.73 080 0.79 005 023 043 034 034
4-16 10 089 087 079 081 0.80 019 022 036 033 033
4-17v 10 088 081 0.77 086 0.88 019 034 037 023 0.22
4-18 10 089 080 071 0.86 0.86 019 033 045 022 0.23
4-19 12 097 094 092 094 094 001 001 001 0.01 0.01
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Table 31: NPC results for H4.5

Q J CCR Pr(tie)

®o000 %1000 %1100 %1110 %1111 @o000 %1000 %1100 %1110 %1111
4-1 4 081 076 077 070 0.73 0.03 008 008 0.09 0.16
4-2 5 081 079 077 070 0.75 0.18 018 0.26 0.23 0.10
4-3 5 081 078 079 072 0.80 003 016 016 027 0.04
4-4 5 080 080 080 072 0.79 001 003 003 014 0.14
4-5 5 080 076 075 073 0.73 0.02 009 010 0.03 0.30
4-6 6 088 08 083 075 0.76 001 002 009 0.09 011
4-7 6 081 084 083 081 0.78 0.02 008 008 011 0.04
4-8 6 082 080 080 078 0.85 0.00 002 002 0.02 0.04
4-9 6 080 077 077 073 0.79 0.02 009 009 0.04 0.16
4-10 8 080 079 080 071 0.80 033 034 034 046 034
4-11 9 087 087 086 078 0.80 0.18 018 0.19 033 0.33
4-12 9 081 087 087 084 0.82 032 018 017 019 031
4-13 9 081 081 080 078 0.87 033 031 032 032 0.19
4-14 9 081 080 081 073 0.85 033 033 034 042 0.20
4-15 10 087 088 086 077 081 022 022 023 037 033
4-16 10 081 087 086 084 081 034 023 022 026 033
4-17 10 081 080 081 0.79 0.87 033 033 033 036 0.23
4-18 10 081 080 080 0.73 0.85 033 035 034 044 0.23
4-19 12 094 094 094 091 094 000 001 001 0.01 o0.01
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Table 32: NPC results for H5.1

Q J CCR Pr(tie)

X000 X10000 11000 11100 11110 *11111 @o0000 _ %10000  %11000  %11100  %11110  %11111
5-1 5 0.58 0.58 0.60 0.59 0.59 0.59 0.00 0.00 0.00 0.00 0.00 0.00
5-2 6 0.58 0.59 0.58 0.59 0.59 0.60 0.18 0.17 0.18 0.18 0.19 0.18
5-3 6 0.60 0.59 0.62 0.60 0.61 0.61 0.03 0.16 0.23 0.24 0.25 0.23
5-4 6 0.58 0.59 0.57 0.64 0.62 0.64 0.00 0.02 0.16 0.29 0.30 0.29
5-5 6 0.60 0.60 0.59 0.58 0.66 0.66 0.00 0.00 0.02 0.13 0.34 0.33
5-6 6 0.59 0.58 0.59 0.59 0.56 0.69 0.00 0.00 0.00 0.02 0.12 0.35
5-7 7 0.63 0.62 0.63 0.64 0.65 0.63 0.00 0.00 0.00 0.00 0.00 0.00
5-8 7 0.60 0.62 0.69 0.70 0.68 0.69 0.01 0.08 0.02 0.02 0.02 0.02
5-9 7 0.58 0.60 0.60 0.76 0.75 0.76 0.00 0.02 0.07 0.03 0.03 0.03
5-10 7 0.59 0.58 0.59 0.60 0.81 0.81 0.00 0.00 0.01 0.06 0.04 0.04
5-11 7 0.58 0.57 0.59 0.59 0.61 0.88 0.00 0.00 0.00 0.01 0.06 0.06
5-12 10 0.59 0.59 0.60 0.59 0.59 0.60 0.63 0.63 0.63 0.63 0.63 0.63
5-13 11 0.65 0.64 0.64 0.63 0.64 0.64 0.54 0.56 0.55 0.54 0.55 0.55
5-14 11 059 0.62 0.69 0.68 0.69 0.69 0.63 0.55 0.44 0.46 0.45 0.45
5-15 11 0.58 0.60 0.64 0.76 0.75 0.76 0.64 0.63 0.53 0.33 0.34 0.33
5-16 11 0.60 0.59 0.60 0.62 0.81 0.81 0.64 0.62 0.62 0.56 0.21 0.21
5-17 11 0.58 0.59 0.59 0.59 0.63 0.89 0.64 0.64 0.63 0.63 0.54 0.05
5-18 12 0.63 0.64 0.63 0.64 0.64 0.63 0.58 0.57 0.56 0.57 0.58 0.57
5-19 12 0.59 0.63 0.69 0.69 0.68 0.68 0.64 0.57 0.49 0.50 0.51 0.51
5-20 12 0.59 0.60 0.64 0.75 0.76 0.75 0.63 0.63 0.56 0.40 0.40 0.40
5-21 12 059 0.59 0.58 0.63 0.83 0.83 0.63 0.62 0.63 0.57 0.29 0.28
5-22 12 0.58 0.61 0.60 0.59 0.62 0.89 0.64 0.61 0.63 0.63 0.57 0.17
5-23 15 0.87 0.88 0.87 0.86 0.87 0.88 0.00 0.00 0.00 0.00 0.00 0.00
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Table 33: NPC results for H5.2

Q J CCR Pr(tie)

X000 X10000 11000 11100 11110 *11111 @o0000 _ %10000  %11000  %11100  %11110  %11111
5-1 5 0.85 0.76 0.72 0.73 0.76 0.85 0.10 0.10 0.17 0.16 0.10 0.11
5-2 6 0.89 0.77 0.75 0.72 0.76 0.84 0.17 0.24 0.11 0.17 0.09 0.10
5-3 6 0.87 0.79 0.77 0.76 0.76 0.85 0.04 0.16 0.22 0.11 0.10 0.09
5-4 6 0.84 0.79 0.75 0.76 0.78 0.85 0.11 0.04 0.22 0.22 0.04 0.10
5-5 6 0.85 0.76 0.76 0.76 0.78 0.88 0.09 0.10 0.12 0.23 0.16 0.04
5-6 6 0.84 0.76 0.72 0.76 0.76 0.89 0.11 0.09 0.17 0.11 0.25 0.17
5-7 7 0.96 0.82 0.77 0.74 0.77 0.84 0.03 0.11 0.11 0.16 0.09 0.10
5-8 7 0.89 0.86 0.82 0.76 0.76 0.85 0.03 0.02 0.10 0.11 0.09 0.09
5-9 7 0.84 0.80 0.82 0.82 0.80 0.85 0.09 0.03 0.12 0.11 0.03 0.09
5-10 7 0.85 0.77 0.76 0.83 0.86 0.89 0.09 0.09 0.11 0.11 0.02 0.02
5-11 7 0.85 0.76 0.73 0.77 0.83 0.96 0.09 0.09 0.16 0.10 0.09 0.03
5-12 10 0.89 0.79 0.79 0.80 0.80 0.89 0.19 0.34 0.35 0.35 0.33 0.19
5-13 11 0.97 0.87 0.80 0.79 0.81 0.89 0.01 0.18 0.33 0.33 0.32 0.19
5-14 11 0.89 0.87 0.86 0.80 0.80 0.89 0.17 0.19 0.19 0.33 0.34 0.20
5-15 11 0.89 0.82 0.87 0.86 0.81 0.88 0.18 0.32 0.19 0.19 0.32 0.20
5-16 11 0.88 0.81 0.80 0.86 0.87 0.89 0.20 0.32 0.32 0.19 0.18 0.17
5-17 11  0.89 0.80 0.79 0.80 0.86 0.97 0.19 0.33 0.34 0.33 0.19 0.01
5-18 12 0.97 0.86 0.80 0.79 0.80 0.89 0.05 0.23 0.33 0.36 0.33 0.19
5-19 12 0.90 0.86 0.86 0.81 0.80 0.89 0.19 0.23 0.23 0.33 0.32 0.19
5-20 12 0.89 0.81 0.86 0.87 0.80 0.89 0.18 0.33 0.24 0.22 0.35 0.19
5-21 12 0.88 0.80 0.79 0.86 0.88 0.90 0.20 0.33 0.34 0.23 0.22 0.18
5-22 12 0.89 0.79 0.80 0.79 0.86 0.97 0.18 0.34 0.33 0.34 0.23 0.05
5-23 15 0.97 0.95 0.93 0.94 0.94 0.97 0.01 0.01 0.01 0.02 0.01 0.01
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Table 34: NPC results for H5.3

Q J CCR Pr(tie)

X000 X10000 11000 11100 11110 *11111 @o0000 _ %10000  %11000  %11100  %11110  %11111
5-1 5 0.84 0.68 0.62 0.70 0.73 0.73 0.10 0.20 0.09 0.07 0.02 0.01
5-2 6 0.86 0.69 0.64 0.69 0.73 0.73 0.18 0.34 0.04 0.09 0.02 0.00
5-3 6 0.87 0.77 0.65 0.71 0.72 0.71 0.06 0.15 0.13 0.03 0.01 0.00
5-4 6 0.84 0.72 0.62 0.72 0.74 0.74 0.11 0.16 0.23 0.17 0.17 0.17
5-5 6 0.83 0.68 0.63 0.68 0.75 0.76 0.11 0.22 0.11 0.23 0.25 0.24
5-6 6 0.84 0.68 0.62 0.69 0.71 0.78 0.11 0.21 0.09 0.11 0.17 0.31
5-7 7 0.95 0.74 0.64 0.70 0.73 0.72 0.03 0.22 0.04 0.07 0.02 0.00
5-8 7 0.88 0.84 0.70 0.72 0.72 0.72 0.03 0.06 0.02 0.02 0.01 0.00
5-9 7 0.84 0.71 0.67 0.79 0.79 0.79 0.10 0.18 0.08 0.02 0.01 0.00
5-10 7 0.83 0.68 0.62 0.72 0.86 0.86 0.11 0.22 0.10 0.14 0.02 0.02
5-11 7 0.83 0.69 0.62 0.69 0.74 0.93 0.12 0.22 0.10 0.09 0.09 0.03
5-12 10 0.88 0.80 0.64 0.72 0.73 0.73 0.19 0.34 0.55 0.45 0.45 0.44
5-13 11  0.97 0.84 0.66 0.71 0.73 0.73 0.01 0.20 0.53 0.46 0.45 0.45
5-14 11 0.90 0.87 0.70 0.73 0.72 0.74 0.18 0.18 0.45 0.45 0.46 0.43
5-15 11 0.89 0.78 0.70 0.78 0.79 0.79 0.18 0.34 0.46 0.34 0.33 0.33
5-16 11 0.89 0.77 0.66 0.77 0.86 0.85 0.19 0.36 0.55 0.34 0.19 0.19
5-17 11 0.88 0.78 0.66 0.71 0.78 0.93 0.20 0.35 0.54 0.46 0.31 0.02
5-18 12 0.97 0.85 0.65 0.72 0.72 0.73 0.05 0.24 0.55 0.47 0.46 0.45
5-19 12 0.90 0.87 0.71 0.73 0.73 0.73 0.18 0.23 0.47 0.46 0.44 0.45
5-20 12 0.89 0.78 0.69 0.78 0.79 0.80 0.19 0.35 0.49 0.37 0.37 0.35
5-21 12 0.88 0.78 0.67 0.77 0.85 0.85 0.19 0.35 0.54 0.38 0.25 0.24
5-22 12 0.88 0.79 0.66 0.72 0.78 0.93 0.19 0.34 0.54 0.46 0.37 0.11
5-23 15 0.97 0.93 0.89 0.91 0.91 0.92 0.00 0.02 0.01 0.01 0.00 0.00
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Table 35: NPC results for H5.4

Q J CCR Pr(tie)

X000 X10000 11000 11100 11110 *11111 @o0000 _ %10000  %11000  %11100  %11110  %11111
5-1 5 0.80 0.66 0.61 0.66 0.69 0.74 0.17 0.15 0.09 0.03 0.10 0.02
5-2 6 0.86 0.66 0.64 0.64 0.70 0.72 0.17 0.27 0.04 0.03 0.08 0.02
5-3 6 0.83 0.72 0.65 0.66 0.72 0.73 0.12 0.15 0.14 0.14 0.02 0.01
5-4 6 0.80 0.66 0.61 0.66 0.71 0.74 0.18 0.17 0.24 0.23 0.19 0.19
5-5 6 0.79 0.65 0.62 0.64 0.75 0.74 0.17 0.16 0.11 0.16 0.23 0.25
5-6 6 0.80 0.65 0.63 0.66 0.66 0.79 0.17 0.16 0.08 0.05 0.23 0.29
5-7 7 0.94 0.70 0.65 0.66 0.69 0.73 0.05 0.16 0.03 0.02 0.08 0.02
5-8 7 0.83 0.76 0.70 0.70 0.72 0.72 0.12 0.05 0.03 0.01 0.02 0.00
5-9 7 0.80 0.64 0.64 0.76 0.78 0.78 0.18 0.17 0.14 0.02 0.02 0.01
5-10 7 0.79 0.66 0.61 0.68 0.86 0.85 0.18 0.16 0.10 0.10 0.03 0.02
5-11 7 0.80 0.65 0.63 0.65 0.70 0.93 0.17 0.16 0.08 0.05 0.14 0.04
5-12 10 0.88 0.72 0.65 0.66 0.73 0.72 0.19 0.46 0.56 0.54 0.44 0.45
5-13 11  0.97 0.77 0.67 0.67 0.71 0.73 0.01 0.33 0.53 0.54 0.46 0.44
5-14 11 0.89 0.79 0.72 0.71 0.72 0.73 0.18 0.33 0.44 0.45 0.44 0.45
5-15 11 0.87 0.71 0.71 0.77 0.78 0.79 0.21 0.45 0.44 0.32 0.32 0.32
5-16 11 0.88 0.72 0.66 0.71 0.85 0.85 0.19 0.45 0.55 0.43 0.20 0.19
5-17 11 0.87 0.71 0.65 0.66 0.77 0.92 0.20 0.46 0.53 0.54 0.33 0.02
5-18 12 0.97 0.77 0.66 0.66 0.72 0.73 0.06 0.37 0.54 0.54 0.46 0.44
5-19 12 0.89 0.78 0.69 0.71 0.72 0.73 0.19 0.37 0.49 0.48 0.45 0.45
5-20 12 0.87 0.73 0.69 0.78 0.79 0.79 0.21 0.44 0.48 0.36 0.36 0.36
5-21 12 0.88 0.72 0.65 0.72 0.86 0.86 0.20 0.45 0.54 0.46 0.25 0.24
5-22 12 0.87 0.71 0.65 0.67 0.77 0.93 0.20 0.46 0.55 0.53 0.37 0.11
5-23 15 0.96 0.91 0.89 0.90 0.92 0.93 0.01 0.02 0.01 0.00 0.01 0.00
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Table 36: NPC results for H5.5

Q J CCR Pr(tie)

X000 X10000 11000 11100 11110 *11111 @o0000 _ %10000  %11000  %11100  %11110  %11111
5-1 5 0.73 0.73 0.70 0.62 0.68 0.83 0.00 0.02 0.08 0.09 0.20 0.11
5-2 6 0.73 0.73 0.69 0.63 0.72 0.84 0.19 0.19 0.24 0.24 0.18 0.11
5-3 6 0.73 0.71 0.71 0.65 0.76 0.84 0.03 0.16 0.30 0.30 0.12 0.11
5-4 6 0.72 0.73 0.69 0.67 0.78 0.83 0.01 0.03 0.15 0.33 0.06 0.11
5-5 6 0.73 0.73 0.72 0.66 0.78 0.87 0.00 0.01 0.03 0.13 0.15 0.06
5-6 6 0.71 0.73 0.69 0.64 0.70 0.88 0.00 0.02 0.08 0.04 0.32 0.17
5-7 7 0.79 0.78 0.74 0.67 0.72 0.84 0.00 0.03 0.08 0.09 0.17 0.11
5-8 7 0.73 0.75 0.81 0.74 0.74 0.84 0.02 0.07 0.10 0.10 0.12 0.10
5-9 7 0.72 0.72 0.73 0.79 0.78 0.85 0.00 0.02 0.08 0.11 0.06 0.09
5-10 7 0.73 0.73 0.72 0.69 0.85 0.88 0.00 0.01 0.02 0.03 0.05 0.03
5-11 7 0.73 0.73 0.69 0.64 0.74 0.95 0.00 0.02 0.08 0.04 0.22 0.03
5-12 10 0.73 0.74 0.71 0.65 0.79 0.88 0.44 0.44 0.46 0.55 0.34 0.20
5-13 11 0.79 0.79 0.77 0.70 0.79 0.89 0.32 0.32 0.34 0.45 0.34 0.19
5-14 11 0.74 0.79 0.84 0.76 0.79 0.89 0.44 0.32 0.19 0.33 0.32 0.19
5-15 11 0.73 0.73 0.78 0.82 0.82 0.89 0.44 0.44 0.32 0.19 0.31 0.18
5-16 11 0.73 0.72 0.72 0.71 0.87 0.89 0.44 0.44 0.44 0.44 0.19 0.18
5-17 11  0.73 0.74 0.73 0.66 0.85 0.97 0.44 0.44 0.44 0.54 0.20 0.01
5-18 12 0.79 0.79 0.77 0.70 0.80 0.88 0.35 0.35 0.37 0.46 0.32 0.20
5-19 12 0.73 0.79 0.85 0.77 0.80 0.89 0.44 0.36 0.26 0.37 0.33 0.18
5-20 12 0.73 0.73 0.77 0.82 0.80 0.89 0.45 0.45 0.36 0.28 0.34 0.19
5-21 12 0.73 0.72 0.73 0.70 0.86 0.90 0.44 0.45 0.45 0.48 0.22 0.18
5-22 12 0.73 0.72 0.72 0.67 0.85 0.97 0.45 0.45 0.46 0.53 0.25 0.05
5-23 15 0.92 0.93 0.92 0.89 0.93 0.97 0.00 0.00 0.01 0.01 0.02 0.01
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Table 37: NPC results for H5.6

Q J CCR Pr(tie)

X000 X10000 11000 11100 11110 *11111 @o0000 _ %10000  %11000  %11100  %11110  %11111
5-1 5 0.72 0.69 0.65 0.69 0.65 0.79 0.02 0.08 0.03 0.23 0.17 0.17
5-2 6 0.73 0.69 0.65 0.73 0.67 0.79 0.18 0.25 0.20 0.17 0.11 0.18
5-3 6 0.72 0.71 0.68 0.75 0.71 0.79 0.03 0.15 0.23 0.12 0.05 0.18
5-4 6 0.73 0.72 0.66 0.75 0.71 0.83 0.01 0.02 0.15 0.22 0.15 0.13
5-5 6 0.73 0.69 0.66 0.71 0.75 0.86 0.02 0.08 0.04 0.26 0.20 0.06
5-6 6 0.73 0.69 0.65 0.73 0.66 0.86 0.02 0.08 0.03 0.17 0.28 0.16
5-7 7 0.79 0.76 0.71 0.73 0.69 0.80 0.01 0.09 0.02 0.18 0.11 0.17
5-8 7 0.73 0.75 0.78 0.75 0.70 0.81 0.02 0.09 0.03 0.12 0.05 0.17
5-9 7 0.74 0.72 0.72 0.82 0.78 0.84 0.01 0.03 0.01 0.13 0.05 0.12
5-10 7 0.72 0.70 0.66 0.74 0.84 0.87 0.01 0.07 0.03 0.22 0.05 0.04
5-11 7 0.73 0.69 0.65 0.72 0.69 0.94 0.02 0.08 0.02 0.18 0.17 0.05
5-12 10 0.72 0.72 0.66 0.78 0.71 0.87 0.46 0.46 0.53 0.34 0.47 0.20
5-13 11 0.79 0.78 0.70 0.80 0.72 0.88 0.33 0.33 0.46 0.34 0.45 0.20
5-14 11 0.73 0.77 0.77 0.80 0.73 0.88 0.45 0.33 0.32 0.32 0.44 0.20
5-15 11 0.74 0.71 0.71 0.85 0.79 0.89 0.44 0.45 0.45 0.21 0.33 0.18
5-16 11 0.72 0.72 0.66 0.84 0.85 0.89 0.46 0.46 0.54 0.20 0.17 0.18
5-17 11  0.73 0.72 0.65 0.80 0.77 0.97 0.46 0.47 0.55 0.34 0.33 0.01
5-18 12 0.79 0.76 0.71 0.79 0.72 0.87 0.35 0.38 0.46 0.34 0.44 0.21
5-19 12 0.74 0.77 0.76 0.79 0.72 0.89 0.44 0.38 0.38 0.35 0.47 0.19
5-20 12 0.73 0.72 0.72 0.85 0.80 0.88 0.46 0.46 0.47 0.24 0.34 0.20
5-21 12 0.73 0.73 0.66 0.85 0.86 0.89 0.44 0.44 0.54 0.23 0.25 0.19
5-22 12 0.73 0.72 0.67 0.78 0.76 0.97 0.43 0.46 0.54 0.35 0.37 0.06
5-23 15 0.92 0.91 0.90 0.93 0.91 0.96 0.00 0.01 0.00 0.02 0.01 0.02
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5.5 Discussion

Nonparametric classifications could play an important role in formative classroom
assessment. Tests developed by the teachers constitute a large part of classroom assessments. With
the guidance of psychometric theory, teachers may be able to extract more formative feedback.
Nonparametric classifications based on CDMs offer solutions to both test construction and result
interpretations. The teachers may develop the items under the guidance of CDM-based assessment
(Rupp et al., 2010). However, it is not likely to collect enough response data in the classroom
setting for model estimation (including calibration and classification). Besides, there are concerns
about the invariance properties of model parameters. In response to these limitations, researchers
have proposed different nonparametric classification methods to produce student results without
having to estimate item parameters (Chiu & Douglas, 2013; Chiu, Sun, & Bian, 2018; Wang &
Douglas, 2015). This study adds to the literature by providing insights into how to construct such
a test.

Q-matrix design is at the center of test construction for both parametric and nonparametric
CDM-based tests. Test construction involves practical questions, including how long the test
should be and how many items are needed from each type. Note that what we discuss in Chapter
3 about equivalent g-vectors and different types of Q-matrices also applies to the nonparametric
situation. Generally, Q-matrix designs that work well for MLE classifications also work well for
nonparametric classifications. The ties in the hamming distance are parallel to equal or similar
likelihoods between attribute profiles.

The simulation study compared Q-matrix designs with K to 3 X K items. Longer tests were
not considered because the situation is teacher-developed classroom assessment. It is important to

include the single-attribute items for nonparametric classifications. Adding an odd number of
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multiple-attribute items can increase the CCR of a subset of as while adding an odd number of
single-attribute items leads to an increased CCR for every a.

It is recommended that a Q-matrix has an odd number of items in each g-vector. A test
with an even number of items in a certain g-vector is generally not substantially better than a test
with one less item in this g-vector. This is especially true when the item quality is homogeneous.

An important implication for teachers is that more items do not necessarily mean more
accurate classifications. A single-attribute item is generally more useful than a multiple-attribute
one. However, if the classification of certain as, say a4y, is of particular interest, then including
the appropriate multiple-attribute item (in this case, q;10}) in the Q-matrix becomes meaningful
in terms of CCR.

A classroom assessment network can be built where teachers develop their items based on
CDMs with g-vectors and the corresponding curriculum identified. Such items can be collected
from teachers and form various item pools, which can later be used for CD-CAT or nonparametric
CD-CAT. At last, this study assumes the DINA model as the underlying CDM. Future research

could explore different Q-matrix designs for NPC with other underlying CDMs.
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Chapter 6 Item pool design for CD-CAT
6.1 Introduction

Item pool design is an important but often neglected area for CD-CAT. Since the item pool
design for CD-CAT has not been addressed in the literature, we draw from studies on item pool
design for CAT based on IRT models (e.g., Reckase, 2010; Thissen, Reeve, Bjorner, & Chang,
2007; Veldkamp & van der Linden, 2000). The findings for IRT-based CAT can be informative
because CD-CATSs are the same sequential optimization problems using CDMs instead of IRT
models as the item response model. However, the categorical nature of the latent constructs in
CDM decides that new studies are needed for the CD-CAT context.

Besides, CD-CAT has different priorities from those of IRT-based CAT. Classroom
formative assessments are generally low-stakes tests, so test security issues are not of primary
concern. It is acceptable that tests overlap between students. What is of more importance is to
assign new items to a student each time he or she takes the test during the instructional period.
Therefore, different requirements are imposed on item pool design for classroom formative
assessments as compared to high-stakes standardized tests.

When a series of formative assessments are needed for one school year’s teaching and
learning, multiple item pools should be constructed. For example, each unit addresses different
attributes, so a new item pool may be needed for each unit to support the formative assessment
when learning a unit. Considering a large number of item pools required for one school year and
the high cost in item development, it is important to know the minimal size of an item pool that
satisfies the purposes of a test.

This study aims to propose an item pool design method for CD-CAT so that the item pool

can fully support a test. The proposed method will be applied to explore the number of items and
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item types needed for an item pool for classroom formative assessments under various conditions.
The item pools obtained will be evaluated in terms of their performances using with a CD-CAT
algorithm.

6.2 Method for CD-CAT item pool design

The proposed method for item pool design borrowed the ideas from Veldkamp and van der
Linden (2000) and Reckase (2010) for the item pool design of IRT-based CAT. The core of the
method is computer simulations.

6.2.1 The minimum optimal pool

The minimum optimal pool is defined to be the smallest item pool that can provide the
ideal item at each item-selection step, given the CD-CAT algorithm and test constraints. The
potential item pool in the case of IRT-based CAT has an infinite number of items. A CDM-based
item pool, however, has a limited number of item types defined by the g-vectors. For example, an
item pool for three independent attributes (H3.1) can have seven item types. For three attribute
hierarchies—H3.2, H3.3, and H3.4—there are three, four, and four item types, respectively, under
the DINA model, which are listed in Table 7-Table 9.

Items within an item type only differ in item parameters. The output of the item pool design
process would be the number of items needed for each item type. In the item writing process, it is
difficult, if not impossible, to control the level of item parameters, which is especially true for
complicated item response models. Therefore, we start with an ideal situation in item pool design,
assuming all items have equally high or low quality — a high-quality condition and a low-quality
condition yield a range of item numbers. The proposed method can be used for any CD-CAT

algorithm and test requirement.
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Below is a brief illustration of the proposed method when applied to a variable-length CD-
CAT. Suppose an examinee with the true attribute profile a; = (0 0 0) istaking a CAT measuring
three linear attributes. The items are calibrated using the DINA model. We further assume that for
all items the probability of the correct response interval for examinees who have mastered none of
the required attributes on an item isP(X = 1 | @ = 0) = 0.1 and the probability of the correct
response interval for examinees who have mastered all the required attributes on an item is P(X =
1la = 1) = 0.9. The first itemis fixed to be g = (1 0 0). A simulation of the CAT process using
the KL algorithm to select items leads to the administration of 2 items when the test terminates
when the desired accuracy level is achieved, that is the largest ™ (a;) > .85. The items
administered to this examinee are summarized by item type in Table 38. Suppose anther examinee
with the true attribute profile o, = (1 0 0) takes the test, and the items used are also summarized
in Table 8. Since two examinees can use the same items, a union of the two sets of items leads to
an item pool for two such examinees. In other words, the maximum number of items from each
item type among the examinees constitutes the number of items required for two such examinees.
If a third examinee is to be simulated, the union or maximization can be taken between the set of

items for the new examinee and the union obtained earlier in Table 38.

Table 38: Item distribution for two hypothetical examinees with true attribute profiles of
o; =(000) and a, = (1 0 0) and the union of the two sets of items

Item type o, =(000) o, =(100) Union/Maximum
q100} 2 1 2
9010} 0 4 4
9001} 0 3 3
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6.2.2 The minimum p-optimal pool

After the test is administered to more examinees, the maximum number of items selected
from each item type among all examinees will eventually become stable except for a few outliers.
The test is extremely long in these extreme cases.

Suppose an item pool is designed for measuring three linear attributes given a certain CD-
CAT algorithm. We further assume that all candidate items are of low quality, that is,
PX=1la=0)=1—-PX =1la=1) =0.3. The simulations of 1,000 examinees per
attribute profile produced a distribution of item numbers for each item type. The distribution for

d{100} IS shown in Figure 26.

An examinee used 44 items of q;00y in an extreme case but 95% of the simulated
examinees only needed 12 items of g0y Or fewer. The maximum numbers of items for q; 10,
and qq11; Were 54 and 44, respectively. Therefore, the minimum optimal pool as defined earlier
would consist of 44 items of g0y, 54 items of qgi10;, and 44 items of qg4,;. However,
considering the need to construct a large number of item pools and the high cost of item
development, an optimal item pool becomes impractical. If we instead take the p" percentile of

the distribution instead of the maximum, the size of the item pool will be substantially smaller.

Such an item pool is called the minimum p-optimal pool.

50
40
30
20
10

>+ooooo ee @ o

Figure 26: Distribution of the number of items for q(;4; in an example
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6.3 Simulation design

Two sets of simulations will be conducted. The first set of simulations apply the proposed
item pool design method to construct minimal 95-optimal pools. The second set of simulations
evaluate the performances of the item pools. We consider item pools involving three attributes.
The attribute hierarchies in Figure 6 are used.

Item pools are designed for the following variable-length CD-CAT. All items are calibrated
by the DINA model. Following the termination rule in Hsu et al. (2013), the variable-length test is
terminated at stage t when the largest n(® () is greater than or equal to 0.90. The item selection
criterion is the posterior-weighted KL index (PWKL) proposed by Cheng (2009). The index of
PWKL was chosen because of its popularity and high attribute profile recovery rate (Xu, Wang &

Shang, 2016). The first item in a test was fixed to be g0y Or randomly selected from the subset

of g-vector for each attribute hierarchy as shown in Table 39.

Table 39: Q-vectors for the first item

Hierarchy First item

H3.1 9100} d{010} 9{001}
H3.2 9100}

H3.3 d100}

H3.4 9100} {010}

In the simulations for item pool design, item quality was held constant for the entire item
pool. Two item quality levels were simulated. An item pool of high quality has P(X = 1|la = 0) =
1-PX =1la=1) =0.1. An item pool of low quality has P(X =1la=0) =1 - P(X =
1l = 1) = 0.3. The minimal 95-optimal pools were constructed for both item quality levels.

For both sets of simulations, a total of 1,000 examinees were simulated for each true

attribute profile. The CD-CAT algorithm described above was used on each simulated examinee.
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Item responses were generated based on the DINA. Arandom U(0, 1) variable u is generated. The
correct response probability P(X;; = 1|a) is compared with u to decide the response of examinee
i to item j:

V. = {1 ifusP(; = 1|a).
Y 0 otherwise (49)

To evaluate the performance of the item pool design method, we constructed ten minimal
95-optimal pools for each hierarchy, assuming low item quality. Under each attribute hierarchy,
ten designed item pools were compared with ten random item pools in terms of test length, the
percent of times that the precision criterion is met, and CCR. The random item pools have the same
size as the corresponding designed pool, but the Q-matrix was randomly selected from all the
available g-vectors. For both designed and random item pools, item parameters ¢, = P(X =
1la = 0) and P(X = 1|a = 1) were generated from the uniform distribution U(0.1,0.4) and
U (0.6,0.9), respectively.

6.4 Simulation results

The number of items needed for the minimal 95-optimal pools is shown in Table 39 for
two item quality levels. The total column presents the size of the item pools. The first row of Table
40Table 40 describes the item pool designed for three independent attributes (H3.1) assuming low

item quality. For example, fifteen items of g0y are required. The second row shows that only
four items of g0y are required if the item quality is high.

To test the performance of the proposed item-pool design method, the designed item pools
were compared with the random pools, and the statistics are summarized in Table 41. The designed
pool for low item quality was used in the comparison because item parameters for this set of

simulations were generated from a uniform distribution with the low item quality as a lower bound.

118



Table 40: The minimum 95-optimal pools
Iltem quality H 4003 9010 9001} 9p110) 9{101} o113 9q111y Total

Low 3.1 15 15 15 10 10 10 9 84
High 3.1 4 4 4 2 2 2 2 20
Low 3.2 12 18 16 46
High 3.2 4 4 4 12
Low 3.3 13 16 17 10 56
High 3.3 4 4 4 2 14
Low 3.4 15 15 11 14 55
High 3.4 4 4 2 4 14

Table 41: Comparison between the random and designed item pools

- % CCR
Test length Modified criterion
test length
Pool H met agop @100 Xo10 X110 P101 X114
Random 3.1 12.05 9.60 96.65 0.88 091 091 091 091 0.91
Designed 3.1 9.92 9.24 99.10 090 0.92 0.89 091 0.93 0.92
Random 3.2 6.40 5.96 98.89 0.95 0.92 0.92 0.92
Designed 3.2 6.27 5.87 99.01 094 0091 0.91 0.91
Random 3.3 8.06 7.03 97.88 0.96 0.89 092 0.91 0.92
Designed 3.3 7.52 7.07 99.11 094 0.92 090 0.92 0.91
Random 3.4 8.02 7.11 98.07 091 092 092 091 0.91
Designed 3.4 7.45 6.97 99.00 0.93 0.92 0.93 0.90 0.91

Note: CCRs for a; and a,;; with H3.1 are not presented for brevity.

Take H3.1 for an example. The average test length using the random item pools was 12.05,
longer than the average test length using the designed pools, which was 9.92. The difference in
test length is partly due to the percent of times that the precision criterion is met. With random
pools, the precision criterion was met at an average of 96.65% of the repetitions, which means
3.35% of the examinees would have to take all the items in the pool. The precision criterion was
met for 99.10% of the cases on average when using the designed pools. The modified test length
was calculated by excluding the cases where the precision criterion was never met. The designed
pools were associated with slightly shorter tests than the random tests after excluding the extreme

cases. With random or designed item pools, the average CCR for each attribute profile was close
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to or higher than 0.90, which was the precision criterion. The same conclusion can be drawn for
other attribute hierarchies except for H3.3, where the modified test length by using designed pools
was not lower than that by using random pools.

6.5 Discussion

An important practical question is how many items are needed for a CD-CAT item pool.
This type of questions belongs to the research area of the item pool design. Although numerous
item selection methods have been proposed, the item pool design has been given limited attention.
This study aims to guide practitioners when CD-CAT is involved. The method for item pool design
is based on simulations. As Dr. Reckase noted, “there is no correct answer to the question ‘How
big should a CAT item pool be?’” The proposed method leads to an item pool designed for a
specific CD-CAT program.

The concept of the minimum optimal pool is introduced but is deemed impractical. The
minimum p-optimal pool is defined to be a practical item pool design for a formative assessment
system. We then demonstrate the construction of minimum p-optimal pools for variable-length
CD-CAT with two item quality levels and four attribute hierarchies. With designed item pools,
the precision criterion is supposed to be met with shorter tests compared to with random item pools,
which was supported by the simulation results.

Future research may consider the item pool design for fixed-length CD-CAT. Another
situation worth explored is when a student would take the test multiple times (M =1, 2, 3, 4) during
an instruction period (a couple of weeks), and each time new items should be administered to a
student.

The p in the minimum p-optimal pool take the value of 0.95 in this study but it could also

take other values. Another variable that can be manipulated is the item quality. Currently, we
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assume homogeneous item quality between item types, which is a common setting in simulation
studies. However, it is possible that single-attribute items and multiple-attribute items tend to have
different levels of item quality, or items involving a certain attribute have lower or higher item
quality than others. Future research may take heterogeneous item quality into consideration and
some practical evidence is needed regarding the item quality of different item types.

Most previous studies are built upon item pools that are calibrated using a single CDM.
This study uses the DINA model. However, it is likely to observe that different items require
different processes in practice, which suggests that the item pool may be made up by various
CDMs (Kaplan, de la Torre, & Barrada, 2015). Recent progress in item-level model selection
indices provides a theoretical basis for such item pools (Liu, Andersson, Xin, Zhang, & Wang,
2018; Ma et al., 2015). Suppose multiple-attribute items calibrated by ACDM are also included as
candidate items. Item selection methods based on KL information, such as PWKL index, would
always prefer a single-attribute item to a multiple-attribute item under the ACDM. The current
item pool design method, therefore, would produce an item pool without any ACMD based

multiple-attribute items. The optimal pool needs to be redefined with mixed models.
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APPENDIX Hierarchies in Two Textbooks

Eureka Math Grade 4 (2015)

Unit 1 (4 weeks)
4.0A.A.1%

4 NBT.A.L,
4NBT.A.2,
4NBT.A3,

4 NBT.B.4,
4.0A.A3

Unit 2 (1 week)
4.MD.A.L,
4.MD.A.2,
4.0A.A.3

Unit 3 (8 weeks)
4.MD.A.2,
4.MD.A.3,
4.NBT.A.1,
4.NBT.B.5,
4.NBT.B.6,
4.0A AL,
4.0A.A.2,
4.0A.A.3,
4,.0A.A4

Unit 4 (3.3 weeks)
4.G.Al,

4.G.A.2,

4.G.A3,
4.MD.C.5,
4.MD.C.6,
4.MD.C.7

Unit 5 (8.4 weeks)

1 4.0A.1 is not connected with any other Grade 4 standards in the Coherence Map.



4.MD.A2
4.MD.B 4,
4.NBT.A.3,
4.NF.A1,
4.NF.A2,
4.NF.B.3,
4.NF.B.A4,
4.0A.A2,
4.0A.C52

Unit 6 (3.3 weeks)
3.NF.A3,
4NF.A1,
4.NF.A.2,
4.NF.C.5,
4.NF.C.6,
4.NF.C.7,
4.MD.A.1,
4.MD.A.2,
4NBT.Al1

Unit 7 (3.8 weeks)
3.NF.A1,
4.NF.A1,
4.NF.B.3,
3.0A A1,
3.0AA2,
4.0A.A.2,
4.0AA3,
4.0A.BA4,
4.MD.A1,
4MD.A2,
4 MD.A.33,
4NBT.A.2,
4NBT.BA4,
4NBT.B.5,
4NBT.B.6

2 4.0A.C.5 is not connected with any other Grade 4 standards in the Coherence Map.
®4.MD.A.3 is not connected with any other Grade 4 standards in the Coherence Map.
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Engage NY Grade 4 (2014)

Unit 1 Unit 2

(4 days) (2 days)

40AA1%, 4ANBT.A2

4NBT.A.L,

4NBT.A.2

Unit 3 Unit 4

(4 days) (2 days)

4 NBT.A.3 4.NBT.B .4,
4.0A.A3

Unit 5 Unit 6

(4 days) (3 days)

4NBT.A2, 4NBT.Al,

4NBT.B.4, 4.NBT.A.2,

4,0A.A3 4.NBT.B.4,
4.0A.A3

Unit 7 Unit 8

(3 days) (2 days)

4 MD.AL, 4.MD.AL,

4. MD.A.2 4MD.A.2

Unit 9 Unit 10

(3 days) (3 days)

4.MD.A.3, 4.NBT.B.5 g-MD-A-

4.0AA1,

4.0AA2,

4NBT.B.5

Unit 11 Unit 12

(5 days) (2 days) ;‘-OA-A- ‘21.0A.A.

ANBT.B5 4.NBT.BS5, J J
4.0A.AL,
4.0A.A.2,
4.0A.A3

4.NBT.
B.5

*4.0A.1 is not connected with any other Grade 4 standards in the Coherence Map.

125




Unit 13 Unit 14
(9 days) (4 days)
4NBT.B.6, 4.0AA4 4.0AA 4.0AB.
4.0A.A3 : !
Unit 15 Unit 16
(9 days) (5 days)
4.NBT.B.6, 4.NBT.B.5
4.0A.A.3,
4.NBT.B.4,
4.NBT.B.6,
4.NBT.A.1
Unit 17 Unit 18
(4 days) (4 days)
4.G.A.1 4.MD.C.5,

4.MD.C.6
Unit 19 Unit 20
(3 days) (5 days)
4.MD.C.7 4.G.Al,

4.G.A.2,

4.G.A3
Unit 21 Unit 22
(6 days) (5 days)
3.NF.A.3, 4.NF.A.l 3.NF.A
4.NF.B .4 3
Unit 23 Unit 24
(4 days) (6 days)
4.NF.A.2 4.NF.B.3

4. NF.B
4

Unit 25
(8 days)
4.NF.B.3, :.NF.B‘ ;.NF.B‘ 7777777 j.MD,B.
4.NF.B.4, J J
4.NF.A.2,
4.MD.B.4
Unit 26
(6 days)
4.NF.B.3
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Unit 27
(6 days)
4.NF.B.4,
4.MD.B.4
Unit 28

(1 day)
4 0A.C.5°

4.0A.A2,

4.0AA. 4.NF.B. 4.MD.B. 4.0A.C.
2 4 4 5

Unit 29
(3 days)
4 NF.C.6

Unit 31
(3 days)
4.NF.C.7

Unit 30
(5 days)
4 NF.C.5,
4.NF.C.6

4.NF.C.

5
4.NF.C. 4.NF.C.
6 J 7

Unit 32
(3 days)
4.NF.C.5,
4.NF.C.6

Unit 33
(2 days)
4.MD.A.2

Unit 34
(5 days)
4.MD.A.1,
4.0A A1,
4.MD.A.2

Unit 35

(3 days)
4.MD.A.2,
4.0AA2,
4.MD.AL,
4NBT.B.5,
4.NBT.B.6,
4.0AA3

54.0A.1 is not connected with any other Grade 4 standards in the Coherence Map.
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