
 

PSYCHOMETRIC TOOLS FOR FORMATIVE CLASSROOM ASSESSMENT: TEST 

CONSTRUCTION AND ITEM POOL DESIGN BASED ON COGNITIVE DIAGNOSTIC 

MODELS 

By 

Jiahui Zhang 

A DISSERTATION 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

Measurement and Quantitative Methods—Doctor of Philosophy  

2019 

  



 

ABSTRACT 

PSYCHOMETRIC TOOLS FOR FORMATIVE CLASSROOM ASSESSMENT: TEST 

CONSTRUCTION AND ITEM POOL DESIGN BASED ON COGNITIVE DIAGNOSTIC 

MODELS 

 

By 

Jiahui Zhang 

This thesis is concerned with the potential applications of cognitive diagnostic models 

(CDMs) with hierarchical attributes in supporting formative classroom assessments. The 

conventional CDM approach that requires large sample sizes is impractical in the classroom setting. 

Three are three CDM-based approaches that do not involve item calibration and thus are practical 

in the classroom setting: 1) CDM classifications using non-adaptive tests assembled from a 

calibrated item pool, 2) nonparametric classifications using non-adaptive tests based on CDMs, 

and 3) computerized adaptive testing (CAT) combined with CDMs (i.e., CD-CAT). Since most 

CDMs and their applications assume independent attributes, relevant model parameterizations, and 

the Q-matrix for hierarchical CDMs were discussed. Three studies were conducted to address the 

test construction and item pool design issues related to the three CDM-based approaches. 

Specifically, new indices based on the Kullback-Leibler information are proposed for non-adaptive 

test construction with a calibrated item pool. Different Q-matrix designs were explored for 

nonparametric classifications, and recommendations regarding the Q-matrix design were provided 

for teachers. For CD-CAT, an item pool design method based on simulation was proposed and 

evaluated. The intended contribution of the thesis consists of psychometric tools for the teachers 

that help them facilitate formative assessments in the classroom and instrumental guidelines for 

developers of formative assessment systems.   
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Chapter 1 Introduction 

Assessments are ubiquitous in most education systems. Educational assessments have the 

potential to provide feedback. The positive effect of feedback on learning has long been 

established in numerous studies in educational psychology, cognitive science, and learning science 

(e.g., Fyfe & Rittle-Johnson, 2015; Hattie & Timperley, 2007; Moreno, 2004). Therefore, various 

types of assessments have been widely used in schools to improve learning and teaching, which 

can be classified into summative assessment (providing a summary evaluation at the end of an 

educational program) and formative assessment (providing timely diagnostic information for 

learning and teaching during an educational program).    

Despite its potential usefulness in learning, assessment or testing is among the most 

debated issues in public education. There have been concerns from teachers and parents that tests 

take up too much time from teaching and learning (Hefling, 2015; Walsh, 2017).  A survey by the 

Council of the Great City Schools (CGCS) on large urban districts revealed that the average 

amount of testing time spent on required assessments among eighth-grade students in the 2014-15 

school year was 4.22 days or 2.34% of school time (Hart et al., 2015). Examples of required 

assessments in the CGCS report are (i) state summative assessments for accountability (e.g., the 

Partnership for Assessment of Readiness for College and Careers [PARCC] assessments), (ii) state 

and local formative assessments, (iii) local end-of-course exams, and (iv) SAT, ACT, and 

Advanced Placement (AP) tests (optional in some places). Specific categories of students 

(including students with disabilities and English language learners) take (v) special assessments in 

addition to the required and optional tests.  

Many of the required tests mentioned above are external, high-stakes, and summative 

measures for accountability purposes, fueled by important educational policy questions (Baker, 
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Chung, & Cai, 2016). These tests are not designed for assisting daily classroom learning and 

teaching. Even if diagnostic information can be extracted, it would be too late to be useful in the 

classroom (Hart et al., 2015).  Too many of such tests would inevitably disrupt the learning process 

and may lead to problems such as teaching to the tests (e.g., Copp, 2018) and test anxiety (e.g., 

Schutz & Pekrun, 2007, p.3), both of which result from the misuse and abuse of educational 

assessments. 

To address this issue, the U.S. Department of Education called on states to make 

assessments fewer and smarter in the Testing Action Plan (U.S. Department of Education, 2015). 

It calls for more classroom, low-stakes, and formative tests that are “smart” to provide timely 

feedback to learning and teaching and fewer external, high-stakes, and summative tests. We are 

entering a new era of K-12 assessments, where both accountability and instructional improvement 

are emphasized (Chang, 2012), and, correspondingly, both summative and formative educational 

assessments are required. 

Research topics in the psychometric society echo the change in educational policies: the 

concepts of “assessment for learning” and “assessment as learning” have become popular as 

researchers emphasize on making assessment truly useful for learning (e.g., Bennett, 2011; Wilson, 

2018). If tests are designed for producing feedback for learning and teaching and eventually 

integrate with the learning process, some problems of educational tests, including disrupting the 

learning process and teaching to the tests may be solved.  

Renewed attention has been brought to the old concepts of classroom assessment and 

formative assessment (e.g., Bennett, 2015; Black & William, 2008; Gotwals, 2018; Shepard, 2018). 

Classroom assessment refers to the assessment taking place in the classroom and initiated by the 

teacher (Shepard, 2006; Wilson, 2018). Formative assessment is designed for providing timely and 
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constructive feedback that is closely connected to a curriculum and are based on students' learning 

history. It should be a thoughtful integration of the process to provide feedback and the appropriate 

measurement instrument or methodology (Bennet, 2011). This thesis concerns formative 

assessment in the classroom henceforth referred to as formative classroom assessment.   

A huge responsibility for implementing formative classroom assessments lies on the 

shoulders of the teachers.  Specifically, teachers need to take two iterated actions that are at the 

core of formative assessment: one is the identification of the gap between the desired goal and the 

learner’s present state, and the other is the action taken to close the gap (Black & William, 

1998). Identifying the gap is a measurement issue per se because the gap is the difference between 

a student’s current state and the goal. However, many teachers do not feel adequately prepared for 

this assessment task (Mertler, 2003). Despite the increasing emphasis on educational 

measurement in policies and research, in some states, preservice teachers are not required to take 

specific coursework in classroom assessment or educational assessment in general (Campbell, 

2013). As a result, teachers’ formative assessment practices are not without struggles (Black 

& Wiliam, 1998; Gotwals, 2018). There is a gap between policy and research on one side and 

teachers’ practice on the other side. 

Although formative assessment is an attractive concept, the effectiveness of formative 

assessment hinges on its quality, not on its existence in the classroom (Black & Wiliam, 1998). As 

it takes time and resources to improve teacher preparation and professional development in 

assessment, there is an urgent need now to provide teachers with psychometric tools to facilitate 

formative assessment in the classroom. Teachers especially need assistance in constructing and 

delivering formative assessments as well as interpreting the results (Bennett, 2015; Campbell, 

2013; Gotwals, 2018). Psychometric tools, which has guided and supported most standardized 
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testing programs, if used appropriately, can also help with constructing, delivering, and 

interpreting formative assessments (Bennett, 2011; Bennett, 2015).  

Note that the use of psychometric tools, especially item response models, inevitably 

introduces some degree of standardization. Ideally, the teacher would develop his or her own 

formative assessment because it is the teacher who knows best the learning history of each student 

and the learning goals. Teachers’ self-developed assessment is the exact opposite of 

standardization. With limited educational resources, therefore, we need to strike a balance between 

individualization and standardization when thinking of psychometric tools for formative classroom 

assessment. 

In choosing appropriate psychometric tools (e.g., item response models) for formative 

classroom assessment, the best place to start is the validity, which is mainly decided by the 

usefulness of the feedback for formative purposes. Therefore, the first question we should ask is: 

What kind of feedback do teachers need? The needs of teachers were reflected in a survey 

conducted on a nationally representative sample of 400 elementary and secondary mathematics 

and English language arts teachers in the U.S. about a decade ago (Goodman & Huff, 2006; Huff 

& Goodman, 2007). The survey shows that norm-referenced information, standards-based 

information, and performance information at the item level from large-scale standardized 

assessments are of comparatively little interest to teachers because the information cannot be used 

directly in the instruction; what teachers need is detailed information about the strengths and 

weaknesses of individual students regarding specific knowledge, skill, and competencies. 

Various methods have been proposed for providing diagnostic feedback. Some approaches 

involve extracting information from summative tests based on and calibrated with unidimensional 

item response theory (IRT) models (e.g., subscores; see Haberman, 2008). However, some 
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researchers caution that each purpose can be compromised if a single assessment is expected to 

serve multiple purposes (Pellegrino, Chudowsky, & Glaser, 2001, p2; Reckase, 2017). Although 

unidimensional IRT models have been successfully applied in summative tests aiming at selecting 

and differentiating, they might not be the most appropriate ones for formative purposes because 

the diagnostic nature of formative assessment usually suggests multidimensionality. 

1.1 Psychometric solutions for formative classroom assessment  

A family of measurement models—cognitive diagnostic models (CDMs; e.g., Rupp, 

Templin & Henson, 2010), which were developed for modeling diagnostic assessment data, are 

chosen for formative classroom assessment in this thesis. These models target multiple fine-

grained latent constructs (referred to as attributes) that are typical in interim or formative 

assessments. With categorical latent variables, they are less affected by the high dimensionality as 

multidimensional IRT (MIRT) models and are more appropriate for finer-grained constructs than 

MIRT models (Templin & Bradshaw, 2013). The identification of these finer-grained constructs 

as well as their relationship is often based on cognitive or learning theories, and require 

collaborations between psychometricians and content experts. This construct space is similar to 

the concept of a domain in domain-referenced testing (Hively, 1974; Houang, 1980). The 

assessment developed based on CDMs can be integrated with the learning process through these 

constructs. Therefore, CDMs have the potential to be an essential part of the solution to formative 

classroom assessment. 

Specifically, this thesis concerns formative classroom assessment that (i) can be linked to 

an instructional program lasting for several weeks, and (ii) can provide formative information for 

learning and instruction. The underlying measurement models are CDMs. Note that the assessment 

of interest does not intend to measure relatively stable traits such as ability or aptitude. Instead, the 
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targeted construct is the internalized knowledge or skills that the student acquires after particular 

several days’ or weeks’ instruction. 

Although current CDM methods (i.e., calibration and classification) work well in large-

scale assessments with hundreds or thousands of examinees and long tests, the application of 

CDMs in small-scale test settings in the classroom would be problematic due to limited testing 

time and the lack of response data required for reliable estimation (Chiu, Sun, & Bian, 2018). 

There are three alternatives to conventional CDM analysis, which do not require item calibrations 

and therefore, are practical in the classroom setting:  

1) parametric classifications using non-adaptive tests assembled from a calibrated item 

pool (e.g., Henson & Douglas, 2005),  

2) nonparametric classifications using non-adaptive tests based on CDMs (e.g., Chiu, Sun, 

& Bian, 2018), and 

3) cognitive diagnostic computerized adaptive testing (CD-CAT; e.g., Chen, 2009). 

The first two approaches use non-adaptive tests, which means the same test is given to all 

students in a classroom, so test construction is a critical question. The CD-CAT approach uses 

adaptive tests that are tailored to the state of individual students, the success of which depends on 

a well-designed item pool. How to design the appropriate item pool for a CD-CAT program 

remains a research question. Responding to practical needs and gaps in the literature, this thesis 

addresses the test construction and item pool design issues for these three approaches.  

These CDM-based approaches are intended for facilitating formative classroom 

assessment, which is related to domain-referenced testing and curriculum-based assessment. 

Therefore, the rest of Chapter 1 reviews these related concepts as well as the broader concept of 

educational assessment and the so-called next-generation assessment.   
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The next chapter reviews the fundamentals and previous studies of the three CDM-based 

approaches with a focus on CDMs with hierarchical attributes. Chapter 3 deals with 

parameterizations and Q-matrices of CDMs with hierarchical attributes, followed by three chapters 

addressing three research questions related to the test construction or item pool design issues.   

1.2 Related concepts 

Formative classroom assessments belong to the broader concept of educational assessment 

or achievement assessment. The terms educational assessment and achievement assessment have 

been used interchangeably in the literature. More specifically, Mislevy, Steinberg, and Almond 

(2003) in their seminal work on assessment design defined an educational assessment to be "a 

machine for reasoning about what students know, can do, or have accomplished, based on a 

handful of things they say, do, or make in particular settings." Baker, Chung, and Cai (2016) 

offered a broader construction: “A test or an assessment consists of a systematic method of gaining 

a sample of information about people or programs so as to draw inferences about examinees’ 

knowledge, characteristics, or propensities.” The definition of Mislevy et al. (2003) focuses on 

the types of inferences made from the assessment, and the definition of Baker et al. (2016) also 

highlights the process of making inferences (i.e., via sampling) in educational assessment.  

The history of educational assessment has been intertwined with that of psychological 

assessment. Their connection can be seen from the title of the Standards for Educational and 

Psychological Testing (AERA, American Psychological Association [APA], & National Council 

on Measurement in Education [NCME], 1985, 1999, 2014) as well as journals and books (e.g., 

Educational and Psychological Measurement). The first generation of standardized achievement 

tests was developed in the same period and by the same researchers as IQ tests were (Sheperd, 

2006). As a result, educational assessments and psychological assessments tend to have the same 
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item formats and often utilize the same statistical models (e.g., item response theory models), with 

both having roots in individual differences psychology. In this section, the discussion is limited to 

IRT-based assessment because most large-scale or commercial achievement tests (e.g., PARCC, 

NAEP, PISA, SAT, ACT) use IRT models. 

More and more researchers in the educational assessment field, however, have realized the 

critical differences between educational and psychological assessments despite their entwined 

histories. Among the most discussed issues is the definition of the measured domain, the stability 

of the unobserved constructs, the dimensionality of the construct space, the normality assumption, 

and the purpose of assessment.  

The unobserved constructs measured in psychological assessments are usually not well-

defined. As noted by Brody (2000, p.39), researchers know how to measure the construct called 

intelligence, but they still do not know what has been measured; what the IQ test does, as a result, 

is merely trying to differentiate people along a hypothetical scale. In some sense, the test that is 

supposed to measure intelligence defines what intelligence is. This is not true in education where 

domains could be well defined according to the instructional goals of a specific instructional 

program. However, the measured domains are not well delineated for some educational tests 

(Baker, 2009). In such cases, it can be said that we know how to measure achievement, but we do 

not know what has been measured, particularly, if and when educational assessments follow the 

tradition of psychological measurement. 

The unobserved constructs in psychological assessments are usually stable traits, such as 

intelligence, self-efficacy, or personality. These traits are assumed, or believed, to remain stable 

for an extended period. The purpose of psychological assessments is to reflect the relative location 

of a person regarding this latent trait, and improvement or change within a short period is not 
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expected (Baird, Andrich, Hopfenbeck, & Stobart, 2017). However, examinees in educational 

assessments are expected to show changes in their educational attributes and accomplishments 

within a short period, which is the primary purpose of any educational program. 

The existence of content blueprints complicates the definition of the unobserved constructs 

in educational assessment. Unlike a psychological test, an educational test is usually developed 

based on a content blueprint (Luecht, 2013; Reckase, 2017). A content blueprint is usually 

constructed as a set of test specifications that is independent of the psychometric modeling of test 

responses (Luecht, 2013). However, a test blueprint with multiple content domains may suggest, 

and be consistent with, a multidimensional space (Reckase, 2017). Besides content dimensions, 

cognitive dimensions have also been considered for educational assessments, which further 

complicates the dimensionality issue (George & Robitzsch, 2018; Harks, Klieme, Hartig, & Leiss, 

2014). In an analysis of TIMSS data, content dimensions are number, geometry, and data, and 

cognitive dimension are knowing, reasoning, and applying (George & Robitzsch, 2018).  

For most of the commercial achievement tests, the interpretation of a test score is directly 

based on the assumed normal distribution of underlying stable psychological characteristics (Baker, 

2009). This normality assumption is another inheritance educational measurement inherited from 

the psychological measurement under the general framework of latent variable modeling (Baker 

& Kim, 2004). Consistent with the interpretation of scores, a normal distribution is usually 

assumed in IRT modeling for the unobserved construct. Specifically, the normal distribution is 

used (i) in the integration step in item calibration and (ii) as a prior distribution in Bayesian IRT-

based scoring (Baker & Kim, 2004). While the normality assumption may work well for a variety 

of stable psychological traits (e.g., intelligence, self-efficacy), whether it is suitable for the 
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measurement of learning or mastery of educational attributes is questionable (Bloom, 1968; Baker, 

2009).  

Educational assessment designers, following the guidelines developed for psychological 

assessments, tend to optimize the test for detecting differences among examinees. It would work 

well if the goal is selection. However, the test development guidelines may need some adaptations 

when we consider the purpose of improving student learning because the differences between 

different test scores could be trivial regarding the subject matter (Bloom, 1968). 

One characteristic of educational assessments that is different from psychological 

assessments, however, is the existence of many dichotomies, such as classroom assessment versus 

external tests, formative versus summative assessment, domain-referenced (or criterion-referenced) 

versus norm-referenced testing (assessment).  

1.2.1 External and classroom assessment 

External assessments are constructed outside of the classroom by measurement and subject 

experts and are often fueled by educational policies (Baker, Chung & Cai, 2016), also referred to 

as the large-scale standardized assessments. There is a rich literature on the theories and practices 

of external assessments. They have served well the purpose of selection and accountability over 

the past decades. However, the effects of external assessments on learning are difficult to establish 

(Wilson, 2018).  

Educational assessments can be divided into classroom assessments and external 

assessments, depending on the administration of the assessments. Teachers usually create and 

grade classroom assessments based on particular instructional goals, and they make short-term 

decisions based on assessment results (Hanna & Dettmer, 2004, p. 8). Classroom assessments may 

also be developed out of the classroom but initiated by teachers or students in the classroom. 
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Classroom assessments, when used in a constructive way by teachers, can send the message to 

students telling them what is important (Nitko, 2001), and have been shown to have a substantial 

impact on student success (Shepard, 2006; Wilson, 2018). Some researchers believe that we can 

make measurement truly important for education through classroom assessments (Wilson, 2018).  

1.2.2 Summative and formative assessment 

The dichotomy of formative assessment versus summative assessment has been proposed 

for decades. While great improvement has been seen in the practices and research of summative 

assessment over the past few decades, formative assessment mostly appears as the subject of 

theoretical discussion (Scriven, 1967; Bloom, 1968; Bloom, Hastings, & Madaus, 1971). Scriven 

(1967) and Bloom (1968) were among the first to use the terms “formative evaluation” and 

“summative evaluation.” A summative evaluation judges what students have mastered at the end 

of an educational program (Bloom, 1968). Defining formative assessments, however, can be much 

more complicated: There has been debate over conceptualization of formative assessment as a test 

or a process (Bennet, 2011). For Bennet (2011), neither side of the argument can provide a full 

picture of formative assessments: He defined formative assessment to be a thoughtful integration 

of process, on the one hand, and methodology or instrumentation, on the other hand. Other 

researchers put more emphasis on the process part (e.g., Furtak, Circi, & Heredia, 2018; Gotwals, 

2018). 

Recently, formative assessment is receiving renewed attention (Bennet, 2011, p. 5). Since 

formative assessments generally take place in the classroom as a type of classroom assessments, 

teachers need to take many responsibilities. However, it remains a challenging task for teachers to 

learn how to do formative assessments (Bennet, 2011; Furtaka, Circib &, Heredia, 2018; Gotwals, 

2018; Shavelson, 2008). Teachers need guidance and assistance in various aspects of assessments, 
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including goal setting, extracting information, providing feedback, and using feedback to modify 

instructions (Gotwals, 2018, p.157). Bennett (2011, p. 18) argued that teachers need “deep 

cognitive-domain understanding” and “knowledge of measurement fundamentals” in addition to 

“pedagogical knowledge”, in order to be able to realize effective formative assessments. However, 

even if teachers can acquire all the knowledge, understanding, and skills needed for formative 

assessment, they still need a substantial amount of time to put them into practice (Bennet, 2011). 

1.2.3 Domain-referenced and norm-referenced testing/interpretations 

 Another well-known contrast in educational measurement is between domain-referenced 

(or criterion-referenced) testing and norm-referenced testing (Hively, 1974). Norm-referenced 

testing (NRT) has its roots in the psychological measurement of individual differences. NRT goes 

hand in hand with latent trait modeling (Hively, 1974; Houang, 1980). The test construction for 

NRT based on latent trait modeling places great emphasis on correlation or the so-called internal 

consistency among a set of items, which plays a significant role in the decisions of including or 

excluding certain items (Hively, 1974; Houang, 1980). However, this test construction procedure 

may pose a danger to the validity of measurement because 1) variables that are conceptually 

disconnected can be correlated (Baird et al., 2017) and 2) the obtained set of items may not be a 

representative sample from the targeted domain (Houang, 1980).  

Domain-referenced testing (DRT), in contrast, bears more educational considerations. 

More emphasis is placed on validity instead of reliability. Much research is devoted to the 

discussion of the domain and item sampling within the domain (Baker, 1974; Hively, 1974; 

Millman, 1974). A domain can be defined by an explicitly specified set of items (Hively, 1974) or 

a set of rules according to which a large number of test items could be generated (Baker, 1974). A 

complex domain can be divided into sub-domains. The examinee's measurement of principal 
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interest in NRT is the examinee's score over all items in domain or sub-domain (Brennan, 1981; 

Hively, 1974). This score, referred to as the domain score (or the sub-domain score), cannot be 

directly obtained because it is impossible to administer all the items in the domain (or sub-domain). 

It can be estimated by the examinee's observed percent of correct responses on a set of items if the 

set is a representative sample (Brennan, 1981). Estimates for large domains may be obtained by 

stratified sampling over their constituent sub-domain, and diagnostic profiles may be gathered by 

sampling within sub-domains (Hively, 1974). IRT-based estimators are available for domain or 

sub-domain scores, given a large set of calibrated items (Bock, Thissen, & Zimowski, 1997). For 

a complicated domain, the set of sub-domain scores serves a diagnostic profile (Hively, 1974); 

alternatively, one can assign sub-domain scores weights to calculate a single domain score 

(Millman, 1974). The estimated domain or sub-domain scores are then compared to some criterion 

to decide whether mastery is achieved. In contrast to the two-stage methods, Houang (1980) took 

a latent class approach to estimate the mastery of a simple domain. 

The concept of DRT as an assessment type lost its popularity after the 1970s. Since the 

1974 Standards for Educational and Psychological Tests, the distinction between two types of test 

score interpretations—criterion-referenced and norm-(or criterion-)referenced interpretations—

have received more attention. Instead of differentiating two different types of assessments (i.e., 

NRT and DRT), test developers draw from both test development perspectives to ensure the 

reliability and validity of measurement (Brennan, 2006). Although most standardized testing 

programs are designed to primarily provide norm-referenced interpretations, there has been an 

increasing need for domain-referenced or criterion-referenced interpretations.  
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1.2.4 Curriculum-based assessment 

Educational assessments are based on a specific curriculum or not. To be useful for learning, 

however, assessment needs to be integrated into a coherent process of assessment, instruction, and 

curriculum based on learning theories (Black, Wilson, & Yao, 2011; Shepard, Penuel, & Pellegrino, 

2018). This is especially true for formative classroom assessment. If the assessment is not aligned 

to the curriculum that students are learning, the validity of the formative feedback will be in doubt. 

A link between curriculum and achievement assessment has been well established in the 

international assessments led by the International Association for the Evaluation of Educational 

Achievement (IEA). The curriculum-achievement alignment constitutes a vital part of the validity 

evidence for the subject achievement tests. The validity check (by comparing assessment items 

with the curriculum students have experienced) has been carried out in some form in all IEA 

studies (Cogan & Schmidt, 2019). For example, teachers provided validity check on the test items 

in the pilot study and the First International Mathematics Study (FIMS) and in the second studies, 

SIMS and SISS (Husén, 1967a; Keeves, 1974; Travers & Westbury, 1989). The 1995 Third 

International Mathematics and Science Study (TIMSS-95) conducted a more extensive curriculum 

analysis, and provided evidence for the relationship between assessment, instruction, and 

curriculum (Schmidt & McKnight, 1995; Schmidt, Jorde, et al., 1996; Schmidt, McKnight, 

Valverde, Houang, & Wiley, 1996).  

A curriculum is structured around subject content. Taking the subject of mathematics as an 

example, as Schmidt and his colleagues put it, “mathematics, even circumscribed by what is taught 

in school, encompasses a very large content domain.” The question is then how to model 

curriculum-sensitive content in the psychometric model for curriculum-based assessment. Under 

the typical unidimensional IRT modeling framework, content exists in the form of content 
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constraints, independent of the measured construct (e.g., Kingsbury & Zara, 1991; van der Linden, 

2005a). The separation of the measured construct and the curriculum-sensitive contents makes it 

difficult, if not impossible, to extract formative feedback from the test data regarding the contents.  

1.2.5 Next-generation assessment 

Since we entered the new millennium, there have been increasing discussion over the so-

called next-generation assessment. Questions like “Are we entering a new era for the educational 

assessment?” are being asked.  In the discussion of the next-generation assessment, researchers 

and measurement practitioners attempt to respond to the critiques on educational measurement 

mentioned earlier and the needs from learners, parents, and teachers (e.g., Bennett, 2011; Conley, 

2018; Embretson, 2003; Heritage, 2010).  

A lengthy, but not exhaustive list of next-generation assessment topics includes formative 

assessment (e.g., Gorin, & Mislevy, 2013; Heritage, 2010), assessment of new constructs such as 

critical thinking (e.g., Liu, Frankel, & Roohr, 2014), technology-based assessment (e.g., Beatty & 

Gerace, 2009; Bennett, 2015; Mislevy, 2016), classroom assessment (e.g., Shepard et al., 2018), 

personalized testing and learning (e.g., Chen, Li, Liu, & Ying, 2018; Clark, 2016), integration of 

learning and assessment (e.g., Baird et al., 2017), and automatic item generation and scoring (e.g., 

Bennett, 2015; Gierl & Lai, 2012).  
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Chapter 2 Literature review of CDM-based approaches 

This chapter provides brief literature reviews for the basics of CDM, nonparametric 

classifications based on CDM, and CD-CAT, which form the foundations of the three CDM-based 

approaches for formative classroom assessment proposed in Chapter 1. 

The CDM-based test construction begins with the identifications of the attribute profile 

space and the Q-matrix characterizing the relationship between items and attributes (described in 

detail in Chapter 2). The attribute profile space defines the domain in the language of domain-

referenced testing. Test construction based on CDMs has many similarities with domain-

referenced testing (Hively, 1974; Houang, 1980). The identifications of the relationships between 

attributes and items usually depend on cognitive theories and learning theories. In this way, the 

assessment can be integrated with the learning process.  

2.1 CDM  

CDMs (cognitive diagnostic models), also known as diagnostic classification models, 

belong to the confirmatory or constrained latent class modeling framework in which individuals 

are classified into groups defined by combinations of categorical (usually binary) latent variables 

(Rupp, Templin & Henson, 2010). The categorical unobserved variables that define the 

measurement constructs underlying a CDM are often referred to as attributes (Tatsuoka, 1983, 

1990), elsewhere called finer-grained proficiencies (de la Torre, & Karelitz, 2009) or facets 

(Henson, DiBello, & Stout, 2018).  

Macready and Dayton (1977) and Houang (1980) were among the first to apply latent class 

models using only one dichotomous trait to measure mastery of a simple domain. Later, the works 

of Tatsuoka (1983) and Leighton, Gierl, and Hunka (2004) involve more complex domains with 

multiple attributes, and they introduced the concepts of Q-matrix and attribute hierarchy. In the 
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past three decades, a large number of CDMs that employ item response functions (IRFs) and 

explicit Q-matrices have been proposed and studied intensely (Rupp, Templin, & Henson, 2010; 

Templin & Bradshaw, 2014) in response to the pressing demand for individualized diagnostic 

information in education (Center for K-12 Assessment and Performance Management at ETS, 

2014; U.S. Department of Education 2014).  

2.1.1 Attributes 

Since the introduction of attributes to diagnostic assessments by Tatsuoka (1983, 1990), 

the terminology of attributes has been used in the CDM literature to refer to the unobserved 

variables that the test aims to measure. Long before the time of diagnostic assessment, Guttman 

(1944) used “attribute” interchangeably with “qualitative variable” (i.e., categorical variable). 

Tatsuoka (1990) provided a broad definition of attributes as “production rules, procedural 

operations, item types, or, more generall, any cognitive tasks” (p. 465). Embretson (1995) viewed 

attributes as "sources of cognitive complexity" in test performance, which may consist of both 

cognitive and content components. Leighton, Gierl, and Hunka (1999) defined attributes as the 

procedural or declarative knowledge needed to perform a task in a specific domain. Most of the 

above definitions include both cognitive and content components.  

In an educational setting, possessing an attribute is often referred to as mastery of an 

attribute, and lacking an attribute is referred to as non-mastery (Templin & Bradshaw, 2014). Like 

most CDM research, we restrict the scope of this thesis to attributes with two levels, so that 𝛼𝑘  =

 1 indicates mastery of attribute 𝑘 and 𝛼𝑘  =  0 indicates non-mastery of this attribute.  

An attribute profile (Templin & Bradshaw, 2014), which is also referred to as an attribute 

pattern (Ma, Iaconangelo, & de la Torre, 2015) or attribute mastery pattern (Henson & Douglas, 

2005), is a specific combination of attribute mastery and non-mastery, with each combination 
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representing a unique latent class of examinees. Attribute profiles are denoted by column vectors 

𝜶 = (𝛼1, … 𝛼𝑘 , … , 𝛼𝐾)𝑇, where 𝛼𝑘 ∈ {0, 1} indicates the absence or presence, respectively, of the 

𝑘th attribute (mastery vs. non-mastery), and the superscript 𝑇 denotes transpose. 

2.1.1.1 Interaction among attributes in an item 

CDMs can be categorized as noncompensatory or compensatory models based on the 

assumptions about how attributes interact with each other to affect the probability of an item 

response. According to DiBello, Roussos, and Stout (2006), a noncompensatory (or conjunctive) 

model assumes that lacking competency on any required attribute poses a severe obstacle to 

successful performance on the task. In other words, successful performance on a task requires 

mastery of all the required attributes; mastery of some of the required attributes does not 

compensate for the non-mastery of other required attributes. The terms of conjunctive models and 

noncompensatory models are often used interchangeably. Opposite to the noncompensatory nature, 

compensatory interaction of attributes means that mastering one required attribute can compensate 

for nonmastery of other required attributes. An extreme case of compensatory models is a 

disjunctive model in which mastering each subset of the required attributes would lead to the 

equally high probability of a correct response (DiBello, Roussos, & Stout, 2006).  

2.1.1.2 Interdependencies among attributes 

Most CDMs assume independent attributes (Rupp et al., 2010). Nevertheless, there are 

cases in which data analysis suggested the presence of interdependencies among attributes 

(Templin & Bradshaw, 2014). To account for the relationships between attributes, de la Torre and 

Douglas (2004) proposed a higher-order model linking the categorical attributes to an underlying 

multivariate normal distribution. The interdependencies among attributes are reflected in the 

correlated dimensions of the multivariate normal distribution. Another approach to modeling the 
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attribute relationships is to impose a hierarchical structure, in which mastering an attribute could 

be prerequisite to mastering another attribute (Leighton et al., 2004; Tatsuoka, 2009; Templin & 

Bradshaw, 2014). This thesis adopts the hierarchical approach, which is reviewed in more details 

below. 

A hierarchy of attributes specifies the relationship between each pair of attributes. For 

attribute 𝑖 and attribute 𝑗, if 𝑃(𝛼𝑗 = 1|𝛼𝑖 = 0) = 0, attribute 𝑖 is called a prerequisite of attribute 

𝑗. Suppose there are three attributes in a linear relationship. We have P(𝛼2 = 1|𝛼1 = 0) = 0, 

P(𝛼3 = 1|𝛼1 = 0) = 0, and P(𝛼3 = 1|𝛼2 = 0) = 0. 

Attribute hierarchies are often visualized by a tree graph with a set of attributes connected 

with arrows. An arrow that points from attribute 𝑖 to attribute 𝑗 means that mastering attribute 𝑖 is 

a prerequisite to mastering attribute 𝑗 (Gierl, Leighton, & Hunka, 2000; Köhn & Chiu, 2018; 

Leighton et al., 2004). Attribute 𝑖  is a lower-level attribute, and attribute 𝑗  is a higher-level 

attribute in this case. 

These pair-wise prerequisite relationships can be formally defined by a K-by-K binary 

matrix called the adjacency matrix (A-matrix), in which K is the number of attributes (Tatsuoka, 

1983, 2009; Gierl et al., 2000). The A-matrix represents the direct relationships among attributes 

usually illustrated by one-way arrows. The (𝑖, 𝑗)th element of the A matrix indicates whether 

attribute 𝑖 is directly connected in the form of a prerequisite to attribute 𝑗. The diagonal elements 

of the A-matrix are zeros. The following is an example of a complex hierarchy in Köhn and Chiu 

(2018) with its 11-by-11 A-matrix. 
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𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11  

 0 0 0 1 1 0 0 0 0 0 0 

 0 0 1 1 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 1 1 0 0 0 0 

A= 0 0 0 0 0 0 1 0 0 0 0 

 0 0 0 0 0 0 0 1 0 0 0 

 0 0 0 0 0 0 0 1 0 0 0 

 0 0 0 0 0 0 0 0 1 0 0 

 0 0 0 0 0 0 0 0 0 1 1 

 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 0 0 0 0 0 0 0 0 

Figure 1: A complex example of attribute hierarchy in Köhn and Chiu (2018) 

  

In an attribute hierarchy, there are direct and indirect relationships. A direct relationship is 

characterized by a one-way arrow. In the example below, 𝛼1  and 𝛼4  has a direct relationship 

because there is an arrow pointing from 𝛼1 to 𝛼4. An indirect relationship can be found between 

𝛼1 and 𝛼6, which are connected through two arrows and 𝛼4 in between. 

If compared to a road map, an attribute hierarchy consists of at least one path of attributes. 

A path is defined to be a subset of attributes connected by one-way arrows. The complex attribute 

hierarchy below has more than one paths, for example, the path 𝛼1 → 𝛼4 → 𝛼7 → 𝛼8 → 𝛼9 → 𝛼10. 

For any hierarchy of 𝐾 attributes, the longest path involves at most 𝐾 attributes and has at most 

𝐾 − 1 arrows. The maximum is reached when the 𝐾 attributes form a linear hierarchy.  

Note that some attributes appear in the same path while others do not share a common path. 

For example,  𝛼1 and 𝛼2 in the following hierarchy do not share a common path. Another example 

is the pair of 𝛼10 and 𝛼11. 
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The prerequisite relationships between attributes are quite common in content standards 

for mathematics. As shown in the map of College- and Career-Ready Standards (CCRS - formerly 

called the Common Core State Standards), content standards do not stand alone but form a 

complicated network (Zimba, 2011, 2015). Some standards form a linear structure with one 

standard being the prerequisite of another one (Figure 2a). Some standards serve as prerequisites 

for several other standards (Figure 2b). There are also standards that are based on several other 

standards (Figure 2c).  

 

 

 

Figure 2: Three types of standard relationships in the Common Core Graph (a: the upper panel, b: 

left bottom panel, c: right bottom panel) 

 

However, attribute hierarchies have long been poorly represented in the current CD 

literature, and related studies have begun only recently (e.g., Templin & Bradshaw, 2014). 

Research on hierarchical attributes has focused on hypothesis testing of the assumed attribute 

hierarchy (Templin & Bradshaw, 2014) and model estimation (Tu et al., 2018). When attribute 

hierarchies are proved to be present, it is recommended to incorporate this information in the 
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modeling process by reparameterizing the original model and excluding certain attribute profiles 

(Templin & Bradshaw, 2014; Tu et al., 2018).  

Hierarchies that have been used in simulation studies are summarized below. Leighton et 

al. (2004) proposed four types of attribute hierarchies, which have been adopted in many studies—

linear, divergent, convergent, and unstructured hierarchies—as illustrated in Figure 3. Liu and 

Huggins-Manley (2016) renamed the unstructured hierarchy and the convergent hierarchy in 

Leighton et al. (2004) as the “invert pyramid” and the “diamond hierarchy,” respectively. They 

replaced the divergent hierarchy with the pyramid hierarchy (Figure 4). Tu et al. (2018) added a 

mixed type to the list, which is a combination of two hierarchies (Figure 5). 

 

Figure 3: Four hierarchical structures using six attributes (Leighton, Gierl, & Hunka, 2004) 

 

 

Figure 4: Linear, pyramid, inverted pyramid and diamond structures using five attributes (Liu & 

Huggins-Manley, 2016) 
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Figure 5: Four types of attribute hierarchies and an independent structure (Tu, Wang, Cai, Douglas, 

& Chang, 2018) 

 

Note that a pyramid (e.g., Liu & Huggins-Manley, 2016) or a convergent (e.g., Tu, et al., 

2018) hierarchy comes with an implicit assumption that all prerequisite attributes must be mastered 

so that the mastery of the higher-level attribute can be possible. 

In application studies of CDMs with hierarchical attributes, the most commonly seen 

hierarchy is the linear hierarchy (Gierl, Wang, & Zhou, 2008; Gierl, Alves & Majeau, 2010). To 

get an idea of the hierarchical relationships in real classroom instruction, two CCRS-aligned 

textbooks for Grade 4 math, Eureka Math (2015) and Engaged NY (2014), were analyzed. The 

content structures of the textbooks may shed some light on classroom instruction because 

textbooks provide an essential source of information and guidance for teachers, especially when 

new standards are introduced. The content analysis results can be found in Appendix A. Generally, 

three to five attributes (standards) are involved in a period of one to four weeks. Pyramid and invert 

pyramid structures following the definitions of Liu and Huggins-Manley (2016) are observed 

besides the linear structure.  
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2.1.2 Attribute profile space of hierarchical attributes 

For a test involving K attributes, the set of all possible attribute profiles, subject to the 

relationship between attributes, is called the attribute profile space (also called latent attribute 

space or latent space; e.g., Köhn & Chiu, 2018; Tatsuoka, 2009). The attribute profile space, 

denoted by ℒ, is defined by a matrix with K columns representing K attributes and each row vector 

representing an attribute profile.  

Identifying the attribute profile space for 𝐾  independent attributes is straightforward. 

Assuming 𝐾 independent attributes, the attribute profile space ℒ is a 2K-by-K matrix, representing 

2K different classes into which the examinees would be classified.  

The hierarchical relationships between attributes constrain the latent attribute space 

because some attribute profiles become impossible. Specifically, it is not allowed to master an 

attribute without mastering its prerequisite. Researchers have reached a consensus on restricting 

the attribute profile space at the presence of hierarchical attributes (e.g., Templin & Bradshaw, 

2014; Tu et al., 2018). However, the identification of the attribute profile space is not 

straightforward, especially when the number of attributes is large (Köhn & Chiu, 2018). 

Köhn and Chiu (2018) proposed the lattice-theoretical approach to obtain the latent space. 

The first step is to derive the K basic proficiency classes “by inspection” from the tree graph of the 

attribute hierarchy. Each basic proficiency class is a K-element vector characterizing a possible 

path from the lowest-level attribute to a higher-level attribute. The next step is to reconstruct the 

attribute space as a set of linear combinations of the basic proficiency classes. However, the 

inspection becomes more difficult as the number of attributes increases and the process is prone to 

mistakes.  
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An alternative way to derive the attribute profile space begins with the A-matrix. The first 

step is to derive the basic proficiency classes as defined in Köhn and Chiu (2018) in the form of 

column vectors of a matrix, called the reachability matrix (R-matrix; Tatsuoka, 1983, 2009; Gierl 

et al., 2000). This approach is, therefore, referred to as the R-matrix approach.  

2.1.2.1 R-matrix approach 

We define some Boolean operations before elaborating the R-matrix approach. A Boolean 

vector or matrix is one for which all entries are either 0 or 1. The Boolean addition of two Boolean 

vectors of K elements is defined as  

𝒙1 + 𝒚2 = (𝑟11⋁𝑟12, … , 𝑟𝐾1⋁𝑟𝐾2), (1) 

where ⋁ is the Boolean “or” operator.  

The product of the I-by-K Boolean matrix 𝐴 and the K-by-J Boolean matrix 𝐵 is defined 

by a matrix 𝐶, the [𝑖, 𝑗]th element of which is 

𝐶[𝑖, 𝑗] = ⋁ 𝐴[𝑖, 𝑘]⋀

𝑘

𝐵[𝑘, 𝑗], (2) 

where ⋁ is the Boolean “or” operator and ⋀ is the Boolean “and” operator. 

For a square Boolean matrix 𝐵, and any  𝑛 ≥ 0, the  𝑛th Boolean power of 𝐵 is the Boolean 

product of 𝑛 copies of 𝐵. 

𝐵𝑛 ≡ 𝐵⨀𝐵⨀ ⋯ ⨀𝐵 (3) 

                                                          

                                                      n times  

The derivation of the R-matrix from the A-matrix and the derivation of the attribute profile 

space from the R-matrix are elaborated below. 

The R matrix can be calculated as the nth Boolean power of the matrix 𝐴 + 𝐼 (Leighton et 

al., 2004):  
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R =  (A +  I)n,   (4) 

where 𝑛 is the integer required for R to reach invariance and can represent the numbers 1 through 

K − 1. The number 𝑛 is decided by the number of arrows in the longest path of the hierarchy.  

The next step of the R-matrix approach derives the attribute profile space from the R-matrix. 

Note that the A-matrix and R-matrix are of order (𝑘, 𝑘). The attribute profile space ℒ , with 𝑘 

columns indicating different attributes, however, may have more than 𝑘  rows. The following 

algorithm produces the transpose of the attribute profile space (Ding, Luo, Cai, Lin, & Wang, 

2008). 

1) For the 𝑖th column of the R-matrix, we take the Boolean addition of the 𝑖th column 

and each column on its right side.  

2) When a new column vector is obtained, it is added to the right of the R-matrix.  

3) The first two steps are repeated for each column of the original R-matrix, including 

the last one. Note that the column vectors in the Boolean addition include the new 

columns. 

The obtained matrix is called the expanded R-matrix, denoted as 𝑅∗, because it expands 

the K-by-K R-matrix by adding columns. This algorithm is referred to as the expanding algorithm. 

The attribute profile space ℒ is the transpose of the expanded R-matrix (𝑅∗𝑇
) with an additional 

row of 0s. The space contains at most 2K rows, representing 2K attribute profiles, denoted as 𝜶s. 

The maximum is reached when the attributes are independent. The number of attribute profiles 

(𝜶s) in the space decreases with hierarchical attributes.  

The R-matrix approach is equivalent to the lattice-theoretical approach (Köhn & Chiu, 

2018), but is easier to apply in practice. Appendix B provides R code for the expanding algorithm.  
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2.1.2.2 Interpretations of the Boolean operations 

The interpretations of the Boolean operations involved in the R-matrix approach are 

provided below.  

Note that the A-matrix only captures the direct relationship between two attributes. Each 

1-entry in the A-matrix stands for a one-way arrow that connects two attributes. The R-matrix 

should also capture indirect relationships. Therefore, the first step is to add the identity matrix to 

the A-matrix to account for the relationship with an attribute itself. The next step multiplies 𝐴 + 𝐼 

to itself until invariance is achieved. The [𝑖, 𝑗]th element of (𝐴 + 𝐼)2 is  

(𝐴 + 𝐼)2[𝑖, 𝑗] = ⋁(𝐴 + 𝐼)[𝑖, 𝑘]⋀

𝑘

(𝐴 + 𝐼)[𝑘, 𝑗], (5) 

in which (𝐴 + 𝐼)[𝑖, 𝑘]⋀(𝐴 + 𝐼)[𝑘, 𝑗] = 1  if 𝑖 → 𝑘  and 𝑘 → 𝑗 , which means attribute 𝑖  and 

attribute 𝑗 has an indirect relationship through attribute 𝑘; else, (𝐴 + 𝐼)[𝑖, 𝑘]⋀(𝐴 + 𝐼)[𝑘, 𝑗] = 0. 

The disjunction among 𝑘 attribute ⋁ 𝐴(1)[𝑖, 𝑘]⋀𝑘 𝐴(1)[𝑘, 𝑗] takes the value of 1 if attribute 𝑖 and 

attribute 𝑗 has an indirect relationship through any attribute.  

Consequently, the elements in (𝐴 + 𝐼)2 capture all indirect relationships between attribute 

𝑖 and attribute 𝑗 in the form of 𝑖 → 𝑘 → 𝑗. Similarly, it can be shown that the [𝑖, 𝑗]th element of the 

matrix (𝐴 + 𝐼)3  takes the value of 1 if attribute 𝑖  and attribute 𝑗  has an indirect relationship 

through two attributes in the form of  𝑖 → 𝑚 → 𝑛 → 𝑗 . Since the longest possible path in an 

attribute hierarchy has 𝐾 − 1 arrows, the largest number 𝑛 would take in equation (4) is 𝐾 − 1. 

Take the 𝑗th column of the R-matrix. The 𝑖th element of the 𝑗th column takes the value of 

1 if there a path from attribute 𝑖 to attribute 𝑗. If the 𝑗th attribute is at the lowest level in any path, 

then the 𝑗th column has only one non-zero entry; otherwise, the 𝑗th column describes a path which 
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ends at attribute 𝑗. As a result, the columns in the R-matrix correspond to different paths as shown 

in the tree graph, equivalent to the basic proficiency classes defined in Köhn and Chiu (2018). 

We use a linear hierarchy with four attributes to demonstrate the derivation of the R-matrix. 

A = [

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

] (6) 

A + I = [

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

] (7) 

(A + I)2 = [

1 1 1 0
0 1 1 1
0 0 1 1
0 0 0 1

] (8) 

𝑅 = (A + I)3 = [

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

] (9) 

The four columns in the R-matrix in equation (9)  describe four paths that start from 

attribute 1 (i.e., the lowest-level attribute) and end with each attribute, respectively. Invariance is 

achieved at 𝑛 = 3 because the longest path (i.e., 𝛼1 → 𝛼2 → 𝛼3 → 𝛼4) has three arrows. 

The columns of the R-matrix can be seen as attribute mastery profiles. If the 𝐾 attributes 

form a single linear hierarchy, then the R-matrix contains all the possible attribute mastery profiles. 

However, if there exist two attributes that do not appear in the same path, the R-matrix fails to 

account for all the possible combinations of states of two such attributes.  

Consider the following attribute hierarchy. The first path (column) is nested within the 

other three paths (columns). The second path is nested within the two paths on the right. However, 

the last two paths are not nested within each other because A3 and A4 are not connected directly 

or indirectly in any path. The four columns in the R-matrix also correspond to four profiles. 
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Another possible profile [1 1 1 1]𝑇, which is not included in the R-matrix, can be obtained by 

adding the last two columns of the R-matrix.  

 

𝑅 = [

1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 1

] (10) 

The expanding algorithm involves the Boolean addition of two columns 𝒓.𝑖 , 𝒓.𝑗in the R-

matrix shown in equation (11) and (12). 

𝑅 =

[
 
 
 

1 𝑟1,2 ⋯ 𝑟1,𝐾

𝑟2,1 1 ⋯ 𝑟2,𝐾

⋮ ⋮ ⋱ ⋮
𝑟𝐾,1 𝑟𝐾,2 ⋯ 1 ]

 
 
 
 (11) 

𝒓.𝑖 + 𝒓.𝑗 = (𝑟1𝑖⋁𝑟1𝑗 , … , 𝑟𝐾𝑖⋁𝑟𝐾𝑗) (12) 

Addition of two nested paths as defined in equation (12) does not produce a new column. 

Addition of two independent paths, however, produces a new column, which expands the original 

R-matrix.  

Continuing with the complex hierarchy example in Köhn and Chiu (2018), the attribute 

profile space ℒ derived from the expanding algorithm contains 31 attribute profiles.  

2.1.3 Q-matrix 

The relationship between the items and the attributes is described in an indicator matrix, 

called the Q matrix, which has rows corresponding to items, columns corresponding to attributes, 

and binary elements indicating whether an attribute is measured by an item (that is, whether 

mastery of an attribute is required to succeed on an item). The Q-matrix was initially proposed by 

Tatsuoka (1983) and has been employed in most of the commonly used CDMs. 

The Q-matrix reflects the test blueprint (Leighton, Gierl, & Hunka, 2004). Specifically, the 

Q-matrix operationalizes the substantive and cognitive theories based on which the test has been 
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developed and provides evidence for the construct and content aspects of validity (Rupp, Templin, 

& Henson, 2010). It is often considered an analog to the specified factor structure in a confirmatory 

factor analysis (Henson, DiBello, & Stout, 2018). The row vectors of the Q-matrix are also referred 

to as q-vectors. Items with a q-vector with only one non-zero entry are called single-attribute items. 

Others are multiple-attribute items. 

An example of Q-matrix is 

[
0 1 0
1 0 1
1 1 1

],      
  (13) 

which shows that the test measures three attributes with three items, the first item probes the second 

attribute, the second item targets the first and the third attributes, and the last item requires all three 

attributes. In other words, an examinee needs to master the second attribute to succeed on item 1 

without guessing or slipping. 

The specification of the Q-matrix precedes any model fitting and classifying. The Q-matrix 

is part of the model assumption that can be falsified (e.g., Wang et al., 2018). While most 

theoretical and empirical studies assume that the Q-matrix is correctly specified (e.g., Henson et 

al., 2018), recent efforts on Q-matrix construction and validation have pointed out the negative 

effects of incorrectly identified Q-matrices and proposed solutions (e.g., de la Torre, 2008; Liu, 

Xu, & Ying, 2012). 

2.1.3.1 Reduced versus full Q-matrix 

With hierarchical attributes, researchers have reached a consensus on restricting the 

attribute profile space (e.g., Templin & Bradshaw, 2014; Tu et al., 2018). However, there has not 

been a consensus on the Q-matrix. Two types of Q-matrices are being used: the full (or unrestricted) 

Q-matrices (Liu et al., 2016; Templin & Bradshaw, 2014) and the reduced (or restricted) Q-

matrices (Köhn & Chiu, 2018; Leighton et al., 2004; Tu et al., 2018), which are defined below.  
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Consider a test with three independent attributes. The expanded R-matrix R∗ below has 

seven columns and each column represents an item type:  

𝑅∗ = [
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

]. (14) 

If we randomly sample from the columns of R∗  in equation (14)  as the q-vectors, 

regardless of the attribute hierarchy, the Q-matrix is called a full Q-matrix. With any attribute 

hierarchy, a full Q-matrix could have all seven types of q-vectors or a random subset of them. In 

a test of three linear attributes, for instance, although the attribute profile 𝜶 = (1 0 1) is not 

allowed, the 𝑞-vector 𝒒 = (1 0 1) is possible in the full-Q-matrix approach. 

Considering that some attributes profiles become illegitimate under a certain hierarchy; 

particularly, it is impossible to master an attribute without mastering all prerequisite attributes. 

Therefore, in another line of research, it is assumed that an item probing a higher-level attribute 

also requires its prerequisite. This assumption would lead to the removal of some q-vectors. For 

example, 𝑞 = (0 1 0) under a linear hierarchy (𝛼1 → 𝛼2 → 𝛼3) would be unreasonable because 

the item requires the mastery of the second attribute without requiring its prerequisite.  A reduced 

Q-matrix can only have columns of 𝑅∗ as q-vectors. A special reduced Q-matrix is the transpose 

of 𝑅∗, denoted as 𝑄𝑟 . For three linear attributes, for example, 𝑅∗ and 𝑄𝑟 are defined in equation 

(15) and (16). 

𝑅∗ = [
1 1 1
0 1 1
0 0 1

] (15) 

𝑄𝑟 = [
1 1 1
0 1 1
0 0 1

]

𝑇

 (16) 

The only difference between Qr and the attribute profile space ℒ is the exclusion or inclusion of 

the vector of all 0s. Therefore, 𝑄𝑟 can also be derived using the R-matrix approach.  
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While studies using full Q-matrices tend not to discuss the necessity to make any change 

in the Q-matrix, researchers using reduced Q-matrices believe that the items should reflect the 

attribute hierarchy (Köhn & Chiu, 2018; Tu et al., 2018). The choice between the full Q-matrix 

and the restricted one has not been formally addressed in the literature.  

2.1.3.2 Complete Q-matrix 

A complete Q-matrix is needed to identify all possible attribute profiles (Chiu, Douglas, & 

Li, 2009; Chiu & Köhn, 2015). With a complete Q-matrix, we have 𝑆(𝜶) = 𝑆(𝜶′) ⟹ 𝜶 = 𝜶′, 

where  𝑆(𝜶) denotes the expected response vector (𝐸[𝑌1|𝜶], 𝐸[𝑌2|𝜶] … , 𝐸[𝑌𝐽|𝜶]). Completeness 

of the Q-matrix is evaluated by checking the definition 𝑆(𝜶) = 𝑆(𝜶′) ⟹ 𝜶 = 𝜶′ for each pair, 

𝜶 and 𝜶′ , in the attribute profile space. It was proved in Chiu et al. (2009) that a Q-matrix 

containing the identity matrix (i.e., 𝐾 single-attribute items) is complete for the DINA model with 

independent attributes. Köhn and Chiu (2018) later showed that any Q-matrix that contains the 

transpose of the R-matrix is complete for the DINA model, given any attribute hierarchy. This rule, 

however, does not apply to more complicated CDMs such as ACDM and GDINA (Köhn & Chiu, 

2018).  

2.1.4 Item response models and calibration methods 

The relationship between each attribute profile and the probability of a correct response is 

expressed in terms of IRF (de la Torre, 2011; Rupp, Templin, & Henson, 2010). A variety of 

models with different IRFs for multiple-attribute items have been proposed; most of them are 

equivalent to each other in the parameterization for a single-attribute item. 

Some CDMs are more general models that subsume most other specific models. The 

general frameworks include the general diagnostic model (GDM; von Davier 2005), the log-linear 
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cognitive diagnosis model (LCDM; Henson, Templin, & Willse, 2009), and the generalized DINA 

(Deterministic Input, Noisy “and” Gate) model (GDINA; de la Torre, 2011). 

The rest of the section introduces the GDINA framework and two reduced models from 

GDINA. The following notations are used:  

• K𝑗
∗ is the number of required attributes for item j, as in K𝑗

∗ = ∑ q𝑖𝑘
𝐾
𝑘=1 . 

• 𝜶𝑙𝑗
∗  is the reduced attribute vector consisting of the columns of the required attributes, 

where 𝑙 = 1, … , 2Kj
∗

. 

• The probability of a correct response on item 𝑗 by students with attribute pattern 𝜶𝑙𝑗
∗  will 

be denoted by P(Xj = 1|𝜶𝑙𝑗
∗  ) = P(𝜶𝑙𝑗

∗  ). 

The IRF of the GDINA model (de la Torre, 2011) is given by 

g[P(𝜶𝑙𝑗
∗ )] = ϕ𝑗0 + ∑ 𝜙𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝜙𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′ + ⋯ +

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘=1

𝜙𝑗12…𝐾𝑗
∗ ∏ 𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

 (17) 

where g[P(𝜶𝑙𝑗
∗ )] is P(𝜶𝑙𝑗

∗ ), log[P(𝜶𝑙𝑗
∗ )], and logit(P(𝜶𝑙𝑗

∗ )) in the identity, log, and logit links, 

respectively; ϕ𝑗0  is the intercept for item j; 𝜙𝑗𝑘  is the main effect due to 𝛼𝑙𝑘 ; 𝜙𝑗𝑘𝑘′  is the 

interaction effect due to 𝛼𝑙𝑘  and 𝛼𝑙𝑘′; 𝜙𝑗12…𝐾𝑗
∗ is the interaction effect due to 𝛼𝑙1, …, 𝛼𝑙𝐾∗ . 

The G-DINA model is a saturated model and subsumes several widely used reduced CDMs, 

including the DINA model (Haertel 1989; Junker and Sjitsma 2001; Macready and Dayton 1977) 

and the A-CDM (de la Torre, 2011). 

To obtain the DINA model, all terms in the GDINA model in identity link, except 𝜙𝑗0 and 

𝜙𝑗12…𝐾𝑗
∗, are constrained to zero, that is, 
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𝑃(𝜶𝑙𝑗
∗ ) = 𝜙𝑗0 + 𝜙𝑗12…𝐾𝑗

∗ ∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

 (18) 

The A-CDM is the constrained identity-link G-DINA model without the interaction terms. 

It can be formulated as 

𝑃(𝜶𝑙𝑗
∗ ) = 𝜙𝑗0 + ∑ 𝜙𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

.     (19) 

Current methods for fitting CDMs use either marginal maximum likelihood estimation that 

relies on the Expectation Maximization algorithm (MMLE-EM) or Markov chain Monte Carlo 

(MCMC) techniques (Rupp et al., 2010). 

2.1.5 Classification methods 

The prime objective of CDM data analysis is to classify examinees into one of the attribute 

profiles. The estimated attribute profile denoted as  𝜶̂, takes the value of one of the possible skill 

patterns 𝜶𝑙  for 𝑙 = 1,… , 𝐿.  When 𝐾  dichotomous attributes are involved and assumed to be 

independent, the attribute profile space consists of 𝐿 = 2𝐾  latent classes. If an attribute hierarchy 

exists, the number of attribute profiles 𝐿  decreases with some attribute profiles becoming 

impossible.  

Examinees are often classified via maximum likelihood estimation (MLE; de la Torre, 

2008), maximum a posteriori (MAP; Rupp et al., 2010), or expected a posteriori (EAP; de la Torre, 

2008; Rupp et al., 2010), which are applicable to any CDM that is a special case of a restricted 

latent class model. Huebner and Wang (2011) conducted a simulation study comparing the 

accuracy of the three methods under different testing conditions. 

The likelihood function of the responses given the attribute profile 𝜶 is given by  
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𝐿(𝑿𝑖|𝜶) = ∏P(X𝑖𝑗 = 1|𝜶 )
𝑋𝑖𝑗[1 − P(X𝑖𝑗 = 1|𝜶 )]

1−𝑋𝑖𝑗

𝐽

𝑗=1

. 
(20) 

 

The MLE estimator is the attribute profile 𝜶𝑙  for 𝑙 = 1, … , 𝐿 that maximizes the likelihood, 

and is formally denoted as  

𝜶̂𝑀𝐿𝐸 = arg max 𝐿(𝑿𝒊|𝜶).  
𝑙

 

(21) 

 

If prior probabilities denoted as 𝑃(𝜶𝑙) for 𝑙 = 1,… , 𝐿, are available from previous test 

administrations, the posterior probability 𝑃(𝜶𝑙|𝑿𝑖) for each 𝜶𝑙  can be calculated: 

𝑃(𝜶𝑙|𝑿𝑖) =
𝐿(𝑿𝑖|𝜶𝑙)𝑃(𝜶𝑙)

∑ 𝐿(𝑿𝑖|𝜶𝑚)𝑃(𝜶𝑚)𝐿
𝑚=1

. (22) 

The MAP estimator is then denoted as 

𝜶̂𝑀𝐴𝑃 = arg max 𝑃(𝜶𝑙|𝑿𝑖).  
𝑙

 
(23) 

It is generally true that MLE and MAP estimates are equivalent if flat priors are used in 

MAP estimation (Huebner & Wang, 2011). 

For the EAP approach, the probabilities of mastery for each attribute (the marginal skill 

probabilities), 𝛼𝑘  for 𝑘 = 1,… 𝐾, are calculated for an examinee and rounded at .50 to obtain 

binary mastery classifications. The posterior probabilities 𝑃(𝜶𝑙|𝑿𝑖) are aggregated to obtain the 

marginal probabilities 𝛼𝑘 for 𝑘 = 1,… 𝐾: 

𝛼̃𝑘 = ∑ 𝑃(𝜶𝑙|𝑿𝑖)𝐼(𝛼𝑙,𝑘 = 1)
𝐿

𝑙=1
 (24) 

where 𝐼(𝛼𝑙,𝑘 = 1) = {
1  if element k of Attribute Profile l equals 1,
0  otherwise.                                                            

 

The marginal probability 𝛼̃𝑘 is usually rounded at .50 to obtain a binary classification for 

attribute 𝑘 (𝑘 = 1, …𝐾).  
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With hierarchical attributes, researchers have reached a consensus on restricting the 

attribute profile space (e.g., Templin & Bradshaw, 2014; Tu et al., 2018). The MLE estimator 

maximizes the likelihood function over the set of all possible attribute profiles when the item 

parameters are assumed to be known, which is referred to as unrestricted MLE (Tu et al., 2018). 

When hierarchical attributes are involved, a restricted MLE is recommended in which the 

probability of some attribute profiles are fixed to zero due to the hierarchy (Templin & Bradshaw, 

2014; Tu et al., 2018). The only difference between unrestricted and restricted MLE is in the 

attribute profile space. Similarly, restricted MAP and EAP estimators should be used for 

hierarchical attributes. 

2.1.6 Q-matrix design 

The CDMs provide guidance for test construction. Cognitive theories could have a real 

impact on testing practice through CDM model assumptions about relationships between attribute 

as well as the relationship between attributes and item responses. Given a set of attributes, instead 

of relying heavily on post hoc item analysis surrounding internal consistency, test development in 

the CDM context begins with a set of possible item types that are characterized by their q-vectors. 

For example, a test with three independent attributes can have at most seven different item types. 

The Q-matrix for a particular test can be obtained by sampling with replacement from the column 

vectors of the corresponding 𝑅∗. The Q-matrix is a core element of the CDM-based test design. 

Madison and Bradshaw (2015) defined the Q-matrix design as "the deliberate arrangement 

of a set of test items according to the specific subset of attributes measured by each individual 

item." The Q-matrix plays a significant role in the statistical identification of the model (Köhn & 

Chiu, 2018; Xu & Zhang, 2016). However, Q-matrices that lead to identification may provide 

varying classification accuracy rates.  
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Three studies have been done with the effects of Q-matrix design on classification accuracy 

with independent attributes. Chiu, Douglas, and Li (2009) showed that each attribute needs to be 

measured by at least one single-structured item in order to obtain acceptable classification accuracy 

in both DINA (Haertel, 1989; Junker & Sjitsma, 2001; Macready & Dayton, 1977) and DINO 

(Templin & Henson, 2006) models. Similarly, DeCarlo (2011), in his investigation of the DINA 

model, found that if an attribute is always measured through interaction terms and never measured 

in isolation, the classification obtained only reflects the prior probabilities. The finding of DeCarlo 

(2011) was echoed in Madison and Bradshaw (2015), in which they concluded that attributes 

measured in isolation could help increase classification accuracy when holding constant the 

number of times an attribute is measured on a test, based on the log-linear cognitive diagnosis 

model (LCDM; Henson, Templin, & Willse, 2009). 

Recent efforts expanded the research on Q-matrix design to testing situations with 

hierarchical attributes (Liu & Huggins-Manley, 2016; Liu, Huggins-Manley, & Bradshaw, 2017). 

In Liu, Huggins-Manley, and Bradshaw (2017), different Q-matrix designs were generated using 

the so-called independent approach, adjacent approach, or reachable approach when the attribute 

hierarchy was linear, divergent, convergent, or unstructured. The CDM was the hierarchical 

diagnostic classification model (HDCM; Templin & Bradshaw, 2014). The independent approach 

only allows for simple-structured items. Each item measures at most two attributes with direct 

relationships in the adjacent approach. Each item can measure any combination of attributes that 

are directly or indirectly connected in the reachable approach. Their simulations found that the 

adjacent approach leads to higher classification accuracy in a shorter test and they recommended 

using the adjacent approach to design the Q-matrix when a hierarchy is present (Liu et al., 2017). 

Using the adjacent approach in Liu et al. (2017), Liu and Huggins-Manley (2016) found that 
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"higher-level attributes were often associated with higher classification accuracy than lower-level 

attributes" as a result of more information about higher-level attributes from the hierarchical 

structure.  

2.1.7 Criteria for test construction 

A research area closely related to Q-matrix design is the development of item and test 

indices. When estimated item parameters are available for a pool of items, an item index based on 

the estimated item parameters can be calculated to identify good items that achieve high 

classification rates with a minimal number of items (Henson, DiBello, & Stout, 2018). This type 

of item indices is referred to as item discrimination in Henson et al. (2018). The Fisher information 

is an example of such item indices in the IRT context. For CDMs, a counterpart of the Fisher 

information is the Kullback-Leibler information (KLI; also called KL divergence or KL distance). 

Much of the work on item-level and test-level indices in CDMs have been based on KLI. 

2.1.7.1 Kullback-Leibler information 

KLI measures how far a distribution 𝑞 is away from the actual distribution 𝑝 (Gray, 2011; 

Chang & Ying, 1996; Xu, Chang, & Douglas, 2003). Given a probability space (Ω, B, P), with Ω 

being a finite space, and another measure M on the same space, the KL information of P with 

respect to M (Gray, 2011) is defined as  

𝐷(𝑃, 𝑀) = ∑ 𝑃(𝜔) ln
𝑃(𝜔)

𝑀(𝜔)
,

𝜔∈Ω

 (25) 

which ranges from 0 to ∞.  

The Fisher information can be used in the test construction because the test information is 

the sum of item information, and the variability of the maximum likelihood estimate decreases as 

the information increases. Test construction criteria for CDMs should have similar properties 

(Henson & Douglas, 2005). 
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The KL information for an item 𝑗 for differentiating 𝛂𝑢 and 𝛂𝑣 is defined as 

𝐷𝑗𝑢𝑣 = ∑ 𝑃(𝑥|𝜶𝑢) ln
𝑃(𝑥|𝜶𝑢)

𝑃(𝑥|𝛂𝑣)
.

1

𝑥=0

 (26) 

Note that 𝐷𝑗𝑢𝑣 ≠ 𝐷𝑗𝑣𝑢; 𝐷𝑗𝑢𝑣 = 0 for 𝑢 = 𝑣 . An item is most useful in determining the 

difference between two attribute profiles, 𝛂𝑢 and 𝛂𝑣, if 𝐷𝑗𝑢𝑣 and 𝐷𝑗𝑣𝑢 are large. All 𝐷𝑗𝑢𝑣s for item 

𝑗 can be recorded in a matrix 𝐷𝑗  of 𝐿 columns and 𝐿 rows where 𝐿 is the size of the attribute profile 

space. 

The KL information for a test is defined as 

𝐷.𝑢𝑣 = ∑𝑃(𝑿|𝜶𝑢) ln
𝑃(𝑿|𝜶𝑢)

𝑃(𝑿|𝛂𝑣)
.

𝑿

 (27) 

where 𝑿 represents the response pattern for 𝐽 items. The KL information for a test compares the 

probability distribution for an item response vector X, given 𝜶𝑢 when compared to the probability 

distribution of X given an alternative attribute pattern, 𝛂𝑣. Because of the assumption of local 

independence among items conditional on 𝜶,  it can be shown that the test information is the sum 

of the KL information across all items in the exam. The test KL information 𝐷.𝑢𝑣 for all pairs of 

(𝑢, 𝑣) in the attribute profile space, ℒ, forms an 𝐿 × 𝐿 matrix 𝐷 where 𝐿 is the size of ℒ. 

of a 2𝐾 × 2𝐾  matrix containing 2𝐾(2𝐾 − 1)  possible comparisons because the KL 

information is not symmetric. The diagonal elements of the matrix are zero. The KL information 

provides a general method that will apply to all CDMs (Henson & Douglas, 2005), based on which 

researchers have proposed attribute, item, or test-level indexes for test construction. 

2.1.7.2 Cognitive diagnostic index (Henson & Douglas, 2005) 

The cognitive diagnostic index (CDI) for an item 𝑗 is proposed as a weighted average of 

the off-diagonal elements of 𝐷𝑗  since the matrix expands exponentially with the number of 
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attributes K  and makes it difficult in simultaneously evaluating all the elements (Henson & 

Douglas, 2005). The CDI𝑗 for item 𝑗 is defined as  

𝐶𝐷𝐼𝑗 =
1

∑ ℎ(𝜶𝑢, 𝜶𝑣)
−1

𝑢≠𝑣
∑ ℎ(𝜶𝑢, 𝜶𝑣)

−1𝐷𝑗𝑢𝑣

𝑢≠𝑣 

. (28) 

where ℎ(. , . ) is the Hamming distance and D𝑗𝑢𝑣 stands for the element of the matrix 𝐷𝑗  at (u, v).  

The CDI for a test is defined as 

𝐶𝐷𝐼 =
1

∑ ℎ(𝜶𝑢, 𝜶𝑣)
−1

𝑢≠𝑣
∑ ℎ(𝜶𝑢, 𝜶𝑣)

−1𝐷𝑢𝑣

𝑢≠𝑣 

. (29) 

where D𝑢𝑣 stands for the element of the matrix 𝐷(𝛂 , 𝛂∗)  at (u, v). It can be shown that the CDI 

for a test is the sum of CDI𝑗 for all the items in the test. 

Henson and Douglas (2005) showed that the CDI strongly relates to the average correct 

classification rates across attributes and examinees for a test and they suggest using the cognitive 

diagnostic index (CDI) as a measure of an item’s or test’s discrimination power. 

Other indexes based on the KL information include the Attribute Discrimination Index 

(ADI) that is supposed to be related to the correct classification rate of the masters for the 𝑘th 

attribute (Henson, Roussos, Douglas & He, 2008), and the modified CDI and modified ADI (Kuo, 

Pai, & de la Torre, 2016). Note that all the indexes mentioned above are overall indexes that are 

not conditional on 𝛂. 

2.1.7.3 A unified item and test discrimination approach (Henson, DiBello, & Stout, 2018) 

Henson et al. (2018) proposed a probability-based attribute-specific index for items with 

multiple options. For dichotomous items, the index is reduced to  

DI𝑗𝑘 = max
𝜶

(|𝑃(𝑋𝑗 = 1|𝜶) − 𝑃(𝑋𝑗 = 1|𝜶−𝑘)|), (30) 
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where 𝜶−𝑘  denotes an attribute pattern that differs from 𝜶  only on the 𝑘 th attribute. The 

maximization is taken over all 𝜶s. The index 𝐷𝐼𝑗𝑘 describes the discrimination power of item 𝑗 in 

measuring attribute 𝑘 and has a value between 0 and 1.   

2.2 Nonparametric classification based on CDM conception 

An alternative to classification when calibrating a parametric CDM is not practical or even 

possible is the nonparametric approach. The nonparametric approach shares with the conventional 

CDM approach the conceptions of a Q-matrix, a set of attributes, and different attribute interaction 

effects on correct responses. The test is still constructed based on a CDM, but a probabilistic model 

is not used to characterize the correct response probabilities of different attribute profiles. Instead, 

the examinees are classified into different attribute profiles using a nonparametric method.  

Barnes (2010) developed a nonparametric exploratory approach to build the Q-matrix and 

classify examinees. Some researchers employ cluster analysis for nonparametric classifications 

(Ayers, Nugent, & Dean, 2008; Chiu, Douglas, & Li, 2009; Willse, Henson, & Templin, 2007). 

Another stream of research is based on the idea of minimizing the distance between observed item 

response patterns and the ideal response patterns according to the Q-matrix (Chiu & Douglas, 2013; 

Chiu, Sun, & Bian, 2018; Wang & Douglas, 2015). The rest of the section reviews the third type 

of nonparametric methods that minimize distance measures. 

2.2.1 The nonparametric (NPC) method 

Chiu and Douglas (2013) proposed a simple method to classify examinees by matching 

observed item response patterns to the nearest ideal response pattern, henceforth referred to as the 

nonparametric (NPC) method. The ideal response of examinee 𝑖 on item 𝑗 is denoted as 𝜂𝑖𝑗 , and 

the vector containing ideal responses of examinee 𝑖 on all the items in a test is denoted as 𝜼𝑖 . 
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The ideal response patterns are derived from the Q-matrix and the assumption on attribute 

interactions. Consider a q-vector 𝐪∗ = (1 1)  and four possible attribute profiles 𝜶1 =

(0 0), 𝜶2 = (1 0), 𝜶3 = (0 1), and 𝜶4 = (1 1) . If we assume a conjunctive model 

underlying the responses, the ideal responses for the four attribute profiles would be 𝜂1∗ = 0, 𝜂2∗ =

0, 𝜂3∗ = 0, and 𝜂4∗ = 1, respectively. For a test with more than one item, each possible attribute 

profile is associated with an ideal response pattern. The observed response pattern of an examinee 

is compared with the ideal response patterns. The attribute profile of the closest ideal response 

pattern is the estimate for the examinee. Three distance measures were proposed by Chiu and 

Douglas (2013). Denote the observe response pattern as 𝒙. The hamming distance between 𝒙 and 

𝜼 is given by 

𝑑ℎ(𝒙, 𝜼) = ∑|𝑥𝑗 − 𝜂𝑗|

𝐽

𝑗=1

, (31) 

where J stands for the test length. A weighted Hamming distance is defined as 

𝑑𝑤ℎ(𝒙, 𝜼) = ∑
1

𝑝̅(1 − 𝑝̅)
|𝑥𝑗 − 𝜂𝑗|,    

𝐽

𝑗=1

 (32) 

where 𝑝̅  denotes the proportion correct on the 𝑗 th item. They also proposed the penalized 

Hamming distance for the special cases where the slipping parameter is much less than the 

guessing parameter or vice versa (Chiu & Douglas, 2013).  

Chiu and Douglas (2013) found that accurate classification can be achieved when the true 

model is DINA and NIDA with slip and guess parameters considerably higher than 0. The 

estimator of 𝜶 would be perfect without any slipping or guessing but still performs with good 

relative efficiency even when this is not the case (Chiu & Douglas, 2013). A formal justification 
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for the NPC methods was provided in Wang and Douglas (2015), showing that the nonparametric 

method yields consistent classifications under a variety of underlying conjunctive models.  

2.2.2 The general nonparametric classification (GNPC) method 

The general nonparametric classification (GNPC) method (Chiu, Sun, & Bian, 2018) was 

proposed as an extension of the NPC methods (Chiu & Douglas, 2013). The example in 3.2.1 is 

revisited to illustrate the need for this extension. The ideal responses for the four attribute profiles 

are 𝜂1∗ = 0, 𝜂2∗ = 0, 𝜂3∗ = 0, and 𝜂4∗ = 1,  respectively, assuming an underlying conjunctive 

model. The ideal responses would become 𝜂1∗ = 0, 𝜂2∗ = 1, 𝜂3∗ = 1, and 𝜂4∗ = 1  if the 

underlying model is a disjunctive one. In the NPC method, either the conjunctive ideal response 

patterns (denoted as 𝜼(𝑐)) or the disjunctive ideal response patterns (denoted as 𝜼(𝑑)) are used 

according to the assumptions about the cognitive process. However, using 𝜼(𝑐) or 𝜼(𝑑) may not be 

adequate if the underlying CDM is a complex one, such as a saturated GDINA model. Consider a 

set of GDINA parameters for this item (β0, β1 , β2 , β3) = (0.1, 0.4, 0.6, −0.2). The probabilities 

for the four possible attribute profiles to answer the item correctly are (0.1, 0.5, 0.7, 0.9) . 

Obviously, neither the ideal responses (0, 0, 0, 1) nor (0, 1, 1, 1) would be appropriate.  

Besides, before any analysis of the response data, we cannot decide which of the ideal 

response patterns is more suitable. Therefore, the GNPC method defines the weighted ideal 

response on item 𝑗 for the 𝑙th attribute profile in the attribute profile space as 

𝜂𝑙𝑗
(𝑤)

= 𝑤𝑙𝑗𝜂𝑙𝑗
(𝑐)

+ (1 − w𝑙𝑗)𝜂𝑙𝑗
(𝑑)

, (33) 

in which 0 ≤ 𝑤𝑙𝑗 ≤ 1 is a weight calculated from the data in an iterative procedure. Conceptually, 

the weight is found when the total distance between the observed responses and the weighted ideal 

responses is minimized. Denote the attribute profiles as 𝐶𝑙 for 𝑙 = 1, … 𝐿. The total distance can be 

denoted as 
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d𝑙𝑗 = ∑(𝑥𝑖𝑗 − 𝜂𝑙𝑗
(𝑤)

)
2

𝑖∈𝐶𝑙

. (34) 

𝑤̂𝑙𝑗 is obtained by minimizing d𝑙𝑗: 

𝑤̂𝑙𝑗 =

∑ (𝑥𝑖𝑗 − 𝜂𝑙𝑗
(𝑑)

)
𝑖∈𝐶𝑙

𝑛𝑙 (𝜂𝑙𝑗
(𝑐)

− 𝜂𝑙𝑗
(𝑑)

)
, (35) 

where 𝑛𝑙  is the number of examinees classified to attribute profile 𝐶𝑙. The 𝑤̂𝑙𝑗 can be computed 

via an iterative procedure described in Chiu et al. (2018). The NPC method can be used to provide 

a set of initial classifications to calculate the initial 𝑤̂𝑙𝑗. 

The NPC (Chiu & Douglas, 2013; Wang & Douglas, 2015) and the GNPC (Chiu et al., 

2018) methods do not have limitations regarding the number of attributes, the sample size or the 

test length as the conventional CDMs do, which makes them a practical option for small-scaled 

classroom assessments. 

2.3 CD-CAT 

2.3.1 From IRT-based CAT to CD-CAT 

Computerized adaptive testing (CAT), built on the idea of “individualized testing,” can 

tailor both items in the test form and the test length to an individual examinee. The maximum 

information criterion is usually adopted in IRT-based CAT’s item selection to optimize test 

efficiency in terms of shorter test length or higher measurement precision or both compared to 

linear testing. There have been many operational CAT programs since the 1980s and rich literature 

in the past decades (Reckase, 2010).  

CAT algorithms based on CDMs (denoted as CD-CAT) have been developed with the same 

motivation behind the IRT-based CAT, that is, to increase testing efficiency (Cheng, 2009; 

McGlohen & Chang, 2008; Xu, Chang, & Douglas, 2003). When the cognitive diagnosis is 
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combined with CAT, we can proceed from “individualized testing” to a new stage of 

“individualized learning.” As technologies become more available in the classroom, CD-CAT can 

play a more important role in learning and teaching. Chang (2015) reported an experimental CD-

CAT program was implemented in Zhengzhou, China and a survey suggested that “CD-CAT 

encourages critical thinking, making students more independent in problem solving, and offers 

easy to follow individualized remedy, making learning more interesting. (p. 15)”  

Similar to the CATs based on other measurement models, a CD-CAT algorithm consists 

of a measurement model (e.g., the DINA model), a method for selecting the first item(s) to 

administer, a scoring method, a rule to select the next item conditional on examinee responses to 

the previous item(s), and a termination rule to end the test. An item pool with calibrated items is 

needed for the implementation of the CAT algorithm.  

2.3.2 Item selection methods for CD-CAT 

Item selection is a core element of CAT algorithms. Three item selection indices based on 

the KL information are reviewed in this section because they will be used in the simulation study. 

There are item selection methods based on other criteria such as the Shannon entropy (Wang, 2013; 

Xu et al., 2003) and mutual information (Huebner, Finkelman, & Weissman, 2018). 

The following notations are used for the CD-CAT context:  

𝜶̂𝑖
(𝑡)

 denotes the attribute profile estimate for examinee 𝑖  after 𝑡  items have been 

administered; 

𝒙𝑖
(𝑡)

 denotes the observed response pattern for examinee 𝑖  when 𝑡  items have been 

administered; 

𝐿 denotes the size of the attribute profile space;  

𝜶𝑙  (𝑙 =  1, 2, … , 𝐿) denotes the 𝑙th attribute profile in the attribute profile space;  
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𝑅(𝑡) denotes the available items in the item pool when 𝑡 items have been administered; and 

𝑋𝑖ℎ denotes the response of examinee 𝑖 to item ℎ from 𝑅(𝑡). 

The KL algorithm. Xu, Chang, and Douglas (2003) proposed using the straight sum of the 

KL distances between 𝑓(𝑋𝑖ℎ |𝜶̂𝑖
(𝑡)

) and all the 𝑓(𝑋𝑖ℎ |𝜶𝑙)𝑠 for 𝑙 =  1, 2,… , 𝐿. Note that 𝐿 = 2𝐾  

when there are 𝐾 independent attributes. The KL index is defined as 

𝐾𝐿ℎ(𝜶̂𝑖
(𝑡)

) = ∑𝐷ℎ(𝜶̂𝑖
(𝑡)

∥ 𝜶𝑙)

𝐿

𝑙=1

 (36) 

where 

𝐷ℎ(𝜶̂𝑖
(𝑡)

∥ 𝜶𝑙) = ∑ log (
𝑃(𝑋𝑖ℎ = 𝑞|𝜶̂𝑖

(𝑡))

𝑃(𝑋𝑖ℎ = 𝑞|𝜶𝑙)
)𝑃(𝑋𝑖ℎ = 𝑞|𝜶̂𝑖

(𝑡))

1

𝑞=0

. (37) 

Then the (𝑡 + 1)th item for the 𝑖th examinee is the item in 𝑅(𝑡) that maximizes 𝐾𝐿(𝜶̂𝑖
(𝑡)

). 

The KL index 𝐾𝐿(𝜶̂𝑖
(𝑡)

) is referred to as the global discrimination index (GDI) in Xu et al. (2003). 

This item selection method is referred to as the KL algorithm in Cheng (2009).  

The KL algorithm selects items that are the most powerful in distinguishing the current 

attribute profile estimate from all other possible attribute profiles on average (Cheng, 2009). Cheng 

(2010) points out that the KL algorithm does not consider attribute coverage. Another drawback 

is that this algorithm may not be effective at the early stage with inaccurate 𝜶̂𝑖
(𝑡)

. 

The posterior-weighted KL (PWKL) index. The PWKL index weights the KL index by the 

posterior distribution (Cheng, 2009). If informative priors 𝜋0𝑙  are available for each attribute 

profile, posterior distributions can be obtained at each step 𝑡: 

𝜋𝑖,𝑡(𝜶𝑐|𝒙𝑖
(𝑡)

) ∝ 𝜋0𝑙𝐿(𝒙𝑖
(𝑡)

|𝜶𝑙). (38) 

Denote 𝜋𝑖,𝑡(𝜶𝑙|𝒙𝑖
(𝑡)) by 𝜋𝑖,𝑡(𝜶𝑙) for simplicity in notation. The PWKL index is defined as 
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𝑃𝑊𝐾𝐿ℎ(𝜶̂𝑖
(𝑡)

) = ∑𝐷ℎ(𝜶̂𝑖
(𝑡)

∥ 𝜶𝑙)

𝐿

𝑙=1

𝜋𝑖,𝑡(𝜶𝑙) = ∑ 𝐷ℎ(𝜶̂𝑖
(𝑡)

∥ 𝜶𝑙)

𝐿

𝑙=1

𝜋0𝑙𝐿(𝒙𝑖
(𝑡)

|𝜶𝑙). (39) 

Assuming local independence, the likelihood function 𝐿(𝒙𝑖
(𝑡)

|𝜶𝑙) can be written as 

𝐿(𝒙𝑖
(𝑡)

|𝜶𝑙) = ∏[𝑃(𝜶𝑙)]
𝑥𝑖𝑗

𝑡

𝑗=1

[1 − 𝑃(𝜶𝑙)]
1−𝑥𝑖𝑗  (40) 

where 𝑃(𝜶𝑙) is the IRF defined by a CDM. Then the (𝑡 + 1)th item for the 𝑖th examinee is the 

item in 𝑅(𝑡) that maximizes PW𝐾𝐿(𝜶̂𝑖
(𝑡)

). If the prior is discrete uniform, the PWKL index is 

reduced to the likelihood-weighted KL (LWKL) index: 

𝐿𝑊𝐾𝐿ℎ(𝜶̂𝑖
(𝑡)

) = ∑ 𝐷ℎ(𝜶̂𝑖
(𝑡)

∥ 𝜶𝑐)

𝐿

𝑙=1

𝐿(𝒙𝑖
(𝑡)

|𝜶𝑐). (41) 

The modified posterior-weighted Kullback-Leibler (MPWKL) index. The KL and PWKL 

index use the current estimate 𝜶̂𝑖
(𝑡)

 with an implicit assumption that the point estimate is a good 

summary of the current information. However, the point estimate 𝜶̂𝑖
(𝑡)

 may be inaccurate 

especially at the early stages of a test. To solve this problem, Kaplan, de la Torre, and Barrada 

(2015) used the entire posterior distribution instead of a point estimate. The MPWKL index is 

given as 

𝑀𝑃𝑊𝐾𝐿ℎ
(𝑡)

= ∑ [∑[∑ 𝑙𝑜𝑔 (
𝑃(𝑋𝑖ℎ = 𝑞|𝜶𝑚)

𝑃(𝑋𝑖ℎ = 𝑞|𝜶𝑙)
)

1

𝑞=0

𝑃(𝑋𝑖ℎ = 𝑞|𝜶𝑚)𝜋𝑖,𝑡(𝜶𝑙)]

𝐿

𝑙=1

𝜋𝑖,𝑡(𝜶𝑚)]

𝐿

𝑚=1

. (42) 

2.3.3 Item pool design 

The potential benefits of CAT cannot be realized without a well-constructed item pool 

(Reckase, 2010). There are some studies on item pool design for CAT based on IRT models (e.g., 

Reckase, 2010; Thissen, Reeve, Bjorner, & Chang, 2007), and more research is needed in this area. 

Considering the difference between items based on IRT and CDM, the findings from IRT-based 
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CAT cannot be directly applied to CD-CAT. However, the item pool design for CD-CAT has not 

been addressed in the literature despite its importance. 

Simulation findings on item usage in CD-CAT might inform the item pool design process 

(Kaplan et al., 2015). For example, a CD-CAT based on the DINA model tends to use items with 

a q-vector matching the examinee’s true attribute profile and items that required single attributes 

which were not mastered by the examinee, which implies that it is important to include sufficient 

single-attribute items in the item pool.  

Since there is no published research on item pool design for CD-CAT, the studies on the 

IRT-based CAT are reviewed below. There is a body of literature on selecting operational pools 

from a larger pool called a “master pool” (Belov & Armstrong, 2009; Swanson and Stocking, 1998; 

van der Linden, Ariel, & Veldkamp, 2006; Way, Steffen, & Anderson, 1998). The problem they 

address is related to item pool design but is more appropriately described as item pool assembly 

(van der Linden et al., 2006). 

van der Linden et al. (2006) argues that an item pool design problem occurs before actual 

items are available and the output is a blueprint for an item pool that defines the distribution of 

numbers of items over the space of all possible combinations of statistical and nonstatistical item 

attributes (e.g., item difficulty parameter and word count). The goal of item pool design is to guide 

the item writing and pool maintenance process (Reckase, 2010; Veldkamp and van der Linden, 

2000). 

Item pool design studies for IRT-based CAT focuses on different aspects of an item pool. 

Veldkamp and van der Linden (2000) proposes a method for item pool design that minimizes item-

writing costs subject to test constraints. Test constraints are represented in the classification table 

that contains all possible combinations of item attributes such as word counts, difficulty parameters, 
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difficulty parameters, and discrimination indices (Veldkamp & van der Linden, 2000). 

Quantitative attributes are transformed to categorical variables represented by intervals, for 

example, (−∞,−2.5), (−2.5, −2),… , (2, 2.5), (2.5,∞) for the difficulty parameter. The goal of 

the item pool design process is to find out the number of items needed for each cell of the 

classification table. The number of items in each cell of a previous item pool, however, is needed 

to define item writing costs as the inverse of that number, based on the idea that items written more 

frequently tend to be less costly.  

Another stream of research based on the bin-and-union method (Reckase, 2010) explores 

item pool design without any information of existing item pools as a starting point (He & Reckase, 

2014; Mao, 2014).  This family of research focuses on the psychometric performances of item 

pools instead of the item-writing costs.  Reckase (2010) thinks an optimal item pool should always 

provide the desired item for every item selection. An optimal item pool for a CAT procedure based 

on 1PL model, for example, is “one that has an item in the pool that has a b-parameter exactly 

equal to the current θ estimate for every item selection.” (Reckase, 2010) The size of an optimal 

item pool is 2𝑛 − 1 where 𝑛 is the test length, which is too large to be practical. If the latent scale 

is divided into bins and the items with b-parameters within a bin are treated equivalent, the item 

pool size will be greatly decreased to a reasonable level. The definition of “bins” is similar to the 

categorization of the difficulty parameter in Veldkamp and van der Linden (2000). 

The item pool design methods of Veldkamp and van der Linden (2000) and Recakse (2010; 

also see He & Reckase, 2014; Mao, 2014) are based on different definitions of optimal item pool, 

but a common feature they share is the use of computer simulation. The simulations in Veldkamp 

and van der Linden (2000) are carried out using integer programming and the shadow test approach 

(van der Linden, 2005a, 2005b; van der Linden & Diao, 2014; van der Linden & Reese, 1998) and 
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sampling examinees from a hypothetical examinee distribution. The goal is to record the counts of 

the number of times items from each cell in the classification table are used, and the final blueprint 

is calculated from these counts (Veldkamp & van der Linden, 2000). The bin-and-union method 

(Reckase, 2010) takes a more direct approach by simulating an operational CAT and sampling 

from an examinee population.  

  



51 

Chapter 3 CDM parameterization and Q-matrix with hierarchical attributes 

3.1 Introduction 

The CDMs with a restricted attribute profile space due to the attribute hierarchy is 

henceforth referred to as hierarchical CDMs. This section addresses parameterizations and the Q-

matrix of hierarchical CDMs. Parameterizations for hierarchical CDMs have not been formally 

discussed except for the HDCM (Liu et al., 2017; Templin & Bradshaw, 2014) and the DINA 

model. When it comes to the Q-matrix, two types of Q-matrices are being used by two groups of 

researchers, respectively: the full (or unrestricted) Q-matrices (Liu et al., 2016; Templin & 

Bradshaw, 2014) and the reduced (or restricted) Q-matrices (Köhn & Chiu, 2018; Leighton et al., 

2004; Tu et al., 2018). The choice between the full Q-matrix and the restricted one has not been 

formally addressed. 

Therefore, the first set of research questions is about the parametrization of hierarchical 

CDMs and the difference between reduced and full Q-matrix. These questions are important 

because the test constructions and item pool designs all depend on correctly-defined CDMs and 

Q-matrices.  

In this thesis, it is assumed that the hierarchical relationship and the Q-matrix have been 

established and validated, and we focus on test construction or item pool design for different types 

of attribute hierarchies.  

3.2 Attribute hierarchies 

Before discussing parameterizations and Q-matrices, we define the attribute hierarchies 

studied in this thesis. The formative assessment is designed for a period of two to four weeks. 

Therefore, we consider situations with three, four, or five attributes in this study. The subsets of 

attribute hierarchies chosen for 3-attribute, 4-attribute, or 5-attribute conditions, respectively, are 
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listed in Table 1 and illustrated in Figure 6-Figure 8. Most of the selected attribute hierarchies can 

be found in the textbook analysis, as well as previous empirical and simulation studies. 

 

Table 1: Subsets of attribute hierarchies for 3-attribute, 4-attribute, or 5-attribute conditions 

ID Number of attributes Size of attribute 

profile space 

Attribute hierarchy 

H3.1 3 8 Independent 

H3.2 3 4 Linear 

H3.3 3 5 Inverted pyramid 

H3.4 3 5 Pyramid 

H4.1 4 16 Independent 

H4.2 4 5 Linear 

H4.3 4 8 Linear + single 

H4.4 4 6 Inverted pyramid 

H4.5 4 6 Pyramid 

H5.1 5 32 Independent 

H5.2 5 6 Linear 

H5.3 5 10 Inverted pyramid I 

H5.4 5 11 Inverted pyramid II 

H5.5 5 10 Pyramid I 

H5.6 5 11 Pyramid II 

 

 

Figure 6: A subset of attribute hierarchies with 3 attributes 
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Figure 7: A subset of attribute hierarchies with 4 attributes 

 

 

Figure 8: A subset of attribute hierarchies with 5 attributes 
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3.3 Parameterizations of hierarchical CDMs 

We discuss the parameterizations for the DINA (Junker & Sijtsma, 2001), ACDM (de la 

Torre, 2011), and GDINA model with the identity link function (de la Torre, 2011) when the 

attributes are hierarchical.  

An item requiring 𝐾 attributes can classify students into at most 2𝐾  classes. A hierarchical 

relationship among attributes leads to fewer than 2𝐾  classes. A saturated model for an item 

requiring 𝐾 independent attributes can have 2𝐾  item parameters including an intercept, 𝐾 main 

effect terms, and 2𝐾 − 𝐾 − 1 interaction terms. The number of item parameters cannot exceed the 

number of classes. 

The parameterizations for DINA and ACDM do not change with hierarchical attributes. 

The DINA model has two parameters for each item disregarding the q-vector of the item: an 

intercept and an interaction term (or a guessing parameter and a slipping parameter in an alternative 

parameterization). Under the A-CDM, an item requiring 𝐾 independent attributes has 𝐾 + 1 item 

parameters (i.e., one intercept and 𝐾 main effect terms). 

 For GDINA, some item parameters (i.e., the main effects of nested attributes and some 

interaction terms) need to be fixed at zero, which is parallel to the parameterizations of the 

Hierarchical Diagnostic Classification Model (HDCM; Templin & Bradshaw, 2014). 

Before demonstrating the parameterizations of hierarchical models, we present the 

parameterizations of three models—DINA, ACDM, and GDINA—for a single-attribute item and 

a two-independent-attribute item. The three models are equivalent regarding a single-attribute item 

but have different parameterizations for an item requiring two independent attributes, which are 

shown in Table 2 in the form of expected response 𝐸[𝑌𝑗|𝜶]. 
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Table 2: Expected responses on two items with two independent attributes 

𝜶 

𝒒𝑗  =  (0 1)  𝒒𝑗  =  (1 1) 

Any model  DINA ACDM GDINA 

(00) 𝜙𝑗0  𝜙𝑗0 𝜙𝑗0 𝜙𝑗0 

(10) 𝜙𝑗0  𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 𝜙𝑗0 + 𝜙𝑗1 

(01) 𝜙𝑗0 + 𝜙𝑗2  𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗2 𝜙𝑗0 + 𝜙𝑗2 

(11) 𝜙𝑗0 + 𝜙𝑗2  𝜙𝑗0 + 𝜙𝑗,12 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 + 𝜙𝑗,12 

Note: Item 𝑗 involves two independent attributes 𝛼1 and 𝛼2; all models the identity link; DINA = 

deterministic input noisy “and” gate; ACDM = additive cognitive diagnosis modeling; GDINA = 

generalized DINA; 𝜙𝑗0 = intercept; 𝜙𝑗𝑘 = main effect of the kth attribute (𝑘 = 1, 2); 𝜙𝑗,12 = two-

way interaction.  

 Suppose 𝛼1 is the prerequisite of 𝛼2 (i.e., 𝛼1 → 𝛼2). The item 𝒒𝑗  =  (0 1), under each 

model (DINA, A-CAM, or GDINA), classifies examinees into two groups: those who master both 

𝛼2 and its prerequisite 𝛼1 and those who have not mastered 𝛼2. The parameterizations of the three 

hierarchical models are in Table 3. Under the DINA model, the item 𝒒𝑗  =  (1 1) has the same 

parameterizations as 𝒒𝑗  =  (0 1) . For the parameterizations of the item 𝒒𝑗  =  (1 1)  under 

GDINA, the main effect of the higher-level attribute (i.e., 𝛼2) needs to be fixed at zero. Both 

ACDM and GDINA have three item parameters. ACDM has an intercept and two main effects. 

GDINA has an intercept, a main effect, and an interaction effect. Although parameterized 

differently, the two models become mathematically equivalent for an item measuring two linear 

attributes.  
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Table 3: Expected responses on two items with two linear attributes (𝛼1→𝛼2) 

𝜶 
𝒒𝑗  =  (0 1)  𝒒𝑗  =  (1 1) 

Any model  DINA ACDM GDINA 

(00) 𝜙𝑗0  𝜙𝑗0 𝜙𝑗0 𝜙𝑗0 

(10) 𝜙𝑗0  𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 𝜙𝑗0 + 𝜙𝑗1 

(11) 𝜙𝑗0 + 𝜙𝑗2  𝜙𝑗0 + 𝜙𝑗,12 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗,12 

Note: Item 𝑗 involves two attributes 𝛼1 and 𝛼2 under a linear hierarchy; all models the identity link; 

DINA = deterministic input noisy “and” gate; ACDM = additive cognitive diagnosis modeling; 

GDINA = generalized DINA; 𝜙𝑗0 = intercept; 𝜙𝑗𝑘 = main effect of the kth attribute (𝑘 = 1, 2); 

𝜙𝑗,12 = two-way interaction.  

Next, we consider a situation involving three attributes with one attribute being the 

prerequisite of the other two as in an inverted pyramid hierarchy (H3.3). Table 4 presents the 

parameterizations of three models for 𝒒𝑗  =  (1 1 1). For this item, the three models have different 

parameterizations. The difference between ACDM and GDINA lies in the interaction effect 

between 𝛼2 and 𝛼3. 

 

Table 4: Expected responses on 𝒒𝑗  =  (1 1 1) under an inverted pyramid hierarchy (H3.3) 

𝜶 
𝒒𝑗  =  (1 1 1) 

DINA ACDM GDINA 

(000) 𝜙𝑗0 𝜙𝑗0 𝜙𝑗0 

(100) 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 𝜙𝑗0 + 𝜙𝑗1 

(110) 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗,12 

(101) 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗3 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗,13 

(111) 𝜙𝑗0 + 𝜙𝑗,123 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 + 𝜙𝑗3 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗,12 + 𝜙𝑗,13 + 𝜙𝑗,123 

Note: The inverted pyramid hierarchy defines 𝛼1 → 𝛼2 , 𝛼1 → 𝛼3 . 𝛼2  and 𝛼3  do not share a 

common path. 
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We then consider a situation involving three attributes with two attributes being the 

prerequisite of the third one as in a pyramid hierarchy (H3.4). Table 5 presents the 

parameterizations of three models for 𝒒𝑗  =  (1 1 1). For this item, the three models have different 

parameterizations. The difference between ACDM and GDINA lies in the interaction effect 

between 𝛼1 and 𝛼2. 

 

Table 5:  Expected responses on 𝒒𝑗  =  (1 1 1) under a pyramid hierarchy (H3.4) 

𝜶 
𝒒𝑗  =  (1 1 1) 

DINA ACDM GDINA 

(000) 𝜙𝑗0 𝜙𝑗0 𝜙𝑗0 

(100) 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 𝜙𝑗0 + 𝜙𝑗1 

(010) 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗2 𝜙𝑗0 + 𝜙𝑗2 

(110) 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 + 𝜙𝑗12 

(111) 𝜙𝑗0 + 𝜙𝑗3 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 + 𝜙𝑗3 𝜙𝑗0 + 𝜙𝑗1 + 𝜙𝑗2 + 𝜙𝑗12 + 𝜙𝑗,123 

Note: The pyramid hierarchy defines 𝛼1 → 𝛼3, 𝛼2 → 𝛼3. 𝛼1 and 𝛼2 do not share a common path. 

 

3.4 Q-matrix of hierarchical CDMs 

3.4.1 Reduced or full Q-matrix 

In previous studies, either a reduced Q-matrix or a full Q-matrix is used. With hierarchical 

attributes, the argument is around whether it is possible for an item to measure a higher-level 

attribute without measuring its prerequisite(s). A full Q-matrix allows all types of q-vectors as in 

an independent-attribute situation. A reduced Q-matrix requires that items that measure a higher-

level attribute also require all its prerequisite(s). In other words, a reduced Q-matrix can only 
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contain q-vectors in 𝑄𝑟 (the transpose of the expanded R-matrix 𝑅∗). We will demonstrate that the 

reduced Q-matrix approach is equivalent to the full Q-matrix approach under the DINA model. 

It can be shown that, under the DINA model, a multiple-attribute item 𝐪𝟏 =

 (q1 … q𝑘−1 1𝑘  0𝑘+1 … 0𝐾)  is equivalent to the single-attribute item 𝐪𝟐 =

(01 … 0𝑘−1 1𝑘  0𝑘+1 … 0𝐾), in which 𝑞𝑖  (𝑖 = 1, … , 𝑘 − 1) takes the value 1 or 0 if the previous 𝑘 −

1 attributes are the direct or indirect prerequisites of the 𝑘th attribute, or takes the value 0 if the 

𝑖th attribute is not connected with the 𝑘th attribute in any path. The multiple-attribute item 𝐪𝟏 and 

the single-attribute item 𝒒2 are equivalent because they classify attribute profiles into the same 

two groups (i.e., 𝜶s mastering the 𝑘th attribute or not), and they have the same expected response 

for each group as shown in Table 6.  

Therefore, under the DINA model with a linear hierarchy, the reduced Q-matrix Qr is 

equivalent to an identity matrix consisting of 𝐾 single-attribute q-vectors. Table 7 presents the 

equivalent q-vectors for each row of 𝑄𝑟 in the case of three linear attributes. 

Under the DINA model and any attribute hierarchy, each q-vector in Qr represents a unique 

type of items (Table 7-Table 10). Other q-vectors can find their equivalent one in Qr. Consequently, 

there would be no difference between the reduced Q-matrix approach and the full Q-matrix 

approach under the DINA model. However, it is noteworthy that there are less than 2𝐾 − 1 

distinctive q-vectors with hierarchical attributes.  

Note that all the single-attribute items are included in 𝑄𝑟 under the DINA model. Under 

the ACDM or GDINA, however, each q-vector is distinctive, and consequently 𝑄𝑟  does not 

include all the single-attribute items. We use H3.2 under the ACDM to demonstrate this in Table 

11. If the reduced Q-matrix approach is used with ACDM or GDINA, it means that some single-

attribute q-vectors will be excluded from the Q-matrix. 
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Table 6: The expected responses of two groups of attribute profiles on 𝐪𝟏 and 𝐪𝟐 under the DINA 

model 

𝜶 𝒒𝟏 =  (q1 … q𝑘−1 1𝑘  0𝑘+1 … 0𝐾) 
 
𝒒𝟐 = (01 … 0𝑘−1 1𝑘  0𝑘+1 … 0𝐾) 

 

𝜶𝑠 𝑤𝑖𝑡ℎ 𝛼𝑘 = 0 𝜙𝑗0  𝜙𝑗0 

𝜶𝑠 𝑤𝑖𝑡ℎ 𝛼𝑘 = 1 𝜙𝑗0 + 𝜙𝑗,𝑎𝑙𝑙  𝜙𝑗0 + 𝜙𝑗,𝑎𝑙𝑙  

Note: 𝛼𝑘 stands for the 𝑘th attribute; 𝑞𝑖  (𝑖 = 1,… , 𝑘 − 1) takes the value 1 or 0 if the previous 𝑘 −
1 attributes are the direct or indirect prerequisites of the 𝑘th attribute, or takes the value 0 if the 

𝑖 th attribute is not connected with the 𝑘 th attribute in any path;  
𝜙𝑗0 = intercept; 𝜙𝑗,𝑎𝑙𝑙 = interaction. 

 

Table 7: The q-vectors in Qr and their equivalent q-vectors under the DINA model with three 

linear attributes (H3.2) 

Qr Equivalent 𝒒s Attribute Profiles 𝜶 

𝐸[𝑌𝑗|𝜶] = 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗,𝑎𝑙𝑙 

(1 0 0)  (0 0 0) (1 0 0) (1 1 0) (1 1 1) 

(1 1 0) (0 1 0) (0 0 0) (1 0 0) (1 1 0) (1 1 1) 

(1 1 1)  (0 0 1) (1 0 1) (0 1 1)  (0 0 0) (1 0 0) (1 1 0) (1 1 1) 

Note: Single-attribute items are bolded; 𝜙𝑗0 = intercept; 𝜙𝑗,𝑎𝑙𝑙 = interaction.  
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Table 8: The q-vectors in Qr and their equivalent q-vectors under the DINA model with three 

inverted pyramid attributes (H3.3) 

Qr Equivalent 𝒒s Attribute Profiles 𝜶 

𝐸[𝑌𝑗|𝜶] = 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗,𝑎𝑙𝑙  

(1 0 0)  (0 0 0)  (1 0 0) (1 1 0) (1 0 1) (1 1 1) 

(1 1 0) (0 1 0) (0 0 0) (1 0 0) (1 1 0) (1 0 1) (1 1 1) 

(1 0 1) (0 0 1) (0 0 0) (1 0 0) (1 1 0)  (1 0 1) (1 1 1) 

(1 1 1)* (0 1 1) (0 0 0) (1 0 0) (1 1 0) (1 0 1) (1 1 1) 

Note: Single-attribute items are bolded; 𝜙𝑗0 = intercept; 𝜙𝑗,𝑎𝑙𝑙 = interaction; * = q-vector that is 

not in the R-matrix. 

 

Table 9: The q-vectors in Qr and their equivalent q-vectors under the DINA model with three 

pyramid attributes (H3.4) 

Qr Equivalent 𝒒s Attribute Profiles 𝜶 

𝐸[𝑌𝑗|𝜶] = 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗,𝑎𝑙𝑙  

(1 0 0)  (0 0 0) (0 1 0) (1 0 0) (1 1 0) (1 1 1) 

(0 1 0)  (0 0 0) (1 0 0) (0 1 0) (1 1 0) (1 1 1) 

(1 1 0)*  (0 0 0) (1 0 0) (0 1 0)  (1 1 0) (1 1 1) 

(1 1 1)  (0 0 1) (1 0 1) (0 1 1)  (0 0 0) (1 0 0) (0 1 0) (1 1 0) (1 1 1) 

Note: Single-attribute items are bolded; 𝜙𝑗0 = intercept; 𝜙𝑗,𝑎𝑙𝑙 = interaction; * = q-vector that is 

not in the R-matrix. 
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Table 10: The q-vectors in Qr and their equivalent q-vectors under the DINA model with four or 

five attributes 

Hierarchy Qr Equivalent 𝒒s Hierarchy Qr Equivalent 𝒒s 

H4.2 (1000)  H5.4 (10000)  

(1100) (0100)  (11000) (01000) 

(1110)  (qq10), e.g.,(0010)   (10100) (00100) 

(1111) (qqq1), e.g.,(0001)  (11100) (01100) 

H4.3 (1000)   (11010) (qq010), e.g., (00010) 

(0001)   (11001) (qq001), e.g., (00001) 

(1100) (0100)  (11110) (qq110) 

(1001)   (11101) (qq101) 

(1110) (qq10), e.g., (0010)  (11011) (qq011) 

(1101) (0101)  (11111) (qq111) 

(1111) (0111) (1011) (0011) H5.5 (10000)  

H4.4 (1000)   (01000)  

(1100) (0100)  (00100)  

(1110) (qq10), e.g.,(0010)  (11000)  

(1101) (qq01), e.g., (0001)  (10100)  

(1111) (qq11)  (01100)  

H4.5 (1000)   (11100)  

(0100)   (11110) (qqq10), e.g., (00010) 

(1100)   (11111) (qqqq1), e.g., (00001) 

(1110) (qq10), e.g., (0010) H5.6 (10000)  

(1111) (qqq1), e.g., (0001)  (01000)  

H5.2 (10000)   (00010)  

 (11000) (01000)  (11000)  

 (11100) (qq100), e.g., (00100)  (10010)  

 (11110) (qqq10), e.g., (00010)  (01010)  

 (11111) (qqqq1) e.g., (00001)  (11100) (qq100), e.g., (00100) 

H5.3 (10000)   (11010)  

 (11000) (01000)  (11110) (qq110) 

 (11100) (qq100), e.g., (00100)  (11111) (qqqq1), e.g., (00001) 

 (11010) (qq010), e.g., (00010)    

 (11001) (qq001), e.g., (00001)    

 (11110) (qq110)    

 (11101) (qq101)    

 (11011) (qq011)    

 (11111) (qq111)    

Note: q takes the value of 0 or 1. Single-attribute items are bolded.  
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Table 11: The q-vectors in Qr and their equivalent q-vectors under the ACDM with three linear 

attributes (H3.2) 

Qr Other 𝒒 Attribute Profiles 𝜶 

𝐸[𝑌𝑗|𝜶] = 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗𝑘 𝜙𝑗0 + 𝜙𝑗𝑘1
+ 𝜙𝑗𝑘2

 𝜙𝑗0 + Σ𝜙𝑗𝑘 

(100)  (000) (100) (110) (111)   

(110)  (000) (100) (110) (111)  

 (010) (000) (100) (110) (111)   

 (001) (000) (100) (110) (111)   

 (101) (000) (100) (110) (111)  

 (011)  (000) (100) (110) (111)  

(111)   (000)  (100) (110) (111) 

Note: Single-attribute items are bolded; 𝜙𝑗0 = intercept; 𝜙𝑗𝑘 = main effect of attribute 𝑘.  

 

If the reduced Q-matrix approach is taken, there are only three q-vectors under ACDM. 

However, if the model selection is made at the item level and an item pool of mixed models can 

be constructed (Ma et al., 2015), items calibrated with the DINA model can be included in this 

item pool. For the linear hierarchy H3.2, for example, the mixed item pool has five distinct item 

types in Table 12. If the full Q-matrix approach is taken instead, the mixed item pool can have two 

more item types: 𝒒 = (1 0 1) and 𝒒 = (0 1 1) calibrated by the ACDM.  

 

Table 12: Distinct q-vectors in a mixed item pool under DINA and ACDM for H3.2 using the 

reduced Q-matrix approach 

𝐪 Model Attribute Profiles 𝜶 

𝐸[𝑌𝑗|𝜶] = 𝜙𝑗0 𝜙𝑗0 + 𝜙𝑗𝑘 𝜙𝑗0 + 𝜙𝑗𝑘1
+ 𝜙𝑗𝑘2

 𝜙𝑗0 + Σ𝜙𝑗𝑘 

(100) - (000) (100) (110) (111)   

(110) ACDM (000) (100) (110) (111)  

(110) DINA (000) (100) (110) (111)   

(111) DINA (000) (100) (110) (111)   

(111)  ACDM (000)  (100) (110) (111) 

Note: Single-attribute items are bolded; 𝜙𝑗0 = intercept; 𝜙𝑗𝑘 = main effect of attribute 𝑘.  
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3.4.2 Complete Q-matrix for hierarchical attributes 

A Q-matrix containing the identity matrix is complete for the DINA model with 

independent attributes, according to Chiu et al. (2009). Since the completeness of a Q-matrix is 

evaluated by checking whether it holds that 𝑆(𝜶) = 𝑆(𝜶′) ⟹ 𝜶 = 𝜶′ for each pair of 𝜶 and 𝜶′  

in the attribute profile space, the completeness will not change if some 𝜶s are excluded from the 

attribute profile space. Since there is only one way to define single-attribute items under different 

models, it is safe to conclude that the identity matrix is complete for any attribute hierarchy under 

any model. Under the DINA model, 𝑄𝑟 is complete since 𝑄𝑟 equals to or contains the identity 

matrix; another type of complete matrix is the transpose of the R-matrix that equals to the identity 

matrix, consistent with the conclusion of Köhn and Chiu (2018). The expected response vectors 

given 𝜶 are presented in Table 13. 

 

Table 13: Expected response vectors given 𝜶  of two Q-matrices (𝑄𝑟  and 𝐼 ) for the inverted 

pyramid (H3.3) under the DINA model 

𝜶 𝑄𝑟  𝐼 

𝒒1

= (100) 

𝒒2

= (110) 

𝒒3

= (101) 

𝒒4

= (111) 

 𝒒5

= (100) 

𝒒6

= (010) 

𝒒7

= (001) 

𝑆(𝜶)  𝑆(𝜶) 

(000) 𝜙10 𝜙20 𝜙30 𝜙40  𝜙50 𝜙60 𝜙70 

(100) 𝜙10

+ 𝜙1,all 

𝜙20 𝜙30 𝜙40  𝜙50

+ 𝜙5,all 

𝜙60 𝜙70 

(110) 𝜙10

+ 𝜙1,all 

𝜙20

+ 𝜙2,all 

𝜙30 𝜙40  𝜙50

+ 𝜙5,all 

𝜙60

+ 𝜙6,all 

𝜙70 

(101) 𝜙10

+ 𝜙1,all 

𝜙20 𝜙30

+ 𝜙3,all 

𝜙40  𝜙50

+ 𝜙5,all 

𝜙60 𝜙70

+ 𝜙7,all 

(111) 𝜙10

+ 𝜙1,all 

𝜙20

+ 𝜙2,all 

𝜙30

+ 𝜙3,all 

𝜙40

+ 𝜙4,all 

 𝜙50

+ 𝜙5,all 

𝜙60

+ 𝜙6,all 

𝜙70

+ 𝜙7,all 

Note: Single-attribute items are bolded; 𝜙𝑗0 = intercept; 𝜙𝑗𝑘 = main effect of attribute 𝑘.  
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Under ACDM, one type of items— 𝒒4 = (1 1 1) —alone would be sufficient for 

completeness by definition as long as the three main effects (𝜙41, 𝜙42, and 𝜙44) are different from 

each other (Table 14). Without assuming the differences between 𝜙41, 𝜙42, and 𝜙44, an inspection 

of Table 14 shows that 𝑄𝑟 of each attribute hierarchy is a complete Q-matrix disregarding the 

attribute hierarchy. 

 

Table 14: Expected response vectors given 𝜶 of five q-vectors for independent attributes under 

ACDM 

𝜶 𝒒1 = (100) 𝒒2 = (110) 𝒒3 = (101) 𝒒4 = (111) 𝒒5 = (010) 

(000) 𝜙10 𝜙20 𝜙30 𝜙40 𝜙50 

(100) 𝜙10 + 𝜙11 𝜙20 + 𝜙21 𝜙30 + 𝜙31 𝜙40 + 𝜙41 𝜙50 

(010) 𝜙10 𝜙20 + 𝜙22 𝜙30 𝜙40 + 𝜙42 𝜙50 + 𝜙52 

(001) 𝜙10 𝜙20 𝜙30 + 𝜙33 𝜙40 + 𝜙43 𝜙50 

(110) 𝜙10 + 𝜙11 𝜙20 + 𝜙21

+ 𝜙22 

𝜙30 + 𝜙31 𝜙40 + 𝜙41 + 𝜙42 𝜙50 + 𝜙52 

(101) 𝜙10 + 𝜙11 𝜙20 + 𝜙21 𝜙30 + 𝜙31

+ 𝜙33 

𝜙40 + 𝜙41 + 𝜙43 𝜙50 

(011) 𝜙10 𝜙20 + 𝜙22 𝜙30 + 𝜙33 𝜙40 + 𝜙41 + 𝜙43 𝜙50 + 𝜙52 

(111) 𝜙10 + 𝜙11 𝜙20 + 𝜙21

+ 𝜙22 

𝜙30 + 𝜙31

+ 𝜙33 

𝜙40 + 𝜙41 + 𝜙42

+ 𝜙43 

𝜙50 + 𝜙52 

Note: 𝑞1, 𝑞2, and 𝑞4 form the 𝑄𝑟 for the linear hierarchy (H3.2); 𝑞1, 𝑞2, 𝑞3, and 𝑞4 form the 𝑄𝑟 for 

the inverted pyramid hierarchy (H3.3); 𝑞1, 𝑞2, 𝑞4, and 𝑞5 form the 𝑄𝑟 for the pyramid hierarchy 

(H3.4).  

 

3.5 Summary 

In discussing the parameterizations of hierarchical CDMs, we identified equivalent models 

when an attribute hierarchy is present. The three models in the GDINA family parameterize single-

attribute items in the same way regardless of the attribute hierarchy. The hierarchical ACDM and 

hierarchical GDINA model are equivalent to each other but different from the hierarchical DINA 

model when two linear attributes are involved in an item. The hierarchical ACDM and GDINA 
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model have different parameterizations when two “independent” attributes are involved. 

Independence refers to the fact that the two attributes are not on the same path in the tree graph.  

Under the hierarchical DINA model, the q-vectors in 𝑄𝑟  represent distinct item types. 

Since the number of q-vectors in 𝑄𝑟  is smaller than 2𝐾 − 1 , a full Q-matrix may have two 

seemingly different q-vectors that are are equivalent. By equivalence, we mean that the items have 

the same parameterizations and would thus lead to the same classifications of examinees given the 

same item parameters. For example, 𝒒 = (1 0 1) and 𝒒 = (1 1 1) are equivalent to 𝒒 = (0 0 1) 

in the hierarchical DINA model if attribute 𝛼1 and attribute α2 are prerequisite to attribute 𝛼3. 

As a result, the choice between the reduced and the full Q-matrix approaches does not make a 

difference under the hierarchical DINA model.  

Under the ACDM or GDINA model, any combination of attributes is a distinct q-vector so 

there are in theory 2𝐾 − 1 different item types. A reduced Q-matrix under the hierarchical ACDM 

or GDINA model inevitably excludes the single-attribute items for the higher-level attributes. For 

example, a reduced Q-matrix 𝑄𝑟 in H3.4 (pyramid hierarchy) only includes two single-attribute q-

vectors corresponding to the two lower-level attributes. The single-attribute q-vector for the other 

attribute is excluded from a reduced Q-matrix. The absence of single-attribute q-vectors in the 

recuded Q-matrices may have serious impact on the classifications, which is discussed in the next 

chapter. 
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Chapter 4 Conditional KLI-based indexes for hierarchical CDMs 

4.1 Introduction 

In the previous chapter, we discuss two approaches to constructing Q-matrices with 

hierarchical attributes. We mainly talk about equivalent q-vectors and complete Q-matrices. There 

are, however, numerous ways to construct the Q-matrix for a test from all the available q-vectors. 

Previous studies in Q-matrix design simulate tests with different Q-matrices to compare the 

classification results (Chiu et al., 2009; Liu & Huggins-Manley, 2016; Liu et al., 2017; Madison 

& Bradshaw, 2015). We address the issue of Q-matrix design from the perspective of item-level 

and test-level indices. The indices can be used to automate test assembly with a calibrated item 

pool. The indices also provide a basis for comparing different Q-matrix designs.   

The existing item-level and test-level indexes based on the KL information are overall 

indexes for a population of examinees, and they are found to be positively correlated with the 

overall classification rates (Henson & Douglas, 2005; Kuo et al., 2016). However, the correct 

classification rates (CCRs) could vary substantially across different attribute profiles within the 

same test regardless of independent or hierarchical attributes. The CCRs conditional on the 

attribute profile are usually not reported as most studies only calculate an overall CCR for the 

population of examinees. 

With independent attributes, the conditional CCRs are different for different attribute 

profiles when each attribute is measured in different numbers of items. In this situation, attribute-

level indexes could compensate for overall indices for items or tests (Henson et al., 2008; Kuo et 

al., 2016). However, the attribute-level index ADI fails to consider the dependency between 

attributes as a result of attribute hierarchies. To address this problem, the modified ADI proposed 
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by Kuo and colleagues (2016) add weights on the original ADI but remains to be an overall index 

for a population of examinees.  

The following examples show the necessity for conditional indices instead of an overall 

index. Suppose items are calibrated with the DINA model and the intercept 𝜙0 = 0.1 and the 

interaction effect 𝜙𝑎𝑙𝑙 = 0.8 for all items. The Q-matrix 𝑄3 contains a multiple-attribute item in 

addition to three single-attribute items. When 𝑄3 is used for three independent attributes, different 

attribute profiles have substantially different conditional CCRs. Another example 𝑄4 is the identity 

matrix but is used for measuring three linear attributes (i.e., 𝛼1 → 𝛼2 → 𝛼3 ). The CCRs for 

complete mastery and complete non-mastery are higher than other profiles. 

𝑄1 = [

1 0 0
0 1 0
0 0 1
1 1 0

] 𝑄2 = [
1 0 0
0 1 0
0 0 1

] 

  

Figure 9: Correct classification rates under two conditions 

 

Since the goal is to estimate the attribute profile for every examinee accurately, it is 

necessary to develop an index conditional on the attribute profile, especially when hierarchical 

attributes are present. This thesis proposes two conditional indices based on the KL information 

that can be used for non-adaptive test construction and Q-matrix design.  
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In this chapter, it is assumed that a large number of items have been developed for a well-

defined domain and that the Q-matrix, as well as the relationship between attributes, are correctly 

specified. We take the full Q-matrix approach and allow all types of q-vectors. It is also assumed 

that item parameter estimates have been obtained from previous calibrations. 

4.2 Conditional KL indices for test construction 

A set of two indices is proposed, conditional on the attribute profile. The two conditional 

indices summarize the information from the L-by-L test KLI matrix 𝐷 as defined in equation (27) 

in 2.1.7, where 𝐿 is the size of the attribute profile space. The first index is the average of the 

elements in the 𝑢th column and the 𝑢th row of the test KLI matrix. The second index is the  

𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢) = ln(
1

2(𝐿 − 1)
(∑ 𝐷.𝑢𝑙+ ∑𝐷.𝑙𝑢

𝐿

𝑙=1

𝐿

𝑙=1

)), (43) 

𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼(𝜶𝑢) = ln (max
𝑙

(𝐷.𝑢𝑙, 𝐷.𝑙𝑢)) − ln (𝑚𝑖𝑛
𝑙

(𝐷.𝑢𝑙, 𝐷.𝑙𝑢)), (44) 

where 𝐷.𝑢𝑣 is the (𝑢, 𝑣)th element of the test KLI matrix 𝐷 and 𝐿 represents the size of the attribute 

profile space. The two KLI-based indices were log-transformed to get a linear relationship with 

CCR (Henson et al., 2008; Henson et al., 2018). 

The index 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢)  describes the average discrimination power of a test to 

differentiate 𝜶𝑢 from other attribute profiles. It is supposed to be positively correlated with the 

conditional CCR for 𝜶𝑢. However, this index alone is not sufficient for predicting CCR due to the 

multidimensional nature of the CDMs. When the 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼𝑗(𝜶𝑢) is fixed, if the test does not 

differentiate well between two particular attribute profiles  𝜶𝑢  and 𝜶𝑣 , the CCR for 𝜶𝑢 or 𝜶𝑣  

suffers (Cheng, 2010). This phenomenon was mentioned in Cheng (2010)’s CD-CAT study and 

compared to Liebig’s “law of the minimum,” or Liebig’s barrel. Therefore, a second index 

𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼(𝜶𝑢) was defined in (44) to characterize the weakest point of a test. One particularly 
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low KLI between two 𝜶s leads to a relatively large range given the same 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼𝑗(𝜶𝑢). A range 

measure was used instead of the minimum measure to control the effect of 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢). The 

index 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼(𝜶𝑢) is negatively correlated with the conditional CCR for 𝜶𝑢 but has a low or 

insignificant correlation with 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢). 

The need for the second index is best illustrated by comparing the following two Q-

matrices under the DINA model. Three independent attributes are measured with nine items. 

𝑄1 = [
𝐼
𝐼
𝐼

], 𝑄2 =

[
 
 
 
 
 
 

𝐼
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0
1 0 0]

 
 
 
 
 
 

, 

where 𝐼 is the identity matrix.  

Assuming the intercept 𝜙0 = 0.1 and the interaction effect 𝜙𝑎𝑙𝑙 = 0.8 for all items, the 

two indices were calculated for the two tests. The CCRs were also obtained from the simulation.  

In the Table 15, the two tests have the same 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼 for each attribute profile but the second 

test has substantially lower CCRs.  

 

Table 15: KLI indices and the CCRs for two Q-matrices 

𝜶 

𝑄1 𝑄2 

𝑚𝑒𝑎𝑛 𝐾𝐿𝐼 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼 CCR 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼 CCR 

000 2.20 1.10 0.92 2.20 2.20 0.81 

100 2.20 1.10 0.92 2.20 2.20 0.81 

010 2.20 1.10 0.92 2.20 2.20 0.81 

001 2.20 1.10 0.92 2.20 2.20 0.81 

110 2.20 1.10 0.92 2.20 2.20 0.80 

101 2.20 1.10 0.91 2.20 2.20 0.80 

011 2.20 1.10 0.91 2.20 2.20 0.81 

111 2.20 1.10 0.91 2.20 2.20 0.81 
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The difference between the two Q-matrices in Table 15 was referred to as an issue of 

content balancing in Cheng (2010) since the number of items for each attribute is not balanced in 

𝑄2. Given the same 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼, the second index 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼 is needed in this case to account for 

the different CCRs. A larger range index corresponds to a lower CCR. 

The two conditional KL indices would be good predictors of the conditional CCR of 𝛂 

with a fixed test length. To make them useful for between various test lengths, the following two 

conditions need to be satisfied: 

1. For each 𝜶, there are no zero off-diagonal entries in the test KLI matrix 𝐷 because 

ln (0) is not defined;  

2. There is an odd number of items in each item type (i.e., a distinct q-vector). 

The first condition is satisfied when the Q-matrix is complete. The second condition is 

necessary for the indices to be useful because when the examinee correctly respond to half of the 

items, the examinee is likely to be misclassified. For example, if the test has two items with 𝒒 =

(1 0 0) , for examinees who master attribute 𝛼1 , the likelihood function is 𝐿1 = ∏ (𝜙𝑗0 +2
𝑗=1

𝜙𝑗,𝑎𝑙𝑙)
𝑥𝑗(1 − 𝜙𝑗0 − 𝜙𝑗,𝑎𝑙𝑙)

1−𝑥𝑗
; for examinees who do not possess attribute 𝛼1, the likelihood 

function is 𝐿0 = ∏ (𝜙𝑗0)
𝑥𝑗(1 − 𝜙𝑗0)

1−𝑥𝑗2
𝑗=1 . It is possible that an examinee correctly answers 

item 1 but fails at item 2. Then 𝐿1 = (𝜙10 + 𝜙1.𝑎𝑙𝑙)(1 − 𝜙20 − 𝜙2,𝑎𝑙𝑙) , 𝐿0 = 𝜙20(1 − 𝜙20) . 

When the items are homogenous in quality, the difference between 𝐿1 and 𝐿0 would be very small. 

In an extreme case when 𝜙𝑗0 = 0.1and 𝜙𝑗,𝑎𝑙𝑙 = 0.8 for all items, 𝐿1 = 𝐿2 = 0.1 × 0.9. 

KLI-based item selection in CD-CAT uses indices similar to 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢) and ignores 

the minimum effect. As a result, researchers found it necessary to add extra constraints to the item 

selection algorithm in order to improve the CCR (Cheng, 2010). Such constraints intend to balance 

attribute coverage, and this process is also referred to as content balancing (Cheng, 2010). The 
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result of content balancing is a smaller KLI range given the same 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢). When attribute 

hierarchies are present, content balancing becomes tricky. Using the two indices together in test 

construction becomes more practical with hierarchical attributes than content balancing. 

4.3 Simulation design 

A simulation study was conducted to assess the performance of the two indices. Random 

tests were generated as described below with items calibrated using DINA or A-CDM. The 

hierarchical GDINA model is equivalent to A-CDM in most cases, so the GDINA model is 

excluded from the simulations. The attribute hierarchies shown in 3.2 were used to simulate the 

examinee responses. The assessment tasks may be embedded in the classroom instruction and 

scattered in multiple class sessions. As a result, the assessment is not necessarily a concise one. 

We consider test lengths of three, five, and seven times the number of attributes, respectively.  

For each combination of test length (e.g., nine items) and attribute hierarchy (e.g., H3.2), 

three sets of tests were simulated. The first set of 25 tests consists of single-attribute items, the 

second set of 25 tests consists of q-vectors from the full Q-matrix calibrated by the DINA model, 

and the third set of 50 tests consists of q-vectors from the full Q-matrix calibrated by the ACDM. 

The actual Q-matrix for each random test was constructed by randomly sampling from all the 

possible q-vectors with replacement if the full Q-matrix approach is used or from the identity 

matrix if only single-attribute items are wanted. Each Q-matrix contained the identity matrix to 

ensure completeness. There was an odd number of items in each item type (i.e., a distinct q-vector). 

For all items, the intercept parameter (𝜙0 = 𝑃(𝑋 = 1|𝜶 = 𝟎)) was generated from the 

uniform distribution 𝑈(0.1, 0.4) and 𝑃(𝑋 = 1|𝜶 = 𝟏) was generated from 𝑈(0.6, 0.9). 

A total of 5,000 examinees are simulated for each true attribute profile for each random 

test. Given each examinee's attribute profile, item scores are generated based on the chosen model. 
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A random 𝑈(0, 1)  variable 𝑢  is generated. The correct response probability 𝑃(𝑋𝑖𝑗 = 1|𝜶)  is 

compared with 𝑢 to decide the response of examinee 𝑖 to item 𝑗: 

𝑌𝑖𝑗 = {
1  𝑖𝑓 𝑢 ≤ 𝑃(𝑌𝑖𝑗 = 1|𝜶)

0  otherwise                   
. (45) 

The two conditional indices were calculated for each attribute profile for each random test. 

Classifications were accomplished via MLE for independent attributes or restricted MLE for 

hierarchical attributes because the item parameters are known. Conditional profile-wise CCR were 

recorded for each 𝜶. 

The index of means is supposed to be positively correlated with the CCR, and the index of 

range is supposed to be negatively correlated with the CCR. For each attribute hierarchy, a linear 

regression model with normal errors was fit using the two indices to predict the CCR: 

CCR = β1𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼(𝜶𝑢) + 𝛽2𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢) + 𝜖 (46) 

 The regression estimates were used to produce a linear combination of the two indices as 

a combined index, cKLI: 

𝑐𝐾𝐿𝐼 = 𝛽1̂𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼(𝜶𝑢) + 𝛽2̂𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢) (47) 

 The combined index cKLI is expected to be highly correlated with the CCR. 

4.4 Simulation results 

 The regression estimates and the 𝑅2 for each attribute hierarchy were summarized in Table 

16. A combined index was calculated as a linear combination of the two indices using the 

regression estimates as weights. This combined index (cKLI) was plotted against the CCR 

conditional on 𝜶 in the following scatter plots to visualize the relationships (see Figure 10-Figure 

24). For brevity, we only present the scatter plots for a subset of 𝜶s when there are more than 𝐾 +

1 attribute profiles in the space. 
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Table 16: Regression estimates and 𝑅2 for each attribute hierarchy 

Attribute hierarchy 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼(𝜶𝑢) 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼(𝜶𝑢) 𝑅2 

H3.1 Independent -0.07 0.24 0.76 

H3.2 Linear -0.07 0.19 0.78 

H3.3 Inverted pyramid -0.07 0.20 0.74 

H3.4 Pyramid -0.06 0.21 0.79 

H4.1 Independent -0.08 0.27 0.82 

H4.2 Linear -0.08 0.21 0.80 

H4.3 Linear+single -0.08 0.24 0.80 

H4.4 Inverted pyramid -0.08 0.22 0.81 

H4.5 Pyramid -0.07 0.22 0.81 

H5.1 Independent -0.07 0.28 0.81 

H5.2 Linear -0.09 0.21 0.82 

H5.3 Inverted pyramid I -0.08 0.26 0.82 

H5.4 Inverted pyramid II -0.08 0.26 0.81 

H5.5 Pyramid I -0.08 0.25 0.80 

H5.6 Pyramid II -0.08 0.25 0.81 

 

Table 17: The overall correlation and the correlations for different test lengths between cKLI and 

the CCR 

Attribute hierarchy All 
Test length 

3 × 𝐾 5 × 𝐾 7 × 𝐾 

H3.1 Independent 0.87 0.60 0.76 0.85 

H3.2 Linear 0.88 0.83 0.87 0.87 

H3.3 Inverted pyramid 0.86 0.79 0.82 0.84 

H3.4 Pyramid 0.89 0.81 0.88 0.86 

H4.1 Independent 0.90 0.77 0.82 0.88 

H4.2 Linear 0.89 0.86 0.86 0.86 

H4.3 Linear+single 0.90 0.81 0.84 0.85 

H4.4 Inverted pyramid 0.90 0.83 0.87 0.89 

H4.5 Pyramid 0.90 0.84 0.87 0.87 

H5.1 Independent 0.90 0.77 0.87 0.85 

H5.2 Linear 0.90 0.85 0.91 0.87 

H5.3 Inverted pyramid I 0.91 0.84 0.88 0.91 

H5.4 Inverted pyramid II 0.90 0.81 0.88 0.89 

H5.5 Pyramid I 0.90 0.80 0.87 0.90 

H5.6 Pyramid II 0.90 0.84 0.87 0.88 

Note: 𝐾 is the number of attributes. 

 

The overall correlation between cKLI and the CCR is presented in Table 17. All the overall 

correlations are around 0.9. The correlations for different test lengths are also calculated (Table 
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17). The correlation generally increases substantially as the test length goes up from three times of 

𝐾 to five or seven times of 𝐾 where 𝐾 is the number of attributes. This trend can also be seen in 

the scatter plots. 

 

 

Figure 10: A plot for tests with three independent attributes (H3.1) of the combined index with 

CCRs 
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Figure 11: A plot for tests with three linear attributes (H3.2) of the combined index with CCRs 
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Figure 12: A plot for tests with three inverted pyramid attributes (H3.3) of the combined index 

with CCRs 
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Figure 13: A plot for tests with three pyramid attributes (H3.4) of the combined index with CCRs 
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Figure 14: A plot for tests with four independent attributes (H4.1) of the combined index with 

CCRs 
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Figure 15: A plot for tests with four linear attributes (H4.2) of the combined index with CCRs 
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Figure 16: A plot for tests with three linear attributes + one single attribute (H4.3) of the combined 

index with CCRs 
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Figure 17: A plot for tests with four inverted pyramid attributes (H4.4) of the combined index with 

CCRs 
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Figure 18: A plot for tests with four pyramid attributes (H4.5) of the combined index with CCRs 
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Figure 19: A plot for tests with five independent attributes (H5.1) of the combined index with 

CCRs 
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Figure 20: A plot for tests with five linear attributes (H5.2) of the combined index with CCRs 
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Figure 21: A plot for tests with five inverted pyramid attributes (H5.3) of the combined index with 

CCRs 
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Figure 22: A plot for tests with five inverted pyramid attributes (H5.4) of the combined index with 

CCRs 
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Figure 23: A plot for tests with five pyramid attributes (H5.5) of the combined index with CCRs
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Figure 24: A plot for tests with five pyramid attributes (H5.6) of the combined index with CCRs 

 

4.5 Discussion 

The two indices can predict the CCR well according to the linear regression results showing 

that abut 80% of the total variance was explained. The prediction of two indices was a substantial 

improve from the prediction of either index alone. This relationship was also reflected by the high 

correlation between the combined index 𝑐𝐾𝐿𝐼 and the CCR. These results suggest that using an 

averaged KLI may not be sufficient for predicting CCR. Therefore, any single index based on the 

maximum or the mean of KLI would have serious limitations as a test construction index. As 

mentioned earlier, it has been found necessary to add extra constraints to the item selection 

algorithm based on a single KLI index, in order to improve the CCR in CD-CAT research (Cheng, 

2010). Such constraints would lead to a decreased range index, and balanced attribute coverage 
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would be observed with independent attributes. In other words, content balancing could have the 

same effect as having a range index when attributes are independent. With hierarchical attributes, 

however, there is no clear way to define content balancing. Therefore, using the two indices 

together in test construction would be more appropriate with hierarchical attributes than content 

balancing. This applies to both non-adaptive and adaptive test construction. 

It is important to note that the (𝑐𝐾𝐿𝐼, CCR) relationship does not depend on the model 

selected (DINA or ACDM) or test length. However, the relationship between the two indices and 

the CCR may depend on the attribute hierarchy, more specifically, the number of attribute profiles 

as suggested by the different regression estimates in Table 15. Moreover, the indices lead to better 

predictions of the CCR as the test length increases.  

The proposed index can be used to assemble tests from an item pool by setting an 

information target or a fixed test length. Setting an appropriate information target may not be easy 

because on the one hand, a target needs to be set for each attribute profile and on the other hand, 

also noted in Henson et al. (2018), the threshold value that would ensure a certain CCR may depend 

on the number of attributes and the attribute hierarchy.  

If the test length is fixed, the test assembly algorithm could take two steps: a set of tests 

with largest mean KLI is identified first, and then the one with the largest minimum KLI or smallest 

range index is chosen. Alternatively, the regression estimates in Table 16 an be used to calculate 

the combined index. The test assembly can be automated in various ways. With the two 

information indices, we do not need extra constraints like “each cognitive attribute is measured by 

an adequate number of items (Cheng, 2010, p. 903).” 
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The (𝑐𝐾𝐿𝐼, CCR) relationship is visualized for each attribute profile in Figure 11 - Figure 

24 because the CCR could vary substantially between 𝜶s. We chose four random tests in the 

condition H4.2 to demonstrate the variation of CCR in Figure 25.  

 

Figure 25: The conditional CCRs from four random tests in H4.2 

 

With a linear hierarchy and an identity matrix as the Q-matrix, the attribute profiles that 

master some but not all attributes are easier to be misclassified than the two attribute profiles on 

the two ends (i.e., the one with all 0s and the one with all 1s). This pattern can also be explained 

in terms of the KL indices (Table 18). Another way to see the various CCRs for a linear hierarchy 

is the item with 𝒒 = (1 0 0)  differentiates 𝜶 = (0 0 0)  with other 𝜶s and the item with 𝒒 =

(0 0 1)  differentiates 𝜶 = (1 1 1)  with other 𝜶s, and as a result these two 𝜶s have a higher 

classification rates than the 𝜶s in the middle. 

We use the two KLI-based indices to compare the full and reduced Q-matrix approaches 

under the ACDM. As mentioned earlier, the two approaches are equivalent under the ACDM. The 

major difference between a full Q-matrix with ACDM and a reduced Q-matrix with ACDM is the 

exclusion of some single-attribute items from the reduced Q-matrices. Therefore, we compare the 
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identity matrix with 𝑄𝑟 with ACDM in terms of the two indices for a linear hierarchy of three 

attributes (H3.2). The item parameters are presented in Table 18. The indices for the two three-

item tests are shown in Table 19. 

If the reduced Q-matrix approach is adopted and all the items are calibrated with the 

ACDM, classifications for the attribute profiles 𝜶 = (100), 𝜶 = (110), and 𝜶 = (111) become 

much more difficult. As suggested by the combined index, much longer tests are required to 

achieve comparable classification rates for most of the attribute profiles if two types of single-

attribute items, 𝒒 = (0 1 0) and 𝒒 = (0 0 1), are excluded from the candidate pool. 

In addition to the consideration of classification efficiency, the choice between a reduced 

Q-matrix and a full Q-matrix should depend on answers to questions such as whether it is possible 

to a mixed item pool, whether it is possible to develop a certain item type, and the model-data fit 

at the item level. 

 

Table 18: Item parameters of five items for H3.2 

 𝒒 Model 𝜙𝑗0 𝜙𝑗1 𝜙𝑗2 𝜙𝑗3 

 (010) - 0.1  0.8  

 (001) - 0.1   0.8 

𝑄𝑟 + 𝐴𝐶𝐷𝑀 

(100) - 0.1 0.8   

(110) ACDM 0.1 0.4 0.4  

(111) ACDM 0.1 0.27 0.27 0.27 

 

Table 19: Comparison between two three-item tests in terms of the two indices 

𝜶 
𝐼3 𝑄𝑟 + 𝐴𝐶𝐷𝑀 

𝑚𝑒𝑎𝑛 𝐾𝐿𝐼 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼 cKLI 𝑚𝑒𝑎𝑛 𝐾𝐿𝐼 𝑟𝑎𝑛𝑔𝑒 𝐾𝐿𝐼 cKLI 

000 1.26 1.10 0.05 1.38 0.82 0.12 

100 0.85 0.69 0.04 0.33 1.35 -0.17 

110 0.85 0.69 0.04 0.52 2.84 -0.38 

111 1.26 1.10 0.05 0.80 3.34 -0.42 
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Chapter 5 Q-matrix design for nonparametric classifications with 

hierarchical attributes 

5.1 Introduction 

Without a calibrated item pool, the nonparametric classification (NPC) method (Chiu, Sun, 

& Bian, 2018) provide an alternative approach for classifications. The NPC method allows the 

teachers to develop their own items based on CDMs if they can identify the attribute hierarchy and 

the Q-matrix. There is no need for item calibration, and students are classified based on their 

response data without the need to estimate item parameters. 

The Q-matrix design plays an even more important role in nonparametric classifications 

than in parametric classifications, but it has not been formally addressed in the literature. Related 

studies explore different Q-matrix designs with hierarchical attributes in the context of parametric 

classifications (Liu, Huggins-Manley, & Bradshaw 2017; Tu, Wang, Cai, Douglas, & Chang, 

2018). There is a consensus on the effect of single-structured items on accurate classifications 

regardless of the attribute hierarchy (Chiu et al., 2009; DeCarlo, 2011; Madison & Bradshaw, 

2015). However, the role of items with multiple attributes is not clear. Other factors in Q-matrix 

design that receive less attention in existing research include test length and the number of items 

in each item type. 

In this study, the NPC method (Chiu & Douglas, 2013) was used Because it is assumed 

that the teacher develops a CDM-based test for a particular classroom. Prior data are not expected 

to be available. Therefore, the general nonparametric classification method (Chiu, Sun, & Bian, 

2018) that requires some prior response data is not considered. 
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5.2 Ties in NPC 

There is a tie when the observed response pattern of an examinee is at an equal distance to 

more than one ideal response pattern. Some Q-matrices lead to more ties than others. With an ideal 

Q-matrix, the item responses of high probabilities are always closest to the ideal response pattern 

of the true 𝜶, and there would be no ties in the hamming distance. In this study, if a tie occurs, the 

examinee would be randomly classified into one attribute profile with the minimal hamming 

distance. 

We present a comparison between two Q-matrices as an example. The underlying model 

is the DINA model. The item quality is assumed to be high: 1 − 𝑃(𝑋 = 1|𝜶 = 𝟏) = 𝑃(𝑋 = 1|𝜶 =

𝟎) = 0.1. Three independent attributes are involved. We focus on an examinee with 𝜶 = (1 1 1). 

The hamming distances between several likely response patterns of 𝜶111 and each of the ideal 

response patterns are shown in the cells of Table 20 and Table 21. With an identity matrix as the 

Q-matrix, there are no ties in the hamming distance and the probability of correctly classifying the 

examinee with 𝜶 = (1 1 1) equals to the probability of observing the response pattern of (1 1 1), 

which is 0.93.  

When the Q-matrix contains the identity matrix 𝐼3 and an item probing all three attributes, 

ties are observed when the examinee slips on one of the items (Table 21). The probability of a tie 

is the probability of observing such a response patter, which is 0.93 × 0.1 × 4 = 0.29. It is still 

possible to clarify the examinee with a tie in the hamming distance. The CCR for 𝜶111 can be 

calculated as a weighted sum of probabilities: 0.94 + 0.93 × 0.1 × 0.25 + 0.93 × 0.1 × 0.33 +

0.93 × 0.1 × 0.5 + 0.93 × 0.1 × 0.5 = 0.77. Comparing the two Q-matrices reveals that adding 

an item with 𝒒 = (1 1 1) to the identity matrix leads to a slight increase in the CCR for 𝜶111 from 

0.73 to 0.77. The second Q-matrix leads to a probability of 0.29 to obtain a tie. 
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Table 20: Hamming distances for 𝜶111 with 𝑄 = 𝐼3 (H3.1) 

Response 

pattern 𝑿 

Probability 

𝑃𝑟(𝑿) 

𝜶: (Ideal response pattern) 

𝜶000 : 

(000) 

𝜶100 : 

(100) 

𝜶010 : 

(010) 

𝜶001 : 

(001) 

𝜶110 : 

(110) 

𝜶101 : 

(101) 

𝜶011 : 

(011) 

𝜶111 : 

(111) 

(111) 0.93 3 2 2 2 1 1 1 0 

(110) 0.92 × 0.1 2 1 1 3 0 2 2 1 

(101) 0.92 × 0.1 2 1 3 1 2 0 2 1 

(011) 0.92 × 0.1 2 3 1 1 2 2 0 1 

 

Table 21: Hamming distances for 𝜶111 with 𝑄 = [𝐼3, 𝑞111]
𝑇   (H3.1) 

Response 

pattern 𝑿 

Probability 

𝑃𝑟(𝑿) 

𝜶: (Ideal response pattern) 

𝜶000 : 

(000) 

𝜶100 : 

(100) 

𝜶010 : 

(010) 

𝜶001 : 

(001) 

𝜶110 : 

(110) 

𝜶101 : 

(101) 

𝜶011 : 

(011) 

𝜶111 : 

(111) 

(1111) 0.94 4 3 3 3 2 2 2 0 

(1110) 0.93 × 0.1 3 2 2 2 1 1 1 1 

(1101) 0.93 × 0.1 3 2 2 4 1 1 3 1 

(1011) 0.93 × 0.1 3 2 4 2 3 1 3 1 

(0111) 0.93 × 0.1 3 4 2 2 3 3 1 1 

 

5.3 Simulation design 

The identity matrix served as the baseline Q-matrix. We considered the following situations: 

1) adding one or two simple-attribute items to the baseline, 2) adding one or two multiple-attribute 

items to be baseline, and 3) adding an identity matrix. A total of 15, 19, and 23 Q-matrices are 

obtained for 𝐾 = 3, 4, and 5, respectively, presented in Table 22.  

The computations of CCRs and the probability of a tie become more complicated with a 

longer test or more attributes. Therefore, a simulation study was conducted to compare Q-matrices. 

Item parameters were simulated based on 1 − 𝑃(𝑋 = 1|𝜶 = 𝟏) = 𝑃(𝑋 = 1|𝜶 = 𝟎) = 0.1 . A 

total of 5,000 examinees are simulated for each true attribute profile for each Q-matrix. Given each 

examinee's attribute profile, item scores are generated based on the DINA. A random 𝑈(0, 1) 

variable 𝑢  is generated. The correct response probability 𝑃(𝑋𝑖𝑗 = 1|𝜶) is compared with 𝑢  to 

decide the response of examinee 𝑖 to item 𝑗: 
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𝑌𝑖𝑗 = {
1  𝑖𝑓 𝑢 ≤ 𝑃(𝑌𝑖𝑗 = 1|𝜶)

0  otherwise                   
. 

(48) 

Examinee responses were classified using the nonparametric classification method (Chiu 

& Douglas, 2013). Conditional profile-wise CCR were recorded for each 𝜶. The percent of ties 

was recorded for each simulation condition as an estimate of the probability of getting a tie.  

 

Table 22: Q-matrix designs for the simulation study of nonparametric classifications 

Q-matrix Q-matrix Q-matrix 
3-1 𝐼3 4-1 𝐼4 5-1 𝐼5 
3-2 [𝐼3, 𝒒{100}]

𝑇
 

4-2 [𝐼4, 𝒒{1000}]
𝑇

 
5-2 [𝐼5, 𝒒{10000}]

𝑇
 

3-3 [𝐼3, 𝒒{110}]
𝑇
 

4-3 [𝐼4, 𝒒{1100}]
𝑇

 
5-3 [𝐼5, 𝒒{11000}]

𝑇
 

3-4 [𝐼3, 𝒒{111}]
𝑇
 

4-4 [𝐼4, 𝒒{1110}]
𝑇

 
5-4 [𝐼5, 𝒒{11100}]

𝑇
 

3-5 [𝐼3, 𝒒{100}, 𝒒{100}]
𝑇
 

4-5 [𝐼4, 𝒒{1111} ]
𝑇
 

5-5 [𝐼5, 𝒒{11110} ]
𝑇

 
3-6 [𝐼3, 𝒒{110}, 𝒒{110}]

𝑇
 

4-6 [𝐼4, 𝒒{1000}, 𝒒{1000}]
𝑇
 

5-6 [𝐼5, 𝒒{11111} ]
𝑇

 
3-7 [𝐼3, 𝒒{111}, 𝒒{111}]

𝑇
 

4-7 [𝐼4, 𝒒{1100}, 𝒒{1100}]
𝑇
 

5-7 [𝐼5, 𝒒{10000}, 𝒒{10000}]
𝑇
 

3-8 [𝐼3, 𝐼3]
𝑇 4-8 [𝐼4, 𝒒{1110}, 𝒒{1110}]

𝑇
 

5-8 [𝐼5, 𝒒{11000}, 𝒒{11000}]
𝑇
 

3-9 [𝐼3, 𝐼3, 𝒒{100}]
𝑇
 

4-9 [𝐼4, 𝑞{1111}, 𝑞{1111}]
𝑇
 

5-9 [𝐼5, 𝒒{11100}, 𝒒{11100}]
𝑇
 

3-10 [𝐼3, 𝐼3, 𝒒{110}]
𝑇
 

4-10 [𝐼4, 𝐼4]
𝑇 5-10 [𝐼5, 𝒒{11110}, 𝒒{11110}]

𝑇
 

3-11 [𝐼3, 𝐼3, 𝒒{111}]
𝑇
 

4-11 [𝐼4, 𝐼4, 𝒒{1000}]
𝑇
 

5-11 [𝐼5, 𝒒{11111}, 𝒒{11111}]
𝑇
 

3-12 [𝐼3, 𝐼3, 𝒒{100}, 𝒒{100}]
𝑇
 

4-12 [𝐼4, 𝐼4, 𝒒{1100}]
𝑇
 

5-12 [𝐼5, 𝐼5]
𝑇 

3-13 [𝐼3, 𝐼3, 𝒒{110}, 𝒒{110}]
𝑇
 

4-13 [𝐼4, 𝐼4, 𝒒{1110}]
𝑇
 

5-13 [𝐼5, 𝐼5, 𝒒{10000}]
𝑇
 

3-14 [𝐼3, 𝐼3, 𝒒{111}, 𝒒{111}]
𝑇
 

4-14 [𝐼4, 𝐼4, 𝒒{1111}]
𝑇
 

5-14 [𝐼5, 𝐼5, 𝒒{11000}]
𝑇
 

3-15 [𝐼3, 𝐼3, 𝐼3]
𝑇 4-15 [𝐼4, 𝐼4, 𝒒{1000}, 𝒒{1000}]

𝑇
 

5-15 [𝐼5, 𝐼5, 𝒒{11100}]
𝑇
 

  4-16 [𝐼4, 𝐼4, 𝒒{1100}, 𝒒{1100}]
𝑇
 

5-16 [𝐼5, 𝐼5, 𝒒{11110}]
𝑇
 

  4-17 [𝐼4, 𝐼4, 𝒒{1110}, 𝒒{1110}]
𝑇
 

5-17 [𝐼5, 𝐼5, 𝒒{11111}]
𝑇
 

  4-18 [𝐼4, 𝐼4, 𝒒{1111}, 𝒒{1111}]
𝑇
 

5-18 [𝐼5, 𝐼5, 𝒒{10000}, 𝒒{10000}]
𝑇
 

  4-19 [𝐼4, 𝐼4, 𝐼4]
𝑇 5-19 [𝐼5, 𝐼5, 𝒒{11000}, 𝒒{11000}]

𝑇
 

    5-20 [𝐼5, 𝐼5, 𝒒{11100}, 𝒒{11100}]
𝑇
 

    5-21 [𝐼5, 𝐼5, 𝒒{11110}, 𝒒{11110}]
𝑇
 

    5-22 [𝐼5, 𝐼5, 𝒒{11111}, 𝒒{11111}]
𝑇
 

    5-23 [𝐼5, 𝐼5, 𝐼5]
𝑇 
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5.4 Simulation results 

Simulation results for the conditions with three attributes are summarized in Table 22-

Table 25. For brevity, we only present the results for four attribute profiles. Comparing each Q-

matrix to the baseline (Q3-1), we found that a very high probability of obtaining a tie usually 

suggests no increase in the CCR and a lack of ties suggests an increased CCR for some 𝜶s. A 

longer test does not necessarily lead to higher CCR for each attribute profile. 

 As shown in Table 22, adding a single-attribute item to the baseline Q-matrix does not 

lead to an increased CCR with three independent attributes. The lack of change can be explained 

by the ties in hamming distances that cancel the effect of adding one more item. It is more likely 

to obtain a tie when there are an even number of 𝒒{100}, 𝒒{010}, or 𝒒{001}in the Q-matrix. Adding 

𝒒{110} slightly increases the CCR of 𝜶110 and 𝜶111  and adding 𝒒{111} slightly increases in the 

CCR of 𝜶111. In the above conditions, ties are likely to occur for all or some attribute profiles. 

However, when two items of each q-vector are added to the baseline, as in Q3-5, Q3-6, and Q3-7, 

the CCRs of all or some attribute profiles increase substantially, and almost no ties are observed.  

With a linear hierarchy, all q-vectors have their equivalent single-attribute q-vectors. 

Therefore, all the Q-matrices contain single-attribute q-vectors. The comparison between Q3-2 

and Q3-5, between Q3-3 and Q3-6, and between Q3-4 and Q3-7 in Table 24 suggests that a large 

probability for getting ties would hurt the classifications. For example, the CCR for 𝜶000 increases 

slightly after adding a 𝑞{100}  (Q3-2) but the classifications for other attribute profiles are not 

benefited. When two 𝒒{100}s are added (Q3-5), the CCR for 𝜶000 and 𝜶000 increase substantially. 

The probability of ties decreases from 0.23 (Q3-2) to 0.08 (Q3-5) with another 𝑞{100} added to the 

Q-matrix. Similar patterns can be found for the inverted pyramid or pyramid hierarchies in Table 

25 and Table 26. 
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The negative effect of having even numbers of items in an item type is highlighted in the 

comparison between Q3-1, Q3-8, and Q3-15 in Table 23-Table 26. When the Q-matrix consists of 

two identity matrices, the CCR for each 𝜶 does not change or increase slightly compared to the 

baseline. However, when Q-matrix consists of three identity matrices, the CCR for each 𝜶 

increases substantially. 

Summarizing simulation results for three attributes, we conclude that tests with even 

number of items from each q-vector are less efficient than tests with each q-vector in odd times. 

When a q-vector appears in an even number and the item quality is homogeneous, it is more likely 

to have ties compared to the baseline situation of each attribute hierarchy, and consequently, the 

effect of extra test length is partially or completely canceled out. This conclusion also applies to 

conditions of four or five attributes, shown in Table 27-Table 37.  
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Table 23: NPC results for H3.1  

Q 𝐽 
𝐽𝑞  CCR  Pr(tie) 

𝑞{100} 𝑞{010} 𝑞{001} 𝑞{110} 𝑞{111}  𝜶000 𝜶100 𝜶110 𝜶111  𝜶000 𝜶100 𝜶110 𝜶111 

3-1 3 1 1 1 0 0  0.73 0.74 0.74 0.74  0.00 0.00 0.00 0.00 

3-2 4 2 1 1 0 0  0.73 0.74 0.73 0.73  0.18 0.18 0.18 0.18 

3-3 4 1 1 1 1 0  0.72 0.71 0.76 0.76  0.03 0.16 0.24 0.25 

3-4 4 1 1 1 0 1  0.73 0.72 0.72 0.77  0.00 0.02 0.15 0.28 

3-5 5 3 1 1 0 0  0.78 0.79 0.77 0.79  0.00 0.00 0.00 0.00 

3-6 5 1 1 1 2 0  0.73 0.75 0.86 0.86  0.01 0.07 0.02 0.02 

3-7 5 1 1 1 0 2  0.74 0.72 0.75 0.93  0.00 0.02 0.07 0.03 

3-8 6 2 2 2 0 0  0.74 0.73 0.74 0.71  0.46 0.45 0.46 0.45 

3-9 7 3 2 2 0 0  0.79 0.79 0.78 0.78  0.32 0.33 0.33 0.33 

3-10 7 2 2 2 1 0  0.74 0.78 0.85 0.85  0.44 0.32 0.18 0.18 

3-11 7 2 2 2 0 1  0.73 0.73 0.78 0.93  0.46 0.44 0.33 0.02 

3-12 8 4 2 2 0 0  0.78 0.79 0.79 0.79  0.36 0.37 0.36 0.36 

3-13 8 2 2 2 2 0  0.73 0.79 0.86 0.85  0.45 0.36 0.25 0.25 

3-14 8 2 2 2 0 2  0.73 0.73 0.78 0.93  0.44 0.44 0.36 0.11 

3-15 9 3 3 3 0 0  0.92 0.92 0.91 0.92  0.00 0.00 0.00 0.00 

Note: J = test length; 𝐽𝑞 = number of items with a certain q-vector; CCR = correct classification rate.  
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Table 24: NPC results for H3.2  

Q 𝐽 
𝐽𝑞  CCR  Pr(tie) 

𝑞{100} 𝑞{110} 𝑞{111}  𝜶000 𝜶100 𝜶110 𝜶111  𝜶000 𝜶100 𝜶110 𝜶111 

3-1 3 1 1 1  0.85 0.77 0.77 0.86  0.09 0.10 0.08 0.09 

3-2 4 2 1 1  0.90 0.77 0.80 0.85  0.17 0.23 0.03 0.09 

3-3 4 1 2 1  0.89 0.81 0.80 0.89  0.04 0.15 0.15 0.03 

3-4 4 1 1 2  0.85 0.80 0.77 0.89  0.10 0.03 0.23 0.17 

3-5 5 3 1 1  0.95 0.84 0.79 0.86  0.03 0.08 0.03 0.08 

3-6 5 1 3 1  0.89 0.87 0.87 0.89  0.02 0.02 0.03 0.03 

3-7 5 1 1 3  0.85 0.80 0.83 0.96  0.08 0.03 0.09 0.03 

3-8 6 2 2 2  0.89 0.82 0.81 0.89  0.18 0.33 0.33 0.19 

3-9 7 3 2 2  0.97 0.86 0.81 0.89  0.01 0.18 0.32 0.18 

3-10 7 2 3 2  0.89 0.88 0.88 0.90  0.18 0.18 0.17 0.17 

3-11 7 2 2 3  0.89 0.81 0.86 0.97  0.19 0.31 0.19 0.01 

3-12 8 4 2 2  0.97 0.86 0.82 0.89  0.05 0.23 0.33 0.19 

3-13 8 2 4 2  0.90 0.87 0.88 0.90  0.18 0.22 0.22 0.19 

3-14 8 2 2 4  0.89 0.81 0.87 0.97  0.20 0.31 0.22 0.05 

3-15 9 3 3 3  0.97 0.94 0.94 0.97  0.01 0.01 0.01 0.01 

Note: J = test length; 𝐽𝑞 = number of items with a certain q-vector; CCR = correct classification rate.  
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Table 25: NPC results for H3.3  

Q 𝐽 
𝐽𝑞  CCR  Pr(tie) 

𝑞{100} 𝑞{110} 𝑞{001} 𝑞{111}  𝜶000 𝜶100 𝜶110 𝜶111  𝜶000 𝜶100 𝜶110 𝜶111 

3-1 3 1 1 1 0  0.81 0.72 0.78 0.81  0.17 0.02 0.08 0.02 

3-2 4 2 1 1 0  0.88 0.75 0.80 0.80  0.16 0.14 0.02 0.01 

3-3 4 1 2 1 0  0.85 0.72 0.80 0.81  0.11 0.18 0.17 0.18 

3-4 4 1 1 1 1  0.81 0.72 0.76 0.83  0.17 0.05 0.24 0.24 

3-5 5 3 1 1 0  0.95 0.78 0.80 0.81  0.04 0.00 0.02 0.00 

3-6 5 1 3 1 0  0.85 0.79 0.87 0.87  0.11 0.01 0.02 0.00 

3-7 5 1 1 1 2  0.81 0.72 0.80 0.95  0.17 0.04 0.15 0.02 

3-8 6 2 2 2 0  0.88 0.75 0.80 0.80  0.19 0.44 0.33 0.33 

3-9 7 3 2 2 0  0.97 0.78 0.81 0.81  0.01 0.31 0.33 0.32 

3-10 7 2 3 2 0  0.89 0.79 0.87 0.87  0.19 0.32 0.18 0.18 

3-11 7 2 2 2 1  0.88 0.74 0.86 0.95  0.19 0.44 0.18 0.01 

3-12 8 4 2 2 0  0.96 0.78 0.80 0.81  0.05 0.35 0.34 0.33 

3-13 8 2 4 2 0  0.89 0.79 0.87 0.87  0.19 0.36 0.22 0.23 

3-14 8 2 2 2 2  0.88 0.73 0.86 0.95  0.20 0.43 0.23 0.08 

3-15 9 3 3 3 0  0.96 0.91 0.94 0.94  0.01 0.00 0.01 0.00 

Note: J = test length; 𝐽𝑞 = number of items with a certain q-vector; CCR = correct classification rate.  
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Table 26: NPC results for H3.4  

Q 𝐽 
𝐽𝑞  CCR  Pr(tie) 

𝑞{100} 𝑞{010} 𝑞{110} 𝑞{111}  𝜶000 𝜶100 𝜶110 𝜶111  𝜶000 𝜶100 𝜶110 𝜶111 

3-1 3 1 1 0 1  0.81 0.76 0.73 0.81  0.02 0.08 0.02 0.17 

3-2 4 2 1 0 1  0.81 0.78 0.73 0.84  0.19 0.25 0.17 0.11 

3-3 4 1 1 1 1  0.80 0.78 0.76 0.88  0.03 0.15 0.22 0.04 

3-4 4 1 1 0 2  0.80 0.81 0.73 0.88  0.01 0.02 0.14 0.16 

3-5 5 3 1 0 1  0.87 0.83 0.79 0.85  0.00 0.08 0.01 0.11 

3-6 5 1 1 2 1  0.81 0.82 0.86 0.88  0.02 0.10 0.02 0.04 

3-7 5 1 1 0 3  0.81 0.80 0.78 0.95  0.00 0.02 0.01 0.04 

3-8 6 2 2 0 2  0.81 0.80 0.73 0.88  0.33 0.34 0.45 0.20 

3-9 7 3 2 0 2  0.87 0.86 0.80 0.90  0.18 0.19 0.32 0.18 

3-10 7 2 2 1 2  0.81 0.86 0.86 0.89  0.32 0.18 0.19 0.17 

3-11 7 2 2 0 3  0.81 0.81 0.80 0.97  0.32 0.31 0.31 0.01 

3-12 8 4 2 0 2  0.87 0.87 0.79 0.89  0.22 0.24 0.36 0.18 

3-13 8 2 2 2 2  0.80 0.86 0.86 0.89  0.33 0.23 0.25 0.19 

3-14 8 2 2 0 4  0.81 0.81 0.78 0.96  0.34 0.32 0.36 0.06 

3-15 9 3 3 0 3  0.95 0.94 0.92 0.96  0.00 0.01 0.00 0.01 

Note: J = test length; 𝐽𝑞 = number of items with a certain q-vector; CCR = correct classification rate.  
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Table 27: NPC results for H4.1  

Q 𝐽 
CCR  Pr(tie) 

𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111  𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111 

4-1 4 0.65 0.65 0.65 0.65 0.66  0.00 0.00 0.00 0.00 0.00 

4-2 5 0.66 0.64 0.66 0.65 0.66  0.17 0.18 0.18 0.19 0.18 

4-3 5 0.65 0.64 0.68 0.68 0.68  0.03 0.17 0.25 0.24 0.25 

4-4 5 0.67 0.67 0.64 0.72 0.70  0.00 0.02 0.14 0.28 0.29 

4-5 5 0.66 0.65 0.64 0.64 0.73  0.00 0.00 0.02 0.13 0.33 

4-6 6 0.71 0.72 0.71 0.70 0.71  0.00 0.00 0.00 0.00 0.00 

4-7 6 0.67 0.68 0.76 0.77 0.77  0.01 0.08 0.02 0.02 0.02 

4-8 6 0.66 0.65 0.67 0.84 0.84  0.00 0.02 0.06 0.03 0.03 

4-9 6 0.65 0.65 0.65 0.67 0.90  0.00 0.00 0.01 0.06 0.04 

4-10 8 0.66 0.66 0.66 0.65 0.66  0.54 0.55 0.54 0.56 0.55 

4-11 9 0.71 0.71 0.71 0.70 0.71  0.44 0.45 0.46 0.45 0.45 

4-12 9 0.64 0.71 0.77 0.77 0.76  0.55 0.44 0.32 0.33 0.34 

4-13 9 0.66 0.64 0.70 0.83 0.84  0.54 0.55 0.45 0.20 0.19 

4-14 9 0.66 0.65 0.65 0.69 0.91  0.54 0.54 0.55 0.45 0.03 

4-15 10 0.71 0.71 0.72 0.71 0.71  0.46 0.48 0.47 0.47 0.47 

4-16 10 0.66 0.70 0.76 0.77 0.77  0.54 0.48 0.38 0.39 0.38 

4-17 10 0.64 0.66 0.70 0.83 0.84  0.56 0.55 0.48 0.27 0.27 

4-18 10 0.65 0.66 0.65 0.71 0.91  0.54 0.54 0.55 0.47 0.14 

4-19 12 0.90 0.89 0.89 0.89 0.89  0.00 0.00 0.00 0.00 0.00 

 

Table 28: NPC results for H4.2  

Q 𝐽 
CCR  Pr(tie) 

𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111  𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111 

4-1 4 0.85 0.76 0.74 0.77 0.86  0.10 0.10 0.16 0.09 0.10 

4-2 5 0.89 0.76 0.76 0.77 0.84  0.17 0.23 0.11 0.09 0.09 

4-3 5 0.88 0.79 0.76 0.79 0.85  0.03 0.16 0.22 0.04 0.09 

4-4 5 0.85 0.79 0.76 0.79 0.88  0.10 0.04 0.22 0.16 0.03 

4-5 5 0.85 0.78 0.76 0.78 0.88  0.09 0.10 0.10 0.23 0.18 

4-6 6 0.96 0.82 0.77 0.77 0.84  0.03 0.10 0.11 0.09 0.11 

4-7 6 0.88 0.86 0.81 0.80 0.85  0.03 0.02 0.11 0.03 0.09 

4-8 6 0.86 0.80 0.82 0.87 0.89  0.10 0.04 0.12 0.02 0.03 

4-9 6 0.85 0.76 0.76 0.82 0.96  0.09 0.09 0.12 0.09 0.02 

4-10 8 0.89 0.80 0.79 0.80 0.89  0.18 0.34 0.34 0.33 0.19 

4-11 9 0.97 0.87 0.80 0.82 0.89  0.01 0.17 0.32 0.32 0.19 

4-12 9 0.89 0.88 0.86 0.81 0.89  0.17 0.17 0.20 0.32 0.18 

4-13 9 0.89 0.81 0.86 0.87 0.90  0.19 0.31 0.19 0.18 0.17 

4-14 9 0.89 0.79 0.80 0.87 0.97  0.19 0.33 0.34 0.18 0.01 

4-15 10 0.97 0.88 0.80 0.80 0.89  0.05 0.22 0.34 0.33 0.19 

4-16 10 0.90 0.87 0.87 0.82 0.89  0.18 0.22 0.23 0.32 0.19 

4-17 10 0.89 0.81 0.86 0.87 0.89  0.20 0.33 0.23 0.22 0.19 

4-18 10 0.89 0.82 0.80 0.87 0.97  0.19 0.32 0.34 0.23 0.06 

4-19 12 0.97 0.95 0.94 0.95 0.97  0.01 0.01 0.02 0.01 0.01 
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Table 29: NPC results for H4.3  

Q 𝐽 
CCR  Pr(tie) 

𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111  𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111 

4-1 4 0.77 0.70 0.70 0.76 0.76  0.09 0.09 0.10 0.09 0.09 

4-2 5 0.79 0.69 0.72 0.76 0.76  0.18 0.24 0.03 0.09 0.10 

4-3 5 0.80 0.73 0.73 0.79 0.80  0.03 0.15 0.14 0.03 0.03 

4-4 5 0.76 0.71 0.69 0.79 0.79  0.10 0.03 0.23 0.17 0.16 

4-5 5 0.77 0.69 0.70 0.76 0.82  0.09 0.09 0.11 0.22 0.24 

4-6 6 0.86 0.76 0.73 0.76 0.76  0.02 0.09 0.03 0.09 0.09 

4-7 6 0.81 0.77 0.78 0.80 0.79  0.02 0.03 0.03 0.02 0.03 

4-8 6 0.75 0.72 0.76 0.87 0.86  0.10 0.03 0.09 0.02 0.03 

4-9 6 0.76 0.69 0.69 0.79 0.94  0.10 0.09 0.10 0.15 0.04 

4-10 8 0.80 0.72 0.73 0.81 0.81  0.34 0.46 0.45 0.34 0.33 

4-11 9 0.87 0.77 0.74 0.81 0.79  0.19 0.34 0.44 0.32 0.35 

4-12 9 0.81 0.78 0.80 0.81 0.80  0.33 0.33 0.32 0.31 0.32 

4-13 9 0.80 0.72 0.78 0.86 0.87  0.34 0.45 0.33 0.19 0.18 

4-14 9 0.80 0.73 0.73 0.85 0.95  0.34 0.46 0.44 0.18 0.01 

4-15 10 0.88 0.78 0.73 0.80 0.80  0.22 0.38 0.46 0.34 0.34 

4-16 10 0.80 0.78 0.78 0.81 0.80  0.33 0.36 0.37 0.32 0.33 

4-17 10 0.80 0.72 0.78 0.87 0.88  0.33 0.46 0.37 0.23 0.22 

4-18 10 0.80 0.73 0.72 0.86 0.94  0.33 0.44 0.46 0.23 0.09 

4-19 12 0.94 0.91 0.92 0.94 0.95  0.01 0.01 0.01 0.01 0.00 

 

Table 30: NPC results for H4.4  

Q 𝐽 
CCR  Pr(tie) 

𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111  𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111 

4-1 4 0.84 0.73 0.69 0.78 0.76  0.10 0.16 0.09 0.09 0.09 

4-2 5 0.87 0.74 0.73 0.77 0.76  0.18 0.29 0.03 0.09 0.10 

4-3 5 0.86 0.79 0.73 0.80 0.81  0.05 0.14 0.13 0.03 0.03 

4-4 5 0.83 0.76 0.70 0.77 0.79  0.10 0.11 0.24 0.25 0.17 

4-5 5 0.86 0.73 0.69 0.76 0.75  0.09 0.16 0.11 0.23 0.24 

4-6 6 0.96 0.78 0.74 0.79 0.76  0.03 0.17 0.03 0.08 0.09 

4-7 6 0.89 0.86 0.78 0.80 0.78  0.03 0.04 0.02 0.02 0.02 

4-8 6 0.85 0.76 0.75 0.83 0.86  0.09 0.11 0.09 0.08 0.02 

4-9 6 0.85 0.72 0.69 0.79 0.80  0.09 0.16 0.10 0.15 0.15 

4-10 8 0.88 0.80 0.73 0.80 0.81  0.19 0.33 0.44 0.34 0.33 

4-11 9 0.97 0.85 0.73 0.80 0.81  0.01 0.20 0.44 0.34 0.33 

4-12 9 0.90 0.87 0.79 0.81 0.81  0.18 0.19 0.30 0.31 0.32 

4-13 9 0.89 0.80 0.78 0.87 0.87  0.18 0.32 0.33 0.19 0.18 

4-14 9 0.88 0.79 0.73 0.85 0.86  0.19 0.34 0.44 0.19 0.18 

4-15 10 0.97 0.86 0.73 0.80 0.79  0.05 0.23 0.43 0.34 0.34 

4-16 10 0.89 0.87 0.79 0.81 0.80  0.19 0.22 0.36 0.33 0.33 

4-17 10 0.88 0.81 0.77 0.86 0.88  0.19 0.34 0.37 0.23 0.22 

4-18 10 0.89 0.80 0.71 0.86 0.86  0.19 0.33 0.45 0.22 0.23 

4-19 12 0.97 0.94 0.92 0.94 0.94  0.01 0.01 0.01 0.01 0.01 
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Table 31: NPC results for H4.5  

Q 𝐽 
CCR  Pr(tie) 

𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111  𝛼0000 𝛼1000 𝛼1100 𝛼1110 𝛼1111 

4-1 4 0.81 0.76 0.77 0.70 0.73  0.03 0.08 0.08 0.09 0.16 

4-2 5 0.81 0.79 0.77 0.70 0.75  0.18 0.18 0.26 0.23 0.10 

4-3 5 0.81 0.78 0.79 0.72 0.80  0.03 0.16 0.16 0.27 0.04 

4-4 5 0.80 0.80 0.80 0.72 0.79  0.01 0.03 0.03 0.14 0.14 

4-5 5 0.80 0.76 0.75 0.73 0.73  0.02 0.09 0.10 0.03 0.30 

4-6 6 0.88 0.86 0.83 0.75 0.76  0.01 0.02 0.09 0.09 0.11 

4-7 6 0.81 0.84 0.83 0.81 0.78  0.02 0.08 0.08 0.11 0.04 

4-8 6 0.82 0.80 0.80 0.78 0.85  0.00 0.02 0.02 0.02 0.04 

4-9 6 0.80 0.77 0.77 0.73 0.79  0.02 0.09 0.09 0.04 0.16 

4-10 8 0.80 0.79 0.80 0.71 0.80  0.33 0.34 0.34 0.46 0.34 

4-11 9 0.87 0.87 0.86 0.78 0.80  0.18 0.18 0.19 0.33 0.33 

4-12 9 0.81 0.87 0.87 0.84 0.82  0.32 0.18 0.17 0.19 0.31 

4-13 9 0.81 0.81 0.80 0.78 0.87  0.33 0.31 0.32 0.32 0.19 

4-14 9 0.81 0.80 0.81 0.73 0.85  0.33 0.33 0.34 0.42 0.20 

4-15 10 0.87 0.88 0.86 0.77 0.81  0.22 0.22 0.23 0.37 0.33 

4-16 10 0.81 0.87 0.86 0.84 0.81  0.34 0.23 0.22 0.26 0.33 

4-17 10 0.81 0.80 0.81 0.79 0.87  0.33 0.33 0.33 0.36 0.23 

4-18 10 0.81 0.80 0.80 0.73 0.85  0.33 0.35 0.34 0.44 0.23 

4-19 12 0.94 0.94 0.94 0.91 0.94  0.00 0.01 0.01 0.01 0.01 
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Table 32: NPC results for H5.1  

Q 𝐽 
CCR  Pr(tie) 

𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111  𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111 

5-1 5 0.58 0.58 0.60 0.59 0.59 0.59  0.00 0.00 0.00 0.00 0.00 0.00 

5-2 6 0.58 0.59 0.58 0.59 0.59 0.60  0.18 0.17 0.18 0.18 0.19 0.18 

5-3 6 0.60 0.59 0.62 0.60 0.61 0.61  0.03 0.16 0.23 0.24 0.25 0.23 

5-4 6 0.58 0.59 0.57 0.64 0.62 0.64  0.00 0.02 0.16 0.29 0.30 0.29 

5-5 6 0.60 0.60 0.59 0.58 0.66 0.66  0.00 0.00 0.02 0.13 0.34 0.33 

5-6 6 0.59 0.58 0.59 0.59 0.56 0.69  0.00 0.00 0.00 0.02 0.12 0.35 

5-7 7 0.63 0.62 0.63 0.64 0.65 0.63  0.00 0.00 0.00 0.00 0.00 0.00 

5-8 7 0.60 0.62 0.69 0.70 0.68 0.69  0.01 0.08 0.02 0.02 0.02 0.02 

5-9 7 0.58 0.60 0.60 0.76 0.75 0.76  0.00 0.02 0.07 0.03 0.03 0.03 

5-10 7 0.59 0.58 0.59 0.60 0.81 0.81  0.00 0.00 0.01 0.06 0.04 0.04 

5-11 7 0.58 0.57 0.59 0.59 0.61 0.88  0.00 0.00 0.00 0.01 0.06 0.06 

5-12 10 0.59 0.59 0.60 0.59 0.59 0.60  0.63 0.63 0.63 0.63 0.63 0.63 

5-13 11 0.65 0.64 0.64 0.63 0.64 0.64  0.54 0.56 0.55 0.54 0.55 0.55 

5-14 11 0.59 0.62 0.69 0.68 0.69 0.69  0.63 0.55 0.44 0.46 0.45 0.45 

5-15 11 0.58 0.60 0.64 0.76 0.75 0.76  0.64 0.63 0.53 0.33 0.34 0.33 

5-16 11 0.60 0.59 0.60 0.62 0.81 0.81  0.64 0.62 0.62 0.56 0.21 0.21 

5-17 11 0.58 0.59 0.59 0.59 0.63 0.89  0.64 0.64 0.63 0.63 0.54 0.05 

5-18 12 0.63 0.64 0.63 0.64 0.64 0.63  0.58 0.57 0.56 0.57 0.58 0.57 

5-19 12 0.59 0.63 0.69 0.69 0.68 0.68  0.64 0.57 0.49 0.50 0.51 0.51 

5-20 12 0.59 0.60 0.64 0.75 0.76 0.75  0.63 0.63 0.56 0.40 0.40 0.40 

5-21 12 0.59 0.59 0.58 0.63 0.83 0.83  0.63 0.62 0.63 0.57 0.29 0.28 

5-22 12 0.58 0.61 0.60 0.59 0.62 0.89  0.64 0.61 0.63 0.63 0.57 0.17 

5-23 15 0.87 0.88 0.87 0.86 0.87 0.88  0.00 0.00 0.00 0.00 0.00 0.00 
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Table 33: NPC results for H5.2  

Q 𝐽 
CCR  Pr(tie) 

𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111  𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111 

5-1 5 0.85 0.76 0.72 0.73 0.76 0.85  0.10 0.10 0.17 0.16 0.10 0.11 

5-2 6 0.89 0.77 0.75 0.72 0.76 0.84  0.17 0.24 0.11 0.17 0.09 0.10 

5-3 6 0.87 0.79 0.77 0.76 0.76 0.85  0.04 0.16 0.22 0.11 0.10 0.09 

5-4 6 0.84 0.79 0.75 0.76 0.78 0.85  0.11 0.04 0.22 0.22 0.04 0.10 

5-5 6 0.85 0.76 0.76 0.76 0.78 0.88  0.09 0.10 0.12 0.23 0.16 0.04 

5-6 6 0.84 0.76 0.72 0.76 0.76 0.89  0.11 0.09 0.17 0.11 0.25 0.17 

5-7 7 0.96 0.82 0.77 0.74 0.77 0.84  0.03 0.11 0.11 0.16 0.09 0.10 

5-8 7 0.89 0.86 0.82 0.76 0.76 0.85  0.03 0.02 0.10 0.11 0.09 0.09 

5-9 7 0.84 0.80 0.82 0.82 0.80 0.85  0.09 0.03 0.12 0.11 0.03 0.09 

5-10 7 0.85 0.77 0.76 0.83 0.86 0.89  0.09 0.09 0.11 0.11 0.02 0.02 

5-11 7 0.85 0.76 0.73 0.77 0.83 0.96  0.09 0.09 0.16 0.10 0.09 0.03 

5-12 10 0.89 0.79 0.79 0.80 0.80 0.89  0.19 0.34 0.35 0.35 0.33 0.19 

5-13 11 0.97 0.87 0.80 0.79 0.81 0.89  0.01 0.18 0.33 0.33 0.32 0.19 

5-14 11 0.89 0.87 0.86 0.80 0.80 0.89  0.17 0.19 0.19 0.33 0.34 0.20 

5-15 11 0.89 0.82 0.87 0.86 0.81 0.88  0.18 0.32 0.19 0.19 0.32 0.20 

5-16 11 0.88 0.81 0.80 0.86 0.87 0.89  0.20 0.32 0.32 0.19 0.18 0.17 

5-17 11 0.89 0.80 0.79 0.80 0.86 0.97  0.19 0.33 0.34 0.33 0.19 0.01 

5-18 12 0.97 0.86 0.80 0.79 0.80 0.89  0.05 0.23 0.33 0.36 0.33 0.19 

5-19 12 0.90 0.86 0.86 0.81 0.80 0.89  0.19 0.23 0.23 0.33 0.32 0.19 

5-20 12 0.89 0.81 0.86 0.87 0.80 0.89  0.18 0.33 0.24 0.22 0.35 0.19 

5-21 12 0.88 0.80 0.79 0.86 0.88 0.90  0.20 0.33 0.34 0.23 0.22 0.18 

5-22 12 0.89 0.79 0.80 0.79 0.86 0.97  0.18 0.34 0.33 0.34 0.23 0.05 

5-23 15 0.97 0.95 0.93 0.94 0.94 0.97  0.01 0.01 0.01 0.02 0.01 0.01 
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Table 34: NPC results for H5.3  

Q 𝐽 
CCR  Pr(tie) 

𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111  𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111 

5-1 5 0.84 0.68 0.62 0.70 0.73 0.73  0.10 0.20 0.09 0.07 0.02 0.01 

5-2 6 0.86 0.69 0.64 0.69 0.73 0.73  0.18 0.34 0.04 0.09 0.02 0.00 

5-3 6 0.87 0.77 0.65 0.71 0.72 0.71  0.06 0.15 0.13 0.03 0.01 0.00 

5-4 6 0.84 0.72 0.62 0.72 0.74 0.74  0.11 0.16 0.23 0.17 0.17 0.17 

5-5 6 0.83 0.68 0.63 0.68 0.75 0.76  0.11 0.22 0.11 0.23 0.25 0.24 

5-6 6 0.84 0.68 0.62 0.69 0.71 0.78  0.11 0.21 0.09 0.11 0.17 0.31 

5-7 7 0.95 0.74 0.64 0.70 0.73 0.72  0.03 0.22 0.04 0.07 0.02 0.00 

5-8 7 0.88 0.84 0.70 0.72 0.72 0.72  0.03 0.06 0.02 0.02 0.01 0.00 

5-9 7 0.84 0.71 0.67 0.79 0.79 0.79  0.10 0.18 0.08 0.02 0.01 0.00 

5-10 7 0.83 0.68 0.62 0.72 0.86 0.86  0.11 0.22 0.10 0.14 0.02 0.02 

5-11 7 0.83 0.69 0.62 0.69 0.74 0.93  0.12 0.22 0.10 0.09 0.09 0.03 

5-12 10 0.88 0.80 0.64 0.72 0.73 0.73  0.19 0.34 0.55 0.45 0.45 0.44 

5-13 11 0.97 0.84 0.66 0.71 0.73 0.73  0.01 0.20 0.53 0.46 0.45 0.45 

5-14 11 0.90 0.87 0.70 0.73 0.72 0.74  0.18 0.18 0.45 0.45 0.46 0.43 

5-15 11 0.89 0.78 0.70 0.78 0.79 0.79  0.18 0.34 0.46 0.34 0.33 0.33 

5-16 11 0.89 0.77 0.66 0.77 0.86 0.85  0.19 0.36 0.55 0.34 0.19 0.19 

5-17 11 0.88 0.78 0.66 0.71 0.78 0.93  0.20 0.35 0.54 0.46 0.31 0.02 

5-18 12 0.97 0.85 0.65 0.72 0.72 0.73  0.05 0.24 0.55 0.47 0.46 0.45 

5-19 12 0.90 0.87 0.71 0.73 0.73 0.73  0.18 0.23 0.47 0.46 0.44 0.45 

5-20 12 0.89 0.78 0.69 0.78 0.79 0.80  0.19 0.35 0.49 0.37 0.37 0.35 

5-21 12 0.88 0.78 0.67 0.77 0.85 0.85  0.19 0.35 0.54 0.38 0.25 0.24 

5-22 12 0.88 0.79 0.66 0.72 0.78 0.93  0.19 0.34 0.54 0.46 0.37 0.11 

5-23 15 0.97 0.93 0.89 0.91 0.91 0.92  0.00 0.02 0.01 0.01 0.00 0.00 
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Table 35: NPC results for H5.4 

Q 𝐽 
CCR  Pr(tie) 

𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111  𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111 

5-1 5 0.80 0.66 0.61 0.66 0.69 0.74  0.17 0.15 0.09 0.03 0.10 0.02 

5-2 6 0.86 0.66 0.64 0.64 0.70 0.72  0.17 0.27 0.04 0.03 0.08 0.02 

5-3 6 0.83 0.72 0.65 0.66 0.72 0.73  0.12 0.15 0.14 0.14 0.02 0.01 

5-4 6 0.80 0.66 0.61 0.66 0.71 0.74  0.18 0.17 0.24 0.23 0.19 0.19 

5-5 6 0.79 0.65 0.62 0.64 0.75 0.74  0.17 0.16 0.11 0.16 0.23 0.25 

5-6 6 0.80 0.65 0.63 0.66 0.66 0.79  0.17 0.16 0.08 0.05 0.23 0.29 

5-7 7 0.94 0.70 0.65 0.66 0.69 0.73  0.05 0.16 0.03 0.02 0.08 0.02 

5-8 7 0.83 0.76 0.70 0.70 0.72 0.72  0.12 0.05 0.03 0.01 0.02 0.00 

5-9 7 0.80 0.64 0.64 0.76 0.78 0.78  0.18 0.17 0.14 0.02 0.02 0.01 

5-10 7 0.79 0.66 0.61 0.68 0.86 0.85  0.18 0.16 0.10 0.10 0.03 0.02 

5-11 7 0.80 0.65 0.63 0.65 0.70 0.93  0.17 0.16 0.08 0.05 0.14 0.04 

5-12 10 0.88 0.72 0.65 0.66 0.73 0.72  0.19 0.46 0.56 0.54 0.44 0.45 

5-13 11 0.97 0.77 0.67 0.67 0.71 0.73  0.01 0.33 0.53 0.54 0.46 0.44 

5-14 11 0.89 0.79 0.72 0.71 0.72 0.73  0.18 0.33 0.44 0.45 0.44 0.45 

5-15 11 0.87 0.71 0.71 0.77 0.78 0.79  0.21 0.45 0.44 0.32 0.32 0.32 

5-16 11 0.88 0.72 0.66 0.71 0.85 0.85  0.19 0.45 0.55 0.43 0.20 0.19 

5-17 11 0.87 0.71 0.65 0.66 0.77 0.92  0.20 0.46 0.53 0.54 0.33 0.02 

5-18 12 0.97 0.77 0.66 0.66 0.72 0.73  0.06 0.37 0.54 0.54 0.46 0.44 

5-19 12 0.89 0.78 0.69 0.71 0.72 0.73  0.19 0.37 0.49 0.48 0.45 0.45 

5-20 12 0.87 0.73 0.69 0.78 0.79 0.79  0.21 0.44 0.48 0.36 0.36 0.36 

5-21 12 0.88 0.72 0.65 0.72 0.86 0.86  0.20 0.45 0.54 0.46 0.25 0.24 

5-22 12 0.87 0.71 0.65 0.67 0.77 0.93  0.20 0.46 0.55 0.53 0.37 0.11 

5-23 15 0.96 0.91 0.89 0.90 0.92 0.93  0.01 0.02 0.01 0.00 0.01 0.00 
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Table 36: NPC results for H5.5  

Q 𝐽 
CCR  Pr(tie) 

𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111  𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111 

5-1 5 0.73 0.73 0.70 0.62 0.68 0.83  0.00 0.02 0.08 0.09 0.20 0.11 

5-2 6 0.73 0.73 0.69 0.63 0.72 0.84  0.19 0.19 0.24 0.24 0.18 0.11 

5-3 6 0.73 0.71 0.71 0.65 0.76 0.84  0.03 0.16 0.30 0.30 0.12 0.11 

5-4 6 0.72 0.73 0.69 0.67 0.78 0.83  0.01 0.03 0.15 0.33 0.06 0.11 

5-5 6 0.73 0.73 0.72 0.66 0.78 0.87  0.00 0.01 0.03 0.13 0.15 0.06 

5-6 6 0.71 0.73 0.69 0.64 0.70 0.88  0.00 0.02 0.08 0.04 0.32 0.17 

5-7 7 0.79 0.78 0.74 0.67 0.72 0.84  0.00 0.03 0.08 0.09 0.17 0.11 

5-8 7 0.73 0.75 0.81 0.74 0.74 0.84  0.02 0.07 0.10 0.10 0.12 0.10 

5-9 7 0.72 0.72 0.73 0.79 0.78 0.85  0.00 0.02 0.08 0.11 0.06 0.09 

5-10 7 0.73 0.73 0.72 0.69 0.85 0.88  0.00 0.01 0.02 0.03 0.05 0.03 

5-11 7 0.73 0.73 0.69 0.64 0.74 0.95  0.00 0.02 0.08 0.04 0.22 0.03 

5-12 10 0.73 0.74 0.71 0.65 0.79 0.88  0.44 0.44 0.46 0.55 0.34 0.20 

5-13 11 0.79 0.79 0.77 0.70 0.79 0.89  0.32 0.32 0.34 0.45 0.34 0.19 

5-14 11 0.74 0.79 0.84 0.76 0.79 0.89  0.44 0.32 0.19 0.33 0.32 0.19 

5-15 11 0.73 0.73 0.78 0.82 0.82 0.89  0.44 0.44 0.32 0.19 0.31 0.18 

5-16 11 0.73 0.72 0.72 0.71 0.87 0.89  0.44 0.44 0.44 0.44 0.19 0.18 

5-17 11 0.73 0.74 0.73 0.66 0.85 0.97  0.44 0.44 0.44 0.54 0.20 0.01 

5-18 12 0.79 0.79 0.77 0.70 0.80 0.88  0.35 0.35 0.37 0.46 0.32 0.20 

5-19 12 0.73 0.79 0.85 0.77 0.80 0.89  0.44 0.36 0.26 0.37 0.33 0.18 

5-20 12 0.73 0.73 0.77 0.82 0.80 0.89  0.45 0.45 0.36 0.28 0.34 0.19 

5-21 12 0.73 0.72 0.73 0.70 0.86 0.90  0.44 0.45 0.45 0.48 0.22 0.18 

5-22 12 0.73 0.72 0.72 0.67 0.85 0.97  0.45 0.45 0.46 0.53 0.25 0.05 

5-23 15 0.92 0.93 0.92 0.89 0.93 0.97  0.00 0.00 0.01 0.01 0.02 0.01 
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Table 37: NPC results for H5.6  

Q 𝐽 
CCR  Pr(tie) 

𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111  𝛼00000 𝛼10000 𝛼11000 𝛼11100 𝛼11110 𝛼11111 

5-1 5 0.72 0.69 0.65 0.69 0.65 0.79  0.02 0.08 0.03 0.23 0.17 0.17 

5-2 6 0.73 0.69 0.65 0.73 0.67 0.79  0.18 0.25 0.20 0.17 0.11 0.18 

5-3 6 0.72 0.71 0.68 0.75 0.71 0.79  0.03 0.15 0.23 0.12 0.05 0.18 

5-4 6 0.73 0.72 0.66 0.75 0.71 0.83  0.01 0.02 0.15 0.22 0.15 0.13 

5-5 6 0.73 0.69 0.66 0.71 0.75 0.86  0.02 0.08 0.04 0.26 0.20 0.06 

5-6 6 0.73 0.69 0.65 0.73 0.66 0.86  0.02 0.08 0.03 0.17 0.28 0.16 

5-7 7 0.79 0.76 0.71 0.73 0.69 0.80  0.01 0.09 0.02 0.18 0.11 0.17 

5-8 7 0.73 0.75 0.78 0.75 0.70 0.81  0.02 0.09 0.03 0.12 0.05 0.17 

5-9 7 0.74 0.72 0.72 0.82 0.78 0.84  0.01 0.03 0.01 0.13 0.05 0.12 

5-10 7 0.72 0.70 0.66 0.74 0.84 0.87  0.01 0.07 0.03 0.22 0.05 0.04 

5-11 7 0.73 0.69 0.65 0.72 0.69 0.94  0.02 0.08 0.02 0.18 0.17 0.05 

5-12 10 0.72 0.72 0.66 0.78 0.71 0.87  0.46 0.46 0.53 0.34 0.47 0.20 

5-13 11 0.79 0.78 0.70 0.80 0.72 0.88  0.33 0.33 0.46 0.34 0.45 0.20 

5-14 11 0.73 0.77 0.77 0.80 0.73 0.88  0.45 0.33 0.32 0.32 0.44 0.20 

5-15 11 0.74 0.71 0.71 0.85 0.79 0.89  0.44 0.45 0.45 0.21 0.33 0.18 

5-16 11 0.72 0.72 0.66 0.84 0.85 0.89  0.46 0.46 0.54 0.20 0.17 0.18 

5-17 11 0.73 0.72 0.65 0.80 0.77 0.97  0.46 0.47 0.55 0.34 0.33 0.01 

5-18 12 0.79 0.76 0.71 0.79 0.72 0.87  0.35 0.38 0.46 0.34 0.44 0.21 

5-19 12 0.74 0.77 0.76 0.79 0.72 0.89  0.44 0.38 0.38 0.35 0.47 0.19 

5-20 12 0.73 0.72 0.72 0.85 0.80 0.88  0.46 0.46 0.47 0.24 0.34 0.20 

5-21 12 0.73 0.73 0.66 0.85 0.86 0.89  0.44 0.44 0.54 0.23 0.25 0.19 

5-22 12 0.73 0.72 0.67 0.78 0.76 0.97  0.43 0.46 0.54 0.35 0.37 0.06 

5-23 15 0.92 0.91 0.90 0.93 0.91 0.96  0.00 0.01 0.00 0.02 0.01 0.02 
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5.5 Discussion 

Nonparametric classifications could play an important role in formative classroom 

assessment. Tests developed by the teachers constitute a large part of classroom assessments. With 

the guidance of psychometric theory, teachers may be able to extract more formative feedback. 

Nonparametric classifications based on CDMs offer solutions to both test construction and result 

interpretations. The teachers may develop the items under the guidance of CDM-based assessment 

(Rupp et al., 2010). However, it is not likely to collect enough response data in the classroom 

setting for model estimation (including calibration and classification). Besides, there are concerns 

about the invariance properties of model parameters. In response to these limitations, researchers 

have proposed different nonparametric classification methods to produce student results without 

having to estimate item parameters (Chiu & Douglas, 2013; Chiu, Sun, & Bian, 2018; Wang & 

Douglas, 2015). This study adds to the literature by providing insights into how to construct such 

a test. 

Q-matrix design is at the center of test construction for both parametric and nonparametric 

CDM-based tests. Test construction involves practical questions, including how long the test 

should be and how many items are needed from each type. Note that what we discuss in Chapter 

3 about equivalent q-vectors and different types of Q-matrices also applies to the nonparametric 

situation. Generally, Q-matrix designs that work well for MLE classifications also work well for 

nonparametric classifications. The ties in the hamming distance are parallel to equal or similar 

likelihoods between attribute profiles.  

The simulation study compared Q-matrix designs with 𝐾 to 3 × 𝐾 items. Longer tests were 

not considered because the situation is teacher-developed classroom assessment. It is important to 

include the single-attribute items for nonparametric classifications. Adding an odd number of 
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multiple-attribute items can increase the CCR of a subset of 𝜶s while adding an odd number of 

single-attribute items leads to an increased CCR for every 𝜶. 

It is recommended that a Q-matrix has an odd number of items in each q-vector. A test 

with an even number of items in a certain q-vector is generally not substantially better than a test 

with one less item in this q-vector. This is especially true when the item quality is homogeneous. 

An important implication for teachers is that more items do not necessarily mean more 

accurate classifications. A single-attribute item is generally more useful than a multiple-attribute 

one. However, if the classification of certain 𝜶s, say 𝜶110, is of particular interest, then including 

the appropriate multiple-attribute item (in this case, 𝒒{110}) in the Q-matrix becomes meaningful 

in terms of CCR. 

A classroom assessment network can be built where teachers develop their items based on 

CDMs with q-vectors and the corresponding curriculum identified. Such items can be collected 

from teachers and form various item pools, which can later be used for CD-CAT or nonparametric 

CD-CAT. At last, this study assumes the DINA model as the underlying CDM. Future research 

could explore different Q-matrix designs for NPC with other underlying CDMs.   
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Chapter 6 Item pool design for CD-CAT 

6.1 Introduction 

Item pool design is an important but often neglected area for CD-CAT. Since the item pool 

design for CD-CAT has not been addressed in the literature, we draw from studies on item pool 

design for CAT based on IRT models (e.g., Reckase, 2010; Thissen, Reeve, Bjorner, & Chang, 

2007; Veldkamp & van der Linden, 2000). The findings for IRT-based CAT can be informative 

because CD-CATs are the same sequential optimization problems using CDMs instead of IRT 

models as the item response model. However, the categorical nature of the latent constructs in 

CDM decides that new studies are needed for the CD-CAT context.  

Besides, CD-CAT has different priorities from those of IRT-based CAT. Classroom 

formative assessments are generally low-stakes tests, so test security issues are not of primary 

concern. It is acceptable that tests overlap between students. What is of more importance is to 

assign new items to a student each time he or she takes the test during the instructional period. 

Therefore, different requirements are imposed on item pool design for classroom formative 

assessments as compared to high-stakes standardized tests. 

When a series of formative assessments are needed for one school year’s teaching and 

learning, multiple item pools should be constructed. For example, each unit addresses different 

attributes, so a new item pool may be needed for each unit to support the formative assessment 

when learning a unit. Considering a large number of item pools required for one school year and 

the high cost in item development, it is important to know the minimal size of an item pool that 

satisfies the purposes of a test. 

This study aims to propose an item pool design method for CD-CAT so that the item pool 

can fully support a test. The proposed method will be applied to explore the number of items and 
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item types needed for an item pool for classroom formative assessments under various conditions. 

The item pools obtained will be evaluated in terms of their performances using with a CD-CAT 

algorithm. 

6.2 Method for CD-CAT item pool design  

The proposed method for item pool design borrowed the ideas from Veldkamp and van der 

Linden (2000) and Reckase (2010) for the item pool design of IRT-based CAT. The core of the 

method is computer simulations. 

6.2.1 The minimum optimal pool 

The minimum optimal pool is defined to be the smallest item pool that can provide the 

ideal item at each item-selection step, given the CD-CAT algorithm and test constraints. The 

potential item pool in the case of IRT-based CAT has an infinite number of items. A CDM-based 

item pool, however, has a limited number of item types defined by the q-vectors. For example, an 

item pool for three independent attributes (H3.1) can have seven item types. For three attribute 

hierarchies—H3.2, H3.3, and H3.4—there are three, four, and four item types, respectively, under 

the DINA model, which are listed in Table 7-Table 9.  

Items within an item type only differ in item parameters. The output of the item pool design 

process would be the number of items needed for each item type. In the item writing process, it is 

difficult, if not impossible, to control the level of item parameters, which is especially true for 

complicated item response models. Therefore, we start with an ideal situation in item pool design, 

assuming all items have equally high or low quality — a high-quality condition and a low-quality 

condition yield a range of item numbers. The proposed method can be used for any CD-CAT 

algorithm and test requirement.  
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Below is a brief illustration of the proposed method when applied to a variable-length CD-

CAT. Suppose an examinee with the true attribute profile 𝛂1 = (0 0 0) is taking a CAT measuring 

three linear attributes. The items are calibrated using the DINA model. We further assume that for 

all items the probability of the correct response interval for examinees who have mastered none of 

the required attributes on an item is P(X = 1│𝜶 = 0) = 0.1 and the probability of the correct 

response interval for examinees who have mastered all the required attributes on an item is P(X =

1|𝜶 = 1) = 0.9. The first item is fixed to be 𝒒 = (1 0 0). A simulation of the CAT process using 

the KL algorithm to select items leads to the administration of 2 items when the test terminates 

when the desired accuracy level is achieved, that is the largest π(t)(𝜶l) > .85 . The items 

administered to this examinee are summarized by item type in Table 38. Suppose anther examinee 

with the true attribute profile 𝛂2 = (1 0 0) takes the test, and the items used are also summarized 

in Table 8. Since two examinees can use the same items, a union of the two sets of items leads to 

an item pool for two such examinees. In other words, the maximum number of items from each 

item type among the examinees constitutes the number of items required for two such examinees. 

If a third examinee is to be simulated, the union or maximization can be taken between the set of 

items for the new examinee and the union obtained earlier in Table 38.  

 

Table 38: Item distribution for two hypothetical examinees with true attribute profiles of  
𝛂1 = (0 0 0) and 𝛂2 = (1 0 0) and the union of the two sets of items 

Item type 𝛂1 = (0 0 0) 𝛂2 = (1 0 0) Union/Maximum 

𝒒{100} 2 1 2 

𝒒{010} 0 4 4 

𝒒{001} 0 3 3 
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6.2.2 The minimum p-optimal pool 

After the test is administered to more examinees, the maximum number of items selected 

from each item type among all examinees will eventually become stable except for a few outliers. 

The test is extremely long in these extreme cases.  

Suppose an item pool is designed for measuring three linear attributes given a certain CD-

CAT algorithm. We further assume that all candidate items are of low quality, that is, 

𝑃(𝑋 = 1|𝜶 = 𝟎) = 1 − 𝑃(𝑋 = 1|𝜶 = 𝟏) = 0.3 . The simulations of 1,000 examinees per 

attribute profile produced a distribution of item numbers for each item type. The distribution for 

𝑞{100} is shown in Figure 26.  

An examinee used 44 items of 𝒒{100}  in an extreme case but 95% of the simulated 

examinees only needed 12 items of 𝒒{100} or fewer. The maximum numbers of items for 𝒒{110} 

and 𝒒{111} were 54 and 44, respectively. Therefore, the minimum optimal pool as defined earlier 

would consist of 44 items of 𝒒{100} , 54 items of 𝒒{110} , and 44 items of 𝒒{111} . However, 

considering the need to construct a large number of item pools and the high cost of item 

development, an optimal item pool becomes impractical. If we instead take the pth percentile of 

the distribution instead of the maximum, the size of the item pool will be substantially smaller. 

Such an item pool is called the minimum p-optimal pool.  

 

Figure 26: Distribution of the number of items for 𝒒{100} in an example 
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6.3 Simulation design 

Two sets of simulations will be conducted. The first set of simulations apply the proposed 

item pool design method to construct minimal 95-optimal pools. The second set of simulations 

evaluate the performances of the item pools. We consider item pools involving three attributes. 

The attribute hierarchies in Figure 6 are used. 

Item pools are designed for the following variable-length CD-CAT. All items are calibrated 

by the DINA model. Following the termination rule in Hsu et al. (2013), the variable-length test is 

terminated at stage 𝑡 when the largest π(t)(𝛂c) is greater than or equal to 0.90. The item selection 

criterion is the posterior-weighted KL index (PWKL) proposed by Cheng (2009). The index of 

PWKL was chosen because of its popularity and high attribute profile recovery rate (Xu, Wang & 

Shang, 2016). The first item in a test was fixed to be 𝑞{100} or randomly selected from the subset 

of q-vector for each attribute hierarchy as shown in Table 39. 

 

Table 39: Q-vectors for the first item  

Hierarchy First item 

H3.1  𝒒{100}, 𝒒{010}, 𝒒{001} 

H3.2 𝒒{100}  

H3.3 𝒒{100}  

H3.4 𝒒{100}, 𝒒{010} 

 

In the simulations for item pool design, item quality was held constant for the entire item 

pool. Two item quality levels were simulated. An item pool of high quality has 𝑃(𝑋 = 1|𝜶 = 𝟎) =

1 − 𝑃(𝑋 = 1|𝜶 = 𝟏) = 0.1.  An item pool of low quality has 𝑃(𝑋 = 1|𝜶 = 𝟎) = 1 − 𝑃(𝑋 =

1|𝜶 = 𝟏) = 0.3. The minimal 95-optimal pools were constructed for both item quality levels. 

For both sets of simulations, a total of 1,000 examinees were simulated for each true 

attribute profile. The CD-CAT algorithm described above was used on each simulated examinee. 
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Item responses were generated based on the DINA. A random 𝑈(0, 1) variable 𝑢 is generated. The 

correct response probability 𝑃(𝑋𝑖𝑗 = 1|𝜶) is compared with 𝑢 to decide the response of examinee 

𝑖 to item 𝑗: 

𝑌𝑖𝑗 = {
1  𝑖𝑓 𝑢 ≤ 𝑃(𝑌𝑖𝑗 = 1|𝜶)

0  otherwise                   
. 

(49) 

To evaluate the performance of the item pool design method, we constructed ten minimal 

95-optimal pools for each hierarchy, assuming low item quality. Under each attribute hierarchy, 

ten designed item pools were compared with ten random item pools in terms of test length, the 

percent of times that the precision criterion is met, and CCR. The random item pools have the same 

size as the corresponding designed pool, but the Q-matrix was randomly selected from all the 

available q-vectors. For both designed and random item pools, item parameters 𝜙0 = 𝑃(𝑋 =

1|𝜶 = 𝟎)  and 𝑃(𝑋 = 1|𝜶 = 1)  were generated from the uniform distribution 𝑈(0.1,0.4)  and 

𝑈(0.6,0.9), respectively.  

6.4 Simulation results 

The number of items needed for the minimal 95-optimal pools is shown in Table 39 for 

two item quality levels. The total column presents the size of the item pools. The first row of Table 

40Table 40 describes the item pool designed for three independent attributes (H3.1) assuming low 

item quality. For example, fifteen items of 𝒒{100} are required. The second row shows that only 

four items of 𝒒{100} are required if the item quality is high. 

To test the performance of the proposed item-pool design method, the designed item pools 

were compared with the random pools, and the statistics are summarized in Table 41. The designed 

pool for low item quality was used in the comparison because item parameters for this set of 

simulations were generated from a uniform distribution with the low item quality as a lower bound. 
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Table 40: The minimum 95-optimal pools 

Item quality H 𝑞{100} 𝑞{010}  𝑞{001} 𝑞{110} 𝑞{101} 𝑞{011} 𝑞{111} Total 

Low 3.1 15 15 15 10 10 10 9 84 

High 3.1 4 4 4 2 2 2 2 20 

Low 3.2 12   18   16 46 

High 3.2 4   4   4 12 

Low 3.3 13   16 17  10 56 

High 3.3 4   4 4  2 14 

Low 3.4 15 15  11   14 55 

High 3.4 4 4  2   4 14 

 

Table 41: Comparison between the random and designed item pools 

 

Pool H 

Test length 
Modified  

test length 

%  

criterion  

met 

CCR 

𝜶000 𝜶100 𝜶010 𝜶110 𝜶101 𝜶111 

Random 3.1 12.05 9.60 96.65 0.88 0.91 0.91 0.91 0.91 0.91 

Designed 3.1 9.92 9.24 99.10 0.90 0.92 0.89 0.91 0.93 0.92 

Random 3.2 6.40 5.96 98.89 0.95 0.92  0.92  0.92 

Designed 3.2 6.27 5.87 99.01 0.94 0.91  0.91  0.91 

Random 3.3 8.06 7.03 97.88 0.96 0.89  0.92 0.91 0.92 

Designed 3.3 7.52 7.07 99.11 0.94 0.92  0.90 0.92 0.91 

Random 3.4 8.02 7.11 98.07 0.91 0.92 0.92 0.91  0.91 

Designed 3.4 7.45 6.97 99.00 0.93 0.92 0.93 0.90  0.91 

Note: CCRs for 𝜶001 and 𝜶011 with H3.1 are not presented for brevity. 

 

Take H3.1 for an example. The average test length using the random item pools was 12.05, 

longer than the average test length using the designed pools, which was 9.92. The difference in 

test length is partly due to the percent of times that the precision criterion is met. With random 

pools, the precision criterion was met at an average of 96.65% of the repetitions, which means 

3.35% of the examinees would have to take all the items in the pool. The precision criterion was 

met for 99.10% of the cases on average when using the designed pools. The modified test length 

was calculated by excluding the cases where the precision criterion was never met. The designed 

pools were associated with slightly shorter tests than the random tests after excluding the extreme 

cases. With random or designed item pools, the average CCR for each attribute profile was close 
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to or higher than 0.90, which was the precision criterion. The same conclusion can be drawn for 

other attribute hierarchies except for H3.3, where the modified test length by using designed pools 

was not lower than that by using random pools. 

6.5 Discussion 

An important practical question is how many items are needed for a CD-CAT item pool. 

This type of questions belongs to the research area of the item pool design. Although numerous 

item selection methods have been proposed, the item pool design has been given limited attention. 

This study aims to guide practitioners when CD-CAT is involved. The method for item pool design 

is based on simulations. As Dr. Reckase noted, “there is no correct answer to the question ‘How 

big should a CAT item pool be?’” The proposed method leads to an item pool designed for a 

specific CD-CAT program. 

The concept of the minimum optimal pool is introduced but is deemed impractical. The 

minimum p-optimal pool is defined to be a practical item pool design for a formative assessment 

system. We then demonstrate the construction of minimum p-optimal pools for variable-length 

CD-CAT with two item quality levels and four attribute hierarchies. With designed item pools,  

the precision criterion is supposed to be met with shorter tests compared to with random item pools, 

which was supported by the simulation results.  

Future research may consider the item pool design for fixed-length CD-CAT. Another 

situation worth explored is when a student would take the test multiple times (M = 1, 2, 3, 4) during 

an instruction period (a couple of weeks), and each time new items should be administered to a 

student. 

The 𝑝 in the minimum p-optimal pool take the value of 0.95 in this study but it could also 

take other values. Another variable that can be manipulated is the item quality. Currently, we 
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assume homogeneous item quality between item types, which is a common setting in simulation 

studies. However, it is possible that single-attribute items and multiple-attribute items tend to have 

different levels of item quality, or items involving a certain attribute have lower or higher item 

quality than others. Future research may take heterogeneous item quality into consideration and 

some practical evidence is needed regarding the item quality of different item types. 

Most previous studies are built upon item pools that are calibrated using a single CDM. 

This study uses the DINA model. However, it is likely to observe that different items require 

different processes in practice, which suggests that the item pool may be made up by various 

CDMs (Kaplan, de la Torre, & Barrada, 2015). Recent progress in item-level model selection 

indices provides a theoretical basis for such item pools (Liu, Andersson, Xin, Zhang, & Wang, 

2018; Ma et al., 2015). Suppose multiple-attribute items calibrated by ACDM are also included as 

candidate items. Item selection methods based on KL information, such as PWKL index, would 

always prefer a single-attribute item to a multiple-attribute item under the ACDM. The current 

item pool design method, therefore, would produce an item pool without any ACMD based 

multiple-attribute items. The optimal pool needs to be redefined with mixed models. 
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APPENDIX Hierarchies in Two Textbooks 

Eureka Math Grade 4 (2015) 

                                                   

1 4.OA.1 is not connected with any other Grade 4 standards in the Coherence Map. 

Unit 1 (4 weeks) 

 

4.OA.A.11,  

4.NBT.A.1,  

4.NBT.A.2， 

4.NBT.A.3， 

4.NBT.B.4, 

4.OA.A.3 

Unit 2 (1 week) 

 

4.MD.A.1,  

4.MD.A.2， 

4.OA.A.3 

Unit 3 (8 weeks) 

 

4.MD.A.2， 

4.MD.A.3,  

4.NBT.A.1,  

4.NBT.B.5, 

4.NBT.B.6, 

4.OA.A.1,  

4.OA.A.2,  

4.OA.A.3, 

4.OA.A.4 

Unit 4 (3.3 weeks) 

 

4.G.A.1, 

4.G.A.2,  

4.G.A.3, 

4.MD.C.5,  

4.MD.C.6, 

4.MD.C.7 

 

Unit 5 (8.4 weeks) 
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2 4.OA.C.5 is not connected with any other Grade 4 standards in the Coherence Map. 
3 4.MD.A.3 is not connected with any other Grade 4 standards in the Coherence Map. 

4.MD.A.2 

4.MD.B.4, 

4.NBT.A.3， 

4.NF.A.1, 

4.NF.A.2, 

4.NF.B.3, 

4.NF.B.4, 

4.OA.A.2, 

4.OA.C.52 

 

 

Unit 6 (3.3 weeks) 

 

3.NF.A.3,  

4.NF.A.1, 

4.NF.A.2, 

4.NF.C.5,  

4.NF.C.6, 

4.NF.C.7, 

4.MD.A.1,  

4.MD.A.2， 

4.NBT.A.1 

Unit 7 (3.8 weeks) 

 

3.NF.A.1,  

4.NF.A.1, 

4.NF.B.3, 

3.OA.A.1, 

3.OA.A.2, 

4.OA.A.2, 

4.OA.A.3, 

4.OA.B.4, 

4.MD.A.1,  

4.MD.A.2， 

4.MD.A.33， 

4.NBT.A.2, 

4.NBT.B.4, 

4.NBT.B.5, 

4.NBT.B.6 
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Engage NY Grade 4 (2014) 

Unit 1  

(4 days) 

Unit 2  

(2 days) 

 

4.OA.A.1 4 , 

4.NBT.A.1, 

4.NBT.A.2 

4.NBT.A.2 

Unit 3 

(4 days) 

Unit 4  

(2 days) 

4.NBT.A.3 4.NBT.B.4, 

4.OA.A.3 

Unit 5 

(4 days) 

Unit 6 

(3 days) 

4.NBT.A.2, 

4.NBT.B.4, 

4.OA.A.3 

4.NBT.A.1, 

4.NBT.A.2, 

4.NBT.B.4, 

4.OA.A.3 

Unit 7  

(3 days) 

Unit 8 

(2 days) 

 

4.MD.A.1, 

4.MD.A.2 

4.MD.A.1, 

4.MD.A.2 

Unit 9 

(3 days) 

Unit 10 

(3 days) 

 
 

 

 

 

 

 

4.MD.A.3, 

4.OA.A.1, 

4.OA.A.2, 

4.NBT.B.5  

4.NBT.B.5 

Unit 11 

(5 days) 

Unit 12 

(2 days) 

4.NBT.B.5 4.NBT.B.5, 

4.OA.A.1, 

4.OA.A.2, 

4.OA.A.3 

                                                   

4 4.OA.1 is not connected with any other Grade 4 standards in the Coherence Map. 
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Unit 13 

(9 days) 

Unit 14 

(4 days) 

 

4.NBT.B.6, 

4.OA.A.3 

4.OA.A.4 

Unit 15 

(9 days) 

Unit 16 

(5 days) 

4.NBT.B.6, 

4.OA.A.3, 

4.NBT.B.4, 

4.NBT.B.6, 

4.NBT.A.1 

4.NBT.B.5 

Unit 17 

(4 days) 

Unit 18 

(4 days) 

 

4.G.A.1 4.MD.C.5, 

4.MD.C.6 

Unit 19 

(3 days) 

Unit 20 

(5 days) 

4.MD.C.7 4.G.A.1, 

4.G.A.2, 

4.G.A.3 

Unit 21 

(6 days) 

Unit 22 

(5 days) 

 

3.NF.A.3, 

4.NF.B.4 

4.NF.A.1 

Unit 23 

(4 days) 

Unit 24 

(6 days) 

4.NF.A.2 4.NF.B.3 

Unit 25 

(8 days) 

 
 

 

4.NF.B.3,  

4.NF.B.4,  

4.NF.A.2,  

4.MD.B.4 

Unit 26 

(6 days) 

4.NF.B.3 
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Unit 27 

(6 days) 

 

4.NF.B.4, 4.OA.A.2, 

4.MD.B.4 

Unit 28 

(1 day) 

4.OA.C.55 

Unit 29 

(3 days) 

Unit 30 

(5 days) 

 

4.NF.C.6 4.NF.C.5,  

4.NF.C.6 

Unit 31 

(3 days) 

4.NF.C.7 

Unit 32 

(3 days) 

Unit 33 

(2 days) 

 

4.NF.C.5,  

4.NF.C.6 

4.MD.A.2 

Unit 34 

(5 days) 

 
 

4.MD.A.1,  

4.OA.A.1,  

4.MD.A.2 

Unit 35 

(3 days) 

 

4.MD.A.2,  

4.OA.A.2,  

4.MD.A.1,  

4.NBT.B.5,  

4.NBT.B.6,  

4.OA.A.3 

                                                   

5 4.OA.1 is not connected with any other Grade 4 standards in the Coherence Map. 
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