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ABSTRACT

DEVELOPMENT AND APPLICATION OF EFFECTIVE QUANTUM CHEMICAL
STRATEGIES

By

Prajay Patel

Within the field of computational chemistry, one of the greatest challenges is predicting

thermodynamic properties such as enthalpies of formation and interaction energies to understand

chemical phenomena throughout the periodic table. To predict these properties at a quantitative

level, high-level electronic structure methods, primarily ab initio methods, are used. These

methods are not utilized as often when increasing molecule size due to the significant

computational resources (disk space, memory, CPU time) required. Therefore, effective quantum

chemical schemes that take advantage of numerous cost-effective methods are needed and this

dissertation showcases their development and application towards main group and transition metal

thermochemistry.

In this dissertation, the pKa of late transition metal hydrides, which are important intermediates

in catalytic reactions, were predicted with electronic structure methods including density functional

theory (DFT) and ab initio methods. Insight into the thermochemistry and binding behavior of

these hydrides is key to understanding metal-ligand behavior for inorganic and organometallic

complexes.

To utilize ab initio methods for high accuracy thermochemistry and circumvent their high

computational cost, ab initio composite strategies, such as the correlation consistent Composite

Approach (ccCA), were developed. In an effort to expand the size limitations of composite

methodologies, ccCA was combined with the domain-based local pair natural orbital (DLPNO)

methods. Denoted as DLPNO-ccCA, this method was developed for main group thermochemistry

and targeted one of the largest molecules examined with composite methodologies. This

methodology was expanded to key reaction types in organometallic chemistry, such as olefin

insertion in hydroformylation, the largest volume homogeneous chemical reaction in chemical



industry for chemical production, and metal-ligand dissociation. To investigate the vibrational

behavior of chemical systems found in the interstellar medium, ccCA was used to generate

potential energy surfaces (PESs) characterizing vibrational motion to predict anharmonic

frequencies in tandem with vibrational self-consistent field (VSCF) and post-VSCF theory so that

there is a reduction in the computational cost associated with generating accurate PESs for

anharmonic mode-mode couplings as well as calculating contributions from anharmonic

corrections to the potential.

While ab initio methods are critical for attaining quality thermochemical predictions,

addressing polyatomic molecules of increasing size and complexity, electronic structure methods

like DFT are utilized due to the relative computational cost of DFT compared to ab initio

methods. Applications in this dissertation include the modeling of the frontier orbitals of zinc

porphyrin-fullerene supramolecular dyads with DFT to exhibit intramolecular charge transfer and

the prediction of the binding energies for several drug-like molecules to polymer-based host

compounds that display a binding pocket, which models protein-drug binding interactions, as part

of the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL) blind prediction

competition.
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CHAPTER 1

INTRODUCTION

Computational chemistry emerged as a field of chemistry even before the digital age began.

Seminal work of chemists, mathematicians, and physicists such as Erwin Schrödinger and Douglas

R. Hartree, as well as Chemistry Nobel Laureates John Pople and Walter Kohn, throughout the

20th century constructed the foundation of computational chemistry even before the digital age

began.1–10 With the advent of computers, computational chemistry has become so important

because it can provide valuable insight into chemical processes and properties that are difficult to

measure experimentally and rationale for mechanistic features within known chemical reactions.

There are many sub-fields of computational chemistry which can be categorized based upon their

theoretical foundation such as ab initio methods, density functional theory (DFT), semiempirical

methods, and molecular dynamics. These approaches are used to investigate the vast numbers of

chemical systems ranging from atoms to proteins and semiconductor materials like graphene and

TiO2. Among the more rigorous of these methods are ab initio approaches, or methods based on

first principles, which focus on modeling the electronic structure of atoms and molecules but often

at a high computational cost (memory, disk space, CPU time) relative to DFT and semiempirical

methods.

As computing power doubled every two years, following Moore’s Law observations, the usage

and development of electronic structure methods to account for the rapid increase in computing

power continues to grow, though the complexity of the mathematical approximations that still need

to be made on modern computing resources inhibits that growth. For ab initio methods, numerous

approximations and methods have been developed to reduce the computational cost and predict

thermodynamic properties within the same range of error as their canonical counterparts.15–24

In this dissertation, a focus is upon the development and integration of a number of strategies

–called ab initio composite strategies– to enable cost reduction in the prediction of thermodynamic

properties for both main group and transition metal species. As described in Chapter 3, the pKas of
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several Group 10 transition metal hydrides were predicted utilizing multilevel approaches due to

the molecule size (Section 2.2.5) with DFT and ab initio methods, which provides insight into

models needed for the prediction of thermodynamic properties of transition metal hydrides and

other inorganic complexes that contain sterically bulky ligands.

While density functional methods are more commonly used, particularly for molecules of

increasing size and complexity based on their low computational scaling, computations using ab

initio methods can serve as an effective gauge for computational thermodynamic predictions. For

example, ab initio composite strategies (see Section 2.2.4), which utilizes a combination of lower

cost ab initio methods to effectively model a higher cost ab initio method at a fraction of the

computational cost, can be used to reduce the cost associated with prediction of thermochemical

properties. One such composite approach developed in theWilson group is the correlation consistent

Composite Approach, or ccCA, which has successfully been applied for main group and transition

metal thermochemistry, predicting thermochemical properties like enthalpies of formation, pKas,

and bond dissociation energies within main group chemical accuracy (1 kcal mol−1) and transition

metal chemical accuracy (3 kcal mol−1) on average.25–29

The ccCA variant described in this dissertation in Chapter 4 utilizes the domain-based local pair

natural orbital (DLPNO) methods within the ccCA framework for main group thermochemistry,

denoted as DLPNO-ccCA, to expand the size limitations of ab initio composite methodologies. To

evaluate the efficacy of DLPNO-ccCA for main group thermochemistry, the electronic energies and

enthalpies of formation generated using ccCA, RI-ccCA, which uses the resolution-of-the-identity

(RI) approximation withinMP2 to reduce the computational cost, and DLPNO-ccCA are compared.

DLPNO-ccCA was utilized for linear alkanes up to octane as well as molecular dimers exhibiting

noncovalent interactions such as hydrogen bonding and dispersion including the coronene dimer (72

atoms), which is one of the largest molecule targeted with a composite approach to date. Therefore,

showing the effectiveness of composite strategies and their usefulness for larger main group organic

species.

DLPNO-ccCA was also used for transition metal species and organometallic complexes, as
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shown in Chapter 5. This approach draws on the ccCA variants for the 3d and 4d transition metal-

containing species, ccCA-TM and rp-ccCA, to predict enthalpies of formation, gas phase ligand

dissociation energies, and the regioselectivity of hydroformylation, the largest volume homogeneous

chemical reaction in industry for chemical production. This study shows the applicability of ab

initio composite methods for computational catalysis, which is typically analyzed with density

functional methods.

Vibrational spectroscopy is an important approach for characterizing the structural and

dynamical properties of molecules. Theoretical methods used for vibrational spectroscopy are

often restricted to scaling frequencies within the harmonic approximation or utilizing potential

energy surfaces (PES) generated with computationally costly ab initio methods that characterize

vibrational motion. In Chapter 6, the correlation consistent Composite Approach (ccCA) and

density functional theory (DFT) have been used to generate PES for polyatomic molecules (2-15

atoms). Frequencies, dipole moments, and infrared absorbance intensities are predicted in tandem

with vibrational self-consistent field (VSCF) and post-VSCF theory to reduce the computational

cost associated with generating PESs for anharmonic mode-mode couplings, calculating

contributions from anharmonic corrections to the potential, and predicting vibrational frequencies

within several cm−1.

Additional research described in this dissertation includes a collaborative effort with Francis

D’Souza at the University of North Texas (Chapter 7) to achieve the goal of artificial photosynthesis

by modeling the donor-acceptor ability of zinc porphyrin-fullerene dyads and triads with DFT

through modeling the frontier orbitals.

In Chapter 8, a combination of molecular dynamics, molecular mechanics, and density

functional methods were used for the sixth Statistical Assessments of the Modeling of Proteins

and Ligands (SAMPL) blind prediction challenge for host-guest binding. In this challenge,

participants are expected to predict binding affinities and other properties for small molecules

within a host system. The SAMPL challenge allows for the comparison of methods for binding

affinity prediction by using statistical tools and modeling methods that can be essential for

3



host-guest systems. Empirical dispersion corrections, the RI approximation, and truncated basis

sets were utilized to probe how electronic structure approaches that reduce the computational cost

contribute to predicting binding affinities, which provides insight into favorable quantum chemical

strategies for host-guest binding affinities.

With the wide range of applications, possible applications, and development presented in

this dissertation, including biochemical processes, astrochemistry, artificial photosynthesis, and

organometallic catalysis, the size and complexity of the molecules examined presents the challenges

and successes of modeling organic, inorganic, and organometallic complexes effectively with DFT

and ab initio composite strategies.
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CHAPTER 2

THEORETICAL BACKGROUND

The fundamental equation of quantum mechanics is the time-independent Schrödinger

equation,1

ĤΨ = EΨ (2.1)

in which finding an approximate solution is an integral part of computational chemistry. The

Hamiltonian operator, Ĥ , operates on the wavefunction describing the system of interest, Ψ, and

returns an energy eigenvalue, E, for the wavefunction, which is an eigenfunction by definition. The

Hamiltonian (Ĥ) is the total energy operator that describes the interactions of the N electrons and

theM nuclei with nuclear charge Z via the kinetic energy of the electrons (i, j) and nuclei (A,B),

the nuclei-electron interactions at a distance riA, the electron-electron interactions at a distance rij ,

and the nuclei-nuclei interactions at a distance RAB , as shown in Equation 2.2.

Ĥ =
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2MA
∇2
A −

N∑
i=1

ZA
riA
−

N∑
i=1

N∑
j>1

1

rij
+

N∑
A=1

N∑
B>A

ZAZB
RAB

(2.2)

The difficulty with multi-electron systems is the inadequate description of the electron-electron

interactions, which implies that the Schrödinger equation is only exactly solvable for one-electron

systems. Therefore, approximations must be made to account for the electron-electron interactions

present in chemical systems.

An important approximation is the Born-Oppenheimer approximation,2 which assumes that

the nuclei are stationary relative to the electrons in a system since the nuclei are much heavier

than electrons and that electrons move faster than nuclei giving the appearance of stationary nuclei.

Through this approximation, the Hamiltonian can be reduced to the electronic Hamiltonian,3

Equation 2.3.

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

ZA
riA
−

N∑
i=1

N∑
j>1

1

rij
(2.3)
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Equation 2.3 represents the motion of N electrons in a field of M nuclei. The kinetic energy

term for nuclei is approximated as zero. The nuclei-nuclei Coulombic energy term is a constant

term, not integrated through all space and is thus removed from Equation 2.2. Using the electronic

Hamiltonian results in the electronic Schrödinger equation, Equation 2.4.

ĤelecΨelec = EelecΨelec (2.4)

The electronic wavefunction (Ψelec) is dependent only on the electron spatial coordinates;

however, electrons have a spin component that is included in the overall wavefunction.3 Since the

wavefunction should not be solely described by neither spatial nor spin components, a suitable

principle that combines both descriptions of the electronic wavefunction is required. Starting with

the antisymmetry principle, the electronic wavefunction must change signs with respect to electron

exchange of both the spatial and spin coordinates, Equation 2.5.3

Ψ
(
~x1, . . . , ~xi, . . . , ~xj , . . . , ~xN

)
= −Ψ

(
~x1, . . . , ~xj , . . . , ~xi, . . . , ~xN

)
(2.5)

Equation 2.5 shows an antisymmetric wavefunction with respect to the coordinate vectors for

N electrons. The Hartree product, a many-electron wavefunction that considers non-interacting

electrons, is shown in Equation 2.6.3

ΨHP (~x1, ~x2, . . . , ~xN ) = χi (~x1)χj(~x2) · · ·χk(~xN ) (2.6)

Equation 2.6 shows the Hartree product where χ is the k spin orbitals for N electrons and their

respective spatial and spin coordinates. While theHartree product does not satisfy the antisymmetry

principle outlined in Equation 2.5, a linear combination of these Hartree products is generated to

satisfy this principle. The generalized form of this linear combination is known as a Slater
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determinant, shown in Equation 2.7a.

Ψ (~x1, ~x2, . . . , ~xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1 (~x1) χ2 (~x1)

χ1 (~x2) χ2 (~x2)

· · · χk (~x1)

· · · χk (~x2)

... ...

χ1 (~xN ) χ2 (~xN )

. . . ...

· · · χk (~xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.7a)

=
1√
N !

N !∑
i

(−1)pn Piχ1(~x1) · · ·χk (~xN ) (2.7b)

Equation 2.7a illustrates a Slater determinant where N is the number of electrons, χ is the k

spin orbitals where k is equal to 2N for each position x, the columns are electron orbitals, and the

rows represent electrons. In Equation 2.7b, the
1√
N !

factor is a normalization constant, the (−1)pn

represents the parity of the ith term, and P is a permutation operator acting on the Hartree product,

Equation 2.6. Slater determinants take advantage of the antisymmetry principle by representing a

multi-electron wavefunction in the form of a determinant. Useful properties of a Slater determinant

include the exchange of any two rows or columns, or interchanging two electrons, resulting in a

change of sign of the determinant. Also, any two rows or columns that are identical, indicating two

electrons with the same spin orbital, results in the wavefunction to be zero. Determinants can be

used to satisfy the antisymmetry principle and the Pauli exclusion principle, respectively.

Other approximations used to solve the Schrödinger equation in molecular quantum chemistry

include the combination of a theoretical method and basis set. This work focuses on two major

classes of methods that are used to approximate the Schrödinger equation, wavefunction methods,

or ab initio methods, and Density Functional Theory (DFT).

2.1 Ab initio methods

For ab initio methods, the fundamental approximation is the Hartree-Fock (HF) approximation,

which averages the effects of electron-electron interactions through an average potential νHF (i).4,5

The Fock operator is an effective one-electron operator, shown in Equation 2.8.

f (i) = −1

2
∇2
i −

M∑
A=1

ZA
riA

+νHF (i) (2.8)
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In Equation 2.8, νHF (i) is the average potential of electron i in the field of the other electrons in

the system. Using the Fock operator reduces the multi-electron Schrödinger equation to numerous

one-electron equations. Roothaan-Hall equations are utilized to make the HF equations into a

matrix form as shown in Equation 2.9.

FC = εSC (2.9)

In Equation 2.9, F is the Fock matrix, S is the overlap matrix, C is the coefficient matrix, and ε is

the orbital energy obtained from applying the Fock operator to a wavefunction. The elements of

these matrices represent integrals involving basis functions defined by the linear combination of

atomic orbitals, or LCAO, approximation, shown in Equation 2.10.

Ψi =
K∑
µ=1

Cµiφµ i = 1, 2, . . . , K (2.10)

Equation 2.10 shows the LCAO approximation through K basis functions, denoted by φ,

representing the wavefunction of electron i. The elements of C are the coefficients Cµi from

Equation 2.10. The elements of F are shown in Equation 2.11.

Fµν =

∫
φ∗µ (1) f (1)φν (1) d~r1 (2.11)

Equation 2.11 is the matrix representation of the Fock operator, f(1), with a set of basis functions

φµ.3 The elements of S are shown in Equation 2.12.

Sµν =

∫
φ∗µ (1)φν (1) d~r1 (2.12)

To solve these equations, an initial guess is proposed for the density matrix P, defined as C*C,

based on diagonalizing S, which in turn is used to generate F. Orthogonalizing and diagonalizing

F results in a new guess for C and thus P. This procedure is iterated until the change in energy

and the change in the density matrix is negligible, and thus is called the self-consistent field (SCF)

procedure used to solve for the HF energy.3 The electron correlation energy is defined as the

difference between the exact energy and the HF-calculated energy, as shown in Equation 2.13.

Ecorr = Eexact − EHF (2.13)
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While the correlation energy is a small percentage of the total electronic energy, it can have

a large magnitude.6 Therefore, inclusion of the correlation energy is essential for the accurate

prediction of chemical and physical properties. Post-HF methods recover the correlation energy

not accounted by the HF method by adding excited determinants. One such method is many-

body perturbation theory (MBPT), which utilizes a perturbation expansion with the Hartree-Fock

Hamiltonian as the zeroth-order Hamiltonian.3 Using the Rayleigh-Schrödinger expansion of a

generalized Hamiltonian, Equation 2.14, Møller and Plesset developed Møller-Plesset perturbation

theory (MPPT).

Ĥ = Ĥ0 + λV (2.14)

In Equation 2.14, is the corrected Hamiltonian, is the sum of one-electron Fock operators, λ is

a dimensionless parameter between 0 and 1, and is the perturbation.3,7 The nth-order electronic

energy is termed as the MPn methods. The MPPT Hamiltonian uses the Fock operator as the

zeroth-order Hamiltonian (MP0), which double-counts electron repulsion when using the HF

wavefunction. The MP1 energy eliminates one set of electron-electron interactions through using

the operator. Therefore, the HF energy is the sum of the MP0 and MP1 energies.3,6,8 The first

perturbation that accounts for corrections beyond HF is MP2, which adds a second-order correction

and provides a size-extensive correction at a low cost, Equation 2.15.

E
(2)
1 =

V1nVn1

E
(0)
1 − E(0)

n

(2.15)

Equation 2.15 uses the operator from Equation 2.14 on all doubly excited determinants.

Further expansions via MPPT are not used as often due to the high scaling and computational cost

even though the corrections recover more correlation energy.6 Another approach to recovering

correlation energy is the coupled-cluster method that employs a cluster operator, eT , to the HF

reference wavefunction.9 The cluster operator is defined as the sum of the single (T̂1), double

(T̂2), triple (T̂3),. . . , N-tuple (T̂N ) excitation operator for N electrons, shown in Equation 2.16.

T̂ = T̂1 + T̂2 + T̂3 + . . .+ T̂N (2.16)
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The operator, Equation 2.16, generates all ith excited Slater determinants when operated on the

HF reference wavefunction. The coupled cluster wavefunction is the resulting wavefunction after

operating on the HF reference wavefunction with the exponential of the cluster operator, Equation

2.17.

eT̂ = 1 + T̂ 1 +

(
T̂2 +

1

2
T̂ 2

1

)
+

(
T̂3 + T̂2T̂1 +

1

6
T̂ 3

1

)
+ . . . (2.17)

For the coupled-cluster methods, Equation 2.11 utilizes the Taylor expansion of the exponential

of the cluster operator. This Taylor expansion generates the multiplicative terms (T̂2T̂1) and product

terms (T̂ 2
1 ) that help account for size inconsistency problems that occur in configuration interaction,

or CI, methods.8–10 CI methods are defined by specifying configurations of the spin orbitals

that construct each Slater determinant in reference to the HF wavefunction.3 By generating all

possible excitations for N electrons, full CI is achieved, which is the exact answer to the electronic

Schrödinger equation within a given basis set. Using the same excitation operator defined in

Equation 2.16, CI wavefunctions can be generated using (1+T̂ ) using intermediate normalization

rather than as the excitation operator on the HFwavefunction to produce excited determinants.8 One

of the more popular coupled cluster methods is CCSD(T), which uses coupled cluster with single

excitations, double excitations, and perturbative triple excitations.11 The scaling of a particular

method is a key descriptor for determining computational cost. The Hartree-Fock method scales

as N4, which relies on the relative size of the system, i.e. number of basis functions N .8 Post-HF

methods, such as MP2 and CCSD(T), have a larger scaling due to the inclusion of correlation

energy and more complex operators. MP2 scales at N5 and CCSD(T) scales iteratively at N7.8

2.2 Cost-Saving Wavefunction-based Methods

With increasing molecule size and thus an increasing number of basis functions,

wavefunction-based methods have decreased practicality. This section outlines approaches, e.g.

local correlation methods, composite methods, and multilevel approaches, that reduce the

computational cost associated with (CPU time, memory, disk space) higher level ab initio

methodologies.
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2.2.1 Local Methods

The molecular orbitals –canonical MOs– generated from the diagonalization of the Fock matrix

are characteristically delocalized, even for smaller molecular systems. The short-range effect of

dynamic correlation has a dependence on distance of r-6 like dispersion energy.12 When using

canonical MOs to describe electron correlation, its short-range aspect cannot be properly exploited,

both in terms of gaining a more qualitatively correct picture of the electron correlation relative

to localized MOs and reducing the high computational cost of ab initio methods.13 Hence, the

development of local correlation methods.

The concept of localized MOs was first introduced by Lennard-Jones, Pople, and Hall.14–18

Since then, localization techniques19–23 and local correlation methods24–47 have been developed

to utilize localized occupied MOs to localize the dynamic correlation. Localization imposes a

mathematical constraint of maximum insensitivity for changes in distant nuclear charges, which

allows orbitals to be localized around covalent bonds and atomic lone pairs. Localized MOs

are generated through exploiting the invariance of the Hartree-Fock wave function with respect to

orthogonal transformations, and are popular in their application to occupied orbitals.19–23,48 For the

occupied orbitals, the Foster-Boys (FB)19,20 and the Pipek-Mezey (PM)23 localization techniques

are more widely used compared to the Edmiston-Ruedenberg method.21–23,49 Both the Foster-Boys

and Pipek-Mezey localization techniques scales as N3 (N is the number of basis functions) since

both approaches calculate one-electron dipole integrals and no two-electron integrals, whereas the

Edmiston-Reudenberg scheme scales as N5, which is caused by the calculation of two-electron

integrals.

The Foster-Boys localization approach minimizes the spatial extension of the MOs

fFB[φ] =
N∑
i

|〈φiφi|r1 − r2|φiφi〉|2 (2.18)

or equivalently maximizing the sum of squares between the distances of orbital centroids from the
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origin of the coordinate system.19,20

fFB[φ] =
N∑
i

|〈φi|r|φi〉|2 (2.19)

The Pipek-Mezey localization approach uses the operator expectation value definition of the gross

Mulliken orbital population to define the localized orbitals

fPM =
N∑
i=1

n∑
A=1

(QAii)
2 =

N∑
i=1

n∑
A=1

[〈φi|P̂µ|φi〉]2 (2.20)

where the sum of atomic centers A and QAii is the population of orbital |p〉 on atomic center A.23

The Hermitian operator P̂µ is defined as

P̂µ = P̂
†
µ =

1

2
(|µ̃〉〈µ|+ |µ〉〈µ̃|) (2.21)

where

|µ̃〉 =
∑
ν

(S−1)νµ|ν〉 (2.22)

where S is the overlap matrix (Equation 2.12) and {|µ̃〉} are biorthonormal to the atomic basis

functions {|µ〉}. The localizedMOs for Pipek-Mezey localization are obtained throughmaximizing

Equation 2.20.23 The Pipek-Mezey localization method is the use of Mulliken population analysis,

which suffers from unphysical behavior, i.e. yielding occupation numbers for individual Mulliken

charges that are larger than 1 or less than 0.23,48 The unphysical behavior is caused by overlap

populations that occur from a non-orthogonal AO basis. An alternative Pipek-Mezey scheme

utilizing the Löwdin population analysis has been developed to account for such deficiencies.50

However, regardless of which population analysis method is used, the Pipek-Mezey localization

properly separates σ-π bonds unlike the Foster-Boys localization approach.

For local correlationmethods, the corresponding virtual orbitals are spanned by a set of projected

atomic orbitals (PAOs) or pair natural orbitals (PNOs),24,25,51,52 but have been spanned by localized

virtual Hartree-Fock orbitals.53,54
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2.2.2 Resolution of the Identity Approximation

The resolution of the identity (RI) approximation enables four-center two-electron repulsion

integrals to be expressed as two- and three-centered electron repulsion integrals, reducing the

computational cost of calculating the electron repulsion integrals from O(ζ12) to approximately

O(ζ9).55–57 The RI approximation involves the insertion of an approximate resolution of the

identity into the Hilbert space of two interacting charge densities ρ and ρ̃, where

ρij = ij (2.23a)

for products of molecular orbitals i, j, and

ρ̃ij =
∑

cij,PP (2.23b)

for a linear combination of auxiliary basis functions P with coefficients cij,P .56

Through a minimization of the residual density, ρ-ρ̃, the four-center integrals are approximated

using Equation 2.24, where the sum is over all functions within a fitted auxiliary basis set (see

Section 2.4.3).

(ia|jb) = (ia|1̂|jb) ≈
∑
PQ

(ia|P )(P |Q)−1(Q|jb) (2.24)

In Equation 2.24, (ai|P ) and (P |Q) are the three- and two-center electron repulsion integrals,

respectively, a, b denote virtual molecular orbitals, i, j denote occupied molecular orbitals, and

P,Q denote auxiliary basis functions.58 The RI method has been implemented in post-HF methods

as well, reducing the cost of MP2 calculations while recovering a similar amount of correlation

energy.56 The RI approximation serves a key role in the integral generation for the domain-based

local pair natural orbital methods (see section 2.2.3).

In a standard implementation of the RI approximation, the coulomb and exchange integrals are

fitted to the auxiliary basis set. However, within the RI framework, variants that create auxiliary

basis sets for the coulomb and exchange integrals individually have been developed. Variants

included inChapters 4 and 5 primarily focuses on the contributions fromNeese et al., who developed

a split-J approximation59 and the chain of spheres exchange approximation (COSX)60,61 for the
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coulomb and exchange portion of the Fock matrix, respectively. The Split RI-J algorithm was a

modification of the RI approximation for the Coulomb interaction based on removing redundancies

in calculating the Coulombmatrix. The COSX approximation utilizes a semi-numerical integration

similar to Friesner’s pseudo-spectral method to construct small ‘chains’ of shells of basis functions

with contributions to the exchange matrix above a certain threshold. The combination of the split

RI-J and COSX, or RIJCOSX, is mainly used on molecular systems exceeding 50 atoms including

open-shell transition metal species due to computational efficiency. The RIJCOSX approximation

for the HF wavefunction was considered for 20 closed shell reactions and 9 reactions and yielded a

mean absolute error of 0.19 kcal mol−1 with a maximum absolute error of 0.64 kcal mol−1. The

RIJCOSX wavefunction has been combined with the RI-MP2 method resulting in errors ranging

from 0.01 to 1.2 mEh for organic systems comprised of 30-57 atoms.60 Because of its demonstrated

utility, the RIJCOSX approximation is considered alongside the standard RI approximation for SCF

energies.

2.2.3 Domain-Based Local Pair Natural Orbital Methods

The domain-based local pair natural orbital (DLPNO) methods,62–66 primarily

DLPNO-CCSD(T), have been shown to result in a reduced computational cost relative to the cost

of CCSD(T) for transition metal-based catalysts and larger organic systems such as complex

hydrocarbons and fullerenes while yielding electronic energies within 1 kcal mol−1 from

CCSD(T) electronic energies.67–71 Recent developments of DLPNO methodology utilize sparse

maps that take advantage of the sparsity of data by reducing the number of matrix elements stored

and omitting terms in sums that are smaller than a predefined tolerance to achieve linear scaling

with respect to N basis functions in all major computational steps including the integral

transformation and storage, the initial guess, and the pair natural orbital (PNO)

construction.65,66,72 These are improvements to the original version of DLPNO-CCSD(T) that

was developed by Riplinger et al,62,63 which included terms that scaled by N2 in the screening of

electron pairs. DLPNO-MP2 recovers approximately 99.9% of the RI-MP2 correlation energy64
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and DLPNO-CCSD(T) recovers 92.2% of the canonical triples correction63 and greater than

99.6% of the canonical CCSD(T) correlation energy.63,65

The DLPNO methods use a single determinant reference wave function with the occupied

molecular orbitals (MOs) localized. The Fock matrix is then constructed followed by the

determination of the projected atomic orbitals (PAOs). The refined electron pair prescreening uses

differential overlap integrals (DOI)

DOIik =

√∫
|fi (r)|2 |gk (r)|2 dr (2.25)

where fi and gk are basis functions (square integrable one-electron functions), which are

calculated via numerical integration techniques to achieve linear scaling.64 Domains are selected

via normalized DOI between localized MOs and PAOs. This allows both the occupied and

unoccupied spaces to be taken into account for domain definition as well as ensuring that all PAOs

that have a significant differential overlap with occupied orbital i are included in the correlation

domain.64 This refined prescreening method eliminates fewer electron pairs than the previous

implementation based on multipole estimates and pair correlation energies. The integral

transformation from atomic orbital (AO) basis three-index integrals (µν|K) to (iµ̃|K) follows,

where µ, ν, λ, σ represent AOs,K, L refer to ABS, i, j, k, l denotes localized MOs, and µ̃,ν̃ label

the PAOs. The local exchange operators, Kij
µ̃ν̃ = (iµ̃|jν̃), are then constructed to find the

semi-canonical local MP2 (SC-LMP2) or local MP2 (LMP2) guess amplitudes

T
ij
µ̃ν̃ = −

K
ij
µ̃ν̃

εµ̃ + εν̃ − Fii − Fjj
(2.26)

where εµ̃ and εν̃ are energies of quasi-canonical, non-redundant PAOs, andFii andFjj are diagonal

Fock matrix elements in terms of localized orbitals.21,22 These guess amplitudes generate the pair

density

Dij = TijT̃ij+ + Tij+T̃ij (2.27)

from which the PNOs are approximated via diagonalization.

Beyond these steps, the DLPNO-MP2 and DLPNO-CCSD(T) methods separate as the DLPNO-

CCSD(T) method uses SC-LMP2 as a crude guess for which electron pairs (ij) to include in a
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subsequent SC-LMP2 calculation and coupled cluster iterations whereas DLPNO-MP2 uses the

LMP2 framework to calculate total energies in one iteration. For DLPNO-CCSD(T), an estimate of

the pair correlation energy εij is computed from the electron pairs that survived the prescreening,

which are separated into three classes based on the dimensionless parameters TCutPairs and

TCutPairsMP2. The first class consists of pairs that are included in CCSD calculations (strong

pairs), the second class contains pairs for MP2 that are kept for the triples correction (weak pairs),

and the third class includes pairs that are not considered further. Pairs in the first two classes are

used in amore accurate SC-LMP2 calculation. Pair correlation energy estimates from the third class

are added to the SC-LMP2 energy to approximate the error introduced by local approximations.65

The scaling reduction from N7 to N5 of DLPNO-CCSD(T) lies in the contribution of orbital

triples to the triples energy.63 Orbital triples (ijk) only contribute to the triples energy if the three

pairs (ij), (ik) and (jk) survive the pair selection process. The domain for (ijk) is the union of

the individual orbital domains (i), (j), and (k). Like the generation of PNOs, the triples natural

orbitals (TNOs) are computed from diagonalizing the average of the pair densities for all three

pairs (Equation 2.27) generated from a local, non-redundant PAO basis formed from redundant

PAOs that span the triples domain. The integrals for TNOs are calculated via the RI approximation

through transformations from the redundant PAO basis to the TNO basis for subsets of three-index

electron repulsion integrals. The singles and doubles amplitudes are projected into the TNO basis

through the triples/pair overlap. Intermediates that enter the triples calculation as well as the

actual contribution of a given triple are calculated by the canonical (T) correction.63 (The original

publications provide more details about DLPNO methods and their development.60,63–65,73,74)

2.2.4 Composite Methods

Ab initio composite methods have been around for a long time and are effective approaches to

reduce computational cost. Ab initio composite strategies are those that emulate a more

computationally demanding method by adding up contributions that describe aspects of modeling

quantum chemistry, like relativity, spin-orbit, and contributions from electrons beneath the
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valence shell (sub-valence electrons), all of which increase the computational cost of ab initio

methods. This additive approach can save greater than 90% of the total CPU time. In the case of

CO, using a composite strategy only took 2 minutes whereas using the effective ab initio method a

composite strategy portrays took over 8 hours!

Popularized by John Pople in 1989, ab initio composite methods targeted main group

thermochemistry with the goal of estimating energies yielded by ab initio methods that would

require significant computational resources efficiently.75 Throughout the 1990s, other composite

approaches and improvements of Pople’s composite strategies targeting chemical and

spectroscopic accuracy, which is defined as 1 kcal mol−1 and 1 kJ mol−1, respectively, appeared

and targeted atoms and small polyatomic molecules with more than six non-hydrogen

atoms.72,76–85 In the early 2000s, simultaneous developments of composite strategies targeting

chemical86–90 and spectroscopic91–95 accuracy emerged, primarily for applications in main

group thermochemistry. With the present computing power, composite methodologies have

targeted molecules as large as buckminsterfullerene (C60).96

Though ab initio composite methods have primarily targeted main group thermochemistry

due to the abundance of well-established reliable experiments, there have been limited studies

in the development and application of ab initio composite methods towards transition metal and

f -block thermochemistry as reliable experimental data is sparse.97–107 As well, the chemistry in

this region of the periodic table becomes increasingly more complex due to the d and f electrons,

which contribute to low-lying excited states, i.e. excited states that are close in energy to the

ground state electronic configuration, as well as the significant effects of relativity and spin-orbit

coupling. When formulating composite strategies for transitionmetal and f -block thermochemistry,

all of these factors require the usage of relativistic basis sets and pseudopotentials (see Section

2.4.2), multireference methods that accounts for low-lying excited states, and/or a relativistic

Hamiltonian that includes spin-orbit coupling and scalar relativity, and if needed, higher orders

of relativity. Therefore, the increase in chemical complexity down the periodic table leads to the

development of variants with respect to composite methodologies implemented for main group
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thermochemistry.97–107

Ab initio composite approaches are utilized to predict thermochemical properties like ∆Hf,

ionization potentials, and bond dissociation energies (BDE) within chemical accuracy (1 kcal

mol−1) and spectroscopic accuracy (1 kJ mol−1) reliably throughout the periodic table at a

computational cost significantly less than the effective level of theory. Based on their success for

predicting thermochemical properties for main group, transition metal, and to an extent f -block

molecules, ab initio composite strategies could be used as a gateway to understand reaction

mechanisms, design catalysts, and characterize heavier elements utilizing wavefunction-based

methods.

Ab initio composite approaches are comprised of a reference energy and additive corrections

to the reference energy that account for effects like relativity, spin-orbit, the inclusion of

interactions between sub-valence and valence electrons, and the energy contributions from

numerous simultaneously excited electrons. For the reference, reliable electronic structures

(electron configuration and geometry) and scaling vibrational contributions to the energy are

needed.108 Some composite methods utilize higher cost methods to correct for anharmonicity

through perturbative methods.109,110

Using the optimized structures, single point calculations are done to obtain the reference energy.

This is generally attained through one to three single point calculations involving an ab initiomethod

such as MP2, MP4, or CCSD(T) (see Section 2.1) and increasingly larger basis sets (see Section

2.4). While composite methods have utilized one single calculation to obtain a reference energy,

most will utilize two or three calculations where the method is the same and the basis sets increase

in size. The intention is to find the energy attained with an infinitely large description of the

electron space. This is also known as the complete basis set (CBS) limit. Composite schemes that

target the CBS limit for the reference energy typically utilize the correlation consistent basis sets

to extrapolate to the CBS limit via analytic formulas based on basis set size111,112 and maximum

angular momentum.113,114

Additive corrections are then included to supplement the reference energy in a methodical
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fashion. These corrections to the energy are arising from scalar relativity, spin orbit (from

experimental atomic values), and interactions between valence and sub-valence electrons. When

these corrections are added to the reference energy, the total electronic energy is obtained at a

much lower computational cost than a calculation for the effective level of theory a composite

method achieves.

Many ab initio composite methods have been developed targeting either chemical accuracy or

spectroscopic accuracy. Composite methodologies that target chemical accuracy include the

Gaussian-n (Gn) methods,75–79,89,90,115 Complete Basis Set (CBS-X) method,72,80–84,86,88 and

the correlation consistent Composite Approach (ccCA).87,97,116–122 Classes of composite

methodologies targeting spectroscopic accuracy for thermochemical properties of diatomics and

very small polyatomic molecules (roughly 3-10 atoms) due to the high computational cost of the

methods involved include the Weizmann-n (Wn) methods,85,94,95,123–125 High Accuracy

Extrapolated Ab initio Thermochemistry (HEAT),92,126,127 Feller-Peterson-Dixon (FPD)

method,128,129 and the focal point analysis method.130–135

Composite methodologies that target chemical accuracy are more efficient that those that target

spectroscopic accuracy and allow larger molecules to be studied.136–143 There are many variants of

composite methodologies including ones modified to describe aqueous phase chemistry or expand

to larger molecules.

2.2.4.1 Correlation Consistent Composite Approach

The correlation consistent Composite Approach (ccCA) was created in 2006 by Wilson and

co-workers as an alternative to the Gn methods.87 While successful for s-block and p-block

thermochemistry in the first four periods,144–146 methodological adjustments were made to the

ccCA formulation in 2009, which included scaling vibrational contributions and options for the

extrapolation scheme for the CBS limit.117

The formulation of ccCA is

EccCA = Eref + ∆ECC + ∆ECV + ∆EDK + ∆ESO + ∆EZPE (2.28)
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where Eref is obtained at the MP2/CBS level by combining CBS extrapolations for the SCF

energies and MP2 correlation energies with the aug-cc-pVNZ basis sets. The SCF energy is

extrapolated with the Feller147,148 two-point extrapolation scheme

E (n) = EHF/CBS +Be−Cn (2.29)

where n indicates the ζ-level of the basis set, E(n) is the energy at the nth ζ-level, EHF/CBS

represents the Hartree-Fock electronic energy at the CBS limit, B is a fitting parameter, and 1.63

is used for C.111 To extrapolate the MP2 correlation energies, previous ccCA studies considered

several different extrapolation schemes, including Peterson’s three-point extrapolation scheme149

E (n) = EMP2/CBS +Be−(n−1) + Ce−(n−1)2 (2.30)

where EMP2/CBS represents the electronic energy at the CBS limit, and B and C are fitting

parameters. The Peterson (P) three-point extrapolation uses the double-, triple-, and quadruple-ζ

correlation consistent basis sets. Other extrapolation schemes used in this work include inverse

cubic and quartic equations, commonly referred to as the Schwartz-3 (S3) and Schwartz-4 (S4)

two-point extrapolation schemes, respectively.112,113,150–153

E (lmax) = EMP2/CBS +
B

(lmax)3
(2.31)

E (lmax) = EMP2/CBS +
B(

lmax +
1

2

)4
(2.32)

In Equations 2.31 and 2.32, lmax is the highest angular momentum function included in the

basis set, which differs for main group and transition metals. Both of the S3 and S4 two-point

extrapolation schemes use the lmax of the triple- and quadruple-ζ level basis sets, denoted as S3(TQ)

and S4(TQ). Since the S3 scheme tends to overestimate the energy at the CBS limit due to a slower

convergence rate and the Peterson scheme tends to underestimate the energy at the CBS limit due

to more rapid convergence, the average of both schemes, denoted PS3(TQ), is considered.117,154

The core-core (CC) correlation (∆ECC ) accounts for higher levels of correlation beyond the MP2
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level by using CCSD(T) at the cc-pVTZ level.

∆ECC = E [CCSD(T)/cc-pVTZ]− E [MP2/cc-pVTZ] (2.33)

The core-valence (CV) correction accounts for the n and n-1 orbital shells, where n ≥ 2. This

correction accounts for the interactions between valence and sub-valence electrons whereas the

other composite steps only include valence-valence interactions. The FC1 notation indicates the

inclusion of the n-1 orbital shell.

∆ECV = E [MP2(FC1)/aug-cc-pCVTZ]− E [MP2/aug-cc-pVTZ] (2.34)

The scalar relativistic correction uses the second-order spin-free Douglas Kroll Hess Hamiltonian

to account for scalar relativistic effects.155–157

∆EDK = E [MP2/cc-pVTZ-DK]− E [MP2/cc-pVTZ] (2.35)

Experimental spin-orbit corrections for atoms are applied from tables provided by Moore.158

This formalism is used as the base model and is altered to accommodate the need for relativistic

corrections and effective core potentials for transition metals. For ccCA-TM,116 developed for 3d

transition metals, the modifications from ccCA include the use of scalar relativistic basis sets and

the use of CCSD(T) and an augmented double-ζ core-valence basis set. For rp-ccCA,97 developed

for 4d transition metals, effective core potentials (ECPs) are used in all steps of the ccCA-TM

formulation. Variants where the fundamental aspects of ccCA remains the same but the steps are

modified have been developed to adapt to chemical problems as well, such as organic acid/base

chemistry (Solv-ccCA),122 active-site chemistry (ONIOM-ccCA, ONIOM-rp-ccCA),119,159 and

modeling open-shell organic species, such as radicals (MR-ccCA, ccCA-CC(2,3)).118,120 For

example, in Solv-ccCA, all methodological steps within ccCA remain the same except for including

an implicit solvent model to describe long-range solvent effects.
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Table 2.1: Summary of ccCA-TM and rp-ccCA steps.

ccCA-TM rp-ccCA
Geometry B3LYP/cc-pVTZ-DK B3LYP/cc-pVTZ-PPOptimization

Eref
HF/aug-cc-pVTZ-DK HF/aug-cc-pVTZ-PP
HF/aug-cc-pVQZ-DK HF/aug-cc-pVQZ-PP

Extrapolations Equation 2.29 Equation 2.29

MP2/CBS
MP2/aug-cc-pVDZ-DK MP2/aug-cc-pVDZ-PP
MP2/aug-cc-pVTZ-DK MP2/aug-cc-pVTZ-PP
MP2/aug-cc-pVQZ-DK MP2/aug-cc-pVQZ-PP

Extrapolations Equations 2.30 -2.32 Equations 2.30 -2.32

∆CC CCSD(T)/cc-pVTZ-DK CCSD(T)/cc-pVTZ-PP
- MP2/cc-pVTZ-DK - MP2/cc-pVTZ-PP

∆CV CCSD(T,FC1)/aug-cc-pCVDZ-DK CCSD(T,FC1)/aug-cc-pCVDZ-PP
– CCSD(T)/aug-cc-pCVDZ-DK – CCSD(T)/aug-cc-pCVDZ-PP

∆DK Included in previous steps Included in previous steps

∆SO Experimental atomic values Experimental atomic values
ZPE Vibrational ZPE scaled by 0.989 Vibrational ZPE scaled by 0.989

Numerous routes have been utilized to reduce the computational cost associated with ccCA to

expand the range of molecules in terms of size that can be examined with this

approach.119,121,159–161 RI-ccCA and ccCA-F12 implemented mathematical approximations to

mitigate the cost of calculating four-center-two-electron repulsion integrals and using the

aug-cc-pVQZ basis set, which both are major contributions to the overall computational cost of

ccCA.121,161

ccCA and its adaptations are suitable for applications targeting chemical accuracy for chemical

systems ranging from atoms and diatomics to organometallic complexes and biomolecules. Some

of these applications are presented in Chapters 4-6.

2.2.5 ONIOM

Multilayer methods provide additional routes to reduce computaitonal cost. For these

approaches, a molecular syste is divided into multiple layers and each layer is treated with a
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different theoretical approach. This enables the chemistry of greatest interest to be targeted with a

high-level method, while the overall molecular system is treated with a more approximate, albeit

more efficient, approach. One of the earlier uses of multilayer methods combined quantum

mechanical (QM) methods with molecular mechanics (MM) force fields to measure the torsional

potential energy surface of the retinal molecule.162 The use of this hybrid methodology was

extended to describe ground and excited-state potential energy surfaces in tandem with a

Pariser-Parr-Pople SCF-CI method163,164 for π electrons and empirical functions for σ electrons,

respectively.165,166 This method was later generalized into the QM/MM method, which includes

a model system and the real system.167 The model system describes the chemically significant

portion of the system and uses QM methods for higher accuracy, whereas the real system is

described by a less accurate but more computationally efficient MM force field. The total energy

of the whole system is shown in Equation 2.36.

EQM/MM = EQM + EMM + EQM-MM (2.36)

Equation 2.36 is an additive scheme168 combining the energy of the two systems, EQM and

EMM, and the energy of the interaction between the two systems, EQM-MM. In contrast to this

additive scheme employed for the QM/MM method, our Own N-Integrated molecular Orbital

molecular Mechanics, or ONIOM169–178 method is an extrapolative scheme that can utilize a

QM/QM or a QM/MM scheme. The development of the ONIOM methodology started with the

development of an alternativeQM/MMscheme known as IMOMM, or IntegratedMolecular Orbital

+ Molecular Mechanics, shown in Equation 2.37.169

EIMOMM = EONIOM2(QM:MM) = EQM,model + EMM,real − EMM,model (2.37)

In Equation 2.37, the total energy of this extrapolative scheme is evaluated as the MM method

for the model system is subtracted from the sum of the energies obtained through the QM method

for the model system and the MM method for the real system. The main difference between

EQM/MM and EIMOMM is that the subtractive operation for EIMOMM removes the doubly-counted

MM contributions to the total energy in Equation 2.36.169,179 The IMOMM scheme was extended
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to QM/QM systems in the Integrated Molecular Orbital + Molecular Orbital formalism, which is

denoted as IMOMO or ONIOM2(QM1:QM2).172 The total energy of the system is calculated in

the same manner as the IMOMM method except for the use of a second QM method replacing the

MM force field, shown in Equation 2.38.

EIMOMO = EONIOM2(QM1:QM2) = EQM1,model + EQM2,real − EQM2,model (2.38)

ONIOM is not limited to two layer systems. A combination of the IMOMM and the IMOMO

methods yield a three-layer ONIOM method denoted as ONIOM3(QM1:QM2:MM) as utilized in

Equation 2.39.175

EONIOM3(QM1:QM2:MM) = EQM1,model + EQM2,intermediate − EQM2,model

+EMM,real − EMM,intermediate

(2.39)

For ONIOM3, three layers, model, intermediate, and real with a different level of theory used to

describe each layer. In general, the high level method, QM1, is an ab initiomethod, the intermediate

level method, QM2, is a DFT method, and the real level method is a MM force field. Based on the

formulations for ONIOM2 and ONIOM3, the ONIOM method can be generalized to an arbitrary

n-layer n-level method, Equation 2.40.

EONIOMn =
n∑
i=1

E[level(i),model (n + 1 - i)]−
n∑
i=2

E[level(i),model(n + 2 - i)] (2.40)

The n=2 (ONIOM2) and n=3 (ONIOM3) forms of n-layer ONIOM are most commonly used,

as n ≥ 3 approaches become impractical. Overall, the ONIOMmethod is most commonly used for

large biological macromolecules,162,165,166 transition metal complexes,180,181 and organometallic

catalysts.182–185

2.3 Density Functional Theory

Density functional theory (DFT) originates from the Hohenberg-Kohn theorems.186,187 In

1964, an existence proof showed that the charge density (ρ[r]) determines the electronic properties

of the ground state including energy. DFT utilizes the electron density as a variable to approximate
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the solution to the Schrödinger equation. Analogous to the Roothaan-Hall Equations in the Hartree-

Fock formalism, the DFT equivalent –the Kohn-Sham equations– were derived by Kohn and Sham

in the early 1960s.186,187 The DFT energy is shown in Equation 2.41.

E[ρ] = Ts[ρ] + Vne[ρ] + J [ρ] + Exc[ρ] (2.41)

Equation 2.41 is dependent on the kinetic energy (Ts) of non-interacting electrons, the energy

term for nuclear-electron interactions (Vne), electron-electron repulsion interactions (J), and the

exchange-correlation energy term (Exc). In principle, the exact form of the exchange-correlation

functional makes DFT an exact and ab initio method; however, the exact form of the exchange-

correlation functional is not known based on the inhomogeneity of the charge density.188 Therefore,

the implementation of DFT is the development of functionals that approximate the exchange-

correlation functional. Density functionals are sorted into a hierarchy based on the complexity of

the functional. As defined by Perdew as the “Jacob’s ladder” for DFT, the tiers of functionals from

least to most complex are the local spin density approximation (LDA), the generalized gradient

approximation (GGA), meta-GGA, hybrid-GGA, hybrid-meta GGA, and double hybrid GGA.189

The local spin density approximation (LDA or LSDA) is based on the uniform electron gas

model and was first introduced by Kohn and Sham.187 LDA uses the exchange for the uniform

electron gas to create a functional solely dependent on the spin density.190

ELDAXC =

∫
ρ(r)εXC [ρ]r (2.42)

Equation 2.42 represents the exchange-correlation (XC) energy for LDA functionals, which is

dependent on the single particle density ρ(r) and the XC energy per particle, εXC [ρ(r)]. LDA is

known to be more effective at describing solid state lattice parameters than more complex DFT

functionals due to the similarity of metallic systems to the homogeneous electron gas.188,191,192

GGA functionals incorporate the gradients of the spin densities in the expression for exchange-

correlation energy and are therefore a correction to the LDA, shown in Equation 2.43.

EGGAXC =

∫
eGGAXC (n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|)d3r (2.43)
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Meta-GGA functionals, which decrease the amount of self-interaction error introduced by GGA

functionals, use the Laplacian of the spin densities as two additional variables and the kinetic

energy densities, τ , as shown in Equation 2.44.193,194

EM -GGA
XC =

∫
eGGAXC (n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, |∇2n↑(r)|, |∇2n↓(r)|, τ↑, τ↓)d3r

(2.44)

LDA, GGA, and meta-GGA functionals are referred to as local functionals because the electronic

energy density at a single point is dependent on the behavior of the density in proximity to that

point.193,195–197

Hybrid functionals combine the GGA exchange correlation functional with the exact exchange

defined in the Hartree-Fock method using the Kohn-Sham orbitals in order to address the

shortcomings of the self-exchange of DFT functionals as shown in Equation 2.45.

E
hybrid
XC = a(EX,exact − EGGAX ) + EGGAXC (2.45)

Equation 2.45 is applied to both GGA and meta-GGA functionals and thus named hybrid-GGA and

hybrid-meta-GGA functionals, respectively. Double hybrid functionals utilize the PT2 correlation

energy into the correlation functional.198,199 Due to the addition of a percentage of exact exchange

into the functional, hybrid-GGA, hybrid-meta-GGA, and double-hybrid functionals are referred to

as non-local functionals.

Based on the “Jacob’s ladder” model for DFT by Perdew,189 for each rung of the ladder,

additional "factors" are appended to the functionals of the rung below, as illustrated from Equations

2.42-2.45. As a result, the increasing complexity of functionals progressing up Jacob’s ladder

implies an assumption of greater accuracy. However, greater accuracy cannot be presumed, i.e.

local functionalsmay bemore effective at describing a system than non-local functionals. Therefore,

the rational choice of DFT functionals should be determined by carefully considering the calibration

of DFT functionals with experiments or high accuracy ab initiomethods for a particular application.

DFT is able to yield results for thermodynamic properties comparable to post-HF methods

at a reduced computational cost as DFT scales at approximately N4 or N5 depending on the
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complexity of the functional where N is the number of basis functions. DFT has the inability to

properly account for the weak interactions due to dispersion forces that arises from local exchange-

correlation, and systems with long-range interactions–dissociation of radials and other charged

odd-electron systems, and self-interaction error. Also, the exchange-correlation functional is

local, which is unsuitable for charge transfer reactions. Attempts have been made to overcome

the inability to accurately describe long-range interactions through dispersion-corrected density

functionals (DFT-D methods),200,201 which use a semi-empirical parameterization to correct for

the lack of dispersion, and the double-hybrid-GGA functionals.

2.4 Basis Sets

A basis set consists of mathematical functions that are used to describe the electronic

wavefunction. Gaussian basis functions, shown in Equation 2.46, are the most common functions

used in basis sets.

φ(ζ, r) = Ne−ζr
2

(2.46)

For the gaussian-type orbital (GTO) or a Gaussian primitive (Equation 2.46),N is the normalization

constant, ζ is the exponent and r is the electron-nucleus distance. Gaussian-type functions were

chosen since the product of two GTOs is another GTO, which greatly simplifies calculating the

four-center two-electron repulsion integrals – the most computationally expensive step in the SCF

procedure (Section 2.1).

A linear combination of these gaussian primitives (Equation 2.10) minimizes the number of

basis functions needed for an accurate representation of the MOs. Gaussian basis sets are designed

in hierarchies of increasing size (ζ-level). While increasing the ζ-level of a basis set increases

the computational cost, a systematic way to obtain higher quality results is attained. Basis sets

commonly utilized in electronic structure calculations are atom-centered and energy-optimized,

i.e. the exponents are optimized to minimize the electronic energy, thus allowing a more widely

applicable basis set.

Two popular styles of basis sets include the Pople-style basis sets developed by Pople202–205
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and the correlation consistent basis sets developed by Dunning and co-workers.206–215

2.4.1 Correlation Consistent Basis Sets

The correlation consistent basis sets are referred to as correlation consistent, polarized, valence,

n-ζ , or cc-pVnZ where n = double-ζ (DZ), triple-ζ (TZ), quadruple-ζ (QZ), etc. level of basis

set. The correlation consistent basis sets can be augmented through the addition of low-exponent

diffuse functions, noted as the aug-cc-pVnZ basis sets. The correlation consistent family of basis

sets also includes cc-pCVnZ basis sets that account for the correlation energy from the interaction of

core-core and core-valence electrons as well as the valence-valence correlation energy,209,213 and

the cc-pVnZ-DK set accounts for scalar relativistic effects and is implemented for main group, 3d

transition metal, and lanthanide atoms.212,214–216 The cc-pV(n+d)Z basis sets were developed for

second-row atoms (Al-Ar) through the inclusion of an additional tight-d function and reoptimization

of the d-function in the basis set to address deficiency in the original correlation consistent basis

sets.211

For ab initiomethods, one of the main advantages to these basis sets is their unique construction,

which enables the extrapolation of some properties like energies, to the complete basis set (CBS)

limit,147 which eliminates the basis set incompleteness error. At the CBS limit, the electronic

energy is not changed by the addition of extra basis functions since the basis set completely spans

the space of molecular orbitals, making an infinite or complete basis set.

2.4.2 Effective Core Potentials

When describing chemical systems with elements beyond the first-row transition metals, many

basis functions are required to define all of the electrons, which causes a significant increase in

the computational time needed relative to earlier main group species. In addition, any basis set

that describes these TM systems needs to account for the effects of relativity that can manifest

in elements beyond the first-row transition metals. Therefore, the concept of the effective core

potential (ECP), or pseudopotential (PP), was developed.217 An ECP portrays the core electrons
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with a potential that is fitted from relativistic calculations and treats the remainder of the electrons

explicitly, which reduces the computational cost relative to their all-electron counterparts and

generally has a negligible effect on accuracy.8 cc-pVnZ-PP is a form of basis sets that have been

developed that pair ECPs with correlation consistent basis sets for the valence space.214,215

2.4.3 Auxiliary Basis Sets

Auxiliary basis sets (ABS) were designed to offset the increase in computational cost arising

from the calculation of four-center two-electron repulsion integrals in methods such as MP2 (i.e.

RI-MP2) by using the resolution of the identity (RI) approximation. To provide details, ABS can

be obtained through fitting procedures involving the coulomb integrals (basis/J or J-fit), or both

the coulomb and exchange integrals (basis/JK or JK-fit), as discussed below.57,218,219 For a J-fit

auxiliary basis set, the coefficients are fitted to a linear combination of three center (ij|a) and two-

center coulomb integrals whereas the K-fit auxiliary basis set is obtained through the difference

between the exact exchange and the approximate exchange generated.

The auxiliary basis sets for MP2 were optimized by minimizing the quantity

δRI =
1

4

∑
iajb

(〈ab||ij〉 − 〈ab||ij〉RI)2

εa − εi + εb − εj
(2.47)

with respect to the auxiliary basis set exponents, where 〈ab||ij〉 = (ai|bj)− (aj|bi). The auxiliary

basis sets are constructed so that the number of auxiliary basis functions are not greater than four

times the number of basis functions in the standard basis set, as this could negate the advantage

gained for computational cost reduction. Also, the quantity in Equation 2.47 must be less than

10−6 when divided by EMP2, and |EMP2 − ERI-MP2| must be less than 20 µEh for auxiliary basis

sets in reproducing MP2 energies, but at a fraction of the cost.57,218,219

2.4.3.1 AutoAux

For lower parts of the periodic table, there are many atoms for which optimized auxiliary

basis sets are not available. For instance, auxiliary basis sets for cc-pCVnZ basis sets optimized
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for ab initio correlated methods are not available. To expand the availability of auxiliary basis

sets, Stoychev et al.220 developed a generation scheme called AutoAux within the ORCA software

package.221 Their scheme was used to generate ABS for def2-SVP, def2-TZVP, def2-QZVPP, and

cc-pwCVnZ where n = D, T, Q, and 5, for H-Rn. They calculated both absolute and relative

energies via several reaction sets. For the cc-pwCVnZ basis sets, the average RI error was within

175 µEh relative to absolute HF and MP2 energies calculated with the AutoAux feature. While

AutoAux is useful for generating auxiliary basis sets on-the-fly in a calculation, these sets are often

twice the size of optimized auxiliary basis sets but can still benefit from the RI approximation. The

AutoAux scheme is utilized for the transition metal species in Chapter 5.

2.4.4 Basis Set Superposition Error

Basis set superposition error (BSSE) arises for interaction energies of molecular complexes via

an improved description of each fragment in the presence of the basis set of the other fragment.

The interaction energy (∆EAB) between two molecular fragments A and B is

∆EAB = EABAB (AB)− EAA(A)− EBB (B) (2.48)

To overcome this error, when describing the energy of fragmentA, the presence of a ghost fragment

B, i.e. the inclusion of the basis functions of fragment B without the atoms of fragment B present,

serves to counterbalance the effect that basis setB has on fragmentA in the calculation of complex

AB.152 The counterpoise-corrected interaction energy is

∆ECPAB = EABAB (AB)− EABA (AB)− EABB (AB) (2.49)

where EABAB is the energy of complex AB calculated with the basis set for AB, EABA (AB) and

EABB (AB) are the energies of fragmentsA andB, respectively, calculated with the basis set forAB.

When substituting Equation 2.49 into Equation 2.48, the counterpoise correction to the interaction

energy is obtained.

∆ECPcorr = ∆ECPAB −∆EAB =
(
EAA(A)− EABA (AB)

)
+
(
EBB (B)− EABB (AB)

)
(2.50)
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Therefore, for variational wavefunctions, the counterpoise correction is always positive since

EAA(A) > EABA (AB) and EBB (B) > EABB (AB).6

Depending on the nature of the interaction, molecular interaction energies vary considerably

in magnitude. Interaction energies range from 100-500 mEh for covalent bonds to 50-500 µEh for

dispersion-bound complexes.152 While BSSE is present in all electronic structure calculations, the

effects of BSSE are more prevalent for weakly-bound interactions, i.e. van der Waal interactions.

2.5 Implicit Solvation Models

As numerous chemical reactions are performed in solution, appropriate computational models

are needed to characterize solute-solvent interactions and describe other properties such as charge

distribution and solvation free energies. Two types of models that are used to incorporate the

effects of solvation explicit solvation models where all of the solvent molecules are explicitly

represented in the calculation and implicit solvation models that represents the solvent molecules

as a continuum. While explicit models can describe short range solute-solvent interactions, these

models are computationally expensive as they require 100-1000 solvent molecules for a single QM

calculation. Using implicit solvation models yields a lower computational cost relative to using

explicit solvent molecules but neglect detailed descriptions of the solute-solvent interactions.

Implicit solvation models are based on the approximation of a liquid medium as a dielectric

unstructured fluid through the use of a quantum mechanical description of the solute. Implicit

solvation models provide an extension of the Born and Onsager models previously used to

describe fundamental properties of solutions.222,223 The general formulation of the solute-solvent

system223,224 in implicit models is that the solute is represented by a permanent point dipole µ

and a polarizability α with a radius a, and the solvent molecules are modeled as the average of the

charge distribution represented as a continuum dielectric medium with a fixed dielectric value (ε).

The Poisson equation, shown in Equation 2.51, is used to define the electrostatic potential as a

function of charge density.10

∇ε(r) ∗ ∇φ(r) = −4πρ(r) (2.51)
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In Equation 2.51, the solute is described explicitly within a cavity of vacuum while the solvent is

described implicitly via charge distribution.

The initial shapes of the vacuum cavity are spheres and ellipsoids, for which the Poisson

equation was solved analytically by Born222 and Onsager,223 respectively. The Born solvation

model creates a single point charge inside a spherical cavity.222 The Onsager model calculates the

dipole moment of the solute by using the point-dipole approximation, and thus, is only applicable

to molecules with dipole moments.223 When describing multipolar systems, the reaction field has

a poor description if the molecule is not spherical since the Onsager model uses an elliptical or

near-spherical cavity. Therefore, arbitrary cavities that use the overlap of atomic spheres defined

by their van der Waals radii and utilize a numerical solution to the Poisson equation are essential

for the development of accurate QM solvation models. A procedure used for calculations with a

solvation model is the self-consistent reaction field, which originates from using the solutions to

the Poisson equation as a perturbation to the gas phase Hamiltonian used for ab initio (Section 2.1)

and density functional methods (Section 2.3), as previously discussed.

Most implicit models are parameterized to describe aqueous solvation free energies at room

temperature; SM8,225 SMD,226 and COSMO-RS227 are solvation models that also describe non-

aqueous solvents and elevated temperatures. Implicit models are used extensively in pKa studies

due to the pKa depending on the solvation free energy.228,229

2.5.1 COSMO

The COnductor-like Screening MOdel (COSMO) was developed by Klamt in 1993 and is

based on the screening in conductors, which are infinitely strong dielectrics.230 This approach uses

arbitrarily-shaped cavities and a boundary element method to describe apparent surface charges that

define the same electrostatic potential as a numerical solution to the Poisson equation. COSMO is

used to calculate the energies of a molecule within a dielectric medium. The dielectric screening

energies for a given geometry scale with the dielectric permittivity of ε of the screening medium
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as shown in Equation 2.52; x is 0.5 for the COSMO model.

ε− 1

ε+ x
where 0 ≤ x ≤ 2 (2.52)

This is due to the response of a conductor to a solute charge distribution compared to the response

from a dielectric medium.10 The COSMO approach allows the calculation of analytical gradients

within an arbitrarily-shaped cavity. Therefore, geometry optimizations in the solvation phase are

practical as numerical gradients, which increase the computational cost, are typically used; however,

one of the difficulties includes finding the optimum parameters such as a set of van der Waal radii

to create the solvent accessible surface.230

2.5.2 PCM/C-PCM

The Polarizable Continuum Model (PCM) was developed in 1981 and employs an apparent

surface charge on the cavity surface.231,232 When using PCM and its variants, arbitrary cavity

shapes are used, unlike Onsager models; this provides better electronic energy results through a

more realistic description of the solute in solution. The basic PCM definition, Equation 2.53,

utilizes a continuous surface charge, σ(s), with the gradient on the internal (in) part of the surface

to describe the apparent surface charge distribution.231–233

σ(s) =
ε− 1

4πε

∂

∂~n
(Vm + Vσ)in (2.53)

In Equation 2.53, ε is the dielectric constant, ~n indicates the unit vector perpendicular to the cavity

surface pointing outward, VM , is the potential generated by the charge distribution, and Vσ is the

potential over the whole space generated by the polarization of the dielectric medium.

Unfortunately, using arbitrarily-shaped cavities are rather expensive because of the requirement

of numerical solutions for the derivatives and gradients. The difficulties with these models are

the sharp edges created by the overlapping spheres on the solvent accessible surface. Therefore,

the surface is smoothed by other spheres not centered on atoms to simulate the solvent excluded

surface. The C-PCM234 formulation was adapted in 1998 based on COSMO and used a conductor-

like setting within the PCM model. As described with COSMO, the solvent was treated as a
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conductor and the polarizability of the system becomes zero, which decreases the complexity of

solving the Poisson equation. C-PCM utilizes the same equation used by PCM, Equation 2.53,

with the key assumption of using the scaling factor, Equation 2.52, to describe the polarization

charges such that the Gauss law is obeyed; in reference to Equation 2.52, x is 0 for the C-PCM

model.234 The C-PCM model is amongst the most widespread implicit solvation models used for

studies on organometallic systems,180,235–237 and the development of hybrid QM/QM schemes for

solvation.176,238

2.5.3 SMD

The universal implicit solvation model SMD226 was developed by Truhlar where the full solute

electron density is usedwithout defining partial atomic charges. This density-basedmodel separates

the solvation free energy into two components: the bulk electrostatic energy calculated through the

integral equation formalism PCMmodel, which replaces the molecular electric field on the surface

with the electrostatic potential; and the cavity-dispersion-solvent-structure component. The first

component uses the SCRF treatment and the solution for the nonhomogeneous Poisson equation,

Equation 2.54.

∇(ε∇φ) = −4πρf (2.54)

The second component is the contribution arising from short-range solute-solvent interactions

in the first solvation shell. SMD describes the solvent accessible surface via a superposition of

nuclear-centered spheres with intrinsic Coulomb radii. SMD focuses on the standard solvation

free energies and was parameterized using 2821 solvation data points including free energies in 90

non-aqueous solvents and water.

2.6 Vibrational Self Consistent Field Theory

Vibrational spectroscopy is a useful approach to characterize intermolecular interactions for

reaction pathways and vibrational motion. In the theoretical treatment of vibrational spectra,

accurate potential energy surfaces (PES) are necessary to describe nuclear dynamics, reaction
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dynamics, and quantum rate constants.239–241 However for vibrational calculations, electronic

structure methods are often restricted to the harmonic oscillator approximation since the vibrational

Hamiltonian can be partitioned into a set of one-dimensional harmonic oscillators using normal

mode coordinates within the harmonic oscillator approximation.242 The errors inherent in both the

harmonic oscillator approximation and electronic structure methods accumulate to yield deviations

over 100 cm−1 for vibrational frequencies in some cases although the individual contributions of

the harmonic approximation and electronic structure method to the error are unknown.

Computationally, the harmonic oscillator approximation is conceptually simpler than fully

anharmonic calculations but results in a loss of accuracy for vibrational properties. One way to

correct for anharmonicity in molecular vibrations is to apply an empirical scaling factor to

harmonic vibrations, commonly called a frequency scaling factor.108 The scaling factor is

determined through a least-squares fitting to corresponding experimental frequencies; thus, this

approach is an underlying potential for addressing computing observables of the anharmonic PES.

However, scaling factors for DFT are approximately 1.00 ± 0.05 whereas those for ab initio

methods are lower (0.95 ± 0.05),108 implying that DFT yields more accurate vibrational

frequencies with the harmonic approximation and introduces uncertainty into which aspects of

DFT contribute to predicting vibrational frequencies.

Directly calculating the anharmonic PESs for vibrations provides better insight about removing

uncertainty arising from both the harmonic approximation and the use fo common global frequency

scaling factors. One of the ab initio methods developed for anharmonic vibrational spectroscopy is

vibrational self consistent field (VSCF) theory, which was developed in the late 1970s.243–247 The

vibrational Schrödinger equation with mass-weighted normal coordinates Qi,−1

2

N∑
j=1

∂2

∂Q2
j

+ V (Q1, . . . , QN )

Ψn (Q1, . . . , QN ) = ENΨn (Q1, . . . , QN ) (2.55)

where V is the potential energy function of the system, n is the state number, and N is the number

of vibrational degrees of freedom (normal modes), utilizes the Born-Oppenheimer approximation

and neglects rotational coupling effects to vibration. VSCF theory is similar to the Hartree-Fock
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theory (see Section 2.1) since each vibrational mode is characterized in the mean field of the other

vibrational motions. Unlike in Hartree-Fock theory, the total wavefunction of VSCF approximation

is a product of single mode wavefunctions akin to a Hartree product

Ψ(Q1, . . . , QN ) =
N∏
i=1

ψ
(n)
i (Qi) (2.56)

where the single mode wavefunctions ψ(n)
i are called the modals and QN are mass-weighted

normal coordinates since vibrations are distinguishable. Error due to introducing the separability

approximation depends on the coordinate system used.248

Using a variational principle for the ansatz in Equation 2.56 leads to the single mode VSCF

equation [
− 1

2

∂2

∂Q2
i

+ V
(n)
i (Qi)

]
ψ

(n)
i = ε

(n)
i ψ

(n)
i (Qi) (2.57)

where the mean effective potential V (n)
i (Qi) for mode Qi is given by

V
(n)
i (Qi) =

〈
N∏
j 6=i

ψ
(n)
j (Qj)

∣∣∣∣∣V (Q1, . . . , QN )

∣∣∣∣∣
N∏
j 6=i

ψ
(n)
j (Qj)

〉
(2.58)

To examine the full potential V (Q1, Q2, . . . , QN ), the potential can be expanded via a multimode

expansion

V (Q1, Q2, . . . , QN ) =
∑
i

V
(1)
i (Qi) +

∑
ij

V
(2)
ij (Qi, Qj) +

∑
ijk

V
(3)
ijk (Qi, Qj , Qk) + . . . (2.59)

where V (1)
i (Qi) are the single-mode diagonal terms

V
(1)
i (Qi) = V (0, . . . , Qi, . . . , 0) (2.60)

the pair-wise interactionsW (2)
ij (Qi, Qj) from the expansion of V (Q1, Q2, . . . , QN ) are

W
(2)
ij (Qi, Qj) = V

(2)
ij (Qi, Qj)− V

(1)
i (Qi)− V

(1)
j (Qj) (2.61a)

= V (0, . . . , Qi, . . . , Qj , . . . , 0)− V (1)
i (Qi)− V

(1)
j (Qj) (2.61b)
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and so forth with higher order expansions. N -order expansions of the potential are not feasible for

N larger than six since the integration over the potential is a N -1 dimensional integral. Therefore,

the expanded potential is usually truncated in terms of a quartic or sextic force field.239

Equations 2.57 and 2.58 are solved self-consistently for the singlemodewavefunctions, energies,

and effective potentials. Several methods can be applied for the solution of Equation 2.57 to get

both the ground and excited VSCF states of the system. Due to this approximation, the total energy

is given by

En =
N∑
i=1

ε
(n)
i + (n− 1)

〈
N∏
j 6=i

ψ
(n)
j (Qj)

∣∣∣∣∣V (Q1, . . . , QN )

∣∣∣∣∣
N∏
j 6=i

ψ
(n)
j (Qj)

〉
(2.62)

Themajor computational difficulty is due to the evaluation of multidimensional integrals inherent in

Equations 2.57, 2.58, and 2.62, especially for large systems, and that depends on the mathematical

form of the potential. Hence, the choice of potential plays a key role in the VSCF approximation.

Since VSCF describes the effect of a singular vibrational mode in the mean field of all other

vibrational modes as the Hartree-Fock method does for electrons, the effects of correlation

between modes need to be described. For post Hartree-Fock methods such as MP2 and CI, there

are complementary vibrational equivalents that correlate vibrational motion. For example, for

perturbation theory, the full vibrational Hamiltonian is written in the form

H = HSCF,(n) + ∆V (Q1, . . . , QN ) (2.63)

where HSCF,(n) is the Hamiltonian used in Equation 2.57 and the equation for ∆V is given by

∆V (Q1, . . . , QN ) = V (Q1, . . . , QN )−
N∑
i=1

V
(n)
i (Qi) (2.64)

where ∆V represents all correlation effects between vibrational modes. Considering the pair-wise

approximation terms in Equations 2.61a, ∆V can be rewritten as

∆V (Q1, . . . , QN ) =
N∑
i=1

V
(1)
i (Qi) +

∑
j

∑
i>j

W
(2)
ij (Qi, Qj)−

N∑
i=1

V
(n)
i (Qi) (2.65)

where the potential at the minimum is taken at zero, leaving diagonal terms and pair-wise terms

as shown in Equations 2.60 and 2.61b. Methods that account for correlation effects of vibrational

modes are known as post-VSCF methods.
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Post-VSCF methods include VSCF-PT2, which is a second-order perturbation to account for

correlation effects between vibrational modes, as well as vibrational coupled cluster (VCC) and

vibrational configuration interaction (VCI) methods, and a combination of VCI with perturbatively

selected interactions (VCIPSI-PT2).239,249–254 The idea is that∆V , which is the difference between

the true Hamiltonian and the VSCF Hamiltonian, must be small as VSCF is a good approximation.

VCI yields the best possible results variationally given the basis set limits.239,250 Analogous to

CI, every possible contribution of a complete set of functions is considered and thus full VCI

with an infinite basis set is the exact solution to the vibrational time independent Schrödinger

equation (Equation 2.55) given the constraints (BO approximation and neglecting rotational effects

on vibration).

For N normal modes, there are N (N -1)/2 coupling potentials. Each coupling potential is

computed with electronic structure methods on a grid of Ngrid × Ngrid points (Ngrid = 16 in

Chapter 6). For example, C6H6, which has 30 normal modes, would require 111,360 single point

calculations for all 435 pair-wise coupling potentials assuming Ngrid = 16. This requires

additional approximations such as the vibrational configuration interaction with perturbation

selected interactions (VCIPSI) algorithm developed by Scribano and Benoit254 to iteratively

select the VCI active space based on previous implementations of this algorithm for ab initio

electronic structure calculations255 and VCI methods.251–253 The active space is treated

variationally and then increased iteratively using a vibrational Møller-Plesset barycentric (VMPB)

partition scheme to improve the representation of the complete VCI wavefunction. The

VCIPSI-PT2 method utilizes the final VMPB correction in the VCI active space. Implementation

of this algorithm led to a savings of 70-80% while only deviating from VCI by approximately 0.01

cm−1 for all vibrations of CH4 when using MP2/aug-cc-pVTZ for generating the vibrational PES

and a savings of 85% and a deviation of 0.07 cm−1 for the OH stretching frequency of benzoic

acid while using 0.49% of the disk space that VCI used for the same vibration.254

Other measures to reduce the computational cost includes screening weakly coupled pair-wise

coupling interactions via a threshold established from calculating the coupling strength (Equation
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2.66), which can be calculated with only the VSCF potential.256,257

ξ(qi, qj) =
1

N2
grid

Ngrid∑
ni=1

Ngrid∑
nj=1

|V (k)
ij (ni, nj)| (2.66)

By removing non-essential vibrational coupling elements from the potential, a fast-VSCF

approach is attained. This can greatly reduce the computational cost to generate fully anharmonic

PESs for polyatomic molecules of increasing size and complexity.

The use of VSCF and VCI methods are pertinent in Chapter 6, as these methods are used to

analyze anharmonic PESs to predict anharmonic vibrations for diatomic and polyatomic molecules.
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CHAPTER 3

PREDICTION OF pKa OF LATE TRANSITION METAL HYDRIDES VIA A QM/QM
APPROACH

3.1 Introduction

Transition metal (TM) hydrides are important intermediates in many catalytic and

stoichiometric processes such as hydrogenation and hydroformylation.1–9 As numerous

organometallic catalytic reactions include hydride transfers, characterizing metal-ligand binding

properties is vital to understanding how these catalysts work. One such thermodynamic property

for TM hydrides is the pKa. Although the pKa values of a number of TM hydrides have been

measured experimentally, experimental characterization of pKa is not accessible for all TM

hydrides. Therefore, with computational approaches, such as density functional theory (DFT),

geometries, spectroscopic constants, and energetics, and thermodynamic properties such as pKas,

Gibbs free energies, and enthalpies of formation, become an important route to predict various

molecular and thermodynamic properties in the absence of experimental measurements.10–17

The development of density functionals has motivated their wide application, and, in 2001,

Perdew proposed the Jacob’s ladder analogy to classify density functionals into primary rungs that

present the hierarchy of density approximations.18 This is explained in Section 2.3. Essentially, the

inherent complexity of functional class increases with higher rungs in Jacob’s ladder; however, the

accuracy of a functional is not necessarily dependent on its complexity. Therefore, in determining

choice of density functional, calibration of density functional approaches with data from experiment

or high accuracy wavefunction-based calculations such as CCSD(T) should be done.19 Though

CCSD(T) is often considered as the “gold standard” of quantum chemistry, it is not computationally

affordable (memory, disk space, CPU time) for routine calculations of many TM complexes, which

often are bound to numerous large ligands.20–24

For the prediction of thermodynamic properties of TM-containing complexes with sterically
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hindering ligands, such as for TM hydrides, DFT is often considered, as it is readily used for

molecules of increasing size and complexity.25 In a study by Tekarli et al., the gas-phase enthalpies

of formation (∆Hf) of 19 3d TM-containing species were calculated to assess the performance

of 44 density functionals paired with cc-pVTZ and cc-pVQZ basis sets.26Among the considered

functionals, the B97-1, and PBE1KCIS functionals resulted in the lowest mean absolute deviations

(MADs) relative to experiment. A similar study was done by Laury et al. for the ∆Hf’s of 30 4d

species, considering the utility of 22 density functionals. Of the functionals considered, B2GP-

PLYP and mPW2-PLYP yielded the lowest MAD from experiment.27 Riley and Merz28 examined

the performance of 12 functionals with the 6-31G* and TZVP basis sets for the calculation of

∆Hf’s of 94 TM species. TPSS1KCIS in combination with the TZVP basis set resulted in the

lowest MAD from experiment in their study. Wang et al.’s study of TM atom mediated Cβ-O bond

cleavage of the β-O-4 linkage of lignin used density functionals to compare the binding, activation,

and reaction enthalpies with respect to CR-CCSD(T).29 They found that the property that yielded

the lowest MADs from CR-CCSD(T) fluctuated depending on functional choice as well as choice

of 3d, 4d, or 5d metal. Overall, the lowest average deviation from CR-CCSD(T) for predicting the

reaction energetics was provided by PBE0. These gas phase studies demonstrate that functional

choice should be strongly based upon the molecular systems of interest, considering the TM, as

well as the number and types of ligands, and the property of interest for TM species.

Since the ligands for bulky TM hydrides predominately consist of main group atoms,

approaches that have been useful for main group thermochemistry should be considered in

identifying approaches that may be effective for the description of TM hydrides. In a study by

Goerigk and Grimme,30 a thorough benchmark of 47 density functionals from the GMTKN30

database for general main group thermochemistry recommended functionals including the GGA

B97-D3 and the meta-GGA, oTPSS-D3. PW6B95 was identified as the most robust hybrid in their

study. However, in comparing their results for main group species to the aforementioned TM

complexes,26–28 functionals that are optimal for each TM may not perform well for the ligands.

In the development of the MN15-L density functional, Yu et al. ranked 48 density functionals
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based on their performance for 33 molecular databases.31 This study showed that B97-1, which

performed well for the thermochemistry of 3d TM-containing compounds,26 ranked 3 out of the 48

chosen functionals for SR-MGM-BE9, which examines single-reference main-group metal bond

energies, but ranked 29 for πTC13, which examines thermochemistry of hydrocarbon π systems.

The opposite trend is shown for M11-L, which ranked 14 for πTC13 but 45 for SR-MGM-BE9.

The rank changes of B97-1 and M11-L for the 2 databases emphasize that some density functionals

are good for TM chemistry but poor at describing main group ligands, and vice versa.

As ligand complexity increases, solvation shells of the complex as well as the electronic and

steric effects of ligands should be considered alongside the chemically important region with the

metal center. However, a single functional may not portray all aspects of increasingly complex

systems useful for homogeneous catalysis effectively. Thus, the main goal of this study is to develop

a scheme that accounts for an optimal method choice for the metal and an optimal method choice

for the ligand.

For systems containing numerous non-hydrogen atoms, the use of cost-effective multilayer

fragmentation approaches such as ONIOM,32–36 Molecules-in-Molecules,37 and the Molecular

Tailoring Approach38 can provide a framework for such a combination. However, as the ONIOM

method (Section 2.2.5) has been commonly applied to transitionmetal complexes and homogeneous

catalysis,39–41 whereas other fragmentation approaches are often utilized for biomolecules and

water clusters,37,42,43 ONIOM is used in this study. However, because of the size of many

TM hydrides, it can be costly to use high level theoretical methods (e.g. CCSD(T)) to directly

model them, and even within an ONIOM scheme, the size of the model layer can also limit the

application of high level theoretical methods in the model layer, making them impractical. Thus,

while a combination of a higher level (HL) method and a lower level (LL) method demonstrates a

traditional use of ONIOM [i.e., ONIOM(HL:LL)], such a layering scheme can also be utilized to

consider the strengths of methods in a metal and non-metal partitioning of a molecule, as is done

in this chapter.

As compared with the number of gas phase computational studies on TM species, far fewer
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studies have been reported on the solvent effects on TM compounds. Such studies are important,

as many TM reactions are carried out in a solvated phase, including TM hydride-mediated

catalysis. For the solvated phase, the pKa exhibits the strongest effects of solvation relative to their

gas phase analogs due to the charge separation of the species involved. Previous studies by Liptak

and Shields44–47 and others48–52 have examined the use of both direct and relative

thermodynamic schemes for pKa calculations. These studies show that direct thermodynamic

schemes for calculating pKas of unknown acids have excellent agreement with experiment with

reduced computational cost over relative schemes. Therefore, the direct thermodynamic scheme,

shown in Scheme 3.1, will be used for this work.

Implicit solvation models (see Section 2.5) are often utilized for practical computations of bulk

TM species.53–57 For implicit solvent models, the choice of a cavity model, which defines the

shape and size of the cavity occupied by a solute species in the solvent, has been shown to have

an impact on the prediction of the pKa of organic acids using DFT.58–60 For instance, in the study

of the aqueous solvation free energies of 10 organic species calculated with seven cavities (UAKS,

UAHF, UAHF, Bondi, Pauling, UA0, and UFF) using the B3LYP/6-31+G(d) method with the

C-PCM solvation model, UAKS and UAHF resulted in the lowest MADs relative to experiment

in comparison to the other considered cavity models.58 Also, a systematic study of solvation

free energy and pKa values of monoprotic, diprotic, and triprotic acids based on DFT(B3LYP,

PBE, BVP86, and M05-2X)/aug-cc-pVTZ methods combined with the C-PCM and SMD solvation

models showed that the Pauling cavity in combination withM05-2X resulted in the lowest deviation

among the UFF, UAKS, Pauling, and Klamt cavity models.60 Though the prediction of pKa values

has been shown to be related to the choice of cavity model, studies showing the utility of density

functionals in terms of the choice of cavity models for TM-containing species are limited.61

In a study by Qi et al.,62 using CCSD(T) with an insufficient basis set, such as LANL2DZ+p, to

calculate the model layer of TM hydrides was found to fail dramatically in describing TM hydrides,

while an improvement of the basis set achieved better results. However, further improving the basis

set will make CCSD(T) impractical in the treatment of the model layer. Thus, they tried to use
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density functionals to describe the whole systems with a high-level basis set to describe the model

layer and low level basis sets to describe the rest of region, which yields much better results than

CCSD(T) with a low-level basis set. Therefore, DFT can perform well in calculating properties

of TM hydrides and the choice of basis set is more important than the choice of method (e.g.,

CCSD(T) vs density functionals).

As shown above,26–28,30 TM (model layer) and main group elements (the main component of

TM hydrides) can be described well with multiple density functionals. Therefore, instead of using

the same density functionals to describe the whole systems, it is worth examining if the combination

of different density functionals in ONIOMwill provide better description for TM hydrides systems.

To assess the appropriateness of density functionals combined with several levels of basis sets

within the ONIOM scheme for TM hydrides in solvated phase, comprehensive studies must be

carried out where a much wider variety of functionals are considered.

In this chapter, to address the ability of electronic structure methods to describe the pKas of

TM hydrides, density functionals utilized in partnership with basis sets of at least triple-ζ quality

are investigated, including ONIOM(DFT:DFT) schemes.63 As well, to consider TM chemistry

in solution, the impact of solvent model (SMD, COSMO, and C-PCM) and the degree to which

the several cavity models affect the determination of the pKa values of TM hydrides are analyzed

in this study. The influence of the addition of exact exchange and dispersion corrections is

considered. As shown in the above examples26,27,64 and several other studies,65–67 the choice

of basis set and the size of the molecules28,64 can have an impact on the utility of density

functionals; therefore, an understanding of the influence of basis set choice and size of the model

layer within the ONIOM scheme also is assessed for several basis sets. This investigation provides

insight about the selection of computational methods for TM hydrides that can be applied to

investigate other thermodynamic properties of catalysts for many important chemical reactions,

such as hydrogenation and hydroformylation.
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3.2 Theoretical Methods

The two layer ONIOM scheme was used with a variety of density functionals and several

basis sets to determine pKa values of Group 10 TM hydrides ([HNi(depe)2]+, [HNi(depp)2]+,

[HNi(PNP)2]+, [HPd(depe)2]+, [HPd(depp)2]+, [HPd(PNP)2]+, [HPt(depe)2]+, [HPt(PNP)2]+).

All calculations were performed using the GAUSSIAN 09 software package.68 For all considered

TM hydrides, geometry optimizations and frequency calculations (using vibrational ZPE scaled by

0.9890)69 were performed using B3LYP/cc-pVTZ in both the gas phase and acetonitrile solvent

to replicate experimental conditions. Acetonitrile solvent systems were treated using the C-PCM,

COSMO, and SMD continuum solvation models.53–57 All stationary points were verified to be true

minima, with no imaginary frequencies. The thermochemical corrections from B3LYP/cc-pVTZ

frequency calculations were added to the single point energies to obtain gas phase and solvation

free energies at 298 K.

Subsequently, single-point calculations were performed with the two-layer ONIOM method

presented in Section 2.2.5 with Equation 2.38.32–36 Since choosing how to partition the molecular

systems into layers can have a significant impact upon the calculated energies, several core regions

have been considered: (a) the metal atom and four phosphorous atoms; (b) the metal, phosphorous

atoms, and the chelate rings; and, (c) all atoms except for the terminalmethyl group. The results from

these expansions are defined in this study as ONIOM-1, ONIOM-2, and ONIOM-3, respectively,

and are shown in Figure 3.1. The ONIOM-1 scheme is primarily used due to computational cost.

To evaluate the impact of the DFT approaches used within ONIOM for the prediction of

pKas of TM hydrides, the following DFT methods were utilized (summarized in Table 3.1), listed

by functional class: (a) Generalized Gradient Approximation (GGA): BLYP,70,71 PBE,72 and

B97-D73; (b) meta-GGA (M-GGA): M06L,16 BB95,74,= and TPSS75; (c) hybrid GGA (H-

GGA): PBE0,72,76,77 B3LYP,70,71,78 and B3P8671,79; (d) hybrid-meta GGA (HM-GGA): M06,16

M06HF80; and, (e) double hybrid GGA (DH-GGA): B2PLYP81 based on their utilization for these

types of compounds. Additionally, Grimme’s empirical dispersion correction (D3)82 was added

to several density functionals selected from GGA, M-GGA, H-GGA, and HM-GGA functionals,
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to evaluate the effect of a dispersion correction on the accuracy of predictions of pKas of the

TM hydrides. To evaluate the impact of the percentage of exact exchange, the percentage of exact

exchange for PBE0was varied from 0% to 80% in intervals of 5% since PBE0 includes no empirical

parameters that may affect the utility of DFT; hence, avoiding interference from other empirical

parameters.
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Figure 3.1: From left to right, the compounds are TM(depe)2, TM(depp)2, TM(PNP)2. (a) The
model system (bolded) within the ONIOM-1 QM/QM partitioning scheme for TM hydrides with
the TM atom (Ni, Pd, and Pt) and four phosphorous atoms in the layer using the high-level method.
(b) ONIOM-2: The QM/QM partitioning scheme for TM hydrides with all the atoms within the
chelate rings in the layer using the high-level method. (c) ONIOM-3: The QM/QM partitioning
scheme for TM hydrides with all except for the very outside methyl group in the layer using the
high-level method.
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Table 3.1: Summary of the density functionals utilized.

Type %HF Exchange/Correlation

BLYP70,71 GGAa 0% Becke88/Perdew86/Lee-Yang-Parr
PBE72 GGAa 0% Perdew-Burke-Ernzerhof/ Perdew-Burke-Ernzerhof
B97-D73 GGAa 0% B97-D/B97-D
M06L16 M-GGAb 0% M06L/M06L
BB9574 M-GGAb 0% Becke88/Perdew86/Becke95
TPSS75 M-GGAb 0% Tao-Perdew-Staroverov-Scuseria/Tao-Perdew-

Staroverov-Scuseria
PBE072,76,77 H-GGAc 25% Perdew-Burke-Ernzerhof/Perdew-Burke-Ernzerhof
B3LYP70,71,78 H-GGAc 20% Becke88/Perdew86/Lee-Yang-Parr
B3P8671,79 H-GGAc 20% Becke88/Perdew86
M0616 HM-GGAd 27% M06/M06
M05-2X83 HM-GGAd 52% M05-2X/M05-2X
M06-2X16 HM-GGAd 54% M06-2X/M06-2X
M06HF80 HM-GGAd 100% M06HF/M06HF
B2PLYP81 DH-GGAe 50% Becke88/Perdew86/Lee-Yang-Parr

aGGA (generalized-gradient approximation)
bM-GGA (meta GGA)
cH-GGA (hybrid GGA)
dHM-GGA (hybrid meta GGA)
eDH-GGA (double hybrid GGA)

For the lower level within theONIOMcalculations, the relativistic effective core potential (ECP)

and valence double-ζ basis set of Hay and Wadt (LANL2DZ)84 as well as the Stuttgart/Dresden

(SDD)85–87 relativistic ECP and valence triple-ζ basis set were considered. For LANL2DZ and

SDD, 10, 28, and 60 electrons were frozen for Ni, Pd, and Pt, respectively. For the high-level

method, cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ were used.88–91 For Ni species,

correlation consistent basis sets with the one-particle Douglas-Kroll-Hess Hamiltonian for scalar

relativistic effects were applied (e.g., aug-cc-pVTZ-DK) for all atoms.92 For Pd and Pt species,

the small-core relativistic pseudopotential basis sets (e.g., aug-cc-pVTZ-PP) were used for Pd and

Pt while the all-electron basis sets (e.g. aug-cc-pVTZ) were used for main group atoms since the

pseudopotentials are incompatible with the DKH Hamiltonian and are constructed to account for

relativistic effects of the heavy atom.90,91,93 In the following sections, the terms DK for Ni and PP
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for Pd and Pt are dropped for clarity from the selected basis set notations.

Three implicit solvation models, SMD,53 COSMO,54 and C-PCM,55–57 were employed to

include solvent effects in the single point calculations. The UA0, UAKS, Pauling, Bondi and

default cavities (UFF for C-PCM, Klamt for COSMO, and Coulomb-SMD for SMD) were applied.

Scheme 3.1: The direct thermodynamic scheme

The direct thermodynamic scheme for calculating pKas of unknown acids shown in Scheme

3.1 has been used mainly due to its demonstrated utility46,48–52,94 and was used in this study with

the value -4.39 kcal mol−1 for the gas phase free energy of a proton, ∆Ggas(H+), derived using

the Sackur-Tetrode equation.95 For the value of the experimental solvation phase free energy of the

proton in acetonitrile, ∆Gsolv(H+), -260.2 kcal mol−1 has been recommended96 and was used in

this study. Thus, the solvation free energy (∆Gsol) can be calculated using the following equations

(Eq. 3.1-3.5).

∆Gsol = ∆Ggas + ∆∆Gsolv (3.1)

∆Ggas = Ggas(LnM) +Ggas(H
+)−Ggas(HLnM+) (3.2)

∆∆Gsolv = ∆Gsolv(LnM) + ∆Gsolv(H
+)−∆Gsolv(HLnM

+) (3.3)

∆Gsolv(LnM) = Esolv(LnM)− Egas(LnM) (3.4)

∆Gsolv(HLnM
+) = Esolv(HLnM

+)− Egas(HLnM+) (3.5)
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The pKa values related to free energies of solvation were calculated as

pKa =
∆Gsolv

2.303RT
(3.6)

All of the calculated gas phase free energies in units atm were converted to molar units and the

solvation phase free energies were calculated using [(Esoln + Gnes) − Egas], as defined in the

parametrization of continuum solvent models.47,97 An error of 1.36 kcal mol−1 in ∆Gsolv results

in a deviation of 1 pKa unit. Ho and Coote reported that a direct thermodynamic cycle can be

expected to depart from experiment by 3.5 pKa units.98

3.3 Results and Discussion

The considered molecules are grouped based on central TM atoms (Ni, Pd, and Pt) and the

ligands (depe, depp, and PNP) in order to evaluate the impact of the selected density functionals,

basis sets, cavities, solvation models, and the expansion in size of the high-level region within

ONIOM on the calculated pKas of TM hydrides. Mean absolute deviations (MADs) with respect

to experimental data99–102 are reported. Since [HPt(depp)2]+ does not have readily available

experimental data for pKa due to the highly reactive nature of Pt complexes, a net equation (Eq.

3.7) of the thermochemical cycle103,104 relating hydricities, pKas , and redox potentials was used to

calculate a proposed pKa based on experimental redox potentials and hydricities.100 FromEquation

3.7, the proposed pKa for [HPt(depp)2]+ is 28.3.

∆GH− = 1.37(pKa) + 46.1E◦(II/0) + 79.6 kcal mol−1 (3.7)

None of the considered TM hydrides showed significant structural changes in the gas or solvation

phases; therefore, the solvation phase structures obtained with C-PCM were used for the single

point calculations based on computational cost.

3.3.1 Utility of DFT in the Real System

The fourteen density functionals (Table 3.1) were chosen for the real layer and PBE, M06-L,

B3LYP, and M06 were chosen for the model layer. PBE, M06-L, B3LYP, and M06 were chosen to
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showcase the tiers of functional complexity in the model layer. A summary of method and basis

set choice for this section is provided in Table 3.2. Using C-PCM for [HNi(depp)2]+ and TPSS for

the real layer, the MAD when using PBE, M06-L, B3LYP, and M06 for the model layer was 11.7,

7.4, 6.2, and 9.0 pKa units, respectively. When using B97-D for the real layer, the MAD when

using PBE, M06-L, B3LYP, and M06 for the model layer were 9.7, 5.4, 4.2, and 7.0 pKa units,

respectively. Similarly, using C-PCM for [HPd(depe)2]+, the MAD when using PBE, M06-L,

B3LYP, and M06 for the model layer were 10.8, 7.3, 6.6, and 11.9 pKa units, respectively, using

TPSS in the real layer and 8.8, 5.3, 4.6, 9.9 pKa units, respectively, using B97-D in the real layer.

Since the MADs varied significantly based on functional choice in the model layer, the MADs

from PBE, M06-L, B3LYP, and M06 are averaged to eliminate bias of functional complexity for

the model layer. Therefore, for [HNi(depp)2]+ and [HPd(depe)2]+, the average MAD is 8.6 and

9.2 pKa units for TPSS, and 6.6 and 7.2 pKa units for B97-D. Averaging the MADs for the model

layers and for the molecule set allowed the choice for the real layer to be compared more readily.

Table 3.2: Theoretical methods for the description of real and model systems within the two-layer
ONIOM scheme using C-PCM, COSMO, and SMD for utility of DFT in the real layer.

Method Model systema Real systemb

1 PBE/aug-cc-pVTZ DFT
2 M06L/aug-cc-pVTZ DFT
3 B3LYP/aug-cc-pVTZ DFT
4 M06/aug-cc-pVTZ DFT

aaug-cc-pVTZ (main group atoms for Pd, Pt species), aug-cc-pVTZ-DK (Ni species), aug-cc-pVTZ-PP (Pd and Pt).
bDFT functionals are listed in Table 3.1. LANL2DZ is used as the basis set for the real system.

For the molecule set, the average MAD in the pKa from experiment is provided in Figure 3.2,

where the considered density functional approach for the low level of the ONIOM approach has

been varied. Among the functionals considered, B97-D performed best with MADs of 5.5, 2.7,

and 2.3 pKa units for C-PCM, COSMO, and SMD, respectively, followed by B3LYP (6.3, 3.4, 2.9

pKa units), and M06-L (7.2, 4.5, 3.8 pKa units). Except for B97-D, B3LYP, and M06L, all other

GGA, M-GGA and H-GGA functionals performed similarly regarding each solvation model with

MAD values of about 7.9, 5.0, and 4.3 pKa units for C-PCM, COSMO, and SMD, respectively.
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The functional with the highest MAD is M06-2X with MAD values of 10.5, 7.7, and 7.1 pKa units

for C-PCM, COSMO, and SMD, respectively. Among the three selected solvation models, SMD

provided the best comparison with experimental pKa data while C-PCM yielded the highest MADs

for all fourteen considered density functionals.

Figure 3.2: MADs in pKa values for the density functionals within low-level methods relative to
experiment. All of the results are from calculations with ONIOM(PBE,M06L,B3LYP,M06/aug-
cc-pVTZ:DFT/LANL2DZ) scheme. The results of using the four functionals in the model layer
are averaged for the molecule set.

It is worth noting that using separate functionals for the core and real layers provided lower

MADs than when the same functional is used for both layers within the ONIOM scheme regarding

each solvation model. For instance, with SMD, ONIOM (B97-D/ aug-cc-pVTZ : PBE/

LANL2DZ), ONIOM (B97-D/ aug-cc-pVTZ : M06L/ LANL2DZ), ONIOM (B97-D/
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aug-cc-pVTZ : B3LYP/ LANL2DZ), and ONIOM (B97-D/ aug-cc-pVTZ : M06/ LANL2DZ)

yielded MADs lower than ONIOM (PBE/ aug-cc-pVTZ : PBE/ LANL2DZ), ONIOM (M06L/

aug-cc-pVTZ : M06L/ LANL2DZ), ONIOM (B3LYP/ aug-cc-pVTZ : B3LYP/ LANL2DZ), and

ONIOM(M06/ aug-cc-pVTZ : M06/ LANL2DZ) by 2.4, 1.6, 1.4, and 4.1 pKa units, respectively.

This shows that a mixed basis set approach may not be advantageous for TM hydride systems.

Figure 3.3: MADs in pKa values for five types of density functionals, GGA,M-GGA,H-GGA,HM-
GGA, and DH-GGA functionals, within low-level methods relative to experiment. All of the results
are from calculations with ONIOM(PBE,M06L,B3LYP,M06/aug-cc-pVTZ:DFT/LANL2DZ)
scheme. The results of using the four functionals in the model layer are averaged for the molecule
set.

The utility of the types of density functionals at modeling pKas is shown in Figure 3.3. The

GGA (7.1, 4.2, and 3.6 pKa units for C-PCM, COSMO, and SMD, respectively) and H-GGA
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(7.3, 4.4, and 3.8 pKa units for C-PCM, COSMO, and SMD, respectively) functionals produced

similar MADs, which were better than all the other types of functionals regardless of solvation

method. In contrast, DH-GGAs performed the worst with MADs of 9.8, 6.9, and 6.0 pKa units

for C-PCM, COSMO, and SMD, respectively, which indicates that the addition of a fraction of the

PT2 correlation energy is a disadvantage for the description of pKas of TM hydrides. Compared

with HM-GGAs, M-GGA functionals, which do not include exact exchange, yielded lower MADs

for all three solvation models. Therefore, exact exchange is not necessary for the description of

the real system. COSMO and SMD performed similarly (5.3 and 4.7 pKa units, respectively) and

resulted in MADs ∼3 pKa units lower than that from C-PCM (8.1 pKa units).

The comparison of functional types of is considered with respect to central TM atoms (Table

3.10) and ligand systems (Table 3.11) employing each of the three solvation models. For the

Ni species, the MADs increased with increasing functional complexity, except for DH-GGAs

for all three solvation models. For Pd and Pt species, H-GGAs yielded the lowest MADs in

comparison to other types of functionals while DH-GGAs always performed the worst for all three

solvation models. Moving from Ni to Pt, the MADs of non-local exchange functionals (H-GGA,

HM-GGA, and DH-GGA) decrease, which indicates that non-local exchange in functionals can

describe TM hydrides with heavier central TM atoms better than those with lighter central TM

atoms. Considering the overall MADs of different types of functionals, the increase in MADs upon

inclusion of exact exchange is more significant for M-GGA functionals (HM-GGA) than it is for the

GGA functionals (H-GGA). As shown in Figure 3.1, the size of the considered ligands increases in

the order of depe, depp, and PNP. Similar MAD was found for each type of functional between all

three solvation models as the size of the ligand increased.

3.3.2 Utility of DFT in the Model Layer

As seen in the previous section, the fluctuation caused by the choice of the four density

functionals in describing the model system of the ONIOM scheme implies that functional choice

for both the model and real layer are factors in calculating pKa values; therefore, the section
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focuses on the utility of the density functionals for the model layer while keeping the functionals

chosen for the real layer constant. Table 3.3 summarizes the combination of density functionals as

ONIOM schemes designed to measure the influence of the fourteen considered density functionals

combined with the aug-cc-pVTZ basis set in the description of model layers of the TM hydrides

(Figure 3.1a). The real systems (Figure 3.1a) were treated with three density functionals (B97-D,

M06L, and B3LYP) paired with the LANL2DZ basis set, which were selected based on their better

performance as low-level methods shown in the previous section. The rationale for averaging the

MADs from the three selected real systemmethods is to eliminate bias from the functional chosen for

the real layer and gauge the utility of density functionals in the model layer, as done in the previous

section for the real layer. TheMADs for each high-level method, which are based upon deviations of

the calculated pKa values of the TM hydrides from experimental data for each functional using the

C-PCM, COSMO, and SMD, are reported in Figure 3.4. For C-PCM and COSMO, the three best-

performing functionals were B3LYP, M05-2X, and M06-HF, with B3LYP and M06-HF resulting

in the lowest average MADs with C-PCM and COSMO, respectively. For SMD, B97-D, TPSS, and

M05-2X yielded the same average MAD value of 2.1 pKa units. Therefore, unlike the consistency

for density functionals that were found to perform best in describing the real systems among the

solvation models, the utility of density functionals in describing the model layer depended on the

selection of the solvation model.
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Figure 3.4: MADs in pKa values for fourteen GGA, M-GGA, H-GGA, HM-GGA, and DH-
GGA functionals within high-level methods relative to experiment. All of the results are from
calculations with ONIOM(DFT/aug-cc-pVTZ:B97-D,M06L,B3LYP/LANL2DZ) scheme. The
MADs in pKa values for the three functionals in the real layer are averaged for the molecule
set.

The most accurate pKa values were yielded by different density functionals for each solvation

model (MAD of 2.0 pKa units by B3LYP with C-PCM, 1.9 pKa units by M06-HF with COSMO,

and 2.1 pKa units by B97-D, TPSS, and M05-2X with SMD). PBE resulted in the largest difference

from experimental data with MADs of 6.7, 6.5 and 5.5 pKa units for C-PCM, COSMO, and SMD,

respectively. BB95 and M06 also performed considerably worse than other considered functionals

(except PBE), which resulted in the same MADs of 6.2 pKa units for C-PCM and 5.0 pKa units for

SMD, and similar MADs of about 5.6 pKa units for COSMO.
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Figure 3.5: MADs in pKa values for five types of density functionals, GGA, M-GGA, H-GGA,
HM-GGA, and DH-GGA functionals, within high-level methods relative to experiment. All of the
results are from calculations with ONIOM(DFT/aug-cc-pVTZ:B97-D,M06L,B3LYP/LANL2DZ)
scheme.

The utility of types of density functionals is shown with the three solvation models in Figure

3.5. The H-GGA functionals provided the most comparable pKa values to the experimental data

with MADs of 3.2, 2.8, and 2.5 pKa units for C-PCM, COSMO, and SMD, respectively, while

the DH-GGA functionals resulted in the highest MADs of 5.2, 4.6, and 4.0 pKa units for C-PCM,

COSMO, and SMD, respectively. The largeMAD of DH-GGAs infers that the addition of a fraction

of the PT2 correlation energy should not be considered for the accurate description of the model

layer of TM hydrides. For all three solvation models, GGA and M-GGA functionals yielded larger

MADs than H-GGA and HM-GGA, which indicates that inclusion of exact exchange is necessary
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to describe the model layer of TM hydrides more appropriately. This lowering of the MADs by

including exact exchange in SMD was less obvious then for C-PCM and COSMO.

Table 3.3: Theoretical methods for the description of real and model systems within the two-layer
ONIOM scheme using C-PCM, COSMO, and SMD for utility of DFT in the model layer.

Method Model systema Real systemb

1 DFT/aug-cc-pVTZ B97-D
2 DFT/aug-cc-pVTZ M06-L
3 DFT/aug-cc-pVTZ B3LYP

aDFT functionals are listed in Table 3.1. aug-cc-pVTZ (main group atoms for Pd, Pt species), aug-cc-pVTZ-DK (Ni species),
aug-cc-pVTZ-PP (Pd and Pt).
bLANL2DZ is used as the basis set for the real system.

The types of functionals were compared with respect to central TM atoms (Table 3.12) to

assess if their ability to describe the model layer was determined by their performance on the

description of metal center. The MADs for all types of functionals decrease from lighter to heavier

metal for all three solvation models (Table 3.12). For Ni species, the M-GGA functionals yielded

the lowest MADs of 3.7, 3.4, and 2.6 pKa units with C-PCM, COSMO, and SMD, respectively.

The H-GGA functionals performed the best for C-PCM and COSMO with MADs of 3.2 and 2.9

pKa units, respectively. The GGA, M-GGA, and H-GGA functionals resulted in similar MADs of

about 2.5 pKa units with SMD for Pd species. For Pt species, the HM-GGA functionals produced

comparable MADs of about 1.8 pKa units for COSMO and SMD that were lower than for other

types of functionals. The DH-GGA functional resulted in the largest MADs for all considered metal

species with all three solvation models. The model layer is described better by H-GGA functionals

than GGA functionals. Thus, following the same conclusion based on the overall performance of

functional type, the reduction in MADs for H-GGA functionals from GGA functionals is more

significant for TM hydrides with lighter central TM atoms than for those with heavier central TM

atoms.
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3.3.3 Impact of Exact Exchange on the Accuracy of DFT

Although there was no systematic trend found between the percentage of exact exchange and

the accuracy of Minnesota functionals for the prediction of the pKas of TM hydrides (Figure 3.4),

H-GGA and HM-GGA functionals showed improvement in predicting pKa values than GGA and

M-GGA functionals when applied to the model layer. Therefore, some light might be still shed

on the impact of exact exchange by investigating if the implementation of other functionals can

be systematically improved as a function of the percentage of exact exchange. PBE0, which has

25% exact exchange included, did improve the accuracy of the local PBE without exact exchange.

Additionally, PBE includes no empirical parameters that may affect the utility of DFT. Therefore,

using the PBE0 functional to examine the impact of exact exchange on the calculation of pKas for

TM hydrides with density functionals can avoid interference from other empirical parameters.

The percentage of exact exchange varied from 0 to 80% in intervals of 5%. The MADs with

respect to central TM atoms and size of ligands of TM hydrides were taken into account with the

ONIOM(PBE0/aug-cc-pVTZ:B97-D/LANL2DZ) scheme and SMD. B97-D was selected due to

its most comparable results to the experimental data and the SMD solvation model was used since

it resulted in lower MADs than either C-PCM or COSMO.
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Figure 3.6: MADs of PBE0 vs. percentage of exact exchange where (a) the average MAD
for each metal center and (b) the average MAD for each ligand. All of the results are from
ONIOM(PBE0/aug-cc-pVTZ:B97-D/LANL2DZ) scheme with SMD.

As shown in Figure 3.6, 50% exact exchange was preferred when the ligand (depe, depp, and

PNP) is constant and the central atoms changes. For Ni species, the minima all laid at 50%. The

MAD curves of Pd and Pt species were significantly flatter than those for the Ni species. For the

Pd species, all values between 40 and 80% yielded roughly comparable results with the greatest

deviation being 0.6 pKa units. The Pt species had the minima at 65%. For the overall MADs of

the considered species, the minimum can be found at 40% exact exchange. Therefore, the amount

of exact exchange needed is dependent on the choice of TM and independent of the ligands.
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3.3.4 Impact of Adding Grimme’s Empirical Dispersion Correction on the Accuracy of DFT

Figure 3.7: MADs in pKa values of DFT and DFT-D3 with SMD relative to experiment, with
respect to central TM atoms and ligand size of TM hydrides. The results are from calculations
involving the ONIOM(DFT(-D3)/aug-cc-pVTZ:B97-D3/LANL2DZ) scheme.

The results of the impact of DFT for the model and real layers indicated that the dispersion-

corrected functional, B97-D, was amongst the best functionals in describing both the real andmodel

layers in the QM/QM scheme for TM hydrides with SMD due to having the lowest MADs with

respect to experimental pKa values. Therefore, it is of interest to evaluate the influence of adding the

Grimme’s empirical (D3) dispersion correction on both LL and HL methods in ONIOM(DFT/aug-

cc-pVTZ:B97-D/LANL2DZ) schemes. The B97-D/LANL2DZ method and basis set combination

for the real layer was applied in this section due to its superior performance relative to other

methods with SMD. The non-dispersion corrected density functionals, BLYP and PBE from the

GGAs, M06L and TPSS from theM-GGAs, PBE0 and B3LYP from the H-GGAs, andM05-2X and

M06-2X from the HM-GGAs, were selected from four types of density functionals to describe the
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model layer of the TM hydrides. To determine the impact of adding the dispersion correction, the

overall performance of the functionals with and without the dispersion correction was considered

with respect to central TM atoms as well as ligand sizes in the TM hydrides (Figure 3.7). All

results are averaged by functional tier in Table 3.4. The values in Table 3.4 are averaged in Figure

3.7 to clearly define the trend when using dispersion-corrected functionals. Although DFT-D3

methods resulted in lower MADs for all considered species, the improvement by adding dispersion

correction varies as shown in Figure 3.8 The reductions in the MADs were more significant for the

lighter central TM atoms and for TM hydrides with larger sized ligands than for heavier central TM

atoms and for TM hydrides with smaller sized ligands. The comparison of different types of density

functionals with and without the dispersion correction is shown in Table ??. For the functionals

with non-local exchange functionals, the addition of Grimme’s dispersion correction reduced the

MADs more significantly than for functionals with local exchange functionals.

Table 3.4: MADs in pKa values of GGA, M-GGA, H-GGA, and HM-GGA Types of Functionals
for Comparison of DFT and DFT-D3 Relative to Experiment with SMD.

GGA M-GGA H-GGA HM-GGA

DFT 4.1 1.9 2.4 2.8
DFT-D3 2.7 1.3 2.0 2.9
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Figure 3.8: MADs of DFT vs. DFT-D3 with SMD for the functionals in the model layer,
i.e. ONIOM(DFT(-D3)/aug-cc-pVTZ:B97-D3/LANL2DZ). The MADs are averages of the full
molecule set.

3.3.5 Impact on the Choice of Basis Set

It is well-known that the chosen basis set will also affect the accuracy of calculated properties in

addition to the selected density functional. Therefore, the influence of the basis set on the accuracy

of calculated pKas was assessed with two double-ζ and two triple-ζ quality correlation consistent

basis sets with select density functionals as the HL method, and LANL2DZ and SDD with select

density functionals as the LL method. The aug-cc-pVTZ basis set was utilized for the HL methods

when comparing the MADs of LANL2DZ and SDD basis sets for LL methods and LANL2DZ was

applied for low-level methods for the comparison of the considered correlation consistent basis sets

for high-level methods.
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The selected density functionals for the high-level method include B97-D, TPSS, B3LYP, and

M05-2X since these functionals yield similar MADs of about 2.3 pKa units and perform better than

the other considered density functionals with respect to experimental pKa values in investigating

the impact of functional choice on the model layer. Only B97-D is applied for low-level methods

since B97-D yields a lower MAD of 2.3 pKa units with SMD than other considered functionals in

investigating the impact of functional choice on the real layer. All calculations in this section used

SMD based on the solvation model’s performance in previous sections.

Table 3.5 shows the dependence of the four selected functionals upon the quality of correlation

consistent basis set for the high-level methods. B97-D and B3LYP only resulted in a small reduction

in MAD of 0.2 pKa units when the basis set quality was increased from aug-cc-pVDZ to aug-cc-

pVTZ while showed a reduction of MADs (more than 0.5 pKa units) upon improving the basis set

from cc-pVDZ to cc-pVTZ.

Table 3.5: MADs in pKa values relative to experiment for four functionals when changing the basis
set used for the model layer.

aug-cc-pVDZa aug-cc-pVTZa cc-pVDZa cc-pVTZa

B97-D 3.0 2.8 4.0 2.7
TPSS 1.5 1.5 1.4 3.3
B3LYP 1.1 0.9 1.6 1.1
M05-2X 1.8 1.9 1.9 1.9

a(aug-)cc-pVnZ-DK was considered for Ni species and (aug-)cc-pVnZ-PP was considered for Pd and Pt species.

As shown in Figure 3.9, the accuracy of the basis set displayed a dependence on the central

TM atoms of the TM hydrides, where cc-pVDZ and cc-pVTZ yielded similar pKa values for Ni

and Pt species while cc-pVDZ performed better than cc-pVTZ for Pd. Similarly, aug-cc-pVDZ

outperformed aug-cc-pVTZ for Pd species but yielded higher MADs than aug-cc-pVTZ for Pt

species. In contrast, the accuracy of the basis sets was not affected by the ligand sizes of the TM

hydrides, as both double-ζ and triple-ζ basis sets, with or without the diffuse functions, consistently

resulted in similar MADs. Both considered double- and triple-ζ correlation consistent basis sets

provided a more accurate description of the model layer of the TM hydrides by including diffuse
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functions, except for the Ni species.

Figure 3.9: Mean absolute deviation (MAD) in pKa values when utilizing different basis sets
relative to experiment, with respect to central TM atoms and ligand size of TM hydrides where (a)
the cc-pVnZ and aug-cc-pVnZ (n=D,T) are considered for the model layer (HL method) and (b)
LANL2DZ and SDD ECPs are considered for the real layer (LL method).

For the low-level methods, SDD performed better than LANL2DZ with respect to central TM

atoms and ligand sizes of the TM hydrides, except for Ni species (Figure 3.9). The MADs of both

LANL2DZ and SDD decreased as the central TM atoms of TM hydrides becomes heavier.

3.3.6 Impact of Cavity Models on Implicit Solvation Models

The calculated pKa valueswere also compared to the experimental data from the viewpoint of the

cavities used in computing the C-PCM, COSMO, and SMD reaction fields with the ONIOM(PBE,

M06L, B3LYP, and M06/aug-cc-pVTZ:B97-D/LANL2DZ) scheme used in previous sections to

eliminate functional bias in choice of the HL method. Five cavity models, Pauling, Bondi, UA0,

UAKS, and the default cavity for each solvation model within the GAUSSIAN09 package (UFF for

C-PCM, Klamt for COSMO, and SMD-Coulomb for SMD) were applied to determine the effect
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of the atomic radii used to build a cavity in the solvent (acetonitrile) on the predicted pKa values

of the TM hydrides. For C-PCM, the Pauling cavity generated the lowest average MAD of 3.4

pKa units while UA0 resulted in the largest MAD of 5.3 pKa units for the full molecule set. For

both COSMO and SMD, the average MAD of the full molecule set yielded the lowest MADs of

3.0 and 2.3 pKa units, respectively, with the GAUSSIAN09 default cavity as shown in both Figure

3.10 and Table 3.6, and the highest average MADs with the UA0 cavity with 5.3 and 5.1 pKa units,

respectively.
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Figure 3.10: Impact of radii models on (a) C-PCM, (b) COSMO, and (c) SMD. The default cavities
for C-PCM, COSMO, and SMD are UFF, Klamt, and SMD-Coulomb, respectively. The average
MADs are results from calculation with the ONIOM (PBE, M06L, B3LYP, M06/ aug-cc-pVTZ :
B97D/ LANL2DZ) scheme and then categorized by metal and ligand.
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Table 3.6: MADs of five cavitymodels in pKa values relative to experiment using theONIOM(PBE,
M06-L, B3LYP, and M06/aug-cc-pVTZ:B97-D/LANL2DZ) scheme.

C-PCM
Pauling Bondi UA0 UAKS Default

Ni 3.5 3.8 5.8 3.6 5.8
Pd 3.9 4.0 6.4 4.0 4.0
Pt 2.8 2.9 3.7 3.0 2.0

depe 3.8 4.0 5.8 4.5 4.3
depp 3.0 3.2 5.5 3.0 3.5
PNP 3.4 3.6 4.8 3.2 4.0

Overall 3.4 3.6 5.3 3.6 3.9

COSMO
Pauling Bondi UA0 UAKS Default

Ni 3.5 3.8 5.8 3.6 3.1
Pd 3.9 4.0 6.5 4.0 3.9
Pt 2.0 2.1 3.7 2.2 1.9

depe 3.0 3.2 5.8 3.7 3.0
depp 3.0 3.2 5.5 3.0 2.9
PNP 3.4 3.6 4.8 3.2 3.0

Overall 3.1 3.3 5.3 3.3 3.0

SMD
Pauling Bondi UA0 UAKS Default

Ni 3.1 3.5 5.8 3.4 2.6
Pd 3.4 3.5 6.1 3.4 2.8
Pt 1.6 1.8 3.6 1.8 1.4

depe 2.7 2.9 5.6 3.4 2.4
depp 2.5 2.8 5.3 2.6 2.1
PNP 2.9 3.1 4.5 2.7 2.2

Overall 2.7 2.9 5.1 2.9 2.3

3.3.7 Impact of the Expansion of the Size of Model System

To examine the influence of the size of the model system on the utility of density functionals to

predict pKa values of TM hydrides, four functionals, B97-D, TPSS, B3LYP, andM05-2Xwere used

due to their better agreement with experimental data when used as the HL methods in previous

sections. The ONIOM-1, ONIOM-2, and ONIOM-3 models are depicted in Figure 3.1. The

ONIOM-1 model used the metal and atoms bound directly to the metal as the high level. The

ONIOM-2 model increases the size of the model layer from ONIOM-1 by including the chelating
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ring connecting the phosphorous atoms. The ONIOM-3 model increases the size of the model

layer in ONIOM-2 by including a methyl group attached to the phosphorous atoms. As shown in

Table 3.7, among the four functionals, only B97-D showed improvement when the size of model

system was expanded from ONIOM-1 to ONIOM-3, while the MADs of the other three functionals

increased. The largest deviation of the MADs between the four functionals are 0.5, 1.8, and 2.7

pKa units for ONIOM-1, ONIOM-2, and ONIOM-3, respectively. The accuracy of the calculated

pKa values of the TM hydrides showed a larger dependence on the selection of density functionals

when a larger sized model system was utilized.

Table 3.7: MADs in pKa values relative to experiment of three expansions of model system of TM
hydrides with SMD.

ONIOM Scheme ONIOM-1 ONIOM-2 ONIOM-3

B97-D/aug-cc-pVTZ:B97-D/LANL2DZ 1.4 2.8 3.2
TPSS/aug-cc-pVTZ:B97-D/LANL2DZ 1.2 0.9 0.5
B3LYP/aug-cc-pVTZ:B97-D/LANL2DZ 0.9 1.2 1.5
M05-2X/aug-cc-pVTZ:B97-D/LANL2DZ 1.0 1.2 1.3

3.3.8 Comparison of Different Methodologies

Combining the results from all previous sections, the proposedmethodology for these systems is

B3LYP-D3/aug-cc-pVTZ:B97-D3/SDD (Scheme A). Shown in Figure 3.11, this proposed scheme

is compared to four other methodological choices: B97-D3/SDD, B3LYP-D3/SDD, B3LYP/aug-

cc-pVTZ:HF/LANL2DZ, and CCSD(T)/aug-cc-pVTZ:B97-D3/SDD, which are Schemes B, C, D,

and E, respectively. Schemes B and C outline the use of a single density functional and Schemes D

and E outline the use of ab initiomethods implemented for both the LL andHLmethod, respectively.

Table 3.8 shows the MADs for each scheme and the average MAD for each scheme presented in

Figure 3.11. The performance of each methodology is compared via the average MAD for the

molecule set. Scheme A had the lowest MAD of 0.6 pKa units while Scheme B had the highest

MAD of 5.5 pKa units.
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Figure 3.11: Comparison of the experimental and calculated pKa values viamethodological choices
represented by their calculated values and the dotted trend lines. The dashed black line denotes
the 1:1 correspondence between experiment and calculated pKa values. Schemes A-E are ONIOM
(B3LYP-D3/ aug-cc-pVTZ : B97-D3/ SDD), B97-D3/ SDD, B3LYP-D3/ SDD, ONIOM (B3LYP/
aug-cc-pVTZ : HF/ LANL2DZ), and ONIOM (CCSD(T)/ aug-cc-pVTZ : B97-D3/ SDD).
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Table 3.8: Predicted pKa values for Schemes A-E, which are ONIOM (B3LYP-
D3/aug-cc-pVTZ:B97-D3/ SDD), B97-D3/SDD, B3LYP-D3/SDD, ONIOM(B3LYP/aug-cc-
pVTZ:HF/LANL2DZ), and ONIOM(CCSD(T)/aug-cc-pVTZ :B97-D3/SDD), respectively.

Scheme A Scheme B Scheme C Scheme D Scheme E Exp

[HNi(depe)2]+ 23.6 23.3 29.9 20.5 20.6 23.8
[HNi(depp)2]+ 22.4 22.8 29.8 21.1 19.6 23.3
[HNi(PNP)2]+ 23.6 24.1 20.9 22.7 20.9 22.2
[HPd(depe)2]+ 23.3 26.2 26.3 21.7 18.9 23.2
[HPd(depp)2]+ 24.4 26.6 27.8 22.7 21.4 22.9
[HPd(PNP)2]+ 21.8 24.4 25.5 20.1 19.2 22.1
[HPt(depe)2]+ 30.1 34.1 34.4 28.6 27.8 29.7
[HPt(depp)2]+ 27.9 32.4 32.8 26.8 26.5 28.3a
[HPt(PNP)2]+ 27.8 32.1 32.6 27.0 27.3 27.6
MAD 0.6 5.5 4.4 1.4 2.3

aObtained through Equation 3.7.

Schemes B and C were formulated to present how the functionals chosen for Scheme A perform

without the use of ONIOM. The average MAD for Scheme B is approximately 1.1 pKa units higher

than for Scheme C (4.4 pKa units). Both Schemes B and C overestimated the pKas, thus showing

that with the SDD basis set, DFT overestimates the pKas of these TM hydrides. The decrease

in MAD while increasing the complexity of the functional from GGA to H-GGA supports the

results from Section 3.3 where exact exchange is necessary for the correct chemical description

of the metal center. For Scheme A, which uses a hybrid functional to describe the model layer

and a local functional to describe the real system, the quality of the basis set used (aug-cc-pVTZ)

at the metal center and the cancellation of inherent DFT errors due to the extrapolative ONIOM

method explains why Scheme A has the closest correspondence to experiment. Schemes D and

E were chosen to examine wavefunction methods for both the LL and HL method. The average

MAD for Scheme D (1.4 pKa units) is approximately 0.9 pKa units lower than for Scheme E (2.3

pKa units). Using wavefunction methods underestimated the pKas for all molecules examined

except for [HNi(PNP)2]+ for Scheme D. In this case, using DFT was advantageous to describe the

metal center and directly bound atoms over CCSD(T).
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3.4 Conclusions

This study provides insight into density functionals, solvation models, basis sets, cavity models,

and model layer size that are needed to examine the chemical properties of TM hydrides. Of the

three solvation models considered, the SMD solvation model resulted in lowerMADs for predicting

pKa values of TM hydrides than the other two models (COSMO and C-PCM) in comparison to the

experimental data. For the high- and low- level methods within the QM/QMONIOM scheme, B97-

D yielded the lowest MADs with B97-D, TPSS, and M05-2X with SMD resulted in lower MADs.

The improvement gained including the DFT dispersion correction was more significant for TM

hydrides with lighter central TM atoms and bulkier ligands. Therefore, dispersion is recommended

for these systems. Generally, the triple-ζ basis sets provided lower MADs than the double-ζ basis

sets for the high-level method, while SDD yielded more comparable pKa values to the experimental

data than LANL2DZ for the low-level method. Among the considered cavity models for SMD

(Pauling, Bondi, UA0, UAKS, and SMD-Coulomb), the default cavity (SMD-Coulomb), yielded

the lowest MADs.

For the selection of ONIOM layers, increasing the number of atoms increases the MAD for

all functionals utilized except for B97-D. Thus, the ONIOM-1 scheme (consisting of the metal

atom and immediately bound atoms) is recommended. Using ab initio methods underestimated

the pKa while the use of a single functional largely overestimated the pKa. Therefore, the ONIOM

scheme (B3LYP-D3/aug-cc-pVTZ:B97-D3/SDD) with SMD can be considered as a computational

method to obtain a reliable description of Group 10 TM hydrides, which can serve as a guide for

the calibration of bulkier TM hydrides.
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APPENDIX
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Table 3.9: Summary of the basis sets utilized.

Ni Species Pd and Pt Species

Real system SDD SDD
LANL2DZ LANL2DZ

Model system

cc-pVDZ-DK cc-pVDZ-PP
aug-cc-pVDZ-DK aug-cc-pVDZ-PP
cc-pVTZ-DK cc-pVTZ-PP

aug-cc-pVTZ-DK aug-cc-pVTZ-PP

Table 3.10: MADs in pKa values of GGA, M-GGA, H-GGA, HM-GGA, and DH-GGA functionals
within low-level methods with solvation models relative to experiment, with respect to central TM
atoms of the TM Hydrides. All of the results are from calculations with ONIOM(B97-D, M06-L,
B3LYP, and M06/ aug-cc-pVTZ:DFT/LANL2DZ) scheme.

Central
TM Atom

GGA M-GGA H-GGA HM-GGA DH-GGA

C-PCM
Ni 7.2 8.0 8.2 10.7 10.6
Pd 8.0 8.8 7.7 9.7 10.3
Pt 6.1 6.9 5.9 7.6 8.5

COSMO
Ni 4.5 5.5 5.5 8.1 7.8
Pd 5.2 6.1 4.9 6.5 7.5
Pt 3.1 3.8 2.8 4.5 5.2

SMD
Ni 3.8 4.8 4.9 7.5 6.9
Pd 4.2 5.1 4 5.6 6.4
Pt 2.9 3.6 2.7 4.5 4.9

Overall-MADa Ni 5.2 6.1 6.2 8.8 8.4
Pd 5.8 6.7 5.5 7.3 8.1
Pt 4.0 4.8 3.8 5.5 6.2

aAverage results of C-PCM, COSMO, and SMD solvation models
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Table 3.11: MADs in pKa values of GGA, M-GGA, H-GGA, HM-GGA, and DH-GGA functionals
within low-level methods with solvation models relative to experiment, with respect to ligands of
the TM hydrides. All of the results are from calculations with ONIOM(B97-D,M06-L, B3LYP,
and M06/ aug-cc-pVTZ:DFT/LANL2DZ) scheme.

Ligand GGA M-GGA H-GGA HM-GGA DH-GGA

C-PCM
depe 7.2 7.7 7.4 9.2 10.0
depp 7.1 8.1 7.3 9.3 9.9
PNP 7.0 7.9 7.1 9.5 9.5

COSMO
depe 4.1 4.7 4.2 6.1 6.8
depp 4.1 5.2 4.3 6.3 6.8
PNP 4.5 5.5 4.6 6.6 7.0

SMD
depe 3.8 4.3 3.9 5.9 6.3
depp 3.5 4.6 3.8 5.9 6.0
PNP 3.7 4.6 3.8 5.8 5.9

overall-MADa
depe 5.0 5.6 5.2 7.1 7.7
depp 4.9 6.0 5.1 7.2 7.6
PNP 5.1 6.0 5.2 7.3 7.5

aAverage results of C-PCM, COSMO, and SMD

Table 3.12: MADs in pKa values of GGA, M-GGA, H-GGA, HM-GGA, and DH-GGA functionals
within high-level methods with solvation models relative to experiment, with respect to central TM
atoms of the TM Hydrides. All of the results are from calculations with ONIOM(DFT/aug-cc-
pVTZ:B97-D,M06L, and B3LYP/LANL2DZ) scheme.

Central
TM Atom

GGA M-GGA H-GGA HM-GGA DH-GGA

C-PCM
Ni 7.0 3.7 3.9 4.8 8.9
Pd 3.7 3.7 3.2 4.1 6.2
Pt 3.0 2.9 2.6 2.8 4.2

COSMO
Ni 6.8 3.4 3.5 4.9 7.5
Pd 3.7 3.4 2.9 4.1 5.9
Pt 2.6 2.2 2.1 1.7 3.3

SMD
Ni 5.9 2.6 2.9 5.1 6.7
Pd 2.7 2.6 2.5 3.5 4.9
Pt 2.2 2.1 2.2 1.9 3.2

Overall-MADa Ni 6.6 3.2 3.4 4.9 7.7
Pd 3.4 3.2 2.9 3.9 5.7
Pt 2.6 2.4 2.3 2.1 3.6

aAverage results of C-PCM, COSMO, and SMD solvation models
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CHAPTER 4

UTILIZATION OF THE DOMAIN-BASED LOCAL PAIR NATURAL ORBITAL
METHODS WITHIN THE CORRELATION CONSISTENT COMPOSITE APPROACH

4.1 Introduction

Over the years, numerous approaches have been developed to try to reduce the computational

cost associated with high-level ab initio methods while maintaining similar accuracy. These

approaches include but are not limited to ab initio composite methods (see Section 2.2.4),1–31 and

local ab initio correlated methods (see Section 2.2.1).32–65

The combination of these approaches should, in principle, expand the range ofmolecules that can

be targeted with composite methodologies since composite methods are often limited by molecule

size but achieve a high level of accuracy for well-established reliable experiments and local methods

reduce theCPU timewhile reproducing electronic energies analogous to canonicalmolecular orbital

methods. Therefore, the premise of this work is to develop a composite methodology that utilizes

local methods to reduce the computational cost while retaining the same level of accuracy as the

canonical composite method.

While the correlation consistent Composite Approach (ccCA) results in a reduction in

computational cost and is comparable in accuracy relative to its target level of theory for main

group species,31 CCSD(T,FC1)/aug-cc-pCV∞Z-DK, additional reduction of computational cost

is desired to facilitate the description of chemical systems of increasing size. For the methodology,

a number of options are available, targeting one or more of the steps of the composite approach.

Approaches include RI-ccCA,25 which utilizes the resolution-of-the-identity (RI) approximation

for the MP2 steps within ccCA, and ccCA-F12,26 which uses explicitly correlated methods for all

steps within ccCA. When using RI-CCSD(T) and CCSD(T)-F12 for RI-ccCA and ccCA-F12,

respectively, neither coupled cluster approach reproduced the same energies as CCSD(T), and

thus led to a decrease in performance of RI-ccCA and ccCA-F12 relative to ccCA. Another
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example is the use of completely renormalized CCSD(T) [CR-CCSD(T)] within ccCA

(CR-ccCA), which can be beneficial in situations that might otherwise require multireference

wavefunction treatment, such as MR-ccCA, and which resulted in a reduction in the MAD from

experiment for open-shell species which was less than that of ccCA.23,66

Another route used to reduce the computational cost of ccCA is via Morokuma’s Our own

N-layered Integrated molecular Orbitals and molecular Mechanics (ONIOM) framework,67 such

as in ONIOM-ccCA28 and rp-ccCA-ONIOM,29. While these implementations have been useful,

they are not immune to common multilayer method challenges including judicious choice of model

layer and method combinations (e.g. QM/QM), as well as reliance on error cancellation to obtain

favorable results.68

While there have been approaches to reduce the computational cost of ccCA and other composite

methods, one of the primary factors in the SCF step is the calculation of four-center two-electron

integrals, which formally scales as N4/8. As mentioned earlier, the RI approximation utilized

within ccCA can mitigate this computational bottleneck successfully for the MP2 step of ccCA by

approximating four-center two-electron integrals as a linear combination of three-center or two-

center two-electron integrals through a projection operator using an auxiliary basis set (ABS). The

use of an ABS reduces the scaling, and thus cost, of the four-center two-electron integrals from

O(K4) to approximately O(K2m) where K is the number of basis functions andm is the number

of auxiliary basis functions, where m < K2 so that an ABS has enough flexibility to adapt to any

Coulomb potential. In practice, different ABS are constructed and used for SCF and correlated

integrals.25,69

Alternatives to using RI methods for mitigating the computational bottleneck of four-center

two-electron integrals include local methods, which have been extensively developed to localize

dynamic correlation.32–65Although canonical orbitals are characteristically delocalized, a localized

description of the occupied orbitals is important for dynamic correlation since dynamic correlation

for nonmetallic systems is a short-range effect with a dependence on distance of r-6 like dispersion

energy.70
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The domain-based local pair natural orbital (DLPNO) methods,55–58,61 primarily DLPNO-

CCSD(T), have been shown to result in reduced computational cost relative to the cost of CCSD(T)

for transition metal-based catalysts and larger organic systems such as complex hydrocarbons

and fullerenes, and with comparable accuracy.71–75 (The original publications and Section 2.2.3

provide more details about DLPNO methods and their development.52–54,56–58). To reduce the

costs of DLPNO methods, the DLPNO methods have been paired with the Foster-Boys (FB)76,77

and the Pipek-Mezey (PM)78 techniques to localize occupiedMOs.78,79 Both localization schemes

have been described in Section 2.2.1. Numerous studies have utilized each of these localization

approaches to successfully reduce computational cost. Pipek-Mezey localization has been used to

improve the accuracy and efficiency of quantum embedding:80 Foster-Boys localization has been

paired with an explicitly correlated HF approach for the quantum treatment of protons.81 Both

localization approaches have been used in the development of a linear scaling implementation of

the direct random-phase approximation.82

To illustrate, an advantage of methods such as DLPNO is that large energetic differences that

can arise from the localization tails generated from orthogonal localized MOS are effectively

truncated through integral transformation, enabling the screening of less important contributions

to energies.83–85

Localization methods have also been utilized within composite approaches. A previous study

by Montgomery et al. utilized the use of the Pipek-Mezey population localization technique based

within the CBS-QB3 composite method,8,78 yielding a mean absolute deviation (MAD) of 1.10

kcal mol−1 for the G2/97 molecule set for heats of formation, which was comparable to G3 and

G3(MP2) with MADs of 0.94 kcal mol−1 and 1.24 kcal mol−1, respectively; thus, demonstrating

the utility of localized MOs within composite methods.

As both approaches are widely used, each of the localization schemes will be considered in the

incorporation of the DLPNO methods within the ccCA framework. As there have been successes

utilizing the DLPNO methods to reproduce RI-MP2 and CCSD(T) correlation energies as well as

implementing localization schemes in a composite framework, the goal of this work is to incorporate
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the DLPNO methods within the ccCA framework to reduce computational cost with little or no

impact upon the accuracy. The accuracy and relative CPU timing for the calculation of enthalpies

of formation using DLPNO-ccCA is compared against ccCA and RI-ccCA to elucidate the efficacy

of the DLPNO methods.

4.2 Computational Methods

A set of 119 closed shell systems from the G2/97 molecule set, including both first and second

row atoms (listed in the Appendix), was used to investigate the enthalpies of formation (∆Hf).86

All calculations were done with the ORCA 4.0 program.87,88 Geometry optimizations were done

at the B3LYP89 level with the cc-pVTZ90 basis set. All calculations that include Al-Cl (3p) were

done using the recommended version of the correlation consistent basis set, the cc-pV(T+d)Z basis

set.91 Energies were converged to 10-6 Eh and gradients were converged to 10-4 Eh/bohr for the

geometry optimization. The vibrational ZPE and vibrational contribution to internal energy were

scaled by 0.989 at 298.15 K and 1 atm to account for anharmonicity.24 Thermal corrections to

enthalpy were calculated at 298.15 K and 1 atm. Experimental spin-orbit corrections for atoms

were applied from tables provided by Moore.92 The formulation of ccCA is described in section

2.2.4.1 and variants used in this chapter are shown in Table 4.1.

To supplement the experimental ∆Hf from the NIST-JANAF thermochemical tables,93

experimental ∆Hf for LiH, Li2, LiF, Na2, and NaCl were obtained based on the work of

Cioslowski et al.94 Also, as detailed theoretical studies95–98 on COF2, F2CCF2, and CH2CHCl

suggest that the experimental ∆Hf were likely in error,95 the values for ∆Hf used in this work for

COF2, F2CCF2, and CH2CHCl are -145.6 ± 1.0, -160.8 ± 0.8, and 5.0 ± 1.0 kcal mol−1,

respectively, which were obtained via ab initio calculations.96–99 The values for the atomic

enthalpies of formation at 0 K for C and H used in this work were based on the work by Tasi et

al.100 The values for atomic enthalpies of formation for B, Si, and Al atoms were adopted from

Karton et al.101 A UHF reference was used for O3. ∆Hf were calculated using the total

atomization approach, which uses open-shell variants for the atoms.
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SCF energies were converged to 10-8 Eh in all single point energy calculations. The thresholds

for DLPNO-MP2 were set to TCutDO = 5.0 * 10-3, TCutPNO = 10-9, and TCutMKN = 10-3. For

DLPNO-CCSD(T) calculations, TCutPairs = 10-5 Eh, TCutPNO = 10-7, and TCutMKN = 10-4.102

These thresholds were established as the TightPNO setting in ORCA.88,102 For DLPNO-CCSD(T),

the Foster-Boys (FB)76,77 and Pipek-Mezey (PM)78 localization schemes were used within ORCA

to localize the occupied orbitals after the SCF energy was calculated.

Table 4.2 shows a summary of the approximations and the auxiliary basis sets (ABS) used in

this work. The AutoAux103 feature within ORCA was implemented to generate Li and Na ABS

for correlated methods. The basis sets utilized in this work were the cc-pVnZ and aug-cc-pVnZ

basis sets and the cc-pV(n + d)Z and aug-cc-pV(n + d)Z basis sets for Na-Cl, where n = D,

T, Q.90,104–107 The ABS for coulomb-fitting (RI-J),108,109 coulomb-exchange fitting (RI-JK),109

and correlated methods (RI-C)110,111 are denoted as basis/J, basis/JK, and basis/C, respectively,

in this work. The implementation of the ABS was done in three schemes. Scheme 1 only

utilizes the correlation consistent ABS for correlated methods. Scheme 2 utilizes the correlation

consistent ABS for correlated methods and the def2/JK ABS for the SCF energy using the RI-JK

approximation. Scheme 3 uses the correlation consistent ABS for correlated methods and either

the RIJCOSX112 or RI-JK113 approximation for the SCF energy with the appropriate def2 ABS.

The RIJCOSX approximation is used for RI-MP2 and DLPNO-CCSD(T) (uses the def2/J ABS),

and the RI-JK approximation is used for DLPNO-MP2 (uses the def2/JK ABS).57,112 The def2

ABS were chosen based on their availability throughout the periodic table.
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Table 4.1: Summary of the different variants of ccCA utilized in Chapter 4.

ccCA RI-ccCA DLPNO-ccCA
Geometry Optimization B3LYP/cc-pVTZ B3LYP/cc-pVTZ B3LYP/cc-pVTZ

Eref

HF/aug-cc-pVTZ HF/aug-cc-pVTZ HF/aug-cc-pVTZ
HF/aug-cc-pVQZ HF/aug-cc-pVQZ HF/aug-cc-pVQZ
HF/aug-cc-pV∞Z HF/aug-cc-pV∞Z HF/aug-cc-pV∞Z
Equation 2.29 Equation 2.29 Equation 2.29

MP2/CBS

MP2/aug-cc-pVDZ RI-MP2/aug-cc-pVDZ DLPNO-MP2/aug-cc-pVDZ
MP2/aug-cc-pVTZ RI-MP2/aug-cc-pVTZ DLPNO-MP2/aug-cc-pVTZ
MP2/aug-cc-pVQZ RI-MP2/aug-cc-pVQZ DLPNO-MP2/aug-cc-pVQZ
MP2/aug-cc-pV∞Z RI-MP2/aug-cc-pV∞Z DLPNO-MP2/aug-cc-pV∞Z
Equations 2.30 - 2.32 Equations 2.30 - 2.32 Equations 2.30 - 2.32

∆CC CCSD(T)/cc-pVTZ CCSD(T)/cc-pVTZ DLPNO-CCSD(T)a/cc-pVTZ
-MP2/cc-pVTZ - RI-MP2/cc-pVTZ - DLPNO-MP2/cc-pVTZ

∆CV MP2(FC1)/aug-cc-pCVTZ RI-MP2(FC1)/aug-cc-pCVTZ DLPNO-MP2(FC1)/aug-cc-pCVTZ
– MP2/aug-cc-pVTZ – RI-MP2/aug-cc-pVTZ – DLPNO-MP2/aug-cc-pVTZ

∆DK MP2/cc-pVTZ-DK RI-MP2/cc-pVTZ-DK DLPNO-MP2/cc-pVTZ-DK
– MP2/cc-pVTZ – RI-MP2/cc-pVTZ – DLPNO-MP2/cc-pVTZ

∆SO Experimental atomic values Experimental atomic values Experimental atomic values
ZPE Vibrational ZPE scaled by 0.989 Vibrational ZPE scaled by 0.989 Vibrational ZPE scaled by 0.989

aThe Pipek-Mezey (PM) and Foster-Boys (FB) localization schemes were considered for orbital localization for DLPNO-CCSD(T) whereas for DLPNO-MP2, only the FB
localization was used.
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Table 4.2: Summary of the approximations, methods, and auxiliary basis sets (ABS) utilized in
this work for SCF and post-HF calculations.

SCF Post-HF

RI Approximations ABS Methods using RI ABS

Scheme 1 – –
RI-MP2 aug-cc-pVnZ/Ca

DLPNO-MP2 cc-pVTZ/C
DLPNO-CCSD(T) aug-cc-pwCVTZ/C

Scheme 2 RI-JK def2/JK
RI-MP2 aug-cc-pVnZ/Ca

DLPNO-MP2 cc-pVTZ/C
DLPNO-CCSD(T) aug-cc-pwCVTZ/C

Scheme 3
RIJCOSXb def2/J RI-MP2 aug-cc-pVnZ/Ca

RI-JKc def2/JK DLPNO-MP2 cc-pVTZ/C
DLPNO-CCSD(T) aug-cc-pwCVTZ/C

an = D, T, Q.
bRIJCOSX is used for calculations involving HF + RI-MP2 and HF + DLPNO-CCSD(T) with the def2/J ABS.
cRI-JK is used for calculations involving HF + DLPNO-MP2 with the def2/JK ABS.

CPU timing studies were done in serial (single core) on a localDell OptiPlex 390 computer

with 16 GB of DDR3 memoryto consider the efficiency of DLPNO-ccCA relative to ccCA and

RI-ccCA using ORCA.87,88 All energies were calculated without the use of symmetry. The usage

of these methods for the molecule set was considered for the first timing study. The use of

ABS for the SCF step (Schemes 2 and 3) were timed for DLPNO-ccCA and RI-ccCA. Linear

alkanes (CnH2n+2 for n=1-8) were considered in a second CPU timing study to assess the effect

of systematically increasing the molecule size on the CPU time and energetics within the ccCA

framework. ∆Hf for linear alkanes are computed with the atomization approach andwith isodesmic

schemes for CnH2n+2 for n = 3-8 since using isodesmic schemes have been shown to reduce the

error for computed ∆Hf for linear alkanes.114 The isodesmic schemes are shown in Table 4.6.

For RI-ccCA, only the Scheme 1 implementation of ABS was investigated. For DLPNO-ccCA,

Schemes 1-3 were considered. The Foster-Boys (FB) localization scheme, the default scheme in

ORCA, was used for all DLPNO-ccCA timing calculations.
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4.3 Results and Discussion

4.3.1 Energetic Properties for the Molecule Set

The ∆Hf’s for each molecule of the set were calculated using ccCA, RI-ccCA, and

DLPNO-ccCA. Four schemes for the extrapolation of the reference energy within ccCA, Peterson

(P), Schwartz-3 (S3), Schwartz-4 (S4), and Peterson-Schwartz-3 (PS3) extrapolation schemes

were considered, and denoted as ccCA-P, ccCA-S3(TQ), ccCA-S4(TQ), and ccCA-PS3(TQ),

respectively.115–122 These approaches are compared in Table 4.3. The ccCA-PS3(TQ) shows the

lowest mean absolute deviation (MAD) for ∆Hf’s of0.94kcal mol−1 and the lowest magnitude for

mean signed deviation (MSD) ∆Hf’s of-0.20kcal mol−1 compared to all other extrapolation

schemes considered. Based on the MAD for ccCA-PS3(TQ), this is the extrapolation scheme

utilized for RI-ccCA and DLPNO-ccCA in this work. The PS3(TQ) moniker is removed from the

name for conciseness.

Table 4.3: Slope, intercept, and R2 of the calculated and experimental ∆Hf. The mean signed
deviation (MSD), mean absolute deviation (MAD), standard deviation (STDEV), and maximum
(MAX) deviation for four variants of ccCA based on the Peterson (P), Schwartz-3 (S3), and
Schwartz-4 (S4) extrapolation schemes. The P and S3 extrapolated values are averaged for PS3.
Triple and quadruple-ζ level basis sets (TQ) were used for all two-point extrapolations. All
deviations are in kcal mol−1.

ccCA-P ccCA-S3(TQ) ccCA-S4(TQ) ccCA-PS3(TQ)
Slope 1.0006 0.9999 1.0000 1.0003

Intercept 0.7283 -0.3192 0.7210 0.2046
R2 0.9999 0.9999 0.9999 0.9999

MSD -0.71 0.32 -0.72 -0.20
MAD 1.10 1.00 1.11 0.94
STDEV 1.27 1.14 1.28 1.18
MAX 4.10 2.66 4.14 3.38

The effect of using the Pipek-Mezey and Foster-Boys localization techniques are demonstrated

in box plots for DLPNO-MP2/aug-cc-pV∞Z electronic energies (Figure 4.1), and

DLPNO-CCSD(T)/cc-pVTZ electronic energies (Figures 4.2 and 4.3). When using the def2/JK
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ABS for the SCF energies in combination with MOs generated with Foster-Boys localization,

lower electronic energies were generated than a pairing with MOs generated with Pipek-Mezey

localization for DLPNO-MP2/aug-cc-pVnZ (n = D, T, Q). At the complete basis set (CBS) limit,

MOs generated with the Pipek-Mezey localization method yielded nearly identical electronic

energies to MOs generated with Foster-Boys localization (approximately a 0.006 mEh difference)

for all of the molecule subsets shown in Figure 4.1. However, for DLPNO-CCSD(T), the effect of

implementing thresholds such as electron pair screening, domain selection, and PNO generation,

on using different localization schemes for the occupied MOs, changed the final

DLPNO-CCSD(T) electronic energies within ±2 mEh as shown in Figure 4.2, which can affect

the total DLPNO-ccCA energies by ±1.4 kcal mol−1.
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Figure 4.1: Differences in electronic energies (mEh) using Pipek-Mezey (PM) and Foster-Boys
(FB) localization schemes using the def2/JK ABS within DLPNO-MP2 for complete basis set
extrapolation using a combined Peterson-Schwartz-3 extrapolation scheme (PS3(TQ)). Included
subsets are based on the presence of certain elements (hydrocarbons, halogenated, chalcogenated,
pnictogenated, and Period 3) and electronic features (aromatic, carbonyl, multiple bonds) as well as
the full molecule set. Points within the dashed lines represent differences less than 0.1 mEh. The
box plots depict the distribution of data within each subset where the band in the middle represents
the median of the data and data points shown as black circles are more than 3 standard deviations
from the median.
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Figure 4.2: Differences in electronic energies (mEh) between the Pipek-Mezey (PM) and Foster-
Boys (FB) localizationmethods for all three schemes within DLPNO-CCSD(T) for the same subsets
in Figure 4.1. The dashed lines represent differences of less than 0.1 mEh. The box plots depict the
distribution of data within each subset where the band in the middle represents the median of the
data and data points shown as black circles are more than 3 standard deviations from the median.
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Figure 4.3: Differences between the CCSD(T) electronic energies and the DLPNO-CCSD(T)
electronic energies in mEh using the (a) Pipek-Mezey (PM) and (b) Foster-Boys (FB) localization
methods for all three schemes for the subsets of the full molecule set shown in Figure 4.1. The
dashed lines represent differences less than 0.1 mEh. The box plots depict the distribution of data
within each subset where the band in the middle represents the median of the data and data points
shown as black circles are more than 3 standard deviations from the median.
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Figure 4.3 depicts the difference between canonical CCSD(T) electronic energies and DLPNO-

CCSD(T) electronic energies generated using localized MOs from the Pipek-Mezey (Figure 4.3a)

and Foster-Boys (Figure 4.3b) schemes. As shown in Figure 4.3a, the effect of the DLPNO-

CCSD(T) truncation and screening parameters on localized MOs from Pipek-Mezey localization

was that DLPNO-CCSD(T) electronic energies were lower than canonical CCSD(T) electronic

energies. In Figure 4.3b, using the DLPNO-CCSD(T) truncation and screening parameters on the

Foster-Boys localized MOs resulted in higher electronic energies for DLPNO-CCSD(T) relative

to CCSD(T) electronic energies, more noticeably for Schemes 2 and 3, since there are more

positive outliers in the box plots for the subsets of the full molecule set separated by atom type

and functional group. Therefore, depending on which scheme is implemented, the choice of initial

localization technique, Foster-Boys or Pipek-Mezey, has a significant effect on the final DLPNO-

CCSD(T) electronic energies based on the effect of implementing different thresholds defined

within DLPNO-CCSD(T) on localized MOs.

Out of the 119 molecules in this molecule set, only 26 exhibited a negligible difference in

the MADs (< 0.01 kcal mol−1) between the two localization schemes using Scheme 1 and ABS

(for correlated methods only). These molecules include those with an even charge distribution

such as alkanes since the difference in electronic energy between the two localization schemes was

within 1 mEh for the hydrocarbons data subset, as shown in the boxplot for Scheme 1 in Figure

4.2. For Scheme 2 (ABS for correlated methods and RI-JK approximation for SCF), 23 molecules

resulted in a negligible difference in the MADs between both localization schemes. Notable cases

where deviations decreased more than 0.5 kcal mol−1 when using the Pipek-Mezey localization

scheme relative to the Foster-Boys localization scheme include cyclic aromatic systems, halogenated

systems, and molecules characterized with triple bonds. This aligns with the known issues with

Boys localization for ring systems,123 which includes the formation of degenerate bonding MOs

instead of a σ-π separation for systems with multiple bonds and aromatic ring systems. The largest

differences in MAD was 3.31 kcal mol−1 when using the Foster-Boys localization scheme and

1.91 kcal mol−1 when using the Pipek-Mezey localization scheme for O3. The use of the RI-JK
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approximation for SCF (Scheme 2) led to lower electronic energies when using the Pipek-Mezey

localization scheme relative to the Foster-Boys localization scheme as shown in Figure 4.2.

When using the RIJCOSX approximation and def2/J ABS (Scheme 3), only 46 molecules

yielded a lower MAD for ∆Hf when using the Pipek-Mezey localization scheme and only 22

showed a negligible difference in MAD (< 0.01 kcal mol−1). The largest difference in MAD

was 3.16 kcal mol−1 when using Foster-Boys localization and 1.76 kcal mol−1 when using Pipek-

Mezey localization for O3 for Scheme 3. With the implementation of ABS, the number ofmolecules

that favored the use of the Pipek-Mezey localization scheme for DLPNO-CCSD(T) decreased from

65 molecules with Scheme 1 to 50 molecules for Scheme 2 and 46 molecules for Scheme 3.

This suggests that Pipek-Mezey localization may not be as useful when used with the RI-JK and

RIJCOSX approximations for the SCF orbitals even though Pipek-Mezey localization has been

proven useful for; (a) cyclic aromatic rings; (b) halogenated compounds; and, (c) molecules such

as P2, which are characterized by triple bonds.

Table 4.4 shows the MSD, MAD, the standard deviation of MADs, and the maximum

deviation from experimental ∆Hf for all variations paired with auxiliary basis functions.Overall,

DLPNO-ccCA shows good agreement with ccCA for experimental ∆Hf since for Scheme 1 (ABS

for correlated methods), DLPNO-ccCA (PM), DLPNO-ccCA (FB), and RI-ccCA lowered the

average MAD relative to ccCA by 0.01, 0.01, and 0.04 kcal mol−1, respectively. The maximum

deviation from experiment for DLPNO-ccCA(PM), DLPNO-ccCA(FB), and RI-ccCA was2.73

kcal mol−1 for NCCN, 3.77 kcal mol−1 for O3, and 4.25 kcal mol−1 for O3 respectively. Using

ABS for SCF energies (Scheme 2) lowered the MAD for DLPNO-ccCA (PM), DLPNO-ccCA

(FB), and RI-ccCA by 0.08, 0.00, and 0.24 kcal mol−1, respectively. The maximum deviation

from experiment for DLPNO-ccCA (PM), DLPNO-ccCA (FB), and RI-ccCA was2.37, 3.77, and

2.53kcal mol−1, respectively, forSi2H6, O3, and H2CCHCN. The use of RIJCOSX for SCF

calculations for DLPNO-CCSD(T) and RI-MP2 calculations (Scheme 3) lowered the average

MAD for DLPNO-ccCA (PM) and DLPNO-ccCA (FB) to 0.92 kcal mol−1 and 0.94 kcal mol−1,

respectively, but increased the average MAD for RI-ccCA to 1.12 kcal mol−1. The largest
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deviation from experiment for DLPNO-ccCA (PM) and DLPNO-ccCA (FB) was2.69 kcal

mol−1 for Si2H6 and 3.77 kcal mol−1 for O3, respectively. For RI-ccCA, the largest deviation

from experiment was 4.52 kcal mol−1 for SiCl4. Therefore, the recommended implementation of

ABS for DLPNO-ccCA is the use of RIJCOSX for SCF calculations within DLPNO-CCSD(T)

and RI-JK for SCF calculations within DLPNO-MP2 calculations (Scheme 3) in conjunction with

Pipek-Mezey localization.
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Table 4.4: Mean signed deviation (MSD), mean absolute deviation (MAD), standard deviation (STDEV), andmaximum (MAX) deviation
for all schemes. All deviations are in kcal mol−1.

DLPNO-ccCA (PM) DLPNO-ccCA (FB) RI-ccCA
Scheme

1
Scheme

2
Scheme

3
Scheme

1
Scheme

2
Scheme

3
Scheme

1
Scheme

2
Scheme

3
MSD 0.21 0.40 0.52 0.38 0.09 0.21 -0.35 0.09 0.52
MAD 0.95 0.91 0.92 0.98 0.98 0.94 0.92 0.75 1.09
STDEV 1.13 1.03 0.98 1.14 1.21 1.15 1.16 0.93 1.23
MAX 2.73 2.37 2.69 3.76 3.77 3.77 4.25 2.53 4.52
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4.3.2 CPU Timing

To give insight about the performance of the ccCA variants in terms of time, the total CPU time

was measured as the sum of the CPU times of the single point calculations that are included in the

Scheme 1 methodology (Table 4.2). Fifteen molecules from the molecule set were selected based

on their varying size to demonstrate the performance and potential bottlenecks of the ccCA variants.

This subset included CH3Cl, NF3, PF3, H3CH2COCH3, cyclic and linear alkenes, and alkanes

(bicyclo[1.1.0]butane, cyclobutane, cyclobutene, isobutene, trans-butane, isobutane, spiropentane),

and cyclic aromatic molecules (furan, thiophene, benzene, pyridine). The CPU times were taken

as percentages of the total CPU time and show that the bottleneck step is the MP2/aug-cc-pVQZ

step. For DLPNO-ccCA, the DLPNO-MP2/aug-cc-pVQZ uses 72.7% of the total CPU time,

MP2(FC1)/aug-cc-pCVTZ uses 10.1% of the total CPU time, DLPNO-CCSD(T)/cc-pVTZ uses

5.8% of the total CPU time, and the other steps require 11.4% of the total CPU time as shown in

Figure 4.4. This is consistent with RI-ccCA assessed in the same fashion. For Schemes 2 and 3,

the use of ABS for the SCF energy, while decreasing the total CPU time, does not change the ratio

of CPU time savings significantly.

The CPU timings for the full 119 molecule set are shown in Table 4.5, which displays the

mean, largest, and smallest percent CPU time savings for RI-ccCA and DLPNO-ccCA relative to

ccCA, and Figure 4.5, which depicts the CPU time savings for DLPNO-ccCA compared to ccCA

(Figure 4.5a) and RI-ccCA (Figure 4.5b). In Scheme 1 (ABS for correlated methods), the percent

difference in CPU time between DLPNO-ccCA and ccCA averaged 29.1% but 32.8% for RI-ccCA

and ccCA, indicating that RI-ccCA is slightly more efficient, overall, than DLPNO-ccCA when

using Scheme 1, as shown in Table 4.5. The use of ABS for the SCF energy and correlated methods

(Scheme 2) drastically increased the percent CPU time savings to approximately 87.5% and 92.5%

for DLPNO-ccCA and RI-ccCA, respectively, relative to use of ABS for correlated methods only

(Scheme 1). The changes in percent CPU savings is due to applying the RI approximation to both

the SCF and correlation energy calculation energy.
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Figure 4.4: CPU time of each individual step within (a) ccCA, (b) RI-ccCA, and (c) DLPNO-
ccCA for selected species from the molecule set. The Other category represents the timing of
the MP2/aug-cc-pVDZ, MP2/aug-cc-pVTZ, MP2/cc-pVTZ, and MP2/cc-pVTZ-DK calculations
as these calculations use a small percentage of the total CPU time. All timing calculations were
done with the ORCA software package.
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Table 4.5: Percent CPU time savings for the three schemes of ABS implementation within DLPNO-
ccCA and RI-ccCA relative to ccCA. The mean percent difference from ccCA, the most efficient
(MAX), and the least efficient (MIN) percent CPU time savings relative to ccCA timings are shown.
All timing studies were done with ORCA.

DLPNO-ccCA (FB) (%) RI-ccCA (%)
Scheme

1
Scheme

2
Scheme

3
Scheme

1
Scheme

2
Scheme

3
MEAN 29.1 87.3 86.5 32.6 92.2 83.6
MAX 40.2 95.3 94.8 38.0 96.0 95.9
MIN -4.0 27.9 21.0 10.9 34.7 34.7

RI-ccCA, which shows 32.8% CPU time savings relative to ccCA, is slightly more efficient

than DLPNO-ccCA, which shows 29.1% CPU time savings relative to ccCA, when using Scheme

1. However, with increasing molecule size and depending on the RI approximation that was used,

DLPNO-ccCA is more efficient than RI-ccCA. This is shown especially for Scheme 3, where the

use of RIJCOSX for SCF within RI-MP2 and DLPNO-CCSD(T) increased the CPU time for RI-

ccCA relative to DLPNO-ccCA. Based on Figure 4.5a and Table 4.5, the RIJCOSX approximation

slightly increases the CPU time of DLPNO-ccCA relative to using the RI-JK approximation for

the SCF step within DLPNO-CCSD(T), but decreased the MAD when using DLPNO-ccCA to

calculate the ∆Hf. The increase in CPU time of RIJCOSX relative to RI-JK is due to the size

of the molecules since a threshold exists between the efficiency of RIJCOSX versus RI-JK for

molecular size. Therefore, using RI-JK for SCF within DLPNO-MP2 and RIJCOSX for SCF

within DLPNO-CCSD(T) for DLPNO-ccCA is recommended for smaller systems.
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Figure 4.5: CPU time ratios of DLPNO-ccCA (FB) to (a) ccCA and (b) RI-ccCA. The ratios for
Scheme 1 (blue circle), Scheme 2 (black x), and Scheme 3 (green triangle) are shown on a log-log
scale. All timing was done with C1 symmetry enforced and done in ORCA.

4.3.3 Enthalpies and Timing for Linear Alkanes

Deviations from experimental ∆Hf are shown in Table 4.6. Only the Foster-Boys localization

schemewas used for linear alkanes since using Pipek-Mezey localization did not significantly change

the final DLPNO-CCSD(T) energy. The trend of increasing deviation with increasing number of

carbon atoms is consistent with previous ccCA studies and common with many other methods

when using the atomization approach.5,19,25 DLPNO-ccCA yields a smaller deviation when ccCA

overestimates the ∆Hf, as shown for CnH2n+2 for n ≥ 4 in Table 4.6, and a larger deviation when

ccCA underestimates the ∆Hf, as shown for CnH2n+2 for n ≤ 3 in Table 4.6. This is due to

the contribution of DLPNO-CCSD(T) as both ccCA and RI-ccCA, which use CCSD(T), follows

the same trend for the rate of increase in deviation from experiment when using the atomization

approach for ∆Hf. Also, the chosen thresholds for the PNOs allow for noncovalent interactions,

which are present in (CnH2n+2 for n ≥ 3, to be better characterized. The percentage of electron

pairs that are screened out of the calculation in the pre-screening process is a potential source of

error in the prediction of ∆Hf for smaller molecules.
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Table 4.6: Deviations in kcal mol−1 from experimental ∆Hf for linear alkanes (CnH2n+2 1 ≤ n ≤
8) using the atomization approach and using isodesmic approaches (shown in parentheses).

Exp ccCA RI-ccCA DLPNO-ccCA (FB)
Scheme Scheme Scheme Scheme

1 1 2 3
CH4 -17.90±0.10 -18.26 -18.28 -18.47 -18.45 -18.62
C2H6 -20.03±0.07 -20.72 -20.76 -21.13 -21.08 -20.67

C3H8a -25.02±0.12 -25.66 -25.72 -26.21 -26.32 -26.05
(-24.64) (-24.64) (-24.58) (-24.76) (-25.50)

C4H10b -30.31±0.14 -28.93 -29.00 -29.57 -29.46 -29.22
(-30.40) (-30.40) (-30.45) (-30.59) (-30.41)

C5H12c -35.11±0.19 -33.59 -33.68 -34.32 -34.21 -34.30
(-34.64) (-34.64) (-34.54) (-34.56) (-35.48)

C6H14d -39.89±0.19 -38.30 -38.41 -39.15 -39.01 -38.94
(-39.40) (-39.40) (-39.27) (-39.12) (-39.73)

C7H16e -44.78±0.18 -43.05 -43.16 -43.98 -43.81 -43.64
(-44.30) (-44.29) (-44.19) (-44.19) (-44.67)

C8H18f -49.90±0.31 -47.82 -47.90 -48.79 -48.60 -48.33
(-49.22) (-49.16) (-49.06) (-49.07) (-49.55)

aIsodesmic Reaction: 2 C2H6 → C3H8 + CH4
bIsodesmic Reaction: C5H12 + C2H6 → C4H10 + C3H8
cIsodesmic Reaction: C4H10 + C2H6 → C5H12 + CH4
dIsodesmic Reaction: C4H10 + C3H8 → C6H14 + CH4
eIsodesmic Reaction: C6H14 + C2H6 → C7H16 + CH4
fIsodesmic Reaction: C7H16 + C2H6 → C8H18 + CH4

The timing results are shown in Table 4.7. Even when using Scheme 1, the time savings

associated with increasing the number of carbon atoms in the linear chain is evident for DLPNO-

ccCA in comparison to ccCA and RI-ccCA, largely due to DLPNO-CCSD(T). The CPU time

savings for RI-ccCA and DLPNO-ccCA for methane, 36.7% and 30.9%, respectively, and for

ethane, 37.8% and 36.1%, respectively, show that RI-ccCA is more efficient than DLPNO-ccCA

for smaller molecules; however, starting with propane (n = 3), DLPNO-ccCA is more efficient than

RI-ccCA with CPU time savings of 39.6% and 38.2%, respectively, and the percent CPU time
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saving monotonically increases with increasing carbon atoms for DLPNO-ccCA.

Table 4.7: Percent CPU time savings for RI-ccCA and DLPNO-ccCA (FB) relative to ccCA for
linear alkanes (CnH2n+2 1 ≤ n ≤ 8). All timing studies were done with ORCA.

RI-ccCA DLPNO-ccCA (FB)
Scheme 1 Scheme 1 Scheme 2 Scheme 3

CH4 36.7 30.9 88.3 87.3
C2H6 37.8 36.1 93.1 92.5
C3H8 38.2 39.6 94.8 94.4
C4H10 37.1 41.6 95.1 94.8
C5H12 35.7 45.8 95.4 95.1
C6H14 33.7 50.5 95.7 95.5
C7H16 30.1 56.6 96.2 96.0
C8H18 35.3 68.7 97.2 97.0

For DLPNO-ccCA, Scheme 2 and 3 protocols were implemented to examine further effects of

cost savings for larger systems relative to those in the molecule set. When using ABS, the deviations

in ∆Hf (Table 4.6) varies depending on which RI approximation was used for the SCF portion of

the DLPNO-CCSD(T) calculation. When using RI-JK (Scheme 2), the trend in deviation from

experimental ∆Hf remained the same from using ABS for correlated methods only (Scheme 1)

but with a slightly higher predicted ∆Hf. Apart from methane, the use of RIJCOSX (Scheme 3)

caused the prediction of enthalpy of formation to be lower in magnitude, which caused the deviation

for linear alkanes to lie between DLPNO-ccCA when using ABS for correlated methods (Scheme

1) and ccCA results. Isodesmic approaches are used for larger linear alkanes as these have been

shown to reduce the error without increasing the cost.112 The isodesmic schemes are shown in

Table 4.6. When using the isodesmic approaches, the deviations associated with ∆Hf are reduced

by 0.3 to 1.3 kcal mol−1 relative to using the atomization approach for ∆Hf. Regardless of which

approach was used, i.e. atomization approach or isodesmic schemes, the calculated ∆Hf generated

with all schemes of DLPNO-ccCA yields deviations in agreement with calculated ∆Hf generated

with ccCA and RI-ccCA.

As shown in Table 4.7, the percent CPU time savings drastically increases when using ABS for

SCF calculations. For methane, the percent CPU time savings increased from 30.9% using ABS
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only for correlated methods (Scheme 1) to 88.3% using RI-JK for SCF and ABS for correlated

methods (Scheme 2) and 87.3% using RIJCOSX for SCF and ABS for correlated methods (Scheme

3). For octane, the percent CPU time savings increased from 68.7% using Scheme 1 to 97.2%

and 97.0% using Scheme 2 and 3, respectively. As with Scheme 1 ABS implementation for

DLPNO-ccCA, the percent CPU time savings monotonically increase as the number of carbon

atoms increase. Employing RIJCOSX with DLPNO-CCSD(T) caused a slight decrease in percent

CPU time savings for all linear alkanes assessed. However, this difference decreases with increasing

number of carbons, inferring that RIJCOSX is beneficial for larger molecules.

4.3.4 Applications of DLPNO-ccCA

The proposed DLPNO-ccCA (Pipek-Mezey localization and using RIJCOSX with

DLPNO-CCSD(T)) has been applied tothe S66and the L7 (coronene dimer) data sets124–127

These datasets target long-range weakly bound systems and are calibrated to CCSD(T)/CBS

interaction energies. For S66, examples were picked from the three subcategories of the dataset

for presentation, hydrogen-bound molecules (water dimer), dispersion-dominated interactions

(stacked uracil dimer), and a combination of both ( CH3NH2-Peptide, T-shaped benzene dimer).

The L7 dataset targets larger noncovalent complexes predominantly exhibiting dispersion

interactions. All calculated interaction energies are counterpoise-corrected. Comparing the

effectiveness of DLPNO-ccCA interaction energies relative to CCSD(T)/CBS interaction energies

provides a computational cost-effective way to haveab initio data present for these larger

molecular systems and serves as a potential gauge for DFT and other scaling/cost-reduction

methods. DLPNO-ccCA calculated interaction energies were compared against the interaction

energies generated with CCSD(T)/CBS and an average of MP2/CBS, MP2C/CBS, MP2.5/CBS,

SCS-MP2/CBS, SCS(MI)-MP2/CBS given the optimized structures from the original publication

of the S66 molecule set.126

For all cases except for the uracil stacked dimer, interaction energies calculated with DLPNO-

ccCA yielded smaller deviations from the CCSD(T)/CBS interaction energies than meanMP2/CBS
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interaction energies. For the T-shaped benzene dimer, the MAD from the reference interaction

energy was 0.03 kcal mol−1 and 0.17 kcal mol−1 using DLPNO-ccCA andMP2/CBS, respectively,

whereas the MAD from the reference interaction energy for the uracil stacked dimer was 0.34 kcal

mol−1 and 0.27 kcal mol−1 using DLPNO-ccCA and MP2/CBS, respectively.

For the coronene dimer, the interaction energy calculated with DLPNO-ccCA deviates from

the QCISD/CBS and DFT-D3/def2-QZVP reference interaction energies by 3.62 kcal mol−1 and

6.44 kcal mol−1, respectively. The DFT-D3/def2-QZVP presented in Table4.8is an average of

calculated interaction energies with the B3LYP-D3, BLYP-D3, TPSS-D3, PW6D95-D3, and

M06-2X-D3 functionals in tandem with the def2/QZVP basis set.127 This shows that

DLPNO-ccCA has some issues when dealing with complexes that exhibit primarily

dispersion-dominated interactions between molecules due to the truncation parameters for

screening orbital pairs and triples. This holds since DLPNO-ccCA yields lower MADs than

MP2/CBS for CCSD(T)/CBS interaction energies for complexes that exhibited both long-distance

hydrogen bonding and dispersion interactions.

Table 4.8: Interactions energies of select examples from the S66 and L7 molecule sets. All
interaction energies are in kcal mol−1.

S66 DLPNO-ccCA CCSD(T)/CBS (∆a(TQ)Z) MP2/CBSa
(H2O)2 -4.88 -4.86 -4.85±0.17

Uracil dimer (S) -9.48 -9.82 -9.56±0.92
CH3NH2-Peptide -5.31 -5.42 -5.15±0.38
Benzene dimer (T) -2.69 -2.58 -3.05±0.38

L7 DLPNO-ccCA QCISD(T)/CBS DFT-D3/def2-QZVPb MP2/CBSa
Coronene dimer -27.98 -24.36 -21.54±1.28 -26.32±6.56

aThe MP2/CBS value presented is the average of the counterpoise-corrected MP2.5/CBS, MP2C/CBS, MP2/CBS, SCS(MI)-
MP2/CBS, SCS-MP2/CBS interaction energies. 125,126 FL
bThe DFT-D3 value presented is an average of the B3LYP-D3, BLYP-D3, TPSS-D3, PW6D95-D3, and M06-2X-D3 functionals
used in combination with the def2-QZVP basis set with no counterpoise correction included. 127 FL

Analyzing the individual components of DLPNO-ccCA for each of the dimers investigated from

the S66 and L7 data sets yielded insight into necessary electronic contributions towards calculating

interaction energies. As shown in Table 4.9, for the molecules from the S66 data set, the primary
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contribution towards interaction energies is the inclusion of core-core correlation effects as an

additive correction to the DLPNO-MP2/CBS reference energy. While the core-valence correlation

effects affected the total interaction energy by less than 0.1 kcal mol−1 for the dimers in S66,

core-valence correlation effects increased the total interaction energy by 4.05 kcal mol−1 for the

coronene dimer. This shows that core-valence interactions are necessary when considering larger

dispersion-dominated molecules.

Table 4.9: Component breakdown of the DLPNO-ccCA calculated interaction energies from the
S66 and L7 datasets with counterpoise corrections included. All interaction energies are in kcal
mol−1.

DLPNO-MP2/CBS ∆CC ∆CV ∆DK DLPNO-ccCA
S66

(H2O)2 -5.03 0.21 -0.07 0.01 -4.88
Uracil dimer (S) -11.03 1.60 -0.06 0.002 -9.49
CH3NH2-Peptide -5.53 0.26 -0.04 0.003 -5.31
Benzene dimer (T) -3.71 0.88 -0.02 -0.003 -2.85

L7
Coronene Dimer -48.29 16.27 4.05 -0.01 -27.98

Since DLPNO-ccCAwas applied to the coronene dimer, the ∆Hf of coronene can be calculated

as well. With DLPNO-ccCA, the computed ∆Hf was 69.3 kcal mol−1 with the atomization

approach and the experimental ∆Hf is 70.5±2.7 kcal mol−1.128 This shows good agreement with

calculating the ∆Hf for larger main group organic species with ab initio composite strategies.

4.4 Conclusions

A new formulation of ccCA, DLPNO-ccCA, incorporating the DLPNO methods has been

developed and used to determine the ∆Hf for 119 molecules of the first and second row main group

from the G2/97 molecule set, a set of 8 linear alkanes, the S66 dataset, and the coronene dimer. The

Foster-Boys and Pipek-Mezey localization schemes followed by integral screening have been used

to aid in reducing the computational cost of the DLPNO-ccCA approach. It was found that by choice

of localization method in one step of the DLPNO-ccCA approach, the DLPNO-CCSD(T) step, can
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result in an impact in the MAD from experiment in the enthalpy of formation by as much as 1.4

kcal mol−1, whereas for the MAD in the DLPNO-MP2/aug-cc-pV∞Z step, the MAD is impacted

by only 0.004 kcal mol−1. For smaller molecules, using localized MOs generated by the Pipek-

Mezey localization yielded a lowerMAD overall compared to using localizedMOs generated by the

Foster-Boys localization when ABS are implemented for SCF calculations. Overall, Pipek-Mezey

localization of occupied MOs yielded lower MADs for ∆Hf for cyclic aromatic rings, halogenated

compounds, and molecules characterized with a triple bond whereas there was no significant

numerical difference in the MADs for ∆Hf when using localization techniques for alkanes.

The use of RIJCOSX for the SCF step within DLPNO-CCSD(T) and RI-JK for the SCF step

within DLPNO-MP2 is recommended for DLPNO-ccCA paired with Pipek-Mezey localization.

DLPNO-ccCA reduces the computational cost compared to ccCA. RI-ccCA tends to save more

CPU time (92.5%) for smaller molecules than DLPNO-ccCA when using RI-JK for SCF energies

(87.5%). However, DLPNO-ccCA tends to result in more CPU time savings (86.7%) than RI-

ccCA (84.3%) with the use of RIJCOSX for RI-MP2 and with increasing molecule size within the

molecule set. When using DLPNO-ccCA for methane, ethane and propane, the deviation from

experimental ∆Hf increased relative to ccCA, but decreased relative to ccCA for molecules with n

≥ 4 where n is the number of carbon atoms. The percent cost savings in CPU time from utilizing

the DLPNO methods for linear alkanes range from approximately 88% to 97% with increasing

number of carbon atoms when using ABS for both SCF and correlated methods.

In summary, DLPNO-ccCA reduced the computational cost associated with ccCA by

approximately 87% while maintaining an overall MAD of no more than 1 kcal mol−1 from

reliable experiment and ab initio calculations for ∆Hf of main group complexes. More so than

RI-ccCA, DLPNO-ccCA significantly reduces the computational cost of ccCA for the larger

molecules in the molecule set, and thus allows access to investigate thermodynamic properties for

larger molecules with the same level of accuracy of ccCA.
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Table 4.10: Molecule list used for full set calculations.

C4H6 (cyclobutene) LiH Si2H6 H2CCO
C4H8 (cyclobutane) CH2 (1A1) CH3Cl C4H4NH
C4H8 (isobutene) CH4 H3CSH H3CCOH

C4H10 (trans–butane) NH3 HOCl F2CCF2 (D2h)
C4H10 (isobutane) H2O SO2 H3CCH2OH
C5H8 (spiropentane) HF BF3 H3COCH3
C6H6 (benzene) SiH2 BCl3 (CH3)3N

C4H4S (thiophene) SiH4 AlF3 (CH3)2SO
H2CSCH2 (thiooxirane) PH3 AlCl3 H3CCH2SH

(CH2)2O (oxirane) SH2 CF4 H3CSCH3
OCHCHO (glyoxal) HCl CCl4 H2CCHF
NCCN (cyanogen) Li2 OCS (1Σ+) H3CCH2Cl

H2CCHCl LiF CS2 (CH3)2NH
H2C––CHCN C2H2 COF2 H3CCH2NH2
H3CONO C2H4 SiF4 H3CCOCH3
H3CSiH3 C2H6 SiCl4 CH3COOH

CH3CH2CH2Cl HCN NNO CH3CFO
HCOOCH3 CO ClNO CH3C(O)Cl
H3CCONH2 H2CO NF3 HCOOH
H2CCH2NH CH3OH PF3 (CH3)2CHOH

C4H6 (2-butyne) N2 O3
C4H6 (methylene cyclopropane) H2NNH2 F2O
C4H6 (bicyclo[1.1.0 ] butane) O2 ClF3

C3H4 (propyne) HOOH H2
C3H4 (allene) F2 Cl2CCCl2

C3H4 (cyclopropene) CO2 (Dh) CF3CN
C3H6 (propene) Na2 CH2F2

C3H6 (cyclopropane) P2 CHF3
C3H8 (propane) Cl2 CH2Cl2

C4H6 (trans–1,3–butadiene) NaCl CHCl3
C5H5N (pyridine) SiO H3CNH2
C4H4O (furan) CS H3CCN
H3CH2COCH3 ClF H3CNO2
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Table 4.11: MP2/CBS counterpoise-corrected interaction energies calculated for molecules in
the S66 data set used to compare DLPNO-ccCA interaction energies from Reference 126. All
interaction energies are in kcal mol−1.

MP2 MP2.5 MP2C SCS-MP2 SCS(MI)-
MP2

(H2O)2 -4.96 -4.93 -4.97 -4.51 -4.91
Uracil dimer (S) -11.14 -9.47 -9.37 -8.25 -9.56
CH3NH2-Peptide -5.53 -5.32 -5.41 -4.45 -5.04
Benzene dimer -3.75 -3.05 -2.96 -2.58 -2.90

Table 4.12: MP2/CBS counterpoise-corrected interaction energies calculated for the coronene
dimer used to compare DLPNO-ccCA interaction energies from Reference 127. All interaction
energies are in kcal mol−1.

MP2 MP2.5 MP2C SCS-MP2 SCS(MI)-
MP2

coronene
dimer

-38.98 -22.80 -20.88 -27.53 -31.71

Table 4.13: DFT-D3/def2-QZVPP non-counterpoise-corrected interaction energies calculated for
the coronene dimer used to compare DLPNO-ccCA interaction energies from Reference 127. All
interaction energies are in kcal mol−1.

B3LYP-D3 BLYP-D3 TPSS-D3 PW6D95-D3 M06-2X-D3

coronene
dimer

-23.22 -22.82 -21.19 -19.93 -20.55
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Figure 4.6: CPU time for ccCA, RI-ccCA, and all 3 schemes for DLPNO-ccCA for the linear
alkanes.

Figure 4.7: Deviations in ∆Hf for ccCA, RI-ccCA, and all 3 schemes for DLPNO-ccCA for the
linear alkanes using the isodesmic approach.
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CHAPTER 5

COMPUTATIONAL CHEMISTRY CONSIDERATIONS IN
CATALYSIS: REGIOSELECTIVITY AND METAL-LIGAND

DISSOCIATION

5.1 Introduction

For the prediction of thermodynamic information (i.e., enthalpies, free energies), reaction

barriers, HOMO-LUMO gaps, and other fundamental properties, density functional theory (DFT)

approaches are commonly used for catalysis. For early main group chemistry (i.e., hydrocarbons),

there are many different density functionals can be used, with very little difference in predicted

property arising from the choice of functional to describe energetics, and with limited exceptions, as

demonstrated by Karton et al.1 However, for transition metal species, the utility of each functional

can vary widely based upon choice of metal, choice of ligand, and property of interest.2–8 To

illustrate, for a set of ~20 3d transition metal species, B3LYP/CEP-31G(d) resulted in errors from

experiment from the predicted enthalpies of formation by ~100 kcal mol−1.2 However, when the

same functional is applied to a different set of the transition metal species —a set that has the

smallest reported experimental uncertainties in the enthalpy of formation-– the error is ~6-7 kcal

mol−1.4,5 So, indeed, extraordinarily large variances can occur depending upon metal and ligand.

For catalysis, where there may be interest in understanding the thermochemistry with much smaller

errors in energy, this magnitude of error may be of limited utility.

Computational approaches have been designed to improve upon the predictions possible byDFT

for transition metal species. With ab initio composite approaches like the correlation consistent

CompositeApproach, ccCA, designed in our group,9–13 differences of ~2-3 kcalmol−1, on average,

can be achieved in the prediction of enthalpies of formation for 3d transition metal species.12,13 As

well, ccCA targeted 4d transition metal chemistry by utilizing relativistic pseudopotentials, denoted

as rp-ccCA, to model relativistic contributions from core electrons and yielded differences of ~3

kcal mol−1 from experimental enthalpies of formation.10,13 This is useful, but more costly than
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DFT approaches. Strategies have evolved that help to reduce the computational cost, which is the

bottleneck in these calculations (e.g., DLPNO-ccCA) while preserving the accuracy or, as a means

to provide quantitative energy predictions for transition metal-based catalytic processes.

So far, these comments have focused upon general trends in the prediction of thermodynamic

properties of molecular systems. However, a question is, what is the utility of computational

approaches for an important industrial process like hydroformylation? More specifically, how

useful are computational approaches, particularly new approaches like DLPNO-ccCA, a form

of ccCA, for important properties like regioselectivity and metal-ligand binding? And, is the

qualitative or quantitative picture impacted by computational method choice?

The mechanism for Rh-based hydroformylation was well-established by Wilkinson in the late

1960s to early 1970s.14 As the largest volume homogeneous chemical reaction conducted in

industry for chemical production, the process converts olefins to aldehydes in a syngas mixture. The

advantage of Rh-based hydroformylation as opposed to Co-based hydroformylation is the favorable

reaction conditions (ambient temperature and pressure). The efficacy of a catalyst designed for

hydroformylation is the ratio of the linear aldehyde to the branched aldehyde (Fig. 5.1), known as

the linear-to-branched ratio. In hydroformylation, the formation of the linear aldehyde is favored

although there are studies targeting asymmetric hydroformylation, i.e. the production of the

branched aldehyde.15,16 This is measured through the kinetics of the migratory insertion of the

olefin to the catalyst.

Figure 5.1: Hydroformylation reaction converting olefins to linear and branched aldehydes via a
Rh catalyst.

Numerous computational studies have targeted modeling the regioselectivity of

hydroformylation due to its importance in chemical industry.17–26 To account for the size of the

catalysts and the limited computing power at the time, earlier computational studies either
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substituted PPh3 ligands with much smaller PH3 ligands or utilized multilevel computational

chemistry methods, such as ONIOM,27,28 to model the bond breaking and formation region with

DFT while relegating the sterically bulky ligands to a computationally more affordable method,

such as molecular mechanics (MM).17–21 While more recent studies also utilize multilevel

approaches for hydroformylation, more rigorous ab initio methodologies are used to model bond

breaking and forming regions and use DFT to model the steric ligands.22,23 Other studies have

only used DFT to model the olefin insertion step as well as the entire Wilkinson catalytic

cycle.23–25,29,30 These studies provide insight into potential electronic contributions of the

sterically bulky ligands as well as the mechanism by identifying the rate-determining step, which

can change based on the type of ligand. Machine learning approaches have recently been

developed to screen potential ligands based on their regioselectivity and is a rising trend in

computational catalysis.26,31

Figure 5.2: A model of the two reaction pathways for hydroformylation where ∆E
‡
l and ∆E

‡
b

are the reaction barriers for forming the linear and branched product, respectively. The energy
difference between the two reaction barriers is denoted as ∆∆E‡.

The kinetics of hydroformylation is very sensitive energetically, i.e. the differences in energy

between competing pathways (∆∆E‡), illustrated in Fig. 5.2, can be less than 1 kcal mol−1.17

With such small differences in energy for the competing pathways, calculating the correct linear-

to-branched ratio can be difficult to predict with computational methods. For example, as shown in

Table 5.1, if ∆∆E‡ = 0 (reaction barriers are equivalent), the l:b ratio is 50:50. However, lowering

the barrier for the linear product by 1 kcal mol−1 (∆∆E‡ = -1 kcal mol−1) results in a product ratio
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increase to approximately 84:16 and lowering the barrier for the formation of the linear product by

an additional 2 kcal mol−1 (∆∆E‡ = -3 kcal mol−1) indicates that the reaction highly favors the

linear product (100:0 ratio).

Table 5.1: A summary of the effect of ∆∆E‡ in kcal mol−1 on the linear-to-branched ratio (l:b)
ratio for hydroformylation.

∆∆E‡ (kcal mol−1) Linear-to-branched ratio (l:b)

0 to -1 50:50 to 84:16
1 to -2 84:16 to 97:3
-2 to -3 97:3 to 100:0

Basically, considering the challenges mentioned earlier about the prediction of thermochemistry

properties for transition metal species, achieving the level of accuracy needed to even predict the

correct product distributions seems unsurmountable. Cancellation of errors that can occur from

comparing energy differences is helpful, though the errors from experiment are not necessarily the

same across a reaction pathway, and, thus, gauging method utility for each problem, considering

metal, ligand, and property, is essential. Thus, in this chapter, the impact of method and basis set

choice – the route to describe the molecular orbitals – are considered to determine the impact of

these choices upon the prediction of linear-to-branched ligand ratio, aswell as the ligand dissociation

energy.

Another aspect that is important in catalysis is the description of metal-ligand dissociation, as it

is a primary step in all homogeneous catalytic reactions, e.g. product dissociation fromRh-catalyzed

hydroformylation and solvent interactions with olefin hydrogenation, as well as gas phase ligand

dissociation for organometallic reactions targeting C-H activation. Here, to gain understanding

about the utility of the ab initio composite strategy, DLPNO-ccCA, a cationic (diiimine)(aquo)PtII

complex was examined. This PtII complex was chosen since PtII complexes with ligands containing

aromatic and aliphatic C-H bonds are involved in the oxidative addition of alkanes and have been

a focus in C-H activation studies where the ligand substitution step is rate-determining.32–35
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5.2 Computational Methods

5.2.1 Computational methods for hydroformylation

DFT and ab initio calculations were done in this study. Several density functionals were

utilized, selecting a number of widely used functionals varying in complexity: B3LYP,36,37

B3P86,36,38 BLYP,37,39 BP86,38,39 PBE,40,41 and PBE0.40–42 (It should be noted that while

increased complexity often means better property predictions, this is not necessarily guaranteed.)

Grimme’s dispersion correction with Becke-Johnson dampening (D3BJ) was included for B3LYP

and PBE0 to correct for long-range intramolecular interactions.43 The Stuttgart/Dresden basis set,

and pseudopotential (SDD) was used for all DFT calculations.44,45 Though it is commonly

believed that a triple-ζ quality basis set is sufficient for DFT calculations, earlier work has

demonstrated that for the predictions of energetic properties of transition metal species,

quadruple-ζ level basis sets can have an impact on the energies, and, thus, this level of basis set

was considered.3,4 As well, this choice of basis set followed earlier work done by Kumar et al.24,

and all structures for the DFT and ab initio calculations were based on this prior work. DFT

calculations in the present work were done with Gaussian16.46

Several ab initio correlated methods also were used including domain-based pair natural orbital

(DLPNO) methods,47–52 DLPNO-MP2 and DLPNO-CCSD(T)), the MP2 and CCSD(T) varieties

of the DLPNO approach. The DLPNO approach enables computational cost reductions from

typical MP2 and CCSD(T) calculations. And, CCSD(T) is of particular interest, as this method

is known for its utility in energy predictions when paired with a high-quality (which typically

means large) basis set. The DLPNO calculations were done with the ORCA program suite.53

Calculations were done using Dunning’s correlation consistent polarized valence-n-ζ (“zeta”) basis

sets (aug-cc-pVnZ, where n=D (double), T (triple), Q (quadruple)), and considering augmented

(aug-cc-pVnZ) and augmented core-valence (aug-cc-pCVnZ) forms of the sets.54,55 For P and

Cl, the recommended tight d versions of the correlation consistent basis sets, denoted as cc-

pV(n+d)Z, aug-cc-pV(n+d)Z, and aug-cc-pCV(n+d)Z were used.55 The correlation consistent
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pseudopotentials (cc-pVnZ-PP) were used for Rh and Pt atoms.56,57 The correlation consistent

Composite Approach (ccCA) for 4d transition metals was also considered,10 utilizing the DLPNO

methods for the composite steps to reduce the computational resources associated with the size of

the compound, denoted as DLPNO-rp-ccCA.58

To calculate the regioselectivity for hydroformylation, the following equation was used for the

linear-to-branched ratio

l : b = kl : kb =
e
(−∆G

‡
l
/kT )

e
(−∆G

‡
b
/kT )

= e(−∆∆G‡/kT ) ≈ e(−∆∆E‡/kT ) (5.1)

where ∆∆G‡ is the free energy barrier, ∆∆G‡ is the energy difference between the two

reaction pathways, k is the Boltzmann constant, and T is the temperature. This equation assumes

the olefin insertion step is irreversible. The Rh-catalyst-olefin complex examined with the DLPNO

methods is ee– [Rh(H)(CO)(DIPHOS)(propene)] where the bis-phosphine DIPHOS ligand is in

the equatorial-equatorial (ee) conformation. The ligands examined with DFT include (PPh3)2,

and more structurally complex bis-phosphine ligands, TBDCP, DIOP, and DIPHOS. All ligands

are attached to a [Rh(H)(CO)] backbone as indicated in the Wilkinson catalytic cycle for Rh-

based hydroformylation. Olefins examined with (PPh3)2 include pentene, hexene, heptene, octene,

decene, dodecene, styrene, and vinyl acetate. Propene is coordinated with all bisphosphine ligands.

As the experiments were carried out in toluene, the SMD implicit solvent model59 was used to

mimic the long-range solvent effects of toluene on the Rh catalyst.

The Rh-catalyst-olefin complex examined with the DLPNO methods is

ee-[Rh(H)(CO)(DIPHOS)(propene)] where the bis-phosphine DIPHOS ligand is in the

equatorial-equatorial (ee) conformation. The ligands examined with DFT include (PPh3)2, and

more structurally complex bis-phosphine ligands, TBDCP, DIOP, and DIPHOS. All ligands are

attached to a [Rh(H)(CO)] backbone as indicated in the Wilkinson catalytic cycle for Rh-based

hydroformylation. Olefins examined with (PPh3)2 include pentene, hexene, heptene, octene,

decene, dodecene, styrene, and vinyl acetate. Propene is coordinated with all bisphosphine

ligands.
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Figure 5.3: Computationally determined 3D structures of ee-[Rh(H)(CO)(DIPHOS) (propene)]
catalyst complex (top) and the dissociation reaction of H2O from the cationic (diimine)(aquo)PtII
complex (bottom).

5.2.2 Computational methods for ligand dissociation

The gas phase ligand dissociation energy was evaluated by the difference between the complex

and the respective fragments.

∆Edissoc = EAB − EA + EB (5.2)

where EAB is the electronic energy of the complex, EA is the electronic energy of fragment A,

and EB is the electronic energy of fragment B. Ab initio calculations, in particular, are susceptible

to basis set superposition error (BSSE), which can result in overbinding of the ligands.60 BSSE

can occur when there is an imbalance in basis set size for the species considered in determining an

energy difference. The effects have been addressed by conducting calculations on the individual

species in the presence of the basis set associated with the other species. A correction for the BSSE

was applied to all DLPNO calculations.

To study fundamental organometallic reactions that occur in the gas phase, a cationic

(diimine)(aquo)PtII complex prevalent in C-H activation and oxidative addition of alkanes was

chosen (see Fig. 5.3). This molecule was chosen due to computational feasibility based on the

molecule size. The calculated zero point energy (ZPE) of the reaction obtained with a frequency

calculation at the BP86 level and the PBE0 optimized structures were obtained from Weymuth et
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al.61 This choice of functional for frequency calculations was selected since the ZPE of the

reaction did not significantly change with respect to functional choice.61 PBE0 structures were

utilized based on their success for heavier elements. A few density functionals, PBE0, B3LYP,

and TPSSh62 utilizing cost-saving techniques, i.e the resolution-of-the-identity or RI

approximation, were paired with the augmented correlation consistent basis sets and

pseudopotentials of triple- and quadruple-ζ level quality (aug-cc-pVnZ, n=T, Q), as well as

DLPNO-rp-ccCA to determine ligand dissociation energies. All ligand dissociation calculations

were done in the ORCA program suite.

5.3 Results and Discussion

5.3.1 Regioselectivity in hydroformylation

The DFT l:b ratios for all Rh catalysts are shown in Table 5.2. The corresponding ∆∆E‡s for

all DFT results are shown in Table 5.3. The DLPNO results for hydroformylation are shown in

Table 5.4 for the l:b ratios, including the l:b determined for calculations that have been corrected for

BSSE.WithDFT, qualitatively correct l:b ratios are obtained formost of the examined catalyst-olefin

complexes as shown in Table 5.2. However, this largely depends onwhich type of functional is used.

For example, usingBLYP,BP86, andPBEgenerally predicted l:b ratios that are in disagreementwith

experiment for (PPh3)2 ligands, particularly for hexene, heptene, octene, dodecene, and styrene,

which produced l:b ratios of 2:98, 26:74, 11:89, 84:16, and 87:13, respectively, for BLYP, and

similar ratios for BP86 and PBE (Table 2). With an increase in complexity in the functionals, i.e.

B3LYP, B3P86, and PBE0, l:b ratios of 67:33 47:53 and 76:24 for B3LYP, 71:29, 67:33, 68:32 for

B3P86, and 75:25, 73:27, 71:29 for PBE0, were predicted for the conversion of heptane, octene, and

dodecane with (PPh3)2 ligands, respectively. And for ee-[Rh(H)(CO)(PPh3)2(pentene)], the linear

product is predicted. However, the inclusion of Grimme’s dispersion correction for B3LYP and

PBE0 predicted l:b ratios that predicted the more favorable produce, in agreement with experiment

for all examined catalyst-olefin complexes with the exception of ee-[Rh(H)(CO) (PPh3)2(decene)]

(l:b ratios of 0:100 and 3:97 for B3LYP-D3 and PBE0-D3, respectively) and ee-[Rh(H)(CO)
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(DIPHOS)(propene)] (l:b ratios of 17:83 and 11:89 for B3LYP-D3 and PBE0-D3, respectively).

Based on the l:b ratios found, introducing complexity in the functional can but not always improve

property prediction.
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Table 5.2: Comparison of several density functionals to linear-to-branched ratios from experiment for ee-[Rh(H)(CO)(L)(olefin)]
complexes.

BLYP BP86 PBE B3LYP B3P86 PBE0 B3LYP-D3 PBE0-D3 Expa

L=(PPh3)2
Pentene 83:17 81:19 79:21 95:5 95:5 95:5 100:0 99:1 95:5
Hexane 2:98 3:97 6:94 10:90 19:81 23:77 100:0 99:1 92:8
Heptane 26:74 28:72 33:67 67:33 71:29 75:25 100:0 99:1 86:14
Octene 11:89 20:80 31:69 47:53 67:33 73:27 100:0 100:0 81:19
Decene 84:16 93:7 89:11 53:47 69:31 64:36 0:100 3:97 74:26

Dodecene 45:55 33:67 41:59 76:24 68:32 71:29 100:0 99:1 87:12
Styrene 87:13 92:8 79:21 83:17 84:16 90:10 0:100 1:99 11:89

Vinyl acetate 0:100 0:100 0:100 0:100 0:100 0:100 0:100 0:100 9:91

L=TBDCP
Propene 90:10 88:12 89:11 96:4 95:5 96:4 92:8 95:5 92:8

L=DIOP
Propene 99:1 99:1 100:0 100:0 100:0 100:0 100:0 100:0 90:10

L=ee-DIPHOS
propene 3:97 3:97 3:97 5:95 5:95 5:95 17:83 11:89 69:31b

L=ea-DIPHOS
propene 83:17 73:27 71:29 86:14 77:23 76:24 88:12 81:19 69:31b

aReferences 14,63–69
bThe data references the ea conformer of DIPHOS.

158



Table 5.3: Comparison of the approximate ∆∆E‡s based on the calculated l:b ratios for ee- [Rh(H)(CO)(L)(olefin)] complexes.
Experimental ∆∆E‡s are an approximation of experimental l:b ratios. All ∆∆E‡s are in kcal mol−1.

BLYP BP86 PBE B3LYP B3P86 PBE0 B3LYP-D3 PBE0-D3 Expa

L = (PPh3)2
Pentene -0.96 -0.88 -0.80 -1.78 -1.74 -1.74 -3.67 -3.05 -1.74
Hexene 2.44 2.07 1.65 1.29 0.87 0.71 -3.93 -2.70 -1.44
Heptene 0.62 0.56 0.41 -0.42 -0.53 -0.66 -3.74 -2.87 -1.07
Octene 1.26 0.81 0.47 0.06 -0.42 -0.60 -4.87 -3.85 -0.85
Decene -0.98 -1.49 -1.23 -0.08 -0.47 -0.34 3.36 2.05 -0.62

Dodecene 0.11 0.43 0.21 -0.68 -0.43 -0.54 -3.92 -2.91 -1.13
Styrene -1.10 -1.44 -0.78 -0.94 -1.00 -1.29 5.62 2.87 1.24

Vinyl acetate 6.24 6.55 6.59 6.02 6.35 6.27 5.06 5.42 1.36

L = TBDCP
Propene -1.31 -1.16 -1.23 -1.86 -1.71 -1.92 -1.45 -1.70 -1.44

L = DIOP
Propene -2.57 -3.12 -3.22 -3.28 -3.76 -4.02 -3.59 -4.22 -1.30

L = ee-DIPHOS
propene 2.00 2.10 2.08 1.70 1.80 1.75 0.93 1.25 -0.47b

L = ea-DIPHOS
propene -0.96 -0.58 -0.54 -1.05 -0.72 -0.69 -1.17 -0.86 -0.47b

aReferences 14,63–69
aThe data references the ea conformer of DIPHOS.
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For ee-[Rh(H)(CO) (PPh3)2(vinyl acetate)], the predicted ∆∆E‡ was ~6 kcal mol−1 for each

functional considered as shown in Table 3, indicating the branched isomer is favored. Overall, the

dispersion-corrected functionals resulted in a lowering of the ∆∆E‡ for ee-[Rh(H)(CO)

(PPh3)2(vinyl acetate)] by approximately 1 kcal mol−1, however, this did not impact the product

distribution. Similarly, for ee[Rh(H)(CO)(DIOP)(propene)], the dispersion correction functionals

resulted in a lowered the predicted ∆∆E‡ by ~0.3 kcal mol−1 and did not impact the product

distribution as the predicted ∆∆E‡ was ~4 kcal mol−1. However, for ee-[Rh(H)(CO)

(PPh3)2(styrene)] and ee-[Rh(H)(CO) (PPh3)2(decene)], the dispersion-corrected functionals

predicted the ∆∆E‡ to be ~6 kcal mol−1 and ~3 kcal mol−1 greater than the ∆∆E‡ predicted

with non-dispersion-corrected functionals. While this change in ∆∆E‡ predicted product ratios of

0:100 and 1:99 for B3LYP-D3 and PBE0-D3, respectively, with styrene as the olefin, with decene

as the olefin, the predicted product ratios were 0:100 and 3:97 for B3LYP-D3 and PBE0-D3,

respectively.

For the DIPHOS ligand, the relative orientation of the Rh-H and Rh-CO bond to the DIPHOS

ligand was a major factor in predicted l:b ratios with DFT. In the ee conformation, all predicted l:b

ratios with DFT predicted the branched product whereas the linear product is predicted for the ea

conformation, in qualitative agreement with experiment. This is to be noted for any calculation.

The small conformation changes from the ee conformation to the ea conformation led to lowering

of the ∆∆E‡ by ~2-3 kcal mol−1 for all functionals, changing the product ratio to favor the linear

product over the branched ratio. This exhibits the high sensitivity of ∆∆E‡, which can greatly

affect product formation ratios with changes as small as a few tenths of a kcal mol−1, as exhibited

by the ∆∆E‡s of -0.54 and -1.05 kcal mol−1 that yielded product ratios of 71:29 and 86:14 for

PBE and B3LYP, respectively. Ergo, based on the observed trends from the DFT calculations, there

remains a need to investigate hydroformylation with electron correlation methods.

160



Table 5.4: Results using DLPNO methods to predict the linear-to-branched ratio for ee-
[Rh(H)(CO)(DIPHOS)(propene)].

l:b l:b (corrected for BSSE)

DLPNO-MP2/aug-cc-pVDZ-PP 25:75 100:0
DLPNO-MP2/aug-cc-pVTZ-PP 29:71 100:0
DLPNO-MP2/aug-cc-pVQZ-PP 16:84 100:0
DLPNO-MP2/cc-pVTZ-PP 18:82 100:0

DLPNO-CCSD(T)/cc-pVTZ-PP 1:99 100:0
DLPNO-CCSD(T)/aug-cc-pCVDZ-PP 100:0 100:0

DLPNO-CCSD(T,FC1)/aug-cc-pCVDZ-PP 100:0 100:0
DLPNO-rp-ccCA 100:0 100:0
Experimental 69:31

The data references the equatorial-axial (ea) conformer of DIPHOS.

Here, the ee-[Rh(H)(CO)(DIPHOS)(propene)] catalyst-olefin complex is considered, as DFT

was unable to address the regioselectivity of this reaction correctly in any case. For the DLPNO

methods, the l:b ratio is predicted to favor the branched isomer. When BSSE has been addressed,

the linear isomer is favored. For DLPNO-rp-ccCA, the molecular orbital space is well-described,

and, thus, accounting for BSSE effects is not necessary, and the l:b ratio predicted with DLPNO-

rp-ccCA is 100:0. This is primarily due to the interactions between the electrons from core

orbitals with electrons in valence orbitals as DLPNO-CCSD(T)/aug-cc-pCVDZ-PP and DLPNO-

CCSD(T,FC1)/aug-cc-pCVDZ-PP, which includes sub-valence electron (FC1) excitations within

the molecular orbital space, both favored the linear isomer with product ratios of 100:0. The

results from implementing the DLPNOmethods indicate that electronic effects from including core

electronswithin the valence basis set are significant in determining∆∆E‡ given the largemagnitude

relative to other calculated ∆∆E‡s with ab initio methods. Even for qualitative predictions,

DLPNO-rp-ccCA is useful without having to correct for BSSE. By utilizing a well-described

molecular orbital space – DLPNO-rp-ccCA does predict the proper regioselectivity; DFT either

does not predict the correct regioselectivity, such as for ee-[Rh(H)(CO) (PPh3)2(styrene)] and ee-

[Rh(H)(CO) (PPh3)2(hexene)], which predicted qualitatively inconsistent product ratios for most

of the functionals examined. In addition, the regioselectivity is highly sensitive to functional
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choice, as the performance is not consistent as the ligand type and olefin changes. However, for

the ab initio methods considered, simply improving the description of the molecular orbital space,

either by BSSE correction or by including sub-valence electrons in the molecular orbital space for

interactions yielding qualitative agreement with experiment.

5.3.2 Metal-ligand dissociation in organometallics

The gas phase ligand dissociation energies are shown in Table 5.5 with DLPNO-rp-ccCA

compared to both experiment and several density functionals utilizing the

resolution-of-the-identity approximation. For gas-phase ligand dissociation, DLPNO-rp-ccCA

yields an error of 1.7 kcal mol−1 relative to experiment. When utilizing the

resolution-of-the-identity approximation within DFT calculations, RI-PBE0/aug-cc-pVTZ,

RI-B3LYP/aug-cc-pVTZ, and RI-TPSSh yields dissociation energies of 20.7, 20.2, and 19.6 kcal

mol−1, respectively. However, increasing the quality of the molecular orbital space, i.e. using

aug-cc-pVQZ, increased the error by 0.4, 0.5, and 0.5 kcal mol−1 for RI-PBE0, RI-B3LYP, and

RI-TPSSh, causing concern for utilizing DFT with higher quality basis sets. Regardless of

functional and basis set choice, the predicted dissociation energy was greater than 5 kcal

mol−1 lower than the experimental value. With the dispersion correction included for

RI-PBE0/aug-cc-pVTZ, the predicted dissociation energy increased to 23.6 kcal mol−1. This

would suggest that accounting for dispersion is necessary for DFT predictions of gas-phase

properties. DLPNO-rp-ccCA calculations yielded favorable results for ligand dissociation energy

in comparison to DFT, but there are factors that can contribute to computationally predicted

dissociation energies. For example, as density functionals are primarily used to generate

structures for large organometallic complexes, the choice of functional for optimization must be

considered. The predicted dissociation energies can change by a few kcal mol−1 based on slight

structural change (root mean square deviation of ~20 pm) between functionals and by 10’s of kcal

mol−1 for significant structural changes such as ligand reorientation. Also, the basis set choice

can affect the quality of predictions as indicated from the lowering of predicted dissociation
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energy by increasing basis set quality.

Table 5.5: Comparison of the gas-phase ligand dissociation energy of H2O from the Pt complex
calculatedwithDLPNO-rp-ccCAandRI-DFT-D3/aug-cc-pVnZ.All energies are in kcalmol−1 and
are BSSE-corrected.

RI-PBE0/aug-cc-pVTZ 20.7
RI-B3LYP/aug-cc-pVTZ 20.2
RI-TPSSh/aug-cc-pVTZ 19.6
RI-PBE0/aug-cc-pVQZ 20.3
RI-B3LYP/aug-cc-pVQZ 19.7
RI-TPSSh/aug-cc-pVQZ 19.1

RI-PBE0-D3/aug-cc-pVTZ 23.6
DLPNO-rp-ccCA 24.2

Experiment 25.9 ± 0.7

5.4 Conclusions

Basically, considering the challenges mentioned earlier about the prediction of thermochemistry

properties for transition metal species, achieving the level of accuracy needed to even predict the

correct product distributions seems unsurmountable. Cancellation of errors that can occur from

comparing energy differences is helpful, though the errors from experiment are not necessarily the

same across a reaction pathway, and, thus, gauging method utility for each problem, considering

metal, ligand, and property, is essential. A typical method choice for the study of transition metal

species is DFT. Unfortunately, there is no “magic” functional to use for all problems. While ab

initio methods like CCSD(T) or composite methods that try to replicate it like ccCA can be quite

useful and are more dependable from system to system and, generally, across a reaction pathway,

they are more costly, and may require additional measures to ensure quality results are obtained

sometimes reaching near saturation of the orbital space (even more costly!). DFT can be very

useful, but properly gauging it is important, as illustrated by this study.
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CHAPTER 6

VIBRATIONAL POTENTIAL ENERGY SURFACES WITH THE
CORRELATION CONSISTENT COMPOSITE APPROACH AND

DENSITY FUNCTIONAL THEORY

6.1 Introduction

Vibrational spectroscopy is one of the most useful techniques available to science due to its

unique window into the structure, dynamical behavior, and bonding properties of molecules.1

Modeling vibrational interactions is critical to understand infrared absorption, mechanisms, and

kinetics of chemical reactions. Calculated frequencies can be utilized to predict thermodynamic

properties like the enthalpy of formation and reaction barriers.2–6Aswell, computational techniques

are necessary to substantiate novel experiments where the resolution is insufficient or there are

difficulties in isolating the molecule, i.e. diatomics, amino acids, or even short-lived molecules like

the transition state of a chemical reaction and radicals.7

Computational chemistry techniques can also interpret and assign vibrational features to a

specific molecule or type of motion. The increase of computational power in the digital age allows

for the development of numerous methods for quantum mechanical modeling within the field,

investigating deeper into the electronic structure of many-body systems, such as electronic

properties, potential energies, and anharmonic vibrational frequencies.8–10 Electronic structure

methods have been utilized to investigate vibrational frequencies with potential energy surfaces

(PESs) describing dynamical motion, obtaining frequencies that are within several cm−1 of

experiment.9,11–14 These methods have a caveat, in which the accuracy attained for vibrational

frequencies is exchanged for high computational cost, most prominent being disk space and CPU

time.9,10 This is coupled with the number of grid points needed to generate the requisite PESs,

which can easily exceed tens of thousands or even one million.11,12 Thus, the combination of

electronic structure methods with the vast number of grid points needed for a PES reduces the

feasibility of utilizing electronic structure methods for predicting vibrational properties within
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several cm−1. This allows for continual development towards creating computational methods

with low computational cost while attaining vibrations predictions within several cm−1 from

well-established reliable experiments. Efficient processes have been developed to reduce the

computational cost while yielding deviations from experimental vibrations by several cm−1 or

deviations less than 1 kcal mol−1 for reaction barriers.11,15–17

The correlation consistent CompositeApproach (ccCA)18,19 is considered, as a route to alleviate

the cost of generating potential energy surfaces. ccCA has been utilized to describe PESs. For

example, the multireference wavefunction ccCA (MR-ccCA) was utilized to analyze the potential

energy curve of the torsional rotation of the carbon-carbon double bond in ethylene, predicting

the barrier height of cis-trans isomerism and yielded errors approximately 0.7 kcal mol−1 from

experiment.16 As an alternative to utilizing multireference methods, completely renormalized

coupled cluster (CR-CC(2,3)) was implemented within the ccCA formalism, CR-ccCA(2,3).17 This

method utilizes a single reference completely renormalized coupled cluster that can correctly treat

reaction pathways such as the thermal pericyclic rearrangement of bicyclo[1.1.0]butane to trans-

buta-1,3-diene and chemical species, e.g. diradicals, that would normally require multireference

methods.

In addition to ccCA, DFT can be used to find properties of these electronic many-body

systems at an affordable computational cost relative to the ab initio methods utilized for

vibrational spectroscopy.20 Density functionals have been largely designed for main group

thermochemical properties; however, DFT cannot adequately describe noncovalent interactions,

such as π-π stacking or weak hydrogen bonding, crucial in larger polyatomic molecules and could

be significant when describing weakly-bound ligands and noncovalent interactions between two

molecules.21,22

Anharmonic vibrational frequencies properly characterize vibrational motion more than

harmonic frequencies; however, these calculations can be quite expensive.23,24 While harmonic

frequencies require the second derivative of the potential energy function, anharmonic frequencies

require at least the third or fourth derivative to solve.25 Generally, computational methods are
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restricted to the harmonic approximation for vibrational frequencies that led to the development of

empirical scale factors that can be tailored for high and low frequencies.24 An analysis taking

anharmonic effects into account would therefore lead to calculated frequencies that are not perfect

overtones and provide a more accurate description of the vibrational behavior.26,27

To account for anharmonicity computationally, computational strategies often include a

perturbative correction, such as VPT2, to the potential. However, vibrational self-consistent field

(VSCF) theory, which was developed in the late 1970s, fully accounts for anharmonicity by

considering the vibrational Schrödinger Equation. Approximations are made which make VSCF

theory analogous to Hartree-Fock theory.28–32 More recent studies utilizing VSCF theory

implement on certain biologically pertinent vibrations for amino acid peptide chains,11,33 which

are not typically targeted with the rigorous ab initio methods utilized for potential energy surfaces

(potentials) of diatomics and small polyatomic molecules like H2O and formaldehyde.12,34,35 In a

study by Roy et al., a VSCF-PT2 approach was utilized with both a B3LYP-D2 potential and a

multilevel HF/MP2 potential to characterize anharmonic vibrational motion of an opioid peptide

[Ala2, Leu5]-leucine enkephalin (ALE).11 They found that the B3LYP and multilevel HF/MP2

potential systematically underestimated and overestimated the experimental frequencies for the

OH and NH stretching modes for each amino acid, respectively, by a few tens of cm−1. The

average of the frequencies compensates for the respective under and overestimation of frequencies

and yielded theoretical predictions within 10 cm−1 of experiment, which was better than the

B3LYP and the multilevel HF/MP2 potentials individually as well as scaled harmonic

calculations, thus showing the efficacy of VSCF theory towards predicting anharmonic vibrations

for systems as large as a pentapeptide.

In this chapter, the correlation consistent Composite Approach (ccCA) and density functional

theory (DFT) have been used to generate potential energy surfaces (PES) for diatomic and small

polyatomic molecules to predict structural and vibrational properties such as frequencies and

infrared absorbance intensities in tandem with vibrational self-consistent field (VSCF) and post-

VSCF theory. Extrapolations schemes for ccCA and functional and basis set choice within DFT
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were considered.

This was done to determine the efficacy of each method for each method. The combination

of electronic structure methods such as ccCA and DFT with post-VSCF theory aims to reduce the

computational cost associated with generating accurate PESs for anharmonicmode-mode couplings

as well as calculating contributions from anharmonic corrections to the potential.

6.2 Computational Methods

The PVSCF program15,36 was used for vibrational analysis and ORCA 4.0 was used for the

electronic structure calculations necessary to generate the potential energy surfaces.37,38 The

molecule set included 20 molecules: H2, CO, LiH, N2, NO+, OH, NH, HF, BF, O2, SiO, H2O,

CO2, NH3, C2H2, C2H4, C2H6, cis-3-aminophenol, and trans-3-aminophenol. These were

chosen based on the availability of experimental frequencies for these molecules and their

presence in the interstellar medium along with the notion of correlating the results with other

studies that use more computationally demanding post-HF methods for predicting anharmonic

frequencies.22 Experimental vibrational frequencies were obtained from Herzberg, Huber, and

Shimanouchi.39–41 Equilibrium bond lengths for the diatomic molecules were obtained from

CISD/cc-pVTZ calculations and the initial Hessians were generated using

RI-B3LYP-D3/aug-cc-pVTZ within the ORCA package. Since the PVSCF program uses the

hessian as an initial guess, a Hessian generated with a more approximate method is sufficient for

the purpose of this study. For polyatomic molecules, B3LYP/cc-pVTZ geometries and hessians

were used in accordance with the ccCA methodology.19

The potentials were generated via an interpolation of 16 grid points by a multimode expansion

using curvilinear coordinates. Potential energy curves (PECs) are generated for diatomics while

surfaces that plot the effect of two different vibrational modes concurrently vibrating, or vibrational

mode coupling, are generated for polyatomic molecules. The extracted potential energies and

dipole moments were then run with the PVSCF program to obtain the anharmonic frequencies

and infrared (IR) intensities of each molecule, respectively. For diatomic molecules, a Fourier
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Grid Hamiltonian approach was used to calculate the single vibrational frequency.42,43 For all

polyatomic molecules, a vibrational configuration interaction method (VCIPSI-PT2) was used to

analyze the effects of vibrational mode coupling.44 VCIPSI-PT2 utilizes vibrational configuration

interaction with perturbatively selected interactions (VCIPSI), which reduces the computational

cost compared to standard VCI approaches while maintaining the same level of accuracy.15,44

6.2.1 DFT Calculations

Density functionals come in numerous flavors based on the number of parameters and the

operations performed on the electronic density surface to varying degrees of success. For example,

B3LYP45,46 is heavily parameterized for main group thermochemistry while TPSS47 has no

empirical parameters; yet both density functionals are popular and have been reported to yield low

mean absolute errors for main group thermochemistry.48 TPSS and B3LYP were therefore used as

the density functionals in this work.

Dunning’s standard and augmented correlation consistent basis sets from double- to quintuple-ζ

(cc-pVnZ (VnZ) and aug-cc-pVnZ (aVnZ), n= D, T, Q, 5) were used.49 These particular basis sets

were built to systematically increase the types of energy contributions and subsequently, these types

of functions included in the basis set, which leads to a smooth convergence of energetic properties

towards an infinite basis set that would describe all possible space in which electrons exist. The

Feller extrapolation scheme was used since this is a three-point extrapolation scheme, which allows

the extrapolation function to converge to a limit closer to the experimental values, and uses the

exponential form (Equation 2.29). The effects of the Feller extrapolation scheme were examined to

provide insight into energies that would be obtained when using a more computationally demanding

basis set (such as sextuple-ζ or higher). For polyatomic molecules with more than three atoms,

only cc-pVTZ and aug-cc-pVTZ was used.
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6.2.2 ccCA Calculations

The implementation of ccCA has been described in Section 2.2.4.1. Standard cartesian, or

rectilinear, coordinates were used for diatomics and linear polyatomic molecules (CO2, C2H2).

Curvilinear coordinates were used for nonlinear polyatomic molecules (H2O, aminophenol

isomers). SCF energies were converged to 10−8 Eh in all single point energy calculations.18,19

ccCA electronic energies were used to generate all potential energy curves for singular vibrational

motion and surfaces for mode-mode coupling, i.e. simultaneous vibrational motion for two

vibrational modes.

For C2H4, C2H6, and aminophenol isomers, DFT calculations were used to generate all

vibrational mode couplings. The number of vibrational mode couplings calculated with ccCA

were decreased via a screening threshold to isolate strongly coupled vibrational modes.23,50

Selected vibrational modes from coupling maps are provided in the Appendix. The coupling

strength is largely independent of the choice of method used to generate the potential energy

surface. This is denoted as a FASTVCI approach in this work.

6.3 Results and Discussion

The calculated frequencies for diatomics, H2O, CO2, and NH3 are shown in the Appendix. The

mean absolute deviation (MAD) was analyzed by basis set, functional, and by number of atoms to

note specific trends or certain occurrences within the calculations. For ccCA potentials, utilizing

different extrapolation schemes did not significantly affect the predicted vibrational frequency as

shown in Table 6.5. Therefore, for conciseness, only the frequencies predicted with ccCA-S4

potentials are presented as ccCA-S4 yielded the lowest errors of all extrapolations schemes utilized.

6.3.1 Diatomics

With DFT potentials at the complete basis set limit, the calculated frequencies yielded a MAD

that ranged from 0 to 149 cm−1 depending on the molecule and functional whereas with ccCA

potentials, the calculated frequencies yielded a MAD that ranged from 0 to 22 cm−1.
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Examining functional choice, frequencies predicted with B3LYP-generated potential energy

curves (PECs) had performedwell compared to TPSS-generated PECs, with having sevenmolecules

(H2, BF, HF, NH, OH, O2, and SiO) that yielded smallerMAD compared to TPSS. This is indicated

in Figure 6.1 fromTPSS yielding lowerMADs for LiH, CO,N2, andNO+ relative to B3LYP. ForN2,

the predicted frequency generated with TPSS aligned with those predicted with ccCA-S4. This is

plausible, due to B3LYP having parameters fitted. In addition, the deviation values ranged from 33

to 149 cm−1 whereas B3LYP had a larger range of error of 42 to 178 cm−1 when TPSS-generated

potentials yielded lower errors for calculated frequencies than B3LYP-generated PECs. The larger

range is due to the B3LYP/V∞Z PEC for LiH yielding a high error for calculated frequency relative

to experiment. Based on the choice of molecule, functional choice had a larger effect on predicted

vibrational frequency than basis set choice.
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Figure 6.1: Mean absolute deviation (MAD) of vibrational frequencies for diatomics using
TPSS/VTZ (blue), B3LYP/VTZ (green), TPSS/aVTZ (purple), B3LYP/aVTZ (red), and ccCA-
S4 (black).

When comparing the effects of basis set choice holistically, augmented basis sets tended to

produce lower MADs for experimental frequencies in comparison to non-augmented basis sets.

This is evident as theMADdecreased from43± 37 and 39± 35 for B3LYP/VnZ andB3LYP/aVnZ,

respectively, and 57 ± 52 and 55 ± 50 for TPSS/VnZ and TPSS/aVnZ, respectively. This could

be due to the extra diffuse function presented in aVnZ basis sets that can better describe a larger

internuclear distance for diatomics. From the supplemental tables (Tables 6.6-6.7), using a larger

basis set could lead to more accurate predictions as the mean error when using VDZ across all

molecules and functionals was 73± 10 cm−1 whereas the mean error when using VTZ, VQZ, and

V5Z across all molecules and functionals was 44 ± 11, 42 ± 10, and 41 ± 10 cm−1, respectively.

Although there is an ∼30 cm−1 decrease in error between VDZ and the higher ζ-level basis sets,
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there is not a consistent lowering of error in calculated frequency with respect to an increase in

basis set size as the error in frequency for all DFT/VTZ, DFT/VQZ and DFT/V5Z potentials were

statistically not different based on the 25% relative uncertainty in deviations across all molecules

and functionals. Therefore, triple-ζ quality basis sets may be useful as a compromise between cost

and accuracy for generating potentials describing vibrational motion for polyatomic molecules.

Diatomics that exhibit covalent triple bonds (CO, NO+, and N2) yielded lower deviations

from experimental frequencies with TPSS (31, 12, 8 cm−1, respectively) while diatomics with

single or double bonds yielded lower deviations from experiment with B3LYP (43, 93, 109 cm−1,

respectively). For the diatomics with covalent triple bonds, the parameterization within B3LYP

and the increase in electron density between atoms may be the cause of the higher deviations in

calculated frequency from experiment obtained with B3LYP-generated PECs opposed to TPSS-

generated PECs. HF, SiO, BF, and OH are molecules for which B3LYP yielded smaller deviations

from experiment, and have a larger electron density around the more electronegative atom, which

indicates that B3LYP is preferred when calculating polar molecules.

Across all diatomics examined, ccCA yielded a MAD of 9 ± 7 cm−1 whereas B3LYP/VnZ

and TPSS/VnZ yielded MADs of 43 ± 37 and 57 ± 52, respectively. This is shown in Figure

6.1. This indicates that using potentials generated with ccCA yield lower deviations for predicted

frequencies than DFT, with the notable exception of SiO, where using B3LYP regardless of basis

set yielded frequencies closer to experiment than ccCA by approximately 20 cm−1. This may be

due to the presence of static correlation as the molecule vibrates. With ccCA, diatomics that have

a larger difference in mass between the two atoms (OH, BF, HF) tended to yield lower deviations

from experiment for calculated frequencies with the exception of NH, which yielded an error of 16

cm−1. PECs for homonuclear diatomics yielded higher deviations with an increase in mass as H2,

N2, and O2, yielded errors of 5, 10, and 11 cm−1, respectively. As well, PECs for LiH and NO+,

heteronuclear diatomics with similar mass between atoms, tended to yield higher errors (8 and 11

cm−1) among the ccCA results although PECs for CO and BF yielded errors of 0 and 2 cm−1,

respectively. This would suggest that unlike DFT, there is no consistent trend between molecular
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weight or atom type present and frequencies generated with ccCA PECs even though PECs at the

ccCA level of theory generates lower errors across all diatomics compared to DFT PECs.

The CPU time was measured with a Dell OptiPlex 390 with 16 GB DDR3 memory for a

few diatomics to show the approximate cost of generating a PEC of 17 grid points with DFT,

ccCA, and CCSD(T,full)/aug-cc-pCV5Z where full denotes the inclusion of all electrons for first-

row main group diatomics in the correlation space. This is shown in Table 6.1. As expected,

B3LYP calculations are more computationally affordable than ab initio methods but yielded higher

deviations for the molecules used (Table 6.2). Also, generating a PEC at the ccCA level, which

aims to model energies at the CCSD(T,full)/aug-cc-pCV∞Z-DK level, is more affordable than

using CCSD(T,full)/aug-cc-pCV5Z by several hours depending on the molecule size. As shown

in Table 6.1 for example, ccCA yielded a percent CPU time savings of 99.16 % for N2 relative

to CCSD(T,full)/aug-cc-pCV5Z. Interestingly, the use of CCSD(T,full)/aug-cc-pCV5Z to generate

the PES yielded larger absolute errors (10 ± 3) than ccCA (6± 4) for these molecules. The higher

absolute errors and large increase in CPU time between CCSD(T,full)/aug-cc-pCV5Z and ccCA

suggests that potentials generated with ccCA are more accurate when using a VSCF approach.

Table 6.1: Percent CPU Time relative to CCSD(T,full)/aug-cc-pCV5Z to generate all 17 grid points
of the PEC for select diatomics.

B3LYP/aVTZ ccCA

H2 98.81 90.66
LiH 99.89 98.82
CO 99.97 99.01
N2 99.98 99.16
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Table 6.2: Calculated frequencies in cm−1 forB3LYP/aug-cc-pVTZ, ccCA, andCCSD(T, full)/aug-
cc-pCV5Z for diatomics in Table 6.1.

B3LYP/aVTZ ccCA CCSD(T,full)/aug-cc-pCV5Z Exp

H2 4189 4157 4155 4162.2
LiH 1372 1368 1348 1360
CO 2186 2143 2128 2143
N2 2420 2340 2323 2330

MAD ± STD 43 ± 29 6 ± 4 10 ± 3

6.3.2 H2O, CO2, NH3

For DFT potentials, both functional choice and basis set quality affected the accuracy of

predicted frequencies and the type of vibration that is observed, i.e. stretching, bending, or

inversion. For ccCA, the range in deviation is primarily due to the type of vibration observed. In

Figure 6.2, the DFT potentials are obtained at the CBS limit (V∞Z and aV∞Z) for H2O and CO2

since there are only 3 and 4 vibrational normal modes, respectively, which leads to the calculation

of 3 and 7 vibrational mode-mode couplings, i.e. the surface describing two vibrations occurring

simultaneously. H2O, CO2, and NH3 yielded a larger range of deviations from experimental

frequencies than the diatomics, wavering from 2 to 294 cm−1 with DFT potentials and from 2

to 57 cm−1 for ccCA potentials. For NH3, the vibrational mode-mode coupling potentials were

generated at the triple-ζ level based on the cost-to-accuracy ratio for the diatomic molecules, the

observation of results from H2O and CO2, and the number of vibrational mode-mode coupling

potentials required for 6 normal modes. All vibrational mode-mode coupling potentials consist of

256 grid points.
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Figure 6.2: MAD of vibrational frequencies for H2O, CO2, and NH3 using TPSS/VnZ (blue),
B3LYP/VnZ (green), TPSS/aVnZ (purple), B3LYP/aVnZ (red), and ccCA-S4 (black). For H2O
and CO2, n =∞. For NH3, n=T.

In Figure 6.2, the MAD is the average across all frequencies for a particular molecule for each

method (B3LYP/VnZ, B3LYP/aVnZ, TPSS/VnZ, TPSS/aVnZ, and ccCA). For DFT, the choice

between aVnZ and VnZ altered the curvature of the potentials enough to yield larger variations in

the errors for calculated frequencies between themolecules with the exception of H2O. When aVnZ

was used in H2O, the error across all vibrations was the same as V∞Z, regardless of functional

choice. For CO2, using aV∞Z increased the mean error for all frequencies by 13 cm−1 relative

to using V∞Z for TPSS and decreased the mean error by 15 cm−1 for B3LYP. For NH3, using

aVTZ for the potentials decreased the mean error across all frequencies by ∼50 cm−1 relative to

using VTZ for both TPSS and B3LYP. This indicates that when using DFT to generate potentials

for vibrational calculations, augmented basis sets properly characterize both bending and stretching
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behavior for small polyatomic species.

Functional choice was a larger factor in terms of general curvature of the potentials as B3LYP-

generated potentials yielded deviations for calculated frequency approximately 20-60 cm−1 lower

than TPSS-generated potentials. For H2O, CO2, and NH3, TPSS potentials inadequately described

both symmetric and asymmetric stretching modes with errors ranging from 70 to 225 cm−1,

whereas B3LYP potentials yielded errors in the range of 3 to 55 cm−1. In comparison, the bending

vibrational modes yielded errors ranging from 19 to 42 cm−1 for TPSS potentials. It is plausible

that in addition to parameterization for main group species, B3LYP potentials produced results

closer to experimental data because B3LYP includes exact exchange. The results infer that B3LYP

is preferred in generating potentials for calculating frequencies of polyatomic molecules when

utilizing DFT to generate potentials for vibrational motion.

With ccCA, the stretching modes for H2O yielded deviations within 2 cm−1 of experiment,

whereas the calculated bending mode was ∼20 cm−1 larger than the experimental frequency. The

difference of 20 cm−1 is most likely due to the weak coupling between the bending and stretching

modes and may be corrected through coupling all three vibrational modes together simultaneously.

For CO2, ccCA potentials did not properly characterize the vibrational motion of the out-of-plane

bending, and stretching normal modes with deviation of 40, 37, and 56 cm−1, respectively. This

may be in part due to the use of a standard cartesian coordinate system for displacing the molecule

in vibration whereas the deviations are generally lower when using a curvilinear coordinate system

as is the case for H2O. For NH3, ccCA potentials utilized for VCIPSI-PT2 predicted the inversion

barrier to within 10 cm−1 and N-H stretching modes within 15 cm−1. This analysis indicates

that when using a curvilinear coordinate system, ccCA potentials yield lower errors for stretching

modes opposed to bending modes, such as for H2O.

6.3.3 Hydrocarbons

This section highlights bonding character and its effect on vibrational potentials generated

with DFT and ccCA through analyzing C2H2, C2H4, and C2H6. Potential energy surfaces were
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generated with basis set superposition error (BSSE)-corrected energies. With ccCA, only strongly

coupled vibrational modes are considered for C2H4 and C2H6, which is depicted via coupling maps

in the Appendix.

Figure 6.3: MAD of vibrational frequencies for C2H2, C2H4, and C2H6 using TPSS/VTZ (blue),
B3LYP/VTZ (green), TPSS/aVTZ (purple), B3LYP/aVTZ (red), and ccCA-S4 (black).

For the hydrocarbons, there is a noticeable improvement among frequencies predicted with

DFT potentials. TPSS provided a smaller absolute deviation in ethyne, while B3LYP was preferred

for ethene and ethane. The number of C-H bonds largely affected deviations from experimental

frequencies. Findings regarding the basis set choice were consistent with other molecules examined

thus far in that DFT/aVTZ potentials yielded lower errors for calculated frequencies relative to using

DFT/VTZ potentials when using VCIPSI-PT2 to compute the frequencies.

Over all observed frequencies, DFT potentials yield lowerMADs from experimental frequencies
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than ccCA. For C2H2, the difference in magnitude between total MADs of frequencies predicted

with DFT and ccCA potentials was approximately 5 cm−1. Yet for C2H4 and C2H6, this difference

increases to 10-15 cm−1. This is primarily due to the large deviations in the C-H stretching

vibrations around 3000 cm−1 for ccCA potentials as well as the number of strongly coupled

vibrational modes that include a non-IR active symmetric C-H stretching mode used for the

FASTVCI approach. This is also consistent with other composite strategies that utilize perturbative

anharmonic corrections.51 This would suggest that for molecules like C2H4 and C2H6, a softer

potential as generated via DFT for the non-IR active symmetric stretches is more characteristic of

the vibrational motion.

With ccCA potentials, the C-C stretching mode for C2H2, C2H4, and C2H6 yielded errors for

predicted frequencies with VCIPSI-PT2 of 17, 21, and 7 cm−1, respectively, all of which are IR

inactive. This would suggest that ccCA potentials are more adequate for describing vibrations

involving covalent single bonds than double or triple bonds. This is also supported in part by the

low deviations observed for H2O and NH3 and high deviations for CO2 observed for stretching

modes.

To correct for this discrepancy between frequencies generated with DFT potentials and ccCA

potentials, a multilevel approach can be utilized where the coupling elements from ccCA potentials

can be added to the frequencies generated via the uncoupled DFT potentials for each vibration. This

is denoted as DFT:ccCA in this work. To illustrate this concept for ethene, where the shape of the

single mode PECs for both the individual non-IR active C––C and C–H symmetric stretches differ

between ccCA and DFT (Figure 6.5) , the frequencies are obtained where the mode-mode coupling

elements from ccCA potentials are applied to the single mode PECs generated with TPSS/VTZ.

As shown in Table 6.3, when using TPSS single mode PECs in tandem with ccCA mode-mode

coupling potentials, the error decreases to 24 cm−1 from 57 cm−1 when using ccCA single mode

and mode-mode coupling PECs and potentials, respectively. While the difference between using

TPSS and ccCA mode-mode coupling potentials with single mode PECs was only 1 cm−1, ccCA

mode-mode coupling potentials lowered the predicted frequency relative to using TPSS mode-
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mode coupling potentials, which lowered the deviation as TPSS potentials overestimated the C-H

stretching modes (modes 9-12 in Table 6.3). Overall, a multilevel approach may be useful when

one method generates a single mode PEC more representative of the vibrational motion indicated

by the predicted frequency and for larger polyatomic systems.

Table 6.3: VCIPSI-PT2 frequencies using a combination of TPSS and ccCA for single mode and
vibrational mode-mode coupling potentials. The use of PECs/PESs is denoted as single:coupled.

Mode Exp TPSS:PSS TPSS:TPSS ccCA-S4:ccCA-S4 TPSS:ccCA-S4
All FASTVCI FASTVCI FASTVCI

1 826 821 827 834 827
2 949 976 988 975 991
3 943 963 981 979 977
4 1023 1046 — — —
5 1236 1229 1238 1233 1239
6 1342 1354 1363 1360 1363
7 1444 1455 1468 1462 1467
8 1623 1628 1636 1649 1652
9 2989 3030 3050 3143 3043
10 3026 2992 3004 3104 2998
11 3103 3087 3113 3221 3105
12 3106 3118 3145 3247 3132

MAD 18 25 57 24

Mode 4 did not strongly couple to any other vibrational mode and hence excluded from FASTVCI calculations.

6.3.4 Aminophenol

For cis-3-aminophenol and trans-3-aminophenol, the NH2 torsion, 318.5 cm−1 and 329 cm−1,

respectively, and OH wagging vibrations, 307 cm−1 and 316 cm−1, respectively were examined.8

Each chosen vibration was coupled to all 38 other normal modes for DFT calculations. With ccCA,

only strongly coupled vibrational modes determined through the DFT calculations were included

in vibrational analysis. Coupling maps depicting strongly coupled vibrational modes are included

in the Appendix.

Calculated frequencies obtainedwith ccCApotentials yielded a lower deviation for experimental

NH2 torsion and OH wagging vibrational modes than frequencies obtained with DFT potentials.
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This is shown in Table 6.4. B3LYP/aVTZyields lower deviations than TPSS/aVTZ for both theNH2

torsion and OH wagging vibrational modes for both cis-3-aminophenol and trans-3-aminophenol.

For ccCA potentials the NH2 torsional mode was better characterized for cis-3-aminophenol with

an error of 5.5 cm−1 and the OHwagging motion was better characterized for trans-3-aminophenol

with an error of 1 cm−1. While the deviations obtained with ccCA potentials are lower than

10 cm−1 for trans-3-aminophenol, this approach can be utilized to spectroscopically differentiate

between aminophenol isomers that differ by the direction of the OH bond relative to the NH2

substituent.

Table 6.4: Vibrational frequencies predicted with VCIPSI-PT2 for selected vibrations of cis-3-
aminophenol and trans-3-aminophenol.

Exp B3LYP/aVTZ TPSS/aVTZ ccCA-S4

cis-3-aminophenol
NH2 torsion 318.5 322 345 313
OH wag 307 300 296 275

trans-3-aminophenol
NH2 torsion 329 333 351 322
OH wag 316 330 325 317

When using a multilevel approach for the aminophenol isomers, utilizing ccCA single mode

PECs and B3LYP/aVTZ mode-mode coupling potentials (ccCA:B3LYP) for all mode-mode

couplings between the NH2 torsion and all other vibrations as well as between the OH wagging

and all other vibrations (75 total mode-mode couplings) yielded lower deviations than if only

ccCA mode-mode coupling potentials were used for cis-3-aminophenol for the few strongly

coupled modes isolated. The deviations for both the NH2 torsion and OH wagging decreased by 2

cm−1. For trans-3-aminophenol, the use of this multilevel approach increased the deviation by 2

cm−1. This may be in part due to how the predicted frequencies using B3LYP/aVTZ potentials

were higher than those predicted with ccCA potentials.

The computed infrared (IR) spectra uses the frequencies generated via VCIPSI-PT2 for

potentials generated with ccCA and DFT. To show the efficacy of the VCIPSI-PT2 predictions, the
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generated spectra is compared to harmonic B3LYP/cc-pVTZ frequencies scaled by 1.0066 per the

study by Merrick et al.24 The intensities for all frequencies are based on the harmonic calculation.

For cis-3- and trans-3-aminophenol, the most intense peaks from harmonic intensities were near

600 cm−1, whereas the most intense experimental peaks were at 307 and 755 cm−1, respectively.

The computed spectra shows peaks in the 200-300 cm−1 range indicating torsional motion among

the C atoms in the ring. For the NH2 torsion and OH wagging motions for cis-3-aminophenol, the

VCIPSI-PT2 frequencies with ccCA potentials were more closely aligned to experiment than both

the scaled harmonic frequencies and VCIPSI-PT2 frequencies with potentials generated with

B3LYP/aVTZ. Even with intensities generated via the harmonic frequency calculation, the

frequencies obtained via the ccCA potentials with VCIPSI-PT2 yielded a more accurate

representation of the spectra than the scaled harmonic frequencies. This would suggest that the

computed IR spectra would be more representative of the experimental IR spectra with a full

description of the mode-mode couplings.
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Figure 6.4: Infrared spectra for cis-3-aminophenol (top) and trans-3-aminophenol (bottom) obtained
with VCIPSI-PT2 frequencies with ccCA potentials and B3LYP/cc-pVTZ harmonic frequencies
scaled by 1.0066. All intensities are from the harmonic frequency calculations. A Lorentz
broadening of 20 cm−1 was applied. The experimental frequencies and relative intensities from
Ref 8 are shown for comparison.
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6.4 Conclusions

Overall, with ccCA potentials, the mean absolute deviation for calculated frequency from

experiment was lower than with DFT potentials. Functional choice had a more significant effect

on the predicted frequency than basis set for potentials generated with DFT. For diatomics, TPSS

potentials tended to properly characterize molecules that exhibit covalent triple bonds and B3LYP

potentials tended to yield lower absolute errors in frequency from experiment for polar molecules.

This trend held with the small polyatomics and hydrocarbons. When considering timings, ccCA

yielded lower deviations than CCSD(T,full)/aug-cc-pCV5Z with up to 99% CPU time savings for

diatomic molecules.

For H2O, CO2, and NH3, the predicted frequencies between potentials generated with ccCA and

DFT yielded similar errors across all vibrations. DFT predicted the bending behaviors better than

ccCA whereas ccCA predicted the stretching behaviors better than DFT. The use of a curvilinear

coordinate system yielded lower errors relative to using a standard Cartesian coordinate system as

indicated by the deviations observed for H2O and CO2.

For hydrocarbons, DFT characterized the C-H stretching behavior better than ccCA as the

errors for DFT potentials were lower than for ccCA potentials for C-H stretching modes. Trends

observed for all molecules examined indicate that B3LYP/aVTZ is the more favorable DFT method

and basis set combination in terms of generating a PES for vibrational motion when coupled with

VCIPSI-PT2 to compute frequencies. A multilevel approach that utilizes the single mode PECs

with DFT and the coupled vibrational modes generated with ccCA yields lower frequencies than

if only DFT were utilized. This is useful for expanding to larger polyatomic systems and for when

one method generates PECs that yield lower deviations than another, as was the case with the

hydrocarbons.

For aminophenol, the errors obtained with VCIPSI-PT2 were lower than those for scaled

harmonics, indicating the success of utilizing this approach to characterize specific vibrations

for polyatomic systems. The FASTVCI approach of only utilizing strongly coupled vibrational

modes saves computational resources when generating potentials with electronic structure methods.
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B3LYP potentials serve as a good approximation for both the NH2 torsional mode and OHwagging

mode for both the cis-3-aminophenol and trans-3-aminophenol isomers. For cis-3-aminophenol,

the ccCA potentials yielded lower deviations for the NH2 torsion where the opposite is true for

trans-3-aminophenol.

Overall, ab initio composite strategies and in some cases DFT can be utilized for depicting

vibrational behavior of small polyatomic molecules present in the interstellar medium and can be

used in tandem with post-VSCF theory as a gauge for predicting anharmonic vibrations without the

harmonic frequencies with frequency scaling factors applied and perturbative corrections.
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Table 6.5: Calculated frequencies of diatomic and small polyatomic molecules in cm−1 obtained
with ccCA potentials.

ccCA-P ccCA-S3 ccCA-S4 ccCA-PS3 Exp40

Diatomics
H2 4156 4157 4157 4157 4162
LiH 1372 1370 1368 1371 1360
CO 2143 2144 2143 2144 2143
N2 2340 2341 2340 2340 2330
BF 1377 1377 1376 1377 3570
HF 3960 3961 3960 3960 2344
NH 3142 3144 3142 3143 1379
NO+ 2355 2356 2355 2355 3961
OH 3566 3567 3566 3566 3126
O2 1591 1593 1591 1592 1556
SiO 1220 1221 1220 1220 1242

Small Polyatomics

H2O
1616 1616 1616 1616 1595
3660 3661 3660 3660 3657
3758 3760 3758 3759 3756

CO2

707 708 707 708 667
676 676 675 676 667
1296 1297 1296 1297 1333
2292 2293 2292 2293 2349

NH3

939 939 940 939 950
1613 1613 1613 1613 1626
1606 1606 1606 1606 1626
3343 3343 3342 3343 3336
3455 3456 3455 3455 3443
3458 3459 3458 3459 3443
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Table 6.6: Calculated frequencies of diatomics in cm−1 obtained with TPSS/cc-pVnZ and
B3LYP/cc-pVnZ potentials.

VDZ VTZ VQZ V5Z V∞Z Exp40

TPSS/cc-pVnZ
H2 4193 4196 4196 4196 4191 4162
LiH 1333 1359 1357 1360 1366 1360
CO 2100 2111 2113 2112 2111 2143
N2 2343 2343 2338 2340 2342 2330
BF 1240 1331 1333 1333 1332 1379
HF 3774 3810 3813 3813 3812 3961
NH 3051 3085 3089 3091 3092 3126
NO+ 2344 2348 2349 2352 2352 2344
OH 3371 3451 3456 3459 3460 3570
O2 1509 1501 1509 1510 1510 1556
SiO 1151 1196 1203 1204 1200 1242

B3LYP/cc-pVnZ
H2 4148 4190 4187 4188 4189 4162
LiH 1347 1367 1365 1370 1538 1360
CO 2187 2176 2186 2188 2185 2143
N2 2427 2423 2421 2421 2423 2330
BF 1322 1386 1382 1380 1378 1379
HF 3848 3918 3915 3911 3905 3961
NH 3034 3108 3116 3122 3129 3126
NO+ 2463 2459 2452 2453 2453 2344
OH 3473 3545 3551 3554 3555 3570
O2 1610 1595 1603 1604 1603 1556
SiO 1194 1234 1247 1247 1240 1242
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Table 6.7: Calculated frequencies of selected diatomics in cm−1 with TPSS/aug-cc-pVnZ and
B3LYP/aug-cc-pVnZ potentials.

Molecule aVDZ aVTZ aVQZ aV5Z aV∞Z Exp40

TPSS/aug-cc-pVnZ
H2 4181 4195 4196 4196 4195 4162
LiH 1328 1361 1360 1359 1359 1360
CO 2086 2108 2111 2112 2112 2143
N2 2335 2341 2339 2340 2342 2330
BF 1240 1331 1333 1333 1332 1379
HF 3774 3810 3813 3813 3812 3961
NH 3051 3085 3088 3090 3092 3126
NO+ 2344 2348 2349 2352 2352 2344
OH 3424 3453 3458 3459 3460 3570
O2 1514 1510 1500 1511 1510 1556
SiO 1156 1203 1201 1205 1205 1242

B3LYP/aug-cc-pVnZ
H2 4137 4189 4188 4189 4190 4162
LiH 1342 1372 1374 1370 1226 1360
CO 2160 2181 2186 2187 2187 2143
N2 2416 2420 2421 2422 2423 2330
BF 1282 1375 1379 1380 1379 1379
HF 3880 3902 3907 3908 3961 3961
NH 3092 3118 3122 3123 3124 3126
NO+ 2444 2448 2452 2453 2453 2344
OH 3530 3545 3552 3554 3570 3570
O2 1612 1605 1594 1605 1604 1556
SiO 1197 1247 1243 1247 1242 1242

Table 6.8: Calculated vibrational frequencies for H2O and CO2 in cm−1 utilizing VCIPSI-PT2
with TPSS/cc-pVnZ potentials.

Molecule Mode VDZ VTZ VQZ V5Z V∞Z Exp41

H2O
1 1614 1615 1614 1614 1614 1595
2 3515 3540 3546 3547 3548 3657
3 3612 3630 3635 3637 3638 3756

CO2

1 634 641 643 642 642 667
2 634 641 643 642 642 667
3 1334 1348 1350 1350 1349 1333
4 2288 2302 2304 2303 2303 2349
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Table 6.9: Calculated vibrational frequencies for H2O and CO2 in cm−1 utilizing VCIPSI-PT2
with B3LYP/cc-pVnZ potentials.

Molecule Mode VDZ VTZ VQZ V5Z V∞Z Exp41

H2O
1 1643 1613 1605 1599 1599 1595
2 3576 3635 3641 3645 3645 3657
3 3670 3723 3730 3734 3734 3756

CO2

1 650 667 670 670 669 667
2 650 667 670 670 669 667
3 1381 1399 1401 1401 1399 1333
4 2368 2365 2357 2353 2351 2349

Table 6.10: Calculated vibrational frequencies for H2O and CO2 in cm−1 utilizing VCIPSI-PT2
with TPSS/aug-cc-pVnZ potentials.

Molecule Mode aVDZ aVTZ aVQZ aV5Z aV∞Z Exp41

H2O
1 1614 1615 1614 1614 1614 1595
2 3515 3540 3546 3547 3548 3657
3 3612 3630 3635 3637 3638 3756

CO2

1 591 628 636 636 636 667
2 591 628 636 636 636 667
3 1311 1319 1319 1318 1318 1333
4 2531 2466 2444 2439 2438 2349

Table 6.11: Calculated vibrational frequencies for H2O and CO2 in cm−1 utilizing VCIPSI-PT2
with B3LYP/aug-cc-pVnZ potentials.

Molecule Mode aVDZ aVTZ aVQZ aV5Z aV∞Z Exp41

H2O
1 1598 1599 1599 1599 1599 1595
2 3626 3635 3642 3644 3644 3657
3 3724 3725 3731 3733 3733 3756

CO2

1 660 669 670 669 669 667
2 660 669 670 669 669 667
3 1383 1398 1401 1400 1400 1333
4 2336 2349 2353 2353 2352 2349
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Figure 6.5: Single mode potential energy curves for vibrational modes 8 (left) and 10 (right) of
ethene (C=C and C-H symmetric stretches) generated with ccCA (black) and TPSS/VTZ (red).

Table 6.12: Calculated vibrational frequencies for NH3 in cm−1 utilizing VCIPSI-PT2 with both
TPSS and B3LYP potentials with the VTZ and aVTZ basis sets.

Mode B3LYP/VTZ B3LYP/aVTZ TPSS/VTZ TPSS/aVTZ Exp41
1 994 886 1039 960 950
2 1632 1576 1659 1598 1626
3 1653 1596 1668 1659 1626
4 3391 3327 3418 3230 3336
5 3474 3441 3619 3357 3443
6 3441 3450 3668 3373 3443
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Figure 6.6: Vibrational coupling map for ethene (left) and ethane (right). The vibrational mode
couplings shown in black indicate strongly coupled modes that were used for all FASTVCI
approaches using ccCA.

Measures to reduce the computational cost includes screening out weakly coupled pair-wise

coupling interactions via a threshold established from calculating the coupling strength (Equation

2.66), which can be calculated with only the VSCF potential.23,50 By removing non-essential

vibrational coupling elements from the potential, a FASTVSCF approach is attained. By utilizing

this approach, the computational time to generate all vibrational potential energy surfaces is reduced

by approximately a factor of 6 (12 out of 78 coupling modes were calculated with ccCA) for ethene

as only the potential energy surfaces for all of the shaded squared were generated with ccCA. For

ethene, modes 9-12 characterize the C-H stretching modes (both symmetric and asymmetric). In

general, symmetric and asymmetric vibrations are strongly coupled largely due to the effect each

type of vibration has on the other.

In contrast to ethene, which exhibited stronger coupling modes for the C-H stretches at

approximately 3000 cm−1, ethane only had one strong coupling mode in this region, which is the

coupling between C-H symmetric and C-H asymmetric stretches. Other modes that were strongly

coupled include the rotational barrier of ethane around the C-C bond (mode 1) and C-C stretching
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(mode 9). Including the coupling strength screened out 67 vibrational mode, leaving 11 shown in

black in Figure 6.6. This effectively reduced the computational cost of generating the full 2D

surface by approximately 93%.

Figure 6.7: Vibrational couplingmap for cis-3-aminophenol (left) and trans- 3-aminophenol (right).
The vibrational mode couplings shown in black indicate strongly coupled modes that were used for
all FASTVCI approaches using ccCA.

For cis-3-aminophenol, only theOHwagging (mode 3) andNH2 torsion (mode 5)were analyzed.

Therefore, all vibrations that coupled to these modes were included. In terms of coupling strength,

only 6 of the 78 mode-mode coupling potentials were analyzed with ccCA, again reducing the cost

by approximately 92%. For trans-3-aminophenol, only the OH wagging (mode 4) and NH2 torsion

(mode 5) were analyzed. Therefore, all vibrations that coupled to these modes were included. In

terms of coupling strength, only 12 of the 78 mode-mode coupling potentials were analyzed with

ccCA, reducing the cost of generating the full 2D surface by approximately 84%.
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CHAPTER 7

CHARGE STABILIZATION OF HIGH POTENTIAL ZINC
PORPHYRIN-FULLERENE VIA AXIAL LIGATION OF

TETRATHIAFULVALENE

7.1 Introduction

Sustainable production of electricity and fuel using abundant solar photons is one of the most

highly researched topics in modern science.1–12 Often, the design of light energy harvesting

materials follows the concepts developed by Mother Nature in bacterial and green plant

photosynthetic systems.13–15 The primary photochemical events in natural photosynthesis

involves capture capturing and funneling of sun light by a group of well-organized chromophores

called ‘antenna’ systems and promoting electron transfer using the funneled light into the

‘reaction center’ where a cascade of electron transfer events occurs leading to the generation of

long-lived charge separated states. Over the last two to three decades, early photo-events of

natural photosynthesis have been mimicked by building donor-acceptor systems to visualize

energy and electron transfer or a combination of these two events.16–45 One strategy used in

building donor-acceptor systems that are capable of producing high-energy charge separated states

include choosing donors that are difficult to oxidize and acceptors that are difficult to reduce.

Under these conditions, the stored energy in the charge separated state is equivalent to the

potential difference between the oxidation and reduction potentials of the donor and acceptor,

respectively. However, challenges exist to accomplish this goal where the excited state energy

from either the donor or the acceptor may not be sufficient to drive the electron transfer process in

an energetically feasible fashion.1

Collaborators have synthesized a donor-acceptor dyad, (F15P)Zn–C60, capable of generating

1This chapter is reprinted from Obondi, C. O.; Lim, G. N.; Jang, Y.; Patel, P.; Wilson, A. K.;
Poddutoori, P. K.; D’Souza, F. J.Phys. Chem. C 2018, 122, 13636–13647 with permission of the
American Chemical Society.
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charge separated state carrying an energy of 1.70 eV (see Figure 7.1 for structure of the dyad).46

In that study, the electron donor zinc porphyrin was functionalized with meso-pentafluorophenyl

substituents that made the zinc porphyrin difficult to oxidize by 0.43 eV compared to simple

zinc porphyrins. The singlet excited energy of 1(F15P)Zn · (= 2.21 eV) was sufficient to drive

the electron transfer process. The lifetime of the charge separated state was persistent for about

50-60 ns. In this chapter, to prolong the lifetime of the charge separated state, collaborators

developed supramolecular triads using a hole transporting tetrathiafulvalene, TTF, linked via the

well-known metal-ligand axial coordination approach.47 Here, the TTF was functionalized with

either pyridine or phenylpyridine coordinating ligands. Supramolecular triad formation including

binding constants and stoichiometry of the complexes were determined by spectroscopic methods.

7.2 Computational Contributions and Analysis

Computational support provided by the author supplemented the synthesis of these

supramolecular dyad ((F15P)Zn–C60) and triads (C60 – (F15P)Zn:Py-TTF and

C60 – (F15P)Zn:Py-phTTF) via modeling the molecular electrostatic potential and frontier

orbitals. The M06-2X/6-31G* method and basis set combination was based on qualitative

modeling indicative of intramolecular charge transfer via the relative location of the HOMO and

LUMO.48–50 M06-2X was chosen based on its implementation for main group and transition

metal thermochemistry.48 The Pople-style 6-31G* basis set was used based on its small size and

availability for all atoms present in this compound.49,50 The molecular electrostatic potential

(MEP) for all of complexes were modeled on a scale of strong attractive potential (red) to a strong

repulsive potential (blue) with respect to a positive test charge. This provides insight into the

potential binding behavior of these systems.

The geometry and electronic structures of the (F15P)Zn–C60 dyad, and C60 – (F15P)Zn:Py-TTF

and C60 – (F15P)Zn:Py-phTTF triads were probed using the hybrid-metal Minnesota functional

M06-2X with 54% exact exchange and the 6-31G* basis set using Gaussian09.48–51 Figure 7.1

depicts molecular electrostatic potential (MEP) maps and frontier HOMO and LUMO for the
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optimized structures. In the case of the dyads, the frontier HOMOwas on the (F15P)Zn and LUMO

on the C60 making them the donor and acceptor sites, respectively. Interestingly, for the triad, the

HOMO was shifted to the TTF site without altering the location of the LUMO, which is attributed

to the easier oxidation of TTF over (F15P)Zn. HOMO-1 occupied the (F15P)Zn for the triads. It

may be pointed out here that the density of the dyad was not affected by the addition of TTF ligand

except at the porphyrin center where the potential was neutral, which indicates that the central

metal is fully coordinated and not likely to bind an additional ligand. The estimated center-to-

center distances between Zn and C60 in the dyad and triads were ~17.5 Å while these distances

between Zn and TTF were ~18.0 and ~17.7 Å, respectively, in the case of C60 – (F15P)Zn:Py-TTF

and C60– (F15P)Zn:Py-phTTF triads.

Figure 7.1: MO6-2X/6-31G* molecular electrostatic potential maps, and the frontier HOMO and
LUMO of the optimized structures of (a) (F15P)Zn-C60 dyad and (b) C60-(F15P)Zn:Py-phTTF
triad. The isovalue used for the MO depictions was 0.02 while the density value used was 0.0004.
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CHAPTER 8

SAMPL6 HOST-GUEST CHALLENGE: BINDING FREE ENERGIES VIA A
MULTISTEP APPROACH

8.1 Introduction

Tremendous advances in technological capabilities have enabled computational approaches to

be applied to discern a broad range of physical, chemical, and biological phenomena across scales in

molecular science.1–6 With emphasis on molecular design, computational approaches have found

great utility towards innovation in drug discovery. Considering the time and cost of the drug

pipeline, from the discovery process to market, in silico biophysical methods serve an important

role in expediting and reducing the cost of the discovery process, facilitating the identification,

optimization, and refinement of potential drug candidates and providing comprehensive insight

into the mechanism of action and structure-property relationships at the atomic level that are

ultimately critical to a drug’s efficacy.17–12

In computational strategies towards structure-based design, an important step is the prediction

of probable conformations of a ligand bound to the host. To identify better possible candidate

binding modes, they can be ranked via scoring functions and further evaluated via molecular

simulation and free energy calculations. From free energy calculations, selectivity profiles may be

constructed not only to determine binding affinities but also to provide understanding into how the

ligand recognizes its host.

Because of the complexity that occurs in ligand-bound protein systems, relatively smaller

representative models such as polymer-based host-guest systems are used to assess free energy

methods.13–18 Although host structures selected to represent proteins are typically much smaller

1This chapter is reprinted from Eken, Y.; Patel, P.; Díaz, T.; Jones, M. R.; Wilson, A. K.
SAMPL6 Host – Guest Challenge : Binding Free Energies via a Multistep Approach. J. Comput.
Aided. Mol. Des. 2018, 32 (10), 1097–1115. with permission of the Springer International
Publishing.
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than proteins, they are large enough to possess a cavity or binding pocket that allows non-covalent

binding of multiple guest molecules. The advantage of using host-guest systems for assessing free

energy methods is that they tend to be more rigid and symmetric than proteins, which results in

fewer conformations that need to be sampled.19–23 Even in the representation of proteins by more

simplistic models, modeling binding free energies for these smaller models is challenging since no

clear "best" computational chemistry approach has been identified; efforts are needed to better

resolve strategies towards predictions of binding free energies. Statistical Assessment of the

Modeling of Proteins and Ligands (SAMPL) blind challenges provide a unique platform to

validate available methods and stimulate the development of new methods for quantitative

predictions.13,16,18,24–26 In these challenges, binding affinities and other physicochemical

properties are predicted, using computational models without the benefit of insight from

experiment; they are then later compared to unpublished experimental measurements that allow

the comparison of different computational prediction methods.

While classical molecular dynamics (MD) methods are commonly used to investigate

host-guest interactions, molecular mechanics (MM) force fields result in a limited treatment of

effects resulting from polarization, charge transfer, and many body effects which can impact the

description of properties such as binding free energies.9,27–31 To better account for these effects,

quantum mechanical (QM) approaches, which are more costly, are commonly used in drug

discovery research,9,32 and have been used in previous SAMPL competitions.17,33–35 For

example, in the SAMPL5 competition for host-guest binding, Caldarau et al.33 used DFT-D3 and

DLPNO-CCSD(T) to predict the binding energies for octa-acid (OA) host-guest systems. In this

approach, they used TPSS-D3/def2-SVP optimized structures and host structures are constrained

during MD simulations to reduce the flexibility of the host and limit the structural distortions

resulting from the repulsion between the negative charge of the ligands and the large negative

charge of the OA hosts. This approach yielded binding energies approximately 12.0 kcal

mol−1 greater than the experimental binding affinities, with a low correlation coefficient (r2 ≈ 0),

and a statistically insignificant Kendall’s rank correlation coefficient (τ ≤ 0.20) for all attempts for
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the host-guest systems in the SAMPL5 blind challenge due to incorrect representative structures,

not sampling enough conformational binding positions for ligands, and thermochemical

corrections that yielded up to a 7.2 kcal mol−1 difference depending on the method of choice.

This performance demonstrates the limited sampling capabilities of current QM methods

compared to MD methods, obtained representative structures, as well as thermodynamic and

solvation corrections.

Contrary to this, in the SAMPL4 competition for host-guest binding, Mikulskis et al.35 were

successful with both MM- and QM-based approaches for OA hosts with mean absolute deviations

(MADs) less than 2.0kcal mol−1. Their MM approach, which utilized free energy perturbation

(FEP) calculations, yielded MADs of approximately 1.0 kcal mol−1 while their QM approaches

with DFT-D3 optimized structures yielded MADs of approximately 1.0-2.0 kcal mol−1 depending

on the implementation of a solvent in the calculations, i.e. no solvent, implicit solvent, or a

combined implicit-explicit solvent. However, the combination of FEP and DFT-D3 did not yield

favorable results due to the large difference between the MM and DFT potential energy functions.

Sure et al.34 provided another successful attempt at using DFT-D3 for the SAMPL4 competition

for host-guest binding of a macrocyclic cucurbit[7]uril host by optimizing the geometry at the

TPSS-D3/def2-TZVP level of theory after pre-optimizing possible binding scenarios with the

HF-3c semiempirical method. These optimizations were followed by single point calculations

using PW6B95-D3/def2-QZVP with the g- and f -functions for non-hydrogen and hydrogen atoms

removed, respectively, with the COSMO-RS implicit solvent model, which yielded aMAD of 2.0±

0.5kcal mol−1. These two studies highlight that for the SAMPL4 competition, host-guest structure

optimization and higher-level MM-based approaches like FEP can be vital in characterizing correct

binding interactions at the QM level.

In this work, efforts in MD and QM methods are combined to predict binding affinities for

fourteen ligands to a macrocyclic cucurbit[8]uril host19,21,22,36 and eight ligands to two variants of

the OA deep-cavity cavitands.20,23 UsingMD simulations to obtain representative structures, MM-

and QM-based methods are utilized to predict binding free energies. Within the QM methods, the
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use of a resolution-of-the-identity (RI) approximation designed for larger molecules,37 Grimme’s

D3 atom-pairwise dispersion correctionswith Becke-Johnson damping,38 and truncated correlation

consistent basis sets for the hydrogen atoms39 are evaluated to probe how different electronic

structure approaches that reduce the computational cost contribute to predicting binding affinities.

Insights into what strategies aremore favorable for host guest-bindingwill help to build a framework

for predicting host-guest binding affinities using QM approaches.

8.2 Methods

8.2.1 System Preparation and Simulation Protocol

The initial structures for the guest molecules are shown in Figures 8.1 and 8.2, and the three

host molecules, cucurbit[8]uril (CB8), octa-acid (OA), and tetramethyl octa-acid (TEMOA), are

shown in Figure 8.3. These molecules were issued with the SAMPL6 challenge dataset were used

to generate the host-guest systems. The CB8 molecule has no formal charge whereas the octa-acids

(OA/TEMOA) have eight deprotonated carboxylic acid groups and thus a formal charge of -8. Even

though OA and TEMOA are water-soluble structurally similar deep-cavity cavitands, the TEMOA

host has four methyl groups in place of four hydrogen atoms present in the OA host located on the

upper rim of the cavitand that enclose the hydrophobic binding pocket.

Initial binding poses of guest molecules binding to the host were generated and refined through

a ∆G scoring function.40–45 Subsequent molecular dynamics simulations were then carried out

in Amber16.7 to relax the host-guest systems in aqueous solution.46 An MM-based approach

(MMPBSA) was used to calculate the binding free energies at the MM-level, which is a standard

level of theory when dealing with drug binding interactions.47 This portion was done by co-authors

Yiğitcan Eken, Thomas Díaz, and Michael Jones.
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Figure 8.1: Guest molecules for the cucurbit[8]uril (CB8) host.
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Figure 8.2: Guest molecules for the octa-acid (OA) and tetramethyl octa-acid (TEMOA) hosts.

Figure 8.3: Host molecules: cucurbit[8]uril (CB8), octa-acid (OA), and tetramethyl octa-acid
(TEMOA).
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8.2.2 Quantum Mechanical Calculations

All quantum mechanical calculations were done by the author. The individual structures

generated from the clustering of MD trajectories, shown in Figures 8.4-8.6, for each host-guest

complex were used for all quantum chemical calculations. The host and guest molecules were

analyzed with the same geometry as from the complex. The thermal corrections for all molecules

were calculated at the HF/6-31G(d) level of theory in Gaussian 16 and the vibrational contributions

were scaled by 0.8953.48 Single point energies were obtained using ORCA 4.049 with the B3PW91

density functional50–52 since B3PW91 has been shown to properly treat long-range covalent

interactions. In the treatment of the exact exchange in the functional, theRIJCOSXapproximation37

was used with the def2 auxiliary basis set53 to reduce the computational cost associated with the

number of atoms in the host-guest complex since the RIJCOSX approximation has been shown to be

five times as efficient for molecules of similar size to the host-guest systems. To mimic the aqueous

solution, the SMD implicit solvation model54 was used with water (ε = 78.4) as the implicit solvent.

Grimme’sD3dispersion correctionwithBecke-Johnson dampingwas used to investigate long-range

covalent interactions as the inclusion of D3 dispersion improves intermolecular interaction energies

predicted with DFT.34,38,55,56

The cc-pVnZ57 basis sets were used for all single point calculations (see Section 2.2.2 for

reasons).58–61 Knowing the CBS limit, which removes basis set incompleteness error, the error

for the property of interest, i.e. binding free energy, only corresponds to the intrinsic error of the

chosen QMmethod. Therefore, to extrapolate to the Kohn-Sham limit for DFTmethods, analogous

to the CBS limit for wavefunction-based methods, the cc-pVnZ basis sets were used (n = D, T )

with the following extrapolation scheme proposed by Jensen

E(lmax) = ECBS + A(lmax + 1)e−B
√
ns (8.1)

where lmax is the maximum angular momentum function in the basis set and ns is the number

of s functions in the basis set.62 The B-parameter was set to 5.5 in agreement with Jensen for

use as a two-point extrapolation scheme. Due to the abundance of weak molecular interactions in
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biomolecules, the calculated binding energieswere counterpoise-corrected before the extrapolations

were performed on each host, guest, and host-guest complex.63,64

Additional electronic structure modeling techniques were applied to the CB8 host-guest systems

to examine the impact of approximations on the binding free energy. Targeting reduction in

computational time, the cc-pVnZ basis sets were truncated via the removal of higher angular

momentum basis functions for hydrogen atoms. This has been shown to reduce the computational

time by approximately 42.9% and 57.8% when removing 1 d function from the cc-pVTZ basis

set, denoted as cc-pVTZ(-1d), and 2 d functions and 1 f function from the cc-pVQZ basis set,

denoted as cc-pVQZ(-1f2d), respectively, and yielded the results closest to the atomization energies

generated with the full basis sets at the complete basis set limit.39

Binding free energies calculated with and without the use of the resolution-of-the-identity (RI)

approximation were examined to gauge how the RI approximation, which leads to a reduction in

CPU time, affects the accuracy. To characterize the ionic strength of the solution used in experiment,

the dielectric constant for the implicit water solvent was also altered from 78.4 for pure water to

76.4 given the concentration of the sodium chloride solution used in the MD simulations and the

experimentally determined relation between the concentration of an ionic solution and the dielectric

constant.65

8.3 Results

The binding free energies submitted as part of the SAMPL6 competition are shown in Tables

8.1-8.3 for CB8, OA, and TEMOA host-guest systems, respectively. For each host-guest complex,

statistical measurements were used to gauge the effectiveness of each of the three methods, which

areMMPBSA, RI-B3PW91-D3, andRI-B3PW91, in predicting experimental binding free energies.

These include the mean absolute error (MAE), the root mean square error (RMSE), Kendall’s Tau

(τ ) rank correlation coefficient, which measures how well a method ranked calculated binding free

energies relative to experimental binding free energies where τ values closer to one correspond to

increased qualitative accuracy of the prediction, and the correlation coefficient (r2). To demonstrate
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there is no correlation in ranking between the calculated binding free energies and the experimental

binding free energies, τ values are compared against τcrit, a cutoff value obtained through a table

of critical values generated by Monte Carlo simulations of a τ distribution, which is similar to the

normal Z distribution used to reject the null hypothesis.66,67

8.3.1 CB8

The binding free energy predictions for the CB8 host with the three methods submitted were

compared to experiment (Table 8.1). The predicted values were significantly more negative than

experimental binding free energies with an MAE of 16.69, 33.58, and 15.54 kcal mol−1 for

MMPBSA, RI-B3PW91-D3, and RI-B3PW91, respectively.

When the binding affinities of the guests to CB8 are ranked from the lowest to the highest

binding affinity, MMPBSA did not correctly rank any of the systems but predicted CB8-G12 to

have a stronger binding affinity relative to the other complexes, which correlates to experiment

well. RI-B3PW91-D3 correctly ranked CB8-G2 as the tenth strongest bound host-guest complex

and predicted that CB8-G12 was more tightly bound relative to the other CB8 host-guest systems.

RI-B3PW91 correctly ranked CB8-G6, CB8-G2, CB8-G1, and CB8-G3 as fifth, tenth, eleventh,

and fourteenth, respectively, while the remaining systems were ranked incorrectly. Unlike both

MMPBSA and RI-B3PW91-D3, RI-B3PW91 predicted CB8-G12 to have a lower binding affinity

relative to the other CB8 host-guest systems.
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Table 8.1: Binding free energies for the CB8 host-guest complexes.

Complex Exp MMPBSA RI-B3PW91-D3 RI-B3PW91
CB8-G0 -6.69 ± 0.05 -29.4 ± 0.3 -49.89 6.75
CB8-G1 -7.65 ± 0.04 -31.5 ± 0.3 -57.22 12.70
CB8-G2 -7.66 ± 0.05 -25.6 ± 0.3 -36.86 10.34
CB8-G3 -6.45 ± 0.06 -34.2 ± 0.5 -44.53 26.61
CB8-G4 -7.80 ± 0.04 -30.8 ± 0.3 -68.09 -11.11
CB8-G5 -8.18 ± 0.05 -18.6 ± 0.3 -35.92 2.39
CB8-G6 -8.34 ± 0.05 -19.8 ± 0.2 -31.95 1.26
CB8-G7 -10.00 ± 0.10 -17.6 ± 0.4 -14.90 18.09
CB8-G8 -13.50 ± 0.04 -30.4 ± 0.2 -50.34 4.49
CB8-G9 -8.68 ± 0.08 -19.9 ± 0.5 -37.07 -2.46
CB8-G10 -8.22 ± 0.07 -19.6 ± 0.3 -39.30 0.61
CB8-G11 -7.77 ± 0.05 -17.5 ± 0.4 -25.75 -1.07
CB8-G12 -9.86 ± 0.03 -31.5 ± 0.4 -62.05 15.00
CB8-G13 -7.11 ± 0.03 -25.4 ± 0.3 -44.04 0.17

MAE 16.69 ± 0.33a 34.29 14.88
RMSE 17.80 ± 0.76b 36.99 17.26
τ -0.19 -0.14 0.05
r2 0.00 0.00 0.00

The mean absolute error (MAE), root mean square error (RMSE), Kendall’s Tau (τ ), and r2 are shown. These results correspond
to those submitted for the competition.
aThe uncertainty reported for MAE is the average of the absolute uncertainties.
bThe uncertainty reported for RMSE is the uncertainty of the RMSE with the experimental and calculated uncertainties.
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Figure 8.4: Structures of the CB8 guest molecules inside the binding pocket generated from the
clustering analysis.
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8.3.2 OA

Table 8.2: Binding free energies for the OA host-guest complexes.

Complex Exp MMPBSA RI-B3PW91-D3 RI-B3PW91
OA-G0 -5.68 ± 0.03 -12.6 ± 0.2 -41.36 -16.57
OA-G1 -4.65 ± 0.02 -11.6 ± 0.1 -40.67 -17.15
OA-G2 -8.38 ± 0.02 -18.3 ± 0.2 6.54 44.53
OA-G3 -5.18 ± 0.02 -10.0 ± 0.2 -47.94 -17.62
OA-G4 -7.11 ± 0.02 -17.0 ± 0.2 -48.19 -13.49
OA-G5 -4.59 ± 0.02 -9.1 ± 0.2 -38.40 -16.42
OA-G6 -4.97 ± 0.02 -11.3 ± 0.2 -43.19 -23.31
OA-G7 -6.22 ± 0.02 -11.4 ± 0.1 -47.37 -23.78

MAE 6.80 ± 0.2a 35.46 [38.49] 17.86 [12.85]
RMSE 7.07 ± 0.4b 36.41 [38.52] 22.51 [13.39]
τ 0.64 0.29 [0.71] -0.21 [0.05]
r2 0.84 0.44 [0.52] 0.60 [0.03]

The mean absolute error (MAE), root mean square error (RMSE), Kendall’s Tau (τ ), and r2 are shown. Bracketed values indicate
the values after the removal of the statistical outlier (OA-G2). These results correspond to those submitted for the competition.
aThe uncertainty reported for MAE is the average of the absolute uncertainties.
bThe uncertainty reported for RMSE is the uncertainty of the RMSE with the experimental and calculated uncertainties.

The three sets of submitted binding free energy predictions for OA are reported in Table 8.2. All

values predicted usingMMPBSAwere significantlymore negative than experimentalmeasurements

with an MAE of 6.8 ± 0.2kcal mol−1. When ranking the binding affinities of the guest to the

host from lowest to highest binding affinity, MMPBSA correctly placed OA-G2, OA-G4, OA-G6,

OA-G5 as first, second, sixth, and eighth, respectively. The other systems were not ranked correctly;

OA-G0, OA-G1, OA-G7 and OA-G3 ranked third, fourth, fifth, and seventh, respectively, whereas

experimentally ranked fourth, seventh, third, and fifth, respectively.

For RI-B3PW91-D3 and RI-B3PW91, the binding free energy predicted for OA-G2 was

determined as a statistical outlier with 99% confidence, visualized in Figure 8.8, using Dixon’s

Q-Test.68 When the statistical outlier (OA-G2) was excluded from the RI-B3PW91-D3 set, the

MAE, RMSE, Kendall’s Tau (τ ), and the correlation coefficient (r2) increased from 35.46 to

38.39kcal mol−1, 36.41 to 38.52kcal mol−1, 0.29 to 0.71, and 0.44 to 0.52, respectively. When

the binding free energy for OA-G2 was excluded from the set of binding free energies obtained
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with RI-B3PW91, the MAE, RMSE, and r2 decreased from 17.87 to 12.85kcal mol−1, 22.51 to

13.39kcal mol−1, and 0.60 to 0.03, respectively, as shown in Table 8.2. In Figure 8.7b, the

statistical outlier was removed, which improved and worsened the linear regression model

comparing experiment to RI-B3PW91-D3 and RI-B3PW91, respectively. With the exclusion of

OA-G2, ranking the binding affinities from lowest to highest, RI-B3PW91-D3 correctly ranked

OA-G4, OA-G1, and OA-G5, as first, sixth, and seventh, respectively, while RI-B3PW91 did not

correctly ranked any of the systems.

Figure 8.5: Structures of the OA guest molecules inside the binding pocket generated from the
clustering analysis.
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8.3.3 TEMOA

Table 8.3: Binding free energies for the TEMOA host-guest complexes.

Complex Exp MMPBSA RI-B3PW91-D3 RI-B3PW91
TEMOA-G0 -6.06 ± 0.02 -12.0 ± 0.2 -43.75 -12.80
TEMOA-G1 -5.97 ± 0.04 -11.3 ± 0.2 -41.98 -10.18
TEMOA-G2 -6.81 ± 0.02 -19.3 ± 0.2 -51.23 -7.22
TEMOA-G3 -5.60 ± 0.04 -8.3 ± 0.2 -43.56 -15.29
TEMOA-G4 -7.79 ± 0.02 -19.2 ± 0.3 -51.98 -12.39
TEMOA-G5 -4.16 ± 0.02 -6.1 ± 0.2 -37.04 -10.66
TEMOA-G6 -5.40 ± 0.03 -10.4 ± 0.2 -41.05 -16.94
TEMOA-G7 -4.13 ± 0.02 -6.8 ± 0.3 -45.98 -10.29

MAE 5.9 ± 0.2a 38.83 6.23
RMSE 7.0 ± 0.5b 39.03 7.00
τ 0.79 0.57 -0.14
r2 0.86 0.55 0.00

The mean absolute error (MAE), root mean square error (RMSE), Kendall’s Tau (τ ), and r2 are shown. These results correspond
to those submitted for the competition.
aThe uncertainty reported for MAE is the average of the absolute uncertainties.
bThe uncertainty reported for RMSE is the uncertainty of the RMSE with the experimental and calculated uncertainties.

TEMOA is structurally different from OA because of the substitution of four hydrogens around

the portal to the binding pocket of OA with four methyl groups. While the same guests bound to

TEMOA and OA with similar binding energies, G7 weakly binds to TEMOA relative to the other

guests whereas it binds stronger to OA experimentally. Binding free energy predictions using the

submitted methods for the TEMOA host are reported in Table 8.3. Similar to OA, all three methods

overestimated the binding free energies relative to experiment. RI-B3PW91-D3 overestimated the

binding free energies with an MAE of 38.83kcal mol−1. Of the three methods considered, the

MMPBSA method yielded better binding free energies, both quantitatively (MAE of 5.9± 0.2kcal

mol−1) and qualitatively (τ = 0.79), than the QM-based calculations. MMPBSA ranked TEMOA-

G0 and TEMOA-G1 as the third and fourth strongest bound complexes, respectively. Additionally,

MMPBSA predicted that TEMOA-G4 and TEMOA-G2 were the most tightly bound complexes

while TEMOA-G7 and TEMOA-G5 were the most loosely bound complexes. RI-B3PW91-D3

correctly predicted that TEMOA-G4, TEMOA-G2, and TEMOA-G3 were the first, second, and
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fifth most tightly bound complexes, respectively. Like MMPBSA, RI-B3PW91-D3 predicted that

TEMOA-G5 was a weakly bound host-guest complex relative to the other TEMOA host-guest

systems. RI-B3PW91 correctly predicted TEMOA-G0 as the third strongest bound host-guest

complex and yielded the lowest deviation from experiment (0.41kcal mol−1) for TEMOA-G2.

Figure 8.6: Structures of the TEMOA guest molecules inside the binding pocket generated from
the clustering analysis.

8.3.4 Quantum Mechanical Calculations

The CB8 host-guest systems were used to probe approaches for improving the binding free

energy prediction. Specifically, the effects of 1) utilizing truncated correlation consistent basis sets

as opposed to standard correlation consistent basis sets; 2) utilizing traditional DFT calculations
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(neglecting the RI approximation); and 3) modifying the dielectric constant used in the continuum

solvation model to reflect the ionic strength of the solution used in experiment were examined.

As shown in Tables 8.1-8.3, for CB8, OA without the statistical outlier (OA-G2), and TEMOA,

the MAE, and RMSE increased by approximately 19.4, 25.5, and 32.6 kcal mol−1 when using

Grimme’s D3 dispersion with RI-B3PW91, respectively, away from experiment. However, when

using Grimme’s D3 dispersion, the τ value decreases from 0.05 to -0.14 for CB8 but increases

from -0.05 to 0.71 when the statistical outlier is removed for OA and increases from -0.14 to 0.57

for TEMOA. This shows the importance of using a dispersion correction for qualitative ranking of

binding affinities.

The binding free energies as a result of utilizing truncated basis sets individually and

extrapolated to the Kohn-Sham limit with a two-point extrapolation using cc-pVDZ and cc-pVTZ

(cc-pV∞Z[D,T]) and a three-point extrapolation to the using cc-pVDZ and truncated triple and

quadruple correlation consistent basis sets, cc-pVTZ(-1d) and cc-pVQZ(-1f2d), denoted as

cc(0,-1,-2), are reported in Tables 8.4 and 8.5, respectively.
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Table 8.4: Binding free energies for the CB8 complexes in kcal mol−1 with schemes involving not using the RI approximation, and
changing the dielectric constant of the implicit solvent with the truncated correlation consistent basis sets for hydrogen.

B3PW91-D3 (SMD, ε=78.4) RI-B3PW91-D3 (SMD, ε=78.4) RI-B3PW91-D3 (SMD, ε=76.4)

Complex Exp TZ TZ QZ TZ TZ QZ TZ TZ QZ
(-1d) (-1f2d) (-1d) (-1f2d) (-1d) (-1f2d)

CB8-G0 -6.69 ± 0.05 -49.85 -49.91 -49.27 -49.84 -49.89 -49.25 -49.84 -49.82 -36.26
CB8-G1 -7.65 ± 0.04 -54.54 -57.22 -56.61 -57.21 -57.22 -56.61 -57.21 -57.24 -56.62
CB8-G2 -7.66 ± 0.05 -37.32 -36.86 -36.39 -36.82 -36.86 -36.39 -36.82 -36.87 -36.40
CB8-G3 -6.45 ± 0.06 -45.01 -44.54 -44.38 -44.51 -44.53 -44.38 -44.51 -44.55 -44.40
CB8-G4 -7.80 ± 0.04 -69.19 -68.10 -67.50 -68.07 -68.09 -67.49 -68.07 -68.12 -67.52
CB8-G5 -8.18 ± 0.05 -36.17 -16.10 -35.53 -35.89 -35.92 -35.52 -35.89 -35.95 -35.54
CB8-G6 -8.34 ± 0.05 -31.95 -31.96 -31.63 -31.93 -31.95 -31.62 -31.95 -31.97 -31.64
CB8-G7 -10.00 ± 0.10 -14.92 -14.95 -12.89 -14.88 -14.90 -12.89 -14.91 -14.92 -12.91
CB8-G8 -13.50 ± 0.04 -50.61 -27.26 -49.89 -50.30 -50.34 -49.90 -50.30 -50.36 -49.92
CB8-G9 -8.68 ± 0.08 -37.31 -19.22 -36.73 -37.05 -37.07 -36.71 -37.05 -37.09 -36.74
CB8-G10 -8.22 ± 0.07 -42.27 -15.29 -38.92 -39.28 -39.30 -38.90 -39.28 -39.32 -38.91
CB8-G11 -7.77 ± 0.05 -28.63 -10.21 -25.37 -25.74 -25.75 -25.36 -25.74 -25.80 -25.41
CB8-G12 -9.86 ± 0.03 -62.53 -62.08 -61.43 -61.99 -62.05 -61.40 -61.99 -62.07 -61.41
CB8-G13 -7.11 ± 0.03 -52.30 -51.72 -50.03 -51.73 -44.04 -50.00 -51.74 -51.75 -50.04

MAE 35.33 27.68 34.19 34.81 34.29 34.18 34.81 34.85 33.27
RMSE 37.96 33.79 37.03 37.56 36.99 37.02 37.56 37.6 36.13
τ -0.14 -0.21 -0.12 -0.12 -0.14 -0.12 -0.12 -0.12 -0.08
r2 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The mean absolute error (MAE), root mean square error (RMSE), Kendall’s Tau (τ ), and r2 are shown.
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Table 8.5: Binding free energies for the CB8 complexes in kcal mol−1 with schemes involving not using the RI approximation, changing
the dielectric constant of the implicit solvent, and two options for basis set choice when extrapolating to the Kohn-Sham limit.

B3PW91-D3 (SMD, ε=78.4) RI-B3PW91-D3 (SMD, ε=78.4) RI-B3PW91-D3 (SMD, ε=76.4)
Complex Exp cc-pV∞Z [D, T] cc(0,-1,-2) cc-pV∞Z [D, T] cc(0,-1,-2) cc-pV∞Z [D, T] cc(0,-1,-2)
CB8-G0 -6.69 ± 0.05 -49.91 -47.62 -49.89 -47.58 -49.82 -16.15
CB8-G1 -7.65 ± 0.04 -57.22 -60.08 -57.22 -55.85 -57.24 -55.88
CB8-G2 -7.66 ± 0.05 -36.86 -35.25 -36.86 -36.00 -36.87 -36.04
CB8-G3 -6.45 ± 0.06 -44.54 -43.50 -44.53 -44.20 -44.55 -44.26
CB8-G4 -7.80 ± 0.04 -68.10 -64.83 -68.09 -66.23 -68.12 -66.27
CB8-G5 -8.18 ± 0.05 -16.10 -34.89 -35.92 -35.28 -35.95 -35.32
CB8-G6 -8.34 ± 0.05 -31.96 -31.33 -31.95 -31.32 -31.96 -31.34
CB8-G7 -10.00 ± 0.10 -14.95 -11.27 -14.90 -11.30 -14.92 -11.31
CB8-G8 -13.50 ± 0.04 -27.26 -24.47 -50.34 -49.31 -50.36 -49.38
CB8-G9 -8.68 ± 0.08 -19.22 -36.14 -37.07 -36.50 -37.09 -36.58
CB8-
G10

-8.22 ± 0.07 -15.29 -33.97 -39.3 -38.63 -39.32 -38.67

CB8-
G11

-7.77 ± 0.05 -10.21 -20.40 -25.75 -24.88 -25.80 -25.02

CB8-
G12

-9.86 ± 0.03 -62.08 -60.01 -62.05 -60.67 -62.07 -60.70

CB8-
G13

-7.11 ± 0.03 -51.72 -47.18 -44.04 -37.82 -51.75 -40.12

MAE 27.68 30.93 34.29 32.69 34.85 30.65
RMSE 33.79 34.71 36.99 35.56 37.6 34.12
τ -0.21 -0.34 -0.14 -0.12 -0.12 -0.01
r2 0.07 0.15 0.00 0.00 0.00 0.02

These options are cc-pV∞Z [D, T], which use cc-pVDZ and cc-pVTZ to extrapolate to the Kohn-Sham limit, and cc(0,-1,-2), which uses cc-pVDZ, cc-pVTZ(-1d), and cc-pVQZ(-
1f2d) to extrapolate to the Kohn-Sham limit. The binding energies obtained with RI-B3PW91-D3 (SMD, ε=78.4)/cc-pV∞Z [D, T] were submitted. The mean absolute error (MAE),
root mean square error (RMSE), Kendall’s Tau (τ ), and r2 are shown.
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For the CB8 complexes in Table 8.4, using standard DFT (B3PW91-D3) yielded a MAE of

35.33 kcal mol−1 and 34.19 kcal mol−1 with cc-pVTZ(-1d) and cc-pVQZ(-1f2d), respectively,

while RI-DFT (RI-B3PW91-D3) yielded a MAE of 34.81 and 34.18 kcal mol−1 for cc-pVTZ(-1d)

and cc-pVQZ(-1f2d), respectively. When changing ε from 78.4 for pure water to 76.4 to account

for the ionic strength of the solution (RI-B3PW91-D3 (ε=76.4)), all metrics (MAE, RMSE, τ , and

r2) used to gauge the method’s predictive qualities for the binding free energies did not significantly

change with respect to the binding free energies predicted in pure water (RI-B3PW91-D3 (ε=78.4)).

Table 8.5 shows the predicted binding free energies for B3PW91-D3 (ε=78.4), RI-B3PW91-D3

(ε=78.4), and RI-B3PW91-D3 (ε=76.4) at the Kohn-Sham limit using cc-pV∞Z[D,T], a two-point

extrapolation using cc-pVDZ and cc-pVTZ, and cc(0,-1,-2), a three-point extrapolation using cc-

pVDZ, cc-pVTZ(-1d) and cc-pVQZ(-1f2d) for the CB8 complexes. Using the cc(0,-1,-2) basis

set choice for extrapolation, the binding free energies predicted by RI-B3PW91-D3 (ε=78.4) and

RI-B3PW91-D3 (ε=76.4) lowered the MAE by approximately 1.6kcal mol−1, and 4.2kcal mol−1,

respectively, in regards to using the cc-pV∞Z[D,T] scheme.
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Figure 8.7: Plots for calculated v. experimental results in kcal mol−1 for (a) CB8 (b) OA, and
(c) TEMOA for MMPBSA (blue), RI-B3PW91-D3 (black), and RI-B3PW91 (green). The dashed
lines in each corresponding color refers to the best fit line where the statistical outlier (OA-G2) is
removed for (b) and (c). The dashed gray line is the y = x line.
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Figure 8.8: Error plots from experimental results in kcal mol−1 for (a) CB8 (b) OA, and (c) TEMOA
for MMPBSA (blue), RI-B3PW91-D3 (black), and RI-B3PW91 (green).
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8.4 Discussion

8.4.1 Submission Analysis

For the methods submitted to the SAMPL6 competition, using RI-B3PW91-D3 yielded higher

τ values for OA and TEMOA than using RI-B3PW91 for predicting binding free energies. Since

there are eight guests that are bound to OA and TEMOA, τcrit for α=0.05 is 0.57 for 8 data points.

Only MMPBSA correlates with experiment (|τ | > τcrit), as the τ values are 0.64, 0.29, and -0.21 for

MMPBSA, RI-B3PW91-D3, and RI-B3PW91, respectively. However, after removing the statistical

outlier, OA-G2, from the dataset, τ increases from 0.29 to 0.71, which implies that RI-B3PW91-D3

also correlates with experiment. As shown in Table 8.2, RI-B3PW91-D3 ranked the binding free

energies more correctly thanMMPBSAwhen the outlier is excluded. For TEMOA, bothMMPBSA

and RI-B3PW91-D3 correlate with experiment with τ values of 0.79 and 0.57, respectively, which

are greater than τcrit.

As shown in Figure 8.7a, there is no correlation between experimental and predicted binding

free energies for the CB8 host-guest systems. This is supported by r2 ≈ 0 and τ values of -0.19,

-0.14, 0.12 for MMPBSA, RI-B3PW91-D3, and RI-B3PW91, respectively, which are smaller in

magnitude than τcrit for α=0.05 for 14 data points, which is 0.36. This also shows an inconsistency

when using Grimme’s dispersion correction, which may be due to the abundance of N and O atoms

present in the CB8 host and empirical descriptors for those atoms. For all sets of the host-guest

systems, RI-B3PW91 had a lower MAE and RMSE than RI-B3PW91-D3 by approximately 19.4-

32.6kcal mol−1, but as a tradeoff, resulted in qualitatively better predictions of the binding affinities

(Figure 8.8). This implies that using a dispersion correction overbinds the guest to the host but is

needed for proper ranking.

To estimate the relative performance of the methods, the mean signed error (MSE) was used

to offset the calculated binding free energies. After the removal of MSE from the MMPBSA and

RI-B3PW91-D3 predicted binding free energies for OA and TEMOA, the MAE and the RMSE

values are recalculated to estimate the performance of methods in relative terms as shown in Table
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8.6. This correction improved the MAE and RMSE for MMPBSA by 6.8 and 5.9 kcal mol−1 for

OA and TEMOA, respectively. The correction improved RI-B3PW91-D3 MAE and RMSE by

38.39 and 38.83 kcal mol−1 for OA without the OA-G2 outlier and TEMOA, respectively.

Table 8.6: Predicted binding energies for OA and TEMOA using MMPBSA and RI-B3PW91 after
the removal of mean signed error (MSE).

OA TEMOA
MMPBSA RI-B3PW91-D3 MMPBSA RI-B3PW91-D3

MAE 1.6 ± 0.2a 11.66 [2.81] 3.0 ± 0.2a 3.49
RMSE 1.9 ± 0.4b 17.87 [3.12] 3.7 ± 0.5b 3.95
τ 0.64 0.29 [0.71] 0.79 0.57
r2 0.84 0.44 [0.52] 0.86 0.55

Bracketed values indicate the values after the removal of the statistical outlier (OA-G2).The mean absolute error (MAE) inkcal
mol−1, root mean square error (RMSE) inkcal mol−1, Kendall’s Tau (τ ), and r2 are shown.
aThe uncertainty reported for MAE is the average of the absolute uncertainties.
bThe uncertainty reported for RMSE is the uncertainty of the RMSE with the experimental and calculated uncertainties.

8.4.2 Impact of Truncated Basis Sets

For the QM calculations, the subset of the CB8 host-guest systems was chosen because the

size of these systems is smaller compared to the octa-acid host-guest systems investigated. While

using the RI approximation, lowering ε from 78.4 for pure water to 76.4 to account for the ionic

strength of the solution increased the MAE by 0.56kcal mol−1. However, altering the dielectric

constant from 78.4 to 76.4 to account for the ionic strength of the solution lowered the MAE from

34.85 to 30.65 kcal mol−1 for the three-point extrapolation with truncated triple-ζ and quadruple-ζ

correlation consistent basis sets, yet for RI-B3PW91-D3 (ε=78.4), the MAE only decreased from

34.29 to 32.69 kcal mol−1 (Table 8.5). Therefore, factors that can change the dielectric constant

should be considered when using implicit solvent models for binding free energy predictions.

The use of the cc(0,-1,-2) basis set scheme lowered the MAE for CB8 complexes by 1.60 kcal

mol−1 relative to using cc-pV∞Z[D,T] (Table 8.5) for RI-B3PW91-D3 (ε=78.4). In contrast,

when using truncated basis sets and standard basis sets for binding free energies (Table 8.4), the

MAE decreased by 0.51 kcal mol−1 for the CB8 complexes when using cc-pVTZ as opposed

to cc-pVTZ(-1d) for RI-B3PW91-D3 (ε=78.4). The MAE decreased by 0.31 kcal mol−1 when
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increasing the basis set quality of truncated basis sets for RI-B3PW91-D3 (ε=78.4). Therefore,

within the RI approximation, the decrease in MAE when using cc-pVQZ(-1f2d) highlights the

importance of using higher quality basis sets when extrapolating to the Kohn-Sham limit.

For predictions without the RI approximation, the binding free energies determined using

B3PW91-D3/cc-pVTZ yielded a decrease in the MAE by 7.65 kcal mol−1 relative to B3PW91-

D3/cc-pVTZ(-1d) as shown in Table 8.4. This is believed to be a result from including the four-

center two-electron electron repulsion integrals removed via the RI approximation and the need

for additional polarization when describing interactions with hydrogens between the host and the

guest. This effect also contributes to the increase of 3.25 kcal mol−1 in theMAE between B3PW91-

D3/cc-pV∞Z[D,T] andB3PW91-D3/cc(0,-1,-2). However, as shown in Table 8.5, when employing

truncated basis sets (cc(0,-1,-2)), binding free energy predictions when using RI-B3PW91-D3

(ε=76.4) are more positive and yield a MAE of 0.28 kcal mol−1 lower than B3PW91-D3 (ε=78.4).

This illustrates that within the RI approximation, changing the dielectric constant is as beneficial to

predicting binding free energies as utilizing standard DFT, which is more computationally costly

than RI-DFT.

For the CB8-G6 host-guest complex, which was one of the smaller systems in the set of host-

guest systems, the number of basis functions decreased from 4016 to 3696 with the truncation of

1 d basis function from the cc-pVTZ basis set for hydrogen and decreased from 7640 to 6872 with

the truncation of 1 f and 2 d basis functions from the cc-pVQZ basis set for hydrogen. Since DFT

scales approximately N3 to N5 depending on the complexity of the functional where N is the

number of basis functions, truncated basis sets become a practical option for further decreasing the

computational cost while improving the quantitative prediction of binding free energies for these

host-guest systems as truncating 1 d basis function from cc-pVTZ only affected the binding energy

predicted with cc-pVTZ by ≤ 0.06 kcal mol−1 as shown in Table 4 for RI-B3PW91-D3.
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8.4.3 Impact of the Extrapolation Scheme B-parameter

Another factor that can account for the large deviations between host-guest binding energies

is the parameter used to fit Equation 8.1 for two-point extrapolations. The value of 5.5 proposed

by Jensen for the B-parameter, which was used for atoms and diatomics, caused the extrapolation

curve to converge at a very rapid rate and is reflected in the predictions for the CB8 complexes, as

the binding affinities in Table 8.1 are identical to those predicted with the cc-pVTZ basis set with

the respective method in Table 8.4. Also, when using the three-point extrapolations with truncated

basis sets for the CB8 complexes, the B-parameter yielded an average value of 0.37 (Table 8.8).

Therefore, the value of 0.37 for the B-parameter was applied to two-point extrapolations with cc-

pVDZ and cc-pVTZ to gauge how changing the B-parameter affected the extrapolated binding free

energies (Table 8.7). The results from using 0.37 as the B-parameter in a two-point extrapolation

show that the MAE decreased by 0.84 and 0.42 kcal mol−1 for the CB8 and TEMOA complexes,

respectively. The MAE did not change for the OA complexes. Setting the B-parameter to 0.37 did

not change the τ values for CB8 and OA complexes, however, did increase the τ value from 0.57 to

0.71 for TEMOA.

In addition to applying 0.37 for theB-parameter to predict binding free energies for all host-guest

systems using two-point extrapolations with cc-pVDZ and cc-pVTZ, the value of the B-parameter

was optimized to the value of 0.12 via minimizing the MAE and was applied (Table 8.7). For the

CB8 host-guest systems, shifting the B-parameter from 5.5 to 0.12 had a noticeable impact on the

MAE, which decreased from 34.29 to 29.84 kcal mol−1 for RI-BWPW91-D3. A similar effect was

observed for TEMOA with a decrease in the MAE of 5.07kcal mol−1. There is no notable change

in MAE, RMSE, or τ for the OA complexes with the change in the B-parameter. Furthermore, τ

increases from 0.57 to 0.93 when the B-parameter is changed from 5.5 to 0.12 for TEMOAwith RI-

B3PW91-D3, which provides more evidence that dispersion-corrected functionals should be used

for qualitative predictions of binding free energies since |τ | > τcrit. The observed trends imply that

the value of the B-parameter should be reoptimized when using Equation 8.1 for macromolecules.
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Table 8.7: Predicted binding energies when using different values forB in Equation 8.1 for two-point
extrapolations using cc-pVDZ and cc-pVTZ with RI-B3PW91-D3.

B=5.5 B=0.37 B=0.12

CB8

MAE 34.29 33.45 29.84
RMSE 36.99 36.33 33.34
τ -0.14 -0.14 -0.03
r2 0.00 0.00 0.00

OA

MAE 35.46 [38.39] 35.46 [38.42] 35.43 [38.74]
RMSE 36.41 [38.52] 36.43 [38.54] 36.70 [38.86]
τ 0.29 [0.71] 0.29 [0.71] 0.29 [0.71]
r2 0.44 [0.52] 0.43 [0.52] 0.43 [0.54]

TEMOA

MAE 38.83 38.41 33.76
RMSE 39.03 38.60 36.30
τ 0.57 0.71 0.93
r2 0.55 0.75 0.58

Bracketed values indicate the values after the removal of the statistical outlier (OA-G2).The mean absolute error (MAE) inkcal
mol−1, root mean square error (RMSE) inkcal mol−1, Kendall’s Tau (τ ), and r2 are shown.

Compared to other submissions employing QM methods in the SAMPL6 Host-Guest binding

challenge, our approach yielded quantitatively poorer predictions that may have resulted from the

approximations considered in this work. In our approach, only a single conformational state of

the guest binding to the host system was considered. Additionally, the representative structures of

the individual host-guest systems obtained from clustering the MD trajectories were not optimized

with QM methods and is reflected in our model chemistries.

8.4.4 Impact of Representative Geometries

The representative geometries had a notable impact on the binding free energies. For example,

the orientation of the substituted cyclohexene ring relative to theOAhostmight be the potential cause

of OA-G2 being a statistical outlier (Figure 8.5). Comparing OA-G2 and TEMOA-G2 in Figures 8.5

and 8.6, where the only difference is the four methyl groups on the host, the structure of the OA-G2

complex has a smaller binding pocket than the TEMOA-G2 complex. While the experimental data

suggests that G2 has a stronger binding affinity towards OA than TEMOA, MMPBSA suggests the
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opposite. More sampling of representative structures would aid in depicting whether the anomalous

binding behavior of OA-G2 correlates with the positive binding free energies predicted with DFT.

Although the only difference between CB8-G6 and CB8-G7 was the expansion of the ring for

the guest by one CH2 group, the predicted binding affinities for the CB8-G6 and CB8-G7 complexes

differed by approximately 17.0kcal mol−1. This may be due to the binding poses of CB8-G6 and

CB8-G7 complexes, as G6 bound in a perpendicular fashion inside the binding pocket relative

to the host whereas G7 bound in a parallel fashion inside the binding pocket. This would affect

nearby electrostatic interactions and why for B3PW91-D3 (ε=78.4), RI-B3PW91-D3 (ε=78.4), and

RI-B3PW91-D3 (ε=76.4), there was a 3.00 kcal mol−1 difference in the change of binding energies

between CB8-G6 and CB8-G7 when improving basis set quality via the basis set scheme used

for extrapolation (Table 8.5). Ergo, more sampling of chemically relevant structures or enhanced

sampling methods can provide a more robust depiction of the host-guest binding environment.

However, these two methods do not correlate to the CB8 binding free energies since the τ

values are -0.19 and -0.14 for MMPBSA and RI-B3PW91-D3, respectively. This may result from

insufficient sampling as the CB8 guests are larger molecules with higher conformational flexibility.

For example, the size of CB8-G4 does not allow the guest to fit entirely into the binding cavity.

As a result, most of the CB8-G4 molecule is weakly bound to the host from outside of the binding

pocket and only one of the three triethyl amines within the guest can fit into the pocket as shown

in Figure 8.4. Each triethyl amine group could bind to the host from inside the binding cavity,

which would result in alternative binding conformations and affect the overall binding free energy.

To better understand binding free energies of these large structures, more sampling of the different

binding modes is needed to generate weighted averages based on the thermodynamic stability of

predicted poses.

The results for OA and TEMOA systems illustrate that MMPBSA and RI-B3PW91-D3methods

can be used to qualitatively rank binding energies of small molecules. Among those two methods,

MMPBSA is computationally less expensive, but RI-B3PW91-D3 predicted the relative binding

affinities better for OA and TEMOA host-guest systems. However, the MAE and the corresponding
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error plots (Figure 8.8) indicate that both methods overestimated the binding free energies. The

MAE reported for the OA and TEMOA complexes state thatMMPBSA and RI-B3PW91-D3 predict

overbinding by 6.8 and 35.5kcalmol−1, respectively, forOAcomplexes and 5.9 and 38.8kcalmol−1,

respectively, for TEMOA complexes. For all systems, the MMPBSAmethod was the best approach

overall in terms of quantitative predictions.

8.5 Conclusions

When implementing DFT for predicting host-guest binding affinities, the use of Grimme’s D3

dispersion correction was essential for qualitatively predicting the binding free energies for the OA

and TEMOA systems even though theMAE exceeded 35.0 kcal mol−1 for both the OA and TEMOA

systems. When using implicit solvent models, factors that can change the dielectric constant, such

as the ionic strength of the solution, are relevant for predicting binding free energies, as lowering

the dielectric constant lowered the MAE. While RI-B3PW91-D3 reduced the computational cost

relative to B3PW91-D3, B3PW91-D3 yielded a lowerMAE. To attain more quantitatively favorable

results, using cc-pVQZ(-1f2d) for hydrogen atoms reduces the computational cost relative to using

cc-pVQZ while simultaneously providing a better standard for extrapolating to the Kohn-Sham

limit than only utilizing cc-pVDZ and cc-pVTZ for extrapolations. Also, truncating 1 d basis

function for hydrogen atoms had a very small effect on predicted binding free energies obtained

with cc-pVTZ, indicating that truncated basis sets are a viable option to reduce the computational

cost while yielding near-identical binding free energies. With the extrapolation scheme utilized, the

B-parameter should be revised formacromolecules since reducing the value of theB-parameter from

the proposed 5.5 to 0.12 reduced the MAE while providing extrapolated binding energies that were

in alignment with those predicted using quadruple-ζ level basis sets. Sampling of different binding

poses becomes pertinent for future investigations as binding orientation in the pocket affected the

predicted binding free energies by approximately 17.0 kcal mol−1 when using RI-B3PW91-D3 for

guests that only differed by one CH2 group.

All methods presented predict overbinding character for these host-guest systems except for
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RI-B3PW91 for CB8 host-guest systems. MMPBSA and RI-B3PW91-D3 worked well at ranking

binding affinities for smaller guests regardless of the size of the host. The CB8 guest molecules with

a larger van der Waals volume yielded poor prediction of binding free energy due to their higher

conformational flexibility, which can complicate predicting binding poses. To better understand

binding free energies of these large structures, enhanced sampling methods can be used, and

multiple host-guest binding poses can be sampled.
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APPENDIX

Table 8.8: Fitting parameter values obtained when using Jensen’s extrapolation scheme for each
component in calculating the binding energy (Equation 8.1). The host and guest are counterpoise-
corrected before the extrapolation was performed.

Complex Complex Host Guest
CB8-G0 0.37 0.36 0.41
CB8-G1 0.36 0.35 0.37
CB8-G2 0.36 0.36 0.37
CB8-G3 0.36 0.36 0.37
CB8-G4 0.32 0.32 0.34
CB8-G5 0.38 0.38 0.39
CB8-G6 0.39 0.39 0.40
CB8-G7 0.38 0.38 0.40
CB8-G8 0.37 0.37 0.39
CB8-G9 0.39 0.39 0.39
CB8-G10 0.38 0.38 0.38
CB8-G11 0.39 0.39 0.40
CB8-G12 0.36 0.35 0.37
CB8-G13 0.39 0.38 0.40

Average 0.37 0.37 0.38
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Figure 8.9: Plots for the correlations calculated after the mean signed errors are removed from the
results in Tables 8.1-8.3 versus experimental results in kcal mol−1 for (a) OA, and (b) TEMOA for
MMPBSA (blue), RI-B3W91-D3 (black). The dashed lines in each corresponding color refers to
the best fit line where the statistical outlier (OA-G2) for RI-B3PW91-D3 is removed for (a). The
dashed gray line corresponds to the y=x line.
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CHAPTER 9

CONCLUDING REMARKS

In this dissertation, several quantum chemical strategies have been shown to be effective for

thermodynamic property prediction for main group and transition metal thermochemistry. This

includes utilizing density functional methods predicting the pKas of transition metal hydrides and

utilizing ab initio composite strategies towards main group thermochemistry, vibrational potential

energy surfaces, and organometallic catalysis. Applications include modeling frontier orbitals and

predicting host-guest binding interactions with density functional methods as well.

In Chapter 3, a QM/QM scheme utilizing the ONIOM method was used to predict the pKa of

late transition metal hydrides with bidentate phosphine ligands. In predicting the pKa of TM

hydrides via the choice of density functional, ab initio method, solvation model, basis set, cavity

model, and model layer size within an ONIOM scheme, the optimal scheme is one that utilizes two

density functionals, one effective at describing the metal center and immediately bound atoms, and

another effective at describing ligands comprised of main group atoms. This was B3LYP-D3/aug-

cc-pVTZ:B97-D3/SDD using the SMD solvation model and default cavity model. Using ab initio

methods underestimated the pKa while the use of a single functional largely overestimated the pKa.

In future studies for these systems, the methodology presented can be expanded to sterically bulkier

bidentate phosphine ligands for Group 10 hydrides utilized for redox potentials to gauge efficacy.

In general studies involving transition metal complexes with sterically bulky ligands, this approach

can be utilized to target functional efficacy for transition metal centers and main group ligands

independently as different tiers of functionals yielded lower deviations from the experimental pKas.

In Chapters 4 and 5, the domain-based local pair natural orbital (DLPNO) methods were

utilized within the correlation consistent Composite Approach (ccCA) and applied to main group

and transition metal thermochemistry. DLPNO-ccCA yielded lower mean absolute deviations than

ccCA for the enthalpies of formation for 119 closed shell main group molecules with a ~87%

CPU time reduction relative to ccCA. As DLPNO-ccCA was implemented for linear alkanes up
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to octane, the CPU time was reduced by up to 97% for octane relative to ccCA given the lower

scaling of DLPNO-CCSD(T) relative to CCSD(T). DLPNO-ccCA was also successfully applied to

bioorganic complexes from the S66 dataset and the coronene dimer, which marks one of the largest

molecules ever examined with a composite strategy, that exhibit noncovalent interactions.

DLPNO-ccCA can therefore be used to predict thermodynamic properties of organic and

bioorganic molecules typically outside the range of ab initio composite approaches based on

molecule size such as per- and polyfluoroalkyl substances (PFAS). DLPNO-ccCA could also

be utilized to examine thermodynamic properties of drug-like molecules, like pKa or partition

coefficients, as these molecules exhibit multiple hydrogen-bonding sites and more aromatic rings.

Thus, DLPNO-ccCA increases the applicability of ab initio composite strategies for main group

species based on the reduction of computer resources and computational cost.

DLPNO-ccCA was implemented to model organometallic catalysis utilizing the variant of

ccCA targeting 4d transition metal chemistry, rp-ccCA. Denoted as DLPNO-rp-ccCA, this

method was successfully applied towards hydroformylation, which is the largest volume

homogeneous chemical reaction in industry for chemical production, and gas phase ligand

dissociation, which targets modeling metal-ligand interactions with ab initio approaches. A

continuation of this study would include modeling more metal-ligand interactions prevalent in

organometallic catalysis with DLPNO-rp-ccCA and expanding the sample size to include more

catalysts utilized in hydroformylation, where the linear isomer is favored, and asymmetric

hydroformylation, where the branched isomer is favored. The DLPNO-ccCA variants for

transition metals could also be applied towards 3d transition metals to further increase the

possible molecule space for ab initio composite methodologies.

In Chapter 6, ccCA, B3LYP, and TPSS were utilized to generate potential energy surfaces

that were then used to predict anharmonic vibrational frequencies with vibrational self-consistent

field (VSCF) theory. Overall, with ccCA potentials, the mean absolute deviation for calculated

frequency from experiment was lower than with DFT potentials. With DFT-generated potentials,

functional choice had a more significant effect on the predicted frequency than basis set choice. A
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multilevel approach that utilizes the single mode potential energy curves with DFT and the coupled

vibrational modes generated with ccCA yields lower frequencies than if only DFT were utilized,

which is useful for expanding to larger polyatomic systems. For aminophenol, the errors obtained

with VCIPSI-PT2 were lower than those for scaled harmonics, indicating the success of utilizing

this approach to characterize specific vibrations for polyatomic systems.

Future work on this project could include the investigation of astrochemical molecules with

unusual binding behavior and utilizing different variants of ccCA, such as completely renormalized

ccCA (CR-ccCA(2,3)) to account for bond-breaking behavior occurring in vibrational motion. This

approach can also be implemented to metal-carbonyl stretching as well as uncovering vibrational

behavior not accounted for by the harmonic approximation. Given the large number of electronic

structure calculations involved with generating potential energy surfaces for polyatomic systems,

DLPNO-ccCA could also be considered to investigate vibrational phenomena while reducing the

CPU time relative to ccCA. As well, multilevel approaches can be utilized to investigate the full

anharmonic mode-mode coupling potential energy surfaces to model infrared (IR) spectra that

more closely resemble experimental IR spectra than using the harmonic oscillator approximation.

For Chapter 7, calculations were done to complement synthesis of the zinc porphyrin-fullerene

supramolecular dyad ((F15P)Zn–C60) and the C60 – (F15P)Zn:Py-TTF and C60 – (F15P)Zn:Py-

phTTF triads via modeling the molecular electrostatic potential and frontier orbitals with M06-

2X/6-31G*. For the dyads, the frontier HOMOwas on the (F15P)Zn and LUMO on the C60 making

them the donor and acceptor sites, respectively. The HOMO was shifted to the tetrathiafulvalene

site without altering the location of the LUMO for the triads.1 For modeling electronic structure

and frontier orbitals for supramolecular dyads useful in artificial photosynthesis, time-dependent

density functional theory (TDDFT) combined with implicit solvent models can be used to model

UV-Vis absorption spectra to verify observed photochemical phenomena for these systems, such as

the transition at ∼400 nm indicating transitions occurring at the porphyrin.

In Chapter 8, molecular dynamics andDFTmethods were used to predict the binding interaction

energies of biological host-guest systems for the sixth Statistical Assessment of Modeling Protein

253



and Ligands (SAMPL) blind prediction competition.2 Modeling the host-guest systems with RI-

B3PW91-D3 predicted qualitative ranking of binding affinity to each of the hosts, exhibited by

the Kendall’s tau (τ ) statistic while predicting binding energies tens of kcal mol−1 away from

experimental binding interaction energies. In the future, more orientations could be sampled

and binding poses obtained through molecular dynamics simulations could be optimized with

density functional theory. As well, different density functionals can be utilized to evaluate the

binding interactions of similar systems to provide a gauge for appropriate functionals for host-

guest binding. This would provide a linear regression technique that can be implemented to

predict binding interaction free energies. In a similar vein, regression-based machine learning

approaches can be used with parameters inputted frommolecular dynamics and electronic structure

calculations, opening a new avenue for thermodynamic property prediction.
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